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AbstratTwo of the most important issues in wireless systems are addressed: hannel estima-tion and hannel oding. The frequeny domain hannel estimation tehniques are usedto estimate the hannel in a WiMAX system (standard IEEE 802.16e [1℄-[2℄). In thesame system, Low-Density Parity-Chek (LDPC) odes [3, 4℄ are proposed and performquite well. In this thesis deoding tehniques for these odes are studied: a modi�a-tion to the Message Passing Algorithm (MPA) [5℄ is proposed in order to redue thenumber of multipliations. Then two alternative deoding methods for LDPC odesare explored: the Priority First Searh Algorithm (PFSA) [6℄, [7℄, [8℄ and the GenetiAlgorithm (GA) [9℄, [10℄, whih transform the deoding problem into a searh problem.FInally, an alternative oding sheme is proposed: onatenation of short LDPCand turbo odes as outer and inner odes, respetively. Aim of this onatenation is aoding system that performs very well for all ranges of SNR's and respets some delayonstraints.





SommarioIn questa tesi sono stati onsiderati due dei piú importanti argomenti di riera peri sistemi wireless: la stima e la odi�a di anale. Le tenihe per la stima di anale infrequenza sono state appliate per stimare il anale in un sistema WiMAX (Standard [1℄and [2℄). Nello standard he de�nise questo sistema, vengono proposti, ome sistemadi odi�a opzionale, i Low-Density Parity-Chek (LDPC) odes he sono odii la uimatrie di paritá ha una bassa densitá di 1 ed hanno prestazioni molto buone.In questa tesi alune tenihe per la deodi�a di questi odii sono state studiate:allo sopo di ridurne il numero di moltipliazioni, é stata proposta una modi�a al Mes-sage Passing Algorithm (MPA), l'algoritmo di deodi�a he viene omunemente usato.Sono stati, poi, analizzati due algoritmi alternativi per la deodi�a degli LDPC: il Pri-ority First Searh Algorithm (PFSA) ed il Geneti Algorithm (GA), he trasformano ilproblema della deodi�a in un problema di riera.In�ne viene proposto uno shema di odi�a alternativo, onsistente nella onate-nazione di LDPC e turbo odii on parole orte allo sopo di soprire un sistemadi odi�a he abbia buone prestazioni per tutti gli SNR e rispetti alune spei�hestringenti sui tempi di ritardo.
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Chapter 1IntrodutionChannel estimation and oding are two of the most important issues in the newgeneration wireless systems. This work is about wireless systems and some importantstandard have been presented, for example: WiMAX standard [1℄ - [2℄ TGnSyn [11℄ orWWise [12℄ for IEEE 802.11n and 3GPP-LTE [13℄, but in this work our attention willbe foused on the mobile part of the �rst one.The IEEE 802.16 teleommuniations standard [1℄ envisions broadband wireless a-ess tehnology as a means of providing wireless �last mile� broadband aess in ametropolitan area network (MAN). The performane and servies should be ompa-rable or better than traditional DSL, able or T1/E1 leased line servies. Espeiallyin areas beyond the reah of DSL and able, IEEE 802.16 ould o�er a ost-e�etivebroadband aess solution. The term WiMax (worldwide interoperability for mirowaveaess) has beome synonymous with IEEE 802.16, promoting and ertifying ompati-bility and interoperability of broadband wireless produts. In its original release 802.16foused on line-of-sight (LOS) appliations in the liensed 10 to 66 GHz frequeny rangebased on single arrier (SC) transmission (WirelessMAN-SC). In a �rst amendment non-line-of-sight (NLOS) appliations in liensed and unliensed bands in the 2 to 11 GHzfrequeny range were overed (WirelessMAN-SCa). To meet the requirements of a lowost solution in a multipath environment, orthogonal frequeny division multiplexing(OFDM) was hosen as physial layer transmission tehnique (WirelessMAN-OFDM).To deliver optimum broadband wireless aess performane, the onept of salableOFDMA (orthogonal frequeny division multiple aess) was adopted. The arhite-ture is based on a salable subhannel bandwidth using a variable sized FFT aordingto the hannel bandwidth. In the standard IEEE 802.16e, [2℄, there is an ongoing evo-lution of IEEE 802.16 addressing mobile appliations thus enabling broadband aessdiretly to portable devies like smartphones, PDAs, notebooks and laptop omputers.The Orthogonal Frequeny Division Multiplexing (OFDM) is a spetrally e�ientform of frequeny division multiplexing (FDM) and divides its alloated hannel spe-trum into several subhannels. It is used to overome the inter-symbol interferene(ISI), through the yli pre�x (CP), that is longer than the order of the hannel im-pulse response (CIR). OFDM is inherently robust against frequeny seletive fading,



2 Chapter 1. Introdutionsine eah subhannel oupies a relatively narrow-band, where the hannel frequenyharateristi is nearly �at. We note that OFDM an be seen as an e�etive way ofinreasing data rates and simplifying the equalization in wireless ommuniations, be-ause only a simple one-tap hannel equalizer in the frequeny domain is required. Inthe end, we reall also that OFDM is omputational e�ient, beause the fast Fouriertransform (FFT) an be used to implement the modulation and demodulation opera-tions. However, OFDM has some disadvantages. One is the high peak-to-average powerratio, another one is not ahieved over a multipath fading hannel.In this work, �rst of all we deal with the problem of the hannel estimation in awireless OFDM system and then with the hannel oding for the same system. We alsoonsider some deoding tehniques for the Low-Density Parity-Chek (LDPC) odes,aking of odes inluded in most of the latter wireless systems, due to their near-apaityerror orretion.Contents of the thesis are divided in Chapters as desribed following:� Chapter 2 : the problem of the hannel estimation is addressed. First of allwe brie�y desribe the known hannel estimation algorithms in time andfrequeny domain. Then onsidering we are interested in their performane inan OFDM system we desribe the hannel estimation in the frequeny domainfor an OFDM system. Algorithm suh as Least Square (LS), Minimum MeanSquare Error (MMSE), Linear Minimum Mean Square Error (LMMSE) [14℄are desribed assuming we know all the transmitted symbols and only pilots.Also an adaptive algorithm [15℄ in the frequeny domain is desribed; thisassumes to have an initial hannel estimation and performs the traking ofthe hannel whih is assumed slowly time-variant.Aim of this study is the seletion of a hannel estimation algorithm whihgives good performane in a WiMAX system. To perform this seletion weimplemented a quasi-ompliant WiMAX standard simulator1 and valuatedthe performane and the Mean Square Error (MSE) for the LS algorithm,two variation of the LMMSE algorithm, one dependent on the transmitteddata and the other not, and the adaptive frequeny algorithm. Result showthat the LS and the LMMSE dependent on the transmitted data algorithmsperform very well, whereas the adaptive one performs very well for speedsbelow 50 km/h, but experienes a performane loss for speed equal to 130km/h.Performane is evaluated per frame and we onsider a system with 512 sub-arriers, oded with a onvolutional ode of rate 1/2 and modulated througha QPSK modulation. We perform the �rst hannel estimation on the pream-ble OFDM symbol through the LS or the LMMSE algorithm and than wetrak the hannel over the 24 OFDM symbols using the LS, the LMMSE or1For quasi-ompliant WiMAX standard simulator we mean a simulator with the parameters givenin the standards [1℄ and [2℄, but where we do not implement the subarriers permutation and all theode-modulation ombinations.



3the adaptive algorithm applied to the pilots. The hannel is assumed to beonstant in an OFDM symbol and to vary very slowly between two adjaentsymbols. These assumptions are orret until the mobile speed is less than
50 km/h, but they are not true anymore when the mobile speed is 130 km/h.� Chapter 3 : a way to improve the performane of the system onsidered inChapter 2 is given by performing a joint hannel estimation and data dete-tion. This an be performed through the Expetation Maximization (EM)algorithm. In this hapter, �rst the EM algorithm [16℄ is desribed and thanits appliation in an OFDM system to hit the mark of jointly estimate thehannel and detet the data [17℄. This approah an be onsidered a semi-blind method beause known and unknown symbols are simultaneously usedto estimate the hannel.This algorithm is very omplex and its usage would be aepted only if thegain over a separated estimation and detetion is signi�ant. Unfortunatelyresults shown in this hapter, for the system desribed in Chapter 2 do notpresent this signi�ant gain.� Chapter 4 : Coding for error orretion is one of the many tools available forahieving reliable data transmission in ommuniation systems. For a widevariety of hannels, the noise hannel oding theorem of the InformationTheory proves that, if properly oded, information is transmitted at a ratebelow hannel apaity, then the probability of deoding error an be madeto approah zero exponentially with the ode length.This Chapter is the introdution to the hannel oding problem and in par-tiular it gives a quite omplete desription of the Low-Density Parity-Chek(LDPC) odes [3℄-[4℄ and their deoding tehniques.After their disovery in the early 1960s the LDPC odes were largely for-gotten, possibly beause omputer of the time ould not simulate the per-formane of this odes with meaningful lengths and of the omputationalomplexity for data deoding. In our days, they have drawn muh attentiondue to their near-apaity error orretion performane. They have a bigdisadvantage and a big advantage: the �rst is the non-existene of a goodonstrution method and the seond one is given by the deoding algorithmwhose omplexity is linear versus the blok length. In fat, the deodingoperation is always performed with an Iterative Deoding based on a Be-lief Propagation (IDBP) [18℄ algorithm whih is a symbol-by-symbol soft-insoft-out deoding algorithm whih iteratively proesses the reeived symbolin order to improve its reliability, based on the parity-hek sums omputedfrom the hard deision of the reeived symbol. The algorithm is ommonlyknown as Message Passing Algorithm (MPA) [5℄.� Chapter 5 : The LDPC deoding algorithm has low omplexity, if omparedwith the turbo deoding algorithm, used to deode the strong LDPC ode



4 Chapter 1. Introdutionompetitors, but atually is still quite omplex. This is the reason why inthis Chapter a modi�ation to the MPA algorithm is proposed in order toredue the number of multipliations. Results are quite promising even if thenot-a-number ases need to be handled.Observations made on this modi�ation suggested the study of what wouldhappen if the input to the MPA is quantized rather than the real valued.One a time, results are shown in this Chapter.Finally, about the LDPC deoding, we analyzed performane for two di�erentalgorithms whih transform the deoding problem into a searh problem. The�rst onsidered algorithm is the Priority First Searh Algorithm (PFSA) [6℄,[7℄ and [8℄, proposed for the onvolutional odes and more in general for allthe odes whih an be represented with trellis.From the parity-hek matrix of the LDPC ode we an onstrut the trellis.The problem is that it is very big and the PFSA is not e�ient. To dealthis problem we propose a variation of the PFSA: we perform the algorithmonly on the �rst k bits, i.e. on the systemati part, than we re-enoded the
k bits and hose the odeword with the minimum distane from the foundone. Results are shown.The seond proposed algorithm is a geneti algorithm [9℄, [10℄. It appliesoperations from natural genetis to guide the trek through the searh spae.The problem here is the de�nition of the parameters, whih are ode-based.For the moment a generalization to �nd out these parameters doesn't exist.� Chapter 6 :LDPC odes have very good performane, but also turbo odes [19℄,[20℄ and [21℄ are very good.Exatly, turbo odes performs very well for BER's above 10−4 (waterfall per-formane), however they have a signi�ant weakened performane at BER'sbelow 10−5: this phenomenon is known as error �oor. Another importantobservation, we need to keep in our mind, is that, in turbo deoding, only in-formation bits are deoded and they annot be used for error detetion. Thepoor minimum distane and lak of error detetion apability make theseodes perform badly in terms of blok error probability. Poor blok errorperformane also makes these odes not suitable for many ommuniationappliations. On the ontrary, �nite geometry LDPC odes do not have allthe above disadvantages of turbo odes, exept that they may not performas well as turbo odes for BER's above 10−4. Other reasons, whih ouldjustify the hoie of a LDPC rather than a turbo ode are given by a verylow omplexity deoding, ompared to the omplexity if the MAP algorithmused for the turbo odes, and the fat that LDPC odes have an inherentinterleaving e�et and so, if it's onatenated with another ode, interleaveris not required.Straight onlusion from the above observation is that the advantages of ex-tremely good error performane of turbo odes for BER's above 10−4 and the



5advantages of �nite geometry LDPC odes suh as no error �oor, possessingerror detetion apability after deoding and good blok error performane,an be ombined to form a oding system that performs well for all rangesof SNR's.Thus, in this Chapter, we propose the onatenation of short LDPC andturbo odes, as inner and outer odes, respetively [22℄, [23℄, [24℄ and [25℄.The hoie of short odewords has two justi�ations: �rst both the odesperform well for long odewords, but this introdue some delay, whih is notsuitable for some kinds of system transmission, for example speeh. Seond,if the odeword is relatively short, we analyze the output at the turbo de-oding and try to onstrut an "ad ho" LDPC deoder whih is suitablefor deoding what the turbo ode annot orret. This idea is useful also toavoid the blok interleaver usage, whih is not suitable, beause it introduesmore delay.Results for this onatenation sheme are represented for overall rates equalto 1/3, 5/16 and 1/4. The most promising ones are those for the 1/4 rate,the other two ases don't show interesting results and for 1/3 rate obtainedwith a turbo ode 1/2 and a LDPC ode 2/3 we observe that the LDPCannot reover the loss of the performane due to the turbo punturing.� Chapter 7 : brie�y desribes those parts of the WiMAX standard whih havebeen of interest for the implementation of a downlink simulator standardompliant.� Chapter 8 : the parameters used in the simulated system are listed and theresults for di�erent hannel estimation and oding are represented.The onsidered odes are the standard de�ned onvolutional ode and LDPCode applied with the onatenation rule de�ned for the onvolutional ode.Beside these standardized odes we plot also the performane for the on-atenation sheme with overall rate equal to 1/4.� Chapter 9 : onlusions are listed.





Chapter 2Channel estimation in OFDMsystemsIn reent years, there has been a lot of interesting applying orthogonal frequeny di-vision multiplexing in wireless and mobile ommuniation systems beause of its variousadvantages in lessening the severe e�ets of frequeny seletive fading.Wireless digital ommuniation systems using oherent signaling shemes, suh asquadrature amplitude modulation (QAM), require estimation and traking of the fadinghannel and so a more omplex reeiver than for di�erential modulation shemes, isneeded [26℄.In partiular, in orthogonal frequeny division multiplexing (OFDM) systems DPSKis appropriate for relative low data rates, but for more spetrally-e�ient OFDM sys-tems, oherent modulation is more appropriate and, in this situation, hannel estimationand traking are required [27℄. To this purpose, known symbols, usually alled pilots,are often multiplexed into the data and hannel estimation is performed by interpola-tion. Channel estimation an be avoided by using di�erential detetion [28℄, at the ost,however, of a 3 dB loss in signal-to-noise ratio (SNR) [29℄.In the design of wireless systems the hannel is usually assumed to have a �nite-length impulse response. A yli extension, longer than this impulse response, isinserted between onseutive symbols in order to avoid inter-symbol interferene andpreserve the orthogonality of the subarriers. Generally, the OFDM system is designedso that the yli extension is a small perentage of the total symbol length [30℄.Several pilot-aided hannel estimation shemes for OFDM appliations have beeninvestigated, and the ones listed above provide a good sample of the results obtained inthis area. In partiular, the method proposed in [31℄ provides hannel estimates basedon pieewise-onstant and pieewise-linear interpolations between pilots. It is simpleto implement, but it needs a large number of pilots to get satisfatory performane.In [26℄, a low-rank approximation to the frequeny domain Linear Minimum MeanSquared Error estimator (LMMSE) is proposed, making use of singular value deompo-sition tehniques. The drawbak of this approximation is that it requires knowledge ofthe hannel frequeny orrelation and the operating SNR. In pratie, the system an be



8 Chapter 2. Channel estimation in OFDM systemsdesigned for �xed values of SNR and hannel orrelation at the expense of performanelosses. The LMMSE studied in [14℄ exploits hannel orrelations in time and frequenydomains. Like the sheme in [26℄, it needs knowledge of the hannel statistis and theoperating SNR. Although it an work in a mismathed mode, its performane degradesif the assumed Doppler frequenies and delay spreads are smaller than the true ones. In[32℄, hannel estimation is performed by two-dimensional interpolation between pilots.Like the method in [14℄, it is rather robust to Doppler, even though it exhibits perfor-mane degradations with lower Doppler frequenies. Similar tehniques are presented in[33℄ and [34℄. Finally, [35℄ investigates the Maximum Likelihood Estimator (MLE). Noinformation on the hannel statistis or the operating SNR is required in this sheme.These methods do not make any assumptions about the hannel model, and henethe dimension of the estimation problem an be quite large. However, the radio hannelin a wireless ommuniation system is often haraterized by the multipath propagationand in large ells with high base station antenna platforms, the multipath propagationis aptly modeled by a few dominant speular paths, typially two to six [36℄.A parametri hannel model an be used to represent this type of hannel, in fat,when the hannel orrelation matrix is onstruted based on this hannel model, thesignal subspae dimension of the orrelation matrix an be e�etively redued and sothe hannel estimation performane improved [37℄.2.1 Channel modelThe hannel impulse response is treated as a time limited pulse train of the form[28℄:
g(t, τ) =

L−1∑

k=0

αk(t)δ(τ − τk(t)) (2.1)where {αk(t)} are the di�erent path omplex gains, {τk(t)} are the di�erent path timedelays and L is the number of paths. {αk(t)} are wide-sense stationary (WSS) narrow-band omplex Gaussian proesses with the so alled Jake's power spetrum [38℄ andthe di�erent path gains are unorrelated with respet to eah other where the averageenergy of the total hannel energy is normalized to one. We observe also that eah
τk(t), k = 0, 1, . . . , L− 1 is smaller than the length of the yli pre�x, i.e., the entireimpulse response lies inside the guard spae.The input/output relation is

y(t) =

∫

dτh(t, τ)x(t − τ)

=

L−1∑

k=0

αk(t)x(t− τk(t)) (2.2)where y(t) is the reeived signal at time t and x(t) is the transmitted signal. In thedisrete time model, Tc is the sample time and we denote the sampled signals by y(k) =
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y(kTc), hk(n) = Tch(kTc, nTc), x(n) = x(nTc), so we get:

y(k) =

L−1∑

n=0

hk(n)x(k − n) + ηk (2.3)where {ηk} is the white Gaussian noise sequene and {hk(n)} is a set of L tap oe�ientsof an equivalent disrete-time hannel impulse response.2.2 Linear equalizationTo perform the estimation and traking of this kind of hannel we ould use anadaptive linear �lter espeially one or more Winner �lters [39℄, [40℄.In this setion we propose a brief resume of the notions of adaptive linear �ltering andadaptive linear equalization existing in literature. These algorithms have been proposedto minimize the performane index of a system and, sine in digital ommuniation themeaningful measure of performane is the average probability of error, we want tominimize this performane index.First of all, onsidering hannels with ISI, we de�ne two parameters:- Q is the ardinality of the alphabet,- L is the number of interfering symbols, i.e. it is the hannel dispersion length,then we observe that the equalizer is a linear transversal �lter, in fat the omputationalomplexity is a linear funtion of the hannel dispersion length L. The input to this�lter is the reeived signal:
y(k) =

L−1∑

n=0

hk(n)x(k − n) + ηk (2.4)where, as said above, {ηk} is the white Gaussian noise sequene and {hk(n)} is a set of
L tap oe�ients of an equivalent disrete-time hannel impulse response. We observethat y(k), k = 0, 1, . . . are the reeived symbols. The output of the equalizer withoe�ients cj , j = −K, −K + 1, . . . , K is the estimate of the transmitted symbols
x(k):

x̂(k) =

K∑

j=−K

cjy(k − j). (2.5)Unfortunately it has been shown that the dependene of the average error probabilityfrom the oe�ients cj is high non-linear, so there are two ways of optimizing theoe�ients [41℄:1. peak distortion riterion,2. mean square error riterion.



10 Chapter 2. Channel estimation in OFDM systems2.2.1 Peak distortion riterionPeak distortion riterion is the worst ase inter-symbol interferene at the output ofthe equalizer and the riterion is based on the minimization of this performane index.We observe that the asade of the disrete time linear model having an impulseresponse h(n) and an equalizer having an impulse response cn an be represented by asingle equivalent �lter having the impulse response:
q(n) =

+∞∑

j=−∞
cjh(n− j). (2.6)In this ase the output is

x̂(k) = q0x(k) +
∑

n 6=k

x(n)q(n− k) +

+∞∑

j=−∞
cjηk−j (2.7)where the �rst term, on the right hand side, is the saled version of the desired symbol(we should normalize q0 to 1) and the seond is the inter-symbol interferene.If we onsider an equalizer with an in�nite number of taps, the peak distortion, i.e.the peak value of ISI is:

D(c) =

+∞∑

n=−∞,n 6=0

|q(n)| (2.8)To obtain D(c) = 0, i.e. to minimize the peak distortion, we must impose:
q0 = 1

q(n) = 0 ∀n 6= 0 (2.9)and using the Z-transformation we obtain:
Q(z) = F (z)C(z) = 1 ⇒ C(z) =

1

F (z)
(2.10)If the equalizer has a �nite length, the peak distortion is:

D(c) =
K+L−1∑

n=−K,n 6=0

|q(n)| (2.11)and we observe that it is impossible to ompletely eliminate ISI and that the peak dis-tortion is a onvex funtion of cj , so it has a global minimum and no relative minimum.Nevertheless, if:
D0 =

1

|h0|

L∑

n=1

|h(n)| < 1, (2.12)



2.3. Channel estimation 11then the ISI is not severe enough to lose the eye and so D(c) is still minimized hoosing:
q0 = 1

q(n) = 0 1 ≤ |n| ≤ K (2.13)2.2.2 Mean square error riterionThe oe�ients cj are adjusted to minimize the mean square values of the error:
εk = x(k) − x̂(k) (2.14)and so the performane index for the MSE riterion is:

J = E[|εk|2] = E[|x(k) − x̂(k)|2] (2.15)whih is a quadrati funtion of the oe�ients cj .2.3 Channel estimationAs said in the Introdution to the Chapter, we an onsider two di�erent typesof estimators: the Maximum Likelihood (ML) estimator, whih doesn't require theknowledge of the hannel statistis or the performing SNR, and the ones whih needthis knowledge, suh as the Minimum Mean Square Error (MMSE) estimator and theList Square (LS) estimator.These two types of estimators are based on di�erent assumptions about the ChannelImpulse Response (CIR). In the former, the CIR is viewed as a deterministi but un-known vetor, whereas in the latter, it is regarded as a random vetor whose partiularrealization we want to estimate. Correspondingly, the Mean Squared Error (MSE) inthe ML estimator is understood as an average over the observed data, whereas in theMMSE estimator, the average is taken not only over the data but over the CIR prob-ability density funtion as well. It follows that the MMSE estimator has the minimumMSE "on the average", i.e., with respet to all the CIR realizations.In [27℄, it is shown that the ML estimator ahieves the Cramér-Rao lower bound(CRLB) [42℄, and therefore, it is the minimum-variane unbiased estimator. No furtherimprovement in MSE is possible as long as the CIR is viewed as a deterministi quantityand the estimator is unbiased. On the other hand, the MMSE estimator has priorinformation on the CIR and an exploit this information to do better than the MLestimator. These onsiderations prompt one important question: is it oneptuallypossible for the MMSE estimator to perform below the CRLB? The answer is a�rmativesine the CRLB is a bound only in the framework of the lassial approah to estimation(where CIR is a deterministi quantity). When dealing with MMSE estimator, on theother hand, a Bayesian approah is adopted, and the orresponding estimation auraydepends on prior information. In priniple, performane an be as good as desired,provided that su�ient prior information is available.



12 Chapter 2. Channel estimation in OFDM systemsHaving established the MMSE estimator an do better than the CRLB, purpose of[27℄ is the understanding of how muh better it an do in pratie and under whihoperating onditions. After the omparison of the ML and the MMSE estimators wean say that the main advantage of ML estimator over MMSE estimator is that itdoes not require knowledge of the hannel statistis and the SNR, and therefore, itis simpler to implement. On the other hand, under ertain operating onditions, theMMSE estimator has better auray as it exploits prior information about the hannel.Spei�ally, the following has been found in [27℄:- The hannel estimates at the edges of the bandwidth are worse than those in themiddle. A possible remedy is to adopt a denser pilot spaing at the edges.- MMSE estimator performs better than ML estimator at low SNR.- At intermediate and high SNRs, the two shemes have omparable performane,provided that the number of pilots is su�iently larger than the duration of theCIRs. Comparisons have also been made with the estimators proposed in [31℄,whih makes a piee-wise liner interpolation of the estimated CIR, and [32℄, whihholds for a general time-varying hannel. It turns out that the loss in performaneof the seond one with respet to ML estimator and MMSE estimator is limited,whereas that of the �rst one may be signi�ant, unless the number of pilots issu�iently high.As said above, if we assume the knowledge of the time-domain hannel statistis,MMSE and LS estimators are the algorithms ommonly used. Both estimators havetheir drawbaks. The MMSE estimator su�ers from a high omplexity, whereas the LSestimate has a high MSE.In [27℄, the authors ompared only ML and MMSE estimators and they didn'tonsider the LS estimator. A justi�ation to this an be found in [43℄, where it is shownthat the MMSE estimate gives 10− 15 dB gain in SNR for the same mean square errorof hannel estimation over LS estimate.To eliminate the major drawbak of the MMSE estimator, the omplexity, in [26℄ alow-rank approximation is applied to the Linear MMSE by using the frequeny orre-lation of the hannel. Another option to redue the omplexity of MMSE estimator isgiven in [44℄, by deriving an optimal low-rank estimator with singular value deompo-sition.Following the three algorithms are brie�y desribed when applied to an OFDMsystem. It is important to underline that these algorithms an be used both when allthe transmitted subarriers are pilot symbols and when only some of them are pilots,while the others are used to transmit information. This will be well desribed in Setion2.5.2.2.3.1 Least-Square (LS) EstimatorAt the reeiver side of an OFDM system, we have the reeived sequene y =

[y0, y1, . . . , yN−1]
T and the LS estimator for the hannel impulse response g minimizes
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(y − XF g)H(y − XF g) and generates

ĥLS = F QLSF HXHy (2.16)where
QLS = (F HXHXF )−1, (2.17)

X is a matrix with the transmitted elements of x = [x0, x1, . . . , xN−1]
T on its diagonaland

F =







W 00
N · · · W

0(N−1)
N... . . . ...

W
(N−1)0
N · · · W

(N−1)(N−1)
N







(2.18)is the FFT matrix with
W nk

N =
1√
N
e−j2π nk

N n, k = 0, 1, 2 . . . , N − 1. (2.19)Considering the matrix notation, the reeived vetor y an be written as
y = XF g + n (2.20)where n is an i.i.d. omplex zero-mean Gaussian noise vetor.Note that, redued to
ĥLS = X−1y, (2.21)the LS estimator is equivalent to what is also referred to as the zero-foring estimator.2.3.2 Minimum Mean Square Error (MMSE) estimatorIf the hannel vetor g is Gaussian and unorrelated with the hannel noise n, theMMSE estimate of g beomes

ĝMMSE = RgyR−1
yyy (2.22)where

Rgy = E{gyH} = RggF HXH

Ryy = E{yyH} = XF RggF HXH + σ2
nINare the ross-ovariane matrix between g and y and the auto-ovariane matrix of

y. Further, Rgg is the auto ovariane matrix of g and σ2
n denotes the noise variane

E[|nk|2]. These two quantities are assumed to be known.Sine the olumns in F are orthonormal, ĝMMSE generates the frequeny-domainMMSE estimate ĥMMSE by
ĥMMSE = F ĝMMSE = F QMMSEF HXHy, (2.23)



14 Chapter 2. Channel estimation in OFDM systemswhere QMMSE an be shown to be
QMMSE = Rgg[(F HXHXF )−1σ2

n + Rgg]−1(F HXHXF )−1. (2.24)If g is not Gaussian, ĥMMSE is not neessarily a minimum mean square error esti-mator. It is, however, the best linear estimator in the mean square error sense.2.3.3 Maximum Likelihood (ML) estimatorThe ML estimator is based on the assumption that g is a deterministi but unknownvetor. The estimate of g is derived from the linear model [14℄ and is given by [45℄:
ĝML = D−1F HX̂

−1
y (2.25)where D is a square matrix

D = F HF .As for the MMSE estimator, the frequeny hannel estimation is given by
ĥML = F ĝML. (2.26)2.4 Channel trakingIn most ommuniation systems that employ equalizers, the hannel harateristisare unknown a priory and, in many ases, the hannel impulse response is time-varying.In suh a ase, the equalizers are designed to be adjustable to the hannel response and,for time-variant hannels, to be adaptive to the time variations in the hannel impulseresponse.For these reasons, algorithms for automatially adjusting the equalizer oe�ients tooptimize a spei�ed performane index and to adaptively ompensate for time variationsin the hannel harateristis have been studied.2.4.1 Time domainMethod of steepest desent or gradient desent algorithmSteepest desent is an old, deterministi method, whih is the basis for stohastigradient based methods. To �nd the minimum value of the mean-squared error, Jmin,by the steepest desent algorithm, we proeed as follows:1. We begin with an initial value w(0) for the tap weight vetor, whih provides aninitial guess as to where the minimum point of the error performane surfae maybe loated. Unless some prior knowledge is available, w(0) is usually set equal tothe null vetor.2. Using this initial or present guess, we ompute the gradient vetor, the real andimaginary parts of whih are de�ned as the derivative of the mean-squared error
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J(n), evaluated with respet to the real and imaginary parts of the tap-weightvetor w(n) at time n.3. We ompute the next guess at the tap-weight vetor by making a hange in theinitial or present guess in a diretion opposite to that of the gradient vetor.4. We go bak to step 2 and repeat the proess.It is intuitively reasonable that suessive orretions to the tap-weight vetor in thediretion of the negative of the gradient vetor should eventually lead to the minimummean-squared error Jmin, at whih point the tap-weight vetor assumes its optimumvalues w0.Thus, we an observe that this is a feedbak approah to �nding the minimum ofthe error performane surfae and- error surfae must be known- adaptive approah onverses to the optimal solution, also known as Wiener solu-tion, w0 = R−1p [46℄ without inverting matrix.We assume that:- {x(n)} are the WSS input samples- {d(n)} are the WSS desired output- {d̂(n)} are the estimate of the desired signals given by

d̂(n) = wH(n)x(n) (2.27)where x(n) = [x(n), x(n−1), . . . , x(n−M+1)]T and w(n) = [w0(n), w1(n), . . . ,

wM−1(n)]T is the �lter weight vetor at time n.- estimation error:
e(n) = d(n) − d̂(n)

= d(n) − wH(n)x(n) (2.28)Thus the mean square error (MSE) at time n is
J(n) = E[|e(n)|2]

= σ2
d − wH(n)p − pHw(n) + wH(n)Rw(n) (2.29)where- σ2

d is the variane of desired signal- p is the ross-orrelation between x(n) and d(n)



16 Chapter 2. Channel estimation in OFDM systems- R is the orrelation matrix of x(n).When w(n) is set to the optimal Wiener solution, then
w(n) = w0 = R−1p (2.30)and

J(n) = Jmin = σ2
d − pHw0 (2.31)Hene, starting from a point of the error surfae, in order to iteratively �nd w0, weuse the method of the steepest desent and the diretion in whih we hange the �lterdiretion is −∇J(n), and so:

w(n+ 1) = w(n) +
1

2
µ[−∇J(n)] (2.32)or, sine ∇J(n) = −2p + 2Rw(n),

w(n + 1) = w(n) + µ[p − Rw(n)] (2.33)for n = 0, 1, . . . and µ is alled adaptation gain.Stability of the system and rate of deayIt is important to note that, sine steepest desent method uses feedbak, the systemould be unstable and so we need to guarantee stability with respet to the eigenvaluesof R. To guarantee the stability we proeed in the following way:- de�ne the error vetor for the tap weights as:
c(n) = w(n) − w0- using p = Rw0, the update beomes:

w(n+ 1) = w(n) + µ[p − Rw(n)]

= w(n) + µ[Rw0 − Rw(n)]

= w(n) − µRc(n)- from w(n+ 1) − w0 = w(n) − w0 − µRc(n) we obtain
c(n+ 1) = c(n) − µRc(n)

= [I − µR]c(n)- using the eigenvalues deomposition we an write R = UΛUH and so
c(n+ 1) = [I − µUΛUH]c(n)



2.4. Channel traking 17- de�ning v(n) = UHc(n), we obtain
v(n+ 1) = [I − µΛ]v(n),so the k-th term in v(n+ 1) is given by

vk(n + 1) = (1 − µλk)vk(n)

= (1 − µλk)
nvk(0)for k = 0, 1, . . . , M − 1, onsidering λk the eigenvalues of R.At this point we an ompute the ondition for stability and the rate of deay.For the stability we must satisfy limn→∞ vk(n) = 0 and so it must be |1− µλk| < 1for all k and from this one we an derive the stability ondition on µ

0 < µ <
2

λmax
,where λmax is the maximum eigenvalues of RWe also observe that the k-th mode has a geometri deay and so we an haraterizethe rate of deay by �nding the time it takes to deay to e−1 of the initial value. Thus

vk(τk) = (1 − µλk)
τkvk(0) = e−1vk(0) ⇒ τk =

−1

ln(1 − µλk)
≈ 1

µλk
for µ≪ 1(2.34)The overall rate of deay is:

−1

ln(1 − µλmax)
≤ τ ≤ −1

ln(1 − µλmin)
(2.35)Now we reall the mean square error or ost funtion J(n) de�ned in (2.28):

J(n) = Jmin + (w(n) − w0)
HR(w(n) − w0)

= Jmin + (w(n) − w0)
HUHΛU (w(n) − w0)

= Jmin + vH(n)Λv(n)

= Jmin +

M−1∑

k=0

λk|vk(n)|2 (2.36)and thus:
lim

n→∞
J(n) = Jmin (2.37)where Jmin is de�ned in (2.31).Zero foring algorithmWe have seen that, when D0 < 1, the D(c) output of the equalizer is minimizedby foring the equalizer response to be q0 = 1 and q(n) = 0, 1 ≤ |n| ≤ K. Thenthe zero foring solution is ahieved by foring the ross-orrelation between the error



18 Chapter 2. Channel estimation in OFDM systemssequene εk = x(k) − x̂(k) and the desired sequene x(k) to be zero for shift in therange 0 ≤ |n| ≤ K.A simple reursive algorithm for adjusting the equalizer oe�ients is:
cj(k + 1) = cj(k) + ∆εkx

∗(k − j) (2.38)where- cj(k) is the jth oe�ient at time k- ∆ is the sale fator that ontrols the rate of adjustment- εk = x(k) − x̂(k) is the error in the deteted symbol.Least Mean Square (LMS) AlgorithmThe error performane surfae used by the steepest desent method is not alwaysknown a priori, so we an use estimated values. The estimates are random variablesand thus this leads to a stohasti approah, in fat the LMS algorithm is an importantmember of the family of stohasti gradient algorithm.The term "stohasti gradient" is intended to distinguish the LMS algorithm fromthe method of steepest desent that uses a deterministi gradient in a reursive ompu-tation of the Wiener �lter for stohasti inputs.We will use the following instantaneous estimates that are based on the samplevalues of the tap-input vetor and desired response:
R̂(n) = x(n)xH(n) (2.39)
p̂(n) = x(n)d∗(n) (2.40)At this point we remember that the steepest desent update is:

w(n+ 1) = w(n) +
1

2
µ[−∇(J(n))] (2.41)where the gradient of the error surfae at w(n) was shown to be

∇(J(n)) = −2p + 2Rw(n), (2.42)but here we use the instantaneous estimates, so we obtain
∇̂(J(n)) = −2x(n)d∗(n) + 2x(n)xH(n)ŵ(n)

= −2x(n)[d∗(n) − xH(n)ŵ(n)]

= −2x(n)[d∗(n) − d̂∗(n)]

= −2x(n)e∗(n) (2.43)where e∗(n) is the omplex onjugate of estimate error.



