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Abstract

Network data representing relationship structures among a set of nodes are available in many

fields of applications covering social science, neuroscience, business intelligence and broader

relational settings. Although early probability models for networks date back almost sixty

years, this field of research is still an object of intense and dynamic interest. A primary rea-

son for the recent growth of statistical methodologies in modeling of networks is that the

routine collection of such data is a recent development. Online social networks, novel neu-

roimaging technologies, improved business intelligence analyses and sophisticated computer

algorithms monitoring world news media, currently provide increasingly complex network

data sets along with novel motivating applications and new methodological questions. A

challenging issue in such settings is that data are available via multiple network observations

and hence the rich literature in modeling of a single network falls far short of the goal of

providing flexible inference in this scenario.

Statistical modeling of replicated network data is still on its infancy and several questions

remain about coherence of inference, flexibility, computational tractability and other key is-

sues. Motivated by complex applications from different domains, this thesis aims to take a

sizable step towards addressing these issues via Bayesian nonparametric modeling. The the-

sis is organized in two main frameworks, further divided in different topics. The first thread

develops flexible and computationally tractable stochastic processes for modeling dynamic

networks, which incorporate temporal dependence and exploit latent network structures.

The second focuses on defining a provably flexible representation for the probabilistic gen-

erative mechanism underlying a network-valued random variable, which is able to provide

valuable insights both on shared and subject – or phenotype – specific sources of variability

in the network structure.





Sommario

I dati di rete misurano connessioni tra un insieme di nodi e ricorrono in molti campi di stu-

dio, tra cui le scienze sociali, le neuroscienze, il marketing ed altre discipline. Sebbene i

primi modelli probabilistici per dati di rete risalgano a circa sessant’anni fa, questo campo

di ricerca è tuttora oggetto di vivace ed intenso interesse. La principale motivazione per la

recente crescita di metodologie statistiche per la modellazione di reti è legata alla sempre più

massiccia accessibilità a dati di questo tipo. Le reti sociali online, i recenti sviluppi tecnolo-

gici nel monitoraggio di reti cerebrali e la disponibilità di algoritmi sofisticati per catalogare

informazioni dai mezzi di comunicazione, forniscono dati di rete caratterizzati da una pro-

gressiva complessità e contribuiscono a nuovi interrogativi applicativi e metodologici. Un

aspetto comune a queste nuove basi di dati è legato alla disponibilità di misure ripetute di

reti, anzichè di una sola rete. Di conseguenza, l’ampia letteratura nello studio di una singola

rete richiede generalizzazioni sostanziali per fornire adeguati strumenti inferenziali in questi

nuovi scenari.

Le tecniche statistiche di modellazione per misure ripetute di reti sono ancora agli albori e

diversi interrogativi rimangono ancora irrisolti in merito alla coerenza dei metodi inferenzia-

li, alla maneggevolezza degli strumenti computazionali ed altre importanti questioni. Questa

tesi è motivata da applicazioni complesse in diversi ambiti di studio e si pone l’obiettivo di

compiere un passo considerevole nella risponda alle precedenti tematiche attraverso modelli

Bayesiani non parametrici. Il lavoro è organizzato in due macro aree, a loro volta suddivise

in diverse tematiche. La prima si pone l’obiettivo di sviluppare processi stocastici flessibili

per la modellazione di reti dinamiche, capaci di incorporare sia la dipendenza temporale che

quella di rete. La seconda macro area cerca invece di definire tecniche di rappresentazione

flessibili per definire meccanismi probabilistici associati a variabili aleatorie di rete, con il fine

di fornire informazioni chiave su strutture comuni di connessione e comprendere se e come

queste si modifichino in funzione di altre variabili.
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Introduction

Overview

Network data have attracted a considerable interest from several scientific communities in

the recent years. A main motivation behind the popularity of this field relies on the unique

focus of network science on relationship patterns among entities and their implication in sev-

eral environments and phenomena. Early analyses in different fields of application have sug-

gested that the network perspective provides an appealing direction in answering challeng-

ing scientific questions via formal inference on patterns and regularities among interacting

units. The importance of this endeavor is well understood – for example – in the neuroscience

community and has motivated recent developments in modeling of network data consisting

of interconnection structures among anatomical regions in the human brain. Citing a recent

review of the American Scientist

Networks of the Brain’s (Sporns, 2010) most important contribution lies in connect-

ing neuroscience with the science of networks [. . .] This is where we should be

looking for solutions to the great mysteries of life and the mind.

This is clearly a simple example of a wider and intense interdisciplinary research embracing

several disciplines such as social science, business intelligence, political science, biology and

finance – among others.

The analysis of networks and the development of statistical methodologies for formal and

robust inference on these data is a challenging task. Networks represent a type of object data

– a concept encompassing a broad class of non-standard data types, ranging from functions

to images and trees; refer to Wang and Marron (2007) and the references cited therein for an

overview. Such data require adaptations of classical modeling frameworks to non-standard

spaces. This is particularly true for inference on network data in which the set of method-

ologies and concepts required to learn underlying connectivity structures from the observed

data is necessarily distinct from standard data analysis strategies.

1



Introduction 2

Formally, a network can be represented by a graph G = (V,E) where V = {1, . . . , V } de-

notes the set of nodes, while E ⊂ V× V defines the set of connected pairs of nodes. A graph

G, naturally induces an adjacency matrix representation through the V × V matrix A having

elements A[vu] informing on the specific relationship from node v to node u. Such relations

can be binary if only the absence or presence of a connection is recorded, or can assume dis-

crete or continuous values when a strength in the relationship is also available. Additionally,

connections can be directed or undirected. In the former case a relationship from v to u can

be different from the one connecting u to v, while in undirected networks A[vu] = A[uv] for

every v = 2, . . . , V and u = 1, . . . , v − 1. This thesis focuses on modeling of undirected bi-

nary networks with no self-relations. Such data are common in many applied fields and the

methodologies developed for this scenario represent an important building block for gener-

alizations dealing with more complex network structures.

Similarly to other types of object data, networks are characterized by specific topological

properties. Since early contribution of Milgram (1967) focusing on small-world structural

properties of networks – suggesting that most of the pairs can be joined by a relatively short

path across interconnected nodes – several studies have been designed to learn recurring

topological structures in real networks. Watts and Strogatz (1998) improve initial findings of

Milgram (1967) on small-world networks by joining the analysis of short paths with the study

of the nodes propensity to create transitive relations in a network. This topological charac-

teristic is highly related with the concept of community structure, denoting the tendency of

nodes to cluster in communities characterized by an high number of edges connecting nodes

in the same community and comparatively few edges between nodes in different communi-

ties (Girvan and Newman, 2002). When these communities contains nodes that are similar

with respect to other features such as language, race and age – among others – the network is

said to have assortative mixing structures (Newman, 2003). Another seminal contribution of

Barabási and Albert (1999) introduces the concept of scale free networks, in which few nodes

– called hubs – have substantially more connections than others and the distribution of the

number of edges connecting to a node follows a power-law.

Previous topological structures recur in networks from several domains, covering neuro-

science (Bassett and Bullmore, 2006), social science (McPherson et al., 2001), bioinformatics

(Jonsson et al., 2006) and finance (Górski et al., 2008) and have been shown to affect the func-

tioning of networked systems in a fundamental way. This has motivated an intense initial

focus on descriptive analyses of networks aimed at extracting summary statistics informa-

tive of specific topological properties. Such measures include the average length of all the

shortest paths between pairs of nodes (average path length), the number of connections that

each node has in the network (degree of a node), the relative frequency of the observed edges

in the network with respect to the total number of possible edges (network density) and the

propensity of nodes to form tight-knit groups in the network (transitivity) – among others;
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refer to Börner et al. (2007) for additional summary statistics. These measures are typically

further integrated with graphical visualizations – carefully tailored for network data – and

statistical algorithms learning community structures, in order to provide a comprehensible

description of the entire system. As highlighted in Tamassia (2007) and Fortunato (2010),

respectively, these topics are still object of interest.

Although descriptive analyses provide valuable insights and represent a key initial step at

the basis of deeper studies, statistical modeling of networks is currently an area of major re-

search. In fact, networks are highly complex objects, characterized by several layers of global

and local heterogeneous structures which can be dramatically altered by small amounts of

random perturbations (Watts, 1999). As a results, explicitly accounting for variability in net-

work structures via carefully tailored statistical models can lead to improved estimates of

connectivity patterns and properties, while providing methodologies for formal inference

in the network framework, including estimation techniques, hypothesis testing, uncertainty

quantification and predictive methods.

Since the seminal random graph model of Erdös and Rényi (1959) – which consider edges

as independent Bernoulli random variables with a common edge probability – several alter-

native specifications have been considered to induce suitable dependence structures among

edges and model specific topological properties of interest. Chatterjee et al. (2011) replace

the common edge probability assumption with a more flexible representation considering

also node-specific propensities to form ties in the network. This specification represents

the counterpart in the undirected case of the p1 model proposed by Holland and Leinhardt

(1981), which replaces the edge independence assumption with dyadic independence. Al-

though these contributions allow tractable inference and are characterized by simple genera-

tive mechanisms, edge and dyadic independence assumptions have shown to be unrealistic

in many empirical studies (Robins et al., 2007a).

Frank and Strauss (1986), generalize previous contributions to account for more realistic

network structures in which two edges can be conditionally dependent – given the others

– if they have a node in common. Their p∗ model allows a more flexible characterization

of transitivity patterns and falls within the more general class of exponential random graph

models (ERGM). This popular family of statistical models defines the probability of a given

network configurationA under an exponential family representation, with sufficient statistics

representing suitably chosen network measures, such as number of edges, node degree, num-

ber of triangles or k-stars and others; refer to Wasserman and Pattison (1996) for a detailed

overview and Robins et al. (2007a,b) for recent developments including covariates effects

and more flexible characterizations. Although exponential random graphs can induce suit-

able dependence structures between edges and model some topological properties of interest,
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these procedures are characterized by a number of drawbacks. Estimation relies on pseudo-

likelihood (Strauss and Ikeda, 1990) and approximate Markov chain Monte Carlo methods

(Snijders, 2002), due to the computational intractability of a full likelihood approach. Some

specifications are prone to degeneracy (Handcock, 2003) and questions remain about coher-

ence, inflexibility and other key issues (Chatterjee and Diaconis, 2013). Moreover, when the

aim of statistical modeling is in developing a flexible characterization of the probabilistic gen-

erative mechanism underlying observed network data, exponential random graphs may lack

flexibility in assigning the same probability to configurations having equal sufficient statis-

tics, even when such configurations are very different.

Previous issues have motivated an intense research aimed at finding alternative specifica-

tions to exponential random graph models. An increasingly popular class of procedures in-

cluding – among others – stochastic block models (Nowicki and Snijders, 2001), mixed mem-

bership stochastic block models (Airoldi et al., 2008) and latent space models (Hoff et al.,

2002), assume edges as conditionally independent Bernoulli random variables given their

corresponding edge probabilities, with these probabilities further characterized as a function

of node-specific latent variables. As highlighted in Hunter et al. (2012), building on condi-

tional independence rules out degeneracy issues and provides computational benefits in fa-

cilitating implementation of standard MCMC methods. Moreover, the shared dependence on

a common set of node-specific latent coordinates can accurately characterize a broad variety

of topological structures and dependencies within the network.

Stochastic block models (Nowicki and Snijders, 2001) and their generalizations (Kemp et al.,

2006) can characterize block structures by defining edge probabilities as a function of nodes

membership to latent communities and block probabilities between these communities. These

formulations can recover different block patterns including assortative and disassortative

structures, but have limited flexibility in relying on stochastic equivalence within the blocks.

Mixed membership stochastic block models (Airoldi et al., 2008) and latent space models

(Hoff et al., 2002) improve flexibility by not restricting nodes to belong to a single commu-

nity. Airoldi et al. (2008) introduce mixed membership block structures which allow nodes

to participate in multiple communities with node-specific degrees of affiliation. Hoff et al.

(2002) define instead edge probabilities as a function of pairwise Euclidean distances between

nodes in a latent space. This characterization can provably accommodate community behav-

iors, transitive relations, k-star structures along with predictors effects (Hoff et al., 2002) and

has been recently generalized to capture additional network properties (Krivitsky et al., 2009)

and account for different types of distance (Hoff, 2008). Refer to Hunter et al. (2012) for an

overview of the computational methods associated with this class of models.
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Main contributions of the thesis

Previous contributions cover a wide set of methodologies for statistical analysis of a single

network observation, but fall far short of the goal of providing flexible inference in com-

plex network data problems which are increasingly common in many fields. Online so-

cial networks, novel neuroimaging technologies, improved business intelligence analyses

and sophisticated computer algorithms monitoring world news media, currently provide

increasingly complex network data sets along with novel motivating applications and new

methodological questions. Examples include dynamic networks, where data are available

via time-varying adjacency matrices At1 , . . . , Atn ; multi-layer networks in which the data set

is characterized by multiple network views Ak, with each layer k = 1, . . . ,K measuring a

different type of relationship on the same set of nodes; and population of networks when the

replicated network data A1, . . . , An consist of measurements of the same type of network on

different individuals.

A common issue in such settings is that data are available via multiple network observa-

tions and hence the rich literature in modeling of a single network requires generalizations

to carefully accommodate these data sets. Although a number of proposals is available, cur-

rent methodologies for provably flexible and tractable inference in these scenarios are still

on their infancy. Motivated by complex applications from different domains, this thesis aims

to take a sizable step towards addressing the main flexibility, computational tractability and

theoretical issues associated with available contributions.

After reviewing available statistical contributions in modeling of complex network data and

providing a careful description of the motivating applications in Chapter 1, we focus on two

main frameworks, further divided in different topics. Chapter 2 develops methodologies for

modeling dynamic networks, while Chapter 3 aims to provide flexible inference procedures

in analyzing populations of networks data. Concluding remarks and further directions of

research are outlined in a final discussion.

Nonparametric Bayes modeling of dynamic networks

Motivated by applications to international relationships data and human interaction net-

works, Chapter 2 focuses on dynamically evolving binary relational matrices At1 , . . . , Atn ,

with interest being on inference on the time-varying relationship structure and prediction.

Previous proposals lack computational tractability and few theoretical results on the flexibil-

ity of the models are available. In Section 2.1 we aim to define a Bayesian nonparametric

dynamic model which is provably general, reduces dimensionality and favors simple com-

putation. Section 2.2 focuses instead on generalizing previous proposal in order to improve
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the flexibility of the underlying stochastic process, while providing scalable algorithms for

inference, forecasting and prediction of future networks.

Specifically, in Section 2.1 we propose a nonparametric Bayesian dynamic model, which

reduces dimensionality in characterizing the collection of time-varying adjacency matrices

through a lower-dimensional latent space representation, with the latent coordinates of the

nodes evolving in continuous time via Gaussian processes (Rasmussen and Williams, 2006).

Using a logistic mapping from the edge probability space to the latent relational space, we

obtain a provably general formulation which can accommodate across-node heterogeneity in

dynamic connectivity patterns. Posterior computation is available via a simple Gibbs sampler

which leverages the recently developed Pólya-gamma data augmentation for Bayesian logis-

tic regression (Polson et al., 2013). We provide theoretical results and illustrate performance

via simulations. The model is applied to study dynamic international relationships.

Although providing a good methodological basis, previous approach faces the usual com-

putational bottlenecks of Gaussian processes (GP) in scaling to large time windows, and the

dynamic network inherits the stationary dependence structure of the latent GPs. Motivated

by the importance of realistically modeling and forecasting dynamic networks of face-to-face

human interactions, we generalize previous contribution by proposing a novel methodology

for Locally Adaptive DYnamic (LADY) network inference in Section 2.2. Our LADY network

model replaces GP with a dynamic latent space representation in which each subject’s posi-

tion evolves over time via a stochastic differential equation characterized by a simple state

space formulation (Durbin and Koopman, 2012). This approach improves computational

tractability utilizing results from Kalman filter (Durbin and Koopman, 2002) and allows lo-

cally varying smoothness in edge probability trajectories.

Nonparametric Bayes modeling of populations of networks

Methodologies developed in Chapter 3 are mostly motivated by neuroscience applications

measuring a network of binary structural interconnections among brain regions for each sub-

ject along with a categorical variable such as creativity group.

When multiple network observations A1, . . . , An are collected, current literature provides

inference on the scale of the networks summary statistics which typically discards impor-

tant information about the whole network structure and leads to different results depending

on the summary measures considered. In Section 3.1 we develop fully general and prov-

ably flexible methods to nonparametrically estimate the probability mass function (pmf) for

network-valued random variables, while favoring dimensionality reduction. Motivated by

the interest in assessing evidence of differences in brain connectivity between low and high

creativity subjects, previous methodology is further generalized to allow flexible changes in
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the pmf across groups, facilitating robust inference and hypothesis testing on global and lo-

cal associations between networks and categorical outcomes. While previous contribution is

specifically motivated by neuroscience data, Section 3.2 takes the lead from the developed

methods to define targeted cross-selling marketing campaigns exploiting mixed domain data

from customers marginal preferences and co-subscription networks among products.

According to previous discussion, Section 3.1 proposes a fully generative Bayesian nonpara-

metric approach for modeling the pmf of network-valued data. In particular, the probability

mass function for the network-valued random variable is assigned a mixture model, allocat-

ing individuals to latent classes in terms of their network structure. Within a class, the edge

probabilities are related to latent similarity measures via a logistic mapping. The similarity

matrix is then factorized as the sum of a common component and a class-specific deviation

that arises from embedding the nodes in a lower-dimensional latent space that takes into ac-

count the network structure. This mixture of low-rank factorizations is provably flexible and

provides a valuable building block for formal inference on group differences in the network

structure, allowing global and local hypothesis testing adjusting for multiplicity and robust

to model misspecification. This is accomplished by generalizing the mixture of low-rank

factorizations to a dependent mixture of low-rank factorizations which allows the pmf for

network-valued data to shift nonparametrically between groups. An efficient Gibbs sampler

is defined for posterior computation. We provide theoretical results on the flexibility of the

model and assess testing performance in simulations. The approach is applied to provide

novel results showing relationships between brain networks and creativity. An additional

application is considered to learn how the Alzheimer’s compromises the brain network.

This mixture of low-rank factorizations provides a general building block also in other ap-

plied settings. In Section 3.2 we exploit this representation for hierarchical joint modeling

of customer preferences for specific products, along with co-subscription networks among

such products encoding multi-buying behavior, across different insurance agencies. This for-

mulation allows efficient targeting at both agency and customer levels, while providing key

information on mono- and multi-product buying behaviors within clusters, informing cross-

selling marketing campaigns.





Chapter 1

Modeling of complex networks

1.1 Motivations underlying dynamic networks

Multiple network observations can arise from dynamic monitoring of time-varying rela-

tional data. Real networks are often associated with a dynamic component and the de-

velopment of statistical methodologies to learn how connectivity patterns are wired across

time is a fundamental goal in many fields of application. The accurate characterization of

these processes allows deeper insights in many complex phenomena, while providing infer-

ence and prediction strategies in different dynamical systems, covering information diffu-

sion (Leskovec et al., 2007), disease contagion (Keeling and Eames, 2005), computer anomaly

transmission (Idé and Kashima, 2004) and riots propagation (Berestycki et al., 2015) – among

others; refer also to Holme and Saramäki (2012) for further examples.

Despite the importance of this endeavor, statistical modeling of dynamic networks is a re-

cent field of research compared to the most popular literature on static network data. As

highlighted in Goldenberg et al. (2009) the reasons for this delay are mostly related to the

initial unavailability of dynamic network data along with the increased complexity in mod-

eling their underlying structures. Since earliest Sampson (1969) monastery data set – en-

coding dynamic relationships between eighteen monks at three time points – the access to

dynamic network data has registered an increasing growth till reaching substantially com-

plex data structures in the last years. World Wide Web architectures (Papadimitriou et al.,

2010), telecommunication infrastructures (Liu et al., 2011), recommendation systems (Sarkar

et al., 2014) and novel tracking devises for face-to-face human contact (Stehlé et al., 2011),

currently provide – among others – a rich variety of complex dynamic networks along with

novel applied questions. In fact, beside modeling and forecasting of global network struc-

tures, there is also an increasing focus on studying edge-specific dynamic patterns. These

9
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finer scale analyses are a key to detect anomalous behaviors and predict how information

propagate from a node to the others in future scenarios.

In accomplishing this goal it is important to develop statistical methodologies which can

flexibly accommodate and forecast complex temporal patterns of heterogeneity among nodes.

Although the number of available contributions in statistical modeling of dynamic networks

has registered an exponential growth in recent years, current proposals still raise open ques-

tions about inference, flexibility and computational tractability. Motivated by time-varying

networks of geo-political relationships among international countries and dynamic human

interaction data, we aim to take a further step towards improving the current state of art in

this field of analysis. The following Sections 1.1.1–1.1.2 describe the data sets motivating the

proposed methodologies along with a careful review of the available literature in modeling

of dynamic networks.

1.1.1 Matrix-valued stochastic processes for international relationships

The last two decades have abounded with key financial and conflict events strongly af-

fecting the world geo-political system. Notable examples include the 1997–2000 dot-com

bubble (Taylor, 2009), the 2004-2007 United States housing bubble (Bernanke, 2007) and the

subsequent 2007–2009 global financial crisis (Brunnermeier, 2009) along with the 2008–2012

global recession and the 2010–2012 European sovereign-debt crisis (Belkin et al., 2012). Be-

side perturbing financial events, recent years have been additionally characterized by sev-

eral conflicts including the 2008–2009 Russian-Ukrainian gas crisis (Tsygankov, 2015) and the

2003–2011 Iraq war (Hinnebush, 2009) – among others. These events potentially have a major

impact on the dynamic evolution of international relationships among pairs of countries and

predicting future patterns is a key to anticipate possible crises. Motivated by the importance

of this endeavor and by the current availability of sophisticated algorithms monitoring world

news media – which allow access to wide catalogs of societal-scale dynamic behaviors – we

aim to exploit media reports to learn dynamic geo-political patterns in the last two decades.

There is growing interest in mining massive daily news media and web data to learn and

predict social and political patterns; refer to Michel et al. (2010), Leetaru (2011), Zaman et al.

(2014) and the references cited therein for examples. Although media reports do not necessar-

ily provide an unbiased view on world events, they provide useful data regarding the overall

tone of public opinions (Wanta et al., 2004), including on relationships between countries. We

focus on dynamic relationship networks among international countries based on the Global

Database of Events, Language and Tone (GDELT) project.

GDELT is an open access database containing a comprehensive and high resolution cata-

log of geo-referenced sociopolitical events from 1979 to the present. Combining Conflict and
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FIGURE 1.1: For some European countries in our data, dynamic relationships for selected times.

Mediation Event Observations (CAMEO) taxonomy for political events and actors (Schrodt,

2012) and Textual Analysis by Augmented Replacement Instructions (TABARI) open soft-

ware for the machine coding of text data (Schrodt, 2014), GDELT provides a platform that

daily monitors the world’s news media reports and translates them into relational data.

Specifically each row in the data set corresponds to a specific event record for which a va-

riety of spatio-temporal and contextual information are available including – among others

– the two agents interacting, their country of affiliation, the type of relationship recorded

and the calendar date in which it was first reported; see Leetaru and Schrodt (2013) for a

more detailed overview. This project is attracting increasing interest in the machine learn-

ing community (Schein et al., 2013; Hoff, 2014; Schein et al., 2014) and has been successfully

utilized in several applied settings, covering domestic protests (Keneshloo et al., 2014), in-

ternational conflicts (Brandt et al., 2013), political instabilities (Gao et al., 2013) and global

disasters (Kwak and An, 2014). We are specifically interested in modeling of dynamic varia-

tions in the overall relationships among countries across the last twenty years as reported by

the news media.

Our data consist of a sequence of V ×V dynamic symmetric adjacency matricesAt1 , . . . , Atn
having entries Ati[vu] = Ati[uv] = 1 if there is a positive overall cooperative relationship

among countries v = 2, . . . , V and u = 1, . . . , v − 1 at time ti and Ati[vu] = Ati[uv] = 0, other-

wise. For interpretability, we consider bimonthly relationships among the V = 25 countries

heavily involved in financial crises and international conflicts in the last twenty years. Refer

to Figure 1.1 for an illustration. Dynamic networks At1 , . . . , At127 are constructed exploit-

ing variable QuadClass in the GDELT data set to first obtain matrices Ahel
t1 , . . . , A

hel
t127 and

Aconf
t1 , . . . , Aconf

t127 . These dynamic matrices have entries Ahel
ti[vu] = Ahel

ti[uv] and Aconf
ti[vu] = Aconf

ti[uv]

encoding the total number of unique events among pairs of agents affiliated with countries



Chapter 1. Modeling of complex networks 12

GREECE-USA

GREECE-GERMANY

IRAQ-USA

IRAQ-SYRIA

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

FIGURE 1.2: For select pairs of countries, barcode plot of their edges across time. Bar at ti means
Ati[vu] = 1.

v = 2, . . . , V and u = 1, . . . , v− 1, respectively, at time interval ti. Matrix Ahel
ti

counts material

help events, while Aconf
ti

counts material conflict events. The difference ∆ti = Ahel
ti
− Aconf

ti

provides an aggregated measure of the strength of positive association between each pair

of countries, with Ati[vu] = Ati[uv] = 1(∆ti[vu] = ∆ti[uv] ≥ 0) indicating an overall positive

cooperative relationship between countries v and u at time ti. In the previous notation 1(·)
represents the indicator function. Examples of positive events include sharing intelligence

and economic aid, while examples of negative events include imposing embargo and stop-

ping military assistance. In addition to ease in interpretation, we avoid joint modeling the

dynamic count matrices (Ahel
ti
, Aconf

ti
) directly, to improve robustness, limiting sensitivity to

missed and duplicate events. The latter are further controlled by a one-day filter which col-

lapses event records having the same date, pairs of agents and relationship type.

As shown in Figure 1.2, the edge trajectories cycle with varying patterns of duration and

inter-dependence across time. Capturing such behavior is important in assessing how the

dynamic inter-relationships relate to key conflict and financial events. Occurrence times of

such events can be included as time-varying predictors of the dynamic network. However,

for simplicity and robustness, we instead focus on developing a dynamic network model,

which is sufficiently general to account for dynamic variations in the network structure with-

out requiring known events to be driving this variation.

Relevant literature in modeling of dynamic networks

There is a growing literature in statistical modeling of dynamic networks. A subset of con-

tributions focus on the case in which the exact time of each edge event is observed; see for
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example Butts (2008) and DuBois et al. (2013). We instead consider the case in which snap-

shots of a specific network are collected at multiple time points.

A popular class of procedures generalizes static exponential random graph models via dis-

crete time Markov models (Robins and Pattison, 2001; Hanneke et al., 2010). These contribu-

tions define the transition probability from a network configuration at time t to a configura-

tion at time t+1 under an exponential family representation with sufficient statistics covering

network measures at time t+ 1 and suitable interaction terms with observed configuration at

t; see also Krivitsky and Handcock (2014) for recent developments. Although discrete time

exponential random graphs (TERGM) can leverage the several techniques available for the

static case and explicitly account for topological properties as well as suitable dependence

structures among edges, these procedures inherit the drawbacks of the static models they

seek to generalize and are not tailored to accommodate irregular time grids.

The seminal contribution of Holland and Leinhardt (1977) and the subsequent improve-

ments of Snijders (2001, 2005) and Snijders et al. (2010a), provide an alternative specification

via continuous time Markov models in which changes in edge variables are conditionally

independent given the current network observation and arise from nodes choices aimed at

maximizing their utility based on the current network topology. Estimation is available via

method of moments (Snijders, 2001), maximum likelihood (Snijders et al., 2010b) or Bayesian

techniques (Koskinen and Snijders, 2007). Stochastic actor-oriented models provide a valu-

able methodology when the interest is on homogenous and time-constant effects of specific

structures – covering for example, transitivity, degree popularity and exogenous variables –

on network evolution, however the underlying homogeneity assumptions may fail to accom-

modate specific heterogenous connectivity patterns. Flexible modeling of dynamic network

structures, while accommodating heterogenous behaviors is a key to improve prediction.

The importance of this endeavor has motivated increasing efforts in generalizing static la-

tent variables models for network data to dynamic scenarios. Although these procedures

do not explicitly parameterize interdependence between relations, the shared dependence on

a common set of node-specific latent variables can induce rich dependence structures and

allow for across-node heterogeneity in time-varying connectivity patterns. Early versions

of dynamic stochastic block models (Yang et al., 2009, 2010) focus on time-varying nodes

membership to blocks, while relying on time-constant block probability matrices. These ini-

tial versions have been recently generalized to more general scenarios in which both block-

probabilities and nodes membership to blocks can change across possibly unequally spaced

times. Xu and Hero (2014) and its recent generalization (Xu, 2015) take advantage from state

space formulations, but require sufficient numbers of observations in each block to meet

Gaussian assumptions for the sample mean, and rely on extended Kalman filter to linearize
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the observation equation. Beside possible computational issues, time-dependent stochas-

tic block models are specifically tailored for learning dynamic changes in block structures,

and hence may fail in accurately characterizing time-varying network patterns different than

those arising from block structures. Dynamic relational feature models (Foulds et al., 2011)

partially improve flexibility by replacing the single block membership variable with vectors

describing presence or absence of given features for each node. Although this representa-

tion accommodates more general network structures, the time-constant assumption for the

feature-interaction matrix may restrict dynamic variations.

We dynamically model adjacency matrices by embedding the nodes in a low-dimensional

latent Euclidean space, with their coordinates evolving in continuous time via Gaussian pro-

cesses and edge probabilities constructed via a logistic mapping function. Hence, our work

is most closely related to the literature on more general classes covering mixed member-

ship stochastic block models (Airoldi et al., 2008) and latent space models (Hoff et al., 2002;

Hoff, 2008). Dynamic mixed membership stochastic block models (Xing et al., 2010) and la-

tent space models (Sarkar and Moore, 2005; Sewell and Chen, 2015) propagate information

across time via state space models, Markov processes and random walk trajectories, respec-

tively. Inference relies on several layers of approximation – such as extended Kalman filter

and variational Bayes – without theory available to justify accuracy. In contrast, we provide

a simple Gibbs sampling algorithm, which converges to the exact posterior and adaptively

shrinks towards lower-dimensional structures.

1.1.2 Scalable and adaptive inference for face-to-face interaction data

The increasing availability of new sensing devices and wearable sensors to trace human in-

teraction behaviors, allows growing access to these type of dynamic networks, while opening

new avenues for studying underlying patterns in social interactions and how these processes

relate to associated dynamic systems such as epidemic spreading. Recent studies have inves-

tigated dynamic face-to-face human interactions in several environments. Isella et al. (2011)

focus on contact dynamics among individuals in two different scenarios, covering a scientific

conference and a long-running museum exhibition, respectively. Vanhems et al. (2013) study

interactions among staff members and patients in a hospital. Stehlé et al. (2011), Gemmetto

et al. (2014) and Fournet and Barrat (2014), Mastrandrea et al. (2015) investigate face-to-face

contact dynamics among students in primary and high schools, respectively; refer also to

Barrat and Cattuto (2013) for a review.

Previous studies mostly focus on aggregate and time-varying descriptive analyses in order

to provide a summarized overview of the topological structures underlying the observed

networks and how these measures relate to environmental conditions and other variables.
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Although these procedures provide valuable insights, holistic statistical models of how the

human interaction networks dynamically evolve would provide improved ability to jointly

infer how different network structures vary, while accounting for uncertainty. In addition,

such models would be highly useful in terms of prediction and forecasting of interactions,

which is of key interest in epidemiology – for example.

We are specifically interested in studying face-to-face dynamic interactions among indi-

viduals in a primary school in Lyon, France – see Stehlé et al. (2011) and Gemmetto et al.

(2014) for additional details. Understanding key aspects of these interaction networks and

prediction of future contacts is interesting sociologically and important in infectious disease

epidemiology. Raw contact data are available at http://www.sociopatterns.org for

232 children between 6 and 12 years of age and 10 teachers, during two consecutive school

days running from ≈ 08:40 to ≈ 17:10. The primary school is characterized by 5 grades, each

divided in two classes comprising on average 24 children. Face-to-face contacts are moni-

tored via wearable radio frequency identification devices (RFID), exchanging low-power ra-

dio packets when two individuals face each other at a distance of ≈ 1 − 1.5 meters. This

proximity range is chosen to represent a reasonable proxy of close social contact, while indi-

cating a potential occasion of disease transmission (Stehlé et al., 2011). Raw data are available

for consecutive windows of 20 seconds and encode which pairs of individuals established a

face-to-face proximity contact during each of these time intervals; refer to Cattuto et al. (2010)

for a description of RFID proximity-sensing infrastructures.

Initial descriptive analyses of these data highlight a very sparse and noisy structure with

only 24 contacts – among the 29,161 possible – monitored on average for every window of 20

seconds. This time scale might be too narrow to highlight recurring patterns in the dynamic

evolution of underlying network topological structures. Hence, we aggregate the data in con-

secutive time windows of 10 minutes so that the resulting networks encode which pairs of

individuals established at least one face-to-face proximity contact during each of these sub-

sequent 10 minute time intervals. Focusing on binary connections instead of the cumulative

number of contacts in the 10 minute time windows provides a simpler starting point. More-

over, under an epidemiological perspective, at least one proximity contact of 20 seconds may

be sufficient for disease transmission. Although we loose short scale dynamics, these win-

dows are sufficiently wide to highlight longer range patterns in the network topology, but

maintain enough granularity to capture sharp changes which may occur in correspondence

of breaks, lunch times and school hours. We found these underlying structures quite ro-

bust to moderate changes in the length of the time intervals, including 5, 15 and 20 minutes.

Stehlé et al. (2011) consider a similar aggregation strategy to investigate dynamic changes in

the averaged degree.

In analyzing these data, we seek inference and prediction procedures which are sufficiently

http://www.sociopatterns.org


Chapter 1. Modeling of complex networks 16

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●
●

●

●●
●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●●

●
●

●
●

●●

●

●

●

●

●
●

●
●

●

●●

●

●●

●

●●

●
●●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●●●●●●●●●●●
●

●

●

●●●●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●●●●●●●●●

●

●

●

●●●●●

●●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●

●●

●

●

●

●

●●

●

●

●●●●●

●

●

●

●

●

●●

●●

●●

●

●●

●●

●

●

●●

●

●

●

●

●

●●●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●●

●●

●●

●

●

●

●

●

●

●●

●●●●●●●●●●●●●●●

●●●●●●●

●●●

●

●

●

●

●●

●●

●

NETWORK DENSITY ASSORTATIVITY  BY  GENDER ASSORTATIVITY  BY  CLASS

DEGREE NODE 43 DEGREE NODE 67 DEGREE NODE 71

0.02

0.04

0.06

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

0

5

10

15

0.0

2.5

5.0

7.5

10.0

12.5

0

5

10

09:00
09:30

10:00
10:30

11:00
11:30

12:00
12:30

13:00
13:30

14:00
14:30

15:00
15:30

16:00
16:30

17:00
09:00

09:30
10:00

10:30
11:00

11:30
12:00

12:30
13:00

13:30
14:00

14:30
15:00

15:30
16:00

16:30
17:00

09:00
09:30

10:00
10:30

11:00
11:30

12:00
12:30

13:00
13:30

14:00
14:30

15:00
15:30

16:00
16:30

17:00

FIGURE 1.3: Time-varying observed network summary statistics for the first day of school. Upper
panels: global measures. Lower panels: degree of selected nodes.

flexible to capture different types of dynamic changes in the network data. Dynamic changes

in connectivity patterns may be influenced by underlying endogenous architectures as well

as exogenous factors, such as changing spatial environments and class or gender homophily.

Information on class membership and gender are available for all the individuals – except

teachers – while approximate changes in spatio-temporal locations are provided for 5 classes

out of 10 in Figure 10 of Stehlé et al. (2011). We focus on the students and teachers in these

5 classrooms, leading to a total of V = 120 nodes. Data from the first day At1 , . . . , Atn are

the focus on inference, while contact networks A∗t1 , . . . , A
∗
tn in the second day are considered

to evaluate out-of-sample predictive performance. Each 120 × 120 adjacency matrix Ati has

entries Ati[vu] = Ati[uv] = 1 if a face-to-face contact has been recorded between individuals

v = 2, . . . , V and u = 1, . . . , v− 1 at time ti, i = 1, . . . , n, and Ati[vu] = Ati[uv] = 0, if no contact

is observed.

As shown in Figure 1.3, the trajectories of global and node-specific summary measures cy-

cle irregularly between phases characterized by slower and more rapid variations. Flexibly

capturing such behavior is important to improve prediction and investigate how dynamic

face-to-face interactions relate to specific events, such as school hours, breaks, lunch time

and changing environments. Instead of directly including covariate information on gen-

der, class membership and spatial locations in the model, we use these variables to assess

the extent to which our model can learn known structure in the data. Current models for

dynamic networks typically rely on homogeneity and stationarity assumptions, and hence

have difficulties in modeling variation over time in the rate of change in the network. This

can have a strong effect on the quality of inferences and predictions, with under-smoothing
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during periods of stable contacts and over-smoothing across times of rapid variations. Mo-

tivated by face-to-face contact network data and by the need for flexible methods enforcing

time-varying smoothness in dynamic network data, we develop a Locally Adaptive DYnamic

(LADY) network model that characterizes the time-varying edge probabilities via latent pro-

cesses, which have time-varying smoothness.

Relevant literature in scalable and flexible inference for dynamic processes

Methodologies for dynamic network inference outlined in Section 1.1.1 have two main

drawbacks motivating further modifications to deal with face-to-face dynamic interaction

data. Firstly, most of the proposed stochastic processes for network dynamics are insuffi-

ciently flexible to accommodate connectivity patterns cycling irregularly between periods of

rapid and slow change. Secondly, although available models reduce dimensionality within

the network by collapsing higher-order dependencies into lower-dimensional spaces, the

proposed computational methods are typically not appropriate for fast forecasting and pre-

dictions.

Inappropriately restricting the smoothness of edge probability trajectories to be constant

can have a major impact on the quality of inferences and predictions, with over-smoothing

during times of rapid change and under-smoothing in correspondence of stable windows. To

realistically characterize the face-to-face human interaction data, it is necessary to accommo-

date time-varying smoothness. Motivated by our application, we additionally look for fast

online updating and forecasting procedures. Efficient strategies of this type remain partially

unexplored, but are a key to timely prediction of future interactions and appropriate design

of policies, such as disease surveillance and outbreak prevention.

There is a wide literature in modeling time-varying trajectories, covering Kalman filter

(Kalman, 1960), Gaussian processes (Rasmussen and Williams, 2006), smoothing spline (Hastie

and Tibshirani, 1990) and kernel smoothing methods (Silverman, 1984) – among others. Such

approaches perform well for slowly-changing patterns with constant bandwidth parame-

ters regulating implicitly or explicitly global smoothness; however, our interest is allowing

smoothness to vary locally in continuous time. Possible extensions for local adaptivity in-

clude free knot splines (Friedman, 1991), which perform well in simulations but the different

strategies proposed to select the number and the locations of knots via stepwise knot selec-

tion (Friedman, 1991), Bayesian knot selection (Smith and Kohn, 1996) or MCMC methods

(George and McCulloch, 1993), prove to be computationally intractable for moderately large

data sets. Zhu and Dunson (2013) recently address previous scalability issues by inducing

local adaptivity via nested Gaussian processes (nGP). These processes explicitly model the

trajectories’ mth order derivatives via GP priors, which are in turn centered on a higher level
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GP instantaneous mean that favors time-varying smoothness. Beside providing flexible mod-

els for locally adaptive inference in trajectories patterns, nGPs can be reformulated as a state

space model (Durbin and Koopman, 2012) which allows implementation of scalable algo-

rithms (Durbin and Koopman, 2002) substantially reducing the computational complexity.

Although nested Gaussian processes have been successfully generalized to characterize

complex mean-covariance stochastic processes (Durante et al., 2014), similar proposals are

lacking in the dynamic network field. To our knowledge only Snijders (2005) includes a no-

tion of local adaptivity by considering a time-varying rate parameter in his actor-oriented

model formulation. However, available algorithms for estimation and inference (Koskinen

and Snijders, 2007; Snijders et al., 2010b) apparently face substantial issues in scaling to large

time windows and approximate procedures via method of moments (Snijders, 2001) raise

questions about accuracy. It is additionally worth noticing how their applications are sub-

stantially different than our face-to-face interaction networks in considering time-varying

relational data generally observed for less than ten time points, instead of dynamic networks

collected at a much finer time scale. In these wider time windows several homogeneity as-

sumptions underlying their formulation may be unrealistic.

Motivated by these issues, we generalize the methodologies developed for data in Section

1.1.1, to realistically analyze dynamic face-to-face human interactions. The proposed proce-

dure aims at enhancing flexibility in modeling of time-varying edge trajectories, while sub-

stantially improving scalability of inference and forecasting strategies. This is accomplished

by considering a latent space formulation with nGPs to induce variability over time in the

rate of change in the network structure. By considering a state space representation of the

latent stochastic processes, we reduce the computational burden, while also developing sim-

ple procedures for fast forecasting and prediction as well as novel online updating strategies

appropriate to streaming networks.
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1.2 Motivations underlying population of networks

Current networks are not only dynamic, but also inherently multidimensional. Social actors

can interact on different online networking platforms such as Twitter, Facebook and Linkedin

– among others – or within the same online social network according to different types of re-

lationship covering friendships, comments, likes, tags (Mankad and Michailidis, 2015). Other

notable examples include trade networks among countries with respect to distinct products

(De Domenico et al., 2015), protein–protein interactions of different types (De Domenico et al.,

2015) and transportation networks arising from various services (De Domenico et al., 2014).

From a statistical perspective, these multiple types of relationships induce a multi-layer net-

work representation characterized by multiple adjacency matrices – called layers – which

share the same set of nodes, but differ in their edges.

Although the last two decades have been characterized by increasing efforts in developing

joint statistical models for multi-layer networks to improve understanding of complex inter-

acting systems (Kivela et al., 2014; De Domenico et al., 2015), the frontier of network science

has shifted again towards new multidimensional data. In fact, the pervasiveness of novel

technologies currently allow the collection of replicated network data. For example, brain

connectivity networks for a group of individuals in a study can be measured via accurate

imaging techniques (Craddock et al., 2013); networks of passes among players are routinely

collected for each team via tracking systems (Grund, 2012) and air transportations networks

are constantly monitored for each airline company (Cardillo et al., 2013). These populations of

networks data are substantially different than multi-layer networks in consisting of multiple

observations of the same type of network on different statistical units, instead of measure-

ments of different types of relationships on the same set of nodes. Hence, while multi-layer

networks require statistical methodologies for joint modeling of multivariate edges, popula-

tion of networks can be seen as realizations from a common network-valued random variable

whose underlying probabilistic generative mechanism represents the focus of inference.

Flexible modeling of network-valued random variables requires substantial generalizations

of current methodologies along with novel inference procedures. Motivated by applications

to neuroscience and business intelligence data sets, we propose a fundamentally new ap-

proach based on defining a generative probabilistic model for replicated network data, while

developing novel inference procedures to estimate and test for changes in the network ar-

chitecture across groups. In Sections 1.2.1–1.2.2 we describe the data sets motivating the

proposed methodologies and provide a careful review of the available contributions.
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1.2.1 Flexible statistical modeling and inference for connectome data

There has been an increasing focus on using neuroimaging technologies to better under-

stand the neural pathways underlying human behavior, abilities and neuropsychiatric dis-

eases. The primary emphasis has been on relating the level of activity in specific brain re-

gions to phenotypes. Activity measures are available via electroencephalography (EEG) and

functional magnetic resonance imaging (fMRI) – among others – and the aim is to produce

a spatial map of the locations in the brain across which activity levels display evidence of

change with the phenotype.

