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Abstract

Dependent data arise frequently in applied research. When quantile regression

is the statistical method of choice, several approaches have been proposed that

can accommodate dependence among observations. Cluster bootstrap is one of

the most popular among them. While practical, this method is generally ineffi-

cient and computationally demanding, especially when the number of clusters is

large. When the primary interest is on marginal quantiles, estimating equations

have been proposed that model the association between the sign of the regres-

sion residuals with the Pearson’s correlation coefficient. The latter, however, is

an inadequate measure of dependence between binary variables because of its

range depends on their marginal probabilities. Instead, we propose to model

a working association matrix through odds ratios, which are popular measures

of association of binary outcomes. Different working structures can be easily

estimated by suitable logistic regression models. These structures can be param-

eterized and may depend on covariates and clusters. Simulations demonstrated

that the efficiency of the estimator increases as the working correlation structure

approaches the true one. We extend the proposed method to penalized estimat-

ing equations, they have increasingly been used to reduce model complexity in

several applications. We focus on penalized smoothly clipped absolute devia-

tion models for feature selection and reduced-rank penalized smoothing splines.

Simulations showed that the proposed methods potentially improve the per-

formance of the marginal quantile regression estimator. When the correlation

structure is correctly specified the estimator’s efficiency increases, similarly to

what happens in the non-penalized case tackled in the first part of the thesis.

We applied the proposed methods to data from a study on cognitive behavior

and treatment in patients with obsessive compulsive disorder. To show the full

potential of the methods, we modified the original data in some of the analyses.

2



Abstract

Nella ricerca applicata, i dati dipendenti sono molto frequenti. Nella regres-

sione quantile sono stati proposti diversi approcci per tenere in considerazione

la dipendenza tra le osservazioni. Uno dei metodi più utilizzato è il cluster boot-

strap, sebbene sia generalmente inefficiente e computazionalmente dispendioso,

soprattutto quando il numero di cluster è elevato. Quando l’interesse princi-

pale è sui quantili marginali, sono state proposte delle equazioni di stima che

modellizzano l’associazione tra i segni dei residui di regressione attraverso il

coefficiente di correlazione di Pearson. Tuttavia, questa misura è inadeguata

per la dipendenza tra variabili binarie, poichè il suo range dipende dalle loro

probabilità marginali. Nella prima parte della tesi viene proposta una matrice

di dipendenza definita attraverso gli odds ratios. Le diverse strutture di as-

sociazione possono essere stimate attraverso modelli di regressione logistica e

possono essere parametrizzate per dipendere da covariate e gruppi. Attraverso

uno studio di simulazione viene mostrato che l’efficienza degli stimatori aumenta

quando la matrice di associazione è vicina a quella vera. Nella seconda parte

della tesi si estende questo metodo ad equazioni di stima penalizzate, che sono

utilizzate per ridurre automaticamente la complessità del modello stimato. In

quest’ultima parte del lavoro si concentra l’attenzione sui modelli con penalità

smoothly clipped absolute deviation per la selezione automatica dei predittori

e sulle spline penalizzate tramite riduzione di rango. Attraverso uno studio di

simulazione mostriamo che questi metodi hanno performance migliori rispetto

a quelli senza penalizzazione. Quando la struttura di associazione è vicina a

quella vera l’efficienza dello stimatore aumenta, analogamente al metodo pro-

posto nella prima parte della tesi. I metodi discussi nella tesi sono stati applicati

ad un dataset proveniente da uno studio sul comportamento cognitivo in pazienti

con disturbi ossessivi-compulsivi; inoltre, per mostrare il massimo potenziale dei

metodi penalizzati, si è provveduto a modificare il dataset originale in alcune

analisi.
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Chapter 1

Introduction

1.1 Overview

This thesis focuses on extensions of population-averaged (marginal) quantile

regression. The interest in quantile regression has substantially grown in recent

years for several reasons. First, it can describe the whole conditional distribution

of the response variable. Second, it is much less sensitive to outliers. Third,

it is equivariant to monotone transformations. This property has been used

effectively in many settings ( Bottai et al. (2010), de Luca and Boccuzzo (2014)).

Quantiles have been used as an alternative to hazard ratio to describe survival

curves of groups of individuals, with a number of applications in econometrics

and epidemiology ( Koenker and Bilias (2002), Bellavia et al. (2015), Bellavia

et al. (2013)). They are also commonly used to study skewed distributions such

as income, health care expenditures and unemployment rates ( Centeno and

Novo (2006), Wang (2011), Buchinsky (1994)).

Dependent data arise frequently in applied research. For example in econo-

metrics, panel data are used to assess time trends and to forecast. A random

sample of individuals is selected from a population, and each subject is observed

at multiple occasions over time. The multiple observations within each subject

may be dependent, while observations from different subjects are independent.

This sampling scheme is also widely used in randomized clinical trials to evalu-

ate treatment effects. In genetic studies, siblings may be included in the study

to separate heredity effects from environmental effects. The dependence can

also be caused by spatial factors. Units that are geographically near may be-

have similarly, for instance trees in a forest or individuals living in the same

area. It is important to take into account the dependence of the data when it is

present. Ignoring it may lead to wrong coverage of the confidence intervals and

loss of statistical efficiency.
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The first contribution of the thesis consists of a novel method to estimate

marginal quantile regression where the dependence between observations within

the same cluster is modeled through a working odds-ratio matrix. Different

working structures can be easily estimated by suitable logistic regression mod-

els. These structures can be parametrized to depend on covariates and clusters.

When the working correlation is close to the true one, the efficiency of the

regression-model estimator increases. We analyzed data from a randomized

clinical trial on cognitive behavior. The dataset consisted of 95 families with

a child aged 8-12 years with a principal diagnosis of generalised anxiety, panic

disorder, separation anxiety, social phobia or specific phobia. Participants were

randomised to 10 weeks of internet-based cognitive theraphy (ICBT) with ther-

apist support (70 families), or to a waitlist control condition (25 families). At

weekly intervals, the amount of difficulties in emotion regulation scale (DERS)

was measured on a 0-100 scale, where 0 indicated no difficulties and 100 extreme

difficulties. The maximum number of repeated measurements was 14. The main

interest of the study was to assess the relationship between the treatment and

DERS.

This method was the basis for the remaining contributions of the thesis,

two cases of penalized marginal quantile regression: reduced-rank penalized

splines smoothing and regularized models for feature selection. The former is

common in various fields. In panel data, complex nonlinear trends might be

modeled using certain fixed periodic functions or regression splines. However,

fixed functions that are not data-driven might not be flexible enough to capture

nonlinear trends. Regression splines are flexible but might lead to overfitting.

Instead, penalized splines would provide enough flexibility while prevent overfit-

ting by automatically selecting the optimal degree of smoothness of a regression

spline. The spline complexity is controlled by a penalty term chosen through

cross-validation or by minimization of a measure that balances goodness of fit

and complexity. The penalty term finds the optimal tradeoff between spline

complexity and fit of the predicted function. In contrast to regression splines,

penalized splines are less influenced by the initial choice of the number of knots

and the degree of the chosen spline.

Regularized models for feature selection are used to select the most impor-

tant predictors in a regression models. The model complexity is controlled by a

penalty term chosen through either cross-validation or by minimizing a measure

of balance between goodness of fit and model complexity. This term finds the

optimal tradeoff between spline complexity and fit of the predicted function.

Regularized models are used when the number of predictors is large and classi-

cal selection methods such as stepwise regression cannot be used. Analogously

to reduced-rank penalized splines smoothing methods, they can be used also to
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automatically select the splines complexity in a regression spline model.

We applied the penalized method to the cognitive-behavior study for treat-

ment of obsessive compulsive disorder. To show their full potential, we added

a predictor that was nonlinearly associated with the response. We modelled

this association through regression splines and we chose the splines complexity

through the penalized methods. We also added a large number of uncorrelated

predictors to study the behavior of the regularized model.

The outline of the thesis is as follows. Chapter 2 presents some basic no-

tions of quantile regression, generalized estimating equations (GEE), regression

splines and regularized models. Chapter 3 introduces a novel approach to esti-

mate unpenalized marginal quantile models using an odds-ratio matrix. Chap-

ter 4 discusses penalized marginal quantile regression splines and regularized

marginal quantile models for feature selection in high dimensional data. We

conclude the thesis with a discussion on Chapter 5.

1.2 Main contributions of the thesis

The main contributions of the thesis can be summarized as follows.

1. Development of a novel method to estimate marginal quantile regression

using a working odds-ratio matrix, with application to a randomized clin-

ical trial study on cognitive behavior.

2. Development of reduced-rank penalized splines smoothing for marginal

quantile regression.

3. Development of regularized marginal quantile regression for feature selec-

tion.

4. Application of the penalized methods to a randomized clinical trial study

on cognitive behavior where we added a nonlinear association along with

a set of uncorrelated predictors.

5. Implementation of R functions to estimate the proposed models.

10



Chapter 2

Background

In this chapter we review some important concepts that will be used in the rest

of the thesis. In Section 2.1 we present quantile regression and follow the book

of Koenker (2005). In Section 2.2 we review generalized estimating equations,

and we use mainly the book of Fitzmaurice et al. (2008). In Section 2.3 and 2.4

we present regression splines and methods for feature selection. These concepts

will be the basis of penalized methods of Chapter 4 and are taken from the

books of Seber and Wild (2003) and Hastie et al. (2011).

2.1 Quantile Regression

Any real-valued random variable X may be characterized by its distribution

function

F (x) = P (X ≤ x)

whereas for any 0 < τ < 1,

F−1(τ) = inf{x : F (x) ≥ τ}

is called the τth quantile of X. The median, F−1(0.5) plays the central role.

The quantiles arise from a simple optimization problem. Consider the following

problem: a point estimate is required for a random variable with distribution

function F . If loss is described by the piecewise linear function illustrated in

Figure 2.1

ψ(u) = u(τ − I(u < 0))

for some τ ∈ (0, 1), find x̂ to minimize expected loss.

11



The aim is to minimize

E(ψ(X − x̂)) = (τ − 1)

∫ x̂

−∞

(x− x̂)dF (x) + τ

∫ ∞

x̂

(x− x̂)dF (x).

Differentiating with respect to x̂, we have

0 = (1− τ)

∫ x̂

−∞

dF (x)− τ

∫ ∞

x̂

dF (x) = F (x̂)− τ.

Because F is monotone, any element of {x : F (x) = τ} minimized expected

loss. When the solution is unique, x̂ = F−1(τ); otherwise, we have an “interval

of τth quantiles” from which the smallest element must be chosen to adhere to

the convention that the empirical quantile function be left-continuous.

It is natural that an optimal point estimator for asymmetric linear loss should

lead us to the quantiles. In the symmetric case of absolute value loss it is well

known to yield the median. When loss is linear and asymmetric, we prefer a

point estimate more likely to leave us on the flatter of two brances of marginal

loss. Thus, for example, if an underestimate is marginally three times more

costly than an overestimate, we will chose x̂ so that P (X ≤ x̂) is three times

greater than P (X > x̂) to compensate. That is, we will choose x̂ to be the 75th

percentile of F . When F is replaced by the empirical distribution function

Fn(x) = n−1
n
∑

i=1

I(Xi ≤ x),

we may still choose x̂ to minimize expected loss:

∫

ψ(x− x̂)dFn(x) = n−1
n
∑

i=1

ψ(xi − x̂)

and doing so yields the τth sample quantile. When τn is an integer there is

again some ambiguity in the solution, but this generally is of little practical

consequence. Much more important is the fact that the problem of finding

the τth sample quantile, that might seem inherently tied to the notion of an

ordering of the sample observations, has been expressed as the solution to a

sample optimization problem. This lead to more general methods of estimating

models of conditional quantile functions. Least squares offers a template for

this development. Knowing that the sample mean solves the problem

min
µ∈R

n
∑

i=1

(yi − µ)2

suggests that, if we are willing to express the conditional mean of y given x as

12



µ(x) = xTβ, then β may be estimated by solving

min
β∈Rp

n
∑

i=1

(yi − xTi β)
2.

