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Abstract

Two of the most important issues in wireless systems are addressed: channel estima-
tion and channel coding. The frequency domain channel estimation techniques are used
to estimate the channel in a WiMAX system (standard IEEE 802.16e [1]-[2]). In the
same system, Low-Density Parity-Check (LDPC) codes [3, 4] are proposed and perform
quite well. In this thesis decoding techniques for these codes are studied: a modifica-
tion to the Message Passing Algorithm (MPA) [5] is proposed in order to reduce the
number of multiplications. Then two alternative decoding methods for LDPC codes
are explored: the Priority First Search Algorithm (PFSA) [6], [7], [8] and the Genetic
Algorithm (GA) (9], [10], which transform the decoding problem into a search problem.

Flnally, an alternative coding scheme is proposed: concatenation of short LDPC
and turbo codes as outer and inner codes, respectively. Aim of this concatenation is a
coding system that performs very well for all ranges of SNR’s and respects some delay

constraints.






Sommario

In questa tesi sono stati considerati due dei pit importanti argomenti di ricerca per
i sistemi wireless: la stima e la codifica di canale. Le tecniche per la stima di canale in
frequenza sono state applicate per stimare il canale in un sistema WiMAX (Standard [1]
and [2]). Nello standard che definisce questo sistema, vengono proposti, come sistema
di codifica opzionale, i Low-Density Parity-Check (LDPC) codes che sono codici la cui
matrice di paritd ha una bassa densita di 1 ed hanno prestazioni molto buone.

In questa tesi alcune tecniche per la decodifica di questi codici sono state studiate:
allo scopo di ridurne il numero di moltiplicazioni, é stata proposta una modifica al Mes-
sage Passing Algorithm (MPA), I’algoritmo di decodifica che viene comunemente usato.
Sono stati, poi, analizzati due algoritmi alternativi per la decodifica degli LDPC: il Pri-
ority First Search Algorithm (PFSA) ed il Genetic Algorithm (GA), che trasformano il
problema della decodifica in un problema di ricerca.

Infine viene proposto uno schema di codifica alternativo, consistente nella concate-
nazione di LDPC e turbo codici con parole corte allo scopo di scoprire un sistema
di codifica che abbia buone prestazioni per tutti gli SNR e rispetti alcune specifiche

stringenti sui tempi di ritardo.
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Chapter 1

Introduction

Channel estimation and coding are two of the most important issues in the new
generation wireless systems. This work is about wireless systems and some important
standard have been presented, for example: WiMAX standard [1] - [2] TGnSync [11] or
WWise [12] for IEEE 802.11n and 3GPP-LTE [13], but in this work our attention will

be focused on the mobile part of the first one.

The IEEE 802.16 telecommunications standard [1| envisions broadband wireless ac-
cess technology as a means of providing wireless “last mile” broadband access in a
metropolitan area network (MAN). The performance and services should be compa-
rable or better than traditional DSL, cable or T1/E1 leased line services. Especially
in areas beyond the reach of DSL and cable, IEEE 802.16 could offer a cost-effective
broadband access solution. The term WiMax (worldwide interoperability for microwave
access) has become synonymous with IEEE 802.16, promoting and certifying compati-
bility and interoperability of broadband wireless products. In its original release 802.16
focused on line-of-sight (LOS) applications in the licensed 10 to 66 GHz frequency range
based on single carrier (SC) transmission (WirelessMAN-SC). In a first amendment non-
line-of-sight (NLOS) applications in licensed and unlicensed bands in the 2 to 11 GHz
frequency range were covered (WirelessMAN-SCa). To meet the requirements of a low
cost solution in a multipath environment, orthogonal frequency division multiplexing
(OFDM) was chosen as physical layer transmission technique (WirelessMAN-OFDM).
To deliver optimum broadband wireless access performance, the concept of scalable
OFDMA (orthogonal frequency division multiple access) was adopted. The architec-
ture is based on a scalable subchannel bandwidth using a variable sized FFT according
to the channel bandwidth. In the standard IEEE 802.16e, [2], there is an ongoing evo-
lution of IEEE 802.16 addressing mobile applications thus enabling broadband access
directly to portable devices like smartphones, PDAs, notebooks and laptop computers.

The Orthogonal Frequency Division Multiplexing (OFDM) is a spectrally efficient
form of frequency division multiplexing (FDM) and divides its allocated channel spec-
trum into several subchannels. It is used to overcome the inter-symbol interference
(ISI), through the cyclic prefix (CP), that is longer than the order of the channel im-
pulse response (CIR). OFDM is inherently robust against frequency selective fading,
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since each subchannel occupies a relatively narrow-band, where the channel frequency
characteristic is nearly flat. We note that OFDM can be seen as an effective way of
increasing data rates and simplifying the equalization in wireless communications, be-
cause only a simple one-tap channel equalizer in the frequency domain is required. In
the end, we recall also that OFDM is computational efficient, because the fast Fourier
transform (FFT) can be used to implement the modulation and demodulation opera-
tions. However, OFDM has some disadvantages. One is the high peak-to-average power
ratio, another one is not achieved over a multipath fading channel.

In this work, first of all we deal with the problem of the channel estimation in a
wireless OFDM system and then with the channel coding for the same system. We also
consider some decoding techniques for the Low-Density Parity-Check (LDPC) codes,a
king of codes included in most of the latter wireless systems, due to their near-capacity
error correction.

Contents of the thesis are divided in Chapters as described following:

e Chapter 2 : the problem of the channel estimation is addressed. First of all
we briefly describe the known channel estimation algorithms in time and
frequency domain. Then considering we are interested in their performance in
an OFDM system we describe the channel estimation in the frequency domain
for an OFDM system. Algorithm such as Least Square (LS), Minimum Mean
Square Error (MMSE), Linear Minimum Mean Square Error (LMMSE) [14]
are described assuming we know all the transmitted symbols and only pilots.
Also an adaptive algorithm [15] in the frequency domain is described; this
assumes to have an initial channel estimation and performs the tracking of
the channel which is assumed slowly time-variant.

Aim of this study is the selection of a channel estimation algorithm which
gives good performance in a WiMAX system. To perform this selection we
implemented a quasi-compliant WiMAX standard simulator! and valuated
the performance and the Mean Square Error (MSE) for the LS algorithm,
two variation of the LMMSE algorithm, one dependent on the transmitted
data and the other not, and the adaptive frequency algorithm. Result show
that the LS and the LMMSE dependent on the transmitted data algorithms
perform very well, whereas the adaptive one performs very well for speeds
below 50 km/h, but experiences a performance loss for speed equal to 130
km /h.

Performance is evaluated per frame and we consider a system with 512 sub-
carriers, coded with a convolutional code of rate 1/2 and modulated through
a QPSK modulation. We perform the first channel estimation on the pream-
ble OFDM symbol through the LS or the LMMSE algorithm and than we
track the channel over the 24 OFDM symbols using the LS, the LMMSE or

!For quasi-compliant WiMAX standard simulator we mean a simulator with the parameters given
in the standards [1] and [2]|, but where we do not implement the subcarriers permutation and all the
code-modulation combinations.



the adaptive algorithm applied to the pilots. The channel is assumed to be
constant in an OFDM symbol and to vary very slowly between two adjacent
symbols. These assumptions are correct until the mobile speed is less than
50 km /h, but they are not true anymore when the mobile speed is 130 km /h.

e Chapter 3 : a way to improve the performance of the system considered in
Chapter 2 is given by performing a joint channel estimation and data detec-
tion. This can be performed through the Expectation Maximization (EM)
algorithm. In this chapter, first the EM algorithm [16] is described and than
its application in an OFDM system to hit the mark of jointly estimate the
channel and detect the data [17]. This approach can be considered a semi-
blind method because known and unknown symbols are simultaneously used
to estimate the channel.

This algorithm is very complex and its usage would be accepted only if the
gain over a separated estimation and detection is significant. Unfortunately
results shown in this chapter, for the system described in Chapter 2 do not

present this significant gain.

e Chapter 4 : Coding for error correction is one of the many tools available for
achieving reliable data transmission in communication systems. For a wide
variety of channels, the noise channel coding theorem of the Information
Theory proves that, if properly coded, information is transmitted at a rate
below channel capacity, then the probability of decoding error can be made
to approach zero exponentially with the code length.

This Chapter is the introduction to the channel coding problem and in par-
ticular it gives a quite complete description of the Low-Density Parity-Check
(LDPCQC) codes [3]-[4] and their decoding techniques.

After their discovery in the early 1960s the LDPC codes were largely for-
gotten, possibly because computer of the time could not simulate the per-
formance of this codes with meaningful lengths and of the computational
complexity for data decoding. In our days, they have drawn much attention
due to their near-capacity error correction performance. They have a big
disadvantage and a big advantage: the first is the non-existence of a good
construction method and the second one is given by the decoding algorithm
whose complexity is linear versus the block length. In fact, the decoding
operation is always performed with an Iterative Decoding based on a Be-
lief Propagation (IDBP) [18] algorithm which is a symbol-by-symbol soft-in
soft-out decoding algorithm which iteratively processes the received symbol
in order to improve its reliability, based on the parity-check sums computed
from the hard decision of the received symbol. The algorithm is commonly
known as Message Passing Algorithm (MPA) [5].

e Chapter 5 : The LDPC decoding algorithm has low complexity, if compared
with the turbo decoding algorithm, used to decode the strong LDPC code
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competitors, but actually is still quite complex. This is the reason why in
this Chapter a modification to the MPA algorithm is proposed in order to
reduce the number of multiplications. Results are quite promising even if the
not-a-number cases need to be handled.

Observations made on this modification suggested the study of what would
happen if the input to the MPA is quantized rather than the real valued.
Once a time, results are shown in this Chapter.

Finally, about the LDPC decoding, we analyzed performance for two different
algorithms which transform the decoding problem into a search problem. The
first considered algorithm is the Priority First Search Algorithm (PFSA) [6],
[7] and [8], proposed for the convolutional codes and more in general for all
the codes which can be represented with trellis.

From the parity-check matrix of the LDPC code we can construct the trellis.
The problem is that it is very big and the PFSA is not efficient. To deal
this problem we propose a variation of the PFSA: we perform the algorithm
only on the first £ bits, i.e. on the systematic part, than we re-encoded the
k bits and chose the codeword with the minimum distance from the found
one. Results are shown.

The second proposed algorithm is a genetic algorithm [9], [10]. It applies
operations from natural genetics to guide the trek through the search space.
The problem here is the definition of the parameters, which are code-based.
For the moment a generalization to find out these parameters doesn’t exist.

e Chapter 6 :LDPC codes have very good performance, but also turbo codes [19],
[20] and [21] are very good.
Exactly, turbo codes performs very well for BER’s above 10~# (waterfall per-
formance), however they have a significant weakened performance at BER's
below 107°: this phenomenon is known as error floor. Another important
observation, we need to keep in our mind, is that, in turbo decoding, only in-
formation bits are decoded and they cannot be used for error detection. The
poor minimum distance and lack of error detection capability make these
codes perform badly in terms of block error probability. Poor block error
performance also makes these codes not suitable for many communication
applications. On the contrary, finite geometry LDPC codes do not have all
the above disadvantages of turbo codes, except that they may not perform
as well as turbo codes for BER’s above 107%. Other reasons, which could
justify the choice of a LDPC rather than a turbo code are given by a very
low complexity decoding, compared to the complexity if the MAP algorithm
used for the turbo codes, and the fact that LDPC codes have an inherent
interleaving effect and so, if it’s concatenated with another code, interleaver
is not required.
Straight conclusion from the above observation is that the advantages of ex-
tremely good error performance of turbo codes for BER’s above 10~* and the



advantages of finite geometry LDPC codes such as no error floor, possessing
error detection capability after decoding and good block error performance,
can be combined to form a coding system that performs well for all ranges
of SNR’s.

Thus, in this Chapter, we propose the concatenation of short LDPC and
turbo codes, as inner and outer codes, respectively [22], [23], [24] and [25].
The choice of short codewords has two justifications: first both the codes
perform well for long codewords, but this introduce some delay, which is not
suitable for some kinds of system transmission, for example speech. Second,
if the codeword is relatively short, we analyze the output at the turbo de-
coding and try to construct an "ad hoc" LDPC decoder which is suitable
for decoding what the turbo code cannot correct. This idea is useful also to
avoid the block interleaver usage, which is not suitable, because it introduces
more delay.

Results for this concatenation scheme are represented for overall rates equal
to 1/3, 5/16 and 1/4. The most promising ones are those for the 1/4 rate,
the other two cases don’t show interesting results and for 1/3 rate obtained
with a turbo code 1/2 and a LDPC code 2/3 we observe that the LDPC
cannot recover the loss of the performance due to the turbo puncturing.

e Chapter 7 : briefly describes those parts of the WiMAX standard which have
been of interest for the implementation of a downlink simulator standard

compliant.

e Chapter 8 : the parameters used in the simulated system are listed and the
results for different channel estimation and coding are represented.
The considered codes are the standard defined convolutional code and LDPC
code applied with the concatenation rule defined for the convolutional code.
Beside these standardized codes we plot also the performance for the con-

catenation scheme with overall rate equal to 1/4.

e Chapter 9 : conclusions are listed.






Chapter 2

Channel estimation in OFDM
systems

In recent years, there has been a lot of interesting applying orthogonal frequency di-
vision multiplexing in wireless and mobile communication systems because of its various
advantages in lessening the severe effects of frequency selective fading.

Wireless digital communication systems using coherent signaling schemes, such as
quadrature amplitude modulation (QAM), require estimation and tracking of the fading
channel and so a more complex receiver than for differential modulation schemes, is
needed [26].

In particular, in orthogonal frequency division multiplexing (OFDM) systems DPSK
is appropriate for relative low data rates, but for more spectrally-efficient OFDM sys-
tems, coherent modulation is more appropriate and, in this situation, channel estimation
and tracking are required [27]. To this purpose, known symbols, usually called pilots,
are often multiplexed into the data and channel estimation is performed by interpola-
tion. Channel estimation can be avoided by using differential detection [28], at the cost,
however, of a 3 dB loss in signal-to-noise ratio (SNR) [29].

In the design of wireless systems the channel is usually assumed to have a finite-
length impulse response. A cyclic extension, longer than this impulse response, is
inserted between consecutive symbols in order to avoid inter-symbol interference and
preserve the orthogonality of the subcarriers. Generally, the OFDM system is designed
so that the cyclic extension is a small percentage of the total symbol length [30].

Several pilot-aided channel estimation schemes for OFDM applications have been
investigated, and the ones listed above provide a good sample of the results obtained in
this area. In particular, the method proposed in [31] provides channel estimates based
on piecewise-constant and piecewise-linear interpolations between pilots. It is simple
to implement, but it needs a large number of pilots to get satisfactory performance.
In [26], a low-rank approximation to the frequency domain Linear Minimum Mean
Squared Error estimator (LMMSE) is proposed, making use of singular value decompo-
sition techniques. The drawback of this approximation is that it requires knowledge of
the channel frequency correlation and the operating SNR. In practice, the system can be
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designed for fixed values of SNR and channel correlation at the expense of performance
losses. The LMMSE studied in [14] exploits channel correlations in time and frequency
domains. Like the scheme in [26], it needs knowledge of the channel statistics and the
operating SNR. Although it can work in a mismatched mode, its performance degrades
if the assumed Doppler frequencies and delay spreads are smaller than the true ones. In
[32], channel estimation is performed by two-dimensional interpolation between pilots.
Like the method in [14], it is rather robust to Doppler, even though it exhibits perfor-
mance degradations with lower Doppler frequencies. Similar techniques are presented in
[33] and [34]. Finally, [35] investigates the Maximum Likelihood Estimator (MLE). No
information on the channel statistics or the operating SNR is required in this scheme.

These methods do not make any assumptions about the channel model, and hence
the dimension of the estimation problem can be quite large. However, the radio channel
in a wireless communication system is often characterized by the multipath propagation
and in large cells with high base station antenna platforms, the multipath propagation
is aptly modeled by a few dominant specular paths, typically two to six [36].

A parametric channel model can be used to represent this type of channel, in fact,
when the channel correlation matrix is constructed based on this channel model, the
signal subspace dimension of the correlation matrix can be effectively reduced and so
the channel estimation performance improved [37].

2.1 Channel model

The channel impulse response is treated as a time limited pulse train of the form
[28]:

L—1
g(t,7) = ar(t)d(r — (t)) (2.1)
k=0

where {aj(t)} are the different path complex gains, {73 (t)} are the different path time
delays and L is the number of paths. {ay(t)} are wide-sense stationary (WSS) narrow-
band complex Gaussian processes with the so called Jake’s power spectrum [38] and
the different path gains are uncorrelated with respect to each other where the average
energy of the total channel energy is normalized to one. We observe also that each
Ti(t), k=0,1,..., L — 1 is smaller than the length of the cyclic prefix, i.e., the entire
impulse response lies inside the guard space.

The input/output relation is
y(t) = /dTh(t,T)x(t —T)
L—1
= S an(t)at - () 22)
k=0

where y(t) is the received signal at time ¢ and z(t) is the transmitted signal. In the
discrete time model, T, is the sample time and we denote the sampled signals by y(k) =
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y(kT.), hi(n) = Toh(kT.,nT,), z(n) = x(nT,), so we get:

L—1
y(k) = 3 he(n)a(k - n) + (2.3)
n=0

where {n;} is the white Gaussian noise sequence and {hy(n)} is a set of L tap coefficients

of an equivalent discrete-time channel impulse response.

2.2 Linear equalization

To perform the estimation and tracking of this kind of channel we could use an
adaptive linear filter especially one or more Winner filters [39], [40].

In this section we propose a brief resume of the notions of adaptive linear filtering and
adaptive linear equalization existing in literature. These algorithms have been proposed
to minimize the performance index of a system and, since in digital communication the
meaningful measure of performance is the average probability of error, we want to
minimize this performance index.

First of all, considering channels with ISI, we define two parameters:
- @ is the cardinality of the alphabet,
- L is the number of interfering symbols, i.e. it is the channel dispersion length,

then we observe that the equalizer is a linear transversal filter, in fact the computational
complexity is a linear function of the channel dispersion length L. The input to this
filter is the received signal:

L—-1
y(k) = hi(n)a(k —n) + (24)
n=0

where, as said above, {n;} is the white Gaussian noise sequence and {hy(n)} is a set of
L tap coefficients of an equivalent discrete-time channel impulse response. We observe
that y(k), k = 0, 1, ... are the received symbols. The output of the equalizer with

coefficients ¢;, j = —K, =K + 1, ..., K is the estimate of the transmitted symbols
x(k):
K
(k)= ) cy(k—j). (2.5)
j=—K

Unfortunately it has been shown that the dependence of the average error probability
from the coefficients c¢; is high non-linear, so there are two ways of optimizing the
coefficients [41]:

1. peak distortion criterion,

2. mean square error criterion.
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2.2.1 Peak distortion criterion

Peak distortion criterion is the worst case inter-symbol interference at the output of

the equalizer and the criterion is based on the minimization of this performance index.

We observe that the cascade of the discrete time linear model having an impulse
response h(n) and an equalizer having an impulse response ¢, can be represented by a
single equivalent filter having the impulse response:

“+oo

g(n) = Y ¢ih(n—j). (2.6)
j=—00
In this case the output is
+oo
2(k) = qo(k) + > x(n )+ D mey (2.7)
n#k j=—00

where the first term, on the right hand side, is the scaled version of the desired symbol
(we should normalize g to 1) and the second is the inter-symbol interference.

If we consider an equalizer with an infinite number of taps, the peak distortion, i.e.

the peak value of ISI is:
+oo

D)= >, lan) (2.8)

n=—00,n#0

To obtain D(c) = 0, i.e. to minimize the peak distortion, we must impose:

qgn) = 0  Vn#0 (2.9)

and using the Z-transformation we obtain:

1
Q(z) =F(2)C(z) =1 = C(z) = F2) (2.10)
If the equalizer has a finite length, the peak distortion is:
K+L-1
Die)= > lan) (2.11)
=—K,n#0

and we observe that it is impossible to completely eliminate IST and that the peak dis-

tortion is a convex function of ¢;, so it has a global minimum and no relative minimum.

Nevertheless, if:

1 L
ozh—z_: n)| <1, (2.12)
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then the ISI is not severe enough to close the eye and so D(c) is still minimized choosing:

gin) = 0 1<|n|<K (2.13)

2.2.2 Mean square error criterion

The coefficients ¢; are adjusted to minimize the mean square values of the error:
e = z(k) — z(k) (2.14)
and so the performance index for the MSE criterion is:
J = Ellex|’] = Ellz(k) — &(k)|*] (2.15)

which is a quadratic function of the coefficients c;.

2.3 Channel estimation

As said in the Introduction to the Chapter, we can consider two different types
of estimators: the Mazimum Likelihood (ML) estimator, which doesn’t require the
knowledge of the channel statistics or the performing SNR, and the ones which need
this knowledge, such as the Minimum Mean Square Error (MMSE) estimator and the
List Square (LS) estimator.

These two types of estimators are based on different assumptions about the Channel
Impulse Response (CIR). In the former, the CIR is viewed as a deterministic but un-
known wvector, whereas in the latter, it is regarded as a random vector whose particular
realization we want to estimate. Correspondingly, the Mean Squared Error (MSE) in
the ML estimator is understood as an average over the observed data, whereas in the
MMSE estimator, the average is taken not only over the data but over the CIR prob-
ability density function as well. It follows that the MMSE estimator has the minimum
MSE "on the average", i.e., with respect to all the CIR realizations.

In [27], it is shown that the ML estimator achieves the Cramér-Rao lower bound
(CRLB) [42], and therefore, it is the minimum-variance unbiased estimator. No further
improvement in MSE is possible as long as the CIR is viewed as a deterministic quantity
and the estimator is unbiased. On the other hand, the MMSE estimator has prior
information on the CIR and can exploit this information to do better than the ML
estimator. These considerations prompt one important question: is it conceptually
possible for the MMSE estimator to perform below the CRLB? The answer is affirmative
since the CRLB is a bound only in the framework of the classical approach to estimation
(where CIR is a deterministic quantity). When dealing with MMSE estimator, on the
other hand, a Bayesian approach is adopted, and the corresponding estimation accuracy
depends on prior information. In principle, performance can be as good as desired,
provided that sufficient prior information is available.
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Having established the MMSE estimator can do better than the CRLB, purpose of
[27] is the understanding of how much better it can do in practice and under which
operating conditions. After the comparison of the ML and the MMSE estimators we
can say that the main advantage of ML estimator over MMSE estimator is that it
does not require knowledge of the channel statistics and the SNR, and therefore, it
is simpler to implement. On the other hand, under certain operating conditions, the
MMSE estimator has better accuracy as it exploits prior information about the channel.
Specifically, the following has been found in [27]:

- The channel estimates at the edges of the bandwidth are worse than those in the

middle. A possible remedy is to adopt a denser pilot spacing at the edges.
- MMSE estimator performs better than ML estimator at low SNR.

- At intermediate and high SNRs, the two schemes have comparable performance,
provided that the number of pilots is sufficiently larger than the duration of the
CIRs. Comparisons have also been made with the estimators proposed in [31],
which makes a piece-wise liner interpolation of the estimated CIR, and [32], which
holds for a general time-varying channel. It turns out that the loss in performance
of the second one with respect to ML estimator and MMSE estimator is limited,
whereas that of the first one may be significant, unless the number of pilots is

sufficiently high.

As said above, if we assume the knowledge of the time-domain channel statistics,
MMSE and LS estimators are the algorithms commonly used. Both estimators have
their drawbacks. The MMSE estimator suffers from a high complexity, whereas the LS
estimate has a high MSE.

In [27], the authors compared only ML and MMSE estimators and they didn’t
consider the LS estimator. A justification to this can be found in [43|, where it is shown
that the MMSE estimate gives 10 — 15 dB gain in SNR for the same mean square error
of channel estimation over LS estimate.

To eliminate the major drawback of the MMSE estimator, the complexity, in [26] a
low-rank approximation is applied to the Linear MMSE by using the frequency corre-
lation of the channel. Another option to reduce the complexity of MMSE estimator is
given in [44], by deriving an optimal low-rank estimator with singular value decompo-
sition.

Following the three algorithms are briefly described when applied to an OFDM
system. It is important to underline that these algorithms can be used both when all
the transmitted subcarriers are pilot symbols and when only some of them are pilots,
while the others are used to transmit information. This will be well described in Section
2.5.2.

2.3.1 Least-Square (LS) Estimator

At the receiver side of an OFDM system, we have the received sequence y =
[y0, Y1, - -, yn_1)7 and the LS estimator for the channel impulse response g minimizes



2.3. Channel estimation 13

(y — XFg)"(y — XFg) and generates

his = FQ sF" XMy (2.16)
where
Qs = (FIX"XF)™, (2.17)
X is a matrix with the transmitted elements of = [z¢, x1, ..., ZCN_l]T on its diagonal
and o—1)
W](\)fo .. Wy
F—| - ; (2.18)
(N=1)0 (N—1)(N—1)
W e Wy
is the FFT matrix with
1 .
Wik — eI g k=0,1,2..., N—1. (2.19)

VN
Considering the matrix notation, the received vector y can be written as

y=XFg+n (2.20)

where m is an i.i.d. complex zero-mean Gaussian noise vector.

Note that, reduced to
hrs =Xy, (2.21)

the LS estimator is equivalent to what is also referred to as the zero-forcing estimator.

2.3.2 Minimum Mean Square Error (MMSE) estimator

If the channel vector g is Gaussian and uncorrelated with the channel noise n, the
MMSE estimate of g becomes

IMMSE = ngR;;y (2.22)
where

Ry, = E{QyH} = RggFHXH
R,, = FE{yy"}=XFRy FIX" {21y

are the cross-covariance matrix between g and y and the auto-covariance matrix of
y. Further, Ryq is the auto covariance matrix of g and 02 denotes the noise variance
E[|ng|?]. These two quantities are assumed to be known.

Since the columns in F' are orthonormal, g,,;,;5r generates the frequency-domain
MMSE estimate fLMMSE by

havse = Faynse = FQuuspFT XMy, (2.23)
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where Q/yrsE can be shown to be
Quuse = Rog(FIXTXF) o} + Rgg] ' (FIXTXF)™". (2.24)

If g is not Gaussian, hjsprsp is not necessarily a minimum mean square error esti-

mator. It is, however, the best linear estimator in the mean square error sense.

2.3.3 Maximum Likelihood (ML) estimator

The ML estimator is based on the assumption that g is a deterministic but unknown
vector. The estimate of g is derived from the linear model [14] and is given by [45]:

gy, =D FEX 'y (2.25)

where D is a square matrix
D=F"F.

As for the MMSE estimator, the frequency channel estimation is given by

hyvr =Fguy;. (2.26)

2.4 Channel tracking

In most communication systems that employ equalizers, the channel characteristics
are unknown a priory and, in many cases, the channel impulse response is time-varying.
In such a case, the equalizers are designed to be adjustable to the channel response and,
for time-variant channels, to be adaptive to the time variations in the channel impulse
response.

For these reasons, algorithms for automatically adjusting the equalizer coefficients to
optimize a specified performance index and to adaptively compensate for time variations
in the channel characteristics have been studied.

2.4.1 Time domain
Method of steepest descent or gradient descent algorithm

Steepest descent is an old, deterministic method, which is the basis for stochastic
gradient based methods. To find the minimum value of the mean-squared error, Jpip,
by the steepest descent algorithm, we proceed as follows:

1. We begin with an initial value w(0) for the tap weight vector, which provides an
initial guess as to where the minimum point of the error performance surface may
be located. Unless some prior knowledge is available, w(0) is usually set equal to
the null vector.

2. Using this initial or present guess, we compute the gradient vector, the real and
imaginary parts of which are defined as the derivative of the mean-squared error
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J(n), evaluated with respect to the real and imaginary parts of the tap-weight

vector w(n) at time n.

3. We compute the next guess at the tap-weight vector by making a change in the
initial or present guess in a direction opposite to that of the gradient vector.

4. We go back to step 2 and repeat the process.

It is intuitively reasonable that successive corrections to the tap-weight vector in the
direction of the negative of the gradient vector should eventually lead to the minimum
mean-squared error Jy,, at which point the tap-weight vector assumes its optimum
values wy.

Thus, we can observe that this is a feedback approach to finding the minimum of

the error performance surface and
- error surface must be known

- adaptive approach converses to the optimal solution, also known as Wiener solu-

tion, wy = R~ 'p [46] without inverting matrix.
We assume that:
- {z(n)} are the WSS input samples
- {d(n)} are the WSS desired output

- {d(n)} are the estimate of the desired signals given by
d(n) = w (n)x(n) (2.27)

where z(n) = [z(n), z(n—1), ..., 2(n—M+1)]T and w(n) = [we(n), wi(n), ...,
wyr—1(n)]7 is the filter weight vector at time n.

- estimation error:

e(n) = d(n)—d(n)
= d(n) — w (n)z(n) (2.28)

Thus the mean square error (MSE) at time n is

J(n) = Elle(n)]’]
= o2 —w(n)p — p?wn) +w(n)Rw(n) (2.29)

where

- 03 is the variance of desired signal

- p is the cross-correlation between x(n) and d(n)
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- R is the correlation matrix of x(n).

When w(n) is set to the optimal Wiener solution, then
w(n) =wo =R 'p (2.30)

and
Jn) = Jmin = afl — pH'wo (2.31)

Hence, starting from a point of the error surface, in order to iteratively find wg, we
use the method of the steepest descent and the direction in which we change the filter
direction is —VJ(n), and so:

w(n+1) = wln) + Zul~VI(n) (2.32)
or, since VJ(n) = —2p + 2Rw(n),
w(n +1) =w(n) + plp — Rw(n)) (2.33)

forn =0, 1, ... and p is called adaptation gain.
Stability of the system and rate of decay

It is important to note that, since steepest descent method uses feedback, the system
could be unstable and so we need to guarantee stability with respect to the eigenvalues
of R. To guarantee the stability we proceed in the following way:

- define the error vector for the tap weights as:

c(n) =w(n) —wy

- using p = Rwy, the update becomes:

win+1) = wn)+ pulp— Rw(n)]
w(n) + p[Rwo — Rw(n)]
— w(n) — uRe(n)

+
+

from w(n + 1) — wy = w(n) — wy — pRe(n) we obtain

cin+1) = ¢(n)— puRe(n)
— [T yRle(n)

- using the eigenvalues decomposition we can write R = UAU*H and so

c(n+1) = [I — pUAUH]e(n)
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- defining v(n) = U ¢(n), we obtain
w(n+1) = [I - pAJo(n),

so the k-th term in v(n + 1) is given by

vg(n +1) (1 — pAg)vr(n)

= (1 — pAx)"vi(0)

for k=0,1, ..., M —1, considering \; the eigenvalues of R.

At this point we can compute the condition for stability and the rate of decay.
For the stability we must satisfy lim,,_.~ vx(n) = 0 and so it must be |1 — pA;| <1
for all £ and from this one we can derive the stability condition on u

O<u<

9y
)\maw

where Ajqr is the maximum eigenvalues of R
We also observe that the k-th mode has a geometric decay and so we can characterize
the rate of decay by finding the time it takes to decay to e~! of the initial value. Thus

—1 1
e ]_ —_ )\ Tk — -1 = ~ f ]_
V(7)) = (1 — ) *v(0) = e vk (0) SO e e w b w or 1 <
(2.34)
The overall rate of decay is:
! < <1 (2.35)
T < '
In(1— pdmaz) =~ In(1 — pAin)
Now we recall the mean square error or cost function J(n) defined in (2.28):
Jn) = Jnpin+ (w(n) — wO)HR(w(n) — wy)
= Jmin + (w(n) — w) TUT AU (w(n) — wo)
= Jmin + T n)Av(n)
M-1
k=0
and thus:
lim J(n) = Jnin (2.37)

where J, is defined in (2.31).

Zero forcing algorithm

We have seen that, when Dy < 1, the D(c) output of the equalizer is minimized
by forcing the equalizer response to be ¢ = 1 and g¢(n) = 0, 1 < |n|] < K. Then
the zero forcing solution is achieved by forcing the cross-correlation between the error
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sequence ¢ = x(k) — Z(k) and the desired sequence z(k) to be zero for shift in the
range 0 < |n| < K.

A simple recursive algorithm for adjusting the equalizer coefficients is:
cj(k+1) = cj(k) + Aepa™(k — j) (2.38)
where
- ¢j(k) is the jth coefficient at time k
- A is the scale factor that controls the rate of adjustment

- e = x(k) — Z(k) is the error in the detected symbol.

Least Mean Square (LMS) Algorithm

The error performance surface used by the steepest descent method is not always
known a priori, so we can use estimated values. The estimates are random variables
and thus this leads to a stochastic approach, in fact the LMS algorithm is an important
member of the family of stochastic gradient algorithm.

The term "stochastic gradient" is intended to distinguish the LMS algorithm from
the method of steepest descent that uses a deterministic gradient in a recursive compu-
tation of the Wiener filter for stochastic inputs.

We will use the following instantaneous estimates that are based on the sample

values of the tap-input vector and desired response:

R(n) = z(n)z(n) (2.39)
p(n) = =x(n)d*(n) (2.40)

At this point we remember that the steepest descent update is:
1
w(n+1) =w(n)+ §u[—V(J(n))] (2.41)
where the gradient of the error surface at w(n) was shown to be
V(J(n)) = —2p+ 2Rw(n), (2.42)
but here we use the instantaneous estimates, so we obtain

V(J(n)) = —2x(n)d*(n)+ 2x(n)x(n)i(n)
(n)[d*(n) — " (n)w(n)]
= —2a(n)[d"(n) — d*(n)]
(n)e*(n) (2.43)

where e*(n) is the complex conjugate of estimate error.
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Putting (2.43) in the update equation (2.41), we obtain:

Wn+1) = w(n)+ pem)d (n) -z (n)io(n)
= w(n)+ px(n)e*(n). (2.44)

Thus LMS algorithm belongs to the family of stochastic gradient algorithms, in
fact, the update is extremely simple while the instantaneous estimates may have large
variance, the LMS algorithm is recursive and effectively averages these estimates.

Stability and performance analysis of LMS algorithm

The LMS algorithm, from a statistical point of view, can be analyzed by invoking

the independence theory, which states:
1. the vectors (1), (2), ..., x(n) are statistically independent vectors
2. at time n, x(n) is independent on d(1), d(2), ..., d(n —1)

3. at time n, d(n) is statistically dependent on x(n), but it is statistically independent
on d(1), d(2), ...,d(n—1)

4. x(n) and d(n) are mutually Gaussian distributed random variables for all n.

The independence theorem is justified in some cases, i.e. beamforming where we
receive independent vector observations. In other cases it is not well justified, but allows
the analysis to proceeds.

Observing Equation. (2.44) we note that the tap weight vector w(n + 1) at time
n + 1 depends only on three inputs:

1. the previous sample vectors of the input process, (n), €(n — 1), ..., x(1)
2. the previous samples of the desired response, d(n), d(n — 1), ..., d(1)
3. the initial value of the tap-weight vector, w(0).

Using the independence theory we can show that w(n) converges to the optimal
solution in the mean, i.e.:
lim Elw(n)] = wo. (2.45)

n—oo
where wq is the Wiener solution.
The starting point is the (2.44)[41]:

wn+1)—wy = w(n)—wy+ px(n)e*(n)
= (I - pa(n)a” (n))e(n) + p(n)eh(n) (2.46)
Now, note that since w(n) is based on past inputs desired responses d(1), ..., d(n—

1), w(n) (and ¢(n)) is independent on x(n), thus pE[x(n)ef(n)] = 0 and so:

Ele(n +1)] = (I — uR)E[c(n)]. (2.47)
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Reasoning as explained for the case of the steepest descent algorithm we find that:

lim Ele(n)] =0 if 0<p< (2.48)
n—0o0 Amaz
which is equivalent to write
lim Elw(n)] = wy if O<p< . (2.49)
n—0oo Amaz
Noting that
Amaz < trace[R] = N7(0) = No? (2.50)
a more conservative bound is
O<pu< 2.51
S No2 (2.51)

and observing that also convergence in the mean (2.45) is a weak condition that says
nothing about the variance, which may even grow.

A stronger condition is the convergence in the mean square, which says:

lim E[|c(n)]?] = constant (2.52)

n—oo

and it is equivalent to show that:

lim J(n) = lim Ef|e(n)[*] = constant. (2.53)

n—oo n—oo
If we write e(n) as [41]:

e(n) = d(n)—d(n)

= ¢o(n) — cH(n)xz(n) (2.54)

then

J(n) = Elle(n)?
= Jin + Bl (n)a(n)2" (n)e(n)
= Jmin + Jez(n) (2.55)

Since Jez(n) is a scalar, we can write [41]

Jeln) = Elef (ma(n)al (n)e(n)]
= trace[RK (n)] (2.56)
where K (n) = Elc(n)c (n)].

If we define S(n) £ U” K (n)U, where U is the unitary matrix obtained from the
eigenvalues decomposition of R and remembering that A is a diagonal matrix, we find:
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M
Jex(n) = trace[AS(n)] =) Aisi(n), (2.57)
i=1
where s1(n), sa(n), ..., sp(n) are the diagonal elements of S(n).

The recursion expression (2.44) can be modified to yield a recursion on S(n), which
is:

S(n+1) =1 —pA)S(n)I — pA) + i Jpin A (2.58)

and its diagonal elements are
sin+1) = (1 — pXi)?si(n) + 2 Tminki,  i=1,2, ..., M (2.59)

Suppose Jez(n) converges, i.e. s;(n+ 1) = s;(n), so, from this equality, we find

Imi )
si(n) = 2“_”Z§i, i=1,2,.... M (2.60)
and then
M—1 A
nhjgo Jex(n) = Jmin Z 5 _ Z)\Z (2.61)
1=0 H
where
M—1 A
M= . 2.62
=0 2- ’u)\z ( )

is the LMS misadjustment and if its value is 10% or less it is generally considered
acceptable.

Normalized LMS algorithm

In the standard LMS algorithm the correction is proportional to px(n)e*(n):
w(n+1) = w(n) + px(n)e*(n) (2.63)

and if x(n) is large, the LMS algorithm experiences a gradient noise amplification
problem. The normalized LMS algorithm seeks to avoid gradient noise amplification:
the adaptation gain is made time varying, u(n), and optimized to minimize error, i.e.,
choose p(n), such that the updated w(n + 1) produces the minimum MSE J(n + 1) =
E[le(n + 1)|%], where e(n + 1) = d(n + 1) —wf (n + D)x(n + 1).

