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Summary

The present work concerns the mechanics of porous media and focuses on the develop-

ment of a thermo-poro-elastic model, with particular emphasis on the simulation of fluid

injection/pumping operations into geological formations. A non-linear model for cou-

pled fluid flow and heat transfer in saturated porous media has been developed based

on Mixed Hybrid Finite Elements (MHFEs) and Finite Volumes (FV). In particular, the

MHFE discretization for the flow equation leads to an element-wise mass-conservative

scheme, providing an accurate discrete velocity field. In the heat transfer equation, a

time-splitting tecnique has been used solving separately the convective term by means of

a FV scheme, and the conductive term by the MHFE method. The model can simulate

problems characterized by very sharp temperature fronts, introducing no spurious oscilla-

tion in the numerical solution and negligible numerical diffusion, and does not required an

excessive mesh resolution in order to ensure accuracy and stability. A fully coupled 3-D

Mixed Finite Element model has also been developed for the numerical solution to the

Biot equations of 3-D consolidation, combining Mixed Finite Elements (MFEs) and tra-

ditional Finite Elements (FEs) to discretize the fluid flow and the structural equilibrium

equations, respectively. MFEs are used in order to alleviate the pore pressure numerical

oscillations at the interface between materials with different permeabilities. An ad hoc

solution algorithm based on conjugate gradients is implemented that takes advantage of

the block structure of the discretized problem. The proposed models have been validated

against well-known analytical solutions, and successfully experimented with in engineering

applications.
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Sommario

Il presente lavoro di tesi si inserisce nell’ambito dello studio della meccanica dei mezzi

porosi ed ha avuto come oggetto principale lo sviluppo di un modello termo-poro-elastico

per la simulazione di processi di iniezione/pompaggio in formazioni geologiche. E’ stato

implementato un modello non-lineare per lo studio del flusso di massa accoppiato al

trasferimento di calore utilizzando Elementi Finiti Misti Ibridi (MHFE) e Volumi Finiti

(FV). In particolare, nel caso dell’equazione di flusso del fluido, l’uso degli Elementi

Finiti Misti Ibridi garantisce la proprietà di conservazione della massa, assicurando cos̀ı

un campo di velocità accurato. Nel caso dell’equazione di trasporto è stata adottata

una tecnica time-splitting andando a risolvere separatamente il termine convettivo con

uno schema ai FV, e quello diffusivo con il metodo degli MHFE. Il codice sviluppato è

in grado di riprodurre fenomeni caratterizzati da fronti di temperatura molto marcati,

senza introdurre oscillazioni spurie nella soluzione numerica, e non richiede l’impiego di

griglie di calcolo estremamente raffinate al fine di assicurare un’adeguata accuratezza. E’

stato sviluppato inoltre un modello 3D per lo studio accoppiato di problemi di flusso e

deformazione sfruttando l’uso combinato di Elementi Finiti Misti (MFE) e di Elementi

Finiti (FE) nella discretizzazione, rispettivamente, dell’equazione di flusso e di equilibrio

strutturale. L’impiego di MFE è stato scelto in modo da limitare le oscillazioni numeriche

della soluzione che caratterizzano il problema di flusso-deformazione in regioni con forti

contrasti di permeabilità. Il sistema lineare che scaturisce dalla discretizzazione delle

equazioni di bilancio è stato risolto implementando una tecnica iterativa ad hoc basata

sui gradienti coniugati precondizionati. I modelli proposti sono stati testati su alcuni

problemi di letteratura e applicati, con successo, a casi di interesse ingegneristico.
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Introduction

Predicting the response of fluid saturated porous media to thermal, pressure and/or me-

chanical loadings is of paramount importance in many engineering problems. Significant

examples deal with groundwater processes, such as flow circulation or water-table fluctua-

tions, heat and fluid transfer in geothermal explorations, heat and moisture flow and stress

around buried pipelines, underground waste containment projects, or nuclear waste stor-

age in deep geological formations. Other applications are the study of pavements under

freezing-thawing cycles, the transport of pollutants due to heat and fluid diffusion, land-

fill design, etc. Recently, considerable interest has been devoted to the study of coupled

hydro-thermo-mechanical models in porous media, especially connected to fluid injection

operations into geological formations. Injection of fluids into the subsurface started with

the petroleum industry more than 50 years ago, and nowadays is increasingly used for a

variety of purposes such enhanceing oil production (EOR), storing gas in depleted gas/oil

fields (UGS), recharging overdrafted aquifer systems (ASR), and mitigate anthropogenic

land subsidence.

Although the mechanical coupling between fluids and porous solids has been recognized

since the end of the 19th century [e.g., Reynolds, 1886; King, 1892], the first significant

advances date back to the 1920s by Terzaghi [1925], who developed the one-dimensional

consolidation theory under constant loading. Two crucial ideas are connected with the

work of Terzaghi: the notions of effective stress and the diffusion of pressure by flow,

linking consolidation directly to the dissipation of excess fluid pressure. These ideas still lie

at the core of current understanding of hydromechanical coupling and fluid flow through

porous media. However, the conceptual breakthrough occurred when Biot published

the theory of three-dimensional consolidation [Biot, 1941], also known as poroelasticity

theory, developing the mathematical framework governing the coupled fluid flow and

deformation. This is the basis of a more general description of hydromechanics in porous

media. Several other issues were addressed and clarified in the following decades [e.g.,

Geertsma, 1966; Verruijt, 1969; Rice & Cleary, 1976], incorporating also thermal effects
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[e.g., McTigue, 1986; Kurashige, 1989] in a thermoporoelastic theory. The solution to

the partial differential equations governing the thermoporoelastic behaviour of real fluid

saturated heterogeneous porous media are typically addressed by numerical strategies.

Despite the intensive research carried out in recent years, numerical solution to thermo-

poro-elasticity still represents a demanding task.

The main goal of this Ph.D. dissertation is to propose a robust, efficient and accurate

numerical approach to address thermoporoelastic problems, with particular emphasis on

the simulation of fluid injection/pumping operations into geological formations. In this

respect, two models based on traditional Finite Elements (FEs), Mixed Finite Element

(MFEs) and Finite Volumes (FVs) have been developed and implemented, addressing at

first the coupled fluid flow and heat transfer in deformable porous media, then the fully

coupled consolidation under isothermal conditions. The thesis is organized as follows:

chapter 1: the mathematical model describing the behaviour of a deformable fluid-

saturated porous medium is discussed. The constitutive relationships and the gov-

erning balance laws are reviewed, assuming a linear thermoporoelastic framework;

chapter 2: a numerical model for heat transfer in saturated porous media is discussed.

The model, consisting of a nonlinear system of coupled flow and heat transfer partial

differential equations, is solved using Godunov-Mixed Methods (GMMs), where an

explicit Finite-Volume Godunov technique is used for the convective flux with an

implicit Mixed Finite Element technique for heat conduction. An implicit Mixed

Finite Element discretization is also used to solve the flow equation. The model is

tested on Elder’s problem, in both the classical two- and extended three-dimensional

configurations. The simulation of seawater injection into a faulted aquifer is also

presented to emphasize the benefits of the proposed approach;

chapter 3: a fully coupled 3-D Mixed Finite Element model is developed for the nu-

merical solution to the Biot equations of 3-D consolidation, a still challenging issue

because of the ill-conditioning of the resulting algebraic system and the instabilities

that may affect the pore pressure solution. In particular, the main purpouse of pro-

posed approach is alleviating the pore pressure numerical oscillations at the interface

between materials with different permeabilities. An ad hoc solution algorithm is im-

plemented that takes advantage of the block structure of the discretized problem.

The proposed model is then validated against well-known analytical solutions;
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chapter 4: the proposed numerical models are applied to several large-size realistic and

computationally challenging applications set in the Venice lagoon. In all simulations,

the most recent available hydrogeological, geothermal and geomechanical data from

the Northern Adriatic basin are used. The consolidation of a shallow formation is

also addressed because of the construction of a trial embankment and a groundwater

withdrawal. Afterwards, the pilot project of anthropogenic uplift of Venice by deep

seawater injection, which has been recently advanced by Castelletto et al. [2008], is

discussed. The proposal, aiming at mitigating the floods that periodically plague

the city, is supplemented with the investigation of the role played by a temperature

variation should the injection take place in non-isothermal conditions.
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Chapter 1

Mathematical model of single-phase

flow in deformable porous media

1.1 Introduction

A porous medium is defined as a multiphase body consisting of a solid matrix with the

voids filled either by a single- or a multi-phase fluid (e.g., gas, water and oil). The matrix

consists of solid grains through which no filtration is possible. The connected pores are

the volume where fluid flow may occur.

The thermomechanical behaviour of fluid saturated porous rock is important in a

number of different areas, such as the enhanced oil recovery by hot fluid injection, the

extraction of geothermal energy, or the design of underground nuclear waste storage site.

Moreover, non-isothermal porous media can be encountered in several engineering ap-

plications. Under certain circumstances these problems may involve significant coupling

between heat transfer, pore pressure and flow of the interstitial fluid, and deformation of

the porous matrix. For example, a pore fluid pressure change or a temperature variation

can alter the bulk equilibrium and involve either a volumetric expansion or contraction.

Such a deformation of the porous matrix in its turn impacts on both the storage capacity

and hydraulic trasmissivity properties, affecting the fluid flow and the temperature field

evolution.

The earliest studies on coupled phenomena between mechanics and flow in porous

media date back to Terzaghi [1925], who developed a one-dimensional consolidation theory

for saturated soils undergoing constant loading. A generalized formulation for the coupling

between pore pressure and stresses in porous media was later established by Biot [1941,

5



6 CHAPTER 1. SINGLE-PHASE FLOW IN DEFORMABLE POROUS MEDIA

Figure 1.1: Schematic representation of a saturated porous medium: the solid phase and
the fluid phase are interpreted as overlapping continua.

1956]. Biot’s three-dimensional consolidation theory was recasted by Rice & Cleary [1976],

and extented to non-isothermal conditions [e.g., McTigue, 1986; Kurashige, 1989].

Macroscopic models of porous media use a continuum representation. In the present

work a single fluid phase is considered with the porous medium treated as two overlapping

continuous media, the solid matrix and the fluid, respectively. Such an approach assumes

the existence of a representative elementary volume (REV) with well defined average

properties (Fig. 1.1). In particular, a REV is defined when the porosity φ, i.e. the ratio

of the volume of voids to the total volume (solid + voids), approaches a stable limit.

In the present chapter the constitutive relationships and balance laws governing the

behaviour of deformable fluid-saturated porous media are reviewed. A linear thermoporoe-

lastic framework is selected with the following assumptions [Verruijt, 1969; Detournay &

Cheng, 1993; Coussy, 2004]:

• isotropic linear thermoporoelastic solid matrix;

• single-phase flow;

• small deformation;

• instantaneous thermal equilibrium between the solid and the fluid phases.
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1.2 Equations of state and constitutive equations

The equations of state for solid and fluid phase along with a set of constitutive equations

are necessary to describe the non-isothermal response of a saturated porous medium to

external loading. They provide the auxiliary relatioships needed to solve the balance

laws. In this pararagraph, the equations of state for solid and fluid densities and fluid

viscosity are described as well as the selected constitutive relationships, consisting of the

thermoporoelasticity equations, Darcy’s law and Fourier’s law.

1.2.1 Density and viscosity

The fluid phase (f) and the solid grain (s) densities are generally regarded as a function

of the state variables pressure p and temperature θ, in the form:

ρi = ρi(p, θ) i = f, s (1.1)

The total differential of (1.1) yields:

dρi =
∂ρi

∂p
dp+

∂ρi

∂θ
dθ

=

(
1

ρi

∂ρi

∂p

)

︸ ︷︷ ︸
βi

ρidp+

(
1

ρi

∂ρi

∂θ

)

︸ ︷︷ ︸
−3β′

i

ρidθ

= βiρidp− 3β′
iρidθ (1.2)

where

• βi is the the compressibility of phase i;

• 3β′
i is the volumetric thermal expansion coefficient of phase i, i.e. three times the

linear one under the hypothesis of isotropic behaviour.

If βf , βs, β
′
f , and β′

s are assumed to be constant, integration of Equation (1.2) leads to

the state equation for each phase in the form [Fernandez, 1972]:

ρi = ρi,0e
βi(p−p0)−3β′

i(θ−θ0)

≈ ρi,0 [1 + βi(p− p0) − 3β′
i(θ − θ0)] (1.3)

where ρi,0 is the reference value at pressure p0 and reference temperature θ0.

Although the dynamic viscosity of the fluid µf is also a function of both pressure

and temperature, it exhibits a strong dependence on temperature and little on pressure.
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Several empirical formulas can be found in the literature. For example, a relationship

proposed by Mercer & Pinder [1974] for water is:

1

µf (θ)
=

1 + 0.7063ζ − 0.04832ζ3

µf,0

(1.4)

with ζ = θ − 150
100 expressing θ in ◦C and the reference viscosity µf,0 evaluated at 150 ◦C.

If the range of temperature is not too large, the dynamic viscosity can be written as a

linear function of θ and µf,0 as:

µf = µf,0 [1 + α(θ − θ0)] (1.5)

where α = (µf,1 − µf,0)/(θ1 − θ0) and µf,1 is the viscosity at a convenient temperature θ1.

1.2.2 Thermoporoelastic constitutive equations

A thermoporoelastic system depends on six variables grouped in conjugate pairs:

• total stress σ and linearized strain ǫ;

• pore pressure p and fluid mass content m;

• temperature θ and specific entropy s.

The fluid mass content is the fluid mass per unit volume of porous medium [Rice &

Cleary, 1976]. The specific entropy is similarly defined as the entropy of the satutared

porous medium per unit volume [McTigue, 1986]. Pore pressure, fluid mass content,

temperature and specific entropy are scalar variables while the total stress and strain are

both rank-2 symmetric tensors with six components each. The total tensor components

σij of the applied stress on a unit reference volume are shown in Figure 1.2: the first and

second indeces denote the lying plane and the direction of the stresses, respectively. The

classical continuum mechanics stress sign convention for the stresses is adopted, namely

tensile stresses are positive and compressive stresses are negative. The strain tensor

components ǫij (Figure 1.3) for a fluid-filled porous medium are the same as in an elastic
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Figure 1.2: Total stress tensor components on an REV.

continuum [Means, 1976]:

ǫxx =
∂u

∂x
(1.6a)

ǫyy =
∂v

∂y
(1.6b)

ǫzz =
∂w

∂z
(1.6c)

ǫxy = ǫyx =
1

2

(
∂u

∂y
+
∂v

∂x

)
(1.6d)

ǫxz = ǫzx =
1

2

(
∂u

∂z
+
∂w

∂x

)
(1.6e)

ǫyz = ǫzy =
1

2

(
∂v

∂z
+
∂w

∂y

)
(1.6f)

where u, v and w are the displacement components in a cartesian coordinate system.

A set of independent variables consists of one variable for each pair. The possible

permutations of independent and dependent variables are eight, each one leading to a

peculiar form of the constitutive relationships based on different physical properties, as-

sumed constant in linear thermoporoelasticity, of the saturated porous medium [Wang,

2001; Coussy, 2004]. In the following, the changes in total stress, fluid mass content and

specific entropy (dependent variables) are linked to changes in strain, fluid pressure and

temperature (independent variables).
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Figure 1.3: Strain tensor components on an REV.
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Denoting with the subscript 0 the reference state, the thermoporoelastic constitutive

equations can be expressed as [Coussy, 2004]:

σ − σ0 = Cdr : ǫ− b (p− p0)1 − 3β′
sK (θ − θ0)1 (1.7a)

1

ρ0,f

(m−m0) = bǫv +
1

M
(p− p0) − 3β′

M (θ − θ0) (1.7b)

s− s0 = 3β′
sKǫv − 3β′

M (p− p0) +
cv,M

θ0

(θ − θ0) (1.7c)

where:

• Cdr is the drained rank-4 elasticity tensor. For an isotropic medium it depends on

two coefficients only;

• b = 1− K
Ks

is the Biot coefficient, K = E
3(1 − 2ν)

is the bulk modulus of the drained

skeleton and Ks is the bulk modulus of the solid phase. E and ν are the elastic

modulus and the Poisson coefficient, respectively;

• 1 is the rank-2 identity tensor;

• ǫv = trace(ǫ) = ǫxx + ǫyy + ǫzz is the volumetric strain;

• M =

(
b− φ
Ks

+
φ
Kf

)−1

is the Biot modulus, with Kf the fluid bulk modulus;

• β′
M = (b− φ)β′

s + φβ′
f is the equivalent thermal expansion coefficient of the porous

medium;

• cv,M = (b − φ)cv,s + φcv,f is the equivalent volumetric heat capacity of the porous

medium.

