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Sommario

Il presente lavoro è stato svolto nell’ambito della biomeccanica sportiva,
scienza che applica le leggi della meccanica e della medicina alla valutazione
della performance atletica, per approfondire la conoscenza delle abilità mo-
torie dei soggetti, tramite misure, modellazioni e simulazioni. Tale disciplina
si prefigge di soddisfare la crescente richiesta di allenatori, medici ed atleti
di ottenere una valutazione quantitativa delle caratteristiche intrinseche alla
performance.

La biomeccanica ha svolto un ruolo fondamentale nella comprensione e
nell’insegnamento delle tecniche sportive. La modellazione teorica, assieme
agli studi sperimentali, ha fornito un valido aiuto nell’approfondire l’analisi
dei meccanismi responsabili di determinati fenomeni. L’applicazione della
biomeccanica allo sport ha inoltre contribuito a migliorare la performance e
ad identificare possibili cause di infortunio.

Negli ultimi anni, si è osservato un notevole incremento nello sviluppo
e nell’utilizzo di tecnologie innovative per la ricerca in ambito sportivo. I
software attualmente presenti sul mercato offrono inoltre vaste possibilità di
visualizzazione e analisi dati. Grazie al sempre più facile accesso a molte stru-
mentazioni di acquisizione dati, ne è divenuto pratico l’utilizzo anche nella
valutazione di tecniche sportive. Dai dati ottenuti con le nuove tecnologie,
sono però sorte importanti questioni. Innanzitutto, il setup sperimentale deve
essere realistico, appropriato allo scopo della ricerca e deve essere mantenuto
il più semplice possibile. Si devono inotre adottare tecniche adeguate per il
processamento e l’analisi dei dati. Infine, i risultati devono essere riportati
in modo semplice, per essere pienamente compresi da atleti e allenatori.

Nella gait analysis clinica, si sono già largamente validati numerosi pro-
tocolli e l’analisi quantitativa è divenuta un potente strumento nelle deci-
sioni chirurgiche, nel monitoraggio post-operatorio e riabilitativo. In ambito
sportivo, il gran numero di discipline e la difficoltà nello standardizzare i
movimenti hanno agito da freno ad un uso sistematico di alcune tecnologie
potenti, quali, ad esempio, la stereofotogrammetria. Le analisi optoelettroni-
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che, sebbene offrano grandi potenzialità, sono infatti ancora ai loro esordi.
Devono ancora essere affrontati problemi sostanziali, come il tempo neces-
sario all’acquisizione dati, la gestione degli attrezzi, i costi, la mancanza di
modelli specifici per i singoli soggetti, ecc.

Compito principale degli allenatori è l’ideazione e la strutturazione di pro-
grammi di allenamento che producano un progressivo miglioramento dell’a-
tleta. Un ruolo importante ricopre anche la prevenzione di infortuni. E’
quindi evidente che uno degli obiettivi della ricerca in ambito sportivo debba
essere l’identificazione delle caratteristiche peculiari e delle strategie motorie
più efficienti per il singolo atleta. Il monitoraggio di più atleti è infatti la
base per la descrizione quantitativa accurata del gesto motorio in analisi e
la valutazione dei diversi livelli di abilità degli atleti. La conoscenza delle
attitudini e delle carenze dei singoli atleti deve poi concorrere a differenziare
programmi di allenamento mirati. Inoltre, per ottenere un’affidabile carat-
terizzazione del singolo soggetto si ha la necessità di svolgere un monitoraggio
longitudinale: l’atleta deve essere confrontato con se stesso in periodi diversi
del periodo di allenamento.

Nel cercare di cogliere le caratteristiche individuali, la ricerca non deve fo-
calizzare l’attenzione sulla miglior performance dell’atleta. Al contrario, deve
essere individuata la “modalità tipica” della performance dell’atleta. Con il
termine modalità tipica si intende la ripetizione di un movimento con un
alto grado di certezza e con la massima efficienza. Per cui, la comprensione
delle caratteristiche motorie individuali risulta strettamente legata alla valu-
tazione di un ampio numero di ripetizioni di un movimento. I dati derivanti
da analisi ripetute sono fortemente affetti dalla presenza della biovariabilità.
Infatti, atleti diversi svolgeranno un movimento in modi differenti. Per di
più, anche atleti di massimo livello non sono in grado di riprodurre un pat-
tern motorio sempre nello stesso identico modo, anche se si allenano da molti
anni. Le variabilità inter- ed intra- soggetto giocano quindi un ruolo fonda-
mentale nella valutazione delle abilità motorie e la loro azione sui dati deve
essere tenuta in considerazione.

Nella biomeccanica sportiva e nella motion analysis, anche protocolli spe-
rimentali semplificati producono spesso un gran numero di dati. E’ quindi
necessario un notevole sforzo per trovare una struttura nei dati, identificare le
features più caratteristiche e presumere se un andamento sia rappresentativo
dell’atleta o meno. Solitamente i risultati vengono interpretati soggetiva-
mente, a partire da un vasto numero di variabili altamente correlate e tempo-
varianti. Le tecniche standard di analisi dati (media, deviazione standard,
ecc.) falliscono nell’estrarre l’informazione significativa da un insieme nu-
meroso di variabili cinematiche e dinamiche. Al contrario, l’analisi statistica
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multivariata si è dimostrata un potente mezzo per eliminare la collinearità
dai dati e facilitarne la comprensione, evidenziando solamente le strutture
essenziali nascoste in essi. Tra le tecniche statistiche multivariate, le trasfor-
mazioni lineari sono computazionalmente più semplici da gestire. Tra di esse,
l’analisi delle componenti principali (PCA) è risultata essere molto efficace
nello studio del movimento umano. E’ stata infatti utilizzata in letteratura
per identificare gruppi di variabili correlate, discriminare differenti pattern
di cammino o valutare i cambiamenti dovuti a patologia, infortunio od in-
tervento. Ciò nonostante, la PCA non è stata ancora sfruttata nell’ambito
della biomeccanica sportiva, per le valutazioni di stato dell’atleta, preven-
zione degli infortuni, allenamento, ecc.

Scopo di questa tesi è valutare le potenzialità dell’uso della PCA nel
ridurre e interpretare dati derivanti da un’analisi sportiva, tenendo in con-
siderazione la variabilità insita in essi. Si è scelto di utilizzare la marcia
come strumento di analisi, perchè è un gesto motorio che presenta proprietà
biomeccaniche e coordinative altamente tecniche e ripetibili. Sono stati utiliz-
zati un sistema optoelettronico ed una pedana di forza per acquisire e stimare
la cinematica e la dinamica di sette marciatori di livello internazionale. Sono
stati processati i dati derivanti da più ripetizioni del gesto motorio.

L’analisi delle componenti principali è una tecnica statistica che riduce
la dimensione dei dati originali, mantenendo l’informazione più importante
in essi contenuta. Le variabili vengono rappresentate in un numero ridotto
di componenti, che tengono conto di gran parte della variabilità originale.
In questa tesi sono state analizzate tre possibili applicazioni di analisi delle
componenti principali: tradizionale (t-PCA), funzionale (f-PCA) e a due fasi
(2-PCA). Un ulteriore obiettivo è stato quello di valutare i vantaggi e gli
svantaggi delle tre tecniche nel rispondere a differenti quesiti, dal momento
che queste tecniche non sono ancora state ampiamente adottate in ambito
sportivo.

Innanzitutto, si è ottenuta una caratterizzazione generale della biomec-
canica della marcia, in modo da avere un quadro completo del movimento in
analisi. Si è cercato poi di ottenere una caratterizzazione robusta e completa
della strategia motoria di ogni atleta. Tutte le tecniche utilizzate hanno per-
messo di individuare relazioni tra le variabili in analisi e la performance di
marcia. E’ stato possibile identificare i principali elementi che distinguono
gli atleti in base al loro livello di abilità. Si sono inoltre descritte le pecu-
liarità tecniche e coordinative di ognuno di essi. Infine, si è riportato un
esempio di monitoraggio longitudinale. La PCA è stata infatti applicata
ai dati derivanti da due sessioni di test successive, in modo da valutare i
miglioramenti ottenuti grazie all’allenamento.
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Questo studio ha cercato di mostrare come l’analisi delle componenti prin-
cipali possa rappresentare un valido strumento per caratterizzare le abilità
motorie degli atleti ed effettuare un monitoraggio longitudinale. La PCA si è
rivelata utile anche nell’ottenere importanti informazioni su comportamenti
motori che potrebbero essere causa di infortuni. Si è adoperata un’attenzione
particolare nel cercare una connessione tra un approccio matematico com-
plesso e teorico quale la PCA e la sua applicazione pratica. Si è cercato
infatti di dare un’interpretazione biomeccanica dei risultati ottenuti, al fine
di rendere l’informazione comprensibile anche agli atleti.



Summary

Sports science defines the field in which this research was carried out. Sports
biomechanics is the science that applies the laws of mechanics and physics to
athlete performance, in order to gain a greater understanding of motor skills
through measurement, modeling and simulation. It operates for meeting
the growing demands of coaches, physicians and athletes, to quantitatively
assess the essential characteristics of performance. Biomechanics has played
an important role in the understanding and coaching of sports techniques.
Theoretical modeling and experimental studies have helped in going more
deeply into the mechanisms responsible for an observed phenomenon. The
application of biomechanics in sports has also contributed to improvements
in performance and to the understanding of possible causes of injury.

Throughout the last years, increasing efforts in developing and using in-
novative technologies in sport science has been observed. Moreover, currently
available software offer numerous options for the visualization and analysis
of biomechanical data. As methods for data collection have become more
widely available, it has become practical to use them in the evaluation of
sports technique. Some important issues have been raised by these inves-
tigations. First, the experimental setup should be realistic, appropriate for
the purposes of the research, and should be kept simple. Then suitable ap-
proaches should be adopted in data processing and results analysis. Finally,
results should be reported in an easy way, to be fully understandable by
athletes and trainers.

In clinical “gait analysis”, standard protocols have been widely validated
and quantitative analysis has become a powerful tool for surgical decision and
for post-operative and rehabilitative monitoring. In sports field the great
amount of disciplines and the difficulty in standardizing movements have
acted as a brake on the systematic use of powerful techniques like stereopho-
togrammetry. These methods, although offering great potentialities, are still
at their beginning. Substantial issues are still to be investigated, such as
time needed for data collection and data analysis, handling of the equip-
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ment, costs, lack of subject-specific models, etc.
The main task for coaches is to identify and carry out training programs

that determine progressive improvement of athletes. Furthermore, all injuries
should be prevented, too. Therefore, one of the purposes of sports research
should be the identification of the peculiar characteristics and of the most
proficient strategy for each athlete. The monitoring of a group of athletes
should be the base for an accurate quantitative assessment of the movement
under analysis and for the identification of different skill levels. Then, the
knowledge of single athlete’s abilities or deficiencies should help coaches to
adjust individual training programs. Moreover, a reliable characterization of
the subject should pass through longitudinal monitoring: the athlete might
be compared with himself in different times during the training season.

When trying to capture the individual characteristics, the research should
not be focused only on the best performance of an athlete. In contrast, studies
should analyze the individual “typical mode” of the athletic performance.
With the term typical mode it is intended the repetition of a movement with a
high degree of certainty and maximum proficiency. Hence, the comprehension
of individual motor behaviors is strictly related to the evaluation of a large
number of repetitions of a movement. Results of this kind of analysis are
strongly affected by the presence of motor biovariability. Different athletes
perform the same task in different ways. Moreover, even elite athletes can
not reproduce identical movement patterns, after many years of training.
Thus, inter- and intra-individual variability in movement patterns play a
fundamental role in sports skills and its influence on data should be accounted
for.

In sports biomechanics and in motion analysis, even simplified protocol
setups often provide a large amount of results. Remarkable efforts are re-
quired in finding a structure in the data, discovering the most characteristic
features and predicting whether a pattern is representative for the athlete’s
skill description or not. Results are commonly interpreted subjectively from
a large number of highly correlated, time-varying and constant variables.
Standard data analysis techniques (mean, standard deviation, etc.) lack in
extracting significant information from a large amount of kinematic and ki-
netic data. In contrast, multivariate statistical analysis has proved to be a
powerful tool to eliminate collinearity and to facilitate the analysis, present-
ing only the essential structures hidden in the data. Among multivariate
statistical techniques, linear transformations are computationally easier to
handle. Among linear transformations, principal component analysis (PCA)
has showed to be extremely effective in the study of human motion. It has
been usually adopted to identify groups of inter-related variables, different
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walking patterns or gait forms, or to evaluate changes due to pathology,
recovery or intervention. Nevertheless, PCA has not been used in sports
biomechanics, to assess athlete’s training status and recovery needs, tracking
injuries, managing training programs, etc.

The purpose of this thesis was to investigate the use of principal com-
ponent analysis for reducing and interpreting sports motion data, while ac-
counting for their original variability. Race walking was chosen as the mean
of investigation, because it is a motor task that presents peculiar biomechan-
ical and coordinative demands. An optoelectronic system and a force plate
were used to collect and estimate kinematics and kinetics of seven race walk-
ers of international level. Several race walking repetitions were acquired and
kinematics and kinetics variables were processed.

Principal component analysis summarized the most important informa-
tion in the data, by representing the variables in a limited number of compo-
nents that explained most of data variance. Data underwent three different
applications of PCA: traditional (t-PCA), functional (f-PCA) and two-stage
(2-PCA).

A further objective of this thesis was to evaluate the advantages and
disadvantages of the three methods in solving different challenges, because
these techniques have not been widely adopted in sports research. A general
characterization of race walking biomechanics was pursued, in order to get
a full comprehension of the movement under analysis. Then, a robust and
complete characterization of the single athlete’s performance strategy was
given. All the three methods allowed the exploitation of the relationships
among multiple measures in the analysis of race walking data. The most
important factors that distinguish athletes according to their skill levels were
found out. Moreover, the peculiar technical and coordinative characteristics
of each athlete were widely described. Finally, an example of longitudinal
monitoring was described. Motion analysis, combined with PCA, was used on
data from two subsequent testing sessions, to identify the main improvements
caused by training.

This study tried to show how principal component analysis could repre-
sent a valuable tool for motor skills characterization and individual monitor-
ing. It gave also important information about motion behaviors that might
be primarily responsible for injury. Moreover, a special effort was spent in
finding a connection between a complex and theoretical mathematical ap-
proach (PCA) and its practical application. The biomechanical interpreta-
tions of the statistical results was intended to make information intelligible
for practitioners.





Chapter 1

Introduction

1.1 Sports biomechanics

The science and practice of sport are becoming objects of increased interest.
Physicians, coaches, athletes and even recreational sportsmen are showing
rising curiosity in the quantitative assessment of the athlete’s motor charac-
teristics. Qualitative analyses of human movement are commonly adopted
both for evaluating athletes’ abilities and testing training effectiveness. They
have often been based on a subjective interpretation of movement. Quali-
tative analyses mainly consist in observation, evaluation and intervention.
Competition results, field tests and visual inspection have traditionally been
adopted to characterize the athlete’s abilities in performing a motor task.
These methods, although immediate and very user-friendly, can not provide
an exhaustive description of how the performance is carried out. Moreover
the perception and the correctness of the movement are strictly connected
with the experience and the coaches’ knowledge. The need of trainers for
increasing athletes’ performance and preventing injuries is the basis for re-
search development in improving the quantitative assessment of motion.

During the last decades, researchers have driven sports biomechanics from
its descriptive phase to a more analytical one [80, 106]. The laws of mechan-
ics and physics were applied to human performance, in order to gain a greater
understanding of performance in athletic events through modeling, simula-
tion and measurement. Biomechanical studies primarily cover issues of per-
formance enhancement, injury prevention and safety regarding elite, leisure
and rehabilitative activity. They allow coaches to rationalize the instructions
they give and to provide the basis for improving performance [69].

