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Abstract

The experimental determination of flavor parameters (mass values, mixing angles and

phases) suffer, in the lepton sector, from large uncertainties. Moreover, the ground on

which theoretical models are built is not firm and although we have several clues to guide

us toward the solution of the puzzle, no approach can be considered conclusive up to now.

The situation gets more complicated by the fact that many theoretical constructions pre-

dict correctly many features of neutrino oscillation, but we still lack enough experimental

sensitivity to discriminate among them, to refute the wrong and identify the best candi-

dates to describe how nature works. Some of the most useful and popular tools to try to

solve the flavor puzzle are the discrete symmetry groups. In this thesis we will deal with

three distinct aspects of the current theoretical research on neutrino physics and discrete

flavor symmetries. We will explicitly construct a model based on the discrete group A5

in order to explain neutrino mixing. Phenomenological consequences will be discussed

at the Leading and Next-to- Leading order, while special emphasis will be put on the

naturalness of the vacuum alignment that spontaneously breaks the symmetry.

We will analyze the phenomenology of flavor models beyond the neutrino sector: in

particular, rare decays of the muon and the tau will be discussed in models based on the

symmetry group A4 × Z3 × U(1) and realized at a high-energy scale, both in a frame-

independent way and in a particular supersymmetric realization. Moreover, we will con-

sider models in which the flavor scale coincides with the electroweak scale and more than

one Higgs fields are present and charged under a generic discrete flavor group. In this case,

the constraints come from the Higgs phenomenology and the search for flavor violation.

Finally, we will consider the effects of including a model for neutrinos in a larger and

more realistic framework, adding Supersymmetry and the Seesaw mechanism. One of the

key test is to check if the high-energy predictions of a given flavor model are stable against

quantum corrections of the renormalization group. We will show general results applying

to a broad class of textures called mass-independent; as an explicit example of this class,

we will pick the Tribimaximal realization of the Altarelli-Feruglio model.





Riassunto della Tesi

Da un punto di vista sperimentale i parametri della fisica del sapore (valori delle

masse, angoli di mescolamento e fasi) mostrano ancora larghe bande di incertezza, spe-

cialmente nel settore dei leptoni. Inoltre, la base sulla quale i modelli teorici vengono

costruiti non ancora solida e nessun approccio puó dichiararsi definitivo nonostante i

numerosi indizi che ci possono guidare verso la soluzione del problema. La situazione é

resa piú complicata dal fatto che molti modelli riproducono correttamente l’oscillazione

dei neutrini, ma non si possiede ancora sufficiente sensitivitá sperimentale per separare

quelli sbagliati dai candidati piú plausibili per descrivere il meccanismo che la natura ha

adottato. I gruppi di simmetria discreti sono fra gli strumenti pi utili e popolari nel tenta-

tivo di risolvere il problema del sapore. In questa tesi ci occuperemo di tre distinti aspetti

appartenenti alla ricerca teorica sulla fisica dei neutrini e sui gruppi di sapore discreti.

Costruiremo esplicitamente un modello basato sul gruppo di simmetria discreto A5 che

spieghi il mescolamento dei neutrini. Si studieranno le conseguenze fenomenologiche per i

due ordini perturbativi piú bassi, sottolineando in particolare come i valori di aspettazione

sul vuoto che rompono spontaneamnete la simmetria compaiono in modo naturale.

Analizzeremo poi alcuni modelli di sapore al di fuori dell’oscillazione dei neutrini: in

particolare discuteremo decadimenti rari delle particelle µ e τ in modelli di sapore basati

sul gruppo di simmetria A4×Z3×U(1). I decadimenti verranno discussi sia senza speci-

ficare una teoria generale che in un contesto supersimmetrico. Passeremo poi ad esempi

in cui la scala della fisica del sapore é fatta coincidere con la scala elettrodebole ed in cui

piú campi di Higgs, carichi essi stessi sotto il gruppo di sapore, sono presenti. In questo

caso Per concludere, verranno studiati gli effetti nell’incluedere un modello di sapore

all’interno di una teoria piú ampia e realistica, ovvero aggiungendo la Supersimmetria e

il cosiddetto meccanismo di Seesaw. Uno dei punti chiave é la verifica che le predizioni di

un dato modello, valide ad alte energie, non vengano rovinate dalle correzioni quantistiche

causate dal gruppo di rinormalizzazione. Mostreremo dei risultati generali che si appli-

cano ad un’ampia classe di schemi detti indipendenti dalle masse (mass-independant):

come esempio esplicito sceglieremo lo schema tribimassimale implementato nel modello

di Altarelli e Feruglio.
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Introduction and Outline

Despite the amazing experimental effort that has confirmed its many features and

predictions, it is a spread belief that the Standard Model is somehow incomplete, or even

a simple effective theory of a more general physical framework. There are many theoretical

reasons that seem to support this view, but before the discovery of neutrino oscillations

there were no serious experimental argument to confirm it.

Neutrino oscillation requires that neutrinos have mass, and this requirement obliges us

to modify, even only in a minimal way, the particle content of the SM and the correspond-

ing Lagrangian. Although the excitement about opening a windows to new physics, the

discovery of oscillating neutrinos made the flavor sector of the SM even more complicated

than before: it added to the ten parameters of quark mixing (six mass eigenvalues, three

angles and a CP phase) ten or twelve parameters describing the lepton mixing, depending

on the Dirac or Majorana nature of neutrinos. But the biggest surprise was that leptons

mix in a very different way with respect to quarks. In fact, the former show two large

angles and one angle which, given our current knowledge, could be vanishing or is, in any

case, very small; the latter show instead three small angles, whose order of magnitude can

be express as powers of the Cabibbo angle λ ∼ 0.22.

After a decade of efforts, we know now that the angle that measure the atmospheric

oscillations is large, possibly maximal. The solar angle has the smallest uncertainties, it

is not maximal, and its particular value is a fundamental hint, as we will see many times

in this work, for model-building. Finally, the reactor angle is bounded by an upper limit,

while its value is still compatible with zero [1–3].

What we do not know about neutrinos is maybe more than what we learned. The

reactor angle is still unmeasured; due to the smallness of θ13 we have no clue on the size of

CP violation in the lepton sector; we ignore the absolute value of neutrino mass, although

beta-decay experiments and cosmology bound it from above, and the hierarchy of the

spectrum; we can not answer the fundamental question whether neutrinos are Dirac or

Majorana particles. However, this lack of data did not prevent physicists to build models

able to fit the empirical evidences. In particular, symmetry is a powerful tool to explore

the flavor problem from a theoretical point of view. Of course, the field of symmetries

is ample: they can be global or local, Abelian or non-Abelian, discrete or continuous.

In this work we will focus on the class of discrete non-Abelian theories, which is a very

popular setup to describe neutrino mixing. The original reason of this popularity is the

fact that large mixing angles point directly toward discrete rotations, as exemplified by

the symmetry of solids.
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The differences among quarks and leptons suggest that different symmetries may act

on different particles. It is a common prejudice, however, that at some high scale their

description is unified. As a consequence, many efforts have been put to find a symmetry

that fits both sectors. In this work, we forget about this issue and focus mainly on models

and phenomenologies of leptons.

Before moving on to concrete realization of these ideas, it is important to stress that a

maximal atmospheric angle is unachievable with an exact symmetry. Then one is forced to

study models where the symmetry is broken either explicitly or spontaneously. The task

of model-building should then consist in discovering a natural way to explain neutrino

mixing and to produce the desired breaking. There are two main paths to implement

a discrete symmetry with a correct breaking in the flavor sector: the first, which is the

most explored, is to build a model where the symmetry is realized at a very high energy

(possibly a scale of Grand Unification) and a completely new set of scalar degrees of

freedom, called flavons, acquires vacuum expectation values (VEVs). The mixing texture

is then realized by a hidden sector, whose consequences can be discovered in some related

low-energy observables; in the second, the flavor scale coincides with the Electroweak scale,

more than one Higgs are present and they usually belong to a non-trivial representation

of the symmetry. This second approach has the advantage to need less new degrees of

freedom, and to offer, perhaps, the chance of observing some direct evidences at LHC; on

the other hand, it is in general less predictive and need a good dose of fine-tuning of the

parameters, while the Higgs phenomenology has to be analyzed carefully not to find it

theoretically and empirically inconsistent. Moreover, it is easier to find a correct vacuum

alignment in the latter case, because usually it is sufficient to break the symmetry in one

direction only to accommodate both charged leptons and neutrinos, while the flavon case

usually needs two different vacuum breaking directions and the task to obtain them in a

natural way is more difficult.

Regarding the last point, working in the Minimal Supersymmetric Standard Model

(MSSM) helps to reach the goal. Due to the holonomicity of the superpotential it is

possible to break the symmetry into two subgroups, denoted as Gl and Gν , which rule

charged leptons and neutrinos, respectively. We must stress, however, that in most cases

the chosen discrete symmetry is not enough: additional constraints coming from Zn or

U(1) groups are necessary and implemented in most of the models. Their function is to

forbid operators that, if included in the Lagrangian, would spoil the desired predictions,

or to give some extra-details of the model, as the hierarchy among charged lepton masses,

that can not be obtained through the starting symmetry alone.

After showing three textures for neutrino oscillations that fall in the broader class

satisfying µ− τ symmetry (namely Tribimaximal, Bimaximal and Golden Ratio textures)

we focus on the Golden Ratio prediction for the solar angle and build a complete model

to obtain it [4]. Our setup is based on the group A5 × Z5 × Z3. We discuss at the

Leading Order the vacuum alignment derived by the minimization of the most general

superpotential built out of the flavon fields and invariant under our symmetry. There

are a finite number of solutions: one of them lead straightforwardly to the Golden Ratio

pattern. We discuss the spectrum of neutrinos and deduce that it is compatible with both
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normal and inverted hierarchy. We discuss the Next-to-Leading-Order corrections, find

them to be under control and plot the corrected values of the solar and reactor angles. Our

results show that even in the presence of higher-order corrections the predicted reactor

angle remains far below the current and future experimental sensitivity.

Since many models correctly reproduce the features of neutrino oscillations, there

must be an alternative way to distinguish among them and to rule out those that are

incorrect. For this reason it is important to draw the effects of one’s model beyond the

neutrino sector and to verify if it remains viable even if included in a larger and more

realistic theoretical frame, like adding the Seesaw mechanism or Supersymmetry. The

flavon realizations, in fact, lay at high-energy, while the low-energy observables are at the

electroweak scale: the picture obtained by imposing a flavor symmetry is then modified

by the renormalization group equations. The running between the two scales is different

if you consider an effective theory for neutrino mass or if we include Seesaw, if we work in

the Standard Model or in the MSSM. We chose to discuss the evolution of flavor models

with the type I Seesaw, both in the SM and in the MSSM [5]. We find some general results

valid for the so-called mass-independent textures, to which the Tribimaximal, Bimaximal

and Golden Ratio textures belong. As an example, we analyze in details the effects on

the Altarelli-Feruglio model [6], a Tribimaximal realization based on the symmetry group

A4 × Z3 × U(1).

The same group is the topic of another part of this thesis, in which lepton flavor

violating processes are discussed [9]. First, we organize the operators that cause flavor

violation according to their particle content, in an effective, model-independent frame. We

demonstrate that the allowed processes satisfy a selection rule, that excludes, in particular,

radiative decays. After that, the Altarelli-Feruglio model is considered. The fact that this

model is supersymmetric changes in a drastic way the predictions of the effective case,

allows to avoid the aforementioned selection rule and modifies the branching ratios of the

decays.

Finally, we will deal with models in which the flavor symmetry is realized at the elec-

troweak energy scale [10,11]. In this class of models, there are usually more copies of the

Higgs field and they are charged under a symmetry group. The connection between the

electroweak and the flavor symmetry breaking opens the door to new effects that provide

constraints to the theoretical building. They come in particular from Higgs phenomenol-

ogy (perturbative unitarity, Z and W decays etc.) and from flavor violation processes.

After developing a general formalism to constrain, we will apply it to three distinct models

present in literature.

The thesis is organized as follows. In the first chapter we fix the notation and review

some aspects of the Standard model and its possible extensions. The mechanism to give

mass to neutrinos is discussed, along with a brief report of the experimental data on flavor

physics and neutrino oscillation in particular. The chapter also includes a summary of

the features of Supersymmetry and of the MSSM. Chapter 2 presents the flavor puzzle

and suggests non-Abelian discrete symmetries as an useful tool to investigate it. After a

list of three mass-independent textures for neutrino oscillation, Tribimaximal, Bimaximal

and Golden Ratio, the Altarelli-Feruglio model is reported in full detail. In Chapter 3

VII



we show a natural model for the Golden Ratio prediction based on the discrete group

A5. In the fourth chapter, renormalization group equations are reported and applied

to Seesaw models based on discrete-symmetries. The general case of mass-independent

textures is analyzed, while a concrete example of the effects of running is given by the

Altarelli-Feruglio model. In Chapter 5 we discuss rare decays of muon and tau particles

in models based on A4 × Z3 × U(1). Again, the Altarelli-Feruglio paper provides us a

concrete realization. Finally, in Chapter 6 we deal with a multi-Higgs flavor symmetry

based on A4. After a general discussion on the different sources of constraints, we apply

it to three model by Ma, Morisi-Peinado and Lavoura-Kuhbock.
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Chapter 1

The Standard Model and Beyond

1.1 The Standard Model and the Neutrino Masses

The interactions of what we call fundamental particles are described by the Standard

Model of particle physics [12]. In its mathematical form, the Standard Model is a quantum

field theory in a four-dimensional Minkowski space, whose Lagrangian is invariant under

the gauge group SU(3)c × SU(2)L × U(1)Y . The first group, SU(3)c, describes quantum

chromodynamics, the theory of strong interactions of colored particles, such as gluons and

quarks. The SU(2)L × U(1)Y term is the group of the electroweak force, which describes

the behavior of the weak gauge bosons, W+, W− and Z0, as well as the electromagnetic

one, the photon γ, in their mutual interactions and in the presence of fermions.

The constituents of matter are leptons and quarks, which transform as four-component

Dirac spinors under the Lorentz group. Using the Weyl or chiral representation of the

Lorentz group, in which the γµ have vanishing 2 × 2 block diagonal components, it is

possible to define Dirac spinors Ψ as the sum of two two-components Weyl spinors with

opposite chirality

Ψ =

(
ΨL

ΨR

)
. (1.1)

Each of these new spinors belongs to a different representation of the Standard Model. If

the left- and right-handed Weyl spinors of a Dirac spinor satisfy ΨL = iσ2∗Ψ∗R, then the

four-component spinor is called Majorana spinor and the two parts are equivalent.

In this work we will mainly adopt another notation: we consider a basis in which

all the fields are left-handed and therefore Ψ refers to the true left-handed component

and Ψc to the charge conjugate of the right-handed part. Using this convention, we

clarify the equivalence between the two- and the four-component notations. For example

e (ec) denotes the left-handed (right-handed) component of the electron field. In terms

of the four-component spinor ψTe = (e, ec), the bilinears e σνe and ecσνec correspond to

ψeγ
νPLψe and ψeγ

νPRψe (where PL,R = 1
2
(1∓γ5)) respectively. We take σµ ≡ (1, ~σ), σµ ≡

(1,−~σ), σµν ≡ 1
4
(σµσν − σνσµ), σµν ≡ 1

4
(σµσν − σνσµ) and gµν = diag(+1,−1,−1,−1),

where ~σ = (σ1, σ2, σ3) are the 2× 2 Pauli matrices:

σ1 =

(
0 1

1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0

0 −1

)
. (1.2)

1



2 Chapter 1. The Standard Model and Beyond

Leptons and quarks are present in three generations or families and each of them

includes four left-handed SU(2)L-doublets, one in the lepton sector, ` = (ν, e), and three

in the quark sector, q = (u, d), and seven right-handed SU(2)L-singlets, the charged

lepton ec and the up- and down-quarks uc and dc. The symmetry charge assignments of

one such family under the Standard Model gauge group are displayed in Table 1.1, along

with the symmetry assignments of the Higgs boson H = (H+, H0). The electric charge

is given by Qem = T3L + Y , where T3L is the weak isospin and Y the hypercharge.

` ec q uc dc H

SU(3)c 1 1 3 3 3 1

SU(2)L 2 1 2 1 1 2

U(1)Y −1/2 +1 +1/6 −2/3 +1/3 +1/2

Table 1.1: Charge assignments of leptons, quarks and the Higgs field under the Standard Model gauge

group.

The fermion assignments are such that the SM results anomaly-free and the gauge

group symmetry of the Lagrangian is preserved at the quantum level. The most general

SU(3)c × SU(2)L × U(1)Y gauge invariant renormalizable Lagrangian density can be

written as follows:

LSM = LK + LY + V , (1.3)

where LK contains the kinetic terms and the gauge interactions for fermions and bosons,

while LY referees to the fermion Yukawa terms and V is the scalar potential. The Yukawa

Lagrangian can be written as

LY = (Ye)ij e
c
iH
†`j + (Yd)ij d

c
iH
†qj + (Yu)ij u

c
iH̃
†qj + h.c. (1.4)

where H̃ ≡ iσ2H∗. The Standard Model gauge group prevents direct fermion mass terms

in the Lagrangian. However, it is customary to account for the mass of fermions and of

the gauge bosons W± and Z to a unique mechanism, the Higgs spontaneous symmetry

breaking. When the neutral component of the Higgs field acquires a non-vanishing vacuum

expectation value (VEV), 〈H0〉 = v/
√

2 with v ' 246 GeV, the electroweak symmetry is

spontaneously broken,

SU(2)L × U(1)Y −→ U(1)em , (1.5)

and as a result all the fermions, apart from neutrinos, acquire non-vanishing masses:

LY = (Mu)u
c
iuj + (Md)ij d

c
idj + (Me)ij e

c
iej where Mi = Yi

v√
2
. (1.6)

However, the experimental observation of the past two decades have undoubtedly

confirmed the oscillation of neutrinos among different families [1]. From the point of view
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of quantum theory, this phenomenon is possible if neutrinos have non-vanishing masses.

However, the SM lacks the mechanism to give mass to neutrinos and this fact suggest the

need to extend it. The minimal variation consists in the introduction of a set of right-

handed neutrinos, νc, which transform under the gauge group of the Standard Model as

(1, 1, 0), i.e. they do not have any interactions with the vector bosons. In this way, it is

possible to construct a Yukawa term for neutrinos similar to the up-quark Yukawa:

(Yν)ij ν
c
i H̃
†`j + h.c. (1.7)

which in the electroweak symmetry broken phase becomes a neutrino Dirac mass term

(mν)ij ν
c
i νj where mν = Yν

v√
2
. (1.8)

According to the observations, mν ∼ 0.1 eV and as a consequence it requires that Yν ∼
10−12, which does not find any natural explanation.

An alternative minimal extension of the Standard Model consists in assuming the

explicit violation of the accidental global symmetry L, the lepton number, at a very high

energy scale, ΛL. It is then possible to write the Weinberg operator [13], a five-dimensional

non-renormalizable term suppressed by ΛL:

O5 =
1

2
(Yν)ij

(`iH̃
∗) (H̃†`j)

ΛL

. (1.9)

When the Higgs field develops the VEV, this produces a neutrino Majorana mass term

(mν)ijνiνj where mν = Yν
v2

4ΛL

. (1.10)

Considering again an average value for the neutrino masses of the order of 0.1 eV, it

implies that ΛL can reach 1014÷15 GeV, for (Yν)ij = O(1). Once we accept explicit lepton

number violation, we gain an elegant explanation for the lightness of neutrinos as they

turn out to be inversely proportional to the large scale where lepton number is violated.

1.1.1 The See-Saw Mechanism

Three different high scale renormalizable interactions have been proposed to account

for the violation of the lepton number and the smallness of neutrino masses. They are

known as the See-saw mechanisms, because the heaviest the new degrees of freedom are,

the lightest the left-handed neutrinos become. Neutrino mass is generated by the tree-

level exchange of three different types of new particles: right-handed neutrinos, fermion

SU(2)L-triplets and scalar SU(2)L-triplets. We explain in the following how Type I See-

saw [14], based on the introduction of right-handed neutrinos, works.

The presence of new fermions with no gauge interactions, which play the role of right-

handed neutrinos, is quite plausible because any grand unified theory (GUT) group larger

than SU(5) requires them: for example, νc complete the representation 16 of SO(10).
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As already anticipated they have a Dirac Yukawa interaction Yν with the left-handed

neutrinos. Assuming explicit lepton number violation a second term appears, a Majorana

mass MR: the Lagrangian can then be written as

Ltype I = (Yν )ijν
c
i H̃
†`j +

1

2
(MR )ijν

c
i ν

c
j + h.c. . (1.11)

Yν and MR are 3×3 matrices in the flavor space: MR is symmetric and is usually associated

with a high-energy scale Λ, while Yν is in general non hermitian and non symmetric. The

Dirac mass term originates through the Higgs mechanism as in eq. (1.8). On the other

hand, the Majorana mass term is SU(3) × SU(2)L × U(1)Y invariant and therefore the

Majorana masses are unprotected and naturally of the order of the cutoff of the low-energy

theory. The full neutrino mass matrix is a 6× 6 mass matrix in the flavor space and can

be written as

Mν =

( ν νc

ν 0 mT
D

νc mD MR

)
, (1.12)

where mD = Yν v/
√

2. By block-diagonalizing Mν , the light neutrino mass matrix is

obtained as

mν = −mT
DM

−1
R mD . (1.13)

This is the well known type I See-Saw Mechanism: the light neutrino masses are quadratic

in the Dirac masses and inversely proportional to the large Majorana ones, justifying the

lightness of the left-handed neutrinos.

This construction holds true for any number of heavy νc coupled to the three known

light neutrinos. In the case of only two νc, one light neutrino remains massless, which is

a possibility not excluded by the present data.

1.2 The Physical Basis and the Mixing Matrices

If we simply assume that the lepton number is explicitly violated, when the electroweak

symmetry is broken all fermions develop a mass term:

Lmass = (Mu)u
c
iuj + (Md)ij d

c
idj + (Me)ij e

c
iej +

1

2
(mν)ijνiνj , (1.14)

where Mi and mν are 3 × 3 mass matrices in the flavor space. Counting the number of

free parameters, there are nine complex entries for each mass matrix, apart for mν which

is symmetric and owns only six. To reduce this amount, we can move to the physical

basis in which the kinetic terms are canonical and all the mass matrices are diagonal.

In this basis also the Yukawa coupling matrices are diagonal and therefore there is no

tree-level flavor changing currents mediated by the neutral Higgs boson. This feature is

in general lost extending the Standard Model by introducing multiple Higgs doublets or

extra fermions.
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We make unitary transformations on the fermions in the family space in order to move

to the physical basis. Unitarity of these matrices ensures that the kinetic terms remain

canonical. Specifically, we define Vu, uc, d, dc and Ue, ec, ν such that the transformations

produce the following diagonal matrices:

V †ucMu Vu = diag(mu, mc, mt) , V †dcMd Vd = diag(md, ms, mb) ,

U †ecMe Ue = diag(me, mµ, mτ ) , UT
ν mν Uν = diag(m1, m2, m3) .

(1.15)

Moving to the physical basis, the unitary matrices Vi and Ui should enter into all the

fermion interactions. As already noted, the associated transformations bring the Yukawa

couplings of fermions with the Higgs boson in the diagonal form. After these rotations

the couplings of fermions to the Z0 boson and to the photon remain diagonal, as well.

It follows that in the Standard Model flavor is conserved by the tree-level exchange of

neutral bosons. The charged current interactions are brought in a non-diagonal form:

considering for simplicity only the negative charged current J−µ , we see that

J−µ = νγµe+ uγµd −→ νγµU
†
νUee+ uγµV

†
uVdd . (1.16)

The products of the diagonalizing unitary matrices are defined as the mixing matrices for

leptons, the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [15], and for quarks, the

Cabibbo-Kobayashi-Maskawa (CKM) matrix [16,17], respectively:

U = U †eUν and V = V †uVd . (1.17)

As the product of two unitary matrices, U and V are unitary as well. As said, before, a

3 × 3 unitary matrix has nine complex independent parameters. It is possible to absorb

some of them through a redefinition of the fermion fields such that only three angles and

one phase are left (1+2 phases if neutrinos are Majorana particles). The angles rule the

mixing between the flavor eigenstates and the phases are responsible for CP violation.

The standard parametrization of the CKM and PMNS matrices are in terms of the angles

θ12, θ13 and θ23 and of the phase δ:

V =

 1 0 0

0 c23 s23

0 −s23 c23

 ·
 c13 0 s13e

−iδ

0 1 0

−s13e
iδ 0 c13

 ·
 c12 s12 0

−s12 c12 0

0 0 1



=

 c12c13 c13s12 s13e
−iδ

−c23s12 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ c13s23

s12s23 − c12c23s13e
iδ −c12s23 − c23s12s13e

iδ c13c23

 ,

(1.18)

where cij and sij stand for cos θij and sin θij (with 0 ≤ θij ≤ π/2), respectively, and

the Dirac CP-violating phase lies in the range 0 ≤ δ < 2π. This notation has various

advantages: the rotation angles are defined and labeled in a way which is related to the

mixing of two specific generations; as a result if one of these angles vanishes, so does the
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mixing between the two respective generations. Moreover in the limit θ23 = θ13 = 0 the

third generation decouples and the situation reduces to the usual Cabibbo mixing of the

first two generations with sin θ12 identified to the Cabibbo angle [16].

The standard parametrization of the lepton mixing is similar to eq. (1.18): we can

write the PMNS matrix as the product of four parts

U = R23(θ23) ·R13(θ13, δ) ·R12(θ12) · P

=

 c12c13 c13s12 s13e
−iδ

−c23s12 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ c13s23

s12s23 − c12c23s13e
iδ −c12s23 − c23s12s13e

iδ c13c23

 · P ,
(1.19)

where P is the matrix of the Majorana phases P = diag(eiϕ1/2, eiϕ2/2, 1), cij and sij
represent cos θij and sin θij, respectively, and δ is the Dirac CP-violating phase. Angles

and phases have well defined ranges: 0 ≤ θ12, θ23, θ13 ≤
π

2
and 0 ≤ δ, ϕ1, ϕ2 < 2π.

Majorana phases are not present in eq. (1.19) if total lepton number is conserved.

In analytical and numerical analysis, quark and lepton mixing matrices are not in the

standard form as in eqs. (1.18, 1.19) but it is possible to recover the mixing angles θij and

the phases δ, ϕ1 and ϕ2 through the following procedure. Denoting the generic mixing

matrix as W , the mixing angles are given by

sin θ13 = |W13| , tan θ12 =

( |W12|
|W11|

)
, tan θ23 =

( |W23|
|W33|

)
, (1.20)

if |W11| (|W33|) is non-vanishing, otherwise θ12 (θ23) is equal to π/2. For the Dirac CP-

violating phase we use the relation

W ∗
iiWijWjiW

∗
jj = c12 c

2
13 c23 s13

(
e−iδ s12 s23 − c12 c23 s13

)
(1.21)

which holds for i, j ∈ {1, 2, 3} and i 6= j. Then the phase δ is given by

δ = − arg


W ∗
iiWijWjiW

∗
jj

c12 c2
13 c23 s13

+ c12 c23 s13

s12 s23

 (1.22)

where i, j ∈ {1, 2, 3} and i 6= j. An additional parameter, the Jarlskog invariant [18]

which measures the amount of the CP violation is defined as:

JCP =
1

2
|Im(W ∗

11W12W21W
∗
22)| =

1

2
|Im(W ∗

11W13W31W
∗
33)|

=
1

2
|Im(W ∗

22W23W32W
∗
33)| =

1

2

∣∣c12 c
2
13 c23 sin δ s12 s13 s23

∣∣ . (1.23)

To conclude the Majorana phases, that are present only in the lepton mixing matrix, are

given by

ϕ1 = 2 arg(eiδe U∗11) , ϕ2 = 2 arg(eiδe U∗12) , (1.24)

where δe = arg(eiδW13).
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1.2.1 Experimental Data and Prospects

Experimentally, the CKM matrix has well defined entries [19]: a fit on the data,

considering the unitary conditions, gives the following results,

|V | =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb



=


0.97428± 0.00015 0.2253± 0.0007 0.00347+0.00016

−0.00012

0.2252± 0.0007 0.97345+0.00015
−0.00016 0.0410+0.0011

−0.0007

0.00862+0.00026
−0.00020 0.0403+0.0011

−0.0007 0.999152+0.000030
−0.000045

 .

(1.25)

Making use of the standard parametrization, it is possible to extract the values of the

quark mixing angles: in terms of sin θij we naively have

sin θ12 ' 0.2253 , sin θ23 ' 0.0410 , sin θ13 ' 0.0035 . (1.26)

In the same way it is possible to recover the phase-convention-independent JCP and the

result of the data fit is

JCP = (2.91+0.19
−0.11)× 10−5 . (1.27)

A convenient summary of the neutrino oscillation data is given in Table 1.2. The pat-

tern of the mixing is characterized by two large angles and a small one: θ23 is compatible

with a maximal value, but the accuracy admits relatively large deviations; θ12 is large,

but about 5σ far from the maximal value; θ13 has only an upper bound. According to the

type of the experiments which measured them, the mixing angle θ23 is called atmospheric,

θ12 solar and θ13 reactor. We underline that there is a tension among the two global fits

presented in Table 1.2 on the central value of the reactor angle: in [2] we can read a

suggestion for a positive value of sin2 θ13 ' 0.016 ± 0.010 [1.6σ], while in [3] a best fit

value consistent with zero within less than 1σ is found.

It is interesting to note that the large lepton mixing angles contrast with the small

angles of the CKM matrix. Furthermore, to compare with eq. (1.25), we display the

allowed ranges of the entries of the PMNS matrix [20]:

|U | =

 Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 =

 0.79− 0.88 0.47− 0.61 < 0.20

0.19− 0.52 0.42− 0.73 0.58− 0.82

0.20− 0.53 0.44− 0.74 0.56− 0.81

 . (1.28)

Experiments showed that quarks and charged leptons have strongly hierarchical masses:

the mass of the first families are smaller than those of the second families and the third
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Ref. [2] Ref. [3]

parameter best fit (1σ) 3σ-interval best fit (1σ) 3σ-interval

∆m2
sol [×10−5eV2] 7.67+0.16

−0.19 7.14− 8.19 7.65+0.23
−0.20 7.05− 8.34

∆m2
atm [×10−3eV2] 2.39+0.11

−0.08 2.06− 2.81 2.40+0.12
−0.11 2.07− 2.75

sin2 θ12 0.312+0.019
−0.018 0.26− 0.37 0.304+0.022

−0.016 0.25− 0.37

sin2 θ23 0.466+0.073
−0.058 0.331− 0.644 0.50+0.07

−0.06 0.36− 0.67

sin2 θ13 0.016+0.010
−0.010 ≤ 0.046 0.010+0.016

−0.011 ≤ 0.056

Table 1.2: Neutrino oscillation parameters from two independent global fits [2, 3].

families are the heaviest. The quark masses are given by [19]§

mu = 1.7÷ 3.3 MeV , mc = 1.27+0.07
−0.09 GeV , mt = 172.0± 0.9± 1.3 GeV ,

md = 4.1÷ 5.8 MeV , ms = 101+29
−21 MeV , mb = 4.19+0.18

−0.06 GeV .
(1.29)

The charged lepton masses are very precisely known and they read [19]

me = 0.510998910± 0.000000023 MeV ,

mµ = 105.658367± 0.000004 MeV , (1.30)

mτ = 1776.82± 0.16 MeV .

In the neutrino sector the mass hierarchy is much milder and only two mass squared

differences have been measured in oscillation experiments.¶ The mass squared differences

are defined as

∆m2
21 = m2

2 −m2
1 ≡ ∆m2

sol = (7.59± 0.20)× 10−5 eV2 ,

∆m2
31 = m2

3 −m2
1 ≡ ±∆m2

atm = (2.43± 0.13)× 10−3 eV2 (1.31)

and in Table 1.2 we can read the results of two independent global fits on neutrino

oscillation data from [2] and [3]. It is interesting to report also the ratio between the two

§The u-, d-, and s-quark masses are estimates of so-called “current-quark masses”, in a mass-

independent subtraction scheme such as MS at a scale µ ≈ 2 GeV. The c- and b-quark masses are

the “running” masses, m(µ = m), in the MS scheme. Only the mass of the t-quark is a result of direct

observation of top events.
¶There is an indication for the existence of a third independent mass squared difference from the

LSND experiment [21], which could be explained only if an additional (sterile) neutrino is considered.

The MiniBooNE collaboration [22] did not confirm the LSND result with neutrinos, but seems to support

it for antineutrinos [23]. Results from MINOS [24] point toward a neutrino/antineutrino anomaly, too.

The existence of a sterile neutrino and a third mass squared difference is still controversial.
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mass squared differences [3]:

r =
∆m2

sol

∆m2
atm

= 0.032+0.006
−0.005 . (1.32)

Due to the ambiguity in the sign of the atmospheric mass squared difference, neutrinos

can have two mass hierarchies: they can be normally hierarchical (NH) if m1 < m2 < m3

or inversely hierarchical (IH) if m3 < m1 < m2. Furthermore, if the absolute mass scale

is much larger than the mass squared differences then we cannot speak about hierarchy:

in this case the neutrino spectrum is quasi degenerate (QD) and we speak about mass

ordering. It is common to redefine the atmospheric mass squared difference to account

for the type of the hierarchy: indeed ∆m2
atm is taken to be the mass squared difference

between the heaviest and the lightest mass eigenstates and therefore

|m2
3 −m2

1(m2
2)| ≡ ∆m2

atm (1.33)

for the normal (inverse) hierarchy.

Regarding the experimental prospects on neutrino mass and mixing there are several

future experiments that will provide information. They are:

• many reactor and accelerator experiments are devoted to improve the sensitivity on

the reactor angle θ13. The combined limit of DOUBLE CHOOZ [25], Daya Bay [26],

MINOS [27], RENO [28], T2K [29] and NOvA [30] should reach sin2 2θ13 . 10−2 [31].

The results of these experiments will also set the schedule of CP violation searches;

• β-decay experiments which measure the endpoint of the tritium decay and to good

approximation probe m2
νe =

∑
i |U2

ei|m2
i and consequently the absolute scale of neu-

trino mass. The most recent experiment is Mainz [32] and it puts an upper bound

at 99% of CL of mνe < 2.1 eV. The Katrin experiment will improve the sensitivity

to mνe by one order of magnitude down to ∼ 0.2 eV [33]. Cosmology can also set an

upper bound on the sum of the neutrino masses. As a result [34]
∑

imi < 0.19÷2.6

eV;

• the neutrinoless-double-beta (0ν2β) decay is a viable decay for a little class of nuclei

only in the hypothesis of Majorana nature for neutrinos. Dedicated experiments

could probe the ee element of the neutrino Majorana mass:

mee =
∑
i

U2
eimi = cos θ2

13(m1 cos θ2
12e

iϕ1 +m2 sin θ2
12e

iϕ2) +m3 sin θ2
13 , (1.34)

where ϕi are the Majorana phases. Nowadays only an upper bound of 0.35 eV on this

quantity has been put by the Heidelberg-Moscow collaboration [35], but the future

experiments are expected to reach better sensitivities: 90 meV [36] (GERDA), 20

meV [37] (Majorana), 50 meV [38] (SuperNEMO), 15 meV [39] (CUORE) and 24

meV [40] (EXO).
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1.3 Supersymmetry

In the Standard Model two Higgs parameters appear in the scalar potential: mH and

λH , which are the mass and the quartic coupling of the Higgs boson, respectively. The

Higgs VEV is linked to these parameter as

〈H〉 ≡ v√
2

=

√
−m

2
H

2λH
. (1.35)

Since λH is bounded from above by various consistency conditions (such as perturbative

unitarity), and given the measured value v ' 246 GeV, it follows that it should be roughly

−m2
H ∼ (100 GeV)2. The parameter mH receives corrections from the virtual effects of

every particle that couples to the Higgs field. These corrections depend quadratically on

the high-energy cut-off scale; the Higgs mass is unprotected against them and this fact

is called the hierarchy problem. If the cutoff scale is taken to be close to the Planck

scale MP ≈ 1019 GeV, the corrections due to the fermion loops are much larger than the

weak scale. Supersymmetry (SUSY) was rapidly recognized as an elegant solution to this

problem §. The introduction of supermultiplets composed of the known SM particles and

of yet-to-be-discovered, heavy partners allows to mitigate the corrections to a logarith-

mic term. SUSY can be considered an extension of the usual 4-dimensional space-time

Poincaré symmetry, in which new fermionic operators, that transform a boson field into a

fermion field and vice versa, are introduced. The generators of the Poincaré algebra and

the new spin 1/2 operators form a superalgebra, whose irreducible representations, called

supermultiplets or superfields, contain both fermionic and bosonic degrees of freedom.