2.4. Channel traking 19Putting (2.43) in the update equation (2.41), we obtain:
ŵ(n+ 1) = ŵ(n) + µx(n)[d∗(n) − xH(n)ŵ(n)]

= ŵ(n) + µx(n)e∗(n). (2.44)Thus LMS algorithm belongs to the family of stohasti gradient algorithms, infat, the update is extremely simple while the instantaneous estimates may have largevariane, the LMS algorithm is reursive and e�etively averages these estimates.Stability and performane analysis of LMS algorithmThe LMS algorithm, from a statistial point of view, an be analyzed by invokingthe independene theory, whih states:1. the vetors x(1), x(2), . . . , x(n) are statistially independent vetors2. at time n, x(n) is independent on d(1), d(2), . . . , d(n − 1)3. at time n, d(n) is statistially dependent on x(n), but it is statistially independenton d(1), d(2), . . . , d(n− 1)4. x(n) and d(n) are mutually Gaussian distributed random variables for all n.The independene theorem is justi�ed in some ases, i.e. beamforming where wereeive independent vetor observations. In other ases it is not well justi�ed, but allowsthe analysis to proeeds.Observing Equation. (2.44) we note that the tap weight vetor ŵ(n + 1) at time
n+ 1 depends only on three inputs:1. the previous sample vetors of the input proess, x(n), x(n− 1), . . . , x(1)2. the previous samples of the desired response, d(n), d(n− 1), . . . , d(1)3. the initial value of the tap-weight vetor, ŵ(0).Using the independene theory we an show that w(n) onverges to the optimalsolution in the mean, i.e.:

lim
n→∞

E[w(n)] = w0. (2.45)where w0 is the Wiener solution.The starting point is the (2.44)[41℄:
w(n+ 1) − w0 = w(n) − w0 + µx(n)e∗(n)

= [I − µx(n)xH(n)]c(n) + µx(n)e∗0(n) (2.46)Now, note that sine w(n) is based on past inputs desired responses d(1), . . . , d(n−
1), w(n) (and c(n)) is independent on x(n), thus µE[x(n)e∗0(n)] = 0 and so:

E[c(n+ 1)] = (I − µR)E[c(n)]. (2.47)



20 Chapter 2. Channel estimation in OFDM systemsReasoning as explained for the ase of the steepest desent algorithm we �nd that:
lim

n→∞
E[c(n)] = 0 if 0 < µ <

2

λmax
(2.48)whih is equivalent to write

lim
n→∞

E[w(n)] = w0 if 0 < µ <
2

λmax
. (2.49)Noting that

λmax ≤ trae[R] = Nr(0) = Nσ2
x (2.50)a more onservative bound is

0 < µ <
2

Nσ2
x

(2.51)and observing that also onvergene in the mean (2.45) is a weak ondition that saysnothing about the variane, whih may even grow.A stronger ondition is the onvergene in the mean square, whih says:
lim

n→∞
E[|c(n)|2] = onstant (2.52)and it is equivalent to show that:

lim
n→∞

J(n) = lim
n→∞

E[|e(n)|2] = onstant. (2.53)If we write e(n) as [41℄:
e(n) = d(n) − d̂(n)

= e0(n) − cH(n)x(n) (2.54)then
J(n) = E[|e(n)|2]

= Jmin +E[cH(n)x(n)xH(n)c(n)]

= Jmin + Jex(n) (2.55)Sine Jex(n) is a salar, we an write [41℄
Jex(n) = E[cH(n)x(n)xH(n)c(n)]

= trae[RK(n)] (2.56)where K(n) = E[c(n)cH(n)].If we de�ne S(n) , UHK(n)U , where U is the unitary matrix obtained from theeigenvalues deomposition of R and remembering that Λ is a diagonal matrix, we �nd:
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Jex(n) = trae[ΛS(n)] =

M∑

i=1

λisi(n), (2.57)where s1(n), s2(n), . . . , sM(n) are the diagonal elements of S(n).The reursion expression (2.44) an be modi�ed to yield a reursion on S(n), whihis:
S(n+ 1) = (I − µΛ)S(n)(I − µΛ) + µ2JminΛ (2.58)and its diagonal elements are

si(n + 1) = (1 − µλi)
2si(n) + µ2Jminλi, i = 1, 2, . . . , M (2.59)Suppose Jex(n) onverges, i.e. si(n + 1) = si(n), so, from this equality, we �nd

si(n) =
µJmin

2 − µλi
, i = 1, 2, . . . , M (2.60)and then

lim
n→∞

Jex(n) = Jmin

M−1∑

i=0

µλi

2 − µλi
(2.61)where

M =

M−1∑

i=0

µλi

2 − µλi
(2.62)is the LMS misadjustment and if its value is 10% or less it is generally onsideredaeptable.Normalized LMS algorithmIn the standard LMS algorithm the orretion is proportional to µx(n)e∗(n):

ŵ(n+ 1) = ŵ(n) + µx(n)e∗(n) (2.63)and if x(n) is large, the LMS algorithm experienes a gradient noise ampli�ationproblem. The normalized LMS algorithm seeks to avoid gradient noise ampli�ation:the adaptation gain is made time varying, µ(n), and optimized to minimize error, i.e.,hoose µ(n), suh that the updated ŵ(n+ 1) produes the minimum MSE J(n+ 1) =

E[|e(n + 1)|2], where e(n + 1) = d(n+ 1) − wH(n+ 1)x(n+ 1).The optimal adaptation gain, µ0(n) will be a funtion of R and ∇(n). To omputeit we expand J(n + 1) and di�erentiate it with respet to µ(n) and set it equal to 0.After some omputation we �nd:
µ0(n) =

∇H(n)∇(n)

∇H(n)R∇(n)
(2.64)



22 Chapter 2. Channel estimation in OFDM systemsand using the instantaneous estimates:
R̂ = x(n)xH(n)

∇̂(n) = −2x(n)e∗(n)we obtain
µ0(n) =

1

xH(n)x(n)
=

1

‖x(n)‖2
(2.65)and the NLMS update is:

ŵ(n+ 1) = ŵ(n) +
µ̃

a+ ‖x(n)‖2
x(n)e∗(n) (2.66)where a > 0 is an o�set added to avoid problems when ‖x(n)‖2 ≈ 0.Following a reason similar to that used for steepest desent method we �nd thatNLMS update will onverge if

0 < µ̃ < 2. (2.67)To onlude this setion we observe that:- the NLMS has a simpler onvergene riteria than the LMS- the NLMS generally onverges faster than the LMS algorithm.The LMS equalizerDe�ning- Γ the ovariane matrix of the input sequene y(k),- C the vetor of the equalizer oe�ients,- ξ the vetor of the ross-orrelation between the input y(k) and the equalizeroe�ients ckwe �nd that for the minimization of the MSE we must hoose:
Copt = Γ−1H . (2.68)The method of the steepest desent o�ers an alternative to the omputation of Γ−1.We start hoosing a vetor C said C0, whih orresponds to some point on the quadratiMSE surfae, then we ompute the gradient vetor:

G0 =
[1

2

∂J

∂C0k

]

, k = −K, −K + 1, . . . , −1, 0 . . . , K (2.69)



2.4. Channel traking 23At this point eah tap is hanged in the opposite to its orresponding gradient ompo-nent:
Ck+1 = Ck − ∆Gk, (2.70)
Gk =

1

2

∂J

∂Ck
= ΓCk − ξ = −E[εkX

∗
k] (2.71)where X∗

k is the vetor of the omplex onjugated reeived signal that makes up theestimate x̂(k).It is interesting to make some observation on the onvergene properties of thisalgorithm.First of all we observe that Γ is an Hermitian matrix and so, using the eigenvaluesdeomposition, we an write Γ = UΛUH where U is a unitary matrix and (·)H denotesthe Hermitian transpose.It an be seen [41℄ that the onvergene is ensured by:
0 < ∆ <

2

λmax
(2.72)where λmax is the maximum eigenvalue of Γ.Reursive least-square (RLS) algorithm for adaptive equalizationAs we have seen, the gradient algorithm has only a single adjustable parameterfor ontrolling the onvergene rate: ∆, and so the slowly onvergene is due to it.Consequently, we need more omplex algorithms to obtain faster onvergene.In this ase, the performane index is expressed in terms of a time average insteadof statistial average.Before explaining the algorithm, we give some de�nitions:- estimation of the transmitted symbol at sample n:

x̂(n) =
K∑

j=−K

cj(n− 1)y(n − j), j = 0, 1, . . . , N − 1 (2.73)- v(n) = y(n+K)- the estimate x̂(n) beomes:
x̂(n) =

N−1∑

j=0

cj(n− 1)v(n − j)

= CN (n− 1)V N (n) (2.74)where CN (n− 1) is the row vetor of the equalizer at sample n− 1 and V N (n) =

[v(n), v(n− 1), . . . , v(n −N + 1)]T is the input signal to the equalizer.Reursive least square algorithm



24 Chapter 2. Channel estimation in OFDM systemsFollowing we desribe the reursive least-square (RLS) algorithm, also known asKalman algorithm.We have observed the vetors V N (n) for n = 0, 1, . . . , t and we wish to determinethe oe�ient vetor CN (t) that minimizes the time average weighted square error:
εLS
N =

t∑

n=0

wt−n|eN (n, t)|2 (2.75)where w is the weighting fator (0 < w < 1) and eN (n, t) = x(n) − CN (t)V N (n)is the error between the estimated and the transmitted symbol at sample n. In thisexpression we have introdued exponential weighting into past data, appropriated whenthe hannel harateristis are time-variant.The minimization of εLS
N with respet to the oe�ients CN (t) yields the set oflinear equations:

RN (t)CN (t) = DN (t) (2.76)where:- RN (t) =
∑t

n=0 w
t−nV H

N (n)V N (t) is the signal orrelation matrix (not a Toeplitzmatrix)- DN (t) =
∑t

n=0w
t−nx(n)V ∗

N (t) is the ross-orrelation vetor.The solution is:
CN (t) = R−1

N (t)DN (t). (2.77)The reursive algorithmNow, we have CN (t−1) and we wish to ompute CN (t). The algorithm's steps are:- RN (t) may be omputed reursively, so the time-update equation for RN (t) is:
RN (t) = wRN (t− 1) + V H

N (t)V N (t) (2.78)- reursive omputation for R−1
N (t) is

R−1
N =

1

w

[

R−1
N (t− 1) − R−1

N (t− 1)V H
N (t)V N (t)R−1

N (t− 1)

w + V ′
N (t)R−1

N (t− 1)V ∗
N (t)

] (2.79)- for onveniene we de�ne P N (t) = R−1
N (t− 1)- we de�ne also Kalman gain vetor:

KN (t) =
1

w + µN (t)
P N (t− 1)V ∗

N (t) (2.80)where µN (t) = V H
N (t)P N (t− 1)V N (t)

• ⇒ P N (t) = 1
w [P N (t− 1) − KN (t)V ′

N (t)P N (t− 1)]



2.4. Channel traking 25- we observe that P N (t)V ∗
N (t) = KN (t)- now we use the matrix inversion identity to ompute CN (t) from CN (t− 1):

• CN (t) = P N (t)DN (t)

• DN (t) = wDN (t− 1) + x(t)V ∗
N (t)

• CN (t) = CN (t−1)+KN (t)[x(t)−V T
N (t)CN (t−1)], where V T

N (t)CN (t−1)is the output of the equalizer at time t, x̂(t)
• eN (t, t− 1) = x(t) − x̂(t) ≡ eN (t)

⇒ CN (t) = CN (t− 1) + KN (t)eN (t) (2.81)- The residual MSE is:
ξLS
N,min =

t∑

n=0

wt−n|x(n)|2 − CN (t)D∗
N (t) (2.82)If we suppose to know CN (t− 1), P N (t− 1) and V N (t), then the algorithm's stepsare:- ompute x̂(t) = V T

N (t)CN (t− 1)- ompute eN (t) = x(t) − x̂(t)- ompute KN (t) = 1
w+µN (t)P N (t− 1)V ∗

N (t)- ompute P N (t) = 1
w [P N (t− 1) − KN (t)V ′

N (t)P N (t− 1)]- update oe�ients CN (t) = CN (t− 1) + KN (t)eN (t)This algorithm has two prinipal disadvantage:1. omputational omplexity,2. sensitivity to round o� noise that aumulates due to reursive omputations.2.4.2 Frequeny domainReognizing that the Fourier transform maps time-domain signals into the frequenydomain and that the inverse Fourier transform provides the inverse mapping that takesus bak into time domain, it is equally feasible to perform the adaptation of �lterparameters in the frequeny domain. In suh a ase we speak of Frequeny-DomainAdaptive Filtering (FDAF).There are two main reasons for seeking the use of frequeny domain adaptive �lteringin one form or another [41℄:



26 Chapter 2. Channel estimation in OFDM systems1. In ertain appliation, suh as aousti eho anellation in teleonferening, forexample, the adaptive �lter is required to have a long impulse response to opewith an equally long eho duration. When the LMS algorithm is adapted inthe time domain, we �nd that the requirement of a long memory results in asigni�ant inreasing of the omputational omplexity of the algorithm. How thendo we deal with this problem? There are two options available to us. We mayhoose an in�nite-duration impulse response (IIR) �lter and adapt it in the timedomain; the di�ulty with this approah is that we inherit a new problem, namely,the �lter instability. Alternatively, we may use a partiular type of frequeny-domain adaptive �ltering that ombines two omplementary methods widely usedin digital signal proessing:� blok implementation of a FIR �lter, whih allows the e�ient use of parallelproessing and thereby results in a gain in omputational speed,� fast Fourier transform (FFT) algorithms for performing fast onvolution (�l-tering) whih permits adaptation of �lter parameters in the frequeny domainin a omputationally e�ient manner.This approah to frequeny-domain adaptive �ltering builds on the so-alled blokLMS algorithm that inludes the standard LMS algorithm as a speial ase.2. Frequeny-domain adaptive �ltering, mehanized in a di�erent way from thatdesribed under point 1, is used to improve the onvergene performane of thestandard LMS algorithm.Blok adaptive �ltersIn a blok adaptive �lter, the inoming data sequene x(n) is setioned into B-point bloks by means of a serial to parallel onverter, and the bloks of input data soprodued are applied to a FIR �lter of length M , one blok at a time. Generally weassume M = L as we see at the end of this subsetion. The adaptation of the �lterproeeds on a blok-by-blok basis rather than on a sample-by-sample basis as in thestandard LMS algorithm. Let k refer to a blok time and ŵ(k) denote the tap-weightvetor of the �lter for the k-th blok:
ŵ(k) = [ŵ0(k), ŵ1(k), . . . , ŵM−1(k)]

T k = 0, 1, . . . (2.83)The index n is reserved for the original sample time, written in terms of the blok sizeas follows:
n = kB + i, i = 0, 1, . . . , M − 1 k = 0, 1, . . . (2.84)Let the input signal vetor x(n) at time n be written as:

x(n) = [x(n), x(n− 1), . . . , x(n−M + 1)]T . (2.85)



2.4. Channel traking 27Aordingly, at time n the output ŷ(n) produed by the �lter in response to the inputsignal vetor x(n) is de�ned by the inner produt:
ŷ(n) = ŵT (k)x(n). (2.86)or equivalently:

y(kB + i) = ŵT (k)x(kB + i)

=

M−1∑

l=0

ŵl(k)x(kB + i− l), i = 0, 1, . . . , M − 1. (2.87)Let y(n) = y(kB + i) denote the orresponding value of the desired response. Anerror e(n) is produed by omparing the �lter output ŷ(n) against the desired response
y(n); the error signal is de�ned by:

e(n) = y(n) − ŷ(n) (2.88)or equivalently
e(kB + i) = y(kB + i) − ŷ(kB + i). (2.89)Reognizing that in the blok LMS algorithm the error signal is allowed to vary atthe sampling rate, it follows that for eah blok of data we have di�erent values of theerror signal for use in the adaptive proess. Aordingly, for the k-th blok, we may sumthe produt x(kB + i)e(kB + i) over all possible value of i, and so de�ne the followingupdate equation for the tap-weight vetor of the blok LMS algorithm operating onreal-valued data:

ŵ(k + 1) = ŵ(k) + µ
B−1∑

i=0

x(kM + i)e(kM + i) (2.90)where µ is the adaptation gain. For onveniene of presentation we de�ne
φ(k) =

B−1∑

i=0

x(kM + i)e(kM + i), (2.91)and so we rewrite (2.90) in the form:
ŵ(k + 1) = ŵ(k) + µφ(k). (2.92)A distintive feature of the blok LMS algorithm desribed herein is that its designinorporates an averaged estimate of the gradient vetor, as shown by

∇̂(k) = − 2

B

B−1∑

i=0

x(kB + i)e(kB + i) (2.93)where the fator 2 is inluded to be onsistent with the de�nition of the gradient vetor



28 Chapter 2. Channel estimation in OFDM systems1 and the fator 1/B is inluded for ∇̂(k) to be an unbiased time average. Then interms of ∇̂(k) we may reformulate the blok LMS algorithm as follows:
ŵ(k + 1) = ŵ(k) − 1

2
µB∇̂(k) (2.94)where µB may be viewed as the e�etive adaptation gain of the blok LMS algorithm;it is de�ned by:

µB = Bµ. (2.95)For the onvergene properties of the blok LMS algorithm we observe that they aresimilar to those of the standard LMS algorithm, in that they both attempt to minimizethe same mean-square error funtion:
J =

1

2
E[e2(n)]. (2.96)It an be shown that the blok LMS algorithm uses a more aurate estimate of thegradient vetor beause of the time averaging, with the estimation auray inreasingas the blok size B is inreased. However, this improvement does not imply fasteradaptation. We may proeed through a onvergene analysis of the blok LMS algorithmin a manner similar to that used for onventional LMS algorithm [41℄.We may thus summarize the onvergene properties of the blok LMS algorithm asfollows:1. Condition for onvergene. The mean of the tap-weighted vetor ŵ(k) om-puted by using the blok LMS algorithm onverges to the optimum Wiener so-lution w0 as the number of blok iterations k approahes in�nity, as shown by

lim
k→∞

E[ŵ(k)] = R−1p = w0 (2.97)where
R = E[x(n)xH(n)] (2.98)
p = E[x(n)y(n)]. (2.99)1We de�ne the gradient operation ∇ the k-th element of whih is written in terms of �rst-orderpartial derivatives with respet to the real part ak and the imaginary part bk, for the k-th �lteroe�ient, as
∇k =

∂

∂ak
+ j

∂

∂bk
.The gradient vetor ∇J(n) is given by:

∇J(n) =

2

6

6

6

6

6

4

∂J(n)
∂a0(n)

+ j
∂J(n)
∂b0(n)

∂J(n)
∂a1(n)

+ j
∂J(n)
∂b1(n)...

∂J(n)
∂aM−1(n)

+ j
∂J(n)

∂bM−1(n)

3

7

7

7

7

7

5

= −2p + 2Rw(n)



2.4. Channel traking 29The ondition that has to be satis�ed by the adaptation gain µ for onvergeneof the blok LMS algorithm in the mean value is
0 < µ <

2

Bλmax
(2.100)where B is the blok size and λmax is the largest eigenvalue of the orrelationmatrix R of the input signal vetor x(n).2. Misadjustment. Remembering the de�nition of the exess mean-squared error

Jex(k) and the minimum mean-squared error Jmin, we note that for the Jex(k)omputed by the blok LMS algorithm to onverge to a onstant value Jex(k) <

Jmin as the number of blok iterations k approahes in�nity, the adaptation gain
µ has to satisfy the more stringent ondition:

0 < µ <
2

B
∑M

i=1 λi

(2.101)and the orresponding value of the misadjustment is
M =

µ

2

M∑

i=1

λi. (2.102)Comparing the results desribed here for the blok LMS algorithm with the or-responding results for LMS algorithm 2.4.1, we may make the following observationswhen operating in a wide-sense stationary environment:� The onverged mean weight vetor and misadjustment of the blok LMS algorithmare idential to those of the standard LMS algorithm. The same holds for theaverage time onstant.� For an input signal vetor x(n) whose orrelation matrix R has a presribed eigen-struture, the ondition imposed on the blok LMS for onvergene in the meansquare is more restritive than the orresponding ondition for the standard LMSalgorithm. In partiular the tighter bound on the adaptation gain µ may ause theblok LMS algorithm to onverge more slowly than the standard LMS algorithm,partiularly when the eigenvalue spread χ = λmax
λmin

of the orrelation matrix R issmall.We an onlude this setion with an observation about the blok size. The operationof the blok LMS algorithm holds true for any integer value of B ≥ 1. Nevertheless,the option of hoosing the blok size B equal to the �lter length M is preferred in mostappliations of blok adaptive �ltering. This hoie may be justi�ed on the followinggrounds:� when B > M , redundant operations are involved in the adaptive proess, beausethen the estimation of the gradient vetor uses more information than the �lteritself



30 Chapter 2. Channel estimation in OFDM systems� when B < M , some of the tap weights in the �lter are wasted, beause thesequene of tap inputs is not long enough to feed the whole �lter.It thus appears that the most pratial hoie is B = M .Fast LMS algorithmThe desription of the fast LMS algorithm presented here uses the overlap-savemethod 2 with 50% overlap.Aording to this method, the M tap weights of the �lter are padded with an equalnumber of zeros, and an N -point FFT is used for the omputation, where N = 2M .Thus let the N × 1 vetor Ŵ (k) denote the FFT oe�ients of the zero-padded, tap-weight vetor ŵ(k), as follows:
Ŵ (k) = FFT

[

ŵ(k)

0

] (2.103)where 0 is the M × 1 null vetor and FFT [·] denotes the fast Fourier transformation.Let X(k) denote an N×N diagonal matrix derived from the input data as following:
X(k) = diag{FFT [x(kM −M), . . . , x(kM − 1)

︸ ︷︷ ︸

(k−1)th blok , x(kM), . . . , x(kM +M − 1)
︸ ︷︷ ︸

kth blok ]}.(2.104)Now, applying the overlap-save method to the linear onvolution of (2.87) yields the
M × 1 vetor

ŷT = [ŷ(kM), ŷ(kM + 1), . . . , ŷ(kM +M − 1)]

= last M elements of IFFT [X(k)Ŵ (k)]. (2.105)where IFFT [·] denotes inverse fast Fourier transformation and only the lastM elementsare retained, beause the �rst M elements orrespond to a irular onvolution.Now de�ne the M × 1 desired response vetor
y(k) = [y(kM), y(kM + 1), . . . , y(kM +M − 1)]T (2.106)and the orresponding M × 1 error signal vetor:

e(k) = [e(kM), e(kM + 1), . . . , e(kM +M − 1)]T

= y(k) − ŷ(k). (2.107)2Implementing onvolution using the DFT, the overlap-save method involves overlapping inputsetion rather than output setions. If the overlap is of P − 1 samples, the �rst P − 1 samples ofeah output sequene are ignored, beause they are due to the wraparound (end) e�et of the irularonvolution.



2.4. Channel traking 31We may transform the error signal vetor e(k) into the frequeny domain as follows:
E(k) = FFT

[

0

e(k)

]

. (2.108)At this point we observe that:
φ(k) = �rst M elements of IFFT [XH(k)E(k)]. (2.109)The update equation in frequeny domain beomes:

Ŵ (k + 1) = Ŵ (k) + µFFT

[

φ(k)

0

] (2.110)Computational omplexityConsider the standard LMS algorithm with M tap weights operating on real data.In this ase, M multipliations are performed to ompute the output and a further
M multipliations are performed to update the tap weights, making for a total of 2Mmultipliations per iteration. Hene, for a blok ofM output samples, the total numberof multipliations is 2M2.Consider next, the fast LMS algorithm. Eah N -point FFT requires approximately
N log2N real multipliations, where N = 2M . Aording to the struture of the fastLMS algorithm, there are �ve frequeny transformations performed, whih thereforeaount for 5N log2N multipliations. In addition the omputation of the frequenydomain output vetor requires 4N multipliations, and so does the omputation of theross-orrelations relating to the gradient vetor estimation. Hene, the total orre-sponding number of multipliations performed in the fast LMS algorithm is:

5N log2N + 8N = 10M log2M + 26M, (2.111)so if we ompute the omplexity ratio we �nd:Complexity ratio =
5 log2M + 13

M
< 1 (2.112)and then we an say that fast LMS algorithm is faster than standard LMS algorithm,as soon as M ≥ 64.Unonstrained frequeny-domain adaptive algorithmThe fast LMS algorithm may be viewed as a onstrained form of frequeny-domainadaptive �ltering. The time domain onstraint onsists of the following operations:� disarding the last M elements of the inverse FFT of XH(k)E(k)� replaing the elements so disarded by a blok of M zeros before reapplying theFFT.



32 Chapter 2. Channel estimation in OFDM systemsIn the unonstrained frequeny-domain adaptive �lter the gradient onstraint isremoved ompletely and the implementation beomes simpler:
Ŵ (k + 1) = Ŵ (k) + µXH(k)E(k). (2.113)It is important to note, however, that the estimate of the gradient vetor omputedhere no longer orresponds to a linear orrelation as spei�ed in (2.93); rather, we nowhave a irular orrelation.Consequently, we �nd that in general the unonstrained frequeny-domain adaptive�ltering algorithm deviates from the fast LMS algorithm, in that the tap weight vetorno longer onverges to the Wiener solution as the number of blok iterations approahesin�nity. Another important point is that although the onvergene rate of the unon-strained frequeny-domain adaptive �ltering algorithm is inreased with time-varyingadaptation gain, the improvement is o�set by a worsening of the misadjustment. In-deed, the unonstrained algorithm requires twie as many iterations as the onstrainedalgorithm to produe the same level of misadjustment.2.5 System desriptionIn Figure 2.1 the OFDM base band model onsidered in this work is represented.We assume that the use of the yli pre�x both preserves the orthogonality of thesubarriers and eliminates inter-symbol interferene (ISI) between onseutive OFDMsymbols.The hannel g(t, τ) is assumed to be slowly fading, so it is onsidered to be onstantduring one OFDM symbol. The number of subarriers in the system is N , and theyli pre�x is made of NCP samples.

Figure 2.1: Base band model of an OFDM system. CP denotes the yli pre�x.Under these assumptions we an desribe the system as a set of parallel Gaussianhannels, with orrelated attenuation hk, k = 0, 1, . . . , N − 1.In matrix notation we desribe the OFDM system as
y = Xh + n (2.114)where y is the reeived vetor, X is a matrix ontaining, on its diagonal, the transmit-



2.5. System desription 33ted signaling points, taken from a multi-amplitude signal onstellation, h is a hannelattenuation vetor and n is a vetor of i.i.d. omplex, zero-mean, Gaussian noise withvariane σ2
n.The hannel impulse response, as explained in Setion 2.1 is treated as a time limitedpulse train of the form:

g(t, τ) =

L−1∑

k=0

αk(t)δ(τ − τk(t))where {αk(t)} are the di�erent path omplex gain, {τk(t)} are the di�erent path timedelays and L is the number of paths. {αk(t)} are wide-sense stationary (WSS) narrow-band omplex Gaussian proesses with the so alled Jake's power spetrum [38℄ andthe di�erent path gains are unorrelated with respet to eah other where the averageenergy of the total hannel energy is normalized to one. We observe also that eah τk(t),
k = 0, 1, . . . , L− 1 is minor than the length of the yli pre�x, i.e., the entire impulseresponse lies inside the guard spae.The transmitted data are divided into frame whih is omposed of N subarriersand Nsym OFDM symbols. The �rst OFDM symbol is a preamble, i.e. its symbols areknown at the reeiver and are employed to obtain a hannel estimation through someestimation algorithm. The following OFDM symbols are made of some left and rightnull subarriers, while the remaining ones are pilot and data subarriers. Obviously, thepilot subarriers are known at the reeiver and are introdued to perform the hanneltraking.2.5.1 Channel estimationWe will analyze several estimators based on the sheme presented in Figure 2.2

Figure 2.2: General sheme used in many hannel estimation algorithms.Least Square (LS) estimatorThe LS estimator for the frequeny response ĥLS is given by:
ĥLS = X−1y (2.115)



34 Chapter 2. Channel estimation in OFDM systemsand from (2.135) it is lear why it is also referred to as the zero foring estimator.The LS estimator is desribed in Setion 2.3.1; here we remind it generates theestimated frequeny response [43℄:̂
h = F QLSF HXHy (2.116)where QLS = (F HXHXF )−1 and F is the N × N DFT matrix, whose elements are

[F ]n,k = W nk
N = 1√

N
exp (−j2π nk

N ).At this point we observe that the equivalene between (2.135) and (2.116) holds whenwe suppose to know all the tones in an OFDM symbol, beause F HF = FF H = I.Minimum Mean Square Error (MMSE) estimatorIf the hannel vetor g is Gaussian and unorrelated with the hannel noise n, theMMSE estimate of g, desribed in Setion 2.3.2, beomes:
ĝMMSE = RgyR−1

yy y (2.117)where
Rgy = E[gyH ] = RggF HXH

Ryy = E[yyH ] = XFRggF HXH + σ2
nIare the ross-ovariane matrix between g and y and the auto-ovariane matrix of y,respetively. Further, Rgg is the auto-ovariane matrix of g and σ2

n denotes the noisevariane E[|nk|2]. For the moment these two quantities are assumed to be known. Sinethe olumns in F are orthonormal, ĝMMSE generates the frequeny domain MMSEestimate ĥMMSE by
ĥMMSE = F ĝMMSE = FQMMSEF HXHy (2.118)where QMMSE an be shown to be [43℄

QMMSE = Rgg[(F HXHXF )−1σ2
n − Rgg]−1(F HXHXF )−1. (2.119)We observe that the MMSE estimator requires the alulation of an N ×N matrix

QMMSE, whih implies a high omplexity when N is large. A straightforward way ofdereasing the omplexity is to redue the size of QMMSE.Linear minimum mean square (LMMSE) estimatorWe start onsidering the LS estimate:
ĥLS = X−1y = h + ñ



2.5. System desription 35where ñ = X−1n is a vetor of independent Gaussian noise variables with ovarianematrix3
Rññ = σ2

n(XXH)−1. (2.120)The LS estimate is a noisy observation of the hannel attenuation and an besmoothed using orrelation properties of the hannel. The optimal linear estimatorin terms of mean square error (MSE) is
ĥ = W X ĥLS , (2.121)where

W X = Rhh(Rhh + σ2
n(XXH)−1)−1, (2.122)and Rhh = E[hhH ] is the auto-ovariane matrix of the hannel vetor h.At this point we reognize that the weighting matrix W X , of size N ×N , dependson the transmitted data X.As a �rst step towards low omplexity estimators we want to �nd a weighting matrixthat is independent on the transmitted data. This an be obtained by onsidering ĥLSto be our observation and derive an LMMSE estimator that onsiders X to be stohastiwith independent and uniformly distributed onstellation points. In this ase we de�nea onstellation fator β = E[|xk|2]E[|xk|−2] and remembering that the signal-to-noiseratio is de�ned as SNR , E[|xk|2]/σ2

n we �nd
Rññ =

β

SNR
I. (2.123)Now, the LMMSE estimate of the ĥLMMSE from ĥLS beomes

ĥLMMSE = WĥLS (2.124)where the �xed weighting matrix is given by
W = Rhh

(

Rhh +
β

SNR
I
)−1 (2.125)The LMMSE estimator still requires N multipliations per estimated attenuationand we use it both as a referene and as a starting point in the derivation of the DFT-based low omplexity estimators.To derive the new estimators we observe that h is the sampled frequeny response ofa hannel with short time duration ompared to the OFDM symbol length and, hene,its assoiated yli impulse response g = IDFT (h) has only a few taps with signi�antpower. If we perform the estimation in the time domain, we an redue the omplexityof the estimation by using this power onentration.This prompts the estimator struture in Figure 2.2, where the blok named Q rep-resents a time elaboration of the signal, as it is evident from the presene of the DFT3Rññ = E[(X−1n)H(X−1n)] = trae(E[nnH(XXH)−1]) = σ2

n(XXH)−1



36 Chapter 2. Channel estimation in OFDM systemsand IDFT bloks. The LS estimate is transformed into its time domain equivalent
ĝLS = IDFT (ĥLS), remembering that when we are using a number of pilot subarriers(Np) less than the number of total subarriers (N) the equivalent time domain responseis given by (2.134). The smoothing is then performed by a linear transformation:

ĝ = QĝLS (2.126)and the result is transformed bak to the frequeny domain: ĥ = DFT (ĝ).The important bene�t of this estimator struture in terms of omplexity is thelow omplexity of the DFT/IDFT (implemented as fast transformations) and the timedomain power onentration, whih o�ers a simpli�ation of (2.126), without sari�ingtoo muh in performane.The sope of the following onsideration is to �nd sparse approximations of theLMMSE estimator's equivalent time domain smoothing matrix
Q = F HWF (2.127)where F is the DFT matrix and W is de�ned in (2.125). A straightforward way is tosimply ignore the oe�ients in ĝLS that ontain more noise than hannel power andonly transform the remaining elements bak to the frequeny domain.Now, we present three di�erent low omplexity estimators, obtained reduing thenumber of non-zero elements in the time domain matrix multipliation (2.126), withthe aim of reduing the omputational omplexity and preserving the performane.Before the desription of the algorithms it is important to underline a drawbak ofthese estimators: for all of them we suppose the knowledge of the hannel length.Estimator AThe simplest idea is to hoose the L oe�ients in ĝLS that have the highest hannelpower, where L is the length of the hannel impulse response and thus it is muh smallerthan N (the number of subarriers) and Np (the number of pilots).In this ase we �nd

QA =

[

QL×L 0

0 0

] (2.128)where
QL×L = Rgg,L

(

Rgg,L +
β

SNR
I
)−1 (2.129)and Rgg,L is the upper left L× L orner of Rgg.Estimator B Further redutions in omplexity an be done by ignoring ross or-relation between the L hosen taps in ĝLS and only weighting them individually. Inthis ase the matrix Q beomes

QB =

[

DL×L 0

0 0

] (2.130)



2.5. System desription 37where
DL×L = diag(δ0, δ1, . . . , δL−1) (2.131)and

δk =
γk

γk + β
SNR

, k = 0, 1, . . . , L− 1and γk = E[|gk|2] whih are the diagonal elements of Rgg = E[ggH ] = F HRhhF .Estimator C In this ase we redue the omplexity using the L hosen oe�ientsdiretly as input to the DFT. The Q matrix simply beomes
Qc =

[

IL×L 0

0 0

]

. (2.132)It is interesting to underline that in this ase we obtain
ĥC = F ĝLS (2.133)where ĝLS is de�ned in (2.134) and, when we are in presene of Gaussian white noise,as in this ase, this is the maximum likelihood (ML) estimator ([47℄ and [48℄).In table 2.1 we summarize the linear transformation and the required multipliationper attenuation oe�ient (hk).Estimator Linear Transformation Required mult./attenuationLMMSE N.A. N + 1A QA =

[
QL×L 0

0 0

]

log2N + L2

N + 1B QB =

[
DL×L 0

0 0

]

log2N + L
N + 1C QC =

[
IL×L 0

0 0

]

log2N + 1LS N.A. 1Table 2.1: Linear transformations and omputational omplexity for the proposedestimator.Until this moment we develop the disussion with no attention about the number oftones we know at the reeiver. If we know all the OFDM symbol the hannel impulseresponse an be omputed using the omplete DFT matrix, but when we know onlysome tones, the pilots, we must use a trunated version of the DFT matrix. To avoidthe problem of this distintion during our desription we use the notation F for boththe trunated or omplete version of the DFT matrix. Partiular attention must be paidwhen we talk about omplete DFT matrix: we know the hannel impulse response hasonly few signi�ant taps and so if we assume the hannel length L known, then the DFTmatrix is said to be omplete even if it has only the �rst L olumns. This assumptionavoids the problem of seleting the signi�ant taps. A way to avoid the trunation ofthe F matrix we an hoose the �rst L taps of the estimated impulse hannel responseand then perform a zero-padding.



38 Chapter 2. Channel estimation in OFDM systemsAfter these observations, we de�ne the hannel impulse response by
ˆgLS = (F HF )−1F H ĥLS , (2.134)in fat, if we ome bak to the frequeny domain through the expression ĥLS = F ĝLS =

F (F HF )−1F H ĥLS we �nd the matrix F (F HF )−1F H is equal to the identity one onlywhen we onsider the entire DFT matrix and not a trunated version, i.e. when thepilot tones are only a fration of subarriers (Np ≤ N).2.5.2 Use of the desribed algorithm onsidering only pilot subarri-ersOften, in OFDM systems there are some subarriers, i.e. the pilot subarriers, whosenumber Np is smaller than the total number of subarriers N , whih are known at thereeiver.In this setion we use the following notation:� F L is a N × L matrix ontaining the �rst L olumns of the DFT matrix F� F L,p is a Np×L matrix obtained from F L eliminating the lines not orrespondingto pilot subarriers� yp is the vetor of the training reeived symbols� Xp is a Np ×Np diagonal matrix ontaining the training symbols.LS estimatorIn the frequeny domain the LS estimate is given by
ĥLS = X−1

p yp (2.135)and in the time domain it is
ĝLS = (F H

L,pF L,p)
−1F H

L,pĥLS (2.136)MMSE estimatorThe expression for the MMSE estimator onsidering only pilot subarriers is
ĝMMSE = RggF H

L,pX
H
p (XpF L,pRggF H

L,pX
H
p + σ2

nI)−1yp

=
(

R−1
gg + F h

L,pX
H
p

1

σ2
n

XpF L,p

)−1
F H

L,pX
H
p

1

σ2
n

yp (2.137)LMMSE estimatorWe de�ne the auto-ovariane matrix of the frequeny response hannel as
Rhh = E[hhH ] = F L,pRggF H

L,p. (2.138)



2.5. System desription 39where Rgg is the auto-ovariane matrix of the hannel impulse response and it is
Rgg = diag(1/L, 1/L, . . . , 1/L).At this point there are the two version of the LMMSE estimator: one depending onthe training symbols:̂

hLMMSE = Rhh(Rhh + σ2
n(XpX

H
p )−1)−1ĥLS (2.139)and the other one independent on the training symbols:

ĥLMMSE = Rhh

(

Rhh +
β

SNR
I
)−1

ĥLS (2.140)Estimator A Here, we de�ne the matrix Rgg,LS = F H
L,pRhhF L,p and ompute thematrix QA

QA = Rgg,LS

(

Rgg,LS +
β

SNR
I)(−1) (2.141)and so we �nd

ĥA = F L,pĝA = F L,pQAĝLS (2.142)where ĝLS is omputed in (2.136).Estimator B In this estimator we onsider the values on the diagonal of the Rgg,LSmatrix (named γk, k = 0, 1, . . . , L−1) and QB is a diagonal matrix with the followingvalues
qB,kk =

γk

γk + β
SNR

(2.143)and so the estimated frequeny response is
ĥB = F L,pĝB = F L,pQB ĝLS (2.144)Estimator C Finally, in this ase the matrix QC is simply an L×L identity matrix,so we �nd ĝC = ˆgLS and in the frequeny domain

ĥC = F L,pĝC = F L,pĝLS (2.145)whih is also the expression of the ML estimator.2.5.3 Channel trakingThe algorithms presented in Setion 2.4 allow the equalization of a hannel, for asingle arrier system, in the time domain.If we onsider an OFDM system we an try to trak a time-varying hannel using,in the frequeny domain, the same idea whih is behind the RLS algorithm.The basi idea is to perform hannel estimation on the �rst OFDM symbol byemploying a linear minimum mean square error (LMMSE) or a least square error (LS)algorithm. Then, to perform the traking we an use an adaptive �lter whose workingpriniple is the same as RLS algorithm.



40 Chapter 2. Channel estimation in OFDM systemsSine we have an OFDM system the �rst idea is to perform the traking in thefrequeny domain. The adaptive �lter in frequeny domain are desribed in Setion2.4.2, but we observe that our ase is a little bit di�erent from the ones proposed there.It is for this reason that we refer to [15℄ in the following analysis.In [15℄ the authors onsider a blok of N input symbols and perform the FFT onthem obtaining X(n), they perform also the FFT on bloks of N desired symbolsobtaining Y (n) and then update the frequeny response of the adaptive �lter W (n) inthe frequeny domain. The k-th omplex weight for the k-th frequeny is then updatedaording to:
Wk(n+ 1) = Wk(n) + µEk(n)X∗(n), (2.146)where E(n) = Y (n)−W (n)X(n). We observe that this is similar to the unonstrainedfrequeny-domain adaptive �lter.In Figure 2.3 the sheme adopted for the traking of the hannel is shown.In the frequeny domain, we de�ne:- Y p(k) the vetor of the symbol reeived on pilot subarriers at time k- Hp(k) the vetor of the real hannel attenuation oe�ients on pilot subarriersat time k- Ĥp(k) the vetor of the estimated hannel attenuation oe�ients on pilot sub-arriers at time k- Xp(k) the transmitted pilot signal at time k- Ỹp(k) = Ĥp(k)Xp(k) is the estimate of the reeived symbol- Ep(k) = Y p(k) − Ỹp(k) is the vetor of the errors between the reeived symbolsand their estimates on pilot subarriers

PSfrag replaements Xp(k) Ỹ p(k)

Y p(k)

Ep(k)

−
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+

Adaptive �lter

Figure 2.3: Adaptive sheme for hannel traking in frequeny domain.Sine in eah OFDM symbol there are Np pilot subarriers we onsider them and�nd the update equation for the hannel estimation at every pilot:
Ĥi(k + 1) = Ĥi(k) + µEi(k)X

∗
i (k), i = 0, 1, . . . , Np − 1 (2.147)



2.6. Simulation setup 41where µ is the adaptation gain.In this way we know the hannel only on a subset of subarriers, so, to have anestimation of the all frequeny hannel response we transform the hannel into the timedomain, eliminate the taps with high noise and re-transform it to frequeny domain on-sidering all the N subarriers and we obtain the frequeny hannel response estimation
Ĥ(k + 1) .Choie of the adaptation gainParameter µ has the same mean of the parameter ∆ in the LMS algorithm (2.38)whih must satisfy the following ondition:

0 < ∆ <
2

λmax
, (2.148)where λmax is the maximum eigenvalue of the matrix orrelation of the input vetor.At this point we reall and use a result provided in [15℄. Starting from Equation.(2.146) the authors observe that sine eah weight is adapted only one for eah N -pointdata blok, the number of adaptations required to obtain output data similar to thoseobtained with the onventional time domain �lter is redued by a fator of N and sothe value of the adaptation gain µ may aordingly be inreased by a fator of N .For this reason, onsidering that we perform the adaptive of the �lter on Np sub-arriers, we de�ne

µ =
Np

δmax
, (2.149)where δmax is the maximum eigenvalue of the orrelation matrix of the input signal Xp.2.6 Simulation setupA brief desription of the onsidered system was given in Setion 2.5 and Figure 2.1.Simulation results are obtained assuming we are working in the frequeny domain,so Figure 2.1 an be hanged as follows:
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Soure Code ModulatorPreamble
Pilots Frameonstrution Channel Channel+w EstimatorEqualizer Demodulator DeodeFigure 2.4: Simulator sheme.2.6.1 CodeThe ode is the onvolutional ode de�ned in the WiMAX standard [1℄-[2℄. The gen-erated bits are enoded in bloks of 288; we took this deision beause the onatenationrule for a QPSK rate 1/2 ode leads to the oding of bloks of this size.



