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Abstract 
 

 

In engineering practice, mechanical components are weakened by a wide range of 

sharp or blunt notches and their presence has to be accurately taken into account 

in the design. In fact near notches a strong stress gradient is always induced when 

a far field loading is applied. 

Aiming to investigate the integrity of notched components subjected to different 

loading histories, for many years to nowadays a lot of stress and strain based 

damage criteria have been proposed. However, in the last years, some energy 

based criteria have been introduced and successfully applied on notched members 

proving to be powerful damage prediction tools. 

In particular the averaged strain energy density criterion (Lazzarin and Zambardi 

2001) has been developed and used in order to assess the strength of notched 

components with various notch geometries subjected to different types of loading. 

The aim of this work is to extend the validity of the averaged SED criterion to the 

three-dimensional effects arising in the vicinity of a notch and to the problems 

induced by the application of multiaxial static and cyclic loadings. 

Taking advantage of some results obtained from multiaxial cyclic analyses, the 

effect of the phase displacement between the applied loads has been addressed 

presenting a new proposal based on the maximum tangential stress averaged over 

an entire loading cycle.  

Finally, a dedicated software based on the cyclic plasticity theory has been 

developed in order to obtain the stress/strain distributions at the tip of a rounded 

notch subjected to uniaxial and multiaxial low cycle fatigue. A particular link 

between the plastic hysteresis energy at the notch tip and the averaged SED has 

been found representing the first potential step for a future extension of the 

averaged SED criterion to cyclic plasticity. 
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 III 

 

Sommario 
 

 

Nella pratica ingegneristica, i componenti meccanici sono sovente indeboliti da 

discontinuità geometriche di diversa forma e dimensione, i quali devono essere 

tenuti in considerazione in fase di progettazione al fine di evitare 

malfunzionamenti o collassi strutturali. 

Con l’obiettivo di valutare l’integrità strutturale di componenti indeboliti da 

intagli soggetti a sollecitazioni di diversa natura, numerosi criteri di cedimento 

sono stati sviluppati considerando lo stato di tensione e/o di deformazione 

all’apice dell’intaglio o nelle immediate vicinanze di quest’ultimo. Inoltre, negli 

ultimi anni, sono stati sviluppati approcci di tipo energetico, i quali hanno 

dimostrato un’ottima attitudine alla previsione del cedimento di componenti 

intagliati. In particolare, il criterio basato sulla densità di energia di deformazione 

(SED) mediata all’interno di un volume strutturale è stato presentato da Lazzarin e 

Zambardi (2001) al fine di valutare la resistenza di componenti intagliati soggetti 

a diverse sollecitazioni. 

L’obiettivo del primo filone di ricerca di questa tesi è quello di estendere e 

validare il criterio SED considerando sia i modi accoppiati che si generano per 

effetto Poisson in componenti tridimensionali, sia problemi legati all’applicazione 

di sollecitazioni di modo misto e di fatica multiassiale.  

Prendendo spunto da alcuni risultati ottenuti nel caso di sollecitazioni cicliche, il 

secondo filone di ricerca ha riguardato lo studio di una proposta in grado di 

discriminare l’effetto dello sfasamento tra le sollecitazioni su provini intagliati a 

spigolo vivo soggetti a fatica multiassiale. 

Il terzo filone di ricerca ha riguardato l'implementazione di un software in grado 

di fornire le tensioni e le deformazioni elasto-plastiche all’apice di un intaglio 

raccordato sottoposto a fatica oligociclica. Infine, è stato possibile trovare un 

coefficiente di correlazione tra l'area del ciclo di isteresi all'apice dell'intaglio ed il 

valore della densità di energia di deformazione elasto-plastica all'interno di un 

volume strutturale. 
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Introduction 

 
Geometrical discontinuities in mechanical components and structures induce more 

or less localized perturbations of the stress fields. The knowledge of the stress 

distributions in the vicinity of the stress raisers is fundamental in order to 

accurately design a mechanical component.  

For a long time, problems related to notches were addressed evaluating first the 

peak stress value and only subsequently the whole stress field. Over the years, the 

specialized literature promoted some new expressions able to obtain the stress 

concentration factors of notches body basing the research on the series expansion 

of Airy biharmonic potential functions (Neuber 1958). With another approach, 

Williams (1952) presented stress and strain displacement fields near V-notches in 

the form of eigenfunction series expansions. When a non zero notch tip radius is 

considered, solutions have been, instead, determined by Creager and Paris (1967). 

With the aim of evaluating the stress fields problem in general terms, for cracked, 

sharp notched or blunt notched components, Lazzarin and Tovo (1996) presented 

some new solutions based on the complex potential functions according to 

Muskelishvili’s method. The problem of sharp V-shaped notches in round bars 

under antiplane shear was solved by Seweryn and Molski (1996) and Qian and 

Hasebe (1997). Recently the elastic stress fields ahead of different types of 

circumferential notches in infinite and finite size round bars under torsion were 

reported by Lazzarin et al. (2007) and Zappalorto et al. (2008-2010). 

In order to find a complete solution of the elastic stress fields in notched bodies 

Hartranft and Sih (1969) introduce some new expressions considering the whole 

three-dimensional nature of the problem. Following, the three-dimensional crack 

stress fields have been obtained by Yang and Freund (1985) by using the 

simplified assumption tied to Kane and Mindlin (1956). More recently, some 

extensions of the linear elastic three-dimensional solutions were given by 
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Kotousov and Lew (2006) and Zappalorto and Lazzarin (2013). Chapter 1 of this 

work briefly introduces the above mentioned linear elastic solutions. 

Chapter 2 of this work focuses on the introduction of the main concepts at the 

basis of the criterion based on the evaluation of the strain energy density (SED) 

over a control volume surrounding the tip of a sharp or rounded notch presented 

and accurately described in some recent contributions by Lazzarin and Zambardi 

(2001) and Lazzarin and Berto (2005a). The strength properties of brittle 

components weakened by different types of notch were uniquely obtained both in 

the case of static and cyclic loading. The definition of this particular approach 

represents the starting point of the following chapters of this dissertation, in fact 

the principal aim of this work is to verify the validity of the SED approach and to 

extend it, if possible, to particular three-dimensional notch effects or problems 

related to different uniaxial or multiaxial, static or cyclic loading conditions. 

Chapters 3 and 4 are related to three-dimensional problems of notched 

components. In particular Chapter 3 discusses the main features of the out-of-

plane induced mode dealing with three-dimensional plates weakened by blunt 

notches. Some results from blunt V-notches, circular and elliptic holes are 

discussed in detail and presented. The main key-point highlighted in this Chapter 

is that always three-dimensional effects exist in finite thickness plates, because 

mode I, II and III cannot exist in isolation. The importance of induced modes 

varies from case to case and depends on the geometry of the component and on 

the externally applied load. These effects cannot be neglected a priori even if, in 

some cases, they may be negligible. Applying some particular boundary 

conditions on pointed V-notches, Chapter 4 remarks that the application of a far 

field mode II loading generates a coupled out-of-plane singular mode. The effect 

of free-fixed boundary conditions along the notch edges in three dimensional 

plates weakened by pointed V-notches has been investigated. A synthesis of the 

magnitude of the stress state through the plate thickness is carried out by using the 

mean value of the strain energy density (SED) over a given control volume 

embracing the notch tip. The capability of the SED to capture all the combined 

effects due to the out-of-plane mode make it a powerful parameter. 
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The validity of the SED criterion has been investigated in Chapter 5 dealing with 

an experimental and numerical study of  U-notched samples subjected to mixed 

mode loading considering different combinations of the notch radius and the tilt 

angle of the notch. 

The averaged SED, in conjunction with the equivalent local mode I concept, has 

been used not only to assess the static strength of the graphite specimens but also 

to determine the damage initiation point along the notch profile. Good agreement 

has been found between experimental data and theoretical predictions based on 

the constancy of the mean strain energy density over the control volume. 

Chapter 6 makes use of the energy based criterion in order to assess the strength 

of sharp and blunt notched components subjected to proportional and non-

proportional multiaxial fatigue. The results from multiaxial tests have been 

discussed together with those obtained under pure tension and pure torsion 

loading from notched specimens with the same geometry. Altogether more than 

120 new fatigue data has been summarised in Chapter 6, corresponding to a one-

year of testing programme. 

All fatigue data has been re-analysed in terms of the mean value of the strain 

energy density evaluated over a given, crescent shape volume embracing the 

stress concentration region. For the examined steel, the radius of the control 

volume is found to be independent of the loading mode. 

Taking advantage of some results obtained on the previous chapter, and in 

particular from in-phase and out-of-phase multiaxial loadings, Chapter 7 focuses 

on the effect of the phase angle on sharp V-notches subjected to multi-axial 

fatigue loading. A new proposal based on the maximum shear stress averaged 

over an entire fatigue cycle has been presented. The formulation revealed to be 

applicable to the whole different opening angles ranging to 0° to 180°. 

Some interesting considerations on the effect of the phase angle have been drawn 

and in particular the main conclusion is that the phase angle is found to play a 

non-negligible effect on the fatigue strength of pointed notches. This effect, that is 

found to be dependent on the biaxiality ratio, should be considered together with 

the non linear effects acting on the region closed to the notch tip. 



 

 VIII 

The last Chapter (8) presents a comprehensive theoretical and numerical study on 

the cyclic elastic-plastic notch stress and strain distributions. The incremental 

cyclic plasticity theory has been extended to the study of the three dimensional 

effects at the tip of rounded notches in plates of finite thickness. Different notch 

geometries and loading configurations have been investigated, such as plane 

specimens with finite thickness weakened by circular holes, U-notches and 

rounded V-notches subjected to cyclic mode I and mode II loadings. Theoretical 

results based on the incremental cyclic plasticity theory have been compared with 

time-consuming elastic-plastic finite element analyses carried out with a 

commercial FE code showing a satisfactory agreement. In addition, an interesting 

link between the SED criterion and the plastic hysteresis energy calculated at the 

notch tip has been obtained for high amplitudes of load. This could represent the 

starting point for a future extension of the SED criterion to cyclic plasticity. 
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1 

On the local behaviour of 

 mechanical components weakened by notches 
 

 

1.1 Introduction 

This chapter is aimed to recall the basic concepts concerning the evaluation of the 

state of stress in the vicinity of a geometrical discontinuity weakening a 

mechanical component. Linear elastic solutions regarding sharp and blunt notches 

will be recall after a brief introduction on continuum mechanics and on the theory 

of elasticity.  

1.2 Equations of continuum mechanics 

In this work one refers on continuous, homogeneous and isotropic bodies. A 

continuous body maintains its continuity even at infinitesimal scale, an 

homogenous body does not change abruptly its material properties and, finally, an 

isotropic body does not vary its properties with directions. 

1.2.1 Equilibrium equations 

Let assume to consider a body subjected to a generic state of stress. According to 

the classical theory of elasticity, the effect of body forces or inertia will be 

neglected on the following argumentation.  

By considering the above mentioned conditions, the following system of 

equations describes a state of equilibrium of the body: 

 

0

0

0
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
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
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 (1.2.1) 
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In order to ensure a state of equilibrium, the mutuality condition of the shear 

stresses has to be satisfied, namely: 

 

jiij   (1.2.2) 

 

This assumption reduces the number of stresses to be determined from nine to six. 

 

1.2.2 Traction vector and principal stresses 

On the surface of a body, the stresses produce a force per unit of area called 

traction T, whose components can be expressed in a matrix form: 

 


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
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x
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n

n

n
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

T  (1.2.3) 

 

where ni are the components of an outward normal unit vector of the surface.  

Considering an elementary cubic body, the axes of the Cartesian coordinate 

system can be rotated at any point such that all the shear stresses will be equal to 

zero. The value of stress at this particular point is characterised by three normal 

stresses (1, 2, 3), acting collinear to the three principal axes. 

Knowing that a plane is called principal only when the traction vector T acts in 

the same direction of the outward unit normal vector n, let assume the magnitude 

of the traction equal to  .  On the principal plane, it can be stated that: nT  .  

In matrix notation: 

 








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
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2
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1

n

n

n

t

t

t

. (1.2.4) 

 

Where T and n are vectors, while   is a scalar representing the magnitude of the 

principal stress. 
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The traction vector can be thought as equal to the stress matrix times the normal 

vector: 
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This represents an eigenvalue problem. When the stress state is known, i.e., the 

stress matrix is given, it is possible to solve an eigenvalue problem in order to 

determine the eigenvalue  and the eigenvector n. The eigenvalue  represents 

the principal stress, while the eigenvector n represents the principal direction. 

Because the stress tensor is a 3 by 3 symmetric matrix, one can always find three 

real eigenvalues, i.e., principal stresses, cba ,,  , distinguishing three different 

cases: 

 

a. If the three principal stresses are unequal, the three principal directions are 

orthogonal (e.g., pure shear state). 

b. If two principal stresses are equal, but the third is different, the two equal 

principal stresses can be in any directions in a plane, and the third principal 

direction is normal to the plane (e.g., pure tensile state). 

c. If all the three principal stresses are equal, any direction is a principal 

direction. This stress state is called hydrostatic state. 

 

The magnitude of the maximum shear stress, max, can be obtained by: 

 

2

max
max

 
  (1.2.6) 

 

where  max  is the greatest difference between principal stresses. max  acts 

on a plane with the normal vector 45° from the principal directions. 
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1.2.3 Displacement field 

A displacement is a vector by which a material particle moves relative to its 

position in the reference configuration. If all the material particles in the body 

move by the same displacement vector, the body moves by a rigid-body 

translation. If instead the material particles in the body move relative to one 

another, the body deforms. 

Let assume each material particle by its coordinates  zyx ,,  in the reference 

configuration. At time t, the material particle  zyx ,,  has the displacement 

 tzyxu ,,,  in the x-direction,  tzyxv ,,,  in the y-direction and  tzyxw ,,,  in the 

z-direction. A function of spatial coordinates is known as a field.  The 

displacement field is a time-dependent vector field. 

 

1.2.4 Strain field   

For a given displacement field, it is always possible to calculate the respective 

strain field. Let consider two generic material particles in the reference 

configuration: particle A at  zyx ,,  and particle B at  zydxx ,, , the two 

particles are far dx one to another. At a given time t, the two particles move to 

new locations.  The x-component of the displacement of particle A is  tzyxu ,,, , 

and that of particle B is  tzydxxu ,,, .  Consequently, the distance between the 

two particles elongates by    tzyxutzydxxu ,,,,,,  .  The axial strain in the x-

direction is equal to: 

 

A B 

C 

dx 

dy 

 tzdyyxu ,,, 

 tzyxu ,,,

 

Figure 1.2.2. Schematic representation of deformation 
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   
x

u

dx

t,z,y,xut,z,y,dxxu
x







 . (1.2.30) 

 

This is a strain of material particles in the vicinity of  zyx ,,  at time t.  The 

function  tzyxx ,,,  is a component of the strain field of the body. 

The shear strain is defined as follows.  Consider two lines of material particles.  In 

the reference configuration, the two lines are perpendicular one to another.  The 

deformation changes the angle between the two lines by a certain amount. This 

change in the angle defines the shear strain,  . Let assume to translate this 

definition into a strain-displacement relation.  Consider three material particles A, 

B, and C.  In the reference configuration, their coordinates are A  zyx ,, , 

B  zydxx ,, , and C  zdyyx ,,  .  In the deformed configuration, in the x-

direction, particle A moves by  tzyxu ,,,  and particle C by  tzdyyxu ,,,  .  

Consequently, the deformation rotates line AC about axis z by an angle 

 

   
y

u

dy
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





. (1.2.31) 

 

Similarly, the deformation rotates line AB about axis z by an angle 
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x

v

dx
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


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. (1.2.32) 

 

Consequently, the shear strain in the xy plane is the net change in the included 

angle: 
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u
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 . (1.2.33) 

 

For a body in the three-dimensional space, the strain state of a material particle is 

described by a total of six components. The strains are linked to the displacements 

as follows: 
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The shear strain can also be written in the following form: 2/xyxy  .  This new 

definition permits to write the six strain-displacement relations as follows: 
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. (1.2.35) 

 

In general six equation of compatibility must be satisfied in order to obtain a 

single-valued displacement field: 
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1.2.5 Equations in Cylindrical Coordinates (r, , z) 

Suppose u, v, w are the displacement components in the radial, circumferential 

and axial directions, respectively.  Equations of Equilibrium become: 
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1.3 Equations of elasticity 

Linear relations between the components of stress and the components of strain 

are known generally as Hooke’s law: 
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In more details, every Cartesian strain component can be written as follows: 
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1.3.1 Plane problems of elasticity theory 

The plane problems of elasticity are generally designated as plane strain and plane 

stress problems.  

Plane strain conditions are typically met by thick plates that are loaded in the 

plane. The loading is invariant along the z-direction. Consequently, the 
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displacement field takes the form  y,xu ,  y,xv , 0w  . 

Considering the strain displacement relations, only the three in-plane strains are 

nonzero:      y,x,y,x,y,x xyyyxx  . The three out-of-plane strains, instead, 

vanish:  0yzxzzz  . This implies that 0yzxz  .  From 0zz   

instead, it is possible to obtain:  

 

 yyxxzz   (1.3.3) 

 

On the other hand, if a thin plate is loaded by forces applied at the boundary, 

parallel to the plane of the plate and distributed uniformly over the thickness, the 

non-zero components in its plane are xyyyxx  ,, , and the components out of the 

plane vanish: 

 

 0 yzxzzz  . (1.3.4) 

 

For both cases the stress field in the plane is described by three functions 

     yxyxyx xyyyxx ,,,,,  . Then, in light of the simplified stress states the 

equilibrium equations reduce to: 
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while compatibility of strains requires: 
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The stress-strain relationships for plane stress are then: 
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While for plane strain one has: 
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1.4 The Airy stress function  

Consider two different functions  yxf ,  and  yxg ,  satisfying: 
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Cauchy-Schwarz conditions assures that there exists a function  yxA , : 
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Considering the equilibrium condition: 
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It is possible to state that a function  yxA ,  exists and the components of stress 

can be written as: 
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From: 
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A function  y,xB  exists and the components of stress can be written as: 
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Finally, from the properties  
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Made use of this last property, a function  yx, can exists, such that: 
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The function  yx,  is known as the Airy stress function (1862). The three 

different components representing the stress field can be written as a function of 

 yx, : 
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Using the stress-strain relations, the three components of strain field can be obtain 
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in terms of the Airy stress function: 
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In this manner, the compatibility equation can be written as follows: 
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Or, equally: 
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This is the so-called biharmonic equation.  

Thus, a procedure to solve a plane problem of elasticity is to solve for  yx,  

from the above partial differential equation, and then calculate stresses and strains.  

After the strains are obtained, the displacement field can be obtained by 

integrating the strain-displacement relations. 

 

1.4.1 Equations in polar coordinates  

The Airy stress function can be expressed also in  polar coordinates,   ,r . 

Following all the stress components will be presented in terms of polar coordinate 

system: 
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The new biharmonic equation can be written as: 
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The stress-strain relations can be thus written as follows: 
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The strain-displacement relations are 
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1.4.2 Mushkelisvili- Kolosov’s equations 

 

The Mushkelisvili-Kolosov’s formulation of plane problems of elasticity follows 

the equations reported below: 
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  (1.4.17) 

 

where, as is well known, and  are two holomorphic functions that have to be 

determined. 

 

1.5 Linear elastic stress distributions on classic notches using the 

Airy stress function: plane problems 

In this section the most relevant linear elastic solutions of notched problems will 

be listed in order to better describe the state of the art dealing with this particular 

problems. 

 

1.5.1 Circular hole in an infinite sheet under remote tension  

 

A classic problem dealing with a component weakened by a notch is the Kirsch 

problem (1898). Let consider an infinite sheet subjected by a remote pure tension 

loading, namely: 0 yyxy    and Sxx  . 

 

Figure 1.5.1. A circular hole in an infinite sheet under remote tension  

 

The remote state of stress can be expressed in polar coordinates:  
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The stress field can be considered as the superposition of two distinct stress fields: 

 

 A symmetric stress field about an axis, which does not depend on the polar 

coordinate , object of the study of Timoshenko and Goodier. 

  

 A non symmetric stress field, which depends on the polar coordinate  

 

The first, symmetric solution, depends only on the radial distance r, so that 

 r . The biharmonic equation can be written as follows: 

 

0
dr

d

r

1

dr

d

dr

d

r

1

dr

d
2

2

2

2








 











      (1.5.2) 

 

This is an equi-dimensional equation, whose solutions can be sought in the 

form mr . 

Inserting mr  into the biharmonic equation, one can obtain the algebraic 

equation   02mm
22   .Consequently, the general solution is: 

 

  DCrrlogBrrlogAr 22  .     (1.5.3) 

 

where A, B, C and D are four unknowns constants related to the problem.. 

The components of the stress field can be written as follows: 
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By using the expression   drrdr /   in combination with the Hooke’s law: 
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One obtains the following equation: 
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Substituting into Eq. (1.5.6) the expressions for stresses, Eqs. (1.5.4), one obtains 

B=0. Then the complete stress field can be re-written in the well-known 

formulation: 
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From these equation it is possible to obtain the case of a hole of radius a in an 

infinite sheet subject to a remote biaxial stress S. The stress field in the sheet is 

equal to: 
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Dealing with the non symmetric solution, the stress function has to be imposed in 

the form      2cosrf,r . Under this circumstances, the biharmonic equation 

can be re-rewritten as: 
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and the solution is: 
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The four-needed boundary conditions are: 

Remote from the hole, namely, r ,   2sin
2

S
,2cos

2

S
rrr , giving 

0B,4/SA  . 

On the surface of the hole, namely, r = a, 0,0   rrr , giving 2/SaD 2  and 

4/SaC 4 .   
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Then stress fields take the form: 
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 (1.5.12) 

 

Adding the solution for the two sub-problems, one can obtain the complete 

solution. 
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 (1.5.13) 

 

1.5.2 Williams’ solution for sharp V-notches under Mode I and Mode II  

Williams, in his pioneering work, addressed for the first time the problem 

of stress distributions resulting from re-entrant corners using an Airy 

stress function composed by two separated variables (Williams 1952):  

 

)(fr),r( 1     (1.5.14) 

 

By knowing the representation of the stress components in terms of polar 

coordinates it is possible to write those related to the Williams problem: 
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  (1.5.15) 

 

The bi-harmonic equation can be expressed as follows: 
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  (1.5.16) 

 

Substituting in the bi-harmonic equations, the following equation can be written: 
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Figure 1.5.2. Polar coordinate system at the tip of a sharp V-notch. 

 

Eq. (1.5.17) can be satisfied if function f() holds the following form: 
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 )1cos(b)1sin(b)1cos(b)1sin(bf( 4321  (1.5.18) 

 

With reference to the fig. 1.5.2, the boundary conditions of the free edge of the 

notch can be written as follows : 

 

0)()(    r   (1.5.19)    

 

That in terms of f turn to: 
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Substituting Eq.(1.5.18) in Eq.(1.5.19) one can obtain: 
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   (1.5.21) 

 

Now it is possible to consider two different contributions on the problem, one 

related to the symmetric mode (Mode I) and the other tied to the skew-symmetric 

one (Mode II), respectively:  
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The eigenvalues of the problem can be determined providing the following two 

equations: 
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which can also be rewritten in the following form: 

 

02 sin2 sin 11     (1.5.26) 

02 sin2 sin 22      (1.5.27) 

 

In the case of Mode I and Mode II, respectively. Solutions of the two above 

reported equations are plotted in Figure 1.5.3. 
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 Figure 1.5.3. Plotting of Williams’ eigeinvalues. 

 

The smallest but positive roots related to each loading mode have to be 

determined. This choice has been made in order to keep the strain energy density 

close to the tip equal to a finite value. 

The remaining parameters can be determined as follows: 
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where 1 satisfies: 
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And: 
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Where: 
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Finally, the expressions for stress distributions in the case of Mode I loading are: 
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And in the case of Mode II loading: 
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Stress fields are defined as a function of two unknown parameters which can be 

linked to the geometry and to the far fields applied load through the notch stress 

intensity factors defined by Gross and Meldenson (1972): 
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In this manner, the equations representing the stress components become, in the 

case of Mode I: 
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  (1.5.36) 

And in the case of Mode II: 
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  (1.5.37) 

 

1.5.3 Lazzarin and Tovo’s equations for blunt V and U shaped notches 

under Mode I and II 

Lazzarin and Tovo (1996) made use of the Kolosoff-Muskhelishvili's method 

aiming to the determination of the stress components in the proximity of an open 

notch (which becomes a V-notch when the notch radius is equal to zero) under 

plane stress and plane strain conditions. 

Following are reported the analytical functions used in the procedure: 
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where coefficients  a, b, c  are complex numbers, while exponents  and  are real 

numbers, with the hypothesis stating that   > . 
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Figure 1.5.4. Coordinate system and symbols used for the stress field components 

(figure from Lazzarin and Tovo, 1996). 

 

With reference to the figure 1.5.4, polar components of stresses can be written as 

follows: 
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  (1.5.39) 

In order to impose the boundary conditions, Lazzarin and Tovo (1996) made use 

of the Neuber’s curvilinear coordinates u and v. The analytical link between the 

two coordinate systems can be written as follows: 

 

x iy re z w u ivi q q      ( )   (1.5.40) 

 

The parametric curve corresponding in the curvilinear system to the u=0 

condition, describes in the (x,y) system a sharp angle equal to 2  where: 
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 2 2  q   (1.5.41) 

 

Moreover the curve u = u0, corresponding to the free edge of a generic smooth 

notch with notch root radius equal to: 
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Being 


 
q

 the angle between the principal directions of the polar and the 

curvilinear systems, the components of the stress field in the (u,v) curvilinear 

system can be obtained from the stress components expressions by imposing the 

rotation of the reference system above defined (Lazzarin and Tovo, 1996): 
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  (1.5.43) 

 

The following boundary conditions have been imposed along the free edge of the 

notch: 
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Authors focused the attention in two important considerations: 

 The boundary conditions in Eq.(1.5.44) should be satisfied far away from the 

tip of the notch, where terms related to exponent "" are negligible; 

 The stress field should be correct in the close neighbourhood of the tip. Hence 

the first two terms of the series expansions along the free edge, related to u 

and uv stresses, have to be zero. 
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Under these considerations, in the case of u, the general boundary conditions 

become: 
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In the same way, other three boundary conditions can be obtained for uv. 

Eq. (1.5.45) gives n-solutions (eigenvalues) that will be characterized by a second 

subscript n. Being the problem linear, the general solution can be given as a linear 

combination of particular solutions. The stress field defined by the lowest 

eigenvalue, however, represents the prevailing component and it will be later 

considered in the analyses. The values of the constants, associated to each 

eigenvalue, are following reported: 
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where ik are: 
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The remaining unknowns parameters can be obtained using the expression of the 

boundary conditions. Four expressions can be obtained for the real constants c1n 

and c2n: 
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The values of the parameter  and of the real and imaginary components of the 

variable c can be obtained as follows for Mode I and Mode II: 

 

 
 

   

   





  

  
1

1

2 1

1 1 1

1 1 1

1
1

1
1 1

1

3 1
1n

n

n

n n n

n n n
q

q q
 

 








   











  

























   (1.5.53) 

     
   


   

  
2

2 2 2 2

2

2 2 2

3 1 1

1 1
1n

n n n n

n n n

 
   

  














   (1.5.54) 

    c r an

n

n

n n n n

n n

1

1

1

0 1 1 1 1

1 1 3 1   



  

 
  (1.5.55) 

    c r an

n

n

n n n n

n n

2

2

2

0 2 2 2 2

2 2 1 1   



  

 
  (1.5.56) 

 

Stress field components in the neighbourhood of the notch tip, for Mode I and II 

respectively, are defined with an exception related to a single constant value: 
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  (1.5.58) 

In the presence of a tension loading, the maximum stress at the notch tip can be 

obtained by imposing r=r0 and =0, so that: 
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  (1.5.59) 

 

According to LEFM, stress components can also be linked to a field parameter, in 

such a way that this particular parameter will be equal to the stress intensity 

factors KI and KII as soon as the notch degenerates into a crack. (=0, 2=0); then 

such a parameter should be representative of the only main stress term, related to 

exponent . The equations representing the stress fields tied to Mode I and Mode 

II loadings, can be particularized by using the definitions given by Gross and 

Mendelson (1972) for open cracks: 
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Applying these definitions as long as the component in  related to the fillet 
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radius is equal to zero (so that also c1,2=0), the real and imaginary parts of the 

complex constant a are: 

 

    

    2222

2
2

1111

1
1

112

112











K
a

K
a
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On the basis of these last expressions, in presence of a tensile loading, the 

maximum stress at the notch tip can be linked to the field parameter by means of 

the notch radius and the opening angle.  

Thus: 
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1.6 Generalized stress intensity factors for rounded V-shaped 

notches: plane problems 

 

The definitions of stress intensity factors given by Gross and Mendelson (1972) 

are valid only for ideal sharp V notches where Williams’ solution exactly matches 

stress distributions, but these parameters were often used also in the presence of 

notch tip radii small but different from zero, by simply ignoring the presence of 

the radius. Lazzarin and Filippi (2005) suggest a generalized form of N-SIFs 

(Notch Stress Intensity Factors) capable of including the influence of the notch 

root radius and quantifying, in particular, the stress redistribution it involves.  

Starting from the Lazzarin-Tovo’s procedure, Filippi et al. (2002) added a new 

term to Eqs. (1.5.38) in order to obtain better precision and more flexibility of the 

stress field distributions. The new analytical functions used in the procedure are: 

   

    dzzaz       zczbz     (1.6.1) 
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For the sake of shortness, the mathematical steps will be omitted, because of the 

procedure traces accurately that already explained in the previous section. 

With reference to the polar coordinate system, the new stress distributions for 

Mode I and Mode II loading respectively can be obtained in the form of: 
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          (1.6.3) 

 

All the parameters composing the equations can be determined with closed form 

expression. The only exceptions are a1 and a2 that need to be evaluated on the 

basis of the local stress distributions. 

With reference only to Mode I stress distributions, a partial solution of the 

problem can be obtained by linking the generalized stress intensity factor to the 

maximum principal stress at the notch tip, max, as follows (Filippi et al. 2002): 
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With reference to figure 1.6.1, when the notch angle is null, q=2, 1
~ =1, 2/r0  , 

so that (1.6.4)  immediately gives (Glinka, 1985): 
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 2/K max

V

I,          (1.6.5) 

 

Under Mode II conditions, instead, the procedure cannot be applied, because r at 

the notch tip is always zero. 

In order to extend the solution on mixed mode loading configuration, and thus to 

formulate a more general approach, the maximum stress has been replaced by the 

components of stress ahead of the notch. The generalized N-SIFs can be written as 

follows: 
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Figure 1.6.1. Coordinate systems and geometrical parameters (figure from 

Lazzarin and Filippi, 2005). 
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where  and r are the stresses at the distance r from the local frame origin (see 

fig.1.6.1). These two equations represents the extension of the Gross and 



 

 31 

Mendelson N-SIFs in the case of rounded notches. Solutions thus obtained are not 

expected to give a constant value for N-SIFs, in fact, they show a slightly 

oscillating value ahead of the notch tip. In order to eliminate the dependence on 

the notch tip distance, the mean values of generalized NSIFs might be used: 
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As soon as N-SIFs are determined, parameters a1,a2 in Eqs.(1.6.2)-(1.6.3) can be 

determined according to the following expressions: 
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1.7 Linear elastic solutions for notches under torsion 
 

1.7.1 Complex potentials in antiplane elasticity 

The problem of an axisymmetric body weakened by a circumferential notch of a 

generic shape subjected to torsion loading has been taken into account by 

Lazzarin et al. (2007) and Zappalorto et al. (2008).  

Referring to the Cartesian coordinate system in figure 1.7.1, let’s consider a body  

loaded by a remote shear stress , resulting only in displacements w along the z 

coordinate.   
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Figure 1.7.1. Axi-symmetric body weakened by a circumferential notch and 

subjected to antiplane shear stresses (figure from Zappalorto et al. 2008). 

 

The only two components different from zero on the strain tensor are 

(Timoshenko and Goodier, 1970): 

 

x

w
xz




       

y

w
yz




 .         (1.7.1) 

 

Since: 

 

G

xz
xz


 

     G

yz

yz


 

         (1.7.2) 

 

The equilibrium condition in the z direction results in: 

 

0









yx

yzxz
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.         (1.7.3) 

 

And thus: 

 

0
2

2

2

2











y

w

x

w

         (1.7.4) 

 

and then w is an harmonic function. 

A real function solution of Laplace’s equation can be written as the real part of an 

analytical function: 
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GwzHzH 2)()(           (1.7.5) 

 

Differentiating Eq.(1.7.5) with respect to x and y: 

 

)(')('2 zHzH
x

w
G 




     (1.7.6) 

 

And 

 

 )(')(' 2 zHzHi
y

w
G 




     (1.7.7) 

 

Re-arranging it is possible to obtain: 

 

)(' zHi yzxz   .     (1.7.8) 

 

Eq. (1.7.8) can also be re-written in polar coordinates 

 

)(' zHei i

zrz


  .     (1.7.9) 

 

1.7.2 Mode III loading solutions with hyperbolic-parabolic transformations 

The problem of circumferential hyperbolic and parabolic notches subjected to 

torsion loading has been addressed by Zappalorto et al. (2008) in order to obtain 

the elastic stress distributions ahead of the notch. In this section the main concepts 

of the dissertation will be recalled. 

Zappalorto et al. used an orthogonal curvilinear hyperbolic-parabolic coordinate 

system generate by the following transformation suggested by Neuber 1958  and 

Lazzarin and Tovo (1996) (See section 1.5.3): 

 

qwz             (1.7.10) 
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where iyxz   and ivuw   are complex variables in the physical and the 

transformed planes, respectively, and q is a real number related to the opening 

angle of the curve 2see figure 1.7.2):   

                                                       











222
q .       (1.7.11) 

 

Eq. (1.7.10) can be re-written as: 

 

     sinicosrreivuw iqq         (1.7.12) 

 

and thus, coordinates u and v can be written as: 

 



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












q
sinrv

q
cosru

q

1

q

1

                         (1.7.13) 

    

The angle between the radial vector r and the normal vector nu to the curve u=cost 

is equal to 
q


  (see figure 1.7.2b).  

System of equations (1.7.13) results in: 

 

  2

q
22 vur

 
        (1.7.14) 

 

The generic curve characterised by the coordinate u0 intersects the x-axis at: 

 

  q

00  ur                                (1.7.15)  

 

So the parameter 0r  can be linked to the curvature radius by: 
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
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 35 

 

 

y 

x 



zr 

z

r0 

r 

u 

u=u0 

x 

y 

u = 0 

-q 

 
Figure 1.7.2. (a) Auxiliary system of curvilinear coordinates (u, v); (b) reference 

system adopted for the solution (figure from Zappalorto et al. 2008). 

 

 

In order to address the problem, Zappalorto et al. suggested to consider the 

analytical function H as: 

  

Aw)z(H     (1.7.17) 

 

where A=A1+iA2 is a complex coefficient. 

