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Abstra
tTwo of the most important issues in wireless systems are addressed: 
hannel estima-tion and 
hannel 
oding. The frequen
y domain 
hannel estimation te
hniques are usedto estimate the 
hannel in a WiMAX system (standard IEEE 802.16e [1℄-[2℄). In thesame system, Low-Density Parity-Che
k (LDPC) 
odes [3, 4℄ are proposed and performquite well. In this thesis de
oding te
hniques for these 
odes are studied: a modi�
a-tion to the Message Passing Algorithm (MPA) [5℄ is proposed in order to redu
e thenumber of multipli
ations. Then two alternative de
oding methods for LDPC 
odesare explored: the Priority First Sear
h Algorithm (PFSA) [6℄, [7℄, [8℄ and the Geneti
Algorithm (GA) [9℄, [10℄, whi
h transform the de
oding problem into a sear
h problem.FInally, an alternative 
oding s
heme is proposed: 
on
atenation of short LDPCand turbo 
odes as outer and inner 
odes, respe
tively. Aim of this 
on
atenation is a
oding system that performs very well for all ranges of SNR's and respe
ts some delay
onstraints.





SommarioIn questa tesi sono stati 
onsiderati due dei piú importanti argomenti di ri
er
a peri sistemi wireless: la stima e la 
odi�
a di 
anale. Le te
ni
he per la stima di 
anale infrequenza sono state appli
ate per stimare il 
anale in un sistema WiMAX (Standard [1℄and [2℄). Nello standard 
he de�nis
e questo sistema, vengono proposti, 
ome sistemadi 
odi�
a opzionale, i Low-Density Parity-Che
k (LDPC) 
odes 
he sono 
odi
i la 
uimatri
e di paritá ha una bassa densitá di 1 ed hanno prestazioni molto buone.In questa tesi al
une te
ni
he per la de
odi�
a di questi 
odi
i sono state studiate:allo s
opo di ridurne il numero di moltipli
azioni, é stata proposta una modi�
a al Mes-sage Passing Algorithm (MPA), l'algoritmo di de
odi�
a 
he viene 
omunemente usato.Sono stati, poi, analizzati due algoritmi alternativi per la de
odi�
a degli LDPC: il Pri-ority First Sear
h Algorithm (PFSA) ed il Geneti
 Algorithm (GA), 
he trasformano ilproblema della de
odi�
a in un problema di ri
er
a.In�ne viene proposto uno s
hema di 
odi�
a alternativo, 
onsistente nella 
on
ate-nazione di LDPC e turbo 
odi
i 
on parole 
orte allo s
opo di s
oprire un sistemadi 
odi�
a 
he abbia buone prestazioni per tutti gli SNR e rispetti al
une spe
i�
hestringenti sui tempi di ritardo.
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Chapter 1Introdu
tionChannel estimation and 
oding are two of the most important issues in the newgeneration wireless systems. This work is about wireless systems and some importantstandard have been presented, for example: WiMAX standard [1℄ - [2℄ TGnSyn
 [11℄ orWWise [12℄ for IEEE 802.11n and 3GPP-LTE [13℄, but in this work our attention willbe fo
used on the mobile part of the �rst one.The IEEE 802.16 tele
ommuni
ations standard [1℄ envisions broadband wireless a
-
ess te
hnology as a means of providing wireless �last mile� broadband a

ess in ametropolitan area network (MAN). The performan
e and servi
es should be 
ompa-rable or better than traditional DSL, 
able or T1/E1 leased line servi
es. Espe
iallyin areas beyond the rea
h of DSL and 
able, IEEE 802.16 
ould o�er a 
ost-e�e
tivebroadband a

ess solution. The term WiMax (worldwide interoperability for mi
rowavea

ess) has be
ome synonymous with IEEE 802.16, promoting and 
ertifying 
ompati-bility and interoperability of broadband wireless produ
ts. In its original release 802.16fo
used on line-of-sight (LOS) appli
ations in the li
ensed 10 to 66 GHz frequen
y rangebased on single 
arrier (SC) transmission (WirelessMAN-SC). In a �rst amendment non-line-of-sight (NLOS) appli
ations in li
ensed and unli
ensed bands in the 2 to 11 GHzfrequen
y range were 
overed (WirelessMAN-SCa). To meet the requirements of a low
ost solution in a multipath environment, orthogonal frequen
y division multiplexing(OFDM) was 
hosen as physi
al layer transmission te
hnique (WirelessMAN-OFDM).To deliver optimum broadband wireless a

ess performan
e, the 
on
ept of s
alableOFDMA (orthogonal frequen
y division multiple a

ess) was adopted. The ar
hite
-ture is based on a s
alable sub
hannel bandwidth using a variable sized FFT a

ordingto the 
hannel bandwidth. In the standard IEEE 802.16e, [2℄, there is an ongoing evo-lution of IEEE 802.16 addressing mobile appli
ations thus enabling broadband a

essdire
tly to portable devi
es like smartphones, PDAs, notebooks and laptop 
omputers.The Orthogonal Frequen
y Division Multiplexing (OFDM) is a spe
trally e�
ientform of frequen
y division multiplexing (FDM) and divides its allo
ated 
hannel spe
-trum into several sub
hannels. It is used to over
ome the inter-symbol interferen
e(ISI), through the 
y
li
 pre�x (CP), that is longer than the order of the 
hannel im-pulse response (CIR). OFDM is inherently robust against frequen
y sele
tive fading,



2 Chapter 1. Introdu
tionsin
e ea
h sub
hannel o

upies a relatively narrow-band, where the 
hannel frequen
y
hara
teristi
 is nearly �at. We note that OFDM 
an be seen as an e�e
tive way ofin
reasing data rates and simplifying the equalization in wireless 
ommuni
ations, be-
ause only a simple one-tap 
hannel equalizer in the frequen
y domain is required. Inthe end, we re
all also that OFDM is 
omputational e�
ient, be
ause the fast Fouriertransform (FFT) 
an be used to implement the modulation and demodulation opera-tions. However, OFDM has some disadvantages. One is the high peak-to-average powerratio, another one is not a
hieved over a multipath fading 
hannel.In this work, �rst of all we deal with the problem of the 
hannel estimation in awireless OFDM system and then with the 
hannel 
oding for the same system. We also
onsider some de
oding te
hniques for the Low-Density Parity-Che
k (LDPC) 
odes,aking of 
odes in
luded in most of the latter wireless systems, due to their near-
apa
ityerror 
orre
tion.Contents of the thesis are divided in Chapters as des
ribed following:� Chapter 2 : the problem of the 
hannel estimation is addressed. First of allwe brie�y des
ribe the known 
hannel estimation algorithms in time andfrequen
y domain. Then 
onsidering we are interested in their performan
e inan OFDM system we des
ribe the 
hannel estimation in the frequen
y domainfor an OFDM system. Algorithm su
h as Least Square (LS), Minimum MeanSquare Error (MMSE), Linear Minimum Mean Square Error (LMMSE) [14℄are des
ribed assuming we know all the transmitted symbols and only pilots.Also an adaptive algorithm [15℄ in the frequen
y domain is des
ribed; thisassumes to have an initial 
hannel estimation and performs the tra
king ofthe 
hannel whi
h is assumed slowly time-variant.Aim of this study is the sele
tion of a 
hannel estimation algorithm whi
hgives good performan
e in a WiMAX system. To perform this sele
tion weimplemented a quasi-
ompliant WiMAX standard simulator1 and valuatedthe performan
e and the Mean Square Error (MSE) for the LS algorithm,two variation of the LMMSE algorithm, one dependent on the transmitteddata and the other not, and the adaptive frequen
y algorithm. Result showthat the LS and the LMMSE dependent on the transmitted data algorithmsperform very well, whereas the adaptive one performs very well for speedsbelow 50 km/h, but experien
es a performan
e loss for speed equal to 130km/h.Performan
e is evaluated per frame and we 
onsider a system with 512 sub-
arriers, 
oded with a 
onvolutional 
ode of rate 1/2 and modulated througha QPSK modulation. We perform the �rst 
hannel estimation on the pream-ble OFDM symbol through the LS or the LMMSE algorithm and than wetra
k the 
hannel over the 24 OFDM symbols using the LS, the LMMSE or1For quasi-
ompliant WiMAX standard simulator we mean a simulator with the parameters givenin the standards [1℄ and [2℄, but where we do not implement the sub
arriers permutation and all the
ode-modulation 
ombinations.



3the adaptive algorithm applied to the pilots. The 
hannel is assumed to be
onstant in an OFDM symbol and to vary very slowly between two adja
entsymbols. These assumptions are 
orre
t until the mobile speed is less than
50 km/h, but they are not true anymore when the mobile speed is 130 km/h.� Chapter 3 : a way to improve the performan
e of the system 
onsidered inChapter 2 is given by performing a joint 
hannel estimation and data dete
-tion. This 
an be performed through the Expe
tation Maximization (EM)algorithm. In this 
hapter, �rst the EM algorithm [16℄ is des
ribed and thanits appli
ation in an OFDM system to hit the mark of jointly estimate the
hannel and dete
t the data [17℄. This approa
h 
an be 
onsidered a semi-blind method be
ause known and unknown symbols are simultaneously usedto estimate the 
hannel.This algorithm is very 
omplex and its usage would be a

epted only if thegain over a separated estimation and dete
tion is signi�
ant. Unfortunatelyresults shown in this 
hapter, for the system des
ribed in Chapter 2 do notpresent this signi�
ant gain.� Chapter 4 : Coding for error 
orre
tion is one of the many tools available fora
hieving reliable data transmission in 
ommuni
ation systems. For a widevariety of 
hannels, the noise 
hannel 
oding theorem of the InformationTheory proves that, if properly 
oded, information is transmitted at a ratebelow 
hannel 
apa
ity, then the probability of de
oding error 
an be madeto approa
h zero exponentially with the 
ode length.This Chapter is the introdu
tion to the 
hannel 
oding problem and in par-ti
ular it gives a quite 
omplete des
ription of the Low-Density Parity-Che
k(LDPC) 
odes [3℄-[4℄ and their de
oding te
hniques.After their dis
overy in the early 1960s the LDPC 
odes were largely for-gotten, possibly be
ause 
omputer of the time 
ould not simulate the per-forman
e of this 
odes with meaningful lengths and of the 
omputational
omplexity for data de
oding. In our days, they have drawn mu
h attentiondue to their near-
apa
ity error 
orre
tion performan
e. They have a bigdisadvantage and a big advantage: the �rst is the non-existen
e of a good
onstru
tion method and the se
ond one is given by the de
oding algorithmwhose 
omplexity is linear versus the blo
k length. In fa
t, the de
odingoperation is always performed with an Iterative De
oding based on a Be-lief Propagation (IDBP) [18℄ algorithm whi
h is a symbol-by-symbol soft-insoft-out de
oding algorithm whi
h iteratively pro
esses the re
eived symbolin order to improve its reliability, based on the parity-
he
k sums 
omputedfrom the hard de
ision of the re
eived symbol. The algorithm is 
ommonlyknown as Message Passing Algorithm (MPA) [5℄.� Chapter 5 : The LDPC de
oding algorithm has low 
omplexity, if 
omparedwith the turbo de
oding algorithm, used to de
ode the strong LDPC 
ode



4 Chapter 1. Introdu
tion
ompetitors, but a
tually is still quite 
omplex. This is the reason why inthis Chapter a modi�
ation to the MPA algorithm is proposed in order toredu
e the number of multipli
ations. Results are quite promising even if thenot-a-number 
ases need to be handled.Observations made on this modi�
ation suggested the study of what wouldhappen if the input to the MPA is quantized rather than the real valued.On
e a time, results are shown in this Chapter.Finally, about the LDPC de
oding, we analyzed performan
e for two di�erentalgorithms whi
h transform the de
oding problem into a sear
h problem. The�rst 
onsidered algorithm is the Priority First Sear
h Algorithm (PFSA) [6℄,[7℄ and [8℄, proposed for the 
onvolutional 
odes and more in general for allthe 
odes whi
h 
an be represented with trellis.From the parity-
he
k matrix of the LDPC 
ode we 
an 
onstru
t the trellis.The problem is that it is very big and the PFSA is not e�
ient. To dealthis problem we propose a variation of the PFSA: we perform the algorithmonly on the �rst k bits, i.e. on the systemati
 part, than we re-en
oded the
k bits and 
hose the 
odeword with the minimum distan
e from the foundone. Results are shown.The se
ond proposed algorithm is a geneti
 algorithm [9℄, [10℄. It appliesoperations from natural geneti
s to guide the trek through the sear
h spa
e.The problem here is the de�nition of the parameters, whi
h are 
ode-based.For the moment a generalization to �nd out these parameters doesn't exist.� Chapter 6 :LDPC 
odes have very good performan
e, but also turbo 
odes [19℄,[20℄ and [21℄ are very good.Exa
tly, turbo 
odes performs very well for BER's above 10−4 (waterfall per-forman
e), however they have a signi�
ant weakened performan
e at BER'sbelow 10−5: this phenomenon is known as error �oor. Another importantobservation, we need to keep in our mind, is that, in turbo de
oding, only in-formation bits are de
oded and they 
annot be used for error dete
tion. Thepoor minimum distan
e and la
k of error dete
tion 
apability make these
odes perform badly in terms of blo
k error probability. Poor blo
k errorperforman
e also makes these 
odes not suitable for many 
ommuni
ationappli
ations. On the 
ontrary, �nite geometry LDPC 
odes do not have allthe above disadvantages of turbo 
odes, ex
ept that they may not performas well as turbo 
odes for BER's above 10−4. Other reasons, whi
h 
ouldjustify the 
hoi
e of a LDPC rather than a turbo 
ode are given by a verylow 
omplexity de
oding, 
ompared to the 
omplexity if the MAP algorithmused for the turbo 
odes, and the fa
t that LDPC 
odes have an inherentinterleaving e�e
t and so, if it's 
on
atenated with another 
ode, interleaveris not required.Straight 
on
lusion from the above observation is that the advantages of ex-tremely good error performan
e of turbo 
odes for BER's above 10−4 and the



5advantages of �nite geometry LDPC 
odes su
h as no error �oor, possessingerror dete
tion 
apability after de
oding and good blo
k error performan
e,
an be 
ombined to form a 
oding system that performs well for all rangesof SNR's.Thus, in this Chapter, we propose the 
on
atenation of short LDPC andturbo 
odes, as inner and outer 
odes, respe
tively [22℄, [23℄, [24℄ and [25℄.The 
hoi
e of short 
odewords has two justi�
ations: �rst both the 
odesperform well for long 
odewords, but this introdu
e some delay, whi
h is notsuitable for some kinds of system transmission, for example spee
h. Se
ond,if the 
odeword is relatively short, we analyze the output at the turbo de-
oding and try to 
onstru
t an "ad ho
" LDPC de
oder whi
h is suitablefor de
oding what the turbo 
ode 
annot 
orre
t. This idea is useful also toavoid the blo
k interleaver usage, whi
h is not suitable, be
ause it introdu
esmore delay.Results for this 
on
atenation s
heme are represented for overall rates equalto 1/3, 5/16 and 1/4. The most promising ones are those for the 1/4 rate,the other two 
ases don't show interesting results and for 1/3 rate obtainedwith a turbo 
ode 1/2 and a LDPC 
ode 2/3 we observe that the LDPC
annot re
over the loss of the performan
e due to the turbo pun
turing.� Chapter 7 : brie�y des
ribes those parts of the WiMAX standard whi
h havebeen of interest for the implementation of a downlink simulator standard
ompliant.� Chapter 8 : the parameters used in the simulated system are listed and theresults for di�erent 
hannel estimation and 
oding are represented.The 
onsidered 
odes are the standard de�ned 
onvolutional 
ode and LDPC
ode applied with the 
on
atenation rule de�ned for the 
onvolutional 
ode.Beside these standardized 
odes we plot also the performan
e for the 
on-
atenation s
heme with overall rate equal to 1/4.� Chapter 9 : 
on
lusions are listed.





Chapter 2Channel estimation in OFDMsystemsIn re
ent years, there has been a lot of interesting applying orthogonal frequen
y di-vision multiplexing in wireless and mobile 
ommuni
ation systems be
ause of its variousadvantages in lessening the severe e�e
ts of frequen
y sele
tive fading.Wireless digital 
ommuni
ation systems using 
oherent signaling s
hemes, su
h asquadrature amplitude modulation (QAM), require estimation and tra
king of the fading
hannel and so a more 
omplex re
eiver than for di�erential modulation s
hemes, isneeded [26℄.In parti
ular, in orthogonal frequen
y division multiplexing (OFDM) systems DPSKis appropriate for relative low data rates, but for more spe
trally-e�
ient OFDM sys-tems, 
oherent modulation is more appropriate and, in this situation, 
hannel estimationand tra
king are required [27℄. To this purpose, known symbols, usually 
alled pilots,are often multiplexed into the data and 
hannel estimation is performed by interpola-tion. Channel estimation 
an be avoided by using di�erential dete
tion [28℄, at the 
ost,however, of a 3 dB loss in signal-to-noise ratio (SNR) [29℄.In the design of wireless systems the 
hannel is usually assumed to have a �nite-length impulse response. A 
y
li
 extension, longer than this impulse response, isinserted between 
onse
utive symbols in order to avoid inter-symbol interferen
e andpreserve the orthogonality of the sub
arriers. Generally, the OFDM system is designedso that the 
y
li
 extension is a small per
entage of the total symbol length [30℄.Several pilot-aided 
hannel estimation s
hemes for OFDM appli
ations have beeninvestigated, and the ones listed above provide a good sample of the results obtained inthis area. In parti
ular, the method proposed in [31℄ provides 
hannel estimates basedon pie
ewise-
onstant and pie
ewise-linear interpolations between pilots. It is simpleto implement, but it needs a large number of pilots to get satisfa
tory performan
e.In [26℄, a low-rank approximation to the frequen
y domain Linear Minimum MeanSquared Error estimator (LMMSE) is proposed, making use of singular value de
ompo-sition te
hniques. The drawba
k of this approximation is that it requires knowledge ofthe 
hannel frequen
y 
orrelation and the operating SNR. In pra
ti
e, the system 
an be



8 Chapter 2. Channel estimation in OFDM systemsdesigned for �xed values of SNR and 
hannel 
orrelation at the expense of performan
elosses. The LMMSE studied in [14℄ exploits 
hannel 
orrelations in time and frequen
ydomains. Like the s
heme in [26℄, it needs knowledge of the 
hannel statisti
s and theoperating SNR. Although it 
an work in a mismat
hed mode, its performan
e degradesif the assumed Doppler frequen
ies and delay spreads are smaller than the true ones. In[32℄, 
hannel estimation is performed by two-dimensional interpolation between pilots.Like the method in [14℄, it is rather robust to Doppler, even though it exhibits perfor-man
e degradations with lower Doppler frequen
ies. Similar te
hniques are presented in[33℄ and [34℄. Finally, [35℄ investigates the Maximum Likelihood Estimator (MLE). Noinformation on the 
hannel statisti
s or the operating SNR is required in this s
heme.These methods do not make any assumptions about the 
hannel model, and hen
ethe dimension of the estimation problem 
an be quite large. However, the radio 
hannelin a wireless 
ommuni
ation system is often 
hara
terized by the multipath propagationand in large 
ells with high base station antenna platforms, the multipath propagationis aptly modeled by a few dominant spe
ular paths, typi
ally two to six [36℄.A parametri
 
hannel model 
an be used to represent this type of 
hannel, in fa
t,when the 
hannel 
orrelation matrix is 
onstru
ted based on this 
hannel model, thesignal subspa
e dimension of the 
orrelation matrix 
an be e�e
tively redu
ed and sothe 
hannel estimation performan
e improved [37℄.2.1 Channel modelThe 
hannel impulse response is treated as a time limited pulse train of the form[28℄:
g(t, τ) =

L−1∑

k=0

αk(t)δ(τ − τk(t)) (2.1)where {αk(t)} are the di�erent path 
omplex gains, {τk(t)} are the di�erent path timedelays and L is the number of paths. {αk(t)} are wide-sense stationary (WSS) narrow-band 
omplex Gaussian pro
esses with the so 
alled Jake's power spe
trum [38℄ andthe di�erent path gains are un
orrelated with respe
t to ea
h other where the averageenergy of the total 
hannel energy is normalized to one. We observe also that ea
h
τk(t), k = 0, 1, . . . , L− 1 is smaller than the length of the 
y
li
 pre�x, i.e., the entireimpulse response lies inside the guard spa
e.The input/output relation is

y(t) =

∫

dτh(t, τ)x(t − τ)

=

L−1∑

k=0

αk(t)x(t− τk(t)) (2.2)where y(t) is the re
eived signal at time t and x(t) is the transmitted signal. In thedis
rete time model, Tc is the sample time and we denote the sampled signals by y(k) =
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y(kTc), hk(n) = Tch(kTc, nTc), x(n) = x(nTc), so we get:

y(k) =

L−1∑

n=0

hk(n)x(k − n) + ηk (2.3)where {ηk} is the white Gaussian noise sequen
e and {hk(n)} is a set of L tap 
oe�
ientsof an equivalent dis
rete-time 
hannel impulse response.2.2 Linear equalizationTo perform the estimation and tra
king of this kind of 
hannel we 
ould use anadaptive linear �lter espe
ially one or more Winner �lters [39℄, [40℄.In this se
tion we propose a brief resume of the notions of adaptive linear �ltering andadaptive linear equalization existing in literature. These algorithms have been proposedto minimize the performan
e index of a system and, sin
e in digital 
ommuni
ation themeaningful measure of performan
e is the average probability of error, we want tominimize this performan
e index.First of all, 
onsidering 
hannels with ISI, we de�ne two parameters:- Q is the 
ardinality of the alphabet,- L is the number of interfering symbols, i.e. it is the 
hannel dispersion length,then we observe that the equalizer is a linear transversal �lter, in fa
t the 
omputational
omplexity is a linear fun
tion of the 
hannel dispersion length L. The input to this�lter is the re
eived signal:
y(k) =

L−1∑

n=0

hk(n)x(k − n) + ηk (2.4)where, as said above, {ηk} is the white Gaussian noise sequen
e and {hk(n)} is a set of
L tap 
oe�
ients of an equivalent dis
rete-time 
hannel impulse response. We observethat y(k), k = 0, 1, . . . are the re
eived symbols. The output of the equalizer with
oe�
ients cj , j = −K, −K + 1, . . . , K is the estimate of the transmitted symbols
x(k):

x̂(k) =

K∑

j=−K

cjy(k − j). (2.5)Unfortunately it has been shown that the dependen
e of the average error probabilityfrom the 
oe�
ients cj is high non-linear, so there are two ways of optimizing the
oe�
ients [41℄:1. peak distortion 
riterion,2. mean square error 
riterion.
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riterionPeak distortion 
riterion is the worst 
ase inter-symbol interferen
e at the output ofthe equalizer and the 
riterion is based on the minimization of this performan
e index.We observe that the 
as
ade of the dis
rete time linear model having an impulseresponse h(n) and an equalizer having an impulse response cn 
an be represented by asingle equivalent �lter having the impulse response:
q(n) =

+∞∑

j=−∞
cjh(n− j). (2.6)In this 
ase the output is

x̂(k) = q0x(k) +
∑

n 6=k

x(n)q(n− k) +

+∞∑

j=−∞
cjηk−j (2.7)where the �rst term, on the right hand side, is the s
aled version of the desired symbol(we should normalize q0 to 1) and the se
ond is the inter-symbol interferen
e.If we 
onsider an equalizer with an in�nite number of taps, the peak distortion, i.e.the peak value of ISI is:

D(c) =

+∞∑

n=−∞,n 6=0

|q(n)| (2.8)To obtain D(c) = 0, i.e. to minimize the peak distortion, we must impose:
q0 = 1

q(n) = 0 ∀n 6= 0 (2.9)and using the Z-transformation we obtain:
Q(z) = F (z)C(z) = 1 ⇒ C(z) =

1

F (z)
(2.10)If the equalizer has a �nite length, the peak distortion is:

D(c) =
K+L−1∑

n=−K,n 6=0

|q(n)| (2.11)and we observe that it is impossible to 
ompletely eliminate ISI and that the peak dis-tortion is a 
onvex fun
tion of cj , so it has a global minimum and no relative minimum.Nevertheless, if:
D0 =

1

|h0|

L∑

n=1

|h(n)| < 1, (2.12)



2.3. Channel estimation 11then the ISI is not severe enough to 
lose the eye and so D(c) is still minimized 
hoosing:
q0 = 1

q(n) = 0 1 ≤ |n| ≤ K (2.13)2.2.2 Mean square error 
riterionThe 
oe�
ients cj are adjusted to minimize the mean square values of the error:
εk = x(k) − x̂(k) (2.14)and so the performan
e index for the MSE 
riterion is:

J = E[|εk|2] = E[|x(k) − x̂(k)|2] (2.15)whi
h is a quadrati
 fun
tion of the 
oe�
ients cj .2.3 Channel estimationAs said in the Introdu
tion to the Chapter, we 
an 
onsider two di�erent typesof estimators: the Maximum Likelihood (ML) estimator, whi
h doesn't require theknowledge of the 
hannel statisti
s or the performing SNR, and the ones whi
h needthis knowledge, su
h as the Minimum Mean Square Error (MMSE) estimator and theList Square (LS) estimator.These two types of estimators are based on di�erent assumptions about the ChannelImpulse Response (CIR). In the former, the CIR is viewed as a deterministi
 but un-known ve
tor, whereas in the latter, it is regarded as a random ve
tor whose parti
ularrealization we want to estimate. Correspondingly, the Mean Squared Error (MSE) inthe ML estimator is understood as an average over the observed data, whereas in theMMSE estimator, the average is taken not only over the data but over the CIR prob-ability density fun
tion as well. It follows that the MMSE estimator has the minimumMSE "on the average", i.e., with respe
t to all the CIR realizations.In [27℄, it is shown that the ML estimator a
hieves the Cramér-Rao lower bound(CRLB) [42℄, and therefore, it is the minimum-varian
e unbiased estimator. No furtherimprovement in MSE is possible as long as the CIR is viewed as a deterministi
 quantityand the estimator is unbiased. On the other hand, the MMSE estimator has priorinformation on the CIR and 
an exploit this information to do better than the MLestimator. These 
onsiderations prompt one important question: is it 
on
eptuallypossible for the MMSE estimator to perform below the CRLB? The answer is a�rmativesin
e the CRLB is a bound only in the framework of the 
lassi
al approa
h to estimation(where CIR is a deterministi
 quantity). When dealing with MMSE estimator, on theother hand, a Bayesian approa
h is adopted, and the 
orresponding estimation a

ura
ydepends on prior information. In prin
iple, performan
e 
an be as good as desired,provided that su�
ient prior information is available.



12 Chapter 2. Channel estimation in OFDM systemsHaving established the MMSE estimator 
an do better than the CRLB, purpose of[27℄ is the understanding of how mu
h better it 
an do in pra
ti
e and under whi
hoperating 
onditions. After the 
omparison of the ML and the MMSE estimators we
an say that the main advantage of ML estimator over MMSE estimator is that itdoes not require knowledge of the 
hannel statisti
s and the SNR, and therefore, itis simpler to implement. On the other hand, under 
ertain operating 
onditions, theMMSE estimator has better a

ura
y as it exploits prior information about the 
hannel.Spe
i�
ally, the following has been found in [27℄:- The 
hannel estimates at the edges of the bandwidth are worse than those in themiddle. A possible remedy is to adopt a denser pilot spa
ing at the edges.- MMSE estimator performs better than ML estimator at low SNR.- At intermediate and high SNRs, the two s
hemes have 
omparable performan
e,provided that the number of pilots is su�
iently larger than the duration of theCIRs. Comparisons have also been made with the estimators proposed in [31℄,whi
h makes a pie
e-wise liner interpolation of the estimated CIR, and [32℄, whi
hholds for a general time-varying 
hannel. It turns out that the loss in performan
eof the se
ond one with respe
t to ML estimator and MMSE estimator is limited,whereas that of the �rst one may be signi�
ant, unless the number of pilots issu�
iently high.As said above, if we assume the knowledge of the time-domain 
hannel statisti
s,MMSE and LS estimators are the algorithms 
ommonly used. Both estimators havetheir drawba
ks. The MMSE estimator su�ers from a high 
omplexity, whereas the LSestimate has a high MSE.In [27℄, the authors 
ompared only ML and MMSE estimators and they didn't
onsider the LS estimator. A justi�
ation to this 
an be found in [43℄, where it is shownthat the MMSE estimate gives 10− 15 dB gain in SNR for the same mean square errorof 
hannel estimation over LS estimate.To eliminate the major drawba
k of the MMSE estimator, the 
omplexity, in [26℄ alow-rank approximation is applied to the Linear MMSE by using the frequen
y 
orre-lation of the 
hannel. Another option to redu
e the 
omplexity of MMSE estimator isgiven in [44℄, by deriving an optimal low-rank estimator with singular value de
ompo-sition.Following the three algorithms are brie�y des
ribed when applied to an OFDMsystem. It is important to underline that these algorithms 
an be used both when allthe transmitted sub
arriers are pilot symbols and when only some of them are pilots,while the others are used to transmit information. This will be well des
ribed in Se
tion2.5.2.2.3.1 Least-Square (LS) EstimatorAt the re
eiver side of an OFDM system, we have the re
eived sequen
e y =

[y0, y1, . . . , yN−1]
T and the LS estimator for the 
hannel impulse response g minimizes
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(y − XF g)H(y − XF g) and generates

ĥLS = F QLSF HXHy (2.16)where
QLS = (F HXHXF )−1, (2.17)

X is a matrix with the transmitted elements of x = [x0, x1, . . . , xN−1]
T on its diagonaland

F =







W 00
N · · · W

0(N−1)
N... . . . ...

W
(N−1)0
N · · · W

(N−1)(N−1)
N







(2.18)is the FFT matrix with
W nk

N =
1√
N
e−j2π nk

N n, k = 0, 1, 2 . . . , N − 1. (2.19)Considering the matrix notation, the re
eived ve
tor y 
an be written as
y = XF g + n (2.20)where n is an i.i.d. 
omplex zero-mean Gaussian noise ve
tor.Note that, redu
ed to
ĥLS = X−1y, (2.21)the LS estimator is equivalent to what is also referred to as the zero-for
ing estimator.2.3.2 Minimum Mean Square Error (MMSE) estimatorIf the 
hannel ve
tor g is Gaussian and un
orrelated with the 
hannel noise n, theMMSE estimate of g be
omes

ĝMMSE = RgyR−1
yyy (2.22)where

Rgy = E{gyH} = RggF HXH

Ryy = E{yyH} = XF RggF HXH + σ2
nINare the 
ross-
ovarian
e matrix between g and y and the auto-
ovarian
e matrix of

y. Further, Rgg is the auto 
ovarian
e matrix of g and σ2
n denotes the noise varian
e

E[|nk|2]. These two quantities are assumed to be known.Sin
e the 
olumns in F are orthonormal, ĝMMSE generates the frequen
y-domainMMSE estimate ĥMMSE by
ĥMMSE = F ĝMMSE = F QMMSEF HXHy, (2.23)
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an be shown to be
QMMSE = Rgg[(F HXHXF )−1σ2

n + Rgg]−1(F HXHXF )−1. (2.24)If g is not Gaussian, ĥMMSE is not ne
essarily a minimum mean square error esti-mator. It is, however, the best linear estimator in the mean square error sense.2.3.3 Maximum Likelihood (ML) estimatorThe ML estimator is based on the assumption that g is a deterministi
 but unknownve
tor. The estimate of g is derived from the linear model [14℄ and is given by [45℄:
ĝML = D−1F HX̂

−1
y (2.25)where D is a square matrix

D = F HF .As for the MMSE estimator, the frequen
y 
hannel estimation is given by
ĥML = F ĝML. (2.26)2.4 Channel tra
kingIn most 
ommuni
ation systems that employ equalizers, the 
hannel 
hara
teristi
sare unknown a priory and, in many 
ases, the 
hannel impulse response is time-varying.In su
h a 
ase, the equalizers are designed to be adjustable to the 
hannel response and,for time-variant 
hannels, to be adaptive to the time variations in the 
hannel impulseresponse.For these reasons, algorithms for automati
ally adjusting the equalizer 
oe�
ients tooptimize a spe
i�ed performan
e index and to adaptively 
ompensate for time variationsin the 
hannel 
hara
teristi
s have been studied.2.4.1 Time domainMethod of steepest des
ent or gradient des
ent algorithmSteepest des
ent is an old, deterministi
 method, whi
h is the basis for sto
hasti
gradient based methods. To �nd the minimum value of the mean-squared error, Jmin,by the steepest des
ent algorithm, we pro
eed as follows:1. We begin with an initial value w(0) for the tap weight ve
tor, whi
h provides aninitial guess as to where the minimum point of the error performan
e surfa
e maybe lo
ated. Unless some prior knowledge is available, w(0) is usually set equal tothe null ve
tor.2. Using this initial or present guess, we 
ompute the gradient ve
tor, the real andimaginary parts of whi
h are de�ned as the derivative of the mean-squared error
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J(n), evaluated with respe
t to the real and imaginary parts of the tap-weightve
tor w(n) at time n.3. We 
ompute the next guess at the tap-weight ve
tor by making a 
hange in theinitial or present guess in a dire
tion opposite to that of the gradient ve
tor.4. We go ba
k to step 2 and repeat the pro
ess.It is intuitively reasonable that su

essive 
orre
tions to the tap-weight ve
tor in thedire
tion of the negative of the gradient ve
tor should eventually lead to the minimummean-squared error Jmin, at whi
h point the tap-weight ve
tor assumes its optimumvalues w0.Thus, we 
an observe that this is a feedba
k approa
h to �nding the minimum ofthe error performan
e surfa
e and- error surfa
e must be known- adaptive approa
h 
onverses to the optimal solution, also known as Wiener solu-tion, w0 = R−1p [46℄ without inverting matrix.We assume that:- {x(n)} are the WSS input samples- {d(n)} are the WSS desired output- {d̂(n)} are the estimate of the desired signals given by

d̂(n) = wH(n)x(n) (2.27)where x(n) = [x(n), x(n−1), . . . , x(n−M+1)]T and w(n) = [w0(n), w1(n), . . . ,

wM−1(n)]T is the �lter weight ve
tor at time n.- estimation error:
e(n) = d(n) − d̂(n)

= d(n) − wH(n)x(n) (2.28)Thus the mean square error (MSE) at time n is
J(n) = E[|e(n)|2]

= σ2
d − wH(n)p − pHw(n) + wH(n)Rw(n) (2.29)where- σ2

d is the varian
e of desired signal- p is the 
ross-
orrelation between x(n) and d(n)
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orrelation matrix of x(n).When w(n) is set to the optimal Wiener solution, then
w(n) = w0 = R−1p (2.30)and

J(n) = Jmin = σ2
d − pHw0 (2.31)Hen
e, starting from a point of the error surfa
e, in order to iteratively �nd w0, weuse the method of the steepest des
ent and the dire
tion in whi
h we 
hange the �lterdire
tion is −∇J(n), and so:

w(n+ 1) = w(n) +
1

2
µ[−∇J(n)] (2.32)or, sin
e ∇J(n) = −2p + 2Rw(n),

w(n + 1) = w(n) + µ[p − Rw(n)] (2.33)for n = 0, 1, . . . and µ is 
alled adaptation gain.Stability of the system and rate of de
ayIt is important to note that, sin
e steepest des
ent method uses feedba
k, the system
ould be unstable and so we need to guarantee stability with respe
t to the eigenvaluesof R. To guarantee the stability we pro
eed in the following way:- de�ne the error ve
tor for the tap weights as:
c(n) = w(n) − w0- using p = Rw0, the update be
omes:

w(n+ 1) = w(n) + µ[p − Rw(n)]

= w(n) + µ[Rw0 − Rw(n)]

= w(n) − µRc(n)- from w(n+ 1) − w0 = w(n) − w0 − µRc(n) we obtain
c(n+ 1) = c(n) − µRc(n)

= [I − µR]c(n)- using the eigenvalues de
omposition we 
an write R = UΛUH and so
c(n+ 1) = [I − µUΛUH]c(n)
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king 17- de�ning v(n) = UHc(n), we obtain
v(n+ 1) = [I − µΛ]v(n),so the k-th term in v(n+ 1) is given by

vk(n + 1) = (1 − µλk)vk(n)

= (1 − µλk)
nvk(0)for k = 0, 1, . . . , M − 1, 
onsidering λk the eigenvalues of R.At this point we 
an 
ompute the 
ondition for stability and the rate of de
ay.For the stability we must satisfy limn→∞ vk(n) = 0 and so it must be |1− µλk| < 1for all k and from this one we 
an derive the stability 
ondition on µ

0 < µ <
2

λmax
,where λmax is the maximum eigenvalues of RWe also observe that the k-th mode has a geometri
 de
ay and so we 
an 
hara
terizethe rate of de
ay by �nding the time it takes to de
ay to e−1 of the initial value. Thus

vk(τk) = (1 − µλk)
τkvk(0) = e−1vk(0) ⇒ τk =

−1

ln(1 − µλk)
≈ 1

µλk
for µ≪ 1(2.34)The overall rate of de
ay is:

−1

ln(1 − µλmax)
≤ τ ≤ −1

ln(1 − µλmin)
(2.35)Now we re
all the mean square error or 
ost fun
tion J(n) de�ned in (2.28):

J(n) = Jmin + (w(n) − w0)
HR(w(n) − w0)

= Jmin + (w(n) − w0)
HUHΛU (w(n) − w0)

= Jmin + vH(n)Λv(n)

= Jmin +

M−1∑

k=0

λk|vk(n)|2 (2.36)and thus:
lim

n→∞
J(n) = Jmin (2.37)where Jmin is de�ned in (2.31).Zero for
ing algorithmWe have seen that, when D0 < 1, the D(c) output of the equalizer is minimizedby for
ing the equalizer response to be q0 = 1 and q(n) = 0, 1 ≤ |n| ≤ K. Thenthe zero for
ing solution is a
hieved by for
ing the 
ross-
orrelation between the error
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e εk = x(k) − x̂(k) and the desired sequen
e x(k) to be zero for shift in therange 0 ≤ |n| ≤ K.A simple re
ursive algorithm for adjusting the equalizer 
oe�
ients is:
cj(k + 1) = cj(k) + ∆εkx

∗(k − j) (2.38)where- cj(k) is the jth 
oe�
ient at time k- ∆ is the s
ale fa
tor that 
ontrols the rate of adjustment- εk = x(k) − x̂(k) is the error in the dete
ted symbol.Least Mean Square (LMS) AlgorithmThe error performan
e surfa
e used by the steepest des
ent method is not alwaysknown a priori, so we 
an use estimated values. The estimates are random variablesand thus this leads to a sto
hasti
 approa
h, in fa
t the LMS algorithm is an importantmember of the family of sto
hasti
 gradient algorithm.The term "sto
hasti
 gradient" is intended to distinguish the LMS algorithm fromthe method of steepest des
ent that uses a deterministi
 gradient in a re
ursive 
ompu-tation of the Wiener �lter for sto
hasti
 inputs.We will use the following instantaneous estimates that are based on the samplevalues of the tap-input ve
tor and desired response:
R̂(n) = x(n)xH(n) (2.39)
p̂(n) = x(n)d∗(n) (2.40)At this point we remember that the steepest des
ent update is:

w(n+ 1) = w(n) +
1

2
µ[−∇(J(n))] (2.41)where the gradient of the error surfa
e at w(n) was shown to be

∇(J(n)) = −2p + 2Rw(n), (2.42)but here we use the instantaneous estimates, so we obtain
∇̂(J(n)) = −2x(n)d∗(n) + 2x(n)xH(n)ŵ(n)

= −2x(n)[d∗(n) − xH(n)ŵ(n)]

= −2x(n)[d∗(n) − d̂∗(n)]

= −2x(n)e∗(n) (2.43)where e∗(n) is the 
omplex 
onjugate of estimate error.
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king 19Putting (2.43) in the update equation (2.41), we obtain:
ŵ(n+ 1) = ŵ(n) + µx(n)[d∗(n) − xH(n)ŵ(n)]

= ŵ(n) + µx(n)e∗(n). (2.44)Thus LMS algorithm belongs to the family of sto
hasti
 gradient algorithms, infa
t, the update is extremely simple while the instantaneous estimates may have largevarian
e, the LMS algorithm is re
ursive and e�e
tively averages these estimates.Stability and performan
e analysis of LMS algorithmThe LMS algorithm, from a statisti
al point of view, 
an be analyzed by invokingthe independen
e theory, whi
h states:1. the ve
tors x(1), x(2), . . . , x(n) are statisti
ally independent ve
tors2. at time n, x(n) is independent on d(1), d(2), . . . , d(n − 1)3. at time n, d(n) is statisti
ally dependent on x(n), but it is statisti
ally independenton d(1), d(2), . . . , d(n− 1)4. x(n) and d(n) are mutually Gaussian distributed random variables for all n.The independen
e theorem is justi�ed in some 
ases, i.e. beamforming where were
eive independent ve
tor observations. In other 
ases it is not well justi�ed, but allowsthe analysis to pro
eeds.Observing Equation. (2.44) we note that the tap weight ve
tor ŵ(n + 1) at time
n+ 1 depends only on three inputs:1. the previous sample ve
tors of the input pro
ess, x(n), x(n− 1), . . . , x(1)2. the previous samples of the desired response, d(n), d(n− 1), . . . , d(1)3. the initial value of the tap-weight ve
tor, ŵ(0).Using the independen
e theory we 
an show that w(n) 
onverges to the optimalsolution in the mean, i.e.:

lim
n→∞

E[w(n)] = w0. (2.45)where w0 is the Wiener solution.The starting point is the (2.44)[41℄:
w(n+ 1) − w0 = w(n) − w0 + µx(n)e∗(n)

= [I − µx(n)xH(n)]c(n) + µx(n)e∗0(n) (2.46)Now, note that sin
e w(n) is based on past inputs desired responses d(1), . . . , d(n−
1), w(n) (and c(n)) is independent on x(n), thus µE[x(n)e∗0(n)] = 0 and so:

E[c(n+ 1)] = (I − µR)E[c(n)]. (2.47)
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ase of the steepest des
ent algorithm we �nd that:
lim

n→∞
E[c(n)] = 0 if 0 < µ <

2

λmax
(2.48)whi
h is equivalent to write

lim
n→∞

E[w(n)] = w0 if 0 < µ <
2

λmax
. (2.49)Noting that

λmax ≤ tra
e[R] = Nr(0) = Nσ2
x (2.50)a more 
onservative bound is

0 < µ <
2

Nσ2
x

(2.51)and observing that also 
onvergen
e in the mean (2.45) is a weak 
ondition that saysnothing about the varian
e, whi
h may even grow.A stronger 
ondition is the 
onvergen
e in the mean square, whi
h says:
lim

n→∞
E[|c(n)|2] = 
onstant (2.52)and it is equivalent to show that:

lim
n→∞

J(n) = lim
n→∞

E[|e(n)|2] = 
onstant. (2.53)If we write e(n) as [41℄:
e(n) = d(n) − d̂(n)

= e0(n) − cH(n)x(n) (2.54)then
J(n) = E[|e(n)|2]

= Jmin +E[cH(n)x(n)xH(n)c(n)]

= Jmin + Jex(n) (2.55)Sin
e Jex(n) is a s
alar, we 
an write [41℄
Jex(n) = E[cH(n)x(n)xH(n)c(n)]

= tra
e[RK(n)] (2.56)where K(n) = E[c(n)cH(n)].If we de�ne S(n) , UHK(n)U , where U is the unitary matrix obtained from theeigenvalues de
omposition of R and remembering that Λ is a diagonal matrix, we �nd:
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king 21
Jex(n) = tra
e[ΛS(n)] =

M∑

i=1

λisi(n), (2.57)where s1(n), s2(n), . . . , sM(n) are the diagonal elements of S(n).The re
ursion expression (2.44) 
an be modi�ed to yield a re
ursion on S(n), whi
his:
S(n+ 1) = (I − µΛ)S(n)(I − µΛ) + µ2JminΛ (2.58)and its diagonal elements are

si(n + 1) = (1 − µλi)
2si(n) + µ2Jminλi, i = 1, 2, . . . , M (2.59)Suppose Jex(n) 
onverges, i.e. si(n + 1) = si(n), so, from this equality, we �nd

si(n) =
µJmin

2 − µλi
, i = 1, 2, . . . , M (2.60)and then

lim
n→∞

Jex(n) = Jmin

M−1∑

i=0

µλi

2 − µλi
(2.61)where

M =

M−1∑

i=0

µλi

2 − µλi
(2.62)is the LMS misadjustment and if its value is 10% or less it is generally 
onsidereda

eptable.Normalized LMS algorithmIn the standard LMS algorithm the 
orre
tion is proportional to µx(n)e∗(n):

