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Abstract

Composite likelihood is a particular pseudo-likelihood built by adequately

combining likelihoods based on lower dimensional events. It appears to

be a very appealing alternative to the standard likelihood when the lat-

ter is too time-consuming to evaluate or unavailable due to a complex,

and possibly unknown, structure of dependence in the data. After the

brief introduction in the first chapter, Chapter 2 gives notation and basic

definitions, but also states a condition for full efficiency of the maximum

composite likelihood estimator in exponential families.

The core of the thesis is Chapter 3, where we explore a linear combi-

nation of two types of composite likelihood which leads to a new objec-

tive function that depends on a constant to be chosen. In particular, this

new combined composite likelihood uses both bivariate margins and uni-

variate margins. Exact and asymptotic properties are explored. The exact

properties lead to the identification of a possible strategy for finding the

range of admissible values for the constant. The resulting estimator en-

joys desirable asymptotic properties such as consistency and asymptotic

normality. Two examples are analyzed in details, also through simulation

studies.

Chapter 4 studies a weighted independence likelihood in a prediction

framework. The aim of this chapter is to determine the weights in order to

get an improved prediction of a component of interest of the data vector.

In particular, the weights are calculated by means of a delete-one approach

in a cross-validation procedure. Through simulation studies, situations in

which the weighted independence likelihood works well with respect to

the standard independence likelihood are highlighted.





Sommario

La verosimiglianza composita è una pseudo-verosimiglianza particolare

costruita combinando adeguatamente validi oggetti di verosimiglianza

relativi a piccoli sottoinsiemi di dati. Essa appare essere un’attraente al-

ternativa alla verosimiglianza completa quando la sua computazione ri-

chiede troppo tempo o quando non può essere trattata a causa della com-

plessa struttura di dipendenza nei dati. Dopo la breve introduzione con-

tenuta nel primo capitolo, verrà introdotta nel secondo capitolo una con-

dizione per la piena efficienza dello stimatore di massima verosimiglianza

composita nelle famiglie esponenziali.

Il nucleo della tesi è presentato nel terzo capitolo ed esplora la com-

binazione lineare di due tipi di verosimiglianza composita in una nuova

funzione obiettiva mediante una costante da scegliere. Il primo tipo si basa

solo sulle marginali bivariate mentre il secondo sulle marginali univariate.

Vengono esplorate sia le proprietà esatte che le proprietà asintotiche. Le

proprietà esatte conducono all’identificazione di una possibile strategia

per trovare l’intervallo di valori ammissibili per la costante. Lo stimatore

risultante gode di desiderabili proprietà asintotiche, come la consistenza

e la normalità asintotica. Due esempi sono analizzati nel dettaglio, an-

che mediante studi di simulazione.

Il quarto capitolo studia verosimiglianze di indipendenza pesate in un

contesto di previsione. L’obiettivo è quello di determinare i pesi per ot-

tenere una migliore previsione di un componente di interesse del vettore

di dati. Viene considerata una procedura basata su cross-validation per af-

frontare l’argomento e, attraverso studi di simulazione, vengono evidenzi-

ate le situazioni in cui la verosimiglianza di indipendenza pesata funziona

meglio rispetto alla verosimiglianza di indipendenza.
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Chapter 1

Introduction

The likelihood function was introduced by Fisher (1921, 1922) and, since

then, it plays a crucial role in several approaches to statistics, mainly due to

the fact that it provides inferential procedures with a number of desirable

properties. However, in many statistical problems, the standard likelihood

may not be a practical solution, either because of computational burdens

or for the inability of specifying the whole joint distribution of the data.

An alternative inferential tool with properties similar to those of a proper

likelihood is the composite likelihood (Lindsay, 1988).

1.1 Overview

The composite likelihood (Lindsay, 1988) is a particular pseudo-likelihood

which may validly replace the standard likelihood when the density in-

volved in the latter is difficult to specify or computationally intractable;

see Pace & Salvan (1997, chap. 4) and Molenberghs & Verbeke (2005, chap.

9) for pseudo-likelihoods. The idea behind the composite likelihood is

to construct a new objective function by adequately compounding likeli-

hoods based on appropriate events in the sample space.

In recent years, composite likelihood methods have received increasing

interest in both theoretical and applied field. Recent advances in the area
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of composite likelihood have been presented at dedicated workshops held

in Warwick (April, 2008) and Banff (April, 2012).

There have been many variations in the composite likelihood formula-

tion to balance the trade-off between efficiency and computational cost.

Even the pseudo-likelihood proposed by Besag (1974) for approximate

inference in spatial processes is now recognized as a composite condi-

tional likelihood. This pseudo-likelihood is the product of conditional

densities of a single observation given its neighbours. Cox & Reid (2004)

investigated composite likelihoods constructed from lower dimensional

marginal densities, called composite marginal likelihoods. The simplest

version, called independence likelihood (Chandler & Bate, 2007) is con-

structed under a working independence assumption. This pseudolikeli-

hood could be useful when inference is about marginal parameters only.

Another example is the pairwise likelihood (Le Cessie & Van Houwelin-

gen, 1994) based on pairs of observations. This pseudo-likelihood could

be useful when the parameters related to the correlations are of interest.

In Hjort & Varin (2008), the composite likelihood is constructed by com-

pounding likelihoods based on triplets of observations in the context of

Markov chain models. See the recent review papers by Varin (2008) and

Varin et al. (2011) for more examples and applications of the composite

likelihood.

