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Riassunto

In questa tesi viene suggerita una possibile applicazione dei metodi del calcolo vari-
azionale e della meccanica statistica alla costruzione di un modello della percezione
in grado di collegare aspetti comportamentali e fenomeni di natura neurelettrica.

Alla base del calcolo delle variazioni vi è infatti l’idea che l’evoluzione nel tempo
di un sistema possa essere derivata come conseguenza di un principio di ottimiz-
zazione applicato a qualche grandezza caratteristica. In particolare, dato un sis-
tema che sta evolvendo da uno stato A a uno stato B, i metodi della meccanica
analitica consentono di derivarne l’energia e il comportameno grazie a una funzione
chiamata Lagrangiana. Infatti, tra tutti i possibili cammini che il sistema potrebbe
seguire nel corso della sua evoluzione, la traiettoria reale sarà quella in grado di
rendere stazionario un integrale della funzione Lagrangiana noto come Azione.

Pertanto, in questa tesi le variazioni nel tempo della sensazione saranno con-
siderate alla stregua di cammini deducibili da un principio di ottimizzazione di
cui verranno esplorate le implicazioni. Inoltre, l’energia necessaria a sostenere il
processo stesso della sensazione verrà considerata come una misura della risposta
neurelettrica del sistema. In particolare, verrà esplorata una possibile relazione tra
la sensazione e la risposta delle unità primarie afferenti.

Dopo una breve introduzione ai metodi matematici alla base della tesi, nel
secondo capitolo verrà abbozzato un modello concettuale che consenta di applicare
i metodi del calcolo variazionale alla percezione e alla psicofisica. L’idea alla base
è dunque quella di considerare il cammino seguito dalla sensazione come se fosse la
soluzione di un’equazione del moto derivabile nel contesto della meccanica analitica
da un’equazione di Eulero-Lagrange. In aggiunta, l’energia posseduta dal moto
stesso, sarà usata per caratterizzare il comportamento neurelettrico del sistema.

Nel terzo capitolo tale modello verrà quindi formalizzato e applicato nel caso
di stimoli costanti nel tempo. In particolare, per caratterizzare la traiettoria se-
guita dalla legge psicofisica nel tempo verrà utilizzato il fenomeno dell’adattamento
psicofisico: una riduzione della sensazione provocata da una stimolazione costante
può infatti essere considerata alla stregua di un moto da uno stato A a uno stato
B. Verrà quindi derivata una funzione Lagrangiana, simile alla Lagrangiana di par-
ticella libera ma con una massa variabile, che risulterà al contempo una condizione
sufficiente (ma non necessaria) per ricavare le fondamentali leggi della psicofisica,
tenendo in considerazione anche eventuali caratteristiche di plasticità e la misura-
bilità delle variabile protetiche su scale a intervalli. Altre caratteristiche fondamen-
tali del modello verranno poi investigate e collegate ad aspetti neurofisiologici: per
esempio, la riduzione dell’energia durante il fenomeno dell’adattamento suggerisce
un parallelismo con il comportamento del firing rate nelle unità primarie afferenti.
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Nel quarto capitolo, quindi, i fenomeni neurelettrici verranno caratterizzati
estendendo al dominio temporale la relazione di Naka-Rushton. In particolare,
l’andamento del firing rate verrà caratterizzato tenendo conto dell’adattamento
puro della frequenza di scarica e dell’adattamento del range percettivo. Il mod-
ello risultante, considerando l’energia come direttamente proporzionale al firing
rate, consentirà di investigare il legame tra la risposta delle unità primarie affer-
enti e il corrispondente comportamento psicofisico: la sensazione risulta descritta
da una relazione in grado di mutare da una legge di potenza a una logaritmica
al variare del trapporto tra segnale e rumore; le variazioni della sensazione sono
legate all’intensità del firing rate; l’adattamento psicofisico segue la dilatazione
dell’intervallo tra gli spikes, e il sitema adatta minimizzando il numero totale dei
potenziali d’azione.

Un test dei risultati preliminari verrà poi eseguito con dati presi dalla letteratura
sul senso del tatto e mostra un buon accordo tra valori predetti e valori sperimentali,
rinforzando l’idea che, nel senso del tatto, l’ipotesi di una connessione diretta tra
la risposta delle unità primarie afferenti e la sensazione sia meno limitativa che
in altri sensi. In particolare, la legge psicofisica e quella neurelettrica del modello
rivelano gli stessi esponenti.

Nel quinto capitolo alcuni concetti di meccanica statistica verranno introdotti
per inglobare nel modello due importanti caratteristiche: la risoluzione limitata
dei sistemi psicofisici e la natura discreta di molte modalità sensoriali. In partico-
lare, viene postulato che il sistema percettivo non sia in grado di discriminare tra
sensazioni i cui correlati neurelettrici possiedano energie molto vicine tra loro. Par-
tendo quindi da questa assunzione e sfruttando la forma dell’energia costruita nel
capitolo quarto verranno ricavate alcune importanti leggi della psicofisica: la legge
di Bloch e Charpentier (o di Weiss e Lapicque nel caso di stimolazione di tessuti),
la legge di Ekman e un’espressione generale per la misura dei jnd, la relazione di
Poulton e Teghtsoonian e infine una struttura della frazione di Weber in grado di
descrivere sia il trend descrescente che caratterizza gli stimoli a bassa intensità, che
la porzione crescente caratteristica dell’estremo superiore del range percettivo.

Quest’ultima relazione, in particolare, sarà testata su dati presi dalla letteratura
e riguardanti la discriminazione della concentrazione di zucchero in una soluzione,
la luminosità, il volume (sonoro), e la stimolazione della pelle, che rivelano un buon
accordo ma evidenziano anche acune difficoltà. In particolare, il minimo previsto
dall’equazione anticipa sistematicamente quello dei dati, influenzando cos̀ı la parte
terminale della curva che tende a salire con una pendenza inferiore a quella reale.

Infine, nel sesto capitolo, il modello siluppato per stimoli costanti verrà es-
teso a stimoli variabili nel tempo e verrà fornita un’interpretazione preliminare dei
risultati evidenziando alcune difficoltà e alcuni pregi del modello. Altri risultati o
approfondimenti (come la derivazione delle legge di Pieron per i tempi di reazioni
semplici a partire dall’entropia del modello) si trovano nelle Appendici.



Abstract

This thesis suggests an application of the methods of variational calculus and sta-
tistical mechanics to a possible model of perception capable of encompassing both
behavioral and neurelectrical phenomena.

The central idea of variational calculus is that the behavior of a system can be
described as a consequence of an optimality request on some fundamental quantity.
In particular, given a system evolving from a state A to a state B, the methods of
analytical mechanics allow one to derive its energy and behavior by the knowledge
of its Lagrangian function. Indeed, among all the possible patterns that the system
could follow during its evolution, the natural one is the one which makes stationary
an integral of the Lagrangian function called Action.

Thus, in this thesis, changes in sensation will be conceived as patterns in time,
and the optimality constraint that they must satisfy will be investigated. More-
over, the energy needed to sustain sensation will be hypotesized to be related to
the neurelectric response. In particular, it will be mainly investigated a possible
relation between sensation and the response of primary afferent units.

After a brief introduction on the mathematical methods needed in the treatise,
in the second chapter will be sketched a possible theoretical framework that allows
one to apply the concepts of variational calculus to perception and psychophysics.
The general idea is to deal with the pattern followed in time by sensation as if
it were a motion that can be derived in the context of analytical mechanics as a
solution to an Euler-Lagrange equation. In addition, the energy possessed by the
motion is posited to be, from a physiological perspective, related to the neurelectric
behavior of the system.

In the third chapter the model is then formalized and applied to a steady
stimulus case. In particular, the psychophysical adaptation phenomenon will be
chosen to describe the pattern followed by sensation in time. A depletion of the
sensation elicited by a steady stimulus can indeed be seen as a motion from a
state A to a state B. A possible Lagrangian function will be derived: a free par-
ticle Lagrangian, with a time-varying mass, that appears to be a sufficient (but
not necessary) condition to derive the fundamental psychophysical laws while ac-
counting for time-varying features and the measurability of prothetic continua on
interval scales. Other fundamental features will then be investigated and tenta-
tively connected with neurophysiological aspects. In particular, the depletion of
energy during adaptation suggests a possible connection with neurophysiological
aspects like the response of the firing rate in primary afferent units.

Hence, in the fourth chapter, a time-featured variation of the Naka-Rushton
relation is introduced to characterize neurelectric phenomena. In particular, the
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pattern followed by the firing rate of primary afferent units is extended to time
by the addition of pure spike frequency adaptation and dynamic range adaptation.
The resulting model, when the energy is related to the firing rate, allows one to
investigate a simplified model that links the response of primary afferent units to
the corresponding psychophysical behavior. In particular, sensation appears to be
described by an equation capable of switching from a power law to a logarithmic law
depending on the signal-to-noise ratio. In addition, changes in sensation are driven
by the firing rate, adaptation follows the increasing of the inter-spike-interval, and
the system adapts minimizing the total number of action potentials.

A test of the preliminary results of the model reveals a good agreement with
data taken from literature on the sense of touch, for which the approximation of a
straight connection between sensation and the response of primary afferent units
holds better than in the other senses. In particular, the psychophysical law and
the neurelectrical law of the model appear to have the same exponents.

In the fifth chapter some concepts of statistical mechanics are introduced to
account for both the limited resolving power of the psychophysical systems and the
discreteness of many sensory modalities. In particular, it will be posited that the
perceiving system is uncapable of discriminating between different sensations whose
neurelectric energies are very close to each other. Moving from this assumption and
using the shape of the energy modeled in chapter four some laws of psychophysics
will be derived: the Bloch-Charpentier law (or equivalently the Weiss-Lapicque law
in the case of irritable tissues), the Ekman law and a general shape for the jnd, the
Poulton-Teghtsoonian relation and finally a shape of the Weber fraction capable of
accounting for both the decreasing trend at low intensities and the rising portion
close to the end of the perceiving range.

The latter relation, in particular, will be tested on data taken from literature
on the discrimination of sucrose concentration, heaviness, brightness, loudness and
skin indentation, revealing a discrete agreement but also some shortcomings. In
particular, its minimum appears to anticipate the actual one sistematically, so that
the rising portion increases more slowly than the actual data.

Finally, in the sixth chapter, the framework developed for steady stimuli will be
extended to time-varying stimuli and a preliminary interpretation of the results will
be given with a particular focus on some shortcomings and some strength points
of the model. Other results or deepenings on the model (like the derivation of
Pieron’s law for simple reaction time moving from the model’s entropy) are given
in the Appendixes.
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Introduction

The act of perceiving can be seen as a complex transduction of energy, ranging
from a stimulus to its subjective representation, through receptors, nerve fibers,
neural pathways and specialized regions of the brain. Nevertheless, although our
knowledge of these processes is constantly growing, still an utter understanding of
the topic is far from being achieved, leaving many questions unanswered.

A topic like perception, indeed, involves many levels of analysis, beginning from
the low-level molecular, chemical and physiological features of sensory transduction
and neuron’s transmission, moving to the more entangled problem of network cod-
ing, ending up to the binding problem of how conscious perception and cognitive
functions arise, or emerge, from all these interactions.

As a consequence, overlaps between several fields of science are common creat-
ing convergence among neuroscience, physiology and neurophysiology, chemistry,
cognitive and computer science, biomedical engineering, psychology and mathe-
matical psychology, physics, philosophy of mind, and so on.

Most of all, more than a century of researches has produced a massive plethora
of results, empirical rules, theoretical issues and methodological approaches, often
applicable only to specific domains, that have neither been encompassed in a unique
framework nor derived by simpler general principles. Perhaps unification is an
impossible goal to achieve, and surely perplexed by the complex, dissipative, and
self-organizing nature of biological systems, yet it has always been an underpinning
idea of scientific reasoning.

To understand the nature of the polytheism in brain and mind sciences, it is
sufficient to highlight that, in the only domain of psychophysics, meant as the field
of psychology that deals with the quantitative measure of sensation, the use of
different assumptions, scaling techniques or sensory modalities leads to different
results (for a review see Baird and Noma 1978, or Gescheider 1997).

A typical example is the psychophysical law, initially proposed in a logarithmic
form by Fechner (1860), and subsequently challenged by Stevens (1956, 1957) that
preferred a more flexible power law. Its nature has always been so debated that
still there is no agreement as to its uniqueness and existence: while on one side
classical methods, like constant stimuli, lead to a logarithmic law, on the other
side magnitude estimation or cross-modality matching methods lead to a power
law. Not to mention the differences in the psychophysical exponent that can be
achieved by simply switching method (Baird and Noma 1978; Gescheider 1997).

Furthermore, standing on a more theoretical ground, Fechner’s integration has
been shown to hold only for certain shapes of Weber’s law (Luce and Edwards 1958)
and it has also been recognized that several possible and different laws of sensation
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can be derived according to the scaling nature of the involved dependent and
independent variables (Luce 1959). Moreover, in addition to the Weber-Fechner
law and its more challenging rival, the Stevens power law, almost an infinite variety
of different neurelectrical laws have been shown to lead to a behavioral response
that can be described by a power law (McKay 1963).

This situation is further entangled if we consider that, from an historical per-
spective (and with a broad approximation), psychophysical researches could be
divided into two main streams, originated respectively from the inner and the
outer psychophysics (Murray 1993).

Indeed, while on one side the study of the relation between stimulus and re-
sponse (outer psychophysics) has led to the important results of Stevens’ psy-
chophysical law and scaling theory (Stevens 1956, 1957) and to the development of
important foundational frameworks like measurement theory (Krantz et al. 1971;
Falmagne 1985) or multidimensional Fechnerian scaling (Dhzafarov and Colonius
2001, 2005); on the other side, the study of the relation between neurelectric phe-
nomena and sensation (inner psychophysics) has led to a vast field of research
ranging from signal detection theory (Green and Swets 1966; Egan 1975) to the
application of Shannon’s information theory to sensory systems (Norwich 1993;
Norwich and Wong 1997; Luce 2003). In particular, researches in this latter field
have led in the last century to an increase in the efforts of linking behavioral phe-
nomena and neurophysiological correlates (for a review in visual neuroscience see
Spillmann 2009) mostly due to the development of the functional brain-imaging
techniques (for a review see Raichle 1998).

Moreover, the merging of psychophysical and neurophysiological studies has of-
ten aimed at investigating the relation between the response of primary afferent
units and the sensation (Mountcastle et al. 1963; Stevens 1970). However, although
this relation has been widely investigated, the linearity posited by sensory trans-
duction theory (Stevens 1970), and by the neuron doctrine (Barlow 1972), is still
argued: while several experiments seems to confirm it (Mountcastle et al. 1963;
Borg et al. 1967; Johnson et al. 2002) several evidences of the contrary have also
been found (see for a general review McKenna 1985; Krueger 1989).

It is straightforward to see that encompassing all these empirical evidences and
theoretical results in a unique framework is a very tangled problem.

Nevertheless, although the mathematical methods in which are rooted Fechner’s
original ideas have been relevant in several works (Luce and Edwards 1958; Luce
1959; Krantz et al. 1971; Iverson 2006a,b), to our knowledge there has been no
efforts to introduce the methods of variational calculus with the purpose of linking
psychophysical and neurophysiological aspects.

Variational methods and minimum theories indeed plays a fundamental and
unifying role in physics, chemistry, engineering, economics and biology (Schoe-
maker 1991). Besides, the paradigm of dynamical system theory, and related fields
like analytical and statistical mechanics, have been recently applied to motor con-
trol (for a review see Engelbrecht 2001) and to cognitive sciences and psychology
(see for instance Port and van Gelder 1995), where they have been both appre-
ciated and criticized (Bechtel 1998). Furthermore, most of the neural networks
approaches currently employed are based on statistical estimation, optimization,
control theory, or energy (Borisyuk and Hoppensteadt 2004; Friston et al. 2006).
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This thesis, then, suggests a possible application of the methods of variational
calculus to neurophysiological and psychophysical topics, particularly focusing on
Lagrangian and Hamiltonian mechanics as a main topic of dynamical system theory,
in order to outline an abstract model of perception capable of encompassing both
behavioral and neurelectrical phenomena, starting from general principles and from
the optimization of physical quantities, to describe sensation and the basic levels
of perception with a focus on the energy of the process.

In analytical mechanics indeed, the energy of a system is described by means of
the Hamiltonian function that is defined as the Legendre transformation of another
function, the Lagrangian. The latter is a function summarizing the whole dynamics
of a system and that allows one to derive the motion equations of a system evolving
from a state A to a state B by the so-called principle of least action: the natural
pattern is the one which makes stationary an integral of the Lagrangian function
called Action.

The central idea of variational calculus is that the evolution of a system can be
described as a consequence of an optimality request on some fundamental quantity.
Thus, if sensation and perception were conceived as patterns in time, we could
wonder whether they satisfy some optimality constraint. Moreover, in that case,
would the energy of the system be supplied by metabolism? In other words, given a
pattern describing the stimulus-response relation of an organism, is its Hamiltonian
a measure of the energy supplied by metabolism in order to perceive?

The concept itself of an energy regulation underpinning perceptive phenomena
can be traced back to the pioneer works of Helmholtz, Fechner and Herbart (see
Murray 1993; Murray and Bandomir 2001), and like a common thread, it runs from
the inner psychophysics’ hypothesis of a relation between the subjective sensation
and its neuronal substrate (Fechner 1860) to the neuronal noise in signal detec-
tion theory (Green and Swets 1966; Egan 1975) up to the later efforts to derive
the laws of psychophysics moving from assumptions on neurelectric phenomena
(McKay 1963; Laming 1986; Norwich 1987, 1993). Moreover, while on one side
the development of brain-imaging techniques allows one to perform correlational
research with very high detail, on the other side is becoming possible to make an
appraisal of the brain’s energy consumption (Attwell and Laughlin 2001) and hence
to measure the metabolic equivalent of perception (Schölvink et al. 2008).

For instance, recent studies seem to confirm that transient changes in metabolic
brain’s activity are related to variation in neuronal spiking frequency and in neuro-
transmitter flux: changes in oxygen consumption in the rat’s brain are proportional
both to the flux of excitatory amino acid glutamate, as measured by MRS, and to
the change in the firing rate of a neuronal ensemble, as determined from extracel-
lular recording (Hyder et al. 2002; Raichle and Gusnard 2002; Smith et al. 2002).
Furthermore, electrophysiological studies on primates have shown that, in several
senses, conscious perception is related to small local consumption of energy due to
variations in the mean cortical neuron firing rate (Schölvink et al. 2008).

In this thesis we shall focus on a possible relation between an abstract model of
sensation and the response of primary afferent units, in particular their firing rate.
Nevertheless, the general idea could be generalized (in between certain boundaries)
to the activity of populations of neurons in higher levels of cognition.

Finally, although the present framework in its general formulation would at-
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tempt to deal with sensory systems that exhibit generalized time-varying features,
to simplify the model we shall consider mainly the steady stimulus case. Moreover,
since adaptive phenomena are often problematic, due to the existence of conflict-
ing definitions of adaptation, habituation, fatigue, and stimulus failure (McBurney
and Balaban 2009), adaptation will be meant as psychophysical adaptation when
applied to a behavioral context, or as spike frequency adaptation and dynamic
range adaptation when applied to a nerve fiber.

Contents of the chapters:

1. In the first chapter will be introduced the general mathematical methods
needed in the treatise, with a particular attention to some fundamental
concepts of Dynamical system theory (DST) and of Analytical mechanics
(namely, the Lagrangian and the Hamiltonian functions that describe a sys-
tem’s behavior and its evolution in time). Some fundamental notions of
variational calculus will be finally introduced. A lately useful example of
a time-varying mass system and a description of the Naka-Rushton model
(Naka and Rushton 1966) will be also given.

2. In the second chapter will be sketched a possible theoretical framework that
allows one to apply the concepts of DST and variational calculus to the top-
ics of sensation and perception, considering the psychophysical law and its
evolution in time as the solution of an Euler-Lagrange equation. Two funda-
mental hypotheses will be given: firt, the sensation and the subject’s response
are linearly dependent, constraining the system to very basic levels of per-
ception; second, the energy that describes the sensation pattern is related to
neurophysiological features.

3. In the third chapter the model will be formalized by applying it to a steady
stimulus case. The main idea of treating sensation as a pattern in time is
applied considering psychophysical adaptation as the only time varying phe-
nomenon: a depletion of the sensation elicited by a steady stimulus can indeed
be seen as a motion from a state A to a state B. The behavior of the psy-
chophysical law during adaptation will be then considered as the solution of
an Euler-Lagrange equation. A possible Lagrangian function will be derived:
a free particle Lagrangian, with a time-varying mass, that appears to be a
sufficient condition to derive the fundamental psychophysical laws while ac-
counting for time-varying features and the measurability of prothetic continua
on an interval scale. Other fundamental features will then be investigated
and tentatively connected with neurophysiological aspects. In particular, the
depletion of energy during adaptation suggests a possible connections with
neurophysiological aspects. Furthermore, perception appears to be related
to a cumulative process of energy and the adaptation phenomenon behaves
like a negative feedback system on the energy previously accumulated. Some
implications of hypothesizing a relation between the energy of the model and
the metabolic consumption needed to sustain sensation will be analyzed.

4. In the fourth chapter a time-featured variation of the Naka-Rushton relation
(Naka and Rushton 1966) will be introduced to characterize neurelectrical
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phenomena. The resulting model, when the Hamiltonian is related to the
spike frequency activity in a nerve fiber, allows one to investigate a simplified
model of perception that links neurelectrical features of primary afferent units
and the corresponding psychophysical behavior. The results will be then
compared to data taken from literature. Moreover, some fundamental but
abstract quantities defined in chapter three will be explained in terms of
physiological phenomena. In particular, the adaptation trend appears to be
due to a minimization of the number of action potential released by the nerve.
Furthermore, neureletrical and behavioral trends appear to follow different
laws but with the same exponent.

5. In the fifth chapter other results of the model will be given: in particular, the
fundamental laws of classical psychophysics, the Lapicque’s law, the Bloch’s
law, the Poulton-Teghtsoonian’s relation between psychophysical exponent
and range of sensation, and a behavior of the Weber fraction that accounts
for several discrepancies found in literature. Results are compared to data
taken from literature.

6. In the sixth chapter the framework developed for steady stimuli will be ex-
tended to time-varying stimuli and a preliminary interpretation of the results
is given with a particular focus on some shortcomings of the model. Several
aspects that deserve further consideration will be also highlighted.

7. In the Appendixes have been collected several demonstrations and deepen-
ings of the model. In particular: an application of variational calculus to
psychophysical laws in the space of stimuli; a biophysical model of nerve
fiber that appears to be connected with the Lagrangian defined in the model;
a link between the model’s energy and Fisher’s informational entropy; and the
derivation of Pieron’s law for simple reaction times moving from the model’s
entropy.
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Chapter 1

Mathematical tools

This chapter contains a brief survey on Analytical Mechanics with a particular focus

on Lagrangian and Hamiltonian systems. Some example is also given. In the last part

the Naka-Rushton model is introduced. Since in the thesis the focus will be mainly on

uni-dimensional system, the introduction is given for a single variable.

1.1 Motion equations

Let q ≡ q(t) be a trajectory in a uni-dimensional space, with independent variable
t ∈ R. A classical example is the position of a point on a line describing a particle
or the center of mass of an object moving in time, like in picture (1.1).
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Figure 1.1: Point moving along the y-axes with trajectory q(t) = 3t2 + 2.

More in general, a dynamical approach can be extended to any system evolving
in time, like the current’s flow in a circuit, the behavior of biological and economical
systems, and so on. In other words, any quantity following a trajectory that can
be approximated with a continuous variable described by some motion equation.
Similarly, we could expect to describe with a motion equation the value of sensation
ψ at the instant t ∈ R, namely its position on the psychological continuum.

