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Abstract
This Thesis deals with some problems related to the pseudoconvex domain.

The first chapter presents some results on the theory on plurisubharmonic defining
function. Interested in the relation of the Diederich - Fornaess index with the estimate for
0- Neumann operator in [Koh99], the author found a more general boundary condition
for the pseudoconvex domain €2 to get the Diederich - Fornaess index goto 1 arbitrarily.
These condition and the coresponding index give an estimate for O- Neumann operator
on H, q)(Q) for s goto infinity. The author also generalize the results by finding the index
and its applications on general g-pseudoconvex domains.

The second part of the thesis is studying the invariant metrics, more precise, the
Kobayashi metric, near infinite boundary points. Diederich and Fornaess on showed us how
fast the Kobayashi metric of a point go to infinity when it comes near the boundary of a
pseudoconvex domain that has real analytic boundary. Remove that cruel assumption, the
author prove the result in more general class domains. The last part of this chapter gave
an estimate the metric at points near the boundary point of infinite type for a special
case. With the estimate for the Kobayashi metric, we can prove a proper holomorphic
mapping theorem and have a Holder estimate for it.



Chapter 1

Bounded strictly plurisubharmonic
exhaustion function.

1.1 Introduction

In the analytic of strictly pseudoconvex domains, there are three elementary properties
of these domains play a fundamential role. They are:

1. Strictly pseudoconvex domain is stable with respect to a small C?— pertubation.

2. A strictly pseudoconvex domain is locally biholomorphically equivalent to strictly
convex domains.

3. If Q cc C" is strictly pseudoconvex with a smooth C?— boundary, then there is a
neighborhood U of Q and a stricty plurisubharmonic C? function p on U such that
dp(p) = 0 for p € bQ and Q2 = {p|p(p) < 0}.

And in particular, the domains Q. = {p|p(p) < €}, with |¢| small enought are strictly
pseudoconvex and approximate 2 from the inside (¢ < 0) and outside (e > 0).

For a real C? function ¢ on a neighborhood p of C", we define the Levi form of ¢ at
p as the Hermitian form

i00¢(p) = Z 0.,05,pdz; @ dZ;.
ij

If Qc C" qe b2, U a neighborhood of ¢ and —oo < a < b < 0o are given, a continous
function ¢ : QN U — (a,b) is called a local exhaustion function of €2 at ¢, if for all ¢, d
satisfy a < ¢ < d < b, we have p=!([c,d]) N b2 = 0.




We call a Diederich - Fornaess index of a domain 2 CC C" is a number n € (0, 1]
for which there exists a smooth defining function p of 2 so that p = —(—p)7 is strictly
plurisubharmonic on €.

The Diederich - Fornaess index was study by some author and have some applications.
One of the most important application is the quantitative estimate shown by J.J. Kohn
on [Koh99] that show us the relation beween Diederich - Fornaess index and the regularity
of O-Neumann problems. For this relation, an attractive problem is find a condition for
the domain €2, for which the index go to 1, and let the H*-regular holds for that domain
with s goes to infinity.

Follow that idea, I prove the existence of the index for ¢-pseudoconvex domains and
find a condition to let the index go to 1.

Theorem 1.1.1. Let  be a bounded g-pseudoconvex domain on C" with C?-boundary
then for each point zy on the boundary, there exist a neighborhood U of zy and 0 < ny < 1
such that for 0 < n < no there exists a defining function ¢ such that —(—p)" is ¢-
plurisubharmonic on U N ).

Theorem 1.1.2. Let Q be a bounded domain on C" and satisfies property P,. Then for
each point zy on the boundary, for each 0 < ny < 1, there exist a neighborhood U of zy such
that there is a defining function ¢, satisfying —(—,)" is g-plurisubharmonic on U N Q)
for 0 <n < np.

The prove of these theorems can be found on Section After that, a result of G.
Zampieri and S. Pinton that generalize the H*-regualarity on g—pseudoconvex domains
as an application.

1.2 Background

We study here the complex valued functions f : C* — C. These functions can be identified
with functions f : R?® — R2. For a choice of a root i = /—1 we write the coordinates in
C" as
z=x+iy for (z,y) € R*;
here z = (z1,...,2,), T1,...,Zn) and y = (y1, ..., yn). We obtains an identification R** —
C" given by
(x,y) — z =z +1y.



We can describe the real structure underlying C" through the correspondence

and the inverse become

@%%9&%D=(Z+2z_z)-

2 7 2
Now, we can consider the derivatives and differentials behavios. From the change and its
inverse, and also the chain rule, we define 9, and 0; by

Op = %az + %85 =0: + 0,
Oy = 5;0: + 5,00 = i(0: — o),

and by inversion
(a:v - iay)v
(O +1i0,),

NI— N

_ 9 dyq _
{@_£@+§@_
_ Oz _
ag—ﬁax‘l'a_gay—

Jr dz O
have the dual basis of differentials correspondences

__ dz+dz
Oz = 5,
8y _ dz—dz

2t 7

Using the notation d, = (0,,) 0z _ (825) ~and similiarly for other variables y, z, z. We
ij

and the inverse
dz = dx + idy,
dz = dx —dy,

Write dx for (dz;); and similarly for the other variables. A function f : C* — C identified
with a function f : R?*" — C, we have

Opfdx + 0y fdy = 0, fdz + 0z fdz

and we write

df =0f +0f.
We call that df is (1,0) form of f and df is (0,1) form.



1.2.1 Plurisubharmonic function.

First, we consider the case complex one dimentional variable. We recall that a C? function
h on a domain €2 C C is said to be harmonic when 0,0:h = 0.

Definition 1.2.1. A real function ¢ on 2 C C with values in [—00, +00) is subharmonic
when

i. The function ¢ is upper semicontinuous, i.e. for any zo, ¢(29) > limsup ¢(z);
Z—20

ii. for any subset K CC 2 and for any h continous on K and harmonic on int(K)

¢lox < hlpx implies ¢[x < h|k.

Let A be the standard disc in C and A, , the disc of center z, and radius 7. We have
the main characterization of subharmonic function.

Theorem 1.2.2. Let ¢ : Q — [—00,+00) be an upper semicontinuos function. The
followings are equivalent,

1. @ 1s subharmonic function on €2,

ii. For any disc A,,, CC Q and for any polynomial P = P(z)

oloa. . < RePlya

zg,r —

o implies  @|x, < ReP|x, |

iii. (Spherical submean ) For any A,,, CC Q, we have

1
pl20) = 5 / @ds
1T bAro,r

where ds is the element unit of the arc.

. (Solid submean ) For any A,,, CC €, we have

1
< - dr NdT.
P20 = i //ASD o




v. (Local solid submean) For any zo there is 1o = dist(zg, 082) such that for any r < rg
w. holds.

The proof of above Theorem can be easily found on many books about complex anal-
ysis. We also have a differential description of subharmonicity.

Theorem 1.2.3. Let ¢ € C*(Q), then ¢ is subharmonic if and only if

Now we can define on case C" with n > 1

Definition 1.2.4. A real upper semicontinuos function ¢ in 2 C C" is said to be plurisub-
harmonic if its restriction to any disc A = ¢(A) C Q is subharmonic.

For a real C? function 7 in a domain of C", we define the Levi form of r at z, as the

Hermitian form
i00r(29) = Z 0.,0z,7(20)dz; ® dZ;.
ij

From the definition of plurisubharmonic functions, if ¢ is of class C?, the plurisubhar-
monicity is characterized by 0.,0z, > 0 for any 4, j. We just only have the subharmonicity
along straight discs 7 — wy + 7w, in which w = (...,0,1,0,...). However we can prove
the following fact, that implies that it sufficient to check the subharmonicity along each
straight discs.

Proposition 1.2.5. Let ¢ Z —o0 be upper semicontinuos and subharmonic along each
cartesian ray. Then there is a sequence {p,}, of C* plurisuharmonic functions on ), :=
{z € Q:dist(z,0Q) > L such that ¢, \, . In particular, ¢ is plurisubharmonic.

1.2.2 qg-pseudoconvex domain.

Let Q is a domain on C". A defining function of €2 is a real function r : C" — R satisfies
p < 0on 2 and dp # 0 at each points where p = 0. We also have that the boundary b2 is
a hypersurface defined by the equation p = 0. We denote by TCb) the complex tangent
bundle to bQ defined by TCbQ = TvQ NiTHQ. For any z € bS2 its fiber TCHS is the space
of vectors orthogonal to dr(z) under the hermitian product.



On b, let (p;;) be the matrix of the Levi form of p when restrict to 7€) under a choice
of a C? orthonormal basis of (1,0) form wy,...w, with w, = dp. Let \(2) < ... <\,
is ordered eigenvalues of (p;;). Let ¢ < n — 2, we introduce

Definition 1.2.6. We say that b2 is g-pseudoconvex (for the orientation from ) if there
exists a covering of the boundary and, on each patch, a C? smooth bundle V € T*%) of
rank qo < ¢, say V = span{0y,, . . . , Ou,, such that

q+1 q0

Z/\j(z) = ri(z) = 0.

j=1

The index gy may vary on different patches.

We consider more precisely on the case ¢ = 1, and we say bf2 is pseudoconvex. In this
case we can simply define the pseudoconvexity of bQ) whether the Levi form i00p(z) is
positive definite when restrict to T b2 for all z € b§). We define on a neighborhood of b2
on C"

S0 (p) = {—.dist(p, bQ2) for g € Q
dist(p, bQ2)  for ¢ ¢ Q

where dist means the Euclidean distance. If p is smooth, by shrinking the neighborhood
of b2 we can get dpn is also a smooth function. Then we have the following important
result.

Theorem 1.2.7 (Oka’s lemma). Let b2 be a hypersurface and zy € bS2. Let dpq be the
distance to bS) as above. Then, D) is pseudoconver at zy if and only if there is an open
neighborhood U of zy such —log(—dpa) is plurisubharmonic.

1.3 Boundary strictly plurisubharmonic exhaustion
function

1.3.1 The existence of Diederich - Fornaess index.

The existence of Diederich - Fornaess index n for smoothly bounded pseudoconvex
domain in C" holds by the following theorem.



Theorem 1.3.1. Let Q CC C" be a pseudoconvexr domain with C? boundary in C". Then
there are a C? defining function p for Q on a neighborhood of Q, and 0 < ny < 1, such
that for any 0 < n < g, the function p = —(—p)" is a strictly plurisubharmonic bounded
exhausion function on €.

Since € is pseudoconvex, the Levi form of any defining function is non negative at any
boundary point when we apply it to the tangential space. Therefore, in order to construct
an plurisubharmonic defining function (the Levi form is non negative for all direction),
we need to consider the Levi form in the normal direction only. The following Lemma is
a consequence of Oka’s lemma.

Lemma 1.3.2. There is a C* defining function o of  on a neighborhood U of b§ in
C", such that the function —log(—o) is a plurisubharmonic exhaustion function of  on
UNCL. For any such function, after shrinking U if necessary, there exists a constant C' > 0
such that

000 (p;t) > —C [t], [(Doy, t)] (1.3.1)

forallt e pr(C" and allp € U N

Proof. According to Oka’s lemma, the pseudoconvexity of € implies that — log(—dpq) is
plurisubharmonic on €.
For the inequality, we have some computation

1
0.0~ low(~0))p) = -0, (70.7) (1)
1 - 1
— (—;aziazjo- + ;azzaazla) (p)7

then
1

a*(p)
By definition, the Levi form of —log(—dq) is non-negative for p € U N €2, then we get

i00(—log(—0))(p; . 1) = [(—o(p))iddo(p;t,t) + (Do, u)|"]

i00c (p;t,t) >0

for t € Ty = {t € T}°| (9o, t) = 0}. Let T2 be the orthogonal complement of T in T)°,
then for any vector t € T)°, it can be decomposed into t = 7 4t € T, © T,}. Then we
have

i000(p;t,) = i00c(p; 17,17 + 2Reiddo (p; 1", ") + i0da (p; t*, ")
> 2Reiddo (p;t7,t") + i00a (p; ", t"). (1.3.2)



Since o is a C? function on U then there exists a constant C; > 0 such that after shrinking
U
‘i@@a(p)(u,t”” < Oy ul, [t7],

for all t € pr, v e sz and p € U. Furthermore, there is C5 > 0 such that
(9o, 1)] = [{D0p, 1) = Co |7,
witht =t +v e T) & T7 and p € U. Combine with ([1.3.2), we obtain
i000(p;t,t) > —C |ul [t"], > =C'[t|[{90y, 1)]

Thus, inequality (1.3.1]) was proved. ]

Proof of Theorem |1.3.1]. Let o and U be chosen as in Lemma [1.3.2] We fix a strictly
plurisubharmonic C'*° function ¥ on C" and define the function p on U

p=oe

Denote p = —(—p)" where 0 < n < 1 and L > 0, which will be chosen later. Then we
have that p is a C*-defining function of Q on U N €.
We have some computation

0.0z, (—(—o)"e ™) = 0, {7t [~y (=)' 0,,0 — Ly (—0)" 9..4] }
= e‘LW{ [—77(77 — 1)(—0)"‘2831.085].0 + 7](_0'>n_182i8§j0'
- an(—g)n_lazjaazﬂ/) + Ln(_a)naziazj¢]
— Lnézjl/z [n(—a)"_lazia + Ln(—a)”azﬂﬂ }

and then

i00p(t,t) = n(—0o)"2e F [(Lo® (i100(t, t) — nL (9, 1)]*)
+(~0) (z’@(%(t,t) — 2LyRe (<aa, £) <a¢,t>)) + (1= n) [0, 1)]?]

for t € T'(U N ). We see that the Levi form i99p will be positive if the expression in
the bracket [ |, which is denoted by D(t), is strictly positive there.
Apply Cauchy-Schwarz inequality to obtain

L2 0,2

o 1
Zio|Re ((00,1) 00,1 ) | <277

(@0, 8) [+ —] (90 1) [




Combining with the expression of D(t) and by Lemma we get

_ Ln?
DIt) > Lo (1900(t.)~ ni| 0.0 - 2 0u1) )
1—
— oCt|| (8o, ) | + T”| (o, 2. (1.3.3)
Since 1 is a smooth strictly plurisubharmonic function, one can choose positive numbers
Cy and Cy such that 190 (t,t) > C|t|, and | (9, t) |* < Calt]? for t € T*(W). And then
we have a quadratic form for D(t) as

2 Ln® 2 I—n 2
D(t)ZLO' Cl—OQ 77L—|—2E |t| —aC\t][(@a,t>!+T|<80,t>|
and then

L 4C%% ., 1-p
D(t) > Lo? - L+2 t]? — t|? t) ]2
(02 L0* (€= Ca (nz4 270 ) Y = S+ 22 0o

From (1.3.3)) we can see that if the plurisubharmonic v on U satisfies | (01, t) | is small
and the Levi form 90y (t,t) is large. Moreover we can let 7 far from 0 by choosing a
sufficiently large constant L and then p become a strictly plurisubharmonic function.
For an arbitrary plurisubharmonic function v, we can find a constant 7y small, and find
CyLn < (4, we can also assume that Conl < %, and obtain

Ol 0177 02 2 2
D > —=1 — — .
(”—<2 2651 =) 2<1—n>)"'t'

One can choose 7y and then L satisfies

c, O Cino C?
LSS +
02770 2 202(1 — 770) 2(1 — 770)

thus D(t) > 0.

