
 

 

 

Sede Amministrativa: Università degli Studi di Padova 

 

Dipartimento di Biologia 

                                          

SCUOLA DI DOTTORATO DI RICERCA IN: BIOSCIENZE E BIOTECNOLOGIA 

INDIRIZZO: BIOLOGIA CELLULARE  

CICLO: XXVIII 

 

 

 

 

 

NOVEL INSIGHTS INTO BOTULINUM NEUROTOXINS 

 MECHANISM OF ACTION AND THE DISCOVERY OF  

PROPHYLACTIC INHIBITORS AGAINST BOTULISM 

 

 

 

 

 

Direttore della Scuola: Ch.mo Prof. Paolo Bernardi 

Coordinatore d’indirizzo: Ch.mo Prof. Paolo Bernardi 

Supervisore: Ch.mo Prof. Cesare Montecucco 

 

 

 

 

 

                 Dottorando: Domenico Azarnia Tehran 

          



 
 

 

 

  



 

 

 

 

 

Alla mia famiglia 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



SUMMARY 

Botulinum neurotoxins (BoNTs), the most poisonous substances identified so far, are protein 

toxins that cause botulism, a severe neuroparalytic disease. They are produced by different 

species of neurotoxigenic Clostridia and can be grouped into seven serotypes (BoNT/A to /G). 

Using genomic and proteomic approach, many novel BoNTs have been recently identified 

and are classified as subtypes, though they cannot be completely neutralized by currently 

available immunological methods. However, all BoNTs have a similar molecular architecture 

which reflects a conserved mechanism of action. Therefore this situation can be tackled by 

developing inhibitors targeting the BoNT intracellular intoxication process.  

The BoNTs consist of two main chains linked by a unique inter-chain disulfide bond: the 

heavy chain (H, 100 kDa) and the catalytic light chain (L, 50 kDa). The C-terminal part of H 

(HC) is responsible for the neurospecific binding and the internalization within an endocytic 

compartment, whilst the N-terminal part (HN) is involved in the translocation of L across the 

endosome membrane. L is a Zn2+ dependent metalloprotease that targets specifically the 

SNARE proteins, the three proteins constituting the core of neuroexocytosis. This cleavage 

results in a prolonged inactivation of neurotransmitter release and causes the flaccid 

paralysis typical of botulism. To penetrate into neurons, BoNTs exploit synaptic vesicles (SV) 

recycling and their lumen acidification induces the HN-mediated membrane translocation of 

L. It has been demonstrated that, once on the cytosolic side, the L metalloprotease remains 

connected to H via the interchain disulphide bridge and the reduction of this bond is 

necessary to release the protease in the cytosol and enable their catalytic activity. 

Using a series of well characterized inhibitors of Thioredoxin Reductase (TrxR)/Thioredoxin 

(Trx) system, we found that this redox system is involved in the cytosolic reduction of the 

interchain disulphide bond of BoNTs. In neuronal cultures, these molecules prevent the 

metalloproteolytic activity of all toxin serotypes without significantly affecting cell viability. 

Moreover, such compounds are very effective in vivo, lowering the severity and the duration 

of paralysis caused by a local BoNT injection. More importantly, one of these drugs elicits a 

remarkable protection in mice systemically injected with lethal doses of different serotypes. 

These results entail that the reduction of the interchain disulphide bond is a strict 

prerequisite for the activity of BoNTs and that this class of inhibitors can prevent the 

neurotoxicity regardless of their different immunogenicity. Intriguingly, we also found that 

the TrxR/Trx system is bound to the cytosolic side of the SV membrane and that it is enriched 



 
 

in those SV that are docked to active zones. We speculated that this redox system may play a 

role in maintaining SV protein function by controlling the redox state of the different SV 

protein disulfides.  

Another step in BoNTs mechanism of action that might offer a good template for drug design 

is their trafficking. Recently, an inhibitor of different pathogens that require a passage 

through acidic endosomes to invade cells has been identified and dubbed EGA. We tested 

the effect of this molecule in neurons treated with BoNTs as also their neurotoxicity is strictly 

dependent on the passage through an intracellular acidic compartment. We focused our 

investigation on BoNT/A and BoNT/B, the two serotypes mainly associated with human 

botulism and used in therapy, and BoNT/D, that scarcely affects humans, but frequently 

causes botulism in animals. We found that EGA inhibits BoNTs activity on neuronal cultures, 

without interfering with any of the main steps characterising their cellular mechanism of 

intoxication. We speculated that, rather than having a direct effect on BoNTs, this compound 

impinges on an intracellular target which is responsible for their trafficking. Importantly, we 

found that EGA is not toxic per se in vivo, and is particularly efficacious in preventing 

botulism induced by BoNT/B and BoNT/D. Instead, in the case of BoNT/A the lethality was 

not reduced, but botulism symptoms developed later. We argued that the trafficking of the 

different BoNT types might be differently impacted by EGA and this compound may be used 

as a new tool for studying different intracellular routes exploited by BoNTs. 

On the basis of the present knowledge about BoNTs mechanism of action, it is clear that 

once the LC has been released in the cytosol, the inhibitors tested here are no longer 

effective. Therefore, these drugs are to be considered as prophylactics. However, if given 

soon after diagnosis, these compounds could reduce symptoms severity by preventing the 

entry into neurons of circulating BoNTs, thus reducing the severity of poisoning and 

shortening the period of hospitalization that is related to the high costs of intensive care. 

Moreover, these molecules may be administered without knowing the BoNT serotype and 

subtype, therefore saving the time needed for toxin characterization.  



SOMMARIO 

Le neurotossine botuliniche (BoNTs) sono le esotossine più potenti attualmente conosciute 

nonché gli agenti eziologici di una grave malattia neuroparalitica, il botulismo. Storicamente 

classificate in 7 sierotipi (A-B-C-D-E-F-G), perché antigenicamente differenti, il loro numero 

risulta in rapida crescita poiché ogni sierotipo esiste in più sottotipi, la cui presenza sta 

progressivamente palesandosi grazie all’introduzione delle moderne tecniche di next 

generation sequencing (NGS). Sebbene il botulismo rappresenti un problema sanitario 

minore, la scoperta di nuovi inibitori contro le BoNTs è di assoluto rilievo dal punto di vista 

socio-economico visti i limitati trattamenti ad oggi disponibili e il possibile utilizzo delle 

tossine botuliniche come potenziali agenti di bioterrorismo. 

Dal punto di vista strutturale, tutti i diversi sierotipi sono costituiti da due catene 

polipeptidiche unite covalentemente da un unico ponte disolfuro: una catena pesante (H, 

100 kDa) e una leggera (L, 50 kDa). Dal punto di vista funzionale, la stessa struttura può 

essere invece suddivisa in tre principali domini con un determinato ruolo nel processo di 

intossicazione: 1) HC, definito anche dominio di legame, media l’adsorbimento specifico della 

tossina alla membrana plasmatica del motoneurone, 2) HN, denominato anche dominio di 

traslocazione, costituisce un canale di permeazione attraverso cui 3) L, riconosciuto essere il 

dominio catalitico, viene traslocato nel citoplasma. Qui, la catena leggera (L) viene liberata 

attraverso la riduzione del legame disolfuro intercatena ed è quindi pronta ad esercitare la 

sua funzione enzimatica. In dettaglio, le BoNTs sono metalloproteasi zinco-dipendenti capaci 

di idrolizzare in maniera specifica le proteine SNARE. Ogni sierotipo presenta un preciso 

bersaglio molecolare: BoNT/A e /E idrolizzano un diverso legame peptidico della proteina 

SNAP-25, BoNT/B, /D, /F e /G proteolizzano la proteina VAMP2, mentre, BoNT/C è in grado di 

idrolizzare due substrati differenti, sintaxina e SNAP-25. Le proteine SNARE costituisco il 

cuore del macchinario biochimico che permette il riconoscimento e la fusione delle vescicole 

sinaptiche con la membrana presinaptica del terminale nervoso a livello della giunzione 

neuromuscolare, pertanto, la loro idrolisi porta al blocco del rilascio di acetilcolina, 

inducendo neuroparalisi di tipo flaccido, conseguenza tipica del botulismo.  

In una prima parte del lavoro, utilizzando un approccio farmacologico, si è dimostrato come il 

sistema ossido-riduttivo Tioredossina (Trx)-Tioredossina Reduttasi (TrxR) dell’ospite abbia un 

ruolo chiave nella riduzione citosolica del ponte disolfuro intercatena di tutti i sierotipi di 

BoNTs. In dettaglio, utilizzando colture neuronali primarie, si è potuto dimostrare come tali 



 
 

molecole siano in grado di proteggere la coltura modello dall’intossicazione. Inoltre, i dati 

ottenuti in vitro sono stati confermati in vivo: la somministrazione dei differenti inibitori, in 

un modello murino, porta ad una diminuzione della severità e della durata della paralisi 

flaccida nonché ad una sostanziale protezione in topi trattati con dosi letali di tossina. Infine, 

si è riusciti ad identificare il sistema della TrxR/Trx a livello delle vescicole sinaptiche. In 

particolare, si è compreso come entrambi le proteine si arricchiscano a livello delle vescicole 

sinaptiche docked, ossia quelle legate alla membrana presinaptica pronte a rilasciare il 

neurotrasmettitore in esse contenuto. Questa evidenza è di particolare importanza se si 

prende in considerazione un possibile ruolo di tali proteine nel processo di neuroesocitosi.  

In un successivo lavoro, si è dimostrato come l’endocitosi all’interno del terminale nervoso, 

può essere considerato un altro passaggio chiave nel meccanismo d’azione delle tossine 

botuliniche, da prendere in considerazione nello sviluppo di nuovi inibitori. In dettaglio, un 

gruppo americano nel 2014 ha dimostrato come una piccola molecola, chiamata EGA, sia 

capace di bloccare l’azione di diverse tossine batteriche e virus che utilizzano gli endosomi 

come “cavallo di Troia” per il loro ingresso nelle cellule. Sebbene il target intracellulare risulta 

ancora non noto, si è deciso di sintetizzare e testare tale inibitore per capire se anche nel 

caso delle tossine botuliniche sia in grado di inibire il loro ingresso in vitro e in vivo. I risultati 

ottenuti evidenziano come EGA sia capace di inibire in vitro l’azione di molteplici sierotipi di 

BoNTs: A e B, comunemente associati a casi di botulismo umano e utilizzati in terapia, e D, 

coinvolto in casi di botulismo animale. Inoltre, questa molecola risulta efficace nel prevenire 

la paralisi in vivo dovuta ai sierotipi B e D e ritarda quella dovuta al sierotipo A. Di 

conseguenza, i nostri risultati suggeriscono come questa molecola possa essere presa in 

considerazione come lead farmacologico per lo sviluppo di nuovi antidoti. 

L’identificazione di questi inibitori potrà avere importanti implicazioni applicative volte a 

compensare il gap attualmente presente nel campo della prevenzione/terapia del botulismo. 

Infatti, il grande numero di sottotipi (>70) e la potenziale (probabile) esistenza di varianti non 

ancora identificate, è notevolmente limitante al controllo della loro azione patogena con il 

solo utilizzo di strumenti immunologici, quali antisieri e vaccinazione. In questa tesi verrà 

discusso come il nostro approccio risulta essere, invece, indipendente dal sierotipo di BoNTs 

coinvolta nell’intossicazione, dunque indipendente dall’antigenicità delle diverse tossine. 
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1. INTRODUCTION 

1.1 BOTULINUM NEUROTOXINS AND BOTULISM  

Botulinum neurotoxins (BoNTs) are produced by neurotoxigenic strains of Clostridia and are 

the most potent toxins yet known, with an estimated lethal dose for humans around 1 ng/Kg 

of body weight1. BoNTs are A-B protein toxins, where protomer A is the enzymatically active 

part and protomer B mediates binding to a specific receptor on the host cell membrane and 

the delivery of A into the cytosol. The potency of botulinum neurotoxins is the result of an 

elaborate and efficient molecular mechanism of action, that impairs an essential 

physiological function for vertebrates life: the neurotransmission at peripheral nerve 

terminals2. Indeed, BoNTs are the etiologic agents of botulism, a severe neuroparalytic 

syndrome that is the pathological consequence of their action on nerve endings on both the 

skeletal and autonomous nerve systems3. 

BoNTs have been classified into seven different serotypes and indicated with the alphabetical 

letters (BoNT/A through /G), based on the fact that a serum raised against one toxin was not 

able to neutralise the others4. In details, more than a century ago, serological methods were 

introduced to distinguish botulinum neurotoxins. In 1910, Leuchs demonstrated that BoNTs 

produced by two European strains of Clostridium botulinum were antigenically different, with 

antitoxin raised against one neurotoxin not cross-neutralising neurotoxin formed by the 

opposite strain. Ten years later, Burke recognised two antigenically distinct BoNTs, and 

designed these as serotypes A and B. This work established, for the first time, the use of 

serological strategies based on type-specific antitoxin to differentiate BoNTs serotypes, and 

has currently led to the recognition of seven confirmed botulinum neurotoxins serotypes, 

types A-G4,5. However their number is much higher as each serotype exists in many variants 

(called subtypes), with difference in their amino acid sequence and tight antigenic relation to 

the parental serotype, as well as possibly individual biological properties6,7. In the last few 

years, this has led to a debate on what might constitute a botulinum neurotoxin type or 

subtype. 

This complexity becomes greater if it consider the different vertebrates host of different 

BoNTs serotypes. Generally speaking, serotypes A, B, and E are those often related with 

human botulism, with fewer cases being cause by BoNT/F. Almost exclusively associated with 

botulism among birds is BoNT/C, whilst BoNT/D cause botulism in different animals species 



2 
 

but not in humans. BoNT/E is more frequently associated with botulism of marine 

vertebrates and fish eating birds2,7. 

The main and life threating outcome arising from BoNTs action in vertebrates is the blockage 

of neurotransmitter release at the neuromuscular junction, which results in the impossibility 

of stimulating voluntary muscles and therefore in the typical flaccid paralysis of botulism8. In 

the adults, botulism is generally caused by an intoxication through the ingestion of the 

mature toxin contained in contaminated food. It is not an infection, since Clostridia 

colonization of the intestinal tract is quite difficult. This can happen in infants because 

ingested spores can germinate in the absence of competing resident microbiota7. In this 

latter case BoNTs are produced and released in the intestines for prolonged periods of time 

causing infant botulism9,10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Different forms of human botulism. Until now, it has been characterized five forms of human botulism. 

The two most common forms are food-borne botulism, which occurs following the ingestion of BoNT-

containing foods, and infant botulism, that is caused by the ingestion of food contaminated with spores that 
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germinate in the gastrointestinal tract as a consequence of the lack of a mature microbiome. The other three 

forms are much rarer and include inhalational botulism, iatrogenic botulism and, wound botulism. Following 

transcytosis across the intestinal epithelium and consequent entry into the general circulation, the toxin 

eventually enters peripheral cholinergic nerve terminals, causing the flaccid paralysis of botulism. From 

Rossetto, Pirazzini et al., 2014
7
. 

 

Other three forms of botulism exist, though rare (Figure 1): wound botulism results from 

tissue contamination with spores and is almost exclusively associated with drug users11, 

iatrogenic botulism is due to the inappropriate administration or the abuse of the toxin for 

cosmetic or therapeutic purpose12, instead, inhalational botulism, owing to inhalation of 

BoNT-containing aerosols, is manly associated to a possible use of BoNTs as bioweapon13. 

Despite the different forms, the symptoms of the disease are very similar. The facial and 

throat innervations are the first affected causing diplopia, ptosis and dysphagia. The paralysis 

continues its descent to the trunk14,15 and when respiratory muscles are involved, breathing 

is compromised and death comes through respiratory failure. However, since intoxicated 

nerves remain intact and do not degenerate, if mechanical ventilation is timely performed, 

patients survive fully recovering from the neuroparalysis, in a time window which depends 

on the amount of toxin poisoning nerve terminals and on the BoNT serotype involved7. The 

current therapy is aimed to neutralize circulating toxin using anti-BoNT serum and keep alive 

patients using artificial ventilation7. Unfortunately, no countermeasures against BoNTs are 

available once entered in target cells. 

BoNTs can be defined Janus toxins, as they are at the same time the most deadly exotoxins 

known to humans and one of the safest drugs used in several human pathologies7. Indeed, 

considering their relative ease of production and extremely potency, BoNTs are considered 

by the Center for Disease Control and Prevention (CDC) as category A agents15, i.e. toxins 

that can be potentially used as biological weapons, but, at the same time, for their 

neurospecificity and reversibility, they have become very useful therapeutics for a growing 

and heterogeneous number of human disease characterized by peripheral nerve terminals 

hyperactivity8,13,15-21. In addition, thanks to the comprehension of their molecular mechanism 

of action, BoNTs have become useful tools for the study of neuronal physiology3. 

 

 



4 
 

1.2 VARIABILITY OF BOTULINUM NEUROTOXINS 

Clostridium is a genus gathering different sporulating and anaerobic Gram-positive bacteria 

including more than 150 species, widely distributed in the environment7. Typically, they are 

found as spores, that can resist for long time but under proper conditions (such as 

anaerobiosis, nutrients and low pH) they germinate into vegetative cells8,22. During this state, 

not solely the foremost Clostridium botulinum, but alternative species, such as Clostridium 

butyricum and Clostridium baratii, are able to produce BoNTs and become neurotoxigenic7. 

Interestingly, the capability of different species to produce the same neurotoxin indicates 

that, throughout the evolution, the toxin gene cluster has moved into different bacteria 

through recombination, such as horizontal gene transfer events6.  

Historically, Emilie van Ermengem was the first to isolate a Clostridium botulinum strain 

producing BoNT/A in 189523. In 1910, Leuchs demonstrated that BoNTs produced by two 

European strains of C. botulinum were antigenically different, with antitoxin raised against 

one neurotoxin not cross-neutralising neurotoxin formed by the opposite strain. Ten years 

later, Burke recognised two antigenically distinct BoNTs, and designed these as serotypes A 

and B. This work established, for the first time, the use of serological strategies based on 

type-specific antitoxin to differentiate BoNTs serotypes4,5. Few years later, Landmann isolated 

a strain producing BoNT/B from an outbreak in Germany and within the following fifty years 

were discovered other serotypes: in chronological order BoNT/C, BoNT/D, BoNT/E, BoNT/F 

and BoNT/G4. The serotype designation was challenged once polyclonal antibodies 

generated against BoNT/D of strain South Africa (BoNT/D-SA) detected with the same 

efficiency also BoNT/C of strain Stockholm; seven years later, cloning associated with 

molecular characterization revealed that this cross reactivity is caused by an exchange of 

domains between different serotypes24. In details, this was the first example of BoNT 

mosaics: BoNT/C of strain Stockholm was renamed BoNT/DC, structurally composed by the 

active part of BoNT/D and the binding part of BoNT/C24,25. Recently, another BoNT mosaics 

was discovered and called BoNT/FA26. 

In the recent years, the development of next generation sequencing and mass spectrometry 

analysis, has permitted the analysis of humans and animals clinical cases accumulated over 

the time2. As a result, it has become rapidly clear that neurotoxigenic Clostridia have 

extensive genetic heterogeneity in terms of genome organization, toxin gene clusters, and 

most importantly, toxin sequences variability6,27-29. Consequently, many variants have been 
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discovered (more than 40) and these findings led to the introduction of the term subtype, a 

genetic BoNT variant with at least 2.5% difference in the amino acid sequence. The subtypes 

are given the toxin letter designation followed by a number (indicated as BoNT/A1, BoNT/A2, 

etc.)6,7,27,30,31 (Figure 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Different serotypes and subtypes are produced by several neurotoxigenic species of Clostridium. Six 

phylogenetically distinct Clostridia (Clostridium botulinum groups I-IV and some strains of Clostridium butyricum 

and Clostridium baratii) produce seven botulinum neurotoxins antigenic different (BoNTs serotypes A-G). Each 

toxin serotype is grouped into various subtypes on the basis of their amino acid sequences (such as BoNT/A1-

A10). BoNTs serotypes C and D are phylogenetically related to each other, as are serotypes B and G, and E and F. 

Even if most strains of C. botulinum produce a single toxin serotype, some isolates produce more than one 

serotype, and other it able to synthetize mosaic toxins, such as BoNT/DC, /CD or /FA. From Rossetto, Pirazzini et 

al., 2014
7
. 
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However, this has led to a debate on what might constitute a botulinum neurotoxin type or 

subtype, and, in which way this difference can be better highlighted: by serological methods 

or by protein sequence?5 Importantly, apart from antigenicity, additional functional 

differences between the major serotypes with respect the binding capability, the catalytic 

activity, neurotoxicity and pharmacological properties like duration of action have been 

demonstrated32-35. To this end, it has been proposed that newly discovered neurotoxin gene 

variants should be named as such, only once it has been established that they display 

different neurotoxin biology such as toxicity, antigenicity or substrate cleavage site5,36. 

 

1.3 BOTULINUM NEUROTOXINS STRUCTURE AND MECHANISM OF ACTION 

The available crystallographic structures of BoNTs (Figure 3) show an overall highly preserved 

molecular architecture, which is purposeful to their mechanism of action37-39.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Crystallographic structure of isolated BoNT/A1. Crystal structure of botulinum neurotoxin A1 (BoNT/A1), 

showing its associated electrical dipole and the organization of individual toxin domains, every of that 

encompasses a specific role in cell mechanism of intoxication: the HC domain binds specifically to nerve 

terminals; the HN domain translocate the L chain into the nerve terminal cytosol; and L chain is a 

metalloprotease that cleaves and inactivates specific SNARE proteins that are involved in neurotransmitter 
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release, thereby causing neuroparalysis. A peptide belt (showing in dark blue), that surrounds the L domain and 

the inter-chain disulfide bond (orange), links the L chain to the HN domain. From Rossetto, Pirazzini et al., 

2014
7
. 

 

The structure is constituted by two main chains: a light chain (L, 50 KDa) and a heavy chain 

(H, 100 KDa) held together by a strictly conserved inter-chain disulfide bond and non-

covalent interactions4,7. This two chains, based on their functionality properties, can be 

divided into four domain (Figure 3): (I) HC-C (25 kDa, in green) is involved in nerve terminal 

binding and internalization40-43; (ii) HC-N (25 kDa, in purple), as not yet a well-defined role, 

but there is evidence that it may contribute to binding by interacting with membrane lipids44-

46; (iii) HN (50 kDa, in yellow) assists the translocation of the catalytic part of the toxin from 

the internal part of an intracellular acidic compartment into the cytosol47-49, (iv) the L 

catalytic domain (50 kDa, in red) is a metalloprotease that cleaves the SNARE proteins 

interfering with the release of neurotransmitters that result in a reversible neuroparalysis3. 

