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THE SUBGROUP LATTICE OF THE ALTERNATING

AND SYMMETRIC GROUPS

Direttore della Scuola: Ch.mo Prof. Paolo Dai Pra

Coordinatore d’indirizzo: Ch.mo Prof. Franco Cardin

Supervisore: Ch.mo Prof. Andrea Lucchini

Dottorando: Valentina Colombo

31 dicembre 2009



Abstract

In this thesis we investigate some properties of the Möbius function on the subgroup
lattice of the Alternating and Symmetric groups of degree n, Alt(n) and Sym(n).
The study of this function is strictly related to the study of the probabilistic zeta
function of a finite or profinite group. We obtain results on two different open ques-
tions. First we prove that in all the Alternating and Symmetric groups the Möbius
number of each subgroup can be bounded polinomially in terms of its index and the
number of subgroups with a given index n and non trivial Möbius number grows
at most polynomially in n. This result is an important step in order to prove a
conjecture of A.Mann on the absolute convergency of the probabilistic series associ-
ated to a positively finitely generated profinite group. Then we consider a problem
introduced by A.Mann and N.Boston: they conjectured that the existence, for a
fixed value of n, of a “good” correspondence between the maximal subgroups of
Alt(n) and Sym(n) reflects the equality between the probabilistic series of Sym(n)
and the probabilistic series of the direct product of Alt(n) with a cyclic group of
order 2. We prove that this conjecture holds whenever n is a prime; but it does
not hold in general (for example when n = 21). Even if there exists a one-to-one
correspondence between maximal subgroups of Alt(n) and Sym(n) the conjecture
can fail; it is the case of n = 62.

Riassunto

In questa tesi analizziamo alcune proprietà della funzione di Möbius nel reticolo
dei sottogruppi dei gruppi Alterno e Simmetrico di grado n, Alt(n) e Sym(n). Lo
studio di questa funzione è strettamente correlato allo studio della funzione zeta
probabilistica di un gruppo finito o profinito. Otteniamo risultati riguardanti due
problemi distinti. Innanzitutto dimostriamo che in ogni gruppo Alterno o Simme-
trico il numero di Möbius di ogni sottogruppo può essere limitato polinomialmente
nell’indice di tale sottogruppo, ed il numero di sottogruppi con un dato indice n e
con numero di Möbius non nullo cresce al più polinomialmente in n. Questo risul-
tato è un passo importante al fine di dimostrare la validità di una congettura di
A.Mann riguardante la convergenza assoluta della serie probabilistica associata ad
un gruppo profinito positivamente finitamente generato. In secondo luogo conside-
riamo un altro problema: A.Mann e N.Boston hanno congetturato che l’esistenza,
per un dato valore di n, di una “buona” corrispondenza tra i sottogruppi massimali
di Alt(n) e Sym(n) rifletta l’uguaglianza tra la serie probabilistica di Sym(n) e la
serie probabilistica del prodotto diretto fra Alt(n) ed un gruppo ciclico di ordine
2. Proviamo che tale congettura vale se n è primo; ma non è vera in generale (ad
esempio quando n = 21). Persino se si assume l’esistenza di una corrispondenza
biunivoca fra i massimali di Alt(n) e Sym(n), la congettura può non valere; è ciò
che accade quando n = 62.
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Introduction

In this thesis we investigate some properties of the Möbius function µ on
the subgroup lattice of a finite group; in particular we will consider finite
Alternating and Symmetric groups.

The most relevant results, contained in Chapter 4, are on the following
problem, introduced in Chapter 2. In this chapter G denotes a finitely gener-
ated profinite group; we define the Möbius function µ(H,G) in the lattice of
the open subgroups of G by the rules: µ(G,G) = 1 and

∑
K≥H µ(K,G) = 0

if H < G. In [25] and [26] Mann proposed to investigate the following pro-
blems:

1. What are the groups in which |µ(H,G)| is bounded by a polynomial
function in the index of H?

2. What are the groups in which the number bn(G) of subgroups H of
index n satisfying µ(H,G) 6= 0 grows at most polynomially in n?

The interest for these questions is related to the study of the function PG(t)
expressing the probability that t randomly chosen elements of G generate G
topologically (the probability being defined via the normalized Haar measure
on G). As it was proved by Mann in [26], the groups G for which µ(H,G)
and bn(G) are polynomially bounded in terms of |G : H| and n respectively
are precisely those for which the infinite sum∑

H<oG

µ(H,G)
|G : H|s

is absolutely convergent in some half complex plane. When this happens,
this infinite sum represents in the domain of convergency an analytic func-
tion which assumes precisely the value PG(t) on any positive integer t large
enough. Since µ(M,G) = −1 for any maximal subgroup M of G, it must be
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mn(G) ≤ bn(G) (where mn(G) denotes the number of maximal subgroups
of G with index n). In particular, if bn(G) grows polynomially, then G

has polynomial maximal subgroup growth (PMSG). A theorem by Mann
and Shalev ([27]) characterizes groups with PMSG as those which are po-
sitively finitely generated (PFG), i.e. PG(t) > 0 for some choice of t. Mann
conjectured that, conversely, the following holds:

Conjecture 1 (Mann) If G is a PFG group, then |µ(H,G)| is bounded
by a polynomial function in the index of H and bn(G) has growth at most
polynomial in n.

Recently Lucchini has proved that this problem can be reduced to the study
of the Möbius function of almost simple groups associated to the set Λ(G)
of finite monolithic groups L with socL non abelian and L an epimorphic
image of G. More precisely, for any L ∈ Λ(G) denote by XL the almost
simple group associated to L, and by b∗n(XL) the number of subgroups K
of XL with |XL : K| = n, K socXL = XL and µ(K,XL) 6= 0; the following
holds ([20]): there exist two constants γ1 and γ2 such that bn(G) ≤ nγ1

and |µ(H,G)| ≤ |G : H|γ2 for each n ∈ N and for each open subgroup
H of G if and only if there exist two constants c1 and c2 such that hold
b∗n(XL) ≤ nc1 and |µ(Y,XL)| ≤ |XL : Y |c2 for each L ∈ Λ(G), each n ∈ N
and each Y ≤ XL with Y socXL = XL. This means that Mann’s conjecture
is true if the following holds:

Conjecture 2 (Lucchini) There exist two constants c1 and c2 such that
for each finite almost simple group X we have: b∗n(X) ≤ nc2 for each n ∈ N,
and |µ(Y,X)| ≤ |X : Y |c1 for each Y ≤ X with Y socX = X.

In Chapter 4 we prove that this conjecture is true for all the Alternating
and Symmetric groups.

Theorem 1 There exists an absolute constant α such that for any n ∈ N,
if G ∈ {Alt(n),Sym(n)} and m ∈ N, then bm(G) ≤ mα.

Theorem 2 There exists an absolute constant β such that for any n ∈ N,
if G ∈ {Alt(n),Sym(n)} and H ≤ G, then |µ(H,G)| ≤ |G : H|β.

To prove these theorems we will use results contained in Chapter 1. In
particular, a key ingredient in these proofs is a consequence of the closure
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theorem of Crapo. It turns out (see in particular Lemma 1.3.6) that if G is a
transitive permutation group on a set Γ, then in order to bound the number
of subgroups H with µ(H,G) 6= 0 and to estimate |µ(H,G)| it suffices to
obtain:

(1) similar bounds for the particular case when H is transitive;

(2) estimations on the number of subgroups of G that are maximal with
respect to the property of admitting a certain set of orbits (Γ-closed
subgroups) and bounds for the number of orbits of a Γ-closed subgroup
H in terms of the index |G : H|.

When G ∈ {Alt(n),Sym(n)}, the second task is easy, since a closed sub-
group is conjugated to (Sym(n1)× · · · × Sym(nr)) ∩G with n1 + . . . nr = n

(see Theorem 1.3.8 and Lemma 4.2.3). The first task can be performed
considering the action of G on the set ∆n = {(a, b) | 1 ≤ a, b ≤ n, a 6= b}.
In this way it suffices to collect informations about the Möbius number of
the ∆n-transitive subgroups of G (but these are precisely the 2-transitive
subgroups of G) and to study how many transitive subgroups of G are ∆n-
closed (see Corollary 1.4.6).
We employ in our proofs the classification of the 2-transitive permutation
groups (see for example [4]) and other asymptotic results on the numbers
of subgroups of Sym(n) which have been proved with the help of the clas-
sification of the finite nonabelian simple groups; many of these results are
contained in [32].

Moreover in the last section of Chapter 4 we prove that the bound on the
Möbius number, in Theorem 2, can be improved if G ∈ {Alt(p), Sym(p)},
with p a “good” prime. In fact it holds:

Theorem 3 Let p be a prime, with p 6= 11, 23 and p 6= (qd− 1)/(q− 1), for
any couple of natural numbers (q, d), with q > 4 if d = 2.
If G ∈ {Alt(p), Sym(p)} and H ≤ G, then

|µ(H,G)| ≤ |G : H|.

In the proof of this result we will use extimations on the Möbius numbers
µ(H,Alt(p)) and µ(H,Sym(p)) with H a subgroup of Alt(p), which are
proved in Chapter 3 (see Lemma 3.2.2 and Theorem 3.2.3).
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We verify that the bound of Theorem 3 does not hold in general for a degree
n ∈ N; but it leads us to formulate the following conjecture:

Conjecture 3 There exists an absolute constant γ such that ∀n ∈ N, if
G ∈ {Alt(n),Sym(n)} and H ≤ G, then

|µ(H,G)| ≤ γ · |G : H|.

In Chapter 3 we consider a problem on the probabilistic zeta function
of a finite group; this function is introduced in the first section of Chapter
2. Let G be a finite group and denote by PG(t) the probability the t ran-
domly chosen elements of G generate G itself; this integer function can be
interpolate by a complex function PG(s), defined as:

PG(s) =
∑

|G:H|=n

µ(H,G)
ns

The multiplicative inverse of the function PG(s) is called the probabilistic
zeta function of G.

Given N/G, we define PG,N (s) =
∑
|G:H|=n

HN=G

µ(H,G)/ns. As it is shown

in [3, Section 2.2], it holds PG(s) = PG/N (s)PG,N (s). In [24] Lucchini and
Massa have proved that there exist explicit criterions to recognize whether
the factor groupG/Frat(G) is isomorphic to Alt(n) (with n ≥ 5) only looking
at the coefficients of PG(s). Using these results they have been able to verify
that if PG(s) = PSym(n)(s), with n ≥ 5, then either G/Frat(G) ∼= Sym(n) or
G/Frat(G) ∼= Alt(n)× C2. We investigate, in Chapter 3, which values of n
satisfy:

PSym(n)(s) = PAlt(n)×C2(s) = PAlt(n)(s) · PC2(s) (1)

This is equivalent to ask when PSym(n),Alt(n)(s) = PAlt(n)(s). Many authors
have studied this problem (see for example [7]) and, by GAP, we already
know whether n satisfies equality (1), for any n < 12. In [2] Boston and
Mann formulated the following conjecture:

Conjecture 4 (Boston, Mann) The validity of (1), for n ≥ 5, reflects
the non-existence of maximal subgroups of Alt(n) that coincide with their
normalizer in Sym(n).
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We will verify that this conjecture holds whenever n is a prime. In fact
if p is a “good” prime (i.e. Sym(p) does not contain any almost simple
transitive subgroup) we prove the following:

Theorem 4 Let p ≥ 5 prime, p 6= 11, 23 and p 6= (qd − 1)/(q − 1). Then
PSym(p),Alt(p)(s) = PAlt(p)(s).

Otherwise, Alt(p) has some maximal subgroups which coincide with their
normalizers in Sym(p); in these cases we prove:

Theorem 5 If p = 11, p = 23 or p = (qd − 1)/(q − 1) > 5, then it holds
PSym(p),Alt(p)(s) 6= PAlt(p)(s).

In the proofs of these theorems we make a deep use of the formula expressing
the difference between PSym(n),Alt(n)(s) and PAlt(n)(s) (see Section 2.1); from
this formula some conditions can be deduced that are sufficient (but not
necessary) to guarantee that PSym(n),Alt(n)(s) = PAlt(n)(s).

The conjecture of Boston and Mann is not true in general for n ≥ 5.
In the last section of Chapter 3 we make some considerations about the
difficulty to estabilish whether Sym(n) satisfies or not the conjecture, and
we show some counterexamples. First of all the condition that any maximal
subgroup of Alt(n) does not coincide with its normalizer in Sym(n) is not
sufficient to guarantee the existence of a bijection between the set A of the
maximal subgroups of Alt(n) and the set S of the maximal supplements of
Alt(n) in Sym(n). We verify that this fact makes the failure of the conjecture
in the case n = 21. Then we notice that, even if this bijection between A
and S exists, it does not always imply PAlt(n)(s) = PSym(n),Alt(n)(s); it is
what happens when n = 62. The problem is that there is no hope that
the bijection between A and S can be extended to a bijection between the
subgroups that can be obtained as intersection of elements of A and those
that are intersection of elements of S. In particular it is very difficult to
study the intersections of imprimitive subgroups: it is possible that the
intersection of few (even two) imprimitive maximal subgroups of Sym(n) is
already contained in Alt(n) (see the case n = 21).

We conclude Chapter 3 with an open problem. We want to consider
the Symmetric groups Sym(n) which do not contain any primitive proper
subgroup, different from Alt(n). By Cameron ([4]), we know that the family
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F of these groups has density 1 in the set of all Symmetric groups. Moreover
we notice that for each Sym(n) ∈ F there exists a bijection between A and
S, defined as above. Then it is natural to ask if Sym(n) ∈ F satisfies or
not the conjecture of Boston and Mann, and if all the Symmetric groups
in F have the same behaviour. We have not yet obtained an answer to
this question. The possibility of expressing subgroups of the Alternating
group as intersection of two (or few) imprimitive maximal subgroups of the
Symmetric group, could imply the existence of a counterexample to the
conjecture, even among the groups in F . But we are inclined to think that,
if such a counterexample exists, then the degree must be quite large.
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Chapter 1

Preliminaries

We start by stating some definitions and by proving some results that will
be used throughout this thesis.

1.1 The Möbius function on a finite poset

Let P be a locally finite poset.

Definition 1.1.1 The Möbius function µ on P × P is defined as follows:

µ(x, y) =


0 if x 6≤ y
1 if x = y

−
∑

x<z≤ y
µ(z, y) if x < y

The Möbius function on P will often be written as µP .

Definition 1.1.2 A closure on P is a function ¯ : P → P satisfying the
following three conditions:

a) x ≤ x̄ for all x ∈ P ;

b) if x, y ∈ P with x ≤ y, then x̄ ≤ ȳ;

c) ¯̄x = x̄ for all x ∈ P .

If ¯ is a closure map on P then P̄ := {x ∈ P | x̄ = x}.
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Notice that P̄ is a poset with order induced by the order on P .