Three-dimensional motion analysis represents a very useful tool to un-
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derstand how sports skills are performed. Powerful and reliable devices for
motion analysis are currently available [3, 14, 22, 36], together with many
different multi-segment models of the human body and software tools for
simulating body motion.

Despite this great improvement in theoretical knowledge and the avail-
ability of instrumentation for sports biomechanics, there is a lack in the defi-
nition of appropriate experimental setup, data elaboration and data analysis.
In clinics, quantitative analysis has become a powerful tool for surgical de-
cision and for post-operative and rehabilitative monitoring. In particular, in
gait analysis, the interaction among clinicians, therapists and engineers has
brought to the definition of standard protocols and the sharing of a “common
language”. In sports field the great number of disciplines, the complexity of
athletic movements and the heterogeneity of survey questions [7, 91] pre-
vented such a standardization. The scientific demands of validity, reliability
and accuracy have to front the more practical issues like complexity, range
of motion to be analyzed, time needed for data collection and data anal-
ysis, handling of the equipment, costs and invasiveness. Moreover careful
information management is required to optimize the process of data elab-
oration and feedback of biomechanical information to coaches and athletes
[5, 7, 44, 72, 91, 97].

Although more controlled experimental studies and suitable statistical
data elaborations have been required from some authors [7, 91, 125], they re-
main a rarity. Some procedural issues in studies comparing different athletes’
techniques have not still been resolved. A need for comprehensive, common
guidelines on experimental protocols and data proceeding and analysis re-
mains.

1.1.1 Issues in Sports Biomechanics

The aim of sports research should be the identification of the peculiar char-
acteristics and of the most proficient strategy for each athlete. Since every
athlete is characterized by his own abilities and deficiencies, trainers and
coaches might get more effective results by applying and monitoring individ-
ual training programs rather than using the same strategy for every athlete.

Variability

Significant differences in individual performances have been always observed
in experimental studies in which different athletes were compared. Such
fluctuations among different individuals are commonly called “inter-subject”
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variability. This variability hardly lend support to the idea of an optimal
performance model, or technique. Movement variability is present both in
sports in which the task is predominantly speed dependent, or requires speed
and accuracy, and in repetitive cyclic sports. Hence, competition results or
experimental outcomes are questionable unless the reliability and objectivity
of the data are assessed and reported.

Focusing attention on individual analysis, also repeated trials of the same
subject present results included within a range of deviation. In fact it is well
known that even elite athletes can not reproduce identical movement patterns
after many years of training [7, 34, 47, 48, 49, 90, 91]. Intra-individual
variability in movement patterns plays a fundamental role in sports skills
and particular attention has to be paid to it.

Movement variability is not exclusively due to neuromuscular system or
measurement “noise”, but it is functional [8, 49]. The functional impor-
tance of variability has been recognized mostly by experts in the ecological
theory. This theory holds that all movements and actions are influenced or
constrained by the environment. Environmental information is necessary to
shape or modify the characteristics of movement to achieve specific actions
or tasks. Thus variability is seen as allowing environmental adaptations, re-
ducing injury risk and facilitating changes in coordination patterns [7, 8].
Variability in movement is particularly important in many sport skills for
which the adaptability of complex motor patterns is necessary [49].

Moreover, group designs concern the need for averaging the results. Since
different athletes perform the same task in different ways, there is no optimal
average movement pattern for athletes as a whole [7, 8, 91]. Taking an aver-
age may obscure important individual differences. Therefore more emphasis
should be placed on individual designs, to address issues such as individual
“signature” of the movement or the optimization of performance [8, 91].

Many problems arise when one tries to capture individual characteris-
tics. First, the research should not be focused only on the best performance
of an athlete. In contrast, research should analyze the individual “motor
skill”, which can be defined as the ability to obtain the goal with a high
degree of certainty and maximum proficiency [105]. Research results should
be representative of the “typical mode” of the athlete’s performance [77].
One definition of a representative mode is “the central tendency score” [66].
This definition requires that variability, i.e. “the degree of difference between
each individual score and the central tendency score” [111], is measured. To
obtain these measures, several trials need to be recorded [77, 90, 91]. Trial
size is influenced by many factors: experimental errors, robustness of the
assumptions of the analysis method, research design, consistency of athletes’
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responses, etc. [77, 91].

Data Analysis

When many trials of the same movement are performed, measurements do
not generate a single curve, but a family of curves, each one slightly different
from the other. There is the need to find a structure in the data, discovering
the most characteristic features and predicting whether a pattern is repre-
sentative for the athlete’s skill description or not. Hence, two main needs
have to be satisfied: data reduction and interpretation. The first demand
has the intent to eliminate collinearity and to simplify data. The second one
concerns the need to obtain a conceptually meaningful summary of the data.
Approaches for the modeling and recognition of motion data may be divided
[18] into data fitting, feature location and multivariate statistical analysis
techniques. Focusing on the multidimensionality of the data set, one of the
methodology most frequently applied to human movement patterns is multi-
variate analysis technique [26]. Multivariate data analysis is a fundamental
way to find suitable representations of measured data, facilitating the anal-
ysis and presenting only the essential structures hidden in the data [64].

Among multivariate statistical techniques, linear transformations are com-
putationally easier to handle [1]. Linearity reduces the complexity of trans-
formations and of computational resources. Moreover, it facilitates the in-
terpretation of the results. Due to these advantages, linear transformations
have been used in many applications, and various techniques for finding linear
transformations have been developed. Principal component analysis, factor
analysis, and projection pursuit are examples of well-known techniques for
finding linear transformations.

Principal component analysis (PCA) is a technique that has been shown
to be extremely effective in the study of human motion. First, PCA explicitly
deals with variance in the data. Given the relevance of variability in sports
measurements, it might be a suitable tool to summarize and compare data
in a way that reflects the true nature of their variability [18].

Works asserting the usefulness of PCA for dimensionality reduction and
subsequent interpretation can be widely found in literature. Moreover, this
statistical technique demonstrated a great ability in analyzing entire wave-
forms and thereby retaining valuable temporal information. Since PCA re-
vealed to be useful for clinical applications, its potentialities were investigated
also for a sportive discipline.
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1.2 Aims

The purpose of this thesis was to investigate the use of principal component
analysis (PCA) for reducing and interpreting race walking data, retaining
most of their original variability. In fact, PCA summarizes the most im-
portant information in the data, by representing the variables in a limited
number of components that explain a maximal amount of variance.

Race walking was chosen as the mean of investigation, because it is a
highly technical and very reproducible motor task. Data underwent three
different applications of PCA: traditional (t-PCA), functional (f-PCA) and
two-stage (2-PCA).

Since principal component analysis has not been widely adopted in sports
research, an objective of this thesis was to extensively explore and assess the
application of the PCA to athletic movements. A second objective was to
evaluate the advantages and disadvantages of the three methods in solving
different challenges for athletes’ skill characterization and longitudinal mon-
itoring.

The final purpose was to evaluate how a complex and theoretical math-
ematical approach (PCA) can find practical application by matching results
with field needs (motor skills characterization) and by making information
intelligible for practitioners.

1.3 Structure of the thesis

A brief description of peculiar characteristics of race walking is discussed
in chapter two. Basic and essential information about the three types of
PCA applied to data will be addressed in the third chapter. The information
about the recruited subjects, the experimental setup, the applied protocol
and data processing are in chapter four. Results regarding athletes’ skill
characterization, coordinative description and an example of longitudinal
monitoring are presented in chapter five. A general discussion will follow at
the end.
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Chapter 2

Race walking

This chapter explains why race walking was chosen as the mean of investi-
gation. A brief description of the discipline is included to better understand
its biomechanical characteristics.

2.1 Description

An official definition of race walking was established to formally differentiate
it from running. This definition evolved over several decades as officials
attempted to better define the sport. Race walk [115] judging requires the
observation of walkers competing at fast speeds. In 1995 as Rule 230.1 of
the International Association of Athletics Federations (the IAAF) [58] was
written:

Race Walking is a progression of steps so taken that the walker
makes contact with the ground so that no visible (to the human
eye) loss of contact occurs. The advancing leg shall be straight-
ened (i.e., not bent at the knee) from the moment of first contact
with the ground until the leg is in the vertical upright position.

In other words, two rules must be strictly respected to perform a cor-
rect action: first the race walker must maintain continuous contact with the
ground during the progression of steps; second, the knee of the walker’s ad-
vancing leg must remain straight, without bending, from the moment of the
first contact with the ground until the leg is in the vertical position. An
oversight in the observation of these rules during the competition implies
sanctions or disqualification [58].

7
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The race walking action can be divided into four principal phases:

- the front leg support phase - FSP,

- the rear leg support phase - RSP,

- the double support phase - DSP,

- the swing phase - SP.

The stance phase can be further subdivided in six main stages, as reported
in Figure 2.1.

Figure 2.1: Race walking technique during the complete gait cycle (a) and
main stages of stance phase (b) [90].

The FSP goes from phase I to III: it begins at heel strike and ends when
the supporting leg passes beyond the vertical projection of the center of
mass. There are some fundamental differences between normal walking and
race walking. The functional lengthening of the lower limbs at the moment
of heel strike occurs performing: more plantar-flexion of the ankle of the rear
limb; more extension of the knee and dorsi-flexion of the ankle of the front
limb [78]. At the beginning the body is in the double-support phase; the body
weight is distributed on the heel of the front foot and the big toe of the back
foot. By landing on the heel, with the toe up, the race walker with enough
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forward momentum can ride the body over the locked leg [115]. This phase
represents a rapid transition from load absorption to propulsion, therefore
the athlete should minimize the loss of progression velocities by performing
a “smooth” action. The rear leg then thrusts forward after the toe of the
back foot pushes off the ground. Afterwords the body moves forward, over
the front leg. At this point walkers tend to violate the rules of race walking:
the leg must remain straightened until it is in the vertical position [81, 115].

The RSP begins when the stance leg passes the vertical upright position
and ends with toe-off (IV-VI). In this phase the knee may be bent. However,
if the leg is straightened longer, an extra thrust forward is get by pushing
off the rear foot. Ideally, the leg should remain straightened until the heel
of the rear foot lifts off the ground. After push-off the leg swings forward
to complete the gait cycle [91, 115]. This passage should be performed by
driving the knee as low to the ground as possible, in order to minimize energy
expenditure, to preserve the horizontal speed and to give a better appearance
of correct technique [90, 91].

As the front leg leaves the ground, the rear leg is already in contact with
the ground (I and VI). This transition between RSP and FSP is the double
support phase (DSP), which is necessarily present, to respect the first of
the two main rules of race walking. The legs do not create a symmetrical
triangle in the sagittal plane: the rear foot is more behind the body than
the front foot is ahead of it. This derives from the two chances of generating
propulsion which proceed concurrently: as front leg creates momentum by
driving forward, the rear leg pushes back against the ground, launching the
body forward by way of a powerful vaulting effect. Keeping the rear foot
on the ground as long as possible by rolling up onto the toe at push-off will
maximize this leverage. This action is also achieved through proper hip and
pelvis action: the increased obliquity of the pelvis in the frontal plane (“hip
drop”) can be used to further extend the driving leg and delay toe off.

The last part of the race walking cycle consists of the swing phase, when
the foot has no contact with the ground, swings and then prepares to ap-
proach back the ground. The hip is flexed in midswing, whereas it is extended
throughout the rest of swing [78]. Just before contact the leg is swinging for-
ward, straightening.

Hip and pelvic motions are fundamental in race walking (Fig.2.2). The
hips are the body’s primary source of forward locomotion. Hips drop and roll
while twisting back and forth. Actively swinging the hip forward increases
stride length behind the body. Thus a strong front-to-back hip action facili-
tates both the propulsive phases of the stride. This allows the legs to move
faster and easier and gives the race walker a longer stride.
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Figure 2.2: Race walking technique concerning pelvic rotations in the frontal
(a) [78], horizontal and sagittal (b) planes [90].

The movement of hips has a strong influence on the position of the center
of mass (COM), a fundamental aspect in race walking technique. While in
normal walking, the center of mass (COM) oscillates, in race walking the
pronounced arm swing and the emphasis on strong toe off replace much of
the oscillation and level the path of COM as it moves forward [13, 90, 91, 98,
115]. Moreover the straightening of the supporting leg and the compensatory
lowering of the opposite hip and ipsilateral shoulder facilitate in maintaining
a linear progression of the center of mass. There is less rising and falling, and
higher race walking velocities are possible. The locked position of the knee
is compensated by an increase in the obliquity of the pelvis in the frontal
plane (Fig.2.2(a)). Furthermore, greater pelvic rotations in the horizontal
plane (Fig.2.2(b)) concur in improving the step length. The hip movement
is crucial also in maintaining a correct foot placement: in race walking feet
should line up one behind the other. When trying to walk this near straight-
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line placement without using the hips, an unneeded stress is placed across
the knee. Moreover a correct hip action allows to increase the stride length
and to make it as smooth as possible.

2.2 Motivation

Race walking was chosen as the mean of investigation because of its specific
constraints. The restrictions imposed by the main rules result in very partic-
ular biomechanical and coordination demands. In fact, the rules restrictions
add further control over the execution and make race walking appear as
rather stereotyped. Therefore, the choice of a very repeatable movement
seemed a good basis for gaining more insight into PCA potentials in the de-
scription of a sportive action. In fact kinematic and kinetic variables of race
walkers of high level are very similar and can not be distinguished through
standard data analysis techniques [90].

Moreover, race walking has strong analogies with normal walking, one of
the most documented movements in literature. Principal component anal-
ysis, together with some other complex statistical techniques, has already
been adopted on gait data [18, 19, 20]. This provides an excellent method-
ological support for knowing how most suitably applying the technique and
processing data.

Furthermore, a review of the literature revealed that little has been doc-
umented about biomechanics of race walking [13, 90, 91, 78, 81]. This disci-
pline is not an inborn motor strategy, because at the progression speed that
race walkers are able to achieve, the man would naturally turn from walking
to running [13, 78]. The chance of a straight comparison with normal walking
characteristics helps in deepening the knowledge of race walking mechanical
and physiological peculiarities. In fact, it gives preliminary indications on
the deviations from normal patterns, injury prevention, rehabilitation moni-
toring, etc.

2.3 A glossary of biomechanical terms for race

walking

The following biomechanical terms will be used to describe race walking
biomechanics in this thesis [115]:

- Toe Off → when the rear foot loses contact with the ground;
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- Heel Strike → when the foot makes contact on the heel;

- Step → from toe off to heel strike of the same foot;

- Race walking Cycle → the interval of time from toe off of one foot to
toe off by the same foot. It has two phases, swing and stance;

- Stance Phase → when body weight is supported by the legs;

- Single Support → when one foot is in contact with the ground;

- Double Support → when two feet are in contact with the ground;

- Swing Phase → when the leg is moving forward during a step;

- Extension → body part going from a bent to a straight position; where
two or more bones comprising a joint move away from each other;

- Hyperextension → the extension of a part of the body beyond normal
limits;

- Flexion → body part going from a straight to a bent position; where
two or more bones comprising a joint move closer to each other;

- Vertical Position → when the leg is directly under the center of mass.
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Chapter 3

Principal Component Analysis

This chapter provides some details of principal component analysis. Special
attention is reserved to the description of peculiarities of the three methods
adopted to analyze data: traditional (t-PCA), functional(f-PCA) and two-
stage (2-PCA).

3.1 Mathematical and geometrical explana-

tion

Principal component analysis (PCA) is a technique that has been shown to be
extremely effective in the study of human motion. PCA is applied to extract
the relevant information from high-dimensional data sets by considering only
those principal components that sufficiently explain high fractions of the
entire data set in terms of its spread or variance. PCA is an old tool in
multivariate data analysis, widely adopted in movement analysis [56, 87]. It
has been substantially used to identify groups of inter-related variables, to
recognize different walking patterns or gait forms, or to evaluate changes due
to pathology, recovery or surgery.