The first derivative of the analytical function, after some mathematical 

manipulations (here omitted for sake of brevity), can be expressed as: 
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Stress components thus have been defined in terms of an unknown constant, A2, 

which can be determined as a function of the external loading conditions: 
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   (1.7.19) 

 

In polar coordinates: 
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   (1.7.20) 

 

Authors stated that the same solution can be obtained using for H(z) the first 

analytical function already used dealing with the Lazzarin-Tovo’s formulation 

(1996): 

 

 z A)z(H         (1.7.21) 

 

Thus the first derivative is equal to: 

 

  1

21

' z  iAA)z(H     (1.7.22) 

 

Considering the polar reference system in figure 1.7.2b, the stress distributions 

have been written as: 

 

     cosAsinAr )z(He Re 12

1'i

zr    (1.7.23) 

    

 cosAsinAr )z(He Im 21

1'i

z  

 

Coefficients Ai has been determined by imposing boundary conditions on the 

notch edge at infinity (see Zappalorto et al. 2008).  
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The following system can be written: 
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The following characteristic equation of the system can be obtained from 

Eq.(1.7.24): 

 

02 sin cos sin2  .   (1.7.25) 

 

The solution of the characteristic equation leads to the determination of the 

smaller positive value of 3 that is: 

 

q

1

2
3 
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Thus, the first equation of the system results in: 
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                                         (1.7.27) 

 

Shear stress components can be finally re-written as: 
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Shear strain components can be determined as: 
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Stress, strain and displacement fields are defined in terms of an unknown 

constant, A2, which can be determined as a function of the external loading 

conditions.  

Authors extended the N-SIF definitions from the plane problems to the antiplane 

case writing: 

 

 )0,r(rlim2K z
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rr
3
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   (1.7.30) 

 

Substituting eq. (1.7.28) into eq. (1.7.30) and using limit properties: 
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and thus stress and strain components and displacement w can be written as: 
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If the notch radius is different from zero, or not too small, the coefficient A2 can 

be determined as a function of the maximum shear stress occurring at the notch 

tip: 
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   (1.7.35) 

 

And, in this case, stress and strain components and displacement w can be written 

as: 
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The case 2=0° and 0 mm represents a circumferential edge crack. As 2q   

5.0q/13  , and, substituting K3 with KIII, eq. (1.7.32) matches the well 

known equations of LEFM: 
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1.7.3 Mode III loading solutions for U and blunt V-shaped notches 

The linear elastic solutions for the determination of the stress field ahead of a 

notch under torsion have been extended to U and blunt V-shaped notches by 

Zappalorto et al. (2010). In particular, this extension has been provided because  

the analytical solution obtained for hyperbolic notches is able to guarantee the 

necessary notch free-edge condition only when the notch profile is actually 

hyperbolic or sharp V- shaped, but generates some residual non-zero shear 

stresses on the edge in the case of a blunt V- or U-notch.  

With reference to figure 1.7.3, it can be seen that a U or blunt V- notch the notch 

profile is discountinuos, being represented by a rounded circular tip of radius   

and two rectilinear flanks. The circular part of the notch profile ends in 

correspondence of a limit angle denoted here as *. The notch profile has been 

described by Berto and Lazzarin (2007) as: 

 

   ieRiyxz          (1.7.40) 
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Figure 1.7.3. Schematic representation of the notch profile and significant 

geometrical parameters (figure from Berto and Lazzarin 2007) 

 

where: 
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And 
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The limit angle * results: 
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The angle  between the x-direction and the direction u (see figure 1.7.2) is 

instead: 
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The following holomorphic function H(z) has been considered by the authors in 

order to address the problem of the determination of the stress distributions ahead 

of a U or rounded V-shaped notch: 

 


ibzzia)z(H                                (1.7.45) 

 

where a and b are real coefficients. The first derivative is equal to: 

 
11' zibzia)z(H                            (1.7.46) 

 

Parameters  and arereal numbers such that <1by hypothesis. 

Using Euler equation and according to Eq.(1.7.8) the stress components can be 

obtained as: 
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Boundary conditions can be formulated in synthetic form as: 

 

  0τ
0uuzu 


                    (1.7.48) 

 

That, in Cartesian coordinates, can be rewritten as: 

 

'sin'cos zyzxzu          (1.7.49) 

 

Then, re-arranging: 
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This last equation has been imposed on the notch flank, far from the notch tip, 

resulting in: 
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Eq. (1.7.51) has to satisfy: 
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Obtaining again: 
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The mathematical steps used in order to obtain parameter B have been omitted for  

sake of brevity. However the final form is reported in the following (see 

Zappalorto et al. (2010) for the whole determination procedure): 
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In this manner, the stress components can be written as: 

 

  
  

 

)μ1(cos*) r(μR)λ1(cos Arτ

)μ1(sin*) r(μR)λ1(sinrA

3

λμ

3

μλ

3

1λ

zy

3

λμ

3

μλ

3

1

zx

33333

33333








 

   (1.7.55) 

 

Parameter A has been determined as a function of the maximum shear stress at the 

notch tip: 
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Finally, shear stress distributions turn out to be: 
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where the parameters and r3 are equal to: 
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1.8 Three dimensional stress field solutions for notches  

 

Engineering solutions related to three-dimensional problems are usually obtained 

by the use of two approximate assumptions, that is: plane stress and plane strain. 

In the literature, especially in relation to crack problems, the dominant state of 

stress is often estimated from the plate thickness by using a simple empirical rule. 

If the plate is thin enough the stress state is normally considered to be plane stress 

and thus to be plane strain for thicker plates. However, the most difficult problem 

is the identification of what thicknesses correspond to plane-stress or to plane-

strain conditions. For these reasons, in the last years many three-dimensional 

based approaches have been developed in order to obtain the stress field solutions 

ahead of a notch. In the following the most important three-dimensional solutions 

will be recalled. 

 

1.8.1 Kane and Mindlin’s assumption 

Let’s consider a three-dimensional plate bounded by planes z=±h,  Kane and 

Mindlin (1956) demonstrated that the three components of displacement are given 

with a good level of accuracy by the following relationships: 
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The equilibrium equations in terms of stress resultants can be written as follows, 

taking advantage by Eqs.(1.8.1): 
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where: 
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Using displacement definitions, stress-strain relationships can be written as: 
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Substituting of Eq.(1.8.4) into Eq. (1.8.3) one can obtain: 
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Where  k is the shear factor while  is Lame’s constant: 

907.0
32

k 

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211

E
       (1.8.6) 

 

1.8.2 Derivations of Kane and Mindlin’s assumption 

Yang and Freund (1985) used Kane and Mindlin’s assumption to analyse the state 

of stress in a thin elastic plate containing through-cracks.  

They reconsidered Eq. (1.8.5) by rewriting Nzz in terms of the mean in-plane 

stress resultant 2/)NN(N yyxx   and w: 
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Substituting then Eq. (1.8.7) and Rxz and Ryz, from Eqs. (1.8.5), into Eq. (1.8.2-c), 

the following differential equation was derived: 
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The system of equations was then completed by enforcing the strain compatibility 

to obtain the following equation: 

 

0wN
Gk2

G22 












           (1.8.9) 

 



 

 46 

Eqs. (1.8.8, 1.8.9) have then been solved by Yang and Freund using the Wiener-

Hopf technique and, examining the solution for points very near to the crack tip, 

they demonstrated the existence of a generalised plane strain field, with the stress 

resultants N having the following forms: 
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where K is the Mode I stress intensity factor.  

 

1.8.3 Three-dimensional stress fields on sharp V-notches, Kotousov and 

Lew’s approach 

Kotousov and Lew
 
(2006) analysed the asymptotic stress fields ahead of a three-

dimensional V-notch. Kane and Mindlin’s assumption on the displacement field 

was assumed as the basic theory, as given by Eq. (1.8.1). Kotousov and Lew 

imposed k=1 in Eqs.(1.8.8) and (1.8.9) and introduced the function to 

automatically satisfy Eqs. (1.8.2-a, b): 
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In this manner, Eqs. (1.8.8) and (1.8.9) can be re-written as: 
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or, equivalently: 
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Writing the Eqs. (1.8.11) in polar coordinates one can obtain: 
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Subsequently, Kotousov and Lew suggested the following forms for and w: 
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Where kkkkkk CandB,A,C,B,A are constants to be determined from the 

boundary conditions, 
 

)1(

2/~
2








,  is the Gamma function and I is the 

modified Bessel function of the first kind. It has to be noted that Eqs (1.8.16) 

automatically satisfy Eqs. (1.8.13).  

By applying appropriate boundary conditions on the notch edge, Kotousov and 

Lew obtained the following eigen-equations for the “free-free edge” case: 
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     0cos2sin)1()1(2sin    (antisymmetric terms) 

 

It is worth noting that the terms within curly brackets are exactly Williams’ eigen-

equations for the plane problem, while the term “cos” represents an additional 

singular behaviour, related to the out-of-plane displacement. 

The presence and the intensity of the out-of-plane mode was discussed by Berto et 

al. (2012) also in the case of notches characterised by a notch tip radius small but 

different from zero, confirming the presence of an out-of-plane mode at the tip of 

the notch. 

After having determined the unknown coefficients resulting from boundary 

conditions and assuming k=0, Kotousov and Lew wrote the following expressions 

for  and w in the case of symmetric loading: 
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While in the case of skew-symmetric loading conditions: 

 

  
























 sin
)1(

r

2
)r(I

)1(

E2
B,r

220              

                       (1.8.19) 



 

 49 

    sin)r(IB,rw 0          

By using the series expansion for the Bessel function and imposing k=0, )r(I   

becomes: 
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1.8.4 Three-dimensional stress fields on sharp V-notches, Lazzarin and 

Zappalorto’s proposal 

With the aim to theoretically clarify the key-concept of inherently coupled stress 

components, as already seen by Pook (2000a-2003), and by making use of the 

basic equations of elasticity a new approach to the three-dimensional problem has 

been developed by Lazzarin and Zappalorto (2012), which assumes as starting 

point the Kane and Mindlin hypothesis for displacement components: 
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Where f(z)=bz. 

Strain components can be written as: 
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In this manner, the normal strains ii, and xy are independent of z. As a 

consequence also the stress components xx, yy, xy and zz are independent of z:  
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The equilibrium equation in the z direction gives: 
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That, when f(z)=bz, immediately leads to: 
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Consider now equilibrium equations in the x and in the y directions: 
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Differentiating the first one by x and the second one by y and making the sum and 

by further using the Schwarz theorem the result is: 
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Components xx, yy and xy do not depend on z, and thus the classic Airy stress 

function x,y can be introduced:  
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In this manner, Eq. (1.8.27) is automatically satisfied. 

According to the Hooke’s law for stresses and strains it is possible to write the in-

plane compatibility equation as follows:  
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Summarising: 
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As already remarked, normal stress components do not depend on z, and thus the 

third of Beltrami-Mitchell’s equations: 
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guarantees that 0zz

2  , so that:  
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This mean that any three dimensional notch problem obeying to the Kane and 

Mindlin’s displacement assumptions can be converted into a bi-harmonic problem 

(plane stress or plane strain conditions) and a harmonic problem (out-of-plane 

shear case) according to the following system: 
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Both the two equations have to be simultaneously satisfied in order to solve the 
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three-dimensional problem. The second equation has been widely used by 

Lazzarin and Zappalorto (2012) to solve the problem of notched shafts under 

torsion loading, as already reported in the previous session. 

Taking into account the V-notch problem Eqs. (1.8.33) has been written by the 

authors as follows: 
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In the case of symmetric terms the free-of-stress conditions on the V-notch flank 

require: 
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While for the antisymmetric terms: 
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Equating to zero the determinants results: 

 

  0sin2sin2sin s,311      symmetric terms   

             (1.8.38) 

  0cos2sin2sin a,322    antisymmetric terms  
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Eqs. (1.8.38) match Kotousov and Lew’s formulations, moreover, since 

 /2 a,3s,3 , only the antisymmetric part of the out-of-plane shear stress 

results in a singular behaviour, whereas the symmetric part results in a non-

singular behaviour. 
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2 

The averaged SED over  

a control volume as a damage parameter  
 

 

2.1  Introduction 

This chapter focuses on the recall of the main concepts concerning the local 

energy based criterion of SED. This criterion was presented for the first time by 

Lazzarin and Zambardi (2001) dealing with the evaluation of sharp V-notches and 

then extended to blunt notches by Lazzarin and Berto (2005). The averaged SED 

criterion will be used in the next chapters in order to investigate the strength of 

notched components subjected to different remote loadings.  

2.2  Averaged SED criterion to predict the static and fatigue 

behaviour of components weakened by sharp V- notches 

By assuming linear elastic conditions, the strain energy density for an isotropic 

material can be written as follows: 

 

    2
12332233112211
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             (2.2.1) 

 

In the presence of a sharp V-notch, the stress distribution in the case of 

application of Mode I or Mode II loading can be obtained using Eqs.(1.5.36) and 

(1.5.37) respectively. 

The stress distributions acting in the vicinity of the notch tip can be written as 

follows only by make use of the superposition of effects principle: 
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Parameters  ~ , rr
~ and r

~  are angular functions that can be determined from 

Eqs. (1.5.36) and (1.5.37). If each expression of stress component is substituted 

into Eq. (2.1.1) one can obtain the expression representing the strain energy 

density in terms of summation of different energy density components: 
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Where the three energy density components are: 
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             (2.2.4) 

With reference to figure 2.2.1, the elastic energy within the area of radius R is 

equal to: 
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By taking advantage of the symmetry of the integration field, the contribution of 

W12 is equal to zero, thus: 
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Figure 2.1.1. Critical volume surrounding the notch tip (figure from Lazzarin and 

Zambardi 2001) 

 

Parameters I1 and I2 are integrals equal to: 
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The value of the integrating area is: 
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Now it is possible to obtain the elastic strain energy averaged over the area A: 
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Where: 
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Values of e1 and e2 are tabulated as a function of the notch opening angle 2. 

It is worth noting that, in the presence of a torsion loading, adding also the 

contribution tied to Mode III the expression for the strain energy density can be 

updated as follows: 
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The Mode III N-SIF is according to Eq.(1.7.34). 

The most important peculiarity of an energy based criterion is that the critical 

configuration of different notch opening angle can be evaluated and compared 

each other with the same physical dimensions, in this case Nmm/mm
3
. This 

cannot be stated in the case of a N-SIF based approach. 

 

2.2.1 Failure criterion based on averaged SED 

Lazzarin and Zambardi (2001), in the case of static loads, supposed that the 

material failure occurs when the averaged strain energy density over a control 

volume reaches a critical value: 

 

CWW            (2.2.12) 

 

This particular and characteristic parameter can be evaluated by means of the 

mechanical properties of the material taken into account. The expression of the 

critical value of the strain energy density can be, thus, written as follows: 
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Where R is the ultimate tensile stress of the material and E is the Young’s 

modulus. 

The critical radius has been thought to be a material property. It can be determined 

by imposing the strain energy component related to Mode II loading equal to zero. 

In this manner, the Mode I N-SIF can be linked to the related component of the 

averaged strain energy density: 
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Supposing critical configuration, the averaged strain energy density has to be 

equal to Wc. And so: 

 

)11(
R

)11(
R

1

1N
C1 R)2(R

)(I

2
K







 1f

     (2.2.15) 

 

By degenerating a V-shaped notch on a crack shaped notch, the value of 

N

C1
K coincides with the fracture toughness: 
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The critical radius can be expressed in the following form: 
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The expression used to calculate the critical radius in the case of an opening angle 

of the notch different from zero is reported in the following: 
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It is appropriate to remember that a useful expression for the radius R surrounding 

the control volume has been provided by Yoshibash et al. (2004) 
 
for the crack 

case under plane strain and plane stress conditions respectively: 
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Finally, the following expression permits to evaluate the critical N-SIF for 

different notch opening angle by considering known material properties and 

characteristic eigenvalues: 
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In the case of notched components or welded joints subjected to fatigue loadings, 

the critical strain energy density turns to be: 
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Where A represents the fatigue limit of an un-notched welded material taken 

into account at N=2x10
6
 cycles with a PS equal to 97.7%. 

In addition, if the contribution tied to Mode II loading can be neglected, it is 

possible to determine the variation of the strain energy density can be obtained as: 
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Equations (2.2.22) and (2.2.23) permit to determinate the critical radius as: 
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The critical value of the control radius has been determined by Lazzarin and 

Zambardi (2001) in the case of structural steel. The critical radius turned out to be 

equal to 0.28 mm. 

Taking advantage of the above reported considerations, it is evident that the use of 

the local energy based criterion of SED can lead to overcome the complex 

problem tied to the different NSIF units of measure in the case of different notch 

opening angles (i.e crack initiation at the toe (2=135°) or root (2=0°) in a 

welded joint) 

 

2.3  Averaged SED criterion extended to the evaluation of blunt 

V-notched components 

Recalling section 1.6 of the previous chapter, the formulations describing the 

stress fields ahead of a rounded notch in a plane problem can be written in a 

compact form as follows (Filippi et al. 2002): 
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In the following, problems related to the application of a Mode I loading, mixed 

mode loading (I+II) and Mode III loading will be analysed. 

 

2.3.1 SED criterion applied to blunt notches under Mode I loading 

Parameter a1 in Eq.(2.3.1) can be expressed by means the maximum principal 

stress value at the notch tip: 
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where 1
~  is a particular parameter reported in Lazzarin and Berto (2005). By 

using the elastic maximum notch stress, Eq.(2.3.1) becomes: 
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       (36) 

The elastic strain energy density can be expressed as follows: 
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Where parameters F, G and M can be written as follows according to Beltrami’s 

formulation: 

 

    2
rzzrrzzrr

2
zz

2
rr

2 f12ffffff2fffF
~

   

    2
rzzrrzzrr

2
zz

2
rr

2 g12gggggg2gggG
~

     

     rrzzrrzzrrzzzzrrrrzzzzrrrr gf12fggffggffggfgfgfgfM
~

 

                                                                                                              (2.3.5) 

 

Considering the area  shown in Figure (2.3.1), the strain energy can be obtained 

as: 
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Figure 2.3.1. Critical volume (area) for sharp V-notch (a),  crack (b) and blunt V-

notch (c) under Mode I loading. 

 

And in detail:  
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Where:  
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The last of Eqs (2.3.8) is applicable only when the notch angle  is different 

from zero. In the presence of a U-shaped notch (2=0), a different equation 

should be used: 
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This integral is uniquely equal to zero for 2 =0 and in general, it is possible to 

write: 
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where the introduction of 2 makes I1 consistent with the expression already used 

for the sharp notch case. 

In synthesis, the energy over a structural volume can be expressed as: 
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where I1 depends on 2,  and R0. In the case of a U-shaped notch (2=0), 

Eq.(2.3.11) can be written as: 
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The averaged strain energy density is then obtainable and equal to: 
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The area   is defined by means of an integration and it is equal to: 
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In general, the integral I1 and the area depend on 2, , and R0. However, I1 is 

proportional to 
2

 according to Eq.(2.3.10), whereas  is proportional to 
2
. 

Then a suitable expression for I1/2 is: 
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When the area embraces the semicircular edge of the notch but not its rectilinear 

flanks, the averaged SED value can be expressed as: 

 

E

σ
×)

ρ

R
,α2(H×)α2(F=W

2

tip0
1                                                                       (2.3.16) 

 

where F(2) is defined as follows: 
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While H is a function of the opening angle of the notch and the Poisson’s ratio. 

By simply using the definition of the Mode I NSIF for blunt V-notches (Lazzarin 

and Filippi 2005) a simple relationship between tip and ρ1K can be obtained: 
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Then it is possible to rewrite Eq. (2.3.16) in a more compact form: 
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Equation (2.3.19) holds true also in the case of blunt notches subjected to fatigue 

loading. 
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2.3.2 SED criterion applied to blunt notches under mixed mode loading 

 

In the case of blunt notches under mixed mode loading (I+II), the elastic stress 

reaches its maximum value out of the notch bisector line and its position varies 

along the notch edge as a function of the ratio between Mode I and Mode II stress 

distributions. The problem of a blunt notch subjected to a shear or mixed mode 

loading is in a certain manner more difficult with respect to the Mode I loading. 

In order to address and overcome this particular problem, the concept of 

equivalent local Mode I, suggested among the others by Berto et al. (2007) and 

Gomez et al. (2007-2008), can be seen as an accurate engineering approximation. 

In particular the SED was generalised from Mode I to mixed mode (I+II), under 

the hypothesis of an equivalent local Mode I along the normal line to the notch 

edge, at the point where the principal stress reaches its maximum value. 

Under mixed mode loading the critical volume is, thus, no longer centred on the 

notch tip, but rather on the point where the principal stress reaches its maximum 

value along the edge of the notch (Fig. 2.3.1b). It was assumed that the crescent 

shape volume rotates rigidly under mixed mode, with no change in shape and size. 

This is the governing idea of the ‘equivalent local Mode I’ approach, as proposed 

and applied to U-notches.  
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Figure 2.3.1. Critical volume (area) for U-notches subjected to Mode I (a) and 

mixed mode loading (b). 

 

Summarising, under mixed mode loading the line normal to the notch edge and 

starting from the point of maximum principal stress becomes a virtual bisector 
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line under pure Mode I, confirming the applicability of the equivalent local Mode 

I concept. 

The expression for U-notches under mixed mode is thus analogous to that valid 

for notches in Mode I: 
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where max is the maximum value of the principal stress along the notch edge and 

H
*
 depends again on the normalized radius /R0, the Poisson’s ratio  and the 

loading conditions. For different configurations of mode mixity, the function H, 

analytically obtained under Mode I loading, was shown to be very close to H*.  

 

2.3.3 SED criterion applied to blunt notches under torsion loading 

Some closed-form expressions for the mean value of the strain energy density in 

the presence of theoretical parabolic and hyperbolic notches under Mode III 

loading were obtained by Zappalorto et al. and are going to be published on 

international journals. 
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3 

3D effects in finite thickness plates weakened by 

rounded notches under in-plane shear 
 

 

3.1 Introduction 

The problem of characterizing analytically the stress field in three-dimensional 

components weakened by cracks and notches, both sharp and blunted, is far from 

easy. Closed form solutions are available only for simple geometries and in 

practice the simplify assumptions of plane stress or plane strain are widely 

employed to overcome the complexity of a complete three-dimensional analysis, 

that is time expensive and requires strong computational efforts. For components 

characterized by a reduced thickness, plane stress assumption is usually adopted. 

On the contrary, for larger values of the plate thickness, plane strain hypothesis is 

generally employed. Both plane stress and plane strain hypotheses are a 

simplification of the real three-dimensional problem and neglect a priori the 

complex state of stresses and strains through the plate thickness, due to the real 

constraint effects or to the induced modes, interacting from the mid plane to the 

free surface of the component. The assumption of a linear displacement through 

the plate thickness has been successfully adopted by some researchers as an 

approximation of real three-dimensional conditions (Kane and Mindlin 1956). 

This hypothesis, named generalized plane strain, has been found to be suitable to 

describe the stress field in notched components subjected to Mode I loading, at 

least in the central zone of the plate, where the hypothesis of a linear displacement 

in z direction is well verified (Yang and Freund 1985, Kotousov and Wang 2002, 

Berto et al. 2004). More recent papers have applied the generalized plane strain 

theory to sharp V-notches under in-plane shear loading deriving the equation for 

the out-of-plane eigenvalues (Huang 2004, Kotousov and Lew 2006, Kotousov 

2007)
 
not tackled in Williams solution (Williams 1952).
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Dealing with in-plane solutions, the asymptotic nature of the linear elastic stress state 

at sharp corners was first discussed by Williams
 
(1952) who explicitly referred to 

Coker and Filon’s treatise on photoelasticity (Coker and Filon 1931, Fadle 1941). The 

degree of singularity of the stresses were explicitly provided in Williams (1952). Only 

the leading terms of the asymptotic stress distributions are discussed in that 

contribution. The degree of the stress singularity for the symmetric (Mode I) and 

antisymmetric (Mode II) loading have been shown to depend on the notch opening 

angle, 2, only. In addition to the degree of the singularity the intensity of  the 

singular terms in the asymptotic expansion play an important role in the integrity and 

failure assessment. These coefficients are usually quantified by the generalized (or 

notch) stress intensity factors (NSIFs). 

The first paper where the NSIFs were analytically defined and numerically evaluated 

considering different geometries and boundary conditions was due to Gross and 

Mendelson (1972).
 
However, the intensity of stress fields for a V-notch opening angle 

equal to 90°, was first investigated in a more dated paper
 
(Brahtz 1933), where the 

stress distributions due to Mode I and Mode II are reported.  

Dealing with out-of-plane solutions, the first pioneering contributions highlighting 

the existence of induced out-of-plane mode when a cracked plate is subjected to 

Mode II are due to Nakamura and Parks
 
(1988-1989),

 
while the first authors who 

extended the Williams’ two dimensional solution to three-dimensional cases (at 

least for the crack case) were Hartranft and Sih (1968-1970). Some fundamental 

contributions in the field are due to Pook (1992-1994-2000a-2000b-2003)
 
who 

confirmed the existence of coupled modes and widely discussed the corner point 

singularity of a notch flank intersecting the free surface of the plate, confirming 

some previous remarkable studies by other authors (Benthem 1977, Bazant and 

Estenssoro 1979). Due to the increase of computational power it is possible to 

investigate in detail three-dimensional effects by means of numerical models. 

Some recent works have been focused to investigate the intensity of coupled 

modes and in particular of Mode O, induced by an external in-plane shear loading 

(Harding et al. 2010, Berto et al. 2011a-2011b-2012a-2013a).  

Other works have been aimed to investigate anti-symmetric in plane singular 

mode induced by an externally applied anti-plane loading (Berto et al. 2013b, 
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Kotousov et al. 2012). By adopting the generalized plane strain hypothesis, some 

approximate stress field equations have been recently derived and applied not 

only to sharp V-notches but also to rounded V-notches for small values of the 

notch tip radius (Lazzarin and Zappalorto 2012, Zappalorto and Lazzarin 2013).
 

The importance of three-dimensional effects, not only from a theoretical point of 

view but also for the influence of these effects on crack propagation, has been 

underlined in two recent reviews (Kotousov et al. 2010, Pook 2013). In particular, 

Pook (2013) presents a very wide and deep survey of three dimensional effects 

ahead of cracks and pointed V-notches discussing the effects and consequences on 

crack paths. The paper provides an overview of the main features of this topic 

providing to the reader a complete state of the art as well as a practical tool to face 

3D effects. Although the aim of the present work does not deal with the crack 

propagation it is worth mentioning that in Pook (2013) crack paths are widely 

discussed paying attention to the interactions between different modes of loading 

and underlining that at the present state of the art the factors controlling the path 

taken by a propagating crack are not completely understood. 

Three-dimensional effects can lead to an increase of stress concentration with 

respect to corresponding plane models
 
(Jiang et al. 2011) and can substantially 

influence the out-of-plane constraint conditions through the plate thickness
 
(Yang 

et al. 2013, Matvienko et al. 2013), being the fractography a powerful tool able to 

explain the complexity of events occurring during the cracking process (James 

2013). Advanced imaging techniques are nowadays available with this aim (James 

et al. 2013a). They include confocal laser scanning microscopy (CLSM), and field 

emission scanning electron microscope (FESEM). 

As stated in Khan et al. (2013), the use of  two-dimensional plane stress or plane 

strain assumptions may deliver results that are reasonable in first approximation 

but a three-dimensional analysis is the only mean to fully understand the fracture 

process and in particular the crack initiation angle as a function of the plate 

thickness. The necessity to adopt a 3D perspective for characterization of the 

crack paths has been recently pointed out in Esnault et al. (2013), Doquet et al. 

(2013).  
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The importance of three dimensional finite element analyses and in particular the 

effects of thickness and notch radius on the fracture toughness of polycarbonate 

plates have been recently highlighted in Kattekola et al. (2013) explaining the 

brittle to ductile transition that usually occurs in polycarbonate decreasing the 

plate thickness and increasing the notch radius. A critical value of the ratio of the 

thickness to the notch root radius equal to 25.5 has been found to separate the 

brittle zone from the ductile one in a failure map, at least for polycarbonate.  

As it seems evident considering the past and recent interest on 3D problems, the 

effect of finite thickness may play an important role in crack propagation process, 

may influence the constraint out-of-plane state and in some cases may influence 

also the fracture assessment in terms of the critical load that a structure can bear. 

In particular, the out-of-plane mode induced by an externally applied in-shear 

loading has some influences on the complex three-dimensional stress field close 

to the notch tip (Figure 3.1.1). While a systematic numerical study dealing with 

this induced mode has been carried out dealing with cracks and pointed V-notches 

(Harding et al. 2010, Berto et al. 2011a-2011b) only a limited number of papers 

have investigated the effect of a finite notch radius
 
(Berto et al. 2012a-2013a),

 

which is the aim of the present contribution. Recalling some observations reported 

in Berto et al. (2012a), a systematic parametric numerical study on the coupled 

Mode O in plates weakened by blunt V-notches and circular and elliptic holes is 

carried out herein. The main geometrical parameters (plate thickness, notch tip 

radius etc.) have been varied to investigate their influence on the coupled, induced 

out-of-plane mode.  
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Figure 3.1.1. Scheme of the coupled out-of-plane mode induced by in-plane shear 

loading. 

 

 

The extensive three-dimensional numerical study is performed focusing on the 

through the thickness effects as well as investigating the stress fields along the 

notch bisector line at different planes. The effect of the Poisson’s ratio on the 

induced out-of-plane model has been also investigated ranging from the extreme 

cases =0 to =0.5. The two limit cases have been considered and studied for sake 

of completeness. In fact they allow to understand qualitatively the out-of-plane 

effect and to show the disappearance of the effect for =0. 

 

3.2 Out-of-plane mode in blunt V-notches 

 

The first part of the chapter deals with plates of thickness 2t weakened by V-

notches and subjected to an externally applied in-plane shear loading (Figure 3.2.1 

a). The coordinate system is shown in Figure 3.2.1b. 
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Figure 3.2.1. Geometry of the plate (a) and coordinate system having the origin 

on the notch tip, in the mid-plane of the plate (b). 
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The remote in-plane shear loading has been applied by means of displacements 

imposed on the far surfaces of the plates. By taking advantage of the symmetry of 

the plate only one quarter of the plate has been modelled. 

With the aim to impose a nominal Mode II shear stress 0=100 MPa, the 

corresponding displacements have been imposed on the lateral surfaces named 

ABDE and DEGF (see Figure 3.2.1b). The intensity of the applied displacement is 

as follows: 

 

2

W

G
uu 0

0y0x 


                       (3.2.1) 

 

In Eq. (3.2.1) W is the plate width, G=E/2(1+)  is the shear modulus and 0 the 

nominal applied stress which is equal to 100 MPa in all the models carried out in 

the present investigation. The Young’s modulus, E, has been set equal to 206000 

MPa in all analyses. 

With the aim to capture the three-dimensional effects close to the notch tip and the 

free surface of the specimen a very fine mesh pattern has been created in those 

zones. The size of the element edge has been kept near the free surface and close 

to notch tip approximately equal to 1/30 of the notch root radius. The analyses 

were conducted by means of ANSYS code, version 13.0. A 20-node brick 

element, called Solid 95, has been used for the numerical analyses. This element 

allows high accuracy in three-dimensional analyses in comparison with 

hexahedral and tetragonal elements. It is well suited to model curved boundaries 

and it can also become tetrahedral or hexahedral managing automatically the 

transition. The shape function is characterized by a complete polynomial up to the 

fourth order. 

 A typical mesh pattern near the notch tip has been shown in Figure 3.2.2(a) as 

well as Figure 3.2.2(b) shows the stress component yz through the plate thickness. 

This stress component is the so called out-of-plane shear stress tied to the coupled 

Mode O induced by the applied shear loading. It will be discussed in detail in the 

next session. 
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                                (a)      (b) 

Figure 3.2.2. Typical mesh pattern used for blunt V-notches (a); coupled stress 

component yz  through the thickness (b). 

 

Four values of the notch radius (=0.5, 1, 2 and 4 mm) have been considered in 

the analysis. The plate thickness, 2t, has been kept constant and equal to 40 mm. 

The notch depth, a, has been set equal to 20 mm and the plate width, W, equal to 

200 mm. Two values of the notch opening angle (2=90° and 135°) have been 

considered. All the analyses have been repeated for four different values of the 

Poisson’s ratio (=0, 0.1, 0.3 and 0.5). 

 

3.2.1 Results from numerical analyses 

Figure 3.2.3a and 3.2.3b  show the trend of the in-plane shear xy and of the out-

of-plane shear stress component, yz, for the cases 2=90° and =0.5 and 1 mm, 

respectively. The plots are referred to the notch bisector line and different planes 

in z-direction. The out-of-plane stress is plotted in the plane where the induced 

mode presents its maximum intensity (z=19.48 mm). The in-plane shear has been 

plotted in the same plane (z=19.48 mm) but also in the mid-plane (z=0) and in the 

free surface (z=20 mm). From Figure 3.2.3a it is evident that a variation of the in-

plane shear stress occurs at different planes. The trend is increasing from the mid-

plane to the free surface of the plate with an increment equal to about 47%. In all 

the planes xy drops to zero at the notch tip. In parallel yz at z=19.48 mm shows a 

maximum at the notch tip which is higher than the nominal external applied stress 

(0=100 MPa). The stress component, yz, smoothly decreases along the notch 



 

 77 

bisector line. A similar behaviour has been observed for =1 mm  (Figure 3.2.3b) 

even if in this last case the variation of the in-plane stress through different planes 

is more limited (25%) as well as the intensity of the out-of-plane shear stress is 

lower, but again higher with respect to the externally applied nominal stress.  

0

50

100

150

200

250

300

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Distance from the notch tip, r [mm]


ij
 [

M
P

a]

Blunt V-notch

W = 200 mm

 = 0.5 mm

2 = 90°

= 0.3

yz (z/2t=0.487)

xy (z/2t=0.487)

xy (z/2t=0)

xy (z/2t=0.5)

 

0

50

100

150

200

250

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Distance from the notch tip, r [mm]


ij
 [

M
P

a]

Blunt V-notch

W = 200 mm

 = 1 mm

2 = 90°

= 0.3

yz (z/2t=0.487)

xy (z/2t=0.487)

xy (z/2t=0)

xy (z/2t=0.5)

 

Figure 3.2.3. The trend of the in-plane shear xy and of the out-of-plane shear 

stress component, yz, for the cases 2=90° and =0.5 (a) and 1 mm (b), 

respectively. 

 

(a) 

(b) 



 

 78 

By increasing the notch root radius and considering =2 and 5 mm the out-of-

plane mode is still present (see Figure 3.2.4a and 3.2.4b) but its maximum value at 

the notch tip, in the plane of higher intensity, is lower than the nominal applied 

stress and the case =2 mm is found to be the transitional value. In that case, in 

fact, at the notch tip the out-of-plane stress is approximately equal to 100 MPa 

which coincides with the applied nominal stress. Also in these last cases, where 

the intensity of the Mode O seems to be limited, a stress redistribution of the in-

plane shear stress, xy, is evident due to non-negligible three-dimensional effects 

occurring through the plate thickness. 

By analysing the first results provided in the present study, the existence of a 

distinctive out-of-plane shear stress component, not predicted by two-dimensional 

elasticity theory, has been proofed.   

In Figures 3.2.5 (a-b) the stress component yz has been plotted at the notch tip 

through the plate thickness varying the notch radius for 2=90° and 135°, 

respectively. The variation of the out-of-plane shear stress is evident from the 

above mentioned figures. In particular, yz is equal to zero at the mid-plane of the 

plate. Due to the symmetry conditions it changes its sign at z=0. The induced 

stress presents a maximum close to the free surface of the plate and it drops to 

zero at z=t. It is worth mentioning that by decreasing the ratio between the notch 

radius and the plate thickness, /2t, the intensity of the coupled stress increases. 
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Figure 3.2.4. Trend of the in-plane shear xy and of the out-of-plane shear stress 

component, yz, for the cases 2=90° and =2 (a) and 5 mm (b), respectively. 
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Figure 3.2.5. Out-of-plane stress through the plate thickness as a function of the 

notch radius for different values of the opening angle. 2=90° (a), 2=135° (b). 

