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Introduzione

Gli eventi estremi fanno parte della vita reale, in particolare quelli riguardanti
l’ambiente dove viviamo, possono avere un grande impatto sulla nostra vita di
ogni giorno. Degli esempi sono le innondazioni, gli uragani, i terremoti ed al-
tre calamità. Questi fenomeni capitano di rado ma le loro consequenze possono
avere un impatto drammatico sulle persone, le città e le abitazioni. In campo
scientifico un notevole impegno è dedicato allo studio delle cause e delle con-
seguenze di eventi catastrofici, con l’obiettivo di predirne il loro verificarsi. In-
oltre, un ampio sforzo è indirizzato per comprendere il possibile collegamento di
questi fenomeni con il riscaldamento della terra e il cambiamento climatico. Con-
seguentemente, di recente l’analisi dei valore estremi sta acquisendo una notevo-
le importanza ed un numero sempre crescente di ricercatori si stanno interessan-
do a questa area di ricerca e in particolar modo gli statistici e i probabilistici.

La modellazione statistica dei valori estremi ha inizio circa a metà degli anni
ottanta. L’analisi statistica degli eventi estremi ci aiuta a capirne l’intensità e
a predirne la frequenza con cui questi fenomeni si verificano. Se queste infor-
mazioni sono disponibili, allora alcune misure preventive possono essere adot-
tate per mitigarne gli effetti.

L’obiettivo di questa tesi e di fornire metodi statistici per la stima di eventi es-
tremi per due particolari processi: sequenze non stazionarie univariate di valori
estremi e sequenze stazionarie di estremi in ambito spaziale. In entrambi i casi
gli aspetti statistici consistono nell’inferenza parametrica e non parametrica dei
modelli usati e nell’adattamento dei modelli ai processi ambientali, con partico-
lare attenzione rispetto le temperature massime e ai livelli massimi delle piogge
rilevati in diversi siti.

La distribuzione dei valori estremi è ampiamente adottata nell’ analisi degli
eventi rari. Il suo utilizzo e motivato da risultati asintotici che si basano su una
classe di processi stazionari ragionevolmente ampia. Un modo di procedere che
tiene conto della non stazionarietà è quello di considerare come modello di base
la distribuzione generalizzata dei valori estremi, ma definendo per i parametri
del modello delle strutture di dipendenza con molteplici covariate (modelli di re-
gressione). Tradizionalmente si sono utilizzati modelli di regressione parametrici
ma recentemente l’interesse si è spostato verso l’alternativa offerta dai modelli
non o semi parametrici. Degli esempi sono gli articoli di Davison e Ramesh
(2002) e Chavez-Demoulin e Davison (2005), i quali hanno dimostrato l’utilità
dell’approccio non parametrico per alcuni tipi di modelli dei valori estremi. In
particolare, i primi autori hanno utilizzato la verosimiglianza locale mentre i sec-
ondi le spline di lisciamento. Nonostante ciò, la letteratura sui modelli di liscia-
mento dei valori estremi è ancora scarsa e nella sua infanzia. In questa tesi si pro-
pone, come possibile alternative ai metodi già adottati, l’utilizzo di spline di lisci-
amento ma secondo la formulazione che si basa sul paradigma dei modelli misti.
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Una conseguenza di questo approccio, consiste nel fatto che per costruzione i
parametri di lisciamento delle spline corrispondono alle componenti di varianza
del modello. Cosı̀ i metodi basati sulla verosimiglianza o le tecniche Bayesiane
possono essere applicate per l’inferenza, la valutazione e l’adeguamento del mod-
ello (per esempio Ruppert, Wand e Carroll, 2003). Inizialmente si considera il
caso più semplice, dove è trattata una sola struttura di dipendenza da covaria-
te, rigurdanti il parametro di posizione. È stato sviluppato cosı̀, un metodo di
stima basato sull’approccio della verosimiglianza, il quale ne risulta una versione
estesa per il modello che incorpora anche gli effetti casuali. L’approccio che fa
uso dei modelli misti è ben conosciuto nel contesto dei modelli lineari e lineari
generalizzati, ma è nuovo nell’ambito della distribuzione generalizzata dei valori
estremi. Comunque questo metodo comporta la necessità di risolvere degli inte-
grali multivariati che sono analiticamente intrattabili. Ne consegue cosı̀ che la
formulazione classica della funzione di verosimiglianza è compromessa. Allora
consideriamo due possibili opzioni: in un caso il metodo di stima si basa su una
approssimazione della funzione di verosimiglianza ottenuta tramite il metodo di
Laplace, in un altro caso il metodo di stima si basa su una approssimazione simile
alla funzione di verosimiglianza penalizzata. Entrambi i metodi sono utilizzati e
messi a confronto. Un’ attraente caratteristica dovuta dalla formulazione delle
spline di lisciamento tramite i modelli misti è che non sono necessarie ulteriori
procedure per la stima dei parametri di lisciamento, come ad esempio il metodo
della validazione incrociata. Invece, questi ultimi possono facilmente venire sti-
mati tramite l’utilizzo di un’approssimazione della funzione di verosimiglianza.
Questo primo modello ha una adeguata applicabilità ma rappresenta anche un
punto di partenza per ulteriori estensioni come quello al caso della componente
di scala.

Mentre nel caso univariato la teoria e l’analisi statistica dei valori estremi e
ben sviluppata, nel caso multivariato ci sono molte meno linee guida. Questo può
essere un problema perchè in molti processi ambientali come per esempio le al-
luvioni, il naturale dominio è quello spaziale. In ambito spaziale, l’analogo delle
sequenze stazionarie univariate e multivariate di valori estremi sono costituiti dai
processi massimamente stabili (per esempio de Haan e Pickands, 1986; Resnick,
1987). Questi sono stati sviluppati da de Haan (1984) ed hanno simili risultati
teorici della distribuzione per i valori estremi ma estesi al dominio spaziale. I
processi massimamente stabili, forniscono un utile approccio perchè permettono
di modellare gli estremi incorporando nel modello le dipendenze temporali ma
anche quelle spaziali. Dal punto di vista statistico una classe parametrica di pro-
cessi massimamente stabili assieme con un semplice metodo di stima sono illus-
trati da Smith (1990). Ulteriori metodi statistici ed altre analisi di dati sono stati
discussi nello stesso ambito da Coles (1993) e Coles e Tawn (1996). Dato che non
è possibile derivare l’ espressione analitica della funzione di densità, i metodi in-
ferenziali basati sulla funzione di verosimiglianza non sono facili da applicare.
Comunque alcuni stimatori non parametrici sono stati proposti da de Haan e
Pereira (2006).

In questa tesi consideriamo due differenti approcci inferenziali. Il primo si
basa sulla funzione di verosimiglianza composita che fornisce un’approssimazione
della funzione di verosimiglianza (Linsday, 1988). Dimostriamo come i metodi
di stima, basati sulla funzione di verosimiglianza a coppie, forniscono uno stru-
mento flessibile per la stima anche nel contesto spaziale e che i risultati ottenuti
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sono sensati e ragionevoli.
Infine, illustriamo un alternativo metodo di stima basato sul approccio Bayesia-

no. Un modo per superare le difficoltà indotte dall’intrattabilità della funzione di
verosimiglianza e fornito dai metodi computazionali conosciuti come ABC (Ap-
proximate Bayesian Computation). Questi metodi possono essere onerosi dal
punto di vista computazionale ma in alcuni casi forniscono ragionevoli risultati
inferenziali. Indaghiamo cosi l’applicabilità di questi metodi nel contesto degli
estremi spaziali.
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Introduction

Rare events are part of the real world but inevitably environmental extreme events
may have a massive impact on everyday life. We are familiar, for example, with
the consequences and damage caused by hurricanes and floods etc. Consequently,
there is considerable attention in studying, understanding and predicting the na-
ture of such phenomena and the problems caused by them, not least because of
the possible link between extreme climate events and global warming or climate
change. Thus the study of extreme events has become ever more important, both
in terms of probabilistic and statistical research.

Statistical modelling of extreme values has flourished since about the mid-
1980s. Such analysis, for instance, can help by estimating both the rate and mag-
nitude of rare events, so that precautionary measures can be taken to prevent
catastrophic phenomena, plan for their impact and mitigate their effects.

This thesis aims to provide statistical modelling and methods for making in-
ferences about extreme events for two types of process. First, non-stationary uni-
variate processes; second, spatial stationary processes. In each case the statistical
aspects focus on model fitting and parameter estimation with applications to the
modelling of environmental processes including, in particular, nonstationary ex-
treme temperature series and spatially recorded rainfall measures.

The Generalized Extreme Value distribution (GEV) is widely adopted model
for extremal events in the univariate context. It’s motivation derives from asymp-
totic arguments that are based on reasonably wide classes of stationary processes.
For modelling extremes of nonstationary sequences it is commonplace to still use
the GEV as a basic model, but to handle the issue of nonstationarity by regres-
sion modelling of the GEV parameters. Traditionally this has been done using
parametric models (Coles 2001, chapter 6), but there has been considerable re-
cent interest in the possibility of nonparametric or semiparametric modelling of
extreme value model parameters. For example, Davison and Ramesh (2002) and
Chavez-Demoulin and Davison (2005) have demonstrated the usefulness of non-
parametric regression, or smoothing, for certain types of extreme value models.
The former used a local likelihood approach, while the latter used smoothing
splines. Nevertheless, the literature on smoothing in extremal models remains
scarce and in its infancy. As a novel alternative, this thesis proposes the use of
mixed model-based splines for extremal models. A compelling feature of this
approach is that the smoothing parameters correspond to variance components,
so maximum likelihood or Bayesian techniques can be applied for model fitting,
assessment and inference (e.g. Ruppert,Wand and Carroll, 2003). We start with
the simplest case, developing nonparametric estimation for a smoothly varying
location parameter within the GEV model. The approach is effectively maximum
likelihood for an expanded version of the model that includes random effects.
This approach is well used and developed when data are normally distributed
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or have a distribution within the exponential family, but is novel for extremes.
However, the inclusion of the random effects leads to analytically intractable K-
dimensional integrals for the likelihood formulation. Two different options are
considered: one an approximation to the likelihood based on Laplace’s approx-
imation; the other based on a further approximation that is closer in spirit to a
penalized likelihood function. The two methods are compared and contrasted by
means of a simulation study.

An attractive feature of this general approach to nonparametric smoothing is
that the extent of smoothing - in our case expressed as variance components - are
estimated as part of the inference procedure. Consequently, there is no need for
secondary procedures such as cross validation to determine smoothing parame-
ters. We provide a quick and simple way of model fitting. This has uses in its own
right, but also provides good starting values for more complex models, enabling
the GEV scale parameter to also be covariate dependent, for example.

Whilst the theory and statistical practice of univariate extremes is well devel-
oped, there is much less guidance for the modelling of spatial extremes. This
creates problems because many environmental processes - such as rainfall - have
a natural spatial domain. The spatial analogue of univariate or multivariate
extreme value models is the class of max-stable processes. (e.g de Haan and
Pickands, 1986; Resnick, 1987). Max-stable processes were first developed by
de Haan (1984) and have a similar asymptotic motivation, but expanded to a
spatial domain, as the GEV distribution in the univariate case. They provide a
general and useful approach to model extremal processes incorporating tempo-
ral or, more commonly, spatial dependence. On the statistical side, a parametric
class of max-stable processes, together with a simple approach for inference, is
provided by Smith (1990). Statistical methods for max-stable processes and data
analysis of practical problems are discussed further by Coles (1993) and Coles
and Tawn (1996). However, likelihood methods for such models are complicated
by the intractability of density functions in all but the most trivial cases, although
some alternative nonparametric estimators have been proposed by de Haan and
Pereira (2006).

In this thesis we consider two different approaches. The first is composite (or
pseudo)-likelihood which serves as a surrogate of the full likelihood (Linsday,
1988). We demonstrate that the composite likelihood procedure performs reason-
ably well and provide a flexible framework for inference.

Finally, we also explore the possibility of a Bayesian analysis of max-stable
processes. This is obviously complicated by the intractability of the likelihood
function, so we turn to a class of recently developed procedures referred to as
ABC (Approximate Bayesian Computation). These methods are computationally
intensive, and not easy to apply for highly structured problems such as max-
stable process. Nonetheless, we show the method to have value and that reason-
able inference can be obtained in some cases.
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Part I

Smoothing extremes
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Chapter 1

Extreme value theory

The extreme type theorems are important to the study of extreme value theory.
In the literature, Fisher and Tippett (1928) were the first to discover the these and
later their results were proved by Gnedenko (1943). Galambos (1987), Resnick
(1987) are interesting reference books on the technical aspect. Coles (1990) gives
a detailed introduction of statistical aspects, with emphasis on maximum likeli-
hood methods in parameter estimation. Essentially, the extreme type theorems
establish that for a sequence of i.i.d. random variables with suitable normalizing
constants, the limiting distribution of maximum statistics, if it exists, follows one
of three types of extreme value distributions.

1.1 Basic results

Let {Xi}i≥1 be a sequence of independent and identically distributed random
variables with marginal distribution function F , that is each Xi is distributed
according to F . Denote the maximum of n consecutive elements of the sequence
by Mn = maxX1, . . . , Xn. As n increases, Mn approaches the upper end-point,
w = sup{y : F (y) < 1}, of F and the limiting distribution of Mn is a point mass at
w. A normalization is required to obtain a non-degenerate limit. As in the central
limit theorem, a linear normalization is traditional and the limit, as n approaches
infinity, is sought for the distribution function

P

(
Mn − bn
an

≤ y

)
= F n(any + bn)

for sequences of constants an > 0 and bn ∈ R. The following theorem, due to
Fisher and Tippett (1928), characterizes all of the possible limit distributions. De-
note weak convergence by w−→.

Theorem. If there exist sequences of constants an > 0 and bn ∈ R such that

P

(
Mn − bn
an

≤ y

)
w−→F (y) as n→∞

for a non-degenerate distribution function F , then F is a generalized extreme value dis-
tribution function,

F (y;µ, ψ, ξ) = exp

[
−
{

1 + ξ

(
y − µ
ψ

)}−1/ξ

+

]
, −∞ < µ, ξ <∞, ψ > 0,
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defined on {y : 1 + ξ(y − µ)/ψ > 0} where y+ = max(0, y). For ξ = 0, F is defined by
the limit as ξ → 0.

The generalized extreme value distribution function comprises three subclasses:

I exp
[
− exp

{
−
(
y−β
α

)}]
for y ∈ R,

II exp
{
−
(
y−β
α

)−γ}
for y > β,

III exp
[
−
{
−
(
y−β
α

)γ}]
for y < β,

where α > 0 and γ > 0. These sub-classes correspond to the generalized extreme
value distribution with ξ = 0, ξ > 0 and ξ < 0, and are known by the names I
Gumbel, II Fréchet and III Weibull. “Standard” versions of these distributions
refer to the special case α = 1, β = 0 and γ = 1.

The approximation P (Mn ≤ y) ≈ F{(y − bn)/an} for large n motivates the
generalized extreme value distribution as a model for maxima of blocks with
large but finite lengths since the normalizing constants can be assimilated into
the location and scale parameters µ and ψ.

The corresponding (probability) density function has expression

f(y) = ψ−1

{
1 + ξ

(
y − µ
ψ

)}−1/ξ−1

exp

[
−
{

1 + ξ

(
y − µ
ψ

)}−1/ξ
]
, (1.1)

provided that {y : 1 + ξ(y − µ)/ψ > 0}
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Chapter 2

Introduction to semiparametric
regression

Splines continue to play a central role in nonparametric and semiparametric re-
gression modelling. Recent descriptions include Ruppert, Wand and Carroll (2003)
and Denison, Holmes, Mallick and Smith (2002). In these references, smooth
functional relationships are fitted using a large basis of spline functions subject
to penalization. Up until the mid-1990s most literature on spline-based nonpara-
metric regression was focused on smoothing splines, and their multivariate ex-
tension thin plate splines, where the penalty takes a specific form and the number
of basis functions roughly equals the sample size (e.g. Wahba, 1990; Green and
Silverman, 1994). However, in recent years, there has been a lot of research on
more general spline/penalty strategies, most of which use considerably fewer
basis functions. The main forces include:

• more complicated models, often with several smooth functions;

• larger data sets, where smoothing and thin plate splines become computa-
tionally intractable,

• mixed model and Bayesian representations of smoothers that lend them-
selves to the use of established software, such as BUGS, lme() in R and
PROC MIXED in SAS; provided the number of basis functions is relatively
low.

Ruppert, Wand and Carroll (2003) summarize and provide access to many of
these developments. The term penalized splines has emerged as a descriptor for
general spline fitting subject to penalties. Therefore sometimes the term smooth-
ing splines will be used imprecisely, but with the same general idea in mind. Pe-
nalized splines have been applied successfully with linear and generalized linear
models. Only recently have spline models been explored in more complex set-
tings such as extreme value models (e.g. Pauli and Coles, 2001; Chavez-Demoulin
and Davison, 2005; Yee and Stephenson 2007). In this chapter we will briefly
introduce penalized spline regression, penalized spline representations under a
mixed model approach and illustrate the application to the linear and generalized
linear models. In the next Chapter the penalized spline mixed model representa-
tion for sample extremes will be discussed.
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2.1 Penalized spline regression

The term nonparametric regression is often referred to as the problem of estimating
an unspecified “smooth” function f from a scatterplot (xi, yi), i = 1, . . . , n. Many
different approaches for this general objective of smoothing a scatterplot exist.
Here we focus on the penalized splines method which has the attractiveness of
being a relatively straightforward extension of linear regression modelling. A
comprehensive exposition to this topic with many useful references is given by
Green and Silverman (1994).

Consider the simplest ordinary nonparametric regression setting

yi = f(xi) + εi, 1 ≤ i ≤ n, (2.1)

where (xi, yi) ∈ R2. Suppose that the εi are random variables with E(εi) = 0 and
variance σ2

ε and that an estimate of f(x) = E(y|x), the corresponding underlying
trend, is required over the interval [a, b] containing the xi’s. f is assumed to be a
generic “smooth” function, for example a polynomial of some order p, with which
different types of nonlinear structures can be accommodated. In order to fit any
complicated structure of f by, for example the method called penalized splines,
the function must be represented defining a nonparametric regression such as a
spline model.

For an integer K ≤ n let κ1, . . . , κK be a sequence of knots such that

a = κ1 < κ2 < . . . < κj < . . . < κK−1 < κK = b

and let (x− κ1)+, . . . , (x− κK)+ be the linear spline basis functions defined by these
knots, where (x)+ = max(0, x). Then the simplest spline model is a linear spline
model defined as

f(x) = β0 + β1x+
K∑
k=1

uk(x− κK)+

where β0, β1 and uk for i = 1, . . . , K are coefficients. The result is a piecewise lin-
ear function obtained as a linear combination of the linear spline basis functions
1, x, (x − κ1)+, . . . , (x − κK)+. Alternative spline basis functions are, for example
the truncated power basis of degree p, the radial basis function, B-spline, etc. An
introduction to these basic alternatives are discussed in detail in Ruppert, Wand
and Carroll (2003, p. 67–74). A more convenient formulation of a spline models
is given by the general class

f(x) = β0 + β1x+
K∑
k=1

ukzk(x) (2.2)

where z1, . . . , zk are spline basis functions which must be suitably specified. The
benefit of using sophisticated basis functions might be substantial. For a deeper
discussion on spline basis functions, penalized splines and direct generalization
of smoothing splines such as the O’Sullivan penalized splines, we refer to Green
and Silverman (1994, p.12), Welham, Cullis, Kenward and Thompson (2007) and
Wand and Ormerod (2007).

Lastly, we mention knot choice. There are sophisticated algorithms that use
the data to choose K, the number of knots. Some examples are discussed in Rup-
pert, Wand and Carroll (2003, p. 127–128). A common default in the penalized
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spline literature is K = min(nU/4, 35), where nU is the number of unique xi’s.
Given K, the distribution of the knots may also have some effect on the results.
One strategy is to use

κk =

(
k + 1

K + 2

)
th sample quantile of the uniquexi

while an alternative recommend by Eilers and Marx (1996) is to use equally-
spaced knots. In Figure 2.1 we have illustrated an example of nonparametric
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Figure 2.1: Fossil data: ratios of strontium isotopes found in fossil shells versus the age
of the fossils. The model fitting is reported by using 50 (dotted red line), 11 (solid black
line) and 2 (broken green line) knots.

regression by using fossil data (Ruppert, Wand and Carroll, 2003 p. 129). The
data consists of 106 measurements of ratios of strontium isotopes found in fos-
sil shells and their age. We can see how it is possible to handle any complex
type of structure by simply adding more linear spline basis functions with form
(x − κ)+. It is clear that the fit improves with a larger set of knots. However, an
excess of knots can cause too much flexibility or overfitting. To avoid this prob-
lem attention must be paid when determining the number of knots, as they have
consequences on the roughness of the fit. One way to overcome this problem is
to select the number and the location of the knots by the simple methods listed
above, and then fit the model by using the technique known as penalized spline
regression. In other words we suppose to use a large number of knots K, but then
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we constrain the coefficients of the spline basis functions which depend by the
knots, so to reduce their influence. This is done in the following way.

The ordinary least-squares criterion with form

ŷ = Xν̂νν, where ν̂νν minimizes ‖y −Xννν‖2,

with ννν = [β0, β1, u1, . . . , uK ]T , without any constraint on ννν often leads to over-
fitting. This problem can be avoided by imposing a constraint on ννν such as∑K

k=1 uk < B for a smoother fit to the scatterplot. In this case the least squares
minimization problem can be written as

minimize ‖y −Xννν‖2 subject to νννTDννν ≤ B,

where

D =

[
02×2 02×K
0K×2 IK×K

]
.

The amount of smoothness is controlled by B, and does not depend on the num-
ber or placement of knots. The solution of the constrained optimization problem
has connections with ridge regression (Hoerl and Kennard, 1970). Solution re-
quires a Lagrange multiplier argument, i.e. for some λ, choose ννν to minimize

‖y −Xννν‖2 + λ2νννTDννν. (2.3)

This has the solution
ν̂ννλ = (XTX + λ2)−1XTy.

The term λ2νννTDννν is called the roughness penalty. It penalizes fits that are too rough
thus yielding a smoother result. The quantity λ is the smoothing parameter which
controls the amount of smoothing. The case λ = 0 corresponds to the uncon-
strained case. By contrast when λ > 0 we have downweighted the influence of
the knots, so the fit is a little less rough.

In Figure 2.2 the regression analysis of Fossil data is again reported. This time
we illustrate the model fitting by setting different values of the smooth parameter.
We can see that the more the smooth parameter’s value is increased, the smoother
the model fitting.

Instead, in Figure 2.3 the model fitting is reported by using different spline
basis functions. In particular we considered the truncated spline basis (top-left
panel), the quadratic spline basis (top-right panel) and the cubic spline basis
(bottom-left panel). As we can see the application of different basis for the fossil
data does not have much influence on the fitting. In the bottom-right panel we
have reported, along with the fit, the variability bands. For a discussion on the
variability bands we refer to Ruppert, Wand and Carroll (2003, p. 133–137).

The curve estimation method described in this section is based on the rough-
ness penalty approach that has other complementary arguments, note in litera-
ture such as smoothing splines (Wahba, 1990; Green and Silverman, 1994). Note
that penalized splines are a more general approach than smoothing splines so
that the latter can also be implemented by the former. Connections between the
two approaches are well established, see Ruppert, Wand and Carroll (2003; p.
74–75) and Green and Silverman (1994).

So far the penalized spline regression has been described without need to fo-
cus on the random structure of the variables contemplated. For instance, if we
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Figure 2.2: Fossil data: ratios of strontium isotopes found in fossil shells versus the age of
the fossils. The model fitting is reported by using smooth parameters equal to 20 (dotted
green line), 3 (solid black line) and 0.1 (broken red line) knots.

suppose that the yi are normally distributed, then the minimization of the sum
of the penalized squared criterion is equivalent to the maximization of the pe-
nalized log-likelihood (e.g Green, 1987). The roughness penalty in this context is
given by the smoothing splines penalty, which is essentially the integral of the
second derivative of the smooth function f . Roughly speaking, the log likeli-
hood term is penalized by the amount of nonlinearity. But the assumption of
normality of the errors in real data analysis are scarcely satisfied. However, the
penalized log-likelihood framework can be used for more general models allow-
ing the treatment of responses with density other than normal, see Davison (2003,
p. 535–539).