Similarly, since the τth sample quantile, α̂(τ), solves

min
α∈R

n
∑

i=1

ψ(yi − α)

we are lead to specifying the τth conditional quantile function as Qy(τ |x) =

xTβτ , and to consideration of β̂τ solving

min
β∈Rp

n
∑

i=1

ψ(yi − xTi β).

A possible parametric link between the minimization of the sum of the abso-

lute deviates and the maximum likelihood theory is given by the asymmetric

Laplace distribution (ALD). We say that a random variable Y is distributed as

an ALD with parameters µ, σ and τ and we write it Y ∼ ALD(µ, σ, τ) if the

corresponding density is given by

f(y|µ, σ, τ) = τ(1− τ)

σ
exp

{

−ψ
(

y − µ

σ

)}

,

where ψ(u) = u(τ − I(u ≤ 0)) is the loss function, 0 < τ < 1 is the skewness pa-

rameter, σ > 0 is the scale parameter, and −∞ < µ <∞ is the location param-

eter. Set µi = xTi β, and y = (y1, . . . , yN ). Assuming that yi ∼ ALD(µi, σ, τ)

then the likelihood for N independent observations is, bar a proportionality

constant,

L(β, σ, y, τ) ∝ σ−1 exp

{

−
n
∑

i=1

ψ

(

yi − µi

σ

)

}

If we consider σ a nuisance parameter, the maximization of the ALD likelihood

is equivalent to the minimization of the loss function. The quantile regres-

sion estimator can be seen as the quasi-maximum likelihood estimator of an

asymmetric Laplace distribution. As we shall see in the next section, this has

important connections to generalized estimating equations (GEE).
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Figure 2.1: Quantile regression loss function for τ = 0.5 (red), τ = 0.1 (blue)
and τ = 0.9 (black).
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2.2 Generalized Estimating Equations

Generalized estimating equations are a common approach to account for depen-

dence in the data. They provide marginal estimates, where the term marginal

is used to emphasize that the model for the mean response at each occasion de-

pends only on the covariates of interest, and does not incorporate dependence

on previous responses. This is constrast to classical mixed-effect (conditional)

models, where the mean response is modeled not only as a function of covariates

but is conditional also on random effects.

Marginal models for dependent data separately model the mean response

and the dependence among observations. In a marginal model, the goal is to

make inferences about the former, whereas the latter is regarded as a nuisance

characteristic of the data that must be taken into account in order to make

correct inferences about changes in the population mean response over time.

A marginal model for dependent data has the following three-part specifica-

tion, with the subscript i and j denoting the cluster and the observation within

the cluster, respectively:

• The conditional expectation of each response, E(Yij |Xij) = µij , is as-

sumed to depend on the covariates through a known link function h−1(·),

h−1(µij) = ηij = XT
ijβ,

where β is a p× 1 vector of marginal regression parameters.

• The conditional variance of each Yij , given Xij , is assumed to depend on

the mean according to

V ar(Yij) = φν(µij),

where ν(·) is a known “variance function” and φ is a scale parameter that

may be fixed and known or may need to be estimated.

• The conditional dependence of the observations is assumed to be a function

of an additional vector of association parameters, say α.

A crucial aspect of marginal models is that the mean response and the depen-

dence among observations are modeled separately. This separation has impor-

tant implications for interpretation of the regression parameters in the model for

the mean response. In particular, the regression parameters, β, in the marginal

model have so-called population-averaged interpretations. That is, they de-

scribe how the mean response in the population is related to the covariates. For

example, regression parameters in a marginal model might have interpretation

15



in terms of contrasts of the changes in the mean responses in subpopulations

(e.g., different treatment, intervention or exposure groups).

The three-part marginal model specification does not require full distribu-

tional assumptions for the data, only a regression model for the mean response.

The avoidance of distributional assumptions leads to a method of estimation

known as generalized estimating equations. Thus, the GEE approach can be

though of as providing a convenient alternative to ML estimation. The GEE ap-

proach is a multivariate generalization of the quasi-likelihood approach for gen-

eralized linear models. To better understand this connection to quasi-likelihood

estimation, in the following we briefly outline the quasi-likelihood approach for

generalized linear models for a univariate response before discussing its exten-

sion to multivariate responses.

In the following, we now assume N independent observations of a scalar

response variable, Yi. Associated with the response, Yi, there are p covariates,

X1i, . . . , Xpi. We assume that the primary interest is in relating the mean of

Yi, µi = E(Yi|X1i, . . . , Xpi) to the covariates via an appropriate link function,

h−1(µi) = β0 + β1X1i + · · ·+ βpXpi,

where the link function h−1(·) is a known function. The assumption that Yi

has an exponential family distribution has implications for the variance of Yi.

In particular, a feature of exponential family distributions is that the variance

of Yi can be expressed in terms of a known function of the mean and a scale

parameter,

V (Yi) = φν(µi),

where the scale parameter φ > 0. The variance function, ν(µi) describes how

the variance of the response is functionally related to the mean of Yi. Next,

we consider estimation of β. Assuming Yi follows an exponential family density

with Var(Yi) = φν(µi), the maximum likelihood estimator of β is obtained as

the solution to the likelihood score equations,

n
∑

i=1

(

∂µi

∂β

)′
1

φν(µi)
{Yi − µi(β)} = 0,

where ∂µi/∂β is the 1 × p vector of derivatives, ∂µi/∂βi, i = 1, . . . , p. Inter-

estingly, the likelihood equations for generalized linear models depend only on

the mean and variance of the response (and the link function). It was suggested

using them as “estimating equations” for any choice of link or variance function,

even when the particular choice of variance function does not correspond to an

exponential family distribution. It was proposed estimating β by solving the
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quasi-likelihood equations,

n
∑

i=1

(

∂µi

∂β

)′

V −1
i (Yi − µi(β)) = 0.

For any choice of weights, Vi, the quasi-likelihood estimator of β, say β̂, is

consistent and asymptotically normal. The choice of weights, Vi = Var(Yi)

yields the estimator with smallest variance among all estimators in this class. In

summary, the estimation of β does not require distributional assumptions on the

response. Quasi-likelihood estimation only requires correct specification of the

model for the mean to yield consistent and asymptotically normal estimators

of β. That is, a key property of quasi-likelihood estimators is that they are

consistent even when the variance of the response has been misspecified, that

is, Vi 6= Var(Yi). Specifically, it can be shown that the asymptotic distribution

of β̂ satisfies √
n(β̂ − β) → N(0, Cβ),

where

Cβ = lim
n→infty

I−1
0 I1I

−1
0 ,

I0 =
1

n

n
∑

i=1

(

∂µi

∂β

)′

V −1
i

(

∂µi

∂β

)

and

I1 =
1

n

n
∑

i=1

(

∂µi

∂β

)′

V −1
i Var(Yi)V

−1
i

(

∂µi

∂β

)

Consistent estimators of the asymptotic covariance of the estimated regression

parameters can be obtained using the empirical estimator of Cβ . The empir-

ical variance estimator is obtained by evaluating ∂µi/β at β̂ and substituting

(Yi − µ̂i)
2 for Var(Yi); this is widely known as the sandwich variance estima-

tor. It can be shown that the same asymptotic distribution holds when Vi is

estimated rather than known, with Vi replaced by estimated weights, say V̂i.

The multivariate extension of this quasi-likelihood approach can be obtained by

replacing Yi and µi by their corresponding multivariate counterparts, and using

a matrix of weights Vi. In the multivariate case, Vi depends not only on β but

also on the pairwise associations among the observations in the ith cluster. In

general, the assumed covariance matrix among the responses within a cluster Vi

can be specified as

Vi = φA
1/2
i Ri(α)A

1/2
i ,

where A
1/2
i = diag{ν(µij)} is a diagonal matrix with diagonal elements ν(µij).

For the correlation matrix Ri(α), α represents a vector of parameters associated
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with a specified model for Corr(Yi), with typical element

ρist = ρist(α) = Corr(Yis, Yit;α), s 6= t.

In the GEE approach, Vi is usually referred to as a “working covariance”, where

the term “working” is used to emphasize that Vi is only an approximation

to the true covariance matrix. Note that if Ri(α) = I, the ni × ni identity

matrix, then the GEE reduces to the quasi-likelihood estimating equations for

a generalized linear model that assume the repeated measures are independent.

Some common examples of models for the correlation are:

• exchangeable, ρist = α ∀ s < t;

• Toeplitz, ρist = α|s−t|

• first-order autoregressive (AR-1), ρist = α|t−s|, where the correlation de-

creases as the time between measurements increases

• unstructured, ρist = αst

For the special case where the outcome is binary, an alternative to the correla-

tion as a measure of association between pairs of binary responses is the odds

ratio. In Chapter 3, the odds-ratio has many desirable properties and a more

straightforward interpretation.

2.3 Regression Spline

A spline function (q-spline) is a piecewise or segmented polynomial of degree q

with q − 1 continuous derivatives at the changepoints. In the spline literature

the changepoints are called knots. We consider only functions of a single vari-

able x. Suppose y = f(x) + ε, but f(x) is completely unknown. When faced

with a well-behaved curved trend in a scatterplot, most statisticians would fit

a low-order polynomial in x and go on to make inferences which are condi-

tional upon the truth of the polynomial model. This is done largely because

the family of polynomials is a family of simple curves which is flexible enough

to approximate a large variety of shapes. More technically, one could appeal to

the Stone-Weierstrass theorem (see Royden [1968:174]), from which it follows

that any continuous function on [a, b] can be approximated arbitrarily closely

by a polynomial. In pratical terms, a better approximation can be obtained by

increasing the order of the polynomial. The cost incurred for doing this is the

introduction of additional parameters and some oscillation between data points.

Spline functions can be viewed as another way of improving a polynomial ap-

proximation. Suppose we are prepared to assume that f(x) has q+1 continuous
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derivatives on [a, b]. Then by Taylor’s theorem,

f(x) =

q
∑

j=0

φjx
j + r(x),

where
q

∑

j=0

φjx
j =

q
∑

j=0

1

j!

∂jf(a)

∂xj
(x− a)j ,

and the remainder is given by

r(x) =
1

q!

∫ x

a

∂q+1f(t)

∂tq+1
(x− t)qdt

=
1

q!

∫ b

a

∂q+1f(t)

∂tq+1
(x− t)q+dt

where zq+ = zq if z ≥ 0 and 0 otherwise. Use of an order-q polynomial model

ignores the remainder term. Instead of improving the polynomial approximation

by increasing the order of the polynomial, it can be achieved by approximating

the remainder term. Consider a partition a ≡ α0 < α1 < · · · < αD−1 < αD ≡ b

and approximate the (q + 1)th derivative of f by a step function, then

r(x) ≈ 1

q!

D−1
∑

d=1

ξd(x− αd)
q
+.

The final term of the summation has been omitted as (x − b)q+ = 0 for x ≤ b.

The function f(x) can now be approximated by

f(x) ≈
q

∑

j=0

φjx
j +

1

q!

D−1
∑

d=1

ξd(x− αd)
q
+. (2.1)

This spline approximation can be improved either by increasing the number

of knots, or by allowing the data to determine the position of the knots, thus

improving the approximation of the integral in the remainder term r(x). The

advantage of using splines over increasing the order of the polynomial, in some

situations, is that the oscillatory behavior of high-order polynomials can be

avoided with splines.

When the positions of the knots αd are treated as fixed, model (2.1) is a

linear regression model. Testing whether a knot can be removed and the same

polynomial equation used to explain two adhacent segments can be test by

testing H0 : ξd = 0, which is the common t-test statistics.

19



2.4 Feature selection methods

2.4.1 Subset selection

Subset selection methods are a common technique to perform feature selection.