More in detail PCA is an approach to find the most informative or ex-
planatory features in data, without needing a priori knowledge. It accom-
plishes this by computing a new, much smaller set of uncorrelated variables
(Principal Components - PCs), which best represents the original data-set.
Each new variable is a linear combination of the original ones.

The first principal component (PC1 ) is the linear combination of the
original variables which accounts for the maximum amount of variance in a
single direction. It is the line of best fit through the data, and the residual
variance about this line is then a minimum for the data set. The second
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principal component (PC2 ) is that line which is orthogonal to the first one
and accounts for the maximum amount of the remaining variance in the
data. All the principal components are orthogonal to each other, so there is
no redundant information. The first two components therefore represent the
plane of best fit through the data. All remaining principal components are
defined similarly, so that the lowest order components normally account for
very little variance and can usually be ignored.

Geometrically, principal component analysis can be considered as a rota-
tion of the axes of the original variable coordinate system to new orthogonal
axes, called “principal axes”, such that the new axes coincide with the di-
rections of maximum variation of the original observations. An example is
reported in Fig.3.1.

Figure 3.1: Example of the geometrical description of principal components.
Y1 and Y2 are the principal axes; the points y1m and y2m give the principal
component scores for the observation x1 = (x1m, x2m); the cosine of the
angle θ between Y1 and X1 gives the first component of the eigenvector
corresponding to Y1.
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The point y1m is the projection of the point x = (x1m, x2m) onto the axis
defined by the direction Y1. This axis has the property that the variance of the
projected points y1m,m = 1, 2, ...n is greater than the variance of the points
when projected onto any other line or axis passing through (x1, x2). The
point y2m is the projection of the point x = (x1m, x2m) onto the axis defined
by the direction Y2, orthogonal to Y1. y1m and y2m are named principal
component “scores”.

Mathematically the principal component analysis is conducted in a se-
quence of steps, with somewhat subjective decisions being made at many of
these steps.

Singular Value Decomposition

Given a data set represented as a matrix X of n rows and m columns

X =











x11 x12 · · · x1m

x21 x22 · · · x2m
...

xn1 xn2 · · · xnm











(3.1)

the sample mean is computed for each column j:

µj =
1

n

n
∑

i=1

xij, j = 1, 2, ...m (3.2)

Therefore, X can be centered to form X∗ :

X∗ =











x11 − µ1 x12 − µ1 · · · x1m − µ1

x21 − µ2 x22 − µ2 · · · x2m − µ2

...
xn1 − µn xn2 − µn · · · xnm − µn











(3.3)

The sample covariance matrix

C =
1

n
[X∗]T X∗ (3.4)

is then computed. Singular value decomposition is applied to the covari-
ance matrix. C can be decomposed as follows:

C = UWV T (3.5)
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where U and V are orthonormal matrices, such that UUT = I, and W
is a diagonal matrix. Since the covariance matrix is square, we can compute
the matrix V of eigenvectors which diagonalizes the covariance matrix. In
fact, for a square (n×n) covariance matrix C, there exists a rotation matrix
E and a diagonal matrix Λ such that:

ECET = Λ (3.6)

The principal form of C is given as:

n×n

C =
n×n

EΛET =










e11 e12 · · · e1n

e21 e22 · · · e2n
...

...
. . .

...
en1 en2 · · · emn





















λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn





















e11 e21 · · · en1

e12 e22 · · · en2

...
...

. . .
...

e1n e2n · · · enm











(3.7)

where columns of E and ET are the eigenvectors and diagonal entries of
Λ are the eigenvalues λj, j=1,2,...n. The sum of the eigenvalues equals the
trace of the square matrix C. If the eigenvalues are sorted in descending order
(λ1 ≥ λ2 ≥, ...,≥ λn), their corresponding eigenvectors, {e1, e2, ..., en}, are
the principal components. Therefore matrix E contains n column vectors,
representing the eigenvectors of the covariance matrix C. In general, λi/Σiλi

gives the relative amount of variance that the i-th principal component cap-
tures. The first principal component retains most of the variance, i.e. if
the data are projected onto this component, more variance will be preserved
than if they are projected onto any other principal component. The second
component preserves the next highest residual variance, and so on. A smaller
eigenvalue contributes much less weight to the total variance. In many cases,
the first few components can account nearly for all the variance.

Initial Extraction of the Components

The number of components (PCs) that may be extracted from C is equal to
the number of variables being analyzed. The new attributes, principal com-
ponents, can be regarded as low-dimensional, more efficient representations
of the same data: only the first few components will account for meaningful
amounts of variance, and the later components will tend to account for only
trivial variance. Therefore only the first few components will be important
enough to be retained for data reduction and interpretation. An eigenvalue
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(λj) represents the amount of variance accounted for by the corresponding
component.

Determining the Number of “Meaningful” Components to Retain

It is important to determine how many components are truly meaningful
and worthy of being retained for data interpretation. Three criteria may be
used in making this decision: the eigenvalue-one criterion, the scree test, the
proportion of variance accounted for.

- The eigenvalue-one criterion
One of the most commonly used criteria for solving the “number of
components” problem is the eigenvalue-one criterion, also known as the
Kaiser criterion [123]. With this approach, only components with an
eigenvalue greater than 1 are retained and interpreted (Fig.3.2). The
rationale for this criterion is straightforward: each observed variable
contributes one unit of variance to the total variance in the data set.
Any component that displays an eigenvalue greater than 1 is accounting
for a greater amount of variance than had been contributed by one
variable. Such a component is therefore worthy of being preserved.

Figure 3.2: Example of the Kaiser rule for determining the number of mean-
ingful components.

On the other hand, a component with an eigenvalue less than 1 is
accounting for less variance than had been contributed by one vari-
able. Since the purpose of principal component analysis is to reduce
the number of observed variables into a relatively smaller number of
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components, components that account for less variance than had been
contributed by individual variables are viewed as trivial, and are not re-
tained. The eigenvalue-one criterion has a number of positive features,
among which simplicity is probably the most important: no subjec-
tive decision has to be made. It has been shown that this criterion
very often results in holding the meaningful number of components,
particularly when a small to moderate number of variables are being
analyzed and the variable commonalities are high [109]. Nevertheless
there are some drawbacks associated with the eigenvalue-one criterion.
Sometimes it may lead to retain the wrong number of components, es-
pecially when many variables are analyzed or when commonalities are
small. In short, the eigenvalue-one criterion can be helpful when used
judiciously.

- The scree test
The scree test1 was proposed by Cattell in 1966 [15]. The eigenvalues
associated with every component are inserted in a bar-plot. Then a
“break” is searched between the components with large eigenvalues
and those with small ones (Fig.3.3).

Figure 3.3: Example of the scree test for determining the number of mean-
ingful components.

1The word “scree” refers to the loose rubble that lies at the base of a cliff. When

performing a scree test, you normally hope that the scree plot will take the form of a cliff:

at the top will be the eigenvalues for the few meaningful components, followed by a break,

i.e. the edge of the cliff. At the bottom of the cliff will lie the scree: eigenvalues for the

trivial components.
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The break is the place where the smooth decrease of eigenvalues appears
to level off to the right of the plot. The components before the break are
retained; those after the break are assumed to be unimportant and are
neglected. A disadvantage of this technique is that sometimes a scree
plot will display several large breaks, while other times no evident break
will be shown. If this happens, the choice of the meaningful components
becomes subjective.

- Proportion of variance accounted for
The last criterion for choosing the number of factors to be considered
involves preserving a component if it accounts for a specified proportion
of variance in the data set. An alternative criterion is to retain enough
components so that the cumulative percent of variance accounted for
is equal to a preset minimal value. In literature the threshold value
for the cumulative percent of variance ranges from 70% to 90% of the
overall data variability.

3.1.1 Scores and Loadings

Each principal component can be expressed as a linear combination of the
original variables. The eigenvectors are weightings which, when applied to
the original data, obtain principal component scores for the observations:

z = [eij]
T · xij, j = 1, 2, ...h,∀i (3.8)

where z represents the principal component scores, e the eigenvectors and
x the original data; “ ·” is the dot product. Scores represent the original data
mapped into the new coordinate system defined by the principal components.
A large positive or negative score value indicates a variable that is correlated,
either in a positive or a negative way, with the component. Referring to (3.5),
the matrix L containing the data loadings is generated by:

L = V W (3.9)

where V contains eigenvectors and W is a diagonal matrix. Loadings

measure the contribution of each original variable to the principal compo-
nents. Each loading is equivalent to the correlation between an original
variable and a component. The strict relation between data, loadings and
scores is reported in Fig.3.4.
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Figure 3.4: Decomposition of X matrix in its principal components basis.

3.2 Traditional PCA (t-PCA)

In this thesis the term “traditional principal component analysis” (t-PCA)
is referred to the application of PCA directly to kinematic, kinetic or elec-
tromyographic data of motion analysis. Data derived from gait or other
analyzed cyclic movement consist in time normalized waveforms, sampled at
each 1% (1-100% of the cycle).

Each subject is described by more variables simultaneously acquired dur-
ing repeated trials. Data belonging to every variable are organized in a
matrix X :

X =











x1,1 x1,2 · · · x1,100

x2,1 x2,2 · · · x2,100
...

xn,1 xn,2 · · · xn,100











(3.10)

where each row represents a single trial and columns contain the instan-
taneous values of the variable during the motion cycle.
The analytical steps described in Section 3.1 are then applied on X. First the
mean is subtracted by each column, then the covariance matrix is evaluated.
PCA is then applied to the covariance matrix and the principal components
are obtained. Each PC contains 100 values, each having a factor loading.
The further step is to choose the number of PCs to be retained. The eigen-
values or weighting factor of each PC indicate how many components are
important in conveying most of the major information. The last step con-
sists in giving a physical meaning to each PC. To facilitate interpretation of
the PCs, it is generally suggested [93, 94, 108] to illustrate the effect of the
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Figure 3.5: Example of the effect of principal components on the mean curve:
mean curves and the effects of adding (+) and subtracting (-) a multiple of
each PC curve [93].

first principal components on the mean curves. An example is reported in
Fig.3.5 [93].

Hence, one method is to examine plots of the overall mean trend and
the patterns obtained by adding and subtracting a suitable multiple α of the
principal component in question [93, 94, 108]. The multiple α is set as:

α = c ·

[
∫

{µ(t) − µ}2 dt

]1/2

(3.11)

where µ(t) is the mean of the rows of X(t) and µ is the average value of
µ(t) over t. The factor c is a constant subjectively chosen to produce a clear
visual impression of the effect of the various components.

In this way each principal component represents a specific feature of the
waveform data. The principal component scores, z, measure the contribu-
tion of the principal components to each individual waveform. The percent
variation explained within a feature quantifies the correlation between the
variable and the feature.

In literature t-PCA has been applied to derive representations of gait
patterns for able-body subjects. Applying PCA directly to the time series
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of three-dimensional positions of marker applied to the skin [26, 113] or to
time series of derived joint angles [112], a low-dimensional posture model was
defined and the analysis of entire gait waveforms was facilitated. Moreover
t-PCA was used to detect the main functional structure of actions taken by
specific muscles during gait [102, 103, 104]. The factor loadings within the
principal components allowed to determine which gait parameters were most
important in able-bodied locomotion.

Principal component modeling of gait kinematic and kinetic parameters
reduces the data to measures of distance from normal. These measures are
shown to be sensitive to changes in gait pattern associated with traumas or
injuries. They allow the individualization and quantification of “disability
signs” not perceived by visual inspection. t-PCA was adopted to provide
insight into gait data obtained from persons with stroke [82] or subjects
affected by osteoarthritis [31, 32, 33]. This technique permitted to quantita-
tively characterize the gait of pathological subjects with respect to subjects
whose gait was considered to be normal. In a recent work t-PCA was simulta-
neously applied to waveform and discrete measures [2]. Waveform measures
were dynamic gait measurements that vary continuously in time throughout
gait, while discrete measures were single values related to stride characteris-
tics or clinical parameters. The results of the study emphasized the ability
of t-PCA in representing an objective method for reducing and analyzing
interrelated gait measures.

Possible applications of t-PCA includes also the analysis of multi-joint
coordination for upper [42] and lower limbs [23] during cyclical movements.
The application means to account for the relations among multiple variables.
It allows to discover the spatio-temporal structure of coordination among
body segments, thus providing a global measure of performance.

3.3 Functional PCA (f-PCA)

The basic philosophy of functional data analysis is to think each function
fitted to a set of data as a single observation. Actually, data are supposed
to have an underlying functional relationship governing them. It has the
advantage that no assumption is made about the function or the data. The
term “functional” refers to the intrinsic structure of the data rather than to
their explicit form [93]. Main goals of functional data analysis are:

- to represent the data in ways that aid further analysis,

- to display the data so as to highlight various characteristics,
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- to study important sources of pattern and variation among data,

- to compare two or more sets of data with respect to certain types of
variation, where two sets of data can contain different sets of repli-
cates of the same function or different functions for a common set of
replicates.

Functional data analysis can be divided in a sequence of simple steps.
The first task is estimating smooth functions from discrete noisy data.

Smoothing

A kinematic, kinetic or electromyographic variable acquired in the i-th trial
(yi) consists in a set of n discrete measured values yi1, yi2, ..., yin. These
values are converted to a function xi(t) computable for any desired argument
value t through smoothness. Smoothness is a property of x and may not be
obvious in the raw data vector y because of observational error or noise that
may be imposed on the underlying signal. In other terms, it can be written:

yj = x(tj) + ǫj (3.12)

where the error ǫj contributes a roughness to the raw data. One of the
tasks in representing the raw data as functions is to filter out this noise as
efficiently as possible. Moreover, the natural biovariability present in multiple
repetitions of the same movement has to be taken into account. The standard
statistical model for the ǫj is that they are independently distributed with
zero mean and finite variance.

One of the best known basis expansion for smoothness is the β-splines
smoothing. Differently from Fourier and polynomial bases, this method en-
ables to fit local features in the curves. A β-spline consists of a set of fixed
positions, called “knots”, and piecewise smooth curves, called “basis func-
tions”, connecting each of the knot positions, satisfying continuity conditions
between the pieces.

A simple example of β-splines [37] is shown in Fig.3.6. A β-spline of
degree 1 (Fig.3.6(a)) consists of two linear pieces, one from x1 to x2, the
other from x2 to x3. A β-spline of degree 2 (Fig.3.6(b)) consists of three
quadratic pieces, joined at two knots. At the joining points ordinates of the
polynomial pieces and their first derivatives are equal.

The β-splines overlap with each other: first degree β-splines overlap with
two neighbors, second-degree β-splines with four neighbors (right side of
Fig.3.6). It is possible to construct a large set of β-splines, by introducing
more knots. The general properties of a β-spline of degree q are:
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Figure 3.6: One isolated β-spline and several overlapping ones with: (a)
degree 1, (b) degree 2 [37].

- it consists of q+1 polynomial pieces, each of degree q ;

- the polynomial pieces join at q inner knots;

- at the joining points, derivatives up to order q-1 are continuous;

- the β-spline is positive on a domain spanned by q+2 knots, everywhere
else it is zero;

- except at the boundaries, it overlaps with 2q polynomial pieces of its
neighbors.

β-splines can track local shape deformations using a small number of
parameters, unlike Fourier descriptors which require many parameters and
can have spurious oscillations. β-splines give complete control over flexibil-
ity, allowing more flexibility where needed and less where not needed. A
demonstration of β-spline flexibility can be inferred by Fig.3.7.

Let equidistant knots be considered and let Bj(x, q) denote the value at
point x of the j-th β-spline of degree q for a given equidistant grid of knots.
A fitted curve y to data (x,y) is the linear combination:

y(x) =
n

∑

j=1

ajBj(x, q) (3.13)

where n is the number of used β-splines.

