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Abstract

Minimally invasive continuous glucose monitoring (CGM) sensors are wear-
able medical devices that provide frequent (e.g., 1-5 min sampling rate) real-
time measurements of glucose concentration for several consecutive days. This
can be of great help in the daily management of diabetes. Most of the CGM sys-
tems commercially available today have a wire-based electrochemical sensor,
usually placed in the subcutaneous tissue, which measures a "raw" electrical
current signal via a glucose-oxidase electrochemical reaction. Observations of
the raw electrical signal are frequently revealed by the sensor on a fine, uni-
formly spaced, time grid. These samples of electrical nature are in real-time
converted to interstitial glucose (IG) concentration levels through a calibra-
tion process by fitting a few blood glucose (BG) concentration measurements,
sparsely collected by the patient through fingerprick. Usually, for coping with
such a process, CGM sensor manufacturers employ linear calibration models
to approximate, albeit in limited time-intervals, the nonlinear relationship be-
tween electrical signal and glucose concentration. Thus, on the one hand, fre-
quent calibrations (e.g., two per day) are required to guarantee a good sensor
accuracy. On the other, each calibration requires patients to add uncomfortable
extra actions to the many already needed in the routine of diabetes manage-
ment.

The aim of this thesis is to develop new calibration algorithms for min-
imally invasive CGM sensors able to ensure good sensor accuracy with the
minimum number of calibrations. In particular, we propose i) to replace the
time-invariant gain and offset conventionally used by the linear calibration
models with more sophisticated time-varying functions valid for multiple-day
periods, with unknown model parameters for which an a priori statistical de-
scription is available from independent training sets; ii) to numerically esti-
mate the calibration model parameters by means of a Bayesian estimation pro-
cedure that exploits the a priori information on model parameters in addition
to some BG samples sparsely collected by the patient.
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The thesis is organized in 6 chapters. In Chapter 1, after a background in-
troduction on CGM sensor technologies, the calibration problem is illustrated.
Then, some state-of-art calibration techniques are briefly discussed with their
open problems, which result in the aims of the thesis illustrated at the end of
the chapter.

In Chapter 2, the datasets used for the implementation of the calibration
techniques are described, together with the performance metrics and the sta-
tistical analysis tools which will be employed to assess the quality of the re-
sults.

In Chapter 3, we illustrate a recently proposed calibration algorithm (Vet-
toretti et al., IEEE Trans Biomed Eng 2016), which represents the starting point
of the study proposed in this thesis. In particular, we demonstrate that, thanks
to the development of a time-varying day-specific Bayesian prior, the algo-
rithm can become able to reduce the calibration frequency from two to one per
day. However, the linear calibration model used by the algorithm has domain
of validity limited to certain time intervals, not allowing to further reduce cal-
ibrations to less then one per day and calling for the development of a new
calibration model valid for multiple-day periods like that developed in the re-
mainder of this thesis.

In Chapter 4, a novel Bayesian calibration algorithm working in a multi-day
framework (referred to as Bayesian multi-day, BMD, calibration algorithm) is
presented. It is based on a multiple-day model of sensor time-variability with
second order statistical priors on its unknown parameters. In each patient-
sensor realization, the numerical values of the calibration model parameters
are determined by a Bayesian estimation procedure exploiting the BG sam-
ples sparsely collected by the patient. In addition, the distortion introduced by
the BG-to-IG kinetics is compensated during parameter identification via non-
parametric deconvolution. The BMD calibration algorithm is applied to two
datasets acquired with the "present-generation" Dexcom (Dexcom Inc., San
Diego, CA) G4 Platinum (DG4P) CGM sensor and a "next-generation" Dexcom
CGM sensor prototype (NGD). In the DG4P dataset, results show that, despite
the reduction of calibration frequency (on average from 2 per day to 0.25 per
day), the BMD calibration algorithm significantly improves sensor accuracy
compared to the manufacturer calibration algorithm. In the NGD dataset, per-
formance is even better than that of present generation, allowing to further
reduce calibrations toward zero.

In Chapter 5, we analyze the potential margins for improvement of the
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BMD calibration algorithm and propose a further extension of the method.
In particular, to cope with the inter-sensor and inter-subject variability, we
propose a multi-model approach and a Bayesian model selection framework
(referred to as multi-model Bayesian framework, MMBF) in which the most
likely calibration model is chosen among a finite set of candidates. A prelim-
inary assessment of the MMBF is conducted on synthetic data generated by a
well-established type 1 diabetes simulation model. Results show a statistically
significant accuracy improvement compared to the use of a unique calibration
model.

Finally, the major findings of the work carried out in this thesis, possible
applications and margins for improvement are summarized in Chapter 6.
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Sommario

I sensori minimamente invasivi per il monitoraggio in continua della glicemia,
indicati con l’acronimo CGM (continuous glucose monitoring), sono dei di-
spositivi medici indossabili capaci di misurare la glicemia in tempo reale, ogni
1-5 minuti, per più giorni consecutivi. Questo tipo di misura fornisce un pro-
filo di glicemia quasi continuo che risulta essere un’informazione molto utile
per la gestione quotidiana della terapia del diabete. La maggior parte dei di-
spositivi CGM ad oggi disponibili nel mercato dispongono di un sensore di
tipo elettrochimico, solitamente inserito nel tessuto sottocutaneo, che misura
una corrente elettrica generata dalla reazione chimica di glucosio-ossidasi. Le
misure di corrente elettrica sono fornite dal sensore con campionamento uni-
forme ad elevata frequenza temporale e vengono convertite in tempo reale in
valori di glicemia interstiziale attraverso un processo di calibrazione. La pro-
cedura di calibrazione prevede l’acquisizione da parte del paziente di qualche
misura di glicemia plasmatica di riferimento tramite dispositivi pungidito. So-
litamente, le aziende produttrici di sensori CGM implementano un processo di
calibrazione basato su un modello di tipo lineare che approssima, sebbene in
intervalli di tempo di durata limitata, la più complessa relazione tra corrente
elettrica e glicemia. Di conseguenza, si rendono necessarie frequenti calibra-
zioni (per esempio, due al giorno) per aggiornare i parametri del modello di
calibrazione e garantire una buona accuratezza di misura. Tuttavia, ogni ca-
librazione prevede l’acquisizione da parte del paziente di misure di glicemia
tramite dispositivi pungidito. Questo aumenta la già numerosa lista di azioni
che i pazienti devono svolgere quotidianamente per gestire la loro terapia.

Lo scopo di questa tesi è quello di sviluppare un nuovo algoritmo di cali-
brazione per sensori CGM minimamente invasivi capace di garantire una buo-
na accuratezza di misura con il minimo numero di calibrazioni. Nello speci-
fico, si propone i) di sostituire il guadagno ed offset tempo-invarianti solita-
mente utilizzati nei modelli di calibrazione di tipo lineare con delle funzioni
tempo-varianti, capaci di descrivere il comportamento del sensore per inter-
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valli di tempo di più giorni, e per cui sia disponibile dell’informazione a priori
riguardante i parametri incogniti; ii) di stimare il valore numerico dei parame-
tri del modello di calibrazione con metodo Bayesiano, sfruttando l’informa-
zione a priori sui parametri di calibrazione in aggiunta ad alcune misure di
glicemia plasmatica di riferimento.

La tesi è organizzata in 6 capitoli. Nel Capitolo 1, dopo un’introduzione sul-
le tecnologie dei sensori CGM, viene illustrato il problema della calibrazione.
In seguito, vengono discusse alcune tecniche di calibrazione che rappresenta-
no lo stato dell’arte ed i loro problemi aperti, che risultano negli scopi della tesi
descritti alla fine del capitolo.

Nel Capitolo 2 vengono descritti i dataset utilizzati per l’implementazione
delle tecniche di calibrazione. Ioltre, vengono illustrate le metriche di accu-
ratezza e le tecniche di analisi statistica utilizzate per analizzare la qualità dei
risultati.

Nel Capitolo 3 viene illustrato un algoritmo di calibrazione recentemente
proposto in letteratura (Vettoretti et al., IEEE, Trans Biomed Eng 2016). Questo
algoritmo rappresenta il punto di partenza dello studio svolto in questa tesi.
Più precisamente, viene dimostrato che, grazie all’utilizzo di un prior Bayesia-
no specifico per ogni giorno di utilizzo, l’algoritmo diventa efficace nel ridurre
le calibrazioni da due a una al giorno senza perdita di accuratezza. Tuttavia, il
modello lineare di calibrazione utilizzato dall’algoritmo ha dominio di validi-
tà limitato a brevi intervalli di tempo tra due calibrazioni successive, renden-
do impossibile l’ulteriore riduzione delle calibrazioni a meno di una al giorno
senza perdita di accuratezza. Questo determina la necessità di sviluppare un
nuovo modello di calibrazione valido per intervalli di tempo più estesi, fino a
più giorni consecutivi, come quello sviluppato nel resto di questa tesi.

Nel Calitolo 4 viene presentato un nuovo algoritmo di calibrazione di ti-
po Bayesiano (Bayesian multi-day, BMD). L’algoritmo si basa su un modello
della tempo-varianza delle caratteristiche del sensore nei suoi giorni di utiliz-
zo e sulla disponibilità di informazione statistica a priori sui suoi parametri
incogniti. Per ogni coppia paziente-sensore, il valore numerico dei parametri
del modello è determinato tramite stima Bayesiana sfruttando alcune misu-
re plasmatiche di riferimento acquisite dal paziente con dispositivi pungidito.
Inoltre, durante la stima dei parametri, la dinamica introdotta dalla cinetica
plasma-interstizio viene compensata tramite deconvoluzione nonparametrica.
L’algoritmo di calibrazione BMD viene applicato a due differenti set di dati ac-
quisiti con il sensore commerciale Dexcom (Dexocm Inc., San Diego, CA) G4
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Platinum (DG4P) e con un prototipo di sensore Dexcom di nuova generazio-
ne (NGD). Nei dati acquisiti con il sensore DG4P, i risultati dimostrano che,
nonostante le calibrazioni vengano ridotte (in media da 2 al giorno a 0.25 al
giorno), l’ algoritmo BMD migliora significativamente l’accuratezza del senso-
re rispetto all’algoritmo di calibrazione utilizzato dall’azienda produttrice del
sensore. Nei dati acquisiti con il sensore NGD, i risultati sono ancora migliori,
permettendo di ridurre ulteriormente le calibrazioni fino a zero.

Nel Capitolo 5 vengono analizzati i potenziali margini di miglioramento
dell’algoritmo di calibrazione BMD discusso nel capitolo precedente e viene
proposta un’ulteriore estensione dello stesso. In particolare, per meglio ge-
stire la variabilità tra sensori e tra soggetti, viene proposto un approccio di
calibrazione multi-modello e un metodo Bayesiano di selezione del modello
(Multi-model Bayesian framework, MMBF) in cui il modello di calibrazione
più probabile a posteriori viene scelto tra un set di possibili candidati. Tale
approccio multi-modello viene analizzato in via preliminare su un set di dati
simulati generati da un simulatore del paziente diabetico di tipo 1 ben no-
to in letteratura. I risultati dimostrano che l’accuratezza del sensore migliora
in modo significativo con MMBF rispetto ad utilizzare un unico modello di
calibrazione.

Infine, nel Calitolo 6 vengono riassunti i principali risultati ottenuti in que-
sta tesi, le possibili applicazioni, e i margini di miglioramento per gli sviluppi
futuri.
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Chapter 1

Continuous glucose monitoring
(CGM) sensors and the problem of
their calibration: state-of-art and
open issues

1

1.1 The diabetes disease and its management

Diabetes is a chronic disorder that occurs either when the pancreas is no longer
able to produce insulin (type 1 diabetes, T1D), or if body tissues and organs
cannot effectively utilize circulating insulin (type 2 diabetes, T2D) [3]. In peo-
ple with diabetes, the deficiencies in glucose control lead to blood glucose
(BG) values exceeding the safe range of 70-180 mg/dl. While hyperglycemia
(i.e., BG > 180 mg/dl) can result in long-term complications, e.g., retinopathy,
nephropathy, cardiovascular disease, hypoglycemia (i.e., BG < 70 mg/dl) can
produce short-term adverse conditions that can cause coma, or even death [4]
[5] [6].

Nowadays diabetes afflicts more than 350 millions of people worldwide.
T2D accounts for about 90% of all cases [7] and its onset is largely correlated
with excessive body weight, physical inactivity, and unhealthy diet. The World
Health Organization (WHO) predicts T2D prevalence to significantly grow in
the next years, due to aging populations and sedentary lifestyles [3] [8]. Con-
sequently, the total cases of diabetes is expected to exceed 500 million by 2030,
becoming one of the most challenging socio-health emergencies of the third

1Part of this chapter is taken from the published review papers [1] and [2].
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millennium. Although it is not possible with current knowledge to definitely
cure diabetes, a constant and appropriate management of the disease can con-
trol and prevent many complications [3] [9] [10]. While T2D management
mainly consists of healthy diet, physical exercise, and drug administration,
T1D therapy requires daily insulin administration. The most challenging is-
sue is related to insulin administration, being the correct amount of injected
insulin determined on the basis of BG concentration levels, which needs to be
monitored by suitable technologies.

At-home BG monitoring became available only in the 1970s, when the first
self-monitoring BG (SMBG) meters were commercialized [11]. The early SMBG
portable devices were based on optical detection of a color change on glucose
oxidase-based strips, while the most recent systems rely on electrochemical-
based sensing techniques [12] becoming, by the mid-1980s, the landmark in
diabetes management [11]. Since the advent of SMBG devices for home BG
testing, the standard therapy for diabetes management consisted of 3–4 SMBG
measurements per day, individually acquired by fingerprick tests [3]. Although
the introduction of self-BG monitoring in everyday life resulted in a general
improvement of metabolic control [13] [14] [15], sparse BG measures cannot
provide a complete description of glucose dynamics during the day. For in-
stance, hypoglycemic or hyperglycemic events occurring between two BG ac-
quisitions cannot be detected. An example of SMBG time series (data derive
from [16]) is depicted in Figure 1.1 (triangles), where it is apparent that some
critical episodes, e.g., a hypoglycemia event and several hyperglycemic condi-
tions, cannot be revealed due to insufficient sampling frequency. On the one
hand, more frequent SMBG measurements would be required to optimize glu-
cose control but, on the other hand, this would increase patient’s discomfort
and increment the number of actions needed daily to manage the disease.

In recent years, technological innovations have been introduced for the
treatment of diabetes. In particular, the development of continuous glucose
monitoring (CGM) sensors [17] [1] have revolutionized diabetes management.
CGM systems are wearable devices able to measure subcutaneous glucose con-
centration almost continuously, e.g., every 1–5 minutes [18], for several con-
secutive days, greatly increasing the information on glucose dynamics com-
pared to standard SMBG-based monitoring, with consequent improvement
of glycemic control, quality of life, and reduction of diabetes-related compli-
cations [19] [20] [21] [22] [23] [24] [25] [26]. See, for instance, in Figure 1.1
(continuous line) the hypo- and hyperglycemic episodes detected by the Dex-
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1.2 CGM sensor technologies

Figure 1.1: Representative two-days of blood glucose (BG) monitoring obtained
with self-monitoring BG (SMBG), triangles, and with continuous glucose monitoring
(CGM), continuous line. The pink band represents the euglycemic range.

com G4 Platinum (Dexcom Inc., San Diego, CA) CGM sensor (data previously
published in [16]) and otherwise undetectable with the standard SMBG mea-
surements. This high frequency information on glucose dynamics provided by
CGM sensors is a key component for several open loop applications, such, e.g.,
sensor-augmented pump therapies [27] and decision support systems [28],
[29], and closed loop applications like the artificial pancreas (see, e.g., [30],
[31], [32], [33], [34], [35], [36], or [37] for an extensive review).

The following section gives a more detailed description of the CGM sensor
technologies, from the early age devices to the products currently available on
the market.

1.2 CGM sensor technologies

In the last years, various glucose-sensing mechanisms for non-invasive, or at
least minimally invasive, CGM have been proposed [38] [12] [39] [40] [41] [42]
[43], trying to match all fundamental requirements for an extended in vivo use,
e.g., sensitivity, specificity, linearity within biological relevant range, biocom-
patibility, and lifetime [44]. Among all the proposed techniques, i.e. electro-
chemical, optical, and piezoelectric, the one that is today exploited by most of
the commercialized CGM systems is the glucose-oxidase electrochemical prin-
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Figure 1.2: Example of patient wearing a CGM sensor in the abdomen. (Source:
https://www.medicalexpo.com)

ciple [12]. The devices based on this principle employ a minimally-invasive
wire-based sensor, usually inserted through a thin needle in the subcutaneous
tissue of the abdomen or the arm (see Figure 1.2), which measures an electrical
current signal generated by the glucose-oxidase reaction. This signal is pro-
portional to the glucose concentration in the interstitial fluid. The process that
converts the electrical current signal into a glucose concentration estimate is
referred to as a calibration procedure.

1.2.1 The early age of glucose-oxidase CGM sensors

The first prototypes of CGM systems based on the glucose-oxidase electro-
chemical principle were proposed in the late 90’s [45], but biocompatibility
problems often led to commercially unsuccessful products. The first gener-
ation of commercial CGM systems became available for personal use only a
few years later, starting from 2005. The first three successfully commercial-
ized products were the Medtronic Guardian (Medtronic Minimed, Northridge,
CA), the Dexcom Seven Plus (Dexcom Inc., San Diego, CA) and the Abbott
Navigator (Abbott Diabetes Care, Alameda, CA).

