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ER CAFFETTIERE FISOLOFO

L’ommini de sto monnasl'istesso
Che vaghi de ca#f ner macinino:

C’uno prima, uno doppo, e un’antro appresso,
Tutti quanti ped vanno a un distino.

Spesso muteno sito, e caccia spesso
Er vago grosso er vago piccinino,
E ss’incarzeno tutti in zu I'ingresso
Der ferro che li sfraggne in porverino.

E I'ommini accusviveno ar monno
Misticati pe mano de la sorte
Che sse li gira tutti in tonno in tonno;

E movennose oggnuno, o ppiano, o fforte,
Senza capillo mai caleno a fonno
Pe casa ne la gola de la morte.

G. G. Belli. Roma, 22 gennaio 1833






Summary

Flows of granular materials exist in a wide variety of sitoas, spanning from indus-
trial plants (silos, hoppers, mixers, fluidised beds) taratprocesses (avalanches, rock-
slides), and even in everyday’s life. Being that nearly & difdll goods processed world-
wide are in a granular form, it is crucial both for economigatl environmental issues to
better understand the behavior of these materials. For Ergle phenomena, continuum
models (i.e. conservation equations equipped with carsté relations) are the only af-
fordable solution to model the flow of powders and grains.

Being that the type of flow depends on the energy injectedtimtcsystem, a classifica-
tion was made in three regimes: 1- the rapid flow regime, foy ddute flows, 2- the
quasistatic regime, for very persistent contacts, and 8-ddgmse flow regime, which is
intermediate between the two and which, despite sevemhats, lacks of a unifying and
satisfying description.

The present work deals with continuum modeling of dense floixgranular materials.
The focus is on the development and validation of rheoldgimadels; in particular, a
model taking into account the dynamics of the fluctuatinggyeas considered, which
gave interesting results, also compared to experimentahamerical data, for both con-
fined and free surface flow. It must be stressed that the maaebyplied both to simple
reference geometries (inclined chute, vertical chutand to industrial scale ones (silo),
thus demonstrating the wide range of applicability of thprapch.

Then, the problem of realistic boundary conditions wasdhghly discussed, evidencing
the importance of correct choices and developing an origieatment considering the
effect of the fluctuating force network on slip dynamics. Eaver, due to the possibil-
ity of extending the approach to treat processes involvasygplids flow such as moving
bed reactors, an attempt was made to simply characterizdicgietween gas and solids
flow in vertical pipes below the fluidizatoin threshold, witte focus on gas maldistribu-
tion.

At first the reader is introduced to the topic of dense grarfldavs and to the state of the
art (Chapter 1), then a mixing length model of dense grarfldess is adopted to assess
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its predictions in a vertical chute configuration (Chapteri@ Chapter 3 a higher-order
closure is introduced and a fluctuating energy model deeeldppm conservation laws
and phenomenological constitutive relations, and it ilsttand extended against Litera-
ture correlations and experience in different geometridkow. Chapter 4 addresses the
issue of boundary conditions, which was verified to be cituciew boundary conditions
for the slip velocity at the wall are developed by means ohagpée stochastic model and
evaluated with the help of dimensional analysis. The proldécountercurrent gas-solid
flow below the fluidization threshold and of possible malilsition deriving from solids
motion is discussed in Chapter 5. A procedure for the scplefusilos for granular-
gas flow applications is then discussed (Chapter 6), andriexpets obtained in a pilot
silo are used to validate the rheological model previoushyetbped, both in the case of
solids only and gas-solids flow. Discrete element simufatere the subject of Chapter 7,
where insights are derived also from numerical data for buttrheology and the bound-
ary conditions. Before resuming the main results and aatjifuture perspectives, first
results of velocity profiles from experiments of a vertidalite are presented in Chapter 8.

The work was done in the Granular Research Group at the Usiiyerf Padova, under the
supervision of Prof. Paolo Canu and Dr. Eng. Andrea Santopvasom | wish to thank
for their suggestions and support. |1 would like to thank d&sedéric Dubois at LMGC
in Montpellier and Mathieu Renouf at LaMCoS in Lyon for thegious help given with
LMGC90. | then acknowledges partial funding and collaborafrom Danieli Research
Center.

Padova, January 28th, 2010.
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Sommario

| flussi di materiali granulari sono comuni a una grande varig situazioni, che vanno
dagli impianti industriali (sili, tramogge, mescolatdeiti fluidi,...) ai processi naturali
(valanghe, frane), e persino alla vita di tutti i giorni. Dabmento che circa meta dei
beni trattati industrialmente si trovano in forma granelappare cruciale per ragioni sia
economiche che ambientali approfondire la conoscenzaodgbartamento di questi ma-
teriali. Per fenomeni su larga scala, i modelli continuisigssquazioni di conservazione
chiuse da appropriate relazioni costitutive) sono I'ursoluzione possibile per trattare il
flusso di polveri e grani.

Dato che il tipo di flusso dipende dall’energia immessa n&tksia, € stata operata una
classificazione in tre regimi: 1- il regime di flusso rapidey flussi molto diluiti, 2- il
regime quasistatico, dove i contatti tra le particelle sassai duraturi, e 3- il regime di
flusso denso, che & intermedio tra i due e che manca ancoreadiascrizione soddis-
facente e unitaria, nonostante i numerosi tentativi teoric

Il presente lavoro tratta della modellazione continua didiwensi di materiali granulari.
Il principale obiettivo & lo sviuppo e la validazione di n&ddreologici; in particolare,
si e scelto di sviluppare un modello che descrive la dinardiell'energia cinetica flut-
tuante, il quale ha portato a risultati interessanti, ancle®nfronto a dati sperimentali e
numerici, per flussi sia in geometrie confinate che a supeltiloéra. Si deve sottolineare
che il modello e stato applicato sia a semplici geometrigfeliimento (piano inclinato,
canale verticale,...) sia a geometrie su scala industf$dl dimostrando cosi 'ampia
applicabilita dell’'approccio.

Inoltre, e stato discusso a fondo il problema di assumenelizmni al contorno realis-
tiche, evidenziando I'importanza di scelte corrette eugplando una trattazione originale
che considera l'effetto della rete fluttuante delle forc#asdinamica di scivolamento
alla parete. Per di piu, vista la possibilita di estendfleqgroccio per trattare processi che
comportino la coesistenza di flussi di solidi e di gas, conreattori a letto mobile, si sono
gettate le basi per una semplice descrizione dell’accopgido tra la reologia del solido
e il flusso del gas sotto la soglia di fluidizzazione in canaliticali, con un’attenzione
particolare per la maldistribuzione del gas.
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Per prima cosa il lettore viene introdotto al tema dei flusanglari e allo stato dell’arte
della reologia (Capitolo 1), in seguito si adotta un mode#ologico a lunghezza di
mescolamento, per valutarne le predizioni in un canaleoaet (Capitolo 2). Nel Capi-
tolo 3 si utilizza una chiusura di ordine superiore per gplare un modello reologico
basato sull’energia fluttuante a partire dalle equaziorgatiservazione e da relazioni
costitutitve fenomenologiche; il modello viene quindi qmanato con correlazioni di Let-
teratura e conoscenze sperimentali per differenti geaoeditiusso. 1l Capitolo 4 affronta
il problema delle condizioni al contorno che si era vistceessruciale per le predizioni
dei modelli: sono sviluppate nuove condizioni al contortizzando un semplice mod-
ello stocastico e valutate con concetti di analisi dimemslie. Il problema del flusso
controcorrente di gas e solidi sotto la soglia della fluidzane & I'argomento del Capi-
tolo 5, considerando il problema dal punto di vista dela msaltbuzione del gas che puo
derivare dall’accoppiamento con la reologia dei solidi.l Napitolo 7 si affrontano in-
vece simulazioni discrete (DEM) di flussi granulari, le quedngono utilizzate anche
per approfondire la reologia e le condizioni al contornamirdi riassumere i principali
risulltati in relazione anche alle prospettive per futuneeistigazioni, nel Capitolo 8 sono
presentati dei risultati preliminari di profili sperimeh velocita in un canale verticale.
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Chapter 1

Introduction to the rheology of dense
granular flows

Sine le croyez, je ne m’en soucie,
mais un homme de bien, un homme de bon sens
croit tousjours ce qu’on luy dict
e qu'il trouve par escript.

Rabelais| a vie treshorrificque du Gargantua pere de Pantagruel.

1.1 Granular media: general concepts

Granular materials are ubiquitous in everyday’s life, al a®this sentence has become
ubiquitous in granular materials Literature. In genergdngilar media can be defined as
ensembles of particles with size larger thHapm(de Gennes, 1998). Above this value,
thermal agitation is negligible, so Brownian motion doesatxur. Therefore a collection
of particles results in what is called athermalsystem. Being that thermodynamic fluc-
tuations do not play an important role, the system canndbexjits phase space without
gaining energy from shear, vibration, or external forceshsas drag or gravity(Aranson
and Tsimring, 2006). Depending on the particle size, genuoledia can be cohesive
or not: typically, abova 00 pum Van der Waals forces are negligible compared to other
forces. The presence and the properties of an interstiti@ 8an modify strongly the
behavior of the mass, both at the level of interparticleratgons (for example changing
interparticle friction properties or cohesion) and on a enbigher scale (e.g. pressure
gradients in the fluid exert forces on the grains).

1



2 Chapter 1. Introduction to the rheology of dense granularslo

Research on granular media, which started from fundamestids of Coulomb (1781)
(who studied static friction and defined the angle of repdskeaps), Faraday (1831)
(who described a convective instability in vibrated povedehich is named after him),
Reynolds (1885) (who observed the dilatancy mechanism¥sém (1895) (who studied
the pressure distribution at the wall of a column filled withigs) can be divided mainly
in two parts: fundamental and technological. Historic#tlyse two branches were respec-
tively held by physicists ad engineers, the relationshigvben the two areas being few
and mostly characterised by two-way distrust. In recents/tee attention of the physics
community on the subject has grown considerably, probabshed also by the interest
in the topic devoted by important personalities such as thieeNprize Pierre-Gilles De
Gennes. An history and a sociology of research on granuldrang not the scope of the
present thesis; however, the author wants to underlineribae communication between
different branches of granular research could be usefutderao proceed with science
and technology, together.

1.2 A physical point of view

The athermal nature implies also that granular systemsaarfedim equilibrium, passing
from a metastable state to another; therefore classidatgtal mechanics fails in these
media. However, being that similarities exist between lggium thermal systems and
driven systems that reach a nonequilibrium steady statefuO’Hern, 2005), many
attempts to develop thermodynamic and statistical thear@ be found in Literature.
Restricting to the case of granular systems, examples d¢f attempts are the kinetic
theory of granular gases(Jenkins and Savage, 1983; JemkihRichman, 1985) for the
rapid regime of flow, and Edwards’ theory of packings in thetistlimit(Edwards and
Oakeshott, 1989; Mehta and Edwards, 1989; Oakeshott andi8dwl1992). In general,
being that energy is in principle not conserved becauseeflibsipative nature of the
interaction between grains (which can be due to frictioel|astic collisions, unrecover-
able deformation, breakage, and so on), effective temyresmtdescribing the state of the
system cannot be defined from energy conservation prirgiple

Moreover, looking at the behavior of a granular system (asxample, a flowing one),
one can be pushed from analogies with similar behaviorshargthysical systems (e.qg.
liquids) to develop contiuum theories, i.e. theories athgppartial differential equations,
thus predicting fields which vary continuously through tlystem (continuum theories
will be largely the subject of the present thesis). Apartrfrthe level of description,
the main theoretical problem of continuum theories death geparation of scales: the



1.3. The industrial way of thinking 3

micro-scale (grain level) and the macro-scale can typichffer by a factor10® —10* (for
example, a silo with diametey 5 m containing material arountdmm in size), which is
not sufficient to strongly affirm the validity of a continuumneatment. Moreover typical
phenomena such as shear banding(G. D. R. Midi, 2004) orrasfailag in drums(Boateng
and Barr, 1997) occur in a limited portion of the system, Ugs@me tenths of diameters
wide. Therefore the continuum assumption cannot be usdtutiknowing that it is a
stronger approximation than it could be for systems in wlaictale separation exists.

1.3 The industrial way of thinking

From the industrial point of view, granular materials aregassed in a variety of manners:
typical operation are storage, discharge, grinding, nglligranulation, pneumatic con-
veying, mixing. It is common sense that systems developegrémular materials usually
have low efficiency compared with analogous systems prowgsquids or gases, with-
out significant improvement of the techniques in the last fitars(Santomaso and Canu,
2001). Problems coming from the peculiar nature of granmlaterials tipically occur in
industrial applications, such as segregation, comminufiermation of stagnant zones,
poor mixing, difficulty in process control,... A detailedderstanding of the mechanics
of granular materials could therefore help, particularlyanw also reactive and transport
phenomena are intended to take place. As an example, a typewfig bed reactor can
be a silo where while the material is continuously dischdyed fed, a reactive gas flows
co- or countercurrently. In this case attention must bededwn wall stress profiles, res-
idence times of the solid and of the gas, trying to reducenstaigzones in the solids and
maldistribution in the gas.

1.4 Phenomenology

Between the various phenomenologies displayed by gramedria, some - though being
out from the scope of the present work - can be reminded bedhayg spread a light on
general properties of the materials under study.

Compaction. If subjected to tapping, an ensemble of grains experientgsieal age-

ing dynamics characterized by logarithmic tendence of iletmvards maximum pack-
ing. If the initial state is already near the maximum (rangigacking limit, the material
needs to expand before compacting again, so density iseanlitire complex function of
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time(Ben-Naim et al., 1996; Herrmann, 1995).

Segregation. When vibrated, a polydisperse ensemble typically segesgatinging to
the surface the biggest grains (this effect is called “Bnaat effect”); this phenomenon
was explained in two ways, one considering excluded volugmeauhics (little particle
flow due to gravity in the voids generated by the motion of éargarticles), the other
taking into account convective motion due to vibrations(@xtive cells bring particles
to the top, and only little particles are able to re-enterttbd)(Marques Fernandes et al.,
2003). This phenomenon is shown in Fig. 1.1. Segregationmeagiso driven by the
difference in the angle of repose of two materials, as it c&ourotating drums, and may
be driven by boundary conditions(Santomaso et al., 2006).

= Ta L rmar v

Figure 1.1: Segregation in a vertically vibrated medium(Oda and IwtsHi999).

Pattern formation. Again, when energy is injected into the system in form of aibr
tions, tappings, pattern formation at the surface of theiomedtan occur(Aranson and
Tsimring, 2006), as it is shown for example in Figure 1.2 plging strips, squares,
hexagons, spyrals, interfaces, localized oscillons.

Flows. Localization, shear banding, hysteresis are some pheowmleich occur when
the material flows in confined or free-surface configurati@epending on the nature of
dissipation and on the energy injected into the systemouarlow regimes appear, which
will be the subject of the next section.

1.5 Granular flows

Already in the speculations of Bagnold (1954, 1956) on the b particulate materi-
als, three regimes have been identified: 1 - the kineticistotial regime which has been
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Figure 1.2: Representative structures in vertically vibrated gramiégers(Aranson and Tsimring, 2006).

succesfully studied by means of corrections of the kindteoty of gases (Jenkins and
Savage, 1983); this regime has the lowest solid fractiorg lasting contacts are negligi-
ble and most of the energy is dissipated through inelastisioms. Analogously to real
gases, a temperature can be defined kinematically as the sgeare fluctuation of the
particle velocities. 2 - the quasistatic case, describepldsticity theories (Schofield and
Wroth, 1968); slow deformation can occur with creep phenuai€éomatsu et al., 2001).
In this regime particles can be thought in persistent canvelcen a large number of parti-
cles lose respective contact, the phenomenon is calledtdaivhich is generally localized
in shear bands (which are generally different from sheadbappearing in dense flows).
3 - the intermediate, dense flowing regime, in which energlssipated by inelastic col-
lisions and interparticle friction (G. D. R. Midi, 2004). Mels for this regime, which is
the subject of the present work, will be discussed later.

Dense flow of granular materials is a very common occurremseveral industrial chem-
ical and related processes. Applications span from operaexpected to be elementary,
like transport or discharge from storage silos, to more dermgnes like moving beds, ro-
tating ovens, mills, granulators, mixers, etc. Difficutia predicting the flow of such ma-
terial surprisingly persist, despite quite a large amoditheoretical and semi-empirical
studies. In this perspective, advances in the predictiostralss and flow patterns of
the material is preliminary to further design goals. Untierding the stress distribution
and the flow behaviour of granular materials in confined ge¢dashas been a research
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subject for engineers, both from fundamental (Nedderm@®2 1Savage, 1998) and tech-
nological (Bohrnsen et al., 2004; Schulze, 2008) starmdpoi

A peculiarity of granular flows which needs to be cited in thisoductory chapter is the
onset of flow and its hysteretic behavior. Due to the fact thatsystem is athermal and
dissipative, in order to have flow the injected energy mustroceme a certain threshold;
for this reason rheology for dense flows typically assumesaoplastic behavior such
as, for example, in Bingham fluids. This is common sense andbeaexemplified by
Dante’s verses, when he wrote about a landslifle] quella ruina che nel fianco/ di
qua da Trento I'Adice percosse/ o per tremuoto o per sosteganco™. Moreover, it
was clearly demonstrated that an hysteresis exists betileestarting threshold and the
stopping one (for a review, see Forterre and Pouliquen (208&ch that for example the
angle at which avalanche starts on an inclined plane is hitjlae the angle at which they
stop.

1.6 Approaches to model the dense flow of granular ma-
terials: state of the art

At the present, two approaches are used in modeling grafioNes: discrete and contin-
uum. The first one, known d&3EM (Discrete Element Method) models the dynamics
of the medium at the particle scale, applying force balamcesach particle, possibly
accounting for interparticle friction, inelastic collisis, non-spherical and cohesive parti-
cles. The attempt dates back to the work of Cundall and S{E®K9). Implementations
may use different algorithms (Jean, 1999) and computati@tegies, and both com-
mercial and open-source simulation softwares are alséad@i(Renouf et al., 2004). In
particular, all DEM techniques start from posing the prabkE motion given by Newton-
Euler equations, which can be written(Dubois and Renoud920
My =P(t)+r
{ Iw =-wA (lw)+ Mp(t)+ M,

wherev is the velocity of the center of massthe angular velocityP(¢) and Mp(t) the

(1.1)

resultant and the momentum of external (body) foreeand M, the resultant and the
momentum of contact force®] andl mass and inertia matrices. Typically the resolution
strategy is divided into three main steps: contact detectontact force computation,
performing movements, which are continuosly looped (instiese that after each move-
ment new contacts can be detected, new forces computed,oamal).s The difference

IDante, Inf. XII 4-6. Translation:"the rockslide that stittarks the flank/ of the Adige, this side of
Trent,/ whether by earthquake or erosion at the base” (BtamcDante Project).
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between different techniques lies principally in the wayofsidering contact forces. A
class of methods exists (to which the first model by Cundall &tmack (1979) belongs)
which can be called “smooth dynamics methods”(Dubois anabik 2009), which are
characterized by (1) explicit time integration and (2) a sthalescription of contact laws.
Briefly summarizing, these methods represent forces asgitiékunction of particle in-
terpenetration, therefore smoothing contacts and allgwanintegrate forward in time.
Another class of methods exists which is called “non-smaeotitact dynamics” (or sim-
ply contact dynamics)(Jean, 1999), which is rather differe the sense that forces are
calculated implicitly. It is not allowed for particles to fdem at the contact interface
(also claiming that this may cause unphysical behaviors)igid contacts are consid-
ered where forces are determined implicitly based on lawakf balances.

Even if simulation capabilities are growing fast, both hessof hardware and software
evolution, full size simulations using real particles (arad virtual, much larger ones) are
often unachievable. On the other hand, DEM models may peouskful and realistic
information on the micromechanics of granular material stnaller scale.

On the larger, industrial scalepntinuum modelsmay be an alternative. Also in this
case many approaches exist: the relation between straistegsdes, i.e. the constitutive
relation has been mimicked by many modeling attempts. Astflaation can be made
extending that proposed by Pouliquen and Chevoir (2002)didg the main approaches
into:

e Hydrodynamic approaches These approaches (to which the model developed in
Chapter 3 belongs) use the granular temperature concaepéddrom the kinetic
theory of rapid granular flows, involving together with cengtion of momentum,
the equation of conservation of fluctuating energy. A 2-Driogggtnamic model was
proposed by Savage (1998), using previous results by H{b&#7). Considering
the existence of two scales, characterizing respectivellgcity and stress fluctu-
ations, and assuming a stress-strain relation coming frgmeld function and an
associated flow rule(Nedderman, 1992), and that the disitoib of strain rate is a
gaussian, he found by averaging momentum balance equatiaestutive relations
between the average stress tensor and the average steabemabr. He showed,
with the assumptions summarized above, that the relatipihgtween tensors was
viscous-like, with a viscosity depending on solids pressaand granular tempera-
ture. To close the system of equations he proposed a cdivaitelation for the
dissipation rate of fluctuating energy and an Equation ofeStalating solid frac-
tion, pressure and granular temperature. The main probliémiwg model seems to
be related with the strength of the assumption of large fatatas of the strain rate
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tensor, which would not be valid in the situations describgdhe author(Mohan
et al., 2002). Another similar hydrodynamic model was psmubby Losert et al.
(2000); Bocquet et al. (2002b), using constitutive relai@oming from kinetic
theory, adding a dependence of viscosity on solid fractiaravfunction diverging
near the random close packing. The equation of state usduebguthors consid-
ered only collisional mechanisms; the main problem witls gpproach seems to
be its too strict relationship with kinetic theory, wheré&lient momentum transfer
and dissipation mechanisms apply than in dense flow.

e Cosserat material models These models(Mohan et al., 2002) are characterized
by the inclusion of the angular momentum balance allowinglie transmission
of couple stresses inside the materials. The stress-satenrelationship is ex-
pressed through a yield function and a flow rule(Nedderm8@2). The model
was applied to a Couette cell(Mohan et al., 2002) showinglgwedictions apart
from the solid fraction profiles; also an application to et chute flow was made
by the authors(Ananda et al., 2008). A problem with these efsos related to
the assumption that the material trasmits couple stregsding a non symmetric
stress tensor. In order to judge whether or not this is féagibe model should be
compared with DEM data. Papers contrasting this assumpénorbe found in Lit-
erature(Goddard., 2008; Pouliquen and Gutfraind, 1998) the analysis given in
Chapter 7 seems to support the idea that even if particléerdtas does not mean
that globally the material transmits couple stresses.

e Elasto-platic or hypoplastic theories These approaches are commonly adopted
in the engineering field, usually solved by means of Finitenig¢nt Methods.The
first are based on elasto-plastic laws (Wu et al., 2007), hviiécscribe the stress-rate
of strain relationship via a yield surface, a plastic pasrand a flow rule, in the
spirit described by Nedderman (1992). Extensions are plessior example, Wu
et al. (2007) use a visco-elasto-plastic model, solving tmt momentum balance
equation in which the stress-rate of strain relationshgien by a viscous (a colin-
ear, constant viscosity term) plus an elastoplastic temwet:from Mohr-Coulomb
yield criterion via a non-associated flow rule. On the othamndy hypoplastic the-
ories specify constitutitve relations between stressaients Jaumann derivative
and the rate of strain, including the effect of void volumel @manular skeleton
(Kolymbas, 2000). These theories seem promising but netfiedmportance of
the fluctuating energy dynamics.

e Self-activated phenomena.Pouliquen and coworkers(Pouliquen and Gutfraind,
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1996; Pouliquen and Forterre, 2009) developed an appraaddidering the fluctu-
ations in the stress tensor as a source of energy capablevdlal of the material.
Subsequently they translated that phenomenology into alotah self-activated
model; their concepts were used succesfully to model thiagpflow of concen-
trated colloidal suspensions(lsa et al., 2007).

e Order parameter description. An order parameter description was proposed by
Aranson and Tsimring (Aranson and Tsimring, 2001, 2002f9dul et al., 2003),
where the material is described as a binary mixture of jamamebiflowing grains.
The relative concentration of the two phases is given by dergsarameter whose
dynamics is described by Ginzburg-Landau equation(Girgzand Landau, 1950).
The stress tensor is given by a liquid-like, viscous contidn plus a solid-like term
proportional to the order parameter. The model was showretaltbe to predict
hysteretical features of dense granular flows, but seeméalltm predicting the
correct rheology(Aranson and Tsimring, 2006; Forterre Radliquen, 2008). An
important issue which should be observed is that the ordempater introduced
by the authors has only an indirect physical meaning, whylérédynamic and
Cosserat theories seem to be based on more reasonableralditiriables.

e Empirical models. A synthesis of experimental and numerical results reggrdin
simple two dimensional configurations of dense flow (simpless, inclined chute,
vertical chute, flow on a heap, rotating drum), was publidghetthe French group G.
D. R. Midi (2004). In that work dimensional analysis was usedrder to describe
a simple rheology, which was translated in a relationshtpeen the effective co-
efficient of bulk friction and the inertial number (being adinsionless number de-
scribing the relative importance of shear and pressure.rfiology outlined was
tested against Couette cell DEM data(da Cruz et al., 2008)ramclined plane
configurations with good results(Jop et al., 2005). It wa® axtended in three
dimensions simply assuming colinearity of stress andrstiatie, and successfully
applied to the case of flow on a heap(Jop et al., 2006). Dus trigin in dimen-
sional analysis, the rheology can be interpreted also agiagriength model(Ertas
and Halsey, 2002). Though the model seems to well behave icetbe of free sur-
face flows, it seems to fail when the flow is completely conf{(Rediliquen et al.,
2006).

Despite several attempts, a fully satisfactory descniptibgranular flows in term of a
pseudocontinuum is still lacking. Difficulties arise prbhabecause of the original nature
of granular materials, particularly with respect to thegsoscopic and dissipative nature,
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but also to the loss of continuity of stress caused by thep®sistence of intergranular
contacts. Some issues which have not been fully explaineddans of continuum mod-
els are hysteresis in inclined chutes, the width of the shaads in vertical chutes; on
more complex geometries, quantitative prediction of batess and velocity fields has
never been properly reached.

In this thesis the work was focused on development and aidaf continuum models,
where attention is devoted both on simple configurationsa¥ity driven flow (vertical
chute, inclined chute) and on more complex ones (silos, éigpand both on qualita-
tive description and prediction of stresses and velocitygdieoriginal contributions were
given both regarding the rheology and the interface belndlmundary conditions to be
applied at the walls). Experimental and DEM were used fodetion and parameter es-
timation. Also the problem of gas-solid flow in a channel etbe fluidization threshold
was addressed theoretically and experimentally.



Chapter 2

Some considerations on mixing length
models of dense granular flows

Namque papaveris haustus itemst facilis quod aquarum;
nec retinentur enim inter se glomeramina quaeque
et perculsus item proclive volubilis exstat.

Tito Lucrezio Card)e Rerum Naturall 453-455

2.1 Introduction

The following chapter contains a work which was mainly psibéid in Europhysics Let-
ters(Artoni et al., 2007a). The main focus is on discussirgadvantages and results
of using a mixing-length, compressible model to accountsteear banding behaviour
in granular flow. A general approach was studied based on twotibns of the solid
fraction to be determined. Studying the vertical chute flidws shown that shear band
thickness is always independent from flowrate in the quasisimit, for Coulomb wall
boundary conditions. The effect of bin width is addressedguthe functions developed
by Pouliquen and coworkers(Jop et al., 2006) predictingheali dependence of shear
band thickness on channel width, while literature repootgm@sting data. The influence
of wall roughness on shear bands is also discussed. ThroGghlamb wall friction cri-
terion it is shown that the model correctly predicts theftd increasing wall roughness
on the thickness of shear bands. Then a simple mixing-leaygghoach to steady granular
flows can be useful and representative of a number of orid@zalires of granular flow.

11
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However, it is shown that the choice of boundary conditioss & strong influence on the
results of the model, and therefore further analysis onttig is needed.

2.2 The model

Many of the theoretical approaches appeared in last dedadature neglect the com-
pressibility of granular materials, assuming it as an ingaessible fluid withy ~ const.
From a phenomenological point of view, dilatancy is a regmient for shearing a granu-
lar material, in other words, the material has to dilate itenrto shear. Accordingly, we
expect that neglect of dilatancy loses an important patt@granular flow physics.

In this chapter a simple model is formulated explicitly itwrag the solid fraction influ-
ence on the flow properties of granular materials. The mades at being a generaliza-
tion of the one developed by the GDR MIDI(G. D. R. Midi, 2004;@ruz et al., 2005; Jop
et al., 2006; Pouliquen et al., 2006) based on the dimeressrdarametef, considered
as the ratio between shearing time and rearranging timealpeessure. In the GDR’s
formulation, the solid fraction is derived frohas being linearly depending on it. Here
the formulation is reversed assuming the solid fractida be the critical variable, instead
of I, to reestablish the physical relevance of the dilation efrtfedium to determine the
flow features. Giving the model an appropriate account okthel fraction can become
important for those geometries (like silos) in whi¢karies significantly (more thar0%)

all over the flow section. In silos flow can be seen to origiffiade fluidization due to the
injection of voids from the exit hole, where solid fractianquite different from its value
in the core.

In this perspective, the-based model derivation and its application to the vertitaite
arrangement are illustrated, to verify the constitutiviatiens proposed. The model
was specifically used to predict the shear bands extensibtis i3sue was considered
(Pouliquen et al., 2006) as a weakness of the mixing lengtioagh; predicted shear
bands width and its dependence on geometrical and flow pésesregpparently do not
match some experimental data. In the following it is showat #iso a simple mixing-
length approach to steady granular flows can appropriaddipt the shear band thick-
ness. The model outlined here is formulated for 2D, steadygigar flows. The relevant
equations are momentum balance with its two componentsthenelquation of continu-
ity.

As a fundamental assumption, let's consider the flow strecto be solvable with the
steady, compressible Navier-Stokes (N-S) equations, avhblid fraction, pressure and
shear-dependent viscosity. In addition, we need a cotigétaquation fom, and the de-
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gree of freedom introduced hyis saturated with a sort of Equation of State that involves
pressure.
Accordingly, equations are:

V-pi=0 (2.1)
L Op 0 ou 0 ou Ov

V- (put) = ~ + 2(‘3—9&” (6_95) + 8—y7) <8_y + 8_90) + P9 (2.2)
. Op 0 ov 0 ou  Ov

V- (pvid) = ay + 28@/?7 (6@/) + 7" (8y + 83:) + pgy (2.3)

wherep is the local density of the compressible pseudo-homogene@aium, which is,
having neglected the interstitial fluid, and takenas material density:

P= o (2.4)

2.2.1 Constitutive relations

A rheological law is assumed, based on dimensional anallkes Prandtl’'s approach
to turbulent flows, as discussed by Ertas and Halsey (2002cadse of the eminent
precursor, we will call it “mixing length approach”.

In this perspective the apparent viscosity of the mediuraaally formulated as:

n=py L* |3 (2.5)

where the unique timescalelig ~'; L is a characteristic length, that has to be function of
d and¢ only, with a generic relation of the form:

L* = dj f(¢) (2.6)

The functionf(¢) is not known so far, but some features of it may be prescribbstiould
diverge whenp — ¢,,.., to limit the material flow (that becomes 'jammed’), ine— oo.
To achieve this limit) should diverge faster thdm*l, as it can be easily seen from Eq.
2.5. Interestingly, forf(¢) = 1 Eq. 2.6 reduce to Bagnold scaling for shear stress (valid
for rapid granular flows), providing a further requiremdmttf (¢ — 0) = 1. However,
the present work addresses dense flow of granular matandhva are not interested, at
the moment, in the liquid-gas like transition.

Also, a relation between pressure and solid fraction is egedhich is similar to an
Equation of State (EoS). Assuming shear rate plays the fadargerature in a gas, and
acts through a geometrical (excluded volume) function) to be specified, dimensional
analysis can be used to obtain the following EoS:

p=py M) (131 dy)* (2.7)
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To keep pressure finite when shear rate vanishges) has to diverge whep — ¢4,
(although value and physical meaninggf,.. is still a matter of debate (Josserand et al.,
2006)). When dealing with Eq. 2.7, we must remember that tbeehis valid only for
stationary flows: of course, a static granular packing caiotied in a wide range of solid
fraction, but we assume that when the system is flowing ancsieonary state, the only
state where the material behaves rigidly is wlter: ¢,,... In the dynamic regime the
material explores its phase space to approach a uniquefiadttbn profile.

Dimensional analysis is broadly used in granular flow madgattempts, starting from
Bagnold's works(Bagnold, 1954, 1956). The formulation @$skrand et al. (2006) uses
dimensional analysis with Coulomb friction to develop a stdntive relation for shear
stress that is composed by a rate dependent part and a rafgemdent one, and where
the isotropic part of the stress tensor is related to soldtion by means of entropic
considerations. Here, normal and shear stresses are sagrascording to Pouliquen
(Jop et al., 2006; Pouliquen et al., 2006), with the diffeesthat solid fraction is used
explicitly as the key variable, instead of dimensionlessashrate. Note that these laws,
are very similar to those developed from hydrodynamic agiak(Bocquet et al., 2002b;
Losert et al., 2000), where granular temperature is usegfpi@sent the local mobility of
the medium. At this moment a simple closure is preferredetbas¢ and an EoS for
it, also because granular temperature is a variable whidHfisult to measure and then
correctly validate.

Rearranging Eq. 2.5-2.6, it is obtained:

_pf@)_»p
=B~ 3o (2.8)

For sake of simplicity, it was replaced the rafiph with G(¢) and introduce:

F(¢) = [h(¢)] (2.9)

as a simple replacement, providealways appears in this form in the following devel-
opments of N-S eqgs. Note th@tmust vanish ifpy = 7 — 0.

Itis easy to see that the functioAsandG correspond, respectively, to the inertial number
I = % and to the effective friction coefficient* as discussed by the GDR MiDi(G.
D. R. Midi, 2004)(da Cruz et al., 2005), which was generaizeany configuration and
dimensions beyond 1D. In simple, quasi-1D geometries, andrderprei as the ratio

of shear and normal stresses; in this sems&as measured from DEM simulations by
da Cruzet al(da Cruz et al., 2005) and possible fittings for its dependent/ were
discussed either by da Cret al. and by Pouliqueret al(Pouliquen et al., 2006). This
formulation is a generalization of those results in a 2 oirBesthsional case, where it is
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Figure 2.1: Vertical chute scheme.

recognized as fundamental the role played by solid fraction

2.3 Applying the model to the vertical chute

The vertical chute configuration is choosen as a standachibegrk for model evaluation.
Original flow structures, principally related to the widthshear zones, can be found in
the chute flow, like in Couette cells. Reference for thesdigarations is the well known
paper by GDR MiDi(G. D. R. Midi, 2004). Broadly speaking, theaterial flows in a
plug-like fashion in the central part of the chute, whilesitsheared near the wall. The
extent of shear bands apparently approaches a typical diorerof order 10-15 patrticle
diameters. Predicting shear bands’ thickness is a ben&hioraall models applied to the
chute and Couette flow(Pouliquen et al., 2006).