The optimal adaptation gain, ug(n) will be a function of R and V(n). To compute
it we expand J(n + 1) and differentiate it with respect to u(n) and set it equal to 0.

After some computation we find:

H?’L n
po(n) = )

- VH(n)RV(n) (2.64)
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and using the instantaneous estimates:

R = z(n)zf(n)

V(n) = —2z(n)e*(n)
we obtain ) )
#o) = i ya(n) ~ e (265)
and the NLMS update is:
do(n+1) = w(n) + mm(n)e*(n) (2.66)

where a > 0 is an offset added to avoid problems when ||z (n)||? ~ 0.

Following a reason similar to that used for steepest descent method we find that
NLMS update will converge if
O<p<2 (2.67)

To conclude this section we observe that:
- the NLMS has a simpler convergence criteria than the LMS

- the NLMS generally converges faster than the LMS algorithm.

The LMS equalizer

Defining
- T the covariance matrix of the input sequence y(k),
- C the vector of the equalizer coefficients,

- £ the vector of the cross-correlation between the input y(k) and the equalizer

coefficients ¢
we find that for the minimization of the MSE we must choose:
Copp=T"'H. (2.68)

The method of the steepest descent offers an alternative to the computation of I~
We start choosing a vector C' said C'y, which corresponds to some point on the quadratic

MSE surface, then we compute the gradient vector:

k=-K, -K+1,...,-1,0 ..., K (2.69)

18J}7

Go=|3 9Con
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At this point each tap is changed in the opposite to its corresponding gradient compo-

nent:
Cry1 = Cp—AGy, (2.70)
10J
G = 390, =TCy — & = —Ele X} (2.71)

where X7 is the vector of the complex conjugated received signal that makes up the
estimate Z(k).

It is interesting to make some observation on the convergence properties of this
algorithm.

First of all we observe that I' is an Hermitian matrix and so, using the eigenvalues
decomposition, we can write I' = UAUY where U is a unitary matrix and (-) denotes
the Hermitian transpose.

It can be seen [41] that the convergence is ensured by:

0< A<

(2.72)

)\max

where A is the maximum eigenvalue of T.

Recursive least-square (RLS) algorithm for adaptive equalization

As we have seen, the gradient algorithm has only a single adjustable parameter
for controlling the convergence rate: A, and so the slowly convergence is due to it.
Consequently, we need more complex algorithms to obtain faster convergence.

In this case, the performance index is expressed in terms of a time average instead
of statistical average.

Before explaining the algorithm, we give some definitions:

- estimation of the transmitted symbol at sample n:

K
Zc]n—l (n—3j), j=01,..,N—1 (2.73)

- v(n) =y(n+ K)
- the estimate Z(n) becomes:
N—
z(n) = cj(n — 1v(n —j)

=0
= Cn(n—1)Vy(n) (2.74)

,_\

.

where Cn(n — 1) is the row vector of the equalizer at sample n — 1 and V y(n) =
[v(n), v(n —1), ..., v(n — N +1)]T is the input signal to the equalizer.

Recursive least square algorithm
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Following we describe the recursive least-square (RLS) algorithm, also known as
Kalman algorithm.
We have observed the vectors Vy(n) for n =0, 1, ..., t and we wish to determine

the coefficient vector C' () that minimizes the time average weighted square error:

t
ex’ =Y w' "en(n,t) (2.75)
n=0

where w is the weighting factor (0 < w < 1) and en(n,t) = z(n) — Cn(t)V n(n)
is the error between the estimated and the transmitted symbol at sample n. In this
expression we have introduced exponential weighting into past data, appropriated when
the channel characteristics are time-variant.

The minimization of ek” with respect to the coefficients Cx(t) yields the set of
linear equations:

RN(t)Cn(t) = Dn(1) (2.76)
where:

- Ry(t) = Yy w!™ VI (n)V n(t) is the signal correlation matrix (not a Toeplitz

matrix)
- Dy(t) = 3! _ wt "x(n) Vi (t) is the cross-correlation vector.

The solution is:
Cn(t) = Ry ()Dp(t). (2.77)

The recursive algorithm
Now, we have Cn(t— 1) and we wish to compute Cn(t). The algorithm’s steps are:

- Ry(t) may be computed recursively, so the time-update equation for Ry (t) is:

Rx(t) =wRyN(t—1) + VIOV N (1) (2.78)

- recursive computation for Ry (¢) is

TR N R}t - 1DVEOVNEORY (- 1)
PI’N1 - RNl(t - 1) - b / N —1 N* ] (279)
w w+ Vi) Ry (t— 1)V ()
- for convenience we define Py (t) = Ry'(t — 1)
- we define also Kalman gain vector:
Kn(t) = — 2 Pu(t— Vi) (2.80)
MY T v N '

where uy(t) = VEG) Pyt — 1)V N (1)

o = Py(t) = 4 [Pn(t—1) = Kn(t)Viy(t) PN (t — 1)]
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- we observe that Py (t)V'y(t) = Kn(t)
- now we use the matrix inversion identity to compute Cn(t) from Cy(t — 1):

e Cn(t) = Pn(t)Dy(t)
e Dy(t) =wDn(t— 1) +z(t)Vi(t)

e Cn(t)=Cn(t—1)+Kpn(t)z(t)-VE{#)Cn(t—1)], where VL (t)Cn(t—1)
is the output of the equalizer at time t, &(¢)

o en(t,t—1)=ua(t) — 2(t) = en(t)

= Cn(t)=Cn({t—1)+ Kn(t)en(t) (2.81)
- The residual MSE is:
t
Emin = >_ W' "|z(n)? = Cn(t) Dy (t) (2.82)
n=0

If we suppose to know Cn(t —1), Py(t—1) and V 5(t), then the algorithm’s steps

are:

- compute Z(t) = VL () Cn(t — 1)

A~

- compute en(t) = x(t) — z(t)

- compute Ky (t) = Pn(t—1)V§(t)

1
wtpn (1)

[Pn(t—1)— Kn(t)V () Py (t —1)]

1
w

- compute Py(t) =
- update coefficients Cn(t) = Cn(t — 1) + Kn(t)en(t)
This algorithm has two principal disadvantage:

1. computational complexity,

2. sensitivity to round off noise that accumulates due to recursive computations.

2.4.2 Frequency domain

Recognizing that the Fourier transform maps time-domain signals into the frequency
domain and that the inverse Fourier transform provides the inverse mapping that takes
us back into time domain, it is equally feasible to perform the adaptation of filter
parameters in the frequency domain. In such a case we speak of Frequency-Domain
Adaptive Filtering (FDAF).

There are two main reasons for seeking the use of frequency domain adaptive filtering

in one form or another [41]:



26 Chapter 2. Channel estimation in OFDM systems

1. In certain application, such as acoustic echo cancellation in teleconferencing, for
example, the adaptive filter is required to have a long impulse response to cope
with an equally long echo duration. When the LMS algorithm is adapted in
the time domain, we find that the requirement of a long memory results in a
significant increasing of the computational complexity of the algorithm. How then
do we deal with this problem? There are two options available to us. We may
choose an infinite-duration impulse response (IIR) filter and adapt it in the time
domain; the difficulty with this approach is that we inherit a new problem, namely,
the filter instability. Alternatively, we may use a particular type of frequency-
domain adaptive filtering that combines two complementary methods widely used

in digital signal processing;:

e block implementation of a FIR filter, which allows the efficient use of parallel

processing and thereby results in a gain in computational speed,

e fast Fourier transform (FFT) algorithms for performing fast convolution (fil-
tering) which permits adaptation of filter parameters in the frequency domain

in a computationally efficient manner.

This approach to frequency-domain adaptive filtering builds on the so-called block
LMS algorithm that includes the standard LMS algorithm as a special case.

2. Frequency-domain adaptive filtering, mechanized in a different way from that
described under point 1, is used to improve the convergence performance of the
standard LMS algorithm.

Block adaptive filters

In a block adaptive filter, the incoming data sequence z(n) is sectioned into B-
point blocks by means of a serial to parallel converter, and the blocks of input data so
produced are applied to a FIR filter of length M, one block at a time. Generally we
assume M = L as we see at the end of this subsection. The adaptation of the filter
proceeds on a block-by-block basis rather than on a sample-by-sample basis as in the
standard LMS algorithm. Let k refer to a block time and w(k) denote the tap-weight
vector of the filter for the k-th block:

w(k) = [wo(k), wi(k), ..., oy (B)T  k=0,1,... (2.83)

The index n is reserved for the original sample time, written in terms of the block size
as follows:
n=~kB+1i, i=0,1,..., M —1 k=0,1, ... (2.84)

Let the input signal vector &(n) at time n be written as:

x(n) = [z(n), z(n —1), ..., z(n — M +1)]T. (2.85)
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Accordingly, at time n the output g(n) produced by the filter in response to the input
signal vector x(n) is defined by the inner product:

j(n) = w? (k)x(n). (2.86)
or equivalently:
y(kB+i) = w!(k)x(kB + 1)
M—-1

= wy(k)z(kB+i—1), i=0,1,...,M—1.  (2.87)

Let y(n) = y(kB + i) denote the corresponding value of the desired response. An
error e(n) is produced by comparing the filter output g(n) against the desired response
y(n); the error signal is defined by:

e(n) =y(n) —g(n) (2.88)

or equivalently
e(kB+1i) =y(kB+1i) —y(kB +1). (2.89)

Recognizing that in the block LMS algorithm the error signal is allowed to vary at
the sampling rate, it follows that for each block of data we have different values of the
error signal for use in the adaptive process. Accordingly, for the k-th block, we may sum
the product (kB + i)e(kB + i) over all possible value of i, and so define the following
update equation for the tap-weight vector of the block LMS algorithm operating on
real-valued data:

B—1

w(k+1) =w(k) +p Y @(kM +i)e(kM + i) (2.90)
=0

where p is the adaptation gain. For convenience of presentation we define

s}
_

p(k) =S @(kM + i)e(kM + i), (2.91)

i

Il
=)

and so we rewrite (2.90) in the form:
w(k+1) =w(k) + pop(k). (2.92)

A distinctive feature of the block LMS algorithm described herein is that its design
incorporates an averaged estimate of the gradient vector, as shown by

x(kB +1i)e(kB +1) (2.93)

where the factor 2 is included to be consistent with the definition of the gradient vector
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! and the factor 1/B is included for V(k) to be an unbiased time average. Then in
terms of @(k‘) we may reformulate the block LMS algorithm as follows:

ww+n:ﬁwg—;@@w) (2.94)

where pp may be viewed as the effective adaptation gain of the block LMS algorithm;

it is defined by:
up = Bp. (2.95)

For the convergence properties of the block LMS algorithm we observe that they are
similar to those of the standard LMS algorithm, in that they both attempt to minimize

the same mean-square error function:
Lo
J = §E[e (n)]. (2.96)

It can be shown that the block LMS algorithm uses a more accurate estimate of the
gradient vector because of the time averaging, with the estimation accuracy increasing
as the block size B is increased. However, this improvement does not imply faster
adaptation. We may proceed through a convergence analysis of the block LMS algorithm
in a manner similar to that used for conventional LMS algorithm [41].

We may thus summarize the convergence properties of the block LMS algorithm as

follows:

1. Condition for convergence. The mean of the tap-weighted vector w(k) com-
puted by using the block LMS algorithm converges to the optimum Wiener so-
lution wq as the number of block iterations k approaches infinity, as shown by

g&Em%ﬂ:RAp:wo (2.97)

where
R = Elz(n)zf(n)] (2.98)
p = Elz(n)y(n). (2.99)

"We define the gradient operation V the k-th element of which is written in terms of first-order
partial derivatives with respect to the real part ar and the imaginary part by, for the k-th filter
coefficient, as

0 0
Ve= gan T g

The gradient vector V.J(n) is given by:

9J(n) . 9J(n)
Bag () +J 2oy (n)
Bar(m) T+ J Dby (n)

VJ(n)

aJ(n) . . 9J(n)
Bani—1(m) T I8 1(n)

= —2p+2Rw(n)
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The condition that has to be satisfied by the adaptation gain p for convergence
of the block LMS algorithm in the mean value is

O<p< (2.100)

B)\maax

where B is the block size and A, is the largest eigenvalue of the correlation
matrix R of the input signal vector x(n).

2. Misadjustment. Remembering the definition of the excess mean-squared error
Jez (k) and the minimum mean-squared error J,;,, we note that for the Jg, (k)
computed by the block LMS algorithm to converge to a constant value Je, (k) <
Jmin as the number of block iterations k approaches infinity, the adaptation gain
1 has to satisfy the more stringent condition:

O<pu< (2.101)

B Zi\i1 )\i

and the corresponding value of the misadjustment is

M =

=

M
>N (2.102)
=1

Comparing the results described here for the block LMS algorithm with the cor-
responding results for LMS algorithm 2.4.1, we may make the following observations

when operating in a wide-sense stationary environment:

e The converged mean weight vector and misadjustment of the block LMS algorithm
are identical to those of the standard LMS algorithm. The same holds for the

average time constant.

e For an input signal vector &(n) whose correlation matrix R has a prescribed eigen-
structure, the condition imposed on the block LMS for convergence in the mean
square is more restrictive than the corresponding condition for the standard LMS
algorithm. In particular the tighter bound on the adaptation gain p may cause the
block LMS algorithm to converge more slowly than the standard LMS algorithm,
particularly when the eigenvalue spread y = ’/\\:’:ﬁ of the correlation matrix R is

small.

We can conclude this section with an observation about the block size. The operation
of the block LMS algorithm holds true for any integer value of B > 1. Nevertheless,
the option of choosing the block size B equal to the filter length M is preferred in most
applications of block adaptive filtering. This choice may be justified on the following
grounds:

e when B > M, redundant operations are involved in the adaptive process, because
then the estimation of the gradient vector uses more information than the filter
itself
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e when B < M, some of the tap weights in the filter are wasted, because the
sequence of tap inputs is not long enough to feed the whole filter.

It thus appears that the most practical choice is B = M.

Fast LMS algorithm

The description of the fast LMS algorithm presented here uses the overlap-save
method 2 with 50% overlap.

According to this method, the M tap weights of the filter are padded with an equal
number of zeros, and an N-point FFT is used for the computation, where N = 2M.
Thus let the N x 1 vector W(k) denote the FFT coefficients of the zero-padded, tap-
weight vector w(k), as follows:

W (k)= FFT N

w(k) ] (2.103)

where 0 is the M x 1 null vector and FFT[] denotes the fast Fourier transformation.

Let X (k) denote an N x N diagonal matrix derived from the input data as following:

X (k) = diag{ FFT|[x(kM — M), ..., x(kM — 1),x(kEM), ..., x(EM + M — 1)]}.
(k—1)th block kth block

(2.104)
Now, applying the overlap-save method to the linear convolution of (2.87) yields the
M x 1 vector

g7 = [GkM), §(EM + 1), ..., (kM + M — 1)]
= last M elements of IFFT[X(k;)W(k)] (2.105)

where I F'F'T[-] denotes inverse fast Fourier transformation and only the last M elements
are retained, because the first M elements correspond to a circular convolution.

Now define the M x 1 desired response vector
y(k) = [y(kM), y(kM + 1), ..., y(kM + M — 1)]" (2.106)
and the corresponding M X 1 error signal vector:

e(k) = [e(kM), e(kM +1), ..., e(kM 4+ M —1)]7
= y(k) —y(k). (2.107)

“Implementing convolution using the DFT, the overlap-save method involves overlapping input
section rather than output sections. If the overlap is of P — 1 samples, the first P — 1 samples of
each output sequence are ignored, because they are due to the wraparound (end) effect of the circular
convolution.
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We may transform the error signal vector e(k) into the frequency domain as follows:

0
E(k) = FFT . (2.108)
e(k)
At this point we observe that:
¢ (k) = first M elements of IFFT[X ™ (k)E(k)]. (2.109)

The update equation in frequency domain becomes:

~ A

W(k+1) = W(k) + uFFT

¢g€) ] (2.110)

Computational complexity

Consider the standard LMS algorithm with M tap weights operating on real data.
In this case, M multiplications are performed to compute the output and a further
M multiplications are performed to update the tap weights, making for a total of 2M
multiplications per iteration. Hence, for a block of M output samples, the total number
of multiplications is 2M?2.

Consider next, the fast LMS algorithm. Each N-point FFT requires approximately
N log, N real multiplications, where N = 2M. According to the structure of the fast
LMS algorithm, there are five frequency transformations performed, which therefore
account for 5NV logs N multiplications. In addition the computation of the frequency
domain output vector requires 4N multiplications, and so does the computation of the
cross-correlations relating to the gradient vector estimation. Hence, the total corre-
sponding number of multiplications performed in the fast LMS algorithm is:

5N logy, N + 8N = 10M logy M + 26, (2.111)

so if we compute the complexity ratio we find:

Slogy M + 13

Complexity ratio =
p Yy i

<1 (2.112)

and then we can say that fast LMS algorithm is faster than standard LMS algorithm,
as soon as M > 64.
Unconstrained frequency-domain adaptive algorithm

The fast LMS algorithm may be viewed as a constrained form of frequency-domain
adaptive filtering. The time domain constraint consists of the following operations:

e discarding the last M elements of the inverse FFT of X (k)E(k)

e replacing the elements so discarded by a block of M zeros before reapplying the
FFT.
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In the unconstrained frequency-domain adaptive filter the gradient constraint is
removed completely and the implementation becomes simpler:

W(k+1) = W(k) + uXT(k)E (k). (2.113)

It is important to note, however, that the estimate of the gradient vector computed
here no longer corresponds to a linear correlation as specified in (2.93); rather, we now
have a circular correlation.

Consequently, we find that in general the unconstrained frequency-domain adaptive
filtering algorithm deviates from the fast LMS algorithm, in that the tap weight vector
no longer converges to the Wiener solution as the number of block iterations approaches
infinity. Another important point is that although the convergence rate of the uncon-
strained frequency-domain adaptive filtering algorithm is increased with time-varying
adaptation gain, the improvement is offset by a worsening of the misadjustment. In-
deed, the unconstrained algorithm requires twice as many iterations as the constrained
algorithm to produce the same level of misadjustment.

2.5 System description

In Figure 2.1 the OFDM base band model considered in this work is represented.
We assume that the use of the cyclic prefix both preserves the orthogonality of the
subcarriers and eliminates inter-symbol interference (ISI) between consecutive OFDM
symbols.

The channel g(t, 7) is assumed to be slowly fading, so it is considered to be constant
during one OFDM symbol. The number of subcarriers in the system is N, and the
cyclic prefix is made of Nop samples.

X | "
X | n(t) L Y1,
E —{ cP | DA }—-{g(t,r)}—{’g—{ AD | —{TeR T} L
RSVEN .

Figure 2.1: Base band model of an OFDM system. CP denotes the cyclic prefix.

Under these assumptions we can describe the system as a set of parallel Gaussian
channels, with correlated attenuation hy, k=0,1, ..., N — 1.

In matrix notation we describe the OFDM system as
y=Xh+n (2.114)

where y is the received vector, X is a matrix containing, on its diagonal, the transmit-
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ted signaling points, taken from a multi-amplitude signal constellation, h is a channel

attenuation vector and n is a vector of i.i.d. complex, zero-mean, Gaussian noise with
2

variance o;;.
The channel impulse response, as explained in Section 2.1 is treated as a time limited

pulse train of the form:

L-1
g(t,m) =Y ar(t)d(r — 7(1))
k=0

where {ay(t)} are the different path complex gain, {7x(¢)} are the different path time
delays and L is the number of paths. {ay(¢)} are wide-sense stationary (WSS) narrow-
band complex Gaussian processes with the so called Jake’s power spectrum [38] and
the different path gains are uncorrelated with respect to each other where the average
energy of the total channel energy is normalized to one. We observe also that each 74 (),
k=0,1, ..., L—1is minor than the length of the cyclic prefix, i.e., the entire impulse
response lies inside the guard space.

The transmitted data are divided into frame which is composed of N subcarriers
and Ngy,;, OFDM symbols. The first OFDM symbol is a preamble, i.e. its symbols are
known at the receiver and are employed to obtain a channel estimation through some
estimation algorithm. The following OFDM symbols are made of some left and right
null subcarriers, while the remaining ones are pilot and data subcarriers. Obviously, the
pilot subcarriers are known at the receiver and are introduced to perform the channel

tracking.

2.5.1 Channel estimation

We will analyze several estimators based on the scheme presented in Figure 2.2

l Xo )
L]

IDFT
9]
DFT

Xn-1

F;N—l

Figure 2.2: General scheme used in many channel estimation algorithms.

Least Square (LS) estimator

The LS estimator for the frequency response hrg is given by:

his =Xy (2.115)
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and from (2.135) it is clear why it is also referred to as the zero forcing estimator.

The LS estimator is described in Section 2.3.1; here we remind it generates the

estimated frequency response [43]:
h=FQ,¢FIxXxHy (2.116)

where Q; ¢ = (FEXH X F)~! and F is the N x N DFT matrix, whose elements are

[Flus = Wk = - exp (—j2n ).

At this point we observe that the equivalence between (2.135) and (2.116) holds when
we suppose to know all the tones in an OFDM symbol, because F/F = FFT =T

Minimum Mean Square Error (MMSE) estimator

If the channel vector g is Gaussian and uncorrelated with the channel noise n, the
MMSE estimate of g, described in Section 2.3.2, becomes:

IMMSE = ngR;yly (2.117)
where

Ry, = FElgy"]= Ry FI'X"
Ry, = Elyy"]=XFRy F!X" 1+ 521

are the cross-covariance matrix between g and y and the auto-covariance matrix of y,
respectively. Further, Rgq4 is the auto-covariance matrix of g and o2 denotes the noise
variance E[|ny|?]. For the moment these two quantities are assumed to be known. Since
the columns in F' are orthonormal, g,;;9r generates the frequency domain MMSE
estimate iLMMSE by

harvise = Fayse = FQuyspFT XMy (2.118)
where Q7155 can be shown to be [43]
Qurse = Rogl(FIXTXF) o) — Rgg] '(FIX"XF) . (2.119)

We observe that the MMSE estimator requires the calculation of an N x N matrix
QryvsE, which implies a high complexity when N is large. A straightforward way of
decreasing the complexity is to reduce the size of Qy;1r55-

Linear minimum mean square (LMMSE) estimator

We start considering the LS estimate:

hrs=X'y=h+n



2.5. System description 35

where 7 = X ~!n is a vector of independent Gaussian noise variables with covariance
matrix3
Risn = o2 (X XH)7L (2.120)

The LS estimate is a noisy observation of the channel attenuation and can be
smoothed using correlation properties of the channel. The optimal linear estimator

in terms of mean square error (MSE) is
h =W xhpg, (2.121)

where

W x = Rpp(Rpp + o2(XX7)"H~1 (2.122)

and Rpp, = E[hh"] is the auto-covariance matrix of the channel vector h.

At this point we recognize that the weighting matrix W x, of size N x N, depends
on the transmitted data X.

As a first step towards low complexity estimators we want to find a weighting matrix
that is independent on the transmitted data. This can be obtained by considering hrs
to be our observation and derive an LMMSE estimator that considers X to be stochastic
with independent and uniformly distributed constellation points. In this case we define
a constellation factor 8 = E[|z|?|E[|zk| %] and remembering that the signal-to-noise
ratio is defined as SNR £ E[|z|?] /02 we find

g

an = =1 2.12
R SNR ( 3)

Now, the LMMSE estimate of the ﬁLMMSE from szs becomes
hivvse = Whig (2.124)

where the fixed weighting matrix is given by

W = R (th + ﬁz) 1 (2.125)

The LMMSE estimator still requires N multiplications per estimated attenuation
and we use it both as a reference and as a starting point in the derivation of the DF'T-
based low complexity estimators.

To derive the new estimators we observe that h is the sampled frequency response of
a channel with short time duration compared to the OFDM symbol length and, hence,
its associated cyclic impulse response g = IDFT(h) has only a few taps with significant
power. If we perform the estimation in the time domain, we can reduce the complexity
of the estimation by using this power concentration.

This prompts the estimator structure in Figure 2.2, where the block named @ rep-
resents a time elaboration of the signal, as it is evident from the presence of the DFT

*Ran = E[(X'n)? (X 'n)] = trace(E[nn (X X)) = o2(X X H)~!



36 Chapter 2. Channel estimation in OFDM systems

and IDFT blocks. The LS estimate is transformed into its time domain equivalent
grs =1DF T(fr, 1s), remembering that when we are using a number of pilot subcarriers
(Np) less than the number of total subcarriers (V) the equivalent time domain response

is given by (2.134). The smoothing is then performed by a linear transformation:

9=Q9.s (2.126)

and the result is transformed back to the frequency domain: h = DFT(g).

The important benefit of this estimator structure in terms of complexity is the
low complexity of the DFT/IDFT (implemented as fast transformations) and the time
domain power concentration, which offers a simplification of (2.126), without sacrificing

too much in performance.

The scope of the following consideration is to find sparse approximations of the

LMMSE estimator’s equivalent time domain smoothing matrix
Q=FIWF (2.127)

where F' is the DFT matrix and W is defined in (2.125). A straightforward way is to
simply ignore the coefficients in g;¢ that contain more noise than channel power and
only transform the remaining elements back to the frequency domain.

Now, we present three different low complexity estimators, obtained reducing the
number of non-zero elements in the time domain matrix multiplication (2.126), with

the aim of reducing the computational complexity and preserving the performance.

Before the description of the algorithms it is important to underline a drawback of
these estimators: for all of them we suppose the knowledge of the channel length.

Estimator A

The simplest idea is to choose the L coefficients in g ¢ that have the highest channel
power, where L is the length of the channel impulse response and thus it is much smaller
than N (the number of subcarriers) and N, (the number of pilots).

In this case we find

Qrxr 0
= 2.128
Q4 [ 0 0 ( )
where
ﬂ —1
Qrxr = Ry (Rgg,L + —SNRI) (2.129)

and Rgyg 1 is the upper left L x L corner of Ry,.

Estimator B Further reductions in complexity can be done by ignoring cross cor-
relation between the L chosen taps in g;g and only weighting them individually. In

this case the matrix @ becomes

(2.130)

| Dxz O
QB—[ 0 0]
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where
Dy = diag(do, 01, ..., 6r—1) (2.131)
and
p=—" k=0,1,...,L—1
Ve T sNR

and vy, = E[|gk\2] which are the diagonal elements of Ryy = E[gg”] = FHR,,F.
Estimator C In this case we reduce the complexity using the L chosen coefficients

directly as input to the DFT. The @ matrix simply becomes

| Ixz O
Q.= [ 0 0 ] . (2.132)

It is interesting to underline that in this case we obtain
he = Fgrg (2.133)

where g ¢ is defined in (2.134) and, when we are in presence of Gaussian white noise,
as in this case, this is the maximum likelihood (ML) estimator ([47] and [48]).
In table 2.1 we summarize the linear transformation and the required multiplication

per attenuation coefficient (hy).

‘ Estimator ‘ Linear Transformation | Required mult./attenuation

LMMSE N.A. N+1
0

A Q= Q%XL 0 logy N + & 41
- D 0 =

B Qp = ng 0 loggN—l-%—l-l
— o

C Qc = LOXL 0 logg N +1

LS N.A. 1

Table 2.1: Linear transformations and computational complexity for the proposed
estimator.

Until this moment we develop the discussion with no attention about the number of
tones we know at the receiver. If we know all the OFDM symbol the channel impulse
response can be computed using the complete DFT matrix, but when we know only
some tones, the pilots, we must use a truncated version of the DFT matrix. To avoid
the problem of this distinction during our description we use the notation F for both
the truncated or complete version of the DF'T matrix. Particular attention must be paid
when we talk about complete DF'T matrix: we know the channel impulse response has
only few significant taps and so if we assume the channel length L known, then the DF'T
matrix is said to be complete even if it has only the first L columns. This assumption
avoids the problem of selecting the significant taps. A way to avoid the truncation of
the F' matrix we can choose the first L taps of the estimated impulse channel response

and then perform a zero-padding.



38 Chapter 2. Channel estimation in OFDM systems

After these observations, we define the channel impulse response by
gis = (FF)'Fhyg, (2.134)

in fact, if we come back to the frequency domain through the expression hrs = Fg;q=
F(FUF)"'F"hg we find the matrix F(F7F)"1F is equal to the identity one only
when we consider the entire DFT matrix and not a truncated version, i.e. when the
pilot tones are only a fraction of subcarriers (N, < N).

2.5.2 Use of the described algorithm considering only pilot subcarri-
ers

Often, in OFDM systems there are some subcarriers, i.e. the pilot subcarriers, whose
number NN, is smaller than the total number of subcarriers IV, which are known at the
receiver.

In this section we use the following notation:
e F; isa N x L matrix containing the first L columns of the DFT matrix F

e Fy ,isa N, x L matrix obtained from F'j, eliminating the lines not corresponding

to pilot subcarriers
e y, is the vector of the training received symbols

e X, isa N, x N, diagonal matrix containing the training symbols.

LS estimator

In the frequency domain the LS estimate is given by
hrs =X, 'y, (2.135)
and in the time domain it is
grs = (F7,Fr,) 'F{ hrs (2.136)

MMSE estimator
The expression for the MMSE estimator considering only pilot subcarriers is
. H s H H ywH -
9uMSE = RggFL,po (XpFL,pRggFL,po + ‘7721[) lyp

1 —1 1
_ —1 h H H H
_ (Rgg +F X O_—%XPFL,p) FiL X 5, (2.137)

LMMSE estimator

We define the auto-covariance matrix of the frequency response channel as

Rpn = E[hh") = F ,RygF ] . (2.138)
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where Rgq is the auto-covariance matrix of the channel impulse response and it is
Ryy = diag(1/L, 1/L, ..., 1/L).

At this point there are the two version of the LMMSE estimator: one depending on
the training symbols:

hirmse = Run(Run + oa (X, X ™) hys (2.139)

and the other one independent on the training symbols:

. -1,
hivyvse = Rhn (th + %I) hrs (2.140)

Estimator A Here, we define the matrix Rgq 1.5 = ngthFLp and compute the

matrix Q4
B _
QA = Rgg,LS (Rgg,LS + ml—)( 1) (2141)
and so we find
ha=Frpgs=FrpyQagrs (2.142)

where g; ¢ is computed in (2.136).

Estimator B In this estimator we consider the values on the diagonal of the Rgqg 1.5

matrix (named v;, k=0, 1, ..., L—1) and Qp is a diagonal matrix with the following
values
k
4B,kk = S — 3 (2.143)
Y+ 5NR

and so the estimated frequency response is
hp = Fryg5 = Fr,Qpdrs (2.144)

Estimator C Finally, in this case the matrix Q. is simply an L x L identity matrix,
so we find go = g7 ¢ and in the frequency domain

he =F1,9c = Fryg1s (2.145)

which is also the expression of the ML estimator.

2.5.3 Channel tracking

The algorithms presented in Section 2.4 allow the equalization of a channel, for a
single carrier system, in the time domain.

If we consider an OFDM system we can try to track a time-varying channel using,
in the frequency domain, the same idea which is behind the RLS algorithm.

The basic idea is to perform channel estimation on the first OFDM symbol by
employing a linear minimum mean square error (LMMSE) or a least square error (LS)
algorithm. Then, to perform the tracking we can use an adaptive filter whose working
principle is the same as RLS algorithm.
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Since we have an OFDM system the first idea is to perform the tracking in the
frequency domain. The adaptive filter in frequency domain are described in Section
2.4.2, but we observe that our case is a little bit different from the ones proposed there.
It is for this reason that we refer to [15] in the following analysis.

In [15] the authors consider a block of N input symbols and perform the FFT on
them obtaining X (n), they perform also the FFT on blocks of N desired symbols
obtaining Y (n) and then update the frequency response of the adaptive filter W (n) in
the frequency domain. The k-th complex weight for the k-th frequency is then updated
according to:

Wi(n+1) = Wi(n) + pEx(n)X*(n), (2.146)

where E(n) =Y (n) — W (n)X (n). We observe that this is similar to the unconstrained
frequency-domain adaptive filter.

In Figure 2.3 the scheme adopted for the tracking of the channel is shown.

In the frequency domain, we define:

- Y (k) the vector of the symbol received on pilot subcarriers at time k

- H (k) the vector of the real channel attenuation coefficients on pilot subcarriers
at time k

- ﬁp(k) the vector of the estimated channel attenuation coefficients on pilot sub-

carriers at time k
- X, (k) the transmitted pilot signal at time k
- Yyp(k) = Hp(k)X (k) is the estimate of the received symbol

- E,(k) = Y, (k) — Yp(k) is the vector of the errors between the received symbols
and their estimates on pilot subcarriers

Xp(k) Adaptive filter Y, (k)

E, (k)

Yy (k)

Figure 2.3: Adaptive scheme for channel tracking in frequency domain.

Since in each OFDM symbol there are N, pilot subcarriers we consider them and
find the update equation for the channel estimation at every pilot:

Hi(k +1) = Hy(k) + pE;(k) X7 (k), i=0,1,...,N,—1 (2.147)
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where p is the adaptation gain.

In this way we know the channel only on a subset of subcarriers, so, to have an
estimation of the all frequency channel response we transform the channel into the time
domain, eliminate the taps with high noise and re-transform it to frequency domain con-
sidering all the IV subcarriers and we obtain the frequency channel response estimation
H(k+1).

Choice of the adaptation gain

Parameter ;1 has the same mean of the parameter A in the LMS algorithm (2.38)
which must satisfy the following condition:

0< A<

o (2.148)
where A4 is the maximum eigenvalue of the matrix correlation of the input vector.

At this point we recall and use a result provided in [15]. Starting from Equation.
(2.146) the authors observe that since each weight is adapted only once for each N-point
data block, the number of adaptations required to obtain output data similar to those
obtained with the conventional time domain filter is reduced by a factor of N and so
the value of the adaptation gain g may accordingly be increased by a factor of N.

For this reason, considering that we perform the adaptive of the filter on N, sub-

carriers, we define

— 2.14
p= (2.149)

max

where 6,4, is the maximum eigenvalue of the correlation matrix of the input signal X,,.

2.6 Simulation setup

A brief description of the considered system was given in Section 2.5 and Figure 2.1.
Simulation results are obtained assuming we are working in the frequency domain,

so Figure 2.1 can be changed as follows:

Channel

Estimator

Frame

Source Code Modulator constructior Channel Equalizer emodulatoy Decode

-

Figure 2.4: Simulator scheme.

2.6.1 Code

The code is the convolutional code defined in the WiMAX standard [1]-[2]. The gen-
erated bits are encoded in blocks of 288; we took this decision because the concatenation
rule for a QPSK rate 1/2 code leads to the coding of blocks of this size.



42 Chapter 2. Channel estimation in OFDM systems

Each FEC block is encoded by the binary convolutional encoder, which shall have
native rate 1/2, and a constraint length equal to & = 7 and shall use the following

generator polynomials codes to derive its two code bits:

G1 = 17lpcr X (2.150)
Gy = 133pcr Y (2.151)

’—> X output

\—> Y output

Figure 2.5: Convolutional encoder of rate 1/2.

Each FEC block is encoded by a tail-biting convolutional encoder, which is achieved
by initializing the encoder’s memory with the last data bits of the FEC block being
encoded.

2.6.2 Frame construction

Also in the construction of the downlink frame we consider the IEEE 802.16e stan-
dard and the frame structure is represented in Figure 2.6.

We construct the preamble and pilot sequences standard compliant, but we change
the way of assembling data and pilots. We don’t considering any permutation system,
but assume the pilots uniformly distributed between data subcarriers.

On the other hand , we keep unchanged the number of virtual, data and pilot

subcarriers.

Preamble

The first symbol of the downlink transmission is the preamble. There are three types
of preamble carrier-sets, those are defined by allocation of different subcarriers for each
one of them and those subcarriers are modulated using a boosted BPSK modulation
with specific Pseudo-Noise (PN) code.



2.6. Simulation setup 43

Preamble
Data Symbol
Data Symbol
Data Symbol

Figure 2.6: Basic frame structure.

The preamble carrier-sets are defined using the following equation:
PreambleCarriesSet, =n+ 3 -k, n=0,1,2and k=0, ..., 567 (2.152)

where PreambleCarrierSet, specifies all subcarriers allocated to the specific preamble.

Pilot subcarriers

For pilot subcarriers we use something similar to the sequences used in the preamble.
Pilots are BPSK modulated and boosted.

2.6.3 Channel

Simulations, performed in Matlab environment, can be run with two different chan-
nel types: SCME and exponential.

The first one is the Spatial Channel Model-Extended. It is an extension to the 3GPP
[49] Spatial Channel Model (SCM) and its Matlab implementation was downloaded from
http://www.mathwork.com/products/matlab/.

The exponential channel is implemented using the Rayleigh model [50] and has an
exponential Power Delay Profile (PDP) [28].

2.6.4 Channel estimation

In our simulations we consider the following channel estimators:

- LS Least square estimator: this is the simplest one: through Equation (2.135) we
compute the channel in the frequency domain on the pilot subcarriers, then
through Equation (2.136) we compute the estimated impulse response and,
finally, we compute the channel frequency response on all the subcarriers

with a simple FFT operation.
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- LMMSE Linear Minimum Mean Square Error independent on the transmit-
ted data: once we have computed the LS estimation on pilot subcarriers
through Equation (2.135), we can compute the LMMSE estimation on pi-
lots independent on the transmitted data through the Equation (2.139) and
then, performing as described for the LS, compute the channel on all the

subcarriers.

- LMMSE X Linear Minimum Mean Square Error dependent on the transmitted
data: as for the LMMSE, once we have computed the LS estimation on
pilot subcarriers through Equation (2.135), we can compute the LMMSE
estimation on pilots dependent on the transmitted data through the Equation
(2.140) and then the channel on all the subcarriers.

- alpha This is the channel tracking method described in Section 2.5.3, where the
adaptation gain is chosen as defined in Equation (2.149).