The squared-mass operator PµP
µ commutes with every single operators of the superal-

gebra, so it follows that particles belonging to the same supermultiplet should have the

same mass. Since this feature has never been observed, we must conclude that somehow

SUSY is a spontaneously broken symmetry. As a consequence the Lagrangian is the sum

of two terms,

L = LSUSY + Lsoft, (1.36)

where LSUSY is the supersymmetric preserving part, while Lsoft breaks SUSY softly, in

order to preserve the relations that solve the hierarchy problem. In the minimal supersym-

metric extension of the Standard Model (MSSM), SM fermions and their superpartners

belong to so-called chiral supermultiplets. The superpartners are spinless bosons and their

names are built placing a s- before the partner’s name (as an example, the partner of the

electron is the selectron). The gauge bosons, along with their 1/2-spin partners called

gauginos, belong to gauge multiplets. Finally, there are two additional chiral supermul-

tiplets to which two independent Higgs fields and two Higgsinos are assigned. The usual

Standard Model Higgs H, defined in Table 1.1, is renamed to Hd and it is responsible

for giving mass to the down quarks and to the charged leptons. The extra Higgs, Hu, is

required to generate the Dirac mass of the up quarks (and of neutrinos if νc are included),

§For a detailed introduction to Supersymmetry, see [41]
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as a requirement of the theory prevents the charge conjugate of Hd from playing that

role (in contrast to what happens with H in the Standard Model). After electroweak

symmetry breaking the neutral components of the Higgs fields acquire VEVs:

〈H0
u〉 = vu , 〈H0

d〉 = vd. (1.37)

They are related to the mass of the Z0 boson by

v2
u + v2

d =
v2

2
=

2mZ

g2 + g′2
≈ (174 GeV)2, (1.38)

and the ratio of the VEVs is a free parameter of the theory and is traditionally written

as

tan β =
vu
vd
. (1.39)

It is not difficult to generalize the Standard Model description of Section 1.1 to the

supersymmetric context: each Standard Model field is considered to be a part of a super-

field, z, and the Lagrangian of the model can be written as a sum of different terms in

the following way

L =

∫
d2θd2θK(z, e2V z) +

[∫
d2θw(z) + h.c.

]
+

1

4

[∫
d2θf(z)WW + h.c.

]
, (1.40)

where K(z, z) is the Kähler potential, a real gauge-invariant function of the chiral su-

perfields z and their conjugates, of dimensionality (mass)2; w(z) is the superpotential,

an analytic gauge-invariant function of the chiral superfields, of dimensionality (mass)3;

f(z) is the gauge kinetic function, a dimensionless analytic gauge-invariant function; V is

the Lie-algebra valued vector supermultiplet, describing the gauge fields and their super-

partners. Finally W is the chiral superfield describing, together with the function f(z),

the kinetic terms of gauge bosons and their superpartners. θ and θ are spinor degrees of

freedom and correspond to transformations in the superspace, defined by the union of the

usual space-time and of the space on which the superymmetric operators act.

The scalar potential V ≡ V (z̃, z̃†) is composed of two contributions. One is usually

called the F -term, obtained from the superpotential as Fi ≡ ∂w(z̃)/∂z̃i, where i is an

index labeling the components of whatever representation the field has under the gauge

group (for example, two components if the chiral superfield containing z̃i is a doublet

of SU(2)). The other contribution is usually called the D-term, and is associated with

the gauge group: Da ≡ ga(M
a
FI)

2 − gaz̃
†T az̃, where a labels the generators T a of the

group and (Ma
FI)

2 denotes the contribution of the Fayet-Iliopoulos (FI) term, which may

be non-zero only for Abelian U(1) factors of the group. Assuming a canonical Kähler

potential, K = zizi and summarizing the two contributions we have

V = F †F +
1

2
D2 =

∑
i

∣∣∣∣dw(z)

dz̃i

∣∣∣∣2 +
1

2

∑
a

(
ga(M

a
FI)

2 − gaz̃†T az̃
)2

. (1.41)

In terms of the hierarchy problem, mH receives new contributions from the Standard

Model superpartners in such a way that the loop diagrams with superparticles in the loop
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have exactly the same value as those ones with Standard Model particles in the loop, but

with opposite sign (due to the minus sign coming from the fermion loop): Supersymmetry

enables the exact cancellation of the quadratic divergence, leaving only milder logarithmic

divergences.

If from one side in supersymmetric theories there is a natural explanation of the

hierarchy problem, dangerous gauge-invariant, renormalizable operators appear: the most

general super potential would include also terms which violate either the baryon number

(B) or the total lepton number (L). The existence of these terms corresponds to B- and

L-violating processes, which however have not been observed: a strong constraint comes

from the non-observation of the proton decay. A possible way out to this problem is

represented by the introduction of a new symmetry in MSSM, which allows the Yukawa

terms, but suppresses B- and L-violating terms in the renormalizable superpotential. This

new symmetry is called “matter parity” or equivalently “R-parity”. The matter parity is

a multiplicative conserved quantum number defined as

PM = (−1)3(B−L) (1.42)

for each particle in the theory. It is easy to check that quark and lepton supermultiplets

have PM = −1, while Higgs supermultiplets, gauge bosons and gauginos have PM = +1.

In the superpotential only terms for which PM = +1 are allowed. The advantage of

such a solution is that B and L are violated only due to non-renormalizable terms in the

Lagrangian and therefore in tiny amounts.

It is common to use also a second definition of this symmetry: the R-parity refers to

PR = (−1)3(B−L)+2s , (1.43)

where s is the spin of the particle. The two definitions are precisely equivalent, since

the product of (−1)2s is always equal to +1 for the particles in a vertex that conserves

angular moment. Under this symmetry all the Standard Model particles and the Higgs

bosons have even R-parity (PR = +1), while all their superpartners have odd R-parity

(PR = −1).

The phenomenological consequences of an R-parity conservation in a theory are ex-

tremely important: the lightest sparticle with odd R-parity is called lightest supersym-

metric particle (LSP) and is absolutely stable; each sparticle, other then the LSP, must

eventually decay in a state with an odd number of LSPs; sparticles can only be produced

in even numbers, at colliders.



Chapter 2

Discrete Flavor Symmetries and the

Flavor Problem

Most of the free parameters of the Standard Model are inherent to the flavor sector.

The mass values of quarks and leptons, their mixing angles and phases remain without

a definitive theoretical explanation although experimental data have been accumulated

for decades. Neutrino mixing could turn to be fundamental to solve the flavor problem,

since it is very different from the quark mixing, for which the angles are small. To

build up theoretical models of neutrino mixing one must guess which features of the data

are relevant in order to identify the basic principles for the formulation of the model. Of

course, one can assume that the particular pattern of the PMNS matrix (1.28) is accidental

and has no deep physical meaning. The experimental data could then be fitted varying

the parameters of a chosen framework. On the other hand, if we assume that neutrino

mixing hides a specific physical pattern, then we are led to consider models that naturally

produce that pattern as a first approximation and only a very special dynamics can lead to

this peculiar mixing matrix. Discrete non Abelian groups (for a review see [42]) naturally

emerge as suitable flavor symmetries, because they immediately suggest rotations by fixed,

discrete and possibly large angles. In the following I will discuss three cases of a broader

class of neutrino mixing patterns based on µ− τ symmetry. Through a general argument

it is shown that specific predictions on the values of the mixing angles can be naturally

related to the property of some discrete groups.

2.1 Lepton Mixing Angles and Platonic Solids

On a pure phenomenological basis there are attractive patterns that could provide a

good LO approximation for the lepton mixing. In particular the data are firmly indicating

that the atmospheric mixing angle is close to maximal and that the reactor angle is the

smallest one so that, in a crude approximation, we can take sin2 θ23 = 1/2 and sin2 θ13 = 0.

In the same approximation, several choices have been suggested for the solar angle, such

as sin2 θ12 = 1/2 (Bimaximal pattern), sin2 θ12 = 1/3 (Tri-Bimaximal) and tan θ12 = 1/φ

13
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(Golden Ratio). Clearly, depending on the pattern chosen as first approximation to the

data, appropriate sub leading corrections are needed, smaller for the TB and GR mixing

patterns and larger for the BM one. In the basis where the charged leptons are diagonal the

most general neutrino mass matrices corresponding to the considered LO approximations

are given by

mν = U∗PMNS diag(m1,m2,m3) U †PMNS . (2.1)

with a mixing matrix

UPMNS =



c12 s12 0

− s12√
2

c12√
2
− 1√

2

− s12√
2

c12√
2

1√
2


, (2.2)

where c12 ≡ cos θ12 and s12 ≡ sin θ12. The three cases we are interested in are obtained

by specializing the value of θ12. By applying eq. (2.1) we find a matrix of the form:

mν =

x y y

y z w

y w z

 , (2.3)

with coefficients x, y, z and w satisfying the following relations:

z + w = x BM

z + w = x+ y TB

z + w = x−
√

2y GR . (2.4)

Thus we have three textures each depending on three independent complex parameters.

Each of them can be completely characterized by a simple symmetry requirement, that

of being invariant under two independent commuting parity transformations, U and S:

S2 = U2 = 1 , [S, U ] = 0 . (2.5)

Indeed the mass matrix of eq. (2.3) is the most general one invariant under the so-called

µ− τ exchange symmetry, generated by:

U =

 1 0 0

0 0 1

0 1 0

 . (2.6)

Moreover, depending on the particular chosen texture, we have another generator S, which

can be found by using the constraints in eq. (2.4). We list the solutions in Table 2.1. The
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requirement of invariance under U and S completely determine the mass textures listed

above. Namely, given a generic neutrino mass matrix mν the most general solutions to

the equations:

UT mν U = mν , ST mν S = mν , (2.7)

with U and S given in eq. (2.6) and in Table 2.1, are the mass matrices defined by eqs.

(2.3) and (2.4).

At the same time the requirement that the combination m†lml is diagonal can be

fulfilled by asking that the charged lepton sector is invariant under the action of a cyclic

symmetry of Zn type. Calling T the corresponding generator, with T n = 1, we can choose

T so that the solution of

T † (m†lml) T = (m†lml) (2.8)

is a diagonal matrix. In minimal constructions realizing BM, TB and GR mixings the

generator T can be chosen as in Table 2.1. With this choice T has the additional property:

(ST )3 = 1 . (2.9)

BM TB GR

S
1√
2

 0 −1 −1

−1 1/
√

2 −1/
√

2

−1 −1/
√

2 1/
√

2

 1

3

−1 2 2

2 −1 2

2 2 −1

 1√
5

 1
√

2
√

2√
2 −φ 1/φ√
2 1/φ −φ



T

 −1 0 0

0 −i 0

0 0 i

 1 0 0

0 ω 0

0 0 ω2




1 0 0

0 e
i
2π

5 0

0 0 e
i
8π

5


Table 2.1: Generators S and T for the different mixing patterns (φ = (1 +

√
5)/2 and

ω = −1/2 + i
√

3/2).

A model giving rise to the desired lepton mixing matrix UPMNS can be obtained

starting from the family group Gf generated by S, T and U . The family symmetry

should be spontaneously broken by a set of scalar fields in such a way that, at the LO, the

charged lepton sector has a residual invariance under the group generated by T , whereas

the neutrino sector has a residual invariance under the group generated by S and U . The

desired lepton mixing UPNMS arises by construction, independently from the base choice.

In existing models the µ − τ exchange symmetry generated by U arises at the LO as

an accidental symmetry. In this case the family symmetry Gf is generated by S and T

satisfying:

S2 = (ST )3 = 1 and T n = 1 , (2.10)
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with n = 4 for BM, n = 3 for TB and n = 5 for GR. These are the defining relations of S4

(BM) [43], A4 (TB) [44] and A5 (GR) [4,45–47], which are the proper symmetry group of

the cube/octahedron, tetrahedron and dodecahedron/icosahedron, respectively. We find

rather intriguing that Platonic solids and their symmetries are in a natural correspondence

with the most popular lepton mixing patterns. Notice that these groups are all subgroups

of the modular group, defined by the presentation S2 = (ST )3 = 1.

2.1.1 The Bimaximal Mixing Pattern

The Bimaximal mixing [48] predicts sin2 θ12 = 1/2, to which corresponds a well defined

relation between the mass parameters: w = x − z (2.4). The most general mass matrix

of the BM-type can be written as

mν =

 x y y

y z x− z
y x− z z

 (2.11)

and satisfies an additional symmetry for which (mν)1,1 = (mν)2,2 + (mν)2,3. Apart from

the Majorana phases, eq. (2.11) depends on only three real parameters, the masses, which

can be written in terms of the mass parameters x, y and z:

m1 = x+
√

2y , m2 = x−
√

2y , m3 = 2z − x . (2.12)

These masses are the eigenvalues of eq. (2.11), while the eigenstates define the uni-

tary transformation which diagonalizes the mass matrix in such a way that mdiag
ν =

UT
BMmνUBM , where the unitary matrix is given by

UBM =

 1/
√

2 −1/
√

2 0

1/2 1/2 −1/
√

2

1/2 1/2 +1/
√

2

 . (2.13)

Notice that this matrix is mass-independent. It is useful to express eq. (2.11) in terms of

mi instead of x, y and z:

mν = UBM diag(m1, m2, m3)UT
BM

=
m3

2

 0 0 0

0 1 −1

0 −1 1

+
m2

4

 2 −
√

2 −
√

2

−
√

2 1 1

−
√

2 1 1

+
m1

4

 2
√

2
√

2√
2 1 1√
2 1 1

 .

(2.14)

Clearly, all type of hierarchies among neutrino masses can be accommodated. The small-

ness of the ratio r = ∆m2
sun/∆m

2
atm requires either |xy| � |z2| (normal hierarchy) or

|x| ∼ |z| � |y| (inverse hierarchy) or |y| � |x| ∼ |z| (approximate degeneracy except for

x ∼ 2z).
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A final comment on the agreement of this scheme with the experimental data is worth.

In the bimaximal pattern the solar angle is assumed maximal, sin2 θ12 = 1/2, to be com-

pared with the latest experimental determination: at 3σ error level, sin2 θ12 = 0.26− 0.37

from [2] or sin2 θ12 = 0.25− 0.37 from [3], and the Bimaximal pattern can be considered

at most as a zeroth order approximation that needs large corrections.

2.1.2 The Tribimaximal Mixing Pattern

In the so-called Tribimaximal or Harrison-Perkins-Scott pattern [49] a vanishing reac-

tor angle, a maximal atmospheric angle and sin2 θ12 = 1/3 are assumed. From eq. (2.4)

it results w = x + y − z and therefore the most generic mass matrix of the TB-type is

given by

mν =

 x y y

y z x+ y − z
y x+ y − z z

 . (2.15)

This matrix satisfies the so-called magic symmetry, for which the sum of the entries

of each row and columns are equal, or (mν)1,1 = (mν)2,2 + (mν)2,3 − (mν)1,3. The mass

eigenvalues can be written in terms of the parameters x, y and z:

m1 = x− y , m2 = x+ 2y , m3 = 2z − x− y . (2.16)

These eigenvalues come from the diagonalisation of eq. (2.15) by the use of a unitary

transformation in such a way that mdiag
ν = UT

TBmνUTB, where the unitary matrix is given

by

UTB =


√

2/3 1/
√

3 0

−1/
√

6 1/
√

3 −1/
√

2

−1/
√

6 1/
√

3 +1/
√

2

 . (2.17)

Notice again that UTB does not depend on the mass eigenvalues, in complete analogy to

the Bimaximal pattern of eq. (2.13).

It is useful to write eq. (2.15) in terms of mi instead of x, y and z:

mν = UTB diag(m1, m2, m3)UT
TB

=
m3

2

 0 0 0

0 1 −1

0 −1 1

+
m2

3

 1 1 1

1 1 1

1 1 1

+
m1

6

 4 −2 −2

−2 1 1

−2 1 1

 .
(2.18)

All the type of neutrino spectra can be accommodated: m3 >> m2 >> m1 defines

a normal hierarchy; a degenerate model is given by choosing m3 ≈ −m2 ≈ m1; for

m1 ≈ −m2 and m3 ≈ 0 the inverse hierarchy case is achieved. However, stability under

renormalization group running strongly prefers opposite signs for the first and the second

eigenvalue which are related to solar oscillations and have the smallest mass squared

splitting (see Chapter 4 for details).
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Finally we underline that this mixing pattern is a very good approximation of the

experimental data: the Tribimaximal values for the atmospheric and the reactor angles

are inside the 1σ error level, while that one for the solar angle is very close to the upper

1σ value.

2.1.3 The Golden Ratio Prediction

In the Golden Ratio prediction [51, 52] a maximal atmospheric angle and θ13 = 0

are assumed. It receives the name from the relation tan θ12 = 1/ϕ, where if ϕ is the

irrational number known as Golden Ratio, defined as ϕ = 1+
√

5
2

. From eq. (2.4) it results

w = x−
√

2y − z and therefore the most generic mass matrix of the TB-type is given by

mν =

 x y y

y z x−
√

2y − z
y x−

√
2y − z z

 . (2.19)

As in the previous cases, the mass eigenvalues are functions of the three parameters of

the matrix (2.19).

m1 =
5

3
(x− 2

√
2

3 +
√

5
y) , m2 =

5

3
(x+

3 +
√

5√
2

y) , m3 = −x−
√

10y + 2z . (2.20)

These eigenvalues come from the diagonalization of eq. (2.19) by the use of a unitary

transformation in such a way that mdiag
ν = UT

GRmνUGR, where the unitary matrix is given

by

UGR =


√

φ√
5

√
1√
5φ

0

−
√

1
2
√

5φ

√
φ

2
√

5
−1/
√

2

−
√

1
2
√

5φ

√
φ

2
√

5
+1/
√

2

 . (2.21)

As the two previous cases UGR does not depend on the mass eigenvalues and therefore it

belongs to the class of mass-independent textures.

It is useful to write eq. (2.19) in terms of mi instead of x, y and z:

mν = UGR diag(m1, m2, m3)UT
GR

=
m3

2

 0 0 0

0 1 −1

0 −1 1

+
m2

10

 2
ϕ2

√
2
√

2√
2 ϕ2 ϕ2

√
2 ϕ2 ϕ2

+
m1

10

 2ϕ2 −
√

2 −
√

2

−
√

2 1
ϕ2

1
ϕ2

−
√

2 1
ϕ2

1
ϕ2

 .

(2.22)

All the type of neutrino spectra can be accommodated. We underline that this mixing

pattern is a good approximation of the experimental data: the values for the atmospheric

and the reactor angles are inside the 1σ error level, while that one for the solar angle is
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close to the lower border of the 2σ range. A small correction could shift it toward the

best experimental value.

2.2 Overview of Flavor Symmetries

In the previous section we discussed how the particular structure of UPMNS lead to

adopt particular non-Abelian discrete symmetry groups. In the following, we describe in

a general way the advantages and disadvantages of this choice.

There is a large variety of symmetries which can be used: they can be either Abelian

or non-Abelian, either local or global (or even a combination of them) and finally either

discrete or continuous. Historically, flavor symmetries were first used to describe the

quark sector and the Abelian U(1) symmetry has been shown to be able to explain the

observed quark mass hierarchies and mixing. In this approach developed by Froggatt and

Nielsen in 1979 [53], there is a flavon field S, a gauge-invariant scalar, which acquires a

vacuum expectation value (VEV) and breaks the U(1) symmetry. It is possible to define

a small parameter ε = 〈S〉/Λf , where the cutoff Λf is the scale of flavor dynamics usually

associated with some heavy fermions which are integrated out. This symmetry breaking

is then communicated to fermions with a non-universal mechanism, in such a way that

different fermions receive different powers of ε. The advantage of this mechanism is that

the Yukawas can be of O(1) and the fermion masses and mixing are explained as powers of

the expansion parameter ε. On the other hand, the main disadvantage consists in the lack

of well-defined predictions: masses and mixing angles are only predicted up to unknown

O(1) coefficients. Furthermore, certain mixing patterns such as the Bimaximal and the

Tribimaximal schemes cannot be achieved with an Abelian symmetry. Therefore we can

conclude that the predictive power of a non-Abelian symmetry is in general larger than

that of an Abelian one.

Concerning the local or the global attribute of a flavor symmetry, we have to remember

that the requirement of anomaly freedom for a local symmetry can put strong constraints

on the charge assignment of the fermions. Furthermore, locality preserves the symmetry

from being broken by quantum gravity effects at the Planck scale.

We now discuss the advantages and disadvantages of using a continuous or a discrete

group. In the case of a spontaneously broken symmetry a continuous one leads to the

appearance of Goldstone or gauge bosons. On the other hand, the breaking of a discrete

group is safe from such a consequence. Furthermore, using the continuous groups such as

SO(3) or SU(3), we have only a single non-trivial possibility to describe the three fermion

families and the type of contractions is also strongly limited. On the contrary, adopting

a discrete symmetry, there are several small representations which can be fairly used.

After this brief summary, we restrict to the context of non-Abelian discrete flavor

symmetries which are in general more predictive than Abelian ones and that are safe from

dangerous effects such as the appearance of Goldstone or gauge bosons. Furthermore, the
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particular mixing pattern in the lepton sector can be very well explained by the use of

certain discrete symmetries, which are all subgroups of SU(3). In the rest of this section

we do not enter in the details of each group, referring to [50] for the general group theory

and to the following chapters where some of these group are treated in detail.

In general, groups containing a three-dimensional representation are chosen, because

it is possible to collect all the fermion families in a unique representation, such as with

SO(3) or SU(3), but with more freedom in the type of couplings. However, this is not

a rule, since it is possible to organize the three families in a 2 + 1 representation, for

example in S4 given that the third family is usually heavier than the other.

Although discrete flavor symmetry were introduced in the lepton sector to study the

related neutrino phenomenology, efforts have been made in order to find a common sym-

metry behind quarks and leptons. For example, the tetrahedral group A4, which was

first used to obtain the Tribimaximal mixing, was then extended to quarks. However,

when the quark sector is considered, it results a highly non-trivial task to get a (even non

grand) unified description of fermions. A possible strategy to overcome the problem is to

enlarge the symmetry: th group T ′, the double coverage of A4, or S4, which contains the

tetrahedral group as a subgroup, are good choices.

A general feature of models based on (discrete) groups is that, unfortunately, the

symmetry alone is not sufficient to fully account for the fermion mass hierarchies and

mixing in the majority of the cases. A first problem concerns the differences between

leptons and quarks: two (of three) large lepton mixing angles with respect to three small

and hierarchical quark ones; neutrinos with a much milder mass hierarchy with respect to

the charged fermions. A viable solution consists in avoiding interferences among the two

sectors, at least in first approximation, and to keep them separated additional groups, such

as the Abelian factors Zn, are implemented in the complete flavor symmetry group. A

second problem refers to the use of the three-dimensional representation, which is usually

adopted to describe leptons: the components of a triplet show degenerate masses, unless

some breaking parameter is introduced. From this the problem of how to describe the

charged lepton mass hierarchy follows and two kind of solutions have been proposed: the

Froggatt-Nielsen (FN) mechanism, which consists in introducing an additional (global or

local) U(1)FN factor under which right-handed fermions transform, is the most used.

The gauge group of the Standard Model prevents direct fermion mass terms and the

Higgs mechanism is addressed to be responsible for them, but it leaves the measured

flavor structure unexplained. When a flavor symmetry is implemented in a model, new

fields are needed: it is necessary that they acquire VEVs, that communicated to the

fermions accounts for masses and mixing. People usually refer to this kind of new degrees

of freedom with the name of “flavons”. They usually are invariant under the gauge group

of the Standard Model and transform only under the flavor symmetry; their masses are

typically much larger then the electroweak scale, introducing an additional energy scale

in the model.

In order not to introduce further scales into the theory, an alternative approach has

been pursued: the flavor and the electroweak symmetries are broken together due to
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the introduction of several copies of the Standard Model Higgs doublet which transform

non-trivially under the flavor group. It is well-known that such multi-Higgs models find

strong constraints by direct searches for Higgs bosons and by indirect bounds from flavor

changing neutral current and lepton flavor violating processes.

The requirement of a broken flavor symmetry is also the result of a well-known no-go

theorem [54,55], which affirms that the atmospheric mixing angle is always undetermined

in the limit of the exact symmetry and in particular θ12 = π/4 can not be obtained. Only

when small breaking parameters are considered in the mass matrices, it is possible to

recover this result. This goal is achieved if the breaking terms have suitable orientations

in the flavor space; this is connected to the VEV (mis)alignment of the flavons: if the

breaking terms are produced by a spontaneous symmetry breaking, in general two inde-

pendent sectors of flavons are needed, indeed one of them communicates the breaking to

charged fermions and the other one to neutrinos. It is worth to underline that the VEV

(mis)alignment of the flavons is an highly non-trivial problem to solve, which could put

severe constraints on the choice of the group representations and on the minimal number

of new degrees of freedom. Usually, working in a supersymmetric environment or adding

extra dimensions helps, but apart from expanding the mathematical apparatus of a model,

it forces us to introduce additional degrees of freedom. In particular, in the MSSM it is

often necessary to add driving fields, charged under R-symmetry, to the superpotential.

Minimizing it with respect to these new scalars provides the desired vacuum alignment.

We stress here that in some case this is not an unavoidable feature, as we will show

explicitly in the next chapter.

2.3 A Concrete Example: the Altarelli-Feruglio Model

We recall here the main features of the Altarelli-Feruglio (AF) model [6–8], which is

based on the flavor group Gf = A4 × Z3 × U(1)FN : the spontaneous breaking of A4 is

responsible for the Tribimaximal mixing; the cyclic symmetry Z3 prevents the appearance

of dangerous couplings and helps keeping separated the charged lepton sector and the

neutrino one; the U(1)FN provides a natural hierarchy among the charged lepton masses.

A4 is the group of the even permutations of 4 objects, isomorphic to the group of

discrete rotations in the three-dimensional space that leave invariant a regular tetrahedron.

It is generated by two elements S and T obeying the relations [50]:

S2 = (ST )3 = T 3 = 1 . (2.23)

It has three independent one-dimensional representations, 1, 1′ and 1′′ and one three-

dimensional representation 3. We present a set of generators S and T for the various

representations, and the relevant multiplication rules in appendix A.1. The group A4

has two obvious subgroups: GS, which is a reflection subgroup generated by S, and GT ,

which is the group generated by T , isomorphic to Z3. These subgroups are of interest

for us because GS and GT are the relevant low-energy symmetries of the neutrino and
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the charged-lepton sectors at the leading order, respectively. The Tribimaximal mixing is

then a direct consequence of this special symmetry breaking pattern, which is achieved via

the vacuum misalignment of triplet scalar fields. If Φ = (Φ1,Φ2,Φ3) denotes the generic

scalar triplet, the VEV

〈Φ〉 ∝ (1, 1, 1) (2.24)

breaks A4 down to GS, while

〈Φ〉 ∝ (1, 0, 0) (2.25)

breaks A4 down to GT . The flavor symmetry breaking sector of the model includes the

scalar fields ϕT , ϕS, ξ and θ. In Table 2.2, we can see the fermion and the scalar content

of the model and their transformation properties under Gf .

` ec µc τ c H θ ϕT ϕS ξ

A4 3 1 1′′ 1′ 1 1 3 3 1

Z3 ω ω2 ω2 ω2 1 1 1 ω ω

U(1)FN 0 2 1 0 0 -1 0 0 0

Table 2.2: The transformation properties of the fields under A4, Z3 and U(1)FN .

As anticipated above, the specific breaking patter of the symmetry which leads to the

Tribimaximal scheme and to hierarchical masses for leptons requires that ξ and θ develop

a non vanishing VEV and that the following specific vacuum misalignment for the triplets

occurs:

〈ϕT 〉 = (vT , 0, 0) , 〈ϕS〉 = (vS, vS, vS) . (2.26)

In [6, 7] it has been shown a natural explanation of this misalignment. These VEVs can

be very large, much larger than the electroweak scale. From the analysis in [6, 7], it is

reasonable to choose:
V EV

Λf

≈ λ2 , (2.27)

where VEV stands for the generic non-vanishing VEV of the flavons, Λf the cutoff of

the theory and λ the Cabibbo angle. Since the ratio in eq. (2.27) represents the typical

expansion parameter when including higher dimensional operators, it keeps all the leading

order results stable, up to correction of relative order λ2. A very useful parametrization

of V EV/Λf is the following:

〈ϕT 〉
Λf

= (u, 0, 0) ,
〈ϕS〉
Λf

= cb(u, u, u) ,
〈ξ〉
Λf

= ca u,
〈θ〉
Λf

= t , (2.28)

where ca,b are complex numbers with absolute value of order one, while u and t are the

small symmetry breaking parameters of the theory (they can be taken real through field

redefinitions).
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Once defined the transformations of all the fields under Gf , it is possible to write down

the Yukawa interactions: at the leading order they read

Le =
ye
Λ3
f

θ2ecH† (ϕT `) +
yµ
Λ2
f

θµcH† (ϕT `)
′ +

yτ
Λf

τ cH† (ϕT `)
′′ + h.c. (2.29)

Lν =
xa

ΛfΛL

ξ(H̃
†
`H̃
†
`) +

xb
ΛfΛL

(ϕSH̃
†
`H̃
†
`) + h.c. , (2.30)

where yi and xi are complex numbers with absolute value of order one. The contractions

under SU(2)L are understood and the notation (. . .), (. . .)′ and (. . .)′′ refers to the con-

tractions in 1, 1′ and 1′′, respectively. We distinguish two different energy scales: Λf

refers to the energy scale of the flavor dynamics while ΛL to the scale at which the lepton

number is violated. We assume here that Λf ∼ ΛL.

When the flavons develop VEVs in agreement with eq. (2.28) and after the electroweak

symmetry breaking, the leading order mass matrix of charged leptons takes the following

form: in the basis of canonical kinetic terms,

Me =

 yet
2 0 0

0 yµt 0

0 0 yτ

 v u√
2
. (2.31)

Once in the physical basis, the entries on the diagonal are identified to the masses of the

charged leptons and the relative hierarchy among them is given by the parameter t: when

t ≈ 0.05 (2.32)

then the mass hierarchy is in agreement with the experimental measurements. As we will

see in the following sections, the model admits a well defined range for the parameter u

which can approximatively be set to

0.003 . u . 0.05 . (2.33)

In the neutrino sector, the leading order Majorana mass matrix is given by

mν =

 a+ 2b/3 −b/3 −b/3
−b/3 2b/3 a− b/3
−b/3 a− b/3 2b/3

 v2

ΛL

, (2.34)

where a ≡ xa ca u and b ≡ xb cb u. At this order the mass matrix is diagonalized by

UT
ν mνUν =

v2

ΛL

diag(|a+ b|, |a|, | − a+ b|) , (2.35)

where Uν = UTBP . The matrix UTB is the Tribimaximal transformation of eq. (2.17),

while P is the matrix of the Majorana phases,

P = diag(eiα1/2, eiα2/2, eiα3/2) , (2.36)
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with α1 = − arg(a+ b), α2 = − arg(a) and α3 = − arg(−a+ b).

It is possible to generalize this description also to the supersymmetric context. In this

case Gf accounts for an additional term, a continuous R-symmetry U(1)R, that contains

the usual R-parity as a subgroup and simplifies the constructions of the scalar potential:

under this symmetry, the matter superfields transform as U(1)R = 1, while the scalar

ones are neutral.

It is easy to extend eqs. (2.29, 2.30) in the supersymmetric case: two Higgs doublets

H(d,u), invariant under A4, substitute H and H̃, respectively; the Lagrangian Le is iden-

tified to the leading order charge lepton superpotential we and Lν is identified to the

leading order neutrino superpotential wν . Moreover, it is necessary to introduce a further

flavon ξ̃, which exactly transforms as ξ but does not acquire any VEV. As a result it does

not have any impact on the previous discussion and its relevance is only linked to the way

in which the VEV misalignment is recovered (see [7] for further details).

While t is still equal to 0.05 in order to have a correct charged lepton mass hierarchy,

the range for u slightly changes:

0.007 . u . 0.05 . (2.37)

2.3.1 The Neutrino Mass Spectrum

We now summarize the results for the neutrino mass spectrum. Notice that the fol-

lowing analysis is valid in the Standard Model as well as in its supersymmetric extension,

by substituting v with vu when necessary. The neutrino masses are given by

m1 = |a+ b| v
2

ΛL

, m2 = |a| v
2

ΛL

, m3 = | − a+ b| v
2

ΛL

. (2.38)

They can be expressed in terms of only three independent parameters: a possible choice

that simplifies the analysis consists in taking |a|, ρ and ∆, where ρ and ∆ are defined as

b

a
= ρ ei∆ , (2.39)

with ∆ in the range [0, 2π]. From the experimental side only the squared mass differences

have been measured and as a result the spectrum is not fully determined and indeed ∆

is still a free parameter: we can, however, bound ∆ requiring that | cos ∆| ≤ 1. Before

proceeding it is useful to express ρ and cos ∆ as functions of some physical observables.

To this purpose we calculate the following mass ratios: for both the hierarchies we have

m2
1(3)

m2
2

= 1± 2ρ cos ∆ + ρ2 . (2.40)

It is then easy to express ρ and cos ∆ as a function of the neutrino masses:

ρ =

√
m2

1 − 2m2
2 +m2

3

2m2
2

, cos ∆ =
m2

1 −m2
3

2
√

2m2

√
m2

1 − 2m2
2 +m2

3

. (2.41)
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Using now the definitions of the mass squared differences,

∆m2
sol ≡ m2

2 −m2
1 , ∆m2

atm ≡ |m2
3 −m2

1(m2
2)| , (2.42)

it is possible to express cos ∆ as a function of only the lightest neutrino mass. Imposing

the constraint | cos ∆| ≤ 1, it results that only the normal hierarchy is allowed and taking

the most conservative case (the 3σ upper value for ∆m2
sol and the 3σ lower value for

∆m2
atm as in [2]) we have

m1 > 14.1 meV . (2.43)

This value corresponds to cos ∆ = −1 and it is the value for which the spectrum presents

the strongest hierarchy: the values of the masses of the other two neutrinos are given by

m2 = 16.7 meV and m3 = 47.5 meV . (2.44)

Furthermore the sum of the neutrino masses in this case is about 78.3 meV. When cos ∆

approached the zero, the neutrino spectrum becomes quasi degenerate.

Not only the neutrino masses can be written as a function of the lightest neutrino mass,

but also the phases: since in the Tribimaximal mixing the reactor angle is vanishing, the

Dirac CP phase is undetermined at the leading order; on the contrary the Majorana phases

are well defined and they can be expressed through ρ and ∆. Since we are interested in

physical observables, we report only phase differences, αij ≡ (αi − αj)/2: in terms of ρ

and ∆ in order to keep compact the expressions,

sin(2α13) =
2ρ sin ∆√

(ρ2 − 1)2 + 4ρ2 sin2 ∆
, sin(2α23) =

ρ sin ∆√
1− 2ρ cos ∆ + ρ2

. (2.45)

It will be useful to report also sin(2α12):

sin(2α12) = − ρ sin ∆√
1 + 2ρ cos ∆ + ρ2

. (2.46)

These results are valid only at the leading order and some deviations are expected

with the introduction of the higher-order terms, that is illustrated in the following section.

The corrections are expected to be of relative order u, whose allowed range is defined in

eqs. (2.33, 2.37). However, close to cos ∆ = −1, where the bounds are saturated, the

corrections to both the numerator and the denominator of eq. (2.41) remain of relative

order u and as a result the lower bound on m1 of eq. (2.43) is not significantly affected.

Major effects could appear when the spectrum is quasi degenerate, cos ∆ ≈ 0.

2.3.2 The Next-To-Leading Order Contributions

Another important implication of the spontaneously broken flavor symmetry is that

the leading order predictions are always subjected to corrections due to higher-dimensional

operators. The latter are suppressed by additional powers of the cutoff Λf and can be

organized in a suitable double power expansion in u and t.
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At the NLO there are may additional terms which can be added to the Lagrangian.

Since ϕT is the only scalar field which is neutral under the Abelian part of the flavor

symmetry, all the NLO terms contain the terms already present in the leading order

Lagrangian with an additional insertion of ϕT/Λf . In addition to these terms, there are

also corrections to the leading vacuum alignment in eq. (2.28):

〈ϕT 〉
Λf

= (u, 0, 0) + (c1u
2, c2u

2, c3u
2)

〈ϕS〉
Λf

= cb(u, u, u) + (c4u
2, c5u

2, c6u
2)

〈ξ〉
Λf

= cau+ c7u
2 ,

(2.47)

where ci are complex numbers with absolute value of order one. Note that in the su-

persymmetric version, the model predicts c2 = c3. Here we will not perform a detailed

analysis for NLO operators and the origin of eq. (2.47) (see [6, 7] for a detailed study).

As a result of these NLO contributions, the quantities generally deviate from their initial

values for terms of relative order u:

Ye + δYe , mν + δmν . (2.48)

These corrections affect also the mixing angles and it is not difficult to see that deviations

from Tribimaximal are also of relative order u with respect to their leading order values

[6, 7]:

sin2 θ23 =
1

2
+O(u), sin2 θ12 =

1

3
+O(u), sin θ13 = O(u). (2.49)

Since the solar mixing angle is, at present, the most precisely known, we require that its

value remains inside the 3σ range [1]. This requirement results in an upper bound on u

of about 0.05. On the other hand, from eq. (2.31), we have the following relations:

u =
1

|yτ |

√
2mτ

v
≈ 0.01

1

|yτ |
in the SM

u ' tan β

|yτ |

√
2mτ

v
≈ 0.01

tan β

|yτ |
in the MSSM

(2.50)

where for the τ lepton we have used its pole mass mτ = (1776.84 ± 0.17) MeV [19].

Requesting |yτ | < 3 we find a lower limit for u of about 0.003 in the Standard Model case;

in the supersymmetric context, the same requirements provides a lower bound close to

the upper bound 0.05 for tan β = 15, whereas for tan β = 2 it is u > 0.007. From now

on, we will choose the maximal range of u as

0.003 . u . 0.05 (2.51)

for the Standard Model context, while for the supersymmetric case we take

0.007 . u . 0.05 , (2.52)



2.3 A Concrete Example: the Altarelli-Feruglio Model 27

which shrinks when tan β is increased from 2 to 15.