The only work is filling in the possible hole 2\ U in the defining function of p. It can be
done by replacing the function o in the above arguments by — exp(—A(log(—0)™")) where
A is a convex increasing function on the real axis with A(t) = ¢ for large ¢ and A constant
before a suitable value of ¢. O

If we only consider in a small neighborhood U of a boundary point of {2, we also can
find a Diederich - Fornaess index for €2, which is for some 0 < < 1 depends on U, we can
find on a neighorhood U a defining function of Q satisfies —(—p)” is plurisubharmonic.
More precisely, we prove the following Theorem.



Theorem 1.3.3. Let Q be a pseudoconver domain on C" with C?*-boundary. For any
boundary point of Q, there exist a neighborhood U of p and an index ng such that we can
find a defining function p of Q on U such that for any 0 < n < 1y we have —(—r)" is
plurisubharmonic.

For the proof of the Theorem, we only need to find an estimate for the Levi form of
defining function for 2 as in Lemma [1.3.2

Lemma 1.3.4. . Let Q be a pseudoconvex domain on C" with C*—boundary. For any
po € bSY there is a defining function r of Q) on a neighborhood U of p such that

i00r(p;t,t) > —CIt[| (Or,1) |
for allt € T,°bQ and p € UNQ.

Proof. For py € bQ) and a neighborhood U we can choose an orthonormal coordinates

system zi,..., 2, such that py = 0 and the normal outward unit at p is % where z, =
T, + 1Y,, the boundary of €2 near p, is obtained by the graph y, = ¢(%/,z,) where
2 =(z1,...,2,1) and g is of class C?. Then r = y" — g(z/,2") is a defining function for
QonU.

Lett=t"®t"' € T' ®T? as in Lemma [1.3.2l Then we have for any p
i00r(p; t,t) = i00r(p; t7,t7) + 2Re(i00r (p; t7, ")) + i00r (p; 1, t*).
Moreover, the boundary of €2 is a graph on U, and {2 is pseudoconvex then we have
i00r (p; 17, t7) = id0r(7(p); t7,t7) > 0

where 7(2) is the projection of z € U to bS).
Since 7 is a C? function on U, after shrinking U if necessary, there exists a constant C; > 0
such that B

1001 (p; £,")] < Cat]p[t"]

for all t € T)°, " € T and ¢ € U. And then we get
i00r (p; t,t) = —CIt|| (Ory,. 1) |
]

Following the proof of Theorem [1.3.1] we obtain the conclusion of Theorem [1.3.3]
For the case bS) is just slightly smoother, namely of class C?, we can get a somewhat
more general version and a simpler proof of Theorem [1.3.1]

10



Theorem 1.3.5. Let Q CC C" be a pseudoconvex domain with C® boundary bSY, such
that there exists a C'™ strictly plurisubharmonic function 1 defined on a neighborhood of
bQ. Let o be any C? defining function for Q). Then there are a neighborhood U of b§) and
constants K >0, 0 < ng < 1 such that for 0 < n < n, the function p = —(—ce 5¥) is
strictly plurisubharmonic on QN U. If there exists v strictly plurisubharmonc on Q, then
p s strictly plurisubharmonic on €.

Proof. We choose a product neighborhood U = bQ) x (—e¢, €) of b2 and let 7 : U — bS2 be
the projection to 0. For fixed u € C", it can be decomposed by u =t + ¢} € Tp1 &) Tp2
where T = {u € T,°| (o,u) = 0} and T} is the orthogonal complement of 7)) in 7,°. The
function L,(p;t7) is of class C! in p € U (from the assumtion b2, and hence r of class
C3). Therefore, for p € U,

000 (ps £7,17) — 090 (x(0): (4. 24y) = Ol (p)) 1,12
Since (2 is pseudoconvex domain, we get
1000 (p; t7,17) > O(lo(p)|) [t[2 (1.3.4)
for p € QN U and t € T,°. Furthermore, can be estimated by
1000 (t,t) = i000 (") + 2Re(i0da (7, ")) + 100 (', t")

=000 (t™,t7) + O([t], 1t"],)

and

"], = O([{9,, 1))
That imply, for some constant A > 0,
i000(p;1,6) > —Alo(p)| |12 — A, [(90,,1)

forpe QNU and t € T,)°.

i00p(t,t) = n(—0)"2e KM [Ko? (100 (t, t) — nK [(0p, 1))
+(—0) (zaéa(t, t) — 2K7Re ((80, ) [0, t>>>
+ (1 —=n) (90, t)°] (1.3.5)

for t € T'9(QNU). Let D(t) be the expression in [ |, we going to show that one can choose
n and K so that D(t) > 0 for ¢ # 0. Similiar to the proof of Theorem [1.3.1] we can find
Ay, A, that are positive and independent of K, n and t € TZ}O(Q N U) such that the lower
estimate of D(t) holds

D(t) > 0? [KA1 /2 — Ay) |t

11



By the choice K > 2A,5/A; and 1y = no(K), we get the desired result.

In the case 1 is strictly plurisubharmonic on Q, iddy(t,t) > As|t|* for t € T'(Q)
and Az > 0; also 0> > ¢ > 0 on ther compact set Q \ U. From ((1.3.5) which now
can holds on Q, D(t) > Ke2Az|t]> — Ag|t]” for t € T'9(Q). Now we can choose K >
max{2A2/A1, A6/€2A5}. ]

Remark 1.3.6. For fixed g € 02 and fixed n, 0 < n < 1, we can always find a neighborhood
U and a C* defining function p of Q on U such that —(—p)" is strictly plurisubharmonic
on QN U. In fact, we can assume that ¢ = 0, U C B(0,¢), from (1.3.5) and let v = |z|?
we have

i00p(t,t) = n(—o)"2e KM [Ko? (100 (t, t) — nK |(z,1)]*)
+(~0) (z'aéa(t, t) — 2K7Re (<aa, 1) W)) + (1= n) (00, ).
Let D(t) be the term [ ], since €2 is bounded, we have
D(t) 2 Ko*(1 = neK)[t|* — o(i0da (t) — 2Knelt] [0, 8)) + (1 = 1) [{o, )

We can choose € small such that neX < 1/2 and from Lemma [1.3.2]
1
D(u) > §Ka2lt|2 +o(C+ 1) |t (9o, )| + (1 —n) (Do, t)|* > 0.

for K > C+1) . And we obtain that p is plurisubharmonic on the neighborhood U of q.

1.3.2 Property P and Diederich - Fornzess index.

We already show that in a neighborhood of a boundary point of €2, the Diederich-Fornaess
index exists and it can be close arbitrarily to 1. However, in genetal case, the index for
global to all 2 is need to be chosen sufficiently small. Our purpose is finding condition for
the domain 2 such that the Diederich - Fornaess index can be chosen arbitrarily close to
1.

First, we recall the classical property 15q introduced by McNeal. We start with the defini-
tion.

12



Definition 1.3.7. Let Q cC C" be the smoothly bounded domain. We said that the
function f € C?*(Q) N PSH(Q) has a self-bounded complex gradient if there exists a
constant C' such that

g(]i OF (i (1.3.6)

k1 82k821

for all t € C" and z € Q. When (L.3.6) holds, we write [0f[%,;, < C.

Under the scaling f — af, t > 0, a factor of a? appears on the left-hand side of
while the right-hand side has a factor of a. The size of C should thus should be viewed
as extrinsic.

Consider g = —e’%f, we have

009z 1,1) = S [100f(=:1,0) ~ S1OLH ()P,

then we can get that ((1.3.6) is equivalent to the statement that
—et! € PSH(Q).

The reformulation shows that the self-boundedness notion should be interpreted for non
smooth functions. If ¢ € C%*(Q) is bounded and plurisubharmonic, then f = e? satisfies
(1.3.6) with C' = sup e®. And we note that (1.3.6)) does not force that f to be bounded.

Definition 1.3.8. We say that the domain 2 has property Pq if, for every M > 0, there
exists ¢ = ¢y € C?(Q) such that

L. |a¢|z‘85¢ <1
ii. for any forms u of degree k > gq.
/ n ! q
Z Z GijuixUjrc — Z Z¢jj|uJ|2 > M|ul?, (1.3.7)
|K|=k—11ij=1 |J|=k j=1

It follows that P, = P, = --- = P,. And we can see that (i) in Definition m
implies that for z € b()

. o~ 3% .
100 = Ury > M
100p(2)(u, u) Z Z 5, ks 2 |ul
if u e AP1(Q).
Recall Catlin’s property Py, for a domain §2: for every M > 0 there exists ¢ € C%(Q) such
that

13



i. [¢] <1on Q,

i S geee (p)ugty > M [[ul|? for p € bQ and u € C"

It’s clear that property Py implies property Py. In fact, let ¢ satisfies property P then let
¢ = e? than we have

‘<8q§, u>’2 < C’@éq@(u, u)

where C' = supe? and t € C". i
From the assumption that €2 satisfies property P, we have the following Theorem

Theorem 1.3.9. Let Q CC C™ be a smoothly bounded domain satisfies property P. Then
for any n € (0,1) there is a smooth defining function r such that —(—r)" is strictly
plurisubharmonic on €.

Proof. For a point p in the boundary, since b2 is smooth we can choose orthonormal
coordinates z1,..., 2, such that p = 0 and the unit outward normal at p is % where
Y, = Imz,. We can represent 02 locally as the graph of function g, Imz, = g(z’,Rez,)
where 2/ = (21,...,2,-1) then we have 0 = Imz, — g(z/,Rez,) is a smooth defining
function for Q. Let ¢ = ¢, satisfy property P on

i [0V]i08y < e

i > g (p)ugdy > M ||ul|” for p € b and u € C"

21, 0Z)
which will be scaled later. We consider the smooth defining function

r=cge .

Following the proof of Theorem [1.3.1] we have

i00p(u) = n(—0)" e~ [(=0)iddo (u) + (1 —n) (9o, u)*
+ o2Re ((30—, u) (90, u>> + 02i09(u) — no? (9, u)|?].

For n small enough, the assumtion (2 satisfies property P is not necessary since Theorem
1.3.3l When 7 is far from 0, the term | (9%, u) |* have more effect on making i09p(u, u)
negative. Then we use i. of property P to limit this effect.

We write D(t) the expression in [ | and we are going to find a good control for D(u) > 0
for a neighborhood of b§2 and arbitrary u € C". We decompose

1000 (u,u) = i000(u”,u") + 2Re(i00a (u”,u")) + i0do(u”, u")
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where u” € T = {u € T'°| (Jo,u) = 0} and u” € T? the orthogonal complement of 7" in
T1%. Near p, the boudary is the graph ¢ then similar to Lemma we have

1000 (u, u)| < C'lul| (9o, u) ],

furthermore

(00,u) < Clul

for some C' > 0. Since ¢ satifies property P, after shrinking the neighborhood U of p, we
have

D(u) > 5 |o]* i00y (u,u) = 2|o| |Clul| (9o, u) | + [ {90, u) [{9¢, )]

+ (L =) [(9o, u)|".

N =

By Cauchy-Schwarz inequality
1
201 (00, u) [[ (D, u) | < 0* <[ {0, u) " + Al (Do, u) |*
let A\ = 1*7", we can shrink U to obtain

D(u) > 7 o 000 (u, u) — 201o]lul] (90, u) | + 17 | @0, )

A~ =

From property P, choose vy, satisfies M > 4% we obtain D(u) > 0 and thus i09p(u)
be. O

1.3.3 Pseudoconvex domains with plurisubharmonic defining
function.

We are going to find another condition of pseudoconvex domain €2 such that the
Diederich - Fornaess index 1 can be chosen arbitrarily close to 1. Assume that for such a
pseudoconvex domain €2 there is a smooth defining function which is plurisubharmonic
on the boundary b2 we can let n go arbitrary close to 1. For that purpose, we need to
have a better estimate for the Levi form of a defining function of €.

We consider the case ) has a plurisubharmonic defining function, [FHO07, [FHOS| that
means, on the boundary, the Levi form of the defining function is non-negative for all
direction. Hence, we predict that the Levi form of the defining function is less negative

15



when we move to the inside of the domain. Precisely, we will estimate the Levi form in
normal direction to inside of the domain as in Theorem [I.3.10] In that Theorem, we show
that the Levi form of a defining function at points near the boundary can be estimate by
a small term of the distance and a controlable term in normal direction.

Theorem 1.3.10. Let 2 be a smoothly bounded domain in C™. Suppose 2 has a smooth
defining function which is plurisubharmonic on the boundary bS2. Then for any ¢ > 0,
there exist a neighborhood U of bSY and a smooth defining functions r such that

1 2
m! (Or(p),u) | (1.3.8)

i00r (p;u,u) > —e | |r(p)||ul* +

holds for all g € QNU, u € C".

In the case n = 2, Theorem can be proved directly since the tangential and nor-
mal direction has only one-dimention. And then they can be shown in explicit formulas.
Furthermore, we can get a stronger estimate for the Levi form of defining function r. The
Theorem in this case is stated as follow

Theorem 1.3.11. Let Q be a smoothly bounded domain in C*. Suppose Q0 has a smooth
defining function which is plurisubharmonic on the boundary bS). Then for any € > 0,
there exist a neighborhood U of D) and a smooth defining functions r = r x such that

i00r (p; u,u) > —elr(p)||uf® + K| (9r(p),u) (1.3.9)
holds for allp € QNU, u e C".

For the proof of above Theorems, we first estimate the Levi form of a defining function
at a point near the boundary. From our assumption, the domain 2 has a plurisubharmonic
defining function, its Levi form is non-negative at any point in the boundary. Then we
can simply use Taylor’s formula to estimate the Levi form at neighbor points.

Since bS2 is smooth, there exists a neighborhood U of b2 such that the projection 7
from Q2 N U to the boundary is smooth. For p € Q N U there is py € b§2 such that py lies
on the real line normal to b$2 passing through p , and |p — po| is equal to the Euclidean
distance dpn(p) to bQ2. Then we have

P = po — dpa(p)N(po)-

where

N |8p Z (?zj
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and p be any defining function of 2. N is the unit outward normal vector at z. If f is a
smooth function on U, then from Taylor’s Theorem

F(p) = f(po) — 2dsa(p)(ReN)(f)(po) + Oldyo(p)) for pe QNU.
If p € QNU with 7(p) = po and apply Taylor formula to the Levi form i90p, we obtain

109p(p; w, w) = 10Ip(po; w, w) —2dpe (p) (ReN ) (10dp(po; w, w)) +O(diq (p)) |w]*. (1.3.10)
for any vector w € C". Since i0dp(w, w) is a real value function, we have
(ReN)(i00p(w, w)) = Re(N(i00p(w, w))).