With subset selection, we retain only a subset of the variables, and eliminate the

rest from the model. Least squares regression (or quantile regression) is used

to estimate the coefficients of the inputs that are retained. There are a number

of different strategies for choosing the subset, including best-subset selection,

forward and backward stepwise selection and forward-stagewise regression. By

retaining a subset of the predictors and discarding the rest, subset selection

produces a model that is interpretable and has possibly lower prediction error

than the full model. However, because it is a discrete process, in which variables

are either retained or discarded, it often exhibits high variance and does not

reduce the prediction error of the full model. Regularized methods are more

continuous, and don’t suffer as much from high variability.

2.4.2 Ridge regression

Ridge regression shrinks the regression coefficients by imposing a penalty on

their size. The ridge coefficients minimize a penalized residual sum of least

squares,

β̂ridge = min
β







n
∑

i=1

(yi − xTi β)
2 + λ

p
∑

j=1

β2
p







Here λ > 0 is a tuning parameter that controls the amount of shrinkage: the

larger the value of λ, the greater the amount of shrinkage. The coefficients are

shrunk towards zero. An equivalent way to write the ridge problem is

β̂ridge = min
β

n
∑

i=1

(yi − xTi β)
2

subject to

p
∑

j=1

β2
j ≤ t

which makes explicit the size constraint on the parameters. There is a one-

to-one correspondence between the parameters λ and t. When there are many

correlated variables in a linear regression model, their coefficients can become

poorly determined and exhibit high variance. A wildly large positive coefficient

on one variable can be canceled by a similarly large negative coefficients on

its correlated cousing. By imposing a size constraint on the coefficients, this

problem is alleviated. Note that the intercept β0 has been left out of the penalty

term. Penalization of the intercept would make the procedure depend on the
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origin chosen for Y ; that is, adding a constant c to each of the targets yi would

not simply result in a shift of the predictions by the same amount c. Writing

the ridge criterion in matrix form,

RSS(λ) = (y −Xβ)T (y −Xβ) + λβTβ

the ridge regression solutions are easily seen to be

β̂ridge = (XTX+ λI)−1XTy,

where I is the p × p identity matrix. Notice that with the choice of quadratic

penalty βTβ, the ridge regression solution is again a linear function of y.

2.4.3 Lasso

The lasso is a shrinkage method like ridge, with subtle but important differences.

The lasso estimate is defined by

β̂lasso = min
β







n
∑

i=1

(yi − xTi β)
2 + λ

p
∑

j=1

|βj |







Equivalenty, we can write

β̂lasso = min
β

n
∑

i=1

(yi − xTi β)
2

subject to

p
∑

j=1

|βj | ≤ t

The L2 ridge penalty
∑p

1 β
2
j is replaced by the L1 lasso penalty

∑p
1 |βj |. This lat-

ter constraint makes the solutions nonlinear in the yi, and there is no closed form

expression as in ridge regression. Computing the lasso solution is a quadratic

programming problem, although efficient algorithms are available for comput-

ing the entire path of solutions as λ is varied, with the same computational

cost as for ridge regression. Because of the nature of the constraint, making t

sufficiently small will cause some of the coefficients to be exactly zero. Thus the

lasso does a kind of continuous subset selection.

2.4.4 Smoothly clipped absolute deviation

The main disadvantage of lasso is that its non-zero coefficients might be bi-

ased. The smoothly clipped absolute deviation (SCAD) penalty was shown to

21



overcome this issue. It is defined as

pSCAD
λ (β) =















λ|β|; if |β| ≤ λ

− |β|2−2aλ|β|+λ2

2(a−1) ; if λ ≤ |β| ≤ aλ
(a+1)λ2

2 ; if |β| > aλ















where a > 2 and λ > 0. It corresponds to a quadratic spline function with knots

at λ and aλ. The function is continuos and differentiable on (−∞, 0)∩(0,∞), but

singular at 0 with its derivatives zero outside the range [−aλ, aλ]. This results

in small coefficients being set to zero, a few other coefficients being shrunk

towards zero while retaining the large coefficients as they are. Thus, SCAD can

produce sparse set of solution and approximately unbiased coefficients for large

coefficients.

The solution to the SCAD penalty can be given as

β̂SCAD
j =











(|β̂j | − λ)+sign(β̂j); if |β̂j | ≤ 2λ

{(a− 1)β̂j − sign(β̂j)aλ/(a− 2)}; if 2λ < ||β̂j | ≤ aλ

β̂j ; if |β| > aλ











This thresholding rule involves two unknown parameters λ and a. Theoretically,

the best pair (λ, a) could be obtained using two dimensional grids search using

some criteria like cross validation methods. However, such an implementation

could be computationally expensive. Fan and Li (2001) suggested a = 3.7 is a

good choice for variance problems.
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Chapter 3

Marginal quantile

regression with a working

odds-ratio matrix

3.1 Introduction

Longitudinal and clustered data represent two frequent data structures in which

observations within clusters may be dependent. In this chapter we analyze data

from a longitudinal randomized trial on cognitive behavior therapy for treat-

ment of obsessive compulsive disorder (Vigerland et al. (2016)). Participants

were randomised to ten weeks of internet-based cognitive theraphy (ICBT) with

therapist support, or to a waitlist control condition. The main interest of the

study was to assess the relationship between the treatment and anxiety disorder

score.

Several methods have been proposed to account for the dependence induced

by the clustering when estimating marginal quantiles of a response variable.

Cluster bootstrap is practical but can become computationally slow when the

number of clusters is large. Besides, because it does not model the dependence,

it may also be inefficient. Generalized estimating equations (GEE), which can

estimate population-averaged models, have become a popular alternative to

the bootstrap. The dependence between observations within the same cluster

is modeled through a covariance matrix, which is usually assumed to be the

same for all clusters. In the literature this matrix is called working covariance

matrix, because the estimator is asymptotically correct even if the correlation is

misspecified. The term “population-averaged” refers to the fact that the method

models the average response over the subpopulation that shares a common value
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of the predictors as a function of such predictors (Diggle et al. (2002)).

Quantile regression is a distribution-free method (Koenker (2005)) that de-

scribes the entire conditional distribution of a response variable. Marginal quan-

tiles were analyzed by Jung (1996), who linked the GEE approach to quantile

regression. This method requires the estimation of the density of the residual

errors, and is based on estimating equations that are non-smooth with respect

to the parameters. More recently, Fu and Wang (2012) provided a smoothed

version of Jung’s estimating equation by means of induced smoothing (Brown

and Wang (2005)). This method does not require specifying the distribution of

the residuals and estimates the parameters and their standard errors jointly.

The main difference between mean and quantile GEE is related to the esti-

mation of the working correlation matrix. In the quantile approach, this matrix

is estimated from the regression residuals’ signs. However, the Pearson’s corre-

lation coefficient is not a good measure of dependence between binary variables

because it is bounded by their marginal probabilities.

Because correlation is not a natural scale for binary sign variables, modeling

on this scale has several disadvantages. First, it does not provide enough flexibil-

ity. For instance, parameters cannot depend on covariates. Second, estimation

procedures might be complicated because they have to respect the contraints

given by the marginal probabilities. Third, the interpretation of the correlation

coefficients may not be straightforward.

Fu et al. (2015) proposed to estimate the working correlation matrix us-

ing a gaussian pseudolikelihood. Although this may formulation improved the

flexibility, the computational and interpretational issues persist.

Instead, we propose to model a working association matrix defined through

odds ratios. In the context of marginal logistic regression, this parametrization

was analyzed by Lipsitz et al. (1991) and Carey et al. (1993).

Touloumis et al. (2013) studied the multinomial case. In marginal quantile re-

gression, this alternative was mentioned by Yi and He (2009). This chapter

explores the odds ratios parametrization in GEE applied to quantile regres-

sion. Different working structures can be estimated by specifying appropriate

logistic regression models, including multilevel hierarchical data structures. Lo-

gistic regression models can be used to select the working dependence structure

appropriately.

The rest of the chapter is organized as follows. Section 3.2 presents the

smoothed quantile generalized estimating equations and the odds-ratio models.

A simulation study is described in Section 3.3. We analyze data from a random-

ized trial on cognitive in behavior therapy for treatment of obsessive compulsive

disorder in Section 3.4. The chapter is concluded with a summary in Section 3.5.
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3.2 Method

Let {yij , xij}, i = 1, . . . , n, j = 1, . . . , Ti be longitudinal data, where yij ∈ R

is the response variable and xij ∈ R
P is the covariate vector. For brevity,

we assume that the number of observations in a cluster Ti is constant across

clusters, Ti = T . The general case when Ti 6= T is a straightforward extension.

Consider the problem of estimating the conditional τ -th quantile of y given x.

A simple solution is to treat the observation as independent and minimize the

following objective function:

∑

i,j

εij ψ(εij),

where εij = yij − xTijβτ indicates the residual and ψ(εij) = τ − I(εij < 0) is

a linear transformation of the residual sign. The parameter vector βτ can be

estimated by solving
∑

i,j

xijψ(εij) = 0

Ignoring the dependence within clusters may lead to wrong standard errors.

Consider the set of repeated measures on the i-th individual, denoted by

yi = (y11, . . . , y1T ), and its design matrix xi = (x11, . . . , x1T ). Each element

of the vector ψ(εi) = (ψ(εi1), . . . , ψ(εiT )) follows a Bernoulli distribution with

expectation τ . Therefore, marginal quantile regression can be regarded as a

special case of GEE where the mean model is a constant τ and the response

variable contains a function of the parameters, I(εij < 0). Jung (1996) showed

that marginal quantiles can be obtained by

UQ(β) =

n
∑

i=1

xTi ΓiW
−1
i ψτ (εi) = 0 (3.1)

where Wi = A
1/2
i RiA

1/2
i , Ai = diag(τ(1 − τ), . . . , τ(1 − τ)), Ri is the residuals

sign correlation matrix of the i-th individual, Γi = diag(fi1(0)), . . . , fiT (0)), and

fij indicates the probability density function of εij . The latter can be estimated

by (Hall and Sheather (1988))

f̂ij(0) = 2hn

[

xTij

{

β̂τ+hn
− β̂τ−hn

}]−1

where hn is a bandwidth parameter such that hn → 0 for n → ∞, often calcu-

lated as hn = 1.57n−1/3
(

1.5φ2
{

Φ−1(τ)
}

/
[

2
{

Φ−1(τ)
}2

])2/3

. The covariance

matrix Wi can be parametrized to increase efficiency. To protect against mis-

specification, a sandwich estimator of the standard errors can be used.
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The correlation matrix of the regression residuals and of the regression resid-

uals’ sign can be different from each other.

As pointed out by Leng and Zhang (2014), if εi has an AR-1 covariance matrix

with parameter φ then ψ(εi) depends on φ as a function of a computationally

untractable two-dimensional integral. Other examples can be found in Fu et al.

(2015). In general, the regression residuals and their signs have the same corre-

lation structure only if εi has an exchangeable or Toeplitz covariance structure.

Fu and Wang (2012) proposed to smooth Jung’s estimating equation by

means of induced smoothing (Brown and Wang (2005)). They approximated

the estimator by adding to the true value β a multivariate standard normal

distribution Z and a smoothing parameter Ω, β̂ = β + Ω1/2Z. The smoothed

estimating equations are obtained by

ŨQ(β) = EZ(UQ(β +Ω1/2Z)) =

n
∑

i=1

xTi ΓiW
−1
i (η)ψ̃τ (εi) = 0 (3.2)

where ψ̃τ (εi) =
(

1− Φ
(

yi1−xT
i1β

ri1

)

− τ, . . . , 1− Φ
(

yiT−xT
iT β

riT

)

− τ
)T

, Φ(·) is the
standard normal cumulative distribution and rik = (xTikΩxik)

1/2.

The derivative of the smoothed score are given by

D̃(β) =
∂ŨQ(β)

∂β
=

n
∑

i=1

XT
i ΓiW

−1
i (η)Λ̃iXi

where Λ̃i is a diagonal matrix with the kth diagonal element r−1
ik φ((yik −

xTikβ)/rik).

The estimation of β̃ and its covariance matrix is obtained through an algo-

rithm, summarized by the following steps:

1. Initialization: obtain β̃0 using ordinary quantile regression; set Ω0 =

n−1Ip and K = 0.

