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Abstract

Many medical studies collect functional data, such as trajectories in a biomarker over

time. It is of interest to estimate the trajectories and identify or predict clinically-

important features. Linear mixed effects (LME) models are commonly used in such

cases, with non-linear effects easily incorporated through splines. However, for sufficient

flexibility, it is often necessary to use adaptive splines in which the number and locations

of knots is unknown and potentially varying across subjects. This can be accomplished

with MCMC methodology, using reversible jump or stochastic search variable selection.

However, such approaches are slow and infeasible to implement routinely, particularly for

large data sets. Motivated by methods proposed in the machine learning literature for

compressive sensing, we focus on relevant vector machine (RVM) methodology - a fast

approximate Bayes functional data analysis approach that relies on sparseness-favouring

hierarchical priors for basis coefficients. Recent literature on the use of RVM method-

ology is restricted to models that assume that the distribution of the basis coefficients

is centered at zero with diagonal covariance. However, in many longitudinal and func-

tional data analysis applications, centering at zero is an unrealistic assumption and does

not allow shrinkage towards a population-averaged function. In this work, we develop a

generalized multi-task relevant vector machine (MT-RVM) methodology that generates

sparse functional linear mixed models to estimate both population-average and subject-

specific curves. In particular, we first consider an LME model that assumes independent

random effects and then extend the approach to a more generalized LME model with

correlated random effects. Further, we extend the application of the generalized MT-

RVM methodology into multi-level relevant vector machine (ML-RVM) methodology to

generate a sparse multi-level functional mixed model. The analysis of basal body tem-

perature curves over the menstrual cycle has been the motivating application for all the

developed methods.



Riassunto

Molti studi medici raccolgono dati in forma funzionale come ad esempio le traiettorie in

un bio-marcatore nel corso del tempo. Di questi dati di interesse stimare le traiettorie

e individuare o predire caratteristiche clinicamente importanti. I modelli lineari ad ef-

fetti misti (LME) sono comunemente utilizzati in questi casi, anche utilizzando effetti

non-lineari che si possono includere facilmente attraverso splines. Tuttavia, per ottenere

una flessibilit adeguata, spesso necessario utilizzare splines adattive in cui il numero e

la posizione dei nodi ignoto e potenzialmente variabile tra soggetti. In questo contesto

si utilizzano strumenti di tipo MCMC (Markov Chain Monte Carlo), come ad esempio il

reversible jump o la selezione di variabili attraverso ricerca stocastica. Questi approcci

sono, tuttavia, lenti e difficilmente utilizzabili in contesti in cui si ripetono spesso le op-

erazioni di stima, in particolare per grandi dati set. A partire dagli strumenti sviluppati

nella letteratura del compressive sensing in ambito di machine learning, ci siamo con-

centrati sulle relevant vector machine (RVM) - un approccio di analisi di dati funzionali

bayesiano che utilizza veloci approssimazioni che sfruttano distribuzioni a priori gerar-

chiche per i coefficienti delle basi che ne favoriscano la sparsit. La letteratura recente per

l’uso della metodologia RVM limitata ai modelli che assumono che una distribuzione

dei coefficienti base centrata sullo zero con matrice di varianze e covarianze diagonale.

In molte applicazioni su dati longitudinali e funzionali, tuttavia, la centratura sullo zero

risulta essere una ipotesi poco realistica non consentendo il restringimento ad una fun-

zione centrata sulla media della popolazione. In questo lavoro, abbiamo sviluppato una

“multi-task relevant vector machine” generalizzata (MT-RVM), che genera modelli fun-

zionali lineari misti sparsi per stimare sia la curva della media della popolazione che

la curva specifica per soggetto. In particolare, in primo luogo abbiamo considerato un

modello LME che assume effetti casuali indipendenti e successivamente abbiamo esteso

questo approccio ad un modello LME pi generalizzato con effetti casuali correlati. In-

oltre, abbiamo esteso ls metodologia MT-RVM generalizzata alla situazione in cui sono

disponibili diversi livelli di gerarchia, ottenendo una “multi-level relevant vector ma-

chine” (ML-RVM) che genera un modello multi-level funzionale sparso ad effetti misti.

I metodi sviluppati sono stati motivati dal problema di analizzare le curve della tem-

peratura basale durante il ciclo mestruale, e tale applicazione viene considerata come

esemplificazione durante tutta la tesi.
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Chapter 1

Introduction

1.1 Overview

In many clinical studies, data are collected repeatedly from many subjects over a period

of time. Using massive datasets, physicians require fast automated tools to estimate data

trajectories and predict clinically important events for a current patient. For example,

in reproductive studies, trajectories of hormonal level or daily basal body temperature

(bbt) among women can help to identify or predict early pregnancy loss and occurrence

of the ovulation day (Bigelow and Dunson, 2008). Hence, to estimate the shape and

predict the location of such features in the function, there is a need for fast algorithms

for estimating functional trajectories while borrowing information from other patients.

Our research is motivated by the bbt data from European fecundability study (Colombo

and Masarotto, 2000). The study enrolled women aged between 18 and 40 years, were

not taking hormonal medications or drugs affecting fertility, and had no known impair-

ment of fecundity. The participants kept daily records of daily basal body temperature.

We consider data from women that contributed temperature measurements from at

least one menstrual cycle. The data are characterized with unequal cycle lengths and

unequally-spaced measurements causing problems in estimating the bbt curves. Thus,

rapid estimation of accurate and smooth curves is not a trivial problem especially when

working in Bayesian framework.

In this thesis we use Functional data analysis (FDA) methods (Ramsay and Silverman,

2005) to estimate curves. In particular, we restrict ourselves to Bayesian framework

where posterior sampling is usually based on slow Markov Chain Monte Carlo (MCMC)

algorithms. This raises a practical motivation for fast approximate Bayes approaches

that bypass MCMC while maintaining some of the benefits of a Bayesian analysis. For

1
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fast parameter estimation, we use Relevant Vector Machine (RVM) (Tipping, 2001)

which is one among fast Bayesian methods that promote sparseness in estimation of

the basis coefficients, providing a more flexible alternative to Support Vector Machines

(SVM) (Burges, 1998) and LASSO (Tibshirani, 1996), leading to a sparser solution

that is more robust to outliers (Tipping, 2001; Ji, Dunson and Carin, 2009). RVM is

based on Empirical Bayes methodology and penalizes the basis coefficients through a

scale mixture of normal priors, which is carefully-chosen so that maximum a posteriori

(MAP) estimates of many of the coefficients are zero. The work in this thesis is divided

in seven chapters.

Chapter two and three describe the motivating application. In particular, chapter two

highlights some background information about the biological processes that lead to a

biphasic pattern in basal body temperature as well as other related fertility biomark-

ers while chapter three gives a brief review about the European fecundability study

(Colombo and Masarotto, 2000). Chapter four reviews recent developments in func-

tional data analysis in estimating non-linear curves.

In chapter five we give an application of the multi-task relevant vector machine (MT-

RVM) methodology (Ji, et al., 2009) into functional random coefficients and linear mixed

models. The models are based on basis functions generated using natural cubic smooth-

ing spline. To allow implementation of the RVM algorithm in linear mixed models, we

consider a simple mixed model that assumes independent random effects. The approach

is used to rapidly estimate population and individual-specific functions based on basal

body temperature data.

Chapter six presents a more flexible generalization of the MT-RVM in linear mixed

models that allows shrinkage towards a non-zero mean and non-zero covariance in the

random effects. Since the random effects are normally correlated, we use the approach

of Chen and Dunson (2003) to generate uncorrelated latent variables that can easily

be implemented in MT-RVM methodology. We also present a simulation study and an

application to real data. The simulation study compares the performance of the MT-

RVM method relative to Functional Principal Component Analysis (Crainiceanu, 2009),

Functional mixed model of Durban et al. (2005) and Bayesian functional mixed model

of Wand and Ormerod (2008).

Chapter seven contains an extension of the MT-RVM model into multi-level relevant

vector machine (ML-RVM) methodology. This approach is used to model multi-level

data where measurements are nested within cycles and cycles are nested within subjects.

The ML-RVM method is used to generate a sparse hierarchical mixed model by selecting

relevant fixed and random effects. Based on the bbt data, we estimate population-

average, subject and cycle specific curves.



Chapter 1. Introduction 3

1.2 Main Contributions of the Thesis

The main contribution of this work is to extend Multi-Task Relevant Vector Machine

(MT-RVM) approach introduced by Ji, et al.(2009) into functional mixed models. Multi-

Task Relevant Vector Machine methodology is an extension of Relevant Vector Machine

method (Tipping, 2001) that provides a natural and fast mechanism in selection of the

basis functions. The Ji, et al. (2009) approach allows basis function selection within a

restricted class of models that assumes that the distribution of the basis coefficients is

centered at zero with diagonal covariance. However, centering at zero does not allow

shrinkage towards a population-averaged curve and independence of the random effects

which is an unrealistic assumption in many longitudinal and functional data analysis

applications. The generalized MT-RVM methodology is used to select basis functions in

functional mixed models to generate sparse models that are easy to fit and take shorter

time relative to classical Bayesian MCMC based methods. In summary the contribution

of this work can be described as follows:

• Since Multi-Task Relevant Vector Machine has been used to estimate and recon-

struct multiple signals based on wavelet bases, our first goal is to implement the

MT-RVM approach in reproductive studies to estimate the bbt curves. We use

functional random coefficients model based on linear combination of cubic B-spline

basis functions that are commonly used to estimate non-linear curves.

• The generalized MT-RVM methodology is then used to generate sparse func-

tional linear mixed models that can estimate both population-average and subject-

specific curves. In particular, we consider two cases: (i) A linear mixed mod-

els (LME) that assumes independent random effects. (ii) A general LME model

with correlated random effects. To facilitate the extension, we rely on a modified

Cholesky decomposition proposed by Chen and Dunson (2003).

• In the final chapter, we extend the application of the generalized MT-RVM method-

ology to fit hierarchical functional mixed models. In particular, we consider cases

where cycles with unequal number of measurements are nested within subjects.

This work demonstrates the use of a fast Empirical Bayes method as an alternative to

computer intensive methods that rely on MCMC. The method is fast and can be used to

rapidly approximate curves for massive datasets. The advantage of our approach is not

only on computational speed, but it also allows for better generalization performance

which leads to sparse generalized linear mixed models. This aspect can provide inference

for a wide variety of models at a moderate computational cost. The approach can be



Chapter 1. Introduction 4

extended to accommodate probit models where multiple binary categorical outcomes

can be handled using data augmentation (Albert and Chib, 1993).



Chapter 2

A review on human fertility

2.1 Introduction

Human reproductive study is one among many scientific fields that have been studied

and significantly benefited from recent technological innovations. The key factor that

has stimulated the advancement is the exponential population growth throughout the

world and in particular the desire for couples to regulate and limit their family size. This

has lead to the development of advanced statistical models that have been implemented

in devices used to predict the most fertile period among women and can be used at

home by couples in all parts of the world. With these advancements, it is technically

possible to predict the most fertile period within days although there are still limitations

on accuracy on predicting the exact moment when fertility is at its peak.

In many text books, human reproductive studies are mostly focused on women and

narrows down to human fertility or child-bearing capacity of a woman. However, both

men and women have different underlying biological capabilities that determine the

child-bearing processes. For instance among women, fertility is the ability to become

pregnant while infertility is the inability to initiate or sustain a pregnancy after one

year of attempt (Tuerlings, 2000). Women have complex biological processes which

regulates their fertility cycles lengths and the associated physiological changes. Studies

have shown that various factors affect the child-bearing process and some of these factors

include: physical, psychological, biological factors, and the age of the woman (Holman,

O’Connor and Wood, 2006). Fertility among women peaks at late teens and deteriorates

after the age of thirty. For a detailed review on physiological and biological processes

related to human fertility, see (Wood, 2001; Rodgers and Kohler, 2003).

The fertile period that has the highest likelihood of pregnancy resulting from sexual

intercourse is believed to be between 5 days before and 2 days after the release of a

5
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mature egg (Rodgers and Kohler, 2003). Accurate timing for this period is of great

importance and can benefit both infertile and fertile couples to achieve and avoid preg-

nancy respectively. For example, in the management of infertile couples, right timing is

essential for artificial insemination and retrieval of oocytes at appropriate maturity for

in vitro fertilization (Edirisinghe, Murch, Junk and Yovich, 1997; Wood, 2001). For the

fertile couples, right timing can help to determine the right moment for child bearing

which is mostly geared toward spacing and limiting purposes.

Although knowledge on the development of follicle (nests of cells that contain primitive

egg) in the ovary has increased considerably especially the developments that occur some

days prior to the most fertility period, there is a great need for simpler and reliable

methods on predicting and identifying the fertility peak. However, there is a lot of

variations on cycles lengths and the levels of fertility hormones excreted in the body

which are widely used to track fertility among women. These variations can cause

problems in predicting the fertility peak and hence raising a practical motivation to

develop better and easy to use methods that couples can use to identify the fertile and

infertile days in the cycle. Most methods are based on observations made from one

or more primary fertility indicators which include: basal body temperature, cervical

mucus, and cervical position (Halberg et al., 2000; Halberg et al., 2001; Wood, 2001).

These primary fertility indicators will be discussed in the next section. Other modern

methods involves urine test kits that consist of tools used to detect the surge in fertility

hormones that occurs prior to the peak of fertility (Holman and Wood, 2001; O’Connol

et al., 2006). Advancement of these tools has lead to computerized devices that can

interpret daily measurements from the basal body temperatures and fertility hormones.

In this study we shall focus on studying curves obtained from basal body temperature

(bbt) a key fertility indicator that varies systematically and periodically and is widely

used to monitor underlying fertility levels among women. In natural family planning

methods which entirely rely on visible physiological characteristics to track fertility lev-

els, the bbt is used to confirm the occurrence of the fertility period. Our study aims to

develop a fast and efficient statistical method that can be used by physician to rapidly

estimate the bbt curves resulting from daily collection of the bbt measurements. Before

we get into developing the anticipated statistical methodologies, we shall give a brief

overview on menstrual cycle, indicators used to monitor fertility level among women,

the biological mechanism underlying the bbt curve and also highlight some findings from

recent studies related to basal body temperature.
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2.2 Biological processes in a menstrual cycle

Menstrual cycle is a recurring process of physiological changes that occur among repro-

ductive aged females and on average it lasts for about 28 days. A normal menstrual

cycle is divided into four phases; the bleeding phase (menstruation), pre-ovulation, ovu-

lation and post-ovulation phases. Ovulation is the time when a mature egg is released

for fertilization and is the optimal time of fertility. The length of the fertile phase is

believed to remain constant for each woman, but the cycle length and the ovulation day

can change depending on the underlying biological processes taking place in a woman.

Irregular cycles are common among teens, women approaching menopause, those that

are breastfeeding and those coming off the pills.

A hormone is a substance which provides means of communication in that it travels

from a special tissue, where it is released into the bloodstream, to distant responsive

cells where the hormone exerts its characteristic effects (Sperroff et al., 1994). Several

hormones are known to regulate different activities in the menstruation cycles and in

particular on the shape of the bbt curve. These hormones are: the Follicle Stimulating

Hormone (FSH), the Luteinising Hormone (LH), pituitary, progesterone, estrogen and

oestriodiol. The levels of FSH and LH hormones in the blood are regulated by hy-

pothalamus which are highly specialized brain cells. A decease or increase of any of the

hormones leads to changes in the menstruation cycle and periodical fluctuations take

place throughout the menstrual cycle. Figure 2.1 shows the levels of different hormones

during a menstrual cycle.

Figure 2.1: Levels of different hormones in an menstrual cycle.
Source: http://www.early-pregnancy-tests.com/progesterone.html

The menstruation phase is the first stage in the cycle and is characterized by shedding

of blood from the vagina. The released blood is dominated by the shed the uterus lining

that was developed in the previous cycle. The beginning of this phase marks the end of
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the previous cycle and the beginning of a new one. On average it takes about four days,

but it can also take a shorter or longer duration depending on the length of the cycle.

However, bleeding can occur without the release of an egg and is commonly caused by

inadequacy of sufficient hormones to causes the release of an egg. This is a common

phenomenon among women at the extreme ends of the fertility period (teen-age and

menopause).

Pre-ovulation phase is characterized with the rise of FHS hormone levels in the blood

resulting into production of pituitary hormones in pituitary glands which initiates the

development of follicle in the ovary. The developing follicle produces oestriodiol hor-

mones that activate the cervix to produce mucus at the opening of the vagina. The

release of mucus heralds the beginning of the fertility phase. While the egg in the folli-

cle is maturing, the follicle moves toward the surface of the ovary in order to be release

into the fallopian tube. At this moment, the levels of the released oestriodiol hormones

from the follicle rises further leading to an increase in fertility characteristics on the

mucus. At the same time the endometrial lining of the uterus begins to grow.

Ovulation takes place immediately after maturity of the egg in the follicle which is then

released into the fallopian tube. This activity takes one day of the cycle and the most

fertile type of mucus is evident at the lining of the cervix and the vagina. This mucus

type facilitates the sperm with guidance, transportation, protective environment along

the passage and supplies the required nutrition needed for fertilization. In absence of

this special type of mucus, the sperms cannot survive in this passage and hence no

fertilization can take place. At the same time the egg drift along the fallopian tube

ready to meet the sperm. If the egg is not fertilized, the egg dies and breaks down

into its constituent components and is re-absorbed by the body. But if the released egg

comes into contact with the male’s sperm, fertilization takes place and foetal growth is

initiated. The union leads to the development of an embryo which latter continue moving

towards the uterus. In preparation for a pregnancy, progesterone hormone is released by

the corpus luteum (empty follicle left in the ovary). The release of progesterone leads

to a sharp rise in the body temperature of a woman.

Post ovulation is the last stage of the menstrual cycle. This stage is commonly char-

acterized with an elevated plateau of the bbt level. It is also characterized with either

the development of the embryo if fertilization took place or the disposal of the released

egg and the uterus lining. When fertilization takes place the embryo moves from the

fallopian tube to the uterus and after about six days it is embedded on the uterus lining.

Implantation of the embryo is complete in about 12 days after ovulation. The uterus

lining thickens and is filled with nutrients suitable for the implanted embryo. When
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fertilization does not result after ovulation, the levels of progesterone and estrogen hor-

mones decline in the blood resulting to breaking away of the uterus lining from the

uterus wall. The resulting refuse is commonly released as menstrual on the fourteenth

day after ovulation.

2.3 Indicators used to monitor fertility level

Many methods have been developed to monitor the fertility level within a menstrual

cycle. Many indicators are characterized with observable characteristics that women can

identify and detrmine the occurrence of the ovulation day. Modern indicators consist of

direct measurements of levels of estrogen and progesterone in urine or blood and the use

of ultrasound scanning to monitor ovarian activities. Traditional indicators include: the

rhythm calender, basal body temperature, cervical mucus and a combination of both

the mucus and the temperature indicators. We shall give a brief overview of each one of

these indicators.

The levels of LH, FHS, estrogen and progesterone hormones in the blood have been

used to monitor the fertility level during the menstrual cycle. Their quantities can be

measured in blood by radio-immunoassay or their metabolites which can be measured in

urine. Blood assays can be used but require tedious daily sampling which is necessary to

provide an accurate picture of ovarian activity around ovulation. In most cases analysis

is done using urine assays. Women collect urine early in the morning daily and the

assays are simplified to the stage that women themselves can do accurate testing at

home using the Home Ovarian Monitor. A surge on secretion of these hormones is a

prerequisite of ovulation. For example, the rising levels of oestradiol secreted about 5 to

7 days prior to ovulation and a surge on FSH/LH hormone heralds pre-ovulatory events

of a normal cycle (Ross et al., 1970).

Ultrasound scanning is one of the modern indicators that is believed to predict ovulation

accurately though expensive. Ultrasound scanning technology helps in visualizing the

activity taking place on the follicles and corpus luteum. Mostly it is concerned with

visualizing the actual rupture of the follicle, the extrusion of the ovum and follicular

fluid, the development of a corpus luteum, the blood supply to these structures and the

degree of stimulation of the uterine endometrium as a result of the hormones produced.

The method has played an important role in providing basic information on all phases

of ovarian activity, and its agreement with the findings based on the hormone patterns

and mucus symptoms. For daily application, ultrasound scanning is expensive and other

methods are used to assess ovarian activity but used latter as a final confirmation that

ovulation is imminent.
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The rhythm calendar indicator is based on calculating the ovulation pattern and specify-

ing the interval when ovulation would occur. In most cases it is believed that ovulation

occurs between 11 to 16 days before the beginning of menstrual bleeding. Using this

pattern, a woman can calculate the expected range of days when ovulation occurs.

However, biological processes in the body changes with the underlying environmental

and psychological factors. Therefore, the menstrual cycles are not always constant and

there are tendency for a woman to experience short and long menstrual cycles. Since

the underlying assumption in calculation is based on the average cycle length, there are

problems with identifying short and long cycles. Hence, the use of this indicator can lead

to unwanted pregnancies or force couples to abstain when there is no risk of pregnancy.

Cervical mucus indicator is based on changes that occur on vaginal discharges during

the menstrual cycle. Cervical mucus is a type of hydrogel fluid produced by the cervical

glands and heralds the beginning of the fertility phase of a cycle (Odeblad, 1994). It is

release is determined by the rise of the levels of estrogen hormone in the blood. This fluid

prepares the birth channel to receive any sperms that are introduced into the channel.

Its primary function is to facilitate fertilization by nourishing and protecting sperms

as they travel through the reproductive system. The cervical mucus tracks the cyclic

changes in oestrogen and progesterone released by the ovaries.

The mucus changes in quality and quantity before and during ovulation. Cervical mucus

is not identical for all women but is believed to be characterized with four common states.

These states are: state 1 that is characterized with dry, rough and itchy feeling or nothing

is felt or no mucus (occurs during the infertile phases), state 2 that is characterized

with damp feeling, nothing is seen or there is no mucus (early fertile days), state 3

has a damp feeling, the mucus is thick, creamy, whitish, yellowish, not stretchy but

sticky. State 4 is the peak fertile level of the mucus where the mucus is characterized

with wet, slippery, smooth feeling, is transparent, like raw egg white, stretchy/elastic,

liquid, watery, reddish with some blood (Colombo and Masarotto, 2000). With proper

personal instructions, women can recognize these changes and can correctly identify the

pre-ovulation infertility period as well as post-ovulation phase of the menstrual cycle

(Billings, Billings, Brown, and Burger, 1972; Billings and Billings, 1983).

Like other biomarkers, the bbt is an indicator that responds regularly to changes in

progesterone hormone levels during the menstrual cycle. Basal body temperature is

defined as the temperature a body has at the time you wake up each day. During the

pre-ovulation period, the progesterone level in the blood is very low, and this is charac-

terized by low bbt measurements. As ovulation approaches, the level of the progesterone

hormone starts to rise in the blood and this leads to a sharp rise in the basal body tem-

perature. After ovulation, the progesterone level is relatively high and this corresponds
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to a high plateau on the bbt curve. As the end of the menstrual cycle approaches, both

the bbt and progesterone levels decrease in preparation for the next cycle. The patterns

of the progesterone trajectory can also facilitate in explaining the biphasic shape of

the bbt curve (Marshall, 1968). Taking the bbt measurements daily immediately after

waking up and noting the day that the temperature level changes, a woman can easily

determine the phases of her menstrual cycle. The work in this thesis is based on the

basal body temperature data. First, we will give a detailed review of characteristics

associated with the bbt indicator in the next section.

The cervical mucus, basal body temperature, and rhythm calendar indicators are com-

monly used in Natural family planning (NFP) methods to predict and determine the

occurrence of ovulation. Natural family planning methods are collection of methods

that relies on natural observable signs and symptoms of the fertile and infertile phases

of the menstrual cycle. The NFP methods give provision of avoiding or achieving preg-

nancy naturally through conforming to the women’s reproductive cycle without the use

of drugs or devices. Hence, they can comfortably be used in diverse populations with

varied religious/ethical beliefs. Other advantages address the need to provide alternative

for couples who want to use natural methods due to medical or personal reasons.

2.4 Researches on basal body temperature

We shall begin by giving a historical review on researches involving the use of basal

body temperature in determining ovulation. Researches on establishing the relationship

between the bbt and fertility levels in woman have received attention since the 19 century

when Squire in 1868 reported that the bbt has a biphasic pattern during a menstrual

cycle. In 1905 a Dutch gynecologist van de Velde, established that there is a relationship

between the change in bbt curve and the timing of ovulation. Early extensive reviews on

bbt patterns and menstrual cycles have been documented by Marshall (1965), Vollman

(1977) and Zuspan & Zuspan (1979). Further, Moghissi et al. (1976), established that

the rise in bbt level happens after an LH surge and that a significant rise in bbt coincide

with rise in progesterone and urinary pregnanediol.

A standard shape of bbt measurements recorded daily in a menstrual cycle is character-

ized with a biphasic curve (see figure 2.2). In most cases, trajectories of bbt curves from

a healthy woman have identical shapes. A typical curve is characterized with two main

sections, pre and post ovulation regions. The pre-ovulation region is characterized with

a low plateau while the post ovulation region is characterized with an elevated plateau.

The transition region between the pre and post ovulation is relatively short and coin-

cides with the ovulation period. There is a wide fluctuation of the bbt measurements
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but the transition phase can be identified from the rest of the regions by a sharp drop

(nadir) in temperature that is followed by a sharp rise (Dunlop et al., 2005; Scarpa and

Dunson, 2009).
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Figure 2.2: A typical bbt curve.

However, the existence of a nadir prior to ovulation has drawn criticism since the in-

ception of the bbt method. Marshall (1968) conducted a detailed study focusing on

thermal changes in menstrual cycles with biphasic bbt patterns and observed that an

acute rise with an elevated level of at least 0.2C (0.4F ) between two consecutive days

occurred in 80% of the menstrual cycle but only 10% of the cycles had a dip preceding

the temperature rise. Further, Hilgers and Bailey (1980), working on both bbt and

hormonal measurements observed that a dip in bbt curves preceding ovulation is about

15% hormonally normal cycles. Thus concluding that a significant elevated shift in bbt

occurring in 48 hours or less in which three consecutive daily temperatures are at least

0.2C (0.4F ) than the last six daily measurements is a more acceptable measure that

confirms ovulation (Marshalls, 1968; Jeffcoate, 1983).

The average body temperature is known to vary from person to person. In most women

the body temperature during the follicular phase ranges between 36.37±0.12C (97.48±
0.25F ) and 36.72±0.12C (98.09±0.22F ) in the luteal phase. A shift in the bbt following

ovulation should occur within a period of 48 hours or less depending on the length of

the cycle. In most ovulatory cycles, there are three consecutive daily bbt measurements

that are between 0.2−0.5C (0.4−1.0F ) higher than the previous six daily temperatures

which leads to a three by six method which is commonly used to identify occurrence
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of ovulation (Jeffcoate, 1983). By recording and charting the body temperature for

each day, the change on the trajectory of the temperature curve can be used by couples

to confirm the onset of ovulation and be able to predict with some probability when

conception will occur in the future cycles (for more details refer to: Jeffcoate, 1983;

Wood, 2001).

Predicting the ovulation day has been of interest in many reproductive studies. How-

ever, the temporal relationship between ovulation and a shift in bbt measurements and

ovulation day has been extensively been investigated but the relationship appears to be

a variable. To uncover the relationship, the biphasic pattern has been studied and pro-

vides a basis for algorithms in identifying the ovulation day in a menstrual cycle (Scarpa

and Dunson, 2009). Based on these and other algorithms variety of statistical models

have been developed to identify the shift in bbt curve which is commonly linked to ovu-

lation day. For example, Royston and Adams developed a CUSUM algorithm (Royston

and Adams, 1980), while Carter and Blight introduced a Bayesian rule to detect the

bbt shift (Carter and Blight, 1981). Colombo and Masarotto 2000, identified the sharp

rise of the bbt curve at the last day of hypothermia prior to the post-ovulatory rise, as

a good marker of the day of ovulation.