And from the assumption {2 has a smooth plurisubharmonic defining function, i09p(w, w)
is non-negative on the boundary. Denote by y the set of all point p € QN U for which
7(p) = po is weakly pseudoconvex boundary point. Let w € C" be a vector in a weakly
pseudoconvex direction at py, i.e., (9p(po),w) = 0 and i09p(po; w, w) = 0. Therefore, for
p € Qw and w is a weakly pseudoconvex tangent direction, then i90p(w,w) > 0 and
equals to 0 at pp. Thus, any tangential derivative of i@@p(w,_w) vanishing at p since
i00p(w, w)|pn attains minimum at these points. Since N — N is tangential to b, we
obtains B B
(N = N)(200p(po; w,w)) = 0,
and then N(i0dp)(w,w) is real at py and
Re(N (i00p(po; w, w))) = N(id0p(po; w,w)) = (N (i00p))(po; w, w)

where the last equation holds since w is a fixed vector. Hence, (|1.3.10)) becomes

100p(p; w, w) = —dya(p) (N (i09p)) (po; w, w) + O(da) (p)- (1.3.11)

Here we see that the problem for attaining conclusion of Theorem [1.3.10f and [1.3.11] is
that when (Nid0p)(po;w,w) is strictly positive, that mean when moving inward along
the real normal line to b2 at po, the Levi form i00p(w, w) is strictly decreasing. Hence,
i00p(w, w) is negative here and then and cannot hold for i00p(w, w) when
€ is sufficiently small.

To solve the problem and get the desired estimate, we must find another defining function
r of 2 such that (Ni9Jr)(po; w,w) is less than (Niddp)(po; w,w). The construction of r is
straightforward when n = 2. In higher dimensions, the difficulty is that the the Levi form
can vanish in more than one complex tangential directions at a point py in the boundary.

Now we will prove Theorem [1.3.11], which is more simplier and strainghtforward. In
the proof we will use the following Lemma
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Lemma 1.3.12. Let Q be a pseudoconver domain in C?. Suppose X is a smooth vector
field, which is complex tangential to bS). Furthermore, suppose bS) is weakly pseudoconvex

at some boundary point py. Then Y = Z X ;9% o is a weak complex tangential to bS)
at pg.

J 0z 0z

Proof. Since X is tangential to b2, let p be a smooth defining function for 2, then X (p) =
0 holds on bQ2. Moveover we have X (X (p)) = 0 on bQ2. Then we have

0= X(X(0))(po) = ija% (Z Xg—”) (v0)

2 2
_ 00Xy Op o? p
_ E X. _~ E X X;(p)=Y
Jk=1 J,k=
where the last equation holds since pg is a weak pseudoconvex boundary point. Then we

have Y is a complex tangential direction at py and i99p(po;Y,Y) = 0. [

Proof of Theorem [1.5.11. Since §2 is smooth, we can find a neighborhood U of b2 such
that the smooth vector fields

%o o) o 1[%0 0o
" |0p| 022021 0z 0z 10p| 021 021 ' 0z, 0z

are defined on QN U. We know that {T, N} spans C2. And we have
Tp=0=(T,N) and |T|=1=|N|lonQnNU.

Let € be fixed, for p € Qw NU and u € C?, we can find constants a,,, and by, such that
u is decomposed as
u = apuT(q) + bpuN (q).

We drop the subscript p, u. Then the Levi form of p can be decomposed as
i100p(p; u,u) = |a|*i00p(p; T, T) + 2Re (ab(i0dp)(p; T, N)) + |b|*(i00p) (p; N, N).

Note that we are considering p € Qy N U in the cases C2, then T must be the weakly
pseudoconvex tangential. From (|1.3.11]) we have

100p(p; u, u) =lal* (—2da(p) (N (i00p) (po; T, T)) + O(diio(p)))
+ 2Re (abiddp(p; T, N)) + |b]*i09p(p; N, N).
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The Cauchy-Schwarz inequality gives

bl*

2|abRe(i00p(p; T, N))| < |al*|p]” + iﬁi@f?p(p; T,N)

and then

i00p(p; u,u) > |af* (—=2dpa(p)(N(i00p) (po; T.T)) — |p|* + O(dya(p)))

1. - _
+[bf? (—Wié’@p(po; T, N) +iddp(p; N, N)) . (1.3.12)

Since (2 is smooth, after shrinking U we can assume that
2 2 €
—lp(p)” + Oldya(p)) = 7 r(p)
for p € Qy NU. Since p is plurisubharmonic on Q N bS2, we have
i00p(T, N)|? < [iddp(T, T)|[iddp(N, N)

holds on Q N b2 For p € Qu NU, m(p) = po is a weakly pseudoconvex boundary point,
we get that i00p(po; T, N) = 0. Therefore, there exists a constant C; > 0 depend on p
such that

[100p(p; T, N)|* < Cilp(p)[*.

Thus we can have a lower estimate for i09p(p; u, u)

i00p(psu, ) Zlaf? (~2dsp) (Ni0Dp(po; T, T)) + $p(p))
+ |b* (C1 — idDp(p; N, N)) ,
and we can find some Cy depending on p such that
100p(p: 0, 0) = [af* (~2dsa(p) (Ni0Dp(po: T, T)) + Sp(0)) = Calbf* (1.3.13)
holds for p € Qy NU.

We know that the problem with obtaining the conclusion is that when (Niddp(T,T))
is strictly positive at pog, cannot hold when € is suficient small. Therefore we need
to construct a smooth defining function 7 of Q such that (Niddr(py; T, T)) is less than
(Ni0dp(po; T, T)).

Let C' > 0 be a large constant, which will be chosen later. We consider a smooth defining
function

re=1=pe °°
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where 0 = [i00p(N, T)|?. According to the new defining function, we define the vector
fields

o L|or o oo 4 - L o9 o0
C|0r| |02 021 0210z C|0r| 021021 0% 02

We note that r and p are defining functions of a same domain, then we have T" = T and
N" = N on the boundary ).

As before, for p € Qu N U, for each vector u € C? can be decomposed as u = a,,T" +
b, N", and we drop the subscripts p, u. Since i00p(po; N, T) = 0, it follows that not only
o but also any derivative of o vanishes at pg, then by straightforward computation we
have

0?r _c do [ Op do 0?p dp Oo fales
= N—C— | =— —-Cp— - C——-C
8zj82k © |: 02k (8Zj paZj) * 8zj82k 8Zk (9zj paZjaZk
and then
O0?r 0p

8zj82k (pO) - 8zj82k (pO)
Moreover, 7 is plurisubharmonic at py and i90r(po; T", N") = 0, we can apply (1.3.13)) for
r with constant C5 depends on r

i08r (p; u,u) > |af? (—zdbg(p)(maér(po;TT,TT)) + %@)) — Cylb]? (1.3.14)

for all p € QuNU after shrinking U. We will show the relation between (N"i09r(po; T7,T"))
and (Ni00p(po; T, T)). We claim that

N"i00r(po; T",T7) < [Ni09p(po; T, T) — C|0p|.(Ni0dp(po; T, T))?] .
We have N" = N on b€, it implies

2 2
_ _ 1 2 _
N"i00r(po; T", T7) = Niddr(po; T, T7) = > N, ( o T’")
=1

— T}

0z 5“0 02,0z 7
on the boundary. Since r is plurisubharmonic at p and 7" is the weak complex tangential
at pg, we have
2 2 2 2 —
0r oTy \ - 0r orTr
N—L|Tj=0= L N—E .
0207, <; Y0z ) k Z 82,07, ; Y0z

Jok=
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Furthermore, 77 (py) = T'(po) on bS2, we have

2
_ B3r _
N"i00r(po; T",T") = ————(po)T; Ty N;.
1 T(pO) ) ) szhl azjazkazl (p0> JjLELVL
By straightforward computation we get
OPr
8zj82kazl
_eca| Db _o( O 00 Op Fo  Op Do 0o
02,02,07z 02,0z, 0z 0%z, 02j0z 0z 02,07 02;07z,0%

e dp do do 0 (0Op do
~Co0m (a—zl - C’)a—zz) ~ om0 (a—zl - O”a—zl)
0o 9%p 0p Oo 0o do ([ dp do
~ Y% (azkazl -C (a_a_ + Cpazkazl) O (a_ - Cpa—zl))]

Since py € b2 we have p, o and all the first derivative of o vanish at py. And T is the

9]
weak complex tangential to b2 at py, we have <8_p’ T> = 0. Thus we get
<j

2 a3r B 2 83,0 B
A Aas o TT.N; | = _vp TTN
.kzzl 8zj82k8zl(p0) L eV ijZZI 8zj82k8zl(p0) 4N

gk,
2 2
0 0o
-C (lzl a—zl(po)Nz> (‘kl 52105 (po)Tka>

J,R=

" (N"i00r (po; T", T")) = (Ni0dp(po; T, T) — C (0p) i0dc (po; T, T)). (1.3.15)

Since o = |i00p(po; N, T)|* and i90p(py; N, T) = 0, we have

1000 (po; T, T) = 1000 (po; T, T)
=i (éi(?ép(po; N, T)3i09p(po; N, T) + 0iddp(po; N, T)Diddp(po; N, T)) (po; T, T)
= [(9i00p(po; N, T),T) |> + | (0i00p(po; N, T),T) |?

> [(0i0dp(po; N, T),T) |?
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Compute further, we ger

2 2

_ 9 Pp -
0100 N, T), T = T,— —— TN,
(0100p(po: N, T). T) ; 79z, (}; 0759z " Z)

2

Dp _ 9?p 0 -
= —F——T;TyN, —— | T, — (T N,
Z aZJaZkazl eNLF Zl 8§kazl < j@zj( F l))

Since T' is a weak complex tangential direction at py, it follows that

(1)

is a complex tangential to b2 at py.

2

k,

8Tk 0
j=1 J 9z (9_
And since p is plurisubharmornic and pq is Weak pseudoconvex boundary point the last
term on the right-hand side vanishes. Since (Jp, N) (po) = |9p(po)|, from (1.3.15)) we
obtain

From Lemma [1.3.12| we know that 3

N"i0dr(po; T", T") < [Niddp(po; T, T) — C|0p|(Niddp(po; T, T))?] -
Hence, the estimate ((1.3.13]) for r becomes

i00r(p;u,u) > |al? [2dm(p) (CC3(Niddp(po; T, T))* — Niddp(po; T, T)) + ir(p)]
— Cy|b]* (1.3.16)

for p € Quw NU, where C5 > 0 satisfies |0p| > C5 on ).
We need to show that there exist a C' > 0 and a neighborhood Ug of b€2 such that

a5 .a 5 €
2dyo(p) (CCs(Ni0Dp(po; T, T))* = NidOp(po; T, T)) = (). (1.3.17)
For easier notation, we write A,, = Niddp(po; T, T), then (1.3.17) becomes
€
2dpa(p) (CC?)A?,O — Ap,) (po) > Zr(p)‘

If CC3A2 — Ay, > 0 then holds trivially for all C' > 0. We consider the case
CC;:,A%O — Ay, < 0. Since 2 is smooth, there exists a constant Cy such that dpyo(p) <
Cylp(p)| for p € QN U. Note that p = re“?, and we only need to find such C' and the
neighborhood Ug such that

€

2C4|r(p)[e®” (CC3 AL, — Ap,y) = —77(P)-
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Since o is smooth, we can find a neighborhood Ug of b2 such that for z € Q N Us we
have e©7(2) < ¢2€9(m(2) Moreover, ¢ € Qy N Ug and then 7(q) is weakly pseudoconvex
boundary point, then we have e“?(*) < 2 and then to obtain (1.3.17) we only need to find
C such that

€
>

= 1604

holds on Qy N Uec. Note that neither Cs, Cy nor A, depends on the choice of C. Thus,

by choosing
——_ 4+ A
C = max< 0, max _16C, " %0
PoEbQy C’gAgo

CCy A2 — A

we prove ((1.3.17) on Qy N Ug, which implies that

i00r (pyu, u) = Sr(p)|uf® = Col (Ar(p), ) | (1.3.18)

N

holds on Qy N U. We will find an estiamate similar to holds for a neighborhood
of Qu NU. For above computation we get that N"idor(T",T") < % holds on the set of
weakly pseudoconvex boundary points of €2. Since r is smooth, there is a neighborhood W
of weakly pseudoconvex boundary points such that Re(N"i00" (T7,T") < é on W N bA.

And we can assume that W C Ug such that if p € W N Q then 7(p) € W NS Using
Taylor’s formula after shrinking W, we have

00 (p; T, T7) = i00r(x(p): T", T7) + 2da(p)Re(N"i00r (x(p); T", T7)) + O(&. (1))
> i09r(x(p); 7, T") + 7r(p) + O(*(p))
> i00r(m(p); T", T") + gr(p)
holds for p € W N Q. And we also have

i00r (u, u) > |af? [iaéf(ﬂ(p);T’",T’“) + %T(p)} + [b[*i00r (p; N7, N™)
— 2|al[b] [100r(x(p); T", N") + O(r(p))]
> |af? [100r (7 (p); T", T") + er(p)] — Cs| (9r(p), u) |*
— 2|a|[b|i0dr (x(p); T, N").
for a large positive number Cs. In the last step we used Cauchy - Schwartz inequality
and since r is smooth. By definition i00r(T",T") is positive, we only need to estimate

id0r(T", N™). We know that 7 is not necessary plurisubharmonic on b€ at strictly pseudo-
convex boundary points. However since p is plurisubharmonic on b and r = pe~¢? and
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since any derivative of o is O(i00p(N",T"), we have on the boundary of  for a constant
Ce >0 B B ~
i00r(T",N") = Csi00r(T",T") [i00r(N",N") + Cj]

By Cauchy-Schwarz inequality we can find a constant C%7 > 0 such that
i00r(u,u) > er(q)|ul® — Cq| (Or(p), u) |2
for p € WNQ. Let 7 = r + Kr? for some K > 2C,. Then we have
i00F (p;u,u) = (1 + 2K7)id0r (p; u, u) + 2K | (0r(p), u) |?

Let Ux = {z € W|1 +2Kr(z) > % and K|r|> < £}, then we get, for p € Ux N Q)

1
2

i00F (u, u) > % (er(p)|u* = C7| (Or,u) |?) + 2K | (Or(p),u) |?
> e (p)|ul” + K[ (97 (p), u) |*

We denote S = bQ \ (W NbQ), the closed subset of the the set of strictly pseudoconvex
boundary points. For K is chosen sufficiently large, there exists a neighborhood Ug of S
such that 7 is strictly plurisubharmonic on 2NUg. In particular there exists a neighborhood
V' of bS2 such that

1007 (p; u, u) > e (p)|ul* + K| (07(p), )

forallp € QNV and u € C2. O

Our purpose is find a condition of the pseudoconvex domain €2 such that the Diederich-
Forneess compornent can be chosen arbitrary closed to 1. As a consequence of Theorem

[1.3.10l and [1.3.11] we have

Theorem 1.3.13. Suppose the hypothesis of Theorem |1.53.1() holds. Then for any n €
(0,1) there exists a smooth defining function 7 such that —(—7)" is strictly plurisubhar-
monic on §2.