The strain tensor ǫ can be split into the sum of a volumetric component and a deviatoric

component:

ǫ =
1

3
ǫv1 + e =

1

3
ǫv




1 0 0

0 1 0

0 0 1


+




ǫxx −
ǫv
3 ǫxy ǫxz

ǫyx ǫyy −
ǫv
3 ǫyz

ǫzx ǫzy ǫzz −
ǫv
3


 (1.8)

with e the deviatoric tensor. If the strain tensor decomposition (1.8) is used, and Cdr is

expressed as a function of the bulk modulus K and the shear modulus G = E
2(1 − 2ν)

,

equation (1.7a) reduces to:

σ − σ0 = (Kǫv1 + 2Ge) − b (p− p0)1 − 3β′
sK (θ − θ0)1 (1.9)
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1.2.3 Darcy’s law

The fluid flow in a porous medium is governed by Darcy’s law, stating that the specific

fluid discharge, i.e. the fluid volume flow rate per unit area and time, is proportional

to the piezometric head change. In vector notation, the specific fluid discharge v, also

known as Darcy’s velocity, reads:

v = −K∇h (1.10)

where:

• K is the rank-2 hydraulic conductivity tensor;

• ∇ is the gradient operator;

• h is the piezometric head.

Equation (1.10) is valid as long as the flow is laminar. A criterion to assess the flow regime

is provided by the magnitude of Reynolds number Re (a pure number relating inertial to

viscous forces), defined as:

Re =
ρf |v| d

µf

(1.11)

where

• |v| is the magnitude of Darcy’s velocity;

• d the average of diameter of the medium particles.

The threshold value of Re between laminar and turbulent regime ranges from 1 to 10

[Bear, 1988], thus the validity of Darcy’s law is warranted whenever Re ≤ 1.

The hydraulic conductivity reflects the resistance opposed by a porous matrix to the

fluid flow and depends on both the fluid (density and viscosity) and the medium properties

(grain-size distribution, shape of grains, tortuosity, specific surface and porosity) according

to [Nutting, 1930]:

K =
ρfg

µf

k (1.12)

where

• k is the intrinsic permeability tensor of the porous matrix;

• g is the gravity acceleration.
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For an isothermal incompressible fluid the hydraulic head is defined as:

h =
p

ρfg
+ z (1.13)

where:

•
p
ρfg is the pressure head;

• z is the elevation.

Using (1.12) and (1.13), Equation (1.10) reads:

v = −
k

µf

∇ (p− ρfgz) (1.14)

In the form (1.14), Darcy’s law, which was originally based on experimental evidence

[Darcy, 1856], represents the momentum balance of the fluid phase (−µfk
−1v is a fric-

tion force) recasted in order to describe flow of fluid through porous media. Moreover,

the (1.14) holds true also when fluid density and viscosity are not constant [De Smedt,

2007], i.e. when non-isothermal and compressible fluids are considered.

1.2.4 Fourier’s law

Fourier’s law of heat conduction states that heat transfer by molecular interaction at any

point in a solid or a fluid is in magnitude proportional to and in direction coincident with

the gradient of the temperature field. The heat flux q (heat flow rate per unit area and

time) is defined as:

q = −Λ∇θ (1.15)

where:

• Λ is the rank-2 thermal conductivity tensor.

In case of a fluid-saturated porous medium, the conductive body consists of two phases,

with the solid and the fluid phases at the same temperature and an equivalent thermal

conductivity tensor defined for the whole medium. The equivalent tensor ΛM combines the

isotropic thermal conductivity of the porous medium λM = (b−φ)λs+φλf in the absence of

fluid flow with a term accounting for the macroconductivity due to the heterogeneity of the

fluid velocity. For groundwater problems, de Marsily [1986] suggests using Darcy’s velocity

v multiplied by the volumetric heat capacity of the fluid cv,f so that the proportionality
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coefficient has the dimension of a length. In the longitudinal and trasverse axes relative

to v, ΛM reads:

ΛM =




λL 0 0

0 λT 0

0 0 λT


 with





λL = λM + αLcv,f | v |

λT = λM + αT cv,f | v |

(1.16)

where αL, αT are the longitudinal and transverse thermodispersivity coefficients, respec-

tively.

1.3 Balance laws

The equations governing a coupled pore fluid-solid system in non-isothermal conditions

are conservation laws expressing the linear momentum balance, the fluid mass and the

energy balance for the mixture.

1.3.1 Linear momentum balance

Assuming a quasi-static condition, the inertia forces are neglected and the equation of

mechanical equilibrium for an elemental porous volume is:

∇ · σ + ρg = 0 (1.17)

where

• ∇· is the divergence operator;

• σ is the total stress tensor;

• ρ = φρf + (1 − φρs) is the bulk density;

• g is the gravity acceleration vector.

Using the constitutive equation (1.9) into Equation (1.17) yields:

∇ · (Kǫv1 + 2Ge) + ρg = b∇p+ 3β′
sK∇θ (1.18)
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i.e.:

2G

(
∂ǫxx

∂x
+
∂ǫxy

∂y
+
∂ǫxz

∂z

)
+

(
K −

2G

3

)
∂ǫv
∂x

+ ρgx = b
∂p

∂x
+ 3β′

sK
∂θ

∂x

2G

(
∂ǫyx

∂x
+
∂ǫyy

∂y
+
∂ǫyz

∂z

)
+

(
K −

2G

3

)
∂ǫv
∂y

+ ρgy = b
∂p

∂y
+ 3β′

sK
∂θ

∂y
(1.19)

2G

(
∂ǫzx

∂x
+
∂ǫzy

∂y
+
∂ǫzz

∂z

)
+

(
K −

2G

3

)
∂ǫv
∂z

+ ρgz = b
∂p

∂z
+ 3β′

sK
∂θ

∂z

Finally, using equations (1.6a) through (1.6f), the classical equilibrium in terms of dis-

placements is recovered [van der Knaap, 1959; Geertsma, 1966; Bai & Abousleiman, 1997]:

G∇2u+

(
K +

G

3

)
∂ǫv
∂x

+ ρgx = b
∂p

∂x
+ 3β′

sK
∂θ

∂x

G∇2v +

(
K +

G

3

)
∂ǫv
∂y

+ ρgy = b
∂p

∂y
+ 3β′

sK
∂θ

∂y
(1.20)

G∇2w +

(
K +

G

3

)
∂ǫv
∂z

+ ρgz = b
∂p

∂z
+ 3β′

sK
∂θ

∂z

with ∇2 the Laplace operator.

1.3.2 Fluid mass balance

If no chemical reaction is considered, the conservation of mass for a control volume reads:

∂m

∂t
= −∇ · (ρfv) + ρf,∗f (1.21)

where

• ρf,∗f is a source term with ρf,∗ the source fluid density and f a volumetric source

term.

Using Equation (1.7b), the mass balance equation (1.21) is written in terms of volumetric

strain, pressure and temperature:

b
∂ǫv
∂t

+
1

M

∂p

∂t
− 3β′

M

∂θ

∂t
= −∇ ·

(
ρf

ρf,0

v

)
+
ρf,∗

ρf,0

f (1.22)
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1.3.3 Energy balance

The heat balance should be prescribed for each phase separately. However, the local

thermal equilibrium assumption allows for imposing a single balance equation for the

whole fluid-filled porous medium with a unique temperature θ. The equation reads:

θ0
∂s

∂t
= −∇ · q −∇ · (cv,fθv) + cv,f,∗θ∗f (1.23)

where

• cv,f,∗θ∗f is a source term, with cv,f∗ the source volumetric heat capacity and θ∗ the

fluid source fluid temperature.

In Equation (1.23) the first term on the right-hand side describes the conductive heat

transport while the second one accounts for the convective heat transport.

Using the constitutive Equation (1.7c) in Equation (1.23) yields a balance relationship

in terms of the selected independent thermoporoelastic variables:

3β′
sθ0K

∂ǫv
∂t

− 3β′
Mθ0

∂p

∂t
+ cv,M

∂θ

∂t
= −∇ · q −∇ · (cv,fθv) + cv,f,∗θ∗f (1.24)

The first and the second terms on the left-hand side of (1.24) account for the latent heat

of the porous medium associated with the skeleton and the fluid volumetric expansion,

respectively. As is tipically observed in linear thermoelasticity, such contributions are

negligible for water saturated rock [McTigue, 1986] and for most porous materials in

general [Coussy, 2004]. Hence, the final form for the energy balance reads:

cv,M

∂θ

∂t
= −∇ · q −∇ · (cv,fθv) + cv,f,∗θ∗f (1.25)

1.4 Uncoupling equilibrium and flow-heat transfer

equations

The set of coupled partial differential equations (1.14), (1.15), (1.20), (1.22) and (1.25)

represent the non-isothermal form of the original Biot’s equations [Biot, 1941]. In case

of multi-aquifer systems, such equations can be extended to transversely isotropic media

with the elasticity tensor Cdr depending on five independent mechanical parameters.

Analytical solutions can be obtained only for a few realistic problems and numerical

techniques are needed.
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In some applications, the model complexity can be reduced. Differentiating the first

equation of (1.20) with respect to x, the second with respect to y and the third with

respect to z, and adding the results, yields:

(
K +

4G

3

)
∇2εv = b∇2p+ 3β′

sK∇2θ (1.26)

By integrating (1.26), we obtain:

(
K +

4G

3

)
εv = bp+ 3β′

sKθ + h(x, y, z, t) (1.27)

where h is a generic harmonic function, i.e. ∇2h = 0 at any time t. An explicit expression

for h was obtained by Verruijt [1969] in problems of flow in leaky aquifer. In particular,

when h = 0 in equation (1.27), the following relationship for εv holds true:

εv = cM (bp+ 3β′
sKθ) (1.28)

where

cM =

(
K +

4G

3

)−1

is the vertical uniaxial compressibility of the porous matrix.

Substituting (1.27) into (1.22), yields:

ηp

∂p

∂t
− ηT

∂θ

∂t
= −∇ ·

(
ρf

ρf,0

v

)
+
ρf,∗

ρf,0

f (1.29)

where:

• ηp = Ss
ρ0g , Ss = ρ0g(bcM + M−1) is the elastic storage coefficient as defined in

Gambolati [1973];

• ηT = 3[(b− φ− bcMK)β′
s + φβ′

f ].

The mass balance equation in the form (1.29) is decoupled from (1.20) and the medium

structural behaviour is accounted for by into two lumped mechanical parameters, i.e. ηp

and ηθ. Hence, the flow (1.14), (1.29) and the heat transfer (1.15), (1.25) models may be

solved for the pressure p and the temperature θ with the p and θ solutions subsequently

used in (1.20) to obtain the medium displacements.

The method described above was originally derived by Terzaghi [1925] for isothermal

conditions and it is rigorous for one-dimensional consolidation problems. Depending on

the characteristic temporal and spatial scales, two- and three-dimensional [Gambolati,
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1992] deforming fields can also be treated by an uncoupled approach without losing accu-

racy of the pressure, the temperature and the displacements fields, respectively [Gambolati

et al., 2000]. In many realistic geomechanical applications, the uncoupled technique has

been succesfully employed [e.g., Brutsaert & Corapcioglu, 1976; Martin & Serdengecti,

1984; Rivera et al., 1991; Doornhof, 1992; Gambolati et al., 2000; Teatini et al., 2000;

Comerlati et al., 2005; Teatini et al., 2006; Ferronato et al., 2008], providing reliable pre-

dictions of the medium displacements along with a computationally cheaper algorithm.

On the other hand, in the same field of applications, coupling needs to be taken into

account at much smaller scales [Ferronato et al., 2003b].



Chapter 2

Godunov-Mixed Methods for

coupled fluid flow and heat transfer

2.1 Introduction

The main mechanisms of heat transfer into a geological formation are two: heat conduction

and heat convection. Heat conduction is the transfer of heat by the activation of solid

and fluid particles, without their bulk movement. Heat convection on the other hand is

due to the bulk motion of the particles. As the motion of the solid particles is negligible

relative to the fluid flow, the convective heat transfer basically depends on the latter. The

heat conduction is governed by Fourier’s law while the heat convection depends on the

rate of fluid flow.

In low permeable formations, such as granitic rock masses, the rate of fluid flow is so

slow that heat convection is negligible [e.g., McTigue, 1986; Wang & Papamichos, 1994;

Nguyen & Selvadurai, 1995]. Hence, heat conduction is predominant and a pure conduc-

tive model can be used. Conversely, with a greater fluid velocity, such as in geothermal

energy extraction, petroleum reservoir production or underground fluid injection opera-

tions, the convective heat transfer may also play an important role.

Several analytical and numerical strategies have been advanced for solving flow through

porous media and heat transfer. Analytical methods exhibit several limitations, e.g. sim-

ple geometric configurations with ad hoc boundary and initial conditions, while numerical

methods proved powerful tools to address realistic field problems. Numerical methods

basically differ on the way the time-dependent terms of the heat transfer equation are dis-

cretized. A first class includes numerical schemes relying on finite difference (FD) or finite

19
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element (FE) methods [e.g., Necati Özisik, 1994; Lewis & Schrefler, 1998; Zienkiewicz et

al., 1999] which typically handle the convective and conductive terms simultaneously using

the same discretization. However, in convection-dominated problems such methods may

lead to non-physical responses, such as spurious oscillations near sharp temperature fronts,

requiring highly refined grids to obtain accurate numerical results. Other approaches,

based on time-operator splitting techniques [Richtmyer & Morton, 1967; Yanenko, 1971],

isolate the conductive from the convective contribution yielding two partial differential

equations solved with independent discretizations. The main advantage of these methods

is the great flexibility in selecting the most appropriate solution methods for the convec-

tion and the conduction processes. Among the splitting methods, the Godunov-Mixed

Methods (GMMs) combine a Godunov-type method, i.e. a finite volume (FV) technique

originally developed for purely hyperbolic non-dissipative systems [Godunov, 1959; van

Leer, 1979], with a mixed finite element (MFE) method in the discretization of the con-

vective and conductive terms, respectively [Dawson, 1990, 1991, 1993; Mazzia et al., 2000;

Mazzia & Putti, 2005].

In the present chapter a Mixed Hybrid Finite Element (MHFE) method for the dis-

cretization of both the flow and the heat transfer equation, in the latter combined with

a High Resolution Finite Volume (HRFV) scheme via a time-splitting technique. The

reasons of this choice are twofold. First, the MHFE scheme applied to the flow equation

yields a conservative discrete velocity field with normal components that are continuous

across inter-element boundaries. This property guarantees that no mass balance errors

due to numerical inaccuracies in the flow problem are introduced in the heat transfer

equation. Second, the HRFV method used for the convection term is able to simulate

accurately very sharp fronts following their evolution in time. After recalling the gov-

erning equations, the spatial and temporal discretizations are presented along with the

Picard linearization scheme. The model is then validated against a classical benchmark

problem in the literature, i.e. the Elder problem [Elder, 1967b], in both the classical two-

and extended three-dimensional configurations. The distinctive features of the proposed

approach are emphasized in the simulation of seawater injection into a deep aquifer.

2.2 Mathematical model

In the uncoupled formulation of thermoporoelasticity, the fluid flow and heat transfer in

saturated porous media are described by a set of coupled conservation laws expressing

the fluid mass and energy balances. The fluid density and viscosity depend on p and θ
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accordingly to suitable equations of state (equations (1.3) and (1.5)). The coupled system

of saturated flow and heat transfer equations reads:

v = −κ∇ (p+ ρfgz) (2.1a)

ηp

∂p

∂t
− ηT

∂θ

∂t
= −∇ ·

(
ρf

ρf,0

v

)
+
ρf,∗

ρf,0

f (2.1b)

q = −Λ∇θ (2.1c)

cv,M

∂θ

∂t
= −∇ · (q + cv,fθv) + cv,fθ∗f (2.1d)

where κ =
µf,0
µf

K0
ρf,0g , and K0 is the saturated hydraulic conductivity tensor at the refer-

ence density and viscosity.

Appropriate initial and boundary conditions have to be added for the well-posedness

of the mathematical model (2.1a) to (2.1d). As far as the fluid flow is concerned, these

take the form:

p(x, 0) = pin(x, 0) (2.2a)

v(x, 0) = vin(x, 0) (2.2b)

p(x, t) = pp(x, t) over Γp (2.2c)

v(x, t) · nv(x) = uv(x, t) over Γv (2.2d)

where:

• x is the Cartesian spatial coordinate vector;

• pin is the pressure at the initial time;

• vin is Darcy’s velocity at the initial time;

• pp is the prescribed pressure (Dirichlet condition) over Γp;

• nv is the outward unit normal to Γv;

• uv is the prescribed fluid flux (Neumann condition) over Γv.
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For the heat transfer, the initial and boundary conditions are:

θ(x, 0) = θin(x, 0) (2.3a)

q(x, 0) = qin(x, 0) (2.3b)

θ(x, t) = θθ(x, t) over Γθ (2.3c)

q(x, t) · nq(x) = qq(x, t) over Γq (2.3d)

(cv,fθv + q) · nc = qc(x, t) over Γc (2.3e)

where:

• θin is the temperature at the initial time;

• qin is the heat flux at the initial time;

• θθ is the prescribed temperature (Dirichlet condition) over Γθ;

• nq and nc are the outward unit normal to Γq and Γc, respectively;

• qq is the prescribed conductive heat flux (Neumann condition) over Γq;

• qc is the prescribed total (conductive plus convective) heat flux (Cauchy condition)

on boundary Γc.

The system (2.1a)-(2.1d) is coupled because of the flow dependence temperature in equa-

tion (2.1b) and the thermal balance dependence on pressure in equation (2.1d) via Darcy’s

law. In case of constant density and viscosity, i.e. βf = β′
f = α = 0, coupling is ensured by

the velocity term in (2.1d). Although the system is physically coupled, mathemathically

it is not and equations (2.1b) and (2.1d) can be solved sequentially. However, generally

the system is irreducible and nonlinear.