17
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Let us consider now the simple case of a point moving along the axis R. Once
defined a trajectory q(t), its velocity is given by its first derivative respect to time:

q̇(t) =
dq(t)

dt
≡ lim

∆t→0

q(t+ ∆t)− q(t)

∆t
(1.1)

that, graphically, corresponds to the inclination of the tangent to the trajectory.
For instance, the tangent line to any point of the trajectory in picture (1.1).

Since the position q and the velocity q̇ characterize completely the state of a
system that is evolving in time, the space of all the pairs (q, q̇) is defined as the
state space and is labeled as S. Every trajectory q(t) corresponds then to a unique
graph in the state space and viceversa.

But, suppose we do not know the actual trajectory q(t) followed by the sys-
tem, nonetheless we know some general features of the system. Can we use this
knowledge to characterize the behavior of a pattern without knowing its specific
shape? In other words, can we build some general function in the state space S,
dependent on q, q̇ and maybe t, by which we can derive the final trajectory q(t)?
This is exactly what analytical mechanics does by means of the Lagrangian and
Hamiltonian functions, that are tightly related to the concept of energy.

1.1.1 Kinetic energy

The dynamical part of a system is described by the kinetic energy T = T (q̇, t). A
quantity that, containing only the velocity q̇, characterizes the amount of motion
(or inertia) possessed by the system. For instance, in the most simple case is
defined as a quadratic form like:

T =
1

2
c q̇2

where usually c is just a proportionality constant, namely c ∈ R. For instance,
in the case of a particle in motion it becomes its mass m (or its density ρ if we are
working with some liquid system), that is:

T =
1

2
mq̇2 (1.2)

The more an object is massive, or the more is fast, the more kinetic energy it
possesses (and the more is difficult to stop it). Notice however that, in the most
general case, kinetic energy could also be a function of time, T (t), for instance:

T (q̇(t), t) =
1

2
m(t) q̇2 (1.3)

The previous equation can be imagined as describing a moving system that loses
or increases its mass, for instance a baloon losing air or a bucket losing water1.

1Actually the problem of a time-varying mass system is more complicated, the previous wants
to be just a naive example (see for instance Plastino and Muzzio 1992; Leubner and Krumm
1990; Flores et al. 2003)
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1.1.2 Potential energy

At the same time the system could be impinged by some external force, possessing
then a further contribute to energy due to the environment in which the motion
is set. This second term is usually described by the potential energy that depends
on the position in the trajectory, namely U = U(q). Typical examples are the
gravitational and electromagnetical fields in physics. Nevertheless, in a general
treatise it could be any effect or constraint acting upon the system and could be
dependent also on velocity, or time itself.

Suppose now we have a potential term U(q) affecting a motion that otherwise
would be related to the only kinetic part T (q̇). We need to consider both these
terms to describe the behavior of the system. For instance we could write the
following expressions:

L = T (q̇)− U(q) , H = T (q̇) + U(q)

where in the first one we have subtracted the contribute of the potential energy
to the kinetic one, while in the second one they have been summated. As we will
see these two functions are respectively called the Lagrangian and the Hamiltonian
of a system. It is straightforward to understand that, while the Lagrangian is a dif-
ference of energies, the Hamiltonian is a sum. In particular, then, the Hamiltonian
is a measure of the total energy possessed by a system.

A very typical example is an object of mass m attached to a spring with an
elastic constant k. In this case the potential energy of the system can be written
as U(q) = 1

2
kq2 and corresponds to the work done by the recalling force of the coil

acting on the mass. Since the spring acts on the mass perturbing its free motion
its potential energy must be added to the system. Hence:

L =
1

2
mq̇2 −

1

2
kq2 , H =

1

2
mq̇2 +

1

2
kq2

The most important result of analytical mechanics is that, starting from a
Lagrangian the trajectory q(t) can be derived by means of an equation.

1.1.3 Lagrangian and Euler-Lagrange’s equation

More in general, it can be shown that any trajectory q(t), given its kinetic and
potential energies, can be found as the result of an Euler-Lagrange’s equation:

d

dt

(

∂L

∂q̇

)

−
∂L

∂q
= 0 (1.4)

where the function L = L(q, q̇, t) is exactly the Lagrangian. It is however im-
portant to notice that a structure of the Lagrangian like L = T − U is generally
not needed. Lagrangian, indeed, can be any function like L(q, q̇, t). Natural la-

grangian systems are those that satisfy a decomposition in kinetic and potential
parts, instead generalyzed Lagrangian systems are those in which the dependence
of the function on the trajectory and the velocity can be any function.
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Generally, the Euler-Lagrange equation corresponds to a second order differen-
tial equation whose solution is the trajectory followed by the system. A derivation
of equation (1.4) will be given later in the context of variational calculus, since it
is very useful to understand the philosophy underlying the methodology.

The importance of the Lagrangian function is in the fact that, once that it is
known, the application of the Euler-Lagrange equation (1.4) gives as a result the
motion equation q(t). Furthermore, as we will see, the Lagrangian function L is
related to energy, given by the Hamiltonian function H, with a simple coordinate’s
transformation called the Legendre transformation.

A simple example of how the motion equation can be derived by the Euler-
Lagrange equation is given by an object moving with kinetic energy (1.2), without
any force acting on it, hence L = T , and we have:

d

dt

∂
(

1
2
mq̇2

)

∂q̇
=

d

dt
(mq̇) = 0 → q̈(t) = 0 → q(t) = q̇(0)t

That is, an object free from the influence of external forces moves of a uniform
motion with constant velocity.

Adding now a potential term corresponding to the presence of a spring, the
Euler-Lagrange equation gives:

q̈(t) =
k

m
q(t)→ q = Acos(

√

k

m
t)

that is generally known as the solution of the harmonic oscillator. Namely, an
object attached to a spring (without friction) oscillates.

1.1.4 Properties of invariance

Euler-Lagrange’s equation and Lagrangian functions possess interesting properties
of invariance.

1. Lagrange’s equations are shape-invariant to changes in the coordinate’s sys-
tem. Taking indeed a regular and inversible transformation (namely, a local
diffeomorphism) like (q, q̇)→ (q̃, ˙̃q), Lagrangian can be rewritten as:

L̃(q̃, ˙̃q, t) = L(q(q̃, t), q̇(q̃, ˙̃q, t), t)

and it can be shown that, while q(t) is the solution of equation (1.4), the new
trajectory q̃(t) is the solution of:

d

dt

(

∂L̃

∂ ˙̃q

)

−
∂L̃

∂q̃
= 0

Hence the shape of Euler-Lagrange’s equation is the same under coordinate’s
transformation.
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2. Different Lagrangian functions can have the same motion equation q(t) as
solution to their Euler-Lagrange’s equations. For instance, the addition of a
constant or of a multiplicative factor to L does not change the shape of the
solution. More in general, given a function F (q, t) and a real constant c 6= 0,
the two different Lagrangians L(q, q̇, t) and

L′(q, q̇, t) = cL(q, q̇, t) +
dF

dt
(q, q̇, t)

give the same motion equations. Namely, Lagrangians that differ from each
other only for a function that is a total derivative of time are equivalent. This
last property is also known as gauge’s invariance.

1.2 Hamiltonian

The Lagrangian approach to the dynamic of a system is a very powerful method-
ology since, once known the Lagrangian function L, it allows one to derive the
whole behavior of the system. Nonetheless, the predictive power of the framework
can be further increased by switching to the Hamiltonian formalism. Hamiltonian
function H is indeed what is usually considered the energy of the system.

Hamilton’s equations and the Hamiltonian function can be straightly derived
from Lagrangian once defined the variable conjugate momentum:

p(q, q̇, t) ≡
∂L

∂q̇
(1.5)

Indeed, the Hamiltonian function is defined as the Legendre transformation of
the Lagrangian function:

H(p, q, t) = [p(q, q̇, t) · q̇ − L(q, q̇, t)]q̇=q̇(p,q,t) (1.6)

with the condition that the Hessian matrix (in our case the second derivative
respect to the velocity) of L(q, q̇, t) has to be different from zero.

Hamilton’s equations instead, similarly to the Euler-Lagrange equation in the
Lagrangian formalism, allow to obtain the motion of the system:

q̇ =
∂H

∂p
, ṗ = −

∂H

∂q

whose solutions describe the trajectories followed by the variables q(t) and p(t).

For a natural lagrangian system, in which L = T − U , and the kinetic energy
has a shape like (1.2) it is straightforward to see that the Hamiltonian takes the
form H = T + U as we have previously seen. In the particular case of natural
lagrangian systems, then, the total energy is the sum of both the kinetic energy and
of the potential energy. It is also straightforward to see that, with the only kinetic
part defined by (1.2), namely in the absence of external influences on the system,
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Lagrangian and Hamiltonian are exactly the same L = T = H and Hamilton’s
equations become:

q̇ =
∂T

∂p
, ṗ = 0

the second one in particular states that the momentum p does not change during
the motion, hence is a conserved quantity. This is a result that will be useful later.

Hamiltonian then, to sum up, is the total energy of the system and its depen-
dence on time can be obtained as:

Ḣ(q, p, t) =
∂H

∂t
= −

∂L

∂t

If the Hamiltonian (and the Lagrangian) changes in time we have a dissipative
(or non-conservative) system, otherwise the system is conservative, since the value
H = E is a constant during all the motion q(t). In the particular case of a
conservative natural system, E = T + U , hence during the motion there’s an
exchange of energy between the kinetic and potential term but the sum is always
equal to E. Non-conservativity instead implies that the energy dissipates or is
exchanged with the environment as if the system were not close or isolated.

A very simple example of energy is the free particle case, in which p = mq̇ and
hence the Lagrangian gives the Hamiltonian:

H =
p2

2m

Since the Hamiltonian does not depend on time the value of the energy will be
the same during the whole motion.

In the case of a potential U(q) we will have instead:

H =
p2

2m
+ U(q)

For instance, let us consider an elastic force:

H =
1

2
mq̇2 +

1

2
kq2

In this case the energy is the sum of the kinetic energy, describing the amount
of motion of the mass m, and a potential term describing the effect of the recalling
force of the spring. When the mass slows down is because the force of the coil is
increasing, and viceversa, since the energy is conserved.

1.2.1 Some considerations on spaces

In the Lagrangian formalism the state space has been defined as the space S of
all the points (q, q̇). Instead using Hamiltonian formalism we can define the phase

space, namely the space Γ of all the points (q, p).
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These two sets of variables are both useful to give an insight into the system’s
nature and, most of all, are equivalent: the switch between the Lagrangian and the
Hamiltonian formalism can always be done if the momentum (1.5) is invertible.
Such a requirement is locally satisfied if the second derivative of the Lagrangian is
not zero, namely ∂2L

∂q̇2
6= 0. A good sufficient global condition instead is that L be

a convex function of q̇.
It is also worthy to notice that the Hamiltonian in the phase space is invariant

for regular and reversible transformations of the local coordinates system as like
Lagrangian is in the state space. Besides, in the phase space there exists also
a wide set of coordinate’s transformation, known as canonical transformations,
that mix up more deeply configurational coordinates and conjugate momenta. In
general then the Hamiltonian description of energy is considered a more powerful
instrument that the Lagrangian’s.

1.3 Noether’s Theorem

Energy E is one of the so-called integrals of motion that are related to the symme-
tries of a system and to conservation laws. For instance, as we have seen before, if
Hamiltonian and Lagrangian are time independent we have the energy conservation
law: hence energy is a consequence of the homogeneity of time.

This idea has been generalized by Emmy Noether in a very important theorem.
Noether’s Theorem states that, given a parameter α ∈ R, and a family of local

diffeomorphisms like:

q → ϕ(α, q) such that ϕ(0, q) = q

q̇ → ψ(α, q, q̇) =
∂ϕ

∂q
q̇

If for every choice of q, q̇, α we have:

L(ϕ(α, q), ψ(α, q, q̇), t) = L(q, q̇, t)

hence the quantity (with p defined in (1.5)):

C(q, q̇, t) =
∂ϕ

∂α
(0, q)p(q, q̇)

is an integral of motion for L, that is, C(q, q̇, t) is invariant during all the motion
of the system and keeps a constant value. Namely, the quantity C is conserved.

The general idea is the system possesses some symmetry (and hence the La-
grangian is invariant under its specific coordinate’s transformation) there is some
quantity that is conserved during the motion. Famous examples are the conserva-
tion of momentum p, that relies on the invariance of Lagrangian for translations
in space (homogeneity of space), and the conservation of angular momentum that
relies on rotational invariance (isotropy of space).
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1.4 Variational Formulation

A natural framework for the Euler-Lagrange equation is the Variational calculus,
a very important field of mathematics that deals with optimization problems. The
solutions of this class of problems (in this case the motion of the system) can in-
deed be seen as a consequence of an optimality constraint over some mathematical
structure called functional. In other words, given all the possible patterns fol-
lowed by a system the actual one is the one which makes stationary some quantity
mathematically built in the form of a functional.

Formally, a functional is a map over a vector space that returns elements of a
scalar field. Broadly speaking, a functional F is a law or application that, applied
to a function f gives a real number, i.e., the resulting F [f ] belongs to R.

For instance, a simple duality principle states that, given a function:

f : x→ f(x)

that associates the value f(x) to the variable x, it is straightforward to define
a functional as:

F : f → f(x)

that instead associates to every function f the value f(x) that the function
attains at a specific point x.

Since we are interested in optimizing a functional we must know how it varies by
changing the function f . Yet, while it is intuitive that the derivative of a function
f respect to its independent variable x is given by ḟ(x) ≡ df(x)

dx
, as defined by (1.1),

what happens when we look for the derivative of F respect to a function f?
The notion of functional variation is similar to the definition of a directional

derivative for a function: given a variation δf of the function f related to some
parameter2, for instance fα = f + αδf , the Gateaux differentiability is:

δF [f, δf ] ≡
d

dα
F [f + αδf ]

∣

∣

∣

∣

α=0

(1.7)

Let us consider now a function f(x) defined over the dominion T = [a, b] for
a, b ∈ R, and considering a functional with a shape like:

F [f ] =

∫ b

a

L(f(x), ḟ(x), x)dx (1.8)

where L is some regular function of the function f , its derivative ḟ , and the in-
dependent variable time. In Analytical mechanics, where the independent variable
x is the time t, and the function f is the position q, the function L is exactly the
Lagrangian, and the functional F is called the Action.

2This results can be also generalized to any family of functions fα(x) that are not necessarily
linearly related to α.
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We can now calculate its variation (see for instance Landau and Lifshitz 1960):

δF [f ] =

(

∂L

∂ḟ
δf

∣

∣

∣

∣

b

a

−

∫ b

a

(

d

dx

∂L

∂ḟ
−
∂L

∂f

)

δf dx (1.9)

In particular, if we consider the case in which the extremes of the pattern are
fixed, that is δf(a) = δf(b) = 0, we obtain that the functional F is stationary,
δF = 0, only if the Euler-Lagrange equation is satisfied:

d

dx

(

∂L

∂ḟ

)

−
∂L

∂f
= 0 (1.10)

the particular solution f of the previous equation, often called a geodetic, is
also the solution of the optimization problem modeled using the functional F [ψ].

1.5 Variable mass

An example that will be particularly useful later is a particle with a variable mass.
Several physical systems possess variable masses like any vehicle burning oil, or a
bucket with a hole, or a rocket in space burning its fuel.

Let us imagine, for instance, an object of mass m that depends on the temper-
ature T of the room, that is m(T ). Its kinetic energy is:

H =
p2

2m(T )
, L =

1

2
m(T )q̇2

with momentum equal to p = m(T )q̇. Keeping the room at a constant temper-
ature the object behaves like a free particle of mass m following a uniform motion.
Hence, given an initial thrust (initial energy and momentum), its velocity is a
constant depending only on the temperature in the room v = p/m(T ).

But what happens if the temperature in the room changes in time?
Let us imagine that the mass increases if the temperature increases. Hence

there is a function describing the temperature, T (t), that implies a dependence of
the mass on time m(T (t)). Hence, the kinetic energy is (let us write m(t) instead
of m(T (t)) for sake of simplicity):

H =
p2

2m(t)
, L =

1

2
m(t)q̇2

It follows from Euler-Lagrange’s equation that the momentum p = m(t)q̇, given
by the initial thrust, is conserved. Hence, if the object’s mass increases its velocity
decreases and the motion is not uniform. The Euler-Lagrange equation impliess:

q̈ = −
ṁ

m(t)
q̇ → q(t) =

∫

p

m(t)
dt

The pattern followed depends on the changes in the room’s temperature (notice
that if the temperature is kept constant we have the free particle’s uniform motion).
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Moreover, in contrast to momentum, the energy is not conserved: kinetic energy
indeed decreases if the object’s mass increases. This behavior can be approximately
explained as follows: an initial thrust is given to the object that starts moving with
momentum p and energy E(0) = p2

2m(0)
. Then, since there are no external forces

acting on it, its momentum is conserved during the whole motion. However, as the
temperature increases in the room, the object becomes gradually massive. But the
momentum is constant so the object has to decelerate. Hence the kinetic energy
decreases until the body stops being too massive.

The Hamiltonian is then time dependent and the system is dissipative. This
non-conservativity can be seen as a sort of external influence on the system. Notice
however that such an influence is not due to some external force since there are no
potential terms like U(q). It should be considered more a feature of the system,
that changes adjusting itself to the environmental condition, without being affected
by some external force.

Finally, it is important to stress that this example of dynamic mass is very naive
and formally debatable in several points (see for instance Plastino and Muzzio 1992;
Leubner and Krumm 1990; Flores et al. 2003). Yet it is very useful to give a general
understanding of the dissipativity of the system with variable mass since the same
Lagrangian will be later used to describe perception.

1.6 The Naka-Rushton model

A widespread behavior in neurelectrical phenomena is a monotonic increase, as
the stimulus intensity raises, until the system reaches a saturation, like in picture
(1.2). A similar behavior ranges indeed from the kinetics of many enzymes to
the responses of a quite number of sensory transduction processes and neurons
impinged by a steady stimulus.
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Figure 1.2: Naka Rushton model for n = 3, fMax = 1, σ = 1.
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Among the sigmoidal or logistic models often used to shape this firing rate’s
behavior, one of the most important and widely applied is the Michaelis-Menten
model or Naka-Rushton relation (Naka and Rushton 1966), also known as rectan-
gular hyperbolic function or log tanh relation.

Generally his shape is written as:

f = fMax
In

σn + In
(1.11)

In the limit of I → ∞, when the stimulus intensity reaches high values, the
firing rate saturates to the value fMax. The intensity σ instead is the one at which
the firing rate takes half of its maximum value, f(σ) = fMax/2, moreover it can be
considered a measure of the dynamic range of the nerve fiber: the bigger the value
of σ, the broader tha range in which the firing rate does not saturate.

As a case of study, in the following chapters, the Naka-Rushton relation will be
used to describe the electrical activity of a nerve fiber, thus leading to a relation
between the psychophysical law and the neurelectrical behavior. It is worth of
notice that, while the framework developed in the next chapters is completely
general, both the choices of a nerve fiber and of a precise shape of the energy as
we will do are just particular cases. Different choices will indeed lead to different
results and behavior of the system.
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Chapter 2

On a general framework

In this chapter will be introduced the ideas underlying a possible analytical framework.

In the first section it will be suggested how dynamical system theory could be used to

describe sensation and perception, allowing one to consider the temporal features of a

system. Then, in the second section, a general structure will be developed in order to

apply variational calculus. In particular it will be detailed a possible interpretation of

the formalism that leads to consider the Hamiltonian as a measure of the neurelectrical

activity underpinning perception.

2.1 General features

Despite the discrete nature of the world, perception appears to be a rather con-
tinuous phenomenon. From a physical and chemical point of view our senses deal
with a discrete reality that are able to grasp with very high resolution: smell and
taste works at the same level of molecules and atoms; vision receptors can detect
single quanta of lights; the sense of hearing, although it does not work at quantal
level, still at the eardrum level is capable of appreciating fluctuations of an atom’s
width (Torre et al. 1995; Gescheider 1997). Yet our perception of the world is, at
a certain degree, smooth, continuous, to such an extent that thought itself seems
to be rather continuous.

Besides, when we perceive, hear, even think, from a certain point of view we
use functions. A truly general definition of function does not exist, for it depends
on the branch of mathematics in which we are: sometimes a function is defined by
a graph, sometimes by the expressed dependence between two quantities, generally
is considered a rule that associates some element of a set to one or more elements
of another set. Nevertheless, the intuitive concept of function is very simple: a rule
that describes how something changes.

Functions are indeed abstractions of processes and, at a certain degree, the
process of perception could be schematized as a composition of functions: intensity
is firstly transformed at the receptor potential level, then it’s coded in the firing rate
of the primary afferent units, and so on, through neural pathways and specialized
regions of the brain, until is reached the final step. Response itself is often seen in
this perspective: the heaviness is a function of the weight of an object one has just
grabbed.

29
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In between all these steps there must be a sort of transition between discreteness
and continuousness, since the final resolution is too coarse-grained to appreciate
differences of the order of some atom. In other words, the Weber fraction is not
capable of appreciating an infinitesimally small difference in the intensity of the
stimulus. This suggests, on one side, that a general framework should encompass
the discrete nature of the world (not to mention the discreteness inherent to the
firing rate coding); on the other side, it suggests the idea of working with continuous
functions, at least to a first degree of approximation, to shape both sensation and
the final response of the organism. While the idea of a discretization will be
introduced later in the treatise (see chapters four and five), the rest of this chapter
and the next one will mainly deal with the introduction of a continuous framework.

2.1.1 A dynamical approach

The main idea underlying the introduction of a dynamical approach is to enclose
the temporal features of a system to describe its evolution (Port and van Gelder
1995). For instance, the inner representation of a time-changing event could be at
the origin of some observed systematic tendencies of the observers in misjudging the
actual events. A typical example of such a topic is the representational momentum,
namely the observers tendency to extend an event beyond its actual ending point
(see for a review Thornton and Hubbard 2002).

Similar phenomena are indeed common in naive physics or in experiments on
causal perception (see for instance McKay 1963; Twardy and Bingham 2002), where
subjects exhibit several wrong beliefs on the motion of a point, of a pendulum, of
the trajectory followed by objects falling down (see for instance Bozzi 1990). More
in general, similar effects can be identified also out of the vision domain, like in the
illusory duration of ramped and damped sounds (Schlauch et al. 2001; Grassi and
Darwin 2006).

These phenomena could be described, at least from a qualitative point of view,
by a psychophysical law that exhibits perceptual acceleration or movements that
are not present in the actual stimuli. Representational momentum itself might be
related to something similar: a law of motion different from the actual one could
imply a misjudging of velocity and acceleration that yield to a misplacement of
the ending point. Obviously, this is a strong simplification of a very complex phe-
nomenon that does not involve only the evaluation of acceleration, velocity and
direction of motion, but also of the object’s weight, of the friction, of any infor-
mation, expectation or belief about the trajectory, of several aspects and features
of the physical surroundings and of the length of the retention interval between
the event and the probe (Thornton and Hubbard 2002). Nevertheless, since we are
interested in an abstract and highly reductive model of the evolution of perception
in time, a dynamical approach seems to be the natural starting point.

As an example: be I(t) = tIB + (1 − t)IA, for t ∈ [0, 1], a linearly varying
loudness stimulus that spans all the values between the intensities IA and IB, at a
constant velocity İ = IB − IA. If IB > IA we have a ramped stimulus, viceversa if
IB < IA we have a damped stimulus.