Under mild regularity conditions (Molenberghs & Verbeke, 2005, Chap.

9), the composite score yields an unbiased estimating function, leading to

the result that the composite maximum likelihood estimator is consistent

and asymptotically normally distributed, with variance given by the in-

verse of the Godambe information matrix (Godambe, 1960). The compo-

site likelihood ratio statistic has the drawback of a non-standard asymp-

totic distribution and, for this, adjustments have been proposed in order

to recover the standard asymptotic chi-squared distribution (Chandler &

Bate, 2007; Pace et al., 2011).
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1.2 Main contributions of the thesis

The main research objective of this thesis focuses on the exploration of new

forms of composite likelihood. The first one follows a suggestion in Cox &

Reid (2004). Precisely, this new objective function is given by a linear com-

bination of independence and pairwise likelihoods through a constant to

be chosen, possibly in an optimal way. Particular values of the constant

lead to notable composite likelihoods, such as pairwise marginal and con-

ditional likelihoods. This new type of composite likelihood is called in the

thesis combined composite likelihood, and particular attention has been

paid to the development of its exact and asymptotic properties. Two ex-

amples dealing with combined composite likelihood are considered, both

dealing with instances of the multivariate normal distribution with struc-

tured covariance matrix. In the first example, the parameter is scalar,

whereas it is a vector in the second example. In particular, exploiting the

exact properties of the combined composite likelihood, we found a con-

dition on the admissible values for the constant for which the combined

composite likelihood satisfies the necessary requirements of being a sensi-

ble pseudo-likelihood in both the scalar and the multidimensional param-

eter case. Moreover, for the asymptotic properties, we showed that the

combined composite likelihood estimator is still consistent and asymptot-

ically normal and that consistency is not generally guaranteed when the

sample size is fixed as the random vector’s length goes to infinity. In addi-

tion, we also showed that the combined composite likelihood ratio statistic

still maintains the drawback of a non-standard asymptotic distribution.

A well-known example of the composite marginal likelihood is the in-

dependence likelihood which is constructed by using only the univariate

marginal densities, under the working assumption of independence. In

certain contexts, it could be appropriate to give different weights to the

univariate marginal densities obtaining a weighted independence likeli-

hood. The second research objective is to determine the weights in order

to have a good prediction of a component of interest of the data vector,
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considering the remaining components as auxiliary variables.

In Chapter 2, the concept and the main results related to the likeli-

hood approach are reviewed. The brief introduction to the theory of li-

kelihood is useful for introducing the composite likelihood’s idea, which

is presented together with its definition and main properties. This chap-

ter also considers conditions for full efficiency of the maximum composite

likelihood estimator in exponential families.

Chapter 3 explores in detail the combined composite likelihood ap-

proach. Motivation arises in contexts in which there is information on

the parameter of interest, both in one and two-dimensional marginal den-

sities. Therefore, instead of using either the independence or the pairwise

likelihood for inference about the parameter of interest, we combine them

obtaining the combined composite likelihood. We give its formal defini-

tion and study its exact and asymptotic properties.

Two examples of the combined composite likelihood, both based on

the multivariate normal distributions are considered in detail. We focus on

efficiency of the combined composite likelihood estimator by comparing

it with the standard maximum likelihood estimator. Both examples seem

to suggest the pairwise conditional likelihood, which is a particular case

of the combined composite likelihood, as a close to optimal choice.

In Chapter 4 we deal with prediction using the weighted independence

likelihood. To determine the weights, we use the delete-one approach

in the cross-validation procedure as done by Wang & Zidek (2005) in a

weighted likelihood framework. Two illustrative examples are consid-

ered together with different simulation scenarios. Situations in which the

weighted independence likelihood works well with respect to the stan-

dard independence likelihood are highlighted.



Chapter 2

Background on composite

likelihood

2.1 Introduction

Composite likelihoods are pseudo-likelihoods built by pooling likelihood

components, with each component based on appropriate events in the

sample space, such as marginal or conditional events.

The motivation for the use of the composite likelihood as a surrogate

of the standard likelihood is two-fold: to reduce the computational com-

plexity to cope with large data set and/or models involving complex inter-

dependencies and to make inference about parameters of interest without

making assumptions on the whole joint distribution of the data.

Here we focus mainly on inferential aspects and properties of the com-

posite likelihood. In addition, we introduce the most commonly used

versions of composite likelihood which are the composite marginal li-

kelihood and the composite conditional likelihood. Before exploring the

methods of inference based on composite likelihoods, we recall some basic

definitions and properties of the standard likelihood for regular models.

The next section is devoted to some basic results of inference based on

the likelihood function. This theory is helpful for better understanding the
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properties of the composite likelihood. Section 3 is devoted to the defini-

tion and properties of the composite likelihood. In Section 4, we define

some quantities related to the composite likelihood. At last, we introduce

different efficiency measures of the maximum composite likelihood esti-

mator compared to the one based on the standard likelihood, in situations

in which the latter is available. In Section 5, we give conditions for which

the maximum composite likelihood estimator is fully efficient in exponen-

tial families.

