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Abstract

Exocytosis on beta-cells is one of the fundamental cellular processes that releases insulin-

containing secretory granules to blood through the plasma membrane due to stimulus.

Studying survival of granules on the plasma membrane and their spatial correlation

within cells during the exocytosis is of great interest to researchers in biological and

medical area, as it is closely related to the regulation of insulin level in blood. Data

are a collection of TIRF images recorded from 8 human beta-cells, containing granules

and syntaxin information. One of the main objectives of this thesis is to investigate the

relationship between the survival rates of granules and syntaxin levels, while adjusting

for spatial correlation among granules within cells.

To answer our specific biological problem, we propose a semiparametric proportional

hazard model, where the baseline hazard function is estimated nonparametrically and

a multivariate normal distribution is assumed for individual frailties. Hence, the clus-

tering structure, as well as the spatial correlation between granules are modeled via the

variance-covariance matrix of frailties.

We firstly extend the penalized partial likelihood method and the Monte-Carlo EM

method to estimate the parameters in the model. Then, we contribute a novel inferential

approach based on pairwise likelihood, EM algorithm and quadrature approximation.

We conduct simulations to validate and compare three approaches, hence the advan-

tages and disadvantages for each approach are discussed. Finally, we apply our method

to the exocytosis data and interpret the results.





Sommario

Nelle cellule beta, l’esocitosi è uno dei processi cellulari fondamentali che rilascia nel sangue

granuli secretori contenenti insulina, i quali attraversano la membrana del plasma quando

sono sotto stimolo. Lo studio del tempo di vita dei granuli fissati alla membrana, prima del

loro distacco, il tasso di esocitosi dei granuli e di altri eventi correlati, e la loro correlazione

spaziale all’interno delle cellule, sono aspetti di grande interesse per i ricercatori nel campo

biomedico, poichè sono strettamente collegati alle disfunzioni del livello di insulina nel sangue.

I dati consistono in un insieme di immagini di tipo TIRF registrate nel tempo su 8 cellule beta

umane, le quali contengono molte informazioni sull’andamento e sulla posizione dei granuli,

oltre che sui livelli di alcune proteine, come per esempio la sintassina. Uno degli scopi principali

della tesi è quello di studiare la relazione tra il tasso degli eventi di scomparsa dei granuli dalla

membrana e i livelli della sintassina, tenendo conto della correlazione spaziale tra i granuli

all’interno di ciascuna cellula.

Per rispondere al problema biologico sotto studio, nella tesi è stato proposto un nuovo

modello semiparametrico, un modello spaziale gerarchico di sopravvivenza ad effetti misti

(“frailty”) per dati raggruppati in clusters, dove la funzione hazard di riferimento è stimata

nonparametricamente ed è assunta una distribuzione multivariata Normale per il vettore degli

effetti casuali individuali. La struttura dei clusters e la correlazione spaziale tra le unità

statistiche, sono modellati tramite la matrice di varianza e covarianza degli effetti casuali.

Inizialmente, la tesi ha esteso il metodo della verosimiglianza parziale penalizzata ed il metodo

EM Monte-Carlo, adattandoli all’inferenza per il modello spaziale di sopravvivenza proposto.

In seguito, per tale modello, è stato presentato un nuovo approccio inferenziale, il quale si basa

sulla verosimiglianza a coppie, l’algoritmo EM e l’approssimazione basata sull’integrazione

numerica. Sono stati condotti studi di simulazione per confrontare il comportamento dei tre

approcci inferenziali, e sono stati discussi i vantaggi e gli svantaggi di ciascun approccio. Infine,

il modello ed i metodi proposti sono stati applicati ai dati sull’esocitosi ed è stata fornita una

possibile interpretazione biologica del fenomeno.
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Introduction

Overview

Data motivation Insulin is a main anabolic hormone of the body produced by beta cells

of the pancreatic islets. It regulates various important metabolisms, especially glucose from

the blood into liver, fat and skeletal muscle cells (Berg et al., 2002). After being synthesized,

insulins are packaged inside mature granules, called insulin-containing secretory granules, and

wait to be released into blood through the plasma membrane due to stimulus (Joslin and

Kahn (2005), Creighton (1993)). This releasing procedure is a particular case of a more gen-

eral cellular process called exocytosis. Particularly, exocytosis of insulin-containing secretory

granules on beta cells is triggered within milliseconds by a rise in cytosolic Ca+ (Gandasi and

Barg, 2014). The exocytosis contributes to managing insulin level in blood, that relates to

various diseases, specially diabetes (Kahn, 2003). Consequently, there have been many biolog-

ical studies on this exocytosis mechanism such as Olofsson et al. (2002), Knowles et al. (2010).

Recent publications, Gandasi and Barg (2014) and Barg et al. (2010), claimed that clustering

of syntaxin stabilizes granules on the plasma membrane and this contributes to increasing the

exocytotic rate. However, there is no literature applying survival analysis techniques to study

the interaction between syntaxin and single granules during the exocytosis process. Moreover,

there is also an increasing interest in understanding if survival times of granules on the plasma

membrane are spatially correlated across the cellular regions.

The dataset used in this thesis is part of some experimental results on human beta cells,

obtained with the aim to study interaction between syntaxin, one of the most important pro-

teins, and single secretory granules during exocytosis (Gandasi and Barg (2014), Barg et al.

(2010)). The dataset contains sequences of images produced by high-resolution total-internal

reflection microscopy on beta cells, which are typical raw imaging results in biological ex-

periments. Presence of granules on the plasma membrane is followed from beginning of the

experiment by the florescence intensity on the images until they disappeared or the experiment

ends. Note that syntaxin is observed to be distributed hierarchically in beta cells (Gandasi

and Barg (2014), Barg et al. (2010)), then this fact may cause spatial correlation of granules

inside cells. This characteristic inspired us to introduce a spatial frailty survival model to

describe the effects of syntaxin on the survival times of granules. The model also accounts

3



4 Overview

for independent right censored times, which are considered when granules end the experiment

without experiencing any events.

The objective model Let T̃ik be the event time for the ith observation in the kth cluster,

where i = 1, . . . , nk, k = 1, . . . ,m and
∑m

k=1 nk = n. Here m is the number of clusters, nk is

the number of observations in cluster k, and n is the total number of observations. Let Cik be

the censoring time, the observed time is then Tik = min(T̃ik, Cik), and δik = 1{T̃ik ≤ Cik} is

the event indicator. Let us also consider a vector of explanatory variables Xik. The observed

time-to-event data are denoted by t = {tik, δik, Xik, i = 1 . . . , nk, k = 1, . . . ,m}.
The random effect, called frailties, provides a suitable way to introduce unobserved random

factors in the model to account for association and unobserved heterogeneity. Given the

frailties zik, the observed event times are typically assumed to be mutually independent with

proportional hazard function for time tik of the ith observation in the kth cluster, written as

λ(tik|zik) = λ0(tik) exp(βtXik + zik), (1)

Here, λ0(t) is the baseline hazard function, and β is the vector of regression coefficients.

Following standard spatial approaches, the frailty vector Z is assumed to follow a multivariate

normal distribution with the block variance-covariance matrix Σ(θc) = σ2 × Ω(d, θρ), where

each block in Ω(d, θρ) presents a correlation matrix for units in the same cluster, while zeros

are outside the blocks, meaning that units belonging to different clusters are independent. The

correlation function depends on the unknown parameters θρ and spatial distances d.

This model setting is similar to the well-known shared frailty model (Hougaard, 1995),

where a frailty variable is presented for hidden aspects of clusters. However, in our case frailties

are introduced for each individual observation to model the spatial variation inside clusters.

Therefore, the model also aims at measuring the spatial correlation between observations and

considering a clustering structure.

Inference approaches Multivariate frailty models have been early used for modeling de-

pendence in multivariate time-to-event data (Clayton (1978), Yashin and Iachine (1995)).

They are characterized by challenges of high-dimensional integrals in the full likelihood, as

well as complications in the maximization procedure. In the context of no spatial correlation

between frailties, multivariate frailty models have been studied in many applications, and their

inference can be based on two common estimation approaches: Monte-Carlo EM algorithm

(MCEM) and penalized partial likelihood (PPL). Ripatti et al. (2002), Vaida and Xu (2000),

Klein (1992), Guo and Rodriguez (1992) treated the unobserved random effects (frailties) as

missing values, thus the EM algorithm is a natural choice. In the E-step, the intractable

integrals in the conditional expectations of random effects, given the observed data, are usu-

ally approximated by Monte-Carlo methods. Ripatti and Palmgren (2000), Therneau and

Grambsch (2013) proposed to use Laplace approximation for approximating the full likelihood
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function. For likelihood maximization, they considered frailties as fixed effect parameters and

the density of such frailties was considered as a penalty term in the likelihood. On the other

hand, the history of spatial study on survival frailty models is relatively short and the majority

of these studies are based on Bayesian inference approaches. See, for example, the study of

Leukemia survival (Henderson et al., 2002), infant mortality (Banerjee et al., 2003) and breast

cancer (Zhou et al., 2015). On the other side, spatial frailty survival models have been rarely

studied by likelihood-based inferential approaches. Two examples are the study of Loblolly

pine based on the MCEM algorithm (Li et al., 2015) and the East Boston Asthma study based

on the Laplace approach (Li and Ryan, 2002). In the thesis, as an alternative choice, we suggest

to use pairwise likelihood, i.e., a special case of a more general class of pseudo likelihoods called

composite likelihoods (Lindsay, 1988). In this approach, the high-dimensional full likelihood is

simplified to several two-dimensional pseudo-likelihoods for the benefit of computational time.

In addition, the composite likelihood function surfaces are usually smoother than those of the

full likelihood, and therefore, easier to be maximized (Katsikatsou et al., 2012). Consequently,

composite likelihood methods can reduce the computation cost substantially and also yield

estimators with the desired asymptotic properties of unbiasedness, consistency, and normality

(Varin et al., 2011). Although pairwise likelihood approach applied on spatial random effects

models have been well developed in context of noncensored data (Katsikatsou et al. (2012),

Varin et al. (2005), Gao and Song (2011)), in the literature there has not been any work on

modeling spatial survival data with presence of frailties.

In this thesis, we firstly have investigated how the common approaches MCEM and PPL can

be extended on our objective model. Successively, a pairwise likelihood approach, conducted

by EM algorithm and quadrature approximation, have been presented. To our knowledge,

this study is the first attempt to develop such pairwise likelihood approach for spatial frailty

survival models.

Main contributions of the thesis

Starting from raw experimental imaging data, we have described different cellular events of

insulin-containing secretary granules during the exocytosis, recorded on human beta cells.

We have implemented in Matlab a procedure to transform this imaging data into numerical

datasets. We then applied a standard Cox model and compared results to a Gaussian frailty

model, where frailties are introduced for each individual granule and they are assumed to

be independent and normally distributed. The Matlab process does not only serve for the

particular dataset used in thesis, but it is also useful for proceeding other raw biological

experimental imaging data.

In order to investigate spatial dependence of granules in their survival rates, we have pro-

posed a hierarchical spatial frailty model. Although the inferential methods, PPL and MCEM,
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are both commonly used in frailty survival models, practically they are unable to be directly

applied to our model setting. Therefore, a contribution of this thesis has been to extend the

R package coxme to implement the PPL method with an Exponential variance-covariance ma-

trix for accounting the spatial correlation between frailties. We also computed standard errors

estimates for the variance-covariance parameters, which are missing in the coxme package. In

addition, we have extended the MCEM inferential method Li et al. (2015) and the R code

to be adapted to our model setting. Moreover, we contributed by proposing a stopping rule

to study convergence of the algorithm. Furthermore, sandwich standard errors have been im-

plemented and compared to the standard errors based on the Louis’s formula to investigate

effects of clustering on parameter estimation.

Another main contribution of the thesis focuses on the quadrature pairwise likelihood

method based on EM algorithm (QPLH), that we introduced for the first time for infer-

ence in spatial frailty models in presence of independent right censored data. The estimators

inherit asymptotic properties of the standard composite likelihood method and the cumulative

baseline hazard function has been estimated following the Breslow-type estimator (Breslow,

1974). The quadrature approximation in the E-step, as well as the estimation procedure in

the M-step, have been carefully shown in propositions and the mathematical proofs are also

provided in the thesis. We have implemented the QPLH algorithm in R and C++ languages.

The performance of the three inferential methods presented in the thesis have been inves-

tigated and compared in simulation studies. The QPLH approach shows off its stability in

modeling spatial survival data because the complex structure of variance-covariance matrix

does not complicate the algorithm. Specially, the QPLH method overcomes the problem of

poor estimation in cases of few observation per cluster and heavy censored data. Finally, we

contributed with an innovative application where the Exocytosis is the first time studied with

a spatial correlation perspective. In detail, we have analyzed the hidden spatial correlation

between granules by applying the QPLH algorithm to our data. This application explained

statistically the biological properties studied by Gandasi and Barg (2014) and Barg et al.

(2010), contributed to novel explorations and also can broaden further novel studies.



Chapter 1

Background

This chapter contains the main methodology of particle tracking procedure for TIRF im-

ages, described in Section 1.1. Two likelihood inference methods for general frailty models

based on penalized partial likelihood and Monte-Carlo EM algorithm are, respectively, given

in Section 1.2 and Section 1.3.

1.1 Particle tracking

TIRF image data include sequences of images produced by a total internal reflection fluo-

rescence microscope (TIRF-M), which is a particular type of microscope. In this procedure,

a thin region of a specimen, usually less than 200 nanometers, will be observed and imaged

every few micro-seconds. Particles bounding to surface of the specimen will be detected due

to increase of its fluorescence surrounding. Hence, TIRF-M produces high contrast images

where bright fields may contain particles information. Due to the fact of sub-micron surface

selectivity, TIRF-M has become a favor method of choice for single molecule detection in cell

and molecular biology.

TIRF images contain a huge information of objects which may help us to understand under-

lying biological mechanisms. Particle tracking aims to identify target particles on the images

and create their trajectories.

In the following chapters of this thesis, we will present a Matlab code to process TIRF

image data where the particle tracking is an important step. In this section, we summarize

the main methodology of the particle tracking which is constructed using a famous Matlab

code authored by Blair and Dufresne (n.d.). In details, this section summarizes the main steps:

Reducing noise, locating particles and creating particle trajectories.

7



8 Section 1.1 - Particle tracking

1.1.1 Reducing noise

Fluorescence microscope has been widely used in biological experiments as a fundamental tool

for the examination of cellular particles. However, it also produces a high signal-to-noise ratio

because of light reflection through the specimen. Therefore, the first step in processing these

image data is to reduce noise from the images using spatial filtering tools.

Generally, spatial filtering uses a defined square mask with diameter 2w + 1, where w is

an integer larger than the single sphere’s image radius pixels, but smaller than the spacing

between particles. The mask size is carefully defined to ensure that it smooths out the noise,

but still preserves the features of interest. The mask is placed on the image and moved across

all possible pixel position on the image. A filtered image is produced by replacing the intensity

value at the center by a linear combination of the intensity values of the center pixel and all

neighboring pixels covered by the mask. The filtering can perform many different functions

but here, we mainly focus on two main functions that will be used in our Matlab code as well

as commonly used for reducing image noise.

The average filter If the target image is denoted by I, then to each pixel (x, y) of

image I is assigned a new value

Iw(x, y) =
1

(2w + 1)2

w∑
i,j=−w

I(x+ i, y + j),

which is the local average taken on a mask size 2w + 1. Informally, the average filter consists

of simply replacing the value at the center with an average of all grayscale intensity values in

the mask.

The Gaussian filter A Gaussian filter is one that has peak at the center of the mask,

and has a Gaussian decay away from center by a variance ε. Each centroid is evaluated by a

new value

Iε(x, y) =

∑w
i,j=−w I(x+ i, y + j) exp

(
− i2+j2

4ε2

)
[∑w

i=−w exp(−i2/4ε2)
]2 .

Hence, the Gaussian filter also performs averaging, but performs a weighted average to give

more emphasis on pixels near the center of the mask.

1.1.2 Locating particles

Determining granule locations is processed on a well cleared image which may be obtained

from the previous step of reducing noise. This work is operated respectively on each image of

video sequence following three steps: Identifying candidates, refining centroids, and computing

exact centroids.
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Identifying particle candidates The particles detection process firstly identifies candidates

by using a threshold. Pixels whose brightness is greater than the threshold, are served as

candidates of the particle locations. The authors recommended that a rough estimate of

the threshold value is about 60% of the maximum grayscale intensity value of all video

images.

Refining centroids A mask with diameter 2w + 1 is again moved across all the locations

of candidates to refine locally brightest pixels, which are defined as the target particle

positions. The locally brightest pixels are those with the highest intensity values within

the moving masks.

Computing exact centroids Note that, in cases one needs to get exact locations for par-

ticles in sub-pixel units, Blair and Dufresne (n.d.) proposed an additional refinement

for the particle locations where sub-pixels are computed for each particle centroid lo-

cation. Particularly, denoting centroids in the target image I that are obtained from

the previous step by (x0, y0), then precise estimates of particle locations are updated by

(xi, yi) = (x0 + εx, y0 + εy) where sub-pixel corrections εx and εy are computed by(
εx

εy

)
=

1

m0

∑
i2+j2≤w2

(
i

j

)
I(x0 + i, y0 + j)

where the multiplication in the formula is the element-by-element vector multiplication

and m0 =
∑

i2+j2≤w2 I(x0 + i, y0 + j) is the integrated brightness of the particle image.

1.1.3 Creating particle trajectories

After completing the locating particle step, we get the lists of particle locations for each im-

age in the video sequence. Given this information, now we aim to get particle trajectories as

functions of time by linking the same particle in adjoining frames. The detection of particle

trajectories requires two main restrictions: a maximum distance noted by r and a maximum

missing time. The former defines the maximum distance that a particle can move from one

frame to next frame. The later accepts that particles can be temporally missing on the focal

plane. This has the advantage of generating longer trajectories, which not only avoids noise

in the fluorescence microscopy, but also improves the statistics for longer lag times.

The central idea of this procedure is coding particle locations of each image in a binary

matrix where the 1s indicate the locations. Then the couple of matrices related to two adjoin-

ing frames are consecutively overlapped and, at each particle location, an area with radius r is

scanned to identify particle status (i.e., particle moved to new position, particle disappeared

or a new particle recorded). If a particle is not found in its adjoining frame, then the algo-

rithm continues to scan in the next frames within the accepted maximum missing time. The

procedure is proceeded until the last frame.
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1.2 Penalized partial likelihood for multivariate frailty

models.