Accuracy of these systems is commonly computed by comparing the CGM
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1.2 CGM sensor technologies

Figure 1.3: Example of Yellow Spring Instrument (YSI) measurements (red points)
versus CGM data (continuous line) collected during an in-clinic session of about 1
day. Accuracy of the CGM sensor can be quantified by using the YSI measurements
as ground truth, e.g., by computing the mean absolute relative difference (MARD) as
the average of the ratio between the YSI-CGM absolute difference over the YSI.

sensor output with a reference BG measurement acquired with highly accurate
laboratory instruments, i.e., Yellow Spring Instrument Inc. (YSI) instruments.
An example of dataset provided to assess accuracy of a CGM sensor is re-
ported in Figure 1.3. Of note is that high frequency YSI references (one every
15 minutes in the picture) can be collected only in a hospital setting. Along
the different metrics that have been proposed in the literature to quantify ac-
curacy of CGM sensors, e.g., mean absolute difference (MAD), mean absolute
relative difference (MARD), and Clarke error grid analysis [46], MARD is the
most popular accuracy index used in recent studies.

From a number of datasets like that of Figure 1.3 it is trivial to estimate the
MARD as the average of the ratio between the YSI-CGM absolute difference
over the YSI. For instance, the MARD of the first commercialized sensors was
15.8% for the Medtronic Guardian [47], 16.7% for the Dexcom Seven Plus [48],
and 12.8% for the Abbott Navigator [49], for a mean lifetime of 4-5 days.

As for any other medical devices, accuracy represents one of the most im-
portant requirements, since critical (and possibly harmful for the patient) ther-
apeutic decisions and actions, like insulin dosing, are based on BG readings.
At the end of the past decade, accuracy values of commercial grade CGM sen-
sors were still significantly worse than those of SMBG systems (that have a
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Figure 1.4: Early-age CGM devices commercialized between 2005 and 2008 and
schematic representation of their accuracy, measured as MARD. From left to right:
Medtronic Guardian (Medtronic Minimed, Northridge, CA), Abbott FreeStyle Navi-
gator (Abbott Diabetes Care, Alameda, CA), and Dexcom Seven Plus (Dexcom Inc.,
San Diego, CA). Accuracy range of standard SMBG devices (5-10% MARD) is also
depicted in pink for comparison.

MARD between 5 and 10%), as represented in Figure 1.4, making therefore
CGM sensors still unsafe for taking therapeutic decisions. Thus, in the past
10 years, CGM companies concentrated a big effort in developing improved,
more accurate, sensor systems.

1.2.2 State-of-art glucose-oxidase CGM sensors

State-of-art CGM devices are depicted in a timeline in Figure 1.5, where their
accuracy is also schematized in terms of MARD, compared to the accuracy of
standard SMBG devices.

In 2011, Medtronic launched the new Enlite sensor, which received the CE
approval in 2011 and the Food and Drug Administration (FDA) approval in
2013, providing users with a more accurate and comfortable sensor. Indeed,
with respect to the previous first generation device, the Enlite sensor shows
significant clinical and human factors improvements. The electrode layout
was redesigned to face inflammatory response effects, the size of the sensor
decreased, the wear time was extended from 3 to 6 days, and the inserter de-
vice became more user-friendly. All these changes improved usability and ac-
curacy, reaching 13.6% MARD [50]. In 2016, the same company proposed a
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Figure 1.5: State of art glucose sensor devices commercialized between 2011 and
2016 and schematic representation of their accuracy, measured as MARD. From left
to right: Medtronic Enlite (Medtronic Minimed, Northridge, CA), Abbott FreeStyle
Navigator II (Abbott Diabetes Care, Alameda, CA), Dexcom G4 Platinum, Dexcom G5
Mobile (Dexcom Inc., San Diego, CA), and Guardian Sensor 3 (Medtronic Minimed,
Northridge, CA). Accuracy range of standard SMBG devices (5-10% MARD) is also
depicted in pink for comparison.

new and more accurate sensor, the Guardian Sensor 3 [51], which has been
recently FDA approved to be used in the Minimed 670G hybrid closed loop
system [52].

Dexcom launched the new G4 Platinum CGM sensor in 2012, after receiv-
ing CE Mark in June and FDA approval in October of the same year. The
new Dexcom G4 Platinum system, which lasts for seven days, employs a com-
pletely redesigned smaller transmitter and several sensor improvements that
allowed enhancing accuracy to 13% MARD [16]. In 2014, algorithmic changes
in the Dexcom G4 Platinum sensor further enhanced accuracy decreasing MARD
to 9% [53]. In addition to accuracy improvements, Dexcom pushed to render
their new products more effective and user-friendly by embedding the G4 Plat-
inum sensor with the Share technology (2015) [54]. The Share technology al-
lows secure wireless connection via Bluetooth Low Energy between a patient’s
receiver and an app on the patient’s smartphone and up to five designated re-
cipients. In the same direction, in 2015, Dexcom launched the G5 Mobile CGM
system that allows direct wireless communication to a smartphone without the
need to have a dedicated receiver [54].

Abbott launched the FreeStyle Navigator II CGM system in 2011 in some
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European countries. The new sensor, which lasts for five days, shows a com-
pletely redesigned receiver, a smaller transmitter, a slightly smaller and re-
designed sensor that allowed reducing warm-up time from 10 to 1 h [55].

1.2.3 Technological trends and challenges for the next genera-

tion CGM sensors

From an hardware point of view, the size and lifetime of a CGM system rep-
resent critical factors in device development. In general, among a series of
equally performing devices, the smallest and more long-lasting product often
has the greatest appeal and success. It is reasonable to extend this general
concept to CGM devices, expecting that next generation CGM systems will be
small, easy to wear, and possibly guarantee longer duration.

Many companies are currently working to match these fundamental re-
quirements by employing different strategies. In August 2015, Dexcom an-
nounced the agreement with the Life Science team at Google (Google Inc.,
Mountain View, CA) to develop jointly a series of next generation CGM prod-
ucts designed to be smaller, cheaper, and lasting for 10–14 consecutive days
[54]. On the other hand, in 2014 Abbott already launched in Europe the new
FreeStyle Libre flash glucose monitoring system (see Figure 1.6), which can
be worn for 14 consecutive days showing glucose levels when scanned by the
user with an accuracy of 11.4% MARD [56] (accuracy reported in the scheme of
Figure 1.5). Also, in 2016 Senseonics Inc. (Germantown, MD) launched the Ev-
ersense sensor, the first fully implantable CGM system based on optical sensor
technology that lasts for 90 consecutive days and has a MARD of 11.4% [57]
(see Figure 1.6).

Beyond the requirements just discussed in terms of sensor lifetime, size,
and user acceptability, which can be achieved mostly by hardware adjust-
ments, next generation CGM systems need to address several other require-
ments through software updates. Currently available CGM systems already
incorporate smart features, such as alerts and alarms generation in case of hy-
poglycemic or hyperglycemic events, incorporation of glucose trend informa-
tion, detection of sensor faults and artifacts [58], [38]. Next generation systems
certainly need to incorporate these features and to deal with data management
and integration into external devices, e.g., smartphone apps or dedicated cloud
platforms.

Another crucial aspect that needs to be considered to improve the ease of
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Figure 1.6: Next generation glucose sensor devices and schematic representation of
their accuracy, measured as MARD. From left to right: Abbott FreeStyle Libre (Abbott
Diabetes Care, Alameda, CA), Eversense (Senseonics Inc., Germantown, MD), and
Dexcom G6 (Dexcom Inc., San Diego, CA). Accuracy range of standard SMBG devices
(5-10% MARD) is also depicted in pink for comparison.

use of next generation sensors is calibration requirement. Most of the com-
mercially available glucose sensors need to be calibrated to convert the raw
measurements (e.g., the electrical current) to glucose values, usually twice per
day, requiring the collection of one or more SMBG measurements to use as
ground truth [58]. In order to facilitate the use of CGM technology, next gener-
ation systems need to be less calibration dependent. On the other hand, sensor
accuracy needs to be maintained despite the reduction of calibration require-
ments. These apparently conflicting demands can be managed by developing
ad hoc calibration techniques.

The very last FDA approved CGM sensor that matches many of the afore-
mentioned requirements of next generation systems, showing a 9.6% MARD
with no calibrations, is the Dexcom G6 (Dexcom Inc., San Diego, CA) [59] (see
Figure 1.6), which starts now, at the time of writing, to be commercialized.2

2All the devices reported in the timeline of Figure 1.5 and Figure 1.6 between 2015 and 2018
were not yet commercialized at the beginning of this Ph.D. research program.
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1.3 Calibration of minimally invasive glucose-oxidase

CGM sensors

Minimally invasive CGM sensors measure a signal that reflects glucose con-
centration only indirectly. Indeed, the wired-based sensor placed through a
needle in the subcutaneous tissue measures a current signal derived from the
glucose-oxidase electrochemical reaction [12], [60]. The calibration process
consists in the estimation of a mathematical model that converts the current
signal (given in fractions of ampere) into meaningful glucose concentration
values (in mg/dl). The following subsections illustrate the calibration prob-
lem and the critical aspects related to calibration.

1.3.1 Calibration problem statement

Letting u(t) be the glucose concentration profile, y(t) the electrical current pro-
file, and f (·) the function of parameters P = [p1, p2, ..., pn] that relates u(t) and
y(t), the calibration process can be schematized in two steps (schematized in
panel (a) and (b) of Figure 1.7). The first step consists in the identification of
the calibration model parameters. In formal terms, the current signal y(t) col-
lected by the sensor and corrupted by measurement error w(t), and the BG
measurements (samples of u(t)) acquired by the patient at correspondent time
instants, are described by the model (see Figure 1.7, panel (a)):

y(t) = f (P, u(t)) + w(t) (1.1)

from which a numerical value P̂ of the calibration parameter vector can be pro-
vided using, for instance, parametric estimation techniques. This step can be
repeated each time a new BG reference is available, with consequent updates of
the calibration parameters P̂ (e.g., every 12–24 h by acquiring SMBG samples).
The second step leads to the estimation of the glucose concentration profile
(see Figure 1.7, panel (b)). Formally, from the vector of estimated parameters
P̂ and the measured current profile y(t), the calibrated glycemic profile û(t) is
obtained in real-time by inverting the calibration function f (·):

û(t) = f−1(P̂, y(t)) (1.2)

The choice of the calibration function f (·) is critical. It has to be invert-
ible and it has to precisely describe the relationship between the electrical cur-

10



1.3 Calibration of minimally invasive glucose-oxidase CGM sensors

+
u(t) y(t)

w(t)

y(t)
𝑓−1

𝑓

ො𝑢(t)

(a)

(b)

Glucose 
concentration 

Sensor 
output

Sensor 
output

Glucose 
concentration 

IDENTIFICATION OF THE CALIBRATION FUNCTION

USE OF THE CALIBRATION FUNCTION

Figure 1.7: Schematic representation of the two steps characterizing the calibration
process. Panel (a): first step, identification of the parameters of the calibration func-
tion f from the glucose concentration samples, u(t) and the sensor measurements,
y(t), corrupted by measurement noise, w(t). Panel (b): second step, estimation of the
glucose concentration profile, û(t), from the sensor measurements, y(t), by inverting
the calibration function.

rent signal and glucose concentration, which can be, in the most general case,
non-linear and time-variant (in this case, time t would be, explicitly, an input
of f (·)). Moreover, the choice of using either the electrical current or the BG
measurements as independent variable in the calibration model may affect the
calibration performance [61].

The most common and simplest calibration model adopted by manufactur-
ers of CGM systems is a first-order time-independent linear function [62], [63],
[64], [65], with parameters P = [s, b], where s and b are referred to as sensor
sensitivity and baseline (or offset), respectively. In this case, the model of the
measurements reported in Equation 1.1 in a general form turns into:

y(t) = f (P, u(t)) + w(t) = s · u(t) + b + w(t) (1.3)

The numerical determination of the estimates ŝ and b̂ is, thus, required. For
such a scope, if for instance two BG references u(t1) and u(t2) are available at
times t1 and t2, knowing the electrical current values given by the sensor at the
same time instants, y(t1) and y(t2), the so-called two-point calibration can be
performed [66], which allows the estimation of sensitivity, ŝ, and baseline, b̂,
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from the two measured pairs as:ŝ = y(t2)−y(t1)
u(t2)−u(t1)

b̂ = y(t2)− y(t2)−y(t1)
u(t2)−u(t1)

· u(t2)
(1.4)

In general, when multiple pairs of electrical current and BG samples are
available at times ti (i = 1, 2, ..., N), a linear regression is used to fit the sensi-
tivity and baseline to the data. In particular, including the measurement noise
w(ti), the model of the measurements becomes:

y(ti) = s · u(ti) + b + w(ti) (1.5)

and the numerical determination of model parameters is done by minimizing
the residual sum of squares:

[ŝ, b̂] = arg min
s,b

N

∑
i=1

(y(ti)− s · u(ti)− b)2 (1.6)

Finally, the calibrated glucose profile û(t) is obtained from the measured
current signal y(t) and the estimated calibration parameters ŝ and b̂ by invert-
ing the calibration function:

û(t) =
y(t)− b̂

ŝ
(1.7)

The quality of the estimate of the calibration parameters is expected to in-
crease with N, i.e., the more electrical current-BG pairs that are available, the
more accurately the calibration parameters are estimated. On the other hand,
increasing N is difficult to satisfy, for practical reasons, e.g., for the discom-
fort related to the acquisition of SMBG samples, and because CGM manufac-
turers push to minimize the calibration points to facilitate the ease-of-use of
their devices. Moreover, in the presence of measurement uncertainty and/or
when only a few data points are available, the standard two-point calibration
of Equation 1.4 could be simplified to a one-point calibration by considering a
zero baseline. This simplification may improve the calibration performance by
reducing the effect of the noise [66], [67].

Although the use of such linear calibration techniques is appealing for its
simplicity and ease of implementation, it introduces several critical aspects
that, together with uncertainty on the measured sensor output and BG ref-
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(a) (b)

Figure 1.8: Examples in which the CGM sensor output (continuous line) (a) overesti-
mates and (b) underestimates the reference blood glucose (points).

erences, are often a cause of CGM sensor inaccuracy. Two examples of sensor
inaccuracy are illustrated in Figure 1.8, where two representative CGM profiles
(continuous lines) acquired by the Dexcom G4 Platinum CGM sensor are com-
pared with reference BG concentrations measured in parallel by gold-standard
laboratory instruments (points). Two major causes of these deviations are dis-
cussed in the following section.

1.3.2 Critical aspects affecting calibration

A first aspect explaining the discrepancies evidenced in Figure 1.8 is the distor-
tion introduced by the BG-to-IG kinetics. Indeed, the needle sensor is inserted
in the subcutaneous tissue and measures a current signal that is proportional
to the glucose concentration in the interstitial fluid. This is due to the fact that,
in order to reduce invasiveness of CGM devices, sensors are placed in the sub-
cutis and measure the glucose-related current signal from the interstitial fluid
rather than directly from the blood. Thus, the two measurements available
during the calibration process, i.e., the electrical current signal measured by
the sensor and the BG references acquired through fingerprick devices, belong
to different physiological sites. A widely-established description of the rela-
tionship between BG and IG is based on a two-compartment model (Figure 1.9
panel a) [68], [69]. According to this representation, and noting that, in steady-
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Figure 1.9: (a) Two-compartment model describing the blood glucose to interstitial
glucose (BG-to-IG) kinetics. Ra is the rate of appearance; k01, k02, k12, k21 are rate
constants. The time constant of the BG-to-IG system is τ = 1

k02+k12
. (b) Representative

blood glucose (dashed line) and interstitial glucose (continuous line) concentration
profiles simulated assuming τ = 11 min.

state, BG and IG have equal values, the IG profile can be described by the
convolution of the BG profile with a single exponential 1

τ e−
t
τ , a decay function

having unitary area under the curve and time constant τ. The time constant
τ is related to the parameters of the two-compartment model by the equation
τ = 1

k02+k12
[68], [69]. Given the low-pass filtering nature of the system de-

scribed in Figure 1.9 panel a, the IG signal is a smoothed and delayed version
of the BG concentration [70]. An example is reported in Figure 1.9 panel b,
where the IG profile (obtained by convolving a given, simulated, BG profile
with a single exponential with τ = 11 minutes) shows both amplitude atten-
uation and phase delay compared to the BG profile. Notably, τ shows inter-
and intra-subject variability and its numerical identification requires suitable
collection of both BG and IG samples. Published values of the time constant τ

range from 6 to 15 min [69]. In practice, the BG-to-IG time constant τ is treated
as a user parameter, but its role in the calibration process needs to be carefully
considered [71], [72].

A second critical aspect behind the differences pointed out in Figure 1.8 is
related to the time variability of sensor sensitivity. The raw electrical current
signals acquired by CGM sensors often exhibit a non-physiological drift, espe-
cially in the first day after sensor insertion. An example of non-physiological
drift observed in a raw CGM signal acquired by the Dexcom G4 Platinum
CGM sensor is depicted in Figure 1.10, where the continuous line represents
the electrical current signal (in units not specified by the manufacturer) and
the dashed line shows the drift. This phenomenon is related to a variation of
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Figure 1.10: Representative raw CGM sensor signal (continuous line, units not spec-
ified by the manufacturer) that exhibits a non-physiological drift (dashed line) due to
the time variability of sensor sensitivity.

sensor sensitivity after its insertion in the body, when the sensor membrane
enters in contact with the biological environment and undergoes the immune
system reaction [73], [74]. The calibration model has to properly compensate
for such time variability, which is often non-linear.

Several techniques have been proposed to deal with these issues affecting
CGM sensor calibration. The next section presents and discusses the most re-
cent algorithms proposed in the literature.

1.4 State-of-art calibration algorithms

One of the major limitations of the calibration linear regression techniques pre-
sented in Section 1.3.1 is that they all neglect the time lag between the BG and
the raw sensor signal, which can lead to a suboptimal estimation of the param-
eters of the calibration function. Therefore, most of the calibration algorithms
developed by the scientific community included more or less sophisticated ap-
proaches to overcome this limitation and take BG-to-IG dynamics into account.