The closure theorem of Crapo ([6, Theorem 1]). Let P be a finite
poset and let¯ : P → P be a closure map. Fix x, y ∈ P such that y ∈ P̄ .
Then ∑

z̄=y
µP (x, z) =

 µP̄ (x, y) if x̄ = x

0 otherwise.

Remark 1.1.3 By definition of µP , we note that the closure theorem of
Crapo can be formulated in the following way, using the same notations:

∑
z̄=y

x≤ z

µP (x, z) =

 µP̄ (x, y) if x̄ = x

0 otherwise.

The Möbius inversion formula. Let P be a finite poset and suppose
f, g : P → Z two functions such that g(x) =

∑
y≤x f(y) for all x ∈ P . Then

f(y) =
∑
x≤ y

µP (x, y)g(x) for all y ∈ P.

Definition 1.1.4 A chain in P is a subset C ⊆ P such that x ≤ y or y ≤ x
for all x, y ∈ C. Let C = {x0, . . . , xl}, with xi < xi+1 for 0 ≤ i ≤ l− 1; then
the elements of C can be ordered as a sequence

x0 < x1 < · · · < xl

The length of the chain C is l.
An antichain in P is a subset A ⊆ P such that neither x ≤ y nor y ≤ x

holds for any pair of distinct elements x, y ∈ A.

Theorem 1.1.5 ([13, Theorem 2.2]) Let P be a finite poset with a unique
minimum element 0̂ and a unique maximum element 1̂. Let r be the length
of the longest chain of P . For −1 ≤ i ≤ r − 2, let ci = ci(P ) be the number
of chains 0̂ = x0 < x1 < · · · < xi+1 < xi+2 = 1̂ of P . Then

µP (0̂, 1̂) =
r−2∑
i=−1

(−1)ici.

It follows
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Corollary 1.1.6 Let P be a finite poset with a unique minimum element 0̂
and a unique maximum element 1̂. Let y ∈ P ; then µP (y, 1̂) is equal to the
difference between the number of chains connecting y to 1̂ of even length,
and the number of similar chains of odd length.

Definition 1.1.7 Let L be a finite lattice.

(a) 0̂ and 1̂ denote, respectively, the unique minimum element of L and
the unique maximum element of L.

(b) A complement to x ∈ L is an element y ∈ L such that infL(x, y) = 0̂
and supL(x, y) = 1̂. Also x⊥ denote the set of complements to x in L.

The complement theorem of Crapo ([5, Theorem 3]) Let L be a
finite lattice and fix x ∈ L. Then

µL(0̂, 1̂) =
∑

y,z∈x⊥
µL(0̂, y)ζL(y, z)µL(z, 1̂),

where ζL is the zeta function on L, with ζL(y, z) = 1 if y ≤ z, or ζL(y, z) = 0
otherwise. In particular, if x⊥ is an antichain, then

µL(0̂, 1̂) =
∑
y∈x⊥

µL(0̂, y)µL(y, 1̂).

1.2 Möbius functions associated to a finite group:
definitions and properties

Let G be a finite group. We consider the lattice LG of subgroups of G; this
is, in particular, a poset, ordered by inclusion, and we denote by µLG the
Möbius function on LG.

Remark 1.2.1 If H ≤ K ≤ G then

µLG(H,K) = µLK (H,K)

with µLK the Möbius function associated to LK . From now on, we will write
µ(H,K) instead of µLK (H,K) whenever H is a subgroup of K.

Remark 1.2.2 One of the first authors to study the Möbius function on the
subgroup lattice of a group G was Hall in [13]; in this paper he noticed the
following properties of µLG.
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1) Let H < G; µ(H,G) 6= 0 only if H is an intersection of maximal
subgroups in LG.

2) Let H ≤ G; µ(H,G) is equal to the difference between the number of
chains of subgroups from H to G of even length, and the number of
such chains of odd length (this is an application to the lattice LG of
Corollary 1.1.6).

Remark 1.2.3 Another characterization of µLG was given by Mann in [25]:
he noticed that µ(H,G), for any H ≤ G, is the difference between the number
of ways to express H as the intersection of evenly many maximal subgroups
of G and the number of ways to express it as such an intersection of oddly
many terms.

Let L?G be the set of the intersections of maximal elements in LG, with G
adjoined; L?G is a poset with order induced by the order on LG. Denote by
µL?G the Möbius function on this poset.

Remark 1.2.4 From the definition of µLG and Remark 1.2.2 1), it follows
that

µ(H,G) = µL?G(H,G)

for any H ∈ L?G.

Let n ≥ 1 be a natural number; we may define the Möbius function µ(n),
that is strictly connected to the Möbius function associated to the subgroup
lattice of a cyclic group.

Definition 1.2.5 Let n ∈ N;

µ(n) =


1 if n = 1,
0 if p2|n for some prime p,

(−1)r if n = p1p2 . . . pr where the pi are distinct primes.

Remark 1.2.6 By the definition of µ(n), we observe that, if n 6= 1, it holds∑
d|n

µ(d) = 0.

It is now easy to prove the following proposition.

Lemma 1.2.7 Let G be a cyclic group of order n; then

µ(〈1〉 , G) = µ(n).

10



1.3 Some applications on LG

If G is a transitive permutation group on a finite set Γ we may define a
closure function on LG in the following way.

Definition 1.3.1 Let Z ≤ G and let τ = {Λ1, . . . ,Λk} be the set of orbits of
Z in its action on Γ. For any 1 ≤ i ≤ k denote by Sym(Λi) the Symmetric
group on the set Λi. We define

Z̄ := (Sym(Λ1)× · · · × Sym(Λr)) ∩G

and
¯ : LG → LG

Z 7→ Z̄

The function¯: LG → LG so defined is a closure function on LG. We will
call Z̄ the closure of Z in LG, for any Z ≤ G; in particular, if Z is transitive
on Γ its closure is G. If Z = Z̄ we will say that Z is closed in LG.
The set L̄G :=

{
Z ∈ LG |Z = Z̄

}
is a poset, with order induced by LG, and

we denote by µL̄G the Möbius function on L̄G.

Remark 1.3.2 For Z ∈ L̄G, we will write µ̄(Z,G) instead of µL̄G(Z,G).
Notice that in general L̄K 6= L̄G ∩ LK , when K is a transitive subgroup of
G; then, if Z ≤ K ≤ G, it follows that in general µ̄(Z,K) 6= µL̄G(Z,K).

Definition 1.3.3 Let PΓ be the poset of all the partitions of Γ, ordered by
refinement: so {A1, . . . , Ah} ≤ {B1, . . . , Bl} if and only if each Ai is a subset
of some Bj. The maximum 1̂ of PΓ is {Γ}. The orbit lattice of G is defined
as

PΓ(G) := {τ ∈ PΓ| the orbits of some Z ∈ LG are the parts of τ} .

This is a poset with the order induced by the order in PΓ; we can define on
PΓ(G) the Möbius function, that we denote by µPΓ(G).
If τ = {Λ1, . . . ,Λk} ∈ PΓ(G), then we define

G(τ) := (Sym(Λ1)× · · · × Sym(Λk)) ∩G ;

G(τ) is the maximal subgroup of G whose orbits are precisely the parts of τ .

11



Remark 1.3.4 We notice that Z ∈ L̄G if and only if there exists τ ∈ PΓ(G)
with Z = G(τ); hence there is a bijection between the sets L̄G and PΓ(G).
Then

µ̄(Z,G) = µPΓ(G)(τ, 1̂)

for any Z ∈ L̄G.

Remark 1.3.5 If G = Sym(Γ), then PΓ(G) = PΓ. Hence the elements of
L̄G are the subgroups of the form Sym(Λ1)×· · ·×Sym(Λk), for any partition
{Λ1, . . . ,Λk} in PΓ.
If G = Alt(Γ), we have PΓ(G) 6= PΓ. In fact Alt(Γ) doesn’t contains any
subgroup with number of orbits on Γ equal to |Γ| − 1. Hence the closed
subgroups of Alt(Γ) are of the form (Sym(Λ1)×· · ·×Sym(Λk))∩Alt(Γ), for
any {Λ1, . . . ,Λk} ∈ PΓ with k 6= |Γ| − 1.
Then to any closed subgroup M of Sym(Γ), with number of orbits on Γ
different from |Γ|−1, corresponds a closed subgroup of Alt(Γ), that is equal to
M∩Alt(Γ). Obviously, ifM 6= 〈1〉, |Sym(Γ) : M | = |Alt(Γ) : (M∩Alt(Γ))|.

Let G be transitive on Γ. For any subgroup H of G, let

SH := {K ≤ G |K transitive on Γ,K ≥ H} ⊆ LG.

The set SH is a poset with order induced by the order on LG. We define
two functions f, g : LG × LG → Z in the following way

f(H,Y ) =

 µ(H,Y ) if Y ∈ SH
0 otherwise,

g(H,X) =

 µ̄(H,X) if X ∈ SH and H is closed in LX
0 otherwise.

Applying the closure theorem of Crapo to LX , with X ∈ SH , we obtain

∑
Y≤X

Y ∈SH

µ(H,Y ) =

 µ̄(H,X) if H is closed in LX
0 otherwise.
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This means that f and g satisfy the relation

g(H,X) =
∑
Y≤X

Y ∈SH

f(H,Y )

and, by the Möbius inversion formula, for any Y ∈ SH , we have

f(H,Y ) =
∑
X≤Y

X∈SH

µ(X,Y )g(H,X).

Setting Y = G, we get:

Lemma 1.3.6 If H is a subgroup of a transitive permutation group G, then

µ(H,G) =
∑

K∈SH

µ(K,G)g(H,K) (1.1)

So in particular

|µ(H,G)| ≤
∑

K∈SH

|µ(K,G)| · |g(H,K)| (1.2)

Remark 1.3.7 In Chapter 4 we will apply the previous Lemma 1.3.6 to
study µ when G is the Symmetric group Sym(n) or the Alternating group
Alt(n). In particular we will consider G with two different actions: the
natural action on the set In := {1, . . . , n}, and the transitive action on the
set ∆n := {(a, b) | 1 ≤ a, b ≤ n, a 6= b} defined by (a, b)g = (ag, bg).

In order to apply Lemma 1.3.6, we first need to estimate |g(H,K)|, for
H ≤ G and K ∈ SH . If K = H, |g(H,H)| = 1; if K 6= H we prove the
following proposition.

Theorem 1.3.8 Assume that G is a transitive permutation group on a set
Γ and H ≤ G. If K ∈ SH and K 6= H, then

|g(H,K)| ≤ (r !)2

2

where r is the number of orbits of H on Γ.
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Proof. Recall the definition of g(H,K):

g(H,K) =

 µ̄(H,K) if H is closed in LK
0 otherwise.

If H is not closed in LK , then |g(H,K)| = 0 and we have finished.
So we can suppose that H is closed in LK ; in particular, since H 6= K, H is
not transitive on Γ. We are proceeding to estimate |µ̄(H,K)|.
Let σ = {Ω1, . . . ,Ωr} be the set of orbits of H on Γ, with r > 1. K is
transitive on Γ, then we can define the set PΓ(K) (see Definition 1.3.3) in
the following way:

PΓ(K) := {τ ∈ PΓ | the orbits of some Z ∈ LK are the parts of τ} .

Denote by µPΓ(K) the Möbius function on PΓ(K); by Remark 1.3.4 it holds

µ̄(H,K) = µPΓ(K)(σ, 1̂).

By Corollary 1.1.6, |µPΓ(K)(σ, 1̂)| is bounded by the number of the chains
in PΓ(K) connecting σ to the partition {Γ} = 1̂. This number is obviously
smaller or equal than the number v of chains from σ to 1̂ in PΓ; so we are
going to calculate v.
The set V of all chains between σ and 1̂ in PΓ can be ordered by refinement.
We start computing the number of maximal chains in the poset V; then we
will estimate how many chains are contained in each maximal chain.
Any maximal chain in V can be constructed in the following way. We join
together two parts of σ, obtaining a partition τ1 of PΓ, with r − 1 parts,
that contains σ; now we join two parts of τ1 and we have a new partition
τ2, with r−2 parts, containing τ1. We can repeat this process until we have
obtained a partition τr−2 with two parts; then, joining these two parts, we
have {Γ}.
So a maximal chain has length r − 1. At the step 1 we have to choose τ1,
joining two parts of σ, and then there are

(r
2
)
possibilities for τ1; at the step

2 we have to choose two parts between r − 1 parts, and so we have
(r−1

2
)

possibilities for τ2. So on, until the step r − 1: we have to join the last two
parts, and so we have only one possibility; in fact we obtain the partition
{Ω1 ∪ · · · ∪ Ωr} = 1̂. Therefore there are r

2

 ·
 r − 1

2

 · · ·
 2

2

 = r !(r − 1)!
2r−1

14



maximal chains in V.
Now we have to calculate how many chains are contained in each maximal
chain. Let m be a maximal chain in V; then m is of the following form

σ = τ0 < τ1 < τ2 < · · · < τr−1 = {Γ}

To obtain a subchain of m we may delete some elements τj of m, with
1 ≤ j < r− 1, because σ and τr−1 are fixed. Then the number of subchains
of m is equal to the cardinality of the set of parts of {τ1, . . . , τr−2}, with
r − 2 elements; so this cardinality is 2r−2.
Each maximal chain has 2r−2 subchains, hence

v ≤ r !(r − 1)!
2r−1 · 2r−2 = r !(r − 1)!

2 ≤ (r !)2

2

It follows
|µ̄(H,G)| ≤ (r !)2

2 .

�

Remark 1.3.9 We know that the upper bound on |g(H,K)| stated in the
previous Theorem 1.3.8 is not the best possible for any K ∈ SH . In fact
Stanley proved in [35] that if K ∈ {Sym(Γ),Alt(Γ)} then, for any H ≤ K

closed in LK (H 6= 〈1〉 when K = Alt(Γ)),

|µ̄(H,K)| = (r − 1)!

where r is the number of orbits of H on Γ. Hence, for any H ≤ K (H 6= 〈1〉
when K = Alt(Γ)), it holds

|g(H,K)| ≤ (r − 1)! .

1.4 Bounds on permutation groups

In this section we will collect a series of results on permutation groups, that
will be very useful in the proofs of our main theorems. We consider n ∈ N
and G ∈ {Alt(n), Sym(n)}, with its natural action on In = {1, . . . , n}. We
can give a bound on the Möbius number of a 2-transitive subgroup of G in
the following way.

15



Theorem 1.4.1 Suppose G ∈ {Sym(n),Alt(n)} and let H be a 2-transitive
subgroup of G. Then

|µ(H,G)| ≤ 1.