Despite the amino acid sequence variability among all BoNT variants, the structure 

organization is however maintained, as it mechanism of nerve intoxication7.  

BoNTs are very precise nanomachines, evolved to exploit different physiological features of 

vertebrates, conserved during their evolution: (i) functional binding to polysialogangliosides 

(PSG), highly enriched in the neuromuscular junction (NMJ), the in vivo site of action of these 

toxins, and to the lumenal domain of an integral membrane proteins of synaptic vesicles 

(SV), organelles unique to vertebrates; (ii) membrane translocation across the SV membrane 

driven by a pH lowering, which is physiologically necessary for the neurotransmitter refilling 

of these compartments; (iii) metalloproteolytic activity specific for VAMP, SNAP-25, or 

syntaxin, three proteins high specialized and conserved in terms of structure and function in 

different vertebrates2. Within the following sections, it will reviewed recent advances that 

have provided relevant insight concerning BoNTs mechanism of action. 

 

1.3.1 The “double receptor model”: neuronal surface accumulation and synaptic 

vesicles internalization 

To account their specific neurotoxicity and high selectivity of binding have been proposed for 

BoNTs a double receptor model based on a first binding to a polysialoganglioside molecule 

followed by a second interaction with a protein receptor40. Later works has proven the 
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validity of this model. Indeed, BoNTs have evolved the ability to bind neurons via two 

receptors, one with low affinity, a polysialogangliosides (PSG), that increases toxin density on 

the target membrane41,42, and a secondary one the luminal part of an integral membrane 

protein of synaptic vesicles (SV), which triggers the internalization into the endocytic 

pathway50 (Figure 4). BoNT could have evolved this distinctive binding mode to 

simultaneously overcome many physiological obstacles, like the low toxin concentration in 

circulating fluids, the high-speed of movement of extracellular fluids around cells as well as 

the reduced surface area of peripheral nerve terminals7.  

In detail, gangliosides are a large family of glycolips (glycosphingolipids) present on the 

external plasma membrane of all animal cells which are involved in many pathways like cell 

signalling, protein sorting and they are very important for membrane domain formation and 

organization. Gangliosides are particularly enriched in neurons membrane, especially in 

axons and dendrites where they govern membrane curvature51,52. Indeed, this first binding of 

BoNTs to the negatively charged sialic acids of PSG is very efficient because these 

neurotoxins are dipoles, with their positively charged end situated near to the binding site on 

PSG. This effect could contribute to the rapid binding of BoNTs to the nerve terminals in vivo, 

as well as, their reorientation that allow the interaction with the second receptor7. Several 

groups have contributed in defining the role of PSG as critical molecules for the specific 

binding of all BoNTs, reviewed in4,41, and their reciprocal interaction has been characterized 

intimately. In any case the PSG binding site is located on the HC-C domain and in BoNT/A, /B, 

/E, /F and /G, is outlined by the conserved motif E(or D or Q)...H(or K or G)...SXWY...G (where 

X is any amino acid and “…” denotes a variable number of residues)39,53-56. The PSG-binding 

site of BoNT/C, BoNT/DC and BoNT/D is found in a similar position, but the binding motif is 

different57-61.  

Despite the moderate affinity achieved by BoNTs throughout the contact with PSG, this 

interaction does not account for the functional uptake into neurons, which is instead 

mediated by the consecutive binding to the lumenal domain of a synaptic vesicle protein7. 

BoNT/B, BoNT/G and BoNT/DC bind to segment 40-60 of the lumenal domain of 

synaptotagmin-I/II (Syt-I, Syt-II) via a binding site within the HC-C domain that is close to the 

PSG-binding site62-72. Interestingly, due to a single point mutation, L51 in human and 

chimpanzee Syt-II versus the homologous F54 in Syt-II of mouse, rat and other species, Syt 

I/II do not act any longer as high affinity receptors for the aforementioned BoNTs, explaining 
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why elevated dosages of BoNT/B are necessary to achieve the same effects of BoNT/A in 

human treatment66. By contrast, BoNT/A and BoNT/E bind specifically to two different 

segments of the fourth lumenal loop of the synaptic vesicle transmembrane protein SV273-75. 

SV2C appears to be the main receptor involved in BoNT/A binding, while SV2A e SV2B, but 

not SV2C, mediate BoNT/E entry. However all three isoforms are expressed in 

motoneurons64,75. The protein receptors of other BoNTs have not been yet fully 

characterized, albeit SV2A-C seems to play an important role in the uptake mechanism of 

BoNT/D and BoNT/F4,55,76,77.  
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Fig. 4. Botulinum neurotoxins mechanism of action within peripheral nerve terminals. The until now known 

BoNT mechanism of action envisages a primary interaction between the carboxy-terminal end of HC domain 

(the HC-C domain) and a polysialogangliosides (PSG), that mediate the toxin accumulation to the plasma 

membrane. Subsequent lateral movements make possible the encounter of the toxin with a protein receptor 

which is the lumenal domain of a synaptic vesicle protein (step 1). The protein receptor has been identified as 

synaptotagmin I and II for BoNT/B, /DC and /G (crystal structure shown on the lower left-hand side), and SV2 for 

BoNT/A, /E and /F (crystal structure shown on the right left-hand side); the protein receptor for the remaining 

serotypes remains to be clarified. This latter binding is preliminary to the internalization of the toxin-receptors 

complex inside an acidic intracellular compartment (step 2) whose nature has been identified as SV for 

BoNT/A1. Little is known on the nature of endocytic compartments employed by the other serotypes, however 

considerable evidence show that the acidification of its lumen triggers a structural modification of L and HN 

together with membrane lipids which ultimately results in the translocation of the L chain within the cytosol 

(step 3). This process ultimate with the reduction of the inter-chain disulfide bond performed by the 

thioredoxin reductase-thioredoxin system. The free L metalloprotease specifically cleaves one of the three 

SNARE proteins (step 4) thereby preventing Ca
2+

 elicited release of the neurotransmitter contained insides SV. 

From Rossetto, Pirazzini et al., 2014
7
. 

 

It is worth to note that BoNTs choose as receptors synaptic vesicles proteins which are highly 

conserved because fundamental for nerve physiology: synaptotagmins are the Ca2+ sensors 

regulating the synchronous neurotransmitter release, instead, the SV2 function is likely 

linked to SV priming or rendering primed vesicle fully Ca2+ responsive78-80. However, each of 

them are integral membrane proteins of SV and expose their BoNT-binding sites to the 

synaptic vesicle lumen; indeed in contrast to PSG, these protein receptors are not exposed 

on the surface of nerve terminal and are not accessible of BoNT. Nonetheless, they become 

available after the fusion of the SV with the presynaptic membrane, which exposes the 

synaptic vesicle lumen to the extracellular environment. Consequently, BoNT binding to 

protein receptors occurs solely after fusion of the synaptic vesicle to the presynaptic 

membrane, and this seems to facilitate the following step of intoxication, which requires the 

endocytosis of BoNTs7.  

In both cultured neurons and in vivo, BoNT/A rapidly enters the synaptic vesicle lumen81,82. 

The mechanism of internalization of other BoNTs remain to be established. By contrast in 

cultured neuron and probably also in vivo, alternative vesicles and trafficking route may 

contribute to their entry83. Indeed, information concerning the nature of the endocytic 

vesicle involved in the uptake of the other serotypes is still lacking. In this thesis, we will 

discuss about the possible distinctive trafficking exploit by different serotypes of BoNTs in 



11 
 

vitro as well as in vivo. Indeed, we found that a single compound, called EGA, is able to 

discriminate between different serotypes internalization84.  

 

1.3.2 Translocation across the membrane of acidic intracellular compartments 

Considering the several steps of BoNTs mechanism of intoxication in nerve terminals, the 

translocation of the L chain from intracellular acidic compartments into the cytosol is the 

least understood in terms of molecular mechanism49. However, as in the case of binding and 

internalization, also to translocate the L chain into the cytosol, BoNTs have evolved to use a 

relevant physiological feature of nerve terminals. Indeed these toxins exploit the acidification 

of the synaptic vesicles (SV) lumen carried out by the v-ATPase, a proton pump present on 

their membrane80, that lowers the lumenal pH to generate the pH gradient driving the re-

uptake of neurotransmitters from the cytoplasm into SV7,49. The importance of the v-ATPase 

in BoNTs mechanism of action, is extensively demonstrated by the fact that specific inhibitors 

block BoNTs neurotoxicity85,86. 

Despite the exact mechanism is still under debate49, it is well known that the translocation 

process comprises a concerted structural reconfiguration of the entire molecule, but in 

particular of the HN and L chain couple, which is promoted by low pH. Indeed it is long 

known that at acidic pH BoNTs forms ion conducting channels, and that this channel 

mediates the translocation of the L chain into the cytosol47,48,87-89. Montal and colleagues 

gave the major contribution with the patch clamp technique, studying the process in cell 

membranes and with single molecule resolution, conditions mimicking those found in vivo. 

The outcomes of these experiments were interpreted with the model reported in Figure 

548,88, in which the HN domain of BoNT/A (in yellow), by lowering the pH on the cis side of 

the patched membrane (corresponding of the SV lumen), and by applying a negative 

membrane potential, forms a transmembrane channel that chaperons the passage of the L 

chain (in red) on the trans side (corresponding to cell cytosol). This mechanism was deduced 

following the current across the membrane: it begins with low values (~ 10 pS) 

corresponding to the phase during which the L chain occupies the channel to pass on the 

other side, and raises within 10 minutes to ~ 65 pS or ~ 110 pS, in PC12 cell line (Figure 

5A)85,90,91, corresponding to the full conductance of a transmembrane channel47,48,88,92,93. 

Notably, such channel permits the passage of only α-helices but not tertiary structure 
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elements, indicating that the L chain has to unfold, at least partially, to fit within the narrow 

cavity (15-20 Å in diameter) (Figure 5B)40,48,94,95.  

 

 

Fig. 5. Membrane translocation of BoNTs across the membrane of endocytic compartments. (A) The upper 

panel shows the elicited by BoNT/A increment of conductance at low pH in Neuro2A cell line. (B) The lower 

panel show the proposed steps involved in the membrane translocation of the L chain: 1) schematic structure 

of the toxin; 2) at acidic pH, the HN domain inserted into the membrane forming a transmembrane channel, 

hypothetically made of a six α –helices; 3) higher conductance accompanied the translocation of L chain from 

the acidic lumen into the neutral cytosol; 4) the L chain is completely translocated within the cytosol where it 

refolds and the inter-chain disulfide bond is reduced by the Thioredoxin Reductase-Thioredoxin system. From 

Pirazzini et al., 2015
49

. 

 

Importantly, for a productive translocation, the interchain disulfide bond must remain intact 

during the preliminary phase of the process, and must be reduced only once it reaches the 

trans side of the membrane. This data are in keeping with the fact that pre-reduced BoNT 

does not form channels and that the reduction at any stage before reaching the cytosolic 

side aborts channel formation and L chain translocation88,93. Thus the model in figure 5 posits 

that upon acidification the BoNT molecules change their structure, HN penetrates the 

membrane and the L chain unfold maintaining only secondary structure elements. The initial 

low conductance state is taken as indication of the passage of the partially unfolded L chain 
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along the transmembrane channel to the cytosolic side of the SV membrane. Thereafter L 

chain remains connected to the SV till the inter-chain disulfide bond is reduced, that is the 

concluding step that ends the process leaving the HN channel to its full conductance (Figure 

5A and Figure 5B).  

Nevertheless, such a model does not take in account of other relevant data present in 

literature: i) the crystal structure of BoNT/B, and the L chain and HN domain of BoNT/A, do 

not change at low pH in solution89,96, while they undergo conformational change in the 

presence of PSG or lipids89,91,97-99; ii) employing an experimental approaches that bypasses 

the internalization step and induces the translocation of the L chain directly from the cell 

surface, it had been found that BoNTs should be attached to the membrane by two receptors 

and that the translocation step occurs within few minutes at 37 °C in the pH range 4.5-6, 

which is consistent with the pH within the synaptic vesicle, and has a strong temperature 

dependence, with very little translocation taking place at 20 °C100; iii) several carboxylate 

amino acids, conserved among the different BoNTs, the inter-chain disulfide bond and a 

segment that possess high propensity for membrane insertion are all present in one face of 

the BoNTs molecule49; iv) replacement of three of the carboxylate residues with the 

corresponding amides in BoNT/B eliminates their protonation and causes the L chain to enter 

the cytoplasm quicker, increasing toxicity101.  

These data suggest that there is no single pH sensor in BoNTs, but several carboxylates that 

have high pKa values and have a role in the low pH-driven release of the L chain into the 

cytosol. By considering these data, an update model for BoNT translocation has been 

presented (Figure 6A and Figure 6B)49. BoNT initially binds to its two receptors within the SV 

lumen, which has a neutral pH, immediately after endocytosis. The v-ATPase then pumps 

protons and SV lumen becomes progressively more acidic. There is no a single pH sensor in 

BoNTs, but the conserved carboxylates predicted to have higher pKa, get protonated, and 

drive the partially protonated BoNT, which has a net positive charge, toward the membrane 

surface involving the disulphide-containing face of the toxin. Here the pH is even more acidic 

with respect to the lumen102 allowing the further protonation of other carboxylates, while 

the positive charges make ionic couples with the anionic membrane, favouring the 

conformational change of the molecule. The subsequent molecular events are presently 

unknown, but on the basis of earlier studies, it can be speculated that the L chain becomes a 

“molten globule”, a protein state variant that retains native secondary structure and 
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increased hydrophobicity, enabling its insertion and passage across the membrane7,49,101. It 

has been proposed that the long α-helices of HN may break generating amphipathic helices 

with the length of 20-24 residues that, together with the other amphipathic helices of the 

HN domain, form a laterally opened transmembrane channel partially surrounding the L 

molten globule, whilst the remaining surface of L interacts with lipids. In this way, hydrophilic 

and hydrophobic surfaces and interactions are matched. The arc-shaped membrane inserted 

HN may act as chaperone for the translocation of the L chain, as suggested by Koriazova and 

Montal48,87,88. Facing the neutral pH of the cytosol, the L chain deprotonates and refolds into 

the metalloprotease domain whilst the membrane inserted HN closes laterally to form a 

stable ion channel. The process is terminated by the reduction of the disulfide bridge which 

releases the L chain and its protease activity, attaining the HN channel for its full 

conductance. 

 

Fig. 6. A novel model might clarify the translocation step in botulinum mechanism of action . 1) The four 

domain of the toxin are schematically represented in different colours and some preserved charged amino acids 

residues are highlighted: L (red), HN (yellow), HC-H (purple) and HC-C (green). This latter domain, in this 

cartoon, binds its two receptors: the polysialoganglioside (blue triangle) and the lumenal part of SV protein (SV2 

or synaptotagmin, orange rectangle). 2) Following the action of the v-ATPase proton pump, the vesicle lumen 

acidified and the high pKa carboxylate residues are protonated. 4) This face of the protein acquires a net 

positive charge and can eventually fall down on the anionic membrane surface; low pH and lipid interaction 

cause a combined and sequential structural change involving at the same time the L and HN domains and lipids. 
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5) L moves to the cytosolic side, refolds and is released upon reduction of the inter-chain disulfide bridge. From 

Pirazzini et al., 2015
49

. 

However, whether this actually occurs is currently unknown, and clearly, additional studies 

are need to clarify this essential step of the BoNT intoxication process. 

 

1.3.3 The inter-chain disulphide bond reduction 

A part the structural role, the interchain disulphide bond plays a functional role in BoNTs 

toxicity. The first evidence was highlighted by the lack of toxicity in vivo of a previously 

reduced neurotoxin103. Later, Fischer and Montal demonstrated that for an effective 

translocation, the L chain needs to remain linked to H via the inter-chain SS bridge and that 

its reduction is the concluding event, that which frees the L chain enabling the 

metalloprotease activity93,104. Consistently, the premature reduction of this bond, at any 

stage before its exposure to the cytoplasm, abort the L chain translocation, indicating that it 

plays a fundamental role within the intoxication process and that it has to reach intact the 

cytosolic side of the membrane for a productive L chain delivery7,100. Consequently, it was 

proposed that the positioning, the size and the high hydrophobicity of the two sulphur 

atoms, is important in initiating the translocation event101. These data indicated that the 

reduction of the interchain disulfide bond within nerve terminal cytosol may be a “conditio 

sine qua non” to free the metalloprotease activity of botulinum neurotoxins, and thus 

represents a rational target for the development of mechanism-based antitoxins7,105.  

In details, the SV lumen of most intracellular organelle is oxidant, while the cell cytosol has a 

reducing potential, which is kept by a large number of redox couples106-109. The reduction of 

protein disulfides is catalysed in the cell by different enzymatic systems. The majors one are 

the glutathione-glutaredoxin system and the NADPH-Thioredoxin reductase (TrxR)-

Thioredoxin (Trx). The first evidence that the TrxR may be involved in the reduction of the 

interchain disulfide bond of BoNTs, was the finding that Auranofin, the most potent TrxR 

inhibitor identified so far, prevented the toxicity of BoNT/B, /C and /D110. On the other hand, 

buthione sulfoximine, a compound capable to substantially reduce glutathione intracellular 

levels, had no inhibitory activity, indicating that the glutathione-glutaredoxin system is not 

involved in the entry of BoNTs in the cytoplasm110. In this thesis, we will discuss how a 

pharmacological approach led us to the identification of the entire NADPH-Thioredoxin 
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reductase (TrxR)-Thioredoxin (Trx) system being responsible for the cytosolic release of L in 

the cytosol and this has led to the discovery that both TrxR and Trx are extrinsic proteins of 

the cytosolic side of SV. Consequently, several inhibitor of this redox system were found to 

prevent the L chain of BoNTs from displaying their metalloprotease activity versus the SNARE 

proteins in cultured neurons and in vivo111,112. Interestingly, the TrxR-Trx redox system is also 

present on the endosomal membrane wherefrom diphtheria toxin enters the cytosol, and it 

is responsible for the inter-chain disulfide bond reduction of this toxin, which was previously 

shown to be the rate limiting step of the entire cell intoxication process113. Together, these 

data suggest that the couple TrxR-Trx is the reducing system involved in the release of the 

catalytic part of all A-SS-B toxins in the cytosol. 

 

1.3.4 The L chains are metalloproteases specific for the SNARE proteins 

Upon reduction of the disulfide bond, the free in the cytosol L chain functions as a Zn2+ 

dependent endopeptidase that exclusively hydrolyses distinct peptide bonds of neuronal 

SNARE proteins: VAMP (vesicle-associated membrane protein; also called synaptobrevin), 

SNAP-25 (synaptosomal-associated protein of 25 kDa) or syntaxin which are cleaved at single 

sites. In details, BoNT/A, and BoNT/E cleave SNAP25114,115, BoNT/B, BoNT/D, BoNT/F and 

BoNT/G cleave VAMP116-118, instead, BoNT/C is unique because cleave both SNAP25 and 

syntaxin3. The fact that inactivation of any of these three proteins inhibits neurotransmitter 

release is the strongest evidence that the three SNARE proteins form the core of the 

neuroexocytosis nanomachine. SNAREs form a heterotrimeric complex and their proteolysis 

impairs its assembly and/or function3,119-121. The SNARE family of proteins includes several 

isoforms that are differentially expressed in many non-neuronal cells and tissues. Even if 

many of those isoforms can be cleaved by BoNTs, these substrates are not accessible in vivo, 

as non-neuronal cells lack proper receptors for the toxin. With the exception of BoNT/A and 

BoNT/C, all BoNTs cleave SNARE proteins by removing large cytosolic segments, which 

prevents the formation of the SNARE complex. BoNT/A and BoNT/C remove only a few 

residues from the C-terminal of SNAP-25 and, this SNAP-25 truncated form are still able to 

form a stable SNARE complex; thus, the molecular mechanism of BoNT/A and BoNT/C-

induced neuroparalysis remains to be elucidated. Nevertheless, no other substrates are 

presently known and this is related to the unique model of recognition of VAMP, SNAP-25 or 
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syntaxin by the L domain, which is based on an extended interaction including the cleavage 

site as well as exosites dispersed along the substrate sequence122-127. As a result of this in-

depth interaction of the L chain with their substrates, the seven BoNTs serotypes exhibit 

exclusive specificities with respect to the different isoforms of the three SNARE proteins 

present within different neurons and within different animal species. Therefore, BoNTs can 

be used as simple tools to determine the effect of knocking-out specific SNAREs in cell 

physiology3. 

 

 

 

 

 

 

 

 

 

Fig. 7. Hypothetical model of synaptic vesicles fusion and BoNTs cleavage sites . The VAMP neurotoxin 

mediated cleavage site for BoNT/B is between Gln 76 and Phe 77; for BoNT/F, between Gln 58 and Lys 59; for 

BoNT/G, between Ala 81 and Ala 82; and for BoNT/D, between Lys 59 and Leu 60. The syntaxin BoNT/C cleavage 

site is between Lys 253 and Ala 254. Cleavage sites in SNAP25 are between Asp 193 and Glu 194 for BoNT/E, 

and between Arg 176 and Gln 177 for BoNT/A. From Sutton et al., 1998. 
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2. AIM OF THE THESIS 

The most potent poisons know to human are the botulinum neurotoxins (BoNTs), which are 

neurospecific metalloproteases acting within peripheral nerve terminals where they 

interrupt the release of neurotransmitter acetylcholine, causing the severe neuroparalytic 

syndrome of botulism7. BoNTs are produced by different species of Clostridia and have been 

classified in seven serotypes (BoNT/A to /G) based on their immunological properties. 

However, with the introduction of Next-Generation Sequencing (NGS) technique, several 

novel BoNTs have been recently identified, and many other are likely going to be discovered6.  

Human botulism is rare but remains a severe paralytic illness, and considering that the solely 

available therapy is based on immunological methods, the existence of so many variants 

represents a major safety problem, especially in the case of a possible use of BoNTs as 

bioweapons 4,7. Indeed, from a clinical point of view, such variations in antigenicity would 

possibly cause a medical aid failure and largely preclude the possibility to develop a pan-

vaccine30,128,129. This calls for implementing more studies aiming at the discovery of new 

drugs capable of block BoNTs regardless their antigenic difference.  

The aim of the present thesis was unravelling novel aspects of the cellular and molecular 

mechanism of action of BoNTs and, consequently, identifying new approaches to prevent 

their neurotoxicity, starting from the evidence that, despite the amino acid sequence 

variability, all BoNT variants are structurally similar and display a likewise similar mechanism 

of action at nerve endings. This offered the rational bases to design new strategies able of 

inhibiting BoNTs, independently from their antigenic variability.  