The NLO terms affect also the previous results for the neutrino phases. All the

new parameters which perturb the leading order results are complex and therefore they

introduce corrections to the phases of the PMNS matrix. Due to the large amount of such

a parameters, we expect non-negligible deviations from the leading order values.

2.3.3 Type I See-Saw Realization

It is possible to easily modify the previous model to accommodate the (type I) See-

Saw mechanism. In this part we do such an extension and analyze the differences with

the effective model. Notice that this part is written considering an underlying Standard

Model context, but the extension to the supersymmetric one is trivial, following the same

strategy as in the effective model.

We introduce conjugate right-handed neutrino fields νc transforming as a triplet of A4

and we modify the transformation properties of some other fields according to Table 2.3.

νc ϕS ξ ξ̃

A4 3 3 1 1

Z3 ω2 ω2 ω2 ω2

U(1)FN 0 0 0 0

Table 2.3: The transformation properties of νc, ϕS, ξ and ξ̃ under A4 × Z3 × U(1)FN .

The rest of the fields still transform as in Table 2.2. Notice that ξ̃ is present only in the

supersymmetric context.

The Lagrangian changes only in the neutrino sector and it is given by

Lν = y(νcH̃†`) + xaξ(ν
cνc) + xb(ϕSν

cνc) + h.c.+ . . . , (2.53)

where dots stand for higher-order contributions.

The vacuum alignment of the flavons is exactly the one described in eqs. (2.28, 2.47).

When the flavons develop VEVs in agreement with eq. (2.28) and after the electroweak

symmetry breaking, the Dirac and the Majorana mass matrices, at the leading order, are

given by

mD =
y v√

2

 1 0 0

0 0 1

0 1 0

 , MR =

 a+ 2b/3 −b/3 −b/3
−b/3 2b/3 a− b/3
−b/3 a− b/3 2b/3

 , (2.54)

where a ≡ 2xacau and b ≡ 2xbcbu. The complex symmetric matrix MR is diagonalized by

the transformation

M̂R = UT
RMRUR , (2.55)
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where M̂R is a diagonal matrix with real and positive entries, given by

M̂R ≡ diag(M1, M2, M3) = diag(|a+ b|, |a|, | − a+ b|) , (2.56)

while the unitary matrix UR can be written as UR = UTBP , where P is the diagonal matrix

of the Majorana phases already defined in eq. (2.36). After the electroweak symmetry

breaking, the mass matrix for the light neutrinos is recovered from the well known type

I See-Saw formula

mν = −mT
DM

−1
R mD = −y

2 v2

2
M−1

R (2.57)

where the last passage is possible considering that M−1
R mD = mDM

−1
R . From eq. (2.55),

U †RM
−1
R U∗R = diag(M−1

1 , M−1
2 , M−1

3 ) and as a result the light neutrino mass matrix can

be diagonalized by

m̂ν = UT
ν mνUν , (2.58)

where Uν = iU∗R = iUTBP
∗. The diagonal matrix m̂ν has real and positive entries written

as

mi =
v2

2

y2

Mi

, (2.59)

which explicitly give the following values

m1 =
v2

2

y2

|a+ b| , m2 =
v2

2

y2

|a| , m3 =
v2

2

y2

| − a+ b| . (2.60)

In these expressions we have absorbed the possible phase of y inside the matrix P : this

phase however is not observable and thus we could have assumed a positive y from the

beginning without loss of generality. We can repeat the analysis presented in Section 2.3.1

to study the light neutrino spectrum in this case. Taking |a| = M2 = v2y2/(2m2), we find

that both the orderings can be described and that the lightest neutrino masses span the

following ranges: for the most conservative case,

normal hierarchy: 4.3 meV < m1 < 6.2 meV

inverse hierarchy: m3 > 15.8 meV .
(2.61)

For the normal hierarchy, m1 spans a narrow range of values, which corresponds to

values of ∆ close to zero. This completely determines the neutrino masses inside a very

small range and represents a prediction of the model. On the other hand, for the inverse

hierarchy, m3 is bounded only from below and the minimum is achieved when ∆ is close

to ±π. In Figure 2.1 we can read off the light neutrino spectrum and its dependence with

the lightest neutrino mass.

From eq. (2.59) it is possible to describe the leading order spectrum of the right-

handed neutrinos as a function of a unique parameter, which is the lightest left-handed

neutrino mass. In all the allowed range for m1,3, the order of magnitude of the right-

handed neutrino masses falls between 1014 GeV and 1015 GeV. In fig. (2.1) we show

explicitly the right-handed neutrino masses for normal hierarchy and inverse hierarchy,
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Figure 2.1: Plots of the heavy neutrino masses, as a function of the lightest left-handed

neutrino mass. On the left the normal hierarchy and on the right the inverse hierarchy.

The green areas refer to the allowed range for m1(3) as in eq. (2.61). The vertical black

lines correspond to the future sensitivity of KATRIN experiment.

on the left and on the right respectively. The ratios among the masses are well defined

for the NH, thanks to the narrow allowed range for m1: M1/M3 ∼ 11 and M2/M3 ∼ 5.

In the case of the IH, the ratio M1/M2 is fixed at 1 while M3/M2 varies from about 3 to

1, going from the lower bound of m3 up to the KATRIN sensitivity. The analysis done

for the Majorana phases in eqs. (2.45, 2.46) is still valid here.





Chapter 3

The Golden Ratio Pattern from the

Symmetry Group A5

Neutrino oscillation and the lepton mixing matrix UPMNS still suffer from large un-

certainties. As seen in Chapter 1, the parameters related to CP violations are totally

unknown at present. The reactor angle θ13 is the smallest mixing angle, but there is only

an upper bound on it and its value can range from zero to about 0.2. The atmospheric

mixing angle θ23 is compatible with being maximal, but deviations from maximality are

still allowed to some extent. The most precisely measured angle is the solar angle θ12,

which is large but not maximal, with a 1σ uncertainty of less than 2 degrees:

sin2 θ12 = 0.304+0.022
−0.016, sin

2 θ12 = 0.321+0.023
−0.022. (3.1)

Despite the lack of a precise knowledge of UPMNS, the present data guide us while search-

ing for a first-order approximation providing the basis of a theoretical description. Some

of them, based on a µ− τ symmetry and predicting the values sin2 θ23 = 1/2 and θ13 = 0

have been described in Chapter 2. Tri-bimaximal mixing (TB) is perhaps the most stud-

ied pattern [49]. It predicts sin2 θ12 = 1/3, which is within two standard deviations from

the current best value. TB mixing can be reproduced at the LO in many models based

on discrete and continuous flavor symmetries [42]. A minimal construction is based on

A4. In Bimaximal mixing (BM) the solar angle is maximal, sin2 θ12 = 1/2, outside the

presently allowed range [48]. To reconcile the LO approximation with the data, the expan-

sion parameter should be not-too-small, of the order of the Cabibbo angle. Sub-leading

corrections of this size are expected to affect also other parameters, such as θ13, which is

thus predicted close to the present experimental upper bound.

Another plausible mixing pattern is the one where sin2 θ23 = 1/2, θ13 = 0 and tan θ12 =

1/φ where φ = (1 +
√

5)/2 is the Golden Ratio (GR) [51,52]. This pattern, called GR the

hereafter, is the focus of the present part of our work. We have

sin2 θ12 =
1√
5φ

=
2

5 +
√

5
≈ 0.276 . (3.2)

This value is about two standard deviations below the experimental range and can be

31
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brought inside the allowed interval by a small NLO correction, of order 0.05 radiants. §

The GR characterizes several properties of the icosahedron and a natural candidate for the

flavor symmetry giving rise to (3.2) is the icosahedral one, related to the group A5. This

relation was pointed out for the first time while trying to connect the value of the solar

angle to the Golden Ratio [51]. Indeed there have been attempts to construct a model

based on the A5 symmetry [45] to the purpose of reproducing the GR mixing pattern,

but a complete model does not exist to date. Recently, the group A5 was also applied

to a scenario with a fourth lepton family [46], while the double cover of the icosahedral

group was used to reproduce the quark mixing [47]. In models based on spontaneously

broken flavor symmetries a crucial feature is the discussion of the vacuum alignment. The

family symmetry is broken by the Vevs of flavon fields and the desired mixing pattern is

intimately related to the directions of these VEVs in flavor space. In a complete model

the VEV alignment should occur naturally, as the outcome of the minimization of the

energy density of the theory. To our knowledge none of the existing proposals of what we

called the GR pattern have solved the vacuum alignment problem.

Aim of the present chapter is to build a complete model based on the family group

A5 and reproducing the GR mixing pattern in a natural way. We will discuss how the

symmetry group A5 can be used to generate the GR mixing pattern. We will show that the

invariance of a general neutrino mass matrix under a parity transformation S guide us in a

straightforward way to the icosahedral symmetry. We will also specify the field content of

the model, develop a natural way of symmetry breaking and discuss the phenomenological

consequences at the LO and NLO.

3.1 A Family Symmetry for the Golden Ratio

We start by analyzing the property of the most general neutrino mass matrix leading

to the Golden Ratio (GR) prediction for the solar mixing angle. We chose a basis where

the mass matrix for the charged leptons ml is diagonal. More precisely, it is sufficient that

the combination m†lml is diagonal, so that there is no contribution to the lepton mixing

from the charged lepton sector. We should also make a choice for θ23 and θ13. To begin

with we assume a leading order approximation where sin2 θ23 = 1/2, sin2 θ13 = 0 and

tan θ12 = 1/φ where φ = (1 +
√

5)/2 is the GR. We look for the most general neutrino

mass matrix mν leading to this mixing pattern. Such a matrix can be constructed by

acting with the corresponding mixing matrix UGR on a generic diagonal neutrino mass

matrix:

mν = U∗GR diag(m1,m2,m3) U †GR . (3.3)

In a particular phase convention, the matrix UGR representing our mixing pattern is given

by:

§An alternative proposal [56] relating the Golden Ratio to the lepton mixing assumes cos θ12 = φ/2.

Consequently we have sin2 θ12 = 1
4 (3−φ) ≈ 0.345, about two standard deviations above the experimental

value. In [57] this prediction was deduced from the symmetry of the dihedral group D10.
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UGR =



cos θ12 sin θ12 0

sin θ12√
2

−cos θ12√
2

1√
2

sin θ12√
2

−cos θ12√
2

− 1√
2


, (3.4)

with tan θ12 = 1/φ. By applying eq. (3.3) we find a matrix of the form:

mν =

x y y

y z w

y w z

 , (3.5)

with coefficients x, y, z and w satisfying the following relation:

z + w = x−
√

2y . (3.6)

The matrix in eq. (3.5) is the most general one giving rise to θ13 = 0 and θ23 maximal.

The constraint of eq. (3.6) arises from further specifying the solar mixing angle.

The matrix in eqs. (3.5-3.6) can be completely characterized by a simple symmetry

requirement. Indeed, it is invariant under the action of the two unitary transformations:

U =

 1 0 0

0 0 1

0 1 0

 S =
1√
5

 1
√

2
√

2√
2 −φ 1/φ√
2 1/φ −φ

 , (3.7)

which satisfy

S2 = U2 = 1 , [S, U ] = 0 , (3.8)

and generate a group Gν = Z2 × Z2. Conversely, the requirement of invariance under

U and S completely characterize mν in eqs. (3.5-3.6). Namely, given a generic neutrino

mass matrix mν the most general solution to the equations:

UT mν U = mν , ST mν S = mν , (3.9)

with U and S given in eq. (3.7), is the mass matrix defined by eqs. (3.5) and (3.6).

In the chosen basis, where m†lml is diagonal, there is no contribution to the lepton

mixing from the charged lepton sector and the mixing matrix UGR originates only from

the diagonalization of mν . To construct a model for the desired mixing pattern, we should

require that a diagonal m†lml arises naturally, as the general solution of a symmetry or

dynamical requirement. For instance, we can require that the charged lepton sector is

invariant under a family group Gl enforcing a diagonal m†lml. In our LO approximation

the groups Gν and Gl should be seen as the residual vacuum symmetries characterizing the

neutrino sector and the charged lepton sector, respectively. Such a configuration can be
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induced by the spontaneous breaking of some family symmetry Gf , through the vacuum

expectation values of two different sets of flavons that selectively couple to neutrinos

and to charged leptons. It is not strictly necessary that Gf entirely contains Gl and

Gν as subgroups, since a part of the residual symmetries can arise accidentally, due to

the specific field content of the model, as the baryon and the lepton numbers arise as

accidental classical symmetries in the standard model. A natural candidate for the family

symmetry Gf giving rise to the GR prediction for the solar mixing angle is the proper

symmetry group of the icosahedral, the alternating group A5 [58]. One of the possible

presentations of A5 is in term of two generators S and T satisfying:

S2 = (ST )3 = 1 and T 5 = 1 . (3.10)

We make the following ansatz: we assume that the µ−τ exchange symmetry generated by

U arises as an accidental symmetry of the neutrino mass matrix, at the LO in the allowed

lepton coupling constants. We then identify the matrix S in eq. (3.7) with the generator

S of A5. Given the explicit form of the generator S, the algebraic relation (3.10) allows

to determine the matrix corresponding to the generator T . We find:

T =


1 0 0

0 e

2πi

5 0

0 0 e

8πi

5

 . (3.11)

This is an encouraging result. Indeed the condition

T † (m†lml) T = (m†lml) (3.12)

requires m†lml to be a diagonal matrix and the natural candidate for the subgroup Gl is

the group Z5 generated by T . We look for a model invariant under the family symmetry

A5, where, after spontaneous breaking, the residual symmetries of the neutrino sector

and of the charged lepton sector are those generated by (S, U) and T , respectively. The

µ− τ symmetry is accidental and is slightly broken by higher order corrections, resulting

in deviations from the LO predictions θ13 = 0 and θ23 = π/4. By construction the model

predicts GR for the solar mixing angle.

Notice that this approach automatically guarantees the independence of the mixing

matrix UGR and the other physical results from the base choice. Indeed, in a generic

basis where the generators are XΩ = Ω X Ω† (X = S, T, U), Ω denoting a unitary 3 ×
3 matrix, in general the combination m†lml is no more diagonal and the neutrino mass

matrix mν have a texture different from the one in eqs. (3.5-3.6). However, as a result

of the residual symmetries, m†lml is diagonalized by Ω, whereas mν is diagonalized by

(Ω UGR), the physical mixing matrix remaining UGR.
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3.2 The Group A5

The group A5 is the group of the even permutations of five objects. It is the proper

symmetry group of two of the five Platonic solids, the icosahedron and the dodecahedron.

It has 60 elements that can be grouped into five conjugacy classes with 1, 12, 12, 15 and 20

elements. The five irreducible representations are the invariant singlet, two inequivalent

triplets, a tetraplet and a pentaplet. The characters of A5 are collected in Table 3.1. The

A5 C1 12C
[5]
2 12C

[5]
3 15C

[2]
4 20C

[3]
5

χ[1] 1 1 1 1 1

χ[3] 3 φ (1− φ) −1 0

χ[3′] 3 (1− φ) φ −1 0

χ[4] 4 −1 −1 0 1

χ[5] 5 0 0 1 −1

Table 3.1: Characters of the A5 group.

products of two A5 representations can be decomposed according to the following rules

3⊗ 3 = (1 + 5)S + 3A

3′ ⊗ 3′ = (1 + 5)S + 3′A

3⊗ 3′ = 4 + 5

3⊗ 4 = 3′ + 4 + 5

3′ ⊗ 4 = 3 + 4 + 5

3⊗ 5 = 3 + 3′ + 4 + 5 (3.13)

3′ ⊗ 5 = 3 + 3′ + 4 + 5

4⊗ 4 = (1 + 4 + 5)S + (3 + 3′)A

4⊗ 5 = 3 + 3′ + 4 + 5 + 5

5⊗ 5 = (1 + 4 + 5 + 5)S + (3 + 3′ + 4)A

where the suffices S(A) denote the symmetric(antisymmetric) property of the correspond-

ing representation. The product between the singlet and any representation r gives r. As

recalled in the previous section, A5 is generated by two elements S and T , with the
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presentation

S2 = (ST )3 = 1 and T 5 = 1 . (3.14)

The element S belongs to the class C
[2]
4 and the element T to the class C

[5]
2 . We find

useful to work in a basis where the T generator for the various representations is always

diagonal. Since this choice is unconventional we list in Table 3.2 the matrices associated

to S and T in our basis. In Appendix A we made connection with other basis used in the

literature.

S
5

2πi
log(T )

3 1√
5

 1
√

2
√

2√
2 −φ 1

φ√
2 1

φ
−φ

 diag(0, 1, 4)

3′ − 1√
5

 1
√

2
√

2√
2 1

φ
−φ√

2 −φ 1
φ

 diag(0, 2, 3)

4 −1
5


−
√

5 (φ− 3) (φ+ 2) −
√

5

(φ− 3)
√

5
√

5 (φ+ 2)

(φ+ 2)
√

5
√

5 (φ− 3)

−
√

5 (φ+ 2) (φ− 3) −
√

5

 diag(1, 2, 3, 4)

5 1
5


−1

√
6 −

√
6 −

√
6 −

√
6√

6 2− φ 2φ 2(1− φ) −1− φ
−
√

6 2φ 1 + φ 2− φ 2(−1 + φ)

−
√

6 2(1− φ) 2− φ 1 + φ −2φ

−
√

6 −1− φ −2(1− φ) −2φ 2− φ

 diag(0, 1, 2, 3, 4)

Table 3.2: S and T generators of A5 in the basis where T is diagonal.

Notice that the matrices S and T of the previous section coincide with those of the

A5 generators in the representation 3. We have derived the Clebsh-Gordan coefficients

entering the decomposition of the representation products. They are given in Appendix

A.
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3.3 A Model with A5 Family Symmetry

In this section we define our model. We focus on the lepton sector and, to facilitate

the task related to the vacuum alignment, we consider a supersymmetric model in the

limit of exact supersymmetry (SUSY). SUSY breaking effects do not affect lepton masses

and mixing angles. Among the fields in the lepton sector we include three gauge singlets

νci and the neutrino masses will be dominated by the contribution of a type I see-saw

mechanism [14]. A version of the model without see-saw, where the neutrino masses are

described by effective higher-dimensional operators, is equally possible. It would lead to

the same predictions for the lepton mixing angles.

To start with we assign both the SU(2) lepton doublets l and the right-handed neutri-

nos νc to the representation 3 of A5. We take the SU(2) singlets ec, µc and τ c as invariant

A5 singlets. Higgs doublets Hu,d are also singlets of A5. In the neutrino sector we can

write a renormalizable Yukawa coupling of the type (νcl)Hu, the notation (...) standing

for the combination of the fields in parenthesis giving an A5 singlet. The product νcνc is

symmetric and contains a singlet and a pentaplet of A5 and, to discuss the most general

case, we introduce two flavon chiral multiplets ξ and ϕS transforming as 1 and 5 of A5,

respectively. They are completely neutral under the gauge interactions. In the charged

lepton sector renormalizable Yukawa interactions are not allowed and we need additional

flavons transforming as 3 under A5. To solve the vacuum alignment problem a minimum

of three triplets is needed, since trilinear interaction terms depending on less than three

triplets vanish by the A5 symmetry. We include three triplets ϕ, ϕ′ and ϕ′′, neutral under

the gauge interactions. An additional flavon ξ′, singlet of A5, is also introduced to imple-

ment the desired vacuum alignment. To avoid couplings of the flavon multiplets to the

wrong sector we also need to enlarge the flavor symmetry. This is done by considering

the group Gf = A5×Z5×Z3. In Table 3.3 we collect the chiral supermultiplets and their

transformation properties under Gf . Notice that, at variance with other constructions

based on flavor symmetries, we do not introduce the so-called driving fields.

ec µc τ c l νc Hu,d ϕ ϕ′ ϕ′′ ϕS ξ ξ′

A5 1 1 1 3 3 1 3 3 3 5 1 1

Z5 0 4 1 0 0 0 0 4 1 0 0 0

Z3 1 1 1 2 1 0 0 0 0 1 1 2

Table 3.3: Chiral multiplets and their transformation properties.

The additional symmetry Z3 is a discrete version of the total lepton number and is

broken by the VEVs of the flavons of the neutrino sector, ϕS, ξ and ξ′. This symmetry

prevents a direct mass term for νc. The presence of the new Z5 factor forces each of

the lepton multiplets ec, µc and τ c to couple to only one of the triplets ϕ, ϕ′ and ϕ′′,

at the LO. The additional factors Z3 and Z5 play also an important role both in the
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construction of the flavon scalar potential and in the classification of NLO corrections.

The superpotential for the lepton multiplets reads:

w = y(νcl)Hu +

√
3

2
y1ξ(ν

cνc) + y5(ϕSν
cνc)

+ yee
c(
ϕ

Λ
l)Hd + yµµ

c(
ϕ′′

Λ
l)Hd + yττ

c(
ϕ′

Λ
l)Hd + ... (3.15)

where dots stand for higher order operators and Λ denotes the cut-off scale. Notice that

the LO Yukawa couplings of the charged fermions are described by non-renormalizable

operators. As we will see in section 5, where we will discuss the vacuum alignment, at

the LO the flavons ϕS, ξ, ϕ, ϕ′ and ϕ′′ acquire VEVs of the type:

〈ϕS〉 = (−
√

2

3
(p+ q),−p, q, q, p) Λ

〈ξ〉 = s Λ

〈ϕ〉 = (u, 0, 0) Λ

〈ϕ′〉 = (0, u′, 0) Λ

〈ϕ′′〉 = (0, 0, u′′) Λ . (3.16)

where p, q, s, u, u′, u′′ are dimensionless coefficients. Such a pattern completely specifies

lepton masses and mixing angles, at the LO. Plugging the VEVs of ϕS, ξ, ϕ, ϕ′ and ϕ′′

into the superpotential w and working out the A5 invariant combinations, with the help

of the results of the previous section and those of the Appendix A, we can find the LO

mass matrices ml and mν .

In the charged lepton sector, after breaking of A5, the relevant part of the superpo-

tential becomes

yeu e
cleHd + yµu

′′ µclµHd + yτu
′ τ clτHd . (3.17)

There is no contribution to the lepton mixing from this sector and charged lepton masses

are

me = yeuvd , mµ = yµu
′′vd , mτ = yτu

′vd , (3.18)

vd being the VEV of the neutral component of Hd. We might be surprised by the fact that

ml is diagonal, since only the VEV of ϕ leaves the ZT
5 subgroup generated by T invariant,

while the VEVs of ϕ′ and ϕ′′ break ZT
5 . We can understand this result by recalling that

the flavor symmetry Gf contains a factor Z5, distinct from ZT
5 . The VEVs of ϕ, ϕ′ and

ϕ′′ break A5 × Z5 down to the diagonal subgroup ZD
5 contained in the product ZT

5 × Z5.

It is this residual group that guarantees a diagonal ml in our construction.

Similarly, in the neutrino sector we read from eq. (3.15) the mass matrices M for the
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right-handed neutrinos and mD, the Dirac one:

M =
√

6


y1s+

2

3
y5(p+ q) y5

p√
2

y5
p√
2

y5
p√
2

y5q y1s−
1

3
y5(p+ q)

y5
p√
2

y1s−
1

3
y5(p+ q) y5q

Λ . (3.19)

mD = y

 1 0 0

0 0 1

0 1 0

 vu , (3.20)

where vu is the VEV of the Higgs doublet Hu. Since M is µ − τ symmetric and mD is

proportional to the matrix U in eq. (3.7), from the see-saw formula we have

mν = mT
DM

−1mD = y2v2
uM

−1 (3.21)

We notice that M has precisely the structure given in eqs. (3.5) and (3.6) and therefore

both M and its inverse are diagonalized by the mixing matrix in eq. (3.4) with tan θ12 =

1/φ:

UT
GR mν UGR = diag(m1,m2,m3) . (3.22)

Therefore UGR represents the contribution to the lepton mixing coming from the neutrino

sector, as desired. This result crucially depends on the VEV of the flavon pentaplet

ϕS, which will be derived from the minimization of the scalar potential in Section 3.4.

We observe that such a VEV is left invariant by the action of the generator S, as can

be immediately checked by multiplying the 5×5 matrix S of Table 3.2 and the vector

(−
√

2/3(p+ q),−p, q, q, p). This is the reason why the residual symmetry of the neutrino

sector contains the parity subgroup generated by S. The presence of the µ− τ symmetry

is more subtle. Indeed the generator S of the 5 representation has three eigenvalues equal

to one and the corresponding eigenvector can be parametrized as

(−
√

2/3(p+ q + rφ),−p+ r, q + 2rφ, q, p+ r) . (3.23)

This is the most general VEV of ϕS that leaves S unbroken. It is easy to construct the

corresponding neutrino mass matrix mν and check that in the general case, with r 6= 0,

mν is not µ−τ symmetric. In our model it is the minimization of the scalar potential that

selects the vacuum with r = 0, thus enforcing the µ− τ symmetry. We will demonstrate

this result in Section 3.4.

The charged fermion masses depend on three sets of independent parameters, which

do not display a manifest relative hierarchy. It is easy to induce the correct hierarchy by

assigning Froggatt-Nielsen U(1)F charges 2q and q to ec, and µc, respectively [53]. The

spontaneous breaking of such U(1)F by the VEV of a scalar fields carrying a negative

units of F explains why ye << yµ << yτ . In the LO approximation the spectrum of the
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Figure 3.1: Predictions for |mee| versus the lightest neutrino mass, for normal (red) and

inverted (blue) mass ordering. In lighter regions the mass parameters are completely free.

In darker regions they are correlated as prescribed by the LO approximation of our model.

light neutrinos is

m1 =
1

A+B + C
, m2 =

1

A+B − C , m3 =
1

−A+ 2B
. (3.24)

where A, B and C are complex parameters defined as

A = 6y1q
Λ√

6y2v2
u

, B = y5(p+ 4q)
Λ√

6y2v2
u

, C = 3
√

5y5p
Λ√

6y2v2
u

. (3.25)

There are no special relations between the three complex parameter and thus we have no

prediction on the neutrino spectrum, that can have both normal and inverted ordering.

A moderate tuning among the parameters is needed in order to reproduce the ratio be-

tween solar and atmospheric squared mass differences. The mass combination entering

neutrinoless double-beta decay, mee, is given by y2v2
u(M

−1)11 and depends on the same

parameters A, B and C. By expressing the absolute values of A, B and C in terms of

∆m2
sol, ∆m2

atm, the smallest neutrino mass and the phases of A, B and C, we can derive a

range for |mee| as a function of the smallest neutrino mass by varying the available phases.

We plot the result in Figure 3.1, where the lighter region refer to the unconstrained case

(see the first reference in [1]), and the darker one corresponds to the present model, in

the LO approximation.

The dominant contribution from local effective operators to the light neutrino masses

is (llhuhuξ
′). This operator is suppressed compared to the see-saw contribution, since

the former is of order V EV/Λ2, while the latter is of order 1/V EV . Moreover, it is easy
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to see that the new effective term preserves the µ − τ symmetry and the Golden Ratio

prediction.

3.4 Vacuum Alignment

The results of the previous section crucially depend on the assumed set of VEVs, eq.

(3.16), and the purpose of this section is to show that they derive from the minimization

of the scalar potential of the theory, without ad-hoc tuning of the parameters involved.

The transformation properties of the flavon fields allow to write the following contribution

to the superpotential

wf = M0ξξ
′ + g1ξ(ϕ

2
S) + g2(ϕ3

S)1 + g3(ϕ3
S)2 +

g4

3
ξ3 +

g5

3
ξ′3

+ M1(ϕ2) +M2(ϕ′ϕ′′) + g(ϕϕ′ϕ′′) + ... (3.26)

where dots stand for higher dimensional terms, which will contribute at the NLO. There

are two independent cubic invariants that can be built from a pentaplet and they are

denoted by the suffices 1 and 2 in wf . There are no driving fields in our construction and

the minima are derived by analyzing the F-terms of the flavons themselves. At the LO

there is no mixing between ξ, ξ′, ϕS, that control the neutrino mass terms and ϕ, ϕ′ and

ϕ′′, that give rise to the charged lepton Yukawas. We can separately discuss the two sets

of minima. We start from the neutrino sector. The condition
∂wf
∂ξ′

= M0ξ + g5ξ
′2 = 0 (3.27)

is solved by

ξ = − g5

M0

ξ′2 . (3.28)

Another set of conditions is given by

∂wf
∂ϕSi

= 0 . (3.29)

To solve these equations it is convenient to move to the so-called Cummins-Patera basis

[59,60] for the generators S and T . In this basis the generator S for the five-dimensional

representation is diagonal, SCP = diag(+1,−1,−1,+1,+1). The explicit form of T for

the 5 representation in the Cummins-Patera basis as well as the unitary matrix relating

the two basis is given in Appendix B. We denote the components of ϕS in the Cummins-

Patera basis by

ϕS = (X1, X2, X3, Z, Z̄) , (3.30)

where Xi (i = 1, 2, 3), Z and Z̄ should be seen as independent complex quantities. The

terms of the superpotential wf that depend on ϕS are explicitly given by:

wf = g1ξ(X
2
1 +X2

2 +X2
3 + 2ZZ̄)

+ g2

(
Z3 − Z̄3 − 3(X2

1 + ω2X2
2 + ωX2

3 )Z + 3(X2
1 + ωX2

2 + ω2X2
3 )Z̄

)
+ g3

(
Z3 + Z̄3 + (X2

1 + ω2X2
2 + ωX2

3 )Z + (X2
1 + ωX2

2 + ω2X2
3 )Z̄

− 4X1X2X3) + ... (3.31)
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where

ω = e

2πi

3 . (3.32)

We have explicitly solved the equations (3.29) in this basis. We found no non-trivial

solutions invariant under T and seven independent solutions invariant under S. They can

be grouped in two pairs and a triplet. Each of these sets is closed under the action of the

generator T . One of the triplet of solutions is given by:

X1 = X2 = X3 = 0 , (3.33)

Z = −2g1g5

3M0

1

(g2 − g3)1/3(g2 + g3)2/3
ξ′2 ,

Z̄ = +
2g1g5

3M0

1

(g2 − g3)2/3(g2 + g3)1/3
ξ′2 , (3.34)

where we have also made use of eq. (3.28). The other two solutions belonging to the triplet

are obtained by multiplying Z by ω(ω2) and Z̄ by ω2(ω). The condition X2 = X3 = 0

correspond to the invariance under S, whereas X1 = 0 is an additional specific feature of

this set of solutions.

In each of these minima we have the basis independent result:

(ϕ2
S) = −8g2

1g
2
5

9M2
0

1

(g2 − g3)(g2 + g3)
ξ′4 . (3.35)

We have a finite multiplicity of minima and we chose the minimum in eqs. (3.33,3.34).

Before coming back to our basis, we analyze the equation

∂wf
∂ξ

= M0ξ
′ + g1(ϕ2

S) + g4ξ
2 = 0 , (3.36)

which, by making use of (3.28) and (3.35), becomes

ξ′

M0

−
[

8g3
1g

2
5

9(g2 − g3)(g2 + g3)
− g4g

2
5

]
ξ′4

M4
0

= 0 . (3.37)

This equation has non-vanishing solutions for ξ′, which make non-trivial the solutions

(3.28) and (3.33, 3.34). With the help of the unitary transformation relating the Cummins-

Patera basis to ours we find that in our basis the minimum (3.33, 3.34) translates into

〈ϕS〉 = (−
√

2

3
(p+ q),−p, q, q, p) Λ (3.38)

with

p =
1

2
√

2Λ

[
ω

(√
3

5
− i
)
Z −

(√
3

5
+ i

)
Z̄

]

q =
1

2
√

2Λ

[
ω

(√
3

5
+ i

)
Z −

(√
3

5
− i
)
Z̄

]
, (3.39)
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with Z and Z̄ given by eq. (3.34). We have recovered the pattern displayed in Section 3.3.

Notice that this result does not depend on the specific value of the Z and Z̄ components,

but rather on the conditions Xi = 0. In particular, the µ− τ parity symmetry is related

to the vanishing of the X1 component.

Moving to the flavons ϕ, ϕ′ and ϕ′′, the relevant part of the superpotential is given by

wf = M1(ϕ2) +M2(ϕ′ϕ′′) + g(ϕϕ′ϕ′′) + ...

= M1(ϕ2
1 + 2ϕ2ϕ3) +M2(ϕ′1ϕ

′′
1 + ϕ′2ϕ

′′
3 + ϕ′3ϕ

′′
2)

+ g(ϕ1ϕ
′
2ϕ
′′
3 + ϕ2ϕ

′
3ϕ
′′
1 + ϕ3ϕ

′
1ϕ
′′
2 − ϕ1ϕ

′
3ϕ
′′
2 − ϕ2ϕ

′
1ϕ
′′
3 − ϕ3ϕ

′
2ϕ
′′
1) + ... (3.40)

The minima in the ϕ, ϕ′ and ϕ′′ can be found by solving the system of equations:

∂wf
∂ϕi

= 0 ,
∂wf
∂ϕ′i

= 0 ,
∂wf
∂ϕ′′i

= 0 , (3.41)

which, using a vectorial notation, can be written as

2M1 ϕ̂+ g ϕ′×ϕ′′ = 0 , 2M2 ϕ̂
′′− g ϕ×ϕ′′ = 0 , 2M2 ϕ̂

′+ g ϕ×ϕ′ = 0 , (3.42)

where × denotes the external product and, for any vector v = (v1, v2, v3), we set v̂ =

(v1, v3, v2). To solve this system it is useful to recognize that the LO part of the su-

perpotential that depends only on the fields ϕ, ϕ′ and ϕ′′ is invariant under the linear

transformation

ϕ→ ΩR Ω−1ϕ , ϕ′ → y ΩR Ω−1ϕ′ , ϕ′′ → 1

y
ΩR Ω−1ϕ′′ , (3.43)

where y is a complex dimensionless parameter,

Ω =


1 0 0

0
1√
2

−i√
2

0
1√
2

+i√
2

 (3.44)

and R is a general complex orthogonal matrix, RTR = 1, depending on three complex

parameters. As we shall see this invariance is accidental and is broken by the NLO

contributions to the superpotential. By exploiting such an invariance we can always

reach the particular minimum with ϕ2 = ϕ3 = 0. It is easy to see that one such solution

is given by¶

ϕ0 = −M2

g
(1, 0, 0)

ϕ′0 =

√
2M1M2

g
(0, 1, 0)

ϕ′′0 =

√
2M1M2

g
(0, 0, 1) , (3.45)

¶There is also another solution where the entries of ϕ′ and ϕ′′ are exchanged.
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The general solution of the system (3.42) is given by

ϕ = ΩR Ω−1ϕ0 , ϕ′ = y ΩR Ω−1ϕ′0 , ϕ′′ =
1

y
ΩR Ω−1ϕ′0 , (3.46)

The degeneracies related to R and y are accidental. Indeed the transformations of eq.

(3.43) are not symmetries of our system, but rather accidental symmetries of the LO

approximation. It is easy to see that the symmetry related to the rotation R is removed

at the NLO, by including operators of dimension four in wf . As we will discuss in the next

section, the inclusion of the most general set of operators of dimension four in the flavon

fields, leads to the result R = 1, thus justifying the choice of the previous section. The

symmetry under the rescaling y is removed by adding invariant operators of dimension

five.

3.5 Higher-order Corrections

3.5.1 Vacuum Alignment

The vacuum alignment discussed in the previous section is modified by the contribution

to the superpotential from higher dimensional operators. If we denote by V EV the typical

vacuum expectation value of the flavon fields, we expect corrections to the LO minima of

order V EV/Λ. These corrections can be kept small by asking V EV/Λ� 1. Nevertheless

they play an important role in removing some of the degeneracy that affect the LO result.

In the following discussion we include all NLO operators, that is operators of dimension

four depending on the flavon fields. A complete set of invariants under the flavor group

is given by

Q1 = (ϕϕ)(ϕϕ) Q11 = ((ϕϕ)5(ϕ′ϕ′′)5)

Q2 = (ϕϕ′)(ϕϕ′′) Q12 = ((ϕ′ϕ′)5(ϕ′′ϕ′′)5)

Q3 = (ϕ′ϕ′′)(ϕ′ϕ′′) Q13 = (((ϕSϕS)51ϕS)3ϕ)

Q4 = (ϕ′ϕ′)(ϕ′′ϕ′′) Q14 = (((ϕSϕS)52ϕS)3ϕ)

Q5 = (ϕϕ)(ϕ′ϕ′′) Q15 = (((ϕSϕS)4ϕS)3ϕ)

Q6 = ((ϕϕ′)3(ϕϕ′′)3) Q16 = ξ′(ϕS(ϕϕ)5)

Q7 = ((ϕ′ϕ′′)3(ϕ′ϕ′′)3) Q17 = ξ′(ϕS(ϕ′ϕ′′)5)

Q8 = ((ϕϕ′)5(ϕϕ′′)5) Q18 = ξξ′(ϕϕ)

Q9 = ((ϕ′ϕ′′)5(ϕ′ϕ′′)5) Q19 = ξξ′(ϕ′ϕ′′)

Q10 = ((ϕϕ)5(ϕϕ)5) Q20 = ξ′2(ϕSϕS) .