2.2 Mixed Model Formulation

Wand (2003) shows how an estimate of f by penalized splines can be written
as the best linear unbiased predictor (BLUP) of a mixed model, Robinson (1991).
Assume the basic nonparametric regression (2.1) where f is modelled by a linear
spline model. Let

βββ = ( β0 β1 )T , u = ( u1 . . . uK )T
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be respectively the coefficients of the linear part and the truncated line functions
of the linear spline model. These are associated to the design matrices

X = [1 xi]1≤i≤n, Z[(xi − κk)+
1≤k≤K

]1≤i≤n. (2.4)

Then the penalized least square criterion (2.3) for fitting a nonparametric regres-
sion can be equivalently reformulated as[

β̂ββ
û

]
= argmin

βββ,u
(‖y −Xβββ − Zu‖2 + λ2‖u‖2).

Thus if the coefficients u are treated as random with Cov(u) = σ2
u then the

minimization criterion corresponds to the BLUP of the standard “general” lin-
ear mixed model with the following identity λ2 = σ2

ε/σ
2
u. The minimization of

‖y−Xβββ−Zu‖2 subject to the penalty λ2‖u‖2 (that is imposing a restriction on the
distribution of u) defines a penalized least squares criterion as well. Broadly a re-
gression spline problem can be formulated by the following general linear mixed
model representation

y = Xβββ + Zu + εεε,

[
u
εεε

]
∼
([

0
0

]
,

[
σ2
uI 0
0 σ2

εI

])
.

While estimation of βββ and prediction of u can be done without the Gaussianity
assumption by BLUP (e.g Robinson, 1991), if the normality hypothesis for the
response and the random effects are taken into account, then the variance com-
ponents can be estimated by standard likelihood methods. So, given that the
variance components correspond in someway to the smoothing parameters, then
data can support us in selecting, from the likelihood approach, the right amount
of smoothing. The quantity ‖u‖2 in the penalty term of the minimization crite-
rion derives from the normality assumptions of u. Under the Gaussian model,
inference may be based on the marginal normal density of y, which gives the log
likelihood for (βββ, σ2

ε , σ
2
u) with form

`(βββ, σ2
ε , σ

2
u) = −1

2
{n log(2π) + log |V|+ (y −Xβββ)TV−1(y −Xβββ)},

where V = Zσ2
uI Z + σ2

εI. For known (σ2
ε , σ

2
u) the likelihood maximum estimator

of βββ is
β̂ββ = (XTV−1X)−1XTV−1y.

In principle likelihood inference for σ2
u and σ2

ε may be obtained via maximization
of the profile log likelihood

`P (σ2
ε , σ

2
u) = −1

2

{
log |V|+ (y −Xβ̂ββ)TV−1(y −Xβ̂ββ) + n log(2π)

}
.

However, the maximum likelihood estimators (obtained by maximization of the
profile log likelihood) may have large downward bias because no adjustment is
made for the degrees of freedom lost in estimating the vector βββ. Therefore an
adjustment is required. One can be provided by maximizing the modified log
likelihood

`R(σ2
ε , σ

2
u) = `P (σ2

u, σ
2
ε)−

1

2
log |XTV−1X|.
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In this way the corresponding maximum likelihood estimator of the variance
components are divided for the right degrees of freedom n − p, Davison (2003,
p. 457–458, 657–659). This log likelihood version is known as restricted log like-
lihood, and the associated estimator as restricted maximum likelihood estimator
(REML). The “modified” term above means that the log likelihood profile has
been modified, rather than the modified likelihood of Barndorff-Nielse (1983).
Restricted log-likelihood turns out to be equivalent to the use of the marginal
likelihood corresponding to the marginal density, rather than the full density of
the data (e.g. Barndorff-Neilsen and Cox, 1994).
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Figure 2.3: Fossil data: ratios of strontium isotopes found in fossil shells versus the
age of the fossils. The model fitting is reported by using different spline basis functions:
truncated (top-left), quadratic (top-right) and cubic (bottom-left). In the bottom-right
panel the fit (using the cubic basis function) along with its variability bands is reported.

For known βββ, σ2
u and σ2

ε , the random effects are predicted by using the best
prediction û = E(u|y) which results in

û = σ2
uI ZTV−1(y −Xβββ),

where for the practice determination of u the estimates of (βββ, σ2
u, σ

2
ε) will be used.

The Maximum likelihood estimator β̂ββ and the best predictor û for given σ2
u and

σ2
ε are equivalent to the solutions obtained solving the penalized least squares
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problem, leading to [
β̂ββ
û

]
= C(CTC + λ2D)−1CTy

where C = [X Z] and D = diag(0, 0, 1, . . . , 1).

2.3 Generalized Semiparametric Regression

Generalized linear models (GLMs) allow the handling of non-Gaussian response
variables in parametric regression problems. Similarly GLMs may be fruitfully
utilized in nonparametric regression using the penalized spline framework, when
the responses are evidently nonnormally distributed. In particular, with general
responses the penalized spline regressions, handled using the mixed model rep-
resentation, need to be redefined. For this reason we evoke the generalized linear
mixed model (Ruppert, Wand and Carroll, 2003, p. 203–206) paradigm in order to
specify properly the nonparametric regression. This change involves challeng-
ing efforts by means of overcoming the computational difficulties resulting in the
fitting for the more complex model.

Specifically, suppose the response vector y has distribution belonging to the
exponential family with density function

f(y; βββ) = exp

(
yTg(Xβββ)− 1T b{g(Xβββ)}

φ
+ 1T c(y, φ)

)
,

where βββ is a vector of regression coefficients related with the design X of form
(2.4) which is associated with the predictor variables xi. b(·) is a function of the
natural parameter ηi = g(xTi βββ), and c(·) is a function of y and the dispersion
parameter φ. These include assuming several forms corresponding to the differ-
ent models: Poisson, Bernoulli, etc. Finally the linear predictor xTi βββ is related to
the mean of the response by the relation g−1{E(y)} = xTi βββ, where g−1 is the link
function, McCullagh and Nelder (1989).

The generalized linear mixed model representation of the penalized spline
regression is a natural extension of the model structure illustrated in the previous
section for the generalized responses. However the more complex distributional
form of the responses involve complications in statistical modelling. It is worth
remembering that penalized log likelihood is a well known inference method
widely utilized in smoothing regressions with Gaussian and non-Gaussian data.

Essentially, under the likelihood umbrella, the estimation criterion consists of
maximizing the log likelihood but also penalizing it with a term that takes the
nonlinearity amount into account. Note that this corresponds to the minimiza-
tion of the penalized sum of the squares, only when we treat normal responses.
The key point is that, in order to fit a spline regression model, the mixed model
formulation can provide a similar criteria to that of the penalized log likelihood.

Precisely, assume the linear spline model (2.2) with basis functions (2.4) and
coefficients (βββ,u). Let the response vector y be a member of the exponential
family with density

f(y; βββ) = exp{yT (Xβββ + Zu)− 1T b{Xβββ + Zu}+ 1T c(y)},

where the dispersion parameter is assumed known, for example φ = 1 and the
link function g is equal to the identity. With this specified structural design, the
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solution to the penalized linear spline problem is given by[
β̂ββ
û

]
= argmax

βββ,u
{yT (Xβββ + Zu)− 1T b(Xβββ + Zu) + σ−2

u ‖u‖2},

Ruppert, Wand and Carroll (2003, p. 215–216). Assume also that the coefficients
u are random variables normally distributed, u ∼ N(0, σ2

uI) with zero mean and
covariance matrix σ2

uI. Then, combining the probability density functions of the
exponential family and the random effects yields the likelihood for (βββ, σ2

u)

L(βββ, σ2
u) = f(y; βββ, σ2

u) =

∫
Rk
f(y|u)f(u) du

∝ |σ2
uI|−1/2

∫
Rk

exp
{
yT (Xβββ + Zu)− 1T b(Xβββ + Zu)− 1

2
uT σ−2

u I u
}
du.

(2.5)

We refer to (2.5) as the integrated likelihood. To perform maximum likelihood
estimation, we need to be able to compute this likelihood by integrating out the
random effects. Whereas the prediction of the random effects can be obtained by
the best predictor û = E(u|y) (their predictions will depend on the likelihood es-
timates). Note that u are random quantities (not parameters) so maximum likeli-
hood cannot be used to estimate (or predict) them. However, the estimation and
prediction are compromised by intractable high dimensional integrals. In fact
with non linear models, such non linearity prevents integration over the random
effects, so that it is not usually possible to find the exact likelihood. No closed
form solution is available either for the best predictor. Various strategies have
been proposed by different authors (e.g. Lindstrom and Bates, 1990). Most of
them replace the integration by joint maximization over the parameters and ran-
dom effects, and then use linearization for the conditional modes of the random
effects to estimate the variance components.

More precisely, laplace’s method (e.g. Severini, 2005, p.276) can be applied
to the integrals over u, expanding the integral argument as a quadratic Taylor
expansion about its maximum, see appendix A.1 for details. This, or other meth-
ods are approximate, either based on theoretical approximations or numerical
approximations of integrals, see Wolfinger and O”Connell (1993). Essentially, the
goodness of the approximation depends on the order used in the Taylor expan-
sion. In some cases high-order expansion could be required in order to obtain
adequate inference results.

Application of Laplace’s method leads to the approximate (integrated) log
likelihood

`INT(βββ, σ
2
u) ' yT (Xβββ + Zû)− 1T b(Xβββ + Zû)− 1

2
ûT σ−2

u I û− 1

2
log |Iuu(ûβββ,σ2)|,

where the quantity Iuu(ûβββ,σ2) = I + σ2
uIZ

T diag{b′′(Xβββ + Zû)}Z - for σ2
u fixed - is

the observed information matrix of the sum between the exponential and the nor-
mal probability densities respect to u. A model feature of spline regression under
the generalized mixed model representation is that a penalized log likelihood
function arises as an approximation of the integrated log likelihood, `INT(βββ, σ

2
u).

More precisely, excluding the quantity−1
2

log |Iuu(ûβββ,σ2
u
)| in the integrated log

likelihood we acquire a similar expression of the penalized log likelihood for

21



generalized linear models. The key idea of the penalized log likelihood gov-
erned by the mixed model paradigm is to treat the fixed and random effects
(βββ,u) as coefficients, but penalizing the random effects according to the restric-
tion u ∼ N(0, σ2I). It turns out that the fitting and inference could be, by some
means, based on the penalized log likelihood. In fact for given σ2

u, Breslow and
Clayton (1993) argued how for ease of fitting that the quantity Iubu(ûβββ,σ2) can be
(somehow) neglected in order to estimate the coefficients βββ. But then for given σ2

u

the penalized log likelihood

`PL(βββ, σ
2
u) = yT (Xβββ + Zu)− 1T b(Xβββ + Zu)− 1

2
uT σ−2

u I u.

can be used in order to base the inference procedure for (βββ,u). By maximiza-
tion of `PL(βββ, σ

2
u) respect with the fixed and random effects (treated as parame-

ters) leads to the approximate likelihood estimates (β̂ββ, û). Estimates can be pro-
vided, for instance as solution of the score equations by a Fisher scoring algorithm
(Green, 1989). Maximization of the penalized log likelihood corresponds essen-
tially to maximization of the joint “likelihood” of the observed data and random
effects simultaneously, as proposed by Harville and Mee (1984). The amount of
smoothing of the penalized spline with the mixed model approach corresponds
to the variance component, and the fit depends on the current estimates of σ2

u.
So given (β̂ββ, û), maximum likelihood estimation of σ2

u involves maximizing the
profile log likelihood. There is no closed form solution, so it has to be done nu-
merically. However, a common approach is to alternatively apply the restricted
log likelihood, although its use is controversially justified. We refer to Breslow
and Clayton (1993), see also Ruppert, Wand & Carroll (2003, p. 205–206) for de-
tails. They provide a description of an iterative scheme in order to obtain the
model fitting and to estimate variance components.

It is also worth remembering that Lee and Nelder (1996) introduced an al-
ternative approach which does not require integration when f(y|u) is a member
of the GLMs. They propose to base inference on what they call the h-likelihood
which is essentially the product between the likelihood of the observed data and
the density function of the random effects. It turns out that taking the logarithm
of that product, again, leads to an expression similar to what here we have called
penalized log likelihood. However, also using the h-likelihood, the generalized
linear models case involves computational challenges for fitting, respect the eas-
iest linear models case. Lee, Nelder and Pawitan (2006) also based their model
fitting and inference in many cases on a stepwise iterative algorithm similar to
that of Breslow and Clayton (1993). Therefore it seems widely accepted in litera-
ture that the model fitting and inference can be based on stepwise procedures.
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Chapter 3

Mixed model-based additive models
for sample extremes

3.1 Introduction

Extreme value models have asymptotic theoretical results that makes them par-
ticulary well suited for statistical applications that focus on extreme events. Coles
(2001) provides a comprehensive introduction to this topic. Assume to observe
a sequence of a process measurement, such as daily temperature, hourly rainfall
levels, etc. and suppose that we are interested in the maximum of the process
over a period of time of observation, for example the annual maxima. Then the
generalized extreme value (GEV) distribution has emerged as the most common
family for modelling such data.

Here briefly, letZ1, . . . , Zn be an independent and identically distributed (i.i.d.)
set of random variables and let Mn = max(Z1, . . . , Zn) denote the sample maxi-
mum. Then, the limiting distribution as n → ∞ of (Mn − an)/bn (if such a se-
quences of constants {bn > 0} and {an} exist) must be a member of the general-
ized extreme value family of distributions (e.g. von Mises, 1954; Jenkinson, 1955).
A random variable Y has a GEV distribution, denoted by Y ∼ GEV(µ, ψ, ξ) if its
cumulative distribution function is given by:

F (y;µ, ψ, ξ) exp

[
−
{

1 + ξ

(
y − µ
ψ

)}−1/ξ

+

]
, −∞ < µ, ξ <∞, ψ > 0,

where x+ = max(0, x) and µ, ψ and ξ are respectively location, scale and shape
parameters. The GEV distribution may be divided into the following three sub-
families: Fréchet distribution (Fischer-Tippett type III) for ξ > 0, Weibull distri-
bution (Fischer-Tippett type II) for ξ < 0 and Gumbel-type distribution (Fischer-
Tippett type I) when ξ → 0; see Fisher and Tippett (1928). For a deeper discussion
with a review of theoretical results see Chapters 3 and 4 of Coles (2001).

Although it is possible to study the asymptotic of maxima of processes with
specified forms of non–stationarity, the results are generally too specific to be of
use in modelling data for which the form of non-stationarity is unknown. Be-
cause of the generality with which such effects may arise in practice, there is little
point in the theoretical study of non–stationary or covariate-dependent extremes.
Instead, these aspects are best addressed from a purely statistical viewpoint, try-
ing to model changes in the marginal behavior of extremes rather than appealing
to any additional asymptotic theory. Thus it is usual to model non-stationarity of
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extremes directly through the parameters of the standard models. For example,
to allow for a linear trend in the underlying level of extremal behavior.

Suppose we observe n sample maxima y1, . . . , yn with corresponding covari-
ate vectors x1, . . . ,xn. General GEV regression models (e.g. Chapter 6 Coles,
2001) take the form

yi|xi ∼ GEV(µ(xi), ψ(xi), ξ(xi)), (3.1)

where, for example, µ(xi) = g((Xβ)i), g is a link function, β is a vector of re-
gression coefficients and X is a design matrix associated with the xi’s. Similar
structures may be imposed upon ψ(xi) and ξ(xi). For non-stationary sequences
of extremes a pragmatic approach is to use the standard extreme value distribu-
tion as a basic template and then enhance it by statistical modelling of the model
parameters. The result is an attractive parametric family where non-stationary
is expressed in terms of extreme value parameters. An immediate advantage of
this approach is that the regression coefficients can be estimated via maximum
likelihood which is easily adaptable to changes in model structures. Davison and
Ramesh (2000) and Hall and Tajvidi (2000) argue that parametric models for (3.1)
can be too restrictive, and have advocated non-parametric approaches. Pauli and
Coles (2001) and Chavez-Demoulin and Davison (2005) have also demonstrated
the usefulness of non-parametric regression, or smoothing in extreme value con-
texts. The first of these papers used a Bayesian approach, while the second used
the classic based-likelihood approach. Chavez-Demoulin and Davison (2005) also
treated the additive model extension, where the effect of several covariates can be
considered simultaneously and flexibly.

The aim of this chapter is to explore an alternative approach to additive model
fitting and inference for sample extreme responses. It is based on the mixed
model/splines paradigm that has achieved a great deal of success in other con-
texts during the last decade. Ruppert, Wand and Carroll (2003) provide a sum-
mary of this general approach. A compelling feature of this approach is that the
smoothing parameters correspond to variance components, so maximum likeli-
hood or Bayesian techniques can be applied for model fitting, assessment and
inference. Complications such as spatial or temporal correlation, missing data
and measurement error are more easily incorporated.

3.2 Model structures

Ruppert, Wand and Carroll (2003) and Wand (2003) have discussed how penal-
ized splines can be carried out in a mixed model framework for Gaussian and
exponential family models. Here, we focus on the generalized extreme value
models.

Let y1, . . . , yn be n observed sample with associated explanatory variables xi.
Assuming that the location parameter in the GEV distribution is smooth on an in-
terval [a, b], then the simplest time-nonhomogeneous spline mixed model is given
by

yi ∼ GEV(µ(xi), ψ, ξ) −∞ < µ(xi), ξ <∞, ψ > 0 xi ∈ R. (3.2)

Mixed model-based penalized spline models for µ take the general form

µ(x) = β0 + β1x+
K∑
k=1

ukzk(x); u1, . . . , uk i.i.d. N(0, σ2),
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where z1, . . . , zK is an appropriate set of spline basis functions. The simplest ver-
sion is zk(x) = (x−κk)+, where κ1, . . . , κK is a dense set of knots within the range
of the xi’s. More sophisticated basis functions are also recommended for consid-
eration. See for example, Welham, Cullis, Kenward and Thompson (2006) and
Wand and Ormerod (2007). The latter reference describes the zk corresponding to
the R function smooth.spline(). The choice of K has a secondary effect and,
for many signals, about 20 knots are sufficient.

Let y = (y1, . . . , yn) and define the design matrix

X = [1 xi]1≤i≤n, Z[zk(xi)
1≤k≤K

]1≤i≤n

associated with fixed βββ = [β0 β1]T and random effects u = [u1 . . . uK ]T . Given u,
the yi are conditionally independent with distribution,

yi|u ∼ GEV(µµµi, ψ, ξ),

where the linear predictor ηηηi(Xβ+Zu)i is related to µµµi by the link function g(µµµi) =
ηηηi. Note that µµµ is related to the conditional mean of y given u via

E(y|u) =

{
µ+ 1ψ{Γ(1− ξ)− 1}/ξ, for ξ 6= 0
µ+ 1ψγ, for ξ = 0

where 1 is a vector of n one, γ = 0.57721566 · · · is the Euler’s constant and Γ is
the Gamma function.

Let C = [X |Z] be the matrix obtained combining the columns of design ma-
trices X and Z, and with vector νννT = [βββT uT ] the K + 2 coefficients of fixed and
random effects. With this notation the conditional probability density function
of yi|u and the probability density function of u random effects, have the expres-
sions

f(u;σ2) = (2π)−K/2(σ2)−K exp

(
−‖u‖

2

2σ2

)
and

f(y|u; βββ, ψ, ξ) =
n∏
i=1

1

ψ

{
1 + ξ

(
(y −Cννν)i

ψ

)}− 1
ξ
−1

exp

[
−
{

1 + ξ

(
(y −Cννν)i

ψ

)}− 1
ξ

]
.

The norm for fitting (3.2) is estimation of the parameters via maximization of
the likelihood:

L(βββ, ψ, ξ, σ2) = f(y; βββ, ψ, ξ, σ2) =

∫
RK

f(y|u; βββ, ψ, ξ)f(u;σ2) du

and prediction of the random effects via the best predictor û = E(u|y). We term
the likelihood above as integrated likelihood (see Chapter 2, Section 2.3). How-
ever, both are hindered by intractable integrals. Instead, we appeal to the approx-
imate (integrated) log likelihood and the ideas of the penalized log likelihood.

Integrated likelihood L(βββ, ψ, ξ, σ2) for the parameters set (βββ, ψ, ξ, σ2) derives
from integrating out the random effects u. The analytical solution of that inte-
gral is not easy to derive straightforwardly, but an approximation can be reached
by application of Laplace’s method to L(βββ, ψ, ξ, σ2), see appendix A.3 for details.
From the penalized (quasi) likelihood (e.g. Green, 1987; Breslow and Clayton,
1993) inference procedures, based on approximate maximum likelihood, can be
developed for generalized linear mixed models and also for curves estimation.
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The penalized log likelihood is widely used in scatterplot smoothing with normal
and generalized responses but it has also been applied in the extreme value con-
text by Pauli and Coles (2001). Application of Laplace’s method to L(βββ, ψ, ξ, σ2),
and then taking the logarithm we derive the following approximate log likeli-
hood

`INT(βββ, ψ, ξ, σ
2) = log{f(y; βββ, ψ, ξ, σ2)}
' log{f(y|û; βββ, ψ, ξ)}+ log{f(û;σ2)} − 1

2
log |Iuu(û, ψ, ξ, σ2)|,

where Iuu(û; βββ, ψ, ξ, σ2) - for (βββ, ψ, ξ, σ2) fixed - is the information matrix of the
sum between the log of the conditional distribution f(y|u), and the log of the
random effects distribution f(u), respect with u. The details and the analytical
expression of the observed information matrix is given in the appendix A.3.

Now omitting the term −1
2

log |Iuu(û, βββ, ψ, ξ, σ2)| in the approximate log like-
lihood `INT(βββ, ψ, ξ, σ

2), we get the penalized log likelihood expression

`PL(ννν, ψ, ξ, σ
2) = log{f(y|û; βββ, ψ, ξ)}+ log{f(û;σ2)}

= −n log(ψ)− 1 + ξ

ξ
1T log

{
1 + ξ

(
y −Cννν|u=bu

ψ

)}
− 1T

{
1 + ξ

(
y −Cννν|u=bu

ψ

)}− 1
ξ

− K

2
log(σ2)− ‖û‖

2

2σ2
,

(3.3)

where Cννν|u=bu means that Cννν is computed for u = û, and Cννν = Xβββ + Zu.
Formula (3.3) is similar to the formulation used by Pauli and Coles (2001).

They approached the model fitting and variance components estimation treating
them as two divided problems. As it is commonly used in nonparametric liter-
ature, they assessed the variance structure by cross validation. Alternatively, in
our setting we will see that the variance components can be estimated as model
parameters. Note that this is an important feature, given that the variance com-
ponents in practice correspond to the the smoothing parameters. So, by this
approach the model fitting and inference can be carried out through likelihood
methods alone.

Analogously to Section 2.3, for fixed σ2 the penalized log likelihood (3.3), de-
rived from the approximate integrated log likelihood `INT(βββ, ψ, ξ, σ

2), can provide
a remedy for the model fitting. In fact, the strategy under the mixed model ap-
proach is to treat the fixed and random effects ννν = (βββ,u) as coefficients in the
penalized log likelihood (3.3), but to penalize the u according to the restriction
u ∼ N(0, σ2I). Thus the maximization of (3.3) respect with ννν furnishes an es-
timate of the regression parameters. This and the accompanying methods for
inference of the scale, shape and the variance components are described in the
next section.

3.2.1 Estimation procedure

With the generalized extreme value model we need to provide the scale and shape
parameter estimates in addition to the model fitting, this is because ψ and ξ are
unknown quantities. For fixed σ2, estimates of (ννν, ψ, ξ) can potentially be pro-
vided by means of a Newton-Raphson algorithm step applied to (3.3). Given
those current estimates (ν̂νν, ψ̂, ξ̂), maximization of the profile penalized log like-
lihood respect with σ2 yields an estimate of the variance component. Then we
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iterate these two stages until convergence of the parameters. However, the ad-
dition of scale and shape parameters jointly with regression coefficients hinders
the application of this method by providing misleading estimates. We found by
simulation exercises that the estimate results were dependent on particular start-
ing values, and that the iterative scheme may be very numerically unstable. This
is because the Newton-Raphson seems to be an unreliable method in order to
simultaneously obtain the estimates of scale, shape and regression parameters.

