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Abstract

In general state space models, where the computational effort required in the eval-

uation of the full likelihood function is infeasible, we analyze the problem of static

parameter estimation based on composite likelihood functions, in particular pair-

wise and split data likelihood functions. We discuss consistency and efficiency

properties of these estimators (related to the characteristics of the model) and the

bias in stationary models where the invariant distributionis unknown.

We focus on numerical methods to compute estimates of the parameter de-

scribing a general state space model. We develop an on line Expectation- Maxi-

mization algorithm in order to obtain the maximum pairwise likelihood estimate

in a general state space framework. We illustrate this method for a linear gaussian

model and we extend it to make inference also in jump Markov linear systems. In

this framework, some sampling procedures need to be developed to estimate the

parameters of the model. In particular, we present an algorithm to sample from

the latent discrete state Markov chain given the pairs of observations.

xi





Riassunto

Nell’ambito di modelli state space, per i quali ricavare la funzione di verosimi-

glianza completa non è computazionalmente possibile, si `e analizzato il problema

della stima di parametri statici mediante funzioni di verosimiglianza composita,

in particolare funzioni di verosimiglianza a coppie e a blocchi. L’interesse si

è concentrato sullo studio delle proprietà di consistenza e di efficienza di tali

stimatori (in relazione alle caratteristiche del processostazionario sottostante il

modello) nonchè su problemi di distorsione in modelli stazionari per i quali la

distribuzione invariante non è nota.

Sono stati presi in esame metodi numerici per il calcolo delle stime dei para-

metri che descrivono un modello state space generale. Si è sviluppato un algo-

ritmo Expectation- Maximization sequenziale per ottenerestime di massima ve-

rosimiglianza a coppie nel contesto di modelli state space generali. Tale metodo

è illustrato per modelli lineari gaussiani e viene esteso per l’inferenza in sistemi

lineari markoviani con salti. In questo contesto, è stato necessario sviluppare

adeguate procedure di campionamento. In particolare, viene presentato un algo-

ritmo per campionare dalla catena markoviana a stati discreti date le coppie di

osservazioni.

xiii





Chapter 1

Introduction

1.1 Overview

State space models are a general class of time series capableof modeling de-

pendent observations in a natural and interpretable way. They consist of a Markov

process (called hidden/latent state process) not observed directly, but only through

another process. When the parameter describing the model isknown, sequential

inference on the latent process is typically based on the sequence of joint poste-

rior distributions, where each summarizes all the information collected about the

latent process up to the current time. Sequential estimation of these distributions

is achieved byoptimal filteringrecursions. Such recursions rarely admit a closed

form expression, but it is possible to resort to efficient numerical approximations,

e.g. Sequential Monte Carlo methods (SMC).

In most real-world scenarios, the parameter is unknow and needs to be esti-

mated. Although apparently simpler than optimal filtering,the static parameter es-

timation problem has proved to be much more difficult: no closed form solutions

are, in general, available, even for linear gaussian and finite state space hidden

Markov models. A possible way to address this problem is based on SMC meth-

ods. There have been many attempts to develop elaborate sequential algorithms,

but all of them suffer from a common intrinsic problem, namelypath degeneracy.

This phenomenon reflects a fundamental weakness of SMC methods: with lim-

ited resources, it is not possible to consistently estimatethe sequence of posterior

1



2 Chapter 1. Introduction

distributions at every instant time [Del Moral, 2004]. Direct application of SMC

techniques is hence inappropriate for static parameter inference.

A different approach consists on developing an inferential procedure based on

full likelihood function to compute point estimates from the data. Recently, some

results on the consistency and asymptotic normality of the maximum likelihood

estimator in state space models have been proved [Douc et al., 2004]. Anyway,

when the latent process is continuous, the computational effort required in the

evaluation of the full likelihood function is infeasible. Approximated solutions,

based on Monte Carlo or numerical methods, have been considered, but none of

the proposed solutions are completely satisfactory.

A possible way to overcome this problem is to replace the likelihood func-

tion by another function, easier to determine. In this direction, composite likeli-

hood approaches have been suggested. The term composite likelihood indicates

a likelihood type object formed by taking the product of individual component

likelihoods, each of which corresponds to a marginal or conditional event. This is

useful when the joint density is difficult to evaluate but computing likelihoods for

some subsets of the data is possible, as in general state space models framework.

This idea dates back probably to Besag [1974] even though theterm composite

likelihood was stated by Lindsay [1988].

All these topics are revised in Chapter 2.

1.2 Main contributions of the Thesis

In the present thesis we analyze the problem of static parameter estimation based

on composite likelihood functions, in particularpairwiseandsplit data likelihood

functions. We discuss the asymptotic properties of the parameter estimators ob-

tained by maximizing these functions in state space scenario in connection with

stationary and ergodic properties of the processes involved. We develop also nu-

merical methods to compute such estimates.

In Chapter 3, we take into account thepairwise likelihoodfunction and we

study its asymptotic properties. We discuss which kind of pairwise likelihood

function is better to use among all possible choices for the weights. We analyze
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motivations that justify the preference of pairwise likelihood of orderL, L being

the maximum distance between the pairs, instead of pairwiselikelihood with all

the pairs. We study the asymptotic properties of the maximumpairwise likelihood

estimator, related to the characteristic of the state spacemodel. We prove the con-

sistency of the maximum pairwise likelihood estimator of order L. In particular,

we need that the joint process is an uniformly ergodic Markovchain. Moreover,

we present an expression for a central limit theorem and we quantify the bias of

the estimate in the case where the invariant distribution isunknown and it is sub-

stituted by a generic distribution. Our result confirms the intuition that the bias,

introduced when using a generic distribution instead of thestationary distribution

in the pairwise likelihood function, depends on how close the two distributions

are and on the ergodic properties of the latent process. We suggest a possible way

to choose a suitable approximation for the invariant distribution. In the case in

which the invariant distribution is unknown, but transitions for the latent process

are simple, the idea is to approximate the invariant distribution sampling from this

transition kernel and to take advantage of the geometric ergodicity of the process.

If L is fixed, the use of pairwise likelihood of orderL suggests that information

about the parameter can be extracted from the dependence structure of the pairs

of observations with a lag distance not greater thanL. Usually it happens that

the maximum pairwise likelihood estimators tend to lose efficiency, with respect

to those based on full likelihood. Until now, no general results about evaluation

of this gap are available. In Chapter 4, we empirically compare the efficiency

between maximum pairwise likelihood and maximum full likelihood estimators

as well as the efficiency between maximum split data likelihood (when blocks of

observations are allowed to overlap) and maximum pairwise likelihood estimators.

We prove that the loss of efficiency of the maximum split data likelihood estimator

vanishes asL increases, while the variance of the maximum pairwise likelihood

estimator decreases until a certainL∗ and then it tends to increase. We suggest

the existence of a ‘best lag’L∗, in terms of variance of the maximum pairwise

likelihood estimator.

We focus on numerical methods to compute estimates of the parameter de-

scribing a general state space model. We develop an on line Expectation- Maxi-

mization algorithm in order to obtain the maximum pairwise likelihood estimate
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in a general state space framework (Chapter 5). This algorithm increases the pair-

wise likelihood at each iteration step. We illustrate this method for a linear gaus-

sian model, deriving the update equations in fairly explicit details. We modify

standard Kalman filter recursions in order to take into account conditioning on

pairs of observations instead of all observations. This simple example, where the

invariant distribution is known, as well as the conditionaldistribution of the latent

states given the pairs of observations, allows us to apply the idea of approximat-

ing the stationary distribution by sampling from the transition kernel. We give an

empirical evidence of our bias theorem, i.e. starting from ageneric distribution

and sampling from the transition kernel reduces the bias in the estimates for each

parameter in the model.

Chapter 6, is devoted to inference issues in jump Markov linear systems. We

present an algorithm that generalizes what derived for a linear gaussian model. In

this framework, some sampling procedures need to be developed to estimate the

parameters of the model. In particular, we present an algorithm to sample from

the latent discrete state Markov chain given a pair of observations.



Chapter 2

State space models

State space models are a general class of time series capableof modeling depen-

dent observations in a natural and interpretable way. Thesemodels can be defined

in the following form. For any parameterθ ∈ Θ, the hidden/latent state process

{Xk; k ≥ 1} ⊂ XN is a Markov process, characterized by its Markov transition

probability distributionfθ(x′|x), i.e. X1 ∼ ν and forn ≥ 1,

Xn+1|(Xn = x) ∼ fθ(·|x). (2.0.1)

The process{Xk; k ≥ 1} is observed, not directly, but through another process

{Yk; k ≥ 1} ⊂ YN. The observations are assumed to be conditionally independent

given {Xk; k ≥ 1}, and their common marginal probability distribution is of the

form gθ(y|x), i.e. for 1≤ n ≤ m,

Yn|(X1, . . . ,Xn = x, . . . ,Xm) ∼ gθ(·|x). (2.0.2)

From now on, we will assume that the process{Zk; k ≥ 1} = {(Xk,Yk); k ≥ 1} is

stationary (in the strict sense) with joint distribution given by

pθ(x1:n, y1:n) = πθ(x1)gθ(y1|x1)
n

∏

i=2

fθ(xi |xi−1)gθ(yi |xi), (2.0.3)

where we denote byπθ the marginal for{Xk; k ≥ 1} of this invariant distribution.

When the static parameterθ is known, sequential inference on the process

5



6 Chapter 2. State space models

{Xk; k ≥ 1} is typically based on the sequence of joint posterior distributions

{pθ(x1:n|y1:n); n ≥ 1}, where each summarizes all the information collected about

X1:n up to timen. Optimal filteringis concerned with the sequential estimation of

these distributions which can be -at least conceptually- easily achieved using the

following updating formula forn ≥ 2

pθ(x1:n|y1:n) =
gθ(yn|xn) fθ(xn|xn−1)

pθ(yn|y1:n−1)
pθ(x1:n−1|y1:n−1), (2.0.4)

andpθ(x1|y1) ∝ gθ(y1|x1)πθ(x1).

Although simple, the recursion formula (2.0.4) rarely admits a closed form ex-

pression: this is typically the case as soon asfθ or gθ are non- gaussian, orX is

not a finite set. In such scenarios it is possible to resort to numerical approxima-

tions. Sequential Monte Carlo (SMC) methods (aka particle filters) are a class of

numerical algorithms available to approximatepθ(x1:n|y1:n) sequentially in time.

They have been recently proved to be efficient tools to propagate in time sample

approximations of these distributions’ marginalspθ(xn−L+1:n|y1:n) for a given inte-

gerL > 0 [Doucet et al., 2001]. This methodology is now well developed and the

theory supporting this approach is also well established [Del Moral, 2004].

Example 2.0.1.AR(1) model with additive observation noise

Xn+1 = φXn +Wn, Wn ∼ N(0, τ2)

Yn = Xn + Vn, Vn ∼ N(0, σ2).

In this case

fθ(x
′|x) = N(φx, τ2) and gθ(y|x) = N(x, σ2),

where N(µ, σ2) is the normal distribution with meanµ and varianceσ2. The

parameter vector isθ = (φ, τ2, σ2). For stationarity,θ ∈ (−1, 1) × R+ × R+ and

πθ ∼ N
(

0, τ
2

1−φ2

)

. This is an example in which a close form expression for (2.0.4) is

available. When the state space model rests on linear and gaussian assumptions,

the updating procedure corresponds to the Kalman filter, which gives recursively

the mean and the variance of the gaussian filtering and prediction distributions at
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each time n. For these reasons this model is also known as linear gaussian model.

In most real-world scenarios the parameter is unknown and needs to be esti-

mated. We assume that there is a ‘true’ parameter valueθ∗ generating the data

{Yk; k ≥ 1} and that this value is unknown. We focus here on the estimation of this

static parameter. Although apparently simpler than the optimal filtering, the static

parameter estimation problem has proved to be much more difficult; no closed

form solutions are, in general, available, even for linear gaussian and finite state-

space hidden Markov models (see Example 2.2.1).

2.1 SMC methods for static parameters

A possible way to address the static parameter estimation isbased on SMC meth-

ods. We do not want here to review these methods in details, but simply to point

out their intrinsic limitations which have fundamental practical consequences for

the static parameter estimation problem. These limitations illustrate the complex-

ity of static parameter estimation and motivate the approach developed in this

thesis. Assuming that the static parameterθ is fixed for the time being, we de-

scribe the simplest SMC algorithm available to approximate{pθ(x1:n,Y1:n); n ≥ 1}
sequentially. More elaborate algorithms are reviewed in Doucet et al. [2001], but

crucially all such SMC algorithms suffer from a common problem, namelypath

degeneracy, as explained below.

2.1.1 Sampling Importance Resampling (SIR)

Assume that at timen− 1, a collection ofN(N ≫ 1) random samples named par-

ticles{X̂(i)
1:n−1, i = 1, . . . ,N} distributed approximately according topθ(x1:n−1|Y1:n−1)

is available. The empirical distribution

p̂N
θ (dx1:n−1|Y1:n−1) =

1
N

N
∑

i=1

δX̂(i)
1:n−1

(dx1:n−1) (2.1.1)
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is an approximation ofpθ(x1:n−1|Y1:n−1), whereδx0(dx) represents the Dirac delta

mass function centered atx0. Now, at timen, one wishes to produceN parti-

cles which will define an approximation ˆpN
θ
(dx1:n|Y1:n) of pN

θ
(dx1:n|Y1:n). A simple

method to achieve this consists of settingX̃(i)
1:n−1 = X̂(i)

1:n−1 and then sampling, for

example,X̃(i)
n ∼ fθ

(

·|X̃(i)
n−1

)

. The resulting empirical distribution of the particles

{X̃(i)
1:n; i = 1, . . . ,N} is an approximation of the joint density

pθ(x1:n−1|Y1:n−1) fθ(xn|xn−1).

We correct for the discrepancy between this density and the targetpθ(x1:n|Y1:n) us-

ing importance sampling. This yields the following approximation ofpθ(x1:n|Y1:n)

p̂N
θ (dx1:n|Y1:n) =

N
∑

i=1

ω(i)
n δX̃(i)

1:n
(dx1:n),

where each particlẽX(i)
1:n has now a weightω(i)

n given by

ω(i)
n ∝ gθ

(

Yn|X̃(i)
1:n

)

and
N

∑

i=1

ω(i)
n = 1.

To obtain an unweighted approximation ofpθ(x1:n|Y1:n) of the form (2.1.1), we

resample particles{X̃(i)
1:n; i = 1, . . . ,N} according to probabilities proportional to

their weights{ω(i)
n ; i = 1, . . . ,N}. The underlying idea is to get rid of particles with

small weights and multiply particles which are in the regionof high probability

masses (see Figure 2.1.1). Many such resampling schemes have been proposed in

the literature [Doucet et al., 2001].

2.1.2 Limitation of SMC Methods

Under relatively weak assumptions onfθ andgθ, it can be proved that the resulting

set of empirical posterior distributions{p̂N
θ
(dx1:n|Y1:n)} converges toward the true

posterior asN goes to infinity. More precisely, it can be easily shown that for any

n ≥ 1 and any bounded test functionϕn : Xn → R there exists some constant
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Figure 2.1.1: SMC method via SIR. Starting at timen with a sample dis-
tributed approximately according topθ(x1:n|Y1:n−1) (1), for each particle we com-
pute the weights using information at timen, getting a weighted approximation of
pθ(x1:n|Y1:n) (2). We select those particles that are suitable to get the unweighted
approximation (3). Then we propagate the particles according to the transition
kernel to get an unweighted approximation ofpθ(x1:n+1|Y1:n) (4).

Cθ,n(ϕn) < ∞ such that for anyN ≥ 1

E













(∫

Xn
ϕn(x1:n)(pθ(dx1:n|Y1:n) − p̂N

θ (dx1:n|Y1:n))

)2










≤ Cθ,n(ϕn)
N

, (2.1.2)

where the expectation is with respect to the particles realizations. A much wider

range of results is in fact available:Lp convergence, central limit theorems, large

deviation. A complete treatment can be found in Del Moral [2004]. Although

at first sight reassuring, Equation (2.1.2) is practically useless since the bound

Cθ,n(ϕn) typically grows polynomially or exponentially withn, and reflects a fun-
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damental weakness of SMC methods: with limited resources, i.e. N fixed and

finite, it is not possible to consistently estimate the sequence of distributions

{pθ(x1:n|Y1:n)}.

Figure 2.1.2: Realistic sequential methods suffer from path degeneracy.

We report here a simple example proposed in Andrieu et al. [2007] that il-

lustrates the underlying phenomenon which explains the growth of Cθ,n(ϕn). The

tree in Figure 2.1.2 represents a realization of the paths{X̂(i)
1:n; i = 1, . . . ,N} of

N = 8 particles up to timen = 8 for a system for which the state space is

X = {−5,−4, . . . , 0, 1, 5}. The numbers at each node represent the number of

particles that effectively pass through it. This realization of the particle process is

representative of what is generally observed in more complex scenarios: the paths

tend tocoalesceas we follow the paths backward in time. As a result, whereas

{X̂(i)
8 ; i = 1, . . . ,N} and {X̂(i)

7 ; i = 1, . . . ,N} have a good coverage ofX, which

will result in a good representation ofp(x8|Y1:8) andp(x7|Y1:8), the sample repre-

sentation deteriorates as we go back in time, resulting in poor approximation of

p(x1:4|Y1:8), i.e. even if the truep(x1:4|Y1:8) is not degenerate, the sample represen-

tation is degenerate. Thiscoalescencephenomenon is the result of the resampling

stage and has long been observed [Gordon et al., 1993]. In fact, for a fixed time

indexk, there almost surely exists a finite random timen such that the particles

{X̂(i)
1:n; i = 1, . . . ,N} have all similar paths up to timek; i.e. {X̂(i)

1:k} = {X̂
( j)
1:k} for

all i, j ∈ {1, . . . ,N}. In the light of this toy example, it should thus come as non

surprise if it is impossible to boundCθ,n(ϕn) uniformly over time.
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A cure to the coalescence phenomenon could consist of rejuvenating the paths

by sampling new paths{X̂(i)
1:n−L; i = 1, . . . ,N} according topθ(x1:n−L |Y1:n) for some

L > 0. However, this would require a growing (in time) computational budget

per iteration, which is unrealistic in a sequential framework or for large time se-

ries. Another potential fix could consist of stopping resampling of the past of the

paths, say{X̂(i)
1:n−L; i = 1, . . . ,N} for some integerL, from timen onwards, pro-

vided that the identitypθ(x1:n−L|Y1:n) ≈ pθ(x1:n−L|Y1:n+1) holds [Kitagawa and Sato,

2001]. However it is difficult to quantifyL practically. More crucially, this pa-

rameter might directly depend on the unknown static parameter that we are trying

to estimate. As we shall see, this inability of SMC methods toapproximate, with

a constant computational budget per iteration, the joint distribution pθ(x1:n|Y1:n)

makes SMC parameter estimation algorithms inappropriate.The success of SMC

methods lies in the fact that results of the following form can be obtained under

the relatively general assumption detailed in Del Moral [2004]. Let L > 0 be an

integer and letϕL : XL → R be a bounded test function, then there exists some

constantDθ,L(ϕL) < ∞ such that for anyn ≥ 1,

E













(∫

XL
ϕn(xn−L+1:n)(pθ(dxn−L+1:n|Y1:n) − p̂N

θ (dxn−L+1:n|Y1:n))

)2










≤ Dθ,L(ϕL)
N

.

Clearly, in the light of the discussion above, this result can only hold when the

particles{X̂(i)
n−L+1:n; i = 1, . . . ,N} do not depend too heavily on their ‘far past’

{X̂(i)
1:k; i = 1, . . . ,N} for k ≪ n − L + 1, since these paths form a poor represen-

tation of pθ(x1:k|Y1:n). In other words, it is required that a property of the type

pθ(xn−L+1:n|Y1:n, x1:k) ≈ pθ(xn−L+1:n|Y1:n) holds.

In summary, for a fixed computational budget per time instant, SMC methods

can not properly approximate joint distribution sequencesof the form{pθ(x1:n|Y1:n);

n ≥ 1} sequentially in time because of the paths’ coalescence phenomenon: as we

shall see this is what makes the direct application of SMC techniques inappropri-

ate for static parameter inference. However, under ergodicassumption, for a given

lag L > 0, SMC methods can consistently approximate sequences of distributions

{pθ(xn−L+1:n|Y1:n); n ≥ 1} for a fixed numberN of particles.
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2.1.3 Difficulties with Static Parameters

Here we briefly review recent SMC-based static parameter estimation techniques

proposed in the literature. We can essentially classify most proposed approaches

into three categories. The first approach consists of setting a prior onθ, incorpo-

ratingθ in the state and applying standard SMC algorithms to the joint stateZn =

(θn,Xn), where the prior transition probability on{θn; n ≥ 1} is θn+1 ∼ δθn(dθn+1),

δθn(·) being the Dirac delta density function. However, in the light of the dis-

cussion above, the use of standard SMC methods to estimate the distributions

{p(x1:n, θ|Y1:n); n ≥ 1} (and thus{p(θ|Y1:n); n ≥ 1}) is bound to fail, especially due

to the lack of ergodicity of the process{Zn; n ≥ 1}. If we were to apply the generic

SMC algorithm as described earlier, the parameter space would only be explored

at the initialization of the algorithm as the transition probability of the Markov

process{Zn; n ≥ 1} includes a Dirac delta mass for the componentθ. Conse-

quently, after a few iterations, the marginal posterior distribution of the parameter

is typically approximated by a single Dirac delta function,which corresponds to

one of the initial values sampled from the prior distribution at time 1. In fact the

particle deplation phenomenon has been quantified in the simpler scenario where

no latent variablex1:n is present [Chopin, 2004]: it can be shown that the vari-

ance of functionals ofθ grows polynomially fast in time and exponentially fast

with the dimension ofθ. This problem was historically identified very early on by

SMC users [Gordon et al., 1993], and in order to limit it, various approximation

strategies have been proposed.

The second, pragmatic, approach consist of modifying the state- space model,

so thatθ is not static anymore. In this scenario we consider the extended state

Zn = (θn,Xn) where, for example,θn+1|θn ∼ N(θn, σ2
θ
) for a typically smallσ2

θ

[Kitagawa, 1998]. However, the choice ofσ2
θ

is difficult, leading to a trade off

between accuracy of the proxy model and speed of convergenceof the particle

filter. Historically it is related to a more general technique which was proposed

in order to introduce diversity in the system of particles using a kernel approxi-

mation of the empirical distribution [Gordon et al., 1993].Liu and West [2001]

establish some form of duality between this approach and themodified system

dynamic approach for some particular cases of interest. However, the selection of
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an appropriate kernel remains a difficult point.

In the third approach we also set a prior onθ and SMC is used to estimate

the joint posteriorp(θ, x1:n|Y1:n). Contrary from the first approach, here diver-

sity among particles in the parameter space is introduced using MCMC steps of

invariant distributionp(θ|Y1:n, x1:n). This is certainly more elegant than the sec-

ond approach, as the model of interest is not artificially altered. This algorithm

takes a simple form whenp(Y1:n|x1:n, θ) can be summarized by a set of low di-

mensional sufficient statistics [Andrieu et al., 1999, Fernhead, 2002, Gilks and

Berzuini, 2001, Storvik, 2002]. However, as noted for example in Andrieu et al.

[1999] and in light of the limitations of SMC methods outlined previously, this

approach might be unreliable. The problem is that the SMC estimates of the suf-

ficient statistics, necessary to perform the MCMC updates, degrade asn increases

because they are based on the approximation of the joint distribution pθ∗(x1:n|Y1:n).

In general, it happens that initially the SMC estimate displays good performance

but performs very poorly asn increases: this stems from the fact that the joint dis-

tributions{pθ∗(x1:n|Y1:n); n ≥ 1} can not be consistently estimated over time. What

we usually observe using this approach is that, at first, the parameter seems to

converge toward the correct region but then drifts away as the sufficient statistics

used in the MCMC update are not properly estimated. The practical problem is

that of assessing whether the algorithm is stable and has converged or not.

The development of an algorithm to approximate the sequence{p(θ|Y1:n)} with

a fixed precision and fixed computational efforts at any timen seem to us to remain

an open question.

2.2 Point estimation methods

A different approach consists on the estimation of the unknown parameterθ∗ in

a frequentist way, developing an inferential procedure based on likelihood quan-

tities to compute point estimates ofθ∗ from {Yk; k ≥ 1}. The aim is to produce a

point estimate ofθ∗ rather than a series of estimates of the posterior distributions

{p(θ,Y1:n); n ≥ 1}. As a result no particle method is required in the parameter

space, and it should also be pointed out that SMC methods in the state- spaceX
are, in general, also not necessary.
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2.2.1 Full likelihood Inference

The most natural approach of point estimate consists of maximizing the series of

likelihoods{pθ(Y1:n); n ≥ 1}. With our notation, the likelihood for a sequence of

observationsy1, . . . , yn is

L(θ; y1:n) = pθ(y1:n) =
∫

Xn

πθ(x1)gθ(y1|x1)
n

∏

i=2

fθ(xi |xi−1)gθ(yi |xi)dx1:n, (2.2.1)

which is simply obtained by taking into account the dependence structure charac-

terizing the model. In many situationsπθ, i.e. the stationary distribution, is not

known analytically. We denote withpθ(y1:n|µ) the joint distribution of the obser-

vations whenX1 ∼ µ, obtained by substitutingµ for the true invariant distribution

πθ in (2.2.1). With this notation,pθ(y1:n) := pθ(y1:n|πθ). An alternative equivalent

representation of the likelihood function is

L(θ; y1:n) =
n

∏

i=1

pθ(yi |y1:i−1) =
n

∏

i=1

∫

X
pθ(xi |y1:i−1)gθ(yi |xi)dxi ,

where the prediction densities are obtained recursively from

pθ(xi |y1:i−1) =
∫

X
fθ(xi |xi−1)pθ(xi−1|y1:i−1)dxi−1 (2.2.2)

pθ(xi−1|y1:i−1) =
pθ(xi−1|y1:i−2)gθ(yi−1|xi−1)

∫

X pθ(xi−1|y1:i−2)gθ(yi−1|xi−1)dxi−1

. (2.2.3)

Formulae (2.2.2) and (2.2.3) specify the well-known recursion which enables the

computation, at each timen ≥ 1, of the filtering and the prediction densities.

Example 2.2.1.Hidden Markov Model

If the latent states{Xk; k ≥ 1} is a finite state Markov chain on{1, . . . ,K}, the

state space model is usually called hidden Markov model. Denoting by Aθ =

[αi j ] the transition probability matrix, the likelihood function for the observations
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y1, . . . , yn is

pθ(y1:n) =
K

∑

x1=1

K
∑

x2=1

. . .

K
∑

xn=1

α(1)
x1

gθ(y1|x1)
n

∏

i=2

αxi−1xi gθ(yi |xi).

The initial probability distributionα(1) used in the definition above is not neces-

sarily the stationary probability distribution for the stochastic matrix Aθ, but any

probability vectorα(1) with strictly positive elements. The consistency of the max-

imum likelihood estimators does not depend on the choice ofα(1) [Leroux, 1992].

In this case the likelihood function can be expressed as

pθ(y1:n) = α
(1)















K
∏

i=1

Gθ(yi)Aθ















1, (2.2.4)

where Gθ(y) = diag{gθ(y|x)} and 1 is a K × 1 vector of ones. It is clear that

(2.2.4) is essentially a product of matrices and is hence easily evaluated. It can

be maximized overθ using standard numerical optimization procedures or using

the EM algorithm.