In a very naive model, considering that perception of loudness is described by
the Fechner’s law, ψ = k log I, showing a logarithmic compression, we could take
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for the time dependence simply ψ(t) = k log I(t), thus:

ψ̇(t) =
k(IB − IA)

IBt+ (1− t)IA

Now, what happens if we assume that the previous equation is in someway
related to the perceived rate of change in the stimulus?

It is simple to show1 that the logarithmic compression implies for a ramping
stimulus a decrease in velocity as if there was a deceleration, whereas for a damping
stimulus leads to an increase in velocity as if there was an acceleration. As a
consequence the ramping stimulus is perceived as decelerating while the damping
stimulus is perceived as accelerating.

An inner equivalent of inertia, like in the representational momentum, might
lead to state that a ramping stimulus is expected to vanish before than the corre-
sponding damping stimulus. Indeed, it has been empirically found (see for instance
Schlauch et al. 2001) that ramped tones (gradual attack and abrupt decay) are per-
ceived as shorter than damped tones (abrupt attack and gradual decay).

Obviously, the previous example does not claim to be a complete description of
the actual phenomenon. On the contrary, it is a quite naive argument. Notwith-
standing this, it is useful to introduce dynamical system as a framework for de-
scribing perceptual events allowing to derive their behavior from abstract and fun-
damental principles. From now on we will then describe psychophysical law ψ and
the subject’s response R using continuous functions.

Hence, in this thesis, the focus will be mainly on intensity-type stimuli, like the
number of decibels of a sound, the concentration of an odorant in the air or of a
solute in a solution, the intensity of light, the weight of an object, the indentation
of skin, and so on. These kind of stimuli are considered to arise corresponding
prothetic psychological continua, like auditory loudness, taste sensation, visual
brightness and lightness, numerousness, duration, heaviness, apparent length, and
so on. These are, in a broad sense, psychological scales corresponding to quantita-
tive aspects of sensation. On the other hand, metathetic attributes are defined as
those that account for more qualitative features of stimuli, like visual position and
contour, auditory pitch, inclination, proportion, and so forth. The idea underpin-
ning prothetic continua is an addition of excitation to excitation moving along the
relative continuum, for metathetic continua is instead a substitution of excitation
for excitation (Stevens and Galanter 1957; Stevens 1957). Since we are interested
in trying to shape a continuous analytical treatise, prothetic continua appear to
be more suitable candidates; hence the main focus will be more on a quantitative
metric of sensation. Yet it must be kept in mind that metathetic continua are often
tightly connected with continuous physical quantities.

1For a ramped stimulus (IA = 60dB, IB = 80dB) we have ψ̇ > 0 since perception is increasing,
in particular: ψ̇(0) = k/3 and ψ̇(1) = k/4, hence is decelerating. For a damping stimulus
(IA = 80dB, IB = 60dB) instead we have that ψ̇ < 0 since perception is decreasing, but it takes
the values ψ̇(0) = −k/4 and ψ̇(1) = −k/3, hence is accelerating.
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2.1.2 Diagrams of perception

A widely used simplification of a general parallelism between a communication
system and a cognitive system follows the schema (Baird and Noma 1978):

Source Stimuli
↓ ↓

Input Transduction Sensory Receptor
↓ ↓

Transmission medium Perceptual channel
↓ ↓

Receiver Cognitive system
↓ ↓

Output Transduction Efferent (motor)
↓ ↓

Output Response

In particular, a slight variation of this pattern for a single perceptual chan-
nel is the so-called psychophysical chain that moves from a stimulus, through its
neurelectrical representation, sensation and eventually response (Murray 1993):

Stimulus I
↓

Neurelectrical response E
↓

Sensation ψ
↓

Response R

(2.1)

It must be stressed, however, that a similar psychophysical chain implies a
strong assumption of independence between different stimuli and perceiving pro-
cesses. Such an assumption is not completely true, since at the levels of amygdala
and orbitofrontal cortex most of the pathways of sensation converge in the so-called
associative memory systems (Rolls and Deco 2010). Hence, considering that in the
first steps after the receptors’s transduction, all the senses possess unimodal sys-
tems and can be considered like independent channels of perception2, a possible
diagram describing the psychophysical chain should be:

I1 → E1 → ψ1 ց

. . . → . . . → . . . → R(..., ψk, ψ̇k, . . . , t)
In → En → ψn ր

(2.2)

where different stimuli I1, I2, . . . , In are detected by separated processes, trans-
formed into neurelectrical responses E1, E2, . . . , En, corresponding to sensations

2For instance, visual stimuli are processed by the V1, V2, V4 areas of the brain and then by the
inferior temporal cortex; taste stimuli follow the nucleus of the solitary tract, then the thalamus
VPMpc nucleus and then frontal operculum and insula and primary taste cortex; olfactory stimuli
instead run through the olfactory bulb and the olfactory (pyriform) cortex; touch instead reaches
the thalamus VPL and then the primary somatosensory cortex (Rolls and Deco 2010).
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ψ1, ψ2, . . . , ψn, and hence elaborated and processed to give a perceptual response
R that, in general, could be any function of the psychophysical laws ψk and their
derivatives. Notice that there are no hypothesis on the existence or on the shape
of the psychophysical law, for different systems might obey to different laws.

It is interesting to stress, in the previous diagram, that any further process
performed on sensation ψ could be seen as a composition of functions. For instance,
most of the psychophysical measurements, like in magnitude estimation methods,
are carried by associating a rank, a category, or a number to the sensation (Baird
and Noma 1978; Gescheider 1997). Indeed, not only the use of function of functions
and functionals in psychophysics and mathematical psychology is not a novelty (see
for instance Krantz et al. 1971), but also similar diagrams are widespread used
in experimental psychology and economics, like in integration information theory
(Anderson 1981) or multi-attribute evaluation models (Oral and Kettani 1989) and
Sensory Science, like in classical models of sensory input, integration by CNS and
motor output (Baird and Noma 1978).

Nevertheless, for what concern this thesis we will focus on the behavior of a
single abstract channel as depicted by the simplified diagram (2.1). In particular,
in order to further simplify it we will rely on an hypothesis of linearity between the
sensation and the subject’s response.

2.1.3 Linearity assumption

A typical assumption that is commonly made in psychophysics (see for instance
Anderson 1981) is that the subject’s final response is proportional to the sensation.
This is often called the linearity assumption:

R = aψ + b for a, b ∈ R (2.3)

For instance, a particularly widespread methodology used in multi-attribute
evaluation models, like those of conjoint analysis (Luce and Tuckey 1964) or of
functional measurement (Anderson 1981), consists in a decomposition of the sub-
ject’s response into a sum of attributes that are often interpreted as subjective
measure of the importance of the attribute itself. As an example, information in-
tegration theory states that there are three fundamental cognitive laws: additive,
multiplicative and averaging. These three laws can be considered subclasses of
diagrams (2.1) and (2.2). Taking indeed:

R : (ψ1, ψ2)→ R
+ , R = aψ1 + bψ2 + cψ1ψ2 + d

in the general case of a, b, c, d 6= 0 we have a simple regression model like those
used in conjoint analysis. When a = b = 0 the model is multiplicative. When c = 0
the model is additive. If c = 0 and a+ b = 1 we have instead an averaging model.
The term d is often used to account for initial conditions (Anderson 1981).

Following this linearity hypothesis the psychophysical chain (2.1) can be re-
duced to the study of the relation between:
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Stimulus I
↓

Neurelectrical response E
↓

Sensation ψ

(2.4)

In particular in the following chapters we will focus on a possible relation be-
tween these quantities based on some optimality constraint.

2.2 On a general model

Following the previous considerations we have reduced the psychophysical chain to
the elements of stimulus, neurelectrical response and sensation. To shape a relation
between these three we will use variational calculus. A detailed formalization of
the theory will be given in chapter three.

2.2.1 Hypothesis on Lagrangian and perception

Many problems in several field of science are based on optimization of functionals
(Schoemaker 1991). For instance, all the physical systems follow as a natural rule
the law that makes stationary a functional like (1.8).

If we take as a stimulus some physical phenomenon, like some object moving,
rotating, crashing, oscillating, we can write down a Lagrangian that summarizes
the motion. The resulting equations, once that boundary or starting conditions
are set, can be used to describe the evolution of the system.

Why something similar couldn’t happen in our mind? Could it be possible
that we possess, or create as an heuristic, some Lagrangians (or Hamiltonians) for
what we perceive and sense? Why couldn’t we consider sensation or perception as
patterns that makes stationary some functional?

Anybody indeed has expectations and beliefs about physical phenomena, beliefs
that could be considered deterministic and mechanistic from several point of views.
Moreover, as we have highlighted before, naive physics studies have shown several
stereotypical wrong beliefs and tendencies in misjudging the actual motion (see for
instance Bozzi 1990; Schlauch et al. 2001; Grassi and Darwin 2006; McKay 1963;
Twardy and Bingham 2002).

There could be a Lagrangian description for our expectations and beliefs. Per-
haps, something built with experience, or reasoning, or intuition. Such a La-
grangian might describe a correct, or misjudged, motion and obviously could de-
pend on different quantities than those contained in the actual physical Lagrangian.

In particular, during the first milliseconds of perception, where the answer of
the system is highly mechanistic and still unaffected by higher cognitive functions,
one could expect that sensory systems obey to some physiologically codified and
deterministic pattern. Under this perspective it sounds sensible that sensation (and
maybe perception) could emerge from variational laws.

As an example, of all the possible patterns that the phenomenon of psychophys-
ical adaptation could follow, why a particular perceptual channel choose often the
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same one? Why this particular pattern couldn’t be the one minimizing a specific
functional F [ψ]? Following the ideas of variational calculus then, the motion of
psychophysical law during time would be the solution of an Euler-Lagrange equa-
tion associated to a functional F [ψ].

More in general, since any kind of pattern can be obtained by a Lagrangian, in-
dependently on its nature, one could expect that any element of the psychophysical
chain (2.4) could be derived by a Lagrangian:

I ← LI
↓
E ← LE
↓
ψ ← Lψ

(2.5)

Notice that we have chosen not to write any relation between the Lagrangians,
because, in the most general case, they could be totally independent and detached.
Besides, at the present moment, Lagrangians are just abstract descriptions of the
pattern followed by any quantity. In particular, the previous diagram implies for
the Legendre transformation (1.6) a similar result for the Hamiltonians:

I ← HI

↓
E ← HE

↓
ψ ← Hψ

(2.6)

Nevertheless, of all the quantities listed in diagrams (2.5) and (2.6), since we
are interested in analyzing perception, our focus will be just on the Lagrangian
and the Hamiltonian that summarize the behavior of sensation, namely:

Lψ : ψ → L(ψ, ψ̇, t) and Hψ : ψ → H(ψ,
∂L

∂ψ̇
, t) (2.7)

that are related to the functional:

F : ψ → F [ψ] =

∫ tR

t0

L(ψ, ψ̇, t) dt (2.8)

defined between the onset t0 and the offset tR of the stimulus.

Recalling now that a functional is a function that takes other functions as its
arguments and gives as a result a scalar number, the functional F will return,
for a given L (and hence H), a numerical value that changes by changing the
pattern ψ. Different patterns followed by sensation will then be labeled by this
functional, the natural one being the one that makes stationary the functional.
Such a stationariety could be for instance the result of a compromise between
survival aspects and energetical issues: the lowest necessary value to perceive and
react, within a sensible time, yet without wasting too much metabolic energy.
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In particular, since the Hamiltonian describes the energy of the process, and at
the same time is the energy needed to maintain it, we could wonder if it should also
describe (or at least be related) to the energy that must be supplied by metabolism.
In that case, since sensation is based on the neurelectric activity, one could expect
the Hamiltonian to be related to the neurelectric response E.

This fundamental hypothesis can be schematized as follows:

I
↓
E ≈ Hψ

↓ ւ
ψ

(2.9)

and will be further discussed in chapter three and used in chapter four to
connect sensation to the response of primary afferent units. Briefly, we expect the
neurelectric response to be a function of the stimulus intensity and to be equivalent
to the Hamiltonian describing the pattern followed by sensation.

2.2.2 Possible approaches

From a general perspective, we could consider two different approaches to diagram
(2.9). The first one is exemplified in a Lagrangian like:

L(ψ, ψ̇, t) where ψ̇ =
∂ψ

∂I
İ +

∂ψ

∂t
(2.10)

or in the case of a steady stimulus:

L(ψ, ψ̇, t) where ψ̇ =
∂ψ

∂t
(2.11)

A different approach can be obtained by neglecting the time dependence:

L(ψ, ψ′, I) where ψ′ =
dψ

dI
(2.12)

Notice that, in this second approach, the psychophysical law is like a field on
the space of the stimuli since the independent variable becomes I. The formalism
is the same, it is only needed to make the substitution I → t. Yet the results are
expected to be different. Nonetheless, in the following chapters will be considered
only the first case, but some details on the second case are given in Appendix A.

2.2.3 Psychophysical law and Noether’s theorem

Independently on the chosen approach, if one considers a transformation of the
psychophysical law, then, using the Noether’s theorem outlined in section (1.3), if
the Lagrangian remains the same there’s a quantity C that is an integral of motion,
namely, a quantity that is invariant during the motion of the psychophysical law
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in time. The viceversa is also interesting: if we have some properties or symme-
tries that we need to be possessed by the system we can take the correspondent
transformations of the psychophysical law and see which features are needed in the
Lagrangian to satisfy them.

For instance, a fundamental property of prothetic continua is that they are mea-
sured on an interval scale. Hence their correspondent admissible transformation is
an affine transformation (Luce 1959; Krantz et al. 1971). Given then:

ϕ(ψ, α) = ψ + α with α ∈ R

Noether’s theorem assures that (see next chapter for a detailed proof) for the
system to be invariant for translations, the Lagrangian must be independent on ψ.
That is, the Lagrangian is symmetric under the changes in the value of sensation,
hence it has general shape:

L ≡ L(ψ̇, t) (2.13)

and the conjugate momentum:

Π ≡
∂L

∂ψ̇
(2.14)

is conserved quantity during the motion. It is also interesting to notice that this
property agrees with the idea, detailed in section (2.1.1), that prothetic continua
are conceived as an addition of excitation to excitation, like a sort of additivity of
sensation.

2.3 Summary

In this chapter a possible general framework has been introduced suggesting that
dynamical system theory and variational calculus could be applied to perception
and psychophysics. The general idea is to deal with the pattern followed in time
by sensation as if it were a motion equation that can be derived in the context of
analytical mechanics as a solution to an Euler-Lagrange equation. In that case,
indeed, among all the possible patterns that sensation could follow the chosen and
natural one would be the one making stationary a functional associated to the La-
grangian of the system. In addition, the Hamiltonian of the system can be derived
as a Legendre’s transform of the Lagrangian. Hamiltonian is the function related
to the energy possessed by the motion, hence, from a physiological perspective,
it could be the energy supplied by metabolism in order to sustain the process of
sensation. The fundamental hypothesis then, is that the Hamiltonian function is
related to the neurelectrical behavior of the system.
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Chapter 3

A variational approach to

sensation

In this chapter will be formally built the model sketched in the previous chapter. Once

defined a shape of the Lagrangian that allows to account for both classical psychophys-

ical laws and time-varying features, the properties of the system will be analyzed and

detailed in the case of the psychophysical adaptation phenomenon. As a result, psycho-

logical prothetic continua appear to be measured on an interval scale, energy decreases

during adaptation resembling the behavior of the firing rate in nerve fiber, and the

sensation results to be an accumulation of energy, similarly to the way jnds are usually

accumulated in psychophysics.

3.1 Preliminary Hypotheses

In order to simplify as much as possible the calculations and the general interpre-
tation of the equations, some assumptions are needed:

1. The stimulus I will be a steady one and hence constant in time.

2. The only time-varying feature of perception will be the psychophysical adap-
tation phenomenon and it will be considered to deplete to extinction.

3. The time dominion of the adaptation will be the interval T ≡ [t0,∞] between
the onset t0 of the stimulus and the total adaptation at t→∞.

3.2 Definition of psychophysical law

Let I ∈ R
+ be a stimulus intensity. From a general point of view, given a time

dominion T between its onset and its offset, a stimulus can be defined as a function
I : T → R

+, while a psychophysical law can be defined as a function of both
stimulus intensity and time:

ψ ≡ ψ(I(t), t) (3.1)

39
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Notice that a direct dependency on time is needed to account for time-varying
features like the psychophysical adaptation phenomenon: given a steady stimulus,
I(t) ≡ I ∀ t ∈ T , only a psychophysical function that directly depends on time
allows for further variation of perception ψ. Indeed, considering a time-varying
intensity stimulus we can immediately define the first derivative respect to time of
the psychophysical law as:

ψ̇(I(t), t) ≡
∂ψ

∂I
İ +

∂ψ

∂t
(3.2)

The first partial derivative describes the actual velocity at which perception
is changing when the stimulus change, while the second partial derivative is a
measure of the rate at which perception is changing in time (notice that in general
the previous equation is not necessarily a measure of the perceived velocity). It is
immediate to notice that if we are considering a steady stimulus situation, namely
I(t) ≡ I ∈ R

+ for all t ∈ T so that İ(t) = 0, equation (3.2) then becomes:

ψ̇(I, t) =
∂ψ

∂t
(3.3)

hence any variation of the psychophysical law does not depend on the stimulus
but only on its time-varying features, like adaptive or plastic phenomena.

Psychophysical law can then be represented, in the general case, as a trajectory
in time ψ : T → R

+, while in the steady stimulus case ψ(I, t) can be seen as
a family of patterns described by the parameter I ∈ R

+ and with independent
variable t ∈ T . Besides, as we have seen in the first chapter, it corresponds to a
graph in the state space S ≡ (ψ, ψ̇) where each point summarizes the intensity of
the sensation and the rate at which sensation is changing in time.

3.3 Application of variational calculus

From an analytical mechanical perspective, the pattern ψ(I, t) followed by the psy-
chophysical law during the adaptation phenomenon can be considered the solution
of an Euler-Lagrange equation.

Hence, considering the framework of variational calculus introduced in section
(1.4), it exists a functional F [ψ] (i.e., a function that takes other functions as
its arguments and gives a scalar as a result) that is stationary for the function
ψ(I, t) or, in other words, it attains a maximum or a minimum value exactly for
a certain shape of ψ(I, t). The extremality condition is then formally obtained
requiring that the variations of the functional F [ψ], induced by variations δψ in
the psychophysical law, are equal to zero:

δF [ψ] = F [ψ + δψ]− F [ψ] = 0 (3.4)

and implies a differential equation whose solution is exactly ψ(I, t). In partic-
ular, since we are interested in functionals that has the form of an Action:



3.4. A SHAPE FOR THE LAGRANGIAN 41

F [ψ] =

∫

T

L(ψ, ψ̇, t) dt (3.5)

when the variation of the function ψ is negligible at the extremes of the interval
T , (namely δψ(t0) = δψ(∞) = 0 as it is in the case of psychophysical adaptation),
the variational condition is equivalent (see for instance Landau & Lifshitz, 1960)
to the Euler-Lagrange equation:

d

dt

(

∂L

∂ψ̇

)

−
∂L

∂ψ
= 0 (3.6)

Briefly, the previous equations state that, of all the possible pattern that adap-
tation can follow, between the values ψ(I, t0) and ψ(I,∞), the natural pattern is
the one that satisfies the extremality condition (3.4) on the functional (3.5) and
hence is the solution of the equation (3.6).

Given then the Lagrangian for sensation, the variable conjugate momentum can
be introduced as in definition (1.5):

Π ≡
∂L

∂ψ̇
(3.7)

and the behavior of the system, in addition to the previously introduced state
space S, can be described also in the phase space Γ ≡ (ψ,Π) where, as like in (1.6),
Legendre’s transformation defines the Hamiltonian as:

H(ψ,Π, t) ≡
[

Πψ̇ − L(ψ, ψ̇, t)
]

ψ̇(ψ,Π,t)
(3.8)

It must be recalled that the two sets of variables (ψ, ψ̇) and (ψ,Π) are both
useful to give an insight into the system’s nature and, most of all, are equivalent:
indeed the switch between the Lagrangian and the Hamiltonian formalism can
always be done if the momentum (3.7) is invertible. Such a requirement is locally
satisfied if the second derivative of the Lagrangian is not zero, namely ∂2L

∂ψ̇2
6= 0. A

good sufficient global condition instead is that L be a convex function of ψ̇.

Finally, it must be stressed that, following the formalism of analytical mechan-
ics, the quantities Π and H have been also defined as the momentum and the
energy related to the motion of the system in time. Nevertheless, at the present
moment they are still a rather abstract description of the system’s behavior. To
understand their meanings in the context of adaptation a Lagrangian L(ψ, ψ̇, t)
that returns the psychophysical law as the solution of equation (3.6) is needed.

3.4 A shape for the Lagrangian

As we have already noticed in chapter one, in the very general case Lagrangian
could be a rather complicated function of its arguments, thus belonging to the
Generalized Lagrangian Systems.
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Nonetheless, a very simple class of Lagrangian appears to be a sufficient con-
dition (see Appendix B) to derive the fundamental laws of psychophysics while
accounting for time-varying features, namely:

L(ψ̇, t; I) =
1

2
m(I, t)ψ̇2 (3.9)

where the notation L(ψ̇, t; I) states that the Lagrangian is a function of ψ̇ and
t, while I is just a parameter. In addition, the quantity m(I, t) 6= 0 acts like a
modulating function that depends both on stimulus intensity and time and allows
the transformation (1.5) to be invertible. Equations (3.9) depicts the process of
adaptation as a free particle motion with a variable mass like in the model shown
in section (1.5). Hence the inertia of the system can increase or decrease depending
on its dependencies on time and stimulus intensity.

Due to its particular shape, the strongest objection that could be raised to
Lagrangian (3.9), is that it has already its solution built into it. Indeed, once one
has set the function m(I, t) the solution ψ will be univocally determined. Hence
any function ψ could be derived with an appropriate choice of m(I, t). The answer
to this objection is not a simple one: first of all, it is important to emphasize that
Lagrangian (3.9) is just one out of an infinite possible number of functions that,
with a variational approach, describe different systems. Second, it is a sufficient
but not a necessary condition, because it is not the only Lagrangian that gives the
classical psychophysical laws as solution of an Euler-Lagrange equation1. Third,
a structure of the Lagrangian like L(ψ̇, t) is required by the Noether’s theorem
to ensure the measurability of the psychophysical quantities on an interval scale,
see section (3.1.5); hence, using a quadratical shape is just choosing the simplest
possible, yet meaningful, Lagrangian. Fourth, but not less important, the fact that
a Lagrangian like (3.9) can give any function once opportunely set-up does not
imply that its particular shape could not be used by some physical system.

Notwithstanding this, equation (3.9) has been chosen because, although its
structure and the idea of a system’s inertia depending on time and on stimulus
intensity may somewhat sound factitious, it exhibits several interesting features
that are proper of the process of perception. Besides, it takes a very simple meaning
in the case of a primary afferent unit as we will see in chapter four.

As an immediate result, it is worthy of notice that a similar shape of the La-
grangian suggests the idea that, if the modulating function m(I, t) were related
to some physiological features, the entire process of sensation would be somehow
layered over other processes. Indeed, in such a case different sensations, based
on different neurophysiological processes or sensory modalities, would always be
driven by the same abstract rule in spite of their different nature.

Other interesting properties are related to the solutions of Lagrangian (3.9) and
to the momentum and the energy.