Alternatively, dividing the estimation of (ννν, ψ, ξ) into two separate stages yields
a better performing method. In conclusion, the stepwise algorithm that allows us
to estimate the regression coefficients, the model parameters and the variance
components is provided by the following iterative scheme:

Iterative Scheme: Fitting and inference in GEV spline Mixed Model

1. Set starting values: ν̂, ψ̂, ξ̂, σ̂2.

2. Update ν̂ by maximizing the penalized log likelihood `PL(ν, ψ̂, ξ̂, σ̂
2).

3. Update (ψ̂, ξ̂) by maximizing the log likelihood `M(ψ, ξ, σ̂2).

4. Update σ̂2 by maximizing the log likelihood `M(σ2).

5. Repeat steps 2–4 until convergence.

At the first stage the maximum penalized likelihood estimate of ννν can be
obtained by the Newton-Raphson method but substituting the observed infor-
mation with the Fisher information (Prescott and Walden, 1980). The Newton-
Raphson updating step is given by

ν̂νν(i+1) = ν̂νν(i) + Iνννννν(ν̂νν(i)

ψ,ξ,σ2 , ψ, ξ, σ
2)−1 Dννν`PL(ν̂νν

(i), ψ, ξ, σ2),

where Iνννννν(ν̂ννψ,ξ,σ2) is the observed information matrix and Dννν`PL(ννν, ψ, ξ, σ
2) is the

gradient for ννν for fixed (ψ, ξ, σ2) at the corresponding maximum penalized log
likelihood estimate ν̂νν(i)

ψ,ξ,σ2 . An explicit expression for Iνννννν(ν̂ννψ,ξ,σ2) its expectation
and Dννν`PL(ννν, ψ, ξ, σ

2) are given in Appendix A.4.
At the second stage, estimates of (ψ, ξ) can be obtained by maximization of

the (modified) log likelihood,

`M(ψ, ξ, σ2) = `PL(ν̂ννψ,ξ,σ2 , ψ, ξ, σ2)− 1
2

log |Iνννννν(ν̂ννψ,ξ,σ2 , ψ, ξ, σ2)|.

Note that the modified term is not referring to the modified likelihood of Barndorff-
Nielsen (1983). At the last stage, estimates of (σ2) can be obtained by maximiza-
tion of the log likelihood,

`M(σ2) = `PL(ν̂ννψ,ξ,σ2 , (ψ̂, ξ̂)σ2 , σ2)− 1
2

log |Iνννννν(ν̂νν( bψ,bξ)σ2 ,σ2 , (ψ̂, ξ̂)σ2 , σ2)|

−1
2

log |I(ψ,ξ)(ψ,ξ)((ψ̂, ξ̂)σ2 , σ2)|

where I(ψ,ξ)(ψ,ξ)((ψ̂, ξ̂)σ2 , σ2) is the observed information matrix for (ψ, ξ) for fixed
σ2 at the corresponding maximum log likelihood estimate (ψ̂, ξ̂)σ2 . An explicit
expression for I(ψ,ξ)(ψ,ξ)((ψ̂, ξ̂)σ2 , σ2) is given in Appendix A.3.
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Maximization of the log likelihoods in the second and third steps can be ob-
tained by using the quasi-Newton numerical maximization routines (e.g. Broy-
den, 1967).

The use of the restricted likelihood method requires that the model parame-
ters have to be orthogonal, for example in the case of the two parameters (λ, ψ).
The adjustment quantity is justified because in the log likelihood an estimate λ̂ψ
appears rather than λ, see Davison (2003, p. 657) for details. The adjustment is a
penalization of the log likelihood that depends on the information available from
λ. Large size of λ involves stronger penalization of the log likelihood than when
it is small. In our case the regression coefficients are asymptomatically indepen-
dent of the ψ and ξ parameters, Tawn (1988). Instead, the orthogonality condition
does not hold exactly for the parameters (ψ, ξ) and σ2. We found that the adjust-
ments in the iterative scheme provide an improvement on the estimate results.
This is especially the case for the variance components which can be substan-
tially smaller, involving the hinderance of the model fitting and parameter esti-
mates without the adjustments. However, the performance of this approximate
method is tested by means of a simulation study that is illustrated in Section 3.4.

In practice we have also found that an easy alternative to model fitting and in-
ference is provide by directly using the approximate log likelihood `INT(βββ, ψ, ξ, σ

2).
In fact, application of the quasi-Newton numerical maximization routines (e.g.
Broyden, 1967) to `INT(βββ, ψ, ξ, σ

2) boils down to adequate estimate results. The
implementation is easily managed and the likelihood evaluation is feasible even
if it may be computationally demanding. Variance estimates can be estimated
consistently using the Jacobian matrix computed at the maximum and obtained
from the numerical maximization routine.

In the simulation study of Section 3.4 we will illustrate the performance of
the estimates obtained with the method based on `INT(βββ, ψ, ξ, σ

2). A comparison
between the two methods is also outlined.

Finally, it is important to remember that asymptotic likelihood results for the
GEV distribution are subject to restrictions, Smith (1985).

3.2.2 Variability bands

Generally, calculating variability bands in function estimations consists of adding
and subtracting from the estimated function two times its estimated standard
error, Bowman and Azzalini (1997, p.75–76). They are considered as approximate
pointwise confident intervals, Hastie and Tibshirani (1990).

Once an estimate of the regression coefficients (β̂ββ, û) has been obtained, the fit
is given by:

µ̂µµ = Xβ̂ββ + Zû = Cν̂νν.

A naı̈ve expression for variability bands at xi is given by:

(Cν̂νν)i ± zα/2
√
{C ̂Cov(ν̂νν|u)CT}ii.

where zα/2 is the quantile of level 1 − α of N(0, 1), ̂Cov(ν̂νν|u) is the estimated
covariance matrix of ν̂νν given u. Note that these are not 100(1 − α)% pointwise
confident intervals, although we assume that they provide an approximation.
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3.2.3 Additive models extension

We now consider the extension where several variates may impact on the sample
extremes y1, . . . , yn. If xi is d-variate then

µ(xi) = f1(xi1) + . . .+ fd(xid)

defines a general additive model for µ. Here the fj are general smooth functions.
The mixed model-based penalized splines of Section 3.2 can accommodate this
extension by setting

X = [1 xi1 · · · xi1]1≤i≤n Z = [zk(xi1)
1≤k≤K1

. . . zk(xid)
1≤k≤Kd

]1≤i≤n,

associated with βββ = [β0, β1, . . . , βd]
T , u = [u1, .., uK1 , .., u1, .., uKd ]

T . Also,

Cov(u) = Gσσσ2 blockdiag(σ2
1IK1 , . . . , σ

2
dIKd),

with Kj the number of spline basis functions used for fj . The fitting procedure
described in the previous section is basically the same, but with longer βββ and u
vectors, and σ2 is replaced by the vector σσσ2 = (σ2

1, . . . , σ
2
d).

3.3 Illustrative examples

In this section some case studies of nonparametric regression for generalized ex-
treme value responses are presented. For simplicity, the simulations are based
on extreme values that are obtained as GEV distribution realizations rather than
computing the block maxima over n units of observations. However, this does
not substantially change the results of the simulation study.

For each scatterplot smoothing we illustrate the graphic regression fitting, re-
porting the model parameter estimates and the variance component selected. The
common simulation design for the examples are:

• Synthetic observations are drawn from yi ∼ GEV(µ(xi), ψ, ξ) with sample
of length n = 250 and xi ∼ U(0, 1).

• K = 20 knots for the predictor, with κk = k+1
K+2

th sample quantile of unique
predictor values.

• Radial cubic basis function modelling of a function f entails putting µ(x) =
β0 + β1x+ Zu, where

Z[|xi − κk|3
1≤k≤K

|κk − κk′ |3
1≤k,k′≤K

]
−1/2
1≤i≤n,

and for k = 1, . . . , K, {κk} is a sequence of knots, |xi−κk|3 are basis functions
and k ≤ k′.

• u ∼ N(0, σ2
uI).
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Figure 3.1: Simulation example: in the left panel the circles indicate the GEV realiza-
tions. The location parameter is set up with the bump function. The true signal is the
solid (black) line and its estimate with the broken (violet) line. In the right panel the true
signal, its estimate and the 95% variability bands are illustrated.

Example 1. Bump function: we considered the regression function suggested by
Ruppert, Wand and Carroll (2003, p. 128) with expression

µ(x) =
1

0.1 + x
+ 8 exp{−400(x− 0.5)2} with x ∈ (0, 1).

Model parameters have been set as ψ = 1 and ξ = −0.4 so that the synthetic
data was generated from a Weibull model. The left panel of Figure 3.1 shows the
results for the simulation exercise. The black solid line is the regression function
and the dotted line is the model fitting. In the right panel the real function and
its estimate accompanied by the variability bands are reported. From Figure 3.1
it appears that the signal has been closely reproduced corresponding to the es-
timated smoothing parameter σ̂u = 70(12). The model parameter estimates are
obtained as ψ̂ = 1.126(0.056) and ξ̂ = -0.405(0.035).

Example 2. Trigonometric functions: the second case study considers two trigono-
metric functions with forms

µ(x) = sin 4πx and µ′(x) = exp{sin(4πx) + x} with x ∈ (0, 1).

Model parameters have been set to ψ = 0.4 and ξ = 0.6 in the first case, and
ψ′ = 1 and ξ′ = 0.4 in the second. Figure 3.2 shows the results of the second sim-
ulation exercise. We can see from the left panels how the true signals (black solid
lines) are adequately replicated from its estimates (broken violet lines). For the
first function the smoothing parameter estimate is σ̂u = 12(3) and for the second
is σ̂′u = 25(5). Between parenthesis the standard deviations are reported. In the
right panels the regression estimates accompanied with the variability bands are
illustrated. The model parameter estimates are respectively ψ̂ = 0.393(0.018),
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Figure 3.2: Simulation example: in the left panels the circles indicate the GEV realiza-
tions. The location parameters are set up with the trigonometric functions. The true
signals are the solid (black) lines and their estimates with the broken (violet) lines. In the
right panels the true signals, their estimates and the 95% variability bands are illustrated.

ξ̂ = 0.575(0.064) for the first case and ψ̂′ = 0.964(0.046),
ξ̂′ = 0.394(0.061) for the second.

Example 3. Additive components: the last study exposes the case of additive
predictors. Consider the following functions:

f1(x) = sin(πx) and f2(x) = sin(2πx) with x ∈ (0, 1),

so that µ(x) = f1(x) + f2(x). Synthetic data are generated with model parameters
ψ = 0.6 and ξ = 0.4. Figure 3.3 shows the true signals f1 and f2 respectively from
left to right panels with (black) solid lines. The function estimates are reported
with the middle broken lines. The outer broken lines and grayed areas represent
the 95 % variability bands. Even in this example the signals are evidently repli-
cated and the respective estimated smoothing parameters are σ̂u1 = 1.052(0.213)
and σ̂u2 = 3.445(0.983). The model parameter estimates and their standard errors
resulted ψ̂ = 0.614(0.029) and ξ̂ = 0.414(0.059).
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Figure 3.3: Simulation example: left and right panels show the estimates of the addi-
tive function components. The location parameters are set up with the functions above
reported. The true signals are the solid (black) lines and their estimates with the broken
(violet) lines. In both panels the true signals, their estimates and the 95% variability
bands are illustrated.

3.4 Simulation Study

We investigated the performance of the mixed model-based for extremes with a
simulation study. Let

µ(x) = 2x+ cos(4πx) 0 ≤ x ≤ 1.

Data was generated in two steps. Firstly a sample x1, . . . , xn was drawn from a
uniform distribution on (0, 1). Secondly, given the xi’s, n realizations were drawn
according to yi ∼ GEV(µ(xi), ψ, ξ). The shape parameter ξ was set to −0.4, 0 and
0.4 corresponding to the three different types of GEV distributions. Also, different
values of the scale parameters were considered. We performed 500 data replica-
tions for each configuration. In each case estimation was performed using the
likelihood-based algorithm of Section 3.2.1 and the approximate log likelihood
`INT(βββ, ψ, ξ, σ

2).
Results for estimation of the scalar parameters are summarized in Table 3.1.

The estimates seem reasonably accurate for all three-type distributions even though
the estimation methods involves approximated likelihood functions. With the
Fréchet distribution we observe a bias on the shape parameter for sample size
equal to 100 with the method based on the penalized log likelihood. This bias ef-
fect is a consequence of the approximated likelihood functions. A bias source can
arise from an inadequacy of Laplace’s approximation integral when used with
the heavy tail distribution (Fréchet). The simulation results indicate a consider-
able reduction of the estimates bias when the method based on the approximate
`INT(βββ, ψ, ξ, σ

2) is used. However, for larger sample size the variability of estimates
distribution decrease gradually in accordance with the standard asymptotic like-
lihood estimate theory.

Figure 1 conveys the performance of the function estimation component. The
estimates appear corresponding to the 10th, 50th and 90th percentiles of the replica-
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Distribution method n ψ̂ ξ̂ σ̂
Fréchet penalized 500 0.611 (0.029) 0.398 (0.040) 9.6 (1.0)

- - 100 0.645 (0.073) 0.365 (0.099) 9.1 (2.1)
- integrated 500 0.597 (0.029) 0.402 (0.043) 8.8 (0.6)
- - 100 0.590 (0.070) 0.411 (0.124) 8.6 (1.3)

true 0.6 0.4
Gumbel penalized 500 0.601 (0.023) -0.005 (0.032) 9.7 (0.7)

- - 100 0.607 (0.056) -0.019 (0.080) 9.9 (1.6)
- integrated 500 0.598 (0.023) 0.001 (0.031) 8.8 (0.8)
- - 100 0.604 (0.055) -0.014 (0.088) 8.3 (1.5)

true 0.6 0
Weibull penalized 500 0.601 (0.021) -0.396 (0.027) 9.5 (0.7)

- 100 0.591 (0.042) -0.377 (0.066) 9.8 (1.5)
- integrated 500 0.601 (0.024) -0.405 (0.029) 8.4 (1.4)
- - 100 0.588 (0.049) -0.389 (0.063) 8.4 (1.6)

true 0.6 -0.4

Table 3.1: Smoothing and nuisance parameters estimates of three-types: the first column
indicates the distribution take into account, the second indicates which method is used for
the estimation, the third report the data sample sizes while the third column indicates the
sample size. From columns 4–6 GEV scale, shape and variance components estimates are
given. Standard errors are in brackets.

tion-wise deviance measures; given by

D(µ; µ̂) = 2{`µ(µ)− `µ(µ̂)},

where `µ(µ̂) is the log likelihood computed for yi = µ̂i. For the larger sample
sizes the fitted curves are approximately matching the true curves for all three
percentiles and distributions. With sample size 100 the results are still acceptable.
In addition, we note for the Fréchet case how a lack of accuracy for the fitted curve
obtained corresponding with the 90th percentile is expected due to the nature of
the heavy-tailed distribution.

3.5 Real data analysis

In this section we consider some analysis with real dataset. England and Switzer-
land temperatures have been the focus of the study. We explore the temperatures
behavior over time and asses the relationship along with some covariates.

3.5.1 Application to English temperature data

In this section we consider the maximum Central England Temperature (CET).
The dataset consists of daily maximum temperatures representative of a roughly
triangular area of the United Kingdom enclosed by Lancashire, London and Bris-
tol recorded from 1878 to 2006. The analysis focuses on the trend of the annual
maxima of the temperatures. So in this case the blocks of maxima correspond to
a time period of one year so that the equal length sequences of daily observations
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Figure 3.4: Fitting of the location parameter: the smoothing function µ and its fitting for
the three-type distributions and different sample sizes are plotted on the panels.

in a year are used to compose them. The annual mean of the North Atlantic Oscil-
lation and Southern Oscillation Index are also considered. The North Atlantic Os-
cillation index measures the difference of mean atmospheric sea-level pressures
near the Azores and near Iceland. The Southern Oscillation Index measures the
difference of mean atmospheric sea-level pressures near Tahiti and Darwin, Aus-
tralia. All three daily and monthly series are available on the web respectively
from: http://hadobs.metoffice.com/hadcet/index.html and
http://www.cru.uea.ac.uk /cru/data/pci.htm. A large amount of lit-
erature has established that the North Atlantic Oscillation has climatic effects on
European and North American winters and Southern Oscillation on Australia’s
climate. From this, we were curious to see if these two environmental processes
could have an effect also for the annual maxima temperature. The aim of this
analysis is not to provide an exhaustive investigation of the temperature be-
haviour, but rather to illustrate how our tools can be used to assess dependence of
the extreme on covariates. The additive regression model is composed from the
maxima temperature which play the role of the response variable, whereas time,
North Atlantic Oscillation and southern Oscillation Index are predictors. The re-
lationship is shown in Figure 3.5. The link function is set to be the identity. Firstly,
we have fitted the full spline model obtaining the following estimation results:
ψ̂ = 1.33 (0.094) and ξ̂ = −0.12 (0.064). Standard errors are reported in parenthe-
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ses, based on the approximate Fisher information matrix. The variance compo-
nents estimates of time, North Atlantic Oscillation and Southern Oscillation Index
are, respectively: σ̂2

T = 0.050 (0.0465), σ̂2
N = 0.001 (0.0015) and σ̂2

S = 0.001 (0.0015).
In Figure 3.5 we plot the fitted maxima trends against the three covariates (from
top-left to bottom-left panel). The shaded regions are variability bands; see the
Appendix for details. In top-left panel we have the regression of extreme temper-
atures versus the time. The trend of annual maxima of temperatures is increasing
over the whole period. From 1978 to 2006 the range of the maxima temperature
trend is about 2 degrees Celsius. Initially the trend has increased from nearly 20
degrees to 21 degrees in about 1991. In around the last 15 years the trend has
increased again of the same amount arriving at nearly 22 degrees. Thus it seems
from this brief analysis that in recent years the maxima temperature trend has
been more rapidly increasing. Differently, the relationship between the annual
maxima of temperatures, North Atlantic Oscillation and southern Oscillation In-
dex are only apparent. In fact, the slope coefficients estimates of North Atlantic
and Southern Oscillation Index are: β̂N = −0.10(0.261) and β̂S = −0.128(0.174).
From this we can conclude that there is no evidence of linear trend between the
annual maxima of temperatures and those two predictors. Then, we have inves-
tigated a second spline model where we considered the time dependence but we
do not take into account the North Atlantic and Southern Oscillation Index co-
variates. The estimation results of this second model are: ψ̂ = 1.32 (0.092) and
ξ̂ = −0.11 (0.065). The estimate of the variance component for the time covariate
is resulted: σ̂2

T = 0.055(0.049), which, for the time covariate, are fairly the same
of the previous model. The model fitting is illustrated in Figure 3.6. Finally, we
considered a third model defining only a linear trend for the time covariate and
without taking into account the smoothing part.

At this stage in order to assess the adequacy of the parametric model we can
test the null of the variance components, Ruppert, Wand and Carroll (2003, p.
146). In other words we performed the hypothesis test, H0 : σ2

T = 0 against
H1 : σ2

T > 0. From the hypothesis test results we can assume that if variance
components are zero then a parametric model should be preferred (linear in this
case) to the nonparametric alternative. Note that this is not a trivial problem be-
cause under the null hypothesis the variance components are on the boundary of
their parameter space. For example the standard test performed within the likeli-
hood ratio paradigm does not have the usual chi-squared distribution but rather
a mixture of chi-square, Selft and Liang (1987). Moreover, under the mixed model
paradigm the random effects induce a dependence factor (e.g. Miller, 1977) and
the mixture asymptotic distribution does not hold for penalized spline models,
Crainiceanu and Ruppert (2002). In order to test the null hypothesis we used
the likelihood ratio test, but for the reasons just discussed we determine the null
distribution of the likelihood ratio test statistic by a simulation-based alternative.
The critical value of the test has been obtained by Monte Carlo simulation. More
precisely, for the data vector y and the variance component θ = σ2

T , the ratio test
statistic is

LRT(y) = 2{`(θ̂; y)− `(θ̂0; y)}, (3.4)

where θ̂0 maximizes the penalized log likelihood under the null hypothesis that
the variance components could be removed from the model, and θ̂ under the al-
ternative. We compute the statistic (3.4) with the observed data, we say LRT(yobs).
Fixing the model parameter equal to θ̂obs0 , the maximum likelihood estimates ob-
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Figure 3.5: Central England Temperatures example. The three panels are from the top-
left to the bottom-left panels, respectively, annual maxima of temperatures versus time,
North Atlantic Oscillation and Southern Oscillation Index. Continuous lines express the
fitting trend and the shaded regions are variability bands.

tained under null hypothesis with the observed data, we simulate M = 10000
synthetic data from the spline mixed-model for extremes (under the null hypoth-
esis it consists of a GEV model with linear trend). Then for each simulated data
we estimate the smoothing, the GEV and the dispersion parameters according to
the models under the null and the alternative hypotheses and so we compute the
test statistic LRT(ysim) by using (3.4). In this way we obtain a sequence of values
that simulate the distribution of the likelihood ratio test under the null hypothe-
sis. Finally the p-value of the test is the proportion of simulated values LRT(ysim)
that exceed the statistic computed with the real data. In other words

p-value =

∑M
m=1 I{LRT(ysim) > LRT(yobs)}

M
,

where I{B} is the indicator function of the set B. Using this simulation-based
method we found a p-value = 0.0002. We conclude that the null hypothesis of
linearity (H0) should be rejected, given that the observed statistic LRT(yobs) is in
the upper tail of the null simulated distribution.
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Figure 3.6: Central England Temperatures example. The panel shows the annual maxima
of temperatures versus the time. Continuous lines express the fitting trend and the shaded
regions are variability bands.

3.5.2 Application to Swiss temperature data

In the second case we studied the maximum temperatures of Switzerland. The
data sequences consists of daily maximum temperatures in degrees Celsius record-
ed in the Zuerich city from 1901 to 2006. The daily precipitation amount in me-
ters was relieved in the same city. These data series and others are available from
the website of the European Climate Assessment & Dataset (ECA&D) project at
url: http://eca.knmi.nl/. This meteorological institute provide some in-
dices for monitoring and analysing changes in climate extremes, as well as the
daily dataset needed to calculate these indices.

In principle the aim of the analysis has been to investigate the presence of a
temporal trend on the maxima temperatures. The non-stationarity hypothesis of
the extreme temperatures seems acceptable and supported from the pattern of the
real data, see left panel of Figure 3.7. Establishing if the trend is real or only ap-
parent and describing the correct pattern of the process is not so immediate and
simple. This is because often the assumptions at the base of the parametric regres-
sion model might be too restrictive in order to describe the trend of environmen-
tal processes. For this reason we approach the problem through semiparametric
regression adopting the extreme value model as a basic template. This methodol-
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ogy can provides, rather than an exhaustive investigation of the temperature be-
haviour, an appropriate model in order to assess the dependence of the extremes
on covariates. An explorative graphic analysis confirmed also the presence of a
dependence between the maxima temperatures and the total annual amount of
precipitation recorded (large rainfall episodes have a decreasing temperature ef-
fect), see right panel of Figure 3.7. Assuming the dependence between the these
two processes seems realistic as much as the time-nonhomogeneous assumption.
Thus we manage both the time and rainfall dependence in a unified framework.
In particular we specify an additive model for sample extremes where the max-
ima temperatures play the role of the response variable, whereas the time and
the precipitation amounts are the predictors. Variations through time and pre-
cipitation amounts are modeled as penalized splines in the location parameter of
the appropriate extreme value model, instead by contrast the shape and scale pa-
rameters are assumed constant. In particular we have used radial basis functions
with 20 knots. The link function is set to be the identity, so that the setup is the
same as the one described in the numerical example section. The estimates and
standard error results of scale and shape parameters are: ψ̂ = 1.564 (0.125) and
ξ̂ = −0.216 (0.079). These indicate mild data variability. Standard errors are re-
ported in parentheses, based on the approximate Fisher information matrix. The
variance components estimates of time and annual precipitation amounts are, re-
spectively: σ̂2

T = 0.82 (0.54), σ̂2
P = 0.28 (0.18).
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Figure 3.7: Switzerland Temperatures example. The circles into the two panels are, re-
spectively, maxima annual temperatures versus time and maxima annual temperatures
versus total annual amount of precipitation. Continuous lines illustrate the fitting trend
and the shaded regions and broken lines are variability bands.

In Figure 3.7 we plot the fitted maxima trends against the two covariates (time
in the left panel, precipitation amount in the right panel). The shaded regions are
variability bands; see the Section 3.2.2 for details. The left panel suggests varia-
tions of the trend maxima in time, similar to a trigonometric function. The right
panel suggests a decreasing variation of the trend maxima with the increasing of
the precipitation amount as expected. The relationship does not seem to be linear
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evident, the maxima temperature trend decreases with the increases of the precip-
itation amount as expected, but for larger values of the latter the trend decrease
with smaller rates.