2.3.1 \Vertical chute equations

A scheme of the chute is given in Fig. 2.1. For the steadyaarthute 2D flow, N-S
equations simplify thanks to:

Y% 9 (2.10)
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leading to:

(aﬁ_) T ppeg =0 (2.11)
~0

Q>|Q3 Q3|Q>

It was also included Janssen effect, assuming pressurendoeary in the vertical direc-
tion. Eqg. 2.11 additionally states that pressure will nat\eorizontally either. The other
equation can be integrated. Wigloriginating from the center of symmetry and directed
to the wall, as shown in Fig. 2.1, itis:

Al = — (g_;‘) (2.12)

to be replaced in the-momentum balance in combination with Eg. 2.8, to give:

0 0 )
ay" ( a;) P89 = —p5 [G(O)] + prog =0 (2.13)
or
SO 2.
¢) D /0 ¢ Y ( 14)

G(y = 0) = 0 follows from Eg. 2.8 and symmetry, which requires the sheass at the
centerline to vanish.

From Eq. 2.14 we expect to identify(y) providedp and an invertible form ofy are
given. At the same timey(y) can be obtained from the EoS:

p @__\/p//)p

or
b
) = oy + 2L [ () y 216)

whereb is the half-width of the channel. So far, the unknown funesio(y) andu(y) can
be formally obtained solving the coupled Eqgs. 2.14 and 2bii6jn practiceF'(¢) and
G(¢) must be specified, and also the pressure calculated.

The continuity equation can be used in its integral formyaating local profiles to the
total mass flowrate)/. Experiments are easily performed with constant flowrathee
controlled by a simple hole in the bottom of the silo, or ustngoving plate with fixed
velocity. Accordingly:

b
2 pp / ou dy = M = const (2.17)
0

Developing, an expression for the slip velocity can be fdatad by using Eq. 2.16:
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b b )
A¢@m+vg%/F@@>@=J£ 218)

2 pp
or:

b
fob pdy

Uslip = -
! 2pp dp 0

M Vrle, %@%mwﬁ4 (2.19)

2.3.2 On boundary conditions

One of the most critical issue in granular flow simulatiordientification and application
of boundary conditions. For the solid fraction, it will besasned that in the central zone
of the chute material reaches,,, (which could be random close packing, or some other
critical value of¢ that leads:(¢) to diverge(Josserand et al., 2006)). Divergenck af
the center is due to the fact that pressure is constant intthie cbut shear rate has to
vanish aty = 0.

One constraint on velocity can be formulated as an integnadlition, by fixing flowrate
as done above. In addition, we must speculate on the intenasetween the granular
assembly as a continuum and the walls. The simplest view inski@rature is assum-
ing a layer of particles glued at the walls, for which a n@-$loundary condition can be
used. This assumption is attracting for its simplicity bedquires caution in its applica-
tion. Some doubt can be cast on the fact that the continuuragee interaction between
nearest particles is the same in the bulk and in the layerrtitfes facing the glued ones.
In this perspective, experimental investigation andaalttheoretical speculations have to
be done. A viable alternative to no-slip assumption is thel@uob criterion at the wall:

Tw = Oyptand (2.20)

whered is a characteristic wall friction angle. In case of partiatéficially fixed at the
wall, this means assuming them as a wall, with a specific roaghmeasurable by its own
0. Combining Coulomb’s law with Eq. 2.8 we obtain a conditiontbe solid fraction:

mznaﬂwzﬁiGwmwuszwm (2.21)

¥

which leads to
G(¢pw) = tand (2.22)

given thato,, = p. Very important, with Coulomb’s criterion the slip velogis not zero,
and has to be determined from Eq. 2.19 using flowrate. In @adiEq. 2.22 allows to
calculate the pressure (normal stress), provided that:
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b
G = Gly =) = 22 /0 o dy (2.23)

which gives:

b
_ 9 )e 0y ppdave g b

tand  tand (2.:24)

where the average solid fraction, defined ﬁé’ybdy = bdave, has been introduced.
Combining Egs. 2.24, 2.19, and 2.16, the velocity profile lmaexplicitly written as:

L VBavegd [ ( ’ ,)
W G | yians o O J, P

M- ave b b
M VOuegb [ g gy (2.25)
2/)p_ d,Vtané Jy

The result of Eq. 2.24 together with Eq. 2.14 leads to:

tand
= d 2.26
b ¢(IU€ / d) y ( )

stating that in the approximation of~ ¢,,.

G(¢) ~ L tans (2.27)

b
or GG is a linear function ofy, which provides a consistence criterion for the identifarat
of the unknown functiord.
Interestingly, the model, based also on Coulomb wall agterpredicts the invariance
of the velocity profiles with flowrate in the quasistatic lifiwhere¢ ~ ¢, is valid). In
other words, the scaled velocity profile:

J7 F(6(y))dy

0= u(y) — Ustip _ (2.28)

b
Umaz — Uslip fO F

does not depend on flowrate, that influences only the slipetating) velocity. In this limit,
the solid fraction profile also does not depend on flowrateprasglicted by Eq. 2.27,
but only on bin width and wall friction angle. It has to be uraeed that the result is
independent of the particular formulation of the functiéhandG. Also with Pouliquen’s
formulation for the effective friction coefficient (whiclkan be seen as a particular choice
for I’ and (), but with a Coulomb slip criterion, the independency ofashigands from
flowrate is obtained. This is indeed a result supporting theng length approach. We
think that shear bands independence on flowrate could beedeia the stress structure
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of granular matter, which develops internal stresses, @igq by walls, to sustain itself;
in this perspective, taking into account stresses in thadidation of boundary conditions
would be necessary. However, far from the quasistatic Jliont in conditions where

o =~ ¢ae IS NO More acceptable, flowrate can significantly affegt) andu(y) because

of the close coupling of the two equations.

2.3.3 Deriving expressions fot’(¢) and G(¢)

Following the work of Pouliquen and coworkers, the funcsiovould take the form:

{ SRR T (2.29)
F(¢) = ¢
whereg is the scaled solid fraction given by:
7 ¢max - ¢
= _mar P 2.30
¢ d)ma:c - Qbmm ( )

The authors (Pouliquen et al., 2006) acknowledged a mdiorwdty in the application to
the vertical chute with no-slip at the walls; shear bandsatéinite and of constant width
in the quasistatic limit. It was have already demonstratetia Coulomb wall slip crite-
rion can correct this. In the following the results from thiximg length model including
Coulomb wall slip criterion and” and G functions as in Eq. 2.29 will be illustrated for
different chute width and wall roughness.

Before that, note the analytical solution achievable inghasistatic limit, obtained com-
bining Eq. 2.27 and 2.29:

(2.31)

s s g

0 for y <
wherep!, = psb/tand andul, = usb/tand. The scaled velocity profile, obtained combin-
ing EQ. 2.28,2.29 and 2.31, is indeed a simple function: of

(2.32)

) Aly=0b)+BIn(C—Dy) for y>u
{ 1 for y <y

whereA,B,C,D are known constants, depending on model parameters, wébfrangle

and channel width.

In the following an analysis is performed, based on thesé&/aoa results; far from the

guasistatic limit, one can repeat the calculations usingZ2p instead of Eq. 2.27,in a

numerical fashion.
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2.3.4 Shear bands thickness and chute width

It was already demonstrated that the model predicts thatttear band is independent on
flowrate. Here the effect of bin width is explored.

Let's choose, as a measure of shear band widthAh&om the wall to the point where
u =~ .99. Using the quasistatic assumption, we calcutateom Eq. 2.32, for different
widths,b. Other model parameters must be given and they depend opebiéis material
choosen. for the purpose of illustrating the model, we usddes determined by Jagi
al.(Jop et al., 2006), collected in table 2.1, were used.

Table 2.1: Parameters of the model(Jop et al., 2006).

Iy 0.279 (adim)
Is tan(20.9)  (adim)
fo tan(32.76) (adim)
Gmaz  0.83 (adim)
Gmin 0.75 (adim)

Fig. 2.2 shows that the model predicts a linear correlatetwben shear band width and
channel width. The slope of the linear dependency may chautpedifferent materials,
but remains linear. It is frequently stated that the thidenef shear bands is expected to
be independent from channel extension. However, litegateports data supporting (e.g.
(Pouliquen and Gutfraind, 1996)) and contrasting (Ned@erand Laohakul, 1980) this
statement. Our results agree with the experimental resyltéedderman and Lahoakul,
but the issue requires further investigation of the verttaite, in order to discriminate
the applicability of a mixing-length model to this configtioam. From the solid fraction
profiles, it can be argued that(¢) < 0.125, that is, we are in the dense regime. Even if
we are not in the quasistatic limit, the approximatidr: ¢, is still valid because the
body force varies less thal¥, and so profiles can be calculated by means of Eq. 2.31
and 2.32. In fact, it is useful to see how the conditior: ¢,,. can be valid beyond the
quasistatic limit, and so the equations cited above can && aiso in the dense regime.

2.3.5 Shear bands thickness and wall roughness

Wall roughness can influence the extension of the shear pandsrding to the model.
Adopting Coulomb criterion at the wall yields a simple exgsien of wall roughness,
related to the wall friction anglé, while using a no-slip condition makes impossible to
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Figure 2.2: First two figures: Non-dimensional axial velocity solid fractionvs non-dimensional channel
width, in chutes with different extension (wall frictiongi@ § = 25deg). Third figure: shear bands
thicknessss chute extension.

account for roughness within a continuum approach. Alsadawwf real scale application
of a mixing-length model, wall friction must be correctlycacinted for, and the wall
friction angle is a wide-spread approach. Furthermord, weald applications aim at
perfect wall slip, but are often in an intermediate situatiwhere wall roughness plays a
role.

Kishida and Uesugi (1987) performed experiments in shdsrm®bing that a correlation
exists between a normalized wall roughness and the walidnicoefficienty,,, that in
their case was linear; in the case when wall roughness istiutluing particles at the
wall of the same material of the bulk, we would have:

[ =X+ fp (2.33)

wherey is the ratio between wall and bulk particle diametetsthe microscopic coeffi-
cient of friction,m a coefficient of order 1. However, their experiments shoved i,

is upper-limited, and according to the paper, our valueg wbuld belong to a region of
constantu,,. A more recent work by Goujoat al(Goujon et al., 2003) on the role of
roughness in flows down inclined planes showed that fricteathes a maximum for a
certain value of the ratig, and they related the behaviour at higher roughness to the fa
that holes are filled by bulk particles, thus reducing fanti For the 2-D case, using the
simple model by Goujon, it turns out from geometrical comsidions that the value of
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the ratioy at which friction reaches a maximumd4s Thus in the rangé — 4 friction is
an increasing function of the relative roughngss
Results according to Eq. 2.32 are given in Fig. 2.3, shovwhagithe model predicts a de-
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Figure 2.3: First two figures: Non-dimensional axial velocity solid fractionvs non-dimensional channel
width, in chutes with different wall friction (channel widt 50 particle diameters).Third figure: shear
bands thicknesgs wall friction angle.

pendence of shearing regions on wall roughness. Howeeeftct ofd is approaching
an asymptote. At small values slip occurs, whereas larggrdin reduces its influence
on the shearing bands. From the solid fraction profiles, #si@ptiony ~ ¢,,. can
be considered again as valid, becadseries less tham0%. The enlargement of shear
zones with increasing wall roughness is supported also byl D&sults of Prochnow
(Prochnow, 2002) (wherg is respectively0.5, 1 and4). Figure 2.4 illustrates quali-
tatively the comparison between DEM and our mixing-lengtimtinuous model. The
mixing length approach can capture the effect of increasialdjroughness predicted by
DEM calculations by means of different sizes of particlesdiat the wall.

2.4 Is the mixing length model an answer to all of our

guestions?

The analysis developed in these pages seems to suggeshihat@length model, when

equipped with proper boundary conditions, can represenpttysics of vertical chute
flow predicting correct velocity profiles. This is true, buinse considerations have to
be introduced regarding both boundary conditions and theuatof physics embedded
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Figure 2.4: Rescaled velocity profiles from DEM simulations by Proch{®mwchnow, 2002) and continu-
ous, mixing-length model. (circled) = 4 d, diamonds:D = d, squares:D = 0.5 d), while continuous
model calculations use differefitvalues.

in the model. First, it is true that Coulomb boundary comuaitis more realistic than
no-slip, even in the case where some particles are gluee atah. However, Coulomb
friction is valid in principle only if the material at the walndergoes steady sliding; if
the grains exhibit stick-slip behavior, it is reasonablexpect that Coulomb friction is
no more a correct boundary condition. Moreover, it can béiedrthat in the quasistatic
limit assuming a Coulomb boundary condition can yield niegatlip velocitites (which
Is evidently not physical), once flowrate is controlled ipdedently. Therefore, for a last
word on the subject of the effectiveness of the mixing lengtdel as well as of other
models in general, correct boundary conditions must beldpgd and implemented. This
will be the subject of Chapter 4. As regards the other probtetated to the ability of the
zero-order closure mixing length model to represent ingraraspects of the physics of
granular flows, it seems that some extension to the simpteyled G. D. R. Midi (2004)
should be developed, in order to include dynamical feaj@ésh as hysteresis, and also
to assess if the strong dependence of the results on the &guowhditions adopted is a
property of the specific model or of granular rheology in gaheThis will be studied in
Chapter 3.
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Chapter 3

A fluctuating energy model for dense
granular flows

La arena de los ciclos es la misma
E infinita es la historia de la arena;
Ad, bajo tus dichas o tu pena,

La invulnerable eternidad se abisma.

No se detiene nunca la iwa
Yo me desangro, no el cristal. El rito
De decantar la arena es infinito
Y con la arena se nos va la vida.

Jorge Luis Borge<| reloj de arena

3.1 Introduction

In this chapter the development of a new rheological modklbgipresented, whose re-
sults was published in Chemical Engineering Science(Artbal., 2009c) as well as at
some conferences(Artoni et al., 2009a, 2007b, 2008). A itodegmulate the dense flow
of granular materials is presented. It is based on contingseudo-fluid approximation.
Balance equations and constitutive relations accountdotifations in the velocity field,
through the 'granular temperature’ concept.

Here, it is choosen to derive the constitutive relationafamalogies with the behavior of
complex fluids, with the hypothesis that the granular matemtrinsically multiphasic,
can be treated as a pseudo-fluid with a suitable reologite\ber. Then, flow and stress
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distribution might be simulated like other fluids in suitabhodified computational fluid
dynamics codes, for arbitrary geometries and constitutieglels. Among the various
rheologies proposed, the so-called hydrodynamic modelga§e, 1998; Bocquet et al.,
2002b), developed from analogies with the kinetic theorgades, introduce a second-
order closure, taking into account the fluctuating part ef\iblocity field and its effects
on the viscosity.

In this chapter, a phenomenological hydrodynamic modelesgnted, derived from con-
siderations which are peculiar to the dense (and not ga¥{lidw of granular materials,
first of all the dissipation of mechanical energy due to ioict The model is formulated
for cohesionless, dry granular materials, very common imyriadustrial scale flows.
Fine powders and polymeric materials likely to accumuldtarges and develop signif-
icant electrostatics effects, including tribocharginge Beyond the present scope. Be-
cause the model treats the granular material as a pseudgatficaech account for mixtures
of granules of different nature or size, as long as the phemofogical parameter that
describe the materials are determined, the compositiorpartttle size do not vary (in
time and space), additional mechanism not accounted in duehdevelopment become
relevant (like drag of interstitial fluid or electrostatitéractions).

The derivations of the equations, together with the camstg choices, are illustrated.
The model is first applied to an industrial silo geometryudpio not limited in its formu-
lation to any geometry or flow configuration. It is shown the thodel predicts realistic
flow patterns, requiring quantitative validation with detd measurements. Regarding
the prediction of the normal stress at the wall during disgbaprofiles closely match
available correlations by Jannsen and Walker, includiedigtion of peak pressure where
section changes. The prediction of both stress and velpaitffles is a non-trivial task
for the continuum approaches(Bohrnsen et al., 2004). ,Als® non-obvious issue of
wall boundary conditions is also addressed and a partlnsbdel illustrated and ap-
plied. Connections with literature correlations togethiéh a sensitivity analysis provide
clues to link model parameters to intrinsic material préipsr Moreover, also stress and
flow patterns in a flat bottom geometry are presented. Finidlly shown for a slightly
modified version of the model that hysteretical behaviorreéfsurface avalanches can
be predicted together with the typical shape of the veldioggl and dependence of the
starting and stopping angles on the flow depth.
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3.2 Model outline

Velocity fluctuations are a fundamental concept used in nsddethe collisional, gas-like
regime of granular flows, based on analogies with dense g&sapman and Cowling,
1960). The notion ofyranular temperaturavas introduced to summarize and quantify
such fluctuations (Jenkins and Savage, 1983)fi.e< v? > /3, wherev is the fluctu-
ating component of the velocity vector.

In dense, slow flow of granular materials, even if the medrasiof dissipation of energy
are different from the collisional flow, yet velocity fluctians are not negligible. The
granular temperature can be assumed as a local measuredghtimicflowability of the
pseudo-fluid, or a local mobility.

Experiments have been done (Natarajan et al., 1995) to meegsanular temperature in
vertical chute flows and to includein models of dense granular flow (Savage, 1998;
Losert et al., 2000; Bocquet et al., 2002b; Strumendo andiC2002). The model pre-
sented here is based on conservation laws for the key geanfmass, momentum and
fluctuating energy) and the fundamental mechanisms areibeddy constitutive laws
relating the unknowns variablesandé.

3.2.1 Conservation laws

In order to derive the general balance equations for massadimomentum and transla-
tional kinetic energy for granular materials, the macrpscepace-time weighted balance
equations have been written as follows:

9 (p) + V- (pv) =0 (3.1)
O (p¥) + V- (pVV) = =V - g + pg + t" (3.2)
0, [p (eT + ET)} +V- [p (eT + ET) \7] = (3.3)

V(g v+q") +pg-v—2" +t"- v+ D"

Equations are based on Babi¢ (1997) formulation, but the sonvention for the stress
tensor and the energy flux has been changed.

The balance equation for the angular momentum has beenchadjldbased on the as-
sumption that Cosserat effects are negligible in the algsehexternal couples, even if
particles are known to roll somehow at their scale, as detratesl by (Goddard., 2008).
Moreover, in most dense, slow flow configurations the monmaritansport arising from

the coupling with the interstitial fluidi,e. t* and D", can be neglected. Taking the
product ofv with EqQ. (3.2), and considering the tensorial relation:

V-(g-V)—V-V-gng:V\_f (3.4)
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for the stress tensar, the following equation can be obtained:
0, (peT) +V- (peT\_/) = —gT: Vv —-V.-qf -2 (3.5)

where the two most significant terms for this stugy,andz” are evident, i.e. the flux of
energy and the its dissipation rate, respectively.
By means of the mentioned definition of granular temperatyrthe last equation rear-
ranges to:

gat (pd) + ;V (pov) = - V¥ =V -q" = 2" (3.6)

Splitting the stress tenserinto its spherical §I) and deviatoric£) part, the linear mo-
mentum Eq. (3.2) simplifies to:

9 (pVv) +V - (pv¥) = -Vp—-V -1+ pg (3.7)

Assuming the stress tensor to be symmetric, as a conseqaetiee absence of couple
stresses and using the splittinggfEq. 3.6 can be rewritten as:

3 3
50 (pf) + 5V (pov) = —pV - ¥ —1: V¥V =V -q" — 2" (3.8)

Finally, it is assumed assume that the flow is nearly incosgibée, i.e.p ~ const. This
is perceived as a crucial issue. As argued in Chapter 2, mpfer dilatancy effects by
assuming a compressible pseudo-fluid would be a major adwagrt both for physical
consistency of the model and its practical application. Asadter of fact, in several dense
flow configurations the solid fractiopvaries more tham0%, like in the discharge region
of a silo. The issue is relevant also in those cases whereia ffased to flow across the
granular material, to predict preferred paths and resiglénee distibutions of the gas. So
far, whenever is known to vary less thaih0%, equations have been derived using the
incompressibility assumption. Accordingly, the contigiequation reduces t9 - v = 0
allowing for simplifications in the linear momentum and eyyealances, Eqg. 3.7 and Eq.
3.8, leading to their final form used for calculations:

3 3
§p(9t(9)+§p\7-V0 = —:Vv-V-.q" 2" (3.9)
po (V) +pv-VV = —Vp—-V.-1+pg (3.10)

On the other hand, when thevariation is significant, the more general Eqs. 3.7 and
3.8 should be used, together with some “Equation of Stalke"relationship to close the
system of equations. However, the development of some gippation like Boussinesq'’s
one (i.e. retaining the effect on the density variationydoi the body forces) would be
helpful to limit mathematical complexity and improve numsaf stability.
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3.2.2 Constitutive relations

The equations listed above are based only on conservatwimaliples, thus they are
always valid under the assumptions made. However, as ités afie case, they do not
provide insights into the physics of the problem, which maustexpressed in form of
constitutive relations for the unknowns in the system ofatigms. These unknowns are
the stress tenser, the energy flux vectog™ and the energy dissipation raté.

In order to solve our system of equations, we need now to egpseme constitutive
hypothesis for these variables.

Energy flux and stress tensor

With the assumption that fluctuating energy can propagasedifusion-like mechanism,
then proportional to its gradient (Savage, 1998),

q" =-K-Vo (3.11)

Hereafter it will be assumed isotropic diffusion, so tha thffusivity tensori = kI,
simplifying to:
qt = —kVo (3.12)

Regarding the stress tensor, dense granular flows appesdnitote viscous-like charac-
ter, whose origin is a matter of debate. Savage (1998) ussdaows results by Hibler to
demonstrate that if a plasticity framework was applied ® ittstantaneous stress field,
with the hypothesis that the fluctuations were gaussianavileeage stress tensor had a
viscous-like dependence on the average strain rate tefrstinis case, we can assume
that the deviatoric part of the stress tensor can be exptesse

(%i 6Uj

meaning that the granular material can be treated as a dgerdrBlewtonian fluid (Bird
et al., 2002). Note that only one viscosity appears due tashal approximations involv-
ing the incompressibility condition, which permit to negiléhe bulk viscosity coefficient
(Aris, 1962; Bird et al., 2002). The generalized Newtoniaitdfis a non-newtonian fluid
whose viscosity can depend on all the variables, partilyutar the invariants of the de-
formation rate tensor. In our case, we aim at highlightingestelencies on the fluctuating
energy summarized by the granular temperature.

It is worth underlining that this formulation implies that & vertical chute (for example
in the cylindrical section of a silo) the ratio of the stressgor components,, ando. .

is 1, because the deviator components vanish along thoseidirectThis results was
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already stated by (Savage, 1998), and is common to all thergered newtonian models
such as Jop’s one (Jop et al., 2006). Such an implicationtrbglquestionable; however
there is not a clear proof of the contrary, particularly wiealing withflowinggranular
materials. This is an often neglected issue which at lead® be recognized, in order
to better understand the subtle implications of many madethoices. This topic will be
further discussed in chapter 7, in analysing DEM data.

The next step in the development of constitutive relatigrtbus the determination of the
constitutive coefficientg andn, which will be in general functions of all the dependent
and independent variables and their derivatives. To recssaing of the flow profiles
with particle diameter and bulk densityandn must depend op andd,, as follows:

k=pdk  n=pdy (3.14)

where primes indicate that are functions of the remainingabaées. Fort’, it is choosen
not to follow Savage (1998) who suggested ~ const, extrapolating a result of Jenkins’
kinetic theory, which is not valid in the dense regime undedg. So fark’ will be
considered as a constant.

Granular materials are often considered to belong to thdyarhglassy systems (Tarzia
et al., 2004; Grebenkov et al., 2008), in which a transitietween flowing and non-
flowing behaviour is characterized by a sharp increase tosgi$y, also typical of yield-
stress fluids. The liquid-glass transition has been extelysstudied, both experimentally
and theoretically. The empirical equation proposed long lagDoolittle (1951) for the
fluidity (i.e. the reciprocal of viscosity; ') of a glass is

Y = oexp (_71;_771) (3.15)
!

wherev,, andv; are the volume of the molecule and the free volume respéygtiVais
relation has been justified theoretically within a free vo&uapproach (Cohen and Grest,
1979). Analogous expression containing free volume waweldifor the viscosity of
simple liquids by Eyring and coworkers (Glasston et al.,1)94lithin the theory of rate
processes, where the deformation of the medium was dedaiba thermally activated
process in a system characterized by energy barriers irdfgmseaging effects (consid-
ering that in dense media the passage of a molecule of flurd &gosition to another
requires that a suitable hole is provided).

It is possible to take advantage of these results to forrawdatemi-theoretical approxi-
mation, considering Doolittle equation to applyt@and identifying an analog of the free
volume in the granular material. As a candidate, the sinhglesice would be the poros-
ity which is the quantity with the closest physical meanibgfined as the complement
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of the solid fraction,l — ¢, the porosity measures the amounwvofd volume. However,
this analogy does not explain several aspects. Porosigthera static than a dynamic
measure of the free volume. The free volume does not nedgssancide with the vol-
ume being effectively void, but is rather an expression efitital ‘mobility’ of the fluid.
The role of mobility could be better described by the grantdanperature, that, being a
measure of the amplitude of velocity fluctuations, is indesddted to the local ability to
move, and thus to the concept of free volume. Also the complciX introduced by Ed-
wards and Oakeshott (1989) to describe the packing abiligyanular materials through
cooperative spatial rearrangements (and therefore deiafeee volume fluctuations), has
not been directly correlated with the fluctuations of vetyci

Intuition suggests that both free volume and velocity flattans are striclty related and
play a major role in the dynamics of flowing granular asseeshlA detailed and reliable
microstuctural theory proving the connection betweendivasiables has to be developed.
Here the rheological properties of the granular medium leen semi-theoretically as-
sumed to depend on the velocity fluctuations. Accordindlg, tiscosity has been ten-
tatively formulated to mimick Eyring’s equation for simdiquids,n = Aexp (£) by
replacing the thermodynamic temperatufewith granular temperature, as follows:

! 0"
— -

wheref* has granular temperature dimensions, and is a sdgrperature scalelt is
worth noticing that recent numerical results for Newtorigunids with a highly temperature-
dependent viscosity, like magma flows (Costa and Maced@6ia3, 2005) show velocity
and (thermodynamic) temperature profiles which are verylaino those reported for
granular chute flows.

In the expression foy’ it was neglected a direct dependence on the history of defttom
(though it acts indirectly through): while this hypothesis is useful to work with simple
equations, it could be an over-simplification restrictihg tvalidity of the approach to
time-invariant processes (Goddard, 2006).

Energy dissipation rate

In this paragraph a model for the energy dissipation ratés formulated. Consider an
undeformable solid block moving at constant velocity on adlaface. It is well known
that in order to have a positive velocity, friction requitbat a forceF' is supplied higher
the frictional forceF ;. The energy dissipated by friction, in this simple situafits the
work done by the frictional forc#';. It is straightforward to derive the rate of dissipation
of energy by friction, which will belEy;ss/dt = Fy - dx/dt = F - v.
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Moving forward, the above definition is applied to a stackrdinitesimal sheets sliding
one above the other in the absence of gravity, suffering aceéiconstant pressure as
shown in Figure 3.1. From the friction law, the force is prammal to the pressure and

R

Figure 3.1: lllustration of the frictional energy dissipation mechami.

the extent of contact between two laye$s,.e. F; = PS. Friction between the layers
atz andz -+ Az dissipates energy at a raltg;,, = «PSv’, wherev' is the relative velocity

of the two layersp(z + Az) — v(z). The rate of energy per unit volume dissipated by
friction in this configuration, which corresponds to thetier” of the rheological model,

can thus be obtained by: ‘
. dEdz‘ss dv
E..= = uP— A7
diss AV % dz (3 )

Compared to a real granular flow, the representation of Ei§ut, which yields Eq. 3.17,

is quite simplistic. The original network of forces of gréamumaterials under shear to-
gether with the bi- and tri-dimensional arrangement of theigles and the threshold
behaviour of microscopic friction define a more complex scen However, there is still
a chance to take advantage phenomenologically of the ngahie simple expression
provided by Eqg. 3.17. Equation 3.17 states that the ratessihtion of the specific en-
ergy related to friction in a continuum of contacts is prdjmoral to normal stresses and to
the spatial gradients of the velocity, via a friction coefiit. The result can be extended
to higher-dimensional cases, recalling that a measureeo$platial velocity gradients is
the shear ratgy|, (the reciprocal of which is a fundamental time scale of fstem) , and
taking the isotropic part of the stress tenpas a measure of normal stresses. Shortly,
the following formulation is proposed:

25 = pp ] (3.18)

wherey is now an effective friction coefficient, which will be in pigiple different from
the microscopic one. Shear rate can be defined as:

Y] = \/% Z Z (€ij€ij) (3.19)
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where

avi i (%j
€5 =
J 6[[’_7 al’i

In the following the effective friction coefficient will be considered as a constant. How-

(3.20)

ever, itis likely that, being: an effective coefficient and not a material property, it can b
a function of shear rate, pressure, granular temperature.
With the help of the constitutive relations above, the flating energy balance can be
further simplified to:

gpat (6) + ;p\_f VO = kA +Q (3.21)

whereQ collects the production (‘heating’), due to shear, and tssigation (‘cooling’)
because of friction, of the fluctuating energy:

Q=-1:Vv-2" (3.22)

The viscous 'heating’ term can be represented in Cartesitation as:

avi 6Uj (%i .2
= 2
n <ag;j + axi) o, ulel (3.23)

where summation over repeated indices is implied. Thushé&ating and cooling terms

can be written as:

Q =31 (31 = np) = 131 (I7] = pp) (3.24)
to beincluded in Eq. 3.21, resulting in the form actuallydu® calculations. This energy
balance determines whether yielding leads to dilatancg ephtractancy (compression)
of the material. In this sense the model bears some analdyytheg critical state theory
developed in soil mechanics. If the material is not shearething changes its potential
mobility (the material does not acquire nor lose flowabjlingcausey| = 0 = Q =
0, andf remains at its initial distribution. Under shear, the cdiodi when|r| = up
is analogous to the critical state condition of granular fleithout volume variations.
However material can both increase its fluidity wheh > up or lose it (7| < up).
Accordingly, the total net production (or consumption) attuating energy is formulated
to involve the timescaléy| ' and the distance from the critical state condition. Using
chemical terms, the shear rate plays the role of a kinetistami, while the distance from
the critical state is like & — C*? term. In addition, it is possible to see that in case of
plane shear (constant shear streg}, the shear rate acts as a kinetic constant with an
Arrhenius dependence on granular temperature:

] = 2 ~ exp (——) (3.25)
n 0

somehow confirming the role @éfin activating the flow process.
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3.3 Wall boundary conditions

The issue of boundary conditions is of major importance inseéegranular flows. Close
to the walls, partial slip, rather than no-slip at all, is thest common behaviour.
Traditionally, slip is characterised via a Coulomb yieldemion, relating tangential and
normal stresses at the walls through a constant frictiofficant. Though appearing a
physically sound choice it has been shown that wall frictioefficient may vary, resulting
in an apparent coefficient, not corresponding to the miapiss wall-particle friction
coefficient. In fact, an investigation of the dependenceuahseffective coefficient on
relevant variables is still lacking and we can speculateitbaalue will strongly depend
on the flow properties, in addition to the local stress. R&flas on this topic were the
nucleus of the development of new boundary conditions, ware described in Chapter
4.

In this chpater a different approach based on the so-caléstieNslip condition has been
used, relating the tangential velocity at the boundarystgiadient in the normal direction
through a constant parametgr,called “slip length”:

8Ut

o (3.26)

Ut:)\

This condition allows for a certain amount of slip, which gpeessed by means of a
simple and measurable quantity. The approach is generatl@neéstricted to uniformly
flat walls; ,it can be used also for bumpy surfaces which apeebed to reduce particle
slip, due to a much larger roughness, resulting in a loweificant \. Experimental and
numerical work is needed calibrateon material and flow properties, and we are work-
ing on it. Nevertheless, the Navier approach is interedbacpuse (1) it contains both
no-slip and perfect slip situations (in the two limits— 0 and\ — o) and (2) because
it respects the physics: in the limit of high normal stressshp behaviour is approached.
Interestingly, its implementation improves convergendd vespect to Coulomb’s condi-
tion.

In the following the value of the slip length will be quantdien terms of particle di-
ameters, provided that, is the characteristic inner length scale of the flowing maker
Accordingly, slip will be characterised by a dimensionlassnber)/d,. Details about
the non-obvious implementation of conditions given by E26) are reported in the next
section.
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3.4 3D Navier slip boundary condition

It can be useful to represent the generic 3-D formulatiornisf ¢ondition, which is often
used in microfluidic problems; at first, the condition asks the normal velocity vanishes
at the boundary:

v-n=20 (3.27)

which, together with Eq.3.26, which can be rewritten as:

/
u; = )\E
n
/
up = A2 (3.28)

where ther{ are the deviatoric components of the stress tensor, forrpmopriate set of
boundary condition for the 3-D case. After having defined @hamormal basién 6, 62|
where the first component is the normal to the surface, whaeother two components
represent twéangentsdentifying the surface. The normal stress is given by:

o =tyng +tyn, +t.n, (3.29)
and the tangential stress is identifyied by two vectors:

™ = t- 01
T2 = t- 92 (330)

The deviatoric components of the stress tensor with respdiee surface are calculated in
analog way, taking into account the fact that in the presemtehthe deviatoric cmponents
of the force per unit area at the boundary are given by:

ou;  Ou;
t = n( — J 3.31

From this it can be derived, for the i-th component of the @copn ofu onk (k = 1, 2),

l.e. the i-th component ofi; or us, the relation (where summation ovgis implicit
(Einzel et al., 1990)):

Oui | Ou
8.’,13']‘ 8:&

g = uby; = An;j ( ) Ori = A0 (3.32)

Two BCs will be defined, formally given byf{(; is the right member of Eq.3.32, and
k=1,2).
up — Z fei =0 (3.33)



36 Chapter 3. A fluctuating energy model for dense granulassflo

that becomes, with implicit summation oveand;:

or, in a more plain form:

uk—Z{)\Z [nj (g;f] +§f;])} e,“} — 0 (3.35)

i

3.5 Silo with converging hopper

Storage silos and hoppers are considered a reference faletise regime of granular
flow, although many different configurations have been stidas nicely catalogued in
the report of G. D. R. Midi (2004). Prediction of the flow patte in a silo is required to
guarantee an effective use of the silo volume, preventiagdhmation of stagnant zones
of material (due to core flow and piping regimes) that affeetresidence time distribution
of the stored material. The issue is relevant when the nadtesin undergo physical of
chemical tranformations, changing its nature or apphegpiroperties (Santomaso et al.,
2006). In addition, predicting the stress distributionhie flowing material is important
to prevent 1) arching and flow stoppage, 2) failure of the wfalicture, and 3) breakage
and comminution of particles due to stress in the bulk.