Proof. Clearly µ(Alt(n),Sym(n)) = −1, so we may assume Alt(n) 6≤ H.
We use the classification of the 2-transitive permutation groups. If H is
2-transitive on In, then it is an affine or an almost simple subgroup of G.
All affine and almost simple 2-transitive groups are well known; they are
listed, for example, in [4], respectively in Table 6.3 and Table 6.4.
To prove the thesis, it suffices to verify that there are at most two maximal
subgroups of G containing H. In fact, if this happens, µ(H,G) 6= 0 only if H
is maximal in G or H corresponds to the intersection of these two maximal
subgroups (see Remark 1.2.2 1)); in both cases, by Remark 1.2.3, we obtain
|µ(H,G)| = 1.
Let H be an affine 2-transitive subgroup of G; so n = pm for some prime p,
m ∈ N, and H ≤ AGL(m, p)∩G such that socH = soc(AGL(m, p)) (we are
assuming pm 6= 2). Using [30, Proposition 6.2.] and comparing Table 2 in
[30] with Table 6.3, we verify that H is not contained in any proper almost
simple subgroup of G different from Alt(n). Then H may be contained only
in some affine subgroups of G and in H Alt(n); moreover AGL(m, p) ∩G is
the unique maximal affine subgroup of G containing H. Hence there are at
most two maximal subgroups of G containing H.
Finally let H be an almost simple 2-transitive subgroup of G. We use
[30, Proposition 6.1.] and [4, Table 6.4] to determine the possible proper
subgroups of G containing H: we deduce that H is not contained in any
affine subgroup of G, but it may be contained in some almost simple 2-
transitive subgroups. Denote by S the socle of H. The maximal al-
most simple subgroup of G containing H and with socle S is NG(S), that
is isomorphic to a subgroup of Aut(S); we are supposing Alt(n) 6≤ H,
and hence NG(S) 6= G. Tables III,IV,V,VI in [17] list all the possi-
ble inclusions between almost simple primitive groups with different so-
cles; we compare these tables with Table 6.4 in [4] to determine the in-
clusions between almost simple 2-transitive proper subgroups of G, with
different socles. If n 6∈ {11, 12, 24}, then no almost simple K exists with
H ≤ K ≤ G and socK 6∈ {S,Alt(n)}; hence the maximal subgroups of
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G containing H are elements of the set {NG(S),Alt(n)}, and we obtain
the thesis. The following exceptional inclusions require more attention:
(n, S, socK) ∈ {(11,PSL(2, 11),M11), (12,PSL(2, 11),M12), (12,M11,M12),
(24,PSL(2, 23),M24)}. We are going to consider these cases.

• (n, S, socK) = (11,PSL(2, 11),M11): we observe that
NSym(11)(S) = S and NSym(11)(M11) = M11 ⇒ H = PSL(2, 11) and
K = M11. Moreover H ≤max K ≤max Alt(11).
We obtain the following diagram:

Sym(11)

rrrrrrrrrr

Alt(11)

M11

H

• (n, S, socK) = (12,PSL(2, 11),M12): NSym(12)(S) = PGL(2, 11) and
NSym(12)(M12) = M12 ⇒ H = PSL(2, 11) and K = M12. Notice that
H ≤max PGL(2, 11) ≤max Sym(12) and H ≤max K ≤max Alt(12).
We have this situation:

Sym(12)

rrrrrrrrrr

SSSSSSSSSSSSSS

Alt(12)

LLLLLLLLLL
PGL(2, 11)

wwwwwwwwwwwwwwwwwwwwww

M12

MMMMMMMMMMM M12

H

• (n, S, socK) = (12,M11,M12): NSym(12)(S) = S ⇒ H = M11 and
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K = M12. Moreover H ≤max K ≤max Alt(12). We obtain:

Sym(12)

rrrrrrrrrr

Alt(12)

vvvvvvvvv

LLLLLLLLLL

M12

IIIIIIIIII M12

qqqqqqqqqqq

H

• (n, S, socK) = (24,PSL(2, 23),M24): NSym(24)(S) = PGL(2, 23) and
NSym(24)(M24) = M24 ⇒ H = PSL(2, 23) and K = M24. Notice that
H ≤max PGL(2, 23) ≤max Sym(24) and H ≤max K ≤max Alt(24).
We obtain the following diagram:

Sym(24)

rrrrrrrrrr

NNNNNNNNNNN

Alt(24) PGL(2, 23)

������������������

M24

MMMMMMMMMMM

H

Hence it turns out that, even in these cases, there are at most two maximal
subgroups of G containing H. �

Definition 1.4.2 A subgroup H of Sym(n) is called orbit-minimal if every
proper subgroup of H has strictly more orbits than H has.

The following proposition gives an upper bound on the number of minimally
transitive groups of degree n; a similar result is in [32].

Theorem 1.4.3 There exists an absolute constant ρ such that the number
of minimally transitive subgroups of Sym(n) is at most (n !)ρ, for any n ∈ N.
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Proof. We are going to prove the statement asymptotically on n; then the
result holds for all n ∈ N.
Let X be a minimally transitive subgroup of Sym(n). By a result in [1], X
can be written as X = 〈Y, g〉 for some solvable subgroup Y of Sym(n) and
some g ∈ Sym(n).
We observe that Y can be chosen orbit-minimal in Sym(n): in fact, if Y is
not orbit-minimal, then ∃Z < Y , orbit-minimal, with the same orbits of Y ;
〈Z, g〉 is transitive and then, by the minimality of X, we obtain X = 〈Z, g〉.
Our aim is to give an upper bound on the number of the minimally transitive
subgroups of Sym(n); it is equivalent to count all the possible pairs (Y, g),
with Y solvable and orbit-minimal and g ∈ Sym(n).
Let d(Y ) be the minimum number of generators of Y ; by [32, Theorem 1.5.],
it holds d(Y ) ≤ logn, for n large enough. Y solvable is contained in some
maximal solvable subgroup of Sym(n); using [32, Lemma 4.1.] we obtain
that the number m of maximal solvable subgroups of Sym(n) is at most
n ! 217n. By Stirling formula, there exists ε ∈ R such that

m ≤ (n !)ε

for any n large enough.
FixM maximal solvable subgroup of Sym(n); we are calculating the number
of the orbit-minimal subgroups of M . Applying [32, Theorem 2.2.] we have
|M | ≤ an, a ∈ R (a = 3√24); then the orbit-minimal subgroups of M are
at most an logn = 2n logn log a. By Stirling formula, for n sufficiently large, it
holds 2n logn log a ≤ (n !)δ, with δ ∈ R.
The number of possible choices for Y in Sym(n) is at most (n !)ε · (n !)δ. For
the element g we have n ! choices; then we may conclude that the possible
pairs (Y, g) are at most (n !)ε+δ+1, for n large enough. �

Remark 1.4.4 We observe that G ∈ {Alt(n), Sym(n)} acts on the set
∆n := {(a, b) | 1 ≤ a, b ≤ n, a 6= b} in the following way: (a, b)g := (ag, bg),
∀g ∈ G and ∀ (a, b) ∈ ∆n. This is a faithful and transitive action of degree
|∆n| = n(n− 1). Then any subgroup of G is a permutation group of degree
n(n−1). Let T ≤ G be transitive on In and with t orbits in its action on ∆n;
each orbit on ∆n contains at least n elements, and then we may conclude
t ≤ n− 1.
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Lemma 1.4.5 Let T be a transitive subgroup of G ∈ {Alt(n),Sym(n)}, and
denote by t the number of orbits of T on the set ∆n. Then

|G : T | ≥ t !
2 .

Proof. Denote by C1, . . . , Ct the orbits of T on ∆n. Fix a ∈ In and let
K = StabT (a). There exists a bijection ϕ between the set of T -orbits on ∆n

and the set of K-orbits on In − {a}: by transitivity of T on In, there is at
least one element (a, cj) ∈ Cj , for each j ∈ {1, . . . , t}; we define ϕ(Cj) the
K-orbit on In−{a} containing the element cj , and we can easily verify that
the map ϕ so defined is a bijection. We denote by Λ1, . . . ,Λt the K-orbits
and we choose bj ∈ Λj , for each 1 ≤ j ≤ t. Define the set φ := {b1, . . . , bt}; it
follows Alt(φ)∩T = Alt(φ)∩K = 〈1〉, and then |G : T | ≥ |Alt(φ)| = (t !)/2.

�

Using Theorem 1.4.3, we obtain a bound concerning the action of G on ∆n.

Corollary 1.4.6 Let G ∈ {Alt(n), Sym(n)} and let P be the set of the
partitions of ∆n whose parts are the orbits of some transitive subgroup of G
in its action on ∆n. Then there exists δ, independent from n, such that

|P| ≤ (n !)δ

for any n ∈ N.

Proof. Let n ∈ N. We notice that any transitive subgroup of G contains at
least one minimally transitive subgroup; by Theorem 1.4.3, we know that
the number of minimally transitive subgroups of G is at most (n !)ρ, with ρ
an absolute constant.
Fix a minimally transitive subgroup X of G. Let {Ω1, . . . ,Ωx} be the set of
orbits of X on ∆n; by Remark 1.4.4, it holds x ≤ n− 1.
Now the set of orbits on ∆n of any transitive subgroup of G containing
X is obtained as a partition of {Ω1, . . . ,Ωx}; so we have to estimate the
cardinality of the set S of all partitions of {Ω1, . . . ,Ωx}. We can easily
prove that there exists an injective function between S and Sym(x); hence

|S| ≤ x ! ≤ (n− 1)!.

Then |P| ≤ n ! · (n !)ρ, and we can take δ = ρ+ 1 for any n ∈ N.
�

20



Now we give a series of bounds for the indices of some subgroups of G ∈
{Alt(n), Sym(n)}. It turns out that the order of a transitive subgroup of G
is in general “small” with respect to |G|. First of all we give a result on the
primitive subgroups of G.

Lemma 1.4.7 Let G ∈ {Alt(n),Sym(n)}. If n is large enough and P is a
primitive subgroup of G with Alt(n) 6≤ P , then

|G : P |2 ≥ n!.

Proof. By a result of Praeger and Saxl (see [31]), any primitive subgroup of
Sym(n), not containing Alt(n), has order smaller or equal than 4n; it follows
|P | ≤ 4n. Then

|G : P |2 ≥ |G|2/(4n)2 ≥ (n !)2/4(4n)2.

Then it suffices to prove n ! ≤ (n !)2/4(4n)2, that is equivalent to verify

42n+1 ≤ n!.

By Stirling formula: n ! ∼ n(n+1)/2e−n
√

2π ∼ 2(n+1)/2 logn ∼ 2n logn/2 ;
42n+1 = 2 4n+2 ⇒ 42n+1 ≤ n ! asymptotically. �

For the index of the imprimitive subgroups of G we have the following lower
bound.

Lemma 1.4.8 There exists a constant σ ∈ R such that

|G : H| ≥ 2σn

for each n ∈ N and each imprimitive subgroup H of G ∈ {Alt(n), Sym(n)}.

Proof. If H ≤ G has an imprimitive system of b blocks of cardinality a,
then H ≤ Sym(a) oSym(b) and |G : H| ≥ n!/(a!)bb! ≥ 2[(n+1)/2] when n ≥ 8,
as it is noticed in the proof of [28, Lemma 2.1]. �

A stronger lower bound holds under additional hypotheses.
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Lemma 1.4.9 There exists a constant c ∈ R such that

|G : H|c ≥ n !

for each n ∈ N and each imprimitive subgroup H of G ∈ {Alt(n),Sym(n)}
which satisfies one of the following conditions:

1) a2 ≤ n, where a is the cardinality of a block of H;

2) the kernel of the action of H on the set of the blocks has order at most
(2a!)

n
2a , where a is the cardinality of a block of H;

3) the permutation group induced on a block B by its setwise stabilizer in
H is primitive and does not contain Alt(B).

Proof. Let B = {B1, . . . , Bb} be a set of blocks of imprimitivity for H,
with |B1| = a. Since H ≤ Sym(a) o Sym(b), we have |G : H| ≥ n!/(a!)bb!.
Moreover, as it is noticed in the proof of [28, Lemma 21], for a fixed value
of n, n!/(a!)bb! increases when a decreases; so, in order to prove that the
statement holds if 1) is satisfied, it suffices to check that there exists γ1 such
that (n!)(1−1/γ1) ≥ (a!)bb! when n is large enough and a ∼ b ∼

√
n. Let

x be a natural number; by Stirling formula: x ! ∼
√

2πx
(
x
e

)x. Then, for a
number x large enough, it holds

(
x
e

)x ≤ x ! ≤ x
(
x
e

)x. We apply this formula
to n !; then we take γ1 large enough such that

(
n

e

)n−n/γ1

≥
(
aa+1

ea

)b
b b+1

eb
.

Denote by ψ : H → Sym(b) the permutation representation induced by the
action of H on the set of blocks. If 2) holds, then |H| ≤ (2a!)

n
2a · b !, and

it follows |G : H| ≥ n!/(2 · (2a!)b/2 · b!). We may suppose a2 > n; to verify
that the thesis holds when 2) is satisfied, we have to prove the existence of a
constant γ2 such that (n!)(1−1/γ2) ≥ 2(2a!)b/2b!, for any n large enough. We
know that Sym(n) contains imprimitive subgroups with order (a!)bb!; there-
fore (a!)b/2 ≤ (n !)1/2. Moreover we observe that, for n sufficiently large,
2(1+b/2)b! ≤ (a!)b/4; then we may take γ2 = 4.
We suppose that 3) holds; we want to prove that there exists a constant
γ3 such that |G : H|γ3 ≥ n!. As it is shown in [4, Theorem 1.8], we have
H ≤ P o Sym(b) with P a primitive subgroup of Sym(a) which does not
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contain Alt(a). By [31], |P | ≤ 4a so |G : H| ≥ n!/(2 · 4n · b!). We may
assume a2 > n; using the Stirling formula, for a large enough, we can prove
2 · 4n · b! ≤ 2 · (2a!)b/2 · b!, and then we can take γ3 = 4.
To conclude we take c = max(γ1, γ2, γ3) = max(4, γ1), for any n large
enough. �

Lemma 1.4.10 There exists a constant c such that for any imprimitive
subgroup H of G ∈ {Alt(n),Sym(n)}, n large enough, the following holds.
Let B = {B1, . . . , Bb} be a set of blocks for H with minimal size, say a. If
|G : H|c < n! then a2 ≥ n and the kernel of the action of H on the blocks of
B contains (Alt(a)b).