2.3 Numerical model

The solution to system (2.1a)-(2.1d) is addressed by Picard-like scheme which decouples

the problem solving the flow equation first, computing the velocity field, solving the

thermal equation, and finally iterating to convergence (Figure 2.1). The flow equation

is discretized by MHFEs, while a time-splitting technique based on the combined use of

cell-centered FVs and MHFEs is used for the heat transfer equation. Using this approach

a single computational grid can be employed to discretize the domain Ω ⊂ R
d (d = 2

or 3). Triangular or tetrahedral elements are used in the two-dimensional and the three-

dimensional case, respectively.
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Figure 2.1: Flow chart of the sequential iterative approach.

2.3.1 Dicretization of the flow equation

The MHFE method finds a solution to the flow problem (2.1a)-(2.1b) by approximating

both p and v. Let T be a partition of Ω with ne elements Tj (j = 1, . . . , ne) and nf

internal elemental edges ej (j = 1, . . . , nf ). If a generic element Tℓ is considered, its edges

can be identified by two superscript denoting Tℓ and its neighbour element index sharing

each edge, i.e. eℓ,ℓj = Tℓ ∩ Tℓj
(j = 1, . . . , d+ 1). The pressure p is approximated by:

p(x, t) ≃
ne∑

j=1

pj(t)hj(x) (2.4)

where hj is an element-wise constant function equal to one over Tj and zero elsewhere

with pj the Tj elemental pressures. The element-wise Darcy’s velocity vℓ is defined as a

linear combination of the (d+ 1) edge fluxes:

vℓ(x, t) ≃
d+1∑

j=1

uℓ,ℓj(t)wℓ,j(x) ℓ = 1, . . . , ne (2.5)

where wℓ,j are vector basis functions selected in the zero-degree Raviart-Thomas space

of degree zero [Raviart and Thomas, 1977] so as to produce a unit outward flux across

the edge eℓ,ℓj and zero on all other edges. Coefficient uℓ,ℓj represents the value of the

normal flux across edge eℓ,ℓj of Tℓ. The support for each wℓ,j is Tℓ only with the following
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Figure 2.2: Vector basis function wℓ,j on a triangular element and on a tetrahedral ele-
ment.

expression:

wℓ,j(x) =
1

d|Tℓ|
(x − xj) (2.6)

where |Tℓ| is the area (d = 2) or the volume (d = 3) of Tℓ and xj is the position vector

of the node opposite to eℓ,ℓj in Tℓ (see Figure 2.2). Because of the local wℓ,j support the

continuity of v across inter-element edges ej, i.e.:

vℓL · nℓL,ℓR + vℓR · nℓR,ℓL = 0 (2.7)

is generally not satisfied, with nℓL,ℓR and nℓR,ℓL the outward unit normal to edge ej shared

by TℓL
and TℓR

for element TℓL
and TℓR

, respectively. In the MHFE method such continuity

is obtained enforcing equation (2.7) and introducing the pressure ψ at the elemental edges

as a Lagrange multiplier [Quarteroni & Valli, 1994]:

ψ(x, t) ≃

nf∑

j=1

ψj(t)ϕj(x) (2.8)

where ϕj are piecewise basis function equal to one over edge ej and zero elsewhere. A

summary of the degrees of freedom used with the MHFE approach is shown in Figure (2.3)

for triangular and tetrahedral elements.

Let us develop a variational form of equations (2.1a)-(2.1b) by orthogonalizing the

residuals to wℓ,i and hℓ, respectively, over Ω. Because of the local support of the test
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Figure 2.3: Locations of the different unknowns (pressure, fluid velocity and edge pressure)
on triangular and tetrehedral cells.

functions, the integrals can be restricted to Tℓ only:

∫

Tℓ

κ−1vℓ · wℓ,id∆ +

∫

Tℓ

∇p · wℓ,id∆ = −

∫

Tℓ

∇ (ρfgz) · w
ℓ,id∆

i = 1, . . . , d+ 1 ℓ = 1, . . . , ne(2.9a)

∫

Tℓ

∇ ·

(
ρf

ρf,0

vℓ

)
hℓd∆ +

∫

Tℓ

ηp

∂p

∂t
hℓd∆ =

∫

Tℓ

ηT

∂θ

∂t
hℓd∆ +

∫

Tℓ

ρf,∗

ρf,0

fhℓd∆

ℓ = 1, . . . , ne (2.9b)

Assuming ρf constant over Tℓ and developing a weak form for the second term on the

left-hand side of equation (2.9a), yields:

∫

Tℓ

κ−1vℓ · wℓ,id∆ −

∫

Tℓ

p∇ · wℓ,id∆ +

∫

eℓ,ℓi

ψwℓ,i · nℓ,ℓidΓ =

= −

∫

Tℓ

ρfg∇z · w
ℓ,id∆ (2.10a)

∫

Tℓ

∇ · vℓd∆ +

∫

Tℓ

ρf,0

ρf

ηp

∂p

∂t
d∆ =

∫

Tℓ

ρf,0

ρf

ηT

∂θ

∂t
d∆ +

∫

Tℓ

ρf,∗

ρf

fd∆ (2.10b)
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The normal flux discontinuity at each elemental edge, leading to a violation of the mass

conservation, is prevented by adding the weak form of equation (2.7):

∫

ej

vℓL · nℓL,ℓRdΓ +

∫

ej

vℓR · nℓR,ℓLdΓ = 0 (2.11)

Substitution of (2.4), (2.5), (2.8) into (2.10a), (2.10b) and (2.11) leads to the following

set of nonlinear differential-algebraic equations:

Au − Bp + Cψ = g1

BTu + Dṗ = g2

CTu = 0

(2.12)

where the unknowns vectors u, p and ψ are:

u =








u1,11

...

u1,1d+1









u2,21

...

u2,2d+1





...



une,ne1

...

une,ned+1








p =




p1

p2

...

pne




ψ =




ψ1

ψ2

...

ψnf




The matrix A is block diagonal and each block Aℓ is (d+ 1) × (d+ 1):

Aℓ ≡ (aℓ
ij) =

∫

Tℓ

(κℓ)−1wℓ,j · wℓ,id∆ i, j = 1, . . . , d+ 1

thus A is a (d+ 1)ne × (d+ 1)ne matrix:

A =




A1 0 0 0

0 A2 0 0
...

...
. . . 0

0 0 . . . Ane
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The matrix B is also block diagonal, but each block Bℓ is (d+ 1) × 1:

Bℓ ≡ (bℓi) =

∫

Tℓ

∇ · wℓ,id∆ i = 1, . . . , d+ 1

and

B =




B1 0 0 0

0 B2 0 0
...

...
. . . 0

0 0 . . . Bne




The matrix D is ne × ne diagonal with coefficients dℓ =

∫

Tℓ

ρf,0

ρf

ηℓ
pd∆:

D =




d1 0 0 0

0 d2 0 0
...

...
. . . 0

0 0 . . . dne




The matrix C is (d+ 1)ne × nf and has no simple block structure:

C =




C1

C2

...

Cne




Each row of C has one non-zero entry given by:

Cℓ ≡ (cℓij) =

∫

eℓ,ℓi

ϕjw
ℓ,i · nℓ,ℓidΓ i = 1, . . . , d+ 1 j = 1, . . . , nf

Finally, g1 and g2 are defined as follows:

g1 =




g11

g12

...

g1ne




(d+1)ne×1

with g1ℓ
≡ (gℓ

1i
) = −

∫

Tℓ

ρfg∇z · w
ℓ,id∆ i = 1, . . . , d+ 1
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g2 =




g21

g22

...

g2ne




ne×1

with g2ℓ
=

∫

Tℓ

1

ρf

(
ρf,0ηT

∂θ

∂t
+ ρf,∗f

)
d∆

Time integration of (2.12) is performed by a backward finite difference scheme:




At+∆t −B C

BT 1
∆tD

t+∆t 0

CT 0 0







ut+∆t

pt+∆t

ψt+∆t


 =




g1
t+∆t

g2
t+∆t + 1

∆tD
t+∆tpt

0


 (2.13)

The system of algebraic equations (2.13) is nonlinear because A, D, g1 and g2 depend on

pressure p through ρf . However, the nonlinearity degree in single-phase flow is generally

smaller than in multiphase flow with a simple Picard iteration process converging rapidly

[Aziz & Settari, 1979]. Denoting by k the non-linear iteration index and setting Â =

At+∆t,k, D̂ = Dt+∆t,k/∆t, ĝ1 = g1
t+∆t,k and ĝ2 = g2

t+∆t,k, the iterative scheme is




Â −B C

BT D̂ 0

CT 0 0







ut+∆t,k+1

pt+∆t,k+1

ψt+∆t,k+1


 =




ĝ1

ĝ2 + D̂pt

0


 k = 0, 1, . . . (2.14)

with



ut+∆t,0

pt+∆t,0

ψt+∆t,0


 =




ut

pt

ψt




The system (2.14) is generally indefinite with a number of unknowns equal to (d + 2) ×

ne + nf . The problem size can be properly reduced. First, ut+∆t,k+1 is obtained from the

upper system block:

ut+∆t,k+1 = Â−1
(
Bpt+∆t,k+1 − Cψt+∆t,k+1 + ĝ1

)
(2.15)

As matrix Â is block-diagonal, it can be easily inverted. Substitution of (2.15) into the

lower equations yields a smaller system:

[
D̂ +BT Â−1B −BT Â−1C

CT Â−1B −CT Â−1C

][
pt+∆t,k+1

ψt+∆t,k+1

]
=

[
ĝ2 + D̂pt −BT Â−1ĝ1

−CT Â−1ĝ1

]
(2.16)
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As D̂ and BT Â−1B are diagonal, pt+∆t,k+1 can be eliminated from the first equation.

Setting H = D̂ +BT Â−1B and S = Â−1B, we obtain:

pt+∆t,k+1 = H−1
[
ST
(
Cψt+∆t,k+1 − ĝ1

)
+ ĝ2 + D̂pt

]
(2.17)

Again, matrix H is diagonal and easily invertible. Finally, the solution of the nf × nf

system with ψt+∆t,k+1 as unknowns is required. Setting M = Â−1−SH−1ST , this system

reads:

CTMCψt+∆t,k+1 = CTM ĝ1 + CTSH−1
(
ĝ2 + D̂pt

)
(2.18)

with CTMC symmetric and positive definite and with at most (2d+ 1) nonzero elements

per row. The system (2.18) can be effectively solved by a preconditioned conjugate gra-

dient technique. Once ψt+∆t,k+1 is computed, pt+∆t,k+1 and ut+∆t,k+1 can be evaluated

using equations (2.17) and (2.15).

2.3.2 Discretization of the heat transfer equation

The heat transfer equation is discretized using a time splitting algorithm. In essence,

the method consists of splitting the time derivative in (2.1d) between the convective and

conductive parts yielding two partial differential equations, namely:

cv,M

∂θ

∂t
= −∇ · (cv,fθv) (2.19)

and

cv,M

∂θ

∂t
= −∇ · q + cv,fθ∗f (2.20)

with (2.19) and (2.20) addressed sequentially using independent discretizations.

In particular, an explicit FV method and the MHFE method are used to approxi-

mate the convective term (equation (2.19)) and the conductive (equation (2.20)) term,

respectively. This approach can be regarded as a predictor-corrector method: for each

time step, the temperature is predicted by nconv explicit FV steps and then used as initial

condition for the MHFE step. Two different time step size for convection and conduction,

∆tconv and ∆tcond, respectively, can be used. The stability of the explicit convective step is

governed by a Courant-Friedrichs-Lewy (CFL) constraint [Liu, 1993; Mazzia et al., 2000],

with the CFL number defined on each element as:

CFL = ∆tconvsup
T ℓ

|Tℓ|
sup

∣∣∣∣
dF

dθ

∣∣∣∣ (2.21)

with T ℓ the perimeter (d = 2) or the surface area (d = 3) of Tℓ and F = cv,fθv. On the

other hand, no stability restriction exists for ∆tcond assuming ∆tcond = nconv∆tconv.
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FV discretization

Let consider the same triangulation T defined for the flow problem. The discretization

of (2.19) follows the FV scheme on unstructured triangular grid developed by Durlofsky

et al. [1992] and then modified by Liu [1993].

At first, the integral form of equation (2.19) is written on each element Tℓ:

∫

Tℓ

cv,M

∂θ

∂t
d∆ = −

∫

Tℓ

∇ · F(θ)d∆ (2.22)

The temperature θ(x, t) is approximated by constant element-wise function hℓ(x):

θ(x, t) ≃
ne∑

ℓ=1

θℓ(t)hℓ(x) ℓ = 1, . . . , ne (2.23)

with

θℓ(t) =
1

|Tℓ|

∫

Tℓ

θ(x, t)d∆ (2.24)

the mean temperature value in Tℓ and hℓ are the function defined in (2.4). Using diver-

gence theorem to the right-hand side of (2.22) and recalling (2.24), yields:

cv,M

∂θℓ

∂t
= −

1

|Tℓ|

d+1∑

j=1

∫

e
ℓ,ℓj

F(θ) · nℓ,ℓjdΓ ℓ = 1, . . . , ne (2.25)

The integrals above are approximated introducing the intercell flux Hℓ,ℓj :

cv,M

∂θℓ

∂t
= −

1

|Tℓ|

d+1∑

j=1

Hℓ,ℓj ℓ = 1, . . . , ne (2.26)

where Hℓ,ℓj = H(θ
ℓ,ℓj

ℓ , θ
ℓj ,ℓ

ℓj
,nℓ,ℓj)

∣∣eℓ,ℓj

∣∣ depends on the cell averaged values of the temper-

ature θ
ℓ,ℓj

ℓ and θ
ℓj ,ℓ

ℓj
evaluated on the left and the right sides of eℓ,ℓj , respectively, and the

elemental edge length or area
∣∣eℓ,ℓj

∣∣.
To get a second order approximation in space, θ

ℓ,ℓj

ℓ and θ
ℓj ,ℓ

ℓj
are linearly reconstructed

component-wise from the cell-averaged data:

θ
ℓ,ℓj

ℓ = θℓ + r
ℓ,ℓj

ℓ · ∇(Lℓ) (2.27)

θ
ℓj ,ℓ

ℓj
= θℓj

+ r
ℓj ,ℓ

ℓj
· ∇(Lℓj

) (2.28)

where rr,s
r is the vector from the centroid of cell Tr to the centroid of the face er,s and

∇(Lr) is the gradient of a linear polynomial Lr defined on Tr, (r, s) = (ℓ, ℓj), (ℓj, ℓ).

This guarantees that a linear θ is reproduced exactly, but overshoots and undershoots at
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Figure 2.4: Triangular grid.

the centroids of the tetrahedra faces may be introduced. Non-linear correction factors,

called limiters, are used to avoid these numerical oscillations and satisfy a local maximum

principle. These limiters must be designed so as to preserve the global second order

accuracy, i.e. they have to correct (2.27)-(2.28) acting locally only and in case of sharp

gradients. A careful definition of this limiting function is crucial to exploit fully the

method.

In the two-dimensional case, the reconstruction and corresponding limiter are defined

as follows [Liu, 1993]. In each triangle Tℓ three linear functions are built by interpolating

the temperature values at its centroid xℓ and at the centroids xℓj
of its three neighbours

Tℓj
, j = 1, . . . , 3 (see Figure 2.4), namely:

• L1
ℓ is the linear interpolant of (xℓ, θℓ), (xℓ1 , θℓ1), and (xℓ2 , θℓ2);

• L2
ℓ is the linear interpolant of (xℓ, θℓ), (xℓ2 , θℓ2), and (xℓ3 , θℓ3);

• L3
ℓ is the linear interpolant of (xℓ, θℓ), (xℓ3 , θℓ3), and (xℓ1 , θℓ1).

The euclidean norm of the gradient of each Lj
ℓ is computed:

∣∣∇Lj
ℓ

∣∣ =

√√√√
(
∂Lj

ℓ

∂x

)2

+

(
∂Lj

ℓ

∂y

)2

j = 1, 2, 3.

Starting from the function Lj
ℓ with maximum gradient toward the one with minimum
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gradient, the first j is selected such that

Lj
ℓ(x

ℓ,ℓ1) is between θℓ and θℓ1

Lj
ℓ(x

ℓ,ℓ2) is between θℓ and θℓ2

Lj
ℓ(x

ℓ,ℓ3) is between θℓ and θℓ3 ,

(2.29)

where xℓ,ℓj is the centroid of the edge eℓ,ℓj (j = 1, . . . , 3). If no Lj
ℓ satisfies (2.29) the

local upper bound UBℓ and the local lower bound LBℓ of Tℓ, defined as the maximum

and the minimum temperature values, respectively, at the centroids of triangles sharing

at least one point with Tℓ, are determined. Hence, starting again from Lj
ℓ with the largest

gradient, the first j such that Lj
ℓ satifies

UBℓ ≥ max (Lj
ℓ(x

ℓ,ℓ1), Lj
ℓ(x

ℓ,ℓ2), Lj
ℓ(x

ℓ,ℓ3))

LBℓ ≤ min (Lj
ℓ(x

ℓ,ℓ1), Lj
ℓ(x

ℓ,ℓ2), Lj
ℓ(x

ℓ,ℓ3)).
(2.30)

is chosen. If no Lj
ℓ satisfies the inequalities (2.30), Lℓ = θℓ is assumed, i.e. a first order

reconstruction is used.