2.2 Likelihood, related quantities and asymptotic

properties

Let

F = {f(y; θ) : θ ∈ Θ ⊆ Rd, y ∈ Y ⊆ Rq} (2.1)

be a parametric model, where f(y; θ) is the probability density function for

a random variable Y and θ the parameter of the model. Given n indepen-

dent observations, y1, . . . , yn, the function

L(θ) =
n∏
i=1

f(yi; θ), (2.2)

considered as a function of θ, is called the likelihood function. In practice,

it is often more convenient to work with the logarithm of the likelihood

function, called the log-likelihood whose expression is

`(θ) =
n∑
i=1

logf(yi; θ). (2.3)

The maximum likelihood estimator, denoted by θ̂, is the value of θ which

maximizes L(θ) or `(θ), that is,

θ̂ = arg max
θ∈Θ

L(θ) = arg max
θ∈Θ

`(θ). (2.4)
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The score vector, also called Fisher’s score function, is the gradient of the

log-likelihood function, and is denoted by

U(θ) =
∂`(θ)

∂θ
· (2.5)

In regular models (Severini, 2000, §3.4) the maximum likelihood estimator

can be found as a solution of the likelihood equation

U(θ) = 0.

The Hessian matrix of `(θ), i.e. the matrix of second derivatives of the

log-likelihood, is

h(θ) =
∂2`(θ)

∂θ∂θT
=


∂2`(θ)

∂θ21
. . . ∂2`(θ)

∂θ1∂θd
... . . . ...

∂2`(θ)
∂θd∂θ1

. . . ∂2`(θ)

∂θ2d

 ·
The observed information matrix is given by ̇(θ) = −h(θ) and the Fisher

information matrix is defined as

ı̇(θ) = Varθ {U(θ)} = Eθ

{
U(θ)U(θ)T

}
, (2.6)

since Eθ {U(θ)} = 0. The Fisher information matrix can also be calculated

as the expectation of the observed information matrix, denoted by

ı̇(θ) = Eθ {̇(θ)} = Eθ

{
U(θ)U(θ)T

}
. (2.7)

Equation (2.7) is known as the second Bartlett identity, while Eθ {U(θ)} = 0

is the first Bartlett identity.

Under suitable regularity conditions, the maximum likelihood estima-

tor θ̂ of θ has the following asymptotic properties

• θ̂ p−→ θ, as n −→∞, i.e. θ̂ is a consistent estimator of θ;

• θ̂ d−→ Nd(θ, ı̇(θ)
−1), i.e. θ̂ is asymptotically normally distributed.
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Moreover, the quantities

Wu(θ) = U(θ)Tı̇(θ)−1U(θ)

We(θ) = (θ̂ − θ)Tı̇(θ)(θ̂ − θ)

W (θ) = 2{`(θ̂)− `(θ)}

can be used to test H0 : θ = θ0 versus H1 : θ 6= θ0 and are known as

the score test, Wald test and likelihood ratio test respectively. They are

asymptotically distributed as χ2
d under H0. The same statistics could be

used also for the construction of confidence regions.

2.3 Composite likelihood: definition and prop-

erties

Let us consider the parametric statistical model (2.1). Given an observa-

tion y = (y1, . . . , yq), the composite likelihood is defined through a set

of marginal or conditional events {A1(y), . . . ,AK(y)}, usually related to

small subsets of the data, with component likelihoods given by Lk(θ; y) =

Lk(θ;Ak(y)). Therefore, following Lindsay (1988), the composite likelihood

obtained by compounding these component likelihoods is defined as

cL(θ; y) =
K∏
k=1

Lk(θ; y)wk ,

where {w1 . . . , wK} is a set of non-negative weights. The associated com-

posite log-likelihood is c`(θ; y) =
∑K

k=1wk`k(θ; y) with `k(θ; y) = logcL(θ; y)

and its maximizer is defined as θ̂C = arg maxθc`(θ; y).Under random sam-

pling of size n, the composite log-likelihood becomes c`(θ) =
∑n

i=1 c`(θ; yi).

Two important instances of composite likelihood are the composite

marginal and the composite conditional likelihood. The composite marginal

likelihood (Cox & Reid, 2004) is constructed from low dimensional marginal

densities. Two important examples belong to this class: the independence

likelihood (Chandler & Bate, 2007) which is constructed by using only the
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univariate marginal densities, under the working assumption of indepen-

dence,

cLI(θ; y) =

q∏
r=1

f(yr; θ)
wr , r = 1, . . . , q,

and the pairwise likelihood (Le Cessie & Van Houwelingen, 1994), built

by using only bivariate marginal densities

cLP(θ; y) =

q−1∏
r=1

q∏
s=r+1

f(yr, ys; θ)
wrs , r, s = 1, . . . , q.

The second notable instance is the composite conditional likelihood.

Here the pseudo-likelihood is obtained by combining only low dimen-

sional conditional densities. Two examples are the full conditional like-

lihood, whose expression is

cLFC(θ; y) =

q∏
r=1

f(yr | y(−r); θ)
wr ,

where y(−r) denotes the vector of all the observations with yr deleted, and

the pairwise conditional likelihood which is defined as

cLPC(θ; y) =

q∏
r=1

q∏
s 6=r

f(yr | ys; θ)wrs .

See Molenberghs & Verbeke (2005) or Mardia et al. (2008) for the example

of the full and pairwise conditional likelihood.