Most statistical analyses are based on the massively univariate approach (Luo and Nichols,

2003), by which separate tests are performed to detect local variations for each brain region

activity variable across phenotypes. These approaches do not consider dependence in activa-

tion structures, and face issues with low power when multiple testing corrections – such as

the Benjamini and Hochberg (1995) false discovery rate (FDR) control – are employed. Refer

to Genovese et al. (2002) for an application of the Benjamini and Hochberg (1995) procedure

within the neuroscience field and Leek and Storey (2008), Clarke and Hall (2009) for a discus-

sion of possible drawbacks in high-dimensional data sets with dependent variables. Graph-

ical models for multivariate activity data represent a possible solution which gains power

in multiple testing by accounting for specific dependence structures in the brain regions’ ac-

tivity variables. This is typically accomplished by incorporating information on the regions’

spatial proximity in the brain (Worsley, 2003; Bowman et al., 2008; Tansey et al., 2014).

Although previous procedures are still object of interest, more recently there has been a

paradigm shift in neuroscience away from the above modular approach and towards study-

ing brain connectivity networks and their relationship with phenotypes (Fuster, 2000, 2006).

It has been increasingly realized that it is naive to study region-specific activity in isolation,

and the overall circuit structure across the brain is a more important predictor of phenotypes

(Bressler and Menon, 2010). Brain connectivity data are now available to facilitate this task,

with non-invasive imaging technologies providing accurate brain network data at increasing

spatial resolution; see Stirling and Elliott (2008), Craddock et al. (2013) and Wang et al. (2014)

for an overview and recent developments on brain scanning technologies. A common ap-

proach for constructing brain network data is based on the covariance in activity across brain

regions estimated from fMRI data. For example, one can define a functional connectivity net-

work from the inverse covariance matrix, with low values of the precision matrix suggesting

evidence of conditional independence between pairs of brain regions (Ramsey et al., 2010;

Smith et al., 2011; Simpson et al., 2013).

Although functional synchronizations matrices are popular data in the neuroscience field,

such networks do not measure anatomical connections made by axonal pathways and hence
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caution is required in interpreting results (Bressler and Menon, 2010). This has motivated

recent developments in extracting brain structural networks from various MRI technologies,

including structural and diffusion tensor imaging (Craddock et al., 2013). These brain imag-

ing techniques map the diffusion of water molecules across biological tissues, rather than

collecting brain activity measures specific to regions, thereby providing better candidates to

estimate axonal pathways. As directional diffusion of water within the brain tends to oc-

cur along white matter tracts, current connectome pre-processing pipelines (Craddock et al.,

2013; Roncal et al., 2013) can produce an adjacency matrix Ai for each individual i = 1, . . . , n,

with elements Ai[vu] = Ai[uv] = 1 if there is at least one white matter fiber connecting brain

regions v = 2, . . . , V and u = 1, . . . , v − 1 in individual i and Ai[vu] = Ai[uv] = 0 otherwise.

In our applications V = 68 and each node in the network characterizes a specific anatomi-

cal brain region according to the Desikan atlas (Desikan et al., 2006), with the first 34 in the

left hemisphere and the remaining 34 in the right; see Figure 1.4 for an illustration. Hence,

instead of focusing on multivariate activity data – under a modular paradigm – we aim to de-

velop methodologies for network-valued data and take a further step towards improving the

current state of art in the cognitive network field. Refer also to Sporns (2013) for a discussion

on functional and structural connectivity networks.

Recent studies measure brain networks along with a categorical predictor, typically denot-

ing each subject’s membership to one of two possible groups. Examples include presence or

absence of a neuropsychiatric disease, rest-stimulus states and evidence of an high or low

level of creative cognition. In such studies, there is a need for methods assessing how the

brain connectivity structure varies across groups.

The methods developed in this sections are directly motivated by ongoing studies of the

neural pathways underlying creative cognition and Alzheimer’s disease. In particular, there

is focus on obtaining a greater understanding of how the connection structure in the brain

varies between low and high creativity individuals as well as learning how the brain archi-

tecture is compromised by the Alzheimer’s disease. Specifically, in the first data set con-

nectomes Ai, i = 1, . . . , n are available for n = 36 subjects along with a creativity group

indicator yi, with yi = 1 or yi = 2 if subject i has low or high creativity, respectively. The

first group comprises 19 subjects and the second 17, with creativity groups defined by the

composite creativity index (CCI) (Jung et al., 2010). Alzheimer’s data set focuses instead on

brain structural connectivity networks Ai for n = 92 individuals, with 42 individual in the

Alzheimer’s disease group yi = 2, and 50 subjects characterizing age-matched cognitively

healthy individuals yi = 1.

Statistical methods for analyzing these data sets have lagged far behind the increasingly

routine collection of networks in neuroscience studies. Current practice focuses on overly

restrictive procedures which fail in flexibly characterizing the richness of the brain network
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FIGURE 1.4: For a selected subject, graphical representation of his undirected structural brain network
for selected brain regions. Node positions are given by their spatial coordinates in the brain.

structure and hence are prone to issues arising from model misspecification. See Arden et al.

(2010) for a review of inconsistencies when relating brain networks to creative reasoning. Mo-

tivated by these issues and novel applications, we develop a probabilistic generative mecha-

nism to draw tractable and efficient inference directly on the probability mass function asso-

ciated to a network-valued random variable, rather than on network summary measures or

multivariate activity data. In allowing the brain network data to be appropriately analyzed

as network-valued, these methods enable substantial improvements in accurately detecting

group differences, isolating specific aspects of the network that vary across neurological dis-

orders or behavioral traits, and enhancing performance of predictive models.

Relevant literature in modeling of replicated network data

Much of today’s literature focuses on analytic methods for understanding localized brain

activity data, yet methodologies for analyzing brain network data Ai is still in its infancy.
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Our main aim is to develop techniques to assess whether and how a network-valued random

variable generating structural brain networks Ai, i = 1, . . . , n varies across two groups. In

particular, it is of interest to test for global variation in the overall brain network structure

across groups, while identifying specific local variations to understand if and which brain

connections are changing.

There has been some emphasis in the literature on developing methods for addressing these

goals; see Bullmore and Sporns (2009), Stam (2014) and the references cited therein for an

overview. The main focus is on reducing each networkAi, i = 1, . . . , n to a vector of summary

statistics θi = (θi1, . . . , θip)
T and then applying standard procedures such as the multivariate

analysis of variance (MANOVA) to test for variations of these vectors across groups. Sum-

mary statistics are commonly chosen to represent global network characteristics of interest,

such as the number of connections, average path length and clustering coefficient (Rubinov

and Sporns, 2010). Similar procedures have been recently employed in exploring the relation

between the brain network and neuropsychiatric diseases, such as Parkinson’s (Olde Dubbe-

link et al., 2014) and Alzheimer’s (Daianu et al., 2013), but analyses are sensitive to the cho-

sen network topological measures, with substantially different results obtained for different

types of summary statistics. Simpson et al. (2011) and Simpson et al. (2012) improve choice

of network summary statistics via a data driven procedure which exploits exponential ran-

dom graph models (Holland and Leinhardt, 1981; Frank and Strauss, 1986; Wasserman and

Pattison, 1996; Robins et al., 2007a) and related validation procedures (Hunter et al., 2008a,b)

to detect the topological measures that better characterize the observed networks. Although

this is a valuable procedure, inference is still available only on the scale of the network sum-

mary statistics, which typically discards important information about the brain connectivity

architecture that may crucially explain differences among groups.

An alternative approach is to avoid discarding information by separately testing for differ-

ences between groups in each edge probability while adjusting the significance threshold for

multiple testing via FDR control. As there are V (V − 1)/2 pairs of brain regions under study

– with V = 68 using the Desikan atlas (Desikan et al., 2006) – the number of tests is sub-

stantial. Such massively univariate approaches do not exploit network information, leading

to low power (Fornito et al., 2013), and underestimating the variations of the brain connec-

tions across groups. Recent proposals try to gain power by replacing the common Benjamini

and Hochberg (1995) approach, with thresholding procedures that account for the network

structure in the data (Zalesky et al., 2010). However, such approaches require careful inter-

pretation, while being highly computationally intensive, requiring permutation testing and

choice of suprathreshold links. Instead of controlling FDR thresholds, Scott et al. (2014) gain

power in multiple testing by explicitly using auxiliary data – such as spatial proximity – to in-

form the posterior probability that specific pairs of nodes interact differently across groups or

with respect to a baseline. Ginestet et al. (2014) focus instead on assessing evidence of global
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changes in the brain structure by testing for group differences in the expected Laplacians.

Scott et al. (2014) and Ginestet et al. (2014) substantially improve the state of art in local and

global hypothesis testing for network data, respectively, but are characterized by a similar key

issue, motivating our methodology. Specifically, previous procedures test for changes across

groups in marginal (Scott et al., 2014) or expected (Ginestet et al., 2014) structures associated

to a much complex network-valued random variable, and hence cannot detect variations in

the probabilistic generative mechanism that go beyond their focus. Similarly to much sim-

pler settings, substantially different probability mass functions for a network-valued random

variable can have equal expectation or induce the same marginal distributions – character-

ized by the edge probabilities. Hence, previous procedures are expected to fail in scenarios

where the changes in the network-valued random variable are related to more complex func-

tionals. Model misspecification can have a major effect on the quality of inference (Deegan,

1976; Begg and Lagakos, 1990; DiRienzo and Lagakos, 2001), providing biased and inaccurate

conclusions.

In order to avoid the previous issues it is fundamental to define a statistical model which is

sufficiently flexible to accurately approximate any probabilistic generative mechanism under-

lying the observed data. We address this goal by developing a fully generative Bayesian joint

modeling approach for the data (yi, Ai), i = 1, . . . , n, which explicitly models the networks

instead of reducing data to summary measures prior to statistical analysis, while avoiding

misspecification issues in testing on changes in the brain network across groups.

Current practice for inference on populations of networks either conducts separate analyses

for each Ai to extract local and global measures (Hagmann et al., 2008) or applies standard

network analyses – outlined in the Introduction – after averaging A1, . . . , An (Scheinerman

and Tucker, 2010). These approaches fall short of addressing our interest in estimating the

population distribution of adjacency matrices to efficiently infer common structures and indi-

vidual – or group – differences in the architecture of interconnections in the brain; in fact, such

differences are poorly understood but are thought to provide important drivers of variability

in cognitive traits and disorders (Mueller et al., 2013). As the replicated network data arise

from measurements of the same type of network on different individuals, it is appealing to

develop a probabilistic generative mechanism, which efficiently borrows information across

observed networks, while allowing networks with similar connectivity patterns to cluster

close together. Individuals within the same class in terms of their brain network architecture

may also have similar cognitive abilities or disorders; see e.g, Stam (2014).

The literature on multi-layer networks considers the case in which replicated network data

arise from measurements of different types of relationships on the same set of nodes. Gollini

and Murphy (2013) generalize Hoff et al. (2002) allowing the network density parameter to

be layer-specific, while forcing the latent space to be shared across layers. Salter-Townshend
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and McCormick (2013) consider a layer-specific latent space representation, while estimating

dependence across observed networks. The resulting model is heavily parametric, inducing

strong constraints on the individual network structure as well as the dependence between

different layers; refer to Kivela et al. (2014) for a broader overview of statistical methodologies

for multi-layer networks. Additionally – as previously discussed – multi-layer network data

are fundamentally different from replicated network data in consisting of measurements of

different types of relationships on the same set of nodes instead of measurements of the same

type of network on different statistical units. In fact, our goal is not on joint modeling of

multivariate edges, but on flexibly characterizing the probability mass function for a network-

valued random variable.

An alternative to define a nonparametric model for the distribution of the random variable

A generating networks Ai, i = 1, . . . , n is to rely on nonparametric models for multivari-

ate binary data. In particular, a model for the probability mass function of the multivariate

Bernoulli vector of edges between pairs of nodes, such as those in Dunson and Xing (2009)

and Zhou et al. (2014), automatically induces a model for the distribution of A. However, as

the length of this binary vector is quadratic in the number of nodes, models that do not exploit

the network structure for dimensionality reduction are expected to have poor performance

when the number of nodes is moderate to large.

We instead explicitly consider network information in our model formulation, allowing

testing on the association between the connectivity architecture and the categorical predic-

tor, while borrowing information across subjects in learning the network structure. This is

accomplished by factorizing the joint pmf for the random variable generating data (yi, Ai),

i = 1, . . . , n as the product of the marginal pmf of the categorical predictor and the conditional

pmf for the network-valued random variable given the group membership defined by the

categorical predictor. By modeling the collection of group-dependent pmfs for the network-

valued random variable via a flexible mixture of low-rank factorizations with group-specific

mixing probabilities, we develop a simple test for global variations in the entire distribu-

tion of the network-valued random variable rather than focusing only on given functionals.

Differently from Ginestet et al. (2014), our procedure additionally incorporates simple local

testing for changes in edge probabilities across groups, in line with Scott et al. (2014) meth-

ods – which in turn do not consider global tests. By explicitly borrowing strength within the

network via matrix factorization representations we intrinsically control for multiplicity in

our local multiple tests and substantially improve power compared to standard FDR control

procedures.

Although being specifically motivated by neuroscience applications, previous methodolo-

gies apply to broader relational settings characterized by replicated network data and focused

on flexible modeling of changes in network structures across categorical variables. This is the
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case of the data set outlined in the next Section 1.2.2, considering a complex business intelli-

gence problems associated to hierarchical cross-selling strategies.

1.2.2 Joint modeling of mixed domain data for cross-selling of products

Increasing business competition and market saturation have led companies to progressively

shift the focus of their marketing strategies from the acquisition of new customers to an in-

creased penetration of their customer base. Targeting existing customers via cross-selling

services instead of attracting new ones, provides a more effective strategy for the growth of

the company and additionally enhances customer retention by increasing the switching costs

(Kamakura et al., 1991). As a consequence, mono-product customers buying a single product

from a company, represent a key segment of the customer base and companies are naturally

interested in expanding these customers buying behavior to additional products.

Cross-sell and up-sell strategies have been widely studied in marketing and business statis-

tics; see e.g. Azzalini and Scarpa (2012). Common practice focuses on identifying shared

acquisition patterns of products by customers, based on their ownership data. A first effort

in addressing this aim can be found in Kamakura et al. (1991), where a latent trait model is

presented for the probability that a customer would buy a particular product, based on its

ownership of other products. Kamakura et al. (2003) combines instead data from a customer

database with information from a survey to make probabilistic predictions of ownerships of

products. Another approach is given by Verhoef and Donkers (2001) who define a multivari-

ate probit model to predict the potential value of a current customer, and propose a two-by-

two segmentation to create a better basis for customer specific strategies. Instead, Thuring

(2012) develops a multivariate credibility method to identify an expected profitable set of cus-

tomers for cross-selling, by estimating a customer specific latent risk profile, using claims as

additional information; refer also to Thuring et al. (2012) and Kaishev et al. (2013) for recently

developed cross-selling strategies and for a general overview on available methodologies.

Previous proposals exploit different sources, including customer demographics and survey

data, to estimate co-subscription probabilities among pairs of products for each customer

in a single agency. Differently from this setting, we do not observe customer demographic

data for a single agency, but monitor mono-product customer preferences along with co-

subscription networks among V = 15 products for n = 130 agencies operating in the Italian

insurance market. Customer relationship management is becoming increasingly important

to effectively operate in the insurance market. This sector is mostly stable in developed coun-

tries, and rising customer expectations, along with tight competition among top corporations

and low growth potentials, force companies to efficiently exploit their database to create,

manage and maintain their portfolio of profitable customers (Matiş and Ilieş, 2014).
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FIGURE 1.5: For selected agencies. Upper panel: observed co-subscription networks Ai. Black refers
to an edge, white to a non-edge. Lower panel: total number of mono-product customers for each
product v = 1, . . . , 15 based on data dij , j = 1, . . . , ni.

We observe preference data dij ∈ {1, . . . , V } denoting the product subscribed to by mono-

product customer j = 1, . . . , ni within agency i = 1, . . . , n. Multi-product customer data are

available via a V × V symmetric adjacency matrix Ai, with Ai[vu] = Ai[uv] = 1 if more than

5% of customers of agency i subscribe to both products v = 2, . . . , V and u = 1, . . . , v− 1 and

Ai[vu] = Ai[uv] = 0 otherwise. The 5% threshold is used to focus on pairs of products involving

sufficient number of customers; in our application, agencies have 1,700 multi-product clients

on average, so that products with edges between them have at least 85 customers subscribing

to both products. Refer to Figure 1.5 for an illustrative example.

Each agency can define appropriate cross-selling strategies by exploiting its co-subscription

network Ai to estimate the propensity of a customer who subscribed to product v = 1, . . . , V

to additionally buy u 6= v. This leads to V different cross-selling strategies qi1, . . . , qiV , with

qiv defining which additional product u 6= v is the best offer to currently mono-product cus-

tomers subscribed to v in agency i, with u = argmaxu{pr(Ai[vu] = 1) : u 6= v}. Efficiently

targeting advertising by offering customers the product mostly complementary to their cur-

rent choice can substantially improve performance relative to untargeted advertising, while

increasing satisfaction and reducing churn effects due to frequent and pointless cross-selling

attempts (Kamakura et al., 2003). Satisfied customers are a key to enhancing positive word-

of-mouth communication and are less sensitive to competing brands and price (Matiş and

Ilieş, 2014).
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The effectiveness at increasing the number of multi-product customers in agency i depends

not only on the tendency for customers with v to also subscribe to u, quantified by pr(Ai[vu] =

1), but also the proportion of mono-product customers with v, defined by pi(v) = pr(dij = v).

If pi(v) is low, then strategy qiv targets a small portion of the customer base of agency i, and

hence has a low ceiling on effectiveness. To take into account the role of pi(v), we associate

each strategy qiv with a performance indicator eiv = pi(v)max{pr(Ai[vu] = 1) : u 6= v}, for

each v = 1, . . . , V and i = 1, . . . , n. Strategies with a high eiv will target a sizable proportion

of the available customers for that agency with advertising for a new product likely to be

appealing to them.

In defining and evaluating cross-sell strategies, there are two important issues to take into

consideration. Firstly, we are faced with statistical error in estimating the components under-

lying strategies qiv and indicators eiv, for each v = 1, . . . , V and i = 1, . . . , n; this is a particular

problem in estimating pr(Ai[vu] = 1) due to data sparsity. The second issue is that it is impor-

tant to take into account the fact that administrative overhead can be reduced by using the

same strategy for different agencies within the same company. For groups of agencies having

sufficiently similar customer bases, an identical strategy can be used to reduce administrative

cost without decreasing effectiveness. Motivated by this notion, we propose to address both

the statistical error and administrative overhead issue through clustering of agencies accord-

ing to the parameters characterizing their customer bases, and then administrating the same

strategy to all agencies within a cluster.

As suggested by Figure 1.5, it is reasonable to expect agencies offering the same service to

exhibit clusters, corresponding to common patterns in the composition of their mono-product

portfolio and co-subscription behavior. Efficient detection of such clusters allows adaptive

reduction of the total number of strategies to be devised from qi1, . . . , qiV , i = 1, . . . , n to

qy1, . . . , qyV , y = 1, . . . ,K < n, with each group-specific strategy maintaining its effectiveness

in targeting similar agencies. This higher level targeting and profiling represents a key to

balance the need of the company to reduce costs and the importance of providing agencies

with effective strategies that account for their specific structure. Providing agencies with sets

of strategies suitably related with their structure is further important to increase their trust in

the company and improve synergy.

We address this goal by developing a Bayesian hierarchical model, which adaptively as-

sociates shared strategies qy1, . . . , qyV and performance indicators ey1, . . . , eyV to groups of

agencies characterized by a similar mono-product portfolio and co-subscription behavior.

Each group-specific set of cross-sell strategies qy1, . . . , qyV is devised by learning group-specific

propensity patterns among pairs of products from co-subscription networks of multi-product

customers. Joining this information with the estimated group-specific distribution of mono-

product customers across products, performance indicators ey1, . . . , eyV are constructed. To
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our knowledge, this is the first approach in the literature that considers a two-level cross-

sell segmentation of the customer base, which clusters agencies with similar client portfolio

and profiles mono- and multi-product buying behavior within each group to define cross-sell

strategies and related performance indicators.

Relevant literature in joint modeling of mixed domain data

There is an increasing statistical literature on joint modeling and co-clustering of mixed do-

main data. Most available procedures focus on learning the dependence between a univariate

response variable and an object predictor, typically characterized by a function. Bigelow and

Dunson (2009) favor clustering among predictor trajectories, with each cluster associated to

a specific offset in a generalized linear model for the response variable. Although providing

an appealing procedure for the sake of interpretability and inference, their model may lack

flexibility in constraining predictor and response groups to be the same. This may require

the introduction of many clusters to appropriately characterize the joint distribution of the

mixed data, reducing the performance in estimating cluster-specific components and provid-

ing a biased overview of the underlying grouping structure.

Dunson et al. (2008) address the previous issue by modeling the conditional distribution of

the response within each functional cluster via a cluster-dependent mixture representation,

rather than considering only a cluster-specific offset in the conditional expectation. In im-

proving flexibility via dependent mixture modeling, they can estimate more reliable clusters

which better identify the underlying grouping structure, rather then characterizing the lack

of fit of the model formulation; see also Banerjee et al. (2013) for a recent overview of this

topic and additional methods.

Although we are similar to previous methods in looking for flexible and accurate joint mod-

eling and co-clustering procedures for mixed domain data, our motivating data set is sub-

stantially different in considering categorical mono-product customer choices and network-

valued co-subscription data. Flexible modeling of the conditional distribution of a network-

valued random variable is still an ongoing issue, which requires careful representations in

order to borrow information across edges, reduce the dimensionality and maintain flexibility

in characterizing its conditional distribution.

We address these issues by exploiting previous methodologies for brain networks to pro-

pose a cluster-dependent mixture of low-rank factorizations, which allows the distribution

of the co-subscription networks to flexibly change across clusters via cluster-specific mixing

probabilities, while borrowing information across agencies in learning the shared mixture

components. Considering cluster dependence only in the mixing probabilities allows further
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dimensionality reduction, while providing simple and efficient computational methods. Dif-

ferently from Dunson et al. (2008), we additionally avoid fixing the total number of clusters,

but instead learn this key quantity from our data via a Chinese restaurant process prior for

the cluster assignments.



Chapter 2

Dynamic networks

2.1 Nonparametric Bayes modeling of dynamic networks

Motivated by the applied problems outlined in Section 1.1.1, we dynamically model binary

relational matrices by embedding the nodes in a low-dimensional latent Euclidean space,

with their coordinates evolving in continuous time via Gaussian processes and edge proba-

bilities constructed via a logistic mapping function. Posterior computation is available via a

simple Gibbs sampler leveraging the recently developed Pólya-gamma data augmentation.

We provide theoretical results on model flexibility, and illustrate its performance via simula-

tion experiments and application to international relationships data.

2.1.1 Dynamic latent space model

Let Ati denote the adjacency matrix characterizing the undirected network with no self-

relations, observed at the generic time ti ∈ <+. As self-relationships are not of interest andAti
is symmetric, we model At1 , . . . , Atn by defining a stochastic process for L(At1), . . . ,L(Atn),

with L(Ati) = (Ati[21], Ati[31], . . . , Ati[V 1], Ati[32], . . . , Ati[V 2], . . . , Ati[V (V−1)])
T the vector en-

coding the lower triangular elements of Ati , which uniquely characterize the network as

Ati[vu] = Ati[uv] for every v = 2, . . . , V , u = 1, . . . , v − 1 and ti = t1, . . . , tn. As a result,

L(Ati) is a vector of binary elements L(Ati)l ∈ {0, 1}, encoding the presence or absence of an

edge among the lth pair of nodes at time ti for each l = 1, . . . , V (V − 1)/2.

Based on previous notation, developing a probabilistic representation for a sequence of

time-varying undirected networks, translates into statistical modeling of a multivariate time

series L(At1), . . . ,L(Atn) arising from dynamic monitoring of V (V − 1)/2 binary variables

for n times. However, in accomplishing this goal it is important to explicitly account for the

special structure of our data. Specifically, the key difference between a general unstructured

31
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multivariate time series and our dynamic vectors of edges is that the observed networks

are potentially characterized by specific underlying patterns – such as transitive relations,

community structures and k-stars – which induce dependence among edges at each time

ti. As a result, by carefully accommodating the network structure in dynamic modeling of

L(At1), . . . ,L(Atn), one might efficiently borrow information within each L(Ati) and across

time, while reducing dimensionality and infer specific network properties along with their

dynamic changes.

Consistently with previous discussion, we assume observed data L(At1), . . . ,L(Atn) as n

snapshots of a continuous latent process {L(At) : t ∈ T ∈ <+} over a possibly unequally

spaced time grid t1, . . . , tn. Letting

L(At)l | πl(t) ∼ Bern {πl(t)} , (2.1)

independently for each pair of nodes l = 1, . . . , V (V −1)/2 and t ∈ T, we aim to define a prior

Ππ for the collection of dynamic edge probability vectors [π(t) = {π1(t), . . . , πV (V−1)/2(t)}T :

t ∈ T] with the goals being to obtain a provably flexible specification, maintain simple com-

putations, perform dimensionality reduction to scale to moderately large V , allow missing

values, accommodate observations over unequally spaced time grids and allow predictions

including a measure of predictive uncertainty.

We construct each πl(t) ∈ (0, 1) via a monotonic increasing link function g(·) : < → (0, 1)

mapping a latent similarity measure among the lth pair of nodes at time t, Sl(t) ∈ <, into the

probability space. We choose g(·) to be the logistic distribution function, obtaining

E {L(At)l | πl(t)} = πl(t) =
{

1 + e−Sl(t)
}−1

l = 1, . . . , V (V − 1)/2, t ∈ T. (2.2)

Without further assumptions on Sl(t), one needs to model V (V − 1)/2 stochastic processes

separately – one for each time-varying similarity measure Sl(t), for l = 1, . . . , V (V − 1)/2. In

order to reduce dimensionality and account for the network structure among the nodes for

every t, we express the similarity measures S(t) = {S1(t), . . . , SV (V−1)/2(t)}T as a quadratic

combination of a set of node-specific coordinates in a latent space. Specifically, focusing on

the lth pair, corresponding to nodes v and u, v > u, we let

Sl(t) = µ(t) +Xv(t)
TXu(t) = µ(t) +

R∑
r=1

Xvr(t)Xur(t), (2.3)

for every l = 1, . . . , V (V − 1)/2 and t ∈ T, where Xv(t) = {Xv1(t), . . . , XvR(t)}T ∈ <R and

Xu(t) = {Xu1(t), . . . , XuR(t)}T ∈ <R are the vectors of latent coordinates for nodes v and u

at time t, respectively, while µ(t) ∈ < is a baseline trajectory centering the latent similarity

process. According to (2.1)–(2.3), nodes with latent coordinates in the same direction will be
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more similar and hence will have an higher edge probability. Recalling our motivating appli-

cation on international relationships data, this construction has an appealing interpretation.

In particular, each country is assigned a multifaceted latent position, which can be seen as

representing its view on different debated topics or international policies. Countries having

similar positions in the different attributes, both positive or negative, will be more likely to

cooperate than countries with opposite positions. The similarity – or dissimilarity – will be

higher the stronger the positions in the same direction – or opposite direction. Moreover fac-

torization (2.3) reduces dimensionality from a V (V − 1)/2 stochastic processes on the edge

probabilities to V × R latent trajectories – typically R � V – and one baseline process. In

matrix form, equation (2.3) can be rewritten as

S(t) = µ(t)1V (V−1)/2 + L(X(t)X(t)T), t ∈ T, (2.4)

where 1V (V−1)/2 = (1, . . . , 1)T, X(t) ∈ <V×R defines the matrix of theR latent coordinates for

the V nodes at time t and L(·) is again the operator vectorizing the lower triangular elements

of X(t)X(t)T, so that L(X(t)X(t)T) = {X2(t)TX1(t), X3(t)TX1(t), . . . , XV (t)TXV−1(t)}T. The

factorization (2.4) is not unique. For example, if µ(t) = 0 and letting X̃(t) = X(t)Q, with

Q an R × R orthogonal matrix, then X̃(t)X̃(t)T = X(t)QQTX(t)T = X(t)X(t)T. If one is

interested in inference on the latent coordinates matrix X(t), identifiability can be ensured

via restrictions (Bollen, 1989) or Procrustean transformations (Hoff et al., 2002). However,

since we instead focus our inferences on the trajectories of the latent similarities S(t) and the

edge probability vectors π(t), we follow Ghosh and Dunson (2009) in avoiding identifiability

constraints, as they are not necessary to ensure identifiability of S(t) and π(t).

Before considering prior specification, it is important to characterize the class of edge prob-

ability vectors π(t) which can be represented as in (2.2) with latent similarities factorized as

in (2.3). In fact, our model considers a latent space approach to network analysis assuming

edges as conditionally independent given the corresponding edge probabilities and aims at

accommodating and learning network structures by careful modeling of π(t) via (2.2)–(2.3).

As discussed in the Introduction and in Section 1.1.1, the shared dependence on a common

set of node-specific latent coordinates can induce rich dependence structures and accommo-

date recurring network properties; see for example Hoff et al. (2002); Hoff (2008); Krivitsky

et al. (2009) and Hunter et al. (2012). Although previous results are promising, it is important

to develop formal theory in order to assess at which extent our formulation is enough gen-

eral to accomplish previous goals. Theorem 2.1 and Corollary 2.2 state that for R sufficiently

large, any edge probability vector π(t) has representation (2.2)–(2.3).

Theorem 2.1. For any S(t) ∈ <V (V−1)/2 and t ∈ T there exist {X(t), µ(t)} ∈ <V×R ×< such that

S(t) = µ(t)1V (V−1)/2 + L(X(t)X(t)T) for some R.
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Proof. Assume without loss of generality µ(t) = 0. As there exist infinitely many V × V posi-

tive semidefinite matrices having lower triangular elements S(t), let Ξ(t) be one of these ma-

trices such that L(Ξ(t)) = S(t). Letting R̃ be the rank of Ξ(t) = X̃(t)Λ̃(t)X̃(t)T, with Λ̃(t) the

diagonal matrix with the R̃ positive eigenvalues of Ξ(t) and X̃(t) ∈ <V×R̃ the matrix with the

corresponding eigenvectors, Theorem 2.1 holds after definingX(t) = {X̃(t)Λ̃(t)1/2 0V×(R−R̃)}.

Corollary 2.2. Any edge probability vector π(t) ∈ (0, 1)V (V−1)/2 admits representation (2.2) for

every t ∈ T, with latent similarities factorized as in (2.3) for some R.

Proof. The proof follows immediately from Theorem 2.1 and from the fact that the element-

wise mapping from Sl(t) to πl(t) is one-to-one continuous for each l = 1, . . . , V (V − 1)/2.

This ensures that our specification is sufficiently flexible to characterize any true generating

process, and hence can be viewed as nonparametric given sufficiently flexible priors for the

components.

2.1.2 Prior specification and theoretical properties

We specify independent prior distributions ΠX and Πµ for XT = {X(t) : t ∈ T} and µT =

{µ(t) : t ∈ T} to induce a prior Ππ for πT = {π(t) : t ∈ T} through (2.2) and (2.3). This

prior is defined to have large support, favor simple and efficient computation, allow missing

values, induce a continuous time specification, and allow adaptive shrinkage towards lower-

dimensional representations. Bhattacharya and Dunson (2011) proposed an approach for

Bayesian shrinkage of the number of latent factors in a model for a single covariance matrix,

and we extend their approach from independent Gaussian latent factors to Gaussian process

latent factors. In particular, we let

Xvr(·) ∼ GP(0, λrcX), (2.5)

independently for v = 1, . . . , V and r = 1, . . . , R, with cX(ti, tj) = exp{−κX(ti− tj)2}. We fo-

cus on the squared exponential correlation function in our applications to enforce smoothness

in analyzing cooperation relationship data, but more elaborate choices can be made to allow

cyclic trends, non-stationarity and other features. Recalling Rasmussen and Williams (2006),

assumption (2.5) implies the following joint prior for the node-specific latent coordinates at

the time grid t1, . . . , tn on which networks L(At1), . . . ,L(Atn) are observed

{Xvr(t1), . . . , Xvr(tn)}T ∼ Nn(0, λrKX),
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independently for v = 1, . . . , V and r = 1, . . . , R, where the covariance matrix KX has ele-

ments KX[ij] = exp{−κX(ti − tj)2} and λr represents a further scaling effect so that when

λr ≈ 0 the latent coordinates trajectories for dimension r collapse around the zero mean

function. Hence to favor adaptive shrinkage we look for an hyperprior Πλ for the vector of

scaling parameters λ = (λ1, . . . , λR)T that adaptively deletes redundant latent space dimen-

sions which are not required to characterize the dynamic edge probability vectors according

to the observed data. To accomplish this goal we adapt Bhattacharya and Dunson (2011) pro-

posal to our setting by letting λ ∼ MIG(a1, a2), with MIG(a1, a2) denoting the multiplicative

inverse gamma distribution

λr =

r∏
m=1

1

ϑm
, ϑ1 ∼ Ga(a1, 1), ϑm>1 ∼ Ga(a2, 1), r = 1, . . . , R, (2.6)

where Ga(a, b) denote the gamma distribution with mean a/b and variance a/b2. Prior (2.6)

adaptively penalizes overparameterized representations favoring elements λr to be increas-

ingly concentrated towards 0 as r increases for appropriate choice of a2. The parameter a1

controls instead the overall level and variability of the entries in λ; see Bhattacharya and

Dunson (2011) for further discussion and theoretical properties. To conclude the prior speci-

fication, we choose µ(·) ∼ GP(0, cµ), with cµ(ti, tj) = exp{−κµ(ti − tj)2}.

To provide insight on the induced prior distribution for the edge probability process, we

derive prior moments of the log-odds process, Sl(t) = log[πl(t)/{1− πl(t)}], conditioning on

the shrinkage parameters λr to highlight their effect on the prior. Focusing on the log-odds,

prior moments have simple form and can be easily derived via straightforward calculations,

obtaining

E{Sl(t) | λ} = 0, var{Sl(t) | λ} = 1 +

R∑
r=1

λ2
r , cov{Sl(t), Sl∗(t) | λ} = 1,

for each fixed time t ∈ T and indexes l = 1, . . . , V (V −1)/2 and l∗ = 1, . . . , V (V −1)/2, l∗ 6= l,

with covariances across time given by

cov{Sl(ti), Sl(tj) | λ} = exp{−κµ(ti − tj)2}+

R∑
r=1

λ2
r exp{−2κX(ti − tj)2},

cov{Sl(ti), Sl∗(tj) | λ} = exp{−κµ(ti − tj)2} (ti, tj ∈ T).

A priori the log-odds of an edge has mean zero and the variance increases with the sum of

shrinkage parameters, while the covariance between the log-odds for different edges at the

same time is fixed at one. When the λrs are all close to zero, the correlation between the

log-odds for different edges at the same time is close to one and the covariance over time is

controlled primarily by κµ. As the λrs increase, κX plays more of a role in controlling the
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dependence in the log-odds of a given edge at different times.

An important issue is the support of the induced prior Ππ. Specifically, we are interested in

whether there is a positive probability of generating a {π(t) : t ∈ T} that is arbitrarily close to

any true {π0(t) : t ∈ T}. Theorem 2.3 states the large support property for ΠS , while Corollary

2.4 provides the same property for Ππ exploiting the continuity of the logistic mapping.

Theorem 2.3. Let ΠS denote the induced prior on {S(t) : t ∈ T} based on the specified prior ΠX×Πµ.

If T is compact, then for all element-wise continuous S0(t) and for every ε > 0,

pr
{

sup
t∈T
||S(t)− S0(t)||1 < ε

}
> 0.

Proof. Let Bε0(t0) = {t : |t− t0| < ε0} denote an ε0-neighborhood around t0, with t0 ∈ T and

ε0 > 0. Exploiting the compactness of T, for any open cover of ε0-neighborhoods, we can

always define a finite subcover such that T ⊂ ∪t0∈T0Bε0(t0), with |T0| = n. Hence:

pr
{

sup
t∈T
||S(t)− S0(t)||1 < ε

}
= pr

{
max
t0∈T0

sup
t∈Bε0 (t0)

||S(t)− S0(t)||1 < ε

}
.

Since pr{maxt0∈T0 supt∈Bε0 (t0) ||S(t)− S0(t)||1 < ε} > 0, if and only if pr{supt∈Bε0 (t0) ||S(t)−
S0(t)||1 < ε} > 0, for every t0 ∈ T0, we only need to prove pr{supt∈Bε0 (t0) ||S(t) − S0(t)||1 <
ε} > 0 for each ε0-neighborhood, independently. Using the triangle inequality, a lower bound

for this probability is

pr

{
sup

t∈Bε0 (t0)
||S0(t0)− S0(t)||1 + sup

t∈Bε0 (t0)
||S(t0)− S(t)||1 + ||S(t0)− S0(t0)||1 < ε

}
, (2.7)

and provided that the first term in (2.7) states the continuity property for a deterministic
component, which is independent from the second and third events, we can further lower
bound the previous probability by

pr

{
sup

t∈Bε0 (t0)
||S0(t0)− S0(t)||1 <

ε

3

}
pr

{
sup

t∈Bε0 (t0)
||S(t0)− S(t)||1 <

ε

3

∣∣ ||S(t0)− S0(t0)||1 <
ε

3

}
× pr

{
||S(t0)− S0(t0)||1 <

ε

3

}
. (2.8)

We prove each of the terms in (2.8) in turn.

As every function S0
l (·) is continuous, following Theorem 4.10 in Rudin (1976), this implies

that also S0(·) = {S0
1(·), . . . , S0

V (V−1)/2(·)}T is continuous. As a results, for every ε/3 > 0,

there exists an ε0,1 > 0 such that:

||S0(t0)− S0(t)||1 <
ε

3
, |t− t0| < ε0,1.

Hence, pr
{

supt∈Bε0,1 (t0) ||S0(t0)− S0(t)||1 < ε/3
}

= 1.
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The second term states the continuity property of S(t) in a neighborhood of t0, with the

conditional event restricting the analysis to the subset of all the realizations of S(t), with

S(t0) lying in a ε/3 neighborhood of S0(t0). We first prove the continuity property of S(t) in

its unrestricted sample space. The continuity in a subset will follow as a consequence.

Given the Gaussian process prior on the elements of X(·), the equation

{X(t)X(t)T}vu =
R∑
r=1

Xvr(t)Xur(t), t ∈ T,

represents a finite sum over pairwise products of almost surely continuous functions, im-

plying that also elements in X(t)X(t)T are almost surely continuous on T. Therefore S(t) =

µ(t)1V (V−1)/2 + L(X(t)X(t)T) is almost surely element-wise continuous on T since the base-

line µ(·) is itself almost surely continuous given the Gaussian process prior assumption.

Therefore, similarly as before, for every ε/3 > 0, there exists an ε∗0,2 > 0 such that

pr

 sup
t∈Bε∗0,2 (t0)

||S(t0)− S(t)||1 <
ε

3

 = 1.

Since we proved that all realizations from S(t) are continuous in a neighborhood of t0,

the same will be true for the subset of the sample space induced by the condition ||S(t0) −
S0(t0)||1 < ε/3. Hence for every ε/3 > 0, we can always identify an ε0,2 > 0, such that

pr

{
sup

t∈Bε0,2 (t0)
||S(t0)− S(t)||1 <

ε

3

∣∣ ||S(t0)− S0(t0)||1 <
ε

3

}
= 1.

To prove the last term, by Theorem 2.1, pr
{
||S(t0)− S0(t0)||2 < ε/3

}
can be always factor-

ized as

pr
{
||µ(t0)× 1V (V−1)/2 + L(X(t0)X(t0)T)− µ0(t0)× 1V (V−1)/2 − L(X0(t0)X0(t0)T)||1 <

ε

3

}
, (2.9)

with {X0(t0), µ0(t0)} ∈ <V×R × < such that S0(t0) = µ0(t0)1V (V−1)/2 + L(X0(t0)X0(t0)T).

Using the triangle inequality, a lower bound for (2.9) is

pr
{
||L(X(t0)X(t0)T)− L(X0(t0)X0(t0)T)||1 <

ε

6

}
pr
[
||1V (V−1)/2

{
µ(t0)− µ0(t0)

}
||1 <

ε

6

]
.

Based on the support of the Gaussian prior,

pr
[
||1V (V−1)/2

{
µ(t0)− µ0(t0)

}
||1 <

ε

6

]
= pr

{
|µ(t0)− µ0(t0)| < ε

6V (V − 1)/2

}
> 0.

For studying the first term of the previous decomposition, note that we need to show the full
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support of the prior on the space of the vectorized lower triangular elements of a symmet-
ric matrix. Hence it suffices to show that the induced prior on X(t0)X(t0)T assigns positive
probability to a neighborhood of every possible V × V positive semidefinite matrix. Note
that, because self-relationships are not of interest, there is no loss of generality in focusing
on the space of positive semidefinite matrices, since for every configuration of latent simi-
larities there exist infinitely many positive semidefinite matrices having these quantities as
off-diagonal elements. To prove this property, write X(t0)X(t0)T =

∑R
r=1Xr(t0)Xr(t0)T,

where Xr(t0) = {X1r(t0), . . . , XV r(t0)}T is distributed, according to our prior specification,
as NV (0, λrIV ), implying that Xr(t0)Xr(t0)T | λr ∼ WV (λrIV , 1) independently for all r =

1, . . . , R, where WV (·, ·) denotes the Wishart distribution. Using the triangle inequality

pr
{
||X(t0)X(t0)T −X0(t0)X0(t0)T||1 <

ε

6

}
≥

R∏
r=1

pr
{
||Xr(t0)Xr(t0)T −X0

r (t0)X0
r (t0)T||1 <

ε

6R

}
.

Since X0
r (t0)X0

h(t0)T is an arbitrary positive semidefinite rank-1 symmetric matrix in <V×V ,

and based on the support of the Wishart distribution

pr
{
||Xr(t0)Xr(t0)T −X0

r (t0)X0
r (t0)T||1 <

ε

6R

}
> 0 r = 1, . . . , R.

Thus pr
{
||X(t0)X(t0)T −X0(t0)X0(t0)T||1 < ε/6

}
> 0 and combining it with the large sup-

port property previously proved for the prior on the baseline µ(·), we obtain

pr
{
||S(t0)− S0(t0)||1 <

ε

3

}
> 0.

Letting ε0 = min(ε0,1, ε0,2), with ε0,1 and ε0,2 defined as above, the proof follows from the

positivity of the three probabilities in (2.8), for every S0(·) and ε > 0.

Corollary 2.4. Let Ππ the induced prior on {π(t) : t ∈ T} based on the specified prior ΠX × Πµ. If

T is compact, then for all element-wise continuous π0(t) and for every δ > 0,

pr
{

sup
t∈T
||π(t)− π0(t)||1 < δ

}
> 0.