In a three-dimensional setting, a linear interpolant based on a least-square approxi-

mation of the centroids values of the reference tetrathedron Tℓ and its four neighbours

combined with the limiter described in Barth & Jespersen [1989] is adopted as suggested

by Mazzia & Putti [2005], because the extension of the method above appears inade-

quate to obtain the desired accuracy when using tetrahedra. This approach requires the

definition of one interpolant only accounting for all information available in Tℓ and its

neighbours Tℓj
(j = 1, . . . , 4). The least-square method minimizes the functional

S(Lℓ) =
∑

v∈{ℓ,ℓ1,ℓ2,ℓ3,ℓ4}

(Lℓ(xv) − θv)
2 (2.31)

where the gradient of Lℓ is the slope of the resulting hyperplane. The slope limiter is

applied computing [Barth & Jespersen, 1989]:

θ
ℓ,ℓj

ℓ = θℓ + Φℓr
ℓ,ℓj

ℓ · ∇(Lℓ) j = 1, . . . , 4 (2.32)

where Φℓ = min (Φℓ1 ,Φℓ2 ,Φℓ3 ,Φℓ4) and

Φℓj
=





1 if (θ
ℓ,ℓj

ℓ )old − θℓ = 0,

min

(
1,

θmax
ℓ − θℓ

(θ
ℓ,ℓj

ℓ )old − θℓ

)
if (θ

ℓ,ℓj

ℓ )old − θℓ > 0,

max

(
1,

θmin
ℓ − θℓ

(θ
ℓ,ℓj

ℓ )old − θℓ

)
if (θ

ℓ,ℓj

ℓ )old − θℓ < 0.

(2.33)
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In the previous formula, θmin
l = min (θℓ,min

j
θ

ℓ,ℓj

ℓ ) and θmax
ℓ = max (θℓ,max

j
θ

ℓ,ℓj

ℓ ).

Once Lℓ is computed for every Tℓ, the reconstructed left θ
ℓ,ℓj

ℓ and right θ
ℓj ,ℓ

ℓj
temperature

values at the centroid of each elemental edge eℓ,ℓj ≡ eℓj ,ℓ represent the boundary conditions

of a local Riemann problem [e.g., Toro , 1999]. Hence, the second order semidiscrete

approximation to (2.22) reads:

cv,M

∂θℓ

∂t
= −

1

|Tℓ|

d+1∑

j=1

H(θ
ℓ,ℓj

ℓ , θ
ℓj ,ℓ

ℓj
,nℓ,ℓj)

∣∣eℓ,ℓj
∣∣ ℓ = 1, . . . , ne (2.34)

with

H(θ
ℓ,ℓj

ℓ , θ
ℓj ,ℓ

ℓj
,nℓ,ℓj) =





F(θ
ℓ,ℓj

ℓ ) · nℓ,ℓj if v · nℓ,ℓj ≥ 0

F(θ
ℓj ,ℓ

ℓj
) · nℓ,ℓj if v · nℓ,ℓj < 0

(2.35)

Time integration between t and t+ ∆tconv of (2.34) is performed explicitly by means of a

two-stage second-order Runge-Kutta method (Heun formula):

stage 1 θ1
ℓ = θt

ℓ − ∆tEℓ(x, θ
t) ℓ = 1, . . . , ne

stage 2 θt+∆tconv

ℓ = 1
2θ

t
ℓ + 1

2(θ1
ℓ − ∆tEℓ(x, θ

1
ℓ )) ℓ = 1, . . . , ne

(2.36)

where Eℓ is defined as

Eℓ(x, θ) =
1

|Tℓ|

d+1∑

j=1

H(θ
ℓ,ℓj

ℓ , θ
ℓj ,ℓ

ℓj
,nℓ,ℓj)

∣∣eℓ,ℓj
∣∣ . (2.37)

MHFE dicretization

The MHFE method is used to discretize equation (2.20). The temperature θ is approxi-

mated by (2.23), while the elemental heat flux qℓ and the temperature on the elemental

edges τ , i.e. the Lagrange multiplier, are expressed as:

qℓ(x, t) ≃
d+1∑

j=1

qℓ,ℓj(t)wℓ,j(x) ℓ = 1, . . . , ne (2.38)

τ(x, t) ≃

nf∑

j=1

τj(t)ϕj(x) (2.39)

where wℓ,j and ϕj are the the basis functions used in (2.5) and (2.8), qℓ,ℓj is the the

normal heat flux across element edge eℓ,ℓj of Tj and τj is the temperature on ej.
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The MHFE method applied to (2.20) produces the following system of linear equations:

∫

Tℓ

Λ−1q · wℓ,id∆ −

∫

Tℓ

θ∇ · wℓ,id∆ +

∫

eℓ,ℓi

τwℓ,i · nℓdΓ = 0 (2.40a)

∫

Tℓ

∇ · qd∆ +

∫

Tℓ

cv,M

∂θ

∂t
d∆ =

∫

Tℓ

cv,fθ∗fd∆ (2.40b)

∫

ej

qℓL · nℓL,ℓRdΓ +

∫

ej

qℓR · nℓR,ℓLdΓ = 0 (2.40c)

with ℓ = 1, . . . , ne, i = 1, . . . , d+ 1 and j = 1, . . . , nf .

Substitution of (2.23), (2.38) and (2.39) in (2.40a), (2.40b) and (2.40c) leads to the

following set of nonlinear differential-algebraic equations:

Eq − Bθ + Cτ = 0

BTq + F θ̇ = t2

CTq = 0

(2.41)

where the unknowns vectors q, θ and τ are:

q =








q1,11

...

q1,1d+1









q2,21

...

q2,2d+1





...



qne,ne1

...

qne,ned+1








θ =




θ1

θ2

...

θne




τ =




τ1

τ2
...

τnf




E, F and t2 have the same pattern as A, D and g2 respectively, and their coefficients

expressions are:
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Eℓ ≡ (eℓ
ij) =

∫

Tℓ

(Λℓ)−1wℓ,j · wℓ,id∆ i, j = 1, . . . , d+ 1

fℓ =

∫

Tℓ

cv,Md∆

t2ℓ =

∫

Tℓ

cv,fθ∗d∆

The time marching scheme and the developments leading to the final system of algebraic

equations are the same as in Section 2.3.1 for the fluid flow problem.

Boundary conditions

The time-splitting approach requires a careful implementation of the boundary conditions.

To better describe how the boundary conditions are handled inflow and outflow boundaries

are analyzed separately.

Inflow boundaries are characterized by Darcy’s velocity v pointing inward the domain.

Cauchy boundary conditions can represent a fluid flow at a prescribed temperature. The

implementation of these boundary conditions is obtained by prescribing Dirichlet-type

boundary conditions in the convective step and Neumann-type boundary conditions in

the conductive step. For example, inflow at a fixed temperature θ1 is specified as:

cv,fθv · n = cv,fθ1v · n =⇒ i.e. Dirichlet b.c. θ = θ1 for the convective step

q · n = 0 =⇒ i.e. zero Neumann flux for the conductive step

Outflow boundaries are characterized by outgoing velocities, zero Neumann fluxes are

imposed in the conduction equation, as the outgoing convective flux is governed only by

the velocity field.

Along fluid impermeable boundaries, either Dirichlet or Neumann can be used, the

former prescribed both in the convective and conductive steps and the latter only on the

conduction equation.

2.3.3 The Picard method

The iteratively coupled method for the solution of the nonlinear system of equations

proceeds as follows. To advance in time from t to t+∆t, at the (k+1)−th iteration the flow

equation is first solved for pt+∆t,k+1 and ut+∆t,k+1, freezing the values of the temperature

θt+∆t,k at the previous iteration. Employing these updated values of pressure and velocity,

the heat transfer equation is then solved for θt+∆t,k+1. The procedure is repeated until

convergence is achieved. The algorithm is summarized in Table 2.1.
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Do k = 1, 2, . . . until convergence

• Flow equation

H = D̂ +BT Â−1B

S = Â−1B

M = Â−1 − SH−1ST

CTMCψt+∆t,k+1 = CTM ĝ1 + CTSH−1
(
ĝ2 + D̂pt

)

pt+∆t,k+1 = H−1
[
ST
(
Cψt+∆t,k+1 − ĝ1

)
+ ĝ2 + D̂pt

]

ut+∆t,k+1 = Â−1
(
Bpt+∆t,k+1 − Cψt+∆t,k+1 + ĝ1

)

• Heat transfer equation

Convective step

Do r = 1, . . . , nconv

t̂ = t+ (r − 1)∆tconv

Do ℓ = 1, . . . , ne

θ1
ℓ = θt̂

ℓ − ∆tconvEℓ(x, θ
t̂)

End do

Do ℓ = 1, . . . , ne

θt̂+∆tconv

ℓ = 1
2θ

t̂
ℓ + 1

2(θ1
ℓ − ∆tconvEℓ(x, θ

1
ℓ ))

End do

End do

Conductive step

H = F̂ +BT Ê−1B

S = Ê−1B

M = Ê−1 − SH−1ST

CTMCτ t+∆t,k+1 = CTSH−1
(
t̂2 + F̂θt+nconv∆tconv

)

θt+∆t,k+1 = H−1
(
STCτ t+∆t,k+1 + t̂2 + F̂θt+nconv∆tconv

)

End do

Table 2.1: Picard iteration algorithm.
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Convergence is achieved when:

‖pt+∆t,k+1 − pt+∆t,k‖2 ≤ tolp

‖θt+∆t,k+1 − θt+∆t,k‖2 ≤ tolθ
(2.42)

where tolp and tolθ are two fixed tolerances. In case convergence is not achieved, ∆t is

reduced using an empirical algorithm already tested in several problems [e.g., D’Haese et

al., 2007]. Given ∆tcond as selected by this procedure, the value of nconv is chosen so that

the CFL constraint is satisfied (2.21).

2.4 Numerical results

2.4.1 Elder’s problem

The Elder problem is an example of free convection, where the fluid flow is driven by

density differences only. Elder [1967a,b] presented experimental and numerical stud-

ies concerning the thermal convection produced by heating a partion of the basis of a

porous layer. The original experiment, called the short-heater problem, was performed in

a Hele-Shaw cell, which provides a laboratoy analogue for flow in porous media. Elder

conducted these studies mainly to verify the finite difference model he developed for the

two-dimensional simulation of thermal-driven convection and provided his results graph-

ically for the temperature and stream-function fields. Because of its complexity, Elder’s

problem is tipically used as a bechmark in flow-transport problems.

The Elder problem consists of a two-dimensional water-saturated rectangular porous

volume (Figure 2.5). Hydrostatic pressure and uniform temperature are the initial con-

dition. A specified pressure of 0 Pa (atmospheric conditions) is imposed at the upper

corners of the region and all boundaries are impervious to fluid flow. A source of heat at

constant temperature θB is applied at part of the bottom boundary, while the temperature

at the top boundary is kept constant. All remaining boundary portions are considered

adiabatic (insulated).

The Elder [1967b] formulation was in terms of dimensionless variables, selecting as

units of length, temperature and velocity the height of the box, H, the excess of tempera-

ture of the heated region, ∆θ = θB−θin, and λMc
−1
v,MH

−1, respectively. Figure (2.6) shows

the contoured temperature fields he obtained at four dimensionless time t̃j (j = 1, . . . , 4).

Note that a vertical exaggeration of a factor two is used in all these figures.

The dimensional parameters used in the simulation are taken from Kipp [1997] (Ta-

ble 2.2). The domain is discretized with 2000 regular triangular elements with a uniform
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Symbol Quantity Value Unit
B length 4 m
H height 1 m
φ porosity 0.10 -
k permeability 9.084 × 10−9 m2

Ss elastic storage 0 m−1

λs thermal conductivity of solid 2.0 W m−1 ◦C−1

cv,s heat capacity of solid 2.0 × 106 J m−3 ◦C−1

ρ0 water Density 1000 kg m−3

µ0 water viscosity 0.001 Pa s
αL longitudinal thermodispersivity 0 m
αT transverse thermodispersivity 0 m
cv,f heat capacity of the fluid 4.182 × 106 J m−3 ◦C−1

λf thermal conductivity of the fluid 0.6 W m−1 ◦C−1

β water compressibility 0 Pa−1

β′ Thermal expansion coefficient of the fluid 1.5 × 10−4 ◦C−1

α viscosity coefficient -0.0233 ◦C−1

θin initial temperature 10 ◦C
θB temperature at the bottom boundary 20 ◦C
θT temperature at the top boundary 10 ◦C

Table 2.2: Simulation parameters for the Elder problem.
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Figure 2.5: Definition of Elder’s problem.

node spacing ∆x = 0.08 m in the horizontal direction and ∆z = 0.05 m in the verti-

cal direction. A constant time step of 500 s is used for the conductive step while the

convective one is imposed by condition (2.21) assuming CFL = 0.3. The dimensionless

temperature and the velocity fields as simulated by MHFE and GMMs coupled models

are reported in Figure (2.7)-(2.10). At first, heat propagates into the domain by conduc-

tion from the bottom boundary, inducing a decrease in water density and a consequent

circulating flow. The fluid motion develops a set of eddies forming at the two ends of the

heated zone, because of the larger density gradient. Small eddies of reverse circulation are

associated with the end eddies, followed by a further set of eddies growing near the ends.

The solution is in good agreement with both Elder’s and other similar results available

in the literature [e.g. Diersch & Kolditz, 1998]. Moreover, it does not suffer from numeri-

cal oscillations without introducing a significant numerical diffusion, as tipically done by

more conventional upwind discretization. The solution does not seem to be significantly

influenced by the computational grid.

The three-dimensional analogue of Elder’s problem consists of a porous box with a

square base of side 4 m and height 1 m [Diersch & Kolditz, 1998]. The box has the same

cross-section as the two-dimensional problem. Boundary and initial conditions are the
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Figure 2.6: Dimensionless temperature at four dimensionless time values for Elder’s prob-
lem (from Elder [1967b]).
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Figure 2.7: Elder’s problem: dimensionless temperature θ̃ (a) and velocity field (b) at
time t̃1. Temperature varies between θ̃ = 0 (θ = 10◦C) and θ̃ = 1 (θ = 20◦C).
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Figure 2.8: The same as Figure 2.7 at time t̃2.
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Figure 2.9: The same as Figure 2.7 at time t̃3.
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Figure 2.10: The same as Figure 2.7 at time t̃4.
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same, with a 2 × 2 m area heated at the bottom (red region in Figure 2.5a). The used

parameters correspond to those given in (Table 2.2). The box is discretized with a regular

tetrahedral grid of 192000 elements as shown in Figure 2.5b. The three-dimensional

free convection process is similar to the two-dimensional case: eddies appear around the

border of the heating area with four predominant patterns growing at the four corners

at the beginning of the simulation (Figures 2.12 and 2.13). The distinctive features,

i.e. no numerical oscillations and mesh effects, observed in the two-dimensional case

are preserved. These results are in good agreement with similar ones published in the

literature [e.g. Diersch & Kolditz, 1998].
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Figure 2.11: Definition of the extended 3D Elder’s problem (a) and tetrahedral mesh used
in the simulation (b).
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(a) (b)

(c) (d)

Figure 2.12: Three-dimensional view of the 0.2 dimensionless temperature isosurface at
times t̃1 (a), t̃2 (b), t̃3 (c) and t̃4 (d).
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(a) (b)

(c) (d)

Figure 2.13: Three-dimensional view of the 0.6 dimensionless temperature isosurface at
times t̃1 (a), t̃2 (b), t̃3 (c) and t̃4 (d).
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Figure 2.14: Sketch of the integration domain used in the numerical simulation: seawater
is injected in a deep formation (ciano) and the injection wells (red) are placed forming a
linear pattern. Two faults are located close to the injection line: fault A is vertical while
fault B has a 45◦ inclination.

2.4.2 A 2-D aquifer injection example

Injecting water in producing oil fields is an important operation for EOR. Typically,

water is taken from the sea, especially in offshore and near coastal operations, because

of its abundance, compatibility with the formation water and ease of capture. Seawater

injection can also be a useful option to mitigate land subsidence in coastal areas, as it

will be discussed in detail in Chapter 4. This simple example of a deep aquifer injection

is addressed to emphasize the GMMs model effectiveness in real field configurations, such

as faulted geological formations.