(3.47)

the NLO contribution to the flavon superpotential is

δw1 + δw2 + δw3 (3.48)

where

δw1 =
12∑
i=1

xi
Qi

Λ
, δw2 =

19∑
i=13

xi
Qi

Λ
, δw3 = x20

Q20

Λ
(3.49)
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It is useful to deal with the contribution wf +δw1 first. This includes all quartic operators

that depend on the fields ϕ, ϕ′ and ϕ′′ only. In this case the minima of ϕ, ϕ′ and ϕ′′ can

be analyzed in a analytic form. This part of the superpotential breaks the invariance of

eq. (3.43), but is still invariant under the linear transformation

ϕ→ ΩR23 Ω−1ϕ , ϕ′ → y ΩR23 Ω−1ϕ′ , ϕ′′ → 1

y
ΩR23 Ω−1ϕ′′ , (3.50)

with Ω given in eq. (3.44) and

R23 =

 1 0 0

0 cosα sinα

0 − sinα cosα

 (3.51)

with α complex. We start by looking for a minimum for ϕ, ϕ′ and ϕ′′ with the same

orientation of the one in eq. (3.45)

ϕ0 = (u, 0, 0) Λ

ϕ′0 = (0, u′, 0) Λ

ϕ′′0 = (0, 0, u′′) Λ , (3.52)

Along this direction the minimum conditions reduce to

gu′u′′ + 2
M1

Λ
u+ 4(x2 + x11)u3 +

1

2
(4x6 − 4x7 + 3x9 + 2x12)uu′u′′ = 0

gu+
M2

Λ
+

1

4
(4x6 − 4x7 + 3x9 + 2x12)u2 +

1

2
(4x4 + 4x8 + x10 + 6x13)u′u′′ = 0 .

We find that the values of the u, u′ and u′′ components are the ones given in eq. (3.45)

plus small perturbations of order V EV/Λ. The solution (3.52) is not isolated. It is

continuously connected to an infinite set of solutions given by

ϕ = ΩR23 Ω−1ϕ0 , ϕ′ = y ΩR23 Ω−1ϕ′0 , ϕ′′ =
1

y
ΩR23 Ω−1ϕ′0 . (3.53)

Thus the degeneracy present at the LO has been only partially removed by the NLO

contribution δw1. The remaining degeneracy is removed by the contribution δw2. We

have analyzed the full NLO superpotential wf + δw1 + δw2 + δw3 by looking for numerical

solution to the minimum equations. Looking for minima for the fields ϕ, ϕ′ and ϕ′′ we

have frozen the value of ϕS to its LO minimum, eq. (3.16). Under this condition it is

easy to see that the operators Q13, Q14 and Q15 vanish. Moreover the operator Q20 does

not influence the minima of ϕ, ϕ′ and ϕ′′ and the effect of the operators Q18 and Q19 can

be absorbed in a redefinition of the parameters M1 and M2 of the LO superpotential. In

our numerical simulation g, x1−12 and x16,17 are complex random numbers generated with

a flat distribution in the square defined by the corners [−(1 + i)/
√

2, (1 + i)/
√

2]. To get

an expansion parameter V EV/Λ of order 0.01, we have taken values of M1,2/Λ, 〈ϕS〉/Λ
and ξ′/Λ in the square defined by the corners [−(1 + i)/

√
2, (1 + i)/

√
2]× 10−2. We have
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performed 50.000 independent minimizations of the scalar potential. We find that the

mean values of the VEVs, normalized to one up to terms of order (V EV/Λ)2, are

〈ϕ〉 = (100, 0.35 + 0.17i, 0.35 + 0.17i)× 10−2

〈ϕ′〉 = (−0.51− 0.03i, 100,−0.53− 0.05i)× 10−2

〈ϕ′′〉 = (−0.51− 0.03i,−0.53− 0.05i, 100)× 10−2 . (3.54)

Notice that the induced perturbations are not independent. We have 〈ϕ2〉 = 〈ϕ3〉, 〈ϕ′1〉 =

〈ϕ′′1〉 and 〈ϕ′3〉 = 〈ϕ′′2〉. This is true not only on average, but also separately for each

individual minimization. The direction of the minima in flavor space is now completely

determined and coincides, up to corrections of relative order V EV/Λ with the alignment

(5.2) needed to enforce the desired mixing pattern. The only remaining flat direction is

that related to the overall scale of ϕ′ and ϕ′′ (the parameter y in eq. (3.43)), since also

the NLO superpotential only depends on the combination ϕ′ϕ′′. This last flat direction

is removed at NNLO order where terms depending separately on ϕ′ and ϕ′′ first occur in

the superpotential. Finally the contribution δw2 also modifies the VEVs of ξ, ξ′ and ϕS
compared to their LO values. Also these corrections are of relative order V EV/Λ.

In summary the analysis of the scalar potential of the model in the SUSY limit shows

that the minima of the flavon fields are given by

〈ϕS〉 = (−
√

2

3
(p+ q),−p, q, q, p) Λ +O(

V EV 2

Λ
)

〈ξ〉 = s Λ +O(
V EV 2

Λ
)

〈ϕ〉 = (u, 0, 0) Λ +O(
V EV 2

Λ
)

〈ϕ′〉 = (0, u′, 0) Λ +O(
V EV 2

Λ
)

〈ϕ′′〉 = (0, 0, u′′) Λ +O(
V EV 2

Λ
) . (3.55)

This proves that the lepton mixing pattern originates from the dynamics of our model

and not from an ad hoc choice of the underlying parameters.

3.5.2 Other Higher-order Operators

Beyond the operators (3.47), that correct the lepton mass spectrum through the

flavon VEVs, there are other higher-dimensional operators contributing directly to lepton

masses. We only consider NLO contributions. At this order the charged lepton mass

matrix ml is not affected. At LO ml is dominated by operators of order 1/Λ. At NLO we
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find the following three invariant operators:

1

Λ2
ec(ϕ′ϕ′′l)Hd,

1

Λ2
µc(ϕ′′ϕl)Hd,

1

Λ2
τ c(ϕϕ′l)Hd. (3.56)

From the multiplication rules reported in the Appendix and the alignment shown in the

previous sections it is easy to show that the NLO VEVs of the new triplets are

(ϕ′ϕ′′)3 = (u′ u′′, 0, 0)Λ2,

(ϕϕ′)3 = (0, u u′, 0)Λ2,

(ϕ′′ϕ)3 = (0, 0, u′′ u)Λ2 (3.57)

and that they exactly align in the same direction as ϕ, ϕ′ and ϕ′′, respectively. Thus these

operators do not modify the LO structure of ml. We conclude that, at NLO, the charged

lepton mass matrix is only modified by the corrections to vacuum alignment analyzed in

Section 3.5.1.

The neutrino sector receives corrections from the operators:

(νclϕ)Hu

ξ′2(νcνc)

(ϕϕSν
cνc). (3.58)

The first one modifies non-trivially the Dirac neutrino mass matrix mD. The second one,

after the breaking of the flavor symmetry, can be absorbed by redefining the coupling

constant y1. The third one changes the Majorana mass matrix M for the heavy neutrinos.

The neutrino mass matrix mν receives two type of corrections at the NLO. One coming

from the modified vacuum for the flavon ϕS and another one from the operators (3.58).

The corrections to the entries of ϕS are unrelated to each other and consequently slightly

modify the vacuum alignment shown in eq. (3.38). Neutrino masses and mixing angles

are modified by terms of relative order V EV/Λ. The size of this correction is constrained

by the agreement between the predicted and observed value of θ12. Not to spoil the

successful prediction of θ12, the ratio V EV/Λ should not exceed a few percent. In Figure

3.2 we show the relation between sin2 θ12 and sin2 θ13 at the NLO order as a result of a

numerical simulation with random parameters. The simulation takes into account all the

corrections coming from eqs. (3.55) and (3.58).

We recognize a possible correlation: in general either θ12 or θ13 can deviate significantly

from the LO prediction, but not both at the same time. When V EV/Λ is of order 0.01,

the maximal correction to the reactor angle remains far below the sensitivity of future

experiments [31] and the result from the global fit on neutrino oscillation given in [2],

where a value not too far from the current limit is reported. On the other hand, θ12 could

be shifted toward the experimental value shown in (3.1).
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Figure 3.2: Correlation between sin2 θ12 and sin2 θ13 at the NLO. For the triplets ϕ, ϕ′

and ϕ′′ the mean values in (3.54) were chosen. 〈ϕS〉/Λ, 〈ξ〉/Λ and 〈ξ′〉/Λ have values

in the square defined by the corners [−(1 + i)10−2/
√

2, (1 + i)10−2/
√

2]. Similarly the

other parameters are complex random numbers generated with a flat distribution in the

square defined by the corners [−(1 + i)/
√

2, (1 + i)/
√

2]. The LO prediction for the solar

angle is also shown (dashed line), along with the extremes of the 3σ experimental range

(dot-dashed lines).

3.6 Conclusion of the Chapter

We think that the GR mixing pattern, where sin2 θ23 = 1/2, θ13 = 0 and tan θ12 = 1/φ,

should be considered on the same foot as other more popular schemes, such as the TB and

the BM ones, in our attempts to construct a model of lepton masses and mixing angles.

Indeed the GR scheme is compatible with the experimental data. The largest deviation is

for the solar angle, where the predicted value is about two standard deviations below the

present experimental central value. In this work we have built a supersymmetric model

reproducing the GR pattern in the LO approximation. In the limit of exact GR mixing we

have identified two transformations S and T , leaving invariant the neutrino mass matrix

and the charged lepton mass matrix respectively, and generating the discrete group A5.

Following this hint, we have chosen as the family symmetry of our model A5 × Z5 × Z3

where the Z5 × Z3 factor forbids unwanted couplings between the flavon fields and the

matter fields. In the supersymmetric limit we have analyzed the most general scalar

potential for the flavon fields up to terms suppressed by one power of the cutoff Λ. In a

finite portion of the parameter space, without any fine-tuning of the parameters, we find

an isolated minimum of the scalar potential where the flavon VEVs give rise to the GR

mixing pattern, up to terms of order V EV/Λ. Choosing V EV/Λ of order few percent

we can have an excellent agreement between theory and data for both the solar and the

atmospheric mixing angles. The mixing angle θ13 is expected to be of order few degrees.
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The neutrino masses depend on three complex parameters so that both types of ordering

can be accommodated. Neutrino masses and squared mass differences can be fitted but

not predicted. At the LO we find restrictions on the allowed value of mee, once the mass

ordering and the smallest neutrino mass have been fixed.

To achieve the desired vacuum alignment there is no need of driving fields, a tool often

used in this type of constructions. Neglecting matter multiplets, the energy density of the

theory only depends on the flavon fields, that are self-aligned at the minimum. To our

best knowledge our model is the first example where the GR mixing pattern is derived

from a full minimization of the energy density.

We think that our model provides a valuable alternative to other existing proposals.

There are not sufficient hints in the data to prefer other mixing patterns, such as the TB

one, to the GR one. Indeed in most of the existing models, including the present one,

TB, BM, GR or other mixing patterns are only lowest order approximations, unavoidably

corrected by powers of the symmetry breaking parameters. From this point of view,

TB and GR mixing patterns can be both considered excellent first order approximations

to the existing data. It is remarkable that the TB, BM and GR mixing patterns can

be obtained from minimal constructions based on the symmetry groups A4, S4 and A5,

which are the proper symmetry groups of the Platonic solids. To make a comparative

experimental test of these constructions other observable quantities should be considered,

such as for instance the rates of lepton flavor violating processes, which, depending on

the assumed supersymmetry breaking scale, could be within the reach of the presently

running or planned experiments.





Chapter 4

Running Effects on Flavour Models

In many flavor models mass matrices and mixing are generated at a very high energy

scale. In order to compare the high-energy predictions with the experimental results, it

is necessary to evolve the observables to low energies through the renormalization group

(RG) running.

In general the deviations from high energy values due to the running consist in mi-

nor corrections which cannot be measured in the future neutrino experiments, but in

some special case these deviations undergo a large enhancement and may cause a conflict

between the original setup and data.

In the present chapter we will discuss the effects of the renormalization group run-

ning on the lepton sector when masses and mixing are the result of an underlying flavor

symmetry, both in the Standard Model and in the MSSM.

When the lightness of the neutrino masses is explained through the five-dimensional

Weinberg operator, it is a general result [61] that the running corrections become relevant

only when the neutrino spectrum is almost degenerate or inversely hierarchical (and only

for particular values of the Majorana phases) or when in the supersymmetric context tan β

is large. Similar results have been found when particular flavor structures for the neutrino

masses are invoked, such as the Tribimaximal [62] and the Bimaximal [63] patterns.

When we consider models in which the type I See-Saw mechanism in implemented,

few studies have been proposed in literature [64] and only regarding general, in particular

non-flavor, models. For this reason we focus [5] our attention only on flavor models in

which the type I See-Saw is responsible for the light neutrino masses.

We first describe, in a very general context, two kinds of interesting constraints on

the Dirac neutrino Yukawa Yν from flavor symmetries and then analyze their impact

on running effects. We start considering flavor models in which Yν is proportional to a

unitary matrix as it is the case, for example, when the right-handed singlet neutrinos or

the charged leptons are in an irreducible representation of the flavor group Gf . Then we

extend this constraint to a more general class of flavor models in which the mixing textures

are independent from the mass eigenstates: examples are the Tribimaximal, Bimaximal

and Golden Ratio textures presented in the previous chapter.

As a general result, we find that in this class of models, the effect of the running

51
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through the See-Saw thresholds can always be absorbed by a small shift on neutrino mass

eigenvalues and the mixing angles remain unchanged. This conclusion is, in particular,

independent both from the specific mixing pattern implied by the flavor symmetry and

from the basis in which we are working.

In a second moment, as an explicit example, we describe in detail the running effects

on the Tribimaximal mixing texture in the Altarelli-Feruglio model described in Section

2.3.

4.1 Running Effects on Neutrino Mass Operator mν

In this section we begin to analyze, in a general context, the renormalization group

equations (RGEs) for neutrino masses below and above the See-Saw threshold, both in

the Standard Model and in the MSSM extended with three right-handed neutrinos. We

consider the Lagrangian in the lepton sector of the type I See-Saw already defined in eqs.

(1.4, 1.11):

L = ecYeH
†`+ νcYνH̃

†`+ νcMRν
c + h.c. (4.1)

where the supersymmetric case is easily derived considering two Higgs doublets, all the

fields as supermultiplets and identifying the homomorphic part of L with a superpoten-

tial. In what follows we concentrate only on the Standard Model particles and for this

reason in our notation a chiral superfield and its R-parity even component are denoted

by the same letter.

Given the heavy Majorana and the Dirac neutrino mass matrices, MR and mD =

Yνv/
√

2 respectively, the light mν is obtained from block-diagonalizing the complete 6×6

neutrino mass matrix,

mν = −v
2

2
Y T
ν M

−1
R Yν , (4.2)

The matrix mν is modified by quantum corrections according to the RGEs widely studied

in the literature [64]. For completeness, in Appendix B, we report the full RGEs for all

the interested quantities in the running. In order to analytically study the change of

mν(µ) from high to low-energy, it is useful to work in the basis in which the Majorana

neutrino mass is diagonal and real, M̂R = diag(MS,MM ,ML). The mass eigenvalues

can be ordered as MS < MM < ML. Furthermore, we can divide the running effects

in three distinct energy ranges: from the cutoff Λ of the theory down to ML, the mass

of the heaviest right-handed neutrino; from ML down to MS, the mass of the lightest

right-handed neutrino; below MS down to %, which can be either mZ , considered as the

electroweak scale, or mSUSY , the average energy scale for the supersymmetric particles.

Λf −→ML. Above the highest See-Saw scale the three right-handed neutrinos are all

active and the dependence of the effective light neutrino mass matrix from the

renormalization scale µ is given by mean of the µ−dependence of Yν and MR:

mν(µ) = −v
2

2
Y T
ν (µ)M−1

R (µ)Yν(µ) . (4.3)
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Then from the RGEs in eqs. (B. 1, B. 2), it is not difficult to see that the evolution

of the effective mass matrix mν is given by:

16π2 dmν

dt
=
(
CeY

†
e Ye + CνY

†
ν Yν

)T
mν +mν

(
CeY

†
e Ye + CνY

†
ν Yν

)
+ ᾱmν (4.4)

with

Ce = −3

2
, Cν =

1

2
in the SM

Ce = Cν = 1 in the MSSM

(4.5)

and

ᾱSM = 2 Tr
[
3Y †uYu + 3Y †d Yd + Y †ν Yν + Y †e Ye

]
− 9

10
g2

1 −
9

2
g2

2

ᾱMSSM = 2 Tr
[
3Y †uYu + Y †ν Yν

]
− 6

5
g2

1 − 6g2
2 .

(4.6)

ML −→MS. The effective neutrino mass matrix mν below the highest See-Saw scale can

be obtained by sequentially integrating out νcn with n = L,M, S:

mν = −v
2

4

(
(n)

κ+ 2
(n)

Y T
ν

(n)

MR
−1

(n)

Yν

)
(4.7)

where
(n)

κ is the coefficient of the effective neutrino mass operator (H̃†`)T (H̃†`). From

the (tree-level) matching condition, it is given by

(n)

κij = 2(Y T
ν )inM

−1
n (Yν)nj , (4.8)

which is imposed at µ = Mn. At ML, the 2 × 3 Yukawa matrix
(L)

Yν is obtained by

simply removing the L-th row of Yν and the 2×2 mass matrix
(L)

MR is found from MR

by removing the L-th row and L-th column. Further decreasing the energy scale

down to MM ,
(M)

Yν is a single-row matrix, obtained by removing the M -th row from
(L)

Yν , and
(M)

MR consists of a single parameter, found by removing the M -th row and

M -th column from
(L)

MR. Finally at MS,
(S)

Yν and
(S)

MR are vanishing.

In the Standard Model, the two parts which define mν in eq. (4.7) evolve in different

ways. We can summarize the corresponding RGEs as follows:

16π2 d
(n)

X

dt
=

(
1

2

(n)

Y †ν
(n)

Yν −
3

2
Y †e Ye

)T
(n)

X +
(n)

X

(
1

2

(n)

Y †ν
(n)

Yν −
3

2
Y †e Ye

)
+

(n)

ᾱX
(n)

X (4.9)

where

(n)

ᾱκ = 2 Tr

[
3Y †uYu + 3Y †d Yd +

(n)

Y †ν
(n)

Yν + Y †e Ye

]
− 3g2

2 + λH

(n)

ᾱY Tν M−1
R Yν

= 2 Tr

[
3Y †uYu + 3Y †d Yd +

(n)

Y †ν
(n)

Yν + Y †e Ye

]
− 9

10
g2

1 −
9

2
g2

2 ,

(4.10)
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with λH the Higgs self-coupling.§

In MSSM the running of
(n)

κ and of
(n)

Y T
ν

(n)

MR
−1

(n)

Yν is the same and therefore we can write

16π2 dmν

dt
=

(
Y †e Ye +

(n)

Y †ν
(n)

Yν

)T
mν +mν

(
Y †e Ye +

(n)

Y †ν
(n)

Yν

)
+

(n)

ᾱmν , (4.11)

where
(n)

ᾱ = 2 Tr

[
3Y †uYu +

(n)

Y †ν
(n)

Yν

]
− 6

5
g2

1 − 6g2
2 . (4.12)

MS −→ λ. For energy range below the mass scale of the lightest right-handed neutrino,

all the νcn are integrated out and
(S)

Yν and
(S)

MR vanish. In the right-hand side of eq.

(4.7) only the term
(S)

κ is not vanishing and in this case the effective mass matrix mν

evolves as:

16π2 dmν

dt
=
(
CeY

†
e Ye

)T
mν +mν

(
CeY

†
e Ye

)
+

(S)

ᾱmν (4.13)

with
(S)

ᾱSM = 2 Tr
[
3Y †uYu + 3Y †d Yd + Y †e Ye

]
− 3g2

2 + λH

(S)

ᾱMSSM = 6 Tr
[
Y †uYu

]
− 6

5
g2

1 − 6g2
2 .

(4.14)

4.1.1 Analytical Approximation to the Running Evolution of

mν

Now we analytically solve the RGEs for mν in the leading Log approximation. All

the Yukawa couplings Y †i Yi for i = ν, e, u, d are evaluated at their initial value at the

cutoff Λ. Furthermore we will keep only the leading contributions from each Y †i Yi term,

for i = e, u, d, i.e. |yτ |2, |yt|2 and |yb|2 respectively. The corrections to the leading order

Y †i Yi come from their running evolution as well as from their sub leading terms and they

contribute to the final result as sub leading effects and we can safely neglect them in our

analytical estimate.

In the MSSM context, the general solution to eqs. (4.4, 4.11, 4.13) have all the same

structure, which is approximately given by

mν (lower Energy) ≈ IUJ
T
e J

T
ν mν (higher Energy)JνJe (4.15)

where IU , Je and Jν are all exponentials of integrals containing loop suppressing factors

and as a result they are close to 1. Note that IU is a universal contribution defined as

IU = exp

[
− 1

16π2

∫
(n)

ᾱ dt

]
(4.16)

where the integral runs between two subsequent energy scales and we have extended the

definition of
(n)

ᾱ by identifying
(Λ)

ᾱ ≡ ᾱ in order to include the range from Λ down to ML. Je is

§We use the convention that the Higgs self-interaction term in the Lagrangian is −λH(H†H)2/4.
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the contribution from charged lepton Yukawa couplings which is always flavor-dependent,

while Jν is the contribution from the neutrino Yukawa coupling: they are given by

Je = exp

[
− 1

16π2

∫
Y †e Ye dt

]
, Jν = exp

[
− 1

16π2

∫
(n)

Y †ν
(n)

Yν dt

]
, (4.17)

where also here we have extended the definition of
(n)

Yν by identifying
(Λ)

Yν with Yν in order to

include the range between Λ and ML. § Differently from Je, Jν can be flavor-dependent

or not.

In the Standard Model context, the running effects do not factorize, due to the different

evolution of
(n)

κ and
(n)

Y T
ν

(n)

M−1
R

(n)

Yν between the See-Saw mass thresholds. However eq. (4.15)

applies also to the Standard Model context when mν is a result of a flavor symmetry: in

this case, by a suitable redefinition of the parameters which define the mass eigenvalues,

the sum
(n)

κ+
(n)

Y T
ν

(n)

M−1
R

(n)

Yν after the running evolution has exactly the same flavor structure

of mν (higher Energy). For the purposes of the present discussion we simply assume that

eq. (4.15) is valid also in the Standard Model context and an explicit example will be

proposed in Section 4.2.3.

Expanding Je and Jν in Taylor series and summing up eq. (4.15) on several energy

ranges one can approximately calculate the neutrino mass at low-energy as

mν(%) ' IU
(
mν(Λ) + ∆m(Je)

ν + ∆m(Jν)
ν

)
, (4.18)

where the low-energy scale % is mZ in the case of Standard Model and mSUSY for MSSM.

The explicit form of the universal part IU is given by:

ISM
U = 1 × exp

[
− 1

16π2

[(
− 9

10
g2

1 −
9

2
g2

2 + 6|yt|2
)

ln
Λf

mZ

+

(
9

10
g2

1 +
3

2
g2

2 + λH

)
ln
MS

mZ

+

+ y2

(
2 ln

MM

MS

+ 4 ln
ML

MM

+ 7 ln
Λf

ML

)]]
,

(4.19)

IMSSM
U = 1 × exp

[
− 1

16π2

[(
−6

5
g2

1 − 6g2
2 + 6|yt|2

)
ln

Λf

mSUSY

+

+ y2

(
2 ln

MM

MS

+ 4 ln
ML

MM

+ 8 ln
Λf

ML

)]]
.

(4.20)

∆m
(Je)
ν is the the contribution from Je and can easily be calculated as:

∆m(Je)
ν = mν(Λ) diag(0, 0,∆τ ) + diag(0, 0,∆τ )mν(Λ) (4.21)

§In eq. (4.17), the combination Y †
e Ye should enter with

(n)

Ye instead of Ye, as one can see from the RGEs

in Appendix B. In our approximation, however, they coincide.
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where the small parameter ∆τ is given by

∆τ ≡ − 3m2
τ

16π2v2
ln

Λ

mZ

in the SM

∆τ ≡
m2
τ

8π2v2
(1 + tan2 β) ln

Λ

mSUSY

in the MSSM

(4.22)

with tan β the usual ratio between the VEVs of the neutral spin zero components of Hu

and Hd, the two doublets responsible for electroweak symmetry breaking in the MSSM.

On the other hand, the contribution from Jν , ∆m
(Jν)
ν , non trivially depends on the neu-

trino Yukawa coupling Yν which cannot be determined by low-energy observables without

additional ingredients. In Section 4.2, we will analyze strong impacts of the flavor sym-

metries on Jν , but before proceeding, we comment on the hierarchy among the various

running contributions to the neutrino mass. Indeed, assuming that the flavor symmetries

have no effects on Yν , we expect that

Y †ν Yν ∼
(n)

Y †ν
(n)

Yν = O(1) (4.23)

and therefore we conclude that the contribution from Jν always dominates. In [5] we

explicitly show that this conclusion holds both in the Standard Model and in the MSSM

even for large tan β (we consider tan β = 60 as the maximal value). One should expect

that a similar observation holds also for the lepton mixing angles, but quite frequently

flavor symmetries imply a Jν which is flavor-independent or has no effects on mixing

angles, as we will see in a moment.

4.2 Flavor Symmetries and Running Effects

In the present section, we will apply the general results of the running evolution of

the neutrino mass operator mν to models beyond the Standard Model, where a flavor

symmetry is added to the gauge group of the Standard Model. The main task is to track

some interesting connections between the running effects and the realization of the flavor

symmetry.

In a given basis, Y †e Ye and mν can be diagonalized by unitary matrices, Ue and Uν ,

respectively. The lepton mixing matrix is given by U = U †eUν . In a flavor model, the

charged lepton Yukawa, the neutrino mass matrix and therefore the PMNS matrix are

dictated by the flavor symmetry Gf . We have already discussed in Section 2.2 that Gf

must be spontaneously broken in order to naturally describe fermion masses and mixing:

here, we simply assume that Gf is spontaneously broken by a set of flavon fields Φ at a

very high scale. Suppose that, at the leading order, the neutrino mixing matrix is given

by U0 which differs from U by sub leading contributions ∼ 〈Φ〉/Λf where Λf is the cutoff

scale of the flavor symmetry Gf . We will begin with some general assumptions on U0

without however specifying its form. Then we will move to specialize in a concrete case

in which U0 is given by the Tribimaximal mixing pattern. Similar studies can be done
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considering other mass-independent textures, such as the Bimaximal, the golden-ratio

and (sometimes) the Trimaximal schemes.

4.2.1 Running Effects on Neutrino Mixing Patterns

As described in Section 4.1 the relevant running effects on mν are encoded in the

combinations Y †e Ye and Y †ν Yν . Furthermore, we observe that a relevant contribution to

the running of Y †e Ye is encoded by Y †ν Yν .

We perform the analysis in the basis in which the charged leptons are diagonal, then

at high energy we have

Y †e Ye = diag(m2
e,m

2
µ,m

2
τ )

2

v2
. (4.24)

From now on, we will use v in the notation of the Standard Model and in order to convert

similar expressions to the MSSM, it is sufficient to substitute v with vu,d, when dealing

with neutrinos or charged leptons, respectively. This simple form changes when evolving

down to low energies. This running effect of Y †e Ye on mν is of second order and we can

safely forget it. However it can generate a non trivial Ue and consequently introduces

additional corrections to the PMNS matrix U . We will return to this effect in Section

4.2.2.

Since flavor symmetries impose constraints on Yν , they should have some impacts also

on running effects. In this section we are interested in two classes of constraints. The

first class is characterized by Yν proportional to a unitary matrix: Y †ν Yν ∼ 1 or YνY
†
ν ∼ 1

is frequent in the presence of a flavor symmetry, since it is, for example, a consequence

of the first Schur’s lemma when ` or νc transforms in a irreducible representation of the

group Gf [65]. In the second class, we assume that mν can be exactly diagonalized by U0

according to

m̂ν = UT
0 mνU0 (4.25)

where m̂ν = diag(m1,m2,m3) with mi positive and U0 is a mass-independent mixing

pattern enforced by the flavor symmetry Gf . Independently from the way in which Gf

is broken, it is straightforward to see that the neutrino Yukawa coupling in the basis of

diagonal right-handed Majorana neutrinos, which we indicate as Ŷν , has the following

simple form

Ŷν = iD U †0 (4.26)

where D = diag(±√2m1M1,±
√

2m2M2,±
√

2m3M3)/v. Notice that Ŷν becomes unitary

if D ∼ 1. However, the present case is not strictly a generalization of the previous one

since a unitary Yν does not necessarily imply a mass-independent mixing pattern.

In [5] we show that mν does not change its flavor structure under Jν if Yν belongs to

one of these classes: the running effects from Jν correct only the neutrino mass eigenvalues

but not the mixing angles. Therefore, the only flavor-dependent running contribution to

mν is encoded in Je.
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A Special Case U0 = iUTBP
∗ and D ∝ diag(1, 1,−1)

In this part we consider a special case of Ŷν = iD U †0 in which the expression of U0 is

enforced by the flavor symmetry group A4 in the context of the Altarelli-Feruglio model

described in Section 2.3. A more detailed analysis of the running effects will be discussed

in the next section. Here we only comment on the constraints on the mixing matrix

U0 = iUTBP
∗ and the neutrino Yukawa coupling in the hatted basis:

Ŷν ≡ yPUT
TBO23 = yP


√

2/3 −1/
√

6 −1/
√

6

1/
√

3 +1/
√

3 +1/
√

3

0 +1/
√

2 −1/
√

2

 (4.27)

where y is a positive parameter of order O(1), P is the usual diagonal matrix of the

Majorana phases and O23 is defined as

O23 =

 1 0 0

0 0 1

0 1 0

 . (4.28)

In order to confront eq. (4.27) with the general expression Ŷν = iD U †0 we observe that

Ŷν = yPUT
TBO23UTBU

T
TB = diag(y, y,−y)PUT

TB . (4.29)

Then we conclude that (4.27) corresponds to the special case in which D = diag(y, y,−y).

Furthermore, in the Altarelli-Feruglio model considered in this section, there is a very

simple relation between mi and Mi given by mi = v2
uy

2/2Mi.

Now we explicitly calculate the renormalization group running from Λf down to % for

this special case using the approximate analytical expressions given in Section 4.1.1. In

the physical basis, it is useful to define the light neutrino mass matrix eq. (4.2) at the

initial energy scale Λf : by imposing the condition mν(Λ) = U∗0 m̂νU
†
0 , we have

mTB
ν = −UTB P m̂ν P U

T
TB

= −

m̃3

2

 0 0 0

0 1 −1

0 −1 1

+
m̃2

3

 1 1 1

1 1 1

1 1 1

+
m̃1

6

 4 −2 −2

−2 1 1

−2 1 1

 ,

(4.30)

where m̃i = mie
iαi . It is necessary to specify the kind of neutrino mass spectrum: in the

normal hierarchy the light neutrinos are ordered as m1 < m2 < m3 and the heavy ones as

M3 < M2 < M1; while in the inverse hierarchy they are arranged as m3 < m1 . m2 and

M2 .M1 < M3.

The general result of the running effects on mν is given by eq. (4.18) which in our case

becomes

mν(%) = IU
(
mTB
ν + ∆m(Je)

ν + ∆m(Jν)
ν

)
. (4.31)
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The analytical result for both IU and ∆m
(Je)
ν (see Section 4.1) does not depend on the

type of the neutrino spectrum, it is sufficient to identify MS,MM ,ML with the correct

hierarchy between M1,M2,M3 . In particular, for the Tribimaximal mixing pattern, the

contribution from Je is given by

∆m(Je)
ν = mTB

ν diag(0, 0, ∆τ ) + diag(0, 0, ∆τ )m
TB
ν

= −


0 0

m̃1

3
− m̃2

3

0 0 −m̃1

6
− m̃2

3
+
m̃3

2
m̃1

3
− m̃2

3
−m̃1

6
− m̃2

3
+
m̃3

2
−m̃1

3
− 2m̃2

3
− m̃3

∆τ .
(4.32)

Naturally, the contribution from Jν depends on the type of the neutrino spectrum, however

it can be written in the same form for both the spectra:

∆m(Jν)
ν = −

m̃′1
6

 4 −2 −2

−2 1 1

−2 1 1

+
2m̃′2

3

 1 1 1

1 1 1

1 1 1

+ m̃′3

 0 0 0

0 1 −1

0 −1 1


(4.33)

where m̃′i are redefinitions of the light neutrino masses:

Normal Hierarchy:

m̃′1 = m̃1(p+ q) , m̃′2 = m̃2(x+ q) , m̃′3 = m̃3(x+ z) in the SM

m̃′1 = 0 , m̃′2 = 2m̃2x , m̃′3 = 2m̃3(x+ z) in the MSSM
(4.34)

with

p = − 1

16π2
(−3g2

2 + λ+
9

10
g2

1 +
9

2
g2

2) ln
M1

M2

q = − 1

16π2
(−3g2

2 + λ+
9

10
g2

1 +
9

2
g2

2) ln
M2

M3

x = − y2

32π2
ln
M1

M2

z = − y2

32π2
ln
M2

M3

;

(4.35)

Inverse Hierarchy:

m̃′1 = m̃1(x+ q) , m̃′2 = m̃2(x+ z) , m̃′3 = m̃3(p+ q) in the SM

m̃′1 = 2m̃1x , m̃′2 = 2m̃2(x+ z) , m̃′3 = 0 in the MSSM
(4.36)
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with

p = − 1

16π2
(−3g2

2 + λ+
9

10
g2

1 +
9

2
g2

2) ln
M3

M1

q = − 1

16π2
(−3g2

2 + λ+
9

10
g2

1 +
9

2
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2) ln
M1

M2

x = − y2

32π2
ln
M3

M1

z = − y2

32π2
ln
M1

M2

.

(4.37)

Comparing mTB
ν of eq. (4.30) with the perturbations ∆mν of eqs. (4.33), we note the

presence of the same flavor structure for several matrices and in particular, by redefining

m̃i to absorb the terms m̃′i it is possible to account for the See-Saw contributions from the

renormalization group running into mTB
ν . As a consequence the leading order predictions

for the Tribimaximal angles receive corrections only from the terms proportional to ∆τ .

This result explicitly confirms what we outlined in the previous section.

4.2.2 Running Effects in the Charged Lepton Sector

The presence of a term proportional to Ŷ †ν Ŷν in the RG equation for Ye can switch

on off-diagonal entries in the charged lepton Yukawa matrix Ye. When rotated away, this

additional contribution introduces a non-trivial Ue and consequently corrects the lepton

mixing matrix U . For a unitary Ŷν , this correction appears only between the See-Saw

mass scales while in the general case it appears already from the cutoff Λf .

In close analogy with the running effects on neutrino mass matrix in eq. (4.31), the

full result of the running for charged lepton mass matrix can conventionally be written as

(Y †e Ye)(%) = Ie
[
(Y †e Ye)(Λf ) + ∆(Y †e Ye)

]
, (4.38)

where Ie is an irrelevant global coefficient which can be absorbed by, for example, yτ . Now

we move to the case of Tribimaximal mixing pattern. In this case, the flavor-dependent

corrections can be explicitly calculated:

NH case:

∆(Y †e Ye) ' y2
τ

ae
 0 0 1

0 0 −1/2

1 −1/2 5

+ be

 0 0 0

0 0 −1

0 −1 2

+ ce

 0 0 0

0 0 0

0 0 2

 ,

(4.39)

IH case:

∆(Y †e Ye) ' y2
τ

a′e
 0 0 0

0 0 1

0 1 2

+ b′e

 0 0 1

0 0 1

1 1 2

+ c′e

 0 0 0

0 0 0

0 0 2

 , (4.40)
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where the coefficients are

ae = b′e = − C ′ν
16π2

y2

3
ln
M1

M2

, be = − C ′ν
16π2

y2

2
ln
M2

M3

,

ce = c′e = −3C ′ey
2
τ

16π2
ln

Λf

mSUSY (mZ)
, a′e = − C ′ν

16π2

y2

2
ln
M3

M1

,

(4.41)

and C ′ν = −3/2 (1), C ′e = 3/2 (3) in the Standard Model (MSSM). Here we observe that

the off-diagonal contributions to Y †e Ye are encoded in ae, be, a
′
e and b′e which depend only

on the See-Saw scales Mi. As a result, as we will show in the next section, ce and c′e do

not affect the lepton mixing angles.

4.2.3 Full Running Effects on the Tribimaximal Mixing Pattern

In this section, we combine various contributions discussed in previous sections into

the observable matrix U from which we extract angles and phases at low-energy. Since we

are interested in physical quantities, we eliminate one of the phases of P and in particular

we express each result as a function of αij ≡ (αi − αj)/2, removing α3. The corrected

mixing angles can be written as

θij(%) = θTBij + kij + . . . (4.42)

where θTB13 = 0, θTB12 = arcsin
√

1/3, θTB23 = −π/4, dots stand for sub leading corrections

and kij are defined by

k12 =
1

3
√

2

( |m̃1 + m̃2|2
m2

2 −m2
1

∆τ − 3ae

)

k23 =


1

6

[( |m̃1 + m̃3|2
m2

3 −m2
1

+ 2
|m̃2 + m̃3|2
m2

3 −m2
2

)
∆τ − 3ae − 6be

]
for NH

1

6

[( |m̃1 + m̃3|2
m2

3 −m2
1

+ 2
|m̃2 + m̃3|2
m2

3 −m2
2

)
∆τ + 3ae + 3a′e

]
for IH

(4.43)

k13 =
1

3
√

2

√
4m2

3∆2
τ

(
m1 sinα13

m2
1 −m2

3

− m2 sinα23

m2
2 −m2

3

)2

+

[( |m̃1 + m̃3|2
m2

1 −m2
3

− |m̃2 + m̃3|2
m̃2

2 − m̃2
3

)
∆τ − 3ae

]2

.