Proof. Let n € (0,1) fixed. For our hypothesis, let r be the defining function of Q as in
Theorem . Set 7 = re H**. We will prove that there exists a neighborhood U of
b2 such that g = —(—7)" is strictly plurisubharmonic on Q2 N U for a large constant L.
Denote 1(z) = |z|* then we have

i00F (u, u) = n(—r)"2e 1 [Lr* (1004 (u, u) — nL |(0Y, u>|2)
+ (—7) (i@ér(u,u) —2LnRe ((87‘, u) (O, u>>> + (1 —mn) |{dr, u>|2}
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and we denote D(u) be the term between [ |. By Cauchy-Schwarz inequality we have

2L2 2

2(—r)LnRe (Or,u) (O, u) > 1—n

2 0,y P~ 2 (@) P

and it follows

D(u) > Li* (i@éw(u,u) "1“7 (O, >y) (- r)i@gr(u,u)—i-l_Tn\(ar,u) .

Since ¢ = |z|?, we compute further the first term of D(u) and note that Q is bounded,
we have

2
00, (u:0) = L @) P = o - L2 g

where A = max_.q |2|*. Now if we choose L = then we have

_1-n

2(n+n?)A
L , 1-

D(u) > §r2|u]2 — 71001 (u, u) + Tﬁ, (Or,u) |?

holds on €2. We see that when 7 go to 1 then L is choose near to 0.

L
In Theorem [1.3.10}, set € = min T Tn then there exist a neighborhood U of b§2 and

a smooth defining function r such that

09 (p; 0, u) > —¢ (|r<p>||u|2 b0 !2)

holds for all p € QN U. Then we obtain

= L
1007 (p; u, u) > n(—r)"’Qe’”erﬂu\z
for p € QNU, u € C. And we can extend 7 to Q \ U such that —(—7)" is strictly
plurisubharmonic on €2. This prove Theorem [1.3.13]. O

1.4 Diederich-Fornass index in g-pseudoconvex
domains.

Let 2 be a domain in C" with boundary 62 = M. Let 2y be a point in M, U be a
neighborhood of z;. We assume that b is of class C?. Let p be a defining function and
denote p;;(2) the matrix of the Levi form i99p(z) in the basis {wy, ... ,w,} with w, = dp.
We assume that, for a suitable choice of {wy,...,w,}, the eigenvalues of the Levi form
is ordered as A\(z) < Aa(z) < ... < A,_1(2). We recall the definition of g—pseudoconvex
domain

25



Definition 1.4.1. We say that M is g—pseudoconvex if there exists a covering of the
boundary and, on each patch, a C? smooth bundle ¥V C T"°M of rank ¢y < ¢, say
V = Span{0,,, . . ., Ou,,, such that

q+1

Z)\j(z) - ijj(z) <0. (1.4.1)

Lemma 1.4.2. Assume that (1.4.1) is satisfied. Then for a suitable p, we have

p = —log(—p)(2) + X|2|”

(N positive) is an exhaustion function of Q at zy such that for suitable N' and for any
k > q+ 1, the following holds

o D e uirtie — Y Y w2 = Al (1.4.2)

|K|=k—11ij=1 |J|=k j=1
for z € QN U and for any forms u of degree k > q.

Proof. In condition , the Levi form is evaluated at point of €2, whereas in assumtion
(1.4.1)) it is evaluated at b§2. We represent b2 as a graph =, = h(z’,y,) and we can get
the defining function p = z,, — h(Z’,y,). We denote z +— z* the projection on bQ) along
the x,, axis. Then we can have

dp*(2) = Ip™(2%)
and
00p(z) = 00p(z*).

We shall forget 2z in the following and always suppose it ranges through 2. We shall use
the notation w”™ = (wl,..;,wn_l), wy, = 0p. Let Ay < Xy < ..oand pp < e < ... be
eigenvalues of 0y and aﬁp} ol respectively. We have some computations

90 = 00 (—1log(—p) + X|z[?)
—p
1

1 _
= ———0pR0Ip+
2P BT )

90p + N6,
(=p) P ’
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then we have ¢ = |p|~'80p+|p| 2w, @&y +Nw®w. Thus |p|~ ;4 X' are the eigenvalues
of 88@’ ot It is clear that

Z Z QDZJ uzKU]K > (ZA> |U|2 (143)

|K|=k—115=1,...,n

and
Z Zson )ugl? = ((—p)‘1 (Z m) +XQ> Jul?. (1.4.4)
|J|=k i<q i=1

We claim that for suitable ¢ > 0,

k q
1

D hi——> pi—Ng=((k— XN —ke) =\ (1.4.5)
; —pP “
i=1 =1

(where \ positive for suitable A’. In fact, we decompose w into w™ and w,, then we have

- 1
00y —88,0—1— Wy ® W+ N @@
(— p) (— p)
1
:—aTaT,o + ——0,,0,,p+2Re OO, p+ Wy ® W+ Nw® w,

(=p) () (p)

(— p)
L oo ! G Wy, @ W e
‘m”"+[<<—p>2+<—p>2) © T+ e

—aw QW + Nw® . (1.4.6)

OOy, p+cw Q|

After shrinking U, for suitable ¢ we can make the term between brackets [.] in (1.4.6]) to
be positive. Thus we get

_ 1 _
d0p > mﬁTﬁTp —w R0 4+ Nw®w. (1.4.7)

Let N describe a family of complex k-dimentional planes in C". We have
k p—
; A\ = 1]{/15 trace (30¢|Nk>
Nk> 7

1 _
> inf trace ( (ﬁaTan —awW RV +Nw® @)
—p

N

k
> Z + (kX — ke).
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Thus, we have
k 1 J
Z&' - _—pZm —Ng > ((k =@\ —ke) = .
i=1 i=1

Combine (1.4.3)), (1.4.4) and (1.4.5)) we prove the lemma. O

In Lemma [1.4.2] we have proved that for g-pseudoconvex domain {2 we can find an
exhausion function that is ¢g-plurisubharmonic. For €2 is a pseudoconvex domain (¢ = 0),
there are some results in which there are Diederich - Fornaess index 7 such that for suitable
defining function ¢, —(—)" is a plurisubharmonic defining function of Q. The question
is that is there a Diedrich - Forneess index for g-pseudoconvex domain €2, ¢ > 0. In the
following Theorem we show that there is such a 7 index that satisfies in a neighborhood
of each point on the boundary.

Theorem 1.4.3. Let Q be a bounded g-pseudoconvex domain on C" with C?-boundary
then for each point zy on the boundary, there exist a neighborhood U of zy and 0 < ny < 1
such that for 0 < n < no there exists a defining function ¢ such that —(—p)" is g¢-
plurisubharmonic on U N ).

Proof. On the neighborhood U of zj, assume that the Levi form we choose an orthogonal
basis of (1, 0)-forms wy, . ..,w, on U and a defining function p as in Lemma We also
assume

(Wi, wn) = (Vi) (d2, . .., dz,)T
where (Vj;) is an unitary matrix. We have that (wi, . ..,w,) span the negative eigenspace
of 88p‘8pl. Let S;; be a n x n diagornal matrix with S; = Ly with ¢ = 1,...,¢ and
Sii=—Lywithi=q+1,...n—1and S,, =0 We define on U

o = pe’.

where
0(z) = (i 20) Vi) (Si) (Vig) (1, 20)

where Ly, Ly > 0 will be choosen later. Denote ¢ = —(—)"” with 0 < n < 1. Then we
have that ¢ is a C*° defining function of 2 on U N§2. After some computations, we obtain

00@ =n(—p)" 2" x

[(1—n)0p @ 0p + (—p) (09p + 2nRe (9p @ D)) — p* (00 + 1oy ® é(w)] .)
1.4.8
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Denote A = n(—p)"~2e™ a positive term. Let 0,,0,,(% be the matrix of (99p) in the basis
of {w;}. Notice that when restrict on dp* we have

L = A[(=p)0p = p*(00¢ + ndp @ )] |, - (1.4.9)

Let 8;5; be the restriction of 0,0,p to the plane orthogonal to w,. We have

% =4 [( M) @ @y + (=) (uBop + 20Re (w0, @ D)) = ° (D0t + 0Dt @ aww} ,
=A [(—p)@iﬁlf) — 0 (00,9 + 101 @ D))
+ (—p) (awnéw”p +2Re 970, p + 2nRe (w, ® &,ﬂﬂ) +(1—nw, ® @n]

—A {(—p)@l(ﬁ;p — 0 (00,0 + N1 ® 0.u1))

(1-mn)

=) W, @@, + 2Re 950, p + 2nRe w, ® &Jw)}

(1.4.10)

+ (_P) <awn 5wnp

Shrink the neighborhood U if necessary, we can have the term (&ﬁnp + (1__—:)> is large.

We also can choose that nL; and 1Ly small, then we can insert a small term C'(—p)? for
a suitable constant C' to get the second line of (|1.4.10)) positive. Hence we obtain

00w = A[(—=p)ILOLp — p* (0.0.% + n0uth ® O,0) — Cp’w” @] . (1.4.11)
Let Ay < Ao < ...and pu; < pp < ... be the eigenvalues of 90 and 85,0|6PL, respectively,

in the basis {wZ} We note that in the basis {w;} we have (8w5wz/1) = S. The Kronecker
product d,¢ ® d,1 forms a Hermitian, the eigenvalues of it are real and we can compute
that it has (n — 1) zero-eigenvalues and one is

n n—1
ZV;]’ZJ' +L2 Z

j=1 j=q+1

q 2

)\L:le

i=1

n 2
> Viiz

j=1

?

and we also have that w, is the eigenvector corresponding to a zero-eigenvalue.
By (1.4.11) and above remark, we have

/ n
Z Zawiawj@wi}(wﬂ( >

|K|=k—1ij=1

k
[ Zuj—i—p —q)La — p? (qLy +nAp + C) [|w]. (1.4.12)
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On the other hand, we have

/

> Zaw]aw Plws> < A

|J|=k j=1

(Z 3w]3w]p) —qLip ] wl?. (1.4.13)

From ([1.4.12)) and ({1.4.13)) and a choice of L; and 7y small and L, large enough, we obtain

’ n / q
Z Z@wia;j(ﬁwi}{w]’K > Z Zawjéwj¢|wJ‘2'

|K|=k—11ij=1 |J|=k j=1

Hence, we proved the Theorem that —(—¢)" is g-plurisubharmonic for all 0 < n < mng. O

In Theorem we proved that for each g-pseudoconvex domain €2 we can find the
Diedrich - Forneess index 7y such that there exists a defining function ¢ = ¢, satisfies
— (—¢)" is g-pseudosubharmonic for any n < 7. Similar to the case Q is pseudoconvex
(means q=0), we going to find a condition for the boundary b2 such that 1 can be closed
to 1 arbitrarily. We remind the definition of self-bounded complex gradient and property
P, the domain (2.

Definition 1.4.4. Let (2 CC C" be a smoothly bounded domain. We said that a function
1 € C? has a self-bounded complex gradient if there exists a constant C' such that

n 2
<C oY

(1.4.14)

for all w € C" and z € 2. When ([1.4.14)) holds, we write |31/)|?)5¢ <C.

Under the scaling 1 — t¢ for t > 0, a factor of t* appears on the left hand side of
(1.4.14)) while the right hand side has a factor of t. The size of the constant C' can be

choosen as we need.

Definition 1.4.5. We say that {2 has the property P if for any positive number M, there
is a function ¢ = 1y, € C*(Q) with

i. 1] <1 onQ;
and such that, if we denote by )\qf < )\g <...< /\ﬁf1 the ordered eigenvalues of the Levi
form (00%), we have
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)\w qo 621/;
A T X g

where the constant ¢ > 0 does not depend on M.

ii.

> M on b2,

Remark 1.4.6. Let € satisfies property P with function ¢ = @j,. Let ¢ = ¥ then we have

by computation
I of Po | O0p 0o\
¢ (62187:] + 8211 © 8_Z]> ’

8235)27
and o ov .0 5
2g0 ' _90
0z; © oz (92] 0%z; ®© 0z
For any k form u with k > ¢ we have
2
> - > (35

02,0, “’K“3K>
j=1 " |K|=k—1 !

! n 82¢ - q0 82¢ )

|K|=k—1 Lij=1

q0
(Z 90z, Za oz, ’K‘2>]

Z]_

/

2

|K|=k—1

Z 82282 92,07, KWK ~ Z

ij=1

Write the derivative of ¥ in the last line in term of derivative of ¢ and obtain

/ q0 n
oY o
RN B ST R S
|K|=k—1 j=1 " j=qo+1 "7
=¥ — Uik — (1 —€) —| JK|2
\K|=k—1 Lij= 02:0%; j=1 02j0%;

n 82()0
AP i 2
(;Zl aziazj“’K“JK Z 2 a- ] )]

From condition ii., if we choose e small enough, the term in the second line of above
equality can be positive. And we obtain

2
S e? L 0% )
> S| =% 3 |3 = 0-03 S

7=1 |K| =q—1 Lij=1

!/

>

|K|=k—1

We have an estimate look like the self-bounded for the gradient.
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Theorem 1.4.7. Let Q be a bounded domain on C" and satisfies property P,. Then for
each point zy on the boundary, for each 0 < ny < 1, there exist a neighborhood U of zy such
that there is a defining function y, satisfying —(—,)" is g-plurisubharmonic on U N Q
for 0 < n < np.

Proof. For a point p in the boundary, we assume a neighborhood U and choose a orthog-
onal basis of (1,0) forms {w} and a defining function p as in Lemma [1.4.2} Let ¢ = ¢y
satisfy property P, on (2, that means there exist M > 0 and

i. [¢| <1on

0%
e

We can also replace ¢ = e¥ if necessary that v can satisfy the above conditions (with a
new constant M) and the estimate for the gradient as in above remark

2
- Y
> S| <2 3 |5 i~ - 3 |

j=1 \K\klljl

/

2

|K|=k—1

for some €y small enough.
Let o = pe~¥ and denote ¢ = —(—p)" for 0 < n < 1.
Similar to Theorem we can compute

00¢ = A[(1 —1)dp @ p+ (—p) (00p + 2nRe (9p @ I))
p? (89 — ndy ® 0], (1.4.16)
with A = n(—p)72e™" is a positive term.