A sketch of the domain is shown in Figure 2.14. Seawater is injected in a faulted
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Symbol Quantity Value Unit
φ porosity 0.25 -
Kx,aquifer horizontal hydraulic conductivity (aquifer) 0.14 m s−1

Kx,faults horizontal hydraulic conductivity (faults) 0.14 × 10−5 m s−1

Kz,aquifer vertical hydraulic conductivity (aquifer) 0.14 × 10−2 m s−1

Kz,faults vertical hydraulic conductivity (faults) 0.14 × 10−7 m s−1

Ss elastic storage 0.8 × 10−3 m−1

λM thermal conductivity of the porous medium 0.15 W m−1 ◦C−1

cv,M heat capacity of the porous medium 3.76 × 106 J m−3 ◦C−1

ρ0 water Density 999.7 kg m−3

αL longitudinal thermodispersivity 0 m
αT transverse thermodispersivity 0 m
cv,f heat capacity of the fluid 4.182 × 106 J m−3 ◦C−1

β water compressibility 9.22 × 10−10 Pa−1

β′ Thermal expansion coefficient of the fluid 4, 52 × 10−4 ◦C−1

α viscosity coefficient -0.6 ◦C−1

Table 2.3: Simulation parameters for the aquifer injection of Figure 2.14.

homegeneous formation between 700 m and 750 m depth, with the injection wells forming

a line-drive pattern. The flow does not exhibit significant variations in the y direction

with the model reduced to a 2-D cross section. Two sealing faults are located 50 m left

(A) and 50 m right (B) of the injection well: fault A is vertical while fault B has a 45◦

inclination. Hydrostatic pressure is initially assumed along with a constant temperature

of 50 ◦C. The aquifer is confined on top and bottom by impermeable units while the outer

boundaries preserve the initial pressure and temperature conditions. Faults are modelled

as thin layers with hydraulic conductivity 5 orders of magnitude lower that of the aquifer,

while thermal properties are uniform. The simulation parameters are summarized in

Table 2.3. An unstructured mesh with 3587 nodes, 6746 triangles and 10332 edges is

used. An overall constant source of 2 m3 day−1m−1 is prescribed over 23 elements for a

four-year period. Seawater temperature is assumed constant at 10 ◦C.

The overpressure and temperature distributions are shown in Figures 2.15 and 2.16,

respectively, at four different instants. At the early stage of the injection, both pressure

and temperature evolve symmetrically. When a fault is encountered the pressure propa-

gates around it with a consequent temperature front distortion due to convection. MHFEs

allow for an accurate description of the velocity field at the fault location as shown in

Figures 2.17 and 2.18, because they are element-wise mass conservative. Observe also
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Figure 2.15: Overpressure distributions at several time steps.
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Year 1
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Year 3

Year 4

Figure 2.16: Temperature distributions at several time steps.
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Figure 2.17: Velocity field around Fault A at 4 years.

that such accuracy is obtained avoiding an excessive mesh refinement by the faults, as

traditional finite elements would have required.

2.5 Conclusions

A numerical method for coupled fluid flow and heat transfer in saturated porous media has

been discussed. The model consists of a nonlinear system of partial differential equations

solved by Godunov-Mixed Methods, combining MHFEs in the discretization of the diffu-

sion term, both in the flow and the thermal equations, and a high-resolution cell-centered

FV scheme for the convective term via a time-splitting tecnique. The solution is obtained

through a Picard linearization scheme, solving the flow problem first, then the thermal

balance, and iterating the procedure at each time step until convergence. Elder’s problem,

a typical challenging benchmark test involving severe nonlinearities due to strong density

contrasts, has been used to verify the robustness and stability of the proposed scheme in

both 2- and 3-D. Finally, the model has been used to simulate seawater injection into a

faulted aquifer.



54 CHAPTER 2. GMMS FOR COUPLED FLUID FLOW AND HEAT TRANSFER

Figure 2.18: Velocity field around Fault B at 4 years.
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The main results can be summarized as follows:

• the MHFE discretization for the flow equation leads to an element-wise mass-

conservative scheme, providing an accurate discrete velocity field;

• the time-operator splitting approach for the heat transfer equation allows for the

distinct treatment of the convective and the conductive contribution. For the con-

vective step a FV scheme is selected because of its robustness in simulating very

sharp fronts, while MHFEs are employed in the conductive step.

• MHFEs and cell-centered FVs are used with a weak variational form of the govern-

ing equations using similar basis functions for the approximated solution, with the

practical benefit that only one grid is required;

• in the examples discussed herein, the numerical solution does not suffer from spuri-

ous oscillations and is negligibly affected by numerical diffusion;

• significant mesh effects are not encountered in both structured and unstructured

grids. Hence, in convective-dominated problems or heterogeneous geological for-

mations this formulation does not require an excessive mesh resolution in order to

ensure accuracy and stability.
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Chapter 3

A fully coupled 3-D Mixed Finite

Element model of Biot consolidation

3.1 Introduction

Poro-elasticity denotes the coupled process between mechanics and flow in porous media.

Its theoretical basis goes back to the mid 1920s when Terzaghi described analytically

the one-dimensional (1-D) consolidation of a soil column under a constant load [Terzaghi,

1925]. In 1941 Biot generalized Terzaghi’s theory to three-dimensional (3-D) porous media

[Biot, 1941] by establishing the mathematical framework which is usually termed as poro-

elasticity. Even though sophisticated, and perhaps more elegant, approaches have been

recently advanced [e.g., Coussy, 1995], the Biot equations of consolidation are still used

today in a great variety of fields, ranging from reservoir engineering to biomechanics.

For example, poro-elasticity is the basic theory to predict the compaction of a producing

hydrocarbon reservoir and the related hazards, including land subsidence and borehole

damages [Pao et al., 2001; Ferronato et al., 2004; Yin et al., 2009]. Several environmental

issues connected with groundwater withdrawal [e.g., Teatini et al., 2006], or the safe long-

term disposal of wastes in the subsurface [e.g., Hudson et al., 2001], can be addressed

with the aid of poro-elastic models. In biomechanics the poro-elastic theory is used to

describe tumor-induced stresses in the brain [Roose et al., 2003] and the bone deformation

under a mechanical load [Swan et al., 2003].

Despite the intensive research in the area, the numerical solution to the Biot partial

differential equations is still a challenging task for a number of reasons. First, the fully

coupled approach leads to algebraic systems which can be quite difficult to solve. In

57
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real 3-D applications the number of unknowns may easily grow up to several hundreds

of thousands and the non-linearities in the constitutive laws of the porous medium can

require multiple nested loops to be properly addressed. Second, the coefficient matrix

resulting from the numerical discretization can be severely ill-conditioned especially at

the early stage of the process [Ferronato et al., 2001], hence advanced preconditioners

with ad hoc solvers are needed to handle the fully coupled system [Bergamaschi et al.,

2008; Ferronato et al., 2009a]. An alternative approach relies on the iteratively coupled

scheme which solves separately in a staggered way the mechanical and the fluid flow models

until convergence. If sufficiently tight convergence criteria are prescribed, the iteratively

coupled solution can be as accurate as the fully coupled one, but the number of required

steps might be prohibitively high. Moreover, convergence of the iterative procedure is not

always guaranteed depending on the fluid and soil mechanical properties [Wheeler & Gai,

2007].

A third challenge is related to different forms of instabilities suffered by the numerical

solution. For example, if an advection-dominated thermal process is associated to the Biot

equations spurious oscillations may arise in the temperature and pressure fields because of

sharp transient gradients [Idelson et al., 1996]. However, the origin of most instabilities is

due to the assumption that at the initial conditions the soil skeleton behaves as an incom-

pressible medium if the pore fluid is so. Prescribing the volume change rate to be initially

zero leads to the Finite Element (FE) pathology known as locking, which typically causes

an oscillatory numerical behavior in the pore pressure. In practice, such an occurrence

takes place even if the fluid compressibility is different from zero but small enough with

respect to the bulk compressibility. This form of instability appears at times smaller than

a critical bound depending on the porous medium permeability and stiffness [Vermeer

& Verruijt, 1981]. Different remedies can be implemented to cope with such numerical

difficulty. For example, Reed [1984] observed that using a different approximation order

for displacement and pressure may help keep the spurious oscillations under control. In

particular the pore pressure should be computed with the same approximation order as

the stress, i.e. one order below the displacement, leading to the so-called Composite FEs

characterized by a linear pressure and a quadratic displacement. Unfortunately, Com-

posite FEs typically provide a less accurate prediction of the soil deformation [Sandhu

et al., 1977] with the oscillations in the pore pressure not entirely eliminated [Murad &

Loula, 1994]. Post-processing techniques intended to smooth the spurious modes have

been proposed with the aim at restoring the standard FE convergence rate [Reed, 1984;

Murad & Loula, 1992]. More recently some approaches have been advanced based on
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mixed formulations. The main advantage from the mixed approximation spaces relies on

the possibility of solving nearly incompressible problems with no locking and a greater

flexibility in describing independently pressures, stresses and displacements. Tchonkova

et al. [2008] have developed a least-square mixed model for poro-elasticity yielding a

positive definite discrete problem, while Phillips & Wheeler [2007a,b, 2008] have shown

the theoretical convergence of two-dimensional (2-D) models that couple both continuous

and discontinuous Galerkin elements for the displacements with mixed spaces for the fluid

flow. A locally mass conservative approach coupling a mixed method for the flow problem

with traditional FEs for the soil displacements has been proposed by Jha & Juanes [2007]

who suggest solving the overall model by an unconditionally stable sequential scheme.

In the present chapter a fully coupled 3-D mixed FE formulation is developed to solve

numerically the Biot equations of consolidation with the aim at alleviating the instabili-

ties in the pore pressure solution. The fluid pore pressure and flux are approximated in

the lowest order Raviart-Thomas mixed space, while linear tetrahedral FEs are used for

the displacements. The main reasons for the above choices are threefold. First, keeping

the flux as a primary variable allows for a greater accuracy in the velocity field, which

can be of interest whenever a consolidation model is coupled with an advection-diffusion

equation, e.g. to account for thermal effects or contaminant transport. Second, a mixed

formulation for the flow problem is element-wise mass conservative because the normal

flux is continuous across the element boundaries. Third, the practical advantages from

using low-order interpolation elements, such as ease of implementation, refinement, and

discretization of geometrically complex and heterogeneous domains, are thouroughly pre-

served. The chapter is organized as follows. After recalling the governing equations, the

mixed variational formulation is developed in a 3-D setting with the discrete system of or-

dinary differential equations integrated in time. A fully coupled algorithm is then derived

in detail using a block version of the Symmetric Quasi-Minimal Residual (SQMR) solver

[Freund & Nachtingal, 1994] with an ad hoc developed block preconditioner. Finally, the

Mixed FE model is validated against the well-known Terzaghi’s analytical solution and

compared to the results obtained from a standard FE method, with the relative merits

discussed.

3.2 Mixed FE model of Biot consolidation

The interaction between a granular material and the fluid filling its pores is governed by

a stress equilibrium equation coupled to a mass balance equation, with the relationship



60 CHAPTER 3. FULLY COUPLED 3-D MFE MODEL OF BIOT CONSOLIDATION

linking the grain forces to the fluid pore pressure based on Terzaghi’s effective stress

principle. The equilibrium equation for an isotropic poro-elastic medium incorporating

the effective stress concept reads:

G∇2δ̂x +

(
K +

G

3

)
∇divδ̂x = b∇p+ ρg (3.1)

where G and K are the shear and bulk moduli, respsctively, b is the Biot coefficient, ρg

the body forces, δ̂x the medium displacements and p the fluid pore pressure. The fluid

mass balance is prescribed by the continuity equation:

divv +
∂

∂t

(
φβfp+ b divδ̂x

)
= f (3.2)

where φ is the medium porosity, βf the fluid compressibility, t time, f a flow source or

sink and v the Darcy’s velocity. Equation (3.2) must be coupled with the Darcy’s law

defining v:

κ−1v + ∇p = 0 (3.3)

with κ = k/γf , k the hydraulic conductivity tensor and γf the fluid specific weight.

Equations (3.1) through (3.3) form a coupled partial differential system defined on a

3-D domain Ω bounded by the frontier Γ with δ̂x, v and p as unknowns. This system can

be solved with appropriate boundary:





δ̂x (x, t) = δ̂xD (x, t) over ΓD

σ (x, t)n (x) = tN (x, t) over ΓN

p (x, t) = pD (x, t) over Γp

v (x, t) · n (x) = uN (x, t) over Γu

(3.4)

and initial conditions: 



δ̂x (x, 0) = δ̂x0 (x)

v (x, 0) = v0 (x)

p (x, 0) = p0 (x)

(3.5)

In equations (3.4) and (3.5) ΓD ∪ ΓN = Γp ∪ Γu = Γ, σ is the total stress tensor, n the

outer normal to Γ and x the position vector in R
3, while the right-hand sides are known

functions.
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3.2.1 Variational formulation

Approximate the medium displacement in space with continuous piecewise linear polyno-

mials ℓi, i = 1, . . . , nn, with nn the number of FE nodes in Ω:

δ̂x (x, t) =




δ̂xx (x, t)

δ̂xy (x, t)

δ̂xz (x, t)


 ≃




nn∑

i=1

ℓi (x) δxx,i (t)

nn∑

i=1

ℓi (x) δxy,i (t)

nn∑

i=1

ℓi (x) δxz,i (t)




= Nδx (x) δx (t) (3.6)

The fluid pore pressure and Darcy’s flux are discretized in space with piecewise con-

stant polynomials and in the lowest order Raviart-Thomas space, respectively, satisfying

the LBB condition that ensures the well-posedness of the discrete problem [Roberts &

Thomas, 1991]. Denoting by ne and nf the number of elements and elemental edges,

respectively, p and v are approximated as follows:

p (x, t) ≃
ne∑

j=1

hj (x) pj (t) = hT (x)p (t) (3.7)

v (x, t) ≃

nf∑

k=1

wk (x)uk (t) = W (x)u (t) (3.8)

where hj are element-wise constant functions such that:

hj (x) =

{
1 x ∈ T (j)

0 x ∈ Ω − T (j)
(3.9)

and wk are vectorial functions in R
3 associated to the k-th elemental edge:

wk (x) = ±
1

3 |V (T (j))|
(x − xk) (3.10)

In equations (3.9) and (3.10) T (j) denotes the j-th tetrahedron, V its volume and xk

the position vector of the node opposite to the k-th elemental edge in T (j). The ± sign

in (3.10) identifies a conventional edge orientation such that wk is oriented outward the

element T (j) with the smallest index j. Because of this orientation, the function wk gives

rise to a unitary flux through the k-th elemental edge and a zero flux through all other

edges. The vectors δx(t), p(t) and u(t) whose components are the nodal displacements

ux,i, uy,i, uz,i, the elemental pressures pj and the edge normal fluxes uk, respectively, are

the discrete unknowns of the variational problem.



62 CHAPTER 3. FULLY COUPLED 3-D MFE MODEL OF BIOT CONSOLIDATION

The elastic equilibrium equation (3.1) can be classically solved by minimizing the total

potential energy in the domain Ω with the aid of the virtual work principle:
∫

Ω

ǫv,Tσ dΩ =

∫

Ω

δ̂x
v,T
ρg dΩ +

∫

ΓN

δ̂x
v,T

tN dΓ (3.11)

where ǫ is the strain vector (= Bδxδx, with Bδx the strain elastic matrix) and σ is the total

stress vector. The apex v denotes the virtual variables. Recalling Terzaghi’s principle:

σ = σ′ − bpi (3.12)

where σ′ is the effective stress vector (= Deǫ, with De the elastic constant matrix) and

i the Kronecker delta in vectorial form, and differentiating with respect to the virtual

displacements, equation (3.11) yields:
(∫

Ω

BT
δxDeBδx dΩ

)
δx −

∫

Ω

bBT
δxip dΩ =

∫

Ω

NT
δxρg dΩ +

∫

ΓN

NT
δxtN dΓ (3.13)

Using the pore pressure approximation (3.7) produces the final discrete form of equation

(3.1):

Kδx −Qp = f1 (3.14)

where:

K =

∫

Ω

BT
δxDeBδx dΩ (3.15)

Q =

∫

Ω

bBT
δxih

T dΩ (3.16)

f1 =

∫

Ω

NT
δxρg dΩ +

∫

ΓN

NT
δxtN dΓ (3.17)

The Dirichlet boundary conditions along ΓD are prescribed in a strong way.

The continuity equation (3.2) and the Darcy’s law (3.3) are both solved by the Galerkin

method of weighted residuals. Using the approximations (3.6) through (3.8) and orthog-

onalizing the residuals to h and W , respectively, give:

∫

Ω

hdivv dΩ +

∫

Ω

h
∂φβfp

∂t
dΩ +

∫

Ω

h
∂bdivδ̂x

∂t
dΩ =

∫

Ω

hf dΩ (3.18)

∫

Ω

W Tκ−1v dΩ +

∫

Ω

W T∇p dΩ = 0 (3.19)

Assuming that φ, βf and b are independent of time and using a weak form for the last

integral in equation (3.19), the semi-discrete Mixed FE expression of equations (3.2) and

(3.3) read:

BTu + P ṗ +QT ˙δx = f2 (3.20)
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Au −Bp = f3 (3.21)

where:

A =

∫

Ω

W Tκ−1W dΩ (3.22)

B =

∫

Ω

ωhT dΩ (3.23)

P =

∫

Ω

φβfhhT dΩ (3.24)

f2 =

∫

Ω

hf dΩ (3.25)

f3 = −

∫

Γp

pDW
Tn dΓ (3.26)

The components of ω in (3.23) are equal to div(wk), k = 1, . . . , nf . Unlike standard FEs,

the Dirichlet boundary conditions are the natural conditions for equation (3.21) and are

therefore prescribed in a weak way, whereas the Neumann boundary conditions are to be

imposed in a strong way.