42 Chapter 2. Channel estimation in OFDM systemsEah FEC blok is enoded by the binary onvolutional enoder, whih shall havenative rate 1/2, and a onstraint length equal to k = 7 and shall use the followinggenerator polynomials odes to derive its two ode bits:
G1 = 171OCT X (2.150)
G2 = 133OCT Y (2.151)

Delay Delay Delay Delay Delay Delay

+

+

Data in

X output

Y outputFigure 2.5: Convolutional enoder of rate 1/2.Eah FEC blok is enoded by a tail-biting onvolutional enoder, whih is ahievedby initializing the enoder's memory with the last data bits of the FEC blok beingenoded.2.6.2 Frame onstrutionAlso in the onstrution of the downlink frame we onsider the IEEE 802.16e stan-dard and the frame struture is represented in Figure 2.6.We onstrut the preamble and pilot sequenes standard ompliant, but we hangethe way of assembling data and pilots. We don't onsidering any permutation system,but assume the pilots uniformly distributed between data subarriers.On the other hand , we keep unhanged the number of virtual, data and pilotsubarriers.PreambleThe �rst symbol of the downlink transmission is the preamble. There are three typesof preamble arrier-sets, those are de�ned by alloation of di�erent subarriers for eahone of them and those subarriers are modulated using a boosted BPSK modulationwith spei� Pseudo-Noise (PN) ode.
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Figure 2.6: Basi frame struture.The preamble arrier-sets are de�ned using the following equation:
PreambleCarriesSetn = n+ 3 · k, n = 0, 1, 2 and k = 0, . . . , 567 (2.152)where PreambleCarrierSetn spei�es all subarriers alloated to the spei� preamble.Pilot subarriersFor pilot subarriers we use something similar to the sequenes used in the preamble.Pilots are BPSK modulated and boosted.2.6.3 ChannelSimulations, performed in Matlab environment, an be run with two di�erent han-nel types: SCME and exponential.The �rst one is the Spatial Channel Model-Extended. It is an extension to the 3GPP[49℄ Spatial Channel Model (SCM) and its Matlab implementation was downloaded fromhttp://www.mathwork.om/produts/matlab/.The exponential hannel is implemented using the Rayleigh model [50℄ and has anexponential Power Delay Pro�le (PDP) [28℄.2.6.4 Channel estimationIn our simulations we onsider the following hannel estimators:- LS Least square estimator: this is the simplest one: through Equation (2.135) weompute the hannel in the frequeny domain on the pilot subarriers, thenthrough Equation (2.136) we ompute the estimated impulse response and,�nally, we ompute the hannel frequeny response on all the subarrierswith a simple FFT operation.



44 Chapter 2. Channel estimation in OFDM systems- LMMSE Linear Minimum Mean Square Error independent on the transmit-ted data: one we have omputed the LS estimation on pilot subarriersthrough Equation (2.135), we an ompute the LMMSE estimation on pi-lots independent on the transmitted data through the Equation (2.139) andthen, performing as desribed for the LS, ompute the hannel on all thesubarriers.- LMMSE_X Linear MinimumMean Square Error dependent on the transmitteddata: as for the LMMSE, one we have omputed the LS estimation onpilot subarriers through Equation (2.135), we an ompute the LMMSEestimation on pilots dependent on the transmitted data through the Equation(2.140) and then the hannel on all the subarriers.- alpha This is the hannel traking method desribed in Setion 2.5.3, where theadaptation gain is hosen as de�ned in Equation (2.149).2.6.5 ParametersIn this Setion we list the parameters used in the simulations:- OFDM system with 512 subarriers:
⋆ 46 + 45 null subarriers
⋆ 1 DC subarrier
⋆ 60 pilot subarriers
⋆ 360 data subarriers- 25 OFDM symbols:
⋆ 1 preamble
⋆ 24 data and pilot symbols- 64 yli pre�x' length- 5 MHz bandwidth- 2 GHz arrier frequeny- QPSK modulation (for data subarriers)- SCME hannel- onvolutional ode



2.7. Results 452.7 ResultsIn our simulations we onsider three di�erent speeds for the mobiles: 3, 50 and 130km/h and we analyze the loss of performane in terms of bit error rate at di�erent speedsdue to the hannel estimation. Figures 2.7, 2.8 and 2.9 represent the performane for thesystem desribed above: red and blak lines represent the performane of the systemwhen we assume a perfet hannel knowledge with and without oding respetively.Cyan line represents performane of the system if we onsider the LS estimator, greenand magenta lines represent the performane when the hannel estimation is performedthrough the LMMSE algorithm onsidering the independene of the estimator from thetransmitted data and not. Finally the blue line represents the performane for theadaptive traking.
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Figure 2.7: Bit error rate with SCME hannel and v = 3 km/h.From all the Figures 2.7, 2.8 and 2.9 we observe that the performane of the LMMSEindependent on the transmitted data are very bad and for SNR greater than 6.2 dBit performs worst than the unoded system with perfet hannel knowledge. Adaptivetraking is a good algorithm for low speeds and so for hannels whih vary very slowlyin the time. LS and LMMSE dependent on the transmitted pilots have both goodperformane in terms of bit error rate, beause we have a good number of pilots.The same results are proved in Figures 2.10, 2.11 and 2.12, where we an see themean square error for the impulse hannel estimation: LS error is represented with ayan line, LMMSE independent on transmitted data with a green line, LMMSE depen-dent on transmitted data with a magenta line and, �nally, the blue line represents theerror for the adaptive traking.From Figures 2.7 and 2.10 we an observe that for speed equal to 3 km/h theadaptive algorithm is the one whih presents the best MSE, than we have the LS,the LMMSE dependent on the transmitted data and the one independent on them
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Figure 2.8: Bit error rate with SCME hannel and v = 50 km/h.
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Figure 2.9: Bit error rate with SCME hannel and v = 130 km/h.algorithms. However, omparing Figures 2.7 and 2.10 we observe that these MSE valuesdon't present big di�erenes when we represent the BER of the system.Similar observations hold for speed equal to 50 km/h. Di�erent results are presentedfor speed equal to 130 km/h. From Figures 2.9 and 2.12 we understand that the adaptivealgorithm an't be used, beause of the Doppler spread. LS and LMMSE dependent onthe transmitted data give both very good performane.Results similar to the ones proposed in Figures 2.10, 2.11 and 2.12 an be seen inFigures 2.13, 2.14 and 2.15 where the mean square error for every subarrier is plotted.In these Figures the legend is the same desribed above.
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Figure 2.10: Mean square error for the impulse hannel estimation: SCME hanneland v = 3 km/h.
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Figure 2.11: Mean square error for the impulse hannel estimation: SCME hanneland v = 50 km/h.Considering the presented results and the fat the LMMSE is omputational moreomplex than the LS, we onlude that, when we onsider a WiMAX system and weneed the estimation of the hannel, we should use the LS algorithm.
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Figure 2.12: Mean square error for the impulse hannel estimation: SCME hanneland v = 130 km/h.
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Figure 2.13: Mean square error for every subarrier: SCME hannel and v = 3 km/h.
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Figure 2.14: Mean square error for every subarrier: SCME hannel and v = 50 km/h.
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Figure 2.15: Mean square error for every subarrier: SCME hannel and v = 130km/h.





Chapter 3Expetation maximizationalgorithm for joint hannelestimation and data detetion
3.1 IntrodutionAs said in the Introdution and extensively explained in Chapter 2, in an OFDMsystem the hannel estimation is very important at the reeiver, beause we need todetet the transmitted data.In this Chapter we want to investigate the joint detetion and hannel estimationfor the OFDM systems in the frequeny domain. Sine the detetion performanedepends on the auray of the hannel estimate, the joint proessing is employed withthe Expetation-Maximization (EM) algorithm to improve the auray of the hannelestimate.The EM algorithm was disovered and employed independently by several di�erentresearhers until Dempster and others [51℄ brought their ideas together, proved on-vergene, and oined the term EM algorithm. Sine that seminal work, hundreds ofpapers employing the EM algorithm in many areas have been published. A large list ofreferenes is found in [52℄. A typial appliation area of the EM algorithm is in genetis,where the observed data (the phenotype) is a funtion of the underlying, unobservedgene pattern (the genotype), e.g. [53℄. Another area is estimating parameters of mixturedistributions, e.g. [54℄. The EM algorithm has also been widely used in eonometri,linial, and soiologial studies that have unknown fators a�eting the outomes [55℄.Some appliations to the theory of statistial methods are found in [56℄.In the area of signal proessing appliations, the largest area of interest in the EMalgorithm is in maximum likelihood tomographi image reonstrution, e.g. [57℄, [58℄.Another ommonly ited appliation is training of hidden Markov models, espeiallyfor speeh reognition, e.g. [59℄. The books [60℄, [61℄ have hapters with extensivedevelopment of hidden Markov models (HMMs).Other signal proessing and engineering appliations began appearing in about 1985.



52 Chapter 3. Expetation maximization algorithm for joint hannel estimation and datadetetionThese inlude: parameter estimation [62℄ [63℄; ARMA modeling [64℄, [65℄; simultaneousdetetion and estimation [66℄, [67℄, [68℄; pattern reognition and neural network training[69℄, [70℄, [71℄; diretion �nding [72℄; noise suppression [73℄; spetrosopy [74℄; signal andsequene detetion [75℄; time-delay estimation [76℄; and speialized developments of theEM algorithm itself [77℄. The EM algorithm has been the subjet for multiproessingalgorithm development [78℄. The EM algorithm is also related to algorithms used ininformation theory to ompute hannel apaity and rate distortion funtions [79℄, [80℄,sine the expetation step in the EM algorithm produes a result similar to entropy.Sine the known and unknown symbols are simultaneously used to estimate thehannel, the following approah is a semi-blind method.3.2 The Expetation-Maximization (EM) algorithm3.2.1 IntrodutionThe EM algorithm produes Maximum Likelihood (ML) estimates of the parameterwhen there is many-to-one mapping from an underlying distribution to the distributiongoverning the observation.The EM algorithm onsists of two major steps:1. Expetation step (E-step): it is performed with respet to the unknown un-derlying variables using the urrent estimate of the parameters and onditionedupon the inomplete observation2. Maximization step (M-step): it provides a new estimation of the parametersthat maximize the expetation of the log-likelihood funtion de�ned over ompletedata, onditioned over the most reent observation and the last estimate.These two steps are iterated until the estimated values onverge.As said in the Introdution to the Chapter, the EM algorithm is related to algorithmsused in information theory, to ompute hannel apaity and rate distortion funtion,sine the E-step produes a result similar to entropy.The EM algorithm is philosophially similar to ML detetion in the presene ofunknown phase (inoherent detetion) or other unknown parameters: the likelihoodfuntion is averaged with respet to the unknown quantity (i.e. the expeted value ofthe likelihood funtion is omputed) before detetion, whih is a maximization step (see[41℄).3.2.2 General statement of the EM algorithmDe�ne:- Y the sample spae of the observation- y ∈ R
m an observation from Y- X the underlying spae of Y



3.2. The Expetation-Maximization (EM) algorithm 53- x ∈ R
n the outome from X, m < n; it is referred as omplete data and itis not observed diretly, but only by means of y, where y = y(x), whih is amany-to-point mapping.- X(y) a subset of X determined through the inverse map of the observed y- f(x|θ) probability density funtion (pdf) of the omplete data, where θ ∈ Θ ∈ R

ris the set of the parameters of the density- g(y|θ) =
∫

X(y) f(x|θ)dx pdf of the inomplete data- ℓy(θ) = g(y|θ) likelihood funtion- Ly(θ) = log ℓy(θ) log-likelihood funtion
PSfrag replaements X

X(y)

Y

y

x

Figure 3.1: Illustration of many to one mapping from X to Y . The point y is theimage of x, and the set X(y) is the inverse map of y.The basi idea behind the EM algorithm is that we would like to �nd θ to maximize
log f(x|θ), but we do not have the data x to ompute the log-likelihood. So, insteadwe maximize the expetation of log f(x|θ) given the data y and our urrent estimateof θ. This an be expressed in two steps.Let θ[k] be our estimate of the parameters at the kth iteration.For the E-step ompute

Q(θ|θ[k]) = E[log f(x|θ)|y, θ[k]]; (3.1)and, for the M-step, let θ[k+1] be that value of θ whih maximizes Q(θ|θ[k]):
θ[k+1] = arg max

θ
Q(θ|θ[k]). (3.2)It is important to note that the maximization is with respet to the �rst argumentof the Q funtion, the onditioner of the omplete data likelihood.The EM algorithm onsists of hoosing an initial θ[k], then performing the E-step andM-step suessively until onvergene. Convergene may be determined by examiningwhen the parameters quite hanging, i.e., stop when ‖θ[k] − θ[k+1]‖ < ǫ for some ǫ andsome appropriate distane measure ‖ · ‖.



54 Chapter 3. Expetation maximization algorithm for joint hannel estimation and datadetetion3.2.3 Convergene of the EM algorithmFor every iterative algorithm, the question of onvergene needs to be addressed andfor the EM algorithm it may be stated simply: at every iteration of the algorithm, avalue of the parameter is omputed so that the likelihood funtion does not derease.That is, at every iteration the estimated parameter provides an inrease in the likelihoodfuntion until a loal maximum is ahieved. In [16℄, the authors provided a onvergenetheorem for the EM algorithm whih is reported in Appendix A.Despite this onvergene theorem, there is no guarantee that the onvergene willbe to a global maximum. For likelihood funtion with multiple maxima, onvergenewill be to a loal maximum whih depends on the initial starting point θ[0].The onvergene rate of the EM algorithm is also of interest. Based on mathematialand empirial examinations, it has been determined that the onvergene rate is usuallyslower than the quadrati onvergene typially available with a Newton's-type method[54℄.However, as observed by Dempster [51℄, the onvergene near the maximum dependsupon the eigenvalues of the Hessian of the update funtionM , so that rapid onvergenemay be possible.In any event, even with potentially slow onvergene there are advantages to EMalgorithms over Newton's algorithms.In the �rst plae, no Hessian needs to be omputed. Also there is no hane of"overshooting" the target or diverging away from the maximum.The EM algorithm is guaranteed to be stable and to onverge to an ML estimate.Further disussion of onvergene appears in [81℄, [82℄.3.3 Joint hannel estimation and data detetion for OFDMsystems3.3.1 System modelLet N be the number of subarriers and x(n) = [x0(n), x1(n), . . . , xN−1(n)]T the
nth signal vetor of size N × 1 to be transmitted, where xm(n) ∈ S and S is the set ofmodulated symbols.After the OFDM modulator the signal is

x̃(n) = F Hx(n) (3.3)where F is the Fourier transform matrix: Fn,m = 1√
N
e−j2π(n−1)(m−1)/N , n,m = 1, 2, . . .

. . . , N .We assume that the hannel impulse response (CIR) is time-invariant for an OFDMsymbol and for an nth signal vetor it is an L × 1 vetor: {hl}L−1
l=0 . We assume alsothat the CIR's length L is smaller than the number of subarriers N (L << N) andalso than the yli pre�x' length CP (L << CP ).
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Figure 3.2: An overview of the EM algorithm. After initialization, the E-step and M-step are iteratively omputed until the parameter estimate has ome to onvergene.The disrete Fourier transform (DFT) of the CIR is:
h̃p(n) =

L−1∑

l=0

hl(n)e−j2πlp/N , p = 0, 1, . . . , N − 1 (3.4)and we de�ne H̃(n) = diag[h̃0(n), h̃1(n), . . . , h̃N−1(n)].Hene, the reeived signal after removing yli pre�x is:
ỹ(n) = H (n)x̃(n) + w̃(n), (3.5)where H (n) is the N ×N yli matrix of [h0(n), h1(n), . . . , hL−1(n), 0, . . . , 0

︸ ︷︷ ︸

N−L

]T and
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w̃(n) is the bakground noise in the time domain.After the DFT the reeived signal is:

y(n) = F ỹ(n)

= F (H (n)x̃(n) + w̃(n))

= F H (n)F H

︸ ︷︷ ︸

H̃(n)

x(n) + Fw̃(n)

= diag[x0(n), x1(n), . . . , xN−1(n)]h̃(n) + w(n) (3.6)where w(n) is the noise in the frequeny domain and h̃(n) = [h̃0(n), h̃1(n), . . . , h̃N−1(n)]Tis the frequeny hannel response omputed in Equation (3.4).We an also de�ne the N ×N ovariane matrix of noise:E[w(n)wH(n)] = σ2
wIN×N .Now, we onsider a omb-type OFDM system, in whih, in eah OFDM symbol,some subarriers are used to transmit pilots, as we an see in Figure 3.3.
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Major group 0

Major group 1

Maior group 2Figure 3.3: Comb-type struture for an OFDM system.Let xp(n) be the signal blok whih ontains pilot tones. In addition, we denote by
xd(n) the signal blok whih ontains data tones. We have:

x(n) = xp(n) + xd(n). (3.7)Let P denote the index set for pilot tones. Then, the index set for data tones, D, beomesthe omplementary set of P. From Equation (3.7) we understand that xp(n) and xd(n)must have the same dimension, so we need to de�ne the following rule: every elementin xp(n) whose index is in P has some values from S. Otherwise, the value beomeszero. The same rule is applied to xd(n), onsidering the elements whose indexes are in
D. Attention must be paid when, as usually happens, pilots and data are modulatedwith di�erent modulations. In this ase values are piked from two di�erent sets; wede�ne them Sp and Sd.From (3.6), the reeived signal vetor is rewritten as

y(n) = H̃(n)xp(n) + H̃(n)xd(n) + w(n). (3.8)Note that xp(n) is known at the reeiver and so the hannel matrix H̃(n) and the datavetor xd(n) shall be estimated.



3.3. Joint hannel estimation and data detetion for OFDM systems 57For notational onveniene, we omit the symbol index n. Let h = [h0, h1, . . . , hL−1]be the hannel vetor to be estimated jointly with the data symbols. In addition, wede�ne the N × L DFT matrix F L as:
[FL]n,m = e−j2π(n−1)(m−1)/N , n = 1, 2, . . . , N, m = 1, 2, . . . , L. (3.9)Then, from (3.4), we an show that

h̃ = F Lh.For notation onveniene, we de�ne:- A =diag(xp)F L- B(h) =diag(F Lh)- K = Jd, where Jd is an N ×Nd matrix whose elements are given by
[Jd]m,n =

{

1 m = βn, n = 1, 2, . . . , Nd

0 otherwiseand βn is the nth smallest element of the index set of data tones D- d = JT
d xdand so, rewrite the reeived signal as [17℄:

y = Ah + B(h)Kd + w. (3.10)It is noteworthy that B(h)K is deoupled, this means that eah olumn vetor hasonly one non zero elements, while the other element are zero.3.3.2 Channel estimationTo develop the algorithm of interest, we onsider an OFDM symbol and we supposethat the hannel vetor h is a symbol-deterministi hannel vetor1 to be estimatedthrough the paper.Cramer-Rao Lower Bound (CRLB)The Cramer-Rao lower bound (CRLB) is an important riterion to evaluate thereliability of any unbiased estimator, beause it provides the MMSE bound among allunbiased estimators.We assume that the hannel vetor h is a deterministi hannel vetor.1By the expression symbol-deterministi hannel vetor we mean a hannel as desribed in Setion2.1 whih is assumed onstant in an OFDM symbol and varies very slowly from symbol to symbol.



58 Chapter 3. Expetation maximization algorithm for joint hannel estimation and datadetetionThe CRLB an be found if the vetor of data symbols, d, is known. Sine B(h) =diag(F Lh), we an show that:
B(h)Kd = diag(Kd)F Lh. (3.11)From this, we have a linear model for the reeived signal vetor y:

y = diag(x0, x1, . . . , xN−1)F Lh + w

= Qh + w, (3.12)where
Q = diag(x0, x1, . . . , xN−1)F L

= A + diag(Kd)F L.If the vetor of data symbols, d, is known, the matrix Q beomes a known matrix.Hene, from [45℄, we an have the CRLB as:E[[ ℜ(ĥ − h)

ℑ(ĥ − h)

]

[(ℜ(ĥ − h))T (ℑ(ĥ − h)T )]

]

≥ CRLB(h)

=
σ2

w

2

[

ℜ{(QHQ)−1} −ℑ{(QHQ)−1}
ℑ{(QHQ)−1} ℜ{(QHQ)−1}

]

, (3.13)where ĥ is an unbiased estimate of h. It follows that:E[‖ĥ − h‖2] ≥ trae(CRLB(h)). (3.14)Note that this bound is ahievable if d is known or orretly deteted. If N is su�ientlylarge and pilot and data symbols are random, QHQ an be approximate by Nσ2
xI , where

σ2
x = E[|xm(n)|2]. Hene we an have:trae(CRLB(h)) =

L

N

σ2
w

σ2
x

. (3.15)Note that this bound is independent of the data symbols.Maximum Likelihood (ML) estimateIn OFDM, aording to [41℄, a simple estimate of h an be found only utilizing pilottones. It an be shown that the two subspaes, Range(A) and Range(B(h)K), areorthogonal for any h. If A is full-rank and Np ≥ L, the ML estimate is given by:
ĥOF,p = (AHA)−1AHy (3.16)and it is not a�eted by the data tones. It an be shown that the uniform distributionof pilot subarriers provides the best performane by minimizing the mean square error



3.3. Joint hannel estimation and data detetion for OFDM systems 59(MSE).As we will see later, this estimate an be the initial hannel estimation for the EMalgorithm.Frequeny domain equalizationSuppose that the hannel estimate ĥ is given, we need to equalize the reeivedsignal. To do this we an adopt more than one tehnique. One of these is the zero-foring equalization in the frequeny domain, whih an be written as:
d̂zf = P zf (ĥ)(y − Aĥ), (3.17)where P zf (ĥ) = ((B(ĥ)K)H(B(ĥ)K))−1(B(ĥ)K)H is an Nd × N matrix, B(ĥ) =diag(F Lĥ) and ĥ is the best estimate we known at the moment (i.e. ĥOF,p or ĥ(k)).In OFDM this method an lead to in�nite tones' estimates if there exist spetralnulls. To overome this, the minimum mean square error (MMSE) equalizer an beused as:

d̂mmse = P mmse(ĥ)(y − Aĥ), (3.18)where P mmse(ĥ) = ((B(ĥ)K)H(B(ĥ)K) + σ2
wI)

−1(B(ĥ)K)H .Note that (B(ĥ)K)H(B(ĥ)K) is a diagonal matrix and its elements are non-negative.3.3.3 Joint hannel estimation and data detetion using EM algorithmFrom (3.10) and the probability density funtion (pdf) of y onditioned on d, hand σ2
w: f(y|d,h, σ2

w), the joint ML estimation of the hannel vetor and data symbolvetor an be formulated as:
{ĥ, d̂, σ̂2

w} = arg max
h∈CL,d∈S

Nd ,σ2
w

f(y|d,h, σ2
w)

= arg max
h∈CL,d∈S

Nd ,σ2
w

1

(πσ2
w)N

exp
(

− ψ(y,h,d)

σ2
w

) (3.19)where ψ(y,h,d) = ‖y − Ah − B(h)Kd‖2, CL is the L-dimensional omplex vetorspae and SNd is the Nd dimensional Cartesian produt of S. But the omplexity of(3.19) is too high, so, to solve it, we use the EM algorithm.We de�ne:- the reeived signal y as the inomplete data,- the ouple of the reeived signal y and the transmitted data d, {y,d}, as theomplete data,- the noise variane σ2
w and the CIR h as the unknown parameters to be estimated.Note that B(h)K is deoupled and so the joint detetion of the data vetor d isreplaed by the individual detetion of the data symbols and this signi�antly reduesthe omplexity of the detetion algorithm.



60 Chapter 3. Expetation maximization algorithm for joint hannel estimation and datadetetionE-stepWe start onsidering the kth iteration and we have the estimates ĥ(k) and σ̂2
w,(k).Let f(y,d|h, σ2

w) be the joint pdf of the omplete data {y,d} onditioned on h and σ2
w.For the E-step we need to �nd E[log f(y,d|h, σ2

w)|ĥ(k), σ̂
2
w,(k),y]. For onveniene, letbe H(k) = {ĥ(k), σ̂

2
w,(k),y}. From (3.10), we have:E[log f(y,d|h, σ2

w)|H(k)] = E[ log
{ 1

(πσ2
w)N

exp
(

− ψ(y,h,d)

σ2
w

)}

|H(k)

]

= −N log(πσ2
w) − E[ψ(y,h,d)|H(k)]

σ2
w

(3.20)Note that the expetation is arried out over d sine y is given.From B(h)Kd = diag(Kd)F Lh, we have:E[ψ(y,h,d)|H(k)] = E[‖y − (A + diag(Kd)F L)h‖2|(H(k))]

, v(k)(h,y). (3.21)It follows that:
vk(h,y) = yHy − 2ℜ{yHG1h} + hHG2h (3.22)where

G1 = A + E[diag(Kd)F L|H(k)]and
G2 = AHA + AHE[diag(Kd)F L|H(k)] + (E[diag(Kd)F L|H(k)])

HA

+ E[(diag(Kd)F L)H(diag(Kd)F L)|H(k)]For onveniene, we de�ne G0 = E[diag(Kd)F L|H(k)]. Hene, it an be easy toshow that:
G0 = diag(KE[d|H(k)])F L, (3.23)

G1 = A + G0 (3.24)and
G2 = AHA + AHG0 + GH

0 A + F H
L (diag(KE[ddH |H(k)])K

H)F L

= GH
1 G1 (3.25)where diag(X) denotes a diagonal matrix whih takes all diagonal elements from X.Hene, in order to �nd vk(h,y), we need to ompute the mean vetor and ovarianematrix of d onditioned on H(k). We assume that the symbols in d are independent.



3.3. Joint hannel estimation and data detetion for OFDM systems 61The onditional mean of d an be obtained as follows:
[E[d|H(k)]]m =

P∑

l=1

qlPr(dm = ql|H(k)), m = 1, 2, . . . , Nd (3.26)where dm stands for the mth element of d and ql is the lth element of S. We also needthe onditioned ovariane matrix E[ddH |H(k)], so we have:E[dmd
∗
r |H(k)] =

P∑

l=1

P∑

l′=1

qlq
∗
l′Pr(dm = ql|H(k))Pr(dr = q′l|H(k)), m 6= r (3.27)and E[|dm|2|H(k)] =

P∑

l=1

|ql|2Pr(dm = ql|H(k)), m = 1, 2, . . . , Nd (3.28)From above, we need to �nd the onditional probability Pr(dm = ql|H(k)). Let
d̄m be a sub-vetor obtained from d by removing the mth element, dm (d̄m = 〈d〉mdenotes this operation). De�ne y(k) = y − Aĥ(k) and U (k) = B(ĥ(k))K, where,as usual, B(ĥ(k)) = diag(F Lĥ(k)). Furthermore, denote by Ūm,(k) the sub-matrixof U (k) obtained by removing the mth olumn vetor. De�ne also Λ(dm = ql) =

‖y(k) − Ūm,(k)d̄m,(k) − um,(k)ql‖2, where um,(k) is the mth olumn of the matrix U (k).In [17℄ it is shown that we an �nd the following expression for Pr(dm = ql|H(k)),whih results not a�eted by d̂m:
Pr(dm = ql|H(k)) =

exp

(

− 1
σ2

w,(k)

Λ(dm = ql)

)

∑P
l′=1 exp

(

− 1
σ2

w,(k)

Λ(dm = q′l)

)

, p̂(k)(dm = ql), m = 1, 2, . . . , Nd (3.29)One p̂(k)(dm = ql) is known, we an �nd E[d|H(k)], E[ddH |H(k)], G0, G1, G2 and
v(k)(h,y).In above, we have found an appropriate expression of E[log f(y,d|h, σ2

w)|H(k)] andwith this, the M-step an be arried out to update the estimates of the hannel vetorand the noise variane.M-stepThe next hannel estimate, ĥ(k+1), an be found by minimizing v(k)(h,y), the resultis:
ĥ(k+1) = G−1

2 GH
1 y. (3.30)



62 Chapter 3. Expetation maximization algorithm for joint hannel estimation and datadetetionIt an be easily shown that the estimate of the noise variane whih maximize (3.20) isgiven by:
σ̂2

w,(k+1) =
1

N
vk(ĥ(k+1),y). (3.31)InitializationThe estimate of the hannel vetor based only on pilots tones, written in equation(3.16) an be used for the initial estimate of the hannel vetor, ĥ(0) = ĥOF,p.The initial variane an be given by:

σ2
w,(0) =

‖y‖2

N
. (3.32)In addition, the initial vetor for d̄m an be given by the hard deision from theMMSE frequeny-domain equalizer in (3.18) with the initial hannel estimate.The iteration is terminated when σ2

w(k + 1) ≥ σ2
w(k).Figure 3.4 gives a shemati desription of the EM algorithm.
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Figure 3.4: Brief resume of the evolution of the EM algorithm.



64 Chapter 3. Expetation maximization algorithm for joint hannel estimation and datadetetion3.4 System desription and simulation resultsThe results presented in this Setion are obtained with the setup desribed in Se-tion 2.6. There's only a di�erene: in this ase we don't onsider the possibility ofonatenating more bits before oding. Here we enode bits symbol-by-symbol, so thesoureword length is 360.3.4.1 ResultsAs in Chapter 2, also for the EM algorithm we present the performane in termsof bit error rate. We onsider two di�erent types of hannel: AWGN (Figure 3.5)and SCME hannel (Figures 3.6, 3.7 and 3.8), and for the last one we analyze theresults for three di�erent speeds of the mobiles: 3, 50 and 130 km/h. To have someterms of omparison, the performane of the system are represented when we assumeperfet hannel knowledge and the data bits are oded and not. For the same reason,we also represent the BER when the hannel estimation is performed through the MLestimation.
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Figure 3.5: Bit error rate with AWGN hannel.Figures 3.5, 3.6, 3.7 and 3.8 represent the results obtained through numerial simu-lations: the blak and green lines represent the bit error rate when we assume perfethannel knowledge and we onsider an unoded and a oded system respetively. Theyan line represents performane for the ML algorithm and the red one the performanefor the EM algorithm.From all these Figures, we an see that the EM algorithm always gives better per-formane than the ML one, but it is very omplex from a omputational point of view.
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Figure 3.6: Bit error rate with SCME hannel and v = 3 km/h.
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Figure 3.7: Bit error rate with SCME hannel and v = 50 km/h.3.5 ConlusionsSome onsiderations an be made to onlude this part on the hannel estimationin wireless systems. First of all we observe that all the estimator presented in these twoChapters require the knowledge of the hannel impulse response length. We an try toestimate it, but performane experienes a loss in term of bit error rate (see AppendixB for more details).Another important parameter is the noise variane. This must be known when weperform a MMSE or an EM estimation: while in EM algorithm it is the variable usedto deide when stopping iterating and so it is estimated, in the MMSE we assume it
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Figure 3.8: Bit error rate with SCME hannel and v = 130 km/h.known.Forgiven for a moment these drawbaks, and remembering that in the onlusion ofthe Chapter 2 we stated that for a WiMAX system we an use the LS algorithm whenthe hannel estimation in needed, here in Figures 3.9, 3.10, 3.11 and 3.12, we ompareLS and EM performane.
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Figure 3.9: Bit error rate omparison between LS and EM algorithms when the hannelis AWGN.Exept for the AWGN hannel, in all the other ases the EM algorithm performsbetter than the LS one, but the performane gain is very small and it doesn't justifythe hoie of a omplex algorithm suh as the EM one.
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Figure 3.10: Bit error rate omparison between LS and EM algorithms when thehannel is SCME and v = 3 km/h.
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Figure 3.11: Bit error rate omparison between LS and EM algorithms when thehannel is SCME and v = 50 km/h.One again we onlude that for a WiMAX system the hannel an be estimatedthrough the LS algorithm.To onlude this disussion we want to underline that all this study has been devel-oped to understand whih is the best algorithm to be used to estimate the hannel in aWiMAX system. Aim of the study was a trade-o� between the performane in terms ofbit error rate and the omputational omplexity. The results we found, as said before,suggest us the LS algorithm.
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Figure 3.12: Bit error rate omparison between LS and EM algorithms when thehannel is SCME and v = 130 km/h.



Chapter 4Channel oding - Low-DensityParity-Chek (LDPC) CodesCoding for error orretion is one of the many tools available for ahieving reliabledata transmission in ommuniation systems. For a wide variety of hannels, the noisehannel oding theorem of the Information Theory proves that, if properly oded, forinformation transmitted at a rate below hannel apaity, the probability of deodingerror approahes zero exponentially with the ode length.In this ontext another important fator is the relation between the ode lengthand the omputation time or the equipment osts neessary to ahieve this low errorprobability.The low-density parity-hek odes, onsidered here, are speial example of parityhek odes [83℄. The odewords of a parity-hek ode are formed by ombining a blokof binary information digits with a blok of hek digits. Eah hek digit is the modulotwo sum of the pre-spei�ed set of information digits. These formation rules for thehek digits an be onveniently represented by a parity-hek matrix, whih representsa set of linear homogeneous modulo 2 equations alled parity-hek equations and theset of odewords is the set of solution of these equations.The use of parity-hek odes makes oding relatively simple to implement; un-fortunately, the deoding of parity hek odes is not inherently simple to implement,and thus we must look for speial lasses of parity-hek odes, for whih reasonabledeoding proedures exist.4.1 Low-Density Parity-Chek (LDPC) odesLow-Density Parity-Chek odes (LDPC) have reently drawn muh attention dueto their near-apaity error orretion performane and are urrently in the fous ofmany standardization ativities. These odes an rightfully take their stand next toturbo odes as the most powerful error ontrol odes known. They o�er performanespetaularly lose to theoretial limits when deoded using iterative soft-deision de-oding algorithms based on fator graphs.



70 Chapter 4. Channel oding - Low-Density Parity-Chek (LDPC) CodesLDPC odes and a orresponding iterative deoding algorithm were �rst introduedby Gallager more than forty years ago [3, 4℄. However, for the next several deadesLDPC odes were largely forgotten, possibly beause omputers of the time ould notsimulate the performane of these odes with meaningful blok lengths at low errorrates. Following the disovery of turbo odes, LDPC odes were redisovered throughthe work of MaKay and Neal [84, 5℄ and have beome a major researh topi. LDPCodes signi�antly di�er from the more onventional trellis and blok odes. First, theyare onstruted in a random manner, and seond, they have a deoding algorithm whoseomplexity is linear in the blok length of the ode, whih allows the deoding of largeodes.The random onstrution is one of their problems, beause we only have a generalmethod for onstruting a lass of pseudorandom LDPC odes, but we an't onstrutgood odes algebrially or systematially. Thus, all the good odes we know are largelyomputer generated and their enoding is very omplex.On the other hand, their deoding is always performed through the Message PassingAlgorithm (MPA). This is an Iterative Deoding based on a Belief Propagation (IDBP)[18℄ algorithm and, even if its omputational omplexity is very high, it results verye�ient in LDPC deoding. It is a symbol-by-symbol soft-in soft-out deoding algorithmwhih iteratively proesses the reeived symbol in order to improve its reliability, basedon the parity-hek sums omputed from the hard deision of the reeived symbol.4.1.1 Code de�nition and spei�ation: Tanner's methodA low-density parity-hek ode is a ode spei�ed by a parity hek matrix Hof dimension M × N , where M = N − K is the number of parity-hek digits, K isthe soureword length and N is the odeword length; the matrix H has the followingproperties:� eah olumn ontains a small �xed number p ≥ 3 of 1's,� eah row ontains a small �xed number q > p of 1's,so it ontains mostly 0's and only a small number of 1's. In partiular an (N, p, q) lowdensity ode is a ode of blok length N and in its matrix eah olumn ontains a small�xed number p of 1's and eah row ontains a small �xed number q of 1's. A odede�ned in this way has a rate
R =

K

N

= 1 − M

N

= 1 − p

q
(4.1)An important property of the parity-hek matrix is that the number of its non-zeroentries must be the same whether alulated by rows or by olumns, i.e. the equation

M · q = N · p is satis�ed and so it must be p < q to have R < 1.



4.1. Low-Density Parity-Chek (LDPC) odes 71These odes are not optimum in the sense of minimizing the probability of deodingerrors, however, a very simple deoding sheme exists and this ompensates for theirlak of optimality.The analysis of low-density ode of long blok length is di�ult beause of theimmense number of odewords involved. It is simpler to analyze a whole ensemble ofsuh odes beause the statistis of an ensemble permit one to average over quantitiesthat are not tratable in individual odes.In order to de�ne an ensemble of (N, p, q) low-density odes, given the parity-hekmatrix, we an observe that it an be divided into p submatries, eah ontaining asingle 1 in eah olumn. The �rst of this submatries ontains all its 1's in desendingorder and the other matries are merely olumns permutations of the �rst, as we ansee in expression (4.35).De�nition 1. De�ne an ensemble of (N, p, q) odes as an ensemble resulting fromrandom permutation of the olumns of eah of the bottom p− 1 submatries of a parity-hek matrix, with equal probability assigned to eah permutation.There are two interesting results that an be proved using this ensemble, the �rstonerning the minimum distane of the member odes, and the seond onerning theprobability of deoding error.De�nition 2. The minimum distane of a ode is the number of positions in whihthe two nearest odewords di�er.The minimum distane of a member ode is a random variable and the distributionfuntion of a random variable an be overbounded by a funtion as skethed in Fig.4.1. As the blok length inreases, for �xed p ≥ 3 and q > p, this funtion approahesa unit step at a �xed fration δpq of the blok length.

Figure 4.1: Sketh of bound to minimum distane distribution funtion.