ŵ(n+ 1) = ŵ(n) + µx(n)e∗(n) (2.63)and if x(n) is large, the LMS algorithm experien
es a gradient noise ampli�
ationproblem. The normalized LMS algorithm seeks to avoid gradient noise ampli�
ation:the adaptation gain is made time varying, µ(n), and optimized to minimize error, i.e.,
hoose µ(n), su
h that the updated ŵ(n+ 1) produ
es the minimum MSE J(n+ 1) =

E[|e(n + 1)|2], where e(n + 1) = d(n+ 1) − wH(n+ 1)x(n+ 1).The optimal adaptation gain, µ0(n) will be a fun
tion of R and ∇(n). To 
omputeit we expand J(n + 1) and di�erentiate it with respe
t to µ(n) and set it equal to 0.After some 
omputation we �nd:
µ0(n) =

∇H(n)∇(n)

∇H(n)R∇(n)
(2.64)



22 Chapter 2. Channel estimation in OFDM systemsand using the instantaneous estimates:
R̂ = x(n)xH(n)

∇̂(n) = −2x(n)e∗(n)we obtain
µ0(n) =

1

xH(n)x(n)
=

1

‖x(n)‖2
(2.65)and the NLMS update is:

ŵ(n+ 1) = ŵ(n) +
µ̃

a+ ‖x(n)‖2
x(n)e∗(n) (2.66)where a > 0 is an o�set added to avoid problems when ‖x(n)‖2 ≈ 0.Following a reason similar to that used for steepest des
ent method we �nd thatNLMS update will 
onverge if

0 < µ̃ < 2. (2.67)To 
on
lude this se
tion we observe that:- the NLMS has a simpler 
onvergen
e 
riteria than the LMS- the NLMS generally 
onverges faster than the LMS algorithm.The LMS equalizerDe�ning- Γ the 
ovarian
e matrix of the input sequen
e y(k),- C the ve
tor of the equalizer 
oe�
ients,- ξ the ve
tor of the 
ross-
orrelation between the input y(k) and the equalizer
oe�
ients ckwe �nd that for the minimization of the MSE we must 
hoose:
Copt = Γ−1H . (2.68)The method of the steepest des
ent o�ers an alternative to the 
omputation of Γ−1.We start 
hoosing a ve
tor C said C0, whi
h 
orresponds to some point on the quadrati
MSE surfa
e, then we 
ompute the gradient ve
tor:

G0 =
[1

2

∂J

∂C0k

]

, k = −K, −K + 1, . . . , −1, 0 . . . , K (2.69)



2.4. Channel tra
king 23At this point ea
h tap is 
hanged in the opposite to its 
orresponding gradient 
ompo-nent:
Ck+1 = Ck − ∆Gk, (2.70)
Gk =

1

2

∂J

∂Ck
= ΓCk − ξ = −E[εkX

∗
k] (2.71)where X∗

k is the ve
tor of the 
omplex 
onjugated re
eived signal that makes up theestimate x̂(k).It is interesting to make some observation on the 
onvergen
e properties of thisalgorithm.First of all we observe that Γ is an Hermitian matrix and so, using the eigenvaluesde
omposition, we 
an write Γ = UΛUH where U is a unitary matrix and (·)H denotesthe Hermitian transpose.It 
an be seen [41℄ that the 
onvergen
e is ensured by:
0 < ∆ <

2

λmax
(2.72)where λmax is the maximum eigenvalue of Γ.Re
ursive least-square (RLS) algorithm for adaptive equalizationAs we have seen, the gradient algorithm has only a single adjustable parameterfor 
ontrolling the 
onvergen
e rate: ∆, and so the slowly 
onvergen
e is due to it.Consequently, we need more 
omplex algorithms to obtain faster 
onvergen
e.In this 
ase, the performan
e index is expressed in terms of a time average insteadof statisti
al average.Before explaining the algorithm, we give some de�nitions:- estimation of the transmitted symbol at sample n:

x̂(n) =
K∑

j=−K

cj(n− 1)y(n − j), j = 0, 1, . . . , N − 1 (2.73)- v(n) = y(n+K)- the estimate x̂(n) be
omes:
x̂(n) =

N−1∑

j=0

cj(n− 1)v(n − j)

= CN (n− 1)V N (n) (2.74)where CN (n− 1) is the row ve
tor of the equalizer at sample n− 1 and V N (n) =

[v(n), v(n− 1), . . . , v(n −N + 1)]T is the input signal to the equalizer.Re
ursive least square algorithm
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ribe the re
ursive least-square (RLS) algorithm, also known asKalman algorithm.We have observed the ve
tors V N (n) for n = 0, 1, . . . , t and we wish to determinethe 
oe�
ient ve
tor CN (t) that minimizes the time average weighted square error:
εLS
N =

t∑

n=0

wt−n|eN (n, t)|2 (2.75)where w is the weighting fa
tor (0 < w < 1) and eN (n, t) = x(n) − CN (t)V N (n)is the error between the estimated and the transmitted symbol at sample n. In thisexpression we have introdu
ed exponential weighting into past data, appropriated whenthe 
hannel 
hara
teristi
s are time-variant.The minimization of εLS
N with respe
t to the 
oe�
ients CN (t) yields the set oflinear equations:

RN (t)CN (t) = DN (t) (2.76)where:- RN (t) =
∑t

n=0 w
t−nV H

N (n)V N (t) is the signal 
orrelation matrix (not a Toeplitzmatrix)- DN (t) =
∑t

n=0w
t−nx(n)V ∗

N (t) is the 
ross-
orrelation ve
tor.The solution is:
CN (t) = R−1

N (t)DN (t). (2.77)The re
ursive algorithmNow, we have CN (t−1) and we wish to 
ompute CN (t). The algorithm's steps are:- RN (t) may be 
omputed re
ursively, so the time-update equation for RN (t) is:
RN (t) = wRN (t− 1) + V H

N (t)V N (t) (2.78)- re
ursive 
omputation for R−1
N (t) is

R−1
N =

1

w

[

R−1
N (t− 1) − R−1

N (t− 1)V H
N (t)V N (t)R−1

N (t− 1)

w + V ′
N (t)R−1

N (t− 1)V ∗
N (t)

] (2.79)- for 
onvenien
e we de�ne P N (t) = R−1
N (t− 1)- we de�ne also Kalman gain ve
tor:

KN (t) =
1

w + µN (t)
P N (t− 1)V ∗

N (t) (2.80)where µN (t) = V H
N (t)P N (t− 1)V N (t)

• ⇒ P N (t) = 1
w [P N (t− 1) − KN (t)V ′

N (t)P N (t− 1)]
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king 25- we observe that P N (t)V ∗
N (t) = KN (t)- now we use the matrix inversion identity to 
ompute CN (t) from CN (t− 1):

• CN (t) = P N (t)DN (t)

• DN (t) = wDN (t− 1) + x(t)V ∗
N (t)

• CN (t) = CN (t−1)+KN (t)[x(t)−V T
N (t)CN (t−1)], where V T

N (t)CN (t−1)is the output of the equalizer at time t, x̂(t)
• eN (t, t− 1) = x(t) − x̂(t) ≡ eN (t)

⇒ CN (t) = CN (t− 1) + KN (t)eN (t) (2.81)- The residual MSE is:
ξLS
N,min =

t∑

n=0

wt−n|x(n)|2 − CN (t)D∗
N (t) (2.82)If we suppose to know CN (t− 1), P N (t− 1) and V N (t), then the algorithm's stepsare:- 
ompute x̂(t) = V T

N (t)CN (t− 1)- 
ompute eN (t) = x(t) − x̂(t)- 
ompute KN (t) = 1
w+µN (t)P N (t− 1)V ∗

N (t)- 
ompute P N (t) = 1
w [P N (t− 1) − KN (t)V ′

N (t)P N (t− 1)]- update 
oe�
ients CN (t) = CN (t− 1) + KN (t)eN (t)This algorithm has two prin
ipal disadvantage:1. 
omputational 
omplexity,2. sensitivity to round o� noise that a

umulates due to re
ursive 
omputations.2.4.2 Frequen
y domainRe
ognizing that the Fourier transform maps time-domain signals into the frequen
ydomain and that the inverse Fourier transform provides the inverse mapping that takesus ba
k into time domain, it is equally feasible to perform the adaptation of �lterparameters in the frequen
y domain. In su
h a 
ase we speak of Frequen
y-DomainAdaptive Filtering (FDAF).There are two main reasons for seeking the use of frequen
y domain adaptive �lteringin one form or another [41℄:
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ertain appli
ation, su
h as a
ousti
 e
ho 
an
ellation in tele
onferen
ing, forexample, the adaptive �lter is required to have a long impulse response to 
opewith an equally long e
ho duration. When the LMS algorithm is adapted inthe time domain, we �nd that the requirement of a long memory results in asigni�
ant in
reasing of the 
omputational 
omplexity of the algorithm. How thendo we deal with this problem? There are two options available to us. We may
hoose an in�nite-duration impulse response (IIR) �lter and adapt it in the timedomain; the di�
ulty with this approa
h is that we inherit a new problem, namely,the �lter instability. Alternatively, we may use a parti
ular type of frequen
y-domain adaptive �ltering that 
ombines two 
omplementary methods widely usedin digital signal pro
essing:� blo
k implementation of a FIR �lter, whi
h allows the e�
ient use of parallelpro
essing and thereby results in a gain in 
omputational speed,� fast Fourier transform (FFT) algorithms for performing fast 
onvolution (�l-tering) whi
h permits adaptation of �lter parameters in the frequen
y domainin a 
omputationally e�
ient manner.This approa
h to frequen
y-domain adaptive �ltering builds on the so-
alled blo
kLMS algorithm that in
ludes the standard LMS algorithm as a spe
ial 
ase.2. Frequen
y-domain adaptive �ltering, me
hanized in a di�erent way from thatdes
ribed under point 1, is used to improve the 
onvergen
e performan
e of thestandard LMS algorithm.Blo
k adaptive �ltersIn a blo
k adaptive �lter, the in
oming data sequen
e x(n) is se
tioned into B-point blo
ks by means of a serial to parallel 
onverter, and the blo
ks of input data soprodu
ed are applied to a FIR �lter of length M , one blo
k at a time. Generally weassume M = L as we see at the end of this subse
tion. The adaptation of the �lterpro
eeds on a blo
k-by-blo
k basis rather than on a sample-by-sample basis as in thestandard LMS algorithm. Let k refer to a blo
k time and ŵ(k) denote the tap-weightve
tor of the �lter for the k-th blo
k:
ŵ(k) = [ŵ0(k), ŵ1(k), . . . , ŵM−1(k)]

T k = 0, 1, . . . (2.83)The index n is reserved for the original sample time, written in terms of the blo
k sizeas follows:
n = kB + i, i = 0, 1, . . . , M − 1 k = 0, 1, . . . (2.84)Let the input signal ve
tor x(n) at time n be written as:

x(n) = [x(n), x(n− 1), . . . , x(n−M + 1)]T . (2.85)
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king 27A

ordingly, at time n the output ŷ(n) produ
ed by the �lter in response to the inputsignal ve
tor x(n) is de�ned by the inner produ
t:
ŷ(n) = ŵT (k)x(n). (2.86)or equivalently:

y(kB + i) = ŵT (k)x(kB + i)

=

M−1∑

l=0

ŵl(k)x(kB + i− l), i = 0, 1, . . . , M − 1. (2.87)Let y(n) = y(kB + i) denote the 
orresponding value of the desired response. Anerror e(n) is produ
ed by 
omparing the �lter output ŷ(n) against the desired response
y(n); the error signal is de�ned by:

e(n) = y(n) − ŷ(n) (2.88)or equivalently
e(kB + i) = y(kB + i) − ŷ(kB + i). (2.89)Re
ognizing that in the blo
k LMS algorithm the error signal is allowed to vary atthe sampling rate, it follows that for ea
h blo
k of data we have di�erent values of theerror signal for use in the adaptive pro
ess. A

ordingly, for the k-th blo
k, we may sumthe produ
t x(kB + i)e(kB + i) over all possible value of i, and so de�ne the followingupdate equation for the tap-weight ve
tor of the blo
k LMS algorithm operating onreal-valued data:

ŵ(k + 1) = ŵ(k) + µ
B−1∑

i=0

x(kM + i)e(kM + i) (2.90)where µ is the adaptation gain. For 
onvenien
e of presentation we de�ne
φ(k) =

B−1∑

i=0

x(kM + i)e(kM + i), (2.91)and so we rewrite (2.90) in the form:
ŵ(k + 1) = ŵ(k) + µφ(k). (2.92)A distin
tive feature of the blo
k LMS algorithm des
ribed herein is that its designin
orporates an averaged estimate of the gradient ve
tor, as shown by

∇̂(k) = − 2

B

B−1∑

i=0

x(kB + i)e(kB + i) (2.93)where the fa
tor 2 is in
luded to be 
onsistent with the de�nition of the gradient ve
tor
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tor 1/B is in
luded for ∇̂(k) to be an unbiased time average. Then interms of ∇̂(k) we may reformulate the blo
k LMS algorithm as follows:
ŵ(k + 1) = ŵ(k) − 1

2
µB∇̂(k) (2.94)where µB may be viewed as the e�e
tive adaptation gain of the blo
k LMS algorithm;it is de�ned by:

µB = Bµ. (2.95)For the 
onvergen
e properties of the blo
k LMS algorithm we observe that they aresimilar to those of the standard LMS algorithm, in that they both attempt to minimizethe same mean-square error fun
tion:
J =

1

2
E[e2(n)]. (2.96)It 
an be shown that the blo
k LMS algorithm uses a more a

urate estimate of thegradient ve
tor be
ause of the time averaging, with the estimation a

ura
y in
reasingas the blo
k size B is in
reased. However, this improvement does not imply fasteradaptation. We may pro
eed through a 
onvergen
e analysis of the blo
k LMS algorithmin a manner similar to that used for 
onventional LMS algorithm [41℄.We may thus summarize the 
onvergen
e properties of the blo
k LMS algorithm asfollows:1. Condition for 
onvergen
e. The mean of the tap-weighted ve
tor ŵ(k) 
om-puted by using the blo
k LMS algorithm 
onverges to the optimum Wiener so-lution w0 as the number of blo
k iterations k approa
hes in�nity, as shown by

lim
k→∞

E[ŵ(k)] = R−1p = w0 (2.97)where
R = E[x(n)xH(n)] (2.98)
p = E[x(n)y(n)]. (2.99)1We de�ne the gradient operation ∇ the k-th element of whi
h is written in terms of �rst-orderpartial derivatives with respe
t to the real part ak and the imaginary part bk, for the k-th �lter
oe�
ient, as
∇k =

∂

∂ak
+ j

∂

∂bk
.The gradient ve
tor ∇J(n) is given by:

∇J(n) =

2

6

6

6

6

6

4

∂J(n)
∂a0(n)

+ j
∂J(n)
∂b0(n)

∂J(n)
∂a1(n)

+ j
∂J(n)
∂b1(n)...

∂J(n)
∂aM−1(n)

+ j
∂J(n)

∂bM−1(n)

3

7

7

7

7

7

5

= −2p + 2Rw(n)
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king 29The 
ondition that has to be satis�ed by the adaptation gain µ for 
onvergen
eof the blo
k LMS algorithm in the mean value is
0 < µ <

2

Bλmax
(2.100)where B is the blo
k size and λmax is the largest eigenvalue of the 
orrelationmatrix R of the input signal ve
tor x(n).2. Misadjustment. Remembering the de�nition of the ex
ess mean-squared error

Jex(k) and the minimum mean-squared error Jmin, we note that for the Jex(k)
omputed by the blo
k LMS algorithm to 
onverge to a 
onstant value Jex(k) <

Jmin as the number of blo
k iterations k approa
hes in�nity, the adaptation gain
µ has to satisfy the more stringent 
ondition:

0 < µ <
2

B
∑M

i=1 λi

(2.101)and the 
orresponding value of the misadjustment is
M =

µ

2

M∑

i=1

λi. (2.102)Comparing the results des
ribed here for the blo
k LMS algorithm with the 
or-responding results for LMS algorithm 2.4.1, we may make the following observationswhen operating in a wide-sense stationary environment:� The 
onverged mean weight ve
tor and misadjustment of the blo
k LMS algorithmare identi
al to those of the standard LMS algorithm. The same holds for theaverage time 
onstant.� For an input signal ve
tor x(n) whose 
orrelation matrix R has a pres
ribed eigen-stru
ture, the 
ondition imposed on the blo
k LMS for 
onvergen
e in the meansquare is more restri
tive than the 
orresponding 
ondition for the standard LMSalgorithm. In parti
ular the tighter bound on the adaptation gain µ may 
ause theblo
k LMS algorithm to 
onverge more slowly than the standard LMS algorithm,parti
ularly when the eigenvalue spread χ = λmax
λmin

of the 
orrelation matrix R issmall.We 
an 
on
lude this se
tion with an observation about the blo
k size. The operationof the blo
k LMS algorithm holds true for any integer value of B ≥ 1. Nevertheless,the option of 
hoosing the blo
k size B equal to the �lter length M is preferred in mostappli
ations of blo
k adaptive �ltering. This 
hoi
e may be justi�ed on the followinggrounds:� when B > M , redundant operations are involved in the adaptive pro
ess, be
ausethen the estimation of the gradient ve
tor uses more information than the �lteritself



30 Chapter 2. Channel estimation in OFDM systems� when B < M , some of the tap weights in the �lter are wasted, be
ause thesequen
e of tap inputs is not long enough to feed the whole �lter.It thus appears that the most pra
ti
al 
hoi
e is B = M .Fast LMS algorithmThe des
ription of the fast LMS algorithm presented here uses the overlap-savemethod 2 with 50% overlap.A

ording to this method, the M tap weights of the �lter are padded with an equalnumber of zeros, and an N -point FFT is used for the 
omputation, where N = 2M .Thus let the N × 1 ve
tor Ŵ (k) denote the FFT 
oe�
ients of the zero-padded, tap-weight ve
tor ŵ(k), as follows:
Ŵ (k) = FFT

[

ŵ(k)

0

] (2.103)where 0 is the M × 1 null ve
tor and FFT [·] denotes the fast Fourier transformation.Let X(k) denote an N×N diagonal matrix derived from the input data as following:
X(k) = diag{FFT [x(kM −M), . . . , x(kM − 1)

︸ ︷︷ ︸

(k−1)th blo
k , x(kM), . . . , x(kM +M − 1)
︸ ︷︷ ︸

kth blo
k ]}.(2.104)Now, applying the overlap-save method to the linear 
onvolution of (2.87) yields the
M × 1 ve
tor

ŷT = [ŷ(kM), ŷ(kM + 1), . . . , ŷ(kM +M − 1)]

= last M elements of IFFT [X(k)Ŵ (k)]. (2.105)where IFFT [·] denotes inverse fast Fourier transformation and only the lastM elementsare retained, be
ause the �rst M elements 
orrespond to a 
ir
ular 
onvolution.Now de�ne the M × 1 desired response ve
tor
y(k) = [y(kM), y(kM + 1), . . . , y(kM +M − 1)]T (2.106)and the 
orresponding M × 1 error signal ve
tor:

e(k) = [e(kM), e(kM + 1), . . . , e(kM +M − 1)]T

= y(k) − ŷ(k). (2.107)2Implementing 
onvolution using the DFT, the overlap-save method involves overlapping inputse
tion rather than output se
tions. If the overlap is of P − 1 samples, the �rst P − 1 samples ofea
h output sequen
e are ignored, be
ause they are due to the wraparound (end) e�e
t of the 
ir
ular
onvolution.



2.4. Channel tra
king 31We may transform the error signal ve
tor e(k) into the frequen
y domain as follows:
E(k) = FFT

[

0

e(k)

]

. (2.108)At this point we observe that:
φ(k) = �rst M elements of IFFT [XH(k)E(k)]. (2.109)The update equation in frequen
y domain be
omes:

Ŵ (k + 1) = Ŵ (k) + µFFT

[

φ(k)

0

] (2.110)Computational 
omplexityConsider the standard LMS algorithm with M tap weights operating on real data.In this 
ase, M multipli
ations are performed to 
ompute the output and a further
M multipli
ations are performed to update the tap weights, making for a total of 2Mmultipli
ations per iteration. Hen
e, for a blo
k ofM output samples, the total numberof multipli
ations is 2M2.Consider next, the fast LMS algorithm. Ea
h N -point FFT requires approximately
N log2N real multipli
ations, where N = 2M . A

ording to the stru
ture of the fastLMS algorithm, there are �ve frequen
y transformations performed, whi
h thereforea

ount for 5N log2N multipli
ations. In addition the 
omputation of the frequen
ydomain output ve
tor requires 4N multipli
ations, and so does the 
omputation of the
ross-
orrelations relating to the gradient ve
tor estimation. Hen
e, the total 
orre-sponding number of multipli
ations performed in the fast LMS algorithm is:

5N log2N + 8N = 10M log2M + 26M, (2.111)so if we 
ompute the 
omplexity ratio we �nd:Complexity ratio =
5 log2M + 13

M
< 1 (2.112)and then we 
an say that fast LMS algorithm is faster than standard LMS algorithm,as soon as M ≥ 64.Un
onstrained frequen
y-domain adaptive algorithmThe fast LMS algorithm may be viewed as a 
onstrained form of frequen
y-domainadaptive �ltering. The time domain 
onstraint 
onsists of the following operations:� dis
arding the last M elements of the inverse FFT of XH(k)E(k)� repla
ing the elements so dis
arded by a blo
k of M zeros before reapplying theFFT.



32 Chapter 2. Channel estimation in OFDM systemsIn the un
onstrained frequen
y-domain adaptive �lter the gradient 
onstraint isremoved 
ompletely and the implementation be
omes simpler:
Ŵ (k + 1) = Ŵ (k) + µXH(k)E(k). (2.113)It is important to note, however, that the estimate of the gradient ve
tor 
omputedhere no longer 
orresponds to a linear 
orrelation as spe
i�ed in (2.93); rather, we nowhave a 
ir
ular 
orrelation.Consequently, we �nd that in general the un
onstrained frequen
y-domain adaptive�ltering algorithm deviates from the fast LMS algorithm, in that the tap weight ve
torno longer 
onverges to the Wiener solution as the number of blo
k iterations approa
hesin�nity. Another important point is that although the 
onvergen
e rate of the un
on-strained frequen
y-domain adaptive �ltering algorithm is in
reased with time-varyingadaptation gain, the improvement is o�set by a worsening of the misadjustment. In-deed, the un
onstrained algorithm requires twi
e as many iterations as the 
onstrainedalgorithm to produ
e the same level of misadjustment.2.5 System des
riptionIn Figure 2.1 the OFDM base band model 
onsidered in this work is represented.We assume that the use of the 
y
li
 pre�x both preserves the orthogonality of thesub
arriers and eliminates inter-symbol interferen
e (ISI) between 
onse
utive OFDMsymbols.The 
hannel g(t, τ) is assumed to be slowly fading, so it is 
onsidered to be 
onstantduring one OFDM symbol. The number of sub
arriers in the system is N , and the
y
li
 pre�x is made of NCP samples.

Figure 2.1: Base band model of an OFDM system. CP denotes the 
y
li
 pre�x.Under these assumptions we 
an des
ribe the system as a set of parallel Gaussian
hannels, with 
orrelated attenuation hk, k = 0, 1, . . . , N − 1.In matrix notation we des
ribe the OFDM system as
y = Xh + n (2.114)where y is the re
eived ve
tor, X is a matrix 
ontaining, on its diagonal, the transmit-



2.5. System des
ription 33ted signaling points, taken from a multi-amplitude signal 
onstellation, h is a 
hannelattenuation ve
tor and n is a ve
tor of i.i.d. 
omplex, zero-mean, Gaussian noise withvarian
e σ2
n.The 
hannel impulse response, as explained in Se
tion 2.1 is treated as a time limitedpulse train of the form:

g(t, τ) =

L−1∑

k=0

αk(t)δ(τ − τk(t))where {αk(t)} are the di�erent path 
omplex gain, {τk(t)} are the di�erent path timedelays and L is the number of paths. {αk(t)} are wide-sense stationary (WSS) narrow-band 
omplex Gaussian pro
esses with the so 
alled Jake's power spe
trum [38℄ andthe di�erent path gains are un
orrelated with respe
t to ea
h other where the averageenergy of the total 
hannel energy is normalized to one. We observe also that ea
h τk(t),
k = 0, 1, . . . , L− 1 is minor than the length of the 
y
li
 pre�x, i.e., the entire impulseresponse lies inside the guard spa
e.The transmitted data are divided into frame whi
h is 
omposed of N sub
arriersand Nsym OFDM symbols. The �rst OFDM symbol is a preamble, i.e. its symbols areknown at the re
eiver and are employed to obtain a 
hannel estimation through someestimation algorithm. The following OFDM symbols are made of some left and rightnull sub
arriers, while the remaining ones are pilot and data sub
arriers. Obviously, thepilot sub
arriers are known at the re
eiver and are introdu
ed to perform the 
hanneltra
king.2.5.1 Channel estimationWe will analyze several estimators based on the s
heme presented in Figure 2.2

Figure 2.2: General s
heme used in many 
hannel estimation algorithms.Least Square (LS) estimatorThe LS estimator for the frequen
y response ĥLS is given by:
ĥLS = X−1y (2.115)



34 Chapter 2. Channel estimation in OFDM systemsand from (2.135) it is 
lear why it is also referred to as the zero for
ing estimator.The LS estimator is des
ribed in Se
tion 2.3.1; here we remind it generates theestimated frequen
y response [43℄:̂
h = F QLSF HXHy (2.116)where QLS = (F HXHXF )−1 and F is the N × N DFT matrix, whose elements are

[F ]n,k = W nk
N = 1√

N
exp (−j2π nk

N ).At this point we observe that the equivalen
e between (2.135) and (2.116) holds whenwe suppose to know all the tones in an OFDM symbol, be
ause F HF = FF H = I.Minimum Mean Square Error (MMSE) estimatorIf the 
hannel ve
tor g is Gaussian and un
orrelated with the 
hannel noise n, theMMSE estimate of g, des
ribed in Se
tion 2.3.2, be
omes:
ĝMMSE = RgyR−1

yy y (2.117)where
Rgy = E[gyH ] = RggF HXH

Ryy = E[yyH ] = XFRggF HXH + σ2
nIare the 
ross-
ovarian
e matrix between g and y and the auto-
ovarian
e matrix of y,respe
tively. Further, Rgg is the auto-
ovarian
e matrix of g and σ2

n denotes the noisevarian
e E[|nk|2]. For the moment these two quantities are assumed to be known. Sin
ethe 
olumns in F are orthonormal, ĝMMSE generates the frequen
y domain MMSEestimate ĥMMSE by
ĥMMSE = F ĝMMSE = FQMMSEF HXHy (2.118)where QMMSE 
an be shown to be [43℄

QMMSE = Rgg[(F HXHXF )−1σ2
n − Rgg]−1(F HXHXF )−1. (2.119)We observe that the MMSE estimator requires the 
al
ulation of an N ×N matrix

QMMSE, whi
h implies a high 
omplexity when N is large. A straightforward way ofde
reasing the 
omplexity is to redu
e the size of QMMSE.Linear minimum mean square (LMMSE) estimatorWe start 
onsidering the LS estimate:
ĥLS = X−1y = h + ñ



2.5. System des
ription 35where ñ = X−1n is a ve
tor of independent Gaussian noise variables with 
ovarian
ematrix3
Rññ = σ2

n(XXH)−1. (2.120)The LS estimate is a noisy observation of the 
hannel attenuation and 
an besmoothed using 
orrelation properties of the 
hannel. The optimal linear estimatorin terms of mean square error (MSE) is
ĥ = W X ĥLS , (2.121)where

W X = Rhh(Rhh + σ2
n(XXH)−1)−1, (2.122)and Rhh = E[hhH ] is the auto-
ovarian
e matrix of the 
hannel ve
tor h.At this point we re
ognize that the weighting matrix W X , of size N ×N , dependson the transmitted data X.As a �rst step towards low 
omplexity estimators we want to �nd a weighting matrixthat is independent on the transmitted data. This 
an be obtained by 
onsidering ĥLSto be our observation and derive an LMMSE estimator that 
onsiders X to be sto
hasti
with independent and uniformly distributed 
onstellation points. In this 
ase we de�nea 
onstellation fa
tor β = E[|xk|2]E[|xk|−2] and remembering that the signal-to-noiseratio is de�ned as SNR , E[|xk|2]/σ2

n we �nd
Rññ =

β

SNR
I. (2.123)Now, the LMMSE estimate of the ĥLMMSE from ĥLS be
omes

ĥLMMSE = WĥLS (2.124)where the �xed weighting matrix is given by
W = Rhh

(

Rhh +
β

SNR
I
)−1 (2.125)The LMMSE estimator still requires N multipli
ations per estimated attenuationand we use it both as a referen
e and as a starting point in the derivation of the DFT-based low 
omplexity estimators.To derive the new estimators we observe that h is the sampled frequen
y response ofa 
hannel with short time duration 
ompared to the OFDM symbol length and, hen
e,its asso
iated 
y
li
 impulse response g = IDFT (h) has only a few taps with signi�
antpower. If we perform the estimation in the time domain, we 
an redu
e the 
omplexityof the estimation by using this power 
on
entration.This prompts the estimator stru
ture in Figure 2.2, where the blo
k named Q rep-resents a time elaboration of the signal, as it is evident from the presen
e of the DFT3Rññ = E[(X−1n)H(X−1n)] = tra
e(E[nnH(XXH)−1]) = σ2

n(XXH)−1



36 Chapter 2. Channel estimation in OFDM systemsand IDFT blo
ks. The LS estimate is transformed into its time domain equivalent
ĝLS = IDFT (ĥLS), remembering that when we are using a number of pilot sub
arriers(Np) less than the number of total sub
arriers (N) the equivalent time domain responseis given by (2.134). The smoothing is then performed by a linear transformation:

ĝ = QĝLS (2.126)and the result is transformed ba
k to the frequen
y domain: ĥ = DFT (ĝ).The important bene�t of this estimator stru
ture in terms of 
omplexity is thelow 
omplexity of the DFT/IDFT (implemented as fast transformations) and the timedomain power 
on
entration, whi
h o�ers a simpli�
ation of (2.126), without sa
ri�
ingtoo mu
h in performan
e.The s
ope of the following 
onsideration is to �nd sparse approximations of theLMMSE estimator's equivalent time domain smoothing matrix
Q = F HWF (2.127)where F is the DFT matrix and W is de�ned in (2.125). A straightforward way is tosimply ignore the 
oe�
ients in ĝLS that 
ontain more noise than 
hannel power andonly transform the remaining elements ba
k to the frequen
y domain.Now, we present three di�erent low 
omplexity estimators, obtained redu
ing thenumber of non-zero elements in the time domain matrix multipli
ation (2.126), withthe aim of redu
ing the 
omputational 
omplexity and preserving the performan
e.Before the des
ription of the algorithms it is important to underline a drawba
k ofthese estimators: for all of them we suppose the knowledge of the 
hannel length.Estimator AThe simplest idea is to 
hoose the L 
oe�
ients in ĝLS that have the highest 
hannelpower, where L is the length of the 
hannel impulse response and thus it is mu
h smallerthan N (the number of sub
arriers) and Np (the number of pilots).In this 
ase we �nd

QA =

[

QL×L 0

0 0

] (2.128)where
QL×L = Rgg,L

(

Rgg,L +
β

SNR
I
)−1 (2.129)and Rgg,L is the upper left L× L 
orner of Rgg.Estimator B Further redu
tions in 
omplexity 
an be done by ignoring 
ross 
or-relation between the L 
hosen taps in ĝLS and only weighting them individually. Inthis 
ase the matrix Q be
omes

QB =

[

DL×L 0

0 0

] (2.130)
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ription 37where
DL×L = diag(δ0, δ1, . . . , δL−1) (2.131)and

δk =
γk

γk + β
SNR

, k = 0, 1, . . . , L− 1and γk = E[|gk|2] whi
h are the diagonal elements of Rgg = E[ggH ] = F HRhhF .Estimator C In this 
ase we redu
e the 
omplexity using the L 
hosen 
oe�
ientsdire
tly as input to the DFT. The Q matrix simply be
omes
Qc =

[

IL×L 0

0 0

]

. (2.132)It is interesting to underline that in this 
ase we obtain
ĥC = F ĝLS (2.133)where ĝLS is de�ned in (2.134) and, when we are in presen
e of Gaussian white noise,as in this 
ase, this is the maximum likelihood (ML) estimator ([47℄ and [48℄).In table 2.1 we summarize the linear transformation and the required multipli
ationper attenuation 
oe�
ient (hk).Estimator Linear Transformation Required mult./attenuationLMMSE N.A. N + 1A QA =

[
QL×L 0

0 0

]

log2N + L2

N + 1B QB =

[
DL×L 0

0 0

]

log2N + L
N + 1C QC =

[
IL×L 0

0 0

]

log2N + 1LS N.A. 1Table 2.1: Linear transformations and 
omputational 
omplexity for the proposedestimator.Until this moment we develop the dis
ussion with no attention about the number oftones we know at the re
eiver. If we know all the OFDM symbol the 
hannel impulseresponse 
an be 
omputed using the 
omplete DFT matrix, but when we know onlysome tones, the pilots, we must use a trun
ated version of the DFT matrix. To avoidthe problem of this distin
tion during our des
ription we use the notation F for boththe trun
ated or 
omplete version of the DFT matrix. Parti
ular attention must be paidwhen we talk about 
omplete DFT matrix: we know the 
hannel impulse response hasonly few signi�
ant taps and so if we assume the 
hannel length L known, then the DFTmatrix is said to be 
omplete even if it has only the �rst L 
olumns. This assumptionavoids the problem of sele
ting the signi�
ant taps. A way to avoid the trun
ation ofthe F matrix we 
an 
hoose the �rst L taps of the estimated impulse 
hannel responseand then perform a zero-padding.



38 Chapter 2. Channel estimation in OFDM systemsAfter these observations, we de�ne the 
hannel impulse response by
ˆgLS = (F HF )−1F H ĥLS , (2.134)in fa
t, if we 
ome ba
k to the frequen
y domain through the expression ĥLS = F ĝLS =

F (F HF )−1F H ĥLS we �nd the matrix F (F HF )−1F H is equal to the identity one onlywhen we 
onsider the entire DFT matrix and not a trun
ated version, i.e. when thepilot tones are only a fra
tion of sub
arriers (Np ≤ N).2.5.2 Use of the des
ribed algorithm 
onsidering only pilot sub
arri-ersOften, in OFDM systems there are some sub
arriers, i.e. the pilot sub
arriers, whosenumber Np is smaller than the total number of sub
arriers N , whi
h are known at there
eiver.In this se
tion we use the following notation:� F L is a N × L matrix 
ontaining the �rst L 
olumns of the DFT matrix F� F L,p is a Np×L matrix obtained from F L eliminating the lines not 
orrespondingto pilot sub
arriers� yp is the ve
tor of the training re
eived symbols� Xp is a Np ×Np diagonal matrix 
ontaining the training symbols.LS estimatorIn the frequen
y domain the LS estimate is given by
ĥLS = X−1

p yp (2.135)and in the time domain it is
ĝLS = (F H

L,pF L,p)
−1F H

L,pĥLS (2.136)MMSE estimatorThe expression for the MMSE estimator 
onsidering only pilot sub
arriers is
ĝMMSE = RggF H

L,pX
H
p (XpF L,pRggF H

L,pX
H
p + σ2

nI)−1yp

=
(

R−1
gg + F h

L,pX
H
p

1

σ2
n

XpF L,p

)−1
F H

L,pX
H
p

1

σ2
n

yp (2.137)LMMSE estimatorWe de�ne the auto-
ovarian
e matrix of the frequen
y response 
hannel as
Rhh = E[hhH ] = F L,pRggF H

L,p. (2.138)



2.5. System des
ription 39where Rgg is the auto-
ovarian
e matrix of the 
hannel impulse response and it is
Rgg = diag(1/L, 1/L, . . . , 1/L).At this point there are the two version of the LMMSE estimator: one depending onthe training symbols:̂

hLMMSE = Rhh(Rhh + σ2
n(XpX

H
p )−1)−1ĥLS (2.139)and the other one independent on the training symbols:

ĥLMMSE = Rhh

(

Rhh +
β

SNR
I
)−1

ĥLS (2.140)Estimator A Here, we de�ne the matrix Rgg,LS = F H
L,pRhhF L,p and 
ompute thematrix QA

QA = Rgg,LS

(

Rgg,LS +
β

SNR
I)(−1) (2.141)and so we �nd

ĥA = F L,pĝA = F L,pQAĝLS (2.142)where ĝLS is 
omputed in (2.136).Estimator B In this estimator we 
onsider the values on the diagonal of the Rgg,LSmatrix (named γk, k = 0, 1, . . . , L−1) and QB is a diagonal matrix with the followingvalues
qB,kk =

γk

γk + β
SNR

(2.143)and so the estimated frequen
y response is
ĥB = F L,pĝB = F L,pQB ĝLS (2.144)Estimator C Finally, in this 
ase the matrix QC is simply an L×L identity matrix,so we �nd ĝC = ˆgLS and in the frequen
y domain

ĥC = F L,pĝC = F L,pĝLS (2.145)whi
h is also the expression of the ML estimator.2.5.3 Channel tra
kingThe algorithms presented in Se
tion 2.4 allow the equalization of a 
hannel, for asingle 
arrier system, in the time domain.If we 
onsider an OFDM system we 
an try to tra
k a time-varying 
hannel using,in the frequen
y domain, the same idea whi
h is behind the RLS algorithm.The basi
 idea is to perform 
hannel estimation on the �rst OFDM symbol byemploying a linear minimum mean square error (LMMSE) or a least square error (LS)algorithm. Then, to perform the tra
king we 
an use an adaptive �lter whose workingprin
iple is the same as RLS algorithm.



40 Chapter 2. Channel estimation in OFDM systemsSin
e we have an OFDM system the �rst idea is to perform the tra
king in thefrequen
y domain. The adaptive �lter in frequen
y domain are des
ribed in Se
tion2.4.2, but we observe that our 
ase is a little bit di�erent from the ones proposed there.It is for this reason that we refer to [15℄ in the following analysis.In [15℄ the authors 
onsider a blo
k of N input symbols and perform the FFT onthem obtaining X(n), they perform also the FFT on blo
ks of N desired symbolsobtaining Y (n) and then update the frequen
y response of the adaptive �lter W (n) inthe frequen
y domain. The k-th 
omplex weight for the k-th frequen
y is then updateda

ording to:
Wk(n+ 1) = Wk(n) + µEk(n)X∗(n), (2.146)where E(n) = Y (n)−W (n)X(n). We observe that this is similar to the un
onstrainedfrequen
y-domain adaptive �lter.In Figure 2.3 the s
heme adopted for the tra
king of the 
hannel is shown.In the frequen
y domain, we de�ne:- Y p(k) the ve
tor of the symbol re
eived on pilot sub
arriers at time k- Hp(k) the ve
tor of the real 
hannel attenuation 
oe�
ients on pilot sub
arriersat time k- Ĥp(k) the ve
tor of the estimated 
hannel attenuation 
oe�
ients on pilot sub-
arriers at time k- Xp(k) the transmitted pilot signal at time k- Ỹp(k) = Ĥp(k)Xp(k) is the estimate of the re
eived symbol- Ep(k) = Y p(k) − Ỹp(k) is the ve
tor of the errors between the re
eived symbolsand their estimates on pilot sub
arriers
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Figure 2.3: Adaptive s
heme for 
hannel tra
king in frequen
y domain.Sin
e in ea
h OFDM symbol there are Np pilot sub
arriers we 
onsider them and�nd the update equation for the 
hannel estimation at every pilot:
Ĥi(k + 1) = Ĥi(k) + µEi(k)X

∗
i (k), i = 0, 1, . . . , Np − 1 (2.147)



2.6. Simulation setup 41where µ is the adaptation gain.In this way we know the 
hannel only on a subset of sub
arriers, so, to have anestimation of the all frequen
y 
hannel response we transform the 
hannel into the timedomain, eliminate the taps with high noise and re-transform it to frequen
y domain 
on-sidering all the N sub
arriers and we obtain the frequen
y 
hannel response estimation
Ĥ(k + 1) .Choi
e of the adaptation gainParameter µ has the same mean of the parameter ∆ in the LMS algorithm (2.38)whi
h must satisfy the following 
ondition:

0 < ∆ <
2

λmax
, (2.148)where λmax is the maximum eigenvalue of the matrix 
orrelation of the input ve
tor.At this point we re
all and use a result provided in [15℄. Starting from Equation.(2.146) the authors observe that sin
e ea
h weight is adapted only on
e for ea
h N -pointdata blo
k, the number of adaptations required to obtain output data similar to thoseobtained with the 
onventional time domain �lter is redu
ed by a fa
tor of N and sothe value of the adaptation gain µ may a

ordingly be in
reased by a fa
tor of N .For this reason, 
onsidering that we perform the adaptive of the �lter on Np sub-
arriers, we de�ne

µ =
Np

δmax
, (2.149)where δmax is the maximum eigenvalue of the 
orrelation matrix of the input signal Xp.2.6 Simulation setupA brief des
ription of the 
onsidered system was given in Se
tion 2.5 and Figure 2.1.Simulation results are obtained assuming we are working in the frequen
y domain,so Figure 2.1 
an be 
hanged as follows:

PSfrag repla
ements

Sour
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Pilots Frame
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tion Channel Channel+w EstimatorEqualizer Demodulator De
odeFigure 2.4: Simulator s
heme.2.6.1 CodeThe 
ode is the 
onvolutional 
ode de�ned in the WiMAX standard [1℄-[2℄. The gen-erated bits are en
oded in blo
ks of 288; we took this de
ision be
ause the 
on
atenationrule for a QPSK rate 1/2 
ode leads to the 
oding of blo
ks of this size.
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h FEC blo
k is en
oded by the binary 
onvolutional en
oder, whi
h shall havenative rate 1/2, and a 
onstraint length equal to k = 7 and shall use the followinggenerator polynomials 
odes to derive its two 
ode bits:
G1 = 171OCT X (2.150)
G2 = 133OCT Y (2.151)

Delay Delay Delay Delay Delay Delay

+

+

Data in

X output

Y outputFigure 2.5: Convolutional en
oder of rate 1/2.Ea
h FEC blo
k is en
oded by a tail-biting 
onvolutional en
oder, whi
h is a
hievedby initializing the en
oder's memory with the last data bits of the FEC blo
k beingen
oded.2.6.2 Frame 
onstru
tionAlso in the 
onstru
tion of the downlink frame we 
onsider the IEEE 802.16e stan-dard and the frame stru
ture is represented in Figure 2.6.We 
onstru
t the preamble and pilot sequen
es standard 
ompliant, but we 
hangethe way of assembling data and pilots. We don't 
onsidering any permutation system,but assume the pilots uniformly distributed between data sub
arriers.On the other hand , we keep un
hanged the number of virtual, data and pilotsub
arriers.PreambleThe �rst symbol of the downlink transmission is the preamble. There are three typesof preamble 
arrier-sets, those are de�ned by allo
ation of di�erent sub
arriers for ea
hone of them and those sub
arriers are modulated using a boosted BPSK modulationwith spe
i�
 Pseudo-Noise (PN) 
ode.



2.6. Simulation setup 43

P
re

am
bl

e

D
at

a 
S

ym
bo

l

D
at

a 
S

ym
bo

l

D
at

a 
S

ym
bo

l

. . . . . . . . . . .

Figure 2.6: Basi
 frame stru
ture.The preamble 
arrier-sets are de�ned using the following equation:
PreambleCarriesSetn = n+ 3 · k, n = 0, 1, 2 and k = 0, . . . , 567 (2.152)where PreambleCarrierSetn spe
i�es all sub
arriers allo
ated to the spe
i�
 preamble.Pilot sub
arriersFor pilot sub
arriers we use something similar to the sequen
es used in the preamble.Pilots are BPSK modulated and boosted.2.6.3 ChannelSimulations, performed in Matlab environment, 
an be run with two di�erent 
han-nel types: SCME and exponential.The �rst one is the Spatial Channel Model-Extended. It is an extension to the 3GPP[49℄ Spatial Channel Model (SCM) and its Matlab implementation was downloaded fromhttp://www.mathwork.
om/produ
ts/matlab/.The exponential 
hannel is implemented using the Rayleigh model [50℄ and has anexponential Power Delay Pro�le (PDP) [28℄.2.6.4 Channel estimationIn our simulations we 
onsider the following 
hannel estimators:- LS Least square estimator: this is the simplest one: through Equation (2.135) we
ompute the 
hannel in the frequen
y domain on the pilot sub
arriers, thenthrough Equation (2.136) we 
ompute the estimated impulse response and,�nally, we 
ompute the 
hannel frequen
y response on all the sub
arrierswith a simple FFT operation.