3.2.2 Numerical implementation

The system of differential-algebraic equations (3.14), (3.20) and (3.21) is numerically

integrated in time by a finite difference scheme. Consider any time-dependent function to

vary linearly in time between t and t + ∆t, and approximate any time-derivative at the

intermediate instant t∗:

t∗ = ϑ (t+ ∆t) + (1 − ϑ) t (3.27)

with a simple incremental ratio. In equation (3.27) ϑ is a scalar value comprised between

0 and 1. The discrete solution scheme thus obtained is the following:

ϑ
[
Kδxt+∆t −Qpt+∆t

]
= (1 − ϑ)

[
Qpt −Kδxt + f t

1

]
+ ϑf t+∆t

1 (3.28)

QT δxt+∆t + Ppt+∆t

∆t
+ ϑBTut+∆t = (1 − ϑ)

[
f t+∆t
2 −BTut

]
+

+
QT δxt + Ppt

∆t
+ ϑf t+∆t

2 (3.29)

ϑ
[
Aut+∆t −Bpt+∆t

]
= (1 − ϑ)

[
Bpt − Aut + f t

3

]
+ ϑf t+∆t

3 (3.30)

Set γ = ϑ∆t and ψ = (1 − ϑ)/ϑ, divide equation (3.28) by −ϑ, multiply equation (3.29)

by ∆t and equation (3.30) by −∆t. The numerical solution at time t+∆t can be therefore
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computed by solving a linear algebraic system:

Azt+∆t = f t (3.31)

where:

A =




P QT γBT

Q −K 0

γB 0 −γA


 zt+∆t =




pt+∆t

δxt+∆t

ut+∆t


 f t =




f (p)

f (δx)

f (u)


 (3.32)

f (p) = (∆t− γ)
[
f t
2 −BTut

]
+QT δxt + Ppt + γf t+∆t

2 (3.33)

f (δx) = ψ
[
Kδxt −Qpt − f t

1

]
− f t+∆t

1 (3.34)

f (u) = (∆t− γ)
[
Aut −Bpt − f t

3

]
− γf t+∆t

2 (3.35)

The matrix A in (3.31) has size ne +3nn +nf and is sparse, symmetric and indefinite.

Suitable solvers for (3.31) belong to the class of the iterative projection-type Krylov

subspace methods properly preconditioned. The explicit construction of A, however, is

generally not convenient from a computational point of view. In fact, while A, B, K,

P and Q can be computed just once at the beginning of the simulation as they do not

depend on t, A changes at each step because ∆t, hence γ, is generally increased as the

consolidation proceeds. Therefore a specific block version of a preconditioned Krylov

subspace method is to be implemented.

As far as the preconditioner is concerned, a variant of the block constraint approach

successfully applied to standard FE consolidation models [Bergamaschi et al., 2008; Fer-

ronato et al., 2009a] is developed. Write A as a 2 × 2 block matrix:

A =

[
P HT

H −C

]
(3.36)

with:

H =

[
Q

γB

]
C =

[
K 0

0 γA

]
(3.37)

Note that C is a block-diagonal symmetric positive definite (SPD) matrix, as both K and

A are SPD and γ is positive. Now consider the following A decomposition:

A =

[
I 0

HP−1 I

][
P 0

0 −S

][
I P−1HT

0 I

]
(3.38)
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where S is the SPD Schur complement:

S = C +HP−1HT =

[
K +QP−1QT γQP−1BT

γBP−1QT γA+ γ2BP−1BT

]
(3.39)

Equations (3.38) and (3.39) could be computed exactly as P is diagonal, however S is

much less sparse than C, hence some dropping can be conveniently enforced. A simple

approximation relies on prescribing the dropped S to preserve the same block diagonal

structure as C:

S ≃ S̃ =

[
S̃1 0

0 S̃2

]
=

[
K +QP−1QT 0

0 γA+ γ2BP−1BT

]
(3.40)

The blocks S̃1 and S̃2 cannot be efficiently inverted, so an additional approximation is

performed by replacing them with their incomplete Cholesky factorizations:

S̃ ≃

[
LS1L

T
S1 0

0 LS2L
T
S2

]
= LSL

T
S (3.41)

S̃ is used in equation (3.38) in place of the exact Schur complement S, thus providing

a factored approximation of A that can be used as preconditioner. Inverting equation

(3.38) and accounting for (3.41) yields:

M−1 = U−1L−1 =

[
I −P−1HTL−T

S

0 L−T
S

][
P−1 0

L−1
S HP−1 −L−1

S

]
(3.42)

with M−1 the Constraint Preconditioner (CP).

Preconditioner (3.42) is used to accelerate the SQMR solver [Freund & Nachtingal,

1994] which has proved a robust and efficient algorithm for sparse symmetric indefinite

problems [e.g., Toh & Poon, 2008; Ferronato et al., 2009b]. An ad hoc block version,

however, is to be implemented. The resulting Block CP-SQMR algorithm for the solution

of equations (3.31) is provided in Table 3.1. The repeated solution of equations (3.31)

starting from the initial conditions (3.5) gives the discrete vectors δx, p and u at the

selected values of time, hence the approximate δ̂x, p and v through equations (3.6), (3.7)

and (3.8), respectively.
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Set ϑ0 = 0, d
(p)
0 = 0, d

(δx)
0 = 0, d

(u)
0 = 0

Choose p0, δx0, u0 arbitrarily

r
(p)
0 = f (p) − Pp0 −QT δx0 − γBTu0

r
(δx)
0 = f (δx) −Qp0 +Kδx0

r
(u)
0 = f (u) − γ (Bp0 − Au0)

t
(p)
0 = P−1r

(p)
0

t
(δx)
0 = L−1

S1

(
Qt

(p)
0 − r

(δx)
0

)

t
(u)
0 = L−1

S2

(
γBt

(p)
0 − r

(u)
0

)

τ0 =

√
‖t

(p)
0 ‖2

2 + ‖t
(δx)
0 ‖2

2 + ‖t
(u)
0 ‖2

2

w
(u)
0 = L−T

S2 t
(u)
0

w
(δx)
0 = L−T

S1 t
(δx)
0

w
(p)
0 = t

(p)
0 − P−1

(
QTw

(δx)
0 + γBTw

(u)
0

)

ρ0 = r
(p),T
0 w

(p)
0 + r

(δx),T
0 w

(δx)
0 + r

(u),T
0 w

(u)
0

Do k = 1, 2, . . . until convergence

s
(p)
k = Pw

(p)
k−1 +QTw

(δx)
k−1 + γBTw

(u)
k−1

s
(δx)
k = Qw

(p)
k−1 −Kw

(δx)
k−1

s
(u)
k = γ

(
Bw

(p)
k−1 − Aw

(u)
k−1

)

σk = w
(p),T
k−1 s

(p)
k + w

(δx),T
k−1 s

(δx)
k + w

(u),T
k−1 s

(u)
k

If [(σk = 0) or (ρk−1 = 0)] Then

Stop with solution pk−1, δxk−1, uk−1

Else

αk = ρk−1/σk

r
(p)
k = r

(p)
k−1 − αks

(p)
k

r
(δx)
k = r

(δx)
k−1 − αks

(δx)
k

r
(u)
k = r

(u)
k−1 − αks

(u)
k

t
(p)
k = P−1r

(p)
k

t
(δx)
k = L−1

S1

(
Qt

(p)
k − r

(δx)
k

)

t
(u)
k = L−1

S2

(
γBt

(p)
k − r

(u)
k

)

. . .
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. . .

ϑk =

(√
‖t

(p)
k ‖2

2 + ‖t
(δx)
k ‖2

2 + ‖t
(u)
k ‖2

2

)
/τk−1

ψk = 1/
√

1 + ϑ2
k

τk = τk−1ϑkψk

d
(p)
k = ψ2

kϑ
2
k−1d

(p)
k−1 + ψ2

kαkw
(p)
k−1

d
(δx)
k = ψ2

kϑ
2
k−1d

(δx)
k−1 + ψ2

kαkw
(δx)
k−1

d
(u)
k = ψ2

kϑ
2
k−1d

(u)
k−1 + ψ2

kαkw
(u)
k−1

pk = pk−1 + d
(p)
k

δxk = δxk−1 + d
(δx)
k

uk = uk−1 + d
(u)
k

v
(u)
k = L−T

S2 t
(u)
k

v
(δx)
k = L−T

S1 t
(δx)
k

v
(p)
k = t

(p)
k − P−1

(
QTv

(δx)
k + γBTv

(u)
k

)

ρk = r
(p),T
k v

(p)
k + r

(δx),T
k v

(δx)
k + r

(u),T
k v

(u)
k

βk = ρk/ρk−1

w
(p)
k = v

(p)
k + βkw

(p)
k−1

w
(δx)
k = v

(δx)
k + βkw

(δx)
k−1

w
(u)
k = v

(u)
k + βkw

(u)
k−1

End If

End Do

Table 3.1: Block CP-SQMR algorithm.

3.3 Numerical results

The stability and accuracy of the 3-D Mixed FE consolidation model previously described

is investigated with the aid of a few examples. The model is validated against analytical

solutions and it is compared to a standard FE model.
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Figure 3.1: Sketch of the setup for Terzaghi’s consolidation test.

3.3.1 Model validation

The model is validated against Terzaghi’s classical consolidation problem, consisting of

a fluid-saturated column of height L with a constant loading PL on top (Figure 3.1).

Drainage is allowed for through the upper moving boundary only. The basement is fixed.

The load is applied istantaneously at time t = 0 yielding a non-zero initial overpressure

p0(z) and a corresponding settlement δxz,0(z). Assuming the z-axis positive downward,

the analytical solution reads [Wang, 2001; Wang & Hsu, 2009]:

p(z, t) =
4

π
p0

∞∑

m=0

1

2m+ 1
exp

[
− (2m+ 1)2 π2ct

4L2

]
sin

[
(2m+ 1)πz

2L

]
(3.43)

δxz(z, t) = cMp0

{
(L− z) −

8L

π2

∞∑

m=0

1

(2m+ 1)2 exp

[
− (2m+ 1)2 π2ct

4L2

]

cos

[
(2m+ 1)πz

2L

]}
+ δxz,0 (3.44)

where:

p0(z) =
bM

Ku + 4G/3
PL (3.45)

δxz,0(z) =
1

Ku + 4G/3
PL (L− z) (3.46)

with M = [φβf + (b − φ)βs]
−1 the Biot modulus, βs the solid grain compressibility,

Ku = K + b2M the undrained bulk modulus, cM = (K + 4G/3)−1 the vertical uniaxial

compressibility, and c = k/[γf (M
−1 + b2cM)] the consolidation coefficient.
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Porous Column
ksand [m/s] 10−5

kclay [m/s] 10−8

φ 0.375
βf [MPa−1] 4.4 × 10−4

K [MPa] 66.7
G [MPa] 40.0
b 1.0

Table 3.2: Hydraulic and mechanical parameters of the porous column used for the model
validation. In Terzaghi’s consolidation test the sample is made from sand only.

A homogeneous sandy column with unit section and L = 15 m is simulated, with

the relevant hydraulic and mechanical properties given in Table 3.2. The prescribed

distributed load PL is 104 Pa. The column is discretized into regular tetrahedrals with

a characteristic element size h = 0.5 m (Figure 3.1). The time integration is performed

with a first-order implicit scheme (ϑ = 1) and a constant time step ∆t = 0.1 s. The

simulation proceeds until steady state conditions are attained. A good matching between

the analytical and the numerical solution is obtained for both pore pressure and vertical

displacement, as it is shown in Figure 3.2 and 3.3, respectively.

The convergence properties of the 3D Mixed FE model have been investigated by

comparing the analytical solutions (3.43)-(3.44) at t = 60 s with the numerical solution

obtained on progressively refined computational grids, ranging from h = 1 m to 0.0625

m. In Figure 3.4 the L∞-norm of the pressure error is plotted vs. h in a double log-log

plot. The profile exhibits initially a linear behaviour, then it flattens out as h decreases.

This agrees with the theoretical results provided in Phillips & Wheeler [2007b] for a 1-D

formulation, with the lack of convergence basically due to the time discretization error. A

similar remark holds true for the displacements using the L2-norm of the error (Figure 3.5).

Consistent with the pore pressure L∞-norm profile, the theoretical quadratic convergence

[Phillips & Wheeler, 2007b] is progressively lost as h decreases while ∆t is kept constant.

Figure 3.6 shows the relative residual norm:

rr =
‖f t −Azt+∆t‖2

‖f t‖2

(3.47)

vs. the number of iterations required by the CP-SQMR algorithm of Table 3.1 to solve the

linear system (3.31). The different number of CP-SQMR iterations to converge indicates

that the conditioning of A gets worse as h decreases and ∆t increases, which is consistent

with the numerical behaviour typically encountered in mixed FE models of subsurface
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Figure 3.2: Terzaghi’s consolidation test: analytical and numerical solutions for the pore
pressure.
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Figure 3.3: Terzaghi’s consolidation test: analytical and numerical solutions for the ver-
tical displacement.
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Figure 3.4: Terzaghi’s consolidation test: L∞ pressure error norm vs. spacing h.
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Figure 3.5: Terzaghi’s consolidation test: L2 displacement error norm vs. spacing h.
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Figure 3.6: CP-SQMR convergence profiles varying h with ∆t = 0.01 s (top) and varying
∆t with h = 0.5 m (bottom).
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Figure 3.7: Heterogeneous consolidation test: pseudo-analytical and Mixed FE numerical
solutions for the pore pressure.

flow [Bergamaschi & Mantica, 1996].

3.3.2 Comparison with standard FEs

The stability of the numerical solution obtained with the Mixed FE model is investigated

in a second test problem. The porous column of Figure 3.1 is now assumed to be hetero-

geneous, with 10 m of clay on top and 5 m of sand on bottom. The clay permeability

is 1000 times smaller than sand (Table 3.2) while the elastic properties are the same.

Drainage is allowed for also on the bottom boundary where a pore pressure variation of

9810 Pa is prescribed. The top boundary is now traction-free. The computational grid is

the same as in Figure 3.1.

The simulated pore pressure at different times is shown in Figure 3.7. The pseudo-

analytical solution has been obtained by progressively refining the tetrahedral mesh until

convergence. The numerical solution is close to the pseudo-analytical one and appears

to be quite stable, with no oscillations at the sand-clay interface. For the sake of a

comparison, Figure 3.8 provides the pore pressure solution simulated by a standard FE

model based on the same mesh and equal order pressure and displacement approximations.

Even in this simple problem, standard FEs exhibit pronounced initial pressure oscillations
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Figure 3.8: Heterogeneous consolidation test: pseudo-analytical and standard FE numer-
ical solutions for the pore pressure.

at the sand-clay interface. By contrast, the vertical displacement is stable and accurate

in both the FE and Mixed FE models (Figure 3.9).

The stable pore pressure solution provided by the Mixed FE model is obtained at the

cost of a larger number of unknowns. To have an idea, the standard FE model has 837

and 279 displacement and pressure unknowns, respectively, while the Mixed FE model

totals 837, 720 and 1,688 unknowns for displacement, pressure and velocity, respectively,

with an overall system size equal to 3,245. However, if the tetrahedral mesh is regularly

refined so that the standard FE system size is three times larger, oscillations in the pore

pressure solution do not vanish, although they are less pronounced than before (Figure

3.10). To have practically insignificant oscillations (≤ 50 Pa) the mesh size h at the

sand-clay interface must be ≤ 5 cm.

3.4 Conclusions

A fully coupled 3D Mixed FE model for the simulation of Biot consolidation has been

developed with the aim at alleviating the oscillations of the pore pressure solution along

the interface between materials with different permeabilities at the initial stage of the

process. A linear piecewise polynomial and the lowest order Raviart-Thomas mixed space
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Figure 3.9: Heterogeneous consolidation test: pseudo-analytical and numerical solutions
for the vertical displacement.
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Figure 3.10: Heterogeneous consolidation test: pseudo-analytical and standard FE nu-
merical solutions for the pore pressure on a regularly refined tetrahedral mesh so that the
total number of unknowns equates that of the Mixed FE model.
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are selected to approximate the medium displacement and the fluid flow rate, respectively.

The numerical solution is obtained with an ad hoc algorithm that takes advantage of the

block structure of the algebraic linearized system. The numerical model is validated

against the well-known Terzaghi’s analytical solution and then compared to standard

FEs. The following results are worth summarizing:

• the Mixed FE formulation is element-wise mass conservative and preserves the prac-

tical advantage of using low-order interpolation elements for the medium displace-

ment as well;

• the solution algorithm addresses the problem in a fully coupled way, thus improving

the stability and avoiding the convergence issues that may arise in a sequential

approach;

• the Block CP-SQMR algorithm appears to be a robust and efficient tool for the fully

coupled solution even though the system conditioning gets worse as the element

spacing decreases and the time integration step increases;

• as compared to standard FEs, the Mixed FE model appears to be numerically more

stable, with no pressure oscillations at the interface between hydrologically heteroge-

neous media although a coarse discretization and an equally accurate approximation

for displacement are used.