The first simple approach is to require calibration of the sensor when glu-
cose is relatively stable. This approach can be applied to any calibration algo-
rithm. The rationale of this heuristic is that, in such a condition, BG and IG
concentrations should be at equilibrium and, thus, the estimation of the linear
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regression parameters should not be influenced by not considering the BG-to-
IG dynamics [75]. Following this rationale, Aussedat et al. [76] developed an
automated algorithm that requests sensor calibration only when a window of
stable signal is detected, i.e., when the sensor signal has not changed by more
than 1% over a four-minute window, and when the raw current value for the
second calibration point differs from the first by ≥ 2 nA. The study proved
that performing calibrations during periods of relative glucose stability mini-
mizes difference between BG references and raw sensor measurements due to
the BG-to-IG kinetics.

More sophisticated model-based approaches to account for the BG-to-IG
dynamics have been developed relying on Kalman filter theory. In particu-
lar, Knobbe et al. [77] proposed a five-state extended Kalman filter, which
estimates subcutaneous glucose levels, BG levels, time lag between the sensor
measured subcutaneous glucose and BG, time-rate-of-change of the BG level,
and the subcutaneous glucose sensor scale factor [78]. In this study, BG levels
are reconstructed in continuous time from CGM measurements, employing a
state-space Bayesian framework with a priori knowledge of unknown vari-
ables. A direct application of a Kalman filter to improve CGM sensor accuracy
was proposed by Kuure-Kinsey and colleagues [79], employing a dual-rate
Kalman filter and exploiting sparse SMBG measurements to estimate the sen-
sor sensitivity in real-time. Although designed for real-time glucose and its
rate of change estimation, the algorithm does not account for BG-to-IG kinet-
ics. A further development, with direct application to the calibration problem
and incorporation of the BG-to-IG dynamic model, was given by Facchinetti et
al. [80]. The authors proposed an extended Kalman filter method that works
in cascade to the standard device calibration to enhance sensor accuracy. By
taking into account BG-to-IG kinetics, using a model to describe the variabil-
ity of sensor sensitivity, and exploiting four BG reference samples per day, the
method significantly improves CGM accuracy when applied to synthetic data.
However, its real-time implementation is not straightforward, requiring the
knowledge of the variances of both state and measurement error processes, as
well as an initial burn-in interval.

Another approach for real-time glucose estimation based on auto regres-
sive (AR) models was proposed by Leal et al. [81]. The study used AR models
to estimate BG from raw CGM measurements. Data acquired from 18 T1D pa-
tients were used to train a population AR model, which was then incorporated
into a calibration algorithm for real-time BG estimation. The raw sensor sig-
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nal, used as the independent variable, and the BG concentration, considered
as a dependent variable, were both normalized based on the maximum range
of the available signals. The best overall estimated model, with a third-order
Box-Jenkins structure and fixed parameters, enhanced CGM performance, es-
pecially in hypoglycemia detection. Significant improvement in hypoglycemia
detection was also obtained by the same authors in another study performed
on 21 patients with T1D where a new linear regression algorithm with en-
hanced offset estimation was proposed [82].

Barceló-Rico and colleagues proposed an alternative calibration algorithm
based on a dynamic global model of the relationship between BG and intersti-
tial CGM signal [83]. The algorithm integrates several local dynamic models,
each one representing a different metabolic condition and/or sensor-subject
interaction. The local models are then weighted and added to compose the
global calibration model. Inputs of the model are the signal measured by the
sensor and other signals containing information relevant to glucose dynamics,
which are normalized in magnitude using population parameters. The algo-
rithm showed improvements in CGM sensor accuracy, although it was tested
on only eight healthy subjects and a more extensive assessment on the diabetic
population would be needed to confirm the findings. A further development
of the algorithm was proposed in [84], where an adaptive scheme is used to es-
timate patient’s normalization parameters in real-time instead of using simple
population parameters. Results on 30 virtual patients showed that the adap-
tation of normalization parameters further improved the performance of the
algorithm, since they were able to compensate for sensor sensitivity variations.

Most of the algorithms proposed for improving CGM performance em-
ploy sophisticated models and signal processing features that, although still
allowing the implementation on wearable devices/smartphones, increase the
computational complexity and processing delay compared to the simple linear
regression techniques. With the aim of reducing the delay due to signal pro-
cessing, Mahmoudi et al. proposed a multistep calibration algorithm based
on rate-limiting filtering, selective smoothing, and robust regression [85]. The
rate-limiting filter limits the rate-of-change if a physiological threshold is ex-
ceeded; the selective smoothing is applied if the signal is noisy, i.e., if the num-
ber of zero crossings of the signal first-order differences exceeds a predefined
threshold; the robust regression then converts the raw measured current to BG
levels using reference SMBG measurements (for a maximum of four references
per day). The application of the filtering step to only the noisy parts of the sig-
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nal lowered the delay introduced by the signal processing of the CGM profile.

Another approach that has the low computational complexity as a major
strength was proposed by Kirchsteiger and colleagues employing linear ma-
trix inequalities techniques, resulting in convex optimization problems of low
complexity [86], [87]. The authors proposed two different parametric descrip-
tions of the relationship between IG and BG and a constructive algorithm to
adaptively estimate the unknown parameters. The algorithm explicitly con-
siders the measurement uncertainty of the device used to collect the calibration
measurements, which was firstly pointed out by Choleau and colleagues [66].
Moreover, the algorithm embeds an automatic feature to detect fingerprtick
measurements, which are not suitable to be used for calibration.

The uncertainty in the reference SMBG samples used for calibration is a
key issue in the development of robust calibration algorithms. The real-time
deconvolution-based approach proposed by Guerra et al. [88] demonstrated
its robustness against both temporal misplacement of the SMBG references and
uncertainty in the BG-to-IG kinetics model. The authors proposed a real-time
signal-enhancement module to be applied to the CGM sensor output to im-
prove the accuracy of the device. The algorithm compensates the distortion
due to the BG-to-IG dynamic by means of regularized deconvolution [89] and
relies on a linear regression model that is updated each time a pair of SMBG
references is collected. Significant accuracy improvements were observed both
on simulated and real datasets. The deconvolution-based approach of [88] was
further developed in [90], where it was directly applied to the raw measured
signal rather than in cascade to the CGM sensor output. The algorithm fits
the raw current signal against BG references (collected twice a day) using a
time-varying linear calibration function whose parameters are identified in the
Bayesian framework using a priori knowledge on their statistical distribution.
The BG-to-IG kinetics is compensated, as in [88], via nonparametric deconvo-
lution. Results showed significant accuracy improvements compared to the
manufacturer calibration.

Current CGM products are available for continuous use and are replaced
after several days. However, none of the methods discussed so far have em-
bedded any features able to capture this essential cyclic nature by exploiting,
e.g., the data from prior weeks to better calibrate new CGM data. A first at-
tempt on this direction was made by Lee and colleagues in [91], where a run-to-
run strategy that personalizes sensor calibration parameters using data from
previous weeks’ use was proposed. Before each weekly new sensor insertion,
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the algorithm minimizes a cost function that penalizes differences between fin-
gerprtick reference values and CGM output of previous weeks. Repeated it-
erations of the run-to-run procedure demonstrated improved performance on
synthetic data (summed square error reduced by 20% after two weeks, and up
to 50% after six weeks). On the same line, another calibration algorithm, em-
ploying a time-varying linear calibration function as in [90], was augmented
with a weekly updating feature for parameter optimization [92]. The algorithm
estimates the calibration parameters through the recursive least squares to fit
SMBG measurements taken approximately every 12 hours. Then, personalized
calibration parameters are optimized after the first week of use using past data,
employing a forgetting factor to give more weight to the most recent data.

The literature calibration algorithms discussed so far showed, in general,
several performance improvements compared to the simple linear regression
methods described in Section 4.1.3 and implemented in the first commercial-
ized CGM sensors. However, none of them explicitly aimed at enhancing sen-
sor accuracy while reducing, at the same time, the frequency of calibrations,
i.e., the number of SMBG fingerprick measurements needed as input to the
algorithm, which are an obvious reason of discomfort for the patients.

To pursue this objective, the use of the Bayesian estimation in the calibra-
tion process, as proposed in [90], appears the most promising technique. In-
deed, by setting the calibration problem in the Bayesian framework, the in-
formation brought by additional BG references could be substituted by the a
priori knowledge on calibration parameters derived from ad hoc training sets,
allowing, in principle, the reduction of calibration frequency without scarify-
ing sensor accuracy. Thus, the calibration algorithm of [90] and, in particular,
the Bayesian strategy employed in the estimation of the calibration parame-
ters, represents the starting point of the study described in this thesis. A more
detailed description of the method will be given in Chapter 3.

1.5 Aim of the thesis and outline

The primary aim of this thesis is to develop a calibration algorithm able to
improve CGM sensor accuracy while, at the same time, reducing the frequency
of calibrations by using a time-varying calibration function and the Bayesian
estimation.

In particular, in Chapter 3 we will demonstrate that a recently proposed
state-of-art calibration algorithm, when fed with day-specific Bayesian pri-
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ors, enables the reduction of calibration frequency from two to one per day.
Then, in Chapter 4, we will propose to replace the time-invariant sensitivity
and baseline conventionally used by linear calibration functions with more
sophisticated time-varying functions, valid for multiple-day periods, with un-
known parameters for which an a priori statistical description is available. We
will refer to this algorithm as Bayesian multi-day (BMD) calibration algorithm.
As a further development of the BMD calibration algorithm, in Chapter 5 we
will propose a multi-model Bayesian framework (MMBF) that, in order to cope
with inter-sensor and inter-subject variability, enables the choice of the calibra-
tion model among a finite specified set of candidates. Finally, in Chapter 6 we
will summarize the major findings of the work carried out in this thesis, the
possible applications and margins for improvement.
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Chapter 2

Available datasets and criteria for
the assessment of the calibration
methods

In this chapter, we describe the two datasets - kindly provided by Dexcom Inc.
(San Diego, CA) - used to test the calibration algorithms discussed in the the-
sis and the relative performance metrics employed to assess the accuracy of
the calibrated profiles. The first dataset was acquired with a commercial CGM
sensor, while the second dataset was acquired with a new CGM sensor proto-
type. We will define specific metrics for each of the two datasets. This choice
was made to ensure agreement of the metrics employed with other literature
studies on the same datasets.

2.1 The Dexcom G4 Platinum (DG4P) dataset

2.1.1 Dataset description

The first dataset available and used in the thesis was collected during a multi-
center pivotal study involving 72 subjects with diabetes (60 subjects with T1D,
12 subject with T2D) [16]. Subjects wore the DG4P CGM sensor for a 7-day
period. In total, a pool of 108 datasets was collected, since 36 subjects wore
two sensors during the study. Each of the 108 datasets includes:

• the raw, unprocessed, electrical current signal measured by the sensor
with 5-min sampling period;
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• the CGM profile as originally calibrated by the manufacturer, i.e., the
output in mg/dl displayed to the user, with 5-min sampling period;

• the SMBG measurements acquired during the study and used by the
manufacturer for calibrating the sensor (about 2 SMBG samples per day);

• highly accurate YSI laboratory measurements acquired during three in-
clinic sessions of 12 h duration in days 1, 4, and 7 after sensor insertion,
with 15-min sampling period, during which carbohydrate consumption,
insulin dosing, and meal timing were manipulated to obtain a wide range
of glucose values (from <60 mg/dl up to 400 mg/dl).

In Figure 2.1, a representative dataset is reported. Top panel shows the raw
electrical current signal (blue line, in units not specified by the manufacturer)
and the SMBG measurements (orange triangles, in mg/dl) used for calibration.
To note that, the same SMBG and raw current data will be used as input to
the calibration algorithms proposed in the thesis, producing a calibrated CGM
output comparable to that originally obtained by the manufacturer. Bottom
panel reports the CGM profile (black line, in mg/dl) as originally calibrated by
the manufacturer and the YSI measurements (red points, in mg/dl) acquired
during the three in-clinic sessions and used for assessing the accuracy of the
calibrate profiles.

2.1.2 Performance analysis

Performance of the DG4P dataset is assessed by comparing the CGM cali-
brated profiles under test and the YSI laboratory references. Firstly, the two
measurements are matched in time. Then, accuracy is quantified by comput-
ing three commonly used metrics.

2.1.2.1 Estimated vs. reference glucose matching

The sampling period of the calibrated CGM profiles corresponds to the sam-
pling frequency of the unprocessed electrical current signal, i.e., 5 minutes. The
sampling period of the YSI laboratory references is instead 15 minutes, and
the two time-grids do not necessarily contain the same time instants. Thus,
in order to compute any accuracy metric, the two measurements need to be
matched in time. In performing the time-matching, we consider that the cali-
brated CGM and the YSI measurements reflects samples of the interstitial and
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Figure 2.1: Representative Dexcom G4 Platinum (DG4P) dataset. Top panel: raw,
unprocessed, current signal (blue line) and calibration SMBG references (orange trian-
gles). Bottom panel: CGM profile as originally calibrated by the manufacturer (black
line) and laboratory references for accuracy assessment (red points).

23



2 Available datasets and criteria for the assessment of the calibration methods

T1=2.5

T2=15T1=0

T2=7.5 T3=12.5

x
The matching procedure

Figure 2.2: Illustrative description of the matching procedure. Each reference mea-
surement (red points) is matched with the closest calibrated glucose estimation (black
points) in the following 5-minutes window. For instance, the reference acquired at
time T1 = 0 is matched with the glucose estimation sample at time 2.5 min. If no CGM
sample is available in the following 5-minutes window, due to, e.g., a missing sample
(blue cross), the matching is performed with the closest glucose estimation sample in
the 5-minutes window preceding the reference. For instance, in the example depicted
here, the reference at time T2 = 15 min is matched with the CGM sample at time 12.5
min.

blood glucose, respectively. As discussed in Section 1.3.2, the IG profile is of-
ten a delayed version of the BG profile. Thus, the YSI measurement acquired at
time t = 0 is matched with the correspondent closest CGM sample in the time
window between t = 0 and t = 5 min. If no CGM sample is available in the
specified time window due, e.g., to missing samples in the raw signal acquired
by the sensor, the matching is performed with the closest CGM sample in the
tine time window between t = −5 min and t = 0. If no CGM sample is avail-
able neither in this second time interval, the YSI measurement is discarded and
not used for accuracy assessment.

An example of matching procedure is reported in Figure 2.2, where the YSI
reference acquired at time instant T1 = 0 is matched with the closest CGM
sample in the following 5 min, i.e., the sample at 2.5 min, while the YSI refer-
ence at time instant T2 = 15 min is matched with a previous CGM sample, i.e.,
the one at 12.5 min, due to a missing sample in the 5-min window following
the reference time T2.

The matching procedure produces a set of YSI-CGM data pairs that are
used to compute the accuracy metrics described in the following section.
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2.1 The Dexcom G4 Platinum (DG4P) dataset

2.1.2.2 Performance metrics

Performance of the DG4P dataset is assessed by computing three common met-
rics (also considered in other studies analyzing the same dataset [16], [90]):

• Mean absolute relative difference (MARD) between the calibrated CGM
profile and the YSI measurements:

MARD =
1
n

n

∑
k=1

(100 · |uk − ûk|
uk

) (2.1)

where n is the number of YSI measurements, uk are the YSI measure-
ments, and ûk are the values of the calibrated glucose profile at corre-
spondent matched times.

• Percentage of accurate glucose estimates (PAGE), i.e., the percentage of
estimated glucose values ûk falling within either 20 mg/dl from the rela-
tive reference uk if uk is lower than 80 mg/dl or within 20% of the relative
reference uk if uk is above 80 mg/dl.

• Percentage of (uk, ûk) pairs lying in the "A" zone of the Clarke error grid
(CEG-A). The CEG is an error grid divided into five zones indicating the
accuracy of BG estimates generated by meters as compared to a reference
value. In particular, zone "A" indicates accurate glucose results that do
not lead to subsequent wrong or dangerous treatments. An example of
CEG plot is reported in Figure 2.3.

These three metrics are used to assess the accuracy of both the CGM profiles
as originally calibrated by the manufacturer and the CGM profiles as calibrated
by the algorithms analyzed and proposed in this thesis.

For each CGM profile under test, a subject-level analysis is performed by
computing the performance metrics for each dataset and then taking the pop-
ulation statistics. In particular, the three metrics described above can be com-
puted by considering, for each dataset, the YSI-CGM pairs of the entire moni-
toring session, or by considering the YSI-CGM pairs of days 1, 4, and 7 sepa-
rately (this last option to evaluate performance in each specific day). The pop-
ulation performance indexes are obtained by computing the mean and stan-
dard deviation of the metrics obtained in each dataset for normally distributed
metrics and the median and interquartile range of the metrics obtained in each
dataset for non-normally distributed metrics. Normality is assessed for each
metric by Lilliefors test.

25



2 Available datasets and criteria for the assessment of the calibration methods

Reference glucose (mg/dl)

P
re

d
ic

te
d

 g
lu

co
se

 (
m

g
/d

l)

v

Figure 2.3: Clarke error grid (CEG) used for accessing the accuracy of a glucose es-
timation, e.g., the glucose estimation given by a CGM sensor, vs. a reference mea-
surement (black points). It is subdivided in 5 zones associated to different grades of
clinical danger (from zone "A", the safest zone, to zone "E", associated to the higher
risk of taking dangerous therapeutic actions).

2.2 The next generation Dexcom (NGD) CGM sen-

sor prototype dataset

2.2.1 Dataset description

The second available dataset derive from a clinical trial involving 60 subjects
affected by diabetes (54 with T1D, 6 with T2D) which were monitored for a
10-day period with a NGD CGM sensor prototype.