It is worth to mention that, even if the study of BoNTs in general seemed to have reached a 

sort of steady state, this type of investigation can yet shed light on novel fascinating details 

about BoNTs mechanism of action as wells as new features of neuron physiology . 
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SUMMARY

Botulinum neurotoxins consist of a metalloprotease
linked via a conserved interchain disulfide bond to
a heavy chain responsible for neurospecific binding
and translocation of the enzymatic domain in the
nerve terminal cytosol. The metalloprotease activity
is enabled upon disulfide reduction and causes neu-
roparalysis by cleaving the SNARE proteins. Here,
we show that the thioredoxin reductase-thioredoxin
protein disulfide-reducing system is present on syn-
aptic vesicles and that it is functional and responsible
for the reduction of the interchain disulfide of botuli-
num neurotoxin serotypes A, C, and E. Specific inhib-
itors of thioredoxin reductase or thioredoxin prevent
intoxication of cultured neurons in a dose-dependent
manner and are also very effective inhibitors of the
paralysis of the neuromuscular junction. We found
that this group of inhibitors of botulinum neurotoxins
is very effective in vivo. Most of them are nontoxic
and are good candidates as preventive and thera-
peutic drugs for human botulism.

INTRODUCTION

The botulinum neurotoxins (BoNTs) are released by different

species of Clostridia in dozens of different isoforms that are

grouped into seven different serotypes (BoNT/A–BoNT/G) (Hill

and Smith, 2013; Rossetto et al., 2014). They inhibit peripheral

cholinergic nerve terminals and cause the flaccid paralysis and

autonomic dysfunctions of botulism (Johnson and Montecucco,

2008). BoNTs are so toxic to humans as to be considered for po-

tential use in bioterrorism (CDC, 2012). At the same time, their

neurospecificity and reversibility of action makes them excellent

therapeutics for a growing and heterogeneous number of human

diseases that are characterized by a hyperactivity of peripheral

nerve terminals (Davletov et al., 2005; Dressler, 2012; Masuyer

et al., 2014; Montecucco and Molgó, 2005).

BoNTs consist of a metalloprotease light chain (L; 50 kDa) and

a heavy chain (H; 100 kDa) linked by a strictly conserved inter-

chain disulfide bond. BoNTs bind specifically to the presynaptic

membrane of peripheral nerve terminals (Dolly et al., 1984) and

enter into the cytosol, where they block neurotransmitter release

by the L-mediated cleavage of the essential SNARE proteins

(Binz and Rummel, 2009; Pantano and Montecucco, 2014).

The seven BoNT serotypes exhibit exclusive specificities with

respect to the different SNARE proteins and therefore can be

used as simple tools to determine the effect of knocking out spe-

cific SNAREs in cell physiology (Pantano and Montecucco,

2014). To penetrate into neurons, BoNTs exploit the endocytosis

of synaptic vesicles (SVs) (Colasante et al., 2013), and the acid-

ification of the SV lumen induces the H-mediated membrane

translocation of L (Fischer and Montal, 2013; Montal, 2010). It

has been demonstrated that, once on the cytosolic side, the L

metalloprotease remains attached to H via the interchain SS

bridge and the reduction of this bond releases the L metallopro-

tease activity, unblocking at the same time the ion channel

formed by H in the membrane (Fischer and Montal, 2007).

Here, we show that the thioredoxin reductase (TrxR)-thioredoxin

(Trx) redox system is highly expressed in the motor neurons

nerve terminals and that it is present on the SV cytosolic surface.

This redox system is shown here to be functional, as inhibitors of

TrxR or Trx effectively prevent the cleavage of SNAP25 by the L

chains of BoNT/A, BoNT/C, and BoNT/E within neurons in cul-

ture and largely reduce the neuroparalysis of these neurotoxins

inmice. Such a high inhibition of BoNTs by small-molecule drugs

in vivo strongly suggests that these drugs may be useful to pre-

vent and treat botulism.

RESULTS

Thioredoxin Reductase and Thioredoxin Are Present on
the Cytosolic Surface of SVs
The recent finding that auranofin, a TrxR inhibitor, prevented

the action of tetanus neurotoxin in cultured neurons (Pirazzini
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et al., 2013) prompted us to investigate the presence of the

TrxR-Trx system within nerve terminals and on synaptic vesi-

cles, which are the Trojan horses used by BoNT/A to deliver

its L chain in the cytosol (Colasante et al., 2013; Harper

et al., 2011). Figure 1A shows that the neuromuscular junction,

which is the major site of action of BoNTs, highly expresses

both TrxR and Trx, as do primary cultures of neurons (Fig-

ure S1A). This is in agreement with previous work, where it

was shown that both TrxR and Trx are transported from the

cell body to axon terminals (Rozell et al., 1985; Stemme

et al., 1985). Figure 1B demonstrates that both TrxR and Trx

are present in synaptosomes purified from rat brain as well

as in a crude preparation of SVs extracted from the same syn-

aptosomes (Figure 1B). Further purification of SV indicates that

this enzymatic redox system is indeed associated with SVs

and that it is highly enriched in docked SVs (Figure 1B); i.e.,

SVs that are bound to the active zones in the presynaptic

nerve terminal (Boyken et al., 2013; Morciano et al., 2005,

2009), and includes portions of the presynaptic plasma mem-

brane, as disclosed by the presence of plasma membrane

markers (Figure S1B, Ca-ATPase and Na/K-ATPase pumps);

at the same time, all the fractions display the typical relative

abundance of presynaptic proteins (Figure S1B). Notably, the

staining of PSD95, a postsynaptic protein, is present only in

synaptosomes but essentially absent in free and docked syn-

aptic vesicles, suggesting that the TrxR-Trx belongs to the

presynaptic compartment (Figure S1B). Moreover, Figure 1C

shows that SVs immunoisolated with an antibody specific for

synaptophysin, a protein marker of SVs (Fykse et al., 1993),

do contain TrxR. The TrxR-Trx redox system is bound extrinsi-

cally to the SV surface, as it is removed upon incubation with

bicarbonate/carbonate buffer at pH 11 (Figure 1C). Such a

location explains why these proteins were not detected before

in thorough proteomics studies of SVs, because bicarbonate-

washed SVs were employed (Boyken et al., 2013; Morciano

et al., 2005; Takamori et al., 2006). At the same time, it indi-

cates that the TrxR-Trx redox system may play an important

role in neuroexocytosis.

Inhibitors of Thioredoxin Reductase Prevent the
Intoxication of Neurons by Botulinum Neurotoxin
Serotypes A, C, and E
Even if the role(s) of the TrxR-Trx system in SV function remains

to be discovered, we used BoNT intoxication as readout of its

functionality, following the demonstration that the cytosolic

reduction of the single interchain disulfide bond is essential to

enable their metalloprotease activity (Fischer and Montal,

2007; Schiavo et al., 1993). Here, and in the next sections,

we show the effects of a large series of TrxR-Trx inhibitors on

its capability to reduce the interchain disulfide bridge of

BoNT/A, BoNT/C, and BoNT/E. These three botulinum neuro-

toxins were chosen because they have different structures (Ku-

maran et al., 2009; Lacy et al., 1998) and are implicated in

human and animal botulism, and because BoNT/A is used in

human therapy (Dressler, 2012; Hallett et al., 2013; Naumann

et al., 2013).

Figure 2A shows that an antibody specific for the BoNT/A-

truncated SNAP25 stains well a BoNT/A-treated primary culture

of neurons consisting of more than 95% cerebellar granular

neurons (CGNs), while no labeling was detectable when neu-

rons were pretreated with the TrxR-specific inhibitors juglone

Figure 1. Thioredoxin Reductase and Thioredoxin Are Present in

Nerve Terminals and Are Loosely Bound to the Surface of Synaptic

Vesicles

(A) The left panels show representative confocal images of the levator aureus

longusmouse neuromuscular junction stained with primary antibodies specific

for thioredoxin reductase (TrxR, green) and a-bungarotoxin (cyan); similarly,

the right panels refer to thioredoxin (Trx, green) and a-bungarotoxin (cyan). As

expected, both proteins appear to be present also in muscle fibers; scale bar,

10 mm. See also Figure S1A.

(B) The immunoblot staining of different preparations from the rat brain

(indicated on the top of the lanes; 10 mg of total lysate proteins per lane)

after SDS-PAGE are shown. TrxR, anti-thioredoxin reductase; Trx, anti-thio-

redoxin; STX 1A, anti-syntaxin; SNAP25, anti-SNAP25; VAMP2, anti-

VAMP2. The electrophoretic mobility corresponding to the different molecular

weight markers is indicated. The asterisk indicates an immunoreactive

band relative to an alternative splicing form of TrxR of 66 kDa (UniProt data-

base).

(C) This panel shows immunoblottings with different specific antibodies of free

and active zone-docked synaptic vesicles immunoisolated with an antibody

specific for synaptophysin and probed for TrxR presence. The four lanes on

the right part of the panel show that TrxR is detached from SVs upon treatment

with bicarbonate/carbonate pH 11 buffer (S, supernatant; P, pellet). In both

panels, membranes were stripped and restained for SNARE proteins. Hash-

tags indicate antibody bands.
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(JUG), auranofin (AUR), myricetin (MYR), and curcumin (CUR)

(Cai et al., 2012; Fang et al., 2005; Lu and Holmgren, 2012;

Lu et al., 2006; Omata et al., 2006; Rackham et al., 2011). Fig-

ure 2B shows that the inhibition of the BoNT/A-mediated cleav-

age of SNAP25 by these inhibitors is dose dependent. In con-

trol experiments, we found that these TrxR inhibitors do not

significantly affect the viability of CGNs at the maximal doses

used and that they do not affect the metalloproteolytic activity

of BoNT/A tested in vitro with recombinant SNAP25 (not

shown). Similar experiments were performed with CGNs

treated with BoNT/E (Figure S2A and S2B) and BoNT/C (Fig-

ure S2C); in this latter case, the readout of inhibitor activity

was also performed with an antibody specific for syntaxin, as

BoNT/C cleaves both SNAP25 and syntaxin (Pantano and Mon-

tecucco, 2014). It should be noted that the TrxR inhibitors used

here show similar dose-dependence patterns versus the three

different neurotoxins, indicating that the step they inhibit has

similar relevance for the display of the SNARE cleavage activity

of the three different BoNTs.

Inhibitors of Thioredoxin Prevent the Intoxication of
Neurons by Botulinum Neurotoxin Serotypes A, C, and E
The reduction of the protein disulfides in the cytosol by the TrxR-

Trx system is the end result of the transfer of reducing equiva-

lents from NADPH to TrxR and then to Trx (Arnér and Holmgren,

2000; Hanschmann et al., 2013; Lu and Holmgren, 2009). The

majority of available inhibitors of this redox system are directed

toward TrxR, but recently, specific inhibitors of Trx have been

tested in humans: PX-12 is under clinical trial as and anticancer

agent (Baker et al., 2013; Kirkpatrick et al., 1998; Ramanathan

et al., 2011), and ebselen is under investigation as a postische-

mia and poststroke therapeutic (Aras et al., 2014; Yamaguchi

et al., 1998; Zhao et al., 2002). PX-12 and ebselen (EBS) inhibit

the BoNT/A-induced cleavage of SNAP25 in CGNs as detected

by immunofluorescence (Figure 3A) and by quantitative immuno-

blotting (Figure 3B). At the same time, neither PX-12 nor ebselen

affects the viability of CGNs at the maximal doses used here, nor

do they show any effect on the metalloproteolytic activity of

BoNT/A (not shown). A similar efficacy of these inhibitors was

Figure 2. The BoNT/A-Induced Cleavage

of SNAP25 Is Prevented in Cerebellar

Granular Neurons by Thioredoxin Reduc-

tase Inhibitors

(A) CGNs were treated with TrxR inhibitors (JUG,

20 mM; AUR, 1 mM; MYR, 75 mM; CUR, 100 mM) or

vehicle (NC, no toxin; PC, toxin treated) at

37�C. After 30 min, BoNT/A 1 nM was added for

an additional 30 min to all samples except NC,

and then neurons were washed and incubated

in the presence of the same concentration of in-

hibitors for an additional 2 hr. Samples were

fixed and stained with an antibody specific for

the C terminus of the BoNT/A-cleaved SNAP25

(SNAP251–197). Anti-BoNT/A-cleaved SNAP25

was detected with an Alexa Fluor 555-conjugated

secondary antibody. Images shown are repre-

sentative of three independent sets of experi-

ments. Scale bar, 10 mm. See also Figure S2A.

(B) Quantification of SNAP25 by immunoblotting.

CGNs were preincubated for 30 min with the

indicated concentration of inhibitor at 37�C,
BoNT/A 1 nM was added for 15 min, cells were

washed, and culture medium with the same

concentration of inhibitor was restored and in-

cubation prolonged for 12 hr at 37�C. Cells were

lysed and the SNAP25 content was estimated

with an antibody that recognizes both the

cleaved and the intact form of SNAP25 and

another one specific for VAMP2, as an internal

control. The top left panel reports a typical

immunoblot resulting from an experiment in

which curcumin was present (NC, no toxin no

inhibitor added; PC, no inhibitor plus BoNT/A

1 nM final concentration; the five right lanes refer

to sample treated with the increasing curcumin

concentrations indicated in the right panel). The

other panels report the amount of SNAP25

determined as a ratio to VAMP2 staining, which

serves as internal control, taking the value in nontreated cells (NC) as 100% in CGNs samples treated with the indicated amounts of the different

inhibitors and with BoNT/A. SD values derive from three independent experiments performed in triplicate. See also Figures S2B and S2C. Similar

results were obtained when 10 pM BoNT/A was left, together with inhibitors, for 12 hr at 37�C before cell lysis and evaluation of SNAP25 cleavage (not

shown).
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found in the prevention of the intoxication of CGNs by BoNT/E

(Figures S3A and S3B) or by BoNT/C (Figure S3C).

Thioredoxin and Thioredoxin Reductase Inhibitors
Inhibit the Peripheral Neuroparalysis Induced by
Botulinum Neurotoxin Serotypes A and C
The panel of inhibitors of TrxR and of Trx used here have been

extensively tested in animals and in humans as possible thera-

peutics in different diseases (Hanschmann et al., 2013; Holmg-

ren and Lu, 2010; Mahmood et al., 2013) and are nontoxic at

the doses used here. This encouraged us to test their activity

in preventing BoNT toxicity inmice by using as a readout the digit

abduction score (DAS) assay, which provides a reliable estima-

tion of the paralysis induced by a local injection of toxin (Broide

et al., 2013). Notably, such an experiment avoids the death of the

animal and allows one to follow the rate of muscular activity

recovery with time. In fact, this assay exploits a remarkable prop-

erty of BoNTs; i.e., the complete reversibility of their peripheral

neuroparalytic action (Rossetto et al., 2014). Figures 4 and S4

report these profiles for BoNT/A and BoNT/C, respectively,

which are the two BoNT serotypes characterized by a long dura-

tion of action (Eleopra et al., 1997; Morbiato et al., 2007). It is

clearly shown that the intramuscular injection of auranofin, myr-

icetin, and curcumin (Figures 4A and S4A), and of PX-12 and

ebselen (Figures 4B and S4B), are effective in lowering the neu-

roparalytic effect of these neurotoxins, permitting a more rapid

recovery of the muscle activity. Notably, the latter two inhibitors,

which act on Trx, are particularly effective. The DAS assay with

BoNT/E does not provide significant results due to the very short

duration of action of this BoNT serotype in mice (Rossetto et al.,

2006). The inhibitory effect was also demonstrated by classical

electrophysiological recordings (Molgo et al., 1990) of the

treated hindlimbs. Figure 4C shows that the soleus muscle ex-

cided 1 week after BoNT/A local injection presents the complete

blockade of the evoked end-plate potential (EEPP). On the other

hand, muscles that were pretreated before the local injection of

BoNT/A with myricetin, which acts upon TrxR, or with PX-12,

which acts upon Trx, show an almost complete recovery of the

EEPP, while the injection of the sole drugs does not alter the

EEPP (Figure S4C). Finally, the possible inhibitory activity of

these drugs in the prevention of death from botulism was evalu-

ated. We used ebselen to perform this proof of principle, since

this drug is representative of the other ones used here as it inter-

acts with both TrxR and Trx (Zhao et al., 2002). More extensive

trials of this kind were not allowed by the local animal ethical

committee because of the large number of animals required.

Figure 4D shows that a systemic pretreatment of mice with a

well-tolerated dose of ebselen (7.5 mg/kg) (Meotti et al., 2003)

significantly reduces the number of deaths induced by a 2-fold

lethal dose of BoNT/A. Remarkably, this pretreatment also

largely extends the life of the remaining animals, a figure of great

significance for human botulism.

Figure 3. Inhibitors of Thioredoxin Prevent the SNAP25 Cleavage by BoNT/A in Cerebellar Granular Neurons

(A) CGNs were treated with Trx inhibitors (PX-12 25 mM or EBS 30 mM) or vehicle (NC, no toxin; PC, toxin treated) at 37�C. After 30 min, BoNT/A 1 nM was added

for an additional 30 min, neurons were washed, and the incubation with the same concentration of inhibitors was prolonged for 2 hr. Treated neurons were fixed

and stained with an antibody specific for the BoNT/A-cleaved form of SNAP25 (SNAP251–197). BoNT/A-cleaved SNAP25 was detected with an Alexa Fluor 555-

conjugated secondary antibody. These images are representative of three independent sets of experiments. Scale bar, 10 mm. See also Figure S3A.

(B) Quantification of SNAP25 by immunoblotting. CGNs were preincubated for 30 min with the indicated concentration of inhibitor at 37�C, BoNT/A 1 nM (final

concentration) was added for 15min, cells were washed, and culture mediumwith the same concentration of inhibitor was restored and incubation prolonged for

12 hr at 37�C. Cells were lysed and the SNAP25 content was estimated with an antibody that recognizes both the cleaved and the intact form of SNAP25 and

another one specific for VAMP2, as an internal control. The left panel reports the result of a typical experiment aimed at determining the effect of thioredoxin

inhibitor PX-12. The right five lanes derive from samples exposed to increasing concentrations of PX-12 indicated in the middle panel. NC, no toxin added; PC,

toxin added in absence of PX-12. The middle and right panels report the amount of SNAP25 determined as a ratio to VAMP2 staining, which serves as internal

control in samples treated with the indicated amounts of the two inhibitors, taking the value of nontreated cells (NC) as 100%. SD values derive from three in-

dependent experiments performed in triplicates. See also Figures S3B and S3C. Similar results were obtained when 10 pM BoNT/A was left, together with

inhibitors, for 12 hr at 37�C before cell lysis and evaluation of SNAP25 cleavage (not shown).
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DISCUSSION

The control of the redox potentials of the cell cytosol and organ-

elles is essential for cell life, and this is exerted via connected

redox systems consisting of several redox couples. A cell redox

event of particularly high relevance is the control of the formation

and breakdown of protein disulfide bonds, which are implicated

in controlling a variety of cell functions and are altered in a num-

ber of human diseases. In addition to glutathione and cysteine-

dependent reducing systems, protein disulfide reduction is

performed by the NADPH-thioredoxin reductase-thioredoxin

system (Holmgren, 1989). The paramount importance of the

TrxR-Trx system is indicated by its high conservation along bio-

logical evolution and by its localization in the nucleus and inside

mitochondria, in addition to the cytosol (Hanschmann et al.,

2013; Holmgren, 1985; Lu and Holmgren, 2012; Rigobello and

Bindoli, 2010). This redox system is also expressed in neurons

and Schwann cells, and it is axonally transported in both direc-

tions (Rozell et al., 1985; Stemme et al., 1985). All TrxR-Trx iso-

forms are essential for cell life as deduced by the fact that their

suppression leads to cell death and are associated to various hu-

man diseases, including cancer (Arnér and Holmgren, 2000;

Holmgren and Lu, 2010; Mukherjee and Martin, 2008). Accord-

ingly, a large number of drugs were developed to be evaluated

as candidates for clinical use. Using the TrxR-specific drug aur-

anofin, which is currently used in the treatment of rheumatoid

arthritis and seems to have a great potential for the treatment

of other pathological conditions (Madeira et al., 2012), we have

provided indirect evidence that the TrxR-Trx system reduces

the disulfide bond linking the L and H chains of tetanus neuro-

toxin (Pirazzini et al., 2013). Building on this observation and on

the fact that synaptic vesicles mediate the entry of tetanus

neurotoxin inside neurons (Matteoli et al., 1996), we have inves-

tigated the association of the TrxR-Trx system with SVs and

found that it is indeed present on the cytosolic surface of SVs

as extrinsic proteins that can be removed with a high pH bicar-

bonate/carbonated buffer incubation. Intriguingly, TrxR-Trx is

enriched in those synaptic vesicles that are docked to active

zones and are ready to release their neurotransmitter content

upon depolarization of the presynaptic membrane. This finding

Figure 4. Thioredoxin and Thioredoxin Reductase Inhibitors Largely Prevent the Local Paralysis and Death Induced by BoNT/A

(A and B) Digit abduction score (DAS) changes with time after injection of 15 pg of BoNT/A in the mouse hindlimb after a previous injection with the indicated TrxR

(A) or Trx (B) inhibitors or vehicle only (PC); DAS scores for animals treated with inhibitors only are not shown for clarity. All values are means ± SEM from four

individual experiments using at least three animals per condition. See also Figures S4A and S4B.

(C) Representative traces of evoked postsynaptic potential by nerve stimulation in soleus muscles dissected at day 6 from mice treated as PC (left) or as in (A)

(middle) or (B) (right). Traces represent intracellular recordings of evoked postsynaptic potentials following nerve stimulation (arrow), with resting membrane

potential clamped at �70 mV. In BoNT/A-treated muscle fibers, no postsynaptic potentials could be evoked, indicating complete nerve block. Star indicates a

spontaneous miniature end-plate potential. See also Figure S4C.

(D) Ebselen reduces BoNT/A lethality. Adult male CD1mice preconditionedwith ebselen 7.5mg/kg (n = 15) or vehicle (n = 15) (see Experimental Procedures) were

i.p. injectedwith 23MLD50 of BoNT/A. The animals weremonitored every 4 hr for 96 hr. The survival curves were compared and found to be significantly different

(p < 0.0001).
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suggests that the TrxR-Trx systemmay play a role in maintaining

SV protein function by reducing protein disulfides. For example,

the cysteine string protein forms disulfide-mediated dimers that

may be noncompatible with its essential chaperone function

(Braun and Scheller, 1995). Moreover, the cytosolic domains of

several other SV proteins include cysteines (Morciano et al.,

2009; Takamori et al., 2006). In addition, it should be recalled

that Trx has the folding of primitive chaperones (Arnér and

Holmgren, 2000; Berndt et al., 2008; Dekker et al., 2011; In-

gles-Prieto et al., 2013), and a chaperone role on the cytosolic

surface is a possibility to be considered. Previous careful studies

of SV proteomics have not found TrxR and Trx (Boyken et al.,

2013; Morciano et al., 2005, 2009), but this is explained by the

present finding of the extrinsic nature of the binding of TrxR

and Trx to SVs and by the fact that bicarbonate-stripped SVs

were used in the mass spectrometry studies. Here, experimental

evidence that TrxR and Trx have to be added to the complex

composition and structure of the synaptic vesicles is provided.