 

 

Figures 3.2.6 (a-b) show the effect of the Poisson’s ratio for the case 2=90° and 

2=135° with =0.5 mm. From the figures it is clear that the induced out-of-plane 

stress is identically equal to zero through the plate thickness when the Poisson’s 

ratio  is equal to 0. The intensity of the Mode O increases as the Poisson’s ratio  

increases. The same trend has been verified also for other values of the notch tip 

radius. Lateral contraction due to Poisson’s ratio is then the cause of the coupled 

induced mode. 

As discussed in Berto et al. (2011a) the intensity of Mode O is higher when the 

notch is sharp (=0 mm). For sake of completeness an example is reported here. 

 

 

 

 

 



 

 81 

 

 

 

 
 

Figure 3.2.6. Out-of-plane stress through the plate thickness as a function of the 

Poisson’s ratio for different values of the opening angle. 2=90° (a), 2=135° (b). 

 



 

 82 

 

 

 

Figure 3.2.7. Stress distribution in a plate weakened by sharp notch under in 

plane shear. Trend along the notch bisector line (a); induced shear stress along the 

thickness (b). 

 

Figures 3.2.7 (a-b) summarize results from a plate with 2=90° and =0 mm. As 

in previous cases, the plate thickness, 2t, has been kept constant and equal to 40 

mm. The notch depth, a, has been set equal to 20 mm and the plate width, W, 

equal to 200 mm. Figure 3.2.7a shows the trend of the in-plane shear stress at the 

mid-plane as a function of the distance from the notch tip and reports also the out-
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of-plane stress detected at the plane corresponding to z=19.9 mm where the 

maximum intensity of the coupled mode is reached. Figure 3.2.7b shows the trend 

through the thickness of the out-of-plane stress for different distances from the 

notch tip (r=0.01, 0.1, 0.3 and 1.0 mm). 

 

3.3 Finite thickness plates weakened by circular and elliptic holes 

Dealing with circular and elliptic holes the geometry of the considered models is 

shown in Figure 3.3.1a while Figure 3.3.1b reports the externally applied 

displacements on the quarter of plate modelled in Ansys. Four different radii of 

the circular hole have been considered and set equal to 1, 5, 10 and 20 mm. The 

plate thickness, 2t, has been set equal to 40 mm while the width of the plate, W, 

has been kept constant and equal to 200 mm. As made for blunt V-notches the 

Poisson’s ratio has been varied from 0 to 0.5 to investigate the effect of this 

parameter on the induced out-of-plane mode. 

Dealing with plates weakened by elliptic holes the ratio between the semi-axis of 

the ellipse (a/b) has been set equal to 5, 10, 20,  keeping constant  the minor semi-

axis b=1 mm. These ratios between the semi-axis correspond to a minimum radius 

of curvature equal to 0.2, 0.1 and 0.05 mm, respectively.  

The plate thickness has been set equal to 40 mm and the plate width equal to 200 

mm. The Poisson’s ratio has been varied also in this case from 0 to 0.5. 

The same boundary conditions used for blunt V-notches have been applied here. 

In particular, in the transverse sectional area, named OABC, ux and uz are imposed 

to be equal to zero. On the mid-plane z = 0 the displacement uz has been set equal 

to 0. The lateral surface called GFHI has been constrained by imposing uy = 0. 

The remotely applied displacements ux0 and uy0 have been applied accordingly to 

Eq. (3.2.1) to the lateral surfaces ABDE and DEGF assuring a nominal shear load 

0 equal to 100 MPa. The same 20-nodes finite element (Solid 95) has been 

employed in the analyses. To capture the through the thickness effects a fine mesh 

is created near the notch tip and close to the lateral surface.  Figures 3.3.2a and 

3.3.2b show the specific mesh pattern adopted for circular and elliptic holes, 

respectively. As explained above, due to the fact that three-dimensional effects are 
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expected to occur near the close neighbourhood of the free surfaces a very fine 

mesh has been employed in that zone. This part of the chapter extends some 

previous preliminary results provided in the appendix of Berto et al. (2012a) 

where the attention was mainly paid to U-notches. 

 

 

 
 

Figure 3.3.1. Geometry of the plate weakened by circular and elliptic holes (a) 

and coordinate system having the origin on the notch tip, at the mid-plane (b). 
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Figure 3.3.2. Mesh pattern used for the circular (a) and elliptic hole (b). 

 

3.3.1 Results from numerical models 

An example of the contour plots of the induced out-of-plane shear stress is 

depicted in Figures 3.3.3a and 3.3.3b for circular and elliptic holes, respectively.  

Figure 3.3.3 a refers to the case R=a=b=5 mm while Figure 3.3.3b reports the 

results from the case a/b=5.  

The contour lines shown in Figure 3.3.3 allows to understand the behaviour of 

Mode O stress component through the plate thickness. It reaches a maximum 

close to the free surface of the specimen and drops to zero both on the mid-plane 

and on the lateral surface.  The maximum value of the out-of-plane shear stress 

occurs on the notch tip and along the notch bisector line. Again it is worth 

mentioning that this effect is not contemplated in 2D models that a priori consider 

equal to zero the stress components tied to Mode O.  

 
Figure 3.3.3. Contour lines of the stress component yz, in plates weakened by 

circular holes (R=5 mm) (a) and elliptic holes (a/b)=5 (b). 
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Figure 3.3.4 reports the stress component yz for the circular hole having a radius 

R= 1 mm. The plot is carried out along the notch bisector on the plane of 

maximum intensity of the Mode O (z=19.5 mm). The induced shear stress reaches 

significant values but remains lower than the external nominal stress. Figure 

3.3.5a, 3.3.5b and 3.3.5c report the out-of-plane shear stress along the notch 

bisector (and on the plane of maximum intensity of the Mode O) for the elliptic 

holes characterized by a ratio between the semi-axis a/b equal to 5, 10 and 20, 

respectively. Contrary to the circular hole case reported in Figure 3.3.4, in these 

cases the intensity of the Mode O stress component is always much higher than 

the nominal external applied stress.  
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Figure 3.3.4. Coupled stress plot along the notch bisector line in the plane of 

maximum    intensity as a function of the Poisson’s ratio: case of a circular radius 

R=1 mm. 

 

 

Figures 3.3.6a and 3.3.6b show the trend through the plate thickness of the shear 

stress component yz, normalized with respect to the principal stress, . Due to 

the fact that the external applied load is a pure Mode II loading, the principal 
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stress reaches its maximum value outside the notch bisector line (see Figure 

3.3.7). On the other hand the induced stress component yz, reaches its maximum 

value along the notch bisector line as discussed describing Figure 3.3.3.  
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Figure 3.3.5. Coupled stress plot along the notch bisector line in the plane of 

maximum intensity as a function of the Poisson’s ratio: case of a elliptic hole 

a/b=5 (a), a/b=10 (b) a/b=20 (c). 

 

Both stresses reach their maximum through the plate thickness near the free 

surface of the plate. Fig. 3.3.6 refers to a value of the Poisson’s ratio equal to 0.3. 
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Figure 3.3.6. Through-the-thickness out-of-plane stress normalized to the 

maximum value of the principal stress; circular holes (a) and elliptic holes (b). 

 

In Figure 3.3.6a, it is worth noting that when the radius of the hole decreases, the 

intensity of the induced out-of-plane stress tends to increase and the position of 

the maximum through the thickness tends to move towards the free surface of the 

specimen. In the case of elliptic holes the intensity of the induced out-of-plane 

stress is strongly influenced by the hole size and in particular by the semi-axis 

ratio but, due to the acuity of the notch, the effect remains limited within the close 

neighborhood of the lateral surface (z /(2t)> 0.48).  

 

 
Figure 3.3.7.  Contour lines of the principal stress through the plate thickness. 

The maximum is out of the notch bisector and close to the free surface (a), typical 

mesh used to capture this effect (b). 
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Figure 3.3.8(a,b) shows the trend of the principal stress, 1, and the out-of-plane 

shear stress yz normalised to the maximum value of 1. The plot is carried out 

through the plate thickness and out of the bisector line. The path line coincides 

with that corresponding to the maximum value of 1. By observing Figure3.3.8 

(b) it appears evident that dealing with elliptic holes the principal stress, 1, 

reaches is maximum value not on the free surface but inside the thickness and not 

far from the lateral surfaces.  

Dealing with circular holes, Figure 3.3.8(a) shows that the maximum principal 

stress varies its position through the thickness as a function of the ratio between 

the radius R and the plate semi-thickness t, in agreement with Figure 3.3.6 (a). As 

discussed above for the case corresponding to R=1 mm and 2t=40 mm, the 

maximum value is placed very close to the free surface of the plate. On the other 

hand, it approaches the mid-plane for the case corresponding to R=20 mm and 

2h=40 mm. By comparing the induced out- of-plane shear stress detected outside 

the notch bisector line its intensity decreases. For circular holes the ratio yz/1,max 

is always lower than 5%.  The higher value corresponds to R=1 mm.  On the other 

hand, considering elliptic holes, the Mode O shear stress component (yz) is 

always not negligible both along the notch bisector and outside from it. For the 

ratio a/b=20, which is the most critical in terms of out-of-plane stress, the ratio 

yz/1,max results to be equal to 0.35 on the notch bisector and  about 0.2 by 

considering the same ratio outside the notch bisector line. This means that the out-

of-plane mode is far from being negligible in this last case and may influence not 

only the position of the fracture initiation along the edge of the notch and through 

the thickness of the plate but also the critical load that the component can bear 

before failure. 

The out-of-plane stress component, yz, plotted through the plate thickness is 

shown in Figure 3.3.9(a) and 3.3.9(b) as a function of the Poisson's ratio. Figure 

3.3.9(a) is referred to the case of a circular hole having a radius R=5 while 3.3.9 

(b) summarized the results from the elliptic case characterized by a ratio a/b=5 

between the ellipse semi-axis. Both Figures evidence that the highest intensity of 

the Mode O is reached for elevate values of the Poisson's ratio and that the effect 
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has it maximum intensity under the free surfaces of the plate at a certain distance 

from them. 
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Figure 3.3.8. Principal stress 1 and the Mode O shear stress yz normalised to the 

maximum value of the principal stress. Both stress components are plotted 

through the plate thickness but outside the bisector line, along the line where 1 

reaches its maximum value; circular holes (a), elliptic holes (b). 
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Figure 3.3.9. Trend of the out-of-plane stress yz (Mode O) through the thickness 

as a function of the Poisson’s ratio. Circular holes (a) and elliptic holes (b). 

 

 

Finally Table 3.3.1 lists the values of the theoretical stress concentration factors 

(Kt) comparing the results from 2D analyses with those obtained from 3D models.  
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Table 3.3.1. Theoretical stress concentration factors for blunt V-notches (2a=90°) 

and circular and elliptic holes. 

 

 

The theoretical stress concentration factor, Kt has been defined as the ratio 

between the maximum value of the principal stress over the nominal in-plane 

shear stress, applied to to the model (0=100 MPa). The appropriate expression for 

Kt is as follows: 

 

0

max,1

tK



             (3.3.1) 

 

It is interesting to observe that the theoretical stress concentration factor from 3D 

models is influenced by the Poisson's ratio and tends to increase for increasing 

values of . For the circular holes the relative deviation between Kt from a 2D and 

a 3D analyses is limited, being the maximum percentage deviation, = 

100×(Kt,3D-Kt,2D)/Kt,2D , equal to 13% for the case R=20 mm and =0.5. On the 

other hand considering the elliptic holes, and in particular the case a/b=20 and 

Blunt V-Notch 2=90°

 Kt 2D tD 

 [mm]  =0.1 =0.3 =0.5 =0.1 =0.3 =0.5

0.5 4.492 4.684 5.312 6.674 4.27 18.25 48.57 

1 4.245 4.277 4.834 6.314 0.75 13.87 48.74 

2 4.021 4.021 4.351 5.551 0.00 8.21 38.05 

5 3.726 3.726 3.974 4.872 0.00 6.66 30.76 

Circular Hole 

 Kt 2D Kt 3D  

R [mm]  =0.1 =0.3 =0.5 =0.1 =0.3 =0.5

1 4.001 4.013 4.159 4.407 0.3 3.95 10.15 

5 4.005 4.024 4.175 4.424 0.5 4.24 10.46 

10 4.002 4.025 4.179 4.425 0.57 4.42 10.57 

20 3.998 4.015 4.215 4.509 0.42 5.43 12.78 

Elliptic Hole 

 Kt 2D Kt 3D  

a/b  =0.1 =0.3 =0.5 =0.1 =0.3 =0.5

5 7.221 7.249 7.715 8.653 3.88 6.85 19.83 

10 12.063 12.312 13.406 15.507 2.06 11.13 28.55 

20 21.689 22.586 25.403 35.219 4.14 17.12 62.82 
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=0.5, is equal to 62%. This last value confirms the necessity to carefully take 

into account three-dimensional effects and, at least, before going straightforward 

to a plane model, to verify if a 2D model is appropriate to the considered case. 

Dealing with blunt V-notches and in particular referring to the case 2=90° the 

same effect has been found as visible from Table 3.3.1. 

In some recent papers (She and Guo 2007, Yu et al. 2008) the influence of 

Poisson’s ratio on the thickness-dependent stress concentration at elliptic holes in 

elastic plates under tension has been investigated showing that it cannot be 

ignored. A relative deviation equal to 25% has been detected in the investigated 

cases. 

When the applied mode and the induced modes due to three-dimensional effects 

are automatically present in a component, the arising problem is how to take these 

effects contemporary into accounts. In Esnault et al. (2013) the energy release rate 

has been adopted to combine together the effects of coupled modes. The 

advantage of an energy based approach is that it permits to easily link, with a 

single parameter, the effects occurring in a plane together with the complex state 

of strains and stresses that usually characterized a three-dimensional problem. 

Some recent contributions of Lazzarin and Berto have shown as the local energy 

averaged over a control volume (SED) is a powerful tool to determine a critical 

parameter for the material (Berto and Lazzarin 2009, Berto et al. 2011c, Lazzarin 

et al. 2013a), able to capture also the effects due to finite plate thicknesses. Some 

recent applications have shown the applicability of the SED also to non 

homogeneous materials like functionally graded materials (Barati and Alizadeh 

2011, Mehram et al. 2012) and at low scale levels dealing with crystals and atoms 

dimensions (Wang et al. 2011, Liu et al. 2011). 

As discussed by Pook (2013) Mode II and Mode III are always combined 

together. One mode causes the automatic arise of a coupled mode which, in some 

cases, can be damaging as the generating mode itself. In other words a three-

dimensional problem is always at least dual scale and a parameter able to capture 

the simultaneous presence of different modes is required. 

Another important aspect, to be carefully considered, is the influence of the higher 

order non-singular terms on the stress field near cracks or notches. In some cases 
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these terms can play an important and non-negligible role (Ayatollahi and Nejati 

2011, Sousa et al. 2013, Cheng et al. 2013) also can influence the fracture 

assessment
 
as well as the crack initiation and propagation angle during failure 

phenomena. As described in Berto et al. (2011b) the non-singular terms can also 

generate coupled mode that in some cases can be more dangerous than the 

generating modes themselves. Again a based on energy parameter is sensitive to 

all these complex effects occurring in-plane but also out-of-plane, through the 

plate thickness. 

 

3.4 Conclusions 

The main aim of the present chapter is to discuss the existence of the Mode O in 

components weakened by blunt notches of different shape under an externally 

applied pure in-plane shear loading. Blunt V-notches as well as circular and 

elliptic holes have been considered to address this objective. The following 

conclusions can be drawn by the present analysis: 

It has been shown that the so called Mode O is always coupled with the 

generating Mode II loading and this is true independent of the notch shape.  

 The intensity of the Mode O is strongly linked to the Poisson's ratio and the 

coupled mode disappears when the limit case =0 is reached. 

The main geometrical parameters of the notch and the component, in particular 

the notch root radius and the plate thickness, play a fundamental role and strongly 

influence the intensity of the out-of-plane effects.  

Finally one can conclude saying that it is not easy to give a simple rule of thumb 

to say a priori if three-dimensional effects are negligible or not in a given 

geometry. On the other hand it seems clear that before simplifying the problem by 

means of a 2D model this possibility has to be verified and checked carefully also 

depending on the degree of accuracy required by the analysis. In some cases, in 

fact, not negligible differences may exist between 2D and 3D models. This does 

not mean to completely abandon 2D analyses. In many cases they provide 

acceptable and reasonable engineering results. The main message that the present 

chapter would like to transmit is that the simplification of a 3D problem into a 2D 
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one is not so trivial and requires some careful considerations otherwise some 

important effects could be neglected a priori. 

Another important key-point to be underlined is that always a real problem is at 

least dual-scale because generating and induced modes are combined together 

giving origin to a complex state of stresses and strains through the plate thickness. 
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4 

SED criterion on three-dimensional  

plates weakened by free clamped V-notches 
 

 

4.1 Introduction 

Dealing with fracture assessment of cracked and notched components a clear 

distinction should be done between large and small bodies (Tang and Sih 2005, 

Sih and Tang 2005a). The design rules applied to large bodies are based on the 

idea that local inhomogeneities, where material damage starts, can be averaged 

being large the volume to surface ratio. The concept of “elementary” volume and 

“structural support length” was introduced many years ago by Neuber (1958). It 

states that not the theoretical maximum notch stress is the static or fatigue 

strength-effective parameter in the case of pointed or sharp notches, but rather the 

notch stress averaged over a short distance normal to the notch edge.  

In small bodies the low ratio between volume and surface makes strong any local 

discontinuities present in the material and the adoption of a multiscaling and 

segmentation scheme is the only way to capture what happens at pico, nano and 

micro levels (Sih 2007- 2009a- 2009b- 2010). In this scheme the crack tip has no 

dimension or mass to speak; it is the sink and source that absorbs and dissipates 

energy while the stress singularity representation at every level is the most 

powerful tool to quantify the energy packed by an equivalent crack reflecting both 

material effect and boundary conditions. This new representation implies also a 

new definition of mass (Sih 2010). The distinction between large and small bodies 

should ever be considered by avoiding to transfer directly the design rules valid 

for large components to small ones under the hypothesis that all material 

inhomogeneities can be averaged (Tang and Sih 2005, Sih and Tang 2005a).  



 

 98 

Other approaches considered the multiscale problems by the investigation of the 

non linear effects occurring at different scale levels (Panin V. et al. 2007- 2008, 

Panin S. et al. 2010). 

Since Beltrami to nowadays, the strain energy density (SED) has been found 

being a powerful tool to assess the static and fatigue behavior of unnotched and 

notched components in structural engineering. The strain energy density factor S 

was defined by Sih as the product of the strain energy density by a critical 

distance from the point of singularity (Sih 1974). Failure was thought of as 

controlled by a critical value Sc, whereas the direction of crack propagation was 

determined by imposing a minimum condition on S. The theory was extended to 

employ the total strain energy density near the notch tip (Sih and Ho 1991), and 

the point of reference was chosen to be the location on the surface of the notch 

where the maximum tangential stress occurs. The material element was always 

kept at a finite distance from the crack or the notch tip, outside the “core region” 

where the inhomogeneity of the material due to micro-cracks, dislocations and 

grain boundaries precludes an accurate analytical solution. The criterion based on 

the factor  S gave a sound theoretical basis to Gillemot’s experimental findings 

(Gillemot 1965, Gillemot et al. 1985) based on the absorbed specific energy.  

A volume-based Strain Energy Density approach has been applied to static and 

fatigue strength assessments of notched and welded structures (Lazzarin and 

Zambardi 2001, Lazzarin and Berto 2005a-2008, Berto and Lazzarin 2009, 

Lazzarin et al. 2009a-2009b, Radaj et al. 2009a, Gomez et al. 2009a). The control 

volume radius, which depends on material and loading conditions, was found to 

vary between about 10
-2

 mm (brittle material under static loading conditions) to 

about 0.3 mm (steel welded joints under high cycle fatigue) or more.  

Recently, as stated above, the volume energy function has been scaled from macro 

to micro to take into account the micro-cracks with a stronger stress singularity 

(Tang and Sih 2005, Sih and Tang 2005a). Positive definiteness of energy density 

can be a guide for precluding physical contradictions that are hidden at different 

scales of the material (Sih and Tang 2005a). As widely described in (Sih 2007) a 

mixed condition would be more realistic to represent a micro crack behaviour due 

to the fact that the micro-crack surfaces are partly closed and partly open. The 
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macro-crack has a stress singularity of the order r
-1/2

 while near the micro-crack a 

stress singularity of the order r
-3/4 

is not unrealistic because the crack surfaces may 

be irregular and jag-shaped. The apex of the micro-crack can be represented by a 

V-notch under free-clamped boundary conditions (Tang and Sih 2005, Sih and 

Tang 2005a, Neuber 1958, Sih 2007).  

Dealing with elastic stress singularities and corresponding generalized stress 

intensity factors for corners under various boundary conditions, Seweryn and 

Molski (1996) summarizes the analytical description of the stress and 

displacement fields around a sharp angular corner subjected to various loading 

and displacement boundary conditions in plane problems of elasticity. The 

clamped-free conditions have been shown to correspond to a rigid punch with a 

strong friction applied to one face of an elastic corner or to a rigid inclusion 

connected with one side to elastic medium subjected to any load, while the second 

face of the medium remains free from traction. 

An interesting three-dimensional effect was described in the case of a cracked 

plate subjected to shear loading by Nakamura and Parks (1989) who first found a 

new singular behaviour for the transverse shear stress components in thin plates 

subjected to in-plane loading. This effect has also been studied for through-the-

thickness cracks in finite thickness plates utilising analytical and numerical 

methods (Jin and Batra 1997, Pook 2000a, Huang 2004, Kotousov 2007).
 
In 

particular, Kotousov (2007) formalised this three-dimensional singular effect for 

sharp notches with arbitrary notch opening angles based on the first order plate 

theory. This singular mode, which was called ‘the out-of-plane mode’, or ‘Mode 

O’, was found to be coupled with the classical antisymmetric stress distribution 

(Mode II). Kotousov also demonstrated that the out-of-plane mode is provoked by 

the three-dimensional effects which increase as the Poisson’s ratio of the material 

increases. Important features of this recently identified singular mode, the out-of-

plane singular mode, conduct a comprehensive three-dimensional numerical study 

of V-notched plates and welded lap joint-like geometries (Berto et al. 2011a, 

Kotousov et al. 2010, Harding et al. 2010). In Berto et al. (2011a) the intensity of 

the Mode O stress distributions has been discussed as a function of the opening 

angle and plate size, paying particular attention to the scale effect due to this 
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singular mode, which is characterised by a degree of singularity matching that due 

to Mode III. It is clear from those analyses that the intensity of Mode O increases 

as the model size increases. This means that there exists the geometrical 

proportional factor at which the contribution into the failure initiation of the out-

of-plane shear stresses will be always greater than the contribution from the 

generating in-plane shear stresses.  

The influence on Mode O of non-singular terms in cracked plates is investigated in  

(Berto et al. 2011b-2011d). 

Dealing with a three-dimensional plate weakened by a sharp notch under free-

clamped boundary conditions the mixed mode is automatically generated by the edge 

constraints as explained in Tang and Sih (2005), Seweryn and Molski (1996). The 

presence of mode II should generate a singular Mode O which has been neglected in 

all previous papers.  

The aim of the chapter is to investigate the contribution and the intensity of this mode 

into the overall three dimensional stress states in the close vicinity of the notch tip. 

Since the out-of-plane mode is not a point-wise effect but rather a volume-based 

effect, it is shown how the strain density over a control volume is sensitive to all the 

three-dimensional effects occurring through the plate thickness and a parameter 

suitable for identifying the most critical zone. The results summarised in the chapter 

are general and can be directly shifted to the mesomechanical approach proposed in  

Tang and Sih (2005), Sih and Tang (2005a) which models the micro-crack tip as a 

fixed-free sharp V-notch as well as to the cases discussed in Seweryn and Molski 

(1996) dealing with in-plane solution and extended to the three-dimensional models. 

 

 

4.2 Analytical background 

 

The Fadle eigen-function expansion method was first used in the1930s to find the 

eigen-values for a pointed notch with different boundary conditions along the 

notch edges (Fadle 1941). However the modern literature usually refers mostly to 

Williams (1952), Coker and Fillon (1931) in two dimensions and to Hartranft and 

Sih (1969-1973) in three dimensions. The results in Fadle (1941) are for the plane 

stress case whereas the plane strain case has been solved in Tang and Sih (2005). 
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The biharmonic stress function rand the harmonic function rcan be 

expressed in the following form: 

 

][Fr],r[ 1              

             (4.2.1) 
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where F() and G() are as follows: 
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The displacement in radial and circumferential direction, ur and u, respectively, 

may be written in terms of randrunder plane stress (Fadle 1941, 

Williams 1952) or plane strain conditions (Tang and Sih 2005): 
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where  is the shear modulus =E/(2(1+)) and =/(1+) under plane stress 

conditions and  (Poisson’s ratio) under plane strain. The displacement field can 

be expressed also by the following equations: 
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The stresses are given as: 
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or, alternatively, as: 
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The stress components can be explicitly expressed in terms of the unknown 

parameters: 
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The same can be done for the radial and circumferential displacements under 

plane strain conditions: 
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The free-fixed condition where the top edge is traction-free while the bottom edge 

is fixed from displacing can be expressed in the form: 

 



  for,0r   

  for,0uu r      (4.2.9) 

 

Dealing with the free-fixed case and by calling  the eigenvalue of this particular 

case, as made in Ref [1], the eigen-equation becomes: 
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The non-trivial solution of Eq.(4.2.10) requires that the determinant of 

coefficients must vanish. This leads to the equation: 
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By neglecting the solution = 1 which would generate infinite displacements at 

the notch tip, the eigen-equation can be written as a function of the Poisson’s 

ratio: 
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One should note that Eq. (4.2.12) gives the same eigenvalues of the equation 
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already reported in Tang and Sih (2005). 
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The link between the unknown parameters can be expressed by taking advantage 

of three auxiliary parameters e1, e2 and e3, where: 
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The factor II/IK  can be defined in terms of A as: 
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The corresponding displacements are: 
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In parallel, the stresses are: 

 







)1cos(),(e)3()1cos()1([
2r

K *

11

II/I
r  

  ])1ksin(),(e)k3()1ksin(),(e)1k( **

3

***

2

*    



 

 105 

 





 )1cos(),(e)1)[cos(1(

2r

K *

11

II/I  

    ])1sin(),(e)1sin(),(e *

3

*

2    

 





 )1sin(),(e)1()1sin()1[(

2r

K *

11

II/I
r  

  ])1cos(),(e)1()1cos(),(e)1( *

3

*

2     

           (4.2.16) 

 

Under plane strain conditions, the strain energy density (SED) evaluated over a 

control volume of radius R0 is as follows: 
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 (4.2.17) 

 

The analytical frame described above allows us to consider the stress field at 

different scale levels as linear elastic. The singularity depends on the considered 

scale level, from macro to micro. 

Alternative to the linear elastic multiscale models, other models consider the non 

linear effects occurring at different scale levels abandoning the field of the linear 

elasticity. A multilevel approach based on the physical mesomechanics of the 

material has been systematically used in Panin V. et al. (2007) dealing with thin 

films (Panin V. et al. 2007). Nonlinear effects in surface layers under severe 

plastic deformation have been investigated experimentally in Panin V. et al. 

(2008). This issue is crucial for a number of applications (nanomaterials and 

nanotechnology, multilayer materials for electronics, deposition of nanostructured 

protective and hardening coatings, catalysis and functional role of interfaces in 

biological objects). Experimental techniques mainly based on acoustic emission 
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have been used to monitor the multiscale of localized plastic strain evolution 

stages in notched aluminum AA 2024 alloy tension specimens (Panin S. et al. 

2010). Digital Image Correlation (DIC) method for strain estimation and acoustic 

emission (AE) have been also used for investigating strain and fracture patterns at 

various scale levels. 

 

4.3 Geometry and boundary conditions 

 

The study considers an arbitrary semi-infinite plate of finite thickness 2h 

containing a V-notch subjected to a remote loading. In the finite element models, 

a denser nodal arrangement is created in the proximity of the crack notch tip 

where the mesh is very fine. All analyses are carried out using the ANSYS 11 

code.  

The mesh consists of an initial arrangement of 15-node trapezoidal elements at the 

notch tip, surrounded by a radial array of 20-node brick elements, where each 

element spans an angular sweep of 11.25°. The considered geometry is shown in 

Figure 4.3.1.  
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Figure 4.3.1. Geometry and coordinate system having the origin on the notch tip 

in the mid- plane of the plate. 

 

In two-dimensional models the eight nodes iso-parametric element plane 82 is 

used under the plane strain hypothesis. 

To simulate the remotely applied constraint conditions corresponding to the free-

clamped boundary conditions, the displacements are applied to the nodes 
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belonging to the outer cylindrical surfaces of the finite element models. The 

displacements exactly correspond to those of a far-field two-dimensional plane 

strain distribution given by the solution in Tang and Sih (2005) (Eqs. (4.2.15)).  

In the beginning, in order to validate the developed finite element models and 

compare the results with previous findings, four opening angles are considered in 

two-dimensional models, 2= 45°, 60°, 90° and 135°, all referred to a constant 

value of the radius ( R=100 mm) and to plane strain hypothesis.  

In all these cases the notch stress intensity factor II/IK  has been set equal to 1000 

MPa·mm


whereas the eigenvalue  and the functions e1, e2 and e3 have been 

updated as a function of the notch opening angle according to Eqs (4.2.11-4.2.13) 

and Eq. (4.2.14), respectively (see Table 4.3.1). The Poisson’s ratio has been kept 

constant and equal to 0.49. 

In the three-dimensional models the same notch opening angles and the same 

radius R have been considered. The thickness is 2h=50 mm. 

 

Table 4.3.1. Eigenvalues  and functions e1 e2 and e3 in terms of notch opening 

2   e1 e2 e3 O 

45 0.253 0.747 1.5566 -1 -1.5566 0.2857 

60 0.257 0.743 1.4854 -1 -1.4854 0.3000 

90 0.2744 0.7256 1.3252 -1 -1.3252 0.3333 

135 0.3384 0.6616 1.1059 -1 -1.1059 0.4000 

 

 

4.4 Results and discussions 

 

4.4.1 Results from 2D numerical analyses 

Two-dimensional models were carried out by imposing the displacements which 

exactly correspond to those of a far-field two-dimensional plane strain distribution 

given in Tang and Sih (2005). For sake of brevity only the results from models with 

2=45° and 135° are summarised below without loosing any significant information. 

These preliminary analyses have been carried out to set up the model and to verify 

how the boundary conditions affect the two-dimensional stress field. 
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Figure 4.4.1 shows the stress distributions along the bisector line in a two-

dimensional plate weakened by a V-notch with an opening angle 2= 45°. Eqs 

(4.2.15) have been used for calculating the displacements to be applied to the contour 

nodes of the model.  
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Figure 4.4.1. Stress distributions in the two-dimensional plate with an opening angle 

2= 45°. The applied stress intensity factor is equal to 1000 MPa mm
0.747  

;  plane 

strain conditions are considered in the model 

 

As shown in the figure, the applied boundary conditions corresponding to the free-

clamped configuration generate not only Mode I but also Mode II in the plate. The 

stress field is typical of a mixed mode configuration. The degree of singularity of the 

stress components is 1- =0.747 and exactly matches the value predicted by the 

solution given in Tang and Sih (2005) for the free-fixed configuration. In the case of 

2=45° the intensity of the generated Mode II remains much lower than that due to 

Mode I. Along the notch bisector line it has been also possible to determine the factor 

KI/II  by inverting Eq. 4.2.16b. Doing so we have: 
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where for the specific case =0.253 and e1=1.5566 (see Table 4.3.1). 

Figure 4.4.2 confirms that applying Eq. (4.3.1) along the notch bisector line KI/II 

results to be equal to 1000 MPa mm
0.747

, which matches the value applied when 

imposing the boundary conditions. The correctness of the applied displacements is 

then verified.  
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Figure 4.4.2. Plot of KI/II along the crack bisector line, from the notch tip to the outer 

radius R. Displacements ux and uy applied only to the nodes of the lateral surface 

(R=100 mm). 

 

Figure 4.4.3 shows the stress field corresponding to the opening angle 2= 135°. 

Also in this case the degree of singularity matches the theoretical value 1 = 

0.66 (Tang and Sih 2005). The intensity of the shear stress xy corresponding to an 

applied stress intensity factor KI/II=1000 MPa mm
0.662

 is higher than that found in 

the previous case, 2=45°. Comparing Figures 4.4.1 and 4.4.3 the main 

conclusion is that the Mode II stress intensity increases with respect to the Mode I 

intensity as the notch opening angle increases. 
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Figure 4.4.3. Stress distributions in the two-dimensional plate with an opening angle 

2= 135°. The applied stress intensity factor is equal to 1000 MPa mm
0.6616

;  plane 

strain conditions are considered in the model . 
 

Finally, Figure 4.4.4 confirms that also in this case the applied boundary 

conditions would generate along the notch bisector line the value of KI/II 

introduced in Eqs (4.2.15). 
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Figure 4.4.4.  Plot of KI/II along the crack bisector line, from the notch tip to the outer 

radius R. Displacements ux and uy applied only to the nodes of the lateral surface 

(R=100 mm). 
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4.4.2 Results from 3D numerical analyses and proof of Mode O existence 

The problem considered here is the three-dimensional finite size plate containing 

a sharp V-notch, subjected to remote displacements. The V-notch is characterised 

by a notch opening angle, 2 and a depth a=R. The plate thickness is again equal 

to 2h. To observe the variability of the intensity of the singular modes as a 

function of the notch angle, different finite element models are created, 

characterised by a varying notch opening angle, 2α = 45
o
, 60°, 90

o
 and 135°.  

The origin of the Cartesian coordinate system (x,y,z) is located in the middle 

plane of the plate as shown in Fig. 4.3.1. For a three dimensional sharp notch 

subjected to in-plane loads it was shown in Nakamura and Parks (1989), Jin and 

Batra (1997), Pook (2000a), Huang (2004), Kotousov (2007) that a singular mode, 

which was called ‘the out-of-plane mode’, or ‘Mode O’, is coupled with the 

antisymmetric loading (Mode II). 

Similar to the in-plane singular modes, the power of singularity for Mode O does 

depend on the V-notch opening angle according to the Eq. (4.3.2), valid for the free-

fixed configuration (Sih and Tang 2005b): 

 

0*)2cos( O              (4.3.2) 

 

The lowest real eigenvalue of Eq. (4.3.2)  is: 
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(see the last column of Table 4.3.1). The expression 0*)2cos( O   corresponds 

to the out-of-plane singular mode, which results in the same eigenvalues of the 

Mode III. Therefore, this mode remains singular for notch opening angles ranging 

from 0
o
 to 180

o
. However, there are some differences between the out-of-plane 

mode and the Mode III. The out-of-plane singular mode is not an independent 

mode but it is coupled with antisymmetric in-plane loading (Mode II). The 

displacement field associated with this mode is symmetric with respect to the mid-
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plane z=0. Moreover its intensity strongly depends on the Poisson’s ratio 

vanishing when =0. Conversely, the Mode III is independent of the Poisson’s 

ratio, with an anti-symmetric distribution about the mid-plane.  

As it was shown by Pook (2000a) at a corner point the Mode II and the out-of-

plane mode cannot exist in isolation. If one of these modes is applied then the 

other is always induced. In order to describe the shape of cracks’ displacements 

and to explain the link between Mode II and the out-of-plane mode, “Volterra 

distorsioni” in a ring element were used (Pook 2000a). Dealing with the induced 

mode, Pook underlined that some controversies are still open: it is not clear over 

how best to characterize stress and displacement fields in the corner point region. 