Real scale silos show a complex dynamic behaviour (Niels@®8; Schwedes and Feise,
1995). The onset of flow is characterised by a pressure waeeHigure 3.2) that changes
the stress distribution in the converging section. The leopgpsaid to be in an active stress
state (with the major principal stesses vertically oridiptdter filling and in a passive state
(with the major principal stesses horizzontally orientatten discharging (Nedderman,
1992). The cylindrical part is frequently assumed to be @er@mtly in an active stress
state. The change in stress orientation is calledgtech The switch is characterized by
a marked stress peak at the wall which moves progressiwaty fhe outlet (at the onset
of the flow) up to the transition between the cylindrical ahe tonverging part, where it
remains, at steady state. The steady state stress profte/evbr only an approximation,
because the stress field (and the velocity field as well) cambteady during discharge,
with oscillations and symmetry-breaking effects (Niels&898; Bohrnsen et al., 2004).
Moreover the assessment of the true stress profile is noboswecause experimental
measurements can be affected by local autoinduced pheroaneated by load cells.
Nevertheless, in axysimmetric silos, where the loss of sgtryns unlikely (Nedderman,
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1992), regular flow can be observed and Janssen and Walkeiossl can be taken as a
reference for wall stress profiles at steady state.

N

Active
stress
state

stress
peak

e N
stress .
e \peak Passive

stress
state

>

Figure 3.2: Development of active and passive states in silos. Switchamésm. Lines represent principal
stress directions. Modified aftefdBrnsen et al. (2004)

3.5.1 Numerical calculations

Egs. 3.9 and 3.10 are four PDEs in a 3D geometry. They are eduygcause granular
temperature affects the viscosity in the momentum equsititich determine veloci-
ties that modify the granular temperature distribution.tianatically, Eqs 3.9 and 3.10
are very similar to advection and diffusion egs. whose smius implemented in many
commercial and open source codes, using state-of-thesareéncal methods and graphi-
cal pre- and postprocessors to address complex geomdtrieas found more efficient,
general and verifiable to implement our model equations indewpread FEM code,
COMSOL Multiphysics(COMSOL, 2005). An axysimmetric silcade of a cylindrical
section and a steep hopper was chosen for reference andhasnity behaviour during
discharge up to steady state was simulated. A small hopge aras chosen to ensure
mass flow in the geometry. This condition was required to cmaphe numerical solu-
tions with the analytical models, only available for massvflegimes. The geometry is
outlined in figure 3.3.

The model parameters for standard simulation, assumedsheaity as typical val-
ues for dense flows, are given in Table 3.1. A sensitivity ysialis presented later, and
modified values will be mentioned in the text. The momentutarm@e equations have
been closed with Navier BCs (Eqg. 3.26) at the wall, as preshostated, and by a tan-
gential stress free upper boundary. The flowrate was fixechm@snon in industrial prac-
tice where rotary, screw or belt feeders are used and dekigneithdraw material at a
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Figure 3.3: Geometry of the silo studied in the present work. For betigralization, the coordinates do
not scale with each other. Units are expressedhin

constant mass flow. This simply translates in a constang fidwv outlet velocityw,,;.
Boundary conditions for the energy equations are “insoitéttype at the walls, constant
temperature on the upper, free surface set to the average oathe temperature in the
cylindrical section of the silo.

Calculations assumed that the height of the material initbevss constant (the no tan-
gential stress upper condition mimicks a free surface) #seifmaterial was constantly
replaced; a steady solution was obtained after all trahsigects had finished.

Table 3.1: Basic model parameters.

W 0.3 -
0* 10 | s?m™2
o 1 571

K 1 st
p | 1000 | kg/m3

d, 3 mm
Nd, | 1 -
Vout 5 cm/s

Simulations provide local, instantaneous values of unknoariables (velocity and
temperature), together with their fluxes, among which saesre particularly interesting.
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Stress distribution under flowing conditions is indeed lyanevestigated with hydrody-
namic models.

3.5.2 Flow distribution

The model predicts a distribution of velocity in good quetiite agreement with available
experimental results (e.g. Natarajan et al. (1995)). Roget, detailed validation requires
accurate measurements, that it was not possible to catiebeiopen literature, notwith-
standing the relevance of these data. Within the context of@ustrial research program,
pressure and velocity data were collected, that will be tiigext of Chapter 6. In this
chapter, following the paper published@inem. Eng. Sciresults from the model will be
compared mainly with literature correlations. Figure $idws that the model correctly
predicts the typical shape of the velocity profile in the mghical section, with an inner
plug-flow region and a shear band near the wall. Calculatiows in Figure 3.4 assumed
A/d, = 0.1 to reduce slip and make the profile structure clearer. Thrutzied width of
the shear band always approaches the typical valué ef 15 particle diameters, and is
quite independent of the rathy'd,. The width of the shear bands was observed to depend
linearly on the parametet* of the model, that rules the sensitivity of the apparent vis-
cosity to the local granular temperature, according to 8d.6). It suggests that might
depend on particle diameter since experiments have shatthth width of shear bands
strongly and linearly depends on patrticle diameter (G. DMK, 2004). As a final com-
ment, it is important to highlight that the slip-length apach is particularly appropriate
and effective to predict the experimentally observed wadlia granular flows.

An important feature of velocity profiles in dense granulew8 is that shear is tipically
localized in rather narrow bands: in cylindrical bins, tetsucture is best observed far
from the orifice, where the flow shows a shear zone close todhedary and a region of
plug flow in the center. In flat-bottomed silos, stagnant sasevelop in the corners. In
the geometry studied here, like many industrial applicetjstagnant zones are prevente
using steep hoppers. The discontinuity in shear is predliotéhe cylindrical part, where
the model describes the formation of shear band. This behesvpossible in the model
because of the balance between generation of fluctuatingyedee to shear and dissipa-
tion due to compression, which defines zones with a diffegeatular temperature, i.e.
local mobility, and thus with a different viscosity (thudfdrence in shear).

3.5.3 Stress distribution

Fig. 3.5 shows the normal stress profile along the walls,iobtethrough the model with
reference parameters of Table 3.1 It can be observed thatath@ormal stress has the
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Figure 3.4: Velocity vectorsX/d, = 0.1, other parameters as in Table 1).

typical features expected for a discharging granular naten the cylindrical upper sec-
tion, the stress does not increase linearly with the depthggant vertical gradient), like
pressure in a fluid, but the increase with depth is smallesamaller, approaching asymp-
totically a maximum (the Janssen asymptote). At the treomsftom the vertical section
to the hopper, a local switch stress peak occurs. Belovgstiecreases, again asympoti-
cally, toward zero at the hopper’s end. This behavior is lisaasociated with a passive
stress state in the convergent hopper. The consistence sfrtiulation results both in the
upper and lover sections of the silo is quite surprising anduthor's knowledge never
obtained before by hydrodynamic models simulating disgihgrsilos. Although simu-
lations are essentially based on a model of flow, they alsdigiréhe stress distribution
with the expected features. This approach is somehow congpiary to the plasticity
theories which determine the flow field after complete desiom of the stress distribu-
tion, through a flow rule (Nedderman, 1992).

Simulation results can be approximated using the classiodkl of Janssen for the upper
cylindrical section, and Walker’s approach for the lowemnical one (Nedderman, 1992).
The best fit yielded = 16.1° andJ,, equal to11.4° and 13.3° in the upper and lower
parts, respectively. In the upper section the stress rddéingsen constant) is expected to
be K = 1 since the model assumes a viscouslike stress tensor withnoemal stress
difference. This value was verified in all the numerical dations.

To better understand the prediction of the model, its cdipabnd the influence of its
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Figure 3.5: Wall normal stresses calculated with the parameters ofd8hbl (symbols). Line is the best fit
approximation with Walker’s equations, adjustifig and?.

parameters, a sensitivity analysis on the most criticaboves carried out.

Figure 3.6 displays the results obtained by varying therpataru, tuning the ability
of the pseudo-fluid to dissipate mechanical energy. Thiamater is also expected to
be closely related to the internal friction angle of the miated. Results indicate that
decreasing:, wall normal stresses grow in the whole geometry. In thencylcal section
the saturation value is approached earlier, nicely reproduthe well known pressure
distribution in a confined bulk of granular material.

Experience and static calculations (Nedderman, 1992)rrd¢pat the angle of internal
friction affects how rapidly the stress curve saturatesnotithe saturation value, which
depends only on bulk density, bin diameter and wall frictooefficient, .. However,
because of the slip boundary conditions that was used, tlue o the effectivewall
friction coefficient will depend on the rheological modesasied for the bulk. This is
a consequence of assuming a Navier slip condition at the waiich is not a model-
independent relation, as Coulomb’s one; this is indeed du&éd fact that Coulomb’s
law directly relates stresses, and so it does not dependeatéological behavior of the
medium, while Navier’s condition involves shear rate, thatins that it needs information
from stresses and rheologly( ~ 7). Therefore the effective friction coefficient at the
wall is expected to be primarily a functign, (1, A, Vip, d,,), While other dependencies
are minor. The overall effect of bulik on wall stress profiles is therefore a consequence
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of how it influences the effective angle of wall friction. Rélang Janssen’s equation:

D K
Ow = Zgﬂ [1 —exp (_4MwD 2)} (3.36)

it can be observed that decreasjng has the double effect of increasing the stresses in

the whole geometry and of slowing down the approach to theai@bn stress: a change
in the parameter of the model modifies the wall stress profile in the way represin
Figure 3.6, because it indirectly changes the effective friation coefficients,,.

The p,, effect is even clearer when comparihigndd,, values that fit modeling results,
obtained at different.,,, Figure 3.7. Both increase monotonically withé,, in the upper
and lower sections of the silo do not differ significantly.niRerkably, for low values of,
typical of cohesionless particlescorrelates to parametgraccording to

[ = tand (3.37)

implying that the effective coefficientin the model quantitatively approaches the coeffi-
cient of internal frictiontan §. Interestingly, beside providing a physical groundingi® t
effective parameter by relating it to a characteristic property of the granulatenial,
eq. (3.37) allows to estimate the valueiofo be used in simulating the flow of a specific
material.

Figure 3.6: Wall normal stresses varying the parametgiother parameters as in Table 3.1.

In Figure 3.8 the effect of varying the slip length to pasidiameter ratid\/d,,, which
determines the amount of slip at the walls, is investigatedas expected that a higher
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Figure 3.7: Calculateds andé,, vs. coefficient:, above. Coefficient of internal frictionan , (symbols)
vs. coefficient, and linear extrapolation of the low-values behavior(lingelow.

slip length corresponded to a lower value of the wall fristamefficient, thus higher nor-
mal stress at the wall. The results confirm the expectatioot, in the upper and lower
part of the silo. A larger slip at the walls determines highlwarmal stresses because the
wall looses its ability to sustain the material. Resultsdearer ifj,, is determined and
compared for each value af d,, as shown in Figure 3.9. It can be realized that— 0,
monotonically when slip length increases. Again, no sigaiit difference between the
upper and the lower part of the silo are observed. In addifioa wide range of\/d,
values, the calculated internal friction coefficienh  stick to theyu value used to ob-
tained the data, and is nearly independent on the slip letite thatl < A\/d, < 30 is
quite a broad range, that encompass most practical apphsafrom extremely rough to
perfectly smooth walls. In the no-slip limiy/d, < 1, the calculated values ofandd,,
appear to diverge. However, this is likely due to difficudtia the fitting equations that
yield § andé,, values. The no-slip limit requires, ~ §, which causes numeric instabili-
ties in static calculations that are the basis of the fittidgreover, in this limit particles
near the wall will likely approach a typical stick-slip betar, which cannot be captured
by the Coulomb slip boundary condition (as assumed in Jarese Walker stress anal-
ysis), but can be treated within a Navier slip-length apphoas described in Chapter 4,
through a proper average.

Figure 3.10 shows the predicted effect on wall normal sees$the discharge veloc-
ity. According to the model, the stresses during dischangeease with flowrate. Figure
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Figure 3.8: Wall normal stresses varying the parameleother parameters as in Table 3.1.
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Figure 3.9: Calculated values of,, vs slip length\/d, (above). Coefficient of internal frictiotan d,
(symbols) vs. model pametel(dotted line) vs slip length/d,, (below).

3.11 systhematically collects the results, showing thatrtbe has a major effect on wall
slip, decreasing the corresponding angle of wall frictibomcontrast, the outlet velocity
(non-material parameter) very weakly affects the caleala@ngle of internal friction, fur-
ther proving that the model paramejecan be considered as a material property, which
can be estimated from the angle of internal friction by mediisy. 3.37, within the range
of parameters considered.
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Figure 3.10: Wall normal stresses varying the outlet velocity, othergmaeters as in Table 3.1.
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Figure 3.11: Calculateds andd,, vs. discharge velocity (above). Coefficient of internadtfan, tan g,
(symbols) and model parametei(dotted line) as a function of discharge velocity (below).

Fig. 3.12 illustrates the evolution of wall normal stresstidibution at the beginning of
the discharge. It has been obtained by gradually incredsengutlet velocity frono to 1
cm/s, in a time span &f0 seconds. A travelling wave, with a stress peak moving froen th
outlet to the hopper corner can be clearly observed. Suebteffindeed expected in real
hoppers, reflecting the switch from the active to the passingss state (see Figure 3.2).
Notwithstanding that, the model predicts a substantiaffeidnt mechanism. Instead of
a switch between active and passive state, the model desailransition from static
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Figure 3.12: Pressure wave in the hopper at the beginning of dischargee@i 10s, 20s, 40s, 80s, 400s).

to dynamic conditions, and the switch is between a true Istdtiz initial solution (at
zero velocity), with linearly increasing pressure, to tlasgive state of discharge. This
is a consequence of considering the granular material asvd\ewtonian fluid, with
zero shear stress at rest. Future improvement of the motalomsider allowance for a
threshold stess, able to determine the onset of flow, as ighim plastic fluids; this will
be partly addressed in next sections dealing with hystenesnclined chute flows.

3.5.4 Experimental determination of model parameters

In the preceding subsection the model predictions of \arpcofiles of wall stress were
illustrated, when model parameters are varied. Resul®ddhe expectations, consider-
ing the physical meaning of each parameter. Here, the iSsparameter estimation is
briefly discussed. The model contains five parameters, oméich (\) is not a property
of the material itself but of the particle-wall couple. Angpthese, the temperature scale,
f* , and the parameterg andk’, mostly affect the velocity and temperature fields. Their
experimental determination is based on measurements afityeprofiles in simplified
flow arrangements. For the present, it can be assumed‘tisatles with the particle di-
ameter. The parametgrwas shown in the preceding section to correspond to theniaiter
angle of friction of the material, which can be easily meadurith shear cells. Parame-
ter A determines the particle-wall interaction. According tooaiginal approach that was
developed, here it is allowed for the possibility of the mialeto slide on the wall, to a
degree determined by the "slip length” coefficieht Calibration of\ requires dedicated,
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simple experiments where solids velocity profiles closé&doundary are measured, us-
ing the same type of particles and surfaces. Thean be calculated from its definition,

Eq. 3.26, which implies that = ‘gfj B

Q
S

3.6 Silo with flat bottom

In this section results from the model described previoastypresented for an axisym-
metric silo with flat bottom, 800 particle diameters high avith a radius of 50 particle
diameters. A simple first choice for the parameters invokethe model is resumed in
table 3.2. Flowrate is fixed at the orifice, no slip is assuntatiewalls, together with

Table 3.2: Parameters of the model

w3 adim
6 10 s*m~2
n 1 s
ko 1 571

p le3 kg/m?

insulation foré (i.e. k% = 0). Figure 3.13 summarizes the development of the velocity
profiles along the silo, from Bessel-like profiles near théa# to a plug flow with shear
bands at the walls higher up the bin. In the higher part of illeeskear bands are of order
10 diameters thick. The temperature profile is qualitayiegiproaching data, with a peak
at the wall, where material is sheared. Imposing a low teatpes at the wall, it was able
to reproduce the fast decaying®tlose to the wall as observed in DEM simulations (G.
D. R. Midi, 2004). Looking at velocity maps and profiles ndee orifice, it is possible to
see that our model predicts well-defined static zones indheets; this behavior can be
explained by analysing temperature maps. A narrow zonegaehd develops from the
orifice to high up in the silo, finally positioning itself cleso the wall. In the framework
of this model, this layer has a lower viscosity that allows thvo zones that it delimits
to move independently one from another, thus insulatingtueer, which ‘cools’ due to
pressure rearranging action. Moreover, the map of granehaperature reveals that the
flow pattern is very similar to that proposed by Brown and HsleyBrown and Hawk-
sley (1947)

As a next step, wall normal stresses as predicted by the naoelshown in figure 3.13d.
Again, perhaps surprisingly, profiles follow qualitatiydianssen’s behaviour.

Finally, recent numerical simulations developed for ntatisnary flow in the silo, dis-
charging freely, show that the model predicts a constantétayanother original feature
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Figure 3.13: Silo with flat bottom (all lengths are id, units): (a) Velocity profiles at different heights (b)
Temperature profile far from the orifice (rescaled with therage value) (c) (Rescaled) temperature map
(d) Normal stresses (grey lines) and Janssen equationKbilaes) ¢, = A [1 — exp (—B z)]).

of dense granular flows.

3.7 Hysteresis in inclined chute flows

Recent advances in the comprehension of granular freecsuiifavs have been pushed
by research on simple geometries of flow; among these, a wggriant one is the in-
clined chute. This geometrical configuration is common tamynaatural flows (such as
avalanches, debris flows,...) but also industrial flowsteel@o the conveying of granular
materials. Regarding this set-up, many experimental t®bale been collected concern-
ing velocity profiles or more averaged variables such as #8teyrshowing typical scal-
ings, and a strong effect of the lateral walls separatiomedkas of the depth of the layer
of grains(Pouliquen, 1999; Jop et al., 2005; Santomaso amdi,001; G. D. R. Midi,
2004). From the modeling point of view, many rheologies(@ogl., 2006; Bocquet et al.,
2002a; Aranson and Tsimring, 2002) have been proposed er twgorovide a unifying
view of all types of flow. Unfortunately, at present a ultimakescription of dense gran-
ular flows is still lacking. In this section the previouslyweéoped hydrodynamic model
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Figure 3.14: Sketch of the inclined chute geometry.

for granular flows is extended to study the free surface flowrdan incline. The model,
whose constitutive relations were developed in order toesgnt the dense, frictional
regime of flow, can be intended as a possible extension oftteagmenology described
e.g. by the French group G. D. R. Midi (2004) with the inclusion bétfluctuating en-
ergy dynamics; here it is applied to a free surface inclinedgte flow, where velocity
scaling and the hysteresis between starting and stoppglgg®aerr and Douady, 1999;
Pouliquen O, 2002) is reproduced, together with the quaigdoehavior of these angles
when varying flow depth.

Note: in the present section, differently from what was previgugfined, granular tem-
perature will be referred &8, while the symbob will be used for the tilting angle. Such
a notation was preferred for coherence with literature artisig and stopping avalanche
angles.

3.7.1 Conservation equations & model

In the inclined chute geometry, the equations of consemabdf momentum vyield, in
steady state:

T =17+ pgsinO(H — y) (3.38)
p=po+pgcost(H —y) (3.39)

whereH is the thickness of materiaj, the direction orthogonal to the flow,the tilting
angle,p the density of the medium, which was verified to be approxatyatniform in

y in many experiments(G. D. R. Midi, 2004). A sketch of the getmis presented in
figure 3.14.

Previous models for the dense flow have considerably imprtheunderstanding of the
behavior of this geometry, but they can’t manage to reptesenplex phenomena like the
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presence of an avalanche starting an@lg,:, higher than the stopping ong,,,(Forterre
and Pouliquen, 2008). This hysteretic phenomenon, commaoihier free surface (like
flow in a rotating drum) and confined (annular Couette) flows very peculiar feature
of the dense flow of granular materials. Thus it would be teémgb improve rheological
models to account for this feature. The presence of a stggpigle below which no flow
Is possible was predicted by Bocquet et al.(Bocquet et @028) who demonstrated in
their approach the existence of a cutyg,(H ) explaining the observed dependence of
the angle on the flow depth. Notably, they proposed that aademundary condition ex-
ists for the pressurg, at the free surface, such as the hydrodynamic boundary wigedsh
downwards of a quantity comparable with the particle di@neéwith this boundary con-
dition, when the thickness of the material is sufficienthy|é,,, strongly depends on the
thickness itself.

Such an assumption seems reasonable, and it will be addgtedthahe following as a
physical translation of the fact that clustering phenomadace correlations in the flow
that become increasingly more important when the movingrlagcomes shallower. Be-
side the possibility to predict variation of the andlg,, with the thickness of the flow,
a modeling framework should also indicate the presence etarsl angle, higher than
the first, which is the angle needed to trigger flow, and wilicb#edd,;,,;. Due to the
dynamical nature of the hysteresis, it seems reasonaltieitharder to reproduce this
typical behavior of avalanches, some “order parameteraadyos has to be added to the
system, in form of a differential equation. An order paraanetpproach was applied by
(Aranson and Tsimring, 2002) to this topic, which howevesmss to fail in predicting
the correct rheology(Forterre and Pouliquen, 2008). Imtibeel, as an order parameter,
that should describe the variations in the mobility of theteyn, as well as reduced free
volume characteristics, it was choosen to use a well knovemtijty which characterises
fluctuations of mechanical energy in granular materialseufidw: granular temperaure.
To extend the results of the GDR Midi(G. D. R. Midi, 2004), wielosure was given
in a first-order scheme, simply forcing a dependency of \@gg@n shear rate (and pres-
sure), a second order closure is used instead, considéerftuttuating energy balance.
Defined asl’ =< v? > /3, wherev' is the fluctuating part of the velocity field, granular
temperature measures the capability of a particle to mowbg cage defined by its near-
est neighbours.

The notion of fluctuating energy is very important in the kio¢heory of granular gases,
due to the analogy with the kinetic theory of gases, wheredthneelation of fluctuations
at the molecular scale define the macroscopic thermodyn@migerature; however, it is
not obvious that the considerations drawn, e.g., by Bocguat (Bocquet et al., 2002a)
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and Jenkins(Jenkins, 2007), who used directly the equatarthe rapid collisional flow
of grains (with corrections for the singularities near ramdpacking and formation of
clusters), apply to dense granular flows, where some funatain@ssumptions of kinetic
theories (such as that particle do not undergo long-lastorgacts) fail; such theories
cannot avoid the risk of not truly accounting for the basiggbs of the problem, because
in quasistatic and dense regimes frictional dissipatiamukhbe accounted for in a clear
way.

Thus, in this section the previous development will be edéel) which involves as col-
lisional theories the equation of conservation of fluctugenergy, but where a different
energy dissipation rate, inspired by the preponderamtjdnal mechanism, is specified.
At steady state, in this geometry the fluctuating energy eguaeduces to:

5 (k5 ) + il = =0 (3.40)
wherek is a coefficient of “diffusion” of fluctuating energyy| is the shear rate; andp
are stresses defined by Egs. 3.38 and 3.39asdn effective friction coefficient, whose
physical meaning will be clarified from the following.

Extending previous work, where only the rate dependent teasconsidered, the shear
stress component is expressed as a rate-independent Gotdomplus a rate-dependent
Bagnold like term of the form:

T = pyp + pd2 |5 o f(T) (3.41)

wherer, is a dimensionless constantthe bulk densityd, particle diameter, and(7")
Is a function diverging fofl” — 0 and tending td whenT" — oo to account for Bagnold
scaling for rapid granular flows.

This could be extended in 3-D in Jop’s(Jop et al., 2006) wagibyply assuming colin-
earity of the stress and the strain rate tensors:

T

Tij = ——Vij (3.42)

]
wherer is taken from Eqg. 3.41. This assumption, sometimes knowherinciple of
coaxiality, is commonly advocated in the mechanics of granular madgeaiad is equiv-
alent to saying that there can be no shear strain on planag albich no shear stress
acts(Nedderman, 1992). From dimensional analysis thdiceet of diffusion of fluctu-
ating energy scales as:

k = kopd, 4] (3.43)

wherek, is a dimensionless constant. The coefficient of energyghsising. could be, in
principle, a function of all the state variables of the systi could be tempting to express
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it as a function of the inertial numbdr= || d,/+/p/p for example with an expression
like(da Cruz et al., 2005):

p(I) = po+01 (3.44)
wherep, andb were material parameters. In the following it will be takenaaconstant,
for the sake of simplicity. From the definition ef the rheology can be reformulated
in an expression for the effective friction coefficient, wiiis defined ag* = 7/p, an
expression which is independent on the geometry:

1= py + o f(T) (3.45)

3.7.2 Results

With the boundary conditions (Bocquet et al., 2002a) 0 andp, = pgzocosf aty =
H, the latter coming from the already stated assumption Heaeffective hydrodynamic
boundary is located slightly inside the material (at a dep}hin the present geometyy
corresponds to:

_ tand(H —y)

o A T ) 3.46
i Tyt (3.46)

from which the effect of the hydrodynamic boundary conditban be appreciated, which
states that* is not a constant but ranges franfnear the surface) t& /(H + zo) tan 6 (at
the bottom), but this is significant only when the raijg H takes large values (in shallow
beds). An example of the behavior of is depicted in Fig.3.15.

From Egs. 3.45 and 3.46, an expression for the shear ratescderived:
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Figure 3.15: Profile of effective friction coefficiept* depending on the ratie,/ H.

12 (H-y) gcosO(H—y+z0)
|7| = |tan QH*erZo Y nodz f(T)
for anfUi=y) ~ (3.47)

H—y+20
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Figure 3.16: Schematic bifurcation/hysteresis diagram for the simgadiBystem (Eqgs. 3.49 and 3.50). Note:
the real sheared solution of the system has not a unique wdlde, as it may seem from this graphic: this
scheme is only for exemplification of the hysteresis.

and zero otherwise. Rewriting Eq. 3.40, with the help of motum balances, Egs.
3.38,3.39, and of boundary conditions:

: cos 0 :
2 (15E) + %52 (H + 2 - ) -
H- —
. (tanHZO+H?4_y — ,u) =0

From a simple analysis on the system of equations 3.47 ai®j i8¢an be said that,

(3.48)

depending on the inclination angle, there may be one or tmplsi solutions. We are
in presence of a simple bifurcational behavior: a schemeefbiehavior is given in
Fig.3.16, and its derivation is detailed in the followingdission. In order to describe the
hysteresis, let’s restrict to the hypothesis of large hecghmaterial, which implies that
20 << H — y in the most part of the geometry. In this case Eq. 3.48 rediaces

o (,. 0T gcosf .
5 (19155 ) + S (1 =) 8 am = ) =0 (3.49

Moreover, the effective friction coefficient can be approated as a constant ~ tan 6,
and the shear rate is given by:

gcosO(H —y)
nody f(T)
First, for angles lower thatan 11y, the shear stress in the material does not over-

for tanf > puy (3.50)

4I° = [tand — py]

come the yield stress, so only one unsheared solution ifpe@gs| = 0. For inclinations

higher thantan=! py, |¥| = 0 is again a solution of the system (with Eq. 3.50 implying
T = 0), but, being that the shear stress is higher than the yieddstalso a sheared,
flowing solution is possible. To understand which solutisrcihoosen by the system,
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the stability of the unsheared solution must be assessed.elisy to see that the bal-
ance between fluctuating energy production and dissipaagonbe positive or negative
depending on the inclination angle. 4f< tan~! 4, dissipation overcomes production,
so, when perturbing an initially unsheared solution, thiypbation is cooled down to the
jammed state, while # > tan~! i production overcomes dissipation, thus a perturbation
is amplified leading the material to flow. It can be said that= 0, 7" = 0 is stable for

0 < tan~! y and unstable elsewhere.

The system shows an hysteretical behavior: gradually &stng the anglé from 0, for

0 < tan~! u the system remains jammed, while fbr- tan—! u material suddenly yields
and starts flowing. If thefiis decreased, the system does not follow the previous paith, b
it follows the upper curve of Fig. 3.16 until> tan~! 1y, below which all flow is forced
to stop. Thereforetan—! 11 can be interpreted as a “starting angle”, whid@ ! iy is a
“stopping angle”.

Before relaxing the hypothesis of large bed depths, sonasidan be collected, in order
to clarify the following. First, the sheared solutipy] # 0 is compatible with a uniform
granular temperature profil% = 0, which was observed in many experiments (with
deviations at the bottom and at the top), and seems to bededddo to a uniform solid
fraction profile. This means that the material explores litage space finally reaching a
critical state(Nedderman, 1992; Schulze, 2008) wheretithga(increase in fluctuating
energy due to shear stress) ad “cooling” (due to presswarsanging action) balance one
each other. In our model temperature uniformity requires) = 1, which means that

Is a sort of critical state coefficient, supporting the iddascribed in the development of
the model.

From EQq.3.50 it can be easily seen thaf/if~ const. or7" is sufficiently high in all
the layer (due to the fact that(7)~! is limited between) and 1, and tends tal as

T — +00),|%| scales as/H — y, which means that(y) will scale as(H — y)2, the typ-
ical velocity scaling commonly observed in inclined chutsv$(Bagnold, 1954). Thus

the simplified model correctly reproduces the typical vigyogrofile of dense flows down
inclines: when relaxing the hypothedis— y >> 2, this means that the full model also
predicts the typical simple scaling far from the bed surface a slightly more complex
behavior near the top.

Based on the analysis developed for large depths of mateelalxing the hypothesis
H —y >> zp, it is possible to define analyticallystopping anglé,,,,, as the angle be-
low which only one solution is possiblee. the jammed one. The minimum angle which
is required in order to have some shear (at the bottom) is:

ZQ+H
H

Ostop = tan ! <,uy (3.51)
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No flow is possible below this angle because the shear stss bt overcome the
Coulomb yield stress required for the material to flow. Agespnted in Fig. 3.17, where
zo was assumed to be of order of the particle diameter, the stg@mgle determined
here is then a function of the flow depth which divergeg/as- 0 and tends to a constant
finite value for large depths. This behavior qualitativadyresponds to the stopping angle
which was observed in experiments on inclines(ForterreRmdiquen, 2008). The exis-
tence of a stopping angle for a hydrodynamic model of denseugar flows has already
been shown by Bocquet et al. (2002a); it can be seen that tkelmshich belongs to
the class of hydrodynamic models too, but is different ingpecification of constitutive
relations, predicts the same qualitative behavior. In, fde model by Bocquett al.
seems to stop here, not giving insights on the existence tafrang angle, and so of the
hysteretical nature of free surface flows, which is a pecali@racter of granular matter.
As it was already shown, the existence aftarting angleis related to the stability of
the solution|y| = 0, T = 0. The valued = tan~! (u2) indicates the minimum
value of the inclination above which a fluctuation can be diegj and below which all
fluctuations are suppressed. Thus the curve

(3.52)

H
estart - tanil (:u ks )

H

can be interpreted as the minimum angle required for themakte flow starting from an
initial stopped configuration. Its behavior, depicted ig.R3.17, is similar to the previous
foundd,,, function, as indeed it was observed in lab experiments¢f@and Pouliquen,
2008). It will be obviously that,y < . Therefore the simple model described here is able
to qualitatively reproduce the hysteresis between stadimd stopping of avalanches in
dense granular flows down inclines. This will in all likelibd apply also to the hysteresis
in rotaing drums (the slumping regime) and annular Couettis.cWhile the existence

of an hysteresis is a robust result of our model, the existerica dependence oA

of the angles ag/ — 0 depends on the boundary condition assumed for the pressure,
which implies an additional length scale which is importahten compared witli/; it is
phenomenologically correct that the surface influenceb#mavior at the boundaries the
less the distance between them. This boundary conditioovigter slightly problematic
for the model because near the top, where H — tafl“gfiw, it implies that the material

is not sheared|{| = 0) because the shear stress is lower than the threshotd uyp.
While experiments(G. D. R. Midi, 2004) support the fact it derivative of the velocity
profile is typically zero at the surface, the existence of @efinone with zero derivative

can be questionable, and needs further investigation. kewwé 2, ~ d, this may not be
a problem, being this zone thus limited to a small portiorhefflow depth.
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Figure 3.17: Curves offisop, andhgiqre from Egs. 3.51 and 3.52, fary = 0.25, = 0.3, 29 ~ dp.

3.8 Conclusions and Perspectives

In this chapter a novel continuum model to simulate the degmaaular flow has been
formulated and applied. It is based on conservation eguafiar mass, momentum and
fluctuating kinetic energy and the rheology is describedugh a generalized newtonian
model whose viscosity depends on granular temperaturepfi@@@omenology contained
in the fluctuating energy balance implies a dynamic intgrpletween mobility induced
by shearing and jamming (frictional dissipation) inducgctbmpression.

The model has been first applied to a mass flow silo with a cgnwgihopper. This is a
reference in the field, but the model is not limited to any getygnor flow configuration.
The model predicts a distribution of flow in the two silo’s 8ens in agreement with the
expected behavior. In this work, we focused on the stressldiion prediction, which
is of great theoretical and practical interest. The flow nipdedicts the development of
the typical wall normal stress profiles characterised byak @ the transition between
the cylindrical and the conical sections of the structurem@arison were made between
the results and the static-like solutions of Janssen andéiahowing a good agreement
and verifying the expected dependence on the amount of stiflawrate. To authors’
knowledge, it is definitely unusual for a hydrodynamic coatim model to predict the
peculiar stress distribution of granular materials in coedi geometries, in addition to the
flow patterns.

An important feature of the model is the allowance of pamvall slip, by means of a
Navier slip length approach, replacing the two unreallycextreme boundary condi-
tions of no-slip and perfect slip. It is well known that grésnmumaterial tend to slip, at
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least partially, on surfaces, and a proper quantificatiatefsitely needed; we suggested
a viable and promising approach.

The success of the model relies upon the possibility of ugifay design purposes and
this still needs work in order to set the model on a more qtetive ground. This can be
achieved with comparison with experimental results ancrdte element models, in order
to evaluate the parameters of the model and charactenzesslifar, a sensitivity analysis
gave important informations on the correlations betweedehparameters and material
properties, such as the angle of internal friction, lingtthe arbitrarity in the model. It is
believed that an original contribution was given regardimese issues) develop a flow
model: most of the models of granular flow used industrialeyactually static. They do
not predict flow rates but focus on stresses, assuming tbeitsedlistribution;2) a simple,
intuitive rehological model based on analogies with liguéshd glasses, was introduced;
3) it is accounted for particle slip of the walls based on a Nabieundary condition,
physically sound4) results were transferred from Physics literature to thesirial scale
(silos) andb) comparison with well-established correlations. The gulti of the model
are huge in principle, not being limited by geometry of flowaagements. Results ob-
tained so far are encouraging. However, non-trivial eff@rte required to validate and
extend it to account for more complex effects such as thedtion of stagnant zones (i.e.
funnel flow).

On the other hand, regarding free surface flows, results presseented in this chapter for
the case of free surface flow down an incline, with a partictdaus on the hystereti-
cal properties fo the flow. It is shown that the model can a&piionportant features of
granular flows, such the existence of an avalanche startiglg 4., above which an
initially jammed configuration begins to flow, and an aval@nestopping anglé,,,, be-
low which no flow is possible, in agreement with experiencée known dependence
of these angles on the flow depth is found and the two cutygs(H) andfy,,(H) are
determined analitically. The existence of this two ang$es $trong result in favour of the
model, because it is the sign of hysteresis in dense grafioles. Besides, it was shown
that the model correctly predicts the scaling of the velopiofile. On the basis of the
analysis performed, it is possible to conclude also thaiyder to extend the phenomenol-
ogy proposed by the GDR MiDi(G. D. R. Midi, 2004) to more com¥pflow dynamics,
a hydrodynamic approach can be useful because it can briagha description some
non-trivial behaviors which are peculiar to dense granildavs.
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Chapter 4

Effective boundary conditions for dense
granular flows

Et sur leur sang ineffagable
verse ton sable intarissable.