1.2.1 The multivariate frailty model

Let T̃i denote the survival time and Ci the censoring time for unit i, i = 1, . . . , n. Define

with Ti = min{T̃i, Ci} and δi = I(T̃i ≤ Ci), respectively, the observed survival time and the

corresponding event indicator. Ripatti and Palmgren (2000) proposed a general multivariate

frailty model using the proportional hazard function

λi(t|Z) = λ0(t) exp(βtXi + IiZ), (1.1)

where Xi and Ii are vectors of explanatory variables. Here, the frailty vector Z is assumed to

follow a multivariate distribution p(z; Σ), with mean 0 and covariance matrix Σ = Σ(θc), with

θc denoting a vector of unknown parameters.

Let assume that the censoring is independent and non-informative of Z. The marginal likeli-

hood function of the parameter vector (Λ0(.), β, θc) for model (1.1) is

L(Λ0(.), β, θc) =

∫ n∏
i=1

λi(t|z)δiSi(t|z)p(z; Σ(θc))dz

=

∫ n∏
i=1

[
λ0(t) exp

(
βtXi + Iiz

)]δi exp
[
−Λ0(t) exp

(
βtXi + Iiz

)]
× p(z,Σ(θc))dz.

(1.2)

This is a class of semi-parametric models where Λ0(.) is treated non-parametrically, and

p(z,Σ(θc)) is a multivariate distribution, including as a special case the Gamma-Cox shared

frailty model (Cox and Oakes, 1984).

Ripatti and Palmgren (2000) consider the case where the frailty Z follows a multivariate

normal distribution. In this case, the formula (1.2) can be rewritten as

L(Λ0(.), β, θc) =
1

|2πΣ(θc)|1/2
∫ n∏

i=1

[
λ0(ti) exp

(
βtXi + Iiz

)]δi
× exp

[
−Λ0(ti) exp

(
βtXi + Iiz

)]
× e− 1

2
ztΣ−1(θc)zdz. (1.3)

1.2.2 Laplace approximation

Presence of normally distributed frailties leads to complications in the optimization of the

likelihood, since the high-dimensional integral in (1.3) does not have a closed form expression.

To overcome the intractable integral, Ripatti and Palmgren (2000) proposed to use the second-

order Laplace approximation, following the lines of Breslow and Clayton (1993), who applied
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this approach to generalized linear mixed models. Breslow and Clayton (1993) claimed that

when the likelihood function can be written in the form c|Σ−1/2(θc)|
∫
e−κ(z)dz, where κ(z) is

a function of the frailty z, then the approximated marginal log-likelihood becomes

l(λ0(.), β, θc) ≈ −
1

2
log |Σ(θc)| −

1

2
log |κ′′(z̃)| − κ(z̃). (1.4)

Therefore, in our case, we have

κ(z̃) =

n∑
i=1

{
−δi

[
log (λ0(ti)) + βtXi + Iiz̃

]
+ Λ0(ti) exp

(
βtXi + Iiz̃

)}
+

1

2
z̃tΣ(θc)

−1z̃,

κ′′(z̃) =

n∑
i=1

Λ0(ti) exp
(
βtXi + Iiz̃

)
IiI

t
i + Σ(θc)

−1, (1.5)

and z̃ denotes the solution to the first partial derivative of κ(z) with respect to z, i.e

κ′(z̃) =

n∑
i=1

[
−δiIi + Λ0(ti) exp

(
βtXi + Iiz̃

)
Ii + Σ(θc)

−1z̃
]

= 0.

Now, the approximated marginal log-likelihood can be fully written as

l(Λ0(.), β, θc) ≈ −
1

2
log |Σ(θc)| −

1

2
log |

n∑
i=1

Λ0(ti) exp
(
βtXi + Iiz̃

)
IiI

t
i + Σ(θc)

−1|

+
n∑
i=1

δi
[
log (λ0(ti)) + βtXi + Iiz̃

]
− Λ0(ti) exp

(
βtXi + Iiz̃

)
− 1

2
z̃tD(θ)−1z̃

(1.6)

1.2.3 Penalized partial likelihood

For estimating parameters β and Λ0(.), θc is assumed to be known and the frailty vector z is

considered as a parameter of fixed effects. According to Ripatti and Palmgren (2000) the equa-

tion (1.6) is again simplified by using an additional approximation where terms −1
2 log |Σ(θc)|

and −1
2 log |κ′′(z̃)| which are in the first line of (1.6) are ignored. Hence, the marginal log-

likelihood becomes the penalized likelihood (PL) for a Cox model with frailty Z, denoted

by

PL =
n∑
i=1

{
δi
[
log (λ0(ti)) + βtXi + Iiz

]
− Λ0(ti) exp

(
βtXi + Iiz

)}
− 1

2
ztΩ(θc)

−1z (1.7)

where term −1
2z
tΣ(θc)

−1z is considered as a penalized term for extreme values of Z. For

maximization purpose, parameter Λ0(.) is eliminated by profiling out as typically done for

Cox models (Johansen, 1983). Let R(ti) = {j = 1, . . . , n such that tj ≥ ti} be the risk set at

time ti, then the PL function in (1.7) becomes the PPL function for (β, z) defined as
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l1(β, z) =
n∑
i=1

δi

(βtXi + Iiz
)
− log

∑
j∈R(ti)

exp
(
βtXj + Ijz

)− 1

2
ztΣ−1(θc)z. (1.8)

For fixed θc, a solution (β̂(θc), ẑ(θc)) can be iteratively obtained by solving estimation equations

based on the first partial derivatives of the PPL function, as follows

∂l1(β, z)

∂β
=

n∑
i=1

δi

[
Xi −

∑
j∈R(ti)

Xj exp
(
βtXj + Ijz

)∑
j∈R(ti)

exp(βtXj + Ijz)

]
= 0 (1.9)

∂l1(β, z)

∂z
=

n∑
i=1

δi

Ii −
∑

j∈R(ti)
Ii exp

(∑
j β

tXj + Ijz
)

∑
j∈R(ti)

exp(βtXj + Ijz)

− Σ(θc)
−1z = 0. (1.10)

Note that formulas (5) and (6) in Ripatti and Palmgren (2000) are reported erroneously in

their paper since the summation
∑

j∈R(ti)
is missing at the numerators.

Replacing the maximized values (β̂(θc), ẑ(θc) of PPL into equation (1.4), we get an approxi-

mated profile likelihood function for θc, equal to

l2(θc) = −1

2
log |Σ(θc)| −

1

2
log |κ′′(θc)| −

1

2
ẑtΣ(θc)ẑ. (1.11)

Note that function κ(θc) have been approximated by minus the PPL function (1.8) at the

estimated parameters (β̂, ẑ). In practice, the second derivative function κ′′(θc) can be conve-

niently approximated by the Hessian matrix of PPL function obtained from the estimation

procedure of parameter (β, z), which is here denoted by K22. Then, the estimating equation

of variance components θc can be simplified and expressed through differential of the profile

likelihood (1.11) as follows

− 1

2

[
tr

(
Σ−1(θc)

∂Σ(θc)

∂θc

)
+ tr

(
K−1

22

∂Σ−1(θc)

∂θc

)
− ẑtΣ−1(θc)

∂Σ(θc)

∂θc
Σ−1(θc)ẑ

]
= 0, (1.12)

where tr() is the trace value of the matrix.

In shared frailty model with i.i.d. frailty terms, θc contains only the variance parameter σ2,

then the explicit formulation of the solution to equation (1.12) is

σ̂2 =
ẑtẑ + tr(K−1

22 )

n

and the asymptotic variance of σ̂2 is

var(σ̂2) = 2σ̂4

[
n+

1

σ̂4
tr
(
K−1

22 K
−1
22

)
− 2

σ̂2
tr
(
K−1

22

)]−1

.
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In conclusion, the whole algorithm procedure can be summarized as follows. At the first step,

the algorithm is started by initialing vector θc. Secondly, (β̂(θc), ẑ(θc)) are found by alternating

between solving equations (1.9) and (1.10) for fixed variance components θc. Thirdly, at

maximized values of β and z, a new value of θc is obtained by solving the estimating equation

(1.12). Lastly, the second and third step are iterated until convergence. After the algorithm

converges, the cumulative baseline hazard can be estimated by using Breslow’s estimator

(Breslow (1974)),

Λ̂0(t) =
∑
tl≤t

dl∑
j∈R(ti)

exp
[
β̂tXj + Ij ẑ

]
where tl = t1, . . . , tL are L distinct ordered event time points, and dl is the number of events

at time tl, for l = 1, . . . , L.

1.3 Monte-Carlo EM (MCEM) algorithm for shared

frailty models

1.3.1 A shared frailty model

Let T̃ik be the survival time and Cik the censoring time for observation i in cluster k defined

for i = 1, . . . , nk, k = 1, . . . ,m and
∑m

k=1 = n. Denote with Tik = min{T̃ik, Cik} and δik =

I(T̃ik ≤ Cik) as the observed survival time and the corresponding event indicator, respectively.

Let also Xik be a vector of exploratory variables. Then, all time-to-event data are identified

by t = {tik, δik, Xik, i = 1, . . . , nk, k = 1, . . . ,m}.
The hazard function of the ith observation in cluster k is modeled by

λik(t) = λ0(t) exp(βtXik + zk), (1.13)

where λ0(t) is the baseline hazard, β is the regression coefficient vector, and zk is the shared

random effect for all individuals in cluster k. The frailty vector Z = (Z1, Z2, . . . , Zm) is

assumed to follow a multivariate normal distribution, Z ∼MVN(0,Σ), where Σ = σ2Ω. Here

Ω is a m × m correlation matrix and its (k, k′) element measures the correlation between

frailties zk and zk′ . In this setting, the correlation is modeled as corr(zk, z
′
k) = ρ(d(k, k′), θρ),

where ρ(·) is a parametric correlation function of the spatial distance d(·) between two cluster

k and k′, which depends on parameter θρ. The vector of unknown parameters in Σ is denoted

by θc = (σ, θρ), and the vector of unknown parameters in the time-to-event model is denoted

by θt = {β,Λ0(.)}. Let θ = {θt, θc} be a general notation for all parameters envolved in the

model.
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1.3.2 The EM algorithm for parameter estimation

The likelihood function for θt, conditional on the data t and random effects z, is

L1(θt|t, z) =
∏
i,k

λ(tik)
δikS(tik)

=
∏
i,k

[
λ0(tik) exp

(
βtXik + zk

)]δik exp
[
−Λ0(tik) exp(βtXik + zk)

]
.

The corresponding log-likelihood function is

l1(θt|t, z) =
∑
i,k

δik log [λ0(tik)] +
∑
i,k

δik
(
βtXik + zk

)
−
∑
i,k

Λ0(tik) exp
(
βtXik + zk

)
. (1.14)

The likelihood and log-likelihood functions for θc, conditional on the random effect z, are

respectively

L2(θc|z) = (2π)−
n
2 |Σ|−1/2 exp

(
−1

2
ztΣ−1z

)
and

l2(θc|z) = −n
2

log(2π)− 1

2
log(|Σ|)− 1

2
ztΣ−1z. (1.15)

If we consider the join density of the event times and the random effects, which is equal to

f(t, z) = L(θ|t, z) = L1(θt|t, z)× L2(θc|z),

as a function only of the frailty vector z, then f(t, z) is proportional to a function g(z), which

in our case has the following expression:

g(z) = exp

∑
i,k

[
δikzk − Λ0(tik) exp

(
βtXik + zk

)]
− 1

2
ztΣ−1z

 .

Then, the distribution of the random effect z, conditional on the data t, is

f(z|t) =
f(t, z)∫
f(t, z)dz

=
g(z)∫
g(z)dz

(1.16)

Expectation step (E-step) Given the estimate θ̂(d) obtained from the iteration (d), the

algorithm requires to evaluate the expectation of the log-likelihood function with respect to

the conditional distribution f(z|t; θ̂(d)) , that is

Q(θ|θ̂(d)) = E(d)
z|t {log[L(θ|t, z)]} =

∫
log [L(θ|t, z)] f(z|t; θ̂(d))dz.
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By simple factorization, Q(θ|θ̂(d)) can be written by Q(θ|θ̂(d)) = Q1(θt|θ̂(d))+Q2(θc|θ̂(d)) where

Q1(θt|θ̂(d)) =
∑
i,k

E(d)
z|t (zk)δik −

∑
i,k

E(d)
z|t [exp(zk)]Λ0(tik) exp(βtXik)

+
∑
i,k

δik log[λ0(tik) exp(βtXik)], (1.17)

and

Q2(θc|θ̂(d)) = −n
2

log(2π)− n

2
log(σ2)− 1

2
log(|Ω|)− 1

2σ2
tr
[
Ω−1E(d)

z|t (z
tz)
]
. (1.18)

In practice, samples of frailty vector z are generated from the posterior distribution g(z; θ̂(d))

by using the Metropolis-Hastings algorithm within Gibbs sampling. Hence, the conditional

expectations in (1.17) and (1.18) are approximated by sample means using such MCMC frailty

samples.

Maximization step (M-step) Given MCMC frailty samples in the E-step, the M-step

maximizes separately the conditional expected log-likelihoods Q1(θt|θ̂(d)) and Q2(θc|θ̂(d)).

Particularly, Q1(θt|θ̂(d)) is maximized at θ̂
(d+1)
t =

{
β̂(d+1), Λ̂

(d+1)
0 (.)

}
in which β̂(d+1) is

obtained by maximizing the profile likelihood function

pl(β) =
∑
i,k

δik

E(d)
z|t (zk) + βtXik − log

 ∑
i′,k′∈R(tik)

E(d)
z|t [exp(zk′)] exp(βtXi′k′)

 ,
where R(t) is the risk set at time t. The cumulative hazard function Λ0(t) is estimated by a

step function which is

Λ̂
(d+1)
0 (t) =

∑
tl≤t

dl∑
i′,k′∈R(tik) E

(d)
z|t [exp(zk′)] exp(βtXi′k′)

.

Here tl, for l = 1, . . . , L, are L distinct event time points and dl is the number of events at

time tl.

On the other side, by taking the first derivative of Q2(θc|θ̂(d)) with respect to θc, the ML

estimates θ̂
(d+1)
c are obtained by computing

(σ̂2)(d+1) =
tr
[
Ω−1E(d)

z|t (z
tz)
]

n

and maximizing the profile function

pl(θρ) = −n
2

log
{
tr
[
Ω−1E(d)

z|t (z
tz)
]}
− 1

2
log(|Ω|).
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1.3.3 The observed information matrix

Since the EM algorithm does not directly provide the observed information matrix for the

likelihood of the observed data, Louis’s formula (Louis, 1982) is a well-known method used to

obtain it. The observed information matrix under this formula is given by

Iθ̂ = Ez|t

[
−∂

2l(θ)

∂2θ

∣∣∣∣∣
θ=θ̂

]
− Ez|t

[(
∂l(θ)

∂θ

)(
∂l(θ)

∂θ

)t ∣∣∣∣∣
θ=θ̂

]
,

where l(θ) = l1(θt)+l2(θc). The two contributions l1(θt) and l2(θt) are provided, respectively, in

(1.14) and (1.15). The information matrix can be estimated by using the MCMC samples at the

last iteration of the algorithm. Through discretization of the baseline hazard function Λ0(t), it

is possible to estimate the variance of the jumps of this function at the event times, λ01, . . . , λ0L,

jointly with the other parameters in the model. The consistency of such estimators has been

tested in Parner et al. (1998) and Andersen et al. (1997).



Chapter 2

Insulin-containing secretory

granules data.

In this chapter we introduce a novel biological dataset. These data contain a vast of

unexplored information about Exocytosis on human pancreatic beta-cells compressed in high-

resolution total-internal reflection (TIRF) images. In details, we give a data overview in

Section 2.1, we propose a Matlab procedure to process these TIRF images to numerical data

in Section 2.2, some primary information on the numerical data is summarized in Section

2.3.1 and finally, in Section 2.3.2, we fit a standard Cox model and an independence Gaussian

model to investigate presence of spatial random effects which motivates us to introduce spatial

frailties in modeling survival rates.

2.1 Data overview

Insulin-containing secretory granules data is a collection of image sequences produced by a

high-resolution total-internal reflection microscopy (TIRF-M). Data are a part of experimen-

tal results studying exocytosis on human pancreatic beta-cell conducted by biologists Nikhil

R. Gandasi and Sebastian Barg, in the Department of Medical Cell Biologist, University of

Uppsala, Sweden. Their experimental results were published in both Gandasi and Barg (2014)

and Barg et al. (2010).

Briefly, exocytosis is a fundamental cellular process that fuses intracellular vesicles with the

plasma membrane and is involved in secretion, protein trafficking and membrane repair. In

beta cells, exocytosis of insulin-containing secretory granules is triggered within milliseconds

by a rise in cytosolic Ca+ (Gandasi and Barg, 2014).

Between proteins, one of the most important is syntaxin. To test how syntaxin in plasma

membrane has influence on exocytosis, the expert biologists imaged several beta-cells where

granules are marked by the granule marker neuropeptide-Y (NPY)-mCherry displayed in red

17
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fluorescence and syntaxin clusters are expressed by green fluorescent protein (syx-GFP). There-

fore, presence of a granule on the plasma membrane is recorded from the moment it approaches

the plasma membrane, by the florescence intensity at its location on the images until it dis-

appears or the experiment ends. Similarly, trajectories of syntaxin concentration levels are

computed for each single granules by overlapping consecutive pairs of granule images and syn-

taxin images.

In details, Gandasi and Barg (2014) concluded that a successful exocytosis process requires

three stages: Tethering, Docking, and Exocytotic event (Figure 2.1). Docking is considered as

a prerequisite stage: a granule is considered to experience an exocytotic event only if previously

it has been docked stably in the plasma membrane. A granule is defined to have an exocytotic

event if it is successfully released to blood due to a stimulation by exposing to elevated K+.

By observing from TIRF images, the florescence of exocytotic events will be disappeared sud-

denly within few micro seconds (usually in 100 − 200ms). There is another group of docked

granules which are also docked successfully on the plasma membrane but they return to the

cellular fluid. From TIRF images, these disappearing events are distinguished from exocytotic

events because of their gradually loosing (usually in few seconds). These events are labeled

by “undocking events”. All docked granules, including “exocytotic events” and “undocking

events”, absorb proteins during the conversion from the tethering stage to the docking stage.

On the other hand, granules who return to the intracellular fluid at the tethering stage or

before being docked successfully at the docking stage, are labeled by “visitors”. Furthermore,

“visitors” fail to recruit proteins during their presence at the plasma membrane. Barg et al.

(2010) mainly discovered that higher syntaxin levels are associated to an increased probability

of exocytosis. Gandasi and Barg (2014) favored to focus on the docking stage. They concluded

that docked granules recruit the syntaxin immediately at the moment of their contact with

the plasma membrane.

Figure 2.1: A successful exocytosis process.