Penalty

The smooth functions related to data are obtained using a least square ap-
proach. Considering the regression of m data points (xi, yi), i=1, 2,..., m on

24



Functional PCA (f-PCA)

Figure 3.7: A simple example for a β-spline of order 3. The four cubic
polynomials, included in rectangles in the upper part of the figure, are joined
at the three knots, to form the curve represented in the lower part.

a set of n β-splines Bj, j=1, 2,..., n, the least square function to minimize
is:

S =
m

∑

i=1

{

yi −

n
∑

j=1

ajBj(xi)

}2

(3.14)

where aj are suitable coefficients.

If the number of knots is large, the fitted curve will show more variation
than that justified by the data. A penalty can be introduced to make the
result less flexible [85]. The extra roughness penalty term, controlled by a
smoothing parameter λ, ensures that each fitted curve is determined not only
by its goodness of fit but also by its roughness. Roughness is measured by
integrating the second derivative of the fitted curve:

R(x) =

∫ xmax

xmin

{

n
∑

j=1

ajB
′′

j (x, q)

}2

dx (3.15)

where xmin and xmax are the limits of the curve. A compromise is then
struck between fitting the data and keeping the fit smooth, forming the
objective function:
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S =
m

∑

i=1

{

yi −
n

∑

j=1

ajBj(xi)

}2

+ λ

∫ xmax

xmin

{

n
∑

j=1

ajB
′′

j (x, q)

}2

dx (3.16)

When λ=0, only fitting the data matters; as λ increases, more emphasis is
placed on penalizing roughness; when λ is very high, only roughness matters
and functions having zero roughness are used. There are data-driven methods
for choosing λ, but smoothing inevitably involves judgment. Usually [93, 94,
108] cross-validation is adopted to determine a starting point for possible
values of λ before a subjective choice is made.

PCA for functional data

The definition of principal component analysis on functional data is analogue
to the traditional PCA’s one. Assuming that observed data are xi(t) in the
functional situation, the covariance function C is given by:

C(s, t) =
1

N

N
∑

i=1

xi(s)xi(t) (3.17)

where s and t are instants of time, N is the number of functions. Thus
the functional PCA problem leads to the eigen-equation:

∫

C(s, t) ξ(t)dt = ρ ξ(s) (3.18)

where ξ are the eigenvectors and ρ the eigenvalues. Thus the first principal
component is the weight function ξ1(s) for which the principal component
scores

fi1 =

∫

ξ1(s) xi(s)ds (3.19)

maximize
∑

i f
2

i1 subject to

∫

ξ2

1
(s)ds = ‖ξ1‖

2 = 1. (3.20)

The second principal component ξ2(s) is the weight function for which
scores maximize

∑

i f
2

i2 subject to ‖ξ2‖
2 = 1 and the additional constraint

∫

ξ2(s) ξ1(s)ds = 0 (3.21)
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and so on.

PCA can be used to study the simultaneous variation of more than one
function. Bivariate functional PCA (bf-PCA) is simply the extension of f-
PCA to deal with bivariate functional data. The analysis is carried out by
replacing two variables with a suitable β-splines expansion. The two vectors
containing the coefficients are then concatenated in a single long vector. The
covariance matrix is then evaluated. Further analytical steps are the same
as previously described for f-PCA.

Ramsay and Silverman [93, 94, 95] were important supporters of the
application of functional data analysis to gait data. They offered a complete
and useful reference to the main concerns of functional principal components
analysis (f-PCA) and showed many examples of how this technique works in
different disciplines including biomechanics.

This technique has been often adopted for the tracking of human motion
in video sequences [83, 84]. It is a fully automated method for learning pe-
riodic human motions from training data. Concerning sports biomechanics,
Ryan [100] and Harrison [51] applied f-PCA to knee sagittal angle kinematics
during the vertical jump for a group of young boys. These works demon-
strated the potential benefits of functional data analysis in providing greater
insight into the changes of kinematic patterns.

3.4 Two-stage PCA (2-PCA)

A useful technique for gait recognition from motion capture has been pro-
posed by Das [29, 30]. It consists in a two-stage principal component analy-
sis. The first step provides a low dimensional representation of gait or cyclic
movement, the second one enables to distinguish clusters corresponding to
the individual identity or to the type of motion.

First stage

Two-stage principal component analysis is used to analyze kinematic data of
more trials of the same subject or of different subjects. It is simultaneously
applied on more variables. An n-dimensional data-set is focused on n vari-
ables, usually joint angles and angular velocities. Thus each data point is a
n-dimensional vector consisting of values xij of variable i=1, 2,..., n at time
j=1, 2,..., 100 (percentage of the movement cycle). If each such data point
is denoted by Xj = [x1, x2, ..., xn] and the principal components are denoted
by Pk, (k =1, 2,...,n), then the projections Ykj of Xj on Pk are given by:
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Ykj = 〈Xj, Pk〉 (3.22)

where 〈 〉 represents the dot product. For every movement cycle (100
percentage segment) Pk and Ykj are calculated separately. Then the projec-
tion of the original data onto the first two principal components (Y1j and
Y2j) are considered. The plot of the second principal component versus the
first one consists in a manifold similar to the one represented in Fig.3.8.

Figure 3.8: Construction of each data point for the second PCA decompo-
sition. The manifold plotted here represents the projection of data points
Xj on the first two components. The colors represent the phase of gait. For
each gait cycle divided into N normalized time points, the projection values
Y 2j are plotted versus Y 1j [30].

Therefore, the variation in the manifold and the temporal dynamics of
how the manifold is traversed during a movement cycle, contain information
about differences in trials of the same subject or in trials of different subjects.

Second stage

In the second stage of 2-PCA, the information about the temporal variability
of the data throughout the movement is captured. The projection values Y1

and Y2 for each movement cycle are concatenated in a single time series. If
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the l-th movement cycle is represented by N uniformly spaced time points,
each data point Y l, derived from the first step of 2-PCA, is given by:

Y l =
[

Y l
1

Y l
2

]

(3.23)

The second principal component decomposition is then performed on each
cycle. The projection Z lm of Y l on the principal component Qm of the second
stage is given by:

Z lm =
〈

Y l, Qm
〉

=
〈

Y l
1
, Qm

1

〉

+
〈

Y l
2
, Qm

2

〉

(3.24)

where 〈 , 〉 represents the dot product, m= 1, 2,..., 2N and Qm
1

and Qm
2

are the part of component Qm that act respectively on the first and second
dimensions.

The second stage of 2-PCA extracts the information about the type of
motion, the identity of the subject, etc. contained in the manifold. Pro-
jections in the eigen-space after two-stage PCA are used to perform various
classification tasks. An example is reported in Fig.3.9, which shows results
of identity classification on six running subjects [30].

Figure 3.9: Recognition of different people from their running gaits. Points
corresponding to gait cycles of each individual are color coded in the second-
stage PC space. Points for each individual are distinguishably clustered [30].
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Das introduced the two-stage PCA as a tool to classify gait (run, jog,
etc.) and to recognize individuals [29, 30]. In psychophysical studies it
has been found that observers are sensitive to specific “motion features”
that characterize the relative motion of body parts. Thus the main idea
is to identify a low-dimensional manifold of motion parameters described
by orientation angles of limb segments. These manifolds could be sensitive
descriptors of gait in biomechanics.

Das found that the first two principal components of gait data had close
correspondence with the identified motion features. A description of devia-
tions in the manifold across individuals or types of gaits was also performed,
taking into account the temporal characteristics of the motion. The 2-PCA
technique demonstrated high accuracy for gait data and identity discrim-
ination tasks, and revealed to be a good tool for getting a biomechanical
interpretation of individual movements.

3.5 Concluding remarks

PCA is a key technique to consider in motion analysis. First, it allows to
reveal new and interesting aspects of data, as well as to highlight already
known features within them. An indication of the complexity of the data is
also provided, in the sense of how many types of curves and characteristics
are to be found.

A close relation exists between f-PCA and t-PCA. A significant, intrinsic
difference between the two methods lies in the perception that functional
data are observed in the continuum, without noise, whereas traditional data
are observed at distributed time points and are often subject to experimental
error [46]. Differences between the two techniques relate to the way in which
a problem is perceived and are more conceptual than actual.

t-PCA consists in the application of PCA to data described on a dense
temporal grid. The implementation is very simple, since only the routines
of the multivariate PCA are needed. However, the eigenfunctions are rough
(non-smooth). When data consist in curves represented only on a small
number of distributed points, non-negligible measurement error is present.
In this case, t-PCA presents bad results, especially when data curves do not
have similar shapes, or are so sparse that the individual data profiles cannot
be discerned. Measurement errors can also mask the shapes of the underlying
profiles. This motivates the application of functional data approaches, and
in particular, functional principal component analysis, to this kind of data.

f-PCA is a statistical method that corresponds more to the functional
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nature of data. When the data are observed with experimental error, the
operation of smoothing data can greatly reduce the effects of noise. It has
been shown [46] that estimation of eigenvalues can be consistent, even if only
a few observations are made of each function, and each observation is encum-
bered by noise. Nevertheless, application of f-PCA implies a further effort in
searching an optimal method to smooth the eigenfunctions. In fact, smooth-
ing requires some care in respecting the periodicity and the nature of data.
f-PCA has also the advantage to get more stable and better interpretable
results.

The 2-PCA approach is a powerful tool in identifying a set of physical
features for the recognition of the motion of different subjects. The man-
ifold representation normalizes the range of original angle variables as well
as temporal evolution of components in a motion cycle [30]. This makes the
representation time invariant but discards potentially discriminating infor-
mation.
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Chapter 4

Materials and Methods

This chapter contains the information about the experimental protocol and
data processing. A dedicated is reserved to the preprocessing of data, in
order to facilitate the interpretation of results.

4.1 Subjects

Four male (weight 64 ± 2.4 kg, height 180.8 ± 9.1 cm) and three female
(weight 50.7 ± 6.8 kg, height 167.3 ± 5 cm) race walkers of national and
international class were recruited for this study. All the athletes were training
at least 6 training sessions a week. Written informed consent was obtained
from all the subjects.

Race walkers were numbered in decreasing order according to their skill
levels and named “s1”, “s2”, etc. The ordering was carried out by consider-
ing their competition results and trainers information. Race walkers were di-
vided in three groups: upper (group1), intermediate (group2), lower (group3)
levels. Group1 contained the first three subjects: {s1, s2, s3}; {s4, s5} were
assigned to group2; {s6, s7} to group3. The number of race walking repeti-
tions for each class varied, with 58 trials in group1, 40 in group2 and 58 in
group3. Detailed information about the anthropometric characteristics and
the agonistic results are reported in Tables 4.1 and 4.2 respectively.

All the athletes were selected taking care they did not show any remark-
able lower limb injury or dysfunction at the time of the experiments.
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s1 s2 s3 s4 s5 s6 s7 µ σ

sex [m,f] m f m m f m f
age [years] 22 20 18 23 18 19 18 19.7 2.1
height [m] 1.74 1.62 1.90 1.87 1.68 1.72 1.72 1.75 0.1
weight [kg] 64.0 43.0 61.0 67.0 53.0 64.0 56.0 58.3 8.3

Table 4.1: Anthropometric data for subjects under analysis

5 km 10 km 20 km

t v t v t v

s1 19:58.00 4.17 40:56.74 4.07 1:25:39.0 3.89
s2 22:55.20 3.64 46:38.53 3.57 - -
s3 21:03.66 3.96 42:22.59 3.93 - -
s4 20:06.61 4.14 42:59.95 3.88 - -
s5 23:25.60 3.56 48:34.43 3.43 1:39:47.0 3.34
s6 21:56.33 3.80 44:24.97 3.75 1:33:06.0 3.58
s7 24:04.61 3.46 - - - -

µ 3.82 3.77 3.60
σ 0.28 0.24 0.28

Table 4.2: Athletes’ personal best over the most common distances of race
walking competitions. The performances achieved over the 5, 10 and 20 km
events are reported in the following format: h:mm:ss, where h stands for
hours, m for minutes and s for seconds. Dashes mean that the athlete did
not compete over that distance. v represents the average progression speed,
in m/s. µ is the mean value and σ is the standard deviation.
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4.2 Instrumentation

Kinetics and kinematics data were acquired at the Laboratory of the Depart-
ment of Bioengineering of the Politecnico di Milano1.
A stereophotogrammetric system (ELITE 2002, BTS, Milan, Italy) com-
posed by 8 cameras working at 100Hz was used to acquire the race walking
movement. Cameras were set in order to enable athletes to perform their
movement in a calibrated volume of about 8×2×4 meters.

The disposition of cameras, shown in Figure 4.1, allowed to detect the
position of markers placed on both sides of subjects throughout the race
walking movement.

Figure 4.1: Experimental Setup [90]

Before each experimental session the system was calibrated and a max-
imum mean error of 1.5mm (concerning the length of a 600mm rigid bar)
was tolerated. A force plate (AMTI OR6-7-1000, Watertown, USA) with a
sampling rate of 500Hz was used to capture the ground reaction force (GRF).
The reference frames relative to kinematics and ground reaction force were

1All experimental session were carried out at Laboratorio di Analisi della Postura e del

Movimento “Luigi Divieti”, Department of Bioengineering, Politecnico di Milano, Italy.
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different. Therefore, they were adapted to a common convention: the x
axis corresponded to the antero-posterior axis, oriented to the direction of
progression; the z axis corresponded to the vertical direction; the y axis
corresponded to the medio-lateral direction (cross-product of x and z ).

4.3 Marker-set

Some preliminary tests were performed at the Laboratory. Their purpose
was the comparison of two protocols (Davis and SAFLo2) [90], to define the
most suitable one to reliably detect lower limb joint angles on the sagittal
plane, without altering natural movement. Both marker-sets are reported in
Figures 4.2 and 4.3.

Figure 4.2: The Davis marker set [90]. Front view (a) and back view (b).

The ground reaction force during heel strike is significantly greater during
race walking than in normal walking [13]. This is related both to the increase

2Servizio di Analisi della Funzionalità Locomotoria.
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Figure 4.3: The SAFLo marker set [90]. All markers are visible from the
back view.

in walking velocity and to the full extension of the knee required by the rules.
Davis configuration involves the application of markers placed on bars, which
feel more the effect of skin artifact during such a fast movement. The oscilla-
tion of markers has repercussions on joint angle reconstruction, considerably
increasing data noise. Moreover the markers placed on the greater trochanter
did not allow athletes to wave the arms close to the trunk, thus challenging
the natural movement. SAFLo configuration has the disadvantage to have
only two markers placed on each segment of the lower limbs, thus not provid-
ing any information about thigh, leg and foot rotations. Nevertheless, this
marker-set has the advantage not to have wands encumbering the subject, vi-
brating and moving relative to the underlying skeleton. Therefore the SAFLo
protocol was adopted. It consists of a total-body marker-set, with 19 retrore-
flective hemisferical markers (15mm diameter) fixed on specific anatomical
landmarks: lower prominence of the sacrum, posterior superior iliac spines,
lateral femoral condyles, lateral malleoli, fifth metatarsal heads (for the pelvis
and lower limbs section); seventh cervical vertebra and point of maximum
kyphosis (for the column); acromion bones, lateral homerus epicondyles and
stiloideus processes (for the upper limbs section); parieto-occipital areas of
the head. Markers were glued to the skin with care, not to be detached or
moved because of rapid movements or sweat.
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4.4 Data collection

Race walkers performed a standard 20 minutes warm up routine and some
trials to familiarize with the experimental settings. The 15m long walkway
allowed them to perform a technically correct race walking, with an approx-
imately constant speed. The position of the force platform at two-thirds of
the path, let the athletes accelerate and reach a stable progression before get-
ting to it. Only trials in which they randomly put their left or right foot on it
were recorded. As many as 20 suitable race walking trials (for left and right
side) were acquired for each athlete. They were performed at a self-selected
pace and under the trainer supervision. The trainer checked the goodness
and correctness of race walkers performance. Four subjects accepted to par-
ticipate to two testing sessions (called session I and II ) in different periods
of the agonistic season, according to their athletic engagements.