2. Compute the covariance matrix Wi(η) using logistic regression on the

residuals sign of the current estimate β̃K .

3. Update β̃K+1 and Ω̃K+1 by:

β̃K+1 = βK + {−D̃(β̃K , Ω̃K)}−1ŨQ(W
K
i , β̃K , Ω̃K)

Ω̃K+1 = [D̃(β̃K+1, Ω̃K)]−1Cov{ŨQ(W
K
i , β̃K+1}{[D̃(β̃K+1, Ω̃K)]−1}T ,

where Cov{ŨG(β)} =
∑n

i=1 x
T
i ΓiW

−1
i (η)ψ̃τ (εi)ψ̃

T
τ (εi)W

−1
i (η)Γixi.

4. Repeat steps (2) and (3) until convergence.

26



The final values of β̃ and Ω̃ are the smoothed estimator of β and its covariance

matrix. The algorithm is fast and it usually requires few iterations to achieve

convergence. Some difficulties may arise when estimating marginal quantiles at

extreme quantiles, because Wi(η) is less likely to be positive definite.

3.2.1 Estimating the working association matrix

Let Vit = I(yit ≤ xTitβτ ) be the residual sign of the i-th individual at time t and

Vt = (V1t, . . . , Vnt) be the set of residual signs at time t.

A generic element wzu of the working covariance matrixWi(η) can be written

as

wzu =







τ(1− τ), z = u

pzu − τ2, z 6= u

where pzu = E(VzVu) = P (Vz = 1, Vu = 1). The elements of Wi(η) can be

computed simultaneously through a second set of estimating equations

(Prentice (1988)). These probabilities are bounded by τ , the marginal proba-

bility of Vz and Vu, as follows:

max(0, 2τ − 1) ≤ pzu ≤ τ. (3.3)

The correlation coefficient is not a good measure of dependence between

binary variables, because it is bounded by their marginal frequencies. Instead,

we propose to model a working association matrix defined through odds ratios.

Let ηzu be the odds ratio between Vz and Vu,

ηzu =
P (Vz = 1, Vu = 1)/P (Vz = 0, Vu = 0)

P (Vz = 0, Vu = 1)/P (Vz = 1, Vu = 0)
.

Let A = {(Vz, Vu)}, z = u, . . . , T, u = 1, . . . , T, be the set of pairwise vectors of

all

(

T

2

)

residual signs corresponding to the odds ratios in the lower triangular

part of the working covariance matrix Wi(η). Because Wi(η) is symmetric, the

upper triangular part is the mirror image of the lower part. Consider the new

dataset (Vz, Vu, z, u, c). For any working structure ofWi(η), the respective set of

odds ratios can be estimated simultaneously through an appropriate definition

of the linear predictor in a logistic regression of Vz on Vu, Vz|Vu ∼ Be(µzu).

EstimatingWi(η) using logistic models has some advantages. First, it makes

it easy to specify the form of the working covariance matrix. For example,

• Exchangeable: logit(µzu) = α+ ηVu;

• Toeplitz: logit(µzu) = α+
∑T−1

i=1 ηiIz−u=iVu +
∑T−1

i=1 Iz−u=i;
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• Unstructured: logit(µzu) = α+
∑(T2)

i=1 ηiIc=iVu +
∑(T2)

i=1 Ic=i.

• Nested Exchangeable: logit(µzu) = α +
∑K−1

i=1 ηiVuIci=1 +
∑K−1

i=1 Ici=1,

where ci indicates whether Vz and Vu belong to the same i-th cluster.

• Exchangeable dependent on a categorical covariate X: logit(µzu) = α +
∑K

i=1 ηiVuIX=i +
∑K

i=1 IX=i, where K indicates the number of categories

of X.

Second, logistic models can be used to easily select the most appropri-

ate structure of the working covariance matrix. Likelihood comparisons and

Akaike’s information criterion may help identify the best structure. Given the

marginal probabilities τ and the odds ratios ηzu, the joint probabilities pzu can

be obtained by solving the following equation:

(ηzu − 1)p2zu + (2τ(1− ηzu)− 1)pzu + τ2ηzu = 0.

Only the smaller root of the former equation provides probabilities that respect

the constraints in equation (3.3).

3.3 Simulation study

We conducted simulations to assess the performance of the proposed method.

The response variable was generated from the following model:

yij = β0 + β1x1ij + (1 + |x1ij |)(εij − qτ ) i = 1, . . . , 250, j = 1, . . . , T,

where qτ was such that p(εij ≤ qτ ) = τ . The size of each cluster was sampled

from a binomial distribution Binom(T, p), with T = (5, 10) and p = 0.8. The co-

variate x1ij was sampled from a uniform distribution U(0, 1) and the regression

coefficients were set to 1.

We considered the following dependence structures for εi = (εi1, . . . , εiT ):

• exchangeable, with correlation of 0.3 and 0.6;

• independence;

• Toeplitz, with correlation equal to 0.4 for the first two lags and zero oth-

erwise.

The distribution of the error term was multivariate Gaussian with unit variance

diagonal.

We conducted a simulation study with 500 independent realizations and esti-

mated three different quantiles, τ = (0.10, 0.25, 0.50). All computations were
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performed using R version 3.23. The multivariate Gaussian random variable

were generated using the “mvtnorm” library.

Coverage probabilities were close to their nominal value in all the settings

(Table 3.1). The estimator of the 10-th percentile showed undercoverage, with

smallest observed value equal to 0.88. Cluster bootstrap had a smaller mean

squared error (MSE) than the proposed method when the 10-th percentile was

estimated (Table 3.2). This may indicate that the number of clusters for this

percentile was not large enough to ensure asymptotic properties. When the 25-

th and 50-th percentile were estimated, the proposed method provided smaller

mean squared error than cluster bootstrap, regardless of the dependence struc-

ture. Similarly to the classic GEE for the expectation of a response variable,

selecting the true dependence structure improved the performances of the es-

timator in terms of mean squared error. When the true dependence structure

was Toeplitz, the estimator obtained using the true dependence structure pro-

vided the smallest mean squared error in most of the settings. In the inde-

pendent case, results were very similar across all the working structures. In

the exchangeable case, the independence and exchangeable structures had the

smallest mean squared error.

Model-based (naive) standard errors were on average smaller than robust

standard errors in all settings (Table 3.3), except the independence case. Mis-

specification of the working correlation structure lead to a decrease in the em-

pirical coverage of the estimators.

Model selection performed through Akaike’s information criterion selected

the true dependence structure with a probability between 80 and 100 percent

for the 25-th and 50-th percentiles and between 40 and 75 percent for the 10-

th percentile(Table 3.4). The smallest percentage of correct selection was 40

percent, obtained when the true dependence structure was Toeplitz, τ = 0.10

and T = 5. The highest was 100 percent, obtained when the true dependence

structure was Toeplitz, τ = 0.50 and T = 10. In general, the percentage of

correct selection was higher for the median than the 25-th percentiles.
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τ = 0.10 τ = 0.25 τ = 0.50

T β̂0 β̂1 β̂0 β̂1 β̂0 β̂1

True structure: Toeplitz
WI 0.914 0.926 0.934 0.950 0.940 0.938
EX 0.914 0.926 0.930 0.948 0.938 0.934
AR 10 0.912 0.920 0.930 0.946 0.944 0.934
TO 0.924 0.922 0.924 0.948 0.938 0.940
BS 0.944 0.940 0.946 0.956 0.938 0.942

WI 0.910 0.902 0.926 0.946 0.944 0.944
EX 0.912 0.902 0.926 0.948 0.948 0.940
AR 5 0.912 0.896 0.924 0.950 0.944 0.940
TO 0.912 0.906 0.914 0.940 0.938 0.932
BS 0.934 0.926 0.938 0.948 0.958 0.950

True structure: Independence
WI 0.914 0.928 0.952 0.950 0.942 0.948
EX 0.910 0.928 0.950 0.950 0.942 0.942
AR 10 0.914 0.926 0.950 0.950 0.940 0.948
TO 0.906 0.932 0.948 0.944 0.940 0.946
BS 0.938 0.958 0.966 0.966 0.948 0.954

WI 0.908 0.922 0.942 0.926 0.946 0.956
EX 0.908 0.920 0.946 0.928 0.946 0.954
AR 5 0.910 0.920 0.946 0.926 0.946 0.954
TO 0.912 0.918 0.942 0.932 0.946 0.950
BS 0.930 0.930 0.958 0.944 0.964 0.964

True structure: Exchangeable with ρ = 30
WI 0.926 0.930 0.934 0.954 0.946 0.948
EX 0.934 0.930 0.932 0.962 0.948 0.950
AR 10 0.932 0.932 0.932 0.954 0.950 0.954
TO 0.928 0.934 0.934 0.960 0.946 0.950
BS 0.942 0.950 0.940 0.958 0.964 0.956

WI 0.892 0.906 0.946 0.944 0.922 0.926
EX 0.888 0.900 0.948 0.946 0.924 0.938
AR 5 0.894 0.898 0.950 0.946 0.920 0.938
TO 0.892 0.904 0.948 0.944 0.918 0.938
BS 0.942 0.954 0.950 0.958 0.940 0.938

True structure: Exchangeable with ρ = 60
WI 0.902 0.908 0.954 0.936 0.956 0.942
EX 0.900 0.914 0.944 0.930 0.944 0.944
AR 10 0.908 0.908 0.946 0.926 0.944 0.944
TO 0.904 0.916 0.944 0.930 0.942 0.946
BS 0.932 0.948 0.962 0.942 0.952 0.948

WI 0.898 0.922 0.938 0.946 0.932 0.934
EX 0.906 0.910 0.944 0.946 0.938 0.946
AR 5 0.912 0.908 0.934 0.944 0.934 0.946
TO 0.902 0.908 0.928 0.950 0.934 0.944
BS 0.938 0.946 0.966 0.968 0.956 0.946

Table 3.1: Empirical coverage of the proposed estimator at three quantiles
for different working correlation structures, cluster size T and true correla-
tion structures. WI=independence, EX=exchangeable, AR=autoregressive,
TO=Toeplitz, BS=cluster bootstrap.
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τ = 0.10 τ = 0.25 τ = 0.50

T β̂0 β̂1 β̂0 β̂1 β̂0 β̂1

True structure: Toeplitz
WI 0.1381 0.6603 0.0903 0.3789 0.0798 0.3414
EX 0.1387 0.6593 0.0907 0.3802 0.0796 0.3430
AR 10 0.1373 0.6555 0.0889 0.3737 0.0790 0.3365
TO 0.1366 0.6522 0.0890 0.3633 0.0783 0.3286
BS 0.1273 0.5966 0.0899 0.3772 0.0820 0.3514

WI 0.2880 1.3025 0.1699 0.7360 0.1410 0.6469
EX 0.2863 1.2933 0.1685 0.7240 0.1373 0.6269
AR 5 0.2825 1.2753 0.1678 0.7216 0.1372 0.6259
TO 0.2818 1.2864 0.1656 0.7259 0.1399 0.6226
BS 0.2536 1.1050 0.1675 0.7340 0.1455 0.6673

True structure: Independence
WI 0.0992 0.4368 0.0480 0.2068 0.0449 0.1811
EX 0.0992 0.4381 0.0481 0.2074 0.0448 0.1810
AR 10 0.0992 0.4377 0.0481 0.2074 0.0449 0.1810
TO 0.0997 0.4396 0.0487 0.2098 0.0448 0.1820
BS 0.0881 0.3795 0.0482 0.2054 0.0459 0.1847

WI 0.1868 0.8453 0.0984 0.4693 0.0760 0.3392
EX 0.1869 0.8462 0.0984 0.4694 0.0758 0.3387
AR 5 0.1870 0.8485 0.0984 0.4691 0.0758 0.3386
TO 0.1892 0.8507 0.0989 0.4689 0.0758 0.3394
BS 0.1711 0.7612 0.0995 0.4678 0.0808 0.3660