Recently, some results on the consistency and asymptotic normality of the

maximum likelihood estimator (MLE) can be found in Douc et al. [2004] (see

also the references therein). Their results allow one to consider the case where

πθ, and hence the true likelihood, is unknown. The technique relies primarily on

the forgetting properties of the filter, uniformly inθ. Anyway, when{Xk; k ≥ 1}
is continuous, evaluation of the full likelihood requires an integration over ann-

dimensional space. This task is insurmountable for typicalvalues ofn and exact

methods for computing and maximizing the likelihood function are usually not

feasible. Approximated solutions, based on Monte Carlo or numerical methods,

have been considered, but none of the proposed solutions arecompletely satisfac-

tory. Markov Chain Monte Carlo (MCMC) methods are usually difficult to im-

plement while Particle Filters (PF) are well suited but suffer from the well known

degeneracy problem. A possible way to overcome this problemis to replace the

likelihood by another function, easier to determine. Any function which (asymp-

totically) has its maximum at the true parameter point is a potential candidate. In

this direction composite likelihood approaches have been suggested.
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2.2.2 Composite likelihood Inference

Even if the full likelihood approach is the most natural and leads to an efficient

estimation of the parameter, the computational effort required in the evaluation

and maximization of the function suggests to develop new procedures in order to

reduce the computational burden. In this way it is possible to fit highly structured

statistical models, even when the use of standard likelihood methods is not prac-

tically possible. In the sequel we focus on composite likelihood.

The term composite likelihood indicates a likelihood type object formed by

taking the product of individual component likelihoods, each of which corre-

sponds to a marginal or conditional event. This is useful when the joint density is

difficult to evaluate but computing likelihoods for some subsetsof the data is pos-

sible, as in general state space models framework. This ideadates back probably

to Besag [1974] even though the term composite likelihood was stated by Lindsay

[1988].

Given the observationsy1:n, a composite likelihood is defined by specifying a set

of K marginal or conditional eventsAk(y1:n), k = 1, . . . ,K, with likelihood given

by Lk(θ; y1:n) = L(θ; Ak(y1:n)). Then, the composite likelihood is obtained by com-

posing these likelihood objects and it corresponds to

LC(θ; y1:n) =
K

∏

k=1

Lk(θ; y1:n)
ωk,

with ωk suitable non-negative weights. The composite loglikelihood is

lC(θ; y1:n) =
K

∑

k=1

ωklk(θ; y1:n),

with lk(θ; y1:n) = logLk(θ; y1:n).

This class contains, and thus generalizes, the usual ordinary likelihood, as well

as many other interesting alternatives. We can group composite likelihoods into

two general classes [Varin and Vidoni, 2005]: omission methods and composite

marginal likelihoods.
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Omission methods

The first group consists of ‘omission methods’, since composite likelihoods are

obtained by removing complicated terms that are not very informative on the pa-

rameter of interest in such a way that the loss of efficiency may be tolerated.

Examples include the Besag pseudolikelihood [Besag, 1974,1977], introduced

for making inference in spatial models before the advent of modern Monte Carlo

methods. It consists on a composite likelihood constructedfrom conditional neigh-

borhood densities. This is a quite natural suggestion sincein the context of

Markov Random Fields we might assume that the conditional distribution at site

i depends only upon the values at those sites which are, in somesense, in the

proximity of sitei. Using this fact, he considered

LC(θ) =
n

∏

i=1

pθ(yi |yj , j ∈ N(i)),

where pθ is defined in (2.0.3) andN(i) denotes some neighborhood of thei-th

site. Another example is them-th order likelihood for stationary processes [Az-

zalini, 1983], motivated by the fact that the exact likelihood in this framework

can be written as a product whosei-th term is the probability density function of

the corresponding sample element conditional on all previous observations. This

suggests to replace the conditioning on all previous observations by only them-th

most recent ones, for somem≥ 0, leading to

LC(θ) =
n

∏

i=1

pθ(yi |yi−m:i−1).

Composite marginal likelihoods

The other group contains composite likelihoods constructed from marginal den-

sities [Cox and Reid, 2004]. Typical attention is paid to compositions of low-

dimensional marginals, since their computation involves usually lower dimen-

sional integrals. This is the case of thepairwise likelihood(PL) [Le Cessie and
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Van Houwelingen, 1994],

LP,ω(θ; y1:n) =
n−1
∏

i=1

n
∏

j=i+1

pθ(yi , yj)
ωi j , (2.2.5)

whereωi j , i = 1, . . . , n− 1, j = i + 1, . . . , n are suitable non-negative weights, or

of thesplit data likelihood(SDL) proposed by Ryden [1994] as an alternative to

maximum likelihood for inference in hidden Markov models. This is a composite

likelihood constructed by splitting then = mLobservations intomgroups of fixed

sizeL and assuming these groups are independent

LS D(θ; y1:n) =
m

∏

i=1

pθ(yL(i−1)+1:iL ).

In the SDL framework, it is also possible to consider overlapping blocks of the

form (Y1:L,Y2:L+1, . . . ,Yn−L+1:n). In this case we define

L(ov)
S D(θ; y1:n) =

n−L+1
∏

i=1

pθ(yi:L+i−1)

=

L(m−1)+1
∏

i=1

pθ(yi:L+i−1). (2.2.6)

In our study we take into account PL and SDL and we discuss the asymptotic

properties of the parameter estimators obtained by maximizing these functions in

the state space scenario.



Chapter 3

Pairwise likelihood inference in

State space models

In this chapter we consider the pairwise likelihood function and the asymptotic

properties of the parameter estimator obtained by maximizing this function in

state space scenario. We discuss which kind of pairwise likelihood function is

better to use among all possible choices for the weights and we prove the consis-

tency of the pairwise likelihood estimator of orderL. Moreover, we present an

expression for a central limit theorem (if such theorem exists) and we quantify the

bias of the estimate in the case where the invariant distribution is unknown and

it is substituted by a generic distribution. Some comments about the efficiency

problems are also suggested.

3.1 Different choices for the weights

Starting from (2.2.5), a suitable choice for the weights allows one to consider

different types of PL. We shall concentrate on the PL that takes into account all

then(n−1)/2 pairs (obtained choosingωi j = 1, ∀i = 1, . . . , n−1, j = i+1, . . . , n),

that is

LP(θ; y1:n) =
n−1
∏

i=1

n
∏

j=i+1

pθ(yi , yj) (3.1.1)

19



20 Chapter 3. Pairwise likelihood inference in State space models

and on the so calledL-th order PL, which is based on all the pairs of observations

with a lag distance not greater thanL ∈ {1, . . . , n− 1}, that is

L(L)
P (θ; y1:n) =

n−1
∏

i=1

min{i+L,n}
∏

j=i+1

pθ(yi , yj).

Note thatL(n−1)
P (θ; y1:n) corresponds to (3.1.1). Given the dependence structure of

the model (2.0.1, 2.0.2), for everyi = 1, . . . , n− 1, j = i + 1 . . . , n

pθ(yi , yj) =
∫

X j−i+1
pθ(yi , yj, xi: j)dxi: j

=

∫

X j−i+1
πθ(xi)gθ(yi |xi)

















j
∏

k=i+1

fθ(xk|xk−1)

















gθ(yj |xj)dxi: j . (3.1.2)

The numerical computation of (3.1.2) involves in general a (j − i + 1)- dimen-

sional integral. If j − i is bounded by a constant that does not depend onn, the

computation is likely easier compared to the full likelihood approach. In the case

of pairwise likelihood with all the pairs, the integral dimension increases withn,

so its evaluation might be still infeasible, depending on the structure offθ(·|x).

This is one of the motivations why people usually do not work with pairwise like-

lihood with all the pairs but prefer using pairwise likelihood of orderL, for some

L ≥ 1.

Moreover, even if the computation of (3.1.1) were feasible,a theoretic issue comes

up when we consider all the pairs. If the process has good properties and the in-

variant distribution is known, we expect that the normalized log pairwise likeli-

hood

lP(θ; y1:n) =
1

n− 1

n−1
∑

i=1

1
n− i

n
∑

j=i+1

log[pθ(yi , yj)] (3.1.3)

will be well approximated by

1
n− 1

n−1
∑

i=1

1
n− i

n
∑

j=mn+i+1

log[pθ(yi)pθ(yj)] (3.1.4)

for n large enough, wheremn is chosen in such a way that, for everyi, mn/(n− i)
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and mnlogn
n go to zero asn goes to infinity.
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Figure 3.1.1: Heuristic proof of (3.1.4): In the likelihood(3.1.3) we are consider-
ing all the pairs (yi , yj) with j > i, i.e. we are above the bisector. The widthmn

depends on the sample sizen but it is constant for everyi and j. Inside the stripe,
observations are close. Ifn grows there are more pairs that are far apart than pairs
that are close. Given the ergodicity of the process, the pairs that are far away act
as they were independent, while the contribution to the likelihood of the the pairs
that are close vanishes.

Roughly speaking, (3.1.4) tells us that ifn grows there are more pairs that are

far apart than pairs that are close and, if the process is ergodic, the pairs that are

far away act as they were independent (see Figure 3.1.1 for anheuristic proof). In

this case it is clear that all the information about the dependence structure of the

model are lost, since only the marginal density is taken intoaccount. For these

reasons from here on we will concentrate on pairwise likelihood of orderL.

More precisely, we prove the following theorem

Theorem 3.1.1.Under the Assumptions(A1) and(A2) defined in Appendix B.2

lP(θ; y1:n) ≈
1

n− 1

n−1
∑

i=1

1
n− i

n
∑

j=mn+i+1

log[pθ(yi)pθ(yj)]

for n large enough, where, for every i, mn/(n− i) and mnlogn
n go to zero as n goes to

infinity.
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Proof. By definition (3.1.3),

lP(θ; y1:n) =
1

n− 1

n−1
∑

i=1

1
n− i

















mn+i
∑

j=i+1

log[pθ(yi , yj)] +
n

∑

j=mn+i+1

log[pθ(yi , yj)]

















,

where for everyi, mn/(n − i) goes to zero asn goes to infinity to ensure thatmn

does not grow ‘too much’ compared ton and hence the second sum makes sense.

We concentrate first in the term

L1(n,mn) :=
1

n− 1

n−1
∑

i=1

1
n− i

mn+i
∑

j=i+1

log[pθ(yi , yj)].

We have that

|L1(n,mn)| ≤
1

n− 1

n−1
∑

i=1

1
n− i

mn+i
∑

j=i+1

|log[pθ(yi , yj)]|

≤ 1
n− 1

n−1
∑

i=1

Cmn

n− i
,

with C ∈ (0,+∞). The result above follows from Assumption (A2) which en-

sure thatpθ(yi , yj) is bounded away from zero for everyi, j and from the identity

(B.4.1). Now

1
n− 1

n−1
∑

i=1

Cmn

n− i
=

Cmn

n− 1

n−1
∑

i=1

1
i

≈ Cmn

n− 1
(log[n− 1] + γ),

whereγ is the Euler constant. For our purpose, the termL1(n,mn) has to go to

zero in order to conclude that the contribution to the log pairwise likelihood of

the pairs with lag distance not greater thanmn vanishes asn goes to infinity. To

reach this, we need to choosemn in such a way thatmnlogn
n goes to zero asn goes

to infinity. Note that this condition holds, for example, when mn is a constant.
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We look now at

L2(n,mn) :=
1

n− 1

n−1
∑

i=1

1
n− i

n
∑

j=mn+i+1

log[pθ(yi , yj)].

We can rewriteL2(n,mn) as

L2(n,mn) =
1

n− 1

n−1
∑

i=1

[ 1
n− i

n
∑

j=mn+i+1

(

log[pθ(yi , yj)] − log[pθ(yi)pθ(yj)]
)

+

+
1

n− i

n
∑

j=mn+i+1

log[pθ(yi)pθ(yj)]
]

.

By ergodic properties, there exist constantsC̃ ∈ (0,+∞) andρ ∈ [0, 1) such that,

for everyi, j

|pθ(yi , yj) − pθ(yi)pθ(yj)| ≤ C̃ρ j−i .

Using again identity (B.4.1), the absolute value of first term in L2(n,mn) satisfies

∣

∣

∣

∣

∣

∣

∣

1
n− 1

n−1
∑

i=1

1
n− i

n
∑

j=mn+i+1

(log[pθ(yi , yj)] − log[pθ(yi)pθ(yj)])

∣

∣

∣

∣

∣

∣

∣

≤ 1
n− 1

n−1
∑

i=1

1
n− i

n
∑

j=mn+i+1

|log[pθ(yi , yj)] − log[pθ(yi)pθ(yj)]|

≤ 1
n− 1

n−1
∑

i=1

1
n− i

n
∑

j=mn+i+1

Cρ j−i ≤ C
(1− ρ)(n− 1)

n−1
∑

i=1

ρmn − ρn−i

n− i

=
Cρmn

(1− ρ)(n− 1)

n−1
∑

i=1

1
i
− C

(1− ρ)(n− 1)

n−1
∑

i=1

ρi

i
,

for a suitable constantC ∈ (0,+∞). Forn large enough

Cρmn

(1− ρ)(n− 1)

n−1
∑

i=1

1
i
≈ Cρmn

(1− ρ)(n− 1)
(log[n− 1] + γ)

n→+∞→ 0,
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sinceρ is a constant less than one. On the other hand

C
(1− ρ)(n− 1)

n−1
∑

i=1

ρi

i
≤ C

(1− ρ)(n− 1)

n−1
∑

i=1

ρi

=
C

(1− ρ)(n− 1)

(

1− ρn

1− ρ − 1

)

n→+∞→ 0.

We have that

L2(n,mn) ≈
1

n− i

n
∑

j=mn+i+1

log[pθ(yi)pθ(yj)]

for n large enough and combining this with the result aboutL1(n,mn), we are able

to conclude that

lP(θ; y1:n) ≈
1

n− 1

n−1
∑

i=1

1
n− i

n
∑

j=mn+i+1

log[pθ(yi)pθ(yj)].

�

3.2 Maximum pairwise likelihood of order L when

πθ is known

In this section, we study the properties of the estimator obtained by maximizing

with respect toθ the pairwise likelihood function of orderL, defined as

L(L)
P (θ; y1:n) =

n−1
∏

i=1

min{i+L,n}
∏

j=i+1

pθ(yi , yj). (3.2.1)

We denote bŷθ(L)
P any global maximum point ofL(L)

P (θ; y1:n). Let us consider the

pairwise likelihood in (3.2.1) wherepθ(yi , yj) is defined by (3.1.2) andL ≥ 1

is a fixed constant (we now suppose thatπθ is known). In order to study the

properties of̂θ(L)
P we need to point out the asymptotic behavior of the normalized
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log likelihood

l(L)
P (θ; y1:n) =

1
n− 1

n−1
∑

i=1

















1
L

min{i+L,n}
∑

j=i+1

log[pθ(yi , yj)]

















(3.2.2)

asn goes to infinity. SinceL−1 ∑min{i+L,n}
j=i+1 log[pθ(yi , yj)] is a function of the ob-

servations (yi , . . . , yi+L) (let us denote this function asϕ), under suitable ergodic

assumptions

1
n− 1

n−1
∑

i=1

ϕ(yi , . . . , yi+L)
n→+∞→ Eθ∗[ϕ(Y1, . . . ,YL+1)] =

=

∫

YL+1
ϕ(y1, . . . , yL+1)pθ∗(y1:L+1)dy1:L+1

=
1
L

L+1
∑

j=2

∫

Y2
log[pθ(y1, yj)]pθ∗(y1, yj)dy1dyj , (3.2.3)

whereEθ∗[·] is the expectation associated to the stationary process{Zk; k ≥ 1}
generated by the model defined in (2.0.1) and (2.0.2) forθ = θ∗ ∈ Θ.

Hence

lim
n→+∞

l(L)
P (θ; y1:n) = l(L)

P (θ),

wherel(L)
P (θ) is defined by (3.2.3). With appropriate conditions, it can be shown

that the set of parameters maximizingl(L)
P (θ) includes the true parameter and hence

the L-th order PL is an objective function that, when maximized, leads to a rea-

sonable estimator of the parameter. This follows from the fact that maximizing

l(L)
P (θ) is equivalent to minimizing the following Kullback-Leibler divergence

K(L)
P (θ, θ∗) = l(L)

P (θ∗) − l(L)
P (θ) ≥ 0.

Varin and Vidoni [2005] calledK(L)
P (θ, θ∗) composite Kullback-Leibler divergence

since it can be seen as the linear combination of the Kullback-Leibler divergences

associated with each component of the composite likelihood. In this case

K(L)
P (θ, θ∗) =

1
L

L+1
∑

j=2

Eθ∗

[

log
pθ∗(y1, yj)

pθ(y1, yj)

]

, (3.2.4)
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which preserves the non-negativity as soon as the ordinary Kullback-Leibler di-

vergence does (see Appendix A).

3.2.1 Strong consistency of the pairwise likelihood estimator of

order L

Following the standard technique introduced by Wald [1949]and asking that the

bivariate process{Xk,Yk} is uniformly ergodic and that the functionsfθ andgθ are

continuous inθ, the estimator obtained by maximizing the pairwise likelihood of

orderL is strongly consistent, i. e. it converges almost surely to the true parameter

value asn goes to infinity.

More precisely, we prove the following theorem (middle results can be found in

Appendix A)

Theorem 3.2.1.Assume that conditions(C1 − C7) in Appendix A.1 hold and let

θ̂
(L)
P be the L-order pairwise likelihood estimator based on n observations. Then

θ̂
(L)
P → θ∗ Pθ∗-almost surely as n→∞.

Proof. Given an arbitraryǫ > 0, setSǫ = {θ ∈ Θ; |θ − θ∗| < ǫ} andC = Θ ∩ Sc
ǫ .

Lemma A.2.3 allows us to choose a positive numberb such that, for everyj =

2, . . . , L + 1

Eθ∗















sup
θ:|θ|>b

log pθ(y1, yj)















≤ Eθ∗
[

log pθ∗(y1, yj)
]

− 1 (3.2.5)

and letC1 = C∩ {θ ∈ Θ; |θ| ≤ b}. It follows from Lemma A.2.1 and Lemma A.2.2

that for eachθ ∈ C1 there is aǫθ > 0 and an open neighborhoodGθ of θ such that

Eθ∗

[

sup
θ′∈Gθ

log pθ′(y1, yj)

]

≤ Eθ∗
[

log pθ(y1, yj)
]

≤ Eθ∗
[

log pθ∗(y1, yj)
]

− ǫθ. (3.2.6)

Note thatC1 is a compact set (from Assumption C2) and thus there is a finiteset

{θ1, . . . , θd} ⊆ Θ such thatC1 ⊆ ∪d
i=1Gi, whereGi = Gθi and defineG0 = {θ ∈
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Θ; |θ| > b}. We have that

sup
θ∈Sc

ǫ

(

logL(L)
P (θ; y1:n) − logL(L)

P (θ∗; y1:n)
)

=

=max
0≤i≤d

(

sup
θ∈Gi

logL(L)
P (θ; y1:n) − logL(L)

P (θ∗; y1:n)

)

.

From Assumption (C1), for everyi, 1 ≤ i ≤ d

sup
θ∈Gi

(

l(L)
P (θ; y1:n) − l(L)

P (θ∗; y1:n)
) n→∞→

1
L

L+1
∑

j=2

Eθ∗

[

sup
θ∈Gi

log pθ(y1, yj)

]

− 1
L

L+1
∑

j=2

Eθ∗
[

log pθ∗(y1, yj)
]

and by Equation (3.2.6) the right term above is less or equal to−ǫθi < 0.

Again by Assumption (C1)

sup
θ∈G0

(

l(L)
P (θ; y1:n) − l(L)

P (θ∗; y1:n)
) n→∞→

1
L

L+1
∑

j=2

Eθ∗

[

sup
θ∈G0

log pθ(y1, yj)

]

− 1
L

L+1
∑

j=2

Eθ∗
[

log pθ∗(y1, yj)
]

and by Equation (3.2.5) the right term above is less or equal to−1 < 0.

This proves that

max
0≤i≤d

(

sup
θ∈Gi

log[L(n− 1)l(L)
P (θ; y1:n)] − log[L(n− 1)l(L)

P (θ∗; y1:n)]

)

n→∞→ −∞ Pθ∗ − a.s.,

that is

Pθ∗

{

lim
n→∞

sup
θ∈Sc

ǫ

(

logL(L)
P (θ; y1:n) − logL(L)

P (θ∗; y1:n)
)

= −∞
}

= 1. (3.2.7)

Now, we use the result in (3.2.7) to prove the strong consistency of θ̂(L)
P , i.e. that

Pθ∗
{

limn→∞ θ̂
(L)
P = θ

∗
}

= 1. Sinceθ̂(L)
P is a global maximum point ofL(L)

P (θ; y1:n),
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we have that

L(L)
P (θ̂(L)

P ; y1:n) ≥ L(L)
P (θ∗; y1:n)

for all n. It is sufficient to prove that for anyǫ > 0 the probability that there exists

a limit point θ̂ of the sequence{θ̂(L)
P } such that|θ̂− θ∗| > ǫ is zero. If such âθ exists

than supθ∈Sc
ǫ
L(L)

P (θ; y1:n) ≥ L(L)
P (θ̂(L)

m ; y1:n) for infinitely manyn. But then

supθ∈Sc
ǫ
L(L)

P (θ; y1:n)

L(L)
P (θ∗; y1:n)

> 0

for infinitely manyn. Since, according to (3.2.7), this is an event with probability

zero, we have shown that the probability that all limit points θ̂ of {θ̂(L)
P } satisfy the

inequality|θ̂ − θ∗| ≤ ǫ is one. By the arbitrariness ofǫ, θ̂(L)
P is strongly consistent.

�

3.2.2 Central limit theorem

Under suitable assumptions, a central limit theorem exists. We do not discuss here

hypothesis that ensure such existence. We consider the sequence of maximum

pairwise likelihood estimators{θ̂(n)
P }, where

θ̂
(n)
P := arg max

θ∈Θ
l(L)
P (θ; y1:n).

In the definition above we explicitly underline that such estimators depend on the

sample sizen and we recall thatl(L)
P (θ; y1:n) is defined as in (3.2.2). In this case,

if a central limit theorem exists, we establish its expression in the scalar case (for

notational simplicity).

Theorem 3.2.2.Central limit theorem: scalar case

√
n− 1(θ̂(n)

P − θ∗)
D→ N(0, σ(L)

P (θ∗)),
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where

σ
(L)
P (θ∗) = h−2

L (θ∗)γL(θ∗), with

hL(θ∗) := Eθ∗

















1
L

L+1
∑

j=2

∂2

∂θ2
log[pθ∗(y1, yj)]

















γL(θ∗) := Eθ∗



































1
L

L+1
∑

j=2

∂

∂θ
log[pθ∗(y1, yj)]

















2
















+

+ 2
∞
∑

k=2

Eθ∗

































1
L

L+1
∑

j=2

∂

∂θ
log[pθ∗(y1, yj)]

































1
L

L+k
∑

j=k+1

∂

∂θ
log[pθ∗(yk, yj)]

































.

Proof. Let {θ̂(n)
P } be the sequence of maximum pairwise likelihood estimators of

θ∗. We have the following Taylor expansion

0 =
∂

∂θ
l(L)
P (θ̂(n)

P ; y1:n) =
1

n− 1

n−1
∑

i=1

∂

∂θ
ϕ
θ̂

(n)
P

(yi , . . . , yi+L) =
1

n− 1

n−1
∑

i=1

∂

∂θ
ϕθ∗(yi , . . . , yi+L)

+
(θ̂(n)

P − θ∗)
n− 1

n−1
∑

i=1

[

∂2

∂θ2
ϕθ∗(yi , . . . , yi+L) +

1
2
∂3

∂θ3
ϕθ̄n(yi , . . . , yi+L)(θ̂(n)

P − θ
∗)

]

, (3.2.8)

whereθ̄n is a point on the segment [θ̂(n)
P , θ

∗] and

ϕθ(yi , . . . , yi+L) :=
1
L

min{i+L,n}
∑

j=i+1

log[pθ(yi , yj)]. (3.2.9)

Since maximum pairwise likelihood is strongly consistent,θ̂(n)
P − θ∗ converges to

zero and hence the second term in squared brackets in Equation (3.2.8) vanishes

asn goes to infinity. From the ergodic properties

1
n− 1

n−1
∑

i=1

∂2

∂θ2
ϕθ∗(yi , . . . , yi+L)

P→ Eθ∗
[

∂2

∂θ2
ϕθ∗(y1, . . . , yL+1)

]

and similarly
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1
√

n− 1

n−1
∑

i=1

[

∂

∂θ
ϕθ∗(yi , . . . , yi+L) − Eθ∗

[

∂

∂θ
ϕθ∗(yi , . . . , yi+L)

]]

D→ N(0, γL(θ∗)).

But here

Eθ∗

[

∂

∂θ
ϕθ∗(yi , . . . , yi+L)

]

= 0

since pairwise likelihood is an unbiased estimating equation and hence

1
√

n− 1

n−1
∑

i=1

∂

∂θ
ϕθ∗(yi , . . . , yi+L)

D→ N(0, γL(θ∗)),

where

γL(θ∗) := Eθ∗













(

∂

∂θ
ϕθ∗(y1, . . . , yL+1)

)2










+

+ 2
∞
∑

k=2

Eθ∗

[(

∂

∂θ
ϕθ∗(y1, . . . , yL+1)

) (

∂

∂θ
ϕθ∗(yk, . . . , yL+k)]

)]

.

We deduce from Equation (3.2.8) that

− 1
n− 1

n−1
∑

i=1

∂

∂θ
ϕθ∗(yi , . . . , yi+L) =

1
n− 1

n−1
∑

i=1

∂2

∂θ2
ϕθ∗(yi , . . . , yi+L)(θ̂(n)

P − θ∗)

and hence

√
n− 1(θ̂(n)

P − θ
∗) = − 1

√
n− 1

n−1
∑

i=1

∂

∂θ
ϕθ∗(yi , . . . , yi+L)

·














1
n− 1

n−1
∑

i=1

∂2

∂θ2
ϕθ∗(yi , . . . , yi+L)















−1

,

leading to

√
n− 1(θ̂(n)

P − θ
∗)
D→ N(0, h−2

L (θ∗)γL(θ∗)),
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where

hL(θ∗) := Eθ∗
[

∂2

∂θ2
ϕθ∗(y1, . . . , yL+1)

]

.

The final result follows from (3.2.9). �

Remark 3.2.3. From expression (3.2.3) we can outline what happens if L is al-

lowed to grow to infinity. For j large enough, by ergodicity, pθ(y1, yj) is well

approximated by pθ(y1)pθ(yj), for everyθ ∈ Θ. Hence, for j large enough

∫

Y2
log[pθ(y1, yj)]pθ∗(y1, yj)dy1dyj

is well approximated by

∫

Y2
log[pθ(y1)pθ(yj)]pθ∗(y1)pθ∗(yj)dy1dyj =

=

∫

Y
log[pθ(y1)]pθ∗(y1)dy1 +

∫

Y
log[pθ(yj)]pθ∗(yj)dyj.

By stationarity assumption, pθ(y1) = pθ(yj) for every j and for everyθ ∈ Θ and

using Cesaro sum we have that

lim
L→+∞

1
L

L+1
∑

j=2

∫

Y2
log[pθ(y1, yj)]pθ∗(y1, yj)dy1dyj = 2

∫

Y
log[pθ(y1)]pθ∗(y1)dy1.

If L goes to infinity, it is clear from the result above that allthe information about

the dependence structure of the model are lost, since only the marginal density

is taken into account. Moreover, in the case where the invariant distribution is

unknown, all the inference is carried out from pθ(y1|µ) =
∫

X µ(x1)gθ(y1|x1)dx1,

that might be completely wrong.

At this point, two important issues arise. First, the characterization of the

bias of the estimate introduced whenπθ is unknown. In this case we need an

approximation for the bivariate density (3.1.2). Second, the quantification of the

loss of asymptotic efficiency introduced by the use ofl(L)
P (θ) in place of the full

likelihood, through the evaluation of the asymptotic variance of the estimator̂θ(L)
P .
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3.3 Bias of the estimate whenπθ is replaced withµ

In many situations (exceptions are, for example, linear gaussian models for the

dynamic of{Xk} and the discrete case), invariant distribution is unknown.Denot-

ing by pθ(yi , yj |µ) the bivariate density of the observationsyi, yj when the process

is wrongly initialized byX1 ∼ µ(·) we have that

pθ(yi , yj |µ) =
∫

X j

µ(x1)

















j
∏

k=2

fθ(xk|xk−1)

















gθ(yi |xi)gθ(yj |xj)dx1: j .