Observing the bbt curve to determine fertility has its own limitations. Information from

the bbt chart is retrospective and normally informs the user that ovulation has already

occurred. Moreover, the bbt measurements can be influenced by psychological, physical

or health disorders e.g. sickness, fever or stress, among other factors. Therefore, it is

advisable for users to note special events in the chart to help make proper interpretation

of the bbt curve in the future. Women in their teenage and menopause can not fully

rely on the method since there is random fluctuation of both the cycle length and the

bbt measurements due to change in biological functioning of their bodies.

If the bbt measurements for all cycles result to smooth curves identical to the one in

figure 2.2 and none of the cited limitations interfere with trajectories of the bbt curves,

then it can be easy to identify the ovulation day. However, in real life situation it is

very rare to have such a smooth curve. Moreover, most bbt measurements are noisy

and majority of curves from a single woman may have different patterns. Thus, the

relationship between the ovulation day and the bbt shift becomes a variable that keeps

on changing depending on the underlying biological factors taking place in the body.

These complex circumstances raises a practical motivation leading to explore for better

approaches to estimate smooth biphasic bbt curves.

Previous researches on bbt have been on estimating the ovulation day but little has

been done on generating smooth bbt curves that can be used to solve other problems.

In particular for women attempting to conceive, the pattern of the estimated curve can
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be used to distinguish healthy ovulatory cycles from those characterized with menstrual

disorders. Hence, it is of interest to estimate the trajectory in bbt over the menstrual

cycle. The aim of this work is to provide a fast statistical methodology that can be

used to generate curves while borrowing information flexibly from other cycles in the

data base. Such automated tool can be used to generate smooth curves from noisy

bbt measurements and physicians can easily approximate the ovulation day and also

distinguish dysfunctional cycles from normal ones. These statistical methodologies can

be extended to fit curves generated from hormonal measurements leading to better and

more efficient methods to predict both ovulation day and menstrual disorders including

dysfunctional menstrual cycles.



Chapter 3

The dataset

3.1 Introduction

In this chapter we will give a review of the study design, sampling process and related

issues linked to the collection of data in a multi-center study called The European Study

of Daily Fecundability. One of the primary goals in the study was to investigate and

predict the daily probability of conception within the fertile window of a menstrual

cycle among healthy women using body basal temperature data and cervical mucus

characteristics. The dataset is a result of a multi-center study that has been discussed

in Colombo and Masarotto (2000). The investigation was planned as a prospective

cohort study that started in 1992 through 1996 on subjects interested in learning about

the fertile phase of the woman and the use of a Natural Family Planning method to

avoid or achieve pregnancies.

3.2 Study Population

The recruitment process enrolled 782 women from The European Study of Daily Fecund-

ability in collaboration with seven European centers (Milan, Verona, Lugano, Dsseldorf,

Paris, London and Brussels) that provided services on fertility awareness and natural

family planning. The 782 women from the European centres were recruited between

1992 through 1996. The research protocol was reviewed and approved by the Institu-

tional Review Boards of Fondazione Lanza (Padua, Italy) and Georgetown University

(Washington D.C., U.S.A.). The study was co-ordinated by Professor Bernardo Colombo

from the Department of Statistical Sciences of the University of Padua (Padua, Italy)

(Colombo and Masarotto, 2000).

15
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The selection/entry criteria for the subjects were: women experienced in use of a Natural

Family Planning method; married or in a stable relationship; aged between 18 and 40

years at admission; having at least had one menses after cessation of breastfeeding or

after delivery; not currently taking hormonal medication or drugs affecting fertility.

Neither partner could be permanently infertile nor both had to be free from any illness

that might cause sub-fertility, e.g., endocrine disorders. Another requirement was that

couples were not supposed to have a habit of mixing incidences of unprotected and

protected intercourse. Any woman was excluded if any one of the discussed criteria was

not fulfilled (Colombo and Masarotto, 2000).

To increase the sample size, additional data for 99 women was included retrospectively

from a prospective study that was conducted in Auckland, New Zealand between 1979

and 1985. The main focus of the New Zealand study was to investigate the relationship

between the interval from intercourse to fertilization and the sex of the baby conceived

(Colombo and Masarotto, 2000). For the New Zealand study, recruitment process in-

volved couples that contemplated having more pregnancies and had proven fertility. The

two studies had similarities in that the couples were instructed to recognize the fertile

period using the daily changes in cervical mucus and patterns of the basal body temper-

ature. However, the couples in the study were restricted to only one act of intercourse

during the fertile phase of the cycle (France et al, 1984, France et al, 1992; Colombo

and Masarotto, 2000). This condition was not properly observed in some cases and was

believed to be one of the causes that lead to frequently dropping out of the study when

couples failed to achieved a pregnancy after 3-4 cycles of attempting pregnancy.

3.3 Study Design and Data Collection

Subjects in the European Study of Daily Fecundability were selected from different

centres. The subjects were screened and selected by natural family planning teachers for

admission. These teachers were trained by the local principal investigator in each centre

on the purpose and requirements of the study. When a subject satisfied the above entry

criteria, she was requested to give a written informed consent for her to be enrolled into

the study. Since the study collected sensitive personal nature which encompassed sexual

behaviour subject’s, anonymity and confidentiality was ensured by assigning a study

number to each woman and only the NFP teacher maintained a personal relationship

with the subject.

On data collection, the study collected data related to the menstrual cycle, pregnancy,

basal body temperature, cervical mucus characteristics, and other demographic charac-

teristics e.g. marital status, contraceptive use, etc. A menstrual cycle was defined as
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the interval that begins on the first day of vaginal bleeding until the commencement of

the next menstrual cycle. Day 1 of a menstrual cycle was considered as the first day of

fresh red bleeding that excluded any preceding days with spotting. A conception was

assumed in the presence of a pregnancy going on at 60 days from the onset of the last

menses or when before that term a miscarriage was clinically detected.

For each woman, the following information was collected: the month and year of birth

of the woman and of her partner; the number of previous pregnancies, if any; the date

of her last delivery (or miscarriage) and of the end of breastfeeding period, if relevant;

the date of last oral contraceptive pill taken, if any. Subsequently, after the collection

of data had begun, it was decided to add the date of marriage for married couples and

the sex of any baby conceived and born during the period of the study. This latter

information is available for a large proportion of subjects.

On bbt, cervical mucus and other related data, the woman was asked to record on a chart

the days of her period and of any disturbance such as illness, broken sleep. Subsequently,

the woman was asked to collect the bbt measurements every morning before engaging in

any activity. She was asked to record her basal body temperature on a chart (as shown

on figure 3.1) for as many days as necessary to determine a clear post-ovulatory rise.

These measurements were charts and sent periodically to the Department of Statistics

at the University of Padua. The charts were then evaluated for all cases of the recorded

bbt measurements to ensure data consistency.

Similarly, the data for the mucus typology and texture was recorded by the subjects. To

collect the cervical mucus data, a woman was asked to observe and chart her cervical

mucus symptoms daily during the cycle. The study required a record of every episode

of coitus, with specification on whether the act was unprotected or protected (barrier

methods, withdrawal, and others). The reliability of the information recorded of acts

of intercourse was checked by the teacher in discussion with subjects at the end of each

cycle. To promote data consistency, the investigators in the study excluded any cycle

that was characterized with a single act of protected intercourse or any simple genital

contact. Mucus characteristics coding were done in the local centres in accordance with

agreed common rules. The charts for both bbt and cervical mucus were sent to the co-

ordinating investigators in Padua for processing and entry into the data base (Colombo

and Masarotto, 2000).

The bbt shift based on “three over six rule” (Marshall 1968) was used to identify the

start of the infertile period following ovulation. The shift was defined as the first time in

the cycle that three temperatures were recorded all of which were above the level of the

immediately preceding six daily temperature recordings (Marshalls, 1968; Colombo and

Masarotto, 2000). However, several exemptions were allowed in the study. i) if there
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was one “spike” temperature among the six at the lower level (a spike temperature was

defined as a temperature which was 0.20 C or more above both its immediate neighbour-

ing temperatures); ii) or, a cycle in which the impact of illness or other disturbances

could be discounted, if there were at least six lower temperatures recorded before the

upward shift.

3.4 Descriptive Statistics

In this section we present the descriptive statistics for the study population. Descriptive

summaries are presented at centre level. The 881 subjects had a total of 7017 menstrual

cycles. Figure 3.1 is an example of a typical menstrual cycle record that was used to

record/chart different demographic and biomarker characteristics in a menstrual cycle.

These menstrual cycle characteristics include: dates and month, the daily characteristics

for the mucus and bbt measurements, sequence of the days from the estimated ovulation

reference day and days with intercourse within the menstrual cycle. The cross on the date

indicates the peak mucus day. The first panel shows the mucus characteristics that are

coded between 0 and 4. Code 0 represents no information; code 1 represents dry, rough

and itchy feeling or nothing felt or seen and sometimes no mucus; code 2 represents damp

feeling with nothing seen or no mucus; code 3 represents damp feeling characterized with

cervical mucus that is thick, creamy/whitish/yellowish, not stretchy/elastic, sticky; code

4 represents mucus that is wet, slippery, smooth feeling and transparent like raw egg

white, stretchy/elastic, liquid, watery, reddish (with some blood). The second panel

shows the trend of the daily bbt measurements that varied between 36.0 to 37.0 degrees

centigrade. The lower panel shows the days in the menstrual cycle when an intercourse

occurred.

Tables 3.1 presents basic demographic characteristics for couples at the beginning of

the study. These demographic characteristics include: ages of both men and women,

percentages of women with past pregnancies and use of hormonal contraceptives. From

the demographic characteristics table, Milan had the highest number of women. The

average age for women ranged between 28 and 29 years while the average age for men

ranged between 30 and 34 years. Dusseldorf had the youngest age-group for both men

and women. The average proportion of women that had at least one pregnancy was 44.6

for European centres and 97 for the New Zealand group. The average proportions of

women with past use of hormonal contraception were 30.1 and 34.3 for the European

centres and New Zealand respectively. Verona had the least proportions for women that

had previous pregnancies and used hormonal contraceptives.
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Figure 3.1: A typical menstrual cycle record chart.
Source: Colombo and Masarotto (2000)

Demographic characteristics of couples.
Centres No. Age of women Age of men No. of women with at No. of women with past

of women Mean(sd) Mean(sd) least past pregnancy use of hormonal contraception
(% of women) (% of women)

Verona 214 28.6 (3.54) 30.7 (4.16) 66 (30.8) 63 (29.4)
Milan 272 28.7 (3.56) 31.3 (4.73) 109 (40.1) 31 (11.4)
Lugano 13 29.3 (4.50) 32.1 (3.99) 5 (38.5) 4 (30.8)
Paris 104 29.3 (4.52) 31.4 (5.42) 76 (73.1) 38 (36.5)
Dusseldorf 105 28.2 (4.48) 30.4 (4.86) 44 (41.9) 59 (56.2)
London 45 31.6 (4.68) 34.0 (4.60) 29 (64.4) 24 (53.3)
Brussels 29 29.7 (4.52) 31.6 (3.78) 20 (69.0) 16 (55.2)
Total European 782 28.9 (4.00) 31.2 (4.70) 349 (44.6) 235 (30.1)
Auckland 99 29.9 (3.13) 32.3 (3.87) 96 (97.0) 34 (34.3)

Table 3.1: Characteristics of women and men participating in the study.
Source: Colombo and Masarotto (2000)

Table 3.2 shows the characteristics of menstrual cycles and their outcomes aggregated

at centre levels. We include information on cycles with identified ovulation days based

on the daily bbt measurements and the cervical mucus characteristics, cycles with at

least one intercourse in the fertile window and the percentages of cycles with detected

pregnancies and miscarriages. In particular, the ovulation identification was based on

a pronounced bbt shift using the three over six rule (Marshalls, 1968). On average the

percentage of menstrual cycles with a detectable bbt shift that identified the ovulation

day were 96.4% and 94.8% for the European centres and New Zealand respectively.
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Cycle characteristics
Centres No. of No. of cycles with identification of No. of cycles with No. of detected No. of miscarriages

cycles BBT ref. day Mucus reference at least coition pregnancy (% of pregnancies)
(% of cycles) (% of cycles) in the window (% of cycles)

Verona 1279 1133 (97.9) 1246 (98.3) 827 171 (13.4) 11 (6.4)
Milan 3288 2840 (95.4) 3051 (95.8) 1351 151 (4.6) 20 (13.2)
Lugano 57 56 (98.2) 57 (100) 48 13 (22.8) 0 (0)
Paris 787 680 (95.8) 576 (74.0) 340 63 (8.0) 5 (7.9)
Dusseldorf 654 615 (97.8) 650 (99.4) 257 41 (6.3) 3 (7.3)
London 320 250 (95.8) 272 (96.1) 181 30 (9.4) 5 (16.7)
Brussels 339 286 (99.0) 314 (95.2) 171 18 (5.3) 3 (16.7)
Total European 6724 5860 (96.4) 6166 (94.1) 3175 487 (7.2) 47(9.7)
Auckland 293 238 (94.8) 285 (97.3) 215 88 (30.0) 2 (2.3)

Table 3.2: Characteristics of menstrual cycles and their outcomes.
Source: Colombo and Masarotto (2000)

Similarly, the percentage of cycles that had ovulation that could be determined using

mucus characteristics were 94.1% and 97.3% for the two groups respectively. The average

percentages from the European group are relatively lower than those from the New

Zealand group due to low percentages from Paris subgroup. The number of cycles with

at least one intercourse act in the fertile window are 3175 and 215; the number of

detected pregnancy are 487 and 88 and the number of miscarriages of pregnancies are

47 and 2 for the European centres and New Zealand respectively. The 575 (i.e. 487+88)

detected pregnancies in Table 3.2 include both those continuing at 60 days from the

onset of the last menses and the 49 clinically recognized miscarriages of the same period

(Colombo and Masarotto, 2000).

Table 3.3 presents characteristics of non-conception menstrual cycles based on the bbt

ovulation reference day. These characteristics include the number of cycles in each centre,

the total cycle lengths and the duration of both pre and post ovulation phases. The

number of subjects and contributed cycles varied markedly between centres. In order to

obtain meaningful fecundability patterns, the aggregate values in the tables for women

from European centres were kept separate from those from New Zealand. Both groups

(the European centres and New Zealand) had 5426 and 165 cycles respectively with a

mean total length of 29 days per cycle. As expected, the lengths of the pre-ovulatory

phase have relative higher variability than that of the post-ovulatory phase. On average

the pre-ovulatory phase had a duration that varied between 16 and 18 days while the

post- ovulatory phase had a duration that ranged between 12 and 13 days.

Table 3.4 gives the average number of intercourse acts per menstrual cycle in both

conceptual and non-conceptual cycles based on the age-groups of the subjects (18-24,

25-29, 30-34, 35-39 and above 40 years). The averages are presented separately for

both conceptual and non-conceptual cycles and grouped according to the age-groups of

couples. The trend based on the age-groups was evaluated using the arithmetic average

which is more preferred to the median for sake of better evidence. It is evident that the
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Characteristics of non conception cycles.
Centres No. of cycles Total length Duration of phases

of cycles Pre-ovulatory Post-ovulatory
Mean(s.d.) Mean(s.d.) Mean(s.d.)

Verona 982 29.0 (5.04) 16.4 (5.01) 12.6 (2.09)
Milan 2711 29.1 (3.89) 16.7 (3.93) 12.4 (2.09)
Lugano 44 27.2 (2.24) 14.7 (2.73) 12.5 (2.19)
Paris 620 29.3 (4.92) 17.1 (4.91) 12.2 (1.08)
Dusseldorf 574 28.3 (3.73) 16.3 (3.68) 12.0 (1.89)
London 224 29.8 (4.68) 17.2 (4.56) 12.5 (2.46)
Brussels 271 28.7 (3.63) 16.3 (3.74) 12.4 (1.94)
Total European 5426 29.0 (4.26) 16.6 (4.26) 12.4 (2.07)
Auckland 165 29.5 (4.37) 16.7 (4.64) 12.8 (2.36)

Table 3.3: Characteristics of non conception menstrual cycles with bbt reference day.
Source: Colombo and Masarotto (2000)

Average number of intercourse acts.
Age classes Intercourse of women in Intercourse of men in
(years) Conception cycles Non conception cycles Conception cycles Non conception cycles

Mean (s.d.) Mean (s.d.) Mean (s.d.) Mean (s.d.)
18− 24 7.1 (3.19) 5.2 (3.10) 7.4 (3.86) 5.7 (3.47)
25− 29 6.5 (3.08) 4.9 (2.82) 6.6 (3.17) 5.1 (3.08)
30− 34 5.5 (3.03) 4.2 (2.73) 6.0 (3.00) 4.3 (2.54)
35− 39 5.1 (2.30) 3.7 (1.96) 5.3 (2.65) 4.0 (2.52)
≥ 40 5.6 (2.62) 4.2 (2.19)
Total 6.2 (3.08) 4.5 (2.76)

Table 3.4: Average number of acts of intercourse per menstrual cycle in the European
centres. Source: Colombo and Masarotto (2000)

number of conceptual cycles is higher than the non conceptual cycles for both men and

women. There is also a gentle decline in the frequency of intercourse with increase in

the age for partners. The small variations between the male and the female findings,

reflect differences on the number of subjects in various classes and on the whole study

group. The higher coefficient of variation in non-conception cycles (61.3% vs. 49.7%),

both support the reliability of the data collected (Colombo and Masarotto, 2000).

It was of interest to explore when the ovulation day occur within the menstrual cycle.

Hence, we computed the percentages of cycles based on the day when ovulation was

predicted to occur using the three over six rule (Marshalls, 1968). Figure 3.2 shows the

distribution of the ovulation day (based on the three over six rule: refer to section 3.3)

against the days of a menstrual cycle. It is evident that almost 14% of the menstrual

cycles in the study have an ovulation day occurring on the 15 day of the cycle. The

percentages lowers as we move away from the 15 day of the menstrual cycle.
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Figure 3.2: A graph for the percentages of the cycles against the occurrence of the
ovulation day.



Chapter 4

A review on statistical methods

4.1 Introduction

This chapter gives a review of various methods that can be used to fit non-linear curves

like the bbt trajectories. The chapter is divided into two main parts. The first part

presents the existing literature on fitting non-linear curves. We start with a simple

formulation of the bbt curve model and then give a brief review on various methods in

the literature that can be adopted to estimate non-linear curves. In particular, our focus

will be on non-parametric methods where we will highlight their use and briefly point out

some advantages and limitations. The second part will discuss the existing literature on

standard Bayesian approaches that can be used to estimate model parameters. We will

give a review on how the standard Bayesian methods can be implemented to estimate

the model parameters and highlight some of the problems that can be faced while using

these standard approaches.

In the recent years, there has been an increased interest on researches involving correlated

data that is characterized with curves or non-linear trajectories. In such cases data is

collected sequentially from one or many subjects at small intervals over a period of time

resulting to longitudinal correlated data. In the literature there exist many methods

that can be used to model such data. For example, functional data analysis (FDA)

is a common tool used to fit non-linear curves using high dimensional data models

(Ramsay and Silverman, 2005). These approaches summarize the trend of the data

into a curve, which is then used as a basic unit in data analysis. The features of the

non-linear structure leads to the global curve having several segments joined together

and weighted using carefully computed weights. In the next section we will consider a

general functional data model to fit the basal body temperature data for one menstrual

cycle.

23
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4.2 Models for the bbt curve

The basal body temperature curves normally follow a trajectory that has a biphasic

shape. During the follicular phase the bbt values tend to be low, with the nadir occurring

close to the time of ovulation. Then after ovulation, the bbt values rises progressively

before dropping prior to the next cycle. If there were no external factors interfering

with the shape of the bbt curves, we can fit the curves using a simple parametric model.

The model can be generated using a piecewise line composed of three parts: a first part

defined as constant describing the low temperature plateau after menstruation, a second

part linearly increasing, describing the sharp rise immediately following ovulation, and

a third part constant, describing the high temperature plateau (Scarpa and Dunson,

2009).

However, the classic bbt pattern is difficult to replicate since there is a wide fluctuation in

the bbt patterns from different cycles and subjects, therefore a parametric model cannot

be adequate to fit the bbt curves. Moreover, if we assume a parametric model, it could

be difficult to generate smooth curves and we would also be ignoring our uncertainty in

specifying that model. A simple solution is to adopt a non-parametric approach that can

accommodate uncertainty in model specification as well as generating smooth curves.

Hence, non-parametric methods are commonly used since they offer more flexibility

compared to parametric methods (Ruppert et al., 2003).

Let a menstrual cycle have T bbt measurements and be represented by a response

vector y = (y1, · · · , yT )
′
. The covariate vector z = (z1, · · · , zT )

′
contains the days of

the menstrual cycle when the bbt measurements were collected while assuming that

z1 < z2 < · · · < zT . A general functional model for the bbt curve can be written as,

yj = f(zj) + εj , j = 1, · · · , T, (4.1)

where f(.) is an unknown smoothing function at day zj and {εj} are independent and

normally distributed with error variance σ2
ε , such that εj ∼ N(0, σ2

ε ).

The smoothing function f(.) can be estimated by non-parametric approaches. Under

non-parametric approach, the shape of the functional relationship between f(.) and y

is determined by the data while in parametric approach the shape is determined by a

model. Non-parametric regression methods include: kernel methods (Wand and Jones,

1995), smoothing splines (Eubank 1988; Green and Silverman 1994), regression splines

(Hastie and Tibshirani 1990; Friedman 1991) and penalized splines (Eilers and Marx,

1996; Ruppert, Wand, and Carroll, 2003). Kernel methods are mostly based on local

likelihoods (Fan and Gijbels, 1996) while both smoothing splines and penalized splines
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are based on penalized likelihoods. There is a strong connection between kernel and

spline smoothing methods. Kernels methods and smoothing splines are asymptotically

equivalent for independent data and splines are commonly viewed as higher-order kernels

(Ramsay and Silverman, 2005).

4.2.1 Kernel smoothing methods

Kernel regression methods use local weighted averages to estimates a non-parametric

regression function at a particular point ζ. Nadaraya-Watson estimator is one among

many local weights used in kernel regression while local polynomials regression is the

most commonly used method (Wand and Jones, 1994). Under the Kernel regression

approach, the unknown smoothing function f(zj) in equation (4.1) is approximated

locally around any arbitrary point ζ by a dth − order polynomial such that f(zj) ≈
α0 + · · · + αd(zj − ζ)d = (zj − ζ)

′
α where zj(ζ) = {1, · · · , (zj − ζ)d} and the local

weights α = (α0, · · · , αd). The weights α are estimated by maximizing the local log-

likelihood function
−1
2σ2

T∑
j=1

Kh(zj − ζ){(yj − ζ)
′
α}2,

where Kh(s) = h−1K(s/h) such that h is a bandwidth and K(.) is a kernel function.

Most commonly chosen kernel functions have symmetric densities with mean zero e.g.

Guassian, uniform and Epanechnikov kernels densities. The resulting kernel estimating

equation is
T∑
j=1

zj(ζ)Kh(zj − ζ){(yj − ζ)
′
α} = 0,

The orders of the kernel can be used to generate different estimators. For example, the

local linear kernel estimator is of order d = 1 while the Nadaraya-Watson which is of

order d = 0 results to

f̂(ζ) =

∑T
j=1Kh(zj − ζ)yj
Kh(zj − ζ)

.

Kernel smoothing methods mostly place more weight on observations when zj values

are in the neighbourhood of ζ, and less weight as observations move farther. Selection

of the appropriate bandwidth h is important in kernel smoothing. Some of the most

common selection methods are: cross-validation, plug-in estimators (Wand and Jones,

1994) and empirical bias bandwidth selection (Ruppert, 1997).
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4.2.2 Smoothing splines

Smoothing splines is a curve fitting strategy that takes a spline with knots at every data

point. It is used to estimates a non-parametric regression function f(z) using a piecewise

polynomial function with all observations used as knots (Green and Silverman, 1994). A

spline function is a piece-wise polynomial with pieces defined by a sequence of t0, · · · , tk
knots inside the range of the time points 1, · · · , k and the pieces are joined smoothly at

the knots. The most commonly used smoothing spline is the natural cubic smoothing

spline, which assumes function f(z) as a piecewise cubic function. A simple example of

a cubic spline function f(z) can be represented as a power series:

f(z) = p3(z) +
k∑
l=1

λl(z − tl)3+,

where p3(z) are cubic polynomial while λl are weights for (z − tl)3+ such that

(z − tl)3+ =

{
(z − tl)3 if z > tl,

0 otherwise.

Practically, a smooth line is estimated by minimizing the sum of squares errors plus a

roughness penalty. A common approach on penalty is to integrate the squared second

derivative, leading to minimizing the penalized least squares

T∑
j=1

{yj − f(zj)}2 + τ

∫ g2

g1

{f ′′(z)}2dz,

where g1 and g2 are the interval for which an estimate of f(.) is sought, f
′′
(z) is the

second derivative of f(z) and τ is the smoothing parameter that controls the mean

square error and smoothness (Guo, 2004). As τ → 0 the effect of the penalty reduces to

zero leading to a very close fit, but the curve follows every detail in the data leading to

a very noisy curve. When parameter τ → ∞, the penalty dominates and the solution

converges to the ordinary least square (OLS) line that has a very poor fit.

4.2.3 Regression splines and penalized splines

Smoothing splines become less practical when T is large leading to the use of k = T

knots. An alternative method is to use a regression splines, a curve fitting method

where the number of knots are reduced using the least square methods. In particular,

the number of knots is far much less than the number of data points (k <<< T ). The
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overall regression line is broken into k + 1 line segments and each segment is linked to

the subsequent segment at the knot to form a continuous line without discontinuities at

the boundaries. Polynomial splines can easily be implemented under regression splines

but the power series in their representation leads to computational problems due to high

correlation between successive terms (for a more detailed reference see Ruppert, et al,

2003). To overcome computational problems, a more appealing representation of splines

is a linear combinations of a set of basis splines called B-splines instead of polynomials.

B-splines are spline functions that have minimal support with respect to a given degree,

smoothness, and domain partition (deBoor, 2001).

Let t = (t0, · · · , tk−1)
′

be a knot vector such that t0 ≤ t1 ≤ t2, · · · , tk−1 ≤ tk. A B-spline

function of degree n is a parametric curve composed of a linear combination of basis

B-spline Bl,n of degree n such that

f(z) =
k−n∑
l=0

PlBl,n(z), z ∈ [tn−1, tk−n]

where P0, P1 · · · , Pk are k − n+ 1 are the control points. The k − n+ 1 basis B-splines

of degree n can be defined as

Bl,0(z) =

{
1 if z ∈ [tl, tl + 1],

0 otherwise.

Bl,n(z) =
z − tl
tl+n − tl

Bl,n−1(z) +
tl+n+1 − z
tl+n+1 − tl+1

Bl+1,n−1(z),

where 0 ≤ k − n and 1 ≤ n ≤ k − 1. When the knots are located at the same distance,

then the B-spline is called uniform, otherwise it is non-uniform. The use of spline

demand additional computations, e.g. the computation of the number of knots k and

determination of their location. The number of knots can be fixed or be placed at design

points but a suitable number of knots should be select to allow flexibility in achieving a

smooth curve (Botts and Daniels, 2008).