In the previous expressions we can clearly distinguish the contributions coming from the

diagonalize of the corrected Tribimaximal neutrino mass matrix (4.31) and those from

the diagonalize of (4.38). As it is clear from (4.41), the corrections to the Tribimaximal

mixing from the charged lepton sector is important only for hierarchical right-handed

neutrinos and will approach to zero as soon as the spectrum becomes degenerate. On

the other hand, the corrections from the neutrino sector should be enhanced if the light

neutrinos are quasi-degenerate and if the tan β is large, in the MSSM case.
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The physical Majorana phases are also corrected due to the running and we found the

following results:

αij(%) ' αij + δαij∆τ + . . . (4.44)

where αij are the starting values at Λf and

δα13 =
2

3

m1m2 sin(α13 − α23)

m2
2 −m2

1

, δα23 =
4

3

m1m2 sin(α13 − α23)

m2
2 −m2

1

. (4.45)

At Λf , sin θTB13 is vanishing and as a result the Dirac CP-violating phase is undetermined.

An alternative is to study the Jarlskog invariants which are well-defined at each energy

scale. At Λf , JCP is vanishing, while after the renormalization group running it is given

by

JCP =
1

18

∣∣∣∣m3

(
m1 sinα13

m2
1 −m2

3

− m2 sinα23

m2
2 −m2

3

)∣∣∣∣∆τ . (4.46)

Two comments are worth. First of all, in the expression for k13, it is easy to recover

the resulting expression for JCP as the first term under the square root, apart global

coefficients. This means that the running procedure introduces a mixing between the

expression of the reactor angle and of the Dirac CP-phase. Moreover we can recover the

value of the Dirac CP-phase directly from eq. (4.46) and we get the following expression:

cot δ =− m1(m2
2 −m2

3) cosα13 −m2(m2
1 −m2

3) cosα23 −m3(m2
1 −m2

2)

m1(m2
2 −m2

3) sinα13 −m2(m2
1 −m2

3) sinα23

+

− 3ae(m
2
2 −m2

3)(m2
1 −m2

3)

2m3 [m1(m2
2 −m2

3) sinα13 −m2(m2
1 −m2

3) sinα23] ∆τ

.

(4.47)

In the neutrino sector, the running contributions from the See-Saw terms are present only

in the resulting mass eigenvalues:

mi(λ) ' mi(1 + δmi) + . . . (4.48)

where mi are the starting values at Λf and δmi, in both the Standard Model and the

MSSM and in both the normally and inversely hierarchical spectra, are given by

δm1 =
m′1
m1

− ∆τ

3
, δm2 = 2

m′2
m2

− 2∆τ

3
, δm3 = 2

m′3
m3

−∆τ , (4.49)

with m′i ≡ |m̃′i|, given as in eqs. (4.34, 4.36).

4.3 Running Effects in the Altarelli-Feruglio Model

In this section we will apply the analysis of renormalization group running effects on

the lepton mixing angles to the Altarelli-Feruglio model, already introduced in Section

2.3. In order to perform such a study, it is important to verify the initial assumptions

made in Section 4.2.3, in particular, we see that eq. (4.27) exactly corresponds to the one
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implied by the Altarelli-Feruglio model, when moving to the physical basis (the phase of

y can be absorbed in the definition of P ). On the other side, the presence of flavon fields

has a relevant impact on the results of the analysis. In the unbroken phase, flavons are

active fields and should modify the RGEs. Since the only source of the A4 breaking is

the VEVs of the flavons, any flavor structure is preserved above the corresponding energy

scale, whatever interactions are present. In particular, the Lagrangian (2.53) contains all

possible leading order terms, given the group assignments, and its invariance under A4

is maintained moving downward to the scale 〈ϕ〉, where significant changes in the flavor

structure can appear. From eqs. (2.54) and (2.56), we deduce that 〈ϕ〉 ∼ Mi and as a

result in the Altarelli-Feruglio model ∆τ must be proportional to ln(〈ϕ〉/%) and not to

ln(Λf/%). Furthermore, it is relevant for the subsequent discussion to recall the level of

degeneracy of the neutrino masses in the allowed space of parameters. The ratios between

the right-handed neutrinos are well defined for the normal hierarchy, M1/M3 ∼ 11 and

M2/M3 ∼ 5, while in the case of the inverse hierarchy, the ratio M1/M2 is fixed at 1 while

M3/M2 varies from about 3 to 1, going from the lower bound of m3 up to the KATRIN

sensitivity.

We will separately discuss the evolution of angles and phases for both type of hierarchy.

In the following, the results will be shown for the Standard Model and for the MSSM

with tan β = 15 in the absence of other explicit indications. Without loss of generality,

we choose y = 1 for our numerical analysis. We also set 〈ϕ〉 = 1015. The spectrum spans

the range obtained in (2.61).

4.3.1 Running of the Angles

Since we are interested in deviations of the corrected mixing angles from the Tribi-

maximal predictions and in comparing them with experimental values, it is convenient to

relate the coefficients kij defined in Section 4.2.3 with physical observables. Keeping in

mind that |kij| � 1 and that we start from a Tribimaximal mixing matrix, it follows that

sin θ13 ' k13 , cos 2θ23 ' 2k23 , sin2 θ12 −
1

3
' 2
√

2

3
k12 . (4.50)

The corrections to the tribimaximal mixing angles as functions of m1,3 in the normal and

inverse hierarchies are shown in Figure 4.1.

We begin with the case of the normal hierarchy. Since the dependence of the corrected

mixing angles from ∆τ is the same, Standard Model corrections are generally expected

to be smaller than those in MSSM. However, from Figure 4.1 we see that, in normal

hierarchy, there is not a large split between the two curves for Standard Model and

MSSM. This fact suggests a dominant contribution coming from the charged lepton sector

as discussed in Section 4.2.3. For the atmospheric and reactor angles, the deviations from

the Tribimaximal predictions lie roughly one order of magnitude below the 1σ limit.

In particular, running effects on sin θ13 are even smaller than the NLO contributions

analyzed in Section 2.3.2 which are of O(u), without cancellations. On the other hand,
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Figure 4.1: Corrections to the Tribimaximal mixing angles as functions of the lightest

neutrino masses, for the normal hierarchy on the left and for the inverse hierarchy on

the right. The plots show the MSSM case with tan β = 15 (solid blue) and the Standard

Model case (black dashed), compared to the current 1σ and 3σ limits (dashed red). m1,3

are restricted in a range which is given by eq. (2.61) or by the KATRIN bound.

since the experimental value of the solar angle is better measured than the other two,

the running effects become more important in this case. Indeed, the running corrections

to the Tribimaximal solar angle evade the 1σ limit as it can be clearly seen in Figure

4.1. Anyway, we observe that for both the atmospheric and solar angles, the running

contribution is of the same order as the contribution from NLO operators.

Now we move to analyze the case of the inverse hierarchy. In this case, since the

neutrino spectrum predicted by the Altarelli-Feruglio model is almost degenerate and in

particular m2/m1 ∼ 1, the contribution from the charged lepton sector in eqs. (4.40) is

sub dominant. As a consequence the information which distinguishes the Standard Model
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case from the MSSM one is mainly dictated by ∆τ defined in eq. (4.22). As a result the

running effects in the MSSM are always larger than in the Standard Model and for large

tan β they are potentially dangerous. The curves corresponding to the atmospheric and

reactor angles do not go above the 3σ and 1σ windows respectively. However, the deviation

from θTB12 presents a more interesting situation. For example, for tan β & 10, the running

effects push the value of the solar angle beyond the 3σ limit for the entire spectrum.

For lower values of tan β, the model is within the 3σ limit only for a (small) part of the

spectrum where the neutrinos are less degenerate. Comparing with the running effects,

in the inverse hierarchy, the contribution from NLO operators in the Altarelli-Feruglio

model is under control.

4.3.2 Running of the Phases

Majorana phases are affected by renormalization group running effects too. Since

there is no experimental information on Majorana phases available at this moment we

will simply show their values at low-energy, comparing them with the predictions in the

Altarelli-Feruglio model. We stress again that they are completely determined by only

one parameter, the mass of the lightest neutrino, m1 for the normal hierarchy and m3 for

the inverse hierarchy.
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Figure 4.2: Majorana phases α13 and α23 as functions of the lightest left-handed neutrino

masses. For the normal hierarchy (left panel) the corresponding curves at low and high

energies are indistinguishable. For the inverse hierarchy (right panel) the curves refer to

low-energy values in MSSM with tan β = 15 (solid blue or red) and the Altarelli-Feruglio

predictions at Λf (dashed blue or red).

In the case of normal hierarchy, Majorana phases are essentially not corrected by

running effects. This feature is due to the fact that δα13 and δα23 of eqs. (4.45) are

proportional to sin(α13−α23) which is close to zero, as we can see looking at the left panel

of Figure 4.2. In the case of inverse hierarchy, MSSM running effects always increase the

values of phases when moving from high energy to low-energy and they are maximized for

tan β = 15, especially when the neutrino spectrum becomes degenerate. On the contrary,
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in the Standard Model context, the low-energy curves cannot be distinguished from the

high energy ones.

As described in Section 4.2.3, a definite Dirac CP violating phase δ arises from running

effects even if, in the presence of a Tribimaximal mixing pattern, it is undetermined in the

beginning. Although the final Dirac phase can be large, Jarlskog invariant, which measures

an observable CP violation, remains small because of the smallness of θ13. These results

are valid both for the Standard Model and for MSSM.

4.4 Conclusion of the Chapter

In this chapter we have studied the running effects on neutrino mixing patterns when

neutrino masses are generated by See-Saw I. The running contribution from the neutrino

Yukawa coupling Yν , encoded in Jν , is generally dominant at energies above the See-

Saw threshold. However, this effect, which in general introduces appreciable deviations

from the leading order mixing patterns, does not affect the mixing angles, under specific

conditions: in the first part of the chapter, we have analyzed two classes of models in

which this indeed happens. The first class is characterized by a Yν proportional to a

unitary matrix. It is the case, for example, when the right-handed singlet neutrinos or

the charged leptons belong to an irreducible representation of the flavor group. The

second class is the mass-independent mixing pattern, in which, in particular, the effects

of Jν can be absorbed by a small shift of neutrino mass eigenvalues leaving mixing angles

unchanged. The widely studied Tribimaximal mixing pattern belongs, for example, to

this second class of models.

Subsequently, we focused on the Altarelli-Feruglio model. The aim was to analyze the

running effects on the Tribimaximal mixing pattern in addition to the NLO corrections

already present in this model due to the spontaneous breaking of the symmetry and to

confront them with experimental values. The analysis has been performed both in the

Standard Model and MSSM. We found that for the normal hierarchy light neutrinos,

the dominant running contribution comes from the charged lepton sector which weakly

depends on both tan β and mass degeneracy. As a result, for this type of spectrum,

the Tribimaximal prediction is stable under running evolution. Moreover, the running

contribution is of the same order or smaller with respect to the contribution from NLO

operators. On the other hand, in the case of the inverse hierarchy, the deviation of the

solar angle from its Tribimaximal value can be larger than the NLO contribution and,

in particular in MSSM, for tan β & 10 an inversely hierarchical spectrum is strongly

disfavored. In the end, we observe that for both spectra, the reactor angle θ13 does not

receive appreciable deviations from zero.
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Rare Decays in A4-Based Models

If we assume that the experimental values of mixing angles hint at a new physical

framework beyond the Standard Model, as the one provided by discrete symmetries, we

still face the task to discriminate among the possible choices of the underlying symmetry

and model. In fact, as pointed out in Chapter 2, several theoretical textures are compatible

with the current data on neutrino oscillation.As a consequence, we need to improve our

knowledge of neutrino mixing or to test models beyond the neutrino sector.

The latter possibility can be offered by processes with lepton flavor violation (LFV)

expected, at some level, for massive and non-trivially mixed neutrinos. At low-energy

LFV is described by dimension six operators, suppressed by two powers of a new physics

scale M , which could be much smaller than the fundamental scale Λ at which the fla-

vor symmetry is generated, thus allowing observable effects. In models based on flavor

symmetries rates of LFV transitions usually receive a double suppression: one from 1/M4

and one from the parameters that break the flavor symmetry. In a set of papers [66–68]

radiative decays of the charged leptons have been analyzed in models invariant under

A4×Z3×U(1)FN , like the Altarelli-Feruglio model discussed in Chapter 2. Remembering

that two breaking parameters u ≈ t ≈ 0.01 are present, a generic suppression u2/M4 for

the rates was found, that can become more severe in a supersymmetric (SUSY) realization

of A4 × Z3 × U(1)FN . For instance, in this last case the decay rate of µ → eγ can scale

as t2u2/M4, leaving room to a relatively light scale of new physics M .

In this chapter we complete the analysis of LFV in A4 × Z3 × U(1)FN symmetric

models, by building the most general dimension six effective Lagrangian allowed by the

symmetry. Contrary to the expectations of many models based on flavor symmetries,

such effective Lagrangian contains four-lepton operators that break the conservation of

the individual lepton numbers, while being fully invariant under the flavor symmetry [66].

These operators leads to LFV transitions whose rates are suppressed only by 1/M4, which

can result in strong bounds on the scale M . We carefully analyze all such transitions, that

satisfy the selection rule ∆Le∆Lµ∆Lτ = ±2. We separate our discussion according to the

type of leptons involved in the transition: four neutrinos, two neutrinos plus two charged

leptons, and four charged leptons. We find that the strength of the new LFV operators

are most severely bound by the observed universality of leptonic muon and tau decays,

67
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from the agreement between the Fermi constant measured in the muon decay and that

extracted from the mW/mZ ratio, and from the limits on the rare decays τ− → µ+e−e−

and τ− → e+µ−µ−. The present experimental limits on the branching ratios of these two

tau decays push the scale M above 10 TeV.

We also analyze a specific SUSY realization of A4×Z3×U(1)FN , motivated by several

considerations: it offers a natural solution to the required vacuum alignment, it might be

required to realize the embedding of the model in a grand unified theory and it provides

a natural framework for a relatively small scale of new physics M , related to the SUSY

breaking scale. In this SUSY model the four-lepton LFV operators arise from box dia-

grams, with neutralinos, charginos and sleptons circulating in the loop. For all processes

that were allowed by the selection rule ∆Le∆Lµ∆Lτ = ±2, we find rates suppressed at

least by eight powers of the symmetry breaking parameters t and/or u, at variance with

the result of the model-independent analysis. We provide a detail explanation for this

singular behavior and we reconsider all possible LFV transitions in the SUSY model,

ending up with a complete picture of the most relevant LFV processes for the model at

hand.

5.1 Classification of Four-lepton Operators

We will consider a model based on the flavor symmetry group

Gf = A4 × Z3 × U(1)FN , (5.1)

as described in details in Chapter 2. The flavor symmetry breaking sector of the model

includes the scalar fields ϕT , ϕS, ξ and θ. The transformation properties of the lepton

fields L, Ee, Eµ, Eτ , of the electroweak scalar doublet H and of the flavon fields have been

recalled in Table 5.1. Notice that at variance with the notation introduced in Chapter 1,

in the following we use the fields Ee, Eµ and Eτ instead of ec, µc and τ c. The different

notations are connected by the equality Ee = ec and the same for the muon and the

tau. As a consequence, L ≡ (Le, Lµ, Lτ ) are left-handed SU(2) doublets with hypercharge

Y=-1/2, while Ee, Eµ and Eτ are right-handed SU(2) singlets with hypercharge Y = −1.

Chirality projectors are understood. The following pattern of VEVs for the flavon fields

〈ϕT 〉
Λ

= (u, 0, 0) +O(u2)

〈ϕS〉
Λ

= cb(u, u, u) +O(u2)

〈ξ〉
Λ

= cau+O(u2)

〈θ〉
Λ

= t (5.2)

where u and t are the small, real, symmetry breaking parameters of the theory, guarantees

that the lepton mixing is approximately TB. The parameters ca,b are pure numbers of order
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one and Λ is the cutoff of the theory. It is possible to achieve this pattern of VEVs in a

natural way, as the result of the minimization of the scalar potential of the theory [7,69].

Field L Ee Eµ Eτ H ϕT ϕS ξ θ

A4 3 1 1′ 1′′ 1 3 3 1 1

Z3 ω ω ω ω 1 1 ω ω 1

U(1)FN 0 −2 −1 0 0 0 0 0 −1

Table 5.1: The transformation rules of the fields under the symmetries associated with

the groups A4, Z3 and U(1)FN .

At the leading order, neglecting the O(u2) contributions, the mass matrix for the

charged leptons is diagonal with the relative hierarchy described by the parameter t. To

reproduce the correct hierarchy we need

t ≈ 0.05 . (5.3)

In the same approximation, the neutrino mass matrix is diagonalized by the TB mixing

matrix (2.17). The symmetry breaking parameter u should approximately lie in the range

0.005 < u < 0.05 , (5.4)

the lower bound coming from the requirement that the Yukawa coupling of the τ does

not exceed 4π, and the upper bound coming from the requirement that the higher order

corrections, so far neglected, do not modify too much the leading TB mixing. The inclu-

sion of higher order corrections modifies all mixing angles by quantities of relative order

u and in order to keep the agreement between the predicted and measured values of the

solar angle within few degrees, u should not exceed approximately 0.05. The unknown

angle θ13 is expected to be of order u, not far from the future aimed for experimental

sensitivity [31]. Constraints from baryogenesis have been discussed in ref. [70].

The fields of Table 5.1 and their transformation properties are common to a generic

class of models, differing from each other by the specific mechanism leading to the desired

vacuum alignment, eq. (5.2), and by additional heavy degrees of freedom. One such

model has been realized in the SUSY framework [6], where the special properties of the

scalar potential in the SUSY limit are helpful in obtaining the correct vacuum structure.

To construct a general low-energy effective Lagrangian depending on lepton fields we

only need the information contained in Table 5.1 and we do not need to specify any

particular model, but in the second part of the chapter we will make contact with the

SUSY realization of ref. [6].



70 Chapter 5. Rare Decays in A4-Based Models

A complete basis of four-lepton operators, invariant under the SU(2)× U(1) gauge

symmetry, have been introduced by Buchmüller and Wyler in [71]. Up to flavor combi-

nation, it consists of four independent dimension-six operators:

(OLE)βδαγ = (L̄βEγ)(Ē
δLα) , (5.5)

(O1
LL)βδαγ = (L̄βγρLα)(L̄δγρLγ) , (5.6)

(O3
LL)βδαγ = (L̄βγρ~τLα)(L̄δγρ~τLγ) , (5.7)

(OEE)βδαγ = (ĒβγρEα)(ĒδγρEγ) . (5.8)

We are using a four-component spinor notation and ~τ denotes the Pauli matrices acting

on SU(2) indices. Greek letters specify the flavor content. Their possible values are e,

µ and τ . The effective Lagrangian, invariant under SU(2)× U(1) gauge transformations,

and depending on Lα and Eβ is given by:

Leff = − 2
√

2GF

[
(εLE)αγβδ (OLE)βδαγ + (ε1LL)αγβδ (O1

LL)βδαγ

+ (ε3LL)αγβδ (O3
LL)βδαγ + (εEE)αγβδ (OEE)βδαγ

]
+ ... (5.9)

We have normalized the interaction strength to the Fermi constant GF , which here we

define by the relation §

R ≡ m2
W

m2
Z

=
1

2
+

√
1

4
− παem(m2

Z)√
2GFm2

Z(1−∆r)
(5.10)

where mW,Z are the electroweak gauge boson masses, αem(m2
Z) is the running QED cou-

pling constant evaluated at the mZ scale, and ∆r is the relevant SM radiative correction.

This relation defines the constant GF in terms of the experimental value of the W and Z

boson masses. The Lagrangian Leff is hermitian under the following conditions:

(εLE)αγβδ = (εLE)βδαγ

(ε1,3LL)αγβδ = (ε1,3LL)βδαγ

(εEE)αγβδ = (εEE)βδαγ . (5.11)

Dots in (5.9) stand for higher order operators. The most general dimension-six effective

Lagrangian depending on lepton fields also include other operators that we mention for

completeness. They fall into two classes. The first one includes operators of dipole type,

describing leptonic electric and magnetic dipole moments and flavor changing radiative

transitions such as µ→ eγ, τ → µγ and τ → eγ:

(OBdip)βα = ĒβσµνBµνH
†Lα

(OWdip)βα = Ēβσµν~τ ~WµνH
†Lα . (5.12)

§It is useful to keep GF distinguished from Gµ, the constant extracted from muon decay.
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Their effect in the model under consideration has been analyzed in refs. [66]. The second

class includes operators bilinear in the lepton fields containing a derivative and a double

insertion of the Higgs multiplet H:

(O1
LH)βα =

(
L̄βH

)
i∂/(H†Lα)

(O3
LH)βα =

(
L̄β~τH

)
id(H†~τLα)

(OEH)βα =
(
H†iDρH

) (
ĒβγρEα

)
, (5.13)

where D denotes the SM covariant derivative. They modify kinetic terms of neutrinos

and charged leptons and lead to deviations in the neutral and charged leptonic currents

as well as to deviation from unitarity in the leptonic mixing matrix. Their effects have

been discussed in general in refs. [72–74]. In the model under consideration the leading

contribution to this second class of operators is flavor conserving and will not be further

discussed here.

The operators (O1
LL)βδαγ and (O3

LL)βδαγ only differs by the contraction of the SU(2) in-

dices. In terms of SU(2) components, they are given by:

(O1
LL)βδαγ =

(
ν̄βγρνα + ēβγρeα

) (
ν̄δγρνγ + ēδγρeγ

)
(5.14)

(O3
LL)βδαγ =

(
ν̄βγρeα + ēβγρνα

) (
ν̄δγρeγ + ēδγρνγ

)
−

(
ν̄βγρeα − ēβγρνα

) (
ν̄δγρeγ − ēδγρνγ

)
+

(
ν̄βγρνα − ēβγρeα

) (
ν̄δγρνγ − ēδγρeγ

)
. (5.15)

The flavor symmetry Gf imposes some restrictions on the coefficients of Leff . In a low-

energy approximation, below the scale of flavor symmetry breaking, the four-lepton opera-

tors of the model originate either from genuine dimension-six operators invariant under Gf

or from higher-dimensional Gf -invariant operators involving the insertions of the flavon

multiplets. After the breaking of Gf by the VEVs in eq. (5.2), the latter become four-

lepton operators proportional to some positive power of the symmetry breaking parame-

ters t and/or u. As a consequence, the coefficients εαγβδ ≡ {(εLE)αγβδ , (ε
1
LL)αγβδ , (ε

1
LL)αγβδ , (εEE)αγβδ }

can be expanded in powers of the symmetry breaking parameters t and u.

εαγβδ = (ε(0))αγβδ + (ε(1,0))αγβδ t+ (ε(0,1))αγβδ u+ ... (5.16)

Given the smallness of these parameters, here we will focus on the leading terms (ε(0))αγβδ ,

that is on the operators that do not vanish when the symmetry breaking effects are

neglected. In particular, there are four-lepton operators that violate flavor while being

invariant under Gf and not suppressed by powers of t and/or u. We will classify them
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and we will study their effects. We find:

Leff = − 2
√

2GFα
(
ĒτγρEµ Ē

eγρEµ + Ēµγρ Eτ Ē
µγρEe

)
− 2

√
2GFα1

(
L̄eγρLe L̄

eγρLe + 4 L̄µγρLµ L̄
τγρLτ+

2 L̄µγρLe L̄
τγρLe + 2 L̄eγρLµ L̄

eγρLτ
)

− 2
√

2GFβ1

(
L̄µγρLµ L̄

µγρLµ + 4 L̄τγρLτ L̄
eγρLe+

2 L̄τγρLµ L̄
eγρLµ + 2 L̄µγρLτ L̄

µγρLe
)

− 2
√

2GFγ1

(
L̄τγρLτ L̄

τγρLτ + 4 L̄eγρLe L̄
µγρLµ+

2 L̄eγρLτ L̄
µγρLτ + 2 L̄τγρLe L̄

τγρLµ
)

− 2
√

2GFα3

(
L̄eγρ~τLe L̄

eγρ~τLe + 4 L̄µγρ~τLµ L̄
τγρ~τLτ+

2 L̄µγρ~τLe L̄
τγρ~τLe + 2 L̄eγρ~τLµ L̄

eγρ~τLτ
)

− 2
√

2GFβ3

(
L̄µγρ~τLµ L̄

µγρ~τLµ + 4 L̄τγρ~τLτ L̄
eγρ~τLe+

2 L̄τγρ~τLµ L̄
eγρ~τLµ + 2 L̄µγρ~τLτ L̄

µγρ~τLe
)

− 2
√

2GFγ3

(
L̄τγρ~τLτ L̄

τγρ~τLτ + 4 L̄eγρ~τLe L̄
µγρ~τLµ+

2 L̄eγρ~τLτ L̄
µγρ~τLτ + 2 L̄τγρ~τLe L̄

τγρ~τLµ
)

+ ... (5.17)

where dots stands for operators that do not violate lepton flavor. For instance, there

are three independent operators of the type (OLE)βδαγ, but they are all flavor conserving.

Notice that among the operators of the type (OEE)βδαγ only one of them is flavor violating.

We found three independent operators of the type (O1
LL)βδαγ that violate lepton flavor, and

we call the corresponding coefficients α1, β1 and γ1. Similarly, there are three independent

flavor-violating operators of the type (O3
LL)βδαγ, entering the Lagrangian with weights given

by the coefficients α3, β3 and γ3. All other operators in Leff either conserve flavor or are

suppressed by some power of the symmetry breaking parameters t and u. From the

Lagrangian (5.17) it is clear that symmetry restricts the allowed operators to a class

satisfying the selection rule ∆Le∆Lµ∆Lτ = 0,±2. By expanding the Lagrangian (5.17)

in neutrino and charged lepton components we get:

Leff = L4ν + Ldecay + LNSI + Lch (5.18)

where

L4ν = −2
√

2GF ×
{(α1 + α3) ν̄eγ

ρνe ν̄eγρνe + (β1 + β3) ν̄µγ
ρνµ ν̄µγρνµ + (γ1 + γ3)ν̄τγ

ρντ ν̄τγρντ+

4 [(γ1 + γ3) ν̄eγ
ρνe ν̄µγρνµ + (α1 + α3) ν̄µγ

ρνµ ν̄τγρντ + (β1 + β3)ν̄τγ
ρντ ν̄eγρνe] +

2 [(α1 + α3) ν̄µγ
ρνe ν̄τγρνe + (β1 + β3) ν̄τγ

ρνµ ν̄eγρνµ + (γ1 + γ3)ν̄eγ
ρντ ν̄µγρντ

+h.c.]} (5.19)
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Ldecay = −2
√

2GF ×
[(1 + 8γ3) ēγρνe ν̄µγρµ+ 2(α1 + α3) ēγρντ ν̄eγρµ+ 2(β1 + β3) ēγρνµ ν̄τγρµ+

(1 + 8α3) µ̄γρνµ ν̄τγρτ + 2(β1 + β3) µ̄γρνe ν̄µγρτ + 2(γ1 + γ3) µ̄γρντ ν̄eγρτ+

(1 + 8β3) ēγρνe ν̄τγρτ + 2(α1 + α3) ēγρνµ ν̄eγρτ + 2(γ1 + γ3) ēγρντ ν̄µγρτ ]

+h.c. (5.20)

LNSI = −2
√

2GF ×
{[2(α1 + α3) ν̄eγ

ρνe + 4(γ1 − γ3) ν̄µγ
ρνµ + 4(β1 − β3) ν̄τγ

ρντ ] ēγρe+

[4(γ1 − γ3) ν̄eγ
ρνe + 2(β1 + β3) ν̄µγ

ρνµ + 4(α1 − α3) ν̄τγ
ρντ ] µ̄γρµ+

[4(β1 − β3) ν̄eγ
ρνe + 4(α1 − α3) ν̄µγ

ρνµ + 2(γ1 + γ3) ν̄τγ
ρντ ] τ̄ γρτ}

(5.21)

Lch = −2
√

2GF ×
{(α1 + α3) ēγρe ēγρe+ (β1 + β3) µ̄γρµ µ̄γρµ+ (γ1 + γ3)τ̄ γρτ τ̄γρτ+

4 [(γ1 + γ3) ēγρe µ̄γρµ+ (α1 + α3) µ̄γρµ τ̄γρτ + (β1 + β3)τ̄ γρτ ēγρe] +

2 [(α1 + α3) µ̄γρe τ̄γρe+ (β1 + β3) τ̄ γρµ ēγρµ+ (γ1 + γ3)ēγρτ µ̄γρτ + h.c.] +

α
[
ĒτγρEµ Ē

eγρEµ + h.c.
]}

(5.22)

In our notation all above fields are left-handed, except the charged leptons Ee,µ,τ that are

right-handed.

5.2 Bounds

We discuss the bounds on the parameters ε = {α, α1,3, β1,3, γ1,3}, by distinguishing

three types of operators: those involving neutrinos only, those involving both neutrinos

and charged leptons and finally those depending on charged leptons only. For simplicity

we assume that all the new parameters ε are real.

5.2.1 Neutrino Self-interactions

Neutrino self-interactions are poorly constrained by present data [75]. Extremely mild

bounds come from astrophysics. For instance limits can be derived by requiring that the

mean free path of neutrinos propagating in the medium between the supernova SN1987A

and us is comparable to or larger than the distance to the supernova [76]. Such bounds

would allow self-coupling of a four-fermion interaction larger than the Fermi coupling by

many order of magnitudes. Stronger bounds can be derived from the agreement between

the observed invisible decay width of the Z boson and the value predicted by the Standard
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Model (SM). New neutrino self-interactions of the type considered here would contribute

to both the decay width of the Z into four neutrinos at the tree level [77], and to the

decay width of the Z into two neutrinos at the one-loop level [78]. These new contri-

butions remain sufficiently small for values of the couplings α1,3, β1,3, γ1,3 smaller than

approximately 1÷ 100.

5.2.2 Neutrino-Charged Lepton Interactions

The new operators containing two neutrinos and two charged leptons lead to several

effects. Some of them add to the SM Lagrangian to modify the prediction for the purely

leptonic decays of the charged leptons µ and τ . The relevant Lagrangian for muon and

tau decays is Ldecay, from which we can identify the “Fermi” constants extracted from

the decays µ→ eν̄ν, τ → µν̄ν, τ → eν̄ν, that we call Gµ, Gτµ and Gτe, respectively. By

expanding the results in powers of the real parameters ε, we find:

Gµ = GF

(
1 + 8γ3 + 2(α1 + α3)2 + 2(β1 + β3)2 + ...

)
Gτµ = GF

(
1 + 8α3 + 2(β1 + β3)2 + 2(γ1 + γ3)2 + ...

)
Gτe = GF

(
1 + 8β3 + 2(γ1 + γ3)2 + 2(α1 + α3)2 + ...

)
(5.23)

where dots stand for higher powers of the parameters. We see that the operators O3
LL lead

to amplitudes that interfere with the SM ones, so that the sensitivity to the correspond-

ing parameters is higher, whereas the operators O1
LL contribute to the decays through

non-interfering amplitudes. The presence of the new operators leads to deviations from

universality in weak interactions. We have(
Gτe

Gµ

)2

= 1 + 16(β3 − γ3) + 4(γ2
1 + 49γ2

3 − β2
1 + 15β2

3 + 2γ1γ3 − 2β1β3 − 64γ3β3)(
Gτµ

Gµ

)2

= 1 + 16(α3 − γ3) + 4(γ2
1 + 49γ2

3 − α2
1 + 15α2

3 + 2γ1γ3 − 2α1α3 − 64γ3α3)(
Gτµ

Gτe

)2

= 1 + 16(α3 − β3) + 4(β2
1 + 49β2

3 − α2
1 + 15α2

3 + 2β1β3 − 2α1α3 − 64β3α3)

(5.24)

These ratios can be directly compared with data using the following relations:(
Gτe

Gµ

)2

=
τµ
ττ
BR(τ− → e−ν̄eντ )

(
mµ

mτ

)5 f(m2
e/m

2
µ)rµEW

f(m2
e/m

2
τ )r

τ
EW(

Gτµ

Gµ

)2

=
τµ
ττ
BR(τ− → µ−ν̄µντ )

(
mµ

mτ

)5 f(m2
e/m

2
µ)rµEW

f(m2
µ/m

2
τ )r

τ
EW(

Gτµ

Gτe

)2

=
BR(τ− → µ−ν̄µντ )

BR(τ− → e−ν̄eντ )

f(m2
e/m

2
τ )

f(m2
µ/m

2
τ )

(5.25)
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where τµ,τ are the muon and tau lifetimes, f(x) = 1 − 8x + 8x3 − x4 − 12x2 log x and

radiative corrections are those of the SM [79]

rlEW =

(
1 +

3

5

m2
l

m2
W

)(
1 +

α(ml)

2π

(
25

4
− π2

))
, (5.26)

α−1(ml) = α−1 − 2

3π
log

ml

me

+
1

6π
. (5.27)

From the measured values of ττ and of BR(τ− → µ−ν̄µντ ), BR(τ− → e−ν̄eντ ) and their

ratio [19,80]

ττ = (290.6± 1.1)× 10−15s , (5.28)

BR(τ− → e−ν̄µντ ) = 0.1785± 0.0005 ,

BR(τ− → µ−ν̄µντ ) = 0.1736± 0.0005 ,

BR(τ− → µ−ν̄µντ )

BR(τ− → e−ν̄µντ )
= 0.9796± 0.0040 , (5.29)

we get(
Gτe

Gµ

)2

= 1.0025±0.0047 ,

(
Gτµ

Gµ

)2

= 1.0025±0.0048 ,

(
Gτµ

Gτe

)2

= 1.0072±0.0041

(5.30)

Assuming values of the parameters ε roughly of the same order, we see that the

deviations from the SM prediction are dominated by the operators of type O3
LL, and we

obtain the bounds

−0.0007 < β3 − γ3 < 0.0010 [3σ]

−0.0007 < α3 − γ3 < 0.0010 [3σ]

−0.0003 < α3 − β3 < 0.0012 [3σ] (5.31)

When the operators O3
LL can be neglected, we get a milder bound on the new parameters.

For instance, if β3 = γ3 = 0, we have

−0.0033 < γ2
1 − β2

1 < 0.0043 [3σ] (5.32)

If we parametrize the effective Lagrangian in terms of a new mass scale M , through the

relation

2
√

2GF ε =
1

M2
(5.33)

we see that an upper bound on |ε| of order 0.001(0.06) corresponds to a lower bound on

M of order 5.5(0.7) TeV.

The comparison between GF in (5.10), extracted from the W mass, and Gµ in (5.23),

obtained from the muon lifetime, leads to additional constraints on the parameters. It



76 Chapter 5. Rare Decays in A4-Based Models

is convenient to express the ratio R = (m2
W/m

2
Z) in terms of Gµ. By expanding up to

second order in the new parameters, we get

R = RSM

[
1− (1−RSM)

(2RSM − 1)

(
8γ3 + 2(α1 + α3)2 + 2(β1 + β3)2

)
− 64

RSM(1−RSM)2

(2RSM − 1)3
γ2

3

]
(5.34)

where we have defined

RSM ≡
1

2
+

√
1

4
− παem(m2

Z)√
2Gµm2

Z(1−∆r)
= 0.77680(0.77611) (5.35)

The numerical values have been obtained from ref. [81] in the OSII scheme, by using as

inputs mZ = 91.1875 GeV, αs(mZ) = 0.118, ∆α
(5)
h = 0.02761, mt = 173.1 GeV and

mH = 115(200) GeV. The experimental value of R, obtained by combining the PDG

averages of the W and Z masses is

Rexp = 0.77735± 0.00048 (5.36)

We first compare (5.34) and (5.36) assuming dominance of the γ3 parameter. We obtain

−0.0010 < γ3 < 0.0004 [3σ] . (5.37)

If γ3 is negligible, we get

−0.0041 < (α1 + α3)2 + (β1 + β3)2 < 0.0014 [3σ] . (5.38)

The bounds are approximately in the same range derived from the universality of the

muon and tau decays.

Weaker bound are derived from the non-standard neutrino interactions described by

the Lagrangian LNSI in eq. (5.21). These interactions are usually described in terms of a

perturbation of the weak effective Lagrangian,

LNSI = −2
√

2GF [εlL,Rαβ (ναγ
µνβ)(lL,RγµlL,R)], (5.39)

where εlL,Rαβ is a small parameter measuring the size of the deviation and l = e, µ, τ . The

strongest bounds are those on neutrino-electron interactions, εeL,Rαβ . When α = β = e, µ

they are derived from neutrino-electron elastic scattering [82]

−0.07 < εeLee < 0.11 −1.0 < εeRee < 0.5 [90% CL]

−0.025 < εeLµµ < 0.03 −0.027 < εeRµµ < 0.03 [90% CL] (5.40)

For α = β = τ the limit comes from the e+e− → ν̄νγ cross-section measured at LEP

II [83,84]

−0.6 < εeLττ < 0.4 − 0.4 < εeRττ < 0.6 [90% CL] (5.41)
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Similar bounds can be derived on flavor-changing terms α 6= β from matter effects in

neutrino oscillations, but they are not relevant for the present analysis. Indeed, by com-

paring eqs. (5.21) and (5.39), we see that in our model, only flavor conserving terms are

allowed (α = β) and we have

εeLee = 2(α1 + α3) εeLµµ = 4(γ1 − γ3) εeLττ = 4(β1 − β3) , (5.42)

while right-handed couplings are vanishing. From eqs. (5.40) and (5.41) we get the 90%

CL bounds

−0.04 < (α1+α3) < 0.06 −0.006 < (γ1−γ3) < 0.007 −0.15 < (β1−β3) < 0.1 .