For each subject, the following data were collected:

• the raw, unprocessed, electrical current signal measured by the sensor
with 5-min sampling period;

• SMBG measurements acquired by the subjects three to four times per
day;

• highly accurate YSI laboratory measurements acquired during one in-
clinic session of about 6 h duration in day 1, 4, 5, 6, or 10 after sensor
insertion, with 15-min sampling period, during which subjects were re-
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2.2 The next generation Dexcom (NGD) CGM sensor prototype dataset

quired to follow their normal diabetes treatment (with no glucose ma-
nipulation to obtain a wider glycemic range).

In 5 of the 60 subjects enrolled in the study, the laboratory YSI measurements
were not available. Thus, in the analysis conducted in this thesis, we only con-
sidered the 55 subjects for which the YSI laboratory references were available
to perform an accuracy analysis.

To note that, differently from the DG4P dataset described in Section 2.1, the
CGM output as originally calibrated by the manufacturer is not available in
the NGD dataset (data were acquired with a sensor prototype which was not
yet commercialized).

Figure 2.4 reports a representative NGD dataset. Top panel shows the raw
electrical current signal measured by the sensor (blue line, in units not speci-
fied by the manufacturer). Bottom panel reports the YSI laboratory measure-
ments acquired during the 6 h in-clinic session (red points, in mg/dl) and the
SMBG measurements acquired by the user (orange triangles, in mg/dl). A
subset of these SMBG references will be processed by our BMD calibration al-
gorithm (described in Chapter 4) together with the raw electrical current signal
to obtain a calibrated CGM profile, whose accuracy will be assessed against the
YSI laboratory measurements.

2.2.2 Performance analysis

The matching procedure preliminary to the computation of the NGD perfor-
mance metrics is the same used for the DG4P dataset described in Section
2.1.2.1. Then, on the CGM-YSI data pairs obtained, the following performance
metrics are computed:

• Mean absolute difference (MAD) between the calibrated CGM (ûk) and
the YSI references (uk):

MAD =
1
n

n

∑
k=1

(|uk − ûk|) (2.2)

where n is the number of YSI-CGM matched pairs.

• MARD (as defined in Section 2.1.2.2, Equation 2.1).
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Figure 2.4: Representative next generation Dexcom (NGD) CGM sensor prototype
dataset. Top panel: raw, unprocessed, current signal (blue line). Bottom panel: SMBG
measurements (orange triangles) and laboratory references for accuracy assessment
(red points).
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2.2 The next generation Dexcom (NGD) CGM sensor prototype dataset

• Mean relative difference (MRD):

MRD =
1
n

n

∑
k=1

(100 · uk − ûk
uk

). (2.3)

• Percentage of CGM-YSI data matching the SMBG standard International
Organization for Standardization (ISO) 15197:2013 [93], that is, the per-
centage of data falling within either 15 mg/dl from the YSI measurement
if the YSI measurement is lower than 100 mg/dl or within 15% of YSI if
YSI is above 100 mg/dl (15/15%). We also consider other two ranges,
20/20% (which is the analogous of PAGE metric described in Section
2.1.2.2) and 30/30%.

• CEG-A (as defined in Section 2.1.2.2).

The metrics described above are used to assess the accuracy of the CGM pro-
files calibrated with the BMD algorithm described in Chapter 4. A subject-
level analysis is performed by computing the metrics described above for each
dataset. The population performance indexes are then obtained by comput-
ing the mean and standard deviation, or median and interquartile range, of
the metrics obtained in each dataset for normally or non-normally distributed
metrics, respectively (normality assessed by Lilliefors test).

Additional aggregated performance analysis

Differently from the DG4P dataset, in the NGD dataset only one YSI session
per subject is available (in day 1, 4, 5, 6, or 10). Thus, with a subject-level
analysis we can only compute population performance indexes for the entire
monitoring period, and not for each specific day separately. Thus, to assess the
accuracy also at different days of the monitoring session, we complement the
performance analysis with an overall, aggregated, performance assessment.
The aggregated assessment is performed by analyzing the CGM-YSI matched
pairs from all subjects together. In particular, from the aggregated pool of YSI-
CGM pairs (uk,ûk), the following metrics are computed:

• Absolute difference (AD):

AD = |uk − ûk| (2.4)
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2 Available datasets and criteria for the assessment of the calibration methods

computed for each single YSI-CGM data pair k. Then, the mean and stan-
dard deviation or median and interquartile range of all pairs AD is com-
puted (for normally or non-normally distributed metrics, respectively).

• Absolute relative difference (ARD):

ARD = 100 · |uk − ûk|
uk

(2.5)

computed for each single YSI-CGM data pair k. Then, the mean and
standard deviation or median and interquartile range of all pairs ARD
is computed (for normally or non-normally distributed metrics, respec-
tively).

• Relative difference (RD):

RD = 100 · uk − ûk
uk

(2.6)

computed for each single YSI-CGM data pair k. Then, the mean and stan-
dard deviation or median and interquartile range of all pairs RD is com-
puted (for normally or non-normally distributed metrics, respectively).

• ISO metric 15/15% and the additional ranges 20/20% and 30/30% (as
defined above).

• CEG-A (as defined in Section 2.1.2.2).

These metrics are computed by considering all YSI-CGM data pairs, obtaining
overall aggregated performance indexed, and by grouping pairs from different
days, to obtain aggregated performance indexes specific for different days of
the monitoring sessions. In particular, we computed aggregated performance
for day 1, day 10, and days 4 to 6, which represent the beginning, end, and
middle phase of the monitoring session, respectively.

2.3 Statistical analysis

In both the DG4P dataset and the NGD dataset, different calibrated profiles
obtained from the same unprocessed current signal by using different calibra-
tion algorithms or the same calibration algorithm with different calibration fre-
quency, are computed and compared. In particular, for the DG4P dataset, the
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2.3 Statistical analysis

accuracy of the calibrated profiles obtained with the algorithms analyzed and
proposed in this thesis with different calibration frequencies is always com-
pared to the accuracy of the CGM profiles as originally calibrated by the manu-
facturer (Chapter 3 and Chapter 4). For the NGD dataset, performance metrics
obtained with the BMD algorithm described in Chapter 4 at different calibra-
tion frequencies are compared between each other. In general, the statistical
significance of the differences in performance metrics between two calibration
algorithms (e.g, our BMD algorithm vs. the manufacturer calibration) or be-
tween the same calibration algorithm at different calibration frequencies, is
determined by:

• a Wilcoxon signed-rank test for non-normally distributed data;

• a t-test for normally distributed data (normality assessed by Lilliefors
test).

In particular, we test the null hypothesis that the median/mean (in case of non-
normally/normally distributed data) difference between the paired values of
the two groups of metrics is zero, with a significance level of 0.005.
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Chapter 3

The starting point: the calibration
algorithm of Vettoretti et al. 2016.
Comprehensive assessment and
margins of improvement

1

In 2016 Vettoretti et al. proposed a calibration algorithm [90] that employs
the Bayesian methodology for parameters estimation. When used with the
same calibration frequency as the manufacturer, i.e., two calibrations per day,
this method showed improved performance compared to the manufacturer
calibration. By using the DG4P dataset described in Section 2.1 in this chapter
we assess whether the use of the Bayesian algorithm of [90] can enable the
reduction of the number of daily in vivo calibrations required to maintain a
good sensor accuracy. We will also demonstrate that there are some margins of
improvement of the methodology for further reducing calibration frequency.

3.1 The calibration algorithm of Vettoretti et al. 2016

The Bayesian calibration method implemented in this chapter is fully described
in [90]. Here, we summarize the main steps of the method.

1Methods and results described in this chapter have been published in [94].
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3 The starting point: the calibration algorithm of Vettoretti et al. 2016.
Comprehensive assessment and margins of improvement

3.1.1 The calibration method

The algorithm processes in real time the raw sensor current signal and the
calibration SMBG references, acquired at time instants ti, i = 1, 2, ..., N. At a
given time t of the i-th calibration interval, the following model is used to relate
the raw interstitial current signal, denoted by yI(t), to the correspondent IG,
denoted by uI(t) and expressed in mg/dl:

yI(t) = a · uI(t) + b + c · ∆t + w(t) (3.1)

where a, b, and c are the calibration parameters, ∆t (min) is the time from sen-
sor insertion, and w(t) is the noise affecting the measurement. It is important
to note that the model of Equation 3.1 is defined to locally describe the relation-
ship between sensor current and IG in the time interval between two consecu-
tive calibrations. In particular, each time a new SMBG reference is available, a
new set of calibration parameters are estimated and then used to calibrate the
current signal until the following reference is provided. The entire procedure
(schematically represented in Figure 3.1) is summarized in three steps:

1. Nonparametric deconvolution of the sensor current signal yI(t), to com-
pensate for the BG-to-IG kinetics (see, e.g., [69], [95]). Notably, the de-
convoluted signal yB(t) corresponds to a hypothetical electrical current
signal measured in plasma.

2. Estimation of calibration parameters â, b̂, ĉ in a Bayesian linear minimum
variance framework using a day-specific prior information [96] (see Sec-
tion 3.1.2), by fitting yB(t) against the last two SMBG references available.

3. Conversion of the sensor current signal yI(t) into the IG signal uI(t):

uI(t) =
yI(t)− b̂− ĉ · ∆t

â
(3.2)

Remark

Equation 3.1 corresponds to a specific definition of the generic function f intro-
duced in Chapter 1. Also, the schematic representation of Figure 3.1 is a more
specific definition of the general scheme of Figure 1.7, where the additional
block relative to the BG-to-IG kinetics is explicitly represented.

34



3.1 The calibration algorithm of Vettoretti et al. 2016
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+
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Figure 3.1: Schematic representation of the dynamic system relating the blood glu-
cose uB(t), whose samples are given by SMBG measurements, to the interstitial cur-
rent yI(t), measured by the sensor. The intermediate variables uI(t) and yn f

I (t) repre-
sents, respectively, interstitial glucose and noise-free interstitial current. The variable
w(t) represents the measurement noise.

3.1.2 The prior information

The estimation of the calibration parameters a, b, and c (step 2 of the procedure
described in Section 4.1) is performed in a Bayesian framework that requires a
priori information. Expectations on a, b, and c are obtained by identifying, on
an independent training set (defined in Section 4.2), the following nonlinear
model:

yI(t) = a · (uB(t) ∗
1
τ

e−
t
τ ) + b + c · ∆t (3.3)

where ∗ is the convolution operator [97], uB(t) is the BG concentration at time
t, measured in mg/dl, and τ (min) is the equilibration time characterizing the
BG-to-IG kinetics [69], whereas all other variables were defined in Section 4.1.

In practice, the unknown parameters a, b, c, and τ of Equation 3.3 can be
estimated by nonlinear least squares, provided that uB(t) is a smoothed profile
obtained from highly accurate BG measurements, i.e., the YSI measurements
acquired during the three in-clinic sessions in days 1, 4, and 7. Parameter τ is
considered constant during all the monitoring session, whereas for a, b, and c,
different estimates are obtained on days 1, 4, and 7. From the point parame-
ter estimates, sample means and covariance matrices are then calculated and
plugged in the Bayesian linear minimum variance estimation procedure (step
2 of the procedure described in Section 4.1). In addition, since no YSI data are
available for identifying the model of Equation 3.3 in days 2, 3, 5, and 6, a sort
of "global" prior is also built by considering the distributions of a, b, and c on
days 1, 4, and 7 all together.
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Comprehensive assessment and margins of improvement

3.2 Assessment of the method with two vs. one cal-

ibrations per day

The calibration algorithm of Vettoretti et al. [90] showed improved perfor-
mance compared to the manufacturer calibration when implemented with the
same calibration frequency, i.e., two calibrations per day. Here, we assess
whether the method can maintain the same performance when implemented
with only one calibration per day instead of two.

3.2.1 Dataset selection

To investigate a two vs. one per day calibration approach, we selected from
the DG4P dataset a subset of recordings which present adequate features in
terms of SMBG scheduling. In particular, datasets presenting more, or less,
than two calibrations per day were excluded from the analysis. Moreover,
the calibration model of Equation 3.1 approximate the time dependence of the
relationship between the sensor current and IG [73], [74] with a linear func-
tion inside each calibration window. This assumption can become critical for
calibration intervals that are much wider than 24 hours. For this reason, the
datasets having an irregular calibration schedule, or with inter-calibration in-
tervals much wider than 12 h, were also excluded from the analysis. Therefore,
the final database used for this assessment consists of 57 recordings (out of the
108 originally available in the DG4P dataset).

3.2.2 Implementation

The Bayesian calibration algorithm as described in Section 4.1 is designed to
be used in real-time. It uploads the calibration model with a new set of param-
eters (â, b̂, ĉ in Equation 3.2) each time a new SMBG measurement is available
by exploiting the last two SMBG samples (i.e., the newly available and the pre-
vious most recent one). The so-determined calibration parameters are used
throughout the following time interval; then, when a new SMBG sample is
available, a new calibration is performed. To compare the two vs. one per day
calibration, the original SMBG calibration vector needs to be downsampled,
passing from 12 to 24 h inter-calibration intervals (details of the downsampling
procedure are reported in Section 3.2.2.1).

Given the limited number of subjects, to create large training and test sets,
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3.2 Assessment of the method with two vs. one calibrations per day

where to, respectively, calculate priors and assess calibration accuracy, we used
a leave-one-out cross-validation approach. Iteratively, one subject was used to
test and evaluate the method, whereas all other subjects formed the training
set, which is needed to derive the prior information on calibration parameters
(for those subjects wearing two sensors, when the first sensor was under test,
the second was excluded from the training, and vice versa). To note that, dif-
ferently from Vettoretti et al. [90], in which different priors are defined for day
1, 4, and 7, here we use a more specific prior for the first day of monitoring,
in order to cope with the sensor time-variability that characterizes day 1 [73],
[74]. In particular, instead of using a unique prior for day 1, we use a specific
prior for the first and second 12 h of monitoring [96].

3.2.2.1 Downsampling of the calibration points

The SMBG samples downsampling is trivial in terms of practical implementa-
tion, but, given the sampling schedule of the dataset, the accuracy assessment
by using only one SMBG sample per day is not straightforward. In fact, to
assess the accuracy on a 24 h inter-calibration window, YSI reference measure-
ments are required for the entire 24 h period between two consecutive calibra-
tions. However, the available dataset was designed to assess accuracy of the
DG4P sensor calibrated once every 12 h, that is, YSI values have been collected
only for 12 h between two consecutive calibrations (see Section 2.1).

Note that, passing from two to one calibration per day, that is, having inter-
calibration windows of 24 h, the 12 h YSI sections cannot match the entire 24
h window, but they only fill either the first or the second 12 h, depending on
how the SMBG values are downsampled from the original SMBG vector. To
overcome this problem and to be able to assess accuracy on the entire 24 h cal-
ibration window, the SMBG vector is downsampled in two different ways, so
that YSI sections will alternatively match the first and the second 12 h. This
procedure allows accuracy assessment in the whole 24 h inter-calibration pe-
riod. In particular, a first SMBG schedule, consisting of selecting the SMBG
value collected at the beginning of the YSI section and the one acquired 24
h earlier, allows to assess accuracy in the first half (0–12 h) of the 24 h inter-
calibration window. Then, a second SMBG schedule, consisting of selecting
the two SMBG samples acquired respectively 12 and 24 h before the beginning
of the YSI section, allows to assess accuracy in the second half (12–24 h) of the
window. The global accuracy on the 24 h inter-calibration window is then the
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mean of the two values.

The creation of two different SMBG schedules to evaluate accuracy of the
Bayesian calibration algorithm by using only one SMBG in the entire 24 h inter-
calibration window is always possible on days 4 and 7. In these days, accuracy
of the Bayesian calibration algorithm is assessed for all 57 datasets both in the
first and in the second half of the 24 h inter calibration intervals.

Conversely, on day 1, a similar approach can be applied only to 14 (out
of 57) datasets, in which YSI references are collected in the second 12 h of
the day and for which there is a sufficient number of SMBG samples to ap-
ply both SMBG schedules mentioned earlier. For the remaining 43 (out of 57)
datasets, the 12 h YSI window is collected at the beginning of the monitoring
period; thus, it is not possible to apply both schedules (SMBG samples and
sensor current acquired before the beginning of the monitoring session would
be needed), but only to the first one, and hence the accuracy can be evaluated
only in the first 12 h of the 24 h inter-calibration window.

In conclusion, for 14 out of 57 datasets, accuracy is assessed on day 1 both
in the first and in the second 12 h; whereas for the remaining 43 out of 57
datasets, accuracy is assessed only in the first 12 h.

3.2.3 Results

Table 3.1 shows the population median value (metrics are all non-normally
distributed) of each performance metric calculated from CGM profiles given
by the original manufacturer calibration, performed every 12 h (third column),
and obtained with the Bayesian calibration algorithm, applied every 12 and 24
h, in fourth and fifth columns, respectively. The overall accuracy, calculated
on days 1, 4, and 7, and the accuracy calculated separately for each of the three
days are reported.

Comparing the original calibration and the Bayesian calibration algorithm
fed with two SMBG calibration samples per day (i.e., using the same number
of SMBG samples of the original manufacturer calibration), the enhancement
brought by the Bayesian approach is evident (confirming [90] and [96]) and
viewable, for a representative subject, in first and second panels of Figure 3.2.
In particular, first panel shows the CGM output given by the manufacturer
versus YSI references; whereas second panel depicts the CGM output obtained
using the Bayesian calibration algorithm with two calibrations per day versus
YSI, evidencing a better accuracy with respect to the CGM profile of the first
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3.2 Assessment of the method with two vs. one calibrations per day

Table 3.1: Performance metrics (median values).