B-splines are easy to implement and available in many common statistical software.

However, the functional form of B-splines is more complex compared to polynomials but

they are the most commonly preferred splines due to their excellent numerical properties

e.g. computational stability where each B-spline is non-zero over a limited range of knots

(deBoor, 2001). One common problem with regression splines is determining where to

position the knots. In many practical situations the knots are commonly placed at

selected quintiles depending on the available number of knots. A more flexible strategy

is to place more knots in regions where f(.) is changing more rapidly to allow the

smoothing function capture the trend of the data.
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Penalized splines (P-splines) were introduced by Eilers and Marx (1996) for generalized

linear smoothing. P-splines is a hybrid method that have important properties from both

smoothing and regression splines. It combines the reduced number of knots (k <<< T )

property in the regression splines and penalization of roughness that allows a smoothing

curvature (Ruppert et al, 2003). The application of P-splines for smoothing data has

been formulated using linear mixed model and extended into several areas including:

generalized additive models (GAM) (Marx and Eilers, 1998), multivariate calibration

and signal regression (PSR) (Marx and Eilers, 1999) and hybrid models that has building

blocks chosen from GAM, PSR and varying-coefficient models (VCM) (Eilers and Marx,

2002). Ruppert et al (2003) has presented an excellent overview on applications and

extensions of the penalized splines.

In many applications of Penalized splines, data smoothing is commonly done using

B-splines with a discrete roughness penalty. Adequate number of basis function at

equal spaced grid of knots are chosen to allow sufficient flexibility to avoid too much

fluctuation (Eilers and Marx, 1996). Let B(z) = {B1(z), · · · , Bk(z)} be B-spline basis.

A linear mixed model formulation of a penalized spline model has a mean function

f(z,θ) represented as

f(z,θ) = β0 + β1z
′
+

k∑
l=1

blB
′
l(z) (4.2)

where θ = {β, b} such that β = (β0, βl)
′

are fixed effects while b = (b1, b2, · · · , bk)
′

are random basis coefficients that have a distribution bl ∼ N(0, σ2
b ). It is important to

choose adequate number of basis functions k and in many practical applications, Ruppert

(2000) recommended that a value between 20 and 40 is sufficient. The penalized least

squares estimator leads to minimizing

T∑
j=1

{yj − f(z,θ)}2 + τΩ,

where Ω is symmetric, positive semi-definite k × k matrix such that Ω = DT
mDm while

Dm is the mth-order differencing matrix and τ = σ2
b/σ

2
ε is the smoothing parameter.

The differencing penalty is a discrete approximation to the integrated square of the mth

derivative of the B-spline smoother (Wand and Ormerod, 2008). The optimal solution

for the penalized least squares estimator b̂(τ) = (B
′
B + τΩ)−1B

′
(y −Xβ̂) where the

penalty matrix gives additional continuous property that controls the smoothness of the

estimated curve. The discreteness property of the penalty allows easy implementation

in contrast to penalties that use the integral of squared higher order derivatives of the

fitted function (O’Sullivan, 1986).

O’Sullivan penalized splines is a special type of P-splines that has been developed to
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generalize smoothing splines that arise when maximal number of B-spline basis functions

are included into the smoothing function (Wand and Ormerod, 2008). They have become

one of the most widely used smoothing splines due to their attractive features e.g. natural

boundary conditions (Green and Silverman, 1994), use of fewer basis functions, better

numerical properties, availability in many popular statistical software, a straight forward

representations in Bayesian models and their direct extension into more generalized

models like generalized additive models (Wand and Ormerod, 2008).

In O’Sullivan penalized splines approach, we consider B(z) as cubic B-spline basis func-

tions defined by the knots as described in Wand and Ormerod (2008). However, the

penalty matrix changes from Ω to Ω∗. The (l, l
′
) element of the penalty matrix Ω∗ is

defined by

Ω∗
l,l′

=
∫ g2

g1

B
′′
l (z)B

′′

l′
(z)dz,

where g1 and g2 are as described before. The computation of Ω∗ has been discussed by

Wand and Ormerod (2008) and is readily available in many statistical software. The

mean function in equation (4.2) can be generalized into linear mixed model

yi = Xiβ +Zibi + ε, (4.3)

where β = (β0, β1) and bi are the coefficients for X = {1, zj}Tj=1 and B-spline basis

functions Z = {B1, · · · , Bk} respectively. The error terms in vector ε = (ε1, · · · , εT )T

have a multivariate normal distribution ε ∼ N(0, σ2
ε I). Computation of the coefficient

estimates β̂ and b̂ can be done either by using Bayesian or non-Bayesian methods. For

example, in non-Bayesian framework the Best Linear Unbiased Predictor (BLUP) for

the two sets of parameters result to

[
β̂

b̂

]
=

(
CTC + τ

[
0 0

0 Ω∗

])−1

CTy.

where C = {X|Z} and τ is the smoothing parameter. In Bayesian framework, param-

eters β and b in the models are treated as random variables. Prior distributions are

assigned to parameter β, b and τ in the model. The priors are then updated using the

data likelihood to yield the anticipated posterior densities. The next section will discuss

the implementation of the Bayesian methods to compute the posterior densities.

4.3 Bayesian methods

In this part we shall give a brief review on Bayesian methods. Tremendous improvement

in computation mechanism within the last 20 years has made Bayesian models to gain
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a lot of interest in data analysis work. Prior to that, Bayesian methodologies were out

of reach due to complex models involved and computation burden. Typically, Bayesian

statistic involves using probability distributions rather than point probabilities for all

unknown quantities. Each parameter in the model is treated as a random variable and

assumes some kind of distribution unlike the Frequentist approach that treats parameter

as unknown constants. Several statistics text books have given a detailed review on

both historical and data modelling methodologies e.g. Gelfand and Smith, (1990); Gill,

(2002); Congdon, (2003); Gelman, et al., (2004); among others.

Bayesian inference is based upon Bayes’ theorem to compute the posterior density which

is a conditional density of unobserved quantity or parameter given the observed data.

Let y be the observed data and θ be the parameter of interest such that the parameters

from the previous linear mixed model (4.3) can represented by θ = {β, b, τ}. We assume

that the probability model or conditional density for the data given parameter is f(y|θ).

The prior beliefs about the distribution of the parameter is expressed by a prior density

π(θ). Using Bayes’ theorem the posterior density for the parameters is expressed as a

conditional density for θ given y is π(θ|y) and expressed as,

π(θ|y) =
π(θ)f(y|θ)∫
f(y|θ)π(θ)dθ

(4.4)

Thus, we can summarize the computation procedure as π(θ|y) ∝ π(θ)f(y|θ), where

π(θ) is the prior and f(y|θ) is the likelihood. The posterior density π(θ|y) can be com-

puted analytically when the integration
∫
f(y|θ)π(θ)dθ is simple but in many practical

applications, this is often a non-trivial problem requiring high-dimensional numerical

integration. Recent research work has focused on this computation problem leading to

development of computationally intensive numerical integration such as Markov chain

Monte Carlo (MCMC) methods. Currently most attention is on Gibbs sampler and

other related MCMC methods such as the Metropolis-Hastings algorithm (Hastings,

1970; Geman and Geman, 1984; Gelfand and Smith, 1990). Before discussing these

recent computation methods, we shall briefly review the choice of prior π.

4.3.1 Choice for prior

Inference based on Bayes’ theorem encounters controversies especially with the choice

and interpretation of the prior π. The choice of prior density π depends on the prior

information available about the data or the model used for data analysis. When reliable

information is available, then “informative” priors are normally used as a building tool

for the prior distribution. Otherwise when there is no reliable information about a
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parameter, selection of a prior density π is a delicate step and in most cases it is common

to choose “uninformative” prior densities.

In spite these controversies, the choice of prior π is very crucial if the goal is to arrive

at an analytically feasible posterior density. The choice involves forming an important

modelling assumption about the nature of the distribution of the parameters. In practice,

“Uninformative” priors with large variance are commonly chosen to minimize the impact

of the selected prior on the inference. Moreover, to make computation feasible, most

common approaches exploit the mathematical relations among probability distributions

leading to analytically feasible posterior densities that have known functional form. For

example, many examples in most Bayesian textbooks work with exponential family of

distributions (e.g. Gaussian, Gamma, Geometric, Poisson, Multinomial, etc.) since they

have conjugate prior densities that result to analytically feasible posterior.

As described in Marin and Robert (2007), let an exponential family be described as,

fθ(y) = h(y) exp{θ.R(y)− ψ(θ)}, θ, R(y) ∈ <p (4.5)

where θ · R(y) in equation (4.5) denote a canonical scalar product in <p. There exists

a class of generic class of priors called conjugate priors,

π(θ|ξ, η) exp{θ · ξ − ηψ(θ)},

which are parameterized by two quantities, η > 0 and ξ, that are of the same family as

R(y). These parameterized prior distributions on θ are derived in a manner that the

posterior distributions are of the same form

π(θ|ξ′(y), η
′
(y)),

where (ξ
′
(y), η

′
(y)) is defined in terms of the observation y. A prior density is said to

be a natural conjugate with respect to a likelihood if it gives rise to a posterior density

having the same parametric form as that of the prior. Hence, the conjugate priors allow

both the prior and the posterior distributions to belong to the same parametric family

of densities, though they have different parameters (Marin and Robert, 2007). This

implies that the resulting estimates of the parameters in the posterior are just updates

of parameters in the prior distribution by the information from the observations y. For

example, a beta prior π(θ) and a binomial likelihood p(y|θ) yield a beta posterior density

p(θ|y) while a normal prior and likelihood results to a normal posterior density. For

more information about the choice of priors refer to Marin and Robert (2007) chapter

2.
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4.3.2 MCMC methods

In many Bayesian problems, the computation of the posterior distribution often requires

integration of high-dimensional functions which cannot be explicitly computed. MCMC

methods provide ideal process to integrate high-dimensional functions. In brief, Markov

chain Monte Carlo involves setting up a Markov chain in parameter space θ with ergodic

distribution π(θ|y). Then starting with some initial state θ0, we simulate G transitions

under this Markov chain and record the simulated states θg, where g = 1, · · · , G (Robert

and Casella, 1999). MCMC methods use previous simulated values to randomly gener-

ate the next sample value. The transition probabilities between successive samples are

functions of the most recent samples leading to generate a Markov chain. Several ap-

proaches of direct integration based on MCMC methods have been proposed. The most

commonly used methods include: Gibbs sampling (Geman and Geman, 1984; Gelfand

and Smith, 1990) and Metropolis-Hastings algorithms (Chib and Greenberg, 1995).

Historically, MCMC methods originated from Metropolis algorithm (Metropolis and

Ulam 1949, Metropolis et al. 1953). This was an attempt by physicists to compute com-

plex integrals by expressing them as expectations for some distribution and then estimate

this expectation by drawing samples from that distribution (for a more detailed historical

review see, Smith 1991, Evans and Swartz 1995, Tanner 1996). The Metropolis-Hastings

algorithm was first introduced as Metropolis algorithm by Metropolis et al. (1953) and

latter generalized by Hastings (1979). The algorithm has many applications and is com-

monly used for numerical integration and optimization. For a thorough review of the

Metropolis-Hastings algorithms, the fundamental theory are well discussed in Chib and

Greenberg (1995).

To sample from a target distribution π(.) = π(θ|y), we start with sensible starting val-

ues θ0 and run a Markov chain with transition matrix satisfying π(i)Pij(.) = π(j)Pji(.)

until the chain settles down to an equilibrium. For the gth iteration of the g = 1, ..., G

simulations, we draw a proposal θ∗ from a known proposal distribution or instrumental

function Pg(θ∗|θg−1). The proposal function can be any density function that is typically

easy to simulate from than the target density π(θ|y). Moreover, the chosen proposal

distribution should allow the chain explores the posterior distribution adequately. Com-

mon proposal densities are uniform distribution, multivariate normal or multivariate-t

that is centred at the current location of the chain.

The realisations for the gth iteration is θg and can assume a proposal θ∗ with probability

α∗ or the previous realization θg−1 with probability 1−α∗. The probability α∗ is defined

as

α∗ = min{ π(θ∗|y)
π(θg−1|y)

Pg(θg−1|θ∗)
Pg(θ∗|θg−1)

, 1}.
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The Metropolis-Hastings algorithm is relatively easy to implement since it requires

the target density π(θ|y) to be defined up to the normalising constant. The con-

stant is usually dropped in the ratio π(θ∗|y)/π(θg−1|y). The proposal θ∗ is automati-

cally accepted when the ratio π(θ∗|y)/Pg(θ∗|θg−1) is increased relative to the previous

π(θg−1|y)/Pg(θg−1|θ∗). Hence, the performance of the acceptance rate depends on the

choice of a particular proposal function. However, it is not necessary that high accep-

tance rates indicate that the algorithm is moving correctly. In some cases, such trends

may indicate that the random walk is moving too slowly on the surface of the targeted

distribution (Tanner 1996; Robert and Casella, 1999). For a simple one dimensional

case, Gelman et al, (1996) suggested that an optimal jumping rule has an acceptance

rate slightly under 0.5, but if the dimension of the parameter vector exceeds 5 the rate

normally decrease to about 0.25. A heavier tailed proposal function that includes the

support for the target distribution should be adopted to improve acceptance rates as

well as reaching the targeted distribution fast. For an interested reader, Robert and

Casella, (1999) has reviewed different approaches of choosing Pg(.|.).

The Gibbs sampling algorithm (Gelman and Gelman, 1984) is another method similar

to the Metropolis-Hastings algorithm. Gibbs sampling algorithm is simpler relative to

Metropolis-Hastings algorithm and is the most implemented MCMC sampling method

when the posterior distribution can be expressed in a fully conditional form. The use a

Gibbs sampler leads to a sequence of draws from conditional distributions to characterize

the joint target distribution π(θ|y). Suppose the targeted distribution has p parameters

such that π(θ|y) = π(θ1, θ2, · · · , θp|y), the sampling process begins sampling θ1 and

choosing the starting values for the remaining p − 1 parameter. In many practical

situations, the starting values θ0
2, · · · , θ0

p are commonly chosen near the posterior mode

or the maximum likelihood estimates. The whole process involves a repeated sequences

of g = 1, · · · , G iterations.

In general, we simulate θi from πg(θi|θ−i,y), which is called the full conditional distri-

butions. The distribution is a function of θi and is obtained by ignoring all components

in θ−i that do not depend on θi. Some of the most commonly used conditional dis-

tributions are multivariate normal, truncated normal, Gamma, etc. For a simple case

that involves conjugate prior distributions, the full conditionals reduce to closed form

distributions that is easy to simulate from. However, many practical situations involve

complex models with full conditionals that cannot simplify to any analytically tractable

expressions (Gilks et al, 1996). For a posterior density that has p parameters and can

be expressed as a full conditional distributions, the Gibbs sampler at the gth iteration

works as follows,
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θg1 ∼ πg(θ1|θ
g−1
2 , · · · , θg−1

p ,y),

θg2 ∼ πg(θ2|θ
g
1, θ

g−1
3 , · · · , θg−1

p ,y),

θg3 ∼ πg(θ3|θ
g
1, θ

g
2, θ

g−1
4 , · · · , θg−1

p ,y),

· · ·
· · ·
· · ·
θgp ∼ πg(θp|θg1, θ

g
2, · · · , θ

g
p−1,y).

(4.6)

The current sampled value θg is always conditioning on past draws which leads to a

sequence of samples in a Markov chain. To compute the posterior means, the Monte

Carlo process require a large number of G iterations (e.g. 10, 000). It is a common

practice to discard realizations for the first set (e.g 1, 000) of “burn-in” iterations. This

helps to ensure that the posterior means are not influenced by the initial values that

were assigned to the parameters. For more explanations on the choice of starting values

and the number of iterations to be discarded, detailed reviews have been documented

in Gelman and Rubin (1992); Casella and George (1999); Gelfand (2000) among others.

4.3.3 Diagnostic tools for MCMC methods

Inferences based on posterior density summaries that are commonly are generated us-

ing MCMC methods, cannot be trusted unless the Markov chain has reached steady

state. In Bayesian analysis, we monitor the MCMC outputs to assess convergence to a

distribution. This calls for specialized diagnostic tools to evaluate if the sampling pro-

cess has generated a representative sample from the anticipated posterior distribution.

However, since diagnostic tests do not provide proof of convergence, it is prudent to

employ more than one method when assessing the quality of samples from an MCMC

algorithm (Smith, 2007). There exist a lot of convergence assessment tools in the liter-

ature. Most convergence diagnostic tools evaluate the marginal posterior distributions.

For example, some methods use different tests to assess the traceplots of outputs from

the MCMC sampler and test if they are stationary. Others methods compare multiple

runs from different starting values and using different random number seeds to deter-

mine whether the chains have converged (Gelman and Rubin, 1992). For an interested

reader, Cowles & Carlin (1995) and Gelman, et al. (2004) have given classical reviews

on various convergence diagnostic methods.

One of the commonly used convergence diagnostic tool is the Gelman & Rubin (1992)

method. The method was first introduced to assess the convergence of individual model

parameters based on the computation of two statistics: the potential scale reduction



Chapter 4. A review on statistical methods 35

factor (PSRF) and the corrected scale reduction factor (CSRF). The PSRF is used

to measure convergence by comparing between-chain and within-chain variances while

CSRF is used to account for the sampling variability in the estimates for the parameter

of interest (Smith, 2007). The PSRF statistics is computed from m independent chains

using the last n samples leading to

PSRF =

√
n− 1
n

+
m+ 1
mn

B

W
,

where B/n is the between-chain variance while W is the within-chain variance. The

between-chain variance (B/n) should be smaller than the within-chain variance (W )

leading to a PSRF that approaches 1. Any value larger than 1 suggests that convergence

has not been attained. The CSRF accounts for the sampling variability and is computed

as

CSRF =

√
n− 1
n

+
m+ 1
mn

B

W

√
df + 3
df + 1

,

where df represents the degrees of freedom based on a t approximation in the posterior

inference. For more details, refer to Gelman & Rubin (1992) and Cowles & Carlin (1995)

and Smith (2007).

The Raftery and Lewis (1992) method uses univariate analysis of a single parameter and

chain. The method is used to determine the number of iterations that should be run.

This is computed using the standard sample size formulas based on binomial variance

(Cowles & Carlin, 1995). Other diagnostic methods of interest include Geweke (1992),

Ritter & Tanner (1992), Roberts (1994), Yu & Mykland (1994) and Mykland, Tiermey,&

Yu (1995).

4.3.4 Issues of concern with MCMC methods

The MCMC based algorithms are commonly used in many Bayesian data analysis. Over

the last decade a number of software packages like WinBUGS (Thomas, Best, and

Spiegelhalter, 2000), OpenBUGS (Thomas, O’Hara, Ligges, and Sturtz, 2006) and some

libraries (e.g. R2WinBugs) in R (R Development Core Team 2006) have been developed

to allow easy implementation of Bayesian methods. However, Bayesian analysis methods

are considered by many to be too slow and far more complicated than classical non-

Bayesian statistical methods. This might be one of the reasons why many commercial

software for statistical analysis such as SAS, SPSS and Stata are mostly focused on

non-Bayesian statistical methods.

One of the major setbacks of Bayesian methods is their dependence upon MCMC based

algorithms that spend a lot of time when computing posterior estimates. Moreover, most
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of the commonly used MCMC algorithms require fast and strong machines that have

large storage capacity. For example, when implementing model selection procedures

such as reversible jump (Green, 1995) or stochastic search variable selection (Smith and

Kohn, 1996), these algorithms are computationally expensive, requiring large memory,

fast processor and involving hours or days to implement especially when working with

data sets that involve thousands of subjects. This is a major concern in data analysis and

has lead to the development of fast approximate methods that bypasses MCMC algo-

rithms. For example, in model selection procedures, most of the methods used are based

on well known approximations methods like expectation maximization (EM) algorithm

(Tipping, 2001) and the variational approximation (Faul and Tipping, 2002). Both ex-

pectation maximization and variational approximation approaches can be accelerated

and they normally provide similar results.

Recently a fast and computationally efficient Bayesian procedure called Relevant Vector

Machine (RVM) (Tipping, 2001) method has been introduced as an alternative. RVM

approach is an Empirical Bayes method that promotes sparseness in estimation of the

basis coefficients by computing the priors from the data and use classical parameter

estimation methods to compute other model parameters while maintaining some of the

benefits of Bayesian analysis methods. Relevance vector machine approach has similar

functional form as the popular Support Vector Machine (SVM) in that it forms a linear

combination of data-centred nonlinear basis functions, but has an advantage in providing

a more flexible alternative in reducing the computational complexity of the Support

Vector Machines (SVM) (Burges, 1998). The RVM method is also thought to have

advantages over other sparse model generating methods like LASSO (Tibshirani, 1996)

in leading to sparser models that are more robust to outliers (Tipping, 2001; Ji, et

al, 2009). The implementation and extension of the Relevant Vector Machine (RVM)

procedure into linear, linear mixed and multi-level models will be discussed in the next

chapters.



Chapter 5

Fast bayesian functional data

analysis of basal body

temperature

5.1 Introduction

In this chapter, we present a general review of the link between the recent methods used

to model the bbt curves and functional data analysis. In particular, the focus is on

functional random coefficients and linear mixed models. This review include informa-

tion on both Bayesian and non-Bayesian methods. We start with an introduction of a

simple functional random coefficients model, followed by a motivation and a theoretical

background of the Multi-task Relevant Vector machine (MT-RVM) method of Ji, et al

(2009) and then implement the method to estimate the bbt curves. To demonstrate the

usability of the approach, we give an extension of the MT-RVM method in functional

linear mixed models that can be used to estimate both the population mean curve as

well as subject-specific deviations.

In reproductive studies, tracking measurement patterns of hormonal level or daily basal

body temperature (bbt) among women can help to identify or predict early pregnancy

loss and occurrence of the ovulation day. In recent years there has been an increased

interest on researches on the distribution of random curves describing such patterns

(Collins, 1996; Dunson, et al., 1999; Bigelow and Dunson, 2008). For example, it is

known that a standard bbt curve from a healthy ovulating female has a biphasic pattern.

This is characterized by a low plateau during the follicular phase, a temperature dip

that occur prior to ovulation, and a sharp rise immediately after ovulation which is

subsequently followed by a luteal phase plateau (e.g., Vincent, 1964; Marshall, 1979).

37
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This characteristic pattern has been used to identify the ovulation day, since several

studies have suggested that ovulation day corresponds to the low point prior to the rise

in bbt (Marshall, 1979; Colombo and Masarotto, 2000). This result is often used as a

basis for the identification of the fertile period during a cycle; in fact the probability of

conception is lower when intercourse occurs outside of the six-day fertile interval ending

on the ovulation day (Dunson et al., 1999). Therefore the estimate of a smooth trajectory

for bbt over the menstrual cycle is of great interest for natural family planning, clinical

and epidemiological applications.

In particular, it is convenient to rapidly predict features of interest based on data ex-

tracted from large database that involve many subjects. Unfortunately, due to hetero-

geneity among subjects, data collection problems, data entry and storage errors, it is

common to have subjects that have sparse and unequally spaced measurements, and

simple statistical tools seem not to work well. Royston and Abrams (1980) and Carter

and Blight (1981) proposed approaches for estimating the shift in bbt as a marker of ovu-

lation and Scarpa and Dunson (2009) uses a mixture of parametric and non parametric

models to fit the curves, by clustering different shapes of functions.

Functional data analysis (FDA) is another ideal tool to estimate a smooth trajectories

resulting from the bbt data characterized with sparseness and unequal cycle lengths.

The main aim of FDA is to explore and highlight important features of a curve. A

trajectory may consist of one or several segments weighted using functional coefficients

(Ramsay and Silverman, 2005). Unfortunately, FDA relies on relatively large number of

basis functions and estimation of functional coefficients becomes time consuming activity

using standard software. A common approximation procedure in FDA is to consider only

a subset of carefully chosen basis functions that can be used for approximation purpose.

However, it can be difficult to choose the basis functions in advance, motivating the

use of adaptive methods that allow uncertainty in basis function selection (Bigelow and

Dunson, 2007; Johnson and Rosen, 2008).

In functional random coefficients models, various model reduction procedures have been

introduced. In Bayesian framework, basis functions selection commonly rely on re-

versible jump algorithms (Green, 1995) or stochastic search variable selection methods

(Smith and Kohn, 1996) that are computationally intensive. For example, a Bayesian

versions of Multivariate adaptive regression spline (MARS) has been proposed by Deni-

son et al, (2002) to automatically select the basis functions. The method has good per-

formance in small to moderate dimensional random coefficients models but the posterior

sampling is based on the slow reversible jump Markov Chain Monte Carlo (RJMCMC).

The use of RJMCMC involves MCMC that requires hours to implement in data sets
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involving thousands of subjects. Hence, raising a practical motivation for fast approx-

imate Bayes approaches that bypass MCMC while maintaining some of the benefits

of a Bayesian analysis. Recent MARS extensions (Sakamoto, 2007), also bypasses the

MCMC algorithms and involves the use of an empirical Bayes approach for selecting

basis functions and knots.

In functional linear mixed model, the selection of the random effects has complication

since the null hypothesis lies on the boundary of the parameter space and the classical

likelihood ratio test statistic no longer valid. To solve this problem Pauler et al. (1999)

and Jiang, et al. (2008) introduced alternative approaches to reduce the dimension of

the random effects model. Recent methods use functional principal component analysis

(James, Hastie and Sugar, 2001; Yao, Muller, and Wang, 2005; Crainiceanu, 2009).

The approaches have good performance in modest dimensional models with moderate

number of subjects, but rapidly becomes computationally infeasible as the number of

the subjects and candidate predictors increases.

In this chapter, we proposes to use a fast Bayesian methodology by approximating the

bbt projectiles using Multi-Task Relevant Vector machine (MT-RVM) method an exten-

sion of Relevant Vector machine (RVM) method (Tipping, 2001; Ji, et al, 2009). RVM

is a fast Bayesian method based on Empirical Bayes methodology and has featured

mostly in Machine Learning especially in signal reconstruction and compressive sens-

ing. Relevant Vector machine is one among several methods that promote sparseness

in estimation of functional coefficients. Other similar methods include; Least Absolute

Shrinkage and Selection Operator (LASSO), Support Vector Machine (SVM) (Tibshi-

rani, 1996; Burges, 1998). Sparseness is a property where the fitted model retains the

least number of basis functions (by having non-zero coefficients), while all the other

basis functions are pruned by setting their corresponding coefficients to zero (Tzikas, et

al, 2005). This property provides a natural mechanism in variable selection leading to a

sparse model that is fast to compute.

We apply the proposed method to the basal body temperature (bbt) data for the Euro-

pean fecundability study (Colombo and Masarotto, 2000). The data are characterized

by missing temperature measurements in some days and there is variability in cycle

lengths among women such that, majority have cycles that ranges between 20 to 40

days. Besides measurement errors which is a common problem with many longitudinal

data, unequal cycle lengths and data sparsity pose a great hindrance to analyze the data

using most available standard software.
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5.2 RVM in random coefficients model

Let yi = (yi1, . . . , yiTi)
′
and zi = (zi1, . . . , ziTi)

′
be vectors for the response and covariates

for the ith woman. A functional model can be represented as

yit = fi(zit) + εit, εit ∼ N(0, σ2
ε ), t = 1, . . . , Ti, i = 1, . . . , N. (5.1)

where fi(.) is a smooth function at zit for subject i and εit is a measurement error.