He also wrote that ‘the crack tip surface displacement behaviour is not yet well 

understood. As a corner point is approached, there are conflicting theories which 

have to be resolved on the value of the out-of-plane stress intensity factor. Either 

it tends to infinity or drops to zero’ (Pook 2000a).  
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Figure 4.4.5. Three-dimensional stress distributions in a plate with an opening 

angle 2= 45°. The applied stress intensity factor is equal to 1000 MPa mm
0.747

 

 

It is clear that the boundary conditions corresponding to the free-clamped 

constraints along the notch edge provoke a mixed mode state in the plate 

(I+II+O). The stress component xy is plotted in Figure 4.4.5 along the notch 
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bisector line as a function of the coordinate x from the V-notch tip. The notch 

opening angle is 2= 45°.  

This figure shows that also in a three-dimensional model the degree of singularity 

of the stress components x, y, xy  exactly matches the values predicted on the 

basis of Eqs (4.2.12, 4.2.13) and already verified in the two-dimensional model 

with the same opening angle. Obviously, the previous two-dimensional studies 

could not recover the presence of the out-of-plane mode (Mode O). Only the 

three-dimensional model, as shown in Figure 4.4.5, permits to capture the 

presence of yz along the notch bisector line. This stress component is plotted in 

the plane at z=24.38 mm where the Mode O reaches its maximum intensity 

through the plate thickness. The out-of-plane stress component yz shows a degree 

of singularity 1 O =0.71, in fully agreement with Eq. (4.3.2).  It is also worth 

noting that the intensity of the generating Mode II is lower than that of the 

coupled Mode O. Once again, the notch stress intensity factor KI/II has been 

plotted in the middle plane of the plate to verify that the boundary conditions 

would correctly been applied to the model (Fig. 4.4.6). 
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Figure 4.4.6. Plot of KI/II along the crack bisector line in the middle plane of the plate, 

from the notch tip to the outer radius R. Displacements ux and uy applied only to the 

nodes of the lateral surface (R=100 mm). 
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The plot of the notch stress intensity factor, KO is shown in Fig. 4.4.7. This factor 

is determined on the notch bisector line according to the expression 
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Figure 4.4.7. Mode O stress intensity factor at a distance z = 24.38 mm as a 

function of the distance x from the notch tip. 

 

KO represents the natural extension to V-notches of the stress intensity factor for 

the crack case.  

The stress component z, which has been omitted from the figures, respects the 

plane strain conditions, applied by means of contour nodal displacements, at least 

near the mid plane of the model. On the other hand it is negligible near the free 

surfaces where the Mode O reaches its maximum intensity. 

Figure 4.4.7 shows the variability of KO as a function of the distance from notch 

tip in the plane corresponding to the maximum intensity of the Mode O. KO 

presents a significant value until a distance approximately equal to 1 mm.  

Figure 4.4.8 shows the trend of KO through the plate thickness at a constant 

distance, x=0.3 mm, from the notch tip. The intensity of KO varies through the 

thickness of the plate. It has zero value at the mid-plane of the plate where it 
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changes sign (due to symmetry conditions) and has a maximum in an interior 

point prior to reaching the outer free surface of the plate where, theoretically, it 

should drop to zero. Surface stresses, obtained from the finite element analysis, 

are simple extrapolations since the 3D mesh used is not refined enough to provide 

shear stresses equal to zero on the free surfaces.  
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Figure 4.4.8. Mode O SIF through the plate thickness at x=0.3 mm 

 

The stress intensity factor KI/II is plotted in Fig. 4.4.9 along the notch bisector line 

as a function of the transverse coordinate z for two radial distances from the V-

notch tip ( r = x = 0.3 mm, and 1,0 mm). This figure shows that there is a large 

central zone within the plate where  does depend only on the radial distance 

from the notch tip, r, and not on the vertical position, z-axis. A strong dependence 

on z-coordinate occurs in the vicinity of the free surface where the decrease of the 

xy stress component is particularly strong. In that limited zone, which has a size 

in the z direction of about 5% of the total plate thickness, the out-of-plane stress 

component yz reaches its minimum or maximum values. 

By increasing the notch opening angle from 45° to 60° the theoretical eigenvalue 

 changes from 0.253 to 0.257 whereas the Mode O eigenvalue O for the free 

fixed configuration changes from 0.2857 to 0.3000. As expected from the theory, 

an increase of the opening angle 2, leads to the decrease of the power of the 
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singular behaviour. Both the in-plane stresses and the out-of-plane stresses remain 

singular and are characterized by a singularity stronger than that induced by a 

free-free notch configuration. It is worth noting that also the in-plane shear stress 

remains singular when opening the notch angle over the value 2=102°,  contrary 

to the free-free case. 
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Figure 4.4.9. KI/II through the plate thickness at different distances from the tip 

 

Figure 4.4.10 summarizes the stress field obtained along the notch bisector line 

for the case of 2=60°. The figure is almost coincident to that obtained for 

2=45°. The plane where the intensity of Mode O reaches its maximum value is 

at the coordinate z = 24.38 mm, very close to the free-surfaces of the plate. Figure 

4.4.11 shows the trend of KO, evaluated according Eq. (4.3.4), through the plate 

thickness at a distance x=0.3 mm from the notch tip. Also in this case the intensity 

of KO is found to vary through the thickness of the plate. The stress intensity 

factor KI/II remains constant in a large central zone of the plate whereas a strong 

dependence on z-coordinate occurs in the vicinity of the free surface where the 

decrease of the intensity of xy stress component is very strong. The figure is 

omitted for sake of brevity being the behaviour analogous to that just described 

for the case 2=45°. Also for the case 2=60° the notch stress intensity factor KI/II 
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has been plotted in the middle plane of the plate to verify that the applied 

boundary conditions would correctly apply to the model. 
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Figure 4.4.10. Three-dimensional stress distributions in a plate with an opening 

angle 2= 60°. The applied stress intensity factor is equal to 1000 MPa mm
0.743 
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Figure 4.4.11. Mode O SIF through the plate thickness at x=0.3 mm 

 

While the case 2=90° does not present any novelty with respect to the previous 

two angles, the case corresponding to a notch opening angle equal to 135° 
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presents some peculiarities. Figure 4.4.12 plots the in plane stress field along the 

bisector line and in the middle plane of the plate together with the shear stress 

component yz in the plane of maximum intensity (z=24.38 mm). The intensity of 

yz is in this case comparable to that of the in-plane stress component x and then 

is stronger with respect to the previous cases. 
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Figure 4.4.12 Three-dimensional stress distributions in a plate with an opening 

angle 2= 135°. The applied stress intensity factor is equal to 1000 MPa mm
0.6616

 

 

 In parallel the behaviour of the Mode O through the plate thickness confirms the 

previous trends, shown in Figure 4.4.13. The main novelty is the variability of the 

stress intensity factor KI/II which increases its intensity approaching the free 

surfaces of the plate, contrary to the previously investigated cases (see Figure 

4.4.14). 

Finally Figure 4.4.15 plots the shear stress component yz through the thickness 

for the different notch angles considered in the present investigation. The stress 

component yz is plotted at a distance x=0.3 mm from the notch tip. It is evident 

that the notch opening angle does not influence the intensity of the out-of-plane 

stress contrary to the free-free notch configuration. 

The main conclusion of this section is that the existence of the out-of-plane mode 

has been proofed for a V-notch under a free-fixed configuration.  
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Figure 4.4.13. Mode O SIF through the plate thickness at x=0.3 mm 
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Figure 4.4.14. KI/II through the plate thickness at different distances from the 

notch tip 

 

By investigating different notch opening angle has been shown that the singularity 

of the new investigated mode matches that obtained by using the theoretical 

solution of a free-fixed notch under antiplane loading (Sih and Tang 2005b). 
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While the stress intensity factor KI/II is equal to the applied value on the mid plane 

it varies along the plate thickness decreasing near the free surfaces for small 

opening angle (2=45, 60 and 90°) and increasing for larger values (2=135°). It 

has also shown that, contrary to the expectations, the intensity of the out-of-plane 

shear stress through the plate thickness is not influenced by the notch opening 

angle for the same applied value of KI/II. 
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Figure 4.4.15. A comparison of the shear stress yz through the thickness for 

different opening angles from 2=45° to 135°. 

 

 

 

 

 

 

 

 

 

 

 



 

 121 

4.5  Strain Energy Density in a control volume surrounding the 

notch tip 

 

To compare the severity of the singular stress fields some assumptions are 

necessary to introduce, which should involve a material’s characteristic length or 

the microstructural support length. Recent papers suggest to use as a characteristic 

of failure initiation the strain energy density averaged over a characteristic control 

volume (Lazzarin and Zambardi 2001, Lazzarin and Berto 2005a-2008, Berto and 

Lazzarin 2009-2011, Radaj et al. 2009a, Gomez et al. 2009a, Lazzarin et al. 

2008a-2009a-2009b-2010, Berto et al. 2007-2011c, Gomez et al. 2007). This 

characteristic length varies from material to material and can range from 10
-6

 to 

10
-3

 m. However some recent applications (Wang et al. 2011, Liu et al. 2011) 

have demonstrated that the elastic energy evaluated in a control volume of radius 

R0 (as defined in Lazzarin and Zambardi 2001) remains a powerful tool also at 

lower scale levels. In Wang et al. (2011), taking R0 as the diameter of Au atoms 

and a as the crack length, the elastic energy has been used to explain the different 

scenarios observed in propagation of two sub-cracks under similar loading 

conditions. A bi-crystal model showed that the elastic energy (measured over a 

volume of radius 0.3 nm) decreased with increasing the notch angle, which 

implies that cracks with small angles could propagate along the grain boundaries 

more easily (Liu et al. 2011). 

A possible synthesis of the magnitude of the stress state through the plate 

thickness is carried out here by using the mean value of the strain energy density 

(SED) over a control volume embracing the notch tip.  The control volume can be 

though of as a cylinder having a radius and a height equal to R0 (see Figure 4.3.1). 

Recently the approach based on the SED has been used to summarize a large bulk 

of experimental data from fatigue failures of seam and spot welded joints and 

from static tests under Mode I and Mode II loading (Berto and Lazzarin 2009, 

Berto et al. 2007, Gomez et al. 2007). As discussed in Lazzarin and Berto (2008), 

Lazzarin et al. (2008a-2008b) the SED can be evaluated directly with a coarse 

mesh also in complex cases where an analytical formulation is far from easy. One 

of the most important advantages of the SED approach is that to provide a mean 
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value which is substantially mesh independent. In fact, contrary to some stress 

parameters integrated in the local criteria (e.g. maximum principal stress, 

hydrostatic stress, deviatoric stress), which are mesh-dependent, the SED 

averaged over a control volume is insensitive to the mesh refinement. As widely 

documented in Lazzarin and Berto (2008), Lazzarin et al. (2008a-2008b) dealing 

with sharp V-notches, refined meshes are not necessary, because the mean value 

of the SED on the control volume can be directly determined via the nodal 

displacements, without involving their derivatives. As soon as the average SED is 

known, the notch stress intensity factors (NSIFs) quantifying the asymptotic stress 

distributions can be calculated a posteriori on the basis of very simple expressions 

linking the local SED and the relevant NSIFs. This holds true also for the stress 

concentration factors (SCFs), at least when the local stress distributions ahead of 

the blunt notch are available for the plane problem. The extension of the SED 

method to three-dimensional cases is also possible as well as its extension to 

notched geometries exhibiting small scale yielding (Lazzarin and Berto 2008).  

Figure 4.5.1 plots the local SED and makes it evident that the maximum value is 

close to the lateral surface where the maximum intensity of the Mode O takes 

place. This behavior can be explained by analyzing the complex stress state 

through the plate thickness. The SED is able to naturally capture and unite the 

features of the combined effects. The results summarised in the chapter are 

general and can be directly translated to the mesomechanic approach proposed by 

Sih which models the micro-crack tip as a fixed-free sharp V-notch as well as to 

the cases discussed in Tang and Sih (2005) dealing with in-plane solution and  

straight extended to the three-dimensional models. 

Moreover it is strongly confirmed the fact that the notch opening angle has a 

negligible influence in the vicinity of the free surface and that the variability is 

slight also in the mid-plane. For the V-notched plates the importance of the out-

of-plane mode has been investigated in Berto et al. (2011a) by increasing the 

plate size. Also for this geometry and boundary conditions the importance of 

Mode O has been strongly expected to be dependent on the main plate thickness. 
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Figure 4.5.1. Local strain energy density (SED) averaged over a cylindrical 

volume having radius R0 and height H, with H about equal to R0. 

 

 

4.6 Conclusions 

Irregularities of the material microstructure tend to torture the crack tip being the 

clamped-free boundary conditions the more realistic and general representation of 

what occurs on the micro V-notch. As a result, mixed mode conditions are always 

present along the V-notch bisector line. Physically, the different orders of the 

stress singularities are related to the different constraints associated with the 

defect thought as a micro V-notch at the tip of the main crack. 

Dealing with a three-dimensional plate weakened by a sharp notch under free-

clamped boundary conditions the mixed mode is automatically generated by the edge 

constraints. The presence of Mode II has been proofed to generate a singular Mode O 

which has been neglected in all previous papers. Different values of the notch 

opening angle have been considered to show the variability of the intensity and 

singularity of the new detected mode. It has been found that the singularity of Mode 

O matches that obtained by using the theoretical solution of a free-fixed notch under 

anti-plane loading.  
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Dealing with three-dimensional model it has been highlighted that the influence of the 

notch opening angle on the intensity of the Mode O is very low even for large values 

of  2.  

Finally the local energy has been used to capture the features of the combined effects 

through the plate thickness. Despite the complexity of the stress state, a simple scalar 

parameter, i.e. the strain energy density over a given control volume, makes easy the 

identification of the critical zones of the notched plate. It has been found that the most 

critical zone of the plate is close to the free surface and that the notch opening angle 

does not affect significantly the value of the SED when the notch is modelled by 

using a free-clamped configuration. 

The SED can be applied at different scale levels keeping into account the boundary 

conditions that should be updated at every level. In fact the constraint conditions are 

sensitive to the environments and cannot be captured or simulated by using a model 

with the same conditions at nano, micro or macro levels. The change of boundary 

conditions at different scale level permits to overcome a complex elasto-plastic 

formulation and bypass the problem by maintaining a multi-scale model in the field 

of elasticity. This is enormously advantageous and powerful.  
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5 

SED criterion on U-notched  

graphite plates under mixed mode loading  
 

 

5.1  Introduction  

Several criteria have been proposed for the failure assessment of brittle or quasi-

brittle materials under monotonic loading subjected to Mode I  and weakened by 

sharp and blunt notches. 

A “Line criterion” was applied by Knésl (1991) who dealt with components 

weakened by sharp V-shaped notches. Some important aspects of the stress field 

in the proximity of the notch tip were highlighted by Nui et al. (1994) who 

demonstrated that, for distances from the notch tip less than 0.2 times the notch 

radius, stress distributions along the notch bisector depend only on the notch root 

and not on the opening angle. Seweryn provided a set of experimental data from 

sharp V-notches specimens made of PMMA and applied a criterion where the 

asymptotic stresses governed by the notch stress intensity factor (NSIF) were 

integrated over a material-dependent distance from the point of singularity 

(Seweryn 1994). Strandberg (2002) successfully applied the NSIF criterion to V-

notched samples made of annealed tool steel, AISI O1, tested at –50˚C.  Dealing 

with different ceramic materials, Gogotsi (2003) investigated the sensitivity of the 

Mode I fracture toughness as a function of the notch tip radius. 

Considering failures from sharp and blunt notched specimens the Cohesive Zone 

Model (CZM) criterion has been successfully used and continuously improved 

considering the influence of different softening curve for the material (Gomez et 

al. 2000, Gomez and Elices 2003). Two essential parameters are associated with 

the softening curve: the ultimate tensile strength t and the specific fracture 

energy Gf. Just considering linear elastic behaviour and ideally sharp notches, 

Gómez and Elices (2003) were able to demonstrate that a single non-dimensional 
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curve fits the experimental data from V-notched specimens made of steel, 

aluminium, polymethyl-metacrylate (PMMA) and PVC.  

In a recent contribution (Ghasemnejad and Aboutorabi 2011), by using the Ansys 

code, the cohesive zone model, which is known as a variation in the cohesive 

stresses with the interfacial opening displacement along the localized fracture 

process zone, has been applied by Ghasemnejad and Aboutorabi (2011) to assess 

the Mode I and Mode II delamination failure in laminated composite structures. 

In parallel a criterion based on the strain energy density (SED) averaged over a 

control volume was developed in (Lazzarin and Zambardi 2001, Lazzarin et al. 

2003) for static and fatigue strength assessments of notched components and 

welded joints. By using the SED approach, Yosibash et al. (2004) showed a very 

good correlation to a large amount of experimental data from Alumina-7% 

Zirconia and PMMA specimens. A criterion based on the J-integral has been 

proposed by Matvienko and Morozov (2004) for a body with a U-notch 

considering an elastic and elastic-plastic behaviour of the material. The J-integral 

has been recently applied to homogeneous plates and functionally graded 

aluminum–silicone carbide composite with U-notches under bending loading 

(Barati et al. 2010a-2010b). A modified maximum tangential stress criterion has 

been proposed for fracture assessment of plates weakened by blunt V-notches 

(Ayatollahi and Torabi 2010a). An accurate review of the main criteria applicable 

under prevalent Mode I loading is carried out in Gomez et al. (2006). 

Under mixed mode loading, particularly for notches with a non-negligible radius, 

providing a suitable fracture criterion is more complex than under Mode I loading 

because the maximum elastic stress is out of the notch bisector line and its 

position varies as a function of Mode I to Mode II stress distributions, along the 

notch edge. For this reason, the problem of brittle or quasi-brittle fracture of blunt 

notched components loaded under mixed mode (I+II) requires further 

investigations. Another important reason is the scarcity of experimental results 

available in the literature, in particular dealing with blunt notches under prevalent 

Mode II loading and, then, the possibility to set up an approach for the fracture 

assessment under the above mentioned conditions.  
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The proposal of Mode I dominance for crack plates was suggested first by 

Erdogan and Sih (1963) when dealing with cracked plates under plane loading and 

transverse shear, where the crack grows in the direction almost perpendicular to 

the maximum tangential stress in radial direction from its tip. Dealing with the 

strain energy density concept, it is worthwhile contemplating some fundamental 

contributions provided by Sih (1974). The strain energy density factor S was 

defined as the product of the strain energy density by a critical distance from the 

point of singularity. Failure was thought of as controlled by a critical value Sc, 

whereas the direction of crack propagation was determined by imposing a 

minimum condition on S. Several criteria have been applied mainly to sharp V-

notched samples but also to U-notches (Papadopoulos and Paniridis 1988, 

Seweryn and Lucaszewicz 2002, Yosibash et al. 2006, Priel et al. 2008, Chen and 

Ozaki 2008, Ayatollahi and Torabi 2010b-2010c) showing a different degree of 

accuracy with respect to the experimental results. Seweryn and Lucaszewicz 

(2002) reviewed the main criteria available under mixed mode loading. A failure 

criterion at re-entrant corners in brittle elastic materials, validated in (Yosibash et 

al. 2004) for Mode I loading, was extended to mixed mode loading and validated 

by experimental observations (Yosibash et al. 2006, Priel et al. 2008). Chen and 

Ozaki (2008) provided some interesting results under mixed mode loading. 

However, the prevalent mode during the test was Mode I. A modified maximum 

tangential stress criterion has been developed to predict the fracture toughness and 

fracture initiation angle in U-shaped notches under mixed mode loading or 

prevalent Mode II loading (Ayatollahi and Torabi 2010b-2010c). 

In the latest years a criterion based on the strain energy density (SED) over a 

control volume has been developed Lazzarin and Zambardi (2001), Lazzarin et al. 

(2003), Lazzarin and Berto (2005a) and applied to assess failure from cracked, U-

notched and sharp V-notched components and also from structural components 

(Berto et al. 2008, Berto and Barati 2011). Over a small but finite volume of 

material close to the notch, the energy always has a finite value. Lazzarin and 

Zambardi (2001) predicted the static and fatigue behaviour of components 

weakened by sharp V-notches with variable notch angles using the mean value of 

the local strain energy. The control radius Rc of the volume, over which the energy 
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was averaged, depended on the fracture toughness and the ultimate tensile stress 

in the case of static loads and brittle materials. Different from Sih’s criterion, 

which is a point-wise criterion, the averaged strain energy density criterion (SED) 

states that brittle failure occurs when the mean value of the strain energy density 

over a control volume (which becomes an area in two dimensional cases) is equal 

to a critical energy Wc. 

The SED criterion has been recently extended to mixed mode loading (see Gomez 

et al. 2007-2008-2009a-2009b, Berto et al. 2007, Berto and Ayatollahi 2011). 

The equivalent local Mode I concept on U-notched specimens has been applied by 

moving the control volume along the notch edge in such a way that it is centred in 

relation to the maximum elastic stress (Gomez et al. 2007-2008, Berto et al. 2007) 

and a simply but accurate expression has been found to evaluate the SED once the 

maximum value of the principal stress along the notch edge is known (Berto et al. 

2007, Berto and Ayatllahi 2011). The SED criterion has been widely compared 

with the CZM in Berto et al. (2007). 

This criterion is used in the present contribution to assess the brittle fracture on 

graphite U-notched specimens. Isostatic graphite is manufactured by using cold 

isostatic pressing technique and is often known for its homogeneous structure and 

excellent isotropic electrical, thermal properties. Moreover this kind of graphite is 

known for its high mechanical performances and for this reason is used in 

mechanical applications. It is sometimes purified in special-designed 

graphitization furnace to remove non-carbonaceous inclusions and impurities. 

Isostatic graphite is extensively used in various industrial applications such as: 

molds in continuous casting systems for making shaped steel, cast iron and 

copper; crucibles for melting precious metals or alloys; molds for making shaped 

glass; heating elements, heat shields, crucibles, etc.  

There are various practical conditions where the notches in graphite components 

are subjected to a combination of tensile and shear deformation (or mixed Mode 

I/II loading). Cracks on graphite components are generated by manufacturing 

faults and other defects are also due to the coalescence of the micro-structural 

pores that are inherently embedded in graphite. While cracks are viewed as 

unpleasant entities in most engineering materials, notches of U or V-shape are 
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sometimes desirable in design and manufacturing of products made from graphite. 

Moulds, heating elements and chucks are only some examples of industrial 

graphite components that contain U or V-shape notches.  

Extensive studies on Mode I and mixed mode fracture in cracked graphite 

specimens are present in literature but very few papers have dealt with brittle 

fracture in V-shaped and U-shaped notched graphite components. Ayatollahi and 

Torabi (2010d) conducted a series of fracture tests on three different V-notched 

test specimens made of a polycrystalline graphite material. Instead Ayatollahi et 

al. (2011) recently performed some tests on brazilian disk specimens to 

investigate failures on polycrystalline graphite weakened by blunt V-notches. 

Some tests have been recently carried out also considering graphite bars weakened 

by V-notches subjected to torsion loading (Berto et al. 2012b). 

The present research deals with mixed mode (I+ II) brittle fracture of U-notched 

specimens made of isostatic graphite.  

The purpose of the present chapter is twofold: 

a. - To provide a large body of experimental data from static fracture of notched 

graphite specimens subjected to mixed mode loading with varying notch root 

radii and different mode mixities. Such data should be helpful to engineers 

engaged in static strength analysis of graphite components. Sixty new 

experimental results are summarised in the chapter with reference to various 

notch configurations. 

 b. - To provide a fracture model in order to estimate the critical loads to failure in 

notched isostatic graphite components subjected to in plane mixed mode 

loading. The strain energy density averaged on a control volume is used for 

brittle failure assessments of notched graphite samples in mixed Mode I/II 

loading conditions. 

The chapter is structured in the following way: in the first section the 

experimental work is described including specimen geometries, testing procedures 

and experimental results. The second section is focused on the SED criterion 

applied to U-notches and to the numerical models. Finally, the third section 

presents a synthesis of all data in terms of averaged SED using a control volume 
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based on the basic material properties under mixed mode loading and a final 

discussion of the present results. 

 

5.2  Fracture experiments 

5.2.1 Materials and geometry 

The material used is a commercial isostatic graphite particularly used in 

mechanical applications for its high performances. The mean grain size was 

measured by using the SEM technique and the density was determined from the 

buoyancy method. 

 

Table 5.2.1. Mechanical properties 

 

Material Property Value 

Elastic Modulus E [MPa] 8050 

Shear Modulus G [MPa] 3354 

Poisson's Ratio  0.2 

Ultimate Torsion Strength [MPa] 30 

Ultimate Compression Strength [MPa] 110 

Ultimate Tensile Strength [MPa] 46 

Fracture toughness [MPa m
0.5

] 1.06 

Density [Kg/dm
3
] 1.85 

Porosity [%] 7 

Resistivity [ohm∙m] 11 

Thermal Conductivity [W/(m∙K)] 110 

 

Table 5.2.1 presents the most important material properties: mean grain size is 2 

m, porosity 7%, bulk density of 1850 kg/m
3
, tensile strength of 46 MPa, 

Young’s modulus of 8.05 GPa and shear modulus 3.35 GPa. The flexural strength 

is 49 MPa, whereas the compressive strength is equal to 110 MPa. In a previous 

investigation (Ayatollahi et al. 2011), the detected mean grain size was 320 m 

whereas the tensile strength was equal to 27.5 MPa, resulting in a mechanical 

behaviour very different from that of the isostatic graphite considered in the 

present work. 
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All tests were performed under load control on a servocontrolled MTS axial 

testing device (100 kN/ 110 Nm,  75mm/ 55°). The load was measured by a 

MTS cell with ± 0.5 % error at full scale. 

                           

Figure 5.2.1. Geometry and main dimensions of the tested specimens 

 

The samples used in this investigation are plates with a central blunt U-notch, as 

shown in Figure 5.2.1.  Different radii at the notch tip, , and tilt angles of the 

notch, , are used in order to investigate their influence on the failure. All the 

specimens are subjected to tensile load. By varying the tilt angle  different mode-

mixity can be produced. If the tilt angle is equal to zero the notches are subjected 

to pure Mode I, while varying  the loading condition changes from pure Mode I 

towards mixed Mode I+II. For all the tested graphite specimens, the width, the 

distance between the tip of the notches and the thickness were 50 mm, 10 mm and 

10 mm, respectively. 

Five values of notch radius =0.25, 0.5, 1, 2, 4 mm were considered for 

manufacturing the test specimens so that the effects of the notch tip radius on 

mixed mode fracture of the graphite specimens are studied. With the aim to obtain 

different mode mixities four values of the angle  were considered (=0°, =30°, 
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 
 

W=50 mm 
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H
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=45° and =60°). Figures 5.2.2 and 5.2.3 show some photos of the tested 

specimens and some details of the notches. 

 

     

 

Figure 5.2.2: Different U-notched specimens (a) =0.25  (b) = 2 mm (c) =60° 

 

            

Figure 5.2.3. Two inclined U-notches: (a) =2mm,=30° (b) =2mm, =60°. 
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5.2.2 Experimental procedure 

In order to prepare the graphite test specimens (see Figures 5.2.2 and 5.2.3), first 

several plates of 10 mm thick were cut from a graphite block. Then, the specimens 

were precisely fabricated by using a 2-D CNC water-jet cutting machine. In order 

to assure plane strain conditions at the notch tip, in the absence of specific 

standards for graphite subjected to stress concentration effects, the thickness of 

the specimens was chosen following the guidelines drawn in (Lomakin et al. 

1975, Yamauchi et al. 2001) 

Before conducting the experiments, the cut surfaces of the graphite specimens 

were polished by using a fine abrasive paper to remove any possible local stress 

concentrations due to surface roughness. A total number of 60 mixed Mode I/II 

fracture tests were performed for various notch geometry parameters. For each 

geometry shape and loading angle, three separate fracture tests were performed by 

using a universal tension-compression test machine under displacement-control 

conditions with a loading rate of 0.05 mm/min. The load-displacement curves 

recorded during the fracture tests were all linear and the specimens fractured 

suddenly. Therefore, the use of a brittle fracture criterion based on the linear 

elastic fracture mechanics (LEFM) is permissible. The values of the fracture loads 

for each experimental test and the mean values (<F>) recorded by the test 

machine are presented in Table 5.2.2.  

A re-analysis of  Table 5.2.2 shows that the fracture load increases when the 

radius  increases from 0.25 mm to 4 mm.  

Dealing with crack initiation angles they have been measured experimentally by 

using an optical microscope and a dedicate software called Las (Leica Application 

Suite), see Figure 5.2.4 as example. All the values of the initial crack angles are 

reported in Table 5.2.2 also with the mean value of the three performed tests 

(<>). 
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Figure 5.2.4: Experimental measure of the initial crack angle with the dedicated 

software LAS 

 

Table 5.2.2. Experimental critical loads and initial crack angles 


[degrees] 


[mm] 

F1 

[N] 

F2 

[N] 

F3 

[N] 

<F> 

[N] 







degrees]





[degrees] 

  Exp. Exp. 

0 0.25 4115 4708 4455 4426 0 0 0 0 

 0.5 4592 4495 4429 4505 0 0 0 0 

 1 4461 5152 4830 4814 0 0 0 0 

 2 5182 5824 5541 5516 0 0 0 0 

 4 7083 6406 6879 6789 0 0 0 0 

30 0.25 3979 4009 4114 4034 35.82 28.78 27.87 30.82 

 0.5 4254 4422 4370 4349 28.60 43.10 34.79 35.50 

 1 4756 4829 4888 4824 32.95 29.26 28.13 30.11 

 2 5906 5965 5876 5916 26.05 29.53 29.31 28.30 

 4 6685 7098 6875 6886 27.68 33.06 30.74 30.49 

45 0.25 3848 3954 3979 3927 53.99 33.26 40.10 42.45 

 0.5 4302 4164 4318 4261 46.55 48.00 44.62 46.39 

 1 4756 4846 4729 4777 44.81 52.52 50.54 49.29 

 2 5448 5666 5696 5603 47.94 42.61 41.91 44.15 

 4 7041 6799 6747 6862 43.67 49.79 50.06 47.84 

60 0.25 4034 3847 3944 3942 65.01 51.54 58.15 58.23 

 0.5 4536 4491 4626 4551 64.97 48.84 53.70 55.84 

 1 4697 4829 4810 4779 64.21 58.06 59.95 60.74 

 2 5511 5363 5491 5455 59.79 54.21 55.72 56.57 

 4 6941 6602 6704 6749 59.49 55.94 58.94 58.12 
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5.2.3 Mode mixity  

In order to quantify the mode mixity of the tested specimens, some FE analyses 

were carried out. In agreement with Lazzarin and Filippi (2006) the definition of 

generalized notch stress intensity factors (N-SIF) for Mode I and Mode II is as 

follows: 

 

 

r2
1

r2K 0
I 




 

   

 

r2
1

r2K 0r
II 




 

  

   (5.2.1) 

 

where σθ and τrθ are the stresses along the notch bisector line at a distance r from 

the local frame origin placed at a distance /2 from the notch tip.   

Eq. (5.2.1) is not expected to give a constant value for N-SIFs but slight variations 

are possible. The slightly oscillating trend ahead of the notch tip is widely 

investigated in Lazzarin and Filippi (2006) and Lazzarin et al. (2011). In order to 

eliminate the weak dependence on the notch tip distance, the following 

expressions have been defined to calculate the mean values of the generalized 

NSIFs (Lazzarin and Filippi 2006): 
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   (5.2.2) 

 

where η is set equal to 0.2 in the present work.  

The mode mixity has been defined according to the following definition: 
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The values of    are listed in Table 5.2.3 and varies from 0 (pure Mode I) to 0.9 

(prevalent Mode II). 

Dealing with Mode II notch stress intensity factors some recent developments can 

be found in Lazzarin et al. (2011). In particular by taking advantage of some 

analytical formulations which are able to describe stress distributions ahead of 

parabolic, hyperbolic and V-shaped notches with end holes, the paper discusses 

the form and the significance of the NSIFs with reference to in-plane shear 

loading, considering explicitly the role played by the notch opening angle and the 

notch tip radius. 

 

Table 5.2.3. Mode mixity of the investigated geometries 

  IK / nom IIK / nom IIK / IK  

[degrees] [mm] mm
0.5

 mm
0.5

   

0 0.25 4.63 0.00 0.00 0.00 

0 0.5 4.78 0.00 0.00 0.00 

0 1 4.99 0.00 0.00 0.00 

0 2 5.31 0.00 0.00 0.00 

0 4 5.81 0.00 0.00 0.00 

30 0.25 3.71 3.81 1.03 0.51 

30 0.5 3.78 4.10 1.08 0.53 

30 1 3.89 4.58 1.18 0.55 

30 2 4.05 5.41 1.33 0.59 

30 4 4.30 6.85 1.60 0.64 

45 0.25 2.71 4.89 1.80 0.68 

45 0.5 2.72 5.22 1.92 0.69 

45 1 2.73 5.76 2.12 0.72 

45 2 2.73 6.71 2.46 0.75 

45 4 2.71 8.35 3.08 0.80 

60 0.25 1.60 5.18 3.23 0.81 

60 0.5 1.54 5.47 3.56 0.83 

60 1 1.44 5.94 4.13 0.85 

60 2 1.27 6.77 5.31 0.88 

60 4 0.97 8.17 8.44 0.92 
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5.3  SED criterion applied to U-notches and numerical models 

The averaged strain energy density criterion (SED) as presented in Lazzarin and 

Zambardi (2001) states that brittle failure occurs when the mean value of the 

strain energy density over a given control volume is equal to a critical value Wc. 

This critical value varies from material to material but does not depend on the 

notch geometry and sharpness. The control volume is thought of as dependent on 

the ultimate tensile strength and the fracture toughness KIc in the case of brittle or 

quasi-brittle materials subjected to static loads. For a blunt U-notch under Mode I 

loading, the volume assumes the crescent shape shown in Fig. 5.3.1a, where Rc is 

the depth measured along the notch bisector line. The outer radius of the crescent 

shape is equal to Rc+/2, being /2 the distance between the notch tip and the 

origin of the local coordinate system.  

Under mixed mode loading the critical volume is no longer centred on the notch 

tip, but rather on the point where the principal stress reaches its maximum value 

along the edge of the notch (Fig. 5.3.1b). It was assumed that the crescent shape 

volume rotates rigidly under mixed mode, with no change in shape and size. This 

is the governing idea of the ‘equivalent local Mode I’ approach, as proposed and 

applied to U-notches (Gomez et al. 2007, Berto et al. 2007).  

Some closed-form expressions correlating SED and maximum elastic stress are 

reported in the literature (Berto et al. 2007). In this paper, however, to avoid any 

simplified assumption, the SED values will be those directly determined from FE 

models. 

Under plane strain conditions the critical length, Rc, can be evaluated according to 

the following expression (Yosibash et al. 2004, Lazzarin and Berto 2005a): 
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(5.3.1) 

 

where KIc is the fracture toughness, the Poisson’s ratio and t the ultimate tensile 

stress of a plain specimen that obeys a linear elastic behaviour. 
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This critical value can be determined from the ultimate tensile stress t according 

to Beltrami’s expression: 

 

E2
W

2

t
c


              (5.3.2) 

 

Unnotched specimens often exhibit a non-linear behaviour whereas the behaviour 

of notched specimens remains linear. Under these circumstances the stress t 

should be substituted by the maximum normal stress existing at the edge at the 

moment preceding the cracking, as underlined in (Seweryn 1994) where it is also 

recommended to use tensile specimens with large semicircular notches to avoid 

any notch sensitivity effect. 