72 Chapter 4. Channel oding - Low-Density Parity-Chek (LDPC) CodesThe probability of error using maximum likelihood deoding for low-density odeslearly depends upon the partiular hannel on whih the ode is being used. The resultsare partiularly simple for the ase of the binary symmetri hannel (BSC), whih is abinary-input binary-output, memoryless hannel with a �xed probability of transitionfrom either input to the opposite output.De�nition 3 (Regular LDPC). A regular low-density parity-hek ode is ompletelyde�ned by a permutation π(i) of the natural numbers 1 ≤ i ≤ pN . The index i refersto the soket number at the variable nodes, and π(i) to the soket number at the heknodes to whih soket i onnets.De�nition 4 (Irregular LDPC). An irregular low-density parity-hek ode is ompletelyde�ned by a permutation π(i) of the natural numbers 1 ≤ i ≤ pN from variable to heknode soket numbers and two degree distributions λ(x) and ρ(x) for the variable nodesand hek nodes, respetively.The ode spei�ation lies in the interonnetion network, whih is omposed by Nvariable nodes with p onnetions from every one to hek nodes and M hek nodeswith q onnetions from every one to variable nodes.We assume that the blok length N and the ode rate are determined by the appli-ation, then it remains to determine appropriate values for p and q.Sine Gallager showed that the minimum distane of the typial regular LDPC odesinreases linearly with N , provided p ≥ 3, then regular LDPC are onstruted with pon the order of 3 or 4.The ode spei�ation given above is the starting point to introdue the Tanner'smethod. It is, in fat, based on a bipartite graph to provide a graphial representationof the parity-hek matrix.De�nition 5. The bipartite graph is a graph in whih the nodes may be partitionedinto two subsets suh that there are no edges onneting nodes within a subset.For LDPC we have two subsets: variable nodes, one for eah of the N olumns of
H and hek nodes, one for eah of the M rows of H ; an edge exists between the i-thvariable node and the j-th hek node if and only if hij = 1.De�nition 6. The number of edges inident upon a node is the degree of the node.When we onsider a regular LDPC, the bipartite graph of a (N, p, q) LDPC odeontains N variable nodes of degree p and M hek nodes of degree q. We observe alsothat (N, p, q) de�nes an ensemble of odes CN (p, q). One the degree of the nodes arehosen, we are still free to hoose whih partiular onnetions are made in the graph.An irregular LDPC ode an not be de�ned in terms of degree parameters p and q.We must, instead, use the degree distributions to desribe the variety of node degreesin the graph.De�nition 7. A degree distribution is a polynomial in x:

γ(x) =
∑

i

γix
i−1



4.2. Irregular LDPC odes 73suh that γ(1) = 1. The oe�ients γi equal the fration of edges in the graph whihare onneted to a node of degree i.Thus, to de�ne an ensemble CN(λ, ρ) of irregular LDPC odes we need: the odelength N and the degree distribution for the variable nodes λ(x) and for the hek nodes
ρ(x).Called Ne the number of edges in the ode and the ratios λi/i and ρi/i the numberof variable and hek nodes of degree i respetively, we an de�ne:� the number of variable nodes is

N = Ne

∑

i

λi

i
(4.2)� the number of hek nodes is

M = Ne

∑

i

ρi

i
(4.3)� the rate is

R =
N −M

M
= 1 − M

N
= 1 −

∑

i
ρi

i
∑

i
λi
i

(4.4)Observation 1. We observe that large irregular odes an approah the Shannon limit,but very large levels of irregularity are required.4.2 Irregular LDPC odesIn [85℄ the authors present irregular low-density parity-hek (LDPC) odes whihexhibit a performane extremely lose to the best possible as determined by Shannonapaity formula.Irregular LDPC odes were introdued in [86℄, [87℄ and were further studied in [88℄-[89℄. As we an see in De�nition 4, for suh an irregular LDPC ode, the degrees ofeah set of nodes are hosen aording to some distribution.For a given length and a given degree distribution, we de�ne an ensemble of odesby hoosing edges, i.e., the onnetions between variable and hek nodes, randomly.Assume that the number of edges is E, then a ode an be identi�ed with a permutationon E letters. By de�nition, all elements in this ensemble are equiprobable. In pratie,the edges are not hosen entirely randomly, sine ertain potentially unfortunate eventsin the graph onstrution an be easily avoided.We say that a polynomial γ(x) of the form
γ(x) =

∑

i≥2

γix
i−1is a degree distribution if γ(x) has non-negative oe�ients and γ(1) = 1. Given adegree distribution pair (λ, γ) assoiate to it a sequene of ode ensembles CN (λ, γ),



74 Chapter 4. Channel oding - Low-Density Parity-Chek (LDPC) Codeswhere N is the length of the ode and where
λ(x) =

dv∑

i≥2

λix
i−1

(

γ(x) =

dc∑

i≥2

γix
i−1
)spei�es the variable (hek) node degree distribution. More preisely λi (γi) representsthe fration of edges emanating from variable (hek) nodes of degree i. The maximumvariable degree and hek degree is denoted by dv and dc, respetively.The total number of edges E emanating from all variable nodes, is equal to

N
∑

i≥2

λi/i
∫ 1
0 λ(x)dx

= N
1

∫ 1
0 λ(x)dx

,and, if we onsider the M hek nodes, the total number of edges E is
M

1
∫ 1
0 γ(x)dx

.Assuming that all these hek equations are linearly independent, we see that the designrate is equal to
r(λ, γ) =

N −M

N
= 1 −

∫ 1
0 γ(x)dx
∫ 1
0 λ(x)dxThus, following we will give a brief desription of the hannel type, the distributionsand their properties and �nally we will desribe the optimization tehniques that weuse to obtain the degree distribution pairs with large threshold.4.2.1 ChannelWe onsider an order family of binary-input memoryless hannels parametrized by areal parameter δ suh that if δ1 < δ2 then the hannel with parameter δ2 is a physiallydegraded version of the hannel with parameter δ1. Furthermore, eah hannel in thisfamily is output-symmetri, i.e.

p(y|x = 1) = p(−y|x = −1). (4.5)4.2.2 Distribution and their propertiesFor some hannels, e.g., the BEC and the BSC, the density of reeived log-likelihoodratios is disrete. For others, e.g., the BIAWGNC, the density is ontinuous. In the�rst ase, the message densities will themselves be disrete and in the seond ase, themessage densities will be ontinuous. In order to be able to treat all these ases in auniform manner we shall work with a fairly general lass of distributions.Let F denote the spae of right-ontinuous, non-dereasing funtions F de�ned on
R satisfying limx→−∞ F (x) = 0 and limx→+∞ F (x) ≤ 1. To eah F ∈ F we assoiate arandom variable z over (−∞,+∞]. The random variable z has law or distribution F ,



4.2. Irregular LDPC odes 75i.e.,
Pr[z ∈ (−∞, x]] = F (x).The reason we allow limx→+∞ F (x) ≤ 1 rather than limx→+∞ F (x) = 1 is to permit zto have some probability mass at +∞, indeed

Pr[z = +∞] = 1 − lim
x→+∞

F (x).We will work with densities over (−∞,+∞] whih, formally, an be treated as(Radon-Nikodyn) derivatives of elements of F. The derivative, when it exists, is thedensity of the assoiated random variable z over (−∞,+∞) although there may bean additional point mass at +∞: reall Pr[z = +∞] = 1 − F−(∞). If f is thedensity orresponding to the distribution F we will write ∫
R
h(x)f(x)dx as a proxy for

∫

R
h(x)dF (x).We are interested in the evolution of the message distributions under the inde-pendene assumption. Therefore, we will now disuss how distributions evolve whenindependent random variables (in either representation) are summed and when therepresentation of suh variables is hanged.Their onvolution is de�ned by

(F ⊗G)(x) =

∫

R

F (x− y)dG(y) =

∫

R

G(x− y)dF (y).If z1 and z2 are independent random variables over (−∞,+∞] with distributions Fz1and Fz2 , respetively, then the distribution of z1 + z2 is Fz1 ⊗ Fz2 (as is the ase forindependent random variables de�ned over (−∞,+∞)).Now, suppose we have a random variable z over (−∞,+∞] with distribution Fzand we wish to desribe the distribution of the random variable γ(z) = (γ1(z), γ2(z)),where
γ1(z) = sgn(z)
γ2(z) = − ln tanh |z

2
|.We approah this problem by assigning two onneted distributions assoiated to γ2(z)under the onditions γ1(z) = 0 and γ1(z) = 1, respetively.Any funtion G over GF(2) × [0,+∞) an be written as

G(s, x) = χ{s=0}G
0(x) + χ{s=1}G

1(x)where χ{s=a} denotes the harateristi funtion of the set {s = a}, i.e., χ{s=a} = 1 if s =

a and χ{s=a} = 0 otherwise. Let G denote the spae of funtions over GF(2) × [0,+∞)suh that G0(x) and G1(x) are non-dereasing and right ontinuous
lim

x→+∞
G0(x) ≥ lim

x→+∞
G1(x)



76 Chapter 4. Channel oding - Low-Density Parity-Chek (LDPC) Codesand suh that G0(0) ≥ 0 and G1(0) = 0.Given a random variable z ∈ (−∞,+∞] with distribution Fz we de�ne the distri-bution of γ(z) as
Γ(Fz)(s, x) = χ{s=0}Γ0(Fz)(x) + χ{s=1}Γ1(Fz)(x) (4.6)where

Γ0(Fz)(x) = 1 − F−
z

(

− ln tanh
x

2

) and Γ1(Fz)(x) = Fz

(

ln tanh
x

2

)

.Thus
Γ0(Fz)(x) = Pr[γ1(z) = 0, γ2(z) ≤ x]

= Pr[z ≥ − ln tanh
x

2
]and

Γ1(Fz)(x) = Pr[γ1(z) = 1, γ2(z) ≤ x]

= Pr[z ≤ ln tanh
x

2
].Note that Γ(Fz) ∈ G, and, in partiular

lim
x→+∞

Γ0(Fz)(x) − lim
x→+∞

Γ1(Fz)(x) = Pr[z = 0].Let G = χ{s=0}G
0 + χ{s=1}G

1 be an element of G. We speak of densities over GF(2)×
[0,+∞]

g(s, x) = χ{s=0}g
0(x) + χ{s=1}g

1(x)by substituting for G0 and G1 their assoiated densities.The funtion Γ has a well-de�ned inverse. Given
G = χ{s=0}G

0 + χ{s=1}G
1 ∈ Gwe have

Γ−1(G)(x) = χ{s>0}G
0
(

− ln tanh
x

2

)

+ χ{s<0}G
1
(

− ln tanh
−x
2

) (4.7)and
Γ−1(G)(0) = limx→+∞G

0(x).It is easy to hek that Γ−1 : G → F and that Γ−1(Γ(F )) = F for all F ∈ F . Further,
Γ and Γ−1 are additive operators on the spaes G and F, respetively.For onveniene, although it onstitutes an abuse of notation, we will apply Γ and
Γ−1 to densities.The spae G has a well-de�ned onvolution. Here, the onvolution of two distribu-



4.2. Irregular LDPC odes 77tions χ{s=0}G
0 + χ{s=1}G

1 and χ{s=0}H
0 + χ{s=1}H

1 is the distribution
χ{s=0}((G

0 ⊗H0) + (G1 ⊗H1)) + χ{s=1}((G
0 ⊗H1) + (G1 ⊗H0))where, here, ⊗ denotes the (one-sided) onvolution of standard distributions. In otherwords, the new onvolution is a onvolution over the group GF(2)× [0,+∞). By abuseof notation, we denote this new onvolution by the same symbol ⊗. Again, we shallallow the onvolution operator to at on the densities assoiated to elements of G withthe impliit understanding that the above provides the rigorous de�nition.If z1 and z2 are independent random variables over GF(2) × [0,+∞) with distribu-tions Gz1 , Gz2 ∈ G, respetively, then the distribution of z1 + z2 is Gz1 ⊗Gz2 .Density evolutionThe symbols Pl and Ql will be shorthand notations for the densities of the randomvariables m(l)

vc and m(l)
cv ,i.e. message sent from variable node v to hek node c and theone sent from hek node c to variable node v at the l-th iteration, respetively. Wewill use the notation ∫ Pl and ∫ Ql to denote the assoiated distributions.By

ml
cv = γ−1

( ∑

v′∈Vc{v}
γ(ml−1

v′c )
)

,we see that the random variable desribing the message passed from hek node c tovariable node v is the image under γ−1 of a sum of random variables from GF(2) ×
[0,+∞]. These random variables are independent by the independene assumption.So, the density of their sum is the onvolution of their densities.Let the graph have degree distribution pair (λ, ρ) where

λ(x) =
∑

i≥2

λix
i−1 and ρ(x) =

∑

i≥2

ρix
i−1.Reall that the fration of edges onneted to a variable node of degree i is λi, andthe fration of edges onneted to a hek node of degree i is ρi. Thus, a randomlyhosen edge in the graph is onneted to a hek node of degree i with probability ρi.Therefore, with probability ρi the sum in (4.2.2) has (i−1) terms, orresponding to theedges onneting c to all its neighbors other than v. We onlude that, in this ase, thedensity of m(l)

cv is equal to
Γ−1(Γ(Pl−1)

⊗(i−1)). (4.8)Summing up over all the possibilities for the degrees of the hek node c, we see thatthe density of the message m(l)
vc equals

Ql = Γ−1(ρ(Γ(Pl−1))) = Γ−1
(∑

i≥2

ρi(Γ(Pl−1))
⊗(i−1)

)

. (4.9)A reursion for Pl in terms of Ql is derived similarly and is quite straightforward.The density of the message passed from hek node c to variable node v at round l is



78 Chapter 4. Channel oding - Low-Density Parity-Chek (LDPC) Codesequal to Ql. At v the inoming messages from all hek nodes other than c are added to
m0, the reeived value for v, and the result is sent bak to c. Sine, by the independeneassumption the random variables desribing these messages are independent, the densityof this message equals

Pl = P0 ⊗ λ(Ql) = P0 ⊗
∑

i≥2

λi(Ql)
⊗(i−1) (4.10)where P0 is the density of the random variable desribing the hannel. Combining (4.9)and (4.10) we obtain the desired reursion for Pl in terms of Pl−1.In [85℄, the authors provide that the density funtion of the messages passed fromvariable to hek nodes during the belief propagation are symmetri, provided that thehannel is output-symmetri.4.2.3 OptimizationIn this setion, we brie�y desribe the optimization tehniques that we used toobtain degree distribution pairs with large thresholds.First, we observe that the threshold is de�ned as the supremum of all hannelparameters for whih the probability of error under density evolution onverges to zero.This is equivalent to requiring that the message distribution onverges to ∆∞. Inpratie, we an verify at best that the probability of error reahes a value below apresribed ǫ, so the issue of onvergene is not of great onern sine we always allow a�nite (but small) probability of error.Seondly, in order to perform the omputations we need to quantize the quantitiesinvolved. This quantization leads to a quantization error and this error might au-mulate over the ourse of many iterations, rendering the omputations useless. Thisproblem an be irumvented in the following way. By arefully performing the quan-tization one an ensure that the quantized density evolution orresponds to the exatdensity evolution of a quantized message-passing sheme. Sine belief propagation isoptimal, suh a quantized version is suboptimal and, hene, the reported thresholds anbe thought of as lower bounds on the atual thresholds.Another important result presented in [85℄ states that density evolution for beliefpropagation always onverges to a �xed point.Loal optimization - hill-limbing approahFix a small target error probability ǫ and a maximum number of iterations m. Startwith a given degree distribution pair and determine the maximum admissible hannelparameter, i.e., the maximum hannel parameter suh that the error probability after miterations is below ǫ. Now apply a small hange to the degree distribution pair and hekif it has either a larger admissible hannel parameter or at least a smaller target errorprobability after m iterations. If so, delare the new degree distribution pair to be theurrently best degree distribution pair, otherwise keep the original degree distributionpair. The same basi step is then repeated a large number of times.



4.2. Irregular LDPC odes 79The searh for good degree distribution pairs an be substantially aelerated byappropriately limiting the searh spae.We found, for example, that very good degreedistribution pairs exist with only a few nonzero terms. In partiular, it su�es to allowtwo or three nonzero hek node degrees (and these degrees an be hosen onseutively)and to limit the nonzero variable node degrees to 2, 3, the maximum suh degree dl,and, possibly, a few well-hosen degrees in-between.Provided that the �xed points are stable, the message distributions at these pointsare ontinuous funtions of the degree distribution pair. Hene, a small hange inthe degree distribution pair auses only small hanges in the assoiated �xed-pointdistributions. Furthermore, if the �xed points are stable, then this a�ords a ertainmemorylessness to the density evolution proess beause they serve as loal attrators.Small perturbations to the path will not matter one the domain of onvergene of the�xed point is entered and, one the �xed point is found, the path that leads to it isirrelevant.Assume we determine the ritial points (near �xed points, or likely �xed points for aslightly worse initial distribution) for a partiular degree distribution pair and we wouldlike to determine the merit of a partiular small hange of the degree distribution pair.Rather than starting with the initial distribution and then heking if (and how fast) thisinitial distribution onverges to ∆∞, one an memorize the distributions at the ritialpoints of the original degree distribution pair and then determine how the proposedhange a�ets the speed of onvergene loally at these points. One a promising hangehas been found, the merit of this hange an be veri�ed by starting with the initial degreedistribution pair. Typially, only a few iterations are neessary at eah ritial pointto determine if the hange of the degree distribution pair improves the onvergene ornot. This has to be ompared to hundreds of iterations or even thousands of iterationswhih are neessary if one starts with the initial distribution.In the optimization sheme we just desribed we made use of the distributionsat the "ritial points" to �nd promising hanges of the degree distribution pair. Thefollowing shemes extend this idea even further; the resulting algorithms are reminisentof the algorithms used in the BEC ase. For simpliity, we will only desribe theoptimization of the variable node degree distribution. The extension to the hek nodedegree distribution and to joint optimization should be quite apparent.Assume that we are given a degree distribution pair (λ, ρ), a partiular hannelparameter σ, and a target probability of error ǫ. Let {pl}m
l=0 be the sequene of errorprobabilities of the belief propagation algorithm. More preisely, p0 is the initial errorprobability, pl is the probability of error after the lth iteration, and pm ≤ ǫ < pm−1.Assume that we want to �nd a new degree distribution λ̃ whih ahieves the targetprobability of error in fewer iterations or ahieves a lower target in the same numberof iterations. De�ne a matrix Al,j, 1 ≤ l ≤ m, 2 ≤ j ≤ dr. The entry Al,j is theerror probability whih results if we run the belief-propagation deoder for (l− 1) stepsassuming that the variable node degree distribution is λ followed by one step in whihwe assume that the variable node degree distribution is a singleton with all its mass onthe degree j. Note that the atual error probability after the lth iteration, pl, an be



80 Chapter 4. Channel oding - Low-Density Parity-Chek (LDPC) Codesexpressed in terms of Al,j as
pl =

dl∑

j=2

Al,jλj.Let us de�ne a funtion p(t) for t ∈ [0,m] by linearly interpolating the pl, setting
p(l) = pl. De�ne

L(λ) =

∫ p0

pl

(

− dp

dt
(x)
)−1

dx.We interpret L as the number of iterations required to take the initial probability oferror p0 down to pm. Using the expression above, we an write down the gradient of
L(λ) with respet to λ. In partiular, for a perturbation h we an ompute

DhL(λ) =
d

dη
L(λ+ ηh)|η=0as

DhL(λ) =

∫ p0

pm

(dp

dt
(x)
)−2

Dh

(dp

dt
(x)
)

dx.Returning to the disrete representation this is equivalent to
DhL =

dl∑

j=2

hj

( m∑

l=1

Al,j − pl

pl−1 − pl

)

.Thus, we observe that the gradient of L(λ) is given by
d

dλj
L(λ) =

m∑

l=1

Al,j − pl

pl−1 − pl
.There are two ways we an exploit this expression. One is to use the (negative) gra-dient diretion to do hill limbing, and the other is to globally optimize the linearizedapproximation of L. In either ase, we must inorporate the onstraints on λ.Let λ be an alternative degree distribution. Clearly, λ has to be a probability massfuntion, i.e.

dl∑

j=2

λ̃j = 1 (4.11)and, further, it has to orrespond to a ode of equal rate, i.e.
dl∑

j=2

λ̃j

j
=

dl∑

j=2

λj

j
. (4.12)Let be the negative gradient diretion of L. If we set λ̃ = λ+ηh (for positive η) then theabove onstraints may not be satis�ed. However, among degree distributions satisfyingthe onstraints the one losest to λ+ηh in Eulidean distane an be easily omputed byalternating projetions. Two projetions are required: the �rst is orthogonal projetionof h onto the subspae determined by ∑j hj = 0 (total probability onstraint) and
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∑

j
1
j hj = 0 (rate onstraint), and the seond projetion sets ηhj = −λj if, prior tothe projetion, ηhj + λj < 0. Note that an alternative interpretation is to projet thegradient diretion h onto the onvex polytypes of admissible diretions. One an thenompute the maximum step size η for whih the onstraints remain satis�ed and thenreompute the projetion at that point. In this way, one an easily walk along theprojeted gradient diretion to look for an improved degree distribution. Let us nowonsider the seond way to exploit the gradient expression for L. Let

p̃l =

dl∑

j=2

Al,jλ̃j.Then we have
L(λ̃) ≃

m∑

l=1

p̃l − pl

pl−1 − pl
. (4.13)This approximation is valid as long as λ̃ does not di�er too muh from λ, i.e., assumingthat the message distributions orresponding to λ and λ̃ are not too di�erent, if

max
l

|pl − p̃l|
pl−1 − pl

< δ (4.14)where δ ≪ 1, and if
p̃l < pl−1, 1 ≤ l ≤ m (4.15)Reall that we want to minimize L(λ̃). The same proedure is then applied repeatedlyin an attempt to onverge to a good degree distribution. Sine both approahes are loaloptimizations it is appropriate to repeat the optimization with various initial onditions.Global optimization - Di�erential Evolution (DE) algorithmDi�erential Evolution (DE) is a robust optimizer for multivariate funtions. We willnot desribe the details here, su�e it to say that the algorithm is in part a hill limbingalgorithm and in part a geneti algorithm.Our goal is to maximize the ost funtion whih we de�ne to be the thresholdvalue for the hannel. Sine suh optimizers, and DE in partiular, operate best ina ontinuous parameter spae of not too large dimension, and sine frequent funtionevaluations are required in the optimization, we found it onvenient to let the parameterspae be a ontinuous spae of small dimension. To aomplish this, we introduedfrational phantom distributions. Let the polynomials λ and ρ take on the generalform ∑

i λix
i−1 (similarly for ρ), where now both the λi and the degree i ould takeany positive real value. The real degree distribution is obtained from this phantomdistribution as ∑i(λi1x

⌊i⌋−1 + λi2x
⌈i⌉−1), where λi1 and λi2 are uniquely determinedvia the equations

λi1 + λi2 = λi and λi1

⌊i⌋ +
λi1

⌈i⌉ =
λi

i
.This way, we are guaranteed to obtain a degree distribution whih respets the rate-



82 Chapter 4. Channel oding - Low-Density Parity-Chek (LDPC) Codesonstraints for the ode.By allowing frational degrees we, in e�et, fore the program to hoose (loseto) optimal degrees. This results in a signi�ant redution of the dimensionality ofthe parameter spae, hene the running time, and also in the sparsity of the degreedistributions obtained.4.3 LDPC enodingFor an LDPC ode the enoding problem an be divided into two sub-problems: theonstrution of the parity-hek matrix and the enoding operation.In the following Setions we give a brief desription of the proposed solutions forthese problems. During these explanations we onsider binary odes, so all the opera-tions are GF(2).4.3.1 Parity-hek matrix' onstrutionAs spei�ed above, to de�ne a LDPC ode, we need a very sparse random parityhek matrix H of size M ×N . There are several methods to onstrut it, following wedesribe two methods generally used when we attempt to reate a regular ode and anirregular ode, given its degree distribution. For a regular ode the proess followed isdesribed next:� selet a olumn weight p ≥ 3� reate a retangular matrix H M×N at random with exatly weight p per olumnand weight per row as uniform as possible� if N/M is an integer, then the number of 1's per row an be onstrained to beexatly pM/M and so we have a regular LDPC ode, beause the bipartite graphis regular� use Gaussian elimination and the reordering of olumns to derive an equipmentparity-hek matrix in a systemati form, i.e. H = [P |IM ].At this point the matrix H is omposed of two very sparse matries H = [C1|C2],where C2 is M ×M very sparse and invertible and C1 is M ×K and still very sparse.To improve the properties of the ode, when generating the matrix H , onstrainall pairs of olumns in the matrix to have an overlap less or equal to 1. Furthermoreonstrain the matrix H so that the topology of the orresponding bipartite graph doesnot ontain short yles.When we onstrut an irregular ode we need its degree distribution. In [85℄ theauthors desribe a method to ompute it, given the rate of the ode, for a ode within�nite odeword length. Here we suppose to know it and give a general desription forthe onstrution of the matrix [90℄.



4.3. LDPC enoding 83One we have generated the parity-hek matrix H and remembering the relation
GHT = 0, we an ompute the generator matrix GT :

GT =

[

Ik

P

]

=

[

Ik

C−1
2 C1

]

, (4.16)where the identity matrix Ik makes the ode systemati.4.3.2 Enoding operationOne major ritiism onerning LDPC odes has been their apparent high enodingomplexity. Whereas turbo odes an be enoded in linear time, a straightforwardenoder implementation for an LDPC ode has omplexity quadrati in the blok length:given the K-bit binary message s, the N enoded bit vetor is
t = GT s mod 2. (4.17)Several authors have addressed this issue and found at least two possible solutions: aasade onstrution [91℄, [92℄ and a restrition of the shape of the parity-hek matrix.Unfortunately both of these result in a performane loss, ompared to a standard LDPCode with the same overall length.A di�erent method enodes the sequene s using the parity-hek matrix. Assumewe have a systemati ode, the odeword an be written as x = [xu xp], where xu is theinformation sequene and xp is the parity sequene. The same distintion an be donefor the parity-hek matrix, whih an be written as: H = [Hu|Hp]. As a onsequenewe an write: Hpx

T
p = HuxT

u and so:
xT

p = H−1
p HuxT

u . (4.18)In literature we an �nd few methods to make this omputation e�ient. Themost important from an e�ient point of view is an enoder based on approximatelower triangularization. It uses the sparseness of the parity-hek matrix to developan algorithm for e�ient enoders. The authors of [93℄ suggests plaing the matrix in"approximate lower triangular" form, in whih the upper right orner is populated withonly 0's as shown in Figure. 4.2.Assume that, by performing row and olumn permutations only, we an bring theparity-hek matrix into the form indiated in Fig. 4.2. We say that H is in approximatelower triangular form. Note that sine this transformation was aomplished solely bypermutations, the matrix is still sparse. More preisely, assume that we bring the matrixin the form
H =

(

A B T

C D E

) (4.19)where A is (M − g) × (N −M), B is (M − g) × g, T is (M − g) × (M − g), C is
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A B

0

T

C D E

N − M M − gg

M − g

g

M

NFigure 4.2: Parity-hek matrix in approximate lower triangular form.
g× (N −M), D is g× g, and, �nally, E is g× (M − g)1. Further, all these matries aresparse and T is lower triangular with ones along the diagonal. Multiplying this matrixfrom the left by (

I 0

−ET−1 I

) (4.20)we get (

A B T

−ET−1A + C −ET−1B + D 0

)

. (4.21)Let x = (s,p1,p2) where s denotes the systemati part, p1 and p2 ombined denotethe parity part, p1 has length g, and p2 has length (M − g). The well know equation
HxT = 0T splits naturally into two equations, namely

AsT + BpT
1 + TpT

2 = 0 (4.22)and
(−ET−1A + C)sT + (−ET−1B + D)pT

1 = 0 (4.23)De�ne φ = −ET−1B + D and assume for the moment that φ is non-singular. We willdisuss the general ase shortly. Then from (4.23) we onlude that
pT

1 = −φ−1(−ET−1A + C)sT . (4.24)Hene, one the matrix −φ−1(−ET−1A+C) has been preomputed, the determinationof p1 an be aomplished in omplexity O(g × (N − M)) simply by performing amultipliation with this (generially dense) matrix. In a similar manner, noting from(4.22) that pT
2 = −T−1(AsT + BpT

1
), we an aomplish the determination of pT

2 inomplexity O(N).Table 4.1 ontains the omplexity of eah operation in the omputation of p1 and
p2. Table 4.2 gives a summary of the proposed algorithm: 2 steps are desribed: pre-proessing and enoding. In the �rst one we perform rows and olumns permutation to1g is the minimum number of rows we an't use in our triangularization proess



4.4. The deoding problem 85E�ient omputation of pT
1 = −φ−1(−ET−1A + C)sTOperation Comment Complexity

AsT Multipliation by sparse matrix O(n)

T−1[AsT ] T−1[AsT ] = yT ⇔ TyT O(n)

−E[T−1AsT ] Multipliation by sparse matrix O(n)

CsT Multipliation by sparse matrix O(n)

[−ET−1AsT ] + [CsT ] Addition O(n)
−φ−1[−ET−1AsT + CsT ] Multipliation by dense g × g matrix O(n)E�ient omputation of pT

2 = −T−1(AsT + BpT
1
)Operation Comment Complexity

AsT Multipliation by sparse matrix O(n)

BpT
1 Multipliation by sparse matrix O(n)

[AsT ] + [BpT
1 ] Addition O(n)

T−1[AsT + BpT
1 ] = yT

T−1[AsT + BpT
1 ] m O(n)

−[AsT + BpT
1 ] = TyTTable 4.1: E�ient omputation of the parity sequene pT = [pT

1
pT

2
].bring the parity-hek matrix into approximate lower triangular form with a gap g assmall as possible. In the seond one p1 and p2 are omputed. We point out that thepre-proessing step is omputed one at the beginning and then only the enoding stepin performed.4.4 The deoding problemThe use of the LDPC odes has two main advantages:� LDPC odes an be deoded using an iterative deoding algorithm,� omplexity deoding grows only linear with the blok length of the ode.The hannel adds noise n to the vetor t and the reeived signal is

r = [GT s + n] mod 2. (4.25)if we assume a binary symmetri hannel (BSC).The deoder's task is to infer s given the reeived signal r and the noise propertiesof the hannel. The optimal deoder returns the message s that maximizes posteriorprobability:
P (s|r,G) =

P (r|s, G)P (s)

P (r|G)
. (4.26)We observe that if the prior probability of s is assumed uniform and the probabilityof n is assumed to be independent of s, than it is onvenient to introdue the M ×Nparity-hek matrix H , whih is in systemati form [P |IM ]. We remember that theparity-hek matrix has the property HGT = 0 mod 2 so that Hn = Hr mod 2.



86 Chapter 4. Channel oding - Low-Density Parity-Chek (LDPC) CodesPre-proessing: Input: Non singular parity-hek matrix H . Output: An equiv-alent parity-hek matrix of the form (
A B T
C D E

) suh that −ET−1B + D isnon-singular.1. Triangularization: Perform row and olumn permutations to bring the parity-hek matrix H into approximate lower triangular form
H =

(
A B T
C D E

)with as small a gap g as possible.2. Chek rank : Use Gaussian elimination to e�etively perform the pre-multipliation
(

I 0
ET−1 I

)(
A B T

C D E

)

=

(
A B T

−ET−1A + C ET−1D 0

)in order to hek that −ET−1B+D is non-singular, performing further olumnpermutations if neessary to ensure this property.(Singularity of H an bedeteted at this point.)Enoding: Input: Parity-hek matrix of the form H =

(
A B T

C D E

) suhthat −ET−1B + D is non-singular and a vetor s ∈ Fn−m. Output: The vetor
x = (s, p1, p2), p1 ∈ F g, p2 ∈ Fm−g, suh that HxT = 0T .1. Determine pT

1 = −φ−1(−ET−1A + C)sT2. Determine pT
2 = −T−1(AsT + BpT

1
)Table 4.2: Summary of the proposed enoding proedure. It entails two steps: apre-proessing step and the atual enoding step.The deoding problem, thus, redues to the task of �nding the most probable noisevetor n suh that

Hn mod 2 = z (4.27)where the syndrome vetor z = Hr mod 2.Observation 2 (Deoding problem's formalization). Assume that n is a sparse randomvetor with independent and identially distributed bits of density fn. We want to reover
t by �nding the most probable n̂ that satis�es

Hn̂ = z mod 2 (4.28)and z = Hr mod 2.



4.5. LDPC deoding's algorithms 87From n̂ we obtain out guess for the transmitted signal:
t̂ = (r + n̂) mod 2 (4.29)and the �rst K bits of this are the guess ŝ, sine we are onsidering a systemati ode.Observation 3. Theoretial e�etiveness of LDPC odes as error orreting odes de-pends on the properties of very sparse matries H; the pratial e�etiveness, instead,depends on our �nding the pratial algorithm for solving Hn = z mod 2 that is loseenough to the optimal deoder.Observation 4. There exist LDPC odes for whih optimal deoders would ahieveinformation rates arbitrarily lose to the Shannon limit for a wide variety of hannel.In the following Chapters the LDPC deoding algorithms present in literature aredesribed.4.5 LDPC deoding's algorithmsFollowing we desribe the proposed LDPC deoding's algorithms, starting from the�rst proposed by Gallager[3, 4℄ and then analyzing the one proposed by MaKay [5℄.4.5.1 The deoding algorithm by GallagerIn 1962 Gallager proposed two deoding shemes that appear to ahieve a reasonablebalane between omplexity and probability of deoding [3℄. The �rst is partiularlysimple, but it is appliable only to the binary symmetri hannel (BSC) at rates farbelow hannel apaity. The seond sheme, whih deodes diretly from the a posterioriprobabilities at the hannel output, is more promising.Algorithm for deoding LDPC odes on BSC hannelThe deoder omputes all the parity heks and then hanges any digit that isontained in more than some �xed number of unsatis�ed parity-hek equations. Usingthese new values, the parity heks are reomputed, and the proess is repeated untilthe parity heks are all satis�ed.If the parity-hek sets are small, this deoding proedure is reasonable, sine most ofthe parity-hek sets will ontain either one transmission error or no transmission errors.Thus when most of the parity-hek equations heking on a digit are unsatis�ed, thereis a strong indiation that that digit is in error.In this algorithm, when the parity hek sets ontain one error the digit d is orreted,but it an be orreted even if its parity-hek sets ontain more than one transmissionerror. To see how this an be done onsider the tree struture in Figure 4.3.The arbitrary digit d is represented by the node at the base of the tree and eahline rising from this node represents one of the parity hek sets ontaining digit d. Theother digits in these parity-hek sets are represented by the nodes on the �rst tier of
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Figure 4.3: Parity-hek set tree.the tree. The lines rising from tier 1 to tier 2 of the tree represent the other parity-heksets ontaining the digits on tier 1, and the nodes on tier 2 represent the other digits inthose parity-hek sets. Notie that if suh a tree is extended to many tiers, the samedigit will appear in more than one plae.Assume that both digit d and several of the digits in the �rst tier are transmissionerrors. Then, on the �rst deoding attempt, the error free digits in the seond tier andtheir parity-hek onstraints will allow orretion of the errors in the �rst tier. Thisin turn will allow orretion of digit d on the seond deoding attempt. Thus digit andparity-hek equations an aid in deoding a digit seemingly unonneted with them.If we de�ne Vj\i the set of the variable nodes whih onnet to hek node j, ex-luding variable node i and Ci\j the set of hek nodes whih onnet to variable node
i, exluding hek node j and all ri the reeived bit, we an synthesize the desribedalgorithm as follows:Gallager's LDPC deoding algorithm A for BSC hannelsStep 1: Initialize di = ri for eah variable nodeStep 2: Variable nodes send µi→j = di to eah hek node j ∈ CiStep 3: Chek nodes onneted to variable node i send

βj→i
∏

l∈Vj\i
µl→j to i; i.e. the hek node sends bakto i the value that would make the parity hek onsistentStep 4: At the variable node i if ⌈p/2⌉ or more of the inoming parityheks βj→i disagree with di, hange the value of variablenode i to its opposite value: di = di

⊕
1Step 5: Stop when no more variable nodes are hanging or after a�xed number of iterations have been exeuted. Otherwise gobak to step 2.



4.5. LDPC deoding's algorithms 89Probabilisti deoding shemeThe probabilisti deoding sheme utilizes extra digits and extra parity hek equa-tions more systematially.Assume that the odewords from an (N, p, q) ode are used with equal probabilityon an arbitrary binary-input hannel. For any digit d an iteration proess will bederived that on the m-th iteration omputes the probability that the transmitted digitin position d is a 1 onditional on the reeived symbols out to and inluding the m-thtier. For the �rst iteration, we an onsider digit d and the digits in the �rst tier toform a subode in whih all sets of these digits that satisfy the p parity-hek equationsin the tree have equal probability of transmission.Consider the ensemble of events in whih the transmitted digits in the positions of
d and the �rst tier are independent equiprobable binary digits, and the probabilitiesof the reeived symbols in these positions are determined by the hannel transitionprobabilities Px(y). In this ensemble the probability of any event onditional on theevent that the transmitted digits satisfy the p parity-hek equations is the same as theprobability of an event in the subode desribed above. Thus, within this ensemble wewant to �nd the probability that the transmitted digit in position d is a 1 onditionalon the set of reeived symbols {y} and on the event S that the transmitted digits satisfythe p parity-hek equations on digit d. We write this as

P [xd = 1|{y}, S]. (4.30)In [3℄ Gallager gave the proof of one lemma and one theorem, their propositions arereported here:Lemma 1. Consider a sequene of m independent binary digits in whih the l-th digitis 1 with probability Pl. Then the probability that an even number of digits are 1 is
1 +

∏m
l=1(1 − 2Pl)

2
(4.31)Theorem 1. Let Pd, be the probability that the transmitted digit in position d is a 1onditional on the reeived digit in position d, and let Pil, be the same probability forthe l-th digit in the i-th parity-hek set of the �rst tier. Let the digits be statistiallyindependent of eah other, and let S be the event that the transmitted digits satisfy the

p parity-hek onstraints on digit d. Then
P [xd = 0|{y}, S]

P [xd = 1|{y}, S]
=

1 − Pd

Pd

p
∏

i=1

[1 +
∏q−1

l=1 (1 − 2Pil)

1 −∏q−1
l=1 (1 − 2Pil)

]

. (4.32)Judging from the omplexity of this result, it would appear di�ult to ompute theprobability that the transmitted digit in position d is a 1 onditional on the reeiveddigits in two or more tiers of the tree. Fortunately, however, the many-tier ase an besolved from the 1-tier ase by a simple iterative tehnique.



90 Chapter 4. Channel oding - Low-Density Parity-Chek (LDPC) CodesAs an example we onsider the 2-tier ase. We an use Theorem 1 to �nd theprobability that eah of the transmitted digits in the �rst tier of the tree is a 1 onditionalon the reeived digits in the seond tier. The only modi�ation of the tier is that the�rst produt is taken over only p − 1 terms, sine the parity-hek set ontaining digit
d is not inluded. Now these probabilities an be used in Equation (4.32) to �nd theprobability that the transmitted digit in position d is 1. The validity of the proedurefollows immediately from the independene of the new values of Pil in the ensemble usedin Theorem 1. By indution, this iteration proess an be used to �nd the probabilitythat the transmitted digit d is 1, given any number of tiers of distint digits in the tree.The general deoding proedure for the entire ode may now be stated. For eahdigit and eah ombination of p−1 parity-hek sets ontaining that digit, use Equation(4.32) to alulate the probability of a transmitted 1 onditional on the reeived symbolsin the p − 1 parity-hek sets. Thus there are p di�erent probabilities assoiated witheah digit, eah one omitting 1 parity-hek set. Next these probabilities are used inEquation (4.32) to ompute a seond order set of probabilities. The probability tobe assoiated with one digit in the omputation of another digit d is the probabilityfound in the �rst iteration, omitting the parity-hek set ontaining d. If the deodingis suessful, then the probabilities assoiated with eah digit approah 0 or 1 as thenumber of iterations is inreased. The proedure is valid only for as many iterations asmeet the independene assumption in Theorem 1.This assumption break down when the tree loses upon itself. Sine eah tier ofthe tree ontains (p − 1)(q − 1) times more nodes than the previous tier, the indepen-dene assumption must break down while m is quite small for any ode of reasonableblok length. This lak of independene an be ignored, however, on the reasonableassumption that the dependenies have a relatively minor e�et and tend to anel eahother out somewhat. Also, even if dependenies our at the m-th iteration, the �rst
m − 1 iterations have redued the equivoation in eah digit. Then we onsider theprobabilities after the m − 1 iterations to be a new reeived sequene that should beeasier to deode than the original reeived sequene.The most signi�ant feature of this deoding sheme is that the omputation perdigit per iteration is independent of the blok length. Furthermore, it an be shownthat the average number of iterations required to deode is bounded by a quantityproportional to the log of the log of the blok length.For the atual omputation of the probabilities in Theorem 1, it appears to be moreonvenient to use Equation (4.32) in terms of log-likelihood ratios. Let

ln
1 − Pd

Pd
= αdβd

ln
1 − Pil

Pil
= αilβil (4.33)

ln
P [xd = 0|{y}, S]

P [xd = 1|{y}, S]
= α′

dβ
′
dwhere α is the sign and β is the magnitude of the log-likelihood ratio. After some



4.5. LDPC deoding's algorithms 91manipulation, Equation (4.32) beomes
α′

dβ
′
d = αdβd +

j
∑

i=1

( k−1∏

l=1

αil

)

f
[ k−1∑

l=1

f(βil)
] (4.34)where f(β) = ln eβ+1

eβ−1
.The alulation of the log-likelihood ratios in Equation (4.34) for eah digit an beperformed either serially in time or by parallel omputations.ExampleThrough the matrix (4.35) we de�ne a (20, 3, 4) ode. It is an example of low-densityode matrix where N = 20, p = 3 and q = 4.

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0

0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(4.35)
Note that the matrix (4.35) is divided into p submatries, eah ontaining a single 1in eah olumn. The �rst of these submatries ontains all its 1's in desending order,the other submatries are merely olumn permutations of the �rst.We de�ne an ensemble of (N, p, q) odes as the ensemble resulting from randompermutation of the olumns of eah of the bottom p − 1 submatries of a matrix suhas (4.35), with equal probability assigned to eah permutation.In Figure 4.4 we represent the Tanner's graph for the ode de�ned with the matrix(4.35) and in Figure 4.5 we represent the tree used with the probabilisti deoder; wean observe that we must onsider only the digit d = 1 and the �rst tier, beause theseond introdue a loop.Remembering that Pd is the probability that the transmitted digit in position d isa 1 onditional on the reeived digit in position d, and, let Pil be the same probability
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Figure 4.4: Tanner's graph for the ode de�ned with the matrix (4.35).
V1

V3 V4 V5V2 V6 V12 V18

V16V11V7V17V10V6 V7 V18 V8 V13 V19 V11 V15 V19 V14 V17

V9

V9

V13

V14

Figure 4.5: Tree used with the probabilisti deoder when the ode de�ned by 4.35is onsidered. The same olors are referred to the same variable nodes and throughthem the loops are shown.for the l-th digit in the i-th parity hek set, the Equation (4.32) beomes:
P [xd = 0|{y}, S]

P [xd = 1|{y}, S]
=

1 − Pd

Pd

p
∏

1=1

[1 +
∏q−1

l=1 (1 − 2Pil)

1 −∏q−1
l=1 (1 − 2Pil)

]

P [xd = 0|{y}, S]

P [xd = 1|{y}, S]
=

1 − Pd

Pd

3∏

1=1

[1 +
∏3

l=1(1 − 2Pil)

1 −∏3
l=1(1 − 2Pil)

]sine q = 4 and p = 3.4.5.2 The deoding algorithm by MaKayFirst of all we reall the de�nition of the deoding problem:
Hn = z mod 2 (4.36)where the unknown vetor n is sparse, the vetor z = Hr mod 2 and H is very sparseand we must remember that its properties also depend on the assumed noise model.In [5℄, MaKay has developed a "sum-produt deoder", also known as a "beliefpropagation deoder". Before starting with the desription of the proposed algorithm,we give some de�nitions:De�nition 8. Cheks are the zj elements orresponding to eah row of H, where

j = 1, 2, . . . , M of H.