Proof. We take c as in Lemma 1.4.9; we want to prove that it satisfies
the thesis. Suppose that |G : H|c < n!. We know from the previous lemma
that a2 > n. Denote by P be the primitive subgroup of Sym(a) induced on
B1 by its setwise stabilizer in H and by ψ : H → Sym(b) the permutation
representation induced by the action ofH on the set of blocks; let J = ψ(H).
Up to permutation isomorphisms, we may identify H with a subgroup of
the wreath product P o J, with respect to its imprimitive action. In this
identification, kerψ = H∩P b, being P b the base of this wreath product. By
Lemma 1.4.9, Alt(a) ≤ P . If kerψ∩ (Alt(a))b 6= 〈1〉 we proceed as described
in [22] (p.531). Denote kerψ∩(Alt(a))b = N . Notice thatH ≤ (Sym(a))b oJ ;
let M = (Sym(a))b. For any j ∈ {1, . . . , b} we define the projection map

πj : M → Sym(a);

Sj :=
{
m ∈M |πj(m) ∈ Alt(a), πi(m) = 1Sym(a) if i 6= j

}
is isomorphic to

Alt(a), for any j. Since (S1 × · · · × Sb) / (Sym(a))b o J and J = ψ(H) is
transitive on {1, . . . , b}, it follows that for any i ≥ 2 there exists hi ∈ H

such that Si = Shi1 . But N ≤ S1 × · · · × Sb and N / H; then, for any i,
πi(N) = (π1(N))hi , and so it follows πi(N) ∼= πj(N), for any 1 ≤ i, j ≤ b.
Consider one of this projection, for example π1(N); it is normalized by the
permutation group induced by StabJ(B1) on B1, that is isomorphic to P .
For n ≥ 5 we can conclude πj(N) ∼= Alt(a), with 1 ≤ j ≤ b; hence N is a
subgroup of (Alt(a))b with all the b projections isomorphic to Alt(a), and
N is normalized by H.
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If we suppose N 6= ((Alt(a))b, then N has to be of the following form. Let
I1, . . . , It be a system of imprimitivity for the action of H on the set B;
hence t ≤ b

2 . Then N = D1 × · · · ×Dt, where Di, for any 1 ≤ i ≤ t, is a full
diagonal subgroup of

∏
j∈ Ii πj(N) (i.e. the resctriction to the subgroup Di

of the projection
∏
j∈ Ii πj(N) → πk(N) is an isomorphism for any k ∈ Ii).

Hence Di
∼= Alt(a), for any 1 ≤ i ≤ t, and N ∼= (Alt(a))t, with t ≤ b

2 .
Therefore, if (Alt(a))b 6≤ kerψ, then | kerψ| ≤ (a!/2)b/22b; but this, by
Lemma 1.4.9, would imply |G : H|c ≥ n!, a contradiction. �
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Chapter 2

The probabilistic zeta
function

Let G be a group. Denote by PG(t) the probability that t randomly chosen
elements of G generate G itself. The study of PG(t) has been developed by
many authors when G is a finite group (see for examples [13], [3], [8]), and
later extended to profinite groups (see [25] and [2]).

2.1 The finite case

Let G be a finite group. To estabilish the probability that a random t-ple of
elements of G generates G itself, we simply calculate the number of systems
of generators of G.

Definition 2.1.1 Define the function φG : N → N ∪ {0} in the following
way: for any t ∈ N, φG(t) is the number of t-bases of G, that is, ordered
t-tuples (g1, . . . , gt) of elements of G that generate G. This function is called
the Eulerian function associate to G.

Remark 2.1.2 The Eulerian function φG was introduced by Hall in [13];
in this paper he proved that

φG(t) =
∑
H≤G

µ(H,G)|H|t

where µ is the Möbius function on the subgroup lattice LG (see Section 1.2).
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For any t ∈ N, the probability PG(t) that a random t-tuple of elements of G
generates G is given by

PG(t) = φG(t)
|G|t

.

Then, by the previous remark, we may write

PG(t) =
∑
H≤G

µ(H,G)
|G : H|t (2.1)

We may interpolate the integer function PG and define PG(s) for any com-
plex variable s. By rearranging the addends in (2.1) we obtain a Dirichlet
polynomial as follows (see also [13], [25], [34]):

PG(s) :=
∑
n∈N

an
ns

where
an :=

∑
|G:H|=n

µ(H,G).

Definition 2.1.3 The multiplicative inverse of the complex function PG, so
defined, is called the probabilistic zeta function of G.

Given a normal subgroup N of G we define a Dirichlet poynomial PG,N (s)
as follows:

PG,N (s) :=
∑
n∈N

bn
ns

with bn :=
∑

|G:H|=n

HN=G

µ(H,G).

As it is shown in [3, Section 2.2], it holds

PG(s) = PG/N (s)PG,N (s) (2.2)

If G is an almost simple group, i.e. S ≤ G ≤ Aut(S) with S a non abelian
simple group, and G/S has prime order, then, as it is proved in [7] p.288,

PS(s)− PG,S(s) =
∑
H≤S

µ(H,S) + µ(H,G)
|G : H|s .

In particular we have

Corollary 2.1.4 ([7]) Suppose G an almost simple group, with socG = S,
and that G/S has prime order; PS(s) = PG,S(s) if µ(H,S) + µ(H,G) = 0
for any H ≤ S.

Remark 2.1.5 We will use this corollary when G and S are respectively
the Symmetric group and the Alternating group of degree n (see Chapter 3).
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2.2 The profinite case

To discuss this part we often use definitions and remarks contained in [25]
and [26]. Let G be an infinite group. We ask what is the probability that t
randomly chosen elements of G generate G itself. In order for our question
to make sense, we have to define a measure on G; this leads us naturally
to the class of profinite groups, i.e. inverse limits of finite groups. Such
groups are compact topological groups, with the topology induced by the
discrete topology on the finite groups in the given inverse system; therefore
they also have a Haar measure (see [11, Chapter 16]). For some properties
of profinite groups, see for example [9]. The finite Haar measure ν on G

is normalized so that G has measure 1, and then we may consider G as a
probability space: this means that the measure of a subset X of G express
the probability that a random element of G lies in X. Denote by XG(t) the
set of t-ples generating G; we note that XG(t) is a closed set in G(t), and
then it is measurable. Then the probability that a random t-ple of elements
generates G is formally defined as

PG(t) = ν
{

(x1, . . . , xt) ∈ G(t) | 〈x1, . . . , xt〉 = G
}

= ν(XG(t)),

where ν denotes also the product measure on G(t) and 〈x1, . . . , xt〉 means
the closed subgroup topologically generated by the set (x1, . . . , xt). Thus
0 ≤ PG(t) ≤ 1, and if PG(t) > 0 then the minimal number d(G) of generators
of G is smaller or equal than t.

Remark 2.2.1 We observe that if G is finite we have ν(X) = |X|/|G| for
each subset X; so the concept of probability in profinite groups reduces to
the usual one in finite groups, studied in Section 2.1.

Remark 2.2.2 Of course, a profinite group (unless it is finite) can be finitely
generated only in the topological sense, i.e. be the closure of the discrete
subgroup generated by some finite subsets. In other words, a subset X of G
generates it in this sense, if and only if the image of X in any finite factor
group of G generates this factor group. From now on we interpret finite
generation of profinite groups in this sense.

Let G be a finitely generated profinite group; denote by N the set of all
open normal subgroups of G. As it is showed in [18], if X is a closed subset
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of G, then X =
⋂∞
i=1XNi, where N1 > N2 > · · · is a descending chain in

N . By the properties of the Haar measure ν we have

ν(X) = lim
i→∞

ν(XNi) = inf
N∈N

ν(XN).

For each N ∈ N the set XN is the union of |XN/N | cosets of N ; so
ν(XN) = |XN/N |ν(N) = |XN/N |/|G : N |, and then

ν(X) = inf
N∈N

|XN/N |
|G/N |

(2.3)

Definition 2.2.3 A set of open subgroups of G such that each open subgroup
contains one of them is called subgroup basis of G.

Recall that open subgroups of profinite groups are of finite index, and XG(t)
is closed; hence using (2.3) the following statement can be proved.

Theorem 2.2.4 ([25]) Let G be a finitely generated profinite group. Then

PG(t) = inf
{
PG/N (t) |N ∈ N

}
.

Moreover, if {Ni}i∈N is a subgroup basis of G consisting of normal sub-
groups, then

PG(t) = inf
i∈N

PG/Ni(t).

Definition 2.2.5 A profinite group G is positively finitely generated (PFG),
if for some t, the probability PG(t) is positive.

Notice that a PFG group is obviously finitely generated. In [25] Mann
formulated the following conjecture:

Conjecture 2.2.6 (Mann, 1996) If G is a PFG group, then the integer
function PG can be interpolated in a natural way to an analytic function
PG(s), defined for all s in some right half-plane of the complex plane.

We call probabilistic zeta function of G the multiplicative inverse of a com-
plex function PG(s) with these properties.

Remark 2.2.7 If G is finite, then we already know (see Section 2.1) that
PG(t) =

∑
H≤G µ(H,G)/|G : H|t for any positive integer t, and this function

is interpolated by the complex function PG(s) =
∑
H≤G µ(H,G)/|G : H|s.
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Mann proposed the following approach to find a candidate for the conjec-
tured function. Let G be a finitely generated profinite group. Firts of all we
define by recursion the Möbius number for any finite index subgroup H of
G:

µ(H,G) =

 1 if H = G

−
∑
H<K≤G µ(K,G) otherwise.

Remark 2.2.8 As we have already observed when G is finite (see Remarks
1.2.2 and 1.2.3), also for the Möbius function associated to a profinite group
the following properties hold:

1) if H < G has finite index, then µ(H,G) 6= 0 only if H is an intersection
of maximal subgroups of G;

2) |µ(H,G)| is bounded by the number of ways to express H as an inter-
section of maximal subgroups.

Now define a series associated to G in the following way:

∑
H≤oG

µ(H,G)
|G : H|s (S)

where s is a complex variable, and H ranges over all open subgroups of G,
arranged in some order. Now let {Ni}i∈N be a normal subgroup basis, with⋂∞
i=1Ni = 〈1〉. Using Remark 2.2.7 and Theorem 2.2.4, we obtain

PG(t) = lim
i→∞

PG/Ni(t) = lim
i→∞

 ∑
Ni≤H≤G

µ(H,G)
|G : H|t

 .
Then the series (S), with the above insertion of parentheses, converges, for
a positive integer t, to PG(t). It follows that (S), with this insertion of
parentheses, is a candidate for the function PG(s) of the Conjecture 2.2.6.
So, in order to prove the conjecture of Mann, we have to estabilish if this
series (with this insertion of parentheses) converges in some half plane.

Remark 2.2.9 Note that different choices of the subgroup basis {Ni}i∈N
lead to different groupings of the terms in (S); so we have also to know if
two different bases lead to the same function. But we also notice that if
(S) is absolutely convergent, then its sum is independent from the ordering
of the summands; in this case the function PG(s) would be independent
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from the choice of the basis {Ni}i∈N, and therefore it would follow that
PG(s) =

∑
H≤oG µ(H,G)/|G : H|s, for any s in the convergency domain.

In 2005 Mann has formulated a conjecture on the convergence of (S) for
PFG groups.

Conjecture 2.2.10 (Mann, 2005) Let G a PFG group. Then the infinite
series (S) converges absolutely in some right half plane.

Definition 2.2.11 Let G be a finitely generated profinite group. For any
n ∈ N, denote by bn(G) the number of subgroups H of G with |G : H| = n

and µ(H,G) 6= 0. We say:

• bn(G) grows polynomially if there exists α such that bn(G) ≤ nα, for
any n ∈ N;

• |µ(H,G)| grows polynomially if there exists β such that, for any finite
index subgroup H of G, |µ(H,G)| ≤ |G : H|β.

In [26] Mann proved the following statement.

Theorem 2.2.12 Let G be a finitely generated profinite group. The series
(S) converges absolutely in some half plane if and only if both |µ(H,G)| and
bn(G) grow polynomially.

Then Conjecture 2.2.10 can be reformulated as: if G is a PFG group, then we
have polynomial bounds for bn(G) and |µ(H,G)|. To discuss this conjecture
we need to recall an important result of Mann and Shalev on the behaviour
of maximal subgroups of PFG groups.

Definition 2.2.13 For any n ∈ N, denote by mn(G) the number of maximal
subgroups of G of index n. We say that G has polynomial maximal subgroup
growth (PMSG) if there exists a constant c such that mn(G) ≤ nc, for any
n ∈ N.

We observe thay if bn(G) grows polynomially, then G has PMSG. Moreover
it holds:

Theorem 2.2.14 (Mann-Shalev, [27]) G is PFG if and only if G has
PMSG.
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Remark 2.2.15 Using Remark 2.2.8, we notice that bn(G) is bounded in
terms of the number of maximal subgroups of G of index dividing n, and
|µ(H,G)| can be bounded in terms of the number of maximal subgroups of
G containing H.

Some interesting bounds can be obtained with these arguments (see for
example [25, Theorem 21]), but even if one assumes that G has PMSG, it
is not known whether this implies that there is a polynomial bound for the
number of maximal intersections of G of index at most n.

Remark 2.2.16 The Conjecture 2.2.10 has been proved in [26], [23] and
[21] for profinite completions of arithmetic groups satisfying the congruence
subgroup property, finitely generated prosolvable groups, adelic groups and
groups with polynomial subgroup growth (PSG groups). These results depend
on the fact that we have a better description of the subgroups with non trivial
Möbius function: in all these cases it can be proved that if µ(H,G) 6= 0, then
not only H is an intersection of maximal subgroups, but also these maximal
subgroups can be choosen with additional “good” properties.

In [19] Lucchini has proved that in order to decide whether a PFG group
G satisfies Conjecture 2.2.10, it suffices to investigate the behaviour of the
Möbius function on the subgroup lattice of the finite monolithic groups
that appear as epimorphic images of G. Recently Lucchini has obtained
a stronger result, which allows us to deal only with almost simple groups;
a paper with this result is in preparation. We now explain more precisely
these argumentations; we start giving some definitions.

Definition 2.2.17 Let L be a finite monolithic group (i.e. a group with
a unique minimal normal subgroup) with non abelian socle; then it holds
socL = S1 × · · · × Sr, where the Si’s are all isomorphic simple groups.
Denote by XL the subgroup of AutS1 induced by the conjugation action of
NG(S1) on S1; this XL is a finite almost simple group, uniquely determined
by L.

Theorem 2.2.18 (Reduction theorem) Let G be a PFG group and we
denote by Λ(G) the set of finite monolithic groups L with socL non abelian
and L an epimorphic image of G. Moreover if L ∈ Λ(G), let b∗n(XL) be the

31



number of subgroups K of XL such that |XL : K| = n, µ(K,XL) 6= 0 and
K socXL = XL. Then the followings are equivalent.

(1) There exist two constants γ1 and γ2 such that

bn(G) ≤ nγ1 and |µ(H,G)| ≤ |G : H|γ2

for each n ∈ N and each open subgroup H of G.

(2) There exist two constants c1 and c2 such that

b∗n(XL) ≤ nc1 and |µ(Y,XL)| ≤ |XL : Y |c2

for each L ∈ Λ(G), each n ∈ N and each Y ≤ XL with Y socXL = XL.

This theorem and Theorem 2.2.14 allow us to reformulate Conjecture 2.2.10
of Mann as follows.

Conjecture 2.2.19 There exists a constant c such that if X is a finite
almost simple group, then b∗n(X) ≤ nc and |µ(Y,X)| ≤ |X : Y |c for each
n ∈ N and each Y ≤ X with Y socX = X.