In parallel, the control volume definition via the control radius Rc needs the 

knowledge of the fracture toughness KIc and the Poisson’s ratio see Eq. 

(5.3.1).The critical load that is sustainable by a notched component can be 

estimated by imposing W equal to the critical value Wc. This value is considered 

here constant under Mode I, Mode II and in plane mixed-mode conditions. This 

assumption has been extensively verified for a number of different brittle and 

quasi-brittle materials (Gomez et al. 2007, Berto et al. 2007). Dealing with blunt 

notches under mixed mode loading, the problem becomes more complex than 

under Mode I loading, mainly because the maximum elastic stress is out of  the 

notch  bisector line and its position varies as a function of Mode I and Mode II. 

As discussed above, the idea of the ‘equivalent local Mode I’ approach, as 

proposed and applied to plates made of PMMA and weakened by U-notches is 

used here. The critical volume is no longer centred on the notch tip, but rather on 

the point where the principal stress reaches its maximum value along the edge of 

the notch and it is assumed that the crescent shape volume rotates rigidly under 

mixed mode, with no change in shape and size with respect to Mode I. 
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Figure 5.3.1. Control volume under Mode I (a) and mixed mode loading (b) for 

U-notched specimens 

 

The maximum stress occurring along the edges of V-notches has been calculated 

numerically by using the FE code ANSYS 12.0


. For each geometry, two models 

were created. The first model was mainly oriented to the determination of the 

point where the maximum principal stress and the maximum SED were located; 

the second model was more refined, with an accurate definition of the control 

volume where the strain energy density should be averaged. All the analyses have 

been carried out by using eight-node elements under the hypothesis of plane strain 

conditions (see Figure 5.3.2). The procedure for building the two models 

necessary to determine the SED in the rotated volume can be easily automated by 

simply writing an APDL (ANSYS Parametric Design Language) subroutine 

which permits the direct evaluation of the SED in the control volume. 

Figure 5.3.3 shows the shape of the control volume in the case of =45°, with 

=0.25 mm (a, b) and =2 mm (c, d). The contour lines of the maximum principal 

stress (a, c) as well as the SED isolines (b, d) are shown in the figure. As 

discussed in Lazzarin and Berto (2005a), the volume adapts itself varying the 

notch tip radius  

Figure 5.3.3 shows that a relatively refined mesh was used to model the notch 

profiles. However, one of the most important advantages of the SED approach is 

that to provide a mean value which is substantially mesh independent. In fact, 

contrary to some stress parameters integrated in the local criteria (e.g. maximum 

principal stress, hydrostatic stress, deviatoric stress), which are mesh-dependent, 

(a) (b) 
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the SED averaged over a control volume is insensitive to the mesh refinement. As 

widely documented in Lazzarin et al. (2008a-2010) dealing with sharp V-notches, 

refined meshes are not necessary, because the mean value of the SED on the 

control volume can be directly determined via the nodal displacements, without 

involving their derivatives. As soon as the average SED is known, the notch stress 

intensity factors (NSIFs) quantifying the asymptotic stress distributions can be 

calculated a posteriori on the basis of very simple expressions linking the local 

SED and the relevant NSIFs. This holds true also for the stress concentration 

factors (SCFs), at least when the local stress distributions ahead of the blunt notch 

are available for the plane problem. The extension of the SED method to three-

dimensional cases is also possible as well as its extension to notched geometries 

exhibiting small scale yielding (Lazzarin and Berto 2008).  

Dealing with the SED approach, the main properties of the material are the 

ultimate tensile strength t= 46 MPa and the fracture toughness KIc = 1.06 

mMPa . Using Eq. (5.3.2), the critical value of SED for the tested material is 

found to be Wc=0.13 MJ/m
3
, whereas the radius of the control volume is Rc  0.17 

mm, considering realistic plane strain conditions.  

In the absence of specific data from cracked components, the parameter  KIc can 

be estimated considering the results from the three specimens with the minimum 

available radius, mm, and =0°. In parallel, the tensile strength has been 

evaluated using the experimental data from the samples with =4 mm and =0°, 

according to some indications drawn by Seweryn (1994). 

Table 5.3.1 summarizes the values of SED as directly evaluated by means of the 

numerical models. The table also gives the maximum value of the principal stress 

(max) and the SED value as obtained from the FE models of the graphite 

specimens by applying to the model the mean value of the critical loads. It is 

interesting to observe that the maximum principal stress along the notch edge is 

much greater (about two times) than the ultimate tensile stress of the material 

justifying the SED approach based on a control volume.  
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Figure 5.3.2 Typical mesh used to evaluate the SED (a), control volume (b) and 

SED contour lines (c) 

 

The stress component  is plotted in Figure 5.3.4 versus the normalised distance 

/. The inclined path is perpendicular to the notch edge and starts from the point 

on the notch profile where the stress component  is maximum. The finite 

element results are compared with the Mode I theoretical solution given by 

Creager and Paris (1967) for the ‘blunt crack’ case. The agreement is satisfactory 

also under prevalent Mode II, independent of the notch radius. In parallel, the 

shear stress component has been verified to be close to zero, as it happens along 

the notch bisector under pure Mode I loading conditions. This observation leads to 

the conclusion that under mixed mode loading the line normal to the notch edge 

and starting from the point of maximum principal stress behaves as a virtual 

bisector line under pure Mode I, confirming the applicability of the equivalent 

local Mode I concept. 
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Figure 5.3.3. Contour lines of the maximum principal stress and of the SED in the 

case = 45° with =0.25 mm (a, b) and =2 mm (c, d). 

 
Figure 5.3.4. Stress distribution along the line of maximum tangential stress out 

of the notch bisector line; =45° and applied load equal to average value of the 

experimental loads, <F>. 
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Table 5.3.1. Numerical values of principal stresses and strain energy density 


[degrees] 


[mm] 

 
[degrees] 

 max  

[MPa] 

  W  

MJ/m
3
] 

 < W > 

MJ/m
3
] 

  FEM FEM FEM FEM 

0 0.25 0 86.94 99.47 94.14 0.1306 0.1709 0.1531 0.1515 

 0.5 0 71.33 69.81 68.81 0.149 0.1428 0.1387 0.1435 

 1 0 51.49 59.47 55.76 0.1081 0.1442 0.1267 0.1263 

 2 0 45.26 50.87 48.40 0.1009 0.1275 0.1154 0.1146 

 4 0 48.08 43.49 46.70 0.1264 0.1034 0.1192 0.1163 

30 0.25 34.44 87.95 88.61 90.93 0.135 0.137 0.1443 0.1387 

 0.5 32.22 68.37 71.09 70.25 0.1378 0.149 0.1455 0.1441 

 1 31.11 56.51 57.37 58.08 0.1315 0.1355 0.1389 0.1353 

 2 30.90 53.30 53.83 53.03 0.1408 0.1436 0.1394 0.1412 

 4 30.00 47.63 50.58 48.98 0.1243 0.1402 0.1315 0.132 

45 0.25 47.78 86.36 88.74 89.30 0.1291 0.1363 0.1381 0.1345 

 0.5 46.67 70.59 68.32 70.84 0.1445 0.1353 0.1455 0.1418 

 1 46.67 58.15 59.24 57.81 0.1388 0.1441 0.1372 0.1401 

 2 46.11 51.19 53.23 53.52 0.1302 0.1408 0.1423 0.1377 

 4 45.28 53.24 51.41 51.02 0.1557 0.1452 0.143 0.1479 

60 0.25 56.67 87.32 83.28 85.38 0.13 0.1182 0.1243 0.1242 

 0.5 57.78 73.28 72.55 74.74 0.1513 0.1484 0.1574 0.1524 

 1 58.89 57.97 59.59 59.37 0.1343 0.1419 0.1409 0.139 

 2 58.89 53.86 52.41 53.66 0.1428 0.1352 0.1417 0.1399 

 4 59.45 56.61 53.85 54.68 0.1757 0.159 0.1639 0.1662 

 

5.4  Results and discussions 

As underlined in Gomez et al. (2007-2008-2009a-2009b) and Berto et al. (2007) 

dealing with mixed mode loading, particularly for notches with a non-negligible 

root radius, providing a suitable fracture criterion is more complex than under 

Mode I loading because the maximum elastic stress is out of the notch bisector 

line and its position strongly varies on the notch edge as a function of Mode I to 

Mode II stress distributions. The problem is solved here by applying the SED 

criterion to rounded-tip U-notched domains, with the aim to estimate the fracture 

load of notched graphite components. 

As underlined before, the purpose of this research is twofold: to provide a new set 

of experimental data from brittle fractures under mixed mode of an isostatic 

ghaphite with a low mean grain size, and to document the applicability of the 

local SED method in the presence of U-notches, by rigidly rotating the crescent 

shape volume defined under Mode I loading. 



 

 144 

 

 

The experimental results are summarised in Table 5.2.2 whereas a comparison 

between experimental data and theoretical results is documented in Table 5.4.1. 

The average value of the measured critical loads are compared with the values 

computed by assuming a constant critical strain energy density over the control 

volume (Wc = 0.13 MJ/m
3
). A good agreement can be observed from the table. 

Figures 5.4.1, 5.4.2, 5.4.3 and 5.4.4 plot the experimental results and the 

theoretical predictions based on the SED approach as a function of the notch root 

radius for each value of the tilt angle, . 

The relative deviation between experimental and predicted values ranges from –

7% to +7%, with an exception (+12%) in the case  = 4 mm and  = 60°. 

However it is important to note that for all the cases taken into account the scatter 

between theoretical and experimental values is very narrow. 

 

 

Figure 5.4.1. Comparison between experimental and predicted values of the 

critical load for different notch radii and tilt angle of the notch =0°. 
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Figure 5.4.2. Comparison between experimental and predicted values of the 

critical load for different notch radii and tilt angle of the notch =30° 

 

 

Figure 5.4.3. Comparison between experimental and predicted values of the 

critical load for different notch radii and tilt angle of the notch =45°. 
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Figure 5.4.4. Comparison between experimental and predicted values of the 

critical load for different notch radii and tilt angle of the notch =60°. 

 

 

Table 5.4.2 summarizes the average values of the measured initiation crack angle 

 compared with the values obtained from Finite Element analyses.  In the 

numerical analyses the angles where the principal stress (and then the strain 

energy density) reaches its maximum value along the notch edge has been 

considered. It is worth nothing from the table that the relative deviation between 

experimental and predicted results is higher with respect to the case of critical 

loads as well as the intrinsic scatter of the experimental results (see Figures 5.4.5, 

5.4.6 and 5.4.7).  
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Table 5.4.1. Comparison between experimental and theoretical critical loads. 

 

 

Figure 5.4.5. Comparison between experimental and numerical values of the 

initial crack angle for different notch radii and tilt angle of the notch =30°. 


[degrees] 


[mm] 

<FEXP> 

[N] 

<Fth>  

[N] 

FEXP./Fth 

  Exp. Theor.  

0 0.25 4426 4128 1.072 

 0.5 4505 4313 1.045 

 1 4815 4919 0.979 

 2 5516 5914 0.933 

 4 6789 7223 0.940 

30 0.25 4034 3927 1.027 

 0.5 4349 4154 1.047 

 1 4824 4755 1.015 

 2 5916 5707 1.037 

 4 6886 6874 1.002 

45 0.25 3927 3882 1.012 

 0.5 4261 4103 1.038 

 1 4777 4628 1.032 

 2 5603 5474 1.024 

 4 6862 6469 1.061 

60 0.25 3942 4056 0.972 

 0.5 4551 4227 1.077 

 1 4779 4646 1.028 

 2 5455 5288 1.032 

 4 6749 6004 1.124 
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Figure 5.4.6. Comparison between experimental and numerical values of the 

initial crack angle for different notch radii and tilt angle of the notch =45°. 

 

 

Figure 5.4.7. Comparison between experimental and numerical values of the 

initial crack angle for different notch radii and tilt angle of the notch =60°. 
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Table 5.4.2. Comparison between experimental and numerical initial crack angles 

 

 

As discussed in Zheng et al. (2001) and Zacharopoulos (2004), the finite element 

technique can be used to calculate the strain energy density (SED) contours and 

the SED can be used not only to estimate the fracture initiation but also the crack 

propagation inside the material. The predicted trajectory of the crack during stable 

and unstable propagation can be assumed to coincide with the minimum of the 

strain energy density function according to the SED criterion (Sih 1974). This 

simple method has been found to offer a reliable prediction of the crack path 

stability for two as well as three-dimensional problems with complex geometry 

structures and arbitrary loadings. In Zacharopoulos (2004) both Three Point 

Bending (TPB) and Double Cantilever Beam (DCB) specimens have been 

analysed showing a good agreement with a large number of  experimental results 

taken from the literature.  


[degrees] 


[mm] 

 
[degrees] 

 EXP> 

[degrees] 
 
[%] 

  FEM Exp.  

0 0.25 0 0 0 

 0.5 0 0 0 

 1 0 0 0 

 2 0 0 0 

 4 0 0 0 

30 0.25 34.44 30.82 10.5 

 0.5 32.22 35.50 -10.2 

 1 31.11 30.11 3.2 

 2 30.9 28.30 8.4 

 4 30 30.49 -1.6 

45 0.25 47.78 42.45 11.2 

 0.5 46.67 46.39 0.6 

 1 46.67 49.29 -5.6 

 2 46.11 44.15 4.2 

 4 45.28 47.84 -5.7 

60 0.25 56.67 58.23 -2.8 

 0.5 57.78 55.84 3.4 

 1 58.89 60.74 -3.1 

 2 58.89 56.57 3.9 

 4 59.45 58.12 2.2 



 

 150 

The scatter of the critical loads to failure presented here is in good agreement with 

that documented in Lazzarin et al. (2009b) and Berto and Lazzarin (2009) where a 

synthesis based on more than one thousand experimental data taken from the 

recent literature were summarised in terms of SED. Those data came from tests on 

U- and V-notched specimens made of very different materials and subjected to 

Mode I and Mode II loading.  

The proposed scatter band was plotted by using, as a synthesis parameter, the 

square root value of the local energy averaged over the control volume, 

normalised with respect to the critical energy of the material. This parameter was 

plotted as a function of the notch radius to control radius ratio, /Rc. The data 

were characterized by a high variability of the ratio /Rc, which ranged from about 

0 to 1000. The fracture toughness KIC and the ultimate fracture stress ranged from 

0.15 to 55 mMPa  and from 2.5 to 1200 MPa, respectively. The non negligible 

influence of the Poisson’s ratio was also underlined. The materials were 

characterized by a critical radius ranging from 0.4 to 500 m. Data from graphite 

specimens were not included in that synthesis. The new analyses  represent an 

extension of the previous database, with values of Rc close to the minimum and 

the maximum values of the previously considered range. 

A synthesis in terms of the square root value of the local energy averaged over the 

control volume, normalised with respect to the critical energy of the material, as a 

function of the notch tip radius is shown in Figure 5.4.8 while the mean values 

detailed are listed in Table 5.4.3. Together with the new data, the normalised 

scatterband includes also previous results from V-shaped notches (Ayatollahi et 

al. 2011). The plotted parameter is proportional to the fracture load. Figure 5.4.8 

makes it evident that the scatter of the data is quite limited, and independent both 

of the loading mode and the notch root radius. All the values fall well inside a 

band where the square root of the normalised SED ranges from 0.80 to 1.20. The 

synthesis confirms also that the choice of the crescent shape volume surrounding 

the highly stressed region is suitable to characterize the material behaviour under 

mixed mode loading.  
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Figure 5.4.8. Scatterband summarising new data and old data taken from Ref. 

[36] based on an isostatic graphite with an average grain size equal to 320 m and 

lower mechanical properties. 

 

Table 5.4.3. Comparison between experimental and theoretical critical SED. 


[degrees] 


[mm] 

< W > 

[MJ/m
3
] 

cW  

[MJ/m
3
] 

( W ./Wc)
0.5

 

  FEM Theor.  

0 0.25 0.1515 0.1314 1.074 

 0.5 0.1435  1.045 

 1 0.1263  0.98 

 2 0.1146  0.934 

 4 0.1163  0.941 

30 0.25 0.1387 0.1314 1.027 

 0.5 0.1441  1.047 

 1 0.1353  1.015 

 2 0.1412  1.037 

 4 0.132  1.002 

45 0.25 0.1345 0.1314 1.012 

 0.5 0.1418  1.039 

 1 0.1401  1.032 

 2 0.1377  1.024 

 4 0.1479  1.061 

60 0.25 0.1242 0.1314 0.972 

 0.5 0.1524  1.077 

 1 0.139  1.029 

 2 0.1399  1.032 

 4 0.1662  1.124 
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5.5  Conclusions 

Brittle fracture in U-notched isostatic graphite specimens is investigated both 

experimentally and theoretically under in plane mixed mode loading. Fracture 

tests are conducted on U-notched specimens subjected to different degrees of 

mode mixity, which ranges  from pure Mode I to almost pure Mode II. 

The equivalent local Mode I concept is used here in combination with an 

approach based on the mean value of the strain energy density (SED), which 

makes the fracture load assessment independent of the loading angle  The 

isostatic graphite tested here is characterised by very low values of the grain size 

(2 m) and the control volume (RC=0.17 mm). This last value is very different 

from that detected in previous investigations (RC=0.43 mm), where the mean grain 

size of the graphite was more than 300 m. Different with respect to the previous 

studies is also the shape of the notches as well as the stronger variability of the 

notch tip radius, which ranges here from 0.25 mm to 4.0 mm.   

The evaluation of the SED over a control volume rigidly rotated with respect to 

the Mode I case is justified by the analysis of the stress field along the inclined 

path perpendicular to the notch edge and starting from the point of the maximum 

elastic stress. The stress components along that line have been proven to be very 

close to the Mode I stress distributions along the notch bisector line. 

It is shown that the method based on the local SED is suitable for the graphite 

stressed under mixed mode loading conditions, being the experimental loads to 

failure always in good agreement with the values estimated by assuming constant 

the mean value of the SED over the control volume. From the sound agreement 

between the theoretical and experimental results, it can be straightforward 

deduced that for the isostatic graphite the critical energy and the radius of the 

control volume are both material properties, which depend on the grain size. They 

do not depend on the in-plane mixed mode loading and the notch acuity and then 

they can be simply evaluated in pure Mode I loading. The synthesis confirms also 

the choice of a crescent shape volume which seems to be suitable to characterize 

the material behaviour under different mode mixities.  

The experimental angles corresponding to the point of crack initiation are 

compared with the values obtained from the FE analyses on the basis of maximum 
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values of the principal stress and the strain energy density along the notch edge. 

The relative deviation is quite limited, but greater than that that exhibited from the 

critical loads to failure. 

Future work should be planned to show whether, varying the materials, the 

constancy of the control radius under Mode I and Mode II loading remains a 

realistic assumption also in the presence of small scale yielding conditions. 

Another intriguing topic will be the extension of the SED approach to the cases of 

pure compression or combined compression and shear, which should require an 

update of the control radius Rc, due to the increase the critical strain energy 

density Wc with respect to the uniaxial tension case. 
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6 

SED criterion on notched  

specimens under multiaxial cyclic loading   
 

 

6.1 Introduction  

With reference to cracked and notched components a number of multi-axial 

predictive models were proposed in the last years ( Lagoda et al. 1999, Carpinteri 

and Spagnoli 2001, Carpinteri et al. 2009, Ye et al. 2008, Nieslony and Sonsino 

2008), often as variants of the critical plane approach formulated at the end of 

‘80s by Fatemi, Socie and Kurath (Fatemi and Socie 1988, Fatemi and Kurath 

1988). An overview on multiaxial fatigue is due to Fatemi and Shamsaei (2011) 

where some approximated models for fatigue life assessments are applied also in 

the presence of blunt notches. A comparison among different failure criteria, the 

volume-based strain energy density (SED) approach among the others, was 

carried out also by Sonsino and Nieslony (2008) considering a large bulk of 

experimental data from notched specimens. 

Łagoda et al. (1999) suggested a criterion based on a damage parameter defined as 

the sum of the energies associated with the normal and shear strains on the critical 

plane. Calculations based on the critical plane approach for blunt notches with 

low stress concentrations were carried out also by Lazzarin and Susmel (2003). 

The critical plane approach was reviewed and modified by Carpinteri and 

Spagnoli (2001) and Carpinteri et al. (2009), who correlated the critical plane 

orientation with the weighted mean principal stress directions.  

The extension of the critical plane criterion to sharp notches characterized by high 

stress concentrations is far from easy. In this ambit energy-based criteria find 

important applications. A thermodynamic analysis of cyclic plastic deformation 

was carried out by Ye et al. (2008) to establish an energy transition relation for 

describing the elastic–plastic stress and strain behavior of the notch-tip material 
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element in bodies subjected to uni-axial and multiaxial cyclic loads. According to 

the actual energy conversion occurring in the notch-tip material element during 

cyclic plastic deformation, a unified expression for estimating the elastic–plastic 

notch stress–strain responses in bodies subjected to multiaxial cyclic loads was 

developed. Neuber’s rule (1961) and Glinka’s ESED method (Molski and Glinka 

1981, Moftakhar et al. 1995) represent two particular cases of Ye’s formulation.  

Recently seven different multiaxial fatigue criteria based on stress, strain and 

energy have been used to estimate the fatigue lives of double shear lap joint 

specimens of aluminum 2024-T3 with bolt clamped and interference fitted-bolt 

clamped fastener holes (Abazadeh et al. 2013). Another recent contribution 

(Cristofori et al. 2011) has proposed a frequency-domain formulation of a stress 

invariant based on a multiaxial fatigue criterion, called “Projection by Projection” 

(PbP) approach, suitable for estimating the fatigue life in presence of complex 

multiaxial loadings. The newly proposed spectral method has been validated with 

experimental data from the literature, concerning bending-torsion random loading, 

showing a general sound accuracy. 

Dealing more specifically with energy-based approaches, worth mentionning is 

the pioneering work dated 1923 due to Jasper (1923), who used an energy-based 

parameter to analyze fatigue strength under tension–compression loadings. In the 

last years well known are the contributions by Ellyin (1989, 1997) who developed 

an energy based formulation where a combination of both the plastic and elastic 

strain work could be efficiently used as a damage parameter in multiaxial fatigue. 

In a review by Macha and Sonsino (1999) on energy based multiaxial fatigue life 

criteria, it is shown that energy based formulations are good candidates when 

dealing with loadings presenting complex temporal histories.  

In a very recent contribution by Saintier et al. (2013), a fatigue life assessment 

method is proposed for proportional and non-proportional multiaxial variable 

amplitude loadings in the range 10
4
–10

7 
cycles. This method, which is based on 

the non-local energy, takes its origins from a previous contribution by Palin-Luc 

and Lasserre (1998), later extended to multiaxial loading under constant 

amplitude by Banvillet et al. (2003). The new proposal consists of a complete 

reformulation and extension of the previous energy-based fatigue strength 
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criterion. It includes two major extensions with respect to the past: the former is 

represented by a fatigue criterion for multiaxial variable amplitude loadings, the 

latter by an incremental fatigue life assessment method for proportional and non-

proportional multiaxial variable amplitude loadings. The criterion is applicable to 

un-notched components as well as to components with notches with low stress 

concentration effects. The new method has been successfully applied to a variety 

of materials (Saintier et al. 2013).  

Theoretical and experimental difficulties arising in multi-axial fatigue testing and 

in the interpretations of the results were discussed in the past by several 

researchers. Prediction of the branch crack threshold condition under mixed mode 

(I+III) was suggested by Pook and Sharples (1979) through the analysis of the 

main crack tip stress field. Pook (1985) pointed out that it is necessary to 

distinguish between the different thresholds for the initiation of crack growth, 

crack arrest and specimen failure. It was clearly shown by Tong et al. (1986) that 

a definition of a fatigue threshold Kth under poly-modal loading is far from easy 

mainly because under torsion loading an extensive plastic zone is developed at the 

tip of a Mode III crack. The presence of yielding in conjunction with the 

dissipative phenomena due to the possible contact of the crack flanks results in a 

strong influence of the specimen geometry on the test data. The intrinsic and 

extrinsic mechanisms producing shielding effects during fatigue crack 

propagation were classified by Ritchie (1988) whereas near threshold fatigue 

crack propagation was examined by Yu et al. (1998) and by Tanaka et al. (1999). 

The crack propagation rate decreased with crack extension because of the shear 

contact of the crack faces causing an increase in friction, abrasion and 

interlocking. Recently the mechanisms of crack propagation were examined also 

by Pippan et al. (2011) dealing with ductile metallic materials. Particular attention 

is paid to the analysis of the various parameters, the environment, the short cracks,  

the small and large scale yielding conditions. It was underlined the essential role 

played by the crack propagation mechanisms: a methodology developed for a 

certain material and loading case can be applied to other materials under similar 

loading conditions only when the fatigue crack propagation mechanisms are the 

same. 
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A novel mathematical model of the stresses around the tip of a fatigue crack, 

which considers the effects of plasticity through an analysis of their shielding 

effects on the applied elastic field was developed by Christopher et al. (2007). The 

ability of the model to characterize plasticity-induced effects of cyclic loading on 

the elastic stress fields was demonstrated using the full field photoelasticity and 

displacement image correlation technique (Christopher et al. 2008, Colombo et al. 

2010, James et al. 2013b). In parallel the complex initiation of crack growth under 

a combination of opening and anti-plane shearing mode loading was studied by 

Lin et al. (2010) showing that the cracks do not grow through a continuous 

evolution of the crack surface but rather by means of an abrupt fragmentation or 

segmentation of the crack front. 

Worth mentioning are also two recent papers by Tanaka (2012). Circumferentially 

notched bars of austenitic stainless steel, SUS316L, and carbon steel, SGV410, 

with three different notch-tip radii were fatigued under cyclic torsion without and 

with static tension. The main result was that in pure cyclic torsion, the fatigue life 

of circumferentially notched bars of austenitic stainless steel SUS316L was found 

to be longer than that of smooth bars. This effect was found to be longer with 

increasing stress concentration under the same amplitude of the nominal shear 

stress on the net transverse area. The anomalous behavior of the notch-

strengthening effect was ascribed to the larger retardation of fatigue crack 

propagation by crack surface contact for the sharper notches. The superposition of 

static tension on cyclic torsion of SUS316L reduced the retardation due to the 

smaller amount of crack surface contact, which gave rise to the well-known notch-

weakening of the fatigue strength. A ‘notch-strengthening’ effect was found also 

in SGV410 (Tanaka 2012)  under cyclic torsion with and without static tension, as 

well as in a recent work dealing with sharply V-notched specimens made of 

39NiCrMo3 steel (Berto et al. 2011c). Here all data from  multiaxial loads were 

re-analysed in terms of strain energy density (SED) averaged over a control 

volume.  

Dealing with multi-axial fatigue strength data from specimens with mild notches, 

the  deviatoric SED at the notch tip has already been used by Park and Nelson 

(2000) to predict the fatigue behavior under multi-axial stresses. That point-wise 
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approach cannot be applied to sharply notched components due to the high stress 

gradients surrounding the notch tips. With the aim to overcome this problem, a 

volume-based SED approach originally proposed for plane problems in the 

presence of stress singularity due to sharp, zero radius, V-notches and cracks 

(Lazzarin and Zambardi 2001) has been extended to multiaxial fatigue conditions 

(Berto et al. 2011c, Lazzarin et al. 2004-2008b, Atzori et al. 2006, Berto et al. 

2008, Berto and Lazzarin 2011) as well as to the case of quasi-brittle failure of a 

variety of brittle and quasi-brittle materials [ceramics (Lazzarin et al. 2009b), 

graphite (Berto et al. 2012c), PMMA (Berto et al. 2013c)] under static loads. In 

parallel, the link between averaged SED and the notch rounding concept was 

discussed in detail by Radaj et al. (2009a-2009b) with reference to welded joints 

under fatigue loading conditions. 

The averaged SED was used in Atzori et al. (2006) to summarize about 300 

fatigue data from sharply notched axis-symmetric specimens made of a medium 

carbon steel (C40) under combined tension and torsion loadings keeping 

unchanged the control volume. This simplifying assumption was not valid for the 

39NiCrMo3 steel weakened by circumferential quasi-sharp V-notches (Berto et al. 

2011c) due to strong dissipative phenomena provoked in this steel by torsion 

loads even in the high cycle regime. The length of non-propagating cracks 

detected in run-out specimens varied as a function of the loading conditions. Since 

under Mode III loading the control volume radius was strongly influenced by 

extrinsic shielding mechanisms, a single SED-based scatterband was possible only 

adapting the control volume to the loading mode. Moreover, the out-of-phase data 

were excluded from the synthesis, being such data located visibly below the lower 

limit of the scatterband for the 39NiCrMo3 steel. This phenomenon was not 

detected for C40 steel (Atzori et al. 2006). 

The volume-based SED approach was used also in Berto and Lazzarin (2011) 

where fatigue strength properties of 13 series of plain and notched specimens 

made of AISI 416 (at hardened and tempered state) were determined under 

tension, torsion and combined tension and torsion, both in-phase and out-of-

phase. Also for this steel, two distinct radii of the control volume were necessary 

under torsion and tension loading due to presence of strong non-linear effects. The 
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SED was called ‘apparent linear elastic SED’ to remember that the evaluation of 

the strain energy in two different volumes (for tension and torsion) allows us to 

overcome the problem tied to shielding mechanisms maintaining a linear elastic 

model. The fact that under torsion loading plasticity might play an important role 

also when tensile loading induces effects fully contained within the linear elastic 

field is deeply discussed in Lazzarin and Berto (2008). The different inverse slope 

of the fatigue curves under tension and torsion loadings has been motivated by 

means of some elasto-plastic finite element analyses aimed to show the difference 

effect of plasticity under the above mentioned loading conditions. An extensive 

review of the volume-based SED approach was presented in Berto and Lazzarin 

(2009). 

 

6.2  Aims of the work 

The present work deals with multiaxial fatigue strength of 40CrMoV13.9. The 

tested material is characterized by four different heat treatments able to assure a 

high strength at room and elevate temperatures. The most important applications 

are cold or hot rolling of magnesium and aluminium alloys. The service 

conditions are usually characterized  by a complex stress state combined with 

aggressive in-service conditions. The 40CrMoV13.9 steel combines very good 

static and fatigue properties with an excellent wear resistance, also at high 

temperature and in corrosive environments. At the best of author’s knowledge, a 

complete set of data from notch specimens under torsion and combined tension 

and torsion loadings are not available in the literature for 40CrMoV13.9 whereas 

other Cr steels have been widely investigated (see, among the others, Nian et al. 

1984, Bai-ping et al. 1987, Bai-ping and Nian 1989, Nian and Bai-ping 1995, 

Terres et al. 2012, Terres and Sidhom 2012). In particular, the effect on 

microstructure and fatigue threshold of pure tension fatigue at a stress level below 

the fatigue limit and high cycle regime has been studied in Nian et al. (1984), Bai-

ping et al. (1987), Bai-ping and Nian (1989), Nian and Bai-ping (1995). Those 

works considered a 12Cr steel and a 40Cr steel under different heat treatments. 

The effects of nitriding and shot-peening treatments on the tensile fatigue 

behavior of 42CrMo4 steel have been investigated in Terres et al. (2012) and 
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Terres and Sidhom (2012) considering notches of different acuity. The 

phenomenon of fatigue is critical in many sectors, not only dealing with structural 

steels (Li et al. 2013). It is a common task for engineers engaged in fatigue 

problems to search suitable solutions for improving the life of the components 

both acting on the material (see, for example, Bagherifard et al. 2013) and on the 

geometry of the components. 

The absence of data from 40CrMoV13.9 steel under multiaxial fatigue loading has 

motivated the present work. Circumferential V-notched and semicircular notched 

specimens have been tested under combined tension and torsion loading, both in-

phase and out-of-phase. The results of one-year experimental programme consists 

of 10 new fatigue curves corresponding to more than 120 fatigue data.  

The behaviour at medium and high cycle fatigue is found to be within the elastic 

regime without any particular non-linear elastic effect. The approach based on the 

strain energy density averaged on a control volume will be employed to 

summarise all the data in a single scatterband. A single value of the control 

volume, evaluated accordingly to the threshold stress intensity range reported in 

Nian et al. (1984), Bai-ping et al. (1987), Bai-ping and Nian (1989) for 40Cr 

steels characterized by similar heat treatments, will be used in the synthesis, 

independent of the loading mode. 

The chapter is structured in the following way: in the first section, the 

experimental work is described including specimen geometries, testing procedures 

and experimental results. The second section is focused on the discussion of the 

new experimental results as well as it is aimed to present the synthesis of all data 

in terms of averaged SED. 

 

6.3  Material properties and specimens geometry 

Static tensile tests were carried out to evaluate the elastic and the strength 

properties of 40CrMoV13.9 steel, see Table 6.3.1. The chemical composition of 

the material is reported in Table 6.3.2. The heat treatment schedules that 

characterize the tested material are shown in Table 6.3.3. The material was first 

quenched at 920°C and subsequently tempered at about 580°C twice. A final 
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stress relieving treatment at 570°C was carried out. The final microstructure was 

characterized by a high strength bainitic martensitic structure.  

The geometries of the specimens tested in the present investigation are shown in 

Figure 6.3.1.  The axis-symmetric V-notched specimens were characterized by a 

depth d = 4 mm, and an opening angle equal to 90°. Constant was also the notch 

root radius, 1 mm. The semicircular specimens presented instead a notch root 

radius of 4 mm (Figure 6.3.1b). 

 

d = 4 mm =1.0 mm 

20 

90° 

d = 4 mm =4.0 mm 

20 

 
(a) 

 

 
(b) 

Figure 6.3.1. Geometry of V-notches and semicircular notches (a) and details of 

the notch tip (b) 

 

All tests were performed under load control on a MTS 809 servo-hydraulic bi-

axial testing device (±100 kN, ± 1100 Nm, ± 75mm/± 55°). The load was 

measured by a MTS cell with ± 0.5 % error at full scale. The specimens were 

tested under pure tension, pure torsion and multiaxial tension-torsion loading with 

different biaxiality ratios (aa=0.6 and 1.0). In particular, 10 series of fatigue 

test were conducted, according to the following subdivision: 
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 Two series of tests on notched specimens (V and semicircular notches) under 

pure torsion fatigue loading (nominal load ratio R=-1);  

 One series of tests on V-notched specimens under pure tension fatigue loading 

(R=-1). 

 Two series of tests on V-notched specimens under combined tension-torsion 

fatigue loading, with biaxiality ratio , load ratio R=-1, load phase angle 

=0° and =90°; 

 Two series of tests on V-notched specimens under combined tension-torsion 

fatigue loading, under constant biaxiality ratio , load ratio R=-1, load 

phase angle =0° and =90°; 

 Two series of tests on semicircular specimens under combined tension-torsion 

fatigue loading, with biaxiality ratio , load ratio R=-1, load phase angle 

=0° and =90°; 

 One series of tests on semicircular specimens under combined tension-torsion 

fatigue loading, with biaxiality ratio , load ratio R=-1, load phase angle 

=0°. 

Table 6.3.1. Mechanical properties of 40CrMoV13.9. 

Ultimate tensile 

strength (MPa) 

Yield stress 

(MPa) 

Elongation to 

fracture (%) 

Brinell Hardness 

1355 1127 15.2 393-415 

 

Table 6.3.2. Chemical composition wt.%, balance Fe. 