The definition above yields the following approximation of the full likelihood

defined in (3.2.1)

L(L)
P (θ; y1:n, µ) =

n−1
∏

i=1

min{i+L,n}
∏

j=i+1

pθ(yi , yj |µ). (3.3.1)

The following result quantifies the bias of the estimate introduced when the true

invariant distributionπθ is replaced with a generic distributionµ. We denotêθP(µ)

(we drop the explicit dependence onL) a generic maximum of the resulting ap-

proximate pairwise likelihood (3.3.1). Assumptions underwhich Theorem 3.3.1

holds are summarized in the Appendix B.2. Middle results canbe found in the

Appendices B.4 and B.5.

Theorem 3.3.1.There exist C∈ (0,+∞) andρ ∈ [0, 1) such that for anyµ ∈ P(X)

|θ̂P(µ) − θ∗| ≤ C
∣

∣

∣[∇2lP(θ∗)]−1
∣

∣

∣

[

||µ − πθ∗ ||
1− ρ + ||∇µ − ∇πθ∗ ||

]

.

Proof. Let us consider the following Taylor expansion aroundθ∗ andµ ∈ P(X)

such that [θ∗, θ̂P(µ)] ⊂
◦
Θ,

∇lP(θ̂P(µ)) = ∇lP(θ∗) + (θ̂P(µ) − θ∗)
∫ 1

0
∇2lP(θ∗ + t(θ̂P(µ) − θ∗))dt

= ∇lP(θ∗) + (θ̂P(µ) − θ∗)[R(µ) + ∇2lP(θ∗)], (3.3.2)
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where

R(µ) :=
∫ 1

0
∇2lP(θ∗ + t(θ̂P(µ) − θ∗) − ∇2lP(θ∗))dt.

Since the set of parameters maximizinglP(θ) includes the true parameter,∇lP(θ∗) =

0. Moreover, by definition,∇lP(θ̂P(µ), µ) = 0. Hence (3.3.2) can be written as

∇lP(θ̂P(µ)) = ∇lP(θ̂P(µ), µ) + (θ̂P(µ) − θ∗)[R(µ) + ∇2lP(θ∗)],

leading to

(θ̂P(µ) − θ∗) = [R(µ) + ∇2lP(θ∗)]−1[∇lP(θ̂P(µ)) − ∇lP(θ̂P(µ), µ)].

We have thatR(µ) vanishes as||µ−πθ|| goes to zero. This follows from the Theorem

B.5.1 and from the continuity inθ of the function∇2lP(θ). Using the result in

Theorem B.4.2, we can easily conclude. �

In the theorem above, the constantρ characterizes the forgetting properties of

{Xk} a priori and conditional upon{Yk}. This result confirms the intuition that the

bias introduced when usingµ instead ofπθ∗ in the pairwise likelihood depends on

how closeµ is toπθ∗ and on the ergodic properties of{Xk}.

The problem now is how to choose the distributionµ. In the cases in which

the invariant distributionπθ is unknown but transitionsfθ(·|x) are simple, the idea

is to approximate the invariant distributionπθ sampling from the transition kernel

fθ(·|x) and to take advantage of the geometric ergodicity of the process. More

precisely, the idea is to take

µ(xi−r : i) = µ(xi−r )
i

∏

k=i−r+1

fθ(xk|xk−1), (3.3.3)

where, under geometric ergodicity, the marginal

µ(xi)→ πθ(xi),

asr goes to+∞.
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In more complex situations, the choice ofµ has to be carefully done, taking into

account that this will affect the bias of the estimate.

3.4 Loss of efficiency

If L is fixed, the use ofL-th order PL suggests that information about the param-

eter can be extracted from the dependence structure of the pairs of observations

with a lag distance not greater thanL. Usually, it happens that the maximum pair-

wise likelihood estimators tend to lose efficiency, with respect to those based on

the full likelihood. Even if this behavior is obviously reliable, until now, no gen-

eral results about the evaluation of this gap are available.

Instead of comparing the efficiency between the PL and the full likelihood, we

would like to compare the efficiency of SDL and PL. This choice is justified by

the fact that for general state- space models the full likelihood function is unavail-

able, as we discussed before, and hence the estimator obtained by maximizing

this function is not actually a real alternative. Moreover,for non overlapping

version of split data likelihood estimator, we have some theoretical results about

the behavior of its variance. Anyway, maximum full likelihood estimator is the

benchmark we have to refer to when we discuss efficiency of any estimator.

We would like to take into account the overlapping version ofthe SDL, as

defined in (2.2.6) and consider the case whereπθ is known. Since in PL of order

L, for everyi = 1, . . . , n− 1, pθ(yi:L+i) is approximated by
∏L+i

j=i+1 pθ(yi , yj), that is

the joint distribution of a block is approximated by the product of the pairs within

the block, we expect that, for a general model, there will be aloss of efficiency

when we use PL of orderL instead of overlapping SDL. This property strongly

depends on the model we consider: in the next chapter, we willempirically show

that this is not necessarily true for every model. The quantification of this loss can

be achieved through the evaluation of the asymptotic variance of the estimator̂θ(L)
P .

Andrieu et al. [2007] characterize the asymptotic variancein the non overlapping

version of SDL, calledΣL, and quantify the loss of efficiency by comparingΣL to

its counterpart associated to the full likelihood based criterion. More precisely,
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they state that there exists aC ∈ (0,+∞) andρ ∈ [0, 1) such that for anyL ≥ 2

|Σ − ΣL| ≤ C

[

log (L)2

L log (ρ)2
+

ρ

L(1− ρ) +
ρL+1

1− ρL

]

, (3.4.1)

whereΣ denotes the asymptotic variance of the full likelihood estimator. Since

ΣL = H−1
L (θ∗)GL(θ∗)H−T

L (θ∗),

where

HL(θ∗) =
1
L
E[∇logpθ∗(Y0)∇T logpθ∗(Y0)],

GL(θ∗) =
1
L
E[∇logpθ∗(Y0)∇T logpθ∗(Y0)] +

2
L

+∞
∑

k=1

E[∇logpθ∗(Y0)∇T logpθ∗(Yk)],

with Yk = (YkL+1, . . . ,Y(k+1)L), the result in (3.4.1) comes from the fact that

1
L
|E[∇logpθ∗(Y0)∇T logpθ∗(Y0)] − Σ−1| ≤ ρ

L(1− ρ) ,

1
L
|E[∇logpθ∗(Y0)∇T logpθ∗(Y1)]| ≤ C

log (L)2

L log (ρ)2
,

1
L
|E[∇logpθ∗(Y0)∇T logpθ∗(Yk)]| ≤ CLρ(k−1)L+1 ∀k ≥ 2,

for a suitableC ∈ (0,+∞) andρ ∈ [0, 1). Equation (3.4.1) proves that the loss of

efficiency compared to the maximum likelihood estimator vanishes asL increases

and depends on the mixing properties of the model. Extendingtheir results to the

overlapping version of the maximum split data likelihood estimator is far from

being easy. The difficulties arise because the dependency structure between blocks

is more complex when blocks are allowed to overlap instead ofbeing disjoint.

This translates in a more complicated calculation for the counterpart ofGL(θ∗),

necessary to evaluate the asymptotic variance of the estimator.

For our purpose, we shall evaluate the asymptotic variancesof the estimators

obtained by maximizing (2.2.6) and (3.2.1). We refer to these quantities asΣ(ov)
S D

andΣ(L)
P respectively. As we discussed above, evaluation ofΣ

(ov)
S D and a fortiori

evaluation ofΣ(L)
P is not easy to obtain, even for simple models. A deep theoretical
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analysis of the efficiency problem in pairwise and overlapping split data likelihood

inferential procedures is beyond the scope of this thesis. Anyway, while we sus-

pect thatΣ(ov)
S D still decreases ifL grows, we do not expect thatΣ(L)

P will do the same

if L grows, unlikeΣL does. This idea is consistent to Varin and Vidoni [2009]. In

the next chapter, we give an empirical evidence of these behaviors and we suggest

the existence of a ‘best’ lagL, in term of variance of the PL estimator. Anyway,

how to determineL optimally is still a good open question.



Chapter 4

Empirical study about efficiency

In this chapter, we empirically compare the efficiency between maximum pair-

wise likelihood and maximum full likelihood estimators, aswell as the efficiency

between maximum overlapping split data likelihood and maximum pairwise like-

lihood estimators. Even if we do not have theoretical results that state the behavior

of their variances, our intuitions, suggested in Section 3.4, are confirmed in this

simple example. We consider a linear gaussian state space model, where invariant

distribution is known and the likelihood function is available in a closed form.

Even if it is only an empirical study in a simple context, these preliminary results

may be a useful guide when we move to more complex settings where we can not

compute the likelihood function in a closed form.

4.1 The model

We illustrate here by means of simulation experiments, the performance of the

maximum pairwise likelihood estimator of orderL and we compare it with the

maximum split data likelihood estimator, where the blocks defining the likelihood

function are allowed to overlap.

We consider a state space model where the latent process follows an autoregres-

sive dynamic and the marginal distributions of the observations are explicitly

known.

As defined in Example 2.0.1, we consider the following AR(1) model with

37
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additive observation noise

Xn+1 = φXn +Wn, Wn ∼ N(0, τ2)

Yn = Xn + Vn, Vn ∼ N(0, σ2).

In this case

fθ(x
′|x) = N(φx, τ2) and gθ(y|x) = N(x, σ2).

We assume that the AR(1) evolution is stationary, so|φ| < 1 andπθ ∼ N
(

0, τ
2

1−φ2

)

.

The unknown parameter isθ = (φ, τ, σ). The full likelihood function is available

in a closed form and it can be efficiently computed by the Kalman filter recursions.

Thus we can compare the performance of the maximum likelihood, the maximum

pairwise likelihood and the maximum split data likelihood estimators. Moreover,

we can empirically compare the variance of the maximum pairwise and the split

data likelihood estimators in order to study their relationship in term of efficiency.

Since we set the parameter space in such a way that the processis stationary, the

bivariate distribution of the pairs (Yi ,Yj), i = 1, . . . , n− 1; j = i + 1, . . . , n is
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and hence the pairwise likelihood of orderL is easy to compute.

It is worthwhile to underline that the statistical model corresponding to the choice

L = 1 is not identifiable. IfL = 1 there exist at least two different sets of param-

eters values forθ which give the same value for the pairwise likelihood function.

This problem can be easily overcome by adding pairs at lag distance greater than

one.

On the other hand, under stationarity conditions, the marginal distribution of the

blocks (Yi , . . . ,YL+i−1), i = 1, . . . , n− L + 1 is
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Table 4.2.1: AR(1) model plus observation noise, withθ∗ = (0.7, 1, 1). Sample
mean and standard deviation (in brackets), for the maximum likelihood estimator
θ̂ML. Calculations based on 300 simulated time series of length 1000.

φ̂ML τ̂ML σ̂ML

0.6952 0.996 0.9932
(0.0473) (0.0952) (0.0798)

and hence the split data likelihood with blocks of lengthL turns out to be easy to

compute.

4.2 Simulation study

We perform a simple simulation study with the aim of comparing the empirical

properties ofθ̂(L)
P and θ̂(L)

S D, with L = 2, . . . , 29. We consider 300 time series of

length n = 1000 from the AR(1) model plus additive observation noise, with

φ∗ = 0.7, σ∗ = 1, τ∗ = 1 as true parameter values. Hereafter, in order to find the

maximum point of the pairwise and split data likelihood functions, we adopt an

optimization procedure based on the Nelder and Mead downhill simplex method,

with a relative convergence tolerance of 10−8. We repeat the optimization pro-

cedure starting from different values in the parameter space, finding similar re-

sults. The sample means and standard deviations for the maximum pairwise and

split data likelihood estimators, for someL, are summarized in Table 4.2.2 as

well as for the maximum full likelihood estimator (Table 4.2.1). The results pre-

sented here are obtained taking as starting values for the optimization procedure

φ0 = 0.9, σ0 = 0.8, τ0 = 0.5.
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Table 4.2.2: AR(1) model plus observation noise, withθ∗ =

(0.7, 1, 1). Sample means and standard deviations (in brack-

ets) for the maximum pairwise likelihood estimatorθ̂(L)
P and

split data likelihood estimator̂θ(L)
S D asL increases. Calcula-

tions based on 300 simulated time series of length 1000.

Pairwise Likelihood Split data Likelihood

Lag φ̂
(L)
P τ̂

(L)
P σ̂

(L)
P φ̂

(L)
S D τ̂

(L)
S D σ̂

(L)
S D

2 0.6968 0.9928 0.992 0.6968 0.9929 0.9919

(0.0561) (0.119) (0.095) (0.0562) (0.1191) (0.0951)

3 0.6963 0.9936 0.9944 0.6956 0.9953 0.9923

(0.0494) (0.1006) (0.0827)(0.0507) (0.1048) (0.0866)

4 0.696 0.9939 0.9948 0.6952 0.9961 0.9924

(0.0481) (0.0963) (0.0803) (0.049) (0.1003) (0.0837)

5 0.6964 0.9932 0.9951 0.6951 0.9964 0.9924

(0.0487) (0.0983) (0.0832) (0.0484) (0.0985) (0.0825)

6 0.6954 0.9954 0.9925 0.6951 0.9965 0.9925

(0.0505) (0.1041) (0.0882) (0.048) (0.0975) (0.0817)

7 0.6945 0.9976 0.99 0.6951 0.9965 0.9926

(0.052) (0.1085) (0.0922) (0.0479) (0.0971) (0.0814)

8 0.694 0.9987 0.9885 0.6951 0.9965 0.9927

(0.0534) (0.113) (0.0955) (0.0478) (0.0969) (0.0811)

9 0.6937 0.9995 0.9871 0.6951 0.9965 0.9928

(0.055) (0.1173) (0.0995) (0.0477) (0.0968) (0.0809)

10 0.6937 0.9995 0.9869 0.6951 0.9964 0.9928

(0.0558) (0.12) (0.1008) (0.0477) (0.0967) (0.0807)

11 0.6935 0.9998 0.9864 0.6952 0.9964 0.9929

(0.0566) (0.1225) (0.1026) (0.0477) (0.0966) (0.0806)

12 0.6937 0.9993 0.9865 0.6951 0.9964 0.9929

(0.0573) (0.1246) (0.1042) (0.0476) (0.0965) (0.0805)

Table 4.2.2: Continued on next page
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Table 4.2.2: continued from previous page

Pairwise Likelihood Split data Likelihood

Lag φ̂
(L)
P τ̂

(L)
P σ̂

(L)
P φ̂

(L)
S D τ̂

(L)
S D σ̂

(L)
S D

13 0.6943 0.9977 0.9875 0.6952 0.9963 0.993

(0.0584) (0.1279) (0.1065) (0.0476) (0.0964) (0.0804)

14 0.6946 0.9971 0.9879 0.6952 0.9962 0.9931

(0.0588) (0.1294) (0.1075) (0.0476) (0.0964) (0.0802)

15 0.6949 0.9962 0.9886 0.6952 0.9962 0.9931

(0.0593) (0.1307) (0.1083) (0.0475) (0.0963) (0.0802)

16 0.695 0.9957 0.9889 0.6952 0.9962 0.9931

(0.0598) (0.1322) (0.1092) (0.0475) (0.0963) (0.0801)

17 0.6953 0.995 0.9894 0.6952 0.9962 0.9932

(0.0601) (0.1334) (0.1095) (0.0475) (0.0963) (0.08)

18 0.6955 0.9945 0.9897 0.6952 0.9962 0.9932

(0.0605) (0.1345) (0.1105) (0.0475) (0.0963) (0.08)

19 0.6958 0.9937 0.9904 0.6952 0.9962 0.9932

(0.0607) (0.1354) (0.111) (0.0475) (0.0963) (0.08)

20 0.6957 0.9938 0.9902 0.6952 0.9962 0.9932

(0.061) (0.1362) (0.1113) (0.0475) (0.0963) (0.08)

21 0.6958 0.9935 0.9906 0.6951 0.9962 0.9933

(0.0611) (0.1363) (0.1108) (0.0474) (0.0963) (0.0799)

22 0.696 0.9932 0.9907 0.6951 0.9962 0.9933

(0.0613) (0.1372) (0.1117) (0.0474) (0.0963) (0.0799)

23 0.6961 0.9928 0.9912 0.6951 0.9962 0.9933

(0.0612) (0.1371) (0.1117) (0.0474) (0.0964) (0.0799)

24 0.6959 0.9933 0.9906 0.6951 0.9962 0.9933

(0.0614) (0.1374) (0.1121) (0.0474) (0.0963) (0.0798)

25 0.6959 0.9932 0.9908 0.6951 0.9962 0.9934

(0.0612) (0.137) (0.1116) (0.0473) (0.0963) (0.0798)

Table 4.2.2: Continued on next page



42 Chapter 4. Empirical study about efficiency

Table 4.2.2: continued from previous page

Pairwise Likelihood Split data Likelihood

Lag φ̂
(L)
P τ̂

(L)
P σ̂

(L)
P φ̂

(L)
S D τ̂

(L)
S D σ̂

(L)
S D

26 0.696 0.9931 0.9908 0.6951 0.9961 0.9934

(0.0612) (0.1371) (0.1118) (0.0474) (0.0963) (0.0798)

27 0.6961 0.9928 0.9912 0.6951 0.9961 0.9934

(0.0611) (0.1366) (0.111) (0.0473) (0.0963) (0.0798)

28 0.6959 0.9932 0.9907 0.6951 0.9961 0.9934

(0.0612) (0.1371) (0.1118) (0.0473) (0.0964) (0.0798)

29 0.6959 0.9932 0.9907 0.6951 0.9961 0.9935

(0.0612) (0.1369) (0.1115) (0.0474) (0.0964) (0.0798)

Let us analyze the table above. We clearly see that the behavior of variance

of the maximum pairwise likelihood estimator is not monotonic. More precisely,

it decreases untilL = 4 and then increases as the maximum distance between

pairs of observations increases. All these results are consistent with the existence

of a ‘best’ lag distanceL∗, in terms of minimum variance. From this empirical

analysis, with this actual true parameter values, we can conclude thatL∗ exists

and it equalsL∗ = 4.

Table 4.2.2 reports also the estimates and the variances of the estimates re-

ferred to the maximum split data likelihood estimator. Our empirical study shows

that the variance in this case decreases to the variance of the maximum full like-

lihood estimator asL grows. These results empirically prove that maximum SDL

estimator goes to the maximum full likelihood estimator as the lag distance be-

tween pairs of observations goes to infinity [Andrieu et al.,2007].

Figure 4.2.1 displays the behavior of the variances of the two estimators (PL

and SDL) compared to the variance of the maximum full likelihood estimator.

We clearly identifyL∗ asL∗ = 4 and the monotonic decreasing trend of the SDL

variance.

If we display in the same plot the PL and the SDL variances asL grows a nice

property arises (Figure 4.2.2). Then, if 2< L ≤ L∗ = 4, L∗ being the ‘best’ lag

distance in terms of minimum PL variance, the variance of thePL estimator is
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smaller then the variance of the SDL estimator. The relationturns upside-down

for L > L∗ = 4. Hitherto, we do not have a clear intuition that can justifysuch

behavior.

We repeat the simulation changing the values ofθ∗. While σ∗ andτ∗ do not

seem to affect the optimal valueL∗, increasing the value ofφ∗ results in a bigger

optimal valueL∗ (we recover the best order equal to six given in Varin and Vidoni

[2009] whenφ∗ = 0.95). This is probably connected to the weaker or stronger

dependence structure of the pairs. Anyway, the fact that theoptimal choice for

the lag distance between the pairs depends on the unknown true parameter values

makes its investigation ambiguous in real scenarios.



44 Chapter 4. Empirical study about efficiency

5 10 20 30

0.
05

0
0.

05
5

0.
06

0

φ

order

st
an

da
rd

 d
ev

ia
tio

n 
(P

L)

5 10 20 30

0.
10

0.
11

0.
12

0.
13

τ

order

st
an

da
rd

 d
ev

ia
tio

n 
(P

L)

5 10 20 30

0.
08

0
0.

09
0

0.
10

0
0.

11
0

σ

order
st

an
da

rd
 d

ev
ia

tio
n 

(P
L)

5 10 20 30

0.
04

6
0.

05
0

0.
05

4

φ

order

st
an

da
rd

 d
ev

ia
tio

n 
(S

D
L)

5 10 20 30

0.
09

5
0.

10
5

0.
11

5

τ

order

st
an

da
rd

 d
ev

ia
tio

n 
(S

D
L)

5 10 20 30

0.
08

0
0.

08
5

0.
09

0
0.

09
5

σ

order

st
an

da
rd

 d
ev

ia
tio

n 
(S

D
L)

Figure 4.2.1: AR(1) model plus observation noise, withθ∗ = (0.7, 1, 1). Standard
deviations for the maximum likelihood estimatorθ̂ML (solid line), the maximum
pairwise likelihood estimator̂θLP (top) and the maximum split data likelihood esti-
matorθ̂(L)

S D (bottom), withL = 2, . . . , 29 denoting the maximum distance between
the observations. Calculations based on 300 simulated timeseries of length 1000.
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Figure 4.2.2: AR(1) model plus observation noise, withθ∗ = (0.7, 1, 1). Standard
deviations for the maximum pairwise likelihood estimatorθ̂LP (circle) and the max-
imum split data likelihood estimatorθ̂(L)

S D (smaller solid circle), withL = 2, . . . , 29
denoting the maximum distance between the observations. Calculations based on
300 simulated time series of length 1000.





Chapter 5

Expectation- Maximization

Algorithm

In this chapter we describe a possible way to obtain estimates for the parameterθ

describing a general state space model. We focus on an on lineExpectation- Max-

imization (EM) technique to minimize, with respect toθ, the Kullback- Leibler

divergenceK(L)
P (θ, θ∗) defined in (3.2.4), or equivalently to minimizel(L)

P (θ). The

key advantage of the average log pairwise likelihood function compared to the

full likelihood is that it only requires the estimation of expectations with respect

to distributions defined onXL+1. More precisely, this technique allows us to find

min
θ∈Θ

K(L)
P (θ, θ∗),

where

K(L)
P (θ, θ∗) =

1
L

L+1
∑

j=2

Eθ∗

[

log
pθ∗(y1, yj)

pθ(y1, yj)

]

=
1
L

L+1
∑

j=2

∫

Y2
log

pθ∗(y1, yj)

pθ(y1, yj)
pθ∗(y1, yj)dy1dyj.

47
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This is clearly equivalent to maximizel(L)
P (θ), where

l(L)
P (θ) =

1
L

L+1
∑

j=2

∫

Y2
log[pθ(y1, yj)]pθ∗(y1, yj)dy1dyj.

We first describe the abstract form of the EM algorithm as it isoften given in

the literature. We then develop the EM procedure in order to find the parameter

estimates in two applications

1. Linear gaussian model [Section 5.4],

2. Jump Markov Linear System [Section 6.2].

For these models we derive the update equations in fairly explicit detail.

5.1 General EM algorithm

In this section, we discuss the EM algorithm of Dempster et al. [1977]. The pre-

sentation and the notation here are self-contained and do not have to be confused

with symbols elsewhere.

The EM algorithm is a general method to find the maximum-likelihood esti-

mate of the parameters of an underlying distribution from a given data set when

the data are incomplete or have missing values. There are twomain applications

of the EM algorithm. The first occurs when the data indeed havemissing values,

due to problems with or limitations of the observation process. The second occurs

when optimizing the likelihood function is analytically intractable but the likeli-

hood function can be simplified by assuming the existence of values for additional

but missing (or hidden) parameters. The latter applicationis more common in the

computational pattern recognition community.

In summary, each iteration of the EM algorithm consists of two steps:

(E-step) In the expectation step (from now on E-step) the missing data are estimated

given the observed data and current estimate of the model parameters. This

is achieved using the conditional expectation, explainingthe choice of ter-

minology.
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(M-step) In the maximization step (from now on M-step), the likelihood function

is maximized under the assumption that the missing data are known. The

estimate of the missing data from the E-step are used in lieu of the actual

missing data.

These steps define an efficient iterative procedure to compute the maximum like-

lihood estimate and convergence is assured, since the algorithm is guaranteed to

increase the likelihood at each iteration.

More precisely, we assume that the data setY = (y1, y2, . . . , yN) observed is

generated by some distribution with density functionp(y|θ), governed by the set

of parametersθ. We callY the incomplete data. We assume that acomplete data

set existsZ = (X,Y) and also assume (or specify) a joint density function:

p(z|θ) = p(x, y|θ) = p(x|y, θ)p(y|θ).

Often the joint density comes from the marginal density function p(y|θ) and the

assumption of hidden variables and parameters value guesses. In other cases (e.g.,

missing data values in samples of a distribution), we must assume a joint relation-

ship between the missing and observed values.

With this density function, we can define a new likelihood function,L(θ|Z) =

L(θ|X,Y) = p(X,Y|θ), called thecomplete-data likelihood. Note that this func-

tion is in fact a random variable since the missing information X is unknown,

random, and presumably governed by an underlying distribution. That is, we can

think of L(θ|X,Y) = hY,θ(X) for some functionhY,θ(·) whereY andθ are constant

andX is a random variable. The original likelihoodL(θ|Y) is referred to as the

incomplete-data likelihoodfunction.

The EM algorithm first finds the expected value of the complete-data log-

likelihood log[p(X,Y|θ)] with respect to the unknown dataX given the observed

dataY and the current parameters estimates.

That is, we define:

Q(θ, θ(i−1)) = E
[

log[p(X,Y|θ)]|Y, θ(i−1)
]

, (5.1.1)

whereθ(i−1) are the current parameters estimates that we used to evaluate the ex-
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pectation andθ are the new parameters that we optimize to increaseQ. The right

side of Equation (5.1.1) can be rewritten as

E
[

log[p(X,Y|θ)]|Y, θ(i−1)
]

=

∫

x∈Υ
log[p(Y, x|θ)] f (x|Y, θ(i−1))dx.

Note that f (x|Y, θ(i−1)) is the marginal distribution of the unobserved data and is

dependent on both the observed dataY and on the current parameters, andΥ is the

space of valuesx can take on. In the best of cases, this marginal distributionis a

simple analytical expression of the assumed parametersθ(i−1) and perhaps the data.

In the worst of cases, this density might be very hard to obtain. Sometimes, in fact,

the density actually used isf (x,Y, θ(i−1)) = f (x|Y, θ(i−1)) f (Y|θ(i−1)) but this does

not affect subsequent steps, since the extra factor,f (Y|θ(i−1)), is not dependent on

θ.

The evaluation of this expectation is called theE-stepof the algorithm. Note

the meaning of the two arguments in the functionQ(θ, θ′). The first argumentθ

corresponds to the parameters that ultimately will be optimized in an attempt to

maximize the likelihood. The second argumentθ′ corresponds to the parameters

that we use to evaluate the expectation.

The second step (theM-step) of the EM algorithm is to maximize the expec-

tation we computed in the first step. That is, we find

θ(i) = arg max
θ

Q(θ, θ(i−1)).

These two steps are repeated as necessary. Each iteration isguaranteed to

increase the loglikelihood and the algorithm is guaranteedto converge to a local

maximum of the likelihood function. There are many papers that analyze the

rate of convergence (e.g., Dempster et al. [1977], Redner and Walker [1984], Wu

[1983], Xu and Jordan [1996]), but we will not discuss them here.

Instead of maximizingQ(θ, θ(i−1)), a modified form of the M-step consists of

finding someθ(i) such thatQ(θ(i), θ(i−1)) > Q(θ, θ(i−1)). This form of the algorithm

is called Generalized EM (GEM) and is also guaranteed to converge.

In this section, we have described the algorithm in its most general form. The

details of the steps required to compute the given quantities are very dependent
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on the particular model and application, so they are not discussed here where the

algorithm is presented in this abstract form.

5.2 Full likelihood inference via EM algorithm

Before considering composite likelihood inference, we propose here an EM al-

gorithm for full likelihood parameters estimation in a linear gaussian model with

observation noise, which is fully automatic and gives optimal estimates. Further,

we apply a Kalman smoother to obtain the estimates. We consider the following

linear gaussian model, written in a state space form

Xn+1 = φXn +Wn, Wn ∼ N(0, τ2)

Yn = Xn + Vn, Vn ∼ N(0, σ2).

The choice of the parameter vectorθ = (φ, τ2, σ2) ∈ (−1, 1) × R+ × R+ ensures

stationarity. So

fθ(x
′|x) = N(x′; φx, τ2)

gθ(y|x) = N(y; x, σ2).