The functional model in (1) can be represented as random coefficients or linear mixed

model depending on whether the interest is on either subject-specific curves or both the

population and subject-specific curves.

When the interest is to model the subject-specific curves, the functional model in (5.1)

can be represented as a random coefficients model such that the smoothing function is

described as a linear combination of M basis functions

fi(zit) =
M∑
j=1

βijϕj(zit) = xit′βi, (5.2)

where xit = (xit1, · · · , xitM )
′

are the values of the basis functions at zit, parameter βij
is the coefficient for the jth basis function ϕj(.) and βi = (βi1, · · · , βiM )

′
. The basis

functions ϕj can be generated using numerous methods that have been discussed in the

literature (e.g.Hastie, et al. 2001; Ruppert, et al. 2003). Conditionally on the basis ϕ,

expression (5.1) can be expressed in the form of a random coefficients model.

The priors are βij ∼ N(0, α−1
j ), σ−2

ε ∼ Gamma(a, b) and αj ∼ Gamma(c, d). The

parameters α = (α1, · · · , αM )
′

and σ−2
ε are computed from the data as maximum

a posteriori (MAP) estimates. Since these MAP estimates are estimated and shared

among all the subjects, this leads to borrowing of strength across subjects in estimating

subject-specific functions. To promote sparseness over the model coefficients βi, the

hyper-parameters c and d are set close to zero leading to a distribution with a large

spike concentrated at zero and a heavy right tail. The basis functions for which αj is in

the right tail have coefficients that are strongly shrunk toward zero.

5.2.1 Posterior Estimates

The commonly used approach to compute the joint posterior density p(β,α, σ−2
ε |Y )

cannot be implemented since the computation of the posterior density require a normal-

ization that cannot be expressed analytically. An alternative approach is to compute
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the posterior density based on the conditional distribution

p(β,α, σ−2
ε |Y ) = p(α, σ−2

ε |Y )
N∏
i=1

p(βi|yi,α, σ−2
ε ), (5.3)

where Y = (y, · · · ,yN )
′

and β = (β1, · · ·βN ). The density function p(βi|yi,α, σ−2
ε )

is the posterior distribution for the random coefficients βi, while p(α, σ−2
ε |Y ) is the

posterior density for the variance components α and σ−2
ε .

The posterior density for the random coefficients βi is a multivariate normal distribution

p(βi|Y ,α, σ−2
ε ) = N(βi; µ̂i, Σ̂i), (5.4)

where µ̂i = σ−2
ε Σ̂iX

′
iyi is the mean vector and Σ̂i = (A+σ−2

ε X
′
iXi)−1 is the covariance

matrix such that A = diag{α1, · · · , αM} and Xi = (xi1, · · · ,xiM )
′
.

Since it is impossible to express the posterior density for the variance components

p(α, σ−2
ε |Y ) analytically, we use an Empirical Bayes approach to compute the posterior

estimates for α and σ−2
ε . These estimates are computed as MAP estimates as will be dis-

cussed in the next section. The density function p(α, σ−2
ε |Y ) ∝ p(Y |α, σ−2

ε )p(α)p(σ−2
ε )

and both p(α) and p(σ−2
ε ) are assumed to be Gamma density. To compute the esti-

mates for α and σ−2
ε , we assume that the modes for p(α, σ−2

ε |Y ) and p(Y |α, σ−2
ε )p(α)

are equivalent and hence the MAP estimates for p(α, σ−2
ε |Y ) are equivalent to the MLE

estimates from p(Y |α, σ−2
ε ) (Ji et al, 2009).

5.2.2 Empirical Bayes method

Expressing the posterior density for the variance components p(α, σ−2
ε |Y ) is difficult

analytically and the MAP estimates for α and σ−2
ε are computed from the marginal

likelihood p(Y |α, σ−2
ε ), obtained after integrating out βi from p(Y |βi, σ−2

ε ) such that

p(Y |α, σ−2
ε ) =

∫ N∏
i=1

p(Y |βi, σ−2
ε )p(βi|α)dβi

This results to a normal density function p(Y |α, σ−2
ε ) = N(yi; 0,Ci) where the covari-

ance matrix Ci = σ2
ε ITi +

∑M
j=1 α

−1
j xijx

′
ij . The expressions for the estimates of α and

σ−2
ε are obtained from the log-likelihood function `(α, σ−2

ε ) =
∑N

i=1 logN(yi; 0,Ci). We
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differentiate the log-likelihood `(α, σ−2
ε ) with respect to parameters α and σ−2

ε respec-

tively and equating the resulting score equations to zero. This results to

α̂j =
N∑N

i=1 µ
2
ij + Σi,jj

, j = 1, · · · ,M (5.5)

σ̂−2
ε =

∑N
i=1 ||yi −Xiµi||2∑N

i=1(Ti −M −α−1Σi,jj)
. (5.6)

The estimates for α and σ−2
ε are inserted into µ̂i and Σ̂i in equation (5.4) leading to

an interactive procedure alternating between estimation of the parameters in equation

(5.4) and (5.5-5.6) respectively.

However, two related problems arise while implementing the above empirical Bayes ap-

proach when the number basis functions is large. These problems are: estimability prob-

lems leading to lack of convergence and the computation process require large amount

of time especially when dealing with large data sets. Such computation difficulties are

commonly encountered when the dimension of the basis functions is large relative to the

sample size, which is a common practice in many functional analysis work. For example,

when M is large (e.g. M > 10), the inversion of M ×M covariance matrix Σi becomes

impossible leading to estimability problems resulting to lack of convergence of the pro-

cedure. Moreover, when the dataset consists of thousands of subjects, the computation

process may take days.

Potentially these problems can be solved by using a MAP estimation approach that

includes a proper prior to induce a penalty in the procedure that leads to shrinkage

towards the prior and regularization. However, such an approach will be sensitive to

hyper-parameter choice. An alternative approach is to adapt a fast algorithm that leads

to a reduced model with dimension m×m for Σ̂i where m << M . The RVM iterative

algorithm can generate such a sparse model and will be discussed in the next section.

5.2.3 A Fast Empirical Bayes method

Conditioning on the MLE estimates for σ−2
ε , a fast approach to compute the elements

of α can be done sequentially. The algorithm is based on the dependence of the kth

component of α upon the log-likelihood function

`(α, σ−2
ε ) = −1/2

N∑
i=1

{Ti log(2π) + log |Ci|+ yiC−1
i yi}. (5.7)

However, the presence of matrix Ci in the log-likelihood function `(α, σ−2
ε ) makes it

impossible to express the log-likelihood function into two parts -one containing the kth
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component and the other one that does not. Hence, to allow such decomposition, we

first decompose the variance matrix Ci into two part -with and without the contribution

of the kth basis function. This leads to Ci = Ci,−k +α−1
k xikx

′
ik where Ci,−k is the part

that does not have the contribution of the kth basis function. The resulting decomposed

log-likelihood function is

`(α, σ−2
ε ) = `(α−k, σ−2

ε ) +
1
2

N∑
i=1

(
logαk − log |αk + sik|+

q2ik
αk + sik

)

where `(α−k, σ−2
ε ) is the part without the contribution of the kth basis function, sik =

x
′
ikC

−1
i,−kxik and qik = x

′
ikC

−1
i,−kyi. Differentiating `(α, σ2

ε ) with respect to αk and

setting the result to zero yield the score equations,

`(α, σ−2
ε )

∂αk
=

N∑
i=1

s2ik/αk + sik − q2ik
2(αk + sik)2

= 0.

The solutions for the score equations are infeasible to express analytically except for a

trivial case when αk =∞. The exact solutions require finding the zeros of a polynomial

of degree 2N − 1 which is computationally expensive. An alternative method to avoid

such computation complexities is to assume that αk << sik where sik = x
′
ikC

−1
i,−kxik,

leading to the approximate estimate

α̂k ∼=


N∑N

i=1(q2ik−sik)/s
2
ik

if
∑N

i=1
(q2ik−sik)

s2ik
> 0,

∞ otherwise.
(5.8)

where qik = x
′
ikC

−1
i,−kyi and Ci,−k is the component of Ci without the kth basis function

xik. When α̂k = ∞ the posterior mean µ̂ik becomes zero and the corresponding basis

function xik is not in the model for all i. But when α̂k <∞ then µ̂ik 6= 0 and the basis

function xik is included in the model for all i.

The selection of the basis functions is done iteratively. We first start with an empty

model and select the basis function that has the largest impact on the log-likelihood

`(α, σ−2
ε ). The subsequent steps on selection of the remaining basis functions involves

three operations on xik. Basically, the selection process involve; addition, deletion

and updating α̂k. Addition of the basis function xik occurs when
∑N

i=1
(q2ik−sik)

s2ik
> 0

and xik is not in the model. An update for α̂k occurs when xik is already in the

model and
∑N

i=1
(q2ik−sik)

s2ik
> 0. We delete the basis function xik from the model when∑N

i=1
(q2ik−sik)

s2ik
< 0. The estimation process involves computation of σ̂−2

ε and α̂k in equa-

tions (5.5-5.6) that are used to update the mean vector µ̂i and covariance matrix Σ̂i in
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equation (5.4). For a concrete justification of this type of approximation refer to Ji et

al 2009.

5.3 Extension to linear mixed model

The discussion in the previous section only allows estimation of subject specific curves

but not the population average. To generate the population average curve we extend

model (5.2) into linear mixed model that can captures both the subject specific and pop-

ulation average components. The functional model in equation (5.1) can be generalized

into functional mixed model. The smoothing function is expressed as

fi(zit) =
M∑
j=1

βjϕj(zit) +
M∗∑
j=1

bijφj(zit) = xit
′β +w

′
itbi,

where β = (β1, · · · , βM )
′

and bi = (bi1, · · · , biM∗)
′

are fixed and random effects respec-

tively. Functions ϕ = {ϕj}Mj=1 and φ = {φj}M
∗

j=1 are basis functions generated using

methods discussed in the literature (Ramsay and Silverman, 2005). This results into the

classical linear mixed model

yi = Xiβ +W ibi + εi, bi ∼ N(0,Ω), εi ∼ N(0, σ2
ε ITi), i = 1, . . . , N, (5.9)

where yi = (yi1, · · · ,yiM )
′
, Xi = (xi1, . . . ,xiTi)

′
, W i = (wi1, . . . ,wiTi)

′
and εi is

a Ti × 1 vector of error terms. Implementation of the RVM procedure require inde-

pendence among all the random components bi = (bi1, · · · , biM∗)
′

and εi leading to a

diagonal covariance matrix Ω = diag{ω1, · · · , ωM∗}. The priors are βj |αj ∼ N(0, α−1
j ),

αj |c1, d1 ∼ Gamma(c1, d1), ωj |c2, d2 ∼ Gamma(c2, d2) and σ−2
ε |a, b ∼ Gamma(a, b).

5.3.1 Parameter estimates

Inference in Bayesian data analysis is based on the posterior distribution of the param-

eters. The joint posterior distribution for the model parameters is,

p(Θ|Y ) ∝ p(Y |β, b, σ−2
ε )p(β|α)p(b|ω)p(α)p(ω)p(σ−2

ε ),

where Θ = {β, b,α,ω, σ−2
ε }, Y = (y1, · · · ,yN )

′
and ω = (ω1, · · · , ωM∗)

′
are the diago-

nal elements of the covariance matrix Ω. The posterior p(Θ|Y ) is analytically intractable

since the normalizing constant does not have a closed form solution. To approximate
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p(Θ|Y ), we use the decomposition,

p(Θ|Y ) = p(b|Y ,β,ω, σ−2
ε )p(β|Y ,α,ω, σ−2

ε )p(α,ω, σ−2
ε |Y ), (5.10)

with the first two terms obtained exactly as written in equation (5.4). The posterior

distribution for β is,

p(β|Y ,α,ω, σ−2
ε ) = N(β; µ̂, Σ̂), (5.11)

where µ̂ = Σ̂(
∑N

i=1X
′
iV
−1
i yi) and Σ̂ = (A+

∑N
i=1X

′
iV
−1
i Xi)−1. Matrix V i = σ2

ε ITi+

W iΩ−1W
′
i, where A is a diagonal matrix with elements α. The posterior distribution

for the random effects is,

p(b|Y ,β,ω, σ−2
ε ) =

N∏
i=1

N(bi; υ̂i, Ω̂i), (5.12)

where υ̂i = σ−2
ε Ω̂iW

′
i(yi −Xiβ) and Ω̂i = (Ω + σ−2

ε W
′
iW i)−1.

Unfortunately, the posterior p(α,ω, σ−2
ε |Y ) for the variance components lacks a simple

form. Therefore, we propose an empirical Bayes procedure for sparse MAP estimation

in the next subsection.

5.3.2 Empirical Bayes for variance components

The posterior p(α,ω, σ−2
ε |Y ) is analytically intractable, and our goal is to rapidly con-

duct approximate Bayes inferences, while favouring sparsity. To accomplish this, we

propose an empirical Bayes approach in which we obtain plug-in estimates for α, ω and

σ2
ε that favor a sparse shrinkage structure, with many elements of α and ω set very

close to zero. As empirical Bayes estimates of ω, σ−2
ε and α, we use the modes of the

generalized log-likelihood functions l(ω, σ−2
ε ) and l(α) to be defined below.

We consider a joint density function for the variance parameters as p(α,ω, σ−2
ε |Y ) ∝

p(α)p(ω)p(σ−2
ε )p(Y |α,ω, σ−2

ε ) where the density functions p(α), p(ω) and p(σ−2
ε ) are

the Gamma distributions that were defined in the previous section. The likelihood

function p(Y |α,ω, σ2
ε ) is obtained after integrating out bi = (bi1, · · · , biM∗)

′
and β =

(β1, · · · , βM )
′

such that,

p(Y |α,ω, σ2
ε ) =

∫ N∏
i=1

p(yi|β, bi, σ2
ε )p(β|α)p(bi|ω)dbidβ. (5.13)

We assume that p(β|α) = N(β; 0,A−1) where A = diag {α1, . . . , αM}, while the distri-

bution for the jth random effect is bij ∼ N(0, ω−1
j ) for j = 1, · · · ,M∗ and i = 1, · · · , N .
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Let p(Y |α,ω, σ2
ε ) = N(Y ; 0,C), where C = V +XAX

′
, X = (X1, . . . ,XN )

′
is the

design matrix and V = diag(V 1, . . . ,V N ). We follow an empirical Bayes approach

and choose non-informative priors for α, ω and σ2
ε by setting all the gamma hyper-

parameters equal to zero. The mode of the posterior p(α,ω, σ−2
ε |Y ) is then equivalent

to the maximum of log p(Y |α,ω, σ−2
ε ). This can be obtained by alternating conditional

maximization iterating between calculating the conditional MLE of α holding ω and

σ−2
ε fixed and the conditional MLE of ω, σ−2

ε holding α fixed.

We consider to maximize `(α;ω, σ−2
ε ) = −1

2 {N log(2π) + log |C|+ Y ′C−1Y } to obtain

the estimates for α. Unfortunately the estimates for α cannot be computed analytically

due to the presence of the square matrix C in the log-likelihood function `(α;ω, σ−2
ε ).

Following a parallel approach as in Ji et al. (2009) while taking fixed values of ω and

σ2
ε , we re-write the log-likelihood function in a decomposed representation leading to,

`(α;ω, σ−2
ε ) =

−1
2

{
N log(2π) + log |Σ̂−1|+ log |A|

+ log |V −1|+ µ̂Aµ̂+ (Y −Xµ̂)
′
V −1(Y −Xµ̂) }. (5.14)

where µ̂ and Σ̂ are the posterior mean and covariance for β as in equation (5.5). The

estimate for the jth element of α is,

α̂j =
1

µ̂2
j + Σ̂jj

j = 1, . . . ,M, (5.15)

where µ̂j and Σ̂jj are the jth elements of µ̂ and Σ̂ respectively. Therefore, the estimates

for α̂ = (α̂1, . . . , α̂M )
′

are functions of both the mean and covariance of β. The compu-

tation of α̂j involves an iterative procedure that estimates the variance hyper-parameter

αj in equation (5.15) and updates the mean vector µ̂ and covariance matrix Σ̂ as in

equation (5.11).

Let `(ω, σ−2
ε ;α) = −1/2

∑N
i=1 Ti log(2π) + log |V −1

i |+ (yi −Xiµ̂)
′
V −1
i (yi −Xiµ̂) be a

conditional log-likelihood for ω and σ−2
ε givenα. We maximize `(ω, σ−2

ε ;α) to obtain the

estimates for ω and σ−2
ε . Unfortunately, the presence of matrix V i in the log-likelihood

function causes problem in the computation of ω and σ2
ε . But upon decomposing the

log-likelihood `(ω, σ−2
ε ;α) we obtain,

`(ω, σ−2
ε ;α) =

−1
2

N∑
i=1

log |Ω̂−1
i |+ log|Ω−1|+ log |σ2

ε I|

−σ2
ε ||yi −Xiµ̂−W iυ̂i||2 + υ̂

′
iΩυ̂i,
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where υ̂i and Ω̂
−1
i are the posterior mean and variance for bi. We then obtain,

ω̂j =
N∑N

i=1(υ̂2
ij + Ω̂ijj)

, (5.16)

σ̂2
ε =

∑N
i=1 ||yi −Xiµ̂−W iυ̂i||2∑N
i=1(Ti −M +

∑n
j=1 ωjΩ̂ijj)

,

i = 1, . . . N, j = 1, . . .M, (5.17)

where υ̂ij is the jth component of υ̂i and Ω̂ijj is the jth diagonal element of Ω̂i. Both ω̂j
and σ̂2

ε are functions of υ̂i and Ω̂i, which leads to an iterative algorithm that alternates

between updating ω̂j and σ̂2
ε via equations (5.16)-(5.17) and updating the mean and

covariance of the random effects as in equation (5.12).

Two problems arise when implementing the above empirical Bayes approach when the

number of fixed and random effects is large. First, the computational time increases

dramatically for large M and/or M∗ due to the need to invert M ×M and M∗ ×M∗

matrices at each step of the iterative procedure. In addition, when M and/or M∗ are

large relative to the sample size, estimability problems can arise that lead to lack of

convergence of the procedure. Potentially this can be solved by using a MAP estimation

approach that includes a proper prior to induce a penalty in the procedure that leads

to shrinkage towards the prior and regularization. However, such an approach will be

sensitive to hyper-parameter choice. An alternative is to adapt a fast algorithm that

will bypass the inversion step leading to a reduced model with dimension m ×m and

m∗ × m∗ for both Σ̂ and Ω̂i respectively where m << M and m∗ ≤ m. The RVM

iterative algorithm can generate such a sparse model and will be discussed in the next

section.

5.3.3 A fast MT-RVM method

A fast MT-RVM approach can be used to hasten the estimation process for α and

ω while overcoming computational problems that were highlighted before. The RVM

approach reduces the dimensions of Xi and W i by discarding M −m columns of Xi

and M∗ −m∗ columns of W i. These columns correspond to fixed and random effects

that can be excluded, since their posteriors are concentrated at zero. The posterior for

βj is concentrated at zero when α̂−1
j = 0, while the posterior for bij is concentrated at

zero for all i when ω̂−1
j = 0.

To estimate α, we consider a conditional log-likelihood `(α;ω, σ−2
ε ) and partition it into

two parts; one with and one without the kth element of α. To achieve this decomposition,
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the covariance matrix has to be partitioned into C = Ck + C−k, such that Ck =

α−1
k X .kX

′
.k and C−k = V +

∑M
j 6=k α

−1
j X .jX

′
.j where X .j is the jth column of matrix

X. The partitioned log-likelihood function becomes,

`(α;ω, σ−2
ε ) = `(α−k;ω, σ−2

ε ) +
1
2

(logαk

− log |αk + sk|+
q2k

αk + sk
),

where sk = X
′
.kC

−1
−kX .k and qk = X

′
kC
−1
−kY . The estimate for αk is

α̂k =


s2k

q2k−sk
if q2k > sk,

∞ otherwise.
(5.18)

This estimate determines the value of the fixed effect β̂k. Depending on the values of qk
and sk, three operations can take place on X .k, including addition, deletion or update

of the coefficient. At the beginning of the computation process we fix all α̂k =∞ which

corresponds to an empty model with β = 0. Subsequent iterations involve selection of a

candidate X .k that has the largest contribution to the log-likelihood `(α;ω, σ−2
ε ). After

the selection, we compute the values of qk and sk. When q2k > sk we add X .k into the

model or update α̂k if X .k was already in the model. Deletion occurs when q2k < sk and

X .k is currently in the model.

The components of ω can be computed based on the conditional log-likelihood function

`(ω;α, σ2
ε ) = −1/2

∑N
i=1 Ti log(2π) + log |V −1

i |+ (yi−Xiµ̂)
′
V −1
i (yi−Xiµ̂). Similarly,

the log-likelihood is partitioned into two parts; one with and one without the kth compo-

nent of ω. To allow such decomposition, we first partition matrix V i into two parts such

that V i = V i,−k + V ik, where V i,−k = σ2
ε I +

∑M∗

j 6=k α
−1
j wijw

′
ij and V ik = α−1

k wikw
′
ik.

The decomposed log-likelihood becomes,

`(ω;α, σ2
ε ) = `(ω−k;α, σ2

ε ) +

−1
2

N∑
i=1

(
logωk − log |ωk + s∗ik|+

q∗2ik
ωk + s∗ik

)

where s∗ik = w
′
ikV

−1
i,−kwik and q∗ik = w

′
ikV

−1
i,−k(yi −Xiµ̂). Differentiating `(ω;α, σ2

ε )

with respect to ωk and setting the result to zero yields the score equations,

`(ω;α, σ2
ε )

∂ωk
=

N∑
i=1

s∗2ik /ωk + s∗ik − q∗2ik
2(ωk + s∗ik)

2
= 0.
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The solutions from the above equation are infeasible to express analytically except for

a trivial case where ωk = ∞. The exact solutions require finding the zeros of a poly-

nomial of degree 2N − 1 which is computationally expensive. A method to avoid such

complexities is to assume that ωk << s∗ik, leading to the approximate estimate

ω̂k ∼=


N∑N

i=1(q∗2ik−s
∗
ik)/s

∗2
ik

if
∑N

i=1
(q∗2ik−s

∗
ik)

s∗2ik
> 0,

∞ otherwise.
(5.19)

For a justification of this type of approximation, refer to Ji et al. (2009).

The computation of the random effects is conditioned on the fixed effects that are already

in the model and it involves three operations: add, update and delete. Addition occurs

when
∑N

i=1
(q∗2ik−s

∗
ik)

s∗2ik
> 0 and wik is not in the model, while an update occurs when

wik is in the model and
∑N

i=1
(q∗2ik−s

∗
ik)

s∗2ik
> 0. Deletion occurs when

∑N
i=1

(q∗2ik−s
∗
ik)

s∗2ik
< 0

and wik is currently in the model. Updating vectors s∗ and q∗ is based on the values

from the previous iteration. The final model tends to have most of the ωj = ∞, which

corresponds to bij = 0 for all i (exclusion of the random effects).

At each iteration, the algorithm computes or updates one component of α and ω at a

time and this helps to overcome the problem encountered while trying to invert matrices

Σ̂ and Ω̂i. However, the computation process in this sequential algorithm requires a lot

of iterations to reach convergence. To accelerate convergence, we choose and update the

fixed and random effects that lead to the largest increase in the log-likelihood functions

`(α;ω, σ−2
ε ) and `(ω;α, σ2

ε ), respectively. The algorithm is computationally demanding

when working with large datasets but it is an improvement over the previous approach

that required inversion of Σ̂ and Ω̂i. The resulting model has m instead of the original

M fixed effects and m∗ instead of original M∗ random effects. For the selections of the

basis functions for the fixed and the random effects, we follow the algorithm discussed in

Tipping (2001) and Ji et. al (2009) using the simplified expression for different quantities

discussed in Appendix A.

5.4 Results

The research is motivated by the basal body temperature data for the European fecund-

ability study (Colombo and Masarotto, 2000). There were 880 women in the study aged

between 18 and 40 years, who were not taking hormonal medications or drugs affecting

fertility, and had no known impairment of fecundity. The subjects kept daily records of

cervical mucus or basal body temperature measurements from at least one menstrual
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cycle, and they recorded the days during which intercourse and menstrual bleeding oc-

curred. For more details about the study, refer to Colombo and Masarotto (2000). In

this chapter we considered the bbt measurements from 520 menstrual cycles where each

subject contributed one menstrual cycle.

Typically a standard bbt curve has biphasic shape that is characterized with three phases

representing the pre-ovulation, ovulation and post-ovulation periods. Identification of

the ovulation day was based on three over six rule or a dip that is followed by a sharp

rise in bbt (Colombo and Masarotto, 2000). Practically it is common to observe many

menstrual cycles with wide fluctuations in bbt measurements resulting to false nadirs

and peaks. Hence, it is difficult to replicate a standard bbt pattern from data collected

from many cycles. Hormonal fluctuation is one among many causes that can interfere

with the pattern of a bbt curve. Other causes include: less amount of sleep, sleep

disturbances, ambient bedroom temperature, food ingestion and fluctuating emotional

state (Colombo and Masarotto, 2000).

Other functional data analysis methods have been proposed to model the bbt data. For

example, Scarpa and Dunson (2008) proposed a Bayesian semi-parametric model based

on nonparametric contamination of a linear mixed effects model. The implementation of

this approach relies on a highly computational intensive MCMC algorithm and our goal

is to obtain a fast approximate Bayes approach that can be implemented much more

rapidly, while obtaining smooth bbt trajectories. Hence, to compare the performance of

the RVM approach with an MCMC based approach, we used the Wand and Ormerod

(2008) subject specific approach instead of the Scarpa and Dunson (2008) method since

it cannot generate smooth curves.

5.4.1 Subject-specific profiles

To implement the RVM procedure into a random coefficients model, we used the cubic

B-splines (Ramsay and Silverman, 2005) to generate the basis functions ϕ. Following the

Wand and Ormerod (2008) approach, the basis functions were generated based on the

standardized values of time covariate (zi). The number of the generated basis functions

was 27 cubic B-splines with 23 interior knots. In addition, we added two columns

containing 1′s and zi (i.e. {1, zit}Tit=1). Hence, the dimension for the design matrix was

Xi is Ti × 29 where M = 29.

Table 5.1 presents the computed posterior mean estimates µ̂i for two menstrual cycles

generated from the random coefficients model using both RVM and MCMC procedures.