We have assessed the adequacy of the parametric model by testing the null of
the variance components as in the previous section. In other words we performed
the hypothesis test, H0 : σT = σP = 0 versus H1 : σT > 0, σP > 0. The critical
value of the test has been obtained by Monte Carlo simulation. More precisely,
for the data vector y and parameter vector σσσ = (σT , σP ), the ratio test statistic is

LRT(y) = 2{`(σ̂σσ; y)− `(σ̂σσ0; y)}, (3.5)

where σ̂σσ0 maximizes the penalized log likelihood under the null hypothesis that
the variance components could be removed from the model, and σ̂σσ under the al-
ternative. We compute the statistic (3.5) with the observed data, we say LRT(yobs).
Fixing the model parameter equal to σ̂σσobs0 , the maximum likelihood estimates ob-
tained under null hypothesis with the observed data, we simulate M = 1000
synthetic data from the spline mixed-model for extremes (under the null hypoth-
esis it consists of a GEV model with linear trend). Then for each simulated data
we estimate the smoothing, the GEV and the dispersion parameters according to
the models under the null and the alternative hypotheses and so we compute the
test statistic LRT(ysim) by using (3.5). In this way we obtain a sequence of values
that simulate the distribution of the likelihood ratio test under the null hypothe-
sis. Finally the p-value of the test is the proportion of simulated values LRT(ysim)
that exceed the statistic computed with the real data. In other words

p-value =

∑M
m=1 I{LRT(ysim) > LRT(yobs)}

M
,

where I{B} is the indicator function of the set B. Using this simulation-based
method we found a p-value = 0.027. We conclude that the null hypothesis of
linearity (H0) should be rejected, given that the observed statistic LRT(yobs) is in
the upper tail of the null simulated distribution.
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Chapter 4

Model extension to the scale function

4.1 Introduction

In the previous chapter we discussed the statistical modelling and inference of
nonparametric regression for GEV models. Basically we focused on the estima-
tion of regression functions for the location model parameter as a function of
predictors xi. The main properties of the antecedent framework are: the regres-
sion functions have been modeled by linear or nonlinear regression splines, errors
have been assumed to have a GEV distribution, and scale and shape parameters
have been considered unchanged respect with the predictors. The model descrip-
tion is shortened and synthesized by saying

yi ∼ GEV(µ(xi), ψ, ξ) −∞ < µ(xi), ξ <∞, ψ > 0; xi ∈ Rd,

where µ(xi) is modeled by a spline model. It seems plausible that trends ap-
pear in real data accompanied with scale variations and assuming, however the
distribution, inalterability. Usually this remark is supported by the real data pat-
tern. This is apparently the case with the data illustrated in Figure (3.7). In other
words, we can still suppose the GEV distribution as the appropriate model, but
assuming its location and scale ψ changes as the predictor changes. The GEV
shape model parameter is difficult to estimate precisely, and also the regularity
conditions of the maximum likelihood estimator and the obtainable estimates are
restricted as they depend on the shape parameter value assumed, Smith (1985).
So, models that alow the shape parameter to be modeled as a smooth function of
predictors could be unreliable in the inference stage. Nonetheless, some authors
such Yee and Stephenson (2007) have explored the alternative of modelling all
three GEV parameters using spline models. However, here we have not yet con-
sidered the opportunity to also model the shape parameter. Instead, we focus on
the resulting model formed by taking into account location and scale parameters
which are modeled by nonparametric regressions.

4.2 Extension to scale parameter

The model extension is formulated as follows. We describe initially the univari-
ate predictor case. Let y1, . . . , yn be n observed extreme values associated with
explanatory variables xi, where i = 1, . . . , n and n ∈ N. As in Chapter 3, Section
3.2, we assumed that the block maxima Y1, . . . , Yn are independent variables from
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a GEV distribution. Where i’s random variable Yi represents the maximum of a
process (daily temperatures, etc.) over m time units of observations. So that, for
instance if m is the number of days in a year we deal with the annual maxima.
Assume also that the location µ and scale ψ parameters of the GEV distribution
are undefined smooth functions on an interval [a, b], where the x’s are defined.
Then the time-nonhomogeneous spline mixed model, or more generally we say
the spline mixed model for extreme values is given by

yi ∼ GEV(µ(xi), ψ(xi), ξ) −∞ < µ(xi), ξ <∞, ψ(xi) > 0; xi ∈ R. (4.1)

Where the mixed model-based penalized spline models for the location parame-
ter µ is defined by

µ(x) = α0 + α1x+

Kµ∑
k=1

ukzk(x); u1, . . . , uk i.i.d. N(0, σ2
u) (4.2)

and for the scale parameter ψ by

ψ(x) = β0 + β1x+

Kψ∑
k=1

vkzk(x); v1, . . . , vk i.i.d. N(0, σ2
v). (4.3)

where z1, . . . , zK is an appropriate set of spline basis functions that depend on a
dense set of knots κ1, . . . , κK within the range of the xi’s. Note that the spline
basis functions used for µ(x) could be different from that used for ψ(x), similarly
for the number of knots that we have opportunely indicated by Kµ and Kψ.

More precisely, let y = (y1, . . . , yn) be the response vector for which we define
the design matrices

X = [1 xi]1≤i≤n, Zµ[ zk(xi)
1≤k≤Kµ

]1≤i≤n Zψ[ zk(xi)
1≤k≤Kψ

]1≤i≤n

associated with fixed ααα = [α0 α1]T and random effects u = [u1 . . . uKµ ]T for the
location function, and fixed βββ = [β0 β1]T and random effects v = [v1 . . . vKψ ]T

for the scale function. Given (u,v), the yi are conditionally independent with
distribution,

yi|(u,v) ∼ GEV(µµµi, ψψψi, ξ),

where the linear predictor ηηηi(Xααα + Zµu)i is related to µµµi by the link function
g(µµµi) = ηηηi and the linear predictor γγγi(Xβββ + Zψv)i is related to ψψψi by the link
function h(ψψψi) = γγγi. Note that µµµ and ψψψ are related to the conditional mean and
the variance of y given (u,v) by the relations

E(y|u) =

{
µ+ 1ψ{Γ(1− ξ)− 1}/ξ, for ξ 6= 0
µ+ 1ψγ, for ξ = 0

and

V(y|u,v) =

{
ψψψ1(Γ(1− 2ξ)− Γ(1− ξ)2)/ξ for ξ 6= 0
ψψψ2π2/6 for ξ = 0,

where Γ is the Gamma function.
Note that both (u,v) have been assumed normally distributed so we have the

doubled random effects set given by[
u
v

]
∼ N

([
0
0

]
,

[
σ2
uI 0
0 σ2

vI

])
.
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Let νννT = [αααT uT ] be the Kµ + 2 vector of fixed and random effects associated
with the design matrix Cµ = [X|Zµ] of the location function, and τττT = [βββT vT ]
be the Kψ + 2 vector of fixed and random effects associated with the design ma-
trix Cψ = [X|Zψ] of the scale function. Suppose that the link functions g and h
are respectively the identity and the natural logarithm. Considering the previ-
ous specifications and denoting with f(yi|(u,v)) the GEV conditional density of
yi|(u,v) and with f(u,v) the multivariate unconditional density of the random
effects (u,v), then those density functions have expressions

f(u,v;σ2
u, σ

2
v) = (2π)−(Kµ+Kψ)/2(σu)

−Kµ(σv)
−Kψ exp

{
−1

2

(
‖u‖2

σ2
u

+
‖v‖2

σ2
v

)}
and

f(y|u,v;ααα, βββ, ξ) =
n∏
i=1

1

exp(Cψτττ)i

{
1 + ξ

(
(y −Cµννν)i
exp(Cψτττ)i

)}− 1
ξ
−1

exp

[
−
{

1 + ξ

(
(y −Cµννν)i
exp(Cψτττ)i

)}− 1
ξ

]
.

The norm for fitting such a model is given by the estimation of the model param-
eters via maximization of the likelihood,

L(ααα, βββ, ξ, σ2
u, σ

2
v) =

∫
RKµ

∫
RKψ

f(y|(u,v))f(u,v) du dv,

and prediction of the random effects (u,v) via the best predictor (û, v̂) = E((u,v)|y).
However, as we have already discussed in Chapter 3, Section 3.2 both the likeli-
hood function and the best predictor’s analytical expressions can not be easily
determined due to the intractable high dimensional integrals. We found that the
solution previously proposed in order to provide the model fitting and the pa-
rameter estimates (3, Section 3.2–3.2.1), performs poorly considering the scale
extension. This result may be due to the scarce approximation that Laplace’s
method provided for the likelihood function. Although, we have not yet con-
ducted an in depth study on this issue. Further studies should be undertaken in
order to conclude if model fitting and model assessments can be provided based
on the likelihood approach. Nonetheless, the model fitting and inference for the
model (4.1) can be performed by alternatively using the Bayesian approach, in
particular via the application of Markov Chain Monte Carlo methods. In the next
section we will discuss the details for the model fitting and inference of the spline
mixed model for extremes.

Finally note here that the additive models extension has not been discussed, as
in Chapter 3, Section 3.2.3. This is because the same rules outlined for the location
function can be applied straightforwardly with typographic modifications to the
scale function.
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4.3 Bayesian Analysis and Markov Chain Monte Carlo

In a mixed model some parameters are treated as random so that in some sense it
is like we have specified prior densities for some model parameters. In Chapter 3
we saw that treating the random coefficients as nonrandom unknown quantities
(model parameters) we have been able to conduct the model fitting and inference
based on the likelihood approach. The mixed model representation of the pe-
nalized splines (4.1) consists of defining spline models, specifying the priors on
(u,v) as well as the likelihood f(y|u,v, ααα, βββ, σ2

u, σ
2
v). Now assuming that in the

spline mixed model framework the fixed effects, the GEV shape parameter and
the variance components (ααα, βββ, ξ, σ2

u, σ
2
v), are all random we can fully formulate a

Bayesian model.
More precisely, the spline mixed model for extremes (4.1) can be naturally for-

mulated as a hierarchical model under the Bayesian paradigm. The hierarchical
Bayes model is constructed by arranging random variables in a hierarchy so that
distributions at each level are determined by the random variable of the previous
lower levels. In the first stage of the hierarchical model, the GEV distribution for
yi|(u,v) is set up given the fixed (ααα, βββ) and random (u,v) effects. In the second
stage, it is assumed the prior distributions N((a,b),G) for (ααα, βββ) and Fξ for ξ
which depend by other extra hyperparameters, and the distribution N(0,R) for
(u,v) that depends on the variance components R. Finally, in the last stage, the
prior distribution FR is assumed for the variance components R. The hierarchical
spline model for extremes is synthesized by

1. yi ∼ GEV{(Xααα + Zµu)i, exp(Xβββ + Zψv)i, ξ};

2. (ααα, βββ) ∼ N((a,b),G), (u,v) ∼ N(0,R) and ξ ∼ Fξ;

3. R ∼ FR,

where it is assumed ααα and βββ are independent, with (a,b) and G known. It is
assumed also that u and v are independent with variance components R that
include the elements (σ2

u, σ
2
v) but can also include more components in the case

where many predictors will impact on the response. Consequently the same ex-
tension is also expected for the matrix G corresponding to (ααα, βββ).

The inference procedure includes the fixed and random effects, and that about
the GEV shape parameter and the variance components. First define the likeli-
hood function under the Bayesian framework. Suppose that, given (ααα, βββ,u,v, ξ,R),
y ∼ f(y|ααα, βββ,u,v, ξ,R) that is the conditional GEV density function. Further-
more, suppose that, given R the random effects (u,v) are independent of (ααα, βββ)
and also that u is independent of v, and ααα is independent of βββ. Then the likeli-
hood function for estimating R is given by

L(R|y) =

∫ ∫ ∫
f(y|ααα, βββ,u,v, ξ,R)φ(ααα, βββ|(a,b),G)φ(u,v|R)π(ξ)dαααdβββ du dv dξ,

where the integrals with respect to ααα, βββ, u and v are multivariate. Now if the
prior is taken into account, then the posterior for R can be expressed as

f(R|y) =
L(R|y) π(R)∫
L(R|y) π(R) dR

, (4.4)
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where π(R) is a prior density function for R. Similar to (4.4) we can obtain the
posterior densities f((ααα, βββ,u,v)|y) for (ααα, βββ,u,v) and f(ξ|y) for ξ.

Alternatively, we can consider jointly the full parameter set (ααα, βββ,u,v, ξ,R)
and then derive the posterior density, f(ααα, βββ,u,v, ξ,R|y). So, taking into account
the priors densities of (ααα, βββ,u,v, ξ,R), their posterior can be formulated as

f(ααα, βββ,u,v, ξ,R|y) = k f(y|ααα, βββ,u,v, ξ,R)ϕ(ααα, βββ|(a,b),G)ϕ(u,v|R) π(R) π(ξ),

where

k =

(∫ ∫ ∫ ∫ ∫ ∫
f(y|ααα, βββ,u,v, ξ,R)ϕ(ααα, βββ|(a,b),G)ϕ(u,v|R)

π(R) π(ξ) dαααdβββ du dv dR dξ
)−1

,

ϕ denotes the multivariate normal density function for (ααα, βββ) and (u,v) and π de-
notes the priory density function for R and ξ (particular forms will be specified
later). The computation of the posterior density function can be fairly compli-
cated even for simple models, as for example with linear mixed models. In our
case the posterior densities involve integrals that are analytically intractable. For
complex models, as in our case, the computation of the posterior density is typi-
cally carried out by Markov chain Monte Carlo (MCMC) methods. For example
the quantity k is a constant of proportionality, which cannot be computed eas-
ily but is still required for inference. The MCMC methods allow sampling from
the posterior distribution. The idea is to sample from a chain whose stationary
distribution is equal to the posterior. Essentially, the MCMC methods work to di-
vide the model parameters into subsets, and then aim to draw a sample from the
conditional distributions given the remaining parameters and data, Zhao, Stau-
denmayer, Coull and Wand (2006). In our case the parameter set could be broken
down into (ααα, βββ,u,v), R and ξ, leading to the conditionals f(ααα, βββ,u,v|R, ξ,y),
f(R|ααα, βββ,u,v, ξ,y) and f(ξ|ααα, βββ,u,v,R,y). By Monte Carlo methods we sample
from a density function that is known only up to a constant of proportionality,
so that roughly speaking we sample from the posterior density without calculat-
ing the proportionality constant (the denominator of the Bayes formula), Tierney
(1994). However, to sample from our conditional densities could be somewhat
difficult because they are not in any standard family. Then we need to adopt
some strategies for attacking the problem in order to provide a suitable solution.
Complex algorithms such as Metropolis-Hastings (Hastings 1970), the adaptive
rejection sampling (Gilks and Wild, 1992), slice sampling (Besag and Green, 1993)
or the Gibbs sampling (Casella and Edward, 1992) can be useful tools in order to
complete the sampling scheme.

We do not discuss here any particular algorithm or which could be the more
appropriate for our study. For a general discussion we refer to Casella and Ed-
ward (1992). Instead, aside discussions about the implementation, we prefer to
focus on the model description and data analysis. Then, the simplest approach
is to implement the penalized spline mixed model for extremes by using the
OpenBUGS package (the open source version of WinBUGS), which is based on
the Gibbs sampling algorithm. Many sophisticated versions are available. In par-
ticular we used the R interface BRugs (see http://mathstat.helsinki.fi/
openbugs/). Previous works on Bayesian analysis for penalized spline regres-
sion by using WinBUGS have been explored by Crainiceanu, Ruppert and Wand
(2005) and Zhao, Staudenmayer, Coull and Wand (2006).
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Now assuming that only a predictor xi impacts on the response yi (the sim-
plest case), in order to fit the model (4.1) with BRugs we need to specify the prior
distributions, the spline basis functions and the number and location of the knots.
In particular, we assume independence of the random effects u,v so that the ma-
trix R is diagonal with elements σ2

u and σ2
v . We consider also that the variance

components σ2
u and σ2

v are independent with prior inverse gamma density,

π(σ2) =
ηλ

Γ(λ)
(σ2)−(λ+1) exp

(
−η
σ2

)
, σ2 > 0, η, λ > 0.

We take the prior distribution of the fixed effects vector (ααα, βββ) to be of the form
N((a,b),G) for some values (a,b) and covariance matrix G. We have assumed
also that ααα and βββ are independent. Finally, we assume an uniform distribution
for ξ of the form U(l, u). The hierarchical Bayes model for OpenBUGS is described
by the following scheme

1st level Li = 1
ψi

{
1 + ξ

(
yi−µi
ψi

)}− 1
ξ
−1

exp

[
−
{

1 + ξ
(
yi−µi
ψi

)}− 1
ξ

]
µi = (Xβββ + Zu)i

logψi = (Xααα + Zv)i

2nd level (ααα, βββ) ∼ N((a,b),G)
(u,v) ∼ N(0,R)
ξ ∼ U(l, u)

3rd level σ2
u ∼ IG(λu, ηu)
σ2
v ∼ IG(λv, ηv)

At the bottom of the hierarchy are the variance components whose distributions
depend on the known hyperparameters. At the next level are the fixed and ran-
dom effects and the GEV shape parameter, whose distributions depend on the
variance components and the hyperparameters. The top level contains the data
y.

For the practice implementation, the covariance matrix G is taken to be diag-
onal with very large entries, so that each entry of (ααα, βββ) corresponds to noninfor-
mative priors. Similarly, for ξ the interval (l, u) of the prior uniform distribution
is set large enough so that it corresponds to a noninformative prior. Finally, for
the scale and shape parameters of the inverse gamma (IG) densities, both take
small values such as 0.01 for the same reasons discussed previously. With those
values, stable model fitting is also guaranteed, as suggested by the sensitivity
investigation of Zhao, Staudenmayer, Coull and Wand (2006).

We used radial cubic basis functions for smooth function components. They
have the advantage of requiring a relatively small number of knots in order to ob-
tain a smooth function. Also, they have shown to posses good mixing properties
in MCMC analysis (Crainiceanu, Ruppert and Wand, 2005). Consider the spline
model (4.2) for the locations parameter and (4.3) for the scale. The radial cubic
basis functions (Ruppert, Wand and Carrol, 2003, p. 72) take the generic form

Z[|xi − κk|3
1≤k≤K

|κk − κk′|3
1≤k,k′≤K

]
−1/2
1≤i≤n.

where {κk} is a sequence of knots for k = 1, . . . , K, |xi − κk|3 are basis functions
and k ≤ k′.
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Empirically we found that for our model with the MCMC approach a rela-
tively small number of knots is required, we say 10. A greater number do not
have an evident impact on the model fitting but involve lower convergence of
the chains. For the location of the knots we used the rule reported in Section 2.1.
Taking into account the Bayesian approach, we explore the MCMC model fitting
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Figure 4.1: Simulation results: horizontally the plot shows the estimate results of three
different chains. The first column shows with the red broken lines the regression function
estimates of the location parameter. Instead in the second column the scale parameters are
illustrated. The blue broken lines are the 95% credibility intervals, while the true signal
is represented with the solid green line. The third column shows the histograms of the
posterior density for the shape parameters.

and inference of the penalized spline mixed model for extremes by some simula-
tion examples. For instance, we have considered the following simulation design.
We set up for the location and scale the functions:

µ(x) = 2x+ cos(4πx) and ψ(x) = 1− 1.5x+ sin(2πx), −0.5 ≤ x ≤ 0.5.

We have simulated n = 100 values for the covariate x from the uniform distribu-
tion, xi ∼ U(−0.5, 0.5). Fixing the shape parameter, ξ = 0.4, then we have drawn a
sample from a GEV distribution with the above parameters, yi ∼ GEV(µ(xi), ψ(xi), ξ).

Then we have run a BRugs script. We found that a burn in period of length
5000 and keeping 10000 values from the chain with a thinning factor of 5 was
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sufficient to produce acceptable convergence. A rigorous method that demon-
strates the convergence of the chain does not exist. Nonetheless, some diagnosis
attempts for the convergence of the chain can be provided. For instance, multi-
ple chains can be run simultaneously from different starting values and then the
results of the simulations are compared. In Figure (4.1) the results of three differ-
ent chains are illustrated in horizontal rows. In the first and second columns the
location and scale function’s estimates and their 95% credibility intervals are re-
ported. The estimates of the location and scale functions are obtained taking the
posterior mean of the regression coefficients using 2000 simulated chain values.
In other words, we compute as a point estimate of the true curves: µ̂µµ = Xα̂αα+Zµû

and ψ̂ψψ = exp(Xβ̂ββ + Zψv̂), where the estimates α̂αα, β̂ββ, û, v̂ are given by the posterior
means. The (1 − α)% credibility intervals are obtained computing the distribu-
tions of µµµ and ψψψ with 2000 simulated chain values for the regression coefficients
ααα, βββ,u and v. Then, for each predictor value we take the quantiles of level α
and 1 − α of the resulting distributions. In the third column histograms of the
shape parameter are given. From Figure (4.1) we can see that the three different
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Figure 4.2: Simulation results: trace plots of three random effects of the regression func-
tion for the location (first row) and scale (second row) parameters are illustrated. In the
third row, in order from left to right panels, the trace plots of the shape parameter and the
two variance components are reported .

chains provide, in practice fairly indistinguishable estimate functions and very
close posterior distributions to the shape parameter. In Figure (4.2) we have also
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reported some illustrative examples of the chains trace plots after the burn in pe-
riod. These correspond to a further simulation. In particular we took a sample
of three chains of random effects for the location and scale functions, the chains
of the shape parameter and the variance components. All these results support
convergence of the chains.

In order to illustrate the results of MCMC model fitting we have also per-
formed many different data simulations. The model set up considered is the
same of the previous study. In Figure (4.3) we have reported a sample of five
simulation results. In the top panels the location function estimate (left) and the
scale function estimate (right) are reported. We can see how the location function
is well estimated in most of the cases. Instead, the scale function estimate re-
sults seem to be less accurate. However, the lacking of the estimates for the scale
function was expected due to the nature of the model parameter. In the bottom
panels the posterior standard deviations of µ(x) (right) and ψ(x) are shown. In
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Figure 4.3: Simulation results: the top panels show the regression function estimates
(thin orange lines) of the location (right) and scale (left) parameters estimated by using 5
different simulated dataset. The solid large black lines represent the true signal. The bot-
tom panels show the standard deviations of the two regression functions, left the location
and right the scale parameters.

both cases the hight variance at the boundaries is clear and expected. Moreover,
the variance of µ(x) seems correctly reflect the scale function structure ψ(x) from
which it is dependent. Concluding from the data simulations, we have observed
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the satisfactory performance of the Bayesian approach based on MCMC method
for the spline mixed model for extremes.

Let us once more consider the Switzerland dataset. We analyzed the annual
maxima temperatures with the time and annual amount of precipitation covari-
ates, assuming the model design described in Section 4.2. The handling of mul-
tiple covariates in the penalized mixed model framework is allowed by the ad-
ditive models structure. The Bayesian approach involves specification of prior
distributions of all model parameters. Analogously with the simulation exercise,
we set the prior distribution of the fixed effects to be N(0,G) for some diagonal
matrix G with very large entries (noninformative). For the prior of the random
effects, zero mean normal distributions are assumed as well, and for the shape
parameter we take U [−3, 3]. Lastly, the priors of the variance components are
IG(0.01, 0.01). The splines design consists of radial cubic basis with 10 knots for
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Figure 4.4: Summary of the fit by using the MCMC method: the panels show the esti-
mates of the location (µ) and scale (ψ) regression (middle broken lines) obtained by the
posterior means and the corresponding pointwise 95% credibility intervals (outer broken
lines). The top panels display the additive components of µ the bottom those of ψ. The
circles depict the temperature maxima vs. the regressors.

each spline.
The MCMC implementation of fitting the Bayesian penalized mixed model

is led by BRugs. The continuous covariate has been standardized (similar to
what we have done with the time covariate). We run a BRugs script, setting 2000
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as the number of iterations with a thinning factor of 5 and a burn in period of
length 20000 (after multiple attempts we found that this was sufficient to yield
convergence).

Figure 4.4 shows the estimates and the 95% credibility intervals for the regres-
sion functions. These are computed by using the means and the quantiles 0.025
and 0.975 of the posteriors. We see from the top panels that the estimate results
are reminiscent of those in Figure 3.7. The posterior mean and deviation standard
of the shape parameter and variance components result in: ξ̂ = −0.211(0.101),
σ̂2
µ,T = 0.63(0.41), σ̂2

ψ,T = 0.20(0.12), σ̂2
µ,P = 0.18(0.11), σ̂2

ψ,P = 0.24(0.16). The
estimate of the shape parameter (provided by the posterior mean) also supports
the compatibility of these results with those of the analysis illustrated in Section
(3.5.2). Figure 4.5 illustrates in the left panel the trace plot (of 2000 iterations)
of the shape parameter after the burn in period. This supports the convergence
of the chain. The right panel shows the posterior estimate by the kernel density
method.
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Figure 4.5: Summary of the fit by using the MCMC method: the left panel shows the
trace plot of the shape parameter (2000 iterations). The right panel shows the kernel
estimate of the shape parameter posterior density.

Concluding, as illustrated by this analysis, the MCMC fitting provides com-
patible results with those previously provided. This is enforced by the similar
location curve estimates for both additive components. For the scale parameter
the presence of a nonlinear trend seems less evident especially because of the very
little change in the posterior mean, and the very large credibility intervals.