2.6.5 Parameters

In this Section we list the parameters used in the simulations:
- OFDM system with 512 subcarriers:

* 46 + 45 null subcarriers
* 1 DC subcarrier
* 60 pilot subcarriers

* 360 data subcarriers
- 25 OFDM symbols:

* 1 preamble

* 24 data and pilot symbols
- 64 cyclic prefix’ length
- 5 MHz bandwidth
- 2 GHz carrier frequency
- QPSK modulation (for data subcarriers)
- SCME channel

- convolutional code
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2.7 Results

In our simulations we consider three different speeds for the mobiles: 3, 50 and 130
km/h and we analyze the loss of performance in terms of bit error rate at different speeds
due to the channel estimation. Figures 2.7, 2.8 and 2.9 represent the performance for the
system described above: red and black lines represent the performance of the system
when we assume a perfect channel knowledge with and without coding respectively.
Cyan line represents performance of the system if we consider the LS estimator, green
and magenta lines represent the performance when the channel estimation is performed
through the LMMSE algorithm considering the independence of the estimator from the
transmitted data and not. Finally the blue line represents the performance for the
adaptive tracking.

Bit error rate — 3 km/h
10" g T T T T

—Hard H
—— Perfect channel knowledgel]
LS H
——LMMSE
J— LMMSE><

—— Adaptive tracking

10

SNR [dB]

Figure 2.7: Bit error rate with SCME channel and v =3 km/h.

From all the Figures 2.7, 2.8 and 2.9 we observe that the performance of the LMMSE
independent on the transmitted data are very bad and for SNR greater than 6.2 dB
it performs worst than the uncoded system with perfect channel knowledge. Adaptive
tracking is a good algorithm for low speeds and so for channels which vary very slowly
in the time. LS and LMMSE dependent on the transmitted pilots have both good
performance in terms of bit error rate, because we have a good number of pilots.

The same results are proved in Figures 2.10, 2.11 and 2.12, where we can see the
mean square error for the impulse channel estimation: LS error is represented with a
cyan line, LMMSE independent on transmitted data with a green line, LMMSE depen-
dent on transmitted data with a magenta line and, finally, the blue line represents the
error for the adaptive tracking.

From Figures 2.7 and 2.10 we can observe that for speed equal to 3 km/h the
adaptive algorithm is the one which presents the best MSE, than we have the LS,
the LMMSE dependent on the transmitted data and the one independent on them
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Bit error rate — 50 km/h
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—— Perfect channel knowledge|
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Figure 2.8: Bit error rate with SCME channel and v = 50 km/h.

Bit error rate — 130 km/h
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Figure 2.9: Bit error rate with SCME channel and v = 130 km/h.

algorithms. However, comparing Figures 2.7 and 2.10 we observe that these MSE values
don’t present big differences when we represent the BER of the system.

Similar observations hold for speed equal to 50 km/h. Different results are presented
for speed equal to 130 km /h. From Figures 2.9 and 2.12 we understand that the adaptive
algorithm can’t be used, because of the Doppler spread. LS and LMMSE dependent on
the transmitted data give both very good performance.

Results similar to the ones proposed in Figures 2.10, 2.11 and 2.12 can be seen in
Figures 2.13, 2.14 and 2.15 where the mean square error for every subcarrier is plotted.
In these Figures the legend is the same described above.
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~ Mean square error for the impulse channel estimation - 3 km/h
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Figure 2.10: Mean square error for the impulse channel estimation: SCME channel
and v =3 km/h.

Mean square error for the impulse channel estimation — 50 km/h
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Figure 2.11: Mean square error for the impulse channel estimation: SCME channel
and v = 50 km/h.

Considering the presented results and the fact the LMMSE is computational more
complex than the LS, we conclude that, when we consider a WiMAX system and we

need the estimation of the channel, we should use the LS algorithm.
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Mean square error for the impulse channel estimation — 130 km/h
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Figure 2.12: Mean square error for the impulse channel estimation: SCME channel

and v = 130 km/h.
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Figure 2.13: Mean square error for every subcarrier: SCME channel and v = 3 km/h.
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Figure 2.14: Mean square error for every subcarrier: SCME channel and v = 50 km/h.
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Figure 2.15: Mean square error for every subcarrier:
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SCME channel and v = 130






Chapter 3

Expectation maximization
algorithm for joint channel
estimation and data detection

3.1 Introduction

As said in the Introduction and extensively explained in Chapter 2, in an OFDM
system the channel estimation is very important at the receiver, because we need to
detect the transmitted data.

In this Chapter we want to investigate the joint detection and channel estimation
for the OFDM systems in the frequency domain. Since the detection performance
depends on the accuracy of the channel estimate, the joint processing is employed with
the Expectation-Maximization (EM) algorithm to improve the accuracy of the channel
estimate.

The EM algorithm was discovered and employed independently by several different
researchers until Dempster and others [51] brought their ideas together, proved con-
vergence, and coined the term EM algorithm. Since that seminal work, hundreds of
papers employing the EM algorithm in many areas have been published. A large list of
references is found in [52]. A typical application area of the EM algorithm is in genetics,
where the observed data (the phenotype) is a function of the underlying, unobserved
gene pattern (the genotype), e.g. [53]. Another area is estimating parameters of mixture
distributions, e.g. [54]. The EM algorithm has also been widely used in econometric,
clinical, and sociological studies that have unknown factors affecting the outcomes [55].
Some applications to the theory of statistical methods are found in [56].

In the area of signal processing applications, the largest area of interest in the EM
algorithm is in maximum likelihood tomographic image reconstruction, e.g. [57], [58].
Another commonly cited application is training of hidden Markov models, especially
for speech recognition, e.g. [59]. The books [60], [61] have chapters with extensive
development of hidden Markov models (HMMs).

Other signal processing and engineering applications began appearing in about 1985.
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These include: parameter estimation [62] [63]; ARMA modeling [64], [65]; simultaneous
detection and estimation [66], [67], [68]; pattern recognition and neural network training
[69], [70], [71]; direction finding [72]; noise suppression [73]; spectroscopy [74]; signal and
sequence detection [75]; time-delay estimation [76]; and specialized developments of the
EM algorithm itself [77]. The EM algorithm has been the subject for multiprocessing
algorithm development [78]. The EM algorithm is also related to algorithms used in
information theory to compute channel capacity and rate distortion functions [79], [80],
since the expectation step in the EM algorithm produces a result similar to entropy.
Since the known and unknown symbols are simultaneously used to estimate the

channel, the following approach is a semi-blind method.

3.2 The Expectation-Maximization (EM) algorithm

3.2.1 Introduction

The EM algorithm produces Maximum Likelihood (ML) estimates of the parameter
when there is many-to-one mapping from an underlying distribution to the distribution
governing the observation.

The EM algorithm consists of two major steps:

1. Expectation step (E-step): it is performed with respect to the unknown un-
derlying variables using the current estimate of the parameters and conditioned
upon the incomplete observation

2. Maximization step (M-step): it provides a new estimation of the parameters
that maximize the expectation of the log-likelihood function defined over complete
data, conditioned over the most recent observation and the last estimate.

These two steps are iterated until the estimated values converge.

As said in the Introduction to the Chapter, the EM algorithm is related to algorithms
used in information theory, to compute channel capacity and rate distortion function,
since the E-step produces a result similar to entropy.

The EM algorithm is philosophically similar to ML detection in the presence of
unknown phase (incoherent detection) or other unknown parameters: the likelihood
function is averaged with respect to the unknown quantity (i.e. the expected value of
the likelihood function is computed) before detection, which is a maximization step (see

[41]).

3.2.2 General statement of the EM algorithm
Define:
- Y the sample space of the observation
- y € R™ an observation from Y

- X the underlying space of Y
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- x € R" the outcome from X, m < n; it is referred as complete data and it
is not observed directly, but only by means of y, where y = y(z), which is a

many-to-point mapping.
- X(y) a subset of X determined through the inverse map of the observed y

- f(=x|0) probability density function (pdf) of the complete data, where § € © € R”
is the set of the parameters of the density

- g(ylo) = fx f(x]6)dx pdf of the incomplete data
- £,(8) = g(y|0) likelihood function

- Ly(0) =log,(0) log-likelihood function

Figure 3.1: Illustration of many to one mapping from X to Y. The point y is the
image of @, and the set X(y) is the inverse map of y.

The basic idea behind the EM algorithm is that we would like to find 6 to maximize
log f(x|0), but we do not have the data x to compute the log-likelihood. So, instead
we maximize the expectation of log f(x|f) given the data y and our current estimate
of 6. This can be expressed in two steps.

Let 0% be our estimate of the parameters at the kth iteration.

For the E-step compute
Q(016™)) = Eflog f (x|0)]y, 0™]; (3.1)
and, for the M-step, let 8+ be that value of # which maximizes Q(#]0!)):
o+l = arg meaxQ(aw[k}). (3.2)

It is important to note that the maximization is with respect to the first argument
of the ) function, the conditioner of the complete data likelihood.

The EM algorithm consists of choosing an initial /%!, then performing the E-step and
M-step successively until convergence. Convergence may be determined by examining
when the parameters quite changing, i.e., stop when ||/ — g*+1)|| < ¢ for some € and

some appropriate distance measure || - ||.
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3.2.3 Convergence of the EM algorithm

For every iterative algorithm, the question of convergence needs to be addressed and
for the EM algorithm it may be stated simply: at every iteration of the algorithm, a
value of the parameter is computed so that the likelihood function does not decrease.
That is, at every iteration the estimated parameter provides an increase in the likelihood
function until a local maximum is achieved. In [16], the authors provided a convergence
theorem for the EM algorithm which is reported in Appendix A.

Despite this convergence theorem, there is no guarantee that the convergence will
be to a global maximum. For likelihood function with multiple maxima, convergence
will be to a local maximum which depends on the initial starting point ().

The convergence rate of the EM algorithm is also of interest. Based on mathematical
and empirical examinations, it has been determined that the convergence rate is usually
slower than the quadratic convergence typically available with a Newton’s-type method
[54].

However, as observed by Dempster [51], the convergence near the maximum depends
upon the eigenvalues of the Hessian of the update function M, so that rapid convergence
may be possible.

In any event, even with potentially slow convergence there are advantages to EM
algorithms over Newton’s algorithms.

In the first place, no Hessian needs to be computed. Also there is no chance of
"overshooting" the target or diverging away from the maximum.

The EM algorithm is guaranteed to be stable and to converge to an ML estimate.
Further discussion of convergence appears in [81], [82].

3.3 Joint channel estimation and data detection for OFDM

systems

3.3.1 System model

Let N be the number of subcarriers and z(n) = [zo(n), z1(n), ..., xx_1(n)]T the
nth signal vector of size N x 1 to be transmitted, where z,,(n) € 8 and 8 is the set of
modulated symbols.

After the OFDM modulator the signal is

&(n) = Fx(n) (3.3)
where F'is the Fourier transform matrix: F, ,, = \/—%e’ﬂ”("’l)(m’l)ﬂv
.., N.

We assume that the channel impulse response (CIR) is time-invariant for an OFDM

,n,m=1,2 ...

symbol and for an nth signal vector it is an L x 1 vector: {hl}lL:*Ol. We assume also
that the CIR’s length L is smaller than the number of subcarriers N (L << N) and
also than the cyclic prefix’ length CP (L << CP).
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Figure 3.2: An overview of the EM algorithm. After initialization, the E-step and M-
step are iteratively computed until the parameter estimate has come to convergence.

The discrete Fourier transform (DFT) of the CIR is:
hp(n) = Z hy(n)eI2mp/N p=0,1,...,N—1 (3.4)
=0

and we define H (n) = diag[ho(n), hi(n), ..., hx—_1(n)].

Hence, the received signal after removing cyclic prefix is:
y(n) = H(n)x(n) +wn), (3.5)

where J#(n) is the N x N cyclic matrix of [hg(n), h1(n), ..., hr_1(n), 0, ..., 0]7 and

N—-L



Chapter 3. Expectation maximization algorithm for joint channel estimation and data
56 detection

w(n) is the background noise in the time domain.
After the DFT the received signal is:

y(n) = Fy(n)
(A (n)@(n) + w(n))
H(n)
= diag[zo(n), z1(n), ..., zx_1(n)]h(n) + w(n) (3.6)

I
o

;

where w(n) is the noise in the frequency domain and h(n) = [ho(n), h1(n), ..., hxy_1(n)]"

is the frequency channel response computed in Equation (3.4).

We can also define the N x N covariance matrix of noise:
E[w(n)w (n)] = 62 Inxn.

Now, we consider a comb-type OFDM system, in which, in each OFDM symbol,
some subcarriers are used to transmit pilots, as we can see in Figure 3.3.

@@@@O@@@O@@@‘O@@@@@@@’@@@O@ ar g0
@@O@O@@@@@‘O@@@@@OMWW“
@O@@O@@‘OO@MEWW

Figure 3.3: Comb-type structure for an OFDM system.

Let a,(n) be the signal block which contains pilot tones. In addition, we denote by
x4(n) the signal block which contains data tones. We have:

x(n) = x,(n) + x4(n). (3.7)

Let P denote the index set for pilot tones. Then, the index set for data tones, D, becomes
the complementary set of P. From Equation (3.7) we understand that x,(n) and x4(n)
must have the same dimension, so we need to define the following rule: every element
in x,(n) whose index is in P has some values from §. Otherwise, the value becomes
zero. The same rule is applied to x4(n), considering the elements whose indexes are in
D. Attention must be paid when, as usually happens, pilots and data are modulated
with different modulations. In this case values are picked from two different sets; we
define them &, and 8.

From (3.6), the received signal vector is rewritten as

y(n) = H(n)x,(n) + H(n)za(n) +w(n). (3-8)

Note that @,(n) is known at the receiver and so the channel matrix H(n) and the data
vector 4(n) shall be estimated.



3.3. Joint channel estimation and data detection for OFDM systems 57

For notational convenience, we omit the symbol index n. Let h = [hg, hi, ..., hp—1]
be the channel vector to be estimated jointly with the data symbols. In addition, we
define the N x L DFT matrix F'j, as:

[Frlpm = e 92r=Dm=1/N " p —1 92 . N, m=1,2,..., L. (3.9)
Then, from (3.4), we can show that
h = Frh.
For notation convenience, we define:
- A =diag(xz,)Fr,
- B(h) =diag(Frh)

- K = Jg4, where J; is an N x Ny matrix whose elements are given by

4] )1 m=0, n=1,2,..., Ny
dim,n = 0 otherwise

and [, is the nth smallest element of the index set of data tones D
-d=JVz,
and so, rewrite the received signal as [17]:
y=Ah+ B(h)Kd+ w. (3.10)

It is noteworthy that B(h)K is decoupled, this means that each column vector has

only one non zero elements, while the other element are zero.

3.3.2 Channel estimation

To develop the algorithm of interest, we consider an OFDM symbol and we suppose
that the channel vector h is a symbol-deterministic channel vector! to be estimated
through the paper.

Cramer-Rao Lower Bound (CRLB)

The Cramer-Rao lower bound (CRLB) is an important criterion to evaluate the
reliability of any unbiased estimator, because it provides the MMSE bound among all
unbiased estimators.

We assume that the channel vector h is a deterministic channel vector.

!By the expression symbol-deterministic channel vector we mean a channel as described in Section
2.1 which is assumed constant in an OFDM symbol and varies very slowly from symbol to symbol.
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The CRLB can be found if the vector of data symbols, d, is known. Since B(h) =
diag(F'rh), we can show that:

B(h)Kd = diag(Kd)F Lh. (3.11)
From this, we have a linear model for the received signal vector y:

y = diag(xo, z1, ..., xn-1)Frh +w
= Qh+w, (3.12)

where

Q = diag(xzo, x1, ..., zny_1)FL
= A+ diag(Kd)F7.

If the vector of data symbols, d, is known, the matrix @ becomes a known matrix.
Hence, from [45], we can have the CRLB as:

E[[mé:mlumm—hnﬂwﬁ—m%1zcmme

S(h — h)
:zi[%«ant% —%KQHQT?]7 5.13)
2 | s{(@"Q)"Y R{(Q"Q)™}
where h is an unbiased estimate of h. It follows that:
E[||h — h||?] > trace(CRLB(h)). (3.14)

Note that this bound is achievable if d is known or correctly detected. If N is sufficiently

large and pilot and data symbols are random, Q" Q can be approximate by No2I, where
02 = E[|z,,(n)|?]. Hence we can have:
Lo
trace(CRLB(h)) = ——5-. (3.15)
N oz

Note that this bound is independent of the data symbols.

Maximum Likelihood (ML) estimate

In OFDM, according to [41], a simple estimate of h can be found only utilizing pilot
tones. It can be shown that the two subspaces, Range(A) and Range(B(h)K), are
orthogonal for any h. If A is full-rank and N, > L, the ML estimate is given by:

hor, = (AT A)~1Aly (3.16)

and it is not affected by the data tones. It can be shown that the uniform distribution

of pilot subcarriers provides the best performance by minimizing the mean square error
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(MSE).
As we will see later, this estimate can be the initial channel estimation for the EM

algorithm.

Frequency domain equalization

Suppose that the channel estimate h is given, we need to equalize the received
signal. To do this we can adopt more than one technique. One of these is the zero-
forcing equalization in the frequency domain, which can be written as:

d.; = P.s(h)(y — Ah), (3.17)

where P.;(h) = (B(h)K)"(B(h)K))"'(B(h)K)" is an Ny x N matrix, B(h) =
diag(Fph) and h is the best estimate we known at the moment (i.e. fALORp or fz(k)).
In OFDM this method can lead to infinite tones’ estimates if there exist spectral
nulls. To overcome this, the minimum mean square error (MMSE) equalizer can be
used as:
dinmse = Prumse(R)(y — Ah), (3.18)

where Pryse(h) = (B(h)K)" (B(h)K) + o7, 1)~ (B(R)K)".
Note that (B(h)K)"(B(h)K) is a diagonal matrix and its elements are non-negative.

3.3.3 Joint channel estimation and data detection using EM algorithm

From (3.10) and the probability density function (pdf) of y conditioned on d, h
and 02: f(y|d, h,o02), the joint ML estimation of the channel vector and data symbol
vector can be formulated as:

{h,d,62} = arg  max  [(y|d, h,o)
heeL desNVd o2

Y(y, b, d))

2
Ow

(3.19)

1
= arg max ~ €Xp ( —

heCL.desNa o2, (To2)

where (y,h,d) = ||y — Ah — B(h)Kd||?>, € is the L-dimensional complex vector
space and 8V is the N, dimensional Cartesian product of 8. But the complexity of
(3.19) is too high, so, to solve it, we use the EM algorithm.

We define:

- the received signal y as the incomplete data,

- the couple of the received signal y and the transmitted data d, {y,d}, as the
complete data,

- the noise variance o2, and the CIR h as the unknown parameters to be estimated.

Note that B(h)K is decoupled and so the joint detection of the data vector d is
replaced by the individual detection of the data symbols and this significantly reduces
the complexity of the detection algorithm.
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E-step

We start considering the kth iteration and we have the estimates ﬁ(k) and 63} (k)"
Let f(y,d|h,c2) be the joint pdf of the complete data {y,d} conditioned on h and o2,
For the E-step we need to find Ellog f(y, d|h, Ui)‘fl(k), 62 (k) y|. For convenience, let

be Hyy = {fz(k),&fu’(k),y}. From (3.10), we have:

1 h.d
Ellog f(y,dlh,o0)|Hp)] = E[log {m exp ( - %) }W(k)]
= —Nlog(nos,) — Ety. };;d)m(k)] (3.20)

Note that the expectation is carried out over d since y is given.

From B(h)Kd = diag(Kd)F 1 h, we have:

Elly — (A + diag(Kd)F)h|*|(H )]

£ gy (h,y). (3.21)
It follows that:
_ . H H H
vp(h,y) =y "y —2R{y" G1h} + h" Gzh (3.22)
where
G1 =A + E[diag(Kd)FL‘j{(k)]
and

Gy = A" A + AYE[diag(Kd)F |H )] + (E[diag(Kd)F |3 )" A
+ E[(diag(Kd)F )" (diag(Kd)F )| H )]

For convenience, we define Gy = E[diag(Kd)F1|})]. Hence, it can be easy to
show that:
Go = diag(KE[d‘j{(k)])FL, (323)

Gi=A+Gy (3.24)

and

Gy = A"A+ A"Gy+ G{ A+ F{(diag(KE[dd"|H )K" )F,
= Gig, (3.25)

where diag(X) denotes a diagonal matrix which takes all diagonal elements from X.

Hence, in order to find vi(h, y), we need to compute the mean vector and covariance

matrix of d conditioned on J(;). We assume that the symbols in d are independent.
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The conditional mean of d can be obtained as follows:
P
[Eld|Hgllm = > aPr(dm =alHg), m=1,2,..., Ny (3.26)
=1

where d,,, stands for the mth element of d and ¢; is the [th element of 8. We also need
the conditioned covariance matrix E[dd!! |H (1], so we have:

P P
Bldmdf | M) =YY g Pridm = a|He) Prd. = q|Hw),  m#r  (3.27)
=10=1
and
P
E[|dn [*|H (K Z > Pr(dm = atlH@w),  m=1,2,..., Ng (3.28)

From above, we need to find the conditional probability Pr(d, = q|Hgy)). Let
d,, be a sub-vector obtained from d by removing the mth element, d,, (d,, = (d)m
denotes this operation). Define yg) = y — Ah(k) and U,y = B(h(k))K, where,
as usual, B(hy,) = diag(Fph()). Furthermore, denote by U, ) the sub-matrix
of U obtained by removing the mth column vector. Define also A(d, = q) =
1Y) — Um,( )d (k) — qu where w,, (1) is the mth column of the matrix U .

In [17] it is shown that we can find the following expression for Pr(d, = q|H ),
which results not affected by dp:

Pr(dy, = q|Hw) =

2 Py(dm = ), m=1,2 ..., Ny (3.29)

Once p(x)(dm = qi) is known, we can find E[d|H )], E[ddH|fH(k)], Gy, G1, G5 and
V() (R, y).
In above, we have found an appropriate expression of E[log f(y,d|h, o )|5H(k | and

with this, the M-step can be carried out to update the estimates of the channel vector

and the noise variance.

M-step

The next channel estimate, ﬁ(k+1), can be found by minimizing v (h, y), the result
is:

hgin = Gy 'Gily. (3.30)
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It can be easily shown that the estimate of the noise variance which maximize (3.20) is
given by:

. 1 -

030,(k+1) = va(h(kJrl)ﬁU)' (3.31)

Initialization

The estimate of the channel vector based only on pilots tones, written in equation
(3.16) can be used for the initial estimate of the channel vector, fz(o) = iLOF7p.

The initial variance can be given by:

ly?
0121;,(0) =N (3.32)
In addition, the initial vector for d,, can be given by the hard decision from the
MMSE frequency-domain equalizer in (3.18) with the initial channel estimate.
The iteration is terminated when o2 (k + 1) > o2 (k).
Figure 3.4 gives a schematic description of the EM algorithm.



3.3. Joint channel estimation and data detection for OFDM systems

63

INITIALIZATION:
h) =hor, = (A" A) A"y

2 lyll®
O-w,(O) = T

E — STEP
exp <_a_g;i/\(dm = ql))
w, (k)
Z[Ij}:l exp <_0_21 A(dm - q;))

w, (k)

Pr(dm - (11|9{(A)) -

P
[E[dw—((k‘)”m - Z (IIPF(dm - q1|j{(k))
=1
P P
E[dmnd|H ] = Z Z g Pr(diy = q| ) Prd, = ¢/|Ha)

=1 I’'=1
G = diag(KE[d|Hy]) F,
G, =A+G,
G, = G'ag,
ve(h.y) = yy — 2R{y" G,h} + K Gsh

M - STEP
hginy = Gy 'Gly

w,(k4+1) — — k(R t1), Y)

Q>

=

Ui(lf—I—l) >02(l€) No

— w ‘

SOx

P se(h) = (B(WE)! (B(R)K) + o,1) " (B(h)K)"

A

&77177186 — PUU?ISG(]AI’)(y - Ah)

Figure 3.4: Brief resume of the evolution of the EM algorithm.
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3.4 System description and simulation results

The results presented in this Section are obtained with the setup described in Sec-
tion 2.6. There’s only a difference: in this case we don’t consider the possibility of
concatenating more bits before coding. Here we encode bits symbol-by-symbol, so the

sourceword length is 360.

3.4.1 Results

As in Chapter 2, also for the EM algorithm we present the performance in terms
of bit error rate. We consider two different types of channel: AWGN (Figure 3.5)
and SCME channel (Figures 3.6, 3.7 and 3.8), and for the last one we analyze the
results for three different speeds of the mobiles: 3, 50 and 130 km/h. To have some
terms of comparison, the performance of the system are represented when we assume
perfect channel knowledge and the data bits are coded and not. For the same reason,
we also represent the BER when the channel estimation is performed through the ML

estimation.

EM performance with AWGN channel

T T T T I T 3
—e— PCSI - uncod]
—o—PCSl-cod ||
—e—EM - cod E
ML - cod

10

Figure 3.5: Bit error rate with AWGN channel.

Figures 3.5, 3.6, 3.7 and 3.8 represent the results obtained through numerical simu-
lations: the black and green lines represent the bit error rate when we assume perfect
channel knowledge and we consider an uncoded and a coded system respectively. The
cyan line represents performance for the ML algorithm and the red one the performance
for the EM algorithm.

From all these Figures, we can see that the EM algorithm always gives better per-
formance than the ML one, but it is very complex from a computational point of view.
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Bit error rate — 3 km/h
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Figure 3.6: Bit error rate with SCME channel and v =3 km/h.
Bit error rate — 50 km/h
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Figure 3.7: Bit error rate with SCME channel and v = 50 km/h.

3.5 Conclusions

Some considerations can be made to conclude this part on the channel estimation
in wireless systems. First of all we observe that all the estimator presented in these two
Chapters require the knowledge of the channel impulse response length. We can try to
estimate it, but performance experiences a loss in term of bit error rate (see Appendix
B for more details).

Another important parameter is the noise variance. This must be known when we
perform a MMSE or an EM estimation: while in EM algorithm it is the variable used
to decide when stopping iterating and so it is estimated, in the MMSE we assume it
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Bit error rate — 130 km/h
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Figure 3.8: Bit error rate with SCME channel and v = 130 km/h.

known.

Forgiven for a moment these drawbacks, and remembering that in the conclusion of
the Chapter 2 we stated that for a WiMAX system we can use the LS algorithm when
the channel estimation in needed, here in Figures 3.9, 3.10, 3.11 and 3.12, we compare
LS and EM performance.

EM performance with AWGN channel
10 E T T T T T

——EM - cod|]
LS

Figure 3.9: Bit error rate comparison between LS and EM algorithms when the channel
is AWGN.

Except for the AWGN channel, in all the other cases the EM algorithm performs
better than the LS one, but the performance gain is very small and it doesn’t justify
the choice of a complex algorithm such as the EM one.
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Bit error rate — 3 km/h
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Figure 3.10: Bit error rate comparison between LS and EM algorithms when the
channel is SCME and v = 3 km/h.

Bit error rate — 50 km/h
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Figure 3.11: Bit error rate comparison between LS and EM algorithms when the
channel is SCME and v = 50 km/h.

Once again we conclude that for a WiMAX system the channel can be estimated
through the LS algorithm.

To conclude this discussion we want to underline that all this study has been devel-
oped to understand which is the best algorithm to be used to estimate the channel in a
WiMAX system. Aim of the study was a trade-off between the performance in terms of
bit error rate and the computational complexity. The results we found, as said before,

suggest us the LS algorithm.
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Bit error rate — 130 km/h
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Figure 3.12: Bit error rate comparison between LS and EM algorithms when the
channel is SCME and v = 130 km/h.



Chapter 4

Channel coding - Low-Density
Parity-Check (LDPC) Codes

Coding for error correction is one of the many tools available for achieving reliable
data transmission in communication systems. For a wide variety of channels, the noise
channel coding theorem of the Information Theory proves that, if properly coded, for
information transmitted at a rate below channel capacity, the probability of decoding
error approaches zero exponentially with the code length.

In this context another important factor is the relation between the code length
and the computation time or the equipment costs necessary to achieve this low error
probability.

The low-density parity-check codes, considered here, are special example of parity
check codes [83]. The codewords of a parity-check code are formed by combining a block
of binary information digits with a block of check digits. Each check digit is the modulo
two sum of the pre-specified set of information digits. These formation rules for the
check digits can be conveniently represented by a parity-check matrix, which represents
a set of linear homogeneous modulo 2 equations called parity-check equations and the
set of codewords is the set of solution of these equations.

The use of parity-check codes makes coding relatively simple to implement; un-
fortunately, the decoding of parity check codes is not inherently simple to implement,
and thus we must look for special classes of parity-check codes, for which reasonable

decoding procedures exist.

4.1 Low-Density Parity-Check (LDPC) codes

Low-Density Parity-Check codes (LDPC) have recently drawn much attention due
to their near-capacity error correction performance and are currently in the focus of
many standardization activities. These codes can rightfully take their stand next to
turbo codes as the most powerful error control codes known. They offer performance
spectacularly close to theoretical limits when decoded using iterative soft-decision de-

coding algorithms based on factor graphs.
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LDPC codes and a corresponding iterative decoding algorithm were first introduced
by Gallager more than forty years ago 3, 4|. However, for the next several decades
LDPC codes were largely forgotten, possibly because computers of the time could not
simulate the performance of these codes with meaningful block lengths at low error
rates. Following the discovery of turbo codes, LDPC codes were rediscovered through
the work of MacKay and Neal [84, 5] and have become a major research topic. LDPC
codes significantly differ from the more conventional trellis and block codes. First, they
are constructed in a random manner, and second, they have a decoding algorithm whose
complexity is linear in the block length of the code, which allows the decoding of large
codes.

The random construction is one of their problems, because we only have a general
method for constructing a class of pseudorandom LDPC codes, but we can’t construct
good codes algebrically or systematically. Thus, all the good codes we know are largely
computer generated and their encoding is very complex.

On the other hand, their decoding is always performed through the Message Passing
Algorithm (MPA). This is an Iterative Decoding based on a Belief Propagation (IDBP)
[18] algorithm and, even if its computational complexity is very high, it results very
efficient in LDPC decoding. It is a symbol-by-symbol soft-in soft-out decoding algorithm
which iteratively processes the received symbol in order to improve its reliability, based
on the parity-check sums computed from the hard decision of the received symbol.

4.1.1 Code definition and specification: Tanner’s method

A low-density parity-check code is a code specified by a parity check matrix H
of dimension M x N, where M = N — K is the number of parity-check digits, K is
the sourceword length and N is the codeword length; the matrix H has the following
properties:

e cach column contains a small fixed number p > 3 of 1’s,
e cach row contains a small fixed number g > p of 1’s,

so it contains mostly 0’s and only a small number of 1’s. In particular an (N, p, q) low
density code is a code of block length NV and in its matrix each column contains a small
fixed number p of 1’s and each row contains a small fixed number ¢ of 1’s. A code
defined in this way has a rate

=
I
==

Il Il
T
IS |’62|§

(4.1)

An important property of the parity-check matrix is that the number of its non-zero
entries must be the same whether calculated by rows or by columns, i.e. the equation
M -q= N -p is satisfied and so it must be p < g to have R < 1.
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These codes are not optimum in the sense of minimizing the probability of decoding
errors, however, a very simple decoding scheme exists and this compensates for their
lack of optimality.

The analysis of low-density code of long block length is difficult because of the
immense number of codewords involved. It is simpler to analyze a whole ensemble of
such codes because the statistics of an ensemble permit one to average over quantities
that are not tractable in individual codes.

In order to define an ensemble of (N, p, q) low-density codes, given the parity-check
matrix, we can observe that it can be divided into p submatrices, each containing a
single 1 in each column. The first of this submatrices contains all its 1’s in descending
order and the other matrices are merely columns permutations of the first, as we can

see in expression (4.35).

Definition 1. Define an ensemble of (N, p,q) codes as an ensemble resulting from
random permutation of the columns of each of the bottom p — 1 submatrices of a parity-

check matriz, with equal probability assigned to each permutation.

There are two interesting results that can be proved using this ensemble, the first
concerning the minimum distance of the member codes, and the second concerning the
probability of decoding error.

Definition 2. The minimum distance of a code is the number of positions in which

the two nearest codewords differ.

The minimum distance of a member code is a random variable and the distribution
function of a random variable can be overbounded by a function as sketched in Fig.
4.1. As the block length increases, for fixed p > 3 and ¢ > p, this function approaches
a unit step at a fixed fraction d,4 of the block length.

o 8

N4k DISTANCE ~—»

Figure 4.1: Sketch of bound to minimum distance distribution function.
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The probability of error using maximum likelihood decoding for low-density codes
clearly depends upon the particular channel on which the code is being used. The results
are particularly simple for the case of the binary symmetric channel (BSC), which is a
binary-input binary-output, memoryless channel with a fixed probability of transition
from either input to the opposite output.

Definition 3 (Regular LDPC). A regular low-density parity-check code is completely
defined by a permutation 7(i) of the natural numbers 1 < i < pN. The index i refers
to the socket number at the variable nodes, and 7(i) to the socket number at the check

nodes to which socket i connects.

Definition 4 (Irregular LDPC). An irreqular low-density parity-check code is completely
defined by a permutation 7(i) of the natural numbers 1 < i < pN from variable to check
node socket numbers and two degree distributions X(x) and p(x) for the variable nodes
and check nodes, respectively.

The code specification lies in the interconnection network, which is composed by N
variable nodes with p connections from every one to check nodes and M check nodes
with ¢ connections from every one to variable nodes.

We assume that the block length N and the code rate are determined by the appli-
cation, then it remains to determine appropriate values for p and q.

Since Gallager showed that the minimum distance of the typical regular LDPC codes
increases linearly with N, provided p > 3, then regular LDPC are constructed with p
on the order of 3 or 4.

The code specification given above is the starting point to introduce the Tanner’s
method. It is, in fact, based on a bipartite graph to provide a graphical representation
of the parity-check matrix.

Definition 5. The bipartite graph is a graph in which the nodes may be partitioned

into two subsets such that there are no edges connecting nodes within a subset.

For LDPC we have two subsets: variable nodes, one for each of the N columns of
H and check nodes, one for each of the M rows of H; an edge exists between the i-th
variable node and the j-th check node if and only if h;; = 1.

Definition 6. The number of edges incident upon a node is the degree of the node.

When we consider a regular LDPC, the bipartite graph of a (N,p,q) LDPC code
contains N variable nodes of degree p and M check nodes of degree q. We observe also
that (N,p,q) defines an ensemble of codes C™(p, q). Once the degree of the nodes are
chosen, we are still free to choose which particular connections are made in the graph.

An irregular LDPC code can not be defined in terms of degree parameters p and q.
We must, instead, use the degree distributions to describe the variety of node degrees
in the graph.

Definition 7. A degree distribution is a polynomial in x:

v(x) = Z yia' !
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such that v(1) = 1. The coefficients ~; equal the fraction of edges in the graph which

are connected to a node of degree 1.

Thus, to define an ensemble CV(), p) of irregular LDPC codes we need: the code
length IV and the degree distribution for the variable nodes A(x) and for the check nodes
p().

Called N, the number of edges in the code and the ratios \;/i and p;/i the number
of variable and check nodes of degree ¢ respectively, we can define:

e the number of variable nodes is

s
N =N, Z 7 (4.2)
KA
e the number of check nodes is
M =N, Z % (4.3)
(3
e the rate is o
R:u:1_%:1_2iz (4.4)
o NTOTRE

Observation 1. We observe that large irregular codes can approach the Shannon limit,

but very large levels of irregularity are required.

4.2 Irregular LDPC codes

In [85] the authors present irregular low-density parity-check (LDPC) codes which
exhibit a performance extremely close to the best possible as determined by Shannon
capacity formula.

Irregular LDPC codes were introduced in [86], [87] and were further studied in [88]-
[89]. As we can see in Definition 4, for such an irregular LDPC code, the degrees of
each set of nodes are chosen according to some distribution.

For a given length and a given degree distribution, we define an ensemble of codes
by choosing edges, i.e., the connections between variable and check nodes, randomly.
Assume that the number of edges is E, then a code can be identified with a permutation
on E letters. By definition, all elements in this ensemble are equiprobable. In practice,
the edges are not chosen entirely randomly, since certain potentially unfortunate events
in the graph construction can be easily avoided.

We say that a polynomial v(z) of the form

v(z) = Z%‘ﬂfi_l

1>2

is a degree distribution if v(z) has non-negative coefficients and (1) = 1. Given a
degree distribution pair (\,v) associate to it a sequence of code ensembles CV (), ~),
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where N is the length of the code and where

AMz) = i)\ixi_l ('y(x) = i%ﬁ_l)

i>2 i>2

specifies the variable (check) node degree distribution. More precisely A; (7;) represents
the fraction of edges emanating from variable (check) nodes of degree i. The maximum
variable degree and check degree is denoted by d, and d., respectively.

The total number of edges F emanating from all variable nodes, is equal to

/i 1
N _N ,
Z fol Az)dx fol Az)dx

i>2
and, if we consider the M check nodes, the total number of edges F is

w1
fo ~v(x)dx

Assuming that all these check equations are linearly independent, we see that the design

rate is equal to
N-M fol y(z)dx
N fol Az)dx

Thus, following we will give a brief description of the channel type, the distributions

r(Ay) =

and their properties and finally we will describe the optimization techniques that we
use to obtain the degree distribution pairs with large threshold.

4.2.1 Channel

We consider an order family of binary-input memoryless channels parametrized by a
real parameter § such that if 47 < do then the channel with parameter do is a physically
degraded version of the channel with parameter §;. Furthermore, each channel in this
family is output-symmetric, i.e.

plylz =1) = p(—ylz = -1). (4.5)

4.2.2 Distribution and their properties

For some channels, e.g., the BEC and the BSC, the density of received log-likelihood
ratios is discrete. For others, e.g., the BIAWGNC, the density is continuous. In the
first case, the message densities will themselves be discrete and in the second case, the
message densities will be continuous. In order to be able to treat all these cases in a
uniform manner we shall work with a fairly general class of distributions.

Let F denote the space of right-continuous, non-decreasing functions F' defined on
R satisfying limy_,_ oo F'(z) = 0 and lim,_, 4 F(x) < 1. To each F' € F we associate a
random variable z over (—oo,+o0c]. The random variable z has law or distribution F,



4.2. Irregular LDPC codes 75

Priz € (—oo,z]] = F(x).