Original Bayesian Bayesian P (original P (original
calibration calibration calibration vs. Bayesian vs. Bayesian

Metric Day (12 h period) (12 h period) (24 h period) 12 h) 24 h)

MARD 1 15.98 12.65 13.29 0.0063 0.0206
4 9.07 9.06 9.59 0.1832 0.4624
7 8.81 8.77 10.13 0.6421 0.7356

1,4,7 13.05 11.67 11.81 0.0248 0.0411

PAGE 1 76.92 85.11 80.95 0.0026 0.0112
4 93.33 95.83 94.87 0.0023 0.0300
7 93.75 95.83 93.74 0.4684 0.6800

1,4,7 78.01 88.65 87.23 0.0097 0.0238

CEG-A 1 81.25 89.13 85.11 0.0181 0.0435
4 91.67 93.62 92.86 0.1485 0.0772
7 93.62 91.49 91.62 0.9439 0.8195

1,4,7 77.78 87.22 84.75 0.0792 0.1148

panel.

Comparing the Bayesian calibration algorithm using one SMBG calibration
sample per day (fifth column of Table 3.1) against the Bayesian calibration al-
gorithm using two SMBG calibration samples per day (fourth column of Table
1), a modest worsening of performance is observed. This result is expected,
because the Bayesian calibration algorithm (which, we remind, is the same
in both scenarios) is now fed with only half of the original SMBG calibration
samples. However, looking at the global performances over the 57 datasets,
the worsening is small and, in most cases, negligible, and not statistically sig-
nificant for any of the considered metrics (P values not shown). In particular,
the overall MARD is almost the same, that is, 11.7% and 11.8% for the Bayesian
calibration algorithm using two and one SMBG samples per day, respectively.

Moreover, comparing the Bayesian calibration method with a 24 h inter-
calibration interval against the original manufacturer calibration, the same sta-
tistically significant improvement in accuracy (MARD on day 1, PAGE on days
1 and 4, and CEG-A on day 1) achieved by the Bayesian calibration algorithm
using two SMBG samples per day is still achieved by the Bayesian calibration
algorithm using one SMBG per day. Overall, a statistically significant improve-
ment is observed for the MARD value, passing from 13.1% to 11.8% (with a P
value of 0.0411) and for the PAGE value, passing from 78.0% to 87.2% (with a
P value of 0.0238).

Figure 3.3 graphically summarizes results of the Bayesian calibration al-
gorithm with one SMBG calibration sample per day, the Bayesian calibration
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Figure 3.2: Results in a representative subject, day 4. Calibrated profiles (continuous
black lines) versus laboratory references (red points) and SMBG samples used for cal-
ibration (green triangles). From top to bottom: original manufacturer calibration (12
h periodicity), Bayesian calibration with 12 h periodicity, Bayesian calibration with 24
h periodicity (accuracy assessed in second 12 h), and Bayesian calibration with 24 h
periodicity (accuracy assessed in first 12 h).
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3.2 Assessment of the method with two vs. one calibrations per day
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Figure 3.3: Boxplot of performance metrics. From top to bottom: MARD, percent-
age of accurate glucose estimates (PAGE), and points in zone "A" of the CEG. From
left to right: original manufacturer calibration, Bayesian calibration with 12 h period,
and Bayesian calibration with 24 h period. In the first three columns, the metrics are
computed separately for days 1, 4, and 7; whereas the last column refers to the overall
monitoring period.The black star inside each box represents the mean of the distribu-
tion.

algorithm with two SMBG samples per day, and the original manufacturer
calibration. In particular, a box plot of each metric is reported for the three
calibration strategies, separately on day 1, 4, and 7, and globally on all three
days.

Of note is that the performance metrics on day 1 are much worse than on
the other days of monitoring for both the original manufacturer calibration
and the Bayesian calibration algorithm, although the latter shows some im-
provement compared to the manufacturer calibration. The use of specific prior
distributions for calibration model parameters in the first 12 h of monitoring
[96] resulted, for most of the sensors, in a significant improvement on day 1.
Thus, using the Bayesian method (with both one and two calibrations per day),
the overall improvement on days 1, 4, and 7 can be greater than the improve-
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ment on the single days. Indeed, if a sensor having an improvement in day
1 accuracy also has an improvement on day 4 and/or on day 7, the overall
enhancement is higher than that on the single days.

It is interesting to note that the use of the procedure described in Section 4.1
without the deconvolution step, that is, ignoring the BG-to-IG kinetics, shows
only a slightly worse performance. For instance, for the 24 h calibration, the
MARD would increase to 11.92%, PAGE would decrease to 87.03%, and, fi-
nally, CEG-A would decrease to 84.16%. This allows us to speculate that the
deconvolution-based correction within the calibration methodology enhances
CGM accuracy, but the relative impact of using reliable priors on calibration
parameters is greater.

Finally, since the availability of YSI references on days 1, 4, and 7 allows to
assess accuracy of the calibrated profiles only in those time intervals, a global
performance evaluation over the entire 7 days of the monitoring period can be
done by a direct comparison of CGM-calibrated profiles. In particular, the per-
formance deterioration caused by the reduction in the number of calibrations
has been assessed by calculating the relative root mean square error (rRMSE)
between CGM profiles that are calibrated using the Bayesian method with two
SMBG calibration samples per day versus one SMBG per day. Over the 57
datasets, rRMSE presents a median value of 0.1, thus confirming that perfor-
mance deterioration caused by the reduction of calibrations from two to one
per day is modest.

3.3 Margins of improvement of the algorithm

3.3.1 Accuracy evaluation in the first and second 12 hours

Passing from two to one per day calibration, we have extended the time inter-
val between two consecutive calibrations from 12 to 24 h. Thus, it is of interest
to separately assess the accuracy in the first and the second 12 h of the new 24
h inter-calibration windows.

Results, made achievable by the SMBG downsampling strategy described
in Section 3.2.2.1, are reported, in terms of performance metrics, in Table 3.2.
On average, the first 12 h window shows better results than the second 12 h
window on day 1, for all the considered metrics. Regarding day 4, the first 12 h
present lower MARD, but almost equal PAGE and CEG-A with respect to the
second 12 h. On day 7, the first half-window has better performance than the

42



3.3 Margins of improvement of the algorithm

Table 3.2: Performance metrics, median values (n=57).

Bayesian calibration Bayesian calibration
Metric Day (first 12 h) (second 12 h)

MARD 1 12.66 13.65∗

4 8.99 9.93
7 9.72 10.39

PAGE 1 85.11 80.75∗

4 95.83 95.45
7 95.74 93.75

CEG-A 1 89.13 83.46∗

4 95.75 95.56
7 91.49 91.62

*n=14

second one for metrics MARD and PAGE, whereas CEG-A is almost the same
in the two intervals. These differences are expected and can be attributed to
the time distance of the last calibration from the YSI window. In fact, accu-
racy evaluation in the first 12 h window is performed by calibrating the CGM
profile just before the beginning of the YSI session (an example is shown in
the third panel of Figure 3.2), whereas accuracy evaluation in the second 12
h window is performed by using a CGM profile that is calibrated 12 h before
the beginning of the YSI session (an example is shown in the bottom panel of
Figure 3.2).

The small deterioration of performance noticed passing from the first to
the second 12 h window indicates that, inside an inter-calibration interval, the
less is the time distance to the last SMBG sample collected (corresponding to
the last update in parameters estimation), the higher is the accuracy of the
calibrated profile. Indeed, the linear approximation of the time dependence
of calibration parameters (see Section 4.1) becomes critical for large time win-
dows, thus confirming that inter-calibration intervals wider than 24 h cannot
be considered with the current calibration model without worsening accuracy.
Moreover, the difference in performance noticed in comparing the two 12 h
windows is much more visible on day 1: a possible explanation is that, with
respect to other days of monitoring, day 1 is characterized by a stronger time
dependence of calibration parameters and, therefore, by a higher dependence
of accuracy on the time distance from the last parameter update.
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3.3.2 Open issues and indications for new investigations

Results reported in this chapter show that the use of a linear time-variant cali-
bration model and the Bayesian estimation procedure allows to reduce the fre-
quency of calibration from two to one per day while, at the same time, improv-
ing accuracy compared to the original manufacturer calibration. However, the
analysis of Section 3.3.1 evidence that accuracy of the calibrated CGM profiles
worsens with time inside the inter-calibration intervals. This result confirms
that the calibration model of Equation 3.1 is suitable for describing the time-
variability of the relationship between electrical current and IG inside time
intervals of limited duration, e.g., at most 24 h.

The use of the Bayesian approach would allow, in principle, to further re-
duce the frequency of calibrations by deriving more specific prior information
on the temporal evolution of calibration parameters. To pursue this objective,
the piece-wise linear model of Equation 3.1 needs to be substituted by a more
complex model, valid for larger time intervals and, potentially, for the entire
monitoring period.

3.4 Summary and concluding remarks

In glucose-oxidase CGM sensors, such as DG4P sensor considered in this chap-
ter, the electrical current signal is transformed to glucose concentration by a
calibration model whose parameters are periodically (usually every 12 h) up-
dated by matching SMBG references that are suitably collected by the patient.
Previous studies [90], [96] showed that a linear time-varying calibration func-
tion, with parameters estimated by a Bayesian procedure embedding suitable
priors improves the accuracy of DG4P sensor with respect to the original man-
ufacturer calibration, using the same calibration frequency.

Here, we moved a step further by investigating whether the same Bayesian
approach also allows to reduce the number of calibrations from two to one per
day. Results show that this is possible, even enhancing accuracy with respect
to the original manufacturer calibration (MARD reduced from 13.1% to 11.8%,
PAGE increased from 78.0% to 87.2%, and CEGA-A increased from 77.8% to
84.8%). When the same Bayesian calibration algorithm is considered, a negligi-
ble and not statistically significant deterioration of the performance is obtained
by reducing the number of calibrations to one per day. This indicates that, in
a Bayesian framework, the use of well-tuned day-specific priors can surrogate
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the information of a second daily SMBG reference, thus allowing to halve the
number of calibrations while preserving accuracy.

The separate performance assessment in the first and second 12 h of the
24 h inter-calibration intervals evidences that accuracy deteriorates with time
between consecutive calibrations, suggesting that the present piece-wise linear
calibration model is not suited to further reduce calibrations to less then one
per day. This limitation calls for the development of a new, more complex,
calibration model valid for wider time intervals (ideally, the entire monitoring
period), capable of incorporating information about the temporal evolution
of the calibration parameters. The design, implementation and assessment
of a new calibration algorithm satisfying these requirements is described in
Chapter 4.

Finally, we highlight that the methodology behind the Bayesian algorithm
described in this chapter is general and, in principle, usable with any CGM
sensor. It requires the availability of uncalibrated CGM signals and a set of
SMBG samples, a sensor-specific calibration model, and a sufficient amount of
data to derive reliable priors for model parameters.
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Chapter 4

A Bayesian multi-day (BMD)
algorithm to calibrate subcutaneous
CGM sensors

1

The calibration algorithm by Vettoretti et al. [90] comprehensively assessed in
Chapter 3 showed promising results toward the possibility of reducing the
number of calibration by using the Bayesian estimation. Nevertheless, the
piece-wise linear calibration function employed in the algorithm is able to ap-
proximate the time-variability of the relationship between the current mea-
sured by the sensor and IG only for a limited time interval, and, thus, it is not
suitable for further reducing the calibrations to less than one per day. In this
chapter, we propose a new calibration model capable of describing the time-
variability of sensor characteristics over a multiple-day period and a Bayesian
estimation procedure to determine its unknown parameters. The new BMD
calibration algorithm is implemented in both the DG4P and NGD datasets.

4.1 The BMD calibration algorithm

4.1.1 The calibration model

The BMD calibration algorithm processes the electrical current signal yI(t),
measured by the CGM sensor, and the SMBG measurements, acquired by the
fingerprick device, to obtain the IG profile uI(t). The two measurements, yI(t)
and SMBG, belong to different physical domains, i.e. the current and the glu-

1Methods and results described in this chapter have been published in [98] and [99].
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Figure 4.1: Schematic representation of the dynamic system relating the blood glu-
cose uB(t), whose samples are given by SMBG measurements, to the interstitial cur-
rent yI(t), measured by the sensor. The intermediate variables uI(t) and yn f

I (t) repre-
sents, respectively, interstitial glucose and noise-free interstitial current. The variable
w(t) represents the measurement noise. (Figure already presented in Chapter 3, re-
ported here for convenience)

cose domain respectively, as well as to different physiological sites. SMBG
measures glucose concentration into the blood, while sensor current reflects
glucose concentration in the interstitium. Thus, to calibrate a CGM sensor, a
model describing the relationship between the two measurements is needed.

Letting uB(t) be the glucose concentration in blood (whose samples are ob-
servable by SMBG), a widely established description of the relation between
BG and IG profiles is based on a two-compartment model [69] (see Section
1.3.2), in which the glucose concentration in the interstitial compartment can
be described by:

τ · d
dt

uI(t) = −uI(t) + uB(t) (4.1)

where τ is the equilibrium time-constant between plasma and interstitium. In
the literature, the value of τ exhibits significant inter-subject variability but,
in a given subject, is commonly assumed to be time-invariant [69], [100], [71],
[101]. According to Equation 4.1, the IG profile can be interpreted as the output
of a first-order linear dynamic system, having the BG profile as input (see first
block in the schematic diagram of Figure 4.1, already presented in Chapter 3
and reported here for convenience) and h(t) as impulse response:

h(t) =
1
τ
· e− t

τ . (4.2)

The low-pass filtering nature of h(t) causes uI(t) to be a distorted version of
uB(t), presenting both amplitude attenuation and phase delay. Following the
cascade of blocks of Figure 4.1, the IG profile uI(t) is the input of the calibration
function which produces as output a current signal referred to the interstitium,
yn f

I (t), which once corrupted by additive noise w(t) finally produces the sen-
sor signal yI(t). To describe the transformation between glucose and current
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profiles, the following model is used:

yI(t) = [uI(t) + b] · s(t) + w(t) (4.3)

where b is the baseline of the glucose profile and s(t) represents the sensitivity
of the sensor, described by the model:

s(t) = s1 · α(t) + s2 · β(t) + s3. (4.4)

In Equations 4.3 and 4.4, α(t) and β(t) are fixed time domain functions that
describe the drift of the specific sensor (see Section 1.3.2), whereas b, s1, s2, and
s3 are model parameters, undergoing the following constraints:

s1, s2, s3 > 0;
s1

s2
= ϕ (4.5)

where ϕ is a fixed value (see Section 4.2.1 for details). As a result, considering
the dependence between sensitivity parameters (s1 = ϕ · s2), the final parame-
ters vector is:

p = [b, s2, s3]
T. (4.6)

In comparison with the other approaches proposed in the literature, the
peculiarity of the model described by Equation 4.3 is its temporal domain of
validity, which is the entire monitoring period, at variance with the model
used in Chapter 3, whose domain of validity was restricted to the time window
between two consecutive calibrations.

Remark

For sake of method generality, in Equation 4.4 the functional form and corre-
sponding parameters of α(t) and β(t) are intentionally treated as being device
dependent. Indeed, optimizing them is done as part of industrial device devel-
opment and is not part of the algorithm we propose. In the specific case of the
data analyzed in this thesis, details are documented in two patent applications
deposited by the sensor manufacturer [102], [103], which also provide numer-
ous examples of sensitivity curves and how they can be derived from clinical
and bench data. In general, any time-domain function (such as linear, loga-
rithmic, polynomial, and exponential) able to capture the sensor drift could be
embedded in Equation 4.4.
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4.1.2 Estimation of model parameters

Each time a new SMBG is acquired for calibration at time ti, i = 1, 2, ..., M
(where M represents the total number of SMBG samples used for calibration),
the set of parameters p is updated by exploiting the new measure uB(ti) and all
previously acquired SMBG samples. In particular, let us consider the following
relation, expressed in vector form:

uB = ûB(p) + w (4.7)

where uB is the i x 1 vector containing the SMBG samples acquired at calibra-
tion times tj, j = 1, ..., i (i = 1, ..., M):

uB = [uB(t1), ..., uB(ti−1), uB(ti)]
T (4.8)

ûB is the i x 1 vector (function of the model parameters), obtained transforming
the i x 1 vector yI, containing yI(tj), j = 1, ..., i, into BG values. Both the BG-to-
IG kinetics and the calibration model are considered in the transformation (as
discussed below). The i x 1 vector w represents the error. Note that the length
i of the vectors increases of one unit each time a new SMBG is acquired for
calibration, since all previous measurements are anyway considered.

The unknown parameters vector p is estimated by exploiting the data con-
tained in uB and yI in addition to some a priori knowledge on the distribution
of p, derived from a data training set, as described in Section 4.2.1. In par-
ticular, the a priori distribution of the parameters vector p has mean µp and
covariance matrix Σp. The error vector w is assumed to contain white noise
samples, uncorrelated from p, with zero mean and diagonal covariance matrix
Σw . The error variance is assumed constant over time, i.e., Σw = σ2

w · I and
σ2

w is estimated from the training set (details in Section 4.2.1).

The Bayesian maximum a posteriori (MAP) estimate of p is obtained by
solving the following optimization problem:

p̂ = argminp[uB− ûB(p)]T Σw
−1[uB− ûB(p)] + (µp− p)T Σp

−1(µp− p)
(4.9)

which, given the presence of nonlinearities, does not have a closed form solu-
tion. Thus, the estimate p̂ is found by looking iteratively into the parameter
space. The iterative procedure, schematically described by the diagram of Fig-
ure 4.2, is summarized in five steps:
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Figure 4.2: Flowchart of the iterative procedure for the estimation of the calibration
model parameters (parallelograms denote input/output blocks, whereas the diamond
denotes the decision block). Starting from initial vector p0 , at each iteration k the pa-
rameter vector is updated, according to the input values yI (current signal) and uB
(blood glucose samples), using the calibration model of Equation 4.3 and compensat-
ing for the blood-to-interstitial glucose kinetics.

• i) initialization of parameter vector p;

• ii) estimation of IG profile ûI(t) according to the calibration model of
Equation 4.3;

• iii) estimation of BG profile, ûB(t), accounting for the distortion intro-
duced by the BG-to-IG kinetics, through nonparametric deconvolution;

• iv) matching between SMBG measurements and ûB(t);

• v) update of parameter vector for the next iteration.