4.5. LDPC deoding's algorithms 93De�nition 9. Belief network or Bayesan network or Causal network or In�uenediagram is the set of bits x and heks z: every bit xl is the parent of p heks zj , andeah hek zj is the hild of qr bits, thus the network of heks and bits form a bipartitegraph.Observation 5. We say that eah hek zj is the hild of qr bits and not q, beause weare onsidering the ase in whih the number of 1's in eah row of H is as uniform aspossible.We aim, given the observed heks, to ompute the marginal posterior probabilities
P (xl = 1|z,A) for eah l. These omputations are expeted to be intratable forthe belief network orresponding to our problem beause its topology ontains manyyles. However, it is interesting to implement the deoding algorithm that would beappropriate if there were no yles, on the assumption that the errors introdued mightbe relatively small. This approah of ignoring yles has been used in the arti�ialintelligene literature [94℄ but is now frowned upon beause it produes inaurateprobabilities. However, for our problem the end produt is a deoding; the marginalprobabilities are not required if the deoding is orret. Also, the posterior probability,in the ase of a good ode ommuniating at an ahievable rate, is expeted typiallyto be hugely onentrated on the most probable deoding. And as the size M × N ofthe ode's matrix H is inreased, it beomes inreasingly easy to produe matries inwhih there are no yles of any given length, so we expet that, asymptotially, thisalgorithm will be a good algorithm. MaKay, in [5℄ has obtained exellent results with
N equal to 1000 and 10000. The algorithm often gives useful results after a number ofiterations muh greater than the number at whih it ould be a�eted by the preseneof yles.The algorithmAlso this algorithm, presented by MaKay in [5℄, is appropriate for binary hannelmodel in whih the noise bits are independent.We denote the set of bits l that partiipate in hek m by L(m) = {l : Aml = 1}.Similarly, we de�ne the set of heks in whih bit l partiipates, M(l) = {m : Aml = 1}.We denote a set L(m) with bit l exluded by L(m)\l. The algorithm has two alternatingparts, in whih quantities qml and rml assoiated with eah nonzero element in the Hmatrix are iteratively updated.De�nition 10. The quantity qx

ml is meant to be the probability that bit l of x has thevalue x, given the information obtained via heks other than hek m.De�nition 11. The quantity rx
ml is meant to be the probability of hek m being satis�edif bit l of x is onsidered �xed at x and the other bits have a separable distribution givenby the probabilities {qml′ : l′ ∈ L(m) \ l}.The algorithm would produe the exat posterior probabilities of all the bits after a�xed number of iterations if the bipartite graph de�ned by the matrix H ontains noyles.



94 Chapter 4. Channel oding - Low-Density Parity-Chek (LDPC) CodesPratial deoding by the sum-produt algorithm - MaKayInitialization: Let p0
l = P (xl = 0) and p1

l = P (xl = 1) = 1 − p0
l the priorprobability that bit xl is 0 or 1. For every (m, l) suh that

Hml = 1 the variables q0ml and q1ml are initialized to the vales
p0

l and p1
l , respetivelyHorizontal step: Compute the di�erene δqml = q0ml − q1ml and

δrml =
∏

l′∈L(m)\l
δqml′ .Then, sine r0ml + r1ml = 1 de�ne r0ml = (1 + δrml)/2 and

r1ml = (1 − δrml)/2Vertial step: For eah l ompute
q0ml = αmlp

0
l

∏

m′∈M(l)\m
r0m′l

q1ml = αmlp
1
l

∏

m′∈M(l)\m
r1m′lwhere αml is hosen suh that q0ml + q1ml = 1In the desription of the algorithm, the horizontal step the probability for zm havingits observed value given either xl = 0 and xl = 1 is founded e�iently by the use of theforward-bakward algorithm. Before this formulation of the problem, the probability

r0ml and r1ml were omputed as follows:
r0ml =

∑

{xl′ ,l
′∈L(m)\l}

P (zm|xl = 0, {xl′ : l′ ∈ L(m) \ l}) ×
∏

l′∈L(m)\l
q
xl′

ml′ (4.37)
r1ml =

∑

{xl′ ,l
′∈L(m)\l}

P (zm|xl = 1, {xl′ : l′ ∈ L(m) \ l}) ×
∏

l′∈L(m)\l
q
xl′

ml′ . (4.38)In the vertial step, we an also ompute the pseudoposterior probabilities q0l and
q1l :

q0l = αlp
0
l

∏

m∈M(l)

r0ml (4.39)
q1l = αlp

1
l

∏

m∈M(l)

r1ml (4.40)and these quantities are used to reate a tentative deoding n̂, the onsisteny of whihis used to deide whether the deoding algorithm an halt.



4.5. LDPC deoding's algorithms 95Soft input to the deoderThere are many ways to measure the unertainty over a bit at the reeiver. We ansimply use the reeived symbol or omputed its marginal a posteriori probability, but,what is generally used is the Log-Likelihood ratio (LLR) de�ned as:
Λ(ri) , log

(P (xi = 1|ri)
P (xi = 0|ri)

)2. (4.41)Soft deoding algorithmThe algorithm presented above aepts as inputs the reeived symbols, but to makeit more e�ient we an have at the demodulator output soft LLRs and so we an adjustthe deoding algorithm to work with these. We all this adjustment soft deodingalgorithm beause it has as input the log-likelihood ratios for the bits of eah odeword
ci, i = 1, 2, . . . , N whih is de�ned as:

L(ci) = log
(P [ci = 0|hannel output for ci]
P [ci = 1|hannel output for ci]) i = 1, 2, . . . , N (4.42)where N is the length of the odewords.Before explaining the soft algorithm, we de�ne:- Ci the set of hek nodes onneted to the variable node i;- Ci\j the set of hek nodes onneted to the variable node i exluded the heknode j;- Vj the set of variable nodes onneted to the hek node j;- Vj\i the set of variable nodes onneted to the hek node j exluded the variablenode i.In the algorithm, desribed in Table 4.3, there are three key variables: L(qji), L(rji)and L(Qi) with j = 1, 2, . . . , M where M represents the number of the parity heknodes and i = 1, 2, . . . , N . The L(·) means that we are onsidering the logarithmvalues. The former is the logarithm of the probability that the i-th bit of the odewordhas the value x, given the information obtained via the hek nodes other than heknode j (De�nition 10); the seond is the logarithm of the probability that a hek node jis satis�ed, i.e. zj = 0, when bit i is �xed to a value x and the other bits are independentwith probabilities qj,i′, i′ ∈ Vj\i (De�nition 11). Finally, the last one, expressed in (4.46)is the logarithm of the pseudo-a-posteriori probability and it is the new log-likelihoodratio, used to determine the transmitted bit in the hard deision of the bit ci.Deoding stepWe observe that if the belief network really is a tree without yles the values ofthe pseudoposterior probabilities q0l and q1l at eah iteration would orrespond to the2Sometimes the de�nition of the LLR is given as log

“

P (xi=0|ri)
P (xi=1|ri)

”, but this doesn't hange anything,beause it is equal to −Λ(ri)
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L(qji) = L(ci) j = 1, 2, . . . , M and i = 1, 2, . . . , N (4.43)- Horizontal step

L(rji) = 2 tanh−1
( ∏

i′∈Vj\i

tanh
(1

2
L(qji′)

)) (4.44)- Vertial step
L(qji) = L(ci) +

∑

j′∈Ci\j

L(rj′i) (4.45)In this step we also ompute L(Qi), the quantity orrespondent to the pseudo-posterior probability:
L(Qi) = L(ci) +

∑

j′∈Ci

L(rj′i) (4.46)Table 4.3: Soft deoding algorithmposterior probabilities of bit l given the states of all the heks in a trunated beliefnetwork entered on bit l and extending out to a radius equal to twie the number ofiterations. Deoding Proedure
− Set xl = 1 if q1l > 0.5

− See if the heks Hn̂ = z mod 2 are all satis�ed
◦ halting when they are
◦ delaring a failure if some maximum number of iterations ourswithout suessful deodingWhen there is a failure, the partial deoding n̂ may serve as a useful starting pointfor another deoding algorithm.To onlude our analysis, we note that undeteted errors would only our if thedeoder found an n̂ satisfying Hn̂ = z mod 2 whih is not equal to the true n and de-teted errors our if the algorithm runs for the maximum number of iterations without�nding a valid deoding.Observation 6. Soft deoding algorithm is very important, beause it gives better per-formane sine it uses soft values as input, but also beause, onsidering the logarithm



4.5. LDPC deoding's algorithms 97values it is e�ient from a omputational point of view: all the multipliations requiredin the vertial step and to omputed the pseudo-a-posteriori probabilities are transformedinto additions and it is well known that these are very simple if ompared to multiplia-tions.Analysis of the deoding algorithmThe algorithm have orretion e�ets whih are independent of the blok length N ,for large N . This onsideration brings us to make a onjeture:Observation 7. Given a binary symmetri hannel with noise density f , there ex-ist pratial deoders for LDPC odes with rate R lose to apaity, that an ahievenegligible probability of error for su�iently large N .Finally we an onlude saying that there is a orretion e�et if the Hammingdistane between n̂ and the true vetor n dereases.Empirial performane of Low-Density Parity-Chek odes on Gaussian han-nelsIn [84℄ D. J. C. Makay and R. M. Neal showed that performane substantially betterthan that of standard onvolutional and onatenated odes on an be ahieved; indeedthe performane is almost as lose to the Shannon limit as that of turbo odes.

Figure 4.6: LDPC odes' performane over Gaussian hannel (solid urves) omparedwith state of the art odes (dotted urves).Figure 4.6 ompares the performane of LDPC odes with state of the art odes.



98 Chapter 4. Channel oding - Low-Density Parity-Chek (LDPC) CodesThe vertial axis shows the empirial bit error probability (BER). Following we desribethe mean of the urves represented in Figure 4.6:� The urve labeled (7, 1/2) shows the performane of a rate 1/2 onvolutional odewith onstraint length 7, known as the fator standard for satellite ommunia-tions [95℄.� The urve (7, 1/2)C shows the performane of the onatenated ode omposedof the same onvolutional ode and a Reed-Solomon ode.� The urve (15, 1/4)C shows the performane of an extremely expensive and om-puter intensive onatenated ode developed at JPL based on a onstraint length
15, rate 1/4 onvolutional ode.� The urve labeled Turbo shows the performane of the rate 1/2 turbo ode de-sribed in [19℄.All the other urves represent LDPC with the parameters (N, K, R) with the fol-lowing values (29507, 9507, 0.322), (15000, 5000, 0.333), (14971, 4971, 0.332), (65389,

32621, 0.499), (19839, 9839, 0.496), (13298, 3296, 0.248), (29331, 19331, 0.659) fromleft to right.It should be emphasized that all the errors made by the LDPC odes were detetederrors: the deoding algorithm reported the fat that it had failed.Results show that performane substantially better than that of standard onvolu-tional and onatenated odes an be ahieved; indeed the performane is almost aslose to the Shannon limit as that of turbo odes. It seems that the best results areobtained by making the weight per olumn as small as possible. Unsurprisingly, odeswith larger blok length are better. In terms of the value of Eb/N0, the best odes arethe ones with rates between 1/2 and 1/3.



Chapter 5Alternative algorithms for LDPCdeoding
5.1 Message passing algorithm: omplexity redutionAs desribed in Chapter 4 the Message Passing Algorithm (MPA) is used to deodethe LDPC odes, beause, even if its omputational omplexity is very high, it is yetpratially implementable and performs very well. Here we propose a modi�ation ofthe MPA in order to redue the number of multipliations in eah iteration. In fat,MPA requires real-number addition, subtration, multipliation, division, exponentialand logarithm operations and, as it is well known, the last four operation are moreomplex than addition and subtration. In [90℄ the number of multipliations in thisalgorithm is de�ned as a linear funtion of the number of 1's in the parity hek matrix.What we are going to propose is the redution of the number of multipliations, so,in the following we will use the terms redution of omplexity or redution of the numberof multipliations indi�erently, even if it's an abuse of notation. In our modi�ed MPAwe assume that all the reeived bits whih exeed, in terms of absolute value, a giventhreshold are reliable. This means that we assume that the value assigned to these bitsdoesn't hange with the evolution of the algorithm. This observation suggests to assignto these bits a value, in term of LLR, equal to ±∞, where the sign is in aordanewith the LLR's one. In Setion 5.1.2 we will show how to hoose the threshold and howthis assumption an be used to redue the number of multipliations at eah iteration.The modi�ed MPA has a redued omplexity beause the number of multipliationshas been redued, but, an present an error �oor dependent on the threshold value. Toverify if the modi�ed proposed algorithm an be ompetitive with the known ones wewill ompare the omplexity and the error performane.5.1.1 LDPC deoding tehniquesIn Chapter 4 the deoding tehniques presented for the LDPC odes have beendesribed. Here we brie�y desribe the algorithms pratially used in tests and simu-lations, exept the MPA, exhaustly desribed above. Here, to make the reading more



100 Chapter 5. Alternative algorithms for LDPC deodingomfortable, we report only the brief desription.A LDPC ode an be deoded in various ways, namely: majority-logi (MLG) deod-ing, bit-�ipping (BF) deoding, weighted BF deoding, a posteriori probability (APP)deoding, and iterative deoding based on belief propagation (IDBP), ommonly knownas sum-produt algorithm (SPA) or message passing algorithm (MPA).The �rst two types are hard deision deoding, the last two are soft deision de-oding and the third one is in between. MLG [90℄ is the simplest one in deodingomplexity; BF requires a little more deoding omplexity, but gives better error per-formane than MLG. APP and MPA deoding provide muh better error performanebut require muh large omplexity than the former two. MPA deoding gives the seondbest error performane among the �ve types of deoding algorithms and yet is prati-ally implementable, onversely the APP provides the best error performane, but itis omputationally intratable. A simpli�ed version an be onsidered to redue theomputational omplexity, but error performane degrades. The most important algo-rithm for a omparison with our proposed one is the weighted-BF algorithm, beauseit's said to represent a good trade-o� between the omputational omplexity and theerror performane.Let de�ne a odeword v = (vo, v1, . . . , vn−1), y = (y0, y1, . . . , yn−1) the soft dei-sion reeived sequene at the output of the demodulator and z = (zo, z1, . . . , zn−1) theorresponding hard deision. Let H be the parity-hek matrix of an LDPC ode Cwith m rows and n olumns, then we an de�ne the syndrome of the reeived sequene
z as

s = zHT . (5.1)The reeived vetor z is a odeword if and only if s = 0, otherwise errors in z aredeteted, in fat nonzero syndrome omponent sj indiates a parity failure. We ande�ne the error pattern e given by e = v + z whih must satis�es s = eHT .One given these few de�nitions we an brie�y desribe the deoding algorithms.Majority-Logi DeodingFrom the strutural properties of the parity-hek matrix H , we see that for everybit position l, there's a set
Al = {h(l)

1 , h
(l)
2 , . . . , h(l)

γl
} (5.2)of γl rows in H that are orthogonal on this bit position. Now we de�ne the set of γlhek-sums orthogonal on the error digit el

Sl = {eh
(l)
j : h

(l)
j ∈ Al, for 1 ≤ j ≤ γl} (5.3)These hek-sums an be used for estimating the error digit el based on the one stepMLG deoding rule [90℄, whih guarantees the orretion only if there are γl

2 or fewererrors in the pattern error e.



5.1. Message passing algorithm: omplexity redution 101Bit-Flipping Deoding AlgorithmThis algorithm, presented for the �rst time by Gallager in [4℄, is based on the hange(or �ip) of the number of parity failures in s when a bit in the reeived sequene z ishanged or �ipped.First, the deoder omputes all the parity-hek sums based on (5.1) and thanhanges any bit in the reeived sequene z that is ontained in more than some �xednumber δ of failed parity-hek equations. Using the modi�ed reeived sequene z′,the deoders reompute the syndrome and the proess is repeated until all parity-heksums are satis�ed or a preset maximum number of iterations is reahed. The designparameter δ is alled threshold and should be hosen to optimize the error performanewhile minimizing the number of omputation of parity-hek sums. The value of δdepends on the ode parameters: ρ, γ, dmin(C) and SNR.Owing to the nature of low-density parity-hek odes, BF deoding algorithm or-rets many error patterns whose number of errors exeeds the error orreting apabilityof the ode.Weighted Bit-Flipping (WBF) AlgorithmTo improve the performane of the BF algorithm some kind of reliability informationan be onsidered. So now we onsider the soft-deision reeived sequene y and for
0 ≤ l ≤ n− 1 and 1 ≤ j ≤ m de�ne:

|yj |(l)min , {min{|yi|} : 0 ≤ i ≤ n− 1, hi,j = 1} (5.4)and
El ,

∑

s
(l)
j ∈Sl

(2s
(l)
j − 1)|yj |(l)min. (5.5)where Sl is the set of hek-sums orthogonal on bit-position l.Now we observe that El is simply a weighted hek sum that is orthogonal on theode bit position l and an be used in the bit-�ipping algorithm.Message Passing AlgorithmBefore explaining the deoding algorithm in Table 5.1, we de�ne:- Ci the set of hek nodes onneted to the variable node i;- Ci\j the set of hek nodes onneted to the variable node i exluded the heknode j;- Vj the set of variable nodes onneted to the hek node j;- Vj\i the set of variable nodes onneted to the hek node j exluded the variablenode i.
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L(qji) = L(ci) j = 1, 2, . . . , m; i = 1, 2, . . . , n (5.6)- Horizontal step

L(rji) = 2 tanh−1
( ∏

i′∈Vj\i

tanh
(1

2
L(qji′)

)) (5.7)- Vertial step
L(qji) = L(ci) +

∑

j′∈Ci\j

L(rj′i) (5.8)In this step we also ompute L(Qi), the quantity orresponding to the pseudo-a-posteriori probability:
L(Qi) = L(ci) +

∑

j′∈Ci

L(rj′i) (5.9)Table 5.1: Desription of the message passing algorithm.5.1.2 Proposed algorithmAs said in the Introdution we ignore the additions and the subtrations in thisanalysis of omplexity of MPA. Observing the algorithm desription in Table 5.1, we�nd that the number of multipliations needed in eah iteration of the deoding proessis of the order O(2mρ̄+4nγ̄) where ρ̄ and γ̄ represent the mean number of 1's per rowsand olumns respetively and the number of logarithm operations needed is of the order
O(n) [90℄. From these values and observing the evolution of the algorithm we had theidea for a modi�ation of the algorithm whih should drive to a redution of the numberof multipliations required.MPA variationLet's try to analyze the algorithm step by step to �nd all the possibilities to reduethe algorithm omplexity.Starting from the initialization step de�ned in equation (5.6), the L(qj,i)'s equal theLLRs de�ned as:

L(ci) = log
(P [ci = 0|hannel output for ci]
P [ci = 1|hannel output for ci]) i = 1, 2, . . . , N, (5.10)so if some absolute value of these quantities are greater than a given threshold we an saythat the orresponding bits are reliable and hange their LLR values to ±∞ aordingwith the known signs.When we ompute the horizontal step as de�ned in equation (5.7), we observe that



5.1. Message passing algorithm: omplexity redution 103for every L(qj,i′) with ±∞ value the tanh(·) is equal to ±1 and so all what we needis to keep trae of the number of −1, beause this an hange the sign of the produtresult, but we don't need to ompute the multipliations.Note that in the vertial step (equation (5.8)) we sum the ontributions of L(rji)'s.In ase two or more values of L(rji) are equal to ±∞ we ould sum terms in�nitelylarge with opposite sign to obtain an undetermined result. In order to avoid this asewe put the onstraint that, in eah Vj\i (equation (5.7)), at least one variable nodeis di�erent from ±∞, whih means that attention must be paid in the hoie of thethreshold, beause its value an't be too small. Adding this onstraint means that the
L(rji) an assume ±∞ value when, with high probability, the bit is enough reliableand so it's hard to obtain undetermined results. Unfortunately, this is not enough tohandle all the NaN ases. In the update of L(qj,i) (equation (5.8)) we don't need toompute the update for the values �xed at the former steps, beause we expet theydon't hange. However, in this ase there are not multipliations, so at this step wedon't save operations of the type we are fousing on.The most important topi of our modi�ed algorithm is the determination of thethreshold: if it is hosen too small we �x some values that are not enough reliable and,as a onsequene, in equation (5.8), we try to sum +∞ and −∞, without reahinga result. On the other side, we don't want to use a threshold too high, beause thisdoesn't allow us to improve the e�ieny of the algorithm.5.1.3 System desriptionThe system we onsider here is represented in Figure 5.1. The soure bits areenoded through an LDPC ode of rate 1/2 and odeword length n = 576, then theyare modulated through a QPSK modulator and transmitted on an AWGN hannel. Atthe reeiver we have a soft demodulator whose log-likelihood ratios are the input to thedeoder. Obviously, the deoding is performed with our modi�ed MPA and to havesome terms of omparison we perform the deoding also through the standard MPAand the weighted BF algorithm [96℄.
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enoder QPSKmodulator Demodulator LDPCLDPC deoderFigure 5.1: Representation of the onsidered transmission sheme, where the LDPCdeoder an be implemented with the standard or modi�ed MPA or with the WBF.Sine we want to have reliable performane results, we onsider the onept ofon�dene, i.e. we have a probability equal to 95% that the measured value lies in theomputed on�dene interval [97℄.We suppose that our system transmit 100 words of 288 information bits every time.These bits are enoded, modulated and transmitted on the hannel. At the reeiverside, the reeived signal (i.e. the signal at the output of the hannel) is demodulated,



104 Chapter 5. Alternative algorithms for LDPC deodingdeoded and the bit error rate (BER) is omputed. At this point we ompute theon�dene interval and verify if it's equal or smaller than the 15% of the estimated BERvalue; if it's not we run the simulation again for other 100 words and reomputed BERand on�dene interval. The proess is iterated until the onstraint on the on�deneinterval is satis�ed or a maximum number of iterations, equal to 1000̇00, is reahed.When we onsider our modi�ed MPA we need to handle the not-a-number (NaN)ases due to the attempt of summing together some +∞ and −∞. This an happenwhen we use a threshold whih is too low and so we onsider reliable some bits whiharen't. What we do in these situations is onsidering a failure of the deoder on theword with the NaN bit and ompute the BER on the other words.5.1.4 Simulation resultsTo test our algorithm we onsider the LDPC ode proposed for the WiMAX system(IEEE 802.16e [1℄, [2℄) with a odeword of length n = 576.Figure 5.2 represents the performane in terms of bit error rate for the above LDPCode when it's deoded through di�erent algorithms, namely the standard and ourmodi�ed MPA, with di�erent thresholds, and the WBF algorithm. To have other termsof omparison, the BER for the hard deision and for a '3G' turbo ode is plotted. Thereason why we hoose the '3G' turbo ode and not the one de�ned for the WiMAXsystem is beause we want to ompare the performane of our algorithm with the onesof a general turbo ode, i.e. a turbo ode omposed by two idential onvolutionalode and an interleaver, and in the standard 802.16e there are no odes of this type.Another term of omparison is given by the WBF deoding algorithm, representedthrough the solid line with ◦ marker. As we an see from Figure 5.2, the performane ofthis algorithm is not so good, but this an be explained onsidering that it is proposedfor deoding �nite geometry LDPC odes [96℄ and the ode we are onsidering is not ofthis type.In Figure 5.2 the solid line with � represents the hard deision performane, thesolid line with ⋄ represents the performane of the standard MPA algorithm and thesolid line with ⋆ represents the turbo ode performane. The dotted lines with ◦, �,
⋄ and ⋆ represent the performane of our modi�ed algorithm for di�erent thresholdvalues, whih are de�ned by the maximum value of the reeived LLRs (max) or throughthe equation:

th = min
llr

+
p

100
(max

llr
−min

llr
). (5.11)where p = 40, 50, 90, the values reported in Figures 5.2 and 5.3.Finally, in Figure 5.2 we an see a solid line with hexagon marker whih representsthe performane we an obtain hoosing the best threshold at eah SNR value. In thisFigure, only the thresholds that lead to a signi�ant gain on the performane of thestandard algorithm are represented, but, obviously, we simulated more thresholds, tobe sure that our hoie is the best one.To reah the best performane we an use our modi�ed algorithm with di�erentthreshold until 4.5 dB and then we must use the standard algorithm.



5.1. Message passing algorithm: omplexity redution 105What we want to underline is that all the results represented in this Figure areomputed on the bit error rate of the words deoded through our modi�ed algorithm;this means that we are not handling the not-a-number (NaN) ases. The same poliyis adopted for the omputation of the interval of on�dene.
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Figure 5.2: Bit error rate omparison when an LDPC ode is deoded through di�erentalgorithms: MPA standard and modi�ed, and WBF. Comparison of the performaneof the LDPC ode with a turbo ode of the same rate.Figure 5.3 represents the perentage of saved produts and deoded words when themodi�ed MPA algorithm is used with the four di�erent thresholds. Figure 5.3.a) showsan expeted result: the perentage of saved produts is higher when the threshold islower and, for example, at SNR= 2 dB and for p = 90 proposed algorithm saves the
35% of multipliation with respet to the standard MPA. What we an onlude is that,if we know the type of appliation we are using and so the reliability we need, we anreah a trade-o� between the omputational omplexity and the system reliability, justhoosing the orret threshold.From Figure 5.3.b) we an observe that the more produts we save the less wordswe an deode and so what is important, at this point, is to study a way to handle theNaN. Looking the Figure, we observe also a strange behavior of these perentages: forall the thresholds there's a minimum around 1 − 1.5 dB. To understand this strangebehavior will be one of the �rst topis of our future researh.Our results show that, hoosing a good threshold allows a redution of the BER,but this performane is omputed only on the words the algorithm is able to deoding.
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b)Figure 5.3: Perentage of a) saved produts b) deoded words when we onsider themodi�ed MPA with di�erent threshold.5.2 Message passing algorithm: quantized versionIn the standard LDPC deoder the input is a real vetor whih represents the log-likelihood ratios for the bits of the odeword.5.2.1 Representation of real numbers in �xed-point data typeIn digital hardware, numbers are stored in binary words. A binary word is a �xed-length sequene of bits (1's and 0's). How hardware omponents or software funtionsinterpret this sequene of 1's and 0's is de�ned by the data type.Binary numbers are represented as either �xed-point or �oating-point data types.A �xed-point data type is haraterized by the word length in bits, the position ofthe binary point, and whether it is signed or unsigned. The position of the binary pointis the means by whih �xed-point values are saled and interpreted.
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bwl−1 bwl−2 . . . b5 b4 b3 b2 b1 b0LSBMSB binary pointFigure 5.4: Binary representation of a generalized �xed-point number (either signedor unsigned).In Figure 5.4 we see a binary representation of a generalized �xed-point number



5.2. Message passing algorithm: quantized version 107(either signed or unsigned), where- bi is the ith binary digit- wl is the word length in bits- bwl−1 is the most signi�ant bit (MSB)- b0 is the less signi�ant bit (LSB)- The binary point is shown four plaes to the left of the LSB. In this example,therefore, the number is said to have four frational bits, or a fration length offour.Fixed-point data types an be either signed or unsigned. Signed binary �xed-pointnumbers are typially represented in one of three ways:- Sign/magnitude- One's omplement- Two's omplement5.2.2 Implementation of a funtion with �xed-point data typeWhen we implement a funtion with �xed-point data type we suppose that:1. input and output are represented with n bits2. internal states are represented with 2n bits.The seond assumption omes from the observation that the sums have still n bits, butthis is not true for the produts, so we use words of 2n bits to have a small loss in thepreision of the �xed-point representation. These results are then re-quantized at theoutput.For working with �xed-point data type, step by step, you should proeed as desribedfollowing:- Fix the number n of bits that you want to use- Fix a range of representable values and so determine the preision of your system,i.e. fration length.ExampleYou want to represent the numbers in the intervals [−128, 127] with n = 16 bits.Sine 128 = 27, you need 7 bits for the magnitude of the entire part and 1 bit forthe sign, then, onsidering all, you need 8 bits for the entire part and you have
n − 8 = 8 frational bits. This means that the interval [0, 1) is divided into 28parts and the preision of your representation is 2−8.



108 Chapter 5. Alternative algorithms for LDPC deoding- Now you are using n = 16 bits integers in the range [−215, 215 − 1] to representyour values. This is a numerable and �nite set, so a single map between theseintegers and the real values exists. The sale fator that you must use is 28, wherethe exponent is the fration length.5.2.3 Implementation of the soft deoding algorithm using �xed-pointdata typeWe onsider input and output at 16 bits and we suppose that the values of thelog-likelihood ratios are in [−64, 64). Sine 64 = 26 we need 6 bit for the magnitudeplus 1 for the sign, for the entire part. Then ,the fration length is of 9 bits; this meansthat we have a preision of 2−9 ≃ 2 · 10−3.Figures 5.5 and 5.6 represent the performane, in terms of odeword error probabilityand bit error probability, respetively, when we onsider a LDPC ode of rate R = 1/2and odeword length N = 576. The deoding algorithm used is the same, but the twourves are obtained onsidering two di�erent types of input to the deoder:- the real-valued log-likelihood ratio;- a 16 bit-quantized version of the same LLR.
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Figure 5.5: Considering a LDPC ode of rate 1/2 and odeword length 576, we omparethe performane, in terms of odeword error rate, of the message passing algorithmonsidering its input is either a real-valued log-likelihood ratio (LLR) or a quantizedversion of it.From these Figures we an see that the performane are almost the same, so we antry to use a small number of bits for our quantization. So, now we need to determinethe number of bit that we must use in our quantization and the fration length. Todetermine these quantities we need to know whih is the small value in the log-likelihoodthat an be onsidered reliable in the proeeding of the message passing algorithm.
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Figure 5.6: Considering a LDPC ode of rate 1/2 and odeword length 576, we om-pare the performane, in terms of bit error rate, of the message passing algorithmonsidering its input is either a real-valued log-likelihood ratio (LLR) or a quantizedversion of it.Finally, Figure 5.7 represents the performane, in terms of bit error rate, of themessage passing algorithm when the input is quantized. We suppose to use 4 bits forthe integer part and the total number of bits is 8 (blue line), 12 (magenta line), 16(green line) and 32 (yan line).The red line, instead represents the performane whenthe input is real valued.We an observe that the best performane are obtained with 12 bits, so it is impor-tant to determine the number of bits we want to use and the fration of it that are usedto represent the integer part.5.3 Other deoding algorithm for LDPC odesAs it is well known, omputation omplexity of message passing algorithm is high,so, in the following setions, alternative algorithms are analyzed espeially from a om-putation point of view.5.3.1 Priority �rst searh algorithmThis algorithm was designed for deoding onvolutional odes and more in generalall the odes whih an be represented with a trellis. Sine we an design a trellis for alinear blok ode starting from its parity-hek matrix, the algorithm an be used alsofor this kind of odes. Considering, then, that low-density parity-hek odes are linearblok odes, we have thought to use it instead of the message passing algorithm.Aim of this algorithm is the transformation of the deoding problem into a searhproblem. For the linear blok odes the algorithm proposed as solution for the deod-ing problem is the maximum-likelihood soft-deision deoding. By maximum-likelihood
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Figure 5.7: Considering a LDPC ode of rate 1/2 and odeword length 576, we om-pare the performane, in terms of bit error rate, of the message passing algorithmonsidering its input is either a real-valued log-likelihood ratio (LLR) or a quantizedversion of it. We suppose to use 8, 12, 16 and 32 bits and the number of bits used forthe integer part is �xed to 4.deoding (MLD) we mean the minimization of the probability of deoding to an in-orret odeword when all odewords have equal probability of been transmitted. Bysoft-deision we mean the use of real number assoiated with every omponent of theodeword in the deoding proedure.The idea presented for the �rst time in [6℄ is based on the Dijkstra's algorithm[98℄ to searh for the trellis for a ode equivalent to the transmitted ode. The use ofthis priority-�rst searh strategy for deoding drastially redues the searh spae andresults in an e�ient optimal soft-deision deoding algorithm for linear blok odes.Furthermore, the deoding e�orts of our deoding algorithm are adaptable to the noiselevel.In this algorithm, every branh in the tree graph is assigned a ost based on amaximum-likelihood deoding (MLD) rule. The purpose of the searh is to �nd adesired path (odeword) whih satis�ed the MLD rule. This searh is guided by anevaluation funtion f de�ned for every node in the graph. The algorithm maintains astak of nodes of the graph that are andidates to be expanded. The node in the stakwith minimum value of the funtion f is seleted to expand. If the algorithm selets agoal node for the expansion it means that the desired path has been found.The algorithmThe main advantage of the presented algorithm is given by the unompleted visitof the nodes in the graph. In fat a suessor, when applied to a node b gives all theimmediate suessors of the node and, for every immediate suessor of node b, storesthe partial path ost of the path ending at it. Then we assign the ost found to the



5.3. Other deoding algorithm for LDPC odes 111orresponding suessor bj and all it the ost (metri) of bj, g(bj).The proess explained above is alled expanding the node.In PFSA the next node to be expanding is the one with the smallest ost on the listof all leaf nodes of the subtree onstruted so far by the algorithm. If we suppose tomemorize the nodes to be expanded in a stak ,we must keep it ordered aording tothe ost assoiated to eah node. When the algorithm hooses to expand a goal node,it outputs the path assoiated with the ost of the goal node.PFSA requires that for all nodes bi and bj suh that node bj is an immediate suessorof node bi, must be veri�ed the equation
g(bi) ≤ g(bj) (5.12)beause it guarantees that the algorithm will always �nd an optimal path.Owing the above requirement (equation (5.12)), the ost of any node is non-dereasingalong any path in a ode tree and is de�ned as follows:

g(bj) = g(bi) + (φ− (−1)c)2 (5.13)where φ is the log-likelihood at the output of the demodulator for the symbol we areonsidering and c ∈ {0, 1}.We observe that when a goal node is hosen for expansion, all osts of nodes in thestak are greater then or equal to the ost of the goal node and sine all suessor ofany of these nodes will have osts no less than that of the node, one will not �nd anypath with smaller ost than that of the goal node.Considering a blok ode with a relative small odeword length, we an suppose theknowledge of the trellis. When we expand a node, we hek if the state assoiated witheah suessor is in the trellis. If it belongs to the trellis, we insert the node into thestak, otherwise we don't onsider it.In �gure 5.8 we an see the performane for a (15, 11) Hamming ode. The red linerepresents the performane when the deoding proess is performed with the Hammingdeoding proess, the blue one represents the performane obtained with the PFSAdesribed above, but where we suppose to know the trellis of the ode and use thisknowledge when we expand a node. In this ase, when we �nd out the node with theminimum ost funtion, we ontrol if it is in the trellis, if it is not we don't put it intothe stak, beause with it we don't �nd a odeword. Finally the green one representsthe performane when we apply the PFSA only to the k information bits and thenompute the parity-hek bits and hose the odeword with the minimum distane fromthe reeived vetor.As we an see from Figure 5.8 the �rst variation of the PFSA, the one representedwith the blue line, whih is based on the knowledge of the trellis, outperforms theperformane of the standard deoding algorithm. The problem arises when we onsidera ode with longer odewords, beause the trellis grows enormous and we need too muhmemory. Unfortunately a LDPC trellis is very big and it is impossible to use the PFSA
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Figure 5.8: Considering a (11, 15) Hamming, we ompare the performane, in termsof bit error rate, of the standard deoding algorithm with the one of two variation ofthe PFSA algorithm.with the trellis knowledge to deode a LDPC ode.Figure 5.9 represents the performane of the PFSA applied only to the k informationbits and then ompute the parity-hek bits and hoose the odeword with the minimumdistane from the reeived vetor. Blue and green lines represent the performane forthis algorithm onsidering the aknowledge and the knowledge of the trellis, respetively.The red line, instead, represents the performane of the standard deoding algorithmfor the Hamming odes.
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Figure 5.9: Considering a (11, 15) Hamming, we ompare the performane, in termsof bit error rate, of the standard deoding algorithm with the one of two variation ofthe PFSA algorithm.As we an see from Figure 5.9 the performane is the same for the tree algorithms.As said above we an't assume the knowledge of the trellis for a LDPC odes and



5.3. Other deoding algorithm for LDPC odes 113from the observation of Figure 5.9, we had the idea of using the PFSA on the k bitswithout the knowledge of the trellis. The problem is that for a LDPC ode we expanda lot of nodes and so the time needed to deode a odeword is very long. Thus, theMPA is better than the PFSA for LDPC deoding.Just beause the performane of the MPA is better than the one of the PFSA foran AWGN hannel, we deided to not perform the simulation with a frequeny seletivehannel, suh as SCME, beause the MPA will ertainly perform better.5.3.2 The geneti algorithm (GA)Geneti algorithms (GA) were introdued by Goldberg in 1989. They are searhalgorithms that apply operations from natural genetis to guide the trek through asearh spae. GAs has theoretially and empirially proves to provide robust searhapability in omplex spaes, o�ering a valid approah to a problem requiring e�ientand e�etive searh.GAs are general purpose searh algorithms whose priniples lie on natural genetisand an be applied to solve problems in whih the objetive funtion is disontinuous,non-di�erentiable, stohasti, or highly non linear.A geneti algorithm maintains a population of individuals that evolve aording torules of seletion and geneti operators, suh as reprodution, rossover and mutation.GA begins with a population that onsists in randomly reated individuals (possiblesolutions) and rapidly modi�es this population "evolving" towards an optimal solution.Eah individual in the population is assigned a measure of its �tness in the environ-ment. Reprodution fouses its attention on high �tness individuals, thus exploiting theavailable �tness information. Crossover and mutation perturb those individuals, provid-ing general heuristis for exploration. Although simplisti from a biologist's viewpoint,these algorithms are omplex enough to provide robust (good performane aross avariety of problem types) and powerful adaptive searh mehanisms. The adaptivebehavior of the GA depends on this feedbak to drive the population towards betteroverall performane [99℄ [100℄.Therefore, onsidering a partiular problem, an ad-ho evaluation or �tness funtionmust be devised.As already known, GAs' performane is a funtion of parameter settings [101℄ [102℄.The number of possible parameter assignments rules out a fatorial design to �x thebest parameter setting.The algorithm for low-density parity-hek odesIn [10℄ the authors presented an algorithm for the deoding of low-density parity-hek odes based on GA. They suppose to use an additive white Gaussian noise(AWGN) hannel, and alled x the transmitted vetor and y the reeived one, whih isnothing more than the transmitted one orrupted by AWGN.The algorithm an be implemented in three steps:



114 Chapter 5. Alternative algorithms for LDPC deoding- syndrome alulation step- GA appliation step- meta deision step.Syndrome alulation stepIn this �rst step the proposed algorithm onstruts a modi�ed reeived vetor yhard,whih is basially a hard deision vetor of the reeived vetor y. In this step, theomponents yi of the reeived vetor, essentially real numbers, are onverted into binaryvalues (taken from the disrete alphabet 0,1) using a �xed threshold. Then, the deodingalgorithm veri�es if this modi�ed vetor satis�es the syndrome ondition
Hyhard = 0. (5.14)If the modi�ed reeived vetor yhard meets this ondition, then a valid ode vetor d isobtained: d = yhard. Otherwise, the deoder makes the following two steps.Geneti algorithm stepThe algorithm begins reating an initial population of V andidates: a set of in-dividual vetor v with real omponents vi ∈ [0, 1]. To avoid an a priori redution ofthe searhing spae, an initial random population is generated. A new 500 individualgeneration (hildren) is reated through the following steps:- Selets individuals (alled parents) based on their �tness value 5.17 through theseletion funtion.- The two individuals with the best �tness values survive for the next generation(elite hildren= 2).- The rossover fration (Pc = 0.95) spei�es the fration of the population, otherthan elite hildren, that are made up of rossover hildren.- To omplete the new generation, mutation hildren are reated by introduingrandom hanges with a given probability rate (Pm = 0.01) to a single parent. Thealgorithm stops when the limit of 25 generations is reahed.The GA parameters were heuristially seleted to optimize its performane.The solution provided by the GA algorithm is a z vetor obtained as follows:

zi =

{

1 if ỹi > vi

0 if ỹi ≤ vi
(5.15)where

ỹi =
1

1 + e−2yi
(5.16)expression that maps the omponents of the reeived vetor y into [0, 1]. Hene thereeived vetor y format agrees with the andidate vetors v format.