Hence, in studying these secretory granules by TIRF imaging, all events including “visi-

tors”, “undocking events” and “exocytotic events”, contain a huge unexplored information to

investigate exocytosis as well as relative intracellular mechanisms. There has been also inter-

est in studying the more general biological process, where granules disappear from the plasma

membrane with different rate over time and the “disappearing event” (either an “undocking
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event”, an “exocytotic event” or a “vistor”) is observed. Therefore, the effect of proteins, such

as syntaxin, on the general disappearing event is also of great interest and will be considered

in this thesis.

The data shows a wealth of granules and syntaxin information on 8 human pancreatic

beta-cells. In details, each cell was imaged consecutively every 0.1 seconds in a certain time.

The first row in Table 2.2 shows different experimental time for the 8 cells. Each cell image,

called ‘frame’, is showed by a matrix 256× 512 where the left 256× 256 matrix is the image of

syntaxin channel and the right 256× 256 matrix is the image of granule channel. An example

of such image is reported in Figure 2.2.

Figure 2.2: The first frame of cell 2466. The image size is 256× 512 where the left
256 × 256 image is the syntaxin channel and the right one is the image of granule
channel.

2.2 Data processing

To work with the Insulin-containing secretory granules data, firstly images are proceeded to

detect granules, following the three main steps of reducing noise, locating granule, and creating

granule trajectories. Finally, to complete the data processing, syntaxin levels are computed

for each granule. We have implemented in Mathlab all the procedures explained in this section

of the thesis, adapting the Matlab code on particle tracking by Blair and Dufresne (n.d.) (see

Section 1.1) to our data setting. This processing procedure does not only produce a numerical

dataset containing granule locations, survival times, censoring indicators and syntaxin levels

which are used for spatial survival analysis in this thesis, but it is also potentially useful for

many other kind of datasets in further analysis.
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2.2.1 Granule detection

Reducing noise

To detect granules, noise in the images of granule channel are firstly reduced by using the

average filter and the Gaussian filter, which have been described in Section 1.1. Generally, a

filter moves a mask of size 2w + 1 across the target image, where w is an integer lager than

the single sphere’s image radius pixels, but smaller than the spacing between particles. The

filtered image is produced by replacing the intensity value at the center of the mask with a

linear combination of all intensity values of its neighboring pixels. For convenience, in the

computational procedure used later on, we suggest to choose the mask size to be equal to

the granule size. In practice, a magnified image of a single granule, as shown in Figure 2.3,

suggests us that a possible choice for the granule size is 2w + 1 = 5. A representative granule

image is shown in Figure 2.4 where the filtered image is much clearer.

Figure 2.3: A magnified image of a single granule in the first frame of cell 2466
recommends a possible granule size to be 2w + 1 = 5.

Locating granule

From the filtered granule images, the next step aims at identifying centroids of granules on

the studied cell area. Applying the theory of particle tracking described in Section 1.1, a

locating particle procedure includes three steps: Identifying centroid candidates by thresholds

of images, refining centroids by local maxima and computing precise sub-pixel locations. How-

ever, sub-pixels are not much meaningful in our study, so we suggest to eliminate the last step

about computing exact centroids in particle locating procedure. Hence, on each cell, determin-

ing granule locations is operated consecutively in each image of video sequence following two

steps: Identifying centroid of granules by using thresholds and local maxima, and secondly,
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Figure 2.4: The granule channel on the first frame of cell 2466 where the original
image is shown in the left side and the filtered image is in the right hand.

removing granules who are out of the cell area.

A rough estimate of the threshold value can be determined by 60% of the maximum pixel

value in filtered images. However, this is infeasible in our data setting since the contrast qual-

ity of the images varied a lot from one image to another, due to the decay of microscopy light

intensity during the experiment. Hence, it is essential to define different thresholds for every

image in the sequence. In this work, thresholds are automatically computed using the gray

scale of Otsu’s method (Otsu, 1979). Generally, Otsu’s method assumes that the target image

contains two classes of pixels following bi-modal histogram (foreground pixels and background

pixels), then it calculates the optimum threshold that separates the two classes, in such a way

that their combined spread is minimal. The local maximum centroids are still defined on a

mask size 2w+ 1 = 5. Figure 2.5 illustrates a representative result of granule detection where

granule locations are identified and marked by red circles in Figure 2.5(c).

The correct cell area is found based on the first frame of syntaxin channel. The syntaxin

image is firstly transformed into a binary image using the gray scale of Otsu’s method (Otsu,

1979). Then connected areas are labeled by using 8-connected criterion that each pixel con-

nects to its neighbors if the neighbors touch one of its edges or corners. The final cell area

is defined as the largest connected one. Figure 2.5(a) is a binary image of a representative

syntaxin channel in which three connected areas are labeled and the final cell area is shown

in Figure 2.5(b). Finally, candidate granules who are out of the cell area are thrown away

(Figure 2.5(d)).
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Figure 2.5: Detection granules on cell 2466. The entire binary of syntaxin channel
(a); the cell area (b); granules are found out on the entire space (c); granules on the
cell area (d).

Creating granule trajectories

The final step is to identify the same granule in subsequent frames (Section 1.1). In our

application, the detection of granule trajectories is based on two assumptions: A granule can

not move further than its diameter (5 pixels) and a granule can be observed to disappear and

then appear again in a maximum time of 5 frames. The first assumption is commonly assumed

in particle tracking and enables granules to be detected from one frame to another. Moreover,

it is also feasible because granules are known not to move in a strong convection (Gandasi

and Barg, 2014). The second assumption implies that, if a granule disappears and it is found

again in one of the subsequent frames, then it is recorded as the same granule. This procedure
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aims at avoiding microscopy noise and at obtaining longer trajectories (see Section 1.1). The

second row in Table 2.2 shows the number of trajectories (the total number of granules) in

each studied cell. Figure 2.6 gives us a panorama of trajectory length. Unsurprisingly, the

shortest trajectories (less than 5 seconds) accounts the highest proportion in every histogram

and most of the granules disappeared before 25 seconds.

Figure 2.6: The histograms of trajectory length (survival time) in seconds for each
cell.

2.2.2 Computing syntaxin

To study the concentration of syntaxin on granules in the plasma membrane, we overlap granule

and syntaxin frames to quantify syntaxin level around each granule. Barg et al. (2010) observed

that the most visible syntaxin clusters did not coincide with granule positions. Syntaxin still

congregated in clusters, but the clusters were rarely centered on granules (see Figure 2.7).

To document this point, the biologists defined on-granule and off-granule clusters and the

concentration of syntaxin level at each granule centroid is then computed by the formula

∆F/S = c−a
a−bg (Gandasi and Barg (2014), Barg et al. (2010)). In details, the notation has the

following meaning:

• c: The average pixel fluorescence in the granule area, which is a central circle of 5 pixels

in our application;

• a: The average pixel fluorescence in a surrounding annulus with an outer diameter of 2

pixels lager than the granule diameter (in our application it is 7 pixels);

• bg: A background fluorescence that is not including the cell area.
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Figure 2.7: An enlarged image of syntaxin channel in the first frame of cell 2466
where red circles are granule positions and fluorescence areas are syntaxin clusters.
The figure shows that most sysntaxin clusters are not centered at granule positions.

Therefore, ∆F = c − a quantifies the specific on-granule fluorescence which implies that

syntaxin is concentrated at the granule for positive values ∆F , while negative values indi-

cate exclusion. The result S = a − bg is proportional to the concentration of free syntaxin

molecules unaffected by any granule. The syntaxin level of each granule is recorded following

its trajectory, so it is showed as a function of time. Figure 2.8 shows representative syntaxin

trajectories on cell 2466. It appears that syntaxin level varies during the experiment and this

pattern is also visible in the other cells.



Chapter 2 - Insulin-containing secretory granules data. 25

Figure 2.8: Four syntaxin trajectories of cell 2466 includes a granule disappeared in
a short time (2.6 seconds) (fig.(a)), a granule disappeared with a long survival time
(23.6 seconds) (fig.(b)), a granule that ends the experiment with a short survival time
(17.4 seconds) (fig.(c)) and a granule that ends the experiment with a full experimental
time (26.8 seconds) (fig.(c)).

2.3 Survival data

2.3.1 Primary exploratory analysis

The numerical data is obtained from the data processing and image analysis described in

Section 2.2. The data includes 1117 granules clustered in 8 cells. The event of interest is dis-

appearance of granule from the plasma membrane. Survival time is recored from the moment

a granule appears on the plasma membrane until it disappears or ends of the experiment. The

data includes two explanatory variables, namely app and syn. The former is a categorical

variable indicating whether a granule is present (and visible) at the first frame or not. The

syn is the average syntaxin level for each granule computed during its survival time. The

dataset contains also the spatial coordinates of each granule in pixel unit. Figure 2.9 shows

the histogram of the pairwise Euclidean distances of granules within cells. With an average of

91.1% over all cells, pairwise distances are less than 100 pixels and there are very few granules

(about 8.35%) who are close in a distance of 10 pixels. Table 2.1 shows a description of the

variables in the dataset and Table 2.2 summarizes the primary information classified by cells.
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Figure 2.9: Histogram of the pairwise Euclidean distances of granules within cells.

Variable Description

cell id A serial number to denote each cell
id A serial number to denote each granule

x coord, y coord Spatial coordinates of each granule in pixel unit
sur time Survival time of each granule in seconds
event Event indicator (1 = disappear, 0 = censored)

syn Average synaxin over granule survival time
app First frame indicator (1 = presence at the first frame, 0 = otherwise)

Table 2.1: Description of variable in the dataset.

2.3.2 Initial survival analysis

First, we analyzed data with a standard survival analysis ignoring any spatial variation. Let

us define with tik the observed time for the ith granule in cell k, with δik the event/censoring

indicator and with Xik the covariate vector. Results from fitting the standard Cox proportional

hazards model,

λ(tik) = λ0(tik) exp(βXik)

are summarized in the left part of Table 2.3. In this model, we have included the interaction

term between syntaxin level and the indicator of granule presence at the first frame. A p-value

lower than 0.001 for the regression coefficient of the variable app indicates that presence of

the granule at the first frame of the experiment is very significant. Moreover, its negative

value (−1.167) means that, if a granule is observed from beginning of the experiment, it

shows a lower rate of disappearing. The estimate of coefficient for syn 0, equal to = 0.734, is
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2460 2461 2462 2464 2466 2469 2481 2485

Time (seconds) 25.7 29.2 37.6 35.1 26.8 34.7 32 52

No.granule 143 44 117 146 121 118 84 344

No.event 122 30 103 112 94 73 60 291

E.time(seconds) 3.789 3.227 4.626 4.124 4.35 5.718 6.53 5.136

C.time(seconds) 11.3 21.521 20.564 22.212 15.915 26.267 13.158 32.192

E.syn 0.026 0.147 0.077 0.057 0.038 0.089 0.029 0.022

C.syn 0.029 0. 138 0. 055 0.075 0.035 0. 127 0.028 0. 028

Table 2.2: Primary information from the data classified by cells: experimental time
in seconds (Time), number of granule (No.granule), number of event (No.event), the
average survival time for events and censored granules (E.time & C.time), the average
syntaxin level for events and censored granules (E.syn & C.syn).

interpreted as the single effect of syntaxin level on the event rate when the indicator variable

app is equal to zero. We observe a p-value of 0.13, indicating that the on-granule syntaxin level

is not significant in disappearance of those granules that enter later during the experiment.

In contrast, the coefficient for syn 1 is estimated by a value −2.647, and indicates that the

syntaxin level decreases the disappearing rate for those granules present at the first frame

of the experiment. These conclusions are also visualized in Figure 2.10 where the estimated

survival curves are plotted at different syntaxin levels for the two groups of granules being

present or absence at the first frame. This figure shows clearly that at any moment, the

survival probability of granules present at the first frame of the experiment is always higher

than the others. Solid lines of group 0 (app = 0) almost coincided and this is coherent with the

conclusion of non-influence of syntaxin level on disappearance of these granules. On the other

hand, dashed lines in group 1 (app = 1) are different and showing higher survival probabilities

for increased on-granule syntaxin levels.

We considered also a Cox model containing an individual frailty term zik, that is

λ(tik|zik) = λ0(tik) exp(βtXik + zik),

where frailties are commonly assumed to be independent and follow a Normal distribution

N (0, σ2). Results from fitting this model are reported in Table 2.3 (right side). As expected,

the estimated coefficient for syn 0 has increased and the other coefficients have decreased

when the frailty term is included, moreover the standard errors are all increased while p-values

are almost the same. In addition, the estimated frailty variance σ̂2 = 0.506, as well as the

higher log-likelihood (−5456.180 in the standard Cox model and −5270.934 in the independent

frailty model), show strong evidence that there exists unexplained variation that should be

accounted in modeling this data. Finally, Figure 2.11 shows potential spatial variation within

cells. Hence, these results motivate us to introduce spatial frailties in modeling survival rates
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Cox Cox/Gaussian

standard standard
β error p.value β error p.value

syn 0 0.734 0.468 0.117 0.845 0.552 0.130
app -1.167 0.117 0.000 -1.532 0.14 0.000

syn 1 -2.647 1.006 0.008 -3.048 1.146 0.008

Frailty variance σ̂2 = 0.506
Log-likelihood -5456.180 -5270.934

Table 2.3: Standard Cox and independence Gaussian survival results. The vari-
ables are coded by syn 0, syn 1 are respectively variables modeling syntaxin levels
for groups of granules who appear within the experiment and the first frame of the
experiment; app is an indicator variable that app = 1 if granule is present at the first
frame of the experiment otherwise app = 0.

Figure 2.10: Estimated survival curves at different level of syntaxin for each group
of granule: presence/absence at that first frame.

for these types of events.
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Figure 2.11: Survival time of granules in each cell, where black pluses and red dots
indicate, respectively, events and censored granules. The size of the dot or plus is
proportional to the observed survival time.





Chapter 3

Likelihood-based methods extended

to the hierarchical spatial frailty

model.

We propose a semiparametric proportional hazard model where frailties are addressed as

random effects in the hazard function. The baseline hazard is estimated non-parametrically

while frailties are assumed to be clustered and normally distributed. Moreover, the spatial

correlation between frailties is incorporated in the variance-covariance matrix. The inference

for this proposed hierarchical spatial frailty model is challenged by the computation of high-

dimensional integrals in the marginal likelihood. Furthermore, the burden of computation is

much considerable since frailties are introduced for individual observations, and the model also

accounts for hierarchical structure via independent clusters.

We firstly investigate the penalized partial likelihood (PPL) method that was proposed by

Ripatti and Palmgren (2000) for inference in frailty survival models where the frailty term

follows a multivariate distribution. The intractable integral in the marginal likelihood term is

approximated by Laplace approximation following the lines of Breslow and Clayton (Breslow

and Clayton, 1993). Frailties are considered as fixed effect parameters and the baseline hazard

function is estimated non-parametrically by the Breslow estimator (Breslow, 1974). The PPL

approach for frailty survival models has been implemented in the R package coxme (Therneau,

2015). In practice, shared frailty models with i.i.d. frailty terms, where the variance-covariance

matrix is diagonal, have been well analyzed and discussed in both Ripatti and Palmgren (2000),

and Therneau and Grambsch (2013). However, it is not clear how the method can be extended

to allow the presence of spatially correlated frailties, although the methodology is quite gen-

eral for any kind of semi-parametric frailty model. Moreover, the R package coxme does not

allow straightforward implementation of frailty survival models for spatially correlated data

and no standard error estimates of frailty covariance are given. Hence, we propose to inves-

tigate PPL methods applied on the hierarchical spatial frailty model. Practically, parameters

31
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are estimated from coxme package where the package is extended to handle an Exponential

variance-covariance matrix for spatial frailties. Moreover, we present the standard errors as-

sociated to the estimated variance-covariance parameters by numerical derivative methods.

An alternative common approach based on likelihood maximization is based on the Monte-

Carlo EM (MCEM) algorithm. The EM algorithm, formalized by Dempster et al. (1977), is

a well-known procedure for finding maximum likelihood estimates in contexts of incomplete

data, such as frailty models. The algorithm is alternated between two steps: finding the ex-

pectation of the unobserved part of the data given the observed data (E-step) and maximizing

the conditional expectation obtained in the E-step (M-step). In the MCEM algorithm, the

conditional expectation in the E-step is approximated by the random effects (frailties) sam-

ples which are drawn from the posterior distribution of frailties using Gibbs sampling. In the

M-step, given frailties, parameters are conveniently estimated in two separated maximization

procedures for the variance-covariance parameters and the time-to-event parameters, includ-

ing the regression parameters and the baseline hazard function. Particularly, time-to-event

parameters can be maximized by using a standard Cox partial likelihood maximization pro-

cedure and the variance-covariance parameters can be solved by simple least square tools.

The MCEM approach was applied on shared frailty survival models in Ripatti and Palmgren

(2000), Vaida and Xu (2000) and Li et al. (2015), but only the last one studied the spatial cor-

relation for frailties. However, in Li et al. (2015) frailties are introduced as clustered random

effects while our proposed hierarchical model requires frailties for each individual observation

and also handles the hierarchical structure via independence clusters. Hence, based on the

studies of Li et al. (2015), we present a MCEM procedure for modeling our proposed hier-

archical spatial frailty model. Furthermore, Li et al. (2015) proposed stopping the iterations

after a fixed amount of time, but for investigating the algorithm convergence speed, we apply

a stopping rule using a defined tolerance value. In addition, besides the Louis method, which

is the common approach for finding standard errors of estimates in the EM algorithm, we also

implemented sandwich standard errors to investigate the influence of clustering as well as the

independence assumption in the semi-parametric model.

In details, the hierarchical spatial frailty model is reintroduced in Section 3.1, then the two

approaches based on PPL and MCEM are respectively given in Section 3.2 and Section 3.3.

Simulation studies will be presented later in the thesis in Chapter 5.

3.1 The hierarchical spatial frailty model

Let T̃ik be the event time for the ith observation in cluster k, where i = 1, . . . , nk, k = 1, . . . ,m

and
∑m

k=1 nk = n. Here m is the number of clusters, nk is the number of observations in

cluster k, and n is the total number of observations. Let Cik be the censoring time, the

observed time is then Tik = min(T̃ik, Cik), and δik = 1{T̃ik ≤ Cik} is the event indicator. Let

us also consider a vector of explanatory variables Xik. The observed time-to-event data are
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denoted by t = {tik, δik, Xik, i = 1 . . . , nk, k = 1, . . . ,m}.
The random effect, called frailty, provides a suitable way to introduce unobserved random

factors in the model to account for association and unobserved heterogeneity. Given the

frailties zik, the observed event times are typically assumed to be mutually independent with

proportional hazard function for time tik of the ith observation in cluster k, written as

λ(tik|zik) = λ0(tik) exp(βtXik + zik), . (3.1)

Here, λ0(t) is the baseline hazard function, and β is the vector of regression coefficients. The

conditional density function is written as a product of the conditional hazard function and the

conditional survival function, that is

f(tik|zik) = λ(tik|zik)δik S(tik|zik)
=
[
λ0(tik) exp(βtXik + zik)

]δik exp
[
−Λ0(tik) exp(βtXik + zik)

]
,

where Λ0(t) denotes the cumulative baseline hazard function.