44 Chapter 2. Channel estimation in OFDM systems- LMMSE Linear Minimum Mean Square Error independent on the transmit-ted data: on
e we have 
omputed the LS estimation on pilot sub
arriersthrough Equation (2.135), we 
an 
ompute the LMMSE estimation on pi-lots independent on the transmitted data through the Equation (2.139) andthen, performing as des
ribed for the LS, 
ompute the 
hannel on all thesub
arriers.- LMMSE_X Linear MinimumMean Square Error dependent on the transmitteddata: as for the LMMSE, on
e we have 
omputed the LS estimation onpilot sub
arriers through Equation (2.135), we 
an 
ompute the LMMSEestimation on pilots dependent on the transmitted data through the Equation(2.140) and then the 
hannel on all the sub
arriers.- alpha This is the 
hannel tra
king method des
ribed in Se
tion 2.5.3, where theadaptation gain is 
hosen as de�ned in Equation (2.149).2.6.5 ParametersIn this Se
tion we list the parameters used in the simulations:- OFDM system with 512 sub
arriers:
⋆ 46 + 45 null sub
arriers
⋆ 1 DC sub
arrier
⋆ 60 pilot sub
arriers
⋆ 360 data sub
arriers- 25 OFDM symbols:
⋆ 1 preamble
⋆ 24 data and pilot symbols- 64 
y
li
 pre�x' length- 5 MHz bandwidth- 2 GHz 
arrier frequen
y- QPSK modulation (for data sub
arriers)- SCME 
hannel- 
onvolutional 
ode



2.7. Results 452.7 ResultsIn our simulations we 
onsider three di�erent speeds for the mobiles: 3, 50 and 130km/h and we analyze the loss of performan
e in terms of bit error rate at di�erent speedsdue to the 
hannel estimation. Figures 2.7, 2.8 and 2.9 represent the performan
e for thesystem des
ribed above: red and bla
k lines represent the performan
e of the systemwhen we assume a perfe
t 
hannel knowledge with and without 
oding respe
tively.Cyan line represents performan
e of the system if we 
onsider the LS estimator, greenand magenta lines represent the performan
e when the 
hannel estimation is performedthrough the LMMSE algorithm 
onsidering the independen
e of the estimator from thetransmitted data and not. Finally the blue line represents the performan
e for theadaptive tra
king.
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Figure 2.7: Bit error rate with SCME 
hannel and v = 3 km/h.From all the Figures 2.7, 2.8 and 2.9 we observe that the performan
e of the LMMSEindependent on the transmitted data are very bad and for SNR greater than 6.2 dBit performs worst than the un
oded system with perfe
t 
hannel knowledge. Adaptivetra
king is a good algorithm for low speeds and so for 
hannels whi
h vary very slowlyin the time. LS and LMMSE dependent on the transmitted pilots have both goodperforman
e in terms of bit error rate, be
ause we have a good number of pilots.The same results are proved in Figures 2.10, 2.11 and 2.12, where we 
an see themean square error for the impulse 
hannel estimation: LS error is represented with a
yan line, LMMSE independent on transmitted data with a green line, LMMSE depen-dent on transmitted data with a magenta line and, �nally, the blue line represents theerror for the adaptive tra
king.From Figures 2.7 and 2.10 we 
an observe that for speed equal to 3 km/h theadaptive algorithm is the one whi
h presents the best MSE, than we have the LS,the LMMSE dependent on the transmitted data and the one independent on them
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Figure 2.8: Bit error rate with SCME 
hannel and v = 50 km/h.
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Figure 2.9: Bit error rate with SCME 
hannel and v = 130 km/h.algorithms. However, 
omparing Figures 2.7 and 2.10 we observe that these MSE valuesdon't present big di�eren
es when we represent the BER of the system.Similar observations hold for speed equal to 50 km/h. Di�erent results are presentedfor speed equal to 130 km/h. From Figures 2.9 and 2.12 we understand that the adaptivealgorithm 
an't be used, be
ause of the Doppler spread. LS and LMMSE dependent onthe transmitted data give both very good performan
e.Results similar to the ones proposed in Figures 2.10, 2.11 and 2.12 
an be seen inFigures 2.13, 2.14 and 2.15 where the mean square error for every sub
arrier is plotted.In these Figures the legend is the same des
ribed above.
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Figure 2.10: Mean square error for the impulse 
hannel estimation: SCME 
hanneland v = 3 km/h.
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Figure 2.11: Mean square error for the impulse 
hannel estimation: SCME 
hanneland v = 50 km/h.Considering the presented results and the fa
t the LMMSE is 
omputational more
omplex than the LS, we 
on
lude that, when we 
onsider a WiMAX system and weneed the estimation of the 
hannel, we should use the LS algorithm.
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Figure 2.12: Mean square error for the impulse 
hannel estimation: SCME 
hanneland v = 130 km/h.
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Figure 2.13: Mean square error for every sub
arrier: SCME 
hannel and v = 3 km/h.
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Figure 2.14: Mean square error for every sub
arrier: SCME 
hannel and v = 50 km/h.
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Figure 2.15: Mean square error for every sub
arrier: SCME 
hannel and v = 130km/h.





Chapter 3Expe
tation maximizationalgorithm for joint 
hannelestimation and data dete
tion
3.1 Introdu
tionAs said in the Introdu
tion and extensively explained in Chapter 2, in an OFDMsystem the 
hannel estimation is very important at the re
eiver, be
ause we need todete
t the transmitted data.In this Chapter we want to investigate the joint dete
tion and 
hannel estimationfor the OFDM systems in the frequen
y domain. Sin
e the dete
tion performan
edepends on the a

ura
y of the 
hannel estimate, the joint pro
essing is employed withthe Expe
tation-Maximization (EM) algorithm to improve the a

ura
y of the 
hannelestimate.The EM algorithm was dis
overed and employed independently by several di�erentresear
hers until Dempster and others [51℄ brought their ideas together, proved 
on-vergen
e, and 
oined the term EM algorithm. Sin
e that seminal work, hundreds ofpapers employing the EM algorithm in many areas have been published. A large list ofreferen
es is found in [52℄. A typi
al appli
ation area of the EM algorithm is in geneti
s,where the observed data (the phenotype) is a fun
tion of the underlying, unobservedgene pattern (the genotype), e.g. [53℄. Another area is estimating parameters of mixturedistributions, e.g. [54℄. The EM algorithm has also been widely used in e
onometri
,
lini
al, and so
iologi
al studies that have unknown fa
tors a�e
ting the out
omes [55℄.Some appli
ations to the theory of statisti
al methods are found in [56℄.In the area of signal pro
essing appli
ations, the largest area of interest in the EMalgorithm is in maximum likelihood tomographi
 image re
onstru
tion, e.g. [57℄, [58℄.Another 
ommonly 
ited appli
ation is training of hidden Markov models, espe
iallyfor spee
h re
ognition, e.g. [59℄. The books [60℄, [61℄ have 
hapters with extensivedevelopment of hidden Markov models (HMMs).Other signal pro
essing and engineering appli
ations began appearing in about 1985.



52 Chapter 3. Expe
tation maximization algorithm for joint 
hannel estimation and datadete
tionThese in
lude: parameter estimation [62℄ [63℄; ARMA modeling [64℄, [65℄; simultaneousdete
tion and estimation [66℄, [67℄, [68℄; pattern re
ognition and neural network training[69℄, [70℄, [71℄; dire
tion �nding [72℄; noise suppression [73℄; spe
tros
opy [74℄; signal andsequen
e dete
tion [75℄; time-delay estimation [76℄; and spe
ialized developments of theEM algorithm itself [77℄. The EM algorithm has been the subje
t for multipro
essingalgorithm development [78℄. The EM algorithm is also related to algorithms used ininformation theory to 
ompute 
hannel 
apa
ity and rate distortion fun
tions [79℄, [80℄,sin
e the expe
tation step in the EM algorithm produ
es a result similar to entropy.Sin
e the known and unknown symbols are simultaneously used to estimate the
hannel, the following approa
h is a semi-blind method.3.2 The Expe
tation-Maximization (EM) algorithm3.2.1 Introdu
tionThe EM algorithm produ
es Maximum Likelihood (ML) estimates of the parameterwhen there is many-to-one mapping from an underlying distribution to the distributiongoverning the observation.The EM algorithm 
onsists of two major steps:1. Expe
tation step (E-step): it is performed with respe
t to the unknown un-derlying variables using the 
urrent estimate of the parameters and 
onditionedupon the in
omplete observation2. Maximization step (M-step): it provides a new estimation of the parametersthat maximize the expe
tation of the log-likelihood fun
tion de�ned over 
ompletedata, 
onditioned over the most re
ent observation and the last estimate.These two steps are iterated until the estimated values 
onverge.As said in the Introdu
tion to the Chapter, the EM algorithm is related to algorithmsused in information theory, to 
ompute 
hannel 
apa
ity and rate distortion fun
tion,sin
e the E-step produ
es a result similar to entropy.The EM algorithm is philosophi
ally similar to ML dete
tion in the presen
e ofunknown phase (in
oherent dete
tion) or other unknown parameters: the likelihoodfun
tion is averaged with respe
t to the unknown quantity (i.e. the expe
ted value ofthe likelihood fun
tion is 
omputed) before dete
tion, whi
h is a maximization step (see[41℄).3.2.2 General statement of the EM algorithmDe�ne:- Y the sample spa
e of the observation- y ∈ R
m an observation from Y- X the underlying spa
e of Y



3.2. The Expe
tation-Maximization (EM) algorithm 53- x ∈ R
n the out
ome from X, m < n; it is referred as 
omplete data and itis not observed dire
tly, but only by means of y, where y = y(x), whi
h is amany-to-point mapping.- X(y) a subset of X determined through the inverse map of the observed y- f(x|θ) probability density fun
tion (pdf) of the 
omplete data, where θ ∈ Θ ∈ R

ris the set of the parameters of the density- g(y|θ) =
∫

X(y) f(x|θ)dx pdf of the in
omplete data- ℓy(θ) = g(y|θ) likelihood fun
tion- Ly(θ) = log ℓy(θ) log-likelihood fun
tion
PSfrag repla
ements X

X(y)

Y

y

x

Figure 3.1: Illustration of many to one mapping from X to Y . The point y is theimage of x, and the set X(y) is the inverse map of y.The basi
 idea behind the EM algorithm is that we would like to �nd θ to maximize
log f(x|θ), but we do not have the data x to 
ompute the log-likelihood. So, insteadwe maximize the expe
tation of log f(x|θ) given the data y and our 
urrent estimateof θ. This 
an be expressed in two steps.Let θ[k] be our estimate of the parameters at the kth iteration.For the E-step 
ompute

Q(θ|θ[k]) = E[log f(x|θ)|y, θ[k]]; (3.1)and, for the M-step, let θ[k+1] be that value of θ whi
h maximizes Q(θ|θ[k]):
θ[k+1] = arg max

θ
Q(θ|θ[k]). (3.2)It is important to note that the maximization is with respe
t to the �rst argumentof the Q fun
tion, the 
onditioner of the 
omplete data likelihood.The EM algorithm 
onsists of 
hoosing an initial θ[k], then performing the E-step andM-step su

essively until 
onvergen
e. Convergen
e may be determined by examiningwhen the parameters quite 
hanging, i.e., stop when ‖θ[k] − θ[k+1]‖ < ǫ for some ǫ andsome appropriate distan
e measure ‖ · ‖.



54 Chapter 3. Expe
tation maximization algorithm for joint 
hannel estimation and datadete
tion3.2.3 Convergen
e of the EM algorithmFor every iterative algorithm, the question of 
onvergen
e needs to be addressed andfor the EM algorithm it may be stated simply: at every iteration of the algorithm, avalue of the parameter is 
omputed so that the likelihood fun
tion does not de
rease.That is, at every iteration the estimated parameter provides an in
rease in the likelihoodfun
tion until a lo
al maximum is a
hieved. In [16℄, the authors provided a 
onvergen
etheorem for the EM algorithm whi
h is reported in Appendix A.Despite this 
onvergen
e theorem, there is no guarantee that the 
onvergen
e willbe to a global maximum. For likelihood fun
tion with multiple maxima, 
onvergen
ewill be to a lo
al maximum whi
h depends on the initial starting point θ[0].The 
onvergen
e rate of the EM algorithm is also of interest. Based on mathemati
aland empiri
al examinations, it has been determined that the 
onvergen
e rate is usuallyslower than the quadrati
 
onvergen
e typi
ally available with a Newton's-type method[54℄.However, as observed by Dempster [51℄, the 
onvergen
e near the maximum dependsupon the eigenvalues of the Hessian of the update fun
tionM , so that rapid 
onvergen
emay be possible.In any event, even with potentially slow 
onvergen
e there are advantages to EMalgorithms over Newton's algorithms.In the �rst pla
e, no Hessian needs to be 
omputed. Also there is no 
han
e of"overshooting" the target or diverging away from the maximum.The EM algorithm is guaranteed to be stable and to 
onverge to an ML estimate.Further dis
ussion of 
onvergen
e appears in [81℄, [82℄.3.3 Joint 
hannel estimation and data dete
tion for OFDMsystems3.3.1 System modelLet N be the number of sub
arriers and x(n) = [x0(n), x1(n), . . . , xN−1(n)]T the
nth signal ve
tor of size N × 1 to be transmitted, where xm(n) ∈ S and S is the set ofmodulated symbols.After the OFDM modulator the signal is

x̃(n) = F Hx(n) (3.3)where F is the Fourier transform matrix: Fn,m = 1√
N
e−j2π(n−1)(m−1)/N , n,m = 1, 2, . . .

. . . , N .We assume that the 
hannel impulse response (CIR) is time-invariant for an OFDMsymbol and for an nth signal ve
tor it is an L × 1 ve
tor: {hl}L−1
l=0 . We assume alsothat the CIR's length L is smaller than the number of sub
arriers N (L << N) andalso than the 
y
li
 pre�x' length CP (L << CP ).
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Figure 3.2: An overview of the EM algorithm. After initialization, the E-step and M-step are iteratively 
omputed until the parameter estimate has 
ome to 
onvergen
e.The dis
rete Fourier transform (DFT) of the CIR is:
h̃p(n) =

L−1∑

l=0

hl(n)e−j2πlp/N , p = 0, 1, . . . , N − 1 (3.4)and we de�ne H̃(n) = diag[h̃0(n), h̃1(n), . . . , h̃N−1(n)].Hen
e, the re
eived signal after removing 
y
li
 pre�x is:
ỹ(n) = H (n)x̃(n) + w̃(n), (3.5)where H (n) is the N ×N 
y
li
 matrix of [h0(n), h1(n), . . . , hL−1(n), 0, . . . , 0

︸ ︷︷ ︸

N−L

]T and



56 Chapter 3. Expe
tation maximization algorithm for joint 
hannel estimation and datadete
tion
w̃(n) is the ba
kground noise in the time domain.After the DFT the re
eived signal is:

y(n) = F ỹ(n)

= F (H (n)x̃(n) + w̃(n))

= F H (n)F H

︸ ︷︷ ︸

H̃(n)

x(n) + Fw̃(n)

= diag[x0(n), x1(n), . . . , xN−1(n)]h̃(n) + w(n) (3.6)where w(n) is the noise in the frequen
y domain and h̃(n) = [h̃0(n), h̃1(n), . . . , h̃N−1(n)]Tis the frequen
y 
hannel response 
omputed in Equation (3.4).We 
an also de�ne the N ×N 
ovarian
e matrix of noise:E[w(n)wH(n)] = σ2
wIN×N .Now, we 
onsider a 
omb-type OFDM system, in whi
h, in ea
h OFDM symbol,some sub
arriers are used to transmit pilots, as we 
an see in Figure 3.3.
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Maior group 2Figure 3.3: Comb-type stru
ture for an OFDM system.Let xp(n) be the signal blo
k whi
h 
ontains pilot tones. In addition, we denote by
xd(n) the signal blo
k whi
h 
ontains data tones. We have:

x(n) = xp(n) + xd(n). (3.7)Let P denote the index set for pilot tones. Then, the index set for data tones, D, be
omesthe 
omplementary set of P. From Equation (3.7) we understand that xp(n) and xd(n)must have the same dimension, so we need to de�ne the following rule: every elementin xp(n) whose index is in P has some values from S. Otherwise, the value be
omeszero. The same rule is applied to xd(n), 
onsidering the elements whose indexes are in
D. Attention must be paid when, as usually happens, pilots and data are modulatedwith di�erent modulations. In this 
ase values are pi
ked from two di�erent sets; wede�ne them Sp and Sd.From (3.6), the re
eived signal ve
tor is rewritten as

y(n) = H̃(n)xp(n) + H̃(n)xd(n) + w(n). (3.8)Note that xp(n) is known at the re
eiver and so the 
hannel matrix H̃(n) and the datave
tor xd(n) shall be estimated.
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hannel estimation and data dete
tion for OFDM systems 57For notational 
onvenien
e, we omit the symbol index n. Let h = [h0, h1, . . . , hL−1]be the 
hannel ve
tor to be estimated jointly with the data symbols. In addition, wede�ne the N × L DFT matrix F L as:
[FL]n,m = e−j2π(n−1)(m−1)/N , n = 1, 2, . . . , N, m = 1, 2, . . . , L. (3.9)Then, from (3.4), we 
an show that

h̃ = F Lh.For notation 
onvenien
e, we de�ne:- A =diag(xp)F L- B(h) =diag(F Lh)- K = Jd, where Jd is an N ×Nd matrix whose elements are given by
[Jd]m,n =

{

1 m = βn, n = 1, 2, . . . , Nd

0 otherwiseand βn is the nth smallest element of the index set of data tones D- d = JT
d xdand so, rewrite the re
eived signal as [17℄:

y = Ah + B(h)Kd + w. (3.10)It is noteworthy that B(h)K is de
oupled, this means that ea
h 
olumn ve
tor hasonly one non zero elements, while the other element are zero.3.3.2 Channel estimationTo develop the algorithm of interest, we 
onsider an OFDM symbol and we supposethat the 
hannel ve
tor h is a symbol-deterministi
 
hannel ve
tor1 to be estimatedthrough the paper.Cramer-Rao Lower Bound (CRLB)The Cramer-Rao lower bound (CRLB) is an important 
riterion to evaluate thereliability of any unbiased estimator, be
ause it provides the MMSE bound among allunbiased estimators.We assume that the 
hannel ve
tor h is a deterministi
 
hannel ve
tor.1By the expression symbol-deterministi
 
hannel ve
tor we mean a 
hannel as des
ribed in Se
tion2.1 whi
h is assumed 
onstant in an OFDM symbol and varies very slowly from symbol to symbol.



58 Chapter 3. Expe
tation maximization algorithm for joint 
hannel estimation and datadete
tionThe CRLB 
an be found if the ve
tor of data symbols, d, is known. Sin
e B(h) =diag(F Lh), we 
an show that:
B(h)Kd = diag(Kd)F Lh. (3.11)From this, we have a linear model for the re
eived signal ve
tor y:

y = diag(x0, x1, . . . , xN−1)F Lh + w

= Qh + w, (3.12)where
Q = diag(x0, x1, . . . , xN−1)F L

= A + diag(Kd)F L.If the ve
tor of data symbols, d, is known, the matrix Q be
omes a known matrix.Hen
e, from [45℄, we 
an have the CRLB as:E[[ ℜ(ĥ − h)

ℑ(ĥ − h)

]

[(ℜ(ĥ − h))T (ℑ(ĥ − h)T )]

]

≥ CRLB(h)

=
σ2

w

2

[

ℜ{(QHQ)−1} −ℑ{(QHQ)−1}
ℑ{(QHQ)−1} ℜ{(QHQ)−1}

]

, (3.13)where ĥ is an unbiased estimate of h. It follows that:E[‖ĥ − h‖2] ≥ tra
e(CRLB(h)). (3.14)Note that this bound is a
hievable if d is known or 
orre
tly dete
ted. If N is su�
ientlylarge and pilot and data symbols are random, QHQ 
an be approximate by Nσ2
xI , where

σ2
x = E[|xm(n)|2]. Hen
e we 
an have:tra
e(CRLB(h)) =

L

N

σ2
w

σ2
x

. (3.15)Note that this bound is independent of the data symbols.Maximum Likelihood (ML) estimateIn OFDM, a

ording to [41℄, a simple estimate of h 
an be found only utilizing pilottones. It 
an be shown that the two subspa
es, Range(A) and Range(B(h)K), areorthogonal for any h. If A is full-rank and Np ≥ L, the ML estimate is given by:
ĥOF,p = (AHA)−1AHy (3.16)and it is not a�e
ted by the data tones. It 
an be shown that the uniform distributionof pilot sub
arriers provides the best performan
e by minimizing the mean square error
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hannel estimation and data dete
tion for OFDM systems 59(MSE).As we will see later, this estimate 
an be the initial 
hannel estimation for the EMalgorithm.Frequen
y domain equalizationSuppose that the 
hannel estimate ĥ is given, we need to equalize the re
eivedsignal. To do this we 
an adopt more than one te
hnique. One of these is the zero-for
ing equalization in the frequen
y domain, whi
h 
an be written as:
d̂zf = P zf (ĥ)(y − Aĥ), (3.17)where P zf (ĥ) = ((B(ĥ)K)H(B(ĥ)K))−1(B(ĥ)K)H is an Nd × N matrix, B(ĥ) =diag(F Lĥ) and ĥ is the best estimate we known at the moment (i.e. ĥOF,p or ĥ(k)).In OFDM this method 
an lead to in�nite tones' estimates if there exist spe
tralnulls. To over
ome this, the minimum mean square error (MMSE) equalizer 
an beused as:

d̂mmse = P mmse(ĥ)(y − Aĥ), (3.18)where P mmse(ĥ) = ((B(ĥ)K)H(B(ĥ)K) + σ2
wI)

−1(B(ĥ)K)H .Note that (B(ĥ)K)H(B(ĥ)K) is a diagonal matrix and its elements are non-negative.3.3.3 Joint 
hannel estimation and data dete
tion using EM algorithmFrom (3.10) and the probability density fun
tion (pdf) of y 
onditioned on d, hand σ2
w: f(y|d,h, σ2

w), the joint ML estimation of the 
hannel ve
tor and data symbolve
tor 
an be formulated as:
{ĥ, d̂, σ̂2

w} = arg max
h∈CL,d∈S

Nd ,σ2
w

f(y|d,h, σ2
w)

= arg max
h∈CL,d∈S

Nd ,σ2
w

1

(πσ2
w)N

exp
(

− ψ(y,h,d)

σ2
w

) (3.19)where ψ(y,h,d) = ‖y − Ah − B(h)Kd‖2, CL is the L-dimensional 
omplex ve
torspa
e and SNd is the Nd dimensional Cartesian produ
t of S. But the 
omplexity of(3.19) is too high, so, to solve it, we use the EM algorithm.We de�ne:- the re
eived signal y as the in
omplete data,- the 
ouple of the re
eived signal y and the transmitted data d, {y,d}, as the
omplete data,- the noise varian
e σ2
w and the CIR h as the unknown parameters to be estimated.Note that B(h)K is de
oupled and so the joint dete
tion of the data ve
tor d isrepla
ed by the individual dete
tion of the data symbols and this signi�
antly redu
esthe 
omplexity of the dete
tion algorithm.



60 Chapter 3. Expe
tation maximization algorithm for joint 
hannel estimation and datadete
tionE-stepWe start 
onsidering the kth iteration and we have the estimates ĥ(k) and σ̂2
w,(k).Let f(y,d|h, σ2

w) be the joint pdf of the 
omplete data {y,d} 
onditioned on h and σ2
w.For the E-step we need to �nd E[log f(y,d|h, σ2

w)|ĥ(k), σ̂
2
w,(k),y]. For 
onvenien
e, letbe H(k) = {ĥ(k), σ̂

2
w,(k),y}. From (3.10), we have:E[log f(y,d|h, σ2

w)|H(k)] = E[ log
{ 1

(πσ2
w)N

exp
(

− ψ(y,h,d)

σ2
w

)}

|H(k)

]

= −N log(πσ2
w) − E[ψ(y,h,d)|H(k)]

σ2
w

(3.20)Note that the expe
tation is 
arried out over d sin
e y is given.From B(h)Kd = diag(Kd)F Lh, we have:E[ψ(y,h,d)|H(k)] = E[‖y − (A + diag(Kd)F L)h‖2|(H(k))]

, v(k)(h,y). (3.21)It follows that:
vk(h,y) = yHy − 2ℜ{yHG1h} + hHG2h (3.22)where

G1 = A + E[diag(Kd)F L|H(k)]and
G2 = AHA + AHE[diag(Kd)F L|H(k)] + (E[diag(Kd)F L|H(k)])

HA

+ E[(diag(Kd)F L)H(diag(Kd)F L)|H(k)]For 
onvenien
e, we de�ne G0 = E[diag(Kd)F L|H(k)]. Hen
e, it 
an be easy toshow that:
G0 = diag(KE[d|H(k)])F L, (3.23)

G1 = A + G0 (3.24)and
G2 = AHA + AHG0 + GH

0 A + F H
L (diag(KE[ddH |H(k)])K

H)F L

= GH
1 G1 (3.25)where diag(X) denotes a diagonal matrix whi
h takes all diagonal elements from X.Hen
e, in order to �nd vk(h,y), we need to 
ompute the mean ve
tor and 
ovarian
ematrix of d 
onditioned on H(k). We assume that the symbols in d are independent.
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hannel estimation and data dete
tion for OFDM systems 61The 
onditional mean of d 
an be obtained as follows:
[E[d|H(k)]]m =

P∑

l=1

qlPr(dm = ql|H(k)), m = 1, 2, . . . , Nd (3.26)where dm stands for the mth element of d and ql is the lth element of S. We also needthe 
onditioned 
ovarian
e matrix E[ddH |H(k)], so we have:E[dmd
∗
r |H(k)] =

P∑

l=1

P∑

l′=1

qlq
∗
l′Pr(dm = ql|H(k))Pr(dr = q′l|H(k)), m 6= r (3.27)and E[|dm|2|H(k)] =

P∑

l=1

|ql|2Pr(dm = ql|H(k)), m = 1, 2, . . . , Nd (3.28)From above, we need to �nd the 
onditional probability Pr(dm = ql|H(k)). Let
d̄m be a sub-ve
tor obtained from d by removing the mth element, dm (d̄m = 〈d〉mdenotes this operation). De�ne y(k) = y − Aĥ(k) and U (k) = B(ĥ(k))K, where,as usual, B(ĥ(k)) = diag(F Lĥ(k)). Furthermore, denote by Ūm,(k) the sub-matrixof U (k) obtained by removing the mth 
olumn ve
tor. De�ne also Λ(dm = ql) =

‖y(k) − Ūm,(k)d̄m,(k) − um,(k)ql‖2, where um,(k) is the mth 
olumn of the matrix U (k).In [17℄ it is shown that we 
an �nd the following expression for Pr(dm = ql|H(k)),whi
h results not a�e
ted by d̂m:
Pr(dm = ql|H(k)) =

exp

(

− 1
σ2

w,(k)

Λ(dm = ql)

)

∑P
l′=1 exp

(

− 1
σ2

w,(k)

Λ(dm = q′l)

)

, p̂(k)(dm = ql), m = 1, 2, . . . , Nd (3.29)On
e p̂(k)(dm = ql) is known, we 
an �nd E[d|H(k)], E[ddH |H(k)], G0, G1, G2 and
v(k)(h,y).In above, we have found an appropriate expression of E[log f(y,d|h, σ2

w)|H(k)] andwith this, the M-step 
an be 
arried out to update the estimates of the 
hannel ve
torand the noise varian
e.M-stepThe next 
hannel estimate, ĥ(k+1), 
an be found by minimizing v(k)(h,y), the resultis:
ĥ(k+1) = G−1

2 GH
1 y. (3.30)



62 Chapter 3. Expe
tation maximization algorithm for joint 
hannel estimation and datadete
tionIt 
an be easily shown that the estimate of the noise varian
e whi
h maximize (3.20) isgiven by:
σ̂2

w,(k+1) =
1

N
vk(ĥ(k+1),y). (3.31)InitializationThe estimate of the 
hannel ve
tor based only on pilots tones, written in equation(3.16) 
an be used for the initial estimate of the 
hannel ve
tor, ĥ(0) = ĥOF,p.The initial varian
e 
an be given by:

σ2
w,(0) =

‖y‖2

N
. (3.32)In addition, the initial ve
tor for d̄m 
an be given by the hard de
ision from theMMSE frequen
y-domain equalizer in (3.18) with the initial 
hannel estimate.The iteration is terminated when σ2

w(k + 1) ≥ σ2
w(k).Figure 3.4 gives a s
hemati
 des
ription of the EM algorithm.
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Figure 3.4: Brief resume of the evolution of the EM algorithm.



64 Chapter 3. Expe
tation maximization algorithm for joint 
hannel estimation and datadete
tion3.4 System des
ription and simulation resultsThe results presented in this Se
tion are obtained with the setup des
ribed in Se
-tion 2.6. There's only a di�eren
e: in this 
ase we don't 
onsider the possibility of
on
atenating more bits before 
oding. Here we en
ode bits symbol-by-symbol, so thesour
eword length is 360.3.4.1 ResultsAs in Chapter 2, also for the EM algorithm we present the performan
e in termsof bit error rate. We 
onsider two di�erent types of 
hannel: AWGN (Figure 3.5)and SCME 
hannel (Figures 3.6, 3.7 and 3.8), and for the last one we analyze theresults for three di�erent speeds of the mobiles: 3, 50 and 130 km/h. To have someterms of 
omparison, the performan
e of the system are represented when we assumeperfe
t 
hannel knowledge and the data bits are 
oded and not. For the same reason,we also represent the BER when the 
hannel estimation is performed through the MLestimation.
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Figure 3.5: Bit error rate with AWGN 
hannel.Figures 3.5, 3.6, 3.7 and 3.8 represent the results obtained through numeri
al simu-lations: the bla
k and green lines represent the bit error rate when we assume perfe
t
hannel knowledge and we 
onsider an un
oded and a 
oded system respe
tively. The
yan line represents performan
e for the ML algorithm and the red one the performan
efor the EM algorithm.From all these Figures, we 
an see that the EM algorithm always gives better per-forman
e than the ML one, but it is very 
omplex from a 
omputational point of view.
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Figure 3.6: Bit error rate with SCME 
hannel and v = 3 km/h.
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Figure 3.7: Bit error rate with SCME 
hannel and v = 50 km/h.3.5 Con
lusionsSome 
onsiderations 
an be made to 
on
lude this part on the 
hannel estimationin wireless systems. First of all we observe that all the estimator presented in these twoChapters require the knowledge of the 
hannel impulse response length. We 
an try toestimate it, but performan
e experien
es a loss in term of bit error rate (see AppendixB for more details).Another important parameter is the noise varian
e. This must be known when weperform a MMSE or an EM estimation: while in EM algorithm it is the variable usedto de
ide when stopping iterating and so it is estimated, in the MMSE we assume it



66 Chapter 3. Expe
tation maximization algorithm for joint 
hannel estimation and datadete
tion

0 1 2 3 4 5 6 7 8 9 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR [dB]

B
E

R

Bit error rate − 130 km/h

 

 

PCI − uncod
PCI − cod
EM −cod
ML − cod

Figure 3.8: Bit error rate with SCME 
hannel and v = 130 km/h.known.Forgiven for a moment these drawba
ks, and remembering that in the 
on
lusion ofthe Chapter 2 we stated that for a WiMAX system we 
an use the LS algorithm whenthe 
hannel estimation in needed, here in Figures 3.9, 3.10, 3.11 and 3.12, we 
ompareLS and EM performan
e.
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Figure 3.9: Bit error rate 
omparison between LS and EM algorithms when the 
hannelis AWGN.Ex
ept for the AWGN 
hannel, in all the other 
ases the EM algorithm performsbetter than the LS one, but the performan
e gain is very small and it doesn't justifythe 
hoi
e of a 
omplex algorithm su
h as the EM one.
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Figure 3.10: Bit error rate 
omparison between LS and EM algorithms when the
hannel is SCME and v = 3 km/h.
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Figure 3.11: Bit error rate 
omparison between LS and EM algorithms when the
hannel is SCME and v = 50 km/h.On
e again we 
on
lude that for a WiMAX system the 
hannel 
an be estimatedthrough the LS algorithm.To 
on
lude this dis
ussion we want to underline that all this study has been devel-oped to understand whi
h is the best algorithm to be used to estimate the 
hannel in aWiMAX system. Aim of the study was a trade-o� between the performan
e in terms ofbit error rate and the 
omputational 
omplexity. The results we found, as said before,suggest us the LS algorithm.
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Figure 3.12: Bit error rate 
omparison between LS and EM algorithms when the
hannel is SCME and v = 130 km/h.



Chapter 4Channel 
oding - Low-DensityParity-Che
k (LDPC) CodesCoding for error 
orre
tion is one of the many tools available for a
hieving reliabledata transmission in 
ommuni
ation systems. For a wide variety of 
hannels, the noise
hannel 
oding theorem of the Information Theory proves that, if properly 
oded, forinformation transmitted at a rate below 
hannel 
apa
ity, the probability of de
odingerror approa
hes zero exponentially with the 
ode length.In this 
ontext another important fa
tor is the relation between the 
ode lengthand the 
omputation time or the equipment 
osts ne
essary to a
hieve this low errorprobability.The low-density parity-
he
k 
odes, 
onsidered here, are spe
ial example of parity
he
k 
odes [83℄. The 
odewords of a parity-
he
k 
ode are formed by 
ombining a blo
kof binary information digits with a blo
k of 
he
k digits. Ea
h 
he
k digit is the modulotwo sum of the pre-spe
i�ed set of information digits. These formation rules for the
he
k digits 
an be 
onveniently represented by a parity-
he
k matrix, whi
h representsa set of linear homogeneous modulo 2 equations 
alled parity-
he
k equations and theset of 
odewords is the set of solution of these equations.The use of parity-
he
k 
odes makes 
oding relatively simple to implement; un-fortunately, the de
oding of parity 
he
k 
odes is not inherently simple to implement,and thus we must look for spe
ial 
lasses of parity-
he
k 
odes, for whi
h reasonablede
oding pro
edures exist.4.1 Low-Density Parity-Che
k (LDPC) 
odesLow-Density Parity-Che
k 
odes (LDPC) have re
ently drawn mu
h attention dueto their near-
apa
ity error 
orre
tion performan
e and are 
urrently in the fo
us ofmany standardization a
tivities. These 
odes 
an rightfully take their stand next toturbo 
odes as the most powerful error 
ontrol 
odes known. They o�er performan
espe
ta
ularly 
lose to theoreti
al limits when de
oded using iterative soft-de
ision de-
oding algorithms based on fa
tor graphs.



70 Chapter 4. Channel 
oding - Low-Density Parity-Che
k (LDPC) CodesLDPC 
odes and a 
orresponding iterative de
oding algorithm were �rst introdu
edby Gallager more than forty years ago [3, 4℄. However, for the next several de
adesLDPC 
odes were largely forgotten, possibly be
ause 
omputers of the time 
ould notsimulate the performan
e of these 
odes with meaningful blo
k lengths at low errorrates. Following the dis
overy of turbo 
odes, LDPC 
odes were redis
overed throughthe work of Ma
Kay and Neal [84, 5℄ and have be
ome a major resear
h topi
. LDPC
odes signi�
antly di�er from the more 
onventional trellis and blo
k 
odes. First, theyare 
onstru
ted in a random manner, and se
ond, they have a de
oding algorithm whose
omplexity is linear in the blo
k length of the 
ode, whi
h allows the de
oding of large
odes.The random 
onstru
tion is one of their problems, be
ause we only have a generalmethod for 
onstru
ting a 
lass of pseudorandom LDPC 
odes, but we 
an't 
onstru
tgood 
odes algebri
ally or systemati
ally. Thus, all the good 
odes we know are largely
omputer generated and their en
oding is very 
omplex.On the other hand, their de
oding is always performed through the Message PassingAlgorithm (MPA). This is an Iterative De
oding based on a Belief Propagation (IDBP)[18℄ algorithm and, even if its 
omputational 
omplexity is very high, it results verye�
ient in LDPC de
oding. It is a symbol-by-symbol soft-in soft-out de
oding algorithmwhi
h iteratively pro
esses the re
eived symbol in order to improve its reliability, basedon the parity-
he
k sums 
omputed from the hard de
ision of the re
eived symbol.4.1.1 Code de�nition and spe
i�
ation: Tanner's methodA low-density parity-
he
k 
ode is a 
ode spe
i�ed by a parity 
he
k matrix Hof dimension M × N , where M = N − K is the number of parity-
he
k digits, K isthe sour
eword length and N is the 
odeword length; the matrix H has the followingproperties:� ea
h 
olumn 
ontains a small �xed number p ≥ 3 of 1's,� ea
h row 
ontains a small �xed number q > p of 1's,so it 
ontains mostly 0's and only a small number of 1's. In parti
ular an (N, p, q) lowdensity 
ode is a 
ode of blo
k length N and in its matrix ea
h 
olumn 
ontains a small�xed number p of 1's and ea
h row 
ontains a small �xed number q of 1's. A 
odede�ned in this way has a rate
R =

K

N

= 1 − M

N

= 1 − p

q
(4.1)An important property of the parity-
he
k matrix is that the number of its non-zeroentries must be the same whether 
al
ulated by rows or by 
olumns, i.e. the equation

M · q = N · p is satis�ed and so it must be p < q to have R < 1.



4.1. Low-Density Parity-Che
k (LDPC) 
odes 71These 
odes are not optimum in the sense of minimizing the probability of de
odingerrors, however, a very simple de
oding s
heme exists and this 
ompensates for theirla
k of optimality.The analysis of low-density 
ode of long blo
k length is di�
ult be
ause of theimmense number of 
odewords involved. It is simpler to analyze a whole ensemble ofsu
h 
odes be
ause the statisti
s of an ensemble permit one to average over quantitiesthat are not tra
table in individual 
odes.In order to de�ne an ensemble of (N, p, q) low-density 
odes, given the parity-
he
kmatrix, we 
an observe that it 
an be divided into p submatri
es, ea
h 
ontaining asingle 1 in ea
h 
olumn. The �rst of this submatri
es 
ontains all its 1's in des
endingorder and the other matri
es are merely 
olumns permutations of the �rst, as we 
ansee in expression (4.35).De�nition 1. De�ne an ensemble of (N, p, q) 
odes as an ensemble resulting fromrandom permutation of the 
olumns of ea
h of the bottom p− 1 submatri
es of a parity-
he
k matrix, with equal probability assigned to ea
h permutation.There are two interesting results that 
an be proved using this ensemble, the �rst
on
erning the minimum distan
e of the member 
odes, and the se
ond 
on
erning theprobability of de
oding error.De�nition 2. The minimum distan
e of a 
ode is the number of positions in whi
hthe two nearest 
odewords di�er.The minimum distan
e of a member 
ode is a random variable and the distributionfun
tion of a random variable 
an be overbounded by a fun
tion as sket
hed in Fig.4.1. As the blo
k length in
reases, for �xed p ≥ 3 and q > p, this fun
tion approa
hesa unit step at a �xed fra
tion δpq of the blo
k length.

Figure 4.1: Sket
h of bound to minimum distan
e distribution fun
tion.