The advantage of the Bayesian approach is the versatility of the penalized
mixed model. Multiple regressors can be taken into account for the location and
scale parameters with a relatively easy MCMC implementation. And the uncer-
tainty in the variance components is more easily assessed respect the likelihood
approach.
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Part II

Spatial extremes
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Chapter 5

Max-stable processes for spatial
extremes

5.1 Introduction

The theory of multivariate extreme value distribution is a relatively novel but
rapidly growing field. It has been flourishing in the last decades where cru-
cial theoretical bases, as limit theorems, have been founded (e.g Resnick, 1987;
Galambos 1987). From the statistical point of view the multivariate extreme value
theory provides a suitable probability framework in order to study jointly the pat-
terns of many extremes series. Some application examples are provided in Coles
(2001). However, multivariate extreme value distributions have several limita-
tions in spatial context, for instance the dependence structure is not related with
the site distances. Moreover with large location numbers, the distribution den-
sity function is often intractable, that is we can not easily derive the analytical
expression.

Stationary stochastic processes theory such as max-stable processes is rela-
tively similar to the multivariate extreme value theory, de Haan (1984). They pro-
vide an infinite dimensional extension of the multivariate extreme value theory,
see also de Haan and Pickands (1986). Indeed some multivariate extreme value
families can be derived starting from a max-stable formulation (Smith 1990). These
processes give a more appropriate theoretical approach in order to model spatial
extremes. One of the advantages accomplished from the max-stable processes
representation is that the tail dependence among the variables located on the
plane decreases monotonically and continuously with the distance. This is a de-
sired property for spatial models. Some applications that illustrate their suitabil-
ity in extreme value context are given by Smith (1990), Coles and Tawn (1990)
and Coles and Tawn (1991).

Spatial extreme models that arise from the max-stable formulation are char-
acterized by having the dependence structure of the random variables involved
represented by model parameters. It turns out that the analytical K-dimensional
distribution function of these models is not easy to derive for an integer K > 2.
For this reason, a consolidated inference procedure for the dependent model pa-
rameters does not yet exist. A consistent and asymptotically normally distributed
estimator of the spatial dependence structure is proposed by de Haan and Pereira
(2006). This estimator has nice theoretical properties but we have found that it has
poor practical performances in weak spatial dependent cases. Alternatively we
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propose an inference procedure based on the likelihood approach. In particular,
we deal with what is known in literature as the composite likelihood estimator,
introduced by Linsday (1988).

In the next section we provide a review of the max-stable processes theory. In
Section 5.3 we are mainly concerned with the description and discussion of the
composite maximum likelihood estimator for spatial extremes. Moreover in Sec-
tion 5.3.2 we show numerically the performance of the estimator and its behavior
for large samples. In section 5.4 we also describe an alternative inference pro-
cedure based on the Bayesian approach. Concluding in section 5.5 we illustrate
a real data application by using the composite likelihood approach, focusing on
rainfall levels recorded in North and South Carolina (USA).

5.2 Definition and modelling

Definition. Let T be an arbitrary space and consider n independent replications
of a stochastic process {Z ′(t)}t∈T . Then {Z(t)}t∈T is a max-stable process if a
suitable sequences of constants an(t) > 0 and bn(t) ∈ R exist and such that

Z(t) = lim
n→∞

maxni=1 Z
′
i(t)− bn(t)

an(t)
, t ∈ T,

and provided that the limit exists, Schlater (2003).
In other words {Z(t)}t∈T is a max-stable process if {maxni=1 Zi(t)− bn(t)}/an(t)

has the same distribution as {nZ1(t)}t∈T where {Zi(t)}t∈T are independent copies
of the process and an(t) > 0 and bn(t) ∈ R are suitable constants, de Haan (1984).

Note that the max-stable formulation can also be seen as an extension of the
max-stability property of multivariate extreme value distribution to the continu-
ous processes, see also Resnick (1987). Two properties that follow from the above
definition (de Haan 1984; de Haan and Resnick, 1977):

• The one-dimensional marginal distribution function Ft(z) belongs to class
of the GEV distribution (three-type), Galambos (1987).

• For any K, the K-dimensional marginal distribution belongs to the class of
the multivariate extreme value distributions.

Without loss of generality let us to consider the case when an(t) = n and bn(t) = 0
for all t so that the margins are standard Fréchet distributions. This is convenient
for the following argumentations.

A max-stable process can be defined by using what is known as its spectral
representation, de Haan (1984). This definition provides a useful approach in or-
der to obtain models for extreme values. Essentially, the process is defined as a
functional of a Poisson process.

In detail, let E be an arbitrary measurable space1 and {Xn, Yn}n≥1 be points
of a Poisson process Π := ΣnI(Xn, Yn) on E × (0,∞) with mean measure µ(dx)×
y−2dy for a positive measure µ on E. Consider a measurable function f(·) defined
on E for which the following property is valid∫

E

f(x, t)µ(dx) = 1 ∀ t ∈ T.

1Note that without loss in generality we can assume an Euclidean space.
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Then, the stochastic process defined as

Z(t) := max
n
{Ynf(Xn − t)}, t ∈ T, (5.1)

forms a max-stable process. The family of random variables Z(t) satisfies the
definition listed above. In fact we can show that the joint distribution for any
K = 1, 2, . . . and for t1 < . . . < tK satisfies the property:

Pm{Z(t1) ≤ mz1, . . . , Z(tk) ≤ mzk}
= Pm{Ynf(Xn − tk) ≤ mzk, n = 1, 2, . . . ; k = 1, . . . , K}

= Pm
{
Yn ≤ mmin

k≤K

zk
f(Xn − tk)

, n = 1, 2,

}
= Pm

{(
{Xn, Yn} : Yn > mmin

k≤K

zk
f(Xn − tk)

)
= ∅
}

= exp

{
−m

∫
E

∫ ∞
mmink≤K

zk
f(x−tk)

dy

y2
µ(dx)

}

= exp

{
−
∫
E

max
k≤K

(
f(x− tk)

zk

)
µ(dx)

}
= P{Z(t1) ≤ z1, . . . , Z(tk) ≤ zk} �

(5.2)

The equivalences obtained in (5.2) arose from the following results. The event
in the third row {yn ≤ mmink≤K

zk
f(xn−tk)

} is satisfied if no points of the Pois-
son process lie in the set A = ({Xn, Yn} : Yn > mmink≤K zk/f(Xn − tk)). Then,
P{Π(A) = 0}, the probability that no points of the Poisson process fall in the set
A, is given by a Poisson distribution with mean measure of the set A.

It turns out that for a finite set of indexes t1, . . . , tK , the sixth row of (5.2) pro-
vides the K-dimensional distribution. It is easy to check from the joint distribu-
tion that the univariate marginal Z has Frechét distribution.

The spectral representation of a max-stable process is also appealing because it
can be physically interpreted as an extreme environmental process. For instance,
in extreme analysis of rainfall and storm events Smith (1990) has formalized the
following relations:

• The set E corresponds to the region where the storms are centered (note
that in practice E = R2).

• The measure µ(dx) describes how the storms are distributed over the region
E. The function f defines for the storm with center xn the diffusion over the
region E, and yn is its intensity.

• Finally, the expression z(t) = maxn{ynf(xn − t)} expresses the maximum
amount of rainfall in the site t recorded over all independent storms with
center xn and intensity yn.

Another application of max-stable theory in the environmental processes such as
for example, the wind speed is provided by Coles and Walshaw (1994). In this
case a max-stable process have been developed on a circular domain that was
appropriate for wind directions.

In extreme value theory it is relevant to study the extremal dependence of the
random variable Y ∈ RK . From extreme value theory literature it is common to
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consider the joint distribution of the componentwise maximum of n independent
replications of the variable Y (de Haan and Resnick, 1977). Under weak condi-
tions, see Resnick (1987, Ch. 5), for k = 1, . . . , K (with K ∈ N) there exists a real
number ν, with 1 ≤ ν ≤ K, such that the normalized maximum of all the vari-
ables converge to the Fréchet distribution with parameter ν. In other words for
n→∞,

P
{

max
k

max
j=1,...,n

Y
(j)
i /n ≤ z

}
= P

{
max
j=1,...,n

Y
(j)

1 /n ≤ z

}ν
= exp(−ν/z), ∀z > 0

where Y (j) is the jth replicate of the variable Yk. The quantity ν, is called the
extremal coefficient and it measures the extremal dependence between Y1, . . . , YK .
The extremal coefficient represents the effective number of the independent vari-
ables in the sequence ofK, from which the maximum is taken (Tawn, 1988; Smith,
1990). A more general discussion on the extremal coefficient in the multivariate
setting is given in Pickands (1981), see also Schlather and Tawn (2003). However,
the main interest here is to study the spatial models for extremes that arise from
the max-stable processes and the dependence measure for this class of models.
In order, we start considering the extremal dependence for a general stationary
process Z(t) with t ∈ Rd and unit Fréchet margins. We focus on the extremal de-
pendence for the pairwise structure for a clearer exposition instead of the generic
sequence Z(t1), . . . , Z(tK). The pairwise setting provides sufficient information
with a simple structure, so that it can be used instead of the wider approach
that involves analytical complications. In principle, we consider the component-
wise maximum of n independent replications of Z(t). Under weak conditions (de
Haan, 1984; Schlather and Tawn, 2003), there exists a real-valued function ν(·) so
that the normalized maximum asymptotic distribution at the pair (of sites) (i, j)
is Fréchet with scale parameter ν(ti, tj), where ti, tj ∈ Rd. In other words for
n→∞ and z > 0 we have

P
{

max
m=1,...,n

max{Z(ti)
(m), Z(tj)

(m)}/n ≤ z

}
= exp(−ν(ti, tj)/z).

In this setting the term ν(·) is called the extremal coefficient function. A similar def-
inition of the extremal coefficient function arises within the max-stable processes
context. In fact we saw before that for a finite set of indexes k = 1, . . . , K, the
K-dimensional distribution is given by

P{Z(tk) ≤ zk, for k = 1, . . . , K} = exp

[
−
∫
E

max
k

{
f(x− tk)

zk

}
µ(dx)

]
,

where now we assume that t,x ∈ Rd. Then for a fixed threshold z > 0 it follows
that the 2-dimensional distribution function is

P{Z(ti) ≤ z, Z(tj) ≤ z} = exp(−ν(ti, tj)/z),

where
ν(ti, tj) =

∫
E

max{f(x− ti), f(x− tj)}µ(dx),

and the indexes ti and tj are seen as locations. The term ν(·) is called the extremal
coefficient function for the pairwise structure, similarly as we saw before. It fol-
lows the property, for ti, tj ∈ Rd, that 1 ≤ ν(ti, tj) ≤ 2. We refer to Schlather and
Tawn (2003) for further details.
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Note that a further class of max-stable processes derives as a generalization of
(5.1) by substituting the function f with an arbitrary random function W , whose
positive part max{0,W (·)} is integrable, Schlather (2002).

We focus now on a class of spatial models for extremes that arises from the
max-stable processes formulation. In particular we assume that E = T ⊆ Rd,
µ(dx) = dx is the Lebesgue measure, and the function f, described as the storm
profile model, is a multivariate normal density function,

f(x− t) = (2π)d/2|Σ|−1 exp

{
−1

2
(x− t)TΣ−1(x− t)

}
,

where Σ is a d× d definite positive covariance matrix. We can not derive the ana-
lytical expression of the K-dimensional distribution (5.2) using the storm profile
model just reported above. Nonetheless the joint probability can at lest be simu-
lated (Smith, 1990), resolving the integral part as follows:∫

E

max
k

{
f(x− tk)

zk

}
dx

=

∫
E

∑
k

f(x− tk)

zk
I

{
f(x− ti)

zi
> max

j 6=i

f(x− tj)

zj

}
dx

=
∑
k

∫
E

f(x)

zk
I

{
f(x)

zi
> max

j 6=i

f(x− tj + ti)

zj

}
dx

= E

[∑
k

1

zk
I

{
f(X)

zi
> max

j 6=i

f(X− tj + ti)

zj

}]
.

Note that for practical applications the further simplifications of E = T = R2

and using the bivariate version of the storm profile model are required. The last
equation is useful also in order to derive the the 2-dimensional distribution of the
process. In fact, given two locations i, j, with a few steps of algebra it is easy to
show that

P{Z(ti) ≤ zi, Z(tj) ≤ zj}

= exp

[
− 1

zi
Φ

(
θ(h)

2
+

1

θ(h)
log

zj
zi

)
− 1

zj
Φ

(
θ(h)

2
+

1

θ(h)
log

zi
zj

)]
,

(5.3)

where

θ(h) = (hTΣ−1h)1/2, Σ−1
2 =

1

1− ρ2

[
ζ−2 − ρ

γζ

− ρ
γζ

γ−2

]
,

Φ is the standard normal distribution, h = ti − tj is the separation between the
two sites and ti, tj ∈ R2 are coordinates on the plane. The max-stable process
with Gaussian storm profile is known as the Gaussian extreme value process, than
we refer to (5.3) as the Gaussian extreme value model. The quantity θ(h) is the Ma-
halanobis distance (which is a distance measure introduced by P. C. Mahalanobis
in 1936). The distance is a function of the separation h and the inverse of covari-
ance matrix Σ2. The elements of Σ2 are constants that measure the strength of
the tail dependence. Roughly speaking, for small values of the covariance ma-
trix elements we have weak dependence of the extremes and by contrast, large
values correspond to strong event dependence. Also as should be required for
spatial models, the extreme dependence between the two random variables Z(ti)
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and Z(tj) decreases monotonically and continuously with the separations |h| be-
tween ti and tj . Instead, for fixed separation h between ti and tj the dependence
decreases monotonically as the elements of Σ decrease. More precisely, when
θ(h)→ 0 it represents independence of the extremes, and instead when θ(h)→∞
it means strong dependence.

Observe that other bivariate spatial models can be obtained using different
storm profile models, as for example the exponential or t-model (de Haan and
Pereira, 2006). Moreover another class of max-stable processes and related spatial
models for extremes are discussed by Schlater (2003).

In conclusion, we report few other results related with the extremal depen-
dence structure. From the multivariate extreme value theory we have that the
2-dimensional distribution of the bivariate random variable (Yi, Yj) (obtained as
the componentwise maximum of n independent replicates) can be factorized as,

P{Yi ≤ yi, Yj ≤ yj} = exp

{
−
(

1

yi
+

1

yj

)
A

(
yi

yi + yj

)}
,

whereA(·) is a function which establishes the dependence of the extremes (Pickands,
1981; Tawn, 1988). It is called the dependence function. A connection between the
spatial model for extremes given by (5.3) and the dependence function exists. In
fact, with few algebraic steps from the 2-dimensional distribution of the Gaussian
extreme value process, we can derive the dependence function of the process, that
is

A(w) = (1− w)Φ

(
θ(h)

2
+

1

θ(h)
log

1− w
w

)
+ wΦ

(
θ(h)

2
+

1

θ(h)
log

w

1− w

)
,

where w = zi/(zi + zj). Moreover, the coefficient θ(h) of model (5.3) is related
with the extremal coefficient ν(h). Indeed, it is easy to check that the extremal
coefficient for the bivariate models is equal to

ν(h) = 2Φ(θ(h)/2).

5.2.1 Simulation of a Max-Stable process

Simulating synthetic data from a stochastic process or model has many advan-
tages. For example, collecting data measurements can be expensive and, when
involving manual work, lengthly. Then, the simulation of data can be helpful
when we desire to asses and validate statistical methods. Moreover, we can as-
sess the fitting of a stochastic process to our data by simulating the process and
than comparing the outcomes with observed data. Testing the goodness of fit will
depend on our ability to simulate the data from the proposed model. The aim of
this section is to describe an efficient method for simulating a max-stable process
or random field.

Assume that the random points {Xn}n≥1 of the Poisson process introduced
in the previous section, belong to R2, so that the random field is defined on the
plane. Let W be a compact set that we can suppose to be a rectangle or any
another compact set with inner points.

To simulate a stationary Poisson point process or random field with mean
measure µ(W ) = EN(W ) = λ|W | on a bounded set W, where | · | is a Lebesgue
measure and λ is the rate per unit, is quite easy. The simulation requires two

57



steps. The first generates the number of points n in W from a random variable
with Poisson distribution and parameter µ = λ|W |, and the second distributes
these uniformly and independently in W. Details of the first step are given in Rip-
ley (1987). Note that Ripley (1987) observed how all random number generators
are ”defective”, where, although most of them will yield a uniform distribution
on the intervals, many will yield quite regular patterns on the squares . Ripley
(1987) discusses how to use a random number generator for simulations occur-
ring in a spatial context.

Instead, the simulation of stationary max-stable processes or random fields is
not as simple because some complications are involved from the process defini-
tion (5.1). In fact, the spectral representation of a max-stable process involves the
maximum over an infinite sequence of points {Xn, Yn}n≥1. But in the practice sim-
ulations the number of generated points have to be necessarily finite. Nonetheless
a simulation of a max-stable process may be carried out under some particular
conditions, as Schlater (2002) has demonstrated. In principle, the simulation of a
max-stable random field consists of the following essential steps summarized in
this iterative scheme.

Iterative Scheme: Simulation of M realizations from a max-stable random field

1. Set a regular or irregular grid of K points in R2.

2. Define a set W ⊆ R2 with finite Lebesgue measure |W |.

3. Generate a sequence of points {xn}n≥1 uniformly distributed on W .

4. Simulate the sequence y1, . . . , yn, n = 1, 2, . . . from unit Fréchet distribution.

5. Compute Z(tk) := maxn{ynf(xn − tk)}, k = 1, . . . , K.

6. Repeat steps 3–5 for M times.

Now in order to perform a simulation we need to define the sampling set W
and the finite number of the points {Xn, Yn}. Solutions to these are provided by
Lemma 3 and Theorem 4 of Schlater (2002), that we report in the following pages.

Lemma: Assume the set W ⊆ R2 with finite Lebesgue measure |W |. Let {Xn}n≥1

be points of a Poisson process on W , and Yn = 1/
∑n

i=1 Si be a random variable defined
assuming that Si are i.i.d. copies of the exponential variable Si ∼ Exp(1) with s ≥ 0.
Then, the random sequence {Xn, |W |Yn}n≥1 is a Poisson process on W × (0,∞) with
mean measure dx× y−2dy.

Proof: The random sequence Sn = {
∑n

i=1 Si : n = 1, 2, . . .} is a homogenous
Poisson process on [0,∞) with mean measure µ[0, s) = s. Consider the transfor-
mation y = 1/s. Then the transformation of the points of the Poisson process Sn
lead to a Poisson process on (0,∞] with mean measure µ′ given for y > 0 by

µ′(y,∞] = µ{s ≥ 0 : s−1 ≥ y} = µ{s ≥ 0 : s < y−1} = µ[0, y−1) = y−1.

µ′ has density α(y) = −d/dy y−1 = y−2. Considering also the positive constant |W |
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in the inverse transformation, then the mean measure of {Xn, |W |Yn}n≥1 is given
by the product of the measures. So the assertion is demonstrated. �

From the previous lemma we have seen in practice how to build the Poisson
process with desired properties on the sampling set W . But it is still unspecified
how to get exact simulations of a max-stable process on the finite sampling set
W . The next theorem describes this last stage.

Theorem: Consider the Poisson process Π, f(·) and Z(t) of definition 5.1. Assume a
compact set W ⊆ E and that the sequence {Xn}n≥1 is a Poisson process on Wr, defined
as Wr =

⋃
tk∈W b(tk, r), where b(·, r) is a ball of radius r. Assume also that f(·) has

support in b(·, r) for some r ∈ (0,∞) and it is bounded by C ∈ (0,∞). And finally that
Yn = 1/

∑n
i=1 Si where Si are i.i.d. copies of the exponential variable Si ∼ Exp(1) with

s ≥ 0. Then, on W ,

Z ′(tk) = |Wr| max
n
{Yn f(Xn − tk)}, tk ∈ W, (5.4)

equals in distribution to Z(tk), and

Z ′(tk) = |Wr| max
n

[
Yn f(Xn − tk) : n = 1, . . . ,m, and m : YmC ≤ max

1≤n≤m
{Ynf(Xn − tk)}

]
is equal to Z(tk) almost surely.

Proof: Following the previous lemma the process Z ′(tk) is equal in distribu-
tion to Z(tk) on the set W . Instead the second assertion can be derived observing
that f(Xn − tk) ≤ C and Yn is a non-increasing sequence, then it follows that the
equality is an immediate consequences. �

This theorem establishes that the transformation 5.4 of the Poisson process
defined in the previous lemma is a max-stable process. Moreover, it defines the
stopping rule in order to determine the finite number of points that form the
process. So the lemma and the theorem together describe the ingredients in order
to obtain an exact simulation of a max-stable process.

For max-stable processes with deterministic profile models f , the simulation
is relatively easy to implement. For instance, in order to simulate the Gaussian
extreme value process the radius r can be selected by the relation ϕ(r) = ε, where
ϕ is the standard normal density and ε is a small tolerance. The constant C de-
pends on the normal density function f . So similarly we can proceed with other
storm profile models, as for example the exponential or t-model.

5.3 Inference based on Likelihood approach

We know from the previous section that with particular storm profiles as for ex-
ample with the bivariate normal density function we can derive the 2-dimensional
distribution. The resulting model can be useful for spatial extreme analysis. For
example, if data from extreme events are available for some locations spread over
a region, then we can estimate, in someway the parameters indicated in (5.3).
Once that the model parameters are estimated then the extremal coefficients for
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all the pairs of locations can be computed, and the tail dependencies can be as-
sessed. Moreover, once the model parameters have been estimated, then by an
opportune transformation of (5.3) we will see that the return levels can then be
estimated and the rates at which high rainfall levels occur at the sites assessed. In
this section we describe an inferential method for spatial extremes, and later we
will see an application with real rainfall level data.

We describe the proposed inference methods for spatial extremes focusing
on the Gaussian extreme value model. Note that the same arguments can be
also extended to other models, we recall that some alternatives are described in
Schlather (2002) and de Haan and Pereira (2006). The extremal Gaussian pro-
cess proposed by Schlather (2002) has been studied but not completed so it is not
reported here.

Second-order partial derivatives of (5.3) yield the 2-dimensional density func-
tion

f(zi, zj) = exp

{
− 1

zi
Φ(w)− 1

zj
Φ(v)

}[{
− 1

θ(h)zizj
ϕ(w) +

1

z2
j

Φ(v)

+
1

θ(h)z2
j

ϕ(v)

}{
1

z2
i

Φ(w) +
1

θ(h)z2
i

ϕ(w)− 1

θ(h)zizj
ϕ(v)

}
+

{
θ(h)− w
θ(h)2z2

i zj
ϕ(w) +

θ(h)− v
θ(h)2ziz2

j

ϕ(v)

}]
,

(5.5)

where ϕ is the univariate standard normal density function,
w = θ(h)/2 + 1/θ(h) log(zj/zi) and v = θ(h)/2 + 1/θ(h) log(zi/zj). For applica-
tions the bivariate model represents most of the trivial cases, this is because only
two sites ti and tj are involved. In fact, rainfall analysis often concerns a “large”
number of sites, at least greater than 2. Assume that we are interested in study-
ing the rainfall processes over a region where many locations are observed. Then
the parameter set (ζ, γ, ρ) can not be estimated by likelihood methods straight-
forwardly. It can be used only separately for all the marginal events that involve
pairs of variables (Z(ti), Z(tj)). Nonetheless, we can still approach the inference
problem based on a likelihood approximation. In fact we appeal to a specific class
of pseudo-likelihood, known in literature as composite likelihood (Linsday, 1988).
Broadly, the composite likelihood is a likelihood function obtained combining
the bivariate likelihood associated with the marginal events (considering pairs of
variables), which can be used to provide consistent estimators. In next section we
will describe, in detail this alterative approach.

5.3.1 Composite likelihood approach

Consider the Gaussian extreme value model introduced in the previous section
and assume, for a finite set of indexes 1, . . . , K that the observations zi1, . . . , ziK
are i.i.d. realizations for i = 1, . . . , n of the random variables Z(t1), . . . , Z(tK)
with t1, . . . , tK ∈ R2.