It also adds to the list of the several SV membrane components

whose physiological role is still unknown. The identification of the

SV protein substrates of Trx requires a study in itself. Neverthe-

less, here we have shown that this redox system is functional on

the cytosolic surface of SVs by using botulinum neurotoxins, for

which it was previously established that the reduction of the sin-

gle interchain disulfide bridge is an essential prerequisite to free

the metalloprotease activity of BoNT/A and BoNT/E (Fischer and

Montal, 2007; Schiavo et al., 1993). Accordingly, a series of well-

characterized inhibitors of TrxR and Trx prevent, in a concentra-

tion-dependent manner, the display of metalloproteolytic activity

of the three different BoNTs tested in neuronal cultures. It is

noteworthy that the scale of potency of the various inhibitors is

closely similar for the three BoNT serotypes, indicating that

the BoNTs are similarly dependent on disulfide reduction. Such

data strongly support the rather general conclusion that the

interchain disulfide reduction is a very essential molecular step

of the intoxication process performed by all clostridial neuro-

toxins into neurons. Of even greater importance it is the finding

that such inhibitors are very effective in lowering the paralysis

induced by a local injection of BoNT/A and BoNT/C. Perhaps

more importantly, ebselen elicits a remarkable protection of

mice from a 2-fold lethal dose of BoNT/A, a serotype often asso-

ciated with human botulism. As a consequence, the present ex-

periments identify a class of inhibitors of BoNTs that should be

active on all BoNTs independently of their different primary

sequence and immunoreactivity, as the single interchain disul-

fide bond is strictly conserved. This class of inhibitors includes

several compounds that have long been tested or are currently

under validation for human therapy and that have a substantial

record of safety. Our data therefore provide a proof of principle

for using these BoNT inhibitors in the prevention and therapy

of human botulism. Clearly, these inhibitors are not effective

once the L chain is already in the cytosol, but it is known that

in clinical botulism the neurotoxin remains in circulation for

weeks after the initial symptoms (Fagan et al., 2009; Sheth

et al., 2008), and these drugs may prevent further entry of

BoNT L chains. This is more important in infant botulism, where

there is a continuous supply of BoNT from the vegetative bacte-

ria implanted into the intestine (Johnson andMontecucco, 2008).

Remarkably, as these inhibitors act on a common step for all

BoNTs, such a strategy may be used immediately after diag-

nosis, without the need for serotype identification. With the

growing number of BoNTs (>40 types already reported) (Ros-

setto et al., 2014), this is a matter of concern with respect to

the current use of BoNT antisera, and such a pharmacological

approach could parallel and synergize with the antisera treat-

ment. In addition, these drugs could be used as preventive ther-

apy for individuals who have to enter environments where BoNTs

have been released.

EXPERIMENTAL PROCEDURES

Purification of Synaptic Vesicles from Rat Cerebral Cortex

SV isolation was performed with established methods (Boyken et al., 2013; De

Camilli et al., 1983; Morciano et al., 2005). Briefly, 15 rats were used. Cerebral

cortices were pulled from the cerebellum, brainstem, and most of the midbrain

and were mechanically homogenized in 320 mM sucrose, 4 mM HEPES (pH

7.3) supplemented with protease inhibitors (complete EDTA-free, Roche). Af-

ter differential centrifugations, crude synaptic vesicles were separated through

a continuous sucrose gradient (0.25–1.5M sucrose, 4mMHEPES [pH 7.3]) in a

Beckmann XL-80 ultracentrifuge for 5 hr with a SW28 rotor. Vesicles sediment-

ing at about 300–400 mM sucrose (free SVs) and those sedimenting at

800–1,000 mM (docked SVs) were collected and pelleted by centrifugation

in a 70Ti rotor (Morciano et al., 2005). These vesicle fractions were resus-

pended in SV buffer (4 mM HEPES, 300 mM glycine [pH 7.4] supplemented

with protease inhibitors). In some experiments, free and docked SVs (1 mg

of total protein) were incubated with 100 ml of G protein-coupled Dynabeads

(Life Technology), previously coupled with anti-synaptophysin, and were im-

munoisolated by overnight incubation. The immunoisolated SVs were directly

lysed in nonreducing loading sample buffer, subjected to SDS-PAGE, and

transferred onto a nitrocellulose membrane. Proteins were then labeled with

specific antibodies, as indicated in the legends of Figures 1B and S1B legends.

In some cases, SV bound to the Dynabeads were removed, washed, and strip-

ped of extrinsic proteins upon incubation with 100 mM Na-bicarbonate buffer

adjusted to pH 11.0. After centrifugation, the supernatant and the pellets were

subjected to SDS-PAGE and then western blotted with the antibodies indi-

cated in the Figure 1C legend.

Botulinum Neurotoxin Inhibition Assay on CGNs

CGNs at 6–8 days in vitro (DIV) were preincubated for 30 min with increasing

concentrations of the indicated inhibitors in basal medium Eagle (BME) 10%

fetal bovine serum (FBS), 25 mMKCl at 37�C and 5%CO2. The indicated toxin

was then added and left for 15 min at 37�C (BoNT/A and BoNT/C, 1 nM; BoNT/

E, 2 nM). Thereafter, the toxin was washed away and the normal culture me-

dium was restored with the same indicated concentration of inhibitor for

12 hr at 37�C and 5% CO2.

Alternatively, CGNs at 6–8 DIV were preincubated for 30 min with different

concentrations of the indicated inhibitors in BME 10% FBS, 25 mM KCl at

37�C and 5% CO2. The BoNT was then added (BoNT/A, 10 pM; BoNT/E

and BoNT/C, 50 pM), in the same medium, and left for 12 hr at 37�C in

the presence of inhibitors. In both cases, the translocation of the L chains

of the various neurotoxins was evaluated following their specific proteolytic

activity by immunoblotting with specific antibodies against their SNARE pro-

tein targets.

Immunocytochemistry and Immunohistochemistry

Neurons were seeded onto 24-well plates at a cell density of 2.53 105 cells per

well. CGNs at 6–8DIVwere preincubated for 30minwith the indicated concen-

tration of inhibitor in BME 10% FBS, 25 mM KCl at 37�C and 5%CO2. BoNT/A

1 nM was added and the incubation carried out for 30 min, the neurons were

washed, and the incubation with the proper inhibitor was prolonged for 2 hr. In

the case of serotype E, the toxin was added (2 nM) and left for 2 hr. The trans-

location of the L chains of the two neurotoxins was evaluated following the

generation of the cleaved form of SNAP25 with specific primary antibodies.
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This was determined by fixing neurons for 15min at room temperature with 4%

paraformaldehyde in PBS, quenched (50 mM NH4Cl in PBS) for 20 min,

and permeabilized with 5% acetic acid in ethanol for 20 min at �20�C.
Neurons were then incubated with primary antibodies specific for the BoNT/

A- or BoNT/E-truncated forms of SNAP25 (Antonucci et al., 2008), using

VAMP2 staining as internal control. For the identification of Trx and TrxR,

CGNs were fixed at 6–8 DIV and immunostained with specific antibodies,

which were detected with Alexa-conjugated secondary antibodies. Coverslips

were mounted in 90% glycerol in PBS containing 3% N-propylgallate and

examined by either confocal (Leica TCS SP5) or epifluorescence (Leica

DMIRE2) microscopy.

Digit Abduction Score Assay

Swiss-Webster adult male CD1 mice weighing 26–28 g were housed under

controlled light/dark conditions, and food and water were provided ad libitum.

All experiments were performed in accordance with Italian guidelines (law n.

116/1992) and approved by the animal ethical committee of Padova Univer-

sity. Inhibitors were dissolved in an ethanol stock solution. Gastrocnemii mus-

cles were injected (injection volume 50 ml) with 0.05mg of auranofin, curcumin,

PX-12, or ebselen (10% ethanol) or with 0.01 mg of myricetin (20% ethanol) or

vehicle alone (20% ethanol in 0.9% NaCl). After 30 min, the muscles were

further injected with 15 pg of BoNT/A or 20 pg of BoNT/C (injection volume

25 ml). Hindlimb paralysis was evaluated at least once per day and DAS score

provided (Aoki, 2001; Broide et al., 2013).

Mouse Death Assay

Swiss-Webster adult male CD1 mice weighing 24–26 g were housed under

controlled light/dark conditions, and food and water were provided ad libitum.

All experiments were performed in accordance with Italian guidelines (law n.

116/1992) and were by the animal ethical committee of our university. Ebselen

was dissolved in a stock solution (10 mg/ml) with DMSO. Mice were condi-

tioned for 3 days with an intraperitoneal (i.p.) injection of ebselen 7.5 mg/kg

or with vehicle every 12 hr. The fourth day, BoNT/A was prepared as a stock

solution (1.75 pg/ml), and 30 min after the last inhibitor dose, mice were

weighted and i.p. injected with 1 ml/g body weight, corresponding to

1.75 ng/kg BoNT/A (23MLD50). Mice weremonitored every 4 hr for 96 hr, after

which the experiment was considered ended.

Electrophysiological Recordings

One week after inhibitor and toxin injections, the treated (left hind leg) and con-

trol nontreated (right hind leg) soleusmuscles were quickly excisedwith partic-

ular care to leave a length of 1–1.5 mm of nerve stump. Excised muscles were

immediately placed in a Tyrode physiological solution and bubbled with a 5%

CO2 95% O2 gas mixture at room temperature (20–22�C). The composition of

Tyrode solution was 139 mM NaCl, 12 mM NaHCO3, 4 mM KCl, 2 mM CaCl2,

1 mM MgCl2, 1 mM KH2PO4, and 11 mM glucose (pH 7.4). After 10 min incu-

bation, muscles were transferred to a Sylgard-coated 35mmPetri dish, placed

with the region of nerve insertion up, and then pinned to the bottom using in-

sect pins (Fine Science Tools). The dish was filled with Tyrode physiological

solution bubbled with a 5% CO2 95% O2 gas mixture. A 3 mM final concentra-

tion of m-Conotoxin GIIIB (Alomone Labs) was added from a stock solution

to block muscle action potentials (Sons et al., 2006). Excitatory postsynaptic

potentials were intracellularly recorded from single muscle fibers using boro-

silicate glass microelectrodes (inner diameter 0.86, outer diameter 1.5; 15

MOhm resistance) (Science Products). Intracellularly recorded signals were

amplified using a SEVC amplifier (NPI electronic) in the current-clamp condi-

tion. Amplified signals were then sent to an A/D converter (National Instru-

ments) and fed to a personal computer. Digitized recordings were analyzed

offline using the WinEDR software for electrophysiology (Strathclyde and

Pclamp6, Axon).
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Figure S1. Thioredoxin Reductase and Thioredoxin are present in nerve terminals. 

(A) Confocal images showing thioredoxin reductase (left) and thioredoxin (right) highly 

expressed in primary cultures of Cerebellar Granular Neurons. The staining is present in 

cell bodies as well as inside nerve projections and terminals. (B) Post synaptic (PSD95), 

mitochondrial (Tom20) or presynaptic markers (all the others) protein content into rat brain 

synaptosomes and their sub-fractions (indicated on the top of the lanes, 10μg of total 

lysate proteins per lane). PMCA, Plasma Membrane Calcium ATPase; NA+/K+ ATPase, 

Sodium-Potassium pump; PSD95, Post Synaptic Density protein 95; Hsp90, Heat shock 

protein 90; Hsc70, Heat shock cognate 70; Rab3a, Ras-related protein 3a; Tom20, 

translocase of outer mitochondrial membranes 20 kDa. Related to Figure 1. 



 

Figure S2. The BoNT/E and BoNT/C induced cleavage of SNARE proteins is 

prevented in cerebellar granular neurons by Thioredoxin Reductase inhibitors. (A) 



CGNs were treated with TrxR inhibitors (JUG 20 µM; AUR 1 µM; MYR 75 µM; CUR 100 

µM) or vehicle (NC, no toxin and PC, toxin treated) at 37 °C. After 30 minutes, BoNT/E 2 

nM was added for further 120 min to all samples except NC. Samples were washed, fixed 

and stained with an antibody specific for the C terminus of the BoNT/E-cleaved SNAP25 

(SNAP251-180). Anti BoNT/E-cleaved SNAP25 was detected with an Alexa555-conjugated 

secondary antibody. Images shown are representative of three independent sets of 

experiments. Bar =10 µm. (B) Quantification of SNAP25 cleavage induced by BoNT/E: 

CGNs were pre-incubated for 30 min with the indicated concentration of inhibitor at 37 °C, 

BoNT/E 2 nM was added for 15 min, cells were washed and culture medium with the same 

concentration of inhibitor was restored and incubation prolonged for 12 h at 37 °C. Cells 

were lysed and the SNAP25 content was estimated with an antibody which recognizes 

both the cleaved and the intact form of SNAP25 and another one specific for VAMP2, as 

internal control. The top left panel reports a typical immunoblot resulting from an 

experiments in which myricetin was present (NC, no toxin no inhibitor added, PC no 

inhibitor plus BoNT/E 2 nM final concentration, the five right lanes refer to sample treated 

with increasing myricetin concentrations, indicated in the side panel). The other panels 

report the amount of SNAP25 determined as a ratio to VAMP2 staining which serves as 

internal control, taking the value in non-treated cells (NC) as 100%, in CGNs samples 

treated with the indicated amounts of the different inhibitors and with BoNT/E. S.D. values 

derive from at least three independent experiments performed in triplicates. Closely similar 

results were obtained when 50 picoMolar BoNT/E was left, together with inhibitors, for 12 h 

at 37 °C before cell lysis and evaluation of SNAP25 cleavage (not shown). (C) 

Quantification of SNAP25 and syntaxin 1A-1B cleavage induced by BoNT/C (1nM): 

samples were treated as in B, with the only exception that immunoblotting was performed 

also against syntaxin 1A-1B. S.D. values derive from at least three independent 

experiments performed in triplicates. Closely similar results were obtained when 50 

picoMolar BoNT/C was left, together with inhibitors, for 12 h at 37 °C before cell lysis and 

evaluation of SNAREs cleavage (not shown). Related to Figure 2. 

 



 

Figure S3. The BoNT/E and BoNT/C induced cleavage of SNARE proteins is 

prevented by Thioredoxin inhibitors in cerebellar granular neurons. (A) CGNs were 

treated with the thioredoxin inhibitors (PX-12 25 µM or EBS 30 µM) or the vehicle (NC, no 

toxin and PC, toxin treated) at 37 °C. After 30 minutes, BoNT/E 2 nM was added and the 

incubation prolonged for 2 h. Treated neurons were fixed and stained with an antibody 

against SNAP251-180 and VAMP2. BoNT/E cleaved SNAP25 was detected with an 

Alexa555 conjugated secondary antibody while VAMP2 with an Alexa488 secondary 

antibody (not shown for clarity). Images shown are representative from three independent 

experiments. Bar =10 µm. (B) Quantification of SNAP25 cleavage induced by BoNT/E: 

CGNs were pre-incubated for 30 min with the indicated concentration of inhibitor at 37 °C, 

BoNT/E 2 nM was added for 15 min, cells were washed and culture medium with the same 

concentration of inhibitor was restored and incubation prolonged for 12 h at 37 °C. Cells 

were lysed and the SNAP25 content was estimated with an antibody which recognizes 

both the cleaved and the intact form of SNAP25 and another one specific for VAMP2, as 

loading control. The left panel shows a typical immunoblot obtained with increasing 

concentrations of ebselen (reported on the side panel). The other panels report the 

quantification of residual SNAP25 with the indicated concentrations of inhibitors, plotted as 

a ratio with respect to VAMP2 staining, used as an internal standard, taking the value in 

non-treated cells (NC) as 100%. S.D. values derive from three independent experiments 



performed in triplicates. Closely similar results were obtained when 50 picoMolar BoNT/E 

was left, together with inhibitors, for 12 h at 37 °C (not shown). (C) Quantification of 

SNAP25 and syntaxin 1A-1B cleavage induced by BoNT/C (1nM): samples were treated 

as in B, with the only exception that immunoblotting was performed also against syntaxin 

1A-1B. S.D. values derive from at least three independent experiments performed in 

triplicates. Closely similar results were obtained when 50 picoMolar BoNT/C was left, 

together with inhibitors, for 12 h at 37 °C before cell lysis and evaluation of SNAREs 

cleavage (not shown). Related to Figure 3. 

 

Figure S4. Thioredoxin or Thioredoxin Reductase inhibitors largely prevent and 

shorten the muscle paralysis induced by BoNT/C in mice. DAS changes with time 

induced by 20pg of BoNT/C injected in the mouse hind limb after pre-injection in the leg of 

different TrxR (A) or Trx (B) inhibitors or vehicle (PC). Values are the means ±SEM 

derived from four experiments using at least three animals per condition. (C) 

Representative traces of post-synaptic potential evoked by nerve stimulation in mouse 

soleus muscles dissected 6 days after injection with the indicated inhibitors. Traces 

represent intracellular recordings of EPPP following nerve stimulation (arrow). Resting 

membrane potential was clamped at -70 mV. Related to Figure 4. 



Supplementary Experimental procedures 

 

Reagents 

Auranofin [1-Thio-β-D-glucopyranosatotriethylphosphine gold-2,3,4,6-tetraacetate], 

Myricetin [3,3′,4′,5,5′,7-Hexahydroxyflavone], Curcumin [(E,E)-1,7-bis(4-Hydroxy-3-

methoxyphenyl)-1,6-heptadiene-3,5-dione], Juglone [5-Hydroxy-1,4-naphtoquinone], 

cytosine β-D-arabinoside, DNAse I, poly-L-lysine were purchased from Sigma Aldrich. PX-

12 [2-[(1-Methylpropyl)dithio]-1H-imidazole] and Ebselen [2-Phenyl-1,2-benzisoselenazol-

3(2H)-one] were purchased from Santa Cruz Biotechnology. Anti-VAMP2 (104 211) and 

anti SNAP25 (SMI81, ab24737) monoclonal antibodies were from Synaptic System and 

Abcam, respectively. Anti-BoNT/A cleaved SNAP25, anti-BoNT/E cleaved SNAP25 and 

anti-syntaxin 1A-1B polyclonal antibodies have been previously characterized (Antonucci 

et al., 2008; Schiavo et al., 1995), anti PMCA (plasma membrane calcium pump ATPase) 

was from Thermo Scientific, Na+/K+ ATPase was from Abcam, anti-synaptophysin mAb 

(clone SY38) was from Dako, anti-thioredoxin reductase 1 (07-613) was from Merck 

Millipore, anti-thioredoxin 1 Mab (clone EPR6111) was from GeneTex, anti-PSD95 Mab 

was from Sigma Aldrich, anti-Hsc70 Mab was from Synaptic Sytem, anti-Hsp90 Mab was 

from BD transduction LaboratoriesTM, anti-tom20 (FL-145) was from SantaCruz 

Biotechnology. BoNT/A and /C were prepared and purified as described (Schiavo and 

Montecucco, 1995; Shone and Tranter, 1995) whilst BoNT/E was produced in Escherichia 

coli via recombinant methods (Binz et al., 1994). 

Cell cultures  

Primary cultures of rat cerebellar granule neurons (CGNs) were prepared from 6- to 8-

days-old rats as previously described (Rigoni et al., 2004). Cerebella of 6 days post-natal 

rats were mechanically disrupted and then trypsinized in the presence of DNase I. Cells 

were collected and plated into 24 well plates, coated with poly-L-lysine (50 μg/mL), at a 

cell density of 4 x 105 cells per well. Cultures were maintained at 37 °C, 5% CO2, 95% 

humidity in BME supplemented with 10% fetal bovine serum, 25 mM KCl, 2 mM glutamine 

and 50 μg/mL gentamicin. To arrest growth of non-neuronal cells, cytosine arabinoside (10 

μM) was added to the medium 18–24 h after plating. 

 



Immunoblotting  

Cells were lysed with 100 mM Tris-HCl, 1% SDS, pH 6.8, containing protease inhibitors 

(complete Mini EDTA-free, Roche). Protein concentration was determined with the BCA 

test (Pierce BCA protein assay, Thermo Scientific), and equal amounts were loaded onto a 

4-12% or 10-20% NuPage gel (Invitrogen) and separated by electrophoresis in 1X MES 

buffer (Invitrogen) or 1X Tris-Glycine buffer. Proteins were then transferred onto Protran 

nitrocellulose membranes (Whatman) and saturated for 1 h in PBST (PBS containing 0.1% 

Tween20) supplemented with 5% non-fatty milk. Incubation with primary antibodies was 

performed overnight at 4°C. The membranes were washed three times with PBST and 

incubated with secondary HRP-conjugated antibodies. Finally, membranes were washed 

several times with PBST and visualization was carried out using Luminata Crescendo 

(Merck Millipore).  

In vitro proteolytic activity 

BoNT/A or BoNT/E (2 µg) was reduced with reducing buffer (150 mM NaCl, 10 mM 

NaH2PO4, 15 mM DTT pH 7.4) in the presence of indicated Trx-TrxR inhibitor for 30 

minutes at 37° C. 5 g of recombinant GST-SNAP25 was added to the reduced toxins and 

the reaction was carried out for 12 hours at 37° C. SNAP25 cleavage was assessed by 

SDS-PAGE and immunoblotting with an anti SNAP25 antibody. 

Viability test 

CGNs were seeded in a 96 wells plates at a cell density 105 cells per well. After 6 div, 

different concentration of Trx or TrxR inhibitors, ranging from 0 to the maximum 

concentration used in the experiments, were added and left for 12 hours. Neurons were 

the washed and MTS assay (Promega) performed according to manufacturer indication.  
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A B S T R A C T

Botulinum neurotoxins (BoNTs) form a growing family of metalloproteases with a unique specificity
either for VAMP, SNAP25 or syntaxin. The BoNTs are grouped in seven different serotypes indicated by
letters from A to G. These neurotoxins enter the cytosol of nerve terminals via a 100 kDa chain which
binds to the presynaptic membrane and assists the translocation of a 50 kDa metalloprotease chain.
These two chains are linked by a single disulfide bridge which plays an essential role during the entry of
the metalloprotease chain in the cytosol, but thereafter it has to be reduced to free the proteolytic activity.
Its reduction is mediated by thioredoxin which is continuously regenerated by its reductase. Here we
show that inhibitors of thioredoxin reductase or of thioredoxin prevent the specific proteolysis of VAMP
by the four VAMP-specific BoNTs: type B, D, F and G. These compounds are effective not only in primary
cultures of neurons, but also in preventing the in vivo mouse limb neuroparalysis. In addition, one of these
inhibitors, Ebselen, largely protects mice from the death caused by a systemic injection. Together with
recent results obtained with BoNTs specific for SNAP25 and syntaxin, the present data demonstrate the
essential role of the thioredoxin–thioredoxin reductase system in reducing the interchain disulfide
during the nerve intoxication mechanism of all serotypes. Therefore its inhibitors should be considered
for a possible use to prevent botulism and for treating infant botulism.