72 Chapter 4. Channel 
oding - Low-Density Parity-Che
k (LDPC) CodesThe probability of error using maximum likelihood de
oding for low-density 
odes
learly depends upon the parti
ular 
hannel on whi
h the 
ode is being used. The resultsare parti
ularly simple for the 
ase of the binary symmetri
 
hannel (BSC), whi
h is abinary-input binary-output, memoryless 
hannel with a �xed probability of transitionfrom either input to the opposite output.De�nition 3 (Regular LDPC). A regular low-density parity-
he
k 
ode is 
ompletelyde�ned by a permutation π(i) of the natural numbers 1 ≤ i ≤ pN . The index i refersto the so
ket number at the variable nodes, and π(i) to the so
ket number at the 
he
knodes to whi
h so
ket i 
onne
ts.De�nition 4 (Irregular LDPC). An irregular low-density parity-
he
k 
ode is 
ompletelyde�ned by a permutation π(i) of the natural numbers 1 ≤ i ≤ pN from variable to 
he
knode so
ket numbers and two degree distributions λ(x) and ρ(x) for the variable nodesand 
he
k nodes, respe
tively.The 
ode spe
i�
ation lies in the inter
onne
tion network, whi
h is 
omposed by Nvariable nodes with p 
onne
tions from every one to 
he
k nodes and M 
he
k nodeswith q 
onne
tions from every one to variable nodes.We assume that the blo
k length N and the 
ode rate are determined by the appli-
ation, then it remains to determine appropriate values for p and q.Sin
e Gallager showed that the minimum distan
e of the typi
al regular LDPC 
odesin
reases linearly with N , provided p ≥ 3, then regular LDPC are 
onstru
ted with pon the order of 3 or 4.The 
ode spe
i�
ation given above is the starting point to introdu
e the Tanner'smethod. It is, in fa
t, based on a bipartite graph to provide a graphi
al representationof the parity-
he
k matrix.De�nition 5. The bipartite graph is a graph in whi
h the nodes may be partitionedinto two subsets su
h that there are no edges 
onne
ting nodes within a subset.For LDPC we have two subsets: variable nodes, one for ea
h of the N 
olumns of
H and 
he
k nodes, one for ea
h of the M rows of H ; an edge exists between the i-thvariable node and the j-th 
he
k node if and only if hij = 1.De�nition 6. The number of edges in
ident upon a node is the degree of the node.When we 
onsider a regular LDPC, the bipartite graph of a (N, p, q) LDPC 
ode
ontains N variable nodes of degree p and M 
he
k nodes of degree q. We observe alsothat (N, p, q) de�nes an ensemble of 
odes CN (p, q). On
e the degree of the nodes are
hosen, we are still free to 
hoose whi
h parti
ular 
onne
tions are made in the graph.An irregular LDPC 
ode 
an not be de�ned in terms of degree parameters p and q.We must, instead, use the degree distributions to des
ribe the variety of node degreesin the graph.De�nition 7. A degree distribution is a polynomial in x:

γ(x) =
∑

i

γix
i−1
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odes 73su
h that γ(1) = 1. The 
oe�
ients γi equal the fra
tion of edges in the graph whi
hare 
onne
ted to a node of degree i.Thus, to de�ne an ensemble CN(λ, ρ) of irregular LDPC 
odes we need: the 
odelength N and the degree distribution for the variable nodes λ(x) and for the 
he
k nodes
ρ(x).Called Ne the number of edges in the 
ode and the ratios λi/i and ρi/i the numberof variable and 
he
k nodes of degree i respe
tively, we 
an de�ne:� the number of variable nodes is

N = Ne

∑

i

λi

i
(4.2)� the number of 
he
k nodes is

M = Ne

∑

i

ρi

i
(4.3)� the rate is

R =
N −M

M
= 1 − M

N
= 1 −

∑

i
ρi

i
∑

i
λi
i

(4.4)Observation 1. We observe that large irregular 
odes 
an approa
h the Shannon limit,but very large levels of irregularity are required.4.2 Irregular LDPC 
odesIn [85℄ the authors present irregular low-density parity-
he
k (LDPC) 
odes whi
hexhibit a performan
e extremely 
lose to the best possible as determined by Shannon
apa
ity formula.Irregular LDPC 
odes were introdu
ed in [86℄, [87℄ and were further studied in [88℄-[89℄. As we 
an see in De�nition 4, for su
h an irregular LDPC 
ode, the degrees ofea
h set of nodes are 
hosen a

ording to some distribution.For a given length and a given degree distribution, we de�ne an ensemble of 
odesby 
hoosing edges, i.e., the 
onne
tions between variable and 
he
k nodes, randomly.Assume that the number of edges is E, then a 
ode 
an be identi�ed with a permutationon E letters. By de�nition, all elements in this ensemble are equiprobable. In pra
ti
e,the edges are not 
hosen entirely randomly, sin
e 
ertain potentially unfortunate eventsin the graph 
onstru
tion 
an be easily avoided.We say that a polynomial γ(x) of the form
γ(x) =

∑

i≥2

γix
i−1is a degree distribution if γ(x) has non-negative 
oe�
ients and γ(1) = 1. Given adegree distribution pair (λ, γ) asso
iate to it a sequen
e of 
ode ensembles CN (λ, γ),
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k (LDPC) Codeswhere N is the length of the 
ode and where
λ(x) =

dv∑

i≥2

λix
i−1

(

γ(x) =

dc∑

i≥2

γix
i−1
)spe
i�es the variable (
he
k) node degree distribution. More pre
isely λi (γi) representsthe fra
tion of edges emanating from variable (
he
k) nodes of degree i. The maximumvariable degree and 
he
k degree is denoted by dv and dc, respe
tively.The total number of edges E emanating from all variable nodes, is equal to

N
∑

i≥2

λi/i
∫ 1
0 λ(x)dx

= N
1

∫ 1
0 λ(x)dx

,and, if we 
onsider the M 
he
k nodes, the total number of edges E is
M

1
∫ 1
0 γ(x)dx

.Assuming that all these 
he
k equations are linearly independent, we see that the designrate is equal to
r(λ, γ) =

N −M

N
= 1 −

∫ 1
0 γ(x)dx
∫ 1
0 λ(x)dxThus, following we will give a brief des
ription of the 
hannel type, the distributionsand their properties and �nally we will des
ribe the optimization te
hniques that weuse to obtain the degree distribution pairs with large threshold.4.2.1 ChannelWe 
onsider an order family of binary-input memoryless 
hannels parametrized by areal parameter δ su
h that if δ1 < δ2 then the 
hannel with parameter δ2 is a physi
allydegraded version of the 
hannel with parameter δ1. Furthermore, ea
h 
hannel in thisfamily is output-symmetri
, i.e.

p(y|x = 1) = p(−y|x = −1). (4.5)4.2.2 Distribution and their propertiesFor some 
hannels, e.g., the BEC and the BSC, the density of re
eived log-likelihoodratios is dis
rete. For others, e.g., the BIAWGNC, the density is 
ontinuous. In the�rst 
ase, the message densities will themselves be dis
rete and in the se
ond 
ase, themessage densities will be 
ontinuous. In order to be able to treat all these 
ases in auniform manner we shall work with a fairly general 
lass of distributions.Let F denote the spa
e of right-
ontinuous, non-de
reasing fun
tions F de�ned on
R satisfying limx→−∞ F (x) = 0 and limx→+∞ F (x) ≤ 1. To ea
h F ∈ F we asso
iate arandom variable z over (−∞,+∞]. The random variable z has law or distribution F ,
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Pr[z ∈ (−∞, x]] = F (x).The reason we allow limx→+∞ F (x) ≤ 1 rather than limx→+∞ F (x) = 1 is to permit zto have some probability mass at +∞, indeed

Pr[z = +∞] = 1 − lim
x→+∞

F (x).We will work with densities over (−∞,+∞] whi
h, formally, 
an be treated as(Radon-Nikodyn) derivatives of elements of F. The derivative, when it exists, is thedensity of the asso
iated random variable z over (−∞,+∞) although there may bean additional point mass at +∞: re
all Pr[z = +∞] = 1 − F−(∞). If f is thedensity 
orresponding to the distribution F we will write ∫
R
h(x)f(x)dx as a proxy for

∫

R
h(x)dF (x).We are interested in the evolution of the message distributions under the inde-penden
e assumption. Therefore, we will now dis
uss how distributions evolve whenindependent random variables (in either representation) are summed and when therepresentation of su
h variables is 
hanged.Their 
onvolution is de�ned by

(F ⊗G)(x) =

∫

R

F (x− y)dG(y) =

∫

R

G(x− y)dF (y).If z1 and z2 are independent random variables over (−∞,+∞] with distributions Fz1and Fz2 , respe
tively, then the distribution of z1 + z2 is Fz1 ⊗ Fz2 (as is the 
ase forindependent random variables de�ned over (−∞,+∞)).Now, suppose we have a random variable z over (−∞,+∞] with distribution Fzand we wish to des
ribe the distribution of the random variable γ(z) = (γ1(z), γ2(z)),where
γ1(z) = sgn(z)
γ2(z) = − ln tanh |z

2
|.We approa
h this problem by assigning two 
onne
ted distributions asso
iated to γ2(z)under the 
onditions γ1(z) = 0 and γ1(z) = 1, respe
tively.Any fun
tion G over GF(2) × [0,+∞) 
an be written as

G(s, x) = χ{s=0}G
0(x) + χ{s=1}G

1(x)where χ{s=a} denotes the 
hara
teristi
 fun
tion of the set {s = a}, i.e., χ{s=a} = 1 if s =

a and χ{s=a} = 0 otherwise. Let G denote the spa
e of fun
tions over GF(2) × [0,+∞)su
h that G0(x) and G1(x) are non-de
reasing and right 
ontinuous
lim

x→+∞
G0(x) ≥ lim

x→+∞
G1(x)
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k (LDPC) Codesand su
h that G0(0) ≥ 0 and G1(0) = 0.Given a random variable z ∈ (−∞,+∞] with distribution Fz we de�ne the distri-bution of γ(z) as
Γ(Fz)(s, x) = χ{s=0}Γ0(Fz)(x) + χ{s=1}Γ1(Fz)(x) (4.6)where

Γ0(Fz)(x) = 1 − F−
z

(

− ln tanh
x

2

) and Γ1(Fz)(x) = Fz

(

ln tanh
x

2

)

.Thus
Γ0(Fz)(x) = Pr[γ1(z) = 0, γ2(z) ≤ x]

= Pr[z ≥ − ln tanh
x

2
]and

Γ1(Fz)(x) = Pr[γ1(z) = 1, γ2(z) ≤ x]

= Pr[z ≤ ln tanh
x

2
].Note that Γ(Fz) ∈ G, and, in parti
ular

lim
x→+∞

Γ0(Fz)(x) − lim
x→+∞

Γ1(Fz)(x) = Pr[z = 0].Let G = χ{s=0}G
0 + χ{s=1}G

1 be an element of G. We speak of densities over GF(2)×
[0,+∞]

g(s, x) = χ{s=0}g
0(x) + χ{s=1}g

1(x)by substituting for G0 and G1 their asso
iated densities.The fun
tion Γ has a well-de�ned inverse. Given
G = χ{s=0}G

0 + χ{s=1}G
1 ∈ Gwe have

Γ−1(G)(x) = χ{s>0}G
0
(

− ln tanh
x

2

)

+ χ{s<0}G
1
(

− ln tanh
−x
2

) (4.7)and
Γ−1(G)(0) = limx→+∞G

0(x).It is easy to 
he
k that Γ−1 : G → F and that Γ−1(Γ(F )) = F for all F ∈ F . Further,
Γ and Γ−1 are additive operators on the spa
es G and F, respe
tively.For 
onvenien
e, although it 
onstitutes an abuse of notation, we will apply Γ and
Γ−1 to densities.The spa
e G has a well-de�ned 
onvolution. Here, the 
onvolution of two distribu-
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odes 77tions χ{s=0}G
0 + χ{s=1}G

1 and χ{s=0}H
0 + χ{s=1}H

1 is the distribution
χ{s=0}((G

0 ⊗H0) + (G1 ⊗H1)) + χ{s=1}((G
0 ⊗H1) + (G1 ⊗H0))where, here, ⊗ denotes the (one-sided) 
onvolution of standard distributions. In otherwords, the new 
onvolution is a 
onvolution over the group GF(2)× [0,+∞). By abuseof notation, we denote this new 
onvolution by the same symbol ⊗. Again, we shallallow the 
onvolution operator to a
t on the densities asso
iated to elements of G withthe impli
it understanding that the above provides the rigorous de�nition.If z1 and z2 are independent random variables over GF(2) × [0,+∞) with distribu-tions Gz1 , Gz2 ∈ G, respe
tively, then the distribution of z1 + z2 is Gz1 ⊗Gz2 .Density evolutionThe symbols Pl and Ql will be shorthand notations for the densities of the randomvariables m(l)

vc and m(l)
cv ,i.e. message sent from variable node v to 
he
k node c and theone sent from 
he
k node c to variable node v at the l-th iteration, respe
tively. Wewill use the notation ∫ Pl and ∫ Ql to denote the asso
iated distributions.By

ml
cv = γ−1

( ∑

v′∈Vc{v}
γ(ml−1

v′c )
)

,we see that the random variable des
ribing the message passed from 
he
k node c tovariable node v is the image under γ−1 of a sum of random variables from GF(2) ×
[0,+∞]. These random variables are independent by the independen
e assumption.So, the density of their sum is the 
onvolution of their densities.Let the graph have degree distribution pair (λ, ρ) where

λ(x) =
∑

i≥2

λix
i−1 and ρ(x) =

∑

i≥2

ρix
i−1.Re
all that the fra
tion of edges 
onne
ted to a variable node of degree i is λi, andthe fra
tion of edges 
onne
ted to a 
he
k node of degree i is ρi. Thus, a randomly
hosen edge in the graph is 
onne
ted to a 
he
k node of degree i with probability ρi.Therefore, with probability ρi the sum in (4.2.2) has (i−1) terms, 
orresponding to theedges 
onne
ting c to all its neighbors other than v. We 
on
lude that, in this 
ase, thedensity of m(l)

cv is equal to
Γ−1(Γ(Pl−1)

⊗(i−1)). (4.8)Summing up over all the possibilities for the degrees of the 
he
k node c, we see thatthe density of the message m(l)
vc equals

Ql = Γ−1(ρ(Γ(Pl−1))) = Γ−1
(∑

i≥2

ρi(Γ(Pl−1))
⊗(i−1)

)

. (4.9)A re
ursion for Pl in terms of Ql is derived similarly and is quite straightforward.The density of the message passed from 
he
k node c to variable node v at round l is
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oding - Low-Density Parity-Che
k (LDPC) Codesequal to Ql. At v the in
oming messages from all 
he
k nodes other than c are added to
m0, the re
eived value for v, and the result is sent ba
k to c. Sin
e, by the independen
eassumption the random variables des
ribing these messages are independent, the densityof this message equals

Pl = P0 ⊗ λ(Ql) = P0 ⊗
∑

i≥2

λi(Ql)
⊗(i−1) (4.10)where P0 is the density of the random variable des
ribing the 
hannel. Combining (4.9)and (4.10) we obtain the desired re
ursion for Pl in terms of Pl−1.In [85℄, the authors provide that the density fun
tion of the messages passed fromvariable to 
he
k nodes during the belief propagation are symmetri
, provided that the
hannel is output-symmetri
.4.2.3 OptimizationIn this se
tion, we brie�y des
ribe the optimization te
hniques that we used toobtain degree distribution pairs with large thresholds.First, we observe that the threshold is de�ned as the supremum of all 
hannelparameters for whi
h the probability of error under density evolution 
onverges to zero.This is equivalent to requiring that the message distribution 
onverges to ∆∞. Inpra
ti
e, we 
an verify at best that the probability of error rea
hes a value below apres
ribed ǫ, so the issue of 
onvergen
e is not of great 
on
ern sin
e we always allow a�nite (but small) probability of error.Se
ondly, in order to perform the 
omputations we need to quantize the quantitiesinvolved. This quantization leads to a quantization error and this error might a

u-mulate over the 
ourse of many iterations, rendering the 
omputations useless. Thisproblem 
an be 
ir
umvented in the following way. By 
arefully performing the quan-tization one 
an ensure that the quantized density evolution 
orresponds to the exa
tdensity evolution of a quantized message-passing s
heme. Sin
e belief propagation isoptimal, su
h a quantized version is suboptimal and, hen
e, the reported thresholds 
anbe thought of as lower bounds on the a
tual thresholds.Another important result presented in [85℄ states that density evolution for beliefpropagation always 
onverges to a �xed point.Lo
al optimization - hill-
limbing approa
hFix a small target error probability ǫ and a maximum number of iterations m. Startwith a given degree distribution pair and determine the maximum admissible 
hannelparameter, i.e., the maximum 
hannel parameter su
h that the error probability after miterations is below ǫ. Now apply a small 
hange to the degree distribution pair and 
he
kif it has either a larger admissible 
hannel parameter or at least a smaller target errorprobability after m iterations. If so, de
lare the new degree distribution pair to be the
urrently best degree distribution pair, otherwise keep the original degree distributionpair. The same basi
 step is then repeated a large number of times.
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odes 79The sear
h for good degree distribution pairs 
an be substantially a

elerated byappropriately limiting the sear
h spa
e.We found, for example, that very good degreedistribution pairs exist with only a few nonzero terms. In parti
ular, it su�
es to allowtwo or three nonzero 
he
k node degrees (and these degrees 
an be 
hosen 
onse
utively)and to limit the nonzero variable node degrees to 2, 3, the maximum su
h degree dl,and, possibly, a few well-
hosen degrees in-between.Provided that the �xed points are stable, the message distributions at these pointsare 
ontinuous fun
tions of the degree distribution pair. Hen
e, a small 
hange inthe degree distribution pair 
auses only small 
hanges in the asso
iated �xed-pointdistributions. Furthermore, if the �xed points are stable, then this a�ords a 
ertainmemorylessness to the density evolution pro
ess be
ause they serve as lo
al attra
tors.Small perturbations to the path will not matter on
e the domain of 
onvergen
e of the�xed point is entered and, on
e the �xed point is found, the path that leads to it isirrelevant.Assume we determine the 
riti
al points (near �xed points, or likely �xed points for aslightly worse initial distribution) for a parti
ular degree distribution pair and we wouldlike to determine the merit of a parti
ular small 
hange of the degree distribution pair.Rather than starting with the initial distribution and then 
he
king if (and how fast) thisinitial distribution 
onverges to ∆∞, one 
an memorize the distributions at the 
riti
alpoints of the original degree distribution pair and then determine how the proposed
hange a�e
ts the speed of 
onvergen
e lo
ally at these points. On
e a promising 
hangehas been found, the merit of this 
hange 
an be veri�ed by starting with the initial degreedistribution pair. Typi
ally, only a few iterations are ne
essary at ea
h 
riti
al pointto determine if the 
hange of the degree distribution pair improves the 
onvergen
e ornot. This has to be 
ompared to hundreds of iterations or even thousands of iterationswhi
h are ne
essary if one starts with the initial distribution.In the optimization s
heme we just des
ribed we made use of the distributionsat the "
riti
al points" to �nd promising 
hanges of the degree distribution pair. Thefollowing s
hemes extend this idea even further; the resulting algorithms are reminis
entof the algorithms used in the BEC 
ase. For simpli
ity, we will only des
ribe theoptimization of the variable node degree distribution. The extension to the 
he
k nodedegree distribution and to joint optimization should be quite apparent.Assume that we are given a degree distribution pair (λ, ρ), a parti
ular 
hannelparameter σ, and a target probability of error ǫ. Let {pl}m
l=0 be the sequen
e of errorprobabilities of the belief propagation algorithm. More pre
isely, p0 is the initial errorprobability, pl is the probability of error after the lth iteration, and pm ≤ ǫ < pm−1.Assume that we want to �nd a new degree distribution λ̃ whi
h a
hieves the targetprobability of error in fewer iterations or a
hieves a lower target in the same numberof iterations. De�ne a matrix Al,j, 1 ≤ l ≤ m, 2 ≤ j ≤ dr. The entry Al,j is theerror probability whi
h results if we run the belief-propagation de
oder for (l− 1) stepsassuming that the variable node degree distribution is λ followed by one step in whi
hwe assume that the variable node degree distribution is a singleton with all its mass onthe degree j. Note that the a
tual error probability after the lth iteration, pl, 
an be
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k (LDPC) Codesexpressed in terms of Al,j as
pl =

dl∑

j=2

Al,jλj.Let us de�ne a fun
tion p(t) for t ∈ [0,m] by linearly interpolating the pl, setting
p(l) = pl. De�ne

L(λ) =

∫ p0

pl

(

− dp

dt
(x)
)−1

dx.We interpret L as the number of iterations required to take the initial probability oferror p0 down to pm. Using the expression above, we 
an write down the gradient of
L(λ) with respe
t to λ. In parti
ular, for a perturbation h we 
an 
ompute

DhL(λ) =
d

dη
L(λ+ ηh)|η=0as

DhL(λ) =

∫ p0

pm

(dp

dt
(x)
)−2

Dh

(dp

dt
(x)
)

dx.Returning to the dis
rete representation this is equivalent to
DhL =

dl∑

j=2

hj

( m∑

l=1

Al,j − pl

pl−1 − pl

)

.Thus, we observe that the gradient of L(λ) is given by
d

dλj
L(λ) =

m∑

l=1

Al,j − pl

pl−1 − pl
.There are two ways we 
an exploit this expression. One is to use the (negative) gra-dient dire
tion to do hill 
limbing, and the other is to globally optimize the linearizedapproximation of L. In either 
ase, we must in
orporate the 
onstraints on λ.Let λ be an alternative degree distribution. Clearly, λ has to be a probability massfun
tion, i.e.

dl∑

j=2

λ̃j = 1 (4.11)and, further, it has to 
orrespond to a 
ode of equal rate, i.e.
dl∑

j=2

λ̃j

j
=

dl∑

j=2

λj

j
. (4.12)Let be the negative gradient dire
tion of L. If we set λ̃ = λ+ηh (for positive η) then theabove 
onstraints may not be satis�ed. However, among degree distributions satisfyingthe 
onstraints the one 
losest to λ+ηh in Eu
lidean distan
e 
an be easily 
omputed byalternating proje
tions. Two proje
tions are required: the �rst is orthogonal proje
tionof h onto the subspa
e determined by ∑j hj = 0 (total probability 
onstraint) and
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∑

j
1
j hj = 0 (rate 
onstraint), and the se
ond proje
tion sets ηhj = −λj if, prior tothe proje
tion, ηhj + λj < 0. Note that an alternative interpretation is to proje
t thegradient dire
tion h onto the 
onvex polytypes of admissible dire
tions. One 
an then
ompute the maximum step size η for whi
h the 
onstraints remain satis�ed and thenre
ompute the proje
tion at that point. In this way, one 
an easily walk along theproje
ted gradient dire
tion to look for an improved degree distribution. Let us now
onsider the se
ond way to exploit the gradient expression for L. Let

p̃l =

dl∑

j=2

Al,jλ̃j.Then we have
L(λ̃) ≃

m∑

l=1

p̃l − pl

pl−1 − pl
. (4.13)This approximation is valid as long as λ̃ does not di�er too mu
h from λ, i.e., assumingthat the message distributions 
orresponding to λ and λ̃ are not too di�erent, if

max
l

|pl − p̃l|
pl−1 − pl

< δ (4.14)where δ ≪ 1, and if
p̃l < pl−1, 1 ≤ l ≤ m (4.15)Re
all that we want to minimize L(λ̃). The same pro
edure is then applied repeatedlyin an attempt to 
onverge to a good degree distribution. Sin
e both approa
hes are lo
aloptimizations it is appropriate to repeat the optimization with various initial 
onditions.Global optimization - Di�erential Evolution (DE) algorithmDi�erential Evolution (DE) is a robust optimizer for multivariate fun
tions. We willnot des
ribe the details here, su�
e it to say that the algorithm is in part a hill 
limbingalgorithm and in part a geneti
 algorithm.Our goal is to maximize the 
ost fun
tion whi
h we de�ne to be the thresholdvalue for the 
hannel. Sin
e su
h optimizers, and DE in parti
ular, operate best ina 
ontinuous parameter spa
e of not too large dimension, and sin
e frequent fun
tionevaluations are required in the optimization, we found it 
onvenient to let the parameterspa
e be a 
ontinuous spa
e of small dimension. To a

omplish this, we introdu
edfra
tional phantom distributions. Let the polynomials λ and ρ take on the generalform ∑

i λix
i−1 (similarly for ρ), where now both the λi and the degree i 
ould takeany positive real value. The real degree distribution is obtained from this phantomdistribution as ∑i(λi1x

⌊i⌋−1 + λi2x
⌈i⌉−1), where λi1 and λi2 are uniquely determinedvia the equations

λi1 + λi2 = λi and λi1

⌊i⌋ +
λi1

⌈i⌉ =
λi

i
.This way, we are guaranteed to obtain a degree distribution whi
h respe
ts the rate-
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onstraints for the 
ode.By allowing fra
tional degrees we, in e�e
t, for
e the program to 
hoose (
loseto) optimal degrees. This results in a signi�
ant redu
tion of the dimensionality ofthe parameter spa
e, hen
e the running time, and also in the sparsity of the degreedistributions obtained.4.3 LDPC en
odingFor an LDPC 
ode the en
oding problem 
an be divided into two sub-problems: the
onstru
tion of the parity-
he
k matrix and the en
oding operation.In the following Se
tions we give a brief des
ription of the proposed solutions forthese problems. During these explanations we 
onsider binary 
odes, so all the opera-tions are GF(2).4.3.1 Parity-
he
k matrix' 
onstru
tionAs spe
i�ed above, to de�ne a LDPC 
ode, we need a very sparse random parity
he
k matrix H of size M ×N . There are several methods to 
onstru
t it, following wedes
ribe two methods generally used when we attempt to 
reate a regular 
ode and anirregular 
ode, given its degree distribution. For a regular 
ode the pro
ess followed isdes
ribed next:� sele
t a 
olumn weight p ≥ 3� 
reate a re
tangular matrix H M×N at random with exa
tly weight p per 
olumnand weight per row as uniform as possible� if N/M is an integer, then the number of 1's per row 
an be 
onstrained to beexa
tly pM/M and so we have a regular LDPC 
ode, be
ause the bipartite graphis regular� use Gaussian elimination and the reordering of 
olumns to derive an equipmentparity-
he
k matrix in a systemati
 form, i.e. H = [P |IM ].At this point the matrix H is 
omposed of two very sparse matri
es H = [C1|C2],where C2 is M ×M very sparse and invertible and C1 is M ×K and still very sparse.To improve the properties of the 
ode, when generating the matrix H , 
onstrainall pairs of 
olumns in the matrix to have an overlap less or equal to 1. Furthermore
onstrain the matrix H so that the topology of the 
orresponding bipartite graph doesnot 
ontain short 
y
les.When we 
onstru
t an irregular 
ode we need its degree distribution. In [85℄ theauthors des
ribe a method to 
ompute it, given the rate of the 
ode, for a 
ode within�nite 
odeword length. Here we suppose to know it and give a general des
ription forthe 
onstru
tion of the matrix [90℄.
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oding 83On
e we have generated the parity-
he
k matrix H and remembering the relation
GHT = 0, we 
an 
ompute the generator matrix GT :

GT =

[

Ik

P

]

=

[

Ik

C−1
2 C1

]

, (4.16)where the identity matrix Ik makes the 
ode systemati
.4.3.2 En
oding operationOne major 
riti
ism 
on
erning LDPC 
odes has been their apparent high en
oding
omplexity. Whereas turbo 
odes 
an be en
oded in linear time, a straightforwarden
oder implementation for an LDPC 
ode has 
omplexity quadrati
 in the blo
k length:given the K-bit binary message s, the N en
oded bit ve
tor is
t = GT s mod 2. (4.17)Several authors have addressed this issue and found at least two possible solutions: a
as
ade 
onstru
tion [91℄, [92℄ and a restri
tion of the shape of the parity-
he
k matrix.Unfortunately both of these result in a performan
e loss, 
ompared to a standard LDPC
ode with the same overall length.A di�erent method en
odes the sequen
e s using the parity-
he
k matrix. Assumewe have a systemati
 
ode, the 
odeword 
an be written as x = [xu xp], where xu is theinformation sequen
e and xp is the parity sequen
e. The same distin
tion 
an be donefor the parity-
he
k matrix, whi
h 
an be written as: H = [Hu|Hp]. As a 
onsequen
ewe 
an write: Hpx

T
p = HuxT

u and so:
xT

p = H−1
p HuxT

u . (4.18)In literature we 
an �nd few methods to make this 
omputation e�
ient. Themost important from an e�
ient point of view is an en
oder based on approximatelower triangularization. It uses the sparseness of the parity-
he
k matrix to developan algorithm for e�
ient en
oders. The authors of [93℄ suggests pla
ing the matrix in"approximate lower triangular" form, in whi
h the upper right 
orner is populated withonly 0's as shown in Figure. 4.2.Assume that, by performing row and 
olumn permutations only, we 
an bring theparity-
he
k matrix into the form indi
ated in Fig. 4.2. We say that H is in approximatelower triangular form. Note that sin
e this transformation was a

omplished solely bypermutations, the matrix is still sparse. More pre
isely, assume that we bring the matrixin the form
H =

(

A B T

C D E

) (4.19)where A is (M − g) × (N −M), B is (M − g) × g, T is (M − g) × (M − g), C is
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A B

0

T

C D E

N − M M − gg

M − g

g

M

NFigure 4.2: Parity-
he
k matrix in approximate lower triangular form.
g× (N −M), D is g× g, and, �nally, E is g× (M − g)1. Further, all these matri
es aresparse and T is lower triangular with ones along the diagonal. Multiplying this matrixfrom the left by (

I 0

−ET−1 I

) (4.20)we get (

A B T

−ET−1A + C −ET−1B + D 0

)

. (4.21)Let x = (s,p1,p2) where s denotes the systemati
 part, p1 and p2 
ombined denotethe parity part, p1 has length g, and p2 has length (M − g). The well know equation
HxT = 0T splits naturally into two equations, namely

AsT + BpT
1 + TpT

2 = 0 (4.22)and
(−ET−1A + C)sT + (−ET−1B + D)pT

1 = 0 (4.23)De�ne φ = −ET−1B + D and assume for the moment that φ is non-singular. We willdis
uss the general 
ase shortly. Then from (4.23) we 
on
lude that
pT

1 = −φ−1(−ET−1A + C)sT . (4.24)Hen
e, on
e the matrix −φ−1(−ET−1A+C) has been pre
omputed, the determinationof p1 
an be a

omplished in 
omplexity O(g × (N − M)) simply by performing amultipli
ation with this (generi
ally dense) matrix. In a similar manner, noting from(4.22) that pT
2 = −T−1(AsT + BpT

1
), we 
an a

omplish the determination of pT

2 in
omplexity O(N).Table 4.1 
ontains the 
omplexity of ea
h operation in the 
omputation of p1 and
p2. Table 4.2 gives a summary of the proposed algorithm: 2 steps are des
ribed: pre-pro
essing and en
oding. In the �rst one we perform rows and 
olumns permutation to1g is the minimum number of rows we 
an't use in our triangularization pro
ess
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oding problem 85E�
ient 
omputation of pT
1 = −φ−1(−ET−1A + C)sTOperation Comment Complexity

AsT Multipli
ation by sparse matrix O(n)

T−1[AsT ] T−1[AsT ] = yT ⇔ TyT O(n)

−E[T−1AsT ] Multipli
ation by sparse matrix O(n)

CsT Multipli
ation by sparse matrix O(n)

[−ET−1AsT ] + [CsT ] Addition O(n)
−φ−1[−ET−1AsT + CsT ] Multipli
ation by dense g × g matrix O(n)E�
ient 
omputation of pT

2 = −T−1(AsT + BpT
1
)Operation Comment Complexity

AsT Multipli
ation by sparse matrix O(n)

BpT
1 Multipli
ation by sparse matrix O(n)

[AsT ] + [BpT
1 ] Addition O(n)

T−1[AsT + BpT
1 ] = yT

T−1[AsT + BpT
1 ] m O(n)

−[AsT + BpT
1 ] = TyTTable 4.1: E�
ient 
omputation of the parity sequen
e pT = [pT

1
pT

2
].bring the parity-
he
k matrix into approximate lower triangular form with a gap g assmall as possible. In the se
ond one p1 and p2 are 
omputed. We point out that thepre-pro
essing step is 
omputed on
e at the beginning and then only the en
oding stepin performed.4.4 The de
oding problemThe use of the LDPC 
odes has two main advantages:� LDPC 
odes 
an be de
oded using an iterative de
oding algorithm,� 
omplexity de
oding grows only linear with the blo
k length of the 
ode.The 
hannel adds noise n to the ve
tor t and the re
eived signal is

r = [GT s + n] mod 2. (4.25)if we assume a binary symmetri
 
hannel (BSC).The de
oder's task is to infer s given the re
eived signal r and the noise propertiesof the 
hannel. The optimal de
oder returns the message s that maximizes posteriorprobability:
P (s|r,G) =

P (r|s, G)P (s)

P (r|G)
. (4.26)We observe that if the prior probability of s is assumed uniform and the probabilityof n is assumed to be independent of s, than it is 
onvenient to introdu
e the M ×Nparity-
he
k matrix H , whi
h is in systemati
 form [P |IM ]. We remember that theparity-
he
k matrix has the property HGT = 0 mod 2 so that Hn = Hr mod 2.
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oding - Low-Density Parity-Che
k (LDPC) CodesPre-pro
essing: Input: Non singular parity-
he
k matrix H . Output: An equiv-alent parity-
he
k matrix of the form (
A B T
C D E

) su
h that −ET−1B + D isnon-singular.1. Triangularization: Perform row and 
olumn permutations to bring the parity-
he
k matrix H into approximate lower triangular form
H =

(
A B T
C D E

)with as small a gap g as possible.2. Che
k rank : Use Gaussian elimination to e�e
tively perform the pre-multipli
ation
(

I 0
ET−1 I

)(
A B T

C D E

)

=

(
A B T

−ET−1A + C ET−1D 0

)in order to 
he
k that −ET−1B+D is non-singular, performing further 
olumnpermutations if ne
essary to ensure this property.(Singularity of H 
an bedete
ted at this point.)En
oding: Input: Parity-
he
k matrix of the form H =

(
A B T

C D E

) su
hthat −ET−1B + D is non-singular and a ve
tor s ∈ Fn−m. Output: The ve
tor
x = (s, p1, p2), p1 ∈ F g, p2 ∈ Fm−g, su
h that HxT = 0T .1. Determine pT

1 = −φ−1(−ET−1A + C)sT2. Determine pT
2 = −T−1(AsT + BpT

1
)Table 4.2: Summary of the proposed en
oding pro
edure. It entails two steps: apre-pro
essing step and the a
tual en
oding step.The de
oding problem, thus, redu
es to the task of �nding the most probable noiseve
tor n su
h that

Hn mod 2 = z (4.27)where the syndrome ve
tor z = Hr mod 2.Observation 2 (De
oding problem's formalization). Assume that n is a sparse randomve
tor with independent and identi
ally distributed bits of density fn. We want to re
over
t by �nding the most probable n̂ that satis�es

Hn̂ = z mod 2 (4.28)and z = Hr mod 2.
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oding's algorithms 87From n̂ we obtain out guess for the transmitted signal:
t̂ = (r + n̂) mod 2 (4.29)and the �rst K bits of this are the guess ŝ, sin
e we are 
onsidering a systemati
 
ode.Observation 3. Theoreti
al e�e
tiveness of LDPC 
odes as error 
orre
ting 
odes de-pends on the properties of very sparse matri
es H; the pra
ti
al e�e
tiveness, instead,depends on our �nding the pra
ti
al algorithm for solving Hn = z mod 2 that is 
loseenough to the optimal de
oder.Observation 4. There exist LDPC 
odes for whi
h optimal de
oders would a
hieveinformation rates arbitrarily 
lose to the Shannon limit for a wide variety of 
hannel.In the following Chapters the LDPC de
oding algorithms present in literature aredes
ribed.4.5 LDPC de
oding's algorithmsFollowing we des
ribe the proposed LDPC de
oding's algorithms, starting from the�rst proposed by Gallager[3, 4℄ and then analyzing the one proposed by Ma
Kay [5℄.4.5.1 The de
oding algorithm by GallagerIn 1962 Gallager proposed two de
oding s
hemes that appear to a
hieve a reasonablebalan
e between 
omplexity and probability of de
oding [3℄. The �rst is parti
ularlysimple, but it is appli
able only to the binary symmetri
 
hannel (BSC) at rates farbelow 
hannel 
apa
ity. The se
ond s
heme, whi
h de
odes dire
tly from the a posterioriprobabilities at the 
hannel output, is more promising.Algorithm for de
oding LDPC 
odes on BSC 
hannelThe de
oder 
omputes all the parity 
he
ks and then 
hanges any digit that is
ontained in more than some �xed number of unsatis�ed parity-
he
k equations. Usingthese new values, the parity 
he
ks are re
omputed, and the pro
ess is repeated untilthe parity 
he
ks are all satis�ed.If the parity-
he
k sets are small, this de
oding pro
edure is reasonable, sin
e most ofthe parity-
he
k sets will 
ontain either one transmission error or no transmission errors.Thus when most of the parity-
he
k equations 
he
king on a digit are unsatis�ed, thereis a strong indi
ation that that digit is in error.In this algorithm, when the parity 
he
k sets 
ontain one error the digit d is 
orre
ted,but it 
an be 
orre
ted even if its parity-
he
k sets 
ontain more than one transmissionerror. To see how this 
an be done 
onsider the tree stru
ture in Figure 4.3.The arbitrary digit d is represented by the node at the base of the tree and ea
hline rising from this node represents one of the parity 
he
k sets 
ontaining digit d. Theother digits in these parity-
he
k sets are represented by the nodes on the �rst tier of
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Figure 4.3: Parity-
he
k set tree.the tree. The lines rising from tier 1 to tier 2 of the tree represent the other parity-
he
ksets 
ontaining the digits on tier 1, and the nodes on tier 2 represent the other digits inthose parity-
he
k sets. Noti
e that if su
h a tree is extended to many tiers, the samedigit will appear in more than one pla
e.Assume that both digit d and several of the digits in the �rst tier are transmissionerrors. Then, on the �rst de
oding attempt, the error free digits in the se
ond tier andtheir parity-
he
k 
onstraints will allow 
orre
tion of the errors in the �rst tier. Thisin turn will allow 
orre
tion of digit d on the se
ond de
oding attempt. Thus digit andparity-
he
k equations 
an aid in de
oding a digit seemingly un
onne
ted with them.If we de�ne Vj\i the set of the variable nodes whi
h 
onne
t to 
he
k node j, ex-
luding variable node i and Ci\j the set of 
he
k nodes whi
h 
onne
t to variable node
i, ex
luding 
he
k node j and 
all ri the re
eived bit, we 
an synthesize the des
ribedalgorithm as follows:Gallager's LDPC de
oding algorithm A for BSC 
hannelsStep 1: Initialize di = ri for ea
h variable nodeStep 2: Variable nodes send µi→j = di to ea
h 
he
k node j ∈ CiStep 3: Che
k nodes 
onne
ted to variable node i send

βj→i
∏

l∈Vj\i
µl→j to i; i.e. the 
he
k node sends ba
kto i the value that would make the parity 
he
k 
onsistentStep 4: At the variable node i if ⌈p/2⌉ or more of the in
oming parity
he
ks βj→i disagree with di, 
hange the value of variablenode i to its opposite value: di = di

⊕
1Step 5: Stop when no more variable nodes are 
hanging or after a�xed number of iterations have been exe
uted. Otherwise goba
k to step 2.
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oding's algorithms 89Probabilisti
 de
oding s
hemeThe probabilisti
 de
oding s
heme utilizes extra digits and extra parity 
he
k equa-tions more systemati
ally.Assume that the 
odewords from an (N, p, q) 
ode are used with equal probabilityon an arbitrary binary-input 
hannel. For any digit d an iteration pro
ess will bederived that on the m-th iteration 
omputes the probability that the transmitted digitin position d is a 1 
onditional on the re
eived symbols out to and in
luding the m-thtier. For the �rst iteration, we 
an 
onsider digit d and the digits in the �rst tier toform a sub
ode in whi
h all sets of these digits that satisfy the p parity-
he
k equationsin the tree have equal probability of transmission.Consider the ensemble of events in whi
h the transmitted digits in the positions of
d and the �rst tier are independent equiprobable binary digits, and the probabilitiesof the re
eived symbols in these positions are determined by the 
hannel transitionprobabilities Px(y). In this ensemble the probability of any event 
onditional on theevent that the transmitted digits satisfy the p parity-
he
k equations is the same as theprobability of an event in the sub
ode des
ribed above. Thus, within this ensemble wewant to �nd the probability that the transmitted digit in position d is a 1 
onditionalon the set of re
eived symbols {y} and on the event S that the transmitted digits satisfythe p parity-
he
k equations on digit d. We write this as

P [xd = 1|{y}, S]. (4.30)In [3℄ Gallager gave the proof of one lemma and one theorem, their propositions arereported here:Lemma 1. Consider a sequen
e of m independent binary digits in whi
h the l-th digitis 1 with probability Pl. Then the probability that an even number of digits are 1 is
1 +

∏m
l=1(1 − 2Pl)

2
(4.31)Theorem 1. Let Pd, be the probability that the transmitted digit in position d is a 1
onditional on the re
eived digit in position d, and let Pil, be the same probability forthe l-th digit in the i-th parity-
he
k set of the �rst tier. Let the digits be statisti
allyindependent of ea
h other, and let S be the event that the transmitted digits satisfy the

p parity-
he
k 
onstraints on digit d. Then
P [xd = 0|{y}, S]

P [xd = 1|{y}, S]
=

1 − Pd

Pd

p
∏

i=1

[1 +
∏q−1

l=1 (1 − 2Pil)

1 −∏q−1
l=1 (1 − 2Pil)

]

. (4.32)Judging from the 
omplexity of this result, it would appear di�
ult to 
ompute theprobability that the transmitted digit in position d is a 1 
onditional on the re
eiveddigits in two or more tiers of the tree. Fortunately, however, the many-tier 
ase 
an besolved from the 1-tier 
ase by a simple iterative te
hnique.
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k (LDPC) CodesAs an example we 
onsider the 2-tier 
ase. We 
an use Theorem 1 to �nd theprobability that ea
h of the transmitted digits in the �rst tier of the tree is a 1 
onditionalon the re
eived digits in the se
ond tier. The only modi�
ation of the tier is that the�rst produ
t is taken over only p − 1 terms, sin
e the parity-
he
k set 
ontaining digit
d is not in
luded. Now these probabilities 
an be used in Equation (4.32) to �nd theprobability that the transmitted digit in position d is 1. The validity of the pro
edurefollows immediately from the independen
e of the new values of Pil in the ensemble usedin Theorem 1. By indu
tion, this iteration pro
ess 
an be used to �nd the probabilitythat the transmitted digit d is 1, given any number of tiers of distin
t digits in the tree.The general de
oding pro
edure for the entire 
ode may now be stated. For ea
hdigit and ea
h 
ombination of p−1 parity-
he
k sets 
ontaining that digit, use Equation(4.32) to 
al
ulate the probability of a transmitted 1 
onditional on the re
eived symbolsin the p − 1 parity-
he
k sets. Thus there are p di�erent probabilities asso
iated withea
h digit, ea
h one omitting 1 parity-
he
k set. Next these probabilities are used inEquation (4.32) to 
ompute a se
ond order set of probabilities. The probability tobe asso
iated with one digit in the 
omputation of another digit d is the probabilityfound in the �rst iteration, omitting the parity-
he
k set 
ontaining d. If the de
odingis su

essful, then the probabilities asso
iated with ea
h digit approa
h 0 or 1 as thenumber of iterations is in
reased. The pro
edure is valid only for as many iterations asmeet the independen
e assumption in Theorem 1.This assumption break down when the tree 
loses upon itself. Sin
e ea
h tier ofthe tree 
ontains (p − 1)(q − 1) times more nodes than the previous tier, the indepen-den
e assumption must break down while m is quite small for any 
ode of reasonableblo
k length. This la
k of independen
e 
an be ignored, however, on the reasonableassumption that the dependen
ies have a relatively minor e�e
t and tend to 
an
el ea
hother out somewhat. Also, even if dependen
ies o

ur at the m-th iteration, the �rst
m − 1 iterations have redu
ed the equivo
ation in ea
h digit. Then we 
onsider theprobabilities after the m − 1 iterations to be a new re
eived sequen
e that should beeasier to de
ode than the original re
eived sequen
e.The most signi�
ant feature of this de
oding s
heme is that the 
omputation perdigit per iteration is independent of the blo
k length. Furthermore, it 
an be shownthat the average number of iterations required to de
ode is bounded by a quantityproportional to the log of the log of the blo
k length.For the a
tual 
omputation of the probabilities in Theorem 1, it appears to be more
onvenient to use Equation (4.32) in terms of log-likelihood ratios. Let

ln
1 − Pd

Pd
= αdβd

ln
1 − Pil

Pil
= αilβil (4.33)

ln
P [xd = 0|{y}, S]

P [xd = 1|{y}, S]
= α′

dβ
′
dwhere α is the sign and β is the magnitude of the log-likelihood ratio. After some
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oding's algorithms 91manipulation, Equation (4.32) be
omes
α′

dβ
′
d = αdβd +

j
∑

i=1

( k−1∏

l=1

αil

)

f
[ k−1∑

l=1

f(βil)
] (4.34)where f(β) = ln eβ+1

eβ−1
.The 
al
ulation of the log-likelihood ratios in Equation (4.34) for ea
h digit 
an beperformed either serially in time or by parallel 
omputations.ExampleThrough the matrix (4.35) we de�ne a (20, 3, 4) 
ode. It is an example of low-density
ode matrix where N = 20, p = 3 and q = 4.

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0

0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(4.35)
Note that the matrix (4.35) is divided into p submatri
es, ea
h 
ontaining a single 1in ea
h 
olumn. The �rst of these submatri
es 
ontains all its 1's in des
ending order,the other submatri
es are merely 
olumn permutations of the �rst.We de�ne an ensemble of (N, p, q) 
odes as the ensemble resulting from randompermutation of the 
olumns of ea
h of the bottom p − 1 submatri
es of a matrix su
has (4.35), with equal probability assigned to ea
h permutation.In Figure 4.4 we represent the Tanner's graph for the 
ode de�ned with the matrix(4.35) and in Figure 4.5 we represent the tree used with the probabilisti
 de
oder; we
an observe that we must 
onsider only the digit d = 1 and the �rst tier, be
ause these
ond introdu
e a loop.Remembering that Pd is the probability that the transmitted digit in position d isa 1 
onditional on the re
eived digit in position d, and, let Pil be the same probability
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Figure 4.4: Tanner's graph for the 
ode de�ned with the matrix (4.35).
V1

V3 V4 V5V2 V6 V12 V18

V16V11V7V17V10V6 V7 V18 V8 V13 V19 V11 V15 V19 V14 V17

V9

V9

V13

V14

Figure 4.5: Tree used with the probabilisti
 de
oder when the 
ode de�ned by 4.35is 
onsidered. The same 
olors are referred to the same variable nodes and throughthem the loops are shown.for the l-th digit in the i-th parity 
he
k set, the Equation (4.32) be
omes:
P [xd = 0|{y}, S]

P [xd = 1|{y}, S]
=

1 − Pd

Pd

p
∏

1=1

[1 +
∏q−1

l=1 (1 − 2Pil)

1 −∏q−1
l=1 (1 − 2Pil)

]

P [xd = 0|{y}, S]

P [xd = 1|{y}, S]
=

1 − Pd

Pd

3∏

1=1

[1 +
∏3

l=1(1 − 2Pil)

1 −∏3
l=1(1 − 2Pil)

]sin
e q = 4 and p = 3.4.5.2 The de
oding algorithm by Ma
KayFirst of all we re
all the de�nition of the de
oding problem:
Hn = z mod 2 (4.36)where the unknown ve
tor n is sparse, the ve
tor z = Hr mod 2 and H is very sparseand we must remember that its properties also depend on the assumed noise model.In [5℄, Ma
Kay has developed a "sum-produ
t de
oder", also known as a "beliefpropagation de
oder". Before starting with the des
ription of the proposed algorithm,we give some de�nitions:De�nition 8. Che
ks are the zj elements 
orresponding to ea
h row of H, where

j = 1, 2, . . . , M of H.



4.5. LDPC de
oding's algorithms 93De�nition 9. Belief network or Bayesan network or Causal network or In�uen
ediagram is the set of bits x and 
he
ks z: every bit xl is the parent of p 
he
ks zj , andea
h 
he
k zj is the 
hild of qr bits, thus the network of 
he
ks and bits form a bipartitegraph.Observation 5. We say that ea
h 
he
k zj is the 
hild of qr bits and not q, be
ause weare 
onsidering the 
ase in whi
h the number of 1's in ea
h row of H is as uniform aspossible.We aim, given the observed 
he
ks, to 
ompute the marginal posterior probabilities
P (xl = 1|z,A) for ea
h l. These 
omputations are expe
ted to be intra
table forthe belief network 
orresponding to our problem be
ause its topology 
ontains many
y
les. However, it is interesting to implement the de
oding algorithm that would beappropriate if there were no 
y
les, on the assumption that the errors introdu
ed mightbe relatively small. This approa
h of ignoring 
y
les has been used in the arti�
ialintelligen
e literature [94℄ but is now frowned upon be
ause it produ
es ina

urateprobabilities. However, for our problem the end produ
t is a de
oding; the marginalprobabilities are not required if the de
oding is 
orre
t. Also, the posterior probability,in the 
ase of a good 
ode 
ommuni
ating at an a
hievable rate, is expe
ted typi
allyto be hugely 
on
entrated on the most probable de
oding. And as the size M × N ofthe 
ode's matrix H is in
reased, it be
omes in
reasingly easy to produ
e matri
es inwhi
h there are no 
y
les of any given length, so we expe
t that, asymptoti
ally, thisalgorithm will be a good algorithm. Ma
Kay, in [5℄ has obtained ex
ellent results with
N equal to 1000 and 10000. The algorithm often gives useful results after a number ofiterations mu
h greater than the number at whi
h it 
ould be a�e
ted by the presen
eof 
y
les.The algorithmAlso this algorithm, presented by Ma
Kay in [5℄, is appropriate for binary 
hannelmodel in whi
h the noise bits are independent.We denote the set of bits l that parti
ipate in 
he
k m by L(m) = {l : Aml = 1}.Similarly, we de�ne the set of 
he
ks in whi
h bit l parti
ipates, M(l) = {m : Aml = 1}.We denote a set L(m) with bit l ex
luded by L(m)\l. The algorithm has two alternatingparts, in whi
h quantities qml and rml asso
iated with ea
h nonzero element in the Hmatrix are iteratively updated.De�nition 10. The quantity qx

ml is meant to be the probability that bit l of x has thevalue x, given the information obtained via 
he
ks other than 
he
k m.De�nition 11. The quantity rx
ml is meant to be the probability of 
he
k m being satis�edif bit l of x is 
onsidered �xed at x and the other bits have a separable distribution givenby the probabilities {qml′ : l′ ∈ L(m) \ l}.The algorithm would produ
e the exa
t posterior probabilities of all the bits after a�xed number of iterations if the bipartite graph de�ned by the matrix H 
ontains no
y
les.