Alfred Jarry,Les minutes de sable memoriaB94

4.1 Introduction

This chapter is centered on the topic of boundary conditiondense granular flows. The
need for reliable expressions for the BCs at the walls wasedain Chapter 2, and this
part of my research was devoted to the development of artiedaundary condition by
means of a simple stochastic model of the behavior of a pasdicthe wall, considering
the presence of a force network and the randomness of fora@iva during flow. Part

of the work presented here was published on Physical Rev{@tdni et al., 2009b).

In Chapter 2 the mixing-length model proposed by the GDR Milas used and it was
shown that using a slip boundary condition instead of a fpesie considerably improved
the predictions of the model in the vertical chute configoragtthere a Coulomb friction

condition was, which could be a valid alternative to the hp-sndition. In this chapter

astep is made further, deriving effective boundary coadsifor granular flow taking into
account the effect of the heterogeneity of the force netwaorkliding friction dynamics.

This yields an intermediate boundary condition which lieghe limit between no-slip
and Coulomb friction; two simple functions relating walfegts, velocity, and velocity
variance are found from numerical simulations. Moreouds shown that this effective
boundary condition corresponds to Navier slip conditiorewlEDR MiDi’'s model is as-
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sumed to be valid, and that the slip length depends on thehesogle that characterises
the systemyiz the particle diameter. Finally, based on the hints obtainea the pre-
vious analysis, an attempt is made to generalize the apptmameans of dimensional
analysis. Possible functional forms for the generalizednlary condition on the slip
velocity require experimental or numerical data; there@full discussion on the validity
of the approach will be given in Chapter 7.

4.2 Outline of the problem

As it was already noticed in previous chapters, in denseugarfiows the physics at a
boundary is rather complex: force chains are breaking anmdif, contacts are long
lasting but not eternal, the number of contacts may charmegaime, et cetera. When
dealing with non-Coulomb friction things may be even monmptex because of the vari-
ation of microscopic contact area with load(Tuzun et188). From the modeling point
of view, rheological models need specification for stressegelocities at the boundary
which should represent at least in an average sense thisle€otmghavior. Despite the
great attention towards continuum models and rheologtds,dffort has been devoted to
develop realistic boundary conditions for the velocitydiat smooth or rough walls, even
if the crucial role of side walls was recognized, for examfeinclined chute flows (Jop
et al., 2005).

For the rapid flow of dense granular materials, boundary itimmg were developed (both
in the case of bumpy(Richman and Chou, 1988) and flat, fnefiavalls(Jenkins and
Louge, 1997)); in that case some regime-specific hypotheses employed in the de-
velopment, such as the existence of binary collisions, anstntaneous contacts. The
resulting boundary conditions are rigorous and contairoatrall the physics involved in
the process. In dense flows, being that the assembly phgsieere complex, involving
the dynamics of several bodies experiencing multiple endurictional contacts, speci-
fying rigorous boundary conditions is more difficult. Thersaholds for the bulk, where
the complexity of interactions and the presence of mesegta&nomena (clusters, shear
bands,...) has up to now prevented from developing a precidesatisfying continuum
description (as the Granular Kinetic Theory is for rapidisanal flows).

Practically, in the flow of granular materials in confined getries such as silos, hop-
pers, etc., the behavior at a boundary is described by mdéams @@ffective) wall friction
coefficient, that isu, = Zﬂ whereo,, is the shear stress amg, is the normal stress
in the direction orthogonal to the wall. Such a coefficienhas a constant but can de-
pend (1) on the normal load, (2) on the assembly flow behapi@sénce of shear). The
work by Tuzun et al. (1988) showed, for flow in a vertical shal, that in absence of
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shear in the material (full plug flow), the effective walldtion coefficient depends on
the normal load only if the particle-wall friction coefficieis load dependent (i.e. non-
Coulomb behavior), otherwise, = 1, Wherep,,, is the (particle-scale) particle-wall
friction coefficient. In this chapter the effect of fluctuais of the force network (which
can be driven by shear) on boundary conditions (and incadlgran the wall friction coef-
ficient) is studied, starting from the idea that the strorigempphenomenon of force chains
breaking and forming in the material, will result for the fi@es at a boundary that the
condition of steady sliding is not correct, implying gerigrénat 11, < fipu-

In the physics community, a common experimental approaghldeed to overcome the
issue of unknown boundary condition is the practice of gjyparticles to the walls, in
order to assume a no-slip boundary condition in the intéapie of the results. This
choice can be of fundamental importance but possesses tyoo diawbacks: at first, it
is known(G. D. R. Midi, 2004) that for high shear rates pdescundergo strong slip at
the glued particles - bulk particles interface, a slip tlttsasome difficulty in holding the
continuum hypothesis; thus it is not clear whether the ghagticles are part of the bulk or
of a bumpy wall, so that boundary conditions must be exptesadhe first moving layer
in contact with the glued one. The second drawback of thigexpental practice is the
partial applicability to real situations: the flow on smostirfaces such as in hopper dis-
charge usually shows particles slipping at the solid iat=f Slip can be promoted or can
be an undesired phenomenon, often we are concerned withstiffgohenomena(Nasuno
et al., 1998; Baldassarri et al., 2006), which are commomyrftiction dynamics(Heslot
et al., 1994) ; in all of these cases, a deeper understandliting dehaviour of granular
materials flowing near a boundary is needed, and the no-slipdary condition is not
the most valid approach.

4.3 A simple model

Consider a single particle of mass and diametet! lying on a plane, moving with in-
stantaneous velocity/’; the particle is subjected to a normal forBeand to a tangential
forceT'. It will be neglected, for simplicity, the effect of couplasting on the patrticle
considering only traslational, sliding movements. Thetr@essumption is that due to the
heterogeneous nature of the medium the normal férsea random function of time with
a given distribution function. Alternatively, evdncould fluctuate, but it can be assumed
for the sake of simplicity that only the normal force doesalgative results are not af-
fected by the choice of the fluctuating force. Llebe the friction force; considering the
simplest model of solid friction, e.g Amontons law, with grne friction coefficient,
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it can be written as:

Tif V=0andT < puP
pod T a a 4.1)
uP else
The motion of the particle is calculated from Newton'’s law:
P
T,V
d '
Figure 4.1: Schematism of the variables considered in this section.
av
— =T—-F 4.2
m— (4.2)

If the normal force was constant, only two situations wouddgmssible, corresponding
respectively to no-slip and Coulomb conditions. But if teece fluctuated, the particle
would undergo slip and no-slip events, which globally repré a non-Coulomb slip phe-
nomenon; our aim is to derive an average expression for ifheedbcity as a function of
the forcings. Let’s consider a typical distribution of n@iforces of the form:

p(f) = a(l —be *)e P, (4.3)

as suggested in (Mueth et al., 2000), wh¢re- P/P,,. anda is a normalization coef-
ficient. This distribution of forces holds for normal forcesuniaxial compression, in
a spatial sense; the key assumption will be made that, inedgraular flows, this dis-
tribution acts also between successive rearrangemengmgéntial forces in time. This
choice is supported by the fact that results do not depentepadrticular choice of the
distribution, apart from one point (the existence of a dutafue in the force) which will
be discussed later, and whose influence is limited. It ih&rrsupposed that the force
is a piecewise linear function whose nodes are extracted fnis distribution. LetP,,,.
be the average value of the normal force. The time step betaeecessive force rear-
rangements can be choosen to be equal to the relaxationtim ga—i(G. D. R. Midi,
2004); it follows directly that rescaling by 7 the time step over which the force rear-
ranges isl. Further rescaling leads to the dimensionless variabifés= V\/% and
T'=T/uPye, P = P/P,,.. If avariablea(t) is defined as:

(4.4)

0if V=0andT < uP
o =
1 else
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the equation of motion becomes:

av’
T = Qi (T" — P (4.5)

from which the average rescaled slip velocity can be conthuwtbich is defined as:

1 T t
V.= lim —/ dt’ / a(T' — P')dt
ToHee T o 0

We solve numerically the equation of motion; an example efdtiick-slip behavior of the
system is given in figure 4.2. An initially motionless paican start to move only if the
instantaneous normal force is below the yield threshold.o¥img particle can decelerate
only if the normal force is higher than the threshold. Mormow is clear from Fig. 4.2
that the area in which normal forces oppose motion is latgen the area in which they
promote motion; it is the dynamical nature of the system tlaatses the body to have a
non null average velocity. It would be desirable to find atrefeship between the average
slip velocity computed by means of Eq. 4.6 and the rescaledage tangential force
(which corresponds to a rescaled effective friction coeffit; beingu. /i = T/t Poye).
After solving Eq. 4.5itis possible to look at the dependevidée statistics of the particle
motion on the average value of the force in Fig. 4.3.

(4.6)
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Figure 4.2: Example of the local dynamics of the system.

4.4 Discussion

The curves evidence a no-slip limit at low values of the restéorce7”, and a Coulomb
limit for 77 — 1. The wayV . approache$ depends on the nature of the distribution
p(f): if the distribution had an upper cut-off value, it would basg to conclude that
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Figure 4.3: Dependence of statistics of particle velocity on statistif force. (top) Rescaled average
pulling force vs average slip velocity. (bottom) Rescaleldeity variance vs average slip velocity. Best fits
from equations 4.7,4.8 are also included.

the system had a sort of yield-stress behavior at the wath @ifinite range ofl” giv-
ing V. = 0; in the other case, without cut-off, the average velocitylsdoe0 only for

T" = 0. This is the only point in which the choice of the distributtiimnction qualitatively
changes something in the results; however, the fast decoddise tail in the distribution,
if not giving a “plastic” behavior, would give some sort pdetplastic behavior, because
of the need to impose a certain stress to obtain an appreshpl So, with a certain loss
of exactness, it is possible to assume also a yield-stresaifation for the BC.

It is interesting to note that also the variance of the distion of the instantaneous parti-
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cle velocities, that corresponds to the concept of grariataperature, which is expressed
asf =< (V(t) — V.e)* >, where brackets denote time averaging, grows wheim-
creases, which is similar to the behaviour of the slip véjodDue to its definitiong is
made dimensionless with the positién= ¢+ In figure 4.3 correlation between gran-
ular temperature andveragevelocity is shown to follow a power-law behavior. From
a general standpoint, the boundary conditions can be esgutesith the help of the fol-
lowing fitting functions (in the following, subscripivewill be eliminated for the sake of

V/ Y
T = 4.7
(V/ + Cl) ( )

0 = c, V'8 (4.8)

simplicity):

wherey > 0,4 < 0.5 andcy, co > 0 are fitting parameters. A very good fit is obtained
forv ~ 0.28, 8 ~ 1.5, ¢; =~ 0.51, ¢o =~ 1.8. In the figures the fit is represented as a
solid line. Eqqg. 4.7 and 4.8 are the simplest expressionthéeffective boundary con-
ditions that can be applied at the wall characterised by tcpamvall friction coefficent

1. These functions are an important result of this work: twarktary conditions have
been obtained which are characterized by simplicity anebtimpplicability to continuum
simulations of granular flows.

4.5 Dependence on the parameters of the model

In the preceding section it was shown that the average behafvstick-slip events can be
interpreted by means of simple relations between dimetessrstress and velocity. The
aim is to propose a simple tool allowing to treat the regim&ken no-slip and continous
sliding in an average sense.

The parameters of the proposed functions should be obta@xeerimentally, however
some issue must be considered which are related to the sathple model assumed, to
see how the obtained relations depend on the assumptiores st of all, a particular
choice of the force distributiop(f) (Mueth et al., 2000) was used, taken from statistics
of static granular packings. In fig. 4.4 it is possible to see khe qualitative behavior of
the obtained functions is not affected by the particulai@hof the force distribution, but
seem to come only from the stochastic behavior of the fort¢keelistributions were also
considered, giving the same qualitative behavior. From eengoantitative standpoint,
the amount of slip increases as the variance of the distoibbuimcreases (increasing
corresponds to increasing the variance of the force digtah). Another issue that shall
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be considered is the friction model assumed, which is quit@le. Assuming a different
model, with two friction coefficients (a static friction déieient higher than the sliding
friction coefficient), does not affect the results, alsoritatively (see Fig. 4.5). Again,
the main feature causing the intermediate, stick-slipalkein, is the randomness of the
force, related to the presence (and the mechanisms of bigeakid forming) of force
chains. Regarding the variations of the force in time, it veestified as a typical time
scale the rearrangement time= ;”a—i; this choice might be questionable, particularly
in high shear situations (when the inertial numbes> 1), where the characteristic time
related to shear is small compared to the rearrangement fiinerefore the validity of
the approach should be rigorously valid in the limit of smialwhile experimental work
is needed to verify and extend its validity in other regimksthis perspective it can be
useful to verify whether the time step over which the forcarges has an impact on the
final curves, though\t ~ 7 seems a reasonable assumption. From results reported in
Fig. 4.6 it can be appreciated that the larger the time sheplarger the amount of slip
predicted by the model for the same average pulling forcewéyer, it is important to
underline the qualitative behavior of the effective bougda@nditions does not depend on
particular choices for the distribution, the time step @ thction model, and that it can
be well represented by means of the proposed Eqgs. 4.7 anHauw&ver, the parameters
in these equations should be determined experimentaily) focal measurements of slip
velocity and wall stresses; in this perspective, it can lggested that to develop boundary
conditions more suitable for gravity (i.e. stress) drivaw8, slip measurements should
be also done in gravity driven situations, for example inviaical chute configuration.
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Figure 4.4: Curves obtained varying the force distribution: Eq. 4.3uages), half-gaussian-like (dia-
monds), same as Eq. 4.3 but with= 0.15 (circles), 8 = 3 (stars). (outer panel) Rescaled average pulling
force vs rescaled average slip velocity (inner panel) Riestaelocity variance vs rescaled average slip
velocity.
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friction
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Figure 4.6: Data obtained varying the time step of force changing. (op&nel) Rescaled average pulling
force vs rescaled average slip velocity (inner panel) Riestaelocity variance vs rescaled average slip

velocity.

4.6 Interpretation of the results by means of a Navier
boundary condition

Navier boundary condition, relating the slip velocity ahéd gradient of the velocity nor-
mal to the boundary via a slip lengtis a common way to characterise slip in fluid flows
in micro and nanochannels; however, there is not a singkeopkiis condition in the/”’

vs T’ diagram, because such a plot needs information on themesdtip between stresses
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and deformation rates in form of constitutive relationsr &mewtonian fluid,

P
V' — A%, /%T’ (4.9)

which is linear and parametric ile mTP. A Bingham yield-stress fluid will have an

explicit relation of the form:

P
V= A%, / mT (T'—T)) (for T'>T.) (4.10)

whereTy, is the rescaled yield stress awids the viscosity coefficient in Bingham’s model.
So a Navier condition for Bingham’s model in th& vs 7" plot is a line shifted byry,

. . . mP
and again parametric 'f‘ e
Both of these relationship obviously do not conform to thbawor obtained from the
model developed in the previous pages; assuming a mixiggHenodel as GDR MiDi’s,

whereL = u(I), with I =

T (the difference in the expression bbf the previous

literature is due to the fact that hefeis a normalorce, not a pressure), the assumption
of u(I) = ps + fff/;_’ﬁ (taken from Pouliquen and coworkers(Jop et al., 2005),él@p.,

2006))yields for a Navier BC:

v AT = s/
dpo/p—1T

which reaches an asymptote f6f — p»/u, and isO in the ranged — ps/p. Thus, to

(for T' > p,/n) (4.12)

unify the curves and represent the results obtained frorsithple model of wall friction
studied here) must be a function of the form:

A=kd((T) (4.12)

where((7") accounts for the change in the position of the asymptote antbe expressed

simply as:

= pa/p— 1"
1-1T

An important result is given in Eq. 4.12: to unify the curvesodtained in the “experi-

(4.13)

ments”, A must be a multiple off: this is actually an important result, beidghe only
internal length scale of the system, and so the best cho@dasis for estimating the slip
length. The typical form of’’ vs T" curves for the various models is given in figure 4.7.
To resume, the intermediate, efficient boundary conditierave looking for can be qual-
itatively expressed as Navier slip condition in a mixinggénframework, the slip length
corresponding to a multiple of the particle diameter. A dtether can be made in the di-
rection of determining a value fox. Let’s admit the yield-stress behavior of Pouliquen’s
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Figure 4.7: Rescaled average velocity vs average pulling force foerdifit BCs/constitutive laws. The
slope of Newton and Bingham lines\g; , / nh

form for (1), and suppose that, ~ 1 (remember that is the particle-wall friction co-
efficient). In this perspective the slip length is simplypodional to the particle diameter
and the best fit gives/d ~ 0.2. This value gives a sort of minimum slip length; in the
case withu, > p the slip length diverges fof’ — 1.

Itis important to note that” is an analog of the inertial numbérfor near wall flows, and
T" is an effective wall friction coefficient gg(I) is for the bulk; thus it is interesting to
note that the shape of the cur¥g V") is very close to that ofi(1); this can lead to some
ideas on the origin of the effective friction coefficient metbulk remembering that the
effective wall friction coefficient derives from the assuiop of heterogeneous forces.
Here the aim is not to define the correct functional form festBCs (even if a very good
fit was obtained for this simple case), but it has to be undedlithat real boundary con-
ditions (even in simplified setups) are not no-slip or Coubdlike, and assuming one of
these limiting BCs can introduce errors in the physicaldmgtiof granular flow models;
this slip behavior can be captured by a modified Navier conditwhere the slip length
is proportional to the particle diameter.

4.7 A possible generalization involving dimensional anal-
ysis
In the preceding sections it was shown how simple assunmgtionthe physics at the

boundary led to reasonable expressions for the boundaditaams, which describe the
intermediate behavior between Coulomb steady sliding andlip. In this section the
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approach will be extended in order to understand the vgiladithe preceding develpment,
and give a more general form of the stress-velocity relatign Being that the physics is
too complex to be completely described, one can try to tattidgoroblem by means of
dimensional analysis, which may help in reconstruct, ia tlaise, general behaviors. This
attempt is very similar to the mixing length model developadthe bulk and described
for example by G. D. R. Midi (2004), which was encountered irafter 2, because the
relevant phenomena are analysed forming dimensionlesgensnand trying to capture
the relation between them.

As for the bulk, being that the main dimensional variablesthe stress tensor, the shear
rate, the density of the material and the particle diaméteas to be reminded that some
dimensionless numbers can be defined involving the simplagics, the first of which
is the effective (bulk) friction coefficient

*

0= (4.14)

-
p
wherep is the trace of the stress tensor, corresponding in 275):&0‘%, andr is the
shear stress, which will be considered, involving symmetsy = o,, = o,,, and the
inertial number(G. D. R. Midi, 2004):

yd
=% (4.15)
/P
Pp
Another, often neglected, dimensionless quantity is threnabstress ratio, which will be
discussed later in connection with DEM results (Chapter 7):

g = Tw (4.16)

O-{L'{L'

which is usually supposed to ien hydrodynamic models of dense granular flow(Artoni
et al., 2009c; Bocquet et al., 2002a), but was shown to deviam unity particularly
when the jamming transition is approached(Renouf et a520

Other dimensionless quantities which shall be consideredttee local solid fraction
and particle-particle interaction parameters such atidriacoefficient, restitution coef-
ficient(s), cohesion parameters. The simple rheology deeel by G. D. R. Midi (2004)
identifies the inertial number as the center of all the phestmwtogy influencing directly
the solid fraction and the effective friction coefficienthd effect of the normal stress
ratio was not studied and no universal relationship wasdaetating the function.*(1)

to particle parameters (therefore the form of the functidf¥) should be determined ex-
perimentally, in the intention of the authors, for each matg

At the boundary, another dimensional quantity must be caned, which is the (slip)
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velocity v,. Generally, the slip velocity can be used to define sevenaédsionless num-
bers with the quantities already defined for the bulk. As aamgXe, two dimensionless
numbers are:

£ = ”SL and ¢® = % (4.17)

Pp

which are related by the inertial numbéer
¢ = ¢ (4.18)

Itis easy to see that! corresponds to the dimensionless slip velocity used int&épus
sections, and that? is a dimensionless slip length:

) A
5(2) - s 2 (4.19)
Yd, dp

where) is a slip length in the sense of Navier (1823). Dimensionalysis suggests that
a function exists such that:

W or €@ = F(u* k", ¢, iy, hp, ) (4.20)

where the RHS indicates a function of all the dimensionlesslrers characterising the
system, where,,, andy,, represent the particle-wall friction coefficient and thetjote-
particle friction coefficient. All the quantities are contpd at the wall, thereforg* corre-
sponds to the effective wall friction coefficient. Other @nsionless numbers which can
be considered come from particle-wall and particle-pleriicteraction laws (coefficients
of restitution, cohesion parameters, etc.). Being thatand<® are not independent,
one of them can be choosen as a representative dimensionlager of wall partial slip.
In the following, differently from what was used in the preus sectionsé® will be
taken as a representative number. Keeping the same pauéidiele interaction laws and
parameters, it can be supposed that:

£ = F(u', LK, 6, ttpu, ---) (4.21)

As regards the effect of the solid fraction on the slip velgclruziun et al. (1988) sug-
gested that it has an important influence for non-Coulondiidm (i.e. when friction
depends on local area of contact). Restricting to non-Gohl&iction, it seems not to
add important phenomenology, and therefore it will be deapput in the following.

The need for simplification can then suggest a less general(izere simplified in order
to treat inelastic, cohesionless particle-wall intei@csi):

€% = fi(u") fo (1) fa (k") fal i) (4.22)
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It can be supposed, considering the results from the simplgehof Section 4.3, that
the dependence qif andy,, can be simplified assuming that the relevant dimensionless
number is the distance of the effective wall friction coaéfit on the particle-wall friction

coefficient, 2= :
Hpw

ﬁwﬂhwm>%gLZ) (4.23)

Therefore a general form of the boundary condition can bessged as

é”zg(“*)hUﬁxﬁ) (4.24)

pw

The dependence of the generalized boundary condition ondimeal stress ratigi(k*)
should be considered when trying to develop refined coroelst for the moment its
effect will be neglected for simplicity, because the bebawaf k* is not well known in
dense granular flows. It will remain an important topic to balgsed in the future. Some
hints will be however obtained from DEM data in chapter 7.

Therefore, neglecting for the moment the effect of the ndstrass ratid:*, the boundary
condition takes the form:

Vs w*
Vs _ I 4.25
Yd, g (pr) f2D) ( )
or alternatively, forc™):
U I f(yg ( K ) (4.26)
pw

If the considerations invoked in the preceding lines hofdegpression for the effective
boundary condtion can be determined once the functjfgrend ¢ are obtained. This
should be done experimentally or by means of numerical sitiauls. It can be easily
seen that for the boundary condition to be valid in the lowtional limit,

g(“)_mofor AN (4.27)
Hopaw Hopw

Therefore a hypothetical form fgrcould be:

* w + Co “
()-(5)
pw T

Hpw

wherecy, o, c3 > 0. Both from experience and previous considerations (Seti8),
it can be argued that for very frictional walls no-slip camsh is approached, therefore
implying ¢co = 0. Rewriting, a functional form is proposed:

y o ¢
ILL Hpw
g(ﬂpw) C<1_u_> ( )

Hpw
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In previous sections, based on considerations involvipg) timescales, the boundary

Us g<“ ) (4.30)
L Hopw

Pp

condition was written as:

implying, in the present developmetitf, (/) = 1. The analysis carried out in this section
shows that such an implication is not fully correct and tltahe assumptions employed
in the simple stochastc model described in Section 4.3 dhmritevised to get rid of this
fact. Apart from these considerations, from general premis could a function of the
form:

foI) =17 (4.31)

where < 0. Just to point outs = 0 does not mean that has no effect on the slip
velocity, because a indirect effect is exerted through #@eddence of* on /(G. D. R.
Midi, 2004). Moreover, there is no evidence thtats uniform in /. In fact, it can be
deduced that the value of the expongmtepends on the relevant timescale of the process.
In 4.3, based on the assumption that the time scale of peeskiven rearrangements,
T, = é\/pzp was the controlling one, we proposed thatscaled as\/%. This is in
principle valid if 7, << 7., wherer, = 47! is the time scale of shear-induced processes
(note that these time scales form the inertial numgje# I). If 7, << 7, itis probable
that v, scales withid,. This can be translated through the functify/), by simply
arguing that3 — 0 as/ — oo and — —1 as/ — 0. From this point of view, it can
be argued that two limiting regimes are found, correspantirthe rapid and quasistatic
regimes of flow. However, the present considerations do olotih the rapid flow regime
(where other well defined BCs apply), but are intended toyapply on the dense flow
where persistent contacts are found. So what we are lookings fa transition from a
quasistatic region, wherktakes low values, and a dense region whietakes moderate
values. It can be supposed that the expomemt the quasistatic region will tend tel,
while it will be comprised betweet and—1 in the dense region, where both the effect
of shear rate and pressure are important. This can be tradstdo the functional form,
characterised by two limiting power-law behaviors:

foI) = 1P + &, 1P (4.32)

Therefore the functional form proposed here for the boundandition extends what was
previously suggested by means of simple modeling attemfiisaimore general form:

1 25

Hpw

/»‘L_* [0}
Us (“7”> (I + 417) (4.33)
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Such a formulation, due to the fact that it comes from dim@meli analysis, can be con-
sidered as valid only in an average sense, within the rangeligfity of all the assump-
tions involved. Neither its correctness nor the specifiapusaters can be determined
analytically, but shall be evaluated from experiments amarical simulations. Possi-
ble improvements, coming from hints derived by evaluatiooyld be achieved adding
corrections based on the normal stress rati@nd on the solid fractiow, whose phe-
nomenological basis was not clear up to this moment. Sonoeiskson will be given in
Chapter 7, in comparison with discrete element data.

4.8 Conclusions

To resume the main results of this chapter, a simple modelpairticle sliding with the
simplest frictional law on a plane has been developed torhte effective boundary
conditions for granular flows. To account for the heteroggred the medium, the par-
ticle is subjected to a random normal force, while a condtamgential force is assumed
for simplicity. The dynamics consists of stick-slip evenigich are related to the het-
erogeneity in the stress field; the resulting dependendeechterage tangential force on
the average slip velocity and on the variance of the velaitye particle (.e. granular
temperature) was reported, thus providing two possibkréffe boundary conditions for
the velocity and granular temperature fields. The resuéisaagll fitted by simple laws
and represent for the velocity field an intermediate behawetween Coulomb’s law (at
high velocities) and the no-slip boundary condition. Gtantemperature is related to the
velocity by a simple power law behavior. The functional fopneposed can be adopted
as a general tool to quantify this intermediate behavioit dses not depend on the par-
ticular choice of the force distribution, nor the frictioroael adopted. In addition, it was
demonstrated that the curve obtained by numerical sinounaatisfies a modified slip-
length Navier boundary condition within a mixing length nebadf granular flow, with
the slip length being proportional to the characteristiggté of the system, the particle
diameter. After having analysed the results obtained bynsmeéthe simple stochastic
model of wall behavior, a generalization was attemptededas dimensional analysis,
which helped to understand the hypotheses underlying tee@qus development, and
gave a basis for an extension of the boundary conditionduiting a dependence on the
inertial numberl also. Further experimental work is needed to estimate thenpeters
and test the validity of the boundary conditions develomectal situations. Comparison
with DEM results will be given in Chapter 7.



Chapter 5

Coupling between solids rheology and
gas flow

Du sable, puis du sable !
Le cesert ! noir chaos
Toujours irepuisable
En monstres, endhux !
Ici rien ne s’arréte.
Ces monts jaune céte,
Quand souffle la tengte,
Roulent comme des flots!

Victor Hugo, Le Feu du Ciel, Les Orientales

5.1 Introduction

In this chapter the classical approach to model the problecowntercurrent gas-solid
flow in vertical pipes is extended with the explicit compidatof the coupling between a
flowing gas and the rheology of a moving bed of granular satigharticular the physics
is characterized by a two-fold phenomenology since (a) thsgnce of shear in the gran-
ular material induces a porosity profile that changes the flattern in the gas and (b)
the gas phase pressure drop has the effect of lowering teetigéf gravity force acting
on the solid. The major novelty of the approach lies in the fiaat for the first time the
strong relationship between the rheology of the granuladiome and its capacity to di-
late under flow is taken into account, while in the past thegity was considered as an
independent quantity. The content of this chapter is thgestlof a paper submitted to
theInternational Journal of Multiphase Flow

75
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Moving beds experiencing countercurrent gas-solid flowcamamonly encountered in
industry. Applications span from drying processes, mowed granular filters(Seville
and Clift, 1997), to direct reduction of iron ore(Parisi aoaborde, 2004), or even to
pebble-bed nuclear reactors(Rycroft et al., 2006), judtit® few examples. Here, at-
tention will be focused on countercurrent moving beds belwsvfluidization threshold,
when the mixture is rather dense, such that the granularumedan be treated within the
context of dense granular flows(G. D. R. Midi, 2004). The despset-up which can be
imagined is a fully-developed channel flow: from the modgjpoint of view, steady, one-
dimensional gas solid flow is a well estabilished topic inttieory of flow through porous
materials and in fluidization. Considering a pipe or a chéafilhed with a moving gran-
ular bed experiencing a countercurrent gas flow, the clalsaialysis(Gidaspow, 1994)
is developed assuming that a granular bed moves with unifplug) velocity profiles in
the direction orthogonal to the flow, with a gas flow which isform too. A drawback of
such an assumption, which is a very useful simplificationwaiety of occasions, is that
it neglects radial profiles of solid velocity and porosithig leads to a wrong estimation
of the gas velocity and subsequently does not take into atgas maldistribution and
contact time distribution, which come directly from thestrnce of such profiles. Previ-
ous studies on voidage variations in channels(Faderari, €9998a,b) used a simplified
model, the so-called “Drift Flux Model” (Wallis, 1969), inlving the assumption that the
relative velocity of the solids and the interstitial fluidieds the terminal velocity, in order
to describe the behavior of nearly buoyant granular madsegigeriencing gravity driven
flow; in this work, such a model cannot be used because (1)ffbet ©f wall friction is
going to be considered, which is neglected in the developwifaghat model, and (2) the
assumption on the relative velocity is unfeasible becauseefer to situations in which
generally the bed is far both from fluidisation and free BejtiTherefore the full analysis
involving the specification of forces on each single phadebgiadopted. In the context
of fixed beds, the importance of considering radial profileparosity in the bed was
already introduced by (Vortmeyer and Schuster, 1983), vilooved how they can affect
the gas flow pattern. In this situation, if the sample is aatly prepared, geometrical
reasons alone can explain the development of a non uniforasity profile. Geometrical
constraints impose that for nearly spherical particlesiamatesence of flat walls, close
to the boundary, porosity — 1, ande typically fluctuates around a mean profile due to
layering effects. This effect vanishes if the wall is fullyugh (that is, if the roughness
length is comparable with the dimension of the particlehetiulk).

When the granular material is moving in the channel, an et source of dilation
occurs: due to (and in order to allow) the motion, the maltergeds to dilate close to
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the wall, where a shear band develops. In the centre of thenehanstead the material
remains unsheared and the porosity constant around themapédcking limit. In this
context, some studies concerning the importance of perpsiffiles, for example in the
drying process, or for heat transfer, have been carried.acéfda et al., 2005; Lira et al.,
2007).

However, often an a-prioristic porosity profile, comingrfrdixed-bed measurements,
was assumed, and it was not discussed how this profile comjdwith the controlling
parameters of the system, such as solid and gas flowrateriahgt@rameters such as
wall-particle and particle-particle friction, and the gasase physical properties. More-
over the coupling between solid rheology and gas flow, asidbestbelow, seems to have
never been taken into account previously.

It seems of great evidence that deeper understanding ottievtor of the flowing gran-
ular material is needed to predict the porosity, and so tieepiese, velocity profile.
Moreover, it is evident, for example looking at the expemtagworks on the dense flow
of granular materials collected by the French group GDR NMEDD. R. Midi, 2004), that
the dilation of the medium is strongly related to the flow eaitof the materials, and so
the porosity profile can not be considered as an a-prioreigignt.

The dilation needs to be evaluated by means of a rheology ditdtancy rule for granu-
lar materials. At constant pressure drop, a more dilatedumecheans higher velocities
of the gas, with consequent preferential channeling neawtils. This is a quite impor-
tant industrial problem and it will be tackled by means of gienarguments. For the sake
of simplicity, efforts will be concentrated on the sheaduced dilation, which seems to
be more important than the geometrical one, at least forcseily large bin to particle
diameter ratios(Paterson et al., September 2000). Theedilne due to the shear band
typically spans for almost ten particle diameters, whikegleometrical dilation, averaged
over the fluctuations extends for maximuhparticle diameters(Goodling et al., 1983;
Mueller, 1992). Thus, it is reasonable to expect that if thenmel is sufficiently large to
allow the formation of shear bandsg/ ¢/, > 20), the contribution of geometrical dilation is
negligible with respect to the shear-induced one; in adidjiit was shown(Paterson et al.,
September 2000) that in such channels, not only the relataight of the geometrical
dilation is low, but also the absolute value is negligiblegaxs maldistribution.

In summary, the following work deals with the prediction bétflow patterns in the gas
and in the solid, when a proper rheology is considered fostties. It is shown how the
simple but effective mixing-length model of granular matkr developed by the GDR
MiDi(G. D. R. Midi, 2004; da Cruz et al., 2005), can be used tedict velocity and
porosity profiles, which strongly affect the behavior of aictercurrent gas flow. The
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main scope is to discuss the methodology for the couplind,esaluate the predictions
given by the approach in a simple configuration, with simgileigh reasonable) assump-
tions for the rheology of the granular medium and the gasebakavior. In view of the
framework outlined here, there’s strong need for furthedetimg and experimental work
on the subject.

5.2 Physical problem and model

The focus is on a quasi 2-dimensional problem (which is thepkfication of a silo),
assuming that the flow field of both the gas and the solid iy fddveloped, and that
due to the Jannsen effect, stresses do not vary with heighofa the top(Nedderman,
1992). The case without gas has been referred previousheagettical chute problem;
the case of countercurrent gas flow is exemplified in Fig. Bis.important to stress that
the coupling between granular and gas flow is given, in tmg configuration, by the
following issues:

e assuming constant pressure drop, variation in the porosttye solid implies vari-
ation in the relative velocity between the gas and the sbidause the permeability
of a granular medium is an increasing function of the poyodeing that the ve-
locity profile of the solid is determined from its momentunuatjons, once that
the latter is fixed, the velocity profile in the gas is given. @mwther side, varying
total gas (and solid) flowrate implies a variation in the gloas phase pressure
gradient.

e gas phase pressure gradients (due to the frictional dragekatthe solid and the
gas) correspond to drag forces in the solid; in a fully depetbflow in a channel,
with all gradients in one direction, the gas pressure drgptha effect of lowering
the weight of the granular material.

¢ the action of lowering the weight of the material modifiegmial stresses, and so in
cascade influences shear rate and velocity profiles in tie Sdierefore, porosity
is determined at this step because it depends on the amosimeai in the material.

Another mechanism inducing coupling between the dynanfitiseotwo phases consid-
ered could be lubrication of the solid particles by the flufdhe interstitial fluid is a gas
and not a liquid, this effect is reasonably negligible.