Proof. Since the elements of π(t) are defined as a one-to-one continuous mapping of the el-

ements of S(t) through the function g(·), by definition of continuity we have that for every

δ > 0 there exists an ε > 0 such that

sup
t∈T
||g {S(t)} − g

{
S0(t)

}
||1 = sup

t∈T
||π(t)− π0(t)||1 < δ,

for all S(t) such that supt∈T ||S(t) − S0(t)||1 < ε, where g {S(t)} means that the function g(·)
is applied to every element of S(t). Finally, since by Theorem 2.3 the event supt∈T ||S(t) −
S0(t)||1 < ε has positive probability, the same holds for supt∈T ||π(t)− π0(t)||1 < δ.
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Theorem 2.3 and Corollary 2.4 provide key results to ensure good performance in our ap-

plication because without prior support about the true data generating process, the posterior

cannot possibly concentrate around the truth.

2.1.3 Posterior computation

Posterior computation is performed by adapting a Pólya-gamma data augmentation scheme

for Bayesian logistic regression (Polson et al., 2013); see Choi and Hobert (2013) for results

on uniform ergodicity of the algorithm. Letting yi ∼ Bern(πi), independently with πi =

(1 + e−x
T
i β)−1, Polson et al. (2013) show that conditionally on Pòlya-gamma augmented data

ωi | − ∼ PG(1, xT
i β), the contribution to the likelihood for the ith observation is

∝ exp
[
−ωi

2
{(yi − 0.5)/ωi − xT

i β}2
]
, i = 1, . . . , n. (2.10)

Equation (2.10) is the kernel of a Gaussian distribution for data (yi − 0.5)/ωi, with mean

xT
i β and variance 1/ωi. Hence, letting β ∼ Np(b, B) be the prior for the coefficients, given

Pòlya-gamma augmented data, the Bayesian logistic regression on yi can be recast in terms

of Bayesian linear regression with Gaussian response (yi − 0.5)/ωi. This allows a Gibbs al-

gorithm, which alternates between ωi | − ∼ PG(1, xT
i β) and β | − ∼ Np(µβ,Σβ), where

Σβ = (XTΩX + B−1)−1, µβ = Σβ(XTz + B−1b), z = (y1 − 1/2, . . . , yn − 1/2)T and Ω =

diag(ω1, . . . , ωn).

Recalling model (2.1), with probabilities defined as in (2.2) and latent similarities from (2.3),

we develop an efficient Gibbs sampler, which uses Pólya-gamma augmented data and con-

verges to the exact posterior, while avoiding accuracy issues arising from analytic approxi-

mations, such as Laplace or variational Bayes. Detailed steps are outlined in Algorithm 1.

Algorithm 1 Gibbs sampler for the dynamic latent space model

[1] Sample Pólya-gamma augmented data

for each l = 1, . . . , V (V − 1)/2 and ti = t1, . . . , tn do

Update each augmented data ωl(ti) from the full conditional Pólya-gamma

ωl(ti) | − ∼ PG {1, µ(ti) + L(X(ti)X(ti)
T)l} .

end for

———————————————————————————————————————–
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[2] Sample the baseline trajectory µ = {µ(t1), . . . , µ(tn)}T from

µ | − ∼ Nn

Σµ


∑V (V−1)/2

l=1 {L(At1)l − 1/2− ωl(t1)L(X(t1)X(t1)T)l}
...∑V (V−1)/2

l=1 {L(Atn)l − 1/2− ωl(tn)L(X(tn)X(tn)T)l}

 ,Σµ

 ,

with Σµ =
{

diag
(∑V (V−1)/2

l=1 ωl(t1), . . . ,
∑V (V−1)/2

l=1 ωl(tn)
)

+K−1
µ

}−1
, and Kµ the Gaus-

sian process covariance matrix with entries Kµ[ij] = exp{−κµ(ti − tj)2}.
———————————————————————————————————————–

[3] Sample the matrix of coordinates trajectories X(t1), . . . , X(tn)

for v = 1, . . . , V do

Block-sample {Xv(t1), . . . , Xv(tn)} given X(−v) = {Xu(ti) : u 6= v, ti = t1, . . . tn}.

1. Define X(v) = {Xv1(t1), . . . , Xv1(tn), . . . , XvR(t1), . . . , XvR(tn)}T

2. Define a Bayesian logistic regression with X(v) acting as coefficient vector and

having prior, according to GP, X(v) ∼ Nn×R {0,diag(λ1, . . . , λR)⊗Kx}

3. The Bayesian logistic regression to update X(v) is a follow

L(A)(v) ∼ Bern(π(v)) logit(π(v)) = 1V−1 ⊗ µ+ X̃(−v)X(v),

with L(A)(v) obtained by stacking vectors {L(At1)l, . . . ,L(Atn)l}T for all

pairs l having v as a one of the two nodes, and π(v) are the corresponding vector

of edge probabilities. Finally, X̃(−v) is the matrix of regressors with entries

suitably chosen from X(−v), to reproduce (2.4) for the sub-sample considered.

4. Hence exploiting previous formulation, the Pólya-gamma sampling provides

X(v) | − ∼ Nn×R

(
µx(v) ,Σx(v)

)
,

with Σx(v) =
{
X̃T

(−v)Ω(v)X̃(−v) + diag(λ−1
1 , . . . , λ−1

R )⊗K−1
x

}−1
, Ω(v) a diagonal

matrix with the corresponding Pólya-gamma augmented data and mean vector

given by µx(v) = Σx(v)

[
X̃T

(−v)

{
L(A)(v) − 1V−1 ⊗ 1N0.5− Ω(v)(1V−1 ⊗ µ)

}]
.

end for

———————————————————————————————————————–

[4] Sample the gamma quantities defining the shrinkage parameters λ1, . . . , λR

ϑ1 | − ∼ Ga

{
a1 +

V × n×R
2

, 1 +
1

2

R∑
m=1

θ(−1)
m

V∑
v=1

XT
vmK

−1
x Xvm

}
,

ϑr | − ∼ Ga

{
a2 +

V × n× (R− r + 1)

2
, 1 +

1

2

R∑
m=r

θ(−r)
m

V∑
v=1

XT
vmK

−1
x Xvm

}
,
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where θ(−r)
m =

∏m
t=1,t 6=r ϑt for r = 1, . . . , R and Xvm = {Xvm(t1), . . . , Xvm(tn)}T.

In performing posterior computation, we fix R at a conservative upper bound, allowing

unnecessary extra dimensions to be effectively removed through posterior distributions for

λr that are concentrated near zero. The results are not sensitive to R unless R is chosen to be

too small, in which case λR not concentrated near zero provides evidence that R should be

increased.

Given MCMC chains for µ(t1), . . . , µ(tn) and X(t1), . . . , X(tn), posterior samples for time-

varying latent similarities S(t1), . . . , S(tn) and edge probability vectors π(t1), . . . , π(tn) can

be easily derived by applying equations (2.3) and (2.2), respectively. Our algorithm can also

easily handle missing values by adding a further step imputing the unobserved binary edges

from their conditional distribution in (2.1) given the current state of the chain.

Previous strategy provides also a useful procedure for forecasting new networks L(Atn+1).

Under our Bayesian paradigm, a strategy to obtain one-step-ahead forecasts is to rely on the

expectation of the forecasted predictive distribution E{L(Atn+1) | L(At1), . . . ,L(Atn)}, having

elements E{L(Atn+1) | L(At1), . . . ,L(Atn)}l = E{L(Atn+1)l | L(At1), . . . ,L(Atn)} defined as

E{L(Atn+1)l | L(At1), . . . ,L(Atn)} = Eπl(tn+1)[E{L(Atn+1)l | πl(tn+1)} | L(At1), . . . ,L(Atn)]

= E{πl(tn+1) | L(At1), . . . ,L(Atn)}, (2.11)

for each l = 1, . . . , V (V − 1)/2. Recall also that we use standard font L(A) to define the ob-

served vectorized adjacency matrix and italics notation L(A) to denote its associated random

variable. Equation (2.11) simply requires the posterior mean of the edge probabilities at time

tn+1. Under our model, the posterior distribution of future π(tn+1) with tn+1 > tn given

the observed networks L(At1), . . . ,L(Atn), can be obtained by simply performing the previ-

ous posterior computations adding to the observed dataset L(At1), . . . ,L(Atn) a new vector

L(Atn+1) of missing values and make inference on the posterior distribution for π(tn+1).

2.1.4 A note on the multiplicative inverse gamma prior

Before assessing model performance in simulations and applications, it is worth consider-

ing an in-depth analysis on the properties of the multiplicative inverse gamma prior in (2.6)

introduced by Bhattacharya and Dunson (2011). This prior provides a useful building block

in the following analyses, but some of the authors statements need clarifications and a careful

study of prior properties is required to ensure appropriate use in routine applications.

Bhattacharya and Dunson (2011) are motivated by increasingly high-dimensional prob-

lems requiring statistical methodologies which adaptively induce sparsity and automatically



Chapter 2. Dynamic networks 42

delete redundant components not required to characterize the data. Although shrinkage

is implicit in some Bayesian inference procedures (Morris, 1983), it is increasingly common

to further enhance adaptive deletion of redundant components via carefully defined priors

which are designed to stochastically penalize over-parameterized representations. Other key

examples include stick-breaking representation (Sethuraman, 1994) and spike-and-slab pri-

ors (Ishwaran and Rao, 2005). These procedures facilitate adaptive shrinkage by defining

priors which concentrate increasing mass towards values deleting the effect of parameters

associated to growing dimensions of the statistical model. For example, the stick-breaking

prior for the weights in a mixture model assigns growing mass around zero for the weights

associated to increasing mixture components. Hence, as the number of components grows,

their weights tends to concentrate around zero a priori, meaning that increasing components

have a decreasing importance in defining the density.

Although these procedures provide key strategies to deal with high-dimensional data, their

performance may be sensitive to several choices including model definition, hyperparame-

ters settings and prior specification for other quantities not directly related to shrinkage; refer

to Roos and Held (2011) and the references cited therein for a discussion. Indeed, the theo-

retical analysis of these shrinkage priors is currently object of intense interest. Key questions

include, among others, assessing how prior properties and hyperparameter settings guar-

antee improved theoretical performance of the posterior distribution and whether specific

shrinkage priors can accurately recover the true dimensions of the parametric space a poste-

riori. Early results are available in simple models (Rousseau and Mengersen, 2011), and it is

an active area of research to extend these asymptotic results to more general settings.

Although previous questions are of fundamental interest, in making these contributions

standard practice, it is first important to provide the researcher with strategies to check

whether the prior actually achieves the shrinkage behavior he seeks when using these meth-

ods. This property doesn’t holds for all the hyperparameters settings, with poor choices lead-

ing to completely opposite behaviors which vanish the motivations for the use of a shrinkage

prior and do not justify higher computational complexity in performing posterior compu-

tation under these methods. Focusing on the shrinkage prior (2.6) we use, its cumulative

shrinkage property is clearly not maintained for all the values of the hyperparameters a1 and

a2. Although Bhattacharya and Dunson (2011) consider hyperpriors on a1 and a2 to learn

these key quantities from the data, a wide set of statistical models building on their contri-

bution fix such hyperparameters following some of the authors statements on the behavior

of (2.6) in relation to a1 and a2. In particular Bhattacharya and Dunson (2011) claim that the

quantities 1/λr – acting as precision parameters in their statistical model – are stochastically

increasing under the restriction a2 > 1, meaning that the cumulative shrinkage behavior of

the prior is guaranteed for choices of a2 greater than 1.
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1/λr λr
Q1 Q2 Q3 Q1 Q2 Q3

a2 = 1.1
r = 1 0.29 0.69 1.39 0.72 1.44 3.50
r = 2 0.13 0.45 1.28 0.78 2.20 7.50
r = 3 0.07 0.30 1.08 0.92 3.35 14.86
r = 4 0.04 0.19 0.88 1.13 5.12 28.16

TABLE 2.1: Stochastic behavior of the priors for the model parameters. For a2 = 1.1 > 1, first (Q1),
second (Q2) and third (Q3) quartiles for 1/λr and λr at increasing dimensions r = 1, . . . , 4, when
λ = (λ1, . . . , λ4)T ∼ MIG(1, 1.1). Quantities are obtained by 1,000,000 simulated data from prior (2.6).

Although it is true that E(1/λr) = E(
∏r
m=1 ϑm) =

∏r
m=1 E(ϑm) = a1a

r−1
2 increases with

r when a2 > 1, such property doesn’t necessarily imply stochastic ordering and cumula-

tive shrinkage. Indeed, as shown in Table 2.1, a value of a2 = 1.1 > 1 induces priors on

parameters 1/λr which seem stochastically decreasing as r increases. This leads to stochas-

tically increasing distributions on λr. Hence, a researcher choosing a2 = 1.1 will obtain a

prior with an opposite behavior with respect to the one he seeks when using a multiplicative

inverse gamma prior. Beside this, even increasing expectation in 1/λr, doesn’t necessarily

implies decreasing expectation in λr and therefore growing shrinkage on average. In fact,

E(λr) = E(
∏r
m=1 1/ϑm) =

∏r
m=1 E(1/ϑm) = 1/{(a1 − 1)(a2 − 1)r−1}. Hence for values

1 < a2 < 2 both 1/λr and λr increase in expectation with growing dimension. Motivated

by these misleading results, we aim to improve the characterization of the multiplicative in-

verse gamma process and add further insights compared to those available in Bhattacharya

and Dunson (2011), in terms of prior properties. This is a key to avoid undesired behaviors

similar to those for a2 = 1.1.

Stochastic ordering and shrinkage in the multiplicative inverse gamma prior

Consistently with the previous discussion let us focus on studying the stochastic behavior

of the sequence λ1, . . . , λR, with each λr, r = 1, . . . , R, defined as the cumulative product

of r independent inverse gamma random variables 1/ϑ1, . . . , 1/ϑr. Stochastic ordering λ1 �
. . . � λR is an appealing property for the multiplicative inverse gamma prior in facilitating

increasing shrinkage as the dimension index r grows. This requires showing that pr(λr+1 ≤
ξ) ≥ pr(λr ≤ ξ) for every r and ξ > 0, or equivalently that E{g(λr+1)} ≤ E{g(λr)} for

all the increasing functions g(·), for which expectation exists; refer to page 4 in Shaked and

Shanthikumar (2007) .

Unfortunately, as stated in Lemma 2.5, for every a2 > 1 it is always possible to find an in-

creasing function g∗(·) for which E{g∗(λr+1)} > E{g∗(λr)}, for every r = 1, . . . , R, meaning

that stochastic ordering is never met under the multiplicative inverse gamma prior. In prov-

ing λ1 � . . . � λR, let us first derive the quantity E(λcr), for r = 1, . . . , R and c > 0. According

to (2.6), this requires first E(1/ϑc), where ϑ is a generic gamma random variable ϑ ∼ Ga(a, 1).
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a2 = 1 a2 = 1.5 a2 = 2

0.1 1 5 0.1 1 5 0.1 1 5

r = 1 4× 10−5 0.37 0.82 4× 10−5 0.37 0.82 4× 10−5 0.37 0.82
r = 2 6× 10−3 0.28 0.65 0.02 0.41 0.77 0.02 0.51 0.84
r = 3 0.01 0.22 0.52 0.05 0.43 0.74 0.10 0.60 0.87
r = 4 0.02 0.18 0.42 0.08 0.44 0.73 0.19 0.67 0.89

TABLE 2.2: Behavior of the cumulative distribution functions. For selected a2 ∈ {1, 1.5, 2}, values of
pr(λr ≤ ξ), evaluated at selected ξ ∈ {0.1, 1, 5} for increasing r = 1, . . . , R. Without loss of generality
a1 is fixed at 1. When r = 1 the pr(λr ≤ ξ) is analytically available as Fλ1(ξ) = 1 − γ(a1, 1/ξ)/Γ(a1),
with γ(·, ·) the incomplete gamma function. When instead r = 2, . . . , R, the quantity pr(λr ≤ ξ) is
evaluated numerically as

∑N
q=1{1 − γ(a2, λ

(q)
r−1/ξ)/Γ(a2)}/N , with N = 1,000,000 and λ(q)

r−1 sampled
from (2.6) for each q = 1, . . . , N . This approximation follows from the Markovian structure of the
multiplicative inverse gamma which guarantees that Fλr (ξ) = Eλr−1{Fλr|λr−1

(ξ)} with Fλr|λr−1
(ξ)

the cdf of λr | λr−1 which is still an inverse gamma with shape a2 and scale λr−1.

Hence

E(1/ϑc) =

∫ +∞

0
ϑ−c

1

Γ(a)
ϑa−1e−ϑdϑ =

1

Γ(a)

∫ +∞

0
ϑ(a−c)−1e−ϑdϑ

=
Γ(a− c)

Γ(a)

∫ +∞

0

1

Γ(a− c)ϑ
(a−c)−1e−ϑdϑ =

Γ(a− c)
Γ(a)

, (a > c). (2.12)

Exploiting (2.12), E(λcr) = E{(∏r
m=1 1/ϑm)c} = E(

∏r
m=1 1/ϑcm) = {Γ(a1 − c)/Γ(a1)}{Γ(a2 −

c)r−1/Γ(a2)r−1}, a1 > c, a2 > c. Exploiting this result, Lemma 2.5 proves λ1 � . . . � λR.

Lemma 2.5. For every a2 > 1, there always exists an increasing function g∗(·) for which E{g∗(λr)}
exists and such that E{g∗(λr+1)} > E{g∗(λr)}, for every r = 1, . . . , R.

Proof. Without loss of generality let a1 = a2 and 0 < ca2 < a2, and consider g∗(λr) = λ
ca2
r . As

ca2 is positive and since λr ∈ (0,+∞) for every r = 1, . . . , R, the function g∗(λr) is increasing

in the parametric space of λr. Moreover, as ca2 < a2, E{g∗(λr)} exists for every r = 1, . . . , R.

Exploiting results in (2.12),

E(λ
ca2
r+1)− E(λ

ca2
r ) =

Γ(a1 − ca2)

Γ(a1)

Γ(a2 − ca2)r

Γ(a2)r
− Γ(a1 − ca2)

Γ(a1)

Γ(a2 − ca2)r−1

Γ(a2)r−1

=
Γ(a1 − ca2)

Γ(a1)

Γ(a2 − ca2)r−1

Γ(a2)r−1

{
Γ(a2 − ca2)

Γ(a2)
− 1

}
. (2.13)

Hence showing E(λ
ca2
r+1) − E(λ

ca2
r ) > 0, requires finding a value 0 < ca2 < a2, such that

Γ(a2 − ca2) > Γ(a2). According to the well known properties and functional form of the

gamma function Γ(·), it is always possible to find a value ca2 less than a2 but sufficiently close

to a2, such that their difference a2 − ca2 is close to zero enough to obtain Γ(a2 − ca2) > Γ(a2).

This proves absence of stochastic ordering.

Although absence of stochastic ordering is an undesired property, it doesn’t necessarily af-

fect the shrinkage behavior for which the prior has been developed. According to the Markov
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inequality pr(λr ≥ ξ) ≤ E(λr)/ξ = 1/{ξ(a1 − 1)(a2 − 1)r−1}. Hence, a value a2 > 2, increas-

ingly concentrates the upper bound towards zero, meaning that the prior achieves shrinkage

for growing r, when a2 > 2. However this property may not hold for 1 < a2 ≤ 2, represent-

ing a subset of the possible hyperparameters settings suggested by Bhattacharya and Dunson

(2011). Moreover, decreasing upper bound as r grows, do not univocally characterize the be-

havior of pr(λr+1 ≤ ξ) compared to pr(λr ≤ ξ). Although stochastic ordering doesn’t hold

for all ξ > 0, analyzing the cumulative distribution function of each λr is still important to

understand if this property is valid on subsets of (0,+∞) of interest.

Indeed, as shown in Table 2.2, for every a2 ∈ {1, 1.5, 2}, including a2 = 1, the prior assigns

increasing mass to small intervals of zero, such as (0, ξ = 0.1), as r grows, with this mass

increasingly higher for growing a2. This facilitates shrinkage. However as ξ grows, stochastic

order no longer holds for all values of a2, with increasing a2 apparently enlarging the subset

of the parametric space in which pr(λr+1 ≤ ξ) ≥ pr(λr ≤ ξ). For example when a2 = 1.5,

the property pr(λr+1 ≤ ξ) ≥ pr(λr ≤ ξ) is true when ξ = 0.1 and ξ = 1, but not for ξ = 5,

while pr(λr+1 ≤ ξ) ≥ pr(λr ≤ ξ) holds for all ξ ∈ {0.1, 1, 5} when a2 = 2. Lemma 2.6 proves

that stochastic order pr(λr+1 ≤ ξ) ≥ pr(λr ≤ ξ) holds as ξ → 0+ for every r = 2, . . . , R and

a2 > 0.

Lemma 2.6. For every a2 > 0, limξ→0+{pr(λr+1 ≤ ξ)/pr(λr ≤ ξ)} ≥ 1.

Proof. To prove Lemma 2.6 let us first study likelihood ratio order λr+1 ≤lr λr as ξ →
0+. Adapting Shaked and Shanthikumar (2007) page 42 to our case, this requires show-

ing limξ→0+ lim∆→0+{fλr+1(ξ)/fλr(ξ) − fλr+1(ξ + ∆)/fλr(ξ + ∆)} ≥ 0, where fλr+1(ξ) and

fλr(ξ) are the probability density functions of λr+1 and λr, respectively. As the probability

density function for a product of independent gammas is available via sophisticated Meijer

G-functions (Springer and Thompson, 1970), let us first focus on fλr+1|λr−1
(ξ) and fλr|λr−1

(ξ)

representing the conditional density function of λr+1 and λr, given λr−1 > 0, respectively.

As λr = λr−1/ϑr, with 1/ϑr ∼ Inv-Ga(a2, 1), from the standard properties of the inverse

gamma random variable, fλr|λr−1
(ξ) is easily available as the probability density function for

the random variable λr | λr−1 ∼ Inv-Ga(a2, λr−1). To compute fλr+1|λr−1
(ξ) note instead

that λr+1 = λh/ϑr+1, with 1/ϑr+1 ∼ Inv-Ga(a2, 1). Hence λr+1 | λr ∼ Inv-Ga(a2, λr) and

λr | λr−1 ∼ Inv-Ga(a2, λr−1). Exploiting this Markov property

fλr+1|λr−1
(ξ) =

∫ +∞

0
fλr+1|λr=x(ξ)fλr|λr−1

(x)dx =
λa2r−1

Γ(a2)2
ξ−a2−1

∫ +∞

0
x−1e

−λr−1
x
−x
ξ dx

=
λa2r−1

Γ(a2)2
ξ−a2−1

∫ +∞

0
y−1e

−y−λr−1/ξ

y dy, (2.14)

where the last equality in (2.14) follows after the change of variable x/ξ = y. To evaluate

(2.14), note that from the theory of Bessel functions Kν(z) = 0.5(0.5z)ν
∫ +∞

0 t−ν−1 exp(−t −
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z2/4t)dt, where Kν(·) is the modified Bessel function of the second kind with parameter ν;

refer to Watson (1966) page 183. Hence, after changing λr−1/ξ with {2(λr−1/ξ)
1/2}2/4 and

rewriting (2.14) to highlight the Bessel component, fλr+1|λr−1
(ξ) is

fλr+1|λr−1
(ξ) =

λa2r−1

Γ(a2)2
ξ−a2−1 2

2
{2(λr−1/ξ)

1
2 }0

∫ +∞

0
y−1e

−y− {2(λr−1/ξ)
1/2}2

4y dy

=
2λa2r−1

Γ(a2)2
ξ−a2−1K0{2(λr−1/ξ)

1
2 }. (2.15)

Once fλr+1|λr−1
(ξ) is available as in (2.15) let us evaluate the likelihood ratio order as ξ → 0+.

According to previous discussion this requires showing that limξ→0+ lim∆→0+{g(ξ) − g(ξ +

∆)} ≥ 0, where g(ξ) = fλr+1|λr−1
(ξ)/fλr|λr−1

(ξ) is defined as

g(ξ) =
2λa2r−1

Γ(a2)2
ξ−a2−1K0{2(λr−1/ξ)

1
2 }Γ(a2)

λa2r−1

ξa2+1e
λr−1
ξ =

2

Γ(a2)
K0{2(λr−1/ξ)

1
2 }e

λr−1
ξ . (2.16)

In proving Lemma 2.6 note that the limit limξ→0+ lim∆→0+{g(ξ) − g(ξ + ∆)} ≥ 0 if and only

if limξ→0+ lim∆→0+{g(ξ)− g(ξ + ∆)}/∆ ≥ 0, provided that ∆ > 0. By the standard definition

of first derivative dg(ξ)/dξ = lim∆→0+{g(ξ + ∆) − g(ξ)}/∆, previous inequality reduces to

prove limξ→0+ dg(ξ)/dξ ≤ 0. Let us compute dg(ξ)/dξ, with g(ξ) from (2.16).

dg(ξ)

dξ
=

2

Γ(a2)
e
λr−1
ξ

{
K1{2(λr−1/ξ)

1
2 }λ

1
2
r−1ξ

− 3
2 −K0{2(λr−1/ξ)

1
2 }λr−1ξ

−2

}
.

Adapting results in page 378 of Abramowitz and Stegun (1964) to our case, as ξ → 0+,

K0{2(λr−1/ξ)
1/2} ≈ K1{2(λr−1/ξ)

1/2} ≈ 0.5π1/2λ
−1/4
r−1 ξ

1/4e−2(λr−1/ξ)1/2 . Hence, as ξ → 0+

dg(ξ)

dξ
≈ π1/2

Γ(a2)
e
λr−1
ξ

(1−2λ
3/2
r−1ξ

1/2)
λ
−1/4
r−1 ξ

1/4
{
λ

1/2
r−1ξ

−3/2 − λr−1ξ
−2
}

=
π1/2λ

3/4
r−1

Γ(a2)
e
λr−1
ξ

(1−2λ
3/2
h−1ξ

1/2)
ξ−7/4(λ

−1/2
r−1 ξ

1/2 − 1).

Since limξ→0+(λ
−1/2
r−1 ξ

1/2−1) = −1 and limξ→0+ e
λr−1(1−2λ

3/2
r−1ξ

1/2)/ξξ−7/4 = +∞, it follows that

limξ→0+ dg(ξ)/dξ ≤ 0 for every a2 > 0 and λr−1 > 0. This proves λr+1 | λr−1 ≤lr λr | λr−1

as ξ → 0+. As order in likelihood ratio implies stochastic order (Shaked and Shanthikumar,

2007; page 43), previous results guarantees λr+1 | λr−1 � λr | λr−1 for every a2 > 0 when

ξ → 0+. Finally, since stochastic order is closed under mixtures (Shaked and Shanthikumar,

2007; page 6) and provided that λr+1 | λr−1 � λr | λr−1 holds for every λr−1 when ξ → 0+, it

follows that limξ→0+{pr(λr+1 ≤ ξ)/pr(λr ≤ ξ)} ≥ 1 for every a2 > 0, proving Lemma 2.6.

Lemma 2.6 is appealing in guaranteeing that the prior assigns increasing mass to a small

neighborhood of zero for all a2 > 0 as r grows, facilitating shrinkage. However this inter-

val may be substantially small. Hence, from an applied perspective, it is worth assessing
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a2 = 1 a2 = 1.5 a2 = 2 a2 = 2.5 a2 = 3

a1 = 1
r = 1→ r = 2 (0, ξ = 0.52) (0, ξ = 1.52) (0, ξ > 100) (0, ξ > 100) (0, ξ > 100)
r = 2→ r = 3 (0, ξ = 0.33) (0, ξ = 1.61) (0, ξ > 100) (0, ξ > 100) (0, ξ > 100)
r = 3→ r = 4 (0, ξ = 0.22) (0, ξ = 1.72) (0, ξ > 100) (0, ξ > 100) (0, ξ > 100)
r = 4→ r = 5 (0, ξ = 0.14) (0, ξ = 1.88) (0, ξ > 100) (0, ξ > 100) (0, ξ > 100)

a1 = 2
r = 1→ r = 2 (0, ξ = 0.33) (0, ξ = 0.65) (0, ξ = 1.79) (0, ξ = 25.94) (0, ξ > 100)
r = 2→ r = 3 (0, ξ = 0.21) (0, ξ = 0.66) (0, ξ = 3.18) (0, ξ > 100) (0, ξ > 100)
r = 3→ r = 4 (0, ξ = 0.13) (0, ξ = 0.68) (0, ξ = 5.67) (0, ξ > 100) (0, ξ > 100)
r = 4→ r = 5 (0, ξ = 0.09) (0, ξ = 0.69) (0, ξ = 9.50) (0, ξ > 100) (0, ξ > 100)

TABLE 2.3: Solutions of (2.17) for r = 1, . . . 4, based on different combinations of a1 and a2. In
evaluating (2.17), N = 1,000,000.

whether this property holds for a larger subset of the parametric space. This requires finding

for which values ξ > 0 the inequality Fλr+1(ξ) − Fλr(ξ) = pr(λr+1 ≤ ξ) − pr(λr ≤ ξ) ≥ 0,

holds. As previously discussed, derivation of the cumulative distribution for the product of

independent inverse gammas is a cumbersome task. Few results are obtained for the prod-

uct of two gammas (Withers and Nadarajah, 2013). However also in these simpler settings

analytical forms are available only for specific values of a2 via sophisticated combinations of

modified Bessel and Struve functions.

To overcome previous issues let us exploit the Markovian structure of the multiplicative in-

verse gamma process which guarantees that λr | λr−1 ⊥ λr−2, . . . , λ1 ∼ Inv-Ga(a2, λr−1), r =

2, . . . , R. Exploiting this property we can write the previous inequality between the cumula-

tive distribution functions as Eλr{Fλr+1|λr(ξ)}−Eλr−1{Fλr|λr−1
(ξ)} = Eλr{Γ(a2, λr/ξ)/Γ(a2)}−

Eλr−1{Γ(a2, λr−1/ξ)/Γ(a2)} ≥ 0. As the previous expectations require the probability density

functions for a product of inverse gamma, and provided that these quantities are available via

sophisticated Meijer G-functions, the quantities Eλr{Γ(a2, λr/ξ)/Γ(a2)} are not analytically

available. Hence, to address our goal let us focus on finding the solutions for the numerical

approximation of Eλr{Fλr+1|λr(ξ)} − Eλr−1{Fλr|λr−1
(ξ)} ≥ 0, which can be easily obtained as

1

N

N∑
q=1

Γ(a2, λ
(q)
r /ξ)

Γ(a2)
− 1

N

N∑
q=1

Γ(a2, λ
(q)
r−1/ξ)

Γ(a2)
≥ 0, r = 2, . . . , R, (2.17)

where samples λ(q)
r and λ

(q)
r−1, q = 1, . . . , N are easily available as cumulative products of

r and r − 1 independent inverse gammas from (2.6), respectively. Note that when r = 1,

inequality (2.17), reduces to
∑N

q=1{Γ(a2, λ
(q)
1 /ξ)/Γ(a2)}/N − Γ(a1, 1/ξ)/Γ(a1) ≥ 0.

In order to provide guidelines for possible behaviors of the multiplicative gamma process

prior, Table 2.3 reports solutions of (2.17) for different combinations of a1 and a2, at increasing

r = 1, . . . , 4. Note how, consistently with Lemma 2.6, stochastic order pr(λr+1 ≤ ξ) ≥ pr(λr ≤
ξ) holds in an interval of zero for every a2 and r in Table 2.3, with this interval becoming
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increasingly larger as a2 grows for every combination of r and a1. Also a1 plays a role in

defining the dimension of such interval. According to Table 2.3, the higher is a1 the smaller is

the interval where stochastic order holds for every combination of a2 and r. Note also how,

the dimensions of such interval generally grows as r increases for the combinations of a1 and

a2 considered, with exception of a2 = 1. Finally it is worth noticing how the subset of (0,+∞)

where stochastic order holds become substantially wide when a2 is moderately higher than

a1. Although Table 2.3 focuses on few standard cases, this study provides the researchers

with the basic guidelines and tools to evaluate the properties of the multiplicative inverse

gamma prior at all possible combinations of a1, a2 and dimensions r. This is a key to check

desirable behaviors in our practical applications.

2.1.5 Simulation study

We conduct a simulation study to evaluate the performance of the proposed approach in

accommodating dynamic heterogenous connectivity patterns. We focus on estimating the dy-

namic edge probabilities and on out-of-sample forecasting. We additionally compare our re-

sults with an approach that uses only temporal information. We generate a set of 15×15 time-

varying matrices Ati with ti ∈ Tsim = {1, . . . , 40}. Each edge L(Ati)l, l = 1, . . . , 15(15− 1)/2,

i = 1, . . . , 40, is simulated according to (2.1) with probabilities obtained from (2.2)–(2.3), gen-

erating {µ(1), . . . , µ(40)}T from a GP(0, cµ) with length scale κµ = 0.01 and choosing two

time-varying latent coordinates {Xv1(1), . . . , Xv1(40)}T, {Xv2(1), . . . , Xv2(40)}T, from Gaus-

sian processes with length scale κx = 0.01, independently for each node v = 1, . . . , 15.

To evaluate out-of-sample predictive performance, we perform posterior inference taking

L(At40) to be a vector missing edges, and then compare our predictions with the simulated

data L(At40).

For inference we choose R = 10 and length scales κµ = κx = 0.05. Recalling discussion

in Section 2.1.4 we set a1 = 2.5 and a2 = 3.5 for the shrinkage parameters. According to

Bhattacharya and Dunson (2011), this choice additionally ensures the existence of the first

two moments for the induced priors on elements Sl(t) at every t ∈ T. We consider 5,000 Gibbs

iterations, and discard the first 1,000. Mixing has been assessed via effective sample sizes for

the quantities of interest, represented by πl(ti), for l = 1, . . . , V (V − 1)/2 and ti ∈ Tsim after

burn-in. Most of these values were around 1,700 out of 4,000, suggesting good mixing. We

additionally assess convergence by investigating the Gelman and Rubin (1992) potential scale

reduction factors (PSRF). These are computed by dividing each chain in four consecutive sub-

chains of length 1,000 after burn-in, and comparing within and between sub-chains variance.

The median of the PSRFs for the chains of the edge probabilities at every time, is 1.01, with

the 99% of these PSRFs being less than 1.2, providing evidence that convergence has been

reached.
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ESTIMATING PERFORMANCE AT TIME : t10 ESTIMATING PERFORMANCE AT TIME : t30 ESTIMATING PERFORMANCE AT TIME : t40
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FIGURE 2.1: For selected times ti, plot of the posterior mean for edge probabilities π̂l(ti), l =
1, . . . , V (V −1)/2 – rearranged in matrix form – (lower triangular), and absolute value of the difference
|π̂l(ti)− π0

l (ti)| (upper triangular).
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FIGURE 2.2: Left plot: plots of the true edge probabilities at time t40, π0
l (t40) (x-axis) versus their

posterior mean π̂l(t40) (y-axis), l = 1, . . . , V (V − 1)/2. Segments denote the 0.95 highest posterior
density intervals. Right plot: forecasting performance assessed via the receiver operating characteristic
curve (ROC) generated using π̂l(t40) and the observed edges L(At40)l, l = 1, . . . , V (V − 1)/2.

The graphical representation in Figure 2.1 of the estimated edge probabilities – rearranged

in matrix form – and their difference with the corresponding true values for some selected

times ti highlights the good performance of our approach in estimation and forecasting. The

latter can be noticed by focusing on the third matrix assessing performance at t40, recalling

that data at t40 were held out in deriving the posterior distribution. Accurate forecasting

performance is further highlighted in Figure 2.2, displaying the true π0
l (t40) against the cor-

responding estimates π̂l(t40), along with the ROC curve when predicting L(At40) with the

expectation of its forecasted predictive distribution according to equation (2.11).

Figure 2.3 compares the performance of our model with respect to selected edge probability

trajectories πl(t1), . . . , πl(tn) with the inferential results when each of these edge probability

processes πl(t1), . . . , πl(tn) is estimated with the same setting of our model but using only the

time series of the corresponding edges L(At1)l, . . . ,L(Atn)l without borrowing information

across the network. The sub-optimality of the independent approach is apparent in terms
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FIGURE 2.3: Model comparison. Upper panels: for selected pairs of nodes, plots of the true edge
probability trajectories (black lines), pointwise posterior means (gray lines) and 0.95 highest posterior
density intervals (gray segments) for our model. Lower panels: same quantities estimated using only
temporal information without exploring network structure. Specifically, we estimate each edge prob-
ability trajectory using only the time series of the edges observed for the corresponding pair of nodes,
instead of considering the entire network information.

of over-smoothed trajectories and wider highest posterior density intervals. When network

structure is taken into account, the model provides accurate estimates, with posterior dis-

tributions better concentrating around the true parameters, while adaptively deleting latent

space dimensions not required to characterize the observed data. In particular, we find that

the posterior mean for λr drop to small values for r = 3, . . . , 10. This implies that these later

dimensions trajectories are flat and have limited influence.

Borrowing information across the network over time has the additional advantage of re-

ducing sensitivity to the choice of hyperparameters, in particular with respect to the length

scales in the Gaussian process priors. Our approach can be easily modified to learn the length

scales from the data as in Murray and Adams (2010). However, since we obtain similar re-

sults when instead letting κµ = κx = 0.03, κµ = κx = 0.1 and κµ = κx = 0.5 in sensitivity

analyses, we preferred to simply elicit the length scales to favor smooth trajectories a priori.

2.1.6 Application to international cooperation relationships networks

We apply our dynamic network model outlined in Sections 2.1.1–2.1.2 to GDELT relation-

ships data At1 , . . . , At127 described in Section 1.1.1, considering the same settings as the in

simulation study. Also mixing via effective sample sizes and convergence based on Gelman

and Rubin (1992) potential scale reduction factors, are on similar values.
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FIGURE 2.4: Trajectory of the posterior mean for the expected network density (gray line) and point-
wise posterior interquartile range (gray segments). [A] Mexican economic crisis (≈1995), Asian fi-
nancial crisis (≈1997–1998), Russian financial crisis (≈1998), Turkish financial crisis (≈2000–2001), Ar-
gentinian financial crisis (≈1999–2001), raise and burst of Dot-com bubble (≈1997–2001); [B] Raise and
burst of housing bubble (≈2002–2007) and global financial crisis (≈2007–2009); [C] European debt crisis
(≈2010–2013), Russian financial crisis (≈2014).

The trajectory of the posterior mean for the expected network density in Figure 2.4 provides

an appealing overview of the overall dynamic connectivity behavior in relation to key finan-

cial and economic international events. Note that the posterior distribution of this quantity

– at every time ti – can be easily derived as a function of the posterior samples for the edge

probabilities, as E[
∑V (V−1)/2

l=1 L(Ati)l/{V (V −1)/2}] =
∑V (V−1)/2

l=1 E{L(Ati)l}/{V (V −1)/2} =∑V (V−1)/2
l=1 πl(ti)/{V (V − 1)/2}. It is first interesting to notice how the posterior mean for the

time-varying expected network density evolves on a range between 0.2 and 0.5, meaning

that there is not an overall strong tendency towards material cooperations compared to ma-

terial conflicts in the time window considered. This can be partially explained by the fact

that 7 nodes on a total of 25 represent Arab countries, which traversed long conflictual peri-

ods with the other nations, but also may reflect an overall general tendency of mass media

towards negative news reports, such as material conflicts, rather than positive ones; see for

example Thapthiang (2013) and the references cited therein.

Although evolving on low values, the overall dynamic connectivity behavior is character-

ized by a positive trend, which traverses several changes and cyclical periods interestingly

related to the key financial events occurring in the time window considered. We observe

a rapid change in the expected network density at the burst of the Asian financial crisis in

1997, which then remains on similar high levels in the subsequent years, while displaying

bumps in correspondence of the main crises occurred in [A] – i.e. the Mexican peso crisis

in 1995, the 1997–1998 Asian financial crisis, the Russian flu in 1998, the 2000–2001 Turkish

economic crisis and the Argentina great depression of 1999–2001. Refer to Eun and Resnick

(2010) and the references cited therein. Previous crises are generally accompanied by rescue
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packages and increased material cooperation relationships among international countries to

organize bailout investments and avoid facing spread of contagion in case of financial col-

lapse of the countries affected (Eun and Resnick, 2010). Our estimated increments for the

overall propensity towards material cooperations in correspondence of previous crises con-

firm this behavior, with the persistent high levels after 1997 potentially related to the growth

of the 1997–2001 Dot-com bubble, which facilitated worldwide investments.

The estimated expected network density remains approximately on the same level in later

years until further increasing from 2006, with the burst of the United States housing bubble

(Taylor, 2009) and the subsequent 2007–2009 Global financial crisis (Brunnermeier, 2009) [B].

This behavior is interestingly consistent with our previous conclusions for time window [A]

and key analyses from Bernanke (2007), Brunnermeier (2009) and Taylor (2009). In particular,

similarly to the Dot-com bubble, the behavior prior to 2006 can be related to the growth of the

United States housing bubble, which was stimulated by the unusually low interest rates de-

cision of the Federal Reserve to mitigate the effects of the Dot-com bubble (Taylor, 2009) and

facilitated a wide network of material investments among countries under a ”global saving

glut” scenario (Bernanke, 2007). The increase of the expected network density in later years

is instead reasonably associated with need for international material cooperation to provide

the many bailouts and bank rescue packages in order to avoid bankruptcy or spread of finan-

cial collapses. Refer to Brunnermeier (2009) for an overview of the interventions required on

key financial institutions covering Northern Rock, Bear Stearns, JP Morgan, Lehman Brother

and others. A similar scenario applies during the subsequent European debt crisis, which re-

quired important bailout investments by the European Stability Mechanism and the Interna-

tional Monetary Fund to face the most acute phases of the crises for Greece, Ireland, Portugal

in 2010–2011 and Spain in 2012 (Belkin et al., 2012). Our dynamic network model captures

also these events with high levels in 2010 – 2012, which are followed by a last increment in

correspondence with the recent 2014 Russia ruble crisis.

We provide further insights to specific events by focusing on the estimated dynamic coop-

eration probabilities between selected pairs of countries, outlined in Figure 2.5. Results in the

top panels confirm previous discussion on the European debt crisis with a specific focus to

Greece. Consistently with the leading role of Germany in guaranteeing financial stability of

the Eurozone, the estimated cooperation probability between Greece and Germany rapidly

increases exactly at the burst of the Greek debt crisis and later stabilizes at very high levels.

Conversely, the relationships between United States and Greece are instead characterized by

a decreasing trend starting in 2010. This may be a result of efforts to reduce inter-connection

with a country in crisis.