94 Chapter 4. Channel 
oding - Low-Density Parity-Che
k (LDPC) CodesPra
ti
al de
oding by the sum-produ
t algorithm - Ma
KayInitialization: Let p0
l = P (xl = 0) and p1

l = P (xl = 1) = 1 − p0
l the priorprobability that bit xl is 0 or 1. For every (m, l) su
h that

Hml = 1 the variables q0ml and q1ml are initialized to the vales
p0

l and p1
l , respe
tivelyHorizontal step: Compute the di�eren
e δqml = q0ml − q1ml and

δrml =
∏

l′∈L(m)\l
δqml′ .Then, sin
e r0ml + r1ml = 1 de�ne r0ml = (1 + δrml)/2 and

r1ml = (1 − δrml)/2Verti
al step: For ea
h l 
ompute
q0ml = αmlp

0
l

∏

m′∈M(l)\m
r0m′l

q1ml = αmlp
1
l

∏

m′∈M(l)\m
r1m′lwhere αml is 
hosen su
h that q0ml + q1ml = 1In the des
ription of the algorithm, the horizontal step the probability for zm havingits observed value given either xl = 0 and xl = 1 is founded e�
iently by the use of theforward-ba
kward algorithm. Before this formulation of the problem, the probability

r0ml and r1ml were 
omputed as follows:
r0ml =

∑

{xl′ ,l
′∈L(m)\l}

P (zm|xl = 0, {xl′ : l′ ∈ L(m) \ l}) ×
∏

l′∈L(m)\l
q
xl′

ml′ (4.37)
r1ml =

∑

{xl′ ,l
′∈L(m)\l}

P (zm|xl = 1, {xl′ : l′ ∈ L(m) \ l}) ×
∏

l′∈L(m)\l
q
xl′

ml′ . (4.38)In the verti
al step, we 
an also 
ompute the pseudoposterior probabilities q0l and
q1l :

q0l = αlp
0
l

∏

m∈M(l)

r0ml (4.39)
q1l = αlp

1
l

∏

m∈M(l)

r1ml (4.40)and these quantities are used to 
reate a tentative de
oding n̂, the 
onsisten
y of whi
his used to de
ide whether the de
oding algorithm 
an halt.



4.5. LDPC de
oding's algorithms 95Soft input to the de
oderThere are many ways to measure the un
ertainty over a bit at the re
eiver. We 
ansimply use the re
eived symbol or 
omputed its marginal a posteriori probability, but,what is generally used is the Log-Likelihood ratio (LLR) de�ned as:
Λ(ri) , log

(P (xi = 1|ri)
P (xi = 0|ri)

)2. (4.41)Soft de
oding algorithmThe algorithm presented above a

epts as inputs the re
eived symbols, but to makeit more e�
ient we 
an have at the demodulator output soft LLRs and so we 
an adjustthe de
oding algorithm to work with these. We 
all this adjustment soft de
odingalgorithm be
ause it has as input the log-likelihood ratios for the bits of ea
h 
odeword
ci, i = 1, 2, . . . , N whi
h is de�ned as:

L(ci) = log
(P [ci = 0|
hannel output for ci]
P [ci = 1|
hannel output for ci]) i = 1, 2, . . . , N (4.42)where N is the length of the 
odewords.Before explaining the soft algorithm, we de�ne:- Ci the set of 
he
k nodes 
onne
ted to the variable node i;- Ci\j the set of 
he
k nodes 
onne
ted to the variable node i ex
luded the 
he
knode j;- Vj the set of variable nodes 
onne
ted to the 
he
k node j;- Vj\i the set of variable nodes 
onne
ted to the 
he
k node j ex
luded the variablenode i.In the algorithm, des
ribed in Table 4.3, there are three key variables: L(qji), L(rji)and L(Qi) with j = 1, 2, . . . , M where M represents the number of the parity 
he
knodes and i = 1, 2, . . . , N . The L(·) means that we are 
onsidering the logarithmvalues. The former is the logarithm of the probability that the i-th bit of the 
odewordhas the value x, given the information obtained via the 
he
k nodes other than 
he
knode j (De�nition 10); the se
ond is the logarithm of the probability that a 
he
k node jis satis�ed, i.e. zj = 0, when bit i is �xed to a value x and the other bits are independentwith probabilities qj,i′, i′ ∈ Vj\i (De�nition 11). Finally, the last one, expressed in (4.46)is the logarithm of the pseudo-a-posteriori probability and it is the new log-likelihoodratio, used to determine the transmitted bit in the hard de
ision of the bit ci.De
oding stepWe observe that if the belief network really is a tree without 
y
les the values ofthe pseudoposterior probabilities q0l and q1l at ea
h iteration would 
orrespond to the2Sometimes the de�nition of the LLR is given as log

“

P (xi=0|ri)
P (xi=1|ri)

”, but this doesn't 
hange anything,be
ause it is equal to −Λ(ri)



96 Chapter 4. Channel 
oding - Low-Density Parity-Che
k (LDPC) Codes- Initialization
L(qji) = L(ci) j = 1, 2, . . . , M and i = 1, 2, . . . , N (4.43)- Horizontal step

L(rji) = 2 tanh−1
( ∏

i′∈Vj\i

tanh
(1

2
L(qji′)

)) (4.44)- Verti
al step
L(qji) = L(ci) +

∑

j′∈Ci\j

L(rj′i) (4.45)In this step we also 
ompute L(Qi), the quantity 
orrespondent to the pseudo-posterior probability:
L(Qi) = L(ci) +

∑

j′∈Ci

L(rj′i) (4.46)Table 4.3: Soft de
oding algorithmposterior probabilities of bit l given the states of all the 
he
ks in a trun
ated beliefnetwork 
entered on bit l and extending out to a radius equal to twi
e the number ofiterations. De
oding Pro
edure
− Set xl = 1 if q1l > 0.5

− See if the 
he
ks Hn̂ = z mod 2 are all satis�ed
◦ halting when they are
◦ de
laring a failure if some maximum number of iterations o

urswithout su

essful de
odingWhen there is a failure, the partial de
oding n̂ may serve as a useful starting pointfor another de
oding algorithm.To 
on
lude our analysis, we note that undete
ted errors would only o

ur if thede
oder found an n̂ satisfying Hn̂ = z mod 2 whi
h is not equal to the true n and de-te
ted errors o

ur if the algorithm runs for the maximum number of iterations without�nding a valid de
oding.Observation 6. Soft de
oding algorithm is very important, be
ause it gives better per-forman
e sin
e it uses soft values as input, but also be
ause, 
onsidering the logarithm



4.5. LDPC de
oding's algorithms 97values it is e�
ient from a 
omputational point of view: all the multipli
ations requiredin the verti
al step and to 
omputed the pseudo-a-posteriori probabilities are transformedinto additions and it is well known that these are very simple if 
ompared to multipli
a-tions.Analysis of the de
oding algorithmThe algorithm have 
orre
tion e�e
ts whi
h are independent of the blo
k length N ,for large N . This 
onsideration brings us to make a 
onje
ture:Observation 7. Given a binary symmetri
 
hannel with noise density f , there ex-ist pra
ti
al de
oders for LDPC 
odes with rate R 
lose to 
apa
ity, that 
an a
hievenegligible probability of error for su�
iently large N .Finally we 
an 
on
lude saying that there is a 
orre
tion e�e
t if the Hammingdistan
e between n̂ and the true ve
tor n de
reases.Empiri
al performan
e of Low-Density Parity-Che
k 
odes on Gaussian 
han-nelsIn [84℄ D. J. C. Ma
kay and R. M. Neal showed that performan
e substantially betterthan that of standard 
onvolutional and 
on
atenated 
odes 
on 
an be a
hieved; indeedthe performan
e is almost as 
lose to the Shannon limit as that of turbo 
odes.

Figure 4.6: LDPC 
odes' performan
e over Gaussian 
hannel (solid 
urves) 
omparedwith state of the art 
odes (dotted 
urves).Figure 4.6 
ompares the performan
e of LDPC 
odes with state of the art 
odes.



98 Chapter 4. Channel 
oding - Low-Density Parity-Che
k (LDPC) CodesThe verti
al axis shows the empiri
al bit error probability (BER). Following we des
ribethe mean of the 
urves represented in Figure 4.6:� The 
urve labeled (7, 1/2) shows the performan
e of a rate 1/2 
onvolutional 
odewith 
onstraint length 7, known as the fa
tor standard for satellite 
ommuni
a-tions [95℄.� The 
urve (7, 1/2)C shows the performan
e of the 
on
atenated 
ode 
omposedof the same 
onvolutional 
ode and a Reed-Solomon 
ode.� The 
urve (15, 1/4)C shows the performan
e of an extremely expensive and 
om-puter intensive 
on
atenated 
ode developed at JPL based on a 
onstraint length
15, rate 1/4 
onvolutional 
ode.� The 
urve labeled Turbo shows the performan
e of the rate 1/2 turbo 
ode de-s
ribed in [19℄.All the other 
urves represent LDPC with the parameters (N, K, R) with the fol-lowing values (29507, 9507, 0.322), (15000, 5000, 0.333), (14971, 4971, 0.332), (65389,

32621, 0.499), (19839, 9839, 0.496), (13298, 3296, 0.248), (29331, 19331, 0.659) fromleft to right.It should be emphasized that all the errors made by the LDPC 
odes were dete
tederrors: the de
oding algorithm reported the fa
t that it had failed.Results show that performan
e substantially better than that of standard 
onvolu-tional and 
on
atenated 
odes 
an be a
hieved; indeed the performan
e is almost as
lose to the Shannon limit as that of turbo 
odes. It seems that the best results areobtained by making the weight per 
olumn as small as possible. Unsurprisingly, 
odeswith larger blo
k length are better. In terms of the value of Eb/N0, the best 
odes arethe ones with rates between 1/2 and 1/3.



Chapter 5Alternative algorithms for LDPCde
oding
5.1 Message passing algorithm: 
omplexity redu
tionAs des
ribed in Chapter 4 the Message Passing Algorithm (MPA) is used to de
odethe LDPC 
odes, be
ause, even if its 
omputational 
omplexity is very high, it is yetpra
ti
ally implementable and performs very well. Here we propose a modi�
ation ofthe MPA in order to redu
e the number of multipli
ations in ea
h iteration. In fa
t,MPA requires real-number addition, subtra
tion, multipli
ation, division, exponentialand logarithm operations and, as it is well known, the last four operation are more
omplex than addition and subtra
tion. In [90℄ the number of multipli
ations in thisalgorithm is de�ned as a linear fun
tion of the number of 1's in the parity 
he
k matrix.What we are going to propose is the redu
tion of the number of multipli
ations, so,in the following we will use the terms redu
tion of 
omplexity or redu
tion of the numberof multipli
ations indi�erently, even if it's an abuse of notation. In our modi�ed MPAwe assume that all the re
eived bits whi
h ex
eed, in terms of absolute value, a giventhreshold are reliable. This means that we assume that the value assigned to these bitsdoesn't 
hange with the evolution of the algorithm. This observation suggests to assignto these bits a value, in term of LLR, equal to ±∞, where the sign is in a

ordan
ewith the LLR's one. In Se
tion 5.1.2 we will show how to 
hoose the threshold and howthis assumption 
an be used to redu
e the number of multipli
ations at ea
h iteration.The modi�ed MPA has a redu
ed 
omplexity be
ause the number of multipli
ationshas been redu
ed, but, 
an present an error �oor dependent on the threshold value. Toverify if the modi�ed proposed algorithm 
an be 
ompetitive with the known ones wewill 
ompare the 
omplexity and the error performan
e.5.1.1 LDPC de
oding te
hniquesIn Chapter 4 the de
oding te
hniques presented for the LDPC 
odes have beendes
ribed. Here we brie�y des
ribe the algorithms pra
ti
ally used in tests and simu-lations, ex
ept the MPA, exhaustly des
ribed above. Here, to make the reading more
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oding
omfortable, we report only the brief des
ription.A LDPC 
ode 
an be de
oded in various ways, namely: majority-logi
 (MLG) de
od-ing, bit-�ipping (BF) de
oding, weighted BF de
oding, a posteriori probability (APP)de
oding, and iterative de
oding based on belief propagation (IDBP), 
ommonly knownas sum-produ
t algorithm (SPA) or message passing algorithm (MPA).The �rst two types are hard de
ision de
oding, the last two are soft de
ision de-
oding and the third one is in between. MLG [90℄ is the simplest one in de
oding
omplexity; BF requires a little more de
oding 
omplexity, but gives better error per-forman
e than MLG. APP and MPA de
oding provide mu
h better error performan
ebut require mu
h large 
omplexity than the former two. MPA de
oding gives the se
ondbest error performan
e among the �ve types of de
oding algorithms and yet is pra
ti-
ally implementable, 
onversely the APP provides the best error performan
e, but itis 
omputationally intra
table. A simpli�ed version 
an be 
onsidered to redu
e the
omputational 
omplexity, but error performan
e degrades. The most important algo-rithm for a 
omparison with our proposed one is the weighted-BF algorithm, be
auseit's said to represent a good trade-o� between the 
omputational 
omplexity and theerror performan
e.Let de�ne a 
odeword v = (vo, v1, . . . , vn−1), y = (y0, y1, . . . , yn−1) the soft de
i-sion re
eived sequen
e at the output of the demodulator and z = (zo, z1, . . . , zn−1) the
orresponding hard de
ision. Let H be the parity-
he
k matrix of an LDPC 
ode Cwith m rows and n 
olumns, then we 
an de�ne the syndrome of the re
eived sequen
e
z as

s = zHT . (5.1)The re
eived ve
tor z is a 
odeword if and only if s = 0, otherwise errors in z aredete
ted, in fa
t nonzero syndrome 
omponent sj indi
ates a parity failure. We 
ande�ne the error pattern e given by e = v + z whi
h must satis�es s = eHT .On
e given these few de�nitions we 
an brie�y des
ribe the de
oding algorithms.Majority-Logi
 De
odingFrom the stru
tural properties of the parity-
he
k matrix H , we see that for everybit position l, there's a set
Al = {h(l)

1 , h
(l)
2 , . . . , h(l)

γl
} (5.2)of γl rows in H that are orthogonal on this bit position. Now we de�ne the set of γl
he
k-sums orthogonal on the error digit el

Sl = {eh
(l)
j : h

(l)
j ∈ Al, for 1 ≤ j ≤ γl} (5.3)These 
he
k-sums 
an be used for estimating the error digit el based on the one stepMLG de
oding rule [90℄, whi
h guarantees the 
orre
tion only if there are γl

2 or fewererrors in the pattern error e.



5.1. Message passing algorithm: 
omplexity redu
tion 101Bit-Flipping De
oding AlgorithmThis algorithm, presented for the �rst time by Gallager in [4℄, is based on the 
hange(or �ip) of the number of parity failures in s when a bit in the re
eived sequen
e z is
hanged or �ipped.First, the de
oder 
omputes all the parity-
he
k sums based on (5.1) and than
hanges any bit in the re
eived sequen
e z that is 
ontained in more than some �xednumber δ of failed parity-
he
k equations. Using the modi�ed re
eived sequen
e z′,the de
oders re
ompute the syndrome and the pro
ess is repeated until all parity-
he
ksums are satis�ed or a preset maximum number of iterations is rea
hed. The designparameter δ is 
alled threshold and should be 
hosen to optimize the error performan
ewhile minimizing the number of 
omputation of parity-
he
k sums. The value of δdepends on the 
ode parameters: ρ, γ, dmin(C) and SNR.Owing to the nature of low-density parity-
he
k 
odes, BF de
oding algorithm 
or-re
ts many error patterns whose number of errors ex
eeds the error 
orre
ting 
apabilityof the 
ode.Weighted Bit-Flipping (WBF) AlgorithmTo improve the performan
e of the BF algorithm some kind of reliability information
an be 
onsidered. So now we 
onsider the soft-de
ision re
eived sequen
e y and for
0 ≤ l ≤ n− 1 and 1 ≤ j ≤ m de�ne:

|yj |(l)min , {min{|yi|} : 0 ≤ i ≤ n− 1, hi,j = 1} (5.4)and
El ,

∑

s
(l)
j ∈Sl

(2s
(l)
j − 1)|yj |(l)min. (5.5)where Sl is the set of 
he
k-sums orthogonal on bit-position l.Now we observe that El is simply a weighted 
he
k sum that is orthogonal on the
ode bit position l and 
an be used in the bit-�ipping algorithm.Message Passing AlgorithmBefore explaining the de
oding algorithm in Table 5.1, we de�ne:- Ci the set of 
he
k nodes 
onne
ted to the variable node i;- Ci\j the set of 
he
k nodes 
onne
ted to the variable node i ex
luded the 
he
knode j;- Vj the set of variable nodes 
onne
ted to the 
he
k node j;- Vj\i the set of variable nodes 
onne
ted to the 
he
k node j ex
luded the variablenode i.
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oding- Initialization
L(qji) = L(ci) j = 1, 2, . . . , m; i = 1, 2, . . . , n (5.6)- Horizontal step

L(rji) = 2 tanh−1
( ∏

i′∈Vj\i

tanh
(1

2
L(qji′)

)) (5.7)- Verti
al step
L(qji) = L(ci) +

∑

j′∈Ci\j

L(rj′i) (5.8)In this step we also 
ompute L(Qi), the quantity 
orresponding to the pseudo-a-posteriori probability:
L(Qi) = L(ci) +

∑

j′∈Ci

L(rj′i) (5.9)Table 5.1: Des
ription of the message passing algorithm.5.1.2 Proposed algorithmAs said in the Introdu
tion we ignore the additions and the subtra
tions in thisanalysis of 
omplexity of MPA. Observing the algorithm des
ription in Table 5.1, we�nd that the number of multipli
ations needed in ea
h iteration of the de
oding pro
essis of the order O(2mρ̄+4nγ̄) where ρ̄ and γ̄ represent the mean number of 1's per rowsand 
olumns respe
tively and the number of logarithm operations needed is of the order
O(n) [90℄. From these values and observing the evolution of the algorithm we had theidea for a modi�
ation of the algorithm whi
h should drive to a redu
tion of the numberof multipli
ations required.MPA variationLet's try to analyze the algorithm step by step to �nd all the possibilities to redu
ethe algorithm 
omplexity.Starting from the initialization step de�ned in equation (5.6), the L(qj,i)'s equal theLLRs de�ned as:

L(ci) = log
(P [ci = 0|
hannel output for ci]
P [ci = 1|
hannel output for ci]) i = 1, 2, . . . , N, (5.10)so if some absolute value of these quantities are greater than a given threshold we 
an saythat the 
orresponding bits are reliable and 
hange their LLR values to ±∞ a

ordingwith the known signs.When we 
ompute the horizontal step as de�ned in equation (5.7), we observe that



5.1. Message passing algorithm: 
omplexity redu
tion 103for every L(qj,i′) with ±∞ value the tanh(·) is equal to ±1 and so all what we needis to keep tra
e of the number of −1, be
ause this 
an 
hange the sign of the produ
tresult, but we don't need to 
ompute the multipli
ations.Note that in the verti
al step (equation (5.8)) we sum the 
ontributions of L(rji)'s.In 
ase two or more values of L(rji) are equal to ±∞ we 
ould sum terms in�nitelylarge with opposite sign to obtain an undetermined result. In order to avoid this 
asewe put the 
onstraint that, in ea
h Vj\i (equation (5.7)), at least one variable nodeis di�erent from ±∞, whi
h means that attention must be paid in the 
hoi
e of thethreshold, be
ause its value 
an't be too small. Adding this 
onstraint means that the
L(rji) 
an assume ±∞ value when, with high probability, the bit is enough reliableand so it's hard to obtain undetermined results. Unfortunately, this is not enough tohandle all the NaN 
ases. In the update of L(qj,i) (equation (5.8)) we don't need to
ompute the update for the values �xed at the former steps, be
ause we expe
t theydon't 
hange. However, in this 
ase there are not multipli
ations, so at this step wedon't save operations of the type we are fo
using on.The most important topi
 of our modi�ed algorithm is the determination of thethreshold: if it is 
hosen too small we �x some values that are not enough reliable and,as a 
onsequen
e, in equation (5.8), we try to sum +∞ and −∞, without rea
hinga result. On the other side, we don't want to use a threshold too high, be
ause thisdoesn't allow us to improve the e�
ien
y of the algorithm.5.1.3 System des
riptionThe system we 
onsider here is represented in Figure 5.1. The sour
e bits areen
oded through an LDPC 
ode of rate 1/2 and 
odeword length n = 576, then theyare modulated through a QPSK modulator and transmitted on an AWGN 
hannel. Atthe re
eiver we have a soft demodulator whose log-likelihood ratios are the input to thede
oder. Obviously, the de
oding is performed with our modi�ed MPA and to havesome terms of 
omparison we perform the de
oding also through the standard MPAand the weighted BF algorithm [96℄.

+

PSfrag repla
ements

b c s r

w

ĉ b̂

LDPC
en
oder QPSKmodulator Demodulator LDPCLDPC de
oderFigure 5.1: Representation of the 
onsidered transmission s
heme, where the LDPCde
oder 
an be implemented with the standard or modi�ed MPA or with the WBF.Sin
e we want to have reliable performan
e results, we 
onsider the 
on
ept of
on�den
e, i.e. we have a probability equal to 95% that the measured value lies in the
omputed 
on�den
e interval [97℄.We suppose that our system transmit 100 words of 288 information bits every time.These bits are en
oded, modulated and transmitted on the 
hannel. At the re
eiverside, the re
eived signal (i.e. the signal at the output of the 
hannel) is demodulated,
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odingde
oded and the bit error rate (BER) is 
omputed. At this point we 
ompute the
on�den
e interval and verify if it's equal or smaller than the 15% of the estimated BERvalue; if it's not we run the simulation again for other 100 words and re
omputed BERand 
on�den
e interval. The pro
ess is iterated until the 
onstraint on the 
on�den
einterval is satis�ed or a maximum number of iterations, equal to 1000̇00, is rea
hed.When we 
onsider our modi�ed MPA we need to handle the not-a-number (NaN)
ases due to the attempt of summing together some +∞ and −∞. This 
an happenwhen we use a threshold whi
h is too low and so we 
onsider reliable some bits whi
haren't. What we do in these situations is 
onsidering a failure of the de
oder on theword with the NaN bit and 
ompute the BER on the other words.5.1.4 Simulation resultsTo test our algorithm we 
onsider the LDPC 
ode proposed for the WiMAX system(IEEE 802.16e [1℄, [2℄) with a 
odeword of length n = 576.Figure 5.2 represents the performan
e in terms of bit error rate for the above LDPC
ode when it's de
oded through di�erent algorithms, namely the standard and ourmodi�ed MPA, with di�erent thresholds, and the WBF algorithm. To have other termsof 
omparison, the BER for the hard de
ision and for a '3G' turbo 
ode is plotted. Thereason why we 
hoose the '3G' turbo 
ode and not the one de�ned for the WiMAXsystem is be
ause we want to 
ompare the performan
e of our algorithm with the onesof a general turbo 
ode, i.e. a turbo 
ode 
omposed by two identi
al 
onvolutional
ode and an interleaver, and in the standard 802.16e there are no 
odes of this type.Another term of 
omparison is given by the WBF de
oding algorithm, representedthrough the solid line with ◦ marker. As we 
an see from Figure 5.2, the performan
e ofthis algorithm is not so good, but this 
an be explained 
onsidering that it is proposedfor de
oding �nite geometry LDPC 
odes [96℄ and the 
ode we are 
onsidering is not ofthis type.In Figure 5.2 the solid line with � represents the hard de
ision performan
e, thesolid line with ⋄ represents the performan
e of the standard MPA algorithm and thesolid line with ⋆ represents the turbo 
ode performan
e. The dotted lines with ◦, �,
⋄ and ⋆ represent the performan
e of our modi�ed algorithm for di�erent thresholdvalues, whi
h are de�ned by the maximum value of the re
eived LLRs (max) or throughthe equation:

th = min
llr

+
p

100
(max

llr
−min

llr
). (5.11)where p = 40, 50, 90, the values reported in Figures 5.2 and 5.3.Finally, in Figure 5.2 we 
an see a solid line with hexagon marker whi
h representsthe performan
e we 
an obtain 
hoosing the best threshold at ea
h SNR value. In thisFigure, only the thresholds that lead to a signi�
ant gain on the performan
e of thestandard algorithm are represented, but, obviously, we simulated more thresholds, tobe sure that our 
hoi
e is the best one.To rea
h the best performan
e we 
an use our modi�ed algorithm with di�erentthreshold until 4.5 dB and then we must use the standard algorithm.



5.1. Message passing algorithm: 
omplexity redu
tion 105What we want to underline is that all the results represented in this Figure are
omputed on the bit error rate of the words de
oded through our modi�ed algorithm;this means that we are not handling the not-a-number (NaN) 
ases. The same poli
yis adopted for the 
omputation of the interval of 
on�den
e.
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Figure 5.2: Bit error rate 
omparison when an LDPC 
ode is de
oded through di�erentalgorithms: MPA standard and modi�ed, and WBF. Comparison of the performan
eof the LDPC 
ode with a turbo 
ode of the same rate.Figure 5.3 represents the per
entage of saved produ
ts and de
oded words when themodi�ed MPA algorithm is used with the four di�erent thresholds. Figure 5.3.a) showsan expe
ted result: the per
entage of saved produ
ts is higher when the threshold islower and, for example, at SNR= 2 dB and for p = 90 proposed algorithm saves the
35% of multipli
ation with respe
t to the standard MPA. What we 
an 
on
lude is that,if we know the type of appli
ation we are using and so the reliability we need, we 
anrea
h a trade-o� between the 
omputational 
omplexity and the system reliability, just
hoosing the 
orre
t threshold.From Figure 5.3.b) we 
an observe that the more produ
ts we save the less wordswe 
an de
ode and so what is important, at this point, is to study a way to handle theNaN. Looking the Figure, we observe also a strange behavior of these per
entages: forall the thresholds there's a minimum around 1 − 1.5 dB. To understand this strangebehavior will be one of the �rst topi
s of our future resear
h.Our results show that, 
hoosing a good threshold allows a redu
tion of the BER,but this performan
e is 
omputed only on the words the algorithm is able to de
oding.
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b)Figure 5.3: Per
entage of a) saved produ
ts b) de
oded words when we 
onsider themodi�ed MPA with di�erent threshold.5.2 Message passing algorithm: quantized versionIn the standard LDPC de
oder the input is a real ve
tor whi
h represents the log-likelihood ratios for the bits of the 
odeword.5.2.1 Representation of real numbers in �xed-point data typeIn digital hardware, numbers are stored in binary words. A binary word is a �xed-length sequen
e of bits (1's and 0's). How hardware 
omponents or software fun
tionsinterpret this sequen
e of 1's and 0's is de�ned by the data type.Binary numbers are represented as either �xed-point or �oating-point data types.A �xed-point data type is 
hara
terized by the word length in bits, the position ofthe binary point, and whether it is signed or unsigned. The position of the binary pointis the means by whi
h �xed-point values are s
aled and interpreted.
PSfrag repla
ements

bwl−1 bwl−2 . . . b5 b4 b3 b2 b1 b0LSBMSB binary pointFigure 5.4: Binary representation of a generalized �xed-point number (either signedor unsigned).In Figure 5.4 we see a binary representation of a generalized �xed-point number



5.2. Message passing algorithm: quantized version 107(either signed or unsigned), where- bi is the ith binary digit- wl is the word length in bits- bwl−1 is the most signi�
ant bit (MSB)- b0 is the less signi�
ant bit (LSB)- The binary point is shown four pla
es to the left of the LSB. In this example,therefore, the number is said to have four fra
tional bits, or a fra
tion length offour.Fixed-point data types 
an be either signed or unsigned. Signed binary �xed-pointnumbers are typi
ally represented in one of three ways:- Sign/magnitude- One's 
omplement- Two's 
omplement5.2.2 Implementation of a fun
tion with �xed-point data typeWhen we implement a fun
tion with �xed-point data type we suppose that:1. input and output are represented with n bits2. internal states are represented with 2n bits.The se
ond assumption 
omes from the observation that the sums have still n bits, butthis is not true for the produ
ts, so we use words of 2n bits to have a small loss in thepre
ision of the �xed-point representation. These results are then re-quantized at theoutput.For working with �xed-point data type, step by step, you should pro
eed as des
ribedfollowing:- Fix the number n of bits that you want to use- Fix a range of representable values and so determine the pre
ision of your system,i.e. fra
tion length.ExampleYou want to represent the numbers in the intervals [−128, 127] with n = 16 bits.Sin
e 128 = 27, you need 7 bits for the magnitude of the entire part and 1 bit forthe sign, then, 
onsidering all, you need 8 bits for the entire part and you have
n − 8 = 8 fra
tional bits. This means that the interval [0, 1) is divided into 28parts and the pre
ision of your representation is 2−8.



108 Chapter 5. Alternative algorithms for LDPC de
oding- Now you are using n = 16 bits integers in the range [−215, 215 − 1] to representyour values. This is a numerable and �nite set, so a single map between theseintegers and the real values exists. The s
ale fa
tor that you must use is 28, wherethe exponent is the fra
tion length.5.2.3 Implementation of the soft de
oding algorithm using �xed-pointdata typeWe 
onsider input and output at 16 bits and we suppose that the values of thelog-likelihood ratios are in [−64, 64). Sin
e 64 = 26 we need 6 bit for the magnitudeplus 1 for the sign, for the entire part. Then ,the fra
tion length is of 9 bits; this meansthat we have a pre
ision of 2−9 ≃ 2 · 10−3.Figures 5.5 and 5.6 represent the performan
e, in terms of 
odeword error probabilityand bit error probability, respe
tively, when we 
onsider a LDPC 
ode of rate R = 1/2and 
odeword length N = 576. The de
oding algorithm used is the same, but the two
urves are obtained 
onsidering two di�erent types of input to the de
oder:- the real-valued log-likelihood ratio;- a 16 bit-quantized version of the same LLR.
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Figure 5.5: Considering a LDPC 
ode of rate 1/2 and 
odeword length 576, we 
omparethe performan
e, in terms of 
odeword error rate, of the message passing algorithm
onsidering its input is either a real-valued log-likelihood ratio (LLR) or a quantizedversion of it.From these Figures we 
an see that the performan
e are almost the same, so we 
antry to use a small number of bits for our quantization. So, now we need to determinethe number of bit that we must use in our quantization and the fra
tion length. Todetermine these quantities we need to know whi
h is the small value in the log-likelihoodthat 
an be 
onsidered reliable in the pro
eeding of the message passing algorithm.
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Figure 5.6: Considering a LDPC 
ode of rate 1/2 and 
odeword length 576, we 
om-pare the performan
e, in terms of bit error rate, of the message passing algorithm
onsidering its input is either a real-valued log-likelihood ratio (LLR) or a quantizedversion of it.Finally, Figure 5.7 represents the performan
e, in terms of bit error rate, of themessage passing algorithm when the input is quantized. We suppose to use 4 bits forthe integer part and the total number of bits is 8 (blue line), 12 (magenta line), 16(green line) and 32 (
yan line).The red line, instead represents the performan
e whenthe input is real valued.We 
an observe that the best performan
e are obtained with 12 bits, so it is impor-tant to determine the number of bits we want to use and the fra
tion of it that are usedto represent the integer part.5.3 Other de
oding algorithm for LDPC 
odesAs it is well known, 
omputation 
omplexity of message passing algorithm is high,so, in the following se
tions, alternative algorithms are analyzed espe
ially from a 
om-putation point of view.5.3.1 Priority �rst sear
h algorithmThis algorithm was designed for de
oding 
onvolutional 
odes and more in generalall the 
odes whi
h 
an be represented with a trellis. Sin
e we 
an design a trellis for alinear blo
k 
ode starting from its parity-
he
k matrix, the algorithm 
an be used alsofor this kind of 
odes. Considering, then, that low-density parity-
he
k 
odes are linearblo
k 
odes, we have thought to use it instead of the message passing algorithm.Aim of this algorithm is the transformation of the de
oding problem into a sear
hproblem. For the linear blo
k 
odes the algorithm proposed as solution for the de
od-ing problem is the maximum-likelihood soft-de
ision de
oding. By maximum-likelihood
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Figure 5.7: Considering a LDPC 
ode of rate 1/2 and 
odeword length 576, we 
om-pare the performan
e, in terms of bit error rate, of the message passing algorithm
onsidering its input is either a real-valued log-likelihood ratio (LLR) or a quantizedversion of it. We suppose to use 8, 12, 16 and 32 bits and the number of bits used forthe integer part is �xed to 4.de
oding (MLD) we mean the minimization of the probability of de
oding to an in-
orre
t 
odeword when all 
odewords have equal probability of been transmitted. Bysoft-de
ision we mean the use of real number asso
iated with every 
omponent of the
odeword in the de
oding pro
edure.The idea presented for the �rst time in [6℄ is based on the Dijkstra's algorithm[98℄ to sear
h for the trellis for a 
ode equivalent to the transmitted 
ode. The use ofthis priority-�rst sear
h strategy for de
oding drasti
ally redu
es the sear
h spa
e andresults in an e�
ient optimal soft-de
ision de
oding algorithm for linear blo
k 
odes.Furthermore, the de
oding e�orts of our de
oding algorithm are adaptable to the noiselevel.In this algorithm, every bran
h in the tree graph is assigned a 
ost based on amaximum-likelihood de
oding (MLD) rule. The purpose of the sear
h is to �nd adesired path (
odeword) whi
h satis�ed the MLD rule. This sear
h is guided by anevaluation fun
tion f de�ned for every node in the graph. The algorithm maintains asta
k of nodes of the graph that are 
andidates to be expanded. The node in the sta
kwith minimum value of the fun
tion f is sele
ted to expand. If the algorithm sele
ts agoal node for the expansion it means that the desired path has been found.The algorithmThe main advantage of the presented algorithm is given by the un
ompleted visitof the nodes in the graph. In fa
t a su

essor, when applied to a node b gives all theimmediate su

essors of the node and, for every immediate su

essor of node b, storesthe partial path 
ost of the path ending at it. Then we assign the 
ost found to the
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orresponding su

essor bj and 
all it the 
ost (metri
) of bj, g(bj).The pro
ess explained above is 
alled expanding the node.In PFSA the next node to be expanding is the one with the smallest 
ost on the listof all leaf nodes of the subtree 
onstru
ted so far by the algorithm. If we suppose tomemorize the nodes to be expanded in a sta
k ,we must keep it ordered a

ording tothe 
ost asso
iated to ea
h node. When the algorithm 
hooses to expand a goal node,it outputs the path asso
iated with the 
ost of the goal node.PFSA requires that for all nodes bi and bj su
h that node bj is an immediate su

essorof node bi, must be veri�ed the equation
g(bi) ≤ g(bj) (5.12)be
ause it guarantees that the algorithm will always �nd an optimal path.Owing the above requirement (equation (5.12)), the 
ost of any node is non-de
reasingalong any path in a 
ode tree and is de�ned as follows:

g(bj) = g(bi) + (φ− (−1)c)2 (5.13)where φ is the log-likelihood at the output of the demodulator for the symbol we are
onsidering and c ∈ {0, 1}.We observe that when a goal node is 
hosen for expansion, all 
osts of nodes in thesta
k are greater then or equal to the 
ost of the goal node and sin
e all su

essor ofany of these nodes will have 
osts no less than that of the node, one will not �nd anypath with smaller 
ost than that of the goal node.Considering a blo
k 
ode with a relative small 
odeword length, we 
an suppose theknowledge of the trellis. When we expand a node, we 
he
k if the state asso
iated withea
h su

essor is in the trellis. If it belongs to the trellis, we insert the node into thesta
k, otherwise we don't 
onsider it.In �gure 5.8 we 
an see the performan
e for a (15, 11) Hamming 
ode. The red linerepresents the performan
e when the de
oding pro
ess is performed with the Hammingde
oding pro
ess, the blue one represents the performan
e obtained with the PFSAdes
ribed above, but where we suppose to know the trellis of the 
ode and use thisknowledge when we expand a node. In this 
ase, when we �nd out the node with theminimum 
ost fun
tion, we 
ontrol if it is in the trellis, if it is not we don't put it intothe sta
k, be
ause with it we don't �nd a 
odeword. Finally the green one representsthe performan
e when we apply the PFSA only to the k information bits and then
ompute the parity-
he
k bits and 
hose the 
odeword with the minimum distan
e fromthe re
eived ve
tor.As we 
an see from Figure 5.8 the �rst variation of the PFSA, the one representedwith the blue line, whi
h is based on the knowledge of the trellis, outperforms theperforman
e of the standard de
oding algorithm. The problem arises when we 
onsidera 
ode with longer 
odewords, be
ause the trellis grows enormous and we need too mu
hmemory. Unfortunately a LDPC trellis is very big and it is impossible to use the PFSA
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Figure 5.8: Considering a (11, 15) Hamming, we 
ompare the performan
e, in termsof bit error rate, of the standard de
oding algorithm with the one of two variation ofthe PFSA algorithm.with the trellis knowledge to de
ode a LDPC 
ode.Figure 5.9 represents the performan
e of the PFSA applied only to the k informationbits and then 
ompute the parity-
he
k bits and 
hoose the 
odeword with the minimumdistan
e from the re
eived ve
tor. Blue and green lines represent the performan
e forthis algorithm 
onsidering the a
knowledge and the knowledge of the trellis, respe
tively.The red line, instead, represents the performan
e of the standard de
oding algorithmfor the Hamming 
odes.
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Figure 5.9: Considering a (11, 15) Hamming, we 
ompare the performan
e, in termsof bit error rate, of the standard de
oding algorithm with the one of two variation ofthe PFSA algorithm.As we 
an see from Figure 5.9 the performan
e is the same for the tree algorithms.As said above we 
an't assume the knowledge of the trellis for a LDPC 
odes and



5.3. Other de
oding algorithm for LDPC 
odes 113from the observation of Figure 5.9, we had the idea of using the PFSA on the k bitswithout the knowledge of the trellis. The problem is that for a LDPC 
ode we expanda lot of nodes and so the time needed to de
ode a 
odeword is very long. Thus, theMPA is better than the PFSA for LDPC de
oding.Just be
ause the performan
e of the MPA is better than the one of the PFSA foran AWGN 
hannel, we de
ided to not perform the simulation with a frequen
y sele
tive
hannel, su
h as SCME, be
ause the MPA will 
ertainly perform better.5.3.2 The geneti
 algorithm (GA)Geneti
 algorithms (GA) were introdu
ed by Goldberg in 1989. They are sear
halgorithms that apply operations from natural geneti
s to guide the trek through asear
h spa
e. GAs has theoreti
ally and empiri
ally proves to provide robust sear
h
apability in 
omplex spa
es, o�ering a valid approa
h to a problem requiring e�
ientand e�e
tive sear
h.GAs are general purpose sear
h algorithms whose prin
iples lie on natural geneti
sand 
an be applied to solve problems in whi
h the obje
tive fun
tion is dis
ontinuous,non-di�erentiable, sto
hasti
, or highly non linear.A geneti
 algorithm maintains a population of individuals that evolve a

ording torules of sele
tion and geneti
 operators, su
h as reprodu
tion, 
rossover and mutation.GA begins with a population that 
onsists in randomly 
reated individuals (possiblesolutions) and rapidly modi�es this population "evolving" towards an optimal solution.Ea
h individual in the population is assigned a measure of its �tness in the environ-ment. Reprodu
tion fo
uses its attention on high �tness individuals, thus exploiting theavailable �tness information. Crossover and mutation perturb those individuals, provid-ing general heuristi
s for exploration. Although simplisti
 from a biologist's viewpoint,these algorithms are 
omplex enough to provide robust (good performan
e a
ross avariety of problem types) and powerful adaptive sear
h me
hanisms. The adaptivebehavior of the GA depends on this feedba
k to drive the population towards betteroverall performan
e [99℄ [100℄.Therefore, 
onsidering a parti
ular problem, an ad-ho
 evaluation or �tness fun
tionmust be devised.As already known, GAs' performan
e is a fun
tion of parameter settings [101℄ [102℄.The number of possible parameter assignments rules out a fa
torial design to �x thebest parameter setting.The algorithm for low-density parity-
he
k 
odesIn [10℄ the authors presented an algorithm for the de
oding of low-density parity-
he
k 
odes based on GA. They suppose to use an additive white Gaussian noise(AWGN) 
hannel, and 
alled x the transmitted ve
tor and y the re
eived one, whi
h isnothing more than the transmitted one 
orrupted by AWGN.The algorithm 
an be implemented in three steps:
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oding- syndrome 
al
ulation step- GA appli
ation step- meta de
ision step.Syndrome 
al
ulation stepIn this �rst step the proposed algorithm 
onstru
ts a modi�ed re
eived ve
tor yhard,whi
h is basi
ally a hard de
ision ve
tor of the re
eived ve
tor y. In this step, the
omponents yi of the re
eived ve
tor, essentially real numbers, are 
onverted into binaryvalues (taken from the dis
rete alphabet 0,1) using a �xed threshold. Then, the de
odingalgorithm veri�es if this modi�ed ve
tor satis�es the syndrome 
ondition
Hyhard = 0. (5.14)If the modi�ed re
eived ve
tor yhard meets this 
ondition, then a valid 
ode ve
tor d isobtained: d = yhard. Otherwise, the de
oder makes the following two steps.Geneti
 algorithm stepThe algorithm begins 
reating an initial population of V 
andidates: a set of in-dividual ve
tor v with real 
omponents vi ∈ [0, 1]. To avoid an a priori redu
tion ofthe sear
hing spa
e, an initial random population is generated. A new 500 individualgeneration (
hildren) is 
reated through the following steps:- Sele
ts individuals (
alled parents) based on their �tness value 5.17 through thesele
tion fun
tion.- The two individuals with the best �tness values survive for the next generation(elite 
hildren= 2).- The 
rossover fra
tion (Pc = 0.95) spe
i�es the fra
tion of the population, otherthan elite 
hildren, that are made up of 
rossover 
hildren.- To 
omplete the new generation, mutation 
hildren are 
reated by introdu
ingrandom 
hanges with a given probability rate (Pm = 0.01) to a single parent. Thealgorithm stops when the limit of 25 generations is rea
hed.The GA parameters were heuristi
ally sele
ted to optimize its performan
e.The solution provided by the GA algorithm is a z ve
tor obtained as follows:

zi =

{

1 if ỹi > vi

0 if ỹi ≤ vi
(5.15)where

ỹi =
1

1 + e−2yi
(5.16)expression that maps the 
omponents of the re
eived ve
tor y into [0, 1]. Hen
e there
eived ve
tor y format agrees with the 
andidate ve
tors v format.
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oding algorithm for LDPC 
odes 115The pro
ess involves the following �tness fun
tion:
Fitness =

m∑

j=1

bj +
n∑

j=1

|zi − ỹi| (5.17)where bj are the 
omponents of the ve
tor b de�ned as
Hz = b. (5.18)In equation (5.17), m is the number of rows of the parity 
he
k matrix H, i.e. thenumber of parity-
he
k nodes, and n the 
ode ve
tor length.The �tness fun
tion (equation (5.17)) measures both a 
omponent wise distan
ebetween the 
andidate ve
tor and the re
eived one, and also how 
lose the 
andidateve
tor satis�es the syndrome 
ondition (equation (5.14)).A set of q de
oded ve
tors z is obtained applying GA algorithm q times, where qis an arbitrary integer value heuristi
ally optimized (partial solutions). These q ve
torsare 
andidates for the following step of the de
oding pro
ess, whi
h 
onsists in applyingthe meta-de
ision pro
ess.Meta de
ision stepThe Meta-de
ision pro
ess redu
es the results s
attering of the GA, whi
h 
omesfrom the randomness of the initial population.The z ve
tors are a set of possible solutions obtained at q GA runs, next a meta-de
ision stage generates the �nal solution, i.e, a de
oded ve
tor d.This pro
ess applies the majority logi
, a well-known pro
edure utilized in the error
orre
tion de
oding theory. This pro
edure performs a 
omponent wise de
ision over the

z 
andidate ve
tors, setting ea
h �nal 
omponent di as the bit state of higher frequen
y.Still open point and 
on
lusionsThe results presented in [10℄ are quite promising: in their example, as we 
an seein [10℄, the GA based de
oder performan
e is better than the traditional sum-produ
tde
oder for signal-to-noise ratio (SNR) greater than 3 dB.We also observe that the main advantage of the proposed GAMD de
oder is thatnoise level transmission 
hannel information needs not be known, an essential 
onditionfor sum produ
t algorithm.Neverless it is important to understand how the authors 
ompute the 
rossover andthe mutation and how they determine- the number of elements in the population,- the number of iteration at the GA step,- the number of de
oded ve
tors used in the meta de
ision step,- the 
rossover fra
tion Pc,- the probability rate of 
hanges Pm.