Following the proof in Theorem [1.4.3| by restrict 9¢ to the plane orthogonal to w,, we
get

0,06 =A [(—p)a;a;p § 2 (B — Bt ® B,0)

+(—p) (8wn5wnp + <t — 7)7) Wn ® Wy + 2Re 70, p + 2nRe w, ® aﬂb)] .
—p

(1.4.17)
In the second line of ((1.4.17]), we see that the Cauchy-Schwart inequation gives
_ 1— 2(— _
2Re w, ® 0,1 > — nown R w,, — (=¢) 0, ® 0,1. (1.4.18)
2(=p) L —mno



Shrink the neighborhood U if necessary makes ﬁ become a large term. By combining

(1.4.17) and (1.4.18)) and also find a suitable constant C' = (), that makes the remain
term be positive. Then (|1.4.17)) becomes

0s0up = A [(=p)OL05p + p* (0,0.0 — 2000 ® Ou00) — CpPw™ @@"| . (1.4.19)

For 7y small, the assumption property P, for €2 is not necessary since we can find a weight
¢ as in Theorem [I.4.3] With the asumption Q has property F,, we will find a weight
Y = 1, such that for arbitrary 0 < 1y < 1 we can have ¢ satlsﬁes the Theorem with
0 <n < no.

By replace 1 with #i) for t > 0, and let ¢ be larger, we can make €, = i—z as small as we
need, and also M increases by a multiplication of .

Let AY < \§ <...and Xf < )\;b < ... be the eigenvalues of 90y and 99 in the basis of
{w}, respectively. Then we obtain

k

0%
Z Z awj uzKu]K

|K|=k—11,5=1

k k q0
0%
_p)Z)\;?+p2 <(1 —en)Z)\;-p+en(1 _60>Z(9w-3@- —C)
Jj=1 j=1 i JYHg

Jj=1

lug?. (1.4.20)

Furthermore, we have

/ q0 2 A

J

2
Zaw]awj Z 8% ] g (1.4.21)

From here, we can choose t large enough to obtain

n q0 aQw
(1—e) Z Z a* UK UK (1—en(1—eo))zawja@j|uj|220|uJ|2. (1.4.22)

|K|=k—11j= 1 j=1

Combine (/1.4.20))-(1.4.22) we have

/ q0 N
0%¢ -
Z Z ow; 8w Juirclljse = Z Z D 8w 2)ujrljK, (1.4.23)
|K|=k—114,j=1 K |—k—1 =1 OW;
for any form u of degree k > ¢ and that proves the Theorem. =

1.5 Applications

There are some applications for the Diederich - Fornaess index.
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1.5.1 An embedding Lemma

Theorem 1.5.1. Let X be a Stein manifold and Q0 CC X be a pseudoconver domain with
C? boundary. Let X be embedded as a closed submanifold into some C*. Let m : U — X
be a holomorphic retraction from a Stein neighborhood U of X onto X. Then there is
a bounded pseudoconver domain Q cc U with C? boundary such that QONX =Q and
W(bQ) = Q. The domain Q) can be chosen to be strictly pseudoconvex outside X .

Proof. Let fi1,..., fs be holomorphic functions on C", which generate the ideal sheaf of
X on C". Then for any vector t = ,_, tka%c that is not tangent to X, we have

2
>0 (1.5.1)

s

D

i=1

i dfi(p) "

2
k=1 Oz,

for all p € X. We see that, for each p € X, 771 o7(p) is a submanifold tranversal to X at
p. Let t, be tangent to 7! o 7(p) at p, ¢, is not tangent to X, then by shrinking U, we
can assume that holds for all p € X and such these ¢.

Let p be a defining function of Q on a neighborhood U of ) correspond to the Diederich
- Fornaess index n = } for [ € N. Let p = —(—p)" on Q and

p=pom+ LY |f
j=1

on 7 1(Q) with a constant L > 0. Since p is exhaust, we can choose L large enough and

obtain A
Q={pen ' (Qlp(p) <0} cCU

and

Op =7(dp) + LY _(fidfi+ [i0f:) #0 on bQ\ X.

=1

On the boundary of Q) we have

—porm=L) |f
j=1

therefore it can be described by

s l
v=pom+L <Z|fj!2> :
j=1
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We have that v is a C? function and di) = 7*(dp) # 0 on b). Hence, b2 is smooth at b
The Levi form of ¢ at ¢ € 771(Q) is

i00¢(p;t) = i00p(m(p); mat —i—LZ

7j=1

of(p
Z sz

k=1

The strict plurisubharmonicity of p implies the strictly plurisubharmonic on 771(Q). Thus
the proof is complete. O

1.5.2 Global regularity of the 0- Neumann problem.

For any pseudoconvex domain 2, let 1 be the Diederich - Fornaess index relate to
the defining function r,,. We get that r, has the form r, = g,r for some g,. For general
pseudoconvex domain €2, the index 1 may near to 0. On the other hand, it’s shown that
for a given Sobolev index s that goes to 0, one can find a domain €2 in which By fails
H?-regularity. So, the relation beween s and 7 is an interesting problem. The problem was
stated by Kohn in [Koh99] and the result has been improved by Pinton and Zampieri in
[PZ11].

For this result, we assume that the domain (2 is g-convex, which means that for the
ordered eigenvalues \; < Ay < ... < \,_; of the Levi form i00r when restrict to the
tangent space dr+, we have

q
d a0
j=1

By a same process as for ¢-pseudoconvex domain, we can prove that there also have
Diederich - Forneaess index for g-convex domain.
First we introduce some notations. For an operator F', we define Qr by

Qr(u,u) = [|[FOul* + || Fo"ul®

We also write Qs(u, u) = ||Oul|? + ||0*u||%. For any function g, let r, = gr and we denote
ory 0 o or -
E L,;=—— ——2N, d T,=—i(N,— N,).
Ny = |87“ |2 0%; 82] 9 0z; 0z g all g H(N 9)
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Then we can have that L,; are complex tangential and 7} is the complementary real
tangential vector field. Now we use the notation

- 1 &r, Or
0. = — g g
J |(97“g|2 Z 82182] 822

and introduce the Euclidean derivatives

_ ' B B
Ogu= > > (0juix — Oju;x) + error
|K|=k—1
/
Ou= > Zj 0jujx + error.

|K|=k—1

Then we can get a realation

0,T,] = ©,T,.
For the commutator with 9%, we need to modify T, by Tg

~ 1 or or
(TgU)jK = TngK + _7’ _QZ |:Tg, a—zg:| Ui K

Thus u € dom(9*) implies T,u € dom(9*) and we also have
0%, T,] = ©:T,.

Definition 1.5.2. Let s be a positive integer and let 1 < ¢ <n —1. We say that T well
commutes with 0* in degree > ¢ when

||[8*7Tg]u”2 < ES,gQ(u,u) + Cg||u||2—1

-1
—2¢osdiam(Q)2 inf ( =2 .
casdiam(€)” inf (1) where ¢; is a small constant

for any u of degree > ¢ and for €, , < cfe
and ¢y is controlled by the C*-norm of r,.

Theorem 1.5.3. Let Q be g-conver and assume that for some g, T, well commutes with o
in degree > q. Assume also that this property of good commutation holds, with a uniform

constant €, 4 for a strongly g-pseudoconvex exhaustion of 2. Then for any form f € H®
we have that By f € H® and

1Beflls < cllflls  forany k> q—1.

We also use some inequalities come from [Koh99] by Kohn.
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Theorem 1.5.4. If Q is q-convex and has a Diederich-Forness index n = ns which
controls the commators of (0,0%) with Q° in degree k > q, then By, is s-reqular for k > q.

Proof. For any form u we can decompose into u = u” + u”. We have

I} < Y 1105wl S Q(u, w)

and
Q7 u") < Qu,u) + Q(u”,u”) S Qu,u) + [lu”[]] S Qu,w).

We going to show that the existence of Diederich-Fornaess index in g-convex domain
implies the good commutation with 0* in defree > q.

Step 1. First, the g-convex domain €2 has the Diederich-Fornaess index 1 corresponds
to the defining function r,. We can assume that 7 is bounded away from 0 (in some cases,

it approches 1 and we expect that (1 — )2 < €sg)-

= ! T T
enote 100r,(u,dr,) = — Ui —— ZK. e consider a k-Iorm
Denote i90r,(u, dr, 2 ) dzg. W ider a k-f
K=k—1 \ij=1,..., na 0 2 (92;'
/ p—
W, = T 2K . Note tha T, ~ |wy|. For shorter notation, let v, = —(—1r,)",
n 877/\d_ Note that 877 n F hort tati ltAn ,7”

|K|=k—1
then we get

i@érn(u, ory,) = (—rn)l_"if)gfn(u, ary,) — (—rn)_l(l —1n)0r, ® 5rn(u, ory)

_Tn)lin(iagfn)(% dry) + |(_rn)71(1 —n)0r, ® 5rn(u, ory)|

I |~

S

—~

q0 aQA
1— )=
(—ry) " (1387“7]) (w, Ory) + (—ry) ”Z 02]32] (u,Ory)

+ K_rn)il(l —n)or, ® arﬂ(“? 5’7’7,)|
N (_Tn>17n (1857:70 (u, wn) + (_Tn)linlarn~u|

AN

q0 82A B
=)' Y 02,07 (w, Ory) + |(ry) = (1 = 0)0ry @ Ory (u, Oy )|

j=1

< (=)' [(i007,) <u,u>}% [(z‘&éfn) <wn,wn>}
+ (=) 0| 4+ (—ry)' "Z 82]8‘ (u, Ory)

+ ()~ (1 = n)Or, @ Ory(u, 87“,7)\. (1.5.2)

=
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In ((1.5.2), we apply the same way as in (2.26) of [PZ11] with (i@éfn) is a positive form.
Continue (1.5.2)), shrink the neighborhood if necesary, we can get

i00r,(u, Or,)

S (=r) 7 [(1007,) (u, )] (=) 71 = )]y '+ O((=ry) 7))
+ (1)l (- ) 1|arn u|
S (_Tﬂ) [(z@c‘)rn ( T7I 2|87“n|2 —f-O( Tn)% g)
= >|8rn|< ) 1|arn ul (1.5.3)

Shrink the neighborhood, we can get
11001, (u, Ory)| S (1 =)z (—r,)"2|0r,? [(i1007,) (u,u)]?
+ (L= n)|0ry*(=ry) Hu"]. (1.5.4)

Apply (1.5.4) for u = u" yields
|00y (u™, 0ry)| < (1 =)

N
N

(—rn)_g [(i@éfn) (u”, uT)]
Step 2.

I(=r) 0" Tulf = [ (=) |i001, w01, av
S(1—n sup|87’n|/ )2 (i007,) (u,u)dV
(1 =) sup |9, | (=)~ (=) B
S (1= mysup|9r [ [Q_, g () + [[(=r,) ™+ [r [u" 2]
(1= )2 sup [ry | (=)~ (=) B
(u,

S o0 |Q, 3 (wsw) + 5w gl (Q g () + 1T Huf?)]

Here 7, = gr. This implies the good commutation of T, with h 0*.

Step 3. First we have
]} S Qomr(u,w) + | Tyull? + [lullsllefs-1-

For n-form that is 0 at b$2, B,,_1 is regular. By induction, we asume that By is s-regular
and we shall prove that it is true for By_;. Let f € C*°(D) be a test function. We have

1Ty Bra fII? = (Ty Br f, Ty f) = (Ty By f, T; 0" NiOf)
— (TEBys /TS f) — (TS TE0By o f, NiDf) — (0, T T2 B £, NiDS).
(1.5.5)
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and then apply to T°2, we get
s
1772 Bea fI| < (sup |g])* 2 || Ty 2 Bir £ +g00d term

S Guplol)~? (55 Bl + ¢ (155711 1077518 1) ) + good term,

We first consider the last term in the right. By spliting it into (k) and (0) component,
where f = f® 4 f© £ ig the harmonic extension of the boundary trace f|yo, and note
that f(©[,q = 0. We have

107, Ty 1NN < eI T3 2AMND < eg(IT7 27 |+ 1772725 £
where the right hand side is good terms.
For the (h)-component, denote £() := ||(—rn)g(:)ZTgs(5Mk_1f)(0)

We will use the following result for the estimate of ||[0*, T, _g](Nké HI®
Proposition 1.5.5. We have

T2, 8™ S |I(=r)2 (1, 0T ™| + Op" 37|, v e C(DNU), (1.5.6)

where Op*~ 3~ denotes an operator of order s — 1 — 1 in R?".

sup g (0 75 (@M ) S suplgP> 7=y S, B ONea YO
S gl (=r )%@Z S(ONg_1.f)™||? + error

1 _ _
< lgl*™ n| E s*||(—=r )5]@ (8Nk,1f)(h)|]2+5(0)+error

< sup [g|** ™" sup |g|" sup r |258 “€egQ 3 7. (ONk-1f, ONi1 f)
+ Q-3 (ONk—1f,ONe_1f) + HTS*géNkAHQ
+ [[(=74) 2 [0, TIONk 1 fI* + (=) 2 [0, T*)ON,+ £
+|T72(0, TJON1 f||* + |1T 20", T*]Ny—1.f||*] + £ + error
< e (Ier) T 0N, A I+ [T 12 + [T 250N fIF) + £ + e
(1.5.7)

where the term ||[T°~29*9N,_1 f||> can be absorbed. The detail of above calculation can
be found on [PZ11].
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For the first term of (1.5.7), we start from f*. We have

IT* 2 B f®2 < el ()3 T8 ON;1 f P2 + | T572 F 0|2 + €O + exror
teg (T4 700 4 7=t

2) . (L5.8)

and the last term of (1.5.8) is a good term.
We have from [Koh99], the first term on the right could be described as

(=) 2T 0" ON 1 f )| S |T* 720" ONy—r f ]| + || — 7T 2L AT ON,_1 f P
= 1% term + 2"¢ term
For the 1%t term
1 term < || 7572 f |2 + (| 7572 By f O 2.

The first term in the right is good. The second term canbe absorbed with a small constant.
For the 2" term

n

2" term = || — rT*21(0*D + D0")0*ON f || + error
= || — T2 719* 0 f M| 4 error
= || =T 2 N (T?* + orT + A) f M)
S A R AR A

SITeE ™)
which is good.