The following subsections describe individually each of these five steps.

Step 0: parameter initialization

At the first iteration of the i-th calibration (i = 1, ..., M) the parameter vector
is initialized to the mean value of the prior distribution, p0 = µp.

Step 1: use of calibration model

At each iteration k (k = 0, 1, ..., Niter), interstitial glucose uI(t) is estimated
from the current signal yI(t) by inverting Equation 4.3, which depends from
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parameter vector pk:

ûI(t, pk) =
yI(t)

s(t, s2, s3)
− b. (4.10)

Step 2:compensation of BG-to-IG kinetics

The IG profile obtained at Step 1, ûI(t, pk), cannot be directly matched to
SMBG measures, uB(t). Indeed, the distortion induced by BG-to-IG kinet-
ics needs to be compensated first. As already discussed in Section 4.1.1, the IG
profile can be seen as the output of a first-order linear dynamic system whose
impulse response is given by Equation 4.2 and whose input is the BG profile.
Thus, the estimation of ûB(t, pk) from ûI(t, pk) is an inverse problem that can
be solved by deconvolution. In particular, to reconstruct the BG profile from
the IG profile a nonparametric stochastic approach [89] is used.

For computational reasons, the deconvolution is applied to temporal win-
dows containing the time instant tj ,j = 1, ..., i at which each SMBG is ac-
quired. Practically, for each of the i BG measures collected in vector uB, a time
window Λ from ti − 100 min to ti + 5 min is considered. Letting uI(Λ) be
the nx1 vector containing the IG measures estimated at previous step at the
sampling instants lying in Λ, a uniform sampling grid, with 5-min step, can be
defined: Ωs = t1, t2, ..., tn. In addition, w is defined as the nx1 vector of mea-
surement error w(t) at time instants in Ωs, assumed to have zero mean and
covariance matrix Σw = σ2R, with σ2 unknown constant and R nxn known
matrix whose structure reflects expectations on measurement error variance
(here,R = In, since the error samples are assumed to be uncorrelated from the
current signal and with variance constant over time). The vector uB(Λ) is de-
fined as the Nx1 unknown vector containing samples of uB(t) at time instants
on a virtual grid Ωv = tv1, tv2, ..., tvN , which is independent from and usually
denser than Ωs (here a uniform 1-min step is used). The virtual grid allows
us to obtain a denser profile, which can be more easily matched with SMBG
samples (see Step 3). Moreover, Σv starts from t1− 100 min, in order to allow
initial condition transient to vanish, so that the reconstruction of uB(t) is not
altered in the window of interest Λ.

Once all variables have been defined, having Ωs and Ωv both uniform, with
Ωs ⊆ Ωv, the following matrix equation can be written:

uI(Λ) = H · uB(Λ) + w (4.11)
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where H is the nxN matrix obtained downsampling the NxN transfer ma-
trix Hv of the BG-to-IG system, maintaining only the rows correspondent to
sampling instants in Σs. Since vector uB(Λ) contains samples of a BG profile,
which is a biological signal expected to have a certain smoothness, a double in-
tegrated white noise model [89] of unknown variance λ2 is chosen to describe
entries of uB(Λ) . Thus, its covariance matrix is:

ΣuB(Λ)
= λ2(FTF)−1 (4.12)

with F NxN Toeplitz lower-triangular matrix having [1,−2, 1, 0, ..., 0]T as first
column. Assuming that uB(Λ) and w are uncorrelated, the following quadratic
optimization problem corresponds to the linear minimum error variance Bayesian
estimate of uB(Λ):

ûB(Λ) = argminuB(Λ)
(uI(Λ)−HuB(Λ))

TR−1(uI(Λ)−HuB(Λ))+

+ γuT
B(Λ)F

TFuB(Λ)

(4.13)

where parameter γ = σ2

λ2 , estimated by Maximum Likelihood [89], represents
the regularization term that balances the data fit with the smoothness of the
estimated profile. The optimization problem of Equation 4.13 admits a closed
form solution, expressed as:

ûB(Λ) = (HTR−1H + γFTF)−1HTR−1uI(Λ). (4.14)

For every SMBG measurement in vector uB (see Equation 4.8), the BG profile
ûB(Λ), which depends on parameter vector pk, is estimated inside the window
Λ that contains the time instant at which the SMBG sample tj, j = 1, ..., i is
acquired.

Step 3: match between estimated BG and available SMBG

For each SMBG sample in vector uB, acquired at time tj, j = 1, ..., i, the corre-
sponding estimated value of ûB(Λ) at time tj is considered, by exploiting the
vector ûB(pk) used in Equation 4.9:

ûB(pk) = [ûB(t1, pk), ..., ûB(ti−1, pk), ûB(ti, pk)]
T . (4.15)
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Step 4: parameter update

At each iteration k, the parameter vector pk is updated to a new set of values,
pk+1, using the Nelder-Mead simplex algorithm, as described in [104].

Steps 1–4 are reiterated until one of the following stopping criteria occurs: i)
the step size in parameters update is smaller than a fixed tolerance (e.g., 10−6);
ii) the relative change in the value of the objective function is lower than a
fixed tolerance (e.g., 10−6); iii) the algorithm reaches the maximum number
of iterations (e.g., 104). This last stopping condition is never reached in the
datasets analyzed in this thesis, since the iterative procedure always converges.

4.1.3 Calibration of the current signal

For each of the M SMBG samples used for calibration, the parameter vector
p̂, estimated from Equation 4.9 by following the five-step procedure of Sec-
tion 4.1.2, is used to calibrate in real-time the electrical current signal yI(t), by
inverting the model of Equation 4.3:

z(t, p̂) =
yI(t)

s(t, ŝ2, ŝ3)
− b̂. (4.16)

In particular, since the SMBG samples are acquired at times ti, i = 1, 2, ..., M,
the parameter estimated at the i-th calibration are used to calibrate the current
signal from ti + 5 min to ti+1 + 5 min. Indeed, the deconvolution window
Λ is defined to end 5 min after the reference time of the BG measurement (in
order to avoid edge effects), thus introducing the need to wait 5 min from any
ti before starting a new calibration.

4.2 Implementation

The BMD algorithm is assessed using a 9-fold cross-validation technique. The
database under analysis is divided into 9 groups of 12 datasets each. Itera-
tively, one group was the test set used to evaluate the method, whereas all
other groups formed the training set on which the priors for the calibration
parameters are derived.
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4.2.1 Prior derivation

The a priori information on calibration model parameters is derived by identi-
fying the following nonlinear model on the training data set:

yI(t) = [(uB(t) ∗ h(t)) + b] · s(t) (4.17)

where ∗ stands for convolution, h(t) is as in Equation 4.2, s(t) is defined by
Equation 4.4 and depends on parameters s1, s2, and s3. The unknown param-
eters s1, s2, s3, b, and τ are estimated by nonlinear least squares. The input of
the identification procedure is a smoothed BG profile uB(t), obtained from YSI
references using a stochastic Bayesian smoother [89] and the output is the elec-
trical current signal yI(t). The identification process is performed on each of
the Nt time series of the training set, thus obtaining Nt values for each parame-
ter. In particular, defining Γ = τ1, ..., τNt the values of parameter τ, a Bayesian
prior is built assuming a priori distribution with mean µτ and variance σ2

τ ,
determined from samples in Γ:

µτ =
1

Nt

Nt

∑
k=1

τk

σ2
τ =

1
Nt− 1

Nt

∑
k=1

(τk− µτ)
2

(4.18)

Similarly, we built a Bayesian prior for parameter vector p.

In the online working modality (see Section 4.1), since the number of BG
measurements available was not sufficient to estimate an individual value for
τ, we fixed its value to the prior mean µτ obtained from the training set at
each iteration of the cross-validation. With regard to the other parameters,
given the stability of the ratio between parameters s1 and s2, to facilitate model
identifiability in online modality (when only few BG references are available)
we decided to fix the ratio s1

s2
to the constant ϕ. The value of ϕ is estimated, at

each iteration of the cross-validation, from the mean value of its distribution
on the correspondent training set of size Nt. Thus, Equation 4.6 represents the
final parameter vector. Defining P = p1, ..., pNt

the samples of the parameters
vector p, a Bayesian prior is built by assuming a distribution with prior mean
µp and prior covariance matrix Σp, where the i-th element of µp, µi, and the
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ij-th element of Σp, σij, are defined as follows:

µi =
1

Nt

Nt

∑
k=1

pk,i

σij =
1

Nt− 1

Nt

∑
k=1

(pk,i− µi)(pk,j− µj)

(4.19)

Training set data have been used also to estimate the error covariance ma-
trix Σw, used in Equation 4.9. The error variance is assumed constant over
time and its value is estimated from the distribution of the differences between
SMBG measurements and the correspondent calibrated values (in mg/dl) given
by the manufacturer. In particular, for all SMBG samples available in the train-
ing set the correspondent CGM calibrated value is matched following the pro-
cedure described in Section 2.1.2.1 and the difference between the two mea-
surements is computed. The error variance is thus obtained, at each cross-
validation iteration, from the distribution of the SMBG–CGM error on the
training set.

4.2.2 Calibration scenarios

The BMD calibration algorithm is applied on the test set by simulating an on-
line working modality. In particular, for each sensor in the test group, the raw
current signal yI(t) is calibrated by exploiting a set of BG references provided
by SMBG measurements. Different calibration schedules are tested, in order
to assess the accuracy of the calibrated profiles using a different number of
SMBG samples per day, i.e., varying the frequency at which parameters of the
calibration model are updated. In particular, apart from the first calibration,
which is always performed about 2 hours after sensor insertion (exploiting a
pair of SMBG samples acquired a few minutes of distance from each other),
the following schedules are tested:

• one calibration about every day;

• one calibration about every two days;

• one calibration about every four days;

• zero calibrations (except the initial one).
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4.3 Results

The following subsections analyze the results of the implementation of the
BMD calibration algorithm in the DG4P dataset (Section 4.3.1) and in the NGD
dataset (Section 4.3.2). Then, in Section 4.3.3, we compare the performance of
the BMD calibration algorithm in the two datasets.

4.3.1 Results on the DG4P sensor

The calibrated profiles obtained with the three scenarios listed in Section 4.2.2
and the original manufacturer CGM output are shown, for a representative
subject of the database, in Figure 4.3, where also YSI references (not used by
the calibration procedure) are reported. Top panel refers to the original manu-
facturer calibration (performed twice per day), whereas the other panels to the
new BMD calibration algorithm and, in particular, from top to bottom, to the
one-every-day, one-every-two-days and one-every-four-days calibration sce-
narios. The calibrated profiles obtained with the BMD calibration algorithm
are, independently from the number of calibrations, more accurate than the
original CGM output given by the manufacturer. In particular, MARD, PAGE
and CEGA-A resulted, respectively, 15.04%, 74.26%, 66.18% (original manufac-
turer calibration, on average two calibrations per day), 8.85%, 97.06%, 94.12%
(BMD algorithm, one calibration per day), 8.94%, 97.06%, 92.65% (BMD al-
gorithm, one calibration every two days), and 10.15%, 93.38%, 87.50% (BMD
algorithm, one calibration every four days).

The results on the entire dataset are reported via boxplot in Figure 4.4,
where the distributions of the three performance metrics, both for the original
calibration and for the BMD algorithm (with different calibration frequencies),
are shown. In general, the BMD algorithm appears to be more accurate than
the original manufacturer calibration, for all the considered metrics and in-
dependently from the frequency of calibrations. Indeed, the metrics obtained
for the BMD calibration algorithm show distributions concentrated at lower
MARD values and higher PAGE and CEGA-A values with respect to the orig-
inal manufacturer calibration. In particular, the BMD algorithm with one cali-
bration every four days compared to the original manufacturer calibration (on
average two calibrations per day) shows 11.62% MARD (vs 12.83%), 89.20%
PAGE (vs 80.62%) and 87.5% CEGA-A (vs 81%).

Numeric values of performance metrics and relative statistical analysis re-
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Figure 4.3: Calibrated CGM profiles (continuous lines) and laboratory references for
accuracy assessment (points) for a representative subject during in-clinic session on
day 7. From top to bottom: original manufacturer calibration (performed two times
per day), Bayesian multi-day (BMD) algorithm with one calibration per day, one cali-
bration every two days and one calibration every four days.
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Figure 4.4: Boxplot of performance metrics. From left to right, MARD, PAGE and
percentage of points in A zone of the CEG obtained on the test sets for the original
calibration (performed twice per day) and for the BMD calibration algorithm with
three different calibration frequencies (one calibration per day, one calibration every
two days and one calibration every four days). The stars represent the mean values of
each distribution.

sults are reported in Table 4.1. Columns 2–5 report, respectively, the median
values of the performance metrics obtained with the original calibration, the
BMD algorithm with one calibration per day, one calibration every two days
and one calibration every four days. Columns 6–8 report the correspondent
p-values by the Wilcoxon signed-rank test. The indexes reported in Table 4.1
show that the BMD calibration algorithm improves sensor accuracy compared
to manufacturer calibration, independently from the frequency of calibrations.
The improvement achieved with the BMD algorithm is statistically significant
(P<0.05) for all the considered metrics and for all the calibration frequencies
tested. In addition, no statistically significant difference (P>0.05) is found be-
tween the performance metrics distributions obtained with the BMD algorithm
by using different calibration frequencies, i.e., one per day vs one every two
days vs one every four days (P not shown).

It is interesting to consider also an extreme scenario where no calibration,
except the initial one, is performed. In this zero calibrations scenario, the cal-
ibration parameters are estimated about two hours after sensor insertion and
used for the entire monitoring session without any further update. Since the
estimation is performed in the Bayesian setting exploiting only a pair a SMBG
samples, it strongly relies on prior information. In this case, the following me-
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Table 4.1: Performance metrics (median values).

BMD BMD BMD P (original P (original P (original
Original algorithm algorithm algorithm vs BMD vs BMD vs BMD

Metric calibration (1cal/day) (1cal/2days) (1cal/4days) 1cal/day) 1cal/2days) 1cal/4days)

MARD 12.83 11.59 11.63 11.62 0.0122 0.0025 0.0058

PAGE 80.62 87.63 87.59 89.20 0.0017 0.0010 0.0012

CEG-A 81.00 85.81 87.07 87.50 0.0442 0.0092 0.0112

dian values are obtained: 12.03% MARD, 85.67% PAGE and 85.62% CEG-A.
Although these indexes are still slightly better than those of the original man-
ufacturer calibration (see Table 4.1), no statistical significant differences are ob-
served. Indeed, the larger the number of calibration references (as moving
from day 1 to day 7), the more the posterior distributions differentiate from
the priors. This phenomenon is depicted in Figure 4.5, where the posterior
distributions of the three calibration parameters are reported, centered with
respect to the a priori expected values. We can observe that, not surprisingly,
as moving from day 1 to day 7, i.e., as the number of calibration references
increases, the posterior distributions differentiate from the priors (this is more
evident for parameters b and s2). Notably, the prior distributions are quite flat,
much more than the posterior distributions. This suggests that the informa-
tion brought into the Bayesian estimation process by the calibration references
plays a key role in determining the parameter values and that the use of only
one calibration reference would let the estimate to excessively rely on prior
information.

4.3.2 Results on the NGD sensor

Figure 4.6 shows the result of the application of the BMD calibration algorithm
to the raw current measured by the next-generation Dexcom CGM sensor pro-
totype on day 10 of a representative individual selected from the database.
YSI reference values acquired during in-clinic session are also reported for ac-
curacy assessment. From top to bottom, the panels refer to the one-per-day,
one-every-two-days, one-every-four-days, and the zero calibration scenarios,
respectively. The calibrated profiles match YSI references with good degree
of accuracy, independent from the frequency of calibrations. Slightly higher
values of MARD are observed when passing from the one-per-day calibra-
tion scenario to the one-every-two-days scenario (from 9.8% MARD to 11.3%
MARD), whereas performance remains substantially stable when further re-
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Figure 4.5: Posterior distributions of the three calibration parameters as moving from
day 1 to day 7 (each day is depicted with a different color, as reported in the legend)
and respective a priori distributions (black curve). From top to bottom: parameter b,
s2, and s3. All distributions have been centered with respect to the a priori expected
values.

61



4 A Bayesian multi-day (BMD) algorithm to calibrate subcutaneous CGM
sensors

Table 4.2: Performance metrics, subject-level analysis, as median[iqr] or mean(sd) for
non-normal/normal distributed metrics, respectively.

One/day One/two days One/four days Zero
Metric, unit calibration calibration calibration calibrations

Pairs, # 24 [1.7] 24 [1.7] 24 [1.7] 24 [1]

MAD, mg/dl 16.7 (6.6) 16.7 (7.8) 15.6 [9.5] 16.2 [12.7]a,b

MARD, % 8.5 [8] 8.4 [6.7] 9.2 [7.9] 9.3 [8.9]a,b

MRD, % 0.4 (9.4) 0.6 (9.6) 0.7 (10.6) -0.4 (12.1)

15/15%, % 87.5 [32.2] 85.1 [29.2] 85 [38.7] 82.2 [41.5]a,b

20/20%, % 95.8 [22.7] 95.8 [17.4] 95.7 [17.4] 91.7 [29.2]a,b,c

30/30%, % 100 [0] 100 [4.2] 100 [4.2] 100 [4.2]

CEG—A, % 95.8 [22.8] 95.7 [17.4] 95.7 [18.2] 91.5 [29.2]a,b,c

aStatistically different from one-per-day calibration scenario.
bStatistically different from one-every-two-days calibration scenario.
cStatistically different from one-every-four-days calibration scenario.

ducing calibrations to one-every-four-days or even to zero (11.5% MARD and
11.6% MARD, respectively).