The last two panels provide insights on the effect of recent conflicts on the dynamics of

the estimated cooperation probabilities. In the three time windows of the middle panels we
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FIGURE 2.5: For selected time windows. Upper panels: posterior mean (gray lines) and point-
wise posterior interquartile range (gray segments) for the dynamic cooperation probabilities between
Greece–USA and Greece–Germany. Middle panels: same quantities with respect to Ukraine–USA and
Ukraine–Russia. Lower panels: same quantities with respect to Iraq–USA and Iraq–Syria.

learn opposite behavior of United States and Russia in their cooperation relationships with

Ukraine. In particular, window [A.2] refers to Viktor Yushchenko president (2005–2010) and

Yulia Tymoshenko prime minister (2007–2010) period who deepened relations with United

States after the Orange Revolution in 2004 and supported NATO membership for Ukraine

while progressively increasing conflicts occasions with Russia, which culminated in the 2008–

2009 Russian-Ukrainian gas crisis (Tsygankov, 2015). Consistently with the previous political

background, we learn evident lower cooperation relationships between Russia and Ukraine

with respect to United States and Ukraine, with the latter evolving on very high levels after

a bump in 2007 when the prime minister Viktor Yanukovych was succeeded by Yulia Ty-

moshenko. Differently from Yushchenko and Tymoshenko, Yanukovych improved relations

with Russia since he was elected president in 2010, renouncing any aspirations to join NATO

and allowing Russia’s Black Sea Fleet to stay in the Crimean port of Sevastopol (Tsygankov,

2015). This change of regime is evident in the two trajectories of the estimated edge probabil-

ities in [B.2] which cross in correspondence of Yanukovych election to reach higher and lower

levels for Russia and United States, respectively. As expected, a further increment is evident

in [C.2] during the 2013–2015 Ukrainian–Russia crisis and the related ousting of Yanukovych,

when the estimated relationships between Ukraine and United States returns to high levels
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while those with Russia sharply drop.

The lower panels focus instead on the Iraq war. As expected, relationships between United

States and Iraq evolve on very low values, with an estimated decrement at the end of 1998

in correspondence of the 1998 Iraq Liberation Act and the subsequent operation Desert Fox

in December 1998. Cooperation relationships between Syria and Iraq register instead an in-

crease around the 2000 with the raise of Bashar al-Assad as president of Syria [B.3], and

remains on high levels until the 2003–2011 Iraq war [C.3]. These results appear to be con-

sistent with improved economic relations between Iraq and Syria under the Bashar al-Assad

regime, mostly related to Iraq oil exports at subsidized prices, which was later shut down by

the United States invasion of Iraq in 2003 (Hinnebush, 2009).

We conclude our analysis by evaluating in-sample prediction and out-of-sample forecasting

performance in the GDELT data application. This is accomplished by performing estimation

until 2014 – using networks from t1 to t126 – and forecasting edges at t127 – coinciding with the

first bimester of 2015 – according to the procedure outlined in equation (2.11). We obtain an

area ROC the curves of 0.79, and 0.71 for in-sample prediction and out-of-sample forecasting,

respectively, providing good results given the complexity of GDELT data.
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2.2 Locally adaptive dynamic network inference

Motivated by dynamic face-to-face human interaction data described in Section 1.1.2, we

generalize methodologies developed in Section 2.1 to improve flexibility and computational

tractability. Our Locally Adaptive DYnamic (LADY) network model, relies on the same la-

tent space formulation previously defined in equations (2.1)–(2.3), but substantially modifies

prior specification by considering nested Gaussian process (nGP) priors on the latent coordi-

nates to flexibly accommodate time-varying smoothness patterns. Using matrix factorization

procedures, our LADY network model can accommodate moderately large V , and consider-

ing a state space representation of the nGP, we improve scalability of inference and provide

novel procedures for fast forecasting of future networks. Adapting the Pólya-gamma data

augmentation strategy to our specific setting, we develop a novel and efficient Gibbs sam-

pler for posterior computations, which utilizes standard results of Kalman filter (Durbin and

Koopman, 2002) for transformed Gaussian data.

2.2.1 From Gaussian process to nested Gaussian process priors

Although the dynamic latent space model developed in Section 2.1 provides a continu-

ous time and highly general methodology that accommodates missing data, accounts for

across-node heterogeneity and scales to moderately large V , there are two issues which may

arise when focusing on data sets similar to those described in Section 1.1.2. Firstly, the pro-

posed coordinates processes assume a stationary dependence structure, and hence tends to

under-smooth during periods of stability and over-smooth during periods of sharp changes.

Secondly, the well known computational problems with usual GP regression are inherited,

leading to difficulties in developing strategies for fast forecasting of future networks. If we

define stationary processes, which assume that the correlation between the realizations at

times ti and tj only depend on the time separation (ti − tj)2, it is straightforward to show

that the resulting network-valued stochastic process will inherit this stationarity. To realis-

tically characterize the face-to-face human interaction data, it is necessary to accommodate

non-stationarity. However, this needs to be done in a careful way to avoid needing to esti-

mate many parameters related to non-stationarity and face computational intractability. Al-

though there is a rich literature on incorporating non-stationarity in GPs, such models tend

to be highly challenging to implement even in simpler settings in which data consist of direct

error-prone measurements of a single function.

With these issues in mind, we maintain the same model (2.1)–(2.3) previously described

in Section 2.1.1, but rely on nested GPs (nGPs) (Zhu and Dunson, 2013) rather than GPs to

induce highly flexible stochastic processes on {µ(t) : t ∈ T} and {Xvr(t) : t ∈ T} for every
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v = 1, . . . , V and r = 1, . . . , R. nGPs explicitly model time-varying smoothness by defin-

ing stochastic differential equations for the function’s derivatives. Focusing on the trajectory

{Xvr(t) : t ∈ T}, the stochastic differential equation representation for the nGP can be ac-

curately characterized by the following state equations for {Xvr(t) : t ∈ T}, it’s first order

derivative {X ′vr(t) : t ∈ T} and the local instantaneous mean {Uvr(t) : t ∈ T} – where

Uvr(t) = E{X ′vr(t) | Uvr(t)}. Xvr(ti+1)

X ′vr(ti+1)

Uvr(ti+1)

 =

 1 δi 0

0 1 δi
0 0 1

 Xvr(ti)

X ′vr(ti)

Uvr(ti)

+

 0 0

1 0

0 1

[ ηiXvr
ηiUvr

]
, (2.18)

= Ti

 Xvr(ti)

X ′vr(ti)

Uvr(ti)

+Qi

[
ηiXvr
ηiUvr

]
,

independently for v = 1, . . . , V and r = 1, . . . , R, with (ηiXvr , ηiUvr )T ∼ N2(0,Σvr), Σvr =

diag(σ2
Xvr

δi, σ
2
Uvr

δi) and δi = ti+1− ti sufficiently small. Similarly, the state equations implied

for {µ(t) : t ∈ T} are µ(ti+1)

µ′(ti+1)

M(ti+1)

 =

 1 δi 0

0 1 δi
0 0 1

 µ(ti)

µ′(ti)

M(ti)

+

 0 0

1 0

0 1

[ ηiµ
ηiM

]
, (2.19)

= Ti

 µ(ti)

µ′(ti)

M(ti)

+Qi

[
ηiµ
ηiM

]
,

where (ηiµ , ηiM )T ∼ N2(0,Σµ), with Σµ = diag(σ2
µδi, σ

2
Mδi).

Although there exists other possible methods for accommodating local adaptivity in the

latent trajectories, state equations (2.18)–(2.19) along with observation equations (2.1)–(2.3)

form an appealing nonlinear logistic state space model for adaptive dynamic network infer-

ence, which characterizes the latent positions at time ti+1 as a first-order stochastic Taylor

expansion of the same quantities at ti. This choice is further appealing in improving scalabil-

ity of the inference procedures, while facilitating implementation of tractable online updating

and prediction strategies by adapting available techniques associated to state space models.

Although previous state equations can be easily extended to model higher order derivatives

for the latent coordinates’ trajectories and their local instantaneous means, equations (2.18)–

(2.19) prove to be sufficiently flexible in inducing adaptive patterns according to our results.

Maintaining formulation (2.1)–(2.3) is appealing in our motivating application. This con-

struction recalls Hoff (2008) static eigenmodel, providing a flexible class of latent variables

models for social networks which allows for across-node heterogeneity while accommodat-

ing several topological properties. According to Hoff (2008), model (2.1)–(2.3) generalizes

stochastic block models (Nowicki and Snijders, 2001) and latent distance models (Hoff et al.,
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2002), and hence can suitably accommodate block structures, homophily behaviors as well

as transitive contact patterns. These properties are – potentially – key factors underlying

our face-to-face interaction data. For instance, during school hours or lunch times the contact

networks are expected to exhibit block structures due to shared environments by students be-

longing to the same class or groups of classes. Breaks are instead potentially associated with

transitive patterns arising from friendship among students in different classes or homophily

by gender.

2.2.2 Posterior computation

Current methodologies leveraging state space formulations in dynamic network analysis

require several layers of approximation to perform statistical inference, without theory avail-

able to justify accuracy. The reason behind these approximate methods is that the observation

equation in (2.1)–(2.3) is neither Gaussian, nor linear and hence efficient algorithms (Durbin

and Koopman, 2002) for inference in state space models (Durbin and Koopman, 2012) can’t

be directly applied. Differently from available contributions, we develop a novel and efficient

Gibbs sampler to obtain samples from the exact posterior of {π(t) : t ∈ T} based on the statis-

tical model (2.1)–(2.3) and priors (2.18)–(2.19). This is accomplished by efficiently exploiting

Pòlya-gamma augmented data (Polson et al., 2013) to obtain a Gaussian state space model for

transformed data. By block-sampling in turn the latent coordinate processes for each node

v conditionally on the latent positions of the others u = 1, . . . , V, u 6= v, we further obtain a

linear observation equation, which allows us to apply standard results from Kalman filtering

(Durbin and Koopman, 2012). Specifically, the Gibbs sampler for Bayesian inference in our

LADY network model alternates between steps outlined in Algorithm 2.

Algorithm 2 Gibbs sampler for the LADY network model

[1] Sample Pólya-gamma augmented data

for each l = 1, . . . , V (V − 1)/2 and ti = t1, . . . , tn do

Update each augmented data ωl(ti) from the full conditional Pólya-gamma

ωl(ti) | − ∼ PG {1, µ(ti) + L(X(ti)X(ti)
T)l} .

end for

———————————————————————————————————————–

[2] Update µ = {µ(t1), . . . µ(tn)}T, µ′ = {µ′(t1), . . . µ′(tn)}T, M = {M(t1), . . .M(tn)}T.
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Adapting representation (2.10) to our model, the likelihood for µ = {µ(t1), . . . µ(tn)}T given

the Pólya-gamma augmented data and the latent coordinate processes is

∝
n∏
i=1

exp

− V (V−1)/2∑
l=1

ωl(ti)

2
{(L(Ati)l − 0.5)/ωl(ti)− µ(ti)− L(X(ti)X(ti)

T)l}2
 ,

∝
n∏
i=1

exp

[
−
∑V (V−1)/2

l=1 ωl(ti)

2

{
µ(ti)

2 − 2µ(ti)

∑V (V−1)/2
l=1 ψl(ti)∑V (V−1)/2
l=1 ωl(ti)

}]
,

∝
n∏
i=1

exp

−∑V (V−1)/2
l=1 ωl(ti)

2

{∑V (V−1)/2
l=1 ψl(ti)∑V (V−1)/2
l=1 ωl(ti)

− µ(ti)

}2
 , (2.20)

with ψl(ti) = L(Ati)l− 0.5−ωl(ti)L(X(ti)X(ti)
T)l. Hence, letting ωµ(ti) =

∑V (V−1)/2
l=1 ωl(ti)

and L(A)µ(ti) =
∑V (V−1)/2

l=1 ψl(ti)/
∑V (V−1)/2

l=1 ωl(ti) for each i = 1, . . . , n, it is easy to notice

that (2.20) is the likelihood for the baseline vector µ arising from the model

L(A)µ(ti) = µ(ti) + εµ(ti), i = 1, . . . , n, (2.21)

where εµ(ti) ∼ N(0, 1/ωµ(ti)) independently for i = 1, . . . , n. Hence, combining the obser-

vation equation (2.21) for transformed data with state equations (2.19), we obtain a linear

Gaussian state space model, which allows simple updating for µ = {µ(t1), . . . µ(tn)}T,

µ′ = {µ′(t1), . . . µ′(tn)}T and M = {M(t1), . . .M(tn)}T via the simulation smoother of

Durbin and Koopman (2002) . This has a computational complexity of O(n) and diffuse

initialization at t1, {µ(t1), µ′(t1),M(t1)}T ∼ N3(0, 100 · I3).

———————————————————————————————————————–

[3] Sample states matrices X(t1), . . . , X(tn), X ′(t1), . . . , X ′(tn) and U(t1), . . . , U(tn)

for v = 1, . . . , V do

SampleXv(ti),X ′v(ti), Uv(ti), ti = t1, . . . , tn givenX(−v) = {Xu(ti) : u 6= v, ti = t1, . . . tn},
considering a similar derivation to the one in step [2].

1. Let X(−v)(ti) the (V − 1)×R coordinate matrix at ti with the vth row held out

2. Define the (V − 1) × 1 vector of transformed Gaussian data for the observation

equation L(A)Xv(ti) = diag{Ω(−v)(ti)}−1{Ati[(−v)v] − 0.5 · 1V−1 − µ(ti)Ω(−v)(ti)},
where Ati[(−v)v] denotes the vth column of Ati after discarding the vth row and

Ω(−v)(ti) the (V − 1)× 1 vector of corresponding Pòlya-gamma augmented data

3. Update states {Xvr(ti), X
′
vr(ti), Uvr(ti) : r = 1, . . . , R, ti = t1, . . . , tn} by applying

the simulation smoother of Durbin and Koopman (2002) to the state space model

having state equation (2.18) and observation equation

L(A)Xv(ti) = X(−v)(ti)Xv(ti) + εXv(ti), i = 1, . . . , n,
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with εXv(ti) ∼ NV−1(0,diag{Ω(−v)(ti)}−1) independently for i = 1, . . . , n. The

simulation smoother is initialized with diffuse states {Xvr(t1), X ′vr(t1), Uvr(t1)}T ∼
N3(0, 100 · I3) for each r = 1, . . . , R.

end for

———————————————————————————————————————–

[4] Update the hyperprior for the noise variances σ2
µ and σ2

M

Letting σ2
µ ∼ Inv-Ga(aµ, bµ) and σ2

M ∼ Inv-Ga(aM , bM ) the hyperpriors for the noise vari-

ances in the states equation (2.19), their full conditional distribution is

σ2
µ | − ∼ Inv-Ga

[
aµ +

n− 1

2
, bµ +

1

2

n−1∑
i=1

{µ′(ti+1)− µ′(ti)−M(ti)δi}2
δi

]
,

σ2
M | − ∼ Inv-Ga

[
aM +

n− 1

2
, bM +

1

2

n−1∑
i=1

{M(ti+1)−M(ti)}2
δi

]
.

———————————————————————————————————————–

[5] Update the noise variances σ2
Xvr

and σ2
Uvr

, v = 1, . . . , V and r = 1, . . . , R

for v = 1, . . . , V and r = 1, . . . , R do

Letting σ2
Xvr
∼ Inv-Ga(aX , bX), σ2

Uvr
∼ Inv-Ga(aU , bU ), the hyperpriors for the noise

variances in the states equation (2.18), their full conditional distribution is

σ2
Xvr | − ∼ Inv-Ga

[
aX +

n− 1

2
, bX +

1

2

n−1∑
i=1

{X ′vr(ti+1)−X ′vr(ti)− Uvr(ti)δi}2
δi

]
,

σ2
Uvr | − ∼ Inv-Ga

[
aU +

n− 1

2
, bU +

1

2

n−1∑
i=1

{Uvr(ti+1)− Uvr(ti)}2
δi

]
.

end for

Given MCMC chains for µ(t1), . . . , µ(tn) and X(t1), . . . , X(tn), posterior samples for latent

similarities S(t1), . . . , S(tn) and edge probability vectors π(t1), . . . , π(tn) can be easily derived

by applying equations (2.3) and (2.2), respectively. To estimate R, we repeat the above algo-

rithm for increasingR, stopping when there is no substantial improvement in in-sample edge

prediction based on area under the ROC curve. As in-sample prediction strategies may suffer

from over-fitting issues, we additionally assess our choice of R by exploring out-of-sample

prediction and forecasting performance.

The proposed Gibbs sampler allows substantial improvements compared to the procedures

outlined in Section 2.1. Replacing GP with nGPs reduces the computational burden from

O(n3) to O(n), with n denoting the length of the time series, while also allowing flexible

locally varying smoothness. Moreover, the state space representation further allows efficient

dynamic updating and forecasting procedures exploiting results from Kalman filter.
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2.2.3 Forecasting, predicting and online updating

Forecasting and predicting

Forecasting a future network based on past data is particularly appealing in our motivating

application as it allows to timely design specific policies, such as outbreak prevention. For ex-

ample, if a subject contract a disease at time tn, forecasts at time tn+1 are a key to understand

which children are at risk of contagion as a result of face-to-face proximity interaction.

Recalling strategies outlined at the end of Section 2.1.3, one-step-ahead forecasts for a future

network L(Atn+1) can be obtained from the expectation of the forecasted predictive distribu-

tion as in equation (2.11). In this respect, an appealing feature of our LADY network model

– compared to procedures developed in Section 2.1 – is that the entire posterior distribution

for πl(tn+1), can be easily obtained by applying the equation

πl(tn+1) =
[
1 + e−{µ(tn)+δnµ′(tn)}−{Xv(tn)+δnX′v(tn)}T{Xu(tn)+δnX′u(tn)}

]−1
, (2.22)

to the posterior samples of the latent states at time tn, where v and u are the nodes corre-

sponding to pair l, for each l = 1, . . . , V (V − 1)/2. This procedure is substantially faster than

the one proposed in Section 2.1.3 which requires re-running posterior computations adding

to the observed dataset L(At1), . . . ,L(Atn) a new vector L(Atn+1) of missing values.

Recalling our data set structure, beside forecasting contacts at the next time within the first

day, it is additionally of interest to predict the whole network dynamics in the second day,

based on estimates from the previous day. In particular, letting L(A∗ti) the random vector

denoting presence or absence of contacts among pairs of nodes at time ti in the second day,

we predict edges L(A∗ti)l, l = 1, . . . , V (V − 1)/2 by focusing on the expected value of the

posterior predictive distribution

E{L(Ati)l | L(At1), . . . ,L(Atn)} = Eπl(ti)[E{L(Ati)l | πl(ti)} | L(At1), . . . ,L(Atn)]

= E{πl(ti) | L(At1), . . . ,L(Atn)}, (2.23)

for each l = 1, . . . , V (V − 1)/2 and time ti, where the expectation in (2.23) simply coincides

with the posterior mean of the edge probability trajectories. Clearly equation (2.23) relies on

the assumption that dynamic contact networks at the second day are governed by the same

statistical model underlying data at the first day. Although this assumption is not necessarily

valid in other analyses of real world dynamic networks, it provides a reasonable choice in

our motivating application. In fact, as the overall schedule of a school remains in general

substantially unchanged across subsequent days, it is reasonable to expect that the contact

network at a given time in the second day may be governed by similar underlying patterns

to those occurring at the same time in the first day.
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Online updating

Online updating is particularly appealing in several real world dynamic networks. Recall-

ing our motivating application, once the model has been estimated on data At1 , . . . , Atn , new

contact networks Atn+1 , . . . , Atn+n∗ can stream in. Hence, in order to timely update policies,

such as disease surveillance, it is important to have a fast online updating algorithm for the

posterior of the edge probability vectors π(tn+1), . . . , π(tn+n∗), including data from new net-

works Atn+1 , . . . , Atn+n∗ , without the need to rerun posterior computation for the whole data

from t1 to tn+n∗ .

Current procedures for dynamic network inference are insufficiently flexible to accommo-

date online updating strategies. Our LADY network model is instead amenable to such fast

dynamic updating due to the latent Kalman filter formulation. Conditionally on the pos-

terior means and covariances of the latent states at time n and the estimated noise vari-

ances in the state equation, our online updating algorithm efficiently cycles between steps

[1], [2] and [3] only for new data Atn+1 , . . . Atn+n∗ , with the simulation smoother in [2] and

[3] initialized at tn+1 using the one step ahed predictive distribution from the Kalman fil-

ter. Specifically we initialize states {µ(tn+1), µ′(tn+1),M(tn+1)}T at tn+1 in [2] by assuming

{µ(tn+1), µ′(tn+1),M(tn+1)}T are distributed according to

N3(Tn[Ê{µ(tn)}, Ê{µ′(tn)}, Ê{M(tn)}]T, TnΓ̂µ,nT
T
n +Qndiag(σ̂2

µδn, σ̂
2
Mδn)QT

n),

where [Ê{µ(tn)}, Ê{µ′(tn)}, Ê{M(tn)}]T is the vector of posterior means for the states at time

n, Γ̂µ,n is their 3 × 3 posterior covariance matrix and σ̂2
µ, σ̂2

M are the estimated state noise

variances using the initial dataset from t1 to tn. A similar initialization is considered in [3] for

{Xvr(tn+1), X ′vr(tn+1), Uvr(tn+1)}T obtaining

N3(Tn[Ê{Xvr(tn)}, Ê{X ′vr(tn)}, Ê{Uvr(tn)}]T, TnΓ̂Xvr,nT
T
n +Qndiag(σ̂2

Xvrδn, σ̂
2
Uvrδn)QT

n),

for v = 1, . . . , V and r = 1, . . . , R. Although the algorithm fixes the hyperparameters corre-

sponding to the noise variances in the state equations at their posterior means, these quanti-

ties are time-constant and hence can be accurately estimated by borrowing information across

the whole time window. It is however straightforward to modify the algorithm to update the

posterior distribution also for these quantities given the latent states stored in the initial sam-

pling from t1 to tn and the updated ones from tn+1 to tn+n∗ . This strategy may be useful

when n is small. We found few differences between the two procedures in our simulations

and hence prefer the first strategy.

It is also worth noticing that our procedure does not update π(t1), . . . , π(tn), given new

data Atn+1 , . . . Atn+n∗ , but focuses only on the posterior of π(tn+1), . . . , π(tn+n∗). This may
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affect the ability of our procedures to properly propagate uncertainty and reduce perfor-

mance in updating π(tn+1), . . . , π(tn+n∗). To mitigate this issue, while maintaing computa-

tional scalability, we run online updating for data Atn−j , . . . , Atn , Atn+1 , . . . Atn+n∗ instead of

only Atn+1 , . . . Atn+n∗ . We found this correction to improve performance even when a small j

number of past networks is included along with new data.

2.2.4 Model checking

Before moving to simulations and application, it is worth developing procedures for model

evaluation. Assessing the performance of a statistical model in characterizing the observed

and future data is fundamental to guarantee robust inference; refer to Chapter 6 in Gelman

et al. (2014) for common procedures in model checking within the Bayesian paradigm. This

practice is even more important in the network framework, providing complex data struc-

tures and comprising a wide set of possible statistical models.

Our methods fall within the class of latent variable modeling of dynamic networks. Al-

though these procedures are appealing in accommodating heterogenous structures and facil-

itate tractable inference strategies, the types of higher-order dependencies included may be

limited by the conditional independence assumption and the characterization of the latent

variables. Exponential random graph models overcome this issue by explicitly parameter-

izing interdependence among edges, but typically rely on restrictive homogeneity assump-

tions.

Although conditional independence may at first appear overly-restrictive, multivariate cat-

egorical data – such as a vectorized adjacency matrix – can be expressed as conditionally

independent given a sufficient number of latent factors without imposing any assumptions

on the joint distribution; see for example Dunson and Xing (2009) for recent theoretical re-

sults. Investigating previous property requires analysis of the posterior predictive distribu-

tion p{L(At1), . . . ,L(Atn) | L(At1), . . . ,L(Atn)} defined as

∫ n∏
i=1

V (V−1)/2∏
l=1

p{L(Ati)l | πl(ti)}dΠ{π(t1), . . . , π(tn) | L(At1), . . . ,L(Atn)},

where p{L(Ati)l | πl(ti)} is the Bernoulli probability mass function in (2.1) for the univariate

random variable L(Ati)l measuring presence or absence of a contact among the lth pair of

nodes at time ti. Π{π(t1), . . . , π(tn) | L(At1), . . . ,L(Atn)} is instead the joint posterior distri-

bution for the edge probability trajectories given observed data L(At1), . . . ,L(Atn).

Although the posterior predictive distribution is not analytically available, it is straightfor-

ward to simulate from p{L(At1), . . . ,L(Atn) | L(At1), . . . ,L(Atn)} exploiting equation (2.1)

along with posterior samples for πl(ti), l = 1, . . . , V (V − 1)/2 and i = 1, . . . , n. Specifically,
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for each MCMC sample of πl(ti), l = 1, . . . , V (V − 1)/2 and i = 1, . . . , n, we simulate contacts

among pairs of nodes from conditionally independent Bernoulli random variables given their

corresponding πl(ti), obtaining samples from p{L(At1), . . . ,L(Atn) | L(At1), . . . ,L(Atn)}.

Exploiting samples from p{L(At1), . . . ,L(Atn) | L(At1), . . . ,L(Atn)}, we evaluate the per-

formance of our model in accommodating specific dynamic topological structures character-

izing observed data by investigating their density arising from the posterior predictive dis-

tribution. Recalling our motivating application, we focus on dynamic network density and

node degree, along with time-varying homophily by class and gender. The last two quantities

are measured by the assortativity coefficient; see Newman (2003), equation 2.

When the interest is on disease surveillance and outbreak prevention, time-varying network

density is a key quantity in summarizing the total number of contacts including those leading

to potential contagion. Node degrees are instead appealing in providing a measure of the

number of subjects at risk of contagion if a child contract a disease at a certain time. Evolution

of homophily structures across time and environmental conditions are instead of interest

from a social science perspective; see for example Stehlé et al. (2013) for a study on gender

homophily in face-to-face contact networks from an aggregated perspective.

Although we compare quantities from the posterior predictive distribution to those aris-

ing from the same data obtained to estimate such distribution, there is no guarantee we

will obtain a good matching. Even the best fit, may lead to substantially biased inference

if the statistical model is insufficiently flexible in accommodating specific topological struc-

tures characterizing the observed networks. Our goal is assessing to what extent the LADY

network model can accommodate such properties. We additionally perform out-of-sample

model checking by evaluating forecasting and predictive performance.

2.2.5 Simulation study

We implement a simulation study to assess the performance of our LADY network model in

correctly estimating varying smoothness patterns, accommodating streaming data and pre-

dicting future networks. We consider a dynamic networks with V = 15 nodes monitored

for n = 50 equally spaced times from t1 = 0 to t50 = 15. The time varying edges L(Ati)l,

l = 1, . . . , V (V − 1)/2, are simulated from model (2.1) with edge probabilities evolving in

time across five regimes mimicking – in a simple version – possible scenarios associated to

our face-to-face children interactions; refer to Figure 2.6 for a description of the true genera-

tive process underlying edge probabilities.

Specifically we consider three classes comprising five students each and define also a gen-

der variable. There are 8 males and 7 females almost equally divided in the different classes.
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REGIME 1 REGIME 2 REGIME 3 REGIME 4 REGIME 5

REGIMES ACROSS TIME

REGIME 1

REGIME 2

REGIME 3

REGIME 4

REGIME 5

t1 t10 t20 t30 t40 t50

FIGURE 2.6: Upper panels: true edge probabilities – arranged in matrix form – for the regimes in
the simulation; colors go from white to dark blue as the probability goes from 0 to 1. Lower panels:
graphical representation showing for every time which regime – i.e. edge probabilities – is considered
to simulate the data.

The first regime represents school hours and is characterized by high probability of contact

between students in the same class, and low chance of face-to-face interaction among chil-

dren in different classes. The second regime encodes high gender homophily which may

arise during breaks in which all children can interact and reveal friendship structures; see

also descriptive analyses in Stehlé et al. (2013). The third regime is characterized by the first

two classes sharing the same room – for school hours or during breaks – and hence, beside

high within class probabilities of contact, we observe also moderately high chance of contact

between students in the first two classes. Regime four represents a possible scenario we have

observed in our data during lunch times and confirmed in Figure 10 of Stehlé et al. (2011).

Specifically students in the second class are almost equally divided in two groups with one

attending lunch with children in the first class and the other with those in the third class.

Hence we observe two block structures, with an additional subset of the students having no

contacts with the others in leaving the school for lunch times. Regimes five and four may

also reasonably characterize contact networks during the end of the school day, with groups

of students gathering in the same room and progressively leaving the school.

Although this generative mechanism represents a substantially simplified version of our

complex data set, the basic underlying structures and the rapid changes in specific topological

patterns are in line with those we expect in our application. Moreover considering edge

probabilities obtained under scenarios different than (2.2)–(2.3) and evolving in time across a

regime-switching process instead of the state equations (2.18)–(2.19) has the additional benefit

of providing a more fair validation of our LADY network methodology, as the true edge

probability processes are not generated from our model.
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FIGURE 2.7: Upper panels: time-varying posterior mean (gray line) and pointwise 0.95 highest pos-
terior density intervals (gray segments) for expected network summary statistics covering network
density, assortativity by gender and by class; true values are represented by the black line. Lower
panels: for the same summary statistics, time-varying mean (gray line) and pointwise 0.95 predictive
intervals (gray segments) obtained from the posterior predictive distribution; black dots represents the
corresponding time-varying network measures computed from the simulated data.

In performing posterior inference under our LADY network model, we choose diffuse pri-

ors for the noise variances in the state equations by letting aµ = aM = aX = aU = bµ =

bM = bX = bM = 0.01, and run 5,000 Gibbs iterations discarding the first 1,000. To learn

R we consider our selection procedure by performing posterior computation for increasing

R = 1, 2, . . . and provide posterior inference for the model having R total latent coordinates

such that AUCR+1 − AUCR < 0.01. The AUC for the model with only the baseline process

is 0.59, while those for formulations with R = 1 and R = 2 are 0.97 and 0.99, respectively.

Increasing the coordinates from R = 2 to R = 3 we found no substantial improvement with

an AUC of 0.992. Hence, consistently with our procedure we provide inference with R = 2.

Mixing via effective sample sizes for the quantities of interest is on similar values to those

obtained in Section 2.1.5. For the same quantities we assess convergence by investigating

the Gelman and Rubin (1992) potential scale reduction factors (PSRF) – computed as in the

simulation in Section 2.1.5. The median of the PSRFs for the chains of the edge probabilities

πl(ti), l = 1, . . . , V (V − 1)/2, and i = 1, . . . , n, is 1.05, with the 99% of these PSRFs being

less than 1.3, providing evidence that convergence has been reached. Similar results are ob-

tained for the PSRF of selected network measures of interest including time-varying expected

homophily by gender and class, expected density E[
∑V (V−1)/2

l=1 L(Ati)l/{V (V − 1)/2}] =∑V (V−1)/2
l=1 πl(ti)/{V (V − 1)/2}, and expected node degree E{∑l∈Lv L(Ati)l} =

∑
l∈Lv πl(ti)

for each v = 1, . . . , V and i = 1, . . . , n, where Lv is the set of pairs of nodes {(v, u) : u ∈ V, u 6=
v}. As the expectation of the assortativity coefficient is not analytically available as a function

of the edge probabilities, we derive posterior samples for the assortativity coefficients via

Monte Carlo methods. Specifically for each posterior sample of πl(ti), l = 1, . . . , V (V − 1)/2
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FIGURE 2.8: Upper panels: time-varying posterior mean (gray line) and pointwise 0.95 highest pos-
terior density intervals (gray segments) for the expected degree of selected nodes; true values are rep-
resented by the black line. Lower panels: for the same summary statistics, time-varying mean (gray
line) and pointwise 0.95 predictive intervals (gray segments) obtained from the posterior predictive
distribution; black dots represents the corresponding time-varying node degrees computed from the
simulated data.

and i = 1, . . . , n, we simulate 100 networks from (2.1) and obtain approximated samples

from the posterior distribution of the time-varying expected gender and class assortativity

by computing these coefficients for the 100 simulated networks and averaging them.

As shown in the upper panels of Figures 2.7 and 2.8, enforcing local adaptivity in the time-

varying trajectories of the edge probabilities while accommodating across-node heterogene-

ity, allow us to accurately characterize rapid changes in the true expected measures of interest,

including time-varying network density, homophily structures and node degrees. Moreover,

although we rely on a latent variable representation which does not explicitly parameterize

dependencies among edges, our LADY network model can accurately accommodate topolog-

ical structures of interest characterizing the observed dynamic networks. This is highlighted

in the lower panels of Figures 2.7 and 2.8, comparing summary statistics form the observed

data, with their distribution arising from the posterior predictive distribution, consistently

with the model checking procedures outlined in Section 2.2.4. All observed quantities are

inside the 0.95 posterior predictive intervals, suggesting good fit.

Table 2.4 compares forecasting and predictive performance of our model to those associ-

ated with two selected competitors, for times from t45 to t50. Specifically we compare out-of-

sample edge prediction of our LADY network model, with results obtained under the Gaus-

sian process dynamic network from Section 2.1 and Hanneke et al. (2010) temporal ERGM

(TERGM). Our procedure in Section 2.1 relies on the same model formulation (2.1)–(2.3) but

does not allow varying smoothness over time. Hanneke et al. (2010) TERGM is instead a

substantially different model which explicitly account for the effect of topological structures
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in model formulation, rather than considering latent variables.

In performing posterior computation under the Gaussian process dynamic network model,

we consider the same hyperparameters settings of the simulation study 2.1.5, fixing R = 2 –

as in the LADY network model for this simulation – and increasing the GP length scales κµ
and κx from 0.05 to 0.1 to improve performance in capturing sudden changes. We considered

several different choices of length scales and selected the one with the best performance. The

TERGM is instead estimated via bootstrapped pseudolikelihood procedures (Desmarais and

Cranmer, 2012) exploiting R packages btergm and xergm. In defining the linear predictor

under the TERGM representation we consider a p∗ ERGM specification with alternating k-

starts (Robins et al., 2007a) and triangle effects to account for transitivity patterns and include

gender and class variables both in terms of main and homophily effects – using functions

nodefactor() and nodematch(), respectively. Finally we account for temporal depen-

dence by including a stability term which measures the tendency of an edge – or non-edge

– at time ti to be also observed – or not observed – at the next time ti+1. The main effects of

node covariates as well as homophily by gender were not significant, hence we drop these

variables in assessing forecasting and predictive performance. It is also worth noticing how

considering time constant homophily effects prevent the TERGM from capturing the strong

gender homophily in the two time windows shown in Figure 2.7. We also attempted an

actor-oriented model using R package RSiena but found computational issues in terms of

convergence for the time-specific parameters in the rate function.

For each time ti, i = 44, . . . , 49 forecasting performance is assessed by estimating the three

different models using data from t1 to ti, and forecasting edges at time ti+1. Forecasts under

the GP dynamic network follow procedures outlined at the end of Section 2.1.3. Under the

TERGM, forecasting of future networks proceed via simulation methods using the gof()

function in the R package ergm; see also Hunter et al. (2008b). Finally for our LADY network

model we consider a potentially more challenging strategy which proceeds by first online

updating the posterior distribution of the edge probabilities at ti using estimates from t1 to

ti−1 according to procedures in Section 2.2.3 – with j = 5 – and then forecasts edges at time

ti+1 by applying the forecasting methods outlined in Section 2.2.3 to the posterior distribution

of the edge probabilities from the online updating. Joining online updating and forecasting

is appealing in providing a fast strategy which avoids re-running posterior computation for

the whole data set when a one-step-ahead forecast in required.

In evaluating predictive performance we instead simulate new networksA∗t45 , . . . , A
∗
t50 from

the same mechanism considered to generate training data – see Figure 2.6 – and compare the

AUC based on the estimates from the three competing methods – exploiting training data

At1 , . . . , At50 – and the new simulated networks A∗t45 , . . . , A
∗
t50 . Edge prediction under our
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AREA UNDER THE ROC CURVE

t45 t46 t47 t48 t49 t50

LADY Network: forecasting performance 0.94 0.82 0.99 0.97 0.99 0.98

LADY Network: predictive performance 0.97 0.98 0.99 0.99 0.98 0.99

Dynamic GP Network: forecasting performance 0.91 0.81 0.91 0.83 0.97 0.97

Dynamic GP Network: predictive performance 0.97 0.98 0.97 0.97 0.98 0.98

TERGM: forecasting performance 0.92 0.78 0.95 0.91 0.97 0.92

TERGM: predictive performance 0.98 0.83 0.97 0.95 0.97 0.96

TABLE 2.4: For our model and selected competitors, forecasting and predictive performance for data
from t45 to t50.

LADY network model and the GP dynamic network model in Section 2.1 use equation (2.23).

For TERGM we exploit again simulation procedures from the gof() function.

As shown in Table 2.4 our procedure is characterized by improved forecasting and predic-

tive performance compared to GP dynamic network model and TERGM. The dynamic GP

network in Section 2.1 accommodates heterogenous structures but assumes time-constant

smoothness. Hanneke et al. (2010) explicitly account for several higher-order dependencies

but force the model parameters to be shared among nodes and typically constant across time.

These assumptions lead to reduced performance compared to our procedure which incorpo-

rates both across-node heterogeneity and time-varying smoothness. These results addition-

ally highlight the good performance of our online updating procedures.

As expected forecasting performance decreases at t46 since the models have no experience

of sudden regime changes. However it is interesting to notice how accommodating locally

adaptive processes provides rapid adjustments of the estimates to new regimes once they are

observed, improving subsequent forecasts. Dynamic GP network model requires more times

to adapt to new regimes due to the time-constant smoothness assumption. Reduced perfor-

mance at t46 is not an issue when predicting new networks generated under the same mech-

anism, as the whole training data set At1 , . . . , At50 already inform on regime changes. Clearly

in the out-of-sample prediction exercise, performance depends on the flexibility of the model

in accommodating rapid regime changes along with their associated network structures.

Inference under our LADY network model takes ≈ 30 minutes for posterior computation,

≈ 6 minutes for online updating and≈ 1 second for forecasting. Dynamic GP network model

is substantially slower in performing posterior computation – ≈ 95 minutes – due to the

computational bottlenecks of the Gaussian processes. Estimation under TERGM is instead

faster than previous procedures, but simulations methods for forecasting and predictions

require more time. It is additionally important to underline that our algorithms are based on
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a naive R (version 3.1.1) implementation in a machine with one Intel Core i5 2.3GHz processor

and 4GB of RAM.

2.2.6 Application to fate-to-face human interaction data

We apply our LADY network model outlined in Section 2.2.1 to the face-to-face contact

data At1 , . . . , At51 described in Section 1.1.2, under the same settings of the simulation study,

with R = 4. We select R = 4 as adding a further dimension increases the area under the

ROC curve by less than 0.01, while AUC4 − AUC3 > 0.01. In performing posterior infer-

ence we consider 5,000 Gibbs samples with a burn-in of 1,000. Convergence and mixing are

assessed via Gelman and Rubin (1992) potential scale reduction factors and effective sample

sizes, respectively, for the quantities of interest, obtaining comparable results to those in the

simulation study.

Considering four coordinates provides an area under the ROC curve for in-sample predic-

tion of AUC4 = 0.978. This is already an interesting results in suggesting that the 120 × 120

time-varying adjacency matrices can be adequately characterized by collapsing information

into a substantially lower-dimensional space. This insight is further confirmed by results in

Figure 2.9 highlighting accurate performance not only in edge prediction but also in model-

ing time-varying network structures of interest.

The trajectory of the posterior mean for the expected network density in upper left plot

of Figure 2.9 provides an interesting overview of the overall dynamic contact behavior, con-

sistent with school schedule and changing environments summarized in Figure 10 of Stehlé

et al. (2011). It is first interesting to notice how the expected network density evolves on

low values suggesting a sparse network, with our adaptive procedure additionally capturing

rapid increase in contacts occurring in correspondence of school breaks and the beginning or

the end of lunch times for groups of students. According to the left plot in the lower panel

of Figure 2.9, the posterior predictive distribution arising from our formulation is sufficiently

flexible in accommodating the evolution of this summary statistics.

In studying dynamic homophily patterns, we investigate the posterior distribution of the

time-varying expected assortativity coefficients by class and gender, computed for the 115

students. We hold out teachers in homophily studies as we don’t have gender information

for these nodes and we are interested in social interactions among children – consistently

with Stehlé et al. (2013). In investigating gender homophily, Stehlé et al. (2013) focus on a sin-

gle network obtained aggregating contacts that are observed in pre-selected nonconsecutive

time windows when proximity occasions are expected to have less environmental restrictions

– i.e. break and lunch times. Although this is a reasonable procedure, information on spa-

tial environments or events are not always available and the choice of aggregation intervals is
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FIGURE 2.9: Upper panels: time-varying posterior mean (gray line) and pointwise 0.95 highest pos-
terior density intervals (gray segments) for expected network summary statistics covering density, as-
sortativity by gender and assortativity by class. Lower panels: for the same summary statistics, time-
varying mean (gray line) and pointwise 0.95 predictive intervals (gray segments) obtained from the
posterior predictive distribution; black dots represents the corresponding time-varying network mea-
sures computed from the observed data.

not necessary unique. Moreover, investigating gender homophily for a single aggregated net-

work provides only an averaged overview of a dynamic system. We instead study homophily

structures as they evolve in time, and allow these quantities to be different in nonconsecutive

time windows. Our results in the upper middle plot of Figure 2.9 partially confirm findings in

Stehlé et al. (2013), with the posterior distributions of the dynamic expected assortativity co-

efficients concentrated on positive values during break and lunch times. However expected

assortativity is higher during lunch compared to breaks, with the posterior for these quanti-

ties including the value 0 during the last break. Hence Stehlé et al. (2013) may over-estimate

gender homophily in correspondence of break times and under-estimate this property during

lunches.

Expected assortativity by class is always positive, with the posterior distributions concen-

trating on substantially high values during school hours, when contacts are restricted by the

spatial environments displayed in Figure 10 of Stehlé et al. (2011); refer to the upper right plot

of Figure 2.9. Model checking in the lower middle and right plots of Figure 2.9 highlights an

overall good performance of our procedures in characterizing also these higher-order ho-

mophily structures. These are key results, provided that we embed a 120 × 120 dynamic

network into a substantially lower-dimensional space made by four latent coordinates, with-

out any further information on the dynamic effect of exogenous variables. Few issues are

found in accommodating rapid changes in assortativity by class. A reason behind this slight

lack of fit is that R = 4 latent coordinates may not be sufficient to characterize class ho-

mophily in specific time windows. It is still an active area of research to accommodate latent

space dimensions which adaptively change as a function of time. Similarly to our procedure,
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FIGURE 2.10: Upper panels: time-varying posterior mean (gray line) and pointwise 0.95 highest pos-
terior density intervals (gray segments) for the expected degree of selected nodes. Lower panels: for the
same summary statistics, time-varying mean (gray line) and pointwise 0.95 predictive intervals (gray
segments) obtained from the posterior predictive distribution; black dots represents the corresponding
time-varying node degrees computed from the observed data.

most of available contributions rely on time-constant space dimensions which can adequately

characterize the whole dynamic network structure. Although a subset of the observed class

assortativity coefficients are not within the 0.95 predictive intervals, most of these values are

contained in the 0.99 predictive intervals. Hence we maintain R = 4 to avoid over-fitting.

Beside accommodating global network structures our procedure can flexibly characterize

node-specific activity measures of interest. According to the upper panels of Figure 2.10,

incorporating node heterogeneity and time-varying smoothness, allow us to flexibly account

for substantially different patterns and dynamic changes in expected node degrees. As shown

in the lower panels of Figure 2.10, the posterior predictive distributions for the dynamic node

degrees arising from our estimates are characterized by a very accurate performance in ac-

commodating these time-varying observed quantities.