The reason we allow lim, ;o F(x) < 1 rather than lim, .. F(xz) = 1 is to permit z
to have some probability mass at +oo, indeed
Priz =+o00]=1— lim F(x).
r—+00

We will work with densities over (—oo,+o0] which, formally, can be treated as
(Radon-Nikodyn) derivatives of elements of F. The derivative, when it exists, is the
density of the associated random variable z over (—oo,+00) although there may be
an additional point mass at 4o0o: recall Prjz = +oo] = 1 — F7(c0). If f is the
density corresponding to the distribution F' we will write [ h(x)f(x)dx as a proxy for
Jg h(x)dF (z).

We are interested in the evolution of the message distributions under the inde-
pendence assumption. Therefore, we will now discuss how distributions evolve when

independent random variables (in either representation) are summed and when the

representation of such variables is changed.
Their convolution is defined by

(Fo6 - [

F(z — y)dG(y) = / Gl — y)dF(y).
R R

If z; and zy are independent random variables over (—oo, +oco] with distributions F},
and F,, respectively, then the distribution of z; + 25 is F,, ® F,, (as is the case for
independent random variables defined over (—oo, +00)).

Now, suppose we have a random variable z over (—oo, 00| with distribution F,
and we wish to describe the distribution of the random variable v(z) = (71(2),72(2)),

where

m(z) = sgn(z)
v(z) = —lntanh|§|.

We approach this problem by assigning two connected distributions associated to y2(z)
under the conditions v1(z) = 0 and 71 (z) = 1, respectively.

Any function G over GF(2) x [0, 400) can be written as

G(s, ;1:) = x{s:o}GO(ﬂf) + X{s:l}G1 (33)

where X {s—,} denotes the characteristic function of the set {s = a}, i.e., X{s=q) = 1if s =
a and X{s—q) = 0 otherwise. Let G denote the space of functions over GF(2) x [0, +00)
such that G°(z) and G!(z) are non-decreasing and right continuous

lim G%x) > lim G'(x)

T——+00 T——+00
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and such that G°(0) > 0 and G (0) = 0.

Given a random variable z € (—o0,4o00| with distribution F, we define the distri-

bution of v(z) as

L(F)(s,2) = X{s=0yTo(F2) (@) + X (=13 11 (F2) (@) (4.6)
where
To(Fy)(z) =1— F;( ~Intanh g) and  T1(F)(z) = Fz<lntanh g)
Thus

Lo(Fz)(x) = Priyi(z) =0, 12(2) < 7]
= Pr[z> —Intanh g]

and

(F)(x) = Prim(z) =1, 12(2) < 7]
= Pr[z <Intanh g]

Note that I'(F,) € G, and, in particular

lim To(F.)(x) — lim I'y(F.)(x) = Pr[z =0].

T—+00 r—+00
Let G = X{SZO}GO + X{szl}Gl be an element of §. We speak of densities over GF(2) x
[0, +00]
9(5, %) = X{s=039" (¥) + Xqs=139" (2)
by substituting for G and G their associated densities.

The function I' has a well-defined inverse. Given
G = x(5=0}G* + x(s=1;G' € G
we have
-1 _ 0 £ 1 —Z
I(G)(z) = X(s>01G ( — Intanh 5) + X{s<0} G ( — Intanh 7) (4.7)
and
I HG)(0) = limg— 1 0G0 ().

It is easy to check that I'': G — JF and that I~Y(I'(F)) = F for all F € F . Further,
I' and I'"! are additive operators on the spaces G and F, respectively.

For convenience, although it constitutes an abuse of notation, we will apply I' and

I'! to densities.

The space G has a well-defined convolution. Here, the convolution of two distribu-
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tions X{SZO}GO + x{szl}Gl and X{SZO}HO + x{szl}Hl is the distribution
X(s=0} (G* @ H°) + (G' @ H')) + x(o=3 ((G° @ H") + (G' ® H"))

where, here, ® denotes the (one-sided) convolution of standard distributions. In other
words, the new convolution is a convolution over the group GF(2) x [0, +00). By abuse
of notation, we denote this new convolution by the same symbol ®. Again, we shall
allow the convolution operator to act on the densities associated to elements of § with
the implicit understanding that the above provides the rigorous definition.

If z; and 29 are independent random variables over GF(2) x [0, 400) with distribu-
tions G,, G, € G, respectively, then the distribution of z1 + 22 is G,, ® G,,.

Density evolution

The symbols P, and @; will be shorthand notations for the densities of the random
variables mq(,lc) and mgv) Ji.e. message sent from variable node v to check node ¢ and the
one sent from check node ¢ to variable node v at the [-th iteration, respectively. We

will use the notation [ P, and [ @Q; to denote the associated distributions.

By
mlcv=7‘1( > v(mifcl)),
v eVe{v}

we see that the random variable describing the message passed from check node ¢ to

! of a sum of random variables from GF(2) x

variable node v is the image under vy~
[0,+00]. These random variables are independent by the independence assumption.
So, the density of their sum is the convolution of their densities.

Let the graph have degree distribution pair (A, p) where

ANz) = Z PV and p(z) = Zpiazifl.

i>2 i>2

Recall that the fraction of edges connected to a variable node of degree 7 is \;, and
the fraction of edges connected to a check node of degree i is p;. Thus, a randomly
chosen edge in the graph is connected to a check node of degree i with probability p;.
Therefore, with probability p; the sum in (4.2.2) has (i — 1) terms, corresponding to the
edges connecting c to all its neighbors other than v. We conclude that, in this case, the
density of mﬁi} is equal to

Py (D(P)®0D), (48)

Summing up over all the possibilities for the degrees of the check node ¢, we see that

()

the density of the message my: equals

Q=T (p(T(P-1)) = T (3 pu(T(P1)®). (4.9)

i>2

A recursion for P, in terms of Q; is derived similarly and is quite straightforward.
The density of the message passed from check node ¢ to variable node v at round [ is
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equal to ;. At v the incoming messages from all check nodes other than ¢ are added to
my, the received value for v, and the result is sent back to ¢. Since, by the independence
assumption the random variables describing these messages are independent, the density
of this message equals

P=PyaXQ)=PR®Y \Q)* (4.10)
i>2

where Py is the density of the random variable describing the channel. Combining (4.9)
and (4.10) we obtain the desired recursion for P in terms of P_;.

In [85], the authors provide that the density function of the messages passed from
variable to check nodes during the belief propagation are symmetric, provided that the
channel is output-symmetric.

4.2.3 Optimization

In this section, we briefly describe the optimization techniques that we used to
obtain degree distribution pairs with large thresholds.

First, we observe that the threshold is defined as the supremum of all channel
parameters for which the probability of error under density evolution converges to zero.
This is equivalent to requiring that the message distribution converges to A,. In
practice, we can verify at best that the probability of error reaches a value below a
prescribed e, so the issue of convergence is not of great concern since we always allow a
finite (but small) probability of error.

Secondly, in order to perform the computations we need to quantize the quantities
involved. This quantization leads to a quantization error and this error might accu-
mulate over the course of many iterations, rendering the computations useless. This
problem can be circumvented in the following way. By carefully performing the quan-
tization one can ensure that the quantized density evolution corresponds to the exact
density evolution of a quantized message-passing scheme. Since belief propagation is
optimal, such a quantized version is suboptimal and, hence, the reported thresholds can
be thought of as lower bounds on the actual thresholds.

Another important result presented in [85] states that density evolution for belief
propagation always converges to a fixed point.

Local optimization - hill-climbing approach

Fix a small target error probability € and a maximum number of iterations m. Start
with a given degree distribution pair and determine the maximum admissible channel
parameter, i.e., the maximum channel parameter such that the error probability after m
iterations is below €. Now apply a small change to the degree distribution pair and check
if it has either a larger admissible channel parameter or at least a smaller target error
probability after m iterations. If so, declare the new degree distribution pair to be the
currently best degree distribution pair, otherwise keep the original degree distribution
pair. The same basic step is then repeated a large number of times.
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The search for good degree distribution pairs can be substantially accelerated by
appropriately limiting the search space.We found, for example, that very good degree
distribution pairs exist with only a few nonzero terms. In particular, it suffices to allow
two or three nonzero check node degrees (and these degrees can be chosen consecutively)
and to limit the nonzero variable node degrees to 2, 3, the maximum such degree d;,
and, possibly, a few well-chosen degrees in-between.

Provided that the fixed points are stable, the message distributions at these points
are continuous functions of the degree distribution pair. Hence, a small change in
the degree distribution pair causes only small changes in the associated fixed-point
distributions. Furthermore, if the fixed points are stable, then this affords a certain
memorylessness to the density evolution process because they serve as local attractors.
Small perturbations to the path will not matter once the domain of convergence of the
fixed point is entered and, once the fixed point is found, the path that leads to it is
irrelevant.

Assume we determine the critical points (near fixed points, or likely fixed points for a
slightly worse initial distribution) for a particular degree distribution pair and we would
like to determine the merit of a particular small change of the degree distribution pair.
Rather than starting with the initial distribution and then checking if (and how fast) this
initial distribution converges to A, one can memorize the distributions at the critical
points of the original degree distribution pair and then determine how the proposed
change affects the speed of convergence locally at these points. Once a promising change
has been found, the merit of this change can be verified by starting with the initial degree
distribution pair. Typically, only a few iterations are necessary at each critical point
to determine if the change of the degree distribution pair improves the convergence or
not. This has to be compared to hundreds of iterations or even thousands of iterations
which are necessary if one starts with the initial distribution.

In the optimization scheme we just described we made use of the distributions
at the "critical points" to find promising changes of the degree distribution pair. The
following schemes extend this idea even further; the resulting algorithms are reminiscent
of the algorithms used in the BEC case. For simplicity, we will only describe the
optimization of the variable node degree distribution. The extension to the check node
degree distribution and to joint optimization should be quite apparent.

Assume that we are given a degree distribution pair (A, p), a particular channel
parameter o, and a target probability of error e. Let {p;};", be the sequence of error
probabilities of the belief propagation algorithm. More precisely, pg is the initial error
probability, p; is the probability of error after the [th iteration, and p,, < € < Pp_1.
Assume that we want to find a new degree distribution A which achieves the target
probability of error in fewer iterations or achieves a lower target in the same number
of iterations. Define a matrix A4;;, 1 <1 < m, 2 < j < d,. The entry A;; is the
error probability which results if we run the belief-propagation decoder for (I — 1) steps
assuming that the variable node degree distribution is A followed by one step in which
we assume that the variable node degree distribution is a singleton with all its mass on
the degree j. Note that the actual error probability after the [th iteration, p;, can be
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expressed in terms of A;; as
d;
P = Z A
Jj=2

Let us define a function p(t) for ¢ € [0,m] by linearly interpolating the p;, setting

p(l) = p;. Define » ; B
L()\):/p ( dfz( )) dz.

1
We interpret L as the number of iterations required to take the initial probability of
error pg down to p,,. Using the expression above, we can write down the gradient of
L(X) with respect to A. In particular, for a perturbation A we can compute

d
DypL(\) = d_nL()\ + nh)|n=0

oty = [ (o) (1)

Returning to the discrete representation this is equivalent to

DyL = Zh (ZA“
7J=2

as

bi—1 _Pl)

Thus, we observe that the gradient of L(\) is given by

d LA -
— L) =) —L—.
dA; 9 ;pl—l -m

There are two ways we can exploit this expression. One is to use the (negative) gra-
dient direction to do hill climbing, and the other is to globally optimize the linearized
approximation of L. In either case, we must incorporate the constraints on A.

Let A be an alternative degree distribution. Clearly, A has to be a probability mass

function, i.e.

A =1 (4.11)

(4.12)

Let be the negative gradient direction of L. If we set A = A+nh (for positive 1) then the
above constraints may not be satisfied. However, among degree distributions satisfying
the constraints the one closest to A4+nh in Euclidean distance can be easily computed by
alternating projections. Two projections are required: the first is orthogonal projection
of h onto the subspace determined by Zj hj = 0 (total probability constraint) and
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Zj %hj = 0 (rate constraint), and the second projection sets nh; = —A\; if, prior to
the projection, nh; + A; < 0. Note that an alternative interpretation is to project the
gradient direction h onto the convex polytypes of admissible directions. One can then
compute the maximum step size n for which the constraints remain satisfied and then
recompute the projection at that point. In this way, one can easily walk along the
projected gradient direction to look for an improved degree distribution. Let us now
consider the second way to exploit the gradient expression for L. Let

d;
Pr=>_ Ay
=2

Then we have

L=y 2 (4.13)
= Pl-1— D

This approximation is valid as long as X does not differ too much from A, i.e., assuming
that the message distributions corresponding to A and X are not too different, if

max I =pil <0 (4.14)
L pi-1—p
where 0 < 1, and if
hi<pi, 1<i<m (4.15)

Recall that we want to minimize L(\). The same procedure is then applied repeatedly
in an attempt to converge to a good degree distribution. Since both approaches are local
optimizations it is appropriate to repeat the optimization with various initial conditions.

Global optimization - Differential Evolution (DE) algorithm

Differential Evolution (DE) is a robust optimizer for multivariate functions. We will
not describe the details here, suffice it to say that the algorithm is in part a hill climbing
algorithm and in part a genetic algorithm.

Our goal is to maximize the cost function which we define to be the threshold
value for the channel. Since such optimizers, and DE in particular, operate best in
a continuous parameter space of not too large dimension, and since frequent function
evaluations are required in the optimization, we found it convenient to let the parameter
space be a continuous space of small dimension. To accomplish this, we introduced
fractional phantom distributions. Let the polynomials A and p take on the general
form Y, \iz'~! (similarly for p), where now both the A; and the degree i could take
any positive real value. The real degree distribution is obtained from this phantom
distribution as Zi()\ilx”J*l + Xioz[11=1), where \;; and iz are uniquely determined
via the equations

Ait+Aig =A;  and ﬂ—i-ﬂzﬁ
L] [l

This way, we are guaranteed to obtain a degree distribution which respects the rate-
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constraints for the code.

By allowing fractional degrees we, in effect, force the program to choose (close
to) optimal degrees. This results in a significant reduction of the dimensionality of
the parameter space, hence the running time, and also in the sparsity of the degree
distributions obtained.

4.3 LDPC encoding

For an LDPC code the encoding problem can be divided into two sub-problems: the
construction of the parity-check matrix and the encoding operation.

In the following Sections we give a brief description of the proposed solutions for
these problems. During these explanations we consider binary codes, so all the opera-
tions are GF(2).

4.3.1 Parity-check matrix’ construction

As specified above, to define a LDPC code, we need a very sparse random parity
check matrix H of size M x N. There are several methods to construct it, following we
describe two methods generally used when we attempt to create a regular code and an
irregular code, given its degree distribution. For a regular code the process followed is
described next:

e select a column weight p > 3

e create a rectangular matrix H M x N at random with exactly weight p per column
and weight per row as uniform as possible

e if N/M is an integer, then the number of 1’s per row can be constrained to be
exactly pM /M and so we have a regular LDPC code, because the bipartite graph

is regular

e use Gaussian elimination and the reordering of columns to derive an equipment

parity-check matrix in a systematic form, i.e. H = [P|I,].

At this point the matrix H is composed of two very sparse matrices H = [C|C3],
where Cy is M x M very sparse and invertible and C'y is M x K and still very sparse.

To improve the properties of the code, when generating the matrix H, constrain
all pairs of columns in the matrix to have an overlap less or equal to 1. Furthermore
constrain the matrix H so that the topology of the corresponding bipartite graph does
not contain short cycles.

When we construct an irregular code we need its degree distribution. In [85] the
authors describe a method to compute it, given the rate of the code, for a code with
infinite codeword length. Here we suppose to know it and give a general description for
the construction of the matrix [90].
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Once we have generated the parity-check matrix H and remembering the relation
GH" =0, we can compute the generator matrix G :

DN

where the identity matrix I, makes the code systematic.

4.3.2 Encoding operation

One major criticism concerning LDPC codes has been their apparent high encoding
complexity. Whereas turbo codes can be encoded in linear time, a straightforward
encoder implementation for an LDPC code has complexity quadratic in the block length:
given the K-bit binary message s, the N encoded bit vector is

t=G"s mod 2. (4.17)

Several authors have addressed this issue and found at least two possible solutions: a
cascade construction |91], [92] and a restriction of the shape of the parity-check matrix.
Unfortunately both of these result in a performance loss, compared to a standard LDPC
code with the same overall length.

A different method encodes the sequence s using the parity-check matrix. Assume
we have a systematic code, the codeword can be written as © = [x,, )], where x,, is the
information sequence and x, is the parity sequence. The same distinction can be done
for the parity-check matrix, which can be written as: H = [H,|H,]. As a consequence
we can write: Hpmg = H,z! and so:

w) = H,'H,x|. (4.18)

In literature we can find few methods to make this computation efficient. The
most important from an efficient point of view is an encoder based on approximate
lower triangularization. It uses the sparseness of the parity-check matrix to develop
an algorithm for efficient encoders. The authors of [93] suggests placing the matrix in
"approximate lower triangular" form, in which the upper right corner is populated with
only 0’s as shown in Figure. 4.2.

Assume that, by performing row and column permutations only, we can bring the
parity-check matrix into the form indicated in Fig. 4.2. We say that H is in approximate
lower triangular form. Note that since this transformation was accomplished solely by
permutations, the matrix is still sparse. More precisely, assume that we bring the matrix

H:(A B T) (4.19)

in the form

C D E
where A is (M —g) x (N —M), Bis (M —g) xg, T'is (M —g) x (M —g), C is
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kN—M‘ngHHM—g—»
0

A B T

<
-—a— - —

Figure 4.2: Parity-check matrix in approximate lower triangular form.

gx (N —M), Dis gx g, and, finally, E is g x (M — g)'. Further, all these matrices are
sparse and T is lower triangular with ones along the diagonal. Multiplying this matrix

from the left by
1 0
4.20
< ~ET' I ) (4.20)

we get

A B T
o o . (4.21)
~ET'A+C —-ET'B+D 0

Let = (s, p;, py) where s denotes the systematic part, p; and p, combined denote
the parity part, p; has length g, and p, has length (M — g). The well know equation
Haz" =07 splits naturally into two equations, namely

As” + Bpl +Tpl =0 (4.22)

and
(-ET'A+C)s" + (~ET'B+ D)p] =0 (4.23)

Define ¢ = —ET !B + D and assume for the moment that ¢ is non-singular. We will
discuss the general case shortly. Then from (4.23) we conclude that

pl = ¢ Y(—ET'A+C)s’. (4.24)

Hence, once the matrix —¢*1(—ET_1A—|—C) has been precomputed, the determination
of p; can be accomplished in complexity O(g x (N — M)) simply by performing a
multiplication with this (generically dense) matrix. In a similar manner, noting from
(4.22) that p? = —T71(AsT + BpT), we can accomplish the determination of pl in
complexity O(N).

Table 4.1 contains the complexity of each operation in the computation of p; and
py. Table 4.2 gives a summary of the proposed algorithm: 2 steps are described: pre-

processing and encoding. In the first one we perform rows and columns permutation to

14 is the minimum number of rows we can’t use in our triangularization process
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‘ Efficient computation of p] = —¢ '(~-ET 1A+ C)s” ‘

Operation Comment Complexity
AsT Multiplication by sparse matrix O(n)
T 1[AsT] T 1AsT] = yT & Ty" O(n)
—E[T 1AsT] Multiplication by sparse matrix O(n)
Cs” Multiplication by sparse matrix O(n)
[-ET 'As™] +[Cs™] Addition O(n)
—¢ I[-ET 'As” + CsT| | Multiplication by dense g x g matrix O(n)

‘ Efficient computation of pI = T~ '(As” + BpY) ‘
Operation Comment Complexity
AsT Multiplication by sparse matrix O(n)
BpT Multiplication by sparse matrix O(n)
[AsT] + [Bp?] Addition O(n)

T~'[As” + Bp{] =y"
T '[As” + Bp]] T O(n)
—[As" + Bp{] = Ty"

Table 4.1: Efficient computation of the parity sequence p” = [pT pl].

bring the parity-check matrix into approximate lower triangular form with a gap ¢ as
small as possible. In the second one p; and p, are computed. We point out that the
pre-processing step is computed once at the beginning and then only the encoding step

in performed.

4.4 The decoding problem

The use of the LDPC codes has two main advantages:
e LDPC codes can be decoded using an iterative decoding algorithm,
e complexity decoding grows only linear with the block length of the code.

The channel adds noise n to the vector ¢t and the received signal is
r=[GTs+n] mod 2. (4.25)

if we assume a binary symmetric channel (BSC).
The decoder’s task is to infer s given the received signal r and the noise properties
of the channel. The optimal decoder returns the message s that maximizes posterior

probability:
P(r[s,G)P(s)
P(r|G)

We observe that if the prior probability of s is assumed uniform and the probability

P(s|r,G) = (4.26)

of n is assumed to be independent of s, than it is convenient to introduce the M x N
parity-check matrix H, which is in systematic form [P|I,s]. We remember that the
parity-check matrix has the property HG' = 0 mod 2 so that Hn = Hr mod 2.
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Pre-processing: Input: Non singular parity-check matrix H. Output: An equiv-

A BT ) such that —ET " 'B + D is

alent parity-check matrix of the form < CDE

non-singular.

1. Triangularization: Perform row and column permutations to bring the parity-
check matrix H into approximate lower triangular form

A BT
H_<CDE>

with as small a gap ¢ as possible.

2. Check rank: Use Gaussian elimination to effectively perform the pre-
multiplication

I o A B T)\ A B T
ET' I C D E) \ —ET'A+C ET'D 0

in order to check that —ET !B+ D is non-singular, performing further column
permutations if necessary to ensure this property.(Singularity of H can be
detected at this point.)

C D E
that —ET !B + D is non-singular and a vector s € F*~™. Output: The vector
x = (s, Py, Py), Py € F9, py € F™ 9, such that Ha! = 07.

Encoding: Input: Parity-check matrix of the form H = ( A B T > such

1. Determine p! = —¢p ' (~ET'A + C)s”

2. Determine pl = —-T'(As” + Bp?)

Table 4.2: Summary of the proposed encoding procedure. It entails two steps: a
pre-processing step and the actual encoding step.

The decoding problem, thus, reduces to the task of finding the most probable noise
vector m such that
Hn mod2=z (4.27)

where the syndrome vector z = Hr mod 2.

Observation 2 (Decoding problem’s formalization). Assume that n is a sparse random
vector with independent and identically distributed bits of density f,. We want to recover

t by finding the most probable nv that satisfies
Hn =2z mod 2 (4.28)

and z = Hr mod 2.
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From nv we obtain out guess for the transmitted signal:
t=(r+n) mod?2 (4.29)

and the first K bits of this are the guess 8, since we are considering a systematic code.

Observation 3. Theoretical effectiveness of LDPC' codes as error correcting codes de-
pends on the properties of very sparse matrices H ; the practical effectiveness, instead,
depends on our finding the practical algorithm for solving Hn = z mod 2 that is close

enough to the optimal decoder.

Observation 4. There exist LDPC codes for which optimal decoders would achieve
iformation rates arbitrarily close to the Shannon limit for a wide variety of channel.

In the following Chapters the LDPC decoding algorithms present in literature are
described.

4.5 LDPC decoding’s algorithms

Following we describe the proposed LDPC decoding’s algorithms, starting from the
first proposed by Gallager[3, 4] and then analyzing the one proposed by MacKay [5].

4.5.1 The decoding algorithm by Gallager

In 1962 Gallager proposed two decoding schemes that appear to achieve a reasonable
balance between complexity and probability of decoding [3]. The first is particularly
simple, but it is applicable only to the binary symmetric channel (BSC) at rates far
below channel capacity. The second scheme, which decodes directly from the a posteriori

probabilities at the channel output, is more promising.

Algorithm for decoding LDPC codes on BSC channel

The decoder computes all the parity checks and then changes any digit that is
contained in more than some fixed number of unsatisfied parity-check equations. Using
these new values, the parity checks are recomputed, and the process is repeated until
the parity checks are all satisfied.

If the parity-check sets are small, this decoding procedure is reasonable, since most of
the parity-check sets will contain either one transmission error or no transmission errors.
Thus when most of the parity-check equations checking on a digit are unsatisfied, there
is a strong indication that that digit is in error.

In this algorithm, when the parity check sets contain one error the digit d is corrected,
but it can be corrected even if its parity-check sets contain more than one transmission
error. To see how this can be done consider the tree structure in Figure 4.3.

The arbitrary digit d is represented by the node at the base of the tree and each
line rising from this node represents one of the parity check sets containing digit d. The
other digits in these parity-check sets are represented by the nodes on the first tier of
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k — 1 other
digits in first « _
parity-check set ™

1) (3,2) (3,3)
j parity checks on d

Figure 4.3: Parity-check set tree.

the tree. The lines rising from tier 1 to tier 2 of the tree represent the other parity-check
sets containing the digits on tier 1, and the nodes on tier 2 represent the other digits in
those parity-check sets. Notice that if such a tree is extended to many tiers, the same
digit will appear in more than one place.

Assume that both digit d and several of the digits in the first tier are transmission
errors. Then, on the first decoding attempt, the error free digits in the second tier and
their parity-check constraints will allow correction of the errors in the first tier. This
in turn will allow correction of digit d on the second decoding attempt. Thus digit and
parity-check equations can aid in decoding a digit seemingly unconnected with them.

If we define Vj\; the set of the variable nodes which connect to check node j, ex-
cluding variable node i and Cj ; the set of check nodes which connect to variable node
1, excluding check node j and call r; the received bit, we can synthesize the described
algorithm as follows:

Gallager’s LDPC decoding algorithm A for BSC channels

Step 1: Initialize d; = r; for each variable node

Step 2: Variable nodes send p;—.; = d; to each check node j € C;

Step 3: Check mnodes connected to variable node ¢ send
Bj—i Hlevj\i fi—; to i; ie. the check node sends back
to ¢ the value that would make the parity check consistent

Step 4: At the variable node i if [p/2] or more of the incoming parity
checks 3;_,; disagree with d;, change the value of variable
node i to its opposite value: d; = d; @ 1

Step 5: Stop when no more variable nodes are changing or after a
fixed number of iterations have been executed. Otherwise go
back to step 2.
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Probabilistic decoding scheme

The probabilistic decoding scheme utilizes extra digits and extra parity check equa-
tions more systematically.

Assume that the codewords from an (N, p,q) code are used with equal probability
on an arbitrary binary-input channel. For any digit d an iteration process will be
derived that on the m-th iteration computes the probability that the transmitted digit
in position d is a 1 conditional on the received symbols out to and including the m-th
tier. For the first iteration, we can consider digit d and the digits in the first tier to
form a subcode in which all sets of these digits that satisfy the p parity-check equations
in the tree have equal probability of transmission.

Consider the ensemble of events in which the transmitted digits in the positions of
d and the first tier are independent equiprobable binary digits, and the probabilities
of the received symbols in these positions are determined by the channel transition
probabilities P, (y). In this ensemble the probability of any event conditional on the
event that the transmitted digits satisfy the p parity-check equations is the same as the
probability of an event in the subcode described above. Thus, within this ensemble we
want to find the probability that the transmitted digit in position d is a 1 conditional
on the set of received symbols {y} and on the event S that the transmitted digits satisfy
the p parity-check equations on digit d. We write this as

Plea = 11y}, S). (4.30)

In [3] Gallager gave the proof of one lemma and one theorem, their propositions are
reported here:

Lemma 1. Consider a sequence of m independent binary digits in which the [-th digit
18 1 with probability P;. Then the probability that an even number of digits are 1 s

L+]I2, (1 —-28)
2

(4.31)

Theorem 1. Let Py, be the probability that the transmitted digit in position d is a 1
conditional on the received digit in position d, and let Py, be the same probability for
the [-th digit in the i-th parity-check set of the first tier. Let the digits be statistically
independent of each other, and let S be the event that the transmitted digits satisfy the
p parity-check constraints on digit d. Then

Plzg = 0[{y}, 5] 1—PdH 1+H 2132'1)] (432)

Plea = 11{y}, 5] (1 2Py)

Judging from the complexity of this result, it would appear difficult to compute the
probability that the transmitted digit in position d is a 1 conditional on the received
digits in two or more tiers of the tree. Fortunately, however, the many-tier case can be
solved from the 1-tier case by a simple iterative technique.



90 Chapter 4. Channel coding - Low-Density Parity-Check (LDPC) Codes

As an example we consider the 2-tier case. We can use Theorem 1 to find the
probability that each of the transmitted digits in the first tier of the tree is a 1 conditional
on the received digits in the second tier. The only modification of the tier is that the
first product is taken over only p — 1 terms, since the parity-check set containing digit
d is not included. Now these probabilities can be used in Equation (4.32) to find the
probability that the transmitted digit in position d is 1. The validity of the procedure
follows immediately from the independence of the new values of P;; in the ensemble used
in Theorem 1. By induction, this iteration process can be used to find the probability
that the transmitted digit d is 1, given any number of tiers of distinct digits in the tree.

The general decoding procedure for the entire code may now be stated. For each
digit and each combination of p—1 parity-check sets containing that digit, use Equation
(4.32) to calculate the probability of a transmitted 1 conditional on the received symbols
in the p — 1 parity-check sets. Thus there are p different probabilities associated with
each digit, each one omitting 1 parity-check set. Next these probabilities are used in
Equation (4.32) to compute a second order set of probabilities. The probability to
be associated with one digit in the computation of another digit d is the probability
found in the first iteration, omitting the parity-check set containing d. If the decoding
is successful, then the probabilities associated with each digit approach 0 or 1 as the
number of iterations is increased. The procedure is valid only for as many iterations as
meet the independence assumption in Theorem 1.

This assumption break down when the tree closes upon itself. Since each tier of
the tree contains (p — 1)(¢ — 1) times more nodes than the previous tier, the indepen-
dence assumption must break down while m is quite small for any code of reasonable
block length. This lack of independence can be ignored, however, on the reasonable
assumption that the dependencies have a relatively minor effect and tend to cancel each
other out somewhat. Also, even if dependencies occur at the m-th iteration, the first
m — 1 iterations have reduced the equivocation in each digit. Then we consider the
probabilities after the m — 1 iterations to be a new received sequence that should be
easier to decode than the original received sequence.

The most significant feature of this decoding scheme is that the computation per
digit per iteration is independent of the block length. Furthermore, it can be shown
that the average number of iterations required to decode is bounded by a quantity
proportional to the log of the log of the block length.

For the actual computation of the probabilities in Theorem 1, it appears to be more
convenient to use Equation (4.32) in terms of log-likelihood ratios. Let

1-P
In 2 4= by
1-F
IHTZ = B (4.33)
P[xd = 0|{y},S] !t
In = a,f
Plzq = 1[{y}, 5] 4

where « is the sign and [ is the magnitude of the log-likelihood ratio. After some
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manipulation, Equation (4.32) becomes

J k—1

= agba+ (ﬁ ca) [ 1 (80)] (4.34)
i=1 =1

=1

where f(3) =1n gﬁf}

The calculation of the log-likelihood ratios in Equation (4.34) for each digit can be
performed either serially in time or by parallel computations.

Example

Through the matrix (4.35) we define a (20, 3,4) code. It is an example of low-density
code matrix where N =20, p =3 and ¢ = 4.

11110000000000000000
00001111000000000000
00000000111100000000
00000000000011110000
00000000000000001111
10001000100010000000
01000100010000001000
00100010000001000100 (4.35)
00010000001000100010
00000001000100010001
10000100000100000100
01000010001000010000
00100001000010000010
00010000100001001000
00001000010000100001

Note that the matrix (4.35) is divided into p submatrices, each containing a single 1
in each column. The first of these submatrices contains all its 1’s in descending order,

the other submatrices are merely column permutations of the first.

We define an ensemble of (N,p,q) codes as the ensemble resulting from random
permutation of the columns of each of the bottom p — 1 submatrices of a matrix such
as (4.35), with equal probability assigned to each permutation.

In Figure 4.4 we represent the Tanner’s graph for the code defined with the matrix
(4.35) and in Figure 4.5 we represent the tree used with the probabilistic decoder; we
can observe that we must consider only the digit d = 1 and the first tier, because the
second introduce a loop.

Remembering that P, is the probability that the transmitted digit in position d is
a 1 conditional on the received digit in position d, and, let P;; be the same probability
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Check Nodes

Figure 4.4: Tanner’s graph for the code defined with the matrix (4.35).

Y Y

Figure 4.5: Tree used with the probabilistic decoder when the code defined by 4.35
is considered. The same colors are referred to the same variable nodes and through
them the loops are shown.

for the [-th digit in the i-th parity check set, the Equation (4.32) becomes:

Plza=0/{y},5] _ 1—Pdﬁ{1+nf;f<1—2az>}
Plza = 1[{y}, 5] Py 50— TTE (1 —2P)
Plrg=0{y},S] _ 1-Piy [1+H?:1<1—2Pﬂ>}
Plzg = 1|{y}, S] Py 3 L= T, (1 —2py)

since ¢ = 4 and p = 3.

4.5.2 The decoding algorithm by MacKay

First of all we recall the definition of the decoding problem:
Hn =2z mod 2 (4.36)

where the unknown vector n is sparse, the vector z = Hr mod 2 and H is very sparse

and we must remember that its properties also depend on the assumed noise model.
In [5], MacKay has developed a "sum-product decoder", also known as a "belief

propagation decoder". Before starting with the description of the proposed algorithm,

we give some definitions:

Definition 8. Checks are the z; elements corresponding to each row of H, where
i=12 ..., M of H.
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Definition 9. Belief network or Bayesan network or Causal network or Influence
diagram is the set of bits  and checks z: every bit x; is the parent of p checks z;, and
each check zj is the child of q, bits, thus the network of checks and bits form a bipartite
graph.

Observation 5. We say that each check z; is the child of q, bits and not q, because we
are considering the case in which the number of 1’s in each row of H 1is as uniform as

possible.

We aim, given the observed checks, to compute the marginal posterior probabilities
P(z; = 1|z, A) for each [. These computations are expected to be intractable for
the belief network corresponding to our problem because its topology contains many
cycles. However, it is interesting to implement the decoding algorithm that would be
appropriate if there were no cycles, on the assumption that the errors introduced might
be relatively small. This approach of ignoring cycles has been used in the artificial
intelligence literature [94] but is now frowned upon because it produces inaccurate
probabilities. However, for our problem the end product is a decoding; the marginal
probabilities are not required if the decoding is correct. Also, the posterior probability,
in the case of a good code communicating at an achievable rate, is expected typically
to be hugely concentrated on the most probable decoding. And as the size M x N of
the code’s matrix H is increased, it becomes increasingly easy to produce matrices in
which there are no cycles of any given length, so we expect that, asymptotically, this
algorithm will be a good algorithm. MacKay, in [5] has obtained excellent results with
N equal to 1000 and 10000. The algorithm often gives useful results after a number of
iterations much greater than the number at which it could be affected by the presence
of cycles.

The algorithm

Also this algorithm, presented by MacKay in [5], is appropriate for binary channel
model in which the noise bits are independent.

We denote the set of bits [ that participate in check m by L(m) = {l : A,y = 1}.
Similarly, we define the set of checks in which bit [ participates, M(l) = {m : A,;; = 1}.
We denote a set L(m) with bit [ excluded by £L(m)\l. The algorithm has two alternating
parts, in which quantities ¢,,; and r,,; associated with each nonzero element in the H
matrix are iteratively updated.

Definition 10. The quantity g, is meant to be the probability that bit | of x has the

value x, given the information obtained via checks other than check m.

Definition 11. The quantity r, is meant to be the probability of check m being satisfied
if bit | of x is considered fized at x and the other bits have a separable distribution given
by the probabilities {qmy : 1" € L(m) \ I}.

The algorithm would produce the exact posterior probabilities of all the bits after a
fixed number of iterations if the bipartite graph defined by the matrix H contains no

cycles.
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Practical decoding by the sum-product algorithm - MacKay

Initialization:  Let p{ = P(x; = 0) and p; = P(x; = 1) = 1 — p) the prior
probability that bit z; is 0 or 1. For every (m,[) such that
H,,; = 1 the variables q?nl and q}nl are initialized to the vales
p? and pll, respectively
Horizontal step: Compute the difference dq,,; = q?nl — q}nl and

Ormi = H dqmur-
reL(m)\l

Then, since r%, +rl = 1 define 79, = (1 + dr,,)/2 and
rl (1= 9rm1)/2

ml =
Vertical step: For each [ compute
qul = amzp? H 7“21'1
m’eM(l)\m
q11nl = amlpll H 7“#/1
m/eM(l)\m

where o, is chosen such that q?nl + q}nl =1

In the description of the algorithm, the horizontal step the probability for z,, having
its observed value given either x; = 0 and 2; = 1 is founded efficiently by the use of the
forward-backward algorithm. Before this formulation of the problem, the probability

r?nl and r;l were computed as follows:
0, = > Plmla=0{zy: ' e Lm)\1}) x ] a4 (4.37)
{z 1V EL(m)\I} rel(m\l
rl, = Y Plmlm=1{zy Ve Lm)\1})x [ ¢ (4.38)
{z /€ L(m)\I} 'elL(m)\l
In the vertical step, we can also compute the pseudoposterior probabilities ql0 and
g
o =ap [ ru (4.39)
meM(l)
Qll = Oélpz1 H 7“7%11 (4.40)
meM(l)

and these quantities are used to create a tentative decoding n, the consistency of which
is used to decide whether the decoding algorithm can halt.



4.5. LDPC decoding’s algorithms 95

Soft input to the decoder

There are many ways to measure the uncertainty over a bit at the receiver. We can
simply use the received symbol or computed its marginal a posteriori probability, but,
what is generally used is the Log-Likelihood ratio (LLR) defined as:

A P(x; = 1|r;)\,
A(rs) 2 log <P(x2- - 0ln)) . (4.41)

Soft decoding algorithm

The algorithm presented above accepts as inputs the received symbols, but to make
it more efficient we can have at the demodulator output soft LLRs and so we can adjust
the decoding algorithm to work with these. We call this adjustment soft decoding
algorithm because it has as input the log-likelihood ratios for the bits of each codeword
¢, 1=1,2,..., N which is defined as:

P[c; = 0|channel output for ci]) 1 9 N (4.42)
1 = 5 PRI :

L(ei) = log (
(c5) = log P[c; = 1|channel output for ¢;]

where N is the length of the codewords.
Before explaining the soft algorithm, we define:

- C; the set of check nodes connected to the variable node i;

- Cy\; the set of check nodes connected to the variable node i excluded the check

node j;
- Vj the set of variable nodes connected to the check node j;

- Vj\: the set of variable nodes connected to the check node j excluded the variable

node i.