(5.43)

With the exception of the limit on (γ1 − γ3), at present these bounds are not compet-

itive with those derived previously from muon and tau decays. A future improvement

is expected from further analysis of data from KamLAND, SNO, SuperKamiokande and

neutrino factories.

5.2.3 Charged Lepton Interactions

New interactions among charged leptons are induced by the Lagrangian (5.22). We

have seen that LFV transitions obey the selection rule ∆Le∆Lµ∆Lτ = ±2. This is a

very interesting feature of the model under discussion. Usually SM extensions allowing

for low-energy flavor changing four-lepton interactions are severely constrained by the

experimental limits on the branching ratio µ → eee: BR(µ → eee) < 1.0 × 10−12. In

our model this transition is forbidden at the lowest order by the selection rule imposed

by A4 symmetry. For the same reason also the transitions τ → eee and τ → µµµ are

forbidden at the lowest order. The above selection rule allows the flavor changing decays
¶ τ− → µ+e−e− and τ− → e+µ−µ− , whose branching ratios have the following upper

limits at 90% CL [19]:

BR(τ− → µ+e−e−) < 2.0×10−8 BR(τ− → e+µ−µ−) < 2.3×10−8 . (5.44)

From (5.22), we compute the corresponding decay rates

Γ(τ− → µ+e−e−) =
G2
Fm

5
τ

96π3
(α1 + α3)2

Γ(τ− → e+µ−µ−) =
G2
Fm

5
τ

96π3

[
(β1 + β3)2 +

α2

4

]
. (5.45)

The total τ width is approximately given by:

Γ =
G2
Fm

5
τ

192π3
× 1

BR(τ− → µ−ντ ν̄µ)
≈ G2

Fm
5
τ

192π3
× 1

0.18
, (5.46)

¶In the context of models with an A4 flavor symmetry, these decays were first considered in ref. [91].
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and we get the 90% CL bounds

|α1 + α3| < 2.4× 10−4√
(β1 + β3)2 +

α2

4
< 2.5× 10−4 . (5.47)

These bounds are the most restrictive ones among those discussed so far. The effec-

tive Lagrangian (5.22) also describes flavour-conserving four-lepton interactions, such as

e+e− → ff̄ (f = e, µ, τ), which have been constrained by the LEP data [85]. For instance,

in terms of the effective operator −2
√

2GF [εLL(ēγρe)( f̄γρf)], ref. [85] quotes

εf 6=eLL = 0.0168± 0.0133 εf=e
LL = −0.0187± 0.0320 (5.48)

Using (5.22), we obtain the bounds at 3σ

−0.006 < (γ1 + γ3) + (β1 + β3) < 0.014 −0.124 < (α1 + α3) < 0.086 .(5.49)

Similar bounds exist on four-lepton flavour-conserving operators with different chirality

structure.

5.3 A Specific Realization

So far we have analyzed the consequences of the A4 flavor symmetry in a general effec-

tive Lagrangian approach, without making reference to any particular model. The only

model-dependent ingredient that we have used is the assignment of the lepton multiplets

to representations of the full flavor group A4×Z3×U(1)FN given in Table 5.1. It is inter-

esting to investigate some concrete realizations of the flavor symmetry in a specific model,

to see if the expectations based on the effective Lagrangian approach are fulfilled or not.

Perhaps the most significant feature of the effective Lagrangian approach is the prediction

of the leading order selection rule ∆Le∆Lµ∆Lτ = ±2, which implies the dominance of

the channels τ− → µ+e−e− and τ− → e+µ−µ− among the flavor-changing transitions. In

this section we consider the supersymmetric realization of A4 × Z3 × U(1)FN discussed

in ref. [6]. The fields in Table 5.1 are promoted to chiral supermultiplets and a U(1)R
symmetry, eventually broken down to the R-parity , is introduced to restrict the super-

potential. This realization of A4 × Z3 × U(1)FN is particularly relevant since it offers a

complete and natural solution of the vacuum alignment problem. Namely the specific

pattern of VEVs given in eq. (5.2) can be reproduced from the minimization of the scalar

potential of the theory in a finite portion of the parameter space, without any fine-tuning

of the parameters. After SUSY breaking four-lepton operators are expected to arise at

one-loop from the exchange of sleptons, charginos and neutralinos. They are naturally

depleted by the effective SUSY breaking scale mSUSY , so that, in the absence of other

suppressions, our parameters ε are expected to be of order

ε ≈ 1

16π2

m2
Z

m2
SUSY

(5.50)
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If mSUSY ≈ 1 TeV we have ε ≈ 10−4 which, as we have seen, is close to the experimental

upper bounds on the branching ratios for τ− → µ+e−e− and τ− → e+µ−µ−, see eq.

(5.47). For this reason it is important to proceed to a direct estimate of the rates for

lepton flavor violating processes in the SUSY model in order to establish their strength

and their relative hierarchy. We first focus on the potentially most dangerous transitions:

τ− → µ+e−e− and τ− → e+µ−µ−. At one-loop these transitions are described by box

diagrams alone, since penguin diagrams always require a particle-antiparticle pair in the

final state. It is useful to analyze these diagrams in the so-called super-CKM basis, where

gaugino-lepton-slepton vertices are flavor diagonal. Neglecting Higgsino exchange, whose

contributions are suppressed by lepton masses, the only sources of flavor change are the

off-diagonal terms of slepton mass matrices (m̃2)MN , which can be analyzed in the mass

insertion approximation, expressed through the parameters

(δij)MN =
(m̃2

ij)MN

m2
SUSY

(5.51)

where M,N = (L,R) are the chiralities. A quick inspection of the relevant box diagrams

reveals that both transitions require at least two mass insertions: δτe and δµe for τ− →
µ+e−e− and δτµ and δµe for τ− → e+µ−µ− and the corresponding amplitudes scale as:

M(τ− → µ+e−e−) ∝ 1

16π2

m2
Z

m2
SUSY

× δτeδµe (5.52)

M(τ− → e+µ−µ−) ∝ 1

16π2

m2
Z

m2
SUSY

× δτµδµe (5.53)

The most general slepton mass matrices compatible with the A4 × Z3 × U(1)FN flavor

symmetry in the super-CKM basis have the following leading order structure [67,68]:

m̃2
eLL = m̃2

νLL =

 1 +O(u) O(u2) O(u2)

O(u2) 1 +O(u) O(u2)

O(u2) O(u2) 1 +O(u)

m2
SUSY (5.54)

m̃2
eRR =

 O(1) O(tu) O(t2u)

O(tu) O(1) O(tu)

O(t2u) O(tu) O(1)

m2
SUSY (5.55)

m̃2
eRL = k

 me c meu c meu

c mµu mµ c mµu

c mτu c mτu mτ

mSUSY (5.56)

where k and c are model dependent coefficients. Depending on the chirality structure of

the four-lepton operator we can have different type of suppression:

M(τ− → µ+e−e−) ∝ 1

16π2

m2
Z

m2
SUSY

× u4 (LLLL)

∝ 1

16π2

m2
Z

m2
SUSY

× t3u2 (RRRR)

∝ 1

16π2

m2
Z

m2
SUSY

× tu3 (LLRR) (5.57)
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M(τ− → e+µ−µ−) ∝ 1

16π2

m2
Z

m2
SUSY

× u4 (LLLL)

∝ 1

16π2

m2
Z

m2
SUSY

× t2u2 (RRRR)

∝ 1

16π2

m2
Z

m2
SUSY

× tu3 (LLRR) (5.58)

The chirality structure (LRLR) is not included because it is strongly suppressed by the

ratiomi/mSUSY . We see that both amplitudes vanish in the limit of exact flavor symmetry,

contrary to the expectation based on our effective Lagrangian approach. In principle the

flavor symmetry allows for non-vanishing amplitudes, but the specific SUSY realization

considered here prevents non-vanishing contributions in the exact symmetry limit. Such a

result can be justified by analyzing the specific symmetry properties of the SUSY model.

Indeed, it is easy to recognize that, in the limit of exact flavor symmetry lepton masses

vanish, and so does the block m̃2
eRL, whereas m̃2

eLL is proportional to the unit matrix and

m̃2
eRR is diagonal. The flavor symmetry in this limit is larger than A4 × Z3 × U(1)FN : it

contains SU(3)L×U(1)eR×U(1)µR×U(1)τR, which forbids any flavor-violating transition

in the lepton sector. Since both u and t symmetry breaking parameters lies in the percent

range, the predicted rates for τ− → µ+e−e− and τ− → e+µ−µ− drop by more than

ten order of magnitudes below the present experimental sensitivity. Indeed in the SUSY

model all the operators of Ldecay, eq. (5.20), originate from similar box diagrams and

they get the same suppression, thus relaxing also the bounds coming from universality

in leptonic muon and tau decays, and from the agreement between the Fermi constant

measured in the muon decay and that extracted from the mW/mZ ratio.

Given this strong suppression of the a priori favored channels τ− → µ+e−e− and

τ− → e+µ−µ−, we would like to establish which is the leading flavor violating process in

this SUSY realization of A4×Z3×U(1)FN . We should look for transitions where a single

mass insertion occurs. In ref. [67,68] a detailed analysis of the dipole transitions µ→ eγ,

τ → µγ and τ → eγ was presented. In terms of the normalized branching ratios

Rij =
BR(li → ljγ)

BR(li → ljνiν̄j)
. (5.59)

the generic expectation in the SUSY model is

Rij =
6

π

m4
W

m4
SUSY

αem|wij u|2 (5.60)

where αem is the fine structure constant and wij are dimensionless parameters of order

one. Such behavior is due to the dominance of the mass insertion of RL type, leading to

an amplitude linear in the symmetry breaking parameter u. As apparent from eq. (5.56)

the amplitude is proportional to the model-dependent coefficient c. There is a class of

SUSY model where c actually vanishes [67]. In this case the ratios Rij are of the form:

Rij =
6

π

m4
W

m4
SUSY

αem

[
|w(1)

ij u
2|2 +

m2
j

m2
i

|w(2)
ij u|2

]
(5.61)
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where w
(1,2)
ij are order one parameters. Even in the case c = 0 the dipole transitions

appear much more favored with respect to τ− → µ+e−e− and τ− → e+µ−µ−. The best

present (and future aimed for) limit is for µ→ eγ:

BR(µ→ eγ) < 1.2× 10−11 (10−13) (5.62)

which implies the following bounds (setting w
(1,2)
µe ≡ 1)

mSUSY > 255 (820) GeV (u = 0.005)

mSUSY > 0.7 (2.5) TeV (u = 0.05) . (5.63)

Process Suppression

µ− → e−γ t2u2

τ− → µ−γ t2u2

τ− → e−γ u4

µ− → e−e+e− t2u2

τ− → µ−µ+µ− t2u2

τ− → µ−e+e− t2u2

τ− → e−µ+µ− u4

τ− → e−e+e− u4

τ− → µ+e−e− u6t2

τ− → e+µ−µ− u4t4

Table 5.2: Parametric suppression of the rates for lepton flavor violating processes, as-

suming the behavior of eq. (5.61) for the dipole transitions and of eqs. (5.57) and (5.58)

for the last two processes.

A related process is the decay µ− → e−e+e−. Within our SUSY model, at one loop

there are contributions both from γ- and Z-penguin diagrams and from box diagrams,

dominated by a single flavor changing mass insertion in a slepton propagator. The domi-

nant contribution comes from the γ penguin diagrams, and we can relate the BR of this

process to the µ→ eγ one [86]

Br(µ− → e−e+e−) ≈ 7 · 10−3 Br(µ→ eγ). (5.64)

From the current upper bound Br(µ− → e−e+e−) < 1.0 × 10−12, using the estimate for

BR(µ→ eγ) of eq. (5.61), we find

mSUSY > 140 (225) GeV (u = 0.005) (5.65)

mSUSY > 400 (700) GeV (u = 0.05) , (5.66)

where in parenthesis we have shown the results assuming an improvement of the limit

by one order of magnitude. Other τ decays such as τ− → e−e+e− ,τ− → µ−µ+µ−,
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τ− → µ−e+e−, τ− → e−µ+µ−, have a relationship with τ → µγ analogous to that

between µ− → e−e−e+ and µ → eγ. We summarize the suppression of the rates for

these processes in Table 5.2. In this SUSY model there are no LFV transitions that are

non-vanishing in the limit of exact flavor symmetry. Flavor violating τ decays have rates

comparable to those of µ decays, but the present and future experimental sensitivities are

much worse compare to µ→ eγ, for which the prospect of detection are the best.

Finally we comment on µ to e conversion in nuclei. Although quarks go beyond the

description provided by the flavor symmetry A4×Z3×U(1)FN , µ to e conversion in nuclei

can be included in our discussion, since in the SUSY model considered here it is driven by

a γ penguin graph similar to that entering the decay µ− → e−e+e−. The conversion rate

CR(µ → e in nuclei) is then related directly to the branching ratio of µ → eγ, through

the relation (the range spans the nuclei used as target in real experiment)

1.5× 10−3 ≤ CR(µ→ e)

BR(µ→ eγ)
≤ 3× 10−2 (5.67)

Given the current experimental limit from SINDRUMII [87] with a gold target, CRAu ≤
6.1 × 10−13 , this channel is not competitive with µ → eγ. However, if Mu2e [88] and

PRIME [89] experiments will reach the sensitivity of CRAl ≤ 6×10−17 and CRT i ≤ 10−18,

they could realistically set the most stringent constraint on lepton flavor violation. For a

titanium target CRT i = 0.5×10−2 BR(µ→ eγ) [90]. Setting u = 0.05 we getmSUSY & 6.6

TeV, while for u = 0.005, mSUSY & 2.3 TeV.

5.4 Conclusion of the Chapter

Violation of individual lepton numbers has been established in neutrino oscillations

and might be confirmed in rare transitions involving charged leptons. Discovering LFV

in charged lepton decays would represent a major step towards the solution of the flavor

puzzle. First of all LFV in tau or muon decays at an observable rate requires new physics

at an energy scale M not too far from the TeV scale, opening the exciting possibility of

producing and detecting the new particles responsible for LFV at the LHC. Moreover, in

many models the same parameters that describe neutrino masses and mixing angles are

also responsible for LFV, and testable predictions can be obtained. In a previous set of

papers, radiative decays of charged leptons have been studied, both in a general effective

Lagrangian approach and in a specific SUSY realization of A4 ×Z3 ×U(1)FN . The three

decays µ → eγ, τ → µγ and τ → eγ have similar rates in these models, but the rates

derived from the effective Lagrangian scale as u2 and require rather large values for the

scale M , while in the SUSY realization the rates can be much more suppressed and can

allow for a more accessible scale of new physics M .

In the present chapter we have extended the analysis to cover all LVF transitions. We

have analyzed the most general four-lepton effective Lagrangian invariant under A4×Z3×
U(1)FN . Such a Lagrangian describes several transitions that violate lepton flavor and

that are not suppressed by any powers of t and/or u. All these unsuppressed transitions
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satisfy the selection rule ∆Le∆Lµ∆Lτ = ±2, which would provide a nice signature of

the assumed flavor symmetry. For instance the decays τ− → µ+e−e− and τ− → e+µ−µ−

would be favored over all the other decays with three charged leptons in the final state.

Indeed, calling ε the strength of the generic four-lepton interaction in units of the Fermi

constant, the non-observation of these tau decays provide the strongest bound on ε from

the existing data: |ε| < (2 ÷ 3) × 10−4. If interpreted as a bound on the scale of new

physics M , this requires M above approximately 10 TeV. Slightly milder bounds comes

from the observed universality of leptonic muon and tau decays and from the agreement

between the Fermi constant measured in the muon decay and that extracted from the

mW/mZ ratio.

Then we have analyzed LFV in the specific SUSY realization of A4 × Z3 × U(1)FN .

In this model, LFV proceeds through one-loop diagrams where sleptons, charginos and

neutralinos are exchanged. Working in the super CKM basis, LFV is due to off-diagonal

entries in the slepton mass matrices and can be analyzed in the mass-insertion approxi-

mation. Contrary to the expectation based on the general effective Lagrangian, a different

hierarchy among the rates of LFV transitions is predicted. Processes where the individ-

ual lepton number is violated by a single unit, like µ− → e−e+e−, τ− → e−e+e−, τ− →
µ−µ+µ−, τ− → µ−e+e−, τ− → e−µ+µ− are favored, with the corresponding rates being

suppressed by u4 ÷ t2u2, while τ− → µ+e−e− and τ− → e+µ−µ− are more suppressed,

their rates scaling as u6t2 and u4t4, respectively. We have traced back this “anomalous”

behavior to the fact that, in the limit of vanishing u and t, the low-energy SUSY La-

grangian acquires a much larger flavor symmetry: SU(3)L × U(1)eR × U(1)µR × U(1)τR,

which forbids any flavor-violating transition in the lepton sector. We can also understand

the predictions of the SUSY case by inspecting the relevant interaction terms. Once we

go in the super CKM basis, neglecting Higgsino interactions that are suppressed by small

lepton masses, all the relevant interaction terms are flavor-diagonal. The only source of

flavor violations are the off-diagonal terms of slepton masses. But slepton masses are

diagonal when t and u vanish and in this limit lepton flavor is conserved. The crucial

point is that in the SUSY model lepton flavor violation proceeds through bilinear terms

of the low-energy Lagrangian. The symmetry group A4×Z3×U(1)FN allows for quartic

invariant operators which violate lepton flavor, such as the effective Lagrangian we have

discussed in the first part of this work, but it forbids any LFV at the level of bilinear

terms. Our SUSY model does not represent the most general realization of the flavor

symmetry A4 × Z3 × U(1)FN and leads to more restrictive conclusion about LFV pro-

cesses. One the one hand this feature might allow to discriminate the SUSY realization

of A4 × Z3 × U(1)FN from other models possessing the same flavor symmetry, but hav-

ing a more general structure of interaction terms. On the other hand, as we have seen,

in the SUSY model there are several characteristic correlations among LFV transitions,

which could hopefully allow to test A4 × Z3 × U(1)FN against other possible underlying

flavor symmetries. At the moment, given the present experimental sensitivity, µ → eγ

appear as the favorite channel. In the future, with improved experimental facilities, µ to

e conversion in nuclei could provide the most stringent test of the model.
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Chapter 6

Multi-Higgs Models

In the models analyzed in the previous chapters, one introduces flavons, heavy scalar

fields charged in the flavor space. Once the flavons develop specific vacuum expectation

values (VEVs), this translates to structures in the masses and mixing of the fermions.

However, imposing the correct symmetry breaking patterns on the flavons is highly non-

trivial. This holds in particular if two or more flavons are used, breaking in different

directions in flavor space. So far, only a few techniques have been developed, all of which

need a supersymmetric context or the existence of extra dimensions [42]. Alternatively,

one can look at models that require only one flavor symmetry breaking direction. In this

case the scalar potential that implements the breaking can be non supersymmetric and

does not require extra dimensions. Of particular interest is the possibility that one set

of fields simultaneously takes the role of the flavons and the Standard Model (SM) Higgs

fields, identifying the breaking scales of the electroweak and the flavor symmetries. In this

chapter, we will consider the discrete flavor symmetry A4 and we will assume that there

are three copies of the Standard Model Higgs field, that transform among each other as

a triplet of A4 [91–96]. The presence of this extended Higgs sector has a deep impact on

the high energy phenomenology: indeed new contributions to the oblique corrections as

well as new sources of CP and flavor violation usually appear in this context. We will

analyze the constraints coming from these observables for all the vacuum configurations

allowed by the scalar potential and will discuss on the viability of each of them. After

the analysis of that part of Higgs phenomenology which is independent from the fermion

content of the theory, we will discuss flavor violation processes, first in a general way and

the focusing on three models taken from the literature: two models for lepton mixing by

Ma and Morisi-Peinado, and a model for quark mixing by Lavoura-Kuhbock. In the text

they are labeled Model 1,2, and 3.

6.1 The A4 Scalar Potential

We consider the Standard Model gauge group SU(3)c × SU(2)L × U(1)Y with the

addition of a global flavor symmetry A4. We consider three copies Φa, a = 1, 2, 3, of

85
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the conventional SM Higgs field (i.e. a singlet of SU(3)c, doublet of SU(2)L and with

hypercharge Y = 1/2) such that the three Higgses are in a triplet of the flavor group A4.

Once the flavor structure of the quarks and leptons is specified, each Φa will couple to

the three fermion families according to the group theory rules in a model dependent way.

Below, we will write down the most general scalar potential for the three Higgses that is

invariant under the flavor and gauge symmetries of the model. After the fields occupy one

of the minima of the potential, electroweak symmetry gets broken (while electromagnetism

is conserved) and we can develop the fields around their vacuum expectation values as

Φa =
1√
2

(
Re Φ1

a + i Im Φ1
a

Re Φ0
a + i Im Φ0

a

)
→ 1√

2

(
Re φ1

a + i Im φ1
a

vae
iωa + Re φ0

a + i Imφ0
a

)
. (6.1)

Here vae
iωa is the vacuum expectation value of the ath Higgs field. One or two of

the va can be zero, implying that the corresponding Higgs field does not develop a VEV.

Furthermore, if all VEVs are real (so if all ωa are zero) CP is conserved, while if one or

more ωas are nonzero, CP is broken. Note that in general, there is the freedom to put

one of the phases to zero by a global rotation.

The most general potential V [Φa] can be written as

V [Φa] = µ2(Φ†1Φ1 + Φ†2Φ2 + Φ†3Φ3) + λ1(Φ†1Φ1 + Φ†2Φ2 + Φ†3Φ3)2

+ λ3(Φ†1Φ1Φ†2Φ2 + Φ†1Φ1Φ†3Φ3 + Φ†2Φ2Φ†3Φ3) (6.2)

+ λ4(Φ†1Φ2Φ†2Φ1 + Φ†1Φ3Φ†3Φ1 + Φ†2Φ3Φ†3Φ2)

+
λ5

2

[
eiε[(Φ†1Φ2)2 + (Φ†2Φ3)2 + (Φ†3Φ1)2] + e−iε[(Φ†2Φ1)2 + (Φ†3Φ2)2 + (Φ†1Φ3)2]

]
,

in agreement with the usual notation adopted in the two Higgs Doublet Models

(2HDM) (for a review on this topic see [97]). The parameter µ2 is typically negative

in order to have a stable minimum away from the origin. All the other parameters, λi,

are real parameters which must undergo to the condition for a potential bounded from

below: this forces λ1 and the combination λ1 + λ3 + λ4 + λ5 cos ε to be positive.

It is interesting to notice that, contrary to other multi Higgs (MH) scenarios, here we

can not recover the SM limit, with one light scalar and all the others decoupled and very

heavy. The flavor symmetry constrains the potential parameters in such a way that the

scalar masses are never independent from each other. This can be easily understood by a

parameter counting: the scalar potential in eq. (6.2) presents 6 independent parameters

and the number of the physical quantities is 8, i.e. the electroweak (EW) VEV and the

seven masses for the massive scalar fields.

We will study the minima of the potential in eq. (6.2) under electromagnetism con-

serving VEVs as specified in eq. (6.1) by studying the first derivative system

∂V [Φ]

∂ΦI
= 0 , (6.3)
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where ΦI is of the fields Re Φ1
a, Re Φ0

a, Im Φ1
a or Im Φ0

a and by requiring that the Hessian

∂2V [Φ]

∂ΦI∂ΦJ
(6.4)

has non negative eigenvalues, or in other words that all the physical masses are positive

except those ones corresponding to the Goldstone bosons (GBs) that vanish.

In Sections 6.3 and 6.4 we will verify that this potential presents a number of so-

lutions. Some of them are natural in the sense that they do not require ad hoc values

of the potential parameters; these are only constrained by requiring the boundedness at

infinity and the positivity of all the physical scalar masses. The only potential parameter

constrained is the bare mass term µ2 which is related to the physical Electroweak (EW)

VEV, v2
w = v2

1 +v2
2 +v2

3. Others require specific relations between the adimensional scalar

potential parameters and may have extra Goldstone bosons.

6.2 The Physical Higgs Fields

The symmetry breaking of the Higgs fields of equation eq. (6.1) leads to a large

number of charged and neutral Higgs bosons as well as the known Goldstone bosons of

the Standard Model.

In the most general case, where CP is not conserved, the neutral real and imaginary

components of eq. (6.1) mix to five CP non-definite states and a GB:

hα = UαaReφ0
a + Uα(a+3)Imφ0

a ,

π0 = U6aReφ0
a + U6(a+3)Imφ0

a .
(6.5)

Here a = 1, 2, 3 and α = 1 − 5, while α = 6 represents the GB π0. In matrix form this

reads 
h1

...

h5

π0

 = U



Reφ0
1

...

Reφ0
3

Imφ0
1

...

Imφ0
3


(6.6)

Clearly eq. (6.5) holds also in the CP conserved case: in that case the 6 by 6 scalar mass

matrix reduces to a block diagonal matrix with two 3 by 3 mass matrices leading to three

CP even states and 2 CP odd states and the GB π0.

The three charged scalars mix into two new charged massive states and a charged GB.H+
1

H+
2

π+

 = S

φ1
1

φ1
2

φ1
3

 , (6.7)
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where π+ is the Goldstone boson eaten by the gauge bosons W+. In general, the S is a

complex unitary matrix. In the special case where CP is conserved, its entries are real

(and it is thus an orthogonal matrix).

6.3 CP Conserved Solutions

In this section, we will study minima of the potential in eq. (6.2) in which only Reφ0
a

develops a VEV, i.e. the CP symmetry is conserved. In this case we expect having 3

neutral scalar CP-even states, 2 CP-odd states and 2 charged scalars as well as a real and

a complex GBs originating from respectively the CP-odd states and the charged states.

In the CP-conserved case all the ωa vanish and the first derivative system in eq. (6.3)

reduces to

v1[2(v2
1 + v2

2 + v2
3)λ1 + (v2

2 + v2
3)(λ3 + λ4 + λ5 cos ε) + 2µ2] = 0 ,

v2[2(v2
1 + v2

2 + v2
3)λ1 + (v2

1 + v2
3)(λ3 + λ4 + λ5 cos ε) + 2µ2] = 0 ,

v3[2(v2
1 + v2

2 + v2
3)λ1 + (v2

1 + v2
2)(λ3 + λ4 + λ5 cos ε) + 2µ2] = 0 ,

v1(v2
2 − v2

3)λ5 sin ε = 0 ,

v2(v2
1 − v2

3)λ5 sin ε = 0 ,

v3(v2
2 − v2

1)λ5 sin ε = 0 ,

(6.8)

where the first three derivatives refer to the real components Φ0
a and the second ones to

the imaginary parts. In the most general case, when neither ε nor λ5 is zero, the last

three equations allow two different solutions

1) v1 = v2 = v3 = v = vw/
√

3;

2) v1 6= 0 and v2 = v3 = 0 (and permutations of the indices); in this case v1 = vw.

Both these solutions are solutions of the first three equations as well, provided that{
µ2 = −(3λ1 + λ3 + λ4 + λ5 cos ε)v2

w/3 for the first case

µ2 = −λ1v
2
w for the second case.

(6.9)

In this cases λ5 can be chosen positive, as a sign can be absorbed in a redefinition of ε.

Next, we consider the case where sin ε is 0. This implies ε = 0 or π. We may however

absorb the minus sign corresponding to the second case in a redefinition of λ5 that is now

allowed to span over both positive and negative values.

Assuming v1 6= 0, we may solve the first equation in eq. (6.8) with respect to µ2. Then

by substituting µ2 in the other two equations we get

v2(v2
1 − v2

2)(λ3 + λ4 + λ5) = 0 ,

v3(v2
1 − v2

3)(λ3 + λ4 + λ5) = 0 .
(6.10)

Next to the two solutions present in the general case, this system has two further possible

solutions
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3) v3 = 0, v2 = v1 = vw/
√

2 and permutations. This requires

µ2 = − (4λ1 + λ3 + λ4 + λ5) v2
w/4 . (6.11)

4) (λ3 +λ4 +λ5) = 0. This condition implies that in the real neutral direction there is

a enlarged–O(3) accidental symmetry that is spontaneously broken by the vacuum

configuration, thus we expect extra GBs. Indeed in this case v1, v2 and v3 are only

restricted to satisfy v2
1 +v2

2 +v2
3 = v2

w and the parameter µ2 is given by µ2 = −λ1v
2
w.

Finally, the case λ5 = 0 allows special cases of the solutions 1) to 4), but does not give

rise to new solutions. For this reason, we will discuss only the general cases and the case

ε = 0 in the remainder of this section and comment what happens for λ5 = 0.

6.3.1 ε 6= 0: The Alignment (v, v, v)

In the basis chosen, the vacuum alignment (v, v, v) preserves the Z3 subgroup of A4.

It is convenient to perform a basis transformation into the Z3 eigenstate basis, 1, 1′ ∼
ω, 1′′ ∼ ω2 according to

ϕ = (Φ1 + Φ2 + Φ3)/
√

3 ∼ 1

ϕ′ = (Φ1 + ωΦ2 + ω2Φ3)/
√

3 ∼ ω

ϕ′′ = (Φ1 + ω2Φ2 + ωΦ3)/
√

3 ∼ ω2 . (6.12)

When A4 is broken to Z3 in the Z3 eigenstate basis, ϕ ∼ 1 behaves like the standard

Higgs doublets: its neutral real component develops a vacuum expectation values

m2
h1

=
2

3
v2
w(3λ1 + λ3 + λ4 + λ5 cos ε). (6.13)

The neutral components of the other two doublets ϕ′ and ϕ′′ mix into two complex neutral

states and their masses are given by

m′,′′ 2n =
v2
w

6

(
−λ3 − λ4 − 4λ5 cos ε±

√
(λ3 + λ4)2 + 4λ2

5(1 + 2 sin2 ε)− 4(λ3 + λ4)λ5 cos ε

)
.

(6.14)

The charged components of ϕ′, ϕ′′ do not mix, their masses being

m′,′′ 2ch = −v
2
w

6

(
3λ4 + 3λ5 cos ε±

√
3λ5 sin ε

)
. (6.15)

6.3.2 ε 6= 0: The Alignment (v, 0, 0)

In the chosen A4 basis, the vacuum alignments (v, 0, 0) preserves the Z2 subgroup of

A4. As we did with the vacuum alignment that conserved the Z3 subgroup, in this case
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it is useful to rewrite the scalar potential by performing the following Z2 conserving basis

transformation
Φ1 → Φ1 ,

Φ2 → e−iε/2Φ2 ,

Φ3 → eiε/2Φ3 .

(6.16)

Φ1 is even under Z2 and behaves like the standard Higgs doublet, while Φ2 and Φ3 are

odd. For what concerns the neutral states, the 6× 6 mass matrix is diagonal in this basis

and with some degenerated entries: using a notation similar to the 2DHM, we have

m2
h1
≡ 2λ1v

2
w , m2

h2
= m2

h3
=

1

2
(λ3 + λ4 − λ5)v2

w ,

m2
h4

= m2
h5

=
1

2
(λ3 + λ4 + λ5)v2

w , m2
π0 = 0 ,

(6.17)

where the last state corresponds to the GB. The charged scalar mass matrix is also

diagonal with

m2
C1

= m2
C2

=
1

2
λ3v

2
w , m2

π+ = 0 , (6.18)

where the last state corresponds to the GB. The degeneracy in the mass matrices are

imposed by the residual Z2 symmetry. Contrary to the previous case the neutral scalar

mass eigenstates are real and not complex.

6.3.3 ε = 0: The Alignment (v, v, 0)

This vacuum alignment does not preserve any subgroup of A4 and it holds that v =

vw/
√

2. From the minimum equations we have that

µ2 = −1

4
v2
w(4λ1 + λ3 + λ4 + λ5) . (6.19)

The scalar and pseudoscalar mass eigenvalues are given by

m2
h1

= −v
2
w

2
(λ3 + λ4 + λ5) , m2

h2
=
v2
w

2
(4λ1 + λ3 + λ4 + λ5) ,

m2
h3

=
v2
w

4
(λ3 + λ4 + λ5) , m2

h4
= −λ5v

2
w ,

m2
h5

=
v2
w

4
(λ3 + λ4 − 3λ5) , m2

π0 = 0 .

(6.20)

For the charged sector we have

m2
C1

=
v2
w

4
(λ3 − λ4 − λ5) , m2

C2
= −v

2
w

2
(λ4 + λ5) m2

C3
= 0 . (6.21)

For λ5 6= 0 the alignment (v, v, 0) has the correct number of GBs, while for λ5 = 0

we have an extra massless pesudoscalar. However in both cases, λ5 6= 0 or λ5 = 0, the

conditions m2
h1
> 0 and m2

h3
> 0 can not be simultaneously satisfied. This alignment is

therefore a saddle point of the A4 scalar potential we are studying.
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6.3.4 ε = 0: The Alignment (v1, v2, v3)

This vacuum alignment, as the previous one, does not preserve any subgroup of A4.

A part from the condition ε = 0, we recall that in this case there is the further constraint

λ3 + λ4 + λ5 = 0 and λ5 may assume both positive and negative values since we have

reabsorbed in the λ5 sign the case ε = π.

Let us define v2
w = v2

1 + v2
2 + v2

3 = (1 + s2 + r2)v2
1 with s = v2/v1 and r = v3/v1

respectively. The mass matrix for the neutral scalar states presents two null eigenvalues–

as we expected since the condition λ3 +λ4 +λ5 = 0 enlarges the potential symmetry– and

a massive one

mh1
2 = 2λ1v

2
w . (6.22)

At the same time the mass matrix for the CP-odd states has one null eigenvalue–the GB

π0 and two degenerate eigenvalues of mass

m2
h2

= m2
h3

= (λ3 + λ4)v2
w . (6.23)

. Notice that for the special case λ5 = 0 we have the constraint λ3 = −λ4 that implies

two extra massless pseudoscalars. Finally for the charged scalars we have

m2
C1

= m2
C2

=
1

2
λ3v

2
w , m2

C3 = 0 (6.24)

The total amount of GBs is 5 (7) for the case λ5 6= 0 (λ5 = 0), so we have 2 (4) extra

unwanted GBs: this situation is really problematic. We note that the introduction of

terms in the potential that softly break A4 can ameliorate the situation with the Goldstone

bosons.

6.4 CP Non-Conserved Solutions

In this section, we consider vacua that exhibit spontaneous CP violation. This occurs

if the VEV of at least one of the Higgses is inherently complex. A global rotation can

always absorb one of the three phases of the VEVs.

We note that that the two natural vacua of the previous section (v, v, v) and (v, 0, 0)

do not have CP violating analogues as they have only one phase that can be reabsorbed

to make all VEVs real.

6.4.1 The Alignment (v1e
iω1, v2, 0)

In this case the third doublet is inert and therefore we are left only with two doublets

that develop a complex VEV and after the redefinition, there is only one phase ω1. Taking

the generic solution (v1e
iω1 , v2, 0) the minimum equations are solved if ε = −2ω1 or ε =

−2ω1 + π, v1 = v2 = vw/
√

2 and

µ2 = −v
2
w

4
(4λ1 + λ3 + λ4 + λ5) . (6.25)
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The neutral and charged 6 × 6 mass matrices are quite simple and it is possible having

analytical expression for the mass eigenvalues. For the neutral sector we have

m2
h1

=
1

2
v2
w(−λ3 − λ4 − λ5) , m2

h2
=

1

2
v2
w(4λ1 + λ3 + λ4 + λ5) ,

m2
h3

=
1

4
v2
w(λ3 + λ4 − λ5 + 2λ5 cos 3ω1) , m2

h4
= −λ5v

2
w ,

m2
h5

=
1

4
v2
w(λ3 + λ4 − λ5 − 2λ5 cos 3ω1) , m2

π0 = 0 ,

(6.26)

and for the charged one we have

m2
C1

=
v2
w

4
(λ3 − λ4 − λ5) , m2

C2
=
v2
w

2
(−λ4 − λ5) , m2

C3
= 0 . (6.27)

We see that the mass of the fourth neutral boson selects negative values for λ5, i.e. the

second solution ε = −2ω1 + π. It is interesting to see that in the CP conserved limits

ω1 → 0 (or π), it is not possible to have both m2
h1

and m2
h3

(respectively m2
h5

) positive,

but that in the general case, there are points in parameter space where indeed all masses

are positive. This is in particular clear in the region around cos 3ω1 = 0.

Finally, as for the CP conserved case, for λ5 = 0 we have two problems: an extra GB

and we cannot have all positive massive eigenstates.

6.4.2 The Alignment (v1e
iω1, v2e

iω2, v3)

In this case all the doublets develop a VEV vi 6= 0, so we may have two physical CP

violating phases. We have the freedom to take ω3 = 0. Minima are obtained for ω2 = −ω1

and v2 = v1 = v. Defining v3 = rv and v2
1 + v2

2 + v2
3 = v2

w We can also get

µ2 = − v2
w

2+r2 [(2 + r2)λ1 + λ3 + λ4 + λ5 cos(ε− 2ω1)] ,

λ5 =
(r2 − 1)(λ3 + λ4) sinω1

(r2 − 1) sin(ε− ω1)− 2 cos ε sin(3ω1)
.