ã 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Several species of anaerobic bacteria of the genus Clostridium
produce botulinum neurotoxins which belong to seven different
serotypes (BoNT/A-/G) [1,2]. Their number is rapidly growing and
many different sub-serotypes are presently known. The biological
and toxicological properties of these novel BoNTs are poorly
understood, but the limited amount of experimental data indicate
that they act predominantly at peripheral cholinergic nerve
terminals, causing a long lasting blockade of acetylcholine release
with ensuing paralysis of skeletal and autonomic nerve terminals,
characteristic of botulism [3]. Apart from BoNT/D [4–6], BoNTs are
the most toxic poisons for humans and are classified as potential
* Corresponding author at: Istituto CNR di Neuroscienze, Università di Padova,
Via U. Bassi 58/B, 35121 Padova, Italy.

E-mail address: cesare.montecucco@gmail.com (C. Montecucco).
1 These authors contributed equally to this work.

http://dx.doi.org/10.1016/j.bcp.2015.09.023
0006-2952/ã 2015 Elsevier Inc. All rights reserved.
bioterrorist weapons [7,8]. This extremely high toxicity results
from their neurospecificity and from their catalytic activity, which
leads to knock-out of proteins essential to the neurotransmitter
release apparatus [2,9]. All BoNTs consist of a metalloprotease light
chain (L, 50 kDa) and a heavy chain (H, 100 kDa) linked by a strictly
conserved interchain disulfide bond. This molecular structure has
been shaped during evolution in order to exploit essential
physiological features of the vertebrate nervous system. Indeed
BoNTs bind specifically to peripheral nerve terminals presynaptic
membrane [10] via the C-terminus of the H chain which interacts
with polysialogangliosides leading to toxin accumulation. The
subsequent binding to a protein receptor, transiently exposed on
the membrane, is harnessed for their endocytosis [11,12]. In the
case of BoNT/A the endocytic organelles were identified as synaptic
vesicles [13,14]. Similar data are not available for the other BoNTs,
but several experiments performed with vacuolar ATPase proton
pump inhibitors clearly indicate that all these neurotoxins enter
the lumen of an acidic compartment [15,16]. Indeed it is
established that all serotypes have to undergo a low-pH driven

http://crossmark.crossref.org/dialog/?doi=10.1016/j.bcp.2015.09.023&domain=pdf
mailto:cesare.montecucco@gmail.com
http://dx.doi.org/10.1016/j.bcp.2015.09.023
http://dx.doi.org/10.1016/j.bcp.2015.09.023
http://www.sciencedirect.com/science/journal/00062952
www.elsevier.com/locate/biochempharm
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membrane translocation of the L chain, mediated by the N-
terminal part of H chain [9,17,18]. Once on the cytosolic side, the L
metalloprotease remains attached to the H chain via the interchain
disulfide bridge. This bond is strictly conserved among serotypes,
sub-serotypes and also tetanus neurotoxin, which is structurally
and functionally related to BoNTs. Remarkably, the premature
reduction of this disulfide completely abrogates the toxicity of all
clostridial neurotoxins, underscoring its fundamental role in the
intoxication process [19–23]. The reduction of this bond is
essential to release the catalytic activity of the L metalloprotease
within the cytosol versus the three SNARE proteins [20]. Indeed,
also in the test-tube BoNTs cannot cleave their recombinant
substrates unless this linkage is reduced [24,25]. Once enabled
through reduction, the L chain of BoNT/B, /D, /F and /G cleave VAMP
at different peptide bonds, BoNT/A and /E cleave SNAP25, while
BoNT/C is particular because it is the only one capable to cleave two
substrates, SNAP25 and syntaxin [26,27].

We recently reported that the thioredoxin reductase (TrxR)–
thioredoxin (Trx) redox system is present on the cytosolic surface
of synaptic vesicles and that its inhibition with specific drugs very
effectively prevented the neuroparalysis induced by the three
SNAP25 specific BoNTs (A, C and E) [28,29]. Here, we extended the
study to the four VAMP-specific BoNTs (B, D, F and G) [16,30] using
the four chemicals whose structures are shown in Fig. 1 and which
are well characterized inhibitors of TrxR–Trx system. Myricetin is a
flavonoid which reacts with the selenium atom present in the
active site of the reduced TrxR, providing its irreversible inhibition
[31]. Curcumin is a polyphenol of vegetal origin that irreversibly
inhibits TrxR forming a 1:2 adduct [32]. In both cases, the direct
consequence of inhibition is the loss of Trx reducing potential.
PX12 acts mainly on thioredoxin by alkylating a non-catalytic
cysteine residue, generating a steric hindrance that prevents the
interaction with its reductase. As a result, Trx remains permanently
in the oxidized, inactive, form [33,34]. Ebselen acts on both
members of the redox couple, as it is an excellent substrate for the
mammalian TrxR and a highly efficient oxidant of reduced Trx.
Thus, Ebselen prevents the normal function of both enzymes [35].

Together with our previous reports [28,36], the present results
provide a strong indication that the reduction of the single
interchain disulfide bond is a newly identified key event in nerve
intoxication of all BoNTs. We therefore propose that TrxR–Trx
Fig. 1. Thioredoxin–thioredoxin reductase inhibitors used in this study.
3,30 ,40 ,5,50 ,7-Hexahydroxyflavone (Myricetin) and (E,E)-1,7-bis(4-hydroxy-3 meth-
oxyphenyl)-1,6 heptadiene-3,5-dione (Curcumin) preferentially inhibit thioredoxin
reductase, 2-phenyl-1,2-benzisoselenazol-3(2H)-one (Ebselen) both thioredoxin
and thioredoxin reductase and 2-[(1-methylpropyl) dithio]-1H-imidazole (PX12)
inhibits thioredoxin.
inhibitors can be considered as a novel and general class of anti-
BoNTs drugs and discuss their possible use in humans.

2. Materials and methods

2.1. Reagents

3,30,40,5,50,7-Hexahydroxyflavone (Myricetin), (E,E)-1,7-bis(4-
hydroxy-3 methoxyphenyl)-1,6 heptadiene-3,5-dione (Curcumin),
cytosine b-D-arabinoside, DNAse I and poly-L-lysine were pur-
chased from Sigma– Aldrich. 2-[(1-Methylpropyl) dithio]-1H-
imidazole (PX12) was purchased from Santa Cruz Biotechnology
and 2-phenyl-1,2-benzisoselenazol-3(2H)-one (Ebselen) was pur-
chased from Cayman Chemical. Antibodies: VAMP2 (104 211) and
Syntaxin-1A (110 111) were from Synaptic System, SNAP25 (SMI81,
ab24737) was from Abcam. Botulinum neurotoxins B, D and G were
produced in Escherichia coli via recombinant methods [37–39]
whilst BoNT/F was purified as previously described [40].

2.2. Neuronal cultures

Primary cultures of rat cerebellar granule neurons (CGNs) were
prepared from 6- to 8-days-old rats as previously described [41].
Briefly, cerebella were isolated, mechanically disrupted and then
trypsinized in the presence of DNase I. Cells were then collected
and plated into 24 well plates, pre-coated with poly-L-lysine
(50 mg/ml), at a cell density of 4 �105 cells per well. Cultures were
maintained at 37 �C, 5% CO2, 95% humidity in BME supplemented
with 10% fetal bovine serum, 25 mM KCl, 2 mM glutamine and
50 mg/ml gentamicin (hereafter indicated as complete culture
medium). To arrest growth of non-neuronal cells, cytosine
arabinoside (10 mM) was added to the medium 18–24 h after
plating.

2.3. Botulinum neurotoxins inhibition assay on CGNs

CGNs at 6–8 days in vitro (DIV) were incubated with increasing
concentrations of the indicated inhibitor in complete culture
medium for 30 min at 37 �C. Thereafter, the indicated toxin was
diluted in complete culture medium and added to CGNs in order to
obtain the following final concentrations: BoNT/B (2 nM) or BoNT/F
(4 nM) or BoNT/G (4 nM). Incubation was prolonged for 12 h at
37 �C. In the case of BoNT/D, owing to its potency, the toxin was
added at a final concentration of 0.025 nM and incubated for
15 min at 37 �C. The neuronal culture was then washed and the
culture medium with the same concentration of inhibitor was
restored for 12 h. Toxicity was evaluated following the specific
proteolytic activity of BoNTs via immunoblotting with antibodies
specific for VAMP2, SNAP25 and syntaxin. All inhibitors were
dissolved in DMSO and stored at �80 �C.

2.4. Immunoblotting

Cells were directly lysed with Laemmli sample buffer contain-
ing protease inhibitors (complete Mini EDTA-free, Roche). Cell
lysates were loaded onto a 4–12% NuPage gel (Life technologies)
and separated by electrophoresis in 1X MES buffer (Life technolo-
gies). Proteins were transferred onto Protran nitrocellulose
membranes (Whatman) and saturated for 1 h in PBST (PBS, 0.1%
Tween 20) supplemented with 5% non-fatty milk. Incubation with
primary antibodies was performed overnight at 4 �C. The
membranes were then washed three times with PBST and
incubated with secondary HRP-conjugated antibodies for 1 h.
Finally, membranes were washed twice with PBST and once with
PBS; visualization was carried out using Luminata Crescendo
(Merck Millipore).
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2.5. Immunocytochemistry

Neurons were seeded onto 13 mm round glasses in 24-well
plates at a cell density of 4 �105 cells per well. CGNs at 6–8 DIV
were pre-incubated for 30 min with the indicated concentration of
inhibitor in complete culture medium at 37 �C and 5% CO2. BoNT/D
was added to reach a final concentration of 0.2 nM and the
incubation carried out for 10 min at 4 �C. Neurons were washed and
the incubation with the indicated inhibitor in the same medium
was prolonged for 90 min at 37 �C and 5% CO2. After treatments,
isolated CGNs were fixed for 10 min with 4% paraformaldehyde in
PBS and processed for immunocytochemistry. Coverslips were
mounted using Fluorescent Mounting Medium (Dako) and
examined by epifluorescence (Leica DMIRE2) microscopy. BoNT/
D activity was evaluated following the decrease of VAMP2 staining,
detected with an antibody specific for the intact form of the
protein.

2.6. Digit abduction score assay

Swiss-Webster adult male CD1 mice weighing 26–28 g were
housed under controlled light/dark conditions, and food and water
were provided ad libitum. All experiments were performed in
accordance with the European Communities Council Directive n�

2010/63/UE and approved by the Italian Ministry of Health.
Curcumin and PX12 were dissolved in ethanol to make stock
solutions (10 mg/ml and 5 mg/ml, respectively and stored at
�20 �C), whilst Ebselen was dissolved in DMSO (10 mg/ml and
stored at �20 �C). A freshly opened aliquot of Ebselen must be used.
Hind limb skeletal muscles were injected (total injection volume
25 ml) with 0.02 mg of Curcumin or PX12 or Ebselen or vehicle
alone (8% ethanol or DMSO in 0.9% NaCl with 0.2% gelatin). After
30 min, muscles were further injected with BoNT/B (0.5 pg/g) or
BoNT/D (0.02 pg/g) or BoNT/F (2 pg/g) or BoNT/G (5 pg/g) or
vehicle alone (0.9% NaCl with 0.2% gelatin). Hind limbs paralysis
Fig. 2. Thioredoxin–thioredoxin reductase inhibitors prevent the BoNT/B-induced cle
concentrations of inhibitors at 37 �C for 30 min. 2 nM BoNT/B was then added and incub
estimated with an antibody recognizing the intact form of VAMP2. Syntaxin and SNAP
immunoblot, obtained in experiments with Ebselen (NC, no toxin added; PC, only toxin
reported inhibitors, for VAMP2 determined as a ratio to Syntaxin staining, taking the va
experiments.
was evaluated at least once per day using the Digit Abduction Score
(DAS) assay, performed as previously reported [42,43].

2.7. Lethality assay

Swiss-Webster adult male CD1 mice weighing 24–26 g were
housed under controlled light/dark conditions, and food and water
were provided ad libitum. All experiments were performed in
accordance with the European Communities Council Directive n�

2010/63/UE and approved by the Italian Ministry of Health. A stock
solution of Ebselen in DMSO was prepared (7.5 mg/ml). Mice were
conditioned for 3 days with intraperitoneal (i.p.) injections of
Ebselen at a dose of 7.5 mg/kg or with vehicle (DMSO) every 12 h.
Each experiment was conducted with a freshly opened aliquot of
Ebselen. The third day, BoNT/B or BoNT/D or BoNT/F was prepared
as a stock solution (BoNT/B 0.9 pg/ml, BoNT/D 0.04 pg/ml and BoNT/
F 2.5 pg/ml in 0.9% NaCl with 0.2% gelatin), and 30 min after the
injection of the last inhibitor dose, mice were weighted and i.p.
injected with 1 ml/g body weight, roughly corresponding to a 2 fold
MLD50 for each toxin. The respective MLD50 have been determined
through preliminary experiments: BoNT/B 0.45 ng/kg, BoNT/D
0.02 ng/kg and BoNT/F 1.25 ng/kg). Mice were monitored every 4 h
for 96 h, at which the experiment was considered ended.

3. Results

3.1. Inhibitors of thioredoxin reductase and thioredoxin prevent
cleavage of VAMP by botulinum neurotoxins type B, D, F and G in
cultured neurons

The most convenient and rapid way to screen the ability of
TrxR–Trx inhibitors in blocking the VAMP-specific BoNTs toxicity is
the use of sensitive neuronal cultures. Fig. 2 shows that, upon
overnight incubation of primary cultures of cerebellar granular
neurons, 2 nM BoNT/B cleaves its substrate, as evaluated by
avage of VAMP2 in neuronal culture. CGNs were incubated with the indicated
ation prolonged for 12 h at 37 �C; cells were then lysed and the VAMP2 content was
25 staining was used as loading control. Upper left panel shows a representative

 added). Graphs show the quantification, of the experiments performed with the
lue of non-treated cells as 100%. SD values derive from at least three independent



Fig. 3. Thioredoxin–thioredoxin reductase inhibitors prevent the BoNT/D-induced cleavage of VAMP2 in neuronal culture. CGNs were incubated with the indicated
concentrations of inhibitor at 37 �C for 30 min. BoNT/D 0.025 nM was added for 15 min, cells were washed, and culture medium with the same concentration of inhibitor was
restored and incubation prolonged for 12 h at 37 �C. Cells were then lysed and the VAMP2 content was estimated with an antibody recognizing the intact form of VAMP2.
Syntaxin and SNAP25 staining was used as loading control. Upper left panel shows a representative immunoblot, obtained in experiments with Ebselen (NC, no toxin added;
PC, only toxin added). Graphs show the quantification, of the experiments performed with the reported inhibitors, for VAMP2 determined as a ratio to Syntaxin staining,
taking the value of non-treated cells as 100%. SD values derive from at least three independent experiments.
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western blotting with an antibody specific for the intact form of the
protein; a residual portion of VAMP2 not accessible to the
metalloprotease L chain of BoNT/B is a common finding
[19,44,45]. At the same time, Ebselen, PX12, Curcumin and
Myricetin prevent the cleavage of VAMP2 in a dose dependent
mode. Importantly, at the doses used here, these drugs do not
affect cell viability, nor do they inhibit the cleavage of a
recombinant VAMP2 (not shown).

Fig. 3 shows that BoNT/D is particularly active in CGNs and a
concentration as low as 0.025 nM cleaves nearly all VAMP2.
Nevertheless, the four compounds are effective in blocking such an
activity with a profile of concentration dependence similar to that
found with BoNT/B (Fig. 2), as determined by immunoblotting. This
is even more evident in Fig. 4, which documents their effect using
an immunofluorescence analysis. Importantly, the two assays
provide fully consistent results even though different toxin
concentrations, binding and incubation times were used. This
reinforces the conclusion about the preventing activity of the four
drugs used here.

We have no a direct explanation for the much higher potency of
BoNT/D in VAMP2 cleavage with respect to BoNT/B, but it could be
ascribed to a faster entry into the cytosol of BoNT/D than BoNT/B,
which was reported to be particularly slow in cell cultures [44].
This may also explain why, when TrxR is not completely inhibited
as in the case of lower concentrations of Curcumin, BoNT/D activity
appears to be less blocked as compared to BoNT/B. Nevertheless,
the comparable inhibition profile of these two BoNTs strongly
indicates that the reduction of the interchain bond, catalyzed by
the TrxR–Trx system, is of similar and essential importance to
enable their intraneuronal catalytic activity. This conclusion is
reinforced by the similar data obtained using BoNT/F and BoNT/G,
whose inhibition profiles are reported in Fig. 5 and Fig. 6,
respectively. Importantly, we achieved this result by using four
different compounds, which belong to different chemical classes,
have different molecular structures as well as different mecha-
nisms to inhibit TrxR–Trx system.
3.2. Inhibitors of thioredoxin reductase and thioredoxin effectively
lower the reversible flaccid paralysis induced by botulinum
neurotoxins type B, D, F and G in mice

One remarkable aspect of BoNTs action in vivo is that they
induce a reversible peripheral neuroparalysis. This property is
clearly documented by the black traces in the panels of Fig. 7 which
shows the recovery time course of mouse limb muscles function
after the paralysis induced by a single local injection of BoNT/B, /D,
/F and /G in sub-lethal doses. The neuromuscular paralytic effect
was evaluated over time with the well-established DAS assay
[42,43], which assigns a score to the severity of muscles paralysis
according to the capability of the mouse to move the hind limb
fingers, upon injection of BoNTs close to the EDL (Extensor Digitoris
Longus) muscle. This score ranges from 0 (no paralysis) up to 4 (all
fingers are paralyzed). Even though the paralytic effect exerted by
the four BoNTs has different durations, it is worth noting that the
local injection of the TrxR–Trx inhibitors effectively reduced both
the severity and the duration of the paralysis. Owing to the very
large number of sampling required by this type of analysis, we used
three different inhibitors to dissect the entire TrxR–Trx system:
Curcumin (inhibitor of TrxR), PX12 (inhibitor of Trx), and Ebselen
(inhibitor of TrxR and Trx). All of them very effectively prevented
the peripheral neuroparalysis induced by the four different BoNTs,
with Ebselen being slightly more potent (Fig. 7).

3.3. Ebselen effectively prevents mice death caused by botulinum
neurotoxins type B, D and F

On the basis of the results reported above, it became very
relevant to test the capacity of the TrxR–Trx inhibitors in
preventing the development of botulism upon systemic delivery
of the four neurotoxins. Since such tests would have required a
very large number of animals, we confined the experiments to one
of the drugs. Ebselen was chosen because it best protected against
paralysis in the DAS assay and because it has been used in clinical



Fig. 4. Immunocytochemical evaluation of BoNT/D activity blockage by Inhibitors of thioredoxin–thioredoxin reductase system. CGNs were treated with Trx–TrxR inhibitors
(Curcumin 100 mM, Ebselen 30 mM, Myricetin 100 mM or PX12 25 mM) or vehicle (NC, no toxin added; PC, only toxin added) at 37 �C. After 30 min, BoNT/D 0.2 nM was added
for 10 min at 4 �C after which neurons were washed and incubated with the same concentration of inhibitors for further 90 min at 37 �C. Thereafter neurons were fixed and
VAMP2 cleavage was assessed using a specific antibody. The images are representative of three independent sets of experiments (scale bar 10 mm).

Fig. 5. Thioredoxin–thioredoxin reductase inhibitors prevent the BoNT/F-induced cleavage of VAMP2 in in neuronal culture. CGNs were incubated with the indicated
concentrations of inhibitor at 37 �C for 30 min. 4 nM BoNT/F was then added and incubation prolonged for 12 h at 37 �C, cells were then lysed and the VAMP2 content was
estimated with an antibody recognizing the intact form of VAMP2. Syntaxin and SNAP25 staining was used as loading control. Upper left panel shows a representative
immunoblot, obtained in experiments with Ebselen (NC, no toxin added; PC, only toxin added). Graphs show the quantification, of the experiments performed with the
reported inhibitors, for VAMP2 determined as a ratio to Syntaxin staining, taking the value of non-treated cells as 100%. SD values derive from at least three independent
experiments.

526 G. Zanetti et al. / Biochemical Pharmacology 98 (2015) 522–530



Fig. 6. Thioredoxin–thioredoxin reductase inhibitors prevent the BoNT/G-induced cleavage of VAMP2 in neuronal culture. CGNs were incubated with the indicated
concentrations of inhibitor at 37 �C for 30 min. 4 nM BoNT/G was then added and incubation prolonged for 12 h at 37 �C, cells were then lysed and the VAMP2 content was
estimated with an antibody recognizing the intact form of VAMP2. Syntaxin and SNAP25 staining was used as loading control. Upper left panel shows a representative
immunoblot, obtained in experiments with Ebselen (NC, no toxin added; PC, only toxin added). Graphs show the quantification, of the experiments performed with the
reported inhibitors, for VAMP2 determined as a ratio to Syntaxin staining, taking the value of non-treated cells as 100%. SD values derive from at least three independent
experiments.

G. Zanetti et al. / Biochemical Pharmacology 98 (2015) 522–530 527
trials in humans for other diseases [46,47]. In addition, we focused
our attention on BoNT/B and BoNT/F, because these serotypes are
Fig. 7. Thioredoxin–thioredoxin reductase inhibitors decrease the local paralysis induced
Ebselen (yellow traces) or vehicle (PC, black traces) were injected in the hind limb of ad
BoNT/B (A) or 0.2 pg/g of BoNT/D (B) or 2 pg/g of BoNT/F (C) or 5 pg/g of BoNT/G (D) and th
DAS score of animals treated with only inhibitors are not shown for clarity. DAS values
condition.
involved in human botulism and BoNT/D because it is often
associated to animal botulism [2,3]. Type G was not tested because
 by BoNT/B, /D, /F and G. 0.02 mg of Curcumin (green traces) or PX12 (red traces) or
ult male CD1 mice. After 30 min the same hind limbs were injected with 0.5 pg/g of
e severity of local paralysis was evaluated and reported as DAS score (see Section 2).

 are means � SEM from three individual experiments of at least eight animals per
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it has not been reported to cause botulism in humans or animals.
Fig. 8 shows that Ebselen substantially protects mice from
intraperitoneally injected BoNT/B, or BoNT/D or BoNT/F. Notewor-
thy, all mice treated displayed the symptoms typical of botulism,
such as a generalized flaccid paralysis of muscles, but Ebselen-
treated animals displayed milder symptoms and in several cases
they were not severe enough to cause the respiratory failure or to
prevent drinking and feeding that generally contribute to death of
injected mice in the animal cage. Importantly, survivors fully
recovered from developed symptoms in few days, suggesting that
large amounts of the injected toxin did not reached VAMP.