Beside representing a key for robust inference, previous results are fundamental to guar-

antee accurate performance in forecasting of future network structures. Recalling our moti-

vating application, once the model has been estimated on data from t1 to ti−1, a new contact

networkAti can stream in along with the information that a subject – or a subset of them – has

contracted a specific disease at ti. Hence, for the sake of outbreak prevention it is fundamen-

tal to fast update estimates at time ti and forecast the contact network structures at the next

time ti+1. Our LADY network model can suitably accomplish this task by online updating

the posterior distribution for the edge probabilities at ti exploiting strategies in Section 2.2.3

– with j = 5 – and then forecast the posterior distribution of the same quantities at the next

time ti+1 by applying equation (2.22) to the MCMC samples from the online updating. Once
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FIGURE 2.11: Left panels: for selected subjects in the five different classes, time-varying mean (gray
line) and pointwise 0.95 predictive intervals (gray segments) of their degree obtained from the one-
step-ahead forecasted predictive distribution from t11 to t51; black dots represents the corresponding
time-varying node degrees computed from the observed data. Right panels: for the same subjects
barplots representing the time-varying mean of their degree obtained from the one-step-ahead fore-
casted predictive distribution from t11 to t51. Colors in the bars represent the proportion of the fore-
casted degree due to connections with each class. Dark red (first class), light red (second class), white
(third class), light blue (fourth class), dark blue (fifth class), green (teachers).
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FIGURE 2.12: Weighted network visualization with weights obtained averaging the mean of the one-
step-ahead forecasted predictive distributions over three time windows. Edges are not displayed to
facilitate graphical analysis. Nodes positions are obtained applying the Fruchterman and Reingold
(1991) force-directed placement algorithm. Nodes dimensions are proportional to their forecasted de-
gree averaged over each time window and colors indicate class membership. Dark red (first class), light
red (second class), white (third class), light blue (fourth class), dark blue (fifth class), green (teachers).

these quantities are available it is straightforward to derive the approximate forecasted pre-

dictive distribution at ti+1 along with related quantities of interest such as the expected value

for forecasting edges and the predictive distribution of future topological structures. Figures

2.11, 2.12 and the upper left plot of Figure 2.13 evaluate the performance of our joint online

updating and forecasting procedure for times from t11 to t51, under different perspectives.

Left panels of Figure 2.11 compare observed node degrees for selected subjects in the five

different classes, with their mean and quantiles arising from the forecasted predictive dis-

tribution. Dynamic node degrees are a key for disease surveillance and accurate forecasts

for these quantities are fundamental to measure the infectivity for each individual at future

times. According to left panels of Figure 2.11 our strategies provide in general a good per-

formance in forecasting dynamic degrees. We observe, however, a slight tendency towards

over-estimating these quantities. Although previous bias is of course undesired, it is worth

noticing that for the sake of outbreak prevention, slightly over-estimating node degrees sug-

gests conservative policies which are preferable to biased mild actions understating chance

of contagion.

Right panels of Figure 2.11 add further insights by highlighting the proportion of the fore-

casted degree due to connections with students in the different classes. This provides an

higher-level measure of which groups of nodes are at risk of contagion at ti+1 if a given in-

dividual contracts a disease at ti, for each i = 10, . . . , 50. Results further confirm our good

performance in forecasting heterogenous activity patterns and dynamic changes in node de-

grees. Consistently with previous findings on homophily structures, contacts with individ-

uals from the same class represent an high proportion of the forecasted dynamic degrees.

This is more evident during school hours, than breaks or lunch times where we forecast more

mixed patterns including increased across classes contacts as well as students apparently
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FIGURE 2.13: Upper panels: for times from t11 to t51 in day one, comparison of the forecasting per-
formance between our LADY network model and TERGM. Performance is assessed via the area under
the ROC curve generated using the mean of the one-step-ahead forecasted predictive distribution and
observed networks. Lower panels: in-sample (day one: solid line) and out-of-sample (day two: dashed
line) predictive performance of LADY network model and TERGM. Performance is assessed via the
area under the ROC curve generated using the mean of the predictive distribution and observed net-
works for every time in day one and two, respectively.

leaving the school – such as for example node 71.

These findings are confirmed in Figure 2.12 providing a graphical representation of future

networks with nodes positions depending on the forecasted edges – according to procedures

(2.11) – averaged over three time windows of interest. Although we do explicitly include

environmental information, as shown in Figure 2.12 our procedure is sufficiently flexible to

account for these structures from an unsupervised perspective. Consistently with Figure 10

in Stehlé et al. (2011) we forecast evident community structures induced by class membership

during the morning hours, with students in classes 1A, 3A and 4B being spatially closer than

those in the remaining classes. This is consistent with classes 1A, 3A and 4B sharing the

playground during the morning break according to Figure 10 in Stehlé et al. (2011). Lunch

times are characterized by a sparse structure with two communities and a wide set of students

having essentially no face-to-face contacts. The first community comprises students in classes

1A, 2B and part of those in class 3A. The second includes children from classes 4B, 5B and the

remaining students from class 3A. Also these forecasts are consistent with the approximate

school schedule presented in Stehlé et al. (2011), with a subset of the students leaving the

school during lunch and the remaining children sharing the canteen in two different groups
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at consecutive times. As expected results in the afternoon hours are similar to those in the

morning ones, with a slightly more sparse structure due the fact that children increasingly

leave the school towards the end of the day.

To further evaluate our forecasts, the upper left plot in Figure 2.13 assesses forecasting per-

formance by showing for each time from t11 to t51 the AUC based on the expected value

of the forecasted predictive distribution – according to our online updating and forecasting

procedure – and observed data At11 , . . . , At51 . The AUC evolves on high values, suggesting

overall good performance in forecasting of future edges, with more evident decrements in

correspondence of the beginning, mid and end of the lunch time windows. These times are

characterized by rapid variations in contact behavior due to children rapidly changing en-

vironments; refer to Figure 10 in Stehlé et al. (2011). Hence – recalling also insights in the

simulation study – this decreased forecasting performance is reasonably related to the fact

that the model has no experience of sudden regime changes. Although we face reduced fore-

casting performance in specific times, our procedure almost always improves forecasts of a

TERGM estimated maintaining the same linear predictor of the simulation study. Refer to the

upper right plot in Figure 2.13.

We conclude our analysis by evaluating in-sample and out-of-sample predictive perfor-

mance. In the former case we compare the mean of the predictive distribution from equation

(2.23) to observed edges in the first day via AUC. Out-of-sample predictive performance is in-

stead assessed using the same procedure but comparing predicted edges – training the model

with data from day one – to observed networks from the second day. As time t51 is not avail-

able in the second day, we assess in-sample and out-of-sample predictive performance using

data and estimates from t1 to t50. Results are displayed in the lower plots of Figure 2.13.

As expected in-sample edge prediction is very accurate under our LADY network model.

We also obtain a general good performance when predicting edges at the second day, based

on estimates from day one. More evident differences compared to in-sample performance are

found in correspondence of lunch times and the afternoon break. This may suggest that the

dynamic contact networks at the second day are governed by slightly different underlying

patterns than those associated with the first day, for these time windows. Also in this case we

almost always improve results from the TERGM in both prediction tasks. These results fur-

ther confirm the need of procedures accounting for heterogenous and dynamic dependence

patterns in such frameworks.
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Populations of networks

3.1 Nonparametric modeling of populations of networks

In neuroscience there is increasing interest in relating the structural connection network

defined by white matter tracts in the human brain and cognitive traits or neuropsychiatric

disorders. There is evidence that the structural network is a more important driver of vari-

ability in cognitive traits and disorders than measures of human brain activity – extracted

from fMRI. Recent connectomics pipelines can obtain the brain network based on diffusion

tensor imaging and structural MRI. This produces a network-valued random variable for

each individual in a study. Motivated by data outlined in Section 1.2.1 we develop novel

nonparametric Bayes methods for analyzing network-valued data, and for performing in-

ference on the relationship between brain networks and cognitive traits or neurological dis-

orders. These methods allow the probability mass function of the network-valued data to

shift nonparametrically between groups, via a dependent mixture of low-rank factorizations,

facilitating global and local hypothesis testing adjusting for multiplicity and robust against

model misspecification. An efficient Gibbs sampler is defined for posterior computation. We

provide theoretical results on the flexibility of the model and show dramatic improvements

relative to current approaches in studying creative reasoning and Alzheimer’s disease data.

3.1.1 Notation and motivation

Let (yi, Ai) represent the group membership and the undirected network observation, re-

spectively, for subject i = 1, . . . , n, with yi ∈ Y = {1, 2} and Ai the V × V adjacency matrix

characterizing the connections among the anatomical regions in his brain.

As a step towards our goal of defining a joint model and testing procedures for data (yi, Ai),

i = 1, . . . , n, we first develop a probabilistic generative mechanism for the random variable

77
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generating replicated network data A1, . . . , An. In addressing this goal we look for a statis-

tical representation which can provably characterize a wide class of probabilistic generative

processes, while maintaining tractable computations via efficient dimensionality reduction.

Accomplishing this aim is fundamental to develop accurate testing procedures to assess evi-

dence of changes in the brain network across groups, limiting concerns about lack of robust-

ness to model misspecification.

Consistently with discussion in Section 2.1.1 – as the brain networks are available via undi-

rected edges and self-relationships are not of interest – we model the observed adjacency ma-

trices A1, . . . , An by focusing on the random variable L(A) generating data L(A1), . . . ,L(An)

withL(Ai) = (Ai[21], Ai[31], . . . , Ai[V 1], Ai[32], . . . , Ai[V 2], . . . , Ai[V (V−1)])
T ∈ AV = {0, 1}V (V−1)/2

the vector encoding the lower triangular elements of Ai, which uniquely define the network

as Ai[vu] = Ai[uv] for every v = 2, . . . , V , u = 1, . . . , v − 1 and i = 1, . . . , n.

Data L(A1), . . . ,L(An) are realizations from a multivariate Bernoulli random variable L(A).

Since there are finitely many network configurations, L(A) can be seen as a categorical ran-

dom variable with each category representing one of the possible network configurations

L(A) = a ∈ AV = {0, 1}V (V−1)/2. Considering for example V = 3, the network-valued ran-

dom variable L(A) has 2V (V−1)/2 = 8 possible categories {(0, 0, 0); (1, 0, 0); . . . ; (1, 1, 1)} and

2V (V−1)/2−1 = 7 parameters are required to fully characterize the pmf pL(A)(a) = pr{L(A) =

a}, a ∈ AV under the restriction
∑

a∈AV pL(A)(a) = 1; see Dai et al. (2013) for properties and

recent results on the multivariate Bernoulli random variable.

The number of parameters is intractable and massively larger than the sample size n even

in small V settings. In the motivating neuroscience study, brain images have been processed

to obtain adjacency matrices for each subject considering V = 68 anatomical brain regions.

This implies that, in the absence of constraints, there are 268(68−1)/2 − 1 = 22278 − 1 free

parameters to estimate characterizing pL(A). Clearly no studies will ever have this many

subjects, and hence it is necessary to substantially reduce dimensionality to make the problem

tractable. However, in reducing dimension, it is important to avoid making overly restrictive

assumptions that lead to inadequate characterization of the observed network data.

To solve this problem, our goal is to develop a provably flexible and tractable factorization

for pL(A), which reduces dimensionality of the parameter space, while retaining flexibility in

characterizing pL(A) incorporating network structure. In fact, the key difference between a

network-valued random variable and an unstructured categorical random vector is that the

network configurations share a common underlying structure which informs edge probabil-

ities. As a result, by carefully combining mixture representations with matrix factorization

procedures in constructing the edge probabilities, one might efficiently borrow information

across units and within each network, while characterizing individual variability. By plac-

ing priors on the components within this factorization, we induce a prior Π for pL(A), with
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full support over the 2V (V−1)/2-dimensional probability simplex P2V (V−1)/2 , while obtaining

appealing asymptotic properties.

3.1.2 Low-rank factorization mechanism

In developing a flexible representation for the probabilistic generative mechanism under-

lying data A1, . . . , An, it is fundamental to account for the special structure of the random

variable L(A). In particular, L(A) is a multivariate Bernoulli random variable characterized

by a network structure underlying its entries L(A)l, l = 1, . . . , V (V − 1)/2, with the structure

potentially having small-world, scale free, transitive, community or hub behaviors.

As discussed in the Introduction there is a rich literature on borrowing network informa-

tion across edges and modeling of network data and their topological characteristics. Classi-

cal approaches in modeling of a single network observation, such as Erdös and Rényi (1959),

p1-models (Holland and Leinhardt, 1981) and p∗ models (Frank and Strauss, 1986), define

the probability pL(A)(a) of a given network configuration a ∈ AV under an exponential fam-

ily representation, with sufficient statistics representing suitably chosen network measures.

Although exponential random graphs can induce suitable dependence structures between

edges and model some topological properties of interest, these procedures are characterized

by drawbacks in terms of estimation (Strauss and Ikeda, 1990), possible degeneracy issues

and inflexibility in assigning the same probability to configurations having equal network

measures, even when such configurations are very different (Chatterjee and Diaconis, 2013).

Based on these possible issues and to provide tractable computation, we borrow informa-

tion across edges by considering a latent variable approach to network analysis. Recalling

our Introduction, latent variable modeling of networks is accomplished by assuming edges

L(A)l, l = 1, . . . , V (V − 1)/2 as conditionally independent Bernoulli random variables given

their corresponding edge probabilities πl ∈ (0, 1), l = 1, . . . , V (V − 1)/2. This leads to the

following representation for pL(A)

pL(A)(a) =

V (V−1)/2∏
l=1

πall (1− πl)1−al , a ∈ AV . (3.1)

As shown in Figure 3.1, under suitable choices of π = (π1, . . . , πV (V−1)/2)T ∈ (0, 1)V (V−1)/2

equation (3.1) can assign high probability to network configurations having specific proper-

ties, such as community structure, scale free, small-world and hub behaviors.

Stochastic block models (Nowicki and Snijders, 2001) and their generalizations can charac-

terize modularity structures by defining π as a function of node memberships to communities

and block probabilities between these communities. Although estimation of block structures
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FIGURE 3.1: Example of possible edge probability matrices generating networks with given topolog-
ical properties under conditional independence assumption of the edges. For each edge probability
matrix, we report mean and standard deviation of key topological measures calculated on 1,000 net-
works whose edges are simulated from conditionally independent Bernoulli random variables given
their edge probabilities defined in the four matrices.

is often of interest, such models have limited flexibility. Mixed membership stochastic block

models (Airoldi et al., 2008) and latent space models (Hoff et al., 2002) improve flexibility by

not restricting nodes to belong to a single community. Hoff et al. (2002) define π as a function

of pairwise Euclidean distances between nodes in a latent space. This characterization can

provably capture community behaviors, transitive relations, and k-star structures (Hoff et al.,

2002) and has been generalized to accommodate additional network properties (Krivitsky

et al., 2009; Hoff, 2008).

In line with the factorizations considered for dynamic network inference in Sections 2.1 and

2.2, our probabilistic low-rank factorization characterizes the edge probability vectors as

π = [1 + exp{−L(XΛXT)}]−1 , π ∈ (0, 1)V (V−1)/2, (3.2)

with the logistic mapping from < to (0, 1) applied element-wise. Equation (3.2) defines edge

probabilities through a low-rank factorization of their log-odds S = (S1, . . . , SV (V−1)/2)T =

L(XΛXT) ∈ <V (V−1)/2, with X ∈ <V×R the matrix of the R latent coordinates for the V

nodes, and Λ a diagonal weight matrix with diag(Λ) = (λ1, . . . , λR)T = λ ∈ <R≥0. Notation

<R≥0 refers to the space of vectors with R real non negative elements.

The low-rank factorization allows dimensionality reduction from V (V −1)/2 edge probabil-

ities to V ×R latent coordinates andRweights – typicallyR� V – while facilitating adaptive

collapsing on lower-dimensional models by appropriately shrinking the weights λr towards

0 as r increases. Moreover characterizing the log-odds via the weighted dot product of the

nodes latent coordinates has an appealing interpretation. Recalling our motivating neuro-

science application, the coordinateXvr ∈ <may measure the activity of brain region v within

pathway r. According to the dot product construction, regions with activities in the same



Chapter 3. Populations of networks 81

direction – both positive or negative – will be more similar. The similarity – or dissimilarity –

will be higher the stronger the activity is in the same – or opposite – direction.

Although the mechanism generates networks from conditionally independent edges given

π, the shared dependence on a common set of node-specific latent coordinates induced by the

dot product representation of S facilitates borrowing of information across observed edges

in estimating πl for l = 1, . . . , V (V − 1)/2 and can accurately characterize a broad variety of

network structures. In particular, equation (3.2) can arbitrarily represent every possible edge

probability vector π ∈ (0, 1)V (V−1)/2 by exploiting the one-to-one continuity of the logistic

mapping and the fact that there exist infinitely many positive semidefinite matrices having

S as lower triangular element vector. This allows our low-rank factorization mechanism to

capture specific network properties by adaptively modeling the edge probability vector.

3.1.3 Nonparametric mixture of low-rank factorizations

The low-rank factorization described above has two main drawbacks motivating further

modifications. Firstly, a single factorization of the edge probability vector does not charac-

terize variability across different networks. Secondly, a common edge probability vector is

not sufficiently flexible to characterize every possible probabilistic mechanism for generating

network data. For example, it is easy to show that equation (3.1) cannot represent the pmf for

the network-valued random variable L(A) that generates either disconnected or fully con-

nected networks with equal probability pL(A){(0, 0, . . . , 0)} = pL(A){(1, 1, . . . , 1)} = 0.5 and

assigns pL(A)(a) = 0 for all configurations a different from (0, 0, . . . , 0) and (1, 1, . . . , 1).

We improve the flexibility by considering a hierarchical representation that characterizes

individual variability through the introduction of a low-rank factorization mechanism for

each network Ai. To characterize variability across networks, the unit-specific edge probabil-

ity vectors πi, i = 1, . . . , n are treated as random effects and are assigned a common discrete

probability measure P . Specifically we let

L(Ai)l | πil
indep∼ Bern(πil), l = 1, . . . , V (V − 1)/2, i = 1, . . . , n, (3.3)

πi | P iid∼ P =

H∑
h=1

νhδπ(h) , π(h) =
[
1 + exp{−Z − L(X(h)Λ(h)X(h)T)}

]−1
, (3.4)

where δπ(h) denotes a mass concentrated at π(h) and νh the probability that a randomly se-

lected network is allocated to class h. This choice allows clustering of networks into H latent

classes, with networks in the same class h having identical edge probability vector π(h). Each

π(h) is in turn factorized to allow inference on shared versus class-specific components of

variability in the networks connectivity behavior. Specifically, according to (3.4) each π(h) is

defined as a function of a similarity vector Z ∈ <V (V−1)/2 shared across all networks and a
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class-specific deviation D(h) ∈ <V (V−1)/2. The shared vector Z is modeled as unstructured.

By borrowing information across all networks in all classes, we can accurately infer Z with-

out additional structural constraints in our experience. There is much less information in the

data about the class-specific deviations, and we rely on a low-rank matrix factorization as

in equation (3.2) obtaining D(h) = L(X(h)Λ(h)X(h)T) for every h = 1, . . . ,H . See Figure 3.2

for a graphical representation of the probabilistic generative mechanism associated with the

mixture of low-rank factorizations characterizing pL(A).

Allowing a separate factorization for eachD(h) induces highly flexible deviations in connec-

tivity behavior with h. Network properties and topological structures can vary substantially,

with some classes having small-world behaviors, while others indicate strong community

patterns. Considering a common edge probability vector as in Nowicki and Snijders (2001),

Airoldi et al. (2008) and Hoff et al. (2002) has the major disadvantage of reducing such vari-

ability in forcing pL(A) to concentrate its mass on a subset of configurations characterized by

a specific network property via (3.1), while ruling out others. Model (3.3)–(3.4) instead adap-

tively assigns probability to different subsets of configurations, each one potentially charac-

terized by a different network property.

By marginalizing out the unit-specific edge probability vectors πi in (3.3)–(3.4), we obtain

the following representation for the pmf pL(A) associated with the network-valued random

variable L(A) generating networks L(A1), . . . ,L(An):

pL(A)(a) =

H∑
h=1

νh

V (V−1)/2∏
l=1

{
π

(h)
l

}al {
1− π(h)

l

}1−al
, (3.5)

for every a ∈ AV , with each π(h) factorized as

π(h) =
[
1 + exp{−Z −D(h)}

]−1
, D(h) = L(X(h)Λ(h)X(h)T), h = 1, . . . ,H. (3.6)

Beside considerably reducing the dimensionality from 2V (V−1)/2 − 1 to H{1 +R(V + 1)}+

V (V − 1)/2 − 1 parameters, as formalized in Lemma 3.1, our mixture of low-factorizations

can represent any possible pmf pL(A) ∈ P2V (V−1)/2 defined on a network-valued sample space.

This confirms the full flexibility of our construction, which can be viewed as nonparametric

given appropriately chosen priors for the components.

Lemma 3.1. Any pL(A) ∈ P2V (V−1)/2 admits representation (3.5) for some H with νh probability

weights such that
∑H

h=1 νh = 1 and each π(h) ∈ (0, 1)V (V−1)/2 factorized as in (3.6) for some R.

Proof. To prove the full generality of (3.5), note that pL(A) is the probability mass function

over the cells in a contingency table with the lth variable denoting presence or absence of an

edge between the lth pair of nodes. Hence Lemma 3.1 follows immediately from Theorem 1
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FIGURE 3.2: Graphical representation of the probabilistic mechanism generating networks Ai (i =

1, . . . , n) under the mixture of low-rank factorizations representation in (3.3)–(3.4). In particular, for
each i choose one low-rank factorization mechanism by sampling the latent class indicator Gi ∈
{1, . . . , H} from pG with pG(h) = pr(Gi = h) = νh. Given Gi = h and the corresponding edge
probability vector π(h) arising from the low-rank representation, generate the network Ai by sampling
its edges L(Ai)l, l = 1, . . . , V (V − 1)/2 from conditionally independent Bernoulli variables.

of Dunson and Xing (2009) with ψ(l)
h = (π

(h)
l , 1 − π(h)

l )T for l = 1, . . . , V (V − 1)/2, as long as

any π(h) ∈ (0, 1)V (V−1)/2 can be represented via (3.6) for h = 1, . . . ,H . Assume without loss of

generality Z = 0V (V−1)/2. Since the logistic mapping is one-to-one and continuous it suffices

to show that anyD(h) ∈ <V (V−1)/2 can be expressed asD(h) = L(X(h)Λ(h)X(h)T), withX(h) ∈
<V×R and Λ(h) a R × R diagonal matrix with non-negative entries for each h = 1, . . . ,H . As

there exist infinitely many positive semidefinite matrices having lower triangular elements

D(h), let Ξ(h) be one of these matrices such that L(Ξ(h)) = D(h). Letting R0(h) denote the rank

of Ξ(h) = X̃(h)Λ̃(h)X̃(h)T, with Λ̃(h) the diagonal matrix with the R0(h) positive eigenvalues

of Ξ(h) and X̃(h) ∈ <V×R0(h)
the matrix with the corresponding eigenvectors, Lemma holds

after defining X(h) = (X̃(h) 0V×(R−R0(h))) and Λ̃(h) diagonal, with Λ
(h)
rr = Λ̃

(h)
rr for r ≤ R0(h)

and 0 otherwise.

Factorization (3.6) is not unique. For example, letting Z̃ = Z + Q and D̃(h) = D(h) − Q,

h = 1, . . . ,H then Z̃+D̃(h) = Z+Q+D(h)−Q = Z+D(h). This further affects the uniqueness

of the factorization D(h) = L(X(h)Λ(h)X(h)T). Moreover, there exist infinitely many diagonal-

izable positive semidefinite matrices having D(h) as lower triangular elements. Although

these issues do not affect the identifiability of each class-specific edge probability vector π(h),

for h = 1, . . . ,H required to characterize pL(A) via (3.5), they may lead to misleading conclu-

sions when studying common network properties and class-specific connectivity patterns.
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Similar identifiability issues arise routinely in Bayesian factorizations and nonparametric

models, which tend to be purposely over-parameterized. Such over-parameterization of-

ten has a beneficial effect on computational efficiency and does not lead to problems when

inference focuses on identifiable functionals of the parameters; see for example Ghosh and

Dunson (2009) and Bhattacharya and Dunson (2011). In our specific setting, the low-rank

factorization is appealing in reducing dimensionality and accommodating network informa-

tion. We propose an approach for inference on identified quantities of interest. To study

shared network patterns, we focus on the expected value π̄ = E{L(A)} =
∑

a∈AV apL(A)(a).

According to Proposition 3.2, this quantity can be easily computed under our model as the

weighted sum of the edge probability vectors π(h), with weights given by the mixing proba-

bilities νh.

Proposition 3.2. Under representation (3.5) for pL(lA), the expected value for the network-valued

random variable L(A) is given by π̄ = E{L(A)} =
∑

a∈AV apL(A)(a) =
∑H

h=1 νhπ
(h).

Proof. Focusing on the general element l with l = 1, . . . , V (V − 1)/2, we need show that
π̄l =

∑
a∈AV alpL(A)(a) =

∑H
h=1 νhπ

(h)
l for Proposition 3.2 to hold. Under representation (3.5)

for pL(A) and letting A−lV denote the set containing all the possible network configurations for
the node pairs except the lth, we can write π̄l as

1·{
∑
A−l
V

H∑
h=1

νhπ
(h)
l

∏
l∗ 6=l

(π
(h)
l∗ )al∗ (1− π(h)

l∗ )1−al∗}+0·{
∑
A−l
V

H∑
h=1

νh(1− π(h)
l )

∏
l∗ 6=l

(π
(h)
l∗ )al∗ (1− π(h)

l∗ )1−al∗}

=
∑
A−l
V

H∑
h=1

νhπ
(h)
l

∏
l∗ 6=l

(π
(h)
l∗ )al∗ (1− π(h)

l∗ )1−al∗ =

H∑
h=1

νhπ
(h)
l

∑
A−l
V

∏
l∗ 6=l

(π
(h)
l∗ )al∗ (1− π(h)

l∗ )1−al∗ .

Proposition 3.2 follows after noticing that
∏
l∗ 6=l(π

(h)
l∗ )al∗ (1 − π

(h)
l∗ )1−al∗ is the joint pmf of

V (V − 1)/2 − 1 independent Bernoulli random variables having joint sample space A−lV
and hence the summation over A−lV = {0, 1}V (V−1)/2−1, provides

∑
A−lV

∏
l∗ 6=l(π

(h)
l∗ )a

∗
l (1 −

π
(h)
l∗ )1−al∗ = 1.

To study class-specific connectivity patterns, we rely on π(h) and the differences π̄(h) =

π(h)−π̄ for each h = 1, . . . ,H . As this type of inference is class-specific, it is important to check

for label switching issues (Stephens, 2000). Although it is not the case in our specific simula-

tions and application, when trace-plots suggest label switching issues are encountered, one

possibility is to relabel the classes at each MCMC iteration via post-processing algorithms,

such as Stephens (2000).
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3.1.4 Prior specification and properties

Results in Section 3.1.3 ensure that any true probability mass function for a population of

networks p0
L(A) ∈ P2V (V−1)/2 admits representation (3.5), with class-specific edge probability

vectors π(h) factorized as in (3.6). Although this is a key result, it is not guaranteed that the

same flexibility is maintained after choosing independent priors Z ∼ ΠZ , ν = (ν1, . . . , νH) ∼
Πν , X(h) ∼ ΠX and λ(h) ∼ Πλ, for h = 1, . . . ,H .

Letting Bε{p0
L(A)} = {pL(A) :

∑
a∈AV |pL(A)(a) − p0

L(A)(a)| < ε} denote an L1 neighborhood

around any p0
L(A) ∈ P2V (V−1)/2 , we place simple and very general conditions on ΠZ , Πν , ΠX

and Πλ, so that the prior Π on pL(A) induced through (3.5)–(3.6) has full support onP2V (V−1)/2 ,

meaning that Π[Bε{p0
L(A)}] > 0 for any p0

L(A) ∈ P2V (V−1)/2 and ε > 0. Theorem 3.3 provides

sufficient conditions on Πν and the prior for the class-specific edge probability vectors Ππ

under which the prior Π for pL(A), induced through representation (3.5), has full support on

P2V (V−1)/2 . Lemma 3.4 provides sufficient conditions on ΠZ , ΠX , and Πλ to ensure that the

induced prior Ππ through (3.6) meets condition (ii) in Theorem 3.3.

Theorem 3.3. Let Π be the prior induced on the probability mass function pL(A) through (3.5) andH0

be the number of components required to represent p0
L(A) as in (3.5). Then for any p0

L(A) ∈ P2V (V−1)/2 ,

Π[Bε{p0
L(A)}] > 0 for all ε > 0 under the following conditions:

(i) H ≥ H0 so that H is an upper bound on H0;

(ii) Ππ{π(1), . . . , π(H) :
∑H

h=1

∑V (V−1)/2
l=1 |π(h)

l − π
0(h)
l | < επ} > 0, for any collection of edge

probability vectors {π0(1), . . . , π0(H) : π0(h) ∈ (0, 1)V (V−1)/2, h = 1, . . . ,H} and επ > 0;

(iii) Πν{Bεν (ν0)} > 0, for any ν0 in the probability simplex PH and εν > 0.

Proof. As it is always possible to factorize p0
L(A) according to (3.5), we can express the L1

distance
∑

a∈AV | pL(A)(a)− p0
L(A)(a) | between pL(A) and p0

L(A) as

∑
a∈AV

∣∣∣∣ H∑
h=1

νh

V (V−1)/2∏
l=1

{
π

(h)
l

}al {
1− π(h)

l

}1−al −
H∑
h=1

ν0
h

V (V−1)/2∏
l=1

{
π

0(h)
l

}al {
1− π0(h)

l

}1−al
∣∣∣∣,

with vector ν0 = (ν0
1 , . . . , ν

0
H0 , 0H−H0) ∈ PH , and H0 the rank of the tensor p0

L(A). Hence

Π[Bε{p0
L(A)}] =

∫
1

∑
a∈AV

| pL(A)(a)− p0
L(A)(a) | < ε

 dΠν(ν)dΠπ(π(1), . . . , π(H)).

Following Dunson and Xing (2009) and recalling the independence between Πν and Ππ, a suf-

ficient condition for the latter to be strictly positive is that Πν has full support on the probabil-

ity simplex PH , and Ππ{Bεπ(π0(1), . . . , π0(H))} = Ππ{π(1), . . . , π(H) :
∑H

h=1

∑V (V−1)/2
l=1 |π(h)

l −
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π
0(h)
l | < επ} > 0, for any collection {π0(1), . . . , π0(H) : π0(h) ∈ (0, 1)V (V−1)/2, h = 1, . . . ,H} and

επh > 0, which follow from conditions (iii) and (ii) in Theorem 3.3, proving the result.

Lemma 3.4. Let Ππ be the prior for the class-specific edge probability vectors induced by ΠZ , ΠX

and Πλ through (3.6), and denote with R0 a value of R for which Lemma 3.1 holds, when p0
L(A) is

factorized as in (3.5) with H0 components. Then, the following sufficient conditions imply (ii) in

Theorem 3.3:

(i) R ≥ R0 so that R is an upper bound on R0;

(ii) ΠZ has full L1 support on <V (V−1)/2;

(iii) ΠX has full L1 support on the space of V ×R real matrices <V×R;

(iv) Πλ has full L1 support on <R≥0.

Proof. Letting ΠS be the prior on the class-specific latent similarity vectors induced by ΠZ ,

ΠX and Πλ through factorization S(h) = Z + L(X(h)Λ(h)X(h)T), h = 1, . . . ,H , we first show

that for any collection {S0(1), . . . , S0(H) : S0(h) ∈ <V (V−1)/2, h = 1, . . . ,H} and εs > 0,

ΠS{Bεs(S0(1), . . . , S0(H))} = ΠS{S(1), . . . , S(H) :
∑H

h=1

∑V (V−1)/2
l=1 | S(h)

l − S0(h)
l | < εs} > 0.

Let R be chosen so as to satisfy condition (i), then according to the proof of Lemma 3.1, we

can factorize the previous probability as

pr


H∑
h=1

V (V−1)/2∑
l=1

|Zl − Z0
l + L(X(h)Λ(h)X(h)T)l − L(X0(h)Λ0(h)X0(h)T)l| < εs

 , (3.7)

with diag(Λ0(h)) = λ0(h) = (λ
0(h)
1 , . . . , λ

0(h)

R0(h) , 0R−R0(h))T. Under the independence of ΠZ , ΠX

and Πλ, and exploiting the triangle inequality, a lower bound for the previous quantity is

pr


V (V−1)/2∑

l=1

| Zl − Z0
l | <

εs
2H


H∏
h=1

pr


V (V−1)/2∑

l=1

| L(X(h)Λ(h)X(h)T)l − L(X0(h)Λ0(h)X0(h)T)l | <
εs

2H

 .

Hence, (3.7) is positive if both terms are positive. The positivity of the first term follows from

(ii) of the Lemma. To prove the positivity of the second term, proof of Lemma 3.1 ensures

that for any εs/(2H) there exist infinitely many radii εX(h) , ελ(h) , for which
∑V

v=1

∑R
r=1 |X

(h)
vr −

X
0(h)
vr | < εX(h) and

∑R
r=1 |λ

(h)
r − λ

0(h)
r | < ελ(h) imply that

∑V (V−1)/2
l=1 | L(X(h)Λ(h)X(h)T)l −

L(X0(h)Λ0(h)X0(h)T)l | < εs/(2H) for every h = 1, . . . ,H . Thus to prove the positivity of the

second term and recalling the independence between ΠX and Πλ, it is sufficient to show that

for every h = 1, . . . ,H we have ΠX{Bε
X(h)

(X0(h))} > 0, for any X0(h) ∈ <V×R and εX(h) > 0

and Πλ{Bε
λ(h)

(λ0(h))} > 0, for any λ0(h) ∈ <R≥0 and ελ(h) > 0, representing conditions (iii)

and (iv) of the Lemma, respectively.
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Let π0(h)
l = 1/{1+exp(−S0(h)

l )}, l = 1, . . . , V (V −1)/2, h = 1, . . . ,H , with S0(h) ∈ <V (V−1)/2

factorized as before, and denote with Ππ the prior on the class-specific edge probability vec-

tors, induced by ΠS through the one-to-one continuous logistic mapping applied element-

wise. To conclude the proof we need to show that Ππ{Bεπ(π0(1), . . . , π0(H))} > 0 given that

ΠS{Bεs(S0(1), . . . , S0(H))} > 0 is true. Since the logistic mapping is one-to-one element-wise

continuous, by the general definition of continuity, for any επ > 0, there exists an εs > 0, such

that

H∑
h=1

V (V−1)/2∑
l=1

| 1/{1 + exp(−S(h)
l )} − 1/{1 + exp(−S0(h)

l )} | =
H∑
h=1

V (V−1)/2∑
l=1

| π(h)
l − π

0(h)
l | < επ,

for all collections {S(1), . . . , S(H) : S(h) ∈ <V (V−1)/2, h = 1, . . . ,H} satisfying condition∑H
h=1

∑V (V−1)/2
l=1 |S(h)

l − S0(h)
l | < εs. Since we proved that the event

∑H
h=1

∑V (V−1)/2
l=1 |S(h)

l −
S

0(h)
l | < εs has non-null probability for any {S0(1), . . . , S0(H) : S0(h) ∈ <V (V−1)/2, h = 1, . . . ,H},

by the continuity of the mapping the same holds for
∑H

h=1

∑V (V−1)/2
l=1 |π(h)

l − π
0(h)
l | < επ

for any collection {π0(1), . . . , π0(H) : π0(h) ∈ (0, 1)V (V−1)/2, h = 1, . . . ,H}, concluding the

proof.

Results in Theorem 3.3 and Lemma 3.4 provide simple sufficient conditions on the priors

for the components in our factorization under which the induced prior for pL(A) has full L1

support. It is additionally important to notice that Lemmas 3.1 and 3.4 hold for more general

functions g(·) : < → (0, 1) mapping from the latent similarity space to the edge probability

space, as long as g(·) is one-to-one continuous.

Large prior support is a key condition of a Bayesian nonparametric model, which also re-

lates to asymptotic behavior of the posterior distribution of pL(A). The usual asymptotic focus

in the network literature is on the case in which the number of nodes V →∞ in a single net-

work having a particular structure; see Sussman et al. (2012), Tang et al. (2013), Sussman et al.

(2014). Our asymptotic theory is unique in the literature in focusing on consistent estimation

of the entire population distribution for a network-valued random variable, when the num-

ber of network realizations n → ∞. For tractability we focus on the fixed V case, though it

is interesting to study the behavior allowing V to increase with n. This is related to a small

but growing literature on Bayesian asymptotics in high-dimensional models, but most of the

focus has been on substantially simpler models, such as linear regression; see e.g., Ghosal

(2000), Ghosal and Belitser (2003), Armagan et al. (2013).

As the pmf for L(A) is characterized by finitely many parameters pL(A)(a), a ∈ AV , which

are all identifiable, full L1 support is sufficient to guarantee that the posterior distribution

assigns probability one to any L1 neighborhood of the true data-generating probability mass

function as the number of networks n → ∞. In particular, we have the strong posterior
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consistency property,

lim
n→∞

Π[Bε{p0
L(A)} | L(A1), . . . ,L(An)] = 1, for every ε > 0,

with probability one when p0
L(A) is the true probability mass function.

For Theorem 3.3 and Lemma 3.4 to hold, we need to choose H and R as upper bounds on

H0 and R0, respectively. Then, the priors for the different components in our factorization

are chosen to favor collapsing out the redundant dimensions, so that the posterior will con-

centrate on νh ≈ 0 for h > H0 and λ
(h)
r ≈ 0 for r > R0(h), with R0(h) denoting the sufficient

number of coordinates required to represent the true edge probability vector π0(h) via the

low-rank factorization in (3.6), for each h = 1, . . . ,H . This is achieved by a double shrinkage

prior.

The first layer of shrinkage corresponds to deleting extra clusters that are not needed to

characterize the data. We take the lead from Rousseau and Mengersen (2011) by letting

(ν1, . . . , νH) ∼ Dirichlet
(

1

H
, . . . ,

1

H

)
. (3.8)

In a simpler case involving Gaussian mixtures, Rousseau and Mengersen (2011) showed that

prior (3.8) will induce effective deletion of the extra mixture components, with the posterior

concentrating on the true number of components H0. It is an active area of research to extend

these asymptotic results on over-fitted mixtures to more general settings, but our empirical

results suggest that such efficient deletion of extra components also occurs in our case. It is

straightforward to verify that condition (iii) in Theorem 3.3 is met under this prior.

The second layer of shrinkage induces collapsing on lower rank structures within each class.

As there are infinitely many positive semidefinite matrices having D(h) as lower triangular

elements, we are not specifically interested in consistently recovering a true rank for each

class-specific deviation vector, but instead look for a prior Πλ that adaptively deletes redun-

dant latent space dimensions which are not required to characterize π(h), h = 1, . . . ,H via

(3.6) according to the data. We looked for a similar behavior when defining priors for the

scaling parameters in the GP latent coordinates in Section 2.1.2, obtaining good results in

simulations and applications. Hence, adapting previous choice to this framework we let

λ(h) ∼MIG(a1, a2), independently for h = 1, . . . ,H , obtaining

λ(h)
r =

r∏
m=1

1

ϑ
(h)
m

, ϑ
(h)
1 ∼ Ga(a1, 1), ϑ

(h)
m>1 ∼ Ga(a2, 1), r = 1, . . . , R, (3.9)

independently for each h = 1, . . . ,H . Prior (3.9) adaptively penalizes overparameterized

representations for each π(h), h = 1, . . . ,H by favoring elements λ(h)
r to be stochastically
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decreasing towards 0 as r increases for appropriate values of a2; see our discussion in Sec-

tion 2.1.4 for further details in this prior. Additionally Πλ has a Markovian structure with

λ
(h)
r | λ(h)

r−1 ∼ Inv-Ga(a2, λ
(h)
r−1), allowing the joint distribution of λ(h) to be factorized as the

product of inverse gamma distributions. This property facilitates proving Lemma 3.5, ensur-

ing condition (iv) in Lemma 3.4 is met under this prior choice.

Lemma 3.5. Let Πλ correspond to the MIG(a1, a2), then Πλ has full L1 support on <R≥0.

Proof. Let λ0 be a general vector with R positive elements λ0
r ∈ <>0, r = 1, . . . , R. We first

show that Πλ{λ :
∑R

r=1 |λr − λ0
r | < ελ} > 0, when Πλ coincides with the MIG(a1, a2). Letting

Bελ(λ0) = {λ : |λr − λ0
r | < ελ/R, r = 1, . . . , R} a lower bound for the previous probability

is Πλ{Bελ(λ0)}, and exploiting the Markovian property of the MIG(a1, a2) we can factorize

this probability as
∫
Bελ (λ0) f(λ1)

∏R
r=2 f(λr | λr−1)dλ, where f(λr | λr−1) is the conditional

density of λr given λr−1.

Hence, the joint MIG(a1, a2) prior for λ can be factorized as the product of conditional

densities with λ1 ∼ Inv-Ga(a1, 1) and λr | λr−1 ∼ Inv-Ga(a2, λr−1) for each r = 2, . . . , R.

Therefore, since the Inv-Ga(a, b) has full support over <>0 for any a > 0, b > 0 and provided

that by definition λr−1 > 0 for every r = 2, . . . , R, it follows that Πλ{Bελ(λ0)} > 0. This proof

holds also for vectors λ0 = (λ0
1, . . . , λ

0
R0 , 0R−R0)T ∈ <≥0 with non negative elements as every

neighborhood of λ0 contains a subset of <R>0 for which prior support has been shown. This

concludes the proof.

Finally, priors ΠZ and ΠX are chosen to meet conditions (ii) and (iii), respectively, in

Lemma 3.4, while favoring simple posterior computation. Consistently with these aims we

assume

Z ∼ NV (V−1)/2(µ,Σ), µ ∈ <V (V−1)/2, Σ = diag(σ2
1, . . . , σ

2
V (V−1)/2). (3.10)

Prior ΠX is defined by assigning independent standard Gaussians

X(h)
vr ∼ N(0, 1), v = 1, . . . , V, r = 1, . . . , R, h = 1, . . . ,H. (3.11)

Beside meeting full prior support conditions and leading to efficient posterior computation,

the previous choices allow simple derivations for the prior moments of the class-specific log-

odds S(h)
l = Zl +

∑R
r=1 λ

(h)
r X

(h)
vr X

(h)
ur for each h = 1, . . . ,H and l = 1, . . . , V (V − 1)/2, with

(v, u) denoting the pair of nodes indexed by l. Specifically, based on priors (3.10)-(3.11) and

conditioning on λ(h) to highlight their effect in the prior, it is straightforward to show that

E{S(h)
l | λ(h)} = µl, var{S(h)

l | λ(h)} = σ2
l +

R∑
r=1

{λ(h)
r }2, cov{S(h)

l , S
(h)
l∗ | λ(h)} = 0, (3.12)
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for each h = 1, . . . ,H , l = 1, . . . , V (V − 1)/2 and l∗ = 1, . . . , V (V − 1)/2 with l∗ 6= l. The

covariance between log-odds in classes h = 1, . . . ,H and h∗ = 1, . . . ,H with h∗ 6= h is instead

cov{S(h)
l , S

(h∗)
l | λ(h), λ(h∗)} = σ2

l , l = 1, . . . , V (V − 1)/2,

cov{S(h)
l , S

(h∗)
l∗ | λ(h), λ(h∗)} = 0, l∗ 6= l.