The MCMC based curves are estimated using 29 non-zero basis coefficients while the

RVM method uses only three non-zero basis coefficients. We implemented the two
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Parameter estimates
Basis no. RVM1 RVM2 MCMC1 MCMC2

1 0.000 0.000 -0.036 (-0.219, 0.159) 0.025 (-0.102, 0.152)
2 0.684 (0.645, 0.722) 0.661 (0.623, 0.699) 0.647 ( 0.437, 0.849) 0.631 (0.426, 0.835)
3 0.000 0.000 -0.082 (-13.254, 11.721) 0.032 (-5.108, 5.172)
4 0.000 0.000 -0.175 (-13.875, 13.596) -0.312 (-24.737, 24.113)
. . . . .
. . . . .
. . . . .
25 0.000 0.000 4.104 (-2.507, 14.383) 0.451 (-0.275, 1.177)
26 0.000 0.000 -0.627 (-5.773, 4.770) 1.429 (-10.299, 13.157)
27 9.215 (8.492, 9.938) 6.188 (5.702, 6.674) 7.860 ( 2.597, 11.446) 3.708 (1.225, 6.190)
28 2.295 (1.922, 2.667) 0.000 2.150 ( 0.207, 3.961) 1.970 (0.189, 3.750)
29 0.000 1.356 (1.135, 1.576) -0.292 (-1.018, 0.399) 1.258 (-1.869, 4.385)
Time spent 0.59 sec 0.57 sec 19.30 sec 16.34 sec

Table 5.1: A table for the parameter estimates for two bbt cycles.

methodologies using R software (version 2.8.1) on Pentium IV, 2.4GHz, 512MB, Win-

dows XP computer platform. On time factor, the MCMC based method takes 19.30

and 16.34 seconds while the RVM method takes 0.59 and 0.57 seconds to estimate the

two bbt curves respectively. Figure 5.1 presents estimated curves for the two bbt cycles

using the two procedures. The continuous and dashed lines represent the estimated

curves generated by the MCMC based and RVM methods respectively. The two sets of

thin dashed lines and the grey region in the plots represent the 95% credible band for

the RVM and the MCMC based methods respectively. Hence, the RVM method takes

a shorter time relative to the MCMC based method given that the quality of the fitted

curves is almost the same.
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Figure 5.1: Plots of bbt curves
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5.4.2 Effects of adding more observations

It might be of interest to evaluate the performance of the RVM method with the increase

of the number of observations. Potentially, we expect that the gap between the curves

from the two methods to narrow down as the number of observations increases. Similarly,

the estimated non-zero random coefficients from the two methods are also expected to

be identical at after a certain number of observations. However, we do not know the

threshold number of observations when the two curves or non-zero parameter estimates

look identical.

To assess the performance of the MT-RVM with the increase in the number of observa-

tions per cycle, we generate 30 biphasic curves that mimic the shape of the bbt curve.

The curves are generated using a sine function,

yit = vi + ρizit sin(10zit − ri) + εit, t = 1, 2, . . . 27, i = 1, 2, . . . 30,

where covariate zit ∼ unif(0, 1), while vi ∼ unif(−1, 1) and ri ∼ unif(−1, 1) are the

vertical and horizontal shift parameters and ρi ∼ unif(0.5, 1.5) controls the amplitude

of the curves. Each curve had 27 observations and we generated the basis functions

using the method used in the previous section. Figure 5.2 shows one of the curves

generated using the sine function. The plot shows three curves namely: the true curve,

the estimated curve using MCMC and MT-RVM methods.

The computation of the basis coefficients is based on the two methods -an MCMC based

and the MT-RVM methods. To compare the estimation of the basis coefficients from

the two methods as the number of observations increases, we computed Reconstructive

Error defined as

REl =
1
N

N∑
i=1

||βRVMi − βMCMC
i ||

||βRVMi ||
, l = 27, . . . 227.

Reconstructive error is a measure that captures the differences between the two sets of

parameters estimates from the two methods. After the computation of the coefficient

estimates and the reconstructive error for the initial model, we subsequently simulated

additional 200 observations for each cycle. After each increment, we re-computed the

basis functions Xi for the new data, computed the basis coefficients using the two

methods and then re-computed the reconstructive error value. We plot the REl against

the number of observations (l) as shown in figure 5.3.

From the plots, it is evident that an increase in the number of observations leads to

a gradual decrease in the reconstructive error but the decreasing trend reaches to a

constant value after about 150 observations. However, the reconstructive error curve
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Figure 5.2: Estimated sine curves.

remains constant at a non-zero RE value since most of the non-relevant basis coefficients

from the MCMC based method are non-zero while their corresponding basis coefficients

from the MT-RVM method are zero.

5.4.3 Subject-specific and population average profiles

Similarly to implement the RVM procedure for a linear mixed model, the cubic B-

splines (Ramsay and Silverman, 2005) were used to generate the basis functions ϕ and

φ. Following Wand and Ormerod (2008) approach, the two sets of the basis functions

were generated based on the standardized values of time covariate (zi). Both design

matrices Xi and W i, have a total of M = M∗ = 29 columns. The first two columns

in both matrices contain 1′s and zi (i.e. {1, zit}Tit=1) while the remaining columns are

generated from 27 cubic B-splines with 23 interior knots. Hence, both Xi and W i

matrices have dimensions Ti × 29 such that M = M∗ = 29.

The RVM and the MCMC based procedures for the linear mixed model were imple-

mented on data for the 520 bbt cycles. The final RVM model has m = 3 fixed effects

(basis functions: 1, 2 and 28) and m∗ = 10 random effects (basis functions: 1, 2, 28,
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Figure 5.3: A plot for RE against the number of observations.

29, 9, 14, 27, 12, 11 and 16). Figure 5.4 shows some estimated bbt curves from six ran-

domly selected subjects based on the RVM method. The continuous line represent the

estimated bbt curve while the gray region represents the 95% confidence band. Figure

5.5 shows a plot for the population and subject specific curves based on the estimates

from the RVM procedure. The thick black curve represents the population average bbt

curve while the thin gray curves represent the estimated subject specific bbt curves.

The interval that is characterized with a gentle rise in bbt curve is beleived to the most

probable period in the menstrual cycle when majority of women experience ovulation.

5.4.4 Prediction

To evaluate the predictive ability of the proposed RVM procedure, we conducted an

out-of-sample prediction. Typically, the process involves randomly dropping a certain

percentage of observations (e.g. 20%, 30%, 50%) in each cycle, generate the basis func-

tions, fit a model using an appropriate method and then estimate the curves. Based

on the parameter estimates generated using the reduced data, we predict the dropped

observations. The computation involves estimation of both the mean and the credibility

interval for the predicted values. In this application, we dropped 20% of the total ob-

servations chosen at random from each women and then the RVM procedure was used
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Figure 5.4: Estimated bbt curves and the 95% confidence band from the RVM pro-
cedure.

Figure 5.5: Estimated population and subjects specific bbt curves from the RVM
procedure.
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to estimate the model parameters. Based on the parameter estimates from the RVM

procedure, we predicted the 20% dropped bbt values. To assess the predictive ability of

the RVM procedure, we computed the correlation value between the predicted 20% that

were dropped and their corresponding fitted values when all observations are present.

The correlation value was 0.80.

Figure 5.6 shows the predicted bbt values from four randomly selected subjects based

on the RVM procedure. The thick line and the gray region in each plot represents the

estimated curve and the 95% credibility band based on all observations. The “+” sign

along the estimated curve shows the mean estimate of the bbt value that would latter be

dropped and then predicted. The star (∗) at the middle of a vertical line represent the

predicted bbt value when 20% of the observations are excluded and the small vertical

lines represent the 95% predictive credibility intervals. However, we note that for those

predicted bbt values that have narrow credibility intervals, the star and the “+” sign are

more visible than the horizontal lines (credibility intervals) which are concealed within

the star (∗).

A high correlation value between the fitted and the predicted bbt values has substantial

clinical implications. This is because women may be able to collect fewer bbt observa-

tions without greatly reducing the accuracy of the estimated bbt curve over the cycle.

Since most of the data collected in reproductive studies are commonly sparse, the results

from the out-of-sample prediction for the proposed procedure suggest that moderate data

sparseness does not have a strong effect on the accuracy of the estimated curves.

5.5 Discussion

In the literature, many data smoothing procedures have been proposed to estimate non

linear curves. For example, Brumback and Rice, (1998), used penalized smoothing spline

mixed-model to generate smooth curves for multi-level data. To reduce the dimension

of the data Crainiceanu (2009) used Functional Principal Component Analysis (FPCA)

on linear mixed models to generate sparse models that can approximate non-linear

curves. However, these MCMC based approaches do not allow fast computation since

the computation relies on slow and computational intensive MCMC algorithms. The use

of the RVM method can helps hasten the computation process leading to a faster model

building process that can simultaneously address the two variable selection problems at

a less computational cost.

Multi-task Relevant Vector Machine (MT-RVM) approach has been used in machine

learning especially in signal reconstruction and compressive sensing applications Ji et
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Figure 5.6: Estimated bbt curves based on the RVM method and the predicted 20%
out of sample bbt values.

al, (2009). However, the application of this approach has not featured in applications

that involve smoothing non-linear curves using penalized spline basis functions. In

this chapter we demonstrate the use of RVM as an alternative approach to computer

intensive methods that rely on MCMC. The method is fast and can be used in large

dimensional functional models to generate sparse random coefficients and linear mixed

models that can be used to rapidly estimate non-linear curves from massive datasets. In

this application the RVM procedure was used to smoothen non-linear bbt curves that

feature commonly in many reproductive studies.

In linear model there exist numerous variable selection procedures where variable selec-

tion procedure can be based on likelihood ratio tests, goodness-of-fit criteria and other
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methods that are commonly applied in linear regression models. However, in linear

mixed model framework, the variable selection procedures for the random effects nor-

mally fail due to complications that arise since the null hypothesis lies on the boundary

of the parameter space. Hence, the likelihood ratio (LR) test statistic is no longer valid.

This work proposes a fast approximate Bayes approach for simultaneous selection of

both fixed and random effects to fit a linear mixed effects model. In adapting RVM

method to perform variable selection, we considered a linear mixed model that assumes

independent random effects. This is not always possible in many practical situations;

hence it is of interest to extended the use of RVM methodology into linear mixed model

with correlated random effects.

The advantage of our approach is not only on computational speed but it also allows

for better generalization performance which leads to sparse generalized linear mixed

models. This aspect can provide inference for a wide variety of models at a moderate

computational cost. For example, this approach can easily be extended to accommodate

multiple predictors, linear mixed effect models and probit models where multiple binary

categorical outcomes can be handled using data augmentation (Albert and Chib, 1993).

In the next chapter, we generalize the implementation of the MT-RVM method into

classical linear mixed model with correlated random effects to generate sparse linear

mixed model models. Such generalization can easily be extended into LME models that

can handle hierarchical data where a woman can have data from multiple cycles.



Chapter 6

Fast approximate bayesian

functional mixed effects model

6.1 Introduction

In this chapter we present an extension of the MT-RVM procedure. We develop a more

flexible generalization of the MT-RVM in linear mixed models that allows shrinkage

towards a non-zero covariance in the random effects. In particular, we implement the

RVM procedure to a general LME model that has correlated random effects. We use the

approach of Chen and Dunson (2003) to generate uncorrelated variables that can easily

be implemented in MT-RVM methodology. We also present a simulation study and an

application to real data. In the simulation study, we compares the performance of the

MT-RVM method relative to other related competitive methods.

In clinical studies, it is routine to collect repeated measurements of a biomarker or other

variable. Although the measurements for an individual are often sparse and unequally-

spaced, with routine entry of patient information into computer data bases, it is in-

creasingly common to have data available for massive numbers of individuals. Ideally,

physicians would have automated tools available for utilizing information in the data

base to rapidly estimate and predict the trajectory for a current patient.

Our motivation is drawn from reproductive applications collecting basal body tempera-

ture (bbt) or reproductive hormone measurements over the menstrual cycle. For women

attempting conception, it is important to identify the day of ovulation, as intercourse

has a near zero probability of resulting in conception if it occurs outside of the six-day

fertile interval ending on the ovulation day (Dunson, Weinberg, Perreault and Chapin,

1999). In addition, healthy menstrual cycles exhibit characteristic trajectories in bbt

59
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and hormones, so that the trajectories can be used to distinguish healthy ovulatory

cycles from cycles with possible dysfunction. Hence, it is of interest to estimate the

trajectories over the menstrual cycle based on the data available for that cycle, while

borrowing information flexibly from other cycles in the data base.

As for other types of functional data (Ramsay and Silverman, 2005), it is common to

have missing data in bbt or hormone data, and there are different numbers and spacings

of measurements for different individuals. In addition, there is substantial heterogeneity

in the curve shapes, with parametric normal random effects models providing a poor

characterization of the data for unhealthy individuals (Scarpa and Dunson, 2008). For

sparse functional data, it is common to rely on functional mixed effect models, which

characterize a baseline curve and additive covariate effects using splines (Lin and Zhang,

1999; Guo, 2004). Additional discussions on connection between spline smoothing meth-

ods and mixed models can be found in Brumback and Rice (1998); Rice and Wu (2001);

Durban, Harzelak, Wand and Carrol (2005). However, it can be difficult to choose the ba-

sis functions in advance, motivating the use of adaptive methods that allow uncertainty

in basis function selection (Bigelow and Dunson, 2007; Thompson and Rosen, 2008).

Other dimension reduction strategies include the use of functional principal component

analysis (James, Hastie and Sugar, 2001; Yao, Muller and Wang, 2005; Crainiceanu,

2009).

Bayesian methods are useful for accommodating uncertainty in basis selection, with pos-

terior computation relying on Markov chain Monte Carlo (MCMC) algorithms, such as

reversible jump (Green, 1995) or stochastic search variable selection (Smith and Kohn,

1996). However, implementation of the algorithms is computationally expensive. Hence,

there is a clear practical motivation for fast approximate Bayes approaches that bypass

MCMC while maintaining some of the benefits of a Bayesian analysis. In the setting

of estimation of a single function, such as a non-linear regression curve or multivari-

ate regression surface, a rich variety of approaches have been proposed. For example,

Krivobokova, Crainiceanu and Kauermann (2008) recently proposed a method for lo-

cally adaptive smoothing using P-splines implemented with the Laplace approximation

to the marginal likelihood. Sakamoto (2007) proposed an empirical Bayes approach for

selecting basis functions and knots using an alternative approximation to the marginal

likelihood.

In the machine learning literature, the relevance vector machine (RVM) (Tipping, 2001)

is widely used for function estimation. RVM penalizes the basis coefficients through a

scale mixture of normals prior, which is carefully-chosen so that maximum a posteriori

(MAP) estimates of many of the coefficients are zero. RVM is one among several methods

that promote sparseness in estimation of basis coefficients, providing a more flexible
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alternative to Support Vector Machines (SVM) (Burges, 1998). RVM is also thought

to have advantages over LASSO (Tibshirani, 1996) in leading to a sparser solution that

is more robust to outliers (Tipping, 2001; Ji, Dunson and Carin, 2009). Sparseness

is a property where the fitted model retains the least number of basis functions (non-

zero basis coefficients), while all the other basis functions are pruned by setting their

corresponding coefficients to zero.

Motivated by bbt data from the European fecundability study (Colombo and Masarotto,

2000), this chapter introduces a more flexible generalization of the RVM applied to auto-

mated selection of fixed and random effects in a functional mixed model with correlated

random effects. A related problem was considered by Ji et al. (2009) who proposed a

multi-task relevance vector machine (MT-RVM) procedure based on wavelet bases to

reconstruct multiple signals from compressive sensing measurements. Their approach

allows basis function selection within a restricted class of models that assumes that

the distribution of the basis coefficients is centered at zero with diagonal covariance.

Centering at zero does not allow shrinkage towards a population-averaged curve and

independence of the random effects is an unrealistic assumption in many longitudinal

and functional data analysis applications. The generalization of the MT-RVM method-

ology to allow separate fixed and random effects and correlated random effects is not at

all straightforward and represents the primary methodological advance in this chapter.

To facilitate the extension, we rely on a modified Cholesky decomposition proposed by

Chen and Dunson (2003) and further justified by Pourahmadi (2007).

6.2 Functional Data Analysis Model

6.2.1 Background and motivation

Functional data analysis models have been discussed extensively in the literature (Ram-

say and Silverman, 2005; Ruppert and Carroll, 2000; Ruppert, et al. 2003). We consider

observations from the ith subject with response vector yi = (yi1, . . . , yiTi)
′

and covari-

ate vector zi = (zi1, . . . , ziTi)
′
. Using the tth observation for the ith subject, a simple

functional model is represented as,

yit = fi(zit) + εit, εit ∼ N(0, σ2
ε ), t = 1, . . . , Ti, i = 1, . . . , N. (6.1)

where fi(.) is a smooth function for subject i and εit is a measurement error.

The functional data model in equation (6.1) can be generalized into a functional mixed

model. Let ϕ = {ϕj}Mj=1 and φ = {φj}M
∗

j=1 be a collection of basis functions for the fixed
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and random effects components. The basis functions can be generated using numerous

methods that have been discussed in the literature (e.g. Hastie, et al. 2001; Ruppert,

et al. 2003). Function fi(.) can be described as a linear combination of basis functions

fi(zit) =
M∑
j=1

βjϕj(zit) +
M∗∑
j=1

bijφj(zit), i = 1, . . . , N,

where
∑M

j=1 βjϕj(zit) = xit′β and
∑M∗

j=1 bijφj(zit) = w
′
itbi such that xit = (xit1, · · · , xitM )

′

and wit = (wit1, · · · , witM∗)
′

are the values of the basis functions at zit. Parameter β is

a vector of unknown population-specific parameters controlling the average curve while

bi are random effects capturing the systematic departure of the ith subject. To express

the linear mixed effects model, we let Xi = (xi1, . . . ,xiTi)
′

and W i = (wi1, . . . ,wiTi)
′
,

then

yi = Xiβ +W ibi + εi, bi ∼ N(0,Ω), εi ∼ N(0, σ2
ε ITi), i = 1, . . . , N, (6.2)

where εi is a Ti × 1 vector of independent error terms. When the basis functions are

pre-specified and few, standard Bayes and frequentist methodologies can be used for

estimation and inference. However, for sufficient flexibility it is typically necessary to

include many basis functions leading to a high-dimensional model. To reduce the di-

mension of the model, Smith and Kohn (1996) proposed the use of stochastic search

variable selection (George and McCulloch, 1993), with Morris (2006) proposing a re-

lated approach.

Motivated by its conjugacy property, the inverse-Wishart distribution is commonly used

as a prior for covariance matrix Ω. However, the inverse-Wishart distribution is too

inflexible as a shrinkage prior for a high- dimensional covariance matrix in that all the

diagonal entries have a common degree of freedom, and adaptive shrinkage of certain

elements is not possible. To address this problem, a number of authors have proposed

shrinkage priors for covariance matrices with MCMC used for posterior computation

(Daniels and Zhao, 2003; Daniels and Kass, 1999; Morris and Carroll 2006).

To avoid MCMC, we focus on generalizing the MT-RVM methodology to allow shrinkage

estimation of Ω following common practice that rely on decomposition (Smith and Kohn,

2002; Chen and Dunson, 2003; Fruhwirth-Schnatter and Tuchler, 2004; Kinney and

Dunson, 2006). We place carefully chosen shrinkage priors on the parameters in the

decomposition.
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6.2.2 Re-parameterization of Ω

The covariance matrix Ω is re-parameterized based on a modified Cholesky decomposi-

tion that was proposed by Chen and Dunson (2003) and further justified by Pourahmadi

(2007). The parameterization used in both papers can lead to problems if implemented

using the MT-RVM algorithm. A modified version leads to latent variables with free

variances making it possible to estimates the variances within the RVM procedure.

Let yi be a vector of response variables while Xi and W i are defined as in the previous

section. We adopt a model,

yi = Xiβ +W iΓ
′
hi + εi, (6.3)

where Γ is a lower triangular matrix that contains off-diagonal elements γ = (γjl :

j = 2, . . . ,M∗; l = j + 1, . . . ,M∗ − 1)T and diagonal entries γjj = 1. Vector hi =

(hi1, . . . , hiM∗)
′

consist of independent latent variables such that the random effects for

the ith subject are bi = Γ
′
hi. The prior for the latent variables is hi ∼ N(0,H−1

0 )

where H0 = diag(ω1, · · · , ωM∗) and the jth element ωj ≥ 0.

The variance for the random effect bij is

var(bij) = ω2
j

(
1 +

j−1∑
r=1

γ2
jr

)
for j = 1, · · · ,M∗.

Matrix Γ is related to the degree of within-subject dependence in the random effects,

with the correlation between the jth and the lth random effects

corr(bij , bil) =
γjl +

∑l−1
r=1 γlrγjr√

(1 +
∑l−1

r=1 γ
2
lr)(1 +

∑j−1
r=1 γ

2
jr)
.

Moreover, the estimates for the jth row and column in Γ depend upon the estimates of

ωj such that if ω−1
j = 0 then γlj = γjl = 0. Equation (6.3) implies that,

yit = x
′
itβ +

M∗∑
j=1

witj

hij +
M∗∑
l=j+1

γjlhil

+ εit, t = 1, · · · , Ti (6.4)

where witj is the jth element in the tth row of matrix W i and γlj are the off-diagonal

elements in matrix Γ. When all off-diagonal elements in Γ are zeros (γlj = 0 for l 6= j),

equation (6.4) reduces to a simpler LME model where the random effects bi are assumed

to be independent.
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6.2.3 Sparse functional mixed model estimation

Inference in Bayesian data analysis is based on the posterior distribution of the param-

eters. We consider the functional mixed model in equation (6.3), the joint posterior

distribution for the model parameters can be expressed as

p(Θ|Y ) ∝ p(Y |β,h,γ, σ−2
ε )p(β|α)p(h|ω)p(α)p(ω)p(γ)p(σ−2

ε ),

where Θ = {β,h,α,ω,γ, σ−2
ε }, Y = (y1, · · · ,yN )

′
and h = (h1, · · · ,hN )

′
. The prior

for the fixed effects is β|α ∼ N(0,A−1
0 ) such that A0 = diag(α1, . . . , αM ). Gamma

priors are chosen for the diagonal elements of A0 and H0, the elements of γ and σ−2
ε ,

with σ−2
ε |a, b ∼ Gamma(a, b), αj |c1, d1 ∼ Gamma(c1, d1) for j = 1, . . .M , ωj |c2, d2 ∼

Gamma(c2, d2) and γjl|c3, d3 ∼ Gamma(c3, d3) for j = 1, . . . ,M∗,l = j + 1, . . . ,M∗.

The posterior p(Θ|Y ) is analytically intractable since the normalizing constant does

not have a closed form solution.

We approximate the joint posterior density by decomposing p(Θ|Y ) into conditional

distributions,

p(Θ|Y ) = p(β|.)p(h|.)p(α,ω,γ, σ−2
ε |Y ), (6.5)

where p(β|.) = p(β|α,ω,γ, σ−2
ε ,Y ) and p(h|.) =

∏N
i=1 p(hi|β,ω,γ, σ−2

ε ,Y ) are poste-

rior distributions for the fixed effects and latent variables, while p(α,ω,γ, σ−2
ε |Y ) is the

joint density function for the variance components. The posterior distribution for the

latent variables hi is

p(hi|β,ω,γ, σ−2
ε ,Y ) = N(hi; ĥi, Ĥ i), (6.6)

where ĥi = σ−2
ε Ĥ iU

′
i(yi−Xiβ), Ĥ i = (H0+σ−2

ε U
′
iU i)−1 such thatU i = (ui1, . . . ,uiTi)

′

and uit = (witj+
∑j−1

l=1 witlγlj : j = 1, . . . ,M∗)
′
. The posterior distributions for the fixed

effects β is,

p(β|α,ω,γ, σ−2
ε ,Y ) = N(β; β̂, Â), (6.7)

where β̂ = Â
∑N

i=1X
′
iV
∗−1
i yi, Â = (A0+

∑N
i=1X

′
iV
∗−1
i Xi)−1, V ∗i = σ2

ε ITi+U iH
−1
0 U

′
i

and V ∗i is the covariance matrix for the random effects for subject i.

The joint posterior density for the variance components p(α,ω,γ, σ−2
ε |Y ) is analytically

intractable and we use an empirical Bayes procedure to generate MAP estimates for the

variance components. This leads to the computation of plug-in estimates for parameters

α, ω, γ and σ2
ε that favor a sparse shrinkage structure, with many elements of α and ω

set very close to zero.
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6.2.4 Empirical Bayes estimates

The joint density p(α,ω,γ, σ−2
ε |Y ) ∝ p(α)p(ω)p(γ)p(σ−2

ε )p(Y |α,ω,γ, σ−2
ε ) where p(α),

p(ω), p(γ) and p(σ−2
ε ) are Gamma distributions as described before. Following an em-

pirical Bayes approach, we take non-informative priors for α, ω, γ, σ−2
ε and the mode

for p(α,ω,γ, σ−2
ε |Y ) is equivalent to the maximum of the likelihood p(Y |α,ω,γ, σ−2

ε ).

The likelihood function p(Y |α,ω,γ, σ−2
ε ) is obtained after integrating out β and h from

equation (6.3), such that

p(Y |α,ω,γ, σ−2
ε ) =

∫ N∏
i=1

p(yi|β,hi,γ, σ2
ε )p(β|α)p(hi|ω)dhidβ.

We consider Y |α,ω,γ, σ−2
ε ∼ N(0,C∗−1) where the covariance C∗ = XA−1

0 X
′
+ V ∗,

X = (X1, . . . ,XN )
′

and V ∗ = diag(V ∗1, . . . ,V
∗
N ). Practically, it is difficult to si-

multaneously estimate the variance parameters, so we use alternating conditional max-

imization based on log p(Y |α,ω,γ, σ−2
ε ). The procedure iterates between computing

the conditional MLE of one parameter, while holding the remaining three parameters

constant. The process continues until we attain convergence.

Let `(α;ω,γ, σ−2
ε ) = logN(0,C∗−1) be a conditional log-likelihood function of α that

depends upon some fixed values of ω, γ and σ−2
ε . Maximizing `(α;ω,γ, σ−2

ε ) leads

to the estimation of α contained in A0 while holding the parameters in V ∗ constant.

Unfortunately the estimates forα cannot be computed analytically due to the presence of

the square matrix C∗ in the log-likelihood function `(α;ω,γ, σ−2
ε ). Following a parallel

approach as in Ji et al. (2009) while taking fixed values of ω, γ and σ2
ε , we re-write

the log-likelihood function in a decomposed representation. The computation involves

partitioning the covariance matrix C∗ into XA−1
0 X

′
and V ∗ which results into the

log-likelihood

`(α;ω,γ, σ−2
ε ) =

−1
2

{
N log(2π) + log |Â−1|+ log |A0|

+ log |V ∗−1|β̂A0β̂(Y −Xβ̂)
′
V ∗−1(Y −Xβ̂) },

where β̂ and Â are the conditional posterior mean and covariance matrix for β. Differ-

entiating the log-likelihood function with respect to α = (α1, · · · , αM )
′

and setting the

solution to zero leads to

α̂j =
1

β̂2
j + Âjj

, j = 1, . . . ,M, (6.8)
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where β̂j is the jth element of β̂ and Âjj is the jth diagonal element of Â in equation (6.7).

The estimates for α̂ = (α̂1, . . . , α̂M )
′

are functions of both the mean and covariance of

β. The computation of α̂j involves an iterative procedure that estimates the variance

hyper-parameter αj in equation (6.8) and updates the mean vector β̂ and covariance

matrix Â as in equation (6.7).

Similarly, let `(ω,γ, σ−2
ε ;α) = −1/2

∑N
i=1 Ti log(2π)+log |V ∗−1

i |+(yi−Xiβ̂)
′
V ∗−1
i (yi−

Xiβ̂) be a conditional log-likelihood function of ω, γ and σ−2
ε at a fixed value of α. To

maximize `(ω,γ, σ−2
ε ;α) we seek to estimate ω, γ and σ−2

ε in V ∗ to maximize the log-

likelihood function while holding A0 constant. The computation leads to partitioning

V ∗i such that V ∗i = U iH0U
′
i+, σ

−2
ε IM∗ where U i = (uit, . . . ,uiTi)

′
and we let,

`(ω,γ, σ−2
ε ;α) =

−1
2

N∑
i=1

log |Ĥ−1
i |+log |H−1

0 |+log |σ2
ε I|−σ2

ε ||yi−Xiβ̂−U iĥi||2+ĥ
′

iH0ĥi,

where ĥi and Ĥ
−1
i are the conditional posterior mean and variance for the latent variable

hi. We differentiate the log-likelihood with respect to ω, γ and σ−2
ε while equating the

solutions to zero. This leads to

ω̂j =
N∑N

i=1 ĥ
2
ij + Ĥijj

, j = 1, . . . ,M∗, (6.9)

σ̂2
ε =

∑N
i=1 ||yi −Xiβ̂ −U iĥi||2∑N

i=1(Ti −M∗ +
∑M∗

j=1 ω̂jĤijj)
, i = 1, . . . , N, (6.10)

γ̂jl =

∑N
i=1

{
(yi −Xiβ̂ −U iĥi)

′
wij ĥil − Ĥi,llw

′
ij(wil +

∑M∗

r=1wirγrl)
}

∑N
i=1 Ĥi,llw

′
ijwij

,

r 6= j, l = j + 1, . . . ,M∗, (6.11)

where Âjj and Ĥijj are the jth diagonal elements of Â and Ĥ i, respectively. The

posterior estimates β̂j and ĥij are the jth components of β̂ and ĥi, respectively.