The Kalman filter is an optimal estimator in the mean-square sense. If thefuture

measurements are available, smoothing equations can be used to further improve

the estimation performance. We propose here an EM algorithmfor parameters

estimation in the model defined above.

Given the measurement sequenceY1:T , we want to find estimates of the model

coefficients. For this purpose we use the Kalman filter, assuming for the moment

that the model parameters are available. We use the following definitions for the

conditional expectations of the states and the corresponding error covariances:

m̃t|s = E[xt|Y1:s]

P̃t1,t2|s = E[(xt1 − m̃t1|s)(xt2 − m̃t2|s)|Y1:s].

For convenience, whent1 = t2 = t, P̃t1,t2|s is written asP̃t|s. The state esti-
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mate (m̃t|t, P̃t|t) can be obtained by iterating thepredictionand update stepsof

the Kalman Filter. If the prior distribution is Gaussian,x0 ∼ N(µ0, σ
2
0), then the

optimal filtering equations can be evaluated in closed form:

pθ(xt|y1:t−1) = N(xt |m̃t|t−1, P̃t|t−1)

pθ(xt|y1:t) = N(xt |m̃t|t, P̃t|t)

and the parameters of these distributions can be calculatedby the following steps:

Prediction step

m̃t|t−1 = φm̃t−1|t−1

P̃t|t−1 = φ
2P̃t−1|t−1 + τ

2.

Update step

ẽt = yt − m̃t|t−1

S̃t = P̃t|t−1 + σ
2

K̃t = P̃t|t−1(S̃t)
−1

m̃t|t = m̃t|t−1 + K̃tẽt

P̃t|t = (I − K̃t)P̃t|t−1,

with the initial conditionm̃1|0 = µ0 andP̃1|0 = σ
2
0.

If the future measurementsYt+1:T are available, then these can be further used

to improve the accuracy of the estimates. Thesmoothedestimates can be obtained

as follows:

J̃t = φP̃t|t(P̃t+1|t)
−1

m̃t|T = m̃t|t + J̃t(m̃t+1|T − m̃t+1|t)

P̃t|T = P̃t|t + J̃2
t (P̃t+1|T − P̃t+1|t),

starting fromt = T. We describe here the estimation of the model parameters with

an EM algorithm. The objective is to compute estimates ofθ given a measurement
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sequence. For gaussian models, maximum likelihood (ML) estimate is an obvious

choice, which is given as follows:

θ̂ML = arg max
θ

log[pθ(Y1:T)],

wherepθ(Y1:T) is the probability density function of the observations. Note that

because of the dependence on the states, which are not available, direct maxi-

mization is not possible. The problem is to maximize the likelihood with respect

to two unknows: states and model parameters. The EM algorithm, as described

in the previous section, takes an iterative approach by firstmaximizing the like-

lihood with respect to the states in the E-step, and then maximizing with respect

the parameters in the M-step. Given the current estimate of the parametersθk, the

E-step maximum is given by the expected value of the completelog-likelihood

function as follows

Q(θ, θk) := Eθk[log[pθ(Y1:T ,X1:T)]] ,

where the expectation is taken wrtpθk(x1:T |y1:T). The M-step involves the direct

differentiation ofQ(θ, θk) wrt θ to find the value of the parameters. We now de-

scribe an EM algorithm for our model.

E-step This step involves the computation ofQ given the measurementsY1:T and

the estimate of the parameters from the previous iteration,θk. The joint

probability distribution ofX1:T ,Y1:T can be written as

pθ(X1:T ,Y1:T) = p(x1)
T

∏

t=2

fθ(xt |xt−1)
T

∏

t=1

gθ(yt |xt).

Taking log, we have thatpθ(X1:T ,Y1:T) is proportional to

− 1
2

logσ2
0 −

1

2σ2
0

(

x2
1 + µ

2
0 − 2x1µ0

)

+

− T − 1
2

logτ2 − 1
2τ2















T
∑

t=2

x2
t + φ

2
T

∑

t=2

x2
t−1 − 2φ

T
∑

t=2

xtxt−1















+
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− T
2

logσ2 − 1
2σ2















T
∑

t=1

y2
t + x2

t − 2xtyt















.

If we take the following expectations

Eθk[Xt] = m̃t|T (5.2.1a)

Eθk[X
2
t ] = P̃t|T + m̃2

t|T := M̃t|T (5.2.1b)

Eθk[XtXt−1] = P̃t,t−1|T + m̃t|Tm̃t−1|T := M̃t,t−1|T , (5.2.1c)

we get the expectation of joint log-likelihood with respectto the conditional

density:

Q(θ, θk) = Eθk[log pθ(X1:T ,Y1:T)] = −1
2

logσ2
0 −

1

2σ2
0

(

M1|T + µ
2
0 − 2m̃1|Tµ0

)

+

− T − 1
2

logτ2 − 1
2τ2















T
∑

t=2

M̃t|T + φ
2

T
∑

t=2

M̃t−1|T − 2φ
T

∑

t=2

M̃t,t−1|T















+

− T
2

logσ2 − 1
2σ2















T
∑

t=1

y2
t + M̃t|T − 2m̃t|Tyt















.

The two quantities (5.2.1a, 5.2.1b) can be obtained using the Kalman smoo-

ther described above, while (5.2.1c) can be computed as in Shumway and

Stoffer [2000] with the following equation

P̃t,t−1|T = J̃t−1P̃t|T.

M-step For the M-step, we take the derivative ofQ with respect to each model

parameter, and set it to zero to get the estimate:

∂Q
∂φ

= φ

T
∑

t=2

M̃t−1|T −
T

∑

t=2

M̃t,t−1|T = 0

∂Q
∂σ2

= −T +

∑T
t=1 y2

t + M̃t|T − 2m̃t|Tyt

σ2
= 0

∂Q
∂τ2

= (T − 1)−
∑T

t=2 M̃t|T + φ
2 ∑T

t=2 M̃t−1|T − 2φ
∑T

t=2 M̃t,t−1|T

τ2
.
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The updates for the parameters can be found as

φk+1 =

∑T
t=2 M̃t,t−1|T

∑T
t=2 M̃t−1|T

σ2
k+1 =

∑T
t=1 y2

t + M̃t|T − 2m̃t|Tyt

T

τ2k+1 =

∑T
t=2 M̃t|T − (∑T

t=2 M̃t,t−1|T)2

∑T
t=2 M̃t−1|T

T − 1

=

∑T
t=2 M̃t|T − φk+1

∑T
t=2 M̃t,t−1|T

T − 1
.

Both E and M steps are iterated and convergence is monitored with the condi-

tional likelihood function

log pθk(Y1:T) =
T

∑

t=1

log
(

N(yt; m̃t|t−1, P̃t|t−1 + σ
2
k)
)

,

since

pθk(yt|y1:t−1) ∼ N(yt; m̃t|t−1, P̃t|t−1 + σ
2
k).

The algorithm is said to have converged if the relative increment in the likeli-

hood at the current time step compared to the previous time isbelow a certain

threshold. We report here a simulation study to illustrate the approach based on

the EM algorithm with Kalman smoother. Figure 5.2.1 shows the convergence of

the parameter estimates. As we can see, after few iterationswe reach the right

value. Convergence is monitored via the relative increments in the likelihood at

the current time step compared to the previous one (see Figure 5.2.2).

5.3 Pairwise likelihood inference via EM algorithm

In the previous section we have seen that the EM algorithm is an efficient iterative

procedure to compute the maximum likelihood estimate in thepresence of missing

or hidden data. This method can be modified in order to obtain the maximum

pairwise likelihood estimate in a general state space framework, provided that the

algorithm increases the pairwise likelihood at each iteration.
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Figure 5.2.1: AR(1) model plus observation noise withθ∗ = (0.7, 1, 1). Full like-
lihood estimation using the EM algorithm with Kalman smoother. Calculations
based on a simulated series of length 10000. Initial valueθ(0) = (0.2, 0.5, 0.5).

Instead of the full likelihood, we want to minimize here, with respect toθ, the

Kullback- Leibler divergenceK(L)
P (θ, θ∗) as defined in (3.2.4), that is

K(L)
P (θ, θ∗) =

1
L

L+1
∑

j=2

Eθ∗

[

log
pθ∗(y1, yj)

pθ(y1, yj)

]

.

We recall here thatpθ(y1, yj) is defined as (3.1.2), that is

pθ(y1, yj) =
∫

X j
pθ(y1, yj, x1: j)dx1: j

=

∫

X j
πθ(x1)gθ(y1|x1)

















j
∏

k=2

fθ(xk|xk−1)

















gθ(yj |xj)dx1: j .
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Figure 5.2.2: AR(1) model plus observation noise withθ∗ = (0.7, 1, 1). Increment
of the likelihood function at each iteration step.

Given an estimateθk of θ∗, at iterationk+ 1 we update our estimate via

θk+1 = arg max
θ∈Θ

Q(θ, θk),

where we defineQ(θ, θk) as

Q(θ, θk) =
1
L

L+1
∑

j=2

∫

X j×Y2
log[pθ(y1, yj , x1: j)]pθk(x1: j |y1, yj)pθ∗(y1, yj)dx1: jdy1dyj

=
1
L

L+1
∑

j=2

∫

X j×YL+1
log[pθ(y1, yj, x1: j)]pθk(x1: j |y1, yj)pθ∗(y1:L+1)dx1: jdy1:L+1

=
1
L

L+1
∑

j=2

∫

X j×YL+1
log[pθ(y1, yj, x1: j)]pθk(x1: j |y1, yj)pθ∗(y1)dx1: jdy1,

whereys = ys:s+L denote the s-th block of observations. For everyθ ∈ Θ, we see

that an iteration of this EM algorithm decreases the value ofK(L)
P (θ, θ∗), and the
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stationary points correspond to the zeros ofK(L)
P (θ, θ∗). More precisely,

0 ≤ Q(θk+1, θk) − Q(θk, θk) =

=
1
L

L+1
∑

j=2

∫

X j×Y2
log[pθk+1(y1, yj, x1: j)]pθk(x1: j |y1, yj)pθ∗(y1, yj)dx1: jdy1dyj+

− 1
L

L+1
∑

j=2

∫

X j×Y2
log[pθk(y1, yj, x1: j)]pθk(x1: j |y1, yj)pθ∗(y1, yj)dx1: jdy1dyj =

=
1
L

L+1
∑

j=2

∫

X j×Y2

[

log[pθk+1(y1, yj, x1: j)] − log[pθk(y1, yj , x1: j)]
]

pθk(x1: j |y1, yj)×

× pθ∗(y1, yj)dx1: jdy1dyj =

=
1
L

L+1
∑

j=2

∫

X j×Y2
log

pθk+1(y1, yj , x1: j)

pθk(y1, yj, x1: j)
pθk(x1: j |y1, yj)pθ∗(y1, yj)dx1: jdy1dyj =

=
1
L

L+1
∑

j=2

∫

X j×Y2
log

pθk+1(x1: j |y1, yj)pθk+1(y1, yj)

pθk(x1: j |y1, yj)pθk(y1, yj)
pθk(x1: j |y1, yj)×

× pθ∗(y1, yj)dx1: jdy1dyj =

=
1
L

L+1
∑

j=2

∫

X j×Y2

[

log
pθk+1(x1: j |y1, yj)

pθk(x1: j |y1, yj)
+ log

pθk+1(y1, yj)

pθk(y1, yj)

]

pθk(x1: j |y1, yj)×

× pθ∗(y1, yj)dx1: jdy1dyj =

=
1
L

L+1
∑

j=2

∫

X j×Y2
log

pθk+1(x1: j |y1, yj)

pθk(x1: j |y1, yj)
pθk(x1: j |y1, yj)pθ∗(y1, yj)dx1: jdy1dyj+

+
1
L

L+1
∑

j=2

∫

X j×Y2
log

pθk+1(y1, yj)

pθk(y1, yj)
pθk(x1: j |y1, yj)pθ∗(y1, yj)dx1: jdy1dyj =

=
1
L

L+1
∑

j=2

∫

X j×Y2
log

pθk+1(x1: j |y1, yj)

pθk(x1: j |y1, yj)
pθk(x1: j |y1, yj)pθ∗(y1, yj)dx1: jdy1dyj+

+
1
L

L+1
∑

j=2

∫

Y2
log

pθk+1(y1, yj)

pθk(y1, yj)

[∫

X j
pθk(x1: j |y1, yj)dx1: j

]

pθ∗(y1, yj)dy1dyj =

=
1
L

L+1
∑

j=2

∫

X j×Y2
log

pθk+1(x1: j |y1, yj)

pθk(x1: j |y1, yj)
pθk(x1: j |y1, yj)pθ∗(y1, yj)dx1: jdy1dyj+
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+
1
L

L+1
∑

j=2

∫

Y2
log

pθk+1(y1, yj)

pθk(y1, yj)
pθ∗(y1, yj)dy1dyj.

Remembering the definition ofK(L)
P (θ, θ∗), the quantity above equals

K(L)
P (θk, θ

∗) − K(L)
P (θk+1, θ

∗)+

+
1
L

L+1
∑

j=2

∫

X j×Y2
log

pθk+1(x1: j |y1, yj)

pθk(x1: j |y1, yj)
pθk(x1: j |y1, yj)pθ∗(y1, yj)dx1: jdy1dyj.

For everyj = 2, . . . , L + 1, by Jensen inequality we have that

∫

X j×Y2
log

pθk+1(x1: j |y1, yj)

pθk(x1: j |y1, yj)
pθk(x1: j |y1, yj)pθ∗(y1, yj)dx1: jdy1dyj

≤ log

[∫

X j×Y2

pθk+1(x1: j |y1, yj)

pθk(x1: j |y1, yj)
pθk(x1: j |y1, yj)pθ∗(y1, yj)dx1: jdy1dyj

]

=

= log

[∫

Y2

[∫

X j
pθk+1(x1: j |y1, yj)dx1: j

]

pθ∗(y1, yj)dy1dyj

]

=

= log

[∫

Y2
pθ∗(y1, yj)dy1dyj

]

= log[1] = 0.

For these reasons

0 ≤ Q(θk+1, θk) − Q(θk, θk) ≤ K(L)
P (θk, θ

∗) − K(L)
P (θk+1, θ

∗). (5.3.1)

The result above allows us to conclude thatK(L)
P (θk+1, θ

∗) ≤ K(L)
P (θk, θ∗), that is at

each iteration the value of the Kullback- Leibler divergence decreases.

Remark 5.3.1. The inequality in (5.3.1) does not depend on the initial distribu-

tion. It holds even if the initial invariant distribution isreplaced with any initial

distribution, since all the steps can be derived exactly in the same way as before.

In practice for the models we will consider, it is necessary to compute a set

of sufficient statisticsΦ(θk, θ∗) at timek in order to evaluate the functionQ(θ, θk).

To do that we have to compute the expectation with respect topθk(x1: j |y1, yj) ×
pθ∗(y1). Even if it is possible to maximizeQ(θ, θk) analytically, in practiceQ can

not be computed as the expectation is with respect to a measure dependent on the
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unknown parameter valueθ∗. However, thanks to the ergodicity and stationary

assumptions, the observed process{Yn} provides us with a sample frompθ∗(y1)

which can be used for the purpose of Monte Carlo integration.

In the next section, we illustrate this method for a linear and gaussian model.

It is a simple example, where the invariant distribution is known, as well as the

conditional distribution of the latent states given the pairs of observations.

5.4 EM calculations for the linear gaussian model

Let us consider the linear gaussian model as defined in Example 2.0.1,

Xn+1 = φXn +Wn, Wn ∼ N(0, τ2)

Yn = Xn + Vn, Vn ∼ N(0, σ2).

The choice of the parameter vectorθ = (φ, τ2, σ2) ∈ (−1, 1) × R+ × R+ ensures

stationarity. So

πθ(x) = N

(

x; 0,
τ2

1− φ2

)

fθ(x
′|x) = N(x′; φx, τ2)

gθ(y|x) = N(y; x, σ2).

We develop here an on line EM procedure, as suggested in the previous section.

We recall that the functionQ(θ, θk) is defined as

Q(θ, θk) =
1
L

L+1
∑

j=2

E
( j)
θk,θ∗

[

log[pθ(y1, yj , x1: j)]
]

,

whereE( j)
θk,θ

∗ denotes the expectation with respect topθk(x1: j |y1, yj) × pθ∗(y1). In

order to computeQ(θ, θk), we have to derive log[pθ(y1, yj, x1: j)], for every j =

2, . . . , L + 1. We have that

log[pθ(y1, yj, x1: j)] = log[πθ(x1)] + log[gθ(y1|x1)] + log[gθ(yj |xj)] +
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+

j
∑

k=2

log[ fθ(xk|xk−1)].

From the definition of the model, the quantity above is proportional to

−1
2

log[τ2] +
1
2

log[1− φ2] −
x2

1(1− φ2)

2τ2
− log[σ2] − (y1 − x1)2

2σ2
+

− ( j − 1) log[τ2]
2

−
∑ j

k=2(xk − φxk−1)2

2τ2
−

(yj − xj)2

2σ2
=

= − 1
2

log[τ2] +
1
2

log[1− φ2] − ( j − 1) log[τ2]
2

−
(y1 − x1)2 + (yj − xj)2

2σ2
+

− log[σ2] − 1
2τ2

















x2
1 +

j
∑

k=2

x2
k − φ2x2

1 + φ
2

j
∑

k=2

x2
k−1 − 2φ

j
∑

k=2

xkxk−1

















=

= − 1
2

log[τ2] +
1
2

log[1− φ2] − ( j − 1) log[τ2]
2

−
y2

1 + y2
j + x2

1 + x2
j − 2x1y1 − 2xjyj

2σ2
+

− log[σ2] − 1
2τ2

















x2
1 + x2

j + (1+ φ2)
j−1
∑

k=2

x2
k − 2φ

j
∑

k=2

xkxk−1

















. (5.4.1)

Using the linearity ofQ and the expression for log[pθ(y1, yj , x1: j)] given by (5.4.1),

we have that

Q(θ, θk) =
1
2

log[1− φ2] − log[τ2]
2
− 1

2
log[τ2]

(

1
L

L(L + 1)
2

)

− log[σ2]+

− 1
2τ2

1
L

L+1
∑

j=2

















E
( j)
θk,θ∗

[X2
1 + X2

j ] + (1+ φ2)
j−1
∑

k=2

E
( j)
θk,θ∗

[X2
k ] − 2φ

j
∑

k=2

E
( j)
θk,θ∗

[XkXk−1]

















+

− 1
2σ2

1
L

L+1
∑

j=2

[

E
( j)
θk,θ

∗[Y2
1 + X2

1 − 2X1Y1 + Y2
j + X2

j − 2X jYj]
]

.

In practice, for this model, it is necessary to compute a set of sufficient statistics

Φi(θk, θ∗), i = 1, . . . , 4 at time k, where

Φ1(θk, θ
∗) =

1
L

L+1
∑

j=2

E
( j)
θk,θ∗

[Y2
1 + X2

1 − 2X1Y1 + Y2
j + X2

j − 2X jYj]

Φ2(θk, θ
∗) =

1
L

L+1
∑

j=2

E
( j)
θk,θ∗

[X2
1 + X2

j ]
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Φ3(θk, θ
∗) =

1
L

L+1
∑

j=1

E
( j)
θk,θ

∗

















j−1
∑

k=2

X2
k

















Φ4(θk, θ
∗) =

1
L

L+1
∑

j=2

E
( j)
θk,θ∗

















j
∑

k=2

XkXk−1

















.

With this definition

Q(θ, θk) =
1
2

log[1− φ2] − log[τ2]
2
− (L + 1) log[τ2]

4
− log[σ2]+

− 1
2τ2

(

Φ2(θk, θ
∗) + (1+ φ2)Φ3(θk, θ

∗) − 2φΦ4(θk, θ
∗)
)

− 1
2σ2
Φ1(θk, θ

∗).

Now, dropping for simplicity the dependence onθ, θ∗, θk,

∂Q
∂φ

=
φ

1− φ2
+

1
τ2

(φΦ3 − Φ4) = 0

∂Q
∂τ2

= 1+
L + 1

2
− 1
τ2

(Φ2 + (1+ φ2)Φ3 − 2φΦ4) = 0

∂Q
∂σ2

= 1− 1
2σ2
Φ1,

so

σ2 =
Φ1

2
0 = φτ2 + (1− φ2)(φΦ3 −Φ4)

τ2 =
2

L + 3
(Φ2 + (1+ φ2)Φ3 − 2φΦ4).

We look at the case ofφ andτ2:

Φ3(C − 1)φ3 − (2C − 1)Φ4φ
2 + (CΦ2 + (C + 1)Φ3)φ − Φ4 = 0

τ2 = C(Φ2 + (1+ φ2)Φ3 − 2φΦ4),

where we denote byC the quantity 2
L+3. One can solve the cubic analytically, and

finds three solutions

φ = u− p
3u
− (1− 2C)Φ3

3Φ2(C − 1)
,
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with

u3 =
1
2















q±
√

q2 +
4
27

p3















where

p =
3
(

(CΦ1+(C+1)Φ2)
Φ2(C−1)

)

−
(

(1−2C)Φ3

Φ2(C−1)

)2

3

q =
−27

(

Φ3
Φ2(C−1)

)

+ 2
(

(1−2C)Φ3

Φ2(C−1)

)3
− 9

(

(1−2C)Φ3

Φ2(C−1)
(CΦ1+(C+1)Φ2)
Φ2(C−1)

)

27
.

We discard solutions that fall outside the interval [−1, 1] and keep among the

remaining values. The corresponding values ofτ2 that maximizesQ(θ, θk) is given

by

τ2(φ) =















C(Φ2 + (1+ φ2)Φ3 − 2φΦ4) if (Φ2 + (1+ φ2)Φ3 − 2φΦ4) > 0;

0 otherwise

since if (Φ2 + (1+ φ2)Φ3 − 2φΦ4) < 0 then ∂Q
∂τ2
> 0 andτ2 = 0 is the solution.

Now we need to compute the sufficient statisticsΦi(θ, θ∗) for i = 1, . . . , 4.

To do that we have to compute the expectation with respect topθk(x1: j |y1, yj) ×
pθ∗(y1). Even if, in this case, it is possible to maximizeQ(θ, θk) analytically, as

we have seen above, in practiceQ can not be computed. However, thanks to the

ergodicity and stationary assumptions, this algorithm canbe approximated using

the following on line scheme. For everyi = 1, . . . , 4, we recursively approximate

the sufficient statisticsΦi(θk, θ∗) with the following update, given here at timek,

Φ̂
(k)
i = (1− γk)Φ̂

k−1
i + γk

















1
L

L+1
∑

j=2

E
( j)
θk

[Ψi(X1: j ,Yk,Yk+ j−1)|Yk]

















, (5.4.2)

where, for every functionh(·), E( j)
θk

[h(X1: j)|Yk] denotes the expectation ofh with

respect topθk(x1: j |yk, yk+ j−1) and fori = 1, . . . , 4 we have implicitly defined

Φi(θk, θ
∗) :=

1
L

L+1
∑

j=2

E
( j)
θk,θ∗

[Ψi(X1: j ,Yk,Yk+ j−1)].
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We then substitutêΦ(k)
i for Φi(θk, θ∗) and obtainθk by maximizing theQ function.

If θk was constant andγk = k−1, thenΦ̂(k)
i would simply compute the arithmetic

average of{E( j)
θk

[Ψi(X1: j ,Yk,Yk+ j−1)|Yk]} for every j = 2, . . . , L + 1, and converge

towardsΦ(θk, θ∗) by ergodicity. In fact, under mild suitable conditions, conver-

gence is in general ensured for any non- increasing positivesequence{γk} such

that
∑

γk < ∞ and
∑

γ2
k < ∞. We can selectγk = Mk−α whereM > 0 and

1
2 < α ≤ 1 thanks to the theory of stochastic approximation [Benveniste et al.,

1990].

Going back to our example (linear gaussian model),E
j
θk

[Ψi(X1: j ,Yk,Yk+ j−1)|Yk]

is known for everyj = 2, . . . , L+1, since the expectation is w.r.t.pθk(x1: j |yk, yk+ j−1).

In this case, we do not need to use a further Monte Carlo approximation. For a

genericθ ∈ Θ, the densitypθ(x1: j |y1, yj) ∝ pθ(y1, yj |x1: j)pθ(x1: j) can be derived in

the following way. Given the structure of the model

pθ(y1, yj |x1: j) = pθ(y1, yj |x1, xj) = gθ(y1|x1)gθ(yj |xj),

with gθ(y|x) = N(y; x, σ2). For everyj = 1, . . . , L+ 1, pθ(y1, yj |x1: j) can be written

as proportional to

exp
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xj
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0 0 . . . 0
...
...
. . .
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0 0 . . . σ−2
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,

and we denote byΣ−1
y ,

Σ−1
y =











































σ−2 0 . . . 0

0 0 . . . 0
...
...
. . .

...

0 0 . . . σ−2











































.

On the other hand, the priorpθ(x1: j) is a normal distributionNj(x1: j; µx,Σx). In
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fact, with x = (x1, . . . , xj)T

x = Ax+ τǫ

x = τM−1ǫ,

where

A =



























































0 0 . . . . . . 0

φ 0
. . .
. . .
...

0
. . .
. . .
. . .
...

...
. . .
. . .
. . . 0

0 . . . 0 φ 0



























































and

M = I − A =



























































1 0 . . . . . . 0

−φ 1
. . .
. . .

...

0
. . .
. . .
. . .

...
...
. . .
. . .
. . . 0

0 . . . 0 −φ 1



























































.

In this example, since the invariant distribution in known,X1 ∼ N
(

x1; 0, τ
2

1−φ2

)

and

hence

µx = τM
−1µǫ

Σx = τ
2M−1ΣǫM

−T ,

with

µǫ = 0 and Σǫ =













































1
1−φ2 0 . . . 0

0 1
. . .
...

...
. . . 1 0

0 . . . 0 1













































.

So the posterior distributionpθ(x1: j |y1, yj) is also normalNj

(

x1: j; µ,Σ
)

, with

µ = (Σ−1
x + Σ

−1
y )−1(Σ−1

x µx + Σ
−1
y y) (5.4.3a)
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Σ = (Σ−1
x + Σ

−1
y )−1 (5.4.3b)

wherey = (y1, 0, . . . , yj)T . We are now able to approximate the statisticsΦi(θ, θ∗)

for i = 1, . . . , 4 using the technique described above and the posterior normal dis-

tribution with parameter given by (5.4.3a, 5.4.3b). All we need in this computation

are the first and second moments of the posterior distribution pθk(x1: j |yk, yk+ j) for

j = 2, . . . , L + 1.

Remark 5.4.1. The on line algorithm described above takes a block of obser-

vationsyk for each iteration of the Expectation- Maximization steps.It can be

modified in order to consider more blocks in each iteration orto run more than

one iteration for a single block.

Remark 5.4.2. Calculation of the posterior density pθ(x1: j |y1, yj), and in particu-

lar its first and second moments, can be achieved by a modification of the general

Kalman filter and smoother outlined in the previous section.Unlike the standard

Kalman filter equations, in this contest, the conditioning is on the observations y1

and yj and not on all the observations between1 and j. Prediction and update

steps need to be modified in order to obtain the right moments of the posterior dis-

tributions pθ(x1: j |y1, yj). Roughly speaking, we pretend to run a Kalman filter with

all the observations y1: j setting an infinity variance for the missing observations

from time2 to time j− 1.

More precisely, if x0 ∼ N(m0|0,P0|0), for every j> 2, the prediction and update

steps modify as follows

• Initialization

m1|0 = φm0|0

P1|0 = φ
2P0|0 + τ

2

e1 = y1 −m1|0

S1 = P1|0 + σ
2

K1 = P1|0(S1)
−1

m1|1 = m1|0 + K1e1

P1|1 = (I − K̃1)P̃1|0.
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• For k = 2, . . . , j − 1

mk|k−1 = φmk−1|k−1

Pk|k−1 = φ
2Pk−1|k−1 + τ

2

mk|k = mk|k−1

Pk|k = Pk|k−1.