1For instance, as it has been already pointed out in the first chapter, the motion equations
are invariant for gauge’s transformation, that is: a Lagrangian L

′

that differs from L only for
a function that is a total derivative of time, L0 = dF

dt
, gives the same motion equations. Other

possible Lagrangians are also given in Appendix B.
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3.5 The psychophysical laws

The Euler-Lagrange equation (3.6) that corresponds to Lagrangian (3.9) is:

ψ̈ = −
ṁ(I, t)

m(I, t)
ψ̇ (3.10)

Psychophysical laws are then its solutions:

ψ = c1

∫

1

m(I, t)
dt+ c2 (3.11)

with constants c1, c2 ∈ R.
Different choices of m(I, t) lead then to different psychophysical laws but they

all obey to the abstract behavior depicted by Lagrangian (3.9) and equation (3.10).
Fechner’s and Stevens’ laws, for instance, appear to be (see Appendix B) solutions
of the same differential equation in two different limits: Fechner’s solution holds in
the limit of small psychophysical exponent, n→ 0, where the Stevens’ law becomes
a trivial constant (Krueger 1989).

As it has been noticed in the previous section, sensation ψ would then be uni-
vocally determined by a specific choice of m(I, t), as if it were a process based on
other processes: different psychophysical laws could be possible but they all would
obey the abstract behavior depicted by Lagrangian (3.9), irrespective of how the
system encodes information. If the function m(I, t) were related to neurophysi-
ological features a Lagrangian like (3.9) would be a common abstract rule that
connects different trends of perception to the ongoing physiological processes.

3.6 The conjugate momentum

Following definition (3.7) the conjugate momentum for the system depicted by
Lagrangian (3.9) is defined as:

Π = m(I, t)ψ̇ (3.12)

and, in the case of the adaptation phenomenon, it behaves like a compound
measure of the rate at which the system is adapting and of its inertia.

Besides, being the Lagrangian (3.9) independent on the magnitude of psy-
chophysical law ψ, the momentum is conserved during the motion:

dΠ

dt
=

d

dt

∂L

∂ψ̇
=

d

dt

(

m(I, t)ψ̇
)

= 0

Noether’s theorem, stated in section (1.3), indeed implies that the system is
invariant under translations. Fitted to the present case the theorem states that
given a transformation of the psychophysical law:

ψ → ϕ(ψ, α) such that ϕ(ψ, 0) = ψ
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if the Lagrangian is invariant, namely:

L(φ, φ̇, t) = L(ψ, ψ̇, t)

hence the quantity:

C =
∂ϕ

∂α

∂L

∂ψ̇

is a constant during the motion.
It is straightforward to verify that for ϕ(ψ, α) = ψ + α the conserved quantity

is exactly C = Π since:

C =
∂(ψ + α)

∂α

∂L

∂ψ̇
= m(I, t)ψ̇ = Π

Hence, an affine transformation of the psychophysical law ϕ(ψ, α) = ψ + α
leaves the system unchanged: as a consequence, ψ is measured on an interval scale
meeting a fundamental measurement requirement for prothetic continua and for
several classes of psychophysical laws (Luce 1959; Krantz et al. 1971).

It is also interesting to notice that the admissible transformation related to a
ratio scale, namely ϕ = αφ, neither fulfills the requirement of Noether’s theorem
nor leaves unchanged the Lagrangian, since Lψ = Lϕα

2. Yet it is still interesting
that it simply implies a scaling of the Lagrangian (and hence of the Hamiltonian)
as if we were only changing the unit of measure.

Furthermore, the phase space Γ becomes very useful to describe the system’s
behavior since adaptation of different sensory modalities is expected to assume dif-
ferent values of Π. In addition, the conservation of momentum implies that changes
in perception are inversely related to m(I, t). Hence, during the adaptation, as ψ̇
decreases in time, m increases like an expanding mass or growing inertia. Looking
at the picture from a reversed perspective: if m were related to some physiological
aspect, then its increasing would imply a decreasing in the rate of adaptation. For
instance, in the fourth chapter, applied to a simplified model of nerve fiber, m(I, t)
will be related to the inter-spike interval (ISI), while conservation of Π will indicate
that the signal propagates with constant velocity within the nerve.

Finally, since ψ̇ during psychophysical adaptation is a monotonic negative func-
tion, Π is assumed to be negative in order to have m > 0. However, in the general
case of a time-varying stimulus, ψ̇ could be a non monotonic function, hence the
conservation of momentum will allow m(I(t), t) to take both positive and negative
values. Anyway, the transformation (3.7) is always globally invertible if m 6= 0.

3.7 Hamiltonian

The Hamiltonian can be found by means of Legendre’s transformation (3.8), in the
phase space Γ, where it takes the form:
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H(Π, t; I) =
Π2

2m(I, t)
(3.13)

Due to the constancy of Π the system’s energy can be seen as an inverse measure
of the inertia m(I, t), or equivalently a direct measure of the change in perception:

H(ψ̇, t; I) =
Π

2
ψ̇ (3.14)

It also appears to be related to the way the system encodes information as if it
were an internal representation of the stimulus: indeed, if m(I, t) is a one-to-one
relation for I ∈ R

+, different stimulus intensities will elicit different values of the
energy. Hence, as it has been hypothesized in section (2.2.1), if the Hamiltonian
were a measure of the neurelectrical response E, it would be exactly a function of
the stimulus intensity E(I), independently on the magnitude of sensation.

3.7.1 Variation of the Hamiltonian

The system generally belongs to the family of the non-autonomous Hamiltonian
systems, being time dependent:

dH

dt
= −

1

2

(

Π

m(I, t)

)2

ṁ(I, t)

Energy is generally not conserved during the motion and the system is dissi-
pative. The only conservative case occurrs indeed for a time independent value
of m(I, t) ≡ m(I) ∀t ∈ T at which the psychophysical law (3.11) takes the form
ψ = c1t

m(I)
+ c2. So the system is conservative only if sensation increases linearly

with time. Such a psychophysical law is empirically false in the case of a steady
stimulus if the time dependence describes only the adaptation phenomenon.

Moreover, it is interesting that the previous expression can be rewritten as:

dH

dt
=

Π

2
ψ̈

that curiously resembles the Newton’s law. That is, if the hypothesis stated
in section (2.2.1) were true and the Hamiltonian were a measure of the neurelec-
tric activity, the previous equation would state that variations in the neurelectric
activity correspond to acceleration in the variation of sensation.

Finally, during psychophysical adaptation, when m(I, t) increases, energy must
decrease. In particular, considering a finite variation we have:

∆H

H
= −

∆m

m

that is, a relative decrease in the value of the modulating functionm corresponds
to a relative increase in the Hamiltonian.
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This suggests a parallelism with neurophysiological features: for instance, adap-
tation in nerve fibers is related to a decrease in electrical activity (Galambos and
Davis 1943; Torre et al. 1995; Wen et al. 2009). More generally, a depletion of the
energy supplied by the organism means a reduction in its costs. Transient changes
in metabolic brain’s activity are indeed related to variation in neuronal spiking
frequency and in neurotransmitter flux: changes in oxygen in the rat’s brain are
proportional both to the flux of excitatory amino acid glutamate, as measured by
MRS, and to the change in the firing rate of a neuronal ensemble, as determined
from extracellular recording (Attwell and Laughlin 2001; Hyder et al. 2002; Raichle
and Gusnard 2002; Smith et al. 2002). If, as it has been suggested in section (2.2.1),
this energy has to be supplied by metabolism, the Hamiltonian could be related to
some detectable measure of energy like the firing rate of a primary afferent unit, or
the level of activity of a neuronal ensemble. This parallelism, indeed, developed in
the fourth chapter with the application of the model to a nerve fiber, will lead to
consider the energy to be a measure of the electrical spiking activity. As a results
the modulating function m(I, t) will appear to be related to the inter-spike interval
(ISI) while the conservation of the momentum Π will be related to the constant
velocity of the impulses’ propagation within the nerve fiber.

3.7.2 Hamiltonian and Perception

Experimental results seem to suggest that particular magnitudes of activity are
needed to support neural functions (Raichle and Gusnard 2002). Indeed, both the
changes in oxygen consumption and in mean spike frequency in neuronal ensem-
bles, needed to reach a stimulated level, are greater starting from lower baselines
artificially induced by different levels of anesthesia. This suggests the existence of
an overall activity that must be fulfilled to activate brain processes. Furthermore,
the maximum levels of metabolic oxigen consumption and mean firing rate that can
be achieved during the stimulation are the same starting from different baselines
(Hyder et al. 2002; Smith et al. 2002).

An application of these concepts to the Hamiltonian permits one to account
for energy differences between a value HS, corresponding to the stimulated level,
and a value H0 corresponding to the baseline resting activity. In the case of an
Hamiltonian like (3.13), that behaves like a function of both stimulus intensity and
time, H ≡ H(I, t), the minimum value H0 related to the spontaneous activity,
could be taken as corresponding to the energy elicited by the threshold stimulus
I0. Its value, H0 ≡ H(I0, t) could be considered the threshold for perception. The
energy actually involved in sensation should then be decreased by the effect of this
absolute threshold:

HP (I, t) = HS(I, t)−H0 (3.15)

In a general framework energy HS(I, t) could be related to the effective con-
sumption sustained by the organism in order to trigger a process, while energy
(3.15) could be the part devoted to sensation.

Thus, in the general case, the psychophysical law (3.11) could be rewritten as:
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ψ = c1

∫

HP (I, t) dt+ c2 (3.16)

with constants c1, c2 ∈ R. Sensation then appears to be the result of accu-
mulating the internal energy, similar to the way jnds are usually accumulated in
psychophysics. Moreover, the functional associated to sensation results to be, in a
given time interval [t0, t1]:

F [ψ] =

∫ t1

t0

Π

2
ψ̇ dt =

Π

2
[ψ(I, t1)− ψ(I, t0)] (3.17)

that is, the functional is a measure of the variations in the psychological con-
tinuum. The quantity that we are asking to be stationary is then the variation
itself of sensation. Indeed, the variational condition (3.4) becomes equivalent to:

δF = 0 → δ(ψ(I, t1)− ψ(I, t0)) = 0 (3.18)

Such a requirement states that the variations along the subjective scale must
be stationary (in this particular case, since the Legendre condition ∂2L

∂ψ̇2
= m is

greater than zero, the extremum is a minimum). Hence, between two instants of
time (likely the onset and the offset of the steady stimulus), this ideal system is
adapting making the minimum possible variation in sensation.

Finally, the previous equation, in the specific case of the adaptation phe-
nomenon, can be written as:

ψ(I, t) = ψ(I, t0)−
2

|Π|

∫ t

t0

HP (I, τ) dτ (3.19)

Hence the sensation, at any moment t ∈ T , can be seen as a reduction of the
initial value (accumulated during the rising phase) at the onset of the stimulus,
as if energy were taken away at this time. Equation (3.19) can indeed be seen
as the response r(t) = s(t) − f(t) of a simple inhibitory feedback system with
input signal s(t) ≡ ψ(I, t0) and suppressor integrator f(t) =

∫

HP (t)dt. A similar
behavior has been used to characterize adaptation in neural systems (Drew and
Abbott 2006). Inhibitory feedback has also been used to characterize adaptation
in sensory neurons relating the increasing in the absolute refractory period to the
activity of ionic currents (Fohlmeister 1979; Gerstner and Kistler 2002).

3.8 On the linearity assumption (2.3)

It is interesting to see that the shape of the Lagrangian (3.9) in the steady stimulus
case is tightly related to the linearity assumption (2.3) between the response and
the psychophysical law. This lead to an interesting interpretation.

In the steady stimulus case perception ψ(I, t) is a family of pattern in time,
parametrized by the stimulus intensity I. Hence we have, between the time of the
onset of the stimulus t = t0 and a time t = t1:
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I → ψ → F [ψ] =

∫ t1

t0

L(ψ, ψ̇, t) dt (3.20)

We could interpret the time-dependent behavior of ψ as if the system, impinged
by the steady stimulus, adapted itself in order to tune the perception. Nevertheless,
we could expect the functional F to be independent from time but not from the
stimulus intensity’s value. Indeed, as we have seen in the previous section, the
functional associated to the Lagrangian (3.9) is:

F [ψ] =
Π

2
[ψ(I, t1)− ψ(I, t0)] (3.21)

Hence we have a family of functionals, F (I) = FI [ψ], dependent on the param-
eter I ∈ I, since the integration cancels any dependence on the time but not on
the stimulus intensity that is just a parameter.

This behavior is very similar to a stimulus-response pattern R(I), and most of
all, with the choice of Lagrangian (3.9), the functional F [ψ] is linearly dependent on
the sensation ψ and hence closely related to the linearity assumption (2.3) between
R and ψ, unless of some scaling term.

In the general case, however, the result of the functional F [ψ] could be com-
pletely detached from the linearity assumption (2.3). For instance it is straightfor-
ward to verify that, keeping time constant, a trivial choice like:

F [ψ] = (ψ−1(ψ(I)))n → F (I) = In

gives as observed response a power law independently on the psychophysical
law that underpins the act of perception. The previous equation is similar to the
objection raised by McKay (1963) to the Stevens’ law: if the perceiving system
adjusted with a sort of internal match an infinite number of psychophysical laws
could eventually generate a power law.

Furthermore, there is still an important distinction to do: only when the linear-
ity assumption (2.3) holds, R(I) and ψ(I) can, with a slight abuse of notation, be
considered both psychophysical laws. In general, the psychophysical law is defined
as the relation between the sensation and the stimulus intensity ψ(I, t) and can be
obtained through direct psychophysical methods that regard a way of constructing
the law by accumulating jnds (Fechner 1860). Instead, within the direct meth-
ods introduced by Stevens (Stevens 1956, 1957), the focus is on the pairs (R, I),
hence what is measured are the stimulus intensity and the observed responses of
the subjects, that is more a measure of perception than of sensation, and hence
independently on their relation to ψ or E. It is indeed well know that different as-
sumptions and scaling hypothesis can lead to different psychophysical laws (Baird
and Noma 1978; Gescheider 1997). Identity, equivalence or linearity between R
and ψ, and hence between sensation and the lowest or simplest levels of percep-
tion, could not be always achieved in the general case. This is another reason for
which Lagrangian (3.9) appears to be interesting.
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3.9 Summary

A model to describe perception in a steady stimulus case has been structured us-
ing variational calculus and analytical mechanics. In particular the psychophysical
adaptation phenomenon has been chosen to describe the pattern followed by per-
ception in time. A Lagrangian capable of accounting for both the time-varying
features and the classical laws of psychophysics has been built. As a result a free
particle Lagrangian, with a time-varying mass, has been obtained and shows several
interesting properties: it is a sufficient but not a necessary condition; it allows for
different and possible psychophysical laws; it depicts perception as an higher level
feature univocally determined by the underpinning neurophysiological processes;
it allows to evaluate psychological prothetic continua on an interval scale. Finally,
the associated Hamiltonian, that is the energy of the process, follows a decreasing
pattern similarly to the response of the firing rate in primary afferent units.
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Chapter 4

Perception based on primary

afferent units

In this chapter an abstract model of the firing rate in nerve fiber will be developed and

used to describe the energy possessed by the neurelectrical response. A very simplified

model of perception will than be built by considering an equivalency between the energy

of a nerve fiber and the Hamiltonian of sensation. The resulting psychophysical law

and neurelectrical law are tested on data taken from the literature.

4.1 Model of nerve fiber

The most important model of nerve fiber is the cable-theory, a model whose history
is rooted in William Thomson’s (Lord Kelvin) work on the signal decay in undersea
telegraphic cables, and that has been subsequently applied to neural fibers by
Hermann and Cremer. Yet the most important result is its application to describe
how action potentials in neurons are initiated and propagated (Hodgkin and Huxley
1952); a fundamental finding followed by several deepenings and variations of the
model (see for a review Gerstner and Kistler 2002)

Nonetheless, in describing the response of a nerve we will not rely on this im-
portant model, since we are not interested in its electrical features. The model
suggested in the next sections is instead based on an abstract and coarse-grained
description (and interpretation) of the action potentials propagation. Such a model
is mainly based on a parallelism between the spiking phenomenon and the De
Broglie’s wave. Signal propagation inside a nerve can indeed be seen as a wave
travelling along the fibers, yet spikes themselves are a discrete phenomenon. More-
over, a similar parallelism is suggested by several empirical findings.

4.1.1 Energy and firing rate

A constant train of impulses generated by a steady stimulus could be schematized
as a wave travelling inside the nerve fibers with constant velocity, every spike
being a peak of the average whole nerve activity. If such a wave is treated like a
De Broglie’s wave it carries an energy:

51
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E(I, t) = h f(I, t) (4.1)

where f(I, t) is the fire rate and h is a constant with the physical dimensions of
an action (but of different magnitude from the Planck’s constant). This equation,
at the level of signal transduction, is coherent with the empirical evidence (found
in several animal species) that the amplitude of the receptor potential is linearly
related to the frequency of the nerve fiber discharge (Katz 1950; Terzuelo and
Washizu 1962; Doving 1964). For a possible physical model of nerve that gives
origin to equation (4.1) see Appendix C.

Before choosing a shape for the energy it is very interesting to explore the
implications of hypothesis (4.1) on the interpretation of the model.

Inter-spike interval

If hypothesis (4.1) is equated to the Hamiltonian (3.13), since the energy is related
to the firing rate then its inverse is both a measure of the wavelength and of the
inter-spike interval τISI .

E = hf and E =
Π2

2m
→ m =

Π2

2h

1

f
=

Π2

2h
τISI =

Π2

2hv
λ (4.2)

Thus, once adequately set the dimensions of the variables (see Appendix D) the
time-varying mass m(I, t) results to be a measure of the inter-spike interval and
increases during psychophysical adaptation, since τISI(I, t) = 1/f(I, t).

Relation between the laws

If hypothesis (4.1) is equated to the Hamiltonian (3.14), the firing rate becomes a
measure of the variation in the psychophysical law:

E = hf and E =
Π

2
ψ̇ → ψ̇ =

2h

Π
f (4.3)

Indeed, in the general case, since sensation behaves like an accumulation of
energy as in equation (3.16), it appears to be related to the number of summated
action potentials, or more in general to the electrical activity of the nerve fiber:

ψ(I, t) = c1

∫

h f(I, t)dt+ c2

In particular, following equation (3.19), during the psychophysical adaptation
phenomenon the sensation at a certain time t ∈ T is given by:

ψ(I, t) = ψ(I, t0)− h

∫ t

t0

f(I, τ)dτ
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hence, the changes in sensation are related to the changes in the total number
of action potentials:

ψ(I, t)− ψ(I, t0) = h[N(I, t0)−N(I, t)]

This result could appear strange at a first glance, since usually the firing rate is
considered to be proportional to sensation. But there are a couple of considerations
that deserve to be done: first, different dependencies on the firing rate could be
possible in different sensory systems. For instance, in slowly adapting systems, like
many stretch receptors, or cold receptors, nociceptive receptors in the cornea, or
pressure receptors of the carotid sinus (Kandel et al. 2000), the firing rate could be
taken out of the integral making the magnitude of sensation directly proportional to
the firing rate itself (Norwich 1993). Second, but not less important, the previous
result holds in the case of a connection between psychophysical adaptation, as the
only time features in psychophysical law, and pure adaptation and dynamic range
adaptation in a nerve fiber, thus the actual situation is expected to be more complex
than this. In particular, the previous equation states that, during psychophysical
adaptation to a steady stimulus, a finite variation in sensation corresponds to the
release of a certain number of action potentials, that is, to a certain value of the
firing rate. A situation with time varying stimuli, including also a dynamic part
could give totally different results (see chapter six for a discussion).

Constant velocity of the spikes train

Putting together equation (4.2) and equation (4.3) we have that the conservation
of momentum (3.12) states that the signal propagates at a constant velocity v = fλ
inside the fiber:

Π = mψ̇ =
Π2

2hv
λ

2h

Π
f → v = λf

hence the signal propagates inside the nerves with the same velocity, inde-
pendently on its frequency. In particular, different fibers and sensory modalities,
having different velocities (Kandel et al. 2000) would have different values of Π.

Action of the nerve fiber

Introducing equation (4.1) into definition (3.5):

F [ψ] = h

∫

T

f(I, t) dt = h[N(I, t1)−N(I, t0)]

the functional F for a nerve fiber becomes the total action carried by the
spikes released during adaptation (or more in greater generality during perception).
Hence, the variational requirement (3.4) corresponds to a stationarity constraint
on the total electrical activity:

δF [ψ] = 0→ δ(N(I, t1)−N(I, t0)) = 0
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Changes in perception in this ideal nerve fiber occur trying to achieve station-
arity of the total number of generated action potentials (in this particular case
minimizing it), and every action potential carries a quantum of action. In our
opinion it is a very interesting result that adaptation occurs trying to minimize the
number of action potentials generated during the process.

With these results in mind we can now detail a shape for the energy and analyze
the resulting equation. To characterize the behavior of the firing rate intensity,
the Michaelis-Menten model or Naka-Rushton relation (Naka and Rushton 1966),
described in section (1.6), will be chosen and extended to time accounting for pure
firing rate adaptation and dynamic range adaptation.

4.2 Naka-Rushton’s shape of the energy

In order to characterize the energy we need to shape the firing rate: a widespread
behavior in neurelectrical phenomena is a monotonic increase, as the stimulus
intensity raises, until the system reaches a saturation. A behavior that can be
recognized in different phases of perception: ranging from the amplitude of several
receptor potentials (Lipetz 1969); to the responses of primary afferent units (see for
taste: Beidler 1954; hearing: Sachs et al. 1989; touch: Knibestöl 1973, 1975; vision:
Naka and Rushton 1966; smell: Duchamp-Viret et al. 1990); higher-level neurons
(Lipetz 1969), like those in the rabbit’s lateral geniculate nucleus (Cano et al. 2006)
or in the cat’s and monkey’s primary visual cortex (Albrecht and Hamilton 1982;
Carandini and Ferster 1997); activation of organized and homogeneous populations
of neurons that exhibits similar properties, like columns in the somatosensory and
visual cortex, or pools of motor neurons (Gerstner and Kistler 2002). It has also
been recently found, by fMRI recordings of a single bilaterally symmetric area in
intraparietal and intraoccipital sulci, that the activity peak appears to increase and
saturate with the increasing of the amount of information that the visual short-term
memory has to retain (Todd and Marois 2004).

Hence, if a Naka-Rushton equation is chosen to model the firing rate and the
energy, without accounting for a threshold value, we can write:

E(I) = Em
In

σn + In
(4.4)

where Em is the maximum energy and σ ∈ R
n is the intensity at which energy

attains half of its maximum value. Besides, as it has been detailed in section (1.6),
σ can be considered a measure of the dynamic range of the afferent unit: the greater
its value the greater the range of intensities in which there’s no saturation.

In order to identify energy (4.4) with the Hamiltonian (3.13) we need to intro-
duce the variable time. A possible modeling concerns two fundamental features:

1. Pure classic adaptation. The energy decreases in time in order to account to
spike frequency adaptation. This can be obtained by reducing the maximum
Em (Wen et al., 2009). The simplest relation is a depletion of the spike
frequency with a power law like Em(t) = Emt

−a.
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2. Pure dynamic range adaptation. The dynamic range of the afferent units has
been shown to adapt to different features of the signal (Dean et al., 2005; Wen
et al., 2009). A simplified version of this complex behavior can be introduced
by taking a value of σ that changes in time to account for dynamic range
adaptation. The simplest relation is a power law shift σn = Rtr.