Based on this estimation procedure, the computation proceeds iteratively applying equa-

tions (6.9)-(6.11), with the conditional posterior mean and covariance of β and hi as

in equations (6.6) and (6.7), respectively. Because the large dimensions of matrices Xi

and U i pose computation problems during the inversion of Â and Ĥ i in equations (6.6)

and (6.7), we seek to find a fast method to improve both the speed and computation

efficiency, while producing sparse estimates.

Two problems arise when implementing the above empirical Bayes approach when the

number of fixed and random effects is large. First, the computational time increases
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dramatically for large M and/or M∗ due to the need to invert M ×M and M∗ ×M∗

matrices at each step of the iterative procedure. In addition, when M and/or M∗ are

large relative to the sample size, estimability problems can arise that lead to lack of

convergence of the procedure. Potentially this can be solved by using a MAP estimation

approach that includes a proper prior to induce a penalty in the procedure that leads

to shrinkage towards the prior and regularization. However, such an approach will be

sensitive to hyper-parameter choice. An alternative is to adapt a fast algorithm that

will bypass the inversion step leading to a reduced model with dimension m ×m and

m∗ ×m∗ for both Â and Ĥ i respectively where m << M and m∗ << M∗. The RVM

iterative algorithm can generate such a sparse model and will be discussed in the next

section.

6.2.5 A fast MT-RVM method

A fast MT-RVM approach can be used to hasten the estimation process for α and ω

while overcoming the convergence, estimability and matrix inversion problems. The

RVM approach reduces the dimensions of Xi and W i by discarding M −m columns of

Xi and M∗−m∗ columns of W i. These columns correspond to fixed and random effects

that can be excluded, since their posteriors are concentrated at zero. The posterior for

βj is concentrated at zero when α̂−1
j = 0, while the posterior for hij is concentrated at

zero for all i when ω̂−1
j = 0

The computation of αk is based on the conditional log-likelihood function,

`(α;ω,γ, σ−2
ε ) =

−1
2

(
N log(2π) + log |C∗|+ Y ′C∗−1Y

)
.

This log-likelihood is partitioned into parts with and without the kth component of α.

We first let C∗ = C∗−k +α−1
k X .kX

′
.k such that C∗−k = V ∗+

∑
l 6=k α

−1
l X .lX

′
.l where X

′
.l

is the lth column of matrix X. The resulting decomposed log-likelihood function is

`(α;ω,γ, σ−2
ε ) = `(α−k;ω,γ, σ−2

ε ) +
1
2

(
logαk − log |αk + sk|+

q2k
αk + sk

)
,

where sk = X
′
.kC

∗−1
−k X .k and qk = X

′
.kC

∗−1
−k Y . The estimate for αk is

α̂k =


s2k

q2k−sk
if q2k > sk,

∞ otherwise.
(6.12)

The selection of a candidate X .k is based on its contribution to the log-likelihood

`(α;ω,γ, σ−2
ε ), with the fixed effect having the largest contribution selected first. This
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is followed by the computation of qk and sk, and based on these values we can either

add, update or delete the selected fixed effect. We add X .k into the model when q2k > sk.

Alternatively, whenX .k is already in the model and q2k > sk, we update α̂k but if q2k < sk

we delete X .k from the model. The process continues until convergence.

Similarly, we can reduce the dimension of the matrix U i from M∗ to m∗ based on

the estimates of ω computed using the fast MT-RVM method. Let `(ω;α,γ, σ−2
ε ) =

−1/2
∑N

i=1 Ti log(2π) + log |V ∗−1
i | + (yi −Xiβ̂)

′
V ∗−1
i (yi −Xiβ̂) be a conditional log-

likelihood function of ω at fixed values of α, γ and σ−2
ε . We first partition V ∗i into

two parts such that V ∗i = V ∗i,−k + V ∗ik, where V ∗i,−k = σ2
ε IM∗ +

∑M∗

j 6=k ω
−1
j uiju

′
ij and

V ∗ik = ω−1
k uiku

′
ik. This results to

`(ω;α,γ, σ−2
ε ) = `(ω−k;α,γ, σ−2

ε ) +
−1
2

N∑
i=1

(
logωk − log |ωk + s∗ik|+

q∗2ik
ωk + sik

)
,

where s∗ik = u
′
ikV

−1
i,−kuik and q∗ik = u

′
ikV

−1
i,−k(yi−Xiβ̂). We differentiate `(ω;α,γ, σ−2

ε )

and set the result to zero. An approximate solution can be obtained by assuming that

ωk << s∗ik which leads to

ω̂k ∼=


N∑N

i=1(q∗2ik−s
∗
ik)/s

∗2
ik

if
∑N

i=1
(q∗2ik−s

∗
ik)

s∗2ik
> 0,

∞ otherwise.
(6.13)

For a justification of this type of approximation, refer to Ji, et al. (2009).

The selection of the candidate wik is based on all 29 basis functions. Three operations

can take place on wik: add, update and delete. Column vector wik is added into the

model when
∑N

i=1
(q∗2ik−s

∗
ik)

s∗2ik
> 0. An update occurs when

∑N
i=1

(q∗2ik−s
∗
ik)

s∗2ik
> 0 and wik is

already in the model. Deletion occurs when
∑N

i=1
(q∗2ik−s

∗
ik)

s∗2ik
< 0 and wik is already in the

model. The final model has few wik with ωj <∞ while majority tend to have ωj =∞
which correspond to bij = 0 for all i. Convergence is accelerated by choosing the fixed

and random effects that lead to the largest increase in `(α;ω,γ, σ−2
ε ) and `(ω;α,γ, σ−2

ε ),

respectively. To compute (i.e. add, update, delete) the significant components of the

prior vectors α and ω, we follow the steps of the algorithm discussed by Tipping (2001)

and Ji et. al (2009) to select the basis functions for both the fixed and random effects.

Appendix A contains simplified expressions for different quantities that can be used in

the modified MT-RVM procedure discussed in this chapter.
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6.3 Simulation Study

We simulate data designed to mimic the trajectories in bbt over the cycle. The ith curve

is generated from the model

yit = vi + ρizit sin(10zit − ri) + εit, t = 1, 2, . . . Ti, i = 1, 2, . . . N,

where covariate zit ∼ unif(0, 1), parameter ρi ∼ unif(0.5, 1.5) controls the amplitude

of the curve, ri ∼ unif(−1, 1) and vi ∼ unif(−1, 1) are horizontal and vertical shift

parameters for the ith curve and εit ∼ N(0, σ2
ε = 0.10). The scale, horizontal and vertical

shift parameters vary between subjects but they remain constant among observations

within the same curve.

The smoothing basis functions ϕ and φ were generated from the standardized values

of zi based on 27 cubic B-splines with 23 interior knots. For this particular case, the

design matrix Xi is Ti × 29 such that M = 29. We have 27 columns of basis functions

and two additional columns containing 1’s and zi (i.e. {1, zit}Tit=1). Similarly, matrix

W i is of order Ti ×M∗ where M∗ = 29.

The computation of the relevant fixed and random effects is based on the estimates of α

and ω. We start with an empty model and select the first relevant fixed effect according

to the discussion in section 6.2. This is followed by computation of the correspond-

ing random effect. The subsequent iterations involve selection of relevant fixed effects

followed by selection of the random effects.

The MT-RVM procedure discussed in section 2 was implemented to generate sparse LME

models. In addition, we attempted to implement a variety of other reduced rank meth-

ods including functional principal components (FPCA) (James et al., 2001; Crainiceanu,

2009) and the adaptive fence method (Jiang et al., 2008). We do not show the results

for the adaptive fence method since the approach required fitting of linear mixed mod-

els of varying dimension in implementing basis selection. We encountered convergence

problems in fitting LME models containing most or all of the potential basis functions.

In addition to the reduced rank methods, we considered recent approaches proposed by

Durban et al. (2005) and Wand and Ormerod (2005), with the latter approach imple-

mented using MCMC. Another alternative is the method of Scarpa and Dunson (2009),

which allows a nonparametric contamination of a parametric hierarchical model and is

quite computationally intensive. As the goal of the MT-RVM method is instead to ob-

tain a fast approach for fitting of functional data in the absence of a known parametric

model, we do not consider their method further. A final possibility we considered is

a two stage approach in which the individual curves are smoothed, and then a model
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is fitted on a fixed grid that is common across the subjects (Ramsay and Silverman,

1997). However, this type of approach is known to only perform well when there is a

high signal-to-noise ratio and there are many observations per subject that are regularly

spaced without regions of missing data. For the bbt data, there tends to be substantial

noise and different observation times for the different cycles.

To investigate the performance of the RVM method we estimated the fitted curves for

varying choices of the number of observations per subject (Ti) and the number of the

subjects (N). The true curve is f truei (zit) = vi+ρizit sin(10zit−ri). Estimates for fi are

obtained for the four procedures -RVM, FPCA (Crainiceanu, 2009, frequentist (Durban

et al., 2005) and MCMC based (Wand & Ormerod, 2008) methods. We considered

four cases for the number of subjects, N = 25, 50, 100 and 500. In each case, we vary

the number of observations per subject such that Ti = 10, 20, 30. We generate 100

replications and each replication has a specified N and Ti, e.g. for a case with N = 50

and Ti = 10, the jth replication has 50 subjects and each subject has 10 observations.

In each replication we plot both the original and the fitted curve for each subject. We

extract the values of f truei and f̂i based on a grid z∗ = (z∗1 , · · · , z∗T ) where z∗ is a vector

containing values of T = 100 finely division points of a grid that covers the curves such

that T >> Ti. To compare the estimated curves from the four procedures, we compute

Mean Integrated Square Error (MISE) and Bias. The MISE and bias for the case with

N subjects and Ti observations is

MISE =
1
NT

N∑
i=1

T∑
t=1

{
f̂i(z∗t )− f truei (z∗t )

}2
,

Bias =
1
NT

N∑
i=1

T∑
t=1

∣∣∣f̂i(z∗t )− f truei (z∗t )
∣∣∣ .

On average, the RVM procedure selected m = 3 fixed and m∗ = 10 random effects.

Tables 6.1 and 6.2 present the results for the MISE and Bias respectively. Columns

1, 2, 3, and 4 in both tables present results for frequentist, MCMC based, RVM and

FPCA procedures respectively. Both tables show that there is a gradual decrease in

both MISE and Bias values as the number of observations increases and this hold for all

procedures. Both smoothing approaches based on the full model perform well relative

to the reduced model. Although both tables do not demonstrate a general improvement

in performance for the proposed RVM approach over the FPCA method, it is important

to consider two factors. First, as the number of observations increase, MISE and bias

for both methods are almost identical. Second, when the number of observations and

subjects increase (e.g. 500 subjects with 30 observations each), the FPCA approach

fails due to convergence problems. The frequentist approach seems to be the best since
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Table 6.1: A table for the Mean Integrated Squared Error for the four curve fit-
ting procedures. CI’s are the empirical 95% intervals for the MISE estimates for the

simulation replicates.

MISE
N Ti Frequentist (CI) MCMC (CI) RVM (CI) FPCA (CI)
25 10 0.021 (0.001,0.042) 0.029 (0.013,0.046) 0.110 (0.027,0.194) 0.045 (0.031,0.060)

20 0.006 (0.004,0.008) 0.004 (0.003,0.006) 0.025 (0.005,0.041) 0.032 (0.021,0.042)
30 0.004 (0.003,0.006) 0.004 (0.003,0.005) 0.019 (0.008,0.029) 0.019 (0.011,0.028)

50 10 0.023 (0.015,0.030) 0.034 (0.025,0.043) 0.095 (0.083,0.106) 0.031 (0.023,0.038)
20 0.006 (0.005,0.007) 0.007 (0.004,0.011) 0.037 (0.025,0.050) 0.023 (0.019,0.028)
30 0.004 (0.003,0.005) 0.005 (0.003,0.006) 0.023 (0.005,0.040) 0.019 (0.016,0.023)

100 10 0.016 (0.012,0.120) 0.021 (0.017,0.027) 0.085 (0.044,0.137) 0.033 (0.028,0.037)
20 0.006 (0.005,0.007) 0.008 (0.006,0.010) 0.024 (0.019,0.029) 0.025 (0.021,0.029)
30 0.004 (0.003,0.005) 0.004 (0.003,0.005) 0.020 (0.007,0.031) 0.021 (0.017,0.025)

500 10 0.017 (0.015,0.021) 0.018 (0.016,0.020) 0.040 (0.022,0.049) 0.033 (0.029,0.036)
20 0.006 (0.005,0.006) 0.006 (0.004,0.007) 0.024 (0.023,0.026) 0.026 (0.025,0.027)
30 0.004 (0.003,0.004) 0.004 (0.003,0.004) 0.005 (0.004,0.006) –

Table 6.2: A table for the Bias for the four curve fitting procedures. CI’s are the
empirical 95% intervals for the simulation replicates.

Bias
N Ti Frequentist (CI) MCMC (CI) RVM (CI) FPCA (CI)
25 10 0.094 (0.070,0.119) 0.117 (0.091,0.142) 0.244 (0.147,0.341) 0.160 (0.135,0.188)

20 0.061 (0.053,0.069) 0.052 (0.045,0.059) 0.109 (0.068,0.150) 0.135 (0.112,0.160)
30 0.051 (0.043,0.059) 0.051 (0.048,0.055) 0.104 (0.072,0.136) 0.104 (0.110,0.142)

50 10 0.099 (0.091,0.108) 0.108 (0.099,0.117) 0.218 (0.201,0.235) 0.130 (0.114,0.147)
20 0.059 (0.055,0.063) 0.064 (0.056,0.072) 0.147 (0.124,0.170) 0.112 (0.101,0.124)
30 0.049 (0.046,0.053) 0.053 (0.048,0.057) 0.114 (0.073,0.154) 0.102 (0.094,0.108)

100 10 0.088 (0.071,0.101) 0.102 (0.086,0.125) 0.200 (0.109,0.131) 0.133 (0.122,0.143)
20 0.059 (0.057,0.062) 0.066 (0.062,0.071) 0.117 (0.108,0.123) 0.115 (0.106,0.124)
30 0.050 (0.047,0.052) 0.051 (0.048,0.054) 0.107 (0.074,0.140) 0.105 (0.097,0.112)

500 10 0.091 (0.086,0.096) 0.091 (0.088,0.095) 0.116 (0.111,0.120) 0.117 (0.114,0.119)
20 0.058 (0.057,0.060) 0.059 (0.057,0.061) 0.115 (0.113,0.119) 0.115 (0.110,0.120)
30 0.050 (0.048,0.052) 0.050 (0.049,0.051) 0.052 (0.051,0.054) –

it has the least MISE and bias. However, we note that as the number of subjects and

observations increases we encountered convergence problems. Figure 6.1 presents a plot

for one simulation case with 30 observations. The figure has five curves representing the

true sine curve and the estimated curves based on the four curve fitting methods.

Table 6.3 presents the average time taken to fit a model for each simulated case based

on the four procedures. The results were generated using an R software (version 2.8.1)

on a Pentium IV, 2.4GHz, 512MB, Windows XP computer platform. Results show

an increase on the average time spent to fit the models as the number of observations
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Figure 6.1: Estimated sine curve using the four procedures.

Table 6.3: A table for the average time taken by the four procedures to fit models in
each simulation case.

Computation time (in seconds)
N Ti Frequentist MCMC RVM FPCA

25 10 2.551 13.683 3.419 0.837
20 2.817 21.013 2.922 1.419
30 3.304 24.669 2.778 2.255

50 10 2.634 17.151 2.678 0.787
20 3.616 22.784 2.448 1.385
30 4.037 24.851 2.425 2.122

100 10 2.656 18.643 2.166 0.723
20 3.696 22.661 1.901 1.426
30 4.450 27.651 2.144 2.245

500 10 2.151 21.014 2.024 1.154
20 3.819 23.121 2.157 2.358
30 4.601 28.241 2.201 –

per cycle increased. Frequentist approach takes the least time in all cases while the

MCMC based approach performs the worst. FPCA approach performs better that the

RVM procedure but we note that as the number of subjects increases (e.g. over 100

subjects with at least 30 observations) the RVM approach performs better. Hence, the

main advantages of the proposed RVM approach include the ability to obtain automated

variable selection even in moderately high dimensional random effects models without

facing convergence problems.
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6.4 Application to the bbt measurements

Our research is motivated by the basal body temperature data from the European fe-

cundability study (Colombo and Masarotto, 2000). The study enrolled 880 women, aged

between 18 and 40 years, who were not taking hormonal medications or drugs affecting

fertility, and had no known impairment of fecundity. The participants kept daily records

of cervical mucus or basal body temperature measurements from at least one menstrual

cycle, and they recorded the days during which intercourse and menstrual bleeding oc-

curred. For more details about the study protocol, refer to Colombo and Masarotto

(2000). In this study we considered bbt measurements from 520 menstrual cycles.

A standard bbt curve has biphasic shape and is characterized with three phases repre-

senting the pre-ovulation, ovulation and post-ovulation periods. The ovulation day is

commonly identified using the three over six rule (Colombo and Masarotto, 2000) or by

identifying the day that correspond to a dip that is followed by a sharp rise in the bbt

curve. In reality, the classic bbt pattern is difficult to replicate and wide fluctuations in

bbt, with many false nadirs and peaks, are commonly observed. Fluctuations result from

a host of factors, other than hormonal fluctuations, that affect a womans bbt: amount

of sleep, sleep disturbances, ambient bedroom temperature, convection currents, food

ingestion and emotional state (Colombo and Masarotto, 2000).

Numerous methods have been proposed to estimate the shape of the bbt curves. For

example, Scarpa and Dunson (2008) proposed a Bayesian semi-parametric model based

on nonparametric contamination of a linear mixed effects model. However, implementa-

tion of the approach relies on a highly computationally intensive MCMC algorithm and

it fails to produce smooth curves. To implement the RVM procedure, we used the cubic

B-splines to generate the basis functions ϕ and φ based on the standardized values of

time covariate (zi). In total we generated M = M∗ = 29 columns for matrices Xi and

W i respectively, where the first and the second columns contain values of 1’s and zi.

The RVM procedure was implemented on data for the 520 cycles and the final model

has m = 3 fixed effects (basis functions: 1, 2 and 28) and m∗ = 10 random effects

(basis functions: 1, 2, 28, 29, 9, 14, 27, 12, 11 and 16). The expressions for the credible

intervals for the RVM parameter estimates are presented in appendix B.

Figure 6.2 shows estimated curves based on the RVM method from four randomly se-

lected cycles. Each plot shows the estimated bbt curve and the gray region represents

the 95% confidence band. Figure 6.3 shows a plot for the population and subject spe-

cific curves based on the estimates from the RVM procedure. The thick black curve

represents the population average bbt curve while the thin gray curves represent the

estimated subject specific bbt curves. The population average curve shows a biphasic
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shape that has a gentle rise starting from day 10 and reaches the climax around day 24.

The interval characterized with a gentle rise in bbt curve is the most probable period in

the menstrual cycle when majority of women experience ovulation.
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Figure 6.2: Estimated bbt curves and the 95% confidence band from the RVM pro-
cedure.

To evaluate the predictive ability of the proposed RVM procedure, we conducted an

out-of-sample prediction process where we first dropped 10% of observations (chosen

at random from among the different women) and then predict the bbt value at the

times for these values. Figure 6.4 presents a plot for the ordered true observations

against the predicted bbt values. The plot shows moderately high correlation between

the predicted and observed bbt values with a correlation coefficient value of 0.82. We

extended the evaluation by increasing the out-of-sample proportions to 25% and 50%

and computed their correlation values. The correlation values for 25% and 50% out-of-

sample proportions are 0.78 and 0.75 respectively, suggesting that accurate predictions

can be obtained even with 50% of the data discarded. Figure 6.5 shows the estimated

curves based on the RVM procedure from four randomly selected subjects. The thick

line represent the estimated curve based on all observations in a cycle while the thin

line represents the estimated curve when 20% of the observations are excluded. We

predicted the 20% excluded observations and included them on the plots. The thick and
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Figure 6.3: A plot for the population and subjects specific bbt curves from the model
fitted using the RVM procedure.

small vertical lines represent the 95% confidence intervals while the thick star (∗) at the

middle of the vertical lines represent the predicted estimates. This result has substantial

clinical implications, as women may be able to collect fewer bbt observations without

greatly reducing the accuracy of the estimated bbt curve over the cycle.

Basal body temperature curves provide a useful non-invasive marker of reproductive

functioning, which can be quite informative to clinicians monitoring women attempting

pregnancy for the purposes of providing guidance on highly fertile days of the woman’s

cycle, as well as inferring possible causes of a delay in conception if it occurs. Before

recommending women having trouble conceiving to assistant reproductive technology

(AFT), it has been increasingly recommended to follow the woman prospectively for

at least several cycles using natural biomarkers, such as basal body temperature. The

woman may provide unevenly spaced and sparse measurements on bbt across her cycle,

which can be difficult for the clinician to interpret. By using our methodology, smoothed

basal body temperature curves across the cycle can be estimated based on the available

data, while borrowing information from the rich historical bbt data base to aid in filling

in the gaps in the data. As shown for our out-of-sample prediction results, the pro-

posed methods appear to do a good job in interpolating across regions of missing data

in estimating the bbt curves. In performing online estimation of the bbt curves for new

women, it is not necessary to re-estimate the population parameters, including the fixed

effects and random effects covariance. Instead we can store the values of these param-

eters, estimated based on our data base and updated periodically. Then, a curve for
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Figure 6.4: A plot for the predicted against true bbt values.

an incoming woman can be estimated extremely rapidly by a physician using a simple

algorithm than could even be implemented in Excel.

6.5 Discussion

Our proposed MT-RVM method adds to the literature on variable selection procedures

for the random effects component of the LME model (6.2). For fixed effects, vari-

able selection can proceed using likelihood ratio tests, goodness-of-fit criteria and other

methods applied routinely in linear regression models. In selecting the random effects, a

complication arise since the null hypothesis lies on the boundary of the parameter space.

Hence, the likelihood ratio (LR) test statistic no longer has an asymptotic chi-square dis-

tribution and the justification for the BIC and other criteria for model selection breaks

down. A variety of approximations have been proposed for the distribution of the LR

test statistic under the null hypothesis. The most widely used approach relies on the

method of Stram and Lee (1994), which may not have good performance (Crainiceanu

and Ruppert 2004).

In conducting random effects selection in linear mixed models, Jiang, et al. (2008)

proposed the fence method that automatically selects a subset of predictors from the

vast number of possible subsets under consideration. The method is easy to implement
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Figure 6.5: Estimated bbt curves using RVM (continuous curve), predicted plots
(dotted curve) without 20% observations and the predicted out of sample observations.

and has good performance in modest dimensional model, but rapidly becomes computa-

tionally infeasible as the number of candidate predictors increases. Functional principal

components analysis (FPCA) is another appealing approach that can be used to reduce

the dimensionality of a functional linear mixed model. The approach improves numerical

stability of parameter estimates through reduced rank models as motivated in James,

Hastie and Sugar (2001) and others. However, fitting a FPCA model often relies on

algorithms used for fitting linear mixed effects models, and we have encountered simi-

lar convergence problems. Moreover, there is the issue of how to select the number of

principal components, with standard approaches being based on cross-validation, which

can be time-consuming to implement. Often one tries increasing the number of princi-

pal components until the improvement in fit is negligible, though this is somewhat ad

hoc. The simulation results for the FPCA procedure revealed that when the number of

subjects and observations increases drastically the method fails.

In this chapter we have developed a fast approximate Bayes approach for simultaneous

variable selection and fitting of linear mixed effects models, motivated by functional data
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analysis applications in which candidate predictors correspond to different basis func-

tions. The proposed approach is motivated by the MT-RVM Ji, et al. (2009) method-

ology, which was developed to borrow information across related signals in performing

reconstruction based on compressive sensing measurements. The RVM approach has the

positive features of allowing automatic basis selection without encountering convergence

problems. In adapting RVM to perform variable selection in linear mixed models, it

was necessary to incorporate two non-trivial modifications, with the first allowing non-

zero values for the fixed effects and the second allowing non-diagonal random effects

covariance. The resulting methodology can be implemented very rapidly and can ac-

commodate high dimensions, leading to advantages over existing methods for variable

selection in random effects models (Pauler et al., 1999).



Chapter 7

Multi-level relevance vector

machine with applications to

hierarchical functional data

analysis

7.1 Introduction

In this chapter we extend the implementation of the MT-RVM procedure to multi-level

data. In particular, we develop a multi-level relevance vector machine (ML-RVM) that

can handle nested data. We will consider a model similar to Brumback and Rice (1998),

where the measurements are nested withing cycles and cycles are nested within subjects.

To avoid computation complexities resulting from additional data hierarchy, we consider

a simple multi-level functional mixed model that assumes independent random effects

at both cycle and subject specific levels. The ML-RVM approach is implemented on the

bbt data and generate a flexible and sparse functional mixed model that can estimate

population-average, subject and cycle specific curves.

Many medical and epidemiological studies collect massive multi-level functional data.

The data results from repeated collection of measurements at different time points from

series of clusters and subjects. For example, functional data that are collected for pa-

tients nested within studies as in many multi-center studies or functional data measured

at repeated times for each patient e.g., medical images taken at each visit to the clinic

and hormone curves for each cycle. In most cases, it is common to have measurements

from different clusters and subjects often sparse and unequally-spaced due to routine

79
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entry of patient information into computer data bases. Hence, difficult to accurately

estimate trajectories from multiple clusters within a subject or center. For physicians

working with many patients, automated tools are required to rapidly estimate and pre-

dict trajectories for a current patient while utilizing information in the data base.

Our motivation is drawn from multi-level data generated from reproductive studies.

In particular, we consider the basal body temperature data (Colombo and Masarotto,

2000) collected to study the characteristic of the bbt trajectories from multiple cycles

that can be used to predict the ovulation day or identify cycles with possible dysfunction.

Hence, before recommending assistant reproductive technology (AFT) to women having

trouble conceiving, it is advisable to first consider the available information from the bbt

trajectories. The pattern of the bbt measurements over the menstrual cycle provides

a natural informative marker of reproductive functioning that can provide guidance on

highly fertile days of the woman’s cycle as well as inferring possible causes of a delay in

conception.

Functional data analysis (FDA) (Ramsay and Silverman, 2005) can be used to model

sparse functional data. Numerous related approaches can be found in Rice and Wu

(2001); Wu and Zhang (2002); Liang, Wu, and Carroll (2003); Wu and Liang (2004).

The development of their approaches fall under the connection between mixed-effects

models (Laird and Ware, 1982; Diggle et al., 1994) and smoothing spline functions

(Wand, 2003) but their scope is limited to a single level of hierarchy. The extension

of the FDA approaches into functional multi-level data can be found in Brumback and

Rice (1998); Guo (2002); Morris et al. (2003); Durban, et al. (2005) among others.