Our approach consists of investigating the spatial variation of observations within clusters.

This is translated in studying the spatial association between the underlying random effects, in

our case between the individual frailties zik in cluster k. Following standard spatial approaches,

we propose the normal distribution for individual frailties, i.e zik ∼ N (0, σ2). The spatial

structure is addressed by assuming that observations who belong to different clusters are

independent, while observations from the same cluster are spatially correlated. We introduce

ρ(dkii′ ; θρ), which is a correlation function containing a parameter θρ that depends solely on the

distance dkii′ between observation i and observation i′ in the kth cluster. The frailty vector z is

distributed as a multivariate normal, z ∼ MVN(0,Σ), where the variance-covariance matrix is

Σ = σ2Ω. Here, Ω is a n×n diagonal block correlation matrix, where correlations are denoted

by corr(zik, zi′k′) = 0 if k 6= k′ and corr(zik, zi′k′) = ρ(dkii′ ; θρ) > 0 if k = k′. The variance

parameter σ2 denotes common variation for all frailties.

Let θt = (Λ0(.), β) be the time-to-event parameters and θc = (σ, θρ) be the unknown

parameters in the variance-covariance matrix, then, we denote by θ = (θt, θc) the vector of all

model parameters.

Assume that the censoring is independent and non-informative of frailty Z. The marginal

log-likelihood function of parameter θ for model (3.1) is

L(Λ0(.), β, θc) =
1

|2πΣ(θc)|1/2
∫ ∏

i,k

[
λ0(tik) exp

(
βtXik + zik

)]δik
× exp

[
−Λ0(tik) exp

(
βtXik + zik

)]
× e− 1

2
ztΣ−1(θc)zdz (3.2)

The integral in this likelihood function is intractable because its dimension corresponds to the

number of individual frailties. Dealing with this intractable integral is a prerequisite step for
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the model inference, hence leading to different statistical approaches.

3.2 Penalized partial likelihood (PPL)

In a study of penalized partial likelihood method on estimation of multivariate frailty models,

Ripatti and Palmgren (2000) proposed to approximate the likelihood (3.2) by Laplace ap-

proximation following the technique in Breslow and Clayton (1993). Hence, an approximated

marginal log-likelihood for the likelihood (3.2) is given by

l(Λ0(.), β, θc) ≈ −
1

2
log |Σ(θc)| −

1

2
log |

∑
i,k

Λ0(tik) exp
(
βtXik + z̃ik

)
IikI

t
ik + Σ(θc)

−1|

+
∑
i,k

δik
[
log (λ0(tik)) + βtXik + z̃ik

]
− Λ0(tik) exp

(
βtXik + z̃ik

)
− 1

2
z̃tΣ(θc)

−1z̃

(3.3)

Here, the frailties z̃ = (z̃11, z̃12, . . . , z̃nmnm) are solution to the first derivative with respect to

z of the last two terms in the approximation. In addition, Iik is a binary vector expressed by

Iik = (i11, i12, . . . , iik, . . . , inmnm) with value 1 at the iik position and 0 elsewhere.

However, it is still not possible to maximize the approximated log-likelihood (3.3) since

it depends on z̃. Ripatti and Palmgren (2000) observed that, if the variance-covariance pa-

rameters θc were known and the frailties z were considered as fixed effect parameters, then

by ignoring the first two terms in the log-likelihood (3.3), the remaining parts would be a

penalized log-likelihood function (Green, 1987) for parameters (β, z,Λ0(.)). Hence, given θc,

the estimation for the time-to-event parameters θt and the frailties z can be simply obtained

by using a Cox-partial likelihood maximization routine for (β, z) and the Breslow estimator

for the cumulative baseline hazard function Λ0(.) (Klein and Moeschberger, 2006). Here, the

penalized partial log-likelihood (PPL) function for (β, z) is given by

lppl(β, z) =

nk∑
i=1

m∑
k=1

δik

(βtXik + zik
)
− log

∑
i′k′∈R(tik)

exp
(
βtXi′k′ + zi′k′

)− 1

2
ztΣ−1(θc)z

(3.4)

where R(tik) = {i′, k′ : ti′k′ ≥ tik} is the risk set at time tik.

Obviously, by ignoring the first two terms in the log-likelihood (3.3), the maximization is

much more simple, but consequently some information may be lost. The characteristics of the

information loss will be discussed in the simulation studies in Chapter 5.

Note that the Laplace approximation in (3.3) can be originally written in the following formula

l(Λ0(.), β, θc) ≈ −
1

2
log |Σ(θc)| − log |κ′′(z̃)| − κ(z̃), (3.5)
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where κ(z̃) is equal to minus the last two terms in the approximation (3.3), which has been

approximated by the penalized partial log-likelihood in (3.4). Now, if we consider the approx-

imation (3.5) as a function of parameter θc given the estimated parameters (β̂, ẑ, Λ̂0), then

(3.5) can be seen as an approximated profile likelihood function for the variance-covariance

parameters θc, that is

l(θc) = −1

2
log |Σ(θc)| −

1

2
log |κ′′(θc)| −

1

2
ztΣ−1(θc)z. (3.6)

For computational efficiency, we follow Ripatti and Palmgren (2000) to approximate the

second derivative function κ′′(θc) by minus the second derivative of PPL function (3.4) with

respect to z, that has the following analytic formula

K ′′(ẑ, β̂, θc) = −∂
2PPL

∂z∂zt

= −
nk∑
i=1

m∑
k=1

δik


 ∑
i′k′∈R(tik)

exp
(
β̂tXi′k′ + ẑik

)
Ii′k′


×

 ∑
i′k′∈R(tik)

exp
(
β̂tXi′k′ + ẑik

)
Ii′k′

t ×
 ∑
i′k′∈R(tik)

exp
(
β̂tXi′k′ + ẑi′k′

)−2
+

nk∑
i=1

m∑
k=1

δi

∑i′k′∈R(tik) exp
(
β̂tXi′k′ + ẑik

)
Ii′k′I

t
i′k′∑

i′k′∈R(tik) exp
(
β̂tXi′k′ + ẑik

)
+ Σ−1(θc).

In practice, this formula is conveniently approximated by the Hessian matrix of PPL func-

tion obtained from the estimation procedure of parameter (β, z), which is here denoted by K22.

Then, it is straightforward to show that the estimator of the component σ of the variance-

covariance parameter vector θc has the explicit formula

σ̂2 =
ẑtΩ(θ̂ρ)

−1ẑ + tr
[
K−1

22 Ω(θ̂ρ)
−1
]

n
, (3.7)

and the correlation parameters θρ is obtained by solving the following estimating equation

tr

(
Ω−1 ∂Ω

∂θρ

)
+

n

σ2(θρ)
tr

(
K−1

22

∂Ω−1

∂θρ

)
− 1

σ2(θρ)
ztΩ−1 ∂Ω

∂θρ
Ω−1z = 0, (3.8)

with tr() being the trace value of the matrix.

The standard error of θ̂c is derived from the second derivative of (3.6). The standard error of

σ̂2 is derived from the following explicit form

∂2l(θc)

∂σ2
= −1

2

{
− n

σ4
+

2

σ6
tr
[
K−1

22 Ω−1(θρ)
]
− 1

σ8
tr
[
K−1

22 Ω(θρ)
−1K−1

22 Ω(θρ)
−1
]

+
2

σ6
ztΩ−1(θρ)z

}
,

whereas computation is complicated for the standard error of θ̂ρ. Hence, practically these
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standard error terms will be obtained by numerical tools.

For more details of the PPL technique applied on multivariate frailty models without

accounting the spatial correlation between frailties (Ripatti and Palmgren, 2000), see Section

1.2.

3.3 Monte-Carlo Expectation Maximization (MCEM)

The MCEM algorithm

Following the approach of Li et al. (2015), the frailties are now treated as missing values.

Hence, instead of maximizing the marginal log-likelihood in (3.2), in the EM algorithm the

maximization is focusing on an expectation of the full log-likelihood given the observed data.

Moreover, unlike Ripatti and Palmgren (2000), in this approach in order to maximize the

likelihood, frailties will be randomly generated rather than being estimated.

The full log-likelihood function for parameter θ is

l(θ; t, z) = log(f(t, z; θ)) = log (f(t|z; θt)) + log (f(z; θc))

=
∑
i,k

δik log [λ0(tik)] +
∑
i,k

δik
(
βtXik + zk

)
−
∑
i,k

Λ0(tik) exp
(
βtXik + zk

)
− 1

2
log(|Σ|)− 1

2
ztΣ−1z. (3.9)

Given the value of θ̂(d) obtained from the iteration (d), the E-step involves the evaluation of

Q(θ|θ̂(d)) =

∫
log [f (t, z; θ)] f(z|t; θ̂(d))dz.

Using the factorization in (3.9), Q(θ|θ(d)) can be written as a sum of the components Q1(θt|θ(d))

and Q2(θc|θ(d)), which separately contain information on the time-to-event parameters θt =

(β,Λ0(.)) and the variance-covariance parameters θc = (σ, θρ), respectively. They are given by

Q1(θt|θ̂(d)) =
∑
i,k

E(d)
z|t (zik)δik −

∑
i,k

E(d)
z|t [exp(zik)]Λ0(tik) exp(βtXik)

+
∑
i,k

δik log[λ0(tik) exp(βtXik)]

and

Q2(θc|θ̂(d)) = −n
2

log(σ2)− 1

2
log(|Ω|)− 1

2σ2
tr
[
Ω−1E(d)

z|t (z
tz)
]
.

Then, the conditional expectations in Q1(θt|θ̂(d)) and Q2(θc|θ̂(d)) are approximated by sam-

ple means using MCMC frailty samples drawn from the Gibbs sampling technique with the
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posterior distribution f(z|t; θ̂(d)) ≈ f(t|z, θ̂(d)
t )f(z|θ̂(d)

c ). In particular, this distribution is pro-

portional to the function

g(z) = exp

∑
i,k

[
δikzik − Λ̂

(d)
0 (tik) exp

(
(β̂(d))tXik + zik

)]
− 1

2
ztΣ−1(θ̂(d)

c )z

 .

In the M-step, given frailty samples obtained from the E-step, the estimates of the parameter

vectors θt and θc are respectively obtained by maximizing Q1(θt|θ̂(d)) and Q2(θc|θ̂(d)). Partic-

ularly, θt = (β, λ0(.)) is conveniently estimated as in standard Cox models using the partial

likelihood technique for parameter β and the Breslow estimator for Λ0(.). On the other side,

Q2(θc|θ(d)) is straightforward to be maximized by the least square tool.

For the convergence criterion, Li et al. (2015) suggested to stop iterations after a spe-

cific amount of time and to check convergence efficiency by graphical methods. However, for

the aim of investigating the algorithm convergence as well as comparing convergence efficiency

between inference approaches, we propose an alternative criterion based on a fixed tolerance.

In details, we define the relative difference of the iteration (d) by maxi |θ̂(d)
i − θ̂

(d−1)
i |/|θ̂(d−1)

i |,
where the maximum is taken over parameter components. The algorithm is defined to be

successfully converged if the relative difference is smaller than the defined tolerance in three

consecutive iterations. This replication of the criterion in three iterations is proposed to en-

sure that the algorithm will not stop because of stochastically small changes in parameter

estimates, i.e, unlike the standard EM algorithm, the MCEM algorithm does not guarantee

monotonic changes in parameters over iterations. In practice, the algorithm will be stopped if

it is successfully convergent or it finishes a defined maximum number of iterations.

For more details of MCEM technique (Li et al., 2015), see Section 1.3.

Sandwich standard error estimates

The well-known technique for finding the standard error estimates in the EM algorithm is

Louis’s formula (Louis, 1982) that was given in Section 1.3. However, note that in our proposed

hierarchical spatial model, we assumed that observations are independent between clusters and

correlated within clusters. While the Louis’s formula does not account for the clustering struc-

ture and therefore may lead to underestimate standard errors, we propose to use additionally

the sandwich standard errors, also referred as the cluster robust standard errors developed by

Huber et al. (1967) and White (1980). Given the estimated variance-covariance matrix V̂L

obtained by Louis’s formula, the sandwich variance-covariance estimate is given by

V̂S = V̂ t
L

(
m∑
k=1

uku
t
k

)
V̂L, (3.10)
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where uk is the contribution of the kth cluster to the total score function ∂l(θ)
∂θ . More specifically,

Rogers (1994) noted that, if the log-likelihood is additive at the observation level, then the

cluster contribution can be written as

uk =

nk∑
i=1

∂li(θ)

∂θ
,

where l(θ) = log (f(t, z; θ)) is the full log-likelihood function given in (3.9) and li(θ) =

log (f(ti, zi; θ)) is the log-likelihood of the ith unit. Consequently, we derive the sandwich

variance-covariance estimate by the formula below

V̂S = V̂ t
L

m∑
k=1

{(
nk∑
i=1

∂lik(θ)

∂θ

)(
nk∑
i=1

∂lik(θ)

∂θ

)t}
V̂L,

so the standard error terms are computed by taking square root of the diagonal elements of

V̂S .
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Quadrature pairwise likelihood

A frailty survival model is a common choice to account for unexplained aspects that helps

to describe dependence and heterogeneity of observations. In survival analysis, frailties are

addressed as random effects in the proportional hazard function. However, inference in this

model requires computation of high dimensional integral in the marginal likelihood. Moreover,

the problem becomes more complicated when spatial correlation is introduced between frail-

ties and the baseline hazard function is estimated non-parametrically. Penalized likelihood

or Monte-Carlo EM methods may be computationally very slow and also poor in parameter

estimation. Alternatively, composite likelihood has been widely used for dealing with estima-

tion in parametric models where the full likelihood approach is computationally intractable

(Varin et al. (2011), Gao and Song (2011)). There have been many applications of composite

likelihood in different statistical areas, including geostatistics, spatial extreme, time series, as

well as survival analysis (Varin et al., 2011). However, there is no study on spatial frailty

survival models for censored data.

In particular, we propose a pairwise likelihood approach, that is, a composite likelihood based

on pairs of observations is adopted, for inference in the spatial frailty survival model. Here,

the frailties are assumed to be normally distributed and spatially correlated. For parameter

estimation, we proceed with an EM algorithm where a Gauss-Hermite approximation is used

in the M-step.

In details, a general theory of pairwise likelihood approach applied on spatial frailty survival

models is introduced in Section 4.1. The EM algorithm with Gauss-Hermite approximation is

provided in Section 4.2. A procedure to get variance of parameter estimates and its difficulties

are discussed in Section 4.3 and finally, proofs of propositions are given in Section 4.4.

4.1 Inference based on the pairwise likelihood

Let T̃ik be the event time for the observation ith in cluster k where i = 1, . . . , nk, k = 1, . . . ,m

and
∑m

k=1 nk = n. Let Cik be the censoring time, the observed time is then Tik = min(T̃ik, Cik),

39
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and δik = 1{T̃ik ≤ cik} is the event indicator. Let us also consider a vector of explanatory vari-

ables Xik. The observed time-to-event data are denoted by t = {tik, δik, Xik, i = 1 . . . , nk, k =

1, . . . ,m}. The hierarchical frailty survival model is defined by the conditional hazard function,

that is

λ(tik|zik) = λ0(tik) exp
(
βtXik + zik

)
.

Here, the frailty vector Z = (Z11, Z12, . . . , Znmnm) is assumed to follow a multivariate normal

distribution with the block variance-covariance matrix Σ(θc) = σ2×Ω(d, θρ), where each block

in Ω(d, θρ) presents a correlation matrix for units in the same cluster, while zeros are outside

the blocks, meaning that units belonging to different clusters are independent. The correlation

function depends on the unknown parameters θρ and spatial distances d.

For simplicity in writing, we generally denote subscript i, i = 1, . . . , n for index units. With the

observed time-to-event data t = {ti, δi, Xi, i = 1, . . . , n}, the conditional distribution function

for unit i at time ti becomes

f(ti|zi; θ) = λ(ti|zi)δiS(ti|zi)
=
[
λ0(ti) exp(βtXi + zi)

]δi exp
[
−Λ0(ti) exp(βtXi + zi)

]
. (4.1)

We define again θt = (Λ0(.), β) and θc = (σ2, θρ). Then, the likelihood for θ = (θt, θc) is

L(θ; t) =

∫
· · ·
∫ n∏

i=1

f(ti|zi; θ)f(z; θc)dz,

which requires the computation of a high-dimensional integral in order to be optimized. As an

alternative, we propose to use a pairwise likelihood approach (Lindsay (1988)). The pairwise

likelihood is defined by

PL(θ; t) =

n∏
i=1

∏
j∈Ai

L(θ; ti, tj)

=

n∏
i=1

∏
j∈Ai

∫ ∫
f(ti|zi; θ)f(tj |zj ; θ)f(zi, zj ; θc)dzidzj , (4.2)

where Ai is a subset of all considered pairwise neighbors of unit i indexed by j. For example,

in the application of our proposed hierarchical spatial frailty model, we proposed that Ai is

equivalent to the cluster containing unit i. This proposal aims to eliminate pairs having no

spatial correlation.

The pairwise maximum likelihood estimator (PMLE) θ̂ is obtained by maximizing the

pairwise likelihood PL(θ; t) or equivalently the pairwise log-likelihood

pl(θ; t) = log(PL(θ; t)) =

n∑
i=1

∑
j∈Ai

pl(θ; ti, tj)
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over the parameter θ, where pl(θ; ti, tj) = log(f(ti, tj ; θ)).

For n independent and identically distributed observations, a central limit theorem for the

PMLE has been available from Lindsay (1988), Kent (1982) and reviewed by Varin et al.

(2011). It is claimed that under regularity conditions on the component log-densities, the

PMLE θ̂ is asymptotically normally distributed:

√
n
(
θ̂ − θ

)
d−→ N

(
0, G−1(θ)

)
,

where G is the Godambe information matrix, also referred to as the sandwich information

matrix (Godambe, 1960). In particular,

G(θ) = H(θ)J−1(θ)H(θ),

where H(θ) is the sensitivity matrix, H(θ) = Et
{
−∇2pl(θ; t)

}
and J(θ) is the variability

matrix, J(θ) = V art {∇pl(θ; t)}. The expectation and the variance are computed with respect

to the unknown density of the observed time-to-event data t.

Other properties of composite likelihood, or pairwise likelihood, are discussed well in Varin

et al. (2011).