A priori the log-odd of a given edge has the same mean µl in all classes with σ2
l controlling

the edge-specific component of variability shared across groups as well as the covariance

between the log-odds of the same edge across different classes. Parameters λ(h) add instead

a class-specific component of variability in the log-odds of each edge. When the λ(h) are all

close to zero, the correlation between the log-odds for the same edge across different groups

is close to one collapsing model (3.5)–(3.6) to (3.1). The prior covariance between the log-odds

of different edges is instead 0.

3.1.5 Posterior computation

Given priors defined as in equations (3.8)–(3.11), posterior computation for the statistical

model having likelihood (3.5) with π(h) from (3.6) is available in a simple form adapting

Polson et al. (2013) Pólya-gamma data augmentation for Bayesian logistic regression.

Specifically, the proposed Gibbs sampler exploits the graphical representation of our hier-

archical construction (3.3)–(3.4) outlined in Figure 3.2 to first allocate each observation L(Ai),

i = 1, . . . , n, into one of the classes and then updates Z, X(h), λ(h), for h = 1, . . . ,H, via

Bayesian logistic regression within each class. Detailed steps for the Gibbs sampler are out-

lined in Algorithm 3.

Algorithm 3 Gibbs sampler for the mixture of low-rank factorizations model

[1] Allocate each network observation to one of the classes

for i = 1, . . . , n do

Sample the class indicator Gi from the full conditional discrete distribution with

pr(Gi = h | −) =
νh
∏V (V−1)/2
l=1 {π(h)

l }L(Ai)l{1− π(h)
l }1−L(Ai)l∑H

m=1 νm
∏V (V−1)/2
l=1 {π(m)

l }L(Ai)l{1− π(m)
l }1−L(Ai)l

,

for each h = 1, . . . ,H , with π(h) defined in (3.6)

end for

———————————————————————————————————————–
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[2] Sample the class probabilities ν1, . . . , νH from the full conditional Dirichlet

(ν1, . . . , νH) | − ∼ Dirichlet

{
1

H
+

n∑
i=1

1(Gi = 1), . . . ,
1

H
+

n∑
i=1

1(Gi = H)

}
.

———————————————————————————————————————–

Comment: Recalling representation (3.3)–(3.4), networks in the same class are independent

and identically distributed conditionally on the class-specific edge probability vectors π(h),

h = 1, . . . ,H . Hence, to update Z, X(h) and λ(h), h = 1, . . . ,H at each step, it is sufficient

to adapt Polson et al. (2013) Pólya-gamma data augmentation for aggregated networks

L(A(1)), . . . ,L(A(H)), with L(A(h)) =
∑

Gi=h
L(Ai), for h = 1, . . . ,H and, according to our

model formulation,

L(A(h))l | Z,X(h), λ(h) ∼ Binom[nh, 1/{1 + exp(−Zl − L(X(h)Λ(h)X(h)T)l)}],

independently for l = 1, . . . , V (V −1)/2 and h = 1, . . . ,H , with nh the number of networks

in class h at a given iteration. This provides also a key result in reducing the computational

complexity, as at each step the number of augmented Pólya-gamma variables to be sampled

depends on the number of classes instead of the sample size n. Hence, after the grouping

steps, the MCMC proceeds as follows

———————————————————————————————————————–

[3] Sample Pólya-gamma augmented data

for each l = 1, . . . , V (V − 1)/2 and h = 1, . . . ,H do

Update each augmented data ω(h)
l from the full conditional Pólya-gamma

ω
(h)
l | − ∼ PG

{
nh, Zl + L(X(h)Λ(h)X(h)T)l

}
,

for every h = 1, . . . ,H and l = 1, . . . , V (V − 1)/2, with PG(b, c) denoting the Pólya-

gamma distribution with parameters c ∈ < and b > 0.

end for

———————————————————————————————————————–

[4] Sample the shared similarity vector Z from its Gaussian full conditional

Z | − ∼ NV (V−1)/2{µZ ,diag(σ2
Z1
, . . . , σ2

ZV (V−1)/2
)},

with µZ having elements µZl = σ2
Zl

[σ−2
l µl+

∑H
h=1{L(A(h))l−nh/2−ω(h)

l L(X(h)Λ(h)X(h)T)l}],
where σ2

Zl
= 1/(σ−2

l +
∑H

h=1 ω
(h)
l ), for each l = 1, . . . , V (V − 1)/2.

———————————————————————————————————————–

Comment: To maintain conjugacy in sampling the class-specific parameters defining D(h),

h = 1, . . . ,H , we reparameterize the model to update quantities X̄(h) = X(h)Λ(h)1/2 and
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Λ(h), h = 1, . . . ,H . Hence, we can rewrite D(h) = L(X̄(h)X̄(h)T), and according to our

prior specification X̄
(h)
vr |λ(h)

r ∼ N(0, λ
(h)
r ) independently for v = 1, . . . , V , r = 1, . . . , R

and h = 1, . . . ,H , with independent MIG(a1, a2) priors on λ(h). Hence, the Gibbs sampler

proceeds af follows

———————————————————————————————————————–

[5] Sample the class-specific weighted matrices X̄(1), . . . , X̄(H)

for h = 1, . . . ,H and v = 1, . . . , V do

Block-sample the vth row of X̄(h).

1. Define X̄(h)
v = (X̄

(h)
v1 , . . . , X̄

(h)
vR )T and let X̄(h)

(−v) denote the (V − 1)×R matrix

obtained by removing the vth row in X̄(h). Consider the logistic regression

L(A(h))(v) ∼ Binom(nh, π
(h)
(v) ), logit(π(h)

(v) ) = Z(v) + X̄
(h)
(−v)X̄

(h)
v ,

with L(A(h))(v) and Z(v) obtained by stacking elements L(A(h))l and Zl, respec-

tively, for all l corresponding to pairs having v as a one of the two nodes, and

ordered consistently with the linear predictor.

2. Exploiting previous formulation, and letting Ω
(h)
(v) be the diagonal matrix

with the corresponding Pólya-gamma augmented data, the full conditional is

X̄(h)
v | − ∼ NR

{(
X̄

(h)T
(−v)Ω

(h)
(v)X̄

(h)
(−v) + Λ(h)−1

)−1
η(h)v ,

(
X̄

(h)T
(−v)Ω

(h)
(v)X̄

(h)
(−v) + Λ(h)−1

)−1}
,

with η(h)
v = X̄

(h)T
(−v){L(A(h))(v) − 1V−1nh/2− Ω

(h)
(v)Z(v)}

end for

———————————————————————————————————————–

[6] Sample the gamma quantities defining the shrinkage weights λ(1), . . . , λ(H)

for h = 1, . . . ,H do

ϑ
(h)
1 | − ∼ Ga

{
a1 +

V R

2
, 1 +

1

2

R∑
m=1

θ(−1)
m

V∑
v=1

(X̄(h)
vm)2

}
,

ϑ
(h)
r>1 | − ∼ Ga

{
a2 +

V × (R− r + 1)

2
, 1 +

1

2

R∑
m=r

θ(−r)
m

V∑
v=1

(X̄(h)
vm)2

}
,

where θ(−r)
m =

∏m
t=1,t 6=r ϑ

(h)
t for r = 1, . . . , R.

end for

The above steps are all straightforward and mixing is efficient in our experience. Moreover,

given MCMC chains for the previous quantities the class-specific edge probability vectors

π(h) are easily available as π(h) = [1 + exp{−Z −D(h)}]−1 with D(h) = L(X̄(h)X̄(h)T), for each
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FIGURE 3.3: Boxplots summarizing the posterior distribution of the mixing probabilities. Latent
classes are reordered to be in decreasing order of the posterior mean of νh.

h = 1, . . . ,H . Finally to obtain a posterior distribution for pL(A) it sufficient to apply equation

(3.5) to the posterior samples of π(h) and νh, h = 1, . . . ,H .

3.1.6 Simulation study

We conduct simulation studies to evaluate the performance of our approach in accurately

estimating the population distribution of network data, accounting for broad differences in

network properties across classes of networks. Of particular interest are community struc-

tures (Faust and Wasserman, 1992), scale freeness (Barabási and Albert, 1999), small-worldness

(Watts and Strogatz, 1998) and classical random graph behaviors (Erdös and Rényi, 1959). Al-

though the latter is overly-restrictive and rarely met in applications, it provides a null model

in many network analyses.

We consider four latent classes and simulate 25 networks for each class by sampling their

edges from conditionally independent Bernoulli random variables given their corresponding

class-specific edge probabilities. We focus on networks having V = 20 nodes to facilitate

graphical presentation. Each class-specific edge probability vector is carefully constructed

to assign high probability to a subset of network configurations characterized by a specific

property via (3.1). In particular, one class is associated with simulated networks character-

ized by two latent communities. Networks generated under a second class have a behavior

similar to Erdös and Rényi (1959) random graphs. Another class assigns high probability to

scale free networks generated under the Barabási and Albert (1999) model. Finally networks

in the remaining class display small-world properties according to the Watts and Strogatz

(1998) generative model. Figure 3.1 provides a graphical representation of these true edge

probability vectors rearranged in matrix form.

The goal in defining this challenging simulation scenario is to assess whether our approach

can accurately characterize a collection of networks having such broad and widely different
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FIGURE 3.4: Upper panel: for each non-empty latent class, posterior mean π̂(h) of π(h) (lower trian-
gular) and absolute value of the difference |π̂(h) − π0(h)| between estimated and true values (upper
triangular). Lower panel: for the same classes posterior mean π̂(h) − ˆ̄π of π(h) − π̄ (lower triangular)
and absolute value of the difference |π̂(h) − ˆ̄π − π0(h) + π̄0| between estimated and true values (upper
triangular).

properties. We analyze the simulated data under model (3.5)–(3.6) with priors (3.8)–(3.11).

Exploiting results in (3.12), we consider µ1 = . . . = µV (V−1)/2 = 0 to obtain priors for each π(h)

centered on the Erdös and Rényi (1959) random graph, and let σ2
1 = . . . = σ2

V (V−1)/2 = 10 to

represent uncertainty in this shared structure. To favor deletion of unnecessary dimensions in

each class, we consider a1 = 2.5 and a2 = 3.5 in the MIG(a1, a2) prior. This enforces adaptive

shrinkage for growing r – as outlined in Section 2.1.4 – allows class-specific variability in the

prior for each π(h) according to (3.12), and ensures the existence of the first two moments for

the induced priors on elements D(h)
l .

Our approach can be easily modified to learn the hyperparameters from the data via hy-

perpriors on quantities a1, a2 and µl, σ2
l for each l = 1, . . . , V (V − 1)/2. However, we

obtained similar results when instead considering other hyperparameter settings, such as

µl ∈ (−1,−0.5, 0.5, 1), σ2
l ∈ (1, 100, 200) for each l = 1, . . . , V (V − 1)/2 and a1 ∈ (5, 10),

a2 ∈ (5, 10). Higher values for a1 and a2 are not recommended in inducing priors on λ(h),

h = 1, . . . ,H strongly concentrated at 0, forcing D(h) ≈ 0. As a result, the edge probability

vectors are forced to be equal across the different classes a priori, collapsing model (3.5)–(3.6)

to (3.1).

We generate 5,000 Gibbs iterations, with upper bounds H = 30 and R = 10, and set a burn-

in of 1,000. Trace-plots and Gelman and Rubin (1992) potential scale reduction factors for the

quantities investigated in Figures 3.3–3.4 suggest this burn-in is sufficient for convergence
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FIGURE 3.5: Violin plots showing the distribution of key topological features computed from net-
works simulated under different scenarios. DATA: computed from our 100 simulated networks. MIX-
TURE OF LOW-RANK FACTORIZATIONS: computed on 4,000 networks simulated from the poste-
rior predictive distribution of our model. SHARED: computed on 4,000 networks whose edges are
simulated from conditionally independent Bernoulli with edge probabilities given by

∑n
i=1 L(Ai)l/n,

l = 1, . . . , V (V − 1)/2. TRUE: computed on 4,000 networks simulated from our model as in Figure 3.2
with π(h) and νh, h = 1, . . . , H set at true values.

and show no evidence of label switching issues. We additionally monitor mixing via effective

sample sizes for the same quantities, with most of these values≈ 1,200 out of 4,000, providing

a good mixing result. The algorithm required 43 minutes to perform posterior computation

based on a naive R (version 3.1.1) implementation in a machine with one Intel Core i5 2.3GHz

processor and 4GB of RAM. As the posterior for pL(A) is a complex object to visualize, we

evaluate inference performance by focusing on posteriors for quantities νh and π(h), h =

1, . . . ,H , which characterize pL(A) under equation (3.5).

Figure 3.3 highlights the good performance of Πν in adaptively deleting redundant classes

while properly estimating the true mixing probabilities. We obtain similar good results in

recovering the true class-specific edge probability vectors and their deviations from the ex-

pected value of the network-valued random variable as shown in Figure 3.4. Borrowing of

information across replicated observations and within each network provides very accurate

inference for the class-specific edge probabilities under very different scenarios, with the 0.95

highest posterior density intervals containing the true class-specific edge probabilities in 90%

of the replicates. Figure 3.4 confirms the ability of the model to accurately approximate and

efficiently estimate a very broad range of true network structures. Inferences are robust to

the choice of upper bounds R = 10 < V = 20 due to the carefully specified prior favoring

adaptive deletion of extra dimensions.
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Accurate estimation of the mixing probabilities νh and the class-specific edge probability

vectors π(h), h = 1, . . . ,H ensures accurate inference and estimation for the true pmf p0
L(A)

arising from (3.5), while providing efficient clustering behavior. We correctly group all the

simulated networks in four latent classes via maximum a posteriori estimates (MAP) of their

Gi using the MCMC samples. We obtained similarly good performance in very different

simulations having more subtle differences between classes mimicking the brain network

application data.

Figure 3.5 presents violin plots demonstrating the ability of our model to accurately char-

acterize the distribution of key topological features with respect to those associated with the

true pmf p0
L(A). Modeling of pL(A) via (3.1), as in the previous literature, significantly re-

duces performance even when considering a different parameter for each edge probability,

with these parameters consistently estimated by exploiting all the n = 100 simulated net-

work data via π̂ =
∑n

i=1 L(Ai)/n. Such an approach averages across network behaviors and

hence cannot capture multi-modality patterns indicative of subsets of data characterized by

different network properties.

Note that – in line with the discussion in Section 2.2.4 – the distributions of the network

summary statistics in Figure 3.5 for our procedure are based on the posterior predictive

distribution associated to our model. Although the latter is not analytically available, it is

straightforward to simulate from the posterior predictive distribution exploiting our con-

structive representation in Figure 3.2 and posterior samples for the quantities in (3.5)–(3.6).

Specifically for each MCMC sample of the parameters in (3.5)–(3.6) – after convergence – we

generate a network from our model exploiting the mechanism in Figure 3.2, to obtain the

desired samples form the posterior predictive distribution.

3.1.7 Global and local testing for group differences in brain networks

The model described in Section 3.1.3 provides a tractable and provably general character-

ization for the pmf of a network-valued random variable. However, when the focus is on

inference and testing on changes in this pmf across groups, previous methodologies need to

be generalized.

Let pY,L(A) be the joint pmf for the random variable {Y,L(A)} with pY,L(A)(y, a) = pr{Y =

y,L(A) = a}, y ∈ Y = {1, 2} and a ∈ AV a network configuration. Assessing evidence of

global association between Y and L(A), formally requires testing the system of hypotheses

H0 : pY,L(A) = pYpL(A) versus H1 : pY,L(A) 6= pYpL(A), (3.13)
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where pY ∈ P2 is the marginal pmf of the grouping variable and pL(A) ∈ P|AV | denotes

the unconditional pmf for the network-valued random variable pL(A)(a) = pr{L(A) = a},
a ∈ AV . System (3.13) assesses evidence of global changes in the entire probability mass

function, rather than on selected functionals or summary statistics, and hence is more general

than Ginestet et al. (2014) and joint tests on network measures.

Recalling our neuroscience application, rejection of H0 implies that there are differences in

the brain architecture across creativity groups, but fails to provide insights on the reasons

for this association. The global differences may be attributable to several underlying mecha-

nisms, including variations in specific interconnection circuits. As discussed in Section 1.2.1,

local testing on group changes in edge probabilities is of key interest in neuroscience applica-

tions in highlighting which brain connections variables L(A)l ∈ {0, 1}, l = 1, . . . , V (V − 1)/2

– characterizing the marginals of L(A) – are potentially responsible for the global association

between Y and L(A). Hence, consistently with these interests, we incorporate in our analyses

also the multiple local tests

H0l : pY,L(A)l = pYpL(A)l versus H1l : pY,L(A)l 6= pYpL(A)l , (3.14)

for each l = 1, . . . , V (V − 1)/2, to assess whether each brain connection L(A)l has no as-

sociation with Y , or differs across low and high creativity subjects, respectively. In the sys-

tem (3.14), the quantity pY,L(A)l(y, al) denotes pr{Y = y,L(A)l = al}, while pL(A)l(al) =

pr{L(A)l = al}, l = 1, . . . , V (V − 1)/2, al ∈ {0, 1}.

In order to develop robust and tractable methodologies to test the global system (3.13) and

the multiple locals in (3.14), it is fundamental to consider a representation for pY,L(A) which is

provably flexible in approximating any joint probabilistic generative mechanism underlying

data (yi, Ai), i = 1, . . . , n. As L(A) is an highly multidimensional random variable on a non-

standard space we additionally require dimensionality reduction in characterizing pY,L(A),

while looking for a representation which facilitates simple derivation of pY,L(A)l(y, al) and

pL(A)l(al) from pY,L(A). This is a key to ensure tractable methodologies for testing the multiple

local systems in (3.14). According to these goals, we start by factorizing pY,L(A) as

pY,L(A)(y, a) = pY(y)pL(A)|y(a) = pr(Y = y)pr{L(A) = a | Y = y}, (3.15)

for every y ∈ Y and a ∈ AV . It is always possible to characterize the joint pmf pY,L(A) ∈
P2×|AV | as the product of the marginal pY ∈ P2 for the grouping variable and the conditional

pmfs pL(A)|y ∈ P|AV | of the network-valued random variable given the group membership

y ∈ Y. This also favors inference on how the network structure varies across the two groups,

with pL(A)|1 and pL(A)|2 fully characterizing such variations. Although we treatY as a random

variable through a prospective likelihood, the method we propose is valid also for studies

that sample groups under a retrospective design.
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Under factorization (3.15), the global test coincides with assessing whether the conditional

pmf of the network-valued random variable remains equal or shifts across the two groups.

Hence, under (3.15), the system (3.13), reduces to

H0 : pL(A)|1 = pL(A)|2 versus H1 : pL(A)|1 6= pL(A)|2. (3.16)

In order to develop provably general and robust strategies to test (3.16) the key challenge

relies in flexibly modeling the conditional pmfs pL(A)|1 and pL(A)|2 characterizing the distri-

bution of the network-valued random variable in the first and second group, respectively.

For every group y ∈ Y, one needs a parameter pL(A)|y(a) for each network configuration

a ∈ AV to uniquely characterize pL(A)|y, with the number of possible configurations being

|AV | = 2V (V−1)/2. Hence, a possible naive procedure to test the system (3.16) is to jointly

assess evidence of H0 : pL(A)|1(a) = pL(A)|2(a) for every a ∈ AV , against the alternative

H1 : pL(A)|1(a) 6= pL(A)|2(a) for some a ∈ AV . Although this strategy is fully general and ro-

bust against model misspecification, in our motivating application, |A68| = 268(68−1)/2 − 1 =

22278 − 1 parameters are required to uniquely define the pmf of the brain network in each

group y ∈ Y under the usual restriction
∑

a∈A68
pL(A)|y(a) = 1. Clearly this number of param-

eters to test is massively larger than the sample size available in neuroscience applications.

Hence, to facilitate tractable testing procedures it is necessary to substantially reduce dimen-

sionality. However, in reducing dimension, it is important to avoid making overly restrictive

assumptions that lead to formulations sensitive to issues arising from model misspecification.

Methodologies developed in Sections 3.1.3–3.1.5 address this dimensionality issue in mod-

eling of the network’s pmf without a categorical response, via mixture of low-rank factor-

izations. We generalize this approach to characterize changes of L(A) across groups, while

accommodating tractable procedures for global and local testing on group differences in the

network structure. This is accomplished via a simple modification of equation (3.5), which re-

places group-constant mixing probabilities ν = (ν1, . . . , νH) ∈ PH with group-specific quan-

tities νy = (ν1y, . . . , νHy) ∈ PH for each y ∈ {1, 2}, while maintaing the same low-rank

factorization (3.6) for the class-specific edge probability vectors π(h), h = 1, . . . ,H . Replacing

ν with νy in equation (3.5), leads to the dependent mixture representation

pL(A)|y(a) = pr{L(A) = a | Y = y} =

H∑
h=1

νhy

V (V−1)/2∏
l=1

{
π

(h)
l

}al {
1− π(h)

l

}1−al
, (3.17)

for each group y ∈ {1, 2} and configuration a ∈ AV , where νhy is the probability that the

brain network of a randomly selected subject within predictor group yi = y is allocated to

class h, and π(h)
l ∈ (0, 1) – from factorization (3.6) – defines the probability of an edge among

the lth pair of nodes in class h, for each l = 1, . . . , V (V − 1)/2 and h = 1, . . . ,H . Hence, rep-

resentation (3.17) defines pL(A)|1 and pL(A)|2 via a flexible dependent mixture model, which
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FIGURE 3.6: Graphical representation of the mechanism to generate data {yi,L(Ai)}, under rep-
resentation (3.15) and (3.17) for the joint pmf pY,L(A), with class-specific edge probability vectors
π(h) = (π

(h)
1 , . . . , π

(h)

V (V−1)/2)T factorized as in (3.6).

borrows strength across the two groups in characterizing the shared mixture components,

while allowing flexible modeling of the conditional pmfs pL(A)|y via group-specific mixing

probabilities νy = (ν1y, . . . , νHy) ∈ PH for y = 1 and y = 2.

Figure 3.6 outlines the mechanism to generate data {yi,L(Ai)} from the random variable

{Y,L(A)} with pmf factorized as in (3.15), (3.17) and class-specific edge probability vectors

from (3.6). According to Figure 3.6 the group indicator yi is sampled from the categorical

random variable with two levels and pmf pY . The network L(Ai) is instead generated con-

ditioned on yi under the mixture representation in (3.17). In particular, given yi = y we first

choose a mixture component by sampling the latent class indicator Gi ∈ {1, . . . ,H} from pG|y

with pG|y(h) = pr(Gi = h | Y = y) = νhy. Then, given Gi = h and the corresponding edge

probability vector π(h) – factorized as in (3.6) – the network L(Ai) is generated by sampling

its edges L(Ai)l, l = 1, . . . , V (V − 1)/2 from conditionally independent Bernoulli variables.

Hence, the dependence on the groups is introduced in the latent class assignment mecha-

nism via group-specific mixing probabilities, so that brain networks in the same class h share

a common edge probability vector π(h), with the probability assigned to each class changing

across the two groups. This simple generative mechanism is appealing in facilitating tractable

posterior computation and inference.
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A key in the previous representation is that it allows substantial dimensionality reduction,

while preserving flexibility. As stated in Corollary 3.6 – generalizing Lemma 3.1 – such a

representation is sufficiently flexible to jointly characterize the collection of group-dependent

pmfs pL(A)|1, pL(A)|2.

Corollary 3.6. Any collection of group-dependent probability mass functions pL(A)|y ∈ P|AV |, y ∈
{1, 2} can be characterized as in (3.17) for some H with class-specific edge probability vectors π(h),

h = 1, . . . ,H factorized as in (3.6) for some R.

Proof. According to Lemma 3.1 we can represent each pL(A)|y(a), y ∈ {1, 2} as pL(A)|y(a) =∑Hy
h=1 ν

∗
hy

∏V (V−1)/2
l=1 {π(hy)

l }al{1−π(hy)
l }1−al , with each π(hy)

l factorized as logit{π(hy)
l } = Z

(y)
l +∑Ry

r=1 λ
(hy)
r X

(hy)
vr X

(hy)
ur , l = 1, . . . , V (V − 1)/2 and h = 1, . . . ,Hy. Hence Corollary 3.6 follows

after choosing π(h), h = 1, . . . ,H as the sequence of unique class-specific edge probability

vectors π(hy) appearing in the previous factorization for at least one group y, and letting the

group-specific mixing weights in (3.17) be νhy = ν∗hy if π(h) = π(hy) and νhy = 0 otherwise.

This additionally ensures that any joint probability mass function pY,L(A) for the random

variable {Y,L(A)} admits representation (3.15) and (3.17) with class-specific edge probabil-

ity vectors from (3.6) and hence our formulation can be viewed as fully general and robust

against model misspecification in testing (3.16), given sufficiently flexible priors for the com-

ponents.

We could have considered more complicated scenarios with group dependence introduced

also in the quantities characterizing the mixture components in (3.6). However, including

group dependence only in the mixing probabilities favors borrowing of information across

the groups in modeling π(h), h = 1, . . . ,H , while massively reducing the number of param-

eters to test in (3.16) from 2{2V (V−1)/2 − 1} to 2(H − 1). Specifically, the characterization of

pL(A)|y in (3.17) further simplifies the system (3.16) to only testing the equality of the group-

specific mixing probability vectors

H0 : (ν11, . . . , νH1) = (ν12, . . . , νH2) versus H1 : (ν11, . . . , νH1) 6= (ν12, . . . , νH2). (3.18)

Recalling Corollary 3.6, under our formulation, the system (3.18) uniquely characterizes H0 :

pY,L(A) = pYpL(A) versus H1 : pY,L(A) 6= pYpL(A).

In developing methodologies for the multiple local tests in (3.14) under our model formu-

lation, we measure the association between L(A)l and Y exploiting the model-based version
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of Cramer’s V, proposed in Dunson and Xing (2009), obtaining

ρ2
l =

1

min{2, 2} − 1

2∑
y=1

1∑
al=0

{
pY,L(A)l(y, al)− pY(y)pL(A)l(al)

}2

pY(y)pL(A)l(al)

=
2∑
y=1

1∑
al=0

{
pY(y)pL(A)l|y(al)− pY(y)pL(A)l(al)

}2

pY(y)pL(A)l(al)

=
2∑
y=1

pY(y)
1∑

al=0

{
pL(A)l|y(al)− pL(A)l(al)

}2

pL(A)l(al)
. (3.19)

Measuring the local association with ρl ∈ (0, 1) provides an appealing choice in terms of

interpretation, with ρl = 0 meaning that pY,L(A)l = pYpL(A)l , and hence the random vari-

able L(A)l modeling the presence or absence of an edge among the lth pair of nodes, has

no differences across groups. Beside incorporating a fully general and tractable global test,

our model formulation is particularly appealing also in addressing issues associated to lo-

cal multiple testing in the network framework. First, as stated in Proposition 3.7, each ρl,

l = 1, . . . , V (V − 1)/2, can be easily computed from the quantities in our model.

Proposition 3.7. Based on equations (3.15) and (3.17) , pL(A)l|y(1) = 1−pL(A)l|y(0) =
∑H

h=1 νhyπ
(h)
l ,

and pL(A)l(1) = 1− pL(A)l(0) =
∑2

y=1 pY(y)
∑H

h=1 νhyπ
(h)
l .

Proof. The steps recall those considered to prove Proposition 3.2. In particular, recalling fac-

torization (3.17) and letting A−lV the set containing all the possible network configurations for

the node pairs except the lth one, we have that pL(A)l|y(1) is equal to

∑
A−lV

H∑
h=1

νhyπ
(h)
l

∏
l∗ 6=l
{π(h)

l∗ }al∗{1− π
(h)
l∗ }1−al∗ =

H∑
h=1

νhyπ
(h)
l

∑
A−lV

∏
l∗ 6=l
{π(h)

l∗ }al∗{1− π
(h)
l∗ }1−al∗

Then Proposition 3.7 follows after noticing that
∏
l∗ 6=l{π

(h)
l∗ }al∗{1− π

(h)
l∗ }1−al∗ is the joint pmf

of independent Bernoulli random variables and hence the summation over the whole joint

sample space A−lV = {0, 1}V (V−1)/2−1, provides
∑
A−lV

∏
l∗ 6=l{π

(h)
l∗ }al∗{1 − π

(h)
l∗ }1−al∗ = 1. The

proof for the marginal pL(A)l(1) =
∑2

y=1 pY(y)
∑H

h=1 νhyπ
(h)
l follows directly from previous

result after noticing that pL(A)l(1) =
∑2

y=1 pY,L(A)l(y, 1) =
∑2

y=1 pY(y)pL(A)l|y(1).

Joining results from Propositions 3.2 and 3.7 note that the vector π̄y ∈ (0, 1)V (V−1)/2, con-

taining the group-specific edge probabilities π̄yl = pr{L(A)l = 1 | Y = y} = pL(A)l|y(1) =∑H
h=1 νhyπ

(h)
l , coincides with the conditional expectation of the network-valued random vari-

able E{L(A) | Y = y} =
∑

a∈AV apL(A)|y(a) =
∑H

h=1 νhyπ
(h) given the group membership

y ∈ {1, 2}. These quantities are of key interest for inference in providing a summarized

overview on how the network structure changes on average across groups.
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A second key benefit for local testing provided by our model formulation, is that the shared

dependence on a common set of node-specific latent coordinates characterizing the construc-

tion of the edge probability vector π(h) within each class h = 1, . . . ,H in (3.6), explicitly

accounts for specific dependence structures in brain connections. According to Hoff (2008),

factorization (3.6) can accurately accommodate key topological properties including block

structures, homophily behaviors and transitive edge patterns – among others. As a results –

in line with Scott et al. (2014) – informing our local testing procedures about these structures,

is expected to substantially improve power, compared to standard FDR control procedures.

3.1.8 Prior specification and posterior computation

We specify independent priors for the quantities pY ∼ Πy, Z = (Z1, . . . , ZV (V−1)/2)T ∼
ΠZ , X(h) = (X

(h)
1 , . . . , X

(h)
V )T ∼ ΠX , λ(h) = (λ

(h)
1 , . . . , λ

(h)
R )T ∼ Πλ, h = 1, . . . ,H and νy =

(ν1y, . . . , νHy) ∼ Πν , y ∈ {1, 2}, to induce a prior Π on the joint pmf pY,L(A) with full support

over the 2×|AV | dimensional simplexP2×|AV |, while obtaining desirable asymptotic behavior,

simple posterior computation and allowance for testing. Prior support is a key to retain

the flexibility associated to our statistical model and testing procedures, when performing

posterior inference under a Bayesian paradigm.

As pY is the pmf of a categorical random variable on 2 levels, we let 1 − pY(2) = pY(1) ∼
Beta(a, b), and consider the same prior specification discussed in Section 3.1.4 for the quanti-

ties in (3.6) by choosing Gaussian priors (3.10) for the entries in Z, standard Gaussians (3.11)

for the elements in X(h) and multiplicative inverse gammas (3.9) for λ(h), h = 1, . . . ,H . A

key of our prior specification is incorporation of global testing (3.18) in the definition of Πν .

Specifically letting υ = (υ1, . . . , υH) and υy = (υ1y, . . . , υHy), we induce Πν through

νy = (1− T )υ + Tυy, y ∈ {1, 2},
υ ∼ Dir(a1, . . . , aH), υy ∼ Dir(a1, . . . , aH), y ∈ {1, 2}, (3.20)

T ∼ Bern{pr(H1)}.

In (3.20), T is a hypothesis indicator, with T = 0 for H0 and T = 1 for H1. Under H1,
we generate group-specific mixing weights independently, while under H0 we have equal
weight vectors. By choosing small values for the hyperparameters in the Dirichlet priors, we
additionally favor automatic deletion of redundant components (Rousseau and Mengersen,
2011). In assessing evidence in favor of the alternative, we can rely on the posterior prob-
ability, pr[H1 | {y,L(A)}] = 1 − pr[H0 | {y,L(A)}] which can be easily obtained from the
output of the Gibbs sampler proposed below. Specifically, under prior (3.20) and exploiting
the hierarchical structure of our dependent mixture model – summarized in Figure 3.6 – the
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full conditional pr(T = 1 | −) = pr(H1 | −) = 1− pr(H0 | −) is simply

=
pr(H1)

∏2
y=1

∫
{∏i:yi=y

pr(Gi | υy, yi)}dΠυy

pr(H0)
∫
{∏n

i=1 pr(Gi | υ)}dΠυ + pr(H1)
∏2
y=1

∫
{∏i:yi=y

pr(Gi | υy, yi)}dΠυy

,

=
pr(H1)

∏2
y=1

∫
(
∏H
h=1 υ

nhy
hy )dΠυy

pr(H0)
∫

(
∏H
h=1 υ

nh
h )dΠυ + pr(H1)

∏2
y=1

∫
(
∏H
h=1 υ

nhy
hy )dΠυy

,

=
pr(H1)

∏2
y=1 B(a+ n̄y)/B(a)

pr(H0)B(a+ n̄)/B(a) + pr(H1)
∏2
y=1 B(a+ n̄y)/B(a)

, (3.21)

with nh =
∑n

i=1 I(Gi = h), nhy =
∑

i:yi=y
I(Gi = h), a = (a1, . . . , aH), n̄ = (n1, . . . , nH), n̄y =

(n1y, . . . , nHy) and B indicates the multivariate beta function B(x) =
∏q
i=1 Γ(xi)/Γ(

∑q
i=1 xi)

with Γ(xi) the gamma function. It is straightforward to derive the equalities
∫

(
∏H
h=1 υ

nh
h )dΠυ =

B(a+ n̄)/B(a) and
∫

(
∏H
h=1 υ

nhy
hy )dΠυy = B(a+ n̄y)/B(a), y ∈ {1, 2} using known results of the

Dirichlet-multinomial conjugacy.

Although providing a key choice for performing global testing, it is impractical to adopt

formulation (3.20) for each local point null H0l : ρl = 0 versus H1l : ρl 6= 0, l = 1, . . . , V (V −
1)/2. Hence, we replace local point nulls with small interval nulls H0l : ρl ≤ ε versus H1l :

ρl > ε. This choice allows pr[H1l | {y,L(A)}] = 1− pr[H0l | {y,L(A)}] to be easily estimated

as the proportion of Gibbs samples in which ρl > ε. Moreover – as noted in Berger and Sellke

(1987) and Berger and Delampady (1987) – testing the small interval hypothesis H0l : ρl ≤ ε

is in general more realistic and provides – under a Bayesian paradigm – essentially the same

results than those obtained when assessing evidence of H0l : ρl = 0.

Beside key computational properties, as stated in Corollary 3.8 – generalizing theoretical

results in Section 3.1.4 on full prior support – our choices induce a prior Π for pY,L(A) with

full L1 support over P2×|AV |, meaning that Π can generate a pY,L(A) within an arbitrarily

small L1 neighborhood of the true data-generating model p0
Y,L(A), allowing the truth to fall

in a wide class.

Corollary 3.8. Based on the priors Πy,ΠZ ,ΠX ,Πλ, and Πν , and letting Bε(p0
Y,L(A)) = {pY,L(A) :∑2

y=1

∑
a∈AV |pY,L(A)(y, a)− p0

Y,L(A)(y, a)| < ε} denote the L1 neighborhood around p0
Y,L(A), then

for any p0
Y,L(A) ∈ P2×|AV | and ε > 0, Π{Bε(p0

Y,L(A))} > 0.

Proof. Recalling Corollary 3.6 and factorization (3.15) we can always represent theL1 distance∑2
y=1

∑
a∈AV |pY,L(A)(y, a)− p0

Y,L(A)(y, a)| between pY,L(A) and p0
Y,L(A) as

2∑
y=1

∑
a∈AV

|pY(y)

H∑
h=1

νhy

V (V−1)/2∏
l=1

{π(h)
l }al{1− π

(h)
l }1−al − p0Y(y)

H∑
h=1

ν0hy

V (V−1)/2∏
l=1

{π0(h)
l }al{1− π0(h)

l }1−al |,
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with ν0
hy = ν∗0hy if π0(h) = π0(hy) and ν0

hy = 0 otherwise. Hence Π{Bε(p0
Y,L(A))} is

∫
1(

2∑
y=1

∑
a∈AV

|pY,L(A)(y, a)− p0Y,L(A)(y, a)| < ε)dΠy(pY)dΠν(ν1, ν2)dΠπ(π(1), . . . , π(H)).

Recalling results in Dunson and Xing (2009) a sufficient condition for the previous integral to

be strictly positive is that Πy{py :
∑2

y=1 |pY(y) − p0
Y(y)| < εy} > 0, Ππ{π(h), h = 1, . . . ,H :∑H

h=1

∑V (V−1)/2
l=1 |π(h)

l − π
0(h)
l | < επ} > 0 and Πν{νy, y ∈ Y :

∑2
y=1

∑H
h=1 |νhy − ν0

hy| < εν} > 0

for every επ > 0, εy > 0 and εν > 0. The large support for pY is directly guaranteed from

the beta prior. Similarly, according to Theorem 3.3 and Lemma 3.4 the same hold for the joint

prior over the sequence of class-specific edge probability vectors π(h), h = 1, . . . ,H induced

by priors ΠZ , ΠX and Πλ in factorization (3.6). Finally marginalizing out the testing indicator

T and recalling our prior specification for the mixing probabilities in (3.20) a lower bound for

Πν{νy, y ∈ Y :
∑2

y=1

∑H
h=1 |νhy − ν0

hy| < εν} is

pr(H0)Πυ{υ :
2∑
y=1

H∑
h=1

|υh − ν0
hy| < εν}+ pr(H1)

2∏
y=1

Πυy{υy :
H∑
h=1

|υhy − ν0
hy| < εν/2}.

If the true model is generated under no association, previous equation reduces to

pr(H0)Πυ{υ :
H∑
h=1

|υh − ν0
h| < εν/2}+ pr(H1)

2∏
y=1

Πυy{υy :
H∑
h=1

|υhy − ν0
h| < εν/2},

with the Dirichlet priors for υ and υy, y ∈ {1, 2} ensuring the positivity of both terms. When

instead ν0
h1 6= ν0

h2 for some h = 1, . . . ,H , the positivity of pr(H0)Πυ{υ :
∑2

y=1

∑H
h=1 |υh −

ν0
hy| < εν} is not guaranteed, but pr(H1)

∏2
y=1 Πυy{υy :

∑H
h=1 |υhy − ν0

hy| < εν/2} remains

positive for every εν under the independent Dirichlet priors for the quantities υy, y ∈ {1, 2},
proving the Corollary.

Full prior support is a key property to ensure good performance in posterior inference and

testing, because without prior support about the true data-generating pmf, the posterior can-

not possibly concentrate around the truth. Moreover, as pY,L(A) is characterized by finitely

many parameters pY,L(A)(y, a), y ∈ Y, a ∈ AV , Corollary 3.8 is sufficient to guarantee that

the posterior assigns probability one to any arbitrarily small neighborhood of the true joint

pmf as n → ∞, meaning that Π[Bε(p
0
Y,L(A)) | {y1,L(A1)}, . . . , {yn,L(An)}] converges almost

surely to 1, when the true joint pmf is p0
Y,L(A).

Posterior computation is easily available adapting the Gibbs sampler 3 for pL(A) factorized

as in (3.5)–(3.6) to the new statistical model characterizing pY,L(A) via (3.15) and (3.17) with

π(h) as in (3.6). Algorithm 4 provides detailed steps for the proposed Gibbs sampler.
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Algorithm 4 Gibbs sampler for the dependent mixture of low-rank factorizations model

[1] Allocate each network observation to one of the classes

for i = 1, . . . , n do

Sample the class indicator Gi from the discrete distribution with probabilities

pr(Gi = h | −) =
νhyi

∏V (V−1)/2
l=1 {π(h)

l }L(Ai)l{1− π(h)
l }1−L(Ai)l∑H

m=1 νmyi
∏V (V−1)/2
l=1 {π(m)

l }L(Ai)l{1− π(m)
l }1−L(Ai)l

,

for each h = 1, . . . ,H , with π(h) defined in (3.6)

end for

———————————————————————————————————————–

[2] Sample the testing indicator T from the full conditional Bernoulli with probability

(3.21).

———————————————————————————————————————–

[3] Update the group-specific mixing probabilities

If T = 0, let νy = υ, y ∈ {1, 2}with υ updated from the full conditional Dirichlet

(υ1, . . . , υH) | − ∼ Dirichlet(1/H + n1, . . . , 1/H + nH).

Otherwise, if T = 1, update νy from

(ν1y, . . . , νHy) | − ∼ Dirichlet(1/H + n1y, . . . , 1/H + nHy)

independently for each y ∈ {1, 2}.
———————————————————————————————————————–

[4] Update quantities Z, X(h) and λ(h), h = 1, . . . ,H

Given Gi, i = 1, . . . , n, the updating for quantities Z, X(h) and λ(h), h = 1, . . . ,H proceeds

as in Algorithm 3 via Polyá-gamma data augmentation. Specifically first sample Polyá-

gamma augmented data as in step [3] of Gibbs sampler 3 and then update Z, X(h) and λ(h),

h = 1, . . . ,H following steps [4], [5] and [6], respectively, of Algorithm 3.

———————————————————————————————————————–

[5] Update the marginal group probabilities pY(1) = 1− pY(2) from

pY(1) | − ∼ Beta(a+ n1, b+ n2),

with ny =
∑n

i=1 I(yi = y).

Since the number of mixing components in (3.17) and the dimensions of the latent spaces in

(3.6) are not known in practice, we perform posterior computation by fixing H and R at con-

servative upper bounds. The priors are chosen to allow adaptive emptying of the redundant
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components, with the posteriors for parameters controlling unnecessary dimensions concen-

trated near zero. If all the classes h are occupied, then H should be increased. Similarly, if the

posterior for λ(h)
R is not concentrated near zero for any h, then R should be increased.

3.1.9 Simulation study

We consider simulation studies to evaluate the performance of our method in accurately

estimating the joint pmf for the pair {Y,L(A)}, in correctly assessing the global hypothesis

of association among the network-valued random variable and the categorical predictor, and

in identifying local variations in each edge probability across groups.

For comparison we also implement a MANOVA procedure – see e.g. Krzanowski (1988)

– to test for global variations across groups of the random vector Θ of summary measures,

with realization θi of Θ comprising the most commonly used network summary statistics –

i.e. network density, transitivity, average path length and assortativity – computed for each

network i. Refer to Kantarci and Labatut (2013) for an overview on these topological network

measures and Bullmore and Sporns (2009), Rubinov and Sporns (2010), Bullmore and Sporns

(2012) for a discussion on their importance in characterizing wiring mechanisms within brain

networks. For local testing, we compare our procedure to the results obtained when testing

on the association between L(A)l and Y for each l = 1, . . . , V (V −1)/2 via separate two-sided

Fisher’s exact tests – see e.g. Agresti (2002). We consider exact tests to avoid issues arising

from the χ2 approximations in sparse tables.

We simulate n = 50 pairs (yi, Ai) from our model in (3.15) and (3.17), with yi from a categor-

ical variable having two equally likely groups p0
Y = (0.5, 0.5) and Ai a V × V network with

V = 20 nodes. We considerH = 2 latent classes, with π0(h) defined as in (3.6). Brain networks

are typically characterized by tighter intra-hemispheric than inter-hemispheric connections

(Roncal et al., 2013). Hence, we consider two node blocks {1, . . . , 10} and {11, . . . , 20} char-

acterizing left and right hemisphere, respectively, and generate entries in Z0 to favor more

likely connections between pairs in the same block than pairs in different blocks. To assess the

local testing performance, we induce group differences only on a subset of nodes V ∗ ⊂ V . A

possibility to favor this behavior is to consider R = 1, λ0(1) = λ0(2) = 1 and let X0(h)
v 6= 0 only

for nodes v ∈ V ∗, while fixing the latent coordinates of the remaining nodes to 0. As a result,

no variations in edge probabilities are displayed when mixing probabilities remain constant,

while only local differences are highlighted when mixing probabilities shift across groups.