For the last term that is related to f(), we must consider is the regularity of Bj_; f(
From elliptic regularity
|72 Nea fON S NT 57270

Applying Boas-Straube formula gives
(=) 207, T1(ONk1 O < ¢y (HTS_g(éNk—lf)(O)HQ + IITTS_g_lﬁ(gNk—lf)(o)||2>

< ¢, (IT* 5 200N 1 /)OI + [T 5 AN, 1))

)

(
< ¢ (I 4 2A@NA )| + [T 4 A@Ne- f) )
<o

o (I FIP 1T 228 £ o T2 S0P 4 T2 ) )
(1.5.9)
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The elliptic regularity as in (1.5.9) also controls |72 [0*, T*|(ON, £)©@ || and ||(=r)2 [0*, T*)(ON.f)" .
Therefore we get

IBRfII < ell fls-
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Chapter 2

Boundary behavior of the Kobayashi
metric

2.1 Introduction.

This chapter deals with the question of the boundary behavior of the Kobayashi metric
on weakly pseudoconvex domains. When 2 is either strongly pseudoconvex in C", or
pseudoconvex of finite type in C2, or convex of finite type in C", the size of Kobayashi
metric in the “small constant-large constant” sense has been proven by I. Graham [GraT75],
D. Catlin [Cat89], L. Lee [Lee08§], respectively. In these classes of domains, there exists a
quantitative M (z, X) satisfying the asymtotic formula

lim M (z, X) = 85" (2)| X7| + 651 (2)| X"

z—bS)

and positive constant ¢ and C' such that
cM(z,X) < K(2,X) < CM(z,X).

Here, X7 and X" are the tangential and normal components of X and dg(2) is the dis-
tance from z to the boundary.

For generally pseudoconvex domain in C", K. Diederich and J. E. Fornaess proved
that there is a € > 0 such that K(z, X) > §(2)7¢X]| (see [DET9]) on real analytic case
of finite type by using Kohn’s algorithm [Koh79]. In [Cho92], S. Cho improved the result
in [DF79] for domains without real analytic condition by using the method of Catlin in

[Cat87, [Cat89).
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However, not much is known in the case when the domain is not finite type except
from the recent results by S. Lee [Lee01] for exponentially-flat infinite type.

For § > 0, denote Ss ={z € Q: -0 <r <0}

Definition 2.1.1. Let ) be a pseudoconvex domain in C" and U be a local path of its
boundary. We say that Q has Property (f-P) on U if there exist a family of C?(U N Sj)
functions {¢s} such that

|ps] <1
[Dgs| < 07! on U S,
i00¢5(L, L) = f(6~1)2|LJ?

for any L € TH%(U N bQ2).

Our main result is the following theorem.

Theorem 2.1.2. Let 2, U, §(z), and X = (X7, X") be defined as above. Assume that
has Property (f-P) on U. Then we have

K(2,X) 2 f(dq" (2)IXT] +dg" (2)| X"
for any z € U and X € TH°

Remark 2.1.3. The asymptotic rate f(d;;, (z)) in tangential directions is optimal.

An important tool for this lower bound follows the bumping function, which migh also
be useful for other purposes. It says, roughly speaking, for any the boundary point w on 2
which satisfies Property (f-P) that one can find a pseudoconvex hypersurface touching
exactly at w from the outside and the distants from z € ) to new hypersurface is exactly
controlled by the rate depending on f of |z — w]|.

Theorem 2.1.4. Let € be pseudoconvexr and U be a local path of the boundary. Assume
that Q has Property (f-P) on U. Then for any open set V. C U, there exist a real C*
function p on V x (V N Q) with following properties:

1. p(w,w) = 0.
2. p(z,w) S —F(lz—w|) for any (z,w) € (VNQ) x (VNQ) where F(6) = f*(61)~ .

3. p(z,m(2)) 2 —=d(z,0Q) for any z € V N Q where w(z) is the projection of z to the
boundary.
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4. For each fized w € V NISY, denote Sy, ={z € V : p(z,w) = 0}. One has:
(a) d.p(z,w) # 0 everywhere on S,,.

(b) Sy is pseudoconvez. In fact, one can choose p such that S, is strictly pseudo-
convex outside of w.

(c) S, touching Q exactly at w from outside.
The proof of Theorem combines the technical of weighted function in [McN02,
K710, [Khal0] and construction the bumping function in [DF79, [Cat89, [(Cho92]. The
details of the proof are given in Section 2.

Using the theory of existence exhaustion function, we obtain the plurisubharmonic
peak functions with good estimates. More precisely we obtain the following theorem

Theorem 2.1.5. Assume that there exists a family of bumping functions on local path V'
of the boundary as in the conclusion of Theorem [2.1.4. Fiz any 0 <n < 1, Then for any
w € VN there is a plurisuhharmonic functions ¥, (z) on V' \ {w} verifying

L pu(z) = Yu(Z)| S |2 = 27
2. u(z) S —F(|z —wl)
3. Ya()(w) 2 —5(2, bO)"

for all z and 2" in V N Q.

The lower bound of Kobayashi metric follows the size of general estimates of plurisub-
harmonic peak function.

Theorem 2.1.6. Let ) be a pseudoconvex domain and V' be a local path of the boundary.
Assume that for any w € V NS, there is a plurisubharmonic function 1,,(z) such that
Vu(2) S —Fi(d(z,w)) and ¢r)(2) 2 —F5(6(2)) for all z € V N Q. Then the Kobayashi
metric has the lower bound

Ka(z, X) 2 (F{F2(3(2))) ' X]|
forallzeV, X € T}O.

The proof of Theorem [2.1.6] can be found in Section 3.5. A domain Q C C" is a
connected, open set. Let D C C denote the unit disc and D, = {z € C : |z| < r}. We also
let Uy (Us) denote the collection of holomorphic mappings from U, to U;. The Kobayashi
metric on 2 is defined for z € Q and X € C”, to be

Fi¥(z,X) =inf{a: a > 0and 3f € Q(D) with f(0) =z, f(0) =o' X}
=inf{r~': 3f € Q(D,) with f(0) = z, f'(0) = X}
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2.2 Pseudoconvex domain with real-analytic
boundary.

In this section, we recall the result of Diederich - Fornaess of estimating the Kobayashi
metric. In there result, they depend deeply on the condition that the domain €2 has a real-
analytic defining function. For that they use J. J. Kohn technique on subelliptic multiplier
to construct a bumping function. And they get the following Theorem to estimate the
Kobayashi metric of a point near the boundary.

Theorem 2.2.1. Let 2 C C" be a pseudoconvex domain with real-analytic boundary. Let
r be any smooth defining function of Q). Then there exist a constants ¢ > 0 and € > 0 such
that

FQ(p7X) ZC

r(p)|
for allp € Q and X € C".

2.2.1 The bumping theorem.

In [DF79], Diederich and Forngess introduced a kind of bumping function. It says that one
can find for any point w on the boundary of a pseudoconvex domain {2 with real-analytic
boundary a pseudoconvex hypersurface near w touching ) exactly at w from the outside.

Theorem 2.2.2. Let U C C" be an open neighborhood of 0 and r a real-analytic function
on U such that dr # 0 everywhere on U, r(0) = 0 and the hypersurface S = {z €
U : r(z) = 0} is pseudoconvex from the side r < 0. Suppose, furthermore that S does
not contain any positive dimensional germs of complex analytic subvarieties. Then there
exists an open neighborhood V- C U of 0 and a real-analytic function p on V x (VN 95)
with the following properties

(1) plw, w) = 0.
(ii) One has d.p(z,w) # 0 everywhere on V' for each fired w € VN S.

(77) The hypersurface S, = {z € V : p(z,w) = 0} is pseudoconver from the side
p(.,w) <0 for each fired w € VN S. Moreover we can choose p and V' such that S,
18 strictly pseudoconvex outside of w.

(i) One hasr >0 on S, \ {w}.
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The proof of Theorem ([2.2.2)) bases on ideal theory of subelliptic multipliers devel-
oped by J. J. Kohn on [Koh79|. To construct the bumping function p we have to use the
following results

Lemma 2.2.3. There exists an open neighborhood U CC U of 0 and a collection of

real-analytic functions f1,..., fi;...; o, Sll on Uy with the following properties: Put

go = coeff.(Or A Or A (90r)™ 1)
and

g; = coeff.(Or NOr NOF NOFI N ... NOFL NOFL A (00r) ),
g =1,...,1; then there is an integer N > 1 with
APV <+ @+ + g (2.2.1)
orallj=1,...,1, k=1,...,s;. Furthermore, g, # 0 everywhere on U,.
J

The pseudoconvexity of S implies g; > 0 on U; NS for j =0,...1. When S is strictly
pseudoconvex, then we also have go(0) > 0 and then f{ will not be needed.
We also have some additions to simplify our later calculations.

1. The functions fg,j =1,...,;k=1...,s can be chosen to be real-valued.

2. Assume that we can choose a coordinates in C" and U such that the definiton func-
tion r of S can be written in the form

r(z) = Rez; + G(Imzy, 2')

with G is a real-analytic function on I x U' C I x C", an open neighborhood of 0,
and G(0) =0, dG(0) = 0. Then all functions f,z,gj,go,j =1,....,;k=1..., 5 can
be chosen to depend only on the variables (Imzy,2") € Iy x U] = U] with I CC I
and U] CC U’, open neighborhoods of 0.

For the proof of the bumping theorem [2.2.2] we may assume that
90(0) = ... g1-1(0) = 0.
Then by induction over j we can construct a real-analytic function
ri(z,w) 1 Ujra X (Ujz2NS) = Ryj=1,...,1

on a neighborhood Ujo C Uy of 0 satisfies the following properties
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a) d,r; # 0 everywhere on Uj .
b) The hypersurface
Siw={2€U;+2:rj(z,w) =0}
is pseudoconvex from the side 7;(z,w) < 0.
¢) ri(.,w) =0on {w}U{r*+gi+...4+g; =0}.
d) (., w) <0 on (Upa NS)\ ({w} U{r* +g5+... + g7 =0}).

) T
)

e) S, is strictly pseudoconvex except at {w}U{r*+ g2 +...+ 9]2- =0}.

f) S;. has at least 4™ order contact with S on {w}U{r*+g¢2+...+ g]2~ =0}.
)

g) All functions r;(.,w) are of the form

ri(z,w) = Rez; + G(Imzy, 2/, w).

We denote by

dy(2) = d(z,w) := [Imz; — Im w|? Z |25 — wi |
k=2
Step 1. For j = 0, we define on an open neighborhood U, CC U; of 0

ro(z,w): Uy x (UyNS) — R
ro(z, w) := r(2) — €o(go(2)dw(2))™

with €y > 0 and an integer Ny will be chosen later. We already have d,r # 0, hence if we
choose € sufficent small, a) is satisfied. Properties ¢), d), f), g) is trivial. Now we need to
prove the pseudoconvexity of Sy . Let fixed w € Uy N S and z = (v + iy, 2’) € Sp,. For
t=(t1,...,tn) € t"9(Sp., N Us), then we have

Z 8r0/8zk
87’0/621
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Therefore, after some computation we can get the Levi form of rq(., w) at z applied to t

i@zézro(z, w) (t, t)

2

8r0/82k - 32
—=t; t,
821821 Z oro /321 ‘ Z &zjazk F

- 8T0/8zk
— 2R
¢ (Z 82182] Z 87‘0/6zk )
2
or/ 8zk " 9%
—=1; t,

Z 87‘/8,21 | Z 9202 ‘

n 8r/8zk P No—21.12
Z 82182] Z a?“/@zk ) + e00(go(2)dw(y, ")) 1t|

J.k=

|

)

=

)
/\

= 10,07 (Z, )( t) + 600(90(Z)dw(y, )2t
with 2 = (G(y, 2') +iy, 2') the projection of z on S, and # satisfies t, = t;, for k = 2,... n;
and t; = — > 7, g’;égz’;( )tx. From the definition of gy, we can find a constand ¢ > 0 such
that

c

i0.0.70(z,w)(1,£) = gy, 2T + Olgo(2)du(y, )2t > Sg2(y, )] (2:2.2)

\)

if we choose ¢ small enough and Ny > 4. This implies that b) is satisfied. For prop-
erty g), we see that the Levi form i00ry(.,w) = 0 only if go(z) = 0. Then we also have

ro(z,w) =r(z) =0.

Step 2. Suppose there is r;_; satisfied above properties for some j = 1,...,j. We define
on a open neighborhood Uj—y C U4

S5

ri(z,w) =i (z,0) = (g3 (2)du(2)™ + (g (2)du(2))V 7 Y (fl(2)? (2.2.3)

k=1

with the integers N; > n; > 1 and ¢; > 0 will be chosen later. As in the case 7 = 0, for
¢; small enough, property a) is satisfied; properties f) and g) is also trivial. Property c)
holds since the induction hypothesis.

For the property d), by induction hypothesis we have on U;12 NS
ri1(z,w) <0 when 2 ¢ {w}U{gl + ... +g]2-_1 =0}

For such (z,w), we distinguish between two cases
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1. For 307, (fl(2))? < (97dw(2))™, then 7;(z,w) < 0 because the contruction of r;.

2. For 300, (fl(2))? > (g7dw(2))™
Shrinking U, if necessary, there is a constant K > 0 such that g?(z) < Kg;(z), and
therefore

G (2)du(2) < Kgj(2)du(2) < K(g2(2)du(2))2du(2)?

sj 1/2n;
<K (Zmz(z))) dy(2)?.

k=1

After shrinking U;, if necessary, by using Lojasiewicz inequality, we get from ({2.2.1])
that

Sj

& (D" (F(2)du(2)" < lrjor(z,0)]

k=1

for some M is large enough and €; small. Then put everything into (2.2.3)) to get

ri(z,w) <rj_1(z,w) + €

85 - (Nj—n;)/2n;
KZ(fé(Z))de(Z)] :

k=1

if we choose N; > n; > 1 such that % > M. Then we can get d) after choosing
J
a sufficiently small ;.

Now, for fixed w € SN Ujs and z € S;,, and let 0 # T € T1°S;,, be an arbitrary
vector. Then we compute the Levi forms as in the case 7 =0

2

_ 0%r;
10,0.7;(z,w)(t,t) — 4+ J
! "3 (Z w Z aZkaZl ke 821821

Z 823 /azk
87”J/821
N or; /8zk

_ 2R R J
¢ 122 02107 Z (9zj/821

As before, the derivatives of r;(.,w) depend only on y = Imz;, 2" and if we replace ¢
by t := (t1,t') € TS, 14, tx = t; for k = 2...n and then after a straightforward
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calculation, we have

Z.azézrj (Z, w)(t7 t) = iazézrj_l(é, w)(f, tA) + 2€j (932(2>dw<y; Z))Njfnj

+60(g; (2)du(y, 2))V 2 Y )
+¢;0(g; (2)du(y, 2)) V2t (2.24)

The first term is the Levi form of r;_; at 2 € S;_1,, with 2 is the image when we project
z to Sj_ 1, in x direction, and it applies to ¢ := (¢, € T'°S;_,, with # = #'. From
induction hypothesis, if z ¢ {w} U {r* + g5 + ...+ g7 | = 0} then this term is strictly
positive.