4.2 The Quadrature pairwise EM algorithm

The main subjective is to estimate the parameter vector θ = (Λ0, β, σ, θρ) by maximizing

the pairwise likelihood function. The EM algorithm is a natural choice since frailties are un-

observed. Moreover, the EM algorithm allows us to estimate the time-to-event parameters

θt = (Λ0, β) and correlation parameters θc = (σ, θρ) separately. The first use of EM algorithm

for pairwise likelihood was proposed by Liang and Yu (2003) in network tomography. The

pairwise EM algorithm inherits the main properties of standard EM algorithm for full likeli-

hood (Gao and Song (2011), Varin et al. (2005)).

Now, instead of maximizing the pairwise likelihood (4.2) directly, the EM algorithm pro-

ceeds by using an initial estimate θ(0) and solving iteratively the pseudo-complete data prob-

lem: maxθ
∑

i,j Ezizj |titj {log f(ti, tj , zi, zj ; θ)} (Liang and Yu, 2003). In details, starting from

an initial value θ(0) such that PL(θ(0); t) > 0 and setting the first iteration to d = 0, the

algorithm alternates an expectation step (E-step) and a maximization step (M-step). The

E-step and M-step are described as follows.
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The approximate E-step

In the E-step, we aim to evaluate the sum of the conditional expectations with respect to the

conditional distribution of z|t given θ(d):

Q(θ|θ(d)) =
∑

(i,j)∈A

∫ ∫
log {f(zi, zj , ti, tj ; θ)} × f(zi, zj |ti, tj ; θ(d))dzidzj

=
∑

(i,j)∈A

∫ ∫
log {f(ti, tj |zi, zj ; θt)} × f(zi, zj |ti, tj , ; θ(d))dzidzj

+
∑

(i,j)∈A

∫ ∫
log {f(zi, zj ; θc)} × f(zi, zj |ti, tj ; θ(d))dzidzj

= Q1(θt|θ(d)) +Q2(θc|θ(d)), (4.3)

For ease of reading from now on, the notation
∑

(i,j)∈A indicates the double sums
∑n

i=1

∑
j∈Ai

.

The decomposition in (4.3) has the advantage that parameters θc and θt can be maximized

separately. However, double integrals cannot be expressed in close form, and the expectation

must be estimated by numerical approximation tools.

Gauss-Hermite quadrature is a form of Gaussian quadrature for approximating the value of

integrals of form
∫∞
−∞ e

−x2g(x)dx. In this case, the integral will be approximated by a weighted

sum of function g evaluated at some predetermined quadrature nodes
∫∞
−∞ e

−x2g(x)dx ∼=∑M
i=1wig(xi). The nodes xi are the zeros of the M th order Hermite polynomial and the wi

are suitably corresponding weights (Liu and Pierce (1994)). Couples (xi, wi) can be obtained

from tables in Abramowitz and Stegun (1964) or by many R tools, for example the statmod

package. For double integrals, Jäckel (2005) showed that they can be effectively approximated

by M ×M function evaluations using one-dimension Gaussian-Hermite quadrature nodes and

weights (xi, wi), that is expressed by the summation
∑M

i,j=1wiwjg(xi, xj). In addition, Varin

et al. (2005) claimed that the adaptive Gauss-Hermite quadrature could give acceptable accu-

racy with a low order M . Hence, we propose to use Gauss-Hermite quadrature to approximate

conditional expectations in the E-step and the approximation procedure is given below.

Given the estimated standard deviation σ̂(d) and the estimated correlation ρ̂
(d)
ij , we define

binary nodes (z̃m1 , z̃m1m2
ij ) by

z̃m1 = σ̂(d)hm1 (4.4)

z̃m1m2
ij = σ̂(d)(1− ρ̂2(d)

ij )1/2hm2 + σ̂(d)ρ̂
(d)
ij hm1 (4.5)

and weights by

ŵm1m2
ij (θ(d)) =

f
(
ti|z̃m1 ; θ(d)

)
f
(
tj |z̃m1m2

ij ; θ(d)
)
km1km2∑

m1,m2
f
(
ti|z̃m1 ; θ(d)

)
f
(
tj |z̃m1m2

ij ; θ(d)
)
km1km2

(4.6)
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where couples (hm1 , hm2) and (km1 , km2) for m1,m2 = 1 . . . ,M are respectively Gauss-Hermite

quadrature nodes and weights. Then, the Gauss-Hermite quadrature approximation ofQ1(θt|θ(d))

and Q2(θc|θ(d)) in (4.3) are respectively given in Proposition 4.1.

Proposition 4.1.

For the bivariate nodes (z̃m1 , z̃m1,m2) and weights ŵm1m2
ij (θ(d)) given in equations (4.4), (4.5)

and (4.6), the final Gaussian-Hermite quadrature approximations forQ1(θt|θ(d)) andQ2(θc|θ(d))

are

Q̂1(θt|θ(d)) =
∑

(i,j)∈A

∑
m1,m2

log
{
f(ti|z̃m1 ; θt)f(tj |z̃m1m2

ij ; θt)
}
ŵm1m2
ij (θ(d)) (4.7)

and

Q̂2(θc|θ(d)) =
∑

(i,j)∈A

∑
m1,m2

log
{
f
(
z̃m1 , z̃m1m2

ij ; θc

)}
ŵm1m2
ij (θ(d)). (4.8)

The proof for this proposition is given in section 4.4.1.

The M-step

In the M-step, we aim to maximize Q̂1(θt|θ(d)) and Q̂2(θc|θ(d)) to get the estimators for the

next iteration, namely θ̂
(d+1)
t and θ̂

(d+1)
c . However, when the baseline hazard function is

assumed to be a nonparametric function, then the model functions can not be directly solved

by common numerical tools such as Newton-Raphson or Nelder-Mead. By solving Q̂1(θt|θ(d))

analytically with the profile likelihood method, Proposition 4.2 shows that the maximum

likelihood estimator for the baseline hazard function is a step function defined at distinct

event time points, where its analytic form is known. The variance-covariance parameters are

estimated for step (d+ 1) by maximizing Q̂2(θc|θ(d)). The analytic formula for the estimated

variance σ̂2 and the profile likelihood function for the correlation parameter θρ are given in

Proposition 4.3. The proofs are respectively given in sections 4.4.2 and 4.4.3.

Proposition 4.2.

For the bivariate nodes (z̃m1 , z̃m1,m2) and weights ŵm1m2
ij (θ(d)) given in equations (4.4), (4.5)

and (4.6), the approximated expectation Q̂1(θt|θ(d)) in (4.7) is maximized at θ̂t =
(
β̂(d+1), Λ̂

(d+1)(.)
0

)
,

where Λ̂
(d+1)
0 (.) is a step function which has jumps at L distinct event time points, tl for

l = 1, . . . , L, computed as

Λ̂
(d+1)
0 (t) =

∑
tl≤t

wl

al1(β̂(d+1)) + al2(β̂(d+1))
(4.9)
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where

wl =
∑
i

|Ai|δi1{ti=tl} +
∑
i

∑
j∈Ai

δj1{tj=tl}

al1(β) =
∑

i∈R(tl)

∑
j

∑
m1,m2

ŵm1m2
ij (θ(d)) exp

(
βtXi + z̃m1

)
al2(β) =

∑
i

∑
j∈R(tl)∩Ai

∑
m1,m2

ŵm1m2
ij (θ(d)) exp

(
βtXj + z̃m1m2

ij

)
,

R(t) is the risk set at time t, Ai is the neighbor set of unit i and |Ai| is the number of units

in set Ai.
The regression coefficient β̂(d+1) is obtained by maximizing the profile likelihood function for

β

pl(β) =

L∑
l=1

β
∑
j∈Dl

Xj |Aj |

− log
(
al1(β) + al2(β)

) ∑
j∈Dl

|Aj |


+
∑
i

L∑
l=1

β
 ∑
j∈Dl∩Ai

Xj

− dil log
(
al1(β) + al2(β)

) , (4.10)

where Dl is the set of subjects failing at event time point tl, d
i
l is the number of subjects failing

at event time tl on subset Ai and al2(β), al2(β) are given above.
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Proposition 4.3.

For the bivariate nodes (z̃m1 , z̃m1,m2) and weights ŵm1m2
ij (θ(d)) given in equations (4.4), (4.5)

and (4.6), the approximated expectation Q̂2(θc|θ(d)) in (4.8) is maximized at θ̂
(d+1)
c =

(
σ̂2 (d+1), θ̂

(d+1)
ρ

)
where

(σ̂2)(d+1) =
1

|A|
∑

(i,j)∈A

∑
m1,m2

[
(z̃m1)2 + (z̃m1m2

ij )2 − 2ρ̂ij z̃
m1 z̃m1m2

ij

]
2
(

1− ρ̂2
ij

) wm1m2
ij (θ(d)). (4.11)

Here, |A| is the total pairwise units, and ρ̂ij = ρij(θ̂
(d+1)
ρ ) is the correlation between individuals

i and j computed at the estimate θ̂
(d+1)
ρ of θρ.

The correlation parameters θ̂
(d+1)
ρ are obtained by maximizing the profile function

pl(θρ) =
∑

(i,j)∈A

∑
m1,m2

{
− log((σ̂2(θρ))

(d+1))− 1

2
log
(
1− ρ2

ij(θρ)
)}

ŵm1m2
ij (θ(d)). (4.12)

Conclusion

Starting from initialized values θ(0) such that PL(θ(0); t) > 0, the algorithm updates the

estimates by applying Propositions 4.2 and 4.3. In details, the regression coefficient β is

maximized by the profile likelihood (4.10) and an estimator of the baseline hazard function is

computed by formula (4.9). Similarly, the MLE of the correlation parameter θρ is produced

by maximizing its profile likelihood function (4.12) and substituting this value into equations

(4.11) to get the MLE of variance σ2. The algorithm converges when the relative difference

defined by maxi |θ(d+1)
i − θ(d)

i |/|θ
(d)
i | is less than a specific tolerance value.

For the choice of initial values, the random effects are firstly neglected and the regression

parameters β and the baseline hazard function are estimated by fitting a standard Cox model.

Variance and correlation parameters are guessed, then local maximum should be checked by

changing the initial starting values and computing the corresponding results of the algorithm.

Different correlation functions should be tested for model validation.

An opportune choice of neighbors for each unit i (defined as Ai) does not only produce

precise estimators but also speeds the algorithm convergence. The reason of this is that,

between all possible pairs of units, some of them do not give significant contribution to the

pairwise likelihood. Nott and Rydén (1999) claimed that only distinct pairs showing significant

spatial dependence need to be included in the product. Varin et al. (2005) showed that pairs

that are far apart and have little spatial correlation will give negligible contribution in the

pairwise likelihood, so the authors used a moving window to exclude these pairs. Hence, based

on our model setting where we ignore spatial correlation between units that belongs to different

clusters, we propose the neighbor sets to be equivalent to the clusters. Consequently, in Ai,
all pairs (i, j) where i and j belongs to different clusters are ignored.
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4.3 Variance of parameter estimates

As discussed in section 4.1, in order to estimate the standard error of the pairwise likelihood

estimators, we need to estimate the Godambe information matrix,

G(θ) = H(θ)J−1(θ)H(θ)

= Et
{
−∇2pl(θ; t)

}
V ar−1

t {∇pl(θ; t)}Et
{
−∇2pl(θ; t)

}
,

where the expectation and the variance are taken with respect to the unknown true density

of the observed data t.

For H(θ), we use a common approximation of the negative observed Hessian matrix, which

is the matrix of partial second derivatives of pairwise log-likelihood evaluated at the pairwise

MLE θ̂ using the original data, i.e, Ĥ(θ) = −∑i,j ∇2pl(θ̂; ti, tj) (Efron and Hinkley, 1978).

While the observed variability ∇pl(θ̂; t)∇pl(θ̂, t)t is zero, so it does not approximate the ex-

pected variability matrix J(θ). To approximate J(θ), we bootstrap the data and calculate an

estimated variability matrix Ĵ(θ) by

Ĵ =
1

K

K∑
k=1

∑
i,j

∇pl(θ̂; tki , tkj )


∑

i,j

∇pl(θ̂; tki , tkj )


t

,

where the gradients ∇pl(θ̂; tki , tkj ) are evaluated at the pairwise MLE θ̂ and t1, . . . , tK are K

bootstrap data sets.

Hence, to estimate G(θ), we need the gradient and the Hessian of each bivariate log-

likelihood contribution pl(θ̂; ti, tj). These quantities are not directly obtainable because they

contain the frailties (zi, zj) which are considered as missing values. To solve this problem,

we follow the approach of Louis (1982), who proposed a method to compute the observed

information matrix in the EM algorithm. Then by straightforward differentiation, for every

couple (i, j), we have

∇pl(θ; ti, tj) = Ezi,zj |ti,tj {∇ log [f(ti, tj , zi, zj ; θ)]} (4.13)

and

∇2pl(θ; ti, tj) = Ezi,zj |ti,tj
{
∇2 log [f(ti, tj , zi, zj ; θ)]

}
+ V arzi,zj |ti,tj {∇ log [f(ti, tj , zi, zj ; θ)]} .

(4.14)

Moreover, by taking the first derivative of Q(θ|θ(d)) computed in θ = θ̂, we have

∇Q(θ|θ(d))|θ=θ̂ =
∑
i,j

∫ ∫
∇ log {f(ti, tj , zi, zj ; θ)} |θ=θ̂ f(zi, zj |ti, tj ; θ(d))dzidzj .
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Hence, by evaluating the above quantity at the last iteration of the EM algorithm, we get the

approximation

∇Q(θ|θ(d))|θ=θ̂ ≈
∑
i,j

∇pl(θ; ti, tj)|θ=θ̂.

Similarly, by taking the second derivative of Q(θ|θ(d)) and evaluating it at the last iteration,

we get an expression for the first term of equation (4.14)

∇2Q(θ|θ(d))|θ=θ̂ ≈
∑
i,j

Ezi,zj |ti,tj
{
∇2 log [f(ti, tj , zi, zj ; θ)]

}
The last term in (4.14) is complicated to be expressed in terms of Q(θ|θ(d)), so it is not provided

in this thesis. Proofs of equations (4.13) and (4.14) are provided in the Appendix A.1.

4.4 Proofs of propositions

4.4.1 Proof of Proposition 4.1

Proof. In this proposition, we aim to approximateQ1(θt|θ(d)) andQ2(θc|θ(d)) by using Gaussian-

Hermite quadrature approximation. Given parameter θ(d), we note that the conditional dis-

tribution f(zi, zj |ti, tj ; θ(d)) does not depend on θ, so its contribution is only to change the

weights of the quadrature approximation. Here, we firstly denote it by wij(θ
(d)), then the

decompositions in (4.3) can be rewritten in terms of wij(θ
(d))

Q1(θt|θ(d)) =
∑

(i,j)∈A

∫ ∫
log {f(ti, tj |zi, zj ; θt)} × f(zi, zj |ti, tj , ; θ(d))dzidzj

=
∑

(i,j)∈A

∫ ∫
log [f(ti|zi; θt)f(tj |zj ; θt)]wij(θ(d))dzidzj

and

Q2(θc|θ(d)) =
∑

(i,j)∈A

∫ ∫
log {f(zi, zj ; θc)} × f(zi, zj |ti, tj , ; θ(d))dzidzj

=
∑

(i,j)∈A

∫ ∫
log {f(zi, zj ; θc)}wij(θ(d))dzidzj .

Since zi, zj are generally correlated normal variables with standard deviation σ(d) and corre-

lation ρ
(d)
ij , to use Gaussian-Hermite quadrature approximation, we transform these random

variables into an independent scale by taking

vi =
zi

σ(d)
, vj =

zj − ρ(d)
ij zi

σ(d)
(

1− [ρ
(d)
ij ]2

)1/2
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or

zi(vi) = viσ
(d), and zj(vi, vj) = σ(d)

(
1− [ρ

(d)
ij ]2

)1/2
vj + σ(d)ρ

(d)
ij vi.

Note that

wij(θ
(d)) = f(zi, zj |ti, tj ; θ(d)) =

f(ti, tj |zi, zj ; θ(d))f(zi, zj ; θ
(d))

f(ti, tj ; θ(d))

=
f(ti|zi; θ(d))f(tj |zj ; θ(d))f(zi, zj ; θ

(d))∫ ∫
f(ti|zi; θ(d))f(tj |zj ; θ(d))f(zi, zj ; θ(d))dzidzj

.

Here f(zi, zj ; θ
(d)) is a two-dimensional normal distribution. Hence, by solving zi(vi) and

zj(vi, vj) with some simple calculations, the denominator in wij(θ
(d)) becomes

1

2π

∫ ∫
f(ti|zi(vi); θ(d))f(tj |zj(vi, vj); θ(d))e−v

2
i /2e−v

2
j /2dvidvj .

Then, it can be estimated conveniently by M×M function evaluations from a one-dimensional

Gauss-Hermite quadrature with notes hm and weights km, for m = 1, . . . ,M (Jäckel, 2005),

by using a double summation

1

2π

M∑
m1=1

M∑
m2=1

f
(
ti|z̃m1 ; θ(d)

)
f
(
tj |z̃m1m2

ij ; θ(d)
)
km1km2 ,

where frailty pairs (zi, zj) are respectively replaced by transformed nodes, z̃m1 = z(d)(hm1) =

σ̂(d)hm1 and z̃m1m2
ij = z

(d)
ij (hm1 , hm2) = σ̂(d)(1− [ρ̂

(d)
ij ]2)1/2hm2 + σ̂(d)ρ̂

(d)
ij hm1 .

The same procedure is carried out for the integral in the numerator of Q1(θt|θ(d)) and

Q2(θc|θ(d)), then we can get the weights

ŵm1m2
ij (θ(d)) =

f
{
ti|z̃m1 ; θ(d)

}
f
{
tj |z̃m1m2

ij ; θ(d)
}
km1km2∑

m1,m2
f
{
ti|z̃m1 ; θ(d)

}
f
{
tj |z̃m1m2

ij ; θ(d)
}
km1km2

.

Therefore, the final Gaussian-Hermite quadrature approximations forQ1(θt|θ(d)) andQ2(θc|θ(d))

become

Q̂1(θt|θ(d)) =
∑

(i,j)∈A

∑
m1,m2

log
{
f(ti|z̃m1 ; θt)f(tj |z̃m1m2

ij ; θt)
}
ŵm1m2
ij (θ(d))

and

Q̂2(θc|θ(d)) =
∑

(i,j)∈A

∑
m1,m2

log
{
f
(
z̃m1 , z̃m1m2

ij ; θc

)}
ŵm1m2
ij (θ(d)),
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where f
(
z̃m1 , z̃m1m2

ij ; θc

)
is the bivariate normal distribution with variance-covariance matrix:

Σij(θc) = σ2

(
1 ρij(θρ)

ρij(θρ) 1

)
.