In Chapter 4 we will verify that this conjecture is satisfied by the Alternating
and Symmetric groups; in fact we will prove the followings:

Theorem 1 There exists an absolute constant α such that for any n ∈ N,
if X ∈ {Alt(n),Sym(n)} and m ∈ N, then bm(X) ≤ mα.

Theorem 2 There exists an absolute constant β such that for any n ∈ N,
if X ∈ {Alt(n),Sym(n)} and Y ≤ X, then |µ(Y,X)| ≤ |X : Y |β.

These theorems imply:

Corollary 2.2.20 If G is a PFG group and for each open normal subgroup
N of G, all the composition factors of G are either abelian or Alternating
groups, then

• there exists γ1 such that |µ(H,G)| ≤ |G : H|γ1 for each open subgroup
H of G;

• there exists γ2 such that bn(G) ≤ nγ2 for each n ∈ N.
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By this corollary, we notice that, for example, G =
∏
n(Alt(n))n satisfies the

Conjecture 2.2.10, because G is PFG, as it is proved in [16].
From [19, Theorem 9] it can be deduced the following statement:

Theorem 2.2.21 Let G =
∏
i Si, where the Si’s are finite nonabelian simple

groups; suppose that G is d-generated and that there exists a constant c with
the following property: for any i and for any Y ≤ Si, |µ(Y, Si)| ≤ |Si : Y |c.
Then

|µ(H,G)| ≤ |G : H|ε

for each open subgroup H of G, where ε = max(d, c) + 1.

Combined Theorem 2 and Theorem 2.2.21, it follows:

Corollary 2.2.22 Let G =
∏
iAi, where the Ai’s are Alternating groups;

suppose that G is d-generated. Then

|µ(H,G)| ≤ |G : H|max(d, β)+1

with β as in Theorem 2.

We have already noted that if bn(G) grows polynomially, then G must be
a PFG group. Using Corollary 2.2.22, we observe that a group G in which
|µ(H,G| is bounded by a polynomial function in the index of H is not
necessarily PFG. An example is G =

∏
n≥ 5(Alt(n))n!/8: G is 2-generated

but not PFG (see [16]), and by Corollary 2.2.22 we have

|µ(H,G)| ≤ |G : H|max(2, β)+1

for each open subgroup H of G.
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Chapter 3

Maximal subgroups of the
Alternating and
Symmetric groups

3.1 A conjecture of Boston and Mann

Let n be a natural number. Denote by Sym(n) and Alt(n) respectively the
finite Symmetric group and the finite Alternating group of degree n. For
Sym(n) and Alt(n) we can define the complex functions PSym(n) and PAlt(n),
as described in Section 2.1. Then, using formula (2.2), we obtain

PSym(n)(s) = PSym(n)/Alt(n)(s) · PSym(n),Alt(n)(s) =
= PC2(s) · PSym(n),Alt(n)(s).

Let G be a finite group. In a recent work Lucchini and Massa have proved
that there exist explicit criterions to recognize whether the factor group
G/Frat(G) is isomorphic to Alt(n) (with n ≥ 5) only looking at the co-
efficients of PG(s). Using these results they have been able to verify that
if PG(s) = PSym(n)(s), with n ≥ 5, then either G/Frat(G) ∼= Sym(n) or
G/Frat(G) ∼= Alt(n)× C2 ([24, Theorem 1.4.]).

Question We want to investigate for which values of n it holds

PSym(n)(s) = PAlt(n)×C2(s) = PAlt(n)(s) · PC2(s) (3.1)

This is equivalent to ask when

PSym(n),Alt(n)(s) = PAlt(n)(s).
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The probabilistic zeta functions of Sym(n) and Alt(n)×C2 can be computed
with GAP ([12]) when n is small (n < 12): it turns out that (3.1) holds for
n = 2, 5, 6, 10 but not for n = 3, 4, 7, 8, 9, 11, as it has been already noticed by
Boston in [2]. In this paper, Boston has presented an interesting conjecture,
formulated with Mann, to estabilish when (3.1) holds.

Conjecture 3.1.1 (Boston, Mann) The validity of the equality (3.1), for
n ≥ 5, reflects the non existence of maximal subgroups of Alt(n) which
coincide with their normalizers in Sym(n).

We will study the conjecture of Boston and Mann; we will prove that it is
true when n = p, for any prime p ≥ 5. But it doesn’t hold in general; in
fact we will show counterexamples to the conjecture. First of all we observe
some facts, that will be useful in the next; from now on we consider n ≥ 5.

Remark 3.1.2 Each maximal subgroup M of Alt(n) is contained in the
normalizer NSym(n)(M), which is a proper subgroup of Sym(n), different
from Alt(n). If NSym(n)(M) 6= M , we can verify that NSym(n)(M) is the
unique maximal subgroup of Sym(n), different from Alt(n), that contains
M . In fact, we suppose that N is a maximal subgroup of Sym(n), different
from Alt(n), and that N ≥M ; then Alt(n)N = Sym(n) and

N

N ∩Alt(n) = N

M
∼=

Sym(n)
Alt(n) .

Therefore |N : M | = 2 ⇒ M / N ≤ NSym(n)(M). But N is maximal in
Sym(n), and then we may conclude N = NSym(n)(M). So we have the
following diagram:

Sym(n)

qqqqqqqqqqq

Alt(n) NSym(n)(M)

ppppppppppp

M

In this situation, we observe: µ(M,Alt(n)) = −1 and µ(M,Sym(n)) = 1.
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If NSym(n)(M) = M , then we have:

Sym(n)

ttttttttt

�����������������

Alt(n)

M

with µ(M,Alt(n)) = −1 and µ(M,Sym(n)) = 0.
The conjecture of Boston and Mann state that there exists M such that
NSym(n)(M) = M if and only if PSym(n)(s) 6= PAlt(n)(s) · PC2(s).

Remark 3.1.3 If M is an intransitive or imprimitive maximal subgroup of
Alt(n), then M 6= NSym(n)(M). We are going to justify this assertion.
Any intransitive maximal subgroup of Alt(n) is of the form

(Sym(a)× Sym(b)) ∩Alt(n)

with Sym(a)×Sym(b) an intransitive maximal subgroup of Sym(n). In fact
we observe that any subgroup isomorphic to Sym(a) × Sym(b) in Sym(n),
with a + b = n, is not contained in Alt(n): we assume that a is equal or
bigger than 2, and then Sym(a) 6≤ Alt(n). Hence the map M 7→ NSym(n)(M)
induces a bijection between intransitive maximal subgroups of Alt(n) and
Sym(n). Any imprimitive maximal subgroup of Alt(n) is of the form

(Sym(a) o Sym(b)) ∩Alt(n)

where Sym(a) o Sym(b) is an imprimitive maximal subgroup of Sym(n).
As above, it is easy to prove that any subgroup of Sym(n) isomorphic to
Sym(a) o Sym(b), with ab = n, is not contained in Alt(n) (in fact a ≥ 2).
Then there exists a bijection between maximal imprimitive subgroups of
Alt(n) and Sym(n): to each maximal imprimitive subgroup of Alt(n) corre-
sponds its normalizer in Sym(n).

3.2 The case n = p

We are supposing p a prime, with p ≥ 5.
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Remark 3.2.1 Each affine maximal subgroup of Sym(p) is isomorphic to
Cp oCp−1; then its intersection with Alt(p) is isomorphic to Cp oC(p−1)/2.
Hence any affine maximal subgroup M of Alt(p) is a subgroup of the form
CpoC(p−1)/2, and it does not coincide with its normalizer in Sym(p). More-
over we note that any affine subgroup of Alt(p) is of the form Cp oCt, with
Ct a subgroup of C(p−1)/2.

By [29, Theorem 2] we know that any transitive subgroup T of Sym(p) has
a simple normal subgroup S and T/S is cyclic; all the possibilities for S are
listed in [29, Table I]. By using this list, we can deduce that if p 6= 11, 23
and p 6= (qd − 1)/(q − 1), for any couple of natural numbers (q, d), with
q > 4 if d = 2, then Sym(p) contains only transitive subgroups of affine
type. On the other hand, if p = 11, p = 23 or p = (qd − 1)/(q − 1) > 5,
then Sym(p) contains some almost simple transitive subgroups but, as it
is proved in [29, Corollary 3], these subgroups are all contained in Alt(p).
Then, also for these values of the degree p, it results that Sym(p) contains
only transitive subgroups of affine type. Denote by MSym(p) the set of all
the intransitive and affine maximal subgroups of Sym(p), and by MAlt(p)

the set of the intransitive and affine maximal subgroups of Alt(p). We notice
that, for the previous considerations, the setMSym(p) coincides with the set
of all maximal subgroups of Sym(p), different from Alt(p), for any p prime.
Moreover, if M is an affine or an intransitive maximal subgroup of Alt(p),
then, by Remark 3.1.3 and Remark 3.2.1, M 6= NSym(p)(M); the normalizer
NSym(p)(M) is a maximal subgroup of Sym(p), of the same type ofM . Hence
there exists a bijection betweenMSym(p) andMAlt(p): to each M ∈MAlt(p)

corresponds NSym(p)(M) ∈MSym(p).

Lemma 3.2.2 Let H < Alt(p), H 6= 〈1〉, such that if N is a maximal
subgroup of Alt(p) with H ≤ N , then N ∈MAlt(p). It holds

µ(H,Sym(p)) = −µ(H,Alt(p)).

Proof. If H is not intersection of elements ofMAlt(p) then, by the bijection
between MSym(p) and MAlt(p), it results that H is not also intersection of
elements ofMSym(p); hence it follows µ(H,Alt(p)) = µ(H,Sym(p)) = 0 (see
Remark 1.2.2). Then we have to calculate µ(H,Alt(p)) and µ(H,Sym(p))
when H is an intersection of elements ofMAlt(p).
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We consider H ∈ MAlt(p) a maximal subgroup of Alt(p); H is obtained
as the intersection between NSym(p)(H) and Alt(p). As we have already
observed in Remark 3.1.2, we obtain µ(H,Sym(p)) = −µ(H,Alt(p)).
We suppose now H an intersection of maximal subgroups inMAlt(p), but H
not maximal in Alt(p). In other words H is an intersection of some maximal
affine or intransitive subgroups of Sym(p) with Alt(p). We observe that the
intersection of two maximal affine subgroups of Sym(p) is intransitive, and
then it follows that H is intransitive. Applying the closure theorem of Crapo
to LSym(p), we obtain

∑
T≤ Sym(p)

T̄=Sym(p)

µ(H,T ) =

 µ̄(H,Sym(p)) if H is closed in LSym(p)

0 otherwise.
(3.2)

If doesn’t esixts any transitive subgroup T 6∈ {Alt(p), Sym(p)} such that
H ≤ T , then H has the form

(Sym(Ω1)× · · · × Sym(Ωk)) ∩Alt(p)

for some partition {Ω1, · · · ,Ωk} of {1, . . . , p}, with 2 < k < p − 1 (in fact
H 6= 〈1〉).
We observe that H 6= Sym(Ω1)× · · · × Sym(Ωk), and hence H is not closed
in LSym(p). From (3.2)

µ(H,Sym(p)) + µ(H,Alt(p)) = 0.

Then we may suppose that there exists at least one transitive subgroup
T 6∈ {Alt(p), Sym(p)} such that H ≤ T .
We have T ≤ A, with A a maximal affine subgroup of Sym(p); so H is an
intransitive subgroup of A. It holds A = P o K = NSym(p)(P ), for some
P ∼= Cp and K ∼= Cp−1; then H is a cyclic subgroup of order dividing p− 1.
By hypothesis, H 6= 〈1〉, and then H is not closed in LSym(p): the cyclic
closed subgroups of Sym(p) have order 2, and fix p − 2 elements; if H has
order 2, it fix only one element. From (3.2)

µ(H,Sym(p)) = −µ(H,Alt(p))−
∑

T trans.

H≤T<Sym(p)

T 6=Alt(p)

µ(H,T ) (3.3)
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We are considering H < A; the transitive subgroups containing H and
contained in A are of the form P o R, with H ≤ R ≤ Ks for some s ∈ P .
The subgroup P has p complements in A pairwise disjoint. Then H is
contained only in one complement of P ; without lost of generality we may
assume H ≤ K and H ≤ R ≤ K.
Any maximal affine subgroup Ā of Sym(p) containing H is conjugated to A
in Sym(p). We can repeat for Ā = P̄ o K̄ the same procedure; so we may
assume H ≤ K̄, with K̄ ∼= Cp−1. Denote by t the number of the maximal
affine subgroups of Sym(p) containing H, that is equivalent to the number
of subgroups of order p normalized by H. We recall that the intersection of
two maximal affine subgroups is intransitive; then any transitive subgroup
T that appears in (3.3), is contained in only one maximal affine subgroup
of Sym(p). It follows∑

T trans.

H≤T<Sym(p)

T 6=Alt(p)

µ(H,T ) = t ·
∑

T trans.

H≤T≤A

µ(H,T ) = t ·
∑

H≤R≤K
µ(H,PR).

Fix R; we proceed to calculate µ(H,PR). We consider the lattice L of
subgroups of PR containing H: in this lattice 0̂ = H and 1̂ = PR. We
notice that the set (PH)⊥ = {X ∈ L |X ∩ PH = H and 〈X,PH〉 = PR} of
the complements to PH in L is reduced to the element R; applying the
complement theorem of Crapo to L (see Section 1.1), we obtain

µ(H,PR) =
∑

R̄∈ (PH)⊥
µ(H, R̄) · µ(R̄, PR) = µ(H,R) · µ(R,PR).

We are supposing H 6= 〈1〉; then R 6= 〈1〉 and R is a maximal subgroup of
PR. It holds µ(R,PR) = −1; hence

µ(H,PR) = −µ(H,R).

H / R, then µ(H,R) = µ(〈1〉 , R/H). Let |H| = h and |R| = r; R/H is
cyclic, then, by Lemma 1.2.7, it follows

µ(H,PR) = −µ(〈1〉 , R/H) = −µ(r/h).
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We obtain ∑
T trans.

H≤T< Sym(p)

T 6=Alt(p)

µ(H,T ) = −t ·
∑

h|r and r|p−1
µ(r/h).

Set r̄ = r/h, for any r such that h|r and r|p − 1; then we observe that
holds

∑
h|r and r|p−1

µ(r/h) =
∑

r̄|((p−1)/h)
µ(r̄). Moreover (p− 1)/h 6= 1, because

H ≤ Alt(p), and so, as observed in Remark 1.2.6, it follows∑
r̄|((p−1)/h)

µ(r̄) = 0.