Gas phase model Let v, (= (u,, vy, wy)) andds (= (us, vs, —ws)) be, respectively,
the gas and the solids velocity fields; for the sake of anadyie case of countercurrent
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Figure 5.1: Schema of countercurrent gas solid flow.

gas flow (with the solid discharging due to gravity), is choosen to be positive when
the solids flow downwards and, is choosen to be positive when the gas flows upwards,
with respect to the absolute reference frame, or, in othedsyavith respect to the walls
of the container.

The gas phase model choosen is a continuum one, mimickingntéection with the
dense assembly of particles by means of lumped, locallyageet, terms. Indeed, the gas
flow can be thought to belong to the category of flow in a poroesliom, for which a
vast Literature exists. The idea, which is common to manjabée-porosity modelisa-
tion attempts, is that the empirical laws expressing pebitigain terms of porosity are
considered to hold (locally) even in the case of variablepity. Even if porosity often
shows significant variations along few particle diametemresponding to the width of
shear bands), it seems reasonable that a lumped empincealabe thought as a height-
averaged expression, thus it is local in the transversattian, but contains global infor-
mations on the direction parallel to the flows. Dealing wittsgs, walls can be thought
as having a small zone of influence on the flow, thus Darcy’s(\@aich neglects viscous
effects) can be used instead of Brinkman'’s. Neglectingouiseffects means neglecting
friction of the gas with the wall: this implies that the gaslafinite velocity at the wall.
Darcy’s law states that:

iy~ = — (VP - p,d) (5.1)

Mg

So, with the hypothesis of fully developed and stationary fiior the solid and the gas,
which implies:
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ow,  Ow,
Ug =03 =0, us =v;=0 [5_(‘92 —0} (5.2)
the following is obtained:
oP
oP 0P
P A4
or 0Oy (5.4)

Thus, P is uniform in the transversal direction; neglecting thevggaterm, in low gas
density flows, and provided that the RHS of Eq. 5.3 does notiéjonz, it is possible
to use the algebraic relation:

AP Mg

= = =1 (w,+ w,) (55)

in which the permeability is unknown and could be derivedeiaample, from the Carman-
Kozeny expression(McNamara et al., 2000). Being thisiatatalid only at low flowrates,
we choose to use its extension to high flowrates (and obwiaadid below the fluidiza-
tion limit) provided by Ergun (1952):

- 52
AP 150Vorg (1—¢)? N 1.751 —€pyVo
L d2 e’ e d,

(5.6)

wheren, is the viscosity of the gas/, = €(w, + w;) the superficial (empty column)
velocity, d, the particle diameter. It is important to emphasize thatEhgun equation
just written relates the pressure drop to a relative velarfithe gas, which can be higher
or lower than the velocity expressed in the “walls referefname”, since it depends on
the direction of the motion of the solid phase. It is eviddratteven if the gas has a
zero absolute velocity, a pressure drop occurs due teetaBvevelocity between the two
phases imposed by solid motion. The problem was early edtmitin the famous paper
by Richardson and Zaki (1954). The Ergun equation can bein@rgionalized into:

APpyd}
Lng

1— ¢ 1-
Sl WP L

= 150Re,—
€ €

Reé? (5.7)

P

whereRe,, = pgg—sdp. It is noteworthy to observe that the Ergun equation costéne
first issue of the coupling between gas and solid, since tiéstihat the gas flow pattern
depends on the porosity of the solid bed. Being that the preskop is uniform along the
transversal coordinate,dfvaries alongr, w,+w, mustvary in order to keep P constant.
More precisely if the porosity increases, the relative ggyomust increase also. To better

understand this point, it is possible to refer to figure 5.Bicl displays the behavior of
APpgdg
Ln?

Re, vs e for constantA P’ = . The dashed line in the figure represents the onset
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of fluidization; this condition is obtained as usual as thenpwhere the pressure drop
in the gas balances the weight of the bed. In this case thsicdéhselation(Kunii and
Levenspiel, 1969) holds:

oy = (s = pg) (1= )9 -
= AP, = L (1 ) = Ar(1— ) 8)
where Ar is Archimedes number; Eq. 5.8 means that the pressap at which flu-
idization starts decreases linearly with porosity; inserthis result in Ergun relation we
obtain the dashed line in Fig. 5.2 which represents the Rdgmumber at the minimum
fluidization point,Re,, ;. Being that the material is more dilated near the walls,libfes
that the onset of fluidization is generally reached eanlighese zones. So, provided that
the system is below the fluidization limit depicted in Fig2,5an algebraic relation holds,
which is the Ergun equation, that for a given local porositgl ¢he overall pressure drop,
allows to calculate the superficial velocity of the gas (&dgebraic relation corresponds
to solid lines in figure 5.2). In the next paragraph a methochtoulate the porosity and
the solid velocity profiles will be presented, in order tosgdhe system of equations.
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onset of fluidization is obtained with parameters in table 1.

Solid phase model The vertical chute problem for dense granular flows, nemjgct
the presence of an interstitial fluid, was already discugséchapter 2; apart from the
assumption of fully developed flow which affects the velpdi¢ld, in this case Jannsen’s
result(Nedderman, 1992) is employed on the stress profélesfanction of depth in a



82 Chapter 5. Coupling between solids rheology and gas flow

granular column, assuming to be far enough from the top obéueto have uniform wall
stresses. As regards stresses, which are:

T=pgx  p=const. (5.9)

where ¢’ is a rescaled gravity which takes into account the secone is$ gas-solid
coupling, considering the weight reduced by the drag eddiyethe gas, and is given by:

g =qg— % (5.10)
The local mixture density depends on the local porosity by means of the relationship
p = py€e + ps(1 — €) which, for gases, can be approximategas p (1 — €). In fact, in
the following the pressure drop will be taken as a controhpwaater (which is equivalent
to choose gas flowrate, but is possible only under the fluidizdimit). In this caseAL—P
is a known quantity. As regards boundary conditions for tii@lsdealing with frictional
contacts, it is likely to assume a Coulomb slip conditiortistathat that the effective
friction coefficienty, = 7/p equals a wall friction coefficient,,, such that:

() = ube p=PT= b)j/(x = b)b (5.11)

whereb is the channel half-width. It is important to spend some tonaliscussing the
role and nature of the wall friction coefficiept,; for the sliding of a mass on a plane,
the well known Da Vinci - Amontons - Coulomb law states tha thction coefficient is
a constant depending only on the materials in contact (magglane). However, when
dealing with a granular mass, which consists of a colleatiboontactors, there can be
unsteady motions (stick-slip events) which cannot be dtaraed (even in an average
sense) by a constapt,. To account for these effects, the simple time-averagestitgt
dependent formulation proposed in Chapter 4 is used :

vl ‘
o = py | —2— (5.12)
Cuw + Uslip

wherevg,,,

efficient, ¢,, and( are dimensionless parameters which in principle are fanaif the

= vyip/\/ P/ ps IS @ dimensionless slip velocity,* is the steady sliding co-

particle-wall pair materials. As a remark, the slip velgeif;;, is the velocity of the solids
at the wall, which is typically non-zero due to sliding pherena, and should not be con-
fused with the relative velocity between the solids and thg gvhich is also sometimes
referred as “slip velocity”. This formulation was develop® take into account the fact
that stick slip events are less probable when the normadsstsehigh (or shear stress is
low), so the average velocity tends to zero in this limit, tior 7 /p — p5° the motion



5.2. Physical problem and model 83

is more similar to steady sliding.

To obtain the solids’ velocity and the porosity field, a rlogptal model is needed, to-
gether with a dilatancy rule for the porosity. In order toatréhe flowing behavior of
granular materials, many rheologies have been proposert absolute predictions are
not sought, but rather it is tried to estabilish a methodpldg order to do so, a simple
(though well estabilished) closure is used in the followtagD. R. Midi, 2004). Consid-
ering the rheology proposed by da Cruz et al. (da Cruz et @5R which is a simple
zero order closure for the behavior of granular materiatieinse flow:

jw= o + A1 (5.13)

where! = 4d,/\/p/ps IS a dimensionless parameter caliedrtial number 1, and g
parameters of the model; the inertial number profile is thus:

w£ - b
[=Hen 1O fop s MO0 (5.14)

B P
and is otherwise zero. Using a linear dilatancy W) as suggested by da Cruz et al. (da
Cruz et al., 2005):

Huy — Ho for x > pob (5.15)
B Hw

wheree,,;, corresponds to the random packing porosity (which for sgghean be ap-

€ = €min + ol = €in + @

proximated by0.36), anda is a parameter. To obtain the velocity profile for the granula
material, the shear rate has to be extracted:

1 b— b
_ L [pparfb—pe o Hob (5.16)
d, \ ps 6] Loy

(and zero otherwise) and integrate it along the channehwidt

w@) =i =0~ [

which becomes, finally:

1 p [ puwb P @? pob
Ustip = Bz \/ o (T — pob — B3 +M0$) ,for x> [b=

v — b o (e ) fop g < tob
slip ™ Bd, \/ ps \ 2 Ho T 5., ) — Huw

The velocity profile is determined numerically with an itire procedure, because in Eq.

(5.17)

ws(x) =

=

5.17 the profile depends g, and,,, which are related by the non linear boundary
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condition, Eq.5.12. The solids flowrate and the mass wetgaterage velocity can be
determined by:
. b Q
Q= / (1 —e)wsdx, ws= > (5.18)
0

An example of the results on velocity and porosity profileghe two currents are
reported in Fig. 5.3; the curves are computed with the paemm®f Table 1 and for
constantF'r, = 0.2, which is an average Froude number defined as:

Fry =

N (5.19)

The different curves represent different values of the disienless pressure drapF’.

As regards limiting cases, at first, there is a finite posi@ielie of the gas phase pressure
drop for whichw, = 0 almost everywhere; moreover, for high enough pressure, tinep
pressure drop at minimum fluidization is reached, which oxethen the effective grav-
ity ¢’ = 0 (and this occurs first near the wall, so a local fluidizatioows there). Figure
5.3a displays porosity profiles of the solid: it is clear tthegt gas tends to expand the bed
enlarging zones with porosity higher than the minimum (andpacking) limit, which
are localized near the walls. In the model this is due to theetong of solid stresses
induced by the lowering of effective gravity (Fig. 5.3b). sAl effective gravity, which
depends on porosity, is not perfectly uniform in the tramsakedirection, but is slightly
lower where the porosity is higher. As it can be deduced fragurfe 5.3c, the variation
in the size of dilated zones is mirrored also by the size oésbhands, which are larger
when more gas is inflated. Although it was choosen to modebgimwalls (by means
of the boundary conditions used), shear bands are cleadgm®y the rougher the walls,
the greater will be their effect on dilation and gas flow mstidipution. The slip velocity,

in this case, decreases as the gas pressure increasess dhis fo flowrate conserva-
tion and enlargement of shear bands. As expected, In Figl ga8 velocity is shown
to depend obviously strongly on the applied pressure drageasing the total flowrate;
moreover the presence of dilated zones influences gasbdisbm, increasing pressure
drop enhances the maldistribution because of higher gasiteln proximity of the wall.
The model predicts a strong coupling between solids and gas With an appreciable
variation of the shear bands on one side, and a strong chatige imaldistribution on the
other side. Some comment is needed on the choice of the pananmeTable 1. The dif-
ference in density between the material and the gas is typied corresponds to choose
air as a gas (the order of magnitude of viscosity too was ambem air properties) and
polyethlyene pellets as a granular materialmm sized particles can be considered as
a typical size for cohesionless particles. The reason ferdhoice is that the research
was originally driven by applications involving particle§similar or larger size such as
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in plastic pellets drying and in metallurgical ore reduntiolThese applications involve
moving unfluidized beds where quantification of the amoumnmnafdistribution coming
from shear-induced dilation is preliminar to mass and gngansfer calculations. Being
that shear induced dilation, from the model used here, temdscrease as the particle
diameter decreases, smaller particles will induce a mdegedi medium and therefore
possibly increase gas maldistribution. Rheological patans are adapted from the work
of da Cruz et al. (2005), while parameters for the boundangitmn for solids flow, Eq.
5.12 were choosen after the considerations included in hdpObviously, when trying
to model real configurations, all of these parameters sHueitietermined experimentally
by means of appropriate testing facilities. The channdhalth was choosen equal to
100 particle diameters, as a value which is large enough to alleglecting of geometri-
cal dilatancy, and characterizes a number of practicaliegtpns.

Experiments to measure directly the flow patterns of the tumenits are very difficult
to carry out, in a true moving bed configuration. Moreovers isimpler to understand
the problem of maldistribution by means of global measuagiser than looking at the
flow profiles. Thus, in the next sections, the analysis is tal/to study the maldistribu-
tion in two ways: first with a lumped parameter, to have an axprate measure of the
distribution, and then in terms of residence times.

Table 5.1: Parameters used in this work.

s 1000 | kg/m?
Py L | kg/m?
ng |1E—5| Pa-s
d, |1E-3| m
Ho 1 []
Emin .36 [—]
a 5 [—]
8 2 ]
b/d, | 100 [—]
L/d, | 1000 | [-]
Moo 3 [_]
¢ 5 ]
Cw 1 [—]

5.3 Macroscopic analysis of gas flow maldistribution

In the preceding section a simple model of countercurrestsgédid flow was outlined,
which involved the coupling between the two phases. Theyaisalleveloped is quite
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Figure 5.3: Profiles obtained varying dimensionless pressure dxdpf, with constant'r; = 0.2. Profiles
are zoomed near the wall to better appreciate the differencEhe x-axis is the transversal coordinate
expressed in particle diametets/d,,.

simple, both for the geometrical configuration choosen hadheological-dilatancy laws
adopted. Refinement is required, once the methodology lesgreved to be succesful,
the demonstration of which is the subject of the present wamnkthe following a pro-
cedure to analyse the results obtained by means of the n®delscribed. Two types
of analysis will be developed: a simple one based on appbedchmeasures of the gas
maldistribution, yielding global informations on the efteof gas and solid flowrate, and
a more specific one regarding the shape and the variatiohe ifull residence time dis-
tribution of the gas.

Considering the superficial velocifl}, obtained from the Ergun equation, the absolute
local velocity of the gas can be expressed as:

w(z) (5.20)
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There are two main control parameters, from the fluid dynarsiandpoint: the pressure
of the gas at the inlet and the flowrate of the solid going ddvertiin. The residence time
of the gas and of the solid in the bin are respectively:

L L
0, = @ 0, = 7(1 sy (5.21)
which are obviously two functions aof. As an approximate measure of the skewness of
the residence time distribution, and so of the amount of galslistribution, the dimen-
sionless number could be choosen:
O,(r=10b

A= % (5.22)
Due to the combined effect of enlarged porosity and slowetianaf the solid, the ab-
solute velocity of the gas is always higher near the wall timaihe bulk, so it is always
A < 1. If we are interested in avoiding the maldistributichshould be operatively kept
close to unity; in fact, it is preferable to use an integrétkcion representing themount
of maldistribution, such as the bypass percentage, as ddiin®ortmeyer and Schuster

(1983). Beingw = ew, /w,, it can be written as:

b
%bypass= 2%/ lw — 1| dzx - 100. (5.23)
0

To study the effect of solid flowrate and gas pressure droprtaps have been constructed
and reported in Figg. 5.4 and 5.5. Fig. 5.4 shows a contowioplof the bypass percent-
age versus the already defined average Froude numbeand versus\ P’, while Fig.
5.5 shows a contour plot of the bypass percentage as a faraftibr, and Re;, which

is a global particle Reynolds number definedrag = % where analogously to the
solidw, = 1/b fob ewydx represents an average velocity of the gas.

When dealing with both solid and gas flowing countercurrér@,minimum fluidiza-
tion velocity is a combination of the velocity of the gas aridh® solid. For high solid
flowrates, almost all of the imposed pressure drop is nepgess@vercome the drag in-
duced by the descending solid, in order to have an upwardwasiioreover, a little gas
flowrate will determine a high relative velocity, possibBaching the fluidization limit.
For this reason if represented in a non-dimensional gasdkews non-dimensional solid
flowrate chart (Fig.5.4), the region under the fluidizatiegime can be approximated by
a triangle, while in a pressure drop - solid flowrate charg(F.5) the limit is a nearly
horizontal line defining the maximum admitted pressure dw@pw the fluidization limit.
However, not all the area of the triangle is feasible, beeaishigh solids flowrate and
relatively low gas velocity, the gas at the center of the deaneaches zero velocity with
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Figure 5.4: Variation of the bypass percentage characterising the gaddistribution with average
Reynolds number of the gas and average Froude number of the be

respect to the absolute reference frame.

In the pressure drogssolid velocity diagram it is possible to identify also a laveeirve
denoting the minimum pressure drop required to force an tpwgas flux (i.e. to have
not zero gas velocity with respect to absolute referenaadjafor each solid velocity;
this curve is monotonically increasing due to the fact thatalready stated, the higher
the solid flowrate, the higher the drag exerted on the gas égéscending medium, so
the higher is the pressure drop is needed to overcome theedeated by the granular
material to force an upward gas flux. This lower curve and thgimum pressure drop
line intersect in one point which represents the limitingaition of zero absolute gas
flow rate described above.

In this perspective, it is possible to give an estimatiorhefminimum pressure drop nec-
essary to have an upward gas velocity, on the basis of thgsasdeveloped: if the solid
has sufficient drag, it will reverse the gas flow directionf@rentially at the center of the
bin, where the gas velocity is lower. In this zone it was assithate = ¢,,,;,,, thus the
pressure drop is given by Ergun equation:
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Figure 5.5: Variation of the bypass percentage characterising the gallistribution with dimensionless
gas-phase pressure drop and average Froude number of the bed
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(5.24)

wherew, is the solids velocity at the center of the channel.

Being that shear bands are the reason for gas maldistnbwtien the granular material
is in motion, it is clear that the amount of maldistributicas (it was already partially
shown, e.g. in Fig. 5.3) depends on the shear band width, aricydarly on the ratio
between this width and the width of the channiel,In Fig. 5.6 the bypass percentage
is plottedvs. the bin width - particle diameter ratio, for different vatuef the width-
averaged particle Reynolds number. Some interesting Sssae be derived from the
analysis of this figure. First, increasing gas flowrate redube maldistribution; this was
already shown for the gas flow through a static packing byweyter and Schuster (1983),
which showed also that the bypass percentage decreasesingneasing the channel
width. This happens also in the present case, when the gramaterial is flowing,
because the ratio shear band width - channel width predizyethe model decreases
with increasing channel width. In reality, shear bands sé®inave a fixed width of
approximatelyl 0-15 particle diameters, thus when the bin width increases dtie shear
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Figure 5.6: Percentage of bypass flow versus dimensionless channdl feiddifferent values of width
averagedRe,. The solid average velocity is the same for all curves.

band width - channel width decreases. Thus qualitativedylbhavior predicted by the
model is in agreement with experience. In fact the rheokdgiwdel proposed by da Cruz
et al. (2005) does not predict such an upper limit for the shaad width, which increase
indefinitely with channel width, thus the model will be pribaoverestimating the bypass
flowrate for very large widths. Refinements in the rheologicadel are needed to get
guantitative predictions, however it seems that the abraarather promising. Another
extension of the approach has to be discussed having argithmgrse at Fig. 5.6. For
low values of the channel width, the rheological model (ireegnent with experimental
knowledge) predicts that no shear bands can form; in reaimgdyeds this is due to the
lack of space necessary for the particle rearrangemenholfishear bands, the material
is not dilated by shear, thus the model predicts that thereisaldistribution. This
is not the case of real packed bed because as said aboverdilatiuced by shear is
not the unique reason for maldistribution: it is well knovirat for static packings, the
arrangement of particles near the walls is not perfect, acidpa static porosity profile
which tends tal at the wall, then oscillates around from the maximum packipgo 5
particle diameters from the wall (for uniformly distribdtepheres, less for not monosized
ensembles)(Goodling et al., 1983; Mueller, 1992), whikedbviation from the maximum
packing of the porosity profile averaged over the fluctuatiextends nearly fdt particle
diameters. For low values of the channel width, this phemameshould be taken into
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account, as it was done, for example, by Vortmeyer and Seh(%9883); however, the
relationship between this “geometrical” dilation and tiear-induced one is not clear
and should be studied experimentally, because when shiez@daterial cannot attain a
stable geometrical configuration, thus the phenomena tdrenseen as independent. A
possible improvement of the model would be the introductiba geometrical factor of
dilatancy near the walls should be added in order to accoumaldistribution in absence
of shear bands.

5.4 Residence time distribution of the gas

In the preceding section the development of maldistrilbutio gas flowing through a
moving bed of granular material was analysed in terms oflsingeasures of the mald-
istribution. In this section it is examined what happendriesidence time distribution
of the gas in the column if the bed is moving with a velocity gadosity profile. A cer-
tain number of studies have been devoted to the subject,sBatet al. (Paterson et al.,
September 2000) reported the measured RTD for fixed andrfreze carefully stopped
during moving) beds of spherical particles to account fertaldistribution of the gas,
seen as the deviation from the fixed column distribution.yT$teowed that it is the pres-
ence of velocity profiles in the gas to induce a deformatich@RTD, and that increasing
wall friction increases the amount of maldistribution.

In order to obtain the RTD for our model the procedure givefPhterson et al. (Septem-
ber 2000) is followed; it is assumed that the column operatasmospheric pressure, and
that the superficial velocity does not change significanglynoving in the axial direction.
In the case of a fixed bed it is common to use a simple axial digpemodel for the pas-
sive tracer, for which the RTD was obtained byLevenspiel@mith (December 1995) to

be
P@l t 2
o] 529

wgel
Deyy

dispersion coefficienb.;; can be calculated from fixed bed correlations, such as the one

where Pe; is the macroscopic Peclet numbBe;, = . In fixed beds the effective

proposed by Wen and Fan(Paterson et al., September 2000):

03 n 0.5
Pep_ScRep 14+

(5.26)

3.8
ScRe,
wherePe,, = gf;—;l’; is the particle Peclet number asd = p’Z—gD. Being that neither gas
velocity nor porosity are uniform along the transversaédiion, for eache position a
local RTD can be definedy* (¢, x), which is a function of local velocity and porosity.
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The global RTD can be calculated by means of the flowrate wethéxpression:

_ Jo wy(a)e(x) E*(t, x)dx
Ho= I Iy we(w)e(x) E*(t, x)dxdt

(5.27)

For better comparison, curves are rescaled with the cltbiee /0, £’ = 6, E.
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Figure 5.7: Variation of the RTD for fixed and moving columns, foP’ = 4.0F + 04, Fr, = 0.2 (in the
moving case), for different values of the wall friction dméént.> .

As shown in Fig. 5.7 the present approach well predicts tlapastand behavior of
the RTD as reported by Paterson et al. (September 2000).idrcdle, increasing wall
friction corresponds to increasing dilation in the sheardyahus increasing the velocity
of the gas in that zone; when the wall instead is sufficientipath, the material slides
as a block on the wall without forming shear bands, and tlaklgithat, consistently with
the experiments by Paterson et al. (September 2000), imtbeth-walls limit the RTD
does not differ from the packed bed case.

To understand the effect of the velocity of the solid and ths, gvhich has already been
represented in Figs. 5.4,5.5, the obtained RTD are repres$en Figs 5.8,5.9. From
fig. 5.8 it is clear that increasing solids flowrate at consfaessure drop slows down
the gas, which uses a higher fraction of the total presswp tir gain an upward flux;
moreover the distribution of the gas is very bad at high fle@sawhile it is similar to
the fixed bed case when the solid flowrate tends to zero. Onsbu®, Paterson et al.
(September 2000) reported a weak dependence of the RTD @olils flow rate, in the
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Figure 5.8: Variation of the RTD for fixed and moving columns, foP’ = 4.0F + 04 (in the moving
case), for different values of the solids’ Froude number.
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Figure 5.9: Variation of the RTD for fixed and moving columns for, = 0.22 (in the moving case), for
different values of the applied gas pressure drop. Fixedrbedlt is for the gas flowrate of the moving case
with AP’ = 3.0FE + 04
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Figure 5.10: Variation of the RTD for fixed and moving columns, foP’ = 3.0 + 04, w, = 0.2 ms™ 1
(in the moving case), for different values of channel wigttpfessed in particle diameters).

range of velocities they considered, which was even weakéna presence of smooth
walls. Further studies should be conducted in a wider rarfigmlids flowrates, also
changing the gas phase pressure drop. It is expected thattaraion of flowrates exists
where dilation strongly depends on the flowrate itself. Mweer, from hints coming
from the mechanics of granular materials, we think that @dolanique of the frozen bed
to measure properties of the moving bed is somewhat questienbecause stopping
(though carefully) the material gives rise to a relaxatibeqomenon which could densify
the medium.

The result obtained by varying the pressure drop at constdials flowrate is evidenced
in fig. 5.9; itis clear that increasing the pressure drop hagffect of augmenting the gas
velocity, thus shifting the average residence time towaeds (not shown due to rescaling
of the axes). When rescaling the curves, it is evident the@ptlssure drop has a complex
(non-monotonic) effect on the gas maldistribution, as itlddbe noticed on figure 5.5.
In fig. 5.10 also the behavior obtained by changing the widtthe channel is studied,
keeping constant the average solids velocity. Itis easgddlsat little spacing between the
walls has a behavior similar to the fixed bed one (see the darvgd, = 20); increasing
the width, an abrupt change in the behavior is obtained, avgtrong maldistribution of
the gas, and increasing again the behavior returns towaedsed bed case; this limiting
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behavior for great diameters is well known, for example & dhying literature(Lacerda
et al., 2005; Lira et al., 2007). It is not difficult to explaime behavior obtained for little
spacings, which is due to the disappearance of shear batius imit; it is well known
from experience that for narrow separated walls no sheat ban form(Jop et al., 2005)
but the material can slide down as a block or alternativedp stue to the formation of
arches. This dependence on the maldistribution on the atipis the same which was
evidenced about Fig. 5.6.

5.5 Conclusions & Perspectives

In summary, in this chapter an approach to model the probfezountercurrent gas-solid
flow in vertical pipes was developed. The approach consistise explicit computation
of the coupling between the flowing gas and solid, includhmegghenomenology that (a)
the presence of shear in the granular material induces ippposfile that change the flow
pattern in the gas, and that (b) the gas phase pressure dsapehaffect of lowering the
effective gravity force acting on the solid.

Using the simplest approach containing the phenomenotmgypining Darcy’s model
for the gas phase and a simple rheology (taken from the wodadEruz et al. (2005))
for the solids, the development of gas flow maldistributiaswtudied theoretically, both
globally (by means of lumped measures of the maldistrilm)i@md specifically (using the
theoretical RTD of the gas in the system). Qualitative camspa with Literature data by
Paterson et al. (September 2000) for RTD in frozen beds¢ae=fully stopped moving
beds) was made, where good agreement was found. Futur@gdemesits will deal, from
the modeling point of view, with more complex treatment @ thvo phases: for the fluid
phase, it would be important to relax the hypothesis of midislow, to extend the ap-
plicability of the approach to liquids and to account exllydfor friction induced by the
wall on the fluid. As regards the granular medium, more comgieologies should be
used which apply more specifically to confined flow situatj@ugh as the one developed
in Chapter 3. This will be partly addressed also in comparisith experimental data of
pressure and solids flow patterns in Chapter 6. Moreoverghdts presented here, and
the future ones, should be compared with experimental diteeasing specifically the
maldistribution. It should be stressed that the technidubefrozen bed(Paterson et al.,
September 2000), even if very clever, can be somewhat,dogicause even if carefully
stopped, the material undergoes a relaxation; future expetal efforts should deal with
the attempt to overcome this technique and study real mddgconfiguration.

Finally, future efforts should deal with the coupling of theomentum transport phe-
nomena described here with heat and mass transport pheaonérh actually occur in
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moving-bed-like industrial configurations.



Chapter 6

Pilot scale silo experiments

O God, | could be bounded in a nut shell and count
myself a king of infinite space, were it not that |
have bad dreams.

Shakespearéjamlet

6.1 Introduction

Granular materials are handled commonly by means of a langdoar of industrial chem-
ical and related processes. Applications span from opearaexpected to be elementary,
like transport or discharge from storage silos, to more dermpnes like moving beds,
rotating ovens, mills, granulators, mixers, etc. As it wasady noticed in previous chap-
ters, difficulties in predicting the flow of such material gusingly persist, despite quite
a large amount of theoretical and semi-empirical studidsusT besides working on re-
fined rheological models which have to represent the flowweha the largest variety
of configurations, it appears to be useful also to performegrpents on pilot plants of
reduced dimensions(Johanson, 1972). It is therefore fuedtal to develop scaling prin-
ciples in order to correctly design small scale testinglitasi which represent in some
way the behavior of the corresponding industrial scale aibjeThis chapter deals with
experiments on small scale silos for countercurrent ghd-8ow. Part of the research
contained in this chapter was motivated by interaction &ihndustrial partner (Centro
Ricerche Danieli), focused on the understanding the flovaien of both the solids and
the gas in an industrial, metallurgical set-up. First, iscatules were studied at the Uni-
versity of Padova in order to give reasonable hints for prigpescaling design variables,
material properties and flow, operating variables (gas afidssflowrates) to set-up a
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model silo. This is described in the first section of the chapNext sections describe
experiments carried out on the pilot facility, which waslbby CRD. Experiments re-
quired spaces and skills which obliged to perform them at CRIdle general features
(sizing, choice of the measurement techniques,...) hase thee subject of a joint work,
the practical experimental campaign was carried out by #¢béugliano and Alessandra
Primavera at CRD. In the following sections data obtainethfthe experiments are anal-
ysed and compared with the results from the rheological mndek&cribed in Chapter 3,
both regarding stress and flow fields, with godd agreemenidsst them. The description
of the experimental results compared with modeling preshstis the subject of a joint
paper submitted t&€hemical Engineering Science

6.2 On the scale-up of silos for granular-gas flow appli-
cations

This section deals with applications of various conceptemdly (or less recently) devel-
oped to the scaling of silos. Once a small scale pilot silobeen constructed, results
from this configuration can be used as test cases for flow raplbet also (and directly)
provide important information for the larger-scale pladereafter, at first the procedure
is developed for granular flow alone, then countercurrestflpav is introduced; finally,
the design procedure is resumed with a simple example of angbed reactor. Needless
to say, the technique proposed for the scale-up is a firsnptterhich should be refined
with specific experimental studies.

6.2.1 Non-Aerated Granular Flow

Geometrical similarity.

The need of feasibly performing experiments on a pilot séiguires small dimensions.
This is obviously embedded in the notion of small scale gdetlity, but it is important
to stress that in the case of granular flow this is mainly du@ Ymeed for less granular
material to treat, so lower power consumption in bulk sohdsdling, (2) low weight
of the structure (with respect to huge industrial building3) possibility of operating at
atmospheric pressure, while larger structures (due taatige Ipressure drops, and for the
peculiar operations being held) can need high pressuremguit. In this paper design
procedures are developed for dry cohesionless granularialat

Before describing the concept of geometrical similaritysiclear that a lower limit for
the small scal silo is given by the width of the bottom holejehimust be large enough
to allow continuous flow. This means that, according to pcacthe bottom hole shall be
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larger than 10 particle diameters. From this sentencerifsstia be clear that the scaling
involves choice of the particle diameter, which is therefan independent quantity. Start-
ing from the analysis of a simplified configuration, the fudgveloped gravity driven flow
in a channel, it is clear from many experimental and thecaégfforts(Natarajan et al.,
1995; Nedderman and Laohakul, 1980; Pouliquen and Gudfydifi96; G. D. R. Midi,
2004), that characteristic lengthscales of flow profileglisas shear bands in silos) de-
pend linearly on the particle diameter, thus, in order toeheemparable flow profiles
rescaling from the full scale to the small scale, that is:

Asb
D

o Asb
D

dp

D

dp
D

(6.1)

ls ss ls ss
wherels and ss stand for large and small scald,, is the dimension of typical shear
bands in silos(, the particle diameterD the silo diameter. Equation 6.1 means that,
in order to reproduce comparable flow profiles, particle éisanand the diameter of the
cylindrical section of the silo cannot be choosen indepetigeThis limits our freedom

to choosing the coupleD, d,),s, which is further limited by the following issues:

1. D is limited by feasibility of operations: larg® requires strong resources for
handling, smallD can become problematic for gas injection, for example when
typical dimensions of injectors are comparable with sildtbi

2. d, is lower-limited by the size at which cohesion becomes irtgrdr(so a different
phenomenon is intoduced which is not present in the largke)sco typically it
shall bed, > 100um. On the other side this sets up a lower limit for the silo wjdth
which can not be too small.

Scaling all the dimensions of the silo with the particle deten results also in main-
taining the same condition of flow a the outlet, which is detieed by the ratio “hole
width/particle diameter”. From the given discussion, itisar that the exact material
that is processed in the industrial set up cannot be useckisrttall scale plant, at least
regarding particle size. Other material properties whicalstibe taken into account are
angle of internal friction, angle of wall friction and bulledsity. As regards the angle of
internal friction, it is reasonable to assume that

Ointlss = Ointlys » OF Mint|os = Hintlys (6.2)

wherep;,,; = tan(d;,;) is the coefficient of internal friction. So though being difnt in
size it shall be preferable that the internal friction cleégaof the materials was the same.
As regards the angle of wall friction and particle mass dgntiey will be discussed in
the following, with respect to their effect on the dynami€she medium.