The combination of this two features leads to a mixed adaptation model (Wen
et al., 2009). Energy (4.4) becomes then:

E(I, t) =
Em
ta

In

Rtr + In
(4.5)

It is interesting to notice that the previous equation can be brought back, in
the limit of negligible decay of the subthreshold level of depolarization, to the
firing rate of a neuron with random inter-spike interval distributed like a Gamma
function (Stein 1965). Furthermore, a similar firing rate has been used to model
the electrically coupled units of a neural network subjected to an external Poisson
signal: as a result the system response showed high sensitivity and large dynamic
range; besides, the transfer function ranged from a power law to a logarithmic
law depending on the relative refractory period of the cells (Copelli et al. 2002).
The addition of time features in those models is equivalent to positing a time-
varying refractory period and rate of presynaptic excitatory impulses. Moreover,
the previous equation can be obtained from Fisher’s information entropy using
the same assumptions made by Norwich (1993) on the sampling of the stimulus
population and the variance of the signal, thus leading to relate the ratio In/(Rtr)
to the signal-to-noise ratio (see Appendix D), a feature that sensory systems are
well designed to increase (Torre et al. 1995). An alternative derivation of the signal-
to-noise ratio, of which equation (4.5) and Norwich’s assumptions are just the limit
of short-memory process, has also been given for a simple neural networks based
on a Brownian motion of the spikes and information theory (Medina 2009).

4.2.1 Threshold correction

Since we are interested in the energy (3.15) involved in perception, we need to
account for the value that energy (4.5) attains at the threshold intensity I0:

E(I0, t) = E0 =
Em
ta

In0
Rtr + In0

(4.6)

Thus the final energy (and hence the firing rate) becomes:

EP (I, t) = E(I, t)− E(I0, t) = Em
Rtr−a(In − In0 )

(Rtr + In)(Rtr + In0 )
(4.7)

It is straightforward to verify that, for I0 → 0, the previous equation turns into
energy (4.5). Notice also that equation (4.7) has been obtained with a choice of
E0 that corresponds to an absence of resting activity in the system. Indeed, the
term (4.6) is just a correction induced by the existance of an intensity threshold
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but does not account for a baseline level of the energy: when the stimulus is at the
threshold energy reaches the zero value. This choice can be seen as equivalent to
a null spontaneous activity in the nerve (see chapter six for an extension).

Considering now the relation between the exponents a and r, that describe pure
spiking frequency adaptation and dynamic range adaptation, two main trends can
be identified. In the next sections, for handiness of calculation, will be kept a = 1
taking the adaptation scale as the fundamental time scale (see Appendix F).

Pure adaptation faster than dynamic range: r ≤ 1

If the exponent r, leading the dynamic range adaptation, is lower than or equal to
one (or if the exponent a of the pure spike frequency adaptation, is greater than
or equal to r) the final adaptation decreases as depicted in figure (4.1).
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Figure 4.1: Energy/firing rate behavior for r ≤ 1.

Pure adaptation slower than dynamic range: r > 1

If the exponent r is instead greater than one (or if the exponent a is lower than r)
the trend of the resulting adaptation behavior is a monotonically increasing one,
until it reaches a maximum after which it decreases, as depicted in figure (4.2).
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Figure 4.2: Energy/firing rate behavior for a < r.
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Considering that the system is abruptly impinged by an external stimulus it is
very interesting that both the previous trends seems to have a physical meaning.
The first one corresponds indeed to an ideal situation in which the nerve fiber
tunes immediately to a certain value of the firing rate and then starts to adapt
(or similarly, a nerve that starts to adapt from a previously reached value of the
firing rate). The second one instead, implies that a fast dynamic range adaptation
could still lead the nerve to a gradual increase and tuning in the firing rate in spite
of an abrupt stimulation. This would make the nerve a very flexible and reactive
structure that could be tuned to a more static or dynamic behavior.

4.3 Perception based on energy (4.7)

Using the energy developed in the previous section we can derive the psychophysical
law and explore the plausibility of both the psychophysical and the neurelectric laws
on data taken from literature. To do so we will hypothesize, as in section (2.2.1),
that the energy describing the psychophysical behavior, summarized by Lagrangian
(3.9) and Hamiltonian (3.13), is related to the energy (4.7) of the nerve fiber.

Identification of energy (4.7) with the Hamiltonian H(ψ,Π, t) can indeed be
done by comparison of equations (4.7) and (3.13) with the choice1:

m(I, t) =
(Rtr + In)(Rtr + In0 )

Rtr−1 (In − In0 )
, Em =

Π2

2
(4.8)

Hence energy (4.7) can be rewritten as:

HP (I, t) =
Π2

2

Rtr−1(In − In0 )

(Rtr + In)(Rtr + In0 )
(4.9)

and will now be used to derive the psychophysical law.

4.3.1 Psychophysical law

Integration of equation (3.16) leads to:

ψ(I, t) =
2

Π

∫

HP (I, t) dt

where the momentum Π is negative since ψ̇ < 0 with the only adaptation
occurring as time dependent phenomenon. Hence, the psychophysical law related
to the shape energy (4.9) becomes, unless of some costant terms (see Appendix F):

ψ(I, t) = k log

(

Rtr + In

Rtr + In0

)

(4.10)

1Actually, there are other possible choices, but the fundamental difference between them is
just a change of the dimensional value of the physical quantities. Choice (4.8) appears to be the
most natural from a dimensional point of view. See Appendix E.
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with k ∈ R
+ such that |Π| = kr.

An interesting result of equation (4.10) is that different limits of its parameters
embrace the fundamental power law and logarithmical law. In the limit of an high
signal-to-noise ratio, that is when the ratio In/Rtr >> 1, pychophysical law (4.10)
behaves like Fechner’s law. Taken indeed γ = (Rtr)−1 we can write:

ψ(I) = k log

(

1 + γIn

1 + γIn0

)

(4.11)

Then, in the limit of γIn →∞, psychophysical law becomes:

ψ(I, t) ≈ kn log

(

I

I0

)

while, in the limit of a low signal-to-noise ratio, that is In/Rtr << 1 or γIn → 0,
psychophysical law (4.10) behaves like a correction of the Steven’s law as found by
Norwich (1993):

ψ(I, t) ≈ kγ(In − In0 ) (4.12)

The latter result has been empirically found in the measurement of loudness
(Lochner and Burger 1961) and appears to describe the behavior of the psychophys-
ical law near the threshold better than (I − I0)

n (see also Buus et al. 1998).

Figure 4.3: Loudness curves given by the relations ψ = kIn, ψ = k(I − I0)
n, and ψ =

k(In − In
0
). The experimental point were obtained by Hellman and Zwiloski (Lochner and

Burger 1961).
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Moreover, in the limit of I0 → 0, equation (4.10) becomes:

ψ(I, t) = k log

(

1 +
In

Rtr

)

(4.13)

The latter expression has the same shape of the psychophysical law firstly pro-
posed by Helmoltz and Delbouf (Murray 1993) with a similar time correction to
the law obtained by Norwich (1993) starting from Shannon’s entropy. Anyway, it
is worthy of notice that it has been derived in a complete different framework. It
can also be used to encompass a large spectrum of empirical laws of psychophysics
and phenomena (Murray 1993; Norwich 1993, 2010).

Finally, it must be emphasized that equation (4.10) is not the psychophysical
law; as it has already been stressed several times it is one out of an infinite number
of possible laws. In this particular case it is the psychophysical law that for La-
grangian (3.9) is associated with energy (4.7). Moreover, without the choice of the
exponent a = 1, that selects pure spike frequency adaptation as the fundamental
time scale of the system, the solution would have been different (see Appendix F).

4.3.2 Neurelectric law

Since |Π| = kr energy (4.9) can now be rewritten as:

HP (I, t) =
(kr)2

2

Rtr−1(In − In0 )

(Rtr + In)(Rtr + In0 )
(4.14)

and the frequency of the firing rate becomes:

f(I, t) =
(kr)2

2h

Rtr−1 (In − In0 )

(Rtr + In)(Rtr + In0 )
(4.15)

Which seems to have a good agreement with experimental data: examples are
given in pictures (4.4) and (4.5).

It is important to notice that, although the Naka-Rushton relation is widely
used, the previous equation neither accounts for all the possible psychophysical
adaptation trends nor accounts for all the possible neuronal behaviors.

Non-saturating behaviors at the increasing of the stimulus strength have been
found for instance in thalamic neurons of the somesthetic system (Mountcastle et al.
1963), in various fast and slow adapting mechano-receptors (Knibestöl 1973, 1975),
or in the neurons of the Inferior Colliculus (Dean et al. 2005). Nevertheless, these
different rate-level responses could be still accounted in the present framework by
relaxing hypothesis (4.1) and considering a value of h ≡ h(I). A similar correction
could be considered like a different sensitivity of the system to different stimulus
intensities that allows to encompass a wide plethora of neuronal behaviors while
keeping a saturating shape of the energy. Moreover, a similar variation wouldn’t
affect the shape of the psychophysical law (4.10) since does not regard the time
dependence of the firing rate.

It is also important to notice that, the value of the firing rate (4.15) appears to
be used as a negative feedback to gradually reduce the amount of sensation (4.10),
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Figure 4.4: Data of Cleland and Enroth-Cugell (1968). Neural adaptation in the on-center
ganglion cells of the cat to square-wave inputs of light to the retina. The smooth curve has
R2 = 0.988 and RMSE = 8.7.
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Figure 4.5: Data of Matthews (1931). Neural adaptation of the frog’s muscle tendon with
two-gram load applied. The smooth curve has R2 = 0.99 and RMSE = 1.6.

both the firing rate (4.15) and the psychophysical law (4.10) show a decreasing
trend, with the psychophysical law that diminishes more slowly in time. A similar
result has been found for instance in the neural response of the chorda tympani
to taste stimulation that adapts with a reasonable correspondence between neu-
rophysiological and psychophysiological records (Diamant et al. 1965). Similarly,
mechanoreceptors’s adaptation precedes the psychophysical one by several seconds
(Greenspan and Bolanowski 1996).

Besides, while the firing rate (4.15) shows a saturating trend, psychophysical
law (4.10) behaves like a power law or a logarithmic law depending on the value of
its parameters. Many sensory modalities exhibits this kind of behavior: single au-
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ditory nerve fibers for instance show a saturating behavior in a range dramatically
shorter than the effective operating behavioral range of sensation (Viemeister 1988;
Wen et al. 2009). The present model, far from pretending to solve a longstanding
question like the dynamic range problem, nevertheless stresses the importance of
adapting features (Dean et al. 2005; Wen et al. 2009).

Total number of action potentials

As to the total number of action potentials generated in the early t seconds of
adaptation, if the system is slow adapting a good approximation can be considered
simply the product f(I, t)t:

∆N ≈
(kr)2

2h

γ (In − In0 )

(1 + γIn)(1 + γIn0 )
(4.16)

where γ = (Rtr)−1.
If the adaptation instead cannot be neglected we need to take the antiderivative

of equation (4.15):

N(I, t) =
k2r

2h
log

(

Rtr + In0
Rtr + In

)

(4.17)

Equation (4.17) is a negative monotonic increasing function that approaches
zero in the limit of t→∞ and can be considered a measure of the number of spikes
missing to the total number of action potentials released during the adaptation
phenomenon. Indeed, the difference ∆N(t, t′) ≡ N(I, t′) − N(I, t), with t < t′, is
the number of action potentials released during an interval [t, t′]:

∆N(t, t′) =
k2r

2h
log

(

Rt′r + In0
Rtr + In0

Rtr + In

Rt′r + In

)

(4.18)

Notice that both equations (4.16) and (4.18) exhibit saturation as the stimulus
intensity increases, so that the number of spikes recorded in a given time interval
does not differ strongly for high intensity stimuli.

4.4 Preliminary test of the model

In the following subsections some comparisons with data from literature are given
for the senses of touch and taste, since, for their nature, they can be considered
among the simplest possible modality for which the approximation of a relation
between sensation and the response of primary afferent units more likely holds.

4.4.1 Touch

With a broad definition, mechanoreceptive afferent fibers of the glabrous skin of
the human hand can be divided into two groups: fast adapting receptors (FA)
and slow adapting receptors (SA), where adaptation is referred to their response
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to a sustained indentation. In particular, mechanoreceptors’s adaptation precedes
the psychophysical adaptation by several seconds: the firing rate (4.15) decreases
faster then the psychophysical law (4.10) (Greenspan and Bolanowski 1996).

In addition, FA receptors, in spite of their name, do not truly adapt, but show
a tonic behavior during a dynamic indentation of the skin: as soon as the stimu-
lus becomes steady, they cease to respond. SA afferents, on the other hand, are
sensitive both to a dynamic and to a sustained indentation of the skin. During
the latter, in particular, they show a phasic behavior with a low spike frequency
adaptation that can last over many seconds or minutes.

Fast adapting receptors

Since FA receptors more then indentation detectors can be considered velocity
detectors (Greenspan & Bolanowski, 1996) they can be treated in a steady stimulus
framework using the indentation velocity as stimulus intensity and their behavior
can be clearly fitted by a log tanh relation (Knibestöl 1973). Fitting of equation
(4.16) to the data ( red curve in figure 4.6 ) gives γ ≈ 0.03, a maximum firing
rate of about fmax ≈ 127.1 spikes/s and an exponent n ≈ 1.3, with fit indexes
R2 = 0.99 and RMSE = 3.64; whereas a power law (blue curve in figure 4.6 ) like
ψ = kIn + c gives instead n ≈ 0.54 with R2 = 0.95 and RMSE = 9.63, without
showing saturation.
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Figure 4.6: Data from Knibestöl (1973), fig. 9A. Stimulus-response function of a fast
adapting (FA) receptor to the velocity of indentation.

Slow adapting receptors

A similar result holds for SA mechanoreceptors. Their trend can be divided into
a dynamic part, due to dynamic indentation of the skin, and a static part, due to
the sustained indentation. Knibestöl (1975) specified then two possible measures
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of firing rate: the total sum of action potential generated in one second (TS)
including both the dynamic and the static parts; and the mean firing rate of the
last 0.5 seconds of static indentation (MF).

As to the measure TS, since firing rate adaptation is negligible, the total number
of spikes can be measured by equation (4.16): a fit to data of Knibestöl (1975) and
Knibestöl and Vallbo (1980) (see pictures 4.8 and 4.7) gives a threshold of about
I0 ≈ 0.50 mm, close to the experimental mean value 0.51 ± 0.06 mm, maximum
firing rates fmax of 28.5 and 53.1 spikes/s, γ parameters of about 0.6 and 0.8, and
exponent n values of 4.0 and 6.1, with fit indexes R2 = 0.99 and RMSE of 1.0
and 1.5. The high value of n is due to the sigmoidal shape induced by the dynamic
part of the stimulation. Equation (4.16) appears to be a good description of the
total number of action potentials, including the dynamic part, when the system
has a slow adaptation rate.
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Figure 4.7: Data from Knibestöl and Vallbo (1980), fig. 3. Stimulus-response plots of a
SA-I receptor stimulated with indentation of 0.5 (red line) and 1.0 (blue line) secs of duration.

As to the measure MF, the fit gives, for both equations (4.16) and (4.18), a value
of the threshold I0 ≈ 0.85 mm, close to the experimental mean value 0.89 ± 0.09
mm, and an exponent n ≈ 1.97, with fit indexes: R2 = 0.99, RMSE = 0.7 (see red
curve in picture 4.8). The variability of the parameter γ, that ranges from 255 in
equation (4.16) to 718 in equation (4.18), appears to be related to a difficulty in
computing the correct slope from data that do not show a saturation: indeed both
the equations fail in predicting the maximum firing rate.

Relation between psychophysical and neural responses

Finally, a comparison of subjective and neural responses has been given in Knibestöl
and Vallbo (1980) emphasizing an absence of correlation between psychophysical
and neural exponents. Indeed, the average trend of the psychophysical responses is
linear (albeit inter-individual differences reveal both accelerating and decelerating
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Figure 4.8: Data from Knibestöl (1975), fig. 5. Stimulus-response plot for a SA-I receptor.
TS-plot (green points) and MF-plot (blue points).

trends) while the neural average function is clearly decelerating. Mean exponents,
obtained with a power law in the same group of subjects, attains a value of 1.18
for the psychophysical law and 0.72 for the neurelectric response.

Considering now, as a case of study, a subject with a clear difference between
psychophysical and neural exponents the fit of equations (4.11) and (4.16) leads
to interesting results. Knibestöl and Vallbo (1980) indeed stimulated the subject’s
hand in three different locations as in figure (4.9).

Figure 4.9: Different locations of stimulation.

Data recorded on location number three (see pictures 4.10) exhibits a clearly
divergent trend between the psychophysical and the neural exponents (1.24 against
0.40 obtained with power law). Psychophysical law (4.10) gives γ ≈ 0.2 and
n ≈ 1.3, with R2 = 0.97, and RMSE = 1.6; while the fit of neural data gives
γ ≈ 3.2, fmax ≈ 87.8 spikes/s, and n ≈ 1.15, with R2 = 0.98 and RMSE =
2.4. The agreement between the two set of parameters can be considered quite
good. In particular, the psychophysical and the neural exponents appear now
to be compatible. This result is particularly interesting since it suggests that
using different laws there still could be the exponents identity suggested by several
authors (Stevens 1970; Barlow 1972; Norwich 1993).
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  Psychophysical law

Figure 4.10: Data from Knibestöl and Vallbo (1980), fig. 9, plot 3. Psychophysical and
neural responses at location number three to skin indentation stimuli.

At the location number one, instead, that show a slightly increased difference
between the psychophysical and the neural exponents (1.33 against 0.38 obtained
with power law), the psychophysical law gives γ ≈ 0.98, n ≈ 2.05 with R2 = 0.98
and RMSE = 0.98; while the fit of the neural data gives γ ≈ 62.05, n ≈ 0.53, with
R2 = 0.99 and RMSE = 1.65, but fails to achieve a maximum firing rate since the
neural data show an increasing trend for high depths of indentation. Nevertheless,
forcing equation (4.16) to take the psychophysical value of the exponent still leads
to an acceptable fit of the data with I0 ≈ 0.12 mm, γ ≈ 6.4 and a maximum firing
rate fmax ≈ 51.5 spikes/s, with R2 = 0.98, RMSE = 1.97.
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Figure 4.11: Data from Knibestöl and Vallbo (1980), fig. 9, plot 1. Psychophysical and
neural responses at location number one to skin indentation stimuli.

In addition, as it has been suggested in section (4.3.2), a term like h ≡ h(I)
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could allow the firing rate to depend on individual variations of the nerve while
attaining different patterns and without affecting neither the Naka-Rushton shape
of the energy nor the psychophysical law. The system could be for instance less
sensitive to stimuli near the threshold, having thus a dependance like h ≈ I−δ. The
addition of such a term to equation (4.15), with a fixed threshold of I0 = 0.16 mm,
gives a maximum firing rate fmax ≈ 65.7 spikes/s, and values of the parameters
γ ≈ 32.6, n ≈ 2.18 and δ ≈ 0.23, with indexes of fit R2 = 0.99, and RMSE = 1.6.
The value of d < 1 implies that, for this subject, the firing rate increases slowly at
high intensities instead of saturating (fmax can still be considered the maximum
firing rate with a slight abuse of notation) and this is what seems to happen in the
data as can be seen in picture (4.11). Moreover, the value of the psychophysical
exponent is now very close to the one given by the psychophysical law: n ≈ 2 .

A similar result can be achieved with location number two, that show the
greatest difference between psychophysical and neural exponents (1.60 against 0.38
obtained with power law). The psychophysical law gives γ ≈ 1.3 and n ≈ 3.0, with
fit indexes R2 = 0.99, and RMSE = 0.6; while the fit of neural data (it must be
noticed that the data were few compared to the other subjects) gives n ≈ 0.22
with R2 = 9.96, RMSE = 4.3. Forcing anyway the exponent of the power law,
and introducing a correction to h, lead to a fit with R2 = 0.97, RMSE = 3.39.
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Figure 4.12: Data from Knibestöl and Vallbo (1980), fig. 9, plot 2. Psychophysical and
neural responses at location number two to skin indentation stimuli.

As a final notice: the value of the threshold I0 obtained by the psychophysical
law is often close to zero, while in for neural data ranges between 0.14− 0.18 mm;
forcing however the psychophysical and the neural laws to have the same threshold
value does not introduce significant variations in the others parameters.

These results emphasize on one side how much those parameters are sensitive
to slight changes in the model: broad confidence intervals make indeed very likely
to find a common set of parameters. Moreover, an adequate number of parameters
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can always end in an overfit of the data, being the rationale behind a contrived
improvement of the fitness quality. On the other hand, considering the previous
results as preliminary, they emphasize that psychophysical law and neural law
could be related through some abstract and general principle.

4.4.2 Taste

The response of the chorda tympani nerve to salt stimulation almost completely
adapts with a reasonable correspondence between neurophysiological and psy-
chophysiological records (Diamant et al. 1965). In particular, the summated elec-
trical response shows 95% of adaptation in about 50 seconds, while psychophysical
adaptation ranges between 79 and 122 seconds. Equation (4.15) decreases faster
than psychophysical law (4.10). Moreover, peaks of activity in the response to su-
crose stimulation correlates with subjective responses (Diamant et al. 1965). More
in general, a correlation between subjective estimation and summated electrical
activity has been found for different concentrations of salt, sucrose and citric acid
(Borg et al. 1967).

Since the maximum height of the electrical activity is defined as a record of
the whole spikes elicited by the stimulation (Lipetz 1969), a comparison should be
done between psychophysical law (4.10) and the total number of summated action
potential accumulated during the rising phase. However, since equation (3.19)
depicts adaptation like a process of decreasing energy until extinction, the total
electrical activity generated during adaptation should be at least proportional to
the total activity generated during excitation.
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Figure 4.13: Data from Borg et al. (1967), fig. 6. Subject’s estimation plotted against the
molarity of sucrose solution.

Equation (4.11), fitted to sucrose data (red curve in fig. 4.13), gives a value
of the threshold I0 ≈ 10−9M , a value of the parameter γ ≈ 204, and an exponent
n ≈ 2.47, with indexes of fit R2 = 0.9 and RMSE = 1.9; whereas a power law
(gray curve in fig. 4.13) of the kind ψ = kIn + c gives n ≈ 0.27 with R2 = 0.9 and
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RMSE = 1.9. Setting a naught value of the threshold, I0 = 0, in equation (4.11)
allows to further improve the fit (R2 = 0.99,RMSE = 0.5) but does not change
the value of the exponent n. The results can be seen in figure (4.13).

The equation for fitting the summated electrical activity could be derived from
equation (4.18) in the limit of both I0, t→ 0 and t′ →∞ giving:

NPeak ≈ A log

(

I

I0

)n

+ C∞ (4.19)

with A,C∞ ∈ R
+. The latter in particular is a divergent term at exactly t = 0

only because the combination of three limits leads the model into a situation out
of the bulk condition in which energy (4.14) has been built.
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Figure 4.14: Data from Borg et al. (1967), fig. 6. Nerve responses plotted against the
molarity of sucrose solution.

In spite of this, equation (4.19), fitted to neural data (brown curve in 4.14),
gives a value of the exponent n ≈ 2.32 with fit indexes R2 = 0.97, RMSE = 1.7;
whereas a power law like ψ = kIn + c (blu curve in 4.14) gives n ≈ 0.28 with R2 =
0.98, RMSE = 1.1). In spite of the broad confidence bounds for both logarithmic
and power laws, the agreement can be considered quite good: in both cases indeed
the exponents exhibit the same value. In addition, the higher the signal-to-noise
ratio, the more equation (4.19) resembles the psychophysical law (4.10). This seems
to agree with the observation that psychophysical and neurophysiological responses
are both correctly described by a logarithmic law with similar parameters (Borg
et al., 1967). Furthermore, the neural and the psychophysical exponents are very
close one to each other like in the power law case.