Then, from (3.3), we may conclude µ(H,Sym(p)) + µ(H,Alt(p)) = 0. �

Suppose p 6= 11, 23 and p 6= (qd − 1)/(q − 1) (with q > 4 if d = 2). Then
Alt(p) does not contain any almost simple transitive subgroup; each maximal
subgroup M of Alt(p) is intransitive or affine (see [29]). Then MAlt(p) is
the set of all maximal subgroups of Alt(p), and each maximal subgroup of
Alt(p) doesn’t coincide with its normalizer in Sym(p). Hence to verify the
validity of the conjecture, we have to prove the following.

Theorem 3.2.3 Let p ≥ 5 prime, with p 6= 11, 23 and p 6= (qd− 1)/(q− 1),
for any couple of natural numbers (q, d), with q > 4 if d = 2. Then

PSym(p),Alt(p)(s) = PAlt(p)(s).

Proof. Applying Corollary 2.1.4, we observe that it suffices to prove the
equality µ(H,Sym(p)) = −µ(H,Alt(p)) for any H ≤ Alt(p). We recall
that, with our hypothesis, Alt(p) has only affine and intransitive maximal
subgroups; then, using Lemma 3.2.2, it remains to prove this equality when
H = Alt(p) and H = 〈1〉.
If H = Alt(p), then it holds µ(Alt(p), Sym(p)) = −µ(Alt(p),Alt(p)): in fact
Alt(p) is a maximal subgroup of Sym(p) and µ(Alt(p), Sym(p)) = −1, from
the definition of µ.

40



Let now H = 〈1〉. H is closed in LSym(p); then from (3.2) we have∑
T≤ Sym(p)

T̄=Sym(p)

µ(〈1〉 , T ) = µ̄(〈1〉 ,Sym(p)).

It is a known result that (see for example [35], p.128)

µ̄(〈1〉 , Sym(p)) = (−1)p−1(p− 1)! = (p− 1)!.

Then
∑

T trans. , T≤ Sym(p)
µ(〈1〉 , T ) = (p− 1)!, and so

µ(〈1〉 , Sym(p)) + µ(〈1〉 ,Alt(p)) = −
∑

T trans., T≤ Sym(p)

T 6=Sym(p)

T 6=Alt(p)

µ(〈1〉 , T ) + (p− 1)!.

T is a transitive subgroup of Sym(p), then, by hypothesis, T is contained in
a maximal affine subgroup. The number of the maximal affine subgroups of
Sym(p) is equal to the number of the subgroups of Sym(p) with order p ; it
is (p − 2)!. These maximal subgroups are all conjugated in Sym(p). Then,
without lost of generality, we consider one of these maximal subgroups,
that we denote by A; we calculate

∑
T trans., T≤A

µ(〈1〉 , T ), and then we

multiply the result by (p− 2)!:∑
T trans., T≤ Sym(p)

T 6=Sym(p)

T 6=Alt(p)

µ(〈1〉 , T ) = (p− 2)! ·
∑

T trans., T≤A

µ(〈1〉 , T ) (3.4)

Let A = P o K, with P ∼= Cp and K ∼= Cp−1; hence we may consider
T = P oR, with R ≤ K. Then∑

T trans.

T≤A

µ(〈1〉 , T ) =
∑

PR≤A
µ(〈1〉 , PR) =

∑
R≤K

µ(〈1〉 , PR).
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Fix R 6= 〈1〉; we observe that the p complements to P in LPR are pairwise
disjoint. We apply the complement theorem of Crapo to the lattice LPR:

µ(〈1〉 , PR) =
∑

R̄∈P⊥
µ(〈1〉 , R̄) · µ(R̄, PR) =

= p · µ(〈1〉 , R) · (−1) = −p · µ(〈1〉 , R).

Let |R| = r; R is cyclic, then, by Lemma 1.2.7, it follows µ(〈1〉 , R) = µ(r).
Then, if R 6= 〈1〉,

µ(〈1〉 , PR) = −p · µ(r).

If R = 〈1〉, obviously µ(〈1〉 , P ) = −1. Hence we obtain∑
R≤K

µ(〈1〉 , PR) = −1− p ·
∑
r|p−1

r 6=1

µ(r).

We have:
∑
r|p−1

r 6=1

µ(r) =
∑
r|p−1

µ(r)

︸ ︷︷ ︸
= 0

−µ(1) = −µ(1) = −1. Then

∑
R≤K

µ(〈1〉 , PR) = −1 + p.

From (3.4) ∑
T trans., T≤ Sym(p)

T 6=Sym(p)

T 6=Alt(p)

µ(〈1〉 , T ) = (p− 2)! · (p− 1) = (p− 1)!

and we may conclude µ(〈1〉 , Sym(p)) + µ(〈1〉 ,Alt(p)) = 0. �

So we have proved that, if p 6= 11, 23 and p 6= (qd− 1)/(q− 1) (with q > 4 if
d = 2), Sym(p) satisfies the conjecture of Boston and Mann. We are going
to analize the remained cases. If p = 11, p = 23 or p = (qd− 1)/(q− 1) > 5,
then Alt(p) contains some almost simple maximal subgroups, which coincide
with their normalizers in Sym(p) (see Corollary 3 and Table I in [29]). We
verify that the conjecture holds in all these cases; in fact we are going to
prove the following statement.
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Theorem 3.2.4 If p = 11, p = 23 or p = (qd − 1)/(q − 1) > 5, then

PSym(p),Alt(p)(s) 6= PAlt(p)(s).

Proof. We recall (see Section 2.1) that

PAlt(p)(s)− PSym(p),Alt(p)(s) =
∑

H≤Alt(p)

µ(H,Alt(p)) + µ(H,Sym(p))
|Sym(p) : H|s (3.5)

Let p ∈ {11, 23}. By [29, Corollary 3], we know that, if p = 11 or p = 23,
the only almost simple maximal subgroups of Alt(p) are those isomorphic to
the Mathieu group Mp ; these subgroups coincide with their normalizers in
Sym(p). We consider all the subgroups H of Alt(p) having the same order
of Mp ; we want to calculate the following term of the sum (3.5)

∑
H≤Alt(p)

|H|=|Mp |

µ(H,Alt(p)) + µ(H,Sym(p))
(| Sym(p)|/|Mp |)s

(3.6)

Suppose H such that if N is a maximal subgroup of Alt(p) and H ≤ N , then
N ∈ MAlt(p); in other words, H is contained only in affine or intransitive
maximal subgroups of Alt(p). Hence, by Lemma 3.2.2, we may conclude
µ(H,Alt(p)) + µ(H,Sym(p)) = 0.
Then we may assume that H is contained in at least one almost simple
maximal subgroup of Alt(p); hence H ≤M , with M isomorphic to Mp. But
|H| = |Mp | = |M |, then H has to coincide with the maximal subgroup M .
We deduce H = NSym(p)(H) and, as observed in Remark 3.1.2, it follows
µ(H,Alt(p))+µ(H,Sym(p)) = −1. Denote by m the number of all maximal
subgroups of Alt(p) isomorphic to Mp; from (3.6) we have

∑
H≤Alt(p)

|H|=|Mp |

µ(H,Alt(p)) + µ(H,Sym(p))
(| Sym(p)|/|Mp |)s

= − m

(|Sym(p)|/|Mp |)s
6= 0.

Hence the term in (3.5) with denominator equal to | Sym(p)|/|Mp |)s is dif-
ferent from 0; it follows

PAlt(p)(s)− PSym(p),Alt(p)(s) 6= 0.
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We suppose now p = (qd− 1)/(q− 1) > 5 for some q, d ∈ N; we consider the
set Q of all the couples (d, q) with (qd − 1)/(q− 1) = p . For any (d, q) ∈ Q,
Alt(p) contains some maximal transitive subgroups isomorphic to PΓL(d, q),
that coincide with their normalizers in Sym(p). The set Q is finite, hence
we can consider (d̂, q̂) ∈ Q such that |PΓL(d̂, q̂)| ≥ |PΓL(d, q)|, for any
(q, d) ∈ Q. We proceed in analoug way to the cases p = 11, 23 to prove
PAlt(p)(s) 6= PSym(p),Alt(p)(s). We consider all the subgroups H of Alt(p)
having the same order of PΓL(d̂, q̂); we want to calculate the following term
of the sum (3.5): ∑

H≤Alt(p)

|H|=|PΓL(d̂,q̂)|

µ(H,Alt(p)) + µ(H,Sym(p))
(| Sym(p)|/|PΓL(d̂, q̂)|)s

(3.7)

Let H be such that if N is a maximal subgroup of Alt(p) and H ≤ N , then
N ∈MAlt(p); by Lemma 3.2.2, we conclude µ(H,Alt(p))+µ(H,Sym(p)) = 0.
Then we may assume that H is contained in at least one almost simple
maximal subgroup of Alt(p); hence H ≤ PΓL(d, q), for some (d, q) ∈ Q. But
we are supposing |H| = |PΓL(d̂, q̂)|, and |PΓL(d̂, q̂)| is maximum between
the orders of the maximal almost simple subgroups of Alt(p); therefore, if
H ≤ PΓL(d, q), it follows |PΓL(d, q)| = |PΓL(d̂, q̂)|, and H has to coincide
with PΓL(d, q). So we obtain that H = NSym(p)(H) and, by Remark 3.1.2,
µ(H,Alt(p))+µ(H,Sym(p)) = −1. Denote by γ the number of the maximal
subgroups of Alt(p) with order equal to |PΓL(d̂, q̂)|; from (3.7) we have∑

H≤Alt(p)

|H|=|PΓL(d̂,q̂)|

µ(H,Alt(p)) + µ(H,Sym(p))
(| Sym(p)|/|PΓL(d̂, q̂)|)s

= − γ

(|Sym(p)|/|PΓL(d̂, q̂)|)s
6= 0.

It follows
PAlt(p)(s)− PSym(p),Alt(p)(s) 6= 0.

�

3.3 Some counterexamples

We have shown in the previous section that the conjecture of Boston and
Mann is true when n is a prime. In this section we will show that this
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conjecture doesn’t hold in general for n ≥ 5.

Remark 3.3.1 It is in general very difficult to estabilish whether Sym(n),
for a generic n not prime, satisfies or not the conjecture. Suppose that any
maximal subgroup of Alt(n) does not coincide with its normalizer in Sym(n);
this condition is necessary but not sufficient to guarantee the existence of a
bijection between the set of the maximal subgroups of Alt(n) and the set of the
maximal subgroups of Sym(n), different from Alt(n). In fact we know that
there exists an one-to-one correspondence between the maximal subgroups of
Alt(n) and Sym(n) of types intransitive and imprimitive (see Remark 3.1.3),
but Sym(n) can contain a maximal primitive subgroup, different from Alt(n),
that intersects Alt(n) in a subgroup which is not maximal in Alt(n). In this
situation the Möbius numbers in Alt(n) and in Sym(n) of this subgroup can
be not opposite, and it could follow PAlt(n)(s) 6= PSym(n),Alt(n)(s).

Remark 3.3.2 Even if n is chosen such that the map M 7→ M ∩ Alt(n)
induces a bijection between the set S of the maximal supplements of Alt(n)
in Sym(n) and the set A of the maximal subgroups of Alt(n), it is not clear
whether and why this could imply PAlt(n)(s) = PSym(n),Alt(n)(s). The prob-
lem is that there is no hope that this bijection can be extended to a bijection
between the subgroups that can be obtained as intersection of elements of
A and those that are intersection of elements of S. For example, we have
n(n− 1)/2 subgroups of order 2 that can be obtained as intersection of n− 2
distinct point stabilizers (which are in S), but each of them has trivial inter-
section with Alt(n). In particular it is very difficult to study what happens
when we consider the imprimitive subgroups. Indeed, it is possible that the
intersection of few (even two) imprimitive maximal subgroups of Sym(n) is
already contained in Alt(n).

Remark 3.3.3 The case n = 21 is very interesting, because it realizes the
situations explained in the previous remarks: in fact we will prove that there
isn’t a bijection between the maximal subgroups of Alt(21) and the maximal
supplements of Alt(21) in Sym(21), and two maximal imprimitive subgroups
of Sym(21) can have intersection in Alt(21). In particular we will verify
that n = 21 is a counterexample to the conjecture.
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3.3.1 n=21

We denote by G a primitive subgroup of Sym(21) isomorphic to PGL(2, 7);
we verify with GAP that G is a maximal subgroup of Sym(21). Let D
be the derived subgroup of G; hence D ∼= PSL(2, 7), and D is transitive
on {1, . . . , 21}. Notice that D = G ∩ Alt(21); we will prove that D is not
maximal in Alt(21) and it corresponds to the intersection of two maximal
imprimitive subgroups of Sym(21). Moreover we will verify that

µ(D,Alt(21)) 6= −µ(D,Sym(21)) (3.8)

We proceed to estabilish the non-trivial systems of imprimitivity of D on
{1, . . . , 21}: D has two distinct systems of imprimitivity; each of these has 7
blocks, with any block with cardinality 3. Then D is contained in two max-
imal imprimitive subgroup of Sym(21) isomorphic to Sym(3) o Sym(7), that
we denote by I and J ; they are the only maximal imprimitive subgroups of
Sym(21) containing D. Using Remark 3.1.3, we can also conclude that D
is contained in I ∩ Alt(21) and J ∩ Alt(21), that are the unique maximal
imprimitive subgroups of Alt(21) containing D. Moreover we obtain that
D = I ∩ J = I ∩ J ∩Alt(21).
We have now to determine the maximal primitive subgroups of Alt(21) and
Sym(21) containing D. As shown in [10], the maximal primitive subgroups
of Sym(21) are isomorphic to Sym(7) or to PΓL(3, 4) or to PGL(2, 7), and
the maximal primitive subgroups of Alt(21) are isomorphic to Alt(7) or to
PGL(3, 4). We have already observed that D is contained in one maxi-
mal subgroup isomorphic to PGL(2, 7), that is G. The maximal subgroups
isomorphic to Sym(7) or PΓL(3, 4) are the normalizers of some maximal
subgroups of Alt(21); therefore it suffices to check the maximal subgroups
containing D in Alt(21). First of all we consider a maximal M isomorphic
to Alt(7); by GAP we verify that M contains 30 subgroups of order 168,
conjugated to D in Sym(21). Each maximal subgroup isomorphic to Alt(7)
is conjugated to M in Sym(21), hence it contains 30 subgroups conjugated
to D. But |ClSym(21)(D)| = 15 · |ClSym(21)(M)|; therefore we may conclude
that each subgroup conjugated to D in Sym(21), and in particular D it-
self, is contained in two maximal subgroups of Alt(21) isomorphic to Alt(7).
Moreover we notice that Alt(7) is the unique maximal subgroup of Sym(7)
containing subgroups with order equal to |D|; then D corresponds to the
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intersection of two maximal subgroups of Sym(21) isomorphic to Sym(7).
We observe that the maximal subgroups of Alt(21) isomorphic to PGL(3, 4)
are all conjugated in Alt(21); we consider M one of these maximal sub-
groups. By GAP we verify that M does not contain any subgroup conju-
gated to D in Sym(21); then D is not contained in any maximal subgroup
of Alt(21) isomorphic to PGL(3, 4), and also in any maximal subgroup of
Sym(21) isomorphic to PΓL(3, 4). We are now able to represent the lattice
of subgroups of Sym(21) containing D:

Sym(21)
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gggggggggggggggggggggggg

ooooooooooo

JJJJJJJJJJJ

RRRRRRRRRRRRRRRR
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sssssssss
Sym(7)

qqqqqqqqqq
I

oooooooooooooo J

ttttttttttt G
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Alt(7) Alt(7) I ∩Alt(21) J ∩Alt(21)

D

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

VVVVVVVVVVVVVVVVVVVVVVV

KKKKKKKKKK

Note that there isn’t a bijection between maximal subgroups of Alt(21) and
maximal supplements of Alt(21) in Sym(21). From the diagram it is easy
to calculate the Möbius numbers of D in Alt(21) and in Sym(21):

µ(D,Alt(21)) = 3 and µ(D,Sym(21)) = 1.