We denote

K = {(é,w,t') € Uj+2 X (S N Uj+2 X (Cn71|2 € ijl,wa ’t” = 17}

F(z,w,t) :=i0,0.1;_1(y, 2') (1, 1)

and
Sj

H(zw,t') =

k=1

with £ € T2°S; 1, and i, =t, | for k=2,...,n; (z,w,t) € K.
We will prove the following claim:

" , N2
Zafi(y,Z)tA
azl :

=1

Claim. (F + G)(z,w,t') > 0 for all (2,w,t) € K with
z¢{wyu{r’+g +...+g =0}

From induction hypothesis, F'(2,w,t) is strictly positive for 2 ¢ {w}U{r*+g5+.. . +g; | =
0}. So without loss generality, we can assume that 2 € X := { € Uja|(r* + g3 + ... +
971)(¢) = 0} but g;(£) # 0. We can find a neighborhood V' of Z such that g;(¢) # 0 for
all eV,
We define

M:={CeVlr(Q)=f)=...=fl()=0}CS

By the construction of fF and g;, we have

|f£|2N§r2+gg+...+g]2_1
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therefore X NV C M. Furthermore, for (e M C V
0 # g;(¢) = coeff(Ar ANOr NI NOFI A ... A 5f§j A (00r)*571)(€))

then 0 ff ©,...,0 fgj are linearly independent over C. And hence M is a real-analytic

manifold. Since by definition, T'°M C T'°S and S is pseudoconvex, we have the Levi
form of r is positive definite on T™°M. Once again, by induction hypothesis, S;,, has at
least 4" order of contact with S on {w} U {r? + ¢§ + ... 4+ g7_,}, then we can get the
Levi form of 7;_1,, is also positive definite on T M. Moreover, if t € T2°S;_ ,, such that
i0,0,7j_1(2,w) = 0, since g; # 0, t ¢ T'OM and then H(2,w,t') # 0. The claim is
proven. Now, we can prove property e) . Let Az, be the Euclidean distance between 2
and the set

{w} U{C € Ujpa|(r? + g5 + ... +g7)(C) = 0}
with w € SNUj;2 and 2 € S;_1,. From the claim and Lojasiewicz inequality, there is a
constant ¢; > 0 and an integer o < 1 such that

(F+H)(2,w,t') > cAf,
for all (2,w,t") € K. Moreover, on Y := {(2,w,t') € K|F(2,w,t') = 0)}, we have the
estimate
H(z,w,t') > 1AL,
We can modify V' as a neighborhood of Y on K such that
Vi={(EZ w,t) e K|§(Zwt),Y) < Alphas,,}

and since H is smooth, we can choose 0 < ¢] < ¢; small enough to obtain

H(zw,t) > 2A°‘

And then, apply this estimate to the Levi form of r;,, in (2.2.4)), we get

10.0:15(2,w)(8,1) > (g7 (2)dw(2))V 1 AL [t + €;0(g5 (2)du (A))N]'_Q\tl2
¢;O(g7(2)dw(2)) '_”j_QZIfk ()1t

If we choose a pair N; > n; > 1 and shrinking U, if necessary, we get

i0.0.r;(2, w)(1,1) > &2 5 (97 () (2)N AL [t

+¢;0(g5 (£)dw(2)) 7~ Z|fk ().
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Now we can shrink the neighborhood V' again such that for each element (Z,w,t") € V,
(2,w,t') € K and dist((2,w,t),Y) < c’Ag,/w for some o/ > «. Then we obtain on V

. 1 2 2 i—mj A’
10,0,1;(z,w)(t, t) > Zejcl(gf(z)dw(z))]vﬁ TAZ
and then the Levi form i9,0,r; is strictly positive for

e VA{wU{CEUjl(r + g+ ...+ 7)) =0

and w € SN U, apply to t = (t1,t') satisfies t € T2°S;,,, |t'| = 1. To finish the proof of
property e), we need only to consider the case that point is in K \ V. From the definition
of Y and apply Lojasiewickz inquality to F' on K, then we can find ¢y > 0 and an integer
B> 1 such that

F(2,w,t) > cy(dist((2,w, 1), V).

Therefore, on K\ V we have
F(zw,t') > 03A§:w

with ¢3 > 0 and 5" = /(. Again, we apply these estimates to (2.2.4) and obtain
10,075 (2, w) (t, 1) > —cae; AN (2 w) 4 AP (3, w)

for all (2,w,t') € K\V, t = (t;,t') € T'°S;,,. The right hand side is strictly positive if
we choose the pair N;,n; such that N; — n; is large enough and ¢; is sufficiently small.
Then e) is proven. Combine e) and f) we can get b). Then we have constructed r; satisfies
these properties for j =1,...,1.

Then also prove Theorem if choose p = ;.

2.2.2 Boundary behavior of Kobayashi metric.

To estimate the Kobayashi metric for points near the boundary, we separate in several
steps.

Step 1. We have already constructed for each boundary point w in a neighborhood
of 0 a bumping fucntion p(z,w). For that, the bumping function p(.,w) is pseudoconvex
from the side p(.,w) < 0. Furthermore, since p(z,w) is a real analytic function on the
set (2N V') x (2N V') and also p vanishes on this set exactly for z = w, Lojasiewicz
inequality gives us that

dY (z,w) < |p(z,w)| (2.2.5)
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with d(z,w) = |z — w|? for some integer N. Now, we need to construct an extension of
¢w on all 2 that preserve the plurisubharmonicity and also (2.2.5). First we notice that
for all z € bU N and w € b2N V' it holds that

lp(z,w)| > ¢ > 0.

Let -
L :=sup{d" (z,w)|z € Q,w € VNbQ.}

By multiplying p(z,w) with a large fixed number, we can get a new function, still denoted
as p(z,w) satisfies
p(zw)| > L+ 1.

Choose a convex funtion x(x) on R* which satisfies
— for 0 <z < L;
x@) =9 . ,
—L forxa > L+1with — L' < —L.

And then, for any fixed w € V N bQ, we denote ¢, (z) as an extension of p(z,w) to all
that is defined as

(2) = x(|p(z, w)]) for z € V' N Q;
SO’LU L _L/ fOI’ZEQ\V’

for w € V' N b§2. Then it easy to see that v, satisfies the following properties
1. pu(w) =0.
2. d.(pw(z)) #0 for all z € VNHQ.
3. For fix w € VN Q, pu(2) is pseudoconvex from the side ¢, < 0.

4. For z € Q and w € VNS
(2) < d¥(z,w) (2.2.6)

5. There exists K’ > 0 such that
K'd?(2,7(2)) < @n()(2) (2.2.7)
for z € V'.

Step 2. Now, apply plurisubharmonic exhaustion function theory, we have the following
Lemma
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Lemma 2.2.4. There exists an open neighborhood V-C U of 0 such that for any w €
Vb, for any 0 < n < 1, we can find a strictly plurisubharmonic function i, on
V' ={z € V]pw(z) <0} and a constant K > 1 satisfies

—Kpw(2)]" < (z) < =1/K]p(2)["
for ze V',
From the Lemma and above estimates for ¢, (z), we obtain
—Kd"?(z,7(2)) < tn()(2) (2.2.8)

Step 3. To get the desired estimate of Fp on V N €. Lets fix a point z € V' N and let
w = 7(z). We now assume that f = (fi,..., f,) : D — Q is a holomorphic map of the
closed unit disc into Q with f(0) = z.

The mean value inequality of the subharmonic function ,, o f(t) on D gives us

1 2 .
Yy o f(0) = y(z) < P Yy o f(e?)db.
™ Jo
therefore o
L7 o fe)do < K> (s, w). (2.2.9)
2w Jo

From ([2.2.8) we have

1 2 ) 1 2 ) ]
3 | o s a0 = o [ o g = () 0o
L[y i
bom [, was
L[y i
2 % 0 d T?(f(e )7w)d0
1 i0 2N
Z 5 ; | fr(e") — wy) |7V d6.

for all k =1,...,n. Combine with (2.2.9)) gives for k =1,...,n
1 27 » oz n/2
o ), | fie(€?) — we[PNV1d0 < Kd"? (2, w).

Consequence, we have

1£10)] < CdY*™N(z,7(2)), k=1,...,n

o4



with C' > 0 is a constant does not depend on f and z. And then there exists C’ > 0 such
that
i (0)] < C'r(2)[ 2N

for a fixed defining function r of © and for all 2 € Q2N V. The estimate is true for all
holomorphic mapping f : D — 2 satisfies f(0) = z. By the definition of Fq(z, X), it can
be shown that for all X € C"

|X| 1/2N
r(z)]

for all z € VN Q with a constant ¢ > 0 independent of z and X. Since €2 can be covered
by finite many of such neighborhood V’. Theorem is proved.

FQ<Z7X) ZC

2.3 The pseudoconvex domain in more general cases

Remove the asumption that {2 has a real analytic defining function, follow the idea to
construct the bumping function in [Cho92], we are going to find the Kobayashi metric for
pseudoconvex domains that satisfy property (f — P).

First, we re-introduce the definition of property (f — P) and some remarks.

2.3.1 Property (f-P)
For § > 0, denote S5 ={z € Q: -0 <r <0}

Definition 2.3.1. Let ) be a pseudoconvex domain in C" and U be a local path of its
boundary. We say that Q has Property (f-P) on U if there exist a family of C*(U N Ss)
functions {¢s} such that

95| <1
|Dgs| < 671 on U N Ss
i00¢s(L,L) 2 f(0~")?|L|?

for any L € T"°(U N19QY).

We show the equivalent of Property (f-P) between pseudoconvex and pseudoconcave
side of hypersurface.

Since the hypersurface defined by each bumping function lies outside domain except
one point and Property (f-P) happens on strips inside domain, so we first show property
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(f-P) still holds outside domain.

We use notation Sy := S5 and Sy := {z € C"|0 < r(z) < d}. We define property
(f-P)* and (f-P)~ in obvious sense.

Lemma 2.3.2. Property (f-P)" <= Property (f-P)~.

Proof. Assume that Property (f-P)" holds on U ,that is, for any § > 0 there exist a
C%*(U N S5) function ¢ such that

651 <1
|IDof| <07t on U N Ss. (2.3.1)
10063 (L, L) 2 f*(6-)|L|?

for any L € THO(U N b§2). Without loss of generality, we can assume that the original
point z, in U N 2. We choose the special coordinate z = (z,7) € R*"! x R at z,.
Set @5 (x,r) = ¢F (z, —r). Then i00¢; (L, L) = i0d¢F (L,L) on —§ < —r < 0 for any
L € TY(U N bQ). That means Property (f-P)~ holds. That is completed the proof of
this lemma. O

2.3.2 The bumping function

In this section, we give the proof of Theorem [2.1.4] The proof is divided several steps. We
already have the equivalent of Property (f-P) between pseudoconvex and pseudoconcave
side of hypersurface. We extend the weights in Property (f-P) to be self-gadient bounded
in step 1. In step 2, we construct plurisubharmonic function with good estimates of size.
The properties of bumping function is checked on step 3.

Step 1. In this step, we will show that there exist a family of functions such that
negative and self-gradient bounded. Define ®; = ¢% ~! —2 on UNS; . Then ®° € C*(U N
S5 ) and satisfies

—2< 95 < —1
|D®s| < 51 on UNSy (2.3.2)
i00%5(L, L) 2 f2(6~")L? + | L®s[?

for any L € THO(U N1€Y). We also can extend @5 to be negatively bounded on whole U
such that the second line of (2.3.2) holds. We still call the new function is ®@s.
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Step 2. Let x : Rt — R be a smooth function defined by

(f) = {1 for t € [1,2],

0 elsewhere

X

such that is bounded on support of x.

For fixed w € U NbS2, for z € U, we define

(z,w) = Z FEF )2z — w]) P p-r(2) (2.3.3)

E‘

Here, we recall again that F'(0) = (f*(é‘l))fl. Denote

Ap(w) :={zcU: = <2"z—w| <2}

l\DI»—

be an annulus center w with radii 2751 and 27*. Since U = koleAk(w), so for any z € U,
there is an integer j such that z € A;(w) . We have

Pz, w) = Z F M2z — w)@pp-r)(2)
S—FE27)
<= F(lz —wl)

(2.3.4)

where the first inequality follows by the fact that ® is negative bounded and x(27|z—w|) >
0 on A;(z); the last one follows by |z — w| < 277. Moreover, we also get

P(z,w) 2 —FQ277) > —F(4|z — wl). (2.3.5)

Furthemore, we know that for z € A;(w) N Sp-s). There exists ¢ > 0 such that x(27]z —
w|) > ¢ >0 for z € Aj(w).
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Then for L € T°(U N 1Y) we have

10:0.(x(27|2 — w])®po-3)(2))(L, L)
= 100X (2|2 — w|)(L, L)®pa-5)(2) + 2Re(L(x(2’|z — w])) L(®pe-5)(2)))
+x(2’|z — w|)9.0. P po-iy(2)(L, L);

_ . 1
> 0.0.x(2’|z — w|)(L, L)®pa-iy(z) —

m’L(X(ﬂZ —wl))|

— X = wDIL(@re5) () + X(2']z = w])0:0. @+ (2)(L, L);

1
027 2"5(’2 2 2
Z —X2 7 —2 ]7 ‘L‘ + §Cazaz(bF(2*j)(Z)(L7 L)

Similarly, for k= j — 1 and k = j + 1 we obtain
12
i0.0.(¢(24] = w)®p 0 (L. L) 2 (—52% - Ko L2 (236)
X
In these two terms, we do not have the Hessian of ® since x is bounded from below by 0.

Therefore we get

J+1
0:0.P(z,w)(X, X) = ) | F(27"1)0.0:(x(2"|z — w])r(o-1)(2)) (X, X)
k=j—1
Jj+1
2 D FE) (2MXP) + X3 0:0:Pp-1 (2)(X, X))

k=j—1
> (—eF(29)220°) 4 P22 - F(2-3)%0) |X P
+ X(2]|Z - w|)azazq)F(2ﬂ)( 2)(X, ) (2.3.7)

for z € Aj(w) N Spp-i) and X € T (bQNT).
Step 3. Again for z € U and w € U N bS2, we define
p(z,w) =71(z) + eP(z,w).

Let S, = {z € Ul|p(z,w) = 0} be hypersurface defined by p(z,w) = 0 when w is fixed.
We will prove that p satisfies the following properties:

(i) p(w,w) = 0.
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(i) p(z,w) S —F(]z —wl|) for z€ UNQ and w € U N Q.

2 —pa(2) for z € UNQ, where 7(z) is the projection of z to the boundary.

(v) S, is pseudoconvex.

We see that (i) is obvious; (ii) comes from the estimate ([2.3.4). For (iii), we have
p(z,w) T —0ha(z) — F(4040(2)) T —dha(2).

Here, the first inequality follows by ([2.3.5)), the second follows by the fact that F'(46) <

(46)? << 4.

For any z € (S, \ {w}) N A;(w), from (2.3.5)), we have

0 <7(2) = —€eP(z,w) S eF(277) < F(27Y).