(6.28)

and one of the following two conditions

i) λ4 = −λ3 ,

ii) tan ε =
r2 sin 2ω1 + sin 4ω1

r2 cos 2ω1 − cos 4ω1

.
(6.29)

To test the validity of the solution so far sketched it is necessary to check to be in a

true minimum of the potential and not to have extra GBs a part from those eaten by the

gauge bosons.

Case i)

In this case the constraints λ4 = −λ3 puts λ5 to zero and enlarge substantially the

symmetries of the potential: we have an accidental O(3) in the neutral real direction and
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two accidental U(1)s due to λ5 = 0. For this reason the neutral spectrum has 5 massless

particles, the GB π0 and 4 other GBs, and only one massive state

m2
h1

= 2λ1v
2
w . (6.30)

The charged scalars are

m2
C1

= m2
C2

=
1

2
λ3v

2
w , m2

C3 = 0 (6.31)

The massive states are degenerate as in the CP conserving minima studied in

Case ii)

As it is not possible to find analytical solutions, here we will study the limit with r very

large. This particular choice is justified by the fact that models present in literature [92,93]

fall in this case.

We may then perform an expansion in term of 1/r and neglect terms of order 1/r2.

From eq. (6.29) we have that

ε ∼ 2ω1 +Nπ , (6.32)

and then eq. (6.28) reduces to

µ2 ∼ −λ1v
2
w ,

λ5 ∼ −(λ3 + λ4) ,

(6.33)

Under these approximations we find a massless neutral scalar state, m2
π0 = 0, and the

other 5 neutral masses are given at leading order by

m2
h1
∼ m2

h2
∼ f [λi]O(1/r2)v2

w ,

m2
h3
∼ 2λ1v

2
w ,

m2
h4
∼ m2

h5
∼ (λ3 + λ4)v2

w ,

(6.34)

where once more f [λi] stays for a linear combination of the λ’s potential parameters. The

charged scalar mass matrix is diagonal up to terms of order O(1/r2) with two massive

degenerate states

m2
C1

= m2
C2

= λ3v
2
w/2 , (6.35)

and the correct number of GBs.

We see that the expressions for m2
h1,2

say that we may have two very light neutral

scalars. Taking as reference values for r the range 50÷ 200 we find

m2
h1,2
∼
√
f [λi] 5 GeV(1 GeV) , (6.36)

giving

m2
1,2 ≤ 502 GeV2 for r ∼ 50 ,

m2
1,2 ≤ 102 GeV2 for r ∼ 200 , (6.37)
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where 50(10) GeV may be obtained only for very peculiar combination of the potential

parameters. In other words we expect that also in the majority of the cases for r in the

range 50− 200 we will have m2
1,2 very light.

Of course, this does not mean that these states will be light for any value of r but

it is a quite strong hint that it is possible that this could be what indeed happens. As

mentioned before, the addition of soft A4 breaking terms to the potential may help in the

cases of Goldstone bosons or very light bosons.

6.5 Bounds From The Higgs Phenomenology

In this section we analyse the phenomenology corresponding to the different vacua

discussed above: unitarity, Z and W± decays and oblique parameters. In this way we

manage to constrain the parameter space and, in some cases, to rule out the studied

vacuum configuration.

6.5.1 Unitarity

In this section we account for the tree level unitarity constraints coming from the

additional scalars present in the theory. We examine the partial wave unitarity for the

neutral two-particle amplitudes for s�M2
W ,M

2
Z . We can use the equivalence theorem, so

that we can compute the amplitudes using only the scalar potential described in eq. (6.2).

In the regime of large energies, the only relevant contributions are the quartic couplings

in the scalar potential [98–101] and then we can write the J = 0 partial wave amplitude

a0 in terms of the tree level amplitude T as

a0(s) ≡ 1

32π

∫ 1

−1

dcos θ T (s) =
1

16π
F (λi) , (6.38)

where F represents a function of the λi couplings. Using for simplicity the notation

Φa =

 w+
a

vae
iωa + h0

a + iza√
2

 , (6.39)

we can write the 30 neutral two-particle channels as follows:

w+
a w
−
b ,

zazb√
2
,
h0
ah

0
b√

2
, h0

azb . (6.40)

Once written down the full scattering matrix a0, we find a block diagonal structure. The

first 12× 12 block concerns the channels

w+
1 w
−
1 , w

+
2 w
−
2 , w

+
3 w
−
3 ,

z1z1√
2
,
z2z2√

2
,
z3z3√

2
,
h0

1h
0
1√

2
, ;
h0

2, h
0
2√

2
,
h0

3, h
0
3√

2
, h0

1z1 , h
0
2z2 , h

0
3z3 ,
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while the other three 6× 6 blocks are related to the channels

w+
a w
−
b , w

+
b w
−
a , h

0
azb , h

0
bza , zazb , h

0
ah

0
b ,

once we specify the labels (a, b) as (1, 2), (1, 3) and (2, 3). Notice that up this point

the analysis is completely general and is valid for all the vacua presented. We specify the

vacuum configuration, expressing the quartic couplings λi in terms of the masses of the

scalars. Afterwards, putting the constraint that the largest eigenvalues of the scattering

matrix a0 is in modulus less than 1, we find upper bounds on the scalar masses which we

use in our numerical analysis.

6.5.2 Z And W± Decays

From an experimental point of view gauge bosons decays into scalar particles are

detected by looking at fermionic channels, such as for example Z → hA → 4f in the

2HDM, or Z decays into partial or total missing energy in a generic new physics scenario.

From this point of view gauge bosons decays bound the Higgs sector in an extremely model

dependent way. However since in the SM the Z and the W± decays into 2 fermions, 4

fermions or all have been precisely been calculated and measured, we may focus on the

decays Z,W± → all. Doing this we overestimate the allowed regions in the parameter

space, but we have a first and model independent cut arising by the gauge bosons decay.

Once we will pass to a model dependent analysis the region may only be restricted, not

enlarged. Furthermore, defining the contribution from new physics as ∆Γ, since

∆Γ2f
Z,W± ∼ ∆Γ4f

Z,W± ∼ ∆ΓallZ,W± � ΓZ,W± , (6.41)

we expect the error we commit being quite small.

From LEP data we have

Γexp
Z,W± = ΓSM

Z,W± + ∆ΓZ,W± (6.42)

with ∆ΓZ ∼ 0.0023 GeV and ∆ΓW± ∼ 0.042 GeV [19]. Therefore we may calculate the

width
Z → hihj ,

W+ → H+
i hj .

(6.43)

for the different multi Higgs (MH) vacuum configuration studied and select the points

that satisfy

ΓMH
Z,W± ≤ ∆ΓZ,W± . (6.44)

Here we have indicated the generic Z → hihj referring to our notation introduced in

Section 6.1. Clearly when CP is conserved the hi have defined CP and only couplings to

CP odd states are allowed. Of course this is not true for the configuration when CP is

spontaneously broken.
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In the vacuum analysis we did we have seen that in few situations we have extra

massless or very light particles. For those cases the gauge bosons decays put strong

bounds. For what concerns the Z decays we have

kZ ≤ ∆ΓZ
16π

mZ

4c2
W

g2
if both particles hi and hj are massless ,

kZ

(
1− m2

hi

m2
Z

)3

≤ ∆ΓZ
16π

mZ

4c2
W

g2
if hj is massless and 0 < m2

hi
< m2

Z ,

kZ

(
1−

m2
hi

+m2
hj

m2
Z

)3

≤ ∆ΓZ
16π

mZ

4c2
W

g2
if hi, hj 6= 0 and 0 < m2

hi
+m2

hj
< m2

Z .

(6.45)

where g is the SU(2) gauge coupling, cW the cosine of the Weinberg angle θW and the

parameter kZ is given by

kZ =
(
−UT

abU
T
(a+3)c + UT

(a+3)bU
T
ac

)2
, (6.46)

with U defined in eq. (6.6).

Similarly for the W± decays we have

kW

(
1− m2

Ci

m2
W

)3

≤ ∆ΓW
16π

mW

4c

g2
if hj is massless and m2

Ci
< m2

W
(6.47)

where, in analogy to the Z decay, the parameter kW is given by

kW =
∣∣∣S†abUT

ac

∣∣∣2 +
∣∣∣S†(a+3)bU

T
(a+3)c

∣∣∣2 , (6.48)

with S defined in eq. (6.7).

6.5.3 Large Mass Higgs Decay

Electroweak data analysis considering the data from LEP2 [102] and Tevatron [103]

put an upper bound on the mass of the SM Higgs of 194 GeV at 99% CL [19]. In a MH

scenario this bound may be roughly translated in the upper bound for the lightest scalar

mass, mh1 . For large values of the SM Higgs mass, mh ≥ 2mW , the main channel decay

is h → W+W− and the upper bound is completely model independent. Let us indicate

as ΓSMWW (194) the branching ratio of the SM Higgs into two W± at a mass of 194 GeV.

In a MH model the lightest Higgs boson couples to the gauge bosons with a coupling

that is
gh1ZZ = β gSMhZZ ,

gh1WW = β gSMhWW ,
(6.49)

with β ≤ 1. In our case for example β is given by

fa(cosωa U
T
a1 + sinωj U

T
(a+3)1) , (6.50)
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with fa = va/vw and ωa the corresponding CP phase. Taking into account that h1 is less

produced then the SM Higgs and that its ΓMH
WW (mh1) is reduced with respect to the SM

one,

ΓMH
WW (mh1) ∼ |β|4ΓSMWW (mh1) ≤ ΓSMWW (194) , (6.51)

we can roughly constrain the upper bound for masses mh1 ≥ 194 GeV.

6.5.4 Constraints By Oblique Corrections

The consistence of a MH model has to be checked also by means of the oblique correc-

tions. These corrections can be classified [104–108] by means of three parameters, namely

TSU , that maybe written in terms of the physical gauge boson vacuum polarizations

as [109]

T =
4π

e2c2
Wm

2
Z

[AWW (0)− c2
WAZZ(0)] ,

S = 16π
s2
W c

2
W

e2

[
AZZ(m2

Z)− AZZ(0)

m2
Z

− A′γγ(0)− (c2
W − s2

W )

cW sW
A′γZ(0)

]
,

U = −16π
s2
W

e2

[
AWW (m2

W )− AWW (0)

m2
W

− c2
W

AZZ(m2
Z)− AZZ(0)

m2
Z

− s2
WA

′
γγ(0)− 2sW cWA

′
γZ(0)

]
,

(6.52)

where sW , cW are sine and cosine of θW and e is the electric charge. EW precision mea-

surements severely constrain the possible values of the three parameters T , S and U . In

the SM assuming m2
h > m2

Z we have

T SMh ∼ − 3

16πc2
W

log
m2
h

m2
Z

,

SSMh ∼ 1

12π
log

m2
h

m2
Z

,

USM
h ∼ 0 .

(6.53)

For a Higgs boson mass of mh = 117 GeV (and in brackets the difference assuming instead

mh = 300 GeV), the data allow [19]

Sexp = 0.10± 0.10(−0.08)

T exp = 0.03± 0.11(+0.09)

U exp = 0.06± 0.10(+0.01) .

(6.54)

The constraints in eq. (6.54) must be rescaled not only for the different values of the

Higgs boson mass but also for a different scalar or fermion field content: for example, if

we assume to have a MH scenario this gives a contribution TMH to the T-parameter and

we need

TNSS − T SM
h = T exp . (6.55)

A detailed analysis on the TSU in a MH model has been presented in [110, 111] where

all the details are carefully explained. However the resulting formulae are valid only for
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scalar masses larger or comparable to mZ . Since this is not the case for a generic MH

model and particularly for the configurations studied so far, where we have a redundant

number of massless or extremely light particles, we improved their results, getting full

formulae valid for any value of the scalar masses (see the appendix C for details).

6.6 Results from Higgs Phenomenology

We have performed a numerical analysis for all vacuum configurations considered,

neglecting the alignment (v, v, 0) since in this case there are tachyonic states. Our aim

was to find a region in the parameter space where all the Higgs constraints were satisfied for

each configuration considered. We have analyzed the points generated through subsequent

constraints, from the weaker one to the stronger according to

• points Y: true minima –all the squared masses positive– (yellow points in the fig-

ures);

• points B: unitarity bound (blue points);

• points G: Z and W± decays (green points);

• points R: TSU parameters (red points).

The ratios B/Y , G/B, R/G may be used to indicate which is the stronger constraint

for each allowed minima. For almost each case we have compared the masses of the two

lightest neutral states –except for the alignment studied in sec. 6.4.2 where we have only

one massive neutral state– and the mass of the lightest neutral scalar versus the mass of

the lightest charged one. Then we have plotted the TS oblique parameters for all the

green points to check that T is the most constrained one –for this reason we have not

inserted the plots concerning U .

On the contrary for the CP breaking alignment (veiω1 , ve−iω1 , rv) we have personalized

the plots for reasons that will be clear in the following.

Notice that in all the following discussion, we refer as m1 (m2) to the (next-to-the-)

lightest neutral state and as mch1 as the lightest charged mass state.

6.6.1 CP Conserved Solutions

The Alignment (v, v, v)

In sec. 6.3.1 we have redefined the initial 3 doublets in term of the Z3 surviving

symmetry representation: 1, 1′, 1′′. One combination corresponds to a Z3 singlet doublet,

that behaves like the SM Higgs: it develops a non-vanishing VEV, gives rise to a CP even

state which we call h1 and to the three GBs eaten by the gauge bosons. The others two

doublets, ϕ′ and ϕ′′, are inert. From these informations we may already figure out what

we expect by the numerical scan:



6.6 Results from Higgs Phenomenology 99

1) when mh1 is the smallest mass, h1 is the lightest state and corresponds to the SM-

like Higgs. As a result, the usual SM mass upper bound applies. On the contrary

as long as we do not consider its coupling with the fermions we do not have a model

independent lower mass bound. This is due to a combined effect of the CP and Z3

symmetries: h1 is CP even and singlet under Z3, but couplings like Zh1ϕ
′0, Zh1ϕ

′′0,

W−h1ϕ
′1 or W−h1ϕ

′′1 are forbidden because of Z3 and then gauge boson decays

cannot constrain the lower mass of h1.

2) When ϕ′0 (ϕ′′0) is the lightest state, we do not have an upper bound on this state

because the couplings ϕ′0W+W− (ϕ′′0W+W−) is absent. On the contrary we may

have a lower bound because couplings like Zϕ′0ϕ′′0 and W−ϕ′0ϕ′′1 are allowed.

Combining the two situations sketched in points 1) and 2), we expect neither lower nor

upper bounds for the lightest Higgs mass: according to which of the two cases is most

favored, we may expect a denser vertical region around m1 ∼ mZ/
√

2 when the Z decay

channel closes according to eq. (6.45) –case 2) more favored– or a denser vertical line

around m1 ∼ 194 GeV, if the large Higgs mass decay constrain applies –case 1) more

favored. Indeed by looking at fig. 6.1 we see that we may find R (allowed) points for

very tiny m1 masses and up to ∼ 500 GeV when the unitarity bound starts to show

its effect. However by looking at the crowded points in fig. 6.1 it seems that case 2) is

slightly preferred with respect to case 1). Finally for the G points –those that satisfy the

minimum, unitarity and decays conditions– we have compared the contributions to the

oblique parameters T and S to see which of the two is more constraining. It turns out to

be T , while we have not reported U because its behavior is very similar to S.

The Alignment (v, 0, 0)

For what concerns the second natural A4 minimum, the Z2 preserving one, things

slightly change with respect to the Z3 surviving case. By sec. 6.3.2 we know that as for

the Z3 case we have a SM-like doublet, Z2 even, that develops the VEV, gives rise to a

CP even neutral state, h1, and to the GBs eaten by the gauge bosons. However contrary

to the Z3 case, in the Z2 minima we have 4 Z2 odd states, 2 CP even labeled h2,3 and 2

CP odd labeled h4,5. Moreover the 2 CP even (odd) are degenerate. As done in sec. 6.6.1

we may sketch what we expect from the numerical analysis:

1) when h1, the Z2 even SM-like Higgs, is the lightest we expect the SM Higgs upper

bound but no lower bound because the interactions Zh1h4,5 are forbidden by the Z2

symmetry;

2) when the two lightest are the Z2 odd degenerate states h2,3 –CP even– or h4,5 –CP

odd– we expect no upper bound. Moreover since they are degenerate we do not

expect lower bound too. On the contrary we expect that Z and W decays constrain

the third lightest neutral Higgs mass and that of the charged ones.
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Figure 6.1: CP conserving alignment (v, v, v): the upper panels show the lightest neutral

mass m1 versus the second lightest neutral mass m2 and the lightest charged one mch1

respectively. The gray arc delimits the region below which the Z ( W ) decay channel

opens. On the left plot the arc is only of 45◦ because m2 ≥ m1. For points below the

arc the Z ( W ) decay may happens. The points allowed stretch in the region close to

the border because of the conditions of eq. (6.45). The dashed vertical lines indicates the

approximated cuts that occur at m1 ∼ mZ/
√

2 and m1 ∼ 194 GeV according to case 2)

and case 1) respectively as explained in the text. The down panels show the contributions

to T and S for the G points. The gray dashed lines indicate the experimental values at 3,

2, 1σ level –long,normal,short dashing respectively. The T parameter turns out to be the

most constraining one.

By looking at fig. 6.2 we see that indeed we have a large amount of points for which

m1 = m2 for values from 0 up to 700 GeV, thus reflecting case 2). Then the points

corresponding to case 1) have a sharp cut at m1 = 194 GeV, that rejects many blue

points, i.e. those satisfying the unitarity constrain but not the decays one. We have

reported also m1 versus m3 to check that indeed, when m1 → 0, m3 is bounded by mZ

as we expected. Our intuitions are also confirmed by the plot m1 −mch1 . As for the Z3

preserving case the most constraining oblique parameter is T .
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Figure 6.2: CP conserving alignment (v, 0, 0): the upper panels show m1 versus m2 (on

the left) and third lightest m3 (on the right). For the latter we reported only the R points.

The central panel shows m1 versus mch1. The gray arc delimits the region below which

the Z (W ) decay channel opens while the second dashed vertical one the SM-Higgs mass

upper bound at 194 GeV. The first dashed vertical line at m1 = mZ/
√

2 is reported to

help a comparison with the Z3 preserving case. On the first two plots the arc is only of 45

degrees because m2,3 ≥ m1. The down panels show the contributions to T and S for the

G points. The T parameter turns out to be the most constraining one.

The Alignment (v1, v2, v3) with ε = 0, λ3 + λ4 + λ5 = 0

In this case we do not have any surviving symmetry which forbid some couplings.

However from sec. 6.3.3 we know that the conditions ε = 0, λ3 + λ4 + λ5 = 0 give rise to
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two extra massless CP even particles. Therefore we expect that

1) when the lightest massive state is CP odd, then its mass is bounded by the Z decay

through eq. (6.45);

2) when the lightest massive state is CP even, then its mass could reach smaller values

since the Z decay bound would constrain the combination of its mass with the

lightest CP odd state mass.

Moreover in both cases we expect the mass of the lightest charged scalar bounded by W

decay, according to eq. (6.47), due to its coupling with W and the massless particles.

By fig. 6.3 we see that it seems that case 2) happens very rarely because the cut at

m1 ∼ mZ is in evidence. As for the Z3 and Z2 preserving minima the T parameter is the

most constraining one.

Figure 6.3: CP conserving alignment (v1, v2, v3): the upper panels show m1 versus m2 and

mch1 respectively. The dashed lines at m1 = mZ (vertical) and mch1 = mW (horizontal)

delimit the region below which the Z and W decay channels open respectively. The allowed

points concentrate close to the borders according to eqs. 6.45-6.47. The down panels show

the contributions to T and S for the G points. The T parameter turns out to be the most

constraining one.
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6.6.2 CP Non-Conserved Solutions

The Alignment (veiω1, v, 0)

As for the vacuum alignment (v1, v2, v3) commented in sec 6.6.1 the alignment (veiω1 , v, 0)

does not preserve any A4 subgroup. Moreover since even CP is broken any symmetry can-

not help us in sketching the behavior we expect. In general any state, having a CP even

and a CP odd component, may couple to Z and to another neutral state. However we

expect limit situations in which for example CP is almost conserved and the 2 lightest

states have almost the same CP parity. Thus for those cases we do not expect any lower

bound on m1 and m2. On the contrary the coupling between the W with the lightest

neutral and the lightest charged scalars does not go to zero when CP is almost restored.

Then we expect that the quantity m2
1 + m2

ch1
is bounded by the W decay (fig. 6.4). For

what concerns the upper bound on the lighetst neutral mass state we do not expect any

clear cut because we may not identify a SM-like Higgs.

Figure 6.4: CP no conserving alignment (veiω1 , v, 0): as in the previous figure the upper

panels show m1 versus m2 and mch1 respectively. In the plot on the right, the effect of the

W decay constraint on m2
1 + m2

ch1
is clear by looking at the B points. The down panels

show the contributions to T and S for the G points. The T parameter turns out to be the

most constraining one.
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The Alignment (veiω1, ve−iω1, rv) case i)

In sec. 6.4.2 we have seen that the alignment (veiω1 , ve−iω1 , rv) with the constrains

λ5 = 0, λ4 = −λ3, gives rise to 4 extra GBs and only to one neutral state. The simplicity of

the analytical expressions for the three no vanishing masses ensures that the boundedness

constrain λ1 > 0 in addition to λ3 > 0 give positive masses. Thus in this case the Y points

are superfluous. As in the previous cases, we expect the B points to be similar to the Y

ones, because we choose our parameters centered in 1 in order not to have problems with

unitarity. In conclusion, for this case only the G and R points are interesting. Moreover we

expect that the most stringent bound is given by the decay constrains and not by TSU :

massless particles give a small contribution to the oblique parameters and due to the

limited number of new particles (2 charged degenerate scalars) TSU should not deviate

too much by the SM values. Indeed in fig. 6.5 it is shown that the oblique parameters

at 3 σ level do not constrain at all the G points. For this reason we reported only the

R points in the upper panel of fig. 6.5. By looking at the plot m1 −mch1 in fig. 6.5 we

see that with respect to the minima so far analyzed we have much less points and that as

expected there are cuts in correspondence of mZ and mW .

In conclusion, the solutions for the alignment (veiω1 , ve−iω1 , rv) with λ5 = 0, λ4 = −λ3

are not easy to find, but the Higgs phenomenology does not completely rule out this

vacuum configuration. We could introduce a weight to estimate how much a solution is

stable or fine-tuned but this goes over the purposes of this work. We expect that this

situation with 4 extra massless particles could be very problematic when considering the

model dependent constraints [11].

(veiω1, ve−iω1, rv) case ii)

In the discussion of sec. 6.4.2 we have seen that in the limit r >> 1 we expect the

presence of two very light particles. From all the numerical scans we performed we found

out that solutions for the vacuum alignment (veiω1 , ve−iω1 , rv) with the constraints of

case ii) are very difficult to be found. Moreover from fig. 6.6 we see that for any value

of r the two lightest states are always very light, thus confirming our rough analytical

approximations and indicating that some cancellations have to occur to give all the masses

greater then 0. This supports the difficulty to find solutions, difficulty that cannot to be

ascribed to any constrain we imposed, because even in presence of 4 additional GBs as in

sec. 6.6.2 we found out a significant larger number of solutions.

The presence of a single R point in fig. 6.6 is not statistically relevant, but more

interesting is the order of magnitude of m1,2: even in case ii) we expect that the alignment

(veiω1 , ve−iω1 , rv) may present serious problems once we add model dependent constraints

[11].

Regarding the last VEV, in our previous paper we also stressed that some very light

Higgs masses are expected. To avoid this feature, which is potentially in contrast with
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Figure 6.5: CP no conserving alignment (veiω1 , ve−iω1 , rv) case i): the upper panel show

m1 versus mch1. Only the R points are reported. The down panels show the contributions

to T and S for the G points. For this specific case the TSU oblique parameter constrain

is irrelevant compared to the decay one.

Figure 6.6: CP no conserving alignment (veiω1 , ve−iω1 , rv), case ii): the panels show m1

(on the left) and m2 (on the right) versus r. The number of points is small, but the

interesting information is the order of magnitude of the masses.

the current limits on flavor violation, we add soft breaking terms to eq. (6.2) in the form

VA4soft = v2
w

m

2
(φ†1φ2 + φ†2φ1) + v2

w

n

2
(φ†2φ3 + φ†3φ2) + v2

w

k

2
(φ†1φ3 + φ†3φ1) , (6.56)
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where m,n, k are adimensional parameters that should presumably be smaller than one.

Notice that the chosen VA4soft is not the most general one but it prevents accidental extra

U(1) factor to appear.

6.7 General Analysis Of The Higgs-Fermion Interac-

tions

We explicitly introduce the interaction of the Higgs triplets with fermions and deduce

the phenomenological consequences. Without specifying the flavor group Gf and the

fermion representations under it, in general Φa will couple to fermions through a given

Y a
ij ,

LY =
(
Y d
ijaQLidRjΦa + Y u

ijaQLiuRjΦ
†
a

)
+ (d↔ e) + h.c. (6.57)

where i and j are fermion family indices and a is the Higgs triplet index. Notice that,

in order to keep the formulae compact, we simply use d ↔ e to indicate that similar

Yukawa terms are present in which down quarks are substituted by charged leptons.

Without specifying any high-energy explanation for the neutrino masses, we consider the

low-energy effective Weinberg operator: this term generates the neutrino masses and it

has been already discussed in the models we will analyze in the next sections. After EW

symmetry breaking according to eq. (6.1), the part of the Lagrangian including neutral

Higgs fields becomes

LY,n =

(
Y d
ijaQ

d

LidRj
vae

iωa

√
2

+ Y d
ijaQ

d

LidRj
1√
2

(Re φ0
a + i Imφ0

a)+

+ Y u
ijaQ

u

LiuRj
vae
−iωa
√

2
+ Y u

ijaQ
u

LiuRj
1√
2

(Re φ0
a − i Imφ0

a)

)
+

+ (d↔ e) + h.c., (6.58)

while the part with the charged Higgs is

LY,ch =
(
Y d
ijaQ

u

LidRjΦ
1
a − Y u

ijaQ
d

LiuRj(Φ
1
a)
∗
)

+ (d↔ e) + h.c. (6.59)

Now we move to the mass basis of fermions through the transformations:

Q
d

Li = Q̂
d

LrV
d†
Lri , dRj = V d

Rjsd̂Rs , (6.60)

and in analogous way for all the other particles. The neutral and the charged Higgs fields

are also rotated into the mass basis, according to eqs. (6.6) and (6.7).

In the mass basis the part of the Lagrangian which includes the neutral Higgs becomes

LY,n =

(
d̂rM

d
(r)

1 + γ5

2
d̂r + d̂r(R

d)αrshα
1 + γ5

2
d̂s + ûrM

u
(r)

1 + γ5

2
ûr + ûr(R

u)αrshα
1 + γ5

2
ûs

)
+

+ (d↔ e) + h.c.

(6.61)
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with

Md,u
ij = V d,u†

Lri

(∑
a

va√
2
Y d,u
ija

)
V d,u
Rjs ,

(Rd)αrs =

[
V d†
Lri

1√
2

(iU †(a+3)α + U †aα)Y d
ijaV

d
Rjs

]
,

(Ru)αrs =

[
V u†
Lri

1√
2

(−iU †(a+3)α + U †aα)Y u
ijaV

u
Rjs

]
,

(6.62)

and similarly for the leptons. The interaction with the charged Higgs becomes

LY,ch =

(
ûr(T

d)βrsĤ
+
β

1 + γ5

2
d̂s − d̂r(T u)βrsĤ−β

1 + γ5

2
ûs

)
+ (d↔ e) + h.c. (6.63)

where

(T d,u)βrs =
[
V d,u†
Lri S

†bβY d,u
ijb V

d,u
Rjs

]
(6.64)

and similarly for the leptons. Expanding the hermitian conjugate, the Lagrangian can be

written in a more compact form

LY =
(
d̂rM

d
(r)d̂r + d̂r

(
(Id)αr,s + γ5(Jd)αr,s

)
hαd̂s

+ûrM
u
(r)ûr + ûr

(
(Iu)αr,s + γ5(Ju)αr,s

)
hαûs

+ûr
(
F β
r,s + γ5G

β
r,s

)
Ĥ+
β d̂s + d̂r

(
F β∗
r,s − γ5G

β∗
r,s

)
Ĥ−β ûs

)
+ (d↔ e) , (6.65)

with the new coefficients defined in the following way:

(Id,u)αr,s =
1

2

(
(Rd,u)αrs + ((Rd,u)αsr)

∗
)
, (6.66)

(Jd,u)αr,s =
1

2

(
(Rd,u)αrs − ((Rd,u)αsr)

∗
)
, (6.67)

F β
r,s =

1

2

(
(T d)βrs)

∗ − ((T u)βsr)
∗
)
, (6.68)

Gβ
r,s =

1

2

(
(T d)βrs)

∗ + ((T u)βsr)
∗
)
, (6.69)

and similarly for leptons.

6.7.1 Flavor Changing Interactions

The interaction of fermions with the Higgs particles induces flavor violating processes

in the lepton and quark sectors. In the former, rare decays of muon and tau particles

into three leptons are allowed at tree-level, while processes as li → ljγ take place through

one-loop graphs. For the latter the possibility of ∆F = 2 meson-antimeson oscillations is

considered.
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The Processes µ− → e−e−e+ and τ− → µ−µ−e+

We consider the decay of a muon into a positron and two electrons (fig. 6.7 on the

left). In the approximation of massless final states, the decay amplitude is written as

Γ(µ→ eee) =
m5
µ

(4π)3 × 24
Iµeee, (6.70)

where the coefficient Iµeee is a combination of Iij and Jij, that were defined in the previous

section:

Iµeee =

∣∣∣∣∑
α

IαµeI
α
ee

mα
H

2

∣∣∣∣2 +

∣∣∣∣∑
α

JαµeJ
α
ee

mα
H

2

∣∣∣∣2 +

∣∣∣∣∑
α

IαµeJ
α
ee

mα
H

2

∣∣∣∣2 +

∣∣∣∣∑
α

JαµeI
α
ee

mα
H

2

∣∣∣∣2. (6.71)
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Figure 6.7: The decays µ− → e+e−e− (left) and τ− → e+µ−µ− (right) can occur at tree

level in our models.

The prediction for the corresponding branching ratio is then

Br(µ→ eee) ≈ Γ(µ→ eee)

Γ(µ→ eνeνµ)
=
Iµeee
8G2

F

, (6.72)

to be compared with the experimental value [19] of Br(µ→ eee)exp = 1.0× 10−12.

The decay of a τ into two muons and a positron (fig. 6.7 on the right) is generally

less constrained than the decay of the muon in two electrons and a positron, but it is

of interest in models where the latter process is prohibited by the symmetries. The

calculation proceeds in an analogous way. In fact, the decay amplitude is now

Γ(τ → eµµ) =
m5
τ

(4π)3 × 24
Iτµµe, (6.73)

where the coefficient is now given by the following expression:

Iτµµe =

∣∣∣∣∑
α

IατµI
α
eµ

mα
H

2

∣∣∣∣2 +

∣∣∣∣∑
α

JατµJ
α
eµ

mα
H

2

∣∣∣∣2 +

∣∣∣∣∑
α

IατµJ
α
eµ

mα
H

2

∣∣∣∣2 +

∣∣∣∣∑
α

JατµI
α
eµ

mα
H

2

∣∣∣∣2. (6.74)
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while the branching ratio becomes

Br(τ → eµµ) = 0.17× Γ(τ → eµµ)

Γ(τ → µνµντ )
= 0.17× Iτµµe

8G2
F

, (6.75)

to be compared with the experimental limit Br(τ → eµµ)exp = 2.3× 10−8 [19].

The process µ− → e−γ

The relevant diagram for this process has one loop with a charged fermion and a

neutral Higgs (see fig. 6.8). We consider the limit in which the Higgs is much heavier

than the virtual fermion and the final electron is massless. Under this assumption the

decay amplitude becomes [113]

Γ(µ→ eγ) =
e2m5

µ

6× (16)3π5

∣∣∣∣∣∑
α,f

(Rα
fe)
∗Rα

fµ

mα
H

2

∣∣∣∣∣
2

(6.76)

and the branching ratio is

Br(µ→ eγ) =
Γ(µ→ eγ)

Γ(µ→ eνν)
=

αem
32πG2

F

∣∣∣∣∣∑
α,f

(Rα
fe)
∗Rα

fµ

mα
H

2

∣∣∣∣∣
2

(6.77)

to be compared with the current [114] (future [115]) experimental bound Br(µ→ eγ)exp =

10−11 (10−13).
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Figure 6.8: The decays µ− → e−γ proceeds at one loop in our models, but can be much

larger than in the Standard Model, where a GIM-like cancellation occurs.

Meson oscillations

Meson-antimeson oscillations are constrained to be generated by box processes in the

SM (fig. 6.9 on the left left), but in the presence of flavor violating Higgs couplings, they

can also proceed via tree-level Higgs exchange.
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Figure 6.9: Bd-Bd oscillations take place via box diagrams in the Standard Model, but can

proceed via tree-level Higgs exchange in our model.

For the mass splitting connected to F 0 − F 0
oscillations [116,117], we find

∆MF = B2
F f

2
F MF

∑
α

[
1

mα
H

2

(
|Iαrs|2

(1

6
+

1

6

M2
F

(mr +ms)2

)
+ |Jαrs|2

(1

6
+

11

6

M2
F

(mr +ms)2

))]
.

(6.78)

Here, MF is the mass of the meson, fF is its decay constant and BF are recalibration

constants of order 1, related to vacuum insertion formalism. Lastly, mr and ms are the

masses of the quarks of which the meson is build, i.e. rs = bd, bs, ds stands for Bd, Bs

and K0 respectively. Recent experimental values for the meson parameters, including

∆MF that should be reproduced by the model, are given in Table 6.1

Meson MF (GeV) fF (GeV) BF ∆MF (GeV)

Bd (bd) 5.2795 0.1928± 0.0099 1.26± 0.11 (3.337± 0.006)× 10−13

Bs (bs) 5.3664 0.2388± 0.0095 1.33± 0.06 (1.170± 0.008)× 10−11

K (sd) 0.497614 0.1558± 0.0017 0.725± 0.026 (3.500± 0.006)× 10−11

Table 6.1: Properties of neutral mesons [118].

6.8 A4 models for quark and/or lepton masses

In this section we will apply the general results about flavor violation to three spe-

cific models. After describing the main features of each model, plots of relevant flavor

violating processes are reported. The points belonging to the plots are not chosen casu-

ally, but instead represent parts of the parameter space that fulfill the tests in the Higgs

sector, as performed in Section 6.6 (positiveness of mass eigenstates, perturbative unitary

constraints, bounds from Z and W decays and oblique corrections).
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6.8.1 Model 1

The aim of the Model 1 [91] is to reproduce the lepton mixing parameters in the Tri-

Bimaximal frame, although it is not possible without introducing hierarchies among the

parameters. Quarks are briefly mentioned in the paper, but the bulk of the analysis is

about the lepton sector. The triplet Φa couples only to charged leptons and the chosen

vacuum alignment falls in the class (v, v, v), with v real. The Yukawa matrices in this

sector are

Yij1 =

 y1 y2 y3

0 0 0

0 0 0

 , Yij2 =

 0 0 0

y1 ωy2 ω2y3

0 0 0

 , Yij3 =

 0 0 0

0 0 0

y1 ω2y2 ωy3


(6.79)

After the diagonalization of the charged lepton mass matrix, it is straightforward to relate

the coefficient yi to the mass eigenvalues:

y1 =
me√
3v
, y2 =

mµ√
3v
, y3 =

mτ√
3v
. (6.80)

Since the VEVs of the scalar potential are real, and consequently CP conserving, the U

matrix that rotates the Higgs fields into the mass basis (see eq. 6.7) is block diagonal.

Neutrino masses are given through a low scale (∼ TeV) type I See-Saw implemented by 3

right handed neutrinos that transform as an A4 triplet and by an SU(2)L doublet Higgs,

η, singlet of A4

η1η0 1√
2

Re η1 + iIm η1Re η0 + iIm η0 (6.81)

Clearly η participates to the scalar potential, thus the Model 1 presents a scalar sector

less minimal of that studied in the first part of the chapter. In this specific case the new

scalar potential added to eq. (6.2) is given by

Vη = µ2
η(η
†η) + λη(η

†η)2 + ληΦ(η†η)(φ†1φ1 + φ†2φ2 + φ†3φ3) ,

Vη soft = µ2
ηΦ

[
η†(φ1 + φ2 + φ3) + (φ†1 + φ†2 + φ†3)η

]
,

where the A4 soft breaking part Vη soft is needed in order to avoid additional GBs. Vη soft
breaks A4 but preserves its Z3 subgroup§, thus the full potential may naturally realize the

vacuum configuration Notice that u is responsible for neutrino masses and in the original

model [91] it has been assumed to be tiny, u � v ∼ vw/
√

3. This may be easily realized

if µ2
ηΦ ∼ O(u vw).