The K-dimensional joint distribution of the process is not easy to derive ex-
plicitly when K > 2. Then the parameters (ζ, γ, ρ) can not be estimated, for
example by maximizing the likelihood

L(ζ, γ, ρ) =
n∏
i=1

f(zi1, . . . , ziK ; ζ, γ, ρ),
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where f(zi1, . . . , ziK ; ζ, γ, ρ) is the i’s contribution of the joint density to the like-
lihood function. In situations where we only know the analytical expression of
the marginal or conditional distribution associated to subsets of data, then a like-
lihood approximation is provided by the composite likelihood, Lindsay (1988),
that is defined adding together individual likelihood objects. More precisely, let
F be the parametric statistical model specified by the density function family
F = {f(z;ψψψ), z ∈ Z ⊆ RK , ψ ∈ Ψ ⊆ Rd}, and consider the sequence of marginal
or conditional events {A1, . . . ,Ak} for some k ∈ K ⊂ N. Let us not specify any
particular sequence of events for the initial description of the general method.
Later we will focus on the specific case for the spatial extremes. Broadly, the
composite likelihood is defined as

LC(ψψψ; z) =
∏
k

Lk(ψψψ; z),

where Lk(ψψψ; z) = f(zk ∈ Ak;ψψψ). Following straightforwardly from the previous
definition, the composite log likelihood is equal to

`C(ψψψ; z) = log
∏
k

Lk(ψψψ; z) =
∑
k

`k(ψψψ; z),

where `k(ψψψ; z) = logLk(ψψψ; z). Analogously with the standard likelihood, by dif-
ferentiation of the the composite log likelihood with respect to parameter vector
ψψψ yields the estimating function

U(ψψψ,Z) =
∂

∂ψψψ
`C(ψψψ; z) =

∑
k

∂

∂ψψψ
`k(ψψψ; z),

which is termed in this context as composite score. An estimate of the parameters
ψψψ can be obtained by solving the composite score equation, U(ψψψ,Z) = 0. The
solution of this equation is called the maximum composite likelihood estimator,
indicated with ψ̂MCL. The key utility of the composite log likelihood is that the
composite score equations form an additive estimating function that, can be used
to provide consistent parameter estimates where the full likelihood estimator is
not available. In other words, because each composite score equation is an unbi-
ased estimating function, then the sum of them is an unbiased estimating func-
tion too. Besides, the associated inferential procedures have theoretical properties
similar to those of the ordinary likelihood methods under suitable regular con-
ditions (e.g. Lindsay, 1988; Nott and Ryden, 1999) the maximum composite like-
lihood estimator, ψ̂MCL, is consistent and is asymptotically normally distributed,
ψ̂MCL∼̇N(ψ, I(ψ)−1), where I(ψ)−1 is an approximation of the asymptotic covari-
ance and I(ψ) is known as the sandwich information matrix. In particular, let
us assume the general setting where we know the density function f that is an
approximation of the unknown true density g. If we consider the finite sample
version of the score equation U(ψψψ,Z) = 0 that is n−1

∑n
i=1 ∂ log f(zi; ψ̂ψψ)/∂ψψψ = 0

where ψ̂ψψ solves the equation, from its Taylor expansion about ψψψg, yields

ψψψ
.
= ψψψg +

{
−n−1

n∑
i=1

∂2 log f(zi;ψψψg)

∂ψψψ ∂ψψψT

}−1{
−n−1

n∑
i=1

∂ log f(zi;ψψψg)

∂ψψψ

}
.
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And a modification of the previous derivation gives

ψ̂ψψ ∼̇N(ψψψg, H(ψψψg)
−1J(ψψψg)H(ψψψg)

−1)

where J(ψψψ) is the variance of the score function,

J(ψψψ) = n

∫
∂ log f(z;ψψψ)

∂ψψψ

∂ log f(z;ψψψ)

∂ψψψT
g(z) dz,

and H(ψψψg) is the Fisher information,

H(ψψψg) = −n
∫
∂2 log f(z;ψψψ)

∂ψψψ ∂ψψψT
g(z) dz.

The composite likelihood approach, in the inferential procedure, involves likeli-
hoods (correctly specified) based only on subsets of data (related to marginal or
conditional events). Consequently, a sort of model mispecification is introduced
with the composite likelihood method.

Given that in practice g(z) is unknown, then quantities J(ψψψ) and H(ψψψg) can
be estimated by

Ĵ =
n∑
i=1

∂ log f(zi; ψ̂ψψ)

∂ψψψ

∂ log f(zi; ψ̂ψψ)

∂ψψψT
, Ĥ = −

n∑
i=1

∂2 log f(zi; ψ̂ψψ)

∂ψψψ ∂ψψψT
,

where the latter is the observed information matrix. As it is expected there is a
loss of efficiency, in fact broadly the composite maximum likelihood estimator
is not asymptotically efficient (Zhao and Joe, 2005). Some useful results on ef-
ficiency issues may be found in Lindsay (1988), although generally a complete
analysis is still not provided.

With the Gaussian extreme value model case we consider the bivariate marginal
likelihoods related to the bivariate marginal events. In this fashion the composite
likelihood is based on a subset of data, and in particular on pairs of observations.
This version is known as the pairwise likelihood. Consider the sequence of ran-
dom variables Z(t1), . . . , Z(tK) and assume a finite value for K, then the set of all
the pairs is K = {K(K − 1)/2}. So we define the pairwise log-likelihood as

`P(ζ, γ, ρ; z) =
∑
k 6=j∈K

n∑
i=1

`(ζ, γ, ρ; zik, zij), (5.6)

where `(ζ, γ, ρ; zik, zij) = log f(zik, zij; ζ, γ, ρ) and f(zik, zij; ζ, γ, ρ) is the bivariate
density associated to the pair (z·k, z·j).

In the Gaussian extreme value model estimates of (ζ, γ, ρ) can not be obtained
as the solution of the pairwise score equation, but instead numerical maximiza-
tion methods are required. Moreover, we saw before that J(ζ, γ, ρ) and H(ζ, γ, ρ)

can be estimated by Ĵ and Ĥ . In practice, in the applications, the estimate of Ĥ at
(ζ̂ , γ̂, ρ̂) can be given by minus the hessian of the pairwise log likelihood which is
easily provided by numerical maximization routines. Instead the quantity Ĵ can
be estimated by the Monte Carlo estimate (Varin, Høst and Skare, 2005),

1

M

M∑
m=1

∂`p(ζ̂ , γ̂, ρ̂; z(m))

∂ζ ∂γ ∂ρ

∂`p(ζ̂ , γ̂, ρ̂; z(m))

∂ζ ∂γ ∂ρ

T

,
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where (ζ̂ , γ̂, ρ̂) is the pairwise maximum likelihood estimate and z(1), . . . , z(M) are
M data replications obtained from the Gaussian extreme value process with pa-
rameters (ζ, γ, ρ) set equal to the pairwise maximum likelihood estimates (ζ̂ , γ̂, ρ̂).
Note that this approach can also be applied to other spatial extreme models pro-
posed, for example by Schlather, (2002) and de Haan and Pereira (2006), where
the composite log likelihood setting can be defined using marginal events related
to the data.

5.3.2 Unified framework

The composite likelihood may provide a reasonable surrogate to the likelihood
for spatial extremes when the latter is not available. The first has important pro-
prieties that make it a useful device for inference also when the likelihood is too
computationally intensive. The use of the likelihood for inference has an impor-
tant advantage in that we can use different model reparametrizations, in order to
see that some parametrizations are perhaps more informative for the application.
Analogously, this advantage is also valid with the composite likelihood. Specifi-
cally, in our setting, by using a particular transformation of the model parameters
we can get a more flexible model for the spatial extremes.

We describe the further model extension as follows. Consider the Gaussian
extreme value model (5.3) with 2-dimensional density function (5.5). We re-
call that a compelling feature of the model is that the marginal are unit Frechét
with the form F (z) = exp(−1/z). Suppose now the following transformation
(S(t1), S(t2)) = g(Z(t1), Z(t2)) that is,

S(t1) = ψ(t1)
{
Z(t1)ξ(t1) − 1

}
/ξ(t1) + µ(t1)

S(t2) = ψ(t2)
{
Z(t2)ξ(t2) − 1

}
/ξ(t2) + µ(t2),

for some opportune values −∞ < µ(ti), ξ(ti) < ∞ and ψ(ti) > 0 with i = 1, 2.
Note that we focused on the indexes t1 and t2 but the discussion is valid for
arbitrary indexes ti and tj belonging to the set of all the pairs. Observe that the
location, scale and shape parameters do not have to be necessarily different with
ti. The inverse transformation of (Z(t1), Z(t2))→ (S(t1), S(t2)) is

Z(t1) =

{
1 + ξ(t1)

(
S(t1)− µ(t1)

ψ(t1)

)} 1
ξ(t1)

Z(t2) =

{
1 + ξ(t2)

(
S(t2)− µ(t2)

ψ(t2)

)} 1
ξ(t2)

,

with jacobian determinant

|J(s1, s2)| =
1

ψ(t1)ψ(t2)

{
1 + ξ(t1)

(
s1 − µ(t1)

ψ(t1)

)} 1
ξ(t1)

−1

·
{

1 + ξ(t2)

(
s2 − µ(t2)

ψ(t2)

)} 1
ξ(t2)

−1

,

Now if the random vector {S(t1), S(t2)} has GEV marginal distributions and
more precisely we say,

S(t1) ∼ GEV(µ(t1), ψ(t1), ξ(t1)) S(t2) ∼ GEV(µ(t2), ψ(t2), ξ(t2))
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then the random variables Z(t1) and Z(t2) have unit Frechét distribution func-
tions, and the joint distribution function of (Z(t1), Z(t2)) is of form (5.3). Conse-
quentially, from the relationship established with the transformation (Z(t1), Z(t2))
→ (S(t1), S(t2)), we have that (S(t1), S(t2)) has the distribution function F (s1, s2)
= F (g−1(s1), g−1(s1)) and bivariate density

f(s1, s2) = f(g−1(s1), g−1(s2))|J(s1, s2)|. (5.7)

Combining (5.7) with (5.5) yields the analytical expression of the bivariate den-
sity function of (S(t1), S(t2)) with marginal S(t1) and S(t2) that have GEV dis-
tributions. In other words, the previous transformation produces a bivariate
model for spatial extremes but with GEV marginal distributions. With this model
parametrization, by using the composite likelihood approach for inference we
can not only estimate and asses the tail dependence between the pairs of sites
but also asses the rates at which the extreme rainfall levels occur at the sites. The
complete set of parameters can be estimated by maximization of the composite
likelihood. In practice due to the intractable expression of the bivariate density
function, consequently we use the quasi-Newton numerical maximization rou-
tines (e.g. Broyden, 1967) in order to maximize the composite log likelihood.

In principle, we could assume marginal GEV distributions with different pa-
rameters in each location. For K fixed locations the resulting spatial model has
3K + 3 parameters that have to be estimated. Although K might be relatively
small, we say K � n where n is the sample size for each site, the likelihood
maximization might be computationally intensive, given that we use numerical
maximization routines. Instead, for large K the likelihood maximization turns
out to be computationally prohibitive. Alternatively, we can consider a common
GEV model with the same parameters (µ, ψ, ξ) for all the sites. However, perhaps
in practice few cases can be conformed with these restrictive model assumptions.
Thus a solution may be provided by the parsimonious regression model. More
precisely, we assume that the marginal have distributions

S(tk) ∼ GEV(µ(tk), ψ(tk), ξ(tk)) k = 1, . . . , K, (5.8)

where µ, ψ and ξ are polynomial surfaces of forms

f(t1,k, t2,k) =
∑
i+j≤p

βi,j t
i
1,kt

j
2,k,

where t1,k, t2,k ∈ R are the plane coordinates of the site tk and the quantity p
is the order of the surface. Thus there are (p + 1)(p + 2)/2 coefficients. In this
way by defining a spatial regression model of degree p we establish a spatial
dependence between the GEV parameters. Consequentially, the resulting GEV
model has different parameters (µ, ψ, ξ) for each site but only using a relatively
small number of regression coefficients. The tail dependence and the regression
parameters, (ζ, γ, ρ, βββ), where βββ represents the regression coefficients for µ, ψ and
ξ, can be estimated all together by maximization of the composite likelihood.

In particular the pairwise log likelihood of the previous section is modified
including the regression extension as follows

`P (ζ, γ, ρ, βββ) =
∑
j 6=k∈K

n∑
i=1

log f(si,k, si,j; ζ, γ, ρ, βββ)
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where j, k belongs to K, the set index of all the pairs, βββ is the vector of regression
coefficients with length that depends by the polynomials degrees of the spatial
regressions, and n is the sample size in each location.

5.3.3 Simulation Study

In this section by means of a simulation study we illustrate the use of the com-
posite likelihood method in the spatial extremes context. We conducted a series
of simulation exercises using different parameter settings and spatial designs in
order to asses the finite sample properties of the composite likelihood estimator.

In particular, the study is led by assuming the Gaussian extreme value model.
The model parameters are (ζ, γ, ρ) which define the covariance matrix of a bivari-
ate normal distribution, as it is here reported,

Σ2 =

[
γ2 ρ γ ζ
ρ γ ζ ζ2

]
.

The bivariate normal density (the storm profile model) is related with the Gaus-
sian extreme value model by (5.3). Note that, for fixed sites over a region, the co-
variance matrix values impact on tail dependence, in determining strong, weak
or mild dependence of the extreme events between the locations.

The simulation exercises are performed using an irregular grid of points (lo-
cations) over a region of 40 × 40. In practice the points are randomly located,
generatingK random values from a uniform variable on an interval [a, b] for each
axis, and then these realizations define the plane coordinates of the points. Ta-
ble 5.1 shows the parameters settings considered in the study. With rows 1–3 we
take into account different shapes of the storm profile. Also empirically, for this
spatial design, we have found that the settings illustrated in entries 4 and 5 rep-
resent strong and weak dependence for most of the pairs, which is of interest in
our study.

Parameters settings γ ρ ζ
1. Same strength in both directions 17.32 0 17.32
2. Different strength in both directions 14.14 0 17.32
3. Spatial correlation 14.14 0.61 17.32
4. Strong dependence 44.72 0.61 54.77
5. Weak dependence 4.47 0.61 5.48

Table 5.1: Parameters configurations for the extreme dependencies: the first column re-
ports the parameter configuration’s names. Columns 2–4 report the different parameter
values.

Realizations of simulated data from the model can be performed by imple-
menting the guidelines illustrated in Section 5.3.3. Already implemented soft-
ware is available in the statistical environment R, by the package RandomFields,
see http://cran.r-project.org/.

For each site, n independent replications are generated from the max-stable
process and we also fit the model using the same number of observations for
each location. The composite log likelihood function has been implemented in R
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and the numerical maximization routine optim is used in order to obtain the pa-
rameter estimates. The composite log likelihood function, given K sites, is made
up of K(K − 1)/2 distinct log likelihoods. For large K the maximization of the
likelihood is computationally demanding, so in some cases it could be necessary
to implement in the general-purpose language C the procedures in favor of re-
ducing the computational time.

One simulation exercise illustrates the performance with moderate dataset,
K = 50 sites and n = 100 observations for each site, under different depen-
dence models (listed in Table 5.1). Table (5.2) summarizes the estimation results
computed over 500 data replications. From columns 3–4 the averages and the

Models γ̂ ρ̂ ζ̂
1 17.35(1.28) 0.012(0.117) 17.34(1.42)

true 17.32 0 17.32
2 14.18(1.14) 0.016(0.109) 17.43(1.26)

true 14.14 0 17.32
3 14.15(1.24) 0.609(0.062) 17.44(1.23)

true 14.14 0.61 17.32
4 44.66(3.97) 0.602(0.072) 54.74(5.34)

true 44.71 0.61 54.77
5 4.48(0.21) 0.613(0.038) 5.51(0.22)

true 4.47 0.61 5.48

Table 5.2: Estimation results: composite likelihood estimates based on 500 simulations of
spatial extreme data (100 observations per site) using the Gaussian extreme value family.
The first column shows the models contemplated (see Table 5.1). Columns 2–4 show the
estimates mean and between parenthesis the standard deviations.

standard deviations are reported for the models. The simulation results indicate
good correspondence between the true parameters and the estimates mean and
also slightly smaller variances for all four cases. There is no evidence of bias in
the estimation of the parameters even in cases of strong and weak dependence.
This is good news because other methods, as for example the one proposed by de
Haan and Pereira (2006) perform badly in the case of weak dependence.

The second exercise shows the performance in small, moderate and large
dataset under the dependence model of row three in Table 5.1. Specifically, we
take into account 10, 50 and 100 sites with 100 observations for each . Table 5.3
summarizes the estimation results based on 500 data realizations.

The simulations indicate that some bias occurs, and that the estimate vari-
ances are large with small dataset, as for example in the case when K = 10 and
n = 10. With an increasing number of observations per site the estimated param-
eters have negligible bias and variance (for instance with n = 200). However, we
can also see that the number of sites does not have much effect on the estimates
but a reduction of the variability can be observed. For example, a comparison
between 10 and 100 sites with 10 observations in Table 5.3 particulary shows that
with the increasing of the number of sites, the estimate variances decrease.
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K n γ̂ ρ̂ ζ̂
10 10 15.83(4.01) 0.559(0.272) 17.63(7.00)
- 50 14.44(1.72) 0.820(0.255) 17.69(2.01)
- 100 14.24(1.36) 0.613(0.073) 17.45(1.53)
- 200 14.10(0.97) 0.612(0.050) 17.32(0.98)

50 10 15.44(3.10) 0.610(0.173) 18.85(3.81)
- 50 14.35(1.43) 0.612(0.078) 17.48(1.78)
- 100 14.15(1.24) 0.609(0.062) 17.44(1.23)
- 200 14.11(0.65) 0.612(0.037) 17.25(0.86)

100 10 15.43(2.78) 0.603(0.164) 18.37(2.99)
- 50 14.38(1.39) 0.608(0.086) 17.66(1.69)
- 100 14.29(1.05) 0.624(0.051) 17.48(1.25)
- 200 14.14(0.93) 0.603(0.062) 17.36(1.23)

true 14.14 0.61 17.32

Table 5.3: Estimation results: composite likelihood estimates based on 500 simulations
of spatial extreme data using the Gaussian extreme value model with parameters given
by row three of Table 5.1. Columns 1–2 describe the number of sites and observations
per site. Columns 3–5 report the estimates mean and between parenthesis the standard
deviations.

5.4 A proposal for Bayesian inference

Recently, in situations where the full maximum likelihood estimator is not avail-
able, the Approximate Bayesian Computation (ABC) method has been confirmed
as an alternative procedure for inference. Many other applications have since
been illustrated for example, Beaumont, Zhang and Bolding (2002), Marjoram,
Molitor, Plagnol and Taveré (2003) and in the context of the extreme values by
Bortot, Coles and Sisson (2006). Approximate Bayesian Computation methods
consist of stochastic simulation algorithms born in a statistical genetics context
with the aim of providing an inference technique for the model parameters when
the likelihood function is not available. The algorithms can be based on the re-
jection method Beaumont, Zhang and Bolding (2002) or on Markov chain Monte
Carlo (MCMC) techniques Marjoram, Molitor, Plagnol and Taveré (2003). How-
ever the common idea is to substitute the likelihood evaluation with the model
simulation when it is feasible and not too computationally intensive. The MCMC
approaches have demonstrated satisfactory results, see for example Bortot, Coles
and Sisson (2006). But the price to pay for avoiding the likelihood evaluation is in
many cases long simulation runs. The rejection method approaches (Beaumont
et al, 2002) can be characterized by fewer low acceptance rates given the global
comparison used in the acceptance step. Also, the major difficulty is that the con-
stant c (the likelihood function evaluated at the maximum likelihood estimate),
which ensures the total envelope used in the acceptance step, is not easy to derive
for most of the non trivial cases, as for example in continuous problems.

The last inconvenience can be overtaken by using an alternative method that
avoids the likelihood maximization but only gives a sample that is approximately
from the posterior distribution. This is known as Sampling Importance Resam-
pling (SIR). Then we propose here an alternative ABC approach based on the SIR
algorithm.
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Let Z be a random vector variable belonging to Z ⊆ Rn with probability den-
sity function f(z|ψψψ) parameterized by ψψψ ∈ Ψ ⊆ Rn. Denoting with π(ψψψ) the prior
distribution on ψψψ, then from the Bayesian paradigm the posterior distribution of
interest is f(ψψψ|z), which is given by

f(ψψψ|z) =
f(z|ψψψ) π(ψψψ)∫
f(z|ψψψ) π(ψψψ)dψψψ

.

From the posterior distribution, opportune quantities such as for example the
posterior mean, median, etc. can be computed in order to estimate the model pa-
rameters. In many situations the posterior density can be hard to derive explic-
itly. We have already argued that some techniques, as for example the rejection
method, can not be easily implemented. The SIR method can represent a suitable
alternative in order to get an approximate sample from the posterior.

SIR (Sampling Importance Resampling) is a common method in computa-
tional statistics for generating samples from difficult distributions. SIR was first
described by Rubin (1987) and it has been used, for example to generate samples
from Bayesian posterior distributions Gelman, Carlin, Stern and Rubin (2004) or
in sequential importance sampling and particle filtering. Consider temporarily,
the case when the random variable Y is discrete. Assume that Y has distribu-
tion q. Then SIR can generate samples that approximately have that distribution.
To do so, we generate a set of “proposal” samples from a source distribution, p,
weight these samples appropriately, then resample these with probability propor-
tional to their weights. Note, we are assuming that the distribution p is defined
on the same sample space of q. The SIR algorithm is given by

Algorithm SIR1: Sampling Importance Resampling’s basic algorithm

1. Generate {x1, . . . , xN}, N proposals from the distribution p.

2. Compute the weight w(xn) = q(xn)/p(xn) for n = 1, . . . , N .

3. Draw {y1, . . . , yM}, M samples (M ≤ N) from {x1, . . . , xN}with
replacement and probability proportional to w(xm) for m = 1, . . . ,M .

The resulting samples will be approximately distributed according to the unnor-
malized function q̂. Specifically, q = q̂/C where C is a normalizing constant. The
constant C can be estimated by C =

∑N
n=1w(xn). So, in other words the effect

of the resampling step is to take proposals from the distribution p, and “filter”
them, so that the samples have a distribution that approximates q. Observe that
when the number of proposals increase, we say N → ∞, then the distribution
of each sample approaches q. Note that this method is still valid in the continu-
ous case. The algorithm remains the same, but we need to substitute q with the
density function f(y) and the proposal distribution p with the density g(x). The
samples from f(y) can be obtained by drawing x1, . . . , xN from g(x) and resam-
pling them from the discrete distribution on the set {x1, . . . , xN}with probabilities
w(xi) = f(xi)/g(xi)

/∑N
n=1 f(xn)/g(xn) for i = 1, . . . , N .

The SIR method is useful when adopted into a Bayesian context in situations
where other methods can not be applied. The method provides an approximate
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sample from the desired posterior density, as suggested by the following algo-
rithm.

Algorithm SIR2: Sampling Importance Resampling’s Bayesian algorithm

1. Generate {ψ1, . . . , ψN}, N values from the density g(ψ).

2. Compute the weight wn = f(ψ|z)/g(ψ)PN
n=1 f(ψ|z)/g(ψ)

for n = 1, . . . , N .

3. Draw {ψ1, . . . , ψM}, M samples (M ≤ N) from {ψ1, . . . , ψN}with
replacement and probabilities {w1, . . . , wN}.

An approximate sample from the posterior is generated by a weighted resam-
pling. The sample {ψ1, . . . , ψN} is drawn from the density g(ψ) and then we re-
sample from the discrete distribution on the set {ψ1, . . . , ψN} with probabilities
wn. Note that given the relation f(ψ|z) = kf(z|ψ)π(ψ) we obtain the following
expression for the weights,

wi =
f(z|ψi)π(ψi)/g(ψi)∑N

n=1 f(z|ψn)π(ψn)/g(ψn)
for i = 1, . . . , N.

These weights may be used in the SIR2 algorithm so that an approximate sample
from the posterior can be obtained without necessary knowing f(ψ|z). Now if the
sampling density g(ψ) is equal to the prior density π(ψ) then the weights assume
the form

wi =
f(z|ψi)∑N
n=1 f(z|ψn)

for i = 1, . . . , N.

Example 1: Assume that the random variable Z has Bernoulli distribution with prob-
ability ψ, Z ∼ Be(ψ). Assume also that the prior for the model parameter is the conjugate
beta distribution ψ ∼ B(α, β).

The conjugate prior distribution has density: π(ψ) = Γ(α+β)
Γ(α)Γ(β)

ψα−1(1 − ψ)β−1.
The likelihood function has the expression: f(z|ψ) = ψk(1 − ψ)n−k, where k =∑n

i=1 zi and n is the sample size. The posterior density is proportional to, f(ψ|z) ∝
ψk+α−1(1 − ψ)n−k+β−1. This result leads to the posterior ψ|z having distribution
B(α + k, β + n − k). This example is useful because it allows us to compare the
samples obtained from the SIR2 algorithm with the posterior density of which
we know the analytical expression. By means of diagnostic plots and summary
statistics we can roughly asses the level of approximation that the SIR method
provides.