Inference based on the composite likelihood may be justified by the fact

that the true value of the parameter, θ0, is the maximizer of the expected

value of the composite log likelihood. That is,

Eθ0 [c`(θ;Y )] < Eθ0 [c`(θ0;Y )],
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for any θ 6= θ0. In fact,

Eθ0 [
K∑
k=1

wklogLk(θ;Y )] =
K∑
k=1

wkEθ0 [logLk(θ;Y )]

=
K∑
k=1

wkEθ0 [logL(θ;Ak(Y ))]

<
K∑
k=1

wkEθ0 [logL(θ0;Ak(Y ))],

for any θ 6= θ0 according to the Kullback-Leibler information inequality

which holds for any single term in the summation.

As for a genuine likelihood, for any composite log-likelihood, the fol-

lowing exact properties would be desirable:

(a) Eθ0 [c`(θ;Y )] ≤ Eθ0 [c`(θ0;Y )] for any θ 6= θ0;

(b) Eθ0

[
∂
∂θ
c`(θ;Y )

]∣∣
θ=θ0

= 0;

(c) the matrix Eθ0

[
∂2

∂θ∂θT
c`(θ;Y )

]∣∣∣
θ=θ0

is negative definite.

Property (a), is the Kullback-Leibler information, or Wald inequality, which

is a key property for ensuring that the maximizer of the composite log like-

lihood gives a consistent estimator. Property (b), ensures that the compo-

site score satisfies the requirement of being an unbiased estimating func-

tion. Finally, the last one ensures the expected Hessian of c`(θ) is negative

definite at θ0 and as a consequence, c`(θ) is on average locally maximized

at θ0.

Composite likelihood methods enjoy many other good properties. Be-

ing the composition of low dimensional marginal or conditional distribu-

tions, they are easier to evaluate and to maximize. Although a loss of

efficiency is expected when one uses a pseudo-likelihood in place of the

standard likelihood, the use of the composite marginal likelihood provides

an important computational gain. In very few cases the composite likeli-

hood estimator is identical to the full likelihood estimator, and thus fully
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efficient. This situation is examined by Mardia et al. (2009) who, show

that the composite marginal and conditional likelihood estimators are full

efficient and identical to the full maximum likelihood estimators in expo-

nential families under a certain closure property. In Section 2.5 we will

study this aspects in more detail.

Composite likelihood inference procedures are in general considered

as robust, since they only require the specification of lower dimensional

conditional or marginal densities . There could be however different types

of robustness, such as robustness of consistency, studied in detail by Xu &

Reid (2011), and computational robustness (Varin et al., 2011).

2.4 Composite likelihood quantities

The composite score function is defined as the first derivative of the com-

posite log-likelihood. Its expression is

cU(θ; y) =
∂

∂θ
c`(θ; y) =

K∑
k=1

wk
∂

∂θ
`k(θ; y).

Under random sampling of size n, it becomes

cU(θ) =
n∑
i=1

cU(θ; yi).

The composite score function is unbiased, because it is a linear combina-

tion of score functions related to proper likelihood, that is Eθ{cU(θ;Y } =

0. Under the usual regularity conditions (Molenberghs & Verbeke, 2005,

chap. 9), the maximum composite likelihood estimator is consistent and

asymptotically normal as n −→∞,

θ̂C ∼̇N(θ,G(θ)−1) ,

where G(θ) = H(θ)J(θ)−1H(θ) is known as the Godambe information or

sandwich information, H(θ) = Eθ{−∂cU(θ)/∂θ} is the sensitivity matrix

and J(θ) = Varθ{cU(θ)} is the variability matrix.
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The use of the composite likelihood in place of the standard likelihood

could lead in general to a loss of efficiency. The composite likelihood can

refer to the theory of misspecified models, being constructed under the

working assumption of independence among the component likelihoods.

As a consequence the composite likelihood does not satisfy the second

Bartlett identity, sinceH(θ) 6= J(θ). In Section 2.5 we will show an example

in which H(θ) 6= J(θ) but we however reach full efficiency, since ı̇(θ) =

G(θ).

Suppose we are interested in testing the null hypothesis

H0 : θ = θ0,

where θ is a d-dimensional vector. As in the standard likelihood setting,

we may use one of the following test statistics related to the composite

likelihood,

WC
u (θ) = cU(θ)TJ(θ)−1cU(θ)

WC
e (θ) = (θ̂C − θ)TG(θ)(θ̂C − θ)

WC(θ) = 2{c`(θ̂C)− c`(θ)}.

The Wald (WC
e ) and score (WC

u ) statistics based on the composite likeli-

hood have the usual χ2
d distribution. Even in this case, WC

e is not invariant

to reparametrization, while WC
u is seen in many examples to be numeri-

cally unstable. The composite likelihood ratio statistic may be preferable

despite the fact that it has a non-standard asymptotic distribution. Indeed,

its asymptotic distribution is a linear combination of independent χ2
1 dis-

tributions,

WC(θ)
d−→

d∑
i=1

λiZ
2
i ,

where Z2
i , i = 1, . . . , d are independent χ2

1 variables and λ1(θ), . . . , λd(θ) are

the eigenvalues of the matrix J(θ)−1H(θ). Adjusted versions of WC(θ) can

recover the usual χ2
d asymptotic distribution (Chandler & Bate, 2007; Pace

et al., 2011).
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Since the composite likelihood could be seen as the likelihood of a mis-

specified model, the issue here is to know how to measure the loss of effi-

ciency given by its use in place of the standard likelihood. To this end, one

way is to compare in terms of efficiency the estimator based on full like-

lihood with the one based on the composite likelihood. This comparison,

in the scalar case, is based on the Asymptotic Relative Efficiency, ARE,

which is the ratio between the asymptotic variances of the two estimators.