 

 

 

 

Table 6.3.3. Heat treatment schedules 

 

C Mn Si S P Cr Ni Mo V Al W 

0.38 0.5 0.27 0.006 0.003 3.05 0.24 1.04 0.24 0.013 0.005 

 Heat treatment Heating ratio Temperature Holding Cooling 

  (°C/h) (°C) (hours)  

1 Quenching 100 920° ± 10° 3 water 

2 Tempering 1 100 580° ± 10° 5 air 

3 Tempering 2 100 590° ± 10° 5 air 

4 Stress relieving 100 570° ± 10° 3 air 
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6.4 Results from fatigue tests 

Before being tested, all specimens have been polished in order to both eliminate 

surface scratches or machining marks and to make the observation of the fatigue 

crack path easier. As stated above, fatigue tests have been carried out on a MTS 

809 servo-hydraulic biaxial machine with a 100 kN axial load cell and a torsion 

load cell of 1100 Nm. All tests have been performed under load control, with a 

frequency ranging from 1 to 10 Hz, as a function of the geometry and load level. 

At the end of the fatigue tests, the notch root and the fracture surfaces were 

examined using optical and electronic microscopy.  

The results of statistical analyses carried out by assuming a log-normal 

distribution are summarised in Table 6.4.1. In particular, it is summarised the 

mean value of the nominal stress amplitudes at different number of cycles, the 

inverse slope k of the Wöhler curves and the scatter index T, which gives the 

width of the scatterband related to 10 - 90% probabilities of survival. All failures 

from 10
4
 to 5x10

6
 have been processed in the statistical analysis whereas run-outs 

were excluded. 

Figure 6.4.1 depicts fatigue data from V-notched specimens tested under tension, 

torsion and combined tension and torsion with different load phases (0° and 90°). 

In this case the biaxiality ratio was equal to 1. It is evident from the figure that the 

out of phase loading causes a slight but visible detrimental effect on the fatigue 

life of the V-notched specimens, almost independent of the number of cycles.  

Figure 6.4.2 summarizes fatigue data from V-notched specimens tested under 

multiaxial fatigue at a biaxiality ratio =0.6, both in-phase and out-of-phase. The 

two mean curves are compared with the curve from pure tension.  It is possible to 

observe that multiaxial loading decreases the fatigue life with respect to the tensile 

loading. Also for =0.6 the out-of-phase loading is more damaging. 
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Table 6.4.1. Results from fatigue tests. Ps=50%. Stresses referred to the net area. 

 

 
Figure 6.4.1. Data from V-notches under pure tension, torsion and multiaxial 

loading (=1) 

Series Load N  k 
Tσ or 

Tτ 
σa or τa 

      10
6 2 10

6 5 10
6 

1 Torsion R= -1 16 τ 13.33 1.144 281.16 266.91 249.18 

2 
Multiaxial R=-1, =0°, 

=1.0 
14 σ 9.39 1.176 182.6 169.91 153.84 

3 
Multiaxial R=-1, =90°, 

=1.0 
13 σ 7.67 1.428 145.83 133.23 118.23 

4 Tension R= -1 12 σ 8.42 1.335 253.69 233.64 209.55 

5 
Multiaxial R=-1, =0°, 

=0.6 
12 

σ 
9.9 1.202 

214.61 200.10 182.41 

τ 128.77 120.06 109.45 

6 
Multiaxial R=-1, =90°, 

=0.6 
13 

σ 
7.63 1.485 

187.45 171.17 151.8 

τ 112.47 102.7 91.08 

7 Torsion R= -1 Semicircular 11 τ 14.27 1.160 367.17 349.76 328.01 

8 

Multiaxial R=-1, =0°, 

=1.0 

Semicircular 

15 σ 7.68 1.268 239.57 218.9 194.28 

9 

Multiaxial R=-1, =90°, 

=1.0 

Semicircular 

17 σ 10.79 1.260 263.82 247.4 227.26 

10 

Multiaxial R=-1, =0°, 

=0.6 

Semicircular 

12 

σ 

11.45 1.307 

332.64 313.10 289.02 

τ 199.58 187.86 173.41 
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Figure 6.4.2. Data from V-notches under multiaxial loading (=0.6): comparison 

with pure tension 

 

Figure 6.4.3 reports the fatigue curves related to semicircular notches. In 

particular it summarises the curves from pure torsion, multiaxial loading with =1 

(in phase and out-of-phase) and multiaxial loading with =0.6 (only in phase). In 

this case it is interesting to observe that for this particular notch radius and 

specimen geometry the out-of-phase loading is slightly beneficial with respect to 

in-phase loading at high cycle regime while the fatigue strength is the same at low 

cycle regime. This means that the non-proportional loading effect may be different 

not only for different materials but also for the same material by moving from a 

sharply notched specimen to a specimen with a large notch root radius.  

A distinction between sharp and blunt notches has been drawn in Atzori-

Lazzarin’s  diagram (Atzori et al. 2003) mainly on the basis of the product of the 

squared stress concentration factor and a characteristic length of the material, 

eventually modified by a shape factor. Notch sensitivity and defect sensitivity 

were seen as two sides of the same medal. The local SED allows a natural 

transition between the fatigue strength of the parent material and that of the 

notched components (Lazzarin and Berto 2005b), independent on the notch acuity, 

keeping constant Rc.  
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Figure 6.4.3. Data from semicircular notches under pure torsion and multiaxial 

loading (=0.6 and 1) 

 

6.5  Fracture surfaces of V-notches  

 

The failure surface of a V-notched specimen broken after 970000 cycles under 

torsion is shown in Figure 6.5.1a.  The outer diameter of the fracture surface is 

largely flat, suggesting a Mode III fracture mechanism.  The classical Mode I 

‘factory roof’ morphology is also evident in large areas of the centre of the 

fracture surface together with evidence of abrasion mainly on the bottom hand 

side of the image. 

Figure 6.5.1b shows the image of a specimen broken at 83000 cycles under 

tension loading. The surface is flat, some small signs of abrasion are present and it 

is well distinguishable the zone corresponding to the final static failure which 

generally tends to decrease in size at high cycle regime. 

Generally for V-notches, in presence of torsion loading, the crack nucleated at 

30% of the fatigue life and all the rest of the life was spent in crack propagation. 

Under pure tension approximately 80% of the fatigue life was spent in crack 

nucleation and only the final part of the life was spent in crack propagation. By 

avoiding to interrupt the tests, the presence of the crack was detected by means of 
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an optical microscope used to monitor the notch tip state during the fatigue life of 

the specimen. Generally a limited but distinguishable quantity of debris and 

powder was emanated from the notch tip when a visible crack was detected and 

started to propagate significantly.  

    
Pure torsion, N=970000, a=280 MPa  

 

    
 

Pure tension, N=84000, a=340 MPa 

 

 

Figure 6.5.1. Fracture surfaces from V-notched specimens under pure torsion (a) 

and pure tension (b) 

 

Fatigue damage is generally described as the nucleation and growth of cracks to 

final failure, although the differentiation of two stages is “qualitatively 

distinguishable but quantitatively ambiguous”, as underlined by Jiang and Feng 

(2004). No demarcation line being drawn between fatigue crack initiation and 

early micro-crack propagation inside the control volume, both phases are thought 

of as strictly dependent on the averaged SED initially present on the uncracked 
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specimens.   

Fracture surfaces of some specimens tested under multiaxial conditions are shown 

in Figure 6.5.2a and 6.5.2b.  All the specimens were from tests at the same phase 

angle, =0, and at the same bi-axiality ratios: =1. A general comment on the two 

figures is the presence of the ‘factory roof’ morphology extending from the initial 

notch root. This changes to a single, inclined fracture surface as one of the Mode I 

crack becomes dominant.  The detail differences between the in-phase and out-

phase loading cases are discussed below. 

   
 

Multiaxial fatigue, N=456750, a=220 MPa,=1, =0° 

 

      
 Multiaxial fatigue, N=151000, a=220 MPa,=1, =0° 

 

 

Figure 6.5.2. Fracture surfaces from V-notched specimens under in-phase 

multiaxial loading 
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By considering in-phase loading cases shown in figure 6.5.2, some observations 

can be made: 

 At medium-high cycle regime, few cracks nucleate, and the crack 

propagation phase takes a significant fraction of the fatigue life of the 

specimen. Under low-cycle fatigue, the number of initiated cracks 

generally increases, and the propagation phase is much reduced (see 

Figure 6.5.3); 

 The inclination of the planes of crack propagation is less than the 45 that 

occurs under pure torsional loading. This is due to the change in the angle 

of the opening displacements from 45 to 0 as the level of axial load 

increases; 

 The irregular surface corresponding to the final static failure is not 

perpendicular with the specimen axis, indicating a non-uniform crack 

propagation front from the outside toward the centre of the specimen; 

 

The fracture surface morphology of specimens tested was strongly influenced by 

the phase angle. Signs of micro abrasions may be observed on all fracture surfaces 

and the extent to which the rubbing occurred appears to depend on phase angle. 

Most visible abrasion appears to occur at =0.6 or =1 and =90° resulting in a 

smooth featureless fracture topography. Small spherical oxide debris, evidence of 

wear, can be observed in the scanning electron micrographs (see Figure 6.5.4a and 

6.5.4b). 

 
 

Figure 6.5.3. Fracture surfaces from V-notched specimens under multiaxial 

fatigue: =0.6 and =0° 
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Multiaxial, N=94698 , a=280 MPa, =0.6, =90° 

 

   
 

Multiaxial, N=27500 , a=260 MPa, =1, =90° 

 

Figure 6.5.4. Fracture surfaces from V-notched specimens under multiaxial 

fatigue: =0.6 and =90° (a), =1 and =90° (b) 

 

The main features were as follows: 

 

 The fracture surfaces are generally flatter than those from in-phase tests.  

This may be due to the increased abrasion observed in these tests. 

 In the zone of crack initiation micro abrasions due to the interference 

between the mating surfaces are well visible.  During the tests, in fact, the 

two surfaces of the cracks slightly scrape each other. 
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6.6 Fracture surfaces of semicircular notches  

 

Semicircular notches were characterized by different fracture surfaces with 

respect to V-notches. For this kind of notches the main part of the fatigue life was 

spent in the crack initiation and only a small part, approximately equal to 10%, 

was spent in the crack propagation with visible debris emanated by the notch tip. 

Some differences were observed under in-phase and out-of-phase loading. Figure 

6.6.1a-b show the final crack propagating at notch tip under in-phase and out-of-

phase loading: under in-phase loading the crack branching is visible while it is 

absent under out-of-phase loading. This effect does not influence substantially the 

fracture surfaces which generally do not present clear planes of crack propagation 

(see Figure 6.6.2a-b). They appear only slightly more flat under out-of-phase 

loading (see Figure 6.6.2b). 

 

 

   
 

Figure 6.6.1. Typical crack propagating from a semicircular notch under 

multiaxial loading under in phase and out-of-phase loading 
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Figure 6.6.2. Typical fracture surface from a semicircular notch under multiaxial 

loading: in phase (a) and out-of-phase (b) 

 

 

6.7  A synthesis in terms of linear elastic SED averaged over a 

control volume 

 

The averaged strain energy density criterion (SED) states that brittle failure occurs 

when the mean value of the strain energy density over a given control volume is 

equal to a critical value Wc.  

This critical value varies from material to material but does not depend on the 

notch geometry and sharpness and the criterion can be applied to sharp notches 

(also with = 0) as well as to blunt notches. In Beltrami’s original formulation Wc 

does not depend on the loading mode.  
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In the particular case of 40CrMoV13.9 steel the radius of the control volume Rc 

has been estimated here by using the fatigue properties of a quenched and 

tempered 40Cr steel reported in Nian et al. (1984), Bai-ping et al. (1987), Bai-

ping and Nian (1989) which presented a chemical composition, a static strength 

analogous to those of the material considered herein. Also the heat treatments 

were almost coincident. In particular the threshold value of stress intensity factor 

range (Kth = 6 mMPa  at R=0) from pure tension fatigue and the fatigue limit 

range of plain material, A at R=0 (430 MPa), taken from Nian et al. (1984) 

have been used. Moreover in Nian et al. (1984) the trend of the threshold stress 

intensity factor and of the ultimate tensile strength is plotted as a function of the 

tempering treatment temperature. For tempering temperature higher than 500°C, 

Kth reaches almost a plateau value equal to 6 MPa m
0.5

.  

A convenient expression for the critical radius is as follows (Berto et al. 2011c, 

Lazzarin et al. 2008b): 

 

2
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R
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


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
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






                                                                  (6.7.1) 

 

where e1 is equal 0.1345 (Park and Nelson 2000). By using Eq. (6.7.1) in 

combination with the material properties reported above, the estimated control 

radius is equal to 0.05 mm. A characteristic length equal to about 0.05 was found 

by Li Nian et al. (1984) for the 12CrNi3 steel, characterized by a tempering 

temperature equal to 600° and by a threshold stress intensity factor range equal to 

6.4 MPam
0.5

. 

Dealing with V-shaped notches the control volume is as shown in Figure 6.7.1a; 

the volume assumes a crescent shape and it is centred at the distance r0 from the 

notch tip. The distance r0 depends on the notch radius,  and the notch opening 

angle, 2 according to the simple Eqs (6.7.2, 6.7.3) (Lazzarin et al. 2008b) 

derived from Neuber’s conformal mapping: 

 






22
q             (6.7.2) 
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



q

1q
r0             (6.7.3) 

 

For semicircular notches under Mode I and III loadings, the volume assumes the 

crescent shape shown in Fig. 6.7.1b, where Rc is the depth measured along the 

notch bisector line. The outer radius of the crescent shape is equal to Rc+/2, 

being /2 the distance between the notch tip and the origin of the local coordinate 

system. 

 

Rc+r0 



Rc 

r0 

(a) 

2

 

Rc 

/2 



(b) 

Figure 6.7.1. Critical volume for V-shaped notches(a) and semicircular 

notches(b) 

 

The value of the SED averaged over the control volume has been calculated 

numerically by using the FE code ANSYS 12.0


 both for V-notches and 

semicircular notches.  

Being in this case the nominal load ratio constant and equal to R=-1 the synthesis 

based on the SED has been carried out directly with the values obtained by the 

numerical simulations. Without entering in the details, it is worth mentioning that 

the effect of different nominal load ratios can be quantified by introducing the 

parameter cw, as made in previous works (Lazzarin et al. 2004, Atzori et al. 2006, 

Lazzarin et al. 2008b). As applied here the averaged SED approach is not 

sensitive to the variation of the phase angle. To fully take into account the effect 

of the out-of-phase loading, which varies from material to material, the radius of 
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the control volume should be updated by using a specific information from 

cracked or sharply V-notched specimens tested under out-of-plane loading 

conditions. Two parameters are not sufficient, a third parameter is necessary. 

Figure 6.7.2 shows the final synthesis based on the averaged SED. Since all data 

come from specimens tested under the same nominal load ratio, R=-1, the 

coefficient cw=0.5 is not introduced herein (Berto et al. 2011c, Lazzarin et al. 

2004, Atzori et al. 2006, Lazzarin et al. 2008b). cw should be taken into account 

when the comparison would involve different steels tested under different nominal 

load ratios. 

 

Figure 6.7.2. Synthesis by means of local SED of multiaxial series data 

 

The scatter index TW, related to the two curves with probabilities of survival PS= 

10% and 90%, is 1.96, to be compared with the variation of the strain energy 

density range, from about 2.5 to about 0.75 MJ/m
3
. TW=1.96 becomes equal to 

1.40 when reconverted to an equivalent local stress range with probabilities of 

survival Ps=10% and 90%. The inverse slope of the scatterband is equal to 5.0.  

At the light of the present results and application of the SED criterion it is clear 

that a single value of the control volume, independent of the loading modes, is 

sufficient to characterize the multiaxial fatigue behavior of 40CrMoV13.9 steel. 
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This result was not known a priori and usually depends on the tested material. In 

some previous works it has been shown that different phenomena can influence 

the size of the control volume under different loading modes (Berto et al. 2011c, 

Berto and Lazzarin 2011). These effects have been recently investigated also in 

Tanaka (2012) dealing with notched bars of austenitic stainless steel, SUS316L, 

and carbon steel, SGV410, with three different notch-tip radii. It has been shown 

that, under torsion loading, the fatigue life of circumferentially notched bars of 

austenitic stainless steel SUS316L is longer than that of smooth bars. This effect 

has been found to be longer with increasing stress concentration under the same 

amplitude of the nominal shear stress on the net transverse area. The anomalous 

behavior of the notch-strengthening effect was ascribed to the larger retardation of 

fatigue crack propagation by crack surface contact for the sharper notches. In fact, 

strong dissipative phenomena and extrinsic shielding mechanisms may be present 

in some steels under torsion loading also in the high cycle regime (Berto et al. 

2011c). Moreover, it plays a fundamental role the fact that under torsion loading 

plasticity might be induced also when tensile loading induces effects fully 

contained within the linear elastic field (Lazzarin and Berto 2008). All these 

combined effects can influence the fatigue life under multiaxial loading and, in 

some cases, these dissipative phenomena are not easy to be clearly distinguished. 

In the present investigation, as also found in Atzori et al. (2006) dealing with C40 

steel notched specimens, plasticity and shielding effects are very limited and play 

only a secondary role on the fatigue crack nucleation and propagation in the 

medium and high cycle fatigue regime. The absence of non linear effects 

combined with the high notch sensitivity of the present steel allows us to use a 

single control volume independent of the loading modes. Due to the high strength 

of the tested steel the size of the volume has been found to be very limited (0.05 

mm). The synthesis by means of SED has confirmed the choice of the control 

volume being the obtained scatterband very narrow if compared with those 

obtained in previous works (Berto et al. 2011c, Berto and Lazzarin 2011, Lazzarin 

and Berto 2008). By comparing Figure 6.7.2 with Figures 6.4.1-6.4.3, based on 

nominal stresses at the net area, it is evident the unifying capacity of the SED 
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which is able to summarize all the data in a single scatterband independent of the 

loading mode and notch geometry. 

 

6.8  Conclusions  

A large bulk of results from multiaxial tests from V-notched and semicircular 

notched specimens made of 40CrMoV13.9 steel are discussed together with those 

obtained under pure tension and pure torsion loading from notched specimens 

with the same geometry. Altogether more than 120 new fatigue data (10 fatigue 

curves) are summarised in the present work. 

All fatigue data are presented first in terms of nominal stress amplitudes and then 

re-analysed in terms of the mean value of the strain energy density evaluated over 

a finite size semicircular sector surrounding the tip of the notch. The synthesis 

permits to obtain a very narrow band characterised by a scatter index equal to 

1.96. The synthesis has been carried out with a constant value of the control 

radius, RC, independent of the loading conditions. 
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7 

The influence of the phase angle  

on multiaxial fatigue of sharp V-notches  
 

 

7.1  Introduction  

Several criteria have been proposed in order to assess the behaviour of un-notched 

or largely blunted components subjected to multi-axial fatigue. It is well known 

that this type of loading condition induces the formation of surface cracks that 

usually nucleate on the plane characterized by the maximum shear.  

After the pioneering works by Ewing and Humfrey (1903) and Forsyth (1961) 

many criteria have been developed with the aim of considering the components of 

stresses and strains acting on the plane experiencing the maximum shear. The so 

called "critical plane approaches" gave different damage parameters based on the 

components of stress/strain considered as critical on the maximum shear plane. 

Brown and Miller (1973) considered both the shear and the normal strain acting 

on the critical plane. Fatemi and Socie (1988) took in consideration the shear 

strain and the stress acting normal to the crack flanks. Smith et al. (1970) 

predicted that the critical plane is the plane where the maximum tensile stress acts. 

The critical plane approach has recently been reviewed and modified by 

Carpinteri and Spagnoli (2001), who have correlated the critical plane orientation 

with the weighted mean principal stress directions. Accordingly, the fatigue 

failure assessment is performed by considering a nonlinear combination of the 

maximum normal stress and the shear stress amplitude acting on the critical plane.  

Some energy based criteria have been also developed to face the problem of 

multi-axial loadings. The common denominator of these approaches is to consider 

a critical parameter based on the strain energy density evaluated on the critical 

plane. Among the others it is worth mentioning the contributions by Liu (1993), 

Chu et al. (1995a), Glinka et al. (1995) and Jiang (2000). 
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Liu (1993) considered two different energy failure modes and the collapse of the 

component was expected on the plane where the maximum virtual strain energy 

was reached. Chu et al. (1995a) used a similar approach in order to relate the work 

of shear and normal components of stress/strain. Glinka et al. (1995) modified 

Chu's criterion in order to better consider the effect of the mean stress in the case 

of non proportional loading. Jiang (2000) developed another multi-axial fatigue 

approach based on the cyclic plasticity and the plastic strain energy concept. A 

wide review of the main multi-axial fatigue criteria is carried out in Socie and 

Marquis (2000) and Susmel (2009). 

Dealing with multi-axial fatigue of un-notched specimens or largely blunted 

specimens, some papers are available in the recent literature confirming the actual 

interest of the scientific community on this topic. Among the others the reader can 

refer to (Hertel and Vormwald 2011, Doring et al. 2006, Reis et al. 2009) and 

references therein. 

In particular Hertel and Vormwald (2011) and Doring et al. (2006) determined the 

fatigue lives of tubular and round shafts with blunt shoulder fillets (notch tip 

radius equal to 1.4 mm) under combined tension/compression and torsion. A short 

crack model originally proposed for multi-axial constant amplitude loading is 

extended and applied to multi-axial variable amplitude loading. The comparison 

between theoretical assessment and experimental results reveals that the proposed 

approach enables an accurate estimation.  

In Reis et al. (2009) the effects of multi-axial loading paths on the cyclic 

deformation behaviour, crack initiation and crack path have been investigated 

considering three types of structural steels (Ck45, medium carbon steel, 

42CrMo4, low alloy steel and the AISI 303 stainless steel) and plain specimens. 

Theoretical predictions of the damage plane were conducted using some critical 

plane approaches, based on stress analysis or strain analysis (Findley, Smith–

Watson–Topper, Fatemi–Socie, Wang–Brown–Miller, etc). Comparisons of the 

predicted crack orientation based on the critical plane approaches with the 

experimental observations were shown and discussed. Results showed the 

applicability of the critical plane approaches to predict the fatigue life and crack 

initial orientation in structural steels. 
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While the application of critical plane approaches to plain specimens is quite 

diffuse, data from pointed V-notches and application of suitable criteria for 

fatigue assessment is very limited and nowadays debated among researchers in the 

field (Capetta et al. 2011, Berto et al. 2011c, Atzori et al. 2006, Li et al. 2011, 

Susmel and Taylor 2012, Berto and Lazzarin 2011). Some of the just mentioned 

criteria have been extended to welded joints under multi-axial loading (Susmel 

2010, Lazzarin et al.2004). One of the more intriguing problems dealing with 

sharp notches is how to take into account the effect of the phase angle in the 

fracture assessment. The problem is very complex because the sensitivity of the 

material to the phase angle varies from case to case. As well discussed and shown 

in Reis et al. (2009) the effect of out-of-phase is generally negative on the fatigue 

life. 

The degree of penalization due to the phase angle can be partially explained by 

considering linear elastic hypothesis and the stress field acting near the notch tip 

but it is also influenced by the microstructural properties of the material and by 

the shielding effects occurring during crack propagation which are different under 

proportional and non-proportional loading. Ritchie (1988) schematically classified 

shielding effects in two classes of mechanisms involved in the material threshold 

behaviour. The intrinsic mechanisms determine the inherent resistance of the 

material against fatigue crack propagation while a second class, the extrinsic 

mechanisms are the cause of local reduction in the crack driving force at the crack 

tip and for this reason they are called shielding mechanisms. Among the others the 

most important extrinsic mechanisms are geometrical shielding (crack deflection 

and crack branching), contact shielding (plasticity, corrosion, roughness, debris) 

and zone shielding (micro-cracks and mismatch of different phases). 

Keeping account the shielding effects, Tanaka et al. (1999) derived an elliptic 

equation for the threshold condition under mixed modes I and III and also an 

equation to express the threshold condition for the initiation of crack growth from 

an initial circumferential crack. 

More recently, a novel mathematical model of the stresses around the tip of a 

fatigue crack, which includes the T-stress and considers the effects of plasticity 

through an analysis of their shielding effects on the applied elastic field, was 
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developed by Christopher et al. (2007-2008). The ability of the CJP model to 

characterize plasticity-induced effects of cyclic loading and on the elastic stress 

fields was demonstrated using full field photoelasticity. The effects due to 

overloads have been also discussed in (Colombo et al. 2010, Colombo and 

Vergani 2010). The variability of the stress intensity factor ahead of the crack tip 

is shown in Colombo and Vergani (2010) on the basis of nonlinear FE models. 

The CJP model can be seen as a modified linear elastic approach, to be applied 

outside the zone where nonlinear effects are prevailing. Two logarithmic terms are 

added to the Williams’ solution and three new stress intensity factors KF, KR and 

KS are proposed to quantify shielding effects ahead of the crack tip and on its 

back.  

Being conscious of the problems related to shielding effects, which are material 

dependent, the main aim of the present chapter is to provide a possible 

explanation of the fatigue life reduction in sharply V-notched components due to 

phase angle by simply considering a linear elastic model.  

The proposed approach is based on the local maximum shear stress averaged over 

a single fatigue cycle evaluated at a certain distance from the notch tip. The 

model, which is based on Cardano’s analytical formulation (Cardano 1545), is 

able to take into account not only the effect of the phase angle but also the effect 

of the nominal load ratio and the biaxiality ratio. The analogy of the present 

model with the critical plane approach is only the consideration of a shear stress 

as a critical parameter. On the other hand substantial differences exist between the 

present approach and those based on critical planes. The main difference with the 

critical plane approach is that in the present work, due to the fact that sharp 

notches are considered, the critical point is not known a priori and its 

determination is based on the maximization of the critical parameter.  

By applying the proposed model to different loading configurations some 

interesting observations can be drawn.  

 

7.2  Analytical frame  

The aim of the present work is to analyze the effect of the phase angle on axis-

symmetric sharp V-notched components subjected to multi-axial loading. A 
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schematic representation of a typical circumferentially V-notched specimen is 

shown in Figure 7.2.1a. Only the notch opening angle 2=90° is considered in 

order to focus the attention on the effect induced by the phase angle on the 

strength of the component varying the applied loads. However, the analytical 

frame presented in the next sessions is applicable to a generic notch opening angle 

and not only to that considered herein. 

The polar coordinate system shown in Figure 7.2.1b is used to express the stress 

field near the notch tip. The origin is centered on the notch tip. The coordinate r 

denotes the radial coordinate while  is the angle between a particular point and 

the notch bisector line.  
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Figure 7.2.1. Component weakened by a sharp V-shaped notch subjected to 

multi-axial loading conditions (a). The centre of the polar coordinate system is 

located at the V-notch tip (b). 

 

As it is well known the presence of a sharp V-notch and the application of a multi-

axial loading induce a complex state of stress in the vicinity of the notch tip. The 

stress field can be described by using the following expressions dealing with 

Mode I and Mode II loadings (Williams 1952, Lazzarin and Tovo 1996): 
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               (7.2.3) 

The last out-of-plane component of the stress field can be written by assuming 

plane strain conditions. This approximation is generally well aligned with the real 

stress field near the notch tip in the case of axis-symmetric components. 

 

  rrzz            (7.2.4) 

 

In the presence of a sharp V-notch, the remaining two tangential components of 

stress can be written in the following form as suggested in Dunn et al. (1997), 

Qian and Hasebe (1997), Seweryn and Molski (1996). 
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Parameters N
1K ,  N

2K  and N

3K  are the Notch Stress Intensity Factors (N-SIFs) 

related to Mode I, Mode II and Mode III stress distributions respectively, 1 and 

2 are Williams’ eigenvalues (Williams 1952), 3 is the Mode III eigenvalue 

(Dunn et al. 1997, Qian and Hasebe 1997, Seweryn and Molski 1996) and, finally, 

1 and 2 are parameters which depend on the opening angle. 

In the case of an opening angle of the notch equal to 90° the eigenvalues are 

0.5445, 0.9085 and 0.6667  for Mode I, Mode II and Mode III respectively, while 

1 is equal to 1.841 and 2 to 0.219. 

In order to better describe the behaviour of every singular component of stress 

during the cyclic loading, the notch stress intensity factors can be re-written as 

follows: 
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N

1 SkK                (7.2.7)  

NOM2

N

2 SkK             (7.2.8) 

NOM3

N

3 TkK             (7.2.9) 

 

Where k1, k2 and k3 are the unitary N-SIFs normalised by the applied stress and 

are obtained by means of a finite element analysis. Considering a multi-axial 

tension-torsion loading, k2 can be set equal to zero. The values of k1 and k3 has 

been found equal to 5.4 and 5.88 respectively. Snom and Tnom are the nominal 

tension and nominal torsion applied to the specimen. They can be written as 

follows: 
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Sa and Ta are the nominal stress amplitude tied to the applied loads,  is the 

machine angle that varies between 0° and 360° in order to complete one cyclic 

loading, R is the load ratio and  is the phase angle. 

As written above, dealing with multi-axial problems on notched and un-notched 

components, many contributions in the literature are focused on the determination 

of the critical plane of maximum shear. In this work the aim is not to search a 

particular plane, but a particular point where the maximum shear stress averaged 

over one cycle of fatigue loading acts.  

To find out the critical point just mentioned, the Mohr's theory has to be used in 

order to obtain the values of the three principal stresses acting during the cyclic 

loading. Only when the principal stresses are known the critical maximum shear 

stress can be derived. 

By substituting Eqs. (7.2.7-7.2.9) into Eqs. (7.2.1-7.2.6) the trend of each stress 

component in a fatigue cycle can be obtained. All the components vary with the 

distance from the notch tip (r), the machine angle (), the polar coordinate () and 

the phase angle (). Parameter r can be set equal to a material characteristic 

length. Lazzarin and Zambardi (2001) formalized a criterion on which the strain 

energy density was averaged over a circular control volume centered at the notch 

tip, later widely employed to assess the fracture and fatigue behaviour of notched 

components and welded joints (Berto and Lazzarin 2009-2013, Lazzarin et al. 

2013b). The radius of the critical control volume in the case of welded steel has 

been found to be equal to 0.28 mm. The same value is used here for applying the 

proposed criterion. The phase angle is also set as a constant value and is updated 

in each analysis. 

All the stress components acting on a particular point at a distance equal to r=0.28 

mm from the notch tip and induced by two different loads characterized by a 

precise phase angle vary as a function of the machine angle  and the polar 

coordinate . 

The stress tensor at a particular point "P" can be written as follows: 
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In order to avoid numerical problems related to the evaluation of the principal 

stresses and with the aim to write a dedicate software able to calculate all the 

required stress components, Cardano's formulation for the resolution of cubic 

equations has been implemented. 

The well known cubic equation that has to be solved in order to obtain the 

principal stresses is: 
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The first step of the present formulation needs the knowledge of the three stress 

invariants that can be extensively written as follows: 
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Following Cardano's formulation the principal stresses assume the following 

form: 
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Parameters u and v are as follows: 
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Parameters p and q can be written in the following form: 
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It is visible from Eqs. (7.2.17) and (7.2.18) that 2 and 3 assume a complex form. 

In order to omit the imaginary part, the following assumption has to be done: 
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By using this particular assumption it is possible to obtain three different real 

roots of the cubic Eq. (7.2.13). By defining two new parameters  and  it is 

possible to obtain a more compact form of the principal stresses: 
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Now it is possible to re-write the parameters u and v in the following simpler way: 
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By using some well known properties of complex variables, u and v can be re-

written: 
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where: 

 

ξi+η=w           (7.2.31) 
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The principal stresses can be finally obtained: 
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Once known the principal stresses it is straightforward to obtain the three related 

shear stresses: 
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All the three maximum shear stresses depend again on the polar coordinate  and 

on the machine angle  They are also function of the distance from the notch tip 

and the phase angle. 

The criterion requires now to determine, along a circumferential path (varying the 

parameter , see Figure 7.2.2), at a distance r=0.28 mm from the notch tip, the 

point where the areas subtended by the three different shear stress functions reach 

their maximum values during one loading cycle. Once the values of the three 

different areas are known, the averaged values of the three shear stresses can be 

calculated on a full loading cycle. Finally, it has to be selected the maximum 

between the three shear stresses, that corresponds to the maximum shear stress 

averaged on a loading cycle. The three averaged values of the shear stresses are 

obtainable as follows: 
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The maximum value between the three averaged shear stresses is finally called                                

(   321 ,,max  ). 

The maximum value in each analysis has been compared considering different 

values of the phase angle and the biaxiality ratio (
NOM

NOM

S

T
 ).  This analysis 

permits to understand if these two variables induce significant effects on the 

averaged shear stress and thus on the strength of a sharp V-notched component. 

 

Figure 7.2.2. Definition of the circumferential path used to discover the critical 

point where the maximum averaged shear stress reaches its maximum value. 

 

 

7.3  Results and discussions  

In order to provide the value of the maximum shear stress averaged on a multi-

axial fatigue cycle a dedicate software has been implemented on Wolfram 

Mathematica
®
. This software permits to compute   for different angle  and to 

search the critical angle on which the maximum value of the averaged shear stress 
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is reached. The angle  has been varied between 0 and 90 degrees with 

incremental steps of 1°.  

All in all, considering all the varied parameters, 4500 different analyses have been 

carried out in order to investigate the effect of the phase angle. Only the most 

significant results are reported below. 

Two different load ratios have been considered, R=0 and R=-1, the biaxiality ratio 

has been set equal to 1/√3, 0.6, 1, 1.6 and √3 and finally the phase angles taken 

into account were five: 0° (in phase loading), 45°, 90°, 135° and 180°. 

The behaviour of the maximum averaged shear stress along the circumferential 

path matching the increment of  is investigated in Figures 7.3.1-7.3.6. Not all the 

studied cases are shown in the figures because a similar trend has been detected in 

the cases =1/√3, =0.6 and =1.6, =√3. 
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Figure 7.3.1. Behaviour of the averaged maximum tangential stress varying the 

polar coordinate  and the phase displacement in the particular case of R=-1; 

=1/√3. 

 

Figure 7.3.1 shows the behaviour of   normalised by the nominal tensile stress in 

the case of a load ratio equal to -1 and  equal to 1/√3 for all the different phase 
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angles. Obviously, for this particular load ratio, the results in the case of in phase 

loading and 180° out of phase loading give identical results. The same 

consideration remains valid for =45° and =135°. From the figure it can be seen 

that the averaged maximum shear stress assumes higher values moving from the 

in phase configuration to the out of phase configuration (90°) for the whole 

circumferential path. The three curves tend to reach an almost constant value on 

the right hand side of the diagram where the maximum value is reached in a range 

between 70° and 90° (see Table 7.3.1). This means that, according to the present 

criterion, the critical point for a V-notched specimen subjected to multi-axial 

loading is far from the notch bisector line. However it is worth mentioning that 

also on the notch bisector line the out of phase loading is more damaging. The 

same behaviour is noticed in the case of a biaxiality ratio equal to 0.6. Increasing 

 the same trend has been observed becoming the scatter between the in phase 

loading and the out of phase loading (90°) slightly higher (see Figure 7.3.2 and 

7.3.3). 
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Figure 7.3.2. Behaviour of the averaged maximum tangential stress varying the 

polar coordinate  and the phase displacement in the particular case of R=-1; =1. 
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Figure 7.3.3. Behaviour of the averaged maximum tangential stress varying the 

polar coordinate  and the phase displacement in the particular case of R=-1; 

=√3. 

 

Table 7.3.1. Critical  where the averaged maximum tangential stress is reached. 