So we have simulated z1, . . . , zn, n = 100 synthetic data from a Bernoulli dis-
tribution with probability ψ = 0.3. Then we have generated approximate samples
from the posterior distribution using the SIR2 algorithm. The prior distribution’s
set up is B(5, 5) from which we have drawn respectively 500, 1000 and 10000 par-
ticles, and resampled 500, 1000 and 2000 values. In Figure 5.1 the results are il-
lustrated. We can see from the histograms that the samples provide a reasonable
approximation of the posterior density (solid line). The quantile-quantile plots
show the adequacy of the applications for all three cases. However we can also
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Figure 5.1: Results example 1: the top to the bottom left panels show the histograms of
samples drawn for different sampling and resampling values. The solid lines show the
posterior and the broken lines the prior densities. The right panels show the quantile-
quantile plots of the true posterior versus the approximate samples.

see that the approximation improves with the increasing of the sampling and re-
sampling sizes. Moreover, we can also compare the expected value and the vari-
ance of the posterior density with the average and variance of the approximate
samples, in order to evaluate the accuracy of the approximation. The expected
value and the variance of the posterior distribution are:

E(ψ|z) =
α + k

α + β + n
and V (ψ|z) =

(α + k)(β + n− k)

(α + β + n)2(α + β + n+ 1)
, (5.9)

In table 5.4 the averages and the standard deviations of three samples computed
with different sampling resampling sizes are reported. In the last row by using
the simulated data and formulas (5.9) the mean and the standard deviations of
the posterior density are given. In all three cases we can see that the averages and
the standard deviations computed from the approximate sample are very close to
those of the posterior.

Suppose now that the likelihood evaluation is not available or too time con-
suming. Observe that for discrete data a sample from the posterior can still be
obtained by applying the rejection method under the ABC approach (e.g Marjo-
ram, 2003). The authors also suggested further algorithm modifications in cases
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N M ψ|z sd(ψ|z)
500 500 0.337 0.043
1000 1000 0.336 0.047
10000 2000 0.337 0.044

0.336 0.044

Table 5.4: Summary statistics: columns 1–2 report the sampling and resampling sizes.
Columns 3–4 report the means and the standard deviations computed using the approx-
imate samples. The last row gives the mean and the standard deviations of the posterior
density with the simulated data.

when the acceptance rate is too small. However when data are high-dimensional
and continuous this approach can be impractical due to the absence of the upper
bound of the likelihood. Then one can resort to the ABC version of the approx-
imate SIR method. Essentially, in cases where the underlying stochastic model
is easy to simulated and not too computationally demanding the ABC approach
to substitute the likelihood evaluation with the model simulation. The method is
describe by the following algorithm.

Algorithm SIR3: Sampling Importance Resampling’s ABC algorithm

1. Generate ψi, from the prior π(ψ).

2. Simulate zsimi from the model with density f(z|ψ) and particle ψi,
and the corresponding statistics ssimi .

3. Compute the distance di = ρ(ssimi , sobsi ) and the weight wi = K(di, ε)I(di≤ε).

4. Repeat steps 1–3 until N particles with wi > 0 are obtained.

5. Draw {ψ1, . . . , ψM}, M samples (M ≤ N) from {ψ1, . . . , ψN}with
replacement and proportional weights {w1, . . . , wN}.

Essentially, for each generated particle from the prior, data are simulated from the
underlying stochastic model. Weights for the samples {ψ1, . . . , ψN} are computed
based on a kernel function of the distances between the observed and simulated
data using an opportune metric. Then the resulting sample set {ψ1, . . . , ψN} is
resampled with proportional weights {w1, . . . , wN}.

More precisely, the likelihood evaluation is substituted by the comparison be-
tween the observed and simulated data. The comparison is done by selecting a
suitable metric ρ and an interval ε. When ε → 0 the matching of observed and
simulated data is required. Instead for ε → ∞ the particles are not “filtered”
so that we get the prior density. The observed and simulated data match with
frequency proportional to f(y), which can be very low. In order to avoid this a
comparison can be done between low-dimensional summaries of the observed
and simulated data. The key point is that if the summary statistics S is sufficient
then f(z|ψ) = f(s|ψ)f(y|s), where the second term on the right does not depend
on ψ. If the reduction of the data dimension is given by sufficient statistics it is
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without loosing information about ψ. Practically, the advantage of using suffi-
cient statistics is that the matching of observed and simulated data occurs more
frequently.
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Figure 5.2: Results example 1: the top to the bottom left panels show the histograms of
samples drawn for different tolerances. The solid lines show the posterior and the broken
lines the prior densities. The right panels illustrate the quantile-quantile plots between
the true posterior versus the approximate samples.

Finally, the particles that satisfy the criteria, that is the corresponding data
are close to the observed for a value less or equal to ε, are resampled with propor-
tional weightswi. These are computed by using a weighting functionK(di, ε)I(di≤ε),
of the distances di and interval ε. To clarify, the weighting function is composed
by a kernel function K(·, ·) as for example the Epanechnikov, and an indicator
function I(·). So, for di ≤ ε the respective weighs are positive, and in particu-
lar for di → 0 we have wi → 1. Instead for di > ε the respective weighs are 0.
Concluding, the weights are normalized as wi = wi/

∑N
j=1wj for i = 1, . . . , N.

Observe that with discrete data cases setting ε → 0 the matching between the
observed and simulated data is required. The particles associated to such events
are imposed unormalized weighs equal to 1. The algorithm for these situations
correspond to that of the rejection method.

Consider once again the illustrative study case given by example1. Now, con-
sidering the same data of the previous example, we emphasize the approximation
level that the approximate samples provide of the posterior density by using the
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SIR3 algorithm. We run the SIR3 algorithm selecting three different tolerances:
1, 0.1 and 0. We fixed the number of acceptances equal to 5000 and then we have
resampled 2000 values for each tolerance. The results are illustrated in Figure 5.2.
The summary statistics used with the algorithm is the sample mean or success
frequencies, y =

∑n
i=1 yi/n. We can see from the histograms that decreasing the

tolerance, the approximate samples provide more and more accurate approxima-
tion of the posterior density. In fact, it is possible to see from the bottom left and
right panels, that reducing the tolerance to zero we reach a high level of accu-
racy with the approximation. This is also confirmed with the summary statistics
results in Table 5.5. With the decreasing of the tolerance values the discrepancy

M ε ψ|z sd(ψ|z)
2000 1 0.487 0.148
2000 0.1 0.347 0.061
2000 0 0.337 0.044

0.336 0.044

Table 5.5: Summary statistics: columns 1–2 report the resampling number and toler-
ances. Columns 3–4 report the means and the standard deviations computed using the
approximate samples. The last row reports the mean and the standard deviations of the
posterior density with simulated data.

between the mean and standard deviations obtained from the approximate sam-
ples and those of the posterior decrease towards zero. In fact this is the case when
ε = 0.

Example 2: Assume that the random variable Z has normal distribution with known
mean µ and unknown variability σ2, Z ∼ N(µ, σ2). Assume also that the prior for the
model parameter is the conjugate inverse Gamma distribution σ2 ∼ IΓ(α, β).

The conjugate prior distribution has density: π(ψ) = βα

Γ(α)
ψ−α−1 exp

(
−β
ψ

)
. The

likelihood function has the expression: L(z|ψ) = (2πψ)−n/2 exp(−k/ψ), where
k =

∑n
i=1(zi − µ)2/2 and n is the sample size. Then the posterior distribution

is proportional to f(ψ|z) ∝ ψ−α−n/2−1 exp{−(β + k)/ψ}. So it turns out that the
posterior ψ|z has distribution IΓ(α + n/2, β + k). We can test the performance
of the SIR algorithms comparing their approximate posterior samples, with the
posterior density for which we know the analytical expression. We simulated
z1, . . . , zn, n = 100 synthetic data from a normal distribution with variance ψ = 9.
Then approximate posterior samples have been obtained by SIR2 and SIR3 al-
gorithms drawing ψ1, . . . , ψN , particles from the prior with α = 0.5 and β = 0.5.
In particular with the first algorithm we have sampled respectively 500, 1000 and
50000 particles and then resampled 500, 1000 and 2000 values. Instead, with the
second algorithm we fixed three tolerances ε = 10, ε = 2 and ε = 0.1. Then we
have set up the acceptance number N = 5000 and resampled M = 2000 values
for all three cases. The summary statistic used with SIR2 is the adjusted sample
variance: s = n

∑
(yi− y)2/(n−1). We can see from the histograms of Figure (5.3)

that even with a continuous variable, the approximate samples from the posterior
density (obtained by using the SIR algorithms) provide a reasonable approxima-
tion of the latter. In particular with both algorithms, increasing the sampling
size for SIR2 and decreasing the tolerance with SIR3 we obtain samples from the
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Figure 5.3: Results example 2: the first row shows the histograms of samples obtained
using SIR2 and the second row using SIR3. The solid lines show the posterior and
the broken lines the prior densities. The third row illustrates the quantile-quantile plots
between the true posterior versus the approximate samples (SIR3).

posterior that provide a better approximation. Figure (5.3) illustrates accurate ap-
proximation levels in the panels of the third column, first and second rows. In the
third row we have reported the quantile-quantile plots of the posterior density
versus the approximate sample obtained with the SIR3 algorithm. Specifically,
the bottom right panel shows that with small tolerance, ε = 0.1, the sample pro-
vides an accurate approximation of posterior density. Now the expected value
and the variance of the posterior distribution are:

E(ψ|z) =
β + k

α + n/2− 1
and V (ψ|z) =

(β + k)2

(α + n/2− 1)2(α + n/2− 2)
,

then we also compared the estimates obtained using the simulated data with the
averages and variances obtained from the approximate samples. The results are
summarized in Table 5.6. We can see from the third and sixth rows that the dif-
ferences between the mean and variances computed from the samples and those
of the posterior density are close to zero.

We don’t posses any rigorous method that demonstrates mathematically the
goodness of the approximate sample from the posterior obtained with SIR al-
gorithms, respect with the true posterior. Then ,until here, we have considered
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Algorithm N M ε ψ|z sd(ψ|z)
SIR2 500 500 - 7.357 1.054
SIR2 1000 1000 - 7.472 0.992
SIR2 50000 2000 - 7.393 1.077
SIR3 - 2000 10 3.465 3.551
SIR3 - 2000 2 7.170 1.417
SIR3 - 2000 0.1 7.376 1.030

7.378 1.059

Table 5.6: Summary statistics: columns 1–3 report the sampling, resampling sizes and
tolerances. Columns 4–5 report the means and the standard deviations computed using
the approximate samples. The last row reports the mean and the standard deviations of
the posterior density with simulated data.

simple problems where we knew the analytical expression of the likelihood func-
tion and posterior density. Therefore for these cases none of the approximation
methods are required for inference. But by means of illustrative examples we
have compared the performance of the SIR approximate methods with the known
posterior density. We have seen with these examples how our proposed method
provides a reasonable surrogate to a sample from the posterior density, making
the SIR algorithm that we propose useful in problems where the posterior density
is not available. For instance in the case of spatial extreme problems introduced
in the previous section. We will discuss now with an illustrative example the
application of the SIR method in the spatial extreme context. Observe that with
the spatial extreme models arising from the max-stable processes, the maximum
likelihood method can not be applied for the model inference when we deal with
a K-variate distribution with K > 2. Then alternative methods such as for exam-
ple the SIR technique are required. Assume the Gaussian extreme value process
with bivariate marginal distribution (5.3). Assume also for simplicity that the co-
variance matrix Σ2 of the storm profile has components γ = ζ and ρ = 0. We
consider in particular the case study given by entry 1 of Table 5.2. In order to
conduct the simulation example we need to specify the metric and the summary
statistics used in the extreme value setting with the SIR3 algorithm. In particular
as summary statistics we used the fitted regression model given by the extremal
coefficients versus the Euclidean distances of the pairs. More precisely the regres-
sion model is formalized as

ν(hk) = g(‖hk‖) + εk

where E(εk) = 0, V (εk) = σ2 and

g(‖hk‖) = β0 + β1‖hk‖+
P∑
p=1

bp(‖hk‖ − κp)+,

with ‖hk‖ the Euclidean distances of the k’s pair of locations (hk is the vector of
plane coordinate differences), {κ1, . . . , κP} is a set of knots defined on the space
of the distances, and bp are coefficients. In this way, g should be flexible enough
to model the relation structure between extremal coefficients and the distances of
the pairs, instead of assuming and establishing some particular parametric mod-
els. In order to fit such a model we need to somehow provide an estimate of the
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Figure 5.4: Approximate samples from the posterior density: the plot illustrates the ap-
proximate sample from the posterior density obtained with different tolerance levels. The
prior density is reported with the solid line. The thin vertical line shows the true param-
eter value.

response vector ννν. An estimate can be empirically provided in different ways,
some methods are proposed for example by Schlater and Tawn (2003). These
methods are useful because they provide an estimate of the extremal coefficients
independently form the likelihood function of the K-variate model. Finally, the
metric used consists of the area between the fitted models (the summary statis-
tics) computed by using the observed and the simulated data. The area is ob-
tained by computing the definite integrals of the two regression curves between
zero and the maximum recorded distance, and then taking the absolute value of
the integrals difference. An approximate value can be provided numerically by
using the integrate routine of R. With the same spatial configuration used in
Section (5.3.3) we have generated a sample zobs from a max-stable process that we
treat as the observed data. Then we used the SIR3 algorithm in order to obtain
an approximate sample from the posterior density. More specifically, particles
are drawn from the Wishart prior with elements: s1 = 100, s12 = 0 and s2 = 100,
of the position matrix S2 and 2 degrees of freedom. Different tolerances have
been considered: ε1 = 20, ε2 = 10, ε3 = 1 and ε4 = 0.1, and for each of them at
least N = 1500 acceptances have been required. Note that for the tolerance ε4,
500000 iterations have been necessary in order to achieve the acceptance num-
ber. Then for each of the four cases, samples of M = 1000 values are resampled
from accepted proposal particles. The resulting approximate samples from the
posterior density are illustrated in Figure (5.4). We recall that given the previous
assumption about the the covariance matrix of the storm profile, that is γ = ζ and
ρ = 0, then we deal with the posterior of a single parameter. Note that decreas-
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Figure 5.5: Approximate samples from the posterior density: the plots show the mean and
the standard deviations of the approximate samples for different tolerances. The middle
(red) line is the mean and the top and bottom (blue) lines are the mean ± 2 sd. The hori-
zontal lines show the values where the mean and the variances are constant for different
tolerances.

ing the tolerance ε, the approximate samples are, roughly speaking more and
more sensible. But we are aware that care is required with any sort of conclusion,
given that we can not compare the approximate samples with the posterior den-
sity that is unknown. It is difficult to establish an appropriate tolerance value in
order to obtain a representative approximate sample from the posterior density.
Nonetheless, we observe that the sample standard deviation decreases and the
sample mean changes progressively with the decreasing of the tolerances. In par-
ticular, for the four cases we have obtained respectively the values: 16.93(5.58),
18.53(4.77), 19.95(4.26) and 20.73(3.47) illustrated in Figure (5.4). Thus a criteria
to select the tolerance for instance, can be obtained plotting the sample mean and
standard deviation for the different tolerances (Bortot, Coles and Sisson, 2006).
An example is provided in Figure (5.5). From the left panel we can see that the
sample mean and standard deviation change with the decreasing of the tolerance
ε, until they remain stabilized for a certain interval. This effect is better illustrated
in the right panel focusing on the subset (0, 2) of the considered tolerance range
(0, 10). We can select ε for example into the tolerance set (0.5, 1.5). Because for the
values of ε inside that interval it corresponds to sample mean and standard devi-
ation values that are reasonably constant, in particular these are respectively 20
and 4. Instead for different values of ε the correspondent sample mean and stan-
dard deviation values change consistently. Moreover, the approximate samples
have, for values of ε greater than the upper bound 1.5, large variability due to the
high number of acceptances. Instead, for the values of ε smaller than about 0.5,
the corresponding approximate samples are less reliable for the small number of
accepted particles.
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5.5 Application to the Florida rainfall data

The data consists of the daily precipitation totals for 5873 stations in the conti-
nental USA. The data are complete up to the end of 1999 and were obtained from
Professor Richard Smith from the University of North Carolina who got them
from Dr. Pavel Groisman of the National Climatic Data Center,
http://www.ncdc.noaa.gov. The aim of the analysis is to asses the depen-
dence of extreme rainfall levels between the locations where the data are col-
lected. Moreover, also to estimate the rates at which high rainfall levels occur
for the pairs of sites analyzed. In particular our analysis focuses on the states of
North and South Carolina taking into account 35 stations sparse over a surface
of about 500 km2. For each site, data are blocked into sequences of observations
corresponding to a time period of length, one year. The block maxima are the
annual maxima of the rainfall levels from 1908 to 1999, so that the selected period
of study consists of 91 observations per location. The selected region where the
sites have been observed is illustrated in figure 5.6.
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Figure 5.6: USA map: the (green) circles represent the 35 stations spread over north and
south Carolina. For those locations daily rainfall measurements are recorded.

In order to conduct the analysis we assume that the data are correctly modeled
by the Gaussian extreme value model introduced in Section (5.2), and more pre-
cisely the extended version explained in Section (5.3.2). In particular, we assumed
the model (5.8) for the annual maxima, specifying for µ, ψ and ξ the polynomial
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surfaces:

µ(t1,k, t2,k) =
∑

i+j≤p1

βµi,j t
i
1,kt

j
2,k

ψ(t1,k, t2,k) =
∑

i+j≤p2

βψi,j t
i
1,kt

j
2,k

ξ(t1,k, t2,k) =
∑

i+j≤p3

βξi,j t
i
1,kt

j
2,k,

for k = 1, . . . , K (the station’s indexes) and for some p1, p2 and p3 index values.
The highest polynomial order considered here is 2 for all three spatial regressions
(indicated by p1, p2 and p3). We have not yet considered higher orders. However,
note that higher order parametric regressions often do not provide substantial
improvements and perhaps may be worth considering in future studies of spline
regression alternatives. After computing the annual maxima with the proposal
to asses the spatial dependencies, we need to estimate the model’s parameters
(ζ, γ, ρ, βββ, ξ), where βββ = (βµ00 . . . β

µ
02 β

ψ
00 . . . β

ψ
02 β

ξ
00 . . . β

ξ
02). Some regression mod-

els taken into account, and their regression coefficient estimates are summarized
in Table 5.7. In parenthesis the deviation standards are reported.

βµ00 βµ01 βµ10 βµ11 βµ20 βµ02

βψ00 βψ01 βψ10 βψ11 βψ20 βψ02

βξ00 βξ01 βξ10 βξ11 βξ20 βξ02

661.56(7.96) 11.40(5.89) -34.50(5.75) -17.30(6.26) 1.41(4.79) 6.90(5.08)
5.25(0.03) -0.041(0.02) -0.042(0.02) -0.063(0.03) 0.055(0.02) 0.054(0.02)

0.164(0.030) 0.022(0.021) -0.054(0.017) -0.000(0.030) 0.001(0.018) -0.036(0.016)
661.59(8.31) 11.37(5.50) -34.57(5.67) -17.24(6.56) 1.41(5.46) 6.93(5.12)
5.23(0.03) -0.041(0.02) -0.041(0.02) -0.064(0.02) 0.062(0.02) 0.054(0.01)

0.123(0.016) - - - - -
665.90(4.32) 16.67(4.46) -31.85(4.11) -15.98(6.48) - -
5.25(0.03) - - -0.08(0.02) 0.04(0.02) 0.05(0.02)

0.129(0.015) - - - - -
668.99(7.53) 6.34(4.97) -41.19(5.08) -3.42(4.95) -0.68(4.87) 1.07(4.84)
5.35(0.02) -0.05(0.01) -0.05(0.02) - - -

0.121(0.014) - - - - -
667.68(4.92) 5.85(4.98) -41.34(5.35) - - -
5.35(0.02) -0.05(0.02) -0.05(0.02) - - -

0.124(0.015) - - - - -
667.98(4.64) 13.01(3.64) -34.45(3.80) - - -
5.35(0.02) - - - - -

0.129(0.016) - - - - -

Table 5.7: Regression coefficient estimates: each table’s entry reports the estimates of
the regression coefficients respectively for the spatial models of the location (first line),
scale (second line) and shape (third line) parameters. Between parenthesis the standard
deviations are reported.

In Figure 5.7 the plots show the location, scale and shape parameter estimates,
computed assuming spatial regressions versus those estimates computed using
individual sites (without assuming any regression models). In particular the re-
gression models illustrated, in order from the top to the bottom panels, are those
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represented by the coefficient estimates of the rows 6, 3 and 1 in Table 5.7. An
evident pattern is present in all three cases (location, scale and shape parameters)
of Figure 5.7. In principle, it seems that the assumption of regression models from
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Figure 5.7: Regression coefficient estimates vs. estimates of individual sites: the regres-
sion coefficient estimates of the models represented by the entries 6 (top row), 3 (middle
row) and 1 (bottom row) of Table 5.7 are plotted versus the estimates obtained using the
individual sites. The regression models involve the location (first column), scale (second
column) and shape (third column) parameters.

all three GEV parameters are appropriate. This consideration also appears to be
supported by Figure 5.8. In fact, these plots show that all three GEV parameters
change considerably with the spatial location. This considering a second degree
polynomial surface. Although, with the same model we found that the spatial
regression shows some deficiencies. In fact, from Figure 5.9 (left panel) we can
see that with the location parameter case only 24 of 35 estimated values fall inside
the confidence intervals computed using the dataset of each individual site. This
could outline the insufficiency of the regression model to explain the spatial de-
pendence of the location parameters. We also note that two site estimates (using
individual sites) are particularly unusual respect the other estimates. So for them
the regression estimates are especially inadequate. It is important to investigate
the reason for such extreme rainfall levels in those two sites. May be some other
additional effects should be taken into account which could have an impact on
the extremes, such as the altitude. Middle and right panels of Figure 5.9 illustrate
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the scale and shape estimates. In these cases, respectively only 5 and 2 of 35 es-
timates fall outside the confidence intervals computed using the individual sites.

x1

x2

location

x1 x2

scale

x1 x2

shape

Figure 5.8: Polynomial surfaces: the panels 1–3 show the second degree polynomial
surfaces for the location (left), scale (middle) and shape (right) parameters.

However, a deep analysis is required in order to establish the real adequacy
of the model assumptions. We need some suitable procedures to test the com-
patibility of the model with the data and to determine the appropriate spatial
regression. One example is the model selection technique.

The variability of the estimates are provided by the diagonal elements of the
inverse of the “sandwich” information matrix introduced in Section (5.3.1). More
precisely, the H part of the asymptotic covariance approximation is consistently
estimated by the hessian matrix of composite log likelihood. An estimate can be
provided by the numerical maximization routines that are used in order to obtain
the parameter estimates. For example, we used the optim routine of the R statis-
tical environment, Ihaka and Gentleman (1996). Instead, the J part is estimated
by using a Monte Carlo estimate where the composite log likelihood gradient is
obtained numerically by numeric differentiation routines as for example fdHess
of R. Numerical methods are necessary because we can not easily derive the first-
order derivative of the composite log likelihood associated to model (5.8). For a
detailed discussion about H and J matrices to see Section (5.3.1).

We need some criteria in order to select a specific model among those avail-
able (some examples are illustrated in Table 5.7). In standard problems where the
full likelihood is available the likelihood ratio test (e.g. Davison, 2003, p. 126)
provides a useful procedure in order to test the adequacy of a particular model
against a model alternative. The composite likelihood analogue of the likelihood
ratio statistic can be used in order to test the hypothesis, determining whether
a model M0 is a plausible reduction of a model M1 (where M0 is a subset of
M1). The asymptotic distribution of the composite likelihood ratio statistic has
non standard form and can be derived as a special case of the (profile) likelihood
ratio test for a misspecified likelihood, Kent (1982). However, that distribution
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Figure 5.9: GEV parameter estimates: the three panels illustrate the location, scale and
shape estimates (green dots) of the 35 sites (Carolina) using second degree surface models.
The (gray) dots show the estimates using the individual sites and the vertical lines their
confidence intervals.

in our case could not be valid given that we estimate the matrix J by a Monte
Carlo estimate. Then the distribution of the composite likelihood ratio statistic
can perhaps be more precisely evaluated by a parametric bootstrap, an example
is illustrated by Bellio and Varin (2005). Another criterion for the model selec-
tion, based on the composite likelihood has been introduced by Varin and Vidoni
(2005). This essentially consists of Akaike information criterion by using the com-
posite likelihood.

We have no conclusive results that support any test for the model selection.
Both methods described above are still under investigation.