In the algorithm, described in Table 4.3, there are three key variables: L(g;;), L(rj;)
and L(Q;) with j = 1, 2, ..., M where M represents the number of the parity check
nodes and i = 1,2, ..., N. The L(-) means that we are considering the logarithm
values. The former is the logarithm of the probability that the i-th bit of the codeword
has the value z, given the information obtained via the check nodes other than check
node j (Definition 10); the second is the logarithm of the probability that a check node j
is satisfied, i.e. z; = 0, when bit ¢ is fixed to a value x and the other bits are independent
with probabilities g;, ' € V}\; (Definition 11). Finally, the last one, expressed in (4.46)
is the logarithm of the pseudo-a-posteriori probability and it is the new log-likelihood
ratio, used to determine the transmitted bit in the hard decision of the bit ¢;.

Decoding step

We observe that if the belief network really is a tree without cycles the values of
the pseudoposterior probabilities q? and ql1 at each iteration would correspond to the

P(z;=0|r;)

P(z»:ur.))’ but this doesn’t change anything,

2Sometimes the definition of the LLR is given as log (

because it is equal to —A(r;)
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- Initialization

L(gji) = L(c;) j=12.... Mandi=1,2,..., N (4.43)
- Horizontal step

L(ry;) = 2tanh—1( ] tann (%L(qﬂ/))) (4.44)
Y€V

- Vertical step

L(gji) = L(c) + > L(ryn) (4.45)
J'€Ci;

In this step we also compute L(Q);), the quantity correspondent to the pseudo-
posterior probability:

L(Qi) = L(ci) + Y L(ryn) (4.46)

J'eC;

Table 4.3: Soft decoding algorithm

posterior probabilities of bit [ given the states of all the checks in a truncated belief
network centered on bit [ and extending out to a radius equal to twice the number of

iterations.

Decoding Procedure

— Seta:lzlifqll>0.5
— See if the checks Hn = z mod 2 are all satisfied

o halting when they are

o declaring a failure if some maximum number of iterations occurs
without successful decoding

When there is a failure, the partial decoding n may serve as a useful starting point
for another decoding algorithm.

To conclude our analysis, we note that undetected errors would only occur if the
decoder found an n satisfying Hn = z mod 2 which is not equal to the true n and de-
tected errors occur if the algorithm runs for the maximum number of iterations without

finding a valid decoding.

Observation 6. Soft decoding algorithm is very important, because it gives better per-

formance since it uses soft values as input, but also because, considering the logarithm
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values it is efficient from a computational point of view: all the multiplications required
in the vertical step and to computed the pseudo-a-posteriori probabilities are transformed
into additions and it is well known that these are very simple if compared to multiplica-

tions.

Analysis of the decoding algorithm

The algorithm have correction effects which are independent of the block length N,
for large IN. This consideration brings us to make a conjecture:

Observation 7. Given a binary symmetric channel with noise density f, there ex-
1st practical decoders for LDPC codes with rate R close to capacity, that can achieve

negligible probability of error for sufficiently large N .

Finally we can conclude saying that there is a correction effect if the Hamming
distance between n and the true vector n decreases.

Empirical performance of Low-Density Parity-Check codes on Gaussian chan-
nels

In [84] D. J. C. Mackay and R. M. Neal showed that performance substantially better
than that of standard convolutional and concatenated codes con can be achieved; indeed
the performance is almost as close to the Shannon limit as that of turbo codes.

1e-01

1e-02

1e-03

1e-04 E

1e-05

1e-06

0.6 0.8 1 1.2 1.4 1.6 18 2 2.2
Eb/No (dB)

Figure 4.6: LDPC codes’ performance over Gaussian channel (solid curves) compared
with state of the art codes (dotted curves).

Figure 4.6 compares the performance of LDPC codes with state of the art codes.
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The vertical axis shows the empirical bit error probability (BER). Following we describe
the mean of the curves represented in Figure 4.6:

e The curve labeled (7,1/2) shows the performance of a rate 1/2 convolutional code
with constraint length 7, known as the factor standard for satellite communica-
tions [95].

e The curve (7,1/2)C shows the performance of the concatenated code composed
of the same convolutional code and a Reed-Solomon code.

e The curve (15,1/4)C shows the performance of an extremely expensive and com-
puter intensive concatenated code developed at JPL based on a constraint length
15, rate 1/4 convolutional code.

e The curve labeled Turbo shows the performance of the rate 1/2 turbo code de-
scribed in [19].

All the other curves represent LDPC with the parameters (NN, K, R) with the fol-
lowing values (29507, 9507, 0.322), (15000, 5000, 0.333), (14971, 4971, 0.332), (65389,
32621, 0.499), (19839, 9839, 0.496), (13298, 3296, 0.248), (29331, 19331, 0.659) from
left to right.

It should be emphasized that all the errors made by the LDPC codes were detected
errors: the decoding algorithm reported the fact that it had failed.

Results show that performance substantially better than that of standard convolu-
tional and concatenated codes can be achieved; indeed the performance is almost as
close to the Shannon limit as that of turbo codes. It seems that the best results are
obtained by making the weight per column as small as possible. Unsurprisingly, codes
with larger block length are better. In terms of the value of Ej/Ny, the best codes are
the ones with rates between 1/2 and 1/3.



Chapter 5

Alternative algorithms for LDPC
decoding

5.1 Message passing algorithm: complexity reduction

As described in Chapter 4 the Message Passing Algorithm (MPA) is used to decode
the LDPC codes, because, even if its computational complexity is very high, it is yet
practically implementable and performs very well. Here we propose a modification of
the MPA in order to reduce the number of multiplications in each iteration. In fact,
MPA requires real-number addition, subtraction, multiplication, division, exponential
and logarithm operations and, as it is well known, the last four operation are more
complex than addition and subtraction. In [90] the number of multiplications in this
algorithm is defined as a linear function of the number of 1’s in the parity check matrix.

What we are going to propose is the reduction of the number of multiplications, so,
in the following we will use the terms reduction of complexity or reduction of the number
of multiplications indifferently, even if it’s an abuse of notation. In our modified MPA
we assume that all the received bits which exceed, in terms of absolute value, a given
threshold are reliable. This means that we assume that the value assigned to these bits
doesn’t change with the evolution of the algorithm. This observation suggests to assign
to these bits a value, in term of LLR, equal to +00, where the sign is in accordance
with the LLR’s one. In Section 5.1.2 we will show how to choose the threshold and how
this assumption can be used to reduce the number of multiplications at each iteration.
The modified MPA has a reduced complexity because the number of multiplications
has been reduced, but, can present an error floor dependent on the threshold value. To
verify if the modified proposed algorithm can be competitive with the known ones we
will compare the complexity and the error performance.

5.1.1 LDPC decoding techniques

In Chapter 4 the decoding techniques presented for the LDPC codes have been
described. Here we briefly describe the algorithms practically used in tests and simu-
lations, except the MPA, exhaustly described above. Here, to make the reading more
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comfortable, we report only the brief description.

A LDPC code can be decoded in various ways, namely: majority-logic (MLG) decod-
ing, bit-flipping (BF) decoding, weighted BF decoding, a posteriori probability (APP)
decoding, and iterative decoding based on belief propagation (IDBP), commonly known
as sum-product algorithm (SPA) or message passing algorithm (MPA).

The first two types are hard decision decoding, the last two are soft decision de-
coding and the third one is in between. MLG [90] is the simplest one in decoding
complexity; BF requires a little more decoding complexity, but gives better error per-
formance than MLG. APP and MPA decoding provide much better error performance
but require much large complexity than the former two. MPA decoding gives the second
best error performance among the five types of decoding algorithms and yet is practi-
cally implementable, conversely the APP provides the best error performance, but it
is computationally intractable. A simplified version can be considered to reduce the
computational complexity, but error performance degrades. The most important algo-
rithm for a comparison with our proposed one is the weighted-BF algorithm, because
it’s said to represent a good trade-off between the computational complexity and the
error performance.

Let define a codeword v = (vo, v1, ..., Un—1), ¥ = (Yo, Y1, - - -, Yn—1) the soft deci-
sion received sequence at the output of the demodulator and z = (z,, 21, ..., 2,—1) the
corresponding hard decision. Let H be the parity-check matrix of an LDPC code C
with m rows and n columns, then we can define the syndrome of the received sequence
z as

s=zHT. (5.1)

The received vector z is a codeword if and only if s = 0, otherwise errors in z are
detected, in fact nonzero syndrome component s; indicates a parity failure. We can
define the error pattern e given by e = v 4 z which must satisfies s = e H” .

Once given these few definitions we can briefly describe the decoding algorithms.

Majority-Logic Decoding

From the structural properties of the parity-check matrix H, we see that for every
bit position [, there’s a set

Al = {h’gl)v hg)7 ) h’gyll)} (52)

of ~; rows in H that are orthogonal on this bit position. Now we define the set of
check-sums orthogonal on the error digit e;

S = {ehg-l) : hg-l) €Ay, for 1 <j <~} (5.3)

These check-sums can be used for estimating the error digit e; based on the one step
MLG decoding rule [90], which guarantees the correction only if there are 2 or fewer

errors in the pattern error e.
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Bit-Flipping Decoding Algorithm

This algorithm, presented for the first time by Gallager in [4], is based on the change
(or flip) of the number of parity failures in s when a bit in the received sequence z is
changed or flipped.

First, the decoder computes all the parity-check sums based on (5.1) and than
changes any bit in the received sequence z that is contained in more than some fixed
number ¢ of failed parity-check equations. Using the modified received sequence 2/,
the decoders recompute the syndrome and the process is repeated until all parity-check
sums are satisfied or a preset maximum number of iterations is reached. The design
parameter J is called threshold and should be chosen to optimize the error performance
while minimizing the number of computation of parity-check sums. The value of §
depends on the code parameters: p, v, dpnin(C) and SNR.

Owing to the nature of low-density parity-check codes, BF decoding algorithm cor-
rects many error patterns whose number of errors exceeds the error correcting capability
of the code.

Weighted Bit-Flipping (WBF) Algorithm

To improve the performance of the BF algorithm some kind of reliability information
can be considered. So now we consider the soft-decision received sequence y and for
0<lI<n-—1and 1< j<m define:

Y 2 {min{|y|} 0 < i <n—1,hy; =1} (5.4)
and
l l
B2 Y s -1yl (5.5)
S;l)esl

where 5; is the set of check-sums orthogonal on bit-position [.

Now we observe that Fj is simply a weighted check sum that is orthogonal on the
code bit position [ and can be used in the bit-flipping algorithm.
Message Passing Algorithm

Before explaining the decoding algorithm in Table 5.1, we define:

- C; the set of check nodes connected to the variable node i;

- Cy\; the set of check nodes connected to the variable node i excluded the check

node j;
- Vj the set of variable nodes connected to the check node j;

- Vj\i the set of variable nodes connected to the check node j excluded the variable

node 1.
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- Initialization

L(gji) = L(c;) i=1L2 ....om;i=1,2,....n (5.6)
- Horizontal step

L(ry;) = 2tanh_1( ] tann (%L(qﬂ/))) (5.7)
Y€V

- Vertical step

L(gji) = L(c) + > L(ryn) (5.8)

J'eCi
In this step we also compute L(Q;), the quantity corresponding to the pseudo-

a-posteriori probability:

L(Qi) = L(ci) + Y L(ryn) (5.9)

J'eC;

Table 5.1: Description of the message passing algorithm.

5.1.2 Proposed algorithm

As said in the Introduction we ignore the additions and the subtractions in this
analysis of complexity of MPA. Observing the algorithm description in Table 5.1, we
find that the number of multiplications needed in each iteration of the decoding process
is of the order O(2mp+ 4n7y) where p and 7 represent the mean number of 1’s per rows
and columns respectively and the number of logarithm operations needed is of the order
O(n) [90]. From these values and observing the evolution of the algorithm we had the
idea for a modification of the algorithm which should drive to a reduction of the number

of multiplications required.

MPA variation

Let’s try to analyze the algorithm step by step to find all the possibilities to reduce
the algorithm complexity.

Starting from the initialization step defined in equation (5.6), the L(g;;)’s equal the
LLRs defined as:

PJ[c; = 0|channel output for cz])

L(c;) = log ( i=1,2,..., N, (5.10)

PJ[c; = 1|channel output for ¢]
so if some absolute value of these quantities are greater than a given threshold we can say
that the corresponding bits are reliable and change their LLR values to +oc0 according
with the known signs.

When we compute the horizontal step as defined in equation (5.7), we observe that
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for every L(g;) with +o0o value the tanh(-) is equal to 1 and so all what we need
is to keep trace of the number of —1, because this can change the sign of the product
result, but we don’t need to compute the multiplications.

Note that in the vertical step (equation (5.8)) we sum the contributions of L(r;)’s.
In case two or more values of L(rj;) are equal to +00 we could sum terms infinitely
large with opposite sign to obtain an undetermined result. In order to avoid this case
we put the constraint that, in each Vj; (equation (5.7)), at least one variable node
is different from +o0o0, which means that attention must be paid in the choice of the
threshold, because its value can’t be too small. Adding this constraint means that the
L(rj;) can assume Foo value when, with high probability, the bit is enough reliable
and so it’s hard to obtain undetermined results. Unfortunately, this is not enough to
handle all the NaN cases. In the update of L(g;;) (equation (5.8)) we don’t need to
compute the update for the values fixed at the former steps, because we expect they
don’t change. However, in this case there are not multiplications, so at this step we
don’t save operations of the type we are focusing on.

The most important topic of our modified algorithm is the determination of the
threshold: if it is chosen too small we fix some values that are not enough reliable and,
as a consequence, in equation (5.8), we try to sum 400 and —oo, without reaching
a result. On the other side, we don’t want to use a threshold too high, because this
doesn’t allow us to improve the efficiency of the algorithm.

5.1.3 System description

The system we consider here is represented in Figure 5.1. The source bits are
encoded through an LDPC code of rate 1/2 and codeword length n = 576, then they
are modulated through a QPSK modulator and transmitted on an AWGN channel. At
the receiver we have a soft demodulator whose log-likelihood ratios are the input to the
decoder. Obviously, the decoding is performed with our modified MPA and to have
some terms of comparison we perform the decoding also through the standard MPA
and the weighted BF algorithm [96].

<
(o3

b LDPC c QPSK s LDPC b
— > Demodulator > E——
encoder modulator decoder

Figure 5.1: Representation of the considered transmission scheme, where the LDPC
decoder can be implemented with the standard or modified MPA or with the WBF.

Since we want to have reliable performance results, we consider the concept of
confidence, i.e. we have a probability equal to 95% that the measured value lies in the
computed confidence interval [97].

We suppose that our system transmit 100 words of 288 information bits every time.
These bits are encoded, modulated and transmitted on the channel. At the receiver
side, the received signal (i.e. the signal at the output of the channel) is demodulated,
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decoded and the bit error rate (BER) is computed. At this point we compute the
confidence interval and verify if it’s equal or smaller than the 15% of the estimated BER
value; if it’s not we run the simulation again for other 100 words and recomputed BER
and confidence interval. The process is iterated until the constraint on the confidence
interval is satisfied or a maximum number of iterations, equal to 100000, is reached.

When we consider our modified MPA we need to handle the not-a-number (NaN)
cases due to the attempt of summing together some 400 and —oo. This can happen
when we use a threshold which is too low and so we consider reliable some bits which
aren’t. What we do in these situations is considering a failure of the decoder on the
word with the NaN bit and compute the BER on the other words.

5.1.4 Simulation results

To test our algorithm we consider the LDPC code proposed for the WiMAX system
(IEEE 802.16e [1], |2]) with a codeword of length n = 576.

Figure 5.2 represents the performance in terms of bit error rate for the above LDPC
code when it’s decoded through different algorithms, namely the standard and our
modified MPA, with different thresholds, and the WBF algorithm. To have other terms
of comparison, the BER for the hard decision and for a ’3G’ turbo code is plotted. The
reason why we choose the 3G’ turbo code and not the one defined for the WiMAX
system is because we want to compare the performance of our algorithm with the ones
of a general turbo code, i.e. a turbo code composed by two identical convolutional
code and an interleaver, and in the standard 802.16e there are no codes of this type.
Another term of comparison is given by the WBF decoding algorithm, represented
through the solid line with o marker. As we can see from Figure 5.2, the performance of
this algorithm is not so good, but this can be explained considering that it is proposed
for decoding finite geometry LDPC codes [96] and the code we are considering is not of
this type.

In Figure 5.2 the solid line with [J represents the hard decision performance, the
solid line with ¢ represents the performance of the standard MPA algorithm and the
solid line with % represents the turbo code performance. The dotted lines with o, [J,
¢ and % represent the performance of our modified algorithm for different threshold
values, which are defined by the maximum value of the received LLRs (max) or through
the equation:

— min+-2 —mi
th—rrlll%nn—i-loo(rrllﬁx nglllrn) (5.11)

where p = 40, 50, 90, the values reported in Figures 5.2 and 5.3.

Finally, in Figure 5.2 we can see a solid line with hexagon marker which represents
the performance we can obtain choosing the best threshold at each SNR value. In this
Figure, only the thresholds that lead to a significant gain on the performance of the
standard algorithm are represented, but, obviously, we simulated more thresholds, to
be sure that our choice is the best one.

To reach the best performance we can use our modified algorithm with different
threshold until 4.5 dB and then we must use the standard algorithm.
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What we want to underline is that all the results represented in this Figure are
computed on the bit error rate of the words decoded through our modified algorithm;
this means that we are not handling the not-a-number (NaN) cases. The same policy
is adopted for the computation of the interval of confidence.

BER comparison
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ol -$ - Modified MPA - threshold = 90
10 ¢ Modified MPA - threshold = 50
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Figure 5.2: Bit error rate comparison when an LDPC code is decoded through different
algorithms: MPA standard and modified, and WBF. Comparison of the performance
of the LDPC' code with a turbo code of the same rate.

Figure 5.3 represents the percentage of saved products and decoded words when the
modified MPA algorithm is used with the four different thresholds. Figure 5.3.a) shows
an expected result: the percentage of saved products is higher when the threshold is
lower and, for example, at SNR= 2 dB and for p = 90 proposed algorithm saves the
35% of multiplication with respect to the standard MPA. What we can conclude is that,
if we know the type of application we are using and so the reliability we need, we can
reach a trade-off between the computational complexity and the system reliability, just
choosing the correct threshold.

From Figure 5.3.b) we can observe that the more products we save the less words
we can decode and so what is important, at this point, is to study a way to handle the
NaN. Looking the Figure, we observe also a strange behavior of these percentages: for
all the thresholds there’s a minimum around 1 — 1.5 dB. To understand this strange

behavior will be one of the first topics of our future research.

Our results show that, choosing a good threshold allows a reduction of the BER,
but this performance is computed only on the words the algorithm is able to decoding.
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Figure 5.3: Percentage of a) saved products b) decoded words when we consider the
modified MPA with different threshold.

5.2 Message passing algorithm: quantized version

In the standard LDPC decoder the input is a real vector which represents the log-
likelihood ratios for the bits of the codeword.

5.2.1 Representation of real numbers in fixed-point data type

In digital hardware, numbers are stored in binary words. A binary word is a fixed-
length sequence of bits (1’s and 0’s). How hardware components or software functions
interpret this sequence of 1’s and 0’s is defined by the data type.

Binary numbers are represented as either fixed-point or floating-point data types.

A fixed-point data type is characterized by the word length in bits, the position of
the binary point, and whether it is signed or unsigned. The position of the binary point
is the means by which fixed-point values are scaled and interpreted.

buwi—1 | bwi—2 e bs by b3 ba by bo
MSB LSB

binary point

Figure 5.4: Binary representation of a generalized fixed-point number (either signed
or unsigned).

In Figure 5.4 we see a binary representation of a generalized fixed-point number
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(either signed or unsigned), where
- b; is the ith binary digit
- wl is the word length in bits
- by—1 is the most significant bit (MSB)
- bo is the less significant bit (LSB)

- The binary point is shown four places to the left of the LSB. In this example,
therefore, the number is said to have four fractional bits, or a fraction length of

four.

Fixed-point data types can be either signed or unsigned. Signed binary fixed-point
numbers are typically represented in one of three ways:

- Sign/magnitude
- One’s complement

- Two’s complement

5.2.2 Implementation of a function with fixed-point data type

When we implement a function with fixed-point data type we suppose that:
1. input and output are represented with n bits
2. internal states are represented with 2n bits.

The second assumption comes from the observation that the sums have still n bits, but
this is not true for the products, so we use words of 2n bits to have a small loss in the
precision of the fixed-point representation. These results are then re-quantized at the
output.

For working with fixed-point data type, step by step, you should proceed as described
following:

- Fix the number n of bits that you want to use

- Fix a range of representable values and so determine the precision of your system,
i.e. fraction length.

Example

You want to represent the numbers in the intervals [—128,127] with n = 16 bits.
Since 128 = 27, you need 7 bits for the magnitude of the entire part and 1 bit for
the sign, then, considering all, you need 8 bits for the entire part and you have
n — 8 = 8 fractional bits. This means that the interval [0,1) is divided into 28
parts and the precision of your representation is 278,
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- Now you are using n = 16 bits integers in the range [-2!% 2! — 1] to represent
your values. This is a numerable and finite set, so a single map between these
integers and the real values exists. The scale factor that you must use is 2%, where
the exponent is the fraction length.

5.2.3 Implementation of the soft decoding algorithm using fixed-point
data type

We consider input and output at 16 bits and we suppose that the values of the
log-likelihood ratios are in [—64,64). Since 64 = 2% we need 6 bit for the magnitude
plus 1 for the sign, for the entire part. Then ,the fraction length is of 9 bits; this means
that we have a precision of 279 ~2.1073.

Figures 5.5 and 5.6 represent the performance, in terms of codeword error probability
and bit error probability, respectively, when we consider a LDPC code of rate R = 1/2
and codeword length N = 576. The decoding algorithm used is the same, but the two
curves are obtained considering two different types of input to the decoder:

- the real-valued log-likelihood ratio;

- a 16 bit-quantized version of the same LLR.

Codeword error rate
107 ¢ f ! I ! I

—— LDPC decoding - soft input (LLR)
~— LDPC decoding - quantized input

Codeword error rate

10' L L L L L L L L L
25
SNR (dB)

Figure 5.5: Considering a LDPC code of rate 1/2 and codeword length 576, we compare
the performance, in terms of codeword error rate, of the message passing algorithm
considering its input is either a real-valued log-likelihood ratio (LLR) or a quantized
version of it.

From these Figures we can see that the performance are almost the same, so we can
try to use a small number of bits for our quantization. So, now we need to determine
the number of bit that we must use in our quantization and the fraction length. To
determine these quantities we need to know which is the small value in the log-likelihood

that can be considered reliable in the proceeding of the message passing algorithm.
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Figure 5.6: Considering a LDPC code of rate 1/2 and codeword length 576, we com-
pare the performance, in terms of bit error rate, of the message passing algorithm
considering its input is either a real-valued log-likelihood ratio (LLR) or a quantized
version of it.

Finally, Figure 5.7 represents the performance, in terms of bit error rate, of the
message passing algorithm when the input is quantized. We suppose to use 4 bits for
the integer part and the total number of bits is 8 (blue line), 12 (magenta line), 16
(green line) and 32 (cyan line).The red line, instead represents the performance when
the input is real valued.

We can observe that the best performance are obtained with 12 bits, so it is impor-
tant to determine the number of bits we want to use and the fraction of it that are used

to represent the integer part.

5.3 Other decoding algorithm for LDPC codes

As it is well known, computation complexity of message passing algorithm is high,
s0, in the following sections, alternative algorithms are analyzed especially from a com-
putation point of view.

5.3.1 Priority first search algorithm

This algorithm was designed for decoding convolutional codes and more in general
all the codes which can be represented with a trellis. Since we can design a trellis for a
linear block code starting from its parity-check matrix, the algorithm can be used also
for this kind of codes. Considering, then, that low-density parity-check codes are linear
block codes, we have thought to use it instead of the message passing algorithm.

Aim of this algorithm is the transformation of the decoding problem into a search
problem. For the linear block codes the algorithm proposed as solution for the decod-

ing problem is the maximum-likelithood soft-decision decoding. By maximum-likelihood
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- Bit error rate for the quantized version of the message passing algorithm
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Figure 5.7: Considering a LDPC code of rate 1/2 and codeword length 576, we com-
pare the performance, in terms of bit error rate, of the message passing algorithm
considering its input is either a real-valued log-likelihood ratio (LLR) or a quantized
version of it. We suppose to use 8, 12, 16 and 32 bits and the number of bits used for
the integer part is fixed to 4.

decoding (MLD) we mean the minimization of the probability of decoding to an in-
correct codeword when all codewords have equal probability of been transmitted. By
soft-decision we mean the use of real number associated with every component of the
codeword in the decoding procedure.

The idea presented for the first time in [6] is based on the Dijkstra’s algorithm
[98] to search for the trellis for a code equivalent to the transmitted code. The use of
this priority-first search strategy for decoding drastically reduces the search space and
results in an efficient optimal soft-decision decoding algorithm for linear block codes.
Furthermore, the decoding efforts of our decoding algorithm are adaptable to the noise
level.

In this algorithm, every branch in the tree graph is assigned a cost based on a
maximum-likelihood decoding (MLD) rule. The purpose of the search is to find a
desired path (codeword) which satisfied the MLD rule. This search is guided by an
evaluation function f defined for every node in the graph. The algorithm maintains a
stack of nodes of the graph that are candidates to be expanded. The node in the stack
with minimum value of the function f is selected to expand. If the algorithm selects a
goal node for the expansion it means that the desired path has been found.

The algorithm

The main advantage of the presented algorithm is given by the uncompleted visit
of the nodes in the graph. In fact a successor, when applied to a node b gives all the
immediate successors of the node and, for every immediate successor of node b, stores
the partial path cost of the path ending at it. Then we assign the cost found to the
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corresponding successor b; and call it the cost (metric) of b;, g(b;).

The process explained above is called ezxpanding the node.

In PFSA the next node to be expanding is the one with the smallest cost on the list
of all leaf nodes of the subtree constructed so far by the algorithm. If we suppose to
memorize the nodes to be expanded in a stack ,we must keep it ordered according to
the cost associated to each node. When the algorithm chooses to expand a goal node,
it outputs the path associated with the cost of the goal node.

PFSA requires that for all nodes b; and b; such that node b; is an immediate successor
of node b;, must be verified the equation

9(bi) < g(b;) (5.12)

because it guarantees that the algorithm will always find an optimal path.
Owing the above requirement (equation (5.12)), the cost of any node is non-decreasing
along any path in a code tree and is defined as follows:

g(b;) = g(bi) + (¢ — (=1)°)” (5.13)

where ¢ is the log-likelihood at the output of the demodulator for the symbol we are
considering and ¢ € {0, 1}.

We observe that when a goal node is chosen for expansion, all costs of nodes in the
stack are greater then or equal to the cost of the goal node and since all successor of
any of these nodes will have costs no less than that of the node, one will not find any
path with smaller cost than that of the goal node.

Considering a block code with a relative small codeword length, we can suppose the
knowledge of the trellis. When we expand a node, we check if the state associated with
each successor is in the trellis. If it belongs to the trellis, we insert the node into the
stack, otherwise we don’t consider it.

In figure 5.8 we can see the performance for a (15,11) Hamming code. The red line
represents the performance when the decoding process is performed with the Hamming
decoding process, the blue one represents the performance obtained with the PFSA
described above, but where we suppose to know the trellis of the code and use this
knowledge when we expand a node. In this case, when we find out the node with the
minimum cost function, we control if it is in the trellis, if it is not we don’t put it into
the stack, because with it we don’t find a codeword. Finally the green one represents
the performance when we apply the PFSA only to the k information bits and then
compute the parity-check bits and chose the codeword with the minimum distance from
the received vector.

As we can see from Figure 5.8 the first variation of the PFSA| the one represented
with the blue line, which is based on the knowledge of the trellis, outperforms the
performance of the standard decoding algorithm. The problem arises when we consider
a code with longer codewords, because the trellis grows enormous and we need too much
memory. Unfortunately a LDPC trellis is very big and it is impossible to use the PFSA
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Figure 5.8: Considering a (11,15) Hamming, we compare the performance, in terms
of bit error rate, of the standard decoding algorithm with the one of two variation of
the PFSA algorithm.

with the trellis knowledge to decode a LDPC code.

Figure 5.9 represents the performance of the PFSA applied only to the k information
bits and then compute the parity-check bits and choose the codeword with the minimum
distance from the received vector. Blue and green lines represent the performance for
this algorithm considering the acknowledge and the knowledge of the trellis, respectively.
The red line, instead, represents the performance of the standard decoding algorithm
for the Hamming codes.

N Comparison of bit error rate for the standard decoding and PFSA plus re-encoding
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Figure 5.9: Considering a (11,15) Hamming, we compare the performance, in terms
of bit error rate, of the standard decoding algorithm with the one of two variation of
the PFSA algorithm.

As we can see from Figure 5.9 the performance is the same for the tree algorithms.

As said above we can’t assume the knowledge of the trellis for a LDPC codes and
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from the observation of Figure 5.9, we had the idea of using the PFSA on the %k bits
without the knowledge of the trellis. The problem is that for a LDPC code we expand
a lot of nodes and so the time needed to decode a codeword is very long. Thus, the
MPA is better than the PFSA for LDPC decoding.

Just because the performance of the MPA is better than the one of the PFSA for
an AWGN channel, we decided to not perform the simulation with a frequency selective
channel, such as SCME, because the MPA will certainly perform better.

5.3.2 The genetic algorithm (GA)

Genetic algorithms (GA) were introduced by Goldberg in 1989. They are search
algorithms that apply operations from natural genetics to guide the trek through a
search space. GAs has theoretically and empirically proves to provide robust search
capability in complex spaces, offering a valid approach to a problem requiring efficient
and effective search.

GAs are general purpose search algorithms whose principles lie on natural genetics
and can be applied to solve problems in which the objective function is discontinuous,
non-differentiable, stochastic, or highly non linear.

A genetic algorithm maintains a population of individuals that evolve according to
rules of selection and genetic operators, such as reproduction, crossover and mutation.
GA begins with a population that consists in randomly created individuals (possible
solutions) and rapidly modifies this population "evolving" towards an optimal solution.

Each individual in the population is assigned a measure of its fitness in the environ-
ment. Reproduction focuses its attention on high fitness individuals, thus exploiting the
available fitness information. Crossover and mutation perturb those individuals, provid-
ing general heuristics for exploration. Although simplistic from a biologist’s viewpoint,
these algorithms are complex enough to provide robust (good performance across a
variety of problem types) and powerful adaptive search mechanisms. The adaptive
behavior of the GA depends on this feedback to drive the population towards better
overall performance [99] [100].

Therefore, considering a particular problem, an ad-hoc evaluation or fitness function
must be devised.

As already known, GAs’ performance is a function of parameter settings [101] [102].
The number of possible parameter assignments rules out a factorial design to fix the
best parameter setting.

The algorithm for low-density parity-check codes

In [10] the authors presented an algorithm for the decoding of low-density parity-
check codes based on GA. They suppose to use an additive white Gaussian noise
(AWGN) channel, and called « the transmitted vector and y the received one, which is
nothing more than the transmitted one corrupted by AWGN.

The algorithm can be implemented in three steps:
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- syndrome calculation step
- GA application step
- meta decision step.

Syndrome calculation step

In this first step the proposed algorithm constructs a modified received vector y;,,,4,
which is basically a hard decision vector of the received vector y. In this step, the
components y; of the received vector, essentially real numbers, are converted into binary
values (taken from the discrete alphabet 0,1) using a fixed threshold. Then, the decoding
algorithm verifies if this modified vector satisfies the syndrome condition

Hyhard =0. (5'14)

If the modified received vector y;,,,q meets this condition, then a valid code vector d is
obtained: d = y;,,,4. Otherwise, the decoder makes the following two steps.

Genetic algorithm step

The algorithm begins creating an initial population of V candidates: a set of in-
dividual vector v with real components v; € [0, 1]. To avoid an a priori reduction of
the searching space, an initial random population is generated. A new 500 individual
generation (children) is created through the following steps:

- Selects individuals (called parents) based on their fitness value 5.17 through the

selection function.

- The two individuals with the best fitness values survive for the next generation
(elite children= 2).

- The crossover fraction (P. = 0.95) specifies the fraction of the population, other
than elite children, that are made up of crossover children.

- To complete the new generation, mutation children are created by introducing
random changes with a given probability rate (P,, = 0.01) to a single parent. The
algorithm stops when the limit of 25 generations is reached.

The GA parameters were heuristically selected to optimize its performance.

The solution provided by the GA algorithm is a z vector obtained as follows:

1 ify; i
= HYi>v (5.15)
0 ifg; <wy
where )
g = ————— Nl
A (5.16)

expression that maps the components of the received vector y into [0, 1]. Hence the

received vector y format agrees with the candidate vectors v format.
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The process involves the following fitness function:

m n
FitneSSZij—i—Z\zi—@i\ (5.17)
j=1 j=1
where b; are the components of the vector b defined as
Hz =b. (5.18)

In equation (5.17), m is the number of rows of the parity check matrix H, i.e. the
number of parity-check nodes, and n the code vector length.

The fitness function (equation (5.17)) measures both a component wise distance
between the candidate vector and the received one, and also how close the candidate
vector satisfies the syndrome condition (equation (5.14)).

A set of g decoded vectors z is obtained applying GA algorithm ¢ times, where ¢
is an arbitrary integer value heuristically optimized (partial solutions). These ¢ vectors
are candidates for the following step of the decoding process, which consists in applying
the meta-decision process.

Meta decision step

The Meta-decision process reduces the results scattering of the GA, which comes
from the randomness of the initial population.

The z vectors are a set of possible solutions obtained at ¢ GA runs, next a meta-
decision stage generates the final solution, i.e, a decoded vector d.

This process applies the majority logic, a well-known procedure utilized in the error
correction decoding theory. This procedure performs a component wise decision over the
z candidate vectors, setting each final component d; as the bit state of higher frequency.

Still open point and conclusions

The results presented in [10] are quite promising: in their example, as we can see
in [10], the GA based decoder performance is better than the traditional sum-product
decoder for signal-to-noise ratio (SNR) greater than 3 dB.

We also observe that the main advantage of the proposed GAMD decoder is that
noise level transmission channel information needs not be known, an essential condition
for sum product algorithm.

Neverless it is important to understand how the authors compute the crossover and
the mutation and how they determine

- the number of elements in the population,

the number of iteration at the GA step,

the number of decoded vectors used in the meta decision step,

- the crossover fraction P,

the probability rate of changes P,,.
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It is of the same importance to understand how to determine the above parameters
when we consider different codes, especially with growing sizes.

Since the results presented in [10] were quite promising, we ran the genetic algo-
rithm, with those parameters, on our quasi-compliant WiMAX standard simulator, but,
unfortunately, our results were a complete disaster. We try to define different values
for the parameters, but we couldn’t find any theoretical rule to determine as good pa-
rameters for our system as those for the code in [10]. We try to define the parameters
somehow, but we weren’t lucky in our research: all the set of simulation performed,
presented very bad results and this is the reason why, here, we don’t present any kind

of result.



Chapter 6

Concatenation of short LDPC and
turbo codes for improved

performance

It is well known that both Low-Density Parity-Check (LDPC) and Turbo codes are
good codes if we consider long codewords, which means that the information part is
greater than a thousand of bits. In our days, in many application, such as voice, delay
is an important issue and large block size commonly used in LDPC or turbo codes
cannot be applied. We propose the use of a concatenation of LDPC, as the outer code,
and turbo, as the inner code, when we consider short frame, i.e. the information part
of a codeword is around a hundred bits. The objective of the work is to come up with
well-performing short code structures through the concatenation of LDPC and turbo
codes: a synergy of short LDPC and short turbo codes vulnerable to different error
patterns. The overall code rate is of concern: we consider 1/3, 5/16 and 1/4 rates.
Other particular topics about this work are the choice of the decoding algorithms. For
turbo codes the one with less computational complexity: the max-log-MAP algorithm is
used and, for LDPC, the one used performs very well even if it has very high complexity:
it is the message passing algorithm (MPA).

The work consists in analyzing the critical sequences of errors for turbo decoding
and try to design the LDPC code with the purpose of decoding those kind of sequences.
This would allow us to reduce the error floor presented by turbo codes at high SNR.
Another important aspect is the determination of when a decoder should continue to
iterate and when it would be better to forward the frame to the other decoder, which
means when would the LDPC decoder have better luck decoding the frame than if the
turbo decoder kept iterating.

6.1 Introduction

Both Low-Density Parity-Check (LDPC) and Turbo codes, when we consider long
codewords, have near-capacity performance on a large variety of data transmission and
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storage channels. This is the reason why they hold the attention of coding theorists
and practitioners.

Everything about LDPC codes has been said in Chapters 4 and 5. Here we remember
that they were invented by Gallager in 1960’s [3| and [4], reinterpreted by Tanner in
1981 [103] and rediscovered by MacKay, Luby and others in the mid-1990’s [104], [105],
[106] and [5].

On the other side, Turbo codes were discovered by Berrou, Glavieux and Thiti-
jashima [19] in 1993. In this work they demonstrated that these codes, with very large
interleavers, can approach the Shannon bound on the capacity of a communication
channel. Then, Berrou and Glavieux, further elaborated the concept in [20] and [21].