True structure: Exchangeable with ρ = 30
WI 0.1771 0.7963 0.1160 0.4746 0.1106 0.4563
EX 0.1761 0.8009 0.1152 0.4702 0.1105 0.4490
AR 10 0.1772 0.7989 0.1151 0.4697 0.1095 0.4457
TO 0.1772 0.7977 0.1157 0.4739 0.1105 0.4456
BT 0.1667 0.7360 0.1212 0.4990 0.1156 0.4804

WI 0.2905 1.3773 0.1462 0.6456 0.1526 0.6486
EX 0.2886 1.3648 0.1454 0.6326 0.1500 0.6286
AR 5 0.2913 1.3820 0.1456 0.6357 0.1517 0.6311
TO 0.2875 1.3484 0.1461 0.6290 0.1509 0.6283
BS 0.2242 0.9985 0.1492 0.6439 0.1519 0.6523

True structure: Exchangeable with ρ = 60
WI 0.3107 1.3797 0.1883 0.8730 0.1783 0.7632
EX 0.3173 1.4302 0.1909 0.9024 0.1834 0.8213
AR 10 0.3145 1.3921 0.1890 0.8874 0.1774 0.7827
TO 0.3153 1.4352 0.1923 0.9044 0.1813 0.8117
BS 0.2730 1.1983 0.1903 0.8910 0.1805 0.7805

WI 0.4306 1.9953 0.2268 0.9978 0.1858 0.8891
EX 0.4146 1.9234 0.2323 1.0414 0.1857 0.8707
AR 5 0.4219 1.9758 0.2317 1.0377 0.1859 0.8647
TO 0.4250 1.9645 0.2360 1.0470 0.1854 0.8701
BS 0.3570 1.4985 0.2210 0.9626 0.1869 0.8874

Table 3.2: Mean squared error of the proposed estimator at three quantiles
for different working correlation structures, cluster size T and true correla-
tion structures. WI=independence, EX=exchangeable, AR=autoregressive,
TO=Toeplitz, BS=cluster bootstrap.
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τ = 0.10 τ = 0.25 τ = 0.50

T Avg s.e. Cover Avg s.e. Cover Avg s.e. Cover

True structure: Toeplitz
WI 0.2036 0.796 0.1260 0.868 0.1217 0.864
EX 10 0.0965 0.856 0.0090 0.946 0.0067 0.922
TO 0.1039 0.848 0.0216 0.940 0.0209 0.936

WI 0.2932 0.750 0.1479 0.880 0.1399 0.890
EX 5 0.1667 0.786 0.0161 0.926 0.0035 0.940
TO 0.1694 0.792 0.0229 0.918 0.0124 0.938

True structure: Independence
WI 0.0418 0.860 -0.0197 0.954 -0.0161 0.956
EX 10 0.0447 0.860 -0.0171 0.952 -0.0136 0.950
TO 0.0447 0.862 -0.0171 0.954 -0.0133 0.950

WI 0.1038 0.854 -0.0184 0.924 -0.0256 0.966
EX 5 0.1076 0.848 -0.0147 0.922 -0.0230 0.964
TO 0.1078 0.844 -0.0141 0.924 -0.0228 0.960

True structure: Exchangeable with ρ = 30
WI 0.2887 0.776 0.2298 0.830 0.2274 0.800
EX 10 0.1173 0.844 0.0554 0.942 0.0570 0.936
TO 0.1184 0.846 0.0552 0.944 0.0571 0.938

WI 0.2715 0.774 0.1478 0.890 0.1473 0.866
EX 5 0.1541 0.804 0.0100 0.934 0.0079 0.946
TO 0.1564 0.804 0.0118 0.938 0.0078 0.942

True structure: Exchangeable with ρ = 60
WI 0.5468 0.658 0.4402 0.714 0.4234 0.680
EX 10 0.2913 0.814 0.2358 0.856 0.2388 0.828
TO 0.2918 0.810 0.2373 0.848 0.2416 0.836

WI 0.5100 0.628 0.3237 0.786 0.2870 0.810
EX 5 0.2908 0.752 0.1190 0.904 0.0998 0.912
TO 0.2928 0.740 0.1216 0.904 0.1024 0.908

Table 3.3: Standard error difference between the robust and naive estimators
(Avg s.e.) and empirical coverage of the naive estimators (Cover) for the pa-
rameter β1 at three quantiles for different working correlation structures, cluster
size T and true correlation structures. WI=independence, EX=exchangeable,
TO=Toeplitz.
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τ = 0.10 τ = 0.25 τ = 0.50

True model T WI EX TO AR WI EX TO AR WI EX TO AR

Independent 10 354 86 60 0 394 84 22 0 413 87 0 0
5 369 87 44 0 393 84 23 0 415 76 9 0

Exchangeable 30 10 12 407 81 0 0 442 58 0 0 498 2 0
5 30 407 63 0 3 452 45 0 0 494 6 0

Exchangeable 60 10 0 366 134 0 0 405 95 0 0 474 26 0
5 0 403 97 0 0 445 55 0 0 459 41 0

Toeplitz 10 29 147 324 0 1 39 460 0 0 0 500 0
5 24 278 198 0 1 142 357 0 0 17 483 0

Table 3.4: Frequency of correct selections of the true model in different scenarios and quantiles. T indicates the cluster size.
WI=independence, EX=exchangeable, TO=Toeplitz, AR=autoregressive.
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3.4 Application to internet-based cognitive ther-

apy data set

The dataset consisted of ninety-five (n = 95) families with a child aged 8-12

years with a principal diagnosis of generalised anxiety, panic disorder, separa-

tion anxiety, social phobia and specific phobia Vigerland et al. (2016). Partici-

pants were randomised to ten weeks of internet-based cognitive theraphy (ICBT)

with therapist support (70 families), or to a waitlist control condition (25 fami-

lies). At weekly intervals, the amount of difficulties in emotion regulation scale

(DERS) was measured on a 0-100 scale, where 0 indicated no difficulties and

100 extreme difficulties. The maximum number of repeated measurements is

fourteen (T = 14). Similarly to previous studies, we assumed that data were

missing completely at random. The main interest of the study was to assess the

relationship between the treatment and DERS.

Figure 3.1 shows the residual errors of a classical mean regression and their

kernel density. It was markedly skewed and there were several outliers. The

mean was not an appropriate summary of it, and we considered quantiles. There

seemed to be a time effect on the response variable, both in treated and un-

treated groups (Figure 3.2). The intraclass correlation was estimated to be

70%.

We considered three different quantiles, τ = (0.25, 0.50, 0.75), and estimated

the following model:

Q(Dersij |Treat,Time) = β0 + β1Treati + β2Timeij + β3Treati × Timeij . (3.4)

We considered an exchangeable, Toeplitz, independence and treatment-dependent

exchangeable association structures, along with a cluster bootstrap. Results are

shown in Table 3.5.

The treatment coefficient, β1, represents the difference in the considered

quantile between treatment groups at the start of the study. It was statis-

tically significant at the 50-th and 25-th percentiles in the exchangeable and

treatment-dependent exchangeable structures. Considering the randomization,

the observed difference at baseline can only be explained by chance. The time

coefficient, β2, indicates the change in the considered quantile per unit change

in time. It was significant at the median with all correlation structures except

the Toeplitz. At the 75-th percentile it was significant with all correlation struc-

tures. The interaction coefficient, β3, represents the difference in the slope over

time between the treatment groups. We found no significant difference in slope.

The treatment-dependent exchangeable structure had the smallest AIC. Mea-

surements from subjects that were treated were less strongly associated than
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those from subjects that were not treated (Table 3.6). Standard errors obtained

with cluster bootstrap were up to 50 percent greater than those obtained with

the proposed method.

Figure 3.3 shows the relationship between DERS and Time, stratified by

treatment. As the estimated quantile increases, the correlation between DERS

and time decreases. The differences between treated and untreated are stronger

at the median than at other percentiles.
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Figure 3.1: Mean regression residuals obtained from model (3.4) and their esti-
mated kernel density.
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Figure 3.2: Boxplot of difficulties in emotion regulation scale (DERS) at different
times. The two lines represents the mean of the response for that specific time
in the group of treated and the untreated group.
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Coefficient τ = 0.25 τ = 0.50 τ = 0.75

EX

Intercept 53.208 (0.908) 65.273 (3.243) 72.915 (2.739)
Treatment -5.988 (2.589) -8.320 (3.908) -6.406 (3.790)
Time -0.630 (0.648) -0.608 (0.270) -0.446 (0.218)
TrxTime 0.202 (0.694) 0.081 (0.307) 0.265 (0.301)
AIC 3165 4043 3045

EX-Trt

Intercept 53.152 (0.936) 65.282 (3.250) 72.933 (2.745)
Treatment -5.766 (2.576) -8.221 (3.894) -6.336 (3.728)
Time -0.649 (0.684) -0.607 (0.270) -0.445 (0.219)
TrxTime 0.227 (0.728) 0.081 (0.307) 0.265 (0.300)
AIC 3092 4031 3022

TO

Intercept 53.436 (0.611) 63.528 (6.809) 72.068 (2.467)
Treatment -6.964 (1.771) -7.140 (6.950) -6.307 (3.454)
Time -0.810 (0.658) -0.472 (0.445) -0.434 (0.198)
Tr×Time 0.579 (0.689) 0.004 (0.478) 0.290 (0.300)
AIC 3179 4037 3062

WI

Intercept 53.993 (3.392) 64.972 (3.560) 72.539 (2.639)
Treatment -6.079 (3.937) -6.954 (4.097) -5.240 (3.489)
Time -0.542 (0.426) -0.679 (0.288) -0.534 (0.214)
TrxTime 0.120 (0.486) 0.211 (0.348) 0.319 (0.313)
AIC 4207 5177 4207

BT

Intercept 54.430 (3.161) 65.059 (4.104) 72.229 (2.940)
Treatment -5.180 (3.854) -6.171 (4.383) -4.629 (3.914)
Time -0.503 (0.322) -0.728 (0.366) -0.627 (0.254)
TrxTime -0.080 (0.406) 0.187 (0.417) 0.391 (0.345)

Table 3.5: Estimated quantile regression coefficients, standard errors (in paren-
theses) and logistic models’ AIC for three quantiles using exchangeable (EX), ex-
changeable varying with treatment (EX-Trt), Toeplitz (TO) and independence
(WI) working correlation structures, along with a cluster bootstrap (BT).

Correlation Parameter τ = 0.25 τ = 0.50 τ = 0.75

φTRT=0 0.06 0.11 0.08
φTRT=1 0.12 0.14 0.12
φExch 0.10 0.13 0.11

Table 3.6: Estimated working correlation parameters for the exchangeable
(φExch) and exchangeable varying with treatment (φTRT=1 and φTRT=0) struc-
tures in the cognitive therapy application.
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Figure 3.3: Estimated relationship between difficulties in emotion regula-
tion scale (DERS) and time by treatment at three different quantiles τ =
(0.25, 0.50, 0.75) with an exchangeable correlation structure varying with treat-
ment. The dashed lines represent the treated group, while the solid lines repre-
sent the untreated group.
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3.5 A summary

The present Chapter 3 chapter describes an alternative method to estimate

the dependence within clusters for inference on population marginal quantile

models. The association matrix of the residuals’ sign is estimated by means of

appropriate logistic regression models. The estimation is flexible and computa-

tionally fast. In our study the proposed method was approximately as fast as

GEE applied to the mean. The best-fitting working structure can be selected by

likelihood comparisons or, for non-nested models, by the Akaike’s information

criterion. Our simulations showed that this criterion could select the true depen-

dence structure with high probability Possible extensions of this work include

models for dependence with non-parametric quantile regression, M-estimators,

LMS (Cole (1990)) and other classifiers.
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Chapter 4

Penalized marginal quantile

models

4.1 Introduction

This chapter presents two penalized versions of the marginal quantile regression

estimator of Chapter 3, regularized smoothly clipped absolute deviation (SCAD)

models for feature selection and reduced-rank penalized splines smoothing. Pre-

vious works in this field generally lack the possibility to either estimate quantiles

(Wang et al. (2012), Chen et al. (2013)) or to account for the dependence struc-

ture of the data (Sherwood et al. (2016), Pratesi et al. (2009)).