Summary performance of the subject-level analysis on the entire data set is
reported in Table 4.2. All metrics are computed for each subject, and then the
distribution among the population in considered. In particular, from column
two to column five, performance refers to the one-per-day, one-every- two-
days, one-every-four-days, and the zero calibration scenarios, respectively. Per-
formance appears substantially stable when progressively reducing the fre-
quency of calibrations from one-per-day to one-every-two-days and one-every-
four-days, with no statistically significant differences (P values >0.05) between
the three scenarios for any of the considered metrics. In particular, the very
small performance deterioration between the first two scenarios shows that
the use of a priori knowledge compensates for the lack of SMBG data. When
the frequency of calibrations is further reduced, this compensation is progres-
sively less effective, resulting in slightly lower accuracy.

Although median MAD, MARD, and 30/30% remain stable even in the
zero calibration scenario, percentage of values within 15/15%, 20/20%, and
CEG-A slightly worsen of 3–4% when moving to the zero calibration scenario,
where we observe some statistically significant differences.

Distributions of performance metrics MARD, ISO 20/20%, and CEG-A are
also reported by boxplot in Figure 4.7, where the slight accuracy deteriora-
tion in the zero calibration scenario is evidenced. In general, the indexes re-
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Figure 4.6: Calibrated CGM profiles (continuous lines) and laboratory references for
accuracy assessment (points) for a representative subject during in-clinic session on
day 10. From top to bottom, calibrated profiles refer to the one-per-day, one-every-
two-days, one-every-four-days, and zero calibration scenarios.
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Figure 4.7: Boxplot of performance metrics. From left to right, MARD, percentage
of points matching the International Organization for Standardization (ISO) 20/20%,
and percentage of points in A zone of the CEG obtained with one calibration per day,
one calibration every two days, one calibration every four days and zero calibrations.
The stars represent the mean values of each distribution.

ported in Table 4.2 and relative distributions of Figure 4.7 show that the new
BMD calibration algorithm insures good sensor accuracy, independent from
the frequency of calibrations. The median MARD is lower than 10% for all the
calibration scenarios assessed, including the extreme scenario where zero cal-
ibrations are performed. Notably, all the scenarios tested present the median
value of 100% data points within 30/30%.

Moreover, when looking at the calibration error with its sign (MRD), we no-
tice that there is no systematic error introduced by the calibration process. In-
deed, as shown in Figure 4.8, boxplots of the error distribution in the different
calibration scenarios are well centered around zero, with no statistically signif-
icant differences when tested for the null hypothesis that their median/mean
(for non-normal/normal distributions) is equal to zero.

Table 4.3 reports the overall accuracy analysis performed on all CGM-YSI
data pairs available. From left to right, metrics refer to the one-per-day, one-
every-two-days, one-every-four-days, and to the zero calibration scenarios, re-
spectively. For each scenario, we analyze the overall performance on the entire
monitoring period and the performance in different phases of the CGM ses-
sion, that is, initial phase (day 1), middle phase (days 4–6), and end phase (day
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1cal/day 1cal/2days 1cal/4days zero

P=0.732 P=0.664 P=0.637 P=0.793

Figure 4.8: Boxplot of calibration error in terms of mean relative difference (MRD).
Left to right: one-per-day, one-every-two-days, one-every-four-days, and zero calibra-
tions. The asterisk inside each box represents the mean of the distribution, whereas
crosses represent outliers. For each box, the P value refers to the result of a Wilcoxon
signed-rank test for non-normally distributed data and a t-test for normally dis-
tributed data with the null hypothesis that data come from a distribution whose me-
dian/mean (for non-normal/normal distribution) is zero.

10), as documented in Section 2.2.2. Overall, median AD and ARD do not in-
crease significantly when reducing the frequency of calibrations. In particular,
median AD and ARD in the zero calibration scenario differs from median AD
and ARD in the one-per-day calibration scenario for less than 1 mg/dl and
1%, respectively. No significant differences are observed in 15/15%, 20/20%,
and 30/30% metrics and CEG-A when reducing calibrations from one-per-day
to one-every-two and one-every-four-days, whereas a slightly worsening of
4–5% occurs when moving to the zero calibration scenario. In addition, no
systematic error is found when looking at the signed error RD (P values not
shown).

Performance is stable among the different phases of the CGM session (day
1, days 4–6, and day 10) for all the considered metrics in the one-per-day, one-
every-two-days, and one-every-four-days calibration scenarios. In particular,
no performance deterioration is observed on day 1, which is usually the most
critical day for what concerns sensor accuracy [16], [94], [105]. In the zero
calibration scenario, the best accuracy is obtained, not surprisingly, in days 4-6.
These days correspond to the middle of the session, where the sensor behavior
is expected to be more stable. Day 1 performance is still comparable with that
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Table 4.3: Performance metrics, overall accuracy analysis.

One-per-day One-every-two-days One-every-four-days Zero
Metric, unit Session calibration calibration calibration calibrations

Pairs, # Overall 1198 1197 1198 1264
Day 1 557 556 557 626

Day 4–6 331 331 331 328
Day 10 310 310 310 310

AD, mg/dla Overall 14.2 [17.6] 13.9 [17.7] 14.9 [18] 15 [19.6]
Day 1 14.5 [17.8] 13.4 [18.7] 14.9 [18.2] 15 [18.7]

Day 4–6 13.6 [16.2] 14.3 [15.1] 13.7 [16.6] 12.6 [19.2]
Day 10 14.1 [18.9] 14.2 [19.6] 16.2 [18.5] 16.9 [22.9]

ARD, %a Overall 8 [10.1] 8 [11.2] 8.9 [11.2] 8.7 [13.5]
Day 1 8.2 [10.5] 7.8 [12.2] 8.3 [11.9] 9.2 [12.5]

Day 4–6 7.9 [8.8] 7.9 [9.5] 8.4 [11.8] 7.5 [14.1]
Day 10 7.9 [10.3] 8.3 [10.8] 9.6 [9.1] 9.8 [14.4]

RD, %a Overall [16.0] 1.2 [15.2] 1.5 [17.5] 0.5 [17.6]
Day 1 -0.9 [16.7] -1.2 [15.1] -1.4 [16.5] 0.6 [19.2]

Day 4–6 4.4 [14.6] 5.6 [13.4] 5.3 [14.6] 2.5 [15.2]
Day 10 -0.5 [16.2] 0.4 [16.6] 2.2 [19.6] -3.2 [19.5]

15/15%, % Overall 78.3 76.2 74.5 70.6
Day 1 77.6 74.1 73.1 71.6

Day 4–6 80.1 79.5 73.7 72.9
Day 10 77.7 76.4 78.1 66.4

20/20%, % Overall 87.3 86.9 86.2 81.1
Day 1 88.5 86.7 87.1 81.5

Day 4–6 86.4 87.3 84.6 83.8
Day 10 86.1 86.8 86.5 77.4

30/30%, % Overall 96.8 96.5 96.3 94.3
Day 1 97.5 97.1 97.7 94.6

Day 4–6 96.1 95.8 95.5 93.3
Day 10 96.4 96.1 94.8 94.8

CEG—A, % Overall 87.2 86.4 86.1 80.7
Day 1 88.5 86 86.7 81.1

Day 4–6 86.1 87 84.6 83.5
Day 10 86.1 86.4 86.4 76.8

aMedian [iqr].
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obtained overall, besides including more data points since there is no need to
wait for the start-up calibration instead required for the other three scenarios,
whereas the end of the session (day 10) shows slightly lower accuracy.

4.3.3 Comparison between DG4P and NGD performance

In this section, we compare the performance of the BMD calibration algorithm
on the NGD dataset with that obtained in the present generation DG4P sensor.

Two representative calibrated profiles are reported in Figure 4.9. Top panel
refers to the present generation and bottom panel to the next generation. In
both panels, the continuous line represents the glucose profile obtained with
one-per-day calibration and the dashed line represents the glucose profile when
zero calibrations are performed. YSI measurements are also reported for visual
accuracy evaluation. In the present generation, we can observe a significant
accuracy deterioration when passing from one-per-day calibration to zero cal-
ibrations (from 10.9% to 18% MARD). Contrarily, the next-generation sensor
appears more stable in maintaining good sensor accuracy when moving from
the one-per-day to the zero calibration scenario (from 9.9% to 11.1% MARD).
Notably, while systematically lower glucose values are observable in this spe-
cific subject, in others, glucose concentration results overestimated.

A global performance comparison is reported in Figure 4.10, where pop-
ulation median MARD values are reported for the present generation (plain
circles) and for the next generation (solid circles) when progressively reducing
calibrations from one-per-day to one-every-two-days, one-every-four-days, and
zero. We observe that the next-generation sensor prototype always performs
better than the present-generation sensor, independent from the frequency of
calibrations. Indeed, the median MARD values always remain below 10%,
whereas, in the present generation, values are always above 10%. Moreover,
while the present-generation performance significantly worsens when moving
to the calibration-free scenario, the next generation appears to reach an asymp-
totic MARD value, which does not deteriorate neither in the calibration-free
scenario.

4.4 Summary and concluding remarks

In this chapter, we proposed a new calibration algorithm which employs a cali-
bration model valid for the entire monitoring period and a Bayesian estimation
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Figure 4.9: Calibrated CGM profiles in the one-per-day calibration scenario (contin-
uous line) and in the zero calibration scenario (dashed line), and reference measure-
ments (dots). Top panel refers to the DG4P CGM sensor and bottom panel refers to
the NGD CGM sensor prototype, in two subjects representative of the mean behavior
in the population.
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Figure 4.10: MARD, median values and relative interquartile ranges in the NGD
dataset (solid circles) and in the DG4P dataset (plain circles). From left to right, val-
ues refer to the one-per-day, one-every-two-days, one-every-four-days, and the zero
calibration scenarios.

procedure determining the values of the unknown parameters.

The proposed BMD calibration algorithm provides real-time estimation of
glucose concentration by processing the raw electrical current signal and a few
BG measurements, taking into account the BG-to-IG kinetics and employing a
nonlinear model to describe the variability of sensor characteristics over time.
The estimation of calibration model parameters is set in the Bayesian frame-
work, where priors derived from a training set data ensure identifiability, even
using only a few BG calibration references.

Performance of the BMD calibration algorithm was assessed on two dif-
ferent datasets, one of the present generation DG4P sensor, and one of a next
generation CGM sensor prototype (NGD dataset). We tested different calibra-
tion scenarios, where we progressively reduced the frequency of calibrations
from one per day until zero.

Results show that, in the DG4P data, the BMD algorithm provides a sta-
tistically significant accuracy improvement compared to the original manufac-
turer calibration (required at least every 12 h), independently from the number
of calibrations performed (one per day, one every two days, one every four
days). In particular, with the BMD algorithm, two calibrations over a period
of 7 days are sufficient to guarantee a good sensor accuracy, i.e., 11.6% MARD
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(vs. 12.8% MARD obtained by the original calibration by exploiting at least
14 calibrations over the 7-day period). The more challenging calibration-free
scenario showed instead poorer performance, with no statistically significant
difference compared to the original calibration.

In the NGD data, performance of the BMD algorithm is even better, with
MARD always lower than 10%, independently from the frequency of calibra-
tions, and even when zero calibrations are performed. In particular, this re-
sult is in line with a recent achievement obtained by the company producing
the NGD sensor, Dexcom Inc. (San Diego, CA), which in 2018 has launched
the new-generation G6 device (already mentioned in Section 1.2.3) showing as
well lower than 10% MARD with zero calibrations [59].

The comparison between present and next generation sensors shows that
the BMD calibration algorithm allows obtaining more accurate CGM traces
when applied to the next generation technology compared to its application to
the present generation (8.5% vs. 11.59% MARD with one-per-day calibration,
8.4% vs. 11.63% MARD with one-every-two-days calibration, 9.2% vs. 11.62%
MARD with one-every-four-days calibration, and 9.3% vs. 12.97% MARD with
zero calibrations). In particular, the NGD technology seems more suited for a
calibration-free scenario than the present generation.

To conclude, we would highlight possible limitations and relative mar-
gins of improvement of the proposed calibration technique. One important
aspect to be considered is, for instance, the investigation of how accuracy is
impacted when considering larger datasets with more variability in sensor-
to-sensor characteristics. Indeed, the Bayesian approach here proposed relays
on prior information on calibration model parameters to reduce or actually
substitute (in the zero calibration scenario) the BG calibration references. In
principle, the lower the inter-sensor variability is, the higher is the accuracy
of the method, especially when only few, or zero, calibration references are
used. When instead potential higher inter-subject or inter-sensor variability is
considered, the method would require additional flexibility to efficiently cope
with the different sensor behaviors. To address this issue, in the following
chapter we propose a multi-model approach and a Bayesian model selection
framework which aim at guaranteeing wide margins of flexibility for both the
determination of the most appropriate calibration model and the numerical
values of its unknown parameters.
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Chapter 5

Dealing with CGM sensors-subject
variability: a multi-model Bayesian
framework (MMBF)

1

The calibration algorithms discussed so far rely on a unique, predetermined,
calibration model, whose parameters are periodically updated in individual
patients by matching the reference blood glucose values. However, in presence
of high variability of sensor-subject characteristics, the use of a unique calibra-
tion model could be not sufficient to guarantee optimal performance in the
entire population of sensor/subjects. In this chapter, we propose a Bayesian
model selection approach aimed at enhancing calibration performance by al-
lowing the choice of the most appropriate calibration model among a finite
set of candidates, each having a given a priori probability. Ideally, the MMBF
can be applied as preliminary step to determine the calibration model to any
calibration algorithm. Here, we apply the MMBF to the BMD calibration algo-
rithm of Chapter 4 and assess performance on synthetic data.

As we have seen so far, a calibration model can be described by the generic
function f , which depends from parameters θ:

yI(t) = f (θ, uB(·)) + w(t) (5.1)

where yI is the raw electrical signal measured in the interstitial fluid, uB the BG
profile, and w the measurement error. To improve effectiveness of this model
during sensor functioning, its parameters θ are periodically updated by using

1The methods described in this chapter, published in [106], have been of inspiration for a
US Provisional Application (details subject to confidentiality).
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reference SMBG values collected by the patient through finger prick devices.
All the algorithms proposed so far rely on a unique, i.e., population, cal-

ibration model described by the function f , whose parameters θ are tuned
“in vivo” to adapt to the specific sensor and to the specific subject in which
the sensor is used. This process assumes that the relationship between elec-
trical current measured by the sensor and BG concentration can be described
by a standard function f in the entire population, requiring both the sensor-
to-sensor and the inter-subject variability to be minimized. Although sensors’
manufacturers can reduce “in factory” the sensor-to-sensor variability, there
is a second source of “in vivo” variability caused by the specific body-sensor
interactions that influence the calibration function f , determining possible dif-
ferent behaviors in the population [107], [74].

In the following, we propose a new calibration framework to enhance flex-
ibility in the choice of the calibration function f with the aim of compensating
for the “in vivo” variability of sensor characteristics.

5.1 Calibration framework incorporating calibration

model selection

5.1.1 Model selection in a Bayesian embedding

The Bayes theory offers a straightforward way to deal with model uncertainty,
in particular when different models are under consideration to describe data
[108]. In particular, let D be the data and M = M1, ..., MK be a set of K models
under consideration for D. The probability density function of D under the
specific model Mi, i = 1, ..., K is given by p(D|θi, Mi), where θi is the vector
of unknown parameters for Mi. A priori distributions are introduced for all
the unknowns, i.e., the parameters of each model, p(θi|Mi), and the models
themselves, p(Mi), i = 1, ..., K. In this probabilistic setup, the data D can be
seen as generated by the following three-step hierarchical procedure [108]:

• the model Mi is generated from p(Mi), i = 1, ..., K, where ∑K
i=1 p(Mi) =

1;

• given the model Mi, the relative parameter vector θi is generated from
p(θi|Mi);

• finally, the data D are generated from p(D|θi, Mi).
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5.1 Calibration framework incorporating calibration model selection

Given the observed data D, the model selection problem consists in finding
the model in M that actually generated the data. From Bayes’ theorem, the
probability that a specific model Mi, i = 1, ..., K was the model generated at
step 1 is:

p(Mi|D) =
p(D|Mi) · p(Mi)

∑K
i=1 p(D|Mi) · p(Mi)

(5.2)

where p(Mi|D) is the posterior probability of model Mi, p(Mi) is the a priori
probability of model Mi, and p(D|Mi) is the integrated likelihood of model
Mi, which is expressed as follows:

p(D|Mi) =
∫

p(D|Mi, θi) · p(θi|Mi)dθi (5.3)

The posterior distributions p(Mi|D), i = 1, ..., K, which can be computed by
different numerical integration strategies [109], [110], are the fundamental ob-
jects for model selection, providing a full post-data representation of model
uncertainty.

In the following sections, we contextualize this general Bayesian model se-
lection approach to the specific framework of CGM sensors’ calibration.

5.1.2 Incorporation of Bayesian model selection in the calibra-

tion problem

Given a set of measures D, i.e., a set of SMBG samples acquired through finger-
prick devices and correspondent raw sensor data measured at the same time
instants, the calibration model is determined among the candidates in M by
choosing the model with the highest a posteriori probability. The two major
challenges for the practical implementation of this procedure are: i) the defi-
nition of all a priori probabilities (i.e., p(Mi) and p(θi|Mi) for i = 1, ..., K),
and ii) the numerical computation of the integrated likelihood of Equation 5.3.
These two aspects are discussed in the following subsections.

Definition of a priori probabilities

A priori probabilities for the candidate models and a priori probabilities for
each model parameter can be derived by retrospective off-line analysis of CGM
sensor data. For instance, given a training data set DT containing NT raw
CGM signals and reference BG values, the model Mi that best fits the data can
be determined by ad hoc criteria (e.g., Akaike criterion) for each record in DT .
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Then, the a priori probability of a specific model Mi will be derived from the
number of times Ni that the model was chosen as the best fit in DT , i.e., Ni

NT
.