6.1.1 Concatenation: why and expected results

Serial concatenation of LDPC and turbo codes is not a new idea. It was first
proposed in [22] where the authors observed that while turbo codes performs very well
for BER’s above 10~* (waterfall performance), however they have a significant weakened
performance at BER’s below 107°: this phenomenon is known as error floor. Another
important observation, we need to keep in our mind, is that, in turbo decoding, only
information bits are decoded and they cannot be used for error detection. The poor
minimum distance and lack of error detection capability make these codes perform
badly in terms of block error probability. Poor block error performance also makes
these codes not suitable for many communication applications. On the contrary, finite
geometry LDPC codes do not have all the above disadvantages of turbo codes, except
that they may not perform as well as turbo codes for BER’s above 10~4. Other reasons,
which could justify the choice of a LDPC code as outer code are given by a very low
complexity decoding, compared to the complexity if the MAP algorithm used for the
turbo codes, and the fact that this algorithm can receive the reliable decoded bits
directly from turbo decoders. Finally, LDPC has an inherent interleaving effect and
so, if it’s concatenated with another code, interleaver is not required [107]. Straight
conclusion from the above observation is that the advantages of extremely good error
performance of turbo codes for BER’s above 10~% and the advantages of finite geometry
LDPC codes such as no error floor, possessing error detection capability after decoding
and good block error performance, can be combined to form a coding system that
performs well for all ranges of SNR’s. Obviously, the first system of this type we can
think about is the concatenation of an inner turbo code and a finite geometric outer
LDPC code. In 2005 Lee and others [23], [24] analyzed the concatenation of LDPC and
turbo codes, because they thought it would be a good idea to obtain a good trade-off
between decoding complexity and performance. They observed that turbo code is the
standard error correcting code for the third generation mobile communication systems,
but even if it shows very good performance at low SNR’s, its floor for higher SNR’s
is not as good as the high quality and high speed multimedia services required in the
next generation mobile communication systems. Since LDPC code doesn’t present the
same floor for high SNR’s, the concatenated scheme can be an alternative to solve the
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problem of the new requirements. In [23] it is shown that the concatenated scheme does
not suffer error floor and outperforms LDPC code of the same code rate when outer
LDPC code rate is selected properly, hence the suitable LDPC code rate remains a still
open point. In [24], the authors are still focused on the same problem, but since both the
code presents iterative decoding they proposed to decode the concatenated scheme with
a global iterative decoding process, which means that each iteration of the decoding
algorithm performs turbo and LDPC decode. Results similar to the ones presented in
[23] are shown. Finally, in 2006, the same authors in [25], observing that concentrated
errors may occur in some codewords in the output of a turbo code, proposed the use
of a block interleaver in the concatenation, between the two codes. Results show that
the block interleaver improves the performance of the concatenation spreading out the
concentrated errors at the output of the turbo decoder. What we can underline here
is that all these works about the concatenation of LDPC and turbo codes consider
long codewords, which is necessary to obtain good performance for both the considered
codes. This is not too good if we must respect some delay constraints as in speech
communications. This observation is the starting point of this work, where we want to
analyze the performance of the concatenation scheme when the word we need to encode
is a hundred bits. Since the codeword is relatively short, we analyze the output at the
turbo decoding and try to construct an "ad hoc" LDPC decoder which is suitable for
decoding what the turbo code cannot correct. This idea is useful also to avoid the block

interleaver usage, which is not suitable, because it introduces more delay.

6.2 Error pattern at the output of the turbo code and
LDPC construction

6.2.1 Turbo code: 3G ’type

The scheme of Turbo coder is a Parallel Concatenated Convolutional Code (PCCC)
with two 8—state constituent encoders and one Turbo code internal interleaver. The
coding rate of Turbo coder is 1/3. The structure of Turbo coder is illustrated in Figure
6.1.

The transfer function of the 8 —state constituent code for PCCC is:

_ g1(D)
G(D) = [1, go(m] , 6.1)
where
9%(D) = 14+D*+D? (6.2)
(D) = 1+D+D3 (6.3)

The initial value of the shift registers of the 8—state constituent encoders shall be



120 Chapter 6. Concatenation of short LDPC and turbo codes for improved performance

Xk \
1st constituent encoder Zk
-
" [t
Input ————et 44> D | D TI D |
[ A— ‘ e
Y
Input Output
Turbo code
int | interl .
el e 2nd constituent encoder )
Qutput
il
Xk

Figure 6.1: Structure of rate 1/3 Turbo coder.

all zeros when starting to encode the input bits. Output from the Turbo coder is:
/ / /
L1y Z1y By X2y B2y B9y vvvy TKHRZK,Z)

where 1, o, ..., , xx are the bits input to the Turbo coder i.e. both first 8—state
constituent encoder and Turbo code internal interleaver, and K is the number of bits,
and z1, 22, ...., 2K and 21, 25, ..., 2} are the bits output from first and second 8—state
constituent encoders, respectively. The bits output from Turbo code internal interleaver
are denoted by zf, =5, ..., 2, and these bits are to be input to the second 8—state
constituent encoder.

Also the turbo interleaver is standard compliant [49].

For the decoding two algorithms are implemented: the log-MAP decoding and the
MAX-log-MAP decoding, which is an approximation of the former. In this work we use

the second one, since it is more efficient from a computational point of view.

Code’s properties

We are looking for those double error pattern in the CC sequences which cannot be
decoded through the CC decoding.

We observe that the polynomials in Equations (6.2) and (6.3) can be written in
other two different forms (binary and octagonal) as follows:

go=[1011] =13

g1 =[1101] = 15,
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hence the encoder needs 3 memory elements and we can define the constraint length
equal to 4.

The code is a systematic feedback code and the encoder can be represented as in
Figure 6.2, where we represented the content of the shift register at the beginning of

the coding.

Y

+ g %,p

Figure 6.2: Representation of the encoder for the (4, [1315], 13) convolutional code.

In Figure 6.2, u represents the information sequence, s the systematic output of the
encoder and p the computed parity-check bits.

Figure 6.3 represents the trellis used for the decoding of the received codeword.
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Figure 6.3: Representation of the trellis for the (4, [1315], 13) convolutional code.

Considering Figure 6.2 and the input sequence u = (10000001), we can show that
the feedback polynomial is primitive [90]. Table 6.1 contains the state evolution and
the output of the convolutional encoder.

We observe that the shift register’s contents rotate through the all 22 —1 = 7 possible
states before returning to the original all-zero state and if the last input bit would be
0 instead of 1 the new state would be 100 and so another cycle is repeated. In Figure
6.4 we can see the path for this input sequence on the trellis.

Observation 8. The behavior described above makes us think that the error pattern of

our interest are the ones with this characteristic: considering the source bits, if we have
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‘u‘state‘s‘p‘

000

1 111
100

0 0]1
010

0 0]1
101

0 0]1
110

0 00
111

0 00
011

0 0]1
001

1 111
000

Table 6.1: Encoder states and output, when the sequence u = (10000001) is en-
coded.
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Figure 6.4: Representation of the path on the trellis for the coding of sequence u =
(10000001) through the (4, [1315], 13) convolutional code. The red path is the one
of our interest and the dashed line represents the beginning of a new cycle if the last
input is a 0 instead of a 1.

an error at the instant k we would not be able to decode the pattern if the second error

would happen at the instant k +n -7, withn=1,2, ....

From Figure 6.2 we can see that the same sequence is encoded through a CC encoder
twice, the first time directly, the second time after an interleaver operation.

At the receiver side (see Figure 6.5) the received systematic part is the input for
both the max-log-MAP decoder and to the second after the interleaver operation. From
the Observation 8 and the Figure 6.5 we understand that the sequence that are not
corrected after the turbo decoders are those whose maintain the property defined in
Observation 8 also after the interleaver operation.
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Figure 6.5: Representation of the turbo decoder. The block deassembler subdivides
the received signal in three parts: the systematic bits, the parity-checks for the first
encoder and the parity-checks for the second one; the 7 represents the interleaver
operation and the 7~1 the deinterleaver one. Finally the block output computes the
final log-likelihood ratio.

We call critical sequences all the possible sequences with 2 errors of this kind, because

they cannot be corrected after the interleaver, since the distance between the 2 errors

is still equal to the minimum distance or a multiple of it.

The interesting results of this study is given by the fact that these sequences can be

grouped, because different groups of sequences affect different and separate groups of

bits at the output of the decoder. Figures 6.6 and 6.7 represent the critical sequences

when we consider a concatenation with overall rate equal to R = 1/3, with turbo code’s
rate Ry = 1/2 and LDPC code’s rate Ry, = 2/3. Since the turbo code is the inner one,
its sourceword length is equal to 150, because the words we want to encode have length

100 bits.

Information bit indexes

Critical sequences for a turbo code with rate 1/2

Information bit indexes

Figure 6.6: Representation of the critical sequences for a turbo code with rate 1/2
when the sourceword length is 150. This Figure refers to the results reported in

Section 6.4.1
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Figure 6.7: Two-dimensional representation of Figure 6.6.

This observation gave us an idea: when we construct the LDPC matrix for the outer
code we add a constraint; we want that the columns correspondent to the bits of the
same group with errors at the output of the turbo decoders have no ones in common.
This means that those bits are checked by different check nodes and so the probability
of correcting the errors through the LDPC code is higher.

6.2.2 LDPC code construction

We can choose if we want to use a regular or an irregular LDPC code and if we choose
the second one we must specify a degree distribution. In literature it is shown that the
irregular codes have better performance especially if the codewords are very long. In
[108], the authors studied the probability densities at the message nodes of the graph
and show that they always converge as the number of iterations tends to infinity. Using
this result they found the optimal degree distribution when a codeword is of infinite
length. However we consider short frame, so, we can find the optimal distribution for
a code with the specified rate and infinite codeword length and then we can adapt the
computed parameter to our case [90]. Unfortunately, this operation introduces cycles
in the Tanner graph and so the performance experiences error floor for high SNR and
bad results for low SNR because of a big number of degree—2 variable node.

To solve this problem the variable node distribution must be modified to have a
number of variable nodes of degree—2 less than or equal to the number of parity-check
nodes and when the graph is constructed the degree—2 variable nodes must be made
correspond to the check nodes. It is important also that the degree—2 variable nodes are
cycle-free. Once the variable node degree distribution is modified also the check node
degree distribution must be changed, because it must be compatible with the other one.

On the web site http://1lthcwww.epfl.ch/research/ldpcopt/index.php there is
an implemented algorithm to compute the optimal degree distributions for infinite
codeword and from http://www.cs.toronto.edu/ radford/ftp/LDPC-2006-02-08/
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index.html we can download some c-functions to construct the parity-check matrix
once we have the degree distributions.

After appropriate modifications, these functions are used to construct the parity-
check matrix which needs to be modified to satisfy the new constraint.

6.3 System description

The system considered is represented in Figure 6.8.

-7 eIIf(]:?)I(DleCr erg%ggl%r Intgzdl?lﬁgor *'G)*'deu%lc:’hslgtor dg}:lorggr (}ég)ol:(’lgr

F

Figure 6.8: Representation of the considered transmission scheme.

Data are encoded first through a LDPC encoder and then through a turbo encoder.
After the coding operation they are modulated through a QPSK modulator and sent
over an AWGN channel. At the receiver side, they are first demodulated and then
decoded through a turbo and a LDPC decoder.

Since we want to have reliable performance results, we consider the concept of
confidence, i.e. we want a probability equal to 95% that the measured value lies in the
computed confidence interval [97].

We suppose that our system transmits 100 words of 100 or 105 information bits
every time. These bits are encoded, modulated and transmitted on the channel. At
the received side, the received signal (i.e. the signal at the output of the channel) is
demodulated, decoded and the bit error rate is computed. At this point we compute
the confidential interval through the equation:

con fidence = 2 -1.96 - \/(var /total _number _words/info_bits)/BER, (6.4)

where var = BER - (1 — BER), total _number_words is the total number of words
simulated until that moment and info bits is the information length of a codeword.
This confidence interval must be equal or smaller than 15% of the estimated BER
value; if it is not we run the simulation again for other 100 words and recomputed BER
and confidence interval. The process is iterated until the constraint on the confidence
interval is satisfied or a maximum number of iterations, equal to 10000, is reached.

6.4 Results

The results shown in this section are computed through Matlab simulations: func-
tions are implemented in Matlab and C, where the c-functions are transformed in mex-
functions and so they can be used into Matlab simulations.
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6.4.1 Overall rate 1/3

The turbo rate is Ry = 1/2 and it is obtained through the puncturing in the 3G’
standard [49]. The LDPC code has rate R, = 2/3 and we compared the performance
with different matrices.

Figure 6.9 represents the performance of the concatenation when we use regular
and irregular LDPC matrices obtained with the algorithms described in Section 6.2.2
(curves red, cyan and green). The blue and yellow curves represent the performance
when the matrices used are modified to satisfy the new constraint. We can observe that
for growing SNR the performance is better and this is reasonable, because, with this
growing, the errors are due more to the distance of the code than to the channel noise.

Unfortunately, the concatenation doesn’t present the expected results, because the
LDPC code isn’t able to recovery the loss do to the turbo puncturing.

Figure 6.9 represents also the performance for an LDPC code and a turbo code with
rate 1/3. While the concatenation outperform the turbo for SNR higher than 3.5 dB,
the used LDPC code performs very well and is of interest for another kind of study.

Comparison between different parity—check matrix

T T "
—=— concatenation - regular matrix 1
- @-Turbo 1/2
concatenation - irregular matrix 2

—=— concatenation - irregular matrix 1

—w— concatenation — modified regular matrix 1
concatenation — modified irregular matrix 1,

——Turbo 1/3

TmesLln ——irregular LDPC 1/3

Thesl
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SNR [dB]

Figure 6.9: Concatenation performance with overall rate equal to 1/3.

6.4.2 Overall rate 5/16

The turbo rate is Ry = 1/3 and the LDPC code’s one is Ry, = 15/16. In this case
the performance doesn’t experience the loss due to the puncturing of the turbo code,
but the problem is that the LDPC parity check matrix is very small (7 x 112) and there
is not enough space to modify the matrix with the aim of satisfying the new constraint.

In Figure 6.10 magenta and black curves represent performance for turbo code with
rate 1/3 and LDPC code with rate 5/16, respectively. On the other hand blue and

green lines represent performance for the concatenation system when we use the random
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matrix and its modified version. Here we can observe that the concatenation has some
advantages in terms of bit error rate, but it is impossible to satisfy the new constraint
and so the results are almost the same (see blue and green lines).

Concatenation with overall rate 5/16
10 E T T T

——LDPC 5/16
—— Concatenation: Turbo 1/3 + LDPC 15/16

10'1; ‘ ' —— Concatenation: Turbo 1/3 + LDPC 15/16 (modified matr ix:
E : : ——Turbo 1/3 B

BER
P
o

T

- | I L I I I | I
10 . 2 25 3 35 4 4.5
SNR [dB]

Figure 6.10: Concatenation performance with overall rate equal to 5/16.

6.4.3 Overall rate 1/4

The turbo rate is Ry = 1/3 and the LDPC one is Ry, = 3/4. In this case the
performance doesn’t experience the loss due to the puncturing of the turbo code, but
the problem is that the overall rate is very low and this is not good in our system,
because we are trying to satisfy some delay constraints.

In Figure 6.11 magenta and cyan curves represent performance for turbo code with
rate 1/3 and LDPC code with rate 1/4, respectively. On the other hand, blue and
green lines represent performance for the concatenation system when we use the ran-
dom matrix and its modified version. Here we can observe that the concatenation has
some advantages in terms of bit error rate: for example, at BER equal to 107% the
concatenation scheme gains 1.1 dB. From Figure 6.11 we observe also that the concate-
nation with the modified matrix (green line) presents an enhancement with respect to
the non-modified one (blue line). This has a theoretical explanation: at low SNR most
of the errors are due to the noise of the channel, but, as the SNR grows, the errors
are due to the inability of decoding some sequences which can be corrected, with high
probability, by the modified LDPC.

Unfortunately, the BER’s values are very small, and, even if we ran the maximum
number of iteration for every simulated point, we can’t say those results are completely
reliable.
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Concatenation with rate 1/4
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Figure 6.11: Concatenation performance with overall rate equal to 1/4.

6.4.4 Conclusion

Observing Figures 6.9, 6.10 and 6.11 we can conclude that concatenation presents
performance gain in terms of bit error rate for codes with very low rates. This is far
from our purpose: we presented the concatenation scheme for short frames to respect
some delay constraints.

Observing LDPC performance in Figures 6.9 and 6.11, another idea comes to our
mind: compare the BER for the LDPC 1/3 (Figure 6.9) and LDPC 1/4 (Figure 6.11).
From a theoretical point of view we expect the LDPC 1/4 outperforms the LDPC 1/3,
but actually it is not true, as we can see from Figure 6.12, where the black line represents
per BER of the LDPC code with rate 1/3, the cyan one the performance of LDPC code
with rate 1/4 and the green one the performance of the concatenation scheme with
overall rate equal to 1/4. For example, at 2-107° BER the LDPC 1/3 has a gain of 1.1
dB and this is due to the strong dependence of the performance from the parity-check
matrix.

For both the LDPC codes, the parity-check matrices were chosen by using the same
design criterion. The choice has been limited, for both codes, to a small number of
parity-check matrices. The conclusion we tried is that for LDPC code with rate 1/3 we
found a very good solution while for the LDPC code with rate 1/4 the best solution we
found is far away from the acceptability and the search must be continued.

We can compare also the performance of the LDPC code with rate 1/3 and the
concatenation with overall rate 1/4. In this case results confirm the expectation: at
2.107° of BER the concatenation scheme gains 0.2 dB over LDPC code and at 1077
0.4 dB.

To conclude this section we observe also that all the parity check matrices have been
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Comparison between LDPC codes and the concatenation scheme
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Figure 6.12: Comparison of LDPC codes with rate 1/3 and 1/4 and concatenation
scheme with rate 1/4

chosen with the design criterion described above, thus the remark made for LDPC code
with rate 1/4 can be made also for the LDPC code of rate 5/16 and all the LDPC codes

involved in the concatenation schemes.






Chapter 7

WiMAX standard

This Chapter has the aim of briefly describe those parts of the standard which have

been of interest for the implementation of a downlink simulator standard compliant.

What I want to underline is that it doesn’t give a complete description of the stan-
dard, so for more details and completeness I recommend the readers to reefer to [1| and

12].

7.1 Aim and frequency allocation

The WirelessMAN- OFDMA PHY, based on the OFDM modulation is designed for
non-line-of-sight (NOS) operation in the frequency bands below 11 HZ, as seen from

the table 7.1.

Designation Applicability | PHY Options | Duplexing
alterna-
tive

WirelessMAN—SCT™ 10 — 66 HZ 8.1 TDD FDD

WirelessMAN—SCa™ [ Below 11 HZ | 8.2 AAS, TDD FDD

licensed bands ARQ,
STC
WirelessMAN Below 11 HZ | 8.3 AAS, TDD FDD
—OFDM™ licensed bands ARQ,
Mesh,
STC
WirelessMAN—OFDMA | Below 11 HZ | 84 AAS, ARQ,
licensed bands STC TDD
FDD
WirelessMAN Below 11 HZ | [8.2,8.3 | AAS, TDD
—HUMAN™ license-exempt | or 8.4 | ARQ,
bands and 8.5 Mesh,
STC

Table 7.1: Air interface nomenclature.

For licensed bands, channel bandwidth shall be limited to the regulatory provisioned
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bandwidth divided by any power of two, and must be no less than 1 MHz.

The OFDMA PHY mode based on at least one of the FFT sizes 2048 (backward
compatible to IEEE Std 802.16-2004), 1024, 512 and 128 shall be supported. This
facilitates support of the various channel bandwidths.

The Mobile Station (MS), called also User Equipment (UE) or Subscriber Station
(SS), may implement a scanning and search mechanism to detect the DL signal when
performing initial network entry and this may include dynamic detection of the FFT
size and the channel bandwidth employed by the Base Station (BS).

We have five frequency range that will support WiMAX, and to everyone of this
we associate one or more combinations of channel bandwidth, FFT size, channel raster
and duplexing mode. In [109], whose scope is to provide the OFDMA system profile
specification of mobile network, primarily for the purpose of certification of conformant
MS and BS, we find all the possible combinations of the above parameters. They are
resumed in Table 7.2.

Frequency | Channel frequency | Channel bandwidth | FFT | Duplexing
range (HZ) step (kHz) (MHz) size mode
2.3—-24 250 5 512 TDD
10 1024 TDD
8.75 1024 TDD
2.305 — 2.32 250 5 512 TDD
2.345 — 2.36 10 1024 TDD
2.496 — 2.69 | 250 (200 in Europe) 5 512 TDD
10 1024 TDD
3.3—-34 250 5 512 TDD
10 1024 TDD
3.4—38 250 5 512 TDD
7 1024 TDD
10 1024 TDD

Table 7.2: Combinations of channel bandwidth, FFT size, channel raster and duplexing
mode.

As we can see from the Table 7.2, even if the standard allows the two duplexing
modes TDD and FDD, the WiMAX Forum requires only the TDD mode to have a
certified product.

7.2 OFDMA symbol description, symbol parameters and
transmitted signal

7.2.1 Time domain description

The OFDMA waveform is created through the Inverse Discrete Fourier Transform
(IDFT) and its time duration is named useful symbol time Ty. To collect multipath,
while maintaining the orthogonality of the tones, a Cyclic Prefix (CP) is used, which
consists in coping the last T;; seconds of the useful symbol period at the beginning of the
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symbol. This method allows the receiver to take the samples for performing the Fast
Fourier Transform (FFT) anywhere over the length of the extended symbol, T and so
multipath immunity and tolerance for symbol time synchronization errors are achieved.

The CP values proposed in the standard are 1/4, 1/8, 1/16 and 1/32, but in [109]
it is said that the value we must use is 1/8.

The transmission energy increases with the length of the CP, while the receiver
energy remains the same, so there is a loss in Ej,/Np, that can be quantified through:
10log(1 — %)

log(10) (7.1)

(Ploss)dB =
where T, and T} are defined in 7.2.3 When CP is equal to 1/8, in (7.1) we found:
(]Dloss)dB =0.5dB

On initialization, a MS should search all possible values of CP, until it finds the one
being used by the BS. The SS must use the same CP on the uplink, because it can be
changed by the BS, but this operation requires the resynchronization of all the SSs to
the BS.

7.2.2 Frequency domain description

An OFDMA symbol is made up of subcarriers, whose number determines the used
FF'T size. There are three subcarrier types:

- Data subcarriers: for data transmission;
- Pilot subcarriers: for various estimation purposes;
- Null carriers: no transmission at all, for guard bands and DC carrier.

In the OFDMA mode, the active subcarriers (pilot and data subcarriers) are di-
vided into subsets of subcarriers, which may, be adjacent, and each subset is termed
subchannel. In downlink, one subchannel can be intended for groups of receivers; in
uplink, instead, one subchannel may be assigned to more transmitters, so that SS may
transmit simultaneously.

This technique supports scalability, multiple access and advanced antenna array
processing capabilities.

7.2.3 Parameters

Primitive parameters
Four parameters characterize the OFDMA symbol:
1. BW: nominal channel bandwidth

2. Nyseq: number of used subcarriers (included the DC subcarrier)
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Figure 7.1: OFDMA frequency description: an example of three channel.

3. n: sampling factor; in conjunction with BW and Nyg.q, determines the subcar-
rier spacing and the useful symbol time. Its values is 28/25 if the channel
bandwidth is a multiple of any of 1.25, 1.5, 2 and 2.75 MHz and 8/7 in the
other cases.

4. G: ratio of CP time to useful time (G = T,/T})

Derived parameters

These parameters are defined in terms of the primitive ones.

1. Nppr: FET size is the smallest power of two greater than Nyseq

2. Fy: sampling frequency Fy = |n - %J % 8000
3. Af: subcarrier spacing Af = NI}:;T

4. Tp: useful symbol time T; = Aif
5. Tg: CP time Ty =G - Ty

6. Ts: OFDMA symbol time Ts =T, 4 T

Ty
NpFpr

7. Tsam: sampling time Tyqp, =

| Channel BW | Scaling factor | Fs[dB] |

1.25 28/25 1.4
15 28/25 1.68
2 28/25 2.24
2.75 28/25 3.08
5 28/25 5.6
8.75 28/25 9.8
10 28/25 11.2
7 8/7 8

Table 7.3: Sampling frequency F.
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7.3 Frame duration

In the standard [2| the frame length can be equal to 20, 12.5, 10, 8, 5, 4, 2.5 and 2
ms, but we saw in [109] that the length chosen is equal to 5 ms.

This length indicates the periodicity of the downlink frame start preamble in both
TDD and FDD cases. Therefore we can say that in every second we transmit 200
frames.

On this point three observations are necessary:

e the frame duration is not an integer multiple of the OFDMA symbol duration.
Therefore sometimes padding may be necessary between the last useful OFDMA

symbol of the frame and the beginning of the next frame;

e in TDD case (which is the only one proposed in [109], as we can see from Table
7.2) Receive/transmit Transition Gap (RTG) and Transmit/receive Transition
Gap (TTG) guard intervals must be included in the frame, and both of them

shall be no less than 5 ps in duration;

e a simple scheme of the frame structure is shown in Figure 7.2, where we can see
that it is composed by a downlink transmission period (which includes also the
preamble), a TTG, an uplink transmission period and a RTG.

Subchannel logical number
Preamble
Preamble

DL TG UL TG

OFDMA symbol number

Figure 7.2: Simple scheme of an OFDMA frame in TDD mode.

Before characterizing RTG and TTG it is necessary to define the Physical Slot (PS)
as a time unit, dependent on the PHY specification, for allocating bandwidth and in
WirelessMAN-OFDMA it is given by:

4
PS=—.
F
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RTG is a gap between the uplink burst and the subsequent downlink burst in a
TDD transceiver. This gap allows time for the BS to switch from receive to transmit
mode and MS to switch from transmit to receive mode. During this gap the BS and MS
are not transmitting modulated data, but simply allowing the BS transmitter carrier
to rump up the transmit/receive antenna switch to actuate and MS receiver sections to

activate.

TTG is a gap between the downlink burst and the subsequent uplink burst in a
TDD transceiver. This gap allows time for the BS to switch from transmit to receive
mode and MS to switch from receive to transmit mode. Also in this case, during this
gap the BS and MS are not transmitting modulated data, but simply allowing the BS
transmitter carrier to rump down, the transmit/receive antenna switch to actuate and

MS transmitter section to activate.

Both these gaps are included in the frame by the BS and not from the MS. Their
minimum durations are equal to 5 us, and we can say that the frame in the time is
composed by the uplink, the downlink and the gaps RTG and TTG and the sum of
their duration must be equal to 5 ps. In Table 7.4 we find the durations of RTG and
TTG in PS and the number of OFDM symbols that compose the frame at the varying
of the channel bandwidth.

Channel Number of TTG | RTG
bandwidth (MHz) | OFDM symbols | (PS) | (PS)
10 47 296 168
8.75 42 218 186
7 33 376 120
5 47 148 84

Table 7.4: Durations of the several parts of the frame.

Example

We have a channel bandwidth equal to 10 MHz and we want to compute the frame

duration.

1. We compute the sampling frequency Fj

BW
F = A
s n 8000J x 8000

_28 107
= _%'—8000J x 8000

= g . 103J - 8000

— 11.2 MHz (7.2)
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2. We compute PS:
4
PS = —
5 FS
= 0.357 us (7.3)
3. We compute TTG:
TG = 296 -PS
= 105.7 ps (7.4)
4. We compute RTG:
TTG = 168-PS
= 60 us (7.5)
5. We compute the OFDM symbol duration:
1
T, = —
b Af
1
- R
Nppr
1024
= ———=0142 .
2-100 1A% ms (7.6)
6. We add the cyclic prefix:
9
T Tb ! g
= 102.86 us (7.7)
7. We compute the frame length:
Tr = TTG + RTG 4 Number of OFDM symbols - T
= 105.7 + 60 4 47 - 102.86 ps
~ 5 ms, (7.8)

7.4 Downlink Subcarriers Allocation

The downlink can be divided into three segment structures and includes a preamble

which begins the transmission.

In Figure 7.3 the downlink transmission basic structure is shown.

There are several ways to perform the subcarrier allocation, but only one of them,

PUSC one, is mandatory, the remaining ones are optional.
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Preamble
Data Symbol
Data Symbol
Data Symbol

Figure 7.3: Downlink transmission basic structure.

As we can see from [109], the remaining allocations are distinguished into two types:
the first one is defined potentially optional, because their implementation is not explic-
itly mentioned as mandatory, but from the standard [2] we may conclude it is, through
not really required for the system to perform basic operations, so at the end we can say
they are optional. The second type is explicitly mentioned as optional in the standard
and so it may or may not be implemented.

7.4.1 Preamble

All preambles are structured as either one or two OFDM symbol. The OFDM
symbols are defined by the values of the composing subcarriers. Each of those OFDM
symbols contains a cyclic prefix, which length is the same as the CP for data OFDM
symbols.

The first symbol of the downlink transmission is the preamble. There are three types
of preamble carrier-sets, those are defined by allocation of different subcarriers for each
one of them and those subcarriers are modulated using a boosted BPSK modulation
with specific Pseudo-Noise (PN) code.

The preamble carrier-sets are defined using the following equation:
PreambleCarriesSet, =n+ 3 -k, n=0,1,2and k=0, ..., 567 (7.9)

where PreambleCarrierSet, specifies all subcarriers allocated to the specific preamble.

Each segment! uses one type of preamble out of the three sets in the following
manner:

- Segment 0 uses preamble carrier-set 0;
- Segment 1 uses preamble carrier-set 1;

- Segment 2 uses preamble carrier-set 2.

! A segment is a subdivision of the OFDMA available subchannels. One segment is used for deploying
a single instance of the MAC.
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In the case of segment 0, the DC carrier will not be modulated at all, therefore it shall
always be zeroed. For the preamble symbol there will be 172 guard band subcarrier on
the left side and on the right side of the spectrum.

7.4.2 Partial Usage Of Subchannel (PUSC)

Here we give only the description of the mandatory allocation, whose name is Partial
Usage of Subchannel (PUSC). For the other type of allocation see Appendix C

Symbol structure

We use three types of subcarriers:

e pilot subcarriers,

e data subcarriers,

e zero subcarriers.

In this case the procedure used is the following:

e the symbol is divided into basic clusters;

e zero carriers are allocated;

e pilots and data carriers are allocated into each cluster.

Each symbol is characterized by the following parameters:

1. Number of DC subcarriers; its index is given by Nppp/2, counting from 0)
2. Number of guard subcarriers, Left, i.e. on the left side of the spectrum

3. Number of guard subcarriers, Right, i.e. on the right side of the spectrum
4. Number of subcarriers per cluster

5. Number of clusters

6. Renumbering sequence, used to renumber clusters before allocation to sub-

channels
7. Number of data subcarriers in each symbol per subchannel
8. Number of subchannels
9. Basic permutation sequence, also called PermBase

which depend on the FFT size.
The values of these parameters, depending on the FFT size, are enumerated in Table
7.5.

Now we make some observations:
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FFT size

Parameter 2048 | 1024 | 512 | 128
Number of DC subcarriers 1 1 1 1
Number of guard subcarriers, Left 184 92 46 | 22
Number of guard subcarriers, Right 183 91 45 | 21
Number of subcarriers per cluster 14 14 14 | 14
Number of cluster 120 60 30 6
Number of data subcarriers in each symbol per subchannel 24 24 24 | 24
Number of subchannels 60 30 15 3
PermBase 12—-8|6—-4| 5 /

Table 7.5: Symbol parameters for the available FFT size (i.e. 2048, 1024, 512 and

128).

Observation 9. The number of pilot subcarriers in each symbol per subchannel is 4 for

the 2048, 1024, 512 and 128 FF'T size.

In fact to compute the number of pilot subcarriers in each symbol per subchannel

we follow these computations:

1. we compute the number of data subcarriers in each symbol, in all subchannels

as the product of the number of data subcarriers in each symbol per subchannel

times the number of subchannels

2. we compute the number of subcarriers in the all clusters as the product of the

number of subcarriers per cluster and the number of clusters

3. we compute the number of all pilot subcarriers as the difference between the results

found at the second and first points

4. finally, we compute the number of pilot subcarriers in each symbol per subchannel

dividing the above result for the number of subchannels.

Now, we make an example to explain what is written above.

Example

We consider the case of 128 and 1024 subcarriers and use the parameters defined in

Table 7.5.

1. Total number of data subcarriers in each symbol N;;:

Ntdlzg = Nd : Nsch Ntd1024
=24-3
=172

where Ny is the number of data subcarriers in each symbol per subchannel and

Nyep, is the number of subchannels.

:Nd'Nsch
=24-30

=720




7.4. Downlink Subcarriers Allocation 141

ANtsubclusm,«s128 = Nejusters * Nsubclustw -]\/vtsubclus,gers1024 = Neiusters * Nsubclustw
=6-14 =60-14
=84 = 840

2. Number of subcarriers in all clusters Nigyp

clusters”

where N, sters 18 the number of clusters and Ny, is the number of subcarriers

cluster

per cluster.

3. Total number of pilots in a symbol Ny:

th128 = NtSchlusters - Ntd th1024 = NtSchlusters - Ntd
=84 -T2 =840 — 720
=12 =120

4. Number of pilots in a symbol per subchannel N,,:

Nt Nt
N = N =
p128 N P1024 N
B 1_2sch B 125 h
- 3 — 30
=4 =4

where N, is the number of subchannels.

If we compute these values using the numerical values of Table 7.5 we find that
the number of pilots in each symbol per subchannel is equal to 4 for all the FFT size
considered.

Observation 10. In every subchannel we have 28 subcarriers.

OOOO0@OOO@O OO Q) evensymbois
Q@OOOOOOOOOOO @O cdsmbs

Figure 7.4: Cluster structure.

Figure 7.4 shows subcarriers from left to right in order of increasing subcarrier index.
In order to determine the PUSC pilot position, symbols are counted from the beginning
of the current zone and the first one is always even. Obviously, the preamble is not
counted as a part of the zone.
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Subchannels subcarrier allocation

The procedure is the following:
1. Subcarriers are divided into Ny, ster physical clusters with 14 adjacent subcarriers.

2. The physical clusters are renumbering into logical clusters:

RenumberingSeguence( Physical Cluster)
First DL zone of "All SC indicator=0"
in STC_DL _ Zone IE"

RenumberingSeguence((Physical Cluster)+

13DL _PermBase)

otherwise

LogicalCluster = (7.10)

mod Ncluster

and the renumbering sequence and Perm Base are specified in the standard (8.4.6.1.2.1
in [2]). The renumbering sequences are reported in Appendix D, the sequences of
Permutation Base, instead,are reported in Table 7.7.

3. Logical cluster are allocated to six groups as it is shown in Table 7.6. These groups

‘ FFT size ‘ Group 0 ‘ Group 1 ‘ Group 2 ‘ Group 3 ‘ Group 4 ‘ Group 5 ‘

2048 0—-23 | 24—39 | 40-63 | 64—79 | 80—103 | 104 — 119
1024 0—11 | 12—19 | 20—-31 | 32—39 | 40—51 | 52-59
512 0-9 10—-19 | 20—29 / / /
128 0—1 2-3 1-5 / / /

Table 7.6: Cluster subdivision into six major groups.

may be allocated to segments, if a segment is being used, then at least one group
shall be allocated to it. By default group 0 is allocated to segment 0, group 2 to
segment 1 and group 4 to segment 2.

4. Allocating subcarriers to subchannel in each major group is performed separately
for each OFDMA symbol by first allocating the pilot subcarriers within each
cluster and then taking all remaining data carriers within the symbol and using
the following procedure:

e the remaining subcarrier within each major group are partitioned into groups
of contiguous subcarriers

e cach subchannel consists of one subcarrier from each group, so the num-
ber of group must be equal to the number of subcarriers per subchannel:
Ngubcarriers, instead the number of subchannels Ny pehannels 1S equal to the
number of subcarriers in each group, so Ngybchannels * Nsubcarriers 18 equal to

the number of data subcarriers
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e the partition into subchannels is given by the permutation formula (7.11):

mod NsubchannBIS] +
(7.11)

= Nsubchannels ‘N + {ps [nk
+DL _ PermBase} mod Ngypehannels

subcarrier(k, s)

where

subcarrier(n,s) is the index of the subcarrier n into the subchannel
* Nsubchannets — 1 (n =0,1,...,

Nsubcarriers — 1 and s =0, 1, ..., Neubchannels — 1)

s; its values are 0, 1, ..., Ngubcarriers

Nk = (k’ + 133) mod Ngypcarriers

ps|j] is the series obtained by rotating basic permutation sequence cycli-
cally to the left s times

DL _PermBase is an integer ranging from 0 to 31, which is set to pream-
ble IDcell in the first zone and determined by the DL MAP for other

zones.

The basic permutation sequence depends on the FFT size and on the number

of the major group in which we find the subcarrier to be allocated and is
reported in Table 7.7.

‘ FFT size ‘ Even group ‘ Sequence ‘ Odd group ‘ Sequence ‘
2048 12 subchannels | 6, 9, 4, 8, 10, 11, | 8 subchannels | 7, 4, 0, 2, 1, 5,
52,7,3,1,0 3,6
1024 6 subchannels 3,2,0,4,5,1 4 subchannels 3,0,2, 1
512 5 subchannels 4,2,3,1,0 / -
128 / - / -

Table 7.7: DL _PermBase.

Example - 128 FFT size

We consider a 128 FFT size.

We have 6 clusters of 14 adjacent subcarriers, hence we allocate 84 subcarriers,

because the remaining are guard subcarriers (22 on the left side and 21 on the right
side) and DC subcarriers (1).

In Figure 7.5 the subdivision in clusters is represented. The blue numbers represent

the physical numeration, instead the black ones are the number of subcarriers in each

groups.

Through the renumbering sequence (see Appendix D) the physical clusters are

renumbering into logical clusters, as it is shown in Figure 7.6.

As we can see from the legend in the Figure 7.6, the blue numbers still represent

the physical numeration and the green ones are the new logical numeration.

The renumbered clusters are subdivided into three groups (see Table 7.6).
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| Left | 0 | 1 | 2 3 | 4 | 5| R|ght |
14 21

Physical clusters

Figure 7.5: Physical clusters.

® Physical clusters

® Logical clusters

i = Group O

5 0
2DC 3 4

Figure 7.6: Logical clusters.

At this point, we need to allocate the pilot subcarriers, which are 4 in each subchan-
nel, as we pointed out in the above example. The pilots are allocated to fixed positions
(see Figure 7.4):

e for the even symbols the pilots are the 5" and 9*" subcarriers
e for the odd symbols the pilots are the 15 and 13'" subcarriers.

The structure of the six cluster is represented in Figure 7.7 and in this one the sub-
division in groups of adjacent subcarriers is also represented. The remaining subcarriers
are numbered from 0 to 71.

We point out that, in this Figure we assume that the cluster are in logical order, so,
looking Table 7.6, we can show also the major groups.

In 128 FFT size we have 3 channels of 24 subcarriers (see Table 7.5).

Now, in each major group, we shall clustering the subcarriers into groups of dimen-
sion equal to the number of channels defined in it and then, through equation (7.11),
we assign the subcarriers to subchannels.