In particular, the expression is given by

ARE(θ̂C)=̇
Varθ(θ̂)

Varθ(θ̂C)
=
G(θ)

i(θ)
· (2.8)

When the parameter is multidimensional, an overall measure of efficiency

(Davison, 2003, p. 113), which is however quite difficult to interpret, can

be summarized by

ARE(θ̂C) =

(
|G(θ)|
|ı̇(θ)|

) 1
d

. (2.9)

On the other hand, if the interest is focused on single r-th component of θ,

we may use the appropriate measure (Davison, 2003, p. 113) given by

ARE(θ̂Cr) =
[ı̇(θ)−1]rr
[G(θ)−1]rr

, (2.10)

where for instance [ı̇(θ)−1]rr is the (r, r)-th of the inverse matrix ı̇(θ)−1.

2.5 Full efficiency in exponential families

In some models, the estimator based on a composite likelihood is iden-

tical to the maximum likelihood estimator. Mardia et al. (2009) provide

an explanation for this, by showing that such identity holds for expo-

nential families that have a certain closure property. However, there are

some models for which the maximum composite likelihood estimator is

still fully efficient and do not fall into this class. We hereafter propose a

new sufficient condition which also includes some of those models.
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Theorem 1. Let us consider the parametric statistical model defined in

(2.1). If `(θ) = θTt(y)−K(θ) and c`(θ) = ψ(θ)Tt(y)− V (θ) are of canonical

exponential family type, with the same sufficient statistic t(y), then

1. cU(θ; y) = ψθ(θ)U(θ; y) where, ψθ(θ) = ∂
∂θ
ψ(θ);

2. θ̂C = θ̂;

3. G(θ) = ı̇(θ), even though J(θ) 6= H(θ).

Proof. The score based on `(θ) becomes

U(θ) = t(y)−Kθ(θ)

where, Kθ(θ) = ∂
∂θ
K(θ). While the score based on c`(θ) is

cU(θ) = ψθ(θ)t(y)− Vθ(θ) (2.11)

where, ψθ(θ) = ∂
∂θ
ψ(θ) and Vθ(θ) = ∂

∂θ
V (θ). Since Eθ {U(θ)} = 0 and

Eθ {cU(θ)} = 0, we have that

Eθ{t(Y )} = Kθ(θ) (2.12)

and

ψθ(θ)Eθ{t(Y )} = Vθ(θ). (2.13)

Putting together (2.12) and (2.13), we get

ψθ(θ)Kθ(θ) = Vθ(θ). (2.14)

Then substituting (2.14) in (2.11) gives

cU(θ) = ψθ(θ)t(y)− ψθ(θ)Kθ(θ)

= ψθ(θ) {t(y)−Kθ(θ)}

= ψθ(θ)U(θ).

(2.15)

As we can see, the score based on pairwise likelihood is proportional to

the one based on the full likelihood. As a result, the estimate based on
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the composite likelihood coincides with the estimate based on the full li-

kelihood. Thus, the first two results are proved. As last step, we want to

show that the Godambe information is identical to the Fisher information.

To this end, we will use index notation (Pace & Salvan, 1997, chap. 9). In

the following, indices r, s, a, b, with r, s, a, b = 1, . . . , d, are used to indi-

cate the components of a vector. For example, θr will indicate the generic

component of the vector θ = (θ1, . . . , θd). Regarding a d × d matrix A, Ars
will indicate its generic element and Ars the element of its inverse. For

simplicity of notation, we will adopt the Einstein summation convention

which says that when an index appears two or more times in a product of

elements of arrays, then summation over the range of that index is under-

stood. For example, if x and y are column vectors in Rd, the scalar product

can be expressed as

x · y = xryr =
d∑
r=1

xryr.

Based on the new notations, the likelihood function can be rewritten as

`(θ) = θrtr(y)−K(θ).

Differentiating `(θ) with respect to θr, gives the generic element of the

score function

Ur(θ) = tr(y)−Kr(θ),

where Kr(θ) = ∂K(θ)/∂θr.

Eθ {Ur(θ)} = 0⇐⇒ Eθ {tr(Y )} = Kr(θ). (2.16)

The generic element of the Fisher information is given by

ı̇rs(θ) = Varθ {Ur(θ)} = Varθ {tr(Y )} = Eθ {−Urs(θ)} = Krs(θ),

where Urs(θ) = ∂`(θ)/(∂θr∂θs) and Krs(θ) = ∂K(θ)/(∂θr∂θs). On the other

hand, the composite log-likelihood can be rewritten as

c`(θ) = ψa(θ)ta(y)− V (θ),
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and its differentiation with respect to θr, gives the generic element

cUr(θ) = ta(y)ψar (θ)− Vr(θ), (2.17)

where ψar (θ) = ∂ψa(θ)/∂θr and Vr(θ) = ∂V (θ)/∂θr.

Eθ {cUr(θ)} = 0⇐⇒ Eθ {ta(Y )}ψar (θ) = Vr(θ). (2.18)

Then, substituting (2.16) in (2.18) gives

Ka(θ)ψ
a
r (θ) = Vr(θ), (2.19)

and (2.19) in (2.17) lead to

cUr(θ) = ta(y)ψar (θ)− Vr(θ)

= ta(y)ψar (θ)−Ka(θ)ψ
a
r (θ)

= ψar (θ) [ta(y)−Ka(θ)]

= ψar (θ)Ua(θ),

which coincides with (2.15).