That implies z € Sp-i). Therefore, we obtain S, C kiLjN(Ak(w) N Spa-r))-

To prove (iv), notice that since r is a defining function of Q then |D,r| ~ 1 on U. We
only need to consider D, P(z,w) for all z € S,,. By above argument, for any z € S,, there
exists j € N such that z € A;(w) N Spe-i). We have

|D.P(z,w)| = Z F(2™™D, (x(2"|z — w|)) ®pp-r)(2) + F2F)x (22 — w]) D, (®pp-#(2))
< i FE ™2+ F ™ (F2 )< C (2.3.8)

Here, we use the fact that |[D®po-1)| S (F(27'))"! and F(27%) < 27%. For € be suffi-
ciently small, we have |D,p(z, w)| ~ 1 and (iv) is satisfied.

Now we have that S,,(z) is a hypersurface, and it easy to see that > 0 on S,,(z) N (U \
{w}). We need to prove that S,(z) are pseudoconvex, more preciously, S, (z) is strictly
pseudconvex on S, (z) N (U \ {w}).

Additional assumption: We assume that the function F' satisfies % is bounded.
For this case, from ([2.3.7)) we can let € small enough such that £ F(27771)27 > eF(279)2771.

Furthermore we have that % is a increasing function. Then we obtain a lower bound
for the Hessian of P(.,w)

i0,0.P(2,w)(X, X) 2 F(27771)2% 4+ x (2|2 — w|)0.0,® p2-1)(2) (X, X) (2.3.9)
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for z € Aj(w) N Spp-i) and X € T (bQNT).

Now we will prove that the hypersurface S,, = {z € U|p(z,w) = 0} are pseudoconvex at
each point z € S,,.

Suppose Ty, (p(z,w)) = 0 and |T,,| = 1. Then T, can be written as

Ty, =T+ aN.
where T € T2 N U) and Nr > 0 on U. We have that

Tw(p(z,w) = (T + aN)(r(z) + eP(z,w))
=€eTP(z,w) + a(Nr(z) + eNP(z,w)) = 0. (2.3.10)

From property (3), we have that NP(z,w) ~ 1, hence we can get |a| S €|TP(z,w)| < 3.
For z € Ap(w) N Spa-ry, (2.3.9) and the hypothesis of ®,-«) imply

9.0.P(z,w)(T,T) 2 F(27)00® pg-1)(2)(T, T) 2 F(27%)|T® -1 (2)? (2.3.11)

and
9.0.P(z,w)(T,T) 2 F(27%)0.0. o1 (2)(T,T) 2 2°F(27"). (2.3.12)

From the definition of x and ([2.3.12) we have

TX(@]z —wl)| 2" S FT)H0.0.P(2,w)(T, ).
And from we also have
TP g1 (2)] S F(2*k)*%(8Z5ZP(z, w)(T, T))%. (2.3.14)
Combine ([2.3.10)), (2.3.13)) and we obtain that

[NIE

(2.3.13)

la| < €|TP(z,w)| < eF(27%)72(0,0,P(z, w)(T, T)z. (2.3.15)
Now we have all material to prove the pseudoconvexity of the hypersurface 5.

0.0,p(z,w) (T, Ty) = 0,0.7(2)(Ty, Ty) + €0,0.P(z,w)(Ty, Ty)
= 0.0.7(2)(T,T) + €0.0.P(z,w)(T, T) + O(a)
> €0,0,P(z,w)(T,T) — eCF(27%)72(0,0,P(z,w)(T, T)
> ¢(8,0,P(z,w)(T,T))? ((a 8.P(z,w)(T,T)): — CF(27%)"

D=

[N
N—

T
Z €(0:0.P(z, w)(T, T))%( _ - ,%)
2 e|TI? 2 e|Tu|*.

In the second to the last inequality, it is true if we have k is large enough, it means we
choose N to be sufficiently large. Then (v) is satisfied.
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F(2z)
F(z2)

Remark 2.3.3. The additional assumption is bounded characterized by finite type

domain.
For the case 2((2;)) is unbounded, we will consider the problem for some special infinite
type domains later.

2.3.3 Boundary behavior of the Kobayashi metric

After constructing the bumping function for any points w in the boundary of €2, the hy-
persurfaces S,, are pseudoconvex and touch the boundary of €2 at w only. Now, we can
apply plurisubharmonic defining function theory to extend to the neighborhood of S,,.

Theorem 2.3.4. Let r be a real-valued-C?-function on a neighborhood U C C* of 0 with
the following properties:

1. r(0) =0.
2. dr # 0 everywhere on U.

3. The hypersurface S = {z € U|r(z) = 0} is pseudoconvex from the side r < 0.

Then, for every m > 0, 0 < n < 1, there exists an open neighborhood V- C U of 0, a
strictly plurisubharmonic function p on V' = {z € V : r(z) < 0} and a constant K > 1
such that —K|r|" < p < —=1/K|r|" on V'. Furthermore, the data K and V' can be chosen
independently of small C*-perturbation of v on U satisfying condition (1), (2), (3) from
above.

Now we can prove the following theorem to get an estimate for the Kobayashi metric
of a point near the boundary b2.

Theorem 2.3.5. Let Q) be a pseudoconvex domain in C* and U be a neighborhood of given
point z, in the boundary. For each w € U NDSY, assume that there is a plurisubharmonic
function 1, (z) such that

i) Yu(2z) < —Fi(aq|z; —wj|) for z€e UNQ

) V() (2) > —caFo(2ba(2)) for z € UNKQ. Here m(z) is the orthogonal projection of
z to U NbSL.

Then
Ka(z, X) > a1 (Ff (c2Fa(azda(2))) 71X

forall z €V, X € THC" where V C U.
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Proof. We now fix a point 2 € VN Q, put w = 7(z) and assume that g = (g1,...,9x) :
A — Q is a holomorphic map of the closed unit disc into Q with g(0) = z.

By applying the mean value inequality to the subharmonic function 1,,(g(t)) on A we
get

1 .
() = 0(9(0) < [ o glc? )it
0
The hypothesis (ii) gives

C2F2 042(5 / l/Jw e} g 127r€) (2316)

We now use the hypothesis (i) of ¥,

/ ww o f 276 de / ww Og 1271'0) o Fl(a1|gj(ei27r9) o U)JD)CZQ

+Azu%@wwwwww (2.3.17)

1
> [ Ra(anlgs(e) = wy)as.
0

Using the Jensen inequality for the increasing, convex function F}, we get

1 1
Fi(anlg;(0)]) < Fy (al/ |g; (™) —wj|d9> S/ Fy(0ng;(e™™) — w;|)df.
0 0
Combining above inequality with (2.3.16|) and (2.3.17)), we obtain
Fi(a1|g5(0)]) < eaFa(aada(z)).

An immediate consequence of this is

G5(0)] < Y (e2Fs(sdal2))

1

By the definition of K(z, X') shows immediately that one must have for all X € T1°C»

K(z,X) > on (Ff (c2Fa(anda(2))) 71 X1
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2.4 Application to proper holomorphic maps

We introduce a general Hardy-Littlewood Lemma for f—Holder estimates

Theorem 2.4.1. Let Q be a bounded Lipschitz domain in R™ and let dpn(x) denote the
distance function from x to the boundary of Q. Let G : RY — R* be an increasing function
such that @ is decreasing and fod SO for d > 0 small enought. If u € C*() such

t
that
G (dpaa))

5bQ(ZL‘)
Then |u(z) —u(y)| < f(lz —y|™") 7Y, for z,y € Q,x # y where f(d7') = < Od @dt>_l.

If G(t) = t*, Theorem is the Hardy-Littlewood for domains of finite type. In [?],
T.V.Khanh provide a general proof for some kind the infinite type domains.

|Au(x)| < for every x € ).

Theorem 2.4.2. Let Q and Q) be pseudoconver domains. Let 1,0 < n < 1 such that
there is a C* defining function r of Q0 such that —(—r)" is strictly plurisubharmonic on
Q. Assume that Q) has property (f-P). Then any proper holomorphic map ® : Q —
can be extended a general Holder continuous map QO — O with a rate f, that s,

[@(2) = d(w)] S fllz = w7

for any z,w € Q. Here, f is defined by

Fat) = ( / ! (f(},p)l dt)l (2.41)

Proof. Using Theorem for €', the Schwarz-Pick lemma for the Kobayashi metric,
and the upper bound of Kobayashi metric, we obtain the following estimate

F(55H(®(2))) |9'(2)X| S Koo (®(2), ¥'(2)X) < Ka(z, X) S 651 (2)| X (24.2)

for any z € Q and X € THOC". Moreover, by the fact that —(—r)" is strictly plurisubhar-
monic on €2, one has 0o/ (P(2)) < 08(z) for any z € Q (Lemma 8 in [DET9]). Therefore,

[(2)X] < dg" (2) (05" (2)1X]|

for any 2 € Q and X € THC". Using Hardy-Littlewood Lemma for general Holder
estimates (see Theorem 5.1 in [?]) then gives that ® can be extended to a general Hélder
continuous map ® : 2 — Q' with the rate f defined in (2.4.1))

O
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2.5 The bumping function for the domain
Q={z € Cr(z) = || = F(|=]) < 1}

Let Q be bounded pseudoconvex domain in C? with boundary 2 and 0 € b§2. Assume
that in a neighborhood U of 0, 2 has the form

QNU ={z€cUlr(z) = —F(|z]) + ||* < 1} (2.5.1)

where F' is strictly increasing, convex function and F(t)/t* is incresing.

The case that we consider the most is when F'(t) = exp(—1/t*®). We can see that €
is pseudoconvex and {(z1, 22)|z1 = 0} is the points of infinity type.

For simplizing our later computation, we only consider the case that = 1. And we
are going to find a family of functions ®; on the strip S5 = {z € Q| —§ < r(z) <0} such
that (f — P)- property holds

on Ss N U where U is a neighborhood of the origin and for any (0,1) form w.
For any ¢ > 0, we define

Dy(2) = exp (@ + 1) — exp <—2|;|;)> .

It is easy to see that ®4 are absolutely bounded on S5 N U. The Levi form of &g
2

o (1)

= 1 *r 1
00D (2 u, 1) = ~ @
’ 6(27 . U) (5 ij=1 82182] it

’ F*1<6> (1 ) 25155)) o (vﬁi;)) o
(Gl am (1 ari ) oo (o))

Uy

Dz

bl
bt LF (4P ! a? a?
21 Z1 1
A== d B= 1— — .
PEETE 2F*<a>< F*(&)GXP( F*<5>>
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We have two cases.

15¢ case. When |z]? < F*(§). We have B 2>
2" case. When |22 < F*(9). £
be estimated by

1
2 F*(a) Thus, A+ B > P

is an increasing function. Term A can

VF(laf?)  LF(F@) _1 5 _ 1

A=3 22 =6 F(0) o6F(0) F(0)

Term B in this case can be negative. However, consider the function g(t) =
(1—t)et it attains minimum mint>1/2 g(t) = —e 2 when t = ‘Z1(| 5 = 2. Thus,

B> — and it implies A + B 2

F(6 NF*a)

We note that in some cases, for instant: F'(t) = exp(—1/t**) then F(277!)/F(277) is
unbounded when j goto infinity. Thus, start from (2.3.7), we cannot find such an € to let
F(277) > F(277%) for all j € N.

2.5.1 The bumping function

By similar arguments as above, let us fix w = (wy, we) € b2 and w; # 0. Denote by Ag(w)
the subset of U satisfies

1
Ak(w) = {Z € U|§ S 2k|21 —w1| S 1)}

and let
_ k _ _
Ur(z,w) = x(2"2z1 — w1]) + diamU|22 wy|.
We define .
P(z,w) =Y F (2, w)Ppe-r(2)
k=N
and

p(z,w) =r(z) + eP(z,w).

and we need to prove that S, is a pseudoconvex hypersurface. Compute the Hessian of
P(z,w), similiar as (2.3.7]) we can get

i0,0,P 2 (—F (277220 D 4 ep (2781220 |y |2 — F(2757 ) |ug|?
+ x (2821 — w1])0.0. @ pa-r-1)(2) (u, @) (2.5.2)
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for 2 € Ag(w) N Spe-x). For any z € (S, \ {w}) N Aj(w), we have
0<7(z) =—eP(z,w) SeF(277) < F(277).

That implies 2 € Sp(2-5). Therefore, we also obtain S, C kiLjN(Ak(w) N SF(H)). Hence,
compute the Hessian of p(z,w), we obtain
i0.0.p(z, w)(u,u) = (i00r(z) + €i0.0.P(z,w)) (u,u)
O*F(|z1) K
= —=——= —F(277)22k=1) (2 k)% 2 (253
(Tl (P2 s orr ) )l (253
+(1+e(=F27FM)) us*. (2.5.4)

We see that it is suffiticient to consider the Hessian of p(.,w) on z; variable since the
term in the last line (2.5.4)) is positive when we choose a sufficiently small e.

For any z € U, there exists k such that z belongs to the annulus A (w). Therefore,
we can write the Hessian of p in z; variable as
Polzw) - Flla)

321821 ~ |2,'1|2

— eF(27) 220D - P27 )2

for some k£ € N.

For w # 0, we can find on C such a zj satisfies 2| = [2] — wi| = $|wi]; 2} is the
center of the real line connecting 0 and w;. Let k,, € N satisfy 2% < |w; — 27| < 27F» L,
Denote by B,, C C the ball center at w; with radian 27%». Note that for any z; € B,,, we
have |z;| > 27% by triangle inequality.

We know that F'(t)/F(2t) is an increasing function, moreover, and F'(t)/F(2t)|;—o = 0;

that implies if we choose a small € such that € := F ('“jl—l‘> /F ('“;—”) = F('\;”—%) then we
can get for any k < ky,, F(27%) > eF(2%1). Now, consider z € S, there are two cases.

For the first case, if 2; € B, then |z; —w;| > 27%_ It implies that z belongs to
an annulus Ag(w) for which k < k,, and then —eF(275+1)2% 4 p(27F)22(k+1)
is positive.

On the other hand, if z € S, satisfies z; € B, then z; € Ag(w) for such

k > k,. Furthermore, following above notation we can have |z;| > 27% and it

Fal) o F(27%)
|7~'1|2 > 22k

gives since F'(t)/t? is an increasing function.
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In conclude, we have the Hessian of p(z,w) is positive for 0 # w € bS). It means S, is
pseudoconvex.

For w; = 0, we define
p(z,w) = 1(2) — € (F*(|21]) + |22 — wol?)

for any € > 0 then we can have the hypersurface Sp = {z € Ulp(z,0) = 0} is also
pseudoconvex and it touches Q from outside of Q at z = 0.

By the construction of p(z,w) and following the proof on Section , we can prove
that p satisfies the following properties:

w) S —F(Jwi|)F(|z1 —wn]) for z€e UNQ and w e UN (2 {(0,ws)}).
z,w) S —F(lz1 —wq])? for z€e UNQ and w € U N (bQ N {(0,ws)}).

(ili) p(z,7m(2)) 2 —da(z) for z € UNQ, where 7(2) is the projection of z to the boundary.
)

(v) S, is pseudoconvex.
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