4. Discussion

The results presented here are very relevant in several respects.
The first one is that they provide experimental evidence that
thioredoxin reductase-thioredoxin disulfide reducing system
cleaves the single interchain disulfide bond of the four BoNT
serotypes whose L chain proteolyses VAMP: BoNT/B, /D, /F and /G.
Together with our previous reports on the SNAP25 and syntaxin
cleaving BoNTs [28,36], it can now be concluded that this
molecular event, which takes place on the cytosolic face of an
intracellular acidic compartment [20], is an essential step of the
cellular mechanism of intoxication of all BoNT serotypes. So
essential, that it is sufficient to inhibit the TrxR–Trx redox system
to completely prevent the toxicity of these very powerful
neurotoxins in cultured neurons. This conclusion is even more
important if one considers the large number of novel BoNTs that
are being discovered [48,49]. They can be classified as subtypes of
the main seven serotypes, which have now all been analyzed with
respect to disulfide reduction (the present paper and [28,36]).
Therefore, it can be concluded that the release in the cytosol of the
L chain metalloprotease activity of all clostridial neurotoxins
requires reduction of the interchain disulfide bridge by the TrxR–
Trx system.

An important feature of BoNTs is their reversibility of action.
This remarkable property has been exploited to evaluate the
respective potency and duration of the different serotypes in vivo
[50,51] through the DAS assay. This test is based on the
intramuscular injection of a limited amount of BoNTs which can
induce the local paralysis of mice hind legs without causing their
death [42,43]. This is facilitated by a very limited diffusion from the
site of injection, a feature which becomes very relevant in the
therapeutic use of BoNTs, particularly when small muscles are
injected [52,53]. Given that the intracellular degradation of the L
chain seems to be the main reason of BoNTs reversibility of action,
the duration of paralysis primarily depends on the amount L chains
which have entered the nerve terminals, beside the intrinsic
properties of the different L chains may also play a significant role
Fig. 8. Ebselen prevents the lethality of BoNT/B, /D and /F. Adult male CD1 mice were
Section 2. Thereafter, 2xMLD50 of BoNT/B (A) or BoNT/D (B) or BoNT/F (C) were injecte
considered concluded. Graphs report the survival curves analyzed with the Log-rank (Ma
p < 0.0058; BoNT/F: p < 0.0022) from inhibitor free controls.
[27,54,55]. Therefore, the second valuable result described here is
that inhibitors of the TrxR–Trx system are general inhibitors of all
BoNTs and are capable of preventing to a large extent their local
neuroparalytic action in mice by reducing the number of L chains
which have entered the nerve terminals. Accordingly, this result
indicates the possible employment of these inhibitors in accidental
events of over dosage of a BoNT during its therapeutic use.

We also assayed the efficacy of TrxR–Trx inhibitors in protecting
mice from a systemic injection of BoNTs. This assay better
recapitulates botulism, i.e., a generalized peripheral neuroparalysis
which generally develops following the toxin absorption from a
large organ such as the intestine (alimentary botulism) [2].
Botulism is reversible, provided that the intoxicated patient is
mechanically ventilated to prevent death by respiratory muscles
paralysis. Because of local regulations on experimentation involv-
ing animals, we could not assay the efficacy of all the inhibitors
tested in neuronal cultures and capable of preventing local
neuroparalysis (DAS assay), in mice lethality tests. However, using
Ebselen we have provided a proof of principle that inhibitors of the
TrxR–Trx system can effectively prevent the development of the
flaccid paralysis caused by BoNT and protect a sizeable fraction of
animals from deadly effects. Notably, the survivors recovered
completely. This result is very relevant as it suggests that Ebselen,
and probably the other TrxR–Trx inhibitors, can be used to prevent
botulism in humans and in animals. This is also valid in the case of
BoNT/D which, in our hands, is the most toxic of all BoNTs in mice
with a MLD50 of 0.02 ng/kg to be compared with the literature data
of 0.4 ng/kg [56].

On the basis of the present knowledge about the BoNTs
mechanism of neuron intoxication, it is clear that once the
reduction of the interchain disulfide bond has released the L chain
metalloprotease activity, the inhibitors tested here are no longer
effective. In other words, these inhibitors cannot be considered for
the use after the symptoms of botulism have developed. Therefore
the drugs tested here are to be considered as prophylactic and the
limitation of a prophylaxis has been discussed before [57].
Notwithstanding, if given soon after diagnosis, these inhibitors
may lessen symptoms severity by preventing the entry of
circulating BoNT, and therefore shorten the period of hospitaliza-
tion which is associated with the high costs of intensive care. It is
indeed known that in adult botulism caused by the ingestion of
BoNT poisoned food, there is a long persistence of the toxin in the
general circulation [58,59]. Moreover, having a good record of
safety in humans, as deduced from previous trials [60–65], these
drugs may have a great potential in the treatment of human
botulism where a continuous release of freshly produced BoNT
takes place, which is the case of infant botulism [66]. In this form of
the disease, the BoNT producing Clostridia colonize the intestine,
 preconditioned with Ebselen 7.5 mg/kg (n = 15) or vehicle (n = 15) as described in
d i.p. Animals were monitored every 4 h for 96 h, after which the experiment was
ntel–Cox) test, and found to be significantly different (BoNT/B: p < 0.0001; BoNT/D:
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owing to the lack of competitive bacterial flora, and release the
toxin in the general circulation for long periods of time [2,67].

There is growing interest in finding new mechanism-based
antidotes against BoNTs, and some molecules were found to have
beneficial potential (Fischer, Nakai et al., 2009). The main
advantage of such molecules is that they act regardless of the
serotypes causing envenomation. This is the more important in
light of the large number of different BoNTs that are being
discovered. These drugs can be administered without knowing the
BoNT serotype and sub-type, thus saving the time required for
toxin characterization. This is also relevant to those cases of
botulism caused by Clostridia producing more than one BoNT
(Barash and Arnon 2004, Barash and Arnon 2013, Dover, Barash
et al., 2013, Maslanka, Lúquez et al., 2015).
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A Novel Inhibitor Prevents the 
Peripheral Neuroparalysis of 
Botulinum Neurotoxins
Domenico Azarnia Tehran1,*, Giulia Zanetti1,*, Oneda Leka1, Florigio Lista3, Silvia Fillo3, 
Thomas Binz4, Clifford C. Shone5, Ornella Rossetto1, Cesare Montecucco1,2, 
Cristina Paradisi6, Andrea Mattarei6 & Marco Pirazzini1

Botulinum neurotoxins (BoNTs) form a large class of potent and deadly neurotoxins. Given their 
growing number, it is of paramount importance to discover novel inhibitors targeting common 
steps of their intoxication process. Recently, EGA was shown to inhibit the action of bacterial toxins 
and viruses exhibiting a pH-dependent translocation step in mammalian cells, by interfering with 
their entry route. As BoNTs act in the cytosol of nerve terminals, the entry into an appropriate 
compartment wherefrom they translocate the catalytic moiety is essential for toxicity. Herein we 
propose an optimized procedure to synthesize EGA and we show that, in vitro, it prevents the 
neurotoxicity of different BoNT serotypes by interfering with their trafficking. Furthermore, in mice, 
EGA mitigates botulism symptoms induced by BoNT/A and significantly decreases the lethality of 
BoNT/B and BoNT/D. This opens the possibility of using EGA as a lead compound to develop novel 
inhibitors of botulinum neurotoxins.

The most potent human poisons are the botulinum neurotoxins (BoNTs), which are neurospecific 
metalloproteases acting inside peripheral nerve terminals. They are synthesized by different species 
of Clostridia and have been grouped in seven serotypes (BoNT/A to/G) based on their immunolog-
ical properties. All known BoNTs act by interrupting the release of neurotransmitter acetylcholine at 
peripheral cholinergic terminals causing a long lasting paralysis that may lead to death by respiratory 
failure1. Nonetheless, mechanically ventilated patients can fully recover in a time period which strongly 
depends on the toxin serotypes and on the amount of toxin molecules entered in the nerve termi-
nals2. According to their extreme potency, and with the fact that they can be easily produced in large 
amounts, BoNTs are considered potential bioweapons3,4. On the other hand, due to their neurospeci-
ficity, reversibility and lack of diffusion from the site of injection, BoNT/A has worldwide become one 
of the safest therapeutics used for the treatment of a growing list of human syndromes, characterized 
by the hyperactivity of peripheral nerve terminals5,6. BoNTs consist of two polypeptide chains (L and 
H), kept together by a single disulphide bond. The overall structure can be subdivided in three 50 kDa 
domains which accomplish different tasks along the mechanism of neuron intoxication2. The L chain is 
the N-terminal domain endowed with metalloprotease activity. The C-terminal domain (HC) is responsi-
ble for the neurospecific binding to the presynaptic membrane of nerve endings, whilst the intermediate 
domain (HN) is involved in membrane translocation of L. The current view of BoNT mechanism of 

1Department of Biomedical Sciences, Via U. Bassi 58/B, 35121, Padova, Italy. 2Italian National Research Council 
Institute of Neuroscience, University of Padova, Via U. Bassi 58/B, 35121, Padova, Italy. 3Histology and Molecular 
Biology Section, Army Medical and Veterinary Research Center, Via Santo Stefano Rotondo 4, 00184 Roma, 
Italy. 4Institut für Biochemie, OE 4310, Medizinische Hochschule Hannover, 30623 Hannover, Germany. 5Public 
Health England, Porton Down, Salisbury, Wiltshire, SP4 OJG, UK. 6Department of Chemical Sciences, University of 
Padova, Via F. Marzolo 1, 35131 Padova, Italy. *These authors contributed equally to this work. Correspondence 
and requests for materials should be addressed to A.M. (email: andrea.mattarei@unipd.it) or M.P. (email: 
marcopiraz@gmail.com)

Received: 18 September 2015

Accepted: 30 October 2015

Published: 16 December 2015

OPEN

mailto:andrea.mattarei@unipd.it
mailto:marcopiraz@gmail.com


www.nature.com/scientificreports/

2Scientific RepoRts | 5:17513 | DOI: 10.1038/srep17513

action envisages a first interaction with polysialogangliosides, which mediate the toxin binding to the 
plasma membrane. This is followed by lateral movements that make possible the encounter with a protein 
receptor which is the lumenal part of a synaptic vesicle (SV) protein2,7,8. The protein receptor has been 
identified as synaptotagmin I and II for BoNT/B,/DC and/G8,9, and SV2 for BoNT/A,/E and F8,10; the 
protein receptor for the remaining serotypes remains to be established. This latter binding is preliminary 
to the internalization of the toxin-receptors complex inside an acidic intracellular compartment whose 
nature has been identified as SV only for tetanus neurotoxin and for BoNT/A11–13. Little is known on 
the nature of the endocytic vesicles/compartment used by the other serotypes, but considerable evidence 
indicate that the acidification of its lumen generally triggers a structural change of L and HN together 
with membrane lipids which ultimately leads to the translocation of the L chain into the cytosol14–16. 
This process is completed by the reduction of the interchain disulphide bond, on the cytosolic side of 
the acidic compartment performed by the thioredoxin reductase–thioredoxin system17–20 . The released 
L metalloprotease specifically cleaves one of the three SNARE proteins thereby preventing the Ca2+ 
induced release of the neurotransmitter contained inside SVs21,22. Many novel BoNTs have been recently 
discovered and their sequences are present in databases, but many more have not yet been deposited. 
All known novel BoNTs are classified as subtypes, and indicated with an Arabic number added to the 
parental serotype (e.g. A2, A3 etc., when their amino acid sequences differ by more than 2.4% from the 
parental serotype A1)2, or as mosaic BoNTs, and indicated with a double capital letter, e.g. BoNT/DC,/
CD,/FA, when they are chimeras of the different serotypes. Due to their different origin, BoNT variants 
exhibit different antigenicity and are neutralized to a different degree by existing serotype specific anti-
sera23,24. Accordingly, it is possible that the therapy with humanized monoclonal antibodies raised versus 
a BoNT subtype may not neutralize variants of the same serotype25,26. This situation calls for increased 
efforts in the identification of inhibitors effective in preventing the neuroparalytic action of BoNTs irre-
spectively of their serotype and subtype which could be used without knowing the particular type of 
BoNT involved. Recently, Gillespie et al. (2013), performing a high-throughput screening, identified 
4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (abbreviated as EGA) as an inhibitor of 
pathogens that enter cells via intracellular acid compartments27. Since BoNTs toxicity is also strictly 
dependent on the passage through an acidic environment2, we decided to test the activity of EGA on 
BoNT action in the light of the urgency and importance to find inhibitors capable of interfering with the 
large and still growing number of BoNTs with undefined immunological properties. Here, we focused 
our attention on BoNT/A and BoNT/B because most frequently associated with human botulism and 
used in human therapy1,2. We also considered BoNT/D, which scarcely affects humans28, but it is very 
frequently involved in animal botulism. Here we show that EGA drastically hinders BoNTs activity on 
neuronal cultures, without interfering with specific steps of their cellular mechanism of intoxication. 
More importantly, this compound is also very effective in reducing neurotoxicity in vivo. Together, our 
results suggest that EGA represents a new tool for studying BoNTs trafficking and a good candidate for 
the development of new inhibitors. Notably, we also report an optimized procedure for the synthesis of 
EGA, which involves milder reaction conditions and provides much higher overall yield than previously 
reported29.

Results
High yield synthesis of 4-bromobenzaldehyde N-(2,6-dimethylphenyl) semicarbazone 
(EGA). The reported approach by Jung in 2014 for the preparation of EGA has been adapted and 
improved to obtain higher yields. The synthesis involves the three steps reported in Fig. 1. In the first one 
(i), 2,6-dimethylaniline (1) is allowed to react with phenyl chloroformate to give the corresponding phe-
nylcarbamate (2), which is next subjected to hydrazinolysis to give semicarbazide (indicated as A) (ii). 
The final step (iii) is the reaction of A with 4-bromobenzaldehyde to form the desired semicarbazone (3, 

Figure 1. Synthesis of EGA. Synthesis of 2-(4-bromobenzylidene)-N-(2,6-dimethylphenyl)
hydrazinecarboxamide (EGA); Reagents and conditions (i) ClCO2Ph, Py, DCM (96% isolated yield); (ii) 
NH2NH2·H2O, DME (iii) 4-bromobenzaldehyde, CHCl3 (88% isolated yield, passages ii and iii).
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EGA). The procedure described by Jung et al. (2014) involves the isolation of A and rather drastic condi-
tions (acidic solution and high temperature) in the last step, leading to an overall yield of 27%. A much 
higher overall yield (84%) is obtained by the new procedure that we have devised: 2 is isolated, whereas 
steps (ii) and (iii) are performed in one-pot without the isolation of A. Furthermore, much milder con-
ditions are used in the last synthetic step. Details are found in the Supplementary information section.

EGA prevents the botulinum neurotoxins cleavage of SNARE proteins in cultured neurons.  
The use of cultured cerebellar granular neurons (CGNs) offers a simple and rapid way to screen the effi-
cacy of candidate molecules in inhibiting BoNTs activity. The overnight incubation with 0.3 nM BoNT/A 
induces the cleavage of SNAP25, as assessed by the appearance in immunofluorescence (Fig. 2a, middle 
panel) and western blot (Fig. 3a, bottom panel) of its truncated form, revealed with a specific antibody. 
This toxin concentration is sufficient to induce a complete cleavage of its substrate, as evaluated using 

Figure 2. Immunocytochemical evaluation of EGA inhibition against different serotypes of BoNT in 
CGNs. (a–c) CGNs were treated with EGA 12.5 μ M or vehicle (DMSO) at 37 °C for 30 min. Thereafter, the 
indicated amount of BoNT was added for 12 hrs. Samples were fixed and stained with an antibody specific 
for BoNT/A-cleaved SNAP25 (a) or intact VAMP2, (b,c). BoNT/A-cleaved SNAP25 was detected with an 
Alexa Fluor 555 goat anti-rabbit, while VAMP2 with an Alexa Fluor 488 goat anti-mouse. Images shown are 
representative of three independent experiments. Scale bar, 10 μ m.
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an antibody recognizing both forms (intact and truncated) of SNAP25 (Fig. 3a, middle panel, SMI-81). 
Figure 3b shows that such activity is however inhibited by EGA in a concentration dependent manner, 
with a maximal effect at 12.5 μ M. The inhibitory effect, though substantial, is not complete as a small 
amount of cleaved SNAP25 is still generated (Fig. 2a, right panel and Fig. 3b).

Figures  2b and 3c,d show that similar results are obtained with BoNT/B. Notably, to achieve the 
substantial cleavage of VAMP2, which is normally concentrated at synaptic contacts (Fig. 2b, left panel), 
BoNT/B had to be used at a concentration of 5 nM (Fig. 2b, middle panel). Nevertheless, the pre-treatment 
with 12.5 μ M EGA is sufficient to abrogate its cleavage (Fig. 2b, right panel). EGA prevents this toxicity 
in a concentration dependent manner, as shown by the inhibition of VAMP2 cleavage, determined with 
two different antibodies (Fig.  3c middle and bottom panels). Interestingly, despite the high amount of 
toxin used, in this case the effect of EGA, at higher concentration, is complete (Fig. 3d).

The same set of experiments was replicated using BoNT/D. This serotype is the most potent in 
rodents28 and, in CGNs, a minimal concentration (0.025 pM) induces the almost complete cleavage of 
VAMP2 (Fig.  2c, middle panel). Similar to what found for BoNT/A, we found that EGA substantially 
prevents the action of this potent neurotoxin (Fig. 2c, right panel), and this inhibition is dependent on 

Figure 3. EGA interferes with the BoNT/A,/B and/D toxicity in CGNs. (a,c,e) CGNs were preincubated 
for 30 min with the indicated concentrations of EGA at 37 °C. Where indicated, BoNTs were added at the 
reported concentrations for 12 hrs. Then cells were lysed and the SNARE content was estimated with the 
indicated antibodies: (a) SMI81 recognizes both the full length and the cleaved form of SNAP25; BoNT/A-
cleaved recognizes only BoNT/A-truncated SNAP25; (c,e) VAMP2 (69.1) recognizes the intact form of 
VAMP2 and, BoNT/B-cleaved recognizes only BoNT/B-cleaved VAMP2. In all experiments an antibody 
against the Na+/K+ ATPase antibody was used as loading control. Blots are representative of a typical 
experiment. (b,d,f) Densitometry analysis of western blots obtained in (a,c) and (e) respectively. All data 
are presented as mean values and error bars indicated the standard deviation obtained from at least three 
independent experiments.
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the amount of the chemical, as estimated in western blot with an antibody specific for the intact form of 
VAMP2 (Fig. 3e, bottom panel and Fig. 3f).

Importantly, Figure S1 shows that neurons viability is not significantly affected, even at the highest 
concentration of EGA used.

EGA does not interfere with the four basic steps of BoNTs’ mechanism of action. The cellular 
target of EGA is not known and we investigated whether any of the four main steps of the BoNTs’ cellular 
mechanism of action is directly impacted by the action of the drug.

The first step of intoxication is the specific binding of BoNTs to peripheral nerve endings followed 
by their internalization via endocytosis2. Given its chemical nature, EGA could in principle intercalate 
among lipids and alter the properties of the presynaptic membrane, making it less receptive for BoNTs 
binding. To investigate this possibility, we took advantage of two constructs consisting of the HC domain 
of BoNT/A and of BoNT/B fused to a fluorescent protein (cpV-HC/A) or tagged by a c-Myc epitope 
(c-Myc-HC/B), respectively. These chimeras fully maintain the capability of parental BoNTs to bind to 
the presynaptic membrane of neurons8,30 and to become endocytosed12,13. We found that EGA, used at 
the concentration which displayed the maximum efficacy in protecting CGNs, does not interfere with 
the binding and the endocytosis of both BoNT/A and BoNT/B, as assessed by the internalization of 
their respective derivatives which show the same pattern regardless of drug presence (Fig. 4a and Figure 
S2a). Intriguingly, the two HCs displayed clearly different patterns of staining, suggesting that they may 
be internalized inside different compartments. Figure 4b and Figure S2b show via western blot analyses 
the quantitation of the results. We performed this experiment with higher concentrations of HCs to 
meet the sensitivity requirements of the antibodies used in Western Blot. Consistently, Fig. 4b show that 
the previous treatment of CGNs with BoNT/D, which cleaves VAMP1/2 thus impairing SVs recycling, 
significantly decreases the uptake of HC/A, as reported elsewhere31,32. At variance, the uptake of HC/B 
was only partially affected by VAMP1/2 cleavage (Figure S2b), leaving open the possibility of a different 
trafficking of BoNT/B with respect to BoNT/A.

Nevertheless, the fact that BoNT/A and BoNT/B use synaptic vesicle proteins as receptors (SV2A/B/C 
and Synaptotagmin I-II, respectively) strongly suggests that they exploit SVs for their initial step of 
endocytosis. Accordingly, we decided to test the possible interference of EGA with SVs dynamics using 
a well-established assay33. As shown in Figure S2c, EGA does not affect SVs endocytosis as an antibody 
specific for the lumenal domain of the synaptic vesicle marker Synaptotagmin I, is internalized at the 
same extent as controls. On the contrary, if neurons are previously treated with BoNT/D, the uptake of 
the same antibody is prevented. The quantitation of the result is shown in Figure S2d. Taken together, 
these results demonstrate that BoNTs binding and internalization through SV cycling are not perturbed 
by EGA.

The BoNT exposure to an intracellular acidic compartment is the next essential step for the neuron 
intoxication by all BoNTs2. Using Lysotracker Red DND-99, a highly sensitive probe of acidic orga-
nelles in live cells, we found that EGA does not significantly interfere with the maturation of acidic 
compartments, both within CGNs cell body and along neurites, where BoNTs act (Fig. 4c). At the same 
time, bafilomycin A1, which prevents BoNTs toxicity by inhibiting the vacuolar-type H+-ATPase proton 
pump12,34,35, completely blocks the acidification of intracellular organelles. This suggests that the essential 
conditions needed for BoNTs translocation, i.e. an acidic environment, are maintained in the presence 
of EGA.