100 Chapter 6. Pilot scale silo experiments

Dynamic similarity

Once the dimensions of the model silo have been defined, anslizb of the particles
has been fixed, the granular material has to be choosen, ardisttharging velocity of
the material needs to be properly rescaled. As it was alrsatyin previous chapters,
in the cylindrical section of the silo, which will be taken ageference in the follow-
ing, the velocity profile is typically a plug flow at the centeith shear bands near the
walls(Nedderman and Laohakul, 1980; Natarajan et al., 1B6EGliquen and Gutfraind,
1996). Linearizing the velocity profile, in the shear bane #verage shear rate is given
by (out of the shear band the shear rate is zero):
Umaz — Usli

=T AL P (6.3)
Considering that the slip velocity is a fraction of the madimvelocityug;, = atmaq,
the average shear rate is

u
S — (1 — max 4
¥=(1-a) A, (6.4)

Average normal stresses, considering at the momgnt o,,. , correspond in the shear
band to the value
ps(1 —€)gD

p=——"-"— (6.5)
Lo

wherey,, is the wall friction coefficiente the average porosity in the band. It is reasonable
to assume that the average porosity outside the band con@spo a close packing value,
emin- IN the shear band, the porosity can be assumed to depene orettial numbetr,
which was defined as: '

I= iy (6.6)

Vp/(ps(1 =€)

Several studies pertaining to the physics literature(daz @t al., 2005; G. D. R. Midi,
2004) showed how such a dependence can be approximatedi®aadilatancy law:

€ = €min + const. X 1 (6.7)
Having linearized the velocity profile, the inertial numloethe shear band becomes:

dy |1
I=(1—Q)tmep—ty | —= 6.8
(1 —aju Au\ gD (6.8)

In order to keep dynamic similarity between the small anddhge scale, it is reasonable
to assume that the same flowing regime has to be assured iwthgebmetries. The
inertial number determines the relative importance oftiaeand rearranging phenom-
ena, and so in the shear band it should be kept equal. Takioguatount the fact that
shear band width is nearly independent on flowrate, and dispeinly on the particle



6.2. On the scale-up of silos for granular-gas flow appliceti 101

diameter, it is reasonable to assuh@A, ~ const. ~ 1/10. With this in mind, in order
to keep dynamic similarity in the shear band, the maximuroaig} of the grains (and so
the solid flowrate) shall be rescaled in order to have

(1 — a@)Umazy %U = const. (6.9)

It can be assumed that (see also Chapter 7 for numerical i@ g@garametetr depends
mainly on wall friction. In general, the wall friction coeffent can be fixed separately,
and the flowrate has to be decided according to Eqg. 6.9, wimvever the dependence
of a on p,, is not clearly defined. So, it is reasonable to choose thelemfpmaterials
constituing particles and walls respecting the relatigmsh

5w|ss = 5w|ls7 or Iuw‘ss = :uw‘ls (610)

If the materials were choosen in order to equal wall frictemefficients, rescaling fol-

lowed the law
DSS

Dls
which corresponds to keeping constant the Froude numbdreirsito (and in fact the

Uss = U (6.11)
inertial number, in this configuration, is strictly relatexdthe Froude number, adding to
the description the effect of friction). If the solids veltycwas scaled with Eq. 6.11 the
residence time in the geometry scaled?%s which means that the material spent more
time in the small scale than in the full scale silo. Slower iois needed to keep the
inertial number the same because compressive forces aee ilmwmaller silos.
Therefore, from the hints developed in the previous disoussnaterial properties, geo-
metrical features and process parameters have been imiposeelkr to preserve similar-
ity. One quantity which was not determined is the particlesity. In fact, it is clear from
the dimensional analysis involving the inertial numBehat the intrinsic density of the
material has no effect on the scaling (but must be taken iedount in calculating mass
flowrate). In the next section, studying the effect of gas fliowvill be shown that the
injection of fluid imposes additional restrictions. Befapatting this section, it has to be
noted that previous scaling rules developed by Johansat2f3%elded a different scaling
for the solids flowrate which is rather different from the ateveloped here. Johanson
developed his rules considering the acceleration of thectes at the outlet, while the
development in this work is based on the problem of the extgt®f velocity profiles in
the cylindrical section of the silo.

6.2.2 Aerated flow

In this section the previously developed scaling procedailiebe extended in order to
include countercurrent gas flow. The focus is always on déass, which means that
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only flows below the fluidization threshold will be considérabove which other scaling
considerations apply(Kunii and Levenspiel, 1969).

Granular rheology

When considering countercurrent gas-solids flow, the dggoal equations for the solids
are the same than in non-aerated flow, with the exceptiordtiagtforces from the gas to
the solids must be taken into account (as it was discussetaptér 5). Eq. 6.8 must be
modified introducing an effective gravity which considetsdidrag:

, AP
Jg=9g—— (6.12)
pL

where the density ip ~ ps(1 — ¢) andAP/L is the applied pressure drop. In order to
preserve constance of the inertial number between diffsiales, some constraint has to
be imposed on the applied pressure drop. In fact, reconmsglEq. 6.9 with the inclusion
of the effective gravity, assuming similar frictional chateristics of the materials, yields:

1
uy / 7D = const. (6.13)

Therefore if the effective gravity is different betweenfeient scales, the solids flowrate

must be scaled accounting for this issue.

6.2.3 Global scaling

As a dynamical similarity principle, the most reasonableicé is to preserve the ratio of
weight forces to drag forces. From the solids velocity pointiew, this implies keeping

the effective gravity, Eq. 6.12, the same from one scale tihean, and so scaling the
velocity of the solids with Eq.6.9 instead of 6.13. Obvigushen dealing with a granular
bed one cannot consider the forces acting on each partidfeitasas isolated, but is

obliged to consider force balances for the entire bed. fatlg the above mentioned
criterion, the dimensionless number which must be consias/he ratio between weight

and drag forces, that is :
AP

L(ps = pg)g(1 —€)
This means that to keep the same ratj@part from the pressure drop, one can tune also

X = (6.14)

solids and gas density (the first having the greatest effeatg that for gases, << p;).
The information contained ity can be transferred to a scaling law for gas flowrate by

means of Ergun equation (which was already introduced):
AP pyd, (1— (1—¢)
63

= 150Re,———— + 1.75R€~—— (6.15)
L n,

€3
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When using dimensionless numbeas a guidance to scale gas flowrate, it is sure that the
small scale is below the fluidization threshold as the fudlags. It has to be remembered
that the scaling procedure is developed for non fluidizeddlfncipient fluidization cor-
responds to¢ = 1). It can be shown that depending on the gas flow regime (vssoou
inertial), conservation of implies different scalings for the gas flowrate.

Indeed, in the viscous limit, Ergun equation can be apprataa as:

AP pyds (1—¢)?
— —— = 150Re,———— 6.16
T & (6.16)
from which it folllows that
X pgdg €
Re, = —(ps — 6.17
which becomes, expliciting gas velocity:
X dy &
— = . — o 6.18
Ug = s = 755 = P9 A (6.18)

Therefore, the final scaling of gas velocity is not simpleswese of the presence of the
solids velocity which scales agD. If the solids velocity is negligible with respect to the
gas velocity, it appears that (considering that solids fitewas scaled with Eq. 6.9, thus
implying same porosities):

d2
g ~ (ps — pg) == (6.19)
Mg
On the other hand, in the inertial regime, Ergun equationced to:
AP pyds (1—¢)
———— =1.75R 2
D 75R€ 5 (6.20)

from which the particle Reynolds number can be obtained arttiesrelative velocity of
the gas and the solids:

2 X Ps — Pg
—ug)t = = d 6.21
(g — us) L.75  p, gedp ( )

From which the scaling of gas velocity on particle diametar (nore generally, on a

characteristic length, according to Eq.6.1) can be vertidae:

ug ~ \/d, (6.22)

Therefore, if scaling gas flowrate is made following Eq. 601%.22, it has to be consid-
ered that the scaling law for flowrate depends on the flow regifrthe gas. The better
choice would be calculating gas flowrate from scaling baseg,oather than using Eg.
6.19 or 6.22. For the same reason, another simple scalingdaed on the dimensionless

Ug

Uy !

number whereu,, ; is the minimum fluidization velocity, is correct only if tharse
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regime pertains to the fluidization and to the operating aigldoth in the full and the
model scale. This is not obvious because reducing partizde also the Reynolds number
at minimum fluidization is reduced. Indeed, the minimum fizédion threshold was de-
fined through different correlations(Kunii and Levenspi€l69; Zenz, 1997; Richardson
et al., 2002). An example is the correlation(Basu, 20065 (B&2006)

Ay,
Repy = Tf”g = \/C2 £ CyAr — O (6.23)

where the constants take valués = 27.2 andCy = 0.0408, and Ar is the Archimedes
number:

_ 3
AT' — pg(ps QPQ)gd (624)
o
Eq. 6.23 is directly derived from Ergun equation, made disi@mess. It shows

clearly that particle Reynolds number at minimum fluidiaatdepends on particle diam-
eter with a3/2 power, therefore if the size is reduced, one can pass fronmiégcwoation
dominated by inertial contributions to pressure drop todominated by the viscous part
of Ergun equation.

The results obtained here means that once the geometricAfa@tion is fixed, gas
flowrate is fixed too once the materials are choosen. Thergfiaying on the different
ps/ pg between the small and the large scale gives another degfesedbm. For exam-
ple, a solid material with a different density can be usedpfticular reasons, implying
a different gas flowrate to be injected to preserve the rataben weight of the material
and drag forces.

Local fluidization

Even if the global fluidization behavior allows to scale prdp the gas flowrate, it could
be that locally the behavior in the large and small scalediif e.gnear the injectors the
material is near the fluidization threshold. Therefore #t&oscaling

. U
g,wm __ g, mn ~’'g sS
u?™ = u; (6.25)
Ug Is

should be considered (wherg™" is the gas velocity at the injectors); this means that
the shape and the number of injectors should be designedssilge, to reproduce the
same situation in the large scale and in the small scale.plbgas drag is sufficient to
induce local fluidization (which probably will not occur dteethe weight of the material),
a criteria to determine the qualitative state of the systemidcbe using the criterion
for bubbliqng fluidization by Wilhelm and Kwaku (1948) based gas Froude number

g _ Yms
Frmf = dy
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Gas maldistribution

Building a small scale version of an industrial silo for ceencurrent gas-flow applications
might be useful for the purpose of understanding from theisoab point of view the
amount of gas maldistribution and its dependence on prqssneters. Due to the fact
that developing techniques for avoiding maldistributisaireason for which downscaled
versions of moving bed reactors are built, it has to disalisdgether or not the simple
scaling relationship for the gas flowrate to be used is vddid for systems in which gas
is maldistributed. As it was discussed in Chapter 5, maibigion of the gas is often
related to channeling effects near the walls, which appéanvihe medium has locally a
higher porosity, which mainly due to two contributions: @lyyeometrical reason (which
appears in moving bed as well as in static packings), whitihebparticles next to a wall
to be more dilated due to the ordering induced by the wall,(@h@ rheological reason,
related to the dilatancy behavior of granular flows, whickdé&o dilate in order to be
sheared (so this occurs mainly near the walls). In moving e second mechanism is
probably the most important, and can be assessed by medmsobdgical and dilatancy
rules as it was done in Chapter 5.

The relationships used above were developed with the agsxmgs perfect distribution
of the gas; let's see what happens when gas flow maldistoibbusi accounted for in a
simple manner. Assuming a linearized velocity profile in $loéds, the material can be
divided in two zones, one with porosity = ¢,,;, in the center, one with porosity given

by egs. 6.7 and 6.8:
_ dy |
€2 = €min + ﬁ(l a)umam Asb gD (626)

where/ is the constant involved in Eq. 6.7. Being that the pressup & uniform in
the radial direction, two zones with different particle Relds number appear, each one
given by the solution of the equation

BP0 _ 50 e, P 1l SR (6.27)
€ €

where the particle Reynolds number is giveniy, = ”9:77—;”[”, wherelj = €(w, — wy) is
the superficial relative velocity of the gas. Let’s assuna the solids flowrate is rescaled
according to Eg. 6.9 or 6.11: then the inertial number pradileonserved between the
different scales, so also the porosity profile is the sameoriervation of the same ratio
between weight and drag forces through theumber is used for scale-up (which allows
to changeA P/ L andp;), as suggested previously, the particle Reynolds numlugilgr
will not be in principle preserved. Typically, it could beathfor low particle diameters

(d, ~ 1mm), Re, < 100, while for particles of centimeter sizBe, > 1000. More-
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over, if two different regimes of gas flow characterized thedei and the full scale silos,
not only the Reynolds number profiles were different, butspathe profiles were not

3
autosimilar. On the other hand, ﬁ%‘;dp was kept the same between the scales, then

APpg d?’,
’ Lng

cannot be easily kept constant between the scales becaugeetisure drop is limited by

the particle Reynolds number profile was the same betweescties. In fact

AL (ps — py)g(1 — €), therefore it will be easily that decreasing the particlentiéter

following equation 6.1, trying to increas®P/ L to preserve the dimensionless number

Aig’gdg will bring the material to a fluidized state in the model sildwus a criterion based
g

on the previously introduced dimensionless numbers isinetitly useful for studying gas

maldistribution. In fact, in order to have a similar distriton of the gas in the full and
the model scale, if one considers an average maldistributieasure such as the bypass
percentage as defined by Vortmeyer and Schuster (1983)uffisient that the velocity
profile of the gas is similar between the scales (this meaats)ff{z) /v5*(x) = const.).
This is possible, from Ergun equation, only if the same sgabf Re, on porosity be-
longs to the two configurations; this means that gas flow imtbeel and the full scale
silo should pertain to the same (inertial or viscous) regiiaen resizing, if design con-
siderations lead the pilot facility in a different flow reggr(as it is likely to happen due to
particle size reduction), this effect must be taken intmaaot: the amount of maldistribu-
tion in the pilot facility will be in principle different thain the full scale plant, and this,
together with the great difference in the particle Reynoldsber could become a prob-
lem, particularly when dealing with experiments involviego mass transfer and reactive
problems. Therefore these scaling procedures are limrgagbly to the study of solids
and fluid dynamics issues. However other scaling proceduggtecting the existence
of porosity profiles in the solid or not implying scaling tharpicle diameter may also
rise issues about maldistribution related to geometriga$ons. For these reasons, when
its implications are kept in mind, it seems that dynamic knity remains a sufficiently
reasonable criterion for scaling.

6.2.4 Example. Cylindrical moving bed reactor

As an example let's consider a cylindrical geometry, whogemeters, together with
the material ones, are reported in Table 6.1. This examglerdes a moving bed reactor
which is a channel with a diameter ®fm in which granules with a mean particel diameter
of 2 cm are characterised by a relatively high velocity and thetga has a strong drag
on the particles (though being below the fluidization thaddh On the other hand, a
relatively high frictional wall is assumed, for which thestficienta is supposed to be low.
When trying to rescale such a geometry, the procedure caivigked in the subsequent
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D (diam.)| [m] 2
Asb [m] 0.2
AP/L | [Pa/m] | 5.00E+003
Ps [kg/m3] | 1.00E+003
oo |g/m3a)| 1
Mg [Pa-s] | 1.85E-005
d, [m)] 2.00E-002
vs (mean)| [m/s] 0.1
How [—] 0.6
o [—] 0.1
15} [—] 1.00E+000

Table 6.1: Data for an arbitrary full scale geometry.

steps:

e a goood choice for the couple channel-particle diameteefeéd asi, = 1 mm
andD = 10cm. A lower size would imply problems both in handling solidslan
performing measurements on the pilot plant. All the otherehsions are rescaled
keeping constant the ratif,/ L.

e in this case, a material with the same density and wall coefffiof friction is used
for simplicity

¢ the solids flowrate is rescaled according to Eq. 6.13, anaglthiat the scaling of
the gas pressure drop will be made using numfehe same effective gravity will
act in the model and the full scale. Resulting solids vejoistreported in Table
6.2. It can be verified that the scaling implies the sameigderumber and porosity
in the shear band.

e the gas pressure drop is rescaled by keeping congtadaving choosen (arbitrar-
ily) to keep the same material density, this results in kegponstant the pressure
drop. From the profile of, it can be seen how the material is (hot too much) below
the fluidization threshold. The resulting approximate rnsitution is in general
low (~ 1%), and it is higher in the model than in the full scale system.

This can be more appreciated if a larger dilation is suppdaetd %), as reported in
Table 6.3. Generally the model seems to behave worse agisegeidistribution. In
both cases maldistribution is not negligible, and in the eld@ds approximately doubled.
The reason for this is that the gas flow is in the viscous regimine model and in
the inertial regime in the full scale. If the same regime $tidae obtained (e.g. for
reactive or heat/mass transfer reasons), then probablgchleng of particle diameter
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full scale model scale
D [m] 2 0.1
d, [m] 2.00E-02 1.00E-03
ps [kg/m3] 1.00E+03 1.00E+03
py [kg/m3] 1 1
ng [Pa - s] 1.85E-05 1.85E-05
AP/L [Pa/m) 5.00E+03 5.00E+03
B-] 1 1
o [—] 0.6 0.6
a[—] 1 1
bulk shear band bulk shear band
Zone width[m)] 0.8 0.2 0.04 0.01
e [—] 0.36 0.365 0.36 0.365
X [-] 7.97E-001| 8.50E-001| 7.97E-001| 8.50E-001
Re, [—] 2723.07 2802.02 9.99 10.51
v, (int) [m/s] 6.98 7.08 0.51 0.53
v, (sup)[m/s] 2.51 2.58 0.18 0.19
vs [m/s] 0.1 0.02
T[] 4,93E-03 4,93E-03
v, (sup) ave[m/s 2.54 0.19
% bypass—]| 0.66 1.18

Table 6.2: Results from the rescaling procedure for the cylindricamMing bed.
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full scale model scale
bulk shear band  bulk shear band
Zone width[m)] 0.8 0.2 0.04 0.01
e [-] 0.36 0.4 0.36 0.4
X [] 7.97E-001| 8.50E-001| 7.97E-001| 8.50E-001
Re, [—] 2723.07 | 3412.45 9.99 14.84
v, (int) [m/s] 6.98 7.87 0.51 0.68
v, (SUp)[m/s] 2.51 3.15 0.18 0.27
v, (sup) ave[m/s] 2.74 0.22
% bypasg—| 5.35 9.52

Table 6.3: Effect of rescaling on gas flow behavior, for a highest valugilation (10%).

should be relaxed (implying coarser particles), but theafdf such a choice on the flow
of granules and on maldistribution (e.g. emergence of géacaeémaldistribution) should
be considered.

6.3 Experimental methods

Based on the scaling laws described in Section 6.2, a pitditfawas built at CRD to
perform experiments on wall stresses and flow profiles, ireoi@ gather information on
the full scale flow configuration, and to test and validatertiuglel presented in Chapter
3. The silo (shown in Fig. 6.1) was almadst meters tall and had a variable diameter
(a cylindrical zone at the top, an enlarging zone in the naddl convergent part at the
bottom) that in the upper part spanned fren?.4 m to ~ 0.5 m. Such facility had also
the possibility to include internal devices (tubes passiug-to-side in the pilot plant)
and air flowing upwards. Internal devices such those useliswtork are installed in
industrial plants (1) to try to induce mixing of the descemglbulk solids and (2) to re-
duce peak stresses at the junction between the cylindmchthee convergent part of the
silo(Johanson, 1968). Some published studies can be fautftkaise of similar devices
and on their effect on the flow and stress fields(Tuziin ardbEienan, 1985a,b).

The main granular material was steel grit while the traces wac grit both with a mean
particle diameter o825um. The material properties are reported in Table 6.4. Zint gri
was chosen as tracer for four reasons: 1) it was availableeisame size as the steel grit;
2) it has physical properties comparable to those of stéelingierms of particle density
and wall friction angle (see Table 6.4); 3) it has a color dleaontrasting with that of
steel and 4) it has not magnetic properties, differentlynfisieel. The last property was
important in order to separate zinc from steel grit, and setse the two materials in
subsequent runs.
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= measurements

— air injection
flanges for i
inclusion of
devices

stress
measurements

Figure 6.1: Picture of the pilot silo with description of the main feaar

Steel grit| Zinc grit
d, | 0.825 0.825 mm
p | 7800 7100 kg m=3
0 |25.29 35.22 °
ov | 17.75 16.41 ©

Table 6.4: Properties of the materials used in the experiments.

As attention was focused on flow and stress profiles, the ewpatal set-up was ar-
ranged in order to measure both of these quantities in tbéguhle silo. As regards flow
profiles, many different experimental techniques can badau the literature to study
velocity profiles of granular materials in confined geongstriAmong these, tomographic
technigues allow to understand what happens inside theriadateith both non-invasive
and invasive methods.
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Non-invasive methods such as PEPT, NMRay tomography, X-ray tomography (Yang
et al., 2007; Ingrama et al., 2005; Nakagawa et al., 1997iNi& et al., 1998; Langston
et al., 1997; Dyakowski, 1996) have not been consideredismwork partly because
of their cost and difficulty of use, but mainly because thegnsenot to be useful for
medium/large scale geometries (i.e. a device with a dianoéte5 m and2.5 m high),
which are in the focus of this work. As regards the technidpgsed on capacitance mea-
surements, they allow to obtain both local and global (ayedainformation on velocity
and porosity (Dyakowski, 1996; Hage and Werther, 1997; 4tal.e2004, 2003). Being
interested in local information, techniques yielding st averaged information where
discarded. Many of those yielding local information howewbere considered too inva-
sive on the flow field because of the insertion of capacitivdps in the moving bed for
example. Other, non-tomographic, techniques usually tedidp determine velocity pro-
files are optical ones; typically a transparent wall is reggibn the wall of the silo, so that
particles can be directly observed and their motion reabtieough a CCD camera. The
velocity field can be then reconstructed by means of numdgchniques, which can be
divided in PIV (particle image velocimetry) (Steingart aadans, 2005; Slominski et al.,
2007) and PTV or SPT (particle tracing velocimetry or sirggeticle tracking) (Machin
et al., 2006) ones. The need for a transparent wall howawéslthe experiments to sit-
uations (such as quasi 2-D silos) which may be not realifti¢his work, the technique
chosen to determine the flow field was based on the use of a.tfamea relatively large
structure, a tracer technique is probably the best choicause of the simplicity of the
operations. These techniques can be found in literatute dotreal scale (Chen et al.,
2005; Ooi et al., 1998) and pilot scale(Johanson, 1964; fBkknet al., 2007) plants.
Since the focus was to use a vessel of pilot scale size, it wssilgle to use the proce-
dure described by Johanson (1964), which consists of usiegsel which can be splitted
along the longitudinal plane into two halves. Two mater{#ie main one and the tracer)
are loaded into the unsplitted vessel so that to form a S&@tbed of alternated bands.
The flow is then started for a given time and then stopped. Tatemal is then con-
strained at the top and at the bottom of the vessel so thabid any further macroscopic
motion of the material. The plant is then turned horizogtalhd splitted removing the
upper shell. The excess material is then carefully swepyagaining the final result
shown in Figure 6.2. The final position and morphology of taads was then registered
by visual inspection.

This approach although it may appear tedious, it allows seolke the profiles resulting
from a fully 3-D geometry without any bias due to the use oésive probes. In this case,
for each single test, some tracer bands of zinc grit weregpegjpat different heights and
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Figure 6.2: Pictures from the profiles study phase of the tests. Thesiitosed and moved with a crane,
then (top) put in horizontal position and finally (bottomgtmaterial is removed until the middle line is
reached.

then the stratified bed was made flowing downwards by meansaksv conveyor at the
bottom end, which allowed for a constant flowrate. Meanwindsh material was contin-
uously charged at the top with a hopper to preserve the lesale the pilot plant. After
each run zinc was divided from steel grit at the end of a coowbglt using a magnetic
pulley as sketched in Figure 6.3.

In order to measure the stress profile at the wall, normasstiewere recorded at six

b
Magnetic pulley

Q
o

Q
°°
, 5" :"' :

Zinc grit ® Steel grit

Figure 6.3: Schema of the method used to separate steel grit from zihc gri

different positions by means of strain gauges placed on glates strained by the ma-
terial acting on them. Six rectangular holes were made orwtidkeat different heights
(starting from the bottom at 0.50, 0.95, 1.12, 1.24, 1.64 a0d m respectively) and
at different angular positions (see Fig. 6.1) and whereeddsy rectangular steel plates
0.5 mm thick. The plates could move elastically deforming andising except at their
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upper extremity where they were fixed at the wall (see Figu4é. 6The estensimeters
were fixed on the outer side of the steel plates, as close a&tbpo$o the junction be-
tween steel plate and wall where the strain gradients wegetlaThe width of the sheets
was fixed (0 mm) while the length was variablef — 35 mm) so that to increase the
sensitivity (longer sheets were placed in zones with lowesses) and to avoid plastic
deformation of the steel plates (shorter sheets were placazhes with higher stresses).
The estensimeters were connected to a Wheatstone bridgsgeveignal was converted

in a tension signaH51") by an apposite module (Analog devices 5B38) and stored on a
laptop PC by means of a data acquisition card (NI DAQCard2&)6

Fixed

boundary

Steel plate —7]
5 mm thick

Pilot plant _—> \
wall |

Figure 6.4: Schema of the installation of plates for strain measurement

Test| Internals| Duration | Gas
T1 no longf no
T2 no shorft no
T3 yes | long' no
T4 yes | short' no
T5 no longf yes
T6 no short' yes
T7 yes | long' yes
T8 yes | short’ | yes

t ~ 110min, 1 band200 mm high, placed at heiglt3 m
1T ~ 45min, 3 bands70 mm high, placed at heights23, 1.8,2.37 m

Table 6.5: Main kinds of test performed
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During the experimental campaigrdifferent tests were made according to Table 6.5.
Each run was repeated three times. In all of these tests gacdrikowrate of6kg/min
was choosen, corresponding to a velocity of the granulaenahiat the outlet of about
0.008ms™! which is a very slow draining.

Also the effect of gas flowing countercurrent on the dynaroicthe descending granu-
lar material was studied, injecting air in the silo at the diéd(see Fig. 6.1) through a
circular jacket communicating with the silo by meangdéhozzles. Air temperature was
controlled by means of a heat exchanger, and air pressusechibie heat exchanger was
of 0.40 barg, the nominal flowrate being 892.00 Nm3/h. In the next sections, at first
the main experimental results will be resumed, which wil/eealso as a methodological
guidance for the following steps. Then the procedure focidations will be described
together with the estimation of model parameters, and jimatiomparison between mod-
eling and experimental results will be performed, at firstthe case without air, then for
the full gas & solids flow.

6.4 Experimental results

6.4.1 Granular flow without air

As regards wall normal stress profiles, which are displape@igure 6.5, they were ob-
tained for the two different flow configurations (with or watlit internal devices) by av-
eraging all the six tests referring to each set-up (T1-T2 BBd4). As for the average
profiles for the case without internals, the expected profds found(Nedderman, 1992)
with a stress peak at the junction between the enlarginglenddnvergent part. The ef-
fect of introducing the tubes passing from side to side wastfied in a strong reduction
of the stress peak, while far from the internals the stressmes unchanged. The lowest
wall normal stress was measured in this case in the postgimglow the internals, prob-
ably because of the particular geometry, characterisechimné&rgement of the section
with depth (see Fig.6.5). As it is easily noticeable froméner bars in the figure, in the
case without internals wall data can be very different frame test to another near the
junction. This happens probably because of the well knowgelfuctuations of forces in
this zone(Nedderman, 1992; Nielsen, 1998); the insertidhedevices diminishes not
only the average value of the stresses near the devicedsbuhair variability, therefore
further reducing the possibility of structure damage.

As regards the flow field, from a general point of view, tracgreziments (displayed in
Figures 6.12 and 6.17 in comparison with modeling resutigfiomed that the silo is in
mass flow with no formation of stagnant zones, with a defoionadf the bands induced
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Figure 6.5: Comparison of experimental results of wall normal stresgiis and without internal devices,
with no air flowing (without: average of tests T1-T2, with:eeage of tests T3-T4). Error bars represent
standard deviations.

by the presence of a divergent and a convergent part in thelgithe cylindrical (upper)
part of the silo, from direct inspection of the position o thands (as it can be noticed in
Figure 6.6), it was however clear that while nearly all theemal is in plug flow, in the
region very close to the wall a velocity profile exists, with@calledshear band

With respect to this, visual inspection confirmed that theastbands are confined by the
wall to a thickness which corresponds to about ten diameféis means, as expected,
that more of thed0% (by weight) of the material in the upper section of the piltn

is not subjected to shear, and descends as a plug flow. Beohitlseshear induced dis-
persion of the particles it was not possible to determinemimguously the slip velocity
at the wall. For this reason it was not possible to compareptbéles obtained from
the experimental results with the modeling ones in the shaad zone and the issue of
assessing the performance of the model in this narrow areaimed unresolved. This
specific aspect however was not in the scopes of this work.n€ke for the experimen-
tal set-up of being of industrial relevance and the choidgletechnique for studying the
flow are clearly devoted to the study of the bulk behavior. &kect estimation of velocity
profiles in the shear zone and the precise quantificationm¥slocity would have needed
different and more idealized configurations of flow. Morepytemust be pointed out that
from a practical standpoint it is much more important forrheological model to be able
to predict the correct behaviour of the profiles of tracehmdther zone of the silo which
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means to predict a plug flow (or mass flow in powder mechanrosit®logy) behaviour.
However, the width of the shear band, which is somewhat plesg) extrapolate, at least
as an indication, remains a result of fundamental impogaviuich has to be reproduced
by the model.

In Figure 6.6 an example of the behavior of the tracer in tmyeent section is reported.
Here the flow field is seldom symmetrical and large fluctuatiofthe profiles can be ob-
served. This feature is not usually embodied in continuurdetsy which instead provide
symmetric profiles that have to be considered as a time asdregpresentation of the
behaviour of the system.

As regards the effect of the inclusion of internals on the fli@id, experiments suggest

Figure 6.6: Example of tracer profiles results: (top) shear band widtigtom) fluctuations in the conver-
gent part of the silo.

that the introduction of internal devices does not impagtigicanity on the flow profiles;

in fact, two zones of limited extension exist just above aelbW the internals, where the
blocking effect due to the external body is clear. These g¢aa example of which is
displayed in Fig. 6.7) seem in this case to be limited as sbaads areto a width of a
tenth of particle diameters.
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Figure 6.7: Particular of the zone above (top) and below (bottom) anriraédevice, with a measurement
grid superimposed

6.4.2 Gas-granular flow

As regards wall normal stress profiles of the tests with dnictvare displayed in Figure
6.8, obtained as an average of all the tests T5-T6 and T74T#¢ocase without or with
internals, results show that generally pressures grow thekilo with respect to the case
without air. This is obvious because strain gauges meabargum of solids pressure and
of air, which is fed in the silo at a relatively high pressubs.for the inclusion of internal
devices, tests seem to point that the inclusion of devicasases stress. A reason for this
behavior is hard to be found: in fact, it is possible that theaeéase in pressures comes
from problems in gas flowrate regulation, being that it hagf@ct on the whole silo,
while normally the inclusion of devices (see previous sabsgr) has only an effect near
the place where they are positioned. Wall pressures aresassitive to gas pressures
because gas is injected at a pressure ot morelth&PRa.

As regards tracer results, reported in Fig. 6.17 in compangith modeling results, it
is possible to say that the gas flowing into the silo does nattmrally affect the solids
behavior as profiles are similar to the case without air. &tstd5 and T7, the experi-
mental conditions were the same, therefore data are aegpastan average of different
tests. Some problems of flowrate control were evidencedsirili@, where solids flowrate
was often higher than the nominal value; in Figure 6.17 only wacer profile is reported
which is the one with the lowest flowrate. One test of the T&ugetnded early, therefore
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on the figure the comparison is made between tests at diffezsitlence times. As re-
gards possible maldistribution of the gas, including cleding near the walls or preferred
paths due to the lateral positionment of the injectors, gd@city was observed also into
the bulk by means of anemometers (not shown here), apprtedyrfanding a good dis-
tribution of the gas.
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Figure 6.8: Comparison of experimental results of wall normal streasitls and without internal devices
(without: average of tests T5-T6, with: average of testsT8Y-with air flowing upwards. Error bars
represent standard deviations.

6.5 Numerical procedure & parameter estimation

The system of PDEs can be conveniently solved through angrgkepurpose solver. A
commercial CFD software(COMSOL, 2005) was used in this eas@ Chapter 3. Mo-
mentum balance has been closed by Navier slip relation, Ef, at the wall and by a
tangential stress free upper boundary, while the outleiigi was fixed (this corresponds
to the experimental case were a screw feeder was adoptedhtimictbowrate). For the
fluctuating energy equation it was choosen to impose ‘iigulaconditions at the walls
and a fixed temperature at the top (determined as the avexageetature value in the
cylindrical part of the pilot plant). During the calculati® the height of the material was
supposed to be constant, as in experiments where freshiahatas nearly continuosly
fed at the top. As regards the strategy used to compare ntahand experimental re-
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sults, in this case (1) some parameters were fitted to repeothe behavior of stresses
and velocity profiles in the pilot plant without air and wititanternals, then (2) the ob-
tained parameters were used to test the predictions aglatasbbtained for granular flow
in the plant with internals and with air. The parameters tfe®d to be calibrated in the
model are, in principle fiveu, o, 0*,k',A. However, considerations developed in previous
chapters allow to modify and reduce the number of these peteas) because:

e in Chapter 3 it was shown that for cohesionless materialsdlaion ~ tand
can be adopted for the parametemwheres is the internal angle of friction of the
material, that can be determined experimentally.

e it can be assumed thét ~ kygd,, wherek, is a dimensionless parameter, which
mainly influences the velocity profiles (as it can be noticexnf the sensitivity
analysis, figure 6.9).

e ) hasto be a linear function of the particle diameter: k,d, (as it was shown in
Chapter 4).

This means that the parameters to be calibrated are redodedrt 7, k¢, k', ky. AS re-
gards the value of the parameterdue to the large prevalence in the pilot plant of the
main material (steel grit) with respect to the tracer, tHhe@af the angle of internal fric-
tion was taken as that of the main one, which from Table 6.4eaestimated as5. The
sensitivity of both wall normal stresses and velocity pesfibn these parameters can be
appreciated in figure 6.9. As regards a more detailed seibgsainalysis of stress profiles
predicted by the model varying parametgrand flowrate, the reader can refer to Chapter
3. As it can be deduced from the results displayed in figurdél®arameter having the
highest sensitivity on the results (both on stress and arcitglprofiles) is the slip length
parametek,.

As regards the use of experimental data for parameter eégtimas it was previously dis-
cussed, data available for calibration and verification(&y¢he pressure data at the walls
(2) the width of the shear band close to the walls, which cagrbeso mod@strapolated
from the experimental tracer profiles, and on (3) the tracefilps in the central part of
the pilot plant.

In particular, in this work the parameters of the model werst talibrated on the case
without internals, then the model was predictively usedhlie same parameters, on the
case with internals, being that the material was unchangeudden the two cases. A good
fit for the parameters was obtainedias= 5, 1, = 2,k' = 2, ky = 100.

In order to simplify the calculations, both cases with anthaut internals were treated
as axisymmetrical, which is correct for the situation withmmternal devices, while it is
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incorrect for the other configuration in which the devicesgp@om side to side. However,
at least on the simmetry plane where the pilot plant was aparaneasurement of tracer
profiles, results may be thought as comparable.
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Figure 6.9: Sensitivity of radial velocity and vertical wall stress fites on (from left to right and from top
to bottom) parametek .,k ko.

6.6 Comparison between the model and the experiments

6.6.1 Granular flow only

Stress profiles

Comparison of normal stress profiles with and without irdésrare shown in Figures
6.10,6.11. As regards profile without internals (Fig.6,10¢re is experimental evidence
of good agreement between data and model predictions;srcéisie the parameters were
fitted in order to reproduce the results, so quantitativeeagent is somehow obvious,
while it has to be stressed the ability of the model to repcedine correct shape of the
stress profiles. The case with internals (Fig. 6.11) is everemsignificant because the
same parameters of the previous case have been used: @nst@éthe reduction of the
peak stress due to the presence of the internals is fairlypredicted by the model, both
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qualitatively and quantitatively. Indeed, predicted gesfiwith and without internals are
the same far from the internals and very different only inrdggon close to the devices.
Simulations therefore confirms that internals contribotsustain part of the weight of
the material lowering the load acting on the walls, exactiyrareality. Departure from
the experimental profile in the upper part of the silo coulétiebuted to the difficulty of
clearly determining the correct position of the top surfdbe material being continuosly
fed during the experiments.

However, it can be assessed that, as regards stressesiajivenagreement exists be-
tween experiments and the model predictions.
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Figure 6.10: Comparison of experimental results(average of tests T, diEZnonds) and numerical calcu-
lations (solid line) for wall normal stresses in the silo mout internals with no air flowing.