Nevertheless, it must be stressed that equation (4.19) has been obtained with
an assumption of proportionality between the activity generated during adaptation
and the activity generated during the rising phase of perception. Moreover, the
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combination of the three limits makes the energy more sensitive to fluctuations in
the data. As an example, when equation (4.11) is fitted to the acid citric data,
that show higher variability than the sucrose data, it gives a good result for the
psychophysical law: γ ≈ 6213, n ≈ 1.54 with R2 = 0.99 and RMSE = 0.5 (against
a power law n ≈ 0.50 and R2 = 0.97 an RMSE = 1.89); while the fitting of the
neural data reveals to be weak, giving n ≈ 2.26 with R2 = 0.88 and RMSE = 5.03
(against the result of a power law n ≈ 0.69 with R2 = 0.99, RMSE = 1.087).

4.5 Summary

In this chapter an abstract description of the firing rate has been given in terms of
a De Broglie’s wave. Hence the energy carried by the spikes train is linearly related
to its frequency. Under this assumption, an interpretation of the formalism that
links the psychophysical response to the neurophysiological background of primary
afferent units has been given. In detail, the modulating function m(I, t) that
characterizes Lagrangian (3.9) appears to be a measure of the inter-spike interval,
and hence is related to the wavelength of the De Broglie wave; the spike frequency
appears to be a measure of the changes in time of sensation, while the conservation
of the conjugate momentum implies that the signal travels with a constant velocity
inside the nerve, independently on the magnitude of the spike frequency.

In addition, the variational requirement underpinning the whole behavior of
the sytem appears to be the minimization of the total number of action potentials
released during the adaptation phenomenon.

A structure of the energy describing the neurelectric behavior has then been
modeled on the Naka-Rushton relation and extended to time by the addition of pure
spike frequency adaptation and dynamic range adaptation. The resulting energy
has been used to obtain the psychophysical law by means of the Euler-Lagrange
equation. As a result, sensation appears to be described by an equation capable
of switching from a power law to a logarithmic law depending on the signal-to-
noise ratio. Moreover, a very similar law had been already proposed by Delbouf
and Helmoltz (Murray 1993) and subsequently obtained by Norwich (1993) moving
from Shannon’s information entropy.

Finally, these preliminary results of the model have been tested on data on the
senses of taste and touch. The agreement is particularly good with the latter for
which the approximation of a straight connection between sensation and the re-
sponse of primary afferent units holds better than in the other senses. In paticular,
the psychophysical law and the neurelectrical law of the model appear to have the
same exponents as posited by many authors (Stevens 1970; Barlow 1972).
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Chapter 5

Laws of psychophysics

In this chapter will be derived some laws of classical psychophysics and some empirical

laws that describe the behavior of the senses. The treatise will be mainly based on the

framework developed before except for only one assumption of discreteness that will

rely on mechanical statistical considerations.

5.1 Statistical Mechanics and Perception

Statistical mechanics is introduced in this thesis with a twofold purpose: on one
hand it allows to discretize the senses by focusing on their quantized nature at
their basic level; on the other hand it is useful to introduce a fundamental feature
of sensory systems that the framework outlined in the previous sections cannot
account for, that is the limited resolving power of the psychophysical systems.

As it has already been pointed out in section (2.1), in spite of its discrete nature
the world appears to our perception as continuous. Nevertheless, on a physical and
chemical perspective our senses are able to grasp its discreteness: chemoreceptors
detect molecules and atoms; vision receptors detect single quanta of light; the
sense of hearing, although it is not quantized, still at the eardrum level is capable
of appreciating an atom’s width variation in pressure (Torre et al. 1995; Gescheider
1997). Yet our perception of the world is smooth, continuous and coarse-grained,
as if somewhere in between receptors transduction and perception there were a
transition to continuousness. In other words, Weber’s fraction can not appreciate
an infinitesimally small difference in the intensity of the stimulus.

In order to simplify the problem we will keep to consider a steady stimulus
situation, so that the time dependence of the model is due only to adaptation and
the Hamiltonian is a family of patterns in time labeled by the parameter I ∈ R

+.

5.1.1 Energy jnds

Bijective and continuous relations between energy and stimulus intensity, like equa-
tions (3.13) or (4.4), cannot account for the limited resolving power of sensory
modalities, since in those relations for any value of the stimulus intensity there is a
corresponding value of the energy. Nevertheless, from a statistical mechanical per-
spective, different states of a system, corresponding to different points in the state
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space S or in the phase space Γ, should be considered equivalent by the perceiving
system if they belong to the set of the states whose internal energy lies in between
certain values of the Hamiltonian H and H + ∆H. In particular, in hypothesis
(2.9), we have posited a relation between the energy and the neurelectric behav-
ior. Hence the idea of enclosing perception in a statistical mechanical framework
leads to consider the perceiving system as uncapable of distinguish the difference
between neurelectric responses of intensities E and E + ∆E.

Thus, different stimulus situations of intensity I and I + ∆I, corresponding to
different states in S or in Γ, could be perceived as equal if they belonged to the
set of the states whose internal energy lies between E and E + ∆E. This seems
also to agree with the observation that there can be peripheral activity without a
corresponding behavioral correlate McKenna (1985).

As a matter of fact, a minimum ∆E behaves as an energy-jnd that restrains
all the other quantities. The limited resolving power of the system will be then
introduced with the strong 1 approximation of holding this jnd constant:

∆E(I) ≡ ǫ (5.1)

independently on a possible dependence of the resolving power by the magni-
tude of the stimulus itself. Hence, ǫ is the smallest physiological difference between
two levels of the internal energy elicited by a particular sensory stimulus. This hy-
pothesis from a certain point of view parallels Fechner’s hypothesis of the constant
jnd but shifts it on an internal energy context in which, as equation (3.16) suggests,
perception can be regarded as a cumulative process. A value of the energy E(I, t)
can then be obtained by accumulating N(I, t) energy-jnds:

E(I, t) = ǫN(I, t) (5.2)

Equating with expression (4.5):

N(I, t) =
E

ǫ
=
Em
ǫta

In

Rtr + In
(5.3)

or with the threshold correction of (4.14):

NP (I, t) =
EP (I, t)

ǫ
=

(kr)2

2ǫ

Rtr−a(In − In0 )

(Rtr + In)(Rtr + In0 )
(5.4)

The saturation of energy implies then a maximum in the number of energy-
jnds that can be accumulated by a sensory modality. In particular, considering a
constant time situation, so that γ = (Rtr)−1, we can write:

NP (I) = N0
γ(In − In0 )

(1 + γIn)(1 + γIn0 )
(5.5)

1In general the relation could be a more complex one, like E =
∫

ǫ(I)ρ(I)dI, the idea of
keeping the same value for all the energy-jnds is a rather strong assumption, yet is the simplest
to do as a starting point.



5.1. STATISTICAL MECHANICS AND PERCEPTION 73

once set:

N0 ≡
(kr)2

2ǫta
(5.6)

that is the maximum number of energy-jnds if the threshold I0 is equal to zero.
Indeed, once taken the limit I →∞:

lim
I→∞

NP (I) =
N0

1 + γIn0
≡ N∞ (5.7)

is the maximum number of energy-jnds in presence of a threshold I0.
Notice also that equation (5.2) is strictly connected with hypothesis (4.1). In

particular, in a highly discretized system each jnd would be a spike. N would then
be the number of spikes generated in one second by the firing rate f . Each spike
carrying a quantum of action h and energy ǫ.

A final notice deserve to be done. In a mechanical statistical treatise the number
of the state that are equivalent on an energetical base is measured by the entropy.
See Appendix G for the behavior of entropy for these systems and its relation with
simple reaction times: Pieron’s law can indeed be derived moving from the entropy
of the system and considering the time that is needed to the perceiving system to
span the space of the equivalent states.

5.1.2 The Bloch-Charpentier law

One of the most important empirical law of sensation was defined in two separated
papers by Bloch (1885) and Charpentier (1885) by applying to vision the Bunsen-
Roscoe law. In particular, it states that the minimum perceptible light intensity
ITh is a function of the duration t of the stimulus:

ITht = C (5.8)

where C is a constant with the dimension of a physical energy. In particular
there is a minimum value I∞ of the threshold below which no light stimulus is
perceptible:

ITh ≥ I∞ (5.9)

In addition, the Bloch law holds only for small values of time, namely t <
0.1 − 0.3 seconds, after which a most general relation discovered by Blondel and
Rey (1912) is needed:

ITh
I∞

= 1 +
a

t
(5.10)

where a is known as the Blondel-Rey constant.
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Another generalization was given by Garner (1947):

ITht
δ = C (5.11)

and can be mixed with the Blondel-Rey generalization to give:

ITh
I∞

= 1 +
a

tδ
(5.12)

It is also worthy of notice, that the same law seems to hold for the sense of
hearing (Norwich 1993; Coren et al. 1999) and is commonly used for temporal
summation (Bunsen-Roscoe law) or spatial summation (Ricco’s law) in neurons.
Moreover, it resembles another fundamental relation in biomedical application: the
Weiss-Lapicque law.

Lapicque’s law

By changing the Weiss’ law Lapicque (1907, 1909) stated that the current I required
to excite a variety of irritable tissues can be written as a function of the duration
d of the impulse impinging the tissue:

I =
k

d
+ b (5.13)

where b is then the current needed to stimulating with a pulse of finite duration
and is called the rheobase. The previous equation ca be rewritten as:

I

b
= 1 +

c

d
(5.14)

where c is the chronaxie (that is the value at which the current is twice the
rheobase). The former relation is tissue specific and is very similar to the Blondel-
Rey law (5.10). Furthermore, a generalization of Lapicque’s law has been given by
Ayers et al. (1986) and is:

I

b
= 1 +

c

dα
(5.15)

that is exactly equation (5.12).

Derivation in the model

Considering now equation (4.7), we can derive the previous equations with a certain
degree of approximation. Taking indeed the limit t → 0 energy (4.7) can be
rewritten as:

lim
t→0

EP ≈
Rtr−a(kr)2

2

In − In0
InIn0



5.1. STATISTICAL MECHANICS AND PERCEPTION 75

that can be rewritten as:

EP ≈
Rtr−a(kr)2

2

In − In0
I2n
0

In0
In

If we consider now the intensity threshold I0 as the minimum possible detectable
threshold, since the stimulus intensity I is expected to be always greater or equal
to I0, we can approximate with a slight abuse of notation:

EP ≤
Rtr−1(kr)2

2

In − In0
I2n
0

that can be rearranged in:

In ≥ In0 +
2EI2n

0

(kr)2Rtr−a

Now, a discretization of the energy like (5.1) implies that the energy Ep must
be at least equal to the value ǫ. Hence, if we consider the threshold intensity Ith
as the one for which the value of the energy attains the value ǫ we have:

InTh ≥ In0 +
2ǫI2n

0

(kr)2Rtr−a
(5.16)

Furthermore, since the energy-jnd is expected to be very small, a Taylor ex-
pansion for the previous equation leads to:

ITh
I0
≥ 1 +

2ǫIn0
n(kr)2Rtr−a

that once set a = (2ǫIn0 )/(n(kr)2R) and δ = r − a gives:

ITh
I0
≥ 1 +

a

tδ
(5.17)

Expression (5.17) is a further generalization of the Bloch-Charpentier law and
of the Lapicque law, similar to the one made by Blondel and Rey (1912). Notice
that in particular is always true that:

ITh ≥ I0

that is equation (5.9). So the actual threshold is always greater or equal than
a particular minimum required value2.-

Moreover, if t is very close to zero, equation (5.16) can be rewritten as:

2It is interesting to notice that I0 was defined as the threshold value at which the energy of
perception HP is equal to zero. Hence it appears sensible that the actual threshold Ith appears
to be greater or equal than that minimum value.
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InTh ≥
2ǫI2n

0

(kr)2Rtr−a

and then:

InTht
r−a ≥

2ǫI2n
0

(kr)2R

that can be rewritten as:

ITht
δ ≥ C where δ =

r − a

n
, C =

(

2ǫI2n
0

(kr)2R

)
1

n

that is like the generalization (5.11) of the Bloch-Charpentier law proposed
by Garner (1947). As a final notice, it is interesting that to have the Bloch law
for vision we need n = 1. In the case of light then, to have also δ = 1, we
need r − a = 1. Thus the dynamic range adaptation in the pathways of vision is
expected to be faster than the spike frequency adaptation. Furthermore, since in
general 0 < δ ≤ 1, we could expect that r ≤ n+ a for a given sensory modality.

5.1.3 The classical jnds

Using equation (4.11) the value of the classical jnd ∆ψ can be derived. Taking
indeed the value of the jnd as:

∆ψ = ψ(I + ∆I)− ψ(I) (5.18)

we have:

∆ψ = k log

(

1 + γ(I + ∆I)n

1 + γIn

)

that can be rewritten as:

∆ψ = k log

(

1 + γw(I)In

1 + γIn

)

(5.19)

where:

w(I) ≡

(

1 +
∆I

I

)n

(5.20)

is a function directly related to the Weber fraction ∆I/I. However, since we
are interested in verify if the model can enclose classical psychophysics, we can
hold (5.20) constant, thus w(I) ≡ w. Hence, taking the limit I → ∞, in which
psychophysical law (4.13) behaves like a Fechner’s law, and expanding (5.19) in
Taylor series arrested at the first order:
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lim
I→∞

∆ψ ≈ k log

(

wγIn

γIn

)

= k logw

that is exactly the constant Fechner’s jnd ∆ψ = c, with c = k logw ∈ R
+.

Taking instead the ratio:

∆ψ

ψ
= k

[

log (1 + γw(I)In)

log (1 + γIn)
− 1

]

and the limit I → 0, in which psychophysical law (4.13) behaves like a Stevens’s
law, and expanding in Taylor series arrested at the first order:

lim
I→0

∆ψ

ψ
≈ k

[

cγIn

γIn
− 1

]

= k[w − 1]

that is the Ekman’s law (Ekman 1959) ∆ψ = cψ with c = k[w − 1] ∈ R
+.

Equation (5.19) can then be considered a generalization of the jnd ∆ψ and can
be easily calculated once known the value of the Weber fraction.

5.1.4 The Weber fraction

Rewriting energy (4.14) as:

E =
(kr)2

2ta

[

γIn

1 + γIn
−

γIn0
1 + γIn0

]

(5.21)

with γ = (Rtr)−1, the Weber fraction ∆I/I can be derived by considering the
difference between the energies E + ∆E and E.

Taking indeed:

∆E =
(kr)2

2ta

[

γIn(1 + ∆I
I

)n

1 + γIn(1 + ∆I
I

)n
−

γIn

1 + γIn

]

we can see that the presence of a threshold I0 does not affect the result. Using
now definition (5.20) we can write:

∆E =
(kr)2

2ta

[

γInwn

1 + γInwn
−

γIn

1 + γIn

]

where, making use of the hypothesis (5.1), and thus considering the slightest
difference in energy ∆E that leads to a difference in perception, we have:

ǫ =
(kr)2

2ta

[

γInwn

1 + γInwn
−

γIn

1 + γIn

]

that using definition (5.7) and expressing w as a function of any other quantity:
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w(I) =

(

1
γ

+ (N0 + 1)In

N0 − (1 + γIn)

)

1

In

and finally by the definition of w:

∆I

I
=

(

1
γ

+ (N0 + 1)In

N0 − (1 + γIn)

)
1

n

1

I
− 1 (5.22)

Equation (5.22), in spite of being still a rough approximation of the actual
Weber’s fraction exhibits several interesting features:

1. In the limit I → 0, the Weber fraction (5.22) follow a typical hyperbolic
trend:

∆I

I
≈

(

1

γ(N0 − 1)

)
1

n 1

I

2. The function decreases until it reaches a minimum at the value:

Imin =

(

1

γ

N0 − 1

N0 + 1

)1/n

at which attains the positive value:

∆I

I
=

(

N0 + 1

N0 − 1

)2/n

− 1 = kW (5.23)

Hence, in a neighborhood of this minimum, equation (5.22) can be approxi-
mated by the constant Weber’s ratio kW . The extension of this neighborhood
can be roughly estimated as the range in which (5.22) is far from its extremes:

(

1

γ(N0 + 1)

)1/n

<< I <<

(

N0 − 1

γ

)1/n

corresponding to an intensity span of the order:

Imax/Imin ≈ N
2/n
0

The higher the Stevens’ exponent n, the shorter the plateau. This result
agrees with the experimental finding that the greater the range of sensation,
the lower is the Stevens’ exponent (Teghtsoonian 1971). In particular, the
higher the value N0, the larger the plateau, that is the higher the maximum
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firing rate achievable by a sensory modality the higher the extension of the
region in which the Weber fraction can be considered constant.

3. When the stimulus intensity I reaches a value R such that N0 = 1 + γRn,
the denominator of the function w(I) becomes singular and the Weber frac-
tion diverges. A terminal rising portion has been found for several sensory
modalities like in the sense of taste and vision, or with different stimulations
like pressure on a single Meissner’s corpuscle, heaviness, flavor of salt, loud-
ness at 800 Hz, pitch at 5 or 40 dB, brightness, and possibly the sensation of
temperature and auditory intensity discrimination (for a review see Holway
and Pratt 1936; or Norwich 1993).

5.1.5 The Poulton-Teghtsoonian relation

The value R =
(

N0−1
γ

)1/n

can then be conceived as the maximum perceivable in-

tensity of a sensory modality. Indeed, beyond that value equation (5.22) becomes
negative and has no physical meaning. Using then R as a measure of the stim-
ulus range, the denominator of equation (5.22) implies the same relation found
by Teghtsoonian (1971) working on data collected by Poulton (1967); that is, the
range of sensation and the Stevens’s exponent are inversely related:

n log10R = cT (5.24)

where cT in literature is generally considered of the order cT ≈ 2 (Norwich
1993). In particular, Teghtsoonian’s finding was cT ≈ 1.53.

Relation (5.24) can be derived from the weber fraction (5.22) by simply con-
sidering that the divergent value defined by the range R:

Rn =
N0 − 1

γ

implies:

n log10R = log10

(

N0 − 1

γ

)

that once taken:

cT = log10

(

N0 − 1

γ

)

(5.25)

is exactly relation (5.24). Furthermore, the constant cT is now related to the
system’s parameters N0 and γ.
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5.2 Fit to real data and discussion

In this section will be analyzed and discussed the fitting of equation (5.22) to some
data taken from literature 3 and some flaws or shortcomings of the model that
deserve to be marked. However, looking at the following results it must be kept in
mind that the use of hypothesis (5.1) is a very strong approximation that, if energy
(4.14) is used to model a nerve fiber, equates the energy-jnd to the single spike in
the nerve.

5.2.1 Data of Lemberger on taste

A very famous set of data about the sense of taste was collected by Lemberger
(1908) reporting the differential threshold of taste of sucrose against the concen-
tration of the tasted solution. Fitting these data with equation (5.22) gives:

Quantity Value 95%confidence bound
N0 29 (26, 32)
γ 0.20 (0.14, 0.26)
n 1.1 (0.9, 1.3)

(5.26)

Results of the fitting are plotted in figure (5.1):
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Figure 5.1: Data of Lemberger (1908) for differential threshold of taste of sucrose. Weber’s
fraction plotted against concentration of tasted solution.

with the following indexes of fit: R2 = 0.69 and RMSE = 0.06.

In particular, with the values listed in (5.26), the resulting Teghtsoonian’s con-
stant (5.25) is cT = 2.13 and the Weber ratio (5.23) is kW = 0.13.

3The fits have been performed with the Nonlinear least squares using the MATLAB’s cftool.
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It is interesting to observe that all the quantities appear to be sensible from a
physical point of view. Most of all, they have the same order of magnitude of those
found experimentally. Indeed, the value of the Teghtsoonian constant is very close
to the value of 2 usually considered in literature; the Weber ratio is very close to
the literature’s value of kW = 0.17 (Baird and Noma 1978) and finally the exponent
n agrees with the values that can be found in literature and that ranges between
0.6 and 1.30 (Baird and Noma 1978; Purghé 1995).

It must be notice however that the plateau of the experimental data appears
to be greater than the one provided by equation (5.22). In particular, the rising
slope of equation (5.22) is slower than the actual one.

5.2.2 Data of Oberlin on heaviness

A set of data about the differential threshold of heaviness was collected by Oberlin
(1936). Fitting these data with equation (5.22) gives:

Quantity Value 95%confidence bound
N0 222 (132, 313)
γ 0.73 (0.23, 1.24)
n 0.75 (0.14, 1.36)

(5.27)

Results of the fitting are plotted in figure (5.2):
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Figure 5.2: Data of Oberlin (1936) for differential threshold of heaviness. Weber’s fraction
plotted against weight (g).

with the following indexes of fit: R2 = 0.83 and RMSE = 0.01.
In particular, with the values listed in (5.27), the resulting Teghtsoonian’s con-

stant (5.25) is cT = 2.5 and the Weber ratio (5.23) is kW = 0.02. Literature’s
values for the Weber ratio are usually around kW = 0.07 while for the exponent n
range between 1.1 and 1.45 (Baird and Noma 1978; Purghé 1995).
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The agreement in between the 95% confidence bound can still be found, but
it is clear that in this set of data, as in the previous one, both the rising slope is
slower than the actual one and the minimum of equation (5.22) appears to precede
the actual one, clearly failing in predicting the exact trend.

5.2.3 Data on skin indentation

Data of Kiesov

Data regarding the differential threshold for single skin indentation on the palm
were recorded by Kiesov (data taken from Greenspan and Bolanowski 1996). Fit-
ting these data with equation (5.22) gives:

Quantity Value 95%confidence bound
N0 27 (21, 33)
γ 0.25 (0.14, 0.36)
n 1.13 (0.74, 1.52)

(5.28)

Results of the fitting are plotted in figure (5.3):
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Figure 5.3: Data of Kiesow (Greenspan and Bolanowski 1996). Differential threshold of
single skin indentation on the hand (tension: gr/mm).

with the following indexes of fit: R2 = 0.77 and RMSE = 0.02.
In particular, with the values listed in (5.28), the resulting Teghtsoonian’s con-

stant (5.25) is cT = 2.02 and the Weber ratio (5.23) is kW = 0.14.

Data of Gatti and Dodge

Another set of data regarding the differential threshold for single skin indentation
on the palm was recorded by Gatti and Dodge (data taken from Greenspan and
Bolanowski 1996). Fitting these data with equation (5.22) gives:
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Quantity Value 95%confidence bound
N0 39 (32, 46)
γ 0.33 (0.28, 0.38)
n 0.77 (0.61, 0.94)

(5.29)

Results of the fitting are plotted in figure (5.4):
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Figure 5.4: Data of Gatti and Dodge (Greenspan and Bolanowski 1996). Differential
threshold of single skin indentation on the hand (tension: gr/mm).

with the following indexes of fit: R2 = 0.94 and RMSE = 0.004.

In particular, with the values listed in (5.29), the resulting Teghtsoonian’s con-
stant (5.25) is cT = 2.1 and the Weber ratio (5.23) is again kW = 0.14.

Literature’s value for the exponent n are usually around 1.10 (Purghé 1995)
hence the agreement appears to be better with the data of Kiesow than with those
of Gatti and Dodge. A slightly better fit that results also in a better value of the
Teghtsoonian constant.

It is also interesting that, in both the previous data set on skin indentation as
in those of Lemberger and Oberlin the rising slope is slower than the actual one.
Moreover the minimum of equation (5.22) still appears to precede the actual one.

5.2.4 Differential threshold for brightness

An important set of data regarding the differential sensibility to brightness was
recorded by König and Brodhun (see Hecht 1924). Fitting these data with equation
(5.22) gives:
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Quantity Value 95%confidence bound
N0 651 (487, 815)
γ 3.98 (2.50, 5.46)
n 0.37 (0.35, 0.40)

(5.30)

Results of the fitting are plotted in figure (5.5):
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Figure 5.5: Data of König and Brodhun (see Hecht 1924). Differential sensitivity to bright-
ness plotted against the intensity of the stimulus (Lamberts, logarithmic scale).

with the following indexes of fit: R2 = 0.99 and RMSE = 0.014.