5.3. Other deoding algorithm for LDPC odes 115The proess involves the following �tness funtion:
Fitness =

m∑

j=1

bj +
n∑

j=1

|zi − ỹi| (5.17)where bj are the omponents of the vetor b de�ned as
Hz = b. (5.18)In equation (5.17), m is the number of rows of the parity hek matrix H, i.e. thenumber of parity-hek nodes, and n the ode vetor length.The �tness funtion (equation (5.17)) measures both a omponent wise distanebetween the andidate vetor and the reeived one, and also how lose the andidatevetor satis�es the syndrome ondition (equation (5.14)).A set of q deoded vetors z is obtained applying GA algorithm q times, where qis an arbitrary integer value heuristially optimized (partial solutions). These q vetorsare andidates for the following step of the deoding proess, whih onsists in applyingthe meta-deision proess.Meta deision stepThe Meta-deision proess redues the results sattering of the GA, whih omesfrom the randomness of the initial population.The z vetors are a set of possible solutions obtained at q GA runs, next a meta-deision stage generates the �nal solution, i.e, a deoded vetor d.This proess applies the majority logi, a well-known proedure utilized in the errororretion deoding theory. This proedure performs a omponent wise deision over the

z andidate vetors, setting eah �nal omponent di as the bit state of higher frequeny.Still open point and onlusionsThe results presented in [10℄ are quite promising: in their example, as we an seein [10℄, the GA based deoder performane is better than the traditional sum-produtdeoder for signal-to-noise ratio (SNR) greater than 3 dB.We also observe that the main advantage of the proposed GAMD deoder is thatnoise level transmission hannel information needs not be known, an essential onditionfor sum produt algorithm.Neverless it is important to understand how the authors ompute the rossover andthe mutation and how they determine- the number of elements in the population,- the number of iteration at the GA step,- the number of deoded vetors used in the meta deision step,- the rossover fration Pc,- the probability rate of hanges Pm.



116 Chapter 5. Alternative algorithms for LDPC deodingIt is of the same importane to understand how to determine the above parameterswhen we onsider di�erent odes, espeially with growing sizes.Sine the results presented in [10℄ were quite promising, we ran the geneti algo-rithm, with those parameters, on our quasi-ompliant WiMAX standard simulator, but,unfortunately, our results were a omplete disaster. We try to de�ne di�erent valuesfor the parameters, but we ouldn't �nd any theoretial rule to determine as good pa-rameters for our system as those for the ode in [10℄. We try to de�ne the parameterssomehow, but we weren't luky in our researh: all the set of simulation performed,presented very bad results and this is the reason why, here, we don't present any kindof result.



Chapter 6Conatenation of short LDPC andturbo odes for improvedperformaneIt is well known that both Low-Density Parity-Chek (LDPC) and Turbo odes aregood odes if we onsider long odewords, whih means that the information part isgreater than a thousand of bits. In our days, in many appliation, suh as voie, delayis an important issue and large blok size ommonly used in LDPC or turbo odesannot be applied. We propose the use of a onatenation of LDPC, as the outer ode,and turbo, as the inner ode, when we onsider short frame, i.e. the information partof a odeword is around a hundred bits. The objetive of the work is to ome up withwell-performing short ode strutures through the onatenation of LDPC and turboodes: a synergy of short LDPC and short turbo odes vulnerable to di�erent errorpatterns. The overall ode rate is of onern: we onsider 1/3, 5/16 and 1/4 rates.Other partiular topis about this work are the hoie of the deoding algorithms. Forturbo odes the one with less omputational omplexity: the max-log-MAP algorithm isused and, for LDPC, the one used performs very well even if it has very high omplexity:it is the message passing algorithm (MPA).The work onsists in analyzing the ritial sequenes of errors for turbo deodingand try to design the LDPC ode with the purpose of deoding those kind of sequenes.This would allow us to redue the error �oor presented by turbo odes at high SNR.Another important aspet is the determination of when a deoder should ontinue toiterate and when it would be better to forward the frame to the other deoder, whihmeans when would the LDPC deoder have better luk deoding the frame than if theturbo deoder kept iterating.6.1 IntrodutionBoth Low-Density Parity-Chek (LDPC) and Turbo odes, when we onsider longodewords, have near-apaity performane on a large variety of data transmission and



118 Chapter 6. Conatenation of short LDPC and turbo odes for improved performanestorage hannels. This is the reason why they hold the attention of oding theoristsand pratitioners.Everything about LDPC odes has been said in Chapters 4 and 5. Here we rememberthat they were invented by Gallager in 1960's [3℄ and [4℄, reinterpreted by Tanner in1981 [103℄ and redisovered by MaKay, Luby and others in the mid-1990's [104℄, [105℄,[106℄ and [5℄.On the other side, Turbo odes were disovered by Berrou, Glavieux and Thiti-jashima [19℄ in 1993. In this work they demonstrated that these odes, with very largeinterleavers, an approah the Shannon bound on the apaity of a ommuniationhannel. Then, Berrou and Glavieux, further elaborated the onept in [20℄ and [21℄.6.1.1 Conatenation: why and expeted resultsSerial onatenation of LDPC and turbo odes is not a new idea. It was �rstproposed in [22℄ where the authors observed that while turbo odes performs very wellfor BER's above 10−4 (waterfall performane), however they have a signi�ant weakenedperformane at BER's below 10−5: this phenomenon is known as error �oor. Anotherimportant observation, we need to keep in our mind, is that, in turbo deoding, onlyinformation bits are deoded and they annot be used for error detetion. The poorminimum distane and lak of error detetion apability make these odes performbadly in terms of blok error probability. Poor blok error performane also makesthese odes not suitable for many ommuniation appliations. On the ontrary, �nitegeometry LDPC odes do not have all the above disadvantages of turbo odes, exeptthat they may not perform as well as turbo odes for BER's above 10−4. Other reasons,whih ould justify the hoie of a LDPC ode as outer ode are given by a very lowomplexity deoding, ompared to the omplexity if the MAP algorithm used for theturbo odes, and the fat that this algorithm an reeive the reliable deoded bitsdiretly from turbo deoders. Finally, LDPC has an inherent interleaving e�et andso, if it's onatenated with another ode, interleaver is not required [107℄. Straightonlusion from the above observation is that the advantages of extremely good errorperformane of turbo odes for BER's above 10−4 and the advantages of �nite geometryLDPC odes suh as no error �oor, possessing error detetion apability after deodingand good blok error performane, an be ombined to form a oding system thatperforms well for all ranges of SNR's. Obviously, the �rst system of this type we anthink about is the onatenation of an inner turbo ode and a �nite geometri outerLDPC ode. In 2005 Lee and others [23℄, [24℄ analyzed the onatenation of LDPC andturbo odes, beause they thought it would be a good idea to obtain a good trade-o�between deoding omplexity and performane. They observed that turbo ode is thestandard error orreting ode for the third generation mobile ommuniation systems,but even if it shows very good performane at low SNR's, its �oor for higher SNR'sis not as good as the high quality and high speed multimedia servies required in thenext generation mobile ommuniation systems. Sine LDPC ode doesn't present thesame �oor for high SNR's, the onatenated sheme an be an alternative to solve the



6.2. Error pattern at the output of the turbo ode and LDPC onstrution 119problem of the new requirements. In [23℄ it is shown that the onatenated sheme doesnot su�er error �oor and outperforms LDPC ode of the same ode rate when outerLDPC ode rate is seleted properly, hene the suitable LDPC ode rate remains a stillopen point. In [24℄, the authors are still foused on the same problem, but sine both theode presents iterative deoding they proposed to deode the onatenated sheme witha global iterative deoding proess, whih means that eah iteration of the deodingalgorithm performs turbo and LDPC deode. Results similar to the ones presented in[23℄ are shown. Finally, in 2006, the same authors in [25℄, observing that onentratederrors may our in some odewords in the output of a turbo ode, proposed the useof a blok interleaver in the onatenation, between the two odes. Results show thatthe blok interleaver improves the performane of the onatenation spreading out theonentrated errors at the output of the turbo deoder. What we an underline hereis that all these works about the onatenation of LDPC and turbo odes onsiderlong odewords, whih is neessary to obtain good performane for both the onsideredodes. This is not too good if we must respet some delay onstraints as in speehommuniations. This observation is the starting point of this work, where we want toanalyze the performane of the onatenation sheme when the word we need to enodeis a hundred bits. Sine the odeword is relatively short, we analyze the output at theturbo deoding and try to onstrut an "ad ho" LDPC deoder whih is suitable fordeoding what the turbo ode annot orret. This idea is useful also to avoid the blokinterleaver usage, whih is not suitable, beause it introdues more delay.6.2 Error pattern at the output of the turbo ode andLDPC onstrution6.2.1 Turbo ode: '3G 'typeThe sheme of Turbo oder is a Parallel Conatenated Convolutional Code (PCCC)with two 8−state onstituent enoders and one Turbo ode internal interleaver. Theoding rate of Turbo oder is 1/3. The struture of Turbo oder is illustrated in Figure6.1.The transfer funtion of the 8−state onstituent ode for PCCC is:
G(D) =

[

1,
g1(D)

g0(D)

]

, (6.1)where
g0(D) = 1 +D2 +D3 (6.2)
g1(D) = 1 +D +D3 (6.3)The initial value of the shift registers of the 8−state onstituent enoders shall be
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Figure 6.1: Struture of rate 1/3 Turbo oder.all zeros when starting to enode the input bits. Output from the Turbo oder is:
x1, z1, z

′
1, x2, z2, z

′
2, . . . , xK , zK , z

′
K ,where x1, x2, . . . , ‘, xK are the bits input to the Turbo oder i.e. both �rst 8−stateonstituent enoder and Turbo ode internal interleaver, and K is the number of bits,and z1, z2, . . . ., zK and z′1, z′2, . . . , z′K are the bits output from �rst and seond 8−stateonstituent enoders, respetively. The bits output from Turbo ode internal interleaverare denoted by x′1, x′2, . . . , x′K , and these bits are to be input to the seond 8−stateonstituent enoder.Also the turbo interleaver is standard ompliant [49℄.For the deoding two algorithms are implemented: the log-MAP deoding and theMAX-log-MAP deoding, whih is an approximation of the former. In this work we usethe seond one, sine it is more e�ient from a omputational point of view.Code's propertiesWe are looking for those double error pattern in the CC sequenes whih annot bedeoded through the CC deoding.We observe that the polynomials in Equations (6.2) and (6.3) an be written inother two di�erent forms (binary and otagonal) as follows:

g0 = [1 0 1 1] = 13

g1 = [1 1 0 1] = 15,



6.2. Error pattern at the output of the turbo ode and LDPC onstrution 121hene the enoder needs 3 memory elements and we an de�ne the onstraint lengthequal to 4.The ode is a systemati feedbak ode and the enoder an be represented as inFigure 6.2, where we represented the ontent of the shift register at the beginning ofthe oding.
u + 0 0 0

++

+

s

pFigure 6.2: Representation of the enoder for the (4, [13 15], 13) onvolutional ode.In Figure 6.2, u represents the information sequene, s the systemati output of theenoder and p the omputed parity-hek bits.Figure 6.3 represents the trellis used for the deoding of the reeived odeword.
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Figure 6.3: Representation of the trellis for the (4, [13 15], 13) onvolutional ode.Considering Figure 6.2 and the input sequene u = (1 0 0 0 0 0 0 1), we an show thatthe feedbak polynomial is primitive [90℄. Table 6.1 ontains the state evolution andthe output of the onvolutional enoder.We observe that the shift register's ontents rotate through the all 23−1 = 7 possiblestates before returning to the original all-zero state and if the last input bit would be
0 instead of 1 the new state would be 1 0 0 and so another yle is repeated. In Figure6.4 we an see the path for this input sequene on the trellis.Observation 8. The behavior desribed above makes us think that the error pattern ofour interest are the ones with this harateristi: onsidering the soure bits, if we have
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u state s p

000

1 1 1
100

0 0 1
010

0 0 1
101

0 0 1
110

0 0 0
111

0 0 0
011

0 0 1
001

1 1 1
000Table 6.1: Enoder states and output, when the sequene u = (1 0 0 0 0 0 0 1) is en-oded.
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Iteration stepFigure 6.5: Representation of the turbo deoder. The blok deassembler subdividesthe reeived signal in three parts: the systemati bits, the parity-heks for the �rstenoder and the parity-heks for the seond one; the π represents the interleaveroperation and the π−1 the deinterleaver one. Finally the blok output omputes the�nal log-likelihood ratio.We all ritial sequenes all the possible sequenes with 2 errors of this kind, beausethey annot be orreted after the interleaver, sine the distane between the 2 errorsis still equal to the minimum distane or a multiple of it.The interesting results of this study is given by the fat that these sequenes an begrouped, beause di�erent groups of sequenes a�et di�erent and separate groups ofbits at the output of the deoder. Figures 6.6 and 6.7 represent the ritial sequeneswhen we onsider a onatenation with overall rate equal to R = 1/3, with turbo ode'srate RT = 1/2 and LDPC ode's rate RL = 2/3. Sine the turbo ode is the inner one,its soureword length is equal to 150, beause the words we want to enode have length
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Figure 6.7: Two-dimensional representation of Figure 6.6.This observation gave us an idea: when we onstrut the LDPC matrix for the outerode we add a onstraint; we want that the olumns orrespondent to the bits of thesame group with errors at the output of the turbo deoders have no ones in ommon.This means that those bits are heked by di�erent hek nodes and so the probabilityof orreting the errors through the LDPC ode is higher.6.2.2 LDPC ode onstrutionWe an hoose if we want to use a regular or an irregular LDPC ode and if we hoosethe seond one we must speify a degree distribution. In literature it is shown that theirregular odes have better performane espeially if the odewords are very long. In[108℄, the authors studied the probability densities at the message nodes of the graphand show that they always onverge as the number of iterations tends to in�nity. Usingthis result they found the optimal degree distribution when a odeword is of in�nitelength. However we onsider short frame, so, we an �nd the optimal distribution fora ode with the spei�ed rate and in�nite odeword length and then we an adapt theomputed parameter to our ase [90℄. Unfortunately, this operation introdues ylesin the Tanner graph and so the performane experienes error �oor for high SNR andbad results for low SNR beause of a big number of degree−2 variable node.To solve this problem the variable node distribution must be modi�ed to have anumber of variable nodes of degree−2 less than or equal to the number of parity-heknodes and when the graph is onstruted the degree−2 variable nodes must be madeorrespond to the hek nodes. It is important also that the degree−2 variable nodes areyle-free. One the variable node degree distribution is modi�ed also the hek nodedegree distribution must be hanged, beause it must be ompatible with the other one.On the web site http://lthwww.epfl.h/researh/ldpopt/index.php there isan implemented algorithm to ompute the optimal degree distributions for in�niteodeword and from http://www.s.toronto.edu/ radford/ftp/LDPC-2006-02-08/



6.3. System desription 125index.html we an download some -funtions to onstrut the parity-hek matrixone we have the degree distributions.After appropriate modi�ations, these funtions are used to onstrut the parity-hek matrix whih needs to be modi�ed to satisfy the new onstraint.6.3 System desriptionThe system onsidered is represented in Figure 6.8.
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demodulator deoder deoderFigure 6.8: Representation of the onsidered transmission sheme.Data are enoded �rst through a LDPC enoder and then through a turbo enoder.After the oding operation they are modulated through a QPSK modulator and sentover an AWGN hannel. At the reeiver side, they are �rst demodulated and thendeoded through a turbo and a LDPC deoder.Sine we want to have reliable performane results, we onsider the onept ofon�dene, i.e. we want a probability equal to 95% that the measured value lies in theomputed on�dene interval [97℄.We suppose that our system transmits 100 words of 100 or 105 information bitsevery time. These bits are enoded, modulated and transmitted on the hannel. Atthe reeived side, the reeived signal (i.e. the signal at the output of the hannel) isdemodulated, deoded and the bit error rate is omputed. At this point we omputethe on�dential interval through the equation:
confidence = 2 · 1.96 ·

√

(var/total_number_words/info_bits)/BER, (6.4)where var = BER · (1 − BER), total_number_words is the total number of wordssimulated until that moment and info_bits is the information length of a odeword.This on�dene interval must be equal or smaller than 15% of the estimated BERvalue; if it is not we run the simulation again for other 100 words and reomputed BERand on�dene interval. The proess is iterated until the onstraint on the on�deneinterval is satis�ed or a maximum number of iterations, equal to 10000, is reahed.6.4 ResultsThe results shown in this setion are omputed through Matlab simulations: fun-tions are implemented in Matlab and C, where the -funtions are transformed in mex-funtions and so they an be used into Matlab simulations.



126 Chapter 6. Conatenation of short LDPC and turbo odes for improved performane6.4.1 Overall rate 1/3The turbo rate is RT = 1/2 and it is obtained through the punturing in the '3G'standard [49℄. The LDPC ode has rate RL = 2/3 and we ompared the performanewith di�erent matries.Figure 6.9 represents the performane of the onatenation when we use regularand irregular LDPC matries obtained with the algorithms desribed in Setion 6.2.2(urves red, yan and green). The blue and yellow urves represent the performanewhen the matries used are modi�ed to satisfy the new onstraint. We an observe thatfor growing SNR the performane is better and this is reasonable, beause, with thisgrowing, the errors are due more to the distane of the ode than to the hannel noise.Unfortunately, the onatenation doesn't present the expeted results, beause theLDPC ode isn't able to reovery the loss do to the turbo punturing.Figure 6.9 represents also the performane for an LDPC ode and a turbo ode withrate 1/3. While the onatenation outperform the turbo for SNR higher than 3.5 dB,the used LDPC ode performs very well and is of interest for another kind of study.
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Figure 6.9: Conatenation performane with overall rate equal to 1/3.6.4.2 Overall rate 5/16The turbo rate is RT = 1/3 and the LDPC ode's one is RL = 15/16. In this asethe performane doesn't experiene the loss due to the punturing of the turbo ode,but the problem is that the LDPC parity hek matrix is very small (7×112) and thereis not enough spae to modify the matrix with the aim of satisfying the new onstraint.In Figure 6.10 magenta and blak urves represent performane for turbo ode withrate 1/3 and LDPC ode with rate 5/16, respetively. On the other hand blue andgreen lines represent performane for the onatenation system when we use the random



6.4. Results 127matrix and its modi�ed version. Here we an observe that the onatenation has someadvantages in terms of bit error rate, but it is impossible to satisfy the new onstraintand so the results are almost the same (see blue and green lines).
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Figure 6.10: Conatenation performane with overall rate equal to 5/16.
6.4.3 Overall rate 1/4The turbo rate is RT = 1/3 and the LDPC one is RL = 3/4. In this ase theperformane doesn't experiene the loss due to the punturing of the turbo ode, butthe problem is that the overall rate is very low and this is not good in our system,beause we are trying to satisfy some delay onstraints.In Figure 6.11 magenta and yan urves represent performane for turbo ode withrate 1/3 and LDPC ode with rate 1/4, respetively. On the other hand, blue andgreen lines represent performane for the onatenation system when we use the ran-dom matrix and its modi�ed version. Here we an observe that the onatenation hassome advantages in terms of bit error rate: for example, at BER equal to 10−6 theonatenation sheme gains 1.1 dB. From Figure 6.11 we observe also that the onate-nation with the modi�ed matrix (green line) presents an enhanement with respet tothe non-modi�ed one (blue line). This has a theoretial explanation: at low SNR mostof the errors are due to the noise of the hannel, but, as the SNR grows, the errorsare due to the inability of deoding some sequenes whih an be orreted, with highprobability, by the modi�ed LDPC.Unfortunately, the BER's values are very small, and, even if we ran the maximumnumber of iteration for every simulated point, we an't say those results are ompletelyreliable.
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Figure 6.11: Conatenation performane with overall rate equal to 1/4.6.4.4 ConlusionObserving Figures 6.9, 6.10 and 6.11 we an onlude that onatenation presentsperformane gain in terms of bit error rate for odes with very low rates. This is farfrom our purpose: we presented the onatenation sheme for short frames to respetsome delay onstraints.Observing LDPC performane in Figures 6.9 and 6.11, another idea omes to ourmind: ompare the BER for the LDPC 1/3 (Figure 6.9) and LDPC 1/4 (Figure 6.11).From a theoretial point of view we expet the LDPC 1/4 outperforms the LDPC 1/3,but atually it is not true, as we an see from Figure 6.12, where the blak line representsper BER of the LDPC ode with rate 1/3, the yan one the performane of LDPC odewith rate 1/4 and the green one the performane of the onatenation sheme withoverall rate equal to 1/4. For example, at 2 · 10−5 BER the LDPC 1/3 has a gain of 1.1dB and this is due to the strong dependene of the performane from the parity-hekmatrix.For both the LDPC odes, the parity-hek matries were hosen by using the samedesign riterion. The hoie has been limited, for both odes, to a small number ofparity-hek matries. The onlusion we tried is that for LDPC ode with rate 1/3 wefound a very good solution while for the LDPC ode with rate 1/4 the best solution wefound is far away from the aeptability and the searh must be ontinued.We an ompare also the performane of the LDPC ode with rate 1/3 and theonatenation with overall rate 1/4. In this ase results on�rm the expetation: at
2 · 10−5 of BER the onatenation sheme gains 0.2 dB over LDPC ode and at 10−7

0.4 dB.To onlude this setion we observe also that all the parity hek matries have been
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Figure 6.12: Comparison of LDPC odes with rate 1/3 and 1/4 and onatenationsheme with rate 1/4hosen with the design riterion desribed above, thus the remark made for LDPC odewith rate 1/4 an be made also for the LDPC ode of rate 5/16 and all the LDPC odesinvolved in the onatenation shemes.





Chapter 7WiMAX standardThis Chapter has the aim of brie�y desribe those parts of the standard whih havebeen of interest for the implementation of a downlink simulator standard ompliant.What I want to underline is that it doesn't give a omplete desription of the stan-dard, so for more details and ompleteness I reommend the readers to reefer to [1℄ and[2℄.7.1 Aim and frequeny alloationThe WirelessMAN- OFDMA PHY, based on the OFDM modulation is designed fornon-line-of-sight (NOS) operation in the frequeny bands below 11 HZ, as seen fromthe table 7.1.Designation Appliability PHY Options Duplexingalterna-tiveWirelessMAN−SCTM 10 − 66 HZ 8.1 TDD FDDWirelessMAN−SCaTM Below 11 HZliensed bands 8.2 AAS,ARQ,STC TDD FDDWirelessMAN
−OFDMTM Below 11 HZliensed bands 8.3 AAS,ARQ,Mesh,STC TDD FDDWirelessMAN−OFDMA Below 11 HZliensed bands 8.4 AAS, ARQ,STC TDDFDDWirelessMAN
−HUMANTM Below 11 HZliense-exemptbands [8.2, 8.3or 8.4and 8.5

AAS,ARQ,Mesh,STC TDD
Table 7.1: Air interfae nomenlature.For liensed bands, hannel bandwidth shall be limited to the regulatory provisioned



132 Chapter 7. WiMAX standardbandwidth divided by any power of two, and must be no less than 1 MHz.The OFDMA PHY mode based on at least one of the FFT sizes 2048 (bakwardompatible to IEEE Std 802.16-2004), 1024, 512 and 128 shall be supported. Thisfailitates support of the various hannel bandwidths.The Mobile Station (MS), alled also User Equipment (UE) or Subsriber Station(SS), may implement a sanning and searh mehanism to detet the DL signal whenperforming initial network entry and this may inlude dynami detetion of the FFTsize and the hannel bandwidth employed by the Base Station (BS).We have �ve frequeny range that will support WiMAX, and to everyone of thiswe assoiate one or more ombinations of hannel bandwidth, FFT size, hannel rasterand duplexing mode. In [109℄, whose sope is to provide the OFDMA system pro�lespei�ation of mobile network, primarily for the purpose of erti�ation of onformantMS and BS, we �nd all the possible ombinations of the above parameters. They areresumed in Table 7.2.Frequeny Channel frequeny Channel bandwidth FFT Duplexingrange (HZ) step (kHz) (MHz) size mode
2.3 − 2.4 250 5 512 TDD

10 1024 TDD
8.75 1024 TDD

2.305 − 2.32 250 5 512 TDD
2.345 − 2.36 10 1024 TDD
2.496 − 2.69 250 (200 in Europe) 5 512 TDD

10 1024 TDD
3.3 − 3.4 250 5 512 TDD

10 1024 TDD
3.4 − 3.8 250 5 512 TDD

7 1024 TDD
10 1024 TDDTable 7.2: Combinations of hannel bandwidth, FFT size, hannel raster and duplexingmode.As we an see from the Table 7.2, even if the standard allows the two duplexingmodes TDD and FDD, the WiMAX Forum requires only the TDD mode to have aerti�ed produt.7.2 OFDMA symbol desription, symbol parameters andtransmitted signal7.2.1 Time domain desriptionThe OFDMA waveform is reated through the Inverse Disrete Fourier Transform(IDFT) and its time duration is named useful symbol time Tb. To ollet multipath,while maintaining the orthogonality of the tones, a Cyli Pre�x (CP) is used, whihonsists in oping the last Tg seonds of the useful symbol period at the beginning of the



7.2. OFDMA symbol desription, symbol parameters and transmitted signal 133symbol. This method allows the reeiver to take the samples for performing the FastFourier Transform (FFT) anywhere over the length of the extended symbol, Ts and somultipath immunity and tolerane for symbol time synhronization errors are ahieved.The CP values proposed in the standard are 1/4, 1/8, 1/16 and 1/32, but in [109℄it is said that the value we must use is 1/8.The transmission energy inreases with the length of the CP, while the reeiverenergy remains the same, so there is a loss in Eb/N0, that an be quanti�ed through:
(Ploss)dB =

10 log(1 − Tg

Ts
)

log(10)
. (7.1)where Tg and Ts are de�ned in 7.2.3 When CP is equal to 1/8, in (7.1) we found:

(Ploss)dB = 0.5 dBOn initialization, a MS should searh all possible values of CP, until it �nds the onebeing used by the BS. The SS must use the same CP on the uplink, beause it an behanged by the BS, but this operation requires the resynhronization of all the SSs tothe BS.7.2.2 Frequeny domain desriptionAn OFDMA symbol is made up of subarriers, whose number determines the usedFFT size. There are three subarrier types:- Data subarriers: for data transmission;- Pilot subarriers: for various estimation purposes;- Null arriers: no transmission at all, for guard bands and DC arrier.In the OFDMA mode, the ative subarriers (pilot and data subarriers) are di-vided into subsets of subarriers, whih may, be adjaent, and eah subset is termedsubhannel. In downlink, one subhannel an be intended for groups of reeivers; inuplink, instead, one subhannel may be assigned to more transmitters, so that SS maytransmit simultaneously.This tehnique supports salability, multiple aess and advaned antenna arrayproessing apabilities.7.2.3 ParametersPrimitive parametersFour parameters haraterize the OFDMA symbol:1. BW: nominal hannel bandwidth2. Nused: number of used subarriers (inluded the DC subarrier)
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Figure 7.1: OFDMA frequeny desription: an example of three hannel.3. n: sampling fator; in onjuntion with BW and Nused, determines the subar-rier spaing and the useful symbol time. Its values is 28/25 if the hannelbandwidth is a multiple of any of 1.25, 1.5, 2 and 2.75 MHz and 8/7 in theother ases.4. G: ratio of CP time to useful time (G = Tg/Tb)Derived parametersThese parameters are de�ned in terms of the primitive ones.1. NFFT : FFT size is the smallest power of two greater than Nused2. Fs: sampling frequeny Fs =
⌊
n · BW

8000

⌋
× 80003. ∆f : subarrier spaing ∆f = Fs

NF F T4. Tb: useful symbol time Tb = 1
∆f5. Tg: CP time Tg = G · Tb6. Ts: OFDMA symbol time Ts = Tg + Tb7. Tsam: sampling time Tsam = Tb
NF F TChannel BW Saling fator Fs[dB]

1.25 28/25 1.4

1.5 28/25 1.68

2 28/25 2.24

2.75 28/25 3.08

5 28/25 5.6

8.75 28/25 9.8

10 28/25 11.2

7 8/7 8Table 7.3: Sampling frequeny Fs.



7.3. Frame duration 1357.3 Frame durationIn the standard [2℄ the frame length an be equal to 20, 12.5, 10, 8, 5, 4, 2.5 and 2ms, but we saw in [109℄ that the length hosen is equal to 5 ms.This length indiates the periodiity of the downlink frame start preamble in bothTDD and FDD ases. Therefore we an say that in every seond we transmit 200frames.On this point three observations are neessary:� the frame duration is not an integer multiple of the OFDMA symbol duration.Therefore sometimes padding may be neessary between the last useful OFDMAsymbol of the frame and the beginning of the next frame;� in TDD ase (whih is the only one proposed in [109℄, as we an see from Table7.2) Reeive/transmit Transition Gap (RTG) and Transmit/reeive TransitionGap (TTG) guard intervals must be inluded in the frame, and both of themshall be no less than 5 µs in duration;� a simple sheme of the frame struture is shown in Figure 7.2, where we an seethat it is omposed by a downlink transmission period (whih inludes also thepreamble), a TTG, an uplink transmission period and a RTG.

P
re

am
bl

e

P
re

am
bl

e

S
ub

ch
an

ne
l l

og
ic

al
 n

um
be

r

DL TTG UL RTG

OFDMA symbol numberFigure 7.2: Simple sheme of an OFDMA frame in TDD mode.Before haraterizing RTG and TTG it is neessary to de�ne the Physial Slot (PS)as a time unit, dependent on the PHY spei�ation, for alloating bandwidth and inWirelessMAN-OFDMA it is given by:
PS =

4

Fs
.



136 Chapter 7. WiMAX standardRTG is a gap between the uplink burst and the subsequent downlink burst in aTDD transeiver. This gap allows time for the BS to swith from reeive to transmitmode and MS to swith from transmit to reeive mode. During this gap the BS and MSare not transmitting modulated data, but simply allowing the BS transmitter arrierto rump up the transmit/reeive antenna swith to atuate and MS reeiver setions toativate.TTG is a gap between the downlink burst and the subsequent uplink burst in aTDD transeiver. This gap allows time for the BS to swith from transmit to reeivemode and MS to swith from reeive to transmit mode. Also in this ase, during thisgap the BS and MS are not transmitting modulated data, but simply allowing the BStransmitter arrier to rump down, the transmit/reeive antenna swith to atuate andMS transmitter setion to ativate.Both these gaps are inluded in the frame by the BS and not from the MS. Theirminimum durations are equal to 5 µs, and we an say that the frame in the time isomposed by the uplink, the downlink and the gaps RTG and TTG and the sum oftheir duration must be equal to 5 µs. In Table 7.4 we �nd the durations of RTG andTTG in PS and the number of OFDM symbols that ompose the frame at the varyingof the hannel bandwidth.Channel Number of TTG RTGbandwidth (MHz) OFDM symbols (PS) (PS)
10 47 296 168

8.75 42 218 186

7 33 376 120

5 47 148 84Table 7.4: Durations of the several parts of the frame.
ExampleWe have a hannel bandwidth equal to 10 MHz and we want to ompute the frameduration.1. We ompute the sampling frequeny Fs

Fs =

⌊

n · BW
8000

⌋

× 8000

=

⌊
28

25
· 107

8000

⌋

× 8000

=

⌊
7

5
· 103

⌋

· 8000

= 11.2 MHz (7.2)



7.4. Downlink Subarriers Alloation 1372. We ompute PS:
PS =

4

FS
= 0.357 µs (7.3)3. We ompute TTG:

TTG = 296 · PS
= 105.7 µs (7.4)4. We ompute RTG:

TTG = 168 · PS
= 60 µs (7.5)5. We ompute the OFDM symbol duration:

Tb =
1

∆f

=
1
Fs

NF F T

=
1024

11.2 · 106
= 91.428 µs (7.6)6. We add the yli pre�x:

Ts = Tb ·
9

8
= 102.86 µs (7.7)7. We ompute the frame length:

TF = TTG + RTG + Number of OFDM symbols · Ts

= 105.7 + 60 + 47 · 102.86 µs
≃ 5 ms, (7.8)7.4 Downlink Subarriers AlloationThe downlink an be divided into three segment strutures and inludes a preamblewhih begins the transmission.In Figure 7.3 the downlink transmission basi struture is shown.There are several ways to perform the subarrier alloation, but only one of them,PUSC one, is mandatory, the remaining ones are optional.
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Figure 7.3: Downlink transmission basi struture.As we an see from [109℄, the remaining alloations are distinguished into two types:the �rst one is de�ned potentially optional, beause their implementation is not expli-itly mentioned as mandatory, but from the standard [2℄ we may onlude it is, throughnot really required for the system to perform basi operations, so at the end we an saythey are optional. The seond type is expliitly mentioned as optional in the standardand so it may or may not be implemented.7.4.1 PreambleAll preambles are strutured as either one or two OFDM symbol. The OFDMsymbols are de�ned by the values of the omposing subarriers. Eah of those OFDMsymbols ontains a yli pre�x, whih length is the same as the CP for data OFDMsymbols.The �rst symbol of the downlink transmission is the preamble. There are three typesof preamble arrier-sets, those are de�ned by alloation of di�erent subarriers for eahone of them and those subarriers are modulated using a boosted BPSK modulationwith spei� Pseudo-Noise (PN) ode.The preamble arrier-sets are de�ned using the following equation:
PreambleCarriesSetn = n+ 3 · k, n = 0, 1, 2 and k = 0, . . . , 567 (7.9)where PreambleCarrierSetn spei�es all subarriers alloated to the spei� preamble.Eah segment1 uses one type of preamble out of the three sets in the followingmanner:- Segment 0 uses preamble arrier-set 0;- Segment 1 uses preamble arrier-set 1;- Segment 2 uses preamble arrier-set 2.1A segment is a subdivision of the OFDMA available subhannels. One segment is used for deployinga single instane of the MAC.



7.4. Downlink Subarriers Alloation 139In the ase of segment 0, the DC arrier will not be modulated at all, therefore it shallalways be zeroed. For the preamble symbol there will be 172 guard band subarrier onthe left side and on the right side of the spetrum.7.4.2 Partial Usage Of Subhannel (PUSC)Here we give only the desription of the mandatory alloation, whose name is PartialUsage of Subhannel (PUSC). For the other type of alloation see Appendix CSymbol strutureWe use three types of subarriers:� pilot subarriers,� data subarriers,� zero subarriers.In this ase the proedure used is the following:� the symbol is divided into basi lusters;� zero arriers are alloated;� pilots and data arriers are alloated into eah luster.Eah symbol is haraterized by the following parameters:1. Number of DC subarriers; its index is given by NFFT/2, ounting from 0)2. Number of guard subarriers, Left, i.e. on the left side of the spetrum3. Number of guard subarriers, Right, i.e. on the right side of the spetrum4. Number of subarriers per luster5. Number of lusters6. Renumbering sequene, used to renumber lusters before alloation to sub-hannels7. Number of data subarriers in eah symbol per subhannel8. Number of subhannels9. Basi permutation sequene, also alled PermBasewhih depend on the FFT size.The values of these parameters, depending on the FFT size, are enumerated in Table7.5.Now we make some observations:



140 Chapter 7. WiMAX standardFFT sizeParameter 2048 1024 512 128Number of DC subarriers 1 1 1 1Number of guard subarriers, Left 184 92 46 22Number of guard subarriers, Right 183 91 45 21Number of subarriers per luster 14 14 14 14Number of luster 120 60 30 6Number of data subarriers in eah symbol per subhannel 24 24 24 24Number of subhannels 60 30 15 3PermBase 12 − 8 6 − 4 5 /Table 7.5: Symbol parameters for the available FFT size (i.e. 2048, 1024, 512 and128).Observation 9. The number of pilot subarriers in eah symbol per subhannel is 4 forthe 2048, 1024, 512 and 128 FFT size.In fat to ompute the number of pilot subarriers in eah symbol per subhannelwe follow these omputations:1. we ompute the number of data subarriers in eah symbol, in all subhannelsas the produt of the number of data subarriers in eah symbol per subhanneltimes the number of subhannels2. we ompute the number of subarriers in the all lusters as the produt of thenumber of subarriers per luster and the number of lusters3. we ompute the number of all pilot subarriers as the di�erene between the resultsfound at the seond and �rst points4. �nally, we ompute the number of pilot subarriers in eah symbol per subhanneldividing the above result for the number of subhannels.Now, we make an example to explain what is written above.ExampleWe onsider the ase of 128 and 1024 subarriers and use the parameters de�ned inTable 7.5.1. Total number of data subarriers in eah symbol Ntd:
Ntd128 = Nd ·Nsch Ntd1024 = Nd ·Nsch

= 24 · 3 = 24 · 30
= 72 = 720where Nd is the number of data subarriers in eah symbol per subhannel and

Nsch is the number of subhannels.
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Ntsubclusters128

= Nclusters ·Nsubcluster
Ntsubclusters1024

= Nclusters ·Nsubcluster

= 6 · 14 = 60 · 14
= 84 = 8402. Number of subarriers in all lusters Ntsubclusters

:where Nclusters is the number of lusters andNsubcluster
is the number of subarriersper luster.3. Total number of pilots in a symbol Ntp:

Ntp128 = Ntsubclusters
−Ntd Ntp1024 = Ntsubclusters

−Ntd

= 84 − 72 = 840 − 720
= 12 = 1204. Number of pilots in a symbol per subhannel Np:
Np128 =

Ntp

Nsch
Np1024 =

Ntp

Nsch

= 12
3 = 120

30
= 4 = 4where Nsch is the number of subhannels.If we ompute these values using the numerial values of Table 7.5 we �nd thatthe number of pilots in eah symbol per subhannel is equal to 4 for all the FFT sizeonsidered.Observation 10. In every subhannel we have 28 subarriers.

even symbols

odd symbols

Data carrier

Pilot carrierFigure 7.4: Cluster struture.Figure 7.4 shows subarriers from left to right in order of inreasing subarrier index.In order to determine the PUSC pilot position, symbols are ounted from the beginningof the urrent zone and the �rst one is always even. Obviously, the preamble is notounted as a part of the zone.