We have already argued that it is not necessary to set ε to zero in eq. (6.2) to get

this particular VEV, as is assumed in [91]. Moreover, since Z3 is preserved, the mass

eigenstates of the triplet Φa, 5 neutral and 2 charged, can be arranged in Z3 represen-

tations, as discussed for the case (v, v, v): moving to this Z3 basis, we denote the states

§Notice that in the original model [91], η is carrying lepton number and therefore it is broken once

η develops VEV. Here, we are breaking the lepton number also by the soft terms and this prevents the

appearance of further GBs.
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as ϕ, ϕ′ and ϕ′′, transforming as 1, 1′ ∼ ω and 1′′ ∼ ω2 of Z3, respectively. This setup

has been discussed in the context of lepton triality in [119]. Notice that only the state

ϕ develops a non-vanishing VEV in the neutral direction, while the other two are inert

scalars. Moreover, ϕ behaves as the SM-Higgs and acquires the mass mh1 defined in Sec-

tion 6.3.1. Furthermore, the transformation properties of the additional scalar η allow

a mixing between ϕ0 (ϕ1) and η0 (η1), both behaving as the SM-Higgs. However, this

mixing interaction, iZη0ϕ0 +h.c., is irrelevant for the scalar spectrum discussion, because

the coupling is extremely small being suppressed by ∼ u. As a result, the conclusions for

the case (v, v, v) apply also in this context.

The coupling of the Higgses ϕ′0, ϕ′′0 to fermions is purely flavor violating. This setup

has striking effects on the lepton processes. In fact it was shown in [9] that, when the

A4 symmetry is unbroken, only a limited number of processes is allowed and these either

conserve flavor or satisfy the constraint ∆Le × ∆Lµ × ∆Lτ = ±2. The only source of

symmetry breaking is the VEV of the SM-like Higgs ϕ0, which is flavor-conserving and

thus not involved in the processes we are looking at. We conclude that all flavor violating

processes should satisfy the selection rule. In particular this implies that the decays

µ− → e−e−e+ and µ → eγ are not allowed, in the latter case in contrast with what was

reported in [91], but in agreement with a more recent paper [120].

Of the allowed processes, the less suppressed is τ− → µ−µ−e+, since its branching ratio

is proportional to m2
τm

2
µ. However, even this decay is very rare and below the experimental

limit for most values of the Higgs masses. In the upper part of fig. 6.10, we plot the

branching ratio for the decay against an effective mass defined as m−2
0 = m−2

hA
+m−2

hB
, where

A and B are the two pairs of degenerate bosons. In the lower part, the same branching

ratio against the mass of the lightest state, m1. In both the plots, the parameter ε is set

to zero, corresponding to the real Higgs potential discussed in [91]. For the first picture,

we reproduce the result of [91] that the branching ratio is proportional to m−4
0 . In the

second one, this dependence is lost, even if we can see a similar behavior. Once we take ε

over the full range [0, 2π], we verified that the points cover a larger parameter space, but

still concentrating around the previous points with ε = 0.

In Figure 6.11, we show the masses of the SM-Higgs ϕ0, mh1 , against the mass of the

lightest state m1. A plot with the mass of the SM-Higgs η0 against m1 looks very similar

to fig. 6.11. All the points are above the diagonal and this corresponds to the fact that

the SM-Higgses are always heavier than the lightest state. As already stated before, in

this situation, the standard upper bound of 194 GeV at 99% CL [19] cannot apply due to

the combined effect of the CP and Z3 symmetries and the smallness of the iZη0ϕ0 + h.c.

coupling.

Finally, we can comment on the magnetic dipole moments, which could give interesting

hints in this model. The discrepancy between the experimental measurement and the SM

theoretical prediction of the magnetic dipole moment of the muon is usually a good test

of flavor models, which could in principle provide new contributions. However, in this

particular model it has already been discussed in [91] that the non-SM contributions are

negligible.
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Figure 6.10: On the upper (lower) side, the branching ratio for the decay τ− → µ−µ−e+

as a function of the effective mass m0 (the smallest mass m1) in the situation where the

parameter ε is zero. The horizontal line corresponds to the experimental upper bound.

6.8.2 Model 2

As in the previous section, the Model 2 [93] deals only with the lepton sector, but the

vacuum configuration used is different: here (r, eiω, e−iω)vw/
√

2 + r2 is assumed, where r

is an adimensional quantity. The Yukawa texture in the charged lepton sector depends

on two parameters:

Yij1 =

 0 0 0

0 0 y1

0 y2 0

 , Yij2 =

 0 0 y2

0 0 0

y1 0 0

 , Yij3 =

 0 y1 0

y2 0 0

0 0 0

 . (6.82)

In order to reproduce the masses of the leptons, r ' 240 is set and as a result the minimum

of the scalar potential falls in the large r scenario, as discussed before. The final number
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Figure 6.11: The mass of the SM-Higgs mh1 against the smallest Higgs mass.

of the parameters in this model is four, two coming from the Yukawas and two from the

vacuum configuration.

Figure 6.12: Correlation among the lightest Higgs mass and the soft breaking parameters.

The different colors correspond to the ranges that the individual parameters m, n and k

are in, respectively (0− 10−4), (0− 10−3), (0− 10−2) and (0− 10−1)

We have shown that it is not possible to obtain a realistic Higgs spectrum without

including soft A4-breaking terms. Indeed if we introduce a soft breaking part, eq. (6.56),
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to the potential with adimensional parameters m, n, k we can find five Higgses of mixed

CP nature, all of which have masses in the LHC sensitive range between 100 GeV and 1

TeV. It is interesting to underline that such large Higgs masses have been recovered by

using soft terms at most of order of 5% of the EW VEV. This underlines a non-linear

dependence, as can be seen in fig. 6.12.

In contrast with the Model 1, A4 is completely broken by the VEV of the Higgs triplet.

Therefore the processes µ− → e−e−e+ and µ− → e−γ are allowed. The first process, fig.

6.13 occurs at tree level and produces a strong bounds on the Higgs sector, where the

lightest Higgs mass is expected to be above about 300 GeV. On the other hand, the

radiative muon decay to an electron, fig. 6.13, is loop suppressed and the new physics

leads to a branching ratio below the observed experimental bound.

Figure 6.13: On the upper (lower) side, the branching ratio of the decay of a µ− → e−e−e+

(µ− → e−γ) versus the lightest Higgs mass. The horizontal band is the experimental

limit [19].
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6.8.3 Model 3

The Model 3 is built as an A4 model for quarks [92], where both up- and down-type

quarks couple to the Higgs triplet. There are eight parameters in their model whose values

are unpredicted by the model itself, but are instead determined in order to reproduce the

masses of quarks and their mixing angles. The Yukawa matrices for both up and down

quarks has the same form as that of charged leptons of the Model 1, given in eq. (6.79).

They provide then six parameters out of eight. The remaining two come from the VEV

of the triplet in the form (eiω, e−iω, r)vw/
√

2 + r2, where r is an adimensional quantity.

Apart from a permutation in the three entries, this is the same vacuum used in Model 2.

The Higgs spectrum can only be realistic in the situation where A4 is (softly) broken.

Although ω is not absolutely constrained, the need of reproducing the neutrino mixing

pattern suggests that the phase is small. In Model 2 we commented on the dependence of

the Higgs masses on the soft parameters and the same applies in this case: the dependence

is not linear and for even small soft parameters we get large Higgs masses. The plot in

fig. 6.12 is representative also of this model.

Experimentally, in the quark sector two features have been explored: flavor changing

interactions and CP violation. Remarkably, the CKM matrix obtained in the model under

inspection is completely real. It seems then of scarce value to explore CP violating effects

coming from the complex VEVs of the Higgs triplet, not having the dominant contribution

from the Standard Model CKM matrix to compare them with. We will consequently focus

only on flavor changing processes. As discussed in Section 6.7.1 meson oscillations are

in these models mediated by tree level diagrams instead of box diagrams. We therefore

expect strong bounds from the mass splittings in the neutral B-meson and Kaon systems.

In fig. 6.14, we plot ∆MF versus the lightest Higgs mass for these systems. Indeed ∆MF

is large, up to several orders of magnitude above the experimental value for the Bd meson

and the Kaon.

6.9 Conclusions of the Chapter

Flavor models based on non-Abelian discrete symmetries under which the SM scalar

doublet (and its replicas) transforms non trivially are quite appealing for many reasons.

First of all there are no new physics scales, since the flavor and the EW symmetries are

simultaneously broken. Furthermore this kind of models are typically more minimal with

respect to the ones in which the flavor scale is higher than the EW one: in particular the

vacuum configuration is simpler and the number of parameters is lower. We then expect an

high predictive power and clear phenomenological signatures in processes involving both

fermions and scalars. Due to the restricted number of parameters and the abundance of

sensitive observables in these models, there are many constraints to analyze: the most

stringent ones arise by FCNC and LFV processes [11] but even Higgs phenomenology put

several constraints on this class of models.

In our work we focused on the A4 discrete group, but this analysis can be safely gener-
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Figure 6.14: ∆MF for Bd, Bs and K mass splittings versus the lightest Higgs mass in the

Model 3. The horizontal lines correspond to the experimental values as reported in [118].
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alized for any non-Abelian discrete symmetry. We consider three copies of the SM Higgs

fields, that transform as a triplet of A4. This setting has already been chosen in sev-

eral papers [91–94] due to the simple vacuum alignment mechanism. We have considered

all the possible vacuum configurations allowed by the A4 × SM scalar potential. These

configurations can either conserve or violate CP. For all of them we have first considered

only model independent constraints, related to the Higgs-gauge boson Lagrangian. We

have shown that the Higgs-gauge boson model independent analysis can be used to study

the parameter space of the difference vacuum configurations. Among the possible solu-

tions which minimize the scalar potential, only one is ruled out due to the presence of

tachyonic states. Furthermore, some other configurations may be obtained only by tuning

the potential parameters, giving rise to scalar spectra characterized by very light or even

massless particles. Finally, for the remaining ones, we find that they may share common

features and this increases the difficulty in discriminating among them.

As a second step we developed a very general formalism to describe the interaction of

charged and neutral Higgs and of fermions. In the mass basis of both Higgs bosons and

fermions the interaction depends on the Yukawa matrices that appear in the Lagrangian

and the unitary matrices that rotate the flavor basis into the mass basis.

We applied the formalism to three specific models that implement the symmetry A4.

These models differ in the representations to which the fermions are assigned and in

the choice of the vacuum expectation values of the scalar fields. The Model 1 [91] of

lepton mixing has a CP-conserving VEV in the direction (v, v, v). In this setup, some

transitions are forbidden by the symmetry and the decay τ− → µ−µ−e+ becomes then

the most relevant process. We studied its dependence on the mass of the lightest Higgs

and recognized that for the largest part of the assumed values the branching ratio is

below the current experimental limit. Apart from a permutation of the components,

both the Model 2 [93] and Model 3 [92] select the complex VEV (eiω, e−iω, r)vw/
√

2 + r2.

The purpose of the two approaches is to reproduce lepton and quark masses and mixing,

respectively. The benchmark process in the lepton sector is the decay µ− → e−e−e+.

Given the experimental bound, our analysis showed that the Model 2 is disfavored for

values of the Higgs mass below 300 GeV. In the quark sector, B and K mesons oscillations

mediated by Higgs exchange were considered and their predictions are largely above the

current experimental limit and strongly disproves the setup of Model 3.

In conclusion, we have shown that a deep and careful analysis of the phenomenology

of flavor models is fundamental to test their validity beyond the prediction of the mixing

patterns and is a powerful tool to discriminate among them.



Summary and Final Remarks

We briefly summarize here the results of this work. For more details we refer to

the conclusions of each chapter. This thesis tried to answer to three specific questions

about neutrino physics: how do we build a model based on discrete symmetry groups, to

reproduce correctly the features of neutrino oscillation in a natural way? What are the

consequence of a particular model beyond the neutrino sector? Is the model still valid if

we implement it in a larger theory?

To answer to the first question, we explicitly built a supersymmetric model based on

the group A5, which leads to the Golden Ratio texture. After showing the LO prediction

for the mixing angles and the neutrino spectrum, we demonstrated that the vacuum

alignment that produces that prediction rises in natural way from the minimization of

the superpotential. It is remarkable that we achieved this result without adding driving

fields to our theory. We also showed that NLO corrections are under control and could

shift the predicted solar angle closer to the experimental value, while the reactor angle

remains far from the prospected experimental sensitivity.

To the second question we answered at two different stages. First, we considered rare

decays of µ and τ particles in an effective theory ruled by the symmetryA4×Z3×U(1). The

allowed decays satisfy the following selection rules ∆Le∆Lµ∆Lτ = ±2. From this rule it

follows that radiative decays are forbidden, while the constraints to the parameters of the

model come mainly from τ− → µ+e−e− and τ− → e+µ−µ−. Moving to a supersymmetric

realization of the model, the picture is completely changed: the selection rule is not valid

anymore and the previously allowed processes are strongly suppressed. Given the current

and future experimental results, µ→ eγ and the conversion of µ in nuclei become the most

interesting decays. Then, we analyzed the viability of multi-Higgs models. We recognized

that only few choices of the VEVs are possible and not problematic. For all this cases, we

analyzed the effects in the Higgs sector (unitarity, gauge bosons decay, corrections to S,T

and U parameters) and constrained the space of the parameters of the Lagrangian. In

a second step, we discussed flavor violation mediated by Higgs exchange in three models

and found two of them to predict results already ruled out by experiments.

The answer to the third question materialized in the study of the running of angles

and phases in models with Type I Seesaw. We were able to find a general behavior

common to all mass-independent textures and studied it for the Altarelli-Feruglio model.

We discovered that the predicted solar angle with inverted hierarchy is carried out of the

3σ range if tan β & 9, while the model is stable with normal hierarchy.
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Appendix A

Group Theory Details

In this appendix we report the character tables and the Clebsch-Gordan coefficients

of the discrete groups A4 and A5. Moreover, representations of A5 different from the one

used in Chapter 3 are reported, along with the transformations that allows to pass from

one to the others. In the character tables, Ci are the classes of the group, ◦Ci is the

order of the ith class, i.e. the number of distinct elements contained in this class, ◦hCi is

the order of the elements A in the class Ci, i.e. the smallest integer (> 0) for which the

equation A
◦hCi = 1 holds. Furthermore the tables contain one representative G for each

class Ci given as product of the generators S and T of the group.

A.1 The Group A4

classes

C1 C2 C3 C4

G 1 S T 2 T
◦Ci 1 3 4 4
◦hCi 1 2 3 3

1 1 1 1 1

1′ 1 1 ω ω2

1′′ 1 1 ω2 ω

3 3 -1 0 0

Table A.1: Character table of the group A4. ω is the third root of unity, i.e. ω = e
2πi
3 =

−1
2

+ i
√

3
2

.

The group A4 is generated by two elements S and T obeying the relations [50]:

S2 = (ST )3 = T 3 = 1 . (A. 1)

123
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It has three independent one-dimensional representations, 1, 1′ and 1′′ and one three-

dimensional representation 3. The one-dimensional representations are given by:

1 S = 1 T = 1

1′ S = 1 T = ei4π/3 ≡ ω2

1′′ S = 1 T = ei2π/3 ≡ ω

(A. 2)

The three-dimensional representation, in a basis where the generator T is diagonal, is

given by:

T =

 1 0 0

0 ω2 0

0 0 ω

 , S =
1

3

 −1 2 2

2 −1 2

2 2 −1

 . (A. 3)

We now report the multiplication rules between the various representations. In the

following a = (a1, a2, a3)T and b = (b1, b2, b3)T are triplets. c, c′ and c′′ belong to 1, 1′

and 1′′ respectively.

We start with all the multiplication rules which include the one-dimensional represen-

tations:
1× r = r× 1 = r with r any representation ,

1′ × 1′′ = 1′′ × 1′ ∼ c′ c′′ ,

1′ × 3 = 3 ∼ c′

 a3

a1

a2

 , 1′′ × 3 = 3 ∼ c′′

 a2

a3

a1

 .

(A. 4)

The multiplication rule with the three-dimensional representation is

3× 3 = 3S + 3A + 1 + 1′ + 1′′ with



1 ∼ a1b1 + a2b3 + a3b2 ,

1′ ∼ a3b3 + a1b2 + a2b1 ,

1′′ ∼ a2b2 + a1b3 + a3b1 ,

3S ∼
1

3

 2a1b1 − a2b3 − a3b2

2a3b3 − a1b2 − a2b1

2a2b2 − a1b3 − a3b1


3A ∼

1

2

 a2b3 − a3b2

a1b2 − a2b1

a3b1 − a1b3



(A. 5)

Note that due to the choice of complex representation matrices for the real representation

3 the conjugate a∗ of a ∼ 3 does not transform as 3, but rather (a?1, a
∗
3, a

∗
2) transforms

as triplet under A4. The reason for this is that T ∗ = UT
23 T U23 and S∗ = UT

23 S U23 = S

where U23 is the matrix which exchanges the 2nd and 3rd row and column.
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A.2 Kronecker products of the group A5

We report here the complete list of the Kronecker products for the group A5. We as-

signe a = (a1, a2, a3)T and b = (b1, b2, b3)T to the 3 representation, while a′ = (a′1, a
′
2, a
′
3)T

and b′ = (b′1, b
′
2, b
′
3)T belong to the 3′ representation. c = (c1, c2, c3, c4, c5)T and d =

(d1, d2, d3, d4, d5)T are pentaplets; f = (f1, f2, f3, f4)T and g = (g1, g2, g3, g4)T are tetraplets.

3 ⊗ 3 = 3a + (1 + 5)s

1 = a1b1 + a2b3 + a3b2

3 = (a2b3 − a3b2, a1b2 − a2b1, a3b1 − a1b3)T

5 = (a1b1 −
a2b3

2
− a3b2

2
,

√
3

2
(a1b2 + a2b1),−

√
3

2
a2b2,−

√
3

2
a3b3,−

√
3

2
(a1b3 + a3b1))T

3′ ⊗ 3′ = 3′a + (1 + 5)s

1 = a′1b
′
1 + a′2b

′
3 + a′3b

′
2

3′ = (a′2b
′
3 − a′3b′2, a′1b′2 − a′2b′1, a′3b′1 − a′1b′3)T

5 = (a′1b
′
1 −

a′2b
′
3

2
− a′3b

′
2

2
,

√
3

2
a′3b
′
3,−
√

3

2
(a′1b

′
2 + a′2b

′
1),−

√
3

2
(a′1b

′
3 + a′3b

′
1),−

√
3

2
a′2b
′
2)T

3 ⊗ 3′ = 4 + 5

4 = (a2b
′
1 −

a3b
′
2√

2
,−a1b

′
2 +

a3b
′
3√

2
, a1b

′
3 −

a2b
′
2√

2
,−a3b

′
1 +

a2b
′
3√

2
)T

5 = (a1b
′
1,−

a2b
′
1 +
√

2a3b
′
2√

3
,
a1b
′
2 +
√

2a3b
′
3√

3
,
a1b
′
3 +
√

2a2b
′
2√

3
,
a3b
′
1 +
√

2a2b
′
3√

3
))T

3 ⊗ 4 = 3′ + 4 + 5

3′ = (a2g4 − a3g1,
1√
2

(
√

2a1g2 + a2g1 + a3g3),− 1√
2

(
√

2a1g3 + a2g2 + a3g4))T

4 = (a1g1 +
√

2a3g2,−a1g2 +
√

2a2g1, a1g3 −
√

2a3g4,−a1g4 −
√

2a2g3)T

5 = (a3g1 + a2g4,

√
2

3
(
√

2a1g1 − a3g2),
1√
6

(
√

2a1g2 − 3a3g3 + a2g1),

1√
6

(
√

2a1g3 − 3a2g2 + a3g4),

√
2

3
(−
√

2a1g4 + a2g3))T
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3′ ⊗ 4 = 3 + 4 + 5

3 = (a′2g3 − a′3g2,
1√
2

(
√

2a′1g1 + a′2g4 − a′3g3),
1√
2

(−
√

2a′1g4 + a′2g2 − a′3g1))T

4 = (a′1g1 +
√

2a′3g3, a
′
1g2 −

√
2a′3g4,−a′1g3 +

√
2a′2g1,−a′1g4 −

√
2a′2g2)T

5 = (a′3g2 + a′2g3,
1√
6

(
√

2a′1g1 − 3a′2g4 − a′3g3),−
√

2

3
(
√

2a′1g2 + a′3g4),

−
√

2

3
(
√

2a′1g3 + a′2g1),
1√
6

(−
√

2a′1g4 + 3a′3g1 + a′2g2))T

3 ⊗ 5 = 3 + 3′ + 4 + 5

3 = (
2a1c1√

3
+ a3c2 − a2c5,−

a2c1√
3

+ a1c2 −
√

2a3c3,−
a3c1√

3
− a1c5 −

√
2a2c4)T

3′ = (a1c1 +
a2c5 − a3c2√

3
,
a1c3 +

√
2(a3c4 − a2c2)√

3
,
a1c4 +

√
2(a2c3 + a3c5)√

3
)T

4 = (4a1c2 + 2
√

3a2c1 +
√

2a3c3, 2a1c3 − 2
√

2a2c2 − 3
√

2a3c4,

2a1c4 − 3
√

2a2c3 + 2
√

2a3c5,−4a1c5 +
√

2a2c4 + 2
√

3a3c1)T

5 = (a2c5 + a3c2, a2c1 −
a1c2 +

√
2a3c3√

3
,−2a1c3 +

√
2a2c2√

3
,

2a1c4 −
√

2a3c5√
3

, a3c1 +
a1c5 −

√
2a2c4√

3
)T

3′ ⊗ 5 = 3 + 3′ + 4 + 5

3 = (a′1c1 +
a′3c3 + a′2c4√

3
,
−a′1c2 +

√
2(a′3c4 + a′2c5)√

3
,
a′1c5 +

√
2(a′2c3 − a′3c2)√

3
)T

3′ = (
2a′1c1√

3
− a′3c3 − a′2c4,−

a′2c1√
3
− a′1c3 −

√
2a′3c5,−

a′3c1√
3
− a′1c4 +

√
2a′2c2)T

4 = (2a′1c2 + 3
√

2a′2c5 − 2
√

2a′3c4,−4a′1c3 + 2
√

3a′2c1 +
√

2a′3c5,

−4a′1c4 −
√

2a′2c2 + 2
√

3a′3c1,−2a′1c5 − 2
√

2a′2c3 − 3
√

2a′3c2)T

5 = (a′2c4 − a′3c3,
2a′1c2 +

√
2a′3c4√

3
,−a′2c1 −

a′1c3 −
√

2a′3c5√
3

,

a′3c1 +
a′1c4 +

√
2a′2c2√

3
,
−2a′1c5 +

√
2a′2c3√

3
)T
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4 ⊗ 4 = (3 + 3′)a + (1 + 4 + 5)s

1 = f1g4 + f2g3 + f3g2 + f4g1

3 = (f1g4 − f4g1 + f3g2 − f2g3,
√

2(f2g4 − f4g2),
√

2(f1g3 − f3g1))T

3′ = (f1g4 − f4g1 + f2g3 − f3g2,
√

2(f3g4 − f4g3),
√

2(f1g2 − f2g1))T

4 = (f3g3 − f4g2 − f2g4, f1g1 + f3g4 + f4g3,−f4g4 − f1g2 − f2g1,−f2g2 + f1g3 + f3g1)T

5 = (f1g4 + f4g1 − f3g2 − f2g3,−
√

2

3
(2f3g3 + f2g4 + f4g2),

√
2

3
(−2f1g1 + f3g4 + f4g3),√

2

3
(−2f4g4 + f2g1 + f1g2),

√
2

3
(2f2g2 + f1g3 + f3g1))T

4 ⊗ 5 = 3 + 3′ + 4 + 5 + 5

3 = (4f1c5 − 4f4c2 − 2f3c3 − 2f2c4,−2
√

3f1c1 −
√

2(2f2c5 − 3f3c4 + f4c3),√
2(−f1c4 + 3f2c3 + 2f3c2)− 2

√
3f4c1)T

3′ = (2f1c5 − 2f4c2 + 4f3c3 + 4f2c4,−2
√

3f2c1 +
√

2(2f4c4 + 3f1c2 − f3c5),√
2(f2c2 − 3f4c5 + 2f1c3)− 2

√
3f3c1)T

4 = (3f1c1 +
√

6(f2c5 + f3c4 − 2f4c3),−3f2c1 +
√

6(f4c4 − f1c2 + 2f3c5),

−3f3c1 +
√

6(f1c3 + f4c5 − 2f2c2), 3f4c1 +
√

6(f2c3 − f3c2 − 2f1c4))T

51 = (f1c5 + 2f2c4 − 2f3c3 + f4c2,−2f1c1 +
√

6f2c5, f2c1 +

√
3

2
(−f1c2 − f3c5 + 2f4c4),

−f3c1 −
√

3

2
(f2c2 + f4c5 + 2f1c3),−2f4c1 −

√
6f3c2)T

52 = (f2c4 − f3c3,−f1c1 +
2f2c5 − f3c4 − f4c3√

6
,−
√

2

3
(f1c2 + f3c5 − f4c4),

−
√

2

3
(f1c3 + f2c2 + f4c5),−f4c1 −

2f3c2 + f1c4 + f2c3√
6

)T
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5 ⊗ 5 = (3 + 3′ + 4)a + (1 + 4 + 5 + 5)s

3 = (2(c4d3 − c3d4) + c2d5 − c5d2,
√

3(c2d1 − c1d2) +
√

2(c3d5 − c5d3),√
3(c5d1 − c1d5) +

√
2(c4d2 − c2d4))T

3′ = (2(c2d5 − c5d2) + c3d4 − c4d3,
√

3(c3d1 − c1d3) +
√

2(c4d5 − c5d4),√
3(c1d4 − c4d1) +

√
2(c3d2 − c2d3))T

4s = ((c1d2 + c2d1)− (c3d5 + c5d3)− 4c4d4√
6

,−(c1d3 + c3d1)− (c4d5 + c5d4)− 4c2d2√
6

,

(c1d4 + c4d1)− (c2d3 + c3d2) + 4c5d5√
6

, (c1d5 + c5d1)− (c2d4 + c4d2) + 4c3d3√
6

)T

4a = ((c1d2 − c2d1) +

√
3

2
(c3d5 − c5d3), (c1d3 − c3d1) +

√
3

2
(c4d5 − c5d4),

(c4d1 − c1d4) +

√
3

2
(c3d2 − c2d3), (c1d5 − c5d1) +

√
3

2
(c4d2 − c2d4))T

51 = (c1d1 + c2d5 + c5d2 +
c3d4 + c4d3

2
,−(c1d2 + c2d1) +

√
3

2
c4d4,

1

2
(c1d3 + c3d1 −

√
6(c4d5 + c5d4)),

1

2
(c1d4 + c4d1 +

√
6(c2d3 + c3d2)),−(c1d5 + c5d1)−

√
3

2
c3d3)T

52 = (
2c1d1 + c2d5 + c5d2

2
,
−3(c1d2 + c2d1) +

√
6(2c4d4 + c3d5 + c5d3)

6
,−2c4d5 + 2c5d4 + c2d2√

6
,

2c2d3 + 2c3d2 − c5d5√
6

,
−3(c1d5 + c5d1) +

√
6(−2c3d3 + c2d4 + c4d2)

6
)T

1 = c1d1 + c3d4 + c4d3 − c2d5 − c5d2
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A.3 Different Representations of A5

Shirai’s basis. In this section we show how the basis chosen in this work is related

to the representations given in previous articles on the group A5. In [45, 121] the Shirai

base was used, in which the presentation of the group is given in terms of two matrices

SSh and TSh satisfying the following algebra:

S2
Sh = T 5

Sh = (T 2
ShSShT

3
ShSShT

−1
Sh SShTShSShT

−1
Sh )3 = 1 (A. 6)

In order to connect them to the matrix S and T satisfying

S2 = T 5 = (ST )3 = 1 (A. 7)

with T diagonal, we take an intermediate step and define first

S ′ = SSh (A. 8)

and a matrix T’ such that (S ′T ′)3 = 1 Then, we define T 2
ShSShT

3
ShSShT

−1
Sh SShTShSShT

−1
Sh =

ASh. Since S ′T ′ = ASh we obtain

T ′ = S ′−1ASh = S ′ASh = SShASh (A. 9)

Note that T ′ is not diagonal. To make it diagonal, we let an unitary matrix U act on it,

such that

S = U †S ′U, T = U †T ′U. (A. 10)

and finally

S = U †SShU, T = U †SShAShU. (A. 11)

Cummins-Patera’s basis. The Cummins-Patera’s basis [59, 60] is generated by two

elements with presentation

A2 = B3 = (AB)5 = 1, (A. 12)

and the quintic representation are explicitly given by

A =


1 0 0 0 0

0 −1 0 0 0

0 0 −1 0 0

0 0 0 1 0

0 0 0 0 1

 ; B = −1

2


1 0 1 −ω2 −ω
0 1 1 −1 −1

−1 −1 0 ω ω2

ω 1 ω2 0 −ω
ω2 1 ω −ω2 0

 , (A. 13)

where ω = e
2iπ
3 is the cubic root of unity, We can define a unitary transformation UCP

that relates the elements of the Cummins-Patera basis to the one introduced in Section 3

as follows:

S = U †CPAUCP , (ST ) = U †CPBUCP , T = U †CP (AB)UCP . (A. 14)
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The unitary matrix is

UCP =
1√
5



0 ω−
1
2

√√
5

2φ

√√
5φ
2
−ω− 1

2

√√
5φ
2

ω−
1
2

√√
5

2φ

−
√

3ω
1
4

ω
1
4√
2

−ω
1
4√
2

−ω
1
4√
2

−ω
1
4√
2

0 ω−
1
2

√√
5φ
2

ω−
1
2

√√
5

2φ
ω−

1
2

√√
5

2φ
−ω− 1

2

√√
5φ
2

−ω2 −eiα −eiβ −eiα eiα

1 e−iγ −eiγ −eiγ −e−iγ


, (A. 15)

where α = arctan (−2+
√

5√
3

), β = arctan (
√

3− 4
√

5
3

) and γ = arctan (
√

5
3
). It is straight-

forward to verify that acting with U †CP on the vector (0, 0, 0, Z, Z)T gives a new vector

with the form given in eq. (3.38).



Appendix B

Renormalisation Group Equations

In order to calculate the evolution of the fermion mass matrix from the cutoff of

the low-energy theory down to the electroweak energy scale, the renormalisation group

equations for all the parameters have to be solved simultaneously. We use the notation

defined in Chapter 4, where a superscript (n) denotes a quantity between the nth and the

(n + 1)th mass threshold. When all the right-handed neutrinos are integrated out, the

renormalisation group equations can be recovered by setting the neutrino Yukawa coupling

Yν to zero, while in the full theory above the highest See-Saw scale, the superscript (n)

has to be omitted.

In the following, t := ln(µ/µ0) and Yu(d) is the Yukawa coupling for the up- (down-)

quarks, in the GUT normalisation, such that g2 = g and g1 =
√

5/3g′.

In the MSSM context the 1-loop renormalisation group equations for the renormali-

sation group equations for
(n)

Ye,
(n)

Yν ,
(n)

M ,
(n)

κ,
(n)

Yd, and
(n)

Yu are given by

16π2 d

dt

(n)

Ye = Ye

{
3Y †e Ye +

(n)

Y †ν
(n)

Yν + Tr
[
3Y †d Yd + Y †e Ye

]
− 9

5
g2

1 − 3g2
2

}
,

16π2 d

dt

(n)

Yν =
(n)

Yν

{
3

(n)

Y †ν
(n)

Yν + Y †e Ye + Tr
[
3Y †uYu +

(n)

Y †ν
(n)

Yν

]
− 3

5
g2

1 − 3g2
2

}
,

16π2 d

dt

(n)

MR = 2
((n)

Yν
(n)

Y †ν

) (n)

MR + 2
(n)

MR

((n)

Yν
(n)

Y †ν

)T
,

16π2 d

dt

(n)

κ =
[(n)

Y †ν
(n)

Yν + Y †e Ye

]T(n)

κ+
(n)

κ
[(n)

Y †ν
(n)

Yν + Y †e Ye

]
+ 2 Tr

[
3Y †uYu +

(n)

Y †ν
(n)

Yν

]
(n)

κ+

−6

5
g2

1

(n)

κ− 6g2
2

(n)

κ ,

16π2 d

dt

(n)

Yd = Yd

{
3Y †d Yd + Y †uYu + Tr

[
3Y †d Yd + Y †e Ye

]
− 7

15
g2

1 − 3g2
2 −

16

3
g2

3

}
,

16π2 d

dt

(n)

Yu = Yu

{
Y †d Yd + 3Y †uYu + Tr

[
3Y †uYu +

(n)

Y †ν
(n)

Yν

]
− 13

15
g2

1 − 3g2
2 −

16

3
g2

3

}
.

(B. 1)

In the Standard Model extended by singlet neutrinos, the renormalisation group equa-

131
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tions for the same quantities are given by

16π2 d

dt

(n)

Ye = Ye

{
3

2
Y †e Ye −

3

2

(n)

Y †ν
(n)

Yν + Tr

[
3Y †uYu + 3Y †d Yd +

(n)

Y †ν
(n)

Yν + Y †e Ye

]
− 9

4
g2

1 −
9

4
g2

2

}
,

16π2 d

dt

(n)

Yν =
(n)

Yν

{
3

2

(n)

Y †ν
(n)

Yν −
3

2
Y †e Ye + Tr

[
3Y †uYu + 3Y †d Yd +

(n)

Y †ν
(n)

Yν + Y †e Ye

]
− 9

20
g2

1 −
9

4
g2

2

}
,

16π2 d

dt

(n)

M =
((n)

Yν
(n)

Y †ν

) (n)

M +
(n)

M
((n)

Yν
(n)

Y †ν

)T
,

16π2 d

dt

(n)

κ =
1

2

[(n)

Y †ν
(n)

Yν − 3Y †e Ye

]T(n)

κ+
1

2

(n)

κ
[(n)

Y †ν
(n)

Yν − 3Y †e Ye

]
+

+2 Tr

[
3Y †uYu + 3Y †d Yd +

(n)

Y †ν
(n)

Yν + Y †e Ye

]
− 3g2

2

(n)

κ+ λH
(n)

κ ,

16π2 d

dt

(n)

Yd = Yd

{
3

2
Y †d Yd −

3

2
Y †uYu + Tr

[
3Y †uYu + 3Y †d Yd +

(n)

Y †ν
(n)

Yν + Y †e Ye

]
+

−1

4
g2

1 −
9

4
g2

2 − 8g2
3

}
,

16π2 d

dt

(n)

Yu = Yu

{
3

2
Y †uYu −

3

2
Y †d Yd + Tr

[
3Y †uYu + 3Y †d Yd +

(n)

Y †ν
(n)

Yν + Y †e Ye

]
+

−17

20
g2

1 −
9

4
g2

2 − 8g2
3

}
,

16π2 d

dt

(n)

λH = 6λ2
H − 3λH

(
3g2

2 +
3

5
g2

1

)
+ 3g4

2 +
3

2

(
3

5
g2

1 + g2
2

)2

+

+4λH Tr
[
3Y †uYu + 3Y †d Yd +

(n)

Y †ν
(n)

Yν + Y †e Ye

]
+

−8 Tr
[
3Y †uYu Y

†
uYu + 3Y †d Yd Y

†
d Yd +

(n)

Y †ν
(n)

Yν
(n)

Y †ν
(n)

Yν + Y †e Ye Y
†
e Ye

]
.

(B. 2)

We use the convention that the Higgs self-interaction term in the Lagrangian is−λH(H†H)2/4.



Appendix C

Analytical Formulae for the

Parameters S, T and U

In this Appendix we provide a sort of translator from the papers [105, 108] to our

notations and furnish the formulae we have used when different from their.

Reminding their notation we are in the case in which nd = 3 and nn, nc = 0 so we do

not have the matrices T and R. Then we have

U → S

ReVki → Uki ,

ImVki → Uk+3i ,

ωk → fke
iωk . (C. 1)

Moreover they put the GBs as first mass eigenstates while we put them as the last ones

and contrary to them we use the standard definition for the photon.

We have rewritten they expression for

A(I, J,Q)− A(I, J, 0)

Q
=


dA(I, J) for I 6= 0 and/or J 6= 0 ,

QF (Q)

Q
∼ 1

48π2
logQ for I = J = 0 since A(0, 0, 0) = 0 .

(C. 2)

For the first row of eq. (C. 2) we have used

A(I, J,Q) ' A(I, J, 0) +Q
∂A(I, J,Q)

∂Q

∣∣∣∣∣
Q=0

= A(I, J, 0) +QdA(I, J) (C. 3)
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with

dA(I, J) =



1

288(I − J)3π2
[I3 + 9JI2 + 6(I − 3J) log(I)I2 − 9J2I − J3 + 6(3I − J)J2 log(J)]

for I, J 6= 0, I 6= J ,

1

288π2
(1 + 6Log[I]) for J = 0 ,

1

48π2
(1 + log[I]) for I = J .

(C. 4)

The function Ā(I, J,Q) enters only in the loops in which a gauge boson and a scalar run,

so we have always J = Q when computing the quantity

Ā(I, J,Q)− Ā(I, J, 0)

Q
= ¯dA(I, J) . (C. 5)

As a result, for this function, it does not make sense considering the case I = J = 0 being

J = Q = m2
V the gauge boson mass. We found

¯dA(I,Q) =


1

8(I −Q)3π2
[Q (−I2 + 2Q log(I)I − 2Q log(Q)I +Q2)] for I 6= Q, I 6= 0 ,

∼ 0 for I = 0 ,

∼ 0 for I = Q .

(C. 6)
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