Then the inequality (3.8) holds. We recall

PAlt(21)(s)− PSym(21),Alt(21)(s) =
∑

H≤Alt(21)

µ(H,Alt(21)) + µ(H,Sym(21))
| Sym(21) : H|s

(3.9)
We consider all subgroups H of Alt(21) having the same order of D, that is
168; we want to calculate the following term of the previous sum (3.9):

∑
H≤Alt(21)

|H|=|D|

µ(H,Alt(21)) + µ(H,Sym(21))
(| Sym(21)|/|D|)s .

First of all we suppose that H is contained in a maximal primitive subgroup
P of Alt(21). If P ∼= Alt(7) thenH is conjugated toD in Sym(21), and it has
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Möbius numbers in Alt(21) and Sym(21) equal to D. Let P ∼= PGL(3, 4);
with GAP we verify that P contains 360 subgroups of order 168, isomorphic
to PSL(2, 7), all conjugated in Sym(21), but not conjugated toD in Sym(21).
Let H be one of these subgroups isomorphic to PSL(2, 7); with some calcula-
tions we verify that µ(H,Alt(21)) = −µ(H,Sym(21)). IfH is an intersection
of some maximal intransitive subgroups of Alt(21) then, using the closure
theorem of Crapo, it is easy to prove µ(H,Alt(21)) = −µ(H,Sym(21)).
Moreover we are able to verify that the intersection H of some maximal
imprimitive subgroups of Alt(n) has order 168 only if we intersect two max-
imal imprimitive subgroups isomorphic to (Sym(3)oSym(7))∩Alt(21); in this
case it follows that H is conjugated to D in Sym(21). Finally we may prove
that the intersection of maximal intransitive and imprimitive subgroups of
Alt(21) has never order 168. Hence

∑
H≤Alt(21)

|H|=|D|

µ(H,Alt(21)) + µ(H,Sym(21))
(| Sym(21)|/|D|)s =

4 · |ClSym(21)(D)|
(| Sym(21)|/|D|)s 6= 0

and then
PAlt(21)(s)− PSym(21),Alt(21)(s) 6= 0.

But we may verify that each maximal subgroup of Alt(21) doesn’t coincide
with its normalizer in Sym(21): by Remark 3.1.3, we know that doesn’t exist
any maximal intransitive or imprimitive subgroup of Alt(21) that coincide
with its normalizer in Sym(21); moreover the maximal primitive subgroups
isomorphic to Alt(7) have normalizer in Sym(21) isomorphic to Sym(7), and
the maximal subgroups isomorphic to PGL(3, 4) are normalized by PΓL(3, 4)
in Sym(21). Therefore we conclude that the conjecture of Boston and Mann
does not hold if n = 21.

Remark 3.3.4 Then we have found a counterexample to the conjecture of
Boston and Mann. In the case n = 21 does not exist an one-to-one corre-
spondence between maximal subgroups of Alt(21) and maximal supplements
of Alt(21) in Sym(21); this fact makes the failure of the conjecture. We ask
if the conjecture always holds when a bijective correspondence exists. As we
have anticipated in Remark 3.3.2, the answer is negative; in fact we show
now a counterexample (n = 62), in which Sym(n) contains some primitive
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proper subgroups different from Alt(n), and there exists a bijection between
maximal subgroups of Alt(n) and maximal subgroups of Sym(n), different
from Alt(n).

3.3.2 n=62

Using a result of Shareshian (see [33, Corollary 4.14]), we know that

µ(〈1〉 , Sym(62)) + µ(〈1〉 ,Alt(62)) = −62 !.

We have

PAlt(62)(s)− PSym(62),Alt(62)(s) =
∑

H≤Alt(62)

µ(H,Alt(62)) + µ(H,Sym(62))
|Sym(62) : H|s ;

we consider the term in this sum with denominator equal to |Sym(62)|s. It
is the following

µ(〈1〉 , Sym(62)) + µ(〈1〉 ,Alt(62))
|Sym(62)|s = − 62 !

(62 !)s 6= 0.

Then
PAlt(62)(s) 6= PSym(62),Alt(62)(s).

But, there exists a bijection between the maximal subgroups of Alt(62) and
the maximal subgroups of Sym(62), different from Alt(62). This bijection
maps each maximal subgroupM of Sym(62) toM∩Alt(62); ifM is primitive
then it is isomorphic to PGL(2, 61) (see [10]), andM∩Alt(62) ∼= PSL(2, 61).
Hence the conjecture is not true.

3.3.3 Open problem

The natural next step in our investigation is to consider Symmetric groups
that do not contain primitive subgroups, different from Alt(n). Cameron
has proved (see [4]) that the set of positive integers n for which does not ex-
ist a primitive group of degree n other than Sym(n) and Alt(n) has density
1. This means that there exists an important infinite family F of positive
integers such that, if n ∈ F , then Sym(n) doesn’t contain any primitive
proper subgroup, different from Alt(n), and then there exists a bijective
correspondence between maximal subgroups of Alt(n) and maximal supple-
ments of Alt(n) in Sym(n). In this case we ask if Sym(n) satisfies or not the
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conjecture of Boston and Mann, and if all the Symmetric groups with degree
in F have the same behaviour. We have not yet obtained an answer to this
question. We think that the possibility of expressing subgroups of the Alter-
nating group as intersection of two (or few) imprimitive maximal subgroups
of the Symmetric group, could imply the existence of a counterexample to
the conjecture of Boston and Mann, even among the groups with degree in
F . On the other hand, different considerations and partial results seem to
indicate that if such a counterexample exists, then the degree must be quite
large.
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Chapter 4

Subgroups with non trivial
Möbius number in
the Alternating and
Symmetric groups

4.1 Statement of the main results

Let n be a natural number. In this chapter we will work with Sym(n)
and Alt(n), respectively the Symmetric group and the Alternating group
of degree n. Let G ∈ {Alt(n),Sym(n)}; denote by bm(G) the number of
subgroups H of G with |G : H| = m and µ(H,G) 6= 0. Then, as anticipated
in Section 2.2, we will prove the following statements.

Theorem 4.1.1 There exists an absolute constant α such that ∀n ∈ N, if
G ∈ {Alt(n),Sym(n)} and m ∈ N, then

bm(G) ≤ mα (4.1)

Theorem 4.1.2 There exists an absolute constant β such that ∀n ∈ N, if
G ∈ {Alt(n),Sym(n)} and H ≤ G, then

|µ(H,G)| ≤ |G : H|β (4.2)

We proceed to prove these two theorems asymptotically on n.
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4.2 Proof of Theorem 4.1.1

First of all we are going to state some results that will be used in the proof
of Theorem 4.1.1.

Lemma 4.2.1 Let G ∈ {Alt(n),Sym(n)} and let

C := {T ≤ G |T transitive, µ(T,G) 6= 0} .

There exists d, independent from n, such that |C| ≤ (n!)d.

Proof. Let T ∈ C. As we have already noted in Remark 1.4.4, G is a
transitive permutation group on the set ∆n = {(a, b) | 1 ≤ a, b ≤ n, a 6= b}.
We can apply Lemma 1.3.6 to G, acting on ∆n, and we obtain

µ(T,G) =
∑
R∈ST

µ(R,G)g(T,R)

where ST = {R ≤ G |R transitive on ∆n, R ≥ T}. Since µ(T,G) 6= 0, there
exists R ∈ ST such that g(T,R) 6= 0. Hence T is closed in LR, with respect
to the action on ∆n, and T = C ∩ R with C = T , the ∆n-closure of T
in LG. We observe that transitivity on ∆n is equivalent to 2-transitivity
on In = {1, . . . , n}; hence R is 2-transitive. Therefore any T ∈ C can be
obtained as the intersection of a 2-transitive subgroup of G and a ∆n-closed
transitive subgroup of G. Hence to give an upper bound on |C|, we may
calculate the number of the ∆n-closed transitive subgroups of G, and the
number of the 2-transitive subgroups of G.
Denote by P the subset of partitions of ∆n whose parts are orbits of some
transitive subgroup of G in its action on ∆n. Then the number of the ∆n-
closed transitive subgroups of G is equal to the cardinality of P; by Corollary
1.4.6, there exists δ, independent from n, such that

|P| ≤ (n !)δ.

We want now to calculate the number of the 2-transitive subgroups of G;
notice that a 2-transitive group is primitive. So we can use a result by
Jaikin and Pyber (see [15, Corollary 8.2.]): they proved that the number
of conjugacy classes of primitive groups of degree n in Sym(n) is smaller or
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equal than n
a logn√
log logn , with a ∈ N an absolute constant. For n sufficiently

large, there exists b such that

n
a logn√
log logn ≤ (n!)b

Obviously each conjugacy class of subgroups in Sym(n) has cardinality
smaller than n!; then we obtain that the number of 2-transitive subgroups
of G is at most (n !)b+1. We can so conclude |C| ≤ (n!)δ+b+1. �

In the following proposition we will give a bound on the number of the
transitive subgroups of G of index m and with Möbius number different
from zero.

Lemma 4.2.2 Let G ∈ {Alt(n),Sym(n)} and denote by tm(G) the number
transitive subgroups T of G with |G : T | = m and µ(T,G) 6= 0. Then there
exists an absolute constant η such that

tm(G) ≤ mη

for each m ∈ N.

Proof. Let f = max{2, c}, where c is the constant which appears in the
statement of Lemma 1.4.10. By Lemma 4.2.1, if mf ≥ n!, then it follows
tm(G) ≤ (n!)d ≤ mfd. Therefore, in order to conclude the proof, it suffices
to find a polynomial bound for tm(G) which holds when mf < n!. Clearly
tm(G) ≤ 1 if m ≤ 2, so we may assume m > 2. Let

Dm := {T ≤ G |T transitive, |G : T | = m, µ(T,G) 6= 0} ;

obviously we have tm(G) = |Dm|. By Lemma 1.4.7 and Lemma 1.4.10, if
T ∈ Dm, then T is imprimitive and, up to conjugacy in Sym(n),

N = (Alt(a))b ≤ T ≤ Sym(a) o Sym(b)

with 1 < b < a < n and ab = n. Since N ≤ T and Sym(a) = Alt(a)〈(1, 2)〉,
T = NX with X ≤ 〈(1, 2)〉 o Sym(b). Notice that X ≤ 〈(1, 2)〉 o Sym(b)
can be viewed as subgroup of Sym(2b) and recall ([32, Theorem 4.2])
that Sym(2b) contains at most 24c1b2 different subgroups for some abso-
lute constant c1. Summarizing we have at most

√
n possibilities for b and,
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for a fixed b, at most 24c1b2 choices for X and, consequently, for T up
to conjugacy in Sym(n). Moreover the number of the conjugates of T in
Sym(n) is at most |Sym(n) : T | ≤ 2|G : T | = 2m. This implies that
tm(G) ≤ 2m

√
n24c1b2 ≤ 2m

√
n24c1n ≤ mc2 for a suitable c2, since, by

Lemma 1.4.8, m ≥ 2σn. �

We prove now that the number of closed subgroups of G of index m can be
bounded polynomially on m.

Lemma 4.2.3 Let G ∈ {Alt(n),Sym(n)} and denote by cm(G) the number
of the subgroups of G with index m and closed in LG with respect to the
action on {1, . . . , n}. Then

cm(G) ≤ m4

for each m ∈ N.

Proof. As we have observed in Remark 1.3.5, the closed subgroups of G are
precisely the conjugates of (Sym(x1)×· · ·×Sym(xr))∩G with x1+· · ·+xr = n

and r 6= n− 1 if G = Alt(n). Except in the case r = n and G = Alt(n), such
a subgroups has index

m = n !
x1 !x2 ! · · ·xr ! .

We need to count the number of possible choices for x1, . . . , xr giving the
same index m. We consider m as the multinomial coefficient

m =
(

n

x1 x2 · · · xr

)
=
(
n

x1

)(
n− x1
x2

)
· · ·
(
n− x1 − · · · − xr−2

xr−1

)
.

We know that the ordered factorizations of m are at most m2 (see [14]). Fix
a factorization m = β1β2 · · ·βr−1. Each factor βi is a binomial coefficient
and, given yi = n − x1 − · · · − xi−1, there are two possible values of xi for
which βi =

(yi
xi

)
, for any i ∈ {1, . . . , r − 1}; hence there at most 2r−1 ≤ m

possibilities for x1, . . . , xr corresponding to the given factorization. So there
are at most m3 choices of x1, . . . , xr giving the same m. Hence there are at
most m3 conjugacy classes of closed subgroups with index m. Each of these
subgroups has at most m conjugates, so cm(G) ≤ m4.

�
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We can now complete the proof of Theorem 4.1.1.

Proof. [Theorem 4.1.1] We are supposing G ∈ {Alt(n),Sym(n)}, and we
want to prove the existence of α, independent from the choice of n, such
that bm(G) ≤ mα for any m ∈ N.
Let H ≤ G with |G : H| = m and µ(H,G) 6= 0. Using Lemma 1.3.6 with
respect to the natural action of G on {1, . . . , n}, we obtain

µ(H,G) =
∑
T∈SH

µ(T,G)g(H,T )

with SH = {T ≤ G |T transitive, T ≥ H}. Since µ(H,G) 6= 0, there exists
T ∈ SH such that µ(T,G)g(H,T ) 6= 0. This implies that H is closed in
LT , and then H = T ∩ C, with C the closure of H in LG. The element H
is intersection between a transitive subgroup of G, with non zero Möbius
number, and a closed subgroup of G. We want to give an upper bound on
bm(G). First of all we count the number of closed subgroups of G with index
dividing m. By Lemma 4.2.3, for any index smaller or equal than m there
are at most m4 closed subgroups of G with this index; hence there are at
most m5 closed subgroups of G with index dividing m. By Lemma 4.2.2,
for each index smaller or equal than m, there are at most mη transitive
subgroups of G with this index and with non zero Möbius number; then
there are at most mη+1 transitive subgroups of G with non zero Möbius
number and index dividing m. We may conclude that

bm(G) ≤ mη+6.