Tracer profiles

In Fig. 6.12 tracer profiles predicted by the model can be epated, compared with
the experimental results. Comparison between the modedbgmetiments is qualitatively
successful, considering the presence of an uncertaintyeidétermination of the exact
flowrate (the screw conveyor had @% precision); in order to get results closer to exper-
iments, a slightly different outlet velocity (with a vaiia of less therl0% with respect

to the nominal value) was assumed which allowed to quaivedgtrecover experimental
profiles. Keeping in mind mass conservation issues, it cajudiged that the bias can
be eliminated easily, with no need of correcting the outldoeity in the model, if the
flowrate is correctly determined. Therefore both the expents and the model agree in
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Figure 6.11: Comparison of experimental results(average of tests T,3}itdnonds) and numerical calcu-
lations (solid line) for wall normal stresses in the silo wihternals with no air flowing. Dotted line is the
profile without internals (Fig. 6.10), displayed as a refece.

showing that the silo is characterised by mass flow, the moaelicting also the effect
of the changes in diameter of the silo. Regarding the effetheinclusion of internal
devices on the flow field, the model is able to reproduce aksdettt that internal devices
have a very local effect on the flow field, determining only eallodrag on the particles.
Therefore, when compared to experiments, the model psadiasonably well the macro-
scopic deformation of the material, as well as the size dudmsnces on the flow field
(such as the “wake” induced by internals, but also the sizhear bands).

6.6.2 Gas-solids flow

Model

The model used for the gas-solid flow extends the rheologicalel adopted for granular
flow (in the same spirit of what was done in Chapter 5) alone bgams of a drag term in
the momentum balanc®&,y:

po (V) +pv-Vv=-Vp—-V -1+ pg+Fp (6.28)
which is a specific drag force which is given by the pressuog dn the gas:

Fp=VP, (6.29)
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Figure 6.12: Comparison between tracer experiments (solid lines) amdisitions (dashed lines) for tests
without air (from left to right: T1,T2. T3, T4). Dotted linespresent initial positions of the bands. Axes
are not on scale.

On the other side, to characterize the 2-3D gas flow the Brarkeguation was adopted:
Oty

posd + By = V- (—pL (Vi + (Vi)T)) + (6.30)

+kpg

The porous medium is described in Brinkman equation by theethng—;‘ju*g, wherek, is
the permeability. In order to define the permeability, Erggoation can be used:

ky = (ddex)_lzz(El%—Ebu@1 (6.31)
Up

whereu, is the superficial velocity, and:

_ 150py(1 — €)?

E 6.32
| 2 (6.32)
1.75p,(1 — €)
By, = —2Pem 7 (6.33)
dp€2

Permeability is thus a function of porosity and superficilloeity. This expression for
the permeability is used to solve Eq. 6.30 by means of COMSQlltiphysics. At
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this moment, there are no tuning parameters except the @maired in the granular
rheology. In fact, a local value of porosity is needed from germeability expression,
and, as a simple choice, it is possible to use the linearadat law already introduced,
Eq. 6.7, relating porosity and the inertial numbei his can be seen to be in conflict with
a main hypothesis of the rheological model, that the flow isoumpressible. In fact, due
to the increasing complexity of the models, it is choosenltiafor porosity variations
only in their effect on the gas dynamics, and to keep the dgchl model the same
without relaxing the uncompressibility hypothesis. Thas de reasonable when porosity
variations are less thard %, which is a value below which the rheological model can
be considered incompressible, but the little variation @an imply a strong effect on gas
distribution.

Therefore the model is closed when the dilatancy parametgrsand 3 are specified.
Based on experience and literature, in the following it wél assumed that,;,, = 0.54
and( ~ 1. The other parameters of the full model were taken the sardetasmined in
the previous Sections.

Stress profiles

Comparison of modeling and experimental results regardirgss profiles is given in
figures 6.13 and refc6stress2. The model predicts the chantpe wall stress profile
due to gas pressure with good agreement, apart from onequoétibe fifth estensime-
ter starting from the top) which is very far from the other esimental points also, and
which is characterised with great probability by experitaéerrors. The fact that the
fifth estensimeter seemed to have some problems was notloexd necording signals by
A. Zugliano at CRD. When studying the inclusion of interndlsee model as expected,
predicts that wall stress change only in the zone close tdeliees (as for the case with-
out air), and therefore results in a rather different prdafien the experimental one (Fig.
6.14). The model results support the idea that gas flowratel@t pressure) is different
in the two set-ups. However, this topic would require repgathe campaign to collect
new, more precise, data. Having noticed a certain agreebstween experimental and
modeling results, the model was used in order to understenelftect of having a pressur-
ized bottom (typical of industrial set-ups, but which wadaasible in the experimental
set-up, where gas could exit both at the top and at the bottttns)was done in order
to understand if “closing” the vessel for gases at the bottbianged flow patterns and
the stress field. As shown in Figure 6.15, the model predietsthe influence of closing
the bottom is limited to the hopper, and generally it actseefgsected) increasing stresses
in that part of the silo. As regards the way the injection o ghanges wall stress with
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Figure 6.13: Comparison of experimental results(average of tests T5diE@nonds) and numerical cal-
culations (solid line) for wall normal stresses in the sildghwut internals with air flowing upwards in the
silo.
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Figure 6.14: Comparison of experimental results(average of tests T /AiB8nonds) and numerical calcu-
lations (solid line) for wall normal stresses in the silo lwinternals with air flowing upwards in the silo.
Dotted line is the profile without internals (Fig. 6.13), diayed as a reference.

respect to the configuration without gas, Figure 6.16 carp gome hints, showing the
decomposition of the wall stress obtained by the model (fercase with “open” bottom)
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Figure 6.15: Comparison of model results for wall normal stresses regey@pen/closed bottom condi-
tions.

into particle stress and air pressure. At first, it is cleat the stress increases mainly due
to air pressure contribution. As regards the particle sfriéss very interesting to notice
that, from the switch to the top of the silo, air injection ueds the stress with respect to
the case without air. In the model, this is reasonably givethle fact that gas pressure
drop reduces the effective gravity. In the hopper, strease®qual in both cases, apart
near the outlet, where the particle stress is higher in tise wath air. This is probably
due to the presence of a pressure gradient reversed withatesithe upper part.

Tracer profiles

In Fig. 6.17 tracer profiles predicted by the model can be epated, compared with

the experimental results. Again, as for the case withoutagood qualitative agreement
is obtained, and adjusting the solids flowrate by less tha{ ¥8sults also in a quanti-

tative agreement. For test T6, where a higher (and unknoew)ydke was experienced,
comparison with the model was unsuccesful until flowrate adjgasted by more than 10
%. Again, both the experiments and the model agree in shovaigthe silo is charac-

terised by mass flow also in the case with air, with the samecsceffect of inserts on

the flow field. It seems that the model behaves well even wheamdrd to treat gas flow,

and therefore it could be used also for more complex cougplinguding mass transfer,
reactions, and so on.
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Figure 6.16: Decomposition of the wall stress into the various contiitis for the case with air injection,
without internals, from model calculations, and companisath the case without air and without internals.

Gas flow pattern

As regards the flow pattern of the gas in the model silo, theahpredicts (please see
Figure 6.18) that just above the injector the gas is wellridbisted both suggesting that
neither wall channeling nor “dead zones” in the center aesgmt. From first observa-
tions made with anemometers in the bed (not shown herekgisé¢hat the picture given
by the model is correct, with no velocity difference from trenter to the wall. However,
these analyses need to be refined in order to arrive to aisatisgmparison.

Regarding the possibility of pressurizing the bottom inesrtb avoid gas flowing down-
wards, from figure 6.18c it can be said that apart being ise@#e upwards flowrate, no
macroscopic effect on the distribution exists, and alsoeaddzones form in the center.

6.7 Conclusions and Perspectives

This chapter dealt with the development of scaling procesitor silos for gas-solids ap-
plications, and with the comparison of experimental resoiiistress and flow profiles of a
pilot scale silo with the predictions of the rheological rebdescribed in Chapter 3, also
extended in order to treat gas-solid coupling. Severalessvere discussed regarding
scaling laws, ending with original scalings, whose rangeatitlity was analysed.
Experiments on a pilot silo built by an industrial partnerrev@erformed studying the
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Figure 6.17: Comparison between tracer experiments (solid lines) amdisitions (dashed lines) for tests
with air (from left to right: T5,T6,T7, T8). Dotted lines ngsent initial positions of the bands. Axes are
not on scale.

effect of including internal devices and injecting air. §tithe experiments were analysed
providing interesting hints, then the model was first calibd on data without internals
and air and then used to predict the profiles for the case wi¢hnals and with air. Both
stress and flow profiles with and without the devices and withwithout air performed
reasonably well (qualitatively and quantitatively) in qoamison with experiments.

This experimental campaign, which is rather unique fodskidimensions, etc. confirms
that the rheological model is well-behaving in the case offioed flow such as flow in a
silo, both for stress and velocity fields, assessing withxg@eemental comparison what
was previously claimed on the basis of experience and ltitexecorrelations. Future
experimental and theoretical works will deal with bettederstanding of local scale phe-
nomena (i.e. phenomena occurring near the walls), alsadier do verify the predictions
of the model in the shear band zone. These topics will alsdeestibject of the next
chapters.
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Figure 6.18: Vector plots of gas velocity, a) with e b) without internaiy without internals and closed
bottom. Axes are not on scale
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Chapter 7

DEM methods for dense flows:
application to the vertical chute
configuration

O mais c’est gé, voyez-vous bien, je n'ai point sujeétte neécontent de mes palgres : ils font des petits
toutes les six semaines, c’est pire que des lapins. Etiliestuai de dire que les poddres Eguliers sont
les plus figles et les plus attaésa leur mdtre ; sauf que I'lcosadre s’est évolEé ce matin et que j'akte
forcé, voyez-vous bien, de lui flanquer une gifle sur chacune dases. Et que comme ¢aétait
compris. Et mon tra#é, voyez-vous bien, sur les moeurs desguivgs qui s’avance : n'y a plus que
vingt-cing volumes faire.

Alfred Jarry Ubu Cocy Acte |, Scene |.

7.1 Introduction

In previous chapters all modeling attempts invoked the @is®tinuum models, which
typically consist of conservation equations for mass, manona, et cetera, equipped with
constitutive relations for the unknowns which appear imbeaé equations (transport, gen-
eration/dissipation terms,...). Asitwas already intrcgtliin Chapter 1, this is not the only
way to model granular materials in flow. Being that a bulkgobnsists of individual par-
ticles, another way of modeling its behavior is to model alftigle-particle interactions.
This is what is usually done by means of DEMs (Discrete Eleéniethods), which
solve the equation of motion for each particle in a giveneaystomputing, apart from
body forces, also the interactions between particles. ghaon principle this seems to
be the most rigorous way to treat granular materials, in theeldpment of DEMs many
problems exist which are often solved by means of modelirmjcels, and therefore end
in creating approximated, analog systems. As to cite a femtacts are often treated in
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simplified ways (e.g. by means of spring-dashpot modelg)etlare still difficulties in
simulating irregular particles, interaction laws are abeeth simple assumptions when
the physics (particularly in presence of cohesion, liquiddes, wear) is rather complex.
Then, DEMs are limited by the number of particles: typicallgulk solid(Schulze, 2008)
consists of, say}0? particles, while up to now DEM codes arrive (with a very laogé-
culation time) to treat0® particles. Research on DEM, both on extending computdtiona
feasibility (which is however hardware-dependent), andhgolementing more complex
behavior, is currently being carried out; surely DEM methade a very important tool
when (1) the number of particles in the system allow to trkait all, or (2) a local be-
havior has to be studied, as wall slip or shear banding. kahapter a DEM code is
used, LMGC90, which I learned to use during my stay at the tatooe de Materiaux et
Structures du Genie Civil in Montpellier, under the supgiom of F. Dubois. The code is
used to understand the effect of varying flowrate, partibkgpe, wall friction, and other
parameters, on stress and velocity profiles for the flow inracad chute, for the purpose
of giving insights on the rheology of granular materials anfined geometries. In this
case the DEM method is used as a source of virtual experim@htsh can give infor-
mations which cannot be simply extracted from experimentgdrticular, this is the case
of stress fields inside the material). It is intended here Berechmark for continuum
models.

Due to the need of performing a number of analyses, it wasepesf to simulate 2D
granular flows. DEM simulations of disks in silo flow were aldy done by Francois
Chevoir’s group at LCPC(Prochnow, 2002), using a silo wigh lottom and controlling
flowrate by means of a hole. Simulations of flow of spheres Iwbfeeflow in a silo and
in a vertical chute were done for example by Rycroft et alO@®009). At this moment,
no simulations exist in Literature for polyhedric/polygdigrains in a vertical chute ge-
ometry. This geometry is rather interesting because (1) tiee practical point of view it
is a common configuration (e.g in silo discharge) and (2)ats®that promising rheolog-
ical models(G. D. R. Midi, 2004; Pouliquen et al., 2006) faipredict the shear banding
phenomenon which occurs near the walls.

As noticed in previous chapters, vertical chute flows argattarised by a plug flow at
the center and shear bands near the walls(G. D. R. Midi, 200¥ width of these shear
zones has been subject of several studies(Pouliquen af@iGdt 1996; Nedderman and
Laohakul, 1980; Natarajan et al., 1995; Ananda et al., 2088)ch are sometimes in
contradiction regarding the influence of several pararsetdiowever, synthesizing, the
typical result is that shear band do not depend on flowratédewliey are weakly depen-
dent on channel width and strongly dependent on wall rougghn&heir typical size is
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however related mainly to the particle diameter, and resllow typically bands ranging
from 5 to 15 particle diameters.

A number of modeling studies were devoted to this type of f@avage, 1998; Pouliquen
et al., 2006). The main problem in the performance of rheoldgnodels in this config-
uration is probably related to the fact that shear is notarnif and moving from the wall
to the center of the channel the material changes flow regnom (dense to quasistatic).
When dealing with continuum models, another topic which hhesassessed is the issue
of boundary conditions. In view of the considerations depell in Chapter 4, detailed
numerical simulations can surely help in better understaneall dynamics, in order to
improve our knowledge of boundary conditions, both in srhaatd bumpy walls con-
figurations. The simulations described in this chapter axetbd to the case of smooth
walls, which are of direct practical impact. First the getnyyecomputational strategy
and numerical method are presented, then the main resulish\are however always in
development) are resumed and compared with rheologicaiderations.

7.2 Geometry & computational strategy

For the sake of reducing computational cost due to the nepdrédrming a large number
of simulations to study sensitivity of results to paramgtérwas choosen to model a two
dimensional vertical chute configuration. The geometryhefgimulations is sketched in
figure 7.1. The reference case chute 8as< 115 particles large, filled withi425 parti-
cles, while a larger configuratioB({ x 120, ~ 9000 particles) was also simulated in order
to study the effect of channel width, and also smaller coméiions were simulated for
the analysis of the boundary conditions.

In order to understand the importance of particle shapd jpolygonal and circular par-
ticles were used, with a particular attention on the form#ije the latter were taken for
a comparison. Generally a slightly polydispersed sample etosen in order to avoid
layering effects. As regards polygons, it was choosen toah@gdjular penthagons. The
method choosen to control flowrate and provide steady flowmplg: (1) after an initial
compaction, the bottom wall is removed and the materialdet tlue to gravity, (2) when
the material passes a certain line at the bottom, its vglejprescribed, thus controlling
the flowrate, and (3) when the material passes another litteedtotttom, it is recircu-
lated at the top. This strategy (sketched in Figure 7.1)aledeto be very useful because
flowrate control is much direct and simple than, for examipjemeans of a variable hole
at the bottom. Contacts between particles and betweerclggrand walls were consid-
ered inelastic using the “inelastic quasi-shock” appradayeloped by Michel Jean(Jean,
1999). Due to the particular attention devoted to the prolkdé boundary conditions, it
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was not choosen to model walls as a collection of fixed padichs it is often done in
order to impose a sort of ‘no slip” boundary condition, butrtodel smooth frictional
walls, which are more similar to boundaries tipically foundeality. A number of sim-
ulations were carried out, varying flowrate, wall frictiquarticle shape, channel width.
Solid fraction, average velocity, granular temperatureveemputed for each simulation.

SURFACE ZONE

3 .' '
%

CLEIA

RECIRCULATING GRAINS

FIXED VELOCITY ZONE

Figure 7.1: (left) Snapshot of the geometry during a simulation andhjiggketch of the strategy used to
recirculate grains and control flowrate.

7.3 Numerical method & averages

The DEM method used in this work is the method developed byh®lidean (1999)
and implemented in the open source platform LMGC90(Renbaif €2004). The code is
used by a growing community of researchers and was usedena@ublications(Renouf
etal., 2005; Azema et al., 2009). The code, developed im&o80, has a Python interface
which allows implementation of non-common features suctinagixed velocity + recir-
culation strategy used in this work. LMGC90 uses a methoalwts different from the
original DEM strategy developed by Cundall and Strack (39B8sed on spring-dashpot
models of contact, and which is called Non-Smooth Contactddyics. Description of
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the approach is not in the scope of this thesis, however itbeasummarized that clas-
sical DEM treats forces as explicit functions of local defiations of the contact surface
through Hertz law (which are calculated from particle diggiments), while NSCD con-
siders that contacts are rigid and forces are implicitlgated from a local balance.
Being that, in this work, the main focus is the developmerasftinuum models of gran-
ular flows, also the quantities extracted from the simufegtiwere choosen as continuum
averaged variables, in order to compare the results witblolgecal models and collect
hints for further development of such models. Mean vargbldracted from the simula-
tions were velocity, solid fraction, granular temperatsteess tensor; then also statistical
evaluations were performed on spatially averaged fielddaltiee fact (1) some models
involve closures based on granular temperature(Loselt, @090), (2) some models are
explicitly stochastic(Kamrin and Bazant, 2007), (3) son@eis involve randomness of
the force in developing rheology(Savage, 1998) or boundanglitions (like in Chapter
4). Therefore averaging was made in two steps: (1) fixed gudifian) interpolation (2)
time averaging and statistics.
Averaging methods for granular materials have been subjetiany research attempts.
A general framework can be identified in the work of Babic97p who defined the
time-space mass weighted average. In this chapter, beaghé® method of controlling
flowrate assures constant velocity, which was verified td byglmeans of analysis of the
total kinetic energy of the sample, after an initial transighe system is thought to be at
steady state: therefore time-averages are obtained sesmymean of the instantaneous
values.
Instantaneous, locally spatially averaged solid fracitsooomputed by means of the ex-
pression:

6= w (7.1)

i€Qr

wherew; is a weight function A; the area of thé-th particle. Velocity field is obtained
similarly by means of the mass weighted expression:

; wiAz‘ﬁi
= sy WA (7.2)
ZZEQR wiAi
Granular temperature is defined in this work as:
1 — S 2
9:§<(u—<u>)> (7.3)

where<> denote time averaging. While flow properties as porositigaity, granular
temperature are averaged in the simple way already dedaitare not sensitive to the
averaging procedure, stresses require more attentionmaireproblem is that averaging



136 Chapter 7. DEM methods for dense flows: application towvénécal chute configuration

methods (such as for example, the framework estabilish&hbyc (1997)) are generally
developed without considering the presence of boundatiel as walls(Zhu and Yu,
2002). Generally this induces, if forces due to boundarresnat considered, a force
imbalance, i.e. deviation from momentum conservation{hget al., 2001).
In principle, the stress tensor is a sum of a contact and ohatiki contribution. The
contact contribution to the stress tensor for the case withvalls can be defined as:

o” =" wifi @l (7.4)

i j>i

wherew;; is a weighting function for contact forceg;; is the contact force between
particles: and j, l;;, = Z; — &, is the distance between particle centers. Restricting
to quasistatic and dense flow, the kinetic contribution ® gkress tensor vanishes, so
g = gc. The weighting functiony; can be expressed simply as:

1
w;(T; — 75; R) = A—RH(R— |75 — o) (7.5)

whereH is the Heaviside step function; this means that a circul@csen of radiusk is
drawn surrounding the averaging poifagtand only the area of the particles whose center
Z; resides in the circular selection is considered for the agatpn. Ay is the area of
the circular selection corrected to take into account ohéy part of the circle residing

in the sample, to give correct estimates near the walls. Aersorooth expression af;
(taking into account partial presence of a particle in theutar area of interpolation) can
be expressed as:

wi(T; — x0; Ryrl) = ALR [H(R— |z — @o| —ri)+
+H(|z; — @y + P — R)- (7.6)

HR = | = 5| =) (| ofsr! )|
where f is a function giving the fraction of area of the parti¢léeo be computed when
the averaging selection intersects the particle. A possihbice for this function is the
approximated expression (derived analitically for diskghie limitr!” << R):

~ 1 —
f(z; —ag;rf, R) = = |2Vl — 22 +sin '
7r

-1

(7.7)

This formula is the one used in this work to have smoother lpsofor low values ofR.
The weighting function used in stress computation can bexe@fapproximately as the
fraction of the segment linking the two particle centersdiag in the circular selection (if
at least one patrticle is inside the selection), or by the rpogeise expression(Goldhirsch
and Goldenberg, 2002; Zhu and Yu, 2002):

v

1
wr = / ds w[Z; — Zo + s(Z; — Ti); R (7.8)
0
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In the presence of walls, the strategy used in this work ioteser the force between
a particle and a boundary as if it was shared by two partides,of which is the real
particle, the other is a disk with the same dimension locatedg the line connecting the
centre of the other particle and the contact point(Zhu and2902).

The particle parameters which were maintained constarit thearuns are resumed in

pp 1000 kgm™3
d, 0.02 m
pp 0.3 -]

Table 7.1: Parameters of the particles considered in this work whiclheweaintained constant in all the
runs.

Table 7.1. The plan of the simulations carried out by mearnsM&C90 is reported in
Table 7.2, mainly in chronological order. Simulations wA#00 particles required nearly
15 hours on a common quad-core workstation with no para#iebn; as many simula-
tions had to be performed, it was not needed to use a pazalteliersion of the code,
but different simulations were performed in parallel eank asing a core. On the other
hand, 3D simulations, which are more computationally espenrequire parallelization.
At prescribed times, positions, velocities and forcesngctin each particle were stored
in external files as allowed by the code; after the simulati@mse files were processed
by means of appropriate routines in Fortran to perform @ega Time statistics were
computed with routines written in Python.

7.4 Stresses in a continuum framework

In order to compare DEM and continuum results regardingssé® it is important to
understand if in a given geometry continuum models can ppbbme assumptions re-
ducing dimensionality, such as the assumption of fully twved flow. Usually in solving
rheological models this assumption is adopted, which meatsve are far enough both
from the entrance and the outlet, such that profiles (of stredocity, porosity and so on)
do not depend on height. Therefore it is important to tesafi@icability and validity of
such an assumption, if we are interested in comparing thetsds rheological models or
in building a rheology from insights coming from DEM simutats. To understand the
basis of such an assumption, a starting point is the momebalamce:

o
%+v-pﬁ*:—v.g+p§ (7.9)

The vertical chute problem is usually tackled with steamyesassumptiong—t =0, and
with the hypothesis (which is valid in the dense and quatststagimes) of negligible
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Popw [—] | < v >[m/s] shape | grav.[m/s* | D/d, [—]
S1 1.0 1 penthagon 9.81 40
S2 0.6 1 penthagon 9.81 40
S3 0.4 1 penthagon 9.81 40
S4 1.0 0.5 penthagon 9.81 40
S5 0.6 0.5 penthagon 9.81 40
S6 0.4 0.5 penthagon 9.81 40
S7 1.0 2.0 penthagon 9.81 40
S8 0.6 2.0 penthagon 9.81 40
S9 0.4 2.0 penthagon 9.81 40
S10f 1.0 0.1 penthagon 9.81 40
S11|, 0.6 0.1 penthagon 9.81 40
S12| 0.4 0.1 penthagon 9.81 40
S13| 0.6 1.0 penthagon 9.81 80
S14| 0.6 1.0 penthagon 98.1 40
S15| 0.6 1.0 penthagon 18.1 40
S16| 0.8 1.0 penthagon 9.81 40
S17, 0.8 0.5 penthagon 9.81 40
S18| 1.2 1.0 penthagon 9.81 40
S19| 1.2 0.5 penthagon 9.81 40
S20 1 1.0 penthagon 9.81 20
S21, 0.8 1.0 penthagon 9.81 20
S22, 0.6 1.0 penthagon 9.81 20
S23| 0.8 10(*) penthagon 98.1 20
S24| 0.7 1.0 penthagon 9.81 20
S25| 0.7(*") 1.0 penthagon 9.81 20
S26, 05 1.0 penthagon 9.81 40
S27| 0.55 1.0 penthagon 9.81 40
S28| 0.45 1.0 penthagon 9.81 40
S29| 1.0 1.0 disk 9.81 40
(*):d, =0.2m

(**) : restitution coefficiente = 0.5.

Table 7.2: Plan of the simulations.

inertial effects,V - puu = 0. The resulting momentum balance equations are:

V.o=pg (7.10)
which can be written as:
00z 80'901
{ L (711)
ox + oy = P9
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The typical assumption which is made in the solution of theie@ chute flow is that of
"fully developed flow”, that isaa—y = 0. This simplifies the equations into:

ox

00y

a9z P9 = Oyz = PYGr

Joy
Gz = () = o,, = CONSst.
{ 7 (7.12)

Eqg. 7.12 do not tell anything about,, ando,,; as regardsr,,, it is stated that it is
uniform along the cross section, without precising its ealvhich will depend on the
boundary conditions. It is important to stress that theiprevsoultion is valid only in the
case of fully developed flow, thus a nonlinear shear stresfdg@will probably be due to
the unfulfilment of this assumption. In order to fully spgdifie stress tensor, in this con-
figuration, rheology has to be used; typically rheologiesive (1) considerations about
symmetry (or not) of the stress tensor (thus telling somngthbout the behavior of,,,),
and (2) thoughts on the normal stress ratio (in order to fixuthgeterminacy of,, ).

As regards the first topic, asymmetry of the stress tensorgi,, # o0,,, would be the
symptom of the presence of couple stresses, suggestinththptoper rheology should
involve angular momentum balances(Mohan et al., 2002) rétighamic models such as
the one developed in Chapter 3 usually assume symmetry aftithes tensor, thus it is
very important to understand, in this case from numericklutations, if and when the
stress tensor can be assumed to be symmetric.

As regards the other type of considerations, i.e. about abstness ratio, the reader
familiar with Janssen’s theory(Janssen, 1895) will remenibat the value of the ratio
K = o0,,/0,,, which is called Janssen’s constant(Nedderman, 1992)nsidered to take
values above and below respectively in the so-called passive and active statdsleW
this picture is valid and useful for statics, in the moving&as not so clear whether this
picture applies or not. In this confusion, hydrodynamic eledusually cut the Gordian
knot by assuming< = 1. The validity of this assumption can be tested in this case by
means of numerical simulations. Another topic of interagtich deals with boundary
conditions, is the value of the wall friction coefficient fibed asi,, = 0,,/0.,. In stat-
ics, typically the value of the coefficient is easily detemable(Nedderman, 1992), while
when the material is moving its value is no more a material)paoperty, but depends
also on flow characteristics, as it was argued in previouptelns. The stress analysis held
in this work aims at evaluating also this coefficient and @pehdence on the parameters
of the system.
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7.5 Results

The following subsections resume the main results obtdired the simulations. First
stress fields are analysed, then flow profiles and statigtéfs,(time correlations); in the
end boundary conditions are studied.

7.5.1 Stress field

The possibility of computing the stress field in a moving gian material is very inter-
esting because of the possibility of relating stresses @raths by means of a dedicated
rheology. Based on the notes given in Section 7.4, when Bigdje dependence of
stresses on the parameters of the system such as flowrateadinwiction coefficient,
some issues which should be considered are (1) the rangdiditywaf the fully de-
veloped assumption, (2) existence of symmetry in the stesssor, (3) the value of the
normal stress ratio.

An example of the stress field obtained for= 1m/s, and two values of the particle-wall
friction coefficient (respectively,,, = 0.4 andyx,,, = 1.) is reported in Figures 7.2 and
7.3. Itis clear that the wall-particle interactions striynaffect the stress field; in particu-
lar (as it will be discussed in the following) less frictidmealls, as occurs in statics, tend
to shift downwards the saturation of stress: it can be judigatin the less frictional case
the assumption of fully developed stress profiles does ndtihahis particular geometry
because stress never reaches an asymptote. This is evest [e&ing at Figures 7.4 and
7.5, which collect stresses at the walls of the container fasietion of height, varying
wall friction and flowrate. The case with,,, = 0.4 displays wall stress profiles which are
nearly a linear function of, while the other situations show (starting from the top)ran i
crease, a saturation (the well known Janssen effect), @mdaldecrease, probably due to
the fact that the material is pulled down. Again looking ajufe 7.3 it is possible to say
that, for the most frictional walls, the saturation of stesoccurs not only at the wall but
also in the center of the bin, but not foey,, which evidently increases with depth in the
center of the geometry; the existence of fully developedilp(in terms of stresses) is
so somewhat questionable, and further analysis would reqthigher height/width ratio.
Therefore generally in this configuration the classicatigal chute solution does not ap-
ply: practically, this means that, for example, to compaselation of a continuum model
with these results, the model must be solved on the whole gggmot on a quasi-2D ap-
proximation of it, because the DEM configuration does nopswipa quasi-2D reduction.
A higher chute should be simulated to allow for such an assiom{o hold. However, the
validity of DEM data does not suffer from these consideraicimply, when solving the
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correspondent continuum model it has to be reminded thegdhgion procedure cannot
profit from fully developed flow assumption.
As regards variation of wall stress with flowrate, in Figut® if can be noticed that
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Figure 7.2: Stress field obtained far = 1m/s, yp, = 4.

the shape of the profiles does not depend on flowrate, excehieftowest part of the bin
where for high values of the flowrate stresses decrease ejthgdwhile for low values
of the flowrate stresses increase with depth rather thardsioig. This is certainly due
to the method of controlling flowrate: for higher velocitiesaterial is somewhat pulled
down, while for low velocities the weight of the material i®re supported by the walls.
As it was already said, a first step in analysing stress datasgidy whether the stress
tensor is symmetric and the value of the normal stress ratio.
By looking at Figure 7.6, where the field of the normal stregsoris contoured for two
values of the particle-wall friction coefficient, it can helped that the normal stress ratio
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Figure 7.3: Stress field obtained far = 1m/s, ., = 1.0.

is not uniform and takes values above and belown fact, it is obvious that even for
simple fluids the normal stress ratio in a non-fully devetbfiew is not a constant: for
a generalized Newtonian fluid the normal stress ratio dependrelocity gradients, and

only for a fully developed flow it id:
Ozxx P+va o P — 27]%

K:—: =
Oy P+ Ty P—2ng—z

(7.13)

Therefore, when trying to gather rheological insights franalysis of the normal stress
ratio, the existence of a non-fully developed flow is a coegilon which has to be care-
fully taken into account, and which should be avoided infeigimulations with an higher
channel height to width ratio. Regarding the effect of wadtfon, Fig. 7.6 allows to rec-
ognize that frictional walls sustain the material whilesiésctional ones let the material
to be supported more by the bottom. This fact is even cleanenviooking at the princi-
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Figure 7.4: Variation of wall stresses with particle-wall friction cfiieient.
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Figure 7.5: Variation of wall stresses with flowrate, for the case wyith, = 1.0.

pal directions of stresses extracted from the simulatibigs (7.7).
Far enough from the top and the bottom, figure 7.8 allows td@aeasonably frictional
walls and in the dense regime (not in the quasistatic) thenabstress ratio is approx-
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Figure 7.6: Normal stress ratio foo = 1. m/s

0.3 0.4 0.5

0.2

0.1 0.6 0.7

and (leftyu,, = 1.0, (right) p,,, = 0.4.

I R I B S R N
A A XA KK XXX A XX XRNNN
PEXXAXAXX XX+ A XXX XXX N
¥ XXX XXX XA+ A XXX XN N
A A XXX XX+ FF XXX
A AAXXXXX A FFFFA XX ANRN
X AHXXX A+ A AXXXNXN |
A AAAXRX Y+ FFF AKX AN
A A XXX A F £ AN
F ot FF XN
s xxxrddFFFFF A xRN

1.0

0.6

o A ™~ 1.8
XX X X XX X X X+ X X X X X X X XN % X X ¥ + + ++ + + + F ++ + FFoxox
7/;f\xXXXX*k%%XXX\\\\\71.67»‘*’c-\"\'++++++++++++7‘>f\7
FX AKX K XX XX AR XX XK XN N XXX XX+ +++F++F+ A+t A AN
A XX XXX X ARXXXXXXNN *x X XXX+ +++++FFAFAFAF N
;xxxxxxxx)«—‘rxxxxxxx\\illél;xk**-\—-\—+++++++++7<><xx7
X XXX XAXXXFAX XXX XX XN *XXXXXX+++++FFAFAFAAXNX

1.2

XXX XXX FHHFF LA A AN
XXX XX XYYttt F A AN
POXXXX XA E Tttt FFAFAAA X
XXXXX XY+t FFAAAAAN
POXX XXX XA+ F A A AAXT
XXX XX XA Y HFFLFAAAAXS
XX XX XX LA A A AR
PO XN A AL A AR AAN
OO AATFAFAA A A A A AN
A A A AL KA A A ]
OO A AAA A A A A AN

L2 2 A 7

.0 0.1 0.2

03 04 05 06 07 0.

89

0 01 02 03 04 05 0

11.04

10.92

.6 0.7 0.8

Figure 7.7: Principal directions of stress for = 1. m/s and (lefty,,, = 1.0, (right) s, = 0.4. The x
and y axis are not on scale.

imately aroundl. This results serve as a hint that the chaice = o, under many

rheological models may be critical, and sometimes loseat&liy; however, Fig. 7.8

seems to suggest that a region might exist where assumisgyéss ratio as is not a bad

approximation.
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Figure 7.8: Normal stress ratio profile far from top and bottom as a fuoctof distance from the wall for
different flowrates and particle-wall friction coefficient

On the other side, Fig. 7.9 displaying the ratio of the shearmonents of the stress tensor
allowing to say that the stress tensor is within good appnation symmetric in the case
under study. This seem to happen both when the flow is neatlydexeloped and when
it is not (low values of the coefficient of friction), and se&mwt to depend on flowrate;
therefore the assumption of symmetric stress tensor sezins strong and general, at
least in the case considered. This is a nice result confirttiaghydrodinamic models
may be - in principle - consistent with the problem of confimgdvity-driven flow, be-
cause couple stresses are negligible. This does not meigpatti@les do not rotate, but
that the medium is not able to transmit couple stressesawgle stresses are only local.
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Figure 7.9: Shear stress ratio profile far from top and bottom as a fumctbdistance from the wall for
different flowrates and particle-wall friction coefficient

7.5.2 Average profiles

In this section, average profiles of velocity, granular tenapure, solid fraction are an-
alyzed. From figure 7.10 one can appreciate that while vimsasis solid fraction and
velocities are well developed in the center of the chanmalhglar temperature is not. A
larger height-to-width ratio should be (probably) simathin order to have well devel-
oped profiles (at the moment it is nearly 3 times high thanelard his will be done in

the future; to have an idea of the variations of profiles wité main parameters, in the
following profiles will be evaluated in the middle, far enduigom the top and the bottom.