116 Chapter 5. Alternative algorithms for LDPC de
odingIt is of the same importan
e to understand how to determine the above parameterswhen we 
onsider di�erent 
odes, espe
ially with growing sizes.Sin
e the results presented in [10℄ were quite promising, we ran the geneti
 algo-rithm, with those parameters, on our quasi-
ompliant WiMAX standard simulator, but,unfortunately, our results were a 
omplete disaster. We try to de�ne di�erent valuesfor the parameters, but we 
ouldn't �nd any theoreti
al rule to determine as good pa-rameters for our system as those for the 
ode in [10℄. We try to de�ne the parameterssomehow, but we weren't lu
ky in our resear
h: all the set of simulation performed,presented very bad results and this is the reason why, here, we don't present any kindof result.



Chapter 6Con
atenation of short LDPC andturbo 
odes for improvedperforman
eIt is well known that both Low-Density Parity-Che
k (LDPC) and Turbo 
odes aregood 
odes if we 
onsider long 
odewords, whi
h means that the information part isgreater than a thousand of bits. In our days, in many appli
ation, su
h as voi
e, delayis an important issue and large blo
k size 
ommonly used in LDPC or turbo 
odes
annot be applied. We propose the use of a 
on
atenation of LDPC, as the outer 
ode,and turbo, as the inner 
ode, when we 
onsider short frame, i.e. the information partof a 
odeword is around a hundred bits. The obje
tive of the work is to 
ome up withwell-performing short 
ode stru
tures through the 
on
atenation of LDPC and turbo
odes: a synergy of short LDPC and short turbo 
odes vulnerable to di�erent errorpatterns. The overall 
ode rate is of 
on
ern: we 
onsider 1/3, 5/16 and 1/4 rates.Other parti
ular topi
s about this work are the 
hoi
e of the de
oding algorithms. Forturbo 
odes the one with less 
omputational 
omplexity: the max-log-MAP algorithm isused and, for LDPC, the one used performs very well even if it has very high 
omplexity:it is the message passing algorithm (MPA).The work 
onsists in analyzing the 
riti
al sequen
es of errors for turbo de
odingand try to design the LDPC 
ode with the purpose of de
oding those kind of sequen
es.This would allow us to redu
e the error �oor presented by turbo 
odes at high SNR.Another important aspe
t is the determination of when a de
oder should 
ontinue toiterate and when it would be better to forward the frame to the other de
oder, whi
hmeans when would the LDPC de
oder have better lu
k de
oding the frame than if theturbo de
oder kept iterating.6.1 Introdu
tionBoth Low-Density Parity-Che
k (LDPC) and Turbo 
odes, when we 
onsider long
odewords, have near-
apa
ity performan
e on a large variety of data transmission and
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atenation of short LDPC and turbo 
odes for improved performan
estorage 
hannels. This is the reason why they hold the attention of 
oding theoristsand pra
titioners.Everything about LDPC 
odes has been said in Chapters 4 and 5. Here we rememberthat they were invented by Gallager in 1960's [3℄ and [4℄, reinterpreted by Tanner in1981 [103℄ and redis
overed by Ma
Kay, Luby and others in the mid-1990's [104℄, [105℄,[106℄ and [5℄.On the other side, Turbo 
odes were dis
overed by Berrou, Glavieux and Thiti-jashima [19℄ in 1993. In this work they demonstrated that these 
odes, with very largeinterleavers, 
an approa
h the Shannon bound on the 
apa
ity of a 
ommuni
ation
hannel. Then, Berrou and Glavieux, further elaborated the 
on
ept in [20℄ and [21℄.6.1.1 Con
atenation: why and expe
ted resultsSerial 
on
atenation of LDPC and turbo 
odes is not a new idea. It was �rstproposed in [22℄ where the authors observed that while turbo 
odes performs very wellfor BER's above 10−4 (waterfall performan
e), however they have a signi�
ant weakenedperforman
e at BER's below 10−5: this phenomenon is known as error �oor. Anotherimportant observation, we need to keep in our mind, is that, in turbo de
oding, onlyinformation bits are de
oded and they 
annot be used for error dete
tion. The poorminimum distan
e and la
k of error dete
tion 
apability make these 
odes performbadly in terms of blo
k error probability. Poor blo
k error performan
e also makesthese 
odes not suitable for many 
ommuni
ation appli
ations. On the 
ontrary, �nitegeometry LDPC 
odes do not have all the above disadvantages of turbo 
odes, ex
eptthat they may not perform as well as turbo 
odes for BER's above 10−4. Other reasons,whi
h 
ould justify the 
hoi
e of a LDPC 
ode as outer 
ode are given by a very low
omplexity de
oding, 
ompared to the 
omplexity if the MAP algorithm used for theturbo 
odes, and the fa
t that this algorithm 
an re
eive the reliable de
oded bitsdire
tly from turbo de
oders. Finally, LDPC has an inherent interleaving e�e
t andso, if it's 
on
atenated with another 
ode, interleaver is not required [107℄. Straight
on
lusion from the above observation is that the advantages of extremely good errorperforman
e of turbo 
odes for BER's above 10−4 and the advantages of �nite geometryLDPC 
odes su
h as no error �oor, possessing error dete
tion 
apability after de
odingand good blo
k error performan
e, 
an be 
ombined to form a 
oding system thatperforms well for all ranges of SNR's. Obviously, the �rst system of this type we 
anthink about is the 
on
atenation of an inner turbo 
ode and a �nite geometri
 outerLDPC 
ode. In 2005 Lee and others [23℄, [24℄ analyzed the 
on
atenation of LDPC andturbo 
odes, be
ause they thought it would be a good idea to obtain a good trade-o�between de
oding 
omplexity and performan
e. They observed that turbo 
ode is thestandard error 
orre
ting 
ode for the third generation mobile 
ommuni
ation systems,but even if it shows very good performan
e at low SNR's, its �oor for higher SNR'sis not as good as the high quality and high speed multimedia servi
es required in thenext generation mobile 
ommuni
ation systems. Sin
e LDPC 
ode doesn't present thesame �oor for high SNR's, the 
on
atenated s
heme 
an be an alternative to solve the
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onstru
tion 119problem of the new requirements. In [23℄ it is shown that the 
on
atenated s
heme doesnot su�er error �oor and outperforms LDPC 
ode of the same 
ode rate when outerLDPC 
ode rate is sele
ted properly, hen
e the suitable LDPC 
ode rate remains a stillopen point. In [24℄, the authors are still fo
used on the same problem, but sin
e both the
ode presents iterative de
oding they proposed to de
ode the 
on
atenated s
heme witha global iterative de
oding pro
ess, whi
h means that ea
h iteration of the de
odingalgorithm performs turbo and LDPC de
ode. Results similar to the ones presented in[23℄ are shown. Finally, in 2006, the same authors in [25℄, observing that 
on
entratederrors may o

ur in some 
odewords in the output of a turbo 
ode, proposed the useof a blo
k interleaver in the 
on
atenation, between the two 
odes. Results show thatthe blo
k interleaver improves the performan
e of the 
on
atenation spreading out the
on
entrated errors at the output of the turbo de
oder. What we 
an underline hereis that all these works about the 
on
atenation of LDPC and turbo 
odes 
onsiderlong 
odewords, whi
h is ne
essary to obtain good performan
e for both the 
onsidered
odes. This is not too good if we must respe
t some delay 
onstraints as in spee
h
ommuni
ations. This observation is the starting point of this work, where we want toanalyze the performan
e of the 
on
atenation s
heme when the word we need to en
odeis a hundred bits. Sin
e the 
odeword is relatively short, we analyze the output at theturbo de
oding and try to 
onstru
t an "ad ho
" LDPC de
oder whi
h is suitable forde
oding what the turbo 
ode 
annot 
orre
t. This idea is useful also to avoid the blo
kinterleaver usage, whi
h is not suitable, be
ause it introdu
es more delay.6.2 Error pattern at the output of the turbo 
ode andLDPC 
onstru
tion6.2.1 Turbo 
ode: '3G 'typeThe s
heme of Turbo 
oder is a Parallel Con
atenated Convolutional Code (PCCC)with two 8−state 
onstituent en
oders and one Turbo 
ode internal interleaver. The
oding rate of Turbo 
oder is 1/3. The stru
ture of Turbo 
oder is illustrated in Figure6.1.The transfer fun
tion of the 8−state 
onstituent 
ode for PCCC is:
G(D) =

[

1,
g1(D)

g0(D)

]

, (6.1)where
g0(D) = 1 +D2 +D3 (6.2)
g1(D) = 1 +D +D3 (6.3)The initial value of the shift registers of the 8−state 
onstituent en
oders shall be
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Figure 6.1: Stru
ture of rate 1/3 Turbo 
oder.all zeros when starting to en
ode the input bits. Output from the Turbo 
oder is:
x1, z1, z

′
1, x2, z2, z

′
2, . . . , xK , zK , z

′
K ,where x1, x2, . . . , ‘, xK are the bits input to the Turbo 
oder i.e. both �rst 8−state
onstituent en
oder and Turbo 
ode internal interleaver, and K is the number of bits,and z1, z2, . . . ., zK and z′1, z′2, . . . , z′K are the bits output from �rst and se
ond 8−state
onstituent en
oders, respe
tively. The bits output from Turbo 
ode internal interleaverare denoted by x′1, x′2, . . . , x′K , and these bits are to be input to the se
ond 8−state
onstituent en
oder.Also the turbo interleaver is standard 
ompliant [49℄.For the de
oding two algorithms are implemented: the log-MAP de
oding and theMAX-log-MAP de
oding, whi
h is an approximation of the former. In this work we usethe se
ond one, sin
e it is more e�
ient from a 
omputational point of view.Code's propertiesWe are looking for those double error pattern in the CC sequen
es whi
h 
annot bede
oded through the CC de
oding.We observe that the polynomials in Equations (6.2) and (6.3) 
an be written inother two di�erent forms (binary and o
tagonal) as follows:

g0 = [1 0 1 1] = 13

g1 = [1 1 0 1] = 15,



6.2. Error pattern at the output of the turbo 
ode and LDPC 
onstru
tion 121hen
e the en
oder needs 3 memory elements and we 
an de�ne the 
onstraint lengthequal to 4.The 
ode is a systemati
 feedba
k 
ode and the en
oder 
an be represented as inFigure 6.2, where we represented the 
ontent of the shift register at the beginning ofthe 
oding.
u + 0 0 0

++

+

s

pFigure 6.2: Representation of the en
oder for the (4, [13 15], 13) 
onvolutional 
ode.In Figure 6.2, u represents the information sequen
e, s the systemati
 output of theen
oder and p the 
omputed parity-
he
k bits.Figure 6.3 represents the trellis used for the de
oding of the re
eived 
odeword.
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Figure 6.3: Representation of the trellis for the (4, [13 15], 13) 
onvolutional 
ode.Considering Figure 6.2 and the input sequen
e u = (1 0 0 0 0 0 0 1), we 
an show thatthe feedba
k polynomial is primitive [90℄. Table 6.1 
ontains the state evolution andthe output of the 
onvolutional en
oder.We observe that the shift register's 
ontents rotate through the all 23−1 = 7 possiblestates before returning to the original all-zero state and if the last input bit would be
0 instead of 1 the new state would be 1 0 0 and so another 
y
le is repeated. In Figure6.4 we 
an see the path for this input sequen
e on the trellis.Observation 8. The behavior des
ribed above makes us think that the error pattern ofour interest are the ones with this 
hara
teristi
: 
onsidering the sour
e bits, if we have
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u state s p

000

1 1 1
100

0 0 1
010

0 0 1
101

0 0 1
110

0 0 0
111

0 0 0
011

0 0 1
001

1 1 1
000Table 6.1: En
oder states and output, when the sequen
e u = (1 0 0 0 0 0 0 1) is en-
oded.
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11Figure 6.4: Representation of the path on the trellis for the 
oding of sequen
e u =

(1 0 0 0 0 0 0 1) through the (4, [13 15], 13) 
onvolutional 
ode. The red path is the oneof our interest and the dashed line represents the beginning of a new 
y
le if the lastinput is a 0 instead of a 1.an error at the instant k we would not be able to de
ode the pattern if the se
ond errorwould happen at the instant k + n · 7, with n = 1, 2, . . ..From Figure 6.2 we 
an see that the same sequen
e is en
oded through a CC en
odertwi
e, the �rst time dire
tly, the se
ond time after an interleaver operation.At the re
eiver side (see Figure 6.5) the re
eived systemati
 part is the input forboth the max-log-MAP de
oder and to the se
ond after the interleaver operation. Fromthe Observation 8 and the Figure 6.5 we understand that the sequen
e that are not
orre
ted after the turbo de
oders are those whose maintain the property de�ned inObservation 8 also after the interleaver operation.
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tion 123PSfrag repla
ements
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Iteration stepFigure 6.5: Representation of the turbo de
oder. The blo
k deassembler subdividesthe re
eived signal in three parts: the systemati
 bits, the parity-
he
ks for the �rsten
oder and the parity-
he
ks for the se
ond one; the π represents the interleaveroperation and the π−1 the deinterleaver one. Finally the blo
k output 
omputes the�nal log-likelihood ratio.We 
all 
riti
al sequen
es all the possible sequen
es with 2 errors of this kind, be
ausethey 
annot be 
orre
ted after the interleaver, sin
e the distan
e between the 2 errorsis still equal to the minimum distan
e or a multiple of it.The interesting results of this study is given by the fa
t that these sequen
es 
an begrouped, be
ause di�erent groups of sequen
es a�e
t di�erent and separate groups ofbits at the output of the de
oder. Figures 6.6 and 6.7 represent the 
riti
al sequen
eswhen we 
onsider a 
on
atenation with overall rate equal to R = 1/3, with turbo 
ode'srate RT = 1/2 and LDPC 
ode's rate RL = 2/3. Sin
e the turbo 
ode is the inner one,its sour
eword length is equal to 150, be
ause the words we want to en
ode have length

100 bits.
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Information bit indexesFigure 6.6: Representation of the 
riti
al sequen
es for a turbo 
ode with rate 1/2when the sour
eword length is 150. This Figure refers to the results reported inSe
tion 6.4.1
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Figure 6.7: Two-dimensional representation of Figure 6.6.This observation gave us an idea: when we 
onstru
t the LDPC matrix for the outer
ode we add a 
onstraint; we want that the 
olumns 
orrespondent to the bits of thesame group with errors at the output of the turbo de
oders have no ones in 
ommon.This means that those bits are 
he
ked by di�erent 
he
k nodes and so the probabilityof 
orre
ting the errors through the LDPC 
ode is higher.6.2.2 LDPC 
ode 
onstru
tionWe 
an 
hoose if we want to use a regular or an irregular LDPC 
ode and if we 
hoosethe se
ond one we must spe
ify a degree distribution. In literature it is shown that theirregular 
odes have better performan
e espe
ially if the 
odewords are very long. In[108℄, the authors studied the probability densities at the message nodes of the graphand show that they always 
onverge as the number of iterations tends to in�nity. Usingthis result they found the optimal degree distribution when a 
odeword is of in�nitelength. However we 
onsider short frame, so, we 
an �nd the optimal distribution fora 
ode with the spe
i�ed rate and in�nite 
odeword length and then we 
an adapt the
omputed parameter to our 
ase [90℄. Unfortunately, this operation introdu
es 
y
lesin the Tanner graph and so the performan
e experien
es error �oor for high SNR andbad results for low SNR be
ause of a big number of degree−2 variable node.To solve this problem the variable node distribution must be modi�ed to have anumber of variable nodes of degree−2 less than or equal to the number of parity-
he
knodes and when the graph is 
onstru
ted the degree−2 variable nodes must be made
orrespond to the 
he
k nodes. It is important also that the degree−2 variable nodes are
y
le-free. On
e the variable node degree distribution is modi�ed also the 
he
k nodedegree distribution must be 
hanged, be
ause it must be 
ompatible with the other one.On the web site http://lth
www.epfl.
h/resear
h/ldp
opt/index.php there isan implemented algorithm to 
ompute the optimal degree distributions for in�nite
odeword and from http://www.
s.toronto.edu/ radford/ftp/LDPC-2006-02-08/
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ription 125index.html we 
an download some 
-fun
tions to 
onstru
t the parity-
he
k matrixon
e we have the degree distributions.After appropriate modi�
ations, these fun
tions are used to 
onstru
t the parity-
he
k matrix whi
h needs to be modi�ed to satisfy the new 
onstraint.6.3 System des
riptionThe system 
onsidered is represented in Figure 6.8.
PSfrag repla
ements

LDPCLDPCen
oder TurboTurboen
oder QPSKQPSKmodulator +

w

demodulator de
oder de
oderFigure 6.8: Representation of the 
onsidered transmission s
heme.Data are en
oded �rst through a LDPC en
oder and then through a turbo en
oder.After the 
oding operation they are modulated through a QPSK modulator and sentover an AWGN 
hannel. At the re
eiver side, they are �rst demodulated and thende
oded through a turbo and a LDPC de
oder.Sin
e we want to have reliable performan
e results, we 
onsider the 
on
ept of
on�den
e, i.e. we want a probability equal to 95% that the measured value lies in the
omputed 
on�den
e interval [97℄.We suppose that our system transmits 100 words of 100 or 105 information bitsevery time. These bits are en
oded, modulated and transmitted on the 
hannel. Atthe re
eived side, the re
eived signal (i.e. the signal at the output of the 
hannel) isdemodulated, de
oded and the bit error rate is 
omputed. At this point we 
omputethe 
on�dential interval through the equation:
confidence = 2 · 1.96 ·

√

(var/total_number_words/info_bits)/BER, (6.4)where var = BER · (1 − BER), total_number_words is the total number of wordssimulated until that moment and info_bits is the information length of a 
odeword.This 
on�den
e interval must be equal or smaller than 15% of the estimated BERvalue; if it is not we run the simulation again for other 100 words and re
omputed BERand 
on�den
e interval. The pro
ess is iterated until the 
onstraint on the 
on�den
einterval is satis�ed or a maximum number of iterations, equal to 10000, is rea
hed.6.4 ResultsThe results shown in this se
tion are 
omputed through Matlab simulations: fun
-tions are implemented in Matlab and C, where the 
-fun
tions are transformed in mex-fun
tions and so they 
an be used into Matlab simulations.
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atenation of short LDPC and turbo 
odes for improved performan
e6.4.1 Overall rate 1/3The turbo rate is RT = 1/2 and it is obtained through the pun
turing in the '3G'standard [49℄. The LDPC 
ode has rate RL = 2/3 and we 
ompared the performan
ewith di�erent matri
es.Figure 6.9 represents the performan
e of the 
on
atenation when we use regularand irregular LDPC matri
es obtained with the algorithms des
ribed in Se
tion 6.2.2(
urves red, 
yan and green). The blue and yellow 
urves represent the performan
ewhen the matri
es used are modi�ed to satisfy the new 
onstraint. We 
an observe thatfor growing SNR the performan
e is better and this is reasonable, be
ause, with thisgrowing, the errors are due more to the distan
e of the 
ode than to the 
hannel noise.Unfortunately, the 
on
atenation doesn't present the expe
ted results, be
ause theLDPC 
ode isn't able to re
overy the loss do to the turbo pun
turing.Figure 6.9 represents also the performan
e for an LDPC 
ode and a turbo 
ode withrate 1/3. While the 
on
atenation outperform the turbo for SNR higher than 3.5 dB,the used LDPC 
ode performs very well and is of interest for another kind of study.
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Figure 6.9: Con
atenation performan
e with overall rate equal to 1/3.6.4.2 Overall rate 5/16The turbo rate is RT = 1/3 and the LDPC 
ode's one is RL = 15/16. In this 
asethe performan
e doesn't experien
e the loss due to the pun
turing of the turbo 
ode,but the problem is that the LDPC parity 
he
k matrix is very small (7×112) and thereis not enough spa
e to modify the matrix with the aim of satisfying the new 
onstraint.In Figure 6.10 magenta and bla
k 
urves represent performan
e for turbo 
ode withrate 1/3 and LDPC 
ode with rate 5/16, respe
tively. On the other hand blue andgreen lines represent performan
e for the 
on
atenation system when we use the random



6.4. Results 127matrix and its modi�ed version. Here we 
an observe that the 
on
atenation has someadvantages in terms of bit error rate, but it is impossible to satisfy the new 
onstraintand so the results are almost the same (see blue and green lines).
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Figure 6.10: Con
atenation performan
e with overall rate equal to 5/16.
6.4.3 Overall rate 1/4The turbo rate is RT = 1/3 and the LDPC one is RL = 3/4. In this 
ase theperforman
e doesn't experien
e the loss due to the pun
turing of the turbo 
ode, butthe problem is that the overall rate is very low and this is not good in our system,be
ause we are trying to satisfy some delay 
onstraints.In Figure 6.11 magenta and 
yan 
urves represent performan
e for turbo 
ode withrate 1/3 and LDPC 
ode with rate 1/4, respe
tively. On the other hand, blue andgreen lines represent performan
e for the 
on
atenation system when we use the ran-dom matrix and its modi�ed version. Here we 
an observe that the 
on
atenation hassome advantages in terms of bit error rate: for example, at BER equal to 10−6 the
on
atenation s
heme gains 1.1 dB. From Figure 6.11 we observe also that the 
on
ate-nation with the modi�ed matrix (green line) presents an enhan
ement with respe
t tothe non-modi�ed one (blue line). This has a theoreti
al explanation: at low SNR mostof the errors are due to the noise of the 
hannel, but, as the SNR grows, the errorsare due to the inability of de
oding some sequen
es whi
h 
an be 
orre
ted, with highprobability, by the modi�ed LDPC.Unfortunately, the BER's values are very small, and, even if we ran the maximumnumber of iteration for every simulated point, we 
an't say those results are 
ompletelyreliable.
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Figure 6.11: Con
atenation performan
e with overall rate equal to 1/4.6.4.4 Con
lusionObserving Figures 6.9, 6.10 and 6.11 we 
an 
on
lude that 
on
atenation presentsperforman
e gain in terms of bit error rate for 
odes with very low rates. This is farfrom our purpose: we presented the 
on
atenation s
heme for short frames to respe
tsome delay 
onstraints.Observing LDPC performan
e in Figures 6.9 and 6.11, another idea 
omes to ourmind: 
ompare the BER for the LDPC 1/3 (Figure 6.9) and LDPC 1/4 (Figure 6.11).From a theoreti
al point of view we expe
t the LDPC 1/4 outperforms the LDPC 1/3,but a
tually it is not true, as we 
an see from Figure 6.12, where the bla
k line representsper BER of the LDPC 
ode with rate 1/3, the 
yan one the performan
e of LDPC 
odewith rate 1/4 and the green one the performan
e of the 
on
atenation s
heme withoverall rate equal to 1/4. For example, at 2 · 10−5 BER the LDPC 1/3 has a gain of 1.1dB and this is due to the strong dependen
e of the performan
e from the parity-
he
kmatrix.For both the LDPC 
odes, the parity-
he
k matri
es were 
hosen by using the samedesign 
riterion. The 
hoi
e has been limited, for both 
odes, to a small number ofparity-
he
k matri
es. The 
on
lusion we tried is that for LDPC 
ode with rate 1/3 wefound a very good solution while for the LDPC 
ode with rate 1/4 the best solution wefound is far away from the a

eptability and the sear
h must be 
ontinued.We 
an 
ompare also the performan
e of the LDPC 
ode with rate 1/3 and the
on
atenation with overall rate 1/4. In this 
ase results 
on�rm the expe
tation: at
2 · 10−5 of BER the 
on
atenation s
heme gains 0.2 dB over LDPC 
ode and at 10−7

0.4 dB.To 
on
lude this se
tion we observe also that all the parity 
he
k matri
es have been
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Figure 6.12: Comparison of LDPC 
odes with rate 1/3 and 1/4 and 
on
atenations
heme with rate 1/4
hosen with the design 
riterion des
ribed above, thus the remark made for LDPC 
odewith rate 1/4 
an be made also for the LDPC 
ode of rate 5/16 and all the LDPC 
odesinvolved in the 
on
atenation s
hemes.





Chapter 7WiMAX standardThis Chapter has the aim of brie�y des
ribe those parts of the standard whi
h havebeen of interest for the implementation of a downlink simulator standard 
ompliant.What I want to underline is that it doesn't give a 
omplete des
ription of the stan-dard, so for more details and 
ompleteness I re
ommend the readers to reefer to [1℄ and[2℄.7.1 Aim and frequen
y allo
ationThe WirelessMAN- OFDMA PHY, based on the OFDM modulation is designed fornon-line-of-sight (NOS) operation in the frequen
y bands below 11 HZ, as seen fromthe table 7.1.Designation Appli
ability PHY Options Duplexingalterna-tiveWirelessMAN−SCTM 10 − 66 HZ 8.1 TDD FDDWirelessMAN−SCaTM Below 11 HZli
ensed bands 8.2 AAS,ARQ,STC TDD FDDWirelessMAN
−OFDMTM Below 11 HZli
ensed bands 8.3 AAS,ARQ,Mesh,STC TDD FDDWirelessMAN−OFDMA Below 11 HZli
ensed bands 8.4 AAS, ARQ,STC TDDFDDWirelessMAN
−HUMANTM Below 11 HZli
ense-exemptbands [8.2, 8.3or 8.4and 8.5

AAS,ARQ,Mesh,STC TDD
Table 7.1: Air interfa
e nomen
lature.For li
ensed bands, 
hannel bandwidth shall be limited to the regulatory provisioned



132 Chapter 7. WiMAX standardbandwidth divided by any power of two, and must be no less than 1 MHz.The OFDMA PHY mode based on at least one of the FFT sizes 2048 (ba
kward
ompatible to IEEE Std 802.16-2004), 1024, 512 and 128 shall be supported. Thisfa
ilitates support of the various 
hannel bandwidths.The Mobile Station (MS), 
alled also User Equipment (UE) or Subs
riber Station(SS), may implement a s
anning and sear
h me
hanism to dete
t the DL signal whenperforming initial network entry and this may in
lude dynami
 dete
tion of the FFTsize and the 
hannel bandwidth employed by the Base Station (BS).We have �ve frequen
y range that will support WiMAX, and to everyone of thiswe asso
iate one or more 
ombinations of 
hannel bandwidth, FFT size, 
hannel rasterand duplexing mode. In [109℄, whose s
ope is to provide the OFDMA system pro�lespe
i�
ation of mobile network, primarily for the purpose of 
erti�
ation of 
onformantMS and BS, we �nd all the possible 
ombinations of the above parameters. They areresumed in Table 7.2.Frequen
y Channel frequen
y Channel bandwidth FFT Duplexingrange (HZ) step (kHz) (MHz) size mode
2.3 − 2.4 250 5 512 TDD

10 1024 TDD
8.75 1024 TDD

2.305 − 2.32 250 5 512 TDD
2.345 − 2.36 10 1024 TDD
2.496 − 2.69 250 (200 in Europe) 5 512 TDD

10 1024 TDD
3.3 − 3.4 250 5 512 TDD

10 1024 TDD
3.4 − 3.8 250 5 512 TDD

7 1024 TDD
10 1024 TDDTable 7.2: Combinations of 
hannel bandwidth, FFT size, 
hannel raster and duplexingmode.As we 
an see from the Table 7.2, even if the standard allows the two duplexingmodes TDD and FDD, the WiMAX Forum requires only the TDD mode to have a
erti�ed produ
t.7.2 OFDMA symbol des
ription, symbol parameters andtransmitted signal7.2.1 Time domain des
riptionThe OFDMA waveform is 
reated through the Inverse Dis
rete Fourier Transform(IDFT) and its time duration is named useful symbol time Tb. To 
olle
t multipath,while maintaining the orthogonality of the tones, a Cy
li
 Pre�x (CP) is used, whi
h
onsists in 
oping the last Tg se
onds of the useful symbol period at the beginning of the



7.2. OFDMA symbol des
ription, symbol parameters and transmitted signal 133symbol. This method allows the re
eiver to take the samples for performing the FastFourier Transform (FFT) anywhere over the length of the extended symbol, Ts and somultipath immunity and toleran
e for symbol time syn
hronization errors are a
hieved.The CP values proposed in the standard are 1/4, 1/8, 1/16 and 1/32, but in [109℄it is said that the value we must use is 1/8.The transmission energy in
reases with the length of the CP, while the re
eiverenergy remains the same, so there is a loss in Eb/N0, that 
an be quanti�ed through:
(Ploss)dB =

10 log(1 − Tg

Ts
)

log(10)
. (7.1)where Tg and Ts are de�ned in 7.2.3 When CP is equal to 1/8, in (7.1) we found:

(Ploss)dB = 0.5 dBOn initialization, a MS should sear
h all possible values of CP, until it �nds the onebeing used by the BS. The SS must use the same CP on the uplink, be
ause it 
an be
hanged by the BS, but this operation requires the resyn
hronization of all the SSs tothe BS.7.2.2 Frequen
y domain des
riptionAn OFDMA symbol is made up of sub
arriers, whose number determines the usedFFT size. There are three sub
arrier types:- Data sub
arriers: for data transmission;- Pilot sub
arriers: for various estimation purposes;- Null 
arriers: no transmission at all, for guard bands and DC 
arrier.In the OFDMA mode, the a
tive sub
arriers (pilot and data sub
arriers) are di-vided into subsets of sub
arriers, whi
h may, be adja
ent, and ea
h subset is termedsub
hannel. In downlink, one sub
hannel 
an be intended for groups of re
eivers; inuplink, instead, one sub
hannel may be assigned to more transmitters, so that SS maytransmit simultaneously.This te
hnique supports s
alability, multiple a

ess and advan
ed antenna arraypro
essing 
apabilities.7.2.3 ParametersPrimitive parametersFour parameters 
hara
terize the OFDMA symbol:1. BW: nominal 
hannel bandwidth2. Nused: number of used sub
arriers (in
luded the DC sub
arrier)
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Figure 7.1: OFDMA frequen
y des
ription: an example of three 
hannel.3. n: sampling fa
tor; in 
onjun
tion with BW and Nused, determines the sub
ar-rier spa
ing and the useful symbol time. Its values is 28/25 if the 
hannelbandwidth is a multiple of any of 1.25, 1.5, 2 and 2.75 MHz and 8/7 in theother 
ases.4. G: ratio of CP time to useful time (G = Tg/Tb)Derived parametersThese parameters are de�ned in terms of the primitive ones.1. NFFT : FFT size is the smallest power of two greater than Nused2. Fs: sampling frequen
y Fs =
⌊
n · BW

8000

⌋
× 80003. ∆f : sub
arrier spa
ing ∆f = Fs

NF F T4. Tb: useful symbol time Tb = 1
∆f5. Tg: CP time Tg = G · Tb6. Ts: OFDMA symbol time Ts = Tg + Tb7. Tsam: sampling time Tsam = Tb
NF F TChannel BW S
aling fa
tor Fs[dB]

1.25 28/25 1.4

1.5 28/25 1.68

2 28/25 2.24

2.75 28/25 3.08

5 28/25 5.6

8.75 28/25 9.8

10 28/25 11.2

7 8/7 8Table 7.3: Sampling frequen
y Fs.



7.3. Frame duration 1357.3 Frame durationIn the standard [2℄ the frame length 
an be equal to 20, 12.5, 10, 8, 5, 4, 2.5 and 2ms, but we saw in [109℄ that the length 
hosen is equal to 5 ms.This length indi
ates the periodi
ity of the downlink frame start preamble in bothTDD and FDD 
ases. Therefore we 
an say that in every se
ond we transmit 200frames.On this point three observations are ne
essary:� the frame duration is not an integer multiple of the OFDMA symbol duration.Therefore sometimes padding may be ne
essary between the last useful OFDMAsymbol of the frame and the beginning of the next frame;� in TDD 
ase (whi
h is the only one proposed in [109℄, as we 
an see from Table7.2) Re
eive/transmit Transition Gap (RTG) and Transmit/re
eive TransitionGap (TTG) guard intervals must be in
luded in the frame, and both of themshall be no less than 5 µs in duration;� a simple s
heme of the frame stru
ture is shown in Figure 7.2, where we 
an seethat it is 
omposed by a downlink transmission period (whi
h in
ludes also thepreamble), a TTG, an uplink transmission period and a RTG.

P
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e

S
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ch
an

ne
l l

og
ic

al
 n

um
be

r

DL TTG UL RTG

OFDMA symbol numberFigure 7.2: Simple s
heme of an OFDMA frame in TDD mode.Before 
hara
terizing RTG and TTG it is ne
essary to de�ne the Physi
al Slot (PS)as a time unit, dependent on the PHY spe
i�
ation, for allo
ating bandwidth and inWirelessMAN-OFDMA it is given by:
PS =

4

Fs
.



136 Chapter 7. WiMAX standardRTG is a gap between the uplink burst and the subsequent downlink burst in aTDD trans
eiver. This gap allows time for the BS to swit
h from re
eive to transmitmode and MS to swit
h from transmit to re
eive mode. During this gap the BS and MSare not transmitting modulated data, but simply allowing the BS transmitter 
arrierto rump up the transmit/re
eive antenna swit
h to a
tuate and MS re
eiver se
tions toa
tivate.TTG is a gap between the downlink burst and the subsequent uplink burst in aTDD trans
eiver. This gap allows time for the BS to swit
h from transmit to re
eivemode and MS to swit
h from re
eive to transmit mode. Also in this 
ase, during thisgap the BS and MS are not transmitting modulated data, but simply allowing the BStransmitter 
arrier to rump down, the transmit/re
eive antenna swit
h to a
tuate andMS transmitter se
tion to a
tivate.Both these gaps are in
luded in the frame by the BS and not from the MS. Theirminimum durations are equal to 5 µs, and we 
an say that the frame in the time is
omposed by the uplink, the downlink and the gaps RTG and TTG and the sum oftheir duration must be equal to 5 µs. In Table 7.4 we �nd the durations of RTG andTTG in PS and the number of OFDM symbols that 
ompose the frame at the varyingof the 
hannel bandwidth.Channel Number of TTG RTGbandwidth (MHz) OFDM symbols (PS) (PS)
10 47 296 168

8.75 42 218 186

7 33 376 120

5 47 148 84Table 7.4: Durations of the several parts of the frame.
ExampleWe have a 
hannel bandwidth equal to 10 MHz and we want to 
ompute the frameduration.1. We 
ompute the sampling frequen
y Fs

Fs =

⌊

n · BW
8000

⌋

× 8000

=

⌊
28

25
· 107

8000

⌋

× 8000

=

⌊
7

5
· 103

⌋

· 8000

= 11.2 MHz (7.2)



7.4. Downlink Sub
arriers Allo
ation 1372. We 
ompute PS:
PS =

4

FS
= 0.357 µs (7.3)3. We 
ompute TTG:

TTG = 296 · PS
= 105.7 µs (7.4)4. We 
ompute RTG:

TTG = 168 · PS
= 60 µs (7.5)5. We 
ompute the OFDM symbol duration:

Tb =
1

∆f

=
1
Fs

NF F T

=
1024

11.2 · 106
= 91.428 µs (7.6)6. We add the 
y
li
 pre�x:

Ts = Tb ·
9

8
= 102.86 µs (7.7)7. We 
ompute the frame length:

TF = TTG + RTG + Number of OFDM symbols · Ts

= 105.7 + 60 + 47 · 102.86 µs
≃ 5 ms, (7.8)7.4 Downlink Sub
arriers Allo
ationThe downlink 
an be divided into three segment stru
tures and in
ludes a preamblewhi
h begins the transmission.In Figure 7.3 the downlink transmission basi
 stru
ture is shown.There are several ways to perform the sub
arrier allo
ation, but only one of them,PUSC one, is mandatory, the remaining ones are optional.
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Figure 7.3: Downlink transmission basi
 stru
ture.As we 
an see from [109℄, the remaining allo
ations are distinguished into two types:the �rst one is de�ned potentially optional, be
ause their implementation is not expli
-itly mentioned as mandatory, but from the standard [2℄ we may 
on
lude it is, throughnot really required for the system to perform basi
 operations, so at the end we 
an saythey are optional. The se
ond type is expli
itly mentioned as optional in the standardand so it may or may not be implemented.7.4.1 PreambleAll preambles are stru
tured as either one or two OFDM symbol. The OFDMsymbols are de�ned by the values of the 
omposing sub
arriers. Ea
h of those OFDMsymbols 
ontains a 
y
li
 pre�x, whi
h length is the same as the CP for data OFDMsymbols.The �rst symbol of the downlink transmission is the preamble. There are three typesof preamble 
arrier-sets, those are de�ned by allo
ation of di�erent sub
arriers for ea
hone of them and those sub
arriers are modulated using a boosted BPSK modulationwith spe
i�
 Pseudo-Noise (PN) 
ode.The preamble 
arrier-sets are de�ned using the following equation:
PreambleCarriesSetn = n+ 3 · k, n = 0, 1, 2 and k = 0, . . . , 567 (7.9)where PreambleCarrierSetn spe
i�es all sub
arriers allo
ated to the spe
i�
 preamble.Ea
h segment1 uses one type of preamble out of the three sets in the followingmanner:- Segment 0 uses preamble 
arrier-set 0;- Segment 1 uses preamble 
arrier-set 1;- Segment 2 uses preamble 
arrier-set 2.1A segment is a subdivision of the OFDMA available sub
hannels. One segment is used for deployinga single instan
e of the MAC.



7.4. Downlink Sub
arriers Allo
ation 139In the 
ase of segment 0, the DC 
arrier will not be modulated at all, therefore it shallalways be zeroed. For the preamble symbol there will be 172 guard band sub
arrier onthe left side and on the right side of the spe
trum.7.4.2 Partial Usage Of Sub
hannel (PUSC)Here we give only the des
ription of the mandatory allo
ation, whose name is PartialUsage of Sub
hannel (PUSC). For the other type of allo
ation see Appendix CSymbol stru
tureWe use three types of sub
arriers:� pilot sub
arriers,� data sub
arriers,� zero sub
arriers.In this 
ase the pro
edure used is the following:� the symbol is divided into basi
 
lusters;� zero 
arriers are allo
ated;� pilots and data 
arriers are allo
ated into ea
h 
luster.Ea
h symbol is 
hara
terized by the following parameters:1. Number of DC sub
arriers; its index is given by NFFT/2, 
ounting from 0)2. Number of guard sub
arriers, Left, i.e. on the left side of the spe
trum3. Number of guard sub
arriers, Right, i.e. on the right side of the spe
trum4. Number of sub
arriers per 
luster5. Number of 
lusters6. Renumbering sequen
e, used to renumber 
lusters before allo
ation to sub-
hannels7. Number of data sub
arriers in ea
h symbol per sub
hannel8. Number of sub
hannels9. Basi
 permutation sequen
e, also 
alled PermBasewhi
h depend on the FFT size.The values of these parameters, depending on the FFT size, are enumerated in Table7.5.Now we make some observations:



140 Chapter 7. WiMAX standardFFT sizeParameter 2048 1024 512 128Number of DC sub
arriers 1 1 1 1Number of guard sub
arriers, Left 184 92 46 22Number of guard sub
arriers, Right 183 91 45 21Number of sub
arriers per 
luster 14 14 14 14Number of 
luster 120 60 30 6Number of data sub
arriers in ea
h symbol per sub
hannel 24 24 24 24Number of sub
hannels 60 30 15 3PermBase 12 − 8 6 − 4 5 /Table 7.5: Symbol parameters for the available FFT size (i.e. 2048, 1024, 512 and128).Observation 9. The number of pilot sub
arriers in ea
h symbol per sub
hannel is 4 forthe 2048, 1024, 512 and 128 FFT size.In fa
t to 
ompute the number of pilot sub
arriers in ea
h symbol per sub
hannelwe follow these 
omputations:1. we 
ompute the number of data sub
arriers in ea
h symbol, in all sub
hannelsas the produ
t of the number of data sub
arriers in ea
h symbol per sub
hanneltimes the number of sub
hannels2. we 
ompute the number of sub
arriers in the all 
lusters as the produ
t of thenumber of sub
arriers per 
luster and the number of 
lusters3. we 
ompute the number of all pilot sub
arriers as the di�eren
e between the resultsfound at the se
ond and �rst points4. �nally, we 
ompute the number of pilot sub
arriers in ea
h symbol per sub
hanneldividing the above result for the number of sub
hannels.Now, we make an example to explain what is written above.ExampleWe 
onsider the 
ase of 128 and 1024 sub
arriers and use the parameters de�ned inTable 7.5.1. Total number of data sub
arriers in ea
h symbol Ntd:
Ntd128 = Nd ·Nsch Ntd1024 = Nd ·Nsch

= 24 · 3 = 24 · 30
= 72 = 720where Nd is the number of data sub
arriers in ea
h symbol per sub
hannel and

Nsch is the number of sub
hannels.
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ation 141
Ntsubclusters128

= Nclusters ·Nsubcluster
Ntsubclusters1024

= Nclusters ·Nsubcluster

= 6 · 14 = 60 · 14
= 84 = 8402. Number of sub
arriers in all 
lusters Ntsubclusters

:where Nclusters is the number of 
lusters andNsubcluster
is the number of sub
arriersper 
luster.3. Total number of pilots in a symbol Ntp:

Ntp128 = Ntsubclusters
−Ntd Ntp1024 = Ntsubclusters

−Ntd

= 84 − 72 = 840 − 720
= 12 = 1204. Number of pilots in a symbol per sub
hannel Np:
Np128 =

Ntp

Nsch
Np1024 =

Ntp

Nsch

= 12
3 = 120

30
= 4 = 4where Nsch is the number of sub
hannels.If we 
ompute these values using the numeri
al values of Table 7.5 we �nd thatthe number of pilots in ea
h symbol per sub
hannel is equal to 4 for all the FFT size
onsidered.Observation 10. In every sub
hannel we have 28 sub
arriers.

even symbols

odd symbols

Data carrier

Pilot carrierFigure 7.4: Cluster stru
ture.Figure 7.4 shows sub
arriers from left to right in order of in
reasing sub
arrier index.In order to determine the PUSC pilot position, symbols are 
ounted from the beginningof the 
urrent zone and the �rst one is always even. Obviously, the preamble is not
ounted as a part of the zone.
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hannels sub
arrier allo
ationThe pro
edure is the following:1. Sub
arriers are divided into Ncluster physi
al 
lusters with 14 adja
ent sub
arriers.2. The physi
al 
lusters are renumbering into logi
al 
lusters:
LogicalCluster =







RenumberingSeguence(PhysicalCluster)First DL zone of "All SC indi
ator=0"in STC_DL_Zone_IE"
RenumberingSeguence((PhysicalCluster)+

13DL_PermBase) mod Nclusterotherwise (7.10)
and the renumbering sequen
e and PermBase are spe
i�ed in the standard (8.4.6.1.2.1in [2℄). The renumbering sequen
es are reported in Appendix D, the sequen
es ofPermutation Base, instead,are reported in Table 7.7.3. Logi
al 
luster are allo
ated to six groups as it is shown in Table 7.6. These groupsFFT size Group 0 Group 1 Group 2 Group 3 Group 4 Group 5

2048 0 − 23 24 − 39 40 − 63 64 − 79 80 − 103 104 − 119

1024 0 − 11 12 − 19 20 − 31 32 − 39 40 − 51 52 − 59

512 0 − 9 10 − 19 20 − 29 / / /128 0 − 1 2 − 3 4 − 5 / / /Table 7.6: Cluster subdivision into six major groups.may be allo
ated to segments, if a segment is being used, then at least one groupshall be allo
ated to it. By default group 0 is allo
ated to segment 0, group 2 tosegment 1 and group 4 to segment 2.4. Allo
ating sub
arriers to sub
hannel in ea
h major group is performed separatelyfor ea
h OFDMA symbol by �rst allo
ating the pilot sub
arriers within ea
h
luster and then taking all remaining data 
arriers within the symbol and usingthe following pro
edure:� the remaining sub
arrier within ea
h major group are partitioned into groupsof 
ontiguous sub
arriers� ea
h sub
hannel 
onsists of one sub
arrier from ea
h group, so the num-ber of group must be equal to the number of sub
arriers per sub
hannel:
Nsubcarriers, instead the number of sub
hannels Nsubchannels is equal to thenumber of sub
arriers in ea
h group, so Nsubchannels ·Nsubcarriers is equal tothe number of data sub
arriers
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arriers Allo
ation 143� the partition into sub
hannels is given by the permutation formula (7.11):
subcarrier(k, s) = Nsubchannels · nk + {ps[nk mod Nsubchannels] +

+DL_PermBase} mod Nsubchannels (7.11)where- subcarrier(n, s) is the index of the sub
arrier n into the sub
hannel
s; its values are 0, 1, . . . , Nsubcarriers · Nsubchannels − 1 (n = 0, 1, . . . ,

Nsubcarriers− 1 and s = 0, 1, . . . , Nsubchannels − 1)- nk = (k + 13s) mod Nsubcarriers- ps[j] is the series obtained by rotating basi
 permutation sequen
e 
y
li-
ally to the left s times- DL_PermBase is an integer ranging from 0 to 31, whi
h is set to pream-ble IDcell in the �rst zone and determined by the DL_MAP for otherzones.The basi
 permutation sequen
e depends on the FFT size and on the numberof the major group in whi
h we �nd the sub
arrier to be allo
ated and isreported in Table 7.7.FFT size Even group Sequen
e Odd group Sequen
e
2048 12 sub
hannels 6, 9, 4, 8, 10, 11, 8 sub
hannels 7, 4, 0, 2, 1, 5,

5, 2, 7, 3, 1, 0 3, 6

1024 6 sub
hannels 3, 2, 0, 4, 5, 1 4 sub
hannels 3, 0, 2, 1

512 5 sub
hannels 4, 2, 3, 1, 0 / -128 / - / -Table 7.7: DL_PermBase.Example - 128 FFT sizeWe 
onsider a 128 FFT size.We have 6 
lusters of 14 adja
ent sub
arriers, hen
e we allo
ate 84 sub
arriers,be
ause the remaining are guard sub
arriers (22 on the left side and 21 on the rightside) and DC sub
arriers (1).In Figure 7.5 the subdivision in 
lusters is represented. The blue numbers representthe physi
al numeration, instead the bla
k ones are the number of sub
arriers in ea
hgroups.Through the renumbering sequen
e (see Appendix D) the physi
al 
lusters arerenumbering into logi
al 
lusters, as it is shown in Figure 7.6.As we 
an see from the legend in the Figure 7.6, the blue numbers still representthe physi
al numeration and the green ones are the new logi
al numeration.The renumbered 
lusters are subdivided into three groups (see Table 7.6).
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Left Right
22 21DC14 14 14 14 14 14

Physical clusters

0 1 2 3 4 5

Figure 7.5: Physi
al 
lusters.
��
��
��
��

��
��
��

��
��
��

Left Right

DC0 1 2 3 4 5
12 3 5 40

Logical clusters

Physical clusters

Group 0

Group 1

Group 2Figure 7.6: Logi
al 
lusters.At this point, we need to allo
ate the pilot sub
arriers, whi
h are 4 in ea
h sub
han-nel, as we pointed out in the above example. The pilots are allo
ated to �xed positions(see Figure 7.4):� for the even symbols the pilots are the 5th and 9th sub
arriers� for the odd symbols the pilots are the 1st and 13th sub
arriers.The stru
ture of the six 
luster is represented in Figure 7.7 and in this one the sub-division in groups of adja
ent sub
arriers is also represented. The remaining sub
arriersare numbered from 0 to 71.We point out that, in this Figure we assume that the 
luster are in logi
al order, so,looking Table 7.6, we 
an show also the major groups.In 128 FFT size we have 3 
hannels of 24 sub
arriers (see Table 7.5).Now, in ea
h major group, we shall 
lustering the sub
arriers into groups of dimen-sion equal to the number of 
hannels de�ned in it and then, through equation (7.11),we assign the sub
arriers to sub
hannels.We observe that 128 FFT size is a parti
ular 
ase, be
ause we have one sub
hannelsper major group, hen
e the group of adja
ent sub
arriers are made of only on
e. Then,
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31 3332 34 35 36 37 38 39 40 41 43 44 45 46 47

7170696867666564636261605958575648 49 50 51 52 53 54 55

Data subcarriers to subchannels

Pilot subcarriers

0

42

Major group 0

Major group 1

Maior group 2Figure 7.7: Pilots allo
ation.from Table 7.7, we see that we haven't basi
 permutation sequen
es and so equation(7.11) is redu
ed to:
subcarrier(k, s) = Nsubchannels · nk (7.12)where:� k = 0, 1, . . . , 23� s = 0� Nsubchannels = 1� nk = (k + 13 · s) mod Nsubcarriers = k mod 24 = 0, 1, . . . , 23.As it is obvious from the above observation and as we 
an see in Figure 7.8, thesub
arriers of a major group, in this 
ase, form a sub
hannel.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 21 22 23

11 12 13 14 18 21 22 23

15

20

Pilot subcarriers

Subcarriers of subchannel 0

Subcarriers of subchannel 1

Subcarriers of subchannel 2

Major group 0

Major group 1

Major group 2

10 10 15 16 17 192 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 19 20 21 22 230 1 2 3 5 6 7 8 94 18Figure 7.8: Sub
arriers to sub
hannel assignment.In Figure 7.8 we use four 
olors to represent:� the pilots (light blue 
olor)� the sub
arriers allo
ated to sub
hannel 0 (magenta 
olor)� the sub
arriers allo
ated to sub
hannel 1 (yellow 
olor)� the sub
arriers allo
ated to sub
hannel 2 (green 
olor)



146 Chapter 7. WiMAX standardExample - 1024 FFT sizeTo show the use and results of the equation (7.11) we 
onsider an example with
1024 sub
arriers.First we show the subdivision in physi
al 
lusters (Figure 7.9) and then the renum-bering into logi
al 
lusters (Figure 7.10).