Our proposed methods consist of solving estimating equations composed of

two components. The first measures the fit of the model and it is the same as

equation 3.2. The second is a penalization component that controls the model

complexity through a tuning parameter. In regularized models, the model com-

plexity is related to the coefficients’ magnitude. Among the several penalty

functions proposed in the literature, we chose the smoothly clipped absolute de-

viations (SCAD) penalty. Fan and Li (2001) showed that it has three desiderable

properties of model selection: unbiasedness, sparsity and continuity. Other com-

mon penalty functions may lack any of these properties. For instance, the lasso

penalty does not satisfies the unbiasedness property, the ridge penalty does not

statisfied the sparsity property and elastic nets do not satisfy the continuity

property.

In reduced-rank penalized spline smoothing, the model complexity is related

to the smoothness of the estimated function. There are several choices for the

spline basis. We focused on the truncated polynomial spline, because it provides

analytical advantages.
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In any given setting, other types of penalty functions or splines basis could

perform better. The rest of the chapter is organized as follows. Section 4.2

presents the penalized quantile regression method and two special cases. Simu-

lation studies are described in Section 4.3. We analyze data from a randomized

trial on cognitive in behavior therapy for treatment of obsessive compulsive dis-

order in Section 4.4. The chapter is concluded with a discussion in Section

4.5.

4.2 Methods

4.2.1 Penalized quantile estimating equations

Let {yij , xij}, i = 1, . . . , n, j = 1, . . . , Ti be longitudinal data, where yij ∈ R is

the response variable and xij ∈ R
P is the covariate vector.

For brevity, we assume that the number of observations in a cluster Ti is constant

across clusters, Ti = T . The general case when Ti 6= T is a straightforward

extension. As was shown in Chapter 3, marginal quantiles can be obtained by

solving a smooth estimating equation,

ŨQ(β) =

n
∑

i=1

xTi ΓiW
−1
i (η)ψ̃τ (εi) = 0

The penalized quantile estimating equations are defined as

U(β, λ,Ω) = ŨQ(β,Ω)− UP (β, λ) = 0 (4.1)

Note that if we take ŨQ(β,X) =
∑n

i=1X
T
i W

−1
i (η)(Yi − XT

i β), the classical

GEE for the mean, we obtain penalized marginal mean regression.

The tuning parameter λ controls the entire penalization component UP (β, λ).

When it is zero, the penalization component disappears and the estimating

equation reduces to equation 3.2. When it is infinite, the penalization is large.

In penalized splines, this forces the estimated function to become linear. In

regularized regression, it shrunk all the estimated parameters towards zero.

The complexity of the model might be controlled by a set of tuning pa-

rameters. In penalized splines, this allows the estimated function to be more

flexible at knots where the function is strongly nonlinear, and less flexible at

knots where the function is more linear. In regularized models, this allows to

shrink coefficients with a different magnitude.

In this work, we focus on a single tuning parameter λ, selected through either

cross-validation techniques or by minimizing a measure that balances goodness

of fit and model complexity such as the Bayesian Information Criterion (BIC).
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4.2.2 Regularized models for feature selection

There are several penalty functions available to perform feature selection, for

instance lasso, elastic nets and smoothly clipped absolute deviation (SCAD). A

good penalty function should result in an estimator with three properties: unbi-

asedness, sparsity (the estimator automatically sets small estimated coefficients

to zero to reduce model complexity) and continuity (a relevant property to avoid

instability in model prediction). Among the several penalty functions available,

SCAD is one of the few that simultaneously achieves all these properties.

This penalty is defined as

UP (β, λ) = q(λ, |β|)sgn(β), (4.2)

q(λ, β) = nλ

{

I(β ≤ λ) +
(aλ− β)+
λ(a− 1)

I(β > λ)

}

, (4.3)

where a can be taken as 3.7 as recommended by Fan and Li (2001).

The non-differentiability of the SCAD penalty might cause computational

problems. Hunter and Li (2005) proposed to solve this equations through the

minorization-maximization (MM) algorithm. For a small ε < 0, the MM algo-

rithm suggests that the penalization term can be approximated by

ŨP (β, λ) = q(λ, |β|) sign(β) |β|
ε+ |β| (4.4)

In the numerical analyses, we take ε to be the fixed small number 10−6. The

estimation of β̃ and its covariance matrix is obtained through an algorithm,

summarized by the following steps:

1. Initialization: set β̂0 = (0, . . . , 0)p and Ω0 = n−1Ip and K = 0.

2. Compute the covariance matrix Wi(η) using logistic regression on the

residuals sign of the current estimate β̂K .

3. Update β̂K+1 and Ω̂K+1 by:

β̂K+1 = β̂K + {H(β̂K , λ, Ω̂K))}−1U(WK
i , β̂K , λ, Ω̂K)

Ω̂K+1 = [H(β̂K+1, λ, Ω̂K)]−1
Cov{UQ(WK

i , β̂K+1, Ω̂K)}{[H(β̂K+1, λ, Ω̂K)]−1}T

where

H(β, λ,Ω) =
∑n

i=1X
T
i ΓiW

−1
i (η)Λ̃iXi − diag

{

q(λ,|β|)
ε+|β1|

, . . . , q(λ,|β|)ε+|βp|

}

Cov{UQ(W
K
i , β̂K+1, Ω̂K)} = [UQ(W

K
i , β̂K+1, Ω̂K)]TUQ(W

K
i , β̂K+1, Ω̂K)

4. Repeat steps (2) and (3) until convergence.

The final values of β̂ and Ω̂ are the estimator of β and its covariance ma-

trix. In our simulations, we continued the iterative procedure until ||βK+1 −
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βK || < 10−8. Our numerical experiment showed that the stopping criterion was

achieved on average in 30 iterations.

4.2.3 Reduced-rank penalized splines smoothing

Let B(x) denote an l-dimensional vector of spline basis functions such as B-

splines or truncated polynomials. For the pth order truncated polynomial with

K knots, B(x) = [1, x, . . . , xp, (x − τ1)
p
+, . . . , (x − τK)p+], where τ1, . . . , τk is a

sequence of knots. Let Bi = [B(Xi1), . . . , B(Xini
)] denote the ni × l matrix of

basis functions.

Chen et al. (2013) showed the penalized mean regression splines are obtained

by solving

UM (θ, λ,Ω, B) =

n
∑

i=1

BT
i V

−1
i (η)(Yi −BT

i θ)− λDqθ = 0, (4.5)

where Vi is the working covariance matrix of the regression residuals, θ is a

vector of basis coefficients and Dq is an appropriate difference-based penalty

matrix that depends on the chosen basis.

Similarly, the penalized quantile regression splines are obtained by substitut-

ing the unpenalized component of equation 4.5 with the unpenalized component

of marginal quantile regression:

U(θ, λ,Ω, B) =

n
∑

i=1

BT
i ΓiW

−1
i (η)ψ̃τ (Yi −BT

i θ)− λDqθ = 0,

where Γi and Wi are the same as equation 3.2. For the qth order truncated

polynomial basis, we have Dq = (0q+1, 1K).

The derivative of the penalized regression spline estimating equations are

H(θ, λ,Ω) = HQ(θ,Ω)−HP (θ, λ), (4.6)

where HQ(θ,Ω) =
∑n

i=1B
T
i ΓiW

−1
i (η)Λ̃iBi and HP (θ, λ) = λDq are the deriva-

tives of the unpenalized and penalized components of the penalized splines es-

timating equation.

The vector of basis coefficients θ and its covariance matrix Ω can be esti-

mated with the following algorithm.

1. Initialization: Set θ̂0 = (0, . . . , 0)p and Ω0 = n−1Iq and K = 0.

2. Compute the covariance matrix Wi(η) using logistic regression on the

residuals sign of the current estimate θ̂K .
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3. Update θ̂K+1 and Ω̂K+1 by:

θ̂K+1 = θ̂K + {H(θ̂K , λ, Ω̂K))}−1U(WK
i , θ̂K , λ, Ω̂K)

Ω̂K+1 = [H(θ̂K+1, λ, Ω̂K)]−1
Cov{UQ(WK

i , θ̂K+1, Ω̂K)}{[H(θ̂K+1, λ, Ω̂K)]−1}T

where

Cov{UQ(WK
i , θ̂K+1, Ω̂K)} = [UQ(WK

i , θ̂K+1, Ω̂K)]TUQ(WK
i , θ̂K+1, Ω̂K)

4. Repeat steps (2) and (3) until convergence.

The final values of θ̂ and Ω̂ are the estimator of θ and its covariance matrix.

In our simulations, we continued the iterative procedure until ||θK+1 − θK || <
10−4. The stopping criterion was achieved on average in 20 iterations. The

covergence rate of the algorithm was generally higher when we used a working

independence working association structure Wi.

The estimated function f̂(x) and its sandwich variance are, respectively,

f̂(x) = BT (x)θ̂ and var(f̂(x)) = BT (x)cov(θ̂)B(x).

4.2.4 Selection of the tuning parameter

The selection criterion of the tuning parameter λ is different for penalized spline

and regularized SCAD models. In the former, we selected it through cross-

validation. The data was randomly splitted into several non-overlapping sub-

sets of approximately equal size. We removed one subset and fit the model to

the remaining data, and estimated the prediction error from the removed ob-

servations. This was repeated for each subset, the estimated prediction errors

were aggregated, and the best tuning parameter was selected by minimizing the

aggregated estimated prediction error over a fine grid. We used the negative

loglikelihood of an asymmetric Laplace distribution as loss function. Alterna-

tively, we could have used the quasi-likelihood under the independence model

criterion (QIC), Pan (2001)):

QIC(R) = −2Q(β̂(R); I) + 2trace(Ω̂I V̂R), (4.7)

where I is the working independence structure, R is a working covariance struc-

ture, VR is the robust estimator of the covariance matrix of the working structure

R, ΩI = ∂
∂β ŨQ(β,X, I) and Q(β̂(R); I) is the quasi-likelihood constructed using

a working independence structure evaluated at the estimate β̂ obtained using

the working covariance matrix R. In particular,

Q(β̂(R); I) =
∑

i,j

(yij − xT1ij β̂(R)) ψ(yij − xT1ij β̂(R)),
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where ψ(yij − xT1ij β̂(R)) = τ − I(yij − xT1ij β̂(R) < 0). The main advantage of

this measure is that it takes into account the dependence structure of the data.

However, it is computationally slow, since it requires the estimation of two mod-

els, one for the working structure R and another for the working independence

structure. Because the negative loglikelihood of an asymmetric Laplace distri-

bution is simple to implement and computationally fast, we selected it as loss

function.

In regularized SCAD models, we selected the tuning parameter λ by op-

timizing some data-driven criteria which balances goodness of fit and model

complexity. We used the BIC for high-dimensional data proposed by Ma et al.

(2013):

BICλ = log

(∑

i e
T
i R

−1
i ei

nt

)

+
log(nt)

nt
df,

where ei = yi − xTi β for given λ, Ri is the working correlation matrix and

df is the number of non-zero coefficients of the model (at the end of the esti-

mation procedure, any coefficient that is below 10−4 was considered as zero).

Alternatively, we could have used the high-dimensional BIC for linear quantile

regression when p is much larger than n (Lee et al. (2014)),

QBIC(λ) = log

n
∑

i=1

t
∑

j=1

ψ(yij − xTij β̂λ) + νλ
log(p) log(nt)

2nt
,

where νλ is the degrees of freedom of the fitted model, which is the number of

interpolated fits for quantile regression. The main problem of this method is

that the number of interpolated fits of a smoothed quantile regression is very

different from that of classical quantile regression. Moreover, QBIC does not

account for the dependence structure of the data.