From Figure 7.11 it can be appreciated that varying flowratgies no change on the
rescaled velocity profile, which means that the shear bagmsin of constant width, in
this case aroundl particle diameters. Even if the rescaled velocity has theegarofile, it
appears clearly that the medium in the shear band is moredilae higher the flowrate.
From the granular temperature profile it is possible to juttge not only the average
temperature (not shown), but also the disproportion batvwiee temperature a the wall
and in the center of the channel increases when increasincatie.

The importance of wall friction is shown in figure 7.12: fomlealues of the wal friction
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Figure 7.10: Fields obtained fow = 1. m/s andu,,, = 1.0: (a) horizontal velocity (b) vertical velocity (c)
solid fraction (d) granular temperature.
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Figure 7.11: Profiles obtained varying flowrate

coefficient, the medium nearly experiences perfect slih) flat velocity and temperature
profile. The solid fraction is not constant in this limit slyrdwecause of geometrical
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effects. Increasing wall friction has the effect of dilgtithe medium increasing in the
shear band, but also increasing the shear band width. ¥ittadl higher the friction, the
higher the average temperature (not shown) and the disgiropon granular temperature
between the center and the walls.
Figure 7.13 offers a comparison between results obtainedis&s with diametetl, =
0.02m and penthagons used in the other simulations. In this dasehtape of the particles
seems to play a strong role on the shear behavior of the gnamaterial: shear bands
are larger for polygonal particles, and also more dilatedsd@led temperature profiles
are very similar, while the average temperature (not shasvhjgher in the case with
penthagons. This result strongly suggests that in ordeaito @accurate predictions from
DEM methods for irregular particles researchers must dehlsthapes different from the
ideal ones (disks and spheres), because predicted praitdsecvery different, as this is
the case.

Profiles obtained varying the channel width are shown in7Hgl. It can be inferred
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Figure 7.12: Profiles obtained varying wall friction coefficient

that the width of the shear band slightly increases as thangtavidth increases, and
also the width of the dilated zone. This supports recentfiigglby Ananda et al. (2008),
together with older experiments by Nedderman and Laohd@8(@), towards the idea
that, though being generally limited to a size~of10 particle diameters, the shear band
has no universal size, but depends on the size of the systefile® obtained varying the
gravitational constant are shown in Fig. 7.15. Itis cleat thcreasing gravity of an order
of magnitude has a negigible effect on the size of shear havidke the global amount
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50

of shear and the dilation decrease; increasing gravityisgtometry, where the flowrate
is controlled, has the effect of increasing compressived®thus reducing dilation (and
pushing the inertial numbertowards zero).
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Figure 7.15: Profiles obtained for different values of the gravitationateleration.

7.5.3 Pdfs of the velocity field

It can be interesting to have a look to the statistics of ttagialty averaged velocity field
in terms of probability density functions. In figure 7.16aion of the pdf at different po-
sitions in the channel is displayed. It is clear that the taamponents of the velocity field
behave differently: while generally the shape of the pdhis $ame, symmetric around
the mean value, and the variance is higher near the wall$)aheontal component pdf
varies less than the vertical one, thus having a smalleaneei near the walls, and a larger
variance in the center. This can be due to “solid-like flugtres”, which reasonably can
propagate better on the direction of the confinement. Itaardrom this figure that char-
acterising the fluctuating behavior only with the concepg@nular temperature (which
corresponds to a global variance not informing about thglsioomponents) is a simpli-
fication which reduces all the directional information @ined in the pdf; wether or not
this reduction is viable, it can be a matter of debate.

Variation of the pdfs with flowrate for a point near the wallsréported in fig.7.17. In
this case the pdfs seem to vary in a similar way, with no furthiferences with respect
to the preceding figure. Generally, as it was already stdiedtaemperature profiles, the
variance increases as the flowrate increases, becausemarassapplied to the particles.

Variation of the pdfs with wall friction is displayed in figdB. It appears clearly that
increasing wall friction the variance of the pdf increaghs, most important result being
an abrupt change in the fluctuating behavior for low valueg gfwith nearly negligible



7.5. Results 151

12

101

o N B (<] 2]
T

12

101

lo v & o ®
:

0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

Figure 7.16: Pdfs of the components of the locally spatially averagedarsl field at different transversal
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Figure 7.17: Pdfs of the components of the locally spatially averagedois field for different values of
the flowrate.

fluctuations. In this case the material acts nearly as a bolity (as it can be seen also
from time statistics). The pdfs obtained varying gravitg ahown in Fig.7.19. It can be
seen that increasing gravity of a factiérhas not a strong effect on the pdfs, but however
implies increasing the vertical component variance. Tives é average shear (fig.7.15)
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is reduced, granular temperature increases. In fact graets both on compressive and
shear forces, thus it is probably the second effect whichagerimportant in this case.
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Figure 7.19: Pdfs of the components of the locally spatially averagedais field for different values of
the gravitational acceleration.
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7.5.4 Time statistics

Apart from studying probability distribution of the veldgifield, it can be interesting to
study time statistics, in order to understand how the vgtatianges in time. Indeed, to
characterise a random signal both the pdf and time statiatie needed. The following
figures report autocorrelation plots, Generally, no gréfer@nce was noticed between
the two components in term of autocorrelation, so in theofeihg only one component
(the vertical one) is reported. In particular, figure 7.2Daves the autocorrelation func-
tion for different flowrates, supporting the idea that thghtar the flowrate, the fastest the
process of losing memory of the past. In particular, for thedst value of the flowrate,
the correlation is significantly different; as it will moréear from the followig figure, this
could be due to the fact that the higher the flowrate, the targedistance from the solid
like state, so memory of the velocity field fades out moredhpi

The same informations can be extracted from figure 7.20b.nWheying the wall fric-
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Figure 7.20: Autocorrelation of the spatially averaged vertical velycat a position near the wall, a) for
different values of the flowrate, b) for different valuesta wall friction coefficient, c) for different values
of the gravitational acceleration.

tion coefficient, if walls are less frictional, the materiakes memory in a larger time,
because shear has less rearranging efficiency. Moreoeegffect of gravity is displayed
in fig. 7.20c. Increasing gravity has the same effect of iasirey shear, reducing the
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correlation time. As for the pdf, this could be due to the fiett gravity acts on shear
forces also, thus increasing shear stress. These topigsedgrther analysis in terms of
stresses, which are not subject of the present work. Howiéean be recalled that(Artoni

et al., 2009b; G. D. R. Midi, 2004) two timescales can be ddfiime dense flows, the
timescale related to shear = ||~ and the timescale related to pressure rearrangements
=5 ~ % It is reasonable to assume that when gravity is largek, < 7., such
that, is the controlling time scale, thus determining also thealation time. Depen-
dence of the correlation time op justifies the behavior displayed in fig.7.20c.

7.5.5 Boundary conditions

Generally, an issue which can be noticed in all the figuresgmied up to this point, is
that strong slip appears at the walls; this is obvious, bee#ie simulations deal with flat
walls, but it is not obvious how this slip can be charactetitem a continuum point of
view. Data from all the 29 runs were used to gather infornmestebout effective boundary
conditions in the spirit of the ideas described in Chapteh &éest-fit for functionsf,(7)
andg(p*/p) Were estimated from the data to be :

fo(I) = 0.0041 317 13,1467 138 (7.14)
0.524
9 [ b)) = e Jit (7.15)
g 1- oo /Mpw

From figures 7.21 and 7.22 it can be appreciated that marerelift data collapse reason-
ably on two curves. The supposition thathas a~ —1 power law behavior fof — 0

is confirmed together with the exponent tending towardsr high /. Divergence of
g(p * /) for p*/p,, — 1is not denied by results, as well as tendence towéurids

L /1 — 0. Results seem therefore to confirm that the slip velocitgesiérom scaling
with pressure to scaling with shear rate:

This is only a first analysis indicating that the thoughtsedeped at the end of Chapter
4 may be a correct way to extend the results from the simpthasiic model to a large
number of configurations. In the future, different funcabforms should be tried, as well
as different fitting methods, but first results seem encangagWork is currently being
carried out on a different geometry, the inclined chute tf@ same reason of collecting
wall slip data: results will be used together with the onesspnted here in the future.
Together with DEM data also experimental data should bectt.
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7.6 Rheology

Many rheological insights can be derived from the resultsioled from DEM simula-
tions. Regarding the structure of the stress tensor, it Waady suggested that the results
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support that the stress tensor is symmetric, and that theerggon of normal stress ratio
equal to unity is somewhat questionable. Analyzing thesstgrain rate relationship, an
usual assumption (Nedderman, 1992) is the colinearityre§stand strain rate tensor, i.e.
the principal directions of stress and strain rate coinseée also Chapter 3). By looking
at Figure 7.23, one can judge that for the case wijth = 1.0, this is a reasonable as-
sumption, which seems however to fail in the regions whegeotientation changes (for
example in Fig. 7.23(left), passing from a zone near thesmnaith stresses oriented at
45°, to a zone near the bottom with principal directions alignétth the boundaries).
Among the recent attempts, the simplest rheology usingtiheiple of colinearity is the
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Figure 7.23: Principal directions of stress (black) and strain (red) for= 1. m/s and (left),., = 1.0,
(right) 1y = 0.4. Due to the large variations, the principal components ddistare not on scale. Also,
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model proposed by Jop et al. (2006), which extended:tlié) rheology (G. D. R. Midi,
2004) in three dimensions by means of the law:

Uij - —P(Szj + Tij (716)

(7.17)
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wherey;; is a component of the strain rate tensor anslthe shear rate. To test this simple
rheology, Figure 7.24 shows the functigri(/) extracted from the data. The typical
shape suggested by Jop et al. (2006) for the function is mddaibut the fact that data
do not collapse on a single curve seem to suggest that theptezology contained in
the inertial number is correct but not sufficient to treatpheblem of vertical chute flow
of granular materials. Figure 7.25 displays solid fractusnthe inertial number. Here,

0.8

Nroo
U=

tle<<<
I

%800 X X X X 0.10

Figure 7.24: Effective friction coefficient* as a function of the inertial numbérfor (left) x,,,, = 1.0 and
different flowrates and (right) = 1.0 m/s and different wall friction coefficients.

the linear dilatancy law proposed by the GDR MiDi (G. D. R. M2D04; da Cruz et al.,
2005) seems not to hold, particularly in the shear band, evttex shear is higher. Solid
fraction appears not to be a function bfalone, as:*. It appears that also regarding
solid fraction the phenomenology contained in the GDR MsDiiodel is correct, but not
complete. To complete the framework, probably issues dagaof the normal stress ratio
should be addressed(Renouf et al., 2005); however, due fa¢hthat the assumptions of
0. = 0y, and of colinearity of stress and strain rate tensor are ngye violated, it is
possible that an extension in the direction of the inclusibftuctuating energy dynamics
into the phenomenology as it was done in Chapter 3 is not €ullyorrect. In order to test
the validity of the fluctuating energy model, it was looked dodependence of the shear
stress on the remaining variables of the system. Here thmgad the model extended
to treat hysteresis in dense granular flows is adopted,

T~ pdai?. (7.18)

To test the validity of the approach, a first step is to lookddunction of the granular

temperaturef (6') such that
-

f(e) = o (7.19)

wheref’ = ﬁ is a (tentative) dimensionless granular temperature.reig26 displays
the dependence %;7 on the rescaled temperature, showing that, even if all thels-
P
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tions share a similar power law behavior, curves do not pe#aon a master curve. When
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Figure 7.26: Dependence of dimensionless shear stress on dimensignéssdar temperature, extracted

from DEM simulations.

discussing about hysteresis in inclined chute flows, it wggpesed that a yield stress

exists, dependent on the trace of the stress temgos iy p. With this assumption, the
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function of the granular temperature to be estimated isgbye

F(0) = %%’j’, for 7> jiyp (7.20)
As it is displayed in Figure 7.27, wheyg- was roughly estimated from figures similar
to Figure 7.24 to be nearly.37, rescaling the stres subtracting the yield stress allows to
obtain a behavior which is not too far from a power-law mastawe. The collapse of
data on a single curve supports not only the need for regcalith a yield stress, but
also the correctness of scaling on particle diameter (whastever would require further
simulations being that only one test with a differdptwas performed, test S23) and on
gravity (results from tests S14,S15 deviate from the mastere if & = 6/gd is not
choosen as a scaling for temperature). A rough estimateedtitictionf(¢'), plotted in
figure 7.27, can be a simple power law:

/ 0 —1.75
F(0) = 10 <g—dp) (7.21)

From the analysis developed it seems also that, being tessstensor approximately
symmetric, a “Cosserat” extension (including the dynarmaf@gular momentum) should
not be correct for the vertical chute configuration. Therefesults from numerical simu-
lations seem to confirm the capability of the fluctuating ggepproach in characterizing
the rheology of dense granular flows, supporting the assongtnade in the develop-
ment of constitutive relations for the stress tensor. Cimecthe validity of the assump-
tions made on the diffusion and dissipation of fluctuatingrgg remains a challenge for
the future requiring to push forward the averaging methadsder to compute not only
velocity, solid fraction, granular temperature and thesgitensor, but also fluxes and gen-
eration/dissipation rates of fluctuating energy. Basederahalysis given in this section,
constitutive relations suggested in Chapter 3 coud be epai#h the new findings.

7.7 Comparison with modeling results

It would be interesting to calibrate the parameters of te®ldgical model on the numer-
ical simulations as for the experiments performed in ChateAt this moment only a
qualitative comparison will be given, and a full validatisriet for future investigations:
due to convergence problems a slightly different law fordtress tensor was adopted,

0 _3
= pd’HA [ — 7.22
T = pdyy (g dp) (7.22)
where the scaling of viscosity on the shear rate and the pecesef a yield stress were

dropped out. Such a relationship appeared to be globallyreasmnable approximation
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Figure 7.27: Dependence of dimensionless shear stress distance fréarsiriess on dimensionless granu-
lar temperature, extracted from DEM simulations.

from DEM simulations. As for the boundary conditions, it wdmosen for simplicity to
model partial slip with Navier’s relation.

In figure 7.28 wall (normal and tangential) stress profilessdrown for a tentative choice
of the parameters and for different values of the slip lergiti compared with the simu-
lation with yi,,,, = 1., v = 0.5 m/s (in which the slip length was verified from numerical
simulations to be around particle diameters). Regarding comparison with DEM, while
the shear stress is in good agreement, the normal stress iBm® means that the effec-
tive wall friction coefficient is different in the two casgsarameters in the model have to
be better tuned in order to recover the profile. Being thatilpgshare the same shape,
it seems not impossible to recover a good quantitative aggae Apart from the com-
parison, it is possible to see that the model correctly ptedhe effect of reducing wall
friction as it was verified in DEM simulations, with stresfiles tending to be linear.
The effect of varying the outlet velocity on wall stresseseigorted in Figure 7.29. In
the range of velocity considered, for high enough velogtyesses do not depend on
flowrate, while for low velocities stresses increase in thele geometry, keeping the
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Figure 7.28: Wall normal stress (left) and wall normal stress (right) aioied from the rheological model
for different values of the slip length and= 0.5 m/s.

same qualitative profile. From DEM simulations, it is not gibte to extract informations
confirming this behavior; on the contrary it seems that stdees not depend on flowrate.
Simulations with a smaller flowrate should be carried outrateo to verify if the model
correctly predicts increasing of stresses at low velagitiBlowever, being that stresses
depend strongly on the boundary conditions used, for a aigarison correct bound-
ary conditions should be implemented. As regards veloaityiles, the model predicts

o, [kPa]
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Figure 7.29: Wall normal stress (left) and wall normal stress (right) aipied from the rheological model
for different values of the exit velocity, fayd, = 0.1.

a plug flow with shear bands near the wall, whose width is eyloin Figure 7.30 as a
function of the outlet velocity and for different values ¢ipdength. It is clear that, as for
stresses, the limit — 0 implies a qualitative change in the shear band, which appear
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grow when reducing flowrate. For high velocities the sheadbaidth reaches a plateau.
Being that only a qualitative comparison is made at the maytba velocity at which
the plateau is reached and the absolute width of shear baedied by the model are
not an interesting information: tuning the parameters caalg affect these results. Also
this behavior does not correspond to DEM data, which sholWwedrshand independence
on flowrate. In fact this independence is commonly repomedterature; therefore this
seems to be a drawback of the model. However recent reseét<(sapter 8) seem to cast
some doubt on the absoluteness of shear band independeffloavate. Again, DEM
simulations for very low flowrates could be very useful intbetinderstanding this topic.
The model correctly predicts, then, the effect of wall focton the shear band width.
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Figure 7.30: Shear band width obtained for the rheological model as a tioncof outlet velocity for
different values of the slip length.

7.8 Conclusions

In this chapter, results from DEM simulations of flow of potyts in a vertical chute were
presented. An open source discrete element code, LMGC®use, with an efficient
strategy to control flowrate. First stress and flow profileditferent wall friction coef-

ficient, flowrates, channel widths were obtained, with iesting results consistent with
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available data. The effect of particle shape was also etedludhen the data were used to
provide insights for the rheology and the boundary cond#idt seems that the rheolog-
ical model developed in Chapter 3 is approximately consistéth the results presented,
particularly regarding symmetry and colinearity of theest tensor, dependence of the
constitutive relation on granular temperature, effect aflvriction on wall stress and
flow profiles. Regarding the effect of flowrate, the model ss@wt to behave correctly,
but further investigation is needed. Data were also usecatract informations for the
boundary conditions, seeming to confirm the extended dgegumiinvolving dimentsional
analysis given in Chapter 4.
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Chapter 8

Experiments on dense flows in a vertical
chute

O nimium coelo et pelago confise sereno,
Nudus in ignota, Palinure, iacebis arena.

Virgilio, Aen.VI 870-1

8.1 Introduction

As it was often discussed in previous chapters, though mepgraments were performed
on the flow of granular materials in vertical channels(Nedds and Laohakul, 1980;
Natarajan et al., 1995; Ananda et al., 2008; Pouliquen anifr&nd, 1996), it seems
that the width of the shear band and the wall slip behaviorarersomewhat far from
being fully explained. Moreover, the topic of gas-solid flawich was studied in Chap-
ter 5 should be experimentally investigated in simple gdas®g For this reason it was
choosen to build a vertical chute suitable for granular flo gas-granular flow experi-
ments. The practical realization of the experimental getvas done by an undergraduate
student (Anzelini, 2009) who gave an important contributimthe research. This chapter
briefly describes some research which is currently undeeldpment, summarizing the
first results. The main features of the set-up are presetited,the analysis technique
briefly described, finally first results are summarized. Ad¢ thoment, only granular flow
is studied, and gas-solid coupling will be subject of futtesearch. Even if the research
outlined in these pages is mainly preliminar, it seems @#iéng to describe the first find-
ings in order to oultine perspectives for the future workadidition, first results of veloc-
ity profiles are encouraging and inspiring and, though megflirther confirmations, they
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seem to be of sufficient interest to put them here.

8.2 Experimental method

Figure 8.1: Picture of the experimental set-up(Anzelini, 2009)

The experimental set-up consists of a vertical chute (shiowig. 8.1) where motion
of the material was controlled by means of a moving plate. kotec motor equipped
with a linear reducer was used to control the velocity of tleggy As shown in the cal-
ibration curve, Fig. 8.2, the velocity range spanned neamlywo orders of magnitude,
from 0.025 to 2.2 cm/s, being therefore an excellent insémninio test the material be-
havior in a wide range of flowrates. The channel had a varialidigh (10-20-30 cm)
and a variable thickness (15-30-45 mm). Lateral woodensmaétre roughened with
40 and 120 grit sandpaper. A campaign was made with partaflesfferent materi-
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als and size; here results from iron beads will be presemtgl,the characteristics de-
scribed in Table 8.1. Velocity profiles were computed usiagiBle Image Velocimetry

diameter [im] 710
static repose anglé][ 32.27
wall friction angle (wood){] | 31.5
wall friction angle (g40){] | 47.7
wall friction angle (g120)q] | 39.0

Table 8.1: Properties of the material used for experiments.

2.5

Plate velocity (cm/s)

0.0

0 2 4 6 8 10
Potentiometer position

Figure 8.2: Calibration curve of the velocity control system.

(PIV); the PIV analysis was performed by means of the freelilable code Matpiv
(http://www.math.uio.no/ jks/matpiv/), which is a tookbtor Matlab. The CCD camera
(mvBlueFox) was set at 25 fps to capture 100 images 1128x&82,| which were ac-
quired with Matrix Vision’s software wxPropView and theropessed (cropped, resized,
subsequently analyzed) in Matlab.

8.3 Results

Results from the first experiments performed on the set-apgishber 2009) are reported
in the following. It is important to stress that these resalte preliminar (refinement of
both the experimental procedure and the image analysiebe, but are reported here
because of some nice findings which open new perspectivéisdduture. Regarding the
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experimental set-up, the vertical chute proved to be aneftiacility allowing to gather
a lot of data in little time.
Velocity profiles obtained for iron beads varying flowrate drsplayed in Figure 8.3. A
wide range of velocities was realized, finding the same plug # shear bands behavior
for all the velocities. The shear band was found to be of 06d&0 particle diameters,
and its dependence on flowrate will be discussed in the falgw

Regarding shear bands, a wel known issue which was discalkssenh previous chapters

2.0

+—+ 0.025
—e (0.240 [
=—u (0.455
+~— 0.834
—v 1.767 ||

velocity (cm/s)
=
o

0.0

0 2 4 6 8 10 12 14
distance from the wall (dp)

Figure 8.3: Velocity profiles obtained for iron spheres, for differefdtp velocities, width of the channel
100mm, wall roughened with 40 grit sandpaper.

is their dependence on channel width. Resuming, some ods¥a(Pouliquen and Gut-
fraind, 1996) report data showing that the shear band iseigent on channel width,
while others(Nedderman and Laohakul, 1980) found a sloweas® in shear band widh
when increasing channel width. Looking at figure 8.4, whibbves velocity profiles

varying channel width (10-20-30 centimeters correspaptinl40, 280 and 420 particle
diameters), it can be noticed that the data suggest a diffeehavior, with the smallest
channel having the largest shear band. Then, due to massreatisn issues, being that
the shear band has a limited size, the slip velocity is loWwersimaller the channel width.
This result appears to be new, and should be further invastign order to understand
its validity. When varying wall roughness, this has obvigwsstrong effect on both the
slip velocity and the shear band width. Figure 8.5 showsttieslip velocity changes by
more than a factor 2 passing from wooden to 40 grit sandpagaks.\viro well understand
the results regarding shear bands, the width of the sheaisharsummarized in Figure
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Figure 8.4: Velocity profiles obtained for iron spheres, varying chdmidth, with the wall roughened with
40 grit sandpaper.: (top) mean velocity 0.24./s, (bottom) mean velocity 1.%m/s.
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Figure 8.5: Velocity profiles obtained for iron spheres, varying walighness, width of the channel 100
mm;: (top) mean velocity 0.24m /s, (bottom) mean velocity 1.7/ s.

8.6 for all the tests performed. The shear band width was et fs:

. v(T) — Umin

Umaz — Umin

= 0.95 (8.1)
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Figure 8.6 suggests as a first important result that the dhead width depends on
flowrate, for low enough velocities, while for higher velbbes a plateau is found. If
these results are confirmed, this would mean that in the spadisi limit shear bands are
larger than in the dense regime; this is important in viewheffact that the shear banding
behavior in the quasistatic limit was taken as a benchmarkdotinuum models, as de-
scribed in Chapter 2. The constance of shear bands for highities supports the idea
that a Coulomb-like boundary condition applies there, & #malysis held in Chapter 2
is valid. The change in shear band width with flowrate is ngfligéble (nearly a factor
1.5), though being shear bands limited around 10 partidendters. In fig. 8.6 it can
be appreciated also the effect of wall roughness and chavidéil, which was already
described. The last step in analyzing results is the stutlysdboundary condition, which

16 ;
=—=a g40, 100

14l +— 940,200 |
e—e g40, 300
~—4 9120, 100

12} +—+ wood, 100 ||

shear band width, dp
=
o

o]

)

6.0 0.5 1.0 1.5 2.0 2.5
velocity (cm/s)

Figure 8.6: Width of the shear band calculated from velocity profilesditferent channel widths and wall
roughness.

was evident from experiment to correspond to a partial siglolary condition. Lacking
stress measurements for the moment, the only way to chaeactbe slip behavior is
with a Navier relationship. The slip length was calculatexhf the experiments as

Uslip
A= — 8.2
B0 (8.2)

Figure 8.7 points out that the slip length spans from 5 to 2@gda diameters, increasing
slowly with flowrate, depending on wall roughness (wood singvgenerally a slip length
double than sandpaper). The figure suggests also that refimteno the velocity com-
putation strategy are needed: for example a clear depeadenmughness is not found,
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probably because of errors induced by the calculation oflth&vative. Therefore future
investigations, if interested in the computation of the $fingth, should somehow take
care in obtaining a smooth velocity gradient field. Howeegperiments like these may
be useful to obtain reasonable estimates of the slip leragtieést as an order of magni-
tude) to be used in solving continuum models of dense grafiala The behavior of the
slip length for low velocities (changing abruptly for sonests) could be a signature of
the tendence to a no-slip boundary condition in the quagidtait, therefore suggesting
further refined investigations.
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Figure 8.7: Slip length calculted from velocity profiles, for differecthannel widths and wall roughness.

8.4 Perspectives

In this chapter, first results from experimental data of fldwron beads in a vertical
channel are presented. Though being preliminar, data seehotv interesting behaviors
suggesting to continue refining the analysis. On one siggrdiands were found to take
values around 10 particle diameters and to be independdtdvarate only for velocities
more than Iem/s while in the slow limit an increase was observed, which waspne-
viously reported in Literature. Also the dependence on nbAwidth seemed to be non
trivial, with larger shear bands for lower channel widthsieTexpected dependence on
roughness was found. Regarding slip velocities, the shigtle was found to be increas-
ing with flowrate, somewhat supporting the idea that a Nasliprrelation with constant
A can be a good approximation of slip behavior for a wide rarfdwrates, but also that
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a different approach, such as the one developed in Chapteyuld probably give better
results.



Chapter 9

Conclusions and Perspectives for future
Works

Lass’ andere auf Trampelpfaden
mit Steinchen hinterher
Wir werden was wir sind, und:
Ende Neu

Einstiirzende NeubauteBnde Neu

9.1 Summary

This thesis was focused on the rheology of dense granulas flamd devoted primarily to
the development of a rheological model, which was testedmmesconfigurations against
experimental and numerical data. Starting from the amalyfsihe performance of a sim-
ple mixing length rheology proposed in Literature (G. D. RidM2004) in a vertical
chute (a quasi-2D simplification of a silo), it was immedigatdear that improvements to
the phenomenology were necessary. Refinements were neetdediynto the rheology
itself, in order to improve the too simple phenomenologytaored in the model, but also
to the treatment of boundary conditions, in order to alloe thodels to be applied to
realistic flow configurations, and in view of the strong impaicthe boundary condition
on the global performance of the model which was experienced

Based on these considerations, the research followed tvadlgldines. The first dealt
with the development of a new rheological model for the ddlaseof granular materials;
among the approaches present in Literature, it was chooseevelop a hydrodynamic
model of granular flows, i.e. a model in which the equationalfhce offluctuating en-
ergyis solved for granular temperature, which enters in thetitortise relations defining
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the stress tensor. This choice was motivated by analogtbstiae theory of the viscosity
of liquids, and other approaches were discarded due to ¢seplp not fully clear physical
significance of the parameters of the model or on Literasuzeticisms. It was considered
that improvements could come from the introduction in thedledl@f the dynamic inter-
play between mobility induced by shear and jamming indugegdrbssure’s rearranging
action. At first, the model was compared with typical flow cgafations such as a silo
with converging hopper and a silo with flat bottom, showirtgiaé sensitivity analysis on
the parameters a quantitative agreement with literatuneledions for stresses and expe-
rience on the flow pattern. The flat bottomed silo allowed totbat the model predicts
also the formation of stagnant zones. After some reworkimgmodel was also used to
study the flow down an inclined chute, showing excellent jtézhs on qualitative fea-
tures of that typical configuration of flow, such as the hystex of starting and stopping
angles, the typical scaling of the velocity field, and theedefence of the cited angles on
the flow depth.

The topic of boundary conditions was addressed by meansmigesstochastic model of
the behavior of particles at the wall. Already in the appglma of the fluctuating energy
model a simple expression for partial slip was adopted, &&/boundary condition. By
means of the results obtained from the simple stochastiemitdvas possible to give a
general formulation of the boundary condition to be appééed smooth frictional wall,
in terms of a relationship between a dimensionless slipoigiand an effective wall fric-
tion coefficient. The formulation describes the intermeslizehavior between no-slip (for
no sliding) and Coulomb slip (for steady sliding), when &t motion at a wall is un-
steady due to force fluctuations. A thorough investigatiasga on dimensional analysis
was initiated suggesting possible further dependency®B@ on the inertial number,
allowing to understand the implications of the previouslygsia. It was also shown that
the boundary condition developed was consistent with aédapproach once a mixing
length rheology was assumed.

Then, the domain of application of the rheology was extendeituations in which a gas
is injected in the material but the material remains belosvfthidization threshold (like
in drying processes, in moving bed reactors, et ceterayyidgaa third research line: a
further step was made in considering coupling of the rheplegh interstitial gas flow,
with a particular focus on gas maldistribution; at first apraach was developed based
on a mixing length model for the solids and Ergun correlatarhe gas, allowing for the
effect of shear-induced solids dilation on preferentidhpan the gas. Theoretical results
showed that the approach is able to qualitatively capturatans in maldistribution and
their dependence on process parameters; it was shown hawive dlobal (in terms of a
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bypass percentage) or specific (using the RTD of the systezasunes of the maldistri-
bution.

In order to validate the model on an industrial configuratiam experimental campaign
was carried out with an industrial partner on a pilot scale. sior the scale-up of the
silo, original scaling considerations were employed. Theperiments on wall normal
stresses and tracer profiles were collected for configursitath and without internal de-
vices, and with and without injection of air. Experimen&dults gave interesting insights
on the effect of air and of the internal devices on both the o stress field. Data were
used to calibrate the parameters of the fluctuating energlemahich was shown to be
in good agreement with them. In order to simulate the effé&ioinjection, previous
considerations were employed, extending them to treae tdnmensional gas flow and
using the fluctuating energy model as a rheology insteadeofriitxing length model.

In order to well characterize rheology on a local scale, rétgcsimulations of flow of
slightly polidispersed polygons in a bidimensional veatichute were also performed,
and analysed extensively in order to understand the effecarging the main parame-
ters on flow and stress patterns, and to extract informatonserning both boundary
conditions and rheology. Regarding the effect of procesarpaters on profiles, typical
results were found such as the independence of shear barildsvoaie, and their slight
dependence on channel width. Regarding boundary condljtibe extended approach in-
volving a similarity relationship between a dimensionlgigs velocity, the effective wall
friction coefficient and the inertial number started to b&ted, showing from first com-
parisons that a master curve can be approximately obtainedhach all data collapse.
Regarding rheology, DEM results proved to be useful in assgghat in the configura-
tion studied the stress tensor is symmetric, and that theutitiog energy approach can
be more correct than a simple mixing length model in studjfiegype of flow simulated.
A new constitutive equation for the stress tensor was thtesmodd.

Finally, preliminar experimental results of flow of iron losain a vertical chute were
reported in which velocity profiles were computed, whereiagns from behaviors re-
ported in Literature for the shear bands were observed.

9.2 Perspectives

On the basis of this thesis’ work, many perspectives appaahé future, which can be
structured into the three main directions explored up te thdment: rheology, boundary
conditions, gas-solid coupling.

Regarding rheology, being that the model performed wellgamed with both Literature

correlations and experimental data, a deep investigatidh@validity of constitutive re-
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lations (and particularly on the diffusive flux and the disgion rate of fluctuating energy)
should be carried out by means of discrete element simakatibhe model should be also
compared with velocity profiles obtained in the experimkfatality shown in Chapter 8
to judge its capability of predicting local velocity profilen real configurations. The need
of deepening the knowledge of local phenomena such as sheds lis not only related
to modeling issues: in fact, first experiments seem to suglgasa qualitative change in
the behavior of the shear bands appears in the quasistatic Lonfirming this finding
would be an important result whether or not the model was abdapture the behavior.
Regarding boundary conditions, while DEM simulations ®gigd that the expressions
developed in the present work are consistent, there isgtiead of experiments in order
to understand if this applies also to real configurationsthla perspective the facility
described in Chapter 8 if equipped with stress measureneites could be useful to
validate globally the framework developed. DEM simulason another geometry (in-
clined chute) are currently carried out in order to verifyihdary conditions for different
configurations of flow. Extensions to the boundary condgioauld imply treatment of
macroscopic bumpy walls.

As regards gas-solid coupling, while the approach to tieatcoupling was somewhat
estabilished and compared qualitatively with literatitrejas not possible to perform ex-
periments on maldistribution in countercurrent gas-sofidw. This an important issue
which should be done in the future, also to understand if itmg@le assumptions used in
Chapter 5 are able to represent the behavior of a real flonm Fine modeling point of
view, the study of the gas flowing into a moving granular mateshould be extended
with the inclusion of transport and reactive phenomena depoto study more complex
configurations involving drying processes, moving bedt@a¢and so on.
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Due t
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o different choices for the name of some variables @adrly when passing from
e granular flow to gas-solids flow, in the following theim symbols used in this

thesis are listed, divided between the two topics.

Gra

I 29

> 3
S

= > D

nular flow

transpose
mean particle diameter
source of mechanical energy due to the interstitial fluid
gravity
fluctuating energy diffusivity tensor
coefficient of diffusion of fluctuating energy
parameter in the diffusion coefficient of fluctuating energy
isotropic part of the stress tensor (pressure)
(diffusive) energy flux
drag force exerted by the interstitial fluid
average velocity field
fluctuating velocity field
discharge velocity
dissipation rate of mechanical energy
stress tensor
deviatoric stress tensor
non-newtonian viscosity coefficient
parameter in the viscosity coefficient
granular temperature
granular temperature scale in the viscosity coefficient
slip length
effective friction coefficient (in the dissipation rate aidtuating energy)
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Hy
Hop
Hopw

Pp
pe
pE"

yield stress coefficient coefficient
particle-particle friction coefficient
particle-wall friction coefficient

effective bulk friction coefficient

solid fraction

local density

intrinsic particle density

= p(v - v)/2 kinetic energy associated with
= p(v - ¥)/2 kinetic energy associated with
angle of internal friction

wall friction angle

Gas-solids flow

gas phase pressure drop
column height
bin half width
gas superficial relative velocity
gas velocity & (ug, vy, w,))
solids velocity & (ug, vs, —wy))
solid phase wall slip velocity
average solid velocity
bed local porosity
gas viscosity
local bed pemeability
gas density
intrinsic particle density
density of the gas solid mixture
gravitational acceleration
solid phase shear stress
solid phase normal stress
shear rate in the granular material
effective friction coefficient
effective wall friction coefficient
steady sliding wall friction coefficient
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residence time of the gas in the column
residence time of the solid in the column
tracer concentration
effective dispersion coefficient
molecular diffusion coefficient of the tracer
local RTD of the gas in the column
global RTD of the gas
gas phase dimensionless pressure drop
inertial number
average Froude number of the solid
Gas (particle) Reynolds number
average particle Reynolds number
macroscopic Peclet number
particle Peclet number
Schmidt number of the gas
Archimedes number
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