Chapter 4

Realistic applications in the Venice

Lagoon

4.1 Introduction

The city of Venice and the surrounding Lagoon sites are periodically plagued by the “acqua

alta” phenomenon, i.e. high tide flooding occurring typically in fall and winter due to a

combination of low atmospheric pressure, strong on-shore winds from the Adriatic Sea and

heavy rain. Floodings have increased in frequency and intensity since early 1900’s mainly

because of three reasons (Figure 4.1): the eustatic rise of the sea level, the natural land

subsidence, and the man-induced land subsidence produced by water pumping. Water

extraction in the Venice and Mestre area stopped in the mid 1970s, and, after a slight

rebound, subsidence recovered its natural trend. Widely accepted estimates set at 0.23 m

the land settlement with respect to mean sea level. According to the updated elevation

map of Venice1, the normal tide height ranges from -0.50 m to +0.80 m with respect

to Punta della Salute datum, located opposite St.Mark’s Square. Above the +0.80 m

threshold, flooding takes place. For example, nearly 30% and more than 60% of the city

area is flooded when tide height exceeds +1.20 m and +1.50 m, respectively.

The Italian government has point the Venice safeguarding as a matter of “priority

national interest” after the devastating flood of November 1966, when the tide reached a

height of 1.94 m above the tidal datum. Several solutions have been advanced to prevent

Venice from drowning. The final project selected for the Venice safety is the “MOdulo

1“Venezia altimetria”, aggiornamento 2009. A cura di L. Boato, P. Canestrelli, L. Facchin e R. Todaro.
Comune di Venezia - Istituzione centro previsioni e segnalazioni maree in collaborazione con
Insula spa (in Italian).

77
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Figure 4.1: Loss of ground elevation (cm) with respect to the 1908 mean sea level during
the last century. The blue region depicts the eustatic rise of the sea level. The subsi-
dence trend is divided into the natural (in yellow) and the induced (in red) contribution,
respectively [Carbognin et al., 2005].
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Sperimentale Elettromeccanico” (MOSE) mobile barriers system, which is currently cur-

rently under construction. The MOSE system uses fold-away steel gates that are raised

from the sea floor to prevent water from entering the Venice lagoon when a high tide is

expected. The floodgates are normally folded and embodied in concrete caissons buried

at the bottom of the three lagoon inlets, i.e. Lido, Malamocco, and Chioggia. When tides

higher than +1.1 m are expected, thus involving a flooding over about 14% of the city

area, the mobile gates rise and isolate the lagoon environment from the Adriatic Sea as

long as the sea level drops. Another flood prevention measure, known as the “Insulae”

project, consists in raising the elevation of banks, pavements and sidewalks in selected

areas, like St. Mark’s Square [Burghignoli et al., 2007], to prevent any flood caused by

tides within +1.00 m.

A novel proposal to mitigate flooding is the anthropogenic uplift of the city by deep

seawater injection recently advanced by Comerlati et al. [2004]. Such a proposal is in-

tended as a complementary action to MOSE, since it might prolong its operational life

considering the expected sea level rise of the next century, and at the same time reduce

significantly its activation, thus limiting concerns at both an economic and environmental

level. A pilot injection has been also designed to test the feasibility of the uplift, improve

the knowledge of the subsurface below the Venice Lagoon and help the calibration of the

full scale prediction models [Castelletto et al., 2008]. In the sequel a review of the pilot

project is provided. Then, the numerical approaches presented in Chapters 2 and 3 are

tested in several large size realistic and computationally challenging applications using

both a stratigraphic sequence typical of the geological basin underlying the Venice lagoon

and the most recent available hydrogeological, geothermal and geomechanical data. The

3-D Mixed FE model is employed to address the consolidation of a shallow formation due

to the construction of a trial embankment, such as the temporary facilities built at the in-

lets of the Venice lagoon during the MOSE construction, and the groundwater withdrawal

from a confined aquifer. The problems above are also representative of in situ tests to

assess the stress-strain properties of the heterogeneous lagoon soils [Simonini et al., 2006]

(the former) and characterize the hydraulic properties of an aquifer (the latter). After-

wards, the proposal by Castelletto et al. [2008] is supplemented with the investigation

of the role played by a temperature variation should the seawater injection take place in

non-isothermal conditions. The 3D non-linear hydro-thermo-mechanical model described

in the previous Chapters is used, with lowest order Mixed Hybrid Finite Elements (MH-

FEs) and Finite Volumes (FVs) for the coupled subsurface fluid flow and heat transfer,

and Finite Elements (FEs) for the structural equilibrium.
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4.2 The pilot project of Venice uplift

Land subsidence caused by fluid withdrawal from subsurface has been experienced world-

wide over the past century. A possible mitigation to such an occurrence can be obtained by

the injection of fluids underground. Subsurface fluid injection is a well-known technique

in the petroleum industry and has been used in the last 40-50 years for different pur-

poses, with facilities discharging a variety of fluids into more than 400,000 injection wells

across the United States alone [USEPA, 2002]. Although the technology is well-known,

fluid injection has seldom been used for the purpose of raising subsiding areas, and there-

fore measurements of anthropogenic uplift are not generally planned. Two documented

examples are the pumping of salt water into the subsurface formations at Long Beach

Harbour, California, and the artificial recharge in the Las Vegas Valley, Nevada. As to

Long Beach, during the oil production period in the 1950s a maximum 8.5 m settlement

was recorded [Poland and Davis, 1969], while the injection program induced a modest

observed rebound of 10 cm along the front pier in the San Pedro Bay [Rintoul, 1981],

with a maximum local uplift of 33 cm from 1958 to 1975 [Kosloff et al., 1980]. In Las

Vegas, recent satellite maps show that the artificial recharge, started in the late ‘80s to

partially compensate the groundwater level decline due to aquifer over-exploitation, has

succeeded in mitigating the produced land subsidence, with a maximum seasonal uplift of

more than 3 cm recorded during the 1997-1998 winter [Hoffman et al., 2001]. The lack of

uplift data is also due to the fact that most fluid injection projects, in particular the ones

for enhancing oil recovery (EOR), occur in desert areas where traditional geodetic level-

ling is not usually performed. It is only very recently that technology from space, such as

GPS (Global Positioning System) and especially InSAR (Interferometric Syntetic Aper-

ture Radar), allows for the inexpensive and accurate detection, also in non-urban land by

the use of ad hoc reflectors, of small displacements (on the order of 1-2 mm/year) that can

be easily related to fluid injection. In fact, field measurements from satellite data provide

documentary evidence that pumping fluid underground has indeed produced a measur-

able anthropogenic uplift [e.g. Bilak et al., 1991; Wang and Kry, 1997; Hoffman et al.,

2001; Dusseault and Rothenburg, 2002; Collins, 2005]. Using satellite interferograms, an

uplift of 29 cm caused by steam injection at the Cold Lake, Alberta, Canada, over less

than a 3-month period was measured by Stancliffe and van der Kooij [2001], and even

larger uplifts in steam-assisted gravity drainage projects may be expected [Davari, 2007].

The experiences above suggest that injecting water below the Venice lagoon can lead to

an appreciable rebound of the city and represent a potential remedy to the settlement
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Figure 4.2: View of the Venice Lagoon with black dots denoting the seatwater injection
wells. The two inlets of Lido (upper) and Malamocco (lower) are shown [Comerlati et al.,
2003].

already experienced.

The first idea to raise Venice was advanced by Comerlati et al. [2003], predicting an

uplift of 30 cm due to saltwater injection through 12 injection wells (Figure 4.2) in 10

years on the basis of hydrogeological and geomechanical models. In 2004, based on more

recent geological, litho-stratigraphical, hydrological and especially geomechanical data

from the Northern Adriatic basin which comprises the lagoon subsurface [Baù et al., 2002;

Ferronato et al., 2003a,b; Ferronato et al., 2004], the Comerlati et al. [2003] modelling

study was refined, with a 25 cm most-likely uplift estimate, comprised between a 40 cm

upper and a 11 cm lower bound, respectively [Comerlati et al., 2004]. It is worth noting

that an upheaval of 25 cm would have precluded most of the flooding occurred from 1872

to 2002 [Comerlati et al., 2004], and meanwhile would offset the 27 cm expected Northern

Adriatic level rise over the XXI century as predicted in a pessimistic scenario by CORILA

[1999], a consortium of universities and research institutions charged with coordinating

the research activities in the Venice Lagoon. Another paper by Comerlati et al. [2006]

addresses the option of storing anthropogenic CO2 underneath the Venice Lagoon, but
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the related uplift would be more modest than that obtained by injecting saltwater, and

the success of the operation is more uncertain because of the great complexity affecting

the overall CO2 sequestration process.

In view of the precarious lagoon environment and the great artistic heritage of the

city of Venice, anthropogenic uplift by seawater injection requires an extremely detailed

knowledge and accurate prediction of the actual subsurface response to the designed

pumping. In this respect Castelletto et al. [2008] advanced the plan of a preliminary pilot

project so as to:

• ascertain whether water injection in deep geological formations below the lagoon

can indeed help raise Venice, as predicted with the aid of the preliminary modelling

analyses [Comerlati et al., 2003, 2004];

• improve the geological and litho-stratigraphical representation of the lagoon sub-

surface down to the depth of interest;

• calibrate the hydrological and geomechanical models improving their predictive ca-

pabilities;

• monitor the land motion in time and space using the most advanced satellite tech-

nology, providing a real time control on the ongoing process and allowing for a

timely arrest of the injection in case of unexpected unsafe conditions.

4.2.1 Experiment design

The pilot project will affect a limited underground volume that has to be nevertheless

representative of the Venice subsurface, raising no concerns among the people living in

the experimental site nor jeopardizing the activity that is normally performed there. A

preliminary design of the injection wells and observation boreholes is shown in Figure 4.3.

Three wells from where saltwater is pumped underground are located at the vertices of

a regular triangle with 800-1000 m-long sides and drilled down to a depth of about 800

m. Each single well will inject the minimum pumping rate that is required to produce

a measurable yet fully safe uplift at any time of practical interest within the 3-year

duration of the experiment. The injection rate will be adjusted accordingly with the

aid of numerical analyses to obtain a maximum uplift at the end of the experiment of

about 7 cm. The final size and layout of the injection wells and observation boreholes will

be based on the actual geology of the subsurface and the logistic constraints dictated by

the selected site.



4.2 THE PILOT PROJECT OF VENICE UPLIFT 83

Figure 4.3: Layout of the injection wells and other instrumented boreholes.

During the injection a number of variables are to be continuously monitored, namely:

1. the pore water overpressure in both the injection wells and the piezometric holes;

2. the injection rate from each individual well;

3. the deformation of the injected formation and overlying clay layer as monitored with

the aid of the radioactive marker technique;

4. the compaction, if any, of the upper fresh water aquifer system as monitored with

the aid of an extensometer;

5. the land surface (horizontal and vertical) motions as monitored by the use of the

remote sensing technologies (GPS and InSAR).

The pore water pressure in the injection wells will be directly recorded by an appropriate

equipment commonly used in petroleum engineering. The final setup is completed by

two additional boreholes instrumented with deep piezometers located by the pilot site

(Figure 4.3) monitoring the aquifer pressurization, an extensometer [Heywood, 1995] in-

stalled in the center of the experimental area measuring the porous medium deformation

in the upper 400-500 m, and a borehole drilled to implement the marker technique and

simultaneously measure in situ pore water pressure. The radioactive marker technique
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[Mobach and Gussinklo, 1994; Ferronato et al., 2003a,b] in the central borehole will al-

low for deriving the most updated and representative estimate of rock compressibility in

unloading conditions (II cycle) by recording the local in situ expansion.

4.2.2 Site selection

The experimental site selection relies on both geological and logistical considerations.

From the geological viewpoint, the aquifer where seawater is injected should be a con-

tinuous formation underlying the entire lagoon and should coincide with the formation

under consideration for the full-scale project of Venice uplift. Moreover, it is fundamental

that the confining unit or caprock have adequate thickness and ideally not be affected

by faulting or fractures. From the logistical viewpoint, the selected area must fulfil a

number of safety requirements, e.g. its ground elevation should be such to avoid any risk

of flooding due to likely events of “acqua alta” during the experiment, and should be far

enough from vulnerable sites (e.g. industries, villages or sensitive areas) that could be

potentially damaged should the experiment evolve differently than planned. Easy and

economic accessibility by trucks to the site in order to both install and remove the exper-

imental equipment, along with the availability of the injected water at a relatively small

distance from the lagoon should be ensured. An ad hoc treatment plant for geochemical

compatibility must be also planned. According to the above requirements, Castelletto

et al. [2008] selected four potential sites as indicated in Figure 4.4, namely Le Vignole

island, San Giuliano, Fusina and Cascina Giare.

4.2.3 Geoseismic analyses

The geological model by Comerlati et al. [2003, 2004] is based on a 3D deep seismic sur-

vey performed by ENI-E&P in the Northern Adriatic, the lithology of the exploratory

boreholes Venezia 1-CNR, Chioggia Mare 3 and Chioggia Mare 4, and the fresh-water

multiaquifer system in the upper 400 m depth as reconstructed in previous studies of

anthropogenic land subsidence of Venice [Gambolati et al., 1974]. Improvement of the

current knowledge on the geology and litho-stratigraphy underneath the Venice Lagoon

is a basic requirement for both the selection of the pilot project location and the pro-

posed full-scale project of anthropogenic Venice uplift. In order to integrate the existing

available information, an ad hoc seismic survey is planned in the lagoon focusing the zone

between 500 and 1000 m depth. Figure 4.4 shows a preliminary programme of the two-

dimensional seismic lines to acquire new geological data. The survey consists of about 90
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Figure 4.4: Image of the Venice Lagoon showing the possible location of the four sites
where to implement the pilot project (Le Vignole, S. Giuliano, Fusina and Cascina Giare)
along with the seismic profiles planned to improve the present knowledge of the geology
and litho-stratigraphy of the lagoon subsurface.
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km-long marine acquisitions and 10 km-long land acquisitions. The seismic survey will be

calibrated using the Venezia 1-CNR sequence and a number of lines outside the lagoon

crossing the exploratory boreholes Chioggia Mare 1 and Assunta 1 (Figure 4.4).

In areas of particular interest, e.g. in the expected pilot experimental site, the two-

dimensional seismic survey should be integrated with in situ geophysical measurements

such as well logs, cross-well seismic, laboratory experiments on water and soil samples

cored from ad hoc exploratory boreholes.

The outcome of the new seismic investigations will be supplemented with the seismic

data acquired by ENI-E&P off-shore in the Adriatic Sea facing the lagoon over the 1990s

and on-shore, in the lagoon surroundings, over the 1950s-1980s. The data integration will

allow for accurately mapping the depth and thickness of the sandy formations potentially

suited for seawater injection and the clayey caprock sealing the aquifer.

4.2.4 Prediction of uplift

The experiment has been simulated numerically using the 3D non-linear FE models of

subsurface water flow and land uplift developed by Comerlati et al. [2004]. Non-linearity

is accounted for by aquifer elastic storage and rock compressibility both of which vary with

the in situ effective intergranular stress, hence the pore water overpressure. The lagoon

subsurface is known to be normally pressurized and consolidated, at least down to 1000

m depth [Teatini et al., 2000]. The volume of the porous medium has been discretized

into linear tetrahedral elements forming a cylinder with a 10-km radius bounded on top

by the ground surface and on bottom by a 5 km-deep fixed basement. Because of the

limited time interval of the simulation, boundary conditions of zero overpressure and

displacement are prescribed everywhere, except at the land surface where a traction-free

plane is assumed. A horizontally layered litho-stratigraphy for the injected formation

and overlying caprock based on the Tronchetto VE-1 borehole [Gatto & Mozzi, 1971]

and the geological reconstruction of Comerlati et al. [2004] is used (Figure 4.5), while

the upper fresh water aquifer-aquitard system is vertically similar to the one underlying

Venice [Gambolati et al., 1974].

To provide an order of magnitude prediction of the expected 3-year time and space

distribution of uplift, the parameters of the baseline case as discussed by Comerlati et al.

[2004] have been implemented into the pilot project model, in particular the hydraulic

conductivity and the uniaxial vertical rock compressibility are reported in Table 4.1 and

Figure 4.6, respectively. Based on actual field measurements from markers installed in



4.2 THE PILOT PROJECT OF VENICE UPLIFT 87

Figure 4.5: Representative litho-stratigraphy of the brackish aquifer unit subdivided into
6 injected subunits and overlying layers as reconstructed below Venice by Comerlati et al.
[2003, 2004] (left) and horizontally layered litho-stratigraphy used by Castelletto et al.
[2008] (right).
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Symbol Quantity Value Unit
KA1 Hydraulic conductivity of unit A1 2.7·10−6 m s−1

KA2 Hydraulic conductivity of unit A2 2.7·10−6 m s−1

KA3 Hydraulic conductivity of unit A3 1.5·10−6 m s−1

KA4 Hydraulic conductivity of unit A4 2.7·10−6 m s−1

KA5 Hydraulic conductivity of unit A5 2.7·10−6 m s−1

KA6 Hydraulic conductivity of unit A6 2.7·10−6 m s−1

Kclay Hydraulic conductivity of clay 10−10 m s−1

Table 4.1: Summary of the hydraulic conductivity property used by Comerlati et al. [2003,
2004] in the baseline case and by Castelletto et al. [2008].

deep Northern Adriatic boreholes, compressibility in expansion was assumed to be 3.5

times less than its value in compression [Ferronato et al., 2003a; Comerlati et al., 2004].