The final step of the nerve intoxication, the one responsible for neuroparalysis, is the cleavage of 
SNARE proteins by the L chain. BoNT/A chops off the last 9 amino acids of SNAP25, whereas BoNT/B 
and BoNT/D cleave at two different sites VAMP1/2. This proteolytic activity can be easily assayed in 
vitro by using recombinant substrates. As shown in Fig. 4d (left panel), upon reduction of the interchain 
disulphide bond, BoNT/A cleaves SNAP25, as shown by the shift of its molecular weight in SDS-PAGE 
(compare lane 1 and 2, upper panels). This activity is however not affected by 12.5 μ M EGA (Fig.  4d, 
compare lane 2 and 3). The same result was obtained using an antibody specific for the cleaved form of 
SNAP25 and western blotting as a read out (Fig. 4d). Figure S3a and Figure S3b show that similar results 
were obtained with BoNT/B and BoNT/D, respectively, suggesting that the enzymatic activity of BoNT 
L chains is not affected by the drug.

EGA interferes with BoNTs trafficking within neurons. Gillespie et al. (2013) reported that EGA 
prevents the toxicity of bacterial toxins and viruses by blocking their trafficking from early to late endo-
somes. Here, we have shown that EGA inhibits BoNTs without interfering with the main events along 
their mechanism of action. As a consequence, we reasoned that EGA could alter the trafficking of BoNTs 
after their internalization, possibly preventing them to reach their translocation-competent compart-
ment. If it is the case, EGA should not be capable of inhibiting BoNTs toxicity when their trafficking is 
bypassed by inducing the entry of the L chain across the plasma membrane of neurons36. As this experi-
mental approach strongly depends on the binding to both receptors at the plasma membrane36, we could 
perform this experiment only with BoNT/B, using an established PC12 cell line expressing on the plasma 
membrane the lumenal domain of Synaptotagmin I, the BoNT/B protein receptor9, and with BoNT/D, 
whose binding domain harbors two ganglioside binding sites37, using CGNs36. Figure 5a,b show that a 
low pH jump in the extracellular medium induces the translocation of BoNT/B and BoNT/D L chains 
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across the plasma membrane as evaluated by the cleavage of VAMP2. In agreement with our hypothesis, 
the same experiment performed in the presence of EGA showed the identical activity of both BoNTs on 
VAMP2. This suggests that, when these neurotoxins bypass their canonical entry routes, EGA cannot 

Figure 4. EGA does not inhibit the known steps of BoNT intoxication. (a) CGNs were treated with 
EGA (12.5 μ M) or vehicle in culture medium at 37 °C. After 30 min, 100 nM cpV-HC/A was added in high 
K+ buffer for 1 h. Neurons were then washed, fixed, and directly imaged. These images are representative 
of at least three independent sets of experiments. Scale bar, 10 μ m. (b) CGNs were treated as in (a) with 
250 nM cpV-HC/A and then lysed. The cpV-HC/A content was estimated with a GFP specific antibody. 
Syntaxin 1A serving as internal control was detected with a specific antibody and an anti-VAMP2 was used 
to assess BoNT/D cleavage. The amount of cpV-HC/A was determined as a ratio to Syntaxin 1A staining 
taking the value in non-treated cells (vehicle) as 100%. All data are presented as mean values and error 
bars indicated the standard deviation obtained from three independent experiments (***p <  0.0001; ns – 
non significant). (c) CGNs were treated with vehicle or 12.5 μ M EGA or 10 nM Bafilomycin A1 for 30 min 
at 37 °C. Lysotracker Red was then added and the incubation prolonged for further 90 min. Cells were 
imaged by fluorescence microscopy. The graph shows the quantification of fluorescence intensity of acid 
compartments (% versus non-treated neurons) arising from CGNs treated with the indicated amount of 
EGA. Mean and standard deviation values refer to four different experiments. Scale bar, 10 μ m. (d) 0.25 μ g 
BoNT/A was reduced in the presence of 12.5 μ M EGA for 30 min at 37 °C. 1 μ g of GST-SNAP25 was added, 
the concentration of inhibitor was restored, and the reaction was carried out for 12 hrs at 37 °C. SNAP25 
cleavage was assessed by SDS-PAGE and Coomassie staining (top-left panel) or immunoblotting (bottom-
left panel) with an antibody specific for the BoNT/A-cleaved form of SNAP25. Lane 1 shows untreated 
GST-SNAP25. Right panel shows the densitometry analysis of western blots, tacking the value of BoNT/A 
without EGA (vehicle) as 100%. All data are presented as mean values and error bars indicated the standard 
deviation obtained from three independent experiments.
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impact on their activity anymore. Taken together the results presented here indicate that EGA prevents 
the activity of BoNTs by inhibiting their intraneuronal trafficking.

EGA interferes with the neuroparalytic activity of BoNT/A, BoNT/B and BoNT/D at the mouse 
hemidiaphragm assay and in vivo. The main aim of the present work was to test the inhibitory 
capacity of EGA against BoNTs toxicity in vivo. Therefore, after the in vitro approach, we used the mouse 
hemidiaphragm muscle paralysis model, an ex vivo preparation which represents the standard method 
to assay the neuroparalytic activity of BoNTs at the neuromuscular junction. In this experimental set up, 
BoNTs induce a decrease in the twitch capability of the diaphragmatic muscle by exerting its metallopro-
tease activity within the attached phrenic nerve. This decay is followed over time, and is used to evaluate 
BoNT potency, but can also be adapted to determine the inhibitory capacity of antitoxins38. As shown 
in Fig. 6(a–c, black traces), BoNT/A, BoNT/B and BoNT/D induce a rapid drop in the twitch capability 
of the diaphragm muscle. On the other hand, the pre-treatment with 12.5 μ M EGA, strongly delays the 
neuroparalytic activity of the three BoNTs (red traces). This inhibitory effect can be appreciated also by 
comparing the different parameters reported in Table S1, and the t50% values in particular (Fig.  6d–f), 
namely the time needed to halve the muscle twitch capacity, which results greatly increased by the treat-
ment with the drug, and found to be significantly different (Table S1).

We then tested the inhibitory effect of EGA in vivo. A wide range of doses from 7.5 mg/kg to 40 mg/
kg per day was administered via b.i.d. intraperitoneal injections in mice: even after one week of treat-
ment with this regimen, the drug was well tolerated by mice which did not show any sign of decreased 
vitality in terms of breathing, eating and drinking nor in terms of motility as compared with vehicle 
injected controls. The lethality of our preparations of BoNT/A,/B and/D was evaluated in preliminary 
experiments, and a dose of 0.5 ng/kg (BoNT/A), 0.9 ng/kg (BoNT/B) and 0.045 ng/kg (BoNT/D) was 
sufficient to progressively induce the classical symptoms of botulism (fur ruffling, sides musculature col-
lapse, generalized weakness, labored breathing) and cause the deadly respiratory failure within 48 hours 
post injection (black traces of Fig. 6 panels g–i). The red traces of the same figure (panels h and i) show 

Figure 5. EGA does not inhibit the translocation and the reduction step. (a) PC12 cells expressing the 
lumenal domain of synaptotagmin I on their surface were pre-incubated with a mixture of gangliosides for 
24 hrs. Cells were washed and, where indicated, treated with 12.5 μ M EGA or vehicle for 30 min at 37 °C. 
Thereafter, BoNT/B (10 nM) was added in the cold for 15 min. Cells were then washed and incubated with 
medium A buffered at indicated pH at 37 °C for 10 min, in the presence or absence of EGA. Then, cells were 
washed and the incubation in culture medium containing 50 nM Bafilomycin A1 and the same concentration 
of EGA prolonged for 24 hrs at 37° C. The translocation of BoNT/B was assessed by monitoring the 
cleavage of VAMP2, determined via western blotting (top panel), and quantified (bottom panel) through the 
densitometry of VAMP2 as a ratio to SNAP25 staining which served as internal control, taking the value in 
non-treated cells (NC) as 100%. All data are presented as mean values and error bars indicated the standard 
deviation obtained from three independent experiments (ns – non significant).  
(b) CGNs were treated with 12.5 μ M EGA or vehicle for 30 min at 37 °C. Then, neurons were incubated with 
BoNT/D (2.5 pM) at 4 °C for 15 min, washed and incubated at 37 °C with buffers at different pH value (7.4 
or 4.5) for 10 min; after washing, the neurons were incubated for 24 h with standard medium in the presence 
of 50 nM bafilomycin A1 and where indicated EGA. Then the SNARE protein content was estimated by 
immunoblotting with specific antibodies. Values are reported as the ratio between the staining with the 
antibody specific for VAMP2 and the staining with an antibody specific for SNAP25, and normalized vs. 
non-treated neurons (NC). All data are presented as mean values and error bars indicated the standard 
deviation obtained from three independent experiments (ns – non significant).
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that EGA is particularly efficacious in preventing death from botulism induced by BoNT/B and BoNT/D. 
Importantly, in those mice that eventually died, the symptoms occurred with delay and were less pro-
nounced. This was the case also for BoNT/A injected mice, where symptoms developed later and were 
milder, but without a reduced toxin lethality (Fig. 6g, red trace).

Discussion
The main result reported here is simple and very relevant at the same time. EGA is a potent inhibitor of 
the neuroparalytic activity of botulinum neurotoxins in vitro and in vivo, at doses that cause no apparent 
toxicity. This result indicates that EGA is the lead of a novel class of inhibitors potentially capable of pre-
venting the activity of BoNTs in humans. This is the more relevant considering that the recent years have 

Figure 6. EGA provides protection against different serotypes of BoNTs in the phrenic nerve-
hemidiaphragm twitch model, delays death induced by BoNT/A and strongly protect against death 
induced by BoNT/B and BoNT/D. (a–c) For each experiment, 12.5 μ M EGA or vehicle (DMSO) was added 
to the nerve-muscle preparations in the bath at 37 °C; after 30 min, 10 pM BoNT/A (a) or 10 pM BoNT/B 
(b) or 100 pM BoNT/D (c) was added (time =  0). Muscle twitch was induced by nerve stimulation and 
monitored until paralysis. A representative experiment is reported for each toxin, showing the progressive 
twitch decrease in the presence of vehicle (black trace) or EGA (red trace). (d–f) Each experiment 
performed for (a–c) was expressed as the time required to decrease the twitch to 50% of the initial value 
(paralysis half time) in vehicle (black points) or EGA treated muscles (red points). (g–i) Adult CD1 mice 
preconditioned with EGA 12.5 mg/Kg (n =  20) or vehicle alone (n =  20) were i.p. injected with 2 ×  MLD50 of 
BoNT/A (g) or BoNT/B (h) or BoNT/D (i). The animals were monitored every 4 hrs for 96 hrs. The survival 
curves were compared and found to be significantly different (p <  0.0001).
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witnessed the discovery of a large number of novel BoNTs, with different immunoreactivity2,39,40, sug-
gesting the possibility of the identification of BoNT variants that may be poorly neutralized by currently 
available antisera. This situation calls for the discovery of inhibitors capable of preventing the activity 
of all BoNTs. Necessarily, these novel inhibitors must be non-toxic to humans and must be effective in 
vivo. Notwithstanding long efforts of many laboratories, this goal has only partially been achieved41. We 
recently reported on inhibitors of the Thioredoxin reductase–Thioredoxin redox couple that effectively 
prevent the neuroparalytic activity of all BoNT serotypes without causing toxic effects in mice19,20,42

Here we add another lead compound with a different mechanism of inhibition. Despite our efforts 
using primary cultures of neurons and neuromuscular junction preparation, we have not identified the 
target of EGA, but we did not note toxic effects in mice treated with a dose that largely prevents the 
action of the three BoNTs used here. We have found that the main steps of BoNTs mechanism of action, 
i.e. binding, internalization, acidification of intracellular compartment, L chain translocation, disulphide 
reduction and substrate proteolysis, are not affected by this compound (Figs  4 and 5, Figure S2 and 
Figure S3). Notably, the range of concentration that block BoNTs in cultured neurons is the same pre-
viously found to inhibit the toxicity of different toxins and viruses in primary and immortalized mac-
rophages. This suggests that, rather than having a direct effect on BoNTs (or on the other pathogens), 
EGA interferes with an intracellular host target responsible for their trafficking. This conclusion is rein-
forced by the result showing that EGA had no effect on the translocation of the L chain from the plasma 
membrane, when the canonical internalization route was bypassed (Fig. 5).

All known protein receptors of BoNTs are the lumenal domains of integral proteins of synaptic ves-
icles which suggests the general conclusion that all BoNTs are endocytosed inside these organelles at 
nerve terminals. However, the following trafficking of synaptic vesicles is not fully understood, though 
there is evidence that they may fuse with synaptic endosomes where they are quality controlled and 
then released to re-enter the synaptic vesicle cycle43–48. As a consequence, the fact that the three differ-
ent serotypes considered here are differently protected by EGA, which inhibits the maturation of early 
endosomes27, is an interesting aspect of the current study, because it revives the possibility that different 
BoNT may be trafficked through different routes inside the nerve terminals. Indeed, the diverse protein 
receptors of BoNTs may account for distinct fates of each toxin-receptor complexes, which have not 
yet been determined case by case. An alternative explanation is suggested by the finding that part of 
BoNT/A may enter terminals independently from SVs endocytosis31,32, which is supported by studies 
showing that BoNTs display toxicity independently of the stimulation of SVs recycling34,49–53. The fact 
that EGA completely inhibits the activity of BoNT/B, although used at a concentration much higher than 
that of BoNT/A, opens the possibility that the activity of this toxin is dependent on a trafficking through 
endosomes and does not translocate its catalytic part into the cytosol across the SV membrane. This is 
a surprising finding which was unexpected on the basis of the knowledge that the SV protein synap-
totagmin mediates the entry of BoNT/B8,9. However, considering that synaptotagmin can be trafficked 
through early endosome54, the possibility that also BoNT/B may need the passage through this organelle 
to reach a membrane translocation-competent compartment becomes plausible. It is also in keeping with 
its slow time course of entry into cultured neurons as compared with other serotypes34,55. Moreover, a 
considerable amount of synaptotagmin molecules remains exposed on the plasma membrane surface, 
in a steady-state with those recycled through sorting endosomes56, which makes possible that BoNT/B 
forms a toxin-receptor complex on the plasma membrane, rather than within SVs. This fits well with 
the present findings that: i) the internalization of c-Myc-HC/B was much less affected compared to that 
of cpV-HC/A, by the pre-treatment with BoNT/D (Fig. 4b and Figure S2b) and ii) the different staining 
pattern of the BoNT/A and BoNT/B binding domains (Fig. 4a and Figure S2a). This possibility is also 
supported by the in vivo finding that EGA has a remarkable effect against the lethality of BoNT/B and 
a lower one on BoNT/A (Fig. 6g,h).

The behavior of BoNT/D in response to inhibition of the endosomal pathway by EGA, in cultured 
neurons is more similar to that of BoNT/A rather than BoNT/B, as VAMP2 cleavage was not completely 
prevented (Figs  2c and 3e,f). On the other hand, BoNT/D was efficaciously inhibited by EGA in vivo, 
with an inhibitory profile similar to that of BoNT/B (Fig.  6i). The mechanism of BoNT/D binding to 
neurons is poorly understood and therefore its internalization and trafficking properties are not entirely 
clear37,57, and as a consequence it is even more difficult to envisage how this toxin could be internalized 
and trafficked. The obtained results clearly show that the observations of cell culture experiments cannot 
be transferred tout court to in vivo conditions.

The present lack of knowledge on the biochemical target of EGA does not prevent research aimed at 
finding more potent inhibitors of the BoNT neuroparalytic action. Clearly, EGA action is a preventive 
one, as it cannot affect those L chains that have already translocated in the cytosol. Nevertheless, it can 
alleviate the symptoms of botulism after diagnosis because a considerable amount of BoNT remains in 
the general circulation of botulism patient for weeks after the first diagnosis58–60. Perhaps, more impor-
tantly, the present findings are relevant for infant botulism where a continuous entry of BoNT into the 
general circulation occurs via adsorption of the toxin produced by Clostridia that have colonized the 
gastrointestinal tract of infants owing to the reduced intestinal flora competing with Clostridia2,61.

We would like to conclude by pointing out that the search for novel EGA-derived analogues is made 
simpler by the design of the novel method of synthesis of this compound described here, which provides 
a much higher yield with respect to the recently described method29. This procedure allowed us to rapidly 
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and efficiently synthesize large quantities of EGA, an essential pre-requisite to produce the considerable 
amount necessary for a possible employment of this or related compounds in humans.

Methods
Chemical Synthesis. Detailed protocol for EGA chemical synthesis is available in Supplementary 
Information.

Botulinum neurotoxin inhibition assay. EGA was dissolved in DMSO to prepare a stock solution 
(12.5 mM). CGNs at 6–8 days in vitro (DIV) were treated for 30 min with the indicated concentrations 
of EGA in complete culture medium at 37 °C and 5% CO2. 0.3 nM BoNT/A, 5 nM BoNT/B or 0.025 pM 
BoNT/D was added, in the presence of the same concentration of inhibitor, and left for 12 hr at 37 °C 
and 5% CO2. Further details can be found in the Supplementary Information.

cpV-HC/A and c-Myc-HC/B binding assay. CGNs were treated with EGA 12.5 μ M or vehicle (DMSO) 
in culture medium at 37 °C. After 30 min, for immunocytochemistry experiments, 100 nM cpV-HC/A 
or c-Myc-HC/B was added in stimulating culture medium (complete culture medium, 57 mM KCl), for 
1 hr. The same protocol was used with 250 nM of cpV-HC/A or c-Myc-HC/B but neurons were then 
lysed and immunoblotted to obtain a quantitative result. Details are in the Supplementary Information.

Low pH induced translocation of BoNT/B and BoNT/D across the plasma membrane.  
Experiment was conducted as previously described36. Detailed protocol is available in Supplementary 
Information.

Mouse diaphragm and lethality assay. All experiments were performed in accordance with the 
European Communities Council Directive n° 2010/63/UE and approved by the Italian Ministry of Health. 
Mouse diaphragms were isolated from CD-1 mice weighing about 20–25 g and halved into two contralat-
eral hemi-diaphragms still innervated with the own phrenic nerve, and were treated as described in the 
Supplemental Experimental Procedures. Lethality assays were performed using Swiss-Webster adult male 
CD1 mice weighing 26–28 g as described in Supplementary Information.

Statistical analysis. For all the experiments, data are presented as mean values. Bars indicated 
the standard deviation. Significance was calculated by Student’s t test (unpaired, two-side). *p <  0.05, 
**p <  0.01, ***p <  0.0001. Only values below 0.05 were considered significant (ns – non significant).
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Supplementary figures 

 

Figure S1. EGA does not affect cell viability of CGNs and PC12. CGNs and PC12 

were treated with increasing concentration of EGA ranging from 2.5 to 25 µM or vehicle in 

culture medium at 37° C. After 24 hours, cell viability has been assayed with a MTS assay. 

Data are presented as a percentage with respect to cells treated with the vehicle, set as 

100%. All data are presented as mean values and error bars indicated the deviation 

standard obtained from three independent experiments. 
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Figure S2. EGA does not affect binding and synaptic vesicles dynamics in CGNs. (a) 

CGNs were treated with EGA (12.5 µM) or vehicle in culture medium at 37° C. After 30 

min, 100 nM c-Myc-HC/B was added in high K+ buffer for 1 h. Neurons were then washed, 

fixed, permeabilized and stained with a primary antibody specific for the c-Myc epitope. An 

Alexa Fluor 488 goat anti-mouse secondary antibody was used for detection. These 

images are representative of two independent sets of experiments. Scale bar, 10 µm. (b) 

CGNs were treated as in (a) with 250 nM of c-Myc-HC/B and then lysed. The c-Myc-HC/B 

content was estimated with specific antibodies against c-Myc epitope. Syntaxin 1A was 

used as loading control and VAMP2 to assess BoNT/D cleavage. The amount of c-Myc-

HC/B was determined as a ratio to Syntaxin 1A staining taking the value in non-treated 

cells (vehicle) as 100%. All data are presented as mean values and error bars indicated 

the standard deviation obtained from two independent experiments (* p<0.05; ns – non 

significant). (c) CGNs were treated with EGA (12.5 µM) or vehicle at 37° C for 30 minutes. 

Where indicated, neurons were pre-treated with BoNT/D (10 nM) for 30 min. Cells were 

then incubated for 20 min with an antibody against the lumenal domain of Synaptotagmin-

1 conjugated to Chromeo 488 in high K+ buffer. At the end of the incubation, CGNs were 

washed twice, fixed and imaged by fluorescence microscopy. These images are 

representative of three independent sets of experiments. Scale bar, 10 µm. (d) CGNs were 

treated as in (c), using a non-fluorescent version of the same anti-Synaptotagmin-1 

antibody. At the end of the incubation, neurons were washed twice and lysed in non-

reducing Laemmli sample buffer. In the upper panel the internalized antibody was detected 

by immunoblotting, using an anti mouse HRP-conjugated secondary antibody. Blots were 

then stripped and incubated with specific antibodies against VAMP2 to assess BoNT/D 

cleavage and against Syntaxin 1A as loading control. In the first lane (input) 50 ng of the 

anti-Synaptotagmin 1 antibody were loaded as reference. The bottom panel reports the 

quantification. All data are presented as mean values and error bars indicated the 
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standard deviation obtained from three independent experiments (*** p<0.0001; ns – non 

significant).  

 

Figure S3. EGA does not affect BoNT/B and /D metalloprotease activity in vitro. (a) 

BoNT/B (1 µg) or (b) BoNT/D (0.25 µg) was reduced in the presence of EGA (12.5 µM) for 

30 min at 37 °C. 1 µg of recombinant VAMP2 (rVAMP2) was then added, the 

concentration of inhibitor restored and the reaction carried out for 12 hours at 37 °C. 

VAMP2 cleavage was assessed by SDS-PAGE (top panels) or immunoblotting (middle 

panels) with an antibody that recognizes full length VAMP2. Lower panels show the 

densitometry analysis of western blots. All data are presented as mean values and error 

bars indicated the standard deviation obtained from three independent experiments (*** 

p<0.0001; ns – non significant). 
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BoNT/A BoNT/B BoNT/D 

 DMSO EGA DMSO EGA DMSO EGA 

Lag phase 
(minutes) 

36.3 ± 3.37 59.6 ± 0.9** 56.3 ± 2.4 82.0 ± 5.3* 29.0 ± 5.1 34.7 ± 2.4ns
 

t1/2 

(minutes) 
64.0 ± 2.6 146.3 ± 21.5* 99.0 ± 3.8 154.3 ± 11.9* 46.7 ± 4.1 67.7 ± 4.9* 

Slope 2.1 ± 0.14 0.5 ± 0.09** 1.3 ± 0.11 0.6 ± 0.01** 2.4 ± 0.16 1.46 ± 0.09** 

N 3 3 3 3 3 3 

Table S1. Statistical analysis of the phrenic nerve-hemidiaphram twitch model. 