Load ratio, R Phase displacement [°] 
Biaxiality ratio,  

1/√3 0.6 1 1.6 √3 

-1 

0 80° 79° 73° 71° 71° 

45 85° 85° 82° 79° 79° 

90 87° 87° 84° 83° 82° 

135 85° 85° 82° 79° 79° 

180 80° 79° 73° 71° 71° 

0 

0 80° 79° 73° 71° 71° 

45 84° 84° 80° 77° 77° 

90 87° 87° 85° 84° 83° 

135 88° 88° 87° 86° 86° 

180 88° 88° 88° 87° 87° 
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The same diagrams are provided also in the case of a load ratio R=0. From 

Figures 7.3.4, 7.3.5 and 7.3.6 it is evident that the results are close to those 

obtained in the case of  R=-1. The only difference is that the normalised value of 

the averaged shear stress increases from the in phase to the out of phase condition 

corresponding to =180° for R=0. Also for this load ratio the maximum value is 

reached far from the notch bisector line at an inclination between 70 and 90 

degrees. 

In table 7.3.1 all the values of the critical angle,  where the averaged shear stress 

reaches its maximum value are shown. One can state that for a fully reversed 

fatigue test the angle increases reaching the maximum value for =90° and then it 

decreases. On the other hand, in the case of  R=0, the higher becomes the phase 

angle, the higher becomes the value of the critical angle where the averaged stress 

is reached. 

Moreover, from all the analyses carried out, it is visible that at a fixed phase 

angle, the critical angle decreases when the biaxiality ratio increases (see again 

Table 7.3.1). 
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Figure 7.3.4. Behaviour of the averaged maximum tangential stress varying the 

polar coordinate  and the phase displacement in the particular case of R=0; 

=1/√3. 
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Figure 7.3.5. Behaviour of the averaged maximum tangential stress varying the 

polar coordinate  and the phase displacement in the particular case of R=0; =1. 
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Figure 7.3.6. Behaviour of the averaged maximum tangential stress varying the 

polar coordinate  and the phase displacement in the particular case of R=0; 

=√3. 
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Figures 7.3.1-7.3.6 just commented above make it evident the trend of the 

averaged maximum tensile stress by varying the polar coordinate . Figures 7.3.7-

7.3.12 can justify that trend (of  ) by investigating the changing of the maximum 

shear stress over a single multi-axial fatigue cycle. The normalised maximum 

shear stress, max, which is the maximum of the three different principal shear 

stresses, has been computed at the critical angle on which   reaches its maximum 

value. 

Figures 7.3.7, 7.3.8 and 7.3.9 plot max in the case of R=-1 and biaxiality ratio 

equal to 1/√3, 1 and √3 respectively. It can be noted that, in the first case, an in 

phase loading condition generates a maximum shear stress ranging between zero 

and an absolute maximum value. By increasing the phase angle from 0° to 90° it 

can be seen that the peak tends to decrease but, at the same time, the minimum 

assumes a value not much far from the maximum one. This consideration leads to 

the conclusion that the mean effect just described is more effective by moving the 

phase angle from 0° to 90°. 
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Figure 7.3.7. Variation of the maximum tangential stress on the critical 

coordinate  during an entire loading cycle for different phase displacements. 

Case R=-1, =1/√3. 
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The same trend has been observed for the five biaxiality ratios considered herein. 

Figures 7.3.8 and 7.3.9 show the same effects, just described  for  the case = 

1/√3, considering the cases = 1 and √3. The only difference with the previous 

case is that the higher becomes the biaxiality ratio, , the lower is the decreasing 

of the maximum value of the shear stress. In fact, it is well visible from Figures 

7.3.8 and 7.3.9 that the maximum value of the shear stress is almost constant, with 

a slight decrease for larger values of phase angles. 
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Figure 7.3.8. Variation of the maximum tangential stress on the critical 

coordinate  during an entire loading cycle for different phase displacements. 

Case R=-1, =1. 
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Figure 7.3.9. Variation of the maximum tangential stress on the critical 

coordinate  during an entire loading cycle for different phase displacements. 

Case R=-1, =√3. 

 

In the case of a load ratio equal to 0, the maximum shear stress for =0°, ranges, 

once again, between 0 and an absolute maximum. By increasing the phase angle 

from 0° to 180°, the maximum value decreases and the minimum value increases. 

It is worth noting from Figure 7.3.10 that when max reaches its minimum value 

for the case =0°, a second maximum occurs for the case =180°. Also for this 

load ratio, the phase angle generates a mean effect in terms of the averaged shear 

stress. This effect could be detrimental for the multi-axial fatigue strength of the 

component. Figures 7.3.11 and 7.3.12 show the trends hold in the case of higher 

biaxiality ratios (=1, √3). All the considerations made for Figure 7.3.10 remain 

valid. The only difference is that when the maximum is reached for the case =0°, 

a relative maximum is reached for the case =180°. In parallel the minimum of 

the in phase case corresponds to the absolute maximum of the out of phase 

condition. Finally, it can be noted that at the highest value of the biaxiality ratio 

(=√3)  the maximum value of the shear stress is almost constant independent of 

the phase angle.  
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Figure 7.3.10. Variation of the maximum tangential stress on the critical 

coordinate  during an entire loading cycle for different phase displacements. 

Case R=0, =1/√3. 
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Figure 7.3.11. Variation of the maximum tangential stress on the critical 

coordinate  during an entire loading cycle for different phase displacements. 

Case R=0, =1. 
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Figure 7.3.12. Variation of the maximum tangential stress on the critical 

coordinate  during an entire loading cycle for different phase displacements. 

Case R=0, =√3. 

 

The following two figures represent a sort of summary diagrams with the aim of 

quantifying the damaging effect due to the phase angle on a sharply V-notched 

component subjected to multi-axial fatigue loading. The first figure (Figure 

7.3.13) shows the averaged maximum shear stress normalised by the maximum 

value computed for a fixed biaxiality ratio in the case of a fully reversed cycle. It 

can be seen that for all the five considered cases the critical configuration is 

reached for =90°. The in phase loading is always the less damaging 

configuration, however it becomes comparable to the case = 90° when the 

biaxiality ratio increases. In the cases corresponding to lower values of  the in 

phase loading is about 13% less damaging with respect to the case =90°, while 

the difference between in phase and out of phase loading reduces to 6% for higher 

values if the biaxiality ratio. Dealing with a load ratio equal to 0, the critical phase 

angle, as visible from Figure 7.3.14, corresponds to the out of phase configuration 

(=180°) while the in phase loading is about 22% less damaging in the case of 

low biaxiality ratios. The difference between in phase and out of phase loading 

reduces to 12-13% for higher values of . Moving from =0° to =180 the effect 

of the phase angle becomes less detrimental but not negligible. 
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Figure 7.3.13. Summary of the phase angle effect for different biaxiality ratios in 

the case of R=-1. 
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Figure 7.3.14. Summary of the phase angle effect for different biaxiality ratios in 

the case of R=0. 
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Being conscious that the out-of-phase loading is still an open problem in fatigue 

design and that the approach summarised here is only a simplified method 

developed under linear elastic hypotheses, there are some recent experimental 

results which confirm the slight penalizing effect at least for severely notched 

specimens under multiaxial loading (Berto et al. 2011c, Berto and Lazzarin 2011, 

Berto et al. 2014). When the notch becomes blunt (see Berto et al. 2014) the effect 

of out-of-phase is negligible. As explained above this is a general tendency that 

could be influenced by the mechanical/fatigue properties of the tested material, by 

many non-linear effects which could be important in the crack nucleation and 

propagation under non-proportional loadings and also by the material 

characteristic length or control volume size with respect to the notch radius. 

Figures 7.3.15 and 7.3.16 report two examples taken from Berto et al. (2011c) and 

Berto et al. (2014). In Figure 7.3.15 data from 39NiCrMo3 steel under in-phase 

and out-of-phase loadings are summarized (Berto et al. 2011c). The notch tip 

radius was equal to 0.1 mm. In Figure 7.3.16 data from 40CrMoV13.9 notched 

specimens are summarized (Berto et al. 2014). The notch tip radius was constant 

and equal to 1 mm. The notch opening angle was equal to 90° for 39NiCrMo3 and 

for 40CrMoV13.9 steels. For both materials the penalizing effect due to out-of-

phase is usually evident even it is also clear that for the same material the 

behaviour could be influenced by the nominal load ratio as taken into account by 

the analytical frame proposed here as well as by the biaxiality ratio (). These 

effects can be also different at low and high cycle fatigue due to the influence of 

the non-linear effects occurring during the tests. It is also evident that in Figure 17 

for R=0 the effect of out-of-phase is more evident than for R=-1 in agreement 

with the proposed analytical frame and with Figures 7.3.13 and 7.3.14. 
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Figure 7.3.15. Fatigue data taken from Berto et al. (2011). 
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Figure 7.3.16. Fatigue data taken from Berto et al. (2013). 

 

 

To conclude, it can be also said that in  a recent review (Susmel 2013) of the most 

widely adopted multiaxial fatigue criteria is carried out  discussing the main issues 

to calibrate the adopted design criterion being the used information usually 

derived from the fatigue strength under both pure uniaxial and pure torsional 
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fatigue loading. The complex fatigue response of metallic materials to multiaxial 

loading paths requires for calibration some information which can be obtained 

only by running the appropriate experiments. Unfortunately, because of a lack of 

both time and resources, very often, structural engineers are requested to perform 

the multiaxial fatigue assessment by guessing the necessary fatigue properties. In 

this complex scenario, initially, the nowadays available empirical rules suitable 

for estimating fatigue strength under both pure axial and pure torsional fatigue 

loading have been reviewed (Susmel 2013).  

Under proportional loading, the empirical rules reviewed in that paper can 

confidently be used to perform the multiaxial fatigue assessment, this holding true 

in the presence of both zero and non-zero superimposed static stresses. On the 

contrary, under non-proportional loading, the use of such rules can result in a non-

conservative fatigue design. This work is a first trial to solve this problem. 

 

 

7.4  Discrimination of the phase displacement effect by means of 

energetic assumptions  

 

This brief paragraph focuses on the research of a discriminating parameter dealing 

with the phase effect between applied load amplitudes on multiaxial fatigue, 

considering energetic assumptions. The same geometries already analysed in the 

previous sections will be studied.  

The analytical relation describing the strain energy at a particular point of 

coordinates (r,) and at a certain machine angle (of the fatigue cycle can be 

written as: 
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Where all the stress components can be obtained from Eqs. (7.2.1-7.2.6). 
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By implementing a particular routine furnishing the most damaging point in terms 

of strain energy in the vicinity of the notch tip, the behaviour of this particular 

parameter over one loading cycle has been obtained. 

The value of the strain energy obtained at a particular distance r (0.28 mm) and in 

the critical angle  can be expressed as: 
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In this formulation the stress components vary only as a function of the machine 

angle . 

Figure 7.4.1 shows the trend of the strain energy during one loading cycle in the 

particular case of a load ratio equal to -1 and a biaxiality ratio equal to 1. As 

already remarked in the case of the maximum shear stress based analysis, an in-

phase loading generates a behaviour ranging from zero to an absolute maximum 

value. The introduction of a phase displacement between the applied loads 

generates an increasing of the minimum value of the instantaneous strain energy 

and at the same time a decrement of the maximum value, obtaining a sinusoidal 

function with a narrower amplitude the bigger becomes the phase displacement. 

By following the same procedure reported in the previous sections, the strain 

energy has been averaged during an entire loading cycle in order to search a 

particular discriminating effect of the phase displacement. 

Figure 7.4.2 demonstrates that, both in the case of load ratio equal to -1 or 0, the 

strain energy averaged during one loading cycle holds a constant value varying 

the phase displacement between the applied loads. In conclusion, a procedure 

based on energetic assumptions proved to be unsuitable for the discrimination of 

the phase effect on multiaxial fatigue.  

 

 

 

 



 

 207 

 

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0 60 120 180 240 300 360

Machine angle [°] 

W
 [

M
J/

m
3
]

Biaxiality ratio =1

Load ratio R=-1

=0°, 180°

=45°, 135°

=90°

 

Figure 7.4.1. Variation of the strain energy on the critical coordinate  during an 

entire loading cycle for different phase displacements. Case R=-1, =1. 
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Figure 7.4.2. Summary of the phase angle effect for different biaxiality ratios in 

the case of R=0 and R=-1 by means of energetic assumptions.  
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7.5  Conclusions  

The present chapter deals with the investigation of the effect of the phase angle on 

sharp V-notched components subjected to multi-axial fatigue. This is still an open 

problem and very challenging issue. The possible detrimental influence of the 

phase angle is often related to the arising of non linear effects contemplated on the 

cyclic plasticity theory, as suggests by many papers in the literature.  

Being conscious of the material dependent non-linear effects just mentioned and 

the simplified assumption of the herein proposed approach, this work tries to 

explain the phase angle effect only focusing on the linear elastic stress field ahead 

of the notch. The parameter considered critical in the present study is the 

maximum shear stress averaged over an entire loading cycle. The analogy of the 

present model with the critical plane approach is only the consideration of a shear 

stress as a critical parameter. On the other hand substantial differences exist 

between the present approach and those based on critical planes. The main 

difference with the critical plane approach is that in the present work, due to the 

fact that sharp notches are considered, the critical point is not known a priori and 

its determination is based on the maximization of the critical parameter.  

All in all 4500 different analyses have been carried out considering different load 

ratios, biaxiality ratios and phase angles. A dedicate software has been 

implemented in order to compute the averaged maximum shear stress on different 

inclinations with respect to the notch bisector line. It has been found that the 

location on which the averaged parameter reaches its maximum value is far from 

the notch bisector line and it acts at a circumferential coordinate ranging between 

70° and 90° depending on the loading conditions. Considering an entire cycle on 

the critical angle, the maximum shear stress ranges from a value equal to zero to 

an absolute maximum in the case of in-phase loading. Introducing a phase angle it 

has been noted that the peak values decrease while the valley values increase, 

resulting in a mean effect more damaging for the component. 

In more detail, it has been shown that in the case of a fully reversed multi-axial 

fatigue loading the most damaging configuration is the 90° out of phase loading 

with a decreasing of the fatigue strength between 6 and 15% with respect to the 

in-phase loading.  The influence of the phase angle is more pronounced for lower 
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values of the biaxiality ratio. A similar behaviour has been observed for a load 

ratio equal to 0 being in this case, the most damaging configuration at =180°. 

The reduction of the fatigue strength has been estimated between 15 and 28%. 

Also in this case, the influence of the phase angle is more pronounced for lower 

values of the biaxiality ratio. 

The phase displacement effect has been investigated also by means of energetic 

assumptions. A strain energy criterion averaged over one loading cycle proved to 

be unsuitable for this particular analysis, In fact, by varying the applied load 

amplitudes the value of the averaged strain energy on the critical point in the 

vicinity of the notch tip results to be constant. 
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8 

Cyclic plasticity on notched components: 

3D effects and energetic considerations   
 

 

8.1 Basic concepts on cyclic plasticity 

A cyclic plasticity model is used to be defined by three main different functions 

describing the three critical parts of the plastic evolution of a particular material: 

 

 The yield function is the boundary surface of the problem. Considering the 

three domensional stress space, the yield function is the locus of points which 

divides the linear elastic behavior (within the surface) and the elastic plastic 

behavior (on the surface); 

 The flow rule is the particular relation describing the increment/decrement of 

plastic strain during a load increment/decrement; 

 The hardening rule defines the translation/expansion of the boundary yield 

surface during a cyclic loading. It establishes the movement of the yield 

surface within the three dimensional stress space. 

 

8.1.1 Yield function 

During a cyclic loading the material is assumed to follow an elastic stress-strain 

relation without plastic strains until the stresses satisfy the yield condition. The 

two most used conditions are due to Tresca and von Mises (Figure 8.1.1). 

Considering the hydrostatic axis as reference axis and the  plane represents in the 

figure, the elliptical boundary surface on Cartesian coordinate system, described 

by von Mises, becomes a circular boundary surface in the deviatoric stress space. 

The radius of the new circumferential surface is equal to k2 that is a 



 

 212 

characteristic value varying from material to material, where k denotes the yield 

stress in simple shear. 

 

 
 

Figure 8.1.1. Schematic representation of Tresca and von Mises criterion (figure 

from Wikipedia.com) 

 

 

In order to better describe the material behavior during a cyclic plasticity problem 

the backstress tensor, , representing the center of the boundary yield surface has 

been introduced (see Figure 8.1.2). The backstress permits to instantaneously 

monitor the yield condition by taking in consideration the movement of the 

limiting surface during the whole loading cycle. In the next sessions the particular 

yield stress condition used in this chapter will be described. 

 

 
 

Figure 8.1.2. Representation of yield surface and backstress (figure from Jiang 

and Sehitoglu 1996). 
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8.1.2 Flow rule 

The flow rule relates the increment of plastic strain to the respectively increment 

of stress. The most commonly rule used for metals is the associated flow rule or 

the normality condition (Drucker 1951). According to this rule one can say that 

the plastic strain increment is collinear with the instantaneous exterior normal to 

the yield surface. 

Mathematically the flow rule can be expressed as: 

 

ijijij

P

ij nndS
h

1
d             (8.1.1) 

 

Where < > denotes the McCauley brackets: 

 










0dS,dS

0dS,0
ndS ijij           (8.1.2) 

 

This implies that plastic strain is reached only in presence of a loading condition 

and not during the unloading part of the cycle. 

Parameters n and h represent the unit exterior normal and the instantaneous plastic 

modulus function respectively. 

 

8.1.3 Hardening rule 

Generally all the cyclic plasticity models use the above mentioned yield criterion 

and flow rule, thus an hardening rule distinguishes one plasticity model from 

another. An hardening rule specifies how the yield surface changes during a 

loading cycle fatigue. 

 

Isotropic hardening 

 

This type of hardening rule simulates an homothetic expansion of the yield 

surface in all directions (see Figure 8.1.3). This means that an increase of the 

plastic strain causes an increase of the linear elastic domain. In the case of stress 
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controlled cyclic loading the use of an isotropic hardening rule implies linear 

completely elastic deformations after the first fatigue cycle. 

 

 

Figure 8.1.3. Schematic representation of isotropic hardening (figure from Jiang 

and Sehitoglu 1996) 

 

 

Kinematic hardening 

 

The kinematic hardening model is used to consider the Bauschinger effect. It 

consists on a reduction of the yield strength in compression when the material is 

loaded over its tensional yield strength limit. The critical surface in this case does 

not change in shape or size but it has the possibility to move through the stress 

space (see Figure 8.1.4). 

The movement of the center of the yield surface is called backstress and it 

represents the range between the centers of two consecutive steps of the yield 

surface during a loading cycle. 

Kinematic hardening model produces a stabilized cyclical response after the first 

loading cycle. For this reason this type of hardening rule is the most used dealing 

with fatigue problems.   

 



 

 215 

 

 

Figure 8.1.4. Schematic representation of kinematic hardening. Movement of the 

yield surface into the stress space. 

 

8.2 Introduction on chapter’s aim 

Failure against fatigue of engineering components is often related to the presence 

of stress raisers like defects, cracks or different shaped notches. It is well known 

that the stress arising in the proximity of these points may exceed the yielding 

limit of the material. The full elastic-plastic stress and strain fields ahead of 

notches can be assessed by using complex non linear finite element analyses that, 

however, result in consuming precious time or monetary resources by engineers 

and industries. For these reasons, simplified methods that approximate the actual 

elastic–plastic notch-tip material behaviour are frequently preferred in practical 

engineering applications. One of the most important works on the evaluation of 

the elastic-plastic stress state at the tip of a notch is due to Neuber (1961), which 

proposed a general rule able to obtain the stress-strain concentration factors for 

uniaxial static and cyclic loading. Dealing with energetic assumptions, Molski and 

Glinka (1981) stated that the strain energy density distribution in the plastic zone 

ahead of a notch tip is the same as that determined under a pure elastic stress–

strain solution, adopting this as the basis of the ESED criterion. During the last 

years extensions of the above mentioned criteria have been developed in order to 

refine the assessment of the actual state of stress and strain ahead of a notch under 
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simple and complex loading configurations, among the others Topper et al. 

(1969), Hoffmann and Seeger (1985), Moftakar et al. (1995), Elliyn and Kujawski 

(1989), Singh et al. (1996), Ye et al. (2004-2008), Zappalorto and Lazzarin (2009-

2010). In particular Ye et al.. (2004-2008), making use of thermodynamics 

assumptions, considered the influence of the stored energy during the loading 

history as a fundamental parameter for the calculation of the actual stress-strain at 

the tip of a notch. With this aim a new modified approach, which confines the two 

milestones as limiting cases of the same problem, has been presented. In particular 

Ye proved that the two above mentioned methods give the same results when 

considering the dissipated energy as a negligible parameter.  

Uniaxial and multiaxial fatigue loads generate a variable complex state of stress at 

the tip of a rounded notch. In order to take into account this particular effect, 

incremental approximate formulations have been developed establishing energetic 

equilibrium conditions between the components of stress and strain acting at the 

notch tip (Elliyn and Kujawski 1989, Moftakar et al. 1995, Singh et al. 1996).  

The incremental approximate procedure make use of constitutive relations of the 

cyclic incremental plasticity theory that is composed of three main parts: 1) The 

von Mises yield criterion is the most used in fatigue problems. 2) The flow rule 

(or normality condition) presented by Drucker (1960) is used to combine the 

increment of plastic strain with the related increment of stress. 3) The hardening 

rule is the part that distinguishes one plasticity model to another. In the case of 

fatigue problems the kinematic hardening rule is the most used because of the 

inner ability to simulate the Bauschinger effect during cyclic loading. Prager 

(1955) proposed the first linear hardening formulation able to take into account 

the above mentioned effect. This particular rule allows the yield surface to move 

into the stress space without changing in shape or size. Armstrong and Frederick 

(1966) presented the first non linear relation introducing a recovery term 

associated to a strain memory effect. Different extensions of the A-F rule have 

been proposed in the last years (see among the others Bower 1987, Bower and 

Johnson 1989, Ohno-Wang 1991). Chaboche (1979,1987) expressed for the first 

time a non linear kinematic hardening rule in the form of an expansion of M 

backstress parts, each one following the Armstrong-Frederick relation. Chaboche 
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model has been adopted by many finite element codes in order to obtain the actual 

behaviour of the material subjected to fatigue loading. A new A-F type model has 

been presented by Jiang and Sehitoglu (1996a, 1996b) aiming to account for the 

ratcheting effect during an asymmetric loading cycle.  

Many contributions dealing with fatigue plasticity problems have been developed 

in the last years addressing different fields of applications. Jiang and Xu (2001) 

studied the problem of a plate with a central hole and a shaft with a circumference 

groove subjected to proportional and non proportional loading, implementing an 

approximate incremental method and comparing the results with some cyclic FE 

analyses. Ye et al. (2004-2008) made use of the incremental procedure in order to 

develop the modified ESED method. The new approach was first calibrated with 

experimental results obtained by uniaxial fatigue tests on flat specimens weakened 

by different notch geometries (2004) and then extended to the multiaxial fatigue 

of notched components (2008). Foletti and Desimone (2007) used a dedicated 

algorithm based on cyclic plasticity in order to address the problem of the residual 

stresses in rolling contact fatigue obtaining a very good agreement with respect to 

much more time consuming non linear FE analyses. Qiu et al. (2009) made use of 

the incremental procedure in order to investigate the non-Masing behaviour of 

16MnR steel. Automotive problems related to wheel radial fatigue tests and rear 

axles strength have been addressed by Firat et al. (2009) and Firat (2011) which 

used a cyclic plasticity model aiming to obtain the actual stress and strain state at 

the focal points of the components in exam. Gao et al. (2010) conducted tension–

compression, torsion, and axial-torsion fatigue experiments on notched shaft 

specimens made of 16MnR steel comparing the fatigue life with those obtained by 

provisional analyses based on incremental cyclic plasticity. 

As already mentioned, the incremental cyclic plasticity has been used in order to 

address plane or axy-symmetric problems but it has never been coupled with three 

dimensional effect arising at the tip of a notched component. An extended review 

on the 3D linear elastic stress distribution ahead of the notch tip can be found in 

(Pook 2013) where the developments over the past 50 years leading up to the 

current state of the art are described. All the three conditions of loads have been 

addressed concluding that three-dimensional effects are sometimes ignored in 
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situations where they might be important for the strength of components. In 

particular, the application of a remote Mode II loading induces a coupled Mode O 

(out-of-plane) singularity at the tip of a crack (Harding et al. 2010). The authors 

investigated the parameters influencing the intensity of this new singularity and 

demonstrated the relevance of this new singular mode to practical problems, as 

i.e., welded lap joints. Berto et al. (2011a) extended the study of three dimensional 

effects on sharp notched components, largely ignored in the past. Dealing with 

rounded notch geometries, Lazzarin and Zappalorto (2012), Berto et al. (2012a) 

and Berto and Marangon (2013), demonstrated that also when the notch root 

radius is different from zero, the out-of-plane mode continues to exist, and its 

intensity depends on the notch radius and the plate thickness. A new stress field 

theory for plates of finite thickness has been proposed in (Zappalorto and Lazzarin 

2013) using two different functions able to take into account the plane and the 

out-of-plane notch problem both in the case of sharp and rounded notches. 

Aiming to relate the incremental cyclic plasticity to the three-dimensional effects 

arising in the vicinity of the notch tip, this chapter first focuses on the calibration 

of the incremental cyclic plasticity with plane and axy-symmetric problems of 

notched members subjected to uniaxial and multiaxial cyclic loadings. 

Subsequently, the procedure will be extended for the first time to the investigation 

of the three dimensional effects arising at the tip of a rounded notch by 

considering the presence of a small scale yielded area ahead the notch tip. 3D flat 

specimens weakened by different geometries and subjected to cyclic Mode I and 

Mode II loading will be investigated by comparing the analytical results obtained 

from a modification of the incremental routine with cyclic elastic-plastic FE 

analyses. 

 

8.3 Analytical frame 

Recently Ye et al. (2004) proposed a unified expression to estimate the elastic-

plastic stress/strain state at the tip of a rounded notch both in the case of static and 

cyclic uniaxial loading. The general expression can be written as follows: 
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where Kt is the theoretical (elastic) stress concentration factor, 
e
 and 

e
 are the 

remotely applied nominal stress and strain ranges and  and  denote the 

notch-tip elastic plastic stress and strain ranges. Wq is, instead, the dissipated 

energy during one loading cycle. The approach considers the energy stored within 

the specimen during the loading as a damaging parameter. The Neuber’s rule 

(Neuber 1961) and the ESED approach (Molski and Glinka 1981) can be obtained 

as particular cases of the above mentioned criterion. 

Ye also introduced the so called “energy dissipation coefficient” in order to obtain 

a physical relationship between the plastic strain energy density and the dissipated 

energy during one loading cycle: 

 

'n1

'n21

W

W
C

p

q

q








            (8.3.2) 

 

In Eq.(8.3.2) Wp is the total plastic strain energy density during one loading 

cycle and n’ is the strain hardening exponent of the material took into account. 

Moving from a uniaxial to a multiaxial state of stress/strain, the use of Kt is no 

longer sufficient because it is linked only to the normal stress component acting at 

the notch tip, thus a more general formulation of Eq. (8.3.1) is needed. This 

problem can be overcome by introducing the “hypothetical notch tip stress and 

strain” (Ellyin and Kujawski 1989 and Singh et al. 1996) which allows to define 

an equilibrium equation for each component of stress/strain acting at the tip of a 

rounded notch. The governing equation is: 
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ij          (8.3.3) 

 

The subscripts “ij” denote the different components of stress and strain involved 

in the problem. 
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When the proposed expression is applied to estimate the notch-tip stress and strain 

field of a generic cyclic loading a proper incremental form should be developed: 
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The prefix  denotes a small but finite increment and the implicit summation rule 

is applied. Gao et al. (2010) modified Eq.(8.3.4) by introducing, within the 

formulation, the reference state parameter defined by Chu (1995b).  
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The superscript “0” represents the reference state of the particular component of 

stress/strain. When a reversal point of a component occurs, the reference states of 

the components are updated to the corresponding stress and strain at the reversal 

point. 

For the sake of simplicity, in this work, all the equations taking the form of Eq. 

(8.3.5) will be named “energy equations”. 

Once the linear elastic components of stress and strain are known, each energy 

equation presents two unknowns: the elastic-plastic component of stress and the 

related elastic-plastic component of strain. Thus every energy equation has to be 

coupled with the corresponding constitutive equation. 

According to the theory of small deformations, an incremental component of 

strain can be written as the sum of an elastic part (
e
ij) and a plastic contribution 

(
p

ij) as follows: 
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The elastic part of strain is governed by the well known Hooke’s law: 
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where G is the shear modulus, E is the Young’s modulus,  the Poisson’s ratio, ij 

the Kronecker delta and kk the hydrostatic component of stress. 

The incremental plastic part of strain can be described by using the cyclic 

plasticity theory which can be comprehensively described by the introduction of a 

proper yield criterion, a flow rule and an hardening rule which will be illustrated 

in the following. 

The yield function represents the locus of points that divides the linear elastic 

behaviour (within the boundary) and the elastic plastic behaviour (boundary 

surface). In the case of cyclic loading the von Mises yield criterion is the most 

used. The material is thought to follow the elastic behaviour with totally absence 

of plastic deformation until the stress components satisfy the yield condition: 

 

   0k2SSf ijijijij           (8.3.8) 

 

Where Sij is the deviatoric stress, ij is the deviatoric backstress (center of the 

yield surface) and k is the yield stress in simple shear. 

When the yield condition is satisfied, the normality flow rule has to be applied in 

order to describe the increment of plastic strain behaviour during a loading cycle. 

Mathematically: 
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Where the symbol “< >” denotes the McCauley brackets (i.e.   2/xxx  ). 

nij is the unit exterior normal to the yield surface which is calculated using the 

following formula: 
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and h is the plastic modulus function that will be described later.  

Finally, the hardening rule deals with the definition of the translation/expansion of 

the boundary yield surface within the stress space. In engineering practice the 

kinematic hardening rule is the most used in the case of cyclic loading, being it 

able to account for the Bauschinger effect. In particular, in the generic case of a 

multiaxial state of stress/strain, the non linear kinematic hardening rule gives the 

most accurate results. In this case, the yield surface is allowed only to move 

within the stress space but not to homotetically expand or contract. Aiming only 

to simplify the implementation of the incremental routine for the determination of 

the elastic-plastic state of stress/strain, the Jiang-Sehitoglu’s (1996a-1996b) non 

linear kinematic hardening has been used for the calculations. The formulation of 

the plastic modulus function and of the i-th part of the backstress can be written as 

follows: 
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Where “:” denotes a scalar vector and p is the equivalent plastic strain increment 

which can be computed as: 
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Parameters c
(i)

, r
(i)

 and 
(i)

 are “ad-hoc” material coefficients. The superscript “i” 

denotes the ith part of the incremental backstress. In fact, according to Chaboche 

(1979-1987), the total backstress can be thought of as composed by M additive 

parts: 

 





M

1i

)i(           (8.3.14) 

 

The Jiang-Sehitoglu’s model is able to take into account a non constant ratcheting 

decay phenomena. In the case of cyclic loading with load ratio R= -1, considered 

for all the analyses in this work, this phenomena can be neglected. Thus the 

parameter 
(i)

 in Eqs.(8.3.11, 8.3.12), which controls the ratchetting rate decay can 

be set equal to zero (Jiang and Kurath 1996). This allows one to obtain the initial 

Chaboche model (1979-1987) by means of Jiang-Sehitoglu coefficients. The 

Chaboche model, however, is able to take into account a constant ratchetting rate 

decay. 

The procedure for the determination of the material coefficients c
(i)

, r
(i)

 and 
(i)

 is 

extensively described in (Jiang and Kurath 1996). It is based on a 

multilinearization of the plastic part of the cyclic stabilised curve of the material. 

When M couple of (,
p
) on the SCC curve are known, the evaluation of the i-th 

material parameters is straightforward and equal to: 
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Being: 
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p
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Many contributions on this topic deal with axy-symmetric components weakened 

by circumferential rounded notches and subjected to a multiaxial remote loading 

(Ye et al. 2008, Gao et al. 2010, Firat et al. 2009, Firat 2011). Only few 

contributions deal with plane 2D specimens weakened by rounded notches 

(Sethuraman et al. 2004, Ye et al. 2004). In this work, the use of the incremental 

cyclic plasticity theory combined with the “energy equations” will be first 

calibrated analysing plane and axy –symmetric components and then extended to 

the evaluations of three-dimensional effects at the tip of rounded notches. In the 

case of 3D flat specimens subjected to tensile loading it is well known that the 

stress concentration factor decreases moving through the thickness of the 

specimen (Pook 2013). In addiction, the application of a remote cyclic in-plane 

shear load induces a local multiaxial state of stress at the tip of the notch. Many 

contributions on this topic explain that, at the pointed notch tip, under linear 

elastic conditions a new singularity called “Out of plane mode” arises in addiction 

to the Mode II (Harding et al. 2010, Berto et al. 2011, Lazzarin and Zappalorto 

2012, Berto et al. 2012a, Berto and Marangon 2013). The so called “O Mode” 

holds zero value at the mid plane of the specimen, reaches a maximum value 

approaching to the free surface and then falls to zero at the free surface. The new 

applied procedure will be used to analyse these phenomena under cyclic elastic-

plastic behaviour, providing different hysteresis loops moving through the 

thickness of the specimen. 

Six different combinations of specimen geometries and applied loads have been 

studied in this work. In the following the elastic-plastic systems to be solved, in 

order to obtain the full stress/strain state at the tip of a rounded notch during one 

loading cycle, are reported. 
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Tensile loading – Plane stress 

 

Consider the Cartesian coordinate system centred at the tip of a rounded notch 

(Figure 8.3.1). In the case of a remote tensile loading applied to a very thin plate, 

four equations (three constitutive equation and one energy equation) are needed 

for the determination of the elastic-plastic stress/strain state at the tip of the notch: 
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Figure 8.3.1. Cartesian coordinate systems in the case on 2D-problems (a), axy-

symmetric problems (b), 3D-problems (c). 
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Tensile loading – Plane strain 

 

In the case of plane strain conditions, the following four relations are needed for 

the determination of the elastic plastic stress/strain state: 
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Where pl is equal to 0.5 and it is named plastic Poisson’s ratio.  

 

 

Pure torsion  loading – Axy-symmetric specimen 

 

The case of a pure torsion loading consists in two different equations governing 

the problem, in fact, at the notch tip, only the “yz” component of stress/strain acts.  
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In this case the Cartesian coordinate system has been hold in order to simplify the 

calculation. It has been assumed the tip of the notch belonging to the “xy” plane 
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Multiaxial loading – Axy-symmetric specimen 

 

The general case of an axy-symmetric specimen subjected to multiaxial loading 

has been faced by many researchers (Ye et al. 2008, Gao et al. 2010, Firat et al. 