In an analogous way, a priori probabilities for model parameters can be
derived from DT by off-line identification. Specifically, let θ be the parameters
vector for the generic model M, which was the best fit for N records in DT . We
assume that θ is distributed with prior mean µθ and prior covariance matrix
Σθ, where the i-th element of µθ, µi, and the ij-th element of Σθ, σij, are defined
as follows:

µi =
1
N

N

∑
n=1

θn,i

σij =
1

N− 1

N

∑
n=1

(θn,i− µi)(θn,j− µj)

(5.4)

Integrated likelihood computation

The integrated likelihood expressed in Equation 5.3, except for few elementary
cases, cannot be evaluated analytically and requires the use of numerical inte-
gration methods [109]. Using the simple Monte Carlo integration, the marginal
likelihood in Equation 5.3 is approximated by averaging the likelihoods values
over a set of Niter iterations:

p̂(D|Mi) =
1

Niter

Niter

∑
n=1

p(D|Mi, θn) (5.5)

where, at each iteration, a set of model parameters θn is sampled from its prior
distribution and the probability of the observed data given that specific set of
parameters is computed. The estimated integrated likelihood is the average of
the likelihoods of the sampled parameters values θn : n = 1, ..., Niter. A possi-
ble difficulty with this type of estimation is that most of the θn may have small
likelihood values so that the simulation process would be inefficient requiring
a large number of iterations to reach convergence. Eventually, the precision
of the simple Monte Carlo integration can be improved by the use of variance
reduction techniques such as importance sampling [109], [110], [111].

Given the prior probabilities and the integrated likelihoods for each candi-
date model, the model with higher a posteriori probability is chosen and used
to calibrate the sensor signal, as described in the following section.
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5.1.3 Use of the selected calibration model

Assume that the model selection procedure resulted in the selection of model
M, described by the calibration function f as in Equation 5.1. Given a set of
data, i.e., a set of SMBG and correspondent raw sensor measurements con-
tained in vectors uB and yI , respectively, the parameter vector θ is estimated
as described in Chapter 4 by Bayesian MAP estimation:

θ̂ = argminθ[uB− ûB(θ)]T Σ−1
w [uB− ûB(θ)] + (µθ− θ)T Σ−1

θ (µθ− θ)

(5.6)
where ûB is the vector of estimated BG values obtained using the calibration
model M (i.e., ûB = f−1(θ̂, yI)), σw is the error covariance matrix, and the
prior mean µ and covariance matrix Σθ are as in Equation 5.4. The complete
parameter estimation procedure, which embeds the deconvolution step [89] to
compensate for the BG-to-IG kinetics [69], was already described in detail in
Chapter 4. We summarize here the main steps:

• according to the selected model M, initialization of parameters vector θ

to its prior mean µθ;

• estimation of IG profile ûI(t) according to the selected calibration model
M;

• estimation of BG profile, ûB(t), accounting for the distortion introduced
by the BG-to-IG kinetics [69] by means of deconvolution [89];

• matching between SMBG measurements and ûB(t);

• update of parameters vector for the following iteration.

The estimated parameter vector θ̂ is used to obtain, in real-time, the cali-
brated CGM profile. The procedure is updated each time a new SMBG mea-
surement is collected.

5.2 Assessment on simulated data

The MMBF is tested on a set of synthetic data generated by the UVA/Padova
type 1 diabetes simulator (T1DS) with the patient behavior model of [112]. The
T1DS is a widely established simulation tool which describes glucose, insulin,
and glucagon kinetics in type 1 diabetes patients. It is accepted by the FDA
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Figure 5.1: Schematic representation of the simulation setup. The blood glucose pro-
file uB is simulated using the UVA/Padova type 1 diabetes simulator (T1DS). SMBG
measurements are obtained from BG samples at calibration times tc by adding the
measurement noise w. The electrical current signal yI is obtained from uB by i) con-
volution with the BG-to-IG system response with time-constant τ and ii) application
of the calibration model M with parameter vector θ.

to test diabetes therapies. Here, we utilize its extended version which embeds
modules describing glucose monitoring devices, e.g., SMBG and CGM devices,
the patient’s behavior in making treatment decisions, and insulin administra-
tion [112], allowing the simulation of realistic CMG time-series.

5.2.1 Generation of the simulated dataset

To generate the simulated dataset used to test the MMBF, we utilized the scheme
of Figure 5.1.

For each subject, a BG concentration profile uB is simulated using the T1DS
[112]. From the BG profile, random SMBG measurements are generated at
calibration times tc (every 12h) according to the following model:

SMBG = BG(tc) + w, w ∼ N(0, σ2
w) (5.7)

where σ2
w is the noise variance (we assumed σw = 0.05 · BG(tc)). As per

block 1 of Figure 5.1, the IG profile uI is obtained from uB accounting for the
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Figure 5.2: Example of simulated dataset. Top panel: blood glucose profile (contin-
uous line), interstitial glucose profile (dashed line) and SMBG samples (diamonds).
Bottom panel: electrical current profile.

BG-to-IG kinetics by means of convolution:

uI(t) = uB(t) ∗ 1
τ
· e− t

τ , τ ∼ N(10, 1.5) (5.8)

Top panel of Figure 5.2 shows an example of simulated IG profile (dashed
line) together with the BG profile (continuous line) and SMBG measurements
(diamonds).

As far as block 2 of Figure 5.1 is concerned, here we simulate a basic sce-
nario in which the calibration model is determined among a set of two candi-
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dates, M = {Ma, Mb}:

Ma : uI(t) =
yI(t)

a1 · t + a2
− a3

Mb : uI(t) =
yI(t)

b1 + b2 · e−2t− b3

(5.9)

The candidate models differ for the mathematical formulation of the denomi-
nator, referred to as the sensitivity of the sensor, which is a linear function for
Ma and an exponential function for Mb. Parameters a3 and b3 represent, in
both cases, the offset of the models.

A priori probabilities of the candidate models, Ma and Mb, and relative pa-
rameters, θa = [a1, a2, a3] and θb = [b1, b2, b3] were arbitrary fixed as follows:

p(Ma) = 0.7; p(θa|Ma) ∼ N(µa, Σa)

p(Mb) = 0.3; p(θb|Mb) ∼ N(µb, Σb)
(5.10)

Specific mean and covariance values used in the simulations were:

µa = [0.3, 28,−10]; Σa =

[
25 11 −6.6
11 16 −9
−6.6 −9 9

]
µb = [30, 5,−10]; Σb =

[ 9 3 −2.4
3 25 6.6
−2.4 6.6 9

] (5.11)

which are qualitatively chosen in accordance to correlations between parame-
ters observed in real data (for instance, a negative correlation between sensi-
tivity and baseline parameters is commonly observed in real data).

For each virtual subject, the electrical current signal is simulated by sam-
pling from the prior distributions one of the two models according to their a
priori probabilities and a relative set of parameters (as described in Section
5.1.1). An example of simulated current signal, obtained applying the model
Mb to the data of Figure 5.2, top panel, is depicted in Figure 5.2, bottom panel.

In total, we simulated 15 different virtual datasets, each comprising the true
BG profile as generated by the T1DS, the noisy SMBG measurements needed
for calibration, and the electrical current signal as it would be measured by
the sensor. In addition, for each virtual dataset, the calibration model used to
convert the glucose concentration into electrical current values is, of course,
known.
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5.2.2 Model selection and performance assessment

To assess the MMBF using the synthetic data generated in Section 5.2.1, a real-
time calibration scenario is simulated. Each time a new SMBG is available
for calibration, i.e., about every 12h, the calibration model is chosen among
the candidates in M by maximizing Equation 5.2. As a result, we obtain a
calibrated CGM profile that can be evaluated, in terms of accuracy, against the
true BG profile available in the dataset.

The number of Monte Carlo iterations for the computation of the marginal
likelihood, i.e., parameter Niter in Equation 5.5, was fixed to 104.

To assess performance of the MMBF we looked at two indexes:

• the number of simulations for which the model that actually generated
the data corresponded to the model selected by the Bayesian model se-
lection;

• the root mean square error (RMSE) between the true BG profile and the
calibrated CGM profile obtained with the selected model vs. the CGM
profile obtained by using a unique population model, i.e., model Ma,
which is the most probable in the simulated population.

Statistical significance of the differences in RMSE is assessed by Wilcoxon test.

5.3 Results

In the 15 analyzed datasets, the model chosen by the Bayesian selection method,
i.e., the model that showed the higher a posteriori probability, was equal to the
model that actually generated the data in 100% of the cases.

When the calibration model selected by the Bayesian model selection proce-
dure is used for calibrating the data, the median RMSE between the calibrated
CGM output and the true BG profile was 17.69 mg/dl. If a population model
approach is used instead, i.e., the most probable model in the considered pop-
ulation, Ma, is used with no previous model selection, then the median RMSE
between calibrated CGM output and the true BG profile was 19.11 mg/dl. Re-
sults are schematized in Table 5.1, where the result of the statistical test evi-
dences a significant difference in favor of the MMBF (p-value of 0.0059).
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Table 5.1: Calibration accuracy as root mean square error (RMSE) for the MMBF vs.
the population model approach.

Calibration MMBF Population
accuracy approach approach p-value

RMSE (mg/dl) 17.69 [3.41] 19.11 [5.07] 0.0059
Results reported as median [interquartile range].

5.4 Work to be done for validation on real data

In this Chapter we have assessed the MMBF on a simulated dataset, proving
the suitability of such model-selection method for the calibration problem. To
strength our findings a validation of the method on a real dataset is certainly
needed. To do so, a large amount of data characterized by high inter-sensor
and inter-subject variability is required for identifying each possible candidate
model and for deriving the a priori information on models and model param-
eters. However, such data are not yet available, at the time of writing, for our
use. Indeed, the datasets described in Chapter 2 are not suitable for this appli-
cation, since the amount of data we would need is on the order of thousands
of sensors. In principle, such data could be available to many CGM sensors
manufacturers through their cloud platforms.

5.5 Summary and concluding remarks

In minimally invasive CGM sensors, the measured electrical signal is trans-
formed to BG values by a calibration model whose parameters are periodi-
cally updated by matching SMBG references collected by finger prick devices.
State-of-art calibration techniques rely on a predetermined calibration model,
with parameters that can be tuned “in vivo” to adapt to the specific sensor
and to the specific subject in which the sensor is used. Retrospective analysis
of CGM recordings suggests that this approach may be not sufficient to ex-
plain the inter-sensor and inter-subject variability of the relationship between
raw sensor measurements and glucose concentrations. On the one hand, the
sensor-to-sensor variability can be reduced “in factory” by sensor manufactur-
ers. On the other hand, a second source of “in vivo” variability, which is caused
by the specific body-sensor interactions occurring after sensor insertion, may
result in different relationships between the raw measurements and glucose
concentrations that cannot be explained by a unique population model.

80



5.5 Summary and concluding remarks

In this chapter, we proposed a MMBF that aims at offering flexibility for
both the choice of the calibration model and the numerical values of its un-
known parameters. In particular, we hypothesized that the calibration func-
tion does not necessarily obey to a unique model. Rather, the most convenient
shape of the calibration function is determined in real-time among a set of can-
didate models, each one depending on a set of unknown parameters for which
a priori statistical description is available. The method was preliminary as-
sessed in simulation, in which only two candidate models were considered.
Results show that the proposed approach is able to identify the correct calibra-
tion model with consequent improvement of sensor accuracy compared to the
use of a unique population approach.

The MMBF here described has a general statistical background and could
be applied, in principle, to any CGM sensor for which a suitable training set
is available. Future work will include a more extensive test of the proposed
approach on simulated datasets and the validation on real datasets.
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Chapter 6

Conclusions

6.1 Summary of the main achievements

In the last twenty years, CGM devices have revolutionized the treatment of
diabetes by providing high frequency measurement of glucose concentration.
Among the different sensing technologies, the minimally invasive CGM de-
vices based on the glucose-oxidase electrochemical principle represent the most
successful commercial products. In glucose-oxidase CGM sensors, the electri-
cal current signal measured by the sensor is in real time transformed to glucose
concentration by a calibration procedure, which requires some BG references
to be used as ground truth.

The two fundamental aspects that determine the efficacy of a calibration
process are the accuracy of the calibrated profile and the number of calibrations
that are needed to ensure such performance. Indeed, on the one hand, frequent
calibrations would help guaranteeing good sensor accuracy, since more BG
measurements are available as reference. On the other hand, each calibration
requires the patients to acquire a BG sample through fingerprick devices, thus
adding uncomfortable extra actions to the many already needed in the routine
of diabetes management. The review of the past and existing calibration tech-
niques proposed in the literature and employed by CGM sensor manufacturers
conducted in Chapter 1 evidences that some critical aspects (i.e., the BG-to-IG
kinetics and the time-variability of sensor sensitivity) are often neglected by
many algorithms, with consequent suboptimal performance. The primary aim
of this thesis was to develop a calibration algorithm able to provide accurate
glucose estimations while, at the same time, reducing the frequency of calibra-
tions.
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As first finding of the present Ph.D. thesis, we demonstrated that the cali-
bration algorithm of Vettoretti et al. [90], when implemented with day-specific
prior information on calibration model parameters, is able to reduce the cal-
ibration frequency from two to one per day, while still improving accuracy
if compared to the manufacturer calibration, which requires two calibrations
per day. As possible margin for improvement, we demonstrated that the lin-
ear calibration model of [90] has domain of validity limited to certain time-
intervals, of, e.g., 24 hours, not allowing to further reduce calibrations to less
than one per day. The limited temporal domain of validity of the calibration
model called for the development of a new calibration algorithm employing a
calibration model valid for a multiple-day period.

The development of a new calibration algorithm with the aforementioned
characteristics represents a major achievement of this Ph.D thesis, described in
Chapter 4. The new BMD algorithm is based on a multiple-day model of sen-
sor time-variability with second order statistical priors on its unknown param-
eters. The numerical values of model parameters are determined by a Bayesian
estimation procedure exploiting a few BG references sparsely collected by the
patient. In addition, the distortion introduced by the BG-to-IG kinetics is com-
pensated during parameter identification via nonparametric deconvolution.
The BMD calibration algorithm was applied to two datasets acquired with the
present generation DG4P sensor and a NGD sensor prototype. In the DG4P
data, results show that the BMD calibration algorithm significantly improves
sensor accuracy compared to the manufacturer calibration while reducing cal-
ibration frequency from 2 to 0.25 per day. In the NGD data, performance of
the BMD algorithm is even better than that of present generation, allowing to
further reduce calibration frequency till zero.

However, higher inter-subject or inter-sensor variability could potentially
characterize large sets of data, requiring additional flexibility to efficiently cope
with the different sensor behaviors. To address this issue, in Chapter 5 we
further developed the newly proposed BMD calibration algorithm in a multi-
model scenario. In particular, to cope with the inter-sensor and inter-subject
variability, we proposed a Bayesian framework also considering calibration
model selection, in which the most likely calibration model is chosen among
a finite set of candidates. A preliminary assessment of the MMBF was con-
ducted on synthetic data. Results show a statistically significant accuracy im-
provement compared to the use of a unique calibration model.
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6.2 Possible applications and future developments

In this thesis, the proposed calibration techniques have been retrospectively
applied to a commercial CGM sensor and a next generation CGM sensor pro-
totype of a specific manufacturer, i.e., Dexcom Inc. (San Diego, CA), thanks to
the availability of some specific datasets.

A first, straightforward, application of the BMD calibration algorithm de-
scribed in Chapter 4 would be the implementation of the algorithm directly
on the DG4P or the NGD sensor’s hardware. Indeed, the BMD algorithm and
its implementation are already intended for real-time use in a portable device,
given also the modest computational complexity of the involved operations.
Of course, the use of the Bayesian estimation would require the preliminary
estimation of a priori distributions of calibration model parameters from a
training set of data.

Secondly, in more general terms, the proposed BMD calibration algorithm
can be potentially applied to other CGM devices for which a raw measurement
taken from the interstitial compartment needs to be converted into glucose
concentration by matching some sparse BG references. In this case, the appli-
cation of the method would require: i) to derive specific sensitivity and base-
line functions that best describe the characteristics of the given sensor, which
could be, in principle, different between different sensor types, and ii) derive
a priori information on model parameters from a training dataset of the same
sensor type.

An interesting future development, provided that suitable data become
available, would be the application and validation of the proposed calibration
techniques to a different glucose sensor other than a Dexcom CGM sensor. In-
deed, the calibration techniques here proposed are intentionally designed to
be flexible and applicable to a large class of glucose sensor devices.

Also, in the present thesis, the analyzed datasets were all acquired in adult
populations. However, many CGM sensors currently available on the market
are approved by the FDA to be used also in adolescents and pediatrics. One
interesting aspect that needs to be analyzed in future work is the adaptabil-
ity of the proposed calibration techniques to these specific populations. This
requires, in particular, investigating whether the prior information on calibra-
tion parameters needs to be estimated from training data sets unique for each
population or can be derived by leveraging existing distributions.

Finally, the MMBF described in Chapter 5 can be potentially applied to
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any CGM sensor to describe the different behaviors caused by either inter-
sensor and inter-subject variability. This would require the availability of large
training datasets in order to capture the more probable sensor behaviors and
estimate a priori probabilities for each model type and for the parameters of
each model. The requirement of such amount of training data could appear,
in principle, difficult to satisfy. However, in the last five years many CGM
sensors manufacturers have started employing dedicated cloud platforms for
storing and analyzing the large amount of data produced every day by their
users. The availability of such datasets would render the application of the
MMBF straightforward.

Provided that real data for such assessment become available for our use,
the validation of the MMBF will be object of future work. Such validation
would require to demonstrate that the accuracy of the calibrated profiles is
enhanced by choosing the model among a set of candidates, rather than using
a unique population calibration model.
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