We observe that 128 FFT size is a particular case, because we have one subchannels

per major group, hence the group of adjacent subcarriers are made of only once. Then,
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O Data subcarriers to subchannels

O Pilot subcarriers
OlOJCOACIOICICIVAUVICICICICICICICACACACACACIONORDICOXORLCLLY

@@@@O@@@O@@@Q@O@@@@@@QG@G@OQme
@@@@O@@@O@@@@@O@@@@@G@Q@@@O@WWM

Figure 7.7: Pilots allocation.

from Table 7.7, we see that we haven’t basic permutation sequences and so equation
(7.11) is reduced to:
subcarrier(k,s) = Ngubchannels * Tk (7.12)

where:

b subchannels = 1

e np = (k+13-5s) mod Ngypearriers = k mod 24 =0, 1, ..., 23.

As it is obvious from the above observation and as we can see in Figure 7.8, the

subcarriers of a major group, in this case, form a subchannel.

O Pilot subcarriers

. Subcarriers of subchannel 0
O Subcarriers of subchannel 1

. Subcarriers of subchannel 2

00000000 °000000°000CCOODOVDOCODOOGOO G
@@@@O@@@O@O@Q@O@@@@G@@@@@@O@WWN
....O...O....ﬂ@..‘..&.&&&&@&mmz

Figure 7.8: Subcarriers to subchannel assignment.

In Figure 7.8 we use four colors to represent:

e the pilots (light blue color)

e the subcarriers allocated to subchannel 0 (magenta color)
e the subcarriers allocated to subchannel 1 (yellow color)

e the subcarriers allocated to subchannel 2 (green color)
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Example - 1024 FFT size

To show the use and results of the equation (7.11) we consider an example with
1024 subcarriers.

First we show the subdivision in physical clusters (Figure 7.9) and then the renum-
bering into logical clusters (Figure 7.10).

\ Left , 0,1, 2, 3, 4, 5, 24, 25,26, 27,28, 29, Right ‘
! 92 "14 T 147 147 14" 14 14 DC "147 147147147147 147 91 !
30 physical clusters
Figure 7.9: Physical clusters.

@ Physical clusters

@ Logical clusters
\ Left . 6,48, 37, 21, 31, 40 20, 24,52, 4,34, 0, Right ‘
‘ "o'1' 2" 3 4 5 DC "24" 25 26" 27 28 29 ‘

Group 0 (0-11)
Group 4 (40 - 51)
Group 5 (52 - 59)

Figure 7.10: Physical clusters.

In Figure 7.11 we insert the pilot subcarriers into each cluster. As we can see the
positions are the same seen in the above example.

After the insertion of the pilots we subdivide the remaining subcarriers within each
of the six major group in groups of adjacent subcarriers of the dimension of the number
of 6 and 4 if we are considering even or odd groups respectively.

Then, a subcarrier from each group, chosen through equation (7.11), forms the
subchannels.

In Figures 7.12 and 7.13 we show the allocation of the subcarriers to subchannels in
the major groups 0 and 1 considering a DL PermBase equal to 0. Considering, then,
that in the last two major groups the allocation would be the same, we represent the
allocation if we assume DL PermBase = 15.

To distinguish the subchannels we use two sets of different color for the two major

groups. In the first major group we have:
e pilot subcarriers (light blue color)
e subcarrier allocated to subchannel 0 (magenta color)
e subcarrier allocated to subchannel 1 (yellow color)

e subcarrier allocated to subchannel 2 (green color)
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O Data subcarriers to subchannels
(O Piot subcarriers
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Major group 4

Figure 7.11: Pilot subcarriers in the clusters.

e subcarrier allocated to subchannel 3 (cyan color)
e subcarrier allocated to subchannel 4 (red color)
e subcarrier allocated to subchannel 5 (pink color)
and in the second major group:
e subcarrier allocated to subchannel 6 (dark cyan color)

e subcarrier allocated to subchannel 7 (light pink color)
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e subcarrier allocated to subchannel 8 (dark green color)

e subcarrier allocated to subchannel 9 (dark magenta color)

O Pilot subcarriers
..@.O@.@O...O@O&@.&@&N&&@&O@j

.@@.O..@OO.@.ﬂO..@O@OQ&&&WO@
.@..O@..OQ.@.@@.@@...@..@.O.
..@.O@.@OO..&@O.@..@...O@&O@
.@@.OO&@OO@@@@@OO@@OO@O...OO“
.@OOO@&.O&%@&@O.@@OOO@..@.@.
@...O..@O..@.ﬂ@...@@.0&.0@0&
.@..O..OO@@&&&O.O@@O@OOOO.@O4
@...O..@O&&@&ﬂ@‘@@@@‘@@@@@@.“
.@..O..OO@@O&ﬂOO@@O.@.@@OO@@

First major group Second major group

Major group (

©

Major group 1

. Subcarrier to subchannel 0 . Subcarrier to subchannel 6
O Subcarrier to subchannel 1 O Subcarrier to subchannel 7
. Subcarrier to subchannel 2 . Subcarrier to subchannel 8
O Subcarrier to subchannel 3 . Subcarrier to subchannel 9

. Subcarrier to subchannel 4

. Subcarrier to subchannel 5

Figure 7.12: Subcarrier allocation into subchannels, for the first two major group,
considering a DL _PermBase equal to 0.

7.5 Channel coding

Channel coding procedures include:

e randomization

FEC coding

bit interleaving

repetition

modulation.

In Figure 7.14 the channel coding process is shown and we point out that repetition
shall only be applied to QPSK modulation.
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‘ Subcarrier to subchannel 20 . Subcarrier to subchannel 26
Subcarrier to subchannel 21 Subcarrier to subchannel 27
s Subcarrier to subchannel 22 . Subcarrier to subchannel 28
Subcarrier to subchannel 23 . Subcarrier to subchannel 29

. Subcarrier to subchannel 24

\\§\ Subcarrier to subchannel 25

Figure 7.13: Subcarrier allocation into subchannels, for the last two major group,
considering a DL PermBase equal to 15.

» Randomizer‘ ! FEC ‘ ! Bit-Interleaver }——{ Repetition}——{ Modulatior}—»,
Dato to transmit | \ | \ Mapping to OFDMA

in PHY burst subchannels

Figure 7.14: Channel coding process for regular and repetition coding transmission.

7.5.1 Randomization

This operation is mandatory in [2].
Data randomization is performed on all data transmitted in uplink and downlink,
except the FCH. It is initialized on each FEC block, through the vector

[LSB] 011011100010101 [MSB]

and in Figure 7.15 the PRBS generator for data randomization is represented.

From the Figure 7.15 we see that the PRBS generator shall be 1+z+ 25, Pream-
bles are not randomized and each data byte to be transmitted shall enter sequentially
into the randomizer, MSB first. The randomizer sequence is applied only to informa-
tion bits. If the amount of data to transmit does not fit exactly the amount of data

allocated, so padding may be added at the end of the transmission block.
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-

SB MSB
1‘ 2‘ 3‘ 4‘ 5‘ 6‘ 7‘ 8‘ 9‘ 1¢ 1# 1% 1‘3 ]\4 JFS

L

. Data out
Data in

Figure 7.15: PRBS generator for data randomization.

H-ARQ requires the randomizer pattern is identical for each H-ARQ attempt, so,
for H-ARQ), it shall be initialized with the vector created as it is shown in Figure 7.16.

MSB‘ 0‘ 1‘ ‘ 0‘ 1‘ 1‘ 1‘ 0‘0‘ O‘LSB MSB‘ 1‘ 0‘ 1‘ 0‘ 1‘LSB OFDMA randomizer
initialization vector

MSB | bus | bis | biz| bu| buwo

bg‘ ba‘ b;‘ b;‘ u‘ b‘ b‘ b‘ b‘ b‘LSB

Figure 7.16: Creation of the OFDMA randomizer initialization vector for H-ARQ.

7.5.2 Encoding

The WiMAX standard defines some codes, but only one of them is mandatory:
the tail-biting convolutional encoding. The other ones are: Block Turbo Code (BTC),
Convolutional Turbo Code (CTC) and Low-Density Parity-Check code (LDPC). Here
we describe only the mandatory and the LDPC ones, because these are the ones of out
interest. The other ones are described in Appendix E.

The encoding block size depends on the number of slots allocated and the modulation
specified for the current transmission. Concatenation of a number of slots shall be
performed in order to make larger blocks of coding, where it is possible, with the
limitation of not exceeding the largest supported block size for the applied modulation
and coding.

For any modulation and FEC rate, given an allocation of n slots, the following
parameters are defined:

e j: parameter dependent on the modulation and FEC rate

e n: number of allocated slots/repetition factor

e ki [n/j]
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e m: n mod j.

We define a rule for the slots concatenation; it is described in Table 7.8.

‘ Number of slots ‘ Slots concatenated ‘
n<j 1 block of n clusters
n>j,n modj=0 k blocks of j slots
n>j,n modj#0 (k — 1) blocks of j slots

1 block of 2 x [(m + j)/2] slots
1 block of 2 x | (m + j)/2] slots

Table 7.8: Rule for the slots concatenation.

In Table 7.9 we find the value of j at the varying of the modulation and FEC rate.

‘ Modulation and rate ‘ j ‘
QPSK 1/2 6
QPSK 3/4 4
16 - QAM 1/2 3
16 - QAM 3/4 2
64 - QAM 3/4 1
64 - QAM 3/2 1

Table 7.9: Values of j at the varying of modulation and FEC rate.

There are severely encoding methods, but only one of them is mandatory and so
need to be implemented: the others are optional, but in [109] is required to implement
one of them.

Convolutional coding (CC) - mandatory

Each FEC block is encoded by the binary convolutional encoder, which shall have
native rate 1/2, and a constraint length equal to k& = 7 and shall use the following
generator polynomials codes to derive its two code bits:

G1 = 17lpcr X (7.13)
Go = 133pcT Y (7.14)

In Table 7.10 the puncturing patterns and serialization order that shall be used to
realize different code rates are defined; in it "1" means a transmitted bit and "0" means
a removed bit.

|Rate [dgee | X [ YV | XY |
12 ] 10 [ 1 ]1 X1Y)

2/3 | 6 |10 [ 11 ] Xi\iYs
3/4 1 5 101110 [ X,1Y5X;

Table 7.10: Convolutional code with puncturing configuration.
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’—> X output

\—> Y output

Figure 7.17: Convolutional encoder of rate 1/2.

Each FEC block is encoded by a tail-biting convolutional encoder, which is achieved
by initializing the encoder’s memory with the last data bits of the FEC block being
encoded.

Following (in Table 7.11) we define the basic sizes of the useful data payloads to be
encoded in relation with the selected modulation type, encoding rate and concatenation

rule.

QPSK | 16 - QAM 64 - QAM
Encoding rate 1/2 | 3/4|1/2| 3/4 | 1/2|2/3 | 3/4
Data payload (bytes) | 6

9
12 12
18 | 18 18 18
24 24 24
27 27

30
36 | 36 | 36 | 36 | 36

Table 7.11: Useful data payload for slot.

H-ARQ implementation is optional and an Incremental Redundancy (IR) based on
it is taking the puncturing pattern into account and for each retransmission the code
block is not the same.

The puncture patterns are predefined or can be easily deducted from the original
pattern and can be selected based on SPID (which is the SubPacket Identifier (ID),
used to identify the four subpackets generated from an encoder packet).

At the receiver, the received signals are de-punctured according to its specific pat-
tern, decided by the current SPID, then the combination is performed at bit metrics

level.
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Code rate
1/212/3]3/4] 5/6
SPID =0 | X 1 10 | 101 | 10101
Y 1 11 | 110 | 11010
SPID =1 | X 1 01 | 011 | 01011
Y 1 11 | 101 | 10101
SPID =2 | X 1 10 | 110 | 10110
Y 1 11 | 011 | 01011
SPID =3 | X 1 01 | 101 | 01101
Y 1 11 | 110 | 10110

Table 7.12: Puncture pattern definition for H-ARQ.

About the Table 7.12 there is a specification:
e SPID = 0: puncture pattern equal to the mandatory one
e SPID = 1: puncture pattern left cyclic shift of the one from SPID = 0

e SPID = 2 and SPID = 3: patterns are governed by the same rule.

Low density parity check code - optional
Code description

The LDPC code is based on a set of one or more fundamental LDPC codes. Each
of the fundamental codes is a systematic linear block code.

Each LDPC code is defined by a matrix H of size m X n, where n is the size of the
code and m is the number of parity-check bits in the code. The number of systematic
bits is k =n —m.

The matrix H is define as:

Py Py, Py Pon,—2 Py,
P P, P, Py, > Py,
_ _ pH
H = Py Py, Py, Py, o Py, 1 =P
| Poy-10 Poy—11 Pry—12 Pry—1m,—2 Pry—1n,-1 |
(7.15)

where P; ; is one of a set of 2 X z permutation matrices or a z X z zero matrix. The
matrix H is expanded from a binary base matrix H, of size my X ny, where n, = 24,
n = z-np and m = z-my, with z an integer. The base matrix is expanded by replacing
each 1 in the base matrix with a z X z permutation matrix, and each 0 with a z x 2
zero matrix.

The set of permutation matrices contains the z x z identity matrix and circular right
shifted version of the identity matrix.

H,, is partitioned into two sections, where Hp; corresponds to the systematic bits
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and Hpy corresponds to the parity check bits, such that

H = [(Hy1)my sy |(H b2) g, xmy )

Section H g is further partitioned into two sections: hy, and Hj,, where h;, has odd
weight, and HJ, has a dual diagonal structure with matrix elements at row 4, column
jequal to 1 for ¢ = j, for i = 5 + 1 and 0 elsewhere.

The base matrix has hy(0) = 1, hy(mp—1) = 1 and a third value hy(j), 0 < j < mp—1

equal to 1.
So:
Hyy, = [hy|Hyy)
[ h(0) | 1 |
hb(l) ‘ 1 1 0
. 1 -
_ | (7.16)
. | S
0 11
| hy(my — 1) | i

The largest code length of each code rate is n = 2304 and, in any case, n must be a

multiple of n, = 24.

Code rate and block size adjustment

The LDPC code flexibility supports different block sizes for each code rate through
the use of an expansion factor z.

Table 7.13 shows the parameters for each code rates:
- N(bytes) = n(bits)/8
- 2= n(bz‘ts)/24

- k= N(pytes) * R

Packet encoding

The encoding block size k shall depend on the number of subchannels allocated
and the modulation specified for the current transmission. As usual, concatenation of
a number of subchannels shall be performed in order to make larger blocks of coding
where it is possible, with the limitation of not passing the largest block under the same
coding rate. For the concatenation rule see Table 7.15, but remember that for the LDPC
the concatenation does not depend on the code rate.

For any modulation and FEC rate, given an allocation of Ngcop subchannels, we

define the following parameters:
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‘ n ‘ n ‘ z [ k bytes | Number of subchannels |
(bits) (bytes) factor [ R=1/2 [ R=2/3 T R=3/4 ] R=5/6 | QPSK | 16 — QAM | 64 — QAM |
576 72 24 36 48 54 60 6 3 2
672 84 28 42 56 63 70 7 — —
768 96 32 48 64 72 80 8 4 —
864 108 36 54 72 81 90 9 — 3
960 120 40 60 80 90 100 10 5 —
1056 132 44 66 88 99 110 11 — —
1152 144 48 72 96 108 120 12 6 4
1248 156 52 78 104 117 130 13 — —
1344 168 56 84 112 126 140 14 7 —
1440 180 60 90 120 135 150 15 — 5
1536 192 64 96 128 144 160 16 8 —
1632 204 68 102 136 153 170 17 — —
1728 216 72 108 144 162 180 18 9 6
1824 228 76 114 152 171 190 19 — —
1920 240 80 120 160 180 200 20 10 —
2016 252 84 126 168 189 210 21 — 7
2112 264 88 132 176 198 220 22 11 —
2208 276 92 138 184 207 230 23 — —
2304 288 96 144 192 216 240 24 12 8

Table 7.13: LDPC block sizes and code rates.

- j;: parameter dependent on the modulation and number of antennas in case of
spatial multiplexing

- Ngcpg: number of allocated subchannel
- F = floor(Nscr /ji)
- M = Ngog mod j;

Table 7.14 specifies the concatenation of subchannels for different allocations and
modulations.

‘ Modulation ‘ J1 ‘ Jo ‘ E ‘ Ja ‘

QPSK |24 |12 8| 6
16-QAM [12] 6 | 4 |3
GI-QAM |8 422

Table 7.14: Parameter j for LDPC.

Nscm < ji | 1 block of Ngog subchannels
Nscm > Ji If M ==
F blocks of j; slots
else
(F — 1) blocks of j; slots
1 blocks of [((M + j;)/2))] slots
1 blocks of |((M + 7;)/2))] slots
end

Table 7.15: Subchannels concatenation.

Control information and packets that result in a codeword size n of less than 576
bits are encoded using CC.
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7.5.3 Interleaving

All encoded data bits shall be interleaved by a block interleaver with a block size
corresponding to the number of coded bits per the encoded block size Ngy,s. The
interleaver is defined by a two-step permutation. The first ensures that adjacent coded
bits are mapped onto nonadjacent subcarriers. The second permutation insures that
adjacent coded bits are mapped alternately onto less or more significant bits of the
constellation, thus avoiding long runs of lowly reliable bits.

Let Ncpe be the number of coded bits per subcarrier, i.e. 2, 4 or 6 for QPSK,
16—QAM or 64—QAM, respectively. Let s = Ng,./2. Within a block of Ng,s bits at
transmission, let k& be the index of the coded bit before the first permutation, m; be
the index of that coded bit after the first and before the second permutation and let jg
be the index after the second permutation, just prior to modulation mapping, and d be
the modulo used for the permutation.

The first permutation is defined by Equation (7.17):

Nepps k

T Foata) T L5 k=01, Neyps — L and d =16 (7.17)

mi =

The second permutation is defined by Equation (7.18):

d-mk

— k=0,1,..., N, —landd=1
Ncbps J)mod(2) 0, 1, > Vebps an 6

(7.18)

The de-interleaver, which performs the inverse operation, is also defined by two

. mg
Jk = S L?J +(mk+Ncbps_L

permutations. Within a received block of N, bits, let j be the index of a received bit
before the first permutation; m; be the index of that bit after the first and before the
second permutation; let k; be the index of that bit after the second permutation, just
prior to delivering the block to the decoder.

The first permutation is defined by Equation (7.19):

c L d-g
my =5 o)+ G+ L

1) j=0,1,..., Nyps— 1 and d = 16 (7.19)

The second permutation is defined by Equation (7.20):

.mj-mj

kj:d'mj_(Ncbps_l)'Ld N
cbps

| j=0,1,..., Ngps — 1 and d = 16 (7.20)

7.5.4 Modulation

There are different way to modulate the data and pilot subcarriers.

Data modulation

After bit interleaving, the data bits are entered serially to the constellation mapper.
Gray-mapped QPSK and 16—QAM are supported , whereas 64—QAM is optional. The
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constellations shall be normalized by multiplying the constellation point with the factor
1/4/2, 1/4/10 and 1/+/42 respectively, to achieve equal average power.

Pilot modulation

Pilot sequences wy are generated through a PRBS generator, whose polynomial is
X' 4 X? 4 1. Than the value of the pilot for OFDM symbol k is derived from wy,. For
each pilot the BPSK modulation shall be derived as follows:

Re{cy} = 2(%—1@)
Im{c} = 0 (7.21)

where the multiplication by 8/3 realizes a boost of 2.5 dB.

Preamble modulation

Once we have defined the sequence of subcarriers that must be used in the preamble,
as described in Section 7.4.1, Let’s call them prej. Their modulation is a boosted BPSK:

Re{pr} = 4-\/§<%—pr6k>
Im{py} = 0. (7.22)






Chapter 8

Performance evaluation

In the Chapters above channel estimation and channel coding techniques have been
described. In this Chapter those techniques will be applied to a WiMAX standard
compliant systems. First of all the implemented WiMAX system will be described and
than the performance with infinite and finite computational resource will be presented.

81 WiMAX simulator

A standard compliant implementation of the PHY level of a downlink 802.16e system
was developed in a Matlab/Simulink software environment. The frame and symbol
structures are compliant with the standards specifications contained in [1] and [2].

The simulation software is able to evaluate the performance of the PHY layer in
different propagation scenarios (e.g. urban/suburban/rural) and in various interference

contexts.

All the simulations are carried out in a baseband environment, neglecting the im-
plementation of pass band frequency modulation and of carrier/symbol/frame synchro-

nization.

The transmitter supports all the convolutional codes and QAM modulation schemes
(MCS) approved by the previously mentioned standards. The useful payload is con-
tained in a single data region, and fills all the available subcarriers. Also the irregular
LDPC code with all the QAM modulation are supported, but only for a code rate equal
to 1/2. Finally for the QPSK modulation we consider also a turbo code with rate 1/3,
a regular LDPC code with rate 3/4 and a concatenation of the last two with an overall
rate equal to 1/4. All the transmitting BSs are assumed to adopt different DL permu-
tation bases and the same MCS of the useful payload. By the way, simulations can be
arranged where these parameters are set individually for each interfering BS.

Figure 8.1 gives a block representation of the implemented system and Figures 8.2,
8.3 and 8.4 give a more accurate representation of the block transmitter, frame assembler

and receiver.
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8.1.1 Transmitter

The transmitter implements the concatenation and coding. We can choose between
five different type of coding: convolutional code, regular and irregular LDPC codes,
turbo code or concatenation. The convolutional code (CC) is implemented exactly as
described in Section 7.5.2. For the other codes we consider the same concatenation rule
(see Table 7.8) because we want to encode sourceword of the same length. For the irreg-
ular LDPC code, the matrix used is the one defined in the standard for sourceword of
length 288 and rate 1/2 (see Table 7.13). We don’t use the concatenation rule described
in Table 7.15, because, for the case we are considering (a full loaded system with 512
subcarriers, QPSK modulation and code rate equal to 1/2) we find the codeword length
is 720, but this value is not included in Table 7.13, and for values different from the

ones listed in that table the standard suggests to use the CC.
After the coding operation the interleaver one is performed as described in 7.5.3.

The last operation is the modulation one: we can choose between QPSK, 16—QAM
and 64—QAM, even if not all the combinations of code-modulation are available.
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8.1.2 PUSC Permutation

This is a complicated block which implements the insertion of the pilots and the
permutation as described in Section 7.4.2.

First of all we divide the data in even and odd symbols and we insert the pilots to
form a cluster. For every FFT size the cluster is made of one even and one odd symbol
and each of them is made of 12 data subcarriers and 2 pilots.

For the even symbols pilots have indexes 5 and 9, for the odd 1 and 13, assuming
we are numerating the carriers starting from 1.

These clusters, which are made of adjacent subcarriers, are called physical clusters
and are renumbering into logical clusters as defined in 7.10.

Logical clusters are allocated to groups (see Table 7.6), then subcarriers are clustered
into groups whose dimension is equal to the number of channels for the FFT size and,
finally, through Equation (7.11), they are allocated to subchannels.

8.1.3 Frame assembler

At the output of the PUSC permutation block we have the data and pilots we
want to transmit on the OFDMA symbols, so, in the frame assembler virtual and DC
subcarriers are added to form the complete OFDMA symbol. At the beginning of the
frame we add the preamble which is one OFDM symbol modulated with a boosted
BPSK. For a 512 system, it contains data only over 143 subcarriers, generated with a
PRBS generator as described in Section 7.4.1.

8.1.4 Channel

Once we have the frame we want to transmit the data over a wireless channel. In
this simulator we can use four different types of channel: AWGN, exponential with
Rayleigh fading, SCME [110] and Winner [111].

8.1.5 Frame deassembler and Data/pilots separation

Aim of the frame deassembler block is simply the division of preamble and useful
OFDM symbols. More complex is the data/pilots separation block: it extracts pilots
from the receiver symbols, performing the PUSC inverse permutation.

In this block we find the subchannels, the groups, the logical and physical clusters.
Once we have the latter ones we know exactly the position of the pilots and so it is easy
to extract them from the received symbols.

8.1.6 Channel estimation

In this case we have four inputs: the transmitted pilots and preamble and the
received ones. Channel estimation can be performed through a reduced rank LS (see
Chapter 2) estimator on both preamble and pilots or a MMSE estimator on preamble
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and a LS estimator on pilots. The choice of these estimators is motivated from the

results presented in Chapter 2.

8.1.7 Receiver

At this point we have the channel estimation and the received data so we perform
the equalization. Actually to measure the loss due to the channel estimation we can
perform also the equalization with the perfect channel, i.e. we assume the knowledge
of the channel.

The output of the equalizer is the input for the soft demapper, then the LLR are
de-interleaved and decoded. Finally we perform a reshape to have the bits ordered as

when they were generated.

8.2 System parameters

We consider a 512 subcarrier system. In this case we use 360 subcarriers for data
transmission and 60 for pilots. All the remaining except the DC are virtual subcarriers
so we don’t transmit anything over them. The bandwidth is 5 MHz and the carrier
frequency 2 GHz, thus the symbol period is Ts = 1.0286e — 04 where we consider a CP
equal to 1/8 of the useful symbol.

A single frame has one preamble and 24 OFDMA symbols and each iteration of our
simulations performs the transmission of 200 frames.

Finally, mobile speed can vary between 3, 50 or 130 km /h.

Table 8.1 resumes all the parameters for the considered system.

8.3 Infinite computational resource

Figure 8.5 represents the performance of the WiMAX implemented system when we
consider an AWGN channel and a CC codes. We consider all the rate and modulation
enumerated in the standard [2].

Assuming we know the channel, we plot the performance when we consider LDPC
and CC codes with rate 1/2. As said above for the considered system, the LDPC
subchannel concatenation rule doesn’t give a valid codeword size, but if we use the slots
concatenation defined for the CC, we have a codeword of 576 bits.

Figures 8.6, 8.7 and 8.8 represents the performance for the considered system when
we assume to concatenate the data through the slots concatenation rule (Table 7.8)
and to encode them through the CC and LDPC codes with rate 1/2. The modulation
considered are QPSK (blue lines), 16—QAM (green line) and 64—QAM (magenta line).
Two different styles are used: the solid lines represent performance for the CC and the
dotted lines performance for the LDPC code.

Observing these figures we can conclude that especially for QPSK and 16—QAM it
could be a good idea to use the LDPC codes with a different concatenation rule.



8.3. Infinite computational resource 163

FFT size 512
Channel bandwidth 5 MHz
Carrier frequency 2 GHz
Sampling factor 1.12

CP ratio 1/8
Sampling frequency 5.6 MHz
Subcarrier spacing 1.0938e + 04
Useful symbol time 9.1429¢ — 05
CP time 1.1429¢ — 05
OFDMA symbol time 1.0286e — 04
Sampling time 1.7857e¢ — 07
Number of OFDM symbols (downlink) 24
Number of preamble OFDM symbols 1
Number of DC subcarriers 1
Number of guard subcarrier, Left 46
Number of guard subcarrier, Right 45
Number of subcarriers per cluster 14
Number of clusters 30
Number of data subcarriers in each symbol per subchannel 24
Number of subchannels 15
PermBase )

Table 8.1: Parameters for the considered system.

AWGN channel
T T T T T
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BER - 16-QAM 3/4 ||
SLER - 16-QAM 3/4(
——BER - 64-QAM 1/2 |1
- « - SLER - 64-QAM 1/2]]

Figure 8.5: Bit error rate performance for a WiMAX system with AWGN channel and
CC.

In Chapter 6 we proposed a concatenation of LDPC and turbo codes as outer and
inner codes, respectively. In that Chapter we considered concatenation with overall
rate equal to 1/3, 5/16 and 1/4. Unfortunately, for the first two rates results were
disappointing. For the rate 1/4 some improvements in the performance are available, so
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Figure 8.6: Comparison in terms of bit error rate between the convolutional code and
the LDPC code when the mobile station moves at 3 km/h.
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Figure 8.7: Comparison in terms of bit error rate between the convolutional code and
the LDPC code when the mobile station moves at 50 km/h.

we decided to apply this kind of analysis to the WiMAX system. Considering the slots
concatenation rule defined in Table 7.8, we introduced in the system, for the QPSK
modulation other three types of coding: a regular LDPC code with rate 3/4, a turbo
code with rate ! 1/3 and the concatenation of these two codes for an overall rate equal
to 1/4.

!The turbo code used here is not the one defined in the WiMAX standard, but the one described in
Chapter 6, because we want to compare the performance of the proposed algorithm with a "common"
turbo code, i.e. a code made by two identical convolutional codes.
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CC and LDPC codes comparison in terms of BER
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Figure 8.8: Comparison in terms of bit error rate between the convolutional code and
the LDPC code when the mobile station moves at 130 km/h.

The parity-check matrix for the regular LDPC code has been found as described in
Section 6.2.2, while the turbo code is the one defined in the 3GPP standard [49] and
described in Section 6.2.1.

Figures 8.9 and 8.10 represent the performance of the system with a QPSK mod-
ulation, an AWGN channel and the coding types described above. In Figure 8.9 the
performance is represented in terms of SNR, just to show the results when we consider
the same level of signal-to-noise ratio. This is not a good term of comparison because
the energy used for each information bit changes when we consider different coding
rates. To avoid this problem we represent the same BER in terms of Ej/Ny in Figure
8.10; the conversion follows the equation:

E,  SNR
Ny Rlogy(M)

where R is the coding rate and M the cardinality of the modulation alphabet. From this
figure we can see that after 4 dB of FEj/Ny the concatenation scheme outperforms the
convolutional one. Unfortunately, the computational complexity in the concatenation
encoding and decoding is higher than in the CC case. Thus, the choice of the coding
type must be made considering a trade-off between the computational complexity and
the required BER.

8.4 Finite computational resource

In this Section we present the results when we consider channel estimation and
tracking. We perform a LS estimation on the preamble and use this as the starting
point for the tracking of the channel over the 24 OFDM symbols. The tracking is
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Figure 8.9: Performance in terms of bit error between CC and concatenation. For
a more complete analysis also the performance of the constituent codes (Turbo and
LDPCQ) are represented.
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Figure 8.10: Comparison in terms of bit error rate between the performance of con-
volutional, turbo and LDPC codes and concatenation of turbo and LDPC. Here we
represent the performance presented in Figure 8.9 in terms of Ej/N.

performed through a LS estimation over the pilots.

Figures 8.11, 8.12 and 8.13 represent the performance when we consider perfect
channel knowledge (x marker) and channel estimation (o marker). The channel used
is the exponential channel with Rayleigh fading and the mobile speed is 3, 50 and 130
km/h. The QPSK 1/2 is represented with blue lines, the QPSK 3/4 with red lines, the
16—QAM 1/2 with green lines, the 16—QAM 3/4 with cyan lines, the 64—QAM 1/2
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with magenta lines and finally the 64—QAM 2/3 and 3/4 with blue and yellow lines.
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Figure 8.11: Comparison in terms of bit error rate between different types of modula-
tion and CC coding rates, with perfect channel knowledge and estimation.
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Figure 8.12: Comparison in terms of bit error rate between different types of modula-
tion and CC coding rates, with perfect channel knowledge and estimation.

Figures 8.14, 8.15 and 8.16 represent the performance for three different modula-
tions: QPSK, 16—QAM and 64—QAM, respectively. The coding rate is equal to 1/2
and we consider LDPC (dotted lines) and convolutional (solid lines) codes. For all the
modulation schemes we assume that the exponential channel is affected by Doppler fre-
quency due to three different speeds: 3 (blue lines), 50 (green lines) and 130 (magenta
lines) km/h. For all the cases we consider perfect channel knowledge (x marker) and
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Figure 8.13: Comparison in terms of bit error rate between different types of modula-
tion and CC coding rates, with perfect channel knowledge and estimation.
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Figure 8.14: Comparison in terms of bit error rate for a QPSK modulation and a
coding rate equal to 1/2. Results for different mobile speeds are represented.

Finally, we implemented our concatenation scheme for the channel coding in the
WiMAX system. In Figures 8.17, 8.18 and 8.19 we represent performance when we
consider a WiMAX system with QPSK modulation and exponential channel for different
mobile speeds: 3, 50 and 130 km/h, respectively. The channel coding is implemented
with the proposed concatenation scheme with overall rate equal to 1/4. Performance
for the proposed algorithm are very good, in fact the BER is about 10~7 for 1.4 dB of



8.4. Finite computational resource

Comparison in terms of bit error rate for a 16—-QAM modulation with rate 1/2

10° T T T T T E

T TR s ]

107 .

107 -

L 10k |——CC 3 km/h - perf R =
E |- «-LDCP 3 kmih - perf NN ]
\
[ |-e-LDPC 3 kmih - est S ]
<
b ——cC 50 km/h - perf ) 1
N .

107k |5 CC 50 kmih ~ est SR Y x _
E |- - - LbPC 50 kmih - perf ¥ ; : E
[ |- ©-LDPC 50 km/h - est % 5 ]
[ |——cc 130 kmih - perf : N 7

| |—e—cc130kmn-est v

10°E |-« -LDPC 130 km/h - perf \ °
E -©-LDPC 130 km/h - est bt

10° | i I I I I I
0 2 4 10 12 14 16 18 20

SNR

Figure 8.15: Comparison in terms of bit error rate for a QPSK modulation and a
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Figure 8.16: Comparison in terms of bit error rate for a QPSK modulation and a
coding rate equal to 1/2. Results for different mobile speeds are represented.

SNR. For all the Figures, the channel estimation is computed through the LS algorithm,

as justified above.
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Figure 8.17: Performance, in terms of bit error rate, for a WiMAX system with QPSK
modulation, exponential channel (mobile speed equal to 3 km/h) and concatenation

scheme.
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Figure 8.18: Performance, in terms of bit error rate, for a WiMAX system with QPSK
modulation, exponential channel (mobile speed equal to 50 km/h) and concatenation
scheme.



8.4. Finite computational resource 171

Bit error rate on WiMAX system with concatenation scheme
10 E T T [ T I I
E —w— Channel estimation
—»— Perfect channel knowledge

—2%

10 &

10 E

—a|

BER

_57

10 &

10° E
F| QPSK modulation

[| Exponential channel: v = 130 km/h
I

-7 I I I I

10 ‘
0 0.2 0.4 0.6 0.8 1 1.2
SNR [dB]

=
I

Figure 8.19: Performance, in terms of bit error rate, for a WiMAX system with QPSK
modulation, exponential channel (mobile speed equal to 130 km/h) and concatenation
scheme.






Chapter 9

Conclusions

Final aim of this work is the performance of a WiMAX system. Actually two big
problems for wireless systems have been analyzed and studied in a general environment
and then the conclusions of these studies have been applied to a WiMAX system.

The first studied problem is the channel estimation in an OFDM system.

We suppose the use of a comb-type structure, which means that in an OFDM symbol
some fixed subcarriers are dedicated to the transmission of pilots.

After the study of the channel estimation we can find in literature, in the time and
frequency domain, we implemented a quasi-compliant WiMAX standard simulator and
analyzed the performance of different channel estimation in the frequency domain. For
quasi-compliant WiMAX standard simulator we mean a simulator with the parameters
given in the standards [1] and [2], but where we do not implement the subcarriers
permutation and all the code-modulation combinations. We simply consider a system
coded with a convolutional code 1/2 and modulated QPSK.

The choice of considering channel estimation in frequency domain derives from the
considered system: it is the most obvious choice for an OFDM system.

The estimation techniques considered are Least Square (LS) and Linear Minimum
Mean Square Error (LMMSE) and finally an adaptive technique. Since we want to
perform the estimation of the channel over a frame of 24 OFDM data symbols and a
preamble, we assume the channel is slow-time variant, which means it is constant on
an OFDM symbol and varies very slowly from a symbol to the successive one. The
former two techniques can be used both for the preamble estimation and the channel
tracking through the pilots, whereas the last one, explained in Section 2.4 takes, as
initial estimation, the LS or the LMMSE preamble estimation and simply performs the
tracking through the pilots.

The channel used in the simulations is the SCME [110] and, since the system con-
sidered is a mobile one, we assume the mobile station moves with three different speeds:
3, 50 and 130 km/h. About the LMMSE, two different versions could be used, one is
independent of the transmitted data and the other one depends on them.

From results presented in Chapter 2 we can see that the LS and LMMSE dependent
on transmitted data are both good estimators, even if the LMMSE one is computational
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more complex than the LS one. The adaptive estimator performs well for speeds under
50 km/h, but fails for speed equal to 130 km/h. Thus for slow mobile speeds we can
choose between LS or adaptive estimator, and rather the adaptive one can be chosen,
because it is better from a computational point of view. For high speeds the LS estimator
seems to be the best choice. These conclusions are straightly related to a system with
the WiMAX parameters; a different number of pilots can completely change the results.

For the problem of the channel estimation another solution has been explored: a joint
channel estimation and data detection through the expectation maximization algorithm
can be performed.

This solution is very complex and so it makes sense to use it only if the bit error rate
gain, with respect to the performance of the techniques described above, is significant.
Unfortunately, results presented in Chapter 3 do not show any significant gain and so
this is not the solution we are looking for.

The second big problem considered in this work is the channel coding with particular
attention to the Low-Density Parity-Check (LDPC) codes. These codes have drawn
much attention due to their near-capacity error correction performance. They are valid
competitors of the turbo codes, because, even if they don’t have as good performance as
turbo codes for low SNR, they present lower error floor at high SNR and their decoding
is not trellis based. In fact, their decoding is performed through an Iterative Decoding
based on Belief Propagation (IDBP) algorithm which is a symbol-by-symbol soft-in
soft-out decoding algorithm which iteratively processes the received symbol in order to
improve its reliability.

The computation complexity of this algorithm is, however, high and so a modified
version has been proposed. Results presented in Chapter 5 are quite promising, even if
a method to handle the not-a-number cases is needed.

The best known codes, i.e. LDPC and turbo, have good performance if the code-
words are very long, but, in our days, in many applications, such as voice, delay is an
important issue and large block sizes commonly used for these codes cannot be applied.

The solution we proposed to this problem, to obtain better performance than the
one given by the known block codes, as Hamming, or convolutional codes, is the con-
catenation of short LDPC and turbo codes as outer and inner codes, respectively. The
turbo codes, due to their structures, are not able to correct some error sequences, so, if
we construct the LDPC code such that the possible wrong bits are checked by different
check nodes, the performance of the concatenation should be good.