2009, Firat 2011). For the sake of completeness the governing equation will be 

presented.  
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Tensile loading – Three dimensional plate 

 

In the case of a flat specimen with finite thickness and weakened by a rounded 

notch, five unknowns are present at the notch tip, two components of stress (yy 

and zz) and three components of strain (xx, yy, zz), thus five different equations 

should be used. The present work, as explained above, permits to evaluate the 

behaviour of every different component of stress/strain through the thickness of 

the plate, only by furnishing a relation describing the trend of the stress 

concentration factor along the z coordinate (see Figure8.3.1). The problem is 

governed by the following equations: 

 

   
   

   
   

   

    

   

    

   

    























































)z(,yy)z(,zzzz)z(,yy)z(,zz

yy)z(,zz)z(,yyxx)z(,zz)z(,yy
zz

zz

)z(,zz)z(,yyzz)z(,yy)z(,zz

yy)z(,zz)z(,yyxx)z(,zz)z(,yy

yy

yy

)z(,zz)z(,yyzz)z(,yy)z(,zz

yy)z(,zz)z(,yyxx)z(,zz)z(,yy
xx

xx

zz

)0(

)z(,zz)z(,zzqzz

)0(

)z(,zz)z(,zzq

e

zz

)0(e

)z(,zz

e

)z(,zz

e

yy

)0(e

)z(,zz

e

)z(,zz

yy

)0(

)z(,yy)z(,yyqyy

)0(

)z(,yy)z(,yyq

e

yy

)0(e

)z(,yy

e

)z(,yy

e

yy

)0(e

)z(,yy

e

)z(,yy

E

1
n2

n2n
h3

n
E

1
n2

n2n
h3

n
E

n2

n2n
h3

n

)C1()C1(

)C1()C1(

 

           (8.3.22) 

Where the subscript “(z)” denotes the through the thickness Cartesian coordinate. 
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Shear in-plane loading – Three dimensional plate 

 

The application of a remote in plane shear loading causes, at the tip of a rounded 

notch, the presence of a non-negligible out of plane component of stress due to 

three dimensional effects (Harding et al. 2010, Berto et al. 2011a, Lazzarin and 

Zappalorto 2012, Berto et al. 2012a, Berto and Marangon 2013). With the aim to 

emphasise this effect, in this work will be studied a flat specimen with finite 

thickness and weakened by a rounded notch characterised by an opening angle 

equal to 120°. It is well known that the singularity tied to the remote shear loading 

disappears for opening angle higher than 102°. Thus in the studied case, at the tip 

of the notch there will be only the presence of the out of plane singularity (Berto 

and Marangon 2013). By knowing the through the thickness behaviour of the 

stress concentration factor related to the O mode (Ko), the new proposed 

procedure permits to obtain the cyclic stress/strain acting at the notch tip along the 

z coordinate. The equation governing the problem are the following: 
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Procedure flow chart 

 

In order to represent the local behaviour of the stress/strain components acting at 

the tip of a rounded notch during one loading cycle, an incremental procedure 

based on the incremental cyclic plasticity has been implemented in Wolfram 

Mathematica
®
. The applied procedure accurately follows the chart presented in 

Gao et al. (2010). Following only the fundamental steps are quoted: 

 

 Obtain the linear elastic stress/strain at the notch tip at step i-th by 

knowing the stress concentration factor of the notch; 

 Get the increment of linear elastic stress/strain components between step i-

th and i+1-th; 

 Obtain the hypothetical linear elastic stress/strain at the notch tip at step 

i+1-th by assuming no plastic deformations; 

 Check the yield condition (Eq.8) and the positivity of the flow rule (Eq.9); 

 Even if only one of the conditions is not satisfied, the hypothetical linear 

elastic stress/strain behaviour will be the real behaviour at the tip of the 

notch; the obtained solutions will be the i-th variable at the next 

incremental step; 

 If, instead, both the conditions are satisfied, plastic deformations will be 

induced at the tip of the notch; 

 Compute the plastic modulus function (Eq.11) after obtaining the material 

coefficients (Eq.15,16,17); 

 Compute the real stress/strain behaviour by solving the elastic-plastic 

system of equations depending on the case studied (Eq. 18-23); the 

obtained solutions will be the i-th variable at the next incremental step; 

 Calculate the increment of equivalent plastic deformation (Eq.13) and then 

the tensor describing the incremental deviatoric backstress (Eq.12,14); 

 Update the input values of the M backstress parts; 

 Return to begin and start the next step. 
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8.4  Material characterisation and FE models construction 

The following material properties have been used for the FE analyses: 

 

 Young’s modulus, E= 194700 MPa; 

 Poisson’s ratio, = 0.3; 

 Fatigue strength coefficient, K’= 2250 MPa; 

 Cyclic strain hardening coefficient, n’= 0.337; 

 

These values correspond to the mechanical behaviour of an AISI 304L steel as 

reported in Meneghetti and Ricotta (2012). In addition, the stress defining the 

upper limit of purely elastic strains is named * and is equal to 160 MPa. 

Knowing this particular value, the quantification of the yield stress in simple 

shear, k, is straightforward. 

By applying the von Mises criterion: 

 

MPa4.92
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
            (8.4.1) 

 

The material has been thought to obey to a linear elastic behaviour up to * and 

then to a Ramberg-Osgood representation: 
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As already explained in the previous section, the characterisation of the material 

behaviour in the case of the incremental procedure consists on the 

multilinearisation of the plastic part of the SCC (stabilised cyclic curve), 

following the guidelines explained in (Jiang and Kurath 1996). The Jiang-

Sehitoglu’s material parameters have been determined using Eqs. (8.3.15-8.3.17).  
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As already remarked, the parameters 
(i)

 have been set equal to zero, thus 

neglecting ratchetting phenomena for this study.  

The results obtained from the solution of the incremental procedure have been 

compared with a bulk of numerical analyses carried out with the FE software 

Ansys
®
. The Chaboche material model routine has been used in order to simulate 

the material cyclic behaviour. Different from the incremental procedure, in the 

case of FE analyses the plastic part of the material SCC needs to be described 

using a multiparametric function according to the following expression (Imaoka 

2008): 

 

 






j

1i

p

i

i

i* tanh
C

         (8.4.3) 

 

where Ci and i are material parameters to be obtained from a dedicated fitting 

routine. In this work, eleven different parameters have been furnished to the FE 

software (j=5), namely five couples (Ci, i) and k. Another example of the use of 

the Chaboche routine in Ansys can be found in Kulkarny et al. (2004) dealing 

with the study of the ratchetting phenomena in piping materials. 

Then, aiming to simulate the cyclic fatigue loading applied to a specimen, a 

particular APDL routine has been implemented. This procedure also permits to 

obtain the components of stress/strain acting at the notch tip that will be compared 

with the results obtained from the incremental cyclic plasticity frame. 

In both cases the simplified material curves accurately match the actual behaviour 

of the used material. All the parameters employed in the analyses are listed in 

Table 8.4.1. 

 

 

 

 



 

 233 

 

Table 8.4.1. Jiang-Sehitoglu’s and Chaboche’s material parameters. 

 
J-S Material Parameters Chaboche Material Parameters 

(i) c r C 

1 127407.9 28.9 1100000 9000 

2 9782.9 33.0 80500 510 

3 2522.5 31.9 20000 48 

4 929.5 33.3 480 20 

5 440.9 35.0 450 1 

6 222.5 39.5   

7 123.1 43.1   

8 70.8 66.5   

9 27.2 109.2   

10 12.4 314.4   

 

In order to investigate the accuracy of the results obtained from the incremental 

cyclic plasticity procedure presented in 8.3, several 2D or 3D FE analyses have 

been carried out with the software Ansys
®

, using four node solid elements for 2D 

analyses and eight node solid elements for three-dimensional models. 

In more details, the following notched geometries have been studied: 

 2D flat specimen weakened by a circular hole and by a blunt U notch  

subjected to a tension-compression fatigue loading, both under plane stress 

and plane strain conditions (see Figures8.4.1 a, b); 

 An axy-symmetric specimen weakened by a circumferential semicircular 

notch subjected to a pure torsion and to a tension-torsion fatigue loading 

(Figure 8.4.1 c); 
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 A flat specimen of finite thickness (3D analysis) weakened by a circular hole, 

by a blunt U notch and by a rounded V-notch subjected to a tension-

compression fatigue loading (Figures 8.4.1 a, b, d); 

  A flat specimen of finite thickness (3D analysis) weakened by a rounded V 

notch subjected to a pure in-plane shear fatigue loading (Figure 8.4.1 d); 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.4.1. Tested geometries: plate weakened by a circular hole (a), blunt U-

notch (b), axy-symmetric U-notched specimen (c), plate weakened by a rounded 

V-notch (d) 
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8.5  Results and discussions 

The different acting hysteresis loops obtained from the incremental cyclic 

plasticity procedure and from the cyclic FE analyses will be compared hereafter, 

considering initially the two-dimensional cases above mentioned and then 

extending the analysis to 3D axy-symmetric components. Finally the tri-

dimensional stress distribution effects arising at the tip of a rounded notch in a 

thick plate subjected to a tension-compression and a in-plane shear fatigue loading 

will be investigated. 

The applied nominal load amplitudes have been chosen in order to guarantee a 

state of small scale yielding on the neighbourhood of the notch tip. This condition 

is necessary to ensure the validity of the incremental procedure based on cyclic 

plasticity, being one of its basic hypothesis.  

The load ratio has been set equal to -1 for all the processed analyses. 

 

8.5.1 Stress/strain state at the tip of a rounded notch - plane stress 

conditions 

The attention has been initially focused on the case of a very thin flat specimen 

weakened by a circular hole and by a blunt U notch (plane stress conditions). 

A circular hole with diameter, d, equal to 10 mm in a plate of ligament W= 200 

mm has been taken into account for first (see Figure 8.4.1 a). The nominal stress 

amplitude of the tension-compression cycle has been chosen equal to 0.8 times 

*, namely 128 MPa. 

In this case only one hysteresis loop, related to yy and yy, can be used as a basis 

of comparison (see Figure8.5.1).  

From the figure it can be seen a satisfactory agreement between the analytical 

incremental procedure and FE cyclic analyses. The transient behaviour of the 

material is identical for both the cases, whereas a slight distinction between the 

two curves can be observed on the lower bounds of the hysteresis loops. This 

slight deviation can be thought of as due to a numerical inaccuracy of the 

incremental cyclic procedure induced by an increment of the hypothetical elastic 

stresses and strains not small enough. 
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Figure 8.5.1. yy-yy hysteresis loop at the notch tip. Plain stress conditions. 

Circular hole. 

 

 

 

Figure 8.5.2. yy-yy hysteresis loop at the notch tip. Plain stress conditions. 

Circular hole. 
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By increasing the applied amplitude load to a a,nom = 1.2 * (See Figure8.5.2) the 

deviation between the two considered procedure slightly increases, probably due 

to the occurrence of state of large plasticity ahead of the notch tip, thus the small 

scale yielding conditions being no longer satisfied. 

In order to investigate the effect of the local notch geometry on the accuracy of 

the results, a flat specimen weakened by U notched geometries with different 

notch root radii have been analysed (= 4 and 1 mm). The notch dept, p, has been 

kept constant and equal to 15 mm. Obviously, moving towards a sharper 

configuration, identical loading conditions result in an increase of the plastic zone 

ahead of the notch tip. However, as it can be seen from Figures 8.5.3 and 8.5.4, 

the agreement between analytical and numerical results remains satisfactory for a 

nominal load stress amplitude equal to 0.8 *. 

 

 

Figure 8.5.3. yy-yy hysteresis loop at the notch tip. Plain stress conditions. Blunt 

U-notch, =4 mm. 
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Figure 8.5.4. yy-yy hysteresis loop at the notch tip. Plain stress conditions. Blunt 

U-notch, =1 mm. 
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8.5.2 Stress/strain state at the tip of a rounded notch - plane strain 

conditions 

It is well known that under plane strain conditions the amount of plasticity at the 

notch tip neighbours is less pronounced than under plane stress. Accordingly, in 

this section the same geometries studied under plane stress have been analysed 

under plane strain conditions. The incremental system of equations (Eq. 8.3.19) 

has been used in order to obtain the results from the incremental procedure. 

Results are presented in Figures (8.5.5-8.5.7). The agreement is evident. It is 

worth to be underlined that, with respect to the plane stress conditions, in this case  

the plastic hysteretic energies are slightly lower. 

 

 

 

Figure 8.5.5. yy-yy hysteresis loop at the notch tip. Plain stress conditions. 

Circular hole. 
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Figure 8.5.6. yy-yy hysteresis loop at the notch tip. Plain stress conditions. Blunt 

U-notch, =4 mm. 

 

 

Figure 8.5.7. yy-yy hysteresis loop at the notch tip. Plain stress conditions. Blunt 

U-notch, =1 mm. 
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8.5.3 Stress/strain state at the tip of a rounded notch - pure torsion fatigue 

loading 

An axy-symmetric specimen weakened by a circumferential notch with =4 mm 

has been considered. The overall geometry of the specimen is shown in Figure 

8.4.1 c. With reference to the Cartesian coordinate system shown in Figure 8.3.1 

b, only one hysteresis loop is present at the notch tip, that is tied to the “yz” shear 

components of stress and strain. Dealing with the incremental plasticity 

procedure, the system of equation defined by Eq. (8.3.20) has been solved. The 

FE analyses have been carried out by considering larger cyclic incremental step 

with respect to the previous analyses, because the analysis of a torque loaded 

specimen requires three-dimensional models, with a much more higher number of 

degrees of freedom with respect to a simple 2D analysis. 

The nominal shear amplitude remotely applied to the specimen has been set equal 

to 0.5 times the yield stress in simple shear, k. This choice is tied to the arising of 

a more extended plastic area ahead of the notch tip with respect to a tension-

compression cyclic loading.   

 

 

Figure 8.5.8. yz-yz hysteresis loop at the notch tip. Pure torsion. Axy-symmetric 

specimen weakened by a blunt U-notch, =4 mm. 
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Figure 8.5.8 shows the comparison between analytical and numerical results. It is 

worth nothing that the agreement is again satisfactory, with a percentage 

difference lower than 3%.  

 

8.5.4 Stress/strain state at the tip of a rounded notch - multiaxial fatigue  

The same specimen considered in the previous case has been subjected to a 

multiaxial tension-torsion loading. Considering the Cartesian coordinate system in 

Figure 8.3.1 b, three different hysteresis loops act at the notch tip: in fact both the 

normal components “yy” and “zz” of stress/strain synergistically act in addition to 

the shear “yz” component. However, the “zz” component is negligible and has not 

been considered. The nominal tensile amplitude loading and the torsion amplitude 

have been set equal to 0.5 * and 0.38 k respectively. This choice ensures a small 

scale yielding condition at the notch tip. The comparisons between analytical and 

FE analyses are presented in Figures (8.5.9, 8.5.10). A good correlation has been 

obtained. Dealing with the computational time, the incremental procedure proved 

to be about 10 times faster then an elastic plastic cyclic FE analysis with an 

average level of accuracy. The difference ranges between ±10%. 

 

 

Figure 8.5.9. yz-yz hysteresis loop at the notch tip. Multiaxial loading. Axy-

symmetric specimen weakened by a blunt U-notch, =4 mm. 
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Figure 8.5.10. yy-yy hysteresis loop at the notch tip. Multiaxial loading. Axy-

symmetric specimen weakened by a blunt U-notch, =4 mm. 
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8.5.5 Stress/strain state at the tip of a rounded notch – 3D analysis, uniaxial 

fatigue, tensile loading 

Dealing with a three-dimensional thick plate weakened by different rounded 

notches and subjected to a cyclic tension-compression loading, a biaxial state of 

stress/strain is induced at the notch tip. In particular, through the plate thickness 

the stress concentration factors related to the acting stress components reduce 

while moving from the mid plane to the free surface (i.e. see Figure 8.5.11 in the 

case of a blunt U-notch).  
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Figure 8.5.11. Stress concentration factors through-the-thickness of the plate at 

the notch tip. Tensile case. 

 

In this work, the incremental procedure based on the cyclic plasticity has been 

extended for the first time to the investigation of the three dimensional effects 

arising at the notch tip. Starting from the equations describing the linear elastic 

through-the-thickness variations of the “yy” and “zz” stress concentration factors 

(obtainable with a much easier 3D linear elastic FE analysis), the new incremental 

routine allows us to obtain the whole elastic-plastic stress/strain state at the tip of 

the notch.  
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As a first example, a three dimensional flat specimen weakened by a circular hole 

has been considered, with d=10 mm, W=200 mm and thickness of the plate (2t) 

equal to 40 mm. The applied uniaxial fatigue loading amplitude has been set equal 

to 0.8 times *, in order to guarantee a small scale yielding condition at the notch 

tip. Figures 8.5.12, 8.5.13 and 8.5.14 show the “yy” hysteresis loop at the mid 

plane, at a coordinate z/2t=0.25mm and on the free surface of the specimen. A 

comparison has been made with the results obtained from a 3D cyclic FE analysis 

as already done for the problems investigated in the previous sections. As 

expected, the hysteresis loop tends to become smaller moving from the mid plane 

to the free surface of the specimen, following the behaviour of the related stress 

concentration factor. The hysteresis loop tied to the “zz” component has not 

reported, being it negligible.  

 

 

 

Figure 8.5.12. yy-yy hysteresis loop at the notch tip on the mid plane of the 

plate. Uniaxial cyclic tensile loading. Three-dimensional analysis. Circular hole. 
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Figure 8.5.13. yy-yy hysteresis loop at the notch tip on the plane equal to 

z/2t=0.25 of the plate. Uniaxial cyclic tensile loading. Three-dimensional analysis. 

Circular hole. 

 

Figure 8.5.14. yy-yy hysteresis loop at the notch tip on the free surface of the 

plate. Uniaxial cyclic tensile loading. Three-dimensional analysis. Circular hole. 

The second studied case is a flat specimen with a thickness (2t) equal to 40 mm 

weakened by a blunt U notch characterised by a radius at the notch tip equal to 4 

mm and a notch depth of 15 mm. The load is the same that has been applied in the 



 

 247 

previous investigation. Once again Figures 8.5.15, 8.5.16 and 8.5.17 demonstrates 

that the hysteresis loop related to “yy” component, follows the stress 

concentration factor behaviour. A very good correlation has been obtained 

between analytical and numerical FE results. 

 

Figure 8.5.15. yy-yy hysteresis loop at the notch tip on the mid plane of the 

plate. Uniaxial cyclic tensile loading. 3D analysis. Blunt U-notch, =4mm. 

 

Figure 8.5.16. yy-yy hysteresis loop at the notch tip on the plane equal to 

z/2t=0.25 of the plate. Uniaxial cyclic tensile loading. 3D analysis. Blunt U-notch, 

=4mm. 
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Figure 8.5.17. yy-yy hysteresis loop at the notch tip on the free surface of the 

plate. Uniaxial cyclic tensile loading. 3D analysis. Blunt U-notch, =4mm. 

 

 

Figure 8.5.18. yy-yy hysteresis loop at the notch tip on the mid plane of the 

plate. Uniaxial cyclic tensile loading. 3D analysis. Rounded V-notch, =4mm, 

2=90°. 
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Finally, a flat specimen weakened by a rounded V-notch with an opening angle 

2=120°, a notch root radius  = 4 mm and a notch depth p= 15 mm has been 

studied. The specimen has been loaded with a uniaxial fatigue loading 

characterised by an amplitude equal to 0.8 times *. As in the previous case, only 

the hysteresis loop tied to the prevailing component of stress and strain has been 

taken into account. Figures 8.5.18, 8.5.19 and 8.5.20 show, once again, a very 

good correlation between analytical results and cyclic FE analyses on different 

normalised “z” coordinates, in fact, approaching to the free surface of the 

specimen the hysteresis loop becomes smaller than that related to the mid plane. 

 

 

 

Figure 8.5.19. yy-yy hysteresis loop at the notch tip on the plane equal to 

z/2t=0.25 of the plate. Uniaxial cyclic tensile loading. 3D analysis. Rounded V-

notch, =4mm, 2=90°. 
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Figure 8.5.20. yy-yy hysteresis loop at the notch tip on the free surface of the 

plate. Uniaxial cyclic tensile loading. 3D analysis. Rounded V-notch, =4mm, 

2=90°. 

 

8.5.6 Stress/strain state at the tip of a rounded notch – 3D analysis, uniaxial 

fatigue, shear loading 

A thick plate weakened by a rounded V notch (2= 120°) and loaded under in-

plane shear has been considered in order to extend the cyclic plasticity to the 

study of the out of plane effects. As already explained in section 8.2, if a notched 

specimen of finite thickness is subjected to a remote Mode II loading, an out of 

plane component of stress (comparable to a Mode III stress component) arises at 

the notch tip. This particular effect is strictly related to the contraction/expansion 

of the specimen due to the Poisson’s ratio. As exhaustively reported in literature 

(Pook 2013), the concentration of the stress tied to the applied load vanishes for 

opening angle greater than 102°, leaving only the out of plane component of 

stress/strain acting at the notch tip. The so called O-mode follows the through-the-

thickness behaviour shown in Figure 8.5.21. In particular, the out of plane effect 

(Kt,yz) does not act on the mid plane and on the free surface of the specimen, while 

it increases its intensity moving towards the free surface, reaching its maximum 
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value at a coordinate z/2t=0.46 (for the case taken into account) and then it drops 

to zero. 

In order to obtain a non negligible yielded area at the notch tip neighbours, a very 

high nominal shear in-plane amplitude has been applied. As it can be noted, the 

intensity of the out of plane effect is equal to 0.6 times the nominal applied load 

near to the free surface. For this reasons the nominal in-plane shear amplitude has 

been set equal to 5k. 

By providing the equations describing the linear elastic through-the-thickness 

variation of the “yz” stress concentration factors (obtainable with a simple 3D 

linear elastic FE analysis), the new incremental routine is able to obtain the whole 

elastic-plastic stress/strain behaviour at the tip of a rounded notch in the 3D plate.  

 

Figure 8.5.21. Stress concentration factors through-the-thickness of the plate at 

the notch tip. In-plane shear case. 

 

In particular, three different through-the-thickness coordinates (z/2t) have been 

chosen to compare the incremental procedure and the FE cyclic elastic-plastic 

results. Figures 8.5.22, 8.5.23 and 8.5.24 show a very good correlation between 

analytical and FE results. Figure 8.5.22 shows the “yz” hysteresis loop at a 

coordinate z/2t=0.25, in the increasing branch of the curve representing the 

through-the-thickness behaviour of the out of plane stress concentration factor. It 
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is worth noting that, in this particular case, the yield condition has been just 

satisfied and the plastic strains are still very low. 

 

Figure 8.5.22. yz-yz hysteresis loop at the notch tip on the plane equal to 

z/2t=0.25 of the plate. Uniaxial cyclic in-plane shear loading. 3D analysis. 

Rounded V-notch, =4mm, 2=120°. 

 

Figure 8.5.23. yz-yz hysteresis loop at the notch tip on the plane equal to 

z/2t=0.46 of the plate. Uniaxial cyclic in-plane shear loading. 3D analysis. 

Rounded V-notch, =4mm, 2=120°. 
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Moving from the mid plane to the free surface, the Kt,yz reaches its maximum 

value at a coordinate z/2t=0.46 (see Figure8.5.23). In this case a very dilated 

hysteresis loop is present, documenting an extended yielded area near the notch 

tip. A low difference can be observed between analytical and numerical results but 

it can be stated that the modified incremental procedure is sensitive to the three 

dimensional effects induced by the application of an in-plane shear loading. 

Approaching the free surface, the out of plane stress concentration factor 

decreases, equating zero at  z/2t=0.5 (see Figure8.5.21). Accordingly, the area 

subtended by the “yz” hysteresis loop quickly decreases up to vanishing on the 

free surface. 

 

 

Figure 8.5.24. yz-yz hysteresis loop at the notch tip on the plane equal to 

z/2t=0.49 of the plate. Uniaxial cyclic in-plane shear loading. 3D analysis. 

Rounded V-notch, =4mm, 2=120°. 
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8.6  A link between cyclic plasticity and the averaged SED 

criterion 

The criterion based on the evaluation of the strain energy density (SED) over a 

control volume surrounding the tip of a sharp or rounded notch has been presented 

and accurately described in some recent contributions (Lazzarin and Zambardi 

2001, Lazzarin and Berto 2005a). The strength properties of brittle components 

weakened by different types of notch were uniquely obtained both in the case of 

static and cyclic loading. The control volume for the evaluation of the SED adapts 

itself as a function of the notch geometry and in particular of the notch root radius 

 and the notch opening angle 2 (See chapter 2). The critical radius Rc, 

expressed as the measure along the notch bisector line starting from the notch tip, 

depends only on the material properties and not on the notch geometry. The 

particular crescent shape volume presented in Lazzarin and Berto (2005a) varies 

from notch geometry to notch geometry following the next formulations: 
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r0             (8.6.2) 

 

In the past, the SED criterion has been already used in order to find a 

correspondence between linear elastic and elastic-plastic behaviour. In particular 

the relation between linear elastic and elastic-plastic notch stress intensity factors 

has been obtained under plane stress and plane strain conditions and also under 

torsion (Lazzarin and Zambardi 2001, Lazzarin and Zappalorto 2008-2011). 

In this work, a link between the averaged SED criterion and the area subtended by 

the hysteresis loops tied to the different components of stress/strain acting at the 

notch tip, obtained by the incremental cyclic plasticity, has been investigated. 

The averaged strain energy density over the crescent shape volume has been 

evaluated with some static FE elastic-plastic analyses provided in Ansys
®

. In all 

the cases taken into account the static applied load has been set equal to the 

nominal amplitude of the cyclic loading considered in the incremental procedure. 
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The values of the averaged SED have been obtained for three different critical 

radius (Rc=0.1, 0.2 and 0.3 mm) in order to investigate the influence on the 

outputs of this fundamental parameter and in addition to ensure the stability of the 

comparison method. 

The area subtended by the hysteresis loops related to one loading cycle, has been 

carried out by a numerical integration routine. In this work, it has been thought 

that only the synergetic presence of a component of stress with the related 

component of strain causes a damaging effect. This leads to neglect the action of, 

for instance, the “xx” component of strain. In fact, because of equilibrium 

conditions, the related component of stress holds zero value at the tip of a rounded 

notch (See Figure 8.3.1). 

In order to obtain a correlation between the SED and area of the acting hysteresis 

loops, four different analyses have been carried out. In particular the problem of a 

cyclic tension-compression loading in the case of plane stress, plane strain and 

generic three-dimensional conditions, and of a multiaxial (tension-torsion) loading 

have been addressed. In all the studied cases, a specimen weakened by a blunt U 

notch with a radius at the notch tip () equal to 1 mm has been considered. The 

notch depth (p) was set equal to 15 mm in the case of a flat specimen and equal to 

6 mm for the axy-symmetric specimen (See Figure 8.4.1). The load ratio has been 

considered always equal to – 1. The material taken into account is the same than 

that used for the analyses in section 8.5, namely AISI 304L steel. 

Several analyses have been carried out with different nominal load amplitudes in 

order to evaluate the evolution of parameter Cm, defined as the ratio between the 

value of the averaged SED and the area of the hysteresis loop acting at the notch 

tip (SED/Ahl). 

The problem of a very thin flat specimen weakened by a blunt U notch has been 

addressed initially. Results are shown in Figure 8.6.1, where it is evident that, for 

high values of the nominal applied stress, Cm tends to an asymptotic constant 

value. For low loads, instead, the link between the SED and the area of the 

hysteresis loop is more complex. Accordingly, for high loads, the area subtended 

by the hysteresis loop can be directly determined from the SED value through a 

multiplicative factor (Cm). This behaviour holds true for all the three considered 
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control volumes and as it can be seen from Figure 8.6.1, it diminishes increasing 

the value of the critical radius. Thus, obtaining the exact critical radius related to 

the material taken into account, the plastic strain hysteresis energy can be easily 

obtained by means of a static FE analysis. 

 
Figure 8.6.1. Cm correlation factor trend for different applied load amplitudes. 

Blunt U-Notch, =1 mm. Plane stress case. 

 
Figure 8.6.2. Cm correlation factor trend for different applied load amplitudes. 

Blunt U-Notch, =1 mm. Plane strain case. 
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The same analyses have been carried out for a very thick plate (plane strain 

conditions). Results shown in Figure8.6.2 make it evident that a plateau value 

exists at high applied loads, namely when a non negligible amount of plasticity is 

present at the notch tip. A correlation can be observed for all the three considered 

Rc and its value, as expected, is similar to that obtained from the plane stress 

analysis. 

Since plane stress and plane strain conditions are only “plane idealisation”, the 

investigation has been extended to the 3D problem of a thick plate weakened by a 

U shaped notch and subjected to a tension-compression cyclic loading (Figure 

8.4.1b). At the tip of the notch two different couples of stress and strain 

components act ((yy, yy) and (zz, zz)). However only the hysteresis loop area 

tied to the “yy” component has been taken into account, being that related to the 

“zz” component almost negligible (less than 1%). 

It is worth mentioning again that, in a thick plate with a rounded notch, the 

maximum notch tip stress varies with the through-the-thickness coordinate and, in 

turn, a variation of Cm might be present, as well. Accordingly, the correlation 

factor, Cm, has been determined on the mid plane (z/2t=0) and on the free surface 

of the specimen (z/2t=0.5) (See Figure 8.6.3 and 8.6.4).  

 
Figure 8.6.3. Cm correlation factor trend for different applied load amplitudes. 

Blunt U-Notch, =1 mm. Three dimensional analysis. Mid plane of the plate. 
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Figure 8.6.4. Cm correlation factor trend for different applied load amplitudes. 

Blunt U-Notch, =1 mm. Three dimensional analysis. Free surface of the plate. 

 

It is also interesting to discuss the through-the-thickness variation of the 

correlation factor for a critical radius equal to 0.3 mm (Figure8.6.5). It is worth 

noting that the parameter holds an almost constant value moving from the mid 

plane to the free surface of the specimen for different nominal applied loads. 

 
Figure 8.6.5. Cm correlation factor trend through the plate thickness for different 

applied load amplitudes. Blunt U-Notch, =1 mm. Three dimensional analysis.  
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The last addressed problem is an axy-symmetric specimen weakened by a 

circumferential U notch under combined cyclic tension-torsion loading. Three 

couples of stress/strain act at the notch tip, in particular the normal components 

“yy” and “zz” and the shear component “yz”. Being the values of the hysteresis 

loop areas comparable, the total area has been thought as the sum of them. The 

trend of the correlation factor is shown in Figure 8.6.6 for different applied loads, 

where the parameter eq is the nominal equivalent von Mises stress. It is evident 

that the results are similar to those discussed for the previous cases. 

 
Figure 8.6.6. Cm correlation factor trend for different applied load amplitudes. 

Axy-symmetric specimen. Blunt U-Notch, =1 mm. Three dimensional analysis. 

Multiaxial loading. 

 

8.7  Conclusions 

A modification of the incremental cyclic plasticity procedure has been presented 

aiming to extend the investigation to the three dimensional effects arising at the 

tip of a rounded notch subjected to different loading configurations. The 

incremental procedure has been initially validated with a number of plane 

analyses (plane stress and plane strain conditions). Then, the problem of an axy-

symmetric specimen weakened by a circumferential notch under pure torsion and 

combined tension-torsion loading has been addressed. In both cases the theoretical 
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predictions have been compared with FE elastic-plastic analyses showing a very 

good agreement.  

Subsequently, the problem has been extended to the three dimensional effects 

arising at the notch tip considering plates of finite thickness weakened by different 

notch geometries, such as a circular hole, a blunt notch and a rounded V-shaped 

notch.  

The through-the-thickness variation of the stress concentration factors, as obtained 

by a linear elastic static FE analysis, have been included into the incremental 

cyclic procedure in order to consider the triaxial nature of the problem. By doing 

so, the actual stress/strain state on different through-the-thickness coordinates has 

been evaluated and compared with three dimensional elastic plastic FE analyses, 

exhibiting a very good agreement. The results prove that the 3D effects related to 

the presence of a finite thickness of the plate cannot be neglected a priori either in 

linear elastic problems or in the presence of a yielded area ahead of the notch tip. 
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Conclusions 
 

 
The present PhD dissertation dealt with linear and non-linear structural analysis of 

notched components by means of local energy approaches. In particular the 

validity of the averaged SED criterion has been investigated by considering 

notched components weakened by different geometrical discontinuities and 

subjected to various loading histories. Three-dimensional effects arising in the 

vicinity of the tip of a notch, multiaxial static and cyclic loadings have been 

investigated taking also into account some particular effects tied to the phase 

displacement between the applied loads and non-linear effects induced by low 

cycle fatigue loadings, trying to extend the averaged SED criterion to the above 

mentioned problems. 

The research activity has been substantially divided in three different research 

topics. In particular, the first topic dealt with the application of the averaged strain 

energy density criterion over a control volume (Lazzarin and Zambardi 2001) on 

mechanical components weakened by sharp and blunt notches and subjected to 

static and cyclic loadings. With the aim to validate the SED criterion, several 

finite element analyses on notched components have been carried out. Two-

dimensional and three-dimensional analyses have been compared to theoretical 

solutions or experimental data, showing the soundness of the approach. In 

particular the SED criterion permitted to assess the static critical load in the case 

of notched specimens made of isostatic graphite subjected to mixed mode 

monotonic loading and the fatigue strength of notched components in 

40CrMoV13.9 steel in the case of uniaxial and multiaxial in-phase and out-of-

phase loadings. Moreover, after the investigation of the out-of-plane effects 

induced by a remotely applied Mode II loading on three-dimensional notched 

specimens, it has been underlined the inherent ability of the criterion to take into 

account the coupled mode arising in the vicinity of the notch tip due to the 
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Poisson's effect in the case of the presence of particular boundary conditions 

applied to the notch profile.  

Taking advantage of some results obtained in the case of cyclic analyses, the 

second research topic dealt with the presentation of a new proposal able to 

discriminate the effect tied to the phase displacement between the applied loads 

on sharp V-notched components subjected to multiaxial loadings. This analytical 

activity made use of the Cardano formulation (1545) in order to obtain the 

maximum tangential stress acting in the vicinity of the notch tip. Results 

demonstrated that a severe notch geometry coupled with an out-of-phase 

multiaxial loading could lead to a more critical condition for the overall strength 

of the component. This phenomenon instead is not noticed in the case of un-

notched or blunt notched components. A brief investigation of the phase 

displacement effect has been carried out also in terms of energetic assumptions. In 

this case, however, an energy based approach reveals to be not effective for the 

discrimination of the phase angle effects. 

The third research topic dealt with the implementation of a dedicate software able 

to obtain the actual stress/strain state at the tip of a rounded notch subjected to low 

cycle fatigue. This particular loading configuration leads to the presence of a non 

negligible yielded area in the proximity of the notch tip. After a deep study on the 

cyclic plasticity theory (as formalised by Prager 1955, Armstrong and Frederick 

1966, Chaboche 1979-1987, Jiang-Sehitoglu 1996a-1996b) and on the simplified 

methods for the determination of the actual stress/strain state at the tip of a 

rounded notch (Neuber 1961, Molski and Glinka 1981, Ye 2004-2008), an 

incremental procedure based on a energetic balance able to model the actual 

cyclic material behaviour (yield criterion, flow rule, hardening rule) has been 

developed and implemented using a commercial calculus software. 

Initially, the obtained results have been compared with those presented in the 

previous scientific literature and, subsequently, the procedure has been extended 

for the first time to the study of the three dimensional effects arising at the notch 

tip. By furnishing the elastic out-of-plane through-the-thickness stress 

concentration factor acting at the tip of a rounded notch, the actual cyclic 

stress/strain through-the-thickness distributions have been obtained. Theoretical 
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results have been compared to a number of non-linear cyclic finite element 

analyses showing a satisfactory agreement. Finally, a new correlation factor 

between the plastic hysteresis energy and the elastic-plastic averaged strain energy 

density within a control volume has been found in order to extend the averaged 

SED criterion to the cyclic plasticity. The analyses reveal a link between the two 

energetic parameters when the yielded area ahead of the notch is not negligible, 

namely when applying non negligible loading amplitudes. 
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Un grosso ringraziamento va a Mamma, Papà e Martina perché sono cosciente 

che ce ne vuole di pazienza per sopportarmi. Grazie per averci creduto e per aver 
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