• For k=j

mj| j−1 = φmj−1| j−1

P j| j−1 = φ
2P j−1| j−1 + τ

2

ej = yj −mj| j−1

S j = P j| j−1 + σ
2

K j = P j| j−1(S j)
−1

mj| j = mj| j−1 + K jej

P j| j = (I − K̃ j)P̃ j| j−1.

Note that for k= 2, . . . , j − 1 we actually do not need to compute quantities

that depend on the varianceσ2. Sinceσ2 tends to infinity, Kk can be set equal

to zero. The innovation at time k (i.e. ek) and its covariance (i.e. Sk) do not

need to be computed, and this allows us to avoid dealing with infinite quantities.

Moreover, the meaning of the steps for k= 2, . . . , j − 1 is quite sensible: if we do

not take into account the observations y2: j−1, the update step is missing and so the

predicted and updated estimates coincide.

The vectorµ and the matrixΣ defined in (5.4.3a, 5.4.3b) can be obtained from

the smoothing recursions, i. e., starting at k= j

Jk = φPk|k(Pk+1|k)
−1

mk| j = mk|k + Jk(mk+1| j −mk+1|k)

Pk| j = Pk| j + J2
k(Pk+1| j − Pk+1|k).
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More precisely,

µ :=











































E[x1|Y1,Yj]

E[x2|Y1,Yj]
...

E[xj |Y1,Yj]











































=











































m1| j

m2| j
...

mj| j











































,

Σ :=











































V[x1|Y1,Yj] C[x1, x2|Y1,Yj] . . . C[x1, xj |Y1,Yj]

C[x2, x1|Y1,Yj] V[x2|Y1,Yj] . . . C[x2, xj |Y1,Yj]
...

. . . . . .
...

C[xj , x1|Y1,Yj] . . . . . . V[xj |Y1,Yj]











































=











































P1| j P1,2| j . . . P1,2| j

P2,1| j P2| j . . . P2, j| j
...

. . . . . .
...

P j,1| j . . . . . . P j| j











































,

where

Pk,k−1| j = Jk−1Pk| j .

We implement the on line EM algorithm described above in order to estimate

the parameterθ = (φ, τ, σ) of the linear gaussian model. We consider a simulated

time series of lengthn = 10000 from the linear gaussian model, withφ∗ = 0.7,

σ∗ = 1, τ∗ = 1 as true parameter values. Taking into account the empirical re-

sults given in Chapter 4, we decide to fix the maximum lag distance between the

observations asL = 4. In fact,L = 4 seems to be the best maximum distance in

terms of variance of the estimator. In order to reduce the variance of the estimate,

we used the Polyak- Ruppert averaging procedure. The algorithm was ran with

γk = k−0.5 for k ≤ 2000 andγk = (k − 2000)−0.8 for k > 2000. The results of

this method are displayed in Figure 5.4.1. We see that the convergence to the true

value is reached in few iteration steps. The code, implemented in R, has a very

low computational burden and even if we have considered a quite long time series,

it takes few seconds to successfully conclude.
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Figure 5.4.1: AR(1) model plus observation noise withθ∗ = (0.7, 1, 1). Pairwise
likelihood estimation using the on line EM algorithm with lag=4 denoting the
maximum distance between the observations. Calculations based on a simulated
series of length 10000. Initial valueθ(0) = (0.2, 0.5, 0.5).

5.4.1 Case with conditioning onx1

Even if in this example the invariant distribution is known,we describe here how

to modify the calculation above in order to obtain the conditional joint distribution

given an initial valuex1. This is useful when invariant distribution is unknown

and initial value is set equal tox1. As we will see, calculation will be simpler,

but it comes with a prize. The bias of the estimate introducedby replacing the

invariant distribution with a Dirac delta mass atx1 effects the convergence of the

EM algorithm.
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We report here the calculation for the linear gaussian modelwith observation

noise, in the case where the invariant distribution is supposed to be unknown. In

order to computeQ(θ, θk), we have to derive log[pθ(y1, yj, x1: j)], for every j =

2, . . . , L + 1. We have that

log[pθ(y1, yj , x1: j)] = log[δx1(x1)] + log[gθ(y1|x1)] + log[gθ(yj |xj)] +

+

j
∑

k=2

log[ fθ(xk|xk−1)].

Sinceδx0(x1) does not depend onθ, the quantity above is proportional to

− log[σ2] − (y1 − x1)2

2σ2
− ( j − 1) log[τ2]

2
−

∑ j
k=2(xk − φxk−1)2

2τ2
−

(yj − xj)2

2σ2
=

= − ( j − 1) log[τ2]
2

−
(y1 − x1)2 + (yj − xj)2

2σ2
+

− log[σ2] − 1
2τ2

















j
∑

k=2

x2
k + φ

2
j

∑

k=2

x2
k−1 − 2φ

j
∑

k=2

xkxk−1

















. (5.4.4)

Using the linearity ofQ and the expression for log[pθ(y1, yj, x1: j)] given by (5.4.4),

we have that

Q(θ, θk) = −
1
2

log[τ2]

(

L + 1
2

)

− log[σ2]+

− 1
2τ2

1
L

L+1
∑

j=2

















j
∑

k=2

E
( j)
θk,θ∗

[X2
k ] + φ2

j−1
∑

k=2

E
( j)
θk,θ∗

[X2
k−1] − 2φ

j
∑

k=2

E
( j)
θk,θ∗

[XkXk−1]

















+

− 1
2σ2

1
L

L+1
∑

j=2

[

E
( j)
θk,θ∗

[Y2
1 + X2

1 − 2X1Y1 + Y2
j + X2

j − 2X jYj]
]

.

In practice, for this model, it is necessary to compute a set of sufficient statistics

Φ̃i(θk, θ∗), i = 1, . . . , 4 at time k, where

Φ̃1(θk, θ
∗) =

1
L

L+1
∑

j=2

E
( j)
θk,θ

∗[Y2
1 + X2

1 − 2X1Y1 + Y2
j + X2

j − 2X jYj]

Φ̃2(θk, θ
∗) =

1
L

L+1
∑

j=2

j
∑

k=2

E
( j)
θk,θ∗

[X2
k ]
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Φ̃3(θk, θ
∗) =

1
L

L+1
∑

j=2

j
∑

k=2

E
( j)
θk,θ

∗ [X2
k−1]

Φ̃4(θk, θ
∗) =

1
L

L+1
∑

j=2

E
( j)
θk,θ∗

















j
∑

k=2

XkXk−1

















.

With this definition

Q(θ, θk) = −
1
2

log[τ2]

(

(L + 1)
2

)

− log[σ2]+

− 1
2τ2

(

Φ̃2(θk, θ
∗) + φ2Φ̃3(θk, θ

∗) − 2φΦ̃4(θk, θ
∗) − 1

2σ2
Φ̃1(θk, θ

∗)

)

.

Now, dropping for simplicity the dependence onθ, θ∗, θk,

∂Q
∂φ

= − 1
2τ2

(

2φΦ̃3 − 2Φ̃4

)

= 0

∂Q
∂τ2

= −L + 1
4τ2

+
1

2τ4
(

Φ̃2 + φ
2Φ̃3 − 2φΦ̃4

)

= 0

∂Q
∂σ2

= − 1
σ2
+

1
2σ4
Φ̃1 = 0,

so

φ =
Φ̃4

Φ̃3

τ2 =
2

L + 1

(

Φ̃2 + φ
2Φ̃3 − 2φΦ̃4

)

σ2 =
Φ̃1

2
.

Again, we need to compute the sufficient statisticsΦ̃i(θ, θ∗) for i = 1, . . . , 4.

The technique is exactly the same as when the invariant distribution is known, the

only difference concerns the derivation of the joint posterior distribution. More

precisely, given a starting valuex1, the joint distribution of the latent states given
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the observationsy1, yj can be obtain as before, where we substituteµǫ andΣǫ by

µǫ =











































x1
τ

0
...

0











































and Σǫ =













































1 0 . . . 0

0 1
. . .
...

...
. . . 1 0

0 . . . 0 1













































.

Remark 5.4.3. As before, the joint distribution above can be achieved using the

Kalman filter and smoothing recursion. To get the conditioning on the initial value

x1, it is sufficient to set m0|0 = x1 and P0|0 = 0. Calculations of the first and second

moments proceed exactly in the same way.

If we implement such on line EM algorithm, we face with the convergence

problem due to the bias of the estimate arising from the substitution of the un-

known invariant distribution with the Dirac delta mass density function (see Fig-

ure 5.4.2).

In light of this, we develop the strategy suggested in Equation (3.3.3), since

the invariant distribution is supposed to be unknown, but transitions fθ(·|x) are

simple. In practice, we approximate the invariant distribution sampling from the

transition kernelfθ(·|x) and we take advantage of the geometric ergodicity of the

process.

5.4.2 Approximation of the invariant distribution

We take a generic initial distributionµ(·) for x−z and we simulate a sufficiently

long Markov chain from the transition kernel. Under geometric ergodicity, the

marginal distribution ofx1 converges toπ(x1) aszgoes to+∞.

In order to take into account the state before time 0, we definethe function

Qz(θ, θk) as follows

Qz(θ, θk) =
1
L

L+1
∑

j=2

E
( j)
θk,θ∗

[log[pθ(y1, yj, x−z: j)]] =
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Figure 5.4.2: AR(1) model plus observation noise withθ∗ = (0.7, 1, 1). Estima-
tion of the parameters using the on line EM algorithm with lag=4 denoting the
maximum distance between the observations. Calculations based on a simulated
series of length 10000. Starting valueθ(0) = (0.2, 0.8, 0.5). We suppose here that
the invariant distribution is unknown and we set as initial distributionX1 ∼ δ(x1),
wherex1 = 6.
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=
1
L

L+1
∑

j=2

E
( j)
θk,θ

∗

















log[µx−z(x)] + log[gθ(y1|x1)] + log[gθ(yj |xj)] +
j

∑

k=−z+1

log[ fθ(xk|xk−1)]

















,

(5.4.5)

whereE( j)
θk,θ∗

now denotes the expectation with respect topθk(x−z: j |y1, yj)pθ∗(y1, yj).

If we chooseµx−z(·) independent ofθ, calculation of (5.4.5) and its maximization

is derived in the same way as above. Again, it is necessary to compute a set of

sufficient statistics̄Φi(θk, θ∗), i = 1, . . . , 4 at time k, where

Φ̄1(θk, θ
∗) =

1
L

L+1
∑

j=2

E
( j)
θk,θ∗

[Y2
1 + X2

1 − 2X1Y1 + Y2
j + X2

j − 2X jYj]

Φ̄2(θk, θ
∗) =

1
L

L+1
∑

j=2

j
∑

k=−z+1

E
( j)
θk,θ

∗ [X2
k ]

Φ̄3(θk, θ
∗) =

1
L

L+1
∑

j=2

j
∑

k=−z+1

E
( j)
θk,θ∗

[X2
k−1]

Φ̄4(θk, θ
∗) =

1
L

L+1
∑

j=2

E
( j)
θk,θ∗

















j
∑

k=−z+1

XkXk−1

















.

With this definition

Qz(θ, θk) = −
1
2

log[τ2]

(

L2 + 2L + 2Lz
2

)

− log[σ2]+

− 1
2τ2

(

Φ̄2(θk, θ
∗) + φ2Φ̄3(θk, θ

∗) − 2φΦ̄4(θk, θ
∗) − 1

2σ2
Φ̄1(θk, θ

∗)

)

.

Now, dropping for simplicity the dependence onθ, θ∗, θk,

φ =
Φ̄4

Φ̄3

τ2 =
2

L2 + 2L + 2Lz

(

Φ̄2 + φ
2Φ̄3 − 2φΦ̄4

)

σ2 =
Φ̄1

2
.
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As before, we need to compute the sufficient statistics̄Φi(θ, θ∗) for i = 1, . . . , 4.

The technique is exactly the same as described in Remark 5.4.2, the only differ-

ence concerns the derivation of the joint posterior distribution. Calculation of the

posterior densitypθ(x−z: j |y1, yj), and in particular its first and second moments,

can be achieved from the following recursions

• Fork = −z+ 1, . . . , 0, we obtain the predicted states

m̄k|k−1 = φm̄k−1|k−1

P̄k|k−1 = φ
2P̄k−1|k−1 + τ

2

m̄k|k = m̄k|k−1

P̄k|k = P̄k|k−1.

• Initialization

m̄1|0 = φm̄0|0

P̄1|0 = φ
2P̄0|0 + τ

2

ē1 = y1 − m̄1|0

S̄1 = P̄1|0 + σ
2

K̄1 = P̄1|0(S̄1)
−1

m̄1|1 = m̄1|0 + K̄1ē1

P̄1|1 = (I − K̄1)P̄1|0.

• Fork = 2, . . . , j − 1, we obtain the predicted states

m̄k|k−1(r−z+2:k) = φm̄k−1|k−1

P̄k|k−1(r−z+2:k) = φ
2P̄k−1|k−1 + τ

2

m̄k|k(r−z+2:k) = m̄k|k−1

P̄k|k = P̄k|k−1.
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• For k=j

m̄j| j−1 = φm̄j−1| j−1

P̄ j| j−1 = φ
2P̄ j−1| j−1 + τ

2

ēj = yj − m̄j| j−1

S̄ j = P̄ j| j−1 + σ
2

K̄ j = P̄ j| j−1(S̄ j)
−1

m̄j| j = m̄j| j−1 + K̄ jēj

P̄ j| j = (I − K̄ j)P̄ j| j−1.

Starting from these filtering quantities, we can compute thesmoothing esti-

mates and derive the first and second moments of the latent states with respect

to pθk(x−z: j |y1, yj). These quantities allow us to compute the sufficient statistics

Φ̄i(θ, θ∗) for i = 1, . . . , 4.

We implement this idea for the AR(1) model, where stationarydistribution is

supposed to be unknown. We set as initial distributionX−z ∼ δ6(x−z) and we take

z = 100. As we can see in Figure 5.4.3, this technique reduces thebias in the

estimates for each parameter in the model.

We also report the distance between the estimate obtained taking δx, x = 6 as

initial distribution and the estimate when the stationary distribution is known. In

order to see how the idea suggested in (3.3.3) is useful, we compare it with the

distance between the estimate obtained by approximate the invariant distribution

by running a Markov chain of lengthz= 100 and the estimate when the stationary

distribution is known. Reduction of the bias is displayed inFigure 5.4.4.

Figure 5.4.5 reports the distance of the estimate with respect to the true pa-

rameter values.
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Figure 5.4.3: AR(1) model plus observation noise withθ∗ = (0.7, 1, 1). Estimation
of the parameter using the on line EM algorithm with lag=4 denoting the maxi-
mum distance between the observations. Calculations basedon a simulated series
of length 10000. We suppose here that the invariant distribution is unknown and
we set as initial distributionX−z ∼ δ(x1), wherex1 = 6 andz= 100.
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Figure 5.4.4: AR(1) model plus observation noise withθ∗ = (0.7, 1, 1). Bias of
the estimates when the invariant distribution is unknown and is approximated by
taking as initial distributionX1 ∼ δ(x), wherex = 6 (top) andX−z ∼ δ(x), where
x = 6 andz= 100 (bottom).
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Figure 5.4.5: AR(1) model plus observation noise withθ∗ = (0.7, 1, 1). Bias of the
estimates with respect to the true parameter values when theinvariant distribution
is unknown and is approximated by taking as initial distribution X1 ∼ δ(x), where
x = 6 (top) andX−z ∼ δ(x), wherex = 6 andz= 100 (bottom).



Chapter 6

Jump Markov Linear System

Many variables undergo episodes in which the behavior of theseries seems to

change quite dramatically: this happens in almost any macroeconomic or finan-

cial time series observed for a sufficiently long period. In order to forecast this

kind of series in a sensible way, the change in the process hasto be seen as a

random variable itself and a complete time series model would therefore include

a description of the probability law governing the change inregime. The simplest

model for the regime variable is a discrete-time Markov chain.

Jump Markov linear systems (JMLS) are linear systems whose parameters

evolve with time according to a finite state Markov chain. These models are

also used in several fields of econometrics as well as of signal processing, and

include as particular cases common models in impulse deconvolution [Mendel,

1990, Doucet and Duvaut, 1997], digital communications [Krishnamurthy and

Logothetis, 1999] and target tracking [Bar-Shalom and Li, 1995]. We model the

latent process as an autoregressive (AR) model with switching, as introduced by

Sclove [1983] and Hamilton [1989]. This process is observedwith additive ob-

servation noise.

6.1 Definition of the model

Let r t denote a discrete-time, time- homogeneous,s− state first order Markov

chain with transition probabilitiesλi j := P(r t+1 = j|r t = i) for any i, j ∈ S, where

79
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S := {1, 2, . . . s}. The transition probability matrixΛ = [λi j ] is, thus, ans× s

matrix, with elements satisfyingλi j ≥ 0 and
∑s

j=1 λi j = 1, for eachi ∈ S. We

denote the initial probability distribution asλi := P(r1 = i) for i ∈ S such that

λi ≥ 0,∀i ∈ S and
∑s

i=1 λi = 1. We consider the following JMLS:

xt+1 = A(r t+1)xt + B(r t+1)vt+1 + F(r t+1)ut+1, (6.1.1a)

yt = C(r t)xt + D(r t)wt +G(r t)ut (6.1.1b)

with xt ∈ Rnx system state,yt ∈ Rny observation at time,ut ∈ Rnu known determin-

istic input, wt ∈ Rnw zero-mean white gaussian noise sequence with covariance

Inw andD(i)DT(i) > 0, for everyi ∈ S, vt ∈ Rnv zero-mean white gaussian noise

sequence with covarianceInv andB(i)BT(i) > 0, for everyi ∈ S. The matrices

A(·), B(·),C(·),D(·), F(·) andG(·) are functions of the Markov chainr t, i.e. (A(·),
B(·),C(·),D(·),F(·),G(·)) ∈ {(A(i), B(i),C(i),D(i),F(i),G(i)); i ∈ S}. They evolve ac-

cording to the realization of the finite state Markov chainr t.

Remark 6.1.1. As a special case, if A(·) = 0 and rt is a i.i.d. discrete- valued

random variable, xt is a simple mixture of different gaussian distributions.

Example 6.1.2.In many situations, we want to model heterogeneity in the vari-

ance of a real time series. Let us consider a particular case of the general model

in (6.1.1a, 6.1.1b), where s= 2 and for every t

nx = 1 and ut = 0,

A(r t+1) = φ and B(r t+1) = τ(rrt+1)

F(r t+1) = 0 and G(r t) = 0,

C(r t) = 1 and D(r t) = σ.

Such a model can be written in this form

xt+1 = φxt + τ(r t+1)vt+1, (6.1.2a)

yt = xt + σwt. (6.1.2b)
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The only dependence on the Markov chain is in the variance of the latent

process noise. In this case rt is a 2- state first order Markov chain. If the chain

r t is in state1 at time t, the process{Xt} follows a standard AR(1) process with

additive observation noise, whereτ(1) is the standard deviation of the noise vt+1.

This specification allows us to take into account lack of homogeneity in the second

moment of the series: switching to regime rt = 2 affects the variance of the noise

vt+1 that changes fromτ2(1) to τ2(2).

In many problems related to seismic processing and nuclear science [Mendel,

1990, Lavielle, 1993], the signal of interest can be modeledas the output of an

ARMA model filter excited by a discrete time Markov chain and observed in white

gaussian noise. An interesting particular case of the model(6.1.2a, 6.1.2b) can be

defined as follows. We consider an AR(1) latent dynamic whereτ(2) is set equal

to zero

xt+1 = φxt + v′t+1(r t+1), (6.1.3a)

yt = xt + σwt, (6.1.3b)

where, conditional upon rt = 1, v′t = τ(1)vt and conditional upon rt = 2, v′t ∼ δ0,
whereδ0 is the Dirac delta measure in0. In this case, if the chain rt is in state2 at

time t, the dynamic of the process{Xt} evolves deterministically since the variance

of the noise vanishes.

The behavior of this model is described in Figure 6.1.1. For afixed set of

parameter values, the figure shows a simulated path of the finite state Markov

chain rt (top) and the continuous (in space) states processes xt, yt (bottom) for

t = 1, . . . , 250. When the Markov chain rt is in state2, the signal xt evolves with-

out noise going deterministically towards zero (from aboveor below). When the

chain jumps to state1, we add some noise to the dynamic of the latent process{Xt}.

6.1.1 Stationary distribution

We suppose that the bivariate latent process{(Xt, r t)} is stationary, and hence by

hypothesis invariant distribution exists. Anyway, stationary distribution is not easy
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Figure 6.1.1: Signal process for the model in (6.1.3a, 6.1.3b): state of the Markov
chain r t (top) and the continuous processesxt, yt (bottom). Fixed value of the
parameters:φ = 0.9, τ(1) = 5, σ = 1, λ1 = λ2 = 0.5, λ12 = 0.9, λ21 = 0.1.

to compute and it obviously depends on the parameters of the model. Moreover,

calculation will be simpler if we put as initial distribution a distribution that does

not depend on the parameter values, since it becomes a constant factor when we

maximize any objective function with respect to the parameter in the parameter

space. Sincer t is a discrete time Markov chain with finite state space, its stationary

distribution corresponds to

π(r) = (π(r)
1 , π

(r)
2 , . . . , π

(r)
s )

such that

π(r) = π(r)Λ
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with the constrain that
∑s

i=1 π
(r)
i = 1. On the other hand, in order to compute the

invariant distribution for the latent process{Xt}, we need to find a distributionπ(x)

such that

∫

π(x)
s

∑

i=1

[

π
(r)
i N(dy; A(i)x+ F(i)u, B(i)B(i)T)

]

= π(dy).

Solving the equation above corresponds to find a solution of an integral equation.

This is not a simple task even for a specific kind of model. A simulation study

(see Figures 6.1.2) shows that the shape of the empirical stationary distribution is

not standard and for that reason, even ifπ(x) might be derived in some way, we

consider it as unknown.

Example 6.1.3.Going back to Example 6.1.2, we have that

π(r) = (π(r)
1 , π

(r)
2 ) =

(

λ21

λ12+ λ21
,
λ12

λ12 + λ21

)

,

whileπ(x) is the solution of the following integral equation

∫

π(x)
[

π
(r)
1 N(y; φx, τ2(1))+ π(r)

2 δφx(dy)
]

= π(dy).

whereδφx(·) is the Dirac delta measure centered inφx.

From the considerations above, JMLS is a framework where it should be useful

exploiting the idea suggested in (3.3.3) and illustrated inSection 5.4.2 for a linear

gaussian model. Here, the invariant distribution is unknown but transitions are

still simple. In the next sections we will approximate the invariant distribution

sampling from the transition kernel of the ergodic process.

6.1.2 Approximation of the stationary distribution

As outlined above, in this case the invariant distribution is unknown and hence has

to be replaced with a suitable approximation. We take a generic initial distribution

ν(·) for x−z and forr−z and we simulate a sufficiently long chain from the transition

kernel. Under geometric ergodicity, the marginal distribution of x1 converges to
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Figure 6.1.2: Simulation study- Estimation of the stationary distributionπr (top)
and of the marginal of the stationary distributionπ(x). We take as initial dis-
tribution the uniform distribution for the chainr t and a gaussian distribution
for the processxt, with mean 15 and variance 1. Fixed value of the param-
eters: nx = 2, s = 2, σ = 0.25,λ12 = 0.9,λ21 = 0.1, xt+1 = (xt+1, xt)

′
,

A(r t+1) =

(

1.511 −0.539
1 0

)

,B(r t+1) = (τ(r t+1), 0)
′
, whereτ(1) = 0.5, τ(2) = 0.

π(x1) aszgoes to+∞. More precisely, we derive the joint distribution

ν(x−z:1, r−z:1) =

















νr−z

1
∏

i=−z+1

λr ir i+1

















ν(x−z:1|z−z:1),

whereνr−z = P(r−z = r−z), λr i r i+1 = P(r i |r i+1) and

ν(x−z:1|r−z:1) = ν(x−z)
1

∏

i=−z+1

fθ(xi |xi−1, r i).

We recall thatfθ(xi |xi−1, r i) = N
(

xi; A(r i)xi−1 + F(r i)ui , B(r i)B(r i)T
)

. Under geo-

metric ergodicity, the marginal

ν(x1, r1)→ πθ(x1, r1),
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asz goes to+∞.

6.2 Inference in a JMLS

Inference on the parameter in JMLS can be carried out via an online EM algo-

rithm, as described in Chapter 5. Algorithms that allow us todevelop such esti-

mates are more complex than those for linear gaussian state space model, since

the latent process is bivariate and consists of a continuousand a discrete valued

process. In what follows, we develop an on line EM algorithm and we describe

how to sample from the required distributions. Moreover, for a special case of

JMLS, we derive the update equations in fairly explicit details.

6.2.1 TheQ(θ, θk) function for a JMLS

Taking into account the states before time 1, the functionQ(θ, θk), that has to

be maximized with respect toθ at each iteration of the EM algorithm, has this

expression

Q(θ, θk) =
1
L

L+1
∑

j=2

E
( j)
θk,θ∗

[log[pθ(y1, yj, x−z: j , r−z: j |ν)]] , (6.2.1)

whereE( j)
θk,θ∗

denotes the expectation with respect topθk(x−z: j , r−z: j |y1, yj, ν)×pθ∗(y1),

ν denoting the initial distribution. In order to compute theQ function, we need

to evaluatelog[pθ(y1, yj , x−z: j , r−z: j |ν)] for the model (6.1.1a, 6.1.1b). Taking into

account the structure of the model, we have that

pθ(y1, yj, x−z: j , r−z: j) = ν(x−z:1, r−z:1)
j

∏

i=2

λr i−1r i×

×
j

∏

i=2

[

N(xi ; A(r i)xi−1 + F(r i)ui, B(r i)B(r i)
T)

]

×

× N
(

y1; C(r1)x1 +G(r1)u1,D(r1)D(r1)
T
)

×

× N
(

yj; C(r j)xj +G(r j)u j ,D(r j)D(r j)
T
)

=
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=ν(r−z)
j

∏

i=−z+1

λr i−1r i×

× ν(x−z)
j

∏

i=−z+1

[

N(xi ; A(r i)xi−1 + F(r i)ui , B(r i)B(r i)
T)

]

×

× N
(

y1; C(r1)x1 +G(r1)u1,D(r1)D(r1)
T
)

×

× N
(

yj; C(r j)xj +G(r j)u j ,D(r j)D(r j)
T
)

.

Example: The Q(θ, θk) function for the model (6.1.2a, 6.1.2b)

We evaluate (6.2.1) for the model specified in Example 6.1.2,whereτ(2)≪ τ(1),

but different from zero. We need this position since it is not possible to apply our

algorithm in the case whereτ(2) = 0. In order to evaluate theQ function, we need

to compute

log pθ(y1: j , x−z, j, r−z: j = r−z: j |ν) = logν(x−z) + logν(r−z) +
j

∑

i=−z+1

logλr i−1r i+

+

j
∑

i=−z+1

log
[

N(xi ; φxi−1, τ
2(r i))

]

+ logN
(

y1; x1, σ
2
)

+ logN
(

yj; xj , σ
2
)

.

If we definen12(r−z: j) the number of times that state 1 is followed by state 2 in the

sampler−z, . . . , r j (and analogouslyn11(r−z: j), n21(r−z: j), n22(r−z: j)) and n1(r−z+1: j)

the number of times that the chainr t is in state 1 in the sampler−z+1, . . . , r j (and

analogouslyn2(r−z+1: j)), the quantity above can be written as

logν(x−z) + logν(r−z) +
2

∑

i=1

2
∑

k=1

nik(r−z: j) logλik+

− 1
2

logτ2(1)n1(r−z+1: j) −
1

2τ2(1)

j
∑

k=−z+1

(

I1(rk)x
2
k + I1(rk)φ

2x2
k−1 − I1(rk)2φxkxk−1

)

− 1
2

logτ2(2)n2(r−z+1: j) −
1

2τ2(2)

j
∑

k=−z+1

(

I2(rk)x
2
k + I2(rk)φ

2x2
k−1 − I2(rk)2φxkxk−1

)

+
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− logσ2 −
y2

1 + x2
1 − 2y1x1 + y2

j + x2
j − 2yj xj

2σ2
,

whereI(·) denotes the indicator function.