To model functional data occurring within nested hierarchy, Brumback and Rice (1998)

introduced flexible smoothing spline method and considered individual specific trajec-

tories as fixed instead of random effects. Guo (2002) introduced spline-based functional

mixed model under a broad range of fixed and random effect structures while Morris

et al. (2003) developed a functional mixed model based on wavelet-based methodology

(Baladandayuthapani et al., 2008). Recent discussions on the use of spline smoothing

methods based on mixed models can be found in Morris and Carroll (2006); Wand and

Ormerod (2008); Crainiceanu (2009).

The hierarchical structure of the data, heterogeneity among the subjects’ trajectories

and the large dimension of the resulting functional mixed models make the approaches

difficult to implement in Bayesian framework. A common solution is to reduce the di-

mension of the functional model. However, it is difficult to choose the basis functions in

advance, motivating the use of adaptive methods that allow uncertainty in basis function

selection using the time consuming reversible-jump markov chain monte carlo (Green,

1995) or stochastic search variable selection (Smith and Kohn, 1996) procedures (Bigelow
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and Dunson, 2007; Thompson and Rosen, 2008). Functional Principal Component Anal-

ysis (FPCA) methodology has also been used extensively to reduce the dimension of the

random effects (James, et al., 2001; Yao, et al., 2005; Crainiceanu, 2009). However,

the posterior computation of model parameters in both classes of procedures are based

on computationally expensive Markov Chain Monte Carlo (MCMC) algorithms. Hence,

there is a clear practical motivation for fast approximate Bayes approaches that bypass

MCMC while maintaining some of the benefits of a Bayesian analysis.

This paper proposes to use a large number of B-spline basis function for the multi-level

functional mixed model and estimate a sparse model using relevance vector machine

(RVM) methodology (Tipping, 2001). RVM is a fast approximate Bayes functional data

analysis that relies on sparseness-favouring hierarchical priors for basis coefficients. The

approach is widely used in machine learning and is one among fast Bayesian methods

that promote sparseness in estimation of the basis coefficients, providing a more flexible

alternative to Support Vector Machines (SVM) (Burges, 1998) and LASSO (Tibshirani,

1996), leading to a sparser solution that is more robust to outliers (Tipping, 2001; Ji, et

al., 2009). The Ji et al. (2009) multi-task relevance vector machine (MT-RVM) approach

implicitly assumed that the random effects distribution was centered at zero while Ciera

and Dunson (2010) extended the approach to a non-zero mean that allow separate fixed

and random effects and accommodate correlation among the random effects. We aim to

extend the MT-RVM approach into multi-level relevant vector machine (ML-RVM) that

can accommodate multi-level functional data. To avoid introducing additional compu-

tation complexities caused by the increase of hierarchy levels, our approach considers

independence covariance structure for the random effects at both cycle and subject-

specific levels. This is a slight deviation from Ciera and Dunson (2010) approach that

allowed a general covariance structure for the random effects. Moreover, at the subjects

level, we only consider two subject specific random effects (the intercept and the slope)

since we assume that the average subjects’ curves have a common biphasic pattern with

varying intercept and slope. To allow more flexibility, this assumption can be relaxed

and we consider subject specific random effects from all basis functions.

7.2 Functional Data Analysis Model

7.2.1 Motivating problem

In practice, the shapes of the average bbt trajectories at subject specific level from

many women is mostly the same. However, it is common to encounter variations among

cycle trajectories due to the day to day physical and psychological disorders that are
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commonly experienced by women. For example, when working with bbt data, factors

like hormonal fluctuations or sleep disturbances may cause abrupt temperature change

leading to abnormal trend on the bbt curve in certain cycles from different women

(Colombo and Masarotto, 2000).

To accommodate these cycle to cycle variations, we allow variations to occur among all

random effects at cycle specific level. But to maintain the biphasic pattern assumption

on the mean trajectories at subject specific level, we consider only two random effects

(intercept and slope) at subject specific level. Hence, we consider a case where curves

within a subject differ in shape but the average curve from different women are assumed

to have a common biphasic structure that differ in height and slope within the x-y

plane. Allowing such structural variability among subject and cycle specific curves,

we can maintain the existing heterogeneity among subjects and variations among cycle

trajectories that are caused by random factors that interferes with cycle trajectories

within a subject.

7.2.2 Functional mixed effects model

We consider a general multi-level mixed model for data with three hierarchical levels such

that observations (level 1) are nested within cycles (level 2) and cycles are nested within

subjects (level 3). For example, in the bbt data application, the daily bbt measurements

are nested within menstrual cycles and the cycles are nested within women. In such

a framework, we have i = 1, · · · , N subjects, where the ith subject has j = 1, · · · , ni
cycles and the jth cycle has t = 1, · · · , Tij bbt observations. Further, we denote that

Ti =
∑ni

j=1 Tij is the total number of observations within a subject.

A standard bbt curve can be estimated using functional data analysis (FDA) models

described in the literature (Ramsay and Silverman, 1997; Ruppert, et al. 2003). Let

yij = (yij1, . . . , yijTij )
′

and zij = (zij1, . . . , zijTij )
′

be the response and covariate vectors

for the jth cycle and the ithe subject such that zij1 < zij2 < . . . < zijTij . A functional

model for the tth observation in the jth cycle and the ith subject can be represented as

yijt = fij(zijt)+εijt, εijt ∼ N(0, σ2
ε ), t = 1, . . . , Tij , j = 1, . . . , ni, i = 1, . . . , N. (7.1)

where fij(.) is a smooth function for cycle j and subject i while εijt is a measurement

error.

The functional data model in equation (7.1) can be generalized into functional mixed

effects model for a multi-level hierarchical data. For a general case, we let the smoothing
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function fij(zijt) be represented as a linear combination of two sets of basis functions

fij(zijt) =
M∑
l=1

βlϕl(zijt) +
M∗∑
l=1

(γil + υijl)φl(zijt),

where
∑M

l=1 βlϕl(zijt) = xijt
′β and

∑M∗

l=1(γil + υijl)φl(zijt) = wijt
′(γi + υij) such that

β = (β1, · · · , βM )
′

are fixed effects and xijt = (xijt1, · · · , xijtM )
′

are the values of the

basis functions at zijt. Similarly, γi = (γi1, · · · , γiM∗)
′

and υij = (υij1, · · · , υijM∗)
′

are

the random effects at subject and cycle levels while wijt = (wijt1, · · · , wijtM∗)
′

are the

values of the basis functions at zijt. The basis functions ϕ = {ϕl}Ml=1 and φ = {φl}M
∗

l=1

are collection of basis functions for the fixed and random effects components and can

be generated using numerous methods that have been discussed in the literature (e.g.

Hastie, et al. 2001; Ruppert, et al. 2003).

To represent the smoothing function in a mixed model formulation where the random

effects at subject level consist of the intercept and a slope, the design matrices for

the fixed and random effects of the jth cycle in the ith subject can be represented by

Xij = (xij1, . . . ,xijTij )
′

and W ij = (wij1, . . . ,wijTij )
′

respectively. The design matrix

for the random effects at subject level is represented by W̃ ij that consist of 1′s and zij
columns for the ith subject and jth cycle. The functional mixed effects model for the jth

cycle of the ith subject can be represented as

yij = Xijβ + W̃ ijγi +W ijυij + εij , γi ∼ N(0,E−1) υij ∼ N(0,Ω−1),

εij ∼ N(0, σ2
ε ITij ) j = 1, . . . , ni, i = 1, . . . , N, (7.2)

where β = (β1, · · · , βM )
′

are M population mean parameters, γi = (γi1, γi2)
′

are the

random effects for the ith subject that capture deviations from the population mean

while υij = (υij1, · · · , υijM∗)
′

are the random effects for the ith subject and jth cycle

that capture deviations from the subject mean. The covariance matrices E, and Ω

for the random effects are diagonal matrix with elements (αγ1, αγ2), and (ω1, · · · , ωM∗)
respectively. The random vectors εij = (εij1, · · · , εijTij )

′
are measurement errors that are

assumed to be independent. We can stacking together Xij , W̃ ij and W ij for different

cycles within a subject. The matrix representation for the subject specific functional
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mixed model is



yi1

yi2

yi3
...

yini


=



Xi1

Xi2

Xi3

...

Xini





β1

β2

β3

...

βM



′

+



W̃ i1 W i1 0 . . . 0

W̃ i2 0 W i2 . . . 0

W̃ i3 0 . . . . . . 0
...

...
...

...
...

W̃ ini 0 . . . . . . W ini





γi

υi1

υi2

υi3
...

υini



′

+



εi1

εi2

εi3
...

εini



Following Hedeker and Gibbons (2006) approach, the above matrix representation can

be expressed using the standard linear mixed effects model,

yi = Xiβ+W ∗
iυ
∗
i + εi, υ∗i ∼ N(0,D∗−1), εi ∼ N(0, σ2

ε ITi), i = 1, . . . , N, (7.3)

where W ∗
i = {W̃ i, diag(W i1, · · · ,W ini)} such that W̃ i = (W̃ i1, · · · , W̃ ini)

′
. The

coefficients vector υ∗i = (γi,υi1, · · · ,υini)
′
contains all random effects for the ith subject,

covariance matrixD∗ = diag(αγ ,Ω, · · · ,Ω) and εi = (εi1, · · · , εini)
′
are the error terms.

We assume that the random components in υ∗i and εi are independent.

Both frequentist and Bayesian methodologies can be used to estimate and make inference

on parameters for a hierarchical functional mixed effects model. For example, in a

frequentist framework, we can use the approach described in Hedeker and Gibbons

(2006) to estimate parameters for a mixed-effects models for multi-level data. Similarly,

in Bayesian environment we can use the MCMC based methods to compute the posterior

estimates for the model parameters (see Gelman and Hill, 2007).

To compute the posterior estimates for parameters in the linear mixed effects model

(3), we can specify the priors distributions β ∼ N(0,A−1), υij ∼ N(0,Ω−1), γi ∼
N(0,E−1) and εi ∼ N(0, σ2

ε ITi) where A = diag(α1, · · · , αM ) while E and Ω are

as described before. The covariance matrices E and Ω for the random effects can

be assigned inverse-Wishart priors. Unfortunately, the inverse-Wishart priors cannot

allow the shrinkage of the covariance matrix components (Chen and Dunson, 2003). To

allow the shrinkage and accommodate the implementation of the RVM procedure, we

assume that the random effects υij are independent resulting to a diagonal covariances

matrix Ω = diag(ω1, · · · , ωM∗) and E = diag(αγ1, αγ2). To complete the specification

of the priors, the variance hyper parameters can be assigned to non-informative gamma

priors that are widely-used in hierarchical models but it is well known in the literature

that gamma priors are inappropriate choice for variance components in random effects
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models. Refer to Gelman (2006) for a discussion of this problem and description of

alternatives.

7.3 Parameter estimates for functional mixed effects model

7.3.1 Posterior estimates

Inference in Bayesian data analysis is based on the posterior distribution of the pa-

rameters. We consider the mixed effects model in equation (7.2) or (7.3) and take

Θ = {β,υ,α,ω,γ,αγ , σ−2
ε }, where γ = (γ1, · · · ,γN ) and υ = (υi, · · · ,υN )

′
such

that υi = (υi1, · · · , υiM∗)
′

for all i subjects. Vectors α = (α1, · · · , αM )
′

and ω =

(ω1, · · · , ωM∗)
′

and are the diagonal elements for the covariance matrix A and Ω re-

spectively. The priors for β, γ and υ are as described before. The priors for param-

eters α, ω, αγ and σ−2
ε are αl|c1, d1 ∼ Gamma(c1, d1), ωl|c2, d2 ∼ Gamma(c2, d2),

αγl|c3, d3 ∼ Gamma(c3, d3) and σ−2
ε |a, b ∼ Gamma(a, b) respectively.

Taking a response vector Y = {y1, · · · ,yN}, the joint posterior distribution for the

parameters in the mixed effects model is

p(Θ|Y ) =
p(Y |β,γ,υ,α,ω,αγ , σ−2

ε )p(β|α)p(υ|ω)p(γ|αγ)p(α)p(ω)p(αγ)p(σ−2
ε )

p(Y |.)

where p(Y |.) is the normalizing constant. However, the posterior density p(Θ|Y ) is ana-

lytically intractable since the normalizing constant does not have a closed form solution.

To approximate p(Θ|Y ), we use the decomposition,

p(Θ|Y ) = p(β|.)p(γ|.)p(υ|.)p(α,ω,αγ , σ−2
ε |Y ). (7.4)

where the density functions p(β|.) = p(β|Y ,α,ω,αγ , σ−2
ε ), p(γ|.) = p(γ|Y ,β,ω,αγ , σ−2

ε )

and p(υ|.) = p(υ|Y ,β,γ,ω, σ−2
ε ). These are the posterior densities for the fixed and

random effects at subject and cycle level respectively.

The posterior distributions for β, γ and υ are Gaussian densities. The posterior density

for β is,

p(β|Y ,α,ω,αγ , σ−2
ε ) = N(β;µ,Σ), (7.5)

where µ = Σ(
∑N

i=1X
′
iV
∗−1
i yi) and Σ = (A +

∑N
i=1X

′
iV
∗−1
i Xi)−1 such that matrix

V ∗i = σ2
ε ITi +W ∗

iD
∗−1W ∗′

i and ITi is a Ti× Ti identity matrix. Matix A is a diagonal

matrix with elements in vector α. The posterior distribution for the subject specific
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random effects γ is,

p(γ|Y ,β,ω,αγ , σ−2
ε ) =

N∏
i=1

N(γi; γ̂i, Ψ̂i), (7.6)

where γ̂i = Ψ̂iW̃
′

iV
−1
i (yi − Xiβ) and Ψ̂i = (E + W̃

′

iV
−1
i W̃ i)−1 such that V i =

σ2
ε ITi + W iD

−1W
′
i and E = diag(αγ1, αγ2). The dimensions of the diagonal matrix

D = diag(Ω, · · · ,Ω) may differ from subject to subject depending on the number of

cycles in a subject and matrix W i = diag(W i1, · · · ,W ini). The posterior distribution

for the cycle specific random effects υij is

p(υ|Y ,β,γ,ω, σ−2
ε ) =

N∏
i=1

ni∏
j=1

N(υij ; υ̂ij , Ω̂ij), (7.7)

where the posterior mean υ̂ij = σ−2
ε Ω̂ijW

′
ij(yij −Xijβ− W̃ ijγi) and posterior covari-

ance Ω̂ij = (Ω + σ−2
ε W

′
ijW ij)−1.

The posterior p(α,ω,αγ , σ−2
ε |Y ) for the variance components do not have a simple

form. Therefore, to estimate the variance components we propose an empirical Bayes

procedure for sparse MAP estimation that will be discussed in the next subsection.

7.3.2 Empirical Bayes for variance components

The posterior density p(α,ω,αγ , σ−2
ε |Y ) is analytically intractable, and we propose to

use an empirical Bayes approach and compute plug-in estimates for α, αγ , ω and σ2
ε .

The estimates are carefully computed to favor a sparse shrinkage structure where many

elements of α and ω are very close to zero. The empirical Bayes estimates are based on

the modes of the generalized log-likelihood functions l(α), l(αγ) and l(ω, σ−2
ε ) that will

be defined latter in this section.

Let the joint density p(α,αγ ,ω, σ−2
ε |Y ) ∝ p(α)p(αγ)p(ω)p(σ−2

ε )p(Y |α,αγ ,ω, σ−2
ε )

where the density functions p(α), p(αγ), p(ω) and p(σ−2
ε ) are the Gamma distributions

that were defined in section 7.2.1. Following an empirical Bayes approach and choosing

non-informative priors for α, ω, αγ and σ2
ε , we set all the gamma hyper-parameters

equal to zero, leading to the assumption that the modes for p(α,αγ ,ω, σ−2
ε |Y ) and

p(Y |α,αγ ,ω, σ−2
ε ) are equivalent. Hence, the plug-in estimates for α, αγ , ω and σ2

ε

can be computed as the maximum likelihood estimates (MLE) of the likelihood function

p(Y |α,αγ ,ω, σ−2
ε ).
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The likelihood function is obtained after integrating out the fixed effects β and random

effects γi and υij such that,

p(Y |α,ω,αγ , σ−2
ε ) =

∫ N∏
i=1

ni∏
j=1

p(yij |β,υij ,γi, σ−2
ε )p(β|α)p(γi|αγ)p(υij |ω)dυijdγidβ,

where the densities p(β|α) =
∏M
l=1N(βl; 0, α−1

l ) and p(υij |ω) =
∏M∗

l=1N(υijl; 0, ω−1
l ),

while p(γi|αγ) is as defined in the previous section. The likelihood p(Y |α,ω,αγ , σ−2
ε ) =

N(Y ; 0,C∗−1), where the covariance matrix C∗ = V ∗ + XA−1X
′

such that X =

(X1, . . . ,XN )
′

is the design matrix and V ∗ = diag(V ∗1, . . . ,V
∗
N ).

The MLE estimates for the four variance components cannot be computed simultane-

ously using the likelihood function p(Y |α,ω,αγ , σ−2
ε ). Therefore, we use an alternating

conditional maximization process that iterates between calculating the conditional MLE

of α, αγ and ω, σ−2
ε seperately. To compute α, we hold parameters ω, αγ and σ−2

ε fixed

and use the likelihood function L(α;ω,αγ , σ−2
ε ). Similarly, to compute the conditional

MLE of αγ we fix the remaining variance parameters and use the conditional likelihood

L(αγ ;α,ω, σ−2
ε ). Computation of the conditional MLE for both ω and σ−2

ε is based

on the likelihood L(ω, σ−2
ε ;α,αγ) while keeping parameters α and αγ fixed. The three

conditional likelihood functions are defined as follows.

The computation of the MLE estimates for α involves maximizing the log-likelihood

function `(α;ω,αγ , σ−2
ε ) = −1

2 {N log(2π)+log |C∗|+Y ′C∗−1Y }. However, the presence

of the covariance matrixC∗ in the log-likelihood function makes it impossible to compute

the estimates for α. Hence, following a similar approach as in Ji et al. (2009) and taking

fixed values of ω, αγ and σ−2
ε , the log-likelihood function `(α;ω,αγ , σ−2

ε ) is re-written

in a decomposed representation

`(α;ω,αγ , σ−2
ε ) =

−1
2

{
N log(2π) + log |Σ̂−1|+ log |A|+ µ̂′Aµ̂

+ log |V ∗−1|+ (Y −Xµ̂)
′
V ∗−1(Y −Xµ̂) }. (7.8)

where µ̂ and Σ̂ are the posterior mean and covariance matrix defined in equation (7.5).

The estimate for the lth element of α is,

α̂l =
1

µ̂2
l + Σ̂ll

l = 1, . . . ,M, (7.9)

where µ̂l is the lth elements of µ̂ and Σ̂ll is the lth diagonal element of Σ̂. The estimates

for α̂ = (α̂1, . . . , α̂M )
′

are functions of both the mean and covariance of β. Hence

the computation of α̂l involves an iterative procedure that estimates variance hyper-

parameter αl in equation (7.8) and updating the mean µ̂ and covariance Σ̂ as in equation
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(7.5).

We maximize the log-likelihood function `(αγ ;α,ω, σ−2
ε ) to obtain the estimates for αγ .

Let `(αγ ;α,ω, σ−2
ε ) = −1/2

∑N
i=1 Ti log(2π) + log |C−1

i | + (yi −Xiµ̂)
′
C−1
i (yi −Xiµ̂)

be a log-likelihood function for αγ given ω and σ−2
ε and α where Ci = V i+α−1

γ W̃ iW̃
′

i

where W̃ i and V i are as were defined previously. Like in the previous case, the presence

of matrix V i in the log-likelihood function causes problem in the computation of the

MLE for αγ , thus we follow a similar decomposition process that leads to

`(αγ ;α,ω, σ−2
ε ) =

−1
2

N∑
i=1

log |Ψ̂−1
i |+ log |αγ |+ γ̂

′
iEγ̂i + log |V −1

i |

+(yi −Xiµ̂− W̃ iγ̂i)
′
V −1
i (yi −Xiµ̂− W̃ iγ̂i), (7.10)

where γ̂i and Ψ̂i are the posterior mean and variance for γi as in equation (7.6). The

estimate for αγ is

α̂γl =
N∑N

i=1(γ̂2
il + Ψ̂ill)

l = 1, 2. (7.11)

The estimates for αγ are functions of both the mean γ̂i and variance Ψ̂i for the subject

specific random effects. Therefore, the computation of α̂γ involves an iterative procedure

that estimates αγ in equation (7.10) and updating the estimates γ̂i and Ψ̂i as in equation

(7.6).

To obtain the estimates for ω and σ−2
ε , we maximize the log-likelihood `(ω, σ−2

ε ;α,αγ) =

−1/2
∑N

i=1{
∑ni

j=1 Tij log(2π) + log |V −1
ij | + (yij − Xijµ̂ − W̃ ijγ̂i)

′
V −1
ij (yij − Xijµ̂ −

W̃ ijγ̂i)} where V ij = σ2
ε ITij + W ijΩ−1W

′
ij . This is a log-likelihood of ω and σ−2

ε

given some fixed values of α and αγ . Like in the previous two cases, the presence of

matrix V ij in the log-likelihood function causes problem in computing the estimates for

ω and σ−2
ε . By decomposing the log-likelihood `(ω, σ−2

ε ;α,αγ) we obtain,

`(ω, σ−2
ε ;α,αγ) =

−1
2

N∑
i=1

{
ni∑
j=1

log |Ω̂−1
ij |+ log|Ω|+ log |σ2

ε ITij |+ υ̂
′
ijΩυ̂ij

−σ2
ε ||yij −Xijµ̂− W̃ ijγ̂i −W ijυ̂ij ||2}, (7.12)

where υ̂ij and Ω̂ij are the posterior mean and covariance for the cycle specific random

effects υij . The MLE estimates are,

ω̂l =
∑N

i=1 ni∑N
i=1(

∑ni
j=1(υ̂2

ijl + Ω̂ijll))
, l = 1, . . .M∗ (7.13)
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σ̂2
ε =

∑N
i=1(

∑ni
j=1 ||yij −Xijµ̂− W̃ ij γ̂i −W ijυ̂ij ||2)∑N

i=1{
∑ni

j=1(Tij −M∗ +
∑M∗

l=1 ωlΩ̂ijll)}
, (7.14)

where υ̂ijl is the lth component of υ̂ij and Ω̂ijll is the lth diagonal element of Ω̂ij . Both

estimates for ω and σ2
ε are functions of υ̂ij and Ω̂ij , which leads to an iterative algorithm

that alternates between updating ω̂ij and σ̂2
ε as in equations (7.13)-(7.14) and updating

the mean and covariance of the random effects as in equation (7.7).

While implementing the above empirical Bayes approach, two problems can arise when

the number of the fixed and random effects is large. The first problem is related to the

computational time. When Σ̂ and Ω̂ij have large dimensions (M ×M and M∗ ×M∗

respectively), the computational time increases dramatically while inverting Σ̂ and Ω̂ij

at each step of the iterative procedure. Next, when dimensions M and/or M∗ are large

relative to the sample size, the computational efficiency worsens while estimating the

elements of the covariance matrices. Such a problem can lead to lack of convergence of

the procedure.

Potentially the computational efficiency problem can be solved by adapting a fast basis

selection RVM algorithm that bypasses the inversion step leading to a reduced model

with dimension m ×m and m∗ ×m∗ for both Σ̂ and Ω̂ij respectively where m << M

and m∗ << M∗. However, the basis selection step typically adds to the computational

burden, but this is still important to obtain a sparse yet flexible characterization of the

data. Moreover, the RVM approach has another disadvantage in that typical Bayesian

basis selection approach also allows both inferences on which variables are important and

allows a better characterization of uncertainty. Unfortunately, the RVM approach does

not have this latter advantage in ignoring uncertainty in the variable selection process.

Hence, this is the price we pay for much greater computational efficiency relative to the

MCMC approaches.

7.3.3 A fast Empirical Bayes approach

A fast Empirical Bayes procedure can be use to improve the computation efficiency while

computing the prior parameters α and ω. Empirically, the local marginal maximization

of the marginal log-likelihoods (7.10) and (7.12) with respect to α and ω respectively,

can lead to a sparse model with reduced dimensions of Xi and W i by discarding M−m
columns of Xi and M∗ − m∗ columns of W i. Conditional maximization of the two

log-likelihood functions `(α;ω,αγ , σ−2
ε ) and `(ω, σ−2

ε ;α,αγ) can lead to highly sparse

distributions with values of many hyper-parameters approach infinity. This allows the

distribution for the posterior estimates to be infinitely peaked at zero for many fixed
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and random effects with corresponding consequences of having few non-zero elements of

posterior estimates µ and υ̂ij for all i and j.

To select the non zero elements of the population mean vector µ, we first maximize the

log-likelihood function `(α;ω,αγ , σ−2
ε ) = −1

2

(
N log(2π) + log |C∗|+ Y ′C∗−1Y

)
with

respect to α. To achieve optimal shrinkage, the maximization process is based on the

kth element of the log-likelihood function. For a better representation, the log-likelihood

function is decomposed into two parts -with and without the kth component of α. This

is achieved by first partitioning the covariance matrix C∗ such that

C∗ = V ∗ +
M∑
l=1

α−1
l X.lX

′
.l = V ∗ +

M∑
l 6=k

α−1
l X.lX

′
.l + α−1

k X.kX
′
.k,

where X.l is the lth columns of the design matrix X. Hence, the covariance matrix

C∗ = C∗−k + α−1
k X.kX

′
.k such that C∗−k is matrix C∗ without the contribution of the

kth component of X and α. This partitioning process allows the decomposition of the

log likelihood function leading to

`(α;ω,αγ , σ−2
ε ) = `(α−k;ω,αγ , σ−2

ε ) +
1
2

(
logαk − log |αk + sk|+

q2k
αk + sk

)
,

where sk = X
′
.kC

∗−1
−k X.k and qk = X

′
.kC

∗−1
−k Y . Differentiating the log-likelihood function

`(α;ω,αγ , σ−2
ε ) with respect to αk and equating the resulting normal equations to zero

leads to the MLE estimate for αk = s2k
q2k−sk

. This results to a recursive RVM algorithm

for the basis function selection that has

α̂k =


s2k

q2k−sk
if q2k > sk,

∞ otherwise.
(7.15)

The basis selection process for a candidate X.k is based on the contribution of αk to the

log-likelihood `(α;ω,αγ , σ−2
ε ). To initiate the selection process, we first select the fixed

effect that has the largest contribution to `(α;ω,αγ , σ−2
ε ). After the initial selection,

we evaluate the contribution of all αk to the log-likelihood function and select the one

with the next largest contribution. Using this candidate basis function we compute the

values of qk and sk which determine whether the candidate basis function is to be added,

removed or update. Addition occurs when q2k > sk and X.k is not in the model. But

when the basis function X.k is already in the model, we can either update or delete

the basis function. We update α̂k when q2k > sk. But if the quantity q2k < sk, we

delete/remove X.k from the model. The process continues until the contribution of the

candidate αk to the log-likelihood function is negligible.
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In a similar manner, a modified RVM procedure can hasten the process of dimension

reduction of the random effects at cycle level from M∗ to m∗. This process is based

on a basis selection procedure that estimates the significant components of ω by maxi-

mizing the log-likelihood function `(ω, σ−2
ε ;α,αγ). In particular, we fix the remaining

parameter constant and evaluate the contribution of the kth component of ω on the

log-likelihood function. We decompose the log-likelihood function `(ω, σ−2
ε ;α,αγ) =

−1/2
∑N

i=1{
∑ni

j=1 Tij log(2π) + log |V −1
ij | + (yij − Xijµ̂ − W̃ ijγ̂i)

′
V −1
ij (yij − Xijµ̂ −

W̃ ijγ̂i)} into two components - with and without the contribution of the kth compo-

nents of hyper-parameter ω. To allow such kind of decomposition, we first partitioning

the covariance matrix V ij into two parts - with and without the contribution of the kth

components. This leads to

V ij = σ2
ε ITij +

M∗∑
l=1

ω−1
l WijlW

′
ijl = σ2

ε ITij +
M∗∑
l 6=k

ω−1
l WijlW

′
ijl + ω−1

k WijkW
′
ijk.

where V ij = V ij−k + ω−1
k WijkW

′
ijk such that V ij−k = σ2

ε ITij +
∑M∗

l 6=k ω
−1
l WijlW

′
ijl.