1492 14 14 14 14 14 911414141414
Left Right

DC

0 1 2 3 4 5 2928272625
14

24

30 physical clustersFigure 7.9: Physi
al 
lusters.
Left Right

DC0 1 2 3 4 5 24 25 26 27 28 29
6 48 37 21 31 40 20 24 52 4 34 0

Logical clusters

Physical clusters

Group 1   (12 − 19) Group 4   (40 − 51)

Group 5   (52 − 59)

Group 0   (0 − 11)

Group 2   (20−31)

Group 3   (32 − 39)Figure 7.10: Physi
al 
lusters.In Figure 7.11 we insert the pilot sub
arriers into ea
h 
luster. As we 
an see thepositions are the same seen in the above example.After the insertion of the pilots we subdivide the remaining sub
arriers within ea
hof the six major group in groups of adja
ent sub
arriers of the dimension of the numberof 6 and 4 if we are 
onsidering even or odd groups respe
tively.Then, a sub
arrier from ea
h group, 
hosen through equation (7.11), forms thesub
hannels.In Figures 7.12 and 7.13 we show the allo
ation of the sub
arriers to sub
hannels inthe major groups 0 and 1 
onsidering a DL_PermBase equal to 0. Considering, then,that in the last two major groups the allo
ation would be the same, we represent theallo
ation if we assume DL_PermBase = 15.To distinguish the sub
hannels we use two sets of di�erent 
olor for the two majorgroups. In the �rst major group we have:� pilot sub
arriers (light blue 
olor)� sub
arrier allo
ated to sub
hannel 0 (magenta 
olor)� sub
arrier allo
ated to sub
hannel 1 (yellow 
olor)� sub
arrier allo
ated to sub
hannel 2 (green 
olor)
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 230

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 230

24 25 26 27 28 29 30 31 3332 34 35 36 37 38 39 40 41 43 44 45 46 4742

24 25 26 27 28 29 30 31 3332 34 35 36 37 38 39 40 41 43 44 45 46 4742

7170696867666564636261605958575648 49 50 51 52 54 5553

7170696867666564636261605958575648 49 50 51 52 54 5553

72 73 74 75 76 77 78 79 80 81 82 83 8584 86 87 88 89 90 91 92 93 94 95

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

131

72 73 74 75 76 77 78 79 80 81 82 83 8584 86 87 88 89 90 91 92 93 94 95

120 121 122 123 124 125 126 127 128 129 130 132 133 134 135 136 137 138 139 140 141 142 143

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 230

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 230

24 25 26 27 28 29 30 31 3332 34 35 36 37 38 39 40 41 43 44 45 46 4742

24 25 26 27 28 29 30 31 3332 34 35 36 37 38 39 40 41 43 44 45 46 4742

7170696867666564636261605958575648 49 50 51 52 54 5553

7170696867666564636261605958575648 49 50 51 52 54 5553

72 73 74 75 76 77 78 79 80 81 82 83 8584 86 87 88 89 90 91 92 93 94 95

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

131

72 73 74 75 76 77 78 79 80 81 82 83 8584 86 87 88 89 90 91 92 93 94 95

120 121 122 123 124 125 126 127 128 129 130 132 133 134 135 136 137 138 139 140 141 142 143

Data subcarriers to subchannels

Pilot subcarriers

.. . . . . . . . . . . . . . . . . . .

Major group 1

Major group 0

Major group 4

Major group 5

Figure 7.11: Pilot sub
arriers in the 
lusters.� sub
arrier allo
ated to sub
hannel 3 (
yan 
olor)� sub
arrier allo
ated to sub
hannel 4 (red 
olor)� sub
arrier allo
ated to sub
hannel 5 (pink 
olor)and in the se
ond major group:� sub
arrier allo
ated to sub
hannel 6 (dark 
yan 
olor)� sub
arrier allo
ated to sub
hannel 7 (light pink 
olor)
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arrier allo
ated to sub
hannel 8 (dark green 
olor)� sub
arrier allo
ated to sub
hannel 9 (dark magenta 
olor)
1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31 3332 34 35 36 37 38 39 40 41 43 44 45 46 47

7170696867666564636261605958575648 49 50 51 52 54 55

Pilot subcarriers

0

42

53

72 73 74 75 76 77 78 79 82 83 8584 86 87 88 89 90 91 92 93 94 95

96 97 98 99 100 101 102 103 104 105 106 108 109 110 112 113 114 115 116 117 119

120 121 122 123 125 127 128 130 131 132 133 134 135 136 137 138 139 140 141 142

111

124

0 1 2 3 87654 9 10 12 13 15 16 17 18 19 21 22 23

24 25 26 27 28 29 30 31 32 33 34 35 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 58 59 60 61 63 64 65 66 67 68 69 70 71

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 88 90 91 92 93 94

80

118

129

107

143

14

81

20

36

57

89 95

11

62

87

14

126

First major group Second major group

Subcarrier to subchannel 0

Subcarrier to subchannel 1

Subcarrier to subchannel 2


Subcarrier to subchannel 3

Subcarrier to subchannel 4

Subcarrier to subchannel 5

Subcarrier to subchannel 7

Subcarrier to subchannel 8

Subcarrier to subchannel 9

Subcarrier to subchannel 6

Major group 0

Major group 1

Figure 7.12: Sub
arrier allo
ation into sub
hannels, for the �rst two major group,
onsidering a DL_PermBase equal to 0.7.5 Channel 
odingChannel 
oding pro
edures in
lude:� randomization� FEC 
oding� bit interleaving� repetition� modulation.In Figure 7.14 the 
hannel 
oding pro
ess is shown and we point out that repetitionshall only be applied to QPSK modulation.
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Figure 7.13: Sub
arrier allo
ation into sub
hannels, for the last two major group,
onsidering a DL_PermBase equal to 15.
FEC Bit−Interleaver Repetition ModulationRandomizer

Dato to transmit
in PHY burst

Mapping to OFDMA
subchannelsFigure 7.14: Channel 
oding pro
ess for regular and repetition 
oding transmission.7.5.1 RandomizationThis operation is mandatory in [2℄.Data randomization is performed on all data transmitted in uplink and downlink,ex
ept the FCH. It is initialized on ea
h FEC blo
k, through the ve
tor

[LSB] 0 1 1 0 1 1 1 0 0 0 1 0 1 0 1 [MSB]and in Figure 7.15 the PRBS generator for data randomization is represented.From the Figure 7.15 we see that the PRBS generator shall be 1+x14 +x15. Pream-bles are not randomized and ea
h data byte to be transmitted shall enter sequentiallyinto the randomizer, MSB �rst. The randomizer sequen
e is applied only to informa-tion bits. If the amount of data to transmit does not �t exa
tly the amount of dataallo
ated, so padding may be added at the end of the transmission blo
k.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

MSBLSB

Data in
Data outFigure 7.15: PRBS generator for data randomization.H-ARQ requires the randomizer pattern is identi
al for ea
h H-ARQ attempt, so,for H-ARQ, it shall be initialized with the ve
tor 
reated as it is shown in Figure 7.16.

b b b b b b b b b b b b b b b14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 LSBMSB

LSBLSB MSBMSB 0 0 000 01 1 1 1 1 1 10 OFDMA randomizer
initialization vector

Figure 7.16: Creation of the OFDMA randomizer initialization ve
tor for H-ARQ.7.5.2 En
odingThe WiMAX standard de�nes some 
odes, but only one of them is mandatory:the tail-biting 
onvolutional en
oding. The other ones are: Blo
k Turbo Code (BTC),Convolutional Turbo Code (CTC) and Low-Density Parity-Che
k 
ode (LDPC). Herewe des
ribe only the mandatory and the LDPC ones, be
ause these are the ones of outinterest. The other ones are des
ribed in Appendix E.The en
oding blo
k size depends on the number of slots allo
ated and the modulationspe
i�ed for the 
urrent transmission. Con
atenation of a number of slots shall beperformed in order to make larger blo
ks of 
oding, where it is possible, with thelimitation of not ex
eeding the largest supported blo
k size for the applied modulationand 
oding.For any modulation and FEC rate, given an allo
ation of n slots, the followingparameters are de�ned:� j: parameter dependent on the modulation and FEC rate� n: number of allo
ated slots/repetition fa
tor� k: ⌊n/j⌋
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oding 151� m: n mod j.We de�ne a rule for the slots 
on
atenation; it is des
ribed in Table 7.8.Number of slots Slots 
on
atenated
n ≤ j 1 blo
k of n 
lusters

n > j, n mod j = 0 k blo
ks of j slots
n > j, n mod j 6= 0 (k − 1) blo
ks of j slots

1 blo
k of 2 × ⌈(m+ j)/2⌉ slots
1 blo
k of 2 × ⌊(m+ j)/2⌋ slotsTable 7.8: Rule for the slots 
on
atenation.In Table 7.9 we �nd the value of j at the varying of the modulation and FEC rate.Modulation and rate jQPSK 1/2 6QPSK 3/4 4

16 - QAM 1/2 3

16 - QAM 3/4 2

64 - QAM 3/4 1

64 - QAM 3/2 1Table 7.9: Values of j at the varying of modulation and FEC rate.There are severely en
oding methods, but only one of them is mandatory and soneed to be implemented: the others are optional, but in [109℄ is required to implementone of them.Convolutional 
oding (CC) - mandatoryEa
h FEC blo
k is en
oded by the binary 
onvolutional en
oder, whi
h shall havenative rate 1/2, and a 
onstraint length equal to k = 7 and shall use the followinggenerator polynomials 
odes to derive its two 
ode bits:
G1 = 171OCT X (7.13)
G2 = 133OCT Y (7.14)In Table 7.10 the pun
turing patterns and serialization order that shall be used torealize di�erent 
ode rates are de�ned; in it "1" means a transmitted bit and "0" meansa removed bit. Rate dfree X Y XY

1/2 10 1 1 X1Y1

2/3 6 10 11 X1Y1Y2

3/4 5 101 110 X1Y1Y2X3Table 7.10: Convolutional 
ode with pun
turing 
on�guration.
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Delay Delay Delay Delay Delay Delay

+

+

Data in

X output

Y outputFigure 7.17: Convolutional en
oder of rate 1/2.Ea
h FEC blo
k is en
oded by a tail-biting 
onvolutional en
oder, whi
h is a
hievedby initializing the en
oder's memory with the last data bits of the FEC blo
k beingen
oded.Following (in Table 7.11) we de�ne the basi
 sizes of the useful data payloads to been
oded in relation with the sele
ted modulation type, en
oding rate and 
on
atenationrule. QPSK 16 - QAM 64 - QAMEn
oding rate 1/2 3/4 1/2 3/4 1/2 2/3 3/4Data payload (bytes) 6
9

12 12
18 18 18 18
24 24 24

27 27
30
36 36 36 36 36Table 7.11: Useful data payload for slot.H-ARQ implementation is optional and an In
remental Redundan
y (IR) based onit is taking the pun
turing pattern into a

ount and for ea
h retransmission the 
odeblo
k is not the same.The pun
ture patterns are prede�ned or 
an be easily dedu
ted from the originalpattern and 
an be sele
ted based on SPID (whi
h is the SubPa
ket Identi�er (ID),used to identify the four subpa
kets generated from an en
oder pa
ket).At the re
eiver, the re
eived signals are de-pun
tured a

ording to its spe
i�
 pat-tern, de
ided by the 
urrent SPID, then the 
ombination is performed at bit metri
slevel.
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oding 153Code rate
1/2 2/3 3/4 5/6SPID = 0 X 1 10 101 10101

Y 1 11 110 11010SPID = 1 X 1 01 011 01011
Y 1 11 101 10101SPID = 2 X 1 10 110 10110
Y 1 11 011 01011SPID = 3 X 1 01 101 01101
Y 1 11 110 10110Table 7.12: Pun
ture pattern de�nition for H-ARQ.About the Table 7.12 there is a spe
i�
ation:� SPID = 0: pun
ture pattern equal to the mandatory one� SPID = 1: pun
ture pattern left 
y
li
 shift of the one from SPID = 0� SPID = 2 and SPID = 3: patterns are governed by the same rule.Low density parity 
he
k 
ode - optionalCode des
riptionThe LDPC 
ode is based on a set of one or more fundamental LDPC 
odes. Ea
hof the fundamental 
odes is a systemati
 linear blo
k 
ode.Ea
h LDPC 
ode is de�ned by a matrix H of size m× n, where n is the size of the
ode and m is the number of parity-
he
k bits in the 
ode. The number of systemati
bits is k = n−m.The matrix H is de�ne as:

H =











P 0,0 P 0,1 P 0,2 · · · P 0,nb−2 P 0,nb−1

P 1,0 P 1,1 P 1,2 · · · P 1,nb−2 P 1,nb−1

P 2,0 P 2,1 P 2,2 · · · P 2,nb−2 P 2,nb−1

· · · · · · · · · · · · · · · · · ·
P mb−1,0 P mb−1,1 P mb−1,2 · · · P mb−1,nb−2 P mb−1,nb−1











= P Hb(7.15)where P i,j is one of a set of z × z permutation matri
es or a z × z zero matrix. Thematrix H is expanded from a binary base matrix Hb of size mb × nb, where nb = 24,
n = z · nb and m = z ·mb, with z an integer. The base matrix is expanded by repla
ingea
h 1 in the base matrix with a z × z permutation matrix, and ea
h 0 with a z × zzero matrix.The set of permutation matri
es 
ontains the z×z identity matrix and 
ir
ular rightshifted version of the identity matrix.

Hb is partitioned into two se
tions, where Hb1 
orresponds to the systemati
 bits
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orresponds to the parity 
he
k bits, su
h that
H = [(Hb1)mb×kb

|(Hb2)mb×mb
]Se
tion Hb2 is further partitioned into two se
tions: hb and H ′

b2, where hb has oddweight, and H ′
b2 has a dual diagonal stru
ture with matrix elements at row i, 
olumn

j equal to 1 for i = j, for i = j + 1 and 0 elsewhere.The base matrix has hb(0) = 1, hb(mb−1) = 1 and a third value hb(j), 0 < j < mb−1equal to 1.So:
Hb2 = [hb|H ′

b2]

=














hb(0) | 1

hb(1) | 1 1 0

· | 1
. . .

· | . . . 1

· | 0 1 1

hb(mb − 1) | 1














(7.16)
The largest 
ode length of ea
h 
ode rate is n = 2304 and, in any 
ase, n must be amultiple of nb = 24.Code rate and blo
k size adjustmentThe LDPC 
ode �exibility supports di�erent blo
k sizes for ea
h 
ode rate throughthe use of an expansion fa
tor z.Table 7.13 shows the parameters for ea
h 
ode rates:- n(bytes) = n(bits)/8- z = n(bits)/24- k = n(bytes) ∗RPa
ket en
odingThe en
oding blo
k size k shall depend on the number of sub
hannels allo
atedand the modulation spe
i�ed for the 
urrent transmission. As usual, 
on
atenation ofa number of sub
hannels shall be performed in order to make larger blo
ks of 
odingwhere it is possible, with the limitation of not passing the largest blo
k under the same
oding rate. For the 
on
atenation rule see Table 7.15, but remember that for the LDPCthe 
on
atenation does not depend on the 
ode rate.For any modulation and FEC rate, given an allo
ation of NSCH sub
hannels, wede�ne the following parameters:
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n n z k bytes Number of sub
hannels(bits) (bytes) fa
tor R = 1/2 R = 2/3 R = 3/4 R = 5/6 QPSK 16 −QAM 64 −QAM

576 72 24 36 48 54 60 6 3 2
672 84 28 42 56 63 70 7 − −
768 96 32 48 64 72 80 8 4 −
864 108 36 54 72 81 90 9 − 3
960 120 40 60 80 90 100 10 5 −
1056 132 44 66 88 99 110 11 − −
1152 144 48 72 96 108 120 12 6 4
1248 156 52 78 104 117 130 13 − −
1344 168 56 84 112 126 140 14 7 −
1440 180 60 90 120 135 150 15 − 5
1536 192 64 96 128 144 160 16 8 −
1632 204 68 102 136 153 170 17 − −
1728 216 72 108 144 162 180 18 9 6
1824 228 76 114 152 171 190 19 − −
1920 240 80 120 160 180 200 20 10 −
2016 252 84 126 168 189 210 21 − 7
2112 264 88 132 176 198 220 22 11 −
2208 276 92 138 184 207 230 23 − −
2304 288 96 144 192 216 240 24 12 8Table 7.13: LDPC blo
k sizes and 
ode rates.- ji: parameter dependent on the modulation and number of antennas in 
ase ofspatial multiplexing- NSCH : number of allo
ated sub
hannel- F = �oor(NSCH/ji)- M = NSCH mod jiTable 7.14 spe
i�es the 
on
atenation of sub
hannels for di�erent allo
ations andmodulations. Modulation j1 j2 j3 j4QPSK 24 12 8 6

16 - QAM 12 6 4 3

64 - QAM 8 4 2 2Table 7.14: Parameter j for LDPC.
NSCH ≤ ji 1 blo
k of NSCH sub
hannels
NSCH > ji If M == 0

F blo
ks of ji slotselse
(F − 1) blo
ks of ji slots
1 blo
ks of ⌈((M + ji)/2))⌉ slots
1 blo
ks of ⌊((M + ji)/2))⌋ slotsendTable 7.15: Sub
hannels 
on
atenation.Control information and pa
kets that result in a 
odeword size n of less than 576bits are en
oded using CC.



156 Chapter 7. WiMAX standard7.5.3 InterleavingAll en
oded data bits shall be interleaved by a blo
k interleaver with a blo
k size
orresponding to the number of 
oded bits per the en
oded blo
k size Ncbps. Theinterleaver is de�ned by a two-step permutation. The �rst ensures that adja
ent 
odedbits are mapped onto nonadja
ent sub
arriers. The se
ond permutation insures thatadja
ent 
oded bits are mapped alternately onto less or more signi�
ant bits of the
onstellation, thus avoiding long runs of lowly reliable bits.Let Ncpc be the number of 
oded bits per sub
arrier, i.e. 2, 4 or 6 for QPSK,
16−QAM or 64−QAM, respe
tively. Let s = Ncpc/2. Within a blo
k of Ncbps bits attransmission, let k be the index of the 
oded bit before the �rst permutation, mk bethe index of that 
oded bit after the �rst and before the se
ond permutation and let jkbe the index after the se
ond permutation, just prior to modulation mapping, and d bethe modulo used for the permutation.The �rst permutation is de�ned by Equation (7.17):

mk =
Ncbps

d
· kmod(d) + ⌊k

d
⌋ k = 0, 1, . . . , Ncbps − 1 and d = 16 (7.17)The se
ond permutation is de�ned by Equation (7.18):

jk = s · ⌊mk

s
⌋ + (mk +Ncbps − ⌊d ·mk

Ncbps
⌋)mod(2) k = 0, 1, . . . , Ncbps − 1 and d = 16(7.18)The de-interleaver, whi
h performs the inverse operation, is also de�ned by twopermutations. Within a re
eived blo
k of Ncbps bits, let j be the index of a re
eived bitbefore the �rst permutation; mj be the index of that bit after the �rst and before these
ond permutation; let kj be the index of that bit after the se
ond permutation, justprior to delivering the blo
k to the de
oder.The �rst permutation is de�ned by Equation (7.19):

mj = s · ⌊j
s
⌋ + (j + ⌊ d · j

Ncbps
⌋) j = 0, 1, . . . , Ncbps − 1 and d = 16 (7.19)The se
ond permutation is de�ned by Equation (7.20):

kj = d ·mj − (Ncbps − 1) · ⌊d · mj ·mj

Ncbps
⌋ j = 0, 1, . . . , Ncbps − 1 and d = 16 (7.20)7.5.4 ModulationThere are di�erent way to modulate the data and pilot sub
arriers.Data modulationAfter bit interleaving, the data bits are entered serially to the 
onstellation mapper.Gray-mapped QPSK and 16−QAM are supported , whereas 64−QAM is optional. The
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onstellations shall be normalized by multiplying the 
onstellation point with the fa
tor
1/
√

2, 1/
√

10 and 1/
√

42 respe
tively, to a
hieve equal average power.Pilot modulationPilot sequen
es wk are generated through a PRBS generator, whose polynomial is
X11 +X9 + 1. Than the value of the pilot for OFDM symbol k is derived from wk. Forea
h pilot the BPSK modulation shall be derived as follows:

Re{ck} =
8

3

(
1

2
− wk

)

Im{ck} = 0 (7.21)where the multipli
ation by 8/3 realizes a boost of 2.5 dB.Preamble modulationOn
e we have de�ned the sequen
e of sub
arriers that must be used in the preamble,as des
ribed in Se
tion 7.4.1, Let's 
all them prek. Their modulation is a boosted BPSK:
Re{pk} = 4 ·

√
2

(
1

2
− prek

)

Im{pk} = 0. (7.22)





Chapter 8Performan
e evaluationIn the Chapters above 
hannel estimation and 
hannel 
oding te
hniques have beendes
ribed. In this Chapter those te
hniques will be applied to a WiMAX standard
ompliant systems. First of all the implemented WiMAX system will be des
ribed andthan the performan
e with in�nite and �nite 
omputational resour
e will be presented.8.1 WiMAX simulatorA standard 
ompliant implementation of the PHY level of a downlink 802.16e systemwas developed in a Matlab/Simulink software environment. The frame and symbolstru
tures are 
ompliant with the standards spe
i�
ations 
ontained in [1℄ and [2℄.The simulation software is able to evaluate the performan
e of the PHY layer indi�erent propagation s
enarios (e.g. urban/suburban/rural) and in various interferen
e
ontexts.All the simulations are 
arried out in a baseband environment, negle
ting the im-plementation of pass band frequen
y modulation and of 
arrier/symbol/frame syn
hro-nization.The transmitter supports all the 
onvolutional 
odes and QAM modulation s
hemes(MCS) approved by the previously mentioned standards. The useful payload is 
on-tained in a single data region, and �lls all the available sub
arriers. Also the irregularLDPC 
ode with all the QAM modulation are supported, but only for a 
ode rate equalto 1/2. Finally for the QPSK modulation we 
onsider also a turbo 
ode with rate 1/3,a regular LDPC 
ode with rate 3/4 and a 
on
atenation of the last two with an overallrate equal to 1/4. All the transmitting BSs are assumed to adopt di�erent DL permu-tation bases and the same MCS of the useful payload. By the way, simulations 
an bearranged where these parameters are set individually for ea
h interfering BS.Figure 8.1 gives a blo
k representation of the implemented system and Figures 8.2,8.3 and 8.4 give a more a

urate representation of the blo
k transmitter, frame assemblerand re
eiver.
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eiver.8.1.1 TransmitterThe transmitter implements the 
on
atenation and 
oding. We 
an 
hoose between�ve di�erent type of 
oding: 
onvolutional 
ode, regular and irregular LDPC 
odes,turbo 
ode or 
on
atenation. The 
onvolutional 
ode (CC) is implemented exa
tly asdes
ribed in Se
tion 7.5.2. For the other 
odes we 
onsider the same 
on
atenation rule(see Table 7.8) be
ause we want to en
ode sour
eword of the same length. For the irreg-ular LDPC 
ode, the matrix used is the one de�ned in the standard for sour
eword oflength 288 and rate 1/2 (see Table 7.13). We don't use the 
on
atenation rule des
ribedin Table 7.15, be
ause, for the 
ase we are 
onsidering (a full loaded system with 512sub
arriers, QPSK modulation and 
ode rate equal to 1/2) we �nd the 
odeword lengthis 720, but this value is not in
luded in Table 7.13, and for values di�erent from theones listed in that table the standard suggests to use the CC.After the 
oding operation the interleaver one is performed as des
ribed in 7.5.3.The last operation is the modulation one: we 
an 
hoose between QPSK, 16−QAMand 64−QAM, even if not all the 
ombinations of 
ode-modulation are available.



8.1. WiMAX simulator 1618.1.2 PUSC PermutationThis is a 
ompli
ated blo
k whi
h implements the insertion of the pilots and thepermutation as des
ribed in Se
tion 7.4.2.First of all we divide the data in even and odd symbols and we insert the pilots toform a 
luster. For every FFT size the 
luster is made of one even and one odd symboland ea
h of them is made of 12 data sub
arriers and 2 pilots.For the even symbols pilots have indexes 5 and 9, for the odd 1 and 13, assumingwe are numerating the 
arriers starting from 1.These 
lusters, whi
h are made of adja
ent sub
arriers, are 
alled physi
al 
lustersand are renumbering into logi
al 
lusters as de�ned in 7.10.Logi
al 
lusters are allo
ated to groups (see Table 7.6), then sub
arriers are 
lusteredinto groups whose dimension is equal to the number of 
hannels for the FFT size and,�nally, through Equation (7.11), they are allo
ated to sub
hannels.8.1.3 Frame assemblerAt the output of the PUSC permutation blo
k we have the data and pilots wewant to transmit on the OFDMA symbols, so, in the frame assembler virtual and DCsub
arriers are added to form the 
omplete OFDMA symbol. At the beginning of theframe we add the preamble whi
h is one OFDM symbol modulated with a boostedBPSK. For a 512 system, it 
ontains data only over 143 sub
arriers, generated with aPRBS generator as des
ribed in Se
tion 7.4.1.8.1.4 ChannelOn
e we have the frame we want to transmit the data over a wireless 
hannel. Inthis simulator we 
an use four di�erent types of 
hannel: AWGN, exponential withRayleigh fading, SCME [110℄ and Winner [111℄.8.1.5 Frame deassembler and Data/pilots separationAim of the frame deassembler blo
k is simply the division of preamble and usefulOFDM symbols. More 
omplex is the data/pilots separation blo
k: it extra
ts pilotsfrom the re
eiver symbols, performing the PUSC inverse permutation.In this blo
k we �nd the sub
hannels, the groups, the logi
al and physi
al 
lusters.On
e we have the latter ones we know exa
tly the position of the pilots and so it is easyto extra
t them from the re
eived symbols.8.1.6 Channel estimationIn this 
ase we have four inputs: the transmitted pilots and preamble and there
eived ones. Channel estimation 
an be performed through a redu
ed rank LS (seeChapter 2) estimator on both preamble and pilots or a MMSE estimator on preamble
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e evaluationand a LS estimator on pilots. The 
hoi
e of these estimators is motivated from theresults presented in Chapter 2.8.1.7 Re
eiverAt this point we have the 
hannel estimation and the re
eived data so we performthe equalization. A
tually to measure the loss due to the 
hannel estimation we 
anperform also the equalization with the perfe
t 
hannel, i.e. we assume the knowledgeof the 
hannel.The output of the equalizer is the input for the soft demapper, then the LLR arede-interleaved and de
oded. Finally we perform a reshape to have the bits ordered aswhen they were generated.8.2 System parametersWe 
onsider a 512 sub
arrier system. In this 
ase we use 360 sub
arriers for datatransmission and 60 for pilots. All the remaining ex
ept the DC are virtual sub
arriersso we don't transmit anything over them. The bandwidth is 5 MHz and the 
arrierfrequen
y 2 GHz, thus the symbol period is Ts = 1.0286e− 04 where we 
onsider a CPequal to 1/8 of the useful symbol.A single frame has one preamble and 24 OFDMA symbols and ea
h iteration of oursimulations performs the transmission of 200 frames.Finally, mobile speed 
an vary between 3, 50 or 130 km/h.Table 8.1 resumes all the parameters for the 
onsidered system.8.3 In�nite 
omputational resour
eFigure 8.5 represents the performan
e of the WiMAX implemented system when we
onsider an AWGN 
hannel and a CC 
odes. We 
onsider all the rate and modulationenumerated in the standard [2℄.Assuming we know the 
hannel, we plot the performan
e when we 
onsider LDPCand CC 
odes with rate 1/2. As said above for the 
onsidered system, the LDPCsub
hannel 
on
atenation rule doesn't give a valid 
odeword size, but if we use the slots
on
atenation de�ned for the CC, we have a 
odeword of 576 bits.Figures 8.6, 8.7 and 8.8 represents the performan
e for the 
onsidered system whenwe assume to 
on
atenate the data through the slots 
on
atenation rule (Table 7.8)and to en
ode them through the CC and LDPC 
odes with rate 1/2. The modulation
onsidered are QPSK (blue lines), 16−QAM (green line) and 64−QAM (magenta line).Two di�erent styles are used: the solid lines represent performan
e for the CC and thedotted lines performan
e for the LDPC 
ode.Observing these �gures we 
an 
on
lude that espe
ially for QPSK and 16−QAM it
ould be a good idea to use the LDPC 
odes with a di�erent 
on
atenation rule.



8.3. In�nite 
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e 163FFT size 512Channel bandwidth 5 MHzCarrier frequen
y 2 GHzSampling fa
tor 1.12CP ratio 1/8Sampling frequen
y 5.6 MHzSub
arrier spa
ing 1.0938e + 04Useful symbol time 9.1429e − 05CP time 1.1429e − 05OFDMA symbol time 1.0286e − 04Sampling time 1.7857e − 07Number of OFDM symbols (downlink) 24Number of preamble OFDM symbols 1Number of DC sub
arriers 1Number of guard sub
arrier, Left 46Number of guard sub
arrier, Right 45Number of sub
arriers per 
luster 14Number of 
lusters 30Number of data sub
arriers in ea
h symbol per sub
hannel 24Number of sub
hannels 15PermBase 5Table 8.1: Parameters for the 
onsidered system.
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Figure 8.5: Bit error rate performan
e for a WiMAX system with AWGN 
hannel andCC.In Chapter 6 we proposed a 
on
atenation of LDPC and turbo 
odes as outer andinner 
odes, respe
tively. In that Chapter we 
onsidered 
on
atenation with overallrate equal to 1/3, 5/16 and 1/4. Unfortunately, for the �rst two rates results weredisappointing. For the rate 1/4 some improvements in the performan
e are available, so
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Figure 8.6: Comparison in terms of bit error rate between the 
onvolutional 
ode andthe LDPC 
ode when the mobile station moves at 3 km/h.
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Figure 8.7: Comparison in terms of bit error rate between the 
onvolutional 
ode andthe LDPC 
ode when the mobile station moves at 50 km/h.we de
ided to apply this kind of analysis to the WiMAX system. Considering the slots
on
atenation rule de�ned in Table 7.8, we introdu
ed in the system, for the QPSKmodulation other three types of 
oding: a regular LDPC 
ode with rate 3/4, a turbo
ode with rate 1 1/3 and the 
on
atenation of these two 
odes for an overall rate equalto 1/4.1The turbo 
ode used here is not the one de�ned in the WiMAX standard, but the one des
ribed inChapter 6, be
ause we want to 
ompare the performan
e of the proposed algorithm with a "
ommon"turbo 
ode, i.e. a 
ode made by two identi
al 
onvolutional 
odes.
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Figure 8.8: Comparison in terms of bit error rate between the 
onvolutional 
ode andthe LDPC 
ode when the mobile station moves at 130 km/h.The parity-
he
k matrix for the regular LDPC 
ode has been found as des
ribed inSe
tion 6.2.2, while the turbo 
ode is the one de�ned in the 3GPP standard [49℄ anddes
ribed in Se
tion 6.2.1.Figures 8.9 and 8.10 represent the performan
e of the system with a QPSK mod-ulation, an AWGN 
hannel and the 
oding types des
ribed above. In Figure 8.9 theperforman
e is represented in terms of SNR, just to show the results when we 
onsiderthe same level of signal-to-noise ratio. This is not a good term of 
omparison be
ausethe energy used for ea
h information bit 
hanges when we 
onsider di�erent 
odingrates. To avoid this problem we represent the same BER in terms of Eb/N0 in Figure8.10; the 
onversion follows the equation:
Eb

N0
=

SNR

R log2(M)where R is the 
oding rate andM the 
ardinality of the modulation alphabet. From this�gure we 
an see that after 4 dB of Eb/N0 the 
on
atenation s
heme outperforms the
onvolutional one. Unfortunately, the 
omputational 
omplexity in the 
on
atenationen
oding and de
oding is higher than in the CC 
ase. Thus, the 
hoi
e of the 
odingtype must be made 
onsidering a trade-o� between the 
omputational 
omplexity andthe required BER.8.4 Finite 
omputational resour
eIn this Se
tion we present the results when we 
onsider 
hannel estimation andtra
king. We perform a LS estimation on the preamble and use this as the startingpoint for the tra
king of the 
hannel over the 24 OFDM symbols. The tra
king is
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Figure 8.9: Performan
e in terms of bit error between CC and 
on
atenation. Fora more 
omplete analysis also the performan
e of the 
onstituent 
odes (Turbo andLDPC) are represented.
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Figure 8.10: Comparison in terms of bit error rate between the performan
e of 
on-volutional, turbo and LDPC 
odes and 
on
atenation of turbo and LDPC. Here werepresent the performan
e presented in Figure 8.9 in terms of Eb/N0.performed through a LS estimation over the pilots.Figures 8.11, 8.12 and 8.13 represent the performan
e when we 
onsider perfe
t
hannel knowledge (× marker) and 
hannel estimation (◦ marker). The 
hannel usedis the exponential 
hannel with Rayleigh fading and the mobile speed is 3, 50 and 130km/h. The QPSK 1/2 is represented with blue lines, the QPSK 3/4 with red lines, the
16−QAM 1/2 with green lines, the 16−QAM 3/4 with 
yan lines, the 64−QAM 1/2
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Figure 8.11: Comparison in terms of bit error rate between di�erent types of modula-tion and CC 
oding rates, with perfe
t 
hannel knowledge and estimation.
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Figure 8.12: Comparison in terms of bit error rate between di�erent types of modula-tion and CC 
oding rates, with perfe
t 
hannel knowledge and estimation.Figures 8.14, 8.15 and 8.16 represent the performan
e for three di�erent modula-tions: QPSK, 16−QAM and 64−QAM, respe
tively. The 
oding rate is equal to 1/2and we 
onsider LDPC (dotted lines) and 
onvolutional (solid lines) 
odes. For all themodulation s
hemes we assume that the exponential 
hannel is a�e
ted by Doppler fre-quen
y due to three di�erent speeds: 3 (blue lines), 50 (green lines) and 130 (magentalines) km/h. For all the 
ases we 
onsider perfe
t 
hannel knowledge (× marker) and
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Figure 8.13: Comparison in terms of bit error rate between di�erent types of modula-tion and CC 
oding rates, with perfe
t 
hannel knowledge and estimation.estimation (◦ marker).
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Figure 8.14: Comparison in terms of bit error rate for a QPSK modulation and a
oding rate equal to 1/2. Results for di�erent mobile speeds are represented.Finally, we implemented our 
on
atenation s
heme for the 
hannel 
oding in theWiMAX system. In Figures 8.17, 8.18 and 8.19 we represent performan
e when we
onsider a WiMAX system with QPSK modulation and exponential 
hannel for di�erentmobile speeds: 3, 50 and 130 km/h, respe
tively. The 
hannel 
oding is implementedwith the proposed 
on
atenation s
heme with overall rate equal to 1/4. Performan
efor the proposed algorithm are very good, in fa
t the BER is about 10−7 for 1.4 dB of
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Figure 8.15: Comparison in terms of bit error rate for a QPSK modulation and a
oding rate equal to 1/2. Results for di�erent mobile speeds are represented..
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Figure 8.16: Comparison in terms of bit error rate for a QPSK modulation and a
oding rate equal to 1/2. Results for di�erent mobile speeds are represented.SNR. For all the Figures, the 
hannel estimation is 
omputed through the LS algorithm,as justi�ed above.
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Figure 8.17: Performan
e, in terms of bit error rate, for a WiMAX system with QPSKmodulation, exponential 
hannel (mobile speed equal to 3 km/h) and 
on
atenations
heme.
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Figure 8.18: Performan
e, in terms of bit error rate, for a WiMAX system with QPSKmodulation, exponential 
hannel (mobile speed equal to 50 km/h) and 
on
atenations
heme.
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Figure 8.19: Performan
e, in terms of bit error rate, for a WiMAX system with QPSKmodulation, exponential 
hannel (mobile speed equal to 130 km/h) and 
on
atenations
heme.





Chapter 9Con
lusionsFinal aim of this work is the performan
e of a WiMAX system. A
tually two bigproblems for wireless systems have been analyzed and studied in a general environmentand then the 
on
lusions of these studies have been applied to a WiMAX system.The �rst studied problem is the 
hannel estimation in an OFDM system.We suppose the use of a 
omb-type stru
ture, whi
h means that in an OFDM symbolsome �xed sub
arriers are dedi
ated to the transmission of pilots.After the study of the 
hannel estimation we 
an �nd in literature, in the time andfrequen
y domain, we implemented a quasi-
ompliant WiMAX standard simulator andanalyzed the performan
e of di�erent 
hannel estimation in the frequen
y domain. Forquasi-
ompliant WiMAX standard simulator we mean a simulator with the parametersgiven in the standards [1℄ and [2℄, but where we do not implement the sub
arrierspermutation and all the 
ode-modulation 
ombinations. We simply 
onsider a system
oded with a 
onvolutional 
ode 1/2 and modulated QPSK.The 
hoi
e of 
onsidering 
hannel estimation in frequen
y domain derives from the
onsidered system: it is the most obvious 
hoi
e for an OFDM system.The estimation te
hniques 
onsidered are Least Square (LS) and Linear MinimumMean Square Error (LMMSE) and �nally an adaptive te
hnique. Sin
e we want toperform the estimation of the 
hannel over a frame of 24 OFDM data symbols and apreamble, we assume the 
hannel is slow-time variant, whi
h means it is 
onstant onan OFDM symbol and varies very slowly from a symbol to the su

essive one. Theformer two te
hniques 
an be used both for the preamble estimation and the 
hanneltra
king through the pilots, whereas the last one, explained in Se
tion 2.4 takes, asinitial estimation, the LS or the LMMSE preamble estimation and simply performs thetra
king through the pilots.The 
hannel used in the simulations is the SCME [110℄ and, sin
e the system 
on-sidered is a mobile one, we assume the mobile station moves with three di�erent speeds:
3, 50 and 130 km/h. About the LMMSE, two di�erent versions 
ould be used, one isindependent of the transmitted data and the other one depends on them.From results presented in Chapter 2 we 
an see that the LS and LMMSE dependenton transmitted data are both good estimators, even if the LMMSE one is 
omputational
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lusionsmore 
omplex than the LS one. The adaptive estimator performs well for speeds under
50 km/h, but fails for speed equal to 130 km/h. Thus for slow mobile speeds we 
an
hoose between LS or adaptive estimator, and rather the adaptive one 
an be 
hosen,be
ause it is better from a 
omputational point of view. For high speeds the LS estimatorseems to be the best 
hoi
e. These 
on
lusions are straightly related to a system withthe WiMAX parameters; a di�erent number of pilots 
an 
ompletely 
hange the results.For the problem of the 
hannel estimation another solution has been explored: a joint
hannel estimation and data dete
tion through the expe
tation maximization algorithm
an be performed.This solution is very 
omplex and so it makes sense to use it only if the bit error rategain, with respe
t to the performan
e of the te
hniques des
ribed above, is signi�
ant.Unfortunately, results presented in Chapter 3 do not show any signi�
ant gain and sothis is not the solution we are looking for.The se
ond big problem 
onsidered in this work is the 
hannel 
oding with parti
ularattention to the Low-Density Parity-Che
k (LDPC) 
odes. These 
odes have drawnmu
h attention due to their near-
apa
ity error 
orre
tion performan
e. They are valid
ompetitors of the turbo 
odes, be
ause, even if they don't have as good performan
e asturbo 
odes for low SNR, they present lower error �oor at high SNR and their de
odingis not trellis based. In fa
t, their de
oding is performed through an Iterative De
odingbased on Belief Propagation (IDBP) algorithm whi
h is a symbol-by-symbol soft-insoft-out de
oding algorithm whi
h iteratively pro
esses the re
eived symbol in order toimprove its reliability.The 
omputation 
omplexity of this algorithm is, however, high and so a modi�edversion has been proposed. Results presented in Chapter 5 are quite promising, even ifa method to handle the not-a-number 
ases is needed.The best known 
odes, i.e. LDPC and turbo, have good performan
e if the 
ode-words are very long, but, in our days, in many appli
ations, su
h as voi
e, delay is animportant issue and large blo
k sizes 
ommonly used for these 
odes 
annot be applied.The solution we proposed to this problem, to obtain better performan
e than theone given by the known blo
k 
odes, as Hamming, or 
onvolutional 
odes, is the 
on-
atenation of short LDPC and turbo 
odes as outer and inner 
odes, respe
tively. Theturbo 
odes, due to their stru
tures, are not able to 
orre
t some error sequen
es, so, ifwe 
onstru
t the LDPC 
ode su
h that the possible wrong bits are 
he
ked by di�erent
he
k nodes, the performan
e of the 
on
atenation should be good.Results presented in Chapter 6 show that the 
hoi
e of the overall rate and ofthe rates of the 
onstituent 
odes is very important. First of all the loss due to thepun
turing of the turbo 
ode 
annot be re
overed with the LDPC 
ode. Thus, theoverall 
ode must be 
hosen su
h that turbo rate is 1/3. On the other hand it is wellknown that performan
e of LDPC 
odes with rates external to the interval [1/3, 1/2]are not so good. By the way, the overall rate equal to 1/4 shows good results even ifthis is a very low rate and this means we add a lot of redundan
y and so we introdu
esome delay. This is not a good point, sin
e we started investigating this 
on
atenations
heme be
ause we want to use it in systems with tight 
onstraints on delay.