Given the variability of each muscle contraction, the data from BoNT/A, /B and /D 

intoxicated muscles treated with EGA or DMSO, were normalized and each single group 

was compared. The average values±SEM of lag phase, t1/2 and slope derive from three 

independent experiments. Significance was calculated by Student’s t test (unpaired, two-

side). *P < 0.05; **P < 0.01. Only values below 0.05 were considered significant. 
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Supplementary experimental procedures  

Reagents. BoNT/A was purified as previously described1,2. BoNT/B and BoNT/D were 

produced in E. coli as recombinant proteins3,4. LysoTracker® Red DND-99 was purchased 

from ThermoFischer Scientific (L-7528), instead, Bafilomycin A1 (sc-201550) from Santa 

Cruz Biotechnology. Cytosine β-D-arabinofuranoside hydrochloride (C6645), DNAse I from 

bovine pancreas (DN25), poly-L-lysine hydrobromide (P1274), solvents and reagents were 

purchased from Sigma Aldrich, and were used as received.  

Chemical Synthesis. Phenyl (2,6-dimethylphenyl)carbamate (2): 2,6-dimethylaniline (1.00 

g, 8.3 mmol, 1.0 eq) was dissolved in DCM (15 mL) and pyridine (0.73 g, 9.2 mmol, 1.1 

eq) and cooled on ice-bath. Phenyl chloroformate (1.43 g, 9.2 mmol, 1.1 eq) in DCM (25 

mL) was added dropwise. After addition the flask was brought to room temperature and 

stirred for 3 h. The reaction mixture was diluted with DCM (50 mL) and washed with 0.5 N 

HCl (5 × 100 mL). The organic layer was dried over MgSO4 and concentrated. The 

resulting crude product was purified by flash column chromatography on silica gel (eluent: 

Petroleum Ether/DCM/Acetone 60:35:5) to afford 2 as a bright white solid (1.92 g, 8.0 

mmol, 96%). 1H NMR (500 MHz, DMSO) δ 9.35 (s, 1H, -NH-), 7.43 (m, 2H, 2 × Ar-H), 7.24 

(s, 1H, 1 × Ar-H), 7.22 (m, 2H, 2× Ar-H), 7.21 (m, 2H, 2 × Ar-H), 7.12 (m, 3H, 3 × Ar-H), 

2.28 (s, 6H, 2 × -CH3); 13C NMR (126 MHz, DMSO) δ 152.95, 151.56, 136.01, 134.76, 

129.86, 128.38, 127.23, 125.56, 122.20, 18.47; ESI-MS: m/z = 242 = [M+H]+; HRMS 

(ESI+): m/z 242.1193 [M+H]+, calculated for C15H16NO2: 242.1181. 2-(4-

Bromobenzylidene)-N-(2,6-dimethylphenyl)hydrazinecarboxamide (3, EGA): 2 (0.50 g, 2.1 

mmol, 1.0 eq) was dissolved in DME (5 mL) and mixed with hydrazine monohydrate (50-

60%, 0.13 g, 4.2 mmol, 2.0 eq) at 0°C. After addition the flask was brought to rt and stirred 

for 24 h. The reaction mixture was concentrated to give a crude white solid that was used 
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without further purification. This white solid was dissolved in chloroform (20 mL), mixed 

with 4-bromobenzaldehyde (0.77 g, 4.2 mmol, 2.0 eq) and vigorously stirred 15 h at room 

temperature. Solvent was removed under reduced pressure and the crude was purified by 

flash column chromatography on silica gel (eluent: DCM/EtOAc 85:15) to afford EGA (3) 

as a bright white solid (0.63 g, 1.8 mmol, 88%). 1H NMR (500 MHz, DMSO) δ 10.65 (s, 1H, 

-NH-), 8.58 (s, 1H, -CH=N-), 7.88 (s, 1H, -NH-), 7.82-7.80 (d, 2H, 2 × Ar-H), 7.59-7.57 (d, 

2H, 2 × Ar-H), 7.09 (m, 3H, 3 × Ar-H), 2.20 (s, 6H, 2 × -CH3). 
13C NMR (126 MHz, DMSO) 

δ 154.20, 138.99, 136.71, 136.02, 134.59, 131.94, 129.24, 128.01, 126.67, 122.70, 18.68. 

ESI-MS: m/z = 346 = [M+H]+; HRMS (ESI+): m/z 346.0563 [M+H]+, calcd for C16H17BrN3O: 

346.0555. TLCs were run on silica gel supported on plastic (Macherey-Nagel 

Polygram®SIL G/UV254, silica thickness 0.2 mm) and visualized by UV detection. Flash 

chromatography was performed on silica gel (Macherey-Nagel 60, 230-400 mesh 

granulometry (0.063-0.040 mm)) under air pressure. The solvents were analytical or 

synthetic grade and were used without further purification. 1H NMR spectra were recorded 

with a Bruker AVII500 spectrometer operating at 500 MHz. Chemical shifts () are given in 

ppm relative to the signal of the solvent. Mass spectra were performed with a 1100 Series 

Agilent Technologies system, equipped with binary pump (G1312A) and MSD SL Trap 

mass spectrometer (G2445D SL) with ESI source. ESI-MS positive spectra of reaction 

intermediates and the final purified product were obtained from solutions in acetonitrile, 

eluting with a water:acetonitrile, 1:1 mixture containing 0.1% formic acid. High-resolution 

mass measurements were obtained using a Mariner ESI-TOF spectrometer (PerSeptive 

Biosystems). HPLC-MS analysis was used to confirm the purity (> 95%). 

Cerebellar Granule Neurons (CGN) cultures. Primary cultures of rat cerebellar granule 

neurons (CGNs) were prepared from 6- to 8-days-old rats5. Cerebella were isolated, 

mechanically disrupted and then trypsinized in the presence of DNase I. Cells were then 
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plated into 24 well plates, pre-coated with poly-L-lysine (50 μg/mL), at a cell density of 4 x 

105 cells per well. Cultures were maintained at 37 °C, 5% CO2, 95% humidity in BME 

supplemented with 10% fetal bovine serum, 25 mM KCl, 2 mM glutamine and 50 μg/mL 

gentamicin (hereafter indicated as complete culture medium). To arrest growth of non-

neuronal cells, cytosine arabinoside (10 μM) was added to the medium 18–24 h after 

plating. 

Botulinum neurotoxin inhibition assay and immunocytochemistry. CGNs at 6–8 DIV 

were treated for 30 min with 12.5 µM of EGA or vehicle (DMSO) in complete culture 

medium at 37 °C and 5% CO2. 0.3 nM BoNT/A or 5 nM BoNT/B or 0.025 pM BoNT/D was 

added and left for 12 hours at 37 °C and 5% CO2. Neurons were then washed with PBS, 

fixed for 10 minutes at RT with 4% paraformaldehyde in PBS, quenched (50 mM NH4Cl in 

PBS) for 20 minutes and permeabilized with 5% acetic acid in ethanol for 20 minutes at -

20° C. CGNs were then incubated with indicated primary antibodies. BoNT/A cleavage 

was evaluated following the generation of the cleaved form of SNAP25, whereas the 

cleavage of BoNT/B and BoNT/D was evaluated following the disappearance of the 

staining due to a primary antibody recognizing the full-length form of VAMP2 (Synaptic 

System, 104 211). As internal control (not shown) it was used an anti SV2A (Santa Cruz, 

[E-8] sc376234) or anti SV2B (Synaptic System, 119 102), respectively. Primary 

antibodies were detected with Alexa Fluor 488 goat anti-mouse IgG (Life Technologies, A-

11001) and Alexa Fluor 555 goat anti-rabbit IgG (Life Technologies, A-21428). Coverslips 

were mounted using Fluorescent Mounting Medium (Dako) and examined by 

epifluorescence (Leica CTR6000) microscopy. Images were collected with the same lamp 

intensity and exposure time. 

For immunoblotting experiments, the neurons were treated with the same condition and  

the neurotoxicity was evaluated following the specific proteolytic activity of the toxin with 
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specific antibodies against their SNARE protein targets: anti BoNT/A-cleaved SNAP256, 

anti SNAP25 (SMI81: abcam, ab24737), anti VAMP2 (Synaptic System, 104 211) and anti 

BoNT/B-cleaved form of VAMP27. The staining with anti Na+/K+ ATPase (abcam, ab7671) 

was used as loading control. 

Immunoblotting. Cells were directly lysed with reducing Laemmli sample buffer 

containing protease inhibitors (complete Mini EDTA-free, Roche). Protein concentration 

was determined with the BCA test (Pierce BCA protein assay, Thermo Scientific), and 

equal amounts were loaded onto a 4-12% NuPage gel or 12% NuPage gel (Life 

technologies) and separated by electrophoresis in 1X MES buffer or 1X MOPS (Life 

technologies), respectively. Proteins were then transferred onto Protran nitrocellulose 

membranes (Whatman) and saturated for 1 h in PBST (PBS 0.1% Tween20) 

supplemented with 5% non-fatty milk. Incubation with primary antibodies was performed 

overnight at 4°C. The membranes were then washed three times with PBST and incubated 

with secondary HRP-conjugated antibodies (goat anti-mouse IgG, H&L chain specific 

peroxidase conjugate, Merk Millipore 401215 and goat anti-rabbit IgG, H&L chain specific 

peroxidase conjugate, Merk Millipore 401393). Finally, membranes were washed twice 

with PBST and once with PBS; visualization was carried out using Luminata Crescendo 

(Merck Millipore). 

cpV-HC/A and c-Myc-HC/B expression, purification and binding assay. The HC of 

BoNT/B (nucleotides corresponding to residues 833-1291) with a N-terminus c-Myc tag 

was cloned into a pRSETa His-tag vector (Novagen) and expressed into BL21pLysS E.coli 

cells. Protein purification was achieved by affinity chromatography with a prepacked 

HisTrap Ni column (GE Healthcare) and then by size-exclusion chromatography using a 

Superdex 200, 10/300GL column (GE Healthcare). The purified c-Myc-HC/B fusion protein 
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were pooled and concentrated using a membrane filter with a cutoff of 30 kDa (Amicon 

Millipore).  

The HC of BoNT/A (nucleotides corresponding residues 876-1296) fused with cpV 

(Circularly Permuted Venus) at the N-terminus was cloned into a pET28a His-tag vector 

(Novagen) and expressed in BL21 DE3 E.coli cells. Purification of cpV-HC/A fusion protein 

was achieved as described for c-Myc-HC/B. 

In binding and internalization assay, CGNs were treated with EGA 12.5 µM or vehicle 

(DMSO) in culture medium at 37° C. After 30 minutes, 100 nM cpV-HC/A or c-Myc-HC/B 

was added in stimulating culture medium (complete culture medium, 57 mM KCl), for 1 hr. 

Neurons were then washed twice, fixed with 4% paraformaldehyde in PBS and directly 

imaged for cpV or permeabilized and stained with a primary antibody specific for the c-Myc 

epitope (Sigma Aldrich, M4439). An Alexa Fluor 488 goat anti-mouse (Life Technologies, 

A-11001) was used to detect the c-Myc primary antibody.  

The same experiment was performed with 250 nM of cpV-HC/A or c-Myc-HC/B but 

neurons were then lysed and immunoblotted to obtain a quantitative result. Where 

indicated, neurons were pre-treated with 10 nM of BoNT/D for 30 minutes. Syntaxin 1A 

(Synaptic System, 110 111) staining was used as loading control, instead, VAMP2 

(Synaptic System, 104 211) staining to assess BoNT/D cleavage. cpV-HC/A was detected 

with an anti-GFP antibody (Cell Signaling, #2956) whereas c-Myc-HC/B was detected with 

the aforementioned antibody.  

Maturation of acidic compartment assay. CGNs at 6–8 DIV were treated for 30 min with 

the indicated concentrations of EGA or 10 nM Bafilomycin A1 in complete culture medium 

supplemented with 6.25 mM Hepes at 37 °C and 5% CO2. 75 nM Lysotracker® Red DND-

99 was added for 90 minutes. Cells were then washed with Krebs-Ringer buffer (KRH: 128 

mM NaCl, 2.5 mM HEPES, 4.8 mM KCl, 1.3 mM CaCl2, 1.2 mM MgSO4 and 1.2 mM 
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K2HPO4) and images of living neurons were acquired with a Leica CTR6000 microscope. 

Fluorescence intensity was quantified using ImageJ software.  

In vitro proteolytic activity. 0.25 µg BoNT/A or BoNT/D or 1 µg BoNT/B was incubated in 

reducing buffer (150 mM NaCl, 10 mM NaH2PO4, 15 mM DTT pH 7.4) in the presence of 

12.5 µM of EGA for 30 min at 37 °C or DMSO. Then 1 µg of recombinant GST-SNAP25 or 

recombinant VAMP2 (1-96) was added to the reduced toxins, the concentration of inhibitor 

was restored, and the reaction was carried out for 12 hours at 37 °C. SNAP25 or VAMP2 

cleavage was assessed by SDS-PAGE or immunoblotting using an anti-SNAP25 A-

cleaved form or an anti-VAMP2 (Synaptic System, 104 211). 

Low pH induced translocation of BoNT/B and BoNT/D across the plasma membrane. 

At a glance, 104 PC12-SYT N24Q were plated into 12-wells plates and maintained in 

RPMI supplemented with 10% HS, 5% FBS, 2 mM L-alanyl-L-glutamine (GlutaMAX), 100 

U/ml penicillin, 100 µg/ml streptomycin, 250 ng/ml amphotericin B at 37 °C in a humid 

incubator. After adhesion, cells were incubated with a mixture of ganglioside (50 ug) for 24 

hours. Cells were washed twice with culture medium and subsequently incubated with 10 

nM of BoNT/B in ice-cooled medium (pH 7.4) and left at 4 °C for 15 minutes. After washing 

twice with the same cold medium, pre-warmed (37 °C) medium A (123 mM NaCl, 6 mM 

KCl, 0.8 mM MgCl2, 1.5 mM CaCl2, 5 mM NaPi, 5 mM citric acid, 5.6 mM glucose, 10 mM 

NH4Cl) - adjusted at indicated pH (7.4 or 4.5) with 1 M TRIS-base - was added and left for 

10 minutes. Cells where then washed twice and further incubated in normal culture 

medium (pH 7.4) containing 50 nM Bafilomycin A1 for 24 hours. Where indicated, 12.5 µM 

EGA was pre-incubated with cells for 30 minutes and was then present in all solutions 

used along experiment. The same procedure was performed using CGNs,  2.5 pM of 

BoNT/D and after low pH assay the incubation was prolonged for 24 hr. Where indicated, 

12.5 µM EGA was pre-incubated with cells for 30 minutes and was then present in all 
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solutions used along experiment. The translocation of BoNT/B or BoNT/D was assessed 

by following the metalloprotease activity against VAMP2 via western blot using an anti-

VAMP2 (Synaptic System, 104211). The staining of SNAP25 (SMI81: abcam, ab24737), 

was used as loading control. 

Mouse diaphragm and lethality assay. Muscles were mounted into two chambers filled 

with 4 ml of oxygenated (95% O2, 5% CO2) solution (139 mM NaCl, 12 mM NaHCO3, 4 

mM KCl, 2 mM CaCl2, 1 mM MgCl2, 1 mM KH2PO4 and 11 mM glucose, pH 7.4). The 

phrenic nerves were stimulated via two ring platinum electrodes with supramaximal stimuli 

of 3 V amplitude and 0.1 ms pulse duration, with a frequency of 0.1 Hz (Stimulator 6002, 

Harvard Apparatus, Massachusetts, USA). Muscle contraction was monitored with an 

isometric transducer (Harvard Apparatus); data was recorded and analysed via an i-

WORX 118 system with Labscribe software (Harvard Apparatus). EGA was added directly 

to the oxygenated solution of one muscle to reach the final concentration of 12.5 µM of 

and the same volume of vehicle (DMSO) was added to the contralateral one for direct 

comparison. After 30 minutes of incubation, 10 pM BoNT/A or BoNT/B or 100 pM BoNT/D 

was added to both preparations and the twitch monitored until complete paralysis was 

achieved. Graphs show muscle twitching capability over time, reported as percentage with 

respect to the initial value obtained before toxin addition. 

For lethality assay, EGA was dissolved in DMSO as a stock solution (12.5 mg/ml). Mice 

were conditioned for 3 days, with 12.5 mg/kg EGA or vehicle with intraperitoneal (i.p.) 

injections b.i.d. (every 12 hours). After the last injection of drug (or vehicle), mice were 

weighted and i.p. injected with 1 µl/g body weight of BoNT/A, /B or /D prepared as stock 

solutions (BoNT/A 0.5 pg/µl, BoNT/B 0.9 pg/µl and BoNT/D 0.045 pg/µl in 0.9% NaCl with 

0.2% gelatin) roughly corresponding to 2XMLD50. Mice were monitored every 4 hr for 96 
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hr, after which the experiment was considered ended. Results are displayed as Kaplan-

Meyer plots, and analysed with a Mantel-Cox test for statistical significance. 

Synaptic vesicles dynamics assay. Experiment was performed as previously described 

8. Briefly, CGNs were conditioned in high K+ buffer (70 mM NaCl, 2.5 mM HEPES, 57 mM 

KCl, 1.3 mM CaCl2, 1.2 mM MgSO4 and 1.2 mM K2HPO4) for 10 minutes. Hereafter, 5 

µg/ml of Chromeo 488 (Synaptic System, 105 311CR1) was added for 20 min in the same 

buffer. Cells were then washed twice with PBS and fixed. Internalized antibodies were 

imaged using a Leica CTR6000 microscope. Where indicated, 10 nM BoNT/D or 12.5 µM 

of EGA (or DMSO) were pre-incubated in normal culture medium for 30 minutes. The 

same concentration of EGA is maintained during antibody incubation. In order to have a 

quantitative result, the same experiment was performed using as a read-out western blot. 

Accordingly, CGNs were lysed in non-reducing condition, blotted on nitrocellulose 

membrane saturated for 1 hr in PBST supplemented with 5% non-fatty milk and directly 

incubated with secondary antibody to detect the internalized anti-Synaptotagmin1 antibody 

(Synaptic System, 105 101). The staining of VAMP2 (Synaptic System, 104 211) was used 

to assess BoNT/D cleavage, instead, Syntaxin 1A (Synaptic System, 110 111) was used 

as loading control. 

Viability test. CGNs or PC12-SYT N24Q were seeded in a 96 wells plates at a cell 

density 105 cells per well. Different concentration of EGA, ranging from 0 to 25 µM, were 

added and left for 24 hours. Neurons were then washed and MTS assay (Promega) 

performed according to manufacturer indication. 
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3. CONCLUSION 

 

Until now, the simplest explanation for the existence of botulinum neurotoxins is related to 

their strategic function in increasing the availability of a suitable anaerobic environment nec-

essary to the growth and dissemination of Clostridia, mainly among animals in wildlife2. 

BoNTs are indeed the foremost poisons found in nature and isolated outbreaks of animal 

botulism can rapidly assume epidemic proportions. Such an efficiency derives from the abil-

ity of BoNTs to target specifically the neuromuscular junction, a compartment essential for 

the survival of their principal hosts, the vertebrates7. On the other hand, the parallel evolu-

tion of many BoNTs variants remains quite mysterious, especially in light of the fact that their 

final aim remains the same. An explanation can be found in the many animal species affected 

by BoNTs and in the many different alimentary chains that lead to botulism in wildlife2. It is 

however remarkable that, beside these genetic heterogeneity and differences, their molecu-

lar architecture is very similar with each region of the toxin shaped by evolution to exploit 

fundamental features and/or events of neuronal physiology4,7. 

Therefore, given the relevant role of the interchain disulphide bond before, during and after 

translocation, our finding that the Thioredoxin Reductase-Thioredoxin system resides on the 

cytosolic face of the synaptic vesicle membrane and mediates the detachment of the catalyt-

ic L chain by reducing the disulphide on the cytosolic side, could be seen once more as an 

evolutionary choice exploited by BoNTs to achieve their final goal105,111,112. Moreover, my 

thesis work also emphasize the importance of BoNTs trafficking within nerve terminals. In 

fact, BoNTs appear to have evolved different ways to invade host neurons, as judged from 

their kinetics of intoxication85,130. Our finding that EGA inhibits the different toxin serotypes 

at different extent suggest that this molecule (or its derivates) could be useful to further in-

vestigate on their different route of entry84. 

In light of the evidence discussed in this thesis, we propose the reduction of the interchain 

disulphide bond by the thioredoxin reductase-thioredoxin redox system and the different 

BoNT trafficking within nerve terminals as a new fundamental events of BoNTs intoxication 

process, consequently recapitulated into five main steps: i) binding to polysialogangliosides 

for toxin accumulation on the target neurons, ii) interaction with the lumenal domain of an 

SV protein for its internalization inside different endosomal compartments, iii) acidification 

of this “Trojan horse” to deliver the catalytically active part across the SV membrane, iv) re-
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duction of the interchain disulphide bond by TrxR-Trx to complete the translocation and re-

lease the L chain on the cytosolic side, v) L chain-mediated cleavage of SNARE proteins and 

disruption of SV ability to fuse with the presynaptic plasma membrane105.  

Our results have important implications concerning the possible application of the 

compounds presented here as therapeutic agents to treat botulism. The most important 

point is that these inhibitors are active regardless of the serotype causing intoxication. This is 

the more important in light of the large number of different BoNTs that are being discovered 

and, is additionally relevant to those cases of botulism caused by Clostridia producing more 

than one BoNT serotype. Indeed, these drugs can be administered without knowing the 

BoNT serotype and sub-type, therefore saving the time required for toxin characterization. 

For this reason, if given soon after diagnosis, these inhibitors might reduce symptoms 

severity by preventing the entry of circulating BoNT, thus shortening the period of 

hospitalization and reducing the associated high costs of intensive care. Importantly, since 

these inhibitors are small molecules which enter the cells, they can affect toxin molecules 

which have already been taken up by the neurons, but cannot be blocked any longer by anti-

BoNT specific antibodies. Clearly, the toxicity of L chains that have already reached the 

neuronal cytosol cannot be blocked. However, it was shown that in clinical botulism, BoNTs 

can remain in the blood circulation and/or in interstitial fluids for many days131. Henceforth, 

using these inhibitors, the severity of BoNT intoxication may be substantially mitigated by 

blocking BoNT molecules that have not yet entered nerve terminals. 

Moreover, some of these compounds, having a good record of safety in humans, might have 

a great potential in the treatment of infant botulism where a continuous release of freshly 

produced BoNT takes place, which is the case of infant botulism. In this form of the disease, 

the BoNT producing Clostridia colonize the intestine, owing to the lack of competitive 

bacterial flora, and release the toxin within the general circulation for long periods of time.  
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