4.5 Data processing

Despite of acquiring only technically correct race walking performances, with
the foot completely inside the surface of the force plate, a further control was
applied on the performed trials. The complete description of data preprocess-
ing is reported in [91]. A first monitoring of movement correctness derived
from the evaluation of the ground reaction force pattern. Since maintaining
an almost constant speed implies similarity between breaking and propul-
sive impulse of GRF, the anterior and posterior force areas were compared.
Moreover a post-processing control directly was applied on the progression
speed of the center of mass, comparing its values at heel strike and toe-off
with the usual training speed of the athlete. From total body kinematics, the
position, velocity and acceleration of the center of mass (COM) were carried
out. Three dimensional coordinates of internal joint centers, joint angles,
velocities and accelerations were estimated from anthropometric measures
through specially designed algorithms [27, 88]. Hip, knee and ankle joint
moments were measured by using the Newton-Euler free body dynamic equi-
librium equations. Each body segment mass, inertial moments, and gravity
center positions were estimated through Zatsiorsky and Seluyanov regres-
sion equations [125]. Concerning sign conventions, lower limb joint extension
moments were defined as positive. Ground reaction force was normalized
by body weight; moments and powers were normalized by body weight and
height [55, 76].

The analysis was focused mainly on 15 variables, supposed to be the most
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consistent measures of lower limb motion analysis [24, 25, 41, 45, 61, 62, 92,
116]:

- antero-posterior, mediolateral and vertical ground reaction forces (Rap(t),
Rml(t), Rv(t));

- hip, knee and ankle joint angles (Fig.4.4) in the sagittal plane (Ahs(t),
Aks(t), Aas(t));

- hip, knee and ankle joint angular velocities in the sagittal plane (Vhs(t),
Vks(t), Vas(t));

- hip, knee and ankle joint moments in the sagittal plane (Mhs(t), Mks(t),
Mas(t));

- pelvic tilt, pelvic obliquity and pelvic rotation angles (Apt(t), Apo(t),
Apr(t)).

Figure 4.4: Conventions for angles definition in lower limb joints. Aver-
age values from the whole population, during standing, were: Ahs

∼=25deg,
Aks

∼=5deg, Aas
∼=70deg [90].

The race walking cycle of every acquisition was analyzed. In classical
clinical gait analysis the “gait cycle” is the period of time from the heel
strike of one foot to the following heel strike of the same foot. For this study
the “race walking” cycle was considered as the interval of time from the toe-
off to the following toe-off of the same foot. This choice derived from the
need to optimize the quality of data; in fact, when the first foot centered the
force plate, the second heel strike happened out of the acquisition volume.
Therefore in the identification of the race walking cycle, the first toe-off

39



Chapter 4. Materials and Methods

was before arriving at the force platform. It was estimated by using specially
designed algorithms that look at the kinematic variables, while the second one
came from ground reaction force measure. The first toe-off corresponded to
the peak of vertical acceleration of the marker applied to the fifth metatarsal
of the supporting leg. The second one corresponded to the instant in which
Rv(t) reached the base line.

After extracting the race walking cycle from the selected variables of each
repetition, unrepresentative trials were removed thanks to a double control.
First macroscopically anomalous curves were eliminated; then the cycle du-
ration was checked, in order to remove temporal outliers. A threshold of 1.5
interquartile from the sample median time value was chosen in agreement
with Chau [19].

Curve registration

Data were normalized, resampling the race walking cycle time to 100 per-
centage frames. This procedure, commonly adopted in literature, is useful
in the study of inter-subject evaluations. However, since this approach is
a form of artificial alignment of data, it may mathematically separate data
from their functional principal components. This was one of the problems
encountered by some researchers in their studies [21, 119, 120].

Curve registration [93, 96] was applied to data to evaluate the effect of
time domain variability. Registration [96] is the process of temporally align-
ing a set of curves, by minimizing discrepancies from an iteratively estimated
sample mean or by aligning specific curve landmarks. Landmark registration
has been adopted in literature to reduce inter-subject variability in angular
displacement, moment and power curves [19, 101, 102, 104] or to analyze
phase variability in gait curves [96, 108]. In this study a minimum variation
was measured among registered and not registered data. Curve registration
presented no major effect, probably because anomalous and temporally odd
curves have already been removed. This proof of data consistency induced
the choice of adopting normalization on unregistered data.

4.5.1 Data arrangement for t-PCA and f-PCA

For the univariate application of t-PCA, each subject was represented by
a set of data curves arranged in a three-dimensional matrix. Rows corre-
sponded to repeated trials, columns to percentage frames of the race walking
cycle (1-100%), while the third dimension stored the 15 analyzed variables.
The matrices of all the race walkers were vertically concatenated (Fig.4.5).
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Therefore all the trials of the seven athletes were grouped in a n × 100 × 15
matrix. The number of rows corresponded to the sum of trials of all the
athletes, columns to percentage frames of race walking cycle and layers to
variables.

Figure 4.5: Example of the data arrangement for athletes’ analysis through
univariate and bivariate t-PCA and f-PCA.

An analogous arrangement was adopted for f-PCA, but time series were
first smoothed through β-splines and they were then inserted in the rows of
the matrix shown in Fig.4.5. PCA was applied to each variable, coinciding
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with a layer. Principal components explaining a total amount of 95% of
data variance were inserted in a bar plot. The scree test was then applied
to choose how many components to retain. They were named “t-PCs” and
“f-PCs” respectively for the two techniques.

A scatterplot analysis was carried out, to better inspect the ability of
traditional and functional PC scores to differentiate athletes according to
their skill level. It consisted in a graphical view of the scores on the first
and second principal components. Points corresponding to trials of the same
subject were shown with the same color. In the meantime a biomechani-
cal interpretation was derived by the evaluation of the deviation from the
mean caused by these PCs (Paragraph3.1). It consisted in the plot of the
mean curve of the variable, with curves created by adding and subtracting a
multiple of the principal component.

For coordinative inspection bivariate traditional (bt-PCA) and funtional
(bf-PCA) PCA were used. Data were arranged as previously described in
an n × 100 × 15 matrix. Two variables (coinciding with two layers) were
taken into account simultaneously. This technique allowed to inspect the
coordination between angles of consecutive joints: hip and knee or knee and
ankle.

Finally, boxplots were used to compare functional principal component
scores of session I respect to session II. This statistic tool produces a box
with lines at the lower quartile, median, and upper quartile values. The
whiskers are lines extending from each end of the box to show the extent of
the rest of the data. Outliers are data with values beyond the ends of the
whiskers. Points beyond the whiskers are displayed using “+”.

Preprocessing for 2-PCA

For two stage PCA (2-PCA) data were arranged differently. In the first stage,
PCA was simultaneously applied to more variables. Thus each subject was
described by a matrix which rows corresponded to percentage frame (100),
columns to variables (15) and layers to the n repeated trials (Fig.4.6).

Principal component analysis was then applied to this matrix and the first
two extracted principal components (2-PC1, 2-PC2 ) were vertically concate-
nated to form a 200-frame time series for every trial. In the second stage,
principal component analysis was applied to these curves.
Loadings of the first stage 2-PCA were inserted in a bar plot. They rep-
resented the relative contribution of each variable to the first and second
principal components. The scores for 2-PC1 and 2-PC2 were inserted in
a scatterplot, to form the “O”-shaped manifold described in Paragraph3.4.

42



Data processing

Figure 4.6: Example of the data matrix for every subject in the first stage
of 2-PCA.

Frames associated to different phases of the race walking cycle had different
colors: red for the swing phase (SP), green for the frontal leg support phase
(FSP) and cyan for the rear foot support phase (RSP). Also the scores of
the second stage 2-PCA were inserted in a scatterplot. In this case different
colors were associated to different athletes.
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Results and Discussion

Since all the athletes were race walkers of high level, differences in movement
performances were not easy to be recognized by simple inspection of kine-
matic or kinetic variables. An example concerning the knee joint angle and
the ankle moment is reported in figure 5.

Figure 5.1: Knee angle (a) and ankle moment(b) patterns for the seven race
walkers.

Each subject was represented with a different color. For each athlete
all the repeated trials were plotted; time was reported as a percentage of
the race walking cycle. Considering the knee joint angle (Fig.5(a)), except
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for s6, who showed a very low knee flexion throughout the movement, the
other athletes displayed similar kinematic trends at the knee. On the con-
trary, only s4 presented an immediately recognizable pattern (Fig.5(b)) for
the ankle moment. Thus, if inspecting distinct variables, athletes might be
grouped in different ways, according to their similarities and differences in
variables’ patterns. PCA allowed to go deeper in the analysis of individual
skill characteristics.

5.1 t-PCA, f-PCA comparison

First, each variable was analyzed separately to describe the main biomechan-
ical characteristics of race walkers. Both t-PCA and f-PCA techniques were
applied to kinematic and kinetic data.

A really small number of extracted features explained greater than 95%
of the variation in the data for most of the variables (Table5.1).

t-PCA f-PCA

Variable Var expl (%) n. of PCs Var expl (%) n. of PCs

Rap(t) 95.00 5 95.55 4
Rml(t) 96.15 5 96.65 4
Rv(t) 97.22 5 96.58 4
Ahs(t) 95.49 6 95.97 6
Aks(t) 96.13 4 96.31 4
Aas(t) 96.20 6 96.36 6
Mhs(t) 95.68 8 95.96 6
Mks(t) 96.20 7 97.38 6
Mas(t) 96.32 5 95.40 4
Phs(t) 95.94 12 95.32 9
Pks(t) 95.19 5 96.11 5
Pas(t) 95.24 5 95.19 4
Apt(t) 95.60 7 95.11 6
Apo(t) 95.17 7 95.71 7
Apr(t) 95.85 6 96.07 6

Table 5.1: Principal component models: percentage of total explained vari-
ance and number of components
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In the comparison between t-PCA and f-PCA, the first technique needed
a larger or equal number of components to explain the same amount of vari-
ability. Moreover, when the scree test was applied, f-PCA presented a more
clear-cut division between the variables to be retained and the negligible
ones.

This could be due to the more sensitivity of t-PCA to noise. In fact, data
are acquired with experimental error. Roughness of data might induce to
retain also some noise, considering it information. Instead, for f-PCA the
operation of smoothing can reduce the effects of noise. These results are in
agreement with [46], who found that even in the presence of noise, statistical
smoothing successfully exploits the high-dimensional character of the data.

Scores obtained from the two statistical techniques were similar for the
first principal components. Moreover, the representation of the influence of
the PCs on the mean trend was quite the same for t-PCA and f-PCA.

These findings led to the hypothesis that kinematic and kinetic data con-
tained an inborn factor which could be revealed by both the analyses. This
was probably due to the intrinsic nature of data. Anomalous trends have
already been removed in the preprocessing phase. Hence, the smoothing
adopted by f-PCA had no major effect. Moreover, the discrete temporal grid
of acquired kinematic and kinetic data was dense, such that discrete data
were comparable with their functional representations.

Therefore, only results obtained from f-PCA were reported in the follow-
ing sections, not to annoy the reader later on, in encountering two times
similar results.
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5.2 Skill level characterization

Results of only some of the 15 analyzed variables were reported for the ath-
letes’ skill characterization: Apr(t), Ahs(t), Aks(t), Mks(t), Mas(t), Rml(t),
Rv(t). The choice of these variables was determined by the discriminant
power of their principal component scores in clustering trials of different race
walkers.
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Figure 5.2: Variance explained by the first functional principal components
for the pelvis rotation. Each bar represents the variance explained by the
corresponding f-PC ; the line above the bars shows the cumulative percentage.

The scree plot for pelvis rotation was reported in Fig.5.2. The x axis
contained the f-PCs sorted by decreasing fraction of explained variance. Bars
contained the fraction of explained variance. The line above the bars showed
the cumulative percentage of explained variability. The first three f-PCs
explained most (89.85%) of the total variability in the data. Thus they were
preserved for further analysis.

First, attention was focused on f-PC1 and f-PC2. In the scatterplot
(Fig.5.3(a)), scores for the repeated trials of all the athletes were shown.
Different colors were associated to different subjects. The representation of
f-PC2 versus f-PC1 scores helped to visually evaluate the discriminant power
of these components. Scores for f-PC1 were positive for {s1, s2, s3, s6} and
negative for {s4, s5, s7}.

Concerning f-PC2, scores did not clearly differentiate athletes. On the
contrary, for the same athlete a group of trials scored positively and an other
group negatively for f-PC2. This was particularly evident for {s5, s6, s7}.

A biomechanical interpretation of the first two f-PCs derived by the eval-
uation of the deviation from the mean (Fig.5.3(b),(c)). The positive scoring
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on f-PC1 for {s1, s2, s3, s6} was interpreted by analyzing the red line in
Fig.5.3(b). It corresponded to a larger range of movement, with an increased
pelvis internal rotation during the swing phase (SP) and increased external
rotation in the rear foot support phase (RSP). Conversely the other race
walkers, with negative scores on f-PC1, were represented by the green line.
It showed a restricted internal rotation during SP and an external rotation
in RSP.

The increase in pelvic obliquity and in pelvic rotation of the race walkers
belonging to group1, demonstrated their cleverness in attenuating the vertical
COM oscillations. In fact, a pronounced lowering the hip of the moving leg
takes place when the supporting leg is fully stretched [98]. Thus, motions
of the pelvis in the frontal and transverse planes must tend to minimize the
vertical excursions of the COM.

Moreover the larger pelvis rotation on the swing side produces a longer
stride length for the same amount of hip flexion of the advancing leg and hip
extension of the retreating leg [13, 78]. The increase in pelvic obliquity and
in pelvic rotation presented by the race walkers of group1 contributed to a
faster movement. With the alternating periods of race walking, the pelvis
on the front support side rotated to its highest point and the pelvis of the
swinging side rotated to its lowest point. The lateral drop of the pelvis away
from the stance leg allowed to decrease the horizontal displacement of the
COM.

To resume, f-PC1 scores were good discriminant factors among athletes
and its interpretation was associated to different ranges of pelvis rotation.
Hence, this variable seemed to be decisive in the characterization of athletes
of different skill levels.

Looking at Fig.5.3(c), f-PC2 corresponded a different pelvis angular mean
value in the transverse plane throughout the race walking cycle. As previ-
ously evidenced, {s5, s6, s7} presented two groups of trials scoring differently
for f-PC2. Since the two clusters corresponded to trials generated by different
limbs (right and left side), these race walkers revealed to have an asymmet-
rical behavior in pelvis rotation.

Fig.5.4 allowed to interpret the meaning of f-PC3 and its discriminant
potential. The best athlete (s1) was characterized by high positive scores
for the third component (Fig.5.4(a)). The score values on this component
for the other race walkers might be hardly clustered. f-PC3 was associ-
ated to a time delay in the passage from external to internal pelvis rotation
(Fig.5.4(c)). Since this characteristic was strictly related to the knee exten-
sion, it underlined the ability of s1 in straightening the leg for a long time,
thus getting an extra thrust forward.
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Figure 5.3: Characterization of pelvis rotation: (a) scores scatterplot of f-
PC2 vs f-PC1 ; (b,c) the mean hip joint angle curve is shown with curves
created by adding (red +) and subtracting (green -) a multiple of: f-PC1
(b), f-PC2 (c). The horizontal line is the zero axis; the vertical lines divides
race walking phases.
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Figure 5.4: Characterization of pelvis rotation: (a) scores scatterplot of f-
PC3 vs f-PC1 ; (b,c) the mean hip joint angle curve is shown with curves
created by adding (red +) and subtracting (green -) a multiple of: f-PC1
(b), f-PC3 (c). The horizontal line is the zero axis; the vertical lines divides
race walking phases.
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Chapter 5. Results and Discussion

The hip joint in the sagittal plane presented interesting results. The scree
plot was reported in Fig.5.5. The first two components accounted for 83.76%
of data variance. The barplot showed how the first component dominated
(74%). It underlined the great importance of f-PC1 in describing the main
behavior in the athletes’ hip flexion-extension.
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Figure 5.5: Variance explained by the first functional principal components
for the hip angle in the sagittal plane. Each bar represents the variance
explained by the corresponding f-PC ; the line above the bars shows the
cumulative percentage.