4.4.2 Proof of Proposition 4.2

Proof. In this proposition, we aim to maximize Q̂1(β,Λ0(.)|θ(d)). For simplicity, we decompose

(4.7) into two parts:

Q̂1(β,Λ0(.)|θ(d)) =
∑

(i,j)∈A

∑
m1,m2

log
{
f(ti|z̃m1 ; θt)f(tj |z̃m1m2

ij ; θt)
}
ŵm1m2
ij (θ(d))

=
∑

(i,j)∈A

∑
m1,m2

log {f(ti|z̃m1 ; θt)} ŵm1m2
ij (θ(d))

+
∑

(i,j)∈A

∑
m1,m2

log
{
f(tj |z̃m1m2

ij ; θt)
}
ŵm1m2
ij (θ(d))

= A1(β,Λ0(.)|θ(d)) +A2(β,Λ0(.)|θ(d)).

Using the conditional distribution in (4.1), A1(β,Λ0(.)|θ(d)) becomes

A1(β,Λ0(.)|θ(d)) =
∑

(i,j)∈A

∑
m1,m2

{
δi log [λ0(ti)] + δi

(
βtXi + z̃m1

)}
ŵm1m2
ij (θ(d))

−
∑

(i,j)∈A

∑
m1,m2

{
Λ0(ti) exp

(
βtXi + z̃m1

)}
ŵm1m2
ij (θ(d))

Let V = {i : δi = 1} be the set of all observed event time points. Since
∑

m1m2
ŵm1m2
ij (θ(d)) =

1, ∀(i, j), then A1(β,Λ0(.)|θ(d)) and A2(β,Λ0(.)|θ(d)) can be rewritten as follows:

A1(β,Λ0(.)|θ(d)) =
∑
i∈V

∑
j∈Ai

log(λ0(ti)) +
∑
i∈V

∑
j∈Ai

∑
m1,m2

(
βtXi + z̃m1

)
ŵm1m2
ij (θ(d))

−
∑

(i,j)∈A

∑
m1,m2

{
Λ0(ti) exp

(
βtXi + z̃m1

)}
ŵm1m2
ij (θ(d)) (4.15)

A2(β,Λ0(.)|θ(d)) =
∑
i

∑
j∈Ai∩V

log(λ0(tj)) +
∑
i

∑
j∈Ai∩V

∑
m1,m2

(
βtXj + z̃m1m2

ij

)
ŵm1m2
ij (θ(d))

−
∑

(i,j)∈A

∑
m1,m2

{
Λ0(tj) exp

(
βtXj + z̃m1m2

ij

)}
ŵm1m2
ij (θ(d)). (4.16)

Now, using the profile likelihood approach, we fix β and maximize Q̂1(β,Λ0(.)|θ(d)), considered

as a function of Λ0(.) only. Note that all weights ŵm1m2
ij (θ(d)) are positive for all pairs (i, j)

and (m1,m2), therefore this function is maximized when λ0(t) = 0 except for times at which

an event occurs.

Let
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• tl, l = 1, . . . , L be L distinct event time points,

• Dl be the set of subjects failing at event time point tl and |Dl| be the number of subjects

in Dl,

• |Aj | be the number of subjects in neighbor set Aj ,

• R(t) be the risk set at time t

Denote by λ0l = λ0(tl) the baseline hazard function computed at event time point tl. Then

the cumulative baseline hazard function can be written as Λ0(t) =
∑L

l=1 λ0l|Dl|1{tl≤t}.
Rewriting terms A1, A2 as functions of the parameter vector (λ01, . . . , λ0L), one gets

A1(λ01, . . . , λ0L;β) =

L∑
l=1

log (λ0l)
∑
j∈Dl

|Aj |

−
∑

(i,j)∈A

∑
m1,m2

(
L∑
l=1

λ0l|Dl|1{tl≤ti}
)

exp
(
βtXi + z̃m1

)
ŵm1m2
ij (θ(d))

=
L∑
l=1

log (λ0l)
∑
j∈Dl

|Aj |

−
L∑
l=1

λ0l|Dl|
∑

i∈R(tl)

∑
j∈Ai

∑
m1,m2

exp
(
βtXi + z̃m1

)
ŵm1m2
ij (θ(d)). (4.17)

Denote by dil = |Dl ∩ Ai| the number of subjects belonging to the subset Ai and failing at

event time tl. Then we can write

A2(λ01, . . . , λ0L;β) =
∑
i

L∑
l=1

log (λ0l) d
i
l

−
L∑
l=1

λ0l|Dl|
∑
i

∑
j∈R(tl)∩Ai

∑
m1,m2

exp
(
βtXj + z̃m1m2

ij

)
ŵm1m2
ij (θ(d)). (4.18)

At fixed event times tl, for l = 1, . . . , L, the partial derivatives with respects to λ0l are

∂A1(λ01, . . . , λ0L;β)

∂λ0l
=
∑
j∈Dl

|Aj |
1

λ0l
− |Dl|

∑
i∈R(tl)

∑
j

∑
m1,m2

ŵm1m2
ij (θ(d)) exp

(
βtXi + z̃m1

)
(4.19)

∂A2(λ01, . . . , λ0L;β)

∂λ0l
=
∑
i

dil
1

λ0l
− |Dl|

∑
i

∑
j∈R(tl)∩Ai

∑
m1,m2

ŵm1m2
ij (θ(d)) exp

(
βtXj + z̃m1m2

ij

)
(4.20)
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By summing equations (4.19) and (4.20), we get

∂Q̂1(λ01, . . . , λ0L|θ(d))

∂λ0l
=
wl
λ0l
− |Dl|

(
al1(β) + al2(β)

)
,

where

wl =
∑
i

|Ai|δi1{ti=tl} +
∑
i

∑
j∈Ai

δj1{tj=tl}

al1(β) =
∑

i∈R(tl)

∑
j

∑
m1,m2

ŵm1m2
ij (θ(d)) exp

(
βtXi + z̃m1

)
al2(β) =

∑
i

∑
j∈R(tl)∩Ai

∑
m1,m2

ŵm1m2
ij (θ(d)) exp

(
βtXj + z̃m1m2

ij

)
,

By setting ∂Q̂1(λ01,...,λ0L|θ(d))
∂λ0l

= 0, for all l = 1, . . . , L, we get the estimators of λ01, . . . , λ0L as

a function of β

λ̂0l(β) =
wl

|Dl|
(
al1(β) + al2(β)

) ,
and the cumulative baseline hazard at time t is

Λ̂0(β) =
∑
tl≤t

wl

al1(β) + al2(β)
. (4.21)

The profile likelihood function for β is

Q̂(β|θ(d)) = A1(β|θ(d)) +A2(β|θ(d)),

which is obtained by substituting function λ̂0l(β) = wl

|Dl|(al1(β)+al2(β))
into A1(β, λ0(.)|θ(d)) and

A2(β, λ0(.)|θ(d)). Using (4.15) and (4.17), and omitting terms that do not contain β, A1(β|θ(d))

is written as a function of β by

A1(β|θ(d)) =
L∑
l=1

β
∑
j∈Dl

Xj |Aj |

− log
(
al1(β) + al2(β)

) ∑
j∈Dl

|Aj |

−W1

where

W1 =
L∑
l=1

wl

al1(β) + al2(β)

∑
i∈R(tl)

∑
j∈Ai

∑
m1,m2

{
exp

(
βtXi + z̃m1

)
ŵm1m2
ij (θ(d))

}

=
L∑
l=1

wl

al1(β) + al2(β)
al1(β)

Similarly,
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A2(β|θ(d)) =
∑
i

L∑
l=1

β
 ∑
j∈Dl∩Ai

Xj

− dil log
(
al1(β) + al2(β)

)−W2

where

W2 =

L∑
l=1

wl

al1(β) + al2(β)
al2(β)

Since W1 + W2 =
∑L

l=1wl is a constant, it can be disregarded for optimization purpose.

Therefore, sum of A1(β|θ(d)) and A2(β|θ(d)) produces the profile likelihood function of β, that

is

pl(β) =

L∑
l=1

β
∑
j∈Dl

Xj |Aj |

− log
(
al1(β) + al2(β)

) ∑
j∈Dl

|Aj |


+
∑
i

L∑
l=1

β
 ∑
j∈Dl∩Ai

Xj

− dil log
(
al1(β) + al2(β)

) ,

given in Proposition 4.2.

The estimators are obtained by firstly maximizing the profile likelihood function to get

β̂(d+1) and then the estimator of the cumulative hazard function in (4.21) is computed at

β̂(d+1). This has proved Proposition 4.2.

4.4.3 Proof of Proposition 4.3

Proof. This proposition aims at maximizing Q̂2(θc|θ(d)). Firstly, rewriting Q̂2(θc|θ(d)), where

f(z̃m1 , z̃m1m2
ij ; θc) is the density function of a bivariate normal, we have

Q̂2(θc|θ(d)) =
∑

(i,j)∈A

∑
m1,m2

{
− log(2π)− log(σ2)− 1

2
log
(
1− ρ2

ij(θρ)
)}

ŵm1m2
ij (θ(d))

−
∑

(i,j)∈A

∑
m1,m2

{
1

2σ2(1− ρ2
ij(θρ))

[
(z̃m1)2 + (z̃m1m2

ij )2 − 2ρij(θρ)z̃
m1 z̃m1m2

ij

]}
ŵm1m2
ij (θ(d))

The first derivative of Q̂2(θc|θ(d)) with respect to σ2 is

∂Q̂2(θc|θ(d))

∂σ2
=

∑
(i,j)∈A

∑
m1,m2

− 1

σ2
+

[
(z̃m1)2 + (z̃m1m2

ij )2 − 2ρij(θρ)z̃
m1 z̃m1m2

ij

]
2σ4(1− ρ2

ij(θρ))

 ŵm1m2
ij (θ(d))
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Evaluating equation ∂Q̂2(θc|θ(d))
∂σ2 = 0 at the estimate θ̂

(d+1)
ρ , we get the estimator (σ̂2)(d+1) of

σ2 shown in the expression (4.11) of Proposition 4.3, that is

(σ̂2)(d+1) =
1

|A|
∑

(i,j)∈A

∑
m1,m2

[
(z̃m1)2 + (z̃m1m2

ij )2 − 2ρ̂ij z̃
m1 z̃m1m2

ij

]
2
(

1− ρ̂2
ij

) ŵm1m2
ij (θ(d)), (4.22)

where |A| is the total number of pairwise neighbours and ρ̂ij = ρij(θ̂
(d+1)
ρ ) is the correlation

between individuals i and j computed at the estimate θ̂
(d+1)
ρ .

If we consider the expression (4.22) as a function of θρ and substitute it into Q̂2(θc|θ(d)), we

get

Q̂2(θρ|θ(d)) =
∑

(i,j)∈A

∑
m1,m2

{
− log(2π)− log((σ̂2(θρ))

(d+1))− 1

2
log
(
1− ρ2

ij(θρ)
)}

ŵm1m2
ij (θ(d))−B

where

B =
∑

(i,j)∈A

∑
m1,m2


[
(z̃m1)2 + (z̃m1m2

ij )2 − 2ρij(θρ)z̃
m1 z̃m1m2

ij

]
2(σ̂2(θρ))(d+1)(1− ρ2

ij(θρ))

 ŵm1m2
ij (θ(d))

=
1

(σ̂2(θρ))(d+1)

∑
(i,j)∈A

∑
m1,m2


[
(z̃m1)2 + (z̃m1m2

ij )2 − 2ρij(θρ)z̃
m1 z̃m1m2

ij

]
2(1− ρ2

ij(θρ))

 ŵm1m2
ij (θ(d))

= |A|

is a constant. Therefore, we get the profile likelihood function for θρ which is shown in equation

(4.12) of Proposition 4.3.





Chapter 5

Simulation studies

In this chapter, we present Monte Carlo simulation studies for the proposed hierarchical

spatial frailty model presented in Section 3.1. The general procedure used for generating the

simulated datasets, the settings and the assumptions for simulations are described in Section

5.1. The performance of inferential theory based on QPLH, which has been presented in

Chapter 4, is studied by simulations and reported in Section 5.2. The performance of the

MCEM and PPL methods, whose theory has been shown in Chapter 3, is discussed and

compared to QPLH approach in Section 5.3. Finally, discussions and conclusions are given in

Section 5.4.

5.1 Simulated datasets

In this section, we present MCMC datasets simulated from the hierarchical spatial model

defined in Section 3.1 to test how our methodologies perform. We simulate survival times

from the proportional hazard model

λ(tik|zik) = λ0(tik) exp(βtXik + zik)

for the ith individual in cluster k. Survival times Tik, given zik, are assumed to follow a Weibull

distribution with scale parameter λ exp(βtXik+zik) and shape parameter ρ. Then, the hazard

and cumulative hazard functions are, respectively, λ0(t) = λρtρ−1 and Λ0(t) = λtρ. To simplify

the setting but still gain insights, we consider the case where we have one explanatory variable

X. For the spatial random effects, we assume that the vector z is generated from a multivariate

normal distribution MVN(0,Σ), with the variance-covariance matrix Σ = σ2Ω, where σ2 is

the common variance and Ω describes the spatial correlation within clusters. For the units i

and i′ in cluster k, we assume an Exponential correlation function, ρ(dkii′ ; θρ) = exp
(
−dkii′/ν

)
,

where dkii′ is the Euclidean distance between them.

55
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Following lines of Bender et al. (2005) who presented a general technique to generate

survival times for simulation studies regarding Cox proportional hazards models, survival

time Tik can be obtained by transforming a uniform random variable, Uik ∼ U [0, 1], via a

cumulative hazard function as follow

Tik = Λ−1
0

[ − log(Uik)

exp (βtXik + Zik)

]
.

Censored times cik are independently generated from a uniform distribution U [0, cmax] where

cmax will be chosen to designate censoring rates, approximately 30%, 50% and 70%. The event

indicator for observation i in cluster k is obtained by calculating δik = I(tik ≤ cik).
All parameter values are chosen to mimic the real survival dataset. In details, we choose

λ = 14, ρ = 2 for the Weibull hazard function. The exploratory variable X is generated from

a uniform distribution, X ∼ U [−1, 1] with the regression coefficient β = 0.6. We set σ = 0.5,

and the frailties are assumed to be correlated by an Exponential correlation function with

parameter ν = 10. In the implementation, the distances are rescaled by a factor 10, to make

them numerically more stable. Thus the results will be obtained on ν̃ = ν/10 instead of the

original values.

Clusters are studied in regions of 36 × 36 squares where 3 and 5 clusters are considered,

respectively. Spatial locations in each cluster are assumed to follow an equally spaced squared

grid of points. We also investigate different cluster sizes by 7× 7 and 9× 9 units (see Figure

5.1). Thus, four settings are considered in the simulation studies.

Figure 5.1: Illustration of site locations in a cluster of 49 units and a cluster of 81
units.

5.2 Results from quadrature pairwise likelihood method

In this section, we show results of QPLH method applied on 1000 simulated datasets. The the-

ory has been shown in Chapter 4 and the coding is implemented in R and C++ languages. For
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what concerns the quadrature approximation in the M-step, note that the algorithm works well

also with a low number of nodes (Varin et al., 2005). Then, for the practical setting, we decided

to use M = 7 nodes after investigating a range of possible values. At the iteration (d), the al-

gorithm is defined to successfully converge if the relative difference, maxi |θ(d)
i −θ

(d−1)
i |/|θ(d−1)

i |
is less than a specific tolerance value, τ = 5× 10−4, otherwise it is stopped when a maximum

number of 1000 iterations has been completed.

Table 5.1 investigates parameter estimation for different number of clusters and different

cluster sizes at level of 50% of censoring. The reported estimates are computed at sample

means on the successfully convergent datasets. To investigate the algorithm convergence,

we define the convergence rate by total successful convergent datasets over 1000 considered

datasets (notation “Conv.rate” in the table) and the average number of iteration for a dataset

to be successfully convergent (notation “Avg.iter” in the table). Studying the convergence

rates and the average iterations, we concluded that the algorithm is successful and converges

fast for all settings, even in case of many observations (5 clusters with 9 × 9 units). Unsur-

prisingly, we observe that the convergence rate increases and the average iteration number

decreases gradually when more observations are considered. Particularly, a high convergence

rate (96.1%) is obtained in the last setting (5 clusters with 9× 9 units). Moreover, compared

to the maximum of 1000 iterations fixed in the implementation, the algorithm is very fast with

an average of 401.57 iterations to get a successful convergence.

Parameter β is always stably estimated with negligible bias, whereas covariance parame-

ters, σ and ν̃, are more difficult to estimate. Particularly, the algorithm shows some bias in

estimating parameter ν̃. However, at the same number of observations (3 clusters with 9× 9

units and 5 clusters with 7 × 7 units), an increasing number of clusters leads to a slight de-

crease in bias for the estimates β̂ and σ̂, but noticeably, there is a significant bias decrease for

ˆ̃ν (from 0.231 to 0.093) and it tends to be more precise when more observations are considered

(5 clusters with 9 × 9 units). It means that this algorithm is more effective in correcting the

estimation of the correlation parameter ν̃, as compared to the variance parameter. In the

last column of Table 5.1 , low empirical standard deviations are shown for β̂ and σ̂. On the

other hand, parameter ν̃ is characterized by high standard deviation regardless of clustering

setting. Furthermore, at the same number of observations (3 clusters with 9 × 9 units and 5

clusters with 7×7 units), clustering increases slightly the standard deviation terms. However,

both ν̃ and σ are well estimated with acceptable bias and a significant reduction in standard

deviations was noted for a lager number of observation (5 cluster with 9 × 9 units). In case

of 30% censoring, the same conclusions about the performance of the QPLH method are also

reported. Results are given in Table 5.2.

From the literature (see, e.g., Xu et al. (2016)), it is known that when composite like-

lihood are information-biased, this is the case especially in complex dependence data, then

the efficiency is not necessary increased by incorporating additional independent component

likelihoods. However, our model setting is a special case, where the likelihood dimension and
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No. of locations Parameter
True Empirical
value Bias SD

3 clusters
β 0.6 -0.012 0.227
σ 0.5 -0.194 0.137

7× 7 ν̃ 1.0 -0.289 0.851

Conv.rate = 93.4%, Avg.iter = 609.506

3 clusters
β 0.6 -0.008 0.173
σ 0.5 -0.145 0.129

9× 9 ν̃ 1.0 -0.231 0.735

Conv.rate = 95.4%, Avg.iter = 513.647

5 clusters
β 0.6 -0.006 0.183
σ 0.5 -0.134 0.138

7× 7 ν̃ 1.0 0.093 0.795

Conv.rate = 95.1%, Avg.iter = 498.079

5 clusters
β 0.6 - 0.009 0.138
σ 0.5 -0.096 0.121

9× 9 ν̃ 1.0 -0.061 0.669

Conv.rate = 96.1%, Avg.iter = 401.57

Table 5.1: Results from QPLH method with Exponential correlation frailty on 1000
simulated datasets for 3 and 5 clusters at level of 50% of censoring. “Conv.rate” is
the convergent rate of datasets and “Avg.iter” is the average iteration number for a
dataset to be successfully convergent.