Decomposing the log likelihood function results to,

`(ω, σ−2
ε ;α,αγ) = `(ω−k, σ−2

ε ;α,αγ)+
−1
2

N∑
i=1

ni∑
j=1

(
logωk − log |ωk + s∗ijk|+

q∗2ijk
ωk + s∗ijk

)
,

where s∗ijk = W
′
ijkV

−1
ij−kWijk, q∗ijk = W

′
ijkV

−1
ij−k(yij−Xijµ̂−W̃ ijγ̂i) and `(ω−k, σ−2

ε ;α,αγ)

is the log-likelihood without the contribution of ωk. We differentiate the log-likelihood

function with respect to ωk and set the result to zero. Since the resulting expression

is complex to express, we approximate solution by assuming that ωk << s∗ijk resulting

to ω̂k = N∑N
l=1

∑ni
j=1(q∗2ijk−s

∗
ijk)/s

∗2
ijk

. More details to justify the use of this approach can be

found in Ji et al. (2009). This leads to a recursive algorithm that has,

ω̂k ∼=


N∑N

i=1

∑ni
j=1(q∗2ijk−s

∗
ijk)/s

∗2
ijk

if
∑N

l=1

∑ni
j=1

(q∗2ijk−s
∗
ijk)

s∗2ijk
> 0,

∞ otherwise.
(7.16)

Like in the previous basis functions selection, the random effects at the cycle level are

selected in a parallel manner similar to the fixed effects. We first select the kth element of

ω that has the largest contribution to the log-likelihood function `(ω, σ−2
ε ;α,αγ). This

is followed by the computation of q∗ijk and s∗ijk that are used to determine the appropriate

operation to be done on the candidate basis function. We then evaluate the contribution

of each ωk towards the log-likelihood function and select the one with the next largest

contribution. This becomes the candidate basis function Wijk. Three operations can

take place on Wijk: add, update and delete. The basis function Wijk is added into the
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model when it is absent and
∑N

l=1

∑ni
j=1

(q∗2ijk−s
∗
ijk)

s∗2ijk
> 0. An update operation occurs

when
∑N

l=1

∑ni
j=1

(q∗2ijk−s
∗
ijk)

s∗2ijk
> 0 and Wik is already in the model. Deletion occurs when∑N

l=1

∑ni
j=1

(q∗2ijk−s
∗
ijk)

s∗2ijk
< 0 and the basis function Wijk is already in the model. The basis

functions selection process continues until the contribution of the candidate ωk to the

log-likelihood function is negligible. The final model has a few ωl < ∞ while majority

tend to approach ∞. This corresponds to majority of the random effects at cycle level

equal to zero and while just a few are non-zero for all subjects i and cycles j.

Appendix C contains simpler expressions for the quantities of interest that are used to

compute: (1) changes in log likelihood functions in the three basis function operations

(addition, deletion and update); (2) parameter estimates for the priors (α, ω), mean

vectors (µ, υ) and covariance matrices (Σ, Ω) as in equations (7.5, 7.7, 7.15, 7.16).

These expressions help to minimize the computation burden involved in the estimation

of the fixed and random effects for the sparse functional mixed model discussed in section

7.3.

7.4 Application to the bbt measurements

In this application, we consider the basal body temperature data from the European fe-

cundability study (Colombo and Masarotto, 2000) that was used in the previous applica-

tions in this thesis. In previous chapters we considered measurements for one menstrual

cycle from each woman, but in this case we generalize the application and consider a case

where subjects contribute measurements from more than one menstrual cycle. However,

since most of the 520 subjects used in the previous chapters have bbt measurements

from a few menstrual cycles, we consider N = 100 subjects. Further, to make the pro-

gramming work easier, we consider a fixed number of cycles ni from each woman such

that each contributes bbt measurements from ni = 5 menstrual cycles.

To implement the proposed multi-level RVM procedure, we use the cubic B-splines

(Ramsay, 2005) to generate the basis functions φ and ϕ for the fixed and random effects

respectively. Following a similar approach like the one used by Wand and Ormerod

(2008), the basis functions are generated using the standardized values of time covariate

zij = (zijt, · · · , zijTij )
′
. We generate 27 cubic B-splines with 23 interior equally spaced

knots. This results to 27 column in the design matrices Xij and W ij for the fixed effects

and cycle specific random effects respectively. We also include two additional columns

generated from 1′s and zij (i.e. {1, zijt}
Tij
t=1). Hence, the two design matrices Xij and

W ij have dimensions Tij ×M and Tij ×M∗ respectively where M = M∗ = 29 are the

number of columns for Xij and W ij and Tij is number of rows which vary from cycle to
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cycle depending upon the number of observations in each menstrual cycle. The design

matrix W̃ ij for the subject specific random effects consists of 2 columns generated from

1′s and zi = (zi1, · · · , zini)
′

leading to dimensions Ti×2, where Ti is the number of rows

that correspond to the total number of the bbt measurements for all menstrual cycles

ni from the ith subject.

The coding for the ML-RVM procedure was done using R software (version 2.8.1) on Pen-

tium IV, 2.4GHz, 512MB, Windows XP computer. We implemented the MT-RVM pro-

cedure to the bbt data for N = 100 women. The final sparse Multi-level functional model

has m = 9 basis functions for the fixed effects (# = 28, 26, 2, 4, 22, 29, 17, 27, 24), two

basis functions for the subject specific random effects and m∗ = 19 basis functions for the

cycle specific random effects (# = 17, 6, 7, 11, 23, 9, 15, 16, 19, 25, 21, 10, 4, 3, 2, 1, 8, 28, 29).

The indexes for the basis functions for the fixed and random effects in the final multi-

level model, represent the order in which the basis functions were entered into the model

at each level. The average time taken to estimate one bbt curve from the jth cycle and

ith subject was 0.0742 seconds. As in other multi-level modeling cases, curves from the

same subject are expected to cluster together. Hence, to reveal the clustering effects

within the subjects’ curves we plot the ni curves from the same subject on the same

plot. Figure 7.1 shows the estimated bbt cycles from 6 randomly selected women where

each woman has five bbt curves. The thick line in all the six plots represent the esti-

mated population average curves, while the five dotted curves in each plot represent the

estimated cycle specific curves.

7.5 Discussion

In this chapter we have a developed a fast Bayesian method that generates a sparse

multilevel functional mixed model. The methodology uses nested data to fit a multilevel

functional mixed model similar to Brumback and Rice (1998). To allow for fast compu-

tation, we developed a dimensional reduction strategy for the multilevel model similar

to James, et al., 2001, Yao, et al., 2005; Crainiceanu, 2009 but avoided their Functional

Principal Component Analysis (FPCA) methodology and used the RVM (Tipping, 2001)

procedure. Our approach establishes a close connection between the relevance machine

methodology that is widely used in machine learning and the multi-level functional mixed

models that are commonly used in biostatistics data analysis. It adds to the literature

on dimensional reduction/variables selection procedures for the multi-level linear mixed

model as well as providing an appealing alternative to the commonly used computer

intensive reversible jump (Green, 1995) and stochastic search variable selection (Smith

and Kohn, 1996) methods. The proposed ML-RVM approach provides a fast Bayesian
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Figure 7.1: Plots for population average (thick curve) and 5 cycles specific curves
(dotted) for each subject
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method that combines the basis functions selection at both population and cycle specific

levels and the parameter estimation process within a single step. The selection of the

variables (fixed and random) is done at two levels (population average and cycle-specific

level), but the number of the random effects at subject specific is fixed in that we only

considered the intercept and the slope.

The proposed approach is appealing in developing a more flexible multi-level Bayesian

methodology that bypasses the use of the MCMC algorithms and use the MAP plug-

in estimates for the priors in both the fixed and random effects parameters. However,

the approach has several limitations. First, to allow the implementation of the RVM

procedure in a multi-level functional linear mixed model, we assumed (1) the daily bbt

measurements are independent and (2) the random effects are also independent. The

independence assumption among the bbt measurements and the random effects is an

unrealistic assumption in many longitudinal and functional data analysis applications.

Hence, a flexible approach should be adopted where the correlations among the mea-

surements and the random effects should be incorporated into the model. To handle a

more general correlation structure for the random effects, we can adopt and extend the

approach used in Ciera nd Dunson (2010) that is based on a modified Cholesky decom-

position that was proposed by Chen and Dunson (2003) and allows the decomposition

of the covariance matrix for the random effects. Other candidate covariance matrix

decomposition methodologies include Smith and Kohn (2002), Fruhwirth-Schnatter and

Tuchler (2004) and Kinney and Dunson (2006). Second, we can considered a more gen-

eralized basis selection procedure that can be applied to the basis functions at all levels

in the hierarchy (i.e. at the fixed effects and random effects at subject and cycle specific

levels).

Despite of the cited limitations, the proposed approach offers a fast and flexible method

to estimate the average population and subject specific curves in addition to the cycle

specific curves. Moreover, the method is appealing in laying the foundation for de-

veloping fast multi-level Bayesian methodologies that bypasses the use of the MCMC

algorithms and use the MAP plug-in estimates for the priors in both the fixed and

random effects parameters. Since most theoretical properties of the application of the

RVM procedure in functional mixed models and multilevel functional models are not yet

known, there is need to investigate: (1) the sensitivity of the MAP estimates toward the

initial values supplied to initiate the ML-RVM algorithm and (2) the performance of the

approach while maximizing the two conditional log likelihood functions `(α;ω,αγ , σ−2
ε )

and `(ω, σ−2
ε ;α,αγ) since there is a potential risk of arriving at local modes. More-

over, before adopting the proposed approach as a universal dimensional reduction and

multilevel curve fitting method, further work is required to compare the performance
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of the ML-RVM method relative to other related approaches in the literature. For ex-

ample, on dimension reduction aspect, simulations studies need to be done to evaluate

the performance of the ML-RVM procedure and compare it with other methods like the

FPCA method (James, et al., 2001) and the fence method (Jiang et al, 2008) that are

commonly used for model reduction in linear mixed model. Similarly, on curve fitting

aspect, crucial properties like computational time, bias and Mean Integrated Squred

Error (MISE) of the ML-RVM method need to be compared with other related methods

in the literature e.g. Brumback and Rice (1998); Guo (2002); Morris et al. (2003);

Durban, et al. (2005); Baladandayuthapani et al. (2008); Crainiceanu (2009) among

others. We also note that, it would be great to find ways to simplify the RVM algorithm

which many readers complain to be relatively complicated compared to other existing

basis selection procedures.

7.6 Further work

Initial results on the application of the ML-RVM method in section 7.3 show that the

approach has great potential in providing a fast method of fitting multilevel curves in

Bayesian framework. Hence, to justify the application of the proposed method in other

related problems, we aim to:

• Extend the basis selection procedure to all hierarchical levels of the random effects

(i.e. implement the selection procedure to both subject specific and cycle specific

levels).

• Evaluate the sensitivity of the MAP estimates by varying the initial values. In

this case, we aim to vary the magnitudes of the initial values used to initiate the

estimation process for parameters ω, α and αγ and evaluate their effects on the

computation time and the resulting MAP estimates.

• Compare the performance of the ML-RVM and other related approach with respect

to the computation time, bias, and MISE. To achieve this, we can simulate data,

implement the ML-RVM procedure and varying the number of observations per

cycle, cycles per subject and the number of subjects in a study.

• Evaluate the robustness of the ML-RVM procedure against the sparseness of the

data by conducting the out-of-sample prediction procedure that was used in chap-

ter 5 and 6. We then evaluate the correlation coefficients between the fitted and

the predicted values obtained after dropping different percentages of observations

per cycles.
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The proposed ML-RVM methodology can be extended to accommodate correlated ran-

dom effects following the approach of Ciera and Dunson (2010) such that the covariance

matrix for the random effects is non-diagonal. Further, the methodology can be modi-

fied to handle functional models that have demographical variables like age, number of

previous births, marital status etc. Predicting non-dysfunctional menstrual cycles is an

important task in many reproductive studies. Hence, the methodology can be extended

to include a cycle clustering step that can be used to predict early early pregnancy loss

or non-conceptional menstrual cycles. The clustering process can be based on the cycle

specific parameters using parametric and non-parametric Bayesian clustering methods.

The approach can also be generalize to cover many generalized linear mixed models. For

example, when working with categorical outcomes, we can consider the Probit models

approach (Albert and Chib 1993) to model a latent variable that can easily be used in

the RVM methodologies.





Appendix A

Simplified computation methods

for different quantities

In this appendix, we follow the approach of Tipping (2001) to provide simpler expres-

sions for computing the changes in the log-likelihood functions (∆` and ∆`i) and other

quantities (qj , sj , , q∗ij , s
∗
ij). The quantities are used while selecting the basis func-

tions for the fixed and random effects in the modified MT-RVM procedure discussed in

chapter 5. The expressions can easily be modified and be used for the functional mixed

effects model discussed in chapter 6 that has correlated random effects. The appendix is

divided into two parts, the first part containers expressions for quantities that are used

in the selection of the fixed effects. The second part contains the expressions for the

quantities used in basis functions selection for the random effects. Each part containers

expressions for quantities used in the three operations (add, update, and delete) that

are contained in the MT-RVM algorithm.

SELECTION OF THE BASIS FUNCTIONS FOR THE FIXED EFFECTS

To allow easy computation in the selection of the basis functions for the fixed effects, we

avoid the use of expressions that have C−j and instead we use the ones with C. Hence,

instead of using sj and qj that have C−j , we use Sj = X
′
.jC
−1X.j and Qj = X

′
.jC
−1Y .

Both sets of variables are related such that sj = αjSj
αj−Sj and qj = αjQj

αj−Sj , when αj = ∞,

sj = Sj and qj = Qj .

Adding a new basis function

2∆` =
Q2
j−Sj
Sj

+ log Sj
Q2
j
,
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Σ̃ =

[
Σ + ΣjjΣX

′
X.jV X

′
.jV XΣ ΣjjΣX

′
V X.j

ΣjjΣ(X
′
V X.j)

′
Σjj

]

µ̃ =

[
µ - µjΣX

′
V X.j

µj

]
S̃j = Sj −Σjj(X

′
.jV ej)

2

Q̃j = Qj − µjX
′
.jV ej

Updating a basis function

2∆` =
Q2
j (α̃j−αj)

Sj(α̃j−αj)+α̃jαj − log{1 + Sj(α̃j−αj)
α̃jαj

}
Σ̃ = Σ− kjΣjΣ

′
j ,

µ̃ = µ− kjµjΣj

S̃j = Sj + kj(Σ
′
jX

′
V X.j)2,

Q̃j = Qj + kj(Σ
′
jX

′
V X.j),

Deleting a basis function

2∆` =
Q2
j

Sj−αj + log(1− Sj
αj

),

Σ̃ = Σ− 1
Σjj

Σ
′
j ,

µ̃ = µ− µj
Σjj

Σj ,

S̃j = Sj + 1
Σjj

(Σ
′
jX

′
V X.j)2,

Q̃j = Qj + µj
Σjj

(Σ
′
jX

′
V X.j),

where Σjj = 1
αj+Sj

, µj = ΣjjQj , ej ≈ X .j −XΣX
′
V X.j , kj = α̃j−αj

Σjj(α̃j−αj)+1 and Σj

is the jth column of covariance matrix Σ.

SELECTION OF THE BASIS FUNCTIONS FOR THE RANDOM EF-

FECTS

To allow easy computation, we avoid the expressions that contain V i,−j . Hence, instead

of using s∗ij and q∗ij that have V i,−j , we use S∗ij = w
′
ijV

−1
i wij and Q∗ij = w

′
ijV

−1
i y

∗
i

where y∗i = yi −Xiµ. Both sets of variables are related such that s∗ij =
ωjS

∗
ij

ωj−S∗ij
and

q∗ij =
ωjQ

∗
ij

ωj−S∗ij
, when ωj =∞, s∗ij = S∗ij and q∗ij = Q∗ij .

Adding a new basis function

2∆`i =
Q∗2ij −S∗ij
S∗ij

+ log
S∗ij
Q∗2ij

,

Ω̃i =

[
Ωi + Ωi,jjΩiW

′
iwijw

′
ijW iΩiσ

−2
ε -Ωi,jjΩiW

′
iwijσ

−2
ε

−Ωi,jjΩi(W
′
iwij)

′
σ−2
ε Ωi,jj

]
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υ̃i =

[
υi − υijΩiW

′
iwijσ

−2
ε

υij

]
S̃∗ij = S∗ij −Ωi,jj(w

′
ijeijσ

−2
ε )2

Q̃∗ij = Q∗ij − υjw
′
ijeijσ

−2
ε

Updating a basis function

2∆`i =
Q∗2ij (ω̃j−ωj)

S∗ij(ω̃j−ωj)+ω̃jωj
− log{1 +

S∗ij(ω̃j−ωj)
ω̃jωj

}

Ω̃i = Ωi − kijΩijΩ
′
ij

υ̃i = υi − kijυijΩij

S̃∗ij = S∗ij + kij(Ω
′
ijW

′
iwij)2σ−2

ε

Q̃∗ij = Q∗ij + kij(Ω
′
ijW

′
iwij)σ−2

ε

Deleting a basis function

2∆`i =
Q∗2ij

S∗ij−ωj
+ log(1− S∗ij

ωj
),

Ω̃i = Ωi − 1
Ωi,jj

Ω
′
ij ,

υ̃i = υi − υij
Ωi,jj

Ωij ,

S̃∗ij = S∗ij + 1
Ωi,jj

(Ω
′
ijW

′
iwij)2σ−2

ε ,

Q̃∗ij = Q∗ij + υij
Ωi,jj

(Ω
′
ijW

′
iwij)σ−2

ε

where Ωi,jj = 1
ωj+S∗ij

, υij = Ωi,jjQ
∗
ij , eij ≈ wij−σ−1

ε W iΩiW
′
iwij , kij = ω̃j−ωj

Ωi,jj(ω̃j−ωj)+1

and Ωij is the jth column of covariance matrix Ωi. A tilde on a parameter or variable

indicates an updated quantity.

The described expressions are for the modified MT-RVM procedure used in the func-

tional mixed effects model discussed in chapter 5. We note that the procedures for the

modified MT-RVM discussed in chapters 5 and 6 are similar with slight different nota-

tions for the basis functions, the posterior mean and covariance matrices for the fixed

and random effects. Since the quantities α and ω in both chapters are are the same,

then the expressions for the parameters and variables described in Appendix A can be

used for the modified MT-RVM procedure discussed in chapter 6.





Appendix B

Approximate 95% credible

intervals

The approximate 95% credible intervals for the parameters from the RVM procedure

are:

• For parameter β̂ the approximate 95% credible intervals are,

β̂j ± 1.96seβj j = 1, . . . ,m

where the standard error for βj is seβj =
√
Âjj such that Âjj is the jth diagonal

elements of the estimated covariance matrix Â in equation (16).

• The approximate 95% credible intervals for ω̂j where j = 1, . . . ,m∗ are,

c1ω̂j

√√√√∑N
i=1 Ti − d∗ − 1

χ2
α/2,

∑N
i=1 Ti−d∗−1

, c1ω̂j

√√√√ ∑N
i=1 Ti − d∗ − 1

χ2
1−α/2,

∑N
i=1 Ti−d∗−1

where c1 =
2Nσ̂ε

∑N
i=1

ŷ
′
iŷi

s∗2
i∑N

i=1(
ŷ
′
i
ŷi

s∗2
i

−s∗i )2
, ŷi = Xiβ̂ and d∗ = m+m∗ + m∗(m∗−1)

2 .

• The approximate 95% credible intervals for γ̂jl are,

γ̂jl ± 1.96seγjl j = 1, . . . ,m∗ − 1 and l = j + 1, . . . ,m∗

where seγjl has a complex expression but can be approximated as

seγjl ≈
σ̂ε
∑N

i=1wij ĥil∑N
i=1 Ĥi,llw

′
ijwij

.
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• The approximate 95% credible intervals for σ̂2
ε are,

c2σ̂ε

√√√√∑N
i=1 Ti − d∗ − 1

χ2
α/2,

∑N
i=1 Ti−d∗−1

, c2σ̂ε

√√√√ ∑N
i=1 Ti − d∗ − 1

χ2
1−α/2,

∑N
i=1 Ti−d∗−1

where c2 =
2σ̂ε

√∑N
i=1 ŷ

′
iŷi∑N

i=1(Ti−M∗+
∑M∗
j=1 ω̂jĤijj)

, ŷi = Xiβ̂ and d∗ = m+m∗ + m∗(m∗−1)
2 .



Appendix C

Simplified expressions for

quantities used in the ML-RVM

algorithm

Using the approach of Tipping (2001), we provide simpler expressions for computing

the changes in the log-likelihood (∆` and ∆`ij) and other quantities (ql, sl, , q∗ijl, s
∗
ijl)

used in the ML-RVM algorithm discussed in section 7.3. The Appendix has two parts,

the first part containers expressions for different quantities that are used in the selection

of the fixed effects. The second part contains the expression for the quantities used in

selection of the basis functions for the random effects at cycle specific level.

SELECTION OF THE BASIS FUNCTIONS FOR THE FIXED EFFECTS

The expressions for sk = X
′
.kC

∗−1
−k X.k and qk = X

′
.kC

∗−1
−k Y have matrix C∗−k which

is difficult to compute. To allow easy computations, we compute Sk = X
′
.kC

∗−1X.k and

Qk = X
′
.kC

∗−1Y . Quantities sk and qk can be re-computed from Sk and Qk using the

expressions sk = αkSk
αk−Sk and qk = αkQk

αk−Sk . When αk =∞, sk = Sk and qk = Qk.

For l = 1, · · · ,M , we can compute the changes of the log likelihood ∆` discussed in

section 7.3.3 that is associated to the three operations: Add, Update and Delete. For

each operations, we can be able to compute the changes for the log likelihood ∆`, com-

pute/update the mean vector (µ), covariance matrix (Σ) and the estimates for the priors

(α) as in equations (7.5, 7.15).
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Adding a new basis function

2∆` = Q2
l−Sl
Sl

+ log Sl
Q2
l
,

Σ̃ =

[
Σ + ΣllΣX

′
X.lV X

′
.lV XΣ ΣllΣX

′
V X.l

ΣllΣ(X
′
V X.l)

′
Σll

]

µ̃ =

[
µ - µlΣX

′
V X.l

µl

]
S̃l = Sl −Σll(X

′
.lV el)

2

Q̃l = Ql − µlX
′
.lV el

Updating a basis function

2∆` = Q2
l (α̃l−αl)

Sl(α̃l−αl)+α̃lαl − log{1 + Sl(α̃l−αl)
α̃lαl

}
Σ̃ = Σ− klΣlΣ

′
l,

µ̃ = µ− klµlΣl

S̃l = Sl + kl(Σ
′
lX
′
V X.l)2,

Q̃l = Ql + kl(Σ
′
lX
′
V X.l),

Deleting a basis function

2∆` = Q2
l

Sl−αl + log(1− Sl
αl

),

Σ̃ = Σ− 1
Σll

Σ
′
l,

µ̃ = µ− µl
Σll

Σl,

S̃l = Sl + 1
Σll

(Σ
′
lX
′
V X.l)2,

Q̃l = Ql + µl
Σll

(Σ
′
lX
′
V X.l),

where Σll = 1
αl+Sl

, µl = ΣllQl, el ≈ X.l−XΣX
′
V X.l, kl = α̃l−αl

Σll(α̃l−αl)+1 and Σl is the

lth column of covariance matrix Σ.

SELECTION OF THE BASIS FUNCTIONS FOR THE RANDOM EF-

FECTS

We can avoid a direct computation of s∗ijl and q∗ijl since both quantities contain matrix

V ij,−l which has difficulties in computation. Instead, we compute S∗ijl = W
′
ijlV

−1
ij Wijl

and Q∗ijl = W
′
ijlV

−1
ij y

∗
i where y∗ij = yij −Xiµ − W̃ iγi. We note that based on S∗ijl

and Q∗ijl, we can compute both s∗ijl and q∗ijl using the expressions s∗ijl =
ωlS
∗
ijl

ωl−S∗ijl
and

q∗ijl =
ωlQ

∗
ijl

ωl−S∗ijl
and when ωl =∞, s∗l = S∗ijl and q∗ijl = Q∗ijl.

Adding a new basis function

2∆`ij =
Q∗2ijl−S

∗
ijl

S∗ijl
+ log

S∗ijl
Q∗2ijl

,
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Ω̃ij =

[
Ωij + Ωij,llΩijW

′
ijWijlW

′
ijlW ijΩijσ

−2
ε -Ωij,llΩijW

′
ijWijlσ

−2
ε

−Ωij,llΩij(W
′
ijWijl)

′
σ−2
ε Ωij,ll

]

υ̃ij =

[
υij − υijlΩijW

′
ijWijlσ

−2
ε

υijl

]
S̃∗ijl = S∗ijl −Ωij,ll(W

′
ijleijlσ

−2
ε )2

Q̃∗ijl = Q∗ijl − υjlW
′
ijleijlσ

−2
ε

Updating a basis function

2∆`ij =
Q∗2ijl(ω̃l−ωl)

S∗ijl(ω̃l−ωl)+ω̃lωl
− log{1 +

S∗ijl(ω̃l−ωl)
ω̃lωl

}

Ω̃ij = Ωij − kijlΩijlΩ
′
ijl

υ̃ij = υij − kijlυijlΩijl

S̃∗ijl = S∗ijl + kijl(Ω
′
ijlW

′
ijWijl)2σ−2

ε

Q̃∗ijl = Q∗ijl + kijl(Ω
′
ijlW

′
ijWijl)σ−2

ε

Deleting a basis function

2∆`ij =
Q∗2ijl

S∗ijl−ωl
+ log(1− S∗ijl

ωl
),

Ω̃ij = Ωij − 1
Ωij,ll

Ω
′
ijl,

υ̃ij = υij −
υijl

Ωij,ll
Ωijl,

S̃∗ijl = S∗ijl + 1
Ωij,ll

(Ω
′
ijlW

′
ijWijl)2σ−2

ε ,

Q̃∗ijl = Q∗ijl + υijl
Ωij,ll

(Ω
′
ijlW

′
ijWijl)σ−2

ε

where Ωij,ll = 1
ωl+S

∗
ijl

, υijl = Ωij,llQ
∗
ijl, eijl ≈ Wijl − σ−1

ε W ijΩijW
′
ijWijl, kijl =

ω̃l−ωl
Ωij,ll(ω̃l−ωl)+1 and Ωij,l is the lth column of covariance matrix Ωij . A tilde symbol on

parameter or variable indicates an update.
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