However, given a specific model we can still test whether a single regression
coefficient is zero by performing a hypothesis test. More specifically, the evidence
of the null hypothesis, that says a regression coefficient is null against the alter-
native that the regressor is not zero, can be supported by testing the hypotheses:

H0 : β = 0 versus H1 : β 6= 0,

where the problem of hypothesis testing can be addressed through the result of
the form

w ≡ β̂ − β
ŝt.dev(β̂)

∼ N(0, 1).

So computing the approximate p-value that is given by the tail area: p-value
' 2{1 − Φ(|w|)}, the null hypothesis for the coefficients β is rejected if p-value
< α, where α is the significance level of the test. Alternatively, one can check if
the confidence interval built for the coefficient contains zero. The (1 − α)% ap-
proximate confidence interval for β is given by CI = β̂ ± zα/2 ŝt.dev(β̂), where
zα/2 is the quantile of level α/2 of the standard normal distribution and ŝt.dev(β̂)

is the standard deviation of the coefficient estimates β̂. The standard deviation
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is computed as the square root of the estimate variances. Then the null hypoth-
esis for the coefficients β is rejected if zero falls into the approximate confidence
interval. In Table (5.7) the regression coefficient estimates of some models that
we have considered are illustrated. As we have mentioned before we can easily
asses, for the models listed, the relevance of each regressor but, more complex is
the model selection procedure. In our case, the latter is still under investigation.

Suppose that a second degree polynomial surface is the correct model for the
location, scale and shape parameters. The regression coefficient estimates are re-
ported in the first entry of Table 5.7. Instead, the estimates of the covariance ma-
trix Σ2 result in : γ̂ = 23 (1.8) km, ζ̂ = 11 (1.1) km and correlation ρ̂ = 0.19(0.09).
In parenthesis the deviation standards are reported. We recall that the model
parameter estimates are obtained by maximization of the composite log likeli-
hood. Furthermore, in order to compute the deviation standard of the trans-
formed estimated parameters we used, from the delta method, the approximate
variance formula. In particular, by denoting with ψ the model parameter we
have: V {f(ψ)} ≈ {f ′(ψ̂)}2V (ψ̂), where V (ψ̂) is the variability of the estimated
parameter.
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Figure 5.10: Extremal coefficients: the extremal coefficient estimates against the Eu-
clidean distances are plotted for each of the pairs involved, from the 35 stations of North
and South Carolina.

From the covariance matrix estimate (the model dependence structure) we
can compute the extremal coefficient estimates for all the pairs of sites, that is
ν̂νν(h) = 2Φ(θ̂θθ(h)/2), where θ̂θθ(h) = (hT Σ̂−1h)−1/2 and h = t1 − t2 with t1 and t2

the coordinates of the j’s and i’s locations. The extremal coefficient estimates are
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illustrated by the cloud of points in the graph in Figure 5.10. The plot shows the
extremal coefficients versus the Euclidean distances for each pair of sites. From
Figure 5.10 we can see that only four pairs of locations can be classified as mildly
or strongly dependent. Instead the other pairs can be classified as weakly depen-
dent.

In order to illustrate the proposal of assessing the rates at which the extreme
rainfall levels occur, from the complete set of pairs of sites, we have selected four
of them. One is the most strongly dependent and the other three have been cho-
sen randomly. In the univariate case the return level estimate associated with
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Figure 5.11: Return level plots: the panels show the return levels for the selected four
pairs. The continuous and dotted lines represent the return values of the two sites in
each pair. The vertical axis represents the quantities 1-p and the horizontal, the extreme
quantiles. The broken lines represent, respectively the quantile levels 0.1 and 0.01 .

the return period 1/p consists of estimating the extreme quantile of the annual
maximum distribution. After estimating the parameters of the GEV distribution,
it follows that the quantile zp of level p can be obtained inverting the equation
F (zp) = 1− p (where F (z) is the GEV distribution). The related interpretation of
all this is that the return level in any particular year with probability p is exceeded
by the annual maximum, Coles (Chapter 3.1, 2001).

Our analysis of spatial extremes is driven by the composite likelihood ap-
proach with the pairwise setting. The bivariate marginal densities of all the pairs
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of observations take the form (5.7). For the pairs of sites we then use the expres-
sion of the marginal distribution F (si, sj), where si and sj are the levels associated
with the sites i and j, and the composite likelihood estimates determine the ex-
tremes quantiles.

Note that in the bivariate case many possible definitions and related inter-
pretations of the return levels exist. For our problem we assume an analogue
definition of the univariate case. Given the composite likelihood estimates, an
estimate of the return levels, with return period 1/p, can be derived inverting the
equation: F (si, sj) = 1− p.

In this way we say that the return levels si and sj in any particular year with
probability p are exceeded by the annual maximum in at least one site, i or j.
Unfortunately, the previous equation can not be easily solved analytically respect
with si and sj . We need another equation in order to have a system of two equa-
tions and two unknown quantities. A possibility is given by the system{

F (si, sj) = 1− p
Fi(si) = Fj(sj),

(5.10)

where from the second equation we can derive that

si = ψi

[{
1 + ξj

(
sj − µj
ψj

)} ξi
ξj

+

− 1

]/
ξi,+µi for ξi 6= 0, ξj 6= 0 (5.11)

and then substituting this result into the first equation we get F (sj, sj) = 1 − p.
However, the latter is still not easily solved analytically respect with sj . Nonethe-
less a solution can be provided by numerical routines that search for the root of a
function as for example uniroot of R. Thus, once we have obtained the estimate
ŝj (with numerical methods), then by using the equation (5.11) we can determine
the estimate ŝi.

For the four pairs of sites we estimated the return levels corresponding to the
values p = 0.01 and p = 0.1. The estimates results are reported in Table 5.8. We
can see that the pairs with strong or mild dependence (as shown by the extremal
coefficients) are related with similar return values for both sites (the first two
rows). This occurs because the dependent sites have similar composite likelihood
estimates due to their close proximity. The remaining two pairs show less similar
return values, which is reasonable considering their larger distances.

Figure 5.11 illustrates the return level plots. Each panel shows the return lev-
els of the pairs. With the first two horizontal plots the similarity between the
return levels for the dependent sites is clearly evident. This could be motivated
by the inadequacy of the polynomial surface order assumed.

The standard errors are obtained from the approximate sampling distribu-
tion of the 1/p, return level as suggest by Coles (2001, p. 139). Broadly, denot-
ing with ψψψ the model parameters, under regular conditions we know that the
composite maximum likelihood estimator ψ̂ψψCML, has approximate distribution
N(ψψψ,H(ψψψ)−1 J(ψψψ)H(ψψψ)−1), where H(ψψψ)−1 J(ψψψ)H(ψψψ)−1 is an approximation of
the asymptotic covariance matrix, see Section (5.3.1).

Plugging the composite likelihood estimates and their approximate asymp-
totic covariance matrix estimates into the normal distribution, we can generate
samples from the approximate sampling distribution of the composite maximum
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sites distance extr. coef. return levels (0.1) return levels (0.01)
30, 31 20 1.44 121.3(35.2), 121.8(37.3) 205.2(25.2), 206.6(29.3)
26, 29 72 1.89 134.6(37.6), 138.5(89.1) 239.4(30.0), 252.7(84.7)
2, 20 435 2.00 203.8(30.3), 144.5(47.8) 366.9(26.4), 239.9(39.5)
5, 33 405 2.00 204.2(42.9), 140.4(26.8) 459.0(21.4), 243.0(12.7)

Table 5.8: Return level estimates: the sites, distances (km), extremal coefficients, return
levels (mm) for p=0.1 and return levels for p=0.01 are reported for the four selected pairs.
In parenthesis the standard deviations are reported.

likelihood estimator. For the set of simulated values ψψψsim1 , . . . , ψψψsimM we compute
the associated return levels by solving the system of equations (5.10). Therefore,
we obtain a set of return levels that form an approximate sampling distribution
of the return level. This can be used in order to calculate approximate variances
and standard deviations.
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Conclusion

The spline mixed model approach for extremes that we propose can be consid-
ered a suitable alternative to the current nonparametric methods (e.g. Chavez-
Demoulin and Davison, 2005). Our goal is not to supplant the already proposed
methods but rather to outline the potential advantages offered by the spline mixed
model paradigm. The novelty of this thesis is their the extension to the general-
ized extreme value distribution. The study focuses on the analysis of series of
block maxima, for instance the annual maxima, to which the GEV distribution
can be fitted. Non stationary sequences of extremes can be modelled incorporat-
ing spline smoother into the GEV model. The particular attractiveness of this ap-
proach is the flexibility of the model and because model fitting and inference use
extensions of standard likelihood methods. The benefit of the mixed model for-
mulation is the inclusion of the smoothing parameter into the model framework
enabling its estimation to occur concurrently with the other parameters. Initially
by adopting the simplest spline mixed model setup (location covarite-dependent)
we illustrate with examples that complex patterns can be easily accommodated.
Fitting and parameter estimates are based on penalized maximum likelihood es-
timation. Our estimation procedure is simple and relatively little computational
effort is required. Simulation study confirms that for an opportune range of scale
and shape values the three-type estimation results have only little bias and vari-
ance. Analysis of the annual maximum temperatures using real data suggests
that our model fits well, properly taking into account the trend in the extremes.

Some drawbacks and points for future study. Non-negligible bias can occur
for a particular range of the shape parameter that correspond to the heavy tail
distributions, especially in moderately small observations. Analysis of environ-
mental extreme processes (our primary goal) could require more realistic models
than the location covariate-dependent case. A less crude approximation could be
provided by including the scale and shape covariate-dependent cases. We con-
sider here the scale covariate-dependent case. We found that the fitting based on
penalized maximum likelihood estimation in the present fashion is not easy to
adapt to further modifications. We explore for the scale covariate-dependent case
the alternative Bayesian approach and use MCMC for estimation and inference.
We found that this proposal facilities the fitting, and that uncertainty in variance
components is more easily taken into account. But it is interesting to explore the
potential solutions offered by the likelihood approach. Mixed model approach
facilities the incorporation of space-time extensions and missing data complica-
tions, and this could be of interest for future studies.

The analysis of spatial extremes is also a primary interest of this thesis. Most of
the models of spatial extremes based on max-stable processes have difficulty han-
dling estimation methods of the parameters. The study focuses on the analysis of
series of block maxima, for instance the annual maxima, spread over a region to
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which the models that arise from the max-stable processes can be fitted. We dis-
cuss a method of inference based on the composite likelihood approach for the
estimation of the spatial model parameters. Simulation study shows the sound
estimation results of the tail dependencies. The spatial extreme value framework
can incorporate spatial dependent regression models with the GEV margins, al-
lowing the assessment of the rate at which the extreme events occur at the sites
under the composite likelihood umbrella.

We analyze the annual maximum rainfall levels at different sites in North
and South Carolina. We are interested in the extreme dependence between the
weather-stations. It is also interesting to explore the use of the composite likeli-
hood with an emphasis on the flexible inference framework it provides in order
to treat the GEV margins. The purpose is to predict the rate of the extreme rainfall
levels that occur at the sites. The estimation results of the dependencies between
the extremes at the sites are reasonable. Although the regression models of the
GEV parameter provide a flexible spatial framework without being too computa-
tionally demanding, their adequacy with data need to be opportunely examined.
Explorative analysis for adequacy of the regression models may be misleading
in situations with spatial data. This is a potential drawback of our analysis and
points for further development. In fact a deep study of the concurrent estima-
tion method of dependence and regression coefficients is necessary. Furthermore,
more flexible nonparametric alternatives could be an initial point of reference.

The intractability of the likelihood function derived from the max-stable pro-
cess formulation of spatial models can be attacked also by Bayesian analysis. We
explore the class of computational intensive methods known as Approximate
Bayesian Computation (ABC). Simulation exercises expose the reasonable ap-
proximation of the posterior densities that can be achieved with this approach.
Simple cases do not require excessive computational effort. Highly structured
problems such as spatial extremes analysis are more difficult to manage with
these techniques. Approximation accuracy favors large sampling numbers, com-
putational considerations favor small numbers. It is of interest for future study
to determine pragmatic methods in order to establish the good compromise be-
tween computational intensity and the approximation accuracy.
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Appendix

In this part of the appendix we present the concept of Laplace approximation
with an example related to the extreme value distribution.

A.1 Laplace approximation

Let f(y) be a positive function. Then one of the simplest methods for approxima-
tion of f is given by the first few terms of its Taylor series expansion. For simplic-
ity f(y) is a univariate function. The approximation can be applied straightfor-
wardly to f or to a transformation of itself like h(y) ≡ log f(y) without changing
anything. For instance, considering f(y) = exp{h(y)} and choosing y0 as the point
to expand around, then an approximation of f is given by

f(y) ≈ exp

{
h(y0) + (y − y0)h′(y0) +

(y − y0)2

2
h′′(y0)

}
, (5.12)

where h′(y) = ∂h(y)/∂y is the first-order differentiation and h′′(y) = ∂2h(y)/∂2y
is the second-order differentiation. For chosen y0 = ŷ (the value that maximizes
the function), it follows that h′(ŷ) = 0 and thus the expression 5.12 can be written
equivalently to

f(y) ≈ exp

{
h(ŷ) +

(y − y0)2

2
h′′(ŷ)

}
. (5.13)

Note that the approximation (5.13) is no longer an approximation, but an exact
expression in the special case that the function h(y) is quadratic. Therefore when
h(y) is not quadratic, for any values y far away from ŷ, the approximation may
not to be close to h(y), so the omitted terms of order (x − x̂)3 and higher will be
important to guarantee a good approximation also for those points. Care should
be taken in any approximation procedure, however many authors like Qind and
Pierce (1993) argue that such an approximation is easy and accurate in inferential
terms. The same approximation method can be applied to compute integrals of
positive functions in the real line, such as

∫
f(y) dy. As in expression (5.13) the

integral can be written as follows∫
f(y) dy ≈

∫
exp

{
h(ŷ) +

(y − y0)2

2
h′′(ŷ)

}
dy. (5.14)

If the quantity ŷ is the maximum, it follows that h′′(ŷ) is negative and the right
side of 5.14 can be explicitly computed by recognizing that the kernel of the in-
tegral is the same as the kernel of a normal density with mean ŷ and variance
−1/h′′(ŷ). With opportune adjustments the above expression becomes∫

f(y) dy ≈ exp{h(ŷ)}
[
− 2π

h′′(ŷ)

]−1/2

, (5.15)

which is a method known as Laplace approximation of the first order.

Example: Generalized extreme value distribution.

Of interest is to look at a practical example that could be the approximation of
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the GEV distribution. Let the generalized extreme value distribution with ex-
pression (1.1). For ξ 6= 0, when ξ = 0 the the distribution is defined by conti-
nuity and it has to be treated separably, the maximum is obtained at the value
ŷ = ψ{(1 + ξ)−ξ − 1}/ξ + µ for ξ > −1. Instead of ξ < −1 the solution can not
be exist. The second derivative of the natural logarithm of (1.1) evaluated at ŷ is
equal to (1 + ξ)2ξ(ξ(1 + ξ)ξ − (1 + ξ)2)/ψ2. Therefore the Taylor series expansion
(5.13) of (1.1) yields

f(y) ≈ exp

{
2(log 2− 1)− logψ − 4

ψ2

(
y − µ+

ψ

2

)2
}
. (5.16)

In this part of the appendix we present explicit expressions for the derivatives
required for the likelihood-based fitting scheme given in Section 3.2–3.2.1.

A.2 Vector notation

Let f be a real-valued function in the d × 1 vector x = (x1, . . . , xd). Then the
derivative vector Dxf(x), is the 1×dwith ith entry ∂f(x)/∂xi. The corresponding
Hessian matrix is given by Hxf(x)Dx{Dxf(x)T}.

If a = (a1, . . . , ad) and b = (b1, . . . , bd) are two d× 1 vectors then element-wise
multiplication is denoted by a� b = (a1b1, . . . , adbd) The expression a/b denotes
element-wise division (a1/b1, . . . , ad/bd). Scalar functions applied to vectors are
also evaluated element-wise. For example, a−1/ξ = (a

−1/ξ
1 , . . . , a

−1/ξ
d ).

A.3 Expression for L(βββ, ψ, ξ, σ2)

Let f(y|u) and f(u) be respectively the GEV conditional and the normal densities
distributions. The likelihood for L(βββ, ψ, ξ, σ2) is given from

L(βββ, ψ, ξ, σ2) = f(y; βββ, ψ, ξ, σ2) =

∫
RK

f(y|u; βββ, ψ, ξ)f(u;σ2) du

= (2π)−K/2|Gσσσ2|−1/2

∫
RK

exp{b(u; βββ, ψ, ξ, σ2)} du

where

b(u; βββ, ψ, ξ, σ2) = −n log(ψ)− 1+ξ
ξ

1T log {1 + ξ(y −Xβββ − Zu)/ψ}

− 1T{1 + ξ(y −Xβββ − Zu)/ψ}−
1
ξ − 1

2
uTG−1

σσσ2 u.

The same arguments of appendix A.1 yields the integral approximation∫
RK

exp{b(u)} du ' (2π)K/2| − Hub(û; βββ, ψ, ξ, σ2)|−1/2 exp{b(û; βββ, ψ, ξ, σ2)}

where

Hub(u; βββ, ψ, ξ, σ2) = XTdiag{huu(u; βββ, ψ, ξ, σ2)}X− blockdiag(G−1
σσσ2 )
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and

huu(u; βββ, ψ, ξ, σ2) ≡ (1 + ξ)[ξ1− {1 + ξ(y −Xβββ − Zu)/ψ}−1/ξ]

ψ2{1 + ξ(y −Xβββ − Zu)/ψ}2
.

Now considering Iuu(u; βββ, ψ, ξ, σ2) = −Hub(u; βββ, ψ, ξ, σ2) the final approximate
expression of the integrated log likelihood results in

L(βββ, ψ, ξ, σ2) ' |Gσσσ2|−1/2 exp{b(û; βββ, ψ, ξ, σ2)}Iuu(û; βββ, ψ, ξ, σ2)

A.4 Expression for Iνννννν(ννν, ψ, ξ, σσσ2)

For the additive model extension, the penalized log-likelihood may be written as

`PL(ννν, ψ, ξ, σ
2) = h(y, ννν, ψ, ξ)− 1

2
uTG−1

σσσ2 u

where

h(y, ννν, ψ, ξ) ≡ −n log(ψ)− 1+ξ
ξ

1T log {1 + ξ(y −Cννν)/ψ}−1T{1+ξ(y−Cννν)/ψ}−
1
ξ .

Vector differential calculus methods (e.g. Wand, 2002) lead to

Dννν`PL(ννν, ψ, ξ, σ
2) = hννν(y, ννν, ψ, ξ)TC−

[
0

uTG−1
σσσ2

]
and

Hννν`PL(ννν, ψ, ξ, σ
2) = CTdiag{hνννννν(y, ννν, ψ, ξ)}C− blockdiag(0,G−1

σσσ2 )

where

hννν(y, ννν, ψ, ξ) ≡ (1 + ξ)1− {1 + ξ(y −Cννν)/ψ}−1/ξ

ψ{1 + ξ(y −Cννν)/ψ}
and

hνννννν(y, ννν, ψ, ξ) ≡ (1 + ξ)[ξ1− {1 + ξ(y −Cννν)/ψ}−1/ξ]

ψ2{1 + ξ(y −Cννν)/ψ}2
.

The required observed information matrix expression is then

Iνννννν(ννν, ψ, ξ, σσσ2) = CTdiag{−hνννννν(y, ννν, ψ, ξ)}C + blockdiag(0,G−1
σσσ2 ).

The (penalised likelihood-based) information matrix is

E{Iνννννν(ννν, ψ, ξ, σσσ2)} = {(1− ξ)/ψ}2Γ(1 + 2ψ)CTC + blockdiag(0,G−1
σσσ2 )

which is consistent with results in Prescott and Walden (1980) and Tawn (1988).

A.5 Expression for I(ψ,ξ)(ψ,ξ)(ψ, ξ, σσσ
2)

First note that

I(ψ,ξ)(ψ,ξ)(ψ, ξ, σσσ
2) = −

[
Hψψ Hψξ

Hψξ Hξξ

]
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where

Hψψ ≡
∂2

∂ψ2

{
`PL(ννν, ψ, ξ, σ

2)− 1
2
|Iνννννν(ννν, ψ, ξ, σ2)|

}
=

∂2

∂ψ2

{
h(y, ννν, ψ, ξ)− 1

2

∣∣∣∣CTdiag{−hνννννν(y, ννν, ψ, ξ)}C + blockdiag(0,G−1
σσσ2 )

∣∣∣∣}
andHψξ andHξξ are defined analogously as the other second-order partial deriva-
tives. Then vector calculus methods lead to

Hψψ = hψψ(y, ψ, ξ) + 1
2
tr
[
Iνννννν(ννν, ψ, ξ, σσσ2)−1CTdiag{hψψνννννν(y, ψ, ξ)}C

]
,

Hψξ = hψξ(y, ψ, ξ) + 1
2
tr
[
Iνννννν(ννν, ψ, ξ, σσσ2)−1CTdiag{hψξνννννν(y, ψ, ξ)}C

]
and

Hξξ = hξξ(y, ψ, ξ) + 1
2
tr
[
Iνννννν(ννν, ψ, ξ, σσσ2)−1CTdiag{hξξνννννν(y, ψ, ξ)}C

]
.

Here r ≡ (y −Cννν)/ψ,

hψψ(y, ψ, ξ) ≡ n

ψ2

+1T

{(1 + ξ)r2} �
{
ξ1− (1 + ξr)−

1
ξ

}
+ 2r� (1 + ξr)�

{
(1 + ξr)−

1
ξ − (1 + ξ)1

}
ψ2(1 + ξr)2

 ,

hψξ(y, ψ, ξ) ≡ 1T

r� (1 + ξr)�
[
1− (1 + ξr)−

1
ξ �

{
log(1+ξr)

ξ2
− r

ξ(1+ξr)

}]
ψ(1 + ξr)2


+1T

r2 �
{

(1 + ξr)−
1
ξ − (1 + ξ)1

}
ψ(1 + ξr)2

 ,

hξξ(y, ψ, ξ) ≡ −1T

[
log(1 + ξr)� {(1 + ξr)� log(1 + ξr)− 2ξ(r + 1)}+ 2ξ2r

ξ4(1 + ξr)1+ 1
ξ

]

+1T
[
ξr� {ξr(ξ + 3) + 2} − 2(1 + ξr)� log(1 + ξr)

ξ3(1 + ξr)2

]
,

hψψνννννν(y, ψ, ξ) ≡
6(1 + ξ)(ξr)2 �

{
ξ1− (1 + ξr)−

1
ξ

}
− (1 + 6ξ + 5ξ2)(r2)� (1 + ξr)−

1
ξ

ψ4(1 + ξr)4

+
6(1 + ξ)

{
ξ1− (1 + ξr)−

1
ξ

}
ψ4(1 + ξr)2

+
(1 + ξ)r�

[
6(1 + ξr)−

1
ξ − 12ξ

{
ξ1− (1 + ξr)−

1
ξ

}]
ψ4(1 + ξr)3

,
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hψξνννννν(y, ψ, ξ) ≡
3ξ(2 + ξ)r− (7 + 8ξ)r� (1 + ξr)−

1
ξ

ψ3(1 + ξr)3

+
2(1 + ξ)

[
1− (1 + ξr)−1/ξ �

{
log(1+ξr)

ξ2
− r

ξ(1+ξr)

}]
� (ξr− 1)

ψ3(1 + ξr)3

−
(1 + ξ)r� (1 + ξr)−1/ξ � { log(1+ξr)

ξ2
− r

ξ(1+ξr)
}

ψ3(1 + ξr)3

+
3(1 + ξ)r� (2ξ1 + rψ)� (1 + ξr)−1/ξ − 6ξ2(1 + ξ)r

ψ4(1 + ξr)4

−
2
{
ξ1− (1 + ξr)−

1
ξ

}
ψ3(1 + ξr)2

and

hξξνννννν(y, ψ, ξ) ≡
−(1 + ξ)(1 + ξr)−1/ξ �

{
log(1+ξr)

ξ2
− r

ξ(1+ξr)

}2

ψ2(1 + ξr)2

−
(1 + ξ)(1 + ξr)�

{
2r+r2ξ
ξ2(1+ξr)

− 2 log(1+ξr)
ξ3

}
ψ2(1 + ξr)2

+

[
1− (1 + ξr)−1/ξ �

{
log(1+ξr)

ξ2
− r

ξ(1+ξr)

}]
� (21− 4r− 2ξr)

ψ2(1 + ξr)3

+
2r�

{
ξ1− (1 + ξr)−1/ξ

}
� (3ξ1− 2ξr + 1)

ψ2(1 + ξr)4
.
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