Moreover the corresponding scatterplot (Fig.5.6(a)) showed an high inter-
subject discriminant power both for f-PC1 and f-PC2. Concerning the x axis
(f-PC1 ), the best athlete (s1) had high positive scores, while one of the least
performing ones (s6) showed high negative scores. A biomechanical inter-
pretation of the first functional principal component derived from Fig.5.6(b).
f-PC1 revealed to be related to a postural behavior: athletes scoring pos-
itively (red curve) maintained their hip more flexed than the mean curve
throughout the movement. On the contrary s6, scoring negatively, extended
the hip during the whole race walking cycle.

Considerable hip flexion throughout the race walking cycle indicates a
forward shifting of the COM, crucial factor for forward propulsion [13, 78].
Moreover it allows the race walker to walk with a fluent style [115]. On the
contrary, bending from the waist causes the hips to move backwards, thus
reducing the ability to extend the hip and accelerate the stride. Hence, one
of the factors that more differentiate s1 and s6 in performing level might be
ascribed to a different behavior in hip flexion and extension. The f-PC2 was
a discriminant factor for the other athletes {s2, s4, s5}: positive scores for
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s2, while negative for s4 and s5. This functional component was related to a
technical factor (Fig.5.6(c)). The athletes of group2 {s4, s5}, characterized
by negative f-PC2 scores, adopted the strategy to bend the hip less than the
average angle during the swing phase (SF), and extending it less during the
rear leg support phase (RSF).

Figure 5.6: Characterization of hip joint in the sagittal plane: (a) scores
scatterplot of f-PC2 vs f-PC1 ; (b,c) the mean hip joint angle curve is shown
with curves created by adding (red +) and subtracting (green -) a multiple
of: f-PC1 (b), f-PC2 (c). The horizontal line is the zero axis; the vertical
lines divides race walking phases.
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This is a counterproductive behavior, since the hip extension in late swing
helps the walker to increase the joint angle amplitude and to gain momentum
to pull the body forward [78].

As reported by Cairns [13], race walkers display a huge amount of hip
flexion during the swing phase of race walking, which becomes significantly
greater with the increase of velocity.

Particular attention must be dedicated to the knee joint angle in the
sagittal plane. The requirement of the International Federation rules to keep
the supporting leg in a straight position, make the knee angle to differ sig-
nificantly respect to its behavior in normal gait analysis [13, 78, 90, 91, 115].

The most relevant discrepancies appear during load acceptance and mid-
stance: the normal knee flexion that occurs in the first phase of stance dis-
appears and an hyperextension angle is maintained from about 25% to 75%
of contact time [91].

The first three functional principal components accounted for most of the
variance in the data (93.7%), as reported in Fig.5.7. Hence further investi-
gations were restricted to these f-PCs.
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Figure 5.7: Variance explained by the first functional principal components
for the knee angle in the sagittal plane. Each bar represents the variance
explained by the corresponding f-PC ; the line above the bars shows the
cumulative percentage.

The first functional component (Fig.5.8(b)) represented athletes with dif-
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ferent mean values for the flexion-extension of the knee throughout the race
walking cycle. Therefore it was interpreted as a postural difference among
race walkers. Especially s6 differentiated from the others: with high negative
scores for f-PC1, this subject exhibited a more extended knee throughout the
movement.

The best athletes {s1, s2} showed (Fig.5.8(a)) opposite behaviors for
the f-PC2 : s1 scoring positively, while s2 negatively. This result seemed
to contrast with the hypothesis of similar technical characteristics for race
walkers belonging to analog skill levels (group1).

A possible explanation derived by the analysis of f-PC2 and f-PC3. They
allowed to reveal how two subjects of the same skill level adopted completely
different motor strategies. Fig.5.9(b) demonstrated how s1, with positive
f-PC2 scores, maintained an extended knee (knee joint angle near to zero
value) during the stance phase, while s2, with negative scores, tended to
hyperextend the knee (negative joint angle) respect to the average curve
during the stance phase.

A better explanation of this difference derived from the interpretation of
f-PC3 (Fig.5.9(c)). s1 showed a smoother trend for knee flexion-extension
(red line), with a smaller range of movement. This athlete extended the knee
just before the heel strike and got it hyperextended only in the late stance
phase. The faster preparation of the knee derived from a lower flexion during
the SP. On the contrary, s2 took longer to get to knee full extension.

For both the athletes, leg was straightened for a long time after the pas-
sage through the vertical position, thus getting an extra thrust forward by
pushing off the rear foot [13, 78, 91]. Fig.5.9(a) emphasized the strong rela-
tion between f-PC2 and f-PC3 : most of the score values arranged around a
diagonal line through the plot. In fact, while f-PC2 was related to a general
technical characteristic of the SF, f-PC3 gave a more subtle description of
the fractional parts of the same phase.

The process of hyperextension for athletes {s2, s4, s6, s7} might put stress
on the posterior structures of the knee joint [78, 91]. Over a long period of
time, this stress may be injurious to the ligaments. To provide dynamic
ligamentous support against excessive hyperextension, strengthening of the
knee flexor muscle is usually recommended. Moreover, concerning f-PC2,
for {s5, s6, s7}, two separate clusters of points could be clearly recognized,
corresponding to trials evaluated for the two lower limbs (right and left side).
This implies that these race walkers had an asymmetrical movement for the
dominant and non dominant legs. To resume, less performing race walkers
(group3) showed knee hyperextension and asymmetry between right and left
limb, thus revealing a possible risk of injury.
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Figure 5.8: Characterization of knee joint angle in the sagittal plane: (a)
scores scatterplot of f-PC2 vs f-PC1 ; (b,c) the mean hip joint angle curve
is shown with curves created by adding (red +) and subtracting (green -) a
multiple of: f-PC1 (b), f-PC2 (c). The horizontal line is the zero axis; the
vertical lines divides race walking phases.
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Figure 5.9: Characterization of knee joint angle in the sagittal plane: (a)
scores scatterplot of f-PC3 vs f-PC1 ; (b,c) the mean hip joint angle curve
is shown with curves created by adding (red +) and subtracting (green -) a
multiple of: f-PC1 (b), f-PC3 (c). The horizontal line is the zero axis; the
vertical lines divides race walking phases.
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Also the knee joint moment revealed to be a good discriminant factor in
characterizing athletes according to their skill levels. The first four functional
components were investigated; they accounted for 90.2% of data variance
(Fig.5.10).
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Figure 5.10: Variance explained by the first functional principal components
for the knee moment in the sagittal plane. Each bar represents the variance
explained by the corresponding f-PC; the line above the bars shows the
cumulative percentage.

The group1 scored positively for the f-PC1 (Fig.5.11(a)), thus revealing
an higher knee extension moment than the mean curve during the stance
phase (Fig. 5.11(b)). It can be seen as the effort exerted by knee extensor
muscles to keep that joint straight, just like rules impose.

A flexion moment occurred in the mean trend at the time corresponding
closely to the heel strike, to compensate the external hyperextension moment,
which is the moment present at knee angle of hyperextension. This flexion
moment was higher in athletes scoring positively for the f-PC2 (Fig.5.11(c)),
especially for {s3, s5}.

The knee flexion moment is interpreted by some authors [13, 78] as the
outcome of passive structures (posterior capsule and ligaments) rather than
active muscular forces. Therefore the knee joint angle and moment should
be monitored to prevent injuries. Athlete s4, scoring negatively for f-PC2,
showed a lower knee extension moment than the mean curve at the toe-off.

58



Skill level characterization

The extension forces at the knee are of great importance in achieving the
push-off in race walking [13].

Fig.5.12(a) showed how f-PC3 and f-PC4 contributed to athletes’ dis-
crimination. s4 and s7 scored negatively on f-PC3, thus revealing (Fig.5.12(b))
a tendency to postpone the initial knee extension moment and to maintain
the delay during the stance phase. A subtle difference between these athletes
was pointed out by f-PC4 (Fig.5.12(c)). This functional component revealed
the knee behaving in different ways for s4, scoring positively, and s7, scoring
negatively. Mainly, the less performing race walker appeared to have diffi-
culties in maintaining a correct knee flexion moment just after the passage
through the vertical position. Hence, the green line in Fig.5.12(c) (negative
scores) had low smoothness.

The asymmetries between right and left limb, evidenced in the knee angle
analysis, were evident also in the knee flexion moment. Separated scores
clusters could be seen for s6 (Fig.5.11(a)) and s7 (Fig.5.12(a)).

The knee joint angle is directly related to the ankle movement. In race
walking, ankle dorsiflexion occurs just prior to heel strike. During the double
support phase, the COM is at its lowest height and the ankle helps in raising
it. Hence the so called “functional lengthening” [78] occurs. It consists in
an increased stride length: at the rear limb the ankle plantarflexes; at the
forward limb the ankle dorsiflexes and the knee extends [13, 78, 90, 115].
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Figure 5.11: Characterization of knee joint moment in the sagittal plane: (a)
scores scatterplot of f-PC2 vs f-PC1 ; (b,c) the mean hip joint angle curve
is shown with curves created by adding (red +) and subtracting (green -) a
multiple of: f-PC1 (b), f-PC2 (c). The horizontal line is the zero axis; the
vertical lines divides race walking phases.
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Figure 5.12: Characterization of knee joint moment in the sagittal plane: (a)
scores scatterplot of f-PC4 vs f-PC3 ; (b,c) the mean hip joint angle curve
is shown with curves created by adding (red +) and subtracting (green -) a
multiple of: f-PC3 (b), f-PC4 (c). The horizontal line is the zero axis; the
vertical lines divides race walking phases.
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The first two f-PCs for the ankle moment in the sagittal plane explained
about 86.7% of the total variance (Fig.5.13).
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Figure 5.13: Variance explained by the first functional principal components
for the ankle moment in the sagittal plane. Each bar represents the variance
explained by the corresponding f-PC; the line above the bars shows the
cumulative percentage.

Fig.5.14(a) showed how s4 had high positive scores for f-PC2. The biome-
chanical interpretation (Fig.5.14(c)) helped in explaining this behavior as a
lower dorsiflexion moment at the ankle during the FSP and an higher plan-
tarflexion moment during the RSP.

Race walkers {s2, s3, s4} scored negatively for f-PC1 (Fig.5.14(a)), thus
revealing a tendency to postpone the ankle dorsiflexion moment after the
heel strike and to maintain a delay in the plantarflexion during the stance
phase (Fig.5.14(b)).

The dorsiflexion moment exerted during the early stance phase results
from eccentric muscle contraction used to decelerate forward progression
of the tibia [78]. The delay in dorsiflexion moment might imply a greater
amount of ankle plantarflexion moment in the last stance phase, to prepare
the foot for the toe-off.
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Figure 5.14: Characterization of ankle joint moment in the sagittal plane:
(a) scores scatterplot of f-PC2 vs f-PC1 ; (b,c) the mean hip joint angle curve
is shown with curves created by adding (red +) and subtracting (green -) a
multiple of: f-PC1 (b), f-PC2 (c). The horizontal line is the zero axis; the
vertical lines divides race walking phases.
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The plantarflexion moment is thus exerted for a shorter period of time,
thus assisting the athlete to maintain a straight knee. In fact both ankle
and knee joint angle influence the knee joint flexion moment produced by
the gastrocnemius. A plantarflexed ankle, associated to a straight position
of the knee, facilitates the intervention of the gastrocnemius [91]. Thus good
race walkers should exploit as soon as possible the contribution of this muscle.

In race walking a medial GRF greater than in normal walking is achieved
early and late in the stance phase to contrast the lateral shift of the COM, due
to the pelvis lateral drop and hip adduction [13, 91]. Fig.5.15 demonstrated
how the first three components were able to explain most (93.9%) of the
variance.
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Figure 5.15: Variance explained by the first functional principal components
for the mediolateral GRF. Each bar represents the variance explained by the
corresponding f-PC; the line above the bars shows the cumulative percentage.

Race walkers ((Fig.5.16(b) black mean curve) involved a quite sensitive
oscillation in the mediolateral direction, even if the sum of positive and nega-
tive areas resulted nearly close to zero [91]. That indicated that the subjects
with a mediolateral force curve resembling the mean trend had a correct
technique, with straight progression.
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Figure 5.16: Characterization of mediolateral GRF: (a) scores scatterplot of
f-PC2 vs f-PC1 ; (b,c) the mean hip joint angle curve is shown with curves
created by adding (red +) and subtracting (green -) a multiple of: f-PC1
(b), f-PC2 (c). The horizontal line is the zero axis; the vertical lines divides
race walking phases.
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Figure 5.17: Characterization of mediolateral GRF: (a) scores scatterplot of
f-PC3 vs f-PC2 ; (b,c) the mean hip joint angle curve is shown with curves
created by adding (red +) and subtracting (green -) a multiple of: f-PC2
(b), f-PC3 (c). The horizontal line is the zero axis; the vertical lines divides
race walking phases.
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Athletes s1 and s2 presented a very small range of score values both for
the first and the second f-PCs, thus highlighting their ability in performing
the movement with great repeatability. A shift in time compared to the mean
trend is well recognized when comparing athletes scoring positively (delay)
with the ones with negative scores (anticipation) for f-PC2 (Fig.5.16(c)).

Athletes s3 and s4, with high positive scores on f-PC2, showed how the
negative and the second positive peak were higher than the mean trend in the
mediolateral GRF. The second peak was higher, to increase the deceleration
of the lateral shift of the pelvis for preparing the next stance phase [13, 78].

Also f-PC3 demonstrated a great discriminant power (Fig.5.17(a)). Ac-
tually, the scatterplot of f-PC3 vs f-PC2 scores clearly identified clusters of
trials belonging to different subjects. {s4, s5, s6}, scoring positively on f-PC3,
showed an advanced first medial peak and a very reduced lateral peak. {s2,
s3}, with negative f-PC3 scores, revealed the first positive and the negative
peak to be higher than the mean trend.

The vertical GRF increases significantly across gait conditions from walk
to race walk to run [13, 78, 81, 90, 91]. Most (93.5%) of data variance was
explained by the first three functional components (Fig.5.18).
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Figure 5.18: Variance explained by the first functional principal components
for the vertical GRF. Each bar represents the variance explained by the
corresponding f-PC ; the line above the bars shows the cumulative percentage.

Athletes {s1, s5}, with high negative scores for f-PC1 (Fig.5.19(a)), were
characterized by force peak higher than the mean curve during the FSP and
a lower one in the RSP (Fig.5.19(b)).
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Figure 5.19: Characterization of vertical GRF: (a) scores scatterplot of f-PC2
vs f-PC1 ; (b,c) the mean hip joint angle curve is shown with curves created
by adding (red +) and subtracting (green -) a multiple of: f-PC1 (b), f-PC2
(c). The horizontal line is the 9.81 axis; the vertical lines divides race walking
phases.
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Figure 5.20: Characterization of vertical GRF: (a) scores scatterplot of f-PC3
vs f-PC1 ; (b,c) the mean hip joint angle curve is shown with curves created
by adding (red +) and subtracting (green -) a multiple of: f-PC1 (b), f-PC3
(c). The horizontal line is the 9.81 axis; the vertical lines divides race walking
phases.
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The first peak might be due to an higher race walking velocity, involving
a greater impact with the ground.

In the last stance, the vertical GRF became inferior respect to the mean
trend probably to decrease the upward thrust of the COM. On the contrary,
s4, with very high positive f-PC1 scores, showed a more smooth force trend,
where a central plateau replaced the typical walking curve with two peaks
and a midstance valley. This proved the ability of this athlete in reducing
the vertical acceleration of the COM, thus achieving a less expensive action.