142 Chapter 7. WiMAX standardSubhannels subarrier alloationThe proedure is the following:1. Subarriers are divided into Ncluster physial lusters with 14 adjaent subarriers.2. The physial lusters are renumbering into logial lusters:
LogicalCluster =







RenumberingSeguence(PhysicalCluster)First DL zone of "All SC indiator=0"in STC_DL_Zone_IE"
RenumberingSeguence((PhysicalCluster)+

13DL_PermBase) mod Nclusterotherwise (7.10)
and the renumbering sequene and PermBase are spei�ed in the standard (8.4.6.1.2.1in [2℄). The renumbering sequenes are reported in Appendix D, the sequenes ofPermutation Base, instead,are reported in Table 7.7.3. Logial luster are alloated to six groups as it is shown in Table 7.6. These groupsFFT size Group 0 Group 1 Group 2 Group 3 Group 4 Group 5

2048 0 − 23 24 − 39 40 − 63 64 − 79 80 − 103 104 − 119

1024 0 − 11 12 − 19 20 − 31 32 − 39 40 − 51 52 − 59

512 0 − 9 10 − 19 20 − 29 / / /128 0 − 1 2 − 3 4 − 5 / / /Table 7.6: Cluster subdivision into six major groups.may be alloated to segments, if a segment is being used, then at least one groupshall be alloated to it. By default group 0 is alloated to segment 0, group 2 tosegment 1 and group 4 to segment 2.4. Alloating subarriers to subhannel in eah major group is performed separatelyfor eah OFDMA symbol by �rst alloating the pilot subarriers within eahluster and then taking all remaining data arriers within the symbol and usingthe following proedure:� the remaining subarrier within eah major group are partitioned into groupsof ontiguous subarriers� eah subhannel onsists of one subarrier from eah group, so the num-ber of group must be equal to the number of subarriers per subhannel:
Nsubcarriers, instead the number of subhannels Nsubchannels is equal to thenumber of subarriers in eah group, so Nsubchannels ·Nsubcarriers is equal tothe number of data subarriers



7.4. Downlink Subarriers Alloation 143� the partition into subhannels is given by the permutation formula (7.11):
subcarrier(k, s) = Nsubchannels · nk + {ps[nk mod Nsubchannels] +

+DL_PermBase} mod Nsubchannels (7.11)where- subcarrier(n, s) is the index of the subarrier n into the subhannel
s; its values are 0, 1, . . . , Nsubcarriers · Nsubchannels − 1 (n = 0, 1, . . . ,

Nsubcarriers− 1 and s = 0, 1, . . . , Nsubchannels − 1)- nk = (k + 13s) mod Nsubcarriers- ps[j] is the series obtained by rotating basi permutation sequene yli-ally to the left s times- DL_PermBase is an integer ranging from 0 to 31, whih is set to pream-ble IDcell in the �rst zone and determined by the DL_MAP for otherzones.The basi permutation sequene depends on the FFT size and on the numberof the major group in whih we �nd the subarrier to be alloated and isreported in Table 7.7.FFT size Even group Sequene Odd group Sequene
2048 12 subhannels 6, 9, 4, 8, 10, 11, 8 subhannels 7, 4, 0, 2, 1, 5,

5, 2, 7, 3, 1, 0 3, 6

1024 6 subhannels 3, 2, 0, 4, 5, 1 4 subhannels 3, 0, 2, 1

512 5 subhannels 4, 2, 3, 1, 0 / -128 / - / -Table 7.7: DL_PermBase.Example - 128 FFT sizeWe onsider a 128 FFT size.We have 6 lusters of 14 adjaent subarriers, hene we alloate 84 subarriers,beause the remaining are guard subarriers (22 on the left side and 21 on the rightside) and DC subarriers (1).In Figure 7.5 the subdivision in lusters is represented. The blue numbers representthe physial numeration, instead the blak ones are the number of subarriers in eahgroups.Through the renumbering sequene (see Appendix D) the physial lusters arerenumbering into logial lusters, as it is shown in Figure 7.6.As we an see from the legend in the Figure 7.6, the blue numbers still representthe physial numeration and the green ones are the new logial numeration.The renumbered lusters are subdivided into three groups (see Table 7.6).
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Figure 7.5: Physial lusters.
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DC0 1 2 3 4 5
12 3 5 40

Logical clusters

Physical clusters

Group 0

Group 1

Group 2Figure 7.6: Logial lusters.At this point, we need to alloate the pilot subarriers, whih are 4 in eah subhan-nel, as we pointed out in the above example. The pilots are alloated to �xed positions(see Figure 7.4):� for the even symbols the pilots are the 5th and 9th subarriers� for the odd symbols the pilots are the 1st and 13th subarriers.The struture of the six luster is represented in Figure 7.7 and in this one the sub-division in groups of adjaent subarriers is also represented. The remaining subarriersare numbered from 0 to 71.We point out that, in this Figure we assume that the luster are in logial order, so,looking Table 7.6, we an show also the major groups.In 128 FFT size we have 3 hannels of 24 subarriers (see Table 7.5).Now, in eah major group, we shall lustering the subarriers into groups of dimen-sion equal to the number of hannels de�ned in it and then, through equation (7.11),we assign the subarriers to subhannels.We observe that 128 FFT size is a partiular ase, beause we have one subhannelsper major group, hene the group of adjaent subarriers are made of only one. Then,
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31 3332 34 35 36 37 38 39 40 41 43 44 45 46 47

7170696867666564636261605958575648 49 50 51 52 53 54 55

Data subcarriers to subchannels

Pilot subcarriers

0

42

Major group 0

Major group 1

Maior group 2Figure 7.7: Pilots alloation.from Table 7.7, we see that we haven't basi permutation sequenes and so equation(7.11) is redued to:
subcarrier(k, s) = Nsubchannels · nk (7.12)where:� k = 0, 1, . . . , 23� s = 0� Nsubchannels = 1� nk = (k + 13 · s) mod Nsubcarriers = k mod 24 = 0, 1, . . . , 23.As it is obvious from the above observation and as we an see in Figure 7.8, thesubarriers of a major group, in this ase, form a subhannel.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 21 22 23

11 12 13 14 18 21 22 23

15

20

Pilot subcarriers

Subcarriers of subchannel 0

Subcarriers of subchannel 1

Subcarriers of subchannel 2

Major group 0

Major group 1

Major group 2

10 10 15 16 17 192 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 19 20 21 22 230 1 2 3 5 6 7 8 94 18Figure 7.8: Subarriers to subhannel assignment.In Figure 7.8 we use four olors to represent:� the pilots (light blue olor)� the subarriers alloated to subhannel 0 (magenta olor)� the subarriers alloated to subhannel 1 (yellow olor)� the subarriers alloated to subhannel 2 (green olor)



146 Chapter 7. WiMAX standardExample - 1024 FFT sizeTo show the use and results of the equation (7.11) we onsider an example with
1024 subarriers.First we show the subdivision in physial lusters (Figure 7.9) and then the renum-bering into logial lusters (Figure 7.10).

1492 14 14 14 14 14 911414141414
Left Right
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0 1 2 3 4 5 2928272625
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30 physical clustersFigure 7.9: Physial lusters.
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DC0 1 2 3 4 5 24 25 26 27 28 29
6 48 37 21 31 40 20 24 52 4 34 0

Logical clusters

Physical clusters

Group 1   (12 − 19) Group 4   (40 − 51)

Group 5   (52 − 59)

Group 0   (0 − 11)

Group 2   (20−31)

Group 3   (32 − 39)Figure 7.10: Physial lusters.In Figure 7.11 we insert the pilot subarriers into eah luster. As we an see thepositions are the same seen in the above example.After the insertion of the pilots we subdivide the remaining subarriers within eahof the six major group in groups of adjaent subarriers of the dimension of the numberof 6 and 4 if we are onsidering even or odd groups respetively.Then, a subarrier from eah group, hosen through equation (7.11), forms thesubhannels.In Figures 7.12 and 7.13 we show the alloation of the subarriers to subhannels inthe major groups 0 and 1 onsidering a DL_PermBase equal to 0. Considering, then,that in the last two major groups the alloation would be the same, we represent thealloation if we assume DL_PermBase = 15.To distinguish the subhannels we use two sets of di�erent olor for the two majorgroups. In the �rst major group we have:� pilot subarriers (light blue olor)� subarrier alloated to subhannel 0 (magenta olor)� subarrier alloated to subhannel 1 (yellow olor)� subarrier alloated to subhannel 2 (green olor)
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 230

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 230

24 25 26 27 28 29 30 31 3332 34 35 36 37 38 39 40 41 43 44 45 46 4742

24 25 26 27 28 29 30 31 3332 34 35 36 37 38 39 40 41 43 44 45 46 4742

7170696867666564636261605958575648 49 50 51 52 54 5553

7170696867666564636261605958575648 49 50 51 52 54 5553

72 73 74 75 76 77 78 79 80 81 82 83 8584 86 87 88 89 90 91 92 93 94 95

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

131
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Figure 7.11: Pilot subarriers in the lusters.� subarrier alloated to subhannel 3 (yan olor)� subarrier alloated to subhannel 4 (red olor)� subarrier alloated to subhannel 5 (pink olor)and in the seond major group:� subarrier alloated to subhannel 6 (dark yan olor)� subarrier alloated to subhannel 7 (light pink olor)
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Figure 7.12: Subarrier alloation into subhannels, for the �rst two major group,onsidering a DL_PermBase equal to 0.7.5 Channel odingChannel oding proedures inlude:� randomization� FEC oding� bit interleaving� repetition� modulation.In Figure 7.14 the hannel oding proess is shown and we point out that repetitionshall only be applied to QPSK modulation.
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Figure 7.13: Subarrier alloation into subhannels, for the last two major group,onsidering a DL_PermBase equal to 15.
FEC Bit−Interleaver Repetition ModulationRandomizer

Dato to transmit
in PHY burst

Mapping to OFDMA
subchannelsFigure 7.14: Channel oding proess for regular and repetition oding transmission.7.5.1 RandomizationThis operation is mandatory in [2℄.Data randomization is performed on all data transmitted in uplink and downlink,exept the FCH. It is initialized on eah FEC blok, through the vetor

[LSB] 0 1 1 0 1 1 1 0 0 0 1 0 1 0 1 [MSB]and in Figure 7.15 the PRBS generator for data randomization is represented.From the Figure 7.15 we see that the PRBS generator shall be 1+x14 +x15. Pream-bles are not randomized and eah data byte to be transmitted shall enter sequentiallyinto the randomizer, MSB �rst. The randomizer sequene is applied only to informa-tion bits. If the amount of data to transmit does not �t exatly the amount of dataalloated, so padding may be added at the end of the transmission blok.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

MSBLSB

Data in
Data outFigure 7.15: PRBS generator for data randomization.H-ARQ requires the randomizer pattern is idential for eah H-ARQ attempt, so,for H-ARQ, it shall be initialized with the vetor reated as it is shown in Figure 7.16.

b b b b b b b b b b b b b b b14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 LSBMSB

LSBLSB MSBMSB 0 0 000 01 1 1 1 1 1 10 OFDMA randomizer
initialization vector

Figure 7.16: Creation of the OFDMA randomizer initialization vetor for H-ARQ.7.5.2 EnodingThe WiMAX standard de�nes some odes, but only one of them is mandatory:the tail-biting onvolutional enoding. The other ones are: Blok Turbo Code (BTC),Convolutional Turbo Code (CTC) and Low-Density Parity-Chek ode (LDPC). Herewe desribe only the mandatory and the LDPC ones, beause these are the ones of outinterest. The other ones are desribed in Appendix E.The enoding blok size depends on the number of slots alloated and the modulationspei�ed for the urrent transmission. Conatenation of a number of slots shall beperformed in order to make larger bloks of oding, where it is possible, with thelimitation of not exeeding the largest supported blok size for the applied modulationand oding.For any modulation and FEC rate, given an alloation of n slots, the followingparameters are de�ned:� j: parameter dependent on the modulation and FEC rate� n: number of alloated slots/repetition fator� k: ⌊n/j⌋



7.5. Channel oding 151� m: n mod j.We de�ne a rule for the slots onatenation; it is desribed in Table 7.8.Number of slots Slots onatenated
n ≤ j 1 blok of n lusters

n > j, n mod j = 0 k bloks of j slots
n > j, n mod j 6= 0 (k − 1) bloks of j slots

1 blok of 2 × ⌈(m+ j)/2⌉ slots
1 blok of 2 × ⌊(m+ j)/2⌋ slotsTable 7.8: Rule for the slots onatenation.In Table 7.9 we �nd the value of j at the varying of the modulation and FEC rate.Modulation and rate jQPSK 1/2 6QPSK 3/4 4

16 - QAM 1/2 3

16 - QAM 3/4 2

64 - QAM 3/4 1

64 - QAM 3/2 1Table 7.9: Values of j at the varying of modulation and FEC rate.There are severely enoding methods, but only one of them is mandatory and soneed to be implemented: the others are optional, but in [109℄ is required to implementone of them.Convolutional oding (CC) - mandatoryEah FEC blok is enoded by the binary onvolutional enoder, whih shall havenative rate 1/2, and a onstraint length equal to k = 7 and shall use the followinggenerator polynomials odes to derive its two ode bits:
G1 = 171OCT X (7.13)
G2 = 133OCT Y (7.14)In Table 7.10 the punturing patterns and serialization order that shall be used torealize di�erent ode rates are de�ned; in it "1" means a transmitted bit and "0" meansa removed bit. Rate dfree X Y XY

1/2 10 1 1 X1Y1

2/3 6 10 11 X1Y1Y2

3/4 5 101 110 X1Y1Y2X3Table 7.10: Convolutional ode with punturing on�guration.
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Delay Delay Delay Delay Delay Delay

+

+

Data in

X output

Y outputFigure 7.17: Convolutional enoder of rate 1/2.Eah FEC blok is enoded by a tail-biting onvolutional enoder, whih is ahievedby initializing the enoder's memory with the last data bits of the FEC blok beingenoded.Following (in Table 7.11) we de�ne the basi sizes of the useful data payloads to beenoded in relation with the seleted modulation type, enoding rate and onatenationrule. QPSK 16 - QAM 64 - QAMEnoding rate 1/2 3/4 1/2 3/4 1/2 2/3 3/4Data payload (bytes) 6
9

12 12
18 18 18 18
24 24 24

27 27
30
36 36 36 36 36Table 7.11: Useful data payload for slot.H-ARQ implementation is optional and an Inremental Redundany (IR) based onit is taking the punturing pattern into aount and for eah retransmission the odeblok is not the same.The punture patterns are prede�ned or an be easily deduted from the originalpattern and an be seleted based on SPID (whih is the SubPaket Identi�er (ID),used to identify the four subpakets generated from an enoder paket).At the reeiver, the reeived signals are de-puntured aording to its spei� pat-tern, deided by the urrent SPID, then the ombination is performed at bit metrislevel.
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1/2 2/3 3/4 5/6SPID = 0 X 1 10 101 10101

Y 1 11 110 11010SPID = 1 X 1 01 011 01011
Y 1 11 101 10101SPID = 2 X 1 10 110 10110
Y 1 11 011 01011SPID = 3 X 1 01 101 01101
Y 1 11 110 10110Table 7.12: Punture pattern de�nition for H-ARQ.About the Table 7.12 there is a spei�ation:� SPID = 0: punture pattern equal to the mandatory one� SPID = 1: punture pattern left yli shift of the one from SPID = 0� SPID = 2 and SPID = 3: patterns are governed by the same rule.Low density parity hek ode - optionalCode desriptionThe LDPC ode is based on a set of one or more fundamental LDPC odes. Eahof the fundamental odes is a systemati linear blok ode.Eah LDPC ode is de�ned by a matrix H of size m× n, where n is the size of theode and m is the number of parity-hek bits in the ode. The number of systematibits is k = n−m.The matrix H is de�ne as:

H =











P 0,0 P 0,1 P 0,2 · · · P 0,nb−2 P 0,nb−1

P 1,0 P 1,1 P 1,2 · · · P 1,nb−2 P 1,nb−1

P 2,0 P 2,1 P 2,2 · · · P 2,nb−2 P 2,nb−1

· · · · · · · · · · · · · · · · · ·
P mb−1,0 P mb−1,1 P mb−1,2 · · · P mb−1,nb−2 P mb−1,nb−1











= P Hb(7.15)where P i,j is one of a set of z × z permutation matries or a z × z zero matrix. Thematrix H is expanded from a binary base matrix Hb of size mb × nb, where nb = 24,
n = z · nb and m = z ·mb, with z an integer. The base matrix is expanded by replaingeah 1 in the base matrix with a z × z permutation matrix, and eah 0 with a z × zzero matrix.The set of permutation matries ontains the z×z identity matrix and irular rightshifted version of the identity matrix.

Hb is partitioned into two setions, where Hb1 orresponds to the systemati bits



154 Chapter 7. WiMAX standardand Hb2 orresponds to the parity hek bits, suh that
H = [(Hb1)mb×kb

|(Hb2)mb×mb
]Setion Hb2 is further partitioned into two setions: hb and H ′

b2, where hb has oddweight, and H ′
b2 has a dual diagonal struture with matrix elements at row i, olumn

j equal to 1 for i = j, for i = j + 1 and 0 elsewhere.The base matrix has hb(0) = 1, hb(mb−1) = 1 and a third value hb(j), 0 < j < mb−1equal to 1.So:
Hb2 = [hb|H ′

b2]

=














hb(0) | 1

hb(1) | 1 1 0

· | 1
. . .

· | . . . 1

· | 0 1 1

hb(mb − 1) | 1














(7.16)
The largest ode length of eah ode rate is n = 2304 and, in any ase, n must be amultiple of nb = 24.Code rate and blok size adjustmentThe LDPC ode �exibility supports di�erent blok sizes for eah ode rate throughthe use of an expansion fator z.Table 7.13 shows the parameters for eah ode rates:- n(bytes) = n(bits)/8- z = n(bits)/24- k = n(bytes) ∗RPaket enodingThe enoding blok size k shall depend on the number of subhannels alloatedand the modulation spei�ed for the urrent transmission. As usual, onatenation ofa number of subhannels shall be performed in order to make larger bloks of odingwhere it is possible, with the limitation of not passing the largest blok under the sameoding rate. For the onatenation rule see Table 7.15, but remember that for the LDPCthe onatenation does not depend on the ode rate.For any modulation and FEC rate, given an alloation of NSCH subhannels, wede�ne the following parameters:
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n n z k bytes Number of subhannels(bits) (bytes) fator R = 1/2 R = 2/3 R = 3/4 R = 5/6 QPSK 16 −QAM 64 −QAM

576 72 24 36 48 54 60 6 3 2
672 84 28 42 56 63 70 7 − −
768 96 32 48 64 72 80 8 4 −
864 108 36 54 72 81 90 9 − 3
960 120 40 60 80 90 100 10 5 −
1056 132 44 66 88 99 110 11 − −
1152 144 48 72 96 108 120 12 6 4
1248 156 52 78 104 117 130 13 − −
1344 168 56 84 112 126 140 14 7 −
1440 180 60 90 120 135 150 15 − 5
1536 192 64 96 128 144 160 16 8 −
1632 204 68 102 136 153 170 17 − −
1728 216 72 108 144 162 180 18 9 6
1824 228 76 114 152 171 190 19 − −
1920 240 80 120 160 180 200 20 10 −
2016 252 84 126 168 189 210 21 − 7
2112 264 88 132 176 198 220 22 11 −
2208 276 92 138 184 207 230 23 − −
2304 288 96 144 192 216 240 24 12 8Table 7.13: LDPC blok sizes and ode rates.- ji: parameter dependent on the modulation and number of antennas in ase ofspatial multiplexing- NSCH : number of alloated subhannel- F = �oor(NSCH/ji)- M = NSCH mod jiTable 7.14 spei�es the onatenation of subhannels for di�erent alloations andmodulations. Modulation j1 j2 j3 j4QPSK 24 12 8 6

16 - QAM 12 6 4 3

64 - QAM 8 4 2 2Table 7.14: Parameter j for LDPC.
NSCH ≤ ji 1 blok of NSCH subhannels
NSCH > ji If M == 0

F bloks of ji slotselse
(F − 1) bloks of ji slots
1 bloks of ⌈((M + ji)/2))⌉ slots
1 bloks of ⌊((M + ji)/2))⌋ slotsendTable 7.15: Subhannels onatenation.Control information and pakets that result in a odeword size n of less than 576bits are enoded using CC.



156 Chapter 7. WiMAX standard7.5.3 InterleavingAll enoded data bits shall be interleaved by a blok interleaver with a blok sizeorresponding to the number of oded bits per the enoded blok size Ncbps. Theinterleaver is de�ned by a two-step permutation. The �rst ensures that adjaent odedbits are mapped onto nonadjaent subarriers. The seond permutation insures thatadjaent oded bits are mapped alternately onto less or more signi�ant bits of theonstellation, thus avoiding long runs of lowly reliable bits.Let Ncpc be the number of oded bits per subarrier, i.e. 2, 4 or 6 for QPSK,
16−QAM or 64−QAM, respetively. Let s = Ncpc/2. Within a blok of Ncbps bits attransmission, let k be the index of the oded bit before the �rst permutation, mk bethe index of that oded bit after the �rst and before the seond permutation and let jkbe the index after the seond permutation, just prior to modulation mapping, and d bethe modulo used for the permutation.The �rst permutation is de�ned by Equation (7.17):

mk =
Ncbps

d
· kmod(d) + ⌊k

d
⌋ k = 0, 1, . . . , Ncbps − 1 and d = 16 (7.17)The seond permutation is de�ned by Equation (7.18):

jk = s · ⌊mk

s
⌋ + (mk +Ncbps − ⌊d ·mk

Ncbps
⌋)mod(2) k = 0, 1, . . . , Ncbps − 1 and d = 16(7.18)The de-interleaver, whih performs the inverse operation, is also de�ned by twopermutations. Within a reeived blok of Ncbps bits, let j be the index of a reeived bitbefore the �rst permutation; mj be the index of that bit after the �rst and before theseond permutation; let kj be the index of that bit after the seond permutation, justprior to delivering the blok to the deoder.The �rst permutation is de�ned by Equation (7.19):

mj = s · ⌊j
s
⌋ + (j + ⌊ d · j

Ncbps
⌋) j = 0, 1, . . . , Ncbps − 1 and d = 16 (7.19)The seond permutation is de�ned by Equation (7.20):

kj = d ·mj − (Ncbps − 1) · ⌊d · mj ·mj

Ncbps
⌋ j = 0, 1, . . . , Ncbps − 1 and d = 16 (7.20)7.5.4 ModulationThere are di�erent way to modulate the data and pilot subarriers.Data modulationAfter bit interleaving, the data bits are entered serially to the onstellation mapper.Gray-mapped QPSK and 16−QAM are supported , whereas 64−QAM is optional. The



7.5. Channel oding 157onstellations shall be normalized by multiplying the onstellation point with the fator
1/
√

2, 1/
√

10 and 1/
√

42 respetively, to ahieve equal average power.Pilot modulationPilot sequenes wk are generated through a PRBS generator, whose polynomial is
X11 +X9 + 1. Than the value of the pilot for OFDM symbol k is derived from wk. Foreah pilot the BPSK modulation shall be derived as follows:

Re{ck} =
8

3

(
1

2
− wk

)

Im{ck} = 0 (7.21)where the multipliation by 8/3 realizes a boost of 2.5 dB.Preamble modulationOne we have de�ned the sequene of subarriers that must be used in the preamble,as desribed in Setion 7.4.1, Let's all them prek. Their modulation is a boosted BPSK:
Re{pk} = 4 ·

√
2

(
1

2
− prek

)

Im{pk} = 0. (7.22)





Chapter 8Performane evaluationIn the Chapters above hannel estimation and hannel oding tehniques have beendesribed. In this Chapter those tehniques will be applied to a WiMAX standardompliant systems. First of all the implemented WiMAX system will be desribed andthan the performane with in�nite and �nite omputational resoure will be presented.8.1 WiMAX simulatorA standard ompliant implementation of the PHY level of a downlink 802.16e systemwas developed in a Matlab/Simulink software environment. The frame and symbolstrutures are ompliant with the standards spei�ations ontained in [1℄ and [2℄.The simulation software is able to evaluate the performane of the PHY layer indi�erent propagation senarios (e.g. urban/suburban/rural) and in various interfereneontexts.All the simulations are arried out in a baseband environment, negleting the im-plementation of pass band frequeny modulation and of arrier/symbol/frame synhro-nization.The transmitter supports all the onvolutional odes and QAM modulation shemes(MCS) approved by the previously mentioned standards. The useful payload is on-tained in a single data region, and �lls all the available subarriers. Also the irregularLDPC ode with all the QAM modulation are supported, but only for a ode rate equalto 1/2. Finally for the QPSK modulation we onsider also a turbo ode with rate 1/3,a regular LDPC ode with rate 3/4 and a onatenation of the last two with an overallrate equal to 1/4. All the transmitting BSs are assumed to adopt di�erent DL permu-tation bases and the same MCS of the useful payload. By the way, simulations an bearranged where these parameters are set individually for eah interfering BS.Figure 8.1 gives a blok representation of the implemented system and Figures 8.2,8.3 and 8.4 give a more aurate representation of the blok transmitter, frame assemblerand reeiver.
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Concatenation Coding Interleaver ModulationFigure 8.2: Transmitter.
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Concatenation

Preamble

FrameModulated
Symbols Figure 8.3: Frame assembler.

Data
Channel

Estimation
Equalizator Soft

Demodulator De−Interleaver Decoding ReshapeFigure 8.4: Reeiver.8.1.1 TransmitterThe transmitter implements the onatenation and oding. We an hoose between�ve di�erent type of oding: onvolutional ode, regular and irregular LDPC odes,turbo ode or onatenation. The onvolutional ode (CC) is implemented exatly asdesribed in Setion 7.5.2. For the other odes we onsider the same onatenation rule(see Table 7.8) beause we want to enode soureword of the same length. For the irreg-ular LDPC ode, the matrix used is the one de�ned in the standard for soureword oflength 288 and rate 1/2 (see Table 7.13). We don't use the onatenation rule desribedin Table 7.15, beause, for the ase we are onsidering (a full loaded system with 512subarriers, QPSK modulation and ode rate equal to 1/2) we �nd the odeword lengthis 720, but this value is not inluded in Table 7.13, and for values di�erent from theones listed in that table the standard suggests to use the CC.After the oding operation the interleaver one is performed as desribed in 7.5.3.The last operation is the modulation one: we an hoose between QPSK, 16−QAMand 64−QAM, even if not all the ombinations of ode-modulation are available.



8.1. WiMAX simulator 1618.1.2 PUSC PermutationThis is a ompliated blok whih implements the insertion of the pilots and thepermutation as desribed in Setion 7.4.2.First of all we divide the data in even and odd symbols and we insert the pilots toform a luster. For every FFT size the luster is made of one even and one odd symboland eah of them is made of 12 data subarriers and 2 pilots.For the even symbols pilots have indexes 5 and 9, for the odd 1 and 13, assumingwe are numerating the arriers starting from 1.These lusters, whih are made of adjaent subarriers, are alled physial lustersand are renumbering into logial lusters as de�ned in 7.10.Logial lusters are alloated to groups (see Table 7.6), then subarriers are lusteredinto groups whose dimension is equal to the number of hannels for the FFT size and,�nally, through Equation (7.11), they are alloated to subhannels.8.1.3 Frame assemblerAt the output of the PUSC permutation blok we have the data and pilots wewant to transmit on the OFDMA symbols, so, in the frame assembler virtual and DCsubarriers are added to form the omplete OFDMA symbol. At the beginning of theframe we add the preamble whih is one OFDM symbol modulated with a boostedBPSK. For a 512 system, it ontains data only over 143 subarriers, generated with aPRBS generator as desribed in Setion 7.4.1.8.1.4 ChannelOne we have the frame we want to transmit the data over a wireless hannel. Inthis simulator we an use four di�erent types of hannel: AWGN, exponential withRayleigh fading, SCME [110℄ and Winner [111℄.8.1.5 Frame deassembler and Data/pilots separationAim of the frame deassembler blok is simply the division of preamble and usefulOFDM symbols. More omplex is the data/pilots separation blok: it extrats pilotsfrom the reeiver symbols, performing the PUSC inverse permutation.In this blok we �nd the subhannels, the groups, the logial and physial lusters.One we have the latter ones we know exatly the position of the pilots and so it is easyto extrat them from the reeived symbols.8.1.6 Channel estimationIn this ase we have four inputs: the transmitted pilots and preamble and thereeived ones. Channel estimation an be performed through a redued rank LS (seeChapter 2) estimator on both preamble and pilots or a MMSE estimator on preamble



162 Chapter 8. Performane evaluationand a LS estimator on pilots. The hoie of these estimators is motivated from theresults presented in Chapter 2.8.1.7 ReeiverAt this point we have the hannel estimation and the reeived data so we performthe equalization. Atually to measure the loss due to the hannel estimation we anperform also the equalization with the perfet hannel, i.e. we assume the knowledgeof the hannel.The output of the equalizer is the input for the soft demapper, then the LLR arede-interleaved and deoded. Finally we perform a reshape to have the bits ordered aswhen they were generated.8.2 System parametersWe onsider a 512 subarrier system. In this ase we use 360 subarriers for datatransmission and 60 for pilots. All the remaining exept the DC are virtual subarriersso we don't transmit anything over them. The bandwidth is 5 MHz and the arrierfrequeny 2 GHz, thus the symbol period is Ts = 1.0286e− 04 where we onsider a CPequal to 1/8 of the useful symbol.A single frame has one preamble and 24 OFDMA symbols and eah iteration of oursimulations performs the transmission of 200 frames.Finally, mobile speed an vary between 3, 50 or 130 km/h.Table 8.1 resumes all the parameters for the onsidered system.8.3 In�nite omputational resoureFigure 8.5 represents the performane of the WiMAX implemented system when weonsider an AWGN hannel and a CC odes. We onsider all the rate and modulationenumerated in the standard [2℄.Assuming we know the hannel, we plot the performane when we onsider LDPCand CC odes with rate 1/2. As said above for the onsidered system, the LDPCsubhannel onatenation rule doesn't give a valid odeword size, but if we use the slotsonatenation de�ned for the CC, we have a odeword of 576 bits.Figures 8.6, 8.7 and 8.8 represents the performane for the onsidered system whenwe assume to onatenate the data through the slots onatenation rule (Table 7.8)and to enode them through the CC and LDPC odes with rate 1/2. The modulationonsidered are QPSK (blue lines), 16−QAM (green line) and 64−QAM (magenta line).Two di�erent styles are used: the solid lines represent performane for the CC and thedotted lines performane for the LDPC ode.Observing these �gures we an onlude that espeially for QPSK and 16−QAM itould be a good idea to use the LDPC odes with a di�erent onatenation rule.



8.3. In�nite omputational resoure 163FFT size 512Channel bandwidth 5 MHzCarrier frequeny 2 GHzSampling fator 1.12CP ratio 1/8Sampling frequeny 5.6 MHzSubarrier spaing 1.0938e + 04Useful symbol time 9.1429e − 05CP time 1.1429e − 05OFDMA symbol time 1.0286e − 04Sampling time 1.7857e − 07Number of OFDM symbols (downlink) 24Number of preamble OFDM symbols 1Number of DC subarriers 1Number of guard subarrier, Left 46Number of guard subarrier, Right 45Number of subarriers per luster 14Number of lusters 30Number of data subarriers in eah symbol per subhannel 24Number of subhannels 15PermBase 5Table 8.1: Parameters for the onsidered system.
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Figure 8.5: Bit error rate performane for a WiMAX system with AWGN hannel andCC.In Chapter 6 we proposed a onatenation of LDPC and turbo odes as outer andinner odes, respetively. In that Chapter we onsidered onatenation with overallrate equal to 1/3, 5/16 and 1/4. Unfortunately, for the �rst two rates results weredisappointing. For the rate 1/4 some improvements in the performane are available, so
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Figure 8.6: Comparison in terms of bit error rate between the onvolutional ode andthe LDPC ode when the mobile station moves at 3 km/h.
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Figure 8.7: Comparison in terms of bit error rate between the onvolutional ode andthe LDPC ode when the mobile station moves at 50 km/h.we deided to apply this kind of analysis to the WiMAX system. Considering the slotsonatenation rule de�ned in Table 7.8, we introdued in the system, for the QPSKmodulation other three types of oding: a regular LDPC ode with rate 3/4, a turboode with rate 1 1/3 and the onatenation of these two odes for an overall rate equalto 1/4.1The turbo ode used here is not the one de�ned in the WiMAX standard, but the one desribed inChapter 6, beause we want to ompare the performane of the proposed algorithm with a "ommon"turbo ode, i.e. a ode made by two idential onvolutional odes.
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Figure 8.8: Comparison in terms of bit error rate between the onvolutional ode andthe LDPC ode when the mobile station moves at 130 km/h.The parity-hek matrix for the regular LDPC ode has been found as desribed inSetion 6.2.2, while the turbo ode is the one de�ned in the 3GPP standard [49℄ anddesribed in Setion 6.2.1.Figures 8.9 and 8.10 represent the performane of the system with a QPSK mod-ulation, an AWGN hannel and the oding types desribed above. In Figure 8.9 theperformane is represented in terms of SNR, just to show the results when we onsiderthe same level of signal-to-noise ratio. This is not a good term of omparison beausethe energy used for eah information bit hanges when we onsider di�erent odingrates. To avoid this problem we represent the same BER in terms of Eb/N0 in Figure8.10; the onversion follows the equation:
Eb

N0
=

SNR

R log2(M)where R is the oding rate andM the ardinality of the modulation alphabet. From this�gure we an see that after 4 dB of Eb/N0 the onatenation sheme outperforms theonvolutional one. Unfortunately, the omputational omplexity in the onatenationenoding and deoding is higher than in the CC ase. Thus, the hoie of the odingtype must be made onsidering a trade-o� between the omputational omplexity andthe required BER.8.4 Finite omputational resoureIn this Setion we present the results when we onsider hannel estimation andtraking. We perform a LS estimation on the preamble and use this as the startingpoint for the traking of the hannel over the 24 OFDM symbols. The traking is
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Figure 8.9: Performane in terms of bit error between CC and onatenation. Fora more omplete analysis also the performane of the onstituent odes (Turbo andLDPC) are represented.
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Figure 8.10: Comparison in terms of bit error rate between the performane of on-volutional, turbo and LDPC odes and onatenation of turbo and LDPC. Here werepresent the performane presented in Figure 8.9 in terms of Eb/N0.performed through a LS estimation over the pilots.Figures 8.11, 8.12 and 8.13 represent the performane when we onsider perfethannel knowledge (× marker) and hannel estimation (◦ marker). The hannel usedis the exponential hannel with Rayleigh fading and the mobile speed is 3, 50 and 130km/h. The QPSK 1/2 is represented with blue lines, the QPSK 3/4 with red lines, the
16−QAM 1/2 with green lines, the 16−QAM 3/4 with yan lines, the 64−QAM 1/2
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Figure 8.11: Comparison in terms of bit error rate between di�erent types of modula-tion and CC oding rates, with perfet hannel knowledge and estimation.
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Figure 8.12: Comparison in terms of bit error rate between di�erent types of modula-tion and CC oding rates, with perfet hannel knowledge and estimation.Figures 8.14, 8.15 and 8.16 represent the performane for three di�erent modula-tions: QPSK, 16−QAM and 64−QAM, respetively. The oding rate is equal to 1/2and we onsider LDPC (dotted lines) and onvolutional (solid lines) odes. For all themodulation shemes we assume that the exponential hannel is a�eted by Doppler fre-queny due to three di�erent speeds: 3 (blue lines), 50 (green lines) and 130 (magentalines) km/h. For all the ases we onsider perfet hannel knowledge (× marker) and
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Figure 8.13: Comparison in terms of bit error rate between di�erent types of modula-tion and CC oding rates, with perfet hannel knowledge and estimation.estimation (◦ marker).
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Figure 8.14: Comparison in terms of bit error rate for a QPSK modulation and aoding rate equal to 1/2. Results for di�erent mobile speeds are represented.Finally, we implemented our onatenation sheme for the hannel oding in theWiMAX system. In Figures 8.17, 8.18 and 8.19 we represent performane when weonsider a WiMAX system with QPSK modulation and exponential hannel for di�erentmobile speeds: 3, 50 and 130 km/h, respetively. The hannel oding is implementedwith the proposed onatenation sheme with overall rate equal to 1/4. Performanefor the proposed algorithm are very good, in fat the BER is about 10−7 for 1.4 dB of
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Figure 8.15: Comparison in terms of bit error rate for a QPSK modulation and aoding rate equal to 1/2. Results for di�erent mobile speeds are represented..
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Figure 8.16: Comparison in terms of bit error rate for a QPSK modulation and aoding rate equal to 1/2. Results for di�erent mobile speeds are represented.SNR. For all the Figures, the hannel estimation is omputed through the LS algorithm,as justi�ed above.
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Figure 8.17: Performane, in terms of bit error rate, for a WiMAX system with QPSKmodulation, exponential hannel (mobile speed equal to 3 km/h) and onatenationsheme.
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Figure 8.18: Performane, in terms of bit error rate, for a WiMAX system with QPSKmodulation, exponential hannel (mobile speed equal to 50 km/h) and onatenationsheme.
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Figure 8.19: Performane, in terms of bit error rate, for a WiMAX system with QPSKmodulation, exponential hannel (mobile speed equal to 130 km/h) and onatenationsheme.





Chapter 9ConlusionsFinal aim of this work is the performane of a WiMAX system. Atually two bigproblems for wireless systems have been analyzed and studied in a general environmentand then the onlusions of these studies have been applied to a WiMAX system.The �rst studied problem is the hannel estimation in an OFDM system.We suppose the use of a omb-type struture, whih means that in an OFDM symbolsome �xed subarriers are dediated to the transmission of pilots.After the study of the hannel estimation we an �nd in literature, in the time andfrequeny domain, we implemented a quasi-ompliant WiMAX standard simulator andanalyzed the performane of di�erent hannel estimation in the frequeny domain. Forquasi-ompliant WiMAX standard simulator we mean a simulator with the parametersgiven in the standards [1℄ and [2℄, but where we do not implement the subarrierspermutation and all the ode-modulation ombinations. We simply onsider a systemoded with a onvolutional ode 1/2 and modulated QPSK.The hoie of onsidering hannel estimation in frequeny domain derives from theonsidered system: it is the most obvious hoie for an OFDM system.The estimation tehniques onsidered are Least Square (LS) and Linear MinimumMean Square Error (LMMSE) and �nally an adaptive tehnique. Sine we want toperform the estimation of the hannel over a frame of 24 OFDM data symbols and apreamble, we assume the hannel is slow-time variant, whih means it is onstant onan OFDM symbol and varies very slowly from a symbol to the suessive one. Theformer two tehniques an be used both for the preamble estimation and the hanneltraking through the pilots, whereas the last one, explained in Setion 2.4 takes, asinitial estimation, the LS or the LMMSE preamble estimation and simply performs thetraking through the pilots.The hannel used in the simulations is the SCME [110℄ and, sine the system on-sidered is a mobile one, we assume the mobile station moves with three di�erent speeds:
3, 50 and 130 km/h. About the LMMSE, two di�erent versions ould be used, one isindependent of the transmitted data and the other one depends on them.From results presented in Chapter 2 we an see that the LS and LMMSE dependenton transmitted data are both good estimators, even if the LMMSE one is omputational



174 Chapter 9. Conlusionsmore omplex than the LS one. The adaptive estimator performs well for speeds under
50 km/h, but fails for speed equal to 130 km/h. Thus for slow mobile speeds we anhoose between LS or adaptive estimator, and rather the adaptive one an be hosen,beause it is better from a omputational point of view. For high speeds the LS estimatorseems to be the best hoie. These onlusions are straightly related to a system withthe WiMAX parameters; a di�erent number of pilots an ompletely hange the results.For the problem of the hannel estimation another solution has been explored: a jointhannel estimation and data detetion through the expetation maximization algorithman be performed.This solution is very omplex and so it makes sense to use it only if the bit error rategain, with respet to the performane of the tehniques desribed above, is signi�ant.Unfortunately, results presented in Chapter 3 do not show any signi�ant gain and sothis is not the solution we are looking for.The seond big problem onsidered in this work is the hannel oding with partiularattention to the Low-Density Parity-Chek (LDPC) odes. These odes have drawnmuh attention due to their near-apaity error orretion performane. They are validompetitors of the turbo odes, beause, even if they don't have as good performane asturbo odes for low SNR, they present lower error �oor at high SNR and their deodingis not trellis based. In fat, their deoding is performed through an Iterative Deodingbased on Belief Propagation (IDBP) algorithm whih is a symbol-by-symbol soft-insoft-out deoding algorithm whih iteratively proesses the reeived symbol in order toimprove its reliability.The omputation omplexity of this algorithm is, however, high and so a modi�edversion has been proposed. Results presented in Chapter 5 are quite promising, even ifa method to handle the not-a-number ases is needed.The best known odes, i.e. LDPC and turbo, have good performane if the ode-words are very long, but, in our days, in many appliations, suh as voie, delay is animportant issue and large blok sizes ommonly used for these odes annot be applied.The solution we proposed to this problem, to obtain better performane than theone given by the known blok odes, as Hamming, or onvolutional odes, is the on-atenation of short LDPC and turbo odes as outer and inner odes, respetively. Theturbo odes, due to their strutures, are not able to orret some error sequenes, so, ifwe onstrut the LDPC ode suh that the possible wrong bits are heked by di�erenthek nodes, the performane of the onatenation should be good.Results presented in Chapter 6 show that the hoie of the overall rate and ofthe rates of the onstituent odes is very important. First of all the loss due to thepunturing of the turbo ode annot be reovered with the LDPC ode. Thus, theoverall ode must be hosen suh that turbo rate is 1/3. On the other hand it is wellknown that performane of LDPC odes with rates external to the interval [1/3, 1/2]are not so good. By the way, the overall rate equal to 1/4 shows good results even ifthis is a very low rate and this means we add a lot of redundany and so we introduesome delay. This is not a good point, sine we started investigating this onatenationsheme beause we want to use it in systems with tight onstraints on delay.