In particular, with the values listed in (5.30), the resulting Teghtsoonian’s con-
stant (5.25) is cT = 2.21 and the Weber ratio (5.23) is again kW = 0.02.

It is quite remarkable that, in spite of the fact that vision is a rather complex
sense compared to touch and taste, the fit of equation 5.22 is very good. Moreover,
considering that literature’s values for the exponent n and the Weber ratio are
usually around n = 0.30 and kW = 0.08 (Baird and Noma 1978; Purghé 1995) the
results can be considered quite good.

5.2.5 Data of Upton on loudness localization

An interesting set of data was collected by Upton (1936) for the binaural localiza-
tion of a sound at 800Hz. When both ears are stimulated with the same energy
the resulting apparent sound is localized in the median plane of the head. A shift
of the energy on one ear implies a shift in the sound off the median plane. Fitting
these data with equation (5.22) gives:
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Quantity Value 95%confidence bound
N0 84 (73, 95)
γ 2.1 (1.6, 2.6)
n 0.62 (0.56, 0.68)

(5.31)

Results of the fitting are plotted in figure (5.6):
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Figure 5.6: Data of Upton (1936), for the binaural localization of a sound at 800Hz. Dif-
ferential sensitivity plotted against the logarithm of speakers’ Voltage intensity (the relation
between the electrical energy and the acoustic energy was linear).

with the following indexes of fit: R2 = 0.94 and RMSE = 0.04.

In particular, with these values, the resulting Teghtsoonian’s constant (5.25) is
cT = 1.6 and the Weber ratio (5.23) is again kW = 0.08. Literature’s values for
the exponent n and the Weber ratio are usually around n = 0.33 (for frequency of
800Hz) and kW = 0.1. The agreement can be considered quite good. In particular,
considering that the exponent n = 0.62 listed in (5.31) has been obtained using
as intensity a linearly measure of the acoustic energy it must be divided by two,
since the sound pressure exponent is twice the sound intensity exponent (Baird
and Noma 1978; Purghé 1995; Norwich 1993).

Finally, it is worthy of notice, that binaural localization is obviously a rather
high level of perception, more complex than the previous cases and far more com-
plex than the model developed in this thesis. Yet it is an interesting data set
because, not only the resulting Weber fraction for binaural localization is of the
type which commonly describe differential intensity sensitivity in animal (Upton
1936), but also because it shows an almost perfect fit of equation (5.22). This
result strengthen the idea that a mechanical treatise could be of more general and
abstract use since the choice of the nerve fiber’s energy is just one out of several
possibilities.
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5.2.6 Discussion about the previous fits

The previous findings show, on the whole, a quite good agreement of equation (5.22)
with data taken from literature. In particular, they exhibit a quite good agreement
with the values of Weber’s ratios and a discrete consistency with the value of
Teghtsoonian’s constant. Although some Stevens’ exponents instead appear to
be slightly overestimated or underestimated, they never deviate unduly from the
range of the literature values 4. Most of all, the general agreement can be considered
acceptable since, in spite of the great deal of approximations that has been done,
the magnitude of the parameters always suits the actual data.

Nevertheless, although from a qualitative point of view the trend of equation
(5.22) appears to be very interesting and encompasses several known features of
the Weber fraction, quantitatively it shows a couple of strong shortcomings: first,
its minimum often occurs before the actual one, thus shifting the plateau’s range
in which the function could be approximated with a constant; second, its rising
portion appears to increase more slowly than the actual data.

There could be several possible explanations for this behavior, but it must be
kept in mind that Weber’s fraction (5.22) has been derived using as energy equation
(4.14) and then assuming, with hypothesis (5.1), the constancy of the energy-jnds
along all the neurelectric continua. These are two strong approximations to be
made. First of all, equation (4.14) is not necessarily correct and most of all is not
necessarily the best description of any neurelectric behavior. Second, assumption
(5.1) is a rather strong approximation of a behavior that actually could be a lot
more complicated.

Indeed, there is an understood hypothesis behind all the previous work, that is
the universality of the particular shape of equations (4.14) and (5.22) to describe
the behavior of different sensory modalities. This is unlikely true. More likely,
different laws should be used to describe each sensory modality, thus implying
(in the context of the same variational framework) different shape of the Weber
fraction. The latter indeed does not always shows an increasing terminal part:
famous examples are visual and tactual length, finger-span, duration, temperature,
and sound intensity detected by a single ear (Baird and Noma 1978; Norwich 1993;
Coren et al. 1999).

Still, in our opinion the behavior of the fits can be considered quite good since
the model appears capable of grasping the fundamental feature of many sensory
modalities moving from general and abstract assumptions. Most of all, it appears
interesting that the better fits are those pertaining the more complex cases of
brightness and binaural localization. On one side this could be the result of their
more smooth trends, on the other side it suggests that the statistical mechanical
approach used in this chapter is a rather abstract methodology capable of dealing
with higher level of sensation and perception.

Finally, it is worthy of notice that in the previous sets of data, the higher is the
deviation from the actual value of the Teghtsoonian constant cT the less precise is
the estimation of all the other parameters. This happens because cT connects all

4Values of Stevens’ exponents of or Weber’s ratios indeed can vary largely depending on the
involved methods and procedures of measurement (See for instance Baird and Noma 1978; Stevens
1971; Geissler 1975; Purghé 1995 )
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the other quantities through the Poulton-Teghtsoonian relation (5.24).

Behavior of the model at the range R

It is worthy to analyze the behavior of the model as the intensity I approaches
the value R. The same divergence of the Weber fraction can indeed be seen in the
generalized jnd. Equation (5.19):

∆ψ = k log

(

1 + γw(I)In

1 + γIn

)

can be rewritten, using the value of w given by:

w(I) =

(

1
γ

+ (N0 + 1)In

N0 − (1 + γIn)

)

1

In

as:

∆ψ = k log

(

N0

N0 − (1 + γIn)

)

that is physically meaningful only for I ∈ [0, R]. That is, like the Weber fraction
(5.22), shows a divergence at I = R.

In addition, the psychophysical law at I = R takes the value:

ψ(R) = k log

(

1 + γN0−1
γ

1 + γIn0

)

= k logN∞

thus relating the maximum value of sensation to the maximum number of energy
jnds that can be accumulated (or the number of spikes if the energy is used to
describe a nerve fiber).

Instead the effective number of energy-jnds given by equation (5.5) is:

NP (R) = N0

γ(N0−1
γ
− In0 )

(1 + γN0−1
γ

)(1 + γIn0 )
= N∞ − 1

and corresponds to an energy value of:

E(R) = ǫ(N∞ − 1)

the saturation then occurs only in the last energy-jnd, beyond the upper thresh-
old value, where equation (5.22) has no physical meaning, so the system does not
perceive stimuli that correspond to the saturating part of the neurelectric response.

These findings are obviously arguable and open to debate, but very interesting.
Furthermore, these results could be mainly due to the approximations intro-

duced that force the model to cope with singularities at the value R. Perhaps,
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simply relaxing some of the strong assumptions that have been made could al-
low for improvement; one above all, hypothesis (5.2): a generalization like ∆E(I)
indeed would introduce further terms in equation (5.22) and in the other quantities.

5.3 Summary

In this chapter statistical mechanics has been introduced to account for both the
limited resolving power of the psychophysical systems and the discreteness of many
sensory modalities. In particular, it has been posited that the perceiving system
is not capable of discriminating between different sensations whose neurelectric
energies are very close to each other. Moving from this assumption and using the
shape of the energy modeled in chapter four some laws of psychophysics have been
derived: the Bloch-Charpentier Law (or equivalently the Weiss-Lapicque law in
the case of irritable tissues), the Ekman law and a general shape for the jnd, the
Poulton-Teghtsoonian relation and finally a shape of the Weber fraction capable of
accounting for the decreasing trend at low intensities and the rising portion close
to the end of the perceiving range.

The Weber fraction, in particular, have been tested on data taken from litera-
ture on the discrimination of sucrose concentration, heaviness, brightness, loudness
and skin indentation, revealing a discrete agreement but also some shortcomings.
In particular, its minimum appears to anticipate the actual one sistematically,
making then the rising portion to increase more slowly than the actual data.



Chapter 6

An extension to time

In this chapter we will sketch an extension of the model developed in the previous

chapters to the case of time-varying stimuli. This is not a complete treatise but just

the preliminary results of a possible extension.

6.1 Time-varying stimulus

If the stimulus is allowed to vary in time, the variation of psychophysical law is:

ψ̇ =
∂ψ

∂I
İ +

∂ψ

∂t
(6.1)

Hence, if we hypothesize that the system is still following a Lagrangian like
(3.9) we could expect the energy to be something similar to:

HP =
Π

2

(

∂ψ

∂I
İ +

∂ψ

∂t

)

= HI +Ht (6.2)

that is the sum of a first term, related to the variation of sensation respect to
the intensity, and a second term related to the variation of sensation respect to the
time. However, this simple generalization introduces some difficulties.

First, in the steady stimulus situation the trend of psychophysical law was due
to the only adaptation hence it was a decreasing one, implying that Π was less
than zero by keeping m greater than zero in Lagrangian (3.9). Instead now the
momentum Π must be constant independently on possible switches from positive
to negative value of ψ̇. Hence the modulating function m must be allowed to take
both positive and negative values. Does that mean that the energy can take both
positive and negative value? What is the meaning of a negative firing rate?

Second, in the steady stimulus situation it was impossible to have a constant
perception. Instead now, it is sufficient to take a stimulus that varies in the opposite
direction of adaptation to keep sensation constant, that is:

İ = −
∂ψ

∂t
/
∂ψ

∂I
(6.3)
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But in such a case the energy would be equal to zero. Does that mean that the
firing rate is equal to zero?

As an example of this ill behavior, let us take the case of null threshold, I0 → 0,
and r = 1, just to simplify the psychophysical law (4.13):

ψ = k log (1 + β
In

t
)

Which corresponds to an energy1:

H =
Π

2
ψ̇ =

Π

2

kβ

t(t+ βIn)

(

nİt

I
− 1

)

(6.4)

Hence a stimulus that increases in time like I(t) = ct1/n results in a constant
psychophysical law and in a null value of the energy. Does this means that in the
case of a nerve fiber the firing rate goes to zero?

6.1.1 Possible interpretations

The first thing that must be noticed about the structure of the Hamiltonian (6.2)
is that it appears to describe an interplay between two terms that act like a sort
of excitatory-inhibitory mechanism leading to perception. For instance, let us
consider a stimulus that increases and then reaches a steady state. In equations
(6.2) and (6.4) there are a positive term and a negative term2: the first one, HI ,
follows the variation of the stimulus, ∂ψ

∂I
, and leads the equation during the initial

phases of stimulation, while the second one, Ht, follows the adaptation, ∂ψ
∂t

, and
leads the system during the steady phase. Then, is it still sensible to interprete
the Hamiltonian HP as a measure of the firing rate?

There are two possible solutions: first, if both HI and Ht were measures of firing
rates then HP could not be a measure of the total firing rate, since the quantities
do not necessarily sum up. Second, if HP were instead a measure of the total firing
rate then HI and Ht couldn’t be measures of firing rate too.

So, if Hamiltonian HP were not a measure of the total firing rate but only of a
sort of clean part of it that is dedicated to perception, the two terms on the right
side of Hamiltonian (6.2) might be, for instance, a measure of two separated trains
of spikes. In a similar case they would sum up to give the total firing rate:

|HI |+ |Ht| → f = fI + ft (6.5)

1It must be noticed that equation (6.4) is a Naka-Rushton relation modulated by the variation
of the stimulus intensity, I(t). It also straightforward that, in a steady stimulus situation, İ = 0,
since the Π becomes negative, equation (6.4) becomes exactly (4.4).

2Actually it must be noticed that both the terms could be negative if the stimulus were
decreasing, İ < 0. Nevertheless, in order to decrease a stimulus must have increased before so
that there have must been a phase in which the first term was positive, thus accumulating step
by step a positive energy by which starting to decrease the value.
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but the structure of HP would be the description of an interplay between an
excitatory and an inhibitory mechanisms that leads to perception. That is, a clean

firing rate related to the energy behind behavior. For instance, there could be a
part related to excitatory nerve fibers and a part related to inhibitory nerve fibers,
their clean result would be the energy used to achieve the final action or perception
(Kandel et al. 2000).

This is a simple interpretation yet, while it is not difficult to apply it to a
multichannel system, since the inhibitory and excitatory parts can be seen as the
result of two different processes related to different physiological parts, what would
happen in a single channel, like a single unit or nerve fiber?

In that case, existing only one physical device it would be impossible to talk
about two or more different trains of spikes. A more suitable interpretation would
be the second one where HP measures the resulting firing rate and the excitatory-
inhibitory mechanism is achieved in different ways, like in the synaptic behavior.

This interpretation simplifies the problems brought up in the previous section,
but still does not explain how the energy HP (and thus the firing rate) could be
positive, negative or null. In order to try to give an explanation we need to consider
two different situations: the presence and the absence of spontaneous activity.

6.1.2 Presence of spontaneous activity

It must be noticed that, without changing its solutions, Lagrangian (3.9) can be
changed by simply adding a time dependent term3:

L̃ =
1

2
m(I(t), t)ψ̇2 − A(t) (6.6)

with the corresponding Hamiltonian:

H̃ =
π2

2m(I(t), t)
+ A(t) (6.7)

In particular, then:

H̃ =
π

2
ψ̇ + A(t) (6.8)

whenever sensation were constant, energy would be not necessarily equal to
zero, but could still be described by some on-going or spontaneous activity A(t).
Indeed, from this point of view, the model of energy discussed in the previous chap-
ters was cleaned by the effects of a spontaneous or resting activity, as we noticed
in section (4.2.1). This would be like a shift of the energy that does not change the
properties of the system but it changes the interpretation of the relation between

3Actually this result is a consequence of the gauge’s invariance discussed in section (1.1.4). In
this case indeed A(t) behaves like the time derivative of a function F (ψ, t) that is a total derivative
of time. A more general result would be to take a new Lagrangian like: L̃ = cL+ d

dt
F (ψ, t) where

the function F could also be a function of ψ thus introducing the dependence on the magnitude
of sensation but without affecting the conservation of momentum Π.
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firing rate and sensation given in section (4.1.1). Indeed, changes in time of the
sensation, ψ̇, would be related to the changes in firing rate in comparison to the
baseline, f(I(t), t) − A(t). In particular the changes in firing rate respect to the
baseline could be both positive or negative. This seems to parallel electrophysiolog-
ical findings on primates that shows how, in several senses, conscious perception is
related to small local consumption of energy due to variations in the mean cortical
neuron firing rate that can be both positive or negative (Schölvink et al. 2008).

6.1.3 Absence of spontaneous activity

In the absence of spontaneous activity, or in the presence of a negligible term A(t)
in the Lagrangian (3.9), the changes in ψ̇ can lead the Hamiltonian HP to take
both positive and negative values.

This result appears to be paradoxical since a negative firing rate does not have
any physical sense. Nevertheless, in the model that we have developed in the pre-
vious chapters the sensation appears to be an accumulation of energy during the
rising phase of the stimulus, like an addition of excitation to excitation, while adap-
tation behaves like a negative feedback that reduces the total amount of energy.
The sign of the energy appears then to be only an indication of the fact that energy
must be increased or decreased, but the physiological correspondent is given by the
module of the energy that is by definition a positive quantity.

In detail, during the rising phase of the stimulus the system behaves like a
counter that reads the number of spikes travelling inside the nerve and accumulates
them in a sort of memory that quantifies sensation. Then a sort of switch is
activated and the system, still counting the spikes travelling inside the nerve, uses
their number to reduce the amount of energy previously stored in memory. Yet
the physiological background is the same.

As an example, let us consider an increasing stimulus that reaches a certain
value and then it becomes steady. The correspondent sensation increases up to
a maximum value and then starts to decrease following adaptation. What is the
pattern followed by the firing rate under the hypothesis of this model?

Figure 6.1: Trajectory followed by sensation and firing rate.
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As in figure (6.1), firing rate increases up to a maximum and then it decreases
attaining a zero value at the same intensity at which the sensation attains its
maximum. After that it continues on a negative scale reaching a minimum and
then raising up to zero (asintotically since we are considering the limit t → ∞),
the latter phase corresponding to the adapted state of sensation.

This is a particularly interesting result, because if we consider only the magni-
tude of the firing rate we have a first train of spikes, corresponding to the dynamic
part of the stimulation, after which we have a pause in the firing, corresponding
to the maximum of sensation, and then we have a longer second train of spikes
corresponding to the static part of sensation.

This behavior is quiet common and can be easily seen, for instance, in the neur-
electric response of primary muscle spindles or in slow adapting mechanoreceptors
(Knibestöl 1975; Katz 1950; Matthews 1931; Nudelman and Agarwal 1972).

6.2 Examples of time varying systems

In this section are given some examples of time-varying stimuli. In particular, the
first one is an Heaviside function to represent a steady stimulus abruptly rising
while the second is an exponential increasing stimulus up to a steady value.

6.2.1 Heaviside function

The Heaviside function is defined as the function that attains the null value except
for an interval in which attains the a constant value. In particular then:

I(t) = IMH(t− t0) (6.9)

represents a stimulus that does not exist before the instant t = t0 and after
which it attains the value IM . In particular its derivative depends on the derivative
of the Heaviside function:

İ(t) = IMδ(t− t0) (6.10)

where δ is the Dirac delta that attains the null value everywhere except than
in t = t0. The associated psychophysical law4 will be:

ψ = k log (1 +
βInM
t

) (6.11)

for t ≥ t0, and zero before. So the sensation arises abruptly. The first derivative,
and hence the firing rate will then be:

f =
Πk

2h

βInM
t(t+ βInM)

(
ntδ(t− t0)

IM
− 1) (6.12)

4It has been chosen to use equation (4.13) with r = 1 and I0 → 0 instead of equation (4.10)
for sake of simplicity.
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So that the number of action potential released in an interval (t0,∞) is:

∆N =

∫ ∞

t0

f dt′ =
Πk

2h

[

nβIn−1
M

t0 + βInM
+ log

(

t0
t0 + βInM

)]

(6.13)

where the first term is the number of spikes generated during the rising phase,
that is the first train of spikes, while the second term is the number of spikes
generated during the static stimulation.

6.2.2 Increasing stimulus

A fast increasing stimulus, up to a certain value IM , can be modeled as:

I(t) = IM(1− exp (−
t

τ
)) (6.14)

that has the first derivative:

İ(t) =
IM
τ

exp (−
t

τ
) (6.15)

The corresponding psychophysical behavior (4.13)is:

ψ = k log

(

1 +
βInM(1− exp (− t

τ
))n

tr

)

(6.16)

It is interesting to see that, in the limit of t→ 0, a Taylor expansion gives:

ψ ≈ k log

(

1 +
βInM
τ

tn−r
)

(6.17)

So that, when the exponent n of the psychophysical law is greater than the ex-
ponent r that leads the dynamic range adaptation, the sensation increases moving
from zero up to a maximum and then decreasing. Hence the firing rate behaves as
hypothesized in section (6.1.3) and depicted in figure (6.1). There a first train of
spikes, then a pause, and then a second train of spikes.

6.3 Summary

In this chapter the model developed in the thesis has been extended to time-varying
stimuli and to the addition of a spontaneous or resting activity. As a result, the
behavior of the firing rate corresponding to a stimulus that increases and then
becomes steady shows an initial burst, followed by a pause and then a longer train
of spikes that follow the static stimulation. A behavior that has been found in
several experiments.



Chapter 7

Discussion and conclusions

The main idea suggested in this thesis is that, if in an abstract model the process
of perception were described as a pattern in time, then its Hamiltonian could be
related to neurophysiological features. In particular, being the Hamiltonian the
energy possessed by the process, and hence needed to sustain it, it could be related
to metabolic or neurelectric features.

Hence, variational calculus, with a particular focus on the methods of analyt-
ical mechanics, has been applied to perception and psychophysics considering the
psychophysical law as the solution of an Euler-Lagrange equation. In particular,
the pattern followed by sensation during the psychophysical adaptation to a steady
stimulus has been chosen as the solution of the motion equation.

The Lagrangian function, (3.9), chosen in the third chapter to summarize the
system’s behavior while allowing to obtain the classical psychophysical laws, is
very simple: changes in sensation are described as a free particle motion with
a variable mass. In spite of its particular shape, this Lagrangian shows several
interesting properties: first of all, it is a sufficient but not a necessary condition;
second, its structure is needed by the Noether’s theorem to ensure the measurability
of the psychological continua on an interval scale; third, it depicts the process of
perception as a process layered over other processes and completely driven by them.
Finally, the energy of the system is not conserved.

This latter feature, in particular, since energy during the adaptation phe-
nomenon depletes in time, could be considered as a reduction of the metabolic costs
and be tentatively connected with neurophysiological aspects. For instance, spike
frequency adaptation in single units or depletion of the whole electrical activity in
afferent nerves are well known to parallel psychophysical adaptation, although in
general with different time-scales (Diamant et al. 1965; Greenspan and Bolanowski
1996). Similar results hold for the discharge rate of neurons populations.

Furthermore, the model describes sensation as an integration in time of the
energy, in a similar way that jnds are accumulated in psychophysics. In particu-
lar, the adaptation phenomenon behaves like a negative feedback: energy is used
as a suppressor integrator to reduce the amount of previously accumulated sensa-
tion. Moreover, changes in sensation during an interval of time obey a stationarity
principle, being the minimum or the maximum possible.

The knowledge of the shape of the energy then allows one to describe the sys-
tem’s behavior. As a working example in the fourth chapter an approximate shape
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for the energy has been modeled on the Naka-Rushton relation (Naka and Rush-
ton 1966) with the addition of some temporal features like spike frequency and
dynamic range adaptation (Wen et al. 2009). The resulting energy (4.14) has been
applied to a rough and simplified model of nerve fiber, showing some shortcomings
but also some interesting results. First, neural adaptation appears indeed to follow
an optimization principle: spikes frequency adaptation occurs minimizing the total
electrical activity, that is the system adapts using the minimum possible number
of action potentials. Second, the velocity of the signal in the nerve is constant in-
dependently on the frequency of the signal. Third, neural adaptation occurs faster
than psychophysical adaptation, and the electrical activity is used to reduce the
sensation like a negative feedback. In particular, since the variable mass of the sys-
tem becomes a measure of the inter-spike interval (ISI), spike frequency adaptation
becomes the physiological process that drives psychophysical adaptation. Fourth,
temporal adaptive features appear to link a saturating firing rate in primary af-
ferent units with a psychophysical response that can range from a power law to a
logarithmic law depending on the signal-to-noise ratio of the system. In particular,
the resulting psychophysical law (4.10) is a further generalization of a law proposed
by Delbouf and Helmoltz (Murray 1993) and derived by Norwich (1993) moving
from Shannon’s information entropy.

In chapter four the resulting equations for the psychophysical law (4.10) and
for the neural response (4.15) have been applied to data taken from literature on
the senses of touch and taste, with a particular focus on the former one. Touch can
indeed be considered the simplest sense and hence the more suitable to a treatise
that relates the energy of perception to the response of primary afferent units.

The results of the fitting suggests a good agreement of the model with the actual
data. In particular, the psychophysical and the neural exponents obtained with
the equations provided by the framework appear to be close to each other. This
is an interesting result, since in literature neural exponents obtained with a power
law are approximately the two third of the psychophysical law exponents obtained
with magnitude estimation method (Krueger 1989; Murray 1993; McKenna 1985)
but many authors (Stevens 1970; Barlow 1972) posited a linearity between them.