The other race walkers {s2, s3, s6, s7}, scoring positively on the f-PC2,
showed a peak vertical GRF in the passage through the vertical position, i.e
from FSP to RSP (Fig.5.19(c)).

A clear-cut division among these athletes was extracted by the analysis
of f-PC3 (Fig.5.20(a)). s2 and s7 scored positively, while s3 and s6 scored
negatively on f-PC3. Looking at Fig.5.20(c), the first two race walkers pre-
sented a vertical force pattern similar to the normal walking one, while the
other two resembled the running trend.

s4 had a very large range of f-PC3 scores, thus revealing a low repro-
ducibility in performing the race walking movement.
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5.3 Coordinative characterization

Up to here, the attention was focused on single variable description, with
the intent to gain more insight onto the characterization of individual athlete
peculiarities. A further step consists in the evaluation of how lower limb joints
interact to perform an efficient movement. Principal component analysis
revealed good potentialities also for the coordinative characterization of race
walkers. Two-stage and bivariate functional PCA were adopted. To avoid
misinterpretation, the principal components measured in the 2-PCA were
named 2-PCs, i.e. the first component was 2-PC1 and the second one 2-PC2.

According to dynamic system theory (DST), human limbs can be seen
as a system of coupled pendulums that oscillate around joints [12, 17, 110].
Changes in the mutual relations between body segments or adjacent joints
may give important indications about the inherent coordinative factors of
the locomotor system.

The choice to insert the angular velocities in the analysis of coordination
derived from their undoubted importance in the coordinative characteriza-
tion of a movement. Moreover, entering these variables in the PCA analysis,
results resembled those derived from continuous phasing relationships (CRP),
thus enabling the comparison of results. CRP has been largely adopted in
literature [114, 68, 67, 89] for the analysis of different elements that partic-
ipate to the movement. It allows to synthesize information, condensing two
variables within one and investigating synergies between interacting joints.
In fact, CRP consists in phase plots of the angle on the horizontal axis, with
its first derivative (the angular velocity) on the vertical axis.

To evaluate the degree of interaction of different variables describing an
athlete movement, 2-PCA was applied to fifteen variables: 3 pelvic rotations,
3 joint angles and 3 moments in the sagittal plane, 3 GRF components and
3 joint angular velocities in the sagittal plane (hip, knee, ankle).

The purpose of 2-PCA application was the detection of the first two main
“motion features” that characterize the relative motion of body parts in race
walking. The loadings of the first two components on each of the 15 kinematic
and kinetic variables were reported in Fig.5.21. They represented the relative
contribution of each variable to the first stage 2-PC1 and 2-PC2.

Apr(t), Ahs(t), Mhs(t) and Vks(t) contributed to the first feature (Fig.
5.21(a)). The signs of the loadings helped to understand the mutual rela-
tions among variables. The loadings of 2-PC1 on Apr(t) and Ahs(t) were
approximately equal and opposite. This indicated that when the pelvis was
intra-rotated, the hip was flexed, when the pelvis was extra-rotated the hip
was extended. Vks(t) had opposite sign respect to Ahs(t). This means that
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Figure 5.21: Loadings of the first two 2-PCs on each of the fifteen kinematic
and kinetic variables.

when hip angle was extended, knee angle velocity was positive (flexion); simi-
larly when hip angle was flexed, knee angle velocity was negative (extension).
Thus, the first motion feature detected the strong importance and interac-
tion of only few factors in race walking description: hip and knee movement
in the sagittal plane and pelvis rotation.

More variables contributed to the second component (Fig. 5.21(b)):
Apo(t), Aks(t), Aas(t), Rv(t), Mas(t) and Vhs(t). The loadings revealed one
more time the strict relation between knee angle and hip angular velocity.
Moreover, the pelvis obliquity and the ankle flexion showed a great impor-
tance in the definition of the second motion feature. Signs gave indications
on the synergies of joints: when the knee was extended, the ankle was dorsi-
flexed, while the hip was high in the sagittal plane.

Interestingly, f-PCA and 2-PCA analysis led to analog results. In fact,
the fundamental variables for the description of race walking motion features,
were the most discriminant ones in the skill level characterization (Section
5.2).

2-PCA application was then restricted only to some kinematic variables:
hip, knee, ankle joint angles and angular velocities in the sagittal plane. This

72



Coordinative characterization

choice derived from the necessity to simplify the interpretability of results.
Graphics involving only angles and angular velocities should better resemble
CRP representations. This might facilitate the comprehension of the athletes’
coordination strategies.

With this new set of variables, the first three components allowed to
account for about 90% of the total data variance for the first stage of 2-PCA.
In particular, the first two components revealed to be the most representative
ones (Fig.5.22).
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Figure 5.22: Scree plot showing the percentage of variation in the data ex-
plained by the principal components.

A biomechanical interpretation of these 2-PCs derived from the inspec-
tion of the contribution on each of the six kinematic variables (Fig.5.23).
Hip and knee revealed their great importance in the definition of race walk-
ing movement: Aks(t), Aas(t) and Vhs(t) were at the base of the first motion
feature for 2-PC1 (Fig.5.23(a)); Ahs(t), Vks(t) and Vas(t) contributed to the
second motion feature for 2-PC2 (Fig.5.23(b)).

The projection space of data on these components (2-PC1, 2-PC2 ) was
similar to a ”O”-shaped manifold, as reported in Fig.5.24. The different race
walking cycle phases were defined by different colors: swing phase [AB] in
red, frontal leg support phase [BC] in green, rear leg support phase [CD] in
cyan. The ”O”-shaped manifold was traversed clockwise, once during every
gait cycle.

The first stage 2-PC2 seemed to be related to differences between the
swing phase and the stance phase. In fact, positive data projections on this
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Figure 5.23: Loadings of the first two 2-PCs on each of the six kinematic
variables.

component (right side of Fig.5.24) concerned the stance phase and the first
part of swing; negative projections (left side of the figure) were related only
to the swing phase. This 2-PCA component was, as previously described,
strictly related to the hip angle and to the knee and ankle angular veloci-
ties in the sagittal plane (Fig.5.23(b)). This implies that the second motion
feature of race walking corresponded to the behaviour of the hip in the dif-
ferent phases of race walking: it was flexed throughout the stance phase and
the initial swing and extended elsewhere. The hip movement was obviously
related to knee and ankle angular velocities.

Concerning the first stage 2-PC1, positive projections (upper part of
Fig.5.24) represented the race walking phase that goes from the terminal
swing to the early RSP. As previously discovered, variables involved in the
first motion feature were Aks(t), Aas(t) and Vhs(t) (Fig.5.23(a)). Thus 2-PC1
corresponded to the interaction among these variables when approaching the
ground and passing through the vertical position. When the knee extended,
the ankle dorsiflexed and a rapid hip extension was carried out. This behavior
identified a mean of functional lengthening, resulting in forward projection
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Figure 5.24: Example of manifold in {2-PC1, 2-PC2} space after first stage
of 2-PCA for s3.

of the calcaneus and increased stride length [78, 13]. Hence, the first stage 2-
PC1 was a good index of athletes’ skill level, because it focused the attention
of the most important phase for race walkers.

Fig.5.25 compared the “O”-shaped manifolds of athletes s3 and s6. Since
athletes were very high level race walkers, variations in the shape were quite
subtle. Little differences might be inferred from the two ”O”-shaped man-
ifolds and from how the manifolds were traversed during a cycle. The best
athlete (s3-group1) showed great repeatability of movement, especially dur-
ing the stance phase. In fact, manifold corresponding to different race walking
cycles were closed each other. Otherwise, s6 (group3) had a rather scattered
trend among different trials, thus revealing a difficulty in performing the race
walking movement always in the same way. Two different trends were clearly
visible in the manifolds of this athlete, during the swing phase. They cor-
responded to trials for right and left limbs, thus confirming the asymmetric
movement of this race walkers, already shown in Section 5.2.

A clear-cut difference between these two athletes were showed by the
first stage 2-PC1. Positive projections on this component had a much more
smooth trend for the best athlete than for the less performing one. This
result confirmed the great importance of this phase of race walking cycle in
determining the level of performance of the athlete.
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Figure 5.25: Example of manifolds in (2-PC1, 2-PC2 ) space after first stage
of 2-PCA: s3 and s6.
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For the second-stage 2-PCA, the first two components derived from the
first stage (2-PC1, 2-PC2 ) were concatenated and inserted in a second PCA.
This analysis led to the recognition of the seven athletes, as shown in Fig.5.26.
All the athletes were recognizable in separated clusters. In particular, s1 and
s6 showed very peculiar behaviors, in agreement with the results (Section
5.2). In fact, the univariate f-PCA had shown that these subjects differenti-
ated most in the hip flexion-extension (Fig.5.6), which thus played a central
role in the whole movement determination. From the two-stage 2-PCA, it was
difficult to give a biomechanical interpretation of differences in clusters. In
fact, the application of PCA twice and the concatenation of two components
of the first stage, involved the loss of a full understanding of the relation-
ships among kinematic and kinetic variables in determining the second stage
components. Thus, even if the scatterplot showed clear-cut divisions among
clsters, it was hard to comprehend where the athletes differed the most.

Figure 5.26: Discrimination of athletes from their race walking. Projection
plane defined by the first two 2-PCs of second stage 2-PCA. Different colored
clusters represent different race walkers.
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In agreement with results presented by Das et al. [29, 30], the two-stage
principal component analysis revealed to be a useful instrument for repre-
senting different motor behaviors. In fact the “O”-shaped manifold provided
a canonical low-dimensional representation of a large amount of race walking
variables. It captured the majority of data variance and provided an opti-
mal way for describing spatio-temporal relationships among gait variables.
Unfortunately, 2-PCA results were hardly interpretable in an intuitive way.

Inter-joint coordination patterns were further analyzed through bivari-
ate f-PCA. This statistical technique had the advantage to present results
resembling those derived from standard coordinative analyses. Moreover, it
evaluated simultaneously only two variables, thus improving the readability
of results. Two variables were simultaneously evaluated with f-PCA. The
attention was focused on the relations between two consecutive joints: hip
and knee, knee and ankle. Bivariate functional principal components were
named bf-PCs.

Hip-knee coordination

The individual components for the hip and knee and the bivariate compo-
nents were plotted respectively in parts (d),(a) and (b) of Fig.5.28. More-
over bf-PCs scores were inserted in a scatterplot shown in part (c). Similar
representations will be adopted for fb-PC1 and fb-PC2 in all the following
coordination analyses.

The first five bf-PCs calculated from the hip and knee data accounted for
more than 90% of the total variation of hip-knee coordination (Fig.5.27). In
particular bf-PC1 explained most (about 63.1%) of the total variation.

Mean hip and knee joint angles are colored in different ways according
to the race walking phase: red for SP, green for FSP, cyan for RSP. Swing
phase lasted almost half of the entire race walking cycle; moreover from FSP
to RSP the movement was described by an increased number of frames, thus
revealing a faster movement while passing through the vertical position.

Inspection of Fig.5.28(b) revealed that bf-PC1 corresponded to the vari-
ation around the mean hip-knee curve. Arrows pointed approximately 45◦

relative to the horizontal axis with an upward direction. This suggested that
athletes who scored positively on bf-PC1 were characterized by an action that
involved hip and knee joint flexion more than the mean curve throughout the
race walking cycle. This behavior was adopted by {s1, s5, s7} (Fig.5.28 (c)),
while {s2, s3, s4, s6}, with negative scores, presented greater hip and knee
extension throughout the movement. Once again s1 and s6 showed the most
clearly separated clusters of trials, in agreement with Section 5.2. Thus the
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Figure 5.27: Scree plot showing the percentage of variation in the data ex-
plained by the functional principal components in the bivariate analysis of
hip and knee angles.

interaction between hip and knee movement revealed to be an essential factor
for athletes’ skill discrimination.

Inspection of Fig.5.29(b) reveals that bf-PC2 caused less homogeneous
variations for hip and knee joint angles respect to the mean curve during
the three phases. Race walkers with high positive scores of bf-PC2 used to
increase the knee and the hip extension during the early swing. This move-
ment was followed by an higher knee flexion in the FSP, a greater extension
in the early RSP and then again a flexion in the last RSP.

Thus athletes {s2, s4, s7}, with positive scores on bf-PC2 (Fig.5.29(c))
tended to have an increased knee flexion during the passage through the
vertical position, so they may incur in the violation of the rule of locked
knee. Moreover, s6 had high negative scores both for bf-PC1 and bf-PC2
and was characterized by a great hip and knee extension (hyperextension) at
heel-strike. Since this athlete was included among those who may incurred
in lower knee ligaments injuries in the previous univariate analysis (Section
5.2), this result could suggest that particular attention should be paid to
prevent any knee damage.
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Figure 5.28: Bivariate functional PC1 for hip-knee joint coordination: (a,d)
deviation from the mean curve due to hip and knee bf-PC1 respectively; (b)
mean hip-knee angle-angle plot with the contribution of bf-PC1 represented
as vectors; (c) bf-PC2 vs bf-PC1 scores scatterplot. Horizontal and vertical
dotted lines in part (a) are approximatively the mean angular values during
standing.
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Figure 5.29: Bivariate functional PC2 for hip-knee joint coordination: (a,d)
deviation from the mean curve due to hip and knee bf-PC2 respectively; (b)
mean hip-knee angle-angle plot with the contribution of bf-PC1 represented
as vectors; (c) bf-PC2 vs bf-PC1 scores scatterplot. Horizontal and vertical
dotted lines in part (a) are approximatively the mean angular values during
standing.
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Knee-ankle coordination

Analysis of coordination was then carried out on the knee and angle angles.
The first five bf-PCs accounted for more than 92% of data variance (Fig.5.30).
The first bivariate functional component was the most representative one.

0% 

10%

20%

30%

40%

51%

61%

71%

81%

91%

Scree plot

 1  2  3  4  5  6  7  8  9 10
0

10

20

30

40

50

60

70

80

90

Components

E
xp

la
in

ed
 v

ar
ia

nc
e 

[%
]

Bivariate f−PCA − [knee,ankle]

Figure 5.30: Scree plot showing the percentage of variation in the data ex-
plained by the functional principal components in the bivariate analysis of
knee and ankle angles.

Inspection of Fig.5.31(b) revealed that bf-PC1 corresponded to an over-
all coordinative deviation from the mean trend throughout the race walk-
ing cycle. Race walkers with high positive scores on bf-PC1 for knee-ankle
coordinative joints, used to increase the knee joint flexion and the ankle
plantarflexion. This behavior was particularly remarkable during the swing
phase. In agreement with previous results, s6, scoring negatively on bf-PC1
(Fig.5.31(c)), showed a tendency to hyperextend the knee (Fig.5.31(b)). This
movement implied a more plantarflexed ankle (Fig.5.31(d)).

Fig.5.32(b) represented the influence of bf-PC2 on the mean coordinative
curve. For race walkers with positive bf-PC2 scores (Fig.5.32(c)) a large
increase in ankle dorsiflexion and knee extension is well recognized during
the late swing. This indicated that {s1, s3, s5} correctly performed the
request knee extension.
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Figure 5.31: Bivariate functional PCA of bf-PC1 for knee-ankle joint coor-
dination: (a,d) deviation from the mean curve due to knee and ankle bf-PC1
respectively; (b) mean knee-ankle angle-angle plot with the contribution of
bf-PC1 represented as vectors; (c) bf-PC2 vs bf-PC1 scores scatterplot. Hor-
izontal and vertical dotted lines in part (a) are approximatively the mean
angular values during standing.
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Figure 5.32: Bivariate functional PCA of bf-PC2 for knee-ankle joint coor-
dination: (a,d) deviation from the mean curve due to knee and ankle bf-PC2
respectively; (b) mean knee-ankle angle-angle plot with the contribution of
bf-PC2 represented as vectors; (c) bf-PC2 vs bf-PC1 scores scatterplot. Hor-
izontal and vertical dotted lines in part (a) are approximatively the mean
angular values during standing.