175Finally, we implemented a WiMAX standard-
ompliant simulator for the transmis-sion in downlink.We assume syn
hronization and apply the presented 
hannel estimation and 
oding.Results presented in Chapter 8 show the loss of performan
e due to the mobile speedand the fa
t that LS estimator over the pilots gives very good results for speeds of 3 and
50 km/h, but experien
es some loss at 130 km/h, espe
ially for 64−QAM modulation.For the 
hannel 
oding we �nd out that, if we use the standard-de�ned LDPC 
odewith the slots 
on
atenation rule rather than the sub
hannels one, there are some gainsin terms of bit error rate.About the proposed 
on
atenation s
heme, results show some performan
e gainswhen the 
hannel is AWGN, but these gains 
ould be lost if the 
hannel experien
esany kind of fading, for example Rayleigh fading.Observing the performan
e of the WiMAX system, we 
an 
on
lude saying that theredu
ed rank LS estimator is a good te
hnique for the 
hannel estimation and LDPC
odes 
ould be used in pla
e of the 
onvolutional 
ode to obtain better performan
e.





Appendix AConvergen
e theorem for EMalgorithmLet
k(x|y,θ) =

f(x|θ)

g(y|θ)and note that k(x|y,θ) may be interpreted as a 
onditional density. Then the log-likelihood fun
tion Ly(θ) = log g(y|θ) may be written as
Ly(θ) = log f(x|θ) − log k(y|θ).De�ne
H(θ′|θ) = E[log k(x|y,θ′)|y,θ].Let M : θ[k] → θ[k+1] represent the mapping de�ned by the EM algorithm in thefollowing Equations:
Q(θ|θ[k]) = E[log f(x|θ)|y,θ[k]],

θ[k+1] = arg max
θ

Q(θ|θ[k]),so that θ[k+1] = M(θ[k]).Theorem 2. Ly(M(θ[k])) ≥ Ly(θ), with equality if and only if
Q(M(θ)|θ) = Q(θ|θ)and

k(x|y,M(θ)) = k(x|y,θ).That is, the likelihood fun
tion in
reases at ea
h iteration of the EM algorithm, untilthe 
onditions for equality are satis�ed and a �xed point of the iteration is rea
hed.A proof of the theorem may be found in [51℄. In θ∗ is an ML parameter estimate,so that Ly(θ
∗) ≥ Ly(θ) for all θ ∈ Θ, then Ly(M(θ∗)) ≥ Ly(θ

∗). In other words,ML estimates are �xed points of the EM algorithm. Sin
e the likelihood fun
tion isbounded (for distribution of pra
ti
al interest), the sequen
e of parameter estimates
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θ∗[0], θ∗[1], . . . , θ∗[k] yields a bounded non-de
reasing sequen
e Ly(θ

[0]) ≤ Ly(θ
[1]) ≤

· · · ≤ Ly(θ
[k]) whi
h must 
onverge as k → ∞.The theorem falls short of proving that the �xed points of the EM algorithm are infa
t ML estimates. The latter in true, under rather general 
onditions, but the proof issomewhat involved and is not presented here.



Appendix BChannel length estimation
B.1 Introdu
tionAs said in Chapter 2, the performan
e naturally depends on the a

ura
y of the
hannel estimates. Conventional 
hannel estimation algorithms preset a �xed lengthfor the 
hannel; in Chapter 2, we assumed to know the exa
t value of the 
hannellength impulse response. For wireless 
ommuni
ations, however, the a
tual length of the
hannel is environment-dependent. Therefore, unless the re
eiver has expli
it knowledgeof the propagation environment, the a
tual length of the wireless 
hannel is unknown.The e�e
t of mismat
h between the length of the 
hannel estimator and a
tual length ofthe dis
rete-time equivalent 
hannel has also been investigated in the literature [112℄. Ithas been shown that an irredu
ible BER �oor results when the 
hannel estimator lengthis shorter than the a
tual 
hannel [112℄. On the other hand, if the 
hannel estimatorlength is longer than the a
tual 
hannel, the equalizer be
omes unne
essarily 
omplex.Furthermore, a performan
e loss that in
reases with the 
hannel estimator length is stillin
urred [112℄.In [113℄, the authors proposed a least squares approa
h for joint syn
hronization,
hannel length estimation and 
hannel estimation. In fa
t, it is desirable to modify
onventional 
hannel estimation algorithms so that the length of the 
hannel estimatoradapts to the a
tual 
hannel. The method proposed in [113℄ relies on the minimizationof the mean square error of the estimated 
hannel 
oe�
ients for di�erent predeterminedCIR lengths. To apply this method, the 
hannel window (the di�eren
e between themaximal and the minimal CIR length) must be known. Simulation results in [113℄show that the proposed s
heme is very robust against variations of the propagationenvironment and a
hieves the best trade-o� between performan
e and 
omplexity.In the literature, there are some other available methods for estimating the ChannelImpulse Response (CIR) length, e.g., [114℄, [115℄ and [116℄. The method des
ribedin [114℄ estimates the CIR length by using the estimated SNR. The method in [115℄rests on the generalized Akaike information 
riterion. It was shown there that the CIRlength is usually underestimated. In [116℄, the estimation of the CIR length is based ona given fa
tor R whi
h is de�ned by the ratio of the 
hannel power to the total power
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hannel plus noise. The ratio R is de�ned in [116℄ as a 
onstant fa
tor within theinterval [0.9, 0.95]. Sin
e the noise power and the 
hannel power are unknown, su
h anestimation of the CIR length based on a prede�ned ratio R is not a pre
ise solution.In [117℄, to over
ome the di�
ulties in the CIR length estimation of time-variant
hannels in the presen
e of strong additive noise, an auxiliary fun
tion is establishedto distinguish between the statisti
al 
hara
teristi
s of the additive noise and thoseof the multipath 
hannel. The di�eren
e between the statisti
al 
hara
teristi
s of theadditive noise and the multipath 
hannel is that the CIR 
oe�
ients are only lo
ated inthe window of the CIR length, whereas the additive noise per 
hannel tap is uniformlydistributed over the whole length of the estimated CIR. The proposed algorithm providesreliable information on the estimated CIR length even at low SNRs. The estimated CIRlength and noise varian
e are very useful in many areas, su
h as 
hannel estimation,
hannel 
oding, data equalization, adaptive �lter implementation, and OFDM systemswith adaptive guard interval length.B.2 Algorithm for the noise varian
e and the CIR lengthestimationThe 
onsidered algorithm 
ombines two di�erent 
hallenges (CIR length and noisevarian
e estimation) to one task. To implement it, we assume that the 
hannel is alreadyestimated by a 
onventional method [118℄. Even though the 
hannel is estimated, theCIR length remains unknown. This is due to the fa
t that the estimated CIR is usuallyimpaired by additive noise. However, a good estimate of both the CIR length and theSNR 
an be obtained by applying the proposed algorithm.We 
onsider the estimated 
hannel 
oe�
ient ĥk,i 
orresponding to the ith OFDMsymbol and the kth 
hannel tap. Let us assume that the distan
e between two neigh-boring 
hannel tap gains is equidistant and equal to the sampling interval ta of thesystem, then the relationship between the 
hannel tap index k and the 
orrespondingpropagation delay τk is given by τk = k · ta. The estimated 
hannel 
oe�
ient ĥk,i isthe sum of the true 
hannel 
oe�
ient hk,i and a zero-mean noise 
omponent nk,i [118℄,i.e.,
ĥk,i = hk,i + nk,i. (B.1)It is worth mentioning that the noise varian
e to be estimated is the varian
e of thenoise 
omponent nk,i of the estimated 
hannel 
oe�
ient ĥk,i

σ2
n[k] = E[|nk,i|2] (B.2)where E[|nk,i|2] is the expe
tation value of |nk,i|2 over the OFDM symbol index i. Thesymbol σ2

n[k] denotes the varian
e of the noise 
omponent of the kth estimated 
hanneltap.As mentioned above, the estimated 
hannel 
oe�
ient 
ontains two di�erent 
ompo-
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e and the CIR length estimation 181nents. The �rst 
omponent is the true 
hannel 
oe�
ient, whi
h is lo
ated only in thewindow of the CIR length. The se
ond 
omponent is the additive noise 
omponent nk,i,whi
h is uniformly distributed over the whole length of the estimated CIR. Therefore,the 
hannel tap index k is omitted in the symbol representing the noise varian
e, i.e.,
σ2

n[k] is repla
ed by σ2
n. Using the estimated noise varian
e σ2

n and the signal power,the estimated SNR 
an easily be 
al
ulated [118℄. If L is presumed to be the true CIRlength, then the new estimated 
hannel 
oe�
ients h̃L
k,i, k = 0, 1, . . . , Nk −1, are equalto the �rst L samples of the estimated 
hannel 
oe�
ients ĥk,i and zero elsewhere, i.e.,.

h̃L
k,i =

{

ĥk,i, 0 ≤ k < L

0, L ≤ k ≤ NK − 1.
(B.3)The presumed CIR length L is in the range 0 < L ≤ NK − 1, sin
e the true CIRlength must be larger than zero and is assumed to be smaller than the estimated CIRlength. The mean squared error between h̃L

k,i and ĥk,i is
e(L) = E[

NK−1∑

k=0

|ĥk,i − h̃L
k,i|2]

= E[sumNK−1
k=L |ĥk,i|2]. (B.4)Thus, the mean squared error e(L) is the sum of the average squared magnitudevalues of the estimated 
hannel taps from the Lth 
hannel tap to the last 
hannel tap

ĥNK−1,i. Substituting ĥk,i from (B.1) into (B.4), it follows that
e(L) = E[sumNK−1

k=L |hk,i + nk,i|2]

=

Nk−1
∑

k=L

{
E[|hk,i|2] + E[|nk,i|2]

}

=

NK−1∑

k=L

ρk + (NK − L)σ2
n (B.5)where ρk = E[|hk,i|2] is the average power of the kth path. In (B.5), let e1(L) =

∑NK−1
k=L ρk be the �rst term and e2(L) = (NK − L)σ2

n be the se
ond term of the meansquared error e(L), it 
an be seen that e1(L) stems 
ompletely from the 
hannel, whereas
e2(L) originates from the noise 
omponents. The noise-related term e2(L) 
an be 
om-pensated by adding an appropriate varian
e to this fun
tion. A

ording to the expres-sion of e2(L), the appropriate varian
e should be equal to Lσ2

pre, where σ2
pre is 
alled thepresumed noise varian
e. The 
ompensation of the noise-related term e2(L) establishesthe auxiliary fun
tion

f(L) =

NK−1
∑

k=L

ρk + (NK − L)σ2
n + Lσ2

pre. (B.6)
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hara
teristi
s of the auxiliary fun
tion f(L) presented in Figure B.1 dependon the following 
ases determined by the presumed noise varian
e:a) If the presumed noise varian
e is larger than the true noise varian
e, i.e., σ2
pre >

σ2
n, then there exists always a unique minimum value of the auxiliary fun
tion
f(Lf,min) = min(f(L)), where Lf,min ≤ NP . If σ2

pre is 
lose to σ2
n, then Lf,min isalso 
lose to NP .b) If the presumed noise varian
e is exa
tly equal to the true noise varian
e, i.e.,

σ2
pre = σ2

n, then f(L) be
omes
f(L) =

NK−1∑

k=L

ρk +NKσ
2
n. (B.7)In this 
ase, the auxiliary fun
tion f(L) is a monotonously de
reasing fun
tionwithin the true CIR length, and is equal to NKσ

2
n outside the true CIR length.
) If the presumed noise varian
e is smaller than the true noise varian
e, i.e., σ2

pre <

σ2
n , then f(L) is a monotonously de
reasing fun
tion within the whole length ofthe estimated CIR, and rea
hes the minimum value at L = NK − 1.

Figure B.1: The auxiliary fun
tion f(L) for di�erent 
ases of the presumed noisevarian
e σ2

pre.Based on the 
hara
teristi
s of the auxiliary fun
tion f(L), an algorithm 
alled thenoise varian
e and CIR length estimation (NCLE) is proposed in [117℄. If the presumednoise varian
e σ2
pre is redu
ed step by step from the possible maximum value to thepossible minimum value of the true noise varian
e, then the 
urve of f(L) will be
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hanged from 
ase a) to 
ase 
). Ea
h step is 
onsidered as one iteration towards theredu
tion of the presumed noise varian
e. The amount ∆σ2, whi
h is used to redu
ethe presumed noise varian
e σ2
pre in ea
h iteration, is 
alled the step size. If this stepsize is very small in 
omparison to the true noise varian
e, then 
ase b) might appear.Otherwise, 
ase a) skips dire
tly over to 
ase 
). When the situation in 
ase 
) appearsfor the �rst time, then the presumed noise varian
e of the previous iteration is very
lose to the true noise varian
e and the de
ision of the estimated noise varian
e will bemade. The shape of f(L) at the previous iteration 
orresponds of 
ourse either to 
asea) or to 
ase b).If 
ase a) appears, then the estimated CIR length N̂P is assigned to be Lf,min, where

f(Lf,min) = min(f(L)). As explained in 
ase a), the estimated CIR length is shorterthan or equal to the true CIR length.Case b) might appear, if the presumed noise varian
e is very 
lose to the true noisevarian
e. Sin
e the theoreti
al auxiliary fun
tion f(L) in 
ase b) is 
onstant over therange from L = NP to L = NK − 1 (see Figure B.1), it follows that f(L) does not havea unique minimum value like in 
ase a). However, if the minimum value of the auxiliaryfun
tion f(L) is still 
omputed by a numeri
al method, then a minimum value 
an befound. This is due to the fa
t that the realized auxiliary fun
tion is pra
ti
ally not
onstant in the interval mentioned above. In this 
ase, the value of L 
orresponding tothe minimum value of f(L), i.e., Lf,min, is always larger than or equal to the true CIRlength. The estimated CIR length 
an be assigned to this value, and, thus, it is alsolarger than or equal to the true CIR length. To ensure that the estimated CIR length is
lose to the true CIR length, the pro
edure of establishing the auxiliary fun
tion f(L)and seeking its minimum value should be repeated NE times. A single exe
ution ofthis pro
edure is 
alled an experiment. The estimated CIR length of ea
h experiment isstored in a ve
tor ~L. Analogously, the estimated noise varian
es are stored in a ve
tordenoted by ~N. After NE experiments, the �nal result of the estimated CIR length isthe minimum element of the ve
tor ~L. The �nal estimated noise varian
e is the averagevalue of the elements of the ve
tor ~N.The initial value of the presumed noise varian
e 
an be determined by
σ2

pre = E[

Nk−1
∑

k=1

|ĥ(k)|2/(Nk − 1)]. (B.8)Figure B.2 shows a �ow
hart of the NCLE algorithm.The appli
ation of the algorithm to our system shows the same results presented in[117℄.
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Figure B.2: Flow
hart of the NCLE algorithm.



Appendix COptional sub
hannel allo
ations inWiMAX systems
C.1 PUSC variationsC.1.1 Potentially optional allo
ationsFirst we remember that the allo
ations de�ned potentially optional are those whi
hare not expli
itly mentioned as mandatory in the standard [2℄, but reading it theyappear so, hen
e they are de�ned optional. Therefor in [109℄ it is required to implementsome of them to have a 
erti�ed produ
t.The potentially optional allo
ation are PUSC with all sub
hannels and PUSC withdedi
ated pilots, Full Usage of Sub
hannel (FUSC) and FUSC with dedi
ated pilots;all these ex
ept the last one are required to implement.PUSC with all sub
hannels and PUSC with dedi
ated pilotsBefore de�ning these allo
ations we must explain what is a DL_MAP. It is a MACmessage that de�ne burst start times for both time division multiplex and time divisionmultiple a

ess by a SS on the downlink. It in
ludes the following parameters:� PHY syn
hronization� Downlink Channel Des
riptor (DCD) 
ount� Base station IDThe DL_MAP_IEs des
ribe the lo
ation, 
oding and modulation s
hemes of the bursts.In the DL_MAP a BS may transmit the Downlink Interval Usage Code (DIUC)to 15 and this indi
ates that the subsequent allo
ation shall use a spe
i�
 permutationand/or a spe
i�
 transmit diversity mode.Table 279 at page 377 of [2℄ shows the format of the information element for theOFDMA downlink. There are two important �elds:
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hannel allo
ations in WiMAX systems1. Spa
e Time Coding (STC) whi
h indi
ates the STC mode that will be used bythe transmitter for the allo
ations2. Dedi
ated Pilots; this is an optional �eld and is used to support the use of openloop pre
oding and 
losed loop transmission in whi
h the MS has no knowledgeof the pre
oding/beamforming matrix.When the bit of the dedi
ated pilots is set to one it means that the pilot sym-bols are pre
oded/beamformed in the same way as are the 
orresponding datasub
arriers. In this 
ase an MS should use only the pilots that are spe
i�
 to itsallo
ation for 
hannel estimations.C.2 Other allo
ation methodsC.2.1 Full Usage of Sub
hannel (FUSC)Also in this 
ase, as in the one of PUSC, the symbol stru
ture is 
onstru
ted usingpilots, data and zero sub
arriers. The symbol is �rst allo
ated with the appropriatepilots and zero sub
arriers and, then, all the remaining sub
arriers are used as datasub
arriers (these will be divided into sub
hannels).Ea
h segment uses both sets of variable/
onstant pilot-sets.The parameters that 
hara
terize the FUSC symbol stru
ture and that depend onFFT size are:� Number of DC sub
arriers; its index is given by NFFT/2, 
ounting from 0)� Number of guard sub
arriers, Left, i.e. on the left size of the spe
trum� Number of guard sub
arriers, Right, i.e. on the right side of the spe
trum� Number of used sub
arriers� Pilots� VariableSet#0� ConstantSet#0� VariableSet#1� ConstantSet#1� Number of data sub
arriers� Number of data sub
arriers per sub
hannel� Number of sub
hannels� Permutation base
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ation methods 187FFT sizeParameter 2048 1024 512 128Number of DC sub
arriers 1 1 1 1Number of guard sub
arriers, Left 173 87 43 11Number of guard sub
arriers, Right 172 86 42 10Number of used sub
arriers 1703 851 427 107Pilots − − − 4VariableSet#0 71 12 18 5ConstantSet#0 12 2 3 4VariableSet#1 71 12 18 1ConstantSet#1 12 2 3 0Number of data sub
arriers 1536 768 384 96Number of data sub
arriers per sub
hannel 48 48 48 48Number of sub
hannels 32 16 8 2PermBaseTable C.1: Symbol parameters for the available FFT size (i.e. 2048, 1024, 512 and128).In Table C.1 the parameters for the FUSC symbol stru
ture are pla
ed.The variable set of pilots embedded within the symbol of ea
h segment shall obeythe following rule:
PilotsLocation = V ariableSet#x+ 6 · (FUSC_SymbolNumber mod 2) (C.1)where FUSC_SymbolNumber 
ounts the FUSC symbols used in the 
urrent zonestarting from 0.The pilots in the ConstantSet are de
ided with the following rule:

ConstantSet#k → PilotosLocation = 72 ∗ (2 ∗ n+ k) + 9 (C.2)where n = 0, 1, . . . , V alue − 1 and V alue is the value found in Table C.1 in the rowsdedi
ated to the Constant sets.Ea
h sub
hannel is 
omposed of 48 sub
arriers. The sub
hannel indexes are formu-lated using a Reed-Solomon series and are allo
ated out of the data sub
arriers domain.After mapping all pilots, the remainder of the used sub
arriers are used to de�nethe data sub
hannels. In fa
t the remaining sub
arriers are partitioned into groupsof 
ontiguous sub
arriers. Ea
h sub
hannel 
onsists of one sub
arrier from ea
h ofthese groups. The number of these groups is equal to the number of sub
arriers persub
hannel Nsubcarriers and the number of sub
arriers in a group is equal to the num-ber of sub
hannels Nsubchannels. Hen
e, the number of data sub
hannel is equal to
Nsubcarriers ·Nsubchannels



188 Appendix C. Optional sub
hannel allo
ations in WiMAX systemsThe exa
t partition into sub
hannels is a

ording to the permutation formula:
subcarrier(k, s) = Nsubchannels · nk + {ps[nk mod Nsubchannels]

+ DL_PermBase} mod Nsubchannels (C.3)where:- sub
arrier(n, s) is the sub
arrier index of the sub
arrier n in sub
hannel s =

0, 1, . . . , Nsubchannels − 1 is the index number of a sub
hannel- nk = (k + 13 · s) mod Nsubcarriers, where k = 0, 1, . . . , Nsubcarriers − 1is thesub
arrier index in a sub
hannel- Nsubchannels is the number of sub
hannels- ps[j] is the series obtained by rotating basi
 permutation sequen
e 
y
li
ally tothe left s times- Nsubcarriers is the number of data sub
arriers allo
ated to a sub
hannel in anOFDMA symbolThe whole data tones in a symbol are partitioned into groups of 
ontiguous datasub
arriers. Ea
h sub
hannel 
onsists of one sub
arrier from ea
h of these groups. Thenumber of sub
arriers in a group is, then, equal to the number of sub
hannels, said Ns,whi
h is determined by FFT size. The exa
t partitioning into sub
hannels is a

ordingto the DL permutation formula:
Carriers(s,m) =







Ns × k + [s+ P1,c1(k
′) + P2,c2(k

′)] 0 < c1, c2 < Ns

Ns × k + [s+ P1,c1(k
′)] c1 6= 0, c2 = 0

Ns × k + [s+ P2,c2(k
′)] c1 = 0, c2 6= 0

Ns × k + s c1 = 0, c2 = 0where:- 
arriers(s,m) sub
arrier index of m-th sub
arrier in sub
hannel s- k = (m+ s ∗ 23) mod 48, k′ = k mod (Ns − 1)- m = 0, . . . , 47 is the sub
arrier in sub
hannel index- s = 0, 1, . . . , Ns − 1 is the index number of a sub
hannel- p1,c1
is the j-th element of a sequen
e obtained by rotating basi
 permutationsequen
e P1 
y
li
ally to the left c1 times- p2,c2
is the j-th element of a sequen
e obtained by rotating basi
 permutationsequen
e P2 
y
li
ally to the left c2 times- c1 = DL_PermBase mod Ns
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ation methods 189- c2 = ⌊DL_PermBase/Ns⌋ FFT size Ns

2048 32

1024 16

512 8

128 2Table C.2: Values of Ns for every FFT size.C.2.2 Optional allo
ationsThese are the allo
ations de�ned optional in the standard [2℄. They are the optionalFUSC and the O-FUSC with dedi
ated pilots the AMC (1 × 6, 2 × 3 and 3 × 2) andthe same ones, but with dedi
ated pilots and the PUSC-ASCA. In [109℄ only the AMC
2 × 3 is required to be implemented.Optional FUSCThe minimal blo
k of pro
essing is given by the 48 data 
arriers symbols. First,the pilot 
arriers are allo
ated and the remaining 
arriers are used ex
lusively for datatransmission. The Nused sub
arriers (ex
ept the DC 
arrier) are dived into groups of
9 
ontiguous sub
arriers and in ea
h of these one pilot is allo
ated. Its position variesa

ording to the index of OFDMA symbol whi
h 
ontains the sub
arriers. The equationis:

3 × l + 1 (C.4)where l = m mod 3 and m is the symbol index.Hen
e, the number of pilot sub
arriers is given by (Nused − 1)/9, be
ause we needto ex
lude the DC 
arrier and their position is given by 9k + 3m + 1, where k =

0, 1, . . . , Number of pilot sub
arriers − 1 and m = (symbol index ) mod 3.Optional Adja
ent Sub
arrier Permutation (AMC)Sin
e now we have 
onsidered "distributed sub
arrier permutations", but a BS may
hange to the "adja
ent sub
arrier permutation". This one 
an be used to take advantageof the stru
ture of the adja
ent sub
arrier permutation in parts of DL subframe thatare indi
ated a

ordingly by the DL-MAP an UL subframe that are indi
ated by theUL-MAP.After this 
hange a BS 
an only transmit/re
eive tra�
 using the adja
ent sub
arrierpermutation during the allo
ated period and shall return to the distributed mode onlyat the beginning of a new DL subframe.Symbol data within a sub
hannel is assigned to adja
ent sub
arriers and pilots anddata sub
arriers are assigned �xed positions in the frequen
y domain within an OFDMAsymbol.



190 Appendix C. Optional sub
hannel allo
ations in WiMAX systemsTo de�ne adja
ent sub
arrier permutation, a BIN, whi
h is a set of 9 
ontiguoussub
arriers within an OFDMA symbol represented in Figure C.1, is a basi
 allo
ationunit both in downlink and in uplink.
1 pilot tone

8 data tones

Figure C.1: Bin stru
ture.AMC sub
hannel 
onsists of 6 
ontiguous bins in a same band. AMC allo
ation,instead, 
an be made by two me
hanisms: by sub
hannel index referen
e in UL-MAPand by sub
hannel allo
ation in a band using H-ARQ map.A slot 
onsists of N bins by M symbols (N ×M). A group of 4 rows is 
alled aphysi
al band. There are four types of AMC sub
hannels, whi
h are di�erent in the
olle
tion of six bins in a band:� default type: a slot 
onsists o 6 
onse
utive bins;� a slot is de�ned as 2 bins by 3 symbols;� a slot is de�ned as 3 bins by 2 symbols;� a slot is de�ned as 1 bins by 6 symbols;The enumeration of bins in a slot is the following: the available bins in a band areenumerated starting from the lowest bin in the �rst symbol to the last bin in thesymbol and then going to the lowest bin in the next symbol and so on.The parameters are the same enumerated before: Number of DC sub
arriers, Num-ber of guard sub
arriers: left and right, Nused, Total number of sub
arriers, Number ofpilots, Number of data sub
arriers. In addition, there are three new parameters:1. Number of physi
al band2. Number of bins per physi
al band3. Number data sub
arriers per sub
hannel
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ation methods 191FFT sizeParameter 2048 1024 512 128Number of bins per physi
al band 4 4 4 4Number of physi
al band 48 24 12 6Number of data sub
arriers per sub
hannel 48 48 48 48Table C.3: New parameters introdu
ed with the AMC permutation.and they are dependent on the FFT size, as shown in Table C.3We remember that an AMC sub
hannel 
onsists of 6 
ontiguous bins whi
h are madeof 9 sub
arriers (8 data and 1 pilot) and so the data sub
arriers in a sub
hannel are
8× 6 = 48, we observe also that only in the �rst type the number of data sub
arriers isthe same that we have in a sub
hannel.The number of bins per physi
al band is �xed to 4 and the number of physi
al binsis obtained dividing the number of data sub
arriers per 32 deriving from 8 × 4 i.e. thenumber of data sub
arriers in a bin per the number of bins.Optional Permutation for PUSC Adja
ent Sub
arrier Allo
ation (PUSC-ASCA)Symbol stru
ture shall use the parameters de�ned for regular PUSC and the same
luster stru
ture shall be maintained.Allo
ation of sub
arriers to sub
hannels shall be performed in the following manner:1. The sub
arriers are divided into physi
al 
lusters, ea
h of 14 adja
ent sub
arriers2. Cluster used for a spe
i�
 DL allo
ation shall be the �rst 2 ∗ SubchannelOffset3. The 
lusters are 
on
atenated into blo
ks using the rule des
ribed in Table C.4,whereNumber of sub
hannels Clusters 
on
atenated

n ≤ 12 1 blo
k of 2 × n 
lusters
n = 12 × k k blo
ks of 24 
lusters

n > 12, n 6= 12 × k (k − 1) blo
ks of 24 
lusters
1 blo
k of 2 × ⌈(m+ 12)/2⌉ 
lusters
1 blo
k of 2 × ⌊(m+ 12)/2⌋ 
lustersTable C.4: Allo
ation of sub
arriers to sub
hannels.- n is the number of allo
ated sub
hannels- k = ⌊n/12⌋- m = n mod 124. Per blo
k, remove the pilot 
arriers from the 
lusters asso
iated with the se
tion,take the remaining data sub
arriers and using the same pro
edure for the partitionof data sub
arriers in FUSC permutation; the sub
arriers are partitioned intosub
hannels 
ontaining 24 data sub
arriers in ea
h OFDMA symbol.
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hannel allo
ations in WiMAX systemsWe 
an de�ne also an adja
ent sub
arrier allo
ation using distributed 
lusters forthe PUSC mode; symbol stru
ture shall use the same parameters of the regular PUSCand the allo
ation of sub
arriers to sub
hannels will be:1. divide the sub
arriers into 120 physi
al 
lusters within 14 adja
ent sub
arriers2. renumber the physi
al 
lusters into logi
al 
lusters using the formula
LogicalCluster = RenumberingSequence((PhysicalCluster

+ 13 ∗ IDcell) mod 120) (C.5)3. divide the 
lusters into 6 major groups4. allo
ating 
arriers to sub
hannel in ea
h major group depends on the spe
i�
allo
ation performed.



Appendix DRenumbering sequen
e for PUSCpermutation
FFT size Renumbering Sequen
e

2048 6, 108, 37, 81, 31, 100, 42, 116, 32, 107, 30, 93, 54, 78, 10,
75, 50, 111, 58, 106, 23, 105, 16, 117, 39, 95, 7, 115, 25, 119,
53, 71, 22, 98, 28, 79, 17, 63, 27, 72, 29, 86, 5, 101, 49, 104,
9, 68, 1, 73, 36, 74, 43, 62, 20, 84, 52, 64, 34, 60, 66, 48, 97,
21, 91, 40, 102, 56, 92, 47, 90, 33, 114, 18, 70, 15, 110, 51,
118, 46, 83, 45, 76, 57, 99, 35, 67, 55, 85, 59, 113, 11, 82, 38,
88, 19, 77, 3, 87, 12, 89, 26, 65, 41, 109, 44, 69, 8, 61, 13, 96,
14, 103, 2, 80, 24, 112, 4, 94, 0

1024 6, 48, 37, 21, 31, 40, 42, 56, 32, 47, 30, 33, 54, 18, 10, 15,
50, 51, 58, 46, 23, 45, 16, 57, 39, 35, 7, 55, 25, 59, 53, 11,
22, 38, 28, 19, 17, 3, 27, 12, 29, 26, 5, 41, 49, 44, 9, 8, 1,
13, 36, 14, 43, 2, 20, 24, 52, 4, 34, 0

512 12, 13, 26, 9, 5, 15, 21, 6, 28, 4, 2, 7, 10, 18, 29, 17, 16, 3,
20, 24, 14, 8, 23, 1, 25, 27, 22, 19, 11, 0

128 2, 3, 1, 5, 0, 4Table D.1: Renumbering sequen
es for the available FFT size (i.e. 2048, 1024, 512and 128).





Appendix EOptional 
odes in WiMAX standard
E.1 Blo
k Turbo Coding (BTC)This is optional and not required to be implemented.BTC is based on the produ
t of two simple 
omponent 
odes: the binary extendedHamming 
odes and the parity 
he
k 
odes. To 
reate the extended Hamming
odes, an overall even parity 
he
k bit is added at the end of ea
h 
ode word. Thegenerator polynomials for OFDMA Hamming 
ode are reported in the Table E.1.

n′ k′ Generator polynomial
15 11 n4 + x+ 1

31 26 x5 + x2 + 1

63 57 x6 + x+ 1Table E.1: OFDMA Hamming 
ode generator polynomials.The 
omponent 
odes are used in a two-dimensional matrix form, as we 
an see inFigure E.1.The Kx information bits in the rows are en
oded into nx bits using the 
omponentblo
k (nx, Kx) 
ode spe
i�ed for the respe
tive 
omposite 
ode.After en
oding the rows, the 
olumns are en
oded using a blo
k 
ode (ny, Ky),where the 
he
k bits of the �rst 
ode are also en
oded.The overall blo
k size is (n, K), where n = nx × ny and K = Kx × Ky, and sothe 
ode rate is R = Rx × Ry, with Ri = Ki/ni, i = x, y. The Hamming distan
e is
d = dx × dy. The �rst bit in the �rst row is the LSB and the last bit in the last rowis the MSB and the transmission if the blo
k over the 
hannel shall o

ur in a linearfashion, with all bit of the �rst row transmitted left to right followed by the se
ond rowand so on.To mat
h a required po
ket size, BTC may be shortened by removing symbols fromthe BTC array. This operation requires three steps:1. remove Ix rows and Iy 
olumns whi
h is equivalent to shortening the 
onstituent
odes that make up the produ
t 
odes
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Information bits Checks

Checks

checks
on

K x

nx

n
y K

y

Figure E.1: Blo
k Turbo Coding (BTC) stru
ture.2. remove B individual bits from the �rst row starting with the LSB3. if at this point there isn't an integral number of data bytes the Q left over LSBare zero-�lled by the en
oder.In Figure E.2 these three steps are represented.The new 
oded blo
k length is (nx − Ix)(ny − Iy)−B and the 
orresponding infor-mation length is (nx − Ix)(ny − Iy) −B −Q and so the 
ode rate is given by:
R =

(Kx − Ix)(Ky − Iy) −B −Q

(nx − Ix)(ny − Iy) −B
. (E.1)In Table E.2 the blo
k sizes for the optimal modulation and 
oding s
hemes usingBTC are given.Table E.3 gives the 
ode parameters for ea
h of possible data and 
oded blo
k sizes.E.2 Convolutional Turbo Code (CTC)In the standard [2℄ this 
ode is de�ned as optional, but in [109℄ it is required to beimplemented.CTC 
an be used for the support of optional H-ARQ. It used a double binary
ir
ular re
ursive systemati
 
onvolutional 
ode. These bits of the data to be
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Information bits Checks

Checks

checks
on

K x

nx

n
y K

y

QB

I x

I y

Figure E.2: Shortened BTC stru
ture.QPSK 16 - QAM 64 - QAM CodedEn
oding rate 1/2 3/4 1/2 3/4 1/2 3/4 bytesAllowed data 6 9 12(bytes) 12 20 16 20 24
18 25 16 25 36
23 35 23 35 48
31 60
40 40 40 72Table E.2: Useful data payload for a sub
hannel.Data bytes Coded bytes Constituent Code parameters

6 12 (31, 32)(16, 11) Ix = 4, Iy = 8, B = 0, Q = 6
9 12 (16, 15)(16, 15) Ix = 6, Iy = 6, B = 4, Q = 5
12 24 (32, 31)(16, 11) Ix = 14, Iy = 5, B = 6, Q = 0
20 24 (16, 15)(16, 15) Ix = 2, Iy = 2, B = 4, Q = 5
18 36 (32, 31)(16, 11) Ix = 5, Iy = 5, B = 9, Q = 3Table E.3: Optional 
hannel 
oding per modulation.en
oded are alternatively fed to A and B, starting with the MSB of the �rst byte beingfed to A (see Figure E.3).The en
oded is fed by blo
ks of k bits on N 
ouples (k = 2 ∗N bits) ad for all theframe size k is a multiple of 8 and N a multiple of 4.



198 Appendix E. Optional 
odes in WiMAX standardThe polynomial de�ning the 
onne
tion are:- for the feedba
k bran
h: 1 +D +D3- for the Y parity bit: 1 +D2 +D3- for the W parity bit: 1 +D3.

Figure E.3: CTC en
oder.The en
oder blo
k size shall depend on the number of slots allo
ated and the mod-ulation spe
i�ed for the 
urrent transmission. Con
atenation of the number of slotsshall be performed in order to make larger blo
ks of 
oding where it is possible, withthe limitation of not ex
eeding the larger blo
k under size for applied modulation and
oding. The 
on
atenation rule shall not be used when using ARQ.For any modulation and FEC rate we de�ne the following parameters:- j: dependent on the modulation and FEC rate,- n: number of allo
ated slots/repetition fa
tor,- k: de�ned as ⌊n/j⌋,- m: de�ned as mod (n, j).
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on
atenation, while Table E.4 gives thevalues of j for di�erent modulations and rates:Number of slots Slots 
on
atenation
n < j, n 6= 7 1 blo
k of n slots

n = 7 1 blo
k of 4slots
1 blo
k of 3slots

n > j if mod (n, j) = 0
k blo
ks of j slotselse
k − 1 blo
ks of j slots
1 blo
k of ⌈((m+ j)/2)⌉ slots (+1 if equal to seven)
1 blo
k of ⌊((m+ j)/2)⌋ slots (+1 if equal to seven)Table E.4: Slots 
on
atenation rules for CTC.Modulation rate jQPSK 1/2 10QPSK 3/4 6

16−QAM 1/2 5

16−QAM 3/4 3

64−QAM 1/2 3

64−QAM 2/3 2

64−QAM 3/4 2

64−QAM 5/6 2Table E.5: En
oding slot 
on
atenation for di�erent rates in CTC.E.2.1 CTC interleaverIt is 
omposed of two states:Step 1: Swit
h alternate 
ouplesLet the sequen
e u0 = [(A0, B0), (A1, B1), . . . , (AN−1, BN−1)] be the input tothe �rst en
oding C1.for i = 0, . . . , N − 1

mod (i, 2) = 0let (Ai, Bi) → (Bi, Ai) (i.e. swit
h the 
ouple)this step gives a sequen
e u1 = [(B0, A0), (B1, A1), . . . , (BN−1, AN−1)] =

= [u1(0), u1(1), . . . , u1(N − 1)].Step 2: P (j)The fun
tion P (j) provides the address of the 
ouple of the sequen
e u1 that shallbe mapped onto the address j of the interleaved sequen
e (i.e., u2(j) = u1(P (j))).
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odes in WiMAX standardfor j = 0, . . . , N − 1swit
h mod (j, 4):
ase 0:P (j) = (P0 · j + 1)mod4
ase 1:P (j) = (P0 · j + 1 +N/2 + P1)mod4
ase 2:P (j) = (P0 · j + 1 + P2)mod4
ase 0:P (j) = (P0 · j + 1 +N/2 + 3)mod4This step gives a sequen
e u2 = [u1(P (0)), u1(P (1)), u1(P (2)), u1(P (3)), . . . ,

u1(P (N − 1))] = [(BP (0), AP (0)), (AP (1), BP (1)), (BP (2), AP (2)), (AP (3), BP (3)),

. . . , (AP (N−1), BP (N−1))]. Sequen
e u2 is the input to the se
ond en
oding C2.The values of N , P0, P1, P2 and P3 for every modulation and rate are listed inTable 326 of the standard [1℄-[2℄.E.2.2 Determination of CTC 
ir
ulation stateThe state of the en
oder is denoted S (0 ≤ S ≤ 7) with S = 4s1+2s2+s3 (see FigureE.3). The 
ir
ulation states Sc1 and Sc2 are determined by the following operations:1. Initialize the en
oder with state 0. En
ode the sequen
e in the natural order forthe determination of Sc1 or in the interleaved order for determination of Sc2. Inboth 
ases the �nal state of the en
oder is S0N−1;2. A

ording to the length N of the sequen
e, use Table E.6 to �nd Sc1 and Sc2.
mod (N, 7) S0N−1

0 1 2 3 4 5 6 7

1 0 6 4 2 7 1 3 5

2 0 3 7 4 5 6 2 1

3 0 5 3 6 2 7 1 4

4 0 4 1 5 6 2 7 3

5 0 2 5 7 1 3 4 6

6 0 7 6 1 3 4 5 2Table E.6: Cir
ulation state look-up table (Sc).E.2.3 Subpa
ket generationProposed FEC stru
ture pun
tures the mother 
odeword to generate a subpa
ketwith various 
oding rates. The subpa
ket is also used as HARQ pa
ket transmission.Figure E.4 shows a blo
k diagram of subpa
ket generation. 1/3 CTC en
oded 
odewordgoes through interleaving blo
k and the pun
turing is performed. Figure E.4 showsblo
k diagram of the interleaving blo
k. The pun
turing is performed to sele
t the
onse
utive interleaved bit sequen
e that starts at any point of whole 
odeword. Forthe �rst transmission, the subpa
ket is generated to sele
t the 
onse
utive interleaved
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e that starts from the �rst bit of the systemati
 part of the mother 
odeword.The length of the subpa
ket is 
hosen a

ording to the needed 
oding rate re�e
ting the
hannel 
ondition. The �rst subpa
ket 
an also be used as a 
odeword with the needed
oding rate for a burst where HARQ is not applied.

Figure E.4: Blo
k diagram of subpa
ket generation.Symbol separationAll of the en
oded symbols shall be demultiplexed into six subblo
ks denoted A, B,
Y1, Y2, W1, and W2. The en
oder output symbols shall be sequentially distributed intosix subblo
ks with the �rst N en
oder output symbols going to the A subblo
k, these
ond N en
oder output going to the B subblo
k, the third N to the Y1 subblo
k, thefourth N to the Y2 subblo
k, the �fth N to the W1 subblo
k, the sixth N to the W2subblo
k, et
.Subblo
k interleavingThe six subblo
k shall be interleaved separately. The interleaving of performed bythe unit of symbol. The sequen
e of interleaver output symbols for ea
h subblo
k shallbe generated by the pro
edure des
ribed below. The entire subblo
k of symbols to beinterleaved is written into an array at addresses from 0 to the number of the symbolsminus one (N − 1), and the interleaved symbols are read out in a permuted order withthe i-th symbol being read from an address, ADi i = 0, 1, . . . , N − 1, as follows:1. Determine the subblo
k interleaver parameters, m and J . Table E.7 gives theseparameters.



202 Appendix E. Optional 
odes in WiMAX standard2. Initialize i and k to 0.3. Form a tentative output address Tk a

ording to the formula:
Tk = 2m mod (k, J) +BROm(⌊k/J⌋)where BROm(y) indi
ates the bit-reverse m-bit value of y (i.e. BRO3(6) = 3).4. If Tk is less than N ADi = Tk and in
rement i and k by 1. Otherwise, dis
ard Tkand in
rement k only.5. Repeat steps 1 and 2 until all N interleaver output addresses are obtained.Blo
k size Subblo
k interleaver(bits) N parameters

NEP m J

48 24 3 3

72 36 4 3

96 48 4 3

144 72 5 3

192 96 5 3

216 108 5 4

240 120 6 2

288 144 6 3

360 180 6 3

384 192 6 3

432 216 6 4

480 240 7 2Table E.7: Parameters for the subblo
k interleavers.Symbol groupingThe 
hannel interleaver output sequen
e shall 
onsist of the interleaved A and Bsubblo
k sequen
e, followed by a symbol-by-symbol multiplexed sequen
e of the in-terleaved Y1 and Y2 subblo
k sequen
e, followed by a symbol-by-symbol multiplexedsequen
e of the interleaved W1 and W2 subblo
k sequen
e. The symbol-by-symbol mul-tiplexed sequen
e of interleaved Y1 and Y2 subblo
k sequen
es shall 
onsist of the �rstoutput bit from the Y1 subblo
k interleaved, the �rst output bit from the Y2 subblo
kinterleaved, the se
ond output bit from the Y1 subblo
k interleaved, the se
ond outputbit from the Y2 subblo
k interleaved, et
. The symbol-by-symbol multiplexed sequen
eof interleaved W1 and W2 subblo
k sequen
es shall 
onsist of the �rst output bit fromthe W1 subblo
k interleaved, the �rst output bit from the W2 subblo
k interleaved, these
ond output bit from the W1 subblo
k interleaved, the se
ond output bit from the W2subblo
k interleaved, et
. Figure E.5 shows the interleaving s
heme.
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Figure E.5: Blo
k diagram of the interleaving s
heme.
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