4.3 Simulation studies

4.3.1 Regularized models

We conducted simulations to assess the performance of the regularized SCAD

quantile model. The response variable was generated from the following model:

yij = β1x1ij + β2x2ij + β3x3ij + εij i = 1, . . . , 200, j = 1, . . . , 9

The covariates x1ij , x2ij , x3ij were sampled from a uniform distribution U(0, 1)

and the regression coefficients were set to β = (1, 2,−0.5). We added 200

independent predictors sampled from a uniform distribution U(0, 1) and stan-

dardized.
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We considered the following dependence structures for εi = (εi1, . . . , εiT ):

• exchangeable, with correlation coefficient 0.5;

• independence;

• Toeplitz, with bands correlation coefficient:

(0.8, 0.6, 0.4, 0.2, 0.2, 0.1, 0.1, 0.1, 0).

The distribution of the error term was multivariate Gaussian with unit variance

diagonal.

We conducted a simulation study with 500 independent realizations and

estimated two different quantiles, τ = (0.50, 0.75). All computations were per-

formed using R version 3.23. The multivariate Gaussian random variable were

generated using the “mvtnorm” library.

Coverage probabilities obtained through the sandwich formula for β1, β2, β3

were close to their nominal value in all settings (Table 4.1).

Table 4.2 shows the proportion of times the penalized SCAD estimator (P),

the unpenalized estimator (UP) and the oracle estimator (OR) under-selected

(U), over-selected (O) and exactly selected (EXACT) the nonzero coefficients.

The regularized SCAD quantile regression models selected the relevant predic-

tors with high probability. The penalized and oracle estimator correctly selected

the true model 100 percent of the time. The unpenalized estimator never se-

lected correctly the true model and always overfitted.

Table 4.3 report the mean squared error (MSE) of the function f(x) = xTijβ,

i.e. (1800)−1
∑200

i=1

∑9
j=1(x

T
ij β̂−x1ij − 2x2ij +0.5x3ij)

2 for the oracle estimator

(O), penalized estimator (P) and unpenalized estimator (UP). When the true

correlation structure was used, the mean squared error of the prediced function

decreased. The mean squared error of the correctly specified working structure

decreased up to 50 percent compared with that of the working independence

estimator. The mean squared error of the penalized and oracle estimators was

around 70 times smaller than that of the unpenalized estimator.

Model selection performed through Akaike’s information criterion selected

the true dependence structure with high probability (Table 4.4). The smallest

percentage of correct selection was 85.6 percent, observed for the unpenalized

estimator when the true dependence structure was independent and τ = 0.75.

The highest was 100 percent, obtained for all estimators and quantiles when

the true dependence structure was either Toeplitz or exchangeable. In general,

the percentage of correct selection was higher for the median than for the 75-th

percentile.

We do not provide a comparison to penalized SCAD marginal mean regres-

sion. Sherwood et al. (2016) showed that penalized marginal quantiles out-
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performed penalized marginal means in presence of heavy-tailed distribution

or heteroscedastic errors. They also showed that the SCAD penalty tends to

pick a smaller and more accurate model compared to lasso and other penalty

functions.
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True Structure

Independent Exchangeable Toeplitz

Estimator β̂1 β̂2 β̂3 β̂1 β̂2 β̂3 β̂1 β̂2 β̂3

EXP 0.946 0.940 0.926 0.934 0.932 0.926 0.946 0.932 0.946
TOP 0.944 0.940 0.928 0.936 0.924 0.922 0.922 0.918 0.934
WIP 0.944 0.940 0.928 0.956 0.970 0.926 0.950 0.930 0.956

EXO 0.946 0.940 0.926 0.934 0.932 0.922 0.946 0.932 0.946
τ = 0.50 TOO 0.944 0.940 0.928 0.936 0.924 0.920 0.922 0.918 0.934

WIO 0.944 0.940 0.928 0.966 0.970 0.926 0.950 0.930 0.956

EXUP 0.930 0.934 0.916 0.930 0.916 0.922 0.940 0.934 0.918
TOUP 0.934 0.942 0.922 0.940 0.912 0.920 0.944 0.920 0.906
WIUP 0.932 0.936 0.916 0.946 0.928 0.930 0.934 0.924 0.940

EXP 0.970 0.968 0.958 0.938 0.932 0.930 0.948 0.934 0.952
TOP 0.966 0.970 0.958 0.942 0.934 0.928 0.928 0.922 0.940
WIP 0.970 0.968 0.958 0.974 0.982 0.966 0.968 0.964 0.974

EXO 0.970 0.968 0.958 0.938 0.932 0.928 0.948 0.934 0.952
τ = 0.75 TOO 0.966 0.970 0.958 0.942 0.934 0.926 0.928 0.924 0.940

WIO 0.970 0.968 0.958 0.974 0.982 0.966 0.968 0.964 0.974

EXUP 0.974 0.970 0.958 0.940 0.932 0.928 0.946 0.936 0.930
TOUP 0.978 0.972 0.956 0.944 0.920 0.926 0.958 0.942 0.938
WIUP 0.974 0.968 0.956 0.970 0.962 0.968 0.974 0.962 0.960

Table 4.1: Empirical coverage of the non-zero coefficients of the model obtained
through the penalized SCAD estimator (P), the unpenalized estimator (UP)
and the oracle estimator (OR) for different quantiles, working correlation struc-
tures and true correlation structures. WI=independence, EX=exchangeable,
TO=Toeplitz.
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True Structure

Independent Exchangeable Toeplitz

Estimator U O EXACT U O EXACT U O EXACT

EXP 0 0 1 0 0 1 0 0 1

TOP 0 0 1 0 0 1 0 0 1

WIP 0 0 1 0 0 1 0 0 1

EXO 0 0 1 0 0 1 0 0 1

τ = 0.50 TOO 0 0 1 0 0 1 0 0 1

WIO 0 0 1 0 0 1 0 0 1

EXUP 0 1 0 0 1 0 0 1 0

TOUP 0 1 0 0 1 0 0 1 0

WIUP 0 1 0 0 1 0 0 1 0

EXP 0 0 1 0 0 1 0 0 1

TOP 0 0 1 0 0 1 0 0 1

WIP 0 0 1 0 0 1 0 0 1

EXO 0 0 1 0 0 1 0 0 1

τ = 0.75 TOO 0 0 1 0 0 1 0 0 1

WIO 0 0 1 0 0 1 0 0 1

EXUP 0 1 0 0 1 0 0 1 0

TOUP 0 1 0 0 1 0 0 1 0

WIUP 0 1 0 0 1 0 0 1 0

Table 4.2: Proportion of times that the penalized SCAD estimator (P), the
unpenalized estimator (UP) and the oracle estimator (OR) under-selected (U),
over-selected (O) and exactly selected (EXACT) the covariates with nonzero
coefficients for different quantiles, true correlation structures and working struc-
ture.
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τ = 0.50 τ = 0.75

True Structure True Structure

Estimator Indep Exch Toeplitz Indep Exch Toeplitz

EXP 0.0252 0.0167 0.0190 0.0251 0.0175 0.0190
TOP 0.0252 0.0175 0.0127 0.0250 0.0176 0.0130
WIP 0.0252 0.0237 0.0241 0.0251 0.0236 0.0240

EXO 0.0253 0.0176 0.0190 0.0251 0.0176 0.0190
TOO 0.0252 0.0177 0.0127 0.0250 0.0177 0.0130
WIO 0.0252 0.0237 0.0241 0.0251 0.0236 0.0240

EXUP 1.3862 0.9812 1.0500 1.3496 0.9803 1.0477
TOUP 1.3959 0.9886 0.7051 1.3556 0.9865 0.7523
WIUP 1.3852 1.3818 1.3759 1.3497 1.3463 1.3413

Table 4.3: Mean squared error×10 of f̂(x) for the penalized estimator (P),
unpenalized estimator (UP) and oracle estimator (O) in different scenarios and
quantiles.

τ = 0.50 τ = 0.75

True Structure True Structure

Estimator Indep Exch Toeplitz Indep Exch Toeplitz

EXP 72 500 0 75 500 0
TOP 0 0 500 0 0 500
WIP 428 0 0 425 0 0

EXO 72 500 0 73 500 0
TOO 0 0 500 0 0 500
WIO 428 0 0 427 0 0

EXUP 73 500 0 77 500 0
TOUP 0 0 500 0 0 500
WIUP 427 0 0 423 0 0

Table 4.4: Frequency of correct selections of the true dependence structure for
the penalized estimator (P), unpenalized estimator (UP) and oracle estimator
(O) in different scenarios and quantiles.
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4.3.2 Reduced-rank penalized splines smoothing

We conducted simulations to assess the performance of the reduced-rank pe-

nalized spline method. The response variable was generated from the following

model:

yij = f(x1ij) + εij i = 1, . . . , 200, j = 1, . . . , 9,

where f(x1ij) was either log(x1ij), sin(2πx1ij) or 2 exp(x1ij). The covariate

x1ij was sampled from a uniform distribution U(0, 1) and standardized. We

considered the following dependence structures for εi = (εi1, . . . , εiT ):

• exchangeable, with correlation coefficient 0.5;

• independence;

• Toeplitz, with bands correlation coefficient:

(0.8, 0.6, 0.4, 0.2, 0.2, 0.1, 0.1, 0.1, 0).

The distribution of the error term was multivariate Gaussian with unit variance

diagonal. For penalized spline estimators, we used a truncated quadratic poly-

nomial base with 20 knots.

We conducted a simulation study with 100 independent realizations and

estimated two different quantiles, τ = (0.50, 0.75). All computations were per-

formed using R version 3.23. The multivariate Gaussian random variable were

generated using the “mvtnorm” library. The tuning parameter λ was chosen

through cross-validation.

We compare the proposed P-spline approach with a regression spline ap-

proach (R-spline). In the penalized approach, the spline complexity was auto-

matically selected by a tuning parameter chosen through two-fold cross-validation.

Table 4.5 summarizes the mean of average MSE (MMSE), that is,

(1800)−1
∑200

i=1

∑9
j=1(f̂(xij) − f(xij))

2 for the penalized (P) and unpenalized

(UP) estimators. In all scenarios, the P-spline approach had a smaller MMSE

than the R-spline approach. When the true correlation structure was used, we

observed a decrease in MMSE of the estimated function f̂(x). The penalized

estimator MMSE was up to three times smaller than its unpenalized counter-

part.

Model selection performed through Akaike’s information criterion selected

the true dependence structure with high probability (Table 4.6). The small-

est percentage of correct selection was 79 percent, obtained by the penalized

estimator when the true dependence structure was independent and τ = 0.75.