Now we can evaluate theQ function for this particular model

Q(θ, θ′) =
1
L

L+1
∑

j=2

E
( j)
θ′,θ∗[log pθ(y1: j , x−z, j, r−z: j = r−z: j)|ν] =

=
1
L

L+1
∑

j=2

E
( j)
θ′,θ∗[log ν(r−z)] +

1
L

L+1
∑

j=2

E
( j)
θ′,θ∗[log ν(x−z)]+

+ logλ11
1
L

L+1
∑

j=2

E
( j)
θ′,θ∗[n11(r−z: j)] + logλ12

1
L

L+1
∑

j=2

E
( j)
θ′,θ∗[n12(r−z: j)]+

+ logλ21
1
L

L+1
∑

j=2

E
( j)
θ′,θ∗[n21(r−z: j)] + logλ22

1
L

L+1
∑

j=2

E
( j)
θ′,θ∗[n22(r−z: j)]+

− 1
2

logτ2(1)
1
L

L+1
∑

j=2

E
( j)
θ′,θ∗[n1(r−z+1: j)]

− 1
2τ2(1)

















1
L

L+1
∑

j=2

E
( j)
θ′,θ∗

















j
∑

k=−z+1

I1(rk)x
2
k

















+
1
L

L+1
∑

j=2

E
( j)
θ′,θ∗

















j
∑

k=−z+1

I1(rk)φ
2x2

k−1

















+

−1
L

L+1
∑

j=2

E
( j)
θ′,θ∗

















j
∑

k=−z+1

I1(rk)2φxkxk−1

































− 1
2

logτ2(2)
1
L

L+1
∑

j=2

E
( j)
θ′,θ∗[n2(r−z+1: j)]−

1
2τ2(2)

















1
L

L+1
∑

j=2

E
( j)
θ′,θ∗

















j
∑

k=−z+1

I2(rk)x
2
k

















+
1
L

L+1
∑

j=2

E
( j)
θ′,θ∗

















j
∑

k=−z+1

I2(rk)φ
2x2

k−1

















+

−1
L

L+1
∑

j=2

E
( j)
θ′,θ∗

















j
∑

k=−z+1

I2(rk)2φxkxk−1

































+

− logσ2 − 1
2σ2

















y2
1 +

1
L

L+1
∑

j=2

E
( j)
θ′,θ∗[x

2
1] − 2y1

1
L

L+1
∑

j=2

E
( j)
θ′,θ∗[x1]+

y2
j +

1
L

L+1
∑

j=2

E
( j)
θ′,θ∗[x

2
j ] − 2yj

1
L

L+1
∑

j=2

E
( j)
θ′,θ∗ [xj]

















.
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The quantity above depends on the following statistics

N11 =
1
L

L+1
∑

j=2

E
( j)
θ′,θ∗ [n11(r−z: j)]

N12 =
1
L

L+1
∑

j=2

E
( j)
θ′,θ∗ [n12(r−z: j)]

N21 =
1
L

L+1
∑

j=2

E
( j)
θ′,θ∗ [n21(r−z: j)]

N22 =
1
L

L+1
∑

j=2

E
( j)
θ′,θ∗ [n22(r−z: j)]

Ψ
(1)
1 =

1
L

L+1
∑

j=2

E
( j)
θ′,θ∗ [n1(r−z+1: j)]

Ψ
(2)
1 =

1
L

L+1
∑

j=2

E
( j)
θ′,θ∗ [n2(r−z+1: j)]

Ψ
(1)
2 =

1
L

L+1
∑

j=2

E
( j)
θ′,θ∗

















j
∑

k=−z+1

I1(rk)x
2
k

















Ψ
(1)
3 =

1
L

L+1
∑

j=2

E
( j)
θ′,θ∗

















j
∑

k=−z+1

I1(rk)x
2
k−1

















Ψ
(1)
4 =

1
L

L+1
∑

j=2

E
( j)
θ′,θ∗

















j
∑

k=−z+1

I1(rk)xkxk−1

















Ψ
(2)
2 =

1
L

L+1
∑

j=2

E
( j)
θ′,θ∗

















j
∑

k=−z+1

I2(rk)x
2
k

















Ψ
(2)
3 =

1
L

L+1
∑

j=2

E
( j)
θ′,θ∗

















j
∑

k=−z+1

I2(rk)x
2
k−1

















Ψ
(2)
4 =

1
L

L+1
∑

j=2

E
( j)
θ′,θ∗

















j
∑

k=−z+1

I2(rk)xkxk−1

















Ψ5 = y2
1 +

1
L

L+1
∑

j=2

E
( j)
θ′,θ∗ [x

2
1 + x2

j ] − 2y1
1
L

L+1
∑

j=2

E
( j)
θ′,θ∗ [x1] +
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+ y2
j +

1
L

L+1
∑

j=2

E
( j)
θ′,θ∗[x

2
j ] − 2yj

1
L

L+1
∑

j=2

E
( j)
θ′,θ∗ [xj].

With these definitions, theQ function can be re-written as

Q =
1
L

L+1
∑

j=2

E
( j)
θ′,θ∗[log pθ(y1: j , x−z, j, r−z: j = r−z: j)|ν] =

=
1
L

L+1
∑

j=2

E
( j)
θ′,θ∗[log ν(r−z)] +

1
L

L+1
∑

j=2

E
( j)
θ′,θ∗[log ν(x−z)]+

+ logλ11N11 + logλ12N12 + logλ21N21 + logλ22N22

+
1
L

L+1
∑

j=2

E
( j)
θ′,θ∗ [log ν(x−z)] −

1
2

logτ2(1)Ψ(1)
1

− 1
2τ2(1)

[Ψ(1)
2 + φ

2Ψ
(1)
3 − 2φΨ(1)

4 ]

− 1
2

logτ2(2)Ψ(2)
1 −

1
2τ2(2)

[Ψ(2)
2 + Ψ

(2)
3 φ

2 − 2φΨ(2)
4 ]+

− logσ2 − 1
2σ2
Ψ5.

In order to simplify the maximization step, we takeν(r−z) andν(x−z) independent

of θ. Sinceλ12 = 1− λ11, λ21 = 1− λ22, derivatives with respect to the parameters

of the model have the following expressions

∂Q
∂λ11

=
N11

λ11
− N12

1− λ11
= 0

∂Q
∂λ22

=
N11

λ22
− N12

1− λ22
= 0

∂Q
∂τ2(1)

= −
Ψ

(1)
1

2τ2(1)
+
Ψ

(1)
2 + φ

2Ψ
(1)
3 − 2φΨ(1)

4

τ4(1)
= 0

∂Q
∂τ2(2)

= −
Ψ

(2)
1

2τ2(2)
+
Ψ

(2)
2 + φ

2Ψ
(2)
3 − 2φΨ(2)

4

τ4(2)
= 0

∂Q
∂σ2

= − 1
σ2
+
Ψ5

2σ4
= 0
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∂Q
∂φ

= − 1
2τ2(1)

[2φΨ(1)
3 − 2Ψ(1)

4 ] − 1
2τ2(2)

[2φΨ(2)
3 − 2Ψ(2)

4 ] = 0,

and hence

λ11 =
N11

N11 + N12

λ22 =
N22

N21 + N22

τ2(1) = −
Ψ

(1)
2 + φ

2Ψ
(1)
3 − 2φΨ(1)

4

Ψ
(1)
1

(6.2.2a)

τ2(2) = −
Ψ

(2)
2 + φ

2Ψ
(2)
3 − 2φΨ(2)

4

Ψ
(2)
1

(6.2.2b)

σ2 =
Ψ5

2

φ















Ψ
(1)
3

τ2(1)
+
Ψ

(2)
3

τ2(2)















=
Ψ
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+
Ψ

(2)
4

τ2(2)
.

This last equation can be written as a third degree equation in φ
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Ψ
(1)
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= 0.

The three solutions forφ can be found in the same way as in Section 5.4. Then

we discard solutions that fall outside the real interval [−1, 1] and keep among the

remaining values, since we work with stationary process. Once we get the value

for φ, τ2(1) andτ2(2) are uniquely determined by Equations (6.2.2a, 6.2.2b).

In this case, it is possible to maximizeQ(θ, θk) analytically, and the maximum

points depend on some sufficient statistics defined as expectations with respect to

a measure that depends on the true unknown parameter values.These statistics
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can be approximated using an on line scheme, following the same idea explained

in Section 5.4.

In general, evaluation of theQ function requires the calculation of the expecta-

tion with respect to a measure that depends on the unknown parameter valueθ∗, so

it can not be computed. Anyway, given a block of observationsyq = (yq, . . . , yq+L),

for everyyq, yq+ j−1 in the blockyq, j = 2, . . . , L + 1,

∫

log[pθ(yq, yq+ j−1, x−z: j , r−z: j)|ν]pθk(x−z: j , r−z: j |yq, yq+ j−1, ν)dx−z: jdr−z: j

can be approximated by

1
M

M
∑

m=1

log[pθ(yq, yq+ j−1, x
(m,q)
−z: j , r

(m,q)
−z: j )|ν],

where{x(m,q)
−z: j , r

(m,q)
−z: j }, for m = 1, . . . ,M are samples from the posterior distribution

pθk(x−z: j , r−z: j |yq, yq+ j−1, ν). When blocks of observationsyq = (yq, . . . , yq+L) are

available one at a time, for everyyq, yq+ j−1 in the blockyq, q = 1, . . . ,T − L,

j = 2, . . . , L + 1, we shall consider an on line scheme, as proposed in Sec-

tion 5.4. We now describe how to obtain samples from the generic distribution

pθ(x−z: j , r−z: j |y1, yj, ν).

6.3 Sampling from pθ(x−z: j, r−z: j |y1, y j, ν)

Given the observationsy1, yj, our interest relies on the joint posterior distribution

pθ(x−z: j , r−z: j |y1, yj), in particular on computing integrals with respect to thisjoint

distribution. If we were able to obtainM independent and identically distributed

(i.i.d.) samples distributed according topθ(x−z: j , r−z: j |y1, yj), then, using the law

of large numbers, integrals as the minimum mean square error(MMSE) estimates

could be computed by averaging. The aim of this section is to obtain, for every

j = 2, . . . , L + 1, samples{r (m)
−z: j : m = 1, . . . ,M} (for largeM) from the posterior

distribution pθ(r−z: j |y1, yj). Obtaining i.i.d. samples from this distribution is not

straightforward, so we use an alternative scheme based on anMCMC method. The

key idea of MCMC methods is to run an ergodic Markov chain whose invariant
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distribution is the distribution of interest. The obtainedsamples are then used

to compute estimates of the states. The proposed algorithm proceed as follows

[Andrieu and Doucet, 2001]

1. Initialization. Set randomlyr (0)
−z: j

2. Iterationm, m= 1, . . . ,M

• For t = −z, . . . , j, sampler (m)
t ∼ pθ(r t|y1, yj , r

(m)
−t ), where

r (m)
−t := (r (m)

−z , . . . , r
(m)
t−1, r

(m−1)
t+1 , . . . , r

(m−1)
j ).

• Computex(m)
−z: j = E[x−z: j |y1, yj , r

(m)
−z: j] and/or other statistics of interest,

given the sequencer (m)
−z: j.

Once the algorithm has been iteratedM times, the MMSE estimates ofr−z: j

andx−z: j are computed using

r̂−z: j(M) =
1
M

M−1
∑

m=0

r (m)
−z: j , x̂−z: j(M) =

1
M

M−1
∑

m=0

x(m)
−z: j .

The different steps of this algorithm are detailed in the next sections. In order

to simplify notation, we drop the superscript (m) from all variables at iterationm

when it is unnecessary.

This algorithm requires sampling frompθ(r t|y1, yt, r−t). Direct solutions are

computationally expensive, so we develop a strategy based on a key decomposi-

tion of the likelihood function (Section 6.3.2).

Furthermore, once the sequencer−z: j is given, a general JMLS, as defined

in (6.1.1a, 6.1.1b), is linear gaussian. Therefore, estimating the sequencex−z: j

by E[x−z: j |y1, yj, r−z: j] can be done using a suitable modification of the Kalman

smoother, as described in the next section.
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6.3.1 Modified Kalman filter : estimation of the statexj given

the sequencer−z: j and the observationsy1, yj

In the framework of pairwise likelihood strategy, we need tocompute expectations

with respect topθ(x−z: j , r−z: j |y1, yj) for j = 2, . . . , L + 1. Given the sequencer−z: j

and the observationsy1 andyj, pθ(x−z: j |y1, yj, r−z: j) is gaussian and then we exploit

here a suitable extension of the Kalman filter recursions to estimate the statex−z: j

given the observationsy1, yj and the stater−z: j.

We recall here thepredictionandupdate stepsof the standard Kalman filter in

the contest of jump Markov linear systems, wherez= 0. If the prior distribution is

gaussian,x0 ∼ N(m̃0|0, P̃0|0), then the optimal filtering equations can be evaluated

in closed form:

pθ(xj |y1: j−1, r1: j) = N(xj |m̃j| j−1(r1: j), P̃ j| j−1(r1: j))

pθ(xj |y1: j , r1: j) = N(xj |m̃j| j(r1: j), P̃ j| j(r1: j))

and the parameters of these distributions can be calculatedby the following steps:

Prediction step

m̃j| j−1(r1: j) = A(r j)m̃j−1| j−1(r1: j) + F(r j)u j

P̃ j| j−1(r1: j) = A(r j)P̃ j−1| j−1(r1: j)A(r j)
T + B(r j)B(r j)

T .

Update step

ẽj(r1: j) = yj −C(r j)m̃j| j−1(r1: j) −G(r j)u j

S̃ j(r1: j) = C(r j)P̃ j| j−1(r1: j)C(r j)
T + D(r j)D(r j)

T

K̃ j(r1: j) = P̃ j| j−1C(r j)(S̃ j(r1: j))
−1

m̃j| j(r1: j) = m̃j| j−1(r1: j) + K̃ j(r1: j)ẽj(r1: j)

P̃ j| j(r1: j) = (I − K̃ j(r1: j)C(r j))P̃ j| j−1(r1: j).

If z= 0, our interest concerns the evaluation ofpθ(xj |y1, yj , r1: j) where condition-

ing is on the observationsy1 andyj and not on all the observations between 1
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and j. The recursions above need to be modified in order to obtain the right mo-

ments of the posterior distributionspθ(xj |y1, yj, r1: j). We follow the same idea as

in the previous chapter, setting an infinity variance for themissing observations

from time 2 to timej − 1. This means taking the matrixD(·) in such a way that

(D(·)D(·)T)−1 is close to zero. To apply this strategy, we need to be carefulabout

computational issues as matrix inversion.

More precisely, ifx0 ∼ N(m0|0,P0|0), for every j > 2, the prediction and update

steps modify as follows

• Initialization

m1|0(r1) = A(r1)m0|0 + F(r1)u1

P1|0(r1) = A(r1)P0|0A(r1)
T + B(r1)B(r1)

T

e1(r1) = y1 −C(r1)m1|0(r1) −G(r1)u1

S1(r1) = C(r1)P1|0(r1)C(r)T + D(r)D(r)T

K1(r1) = P1|0C(r1)(S1(r1))
−1

m1|1(r1) = m1|0(r1) + K1(r1)e1(r1)

P1|1(r1) = (I − K1(r1)C(r1))P1|0(r1).

• Fork = 2, . . . , j − 1

mk|k−1(r1:k) = A(rk)mk−1|k−1(r1:k) + F(rk)uk

Pk|k−1(r1:k) = A(rk)Pk−1|k−1(r1:k)A(rk)
T + B(rk)B(rk)

T

mk|k(r1:k) = mk|k−1(r1:k)

Pk|k(r1:k) = Pk|k−1(r1:k).

• For k=j

mj| j−1(r i: j) = A(r j)mj−1| j−1(r1: j) + F(r j)u j

P j| j−1(r i: j) = A(r j)P j−1| j−1(r1: j)A(r j)
T + B(r j)B(r j)

T

ej(r1: j) = yj −C(r j)mj| j−1(r1: j) −G(r j)u j

S j(r1: j) = C(r j)P j| j−1(r1: j)C(r j)
T + D(r j)D(r j)

T
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K j(r1: j) = P j| j−1(r1: j)C(r j)(S j(r1: j))
−1

mj| j(r1: j) = mj| j−1(r1: j) + K j(r1: j)ej(r1: j)

P j| j(r1: j) = (I − K j(r1: j)C(r j))P j| j−1(r1: j).

Remark 6.3.1. Note that for k= 2, . . . , j − 1 we actually do not need to compute

quantities that depend on the variance D(·)D(·)T . Since(D(·)D(·)T )−1 tends to

zero, Kk(r1:k) can be set equal to zero. Again, the innovation at time k (i.e.ek(r1:k))

and its covariance (i.e. Sk(r1:k)) do not need to be computed, and this allows us to

avoid matrix inversion and approximations.

Going back to our example defined by the system (6.1.2a, 6.1.2b), we run the

modified Kalman filter described above in order to estimate the latent statexj,

given the sequencer1: j and the observationsy1, yj. We takex0 ∼ N(0, 1). For

j = 2, . . . , 250, we compute the minimum mean square error estimates of the

continuous state of the JMLS. The results are shown in Figure6.3.1.

We also compare the standard Kalman filter and our modified Kalman filter

via the comparison between the optimal (in a mean square sense) estimates ofxj

given byE[xj |y1: j , r1: j] and E[xj |y1, yj , r1: j], respectively. The results are shown

in Figure 6.3.2. Moreover, if we define ˜m1:T = (m̃1|1, m̃2|2, . . . , m̃T |T) andm1:T =

(m1|1,m2|2, . . . ,mT |T), we can evaluate the distance between the estimates and the

true values, as shown below.

(x1:T − y1:T)(x1:T − y1:T)T 14.2611

(m̃1:T − x1:T)(m̃1:T − x1:T)T 2.8308

(m1:T − x1:T)(m1:T − x1:T)T 9.9984

In our case, the stationary distribution is unknown, so it becomes important

to estimatex−z: j given the observationsy1, yj and the stater−z: j, for a fixed value

of z , 0 and for j = 2, . . . , L + 1. The strategy described above can be easily

extended to this aim. In the next, we describe how to generalize the modified

Kalman filter in order to sample frompθ(r−z: j |y1, yj, ν), ν being the initial distribu-

tion. This allows us to evaluate integrals with respect to the posterior distribution

pθ(x−z: j |y1, yj, r−z: j, ν).

More precisely, if (x−z) ∼ ν(x−z), with meanm−z|−z and covarianceP−z|−z, the
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Figure 6.3.1: Modified Kalman Filter- Estimation of the state xj, given the se-
quencer1: j and the observationsy1, yj, for j = 2, . . . , 250. Fixed value of the pa-
rameters:φ = 0.9, τ(1) = 0.5, τ(2) = 0, σ = 0.25, λ1 = λ2 = 0.5, λ12 = 0.9, λ12 =

0.1,m0|0 = 0,P0|0 = 1.

modified Kalman filter becomes

• For k = −z, . . . , 0, we obtain the predicted states (“missing observations”

y−z:0)

mk|k−1(r−z:k) = A(rk)mk−1|k−1(rk) + F(rk)uk

Pk|k−1(r−z:k) = A(rk)Pk−1|k−1(rk)A(rk)
T + B(rk)B(rk)

T

mk|k(r−z:k) = mk|k−1(r−z:k)

Pk|k(r−z:k) = Pk|k−1(r−z:k).
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Figure 6.3.2: Comparison between the standard Kalman filterand the modified
Kalman filter- MMSE of the statexj, given the sequencer1: j and the observations
y1: j (standard Kalman filter) ory1, yj (modified Kalman filter), forj = 2, . . . , 250.
Fixed value of the parameters:φ = 0.9, τ(1) = 0.5, τ(2) = 0, σ = 0.25, λ1 = λ2 =

0.5, λ12 = 0.9, λ12 = 0.1,m0|0 = m̃0|0 = 0,P0|0 = P̃0|0 = 1.

• Initialization

m1|0(r−z:1) = A(r1)m0|0(r−z:1) + F(r1)u1

P1|0(r−z:1) = A(r1)P0|0(r−z:1)A(r1)
T + B(r1)B(r1)

T

e1(r−z:1) = y1 −C(r1)m1|0(r−z:1) −G(r1)u1

S1(r−z:1) = C(r1)P1|0(r−z:1)C(r1)
T + D(r1)D(r1)

T

K1(r−z:1) = P1|0(r−z:1)C(r1)(S1(r−z:1))
−1

m1|1(r−z:1) = m1|0(r−z:1) + K1(r−z:1)e1(r−z:1)

P1|1(r−z:1) = (I − K1(r−z:1)C(r1))P1|0(r−z:1).
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• Fork = 2, . . . , j −1, we obtain the predicted states (“missing observations”

y2: j−1)

mk|k−1(r−z:k) = A(rk)mk−1|k−1(r−z:k) + F(rk)uk

Pk|k−1(r−z:k) = A(rk)Pk−1|k−1(r−z:k)A(rk)
T + B(rk)B(rk)

T

mk|k(r−z:k) = mk|k−1(r−z:k)

Pk|k(r−z:k) = Pk|k−1(r−z:k).

• For k=j

mj| j−1(r−z: j) = A(r j)mj−1| j−1(r−z: j) + F(r j)u j

P j| j−1(r−z: j) = A(r j)P j−1| j−1(r−z: j)A(r j)
T + B(r j)B(r j)

T

ej(r−z: j) = yj −C(r j)mj| j−1(r−z: j) −G(r j)u j

S j(r−z: j) = C(r j)P j| j−1(r−z: j)C(r j)
T + D(r j)D(r j)

T

K j(r−z: j) = P j| j−1(r−z: j)C(r j)(S j(r−z: j))
−1

mj| j(r−z: j) = mj| j−1(r−z: j) + K j(r−z: j)ej(r−z: j)

P j| j(r−z: j) = (I − K j(r−z: j)C(r j))P j| j−1(r−z: j).

Going back to our example defined by the system (6.1.2a, 6.1.2b), we run the

modified Kalman filter described above in order to estimate the latent statexj,

given the sequencer−z: j and the observationsy1, yj, for j = 2, . . . , 250. We take

ν(x−z) = N(4, 1) as initial distribution. We compute the minimum mean square

error (MMSE) estimates of the continuous state of the JMLS and the results are

shown in Figure 6.3.3.

If we compute the estimates of the continuous state obtainedfrom the above

strategy, the distance between the estimates and the true values decreases from

9.9984 to 3.7902.

6.3.2 Sampling frompθ(r t|y1, yj , r−t)

The MCMC algorithm reported at the beginning of this sectionrequires sampling

from pθ(r t|y1, yj, r−t) for t = −z, . . . , j. Before describing how to sample from
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Figure 6.3.3: Modified Kalman Filter- Estimation of the state xj, given the se-
quencer−z: j and the observationsy1, yj, for j = 2, . . . , 250 andz = 100. Fixed
value of the parameters:φ = 0.9, τ(1) = 0.5, τ(2) = 0, σ = 0.25, λ1 = λ2 =

0.5, λ12 = 0.9, λ12 = 0.1. Initial distributionν(x−z) = N(4, 1).

this distribution, we describe a generic algorithm of computational complexity

O(T) that allows us to sample frompθ(r t|y1:T , r−t), for t = 1, . . . ,T (as derived in

Andrieu and Doucet [2001]). A direct solution to this problem would consist of

evaluating fori ∈ S the distribution

pθ(r t = i|y1:T , r−t) ∝ pθ(y1:T |r t = i, r−t)pθ(r t = i|r−t),

usings times a Kalman filter to compute thes likelihood termspθ(y1:T |r t = i, r−t)

for i = 1, . . . , s. As we need to sample frompθ(r t|y1:T , r−t) for t = 1, . . . ,T, this

would result in an algorithm of computational complexityO(T2). We describe

here an algorithm of complexityO(T) that relies on the following key decompo-

sition of the likelihoodpθ(y1:T |r1:T) that allows for the efficient computation of
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pθ(r t|y1:T , r−t) for t = 1, . . . ,T. Indeed, for anyt = 2, . . . ,T − 1 (the modifications

needed to handle the case of boundaries are straightforwardand omitted here), we

have

pθ(y1:T |r1:T) = pθ(y1:t−1|r1:t−1)pθ(yt|y1:t−1, r1:t)

×
∫

pθ(yt+1:T |r t+1:T , xt)pθ(xt|y1:t, r1:t)dxt (6.3.1)

where

pθ(yt:T |r t:T , xt−1) =
∫

pθ(yt+1:T |r t+1:T , xt)pθ(yt, xt|r t, xt−1)dxt. (6.3.2)

The two first terms on the right-hand side of (6.3.1) can be computed using a

forward recursion based on the Kalman filter. It appears thatit is possible to eval-

uate the third term using a backward recursion given by (6.3.2). More precisely,

pθ(yt:T |r t:T , xt−1) turns out to be gaussian with meanMt(r t:T)xt−1 + E[Nt(r t:T)] and

covariancecov[Nt(r t:T)] > 0, where

Mt(r t:T) =



































































C(r t)A(r t)

C(r t+1)A(r t+1)A(r t)

. . .
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∏t
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. . .
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Nt(r t:T) =





















































D(r t)wt +C(r t)(B(r t)vt +G(r t)ut) +G(r t)ut

. . .

D(r t+i−1)wt+i−1 + remaining terms

. . .

D(rT)wT + remaining terms





















































.

The positiveness ofcov[Nt(r t:T)] comes from the assumptionD(i)D(i)T > 0 for

i ∈ S. We defineLt(r t:T) = E[Nt(r t:T)NT
t (r t:T)] and

P′−1
t−1|t(r t:T) = MT

t (r t:T)L−1
t (r t:T)Mt(r t:T),
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P′−1
t−1|t(r t:T)m′t−1|t(r t:T) = MT

t (r t:T)L−1
t (r t:T)yt:T .

Mayne [1966] has established the algorithm to compute them recursively in time.

More precisely, the quantitiesP′−1
t−1|t(r t:T) and P′−1

t−1|t(r t:T)m′t−1|t(r t:T) always satisfy

the following backward information filter recursions

1. Initialization

P′−1
T |T(rT) =CT(r t)(D(rT)DT(rT))−1C(rT)

P′−1
T |T(rT)m′T |T(rT) = CT(r t)(D(rT)DT(rT))−1C(rT)(yT −G(rT)uT).

2. Backward recursion. Fort = T − 1, . . . , 1,

∆t+1 =
[

Inv + BT(r t+1)P
′−1
t+1|t+1(r t+1:T )B(r t+1)

]−1

P′−1
t|t+1(r t+1:T) = AT(r t+1)P

′−1
t+1|t+1(r t+1:T)×

×
(

Inx − B(r t+1)∆t+1BT(r t+1)P
′−1
t+1|t+1(r t+1:T)

)

A(r t+1),

P′−1
t|t+1(r t+1:T)m′t|t+1(r t+1:T) = AT(r t+1)×

×
(

Inx − P′−1
t+1|t+1(r t+1:T )B(r t+1)∆t+1BT(r t+1)

)

×

× P′−1
t+1|t+1(r t+1:T )

(

m′t+1|t+1(r t+1|T) − F(r t+1)ut+1

)

,

P′−1
t|t (r t:T) = P′−1

t|t+1(r t+1:T) +CT(r t)(D(r t)D
T(r t))

−1C(r t),

P′−1
t|t (r t:T)m′t|t(r t:T) = P′−1

t|t+1(r t+1:T)m′t|t+1(r t+1:T )+

+CT(r t)(D(r t)D
T(r t))

−1C(r t)(yt −G(r t)ut).

Now, combining (6.3.1) and the previous results, one obtains an expression

for pθ(r t|y1:T , r−t), t=2,. . . ,T-1. In fact

pθ(r t|y1:T , r−t) ∝pθ(r t|r−t)pθ(y1:T , r−t, r t)

∝pθ(r t|r t−1, r t+1)pθ(yt|y1:t−1, r1:t)×

×
∫

pθ(yt+1:T |r t+1:T , xt)pθ(xt|y1:t, r1:t)dxt.

The two first terms are easy to compute aspθ(r t|r t−1, r t+1) is given by the transition

matrix of the Markov chain andpθ(yt|y1:t−1, r1:t) = N(ẽt(r1:t), S̃t(r1:t)), where the
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innovationet(r1:t) and its covariancẽSt(r1:t) are evaluated using the Kalman filter.