Other results of the model have been achieved in chapter five where, once
introduced the concept of energy-jnd that implies a limit in the resolution of the
perceiving systems, several empirical laws of psychophysics can be derived from
the fundamental equations of the framework. In detail, The Bloch-Charpentier’s
law (5.8) and its generalizations (as like the Weiss-Lapicque law for the excitability
of tissues), the Eikman’s law and a generalization of the classical jnd (5.19), the
Poulton-Teghtsoonian relation (5.24) between the extension of the perceptual range
and Stevens’ exponent; and finally a shape of the Weber fraction (5.22) capable of
accounting, with a quite good approximation, for the deviations at the extremes
of the perceiving range (a derivation of the Pieron law for simple reaction time is
also given in the Appendixes).

Finally, a possible extension of the model to time-varying stimuli has been
sketched in chapter six, leading to a preliminary result that could explain a quite
typical pattern of discharge: namely, strong burst during dynamic stimulation,
followed by a pause and then a longer and slower discharge pattern.

Nevertheless, notwithstanding the results achieved, it must be stressed that the
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model shows several shortcomings and limits to its application:

1. First of all, the choice of Lagrangian (3.9) in chapter three is in a certain way
arbitrary, since different Lagrangians can lead to the same motion equations
(yet generally showing different properties). In particular there is an entire
class of Lagrangians having similar properties, has it is stressed in the Ap-
pendixes. Moreover, it could be argued that Lagrangian (3.9) has its solution
already built into it, since once one has set the function m any psychophysical
law ψ can be derived. Possible answers to this argument has been given in
chapter three. In particular, the choice of the shape (3.9) has been based on
a parsimony principle: it is the simplest one that shows many features char-
acterizing perception. Most of all, it must be remarked that is a sufficient
and not a necessary condition, hence better choices could always be possible.

2. Second, energy (4.14), developed in chapter four, is just an approximation
built in a bulk condition in which adaptation is depleted to extinction and
spontaneous activity is not considered; thus, neither it accounts for any pos-
sible adaptation trend nor for any possible stimulus-response curve. In addi-
tion, it becomes singular taking the limits I0, t→ 0 thus revealing a limits of
the boundary conditions chosen.

3. Third, the assumptions made to introduce both spike frequency adaptation
and dynamic range adaptation into the Naka Rushton equation are rough
compared to the actual behavior of a nerve (Dean et al. 2005; Wen et al.
2009). Similarly rough can be considered the hypothesis (5.1) of a constant
energy-jnd introduced to limit the resolving power of the system. Yet the
stronger are these hypothesis the more interesting appears to be the quite
good fit obtained with actual data.

4. Fourth, but not less important, the hypothesis of linking the energy of the
nerve fiber’s electrical activity to the energy that underpins the psychophys-
ical response is a strongly debatable simplification, since it cuts away all
the processes between primary afferent units and the sensation that should
be based on the activity of populations of neurons. The latter, indeed, is
generally unrelated to the single neuron’s response, particularly when the
population is not homogeneous (Jakson 1974; Gerstner and Kistler 2002).
Furthermore, a similar hypothesis does not account for the presence of periph-
eral activity without a corresponding behavioral correlate (McKenna 1985)
or the diffusion of the neural code performed to minimize energy (Attwell
and Laughlin 2001). Nevertheless, at least for the sense of touch can be con-
sidered an acceptable approximation. Moreover, positing a proportionality
between psychophysical law and neurelectric response, as it has been done by
the sensory transducer theory (Stevens 1970) and the neuron doctrine (Bar-
low 1972), echoes the De Valois’s idea of a lower envelope or most sensitive

neuron, so that the system follows the channel with the highest signal-to-
noise ratio (Barlow 1972). This idea, sometimes in slightly different shapes,
has been proposed in various theories of conscious perception to solve the
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so-called binding problem. Moreover, it could be corroborated by the experi-
mental evidence that awareness seems to correlate with single-neuron activity
(Rees et al. 2002).

In conclusion, although the model exhibits several shortcomings that need to be
further investigate, and additional work is needed to encompass other behavioral or
neurelectrical laws, or to predict new phenomena, it appears fascinating that neural
and psychophysical laws could be related by the general and abstract principles of
variational calculus. Considering indeed the strong assumptions that have been
done, still this model of perception based on optimization assumptions gives a
good qualitative (and a discrete quantitative) description of both psychophysical
and neurelectric phenomena.



Appendix A

Stimulus as an independent

variable

In section (2.2.2) it has been suggested that a possible approach to the use of
Lagrangian in psychophysics could follow an equation like (2.12), considering the
psychophysical function as a function of the only stimulus intensity, ψ(I). The use
of variational calculus respect to the stimulus intensity I leads then to a Lagrangian
of the form L(ψ, ψ′, I) where ψ′ is the first derivative of ψ respect to I, with
associated Euler-Lagrange’s equation:

d

dI

∂L

∂ψ′
−
∂L

∂ψ
= 0 (A.1)

which solution is the psychophysical law itself ψ(I).
Then the conjugate momentum is defined as:

Π ≡
∂L

∂ψ′

for an Hamiltonian defined as H = Πψ′ − L, such that:







ψ′ = ∂H
∂Π

Π′ = −∂H
∂ψ

In particular, for classical psychophysics, in order to have the measurability of
the psychological continua on an interval scale we could ask, as in section (2.2.3),
for the Lagrangian to have a shape like:

L(ψ, ψ′, I) ≡ L(ψ′, ψ) (A.2)

So the simplest choice is similar to Lagrangian (3.9):

L(ψ′, I) =
1

2
m(I)ψ′ (A.3)
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It must be noticed however that Lagrangian (A.2) is a member of the general
class of Lagrangians with a shape like L(ψ′, I) = ψ′f(ψ′, I) where f(ψ′, I) is any
function of ψ′ and I. This class shares the fundamental result of the conservation
of momentum Π = f(ψ′, I) + ψ′ ∂f

∂ψ′
and has an Hamiltonian H = ψ′2 ∂f

∂ψ′
.

For instance, another member of the same class, that also gives the same Euler-
Lagrange equation, is: L(ψ′, I) = ψ′ log (m(I)ψ′) that curiously resembles the
Kullback-Lieber entropy. Obviously, different shape of f(ψ′) lead in general to
different trends of the energy.

Equation (A.2), in particular, gives for the Fechner law:

m(I) = I → ψ = log I → H =
1

I
(A.4)

while for Stevens’ law gives:

m(I) = I1−n → ψ =
In

n
→ H =

1

I1−n
(A.5)

and for the Delbouf-Helmoltz law:

m(I) =
1 + In

In−1
→ ψ = log (1 + In)→ H =

In−1

1 + In
(A.6)

the latter in particular is very interesting since dependending on the value of n
can describe different trends.

Finally, it is important to notice that a similar approach to the psychophysical
law does not always give the same results of the time approach used in the thesis.
In particular, the energy related to the Delbouf-Helmoltz energy is not a Naka
Rushton relation but a slight correction of it.

This suggests some interesting considerations: first, an approach completely
without time could be useful for studying those systems that do not show adaptive
phenomena. Hence, in those systems the relation between firing rate and sensation
could be completely different from the result obtained in the thesis where adaptive
phenomena play a fundamental role. Second, the absence of time can be considered
equivalent to a constant time situation. Hence, the approach just used can be seen
as a subcase of the time-varying stimulus approach depicted in chapter six: in
particular, it is equivalent to study the partial derivative ∂ψ

∂I
in equation (3.2), that

is the dependence of the system by the stimulus taking the time constant.



Appendix B

Deepenings on equation (3.9)

B.1 An equation for Fechner’s and Stevens’ laws

Extending to time Fechner’s and Stevens’ laws gives:

ψF = kF log h(t) , ψS = kSh(t)n

where h(t) ≡ h(I(t), t) generalizes the psychophysical law’s argument to be a
function of time.

It is straightforward to verify that the previous equations can be common so-
lutions to the same second order differential equation:

ψ̈ =

[

(n− 1)
ḣ

h
+
ḧ

ḣ

]

ψ̇ (B.1)

in particular, the Stevens’ solution can be obtained for any n > 0, while the
Fechner’s solution holds in the limit n → 0. Thus, the latter holds in the limit in
which the former becomes a constant since the exponent approaches zero (Krueger
1989). It is also important to stress that equation (B.1) is not the only equation
that gives either the Fechner law or the Stevens law as solutions, but it is the one
that gives both of them.

B.2 Derivation of equation (3.9)

Considering then as a general shape for the Lagrangian a linear combination of ψ
and ψ̇:

L(ψ, ψ̇, t) =
1

a
A(t)ψa +

1

b
B(t)ψ̇b

where a, b ∈ R
+, and the coefficients A(t) ≡ A(I(t), t) and B(t) ≡ B(I(t), t)

may in general depend on time and stimulus intensity. For such a Lagrangian the
associated Euler-Lagrange equation is:
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ψ̈ =
A(t)ψa−1

B(t)(b− 1)
ψ̇2−b −

Ḃ(t)

B(t)

ψ̇

b− 1
(B.2)

with b 6= 1 and B(t) 6= 0. Equations (B.1) and (B.2) are the same if the
coefficients:

A(t) = 0 , B(t) =

(

h1−n

ḣ

)b−1

, b 6= 1

Hence a generalization of Fechner’s and Steven’s law can be obtained by the
family of Lagrangians:

L =
1

b
B(t)ψ̇b

Applying Legendre’s transformation (3.8), Hamiltonian can be easily found and
rewritten in the state space coordinates (ψ, ψ̇):

H(ψ, ψ̇, t) = (
b− 1

b
)B(t)ψ̇b = (b− 1)L(ψ, ψ̇, t)

that actually is the Lagrangian unless of a scaling term. So, Hamiltonian and
Lagrangian appear to differ only for a ratio scaling term. Asking that H = L gives
without loss of generality b = 2. Renaming then B(t) = m(I(t), t) and considering
a steady stimulus situation I(t) ≡ I gives exactly the Lagrangian (3.9).

B.2.1 Other possible Lagrangians

It must be noticed that the absence of any dependence on ψ in the previous La-
grangian is equivalent to require a Lagrangian like L(ψ̇, t) in order to have the
measurability on interval scale of the sensation continuum, as stated by Noether’s
theorem. In addition, a more general solution for the Lagrangian could be searched
in the form of a power series like:

L(ψ̇) =
∑

k

ak(t)ψ̇
k

it is straightforward to see that, except for the term a0(t) that does not alter
the Lagrangian and is equivalent to the addition of a resting activity as discussed
in chapter six, the only surviving term in order to have equation (B.1), is a2(t)
corresponding to k = 2, that is the quadratic term previously used.

Obviously, a Lagrangian could be chosen among the transcendental functions.
For instance, as it has been already noticed in Appendix A, equation (3.9) can also
be given by any Lagrangians of the kind:

L(ψ̇, t) = ψ̇f(ψ̇, t) (B.3)



B.2. DERIVATION OF EQUATION (3.9) 103

where f(ψ̇, t) is any function of ψ̇ and t. This class shares the fundamental
result of the conservation of momentum:

Π = f(ψ̇, t) + ψ̇
∂f

∂ψ̇
(B.4)

and has an Hamiltonian:

H = ψ̇2 ∂f

∂ψ̇
(B.5)

For instance, a member of this class, that also gives the same Euler-Lagrange
equation of (3.9), is:

L(ψ̇, I) = |ψ̇| log |m(I, t)ψ̇| (B.6)

that resembles the Kullback-Lieber entropy. Obviously, different shape of f(ψ̇)
lead in general to different trends of the energy. Nevertheless, among all these
possibilities still equation (3.9) appear to be the simplest one.
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Appendix C

Model of nerve

Let us consider a very simplified model of nerve fiber approximated a by tube of
section πr2 and with a distance between the Ranvier nodes of dR.

Independently on the presence or absence of the adaptation phenomenon the
motion of a train of spikes is related to a liquid wave travelling inside the axon.
Indeed the spikes is generated by an exchange of ionic currents due to the action of
ion pumps (Kandel et al. 2000). In particular, since there’s a continuous exchange,
particularly at the Ranvier nodes, the resulting total density can be considered a
function of time. So the resulting density of kinetic energy can be written as:

ǫ(t) =
1

2
ρ(t)v2 (C.1)

where the velocity v is a constant and measures the velocity at which the
perturbation in the ionic density (that is the signal) is travelling.

On the other side, the energy (3.13) of the system can be rewritten as:

E =
1

2
m(I, t)ψ̇2 (C.2)

that, using the equivalences given in section (4.1.1), becomes:

E =
1

2

(

Π2

2hv
λ(I, t)

)(

2h

Π
f

)2

(C.3)

and simplifying:

E =
1

2

(

2h

vλ(I, t)

)

(λf)2 (C.4)

If now we consider that, with a steady stimulus impinging the system, there is
a wave of spikes with a defined frequency f(I, t) and wavelength λ(I, t), so that
the velocity can be written as v = λf , the previous equation becomes:

E =
1

2

(

2h

vλ(I, t)

)

v2 (C.5)
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Considering now that the greatest changes in ionic currents happens at the
Ranvier node (Kandel et al. 2000), we could consider as a rough approximation
the changes in density in a volume πr2dR, so that we have a density of energy of:

ǫ(t) =
1

2

(

2h

πr2dRvλ(I, t)

)

v2 (C.6)

Hence, if we consider the density of ionic currents given by:

ρ(t) ≡
2h

πr2dRvλ(I, t)
(C.7)

then equation (C.1) and the Hamiltoninan (3.13) are equivalent. In particular,
since definition (C.7) can be rewritten as:

λ(I, t) ≡
2h

πr2dRvρ(t)
(C.8)

hence changes in the wavelength are related to changes in the total density
of ionic currents, in particular λ increases if ρ(t) decreases. Adaptation indeed
occurs following the inactivation of Na+ or Ca2+ channels or the activation of K+

channels, thus reducing the density of ions inside the nerve (Kandel et al. 2000).
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Possible derivations of (4.4)

D.1 Norwich’s assumptions

A simplified model of the energy can be built on the base of two assumptions: first,
internal energy decreases with time in order to account for adaptation phenomenon;
second, internal energy is proportional to the probability that the sensory system
discriminates a signal intensity from the background noise (or a reference signal).
Given these assumptions the energy becomes:

E =
C

ta
σ2
S

σ2
S + σ2

R

where C is a constant with the physical dimension of an action, the variable
t ∈ T accounts for adaptation1, and the ratio between the standard deviations of
signal and noise accounts for the probability of discriminating signal from noise.

Following the same statistical assumptions made by Norwich (1993) the depen-
dencies on t ∈ T and I ∈ R

+ can be emphasized. In detail:

• The system draws samples of size N from the stimulus population, hence the
variance σ2

S can be replaced by the variance of the mean σ2
S/N .

• The sampling rate α is constant, so that N = αt.

• The relation between the signal’s standard deviation and its mean (corre-
sponding to the stimulus intensity) follows a common statistical mechanical
dependence (Jakson 1974; Huang 1987) of the order σ2

S ∝ In.

The resulting energy is:

E =
C

ta

σ2
S

N
σ2

S

N
+ σ2

R

→ E =
C

ta
βIn

t+ βIn

where β groups all the constants. The previous expression is exactly equation
(4.4) for r = 1. Indeed, relaxing Norwich’s second assumption to a non constant
sampling rate gives exactly (4.4). In particular, the shape of the psychophysical
law (4.13) found by Norwich (1993) corresponds to the choice a = r = 1.

1In this strong approximation perception is depleted to extinction.
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D.2 Fisher’s Information approach

An interesting field of physics, related to the calculus of variation, derives the
behavior of a system as a consequence of a variational requirement over a difference
in Fisher information entropy in the system (Frieden 1988). Fisher’s information
can indeed be considered a measure of the precision, that is the ability in estimate a
parameter, hence a difference in Fisher’s information entropy measures a transition
in which the knowledge about the system changes. Moving for instance from a state
s1 to a state s2, there is a transition in Fisher’s information, that is I1 → I2. The
behavior of the system derives from the requirements that δ(I2 − I1) = 0, that is
the change in Fisher’s entropy is an extremum.

Equation (4.4) can be derived from Fisher’s Information Entropy. Suppose
indeed that the initial state of a system is a gaussian noise, corresponding to a
Fisher’s information IN = 1

σ2
N

. Then the system is impinged by a gaussian external

stimulus and moves to a state of signal plus noise, that has an information entropy
IS+N = 1

σ2
S+N

. If the energy were related to these changes we could hypothesize:

E = C(IN − IS+N) = C(
1

σ2
N

−
1

σ2
S+N

)

that is:

E = C(
1

σ2
N

σ2
S

σ2
S + σ2

N

)

where C is just a proportionality constant. So, like in the previous derivation,
the ratio between the standard deviations of signal and noise accounts for the
probability of discriminating signal from noise. With very similar hypotheses of
those of Norwich (1993):

• The system draws samples of size N from the stimulus population, hence the
variance σ2

S can be replaced by the variance of the mean σ2
S/N .

• The sampling rate α is not constant, so that N = Rtτ .

• The noise increases in time following a power law: σ2
N = Ata and thus satis-

fying the I-theorem, dI
dt
≤ 0 (Frieden 1988).

• The relation between the signal’s standard deviation and its mean (corre-
sponding to the stimulus intensity) follows a common statistical mechanical
dependence (Jakson 1974; Huang 1987) of the order σ2

S = βIn.

We have:

E =
C

Ata
βIn

ARtτ+a + βIn

thus taking τ = r − a gives exactly equations (4.4).



Appendix E

Dimensional analysis

The choice (4.8) has been suggested by the following dimensional analysis:

[R] =
[I]n

[t]r
(E.1)

[E] ≈
[Π]2

[t]

[R][t]r[I]n

([R][t]r + [I]n)2
≈

[Π]2

[t]

[I]2n

[I]2n
≈

[Π]2

[t]
(E.2)

that imply for the conjugate momentum to have the dimension of an action:

[Π]2 = [E][t] = [A] (E.3)

then the modulating function has the dimension of a time:

[m] =
[A]

[E]
= [t] (E.4)

since it is a measure of the inter-spike interval.
In particular then a psychophysical continua is measured as a square root of an

action:

[ψ] =
[Π]

[m]
= [A]

1

2 (E.5)
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Appendix F

Derivation of equation (4.5)

The general form of the psychophysical function can be derived starting from:

ψ(I, t) = −
2

|Π|

∫

HP (I, t) dt

and using the shape of energy (4.14):

HP (I, t) =
(Π)2

2

Rtr−1(In − In0 )

(Rtr + In)(Rtr + In0 )

that leads to:

ψ(I, t) = −|Π|

∫

Rtr−1(In − In0 )

(Rtr + In)(Rtr + In0 )
dt

The integrand can be split into two parts:

ψ(I, t) = −|Π|

∫
(

In

ta(Rtr + In)
−

In0
ta(Rtr + In0 )

)

dt

that can furtherly decomposed in:

ψ(I, t) = −|Π|

∫
[(

1

ta
−

Rtr−a

Rtr + In

)

−

(

1

ta
−

Rtr−a

Rtr + In0

)]

dt

Simplifying the terms and switching signes:

ψ(I, t) = |Π|

∫
(

Rtr−a

Rtr + In
−

Rtr−a

Rtr + In0

)

dt

Collecting the dependence on a:

ψ(I, t) =
|Π|

r

∫

t1−a
(

Rrtr−1

Rtr + In
−

Rrtr−1

Rtr + In0

)

dt

that can be rewritten as:
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ψ(I, t) =
|Π|

r

∫

t1−a
[

d

dt
log (Rtr + In)−

d

dt
log (Rtr + In0 )

]

dt

and then:

ψ(I, t) =
|Π|

r

∫

t1−a
d

dt
log

(

Rtr + In

Rtr + In0

)

dt

Integrating by parts:

ψ(I, t) =
|Π|

r

[

t1−a log

(

Rtr + In

Rtr + In0

)

−

∫

1− a

ta
log

(

Rtr + In

Rtr + In0

)

dt

]

If now a = 1 we have psychophysical law (4.10):

ψ(I, t) =
|Π|

r
log

(

Rtr + In

Rtr + In0

)

Whereas, if a > 1 or if 0 < a < 1 the solution becomes really tangled. In our
opinion this is a very interesting results since it implies that, the psychophysical law
(4.10) can be obtained only when the exponent of the spike frequency adaptation
is a = 1, that is, pure classical adaptation is the fundamental scale of the system
and leads the trend of perception.



Appendix G

Derivation of Pieron’s law

As it has already been stressed in section (5.1.1), in a mechanical statistical treatise
the number of states that are equivalent, since they possess an energy between E
and E + ∆E, is measured by the entropy S that is defined as a measure of the
volume occupied by the states in the phase space Γ (Huang 1987). Given then the
volume of those states with Hamiltonian in between E,E + ∆E:

V(E) =

∫

E≤H≤E+∆E

dψdΠ (G.1)

the entropy is defined as:

S(E) ≡ k logV(E) (G.2)

In particular, for the choice of Hamiltonian (3.13) it can be seen that:

S(I, t) = k log

(

2Rψm(I, t)

π
(2∆E)

1

2

)

(G.3)

where Rψ is the range spanned over the psychological continuum and m(I, t) is
the modulating function defined in section (3.4). In particular, using now approx-
imation (5.1) on the energy-jnds:

S(I, t) = k log

(

2Rψ(2ǫ)
1

2

π
m(I, t)

)

(G.4)

if now, for sake of simplicity we consider the limit I0 → 0 in the energy equation
(4.14), we can write:

S(I, t) = k log

(

C
t(Rtr + In)

In

)

(G.5)

where C collects all the constants. It is interesting to notice that, in the limit
I → 0 the energy becomes very small while the entropy increases since in the
same volume there can be more states. Instead, in the limit I → ∞ the entropy
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decreases, so that the higher the stimulus intensity the lower the number of states
in the phase space. This sounds sensible if reaction time measures the time needed
to span the phase space in order to identify the stimulus: higher stimuli intensity
require less time to be recognized. Furthermore, it must be noticed that entropy
increases as t increases, so that psychophysical adaptation can be considered like
a blurring of sensation. In particular, the minimum entropy is given in the limit
I →∞:

lim
I→∞

S(I, t) = k log (Ct) = S∞ (G.6)

Now, since we are considering simple reaction times the system does not have
time to adapt, so that we can take the limit t→ 0:

lim
t→0

S(I, t) = lim
t→0

k log

(

C
t(Rtr + In)

In

)

= ...

... = lim
t→0

k log (Ct) + k log

(

1 +
Rtr

In

)

≈ S∞ +
Rtr

In

The velocity of the span mechanism of the states must be faster than the velocity
at which the entropy increases for the adaptation phenomenon, otherwise it would
be impossible to resolve a state. In particular, we should expect adaptation to
cease at a value τ lower than the simple reaction time tR since the latter has to
account for the travel delay of the signal along nerves and neural pathways. In
particular, the entropy SR to which the system reacts can be approximated with:

SR(I, τ) ≈ S∞ +
Rτ r

In
(G.7)

where τ is then related to the maximum growth of the entropy and, at a first
approximation, can be considered a constant (in such a way S∞ is also constant).

Finally, since the reaction time should be in proportion to the space that has
to be spanned, calling t∞ the time needed to span the volume S∞, we have:

tR : SR(I, τ) = t∞ : S∞ (G.8)

that implies:

tR = t∞
SR(I, τ)

S∞

= t∞ +
t∞Rτ

r

S∞In
(G.9)

collecting all the constants t∞, τ, R and S∞ gives:

tR = t∞ +
C∞

In
(G.10)

that is the Pieron Law for the simple reaction times.
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