175Finally, we implemented a WiMAX standard-ompliant simulator for the transmis-sion in downlink.We assume synhronization and apply the presented hannel estimation and oding.Results presented in Chapter 8 show the loss of performane due to the mobile speedand the fat that LS estimator over the pilots gives very good results for speeds of 3 and
50 km/h, but experienes some loss at 130 km/h, espeially for 64−QAM modulation.For the hannel oding we �nd out that, if we use the standard-de�ned LDPC odewith the slots onatenation rule rather than the subhannels one, there are some gainsin terms of bit error rate.About the proposed onatenation sheme, results show some performane gainswhen the hannel is AWGN, but these gains ould be lost if the hannel experienesany kind of fading, for example Rayleigh fading.Observing the performane of the WiMAX system, we an onlude saying that theredued rank LS estimator is a good tehnique for the hannel estimation and LDPCodes ould be used in plae of the onvolutional ode to obtain better performane.





Appendix AConvergene theorem for EMalgorithmLet
k(x|y,θ) =

f(x|θ)

g(y|θ)and note that k(x|y,θ) may be interpreted as a onditional density. Then the log-likelihood funtion Ly(θ) = log g(y|θ) may be written as
Ly(θ) = log f(x|θ) − log k(y|θ).De�ne
H(θ′|θ) = E[log k(x|y,θ′)|y,θ].Let M : θ[k] → θ[k+1] represent the mapping de�ned by the EM algorithm in thefollowing Equations:
Q(θ|θ[k]) = E[log f(x|θ)|y,θ[k]],

θ[k+1] = arg max
θ

Q(θ|θ[k]),so that θ[k+1] = M(θ[k]).Theorem 2. Ly(M(θ[k])) ≥ Ly(θ), with equality if and only if
Q(M(θ)|θ) = Q(θ|θ)and

k(x|y,M(θ)) = k(x|y,θ).That is, the likelihood funtion inreases at eah iteration of the EM algorithm, untilthe onditions for equality are satis�ed and a �xed point of the iteration is reahed.A proof of the theorem may be found in [51℄. In θ∗ is an ML parameter estimate,so that Ly(θ
∗) ≥ Ly(θ) for all θ ∈ Θ, then Ly(M(θ∗)) ≥ Ly(θ

∗). In other words,ML estimates are �xed points of the EM algorithm. Sine the likelihood funtion isbounded (for distribution of pratial interest), the sequene of parameter estimates
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θ∗[0], θ∗[1], . . . , θ∗[k] yields a bounded non-dereasing sequene Ly(θ

[0]) ≤ Ly(θ
[1]) ≤

· · · ≤ Ly(θ
[k]) whih must onverge as k → ∞.The theorem falls short of proving that the �xed points of the EM algorithm are infat ML estimates. The latter in true, under rather general onditions, but the proof issomewhat involved and is not presented here.



Appendix BChannel length estimation
B.1 IntrodutionAs said in Chapter 2, the performane naturally depends on the auray of thehannel estimates. Conventional hannel estimation algorithms preset a �xed lengthfor the hannel; in Chapter 2, we assumed to know the exat value of the hannellength impulse response. For wireless ommuniations, however, the atual length of thehannel is environment-dependent. Therefore, unless the reeiver has expliit knowledgeof the propagation environment, the atual length of the wireless hannel is unknown.The e�et of mismath between the length of the hannel estimator and atual length ofthe disrete-time equivalent hannel has also been investigated in the literature [112℄. Ithas been shown that an irreduible BER �oor results when the hannel estimator lengthis shorter than the atual hannel [112℄. On the other hand, if the hannel estimatorlength is longer than the atual hannel, the equalizer beomes unneessarily omplex.Furthermore, a performane loss that inreases with the hannel estimator length is stillinurred [112℄.In [113℄, the authors proposed a least squares approah for joint synhronization,hannel length estimation and hannel estimation. In fat, it is desirable to modifyonventional hannel estimation algorithms so that the length of the hannel estimatoradapts to the atual hannel. The method proposed in [113℄ relies on the minimizationof the mean square error of the estimated hannel oe�ients for di�erent predeterminedCIR lengths. To apply this method, the hannel window (the di�erene between themaximal and the minimal CIR length) must be known. Simulation results in [113℄show that the proposed sheme is very robust against variations of the propagationenvironment and ahieves the best trade-o� between performane and omplexity.In the literature, there are some other available methods for estimating the ChannelImpulse Response (CIR) length, e.g., [114℄, [115℄ and [116℄. The method desribedin [114℄ estimates the CIR length by using the estimated SNR. The method in [115℄rests on the generalized Akaike information riterion. It was shown there that the CIRlength is usually underestimated. In [116℄, the estimation of the CIR length is based ona given fator R whih is de�ned by the ratio of the hannel power to the total power



180 Appendix B. Channel length estimationof the hannel plus noise. The ratio R is de�ned in [116℄ as a onstant fator within theinterval [0.9, 0.95]. Sine the noise power and the hannel power are unknown, suh anestimation of the CIR length based on a prede�ned ratio R is not a preise solution.In [117℄, to overome the di�ulties in the CIR length estimation of time-varianthannels in the presene of strong additive noise, an auxiliary funtion is establishedto distinguish between the statistial harateristis of the additive noise and thoseof the multipath hannel. The di�erene between the statistial harateristis of theadditive noise and the multipath hannel is that the CIR oe�ients are only loated inthe window of the CIR length, whereas the additive noise per hannel tap is uniformlydistributed over the whole length of the estimated CIR. The proposed algorithm providesreliable information on the estimated CIR length even at low SNRs. The estimated CIRlength and noise variane are very useful in many areas, suh as hannel estimation,hannel oding, data equalization, adaptive �lter implementation, and OFDM systemswith adaptive guard interval length.B.2 Algorithm for the noise variane and the CIR lengthestimationThe onsidered algorithm ombines two di�erent hallenges (CIR length and noisevariane estimation) to one task. To implement it, we assume that the hannel is alreadyestimated by a onventional method [118℄. Even though the hannel is estimated, theCIR length remains unknown. This is due to the fat that the estimated CIR is usuallyimpaired by additive noise. However, a good estimate of both the CIR length and theSNR an be obtained by applying the proposed algorithm.We onsider the estimated hannel oe�ient ĥk,i orresponding to the ith OFDMsymbol and the kth hannel tap. Let us assume that the distane between two neigh-boring hannel tap gains is equidistant and equal to the sampling interval ta of thesystem, then the relationship between the hannel tap index k and the orrespondingpropagation delay τk is given by τk = k · ta. The estimated hannel oe�ient ĥk,i isthe sum of the true hannel oe�ient hk,i and a zero-mean noise omponent nk,i [118℄,i.e.,
ĥk,i = hk,i + nk,i. (B.1)It is worth mentioning that the noise variane to be estimated is the variane of thenoise omponent nk,i of the estimated hannel oe�ient ĥk,i

σ2
n[k] = E[|nk,i|2] (B.2)where E[|nk,i|2] is the expetation value of |nk,i|2 over the OFDM symbol index i. Thesymbol σ2

n[k] denotes the variane of the noise omponent of the kth estimated hanneltap.As mentioned above, the estimated hannel oe�ient ontains two di�erent ompo-



B.2. Algorithm for the noise variane and the CIR length estimation 181nents. The �rst omponent is the true hannel oe�ient, whih is loated only in thewindow of the CIR length. The seond omponent is the additive noise omponent nk,i,whih is uniformly distributed over the whole length of the estimated CIR. Therefore,the hannel tap index k is omitted in the symbol representing the noise variane, i.e.,
σ2

n[k] is replaed by σ2
n. Using the estimated noise variane σ2

n and the signal power,the estimated SNR an easily be alulated [118℄. If L is presumed to be the true CIRlength, then the new estimated hannel oe�ients h̃L
k,i, k = 0, 1, . . . , Nk −1, are equalto the �rst L samples of the estimated hannel oe�ients ĥk,i and zero elsewhere, i.e.,.

h̃L
k,i =

{

ĥk,i, 0 ≤ k < L

0, L ≤ k ≤ NK − 1.
(B.3)The presumed CIR length L is in the range 0 < L ≤ NK − 1, sine the true CIRlength must be larger than zero and is assumed to be smaller than the estimated CIRlength. The mean squared error between h̃L

k,i and ĥk,i is
e(L) = E[

NK−1∑

k=0

|ĥk,i − h̃L
k,i|2]

= E[sumNK−1
k=L |ĥk,i|2]. (B.4)Thus, the mean squared error e(L) is the sum of the average squared magnitudevalues of the estimated hannel taps from the Lth hannel tap to the last hannel tap

ĥNK−1,i. Substituting ĥk,i from (B.1) into (B.4), it follows that
e(L) = E[sumNK−1

k=L |hk,i + nk,i|2]

=

Nk−1
∑

k=L

{
E[|hk,i|2] + E[|nk,i|2]

}

=

NK−1∑

k=L

ρk + (NK − L)σ2
n (B.5)where ρk = E[|hk,i|2] is the average power of the kth path. In (B.5), let e1(L) =

∑NK−1
k=L ρk be the �rst term and e2(L) = (NK − L)σ2

n be the seond term of the meansquared error e(L), it an be seen that e1(L) stems ompletely from the hannel, whereas
e2(L) originates from the noise omponents. The noise-related term e2(L) an be om-pensated by adding an appropriate variane to this funtion. Aording to the expres-sion of e2(L), the appropriate variane should be equal to Lσ2

pre, where σ2
pre is alled thepresumed noise variane. The ompensation of the noise-related term e2(L) establishesthe auxiliary funtion

f(L) =

NK−1
∑

k=L

ρk + (NK − L)σ2
n + Lσ2

pre. (B.6)



182 Appendix B. Channel length estimationThe harateristis of the auxiliary funtion f(L) presented in Figure B.1 dependon the following ases determined by the presumed noise variane:a) If the presumed noise variane is larger than the true noise variane, i.e., σ2
pre >

σ2
n, then there exists always a unique minimum value of the auxiliary funtion
f(Lf,min) = min(f(L)), where Lf,min ≤ NP . If σ2

pre is lose to σ2
n, then Lf,min isalso lose to NP .b) If the presumed noise variane is exatly equal to the true noise variane, i.e.,

σ2
pre = σ2

n, then f(L) beomes
f(L) =

NK−1∑

k=L

ρk +NKσ
2
n. (B.7)In this ase, the auxiliary funtion f(L) is a monotonously dereasing funtionwithin the true CIR length, and is equal to NKσ

2
n outside the true CIR length.) If the presumed noise variane is smaller than the true noise variane, i.e., σ2

pre <

σ2
n , then f(L) is a monotonously dereasing funtion within the whole length ofthe estimated CIR, and reahes the minimum value at L = NK − 1.

Figure B.1: The auxiliary funtion f(L) for di�erent ases of the presumed noisevariane σ2

pre.Based on the harateristis of the auxiliary funtion f(L), an algorithm alled thenoise variane and CIR length estimation (NCLE) is proposed in [117℄. If the presumednoise variane σ2
pre is redued step by step from the possible maximum value to thepossible minimum value of the true noise variane, then the urve of f(L) will be



B.2. Algorithm for the noise variane and the CIR length estimation 183hanged from ase a) to ase ). Eah step is onsidered as one iteration towards theredution of the presumed noise variane. The amount ∆σ2, whih is used to reduethe presumed noise variane σ2
pre in eah iteration, is alled the step size. If this stepsize is very small in omparison to the true noise variane, then ase b) might appear.Otherwise, ase a) skips diretly over to ase ). When the situation in ase ) appearsfor the �rst time, then the presumed noise variane of the previous iteration is verylose to the true noise variane and the deision of the estimated noise variane will bemade. The shape of f(L) at the previous iteration orresponds of ourse either to asea) or to ase b).If ase a) appears, then the estimated CIR length N̂P is assigned to be Lf,min, where

f(Lf,min) = min(f(L)). As explained in ase a), the estimated CIR length is shorterthan or equal to the true CIR length.Case b) might appear, if the presumed noise variane is very lose to the true noisevariane. Sine the theoretial auxiliary funtion f(L) in ase b) is onstant over therange from L = NP to L = NK − 1 (see Figure B.1), it follows that f(L) does not havea unique minimum value like in ase a). However, if the minimum value of the auxiliaryfuntion f(L) is still omputed by a numerial method, then a minimum value an befound. This is due to the fat that the realized auxiliary funtion is pratially notonstant in the interval mentioned above. In this ase, the value of L orresponding tothe minimum value of f(L), i.e., Lf,min, is always larger than or equal to the true CIRlength. The estimated CIR length an be assigned to this value, and, thus, it is alsolarger than or equal to the true CIR length. To ensure that the estimated CIR length islose to the true CIR length, the proedure of establishing the auxiliary funtion f(L)and seeking its minimum value should be repeated NE times. A single exeution ofthis proedure is alled an experiment. The estimated CIR length of eah experiment isstored in a vetor ~L. Analogously, the estimated noise varianes are stored in a vetordenoted by ~N. After NE experiments, the �nal result of the estimated CIR length isthe minimum element of the vetor ~L. The �nal estimated noise variane is the averagevalue of the elements of the vetor ~N.The initial value of the presumed noise variane an be determined by
σ2

pre = E[

Nk−1
∑

k=1

|ĥ(k)|2/(Nk − 1)]. (B.8)Figure B.2 shows a �owhart of the NCLE algorithm.The appliation of the algorithm to our system shows the same results presented in[117℄.
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Figure B.2: Flowhart of the NCLE algorithm.



Appendix COptional subhannel alloations inWiMAX systems
C.1 PUSC variationsC.1.1 Potentially optional alloationsFirst we remember that the alloations de�ned potentially optional are those whihare not expliitly mentioned as mandatory in the standard [2℄, but reading it theyappear so, hene they are de�ned optional. Therefor in [109℄ it is required to implementsome of them to have a erti�ed produt.The potentially optional alloation are PUSC with all subhannels and PUSC withdediated pilots, Full Usage of Subhannel (FUSC) and FUSC with dediated pilots;all these exept the last one are required to implement.PUSC with all subhannels and PUSC with dediated pilotsBefore de�ning these alloations we must explain what is a DL_MAP. It is a MACmessage that de�ne burst start times for both time division multiplex and time divisionmultiple aess by a SS on the downlink. It inludes the following parameters:� PHY synhronization� Downlink Channel Desriptor (DCD) ount� Base station IDThe DL_MAP_IEs desribe the loation, oding and modulation shemes of the bursts.In the DL_MAP a BS may transmit the Downlink Interval Usage Code (DIUC)to 15 and this indiates that the subsequent alloation shall use a spei� permutationand/or a spei� transmit diversity mode.Table 279 at page 377 of [2℄ shows the format of the information element for theOFDMA downlink. There are two important �elds:



186 Appendix C. Optional subhannel alloations in WiMAX systems1. Spae Time Coding (STC) whih indiates the STC mode that will be used bythe transmitter for the alloations2. Dediated Pilots; this is an optional �eld and is used to support the use of openloop preoding and losed loop transmission in whih the MS has no knowledgeof the preoding/beamforming matrix.When the bit of the dediated pilots is set to one it means that the pilot sym-bols are preoded/beamformed in the same way as are the orresponding datasubarriers. In this ase an MS should use only the pilots that are spei� to itsalloation for hannel estimations.C.2 Other alloation methodsC.2.1 Full Usage of Subhannel (FUSC)Also in this ase, as in the one of PUSC, the symbol struture is onstruted usingpilots, data and zero subarriers. The symbol is �rst alloated with the appropriatepilots and zero subarriers and, then, all the remaining subarriers are used as datasubarriers (these will be divided into subhannels).Eah segment uses both sets of variable/onstant pilot-sets.The parameters that haraterize the FUSC symbol struture and that depend onFFT size are:� Number of DC subarriers; its index is given by NFFT/2, ounting from 0)� Number of guard subarriers, Left, i.e. on the left size of the spetrum� Number of guard subarriers, Right, i.e. on the right side of the spetrum� Number of used subarriers� Pilots� VariableSet#0� ConstantSet#0� VariableSet#1� ConstantSet#1� Number of data subarriers� Number of data subarriers per subhannel� Number of subhannels� Permutation base



C.2. Other alloation methods 187FFT sizeParameter 2048 1024 512 128Number of DC subarriers 1 1 1 1Number of guard subarriers, Left 173 87 43 11Number of guard subarriers, Right 172 86 42 10Number of used subarriers 1703 851 427 107Pilots − − − 4VariableSet#0 71 12 18 5ConstantSet#0 12 2 3 4VariableSet#1 71 12 18 1ConstantSet#1 12 2 3 0Number of data subarriers 1536 768 384 96Number of data subarriers per subhannel 48 48 48 48Number of subhannels 32 16 8 2PermBaseTable C.1: Symbol parameters for the available FFT size (i.e. 2048, 1024, 512 and128).In Table C.1 the parameters for the FUSC symbol struture are plaed.The variable set of pilots embedded within the symbol of eah segment shall obeythe following rule:
PilotsLocation = V ariableSet#x+ 6 · (FUSC_SymbolNumber mod 2) (C.1)where FUSC_SymbolNumber ounts the FUSC symbols used in the urrent zonestarting from 0.The pilots in the ConstantSet are deided with the following rule:

ConstantSet#k → PilotosLocation = 72 ∗ (2 ∗ n+ k) + 9 (C.2)where n = 0, 1, . . . , V alue − 1 and V alue is the value found in Table C.1 in the rowsdediated to the Constant sets.Eah subhannel is omposed of 48 subarriers. The subhannel indexes are formu-lated using a Reed-Solomon series and are alloated out of the data subarriers domain.After mapping all pilots, the remainder of the used subarriers are used to de�nethe data subhannels. In fat the remaining subarriers are partitioned into groupsof ontiguous subarriers. Eah subhannel onsists of one subarrier from eah ofthese groups. The number of these groups is equal to the number of subarriers persubhannel Nsubcarriers and the number of subarriers in a group is equal to the num-ber of subhannels Nsubchannels. Hene, the number of data subhannel is equal to
Nsubcarriers ·Nsubchannels



188 Appendix C. Optional subhannel alloations in WiMAX systemsThe exat partition into subhannels is aording to the permutation formula:
subcarrier(k, s) = Nsubchannels · nk + {ps[nk mod Nsubchannels]

+ DL_PermBase} mod Nsubchannels (C.3)where:- subarrier(n, s) is the subarrier index of the subarrier n in subhannel s =

0, 1, . . . , Nsubchannels − 1 is the index number of a subhannel- nk = (k + 13 · s) mod Nsubcarriers, where k = 0, 1, . . . , Nsubcarriers − 1is thesubarrier index in a subhannel- Nsubchannels is the number of subhannels- ps[j] is the series obtained by rotating basi permutation sequene ylially tothe left s times- Nsubcarriers is the number of data subarriers alloated to a subhannel in anOFDMA symbolThe whole data tones in a symbol are partitioned into groups of ontiguous datasubarriers. Eah subhannel onsists of one subarrier from eah of these groups. Thenumber of subarriers in a group is, then, equal to the number of subhannels, said Ns,whih is determined by FFT size. The exat partitioning into subhannels is aordingto the DL permutation formula:
Carriers(s,m) =







Ns × k + [s+ P1,c1(k
′) + P2,c2(k

′)] 0 < c1, c2 < Ns

Ns × k + [s+ P1,c1(k
′)] c1 6= 0, c2 = 0

Ns × k + [s+ P2,c2(k
′)] c1 = 0, c2 6= 0

Ns × k + s c1 = 0, c2 = 0where:- arriers(s,m) subarrier index of m-th subarrier in subhannel s- k = (m+ s ∗ 23) mod 48, k′ = k mod (Ns − 1)- m = 0, . . . , 47 is the subarrier in subhannel index- s = 0, 1, . . . , Ns − 1 is the index number of a subhannel- p1,c1
is the j-th element of a sequene obtained by rotating basi permutationsequene P1 ylially to the left c1 times- p2,c2
is the j-th element of a sequene obtained by rotating basi permutationsequene P2 ylially to the left c2 times- c1 = DL_PermBase mod Ns



C.2. Other alloation methods 189- c2 = ⌊DL_PermBase/Ns⌋ FFT size Ns

2048 32

1024 16

512 8

128 2Table C.2: Values of Ns for every FFT size.C.2.2 Optional alloationsThese are the alloations de�ned optional in the standard [2℄. They are the optionalFUSC and the O-FUSC with dediated pilots the AMC (1 × 6, 2 × 3 and 3 × 2) andthe same ones, but with dediated pilots and the PUSC-ASCA. In [109℄ only the AMC
2 × 3 is required to be implemented.Optional FUSCThe minimal blok of proessing is given by the 48 data arriers symbols. First,the pilot arriers are alloated and the remaining arriers are used exlusively for datatransmission. The Nused subarriers (exept the DC arrier) are dived into groups of
9 ontiguous subarriers and in eah of these one pilot is alloated. Its position variesaording to the index of OFDMA symbol whih ontains the subarriers. The equationis:

3 × l + 1 (C.4)where l = m mod 3 and m is the symbol index.Hene, the number of pilot subarriers is given by (Nused − 1)/9, beause we needto exlude the DC arrier and their position is given by 9k + 3m + 1, where k =

0, 1, . . . , Number of pilot subarriers − 1 and m = (symbol index ) mod 3.Optional Adjaent Subarrier Permutation (AMC)Sine now we have onsidered "distributed subarrier permutations", but a BS mayhange to the "adjaent subarrier permutation". This one an be used to take advantageof the struture of the adjaent subarrier permutation in parts of DL subframe thatare indiated aordingly by the DL-MAP an UL subframe that are indiated by theUL-MAP.After this hange a BS an only transmit/reeive tra� using the adjaent subarrierpermutation during the alloated period and shall return to the distributed mode onlyat the beginning of a new DL subframe.Symbol data within a subhannel is assigned to adjaent subarriers and pilots anddata subarriers are assigned �xed positions in the frequeny domain within an OFDMAsymbol.



190 Appendix C. Optional subhannel alloations in WiMAX systemsTo de�ne adjaent subarrier permutation, a BIN, whih is a set of 9 ontiguoussubarriers within an OFDMA symbol represented in Figure C.1, is a basi alloationunit both in downlink and in uplink.
1 pilot tone

8 data tones

Figure C.1: Bin struture.AMC subhannel onsists of 6 ontiguous bins in a same band. AMC alloation,instead, an be made by two mehanisms: by subhannel index referene in UL-MAPand by subhannel alloation in a band using H-ARQ map.A slot onsists of N bins by M symbols (N ×M). A group of 4 rows is alled aphysial band. There are four types of AMC subhannels, whih are di�erent in theolletion of six bins in a band:� default type: a slot onsists o 6 onseutive bins;� a slot is de�ned as 2 bins by 3 symbols;� a slot is de�ned as 3 bins by 2 symbols;� a slot is de�ned as 1 bins by 6 symbols;The enumeration of bins in a slot is the following: the available bins in a band areenumerated starting from the lowest bin in the �rst symbol to the last bin in thesymbol and then going to the lowest bin in the next symbol and so on.The parameters are the same enumerated before: Number of DC subarriers, Num-ber of guard subarriers: left and right, Nused, Total number of subarriers, Number ofpilots, Number of data subarriers. In addition, there are three new parameters:1. Number of physial band2. Number of bins per physial band3. Number data subarriers per subhannel



C.2. Other alloation methods 191FFT sizeParameter 2048 1024 512 128Number of bins per physial band 4 4 4 4Number of physial band 48 24 12 6Number of data subarriers per subhannel 48 48 48 48Table C.3: New parameters introdued with the AMC permutation.and they are dependent on the FFT size, as shown in Table C.3We remember that an AMC subhannel onsists of 6 ontiguous bins whih are madeof 9 subarriers (8 data and 1 pilot) and so the data subarriers in a subhannel are
8× 6 = 48, we observe also that only in the �rst type the number of data subarriers isthe same that we have in a subhannel.The number of bins per physial band is �xed to 4 and the number of physial binsis obtained dividing the number of data subarriers per 32 deriving from 8 × 4 i.e. thenumber of data subarriers in a bin per the number of bins.Optional Permutation for PUSC Adjaent Subarrier Alloation (PUSC-ASCA)Symbol struture shall use the parameters de�ned for regular PUSC and the sameluster struture shall be maintained.Alloation of subarriers to subhannels shall be performed in the following manner:1. The subarriers are divided into physial lusters, eah of 14 adjaent subarriers2. Cluster used for a spei� DL alloation shall be the �rst 2 ∗ SubchannelOffset3. The lusters are onatenated into bloks using the rule desribed in Table C.4,whereNumber of subhannels Clusters onatenated

n ≤ 12 1 blok of 2 × n lusters
n = 12 × k k bloks of 24 lusters

n > 12, n 6= 12 × k (k − 1) bloks of 24 lusters
1 blok of 2 × ⌈(m+ 12)/2⌉ lusters
1 blok of 2 × ⌊(m+ 12)/2⌋ lustersTable C.4: Alloation of subarriers to subhannels.- n is the number of alloated subhannels- k = ⌊n/12⌋- m = n mod 124. Per blok, remove the pilot arriers from the lusters assoiated with the setion,take the remaining data subarriers and using the same proedure for the partitionof data subarriers in FUSC permutation; the subarriers are partitioned intosubhannels ontaining 24 data subarriers in eah OFDMA symbol.



192 Appendix C. Optional subhannel alloations in WiMAX systemsWe an de�ne also an adjaent subarrier alloation using distributed lusters forthe PUSC mode; symbol struture shall use the same parameters of the regular PUSCand the alloation of subarriers to subhannels will be:1. divide the subarriers into 120 physial lusters within 14 adjaent subarriers2. renumber the physial lusters into logial lusters using the formula
LogicalCluster = RenumberingSequence((PhysicalCluster

+ 13 ∗ IDcell) mod 120) (C.5)3. divide the lusters into 6 major groups4. alloating arriers to subhannel in eah major group depends on the spei�alloation performed.



Appendix DRenumbering sequene for PUSCpermutation
FFT size Renumbering Sequene

2048 6, 108, 37, 81, 31, 100, 42, 116, 32, 107, 30, 93, 54, 78, 10,
75, 50, 111, 58, 106, 23, 105, 16, 117, 39, 95, 7, 115, 25, 119,
53, 71, 22, 98, 28, 79, 17, 63, 27, 72, 29, 86, 5, 101, 49, 104,
9, 68, 1, 73, 36, 74, 43, 62, 20, 84, 52, 64, 34, 60, 66, 48, 97,
21, 91, 40, 102, 56, 92, 47, 90, 33, 114, 18, 70, 15, 110, 51,
118, 46, 83, 45, 76, 57, 99, 35, 67, 55, 85, 59, 113, 11, 82, 38,
88, 19, 77, 3, 87, 12, 89, 26, 65, 41, 109, 44, 69, 8, 61, 13, 96,
14, 103, 2, 80, 24, 112, 4, 94, 0

1024 6, 48, 37, 21, 31, 40, 42, 56, 32, 47, 30, 33, 54, 18, 10, 15,
50, 51, 58, 46, 23, 45, 16, 57, 39, 35, 7, 55, 25, 59, 53, 11,
22, 38, 28, 19, 17, 3, 27, 12, 29, 26, 5, 41, 49, 44, 9, 8, 1,
13, 36, 14, 43, 2, 20, 24, 52, 4, 34, 0

512 12, 13, 26, 9, 5, 15, 21, 6, 28, 4, 2, 7, 10, 18, 29, 17, 16, 3,
20, 24, 14, 8, 23, 1, 25, 27, 22, 19, 11, 0

128 2, 3, 1, 5, 0, 4Table D.1: Renumbering sequenes for the available FFT size (i.e. 2048, 1024, 512and 128).





Appendix EOptional odes in WiMAX standard
E.1 Blok Turbo Coding (BTC)This is optional and not required to be implemented.BTC is based on the produt of two simple omponent odes: the binary extendedHamming odes and the parity hek odes. To reate the extended Hammingodes, an overall even parity hek bit is added at the end of eah ode word. Thegenerator polynomials for OFDMA Hamming ode are reported in the Table E.1.

n′ k′ Generator polynomial
15 11 n4 + x+ 1

31 26 x5 + x2 + 1

63 57 x6 + x+ 1Table E.1: OFDMA Hamming ode generator polynomials.The omponent odes are used in a two-dimensional matrix form, as we an see inFigure E.1.The Kx information bits in the rows are enoded into nx bits using the omponentblok (nx, Kx) ode spei�ed for the respetive omposite ode.After enoding the rows, the olumns are enoded using a blok ode (ny, Ky),where the hek bits of the �rst ode are also enoded.The overall blok size is (n, K), where n = nx × ny and K = Kx × Ky, and sothe ode rate is R = Rx × Ry, with Ri = Ki/ni, i = x, y. The Hamming distane is
d = dx × dy. The �rst bit in the �rst row is the LSB and the last bit in the last rowis the MSB and the transmission if the blok over the hannel shall our in a linearfashion, with all bit of the �rst row transmitted left to right followed by the seond rowand so on.To math a required poket size, BTC may be shortened by removing symbols fromthe BTC array. This operation requires three steps:1. remove Ix rows and Iy olumns whih is equivalent to shortening the onstituentodes that make up the produt odes
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Figure E.1: Blok Turbo Coding (BTC) struture.2. remove B individual bits from the �rst row starting with the LSB3. if at this point there isn't an integral number of data bytes the Q left over LSBare zero-�lled by the enoder.In Figure E.2 these three steps are represented.The new oded blok length is (nx − Ix)(ny − Iy)−B and the orresponding infor-mation length is (nx − Ix)(ny − Iy) −B −Q and so the ode rate is given by:
R =

(Kx − Ix)(Ky − Iy) −B −Q

(nx − Ix)(ny − Iy) −B
. (E.1)In Table E.2 the blok sizes for the optimal modulation and oding shemes usingBTC are given.Table E.3 gives the ode parameters for eah of possible data and oded blok sizes.E.2 Convolutional Turbo Code (CTC)In the standard [2℄ this ode is de�ned as optional, but in [109℄ it is required to beimplemented.CTC an be used for the support of optional H-ARQ. It used a double binaryirular reursive systemati onvolutional ode. These bits of the data to be



E.2. Convolutional Turbo Code (CTC) 197

Information bits Checks

Checks

checks
on

K x

nx

n
y K

y

QB

I x

I y

Figure E.2: Shortened BTC struture.QPSK 16 - QAM 64 - QAM CodedEnoding rate 1/2 3/4 1/2 3/4 1/2 3/4 bytesAllowed data 6 9 12(bytes) 12 20 16 20 24
18 25 16 25 36
23 35 23 35 48
31 60
40 40 40 72Table E.2: Useful data payload for a subhannel.Data bytes Coded bytes Constituent Code parameters

6 12 (31, 32)(16, 11) Ix = 4, Iy = 8, B = 0, Q = 6
9 12 (16, 15)(16, 15) Ix = 6, Iy = 6, B = 4, Q = 5
12 24 (32, 31)(16, 11) Ix = 14, Iy = 5, B = 6, Q = 0
20 24 (16, 15)(16, 15) Ix = 2, Iy = 2, B = 4, Q = 5
18 36 (32, 31)(16, 11) Ix = 5, Iy = 5, B = 9, Q = 3Table E.3: Optional hannel oding per modulation.enoded are alternatively fed to A and B, starting with the MSB of the �rst byte beingfed to A (see Figure E.3).The enoded is fed by bloks of k bits on N ouples (k = 2 ∗N bits) ad for all theframe size k is a multiple of 8 and N a multiple of 4.



198 Appendix E. Optional odes in WiMAX standardThe polynomial de�ning the onnetion are:- for the feedbak branh: 1 +D +D3- for the Y parity bit: 1 +D2 +D3- for the W parity bit: 1 +D3.

Figure E.3: CTC enoder.The enoder blok size shall depend on the number of slots alloated and the mod-ulation spei�ed for the urrent transmission. Conatenation of the number of slotsshall be performed in order to make larger bloks of oding where it is possible, withthe limitation of not exeeding the larger blok under size for applied modulation andoding. The onatenation rule shall not be used when using ARQ.For any modulation and FEC rate we de�ne the following parameters:- j: dependent on the modulation and FEC rate,- n: number of alloated slots/repetition fator,- k: de�ned as ⌊n/j⌋,- m: de�ned as mod (n, j).



E.2. Convolutional Turbo Code (CTC) 199Table E.5 shows the rules used for slots onatenation, while Table E.4 gives thevalues of j for di�erent modulations and rates:Number of slots Slots onatenation
n < j, n 6= 7 1 blok of n slots

n = 7 1 blok of 4slots
1 blok of 3slots

n > j if mod (n, j) = 0
k bloks of j slotselse
k − 1 bloks of j slots
1 blok of ⌈((m+ j)/2)⌉ slots (+1 if equal to seven)
1 blok of ⌊((m+ j)/2)⌋ slots (+1 if equal to seven)Table E.4: Slots onatenation rules for CTC.Modulation rate jQPSK 1/2 10QPSK 3/4 6

16−QAM 1/2 5

16−QAM 3/4 3

64−QAM 1/2 3

64−QAM 2/3 2

64−QAM 3/4 2

64−QAM 5/6 2Table E.5: Enoding slot onatenation for di�erent rates in CTC.E.2.1 CTC interleaverIt is omposed of two states:Step 1: Swith alternate ouplesLet the sequene u0 = [(A0, B0), (A1, B1), . . . , (AN−1, BN−1)] be the input tothe �rst enoding C1.for i = 0, . . . , N − 1

mod (i, 2) = 0let (Ai, Bi) → (Bi, Ai) (i.e. swith the ouple)this step gives a sequene u1 = [(B0, A0), (B1, A1), . . . , (BN−1, AN−1)] =

= [u1(0), u1(1), . . . , u1(N − 1)].Step 2: P (j)The funtion P (j) provides the address of the ouple of the sequene u1 that shallbe mapped onto the address j of the interleaved sequene (i.e., u2(j) = u1(P (j))).



200 Appendix E. Optional odes in WiMAX standardfor j = 0, . . . , N − 1swith mod (j, 4):ase 0:P (j) = (P0 · j + 1)mod4ase 1:P (j) = (P0 · j + 1 +N/2 + P1)mod4ase 2:P (j) = (P0 · j + 1 + P2)mod4ase 0:P (j) = (P0 · j + 1 +N/2 + 3)mod4This step gives a sequene u2 = [u1(P (0)), u1(P (1)), u1(P (2)), u1(P (3)), . . . ,

u1(P (N − 1))] = [(BP (0), AP (0)), (AP (1), BP (1)), (BP (2), AP (2)), (AP (3), BP (3)),

. . . , (AP (N−1), BP (N−1))]. Sequene u2 is the input to the seond enoding C2.The values of N , P0, P1, P2 and P3 for every modulation and rate are listed inTable 326 of the standard [1℄-[2℄.E.2.2 Determination of CTC irulation stateThe state of the enoder is denoted S (0 ≤ S ≤ 7) with S = 4s1+2s2+s3 (see FigureE.3). The irulation states Sc1 and Sc2 are determined by the following operations:1. Initialize the enoder with state 0. Enode the sequene in the natural order forthe determination of Sc1 or in the interleaved order for determination of Sc2. Inboth ases the �nal state of the enoder is S0N−1;2. Aording to the length N of the sequene, use Table E.6 to �nd Sc1 and Sc2.
mod (N, 7) S0N−1

0 1 2 3 4 5 6 7

1 0 6 4 2 7 1 3 5

2 0 3 7 4 5 6 2 1

3 0 5 3 6 2 7 1 4

4 0 4 1 5 6 2 7 3

5 0 2 5 7 1 3 4 6

6 0 7 6 1 3 4 5 2Table E.6: Cirulation state look-up table (Sc).E.2.3 Subpaket generationProposed FEC struture puntures the mother odeword to generate a subpaketwith various oding rates. The subpaket is also used as HARQ paket transmission.Figure E.4 shows a blok diagram of subpaket generation. 1/3 CTC enoded odewordgoes through interleaving blok and the punturing is performed. Figure E.4 showsblok diagram of the interleaving blok. The punturing is performed to selet theonseutive interleaved bit sequene that starts at any point of whole odeword. Forthe �rst transmission, the subpaket is generated to selet the onseutive interleaved



E.2. Convolutional Turbo Code (CTC) 201bit sequene that starts from the �rst bit of the systemati part of the mother odeword.The length of the subpaket is hosen aording to the needed oding rate re�eting thehannel ondition. The �rst subpaket an also be used as a odeword with the neededoding rate for a burst where HARQ is not applied.

Figure E.4: Blok diagram of subpaket generation.Symbol separationAll of the enoded symbols shall be demultiplexed into six subbloks denoted A, B,
Y1, Y2, W1, and W2. The enoder output symbols shall be sequentially distributed intosix subbloks with the �rst N enoder output symbols going to the A subblok, theseond N enoder output going to the B subblok, the third N to the Y1 subblok, thefourth N to the Y2 subblok, the �fth N to the W1 subblok, the sixth N to the W2subblok, et.Subblok interleavingThe six subblok shall be interleaved separately. The interleaving of performed bythe unit of symbol. The sequene of interleaver output symbols for eah subblok shallbe generated by the proedure desribed below. The entire subblok of symbols to beinterleaved is written into an array at addresses from 0 to the number of the symbolsminus one (N − 1), and the interleaved symbols are read out in a permuted order withthe i-th symbol being read from an address, ADi i = 0, 1, . . . , N − 1, as follows:1. Determine the subblok interleaver parameters, m and J . Table E.7 gives theseparameters.



202 Appendix E. Optional odes in WiMAX standard2. Initialize i and k to 0.3. Form a tentative output address Tk aording to the formula:
Tk = 2m mod (k, J) +BROm(⌊k/J⌋)where BROm(y) indiates the bit-reverse m-bit value of y (i.e. BRO3(6) = 3).4. If Tk is less than N ADi = Tk and inrement i and k by 1. Otherwise, disard Tkand inrement k only.5. Repeat steps 1 and 2 until all N interleaver output addresses are obtained.Blok size Subblok interleaver(bits) N parameters

NEP m J

48 24 3 3

72 36 4 3

96 48 4 3

144 72 5 3

192 96 5 3

216 108 5 4

240 120 6 2

288 144 6 3

360 180 6 3

384 192 6 3

432 216 6 4

480 240 7 2Table E.7: Parameters for the subblok interleavers.Symbol groupingThe hannel interleaver output sequene shall onsist of the interleaved A and Bsubblok sequene, followed by a symbol-by-symbol multiplexed sequene of the in-terleaved Y1 and Y2 subblok sequene, followed by a symbol-by-symbol multiplexedsequene of the interleaved W1 and W2 subblok sequene. The symbol-by-symbol mul-tiplexed sequene of interleaved Y1 and Y2 subblok sequenes shall onsist of the �rstoutput bit from the Y1 subblok interleaved, the �rst output bit from the Y2 subblokinterleaved, the seond output bit from the Y1 subblok interleaved, the seond outputbit from the Y2 subblok interleaved, et. The symbol-by-symbol multiplexed sequeneof interleaved W1 and W2 subblok sequenes shall onsist of the �rst output bit fromthe W1 subblok interleaved, the �rst output bit from the W2 subblok interleaved, theseond output bit from the W1 subblok interleaved, the seond output bit from the W2subblok interleaved, et. Figure E.5 shows the interleaving sheme.
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Figure E.5: Blok diagram of the interleaving sheme.
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