Now, the last term is equal to

∫

pθ(yt+1:T |r t+1:T , xt)pθ(xt|y1:t, r1:t)dxt = N(yt+1:T − Mt+1(r t+1:T )m̃t|t(r1:t),

Lt+1(r t+1:T ) + Mt+1(r t+1:T)Pt|t(r1:t)M
T
t+1(r t+1:T )),

where

N(m,Σ) = |2πΣ|−1/2 exp

(

−1
2

mTΣ−1m

)

.

If Pt|t(r1:t) = 0nx×nx,

pθ(r t|y1:T , r−t) ∝λrt−1rtλrtrt+1N(ẽt(r1:t), S̃t(r1:t))

× exp
(

− 1
2

[

mT
t|t(r1:t)P

′−1
t|t+1(r t+1:T)m̃t|t(r1:t)−

− 2m̃T
t|t(r1:t)P

′−1
t|t+1(r t+1:T)m′t|t+1(r t+1:T )

])

,

sinceyT
t+1:T L−1

t+1(r t+1:T)yt+1:T does not depend onr t. If P̃t|t(r1:t) , 0nx×nx and it is

symmetric, then there existΠ̃t|t(r1:t) andQ̃t|t(r1:t) such that

P̃t|t(r1:t) = Q̃t|t(r1:t)Π̃t|t(r1:t)Q̃
T
t|t(r1:t).

The matricesQ̃t|t(r1:t) andΠ̃t|t(r1:t) are obtained using the singular value decompo-

sition of P̃t|t(r1:t). Matrix Π̃t|t(r1:t) is a diagonal matrix with the nonzero eigenval-

ues ofP̃t|t(r1:t) as elements. Note that

∣

∣

∣Lt+1(r t+1:T) + Mt+1(r t+1:T)P̃t|t(r1:t)M
T
t+1(r t+1:T)

∣

∣

∣ =

= |Lt+1(r t+1:T )|
∣

∣

∣Π̃t|t(r1:t)Q̃
T
t|t(r1:t)P

′−1
t|t+1(r t+1:T )Q̃t|t(r1:t) + Int

∣

∣

∣

and that

[

Lt+1(r t+1:T ) + Mt+1(r t+1:T)P̃t|t(r1:t)M
T
t+1(r t+1:T )

]−1
=

[

Lt+1(r t+1:T ) + Mt+1(r t+1:T)Q̃t|t(r1:t)Π̃t|t(r1:t)Q̃
T
t|t(r1:t)M

T
t+1(r t+1:T)

]−1
=

= Lt+1(r t+1:T )−1 − Lt+1(r t+1:T )−1Mt+1(r t+1:T)Rt|t(r1:t)M
T
t+1(r t+1:T)Lt+1(r t+1:T)−1,
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where

Rt|t(r1:t) = Q̃t|t(r1:t)
[

Π̃−1
t|t (r1:t) + Q̃T

t|t(r1:t)P
′−1
t|t+1(r t+1:T)Q̃t|t(r1:t)

]−1
Q̃T

t|t(r1:t).

Therefore

(yt+1:T − Mt+1(r t+1:T )m̃t|t(r1:t))
T[Lt+1(r t+1:T )+

+ Mt+1(r t+1:T )P̃t|t(r1:t)M
T
t+1(r t+1:T)

]−1(yt+1:T − Mt+1(r t+1:T)m̃t|t(r1:t)) =

=yT
t+1:T L−1

t+1(r t+1:T )yt+1:T + m̃T
t|t(r1:t)P

′−1
t|t+1(r t+1:T)m̃t|t(r1:t)+

− 2m̃T
t|t(r1:t)P

′−1
t|t+1(r t+1:T)m′t|t+1(r t+1:T ) − (m′t|t+1(r t+1:T) − m̃t|t(r1:t))

T×
× P′−1

t|t+1(r t+1:T)Rt|t(r1:t)P
′−1
t|t+1(r t+1:T)(m′t|t+1(r t+1:T) − m̃t|t(r1:t))

and hence

pθ(r t|y1:T , r−t) ∝ λrt−1rtλrtrt+1N(ẽt(r1:t), S̃t(r1:t))×

×
∣

∣

∣Π̃t|t(r1:t)Q̃
T
t|t(r1:t)P

′−1
t|t+1(r t+1:T )Q̃t|t(r1:t) + Int

∣

∣

∣

−1/2×

× exp
( − 1

2
[

m̃T
t|t(r1:t)P

′−1
t|t+1(r t+1:T)m̃t|t(r1:t)+

− 2m̃T
t|t(r1:t)P

′−1
t|t+1(r t+1:T)m′t|t+1(r t+1:T) − (m′t|t+1(r t+1:T ) − m̃t|t(r1:t))

T×
× P′−1

t|t+1(r t+1:T)Rt|t(r1:t)P
′−1
t|t+1(r t+1:T )(m′t|t+1(r t+1:T ) − m̃t|t(r1:t))

])

.

Remark 6.3.2. Remember that̃mt|t−1(r1:t), P̃t|t−1(r1:t), m̃t|t(r1:t), P̃t|t(r1:t), ẽt(r1:t) and

S̃t(r1:t) are, respectively, the one-step ahead prediction and covariance of xt, the

filtered estimate and covariance of xt, the innovation at time t and the covariance

of this innovation. These quantities are given by the standard Kalman filter, the

system (6.1.1a, 6.1.1b) being linear-gaussian until t conditional upon r1:t.

Figure 6.3.4 shows the performance of this algorithm. We simulate a real-

ization of a two states Markov chain of lengthT = 250, whereλ1 = λ2 =

0.5, λ12 = 0.9, λ21 = 0.1 . We run 100 times the algorithm to sample from the

distribution of r1:T given all the observations between time 1 to timeT, where

observations come from a simulation from the model in (6.1.3a, 6.1.3b), where

φ = 0.9, τ(1) = 5, σ = 1. We start from an uniform distribution over state 1 and 2.

We clearly see that, after some iteration, we almost recoverthe original sequence.
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0
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2

Original Markov chain r

Estimation of the Markov chain r

Figure 6.3.4: Sample frompθ(r1:T |y1:T), T = 250, where observations come from
a simulation from the model in (6.1.3a, 6.1.3b), whereφ = 0.9, τ(1) = 5, σ = 1
andλ1 = λ2 = 0.5, λ12 = 0.9, λ21 = 0.1. Original sequencer1:T (top) and estimated
sequence after 100 iterations (bottom).

The algorithm above allows to sample frompθ(r t|y1:T , r−t) for t = 1, . . . ,T.

This strategy can be modified in order to obtain samples frompθ(r t|y1, yj , r−t) for

t = 1, . . . , j. In our contest, the conditioning is on the observationsy1 and yj

and not on all the observations between 1 andj. Using the same idea of the

modified Kalman filter, we run the backward information filterrecursions with all

the observationsy1: j setting an infinity variance for the missing observations from

time 2 to timej − 1. As before, this means that (D(·)D(·)T )−1 is close to zero.

1. Initialization

P′−1
j| j (r j) =CT(r j)(D(r j)D

T(r j))
−1C(r j)
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P′−1
j| j (r j)m

′
j| j(r j) = CT(r j)(D(r j)D

T(r j))
−1C(r j)(yj −G(r j)u j).

2. Backward recursion without observations. Fort = j − 1, . . . , 2,

∆t+1 =
[

Inv + BT(r t+1)P
′−1
t+1|t+1(r t+1: j)B(r t+1)

]−1

P′−1
t|t+1(r t+1: j) = AT(r t+1)P

′−1
t+1|t+1(r t+1: j)×

×
(

Inx − B(r t+1)∆t+1BT(r t+1)P
′−1
t+1|t+1(r t+1: j)

)

A(r t+1),

P′−1
t|t+1(r t+1: j)m

′
t|t+1(r t+1: j) = AT(r t+1)×
×

(

Inx − P′−1
t+1|t+1(r t+1: j)B(r t+1)∆t+1BT(r t+1)

)

×

× P′−1
t+1|t+1(r t+1: j)

(

m′t+1|t+1(r t+1: j) − F(r t+1)ut+1

)

,

P′−1
t|t (r t: j) = P′−1

t|t+1(r t+1: j),

P′−1
t|t (r t: j)m

′
t|t(r t: j) = P′−1

t|t+1(r t+1: j)m
′
t|t+1(r t+1: j).

3. Backward recursion. Fort = 1,

∆t+1 =
[

Inv + BT(r t+1)P
′−1
t+1|t+1(r t+1: j)B(r t+1)

]−1

P′−1
t|t+1(r t+1: j) = AT(r t+1)P

′−1
t+1|t+1(r t+1: j)×

×
(

Inx − B(r t+1)∆t+1BT(r t+1)P
′−1
t+1|t+1(r t+1: j)

)

A(r t+1),

P′−1
t|t+1(r t+1: j)m

′
t|t+1(r t+1: j) = AT(r t+1)×
×

(

Inx − P′−1
t+1|t+1(r t+1: j)B(r t+1)∆t+1BT(r t+1)

)

×

× P′−1
t+1|t+1(r t+1: j)

(

m′t+1|t+1(r t+1: j) − F(r t+1)ut+1

)

,

P′−1
t|t (r t: j) = P′−1

t|t+1(r t+1: j) +CT(r t)(D(r t)D
T(r t))

−1C(r t),

P′−1
t|t (r t: j)m

′
t|t(r t: j) = P′−1

t|t+1(r t+1:T )m′t|t+1(r t+1: j)+

+CT(r t)(D(r t)D
T(r t))

−1C(r t)(yt −G(r t)ut).

For t = 1, . . . , j, the distributionpθ(r t|y1, yj, r−t) has the same expression as

pθ(r t|y1:T , r−t), wherem̃t|t−1(r1:t), P̃t|t−1(r1:t), m̃t|t(r1:t), P̃t|t(r1:t), ẽt(r1:t) and S̃t(r1:t)

are replaced bymt|t−1(r1:t), Pt|t−1(r1:t), mt|t(r1:t), Pt|t(r1:t), et(r1:t) and St(r1:t), ob-

tained from the modified Kalman filter algorithm. Furthermore, the function

N(et(r1:t),St(r1:t)) is computed only fort = j and t = 1, being a constant factor
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in the other cases.

Remark 6.3.3. To sum up, the algorithm to sample from pθ(r t|y1, yj, r−t), t =

1, . . . , j requires first the computation of the backward informationfilter, sec-

ond, the evaluation of pθ(r t|y1, yj, r−t) combining the information and the modified

Kalman filter, and finally, sampling from pθ(r t|y1, yj, r−t) and storing accordingly

the updated set of sufficient statistics mt|t(r
(k)
1:t−1, r

(k)
t ), Pt|t(r

(k)
1:t−1, r

(k)
t ).

Going back to our case, where the stationary distribution isunknown, it be-

comes important to sample frompθ(r t|y1, yj, r−t, ν), for t = −z, . . . , j, for a fixed

value of z and for j = 2, . . . , L. The strategy described above can be easily

extended to this aim. In the next, we describe how to generalize the backward

information recursions in order to sample frompθ(r−z: j |y1, yj, ν), ν being the ini-

tial distribution. Combining this algorithm with the modified Kalman filter re-

cursions allows us to evaluate integrals with respect to theposterior distribution

pθ(x−z: j , r−z: j |y1, yj, ν).

The modified Kalman filter, as described in Section 6.3.1, allows us to com-

pute the quantitiesmt|t−1(r−z:t), Pt|t−1(r−z:t), mt|t(r−z:t), Pt|t(r−z:t), et(r−z:t) andSt(r1:t)

needed to sample frompθ(r t|y1, yj, r−t, ν), for t = −z, . . . , j. Backward information

recursions modify as follows:

1. Initialization

P′−1
j| j (r j) =CT(r j)(D(r j)D

T(r j))
−1C(r j)

P′−1
j| j (r j)m

′
j| j(r j) = CT(r j)(D(r j)D

T(r j))
−1C(r j)(yj −G(r j)u j).

2. Backward recursion without observations. Fort = j − 1, . . . , 2,

∆t+1 =
[

Inv + BT(r t+1)P
′−1
t+1|t+1(r t+1: j)B(r t+1)

]−1

P′−1
t|t+1(r t+1: j) = AT(r t+1)P

′−1
t+1|t+1(r t+1: j)×

×
(

Inx − B(r t+1)∆t+1BT(r t+1)P
′−1
t+1|t+1(r t+1: j)

)

A(r t+1),

P′−1
t|t+1(r t+1: j)m

′
t|t+1(r t+1: j ) = AT(r t+1)×
×

(

Inx − P′−1
t+1|t+1(r t+1: j)B(r t+1)∆t+1BT(r t+1)

)

×

× P′−1
t+1|t+1(r t+1: j)

(

m′t+1|t+1(r t+1: j) − F(r t+1)ut+1

)

,
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P′−1
t|t (r t: j) = P′−1

t|t+1(r t+1: j),

P′−1
t|t (r t: j)m

′
t|t(r t: j) = P′−1

t|t+1(r t+1: j)m
′
t|t+1(r t+1: j).

3. Backward recursion. Fort = 1,

∆t+1 =
[

Inv + BT(r t+1)P
′−1
t+1|t+1(r t+1: j)B(r t+1)

]−1

P′−1
t|t+1(r t+1: j) = AT(r t+1)P

′−1
t+1|t+1(r t+1: j)×

×
(

Inx − B(r t+1)∆t+1BT(r t+1)P
′−1
t+1|t+1(r t+1: j)

)

A(r t+1),

P′−1
t|t+1(r t+1: j)m

′
t|t+1(r t+1: j) = AT(r t+1)×
×

(

Inx − P′−1
t+1|t+1(r t+1: j)B(r t+1)∆t+1BT(r t+1)

)

×

× P′−1
t+1|t+1(r t+1: j)

(

m′t+1|t+1(r t+1: j) − F(r t+1)ut+1

)

,

P′−1
t|t (r t: j) = P′−1

t|t+1(r t+1: j) +CT(r t)(D(r t)D
T(r t))

−1C(r t),

P′−1
t|t (r t: j)m

′
t|t(r t: j) = P′−1

t|t+1(r t+1:T )m′t|t+1(r t+1: j)+

+CT(r t)(D(r t)D
T(r t))

−1C(r t)(yt −G(r t)ut).

4. Backward recursion without observations. Fort = −1, . . . ,−z,

∆t+1 =
[

Inv + BT(r t+1)P
′−1
t+1|t+1(r t+1: j)B(r t+1)

]−1

P′−1
t|t+1(r t+1: j) = AT(r t+1)P

′−1
t+1|t+1(r t+1: j)×

×
(

Inx − B(r t+1)∆t+1BT(r t+1)P
′−1
t+1|t+1(r t+1: j)

)

A(r t+1),

P′−1
t|t+1(r t+1: j)m

′
t|t+1(r t+1: j) = AT(r t+1)×
×

(

Inx − P′−1
t+1|t+1(r t+1: j)B(r t+1)∆t+1BT(r t+1)

)

×

× P′−1
t+1|t+1(r t+1: j)

(

m′t+1|t+1(r t+1: j) − F(r t+1)ut+1

)

,

P′−1
t|t (r t: j) = P′−1

t|t+1(r t+1: j),

P′−1
t|t (r t: j)m

′
t|t(r t: j) = P′−1

t|t+1(r t+1: j)m
′
t|t+1(r t+1: j).

Once these quantities are computed, we can evaluatepθ(r t|y1, yj, r−t, ν), for

t = −z, . . . , j combining the backward information recursions and the modified

Kalman filter, in the case where the stationary distributionis unknown and it is re-

placed with a generic initial distributionν. Again, the functionN(et(r−z:t),St(r−z:t))
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is computed only fort = j andt = 1, being a constant factor in the other cases.

Remark 6.3.4. In order to compute statistics defined on page 88, we need samples

r−z: j from the distribution pθ(r−z: j |y1, yj, ν) and the first two moments of the distri-

bution pθ(x−z: j |y1, yj, r−z: j, ν). Samples can be obtained from the algorithm above,

while moments are achieved through Kalman smoother formulas as in Chapter 5.

These statistics may be recursively updated following the same idea of (5.4.2).



Chapter 7

Discussion

The work in this thesis dealt with the problem of static parameter estimation in

general state space models. Given the difficulties arising in this framework, we

have focused on inferential procedures based on composite likelihood functions,

in particularpairwiseandsplit data likelihoodfunctions. Asymptotic properties

of the parameter estimators obtained by maximizing these functions in general

state space scenario were investigated. We proved that standard results, as strong

consistency, depend on the properties of the processes involved, in particular sta-

tionarity and ergodicity that ensure forgetting behavior of the filter.

Even if the models we considered are strictly stationary, inmany situations

invariant distribution is difficult (or even impossible) to compute. In this cases,

it becomes important to quantify the bias in the estimate when stationary distri-

bution is replaced with a generic approximation. When stationary distribution is

unknown, objective functions need to be approximated and this leads to biased es-

timate of the parameters. We proved that the bias introducedwhen using a generic

distribution instead of the stationary distribution in thepairwise likelihood func-

tion depends on how close the two distributions are, and, again, on the ergodic

properties of the latent process. To prove this result, we need uniformly conver-

gence of the pairwise likelihood function and of its gradient.

We also investigated efficiency problem in pairwise and split data likelihood
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framework asL, i.e. the lag distance between pairs or the length of a block,respec-

tively, increases. We empirically proved that the loss of efficiency, with respect

to maximum likelihood estimator, of the maximum split data likelihood estimator

vanishes asL increases, while the variance of the maximum pairwise likelihood

estimator decreases until a certainL∗ and then it tends to increase. Anyway, un-

til now, no general results about evaluation of this loss areavailable, even if this

behavior is observed also in Varin and Vidoni [2009]. Moreover, we suggested

the existence of a ‘best lag’L∗, in terms of variance of the maximum pairwise

likelihood estimator. However, we have not theoretically analyzed yet how to

determine such value. In the future, we wish to investigate this topic through the

evaluation of the asymptotic variance of the maximum pairwise likelihood estima-

tor, in order to obtain an expression that depends on the lag distanceL. We would

like to follow the idea of Andrieu et al. [2007] in the non overlapping version of

split data likelihood function. To do that, we need to quantify the loss of efficiency

with respect to the full likelihood function. This requiresa deep study of the de-

pendence structures between pairs of observations, exploiting ergodic properties

of the processes involved.

We focused on numerical methods to compute estimates of the parameter de-

scribing a general state space model. We presented an on lineExpectation- Max-

imization algorithm in order to obtain the maximum pairwiselikelihood estimate

in a general state space framework. We illustrated this method for a linear gaus-

sian model. We modified standard Kalman filter recursions in order to take into

account conditioning on pairs of observations instead of all observations. In this

simple example, we gave an empirical evidence of our bias theorem, i.e. starting

from a generic distribution and sampling from the transition kernel reduces the

bias in the estimates for each parameter in the model. We thenextended this al-

gorithm to make inference in jump Markov linear systems. In this framework, we

developed new procedures to sample from the latent discretestate Markov chain

given the pairs of observations.

Further research will focus on numerical methods to computeestimate of the

parameter in more general contexts. In scenarios whereE
( j)
θk

[Ψi(X1: j ,Yk,Yk+ j−1)|Yk],

i.e. the expectation ofΨ with respect topθk(x1: j |yk, yk+ j−1) as defined in (5.4.2),
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does not admit an analytical expression, a further Monte Carlo approximation can

be used. Assume that a good approximationqθk(x1: j |yk, yk+ j−1) of pθk(x1: j |yk, yk+ j−1)

is available, and that it is easy to sample fromqθk(x1: j |yk, yk+ j−1). In this case, the

expectation step will be altered as follows

• SampleX(i)
1: j from qθk(·|yk, yk+ j−1), for i = 1, . . . ,N

• ApproximateΦ(θk, θ∗) as

Φ̂(k) = (1− γk)Φ̂
k−1 + γk

















1
L

L+1
∑

j=2

N
∑

i=1

W(i)
k Ψ(X(i)

1: j ,Yk,Yk+ j−1)

















,

where

W(i)
k ∝

pθk(x1: j |yk, yk+ j−1)

qθk(x1: j |yk, yk+ j−1)
,

N
∑

i=1

W(i)
k = 1.

As N increases, the importance sampling approximation converges towards the

true expectation. Note that if it is possible to sample frompθk(x1: j |yk, yk+ j−1) ex-

actly, then it is not necessary to have a large numberN of samples and a single

one might even be sufficient. Indeed it is only necessary to produce estimates of

E
( j)
θk

[Ψi(X1: j ,Yk,Yk+ j−1)|Yk]. We underline that the algorithm above leads to asymp-

totically biased estimates, but that this can be corrected by considering the follow-

ing recursion for the estimation of the conditional expectation

F̂k = (1− γk)F̂
k−1 + γk

















1
L

L+1
∑

j=2

1
N

N
∑

i=1

pθk(x1: j |yk, yk+ j−1)

qθk(x1: j |yk, yk+ j−1)
Ψ(X(i)

1: j ,Yk,Yk+ j−1)

















,

N̂k = (1− γk)N̂
k−1 + γk

















1
L

L+1
∑

j=2

1
N

N
∑

i=1

pθk(x1: j |yk, yk+ j−1)

qθk(x1: j |yk, yk+ j−1)

















,

and letΦ̂(k) =
F̂k

N̂k
. It is also possible to use rejection sampling or SMC techniques

to approximate this expectation. This idea may represent a starting point for sub-

sequent extensions to more complex models.





Appendix A

Technical results about consistency

A.1 Assumptions

In Theorem 3.2.1, we prove consistency of the pairwise likelihood estimator under

the following assumptions

(C1) There existsf0, g0 > 0 andf 0, g0 < ∞ such that far allx, x′, y, θ ∈ X2×Y×Θ

f0 ≤ fθ(x
′|x) ≤ f 0, g0 ≤ gθ(y|x) ≤ g0

(C2) Θ is a compact set

(C3) fθ andgθ are continuous as functions ofθ

There is an integerL ≥ 1 such that, for everyj = 2, . . . , L + 1

(C4) pθ(y1, yj) = pθ∗(y1, yj) if and only if θ = θ∗

(C5) for the true parameter valueθ∗ we haveE[|log[pθ∗(y1, yj)]|] < ∞

(C6) for eachθ there is aδ > 0 (sufficiently small) such that

Eθ∗

[(

sup
θ′:|θ′−θ|≤δ

log pθ′(y1, yj)

)+]

< ∞
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and there is ab > 0 (sufficiently large) such that

Eθ∗

[(

sup
θ′:|θ′ |>b

log pθ′(y1, yj)

)+]

< ∞,

whereh+ denotes the positive part of the functionh

(C7) if lim i→∞ |θi | = ∞ then limi→∞ pθi (y1, yj) = 0.

Condition (C1) implies that the process{Xk,Yk} is an uniformly ergodic Mar-

kov chain.

A.2 Middle results

The composite likelihood we consider is defined as

L(L)
P (θ; y1:n) =

n−1
∏

i=1

min (i+L,n)
∏

j=1+1

log[pθ(yi , yj)].

If we normalize and take the log, we have that the normalized log pairwise likeli-

hood is defined as

l(L)
P (θ; y1:n) =

1
n− 1

n−1
∑

i=1

















1
L

min i+L,n
∑

j=1+1

log[pθ(yi , yj)]

















.

We call L(L)
P (θ; y1:n) a pairwise likelihood, and any global maximum pointθ̂(L)

P of

it is a maximum pairwise likelihood estimate. We prove here some middle re-

sults necessary to state that pairwise likelihood estimator is strongly consistent, as

proved in Theorem 3.2.1. We start with a lemma concerning theL-dimensional

Kullback-Leibler information

K(L)
P (θ, θ∗) =

1
L

L+1
∑

j=2

∫

Y2
log

pθ∗(y1, yj)

pθ(y1, yj)
pθ∗(y1, yj)dy1dyj

=
1
L

L+1
∑

j=2

Eθ∗

[

log
pθ∗(y1, yj)

pθ(y1, yj)

]

.
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If we definel(L)
P (θ) = 1

L

∑L+1
j=2 Eθ∗

[

log pθ∗ (y1,yj )
pθ(y1,yj )

]

thenK(L)
P (θ, θ∗) = l(L)

P (θ∗) − l(L)
P (θ).

Under the ergodicity assumption (C1), the log pairwise likelihood l(L)
P (θ, y1:n) sat-

isfies

lim
n→∞

l(L)
P (θ, y1:n) = l(L)

P (θ).

Lemma A.2.1. Assume that Conditions(C4−C6) hold. Then K(L)
P (θ, θ∗) ≥ 0 with

equality if and only ifθ∗ = θ.

Proof. By Conditions (C6), the expected valuesl(L)
P (θ∗) andl(L)

P (θ) exist. Because

of the Assumption (C5), we have thatl(L)
P (θ∗) is finite. If l(L)

P (θ) = −∞, Lemma

A.2.1 obviously holds. Thus we shall consider the case whenl(L)
P (θ) is finite. Then

K(L)
P (θ, θ∗) = l(L)

P (θ∗) − l(L)
P (θ) exists finite. For everyj = 2, . . . , L + 1, by Jensen

inequality we have that

∫

Y2
log

pθ(y1, yj)

pθ∗(y1, yj)
pθ∗(y1, yj)dy1dyj

≤ log

[∫

Y2

pθ(y1, yj)

pθ∗(y1, yj)
pθ∗(y1, yj)dy1dyj

]

= log

[∫

Y2
pθ(y1, yj)dy1dyj

]

= log[1] = 0. (A.2.1)

Since

−K(L)
P (θ, θ∗) =

1
L

L+1
∑

j=2

∫

Y2
log

pθ(y1, yj)

pθ∗(y1, yj)
pθ∗(y1, yj)dy1dyj

and given the result in (A.2.1),K(L)
P (θ, θ∗) ≥ 0 and this proves the first part of the

lemma. The equality holds if and only if, for everyj = 2, . . . , L + 1, pθ(y1, yj) =

pθ∗(y1, yj) almost everywhere. By Condition (C4), this is true if and only ifθ =

θ∗. �

Lemma A.2.2. Assume that Conditions(C3) and(C6) hold. Then for everyθ ∈ Θ
and for every j= 2, . . . , L + 1

lim
δ→0
Eθ∗

[

sup
θ′:|θ′−θ|≤δ

log pθ′(y1, yj)

]

= Eθ∗
[

log pθ(y1, yj)
]

.

Proof. By Condition (C3), pθ(y1, yj) is continuous for ally1, yj, j = 2, . . . , L + 1.



116 Appendix A. Technical results about consistency

Then

lim
δ→0

(

sup
θ′:|θ′−θ|≤δ

log pθ′(y1, yj)

)+

= (log pθ(y1, yj))
+,

except perhaps on a set whose probability measure is zero.

Since
(

supθ′:|θ′−θ|≤δ log pθ′(y1, yj)
)+

is an increasing function ofδ, it follows from

Assumption (C6) that

lim
δ→0
Eθ∗

[(

sup
θ′:|θ′−θ|≤δ

log pθ′(y1, yj)

)+]

= Eθ∗

[

lim
δ→0

(

sup
θ′:|θ′−θ|≤δ

log pθ′(y1, yj)

)+]

= Eθ∗

[

(

log pθ(y1, yj)
)+

]

. (A.2.2)

Again by Condition (C3)

lim
δ→0

(

sup
θ′:|θ′−θ|≤δ

log pθ′(y1, yj)

)−

= (log pθ(y1, yj))
−,

except perhaps on a set whose probability measure is zero, whereh− denotes the

negative part of the functionh. Then the relation

lim
δ→0
Eθ∗

[(

sup
θ′:|θ′−θ|≤δ

log pθ′(y1, yj)

)−]

= Eθ∗
[

(log pθ(y1, yj))
−
]

(A.2.3)

is clearly satisfied in both cases, whenEθ∗
[

(

supθ′:|θ′−θ|≤δ log pθ′(y1, yj)
)−]

is finite

and when it is equal to+∞. Lemma A.2.2 is a consequence of (A.2.2) and (A.2.3).

�

Lemma A.2.3. Assume that Conditions(C3,C6,C7) hold. Then, for every j=

2, . . . , L + 1

lim
b→∞
Eθ∗

[

sup
θ:|θ|>b

log pθ(y1, yj)

]

= −∞.