Results presented in Chapter 6 show that the choice of the overall rate and of
the rates of the constituent codes is very important. First of all the loss due to the
puncturing of the turbo code cannot be recovered with the LDPC code. Thus, the
overall code must be chosen such that turbo rate is 1/3. On the other hand it is well
known that performance of LDPC codes with rates external to the interval [1/3, 1/2]
are not so good. By the way, the overall rate equal to 1/4 shows good results even if
this is a very low rate and this means we add a lot of redundancy and so we introduce
some delay. This is not a good point, since we started investigating this concatenation

scheme because we want to use it in systems with tight constraints on delay.
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Finally, we implemented a WiMAX standard-compliant simulator for the transmis-
sion in downlink.

We assume synchronization and apply the presented channel estimation and coding.

Results presented in Chapter 8 show the loss of performance due to the mobile speed
and the fact that LS estimator over the pilots gives very good results for speeds of 3 and
50 km /h, but experiences some loss at 130 km /h, especially for 64—QAM modulation.

For the channel coding we find out that, if we use the standard-defined LDPC code
with the slots concatenation rule rather than the subchannels one, there are some gains
in terms of bit error rate.

About the proposed concatenation scheme, results show some performance gains
when the channel is AWGN, but these gains could be lost if the channel experiences
any kind of fading, for example Rayleigh fading.

Observing the performance of the WiMAX system, we can conclude saying that the
reduced rank LS estimator is a good technique for the channel estimation and LDPC
codes could be used in place of the convolutional code to obtain better performance.






Appendix A

Convergence theorem for EM

algorithm

Let

el 0= o

and note that k(x|y,0) may be interpreted as a conditional density. Then the log-

likelihood function L, (@) = log g(y|@) may be written as

Ly(0) =log f(x|0) — log k(y|0).
Define
H(0'|60) = Ellog k(z[y, 6")|y, 6.

Let M : 08 — @*+1] represent the mapping defined by the EM algorithm in the
following Equations:

Q(016") = Ellog f(x|6)]y, 6],
gl = argmng(O\B[k]),

so that @F+1 = pr(elk]),

Theorem 2. Ly(M(H[k})) > L,(0), with equality if and only if
Q(M(6)|6) = Q(616)

and
k(zly, M(0)) = k(x|y, ).

That is, the likelihood function increases at each iteration of the EM algorithm, until
the conditions for equality are satisfied and a fixed point of the iteration is reached.
A proof of the theorem may be found in [51]. In 6" is an ML parameter estimate,
so that L,(0%) > L,(0) for all 8 € ©, then L,(M(0")) > L,(0). In other words,
ML estimates are fixed points of the EM algorithm. Since the likelihood function is
bounded (for distribution of practical interest), the sequence of parameter estimates
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0*[0], 67[1], ..., 0*[k] yields a bounded non-decreasing sequence Ly(B[O}) < Ly(O[”) <
e < Ly(B[k}) which must converge as k — oo.

The theorem falls short of proving that the fixed points of the EM algorithm are in
fact ML estimates. The latter in true, under rather general conditions, but the proof is

somewhat involved and is not presented here.
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Channel length estimation

B.1 Introduction

As said in Chapter 2, the performance naturally depends on the accuracy of the
channel estimates. Conventional channel estimation algorithms preset a fixed length
for the channel; in Chapter 2, we assumed to know the exact value of the channel
length impulse response. For wireless communications, however, the actual length of the
channel is environment-dependent. Therefore, unless the receiver has explicit knowledge
of the propagation environment, the actual length of the wireless channel is unknown.
The effect of mismatch between the length of the channel estimator and actual length of
the discrete-time equivalent channel has also been investigated in the literature [112]. It
has been shown that an irreducible BER floor results when the channel estimator length
is shorter than the actual channel [112]. On the other hand, if the channel estimator
length is longer than the actual channel, the equalizer becomes unnecessarily complex.
Furthermore, a performance loss that increases with the channel estimator length is still
incurred [112].

In [113], the authors proposed a least squares approach for joint synchronization,
channel length estimation and channel estimation. In fact, it is desirable to modify
conventional channel estimation algorithms so that the length of the channel estimator
adapts to the actual channel. The method proposed in [113] relies on the minimization
of the mean square error of the estimated channel coefficients for different predetermined
CIR lengths. To apply this method, the channel window (the difference between the
maximal and the minimal CIR length) must be known. Simulation results in [113]
show that the proposed scheme is very robust against variations of the propagation
environment and achieves the best trade-off between performance and complexity.

In the literature, there are some other available methods for estimating the Channel
Impulse Response (CIR) length, e.g., [114], [115] and [116]. The method described
in [114] estimates the CIR length by using the estimated SNR. The method in [115]
rests on the generalized Akaike information criterion. It was shown there that the CIR
length is usually underestimated. In [116], the estimation of the CIR length is based on
a given factor R which is defined by the ratio of the channel power to the total power
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of the channel plus noise. The ratio R is defined in [116] as a constant factor within the
interval [0.9,0.95]. Since the noise power and the channel power are unknown, such an
estimation of the CIR length based on a predefined ratio R is not a precise solution.

In [117], to overcome the difficulties in the CIR length estimation of time-variant
channels in the presence of strong additive noise, an auxiliary function is established
to distinguish between the statistical characteristics of the additive noise and those
of the multipath channel. The difference between the statistical characteristics of the
additive noise and the multipath channel is that the CIR coefficients are only located in
the window of the CIR length, whereas the additive noise per channel tap is uniformly
distributed over the whole length of the estimated CIR. The proposed algorithm provides
reliable information on the estimated CIR length even at low SNRs. The estimated CIR
length and noise variance are very useful in many areas, such as channel estimation,
channel coding, data equalization, adaptive filter implementation, and OFDM systems
with adaptive guard interval length.

B.2 Algorithm for the noise variance and the CIR length

estimation

The considered algorithm combines two different challenges (CIR length and noise
variance estimation) to one task. To implement it, we assume that the channel is already
estimated by a conventional method [118]. Even though the channel is estimated, the
CIR length remains unknown. This is due to the fact that the estimated CIR is usually
impaired by additive noise. However, a good estimate of both the CIR length and the
SNR can be obtained by applying the proposed algorithm.

We consider the estimated channel coefficient ﬁkﬂ- corresponding to the i* OFDM

symbol and the k*?

channel tap. Let us assume that the distance between two neigh-
boring channel tap gains is equidistant and equal to the sampling interval ¢, of the
system, then the relationship between the channel tap index k£ and the corresponding
propagation delay 73 is given by 7, = k - t,. The estimated channel coefficient iL;H is
the sum of the true channel coefficient hy ; and a zero-mean noise component ny ; [118],

le.,

hii = g + ng - (B.1)
It is worth mentioning that the noise variance to be estimated is the variance of the
noise component ny ; of the estimated channel coefficient iL;H

n

olk] = Elln,;|2] (B.2)

where E[|ny ;|2] is the expectation value of |ny ;|2 over the OFDM symbol index i. The
symbol o2 [k] denotes the variance of the noise component of the k* estimated channel
tap.

As mentioned above, the estimated channel coefficient contains two different compo-
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nents. The first component is the true channel coefficient, which is located only in the
window of the CIR length. The second component is the additive noise component ny, ;,
which is uniformly distributed over the whole length of the estimated CIR. Therefore,
the channel tap index k is omitted in the symbol representing the noise variance, i.e.,
21k] is replaced by o2. Using the estimated noise variance o2 and the signal power,
the estimated SNR can easily be calculated [118]. If L is presumed to be the true CIR

length, then the new estimated channel coefficients ﬁﬁyi, k=20,1,..., Np—1, are equal

g

to the first L samples of the estimated channel coefficients iL]“ and zero elsewhere, i.e.,

(B.3)

o hei, 0<k<L
0, L<k<Ng-—1.

The presumed CIR length L is in the range 0 < L < Ni — 1, since the true CIR
length must be larger than zero and is assumed to be smaller than the estimated CIR
length. The mean squared error between iLﬁﬂ and iL;H is

Ng—1 .
(L) = B[ |hei—hill
k=0

= Elsump s gl (B.4)

Thus, the mean squared error e(L) is the sum of the average squared magnitude
values of the estimated channel taps from the L' channel tap to the last channel tap
iLNK_LZ‘. Substituting iL]“ from (B.1) into (B.4), it follows that

e(L) = Blsum, i+ ngil?
Np—1

= Y {Elhil?) + Bl
k=L
Ng—1

= Y et (Nx —L)o? (B.5)
k=L

where pp = E[|hy;|?] is the average power of the k'™ path. In (B.5), let (L) =
Ziva_l pr be the first term and es(L) = (N — L)o2 be the second term of the mean
squared error e(L), it can be seen that e; (L) stems completely from the channel, whereas
e2(L) originates from the noise components. The noise-related term es(L) can be com-
pensated by adding an appropriate variance to this function. According to the expres-
sion of ea(L), the appropriate variance should be equal to Lagre, where ogre is called the
presumed noise variance. The compensation of the noise-related term es(L) establishes
the auxiliary function

Nig—1

f(L) = Z Pk + (NK - L)O—Z + Lo—gre‘ (B6)
k=L



182 Appendix B. Channel length estimation

The characteristics of the auxiliary function f(L) presented in Figure B.1 depend
on the following cases determined by the presumed noise variance:

a) If the presumed noise variance is larger than the true noise variance, i.e., wae >
o2, then there exists always a unique minimum value of the auxiliary function
F(Ltmin) = min(f(L)), where Ly pin < Np. If af,,re is close to o2, then Lf min is
also close to Np.

b) If the presumed noise variance is exactly equal to the true noise variance, i.e.,

07 = 0n, then f(L) becomes
Ng—1
F(L)y= > pr+ Ngoy. (B.7)
k=L

In this case, the auxiliary function f(L) is a monotonously decreasing function
within the true CIR length, and is equal to N o2 outside the true CIR length.

c¢) If the presumed noise variance is smaller than the true noise variance, i.e., wae <
o2 then f(L) is a monotonously decreasing function within the whole length of
the estimated CIR, and reaches the minimum value at L = Ng — 1.

(L)

\ et 2
8) 0p < Oppe

>
pre

h)o'fl:cr

W\ 72 ~ g2
C)oy > Uprp

AF . 2
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Figure B.1: The auxiliary function f(L) for different cases of the presumed noise

: 2
variance o,,.,.

Based on the characteristics of the auxiliary function f(L), an algorithm called the
noise variance and CIR length estimation (NCLE) is proposed in [117]. If the presumed

noise variance o2, is reduced step by step from the possible maximum value to the

pre
possible minimum value of the true noise variance, then the curve of f(L) will be
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changed from case a) to case ¢). Each step is considered as one iteration towards the
reduction of the presumed noise variance. The amount Ac?, which is used to reduce
the presumed noise variance agre in each iteration, is called the step size. If this step
size is very small in comparison to the true noise variance, then case b) might appear.
Otherwise, case a) skips directly over to case ¢). When the situation in case ¢) appears
for the first time, then the presumed noise variance of the previous iteration is very
close to the true noise variance and the decision of the estimated noise variance will be
made. The shape of f(L) at the previous iteration corresponds of course either to case
a) or to case b).

If case a) appears, then the estimated CIR length Npis assigned to be Ly, where
J(Lmin) = min(f(L)). As explained in case a), the estimated CIR length is shorter
than or equal to the true CIR length.

Case b) might appear, if the presumed noise variance is very close to the true noise
variance. Since the theoretical auxiliary function f(L) in case b) is constant over the
range from L = Np to L = Ng — 1 (see Figure B.1), it follows that f(L) does not have
a unique minimum value like in case a). However, if the minimum value of the auxiliary
function f(L) is still computed by a numerical method, then a minimum value can be
found. This is due to the fact that the realized auxiliary function is practically not
constant in the interval mentioned above. In this case, the value of L corresponding to
the minimum value of f(L), i.e., L min, is always larger than or equal to the true CIR
length. The estimated CIR length can be assigned to this value, and, thus, it is also
larger than or equal to the true CIR length. To ensure that the estimated CIR length is
close to the true CIR length, the procedure of establishing the auxiliary function f(L)
and seeking its minimum value should be repeated Ng times. A single execution of
this procedure is called an experiment. The estimated CIR length of each experiment is
stored in a vector L. Analogously, the estimated noise variances are stored in a vector
denoted by N. After N, r experiments, the final result of the estimated CIR length is
the minimum element of the vector £. The final estimated noise variance is the average
value of the elements of the vector N.

The initial value of the presumed noise variance can be determined by

Np—1
020 = E[ Y [h(K)2/(N, — ). (B3)
k=1

Figure B.2 shows a flowchart of the NCLE algorithm.
The application of the algorithm to our system shows the same results presented in
[117].
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Appendix C

Optional subchannel allocations in
WiMAX systems

C.1 PUSC variations

C.1.1 Potentially optional allocations

First we remember that the allocations defined potentially optional are those which
are not explicitly mentioned as mandatory in the standard [2|, but reading it they
appear so, hence they are defined optional. Therefor in [109] it is required to implement
some of them to have a certified product.

The potentially optional allocation are PUSC with all subchannels and PUSC with
dedicated pilots, Full Usage of Subchannel (FUSC) and FUSC with dedicated pilots;
all these except the last one are required to implement.

PUSC with all subchannels and PUSC with dedicated pilots

Before defining these allocations we must explain what is a DL MAP. It is a MAC
message that define burst start times for both time division multiplex and time division
multiple access by a SS on the downlink. It includes the following parameters:

e PHY synchronization
e Downlink Channel Descriptor (DCD) count
e Base station ID

The DL MAP IEs describe the location, coding and modulation schemes of the bursts.
In the DL MAP a BS may transmit the Downlink Interval Usage Code (DIUC)
to 15 and this indicates that the subsequent allocation shall use a specific permutation
and/or a specific transmit diversity mode.
Table 279 at page 377 of |2]| shows the format of the information element for the
OFDMA downlink. There are two important fields:
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1. Space Time Coding (STC) which indicates the STC mode that will be used by
the transmitter for the allocations

2. Dedicated Pilots; this is an optional field and is used to support the use of open
loop precoding and closed loop transmission in which the MS has no knowledge
of the precoding/beamforming matrix.

When the bit of the dedicated pilots is set to one it means that the pilot sym-
bols are precoded/beamformed in the same way as are the corresponding data
subcarriers. In this case an MS should use only the pilots that are specific to its
allocation for channel estimations.

C.2 Other allocation methods

C.2.1 Full Usage of Subchannel (FUSC)

Also in this case, as in the one of PUSC, the symbol structure is constructed using
pilots, data and zero subcarriers. The symbol is first allocated with the appropriate
pilots and zero subcarriers and, then, all the remaining subcarriers are used as data
subcarriers (these will be divided into subchannels).

Each segment uses both sets of variable/constant pilot-sets.

The parameters that characterize the FUSC symbol structure and that depend on
FFT size are:

e Number of DC subcarriers; its index is given by Nppr/2, counting from 0)
e Number of guard subcarriers, Left, i.e. on the left size of the spectrum

e Number of guard subcarriers, Right, i.e. on the right side of the spectrum
e Number of used subcarriers

e Pilots

e VariableSet#0

e ConstantSet#0

e VariableSet#1

e ConstantSet#1

e Number of data subcarriers

e Number of data subcarriers per subchannel

e Number of subchannels

e Permutation base
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FFT size
Parameter 2048 | 1024 | 512 | 128
Number of DC subcarriers 1 1 1 1
Number of guard subcarriers, Left 173 87 43 | 11
Number of guard subcarriers, Right 172 86 42 | 10
Number of used subcarriers 1703 | 851 | 427 | 107
Pilots — — — 4
VariableSet#0 71 12 18 5
ConstantSet#0 12 2 3 4
VariableSet#1 71 12 18 1
ConstantSet#1 12 2 3 0
Number of data subcarriers 1536 | 768 | 384 | 96
Number of data subcarriers per subchannel | 48 48 48 | 48
Number of subchannels 32 16 8 2
PermBase

Table C.1: Symbol parameters for the available FFT size (i.e. 2048, 1024, 512 and
128).

In Table C.1 the parameters for the FUSC symbol structure are placed.

The variable set of pilots embedded within the symbol of each segment shall obey
the following rule:

PilotsLocation = VariableSet#x + 6 - (FUSC _SymbolNumber mod 2) (C.1)

where FUSC _Symbol Number counts the FUSC symbols used in the current zone
starting from 0.

The pilots in the ConstantSet are decided with the following rule:
ConstantSet#k — PilotosLocation =72 % (2xn+ k) +9 (C.2)

where n =10, 1, ..., Value — 1 and Value is the value found in Table C.1 in the rows
dedicated to the Constant sets.

Each subchannel is composed of 48 subcarriers. The subchannel indexes are formu-

lated using a Reed-Solomon series and are allocated out of the data subcarriers domain.

After mapping all pilots, the remainder of the used subcarriers are used to define
the data subchannels. In fact the remaining subcarriers are partitioned into groups
of contiguous subcarriers. Each subchannel consists of one subcarrier from each of
these groups. The number of these groups is equal to the number of subcarriers per
subchannel Ngypeqrriers and the number of subcarriers in a group is equal to the num-

ber of subchannels Ngypchannels: Hence, the number of data subchannel is equal to

Nsubcarrie'rs : Nsubchannels
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The exact partition into subchannels is according to the permutation formula:

subca'rrier(k:, 8) = Nsubchannels * Tk + {ps [nk mod Nsubchannels]
+ DL_PermBase} mod Ngybchannels (C.3)

where:

subcarrier(n,s) is the subcarrier index of the subcarrier n in subchannel s =

0, 1, ..., Nsubchannels — 1 is the index number of a subchannel

- ng = (k4 13- 5) mod Ngypcarriers, where k = 0, 1, ..., Ngybcarriers — 1is the

subcarrier index in a subchannel
- Ngubchannels 18 the number of subchannels

- Pslj] is the series obtained by rotating basic permutation sequence cyclically to
the left s times

- Ngubcarriers 18 the number of data subcarriers allocated to a subchannel in an
OFDMA symbol

The whole data tones in a symbol are partitioned into groups of contiguous data
subcarriers. Each subchannel consists of one subcarrier from each of these groups. The
number of subcarriers in a group is, then, equal to the number of subchannels, said Ny,
which is determined by FFT size. The exact partitioning into subchannels is according
to the DL permutation formula:

Ny x k + [8 + Pl,c1 (k‘/) + P27C2(k‘/)] 0<ecp, o < Ng
Carriers(s,m) Ng X k+ [s+ P1c, (K] c1#0,c0=0

Ng X k4 [s 4 Pa ¢, (K] c1=0,c0#0

Ny xk+s c1=0,c0=0

where:

carriers(s, m) subcarrier index of m-th subcarrier in subchannel s
- k=(m+sx23) mod48, k¥ =k mod (Ns; —1)
-m=0,...,47is the subcarrier in subchannel index
-s=0,1,..., Ng — 1is the index number of a subchannel

- Pi,, is the j-th element of a sequence obtained by rotating basic permutation
sequence P cyclically to the left ¢; times

- P2, is the j-th element of a sequence obtained by rotating basic permutation
sequence P cyclically to the left ¢y times

- ¢y =DL PermBase mod Ny
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- ¢cg = |DL_PermBase/N|

| FFT size | N; |

2048 32
1024 16
512 8
128 2

Table C.2: Values of Ny for every FFT size.

C.2.2 Optional allocations

These are the allocations defined optional in the standard [2]|. They are the optional
FUSC and the O-FUSC with dedicated pilots the AMC (1 x 6, 2 x 3 and 3 x 2) and
the same ones, but with dedicated pilots and the PUSC-ASCA. In [109] only the AMC
2 x 3 is required to be implemented.

Optional FUSC

The minimal block of processing is given by the 48 data carriers symbols. First,
the pilot carriers are allocated and the remaining carriers are used exclusively for data
transmission. The Nyeq subcarriers (except the DC carrier) are dived into groups of
9 contiguous subcarriers and in each of these one pilot is allocated. Its position varies
according to the index of OFDMA symbol which contains the subcarriers. The equation
is:

3x1+1 (C.4)

where | = m mod 3 and m is the symbol index.

Hence, the number of pilot subcarriers is given by (Nyseq — 1)/9, because we need
to exclude the DC carrier and their position is given by 9%k + 3m + 1, where k =
0, 1, ..., Number of pilot subcarriers — 1 and m = (symbol index) mod 3.

Optional Adjacent Subcarrier Permutation (AMC)

Since now we have considered "distributed subcarrier permutations”, but a BS may
change to the "adjacent subcarrier permutation”. This one can be used to take advantage
of the structure of the adjacent subcarrier permutation in parts of DL subframe that
are indicated accordingly by the DL-MAP an UL subframe that are indicated by the
UL-MAP.

After this change a BS can only transmit/receive traffic using the adjacent subcarrier
permutation during the allocated period and shall return to the distributed mode only
at the beginning of a new DL subframe.

Symbol data within a subchannel is assigned to adjacent subcarriers and pilots and
data subcarriers are assigned fixed positions in the frequency domain within an OFDMA

symbol.
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To define adjacent subcarrier permutation, a BIN, which is a set of 9 contiguous
subcarriers within an OFDMA symbol represented in Figure C.1, is a basic allocation

unit both in downlink and in uplink.

8 data tone:

1 pilot tone

Figure C.1: Bin structure.

AMC subchannel consists of 6 contiguous bins in a same band. AMC allocation,
instead, can be made by two mechanisms: by subchannel index reference in UL-MAP
and by subchannel allocation in a band using H-ARQ map.

A slot consists of N bins by M symbols (N x M). A group of 4 rows is called a
physical band. There are four types of AMC subchannels, which are different in the
collection of six bins in a band:

e default type: a slot consists o 6 consecutive bins;
e 3 slot is defined as 2 bins by 3 symbols;
e a slot is defined as 3 bins by 2 symbols;
e a slot is defined as 1 bins by 6 symbols;

The enumeration of bins in a slot is the following: the available bins in a band are
enumerated starting from the lowest bin in the first symbol to the last bin in the
symbol and then going to the lowest bin in the next symbol and so on.

The parameters are the same enumerated before: Number of DC subcarriers, Num-
ber of guard subcarriers: left and right, Nys.q, Total number of subcarriers, Number of
pilots, Number of data subcarriers. In addition, there are three new parameters:

1. Number of physical band
2. Number of bins per physical band

3. Number data subcarriers per subchannel
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FFT size
Parameter 2048 | 1024 | 512 | 128
Number of bins per physical band 4 4 4 4
Number of physical band 48 24 12 6
Number of data subcarriers per subchannel | 48 48 48 | 48

Table C.3: New parameters introduced with the AMC permutation.

and they are dependent on the FF'T size, as shown in Table C.3

We remember that an AMC subchannel consists of 6 contiguous bins which are made
of 9 subcarriers (8 data and 1 pilot) and so the data subcarriers in a subchannel are
8 x 6 = 48, we observe also that only in the first type the number of data subcarriers is
the same that we have in a subchannel.

The number of bins per physical band is fixed to 4 and the number of physical bins
is obtained dividing the number of data subcarriers per 32 deriving from 8 x 4 i.e. the

number of data subcarriers in a bin per the number of bins.

Optional Permutation for PUSC Adjacent Subcarrier Allocation (PUSC-
ASCA)

Symbol structure shall use the parameters defined for regular PUSC and the same
cluster structure shall be maintained.

Allocation of subcarriers to subchannels shall be performed in the following manner:

1. The subcarriers are divided into physical clusters, each of 14 adjacent subcarriers
2. Cluster used for a specific DL allocation shall be the first 2 x SubchannelOf f set

3. The clusters are concatenated into blocks using the rule described in Table C.4,

where
‘ Number of subchannels ‘ Clusters concatenated ‘
n <12 1 block of 2 x n clusters
n=12xk k blocks of 24 clusters
n>12, n#12xk (k — 1) blocks of 24 clusters

1 block of 2 x [(m 4+ 12)/2] clusters
1 block of 2 x |(m 4 12)/2] clusters

Table C.4: Allocation of subcarriers to subchannels.

- n is the number of allocated subchannels
- k=[n/12]

-m=n mod 12

4. Per block, remove the pilot carriers from the clusters associated with the section,
take the remaining data subcarriers and using the same procedure for the partition
of data subcarriers in FUSC permutation; the subcarriers are partitioned into
subchannels containing 24 data subcarriers in each OFDMA symbol.
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We can define also an adjacent subcarrier allocation using distributed clusters for
the PUSC mode; symbol structure shall use the same parameters of the regular PUSC
and the allocation of subcarriers to subchannels will be:

1. divide the subcarriers into 120 physical clusters within 14 adjacent subcarriers

2. renumber the physical clusters into logical clusters using the formula

LogicalCluster = RenumberingSequence((PhysicalCluster
+ 13 IDcell) mod 120) (C.5)

3. divide the clusters into 6 major groups

4. allocating carriers to subchannel in each major group depends on the specific
allocation performed.
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Renumbering sequence for PUSC

permutation

FFT size | Renumbering Sequence

2048 | 6, 108, 37, 81, 31, 100, 42, 116, 32, 107, 30, 93, 54, 78, 10
75, 50, 111, 58, 106, 23, 105, 16, 117, 39, 95, 7, 115, 25, 119,
53, 71, 22, 98, 28, 79, 17, 63, 27, 72, 29, 86, 5, 101, 49, 104,
9, 68, 1, 73, 36, 74, 43, 62, 20, 84, 52, 64, 34, 60, 66, 48, 97
21, 91, 40, 102, 56, 92, 47, 90, 33, 114, 18, 70, 15, 110, 51,
118, 46, 83, 45, 76, 57, 99, 35, 67, 55, 85, 59, 113, 11, 82, 38,
88, 19, 77, 3, 87, 12, 89, 26, 65, 41, 109, 44, 69, 8, 61, 13, 96,
14, 103, 2, 80, 24, 112, 4, 94, 0

1024 | 6, 48, 37, 21, 31, 40, 42, 56, 32, 47, 30, 33, 54, 18, 10, 15,
50, 51, 58, 46, 23, 45, 16, 57, 39, 35, 7, 55, 25, 59, 53, 11,
22, 38, 28, 19, 17, 3, 27, 12, 29, 26, 5, 41, 49, 44, 9, 8, 1,
13, 36, 14, 43, 2, 20, 24, 52, 4, 34, 0

512 12, 13, 26, 9, 5, 15, 21, 6, 28, 4, 2, 7, 10, 18, 29, 17, 16, 3,
20, 24, 14, 8, 23, 1, 25, 27, 22, 19, 11, 0

128 2,3,1,5,0, 4

Table D.1: Renumbering sequences for the available FF'T size (i.e. 2048, 1024, 512
and 128).






Appendix E

Optional codes in WiMAX standard

E.1 Block Turbo Coding (BTC)

This is optional and not required to be implemented.

BTC is based on the product of two simple component codes: the binary extended
Hamming codes and the parity check codes. To create the extended Hamming
codes, an overall even parity check bit is added at the end of each code word. The
generator polynomials for OFDMA Hamming code are reported in the Table E.1.

‘ n’ ‘ k' ‘ Generator polynomial ‘

15 | 11 n*+r+1
31| 26 2+ 22+ 1
63 | 57 P +r+1

Table E.1: OFDMA Hamming code generator polynomials.

The component codes are used in a two-dimensional matrix form, as we can see in
Figure E.1.

The K, information bits in the rows are encoded into n, bits using the component
block (n,, K,) code specified for the respective composite code.

After encoding the rows, the columns are encoded using a block code (n,, K),
where the check bits of the first code are also encoded.

The overall block size is (n, K), where n = n; x n, and K = K, x K, and so
the code rate is R = R, x R, with R; = K;/n;, i = x, y. The Hamming distance is
d = d; x d,. The first bit in the first row is the LSB and the last bit in the last row
is the MSB and the transmission if the block over the channel shall occur in a linear
fashion, with all bit of the first row transmitted left to right followed by the second row
and so on.

To match a required pocket size, BT'C may be shortened by removing symbols from
the BTC array. This operation requires three steps:

1. remove I, rows and I, columns which is equivalent to shortening the constituent
codes that make up the product codes
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Nx
Information bits Checks
. N
c
Checks
on
checks
K«

Figure E.1: Block Turbo Coding (BTC) structure.

2. remove B individual bits from the first row starting with the LSB

3. if at this point there isn’t an integral number of data bytes the @ left over LSB
are zero-filled by the encoder.

In Figure E.2 these three steps are represented.
The new coded block length is (n, — I;)(ny — I,) — B and the corresponding infor-
mation length is (n, — I;)(ny — Iy) — B — @ and so the code rate is given by:

R=

(K:B Ia:)(Ky __Iy; -B-Q (El)

(nz — I)(ny y) — B

In Table E.2 the block sizes for the optimal modulation and coding schemes using
BTC are given.

Table E.3 gives the code parameters for each of possible data and coded block sizes.

E.2 Convolutional Turbo Code (CTC)

In the standard [2] this code is defined as optional, but in [109] it is required to be
implemented.

CTC can be used for the support of optional H-ARQ. It used a double binary
circular recursive systematic convolutional code. These bits of the data to be
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Nx

Q
Information bits Checks
_ %
c
Checks
on
checks
- KX
I X
Figure E.2: Shortened BTC structure.
QPSK |16 - QAM | 64 - QAM | Coded
Encoding rate | 1/2 [ 3/4[1/2 | 3/4 [1/2] 3/4 | bytes
Allowed data 6 9 12
(bytes) 12 | 20 | 16 20 24
18 | 25 16 25 36
23 | 35 | 23 35 48
31 60
40 40 40 72

Table E.2: Useful data payload for a subchannel.

Data bytes | Coded bytes ‘ Constituent ‘ Code parameters ‘

6 12 (31,32)(16,11) | I, =4, 1,=8, B=0, Q =
9 12 (16,15)(16,15) | I, =6, I, =6, B=14, Q =
12 24 (32,31)(16,11) | I, =14, I, =5, B=6, Q =
20 24 (16 15)(16, 15) | I, =2,1,=2,B=4,Q =75
18 36 (32,31)(16,11) | I, =5,1,=5 B=9,Q =

Table E.3: Optional channel coding per modulation.

encoded are alternatively fed to A and B, starting with the MSB of the first byte being
fed to A (see Figure E.3).
The encoded is fed by blocks of k bits on N couples (k = 2 % N bits) ad for all the

frame size k is a multiple of 8 and N a multiple of 4.
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The polynomial defining the connection are:
- for the feedback branch: 1+ D + D3
- for the Y parity bit: 1+ D? 4+ D3

- for the W parity bit: 1+ D3.

1
>

; X ,

1&;‘;1-15%;11;;1;' c nw,

1 - | 1

CIEC ‘ "\ encoder [ >
Interleaver | 2 : e LW,

A
B

Systematic part

.

v

Parity part

vYy

_________________________________

Figure E.3: CTC encoder.

The encoder block size shall depend on the number of slots allocated and the mod-
ulation specified for the current transmission. Concatenation of the number of slots
shall be performed in order to make larger blocks of coding where it is possible, with
the limitation of not exceeding the larger block under size for applied modulation and
coding. The concatenation rule shall not be used when using ARQ.

For any modulation and FEC rate we define the following parameters:
- j: dependent on the modulation and FEC rate,

- n: number of allocated slots/repetition factor,

- k: defined as [n/j],

- m: defined as mod (n, j).
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Table E.5 shows the rules used for slots concatenation, while Table E.4 gives the

values of j for different modulations and rates:

‘ Number of slots ‘ Slots concatenation ‘
n<jn#T 1 block of n slots
n="17 1 block of 4slots
1 block of 3slots
n>j if mod (n,5) =0

k blocks of j slots
else
k — 1 blocks of j slots
1 block of [((m 4+ j)/2)] slots (+1 if equal to seven)
1 block of [((m + j)/2)] slots (+1 if equal to seven)

Table E.4: Slots concatenation rules for CTC.

| Modulation rate | j |

QPSK 1/2 10

QPSK 3/4 6
16—QAM 1/2 | 5
16-QAM 3/4 | 3
6I—QAM 1/2 | 3
64—QAM 2/3 | 2
64—QAM 3/4 | 2
64—QAM 5/6 | 2

Table E.5: Encoding slot concatenation for different rates in CTC.

E.2.1 CTC interleaver

It is composed of two states:

Step 1: Switch alternate couples

Let the sequence ug = [(Ao, Bo), (41, B1), ..., (An—1, Bn—1)] be the input to
the first encoding C}.

fori=0,...,N—1
mod (¢,2) =0
let (A;, B;) — (B;, A;) (i-e. switch the couple)
this step gives a sequence u; = [(By, Ap), (B1, A1), ..., (By-1, ANn-1)] =
= [u1(0), w1 (1), ..., wa (N —1)].

Step 2: P(j)

The function P(j) provides the address of the couple of the sequence u; that shall
be mapped onto the address j of the interleaved sequence (i.e., ua(j) = ui(P(j))).
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for j=0,...,N—1
switch mod (j,4):
) = (B0 J + Dmods
J) = (Po-j+1+N/2+ Pi)mod,
) = (Po-j+ 1+ P2)mod,
case 0:P(j) = (Po -7+ 14+ N/2+ 3)mods
This step gives a sequence up = [u1(P(0)), ui(P(1)), u1(P(2)), u1(P(3)), ...,

u1(P(N —1))] = [(Bpw), Ap0))> (Apay, Bray), (Bpe), Ap@))s (Aps), Bp)),
» (Ap(v—1), Bp(v—1))]- Sequence uz is the input to the second encoding Cs.

case 0:P(j
case 1:P

case 2:P(j

(
(
(
(

The values of N, Py, P, P» and P5 for every modulation and rate are listed in
Table 326 of the standard [1]-[2].

E.2.2 Determination of CTC circulation state

The state of the encoder is denoted 8§ (0 < 8§ < 7) with § = 4s; +2s2+ s3 (see Figure
E.3). The circulation states Sc¢; and Scg are determined by the following operations:

1. Initialize the encoder with state 0. Encode the sequence in the natural order for
the determination of S¢; or in the interleaved order for determination of Se¢y. In
both cases the final state of the encoder is SOnx_1;

2. According to the length IV of the sequence, use Table E.6 to find Sc; and Ses.

mod (N, 7) SO0n-—1

0[1[2[3[4[5]6][7
1 016427135
2 013745621
3 015362714
4 0141156273
5 012|5|7|1|3]4]6
6 0171613452

Table E.6: Circulation state look-up table (Sc).

E.2.3 Subpacket generation

Proposed FEC structure punctures the mother codeword to generate a subpacket
with various coding rates. The subpacket is also used as HARQ packet transmission.
Figure E.4 shows a block diagram of subpacket generation. 1/3 CTC encoded codeword
goes through interleaving block and the puncturing is performed. Figure E.4 shows
block diagram of the interleaving block. The puncturing is performed to select the
consecutive interleaved bit sequence that starts at any point of whole codeword. For
the first transmission, the subpacket is generated to select the consecutive interleaved
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bit sequence that starts from the first bit of the systematic part of the mother codeword.
The length of the subpacket is chosen according to the needed coding rate reflecting the
channel condition. The first subpacket can also be used as a codeword with the needed
coding rate for a burst where HARQ is not applied.

l

1/3 CTC encoder

l 3*Nep

Interleaver

Puncturing block
(symbol selection)

l

Figure E.4: Block diagram of subpacket generation.

Symbol separation

All of the encoded symbols shall be demultiplexed into six subblocks denoted A, B,
Y1, Yo, Wi, and Ws. The encoder output symbols shall be sequentially distributed into
six subblocks with the first N encoder output symbols going to the A subblock, the
second N encoder output going to the B subblock, the third N to the Y; subblock, the
fourth N to the Y5 subblock, the fifth NV to the W; subblock, the sixth N to the Wy
subblock, etc.

Subblock interleaving

The six subblock shall be interleaved separately. The interleaving of performed by
the unit of symbol. The sequence of interleaver output symbols for each subblock shall
be generated by the procedure described below. The entire subblock of symbols to be
interleaved is written into an array at addresses from 0 to the number of the symbols
minus one (N — 1), and the interleaved symbols are read out in a permuted order with
the i-th symbol being read from an address, AD; i =0, 1, ..., N — 1, as follows:

1. Determine the subblock interleaver parameters, m and J. Table E.7 gives these

parameters.
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2. Initialize 7 and k to 0.

3. Form a tentative output address T}, according to the formula:
T, =2" mod (k,J) + BRO,(|k/J])

where BRO,,(y) indicates the bit-reverse m-bit value of y (i.e. BRO3(6) = 3).

4. If Ty, is less than N AD; = T}, and increment ¢ and k by 1. Otherwise, discard T},

and increment £ only.

5. Repeat steps 1 and 2 until all N interleaver output addresses are obtained.

Block size Subblock interleaver
(bits) N parameters
N EP m | J

48 24 | 3 3
72 36 | 4 3
96 48 | 4 3
144 72 |5 3
192 9 | 5 3
216 108 | 5 4
240 120 | 6 2
288 144 | 6 3
360 180 | 6 3
384 192 | 6 3
432 216 | 6 4
480 240 | 7 2

Table E.7: Parameters for the subblock interleavers.

Symbol grouping

The channel interleaver output sequence shall consist of the interleaved A and B
subblock sequence, followed by a symbol-by-symbol multiplexed sequence of the in-
terleaved Y7 and Y, subblock sequence, followed by a symbol-by-symbol multiplexed
sequence of the interleaved W7 and Ws subblock sequence. The symbol-by-symbol mul-
tiplexed sequence of interleaved Y7 and Y5 subblock sequences shall consist of the first
output bit from the Y7 subblock interleaved, the first output bit from the Y5 subblock
interleaved, the second output bit from the Y7 subblock interleaved, the second output
bit from the Y5 subblock interleaved, etc. The symbol-by-symbol multiplexed sequence
of interleaved W; and W5 subblock sequences shall consist of the first output bit from
the W1 subblock interleaved, the first output bit from the Ws subblock interleaved, the
second output bit from the W subblock interleaved, the second output bit from the Ws
subblock interleaved, etc. Figure E.5 shows the interleaving scheme.
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A subblock B subblock Y, subblock Y, subblock W, subblock | | W, subblock
y v v v
subblock subblock subblock subblock subblock subblock
interleaver interleaver interleaver interleaver interleaver interleaver

Figure E.5: Block diagram of the interleaving scheme.
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