Under the dependence scenario, data are simulated with group-specific mixing probabilities

ν0
1 = (0.8, 0.2), ν0

2 = (0.2, 0.8). Instead, constant mixing probabilities ν0
1 = ν0

2 = (0.5, 0.5) are

considered under independence. Even if we focus only on 20 nodes to facilitate graphical

analyses, our dependent mixture of low-rank factorizations scales to much higher V settings.

Refer to discussion in Section 3.1.6.
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FIGURE 3.7: For the two scenarios, observed changes across the two groups of selected network
summary statistics. These measures are computed for each simulated network under the two scenarios
and summarized via violin plots.
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FIGURE 3.8: Lower triangular: group difference between the relative edge frequencies for each pair of
nodes computed from the simulated data. Upper triangular: true group difference in edge probabilities
arising from the generative processes considered in the simulations. Previous quantities are displayed
for the dependence (left) and independence (right) simulation scenarios. Triangles highlight edges
which truly differ across groups in the dependence simulation scenario.

As show in Figures 3.7–3.8, although our dependence simulation setting may appear – at

first – simple, it provides a challenging scenario for procedures assessing evidence of global

association by testing on variations in the network summary measures. In fact, we choose

valuesX0(h)
v for the nodes v ∈ V ∗ such that the resulting summary statistics for the simulated

networks do no display changes across groups also in the dependence scenario. Hence a



Chapter 3. Populations of networks 108

DEPENDENCE INDEPENDENCE

0.00

0.25

0.50

0.75

1.00

ν
hy

h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9 h=10 h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9 h=10

y
y=1

y=2

DEPENDENCE INDEPENDENCE

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

π
(1)

π
(2)

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

FIGURE 3.9: Upper panels: boxplots based on the posterior samples of the group-specific mixing
probabilities under the dependence (left) and independence (right) scenarios. Lower panels: under the
same scenarios and for the non-empty classes h = 1 and h = 2, plots of the true class-specific edge
probabilities π0(h)

l (x-axis) versus their posterior mean π̂(h)
l (y-axis), l = 1, . . . , V (V − 1)/2. Segments

denote the corresponding 0.95 highest posterior density intervals.

global test relying on network summary measures is expected to fail in detecting association

between Y and L(A), as variations in the network pmf are only local – i.e. in a subset of

its marginals L(A)l. On the other hand, powerful local testing procedures are required to

efficiently detect this small set of edge probabilities truly changing across the two groups.

In both scenarios, inference is accomplished by consideringH = R = 10, pr(H1) = pr(H0) =

0.5 and letting pY(1) ∼ Beta(1/2, 1/2). To favor deletion of unnecessary classes h, we fix the

hyperparameter vector in the Dirichlet for υ and υy to a = (a1 = 1/H, . . . , aH = 1/H).

As noted in Ishwaran and Zarepour (2002), this choice provides also a finite approxima-

tion to the Dirichlet process. For priors ΠZ ,ΠX and Πλ, we choose the same hyperparame-

ter settings of the simulation study in Section 3.1.6. We collect 5,000 Gibbs iterations, dis-

carding the first 1,000. In both scenarios converge and mixing are assessed via Gelman

and Rubin (1992) potential scale reduction factors (PSRF) and effective sample sizes, respec-

tively. Previous quantities are computed for the parameters of interest for inference in the
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FIGURE 3.10: Lower triangular: for the dependence simulation scenario, mean and quartiles for the
posterior distribution of the difference between the edge probabilities in the second group π̄2 and first
group π̄1. Upper triangular: for the same scenario, true difference π̄0

2 − π̄0
1 .

simulation, covering the group-specific mixing probabilities νhy, h = 1, . . . ,H , y ∈ {1, 2},
the class-specific edge probabilities comprising vectors π(h), the Cramer’s V coefficients ρl,

l = 1, . . . , V (V − 1)/2 for local testing and the group-specific edge probability vectors π̄y,

with elements π̄yl = pL(A)l|y(1) = pr{L(A)l = 1 | Y = y} defined in Proposition 3.7. As dis-

cussed in Section 3.1.7 this vector coincides with the group-specific mean network structure

E{L(A) | Y = y} =
∑H

h=1 νhyπ
(h). In both scenarios, most of the effective samples sizes are

around 2,000 out of 4,000 samples, demonstrating excellent mixing performance. Similarly,

all the PSRFs are less than 1.1, providing evidence that convergence has been reached.

Our testing procedure allows accurate inference on the global association betweenL(A) and

Y . We obtain p̂r[H1 | {y,L(A)}] > 0.99 for the association scenario and p̂r[H1 | {y,L(A)}] <
0.01 when yi andAi, i = 1, . . . , n are generated independently. Instead, the MANOVA testing

procedure on the summary statistics vector fails to reject the null hypothesis of no association

in both scenarios at a level α = 0.1 – as expected. This result further highlights how global

network measures may fail in accurately characterizing the whole network architecture. We

obtain similarly good performance in correctly recovering the true pmf for {Y,L(A)} under

both scenarios. This is highlighted in Figure 3.9. As the posteriors for pL(A)|1 and pL(A)|2 are

complex objects to visualize, we evaluate inference performance in Figure 3.9 by focusing on

posteriors for quantities νy, y ∈ {1, 2} and π(h), h = 1, . . . ,H , which characterize pL(A)|1 and

pL(A)|2 under equation (3.17). As Figures 3.9 provides inference on class-specific quantities,

we additionally accounted for label switching via the Stephens (2000) relabeling algorithm.

However, no relabeling was necessary in our simulations.

As expected we learn posterior distributions for the mixing probabilities which shift over

the grouping variable or remain constant under dependence and independence, respectively,

as shown in the upper panel of Figure 3.9. Note also how the sparse Dirichlet priors for

quantities u and uy allow us to efficiently remove redundant dimensions. Borrowing of in-

formation across the groups provides accurate estimates of the class-specific edge probability
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FIGURE 3.11: Lower triangular: p̂r[H1l | {y,L(A)}] = pr[ρl > 0.1 | {y,L(A)}] (left) and calibrated
Fisher’s exact tests p-values 1/(1 − epl log pl) if pl < 1/e, 0.5 otherwise (right), to allow comparison
with p̂r[H1l | {y,L(A)}]. Upper triangular: Accepted (white) and rejected (black) local null hypotheses.
Triangles highlight edges which truly differ across groups.

vectors π(h), with posterior distribution concentrated around the true values, as confirmed

in the lower panels of Figure 3.9. We obtain similar performance in estimating pY , with the

posterior concentrated around the true p0
Y . These results ensure accurate inference and es-

timation for the true joint pmfs p0
Y,L(A) underlying simulated data in the dependence and

independence scenarios.

Focusing on the dependence scenario, Figure 3.10 shows how accounting for sparsity and

network information – via our dependent mixture of low-rank factorizations – provides accu-

rate inference on local variations in edge probabilities, correctly highlighting pairs of nodes

whose connectivity differs across groups in the true generating process and explicitly charac-

terizing uncertainty through the posterior distribution. Conducting inference on each pair of

nodes separately provides instead poor estimates – refer to left plot in Figure 3.8 – with the

sub-optimality arising from inefficient borrowing of information across the edges. This lack

of efficiency strongly affects also the local testing performance as shown in Figure 3.11, with

our procedure having higher power than the one obtained via separate Fisher’s exact tests.

In Figure 3.11, each Fisher’s exact test p-value is calibrated via 1/(1−epl log pl) if pl < 1/e and

0.5 otherwise, to allow better comparison with p̂r[H1l | {y,L(A)}] (Sellke et al., 2001). More-

over, we adjust for multiplicity in the Fisher’s exact tests by rejecting all local nulls having a

p-value below p∗, with p∗ the Benjamini and Hochberg (1995) threshold to maintain a false

discovery rate FDR ≤ 0.1. Under our local Bayesian testing procedure we reject all H0l such

that p̂r[H1l | {y,L(A)}] > 0.9, with ε = 0.1. We do not explicitly control for FDR in order to

assess whether our Bayesian procedures and the borrowing of information across local tests

induced by factorization (3.6) contain the intrinsic adjustment for multiple testing, we expect.

Results in Figure 3.11 confirm our expectations.
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Type I error Type II error FWER FDR
Global testing procedure

Mixture of low-rank factorizations 0.01 0.01
MANOVA on summary measures 0.09 0.90

Local testing procedure
Mixture of low-rank factorizations 0.0004 0.0587 0.0600 0.0023
Separate Fisher’s exact tests 0.0036 0.5983 0.4000 0.0387

TABLE 3.1: Comparison of error rates for our procedure against MANOVA on summary statistics for
global testing and separate Fisher’s exact tests for local hypotheses.

Minimum Mean Median Maximum
Area under the ROC curve

Mixture of low-rank factorizations 0.969 0.999 1.000 1.000
Separate Fisher’s exact tests 0.810 0.921 0.923 0.989

TABLE 3.2: Summary of the AUCs computed for the 100 simulated datasets in the dependence sce-
nario, to assess performance of local testing at varying thresholds. The ROC curves are constructed
using the true hypotheses indicators – δl = 0 if H0l is true, δl = 1 if H1l is true, l = 1, . . . , V (V − 1)/2

– and the acceptance or rejection decisions based on our procedure and Fisher’s exact tests at varying
the thresholds on posterior probabilities or FDR, respectively.

To assess frequentist operating characteristics, we repeated the above simulation exercise

for 100 simulated datasets under both dependence and independence scenarios. The MANOVA

test is performed under a threshold α = 0.1, while the decision rule in the local Fisher’s exact

tests is based on the Benjamini and Hochberg (1995) threshold to maintain a false discovery

rate FDR≤ 0.1. Under our Bayesian procedure we reject the global null if p̂r[H1 | {y,L(A)}] >
0.9. As in our settings the prior odds pr(H1)/pr(H0) = 1, previous threshold implies rejecting

the global null when the Bayes factor provides an evidence against H0 which is substantially

close or higher than strong (Kass and Raftery, 1995). According to sensitivity analyses, rea-

sonable changes in the previous threshold do not affect the final conclusions. Consistently

with our initial simulation we reject local nulls if p̂r[H1l | {y,L(A)}] > 0.9. Also in this case

results are not substantially affected by moderate changes in the threshold both in simulation

and application, hence we maintain this choice to preserve coherence in our analyses.

Table 3.1 confirms the superior performance of our approach in maintaining all error rates

close to zero, in both global and local testing, while intrinsically adjusting for multiplicity. The

information reduction via summary measures for the global test and the lack of a network

structure in the local Fisher’s exact tests lead to procedures with substantially less power.

Although Table 3.1 has been constructed using an FDR control of 0.1 in the Fisher’s exact tests

and a threshold of 0.9 under our local testing procedure, we maintain superior performance

allowing the thresholds to vary, as shown in Table 3.2.

In considering sample size versus type I and type II error rates, it is interesting to assess the

rate at which the posterior probability of the global alternative pr[H1 | {y,L(A)}] converges to

0 and 1 underH0 andH1, respectively, as n increases. We evaluate this behavior by simulating

100 datasets as in the previous simulation for increasing sample sizes n = 20, n = 40 and
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FIGURE 3.12: For increasing sample sizes n, histograms of the estimated posterior probabilities of the
global alternative H1 in each of the 100 simulations under association and no association.

n = 100 and for each scenario. Figure 3.12 provides the histograms showing the estimated

posterior probabilities of H1 for the 100 simulated datasets under the two scenarios and for

increasing sample sizes. The separation between scenarios is evident for all sample sizes,

with p̂r[H1 | {y,L(A)}] consistently concentrating around 0 and 1 under the no association

and association scenario, respectively, as n increases. When n = 20 the test has lower power,

with 32/100 samples having p̂r[H1 | {y,L(A)}] < 0.9 when H1 is true. However, type I errors

were rare, with 1/100 samples having p̂r[H1 | {y,L(A)}] > 0.9 when data are generated

under H0. These values are very close to 0 when the sample size is increased to n = 40 and

n = 100, with the latter showing strongly concentrated estimates around 1 and 0, when H1 is

true and H0 is true, respectively.

We conclude our simulation studies by considering a final scenario in which there is a strong

association between L(A) and Y , but this dependence arises from changes in more complex

functionals of the probabilistic generative mechanism, instead of edge probabilities. Specifi-

cally, we simulate n = 50 pairs (yi, Ai) from our model (3.15) and (3.17), with yi from a cate-

gorical variable having p0
Y = (0.5, 0.5) andAi a V ×V network with V = 20 nodes. In defining

(3.17) we considerH = 3 components and again split the nodes in two blocks V1 = {1, . . . , 10}
and V2 = {11, . . . , 20}, characterizing – for example – the two different hemispheres. When

h = 1, the vector π0(1) characterizes this block structure, with the probability of an edge be-

tween pairs of nodes in the same block set at 0.75, while nodes in different blocks have 0.5

probability to be connected. Vectors π0(2) and π0(3) maintain the same within block proba-

bility of 0.75 as in π0(1), but have different across block probability. In component h = 2 the

latter increases by 0.3 – from 0.5 to 0.8 – while in component h = 3 this quantity decreases by

the same value – from 0.5 to 0.2. As a result, when letting ν0
1 = (1, 0, 0) and ν0

2 = (0, 0.5, 0.5)

it is easy to show that the group-specific edge probabilities – characterizing the distribution

of each edge in the two groups – remain equal π̄0
1 = π̄0

2 , even if the probability mass function

jointly assigned to these edges changes across groups p0
L(A)|1 6= p0

L(A)|2. This provide a subtle

scenario for the several procedures assessing evidence of changes in the brain across groups,
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FIGURE 3.13: Model performance in the final simulation scenario. Upper-left adjacency matrix: group
difference between the relative edge frequencies for each pair of nodes computed from the simulated
data (lower triangular) versus true group difference in edge probabilities (upper triangular). Upper-
middle adjacency matrix: posterior mean of the difference between the edge probabilities in the two
groups (lower triangular) versus true group difference in edge probabilities (upper triangular). Upper-
right adjacency matrix: p̂r[H1l | {y,L(A)}] = pr[ρl > 0.1 | {y,L(A)}] (lower triangular) and accepted
(white) or rejected (black) local null hypotheses (upper triangular). Lower panels: violin plots repre-
senting the density of selected network summary statistics in the two groups, arising from the posterior
predictive distribution associated with our model.

by focusing on marginal or expected quantities. In such setting, these strategies should –

correctly – find no difference in edge probabilities and hence may be – wrongly – prone to

conclude that the brain network does not change across groups. Underestimating associa-

tions may be a dangerous fallacy in understating – for example – the effect of a neurological

disorder that induces changes in more complex functionals of the brain network.

We apply our procedures to these simulated data under the same settings of our initial

simulations, obtaining very similar effective sample sizes and PSRFs. As shown in the upper

panels of Figure 3.13 the posterior probabilities for all the local alternatives are lower than 0.9

and hence our multiple testing procedure accepts H0l for every l = 1, . . . , V (V − 1)/2. Beside

correctly assessing the evidence of no changes in edge probabilities across the two groups,

our global test is able to detect variations in more complex functionals of the brain network.

In fact we obtain p̂r[H1 | {y,L(A)}] > 0.99, meaning that although there is no evidence of

changes in edge probabilities across the two groups, the model finds a strong association

between L(A) and Y .

The type of these variations can be observed in the lower panels of Figure 3.13 showing
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the distribution of the selected network summary statistics arising from the posterior predic-

tive distribution associated to our model. Although the latter is not analytically available, it

is straightforward to simulate from the posterior predictive distribution exploiting our con-

structive representation in Figure 3.6 and posterior samples for the quantities in (3.15), (3.17)

and (3.6), in line with the strategy outlined at the end of Section 3.1.6. According to the lower

panels of Figure 3.13 there are substantial changes in the pmf of the network data across

groups. In group one our model infers network summary measures having unimodal dis-

tributions, while in the second group we learn substantially different bimodal distributions.

This behavior was expected based on our simulation, and hence these results further con-

firm the accuracy of our global test along with the good performance of our model in flexibly

characterizing the distribution of a network-valued random variable and its variations across

groups.

3.1.10 Application to brain network data and creativity

Although there is increasing interest in understanding how the structural interconnections

in the brain play a critical role in creative cognition, as discussed in Section 1.2.1 and in Arden

et al. (2010), current findings lack agreement due to the absence of a unifying approach to

statistical inference in this field. The major effort of our procedures is in addressing these

issues via provably general formulations which can flexibly characterize the richness of the

network structure and avoid ad-hoc data reduction strategies prior to statistical modeling.

According to previous discussion, we evaluate our procedure on the creativity data set

described in Section 1.2.1 using the same settings as in the simulation examples, but with

upper bound H increased to H = 15. This choice proves to be sufficient with classes h =

12, . . . , 15 having no observations and redundant dimensions of the latent spaces efficiently

removed. The efficiency of the Gibbs sampler was very good, with effective sample sizes

around 1,500 out of 4,000. Similarly the PSRFs provide evidence that convergence has been

reached, as the highest of these quantities is 1.15. These checks on mixing and convergence

are performed for the chains associated to quantities of interest for inference and testing.

These include, the Cramer’s V coefficients ρl, l = 1, . . . , V (V − 1)/2 for local testing, the

group-specific edge probability vectors π̄1 and π̄2, the unconditional edge probability vector

π̄ = pY(1)π̄1 + pY(2)π̄2 and the expectation of selected network summary statistics.

Our results provide interesting insights into the global relation between the brain network

and creativity, with p̂r[H1 | {y,L(A)}] = 0.995 strongly favoring the alternative hypothe-

sis of association between brain region interconnections and level of creativity. In order to

further assess the robustness of our global test we also performed posterior computation by

randomly matching the observed group membership variables yi with the brain networks
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FIGURE 3.14: Mean and quartiles for the posterior distribution of the difference between the edge
probabilities in high creativity subjects π̄2 and low creativity subjects π̄1.

L(Ai). In 10 of these trials we always obtained – as expected – low p̂r[H1 | {y,L(A)}] ≤ 0.2.

This reasonably confirms the reliability of our conclusions.

We also attempted to apply the MANOVA test as implemented in the simulation exper-

iments, with the same network statistics – i.e. network density, transitivity, average path

length and assortativity by hemisphere. These are popular and key measures in neuro-

science in informing on fundamental properties in brain network organization such as small-

world, homophily patterns and scale-free behaviors (Bullmore and Sporns, 2009; Rubinov

and Sporns, 2010; Bullmore and Sporns, 2012). In our dataset, the average path length was

undefined for three subjects, as there were no paths between several pairs of their brain re-

gions. Replacing these undefined shortest path lengths with the maximum path lengths, we

obtain no significant difference in summary measures across creativity groups with a p-value

of 0.111. When excluding this topological measure, we instead obtain a borderline p-value of

0.054. This sensitivity to the choice of summary statistics further motivates tests that avoid

choosing topological measures, which is an inherently arbitrary exercise.

A key of our procedure is in providing efficient dimensionality reduction via mixture mod-

eling and matrix factorization procedures, while preserving general flexibility in characteriz-

ing replicated network data. In fact, we obtain excellent performance – with an AUC = 0.97

– in edge prediction exploiting the posterior mean of the group-specific edge probabilities.

Specifically we consider ˆ̄π1 in predicting edges for brains in the low creativity group and ˆ̄π2

for brains in the high creativity group. Beside providing a flexible approach in joint mod-

eling of networks and categorical predictors, our methodology represents also a powerful

tool to predict yi given the subject’s full brain network structure. In fact, under our frame-

work, the probability that a subject i has high creativity, conditionally on his brain structural

connectivity network Ai, is simply

pr{Yi = 2 | L(Ai)} = 1− pr{Yi = 1 | L(Ai)} =
pY(2)pL(A)|2(ai)

pY(2)pL(A)|2(ai) + pY(1)pL(A)|1(ai)
, (3.22)
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FIGURE 3.15: Brain network visualization exploiting results from our local testing procedure. We only
display those connections which provide evidence of changes across high and low creativity subjects
based on our procedure – i.e. p̂r[H1l | {y,L(A)}] > 0.9. Edge color is green – or red – if its estimated
probability in high creativity subjects is greater – or less – than low creativity ones. Regions positions
are given by the spatial coordinates in the brain, with the same brain displayed from different views.

where ai = L(Ai) is the network configuration of the ith subject and pL(A)|y(ai), y ∈ {1, 2}
can be easily computed from (3.17). We obtain an AUC = 0.87 in predicting the creativity

group yi using the posterior mean of pr{Yi = 2 | L(Ai)} = 1−pr{Yi = 1 | L(Ai)} for each i =

1, . . . , n. Hence, allowing the conditional pmf of the network-valued random variable to shift

across groups via group-specific mixing probabilities provides a good characterization of the

dependence between brains and creativity, leading to accurate prediction of the creativity

group.

Previous results highlight a good fit of our model to the data, motivating further analyses

and interpretation of the results with respect to available literature. Figure 3.14 provides sum-

maries of the posterior distribution for π̄2−π̄1, with π̄2 =
∑H

h=1 νh2π
(h) and π̄1 =

∑H
h=1 νh1π

(h)

encoding the edge probabilities in high and low creativity groups, respectively, as well as

the conditional expectation of the corresponding network-valued random variable. Most

of these connections have a similar probability in the two groups, with more evident local

differences for connections among brain regions in different hemispheres. Highly creative
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FIGURE 3.16: Violin plots representing the posterior distribution for the conditional expectation of
selected network summary statistics in the two creativity groups.

individuals display a higher propensity to form inter-hemispheric connections. Differences

in intra-hemispheric circuits are less evident. These findings are confirmed by Figure 3.15 in-

cluding also results from our local testing procedure. As in the simulation we set ε = 0.1 and

the decision rule rejects the local nulls when p̂r[H1l | {y,L(A)}] > 0.9. These choices provide

reasonable settings based on simulations, and results are robust to moderate changes in the

thresholds.

Early studies show that intra-hemispheric connections are more likely than inter-hemispheric

connections for healthy individuals (Roncal et al., 2013). This is also evident in our dataset,

with subjects having a proportion of intra-hemispheric edges of 0.55 over the total number

of possible intra-hemispheric connections, against a proportion of about 0.21 for the inter-

hemispheric ones. Our estimates in Figure 3.14 and local tests in Figure 3.15 highlight dif-

ferences only in terms of inter-hemispheric connectivity, with high creative subjects having a

stronger propensity to connect regions in different hemispheres. This is consistent with the

idea that creative innovations arise from communication of brain regions that ordinarily are

not connected (Heilman et al., 2003).

These findings contribute to the ongoing debate on the sources of creativity in the human
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FIGURE 3.17: Weighted network representation with weights given by the posterior mean of the
unconditional edge probabilities pr{L(A)l = 1} = π̄l = pY(1)π̄1l + pY(2)π̄2l, l = 1, . . . , V (V − 1)/2.
Edges are not displayed to facilitate graphical analysis. Nodes positions are obtained by applying
the Fruchterman and Reingold (1991) force-directed placement algorithm and sizes are proportional to
their degree computed from the estimated π̄. Circles and squares represent brain regions in the left and
right hemispheres, respectively. Colors define anatomical lobe membership, according to Kang et al.
(2012) classification of brain regions in anatomical lobes.

brain, with original theories considering the right-hemisphere as the seat of creative thinking,

and more recent empirical analyses highlighting the importance of the level of communica-

tion between the two hemispheres of the brain; see Sawyer (2012), Shobe et al. (2009) and

the references cited therein. Beside the different techniques in monitoring brain networks

and measuring creativity, as stated in Arden et al. (2010), previous lack of agreement is likely

due to the absence of a unifying approach to statistical inference in this field. Our method

addresses this issue, while essentially supporting modern theories considering creativity as

a result of cooperating hemispheres.

According to Figure 3.15 the differences in terms of inter-hemispheric connectivity are found

mainly in the frontal lobe, where the co-activation circuits in the high creativity group are

denser. This result is in line with recent findings highlighting the major role of the frontal

lobe in creative cognition (Carlsson et al., 2000; Jung et al., 2010; Takeuchi et al., 2010). Pre-

vious analyses focus on variations in the activity of each region in isolation, with Carlsson

et al. (2000) and Takeuchi et al. (2010) inferring an increase in cerebral blood flow and frac-

tional anisotropy, respectively, for highly creative subjects, and Jung et al. (2010) showing a



Chapter 3. Populations of networks 119

negative association between creativity and cortical thickness in frontal regions. We instead

provide inference on interconnections among these regions, with increased bilateral frontal

connectivity for creative subjects, consistent with both the attempt to enhance frontal activity

as suggested by Carlsson et al. (2000) and Takeuchi et al. (2010) or reduce it according to Jung

et al. (2010).

Figure 3.16 shows the effect of the increased inter-hemispheric frontal connectivity – in

high creativity subjects – on the posterior distribution of the key expected network summary

statistics in the two groups. Although the expectation for most of these quantities cannot be

analytically derived as a function of the parameters in (3.15) and (3.17), it is straightforward

to obtain posterior samples for the previous measures via Monte Carlo methods exploiting

the constructive representation in Figure 3.6. According to Figure 3.16 the brains in high

creativity subjects are characterized by an improved architecture – compared to low creativ-

ity subjects – with increased connections, higher transitivity and shortest paths to connect

pairs of nodes. As expected also hemispheric assortativity decreases. This is consistent with

our local testing procedure providing evidence of increased inter-hemispheric activity and

unchanged intra-hemispheric connectivity structures across the two groups. Previous results

are also indicative of small-world structures in highlighting high transitivity and low average

path length, with brains for high creativity subjects having a stronger small-world topology

than subjects with low creativity. This property is a key in characterizing brain networks

and hence our findings are in line with general results in neuroscience (Bullmore and Sporns,

2009).

We conclude our analysis by assessing the performance of our model formulation in charac-

terizing also unconditional network structures. This is accomplished by providing a graph-

ical network visualization based on the posterior mean of the unconditional expectation for

the network-valued random variable arising from our model formulation. This quantity is

easily available as π̄ = pY(1)π̄1 + pY(2)π̄2 and coincides also with the unconditional edge

probability vector. Node positions in Figure 3.17 again highlight the two blocks induced by

the hemispheres while additionally showing how regions in the same anatomical lobe are in

general spatially closer. These results are consistent with neuroscience literature (Bullmore

and Sporns, 2009), while being in line with the real spatial coordinates of the regions in the

brain. This is a key insight on the performance of our model, as we learn previous structures

only exploiting connectivity patterns without informing the model on spatial proximity of

the nodes or their membership to hemispheres and lobes.

3.1.11 Application to brain network data and Alzheimer’s

There is fundamental interest in understanding the relationship between the brain connec-

tivity structure and neurodegenerative disorders, such as Alzheimer’s, Parkinson’s and other
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dementias (Stam, 2014). These diseases are mainly found in aged populations and affect the

normal functions of the central and peripheral nervous system causing, among others, mus-

cle weakness, loss of coordination and cognitive impairment.

Alarming prevalence projections of dementia cases by the World Health Organization in

2006, and the rapid development of brain imaging technologies in recent years, have stim-

ulated intensive research aimed at understanding how the brain structure is compromised

with specific neurological diseases. This is key to improving diagnosis as well as providing

increasingly targeted therapies. According to the Centers for Disease Control and Prevention

(CDC), Alzheimer’s disease (AD) is the most common form of dementia and the sixth lead-

ing cause of death in the United States. Unlike cancer and heart disease death rates, which

are expected to decline, the growth of elderly population in the age range most commonly

affected by dementia is leading to an increase of the death rates due to AD (James et al.,

2014). This has strongly motivated intensive research aimed at finding the sources of AD in

the human brain to develop increasingly refined diagnosis and prognosis procedures as well

as improved therapy.

Current understanding of variations in brain behavior across AD is mostly available via

early neuropathological studies (Hopper and Vogel, 1976), and contributions analyzing joint

or local changes in the activity of each region under the modular paradigm (Thompson et al.,

2001). More recent proposals shift increasingly away from the above approach towards

studying brain activity networks via changes of the covariance in activity across brain re-

gions for AD and controls (Bokde et al., 2006). However, functional connectivity matrices

estimated from fMRI data do not reflect the underlying axonal pathways that can give rise to

changes in function, and often require caution in interpreting the results (Bressler and Menon,

2010). This has motivated an increasing interest in structural connectivity matrices estimated

from diffusion scans. Early studies on these data proceed by assessing variations of global

brain network measures or region-specific connectivity statistics across AD and controls (Da-

ianu et al., 2013). As previously noted, these methods may fail in flexibly characterizing the

richness of the brain network structure, leading to inconsistent results. To address these is-

sues, we apply our methodology to brain networks and Alzheimer’s disease data described

in Section 1.2.1. Posterior analysis is performed with the same settings of the application to

creativity in Section 3.1.10, obtaining comparable results in terms of mixing and convergence.

The global testing procedure in (3.18) strongly favors the hypothesis of association between

brain structural connectivity and AD diagnosis with p̂r[H1 | {y,L(A)}] > 0.99. This confirms

findings in Daianu et al. (2013) highlighting significant variations in brain network summary

measures when comparing AD patients with cognitively healthy controls.

As expected the estimated significant differences between the edge probabilities in AD

group and control group in Figure 3.18 show an overall less connected brain network for the
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FIGURE 3.18: Brain network visualization exploiting results from our local testing procedure. We only
display those connections which appear to be compromised by Alzheimer’s based on our procedure –
i.e. p̂r[H1l | {y,L(A)}] > 0.9. Edge color is green – or red – if its estimated probability in Alzheimer’s
disease subjects is greater – or less – than healthy individuals. Regions positions are given by the spatial
coordinates in the brain, with the same brain displayed from different views.

AD group compared to controls, in line with Daianu et al. (2013) and literature on AD. The

main differences appear in terms of intra-hemispheric connections in the left hemisphere,

while fewer local differences are found also in terms of inter-hemispheric connections and

right intra-hemispheric. This major role of the left hemisphere agrees with Daianu et al. (2013)

and Thompson et al. (2001). These findings are confirmed in Figure 3.19 summarizing the

posterior distributions for elements in π̄2−π̄1, with π̄2 =
∑H

h=1 νh2π
(h) and π̄1 =

∑H
h=1 νh1π

(h)

encoding the edge probabilities in Alzheimer’s disease and control groups, respectively. Ac-

cording to Figure 3.19 the entire posterior distributions – and not only posterior means – tend

to concentrate on negative values for almost all connections. This further confirms the major

effect of AD in compromising brain connectivity circuits.

The agreement with previous studies highlights the consistency of our methodology, which

has the additional benefit of providing inference not only on the scale of the network sum-

mary measures but in terms of variations of the entire pmf for the brain network-valued
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FIGURE 3.19: Mean and quartiles for the posterior distribution of the difference between the edge
probabilities in Alzheimer’s disease subjects π̄2 and and age-matched cognitively healthy controls π̄1.

random variable representing brain interconnections. This rules out the issue of conflict-

ing conclusions when different network statistics are considered, while also avoiding ad-hoc

choices when defining certain summary measures. Recalling for example Daianu et al. (2013)

one may obtain different results when considering an order for the k-core different from 18.

An additional benefit of our approach, as outlined in the simulation study, is that local testing

intrinsically controls for multiplicity, while out-performing frequentist competitors control-

ling for FDR, in terms of power. Recalling the application to AD, this leads to a procedure

which can more easily identify connections significantly varying between control and AD

subjects. This is evident when comparing Figure 3.18 to results in Figure 1 in Daianu et al.

(2013) learning less significant local differences. This result may be related to the use of a

region-specific network statistic which displays low variations across case and controls as

well as the choice of an overly conservative level for the FDR and the less power related to

massively univariate local testing procedures.

Our approach doesn’t rely on the choice of network summary measures and intrinsically

controls for multiplicity, overcoming previous issues while strongly gaining power. As a

result we learn more connections significantly varying between control and AD groups. This

provides interesting new insights according to Figure 3.20, which displays for each region

v = 1, . . . , V the total number of connections among v and the remaining V − 1 regions

significantly varying between controls and AD group under our local testing procedure (3.19)

with ε = 0.1. To highlight the roles of higher level brain systems, regions are grouped in

anatomical lobes according to Kang et al. (2012) and in hemispheres. To facilitate comparison,

we additionally maintain the same region’s ID as in Table 3 of Daianu et al. (2013)

Results in Figure 3.20 highlight the connectivity breakdown for regions in the left hemi-

sphere while providing new insights with respect to Daianu et al. (2013). In particular we

learn the major role of regions in the left limbic lobe consistently with initial neuropatholog-

ical studies (Hopper and Vogel, 1976; Blesa et al., 1995) and more recent empirical findings
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FIGURE 3.20: Test degree for each brain region – classified in left and right hemisphere and corre-
sponding lobe. The test degree of region v is defined as the total number of connections among v and
the remaining V − 1 regions significantly varying in Alzheimer’s group. To facilitate comparison, we
maintain the same region’s ID as in Table 3 of Daianu et al. (2013)

via MRI (Deoni et al., 2011; Thiebaut de Schotten et al., 2014) highlighting the key role of the

limbic system in memory, attention and executive functioning, while focusing on this lobe as

one of the areas mainly affected by AD. Significant changes are also found in the connectivity

of the other anatomical lobes such as temporal, parietal and occipital, consistent with Smith

et al. (2001), Azari et al. (1992), Thompson et al. (2003) and Horwitz et al. (1987).

According to Figure 3.20 the regions mostly affected by AD in terms of connectivity be-

havior are the left isthmus of the cingulate (10L), left parahippocampal (16L), left posterior

cingulate (23L), left fusiform (7L) and left precuneus (25L) – among others. These results pro-

vide a unifying answer to different insights arising from several studies, typically focusing

on the activity of a subset of regions. Parahippocampal atrophy is found in Kesslak et al.

(1991) and Thangavel et al. (2008); Zhou et al. (2008) highlights abnormal connectivity in hip-

pocampus and posterior cingulate, while Kim et al. (2013) learn reduced functional activity

in hippocampus and precuneus, with the latter showing atrophy also in Karas et al. (2007).

Metabolic reduction in the posterior cingulate is studied in Minoshima et al. (1997) and Liang

et al. (2008). Reduced functional connectivity in the fusiform is found in Golby et al. (2005)

and Bokde et al. (2006) via fMRI. Fewer studies are available on the role of the isthmus of

the cingulate with only a recent work of Zhu et al. (2013) trying a first attempt in this direc-

tion. We provide a unifying vision, consistent with previous literature, while highlighting the

role of the isthmus. This region represents an anatomical bridge between the parahippocam-

pal and the posterior cingulate, two critical regions extensively explored in the literature in

terms of atrophy and metabolic reduction in AD subjects. Hence a reduced metabolic activity

and increased atrophy of parahippocampal and the posterior cingulate, may be related to a

disruption of the circuits from the left cingulate isthmus.

We conclude our application by evaluating the ability of our procedure in equation (3.22)

to assess evidence of AD according to the subject’s full brain network structure. Current
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prediction procedures exploit either region activity vectors (Eskildsen et al., 2015) or net-

work summary statistics vectors θi (Friedman et al., 2014; Prasad et al., 2015), rather than

the whole brain network L(Ai), to predict yi. We evaluate our procedure in (3.22) in terms

of in-sample and out-of-sample predictive performance. In the first case, we compute (3.22)

for each subject after considering all data in model estimation. Out-of-sample predictions

is instead performed by training the model on 69 subjects and predicting the AD status via

(3.22) on the remaining one fourth of the individuals, with the training and test samples ran-

domly selected. Our methodology provides an overall good predictive performance, with an

area under the ROC curve of 0.91 for in-sample prediction and 0.83 for out-of-sample. The

accuracy is instead 87% in the former, and 75% in the latter. These results out perform Es-

kildsen et al. (2015), and Friedman et al. (2014) when summary statistics θi are extracted from

undirected brain networks, while providing similar performance to Prasad et al. (2015). It is

important to note that Prasad et al. (2015) utilizes substantially more information in consid-

ering both weighted and flow connectivity networks for a total of 298,600 network summary

measures, rather than only binary connections encoding presence or absence of fibers.
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3.2 Bayesian modeling of mixed domain data

Methodologies developed in Section 3.1 provide a general procedure for answering applied

questions also outside the neuroscience field. Motivated by a complex business intelligence

problem for targeted advertising of cross-selling strategies in different agencies, we develop

a flexible joint model for mixed domain data including mono-product customer preferences

and co-subscription networks measuring multiple buying behavior across different agencies.

Our procedure defines shared sets of cross-selling strategies by effectively clustering agen-

cies characterized by common mono- and multi-product customer behavior. Each segment

is carefully profiled by modeling customer preferences and co-subscription networks via the

dependent mixture of low-rank factorization proposed in Section 3.1.7. Exploiting such esti-

mates, we construct cluster-specific sets of cross-selling strategies informing for each product

v which additional product u 6= v should be offered to obtain the highest probability of a

co-subscription by a mono-product customer subscribed to v. We evaluate the effectiveness

of each strategy via performance indicators accounting also for mono-product customer pref-

erences. We provide simple algorithms for posterior computation and assess performance in

simulations and application to the data set described in Section 1.2.2.

3.2.1 Joint modeling of mono-product data and co-subscription networks

As a step towards our goal of designing efficient cross-sell strategies, we first develop joint

models for the data {di = (di1, . . . , dini), Ai}, for each agency i = 1, . . . , n, which characterize

the distribution of the mono-product customer subscriptions along with the co-subscription

network for multi-product customers. The models are chosen to be flexible while auto-

matically clustering different agencies that have similar customer mono-product and co-

subscription network profiles. This clustering is useful for borrowing information across

agencies in efficiently and effectively learning the joint distribution of the mono- and co-

subscription behavior of the customer bases. In addition, clustering provides a useful simpli-

fication in design of strategies.

Let (y1, . . . , yn) denote a vector of cluster assignments, with yi ∈ {1, . . . ,K} indicating the

cluster membership of agency i. Agencies within the same cluster are characterized by a

similar composition of their mono-product portfolio as well as a comparable co-subscription

behavior. To complete a specification of the joint model, we need to define a cluster-specific

probabilistic representation pD|y of mono-product customer choice, as well as a cluster-specific

probabilistic generative mechanism pL(A)|y underlying co-subscription networks. The latter

is a key to define the cross-selling strategies qy1, . . . , qyV in each cluster y = 1, . . . ,K, while the

former provides the additional information to construct performance indicators ey1, . . . , eyV ,

according to discussion in Section 1.2.2.



Chapter 3. Populations of networks 126

As a mono-product customer can be associated with only one subscription v = 1, . . . , V ,

it is straightforward to define a probabilistic representation of the mono-product customer

behavior within each cluster y. In particular, we introduce a cluster-specific vector pD|y =

{pD|y(1), . . . , pD|y(V )}, with element pD|y(v) defining the probability that a mono-product

customer in an agency within cluster y subscribes to product v. Assuming independence of

customer choices, the joint probability for data di in agency i given its membership to cluster

y is simply

pD|y(di1)pD|y(di2) · · · pD|y(dini) =

V∏
v=1

pD|y(v)niv , i = 1, . . . , n, (3.23)

where niv is the total number of mono-product customers in agency i who subscribed to

product v for each v = 1, . . . , V .

Within each cluster y, co-subscription networks are realizations from a network-valued ran-

dom variable with associated conditional probability mass function pL(A)|y where pL(A)|y(a)

defines the probability of observing the network configuration L(A) = a ∈ AV in cluster

y. Similarly to methodologies developed in previous Sections, we define a probabilistic gen-

erative mechanism for the adjacency matrices – characterizing co-subscription networks –

by modeling their lower triangular elements. In fact, since networks are undirected and

self-relationships are not of interest, the probability mass function on the entire symmetric

adjacency matrix, coincides with the one on its lower triangular elements.

As there are 2V (V−1)/2 = |AV | distinct network configurations a ∈ AV , we cannot estimate

pL(A)|y nonparametrically without dimensionality reduction. Interestingly, these method-

ological issues coincide with those addressed in Section 3.1.7. In particular, the dependent

mixture of low-rank factorizations in equation (3.17) has been specifically developed to re-

duce dimension while maintaining flexibility in characterizing changes in the distribution

of brain networks across behavioral – or disease – groups. Replacing brain networks with

co-subscription networks and behavioral – or disease – groups with agency-specific cluster

indicators, we are then faced with a common underlying goal and hence we can exploit the

same dependent mixture of low-rank factorizations to characterize pL(A)|y. Hence, generaliz-

ing equations (3.17) to the multiple group case, this leads to the following probability for the

co-subscription network L(Ai) = ai in agency i given its membership to cluster y:

pL(A)|y(ai) =

H∑
h=1

νhy

V (V−1)/2∏
l=1

{
π

(h)
l

}ail {
1− π(h)

l

}1−ail
, (3.24)

with each π(h) = (π
(h)
1 , . . . , π

(h)
V (V−1)/2)T factorized as

π(h) =
[
1 + exp{−Z −D(h)}

]−1
, D(h) = L(X(h)Λ(h)X(h)T), h = 1, . . . ,H. (3.25)
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Equations (3.24)–(3.25) carefully incorporate cluster dependence in (3.24) via group-specific

mixing probabilities νy = (ν1y, . . . , νHy), y = 1, . . . ,K as well as network information by

considering a different low-rank factorization representation (3.25) for the class-specific edge

probability vectors π(h), h = 1, . . . ,H .

Recalling discussion in Sections 3.1.2, 3.1.3, 3.1.7, and focusing on class h, the low-rank

factorization mechanism assumes the undirected edges are realizations from conditionally

independent Bernoulli random variables given their specific edge probabilities π(h)
l ∈ (0, 1),

and then borrows network dependence across these edge probabilities π(h)
l l = 1, . . . , V (V −

1)/2 via lower dimensional representations. In particular, according to (3.25) – and letting

l corresponds to the pair of products v and u – each π
(h)
l is constructed as a function of the

pairwise similarity among products v and u in a latent space, with this similarity arising from

the dot product of the products’ latent coordinate vectors X(h)
v = {X(h)

v1 , . . . , X
(h)
vR }T ∈ <R,

v = 1, . . . , V , withX(h)T
v the vth row ofX(h). Hence, products having coordinates in the same

direction are more likely to be co-subscribed than products characterized by coordinates in

opposite directions, with the R × R matrix Λ(h) = diag(λ
(h)
1 , . . . , λ

(h)
R ) = λ(h) weighting the

similarity in each dimension r by a non-negative parameter λ(h)
r .

The low-rank factorization in each class h provides an appealing choice in reducing the di-

mensionality from V (V − 1)/2 edge probabilities to V × R latent coordinates and R weights

– typically R� V – and has been shown to provide an highly flexible characterization of the

connectivity patterns and network structures, according to simulations in Section 3.1.6. More-

over, according to Corollary 3.6, mixing together H low-rank factorization mechanisms as in

equation (3.24) guarantees full flexibility in approximating the collection of cluster-specific

probability mass functions pL(A)|y ∈ P|AV |, y = 1, . . . ,K for the co-subscription networks.