Proof. From Assumptions (C3) and (C7)

lim
b→∞

sup
θ:|θ|>b

log pθ(y1, yj) = lim
θ→∞

log pθ(y1, yj) = −∞.



A.2. Middle results 117

According to Assumption (C6),

Eθ∗

[(

sup
θ:|θ|>b

log pθ(y1, yj)

)+]

< ∞,

and since
(

supθ:|θ|>b log pθ(y1, yj)
)+

is a decreasing function ofb we have that

lim
b→∞
Eθ∗

[(

sup
θ:|θ|>b

log pθ(y1, yj)

)+]

= 0. (A.2.4)

Since
(

supθ:|θ|>b log pθ(y1, yj)
)−

is an increasing function ofb, in the same way we

have that

lim
b→∞
Eθ∗

[(

sup
θ:|θ|>b

log pθ(y1, yj)

)−]

= +∞ (A.2.5)

in both cases, whenEθ∗
[

(

supθ:|θ|>b log pθ(y1, yj)
)−]

is finite and when it is equal to

+∞. Lemma A.2.3 is a consequence of (A.2.4) and (A.2.5).

�





Appendix B

Technical results

B.1 Preliminary results

We recall here two results that will be used in the next. They are general and

standard results in Markov chains theory (see Meyn and Tweedie [1993] for a

deeper and wider treatment). For any two probability measuresµ, ν we define the

total variation distance||µ − ν|| = supA |µ(A) − ν(A)|, whereA ∈ B(X) and we

also recall the identity sup0≤ f≤1 |µ( f )− ν( f )| = ||µ− ν||, wheref is any measurable

function. We use here the standard notation as in Meyn and Tweedie [1993].

Theorem B.1.1.Let P(x, ·) be the transition kernel of a Markov chain. Suppose

there existǫ > 0, and a measureλ onX such that for every x∈ X,A ∈ B(X)

P(x,A) ≥ ǫλ(A). (B.1.1)

Then for everyµ, ν ∈ P(X)

||µP− νP|| := sup
0≤ f≤1

∣

∣

∣

∣

∣

∫

[µ(dx) − ν(dx)]P(x, f )
∣

∣

∣

∣

∣

≤ (1− ǫ)||µ − ν||,

where P(x, f ) :=
∫

P(x, dy) f (y).

Proof. Let us rewriteP(x, dy) as

P(x, dy) = ǫλ(dy) + (1− ǫ)P(x, dy) − ǫλ(dy)
1− ǫ
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and by condition (B.1.1)

R(x, dy) :=
P(x, dy) − ǫλ(dy)

1− ǫ ≥ 0.

Moreover

|R(x, f )| =
∣

∣

∣

∣

∣

∫

f (y)R(x, dy)
∣

∣

∣

∣

∣

≤
∫

R(x, dy) =
1

1− ǫ

∫

[P(x, dy) − ǫλ(dy)] ≤ 1.

We have that

∣

∣

∣

∣

∣

∫

[µ(dx) − ν(dx)]P(x, f )
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ ∫

[µ(dx)P(x, dy) − ν(dx)P(x, dy)] f (y)
∣

∣

∣

∣

∣

= (1− ǫ)
∣

∣

∣

∣

∣

∫ ∫

[µ(dx)R(x, dy) − ν(dx)R(x, dy)] f (y)
∣

∣

∣

∣

∣

= (1− ǫ)
∣

∣

∣

∣

∣

∫

(µ(dx) − ν(dx))R(x, f )
∣

∣

∣

∣

∣

≤ (1− ǫ)||µ − ν||.

Since the bound above does not depend on the functionf , we can conclude that

||µP− νP|| ≤ (1− ǫ)||µ − ν||.

�

When a condition such (B.1.1) holds, we say thatX satisfies aone-step mi-

norization condition. Under this hypothesis,X has a unique invariant measure

and is uniformly ergodic (see again Meyn and Tweedie [1993] for the proof).

Corollary B.1.2. Under the hypothesis of Theorem B.1.1, for k> 0

||µPk − νPk|| ≤ (1− ǫ)k||µ − ν||,

where Pk(x, ·) is the k-step Markov transition kernel corresponding to P.
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Proof. By Chapman-Kolmogorov equations

||µPk − νPk|| = ||µPk−1P− νPk−1P||
≤ (1− ǫ)||µPk−1 − νPk−1||
≤ . . .
≤ (1− ǫ)k||µ − ν||.

�

B.2 Assumptions

Our results hold under the following assumptions

(A1) Θ is a compact set,θ∗ is a unique global maximum oflP(θ) and belongs to

the interior ofΘ, denoted
◦
Θ. MoreoverlP(θ) is twice continuously differen-

tiable on
◦
Θ andHP(θ∗) := ∇2lP(θ∗) is positive definite.

(A2) We assume thatfθ andgθ are twice continuously differentiable and that there

exist f0, g0 > 0 and f0, g0, f1, g1, f2, g2 < +∞ such that for allx, x′, y, θ ∈
X2 × Y × Θ

f0 ≤ fθ(x
′|x) ≤ f0, g0 ≤ gθ(y|x) ≤ g0

|∇ log fθ(x
′|x)| < f1, |∇ loggθ(y|x)| < g1

|∇2 log fθ(x
′|x)| < f2 and |∇2 loggθ(y|x)| < g2.

In addition, we assume that∇2 log fθ(x′|x) and∇2 loggθ(y|x) are continuous

in θ, uniformly in x, x′, y, ∈ X2 × Y and that supθ∈Θ |∇ logµ| ≤ µ̄, with µ̄ ∈
(0,∞), µ ∈ P(X).

Assumptions (A2) implies that for allx ∈ X,A ∈ B(X),

P(x,A) :=
∫

A
fθ(x

′|x)dx′ ≥ f0λ(A),

whereλ denotes the Lebesgue measure. As stated in Section B.1, thismeans that

X has a unique invariant measureπθ and is uniformly ergodic.
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B.3 Useful theorems

Theorem B.3.1.For j = 2, . . . , L + 1 and for anyθ ∈ Θ, x1, y1, yj ∈ X × Y2

g0
2 ≤ pθ(y1, yj |x1) ≤ g0

2

Proof. From Assumptions (A2), simple calculations yield to

pθ(y1, yj |x1) =
∫

gθ(y1|x1)
j

∏

k=2

fθ(xk|xk−1)gθ(yj |xj)dx2: j

≤ g0
2
∫

pθ(x2: j |x1)dx2: j = g0
2
.

In the same way, we have that

pθ(y1, yj |x1) ≥ g0
2.

�

Theorem B.3.2.For j = 2, . . . , L+1 and for any0 ≤ k < j, θ ∈ Θ, xk+1, yj ∈ X×Y

g0 ≤ pθ(yj |xk+1) ≤ g0

Proof. The result obviously holds ifk = j − 1. If k < j − 1, from Assumptions

(A2), simple calculations yield to

pθ(yj |xk+1) =
∫ j

∏

l=k+2

fθ(xl |xl−1)gθ(yj |xj)dxk+2: j

≤ g0

∫

pθ(xk+2: j |xk+1)dxk+2: j = g0.

In the same way, we have that

pθ(yj |xk+1) ≥ g0.

�
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Theorem B.3.3.For j = 2, . . . , L + 1 and for anyθ ∈ Θ, y1, yj ∈ ×Y2, µ ∈ P(X)

g0
2 ≤ pθ(y1, yj |µ) ≤ g2

0

Proof. From Assumptions (A2), simple calculations yield to

pθ(y1, yj |µ) =
∫

µ(x1)gθ(y1|x1)
j

∏

k=2

fθ(xk|xk−1)gθ(yj |xj)dx1: j

≤ g0
2
∫

pθ(x1: j |µ)dx1: j = g0
2
.

In the same way, we have that

pθ(y1, yj |µ) ≥ g0
2.

�

Theorem B.3.4.For j = 2, . . . , L + 1 and for anyθ ∈ Θ, y1, yj ∈ ×Y2, µ ∈ P(X)

g0
2

g0
≤ pθ(yj |y1, µ) ≤

g0
2

g0

Proof. From Assumptions (A2) and Theorem B.3.3, simple calculations yield to

pθ(yj |y1, µ) =
pθ(y1, yj |µ)

pθ(y1|µ)

≤ g0
2

∫

µ(x1)gθ(y1|x1)dx1

≤ g0
2

g0
.

In the same way, we have that

pθ(yj |y1, µ) ≥
g0

2

g0
.

�

Theorem B.3.5.There exists a constant C∈ (0,+∞) such that for j= 2, . . . , L+1
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and for anyθ ∈ Θ, y1, yj ∈ ×Y2, µ, ν ∈ P(X)

|pθ(y1, yj |µ) − pθ(y1, yj |ν)| ≤ C||µ − ν||.

Proof. From Theorem B.3.1, simple calculations yield to

|pθ(y1, yj |µ) − pθ(y1, yj |ν)| ≤
∫

|µ(x1) − ν(x1)|pθ(y1, yj |x1)dx1

≤ g0
2||µ − ν||.

�

Theorem B.3.6.For every j= 2, . . . , L+1, µ ∈ P(X), the following identity holds

∇ log pθ(y1, yj |µ) = Eθ∗
[

∇ log pθ(y1, yj, x1: j |µ)|Y1,Yj , µ
]

.

Proof. The result follows from an application of the Fisher’s identity. Under reg-

ularity assumptions

∇ log pθ(y1, yj |µ) =
∇pθ(y1, yj |µ)
pθ(y1, yj |µ)

=
1

pθ(y1, yj |µ)
∇

∫

X j
pθ(y1, yj, x1: j |µ)dx1: j

=
1

pθ(y1, yj |µ)

∫

X j

∇pθ(y1, yj, x1: j |µ)dx1: j

=

∫

X j

∇pθ(y1, yj, x1: j |µ)
pθ(y1, yj |µ)

dx1: j

=

∫

X j

∇pθ(y1, yj, x1: j |µ)
pθ(y1, yj, x1: j |µ)

pθ(x1: j |y1, yj, µ)dx1: j

=

∫

X j

∇ log pθ(y1, yj , x1: j |µ)pθ(x1: j |y1, yj, µ)dx1: j

=Eθ∗ [∇ log pθ(y1, yj, x1: j |µ)|Y1,Yj , µ].

�

Theorem B.3.7.There exists a constant C∈ (0,+∞) andρ ∈ [0, 1) such that for

everyµ, ν ∈ P(X), θ ∈ Θ, y1, yj ∈ Y2 and j= 2, . . . , L + 1, k ≤ j,

||pθ(Xk ∈ ·|y1, yj , µ) − pθ(Xk ∈ ·|y1, yj , ν)|| ≤ C||µ − ν||ρk−1.
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Proof. In order to prove the theorem, some intermediate results areneeded.

(i) By definition of total variation norm and under Assumptions (A2)

||pθ(X1 ∈ ·|y1, µ) − pθ(X1 ∈ ·|y1, ν)||

= sup
A

∣

∣

∣

∣

∣

∫

A
pθ(x1|y1, µ)dx1 −

∫

A
pθ(x1|y1, ν)dx1

∣

∣

∣

∣

∣

= sup
A

∣

∣

∣

∣

∣

∫

A
[µ(x1) − ν(x1)]gθ(y1|x1)dx1

∣

∣

∣

∣

∣

≤g0 sup
A

∣

∣

∣

∣

∣

∫

A
[µ(x1) − ν(x1)]dx1

∣

∣

∣

∣

∣

= g0 ||µ − ν||. (B.3.1)

(ii) By definition of total variation norm and under Assumptions (A2)

||pθ(Xk ∈ ·|y1, µ) − pθ(Xk ∈ ·|y1, ν)||

= sup
A

∣

∣

∣

∣

∣

∫

A
pθ(xk|y1, µ)dxk −

∫

A
pθ(xk|y1, ν)dxk

∣

∣

∣

∣

∣

= sup
A

∣

∣

∣

∣

∣

∫

A

∫

[pθ(xk|x1, y1, µ)pθ(x1|y1, µ) − pθ(xk|x1, y1, ν)pθ(x1|y1, ν)]dx1dxk

∣

∣

∣

∣

∣

= sup
A

∣

∣

∣

∣

∣

∫

A

∫

pθ(xk|x1)[pθ(x1|y1, µ) − pθ(x1|y1, ν)]dx1dxk

∣

∣

∣

∣

∣

.

Using the notation and the results of Theorem B.1.1 and Corollary B.1.2

||pθ(Xk ∈ ·|y1, µ) − pθ(Xk ∈ ·|y1, ν)||

= sup
A

∣

∣

∣

∣

∣

∫

Pk−1(x,A)[pθ(x1|y1, µ) − pθ(x1|y1, ν)]dx1

∣

∣

∣

∣

∣

≤(1− f0)
k−1||pθ(X1 ∈ ·|y1, µ) − pθ(X1 ∈ ·|y1, ν)||

≤g0(1− f0)
k−1||µ − ν||, (B.3.2)

where the last inequality follows by (B.3.1).

(iii) From Assumptions (A2), Theorem B.3.2 and Equation (B.3.2)

|pθ(yj |y1, µ) − pθ(yj |y1, ν)|
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=

∣

∣

∣

∣

∣

∫

pθ(yj |xk+1) fθ(xk+1|xk)[pθ(xk|y1, µ) − pθ(xk|y1, ν)]dxkdxk+1

∣

∣

∣

∣

∣

≤ f0g0||pθ(Xk ∈ ·|y1, µ) − pθ(Xk ∈ ·|y1, ν)||
≤ C(1− f0)

k−1||µ − ν||, (B.3.3)

whereC is a suitable constant in (0,+∞).

Let us go back to the main theorem. Ifk < j we can write

pθ(xk|y1, yj, µ) =
∫

pθ(xk, xk+1|y1, yj , µ)dxk+1

=

∫

pθ(yj |xk, xk+1, y1)pθ(xk, xk+1|y1, µ)

pθ(yj |y1, µ)
dxk+1

=

∫

pθ(yj |xk+1) fθ(xk+1|xk)pθ(xk|y1, µ)

pθ(yj |y1, µ)
dxk+1,

and hence

pθ(xk|y1, yj, µ) − pθ(xk|y1, yj, ν)

=

∫

pθ(yj |xk+1) fθ(xk+1|xk)

[

pθ(xk|y1, µ)
pθ(yj |y1, µ)

− pθ(xk|y1, ν)
pθ(yj |y1, ν)

]

dxk+1.

The term in square brackets can be written as

pθ(xk|y1, µ)
pθ(yj |y1, µ)

− pθ(xk|y1, ν)
pθ(yj |y1, ν)

=
(pθ(xk|y1, µ) − pθ(xk|y1, ν))pθ(yj |y1, ν)

pθ(yj |y1, µ)pθ(yj |y1, ν)

−
pθ(xk|y1, ν)(pθ(yj |y1, µ) − pθ(yj |y1, ν))

pθ(yj |y1, µ)pθ(yj |y1, ν)
.

Under Assumptions (A2) and using the results in Theorems B.3.2, B.3.4 and

Equations (B.3.2, B.3.3)

||pθ(Xk ∈ ·|y1, yj, µ) − pθ(Xk ∈ ·|y1, yj, ν)|| ≤ C(1− f0)
k−1||µ − ν||,

where we have used the fact that, for everyk, pθ(xk|y1, µ) is bounded for any

θ, xk, y1 ∈ Θ × X × Y and for anyµ ∈ P(X).
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If k = j, the reasoning is almost the same, starting from the following decomposi-

tion

pθ(xj |y1, yj , µ) =
pθ(yj |xj, y1)pθ(xj |y1, µ)

pθ(yj |y1, µ)

=
gθ(yj |xj)pθ(xj |y1, µ)

pθ(yj |y1, µ)
.

�

B.4 Technical results on the convergence ofl(L)
P (θ, µ)

and its derivative

In this section we prove some uniform convergence results for l(L)
P (θ, µ) and its

derivative. Hereafter, for simplicity, we drop theL index in l(L)
P (·, ·) := lP(·, ·).

The first result states thatlP(θ, µ) converges uniformly inθ to lP(θ, ν) as the total

variation distance betweenµ andν tends to zero (even ifµ, ν can depend onθ, we

omit the explicit dependence for notational convenience).

Theorem B.4.1. There exists a constant C∈ (0,+∞) such that for anyµ, ν ∈
P(X), θ ∈ Θ and L≥ 1

|lP(θ, µ) − lP(θ, ν)| ≤ C||µ − ν||.

Proof. By definition

lP(θ, µ) − lP(θ, ν) =
1
L

L+1
∑

j=2

Eθ∗
[

log pθ(y1, yj |µ) − log pθ(y1, yj |ν)
]

and using the following identity valid for anyx, y ∈ (0,+∞),

| log x− logy| ≤ |x− y|
x∧ y

, (B.4.1)
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we have

|lP(θ, µ) − lP(θ, ν)| ≤ 1
L

L+1
∑

j=2

Eθ∗

[ |pθ(y1, yj |µ) − pθ(y1, yj |ν)|
pθ(y1, yj |µ) ∧ pθ(y1, yj |ν)

]

≤ 1
L

L+1
∑

j=2

C||µ − ν|| = C||µ − ν||,

where we have used the results in Theorems B.3.3 and B.3.5. �

Now we look at the derivative oflP(θ, µ). For everyµ, ν ∈ P(X) the difference

of the gradient of two approximated pairwise likelihood of orderL is

∇lP(θ, µ) − ∇lP(θ, ν) =
1
L

L+1
∑

j=2

Eθ∗
[

∇ log pθ(y1, yj |µ) − ∇ log pθ(y1, yj |ν)
]

(B.4.2)

and

∇ log pθ(y1, yj, x1: j |µ) =∇ logµ(x1) + ∇ loggθ(y1|x1)+

+

j
∑

k=2

∇ log fθ(xk|xk−1) + ∇ loggθ(yj |xj).

We prove the following result.

Theorem B.4.2.There exists a constant C∈ (0,+∞) andρ ∈ [0, 1) such that for

everyµ, ν ∈ P(X), θ ∈ Θ, L ≥ 1,

|∇lP(θ, µ) − ∇lP(θ, ν)| ≤ C

[

||µ − ν||
1− ρ + ||∇µ − ∇ν||

]

.

Proof. Let us analyze the generic term of the sum (B.4.2). By TheoremB.3.6

∇ log pθ(y1, yj |µ) − ∇ log pθ(y1, yj |ν)
=Eθ∗ [∇ log pθ(y1, yj, x1: j |µ)|Y1,Yj , µ] − Eθ∗ [∇ log pθ(y1, yj, x1: j |ν)|Y1,Yj , ν]

=

∫

∇ log pθ(y1, yj , x1: j |µ)pθ(x1: j |y1, yj, µ)dx1: j+

−
∫

∇ log pθ(y1, yj , x1: j |ν)pθ(x1: j |y1, yj , ν)dx1: j
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=

∫

∇ loggθ(y1|x1)
(

pθ(x1: j |y1, yj, µ) − pθ(x1: j |y1, yj , ν)
)

dx1: j

+

∫

∇ loggθ(yj |xj)
(

pθ(x1: j |y1, yj, µ) − pθ(x1: j |y1, yj, ν)
)

dx1: j

+

j
∑

k=2

∫

∇ log fθ(xk|xk−1)
(

pθ(x1: j |y1, yj, µ) − pθ(x1: j |y1, yj, ν)
)

dx1: j

+

[∫

∇ logµ(x1)pθ(x1: j |y1, yj , µ)dx1: j −
∫

∇ logν(x1)pθ(x1: j |y1, yj, ν)dx1: j

]

:=T1 + T2 + T3 + T4.

We study the termsT1,T2,T3,T4 separately. Let us start withT1.

T1 :=
∫

∇ loggθ(y1|x1)
(

pθ(x1: j |y1, yj, µ) − pθ(x1: j |y1, yj, ν)
)

dx1: j

=

∫

∇ loggθ(y1|x1)
(

pθ(x1, x2: j |y1, yj, µ) − pθ(x1, x2: j |y1, yj , ν)
)

dx1: j

=

∫

∇ loggθ(y1|x1)

[∫

pθ(x1, x2: j |y1, yj , µ)dx2: j

]

dx1

−
∫

∇ loggθ(y1|x1)

[∫

pθ(x1, x2: j |y1, yj , ν)dx2: j

]

dx1

=

∫

∇ loggθ(y1|x1)
[

pθ(x1|y1, yj , µ) − pθ(x1|y1, yj, ν)
]

dx1.

By Theorem B.3.7 and Assumptions (A2),

|T1| ≤ sup
x1

|∇ loggθ(y1|x1)| · ||pθ(X1 ∈ ·|y1, yj, µ) − pθ(X1 ∈ ·|y1, yj, ν)||

≤ C||µ − ν||. (B.4.3)

Analogous calculations forT2 yield to

|T2| ≤ Cρ j−1||µ − ν||. (B.4.4)

Now, for everyk = 2, . . . , j

∫

∇ log fθ(xk|xk−1)
(

pθ(x1: j |y1, yj, µ) − pθ(x1: j |y1, yj, ν)
)

dx1: j
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=

∫

(

pθ(x1:k−2, xk−1:k, xk+1: j |y1, yj , µ) − pθ(x1:k−2, xk−1:k, xk+1: j |y1, yj , ν)
)

· ∇ log fθ(xk|xk−1)dx1: j

=

∫

∇ log fθ(xk|xk−1)
[

pθ(xk−1, xk|y1, yj, µ) − pθ(xk−1, xk|y1, yj, ν)
]

dxk−1:k

=

∫

[

pθ(xk|xk−1, y1, yj, µ)pθ(xk−1|y1, yj, µ) − pθ(xk|xk−1, y1, yj, ν)pθ(xk−1|y1, yj, ν)
]

· ∇ log fθ(xk|xk−1)dxk−1:k

=

∫

∇ log fθ(xk|xk−1)pθ(xk|xk−1, y1, yj)
[

pθ(xk−1|y1, yj, µ) − pθ(xk−1|y1, yj, ν)
]

dxk−1:k

=

∫ [∫

∇ log fθ(xk|xk−1)pθ(xk|xk−1, y1, yj)dxk

]

·
[

pθ(xk−1|y1, yj , µ) − pθ(xk−1|y1, yj, ν)
]

dxk−1

=

∫

Ψ(xk−1)
[

pθ(xk−1|y1, yj , µ) − pθ(xk−1|y1, yj, ν)
]

dxk−1,

whereΨ(xk−1) :=
∫

∇ log fθ(xk|xk−1)pθ(xk|xk−1, y1, yj)dxk. Moreover,

sup
xk−1

|Ψ(xk−1)| ≤ f1

∫

pθ(xk|xk−1, y1, yj)dxk = f1. (B.4.5)

By Theorem B.3.7 and Equation (B.4.5), we have that

|T3| ≤
j

∑

k=2

Cρk−2||µ − ν|| ≤ C||µ − ν||
1− ρ . (B.4.6)

The last term in the sum can be written as
∫

∇ logµ(x1)pθ(x1: j |y1, yj , µ)dx1: j −
∫

∇ logν(x1)pθ(x1: j |y1, yj, ν)dx1: j

=

∫

∇ logµ(x1)pθ(x1, x2: j |y1, yj, µ)dx1: j −
∫

∇ logν(x1)pθ(x1x2: j |y1, yj , ν)dx1: j

=

∫

∇ logµ(x1)pθ(x1|y1, yj, µ)dx1 −
∫

∇ logν(x1)pθ(x1|y1, yj, ν)dx1

=

∫ ∇µ(x1)
µ(x1)

pθ(x1, y1, yj |µ)
pθ(y1, yj |µ)

dx1 −
∫ ∇ν(x1)
ν(x1)

pθ(x1, y1, yj |ν)
pθ(y1, yj |ν)

dx1

=

∫

∇µ(x1)
pθ(y1, yj |x1)

pθ(y1, yj |µ)
dx1 −

∫

∇ν(x1)
pθ(y1, yj |x1)

pθ(y1, yj |ν)
dx1
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=

∫

pθ(y1, yj |x1)

[

∇µ(x1)
pθ(y1, yj |µ)

− ∇ν(x1)
pθ(y1, yj |ν)

]

dx1.

From Theorem B.3.1,pθ(y1, yj |x1) is a bounded function ofx1 and the term in

square brackets can be written as

∇µ(x1)
pθ(y1, yj |µ)

− ∇ν(x1)
pθ(y1, yj |ν)

=
∇µ(x1)pθ(y1, yj |ν) − ∇ν(x1)pθ(y1, yj |µ)

pθ(y1, yj |µ)pθ(y1, yj |ν)

=
(∇µ(x1) − ∇ν(x1))pθ(y1, yj |ν) − ∇ν(x1)(pθ(y1, yj |µ) − pθ(y1, yj |ν))

pθ(y1, yj |µ)pθ(y1, yj |ν)
.

Using Assumptions (A2) and Theorems B.3.3 and B.3.5, we havethat

|T4| ≤ C(||∇µ − ∇ν|| + ||µ − ν||). (B.4.7)

From the results (B.4.3, B.4.4, B.4.6, B.4.7), we conclude that

|∇lP(θ, µ) − ∇lP(θ, ν)| ≤ 1
L

L+1
∑

j=2

Eθ∗ |∇ log pθ(y1, yj |µ) − ∇ log pθ(y1, yj |ν)|

≤ C

[

||µ − ν||
1− ρ + ||∇µ − ∇ν||

]

.

�

B.5 Bias whenπθ is replaced withµ

Let us define the set

θ̂P(µ) := arg max
θ∈Θ

lP(θ, µ),

where, as usual

lP(θ, µ) =
1
L

L+1
∑

j=2

Eθ∗ [log pθ(y1, yj |µ)]

andlP(θ, πθ) := lP(θ), beingπθ the unique stationary distribution. The setθ̂P(µ) is

not empty sinceΘ is compact andlP(θ, µ) is continuous from Assumptions (A2)
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wheneverµ is continuous. For anyǫ ∈ (0,+∞) andθ0 ∈ Θ, let B(θ0, ǫ) = {θ ∈ Θ :

|θ − θ0| ≤ ǫ} and for any setA ∈ Θ let d(θ0,A) = inf {|θ − θ0| : θ ∈ A} the distance

betweenθ0 and the setA. Theorem 3.3.1 quantifies the bias when the (unknown)

invariant distributionπθ is replaced with a genericµ, that is the bias of the estimate

introduced by maximizinglP(θ, µ) instead oflP(θ). The result says that the bias

depends on how closeµθ∗ is toπθ∗ and on the ergodicity properties of{Xk}, where

θ∗ denotes the true parameter. We prove first the following statement.

Theorem B.5.1. Assume (A1). Then for any sequence of measures{µk, k ≥ 1}
with uniformly continuous (inθ) density such that||µk − πθ|| goes to zero and for

any ǫ > 0 such that B(θ∗, ǫ) ⊂
◦
Θ, there exists ksuch that∀k ≥ k, lP(θ, µk) has its

maximaθ̂(µk) in B(θ∗, ǫ) and

lim
||µk−πθ ||→0

d(θ∗, θ̂(µk)) = 0. (B.5.1)

Proof. Let ǫ be a strictly positive constant. We proceed by contradiction. Assume

there exists a sequence of measures{µk, k ≥ 1} with uniformly continuous (inθ)

density such that||µk − πθ|| goes to zero and̂θ(µk) < B(θ∗, ǫ). This means that the

estimates obtained by maximizinglP(θ, µk) with respect toθ are far from the true

parameter value. Hence|θ̂(µk) − θ∗| > ǫ ≥ 0. By definition ofθ̂(µk), we have that

lP(θ∗, µk) ≤ lP(θ̂(µk), µk).

Since{θ̂(µk)} ⊂ Θ, andΘ is bounded, it has at least an accumulation pointθ̃∗ cor-

responding to a subsequence of{θ̂(µk)}. From Theorem B.4.1,lP(θ, µk) converges

uniformly to lP(θ) as||µk − πθ|| goes to zero and consequently

lP(θ̃∗) ≥ lP(θ∗)

with |θ̃∗ − θ∗| > ǫ ≥ 0. This contradicts the fact thatθ∗ is the unique strong

maximum oflP(θ). Equation (B.5.1) obviously holds. �

All these results allow us to prove Theorem 3.3.1.
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