84



Longitudinal monitoring

5.4 Longitudinal monitoring

Data acquired in two different sessions (session I and session II ) were com-
pared. This analysis allowed to evaluate PCA potential in following athletes
during a longitudinal monitoring. Four subjects repeated the analyses: s1,
s2, s3 and s6. Results of s6 (group3) were taken into consideration as an
explanatory example. In fact, this athlete presented the most evident differ-
ences between the two sessions.

f-PCA was applied to each variable for data resulting from sessions I and
II. Scores of the two sessions were then compared using boxplots. This tech-
nique was similar to that adopted by Ryan and Harrison [51, 100] to compare
different stages in the development of the vertical jump for young subjects.
While in vertical jump analysis boxplots were applied to indicate changes on
scores of children at different developmental stages, in this thesis they were
used on scores of the same subject in different training periods. Hence, they
helped to longitudinal monitor athlete’s changed behaviors.

A biomechanical interpretation of the differences in scores was inferred
from the analysis of figures and results reported in Section 5.2. The repre-
sentation of the influence of f-PCs on the mean trend were inserted another
time in the figures, to improve their immediate inspection.

For some kinematic variables (pelvis rotation, hip and knee joint angles
in the sagittal plane), f-PC1 scores became less variable and more positive
in the passage from session I to session II, to the detriment of ankle joint
ankle, which presented a larger range in scores values (Fig.5.33 - Fig5.36).

Reduced variability in f-PC1 and f-PC2 scores for pelvis rotation (Fig.5.33
(a)) showed a developmental trend. In fact, pelvis internal-external rotations
became less variable, probably because the athlete was trained to maintain
a correct movement in attenuating the vertical COM oscillations.

The more positive score values on f-PC1 for hip and knee demonstrated a
tendency of this athlete to maintain these joints more flexed throughout the
race walking cycle (Fig.5.34 (b)). This behavior might be interpreted as an
improvement due to training. In fact, in previous analyses (Section 5.2) hip
flexion-extension revealed to be a fundamental aspect in revealing athlete’s
ability. Moreover, s6 showed a knee hyperextension that might put stress on
the posterior structures of the knee joint.

The less variability of functional component scores, evidenced a reduced
knee extension in session II (Fig.5.35 (b)). This behavior might be a move-
ment trained to prevent injuries on this joint.

The larger range of scores on f-PC1 for the ankle angle in session II
might be imputed to a compensation movement in learning a new motor
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skill. In fact, a more variable behavior at the ankle dorsi- plantarflexion could
facilitate changes in coordination of hip and knee. It might be interpreted
as a functional variability induced by more restricted constraints for hip and
knee joints.

More positive scores were evident for hip and knee angles also on the
second functional principal component. Section 5.2 revealed that f-PC2 con-
cerned a better hip and knee behavior during the passage through the vertical
position (Fig.5.34 (c), Fig.5.35 (c)). Hence, boxplots suggested that the in-
crease in the first and second functional principal component for hip and
knee angles could be developmentally related.

The lower variability in score values, especially for the hip and knee joints,
might be also imputed to a more symmetrical behavior, limiting the differ-
ences in right and left limbs demonstrated in Section 5.2.

The improvement of knee angle flexion-extension behavior was clearly
visible in Fig.5.41. Clusters of trials belonging to right and left limbs were
no more divided passing from session I to session II.

The scores of f-PC2 for the ankle angle on the sagittal plane became
more positive. This corresponded to an increased ankle plantarflexion after
the passage through the vertical position (Fig.5.36 (c)). This behavior might
help the athlete in the toe-off phase and might facilitate to maintain the knee
in the extended position for a longer time, as previously described in Section
5.2.
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Figure 5.33: (a) Boxplot: scores of the f-PC1 and f-PC2 for pelvis rotation in
the sagittal plane, divided in two groups, corresponding to sessions I and II.
(b,c) The mean pelvis rotation curve is shown with curves created by adding
(red +) and subtracting (green -) a multiple of: f-PC1 (b), f-PC2 (c).
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Figure 5.34: (a) Boxplot: scores of the f-PC1 and f-PC2 for hip joint angle in
the sagittal plane, divided in two groups, corresponding to sessions I and II.
(b,c) The mean hip joint angle curve is shown with curves created by adding
(red +) and subtracting (green -) a multiple of: f-PC1 (b), f-PC2 (c).
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Figure 5.35: (a) Boxplot: scores of the f-PC1 and f-PC2 for knee angle in
the sagittal plane, divided in two groups, corresponding to sessions I and II.
(b,c) the mean knee joint angle curve is shown with curves created by adding
(red +) and subtracting (green -) a multiple of: f-PC1 (b), f-PC2 (c).
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Figure 5.36: (a) Boxplot: scores of the f-PC1 and f-PC2 for ankle joint angle
in the sagittal plane, divided in two groups, corresponding to sessions I and
II. (b,c) the mean ankle joint angle curve is shown with curves created by
adding (red +) and subtracting (green -) a multiple of: f-PC1 (b), f-PC2
(c).
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The kinetic variables (Fig.5.37 - Fig.5.40) showed a similar trend, even if
the differences in scores’ spread were less evident. Mediolateral and vertical
GRF showed a higher reliability in performing the movement. In fact, ranges
of score values reduced from session I to session II.

Moreover, more positive scores on f-PC2 for mediolateral GRF showed an
increased delay (Fig.5.37 (c)) in the movement. This characteristic belonged
to the best performing athletes, as described in Section 5.2. Hence, this was
a new proof of the athlete’s improvement in maintaining a straight progress
of COM.

The vertical GRF showed no evident differences between session I and
session II (Fig.5.38 (a)). Less variable scores described a more reproducible
movement among repeated trials.

The knee joint moment presented a decrease in scores variability, espe-
cially for f-PC2 (Fig.5.39 (a)). This result might be related to the correction
of the asymmetric moments of right and left knees, outlined in Section 5.2.
Moreover, the more positive score values of knee moment for f-PC1 and f-PC2
were strictly related to the improvement of knee flexion extension movement
in session II.

In agreement with previous results, ankle joint moments showed a larger
range of score values (Fig.5.40 (a)). More negative scores for both f-PC1
and f-PC2 revealed a delayed and stronger plantarflexion moment just before
passing through the vertical position (Fig.5.40 (b), Fig.5.40 (c)).

A further immediate evaluation of athletes’ performance improvement
caused by training derived by the application of 2-PCA to data obtained for
all the four athletes who repeated the acquisition sessions.
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Figure 5.37: (a) Boxplot: scores of the f-PC1 and f-PC2 for mediolateral
GRF, divided in two groups, corresponding to sessions I and II. (b,c) the
mean mediolateral GRF curve is shown with curves created by adding (red
+) and subtracting (green -) a multiple of: f-PC1 (b), f-PC2 (c).
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Figure 5.38: (a) Boxplot: scores of the f-PC1 and f-PC2 for mediolateral
GRF, divided in two groups, corresponding to sessions I and II. (b,c) the
mean vertical GRF curve is shown with curves created by adding (red +)
and subtracting (green -) a multiple of: f-PC1 (b), f-PC2 (c).
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Figure 5.39: (a) Boxplot: scores of the f-PC1 and f-PC2 for knee joint mo-
ment in the sagittal plane, divided in two groups, corresponding to sessions I
and II. (b,c) the mean knee joint moment curve is shown with curves created
by adding (red +) and subtracting (green -) a multiple of: f-PC1 (b), f-PC2
(c).
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Figure 5.40: (a) Boxplot: scores of the f-PC1 and f-PC2 for ankle joint
moment in the sagittal plane, divided in two groups, corresponding to sessions
I and II. (b,c) the mean ankle joint moment curve is shown with curves
created by adding (red +) and subtracting (green -) a multiple of: f-PC1
(b), f-PC2 (c).
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Figure 5.41: Scores scatterplot of the f-PC1 and f-PC2 for knee joint angle
in the sagittal plane for s6; data are divided in two groups, corresponding to
sessions I and II.

Results from the first stage 2-PCA for s6 were reported in Fig.5.42. In-
terestingly, Fig.5.42 resembled Fig.5.25, where two athletes, belonging to
different skill levels, were compared. The manifold of s6 in the session II
was very similar to the one of s3 (group1) for session I. It seemed that the
improvement of s6 from session I to session II changed the race walking
movement, leading it to be more similar to the one of the most performing
athletes. In fact, in session II, s6 had a more smooth movement from the
late swing to the first RSP (positive projections on 2-PC1. Moreover, data
points were less scattered among different trials, especially during the swing
phase. In early SP the differences in trials acquired for different limbs (right
and left side), evident in session I, were no more visible in the second one.
It implied an higher symmetry in lower limbs movement. This results con-
firmed an improvement in motion repeatability, already seen with boxplots
analysis.
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Figure 5.42: Longitudinal monitoring: manifolds in (2-PC1, 2-PC2) space
after first stage of PCA for s6 resulting from the acquisition session I (a) and
II (b).
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Chapter 5. Results and Discussion

Figure 5.43: Scores scatterplot for second stage 2-PCA (2-PC1 vs 2-PC2);
comparison between sessions I and II for s1, s2, s3 and s6

The analysis of the scores of the second stage 2-PCA (Fig.5.4) indicated a
tendency for 2-PC1 and 2-PC2 scores of all the four race walkers toward the
first quadrant. This might be an indication of a general improvement caused
by training in all the athletes. These results would be probably hidden by
biovariability in a standard gait analysis evaluation.

To resume, PCA method provided specific information on the population
sampled. This technique revealed useful in understanding the differences
among athletes of different skill levels as well as for carrying out a longitudinal
monitoring.

Using principal component analysis, race walking waveform data were
represented as a set of scores and components that provided important infor-
mation. Scores scatterplot gave immediate visual evidence of main differences
among athletes. As such, they were a suitable choice due to their simplicity
and ease of interpretation. Moreover, principal components allowed the in-
terpretation of these differences by identifying the portion of the race walking
cycle in which they occurred.

The investigation of single variables evidenced how differences detected
by the principal component techniques were correlated not only with skill
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level, but also with the peculiar characteristics of each athlete. For example,
the best athletes (group1), with similar competitive results, were associated
by similar hip flexion extension movements. Meanwhile, they demonstrated
quite different behaviors at the knee joint angle.

Important coordinative information were inferred both by f-PCA and 2-
PCA. While in the first case results were easily understandable, resembling
those derived from standard coordinative methods, the second statistical
technique was hardly comprehensible. In fact, applying twice PCA on data,
created a gap between final results and the original variables.

Concerning the longitudinal monitoring, functional principal component
scores indicated a developmental trend in the first and second components,
especially for the kinematic variables. They represented a reduction in vari-
ability, indicating that asymmetries were limited and a more repeatable pat-
tern was adopted.
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Conclusions

Much research in sports biomechanics have been based on particular assump-
tions. One of them is the presumption of the existence of an optimal move-
ment model that can be applied to all athletes. An other assumption is that
one trial of a movement task may represent also the other trials. These hy-
potheses are hardly true in most of the experimental cases. In fact, data are
always affected by inter- and intra-subject variability. Moreover, most of the
approaches in sports research are based only on performance results, rather
than studying the whole movement process. Hence, there is the need to ex-
plore innovative approaches for measuring and assessing movement analysis
data.

This study has shown that PCA can be applied to sports studies of kine-
matic and kinetic data. The key concepts, techniques and advantages of
using PCA were illustrated using an analysis of race walking. Three differ-
ent approaches were used, to inspect all the potential applications of PCA:
traditional (t-PCA), functional (f-PCA) and to-stage (2-PCA).

First, a comparison between t-PCA and f-PCA methods was carried out.
The first technique consisted in the application of PCA to data described
on a discrete temporal grid, while the second one corresponded more to the
functional nature of data. Even if t-PCA needed a greater number of principal
components to explain the same amount of variance, results did not present
evident differences between the two techniques. This was probably due to the
intrinsic nature of data. Since anomalous and temporally odd curves have
already been removed in the preprocessing phase, the smoothing adopted
by f-PCA had no major effect. Moreover kinematic and kinetic data were
collected with quite high frequency (respectively 100Hz and 500Hz). Thus,
the discrete temporal grid was dense and discrete data were comparable with
their functional representations. Hence, we might infer that traditional PCA
is preferred to be adopted on data with regular patterns and collected with
high frequency. Otherwise, functional PCA, even if implying some efforts in
smoothing data, should be used.
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Conclusions

A biomechanical description of race walking and a general characteriza-
tion of all the athletes were carried out. The applied methods showed spe-
cific advantages in solving different challenges. f-PCA allowed to identify the
most powerful variables able to discriminate athletes belonging to different
skill levels. Scatterplots of functional component scores clustered trials of dif-
ferent subjects in clearly divided groups for most of the analyzed variables.
Moreover, 2-PCA identified the main “motion features” that characterize
race walking. Hence, the most representative variables for the description of
performance, together with their mutual relations, were found. Therefore,
these analytical techniques proved high accuracy for identity discrimination
tasks. They yielded also insights into the contributions of various parameters
to race walking principal modes.

A coordinative description of race walking performance was also inferred
for every athlete through bf-PCA and 2-PCA. The first technique allowed to
obtain results resembling those derived by continuous phasing relationships
(CRP). Hence, a straightforward biomechanical interpretation was possible.
While bf-PCA allowed analyses conceiving only two joints, 2-PCA simulta-
neously evaluated a larger number of variables. It revealed to be a very
powerful statistical technique in underlying differences in coordinative be-
haviors among athletes.

Despite this promising recognition potentiality in classifying race walk-
ers, 2-PCA presented hardly interpretable results. In fact, difficulties were
encountered in understanding the meaning of the manifolds and in associ-
ating the second stage results to the original variables. Perhaps, the set
of variables inserted in the analysis influences the comprehension of results.
Probably, including more variables or changing their choice, might improve
the performance of this technique.

An example of longitudinal monitoring of an athlete was also reported in
the thesis. Functional scores for kinematic variables proved to change dras-
tically from session I to session II. One of the variables that mostly modified
its behavior in the two periods of training season was hip joint angle in the
sagittal plane. Throughout the above-mentioned analyses, hip flexion exten-
sion movement demonstrated to be a fundamental aspect for race walking
skill characterization. Hence, results of the longitudinal monitoring were in-
terpreted as a consequence of training. New evidence of this improvement
derived from the evaluation of the two 2-PCA manifolds of the athlete in the
two sessions. Asymmetries between right and left limbs were clearly reduced
and a smoother movement was performed.

To resume, PCA provides a basis for sports biomechanics, for ensuring
that important data are not sacrificed in the analysis and that important
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trends in the kinematic and kinetic patterns are not missed through limi-
tations in the statistical analysis procedure. PCA revealed to represent an
important mean of performance analysis and skill characterization. Ath-
letes’ peculiar motor strategies were discovered even for subjects associated
by similar competition results. Probably such subtle characteristics might
be hardly found through traditional data analysis techniques. An example of
how PCA might be used in longitudinal monitoring of athletes, showed how
this technique might quantitatively support individual training procedures.

Perhaps, this statistical technique might be adopted also in seeking to
reduce the incidence of injuries, giving indication of individual possible dan-
gerous behaviors. Further investigations are needed to support this hypoth-
esis. Despite many interesting PCA potentialities, further efforts should be
spent in improving the interpretation of results and in finding a way to make
them intelligible for practitioners.

In a longtime perspective, PCA could be applied on other kind of move-
ment tasks and the proof of its advantages might be strengthened. Moreover,
inferred information could be inserted in a graphical interface to present an
immediate feed-back of the athletes peculiarities, thus helping to achieve the
required outcome of improved performance.
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