The highest was 100 percent, obtained when the true dependence structure was

Toeplitz or exchangeable and for any quantile and estimator type. In general,
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the percentage of correct selection was higher for the median than for the 75-th

percentile.
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τ = 0.50 τ = 0.75

True Structure True Structure

Estimator Indep Exch Toeplitz Indep Exch Toeplitz

f̂(x) = exp

EXP 0.0133 0.0225 0.0227 0.0119 0.0241 0.0263
TOP 0.0134 0.0226 0.0199 0.0121 0.0243 0.0231
WIP 0.0131 0.0227 0.0220 0.0119 0.0251 0.0270

EXUP 0.0448 0.0472 0.0492 0.0507 0.0568 0.0574
TOUP 0.0448 0.0471 0.0477 0.0509 0.0570 0.0548
WIUP 0.0447 0.0480 0.0493 0.0504 0.0571 0.0585

f̂(x) = log

EXP 0.0316 0.0373 0.0376 0.0319 0.0404 0.0448
TOP 0.0316 0.0371 0.0358 0.0320 0.0405 0.0405
WIP 0.0314 0.0378 0.0380 0.0319 0.0414 0.0459

EXUP 0.0476 0.0501 0.0515 0.0535 0.0588 0.0614
TOUP 0.0477 0.0499 0.0501 0.0537 0.0591 0.0577
WIUP 0.0474 0.0510 0.0514 0.0532 0.0594 0.0618

f̂(x) = sin

EXP 0.0230 0.0296 0.0315 0.0238 0.0308 0.0377
TOP 0.0230 0.0295 0.0287 0.0238 0.0308 0.0337
WIP 0.0229 0.0315 0.0330 0.0237 0.0339 0.0382

EXUP 0.0447 0.0472 0.0492 0.0507 0.0568 0.0574
TOUP 0.0448 0.0471 0.0477 0.0509 0.0569 0.0547
WIUP 0.0446 0.0480 0.0493 0.0504 0.0570 0.0585

Table 4.5: Mean squared error×10 of f̂(x) for the penalized estimator (P) and
unpenalized estimator (UP) in different scenarios and quantiles.
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τ = 0.50 τ = 0.75

True Structure True Structure

Estimator Indep Exch Toeplitz Indep Exch Toeplitz

f̂(x) = exp

EXP 14 100 0 21 100 0
TOP 0 0 100 0 0 100
WIP 86 0 0 79 0 0

EXUP 15 100 0 15 100 0
TOUP 0 0 100 0 0 100
WIUP 85 0 0 85 0 0

f̂(x) = log

EXP 17 100 0 18 100 0
TOP 0 0 100 0 0 100
WIP 83 0 0 82 0 0

EXUP 17 100 0 17 100 0
TOUP 0 0 100 0 0 100
WIUP 83 0 0 83 0 0

f̂(x) = sin

EXP 16 100 0 20 100 0
TOP 0 0 100 0 0 100
WIP 84 0 0 80 0 0

EXUP 16 100 0 15 100 0
TOUP 0 0 100 0 0 100
WIUP 84 0 0 85 0 0

Table 4.6: Frequency of correct selections of the true depedence structure for the
penalized estimator (P) and unpenalized estimator (UP) in different scenarios
and quantiles. WI=independence, EX=exchangeable, TO=Toeplitz.
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4.4 Application

We applied the proposed penalized methods to the cognitive behavior therapy

data of Chapter 3. Recall that the dataset had ninety-five clusters and fourteen

repeated measurements. To show the full potential of the penalized SCAD

method, we added q = 20 uncorrelated standardized predictors sampled from a

uniform distribution U(0, 1). We also added a nonparametric component defined

as xNPij = (log(Dersij−εij)) that we modelled through reduced-rank penalized

spline smoothing. The distribution of the error term εi = (εi1, . . . , εiT ) was taken

as multivariate normal with a treatment-dependent exchangeable correlation

matrix with parameters 0.6 (treated group) and 0.2 (untreated group). The

relationship between the response variable and xNPij can be seen in Figure 4.1.

We considered three different quantiles, τ = (0.25, 0.50, 0.75) and we esti-

mated the following model:

Q(Dersij) = β0 + β1Treati + β2Timeij + β3Treatij ×Timei +

q+5
∑

z=5

βzxzij , (4.8)

We estimated the nonparametric association Dersij = f(xNPij) using

reduced-rank penalized splines smoothing with a truncated cubic polynomial

with 20 knots.

For both methods, we considered an exchangeable, independence and

treatment-dependent exchangeable association structures.

Similarly to Chapter 3, the treatment-dependent exchangeable association

structure has the lowest AIC (Table 4.7 and Table 4.8 ).

Table 4.7 shows also the results of the parametric component of the SCAD

model (Equation 4.8). Among the zero coefficients that were added to the

model, none were selected by our method. In the 50-th and 75-th quantiles,

only the intercept and treatment coefficients were statistically significant. This

result is in line to what we saw in Chapter 3, where these coefficients were far

away from zero. The magnitude of these coefficients is comparable to that of

the unpenalized method. In the 25-th percentile the treatment coefficient is no

longer significant. This might be caused by some computational problems that

arose when we estimated models with a relative small tuning parameter λ.

Table 4.8 shows the selection of the working covariance structure for the

reduced-rank penalized spline smoothing approach. The treatment-dependent

structure had the lowest AIC, which suggested that it was the best dependence

structure. Figure 4.2 and Figure 4.3 show the estimated function for the non

parametric association at different quantiles obtained through, respectively, the

unpenalized marginal quantile regression splines and the reduced-rank spline

approach. We show the results for the treatment-dependent exchangeable as-
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sociation structures only. The nonlinear association was well-captured by the

model. The unpenalized functions were wiggly and clearly overfitted the data.

The penalized functions were smoothed and seemed to fit the data better.
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Coefficient τ = 0.25 τ = 0.50 τ = 0.75

EX

Intercept 46.208 (1.521) 62.473 (2.946) 70.472 (2.056)
Treatment 0 -8.331 (3.664) -4.759 (3.146)
Time 0 0 0
TrxTime 0 0 0
x5, . . . , x25 0 0 0
AIC 2815 3962 3166

EX-Trt

Intercept 46.480 (1.512) 62.501 (2.957) 70.494 (2.060)
Treatment 0 -8.260 (3.654) -4.727 (3.087)
Time 0 0 0
TrxTime 0 0 0
x5, . . . , x25 0 0 0
AIC 2713 3948 3141

TO

Intercept 45.854 (1.509) 60.792 (3.226) 69.750 (1.810)
Treatment 0 -7.762 (4.019) -5.130 (2.955)
Time 0 0 0
Tr×Time 0 0 0
x5, . . . , x25 0 0 0
AIC 2820 3950 3181

WI

Intercept 46.874 (1.462) 60.994 (3.077) 69.573 (2.144)
Treatment 0 -5.551 (3.778) -3.432 (3.053)
Time 0 0 0
TrxTime 0 0 0
x5, . . . , x25 0 0 0
AIC 3757 5164 4313

Table 4.7: Estimated quantile regression SCAD coefficients, standard errors (in
parentheses, provided for non-zero coefficients only) and logistic models’ AIC
for three quantiles and different working covariance structures.

Working Structure τ = 0.25 τ = 0.50 τ = 0.75

EX 3885 4478 3482

EX-Trt 3819 4357 3432

TO 3920 4515 3516

WI 4288 5189 4107

Table 4.8: AIC of the logistic regression models in reduced-rank penalized spline
smoothing for different working covariance structures and quantiles. EX =
exchangeable, TO= Toeplitz, WI = working independence, Ex-Trt = treatment-
dependent exchangeable.
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Figure 4.1: Relationship between the response variable Ders and the predictor
xNP .
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Figure 4.2: Predicted function of the nonlinear association between Ders and
xNP obtained through the unpenalized estimator at different quantiles.
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Figure 4.3: Predicted function of the nonlinear association between Ders and
xNP obtained through the reduced-rank penalized spline smoothing estimator
at different quantiles.
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4.5 A summary

This chapter describes a penalized estimating equation approach that accounts

for the dependence induced by the clustering. The association matrix of the

residuals’ sign is estimated by means of appropriate logistic regression models.

The estimation is flexible but more computationally intensive than the unpe-

nalized method. The model flexibility allows the within-cluster association to

depend on covariates and be multilevel. The best-fitting working structure can

be selected by likelihood comparisons or the Akaike’s information criterion. Our

simulations showed that this criterion could select the true dependence struc-

ture with high probability. When the true correlation matrix was specified, the

mean squared error of the estimated functions decreased considerably.

Penalized methods performed much better than their unpenalized counter-

parts. The MM algorithm for regularized SCAD marginal quantile regression

was computationally fast and usually converged in less than 30 iterations. When

we applied this algorithm to the cognitive-therapy data, we faced some compu-

tational issues. The algorithm did not converge for low quantiles (τ = 0.25)

when the values of the tuning parameter λ was small, thus we had to choose

a tuning parameter that was larger than the ideal one. Therefore, the method

shrunk some of the non-zero coefficients to zero. At the moment, the cause of

this behavior is not clear to us. The reduced-rank penalized splines smoothing

algorithm had a low convergence rate. When the algorithm did not converge, the

quantity ||θK+1 − θK || was not decreasing at each iteration. This suggests that

there could be identifiability problems, perhaps caused by the high correlation

among the spline basis of the truncated polynomial.

In general, other loss functions or data-driven measures could perform better

when choosing the tuning parameter λ through cross-validation or by minimiza-

tion. For instance, Chen et al. (2013) proposed to select the tuning parameter in

penalized spline regression by minimizing an estimate of the asymptotic mean

squared error as the sum of the squared shrinkage bias and the asymptotic

variance.

We did not discuss how to obtain a range of values of the tuning parameter

λ. Extreme values of λ may cause convergence problems, so it is important to

find a range of values where the model can be estimated. The range of values

depend on the penalty function used. For certain penalty function such as the

lasso, the range of values can be obtained using data-driven methods. To our

knowledge, this is not possible for the SCAD penalty. In our simulation study

and application, we selected the range using interval methods.
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Chapter 5

Conclusions

In this thesis we developed a novel marginal quantile regression method using

a working odds ratio matrix. We proposed a penalized version of this method,

with applications to reduced-rank penalized splines smoothing and regularized

SCAD models. These methods extend the current literature on penalized quan-

tile regression methods. In contrast to previous methods, the proposed quantile

estimating equations accounts for the dependence structure of the data. In our

simulations, we showed that correctly modeling the dependence induced by the

clustering may increase the efficiency of the estimators. Furthermore, penalized

methods might outperform unpenalized methods when the model complexity is

high. The algorithm proposed in Chapter 3 was computationally fast and had

good convergence rate. The MM algorithm of regularized SCAD model was

computationally efficient and usually converged in less than 30 iterations. The

quasi Newton-Raphson algorithm of reduced-rank penalized splines smoothing

encountered several identifiability issues caused by the high correlation among

the spline basis functions.

In regularized SCAD models, we did not discuss the more general setting of

ultra-high dimensional data. The estimation procedure becomes more tedious

because the design matrix is nonsingular and the computational burden may

increase drammatically. The Sure Independence Screening method (Fan and Lv

(2008)) reduces the dimensionality of the problem to p < n and ensures that all

the most relevant predictors are included in the new subset of predictors.

We did not present any theorem regarding the properties of the estimators.

For the estimator of Chapter 3 this is not a concern, because we can apply

the same theorem used by Fu and Wang (2012). As regards the penalized

estimators, we could extend the proofs given by Fu and Wang (2012), Sherwood

et al. (2016) and Chen et al. (2013).

Several extensions of the proposed methods might be explored in the future.
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For instance, the simultaneous estimation of a set of quantiles. This approach

overcomes the problem of quantile-crossing, which is frequent when estimating

extreme quantiles. The penalized extension of simultaneous marginal quantile

regression could be featured by an uniform tuning parameter for a set of quantile

levels, that would avoid some of the potential problems with model selection at

individual quantile levels. For independent data, this was proposed by Zheng

et al. (2015).

Longitudinal data are often characterized by missing data. Our proposed

methods require the data missingness mechanism to be missing completely at

random (MCAR), i.e. the events that lead to any particular data being missing

are independent both of observable variables and of unobservable parameters

of interest, and occur entirely at random (Little and Rubin (2014)). This as-

sumption is rather strong and can be relaxed to data coming from a missing

at random (MAR) process. This process occurs when the missingness is not

random, but where it can be fully accounted for by variables with complete

information. For unpenalized marginal quantile regression, Yi and He (2009)

proposed a weighted estimating equation approach that can handle missing at

random data. This method can be easily extended to our approaches, even the

penalized versions.

Another extension that could be explored are related to censored dependent

data. Wang et al. (2013) recently proposed a method to perform variable se-

lection in censored quantile regression that could be extended by modeling the

dependence induced by the clustering.

Further extensions of this method are related to the small sample correction

of the covariance matrix of the estimator, along with sample size and power

calculations. The first occurs when the number of clusters is small and the

covariance matrix of the estimator is underestimated. Wang et al. (2015) pub-

lished a review of methods to correct the covariance matrix of the estimator in

marginal mean regression. The sample size and power calculations are useful

at the design stage of a study. In general, large samples have a larger chance

to discover effects than small ones. However, gathering large samples might be

expensive and sometimes impossible. Therefore, it is important to balance sam-

ple size and power. There are currently no published works on sample size and

power calculations for quantile regression. Teerenstra et al. (2010) proposed a

method to compute sample size for three-levels cluster randomized trials where

the interest was on the marginal mean.
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