We now compute the necessary quantities for the Godambe informa-

tion. The generic element of the Hessian matrix based on c`(θ) is

cUrs(θ) =
∂

∂θs
cUr(θ) = ψars(θ)Ua(θ) + ψar (θ)Uas(θ),

where, ψars(θ) = ∂ψa(θ)/(∂θr∂θs). The matrix H(θ) has elements

Hrs(θ) = Eθ {−cUrs(θ)} = −ψars(θ)Eθ {Ua(θ)}+ ψar (θ)Eθ {−Uas(θ)}

= ψar (θ)ı̇as(θ).

The variability matrix J(θ) has elements

Jrs(θ) = Eθ {cUr(θ)cUs(θ)} = Eθ

{
ψar (θ)Ua(θ)ψ

b
s(θ)Ub(θ)

}
= ψar (θ)ψ

b
s(θ)Eθ {Ua(θ)Ub(θ)}

= ψar (θ)ψ
b
s(θ)ı̇ab(θ).
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The inverse of J(θ) has elements

Jrs(θ) = Θs
a(θ)ı̇

ab(θ)Θr
b(θ),

where Θs
a(θ)ψ

a
r (θ) = δsr and Θr

b(θ)ψ
b
s(θ) = δrs . The symbol δsr takes value 1

when r = s and 0 otherwise. Therefore, the generic element of the Go-

dambe information is

Grs(θ) = Hrs(θ)J
rs(θ)Hsr(θ)

= ψar (θ)ı̇as(θ)Θ
s
b(θ)ı̇

bc(θ)Θr
c(θ)ψ

d
s (θ)ı̇dr(θ)

= δac ı̇as(θ)ı̇
bc(θ)ı̇dr(θ)δ

a
b

= ı̇as(θ)ı̇
ba(θ)ı̇br(θ)

= ı̇as(θ)δ
a
r

= ı̇rs(θ) = ı̇sr(θ).

In conclusion, the Fisher information coincides with the Godambe infor-

mation. �

Example 1 One-way random effects

This example is consider in Cox & Reid (2004). In this model, it is as-

sumed that Y is q-dimensional multivariate normal with components hav-

ing mean µ and variances σ2. The correlation between any two compo-

nents of the same vector is ρwith−1/(q−1) < ρ < 1, which is the necessary

condition for the covariance matrix to be positive definite. The interest pa-

rameter is then three-dimensional, with θ = (µ, σ2, ρ).

An important application is the analysis of the variance with random

effects, where it is usually assumed that Yir = µ+ ai + eir, r = 1, . . . , q, i =

1, . . . , n, with effect ai which has distribution N(0, σ2
a), and the error eir,

with distribution N(0, σ2
e), and independent of ai. The statistical model

considered above, has σ2 = σ2
a + σ2

e and ρ = σ2
a/(σ

2
a + σ2

e).

The full log-likelihood based on n independent observations is given
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by

`(θ) = − 1

2σ2(1− ρ)
ssW −

q

2σ2 {1 + ρ(q − 1)}
(ssB + ny2)

+
nqµ

σ2 {1 + ρ(q − 1)}
y − nqµ2

2σ2 {1 + ρ(q − 1)}
− nq

2
logσ2

− n(q − 1)

2
log(1− ρ)− n

2
log {1 + ρ(q − 1)}

and the pairwise log-likelihood is

c`P(θ) = − q − 1 + ρ

2σ2(1− ρ2)
ssW −

q(q − 1)

2σ2(1 + ρ)
(ssB + ny2) +

nq(q − 1)µ

σ2(1 + ρ)
y

− nq(q − 1)µ2

2σ2(1 + ρ)
− nq(q − 1)

2
logσ2 − nq(q − 1)

4
log(1− ρ2),

where ssW =
∑n

i=1

∑q
r=1(yir − yi)2 e ssB =

∑n
i=1(yi − y)2. As we can see,

both full and pairwise log-likelihoods are of canonical exponential type

with same sufficient statistic, t(y) = (ssW , ssB, ȳ). Therefore, the pairwise

likelihood estimator is fully efficient. This result is also valid for pairwise

conditional likelihood estimator. We note that this model is not a closed

exponential family in the definition of Mardia et al. (2009).

When we moved outside full exponential families, typically, full effi-

ciency can not be attained. For instance, let us consider the parametric

statistical model defined in (2.1), with `(θ) and c`(θ) of curved exponential

type. Even if they have the same sufficient statistic, full efficiency is not

guaranteed.

In the following we start by showing that the estimator based on the

composite likelihood may not coincide with the one based on the standard

likelihood. This will be done using the geometry of exponential families.

The joint density of the data can be written as

p(y; θ) = h(y) exp
[
φ(θ)Tt(y)−K(θ)

]
with q > d. The natural parameter space Ωθ, corresponds to the set of all θ

such that the normalizing constant

eK(θ) =

∫
h(y)eφ(θ)Tt(y)µ(dy) < +∞.
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Let us denote by η = η(θ) = Eθ{t(Y )} the expectation parameter and by

Ωη the corresponding parameter space. The full log-likelihood is given by

`(θ) = φ(θ)Tt(y)−K(θ),

and the composite log-likelihood is

c`(θ) = α(θ)Tt(y)−Q(θ).