.

the frailty vector dimension are equal to the number of observations. Hence, presence of more

observations should give more precise estimates as discussed before about the results in Tables

5.2 and 5.1. Consequently, the algorithm also consumes more computing time. Figure 5.2

shows the average computing times of QPLH algorithm in case of 3 clusters when the number

of observations increases, where the computed time is averaged on 100 simulated datasets for

each studied case. In case of few observations (75 observations for 3 clusters), the algorithm

takes about 9 minutes, but it grows up quadratically with the number of observations (with

the dimension of the frailty vector), in line with the conclusions of Lindsay et al. (2011). Com-

putational expense of composite likelihoods are discussed in details in Lindsay et al. (2011).

Table 5.3 describes results from QPLH method at different levels of censoring for the case

of 5 clusters with 81 observations per cluster. Unsurprisingly, a high censoring proportion

(70% censoring) produces a lower convergent rate (93.2%) of the algorithm, even though the

algorithm is faster (with an average of 373.223 iterations for a successful convergence), be-

cause fewer observed events require less computational burden. Moreover, when the censoring

proportion increases, the bias of ˆ̃ν substantially raises about 15-fold, compared to the case of
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No. of locations Parameter
True Empirical
value Bias SD

3 clusters
β 0.6 -0.028 0.207
σ 0.5 -0.223 0.137

7× 7 ν̃ 1.0 -0.206 0.881

Conv.rate =90.5%, Avg.iter = 662.368

3 clusters
β 0.6 -0.017 0.153
σ 0.5 -0.169 0.145

9× 9 ν̃ 1.0 -0.161 0.798

Conv.rate = 94.3%, Avg.iter = 548.312

5 clusters
β 0.6 -0.017 0.165
σ 0.5 -0.164 0.14

7× 7 ν̃ 1.0 -0.058 0.738

Conv.rate = 92.8%, Avg.iter = 534.155

5 clusters
β 0.6 -0.017 0.12
σ 0.5 -0.119 0.12

9× 9 ν̃ 1.0 0.003 0.683

Conv.rate = 94.8%, Avg.iter = 429.255

Table 5.2: Results from QPLH method with Exponential correlation frailty on 1000
simulated datasets for 3 and 5 clusters at level of 30% of censoring. “Conv.rate” is
the convergent rate of datasets and “Avg.iter” is the average iteration number for a
dataset to be successfully convergent.

.

low censoring level (30% censoring). On the other hand, the bias terms in estimating param-

eters β and ν̃ are mostly stable across the all scenarios considered. The empirical standard

deviations increase when more observations are censored, and we note that the most clearly

raise is for parameter ν̃. It implies that parameter ν̃ is much sensitive to the censoring level.

However, generally we observed that QPLH method is working well with high convergence

rates, negligible bias and standard deviations in all censoring settings, even in case of highly

censored data.

5.3 Comparison of results

After the discussion of QPLH method in the previous section, here we present simulation results

for the PPL and MCEM approaches as well as comparison of all three methods. Particularly,

adopting the theory given in Section 3.2, PPL method is practically implemented in the R

package coxme. We have extended this package to handle an Exponential correlation matrix

allowing to incorporate the spatial correlation as well as clustering between frailties. Standard
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Figure 5.2: The average computing time of QPLH algorithm in case of 3 clusters
with different numbers of observation.

errors of the variance-covariance parameters σ and ν̃ are estimated by numerical tools. We

have implemented the MCEM method (see Section 3.3) in the R software and the C language

was used for the Gibbs sampling step, adapting the code in Li et al. (2015) to our proposed

model. In this practical setting, thinned MCMC samples of 2000 frailty vectors are used for

the approximation at each iteration in the E-step, and we also used a tolerance of τ = 5×10−4

for the convergence criterion as described in Section 3.3. The results are given in Table 5.4.

First of all, we observe that PPL is the most effective method in estimating parameters β

and σ, with the lowest bias for σ and bias similar to the other methods for β. Moreover, in

the PPL method, negligible bias and low empirical standard deviations are stably observed in

all settings. However, this method fails to estimate the correlation parameter ν̃ because, in

the simulations, we observed many extreme values (that is the reason why sample medians are

reported for this parameter estimates, rather than sample means). The reason of this result

could be probably attributed to non convergence of the optimization numerical procedure.

Furthermore, even though the estimated standard errors of β̂ are very similar to the empirical

counterpart, the estimated standard errors for ˆ̃ν and σ̂ are either heavily underestimated or

overestimated across the different settings, showing that the PPL-based method is not working

well for estimating uncertainty of these two parameters. Consequently, PPL method failed to

provide complete inferential good results for the proposed hierarchical spatial frailty model.

We compare now the QPLH and MCEM methods. With exception for the the first setting,
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Censoring level Parameter
True Empirical
value Bias SD

30% censoring
β 0.600 -0.017 0.120
σ 0.500 -0.119 0.120

ν̃ 1.000 0.003 0.683

Conv.rate = 94.8%, Avg.iter= 429.255

50% censoring
β 0.600 - 0.009 0.138
σ 0.500 -0.096 0.121

ν̃ 1.000 -0.061 0.669

Conv.rate = 96.1%, Avg.iter = 401.57

70% censoring
β 0.600 -0.002 0.165
σ 0.500 -0.081 0.070

ν̃ 1.000 -0.043 0.755

Conv.rate = 93.2%, Avg.iter = 373.223

Table 5.3: Results from QPLH method with Exponential correlation frailty on 1000
simulated datasets for 5 clusters with 9 × 9 units per cluster. The results are imple-
mented at different levels of censoring. “Conv.rate” is the convergent rate of datasets
and “Avg.iter” is the average iteration number for a dataset to be successfully con-
vergent.

.

the regression parameter β is more accurately estimated with slightly lower bias under QPLH

method, as compared to MCEM method. In contrast, the estimate σ̂ produces lower bias

under the MCEM approach. Interestingly, the estimate of parameter ν̃ shows a very unsta-

ble behavior across settings. Particularly, in cases of few observation per cluster (3 clusters

with 7 × 7 units and 5 clusters with 7 × 7 units), the MCEM method fails in estimating the

correlation parameter ν̃, because we observe a very high bias as well as very large standard

deviations. QPLH method has instead acceptable bias and empirical standard deviation, in

particular, ν̃ is just slightly underestimated (bias 0.093) in the third setting ( 5 clusters with

7 × 7 units), compared to a heavy overestimation (bias 0.45) produced by MCEM method.

However, when more observations are considered for each cluster, the MCEM approach pro-

duces slightly better results.

In all settings, β̂ and σ̂ are associated to similar empirical standard deviations, which as-

sume low values, whereas the estimate of parameter ν̃ is characterized by a larger empirical

standard deviation. This results about a high standard deviation was observed in the simula-

tion studies, regardless of the choice of the inferential method, and this implies challenges in

estimating this parameter. Noticeably, compared to MCEM method, QPLH method always

produces lower standard deviations for all parameters.
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Both QPLH and MCEM methods show off particular limitations in computing the esti-

mated standard errors. Since QPLH leads to complex calculations for estimating standard

error terms, they have not been implemented in these simulation studies. However, challenges

were also shown in the alternative methods. In details, standard errors computed by Louis

information matrix in MCEM approach, are totally underestimated for the estimates of pa-

rameter σ and ν̃. On the other side, sandwich standard errors of parameter σ̂ are very similar

to the empirical standard deviations, while sandwich standard errors for β̂ are much more

underestimated regardless of clustering setting. For parameter ν̃, the sandwich standard error

is acceptable in cases of having more observations per cluster (3 clusters with 9×9 units and 5

clusters with 9× 9 units). These results implies that the assumption of independence between

clusters has much more influence on the estimation of the covariance parameters σ and ν̃, than

on the estimation of β. Moreover, estimates of parameter ν̃ is very sensitive to the number

of observations per cluster. More discussions about Louis and sandwich standard are given in

Appendix A.2.

The last point to be noted is the convergence speed. As discussed in the previous section,

QPLH algorithm is very fast to converge, with more than 93% of datasets that converged

before the maximum of 1000 iterations. Averagely, about 400 to 600 iterations are needed for a

successful convergence. On the other hand, unsurprisingly, MCEM method is computationally

very slow. For more than 98% of datasets, the algorithm needs to arrive to the maximum of

1000 iterations to obtain full converge. Therefore, when we performed our simulation studies,

computational time to obtain results from the MCEM algorithm was about twice longer than

the one for the QPLH algorithm.

5.4 Discussions and Conclusions

We structure the discussion by underlying: advantages and disadvantages for each method as

given belows.

PPL method

Advantages: This method may be effective in simple frailty models, such as the case of

i.i.d shared frailty model that contains only the regression parameter β and the variance

parameter σ. Moreover, the R package is well implemented and flexible to be extended

to different kind of variance-covariance matrix.

Disadvantages: As shown in the previous section, this method failed to estimate the

correlation parameters, showing many wrong extreme values as well as underestimates of

the standard errors. It may perform poorly in modeling the complex dependence struc-

ture of multidimensional random effects. The reason may be explained in the following

aspects. Firstly, to get the penalized partial likelihood from the Laplace approximation

of the full likelihood, the method ignores some terms. In details, two terms −1
2 log |Σ(θc)|
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3 clusters: 7× 7

QPLH MCEM PPL

Par True.val Bias Sd Bias Sd L.SE S.SE Bias Sd SE

β 0.600 -0.012 0.227 0.006 0.230 0.199 0.133 0.012 0.232 0.226
σ 0.500 -0.194 0.137 -0.074 0.243 0.157 0.231 0.001 0.258 0.108

ν̃ 1.000 -0.289 0.851 1.243 9.447 2.207 1.765 -0.088* 1.034* 0.476*

3 clusters: 9× 9

QPLH MCEM PPL

Par True.val Bias Sd Bias Sd L.SE S.SE Bias Sd SE

β 0.600 -0.008 0.173 0.021 0.182 0.155 0.099 0.018 0.176 0.174
σ 0.500 -0.145 0.129 -0.022 0.223 0.130 0.230 0.006 0.084 0.217

ν̃ 1.000 -0.231 0.735 0.150 1.778 0.837 1.135 -0.163* 0.238* 0.776*

5 clusters: 7× 7

QPLH MCEM PPL

Par True.val Bias Sd Bias Sd L.SE S.SE Bias Sd SE

β 0.600 -0.006 0.183 0.013 0.250 0.154 0.118 0.011 0.186 0.173
σ 0.500 -0.134 0.138 -0.035 0.215 0.118 0.134 -0.012 0.072 0.201

ν̃ 1.000 -0.093 0.795 0.450 2.300 1.037 0.912 0.014* 0.802* 0.272*

5 clusters: 9× 9

QPLH MCEM PPL

Par True.val Bias Sd Bias Sd L.SE S.SE Bias Sd SE

β 0.600 -0.009 0.138 0.010 0.143 0.120 0.090 0.001 0.136 0.134
σ 0.500 -0.096 0.121 0.004 0.194 0.108 0.191 -0.002 0.169 0.057

ν̃ 1.000 -0.061 0.669 0.060 0.785 0.475 0.554 0.024* 0.742* 0.118*

Table 5.4: A simulation study compares results of three approaches: QPLH, MCEM,
and PPL methods. It includes true values (True.val), bias (Bias), empirical standard
errors (Sd), estimated standard errors (SE). In the MECM method, the estimated
standard errors are reported by Louis method (L.SE) and sandwich standard errors
(S.SE). The results are implemented by using an Exponential correlation frailty on
1000 simulated datasets at level of 50% of censoring. Notations “*” indicate sample
medians.

and

−1
2 log |∑i,k Λ0(tik) exp

(
βtXik + z̃ik

)
IikI

t
ik + Σ(θc)

−1| in the expression (3.3) are omit-

ted. It is clear that some information of parameters β and Λ0(.) is lost in the second

term, while parameters θc = (σ, θρ) are present in both two terms. Hence, more informa-

tion of θc is lost when the model handles complex correlation structures of frailties and

this may explain imprecise estimates of θc. Secondly, PPL method considers frailties as

fixed effect parameters and estimates them. The algorithm involves a repeated inver-

sion of the design matrix and the variance-covariance matrix for the individual frailties.
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Consequently, it should show off maximization issues when dealing with cases of large

number of frailties. Lastly, another limitation of this approach is implied by the ad-

justed iteration mechanism of the maximization procedure. Particularly, the algorithm

is iterated between estimation of parameters (β, z) and estimation of θc at given starting

values of θc, using profile likelihood method. Consequently, some bias of β̂ may be arisen

from bias of θ̂c.

MCEM method

Advantages: Unlike PPL method, the original likelihood function is maximized in

MCEM method. Moreover, MCEM method does not aim to maximize the unknown

frailties as in the PPL approach, alternatively they are generated for the approximation

of the full likelihood function. Hence, the number of frailties as well as their complex

dependence structure has influence only on the computational expense of the Gibbs

sampling, and it does not complicate the maximization of the algorithm. In addition,

the M-step of the algorithm separately maximizes the time-to-event parameters and the

variance-covariance parameters, and then all the uncertainty of parameters is accounted.

Disadvantage: In the simulation studies, we have observed that the algorithm is very

sensitive to the clustering structure, showing high bias of the correlation parameter es-

timates in cases of few observation per cluster. Moreover, its limitation in modeling the

independence of clusters can also be observed in the standard error terms where both

Louis’s formula and sandwich formula are unable to produce good standard error esti-

mates of all parameters. In addition, MCEM method is typically very slow to converge.

This issue may come from a large number of frailties and their complex dependence

structure, which reduce the efficiency of the Gibbs sampling in the E-step. Lastly, both

MCEM method and PPL method commonly struggle to deal with the problem of high-

dimensional matrix inversion produced by the variance-covariance matrix of individual

frailties.

QPLH method

Advantages: QPLH method shows off its advantages in both the parameter estimation

precision and the convergence speed. The potential key is that QPLH method simpli-

fies the high-dimensional full likelihood to several 2-dimensional pseudo-likelihoods. In

this way of simplification, the algorithm avoids to deal with high-dimensional matrix

inversions that might produced issues in the estimation procedure of PPL and MCEM

methods. Moreover, the composite likelihood function surface is usually much smoother

than the one of the full likelihood and therefore, easier to be maximized (Katsikatsou

et al., 2012). Note that if a cluster has m observations, then QPLH method considers

m× (m− 1) pair observations for model inference. That seems to explain why MCEM

method is unsuccessful in cases of few observation per cluster whereas QPLH is still

stably working well. The pairwise likelihood is also not sensitive to the percentage of
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censored data, since it shows stable estimates across different censoring levels in simula-

tion studies. Lastly, QPLH algorithm uses the quadrature approximation in the E-step,

while on the contrary, MCMC samples are used in the MCEM algorithm. Therefore,

it produces a deterministic algorithm of QPLH, consequently the assessment of conver-

gence is simpler and empirical standard deviations are also lower compared to MCEM

approach.

Disadvantages: Besides the advantages, QPLH has also some limitations. The preci-

sion of the estimates, as well as computation expense of QPLH, depend on the particular

set of all pair observations that contributes to the pairwise likelihood, and also on the

number of quadrature nodes used in the E-step. Both issues should be verified practically

by implementing the algorithm in different settings. Moreover, an increased number of

observations leads to raising quadratically the computational time. Practically, this al-

gorithm still needs to be improved for the benefit of computational time, but importantly

the simulation studies have concluded that the high number of independent component

in the likelihood does not complicate the parameter maximization and the algorithm is

still computable in high dimension. For example, 972 frailties (likelihood dimensions)

were considered in the last case of Figure 5.2. Lastly, we are currently working for the

standard error estimates under the QPLH method, which will be included in the future

submission of a scientific paper.

In conclusion, for modeling i.i.d frailty models, PPL method is a convenient choice, but for

handling the spatial correlation between frailties, QPLH and MCEM methods are preferable.

QPLH method is flexible for modeling many types of complex correlated data and has shown

a good performance in the parameter estimation. Specially it overcomes the problem of poor

estimation in case of heavy censoring (i.e 70%) and few observations per cluster.
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Real data application

In this chapter, we fit the proposed hierarchical spatial frailty model in Section 3.1 to the

insulin-containing secretory granules data described in Chapter 2 by using the QPLH method.

We implemented the QPLH algorithm with Exponential and Gaussian correlation functions,

then we compared results to the standard Cox models. The setting of the algorithm is the

same as used in simulation studies (tolerance 5× 10−4, quadrature nodes M = 7).

6.1 The biological dataset

We analyzed our real dataset (see Chapter 2) by fitting the proposed hierarchical spatial

frailty model and applying the QPLH inferential approach with an Exponential correlation

function. The results are reported in Table 6.1 and compared with those from standard Cox

models. The QPLH algorithm converged after 365 iterations. As discussed in Section 2.3.2,

there exist two distinct groups of granules identified by their presence/absence at beginning

of the experiment. A higher level of syntaxin contributes to obtain a higher survival rate for

granules that are present at beginning of the experiment, whereas syntaxin level has no effect

on survival rates of granules in the other group. This conclusion seems to be coherent with

results obtained by fitting QPLH method in this chapter, where regression coefficient estimates

are similar between models. The estimate of σ is equal to 1.060 and 0.711, respectively, in

the model with Exponential spatially correlated frailties and in the model with independent

frailties, indicating that there exist unexplored aspects in the dataset. The small estimated

value of parameter ν, equal to 0.432, in the Exponential correlation function indicates no

spatial correlation between survival rates of granules. However, in this fitting, parameters σ

and ν describe common variation and correlation of granules on the entire data, but actually

they may also be affected by the entrance time in the experiment. Therefore, we propose to

perform the analysis separately in the two groups of granules being presence or absence of the

beginning of the experiment, in order to have a precise view on spatial variation.

67
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syn 0 syn 1 app sigma nu

Exponential 0.300 -2.332 -1.888 1.060 0.432
Cox (i.i.d frailty) 0.845 -3.048 -1.532 0.711 -
Cox (no.frailty) 0.734 -2.647 -1.167 - -

n.obs = 1117; n.event = 885

Table 6.1: Estimates of parameters in the hierarchical spatial frailty model by the
QPLH method with an Exponential correlation function, and by standard Cox models
(Cox models with independent frailties and without frailties). Parameter “app” indi-
cates if granule is present at beginning of the experiment (app = 1) or not (app = 0).
“syn 0” and “syn 1” are respectively syntaxin levels in group 0 (when app = 0) and
in group 1 (when app = 1). Here, “n.obs” is the total number of observations and
“n.event” is the total number of events.