�

4.3 Proof of Theorem 4.1.2

To prove Theorem 4.1.2 we will use the following lemma on the Möbius
number of the transitive subgroups of G.

Lemma 4.3.1 Let G ∈ {Alt(n),Sym(n)}. Then there exists an absolute
constant ν such that

|µ(T,G)| ≤ |G : T |ν

for each transitive subgroup T of G.
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Proof. Let T be a transitive subgroup of G; obviously we may suppose
µ(T,G) 6= 0. Using Lemma 1.3.6 with respect to the transitive action of G
on ∆n = {(a, b) | 1 ≤ a, b ≤ n, a 6= b}, we obtain

|µ(T,G)| ≤
∑
R∈ST

|µ(R,G)| · |g(T,R)| (4.3)

with ST := {R ≤ G |R transitive on ∆n, R ≥ T}. Let t ≤ n − 1 be the
number of orbits of T on ∆n. We have to distinguish two cases.

a) Let ST ⊆ {Alt(n),Sym(n)}. Obviously if socT = Alt(n) we have

|µ(T,G)| = 1 ≤ |G : T |.

Otherwise, using Theorem 1.3.8 and Lemma 1.4.5, we obtain

|µ(T,G)| ≤ |g(T,Alt(n))|+ |g(T, Sym(n))| ≤ (t !)2 ≤ 4 · |G : T |2.

b) Let ST 6⊆ {Alt(n),Sym(n)}. In this case there exists R ∈ ST such
that Alt(n) 6≤ R. This subgroup R is 2-transitive and consequently
primitive on {1, . . . , n}; then, by applying Lemma 1.4.7, we obtain
|G : T |2 ≥ |G : R|2 ≥ n! for n large enough. Hence our aim becomes
bounding |µ(T,G)| polinomially on n!.
Since t ≤ n− 1, by Theorem 1.3.8 we get |g(T,R)| ≤ (t !)2

2 ≤ (n !)2

2 for
any R 6= T ; also |g(T, T )| = 1 ≤ (n !)2

2 . From (4.3), it follows

|µ(T,G)| ≤ (n !)2 ·
∑
R∈ST

|µ(R,G)|.

So we have to bound the sum
∑
R∈ST |µ(R,G)| polinomially on n !.

As we noticed in the proof of Lemma 4.2.1, there exists b such that the
number of 2-transitive subgroups of G is at most (n !)b. In particular
|ST | ≤ (n !)b. Moreover, by Theorem 1.4.1, we have |µ(R,G)| ≤ 1 for
each R ∈ ST . We can conclude

|µ(T,G)| ≤ (n !)2 · (n !)b

for any n large enough.
�
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Now we are able to prove the theorem.

Proof. [Theorem 4.1.2] We are supposing G ∈ {Alt(n),Sym(n)}; we
want to prove the existence of β, independent from the choice of n, such
that |µ(H,G)| ≤ |G : H|β for each H ≤ G. We may suppose H ≤ G with
µ(H,G) 6= 0. By Lemma 1.3.6

µ(H,G) =
∑
T∈SH

µ(T,G)g(H,T ) (4.4)

with SH the set of transitive subgroups of G containing H.
Let σ = {Ω1, . . . ,Ωr} be the set of orbits of H on {1, . . . , n}. Choose an
element xi ∈ Ωi, ∀ 1 ≤ i ≤ r, and define the set X := {x1, . . . , xr}. Since
Alt(X) ∩H = 〈1〉, we have |G : H| ≥ |Alt(X)| = r !/2. Moreover, applying
Theorem 1.3.8, we obtain |g(H,T )| ≤ (r !)2/2 for each T 6= H. Hence, for
each T ∈ SH ,

|g(H,T )| ≤ 2 · |G : H|2.

From (4.4), it follows

|µ(H,G)| ≤ 2 · |G : H|2 ·
∑
T∈SH

|µ(T,G)|.

By Lemma 4.3.1 there exists ν such that

|µ(T,G)| ≤ |G : T |ν ≤ |G : H|ν for each T ∈ SH .

It remains to give an estimate on the number s of subgroups T ∈ SH with
µ(T,G) 6= 0. We notice that if T ∈ SH then |G : T | ≤ |G : H|. Hence,
applying Lemma 4.2.2, we obtain

s ≤
∑

m≤ |G:H|
tm(G) ≤ |G : H|η+1.

We may conclude |µ(H,G)| ≤ 2 · |G : H|2 · |G : H|ν · |G : H|η+1. �

We have proved the existence of two constants α and β that satisfy the
statements of Theorems 4.1.1 and 4.1.2 for any n ∈ N, but we have not
found precise values for these constants. In fact, proving the theorems, we
have realized that an extimation of α and β could need many calculations.
In the particular case n prime (with some exceptions), we are able to verify
that β = 1.
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4.4 Bounds with n prime

From now on we consider G ∈ {Alt(p),Sym(p)}; we denote byMG the set
of the intransitive and affine maximal subgroups of G. We are able to prove
the following statement.

Lemma 4.4.1 Let p ≥ 5 and let G ∈ {Alt(p),Sym(p)}. Suppose H < G,
H 6= 〈1〉, such that if N is a maximal subgroup of G with H ≤ N , then
N ∈MG. Then

|µ(H,G)| < |G : H|.

Proof. H < G; then we know that µ(H,G) 6= 0 only if H is an intersection
of maximal subgroups of G (see Remark 1.2.2).
If H is a maximal subgroup of G, then |µ(H,G)| = 1, by the definition of µ,
and the index |G : H| is strictly bigger than 1; hence |µ(H,G)| < |G : H|.
Now we suppose H an intersection of elements ofMG, but H not maximal
in G; H is an intersection of some maximal affine or intransitive subgroups
of G. We notice that the intersection of two maximal affine subgroups of
G is intransitive; then H is an intransitive subgroup of G. By applying the
closure theorem of Crapo to the lattice LG, we obtain

µ(H,G) = −
∑

H≤T<G

T̄=G

µ(H,T ) +

 µ̄(H,G) if H is closed in LG
0 otherwise

and

|µ(H,G)| ≤ |
∑

H≤T<G

T̄=G

µ(H,T )|+

 |µ̄(H,G)| if H is closed in LG
0 otherwise

(4.5)
If doesn’t esixts any transitive subgroup T 6= G such that H ≤ T , then H
has the form

(Sym(Ω1)× · · · × Sym(Ωr)) ∩G

where Ω1, . . . ,Ωr are the orbits of H on {1, . . . , p}, with 2 < r < p. Then H
is closed in LG and, as we have already observed in Remark 1.3.9, it holds
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|µ̄(H,G)| = (r − 1)!. Hence

|µ(H,G)| = (r − 1)!.

We take xi ∈ Ωi, ∀ 1 ≤ i ≤ r, and define X := {x1, . . . , xr}. The group
Y := Sym(X)∩G is such that Y ∩H = 〈1〉; then |G : H| ≥ |Y | ≥ r !/2. We
are considering r > 2, then (r−1)! < (r !/2), and it follows (r−1)! < |G : H|.
We may conclude

|µ(H,G)| < |G : H|.

Then we may suppose that there exists at least one transitive subgroup
T 6= G such that H ≤ T . By hypothesis, we have T ≤ A, with A a maximal
affine subgroup of G; hence H is an intransitive subgroup of A. It holds
A = P o (K ∩ G) = NG(P ), for some P ∼= Cp and K ∼= Cp−1; then H is a
cyclic subgroup of K ∩G. By hypothesis, H 6= 〈1〉, and then H is not closed
in LG: in fact Alt(p) doesn’t have any cyclic closed subgroup, and the only
cyclic closed subgroups of Sym(p) have order 2, and fix p−2 elements. From
(4.5),

|µ(H,G)| ≤ |
∑

H≤T<G

T trans.

µ(H,T )| (4.6)

We are considering H < A; the transitive subgroups containing H and
contained in A are of the form P o R, with H ≤ R ≤ (Ks ∩ G) for some
s ∈ P (see Remark 3.2.1). The subgroup P has p complements in A pairwise
disjoint. Then H is contained only in one complement of P ; without lost of
generality we may assume H ≤ K ∩G and H ≤ R ≤ K ∩G.
Any maximal affine subgroup Ā of G containing H is conjugated to A in
Sym(p). Then we can repeat for Ā = P̄ o (K̄ ∩G) the same procedure; so
we may assume H ≤ (K̄ ∩ G), with K̄ ∼= Cp−1. Denote by t the number
of the maximal affine subgroups of G containing H, that is equivalent to
the number of the subgroups of order p normalized by H. We recall that
the intersection of two maximal affine subgroups is intransitive; then any
transitive subgroup T that appears in (4.6), is contained in only one maximal
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affine subgroup of G. It follows∑
H≤T<G

T trans.

µ(H,T ) = t ·
∑

T trans.

H≤T≤A

µ(H,T ) = t ·
∑

H≤R≤K ∩G
µ(H,PR) (4.7)

If H = K ∩G, then H is a maximal subgroup of PH, and we obtain:∑
H≤T<G

T trans.

µ(H,T ) = t · µ(H,PH) = −t.

We recall that t is smaller or equal than the number of all maximal affine
subgroups of G; using the bijection between the set of the maximal affine
subgroups of Alt(p) and the set of the maximal affine subgroups of Sym(p),
we may conclude t ≤ (p− 2)!. Then

|
∑

H≤T<G

T trans.

µ(H,T )| ≤ (p− 2)!.

If G = Alt(p), then |H| = (p−1)/2; it follows that |Alt(p) : H| = p ·(p−2)!.
From (4.6), we obtain

|µ(H,Alt(p))| ≤ (p− 2)! < |Alt(p) : H|.

At the same way, if G = Sym(p)⇒ |H| = p−1 and | Sym(p) : H| = p·(p−2)!.
Hence

|µ(H,Sym(p))| < |Sym(p) : H|.

Now we suppose H < K ∩G. We fix R in (4.7), and we calculate µ(H,PR);
to do this, we proceed as in the proof of Lemma 3.2.2. By applying the
complement theorem of Crapo to the lattice L of the subgroups of PR
containing H, we obtain:

µ(H,PR) =
∑

R̄∈ (PH)⊥
µ(H, R̄) · µ(R̄, PR) = µ(H,R) · µ(R,PR).

R is a maximal subgroup of PR; it holds µ(R,PR) = −1. Hence

µ(H,PR) = −µ(H,R).
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H / R, then µ(H,R) = µ(〈1〉 , R/H). Let |H| = h and |R| = r; R/H is
cyclic, then, by Lemma 1.2.7, it follows

µ(H,PR) = −µ(〈1〉 , R/H) = −µ(r/h).

If G = Alt(p), then |K ∩Alt(p)| = (p− 1)/2, and from (4.7) we obtain:∑
H≤T<Alt(p)

T trans.

µ(H,T ) = −t ·
∑

h|r and r|(p−1)/2
µ(r/h).

Set r̄ = r/h, for any r such that h|r and r|(p − 1)/2; then we observe that∑
h|r and r|(p−1)/2

µ(r/h) =
∑

r̄|(p−1)/2h
µ(r̄). Moreover (p − 1)/2h 6= 1, because

we are supposing H < K ∩ Alt(p), and so, as observed in Remark 1.2.6, it
follows ∑

r̄|(p−1)/2h
µ(r̄) = 0.

Then, from (4.6),

|µ(H,Alt(p)| = 0 < |Alt(p) : H|.

In a analoug way, let G = Sym(p); then |K| = p−1, and from (4.7) we have∑
H≤T<Sym(p)

T trans.

µ(H,T ) = −t ·
∑

h|r and r|p−1
µ(r/h).

Set r̄ = r/h, for any r such that h|r and r|p − 1; then we observe that∑
h|r and r|p−1

µ(r/h) =
∑

r̄|p−1/h
µ(r̄). Moreover (p− 1)/h 6= 1, because H < K,

and so it follows ∑
r̄|p−1/h

µ(r̄) = 0.

Then, from (4.6),

|µ(H,Sym(p)| = 0 < |Sym(p) : H|.
�

From Lemma 4.4.1 we can deduce the following theorem, that gives a bound
stronger than Theorem 4.1.2, for some prime degrees.
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Theorem 4.4.2 Let p be a prime, with p 6= 11, 23 and p 6= (qd− 1)/(q− 1),
for any couple of natural numbers (q, d), with q > 4 if d = 2.
If G ∈ {Alt(p),Sym(p)} and H ≤ G, then

|µ(H,G)| ≤ |G : H|. (4.8)

Proof. We may suppose p ≥ 5: in fact if p = 2 or p = 3 the inequality
(4.8) is easily verified. Consider G ∈ {Alt(p),Sym(p)}; using [29, Theorem
2, Corollary 3], we observe that if p 6= 11, 23 and p 6= (qd − 1)/(q − 1) (with
q > 4 if d = 2), then G contains only maximal transitive subgroups of affine
type. The setMG represents the set of all maximal subgroups of G, different
from Alt(p). By applying Lemma 4.4.1, we obtain |µ(H,G)| < |G : H|, for
any H < G, H 6= 〈1〉, with Alt(p)H = G.
If G = Sym(p) and 〈1〉 < H < Alt(p), using Lemma 3.2.2 and Lemma
4.4.1, we may conclude |µ(H,Sym(p)| = |µ(H,Alt(p)| < |Sym(p) : H|. If
G = Sym(p) and H = Alt(p), then |µ(G,H)| = 1 < |G : H|.
Hence it remains to prove that (4.8) holds for H = G and H = 〈1〉. If
H = G we obtain |µ(H,G)| = |G : H| = 1. Let H = 〈1〉; as it is shown
in [33, Theorem 1.6.], it holds |µ(〈1〉 , Sym(p))| = p !/2. In the proof of
Theorem 3.2.3, it has been proved µ(〈1〉 , Sym(p)) = −µ(〈1〉 ,Alt(p)); then
|µ(〈1〉 , G| = p !/2 = |G : 〈1〉|. �

Remark 4.4.3 If p ≥ 5, with p 6= 11, 23 and p 6= (qd − 1)/(q − 1), as in
the hypothesis of Theorem 4.4.2, then we observe that the inequality (4.8)
strictly holds for any H < G, H 6= 〈1〉.

Remark 4.4.4 We observe that the inequality (4.8) does not hold in gen-
eral if we consider G = Alt(n) and H ≤ G. For example, as shown in
[33, Corollary 4.15], it holds µ(〈1〉 ,Alt(14)) = 14!. Instead we don’t know
examples of Symmetric groups for which (4.8) doesn’t hold for some H ≤ G.

These considerations lead us to formulate the following:

Conjecture 4.4.5 There exists an absolute constant γ such that ∀n ∈ N,
if G ∈ {Alt(n),Sym(n)} and H ≤ G, then

|µ(H,G)| ≤ γ · |G : H|.
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