Following the terminology of Efron (1975), the curved exponential family

F is represented by the curves

F `Ωθ = {φ(θ) : θ ∈ Θ} , F cΩθ = {α(θ) : θ ∈ Θ} in Ωθ

FΩη = {η = η(θ) : θ ∈ Θ} in Ωη,

where, with the superscripts ` and c we refer to the full log-likelihood and

the composite log-likelihood respectively. Note that FΩη is the same for

`(θ) and c`(θ), because they both have the same sufficient statistic. The

score based on the full log-likelihood is given by

U(θ) = t(y)Tφθ(θ)−Kθ(θ),

where subscripts denote differentiation, for instance Kθ(θ) = ∂K(θ)/∂θ.

Since Eθ{U(θ)} = 0 = Eθ{t(Y )}Tφθ(θ) − Kθ(θ) =⇒ Kθ(θ) = η(θ)Tφθ(θ).

Therefore, U(θ) = {t(y) − η(θ)}Tφθ(θ). The maximum full likelihood esti-

mator, assuming it exists, satisfies

U(θ̂) = {t(y)− η(θ̂)}Tφθ(θ̂) = 0, (2.20)

From the latter equation, it follows that the set of t(y) points having θ̂ as

solution of (2.20) is the straight line orthogonal to φθ(θ̂) and intersecting

FΩη at η(θ̂). In other words, the maximum likelihood estimator of η(θ̂) is

obtained by projecting the data point t(y) onto FΩη orthogonally to φθ(θ̂).

We now denote such set of t(y) points by

Lθ̂ = {t(y) : U(θ̂) = 0}.
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Following the same steps, we get that the score based on the composite

log-likelihood is

cU(θ) = {t(y)− η(θ)}Tαθ(θ).

The maximum composite likelihood satisfies

cU(θ̂C) = {t(y)− η(θ̂C)}Tαθ(θ̂C) = 0. (2.21)

It follows that the maximum composite likelihood estimator η(θ̂C) is ob-

tained by projecting the data point t(y) onto FΩη orthogonally to αθ(θ̂C).

Here, the set of t(y) points having θ̂C as solution of (2.21) is denoted by

Lθ̂C = {t(y) : cU(θ̂C) = 0}.

In Figure 2.1, the curved exponential family F is represented by FΩη in

Ωη.

Conditions (2.20) and (2.21) will generally lead to different estimates,

θ̂ and θ̂C , as illustrated in Figure 2.1. We note that, we have not proved

that the two estimates have to be different. In fact, assuming θ̂ = θ̂C , (2.20)

and (2.21) imply that {t(y) − η(θ̂)}T{φθ(θ̂) − αθ(θ̂)} = 0 and this could be

satisfied even with α(θ) 6= φ(θ).However, we have not found any example

of curved exponential family with θ̂ = θ̂C .

We now show also that in general the Fisher and Godambe information

do not coincide. Returning to index notation, we can rewrite the full log-

likelihood as

`(θ) = ta(y)φa(θ)−K(θ),

with the corresponding score vector

Ur(θ) = ta(y)φar(θ)−Kr(θ),

where, φar(θ) = ∂φa(θ)/∂θr. Since Eθ{Ur(θ)} = 0 =⇒ Kr(θ) = ηa(θ)φar(θ).

Therefore, the generic element of the score becomes

Ur(θ) = {ta(y)− ηa(θ)}φar(θ).
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Figure 2.1: The curved exponential family F is represented by the curve

FΩη = {η = η(θ) : θ ∈ Θ}. The maximum likelihood estimator of η(θ̂) and

the maximum composite likelihood estimator of η(θ̂C) are obtained by pro-

jecting the t(y) point onto FΩη orthogonally to φθ̂ and αθ̂C respectively.

The generic element of the observed information matrix is

̇rs(θ) = −Urs(θ) = ηas (θ)φ
a
r(θ)− {ta − ηa(θ)}φars(θ),

where, ηas (θ) = ∂ηa(θ)/∂θs and φars(θ) = ∂2φa(θ)/(∂θr∂θs). The Fisher infor-

mation has therefore elements,

ı̇rs(θ) = Eθ{̇rs(θ)} = ηas (θ)φ
a
r(θ).

The composite log-likelihood can be rewritten as

c`(θ) = ta(y)αa(θ)−Q(θ),

and the corresponding generic element of its score function is given by

cUr(θ) = {ta(y)− ηa(θ)}αar(θ),
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where, αar(θ) = ∂αa(θ)/∂θr. The matrix H(θ) has elements

Hrs(θ) = Eθ{−cUrs(θ)} = ηas (θ)α
a
r(θ)

while J(θ), has elements

Jrs(θ) = Eθ [cUr(θ)cUs(θ)] = Eθ

[
{ta(Y )− ηa(θ)}αar(θ)

{
tb(Y )− ηb(θ)

}
αbs(θ)

]
= αar(θ)α

b
s(θ)Eθ

[
{ta(Y )− ηa(θ)}

{
tb(Y )− ηb(θ)

}]
= αar(θ)Vab(θ)α

b
s(θ),

where, Vab(θ) are the elements of the matrix V = Varθ{t(Y )}. Inverting

J(θ), we obtain

Jrs(θ) = Θs
a(θ)V

ab(θ)Θr
b(θ),

where Θs
a(θ)α

a
r(θ) = δsr and Θr

b(θ)α
b
s(θ) = δrs . Hence, the Godambe infor-

mation matrix has elements

Grs(θ) = Hrs(θ)J
rs(θ)Hsr(θ) = ηas (θ)α

a
r(θ)Θ

s
b(θ)V

bc(θ)Θr
c(θ)η

d
r (θ)α

d
s(θ)

= δac δ
d
bη

a
s (θ)V

bc(θ)ηdr

= ηas (θ)V
ba(θ)ηbr(θ).