6.2 Analysis of the subsets in the dataset

In this section, we analyze data separately in the two subsets: group 1 containing granules

that are present at beginning of the experiment and group 0 containing granules who enter

later in the experiment.

Group 1: Granules that are present at beginning of the experiment

Table 6.2 shows parameter estimates for data containing only granules that are present

at beginning of the experiment. The results are obtained under the QPLH method and the

algorithm converged after 867 and 135 iterations respectively for using Exponential and Gaus-

sian correlation function. The regression parameter “syn” is stably estimated in all inferential

methods, while the variance parameter estimate σ̂ is slightly lower in the case of independent

Gaussian frailty model. The correlation parameter ν is respectively equal to 109.606 and

291.771 in the models of Exponential correlation and Gaussian correlation, indicating very

strong correlation between event rates of granules within cells. Figure 6.1 is shown to visualize

this conclusion. For granules with distances within 150 pixels, Gaussian correlation function

produces higher correlation than the Exponential function and a faster decay. Interestingly,

the histogram shows off that most granules have at least one neighbor that is at the distance

less than 150 pixels to itself. It means that within cells, event rates of granules are strongly

correlated and the correlations among those granules range from 0.2 to 1. Figure 6.2 illustrates

the estimated survival curves at a representative frailty of z = 0.5 for different syntaxin levels.

Within the first 5 seconds, concentration of syntaxin on single granules does not seem to affect

significantly the granule survival rates, but for longer survival times, a higher level of syntaxin

contributes to a higher survival probability. Figure 6.3 shows a strong effect of frailty on the

survival rate of granules. Considering the 50th second as an example, when the frailty value

increases from −0.5 to 0, the survival probability decreases from 60% to 40% and falls to under

20% if the frailty value climbs to 0.5. The same behavior has been recorded in using Gaussian
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correlation function and the related figures are given in Appendix A.3 (Figure A.3, Figure

A.4). Moreover, the algorithm has been run at different initial values and a different number

of quadrature node (M = 8), showing very similar results (see Appendix A.3, in particular

Table A.2 and Table A.3).

syn sigma nu

Exponential -2.282 0.53 109.606
Gaussian -2.238 0.606 291.771
Cox (i.i.d.frailty) -2.186 0.363 -
Cox (no.frailty) -2.086 - -

n.obs = 232; n.event = 138

Table 6.2: Estimates of parameters in the hierarchical spatial frailty model on group
1. QPLH method with Exponential and Gaussian correlations are implemented and
compared to the other standard Cox models (Cox models with independent frailties
and without frailties). Here, “n.obs” is the total number of observations and “n.event”
is the total number of events.

Figure 6.1: Estimated correlation functions of granules within cells and the his-
togram of granule distances in unit of pixel.

Group 0: Granules that enter later in the experiment

On the other hand, in the group of granules with later entrance, negligible estimates of parame-

ter “syn” (about 0.1 in spatial models and about 0.6 in standard Cox models) and parameter ν

( 0.604 and 0.874), given in Table 6.3, indicate no interaction between syntaxin level and event

rate, as well as no spatial correlation between granules in this group. However, random effects

may still exist in this dataset because of variance parameter estimates (σ̂ = 0.1, 0.562, 0.565)

in the different models. This behavior is coherent with the results discussed in Section 2.3.2.
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Figure 6.2: Estimated survival curves at a representative frailty z = 0.5.

The QPLH algorithm converged after 239 and 260 iterations respectively, when using an Ex-

ponential correlation function or a Gaussian correlation function. The issue of local maxima

has also been checked by running the algorithm at different initial values, and similar results

are also recorded with different number of quadrature node (M = 8). These additional results

are provided in Appendix A.3 (Table A.4, Table A.5).

syn sigma nu

Exponential 0.113 0.565 0.604
Gaussian 0.096 0.562 0.874
Cox (i.i.d.frailty) 0.694 0.1 -
Cox (no.frailty) 0.691 - -

n.obs = 885; n.event = 747

Table 6.3: Estimates of parameters in the hierarchical spatial frailty model on group
0. QPLH method with Exponential and Gaussian correlations are implemented and
compared to the other standard Cox models (Cox models with independent frailties
and without frailties). Here, “n.obs” is the total number of observations and “n.event”
is the total number of events
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Figure 6.3: Estimated survival curves at a fixed syntaxin level for different values
of frailties.

6.3 Conclusions and discussions

Starting from the entire dataset, we have discovered that there exist two groups of granules

showing opposite behaviors in the interaction with syntaxin level as well as in the spatial

correlation between granules. Linking this conclusion to the biological papers (Gandasi and

Barg (2014), Barg et al. (2010)), our results indicate indirectly that with a high probability,

exocytotic events (granules who are successfully released to blood) will be concentrated in

group 1, because granules need syntaxin clusters to be docked before being released. On the

other hand, for granules in group 0, our results showed off no interaction between syntaxin

level and their event rates on the plasma membrane. Hence, this group might mainly contain

“visitors” which are failed to recruit proteins during their presence at the plasma membrane

(see Section 2.1). Furthermore, as mentioned in Section 2.1, there exist two event types in

the dataset, which are very difficult to be distinguished visually from TIRF images. The first

one is “exocytotic event” observed in granules that are successfully released to blood, and

the other event is “undocking”, which is defined for granules who have been stabilized on the
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plasma membrane by syntaxin clusters but then they return to cellular fluid (Gandasi and

Barg (2014), Barg et al. (2010)). Therefore, these results open further research related to

granule classification by event type, which could be interestingly studied by competing risks

survival models.



Conclusions

Discussion

Exocytosis is itself a complex biological mechanism that has never been studied in statistics.

Moreover, starting from a raw biological imaging data required us much efforts to well under-

stand the internal biological mechanism as well as to learn the imaging processing techniques.

On working with this dataset, we started with the aim of modeling the exocytotic rates of

granules (granules who are successfully released to blood), but we coped with two intractable

issues. Firstly, it is very complicated to identify exocytotic events among other types. Sec-

ondly, the model need to deal with high censored data due to a low probability of exocytotic

events. Consequently, we have alternatively worked on survival times of granules on the plasma

membrane which disappear because of either an exocytotic event or a return to the cellular

fluid. Interestingly, our first results explained indirectly some biological properties reported in

the reference papers (Gandasi and Barg (2014), Barg et al. (2010)), contributed also to new

explorations and broadened potential studied directions.

Inference on spatial frailty survival models based on maximum likelihood approaches is a

challenging problem because of the high dimension of the full likelihood and complications

of the maximization procedure. Common approaches, such as the PPL method, might be

preferable to be used with uncorrelated data, while the MCEM method might be effective

in shared frailty models without the frailty clustering structure. However, both of them are

still intractable in dealing with a large number of frailties or with the complex dependence

structure between frailties. Here, we have tackled such problem by using the pairwise likeli-

hood technique, which in our simulation studies, has presented advantages compared to other

common approaches. Specially, QPLH method overcome the problem of poor performance in

the cases of few observation per cluster or heavy censored data. The first feature is frequently

observed in cellular studies. For example, in our real data of group 1, there are few granules

per cell. On the other side, the difficulty of heavy censored data in the study of exocytotic rate,

that we have coped at beginning, is expected to be solved by our proposed QPLH method.

Moreover, we have also implemented the QPLH algorithm in a R package. Therefore, our

work on this method has contributed to an innovative inference approach in modeling spatial

frailty survival models with an available R package for dissemination of the scientific results

and application to other practical real data problems.
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Future directions of research

First of all, we need to complete the work on standard error estimates for the QPLH method.

Then, it is expected to investigate with simulation studies, as well as in the application, dif-

ferent types of correlation functions.

The proposed hierarchical spatial frailty model can be extended to incorporate time-

dependent covariates, such as trajectories of syntaxin level, and multiple covariates. See,

for example, our biological problem where there is great interest in studying the effects of

multiple proteins on the behaviour of granules in β-cells.

Another interesting avenue for future work is to generalize the QPLH method to other

types of spatial frailty survival models, such as shared frailty models, nested frailty models or

to handle competing risks data.
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Appendix

A.1 The first and second derivatives of the bivariate

log-likelihood pl(ti, tj; θ)

Proof of equation (4.13):

∇pl(θ; ti, tj) = ∇ log [f(ti, tj ; θ)] = ∇ log

{∫ ∫
f(ti, tj , zi, zj ; θ)dzidzj

}
=
∇
∫ ∫

f(ti, tj , zi, zj ; θ)dzidzj∫ ∫
f(ti, tj , zi, zj ; θ)dzidzj

=

∫ ∫
∇f(ti, tj , zi, zj ; θ)dzidzj

f(ti, tj ; θ)

=

∫ ∫ ∇f(ti, tj , zi, zj ; θ)

f(ti, tj , zi, zj ; θ)

f(ti, tj , zi, zj ; θ)

f(ti, tj ; θ)
dzidzj

=

∫ ∫
∇ log {f(ti, tj , zi, zj ; θ)} f(zi, zj |ti, tj ; θ)dzidzj

= Ezizj |titj {∇ log [f(ti, tj , zi, zj ; θ)]} (A.1)

Proof of equation (4.14):

∇2pl(θ; ti, tj) = ∇
{∫ ∫

∇ log {f(ti, tj , zi, zj ; θ)} f(zi, zj |ti, tj ; θ)dzidzj
}

=

∫ ∫
∇2 log {f(ti, tj , zi, zj ; θ)} f(zi, zj |ti, tj ; θ)dzidzj

+

∫ ∫
∇ log {f(ti, tj , zi, zj ; θ)}∇f(zi, zj |ti, tj ; θ)dzidzj

= Ezizj |titj
{
∇2 log [f(ti, tj , zi, zj ; θ)]

}
+

∫ ∫
∇ log {f(ti, tj , zi, zj ; θ)}∇f(zi, zj |ti, tj ; θ)dzidzj (A.2)

= Ezizj |titj
{
∇2 log [f(ti, tj , zi, zj ; θ)]

}
+A
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Denote the second term in (A.2) by A and it can be analyzed as follows

A =

∫ ∫
∇ log {f(ti, tj , zi, zj ; θ)} f(zizj |ti, tj ; θ)

[∇f(zi, zj |ti, tj ; θ)
f(ti, tj , zi, zj ; θ)

]
dzidzj

=

∫ ∫
∇ log {f(ti, tj , zi, zj ; θ)} f(zi, zj |ti, tj ; θ)∇ log {f(zi, zj |ti, tj ; θ)} dzidzj

=

∫ ∫
[∇ log {f(ti, tj , zi, zj ; θ)}] [∇ log {f(ti, tj , zi, zj ; θ)}]t f(zi, zj |ti, tj ; θ)dzidzj

−
∫ ∫

∇ log {f(ti, tj , zi, zj ; θ)}∇ log {f(ti, tj ; θ)} f(zi, zj |ti, tj ; θ)dzidzj

= Ezizj |titj
{

[∇ log {f(ti, tj , zi, zj ; θ)}] [∇ log {f(ti, tj , zi, zj ; θ)}]t
}

−∇ log {f(ti, tj ; θ)}
∫ ∫

∇ log {f(ti, tj , zi, zj ; θ)} f(zi, zj |ti, tj ; θ)dzidzj

By using the result (A.1), we get

A = Ezizj |titj
{

[∇ log {f(ti, tj , zi, zj ; θ)}] [∇ log {f(ti, tj , zi, zj ; θ)}]t
}

−
[
Ezizj |titj {∇ log f(ti, tj , zi, zj ; θ)}

] [
Ezizj |titj {∇ log f(ti, tj , zi, zj ; θ)}

]t
= Varzizj |titj {∇ log f(ti, tj , zi, zj ; θ)} (A.3)

Combine equations (A.3) and (A.2), we have

∇2pl(θ; ti, tj) = Ezizj |titj
{
∇2 log f(ti, tj , zi, zj ; θ)

}
+ Varzizj |titj {∇ log f(ti, tj , zi, zj ; θ)}

that is equation (4.14).

A.2 Standard error discussion of MCEM method

Table A.1 shows a study on the coverage probabilities in the MCEM method. It is clear that

sandwich standard errors give lower coverage probabilities than the Louis standard errors re-

gardless of the clustering setting. The last column contains the percentages of cases where

the Louis standard errors are greater than the sandwich standard errors. This percentages

are observed very high for all settings and all parameters. Consequently, confidence intervals

produced by sandwich standard errors are narrower in most of the simulations, leading to a

lower coverage of the true value.

Coverage probabilities for σ and ν̃ are systematically lower than those for β. One reason

for that may be the substantial asymmetry of confidence intervals because they are strongly

shifted to the left, leading to very asymmetric type-1 errors on the tails (two numbers in the

parentheses). Moreover, when computing Louis standard errors for σ̂ and ˆ̃ν, a percentage of

samples is lost (about 20%) because of numerical problem, therefore the related coverage prob-

abilities might be affected by a reduced sample size. Figure A.1 and A.2 give a visualization
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of this result for the case of 5 clusters with 9× 9 units per cluster. From boxplots, we observe

that the poor estimates in standard errors of ˆ̃ν and σ̂ may be affected substantially by the long

tails of outliers. On the other hand, from the histograms of figure A.1, we see that estimates

of β are nearly following a normal distribution, explaining the reason why its standard error

estimates have higher coverage probabilities.

3 clusters: 7× 7

Par True.val Bias Sd L.SE S.SE
L.cov.prob S.cov.prob L.se > S.se

(%) (%) (%)

β 0.600 0.006 0.230 0.199 0.133 91.1 (3.9, 5.0) 67.8 (15.2,17.0) 82.1

σ 0.500 -0.074 0.243 0.157 0.231 65.3 (27.8, 6.9) 45.0 (41.6, 13.4) 86.6

ν̃ 1.000 1.243 9.447 2.207 1.765 84.2(15.0, 0.8) 50.3(41.5, 8.2) 88.6

3 clusters: 9× 9

Par True.val Bias Sd L.SE S.SE
L.cov.prob S.cov.prob L.se > S.se

(%) (%) (%)

β 0.600 0.021 0.182 0.155 0.099 97.3(3.3, 6.0) 66.7(13.1, 20.2) 84.7

σ 0.500 -0.022 0.223 0.130 0.230 66.6(20.4, 13.0) 46.8(33.6, 15.9) 82.6

ν̃ 1.000 0.150 1.778 0.837 1.135 71.6(17.9, 0.5) 46.7(45.3, 8.0) 83.3

5 clusters: 7× 7

Par True.val Bias Sd L.SE S.SE
L.cov.prob S.cov.prob L.se > S.se

(%) (%) (%)

β 0.600 0.013 0.250 0.154 0.118 88.6(4.2, 7.2) 73.8(11.1, 13.1) 79.0

σ 0.500 -0.035 0.215 0.118 0.134 66.2(22.9, 10.9) 51.2(33.2, 15.2) 79.5

ν̃ 1.000 0.450 2.300 1.037 0.912 81.8(17.7, 0.5) 61.0 (33.2, 5.8) 80.5

5 clusters: 9× 9

Par True.val Bias Sd L.SE S.SE
L.cov.prob S.cov.prob L.se > S.se

(%) (%) (%)

β 0.600 0.010 0.143 0.120 0.090 90.1(4.0, 5.6) 75.1 (10.2, 14.7) 81.7

σ 0.500 0.004 0.194 0.108 0.191 67.0(17.4, 15.4) 54.7(25.8, 19.5) 72.9

ν̃ 1.000 0.060 0.785 0.475 0.554 69.7(28.6, 1.7) 61.6(33.4, 4.9) 74.4

Table A.1: Simulation results of MCEM method by using an Exponential correlation
frailty on 1000 simulated datasets at level of 50% of censoring. The results include
parameter names (par), true values of parameters (True.val), the bias of estimates
(bias), the empirical standard deviations (Sd), the estimated standard errors and
the corresponding coverage probabilities by Louis method (L.SE & L.cov.prob), the
estimated sandwich standard errors and the corresponding coverage probabilities(S.SE
& S.cov.prob), and lastly the percentages such that the estimated standard errors is
greater than the estimated sandwich standard errors (L.se > S.se). Two numbers in
the parentheses of the coverage probabilities are the upper rate (when the true value
is greater than the estimated confidence interval) and lower rate (when the true value
is lower than the estimated confidence interval) respectively.
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Figure A.1: Histograms of standard errors computed by Louis method and sandwich
method in a simulated study of 5 clusters with 9× 9 observations per cluster.

A.3 Additional results on the real data application
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Figure A.2: Boxplots of standard errors computed by Louis method and sandwich
method in a simulated study of 5 clusters with 9× 9 observations per cluster.
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Parameters Exponential Gaussian

syn -2.287 -2.263
sigma 0.532 0.518
nu 107.206 78.338
no.iter 1000 1000

Table A.2: Estimates of parameters in the hierarchical spatial frailty model on
group 1. QPLH method with Exponential and Gaussian correlations are implemented
at initial values σ = 0.7, ν = 20 compared to results in Table 6.2 at initial values
σ = 0.7, ν = 200.

Parameters Exponential Gaussian

syn -2.284 -2.239
sigma 0.530 0.476
nu 110.071 131.414
no.iter 867 135

Table A.3: Estimates of parameters in the hierarchical spatial frailty model on group
1. The QPLH method with Exponential and Gaussian correlations are implemented
at the number of quadrature node M = 8 and compared to results in Table 6.2 with
M = 7.

Parameters Exponential Gaussian

syn 0.113 0.069
sigma 0.565 0.455
nu 0.604 1.078
no.iter 245 569

Table A.4: Estimates of parameters in the hierarchical spatial frailty model on group
0. The QPLH method with Exponential and Gaussian correlations are implemented
at initial values σ = 0.7, ν = 20 and compared to results in Table 6.2 at initial values
σ = 0.7, ν = 2.

Parameters Exponential Gaussian

syn 0.110 0.095
sigma 0.563 - 0.560
nu 0.586 - 0.870
no.iter 259 - 256

Table A.5: Estimates of parameters in the hierarchical spatial frailty model on group
0. The QPLH method with Exponential and Gaussian correlations are implemented
at the number of quadrature node M = 8 and compared to results in Table 6.2 with
M = 7.
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Figure A.3: Estimated survival curves at a representative frailty z = 0.5. The result
is obtained from the implementation of the QPLH method with a Gaussian correlation
function.

Figure A.4: Estimated survival curves at a fixed syntaxin level for different values
of frailties. The result is obtained from the implementation of the QPLH method with
a Gaussian correlation function.
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