Our focus is on using the resulting flexible and parsimonious joint model for the mono-

product portfolio and multi-product network to develop targeted strategic marketing poli-

cies. Figure 3.21 provides an example of the output from our model for decision making in

business intelligence when there are n = 8 agencies and K = 3 latent clusters. Accord-

ing to Figure 3.21 agencies 1, 4 and 5 have a similar composition of their mono-product

portfolio and comparable co-subscription behavior as y1 = y4 = y5 = 1. In Figure 3.21,

mono-product preferences are simply available via pD|1, while co-subscription behavior is

summarized by the expectation for the network-valued random variable in cluster y = 1,

π̄1 =
∑

a∈AV apL(A)|1(a) =
∑H

h=1 νh1π
(h) according to Proposition (3.2). As discussed in Sec-

tion 3.1.7 these quantities coincide also with the co-subscription probabilities for pairs of

products in each cluster and hence can be used to define the set of cross-selling marketing

strategies q11, . . . , q1V in cluster y = 1. The same description holds for clusters y = 2 and

y = 3.
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FIGURE 3.21: Example of a possible output from our model for decision making in business intelli-
gence. The vectors of edge probabilities in each cluster π̄1, π̄2 and π̄3 are rearranged in adjacency matrix
form. Color goes from white to dark blue as the probability goes from 0 to 1.

These quantities are estimated from our model and considered when defining the cluster-

specific cross-selling marketing strategies qy1, . . . , qyV and computing their corresponding

performance indicators ey1, . . . , eyV . Adapting discussion in Section 1.2.2 to the output of our

model, cross-selling strategy qyv, offers to mono-product customers who subscribed to v in

cluster y the additional product u, with u = argmaxu{pr(A[vu] = 1 | y) : u 6= v} where the

probability of a co-subscription of products v and u for agencies in cluster y, pr(A[vu] = 1 | y),

is easily available from our model as π̄yl, with l the index denoting the pair v and u in the

vectorized representation of the adjacency matrix. The performance measure of qyv is eyv =

pD|y(v)max{pr(A[vu] = 1 | y) : u 6= v}.

As motivated above, the main purpose of our analysis is to cluster agencies having similar

customer bases in terms of mono-product and multi-product subscriptions, while provid-

ing accurate estimates of the performance measures for different marketing campaigns. In

implementing computation, it is useful to rely on an equivalent hierarchical specification

to factorization (3.24)–(3.25), which introduces an additional class index for each agency i,
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Gi ∈ {1, . . . ,H}, as follows:

L(Ai)l | πil
indep∼ Bern(πil), l = 1, . . . , V (V − 1)/2, i = 1, . . . , n, (3.26)

πi | Gi = h, π(h) = π(h), π(h) =
[
1 + exp{−Z − L(X(h)Λ(h)X(h)T)}

]−1

pr(Gi = h | yi = y) = νhy, h = 1, . . . ,H,

independently for i = 1, . . . , n. Recalling that yi is the cluster index for agency i, repre-

sentation (3.26) shows that a given cluster of agencies has a common set of weights over the

components in the mixture model for the co-subscription network. The next section proposes

a Bayesian approach to inference under the proposed model, which can be implemented via

a simple Markov chain Monte Carlo algorithm. However – before proceeding to prior speci-

fication – it is worth noticing that although the hierarchical representation in (3.26) recalls the

specification displayed in Figure 3.6, the statistical model developed in this Section has a key

difference compared to the one outlined in Section 3.1.7. In particular, while in the previous

neuroscience framework the predictor groups y1, . . . , yn represent exogenous observed data,

in this business intelligence problem such quantities are model parameters – of key inter-

est for inference – endogenously determined by mono-product choices and co-subscription

behaviors shared across subsets of agencies.

3.2.2 Prior specification

As previously discussed, the assignment vector (y1, . . . , yn) of the agencies to K clusters

is not observed from the data, but is a key unknown quantity in our analysis. This raises

novel issues compared to methodologies developed in Section 3.1.7. A fundamental one is

how to appropriately choose the total number of clusters K. Although K may be subject to

budget restrictions and fixed a priori, this quantity is typically unknown in practical applica-

tions. Hence, in providing inference on such quantities, it is important to consider carefully

tailored priors for the cluster assignments, which allow adaptive and automatic learning of

the number of groups in our data.

There exists a considerable Bayesian nonparametric literature defining probabilistic gen-

erative mechanisms for clustering which allow the number of groups K to be random. A

widely used prior for random partitions is the Chinese restaurant process (CRP) (Aldous,

1985), in which each cluster attracts new units in proportion to its size. In particular, letting

(y1, . . . , yn) ∼ CRP(αc), the prior distribution over clusters for the ith agency, conditioned on

the membership of the others y1, . . . , yi−1, yi+1, . . . , yn is

pr(yi = y | y1, . . . , yi−1, yi+1, . . . , yn) =


ny,−i

n−1+αc
for y = 1, . . . ,K−i,

αc
n−1+αc

for y = K−i + 1,
(3.27)
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where ny,−i is the total number of agencies associated to cluster y, excluding the ith one, and

αc > 0 is a concentration parameter controlling the expected number of groups occupied by

at least one of the n agencies E(K) =
∑n

i=1 αc/(i − 1 + αc) = O(αc log n). High values of αc
favor a larger number of clusters a priori.

Equation (3.27) defines the conditional distribution of yi given the other assignments, after

rearranging indices so that 1, . . . ,K−i clusters are nonempty after removing yi. These oper-

ations are possible since the cluster labels are arbitrary and observations are exchangeable

based on the CRP prior. In fact, the joint probability for any particular cluster assignment

under the CRP representation is

pr(y1, . . . , yn) =
αKc
∏K
y=1(ny − 1)!∏n

i=1(i− 1 + αc)
. (3.28)

Equation (3.28) depends only on the total number of agencies in each cluster ny, y = 1, . . . ,K

and hence is invariant under permutation of elements or rearrangements of cluster indices;

refer to Griffiths and Ghahramani (2011) and Gershman and Blei (2012) for an introductory

overview. According to our aim, exchangeability is also a desirable property in characterizing

absence of any particular knowledge about the type of agencies that would justify treating

them differently from one another. Although we focus on the CRP, our model can easily ac-

commodate other commonly used priors for random partitions, such as the stick-breaking

construction for the Dirichlet process, the random partition induced by the Pitman-Yor pro-

cess, and the Kingman paintbox; refer to Hjort et al. (2010) for a general overview.

Accurate clustering of agencies also relies on careful modeling of the sequence of cluster-

specific mono-product portfolios pD|y, y = 1, . . . ,K and the collection of cluster-specific prob-

abilistic generative mechanism pL(A)|y, y = 1, . . . ,K associated to the co-subscription net-

works. Efficient estimation of these quantities is also fundamental to develop accurate cross-

selling strategies qy1, . . . , qyV in each cluster y and quantify their performance via ey1, . . . , eyV .

Hence we look for large support priors on these quantities which don’t rule out a priori any

generative mechanism while maintaining tractable computations.

As pD|y is the probability mass function for a discrete random variable with V categories,

we simply let

pD|y = {pD|y(1), . . . , pD|y(V )} ∼ Dirichlet(α1, . . . , αV ), (3.29)

independently for each cluster y = 1, . . . ,K.

The prior for the collection of co-subscription network probabilistic generative mechanisms

pL(A)|y, y = 1, . . . ,K is instead defined by choosing independent priors for the quantities in
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factorization (3.24)–(3.25). To maintain computational tractability and recalling prior spec-

ification in Sections 3.1.4 and 3.1.8, we consider independent normal priors as in (3.10) for

elements in Z and standard Gaussians for the latent coordinates X(h) for each h = 1, . . . ,H

according to equation (3.11). Adapting Rousseau and Mengersen (2011), we choose inde-

pendent Dirichlet priors with small parameters for each cluster-specific mixing probability

vector νy = (ν1y, . . . , νHy) ∼ Dirichlet(1/H, . . . , 1/H) to favor deletion of redundant mixture

components not required to characterize the co-subscription networks. Finally, as the dimen-

sion of latent spaces is unknown – consistently with discussion in Section 3.1.4 – we consider

independent MIG(a1, a2) priors (Bhattacharya and Dunson, 2011) on the weights vector λ(h)

for each h = 1, . . . ,H to adaptively deletes redundant latent space dimensions not required

to characterize the co-subscription probabilities; refer to equation (3.9) to recall the structure

of the multiplicative inverse gamma prior.

Beside providing simple computational algorithms for posterior inference, a minor gener-

alization of proof of Corollary 3.8 to the multiple group case, guarantees that the previous

specifications induce a prior on the collection of probabilistic generative mechanisms pL(A)|y,

y = 1, . . . ,K, for the co-subscription networks, with full support properties. Full prior sup-

port is a key property to ensure good performance in defining correct group-specific cross-

selling strategies, because without prior support about the true data generating collection

p0
L(A)|y, y = 1, . . . ,K, the posterior cannot possibly concentrate around the truth.

3.2.3 Posterior computation

Posterior computation is available via a simple Gibbs sampler outlined in Algorithms 5 and

6, which exploits results in Neal (2000) to allocate agencies to clusters under the CRP prior

and steps in Algorithm 3 to update the quantities in equations (3.24)–(3.25) via Pólya-gamma

data augmentation (Polson et al., 2013). Algorithm 5 proceeds as follows:

Algorithm 5 Part I of the Gibbs sampler for joint modeling of mixed domain data

Conditionally on cluster assignments (y1, . . . , yn) update priors for quantities in equations

(3.23), (3.24) and (3.25), according to the following steps.

———————————————————————————————————————–

[1] Allocate each network observation to one of the classes

for i = 1, . . . , n do

Sample the class indicator Gi from the discrete distribution with probabilities

pr(Gi = h | −) =
νhyi

∏V (V−1)/2
l=1 {π(h)

l }L(Ai)l{1− π(h)
l }1−L(Ai)l∑H

m=1 νmyi
∏V (V−1)/2
l=1 {π(m)

l }L(Ai)l{1− π(m)
l }1−L(Ai)l

,

for each h = 1, . . . ,H , with π(h) defined in (3.25)
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end for

———————————————————————————————————————–

[2] Update the cluster-specific mixing probabilities

for y = 1, . . . ,K do

Update each νy from

(ν1y, . . . , νHy) | − ∼ Dirichlet(1/H + n1y, . . . , 1/H + nHy)

end for

———————————————————————————————————————–

[3] Update quantities Z, X(h) and λ(h), h = 1, . . . ,H

Given Gi, i = 1, . . . , n, the updating for quantities Z, X(h) and λ(h), h = 1, . . . ,H proceeds

as in Algorithm 3 via Polyá-gamma data augmentation. Specifically first sample Polyá-

gamma augmented data as in step [3] of Gibbs sampler 3 and then update Z, X(h) and λ(h),

h = 1, . . . ,H following steps [4], [5] and [6], respectively, of Algorithm 3.

———————————————————————————————————————–

[4] Update cluster-specific mono-product portfolio structures

for y = 1, . . . ,K do

Update each {pD|y(1), . . . , pD|y(V )} from

{pD|y(1), . . . , pD|y(V )} | − ∼ Dirichlet

α1 +
∑
i:yi=y

ni1, . . . , αV +
∑
i:yi=y

niV


end for

Algorithm 5 provides a detailed overview of the steps in our MCMC to update the cluster-

specific probabilistic representation of the mono-product customer choice pD|y and the cluster-

specific probabilistic generative mechanism pL(A)|y underlying co-subscription networks for

each cluster y = 1, . . . ,K, conditionally on cluster assignments y1, . . . , yn. All the steps are

straightforward to compute, exploiting the data augmentation strategy described in (3.26) for

updating pL(A)|y. The latter provides key computational benefits also when sampling from

the full conditional of the cluster assignments described in Algorithm 6.

Algorithm 6 Part II of the Gibbs sampler for joint modeling of mixed domain data

Conditionally on samples for the quantities in equations (3.23), (3.24) and (3.25), update

the cluster assignments (y1, . . . , yn).

———————————————————————————————————————–

[5] Sample cluster assignments (y1, . . . , yn) via sequential re-seating

for i = 1, . . . , n do

Update each yi conditionally on y−i = (y1, . . . , yi−1, yi+1, . . . , yn)
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1. Remove agency i since we are going to sample its cluster membership yi.

2. If no other agencies are in the same cluster of i, this cluster becomes empty and

is removed along with its associated mono-product portfolio structure and co-

subscription network probability mass function.

3. Re-order cluster indices so that 1, . . . ,K−i are non-empty.

4. Update the cluster of i from the full conditional categorical variable with cluster

probabilities

pr(yi = y | −) ∝


ny,−i

n−1+αc
pr
{
di,L(Ai), Gi | yi = y, pD|y, νy, π

(Gi)
}

for y ≤ K−i,
αc

n−1+αc
pr
{
di,L(Ai), Gi | yi = K−i + 1, π(Gi)

}
for y = K−i + 1,

(3.30)

5. If i is assigned a new cluster K−i + 1, add a new cluster and sample a new νK−i+1

and pD|K−i+1 conditionally onGi and di according to steps [2] and [4], respectively.

end for

To perform steps in Algorithm 6 one needs to compute conditional probabilities in equation

(3.30) at each MCMC iteration. Although this is apparently a cumbersome task, our model

formulation (3.23)–(3.25) along with its hierarchical representation in (3.26) allows key sim-

plifications, substantially improving the computational tractability of our procedures. Specif-

ically, under our model, the conditional probability pr
{
di,L(Ai), Gi | yi = y, pD|y, νy, π

(Gi)
}

can be factorized as

pr(di | yi = y, pD|y)pr(Gi | yi = y, νy)pr{L(Ai) | Gi, π(Gi)}. (3.31)

According to (3.31) inducing cluster-dependence only through the mixing probabilities νy,

while considering cluster-independent mixing components in (3.24)–(3.25), has the key ben-

efit of maintaining pr{L(Ai) | Gi, π(Gi)} constant across the clusters assignments. As a result

pr
{
di,L(Ai), Gi | yi = y, pD|y, νy, π

(Gi)
}
∝ pr(di, Gi | yi = y, pD|y, νy) =

= pr(di | yi = y, pD|y)pr(Gi | yi = y, νy),

for every y = 1, . . .K, where both terms are multinomial likelihoods with independent

Dirichlet priors for their class probabilities pD|y and νy, respectively. This allows simple

computation of the posterior probabilities for clusters assignments in (3.30) of the algorithm,
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obtaining

pr(yi = y|−) ∝


ny,−i

n−1+αc

∏V
v=1 pD|y(v)niv

∏H
h=1 ν

1(h)(Gi)

hy for y ≤ K−i,
αc

n−1+αc
pr(di|yi = K−i + 1)pr(Gi|yi = K−i + 1) for y = K−i + 1,

(3.32)

where the two marginal likelihoods corresponding to a newly occupied cluster are easily

available exploiting the multinomial-Dirichlet conjugacy. In particular it is easy to show that

pr(di|yi = K−i + 1) =

∫ V∏
v=1

pD|K−i+1(v)nivdΠ(pD|K−i+1) =
Γ(
∑V

v=1 αv)∏V
v=1 Γ(αv)

∏V
v=1 Γ(αv + niv)

Γ{∑V
v=1(αv + niv)}

,

for the mono-product portfolio, and

pr(Gi|yi = K−i + 1) =

∫ H∏
h=1

ν
1(h)(Gi)

h,K−i+1dΠ(νK−i+1) =
Γ(
∑H

h=1 1/H)∏H
h=1 Γ(1/H)

∏H
h=1 Γ{1/H + 1(h)(Gi)}

Γ[
∑H

h=1{1/H + 1(h)(Gi)}]
,

for the augmented indicator variable in the cluster-dependent mixture of low-rank factoriza-

tions.

Hence, considering only cluster dependence in the mixture probabilities νy, y = 1, . . . ,K

and exploiting the augmented data Gi, i = 1, . . . , n in the mixture representation for pL(A)|y,

y = 1, . . . ,K allows a massive gain in computational tractability for step [5] in Algorithm

6. In fact, while pr(di | yi = K−i + 1) and pr(Gi | yi = K−i + 1) can be easily derived

in closed form, the marginal likelihood of the multi-product networks with respect to the

edge probability vectors arising from the low-rank factorization construction in (3.25) is not

analytically available. According to factorization (3.31), this quantity can be avoided in step

[5] as it doesn’t change across clusters.

3.2.4 Simulation study

We consider a simulation study to evaluate the performance of our model in accurately

recovering clusters of agencies and in efficiently estimating the key quantities required to

define the set of cross-selling strategies for each group and their associated performance in-

dicators. In simulating data, we look for a scenario possibly mimicking the structure of our

application or related problems.

According to these aims we focus on n = 200 agencies equally divided in K = 4 latent clus-

ters and consider a total number of V = 15 products as in our application. Graphical analyses

of our data – highlighted in Figure 1.5 – show that mono-product customers typically con-

centrate on a small subset of the available products with high probability, while choosing

the remaining set with very low frequency. We maintain this behavior in constructing p0
D|y,
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y = 1, . . . , 4, while additionally looking for a challenging scenario with small changes in p0
D|y

across clusters. This is obtained by letting p0
D|1(v) and p0

D|2(v) equal for all products except

for permuting 1 and 9, so as p0
D|1(1) = p0

D|2(9) and p0
D|1(9) = p0

D|2(1). We adopt a similar

strategy for clusters y = 3 and y = 4 by considering p0
D|3(v) = p0

D|4(v) for all products v

except 3 and 7, where we let p0
D|3(3) = p0

D|4(7) and p0
D|3(7) = p0

D|4(3). Based on the previ-

ous p0
D|y, y = 1, . . . , 4 we simulate mono-product subscription data dij , i = 1, . . . , 200 and

j = 1, . . . , 500 from the discrete random variable with probability mass function p0
D|y where

y = 1 for agencies i = 1, . . . , 50, y = 2 for i = 51, . . . , 100, y = 3 for i = 101, . . . , 150 and

y = 4 for i = 151, . . . , 200. Although agencies in our application have at least ≈ 1,000 mono-

product customers, we consider a smaller number ni = 500 for each agency i = 1, . . . , 200 to

evaluate the performance of the model when there is less information in the data.

Co-subscription networks are simulated exploiting the constructive representation (3.26) of

the mixture model in (3.24). We consider H = 3 mixture components with each edge proba-

bility matrix π0(h) generated to mimic a possible co-subscription scenario. Specifically π0(1) is

characterized by one dense community among 10 possibly highly related products, while as-

signing low probability to the remaining pairs of products. Matrix π0(2) represents the case of

4 hub products which occur with high probability in consumer multiple choices and fix the

remaining co-subscription probabilities at low values. Finally, to reduce separation among

mixture components and provide a more challenging scenario, matrix π0(3) is very similar to

π0(2) with exception of product v = 4 which is held out from the hub products. In avoiding

the low-rank factorization construction (3.25) in the definition of π0(h), h = 1, . . . , 3, we ad-

ditionally aim to evaluate the performance of factorization (3.25) in accurately characterizing

the co-subscription probability matrices for each class h.

In simulating networks Ai, i = 1, . . . , 200 from the hierarchical representation in (3.26), we

consider cluster-dependent mixing probabilities ν0
1 = ν0

2 = (0.9, 0.05, 0.05), ν0
3 = (0.05, 0.9, 0.05)

and ν0
4 = (0.05, 0.05, 0.9). This choice allows the first co-subscription scenario defined by π0(1)

to be very likely in agencies belonging to clusters y = 1 and y = 2. Scenarios characterized

by π0(2) and π0(3) are instead more likely in clusters y = 3 and y = 4, respectively. Note that

letting ν0
1 = ν0

2 further reduces separation among clusters y = 1 and y = 2. According to

our simulation these two clusters have very similar mono-product choices according to p0
D|y

and equal generative process for the co-subscription networks p0
L(A)|1 = p0

L(A)|2, providing

an appealing scenario to evaluate the clustering performance of our model.

We analyze the simulated data under our model (3.23)–(3.25), considering the previously

specified priors. As in Section 3.1.6 , we set a1 = 2.5, a2 = 3.5 and σ2
l = 10, l = 1, . . . , V (V −

1)/2. Quantities µl, l = 1, . . . , V (V − 1)/2 are instead defined as µl = logit{∑n
i=1 L(Ai)l/n}

in order to center the mixture representation for pL(A)|y around a co-subscription structure

shared by all the simulated agencies in the company. We adopt a similar strategy for the
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FIGURE 3.22: For the four non-empty clusters. Upper panel: posterior mean ˆ̄πy of the co-subscription
probabilities among pairs of products in each cluster y = 1, . . . , 4 (lower triangular) and absolute value
of the difference with the truth |ˆ̄πy − π̄0

y|, y = 1, . . . , 4 (upper triangular). Color goes from white to
dark blue as the probability goes from 0 to 1. Lower panels: posterior mean p̂D|y of the mono-product
choices in each cluster y = 1, . . . , 4 (red) and true p0D|y , y = 1, . . . , 4 (green).

hyperparameters of the Dirichlet prior (3.29) for the mono-product portfolio by setting αv =∑n
i=1 niv/n for each v = 1, . . . , V , in order to center (3.29) around an averaged portfolio for

the entire company. This choice allows a more reasonable characterization of the marginal

likelihood for mono-product data in (3.32), rather than considering a sparse and symmetric

Dirichlet which may fail in adding further clusters, when required. Finally we set the concen-

tration parameter αc = 1 in the CRP prior for the cluster assignments, according to standard

practice. Although this parameter could be learned from our data as in Escobar and West

(1995), we found results robust to moderate changes in αc according to sensitivity analyses.

We perform posterior inference considering 5,000 Gibbs iterations and set H = 15 and R =

10 as upper bounds for the number of mixture components and the dimension of the latent

spaces, respectively. These upper bounds provide a good choice, with the sparse Dirichlet

prior for the mixing probabilities νy, y = 1, . . . ,K and the multiplicative inverse gamma for

the weights λ(h), h = 1, . . . ,H adaptively removing redundant components. Potential scale

reduction factors for the quantities considered for inference suggest convergence is reached

after a burn-in of 1,000 and mixing is very good in our experience. As our inference focuses on

cluster-specific structures it is additionally important to first check for label switching issues

and relabel the clusters at each MCMC iteration using for example Stephens (2000) in case

such issue is encountered. Traceplots suggest label switching isn’t an issue in our simulation.

In providing inference on cluster assignments we initialize our algorithm by considering

all agencies in a single group corresponding to a unique set of cross-selling strategies com-

mon to all agencies, and then assign agencies to clusters via maximum a posteriori estimates
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FIGURE 3.23: Plot of the estimated cluster-specific cross-selling strategies q̂y1, . . . , q̂yV along with
their performance indicators êy1, . . . , êyV . In particular each cell [y, v] of the matrix defines the cross-
selling strategy for mono-product customers subscribed to product v in agencies belonging to cluster
y. The number in such cell corresponds to the best offer u = argmax

u
{p̂r(A[vu] = 1 | y) : u 6= v}

according to q̂yv , while the color is proportional to the corresponding estimated performance êyv =
p̂D|y(v)max{p̂r(A[vu] = 1 | y) : u 6= v}. The estimated probability of a co-subscription for each pair of
products v and u for agencies in cluster y, p̂r(A[vu] = 1 | y), is easily available from estimates via ˆ̄πyl
for each y = 1, . . . ,K and l = 1, . . . , V (V − 1)/2.

of y1, . . . , yn based on the MCMC samples. Flexible modeling of the cluster-specific mono-

product portfolios and co-subscription networks along with the CRP prior for the cluster

memberships, allow us to identify the K = 4 true clusters in our data and correctly group

all the simulated agencies, including those in clusters y = 1 and y = 2. These groups are

characterized by very subtle differences in their generating process.

Accurate clustering performance further allows for efficient estimation of the cluster-specific

components required in defining the sets of cross-selling strategies. According to Figure 3.22

we correctly estimate the matrix of co-subscription probabilities among pairs of products π̄0
y

in each cluster y = 1, . . . , 4 as well as the probability mass function p0
D|y characterizing mono-

product choices in each group y = 1, . . . , 4. These results further highlight the flexibility of

the low-rank factorizations in flexibly characterizing co-subscription probability matrices.

Previous quantities are a key to define the cluster-specific cross-selling strategies qy1, . . . , qyV

and related performance indicators ey1, . . . , eyV , as shown in Figure 3.23. Consistently with

results in Figure 3.22, cross-selling strategies are the same in clusters 1 and 2 as ˆ̄π1 ≈ ˆ̄π2,

while performance indicators differ only for strategies targeting mono-product customers

subscribed to v = 1 or v = 9; the first are more profitable in cluster y = 1 while the

second in cluster y = 2. This is consistent with our estimates in Figure 3.22 highlighting

p̂D|1(1) > p̂D|1(9) and p̂D|2(1) < p̂D|2(9). Mono-product customers subscribed to v = 4 and

v = 7 are highly profitable in cluster k = 3 in being highly represented and having high co-

subscription probability with at least one additional product. Customers subscribed to v = 4

are instead no more a segment worth targeting for cross-selling in cluster y = 4. Although

v = 4 is highly populated, according to ˆ̄π4 it is not possible to find any additional product u

having high co-subscription probability with v = 4.
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FIGURE 3.24: For each agency i = 1, . . . , n plot of the area under the ROC curve (AUC) when pre-
dicting its observed edges in the co-subscription network data L(Ai)l, l = 1, . . . , V (V − 1)/2 with the
corresponding Ê(L(A) | yi = y)l = ˆ̄πyl versus the same quantity obtained replacing ˆ̄πyl with π̂il. Trian-
gles represents agencies in which prediction via π̂i provides an AUC which exceeds the one associated
to ˆ̄πy by more than 0.05.

Figure 3.24 compares the prediction performance of the estimated cluster-specific vectors

encoding co-subscription probabilities ˆ̄πy, y = 1, . . . , 4 with respect to the same quantities π̂i
specific to each agency, obtained from representation (3.26). According to results in Figure

3.24 most of the co-subscription networks are adequately characterized by the co-subscription

probability vectors ˆ̄πy, y = 1, . . . , 4 specific to their clusters, with most of the AUC greater

than 0.7 and the predictive performance not significantly improved when considering the

more refined agency-specific co-subscriptions probabilities π̂i. More evident improvements

are found for agencies represented by triangles. For such agencies, the company may devise

ad-hoc cross-selling strategies based on their specific π̂i rather than considering the same

cross-selling advertising associated with the clusters they belong to.

To evaluate the fit with respect to the mono-product portfolios, we consider the standard-

ized L1 distance between observed and estimated product frequencies εDi =
∑V

v=1 |niv/ni −
p̂D|y(v)|/V with y denoting the cluster in which agency i is allocated. In our simulation the

maximum of these quantities is max(εD1
, . . . , εDn ) = 0.013 meaning that mono-product data

in each cluster y = 1, . . . , 4 are adequately characterized by their cluster-specific estimate of

pD|y.

3.2.5 Application to cross-selling marketing in an insurance company

We apply the model outlined in Section 3.2.1 to our motivating business intelligence dataset

described in Section 1.2.2 which comprises mono-product choice data and co-subscription
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networks for n = 130 agencies selling V = 15 different insurance products. Posterior compu-

tation is performed considering the same settings as in the simulation study. Also in this case

we obtain convergence, good mixing performance and no issues of label switching according

to traceplots and potential scale reduction factors for the quantities we consider in posterior

analyses.

The posterior distribution for the cluster assignments suggests a total of K = 18 clusters

in our data. This is already an appealing reduction of dimensionality in requiring the com-

pany to define K = 18 sets of cross-selling strategies qy1, . . . , qyV , y = 1, . . . , 18, rather than

considering n = 130 different sets of campaigns qi1, . . . , qiV , i = 1, . . . , 130. According to

posterior summaries in Figure 3.25 for the three mostly populated clusters which character-

ize the ≈ 50% of the agencies, our procedures additionally allow a good joint representation

of the different mono- and multi-product sources of variability in our data, while providing

interesting insights on customer mono and multiple buying behavior with respect to insur-

ance products. Posterior quartiles additionally highlight that the posterior distributions are

efficiently concentrated around our estimates.

According to Figure 3.25, although mono- and multi-product customers of agencies in clus-

ters y = 2 and y = 3 are characterized by a very similar behavior, our flexible procedure is

able to capture subtle differences when comparing p̂D|2 with p̂D|3. Both groups have relatively

high preferences for products v = 1 (house insurance) and v = 2 (car insurance), however

the latter is slightly more populated in cluster y = 3 at the expense of house insurance poli-

cies. Correctly identifying differences in pD|y is a key to evaluate and rank the cross-selling

campaigns qy1, . . . , qyV , y = 1, . . . , 18 according to their performances indicators ey1, . . . , eyV .

Co-subscription probabilities are instead very similar in groups y = 2 and y = 3, which

share an interesting community structure among products v = 1, . . . , 6, while assigning low

probability to the remaining pairs of products. Interestingly, these products refer to home

insurance (v = 1), car insurance (v = 2), insurance on savings (v = 3), on investments (v = 4),

retirement plans (v = 5) and insurance on injuries (v = 6), representing the polices mostly

co-occurring in standard choices for families and individual consumers.

Cluster y = 7 is instead highly different than y = 2 and y = 3 in containing mono-

product customers with high preferences for business activities insurance (v = 7) and multi-

product customers characterized by a substantially different community structure in their

co-subscription behavior. This community contains home insurance (v = 1), insurance on

injuries (v = 6), business activities insurance (v = 7), payment protection insurance (v = 8),

income protection insurance (v = 9) and liability insurance (v = 10). Hence, agencies in

y = 7 are likely to deal mostly with business customers rather than families or individual

consumers and require substantially different cross-selling strategies with respect to those

associated with clusters y = 2 and y = 3.
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FIGURE 3.25: For the three mostly populated clusters. Summary of the posterior distribution of their
co-subscription probabilities among pairs of products π̄y , rearranged in matrix form. Color goes from
white to dark blue as the probability goes from 0 to 1. Lower panel: posterior mean p̂D|y of their
mono-product choices.

The left matrix in Figure 3.26 provides a more general overview for the set of cross-selling

strategies q̂y1, . . . , q̂yV in each cluster y = 1, . . . , 18 estimated from ˆ̄πy. Most of the clusters

are characterized by similar cross-selling strategies closely related to the multiple buying

behavior of families and individual consumers discussed for clusters y = 2 and y = 3 in

Figure 3.25, with only slight differences in the co-subscription probabilities max{p̂r(A[1u] =

1 | y) : u 6= 1}, . . . ,max{p̂r(A[V u] = 1 | y) : u 6= V }. Clusters y = 18, 14, 12 are instead more

similar to y = 7 in having business-related insurance products, which co-occur more than

family related ones, such as v = 3, 4, 5. Cluster y = 9 is finally characterized by a substantially

different set of cross-selling strategies. In interpreting results for y = 9 it is worth noticing that
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FIGURE 3.26: Plot of the estimated cluster-specific cross-selling strategies q̂y1, . . . , q̂yV along with their
co-subscription probabilities max{p̂r(A[1u] = 1 | y) : u 6= 1}, . . . ,max{p̂r(A[V u] = 1 | y) : u 6= V } (left
matrix) and performance indicators êy1, . . . , êyV (right matrix). In particular each cell [y, v] of the ma-
trix defines the cross-selling strategy for mono-product customers subscribed to product v in agencies
belonging to cluster y. The number in such cell corresponds to the best offer u = argmax

u
{p̂r(A[vu] =

1 | y) : u 6= v} according to q̂yv . The color of each cell in the left matrix is proportional to the corre-
sponding estimated co-subscription probability max{p̂r(A[vu] = 1 | y) : u 6= v}. The color in the right
matrix is proportional to the corresponding estimated performance êyv = p̂D|y(v)max{p̂r(A[vu] = 1 |
y) : u 6= v}. The estimated probability of a co-subscription for each pair of products v and u for agen-
cies in cluster y, p̂r(A[vu] = 1 | y), is easily available from estimates via ˆ̄πyl for each y = 1, . . . ,K and
l = 1, . . . , V (V − 1)/2.

basic coverage for medical expenses is guaranteed in Italy by public institutions, and health

insurance policy (v = 14) provides further benefits in accessing health care. In fact v = 14 is

rarely observed in the inferred cross-selling strategies with exception of cluster y = 9 where

the health insurance policy (v = 14) and the business activities insurance (v = 7) co-occur

with high probability in the co-subscription networks of agencies belonging to cluster y = 9.

Hence, this group may refer to agencies dealing with high income business costumers which

can afford additional expenses for an improved health care. This is further explicit after

noticing that v = 14 co-occurs with high probability with insurance policies on investments

(v = 4) in cluster y = 9.

When considering performance êy1 = p̂D|y(1)max{p̂r(A[1u] = 1 | y) : u 6= 1}, . . . , êyV =

p̂D|y(V )max{p̂r(A[V u] = 1 | y) : u 6= V } in right matrix of Figure 3.26, we clearly notice

how cross-selling strategies targeting mono-product customers with car insurance (v = 2)

or home insurance (v = 1) are in general more effective in creating new multi-product cus-

tomers. Beside being characterized by high co-occurence patterns with other polices, these

products are also highly populated by mono-product costumers as home insurance (v = 1)

represents a common policy for families and car insurance (v = 2) is compulsory in Italy.
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FIGURE 3.27: For each agency i = 1, . . . , 130 plot of the area under the ROC curve (AUC) when
predicting its observed edges in the co-subscription network data L(Ai)l, l = 1, . . . , V (V − 1)/2 with
the corresponding Ê(L(A) | yi = y)l = ˆ̄πyl versus the same quantity obtained replacing ˆ̄πyl with
π̂il. Triangles represents agencies in which prediction via π̂i provides an AUC which exceeds the one
associated to ˆ̄πy by more than 0.05.

Customers subscribed to business activities insurance (v = 7) are instead profitable for agen-

cies in clusters y = 7 and y = 9. This segment of the customer base is in fact highly populated

in y = 7 and y = 9, while having high co-subscription probability with u = 8 and u = 14,

respectively.

Finally it is additionally interesting to notice how mono-product customers subscribed to

v = 3 are associated with a cross-selling strategy q̂y3 offering u = 4 in almost all the clusters.

The same is true in the reverse case. This is a consistent finding as v = 3 and v = 4 correspond

to insurance on savings and insurance on investments, respectively, and hence such polices

are reasonably related in customer multiple buying behavior.

According to results in Figure 3.27, we do a good job in characterizing the observed co-

subscription networks L(Ai), i = 1, . . . , 130 considering the co-subscription probability vec-

tors ˆ̄πy, y = 1, . . . , 18 specific to their clusters. All the AUC are greater than 0.8 and the

prediction performance is in general not significantly improved when considering the more

refined agency-specific co-subscriptions probabilities π̂i, with exception of a few agencies

represented by triangles. For such agencies, the company may devise cross-selling strategies

based on their specific π̂i, but it is still reasonable to rely on strategies in Figure 3.26 based on

the good performance associated to ˆ̄πy, y = 1, . . . , 18.

Our estimates provide also a good fit with respect to the mono-product portfolios with

the maximum of the standardized L1 distances between observed and estimated product

frequencies for each agency being max(εD1
, . . . , εD130

) = 0.041.
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Discussion

Network science is a stimulating field. It embraces several disciplines and provides increas-

ingly complex data sets, new interlocutors as well as novel scientific questions. Within this

framework, the main goal of statistical research is to constantly catch up with the ongoing

changes and provide novel methods balancing the need for provably flexible formulations

with the demand of tractable inference procedures.

This thesis starts from important statistical questions associated with new applied prob-

lems, to propose novel methods for Bayesian inference in complex network data. Taking in-

spiration from different methodologies – such as tensor decomposition, matrix factorization,

functional data analysis and mixture modeling – we developed novel procedures to study

dynamic networks and populations of networks, when edges are binary and undirected. A

primary emphasis has been on carefully characterizing the statistical models and prior dis-

tributions to efficiently account for the different sources of information in our data, while

providing tractable inference procedures and simple computational strategies guaranteeing

ease of implementation.

Procedures developed in Chapters 2 and 3 incorporate network information by defining

edge probabilities as a function of nodes coordinates in a latent space, with this shared de-

pendence on a common set of latent positions, allowing characterization of a broad variety of

network structures – as confirmed in simulations and highlighted in theoretical studies. This

choice further facilitates scaling to moderately large V in requiring estimation of a smaller set

of latent coordinates instead of direct modeling of V (V − 1)/2 edge probabilities.

Methodologies developed in Chapter 2 further require incorporation of dynamic informa-

tion on top of the network one. In Section 2.1 this is accomplished by allowing the latent

coordinates to evolve in continuous time via Gaussian process priors, providing a general

procedure for dynamic network inference with full support properties and simple strategies

for posterior computation. Section 2.2 replaces Gaussian process priors with nested Gaussian

processes to allow the smoothness level of the underlying trajectories to change across time

143
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rather than being time-constant. This additionally allows scaling to larger time windows

by leveraging state space models which reduce the Gaussian process computation burden

from O(n3) to O(n) and facilitates implementation of fast online updating and forecasting

algorithms.

Although we evaluated the flexibility and the key benefits of our methods in different sim-

ulations and applications to time-varying international relationship data and face-to-face dy-

namic human interaction networks, the procedures developed in Chapter 2 have a broad

range of possible applications – also outside the dynamic filed – when the interest is on

learning changes of a network structure across a continuous variable – not necessarily time.

Recalling the neuroscience applications outlined in Section 1.2.1, this is for example the case

of brain networks collected for each subject along with continuous phenotypes such as intel-

ligences scores.

Differently from procedures in Chapter 2, methodologies developed in Chapter 3 focus on

replicated observations of the same network for different units, rather than time-varying rela-

tional structures. Hence – instead of incorporating dynamic information – the goal in Chapter

3 is to carefully borrow strength within each network and across different units to nonpara-

metrically estimate the probability mass function of a network-valued random variable. In

Section 3.1 this is accomplished by combining the latent space approach – to incorporate net-

work information – with mixture models – to share information across different replicates. As

highlighted in detailed simulations and theoretical studies, this model is unique in providing

a flexible approximation to the population distribution of binary and undirected network-

valued data, while representing a flexible and general building block to develop efficient

testing methods for changes across the levels of categorical predictors. This is obtained by

allowing the mixture probabilities to vary across groups, providing highly efficient and com-

putationally tractable Bayesian global and local testing procedures that adjust intrinsically

for multiple comparisons and are robust against issues arising from model misspecification.

In allowing the network data to be appropriately analyzed as network-valued, these methods

enable substantial improvements in accurately detecting group differences, isolating specific

aspects of the network that vary across behavioral traits and neurological disorders, and en-

hancing performance of predictive models as outlined in the application to creative cognition

data and Alzheimers disorders.

Contributions in Section 3.1 have great potentials beyond neuroscience. As highlighted in

Section 3.2 the dependent mixture of low-rank factorizations provides a key to define joint

models for flexible and computationally tractable statistical analyses of mixed domain data.

Although Section 3.2 focuses on inference and co-clustering for business intelligence data,

the procedures developed have a broad range of additional applications. Examples include

efficient allocation of resources across health care or public services based on mono- and
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multi-service citizens data in different cities or states. Similarly, our strategies can be useful

in defining optimal task assignments based on mono and multi-task data from players in

different teams.

Future directions of research

Although the procedures developed in this thesis take an initial step towards addressing

important open questions associated with complex network data, there are several important

areas for future research. The first – common to all the methods developed in this thesis – is

to generalize our procedures to weighted network data. Presence or absence of a relationship

among pairs of nodes is progressively replaced by a measure of strength in this relation,

typically in the form of counts. Examples include event counts in international relationships

data, number of contacts in face-to-face interaction data, fiber counts in connectomes and

frequency of customers subscribed to pairs of products in business analysis.

Weighted networks contain potentially more information than binary ones, but statistical

methods for analyzing these data are still on their infancy compared the most popular lit-

erature on binary networks. As discussed in this thesis, in the binary case, data consist of

indicators of connections between each pair of nodes. Such data are essentially multivariate

binary, with network-structured dependence. Incorporating information on weighted edges,

data take the form of multivariate counts, again with network-structured dependence. There

are subtleties involved in modeling of multivariate counts. It is common to incorporate latent

variables in Poisson factor models (Dunson and Herring, 2004; Gopalan et al., 2014). How-

ever, as noted in Canale and Dunson (2011), there is a pitfall in such models due to the dual

role of the latent variable component in controlling the degree of dependence and the mag-

nitude of over-dispersion in the marginal distributions. Canale and Dunson (2011) address

these issue via a rounded kernel method which improves flexibility in estimating the distribu-

tion of count variables, while allowing simple generalizations for dynamic inference (Canale

and Dunson, 2013). We are currently adapting these procedures to define novel stochastic

processes for dynamic networks of counts and develop the first nonparametric approach for

estimating the population distribution of weighted networks of counts.

While modeling of weighted networks require new statistical models and theoretical justi-

fications along with adapted testing procedures and new algorithms for posterior inference,

it is substantially easier to generalize the methods for undirected networks developed in this

thesis to directed ones. This can be accomplished by simply replacing the low-rank factor-

ization mechanism based on eigen-decomposition procedures, with singular value factoriza-

tions of the latent similarities. Clearly in such directed cases it is necessarily to model the

entire adjacency matrix, rather than only its lower triangular elements.
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Beside future directions of research common to all the methods outlined, there are also sev-

eral possible improvements specific to each topic addressed in this thesis. Dynamic networks

are becoming increasingly multivariate. For example, using information from GDELT – de-

scribed in Section 1.1.1 – one can potentially define a multi-layer dynamic network data set

A
(k)
ti

, ti = t1, . . . , tn, k = 1, . . . ,K with A
(k)
ti[vu] = A

(k)
ti[uv] denoting presence or absence of a

connection among countries v and u time ti with respect to relationship type k. This leads to

an highly complex V ×V ×K ×n array for which flexible statistical methodologies still need

to be developed. One possibility is to borrow information among different layers using the

mixture models developed in Chapter 3, with the kernels defined by the stochastic processes

developed in Chapter 2 to account for network and dynamic information.

Moving to connectome data considered in Section 3.1, it is important to develop statistical

methods that explicitly take into account errors in constructing the structural brain connec-

tion network, including in alignment and in recovering fiber tracts, taking as input the raw

data collected from the imaging machines. This represents a substantial computational hur-

dle, but may yield improvements in performance including better uncertainty quantification.

An additional aspect is taking into account network structure other than a simple measure

of the number of fibers connecting regions – for example, information on volume and rela-

tive spatial locations in the brain could also be incorporated. Additionally, scaling to massive

networks is a key issue to deal with the high spatial resolution provided by modern imaging

technologies. In the absence of careful modifications our computational algorithms fail in

scaling to very large nodes sets V . Developing models that exploit sparsity in the network,

or avoid sampling through efficient optimization algorithms, provide promising directions.

In such settings, it is additionally of interest to develop further theoretical results to assess

asymptotic properties of the posterior distribution for pL(A) as the cardinality V of the node

set increases with n. One possibility is to adapt recent Bayesian nonparametric asymptotic

theory for multivariate categorical data with increasing number of variables (Zhou et al.,

2014) to our specific setting.

Finally, focusing on methodologies for inference and co-clustering of mixed domain data

in Section 3.2, our procedures develop and evaluate targeted cross-selling strategies aimed at

stimulating customers multiple buying behavior in different agencies. It is worth considering

further research to formally enter additional information – such as costs of the strategies and

product prices – in a carefully defined loss function and define strategies within a Bayesian

framework via minimization of expected posterior loss.
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