A constant rate Q equal to 12·10−3 m3/s of saltwater was continuously injected into

each well and partitioned into the six subunits displayed in Figure 4.5 on the basis of

the respective hydraulic transmissivity. The results of the simulation were superposed on

each of the four candidate sites. Figures 4.7a and 4.7b show the pore water overpressure

and the land uplift, respectively, for the Fusina site predicted at the completion of the

experiment, i.e. three years after starting the injection. The largest overpressure and

uplift are obtained at the centre of the ideal triangle equating 0.67 MPa and 7.3 cm,

respectively. Both the predicted pore overpressure and uplift exhibit a regular distribution

in space. Because of the relatively short pilot project duration and the small injected

seawater volume, the overpressure does not migrate vertically and remains practically

confined within the injected units. Behaviour in time during and after the experimentation

is provided in Figure 4.8, including the water pressure rise and decline in one of the

piezometers outside the triangle. The injected formation expansion vs. time below the

triangle centre is given in Figure 4.8. The maximum expansion has the same order as

the largest uplift and should be easily detected and measured quite accurately with the

aid of the radioactive marker technique. The largest gradient of the vertical ground

displacement is predicted at 2·10−5, i.e. far below the admissible bounds recommended

for civil structures [Skempton and McDonald, 1956; Holtz, 1991]. Note that the most

severe indications are related to the maximum distortion acceptable for masonry buildings

with more than one floor. Based on the presently available knowledge of the subsurface

properties, the small strains developed on the ground surface are expected to cause no

adverse effects during the experiment. However, should the ground motion be such to
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Figure 4.6: Uniaxial vertical compressibility cM vs. effective stress σz and depth z used
in the FE model of Venice subsurface by Comerlati et al. [2003, 2004] and by Castelletto
et al. [2008].

Figure 4.7: (a) Pore water overpressure (bar) averaged over the injected aquifer thickness,
and (b) land uplift (cm) at the completion of the pilot project (Fusina site).
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Figure 4.8: Time behavior of pore water overpressure (bar) averaged over the injected
aquifer thickness, and land uplift and injected formation expansion (cm) at the center of
the ideal injection triangle. The average pore water overpressure in one external piezome-
ter is also shown.



4.3 CONSOLIDATION EXAMPLES 91

Clay Silt Sand
Kxx = Kyy [m/s] 10−7 10−6 10−4

Kzz/Kxx 1 1 0.1
φ 0.3 0.3 0.3
βf [MPa−1] 4.32 × 10−4 4.32 × 10−4 4.32 × 10−4

E [MPa] 2.13 2.13 4.50
ν 0.3 0.3 0.3
b 1.0 1.0 1.0

Table 4.2: Hydro-geological properties of the shallow sediments in the Upper Adriatic
basin used in the consolidation examples.

induce a potential risk of earth fissure generation, the real-time deformation monitoring

network would help keep such a hazard under a safe control.

4.3 Consolidation examples

The 3-D Mixed FE model has been experimented with in two realistic applications ad-

dressing the consolidation of a shallow formation in the geological basin underlying the

Venice lagoon, Italy. A cylindrical stratified porous volume made of a sequence of alternat-

ing sandy, silty and clayey layers down to 50 m depth is simulated. The hydro-geological

properties are summarized in Table 4.2 and are representative of a shallow sedimentary

sequence of the upper Adriatic [Teatini et al., 2006; Gambolati et al., 1974, 1991]. The

axial symmetry of the model geometry allows for the discretization of one fourth only of

the overall porous volume (Figure 4.9) with zero flux and horizontal displacement pre-

scribed on the inner boundaries. The following additional boundary conditions apply:

the outer boundary is fixed and drained, the bottom is fixed and impervious, the top is

traction-free and drained. As shown in Figure 4.9, a vertically regularly refined grid is

used totaling nn = 13, 356 nodes, ne = 70, 080 elements and nf = 143, 368 faces with an

overall model size equal to 253,516.

4.3.1 Example 1: consolidation of a trial embankment

A uniform surface load distributed over a circular area centered on the domain top with

a 10-m radius is applied. The load is set equal to 8 kN/m2 and is representative of an

artificial embankment similar to that built at the inlets of the Venice lagoon during the

MOSE construction. The load is assumed to increase linearly from 0 to 8 kN/m2 within 3

days and then to remain constant. As the first layer consists of low permeable sediments,
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Figure 4.9: Axonometric view of the FE grid used in the consolidation examples.

the pore pressure is expected to initially rise at the load application as a consequence

of the almost undrained deformation of the clay. The overpressure gradually dissipates

in time, with the dissipation rate depending on sediment thickness and permeability.

This is physically related to the zero volume change rate prescribed at the initial time

for the porous medium, which represents the main source of instability in the numerical

pore pressure solution. Moreover, the induced overpressure is generally pretty small, so

reproducing it numerically may be a difficult task.

The overpressure rise and dissipation in time as simulated by the Mixed FE coupled

model are shown in Figure 4.10. Despite the small overpressure, no oscillations in the

numerical solution are observed. Note the pressure rise simulated in the deepest clay layer

as well. As the pore water flows out of the top draining surface the soil consolidates and

the ground surface subsides. Figure 4.11 shows the vertical land settlement vs. time in a

radial cross-section. After 20 days the overpressure has dissipated almost completely and

the displacement approaches the steady state.

4.3.2 Example 2: groundwater withdrawal and the Noordber-

gum effect

This example allows for testing the ability of the numerical model to simulate one of the

most known physical processes accounted for by coupling between fluid flow and soil stress,

that is the pressure rise occurring in a low permeable layer confining a pumped formation

[Verruijt, 1969]. The phenomenon is called Noordbergum effect by the name of the village
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Figure 4.10: Example 1: pore pressure variation vs. time due to the application of a
surface load.
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Figure 4.11: Example 1: vertical land displacement vs. time.

in The Netherlands where it was first observed. Because of the small overpressure involved,

especially when pumping occurs at a shallow depth, the Noordbergum effect turns out to

be quite difficult to simulate numerically in a stable way.

A constant withdrawal rate of 8 l/s is prescribed from the shallowest sandy layer (Fig-

ure 4.9) through a vertical well located at the centre of the simulated cylindrical porous

volume. The pore pressure in the pumped formation achieves a maximum drawdown of

0.15 MPa 20 days after the beginning of pumping. Figure 4.12 shows the drawdown dis-

tribution, while Figure 4.13 provides the related land settlement vs. time along a radial

cross-section. To reveal the Noordbergum effect Figure 4.14 provides the numerical pore

pressure solution as obtained on a 3-m deep horizontal plane, i.e. in the middle of the up-

per clay layer. As theoretically expected, the pore pressure increases at the initial stage of

pumping with a very small value (about 1 kPa, i.e. more than 100 times smaller than the

largest drawdown), then quickly dissipates as the consolidation proceeds. The numerical

solution appears to be stable with no oscillations and a good degree of symmetry.
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Figure 4.12: Example 2: pore pressure variation 20 days after the start of pumping.
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Figure 4.13: Example 2: vertical land displacement vs. time.
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Figure 4.14: Example 2: pore pressure variation vs. time on a horizontal plane located in
the middle of the upper clay layer.
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Figure 4.15: Sketch of the integration domain used in the non-isothermal injection simu-
lation. Seawater is injected in a deep formation (ciano) confined by clayey units.

4.4 Non-isothermal seawater injection

The thermal effects involved in the pilot project of Venice uplift are investigated by sim-

ulating the deformation of a porous volume subject to a pore pressure change induced by

deep seawater injection into a brackish aquifer through a single vertical well. The numer-

ical simulations make use of a realistic geological setting representative of the Northern

Adriatic basin. The conceptual model consists of a pumped aquifer overlain and underlain

by clayey confining beds (Figure 4.15). Because of its axial-symmetry, the problem can

be reduced by studying s quarter of the injected porous medium only. The integration

domain is discretized by linear tetrahedral elements forming with the well, drawn in red

in Figure 4.16, located along a vertical side. The discretized volume covers an area of

10×10 km confined on top by the ground surface and a 10-km deep rigid basement on

bottom. The three-dimensional mesh is made of 143,055 nodes and 810,000 tetrahedra.

Close to the injection well the average elemental size is equal to 10 m. The boundary

conditions are specified far enough from the depleted reservoir in order to avoid any ap-

preciable influence on the results of interest. The ground surface is a traction-free plane
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Figure 4.16: Axonometric view of the tetrahedral mesh used to discretize the integration
domain.

with zero displacements prescribed on the bottom and outer boundaries. Along the in-

ner boundaries no horizontal displacements are allowed for. The basement and the inner

boundaries are impermeable to fluid flow and adiabatic, while the ground surface and the

outer boundaries are fixed for both pore pressure and temperature. The injected aquifer

has a constant thickness of 80 m and is ideally located between 710 and 790 m below the

sea level (Figure 4.15). The initial pressure is hydrostatic, while the initial temperature

distribution is given by:

θin = θsurf + gtz (4.1)

where gt is the thermal gradient in [◦C/m] and θsurf the surface temperature. The average

value of gt is usually equal to 0.029 ◦C/m. However, experimental measurements and

geological considerations [Mattavelli and Novelli, 1990] suggest using a smaller value, i.e.

0.02 ◦C/m, for the Northern Adriatic basin. In equation (4.1) the surface temperature

is conventionally assumed to be 15 ◦C [Chierici, 1989], so the injected aquifer is at an

initial temperature of 30 ◦C. Above and below the aquifer confining beds the medium

consists of of a sequence of alternating sandy and clayey units. The horizontal hydraulic

conductivity of the injected formation and of the confinig units is set to 1×10−6 m/s and

10−10 m/s, respectively, i.e. the same as unit A3 and clay in Table 4.1. The vertical

hydraulic conductivity is one tenth of the horizontal value. As to the thermal properties,

heat conductivity and volumetric capacity are 0.6 W m−1 ◦C−1 and 4.18×106 J m−3 ◦C−1,
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respectively, for water and 5.0 W m−1 ◦C−1 and 2.5 × 106 J m−3 ◦C−1 for the formation.

The relationship used in Comerlati et al. [2004] is selected as the constitutive law for the

vertical rock compressibility cM (Figure 4.6), with cM in unloading/reloading conditions

3.5 times less than that in virgin loading conditions. Other significant parameters are

the water compressibility βf = 9.0×10−4 MPa−1 and thermal expansion coefficients β′
f =

4.5×10−4 ◦C−1 [Wagner & Kretzschmar, 2008], respectively, and the formation thermal

expansion coefficient β′
s = 35×10−6 ◦C−1 [Fjaer et al., 2008].

A set of simulations is performed by injecting seawater over a 60-m long inlet (Fig-

ure 4.15) with a constant overpressure of 1 MPa. All scenarios span a 10-year period,

consisting of 3-year injection operations and a 7-year post-injection stage. Three test cases

are addressed depending on the temperature θinj of the injected seawater (Figure 4.17),

namely:

• Test case 1: θinj is constant and equal to 15 ◦C;

• Test case 2: θinj is constant and equal to 45 ◦C;

• Test case 3: θinj varies between a minimum of 7.5 ◦C and a maximum of 22.5 ◦C

according to season [e.g., ARPA-FVG, 2007].

It is worth noting that the constant temperature in Test case 1 can be interpreted as the

average of the periodic function describing the temperature profile in Test case 3.

The results of the simulation show that the impact of temperature on the pore-pressure

change ∆p distribution is quite small with respect to the isothermal case. Figure 4.18

provides the distribution of the ∆p difference between Test case 1 and the isothermal

case, and Test case 2 and the isothermal case, respectively, at the end of the injection

period in a horizontal cross-section at z = -750. Only a slight delay/acceleration of the

pressure field propagation can be observed when a colder/warmer injetion temperature

occurs, with the largest difference located close to the well on the order of 0.6×10−1 MPa.

No appreciable difference on ∆p is found between Test case 1 and Test case 3. The ∆p

distributions can thus be practically considered the same in all cases and equal to the

isothermal ∆p shown in Figures 4.19 and 4.20 at different time steps during injection and

post-injection, respectively. It is worth noting that, following cessation of pumping, the

overpressure is quickly dissipated, decreasesing by more than 90% in one year.

The elemental temperature change ∆θ distribution at several time steps is shown in

Figure 4.21 in a radial section through the well for Test case 1. Similar results hold

true for Test cases 2 and 3 in terms of affected volume, with a +15 ◦C and -22.5 ◦C
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Figure 4.17: Injection temperature profile vs. time in the three simulated test cases.

peak ∆θ value, respectively. In all cases, the region subject to a change in temperature

keeps expanding for 3 years mainly into the aquifer up to a distance of about 125 m from

the well, with some diffusive heat transfer into the sealing layers, too. Once injection

is stopped, the convective contribution diminishes because of tha small velocity values

, with the heat transfer essentially governed by the thermal diffusivity of the saturated

formation. After 10 years the process has not reached a steady state, meaning that the

aquifer has a small thermal diffusivity and a longer time is required to attain a new

equilibrium condition. The ground surface responses in terms of vertical displacements

∆z in Test cases 1 and 2, respectively, are compared to the isothermal model and shown in

Figures 4.22 and 4.23, along a radial section through the well, and in Figure 4.24, in which

the behaviour in time at the well location is plotted. The largest ∆z predicted at end

of the injection in isothermal conditions is equal to 1.97×10−2 m. The largest deviation

due to the thermal deformation is 0.15×10−2 m, i.e. about 8%, negative in Test case 1

and positive in Test case 2, respectively. At the end of the injection, the uplift is quickly

recovered with no significant residual deformation related to the still non-equilibrated

temperature distribution, namely less than 1×10−3 m (Figure 4.24). Consistent with the

similitude in the pressure and temperature fields, Test case 3 exhibits almost the same
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Figure 4.18: Contour plot of the ∆p difference [MPa] between Test case 1 (left) and Test
case 2 (right) and the isothermal analysis, respectively, at the end of the injection (year
3) in a cross section at z = -750 m.
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Figure 4.19: Isothermal case: contour plot of the pore-pressure change [MPa] along a
horizontal cross-section at z = -750 m after 1-year (a), 2-year (b), and 3-year injection,
respectively.
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Figure 4.20: Isothermal case: contour plot of the pore-pressure change [MPa] along a
horizontal cross-section at z = -750 m after 1 month (a), 6 months (b), and 1 year (c)
injection is stopped, respectively.
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Figure 4.21: Test case 1: elemental temperature change distribution in a radial section
through the well at several time steps.
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Figure 4.22: Land vertical displacement along a radial section through the well at three
time steps during injection. The continuous profile is used for the isothermal case, while
filled and empty circles identify Test cases 1 and 2, respectively.
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Figure 4.23: The same as Figure 4.22 during post-injection.
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Figure 4.24: Land vertical displacement at the injection point vs time. As in Figure 4.22
the continuous profile is used for the isothermal case, while filled and empty circles identify
Test cases 1 and 2, respectively.

displacements as Test case 1 (Figure 4.25), with only small differences related to the

oscillatory temperature behaviour.

It may be concluded that in a quite realistic configuration the influence of the tem-

perature on the pressure field appears to be very small relative to the isothermal case.

By distinction, some influence is exerted by the thermal gradient on the predicted uplift,

which can vary by up to about 8%. Anyway, for the temperature variations assumed

herein the overpressure is still the predominant cause of deformation.

4.5 Conclusions

The numerical models presented in Chapter 2 and 3 have been experimented with in some

engineering applications, using both realistic geomechanical, hydrological and geothermal

data and vertical stratigraphic profiles representative of shallow and deep geological for-

mations underneath the Venice lagoon, Italy.

Two consolidation examples performed with the aid of the 3-D Mixed FE model have

confirmed the ability of the method in limiting the oscillations of the pore pressure solu-

tion in presence of significant hydraulic conductivity contrasts also in practical complex
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Figure 4.25: Comparison between the vertical displacement profile of Test cases 1 (in
black) and 3 (in blue) during injection.

coupled processes. Afterwards, based on the GMMs formulation, a set of simulations

addressing the seawater injection into a deep aquifer has excluded an important role of

temperature gradient effects in the pilot project of anthropogenic uplift of Venice, recently

advanced by Castelletto et al. [2008].

The following conclusive remarks can be made:

• in the trial embankment construction test, the small overpressure rise and dissipa-

tion in time are efficiently simulated, with no instability in the numerical solution

observed;

• the example concerning the groundwater withdrawl from a shallow confined aquifer

provides an accurate simulation of the increase in pore pressure in the sealing layers

at the early stage of pumping, i.e. the Noordbergum effect, involved by the time-

dependent aquifer volumetric contraction, with the overpressure eventually canceled

by pore-pressure diffusion;

• in the injection experiments, the numerical results have shown that, relatively to the

isothermal case, the temperature difference between formation water and seawater

taken from the Adriatic sea negligibly impacts the pressure field, with a little influ-

ence on the predicted uplift which can vary by up to about 8%, for the temperature

variations assumed;
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• the results obtained by the proposed numerical models encourage further develop-

ments such as the coupling between the Mixed FE and GMMs models in order to

address the coupled thermo-poro-elasticity equations through a sequential solution

method, and the extension to inelastic deformations.
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