Hence, the Fisher information has a different form than the Godambe in-

formation, and therefore they are not guaranteed to be equal.

Example 2 Equicovariance normal model
This is the same example as the previous one with mean 0 and an equico-

variance matrix with common known variances σ2 = 1. The one-dimensional

parameter is ρ. The calculation of the full log-likelihood based on n inde-

pendent observations gives

`(ρ) = −n(q − 1)

2
log(1− ρ)− n

2
log {1 + ρ(q − 1)} − 1

2(1− ρ)
ssW

− 1

2q {1 + ρ(q − 1)}
ssV

while the pairwise log-likelihood is

c`P(ρ) = −nq(q − 1)

4
log(1− ρ2)− q − 1 + ρ

2(1− ρ2)
ssW −

(q − 1)

2q(1 + ρ)
ssV ,
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where ssW =
∑n

i=1

∑q
r=1(yir − yi)

2 e ssV =
∑n

i=1 y
2
i· with yi· =

∑q
r=1 yir,

are components of the sufficient statistic. Since the only parameter is ρ,

the pairwise likelihood coincides with the pairwise conditional likelihood.

Both full and pairwise log-likelihood are of curved exponential type. Cox

& Reid (2004, Example 1) show that there is a loss of efficiency when using

c`P(ρ) in place of `(ρ).

Example 3 First order Gaussian autoregressive process
Let {Yt} be a normal autoregressive process of order one with correlation

coefficient ρ. The model is defined as

Yt = ρYt−1 + εt, t = 1, . . . , T,

where εt is normal with mean zero and constant variance σ2. Here it is

assumed that the initial value Y0 is a random variable from N(0, σ2/(1 −
ρ2)), and independent of ε1, . . . , εT . The correlation between Yt−1 and Yt is

equal to σ2ρ/(1 − ρ2). Given the sample Y1, . . . , YT , the likelihood is given

by

`(σ2, ρ) =
1

2
log(1− ρ2)− T

2
log(σ2)− 1

2σ2
[S1 + ρ2S2 − 2ρS12]

and while the pairwise log-likelihood is

c`P(σ2, ρ) = −(T − 1)log(σ2) +
T − 1

2
log(1− ρ2)− 1

2σ2
[S1 + S2 − 2ρS12],

where S1 =
∑T

t=1 y
2
t , S2 =

∑T−1
t=2 y

2
t and S12 =

∑T−1
t=1 ytyt+1 are components

of the sufficient statistic. Even in this case, both `(σ2, ρ) and c`P(σ2, ρ)

are of curved exponential type, with the same sufficient statistic t(y) =

(S1, S2, S12). We consider a numerical example using data on the luteiniz-

ing hormone in T = 48 blood samples, taken at 10 minutes intervals from

a human female. The data can be found in object lh in the standard R dis-

tribution (R Core Team, 2012). The estimates of σ2 and ρ based on `(σ2, ρ)

are 0.25075 and 0.98077, respectively, while those based on c`P(σ2, ρ) are

given by 0.25033 and 0.97904, respectively. As we can see, the maximum

likelihood estimates do not coincide with the ones based on the pairwise

log-likelihood.





Chapter 3

Combined composite likelihood

3.1 Introduction

For a number of complex statistical models, the composite likelihood may

be considered as an useful alternative to the standard likelihood, due to its

many appealing features discussed in Section 2.3. Since there are different

ways to formulate a composite likelihood, the crucial question that arises

here is relative to the choice of the composite likelihood which has more

desirable properties.

In contexts in which one may use either the pairwise or the indepen-

dence likelihood (Varin, 2008; Varin et al., 2011) in place of the standard

likelihood, it is possible to combine them adequately obtaining thus a com-

bined composite likelihood. A formulation of a combined composite like-

lihood, almost not explored in the literature, is suggested in Cox & Reid

(2004), and is given by a linear combination of independence and pairwise

log-likelihoods resulting in a new objective function, which depends on a

constant to be chosen. Of course, this objective function could represent

a usefull composite likelihood in situations where there is information on

the parameter of interest both in one and two-dimensional marginal den-

sities.

Notable composite likelihoods are particular case of the combined com-



26 Chapter 3. Combined composite likelihood

posite likelihood such as the pairwise marginal and conditional likelihood.

Hence, this new type of pseudo-likelihood could be seen as a compromise

between the pairwise marginal and conditional likelihood. On the other

hand, from the form of the combined composite likelihood, it comes out

that the independence likelihood is not a particular case.

As for general composite likelihoods, under suitable regularity condi-

tions, the various inferential procedures based on the combined composite

likelihood have theoretical properties often similar to those based on the

standard likelihood, although expecting a loss of efficiency.

This chapter aims to study the properties and to explore the inferential

aspects of the combined composite likelihood. Exact and asymptotic prop-

erties are studied. Two examples of the combined composite likelihood,

both based on the multivariate normal distribution are considered. Partic-

ular attention will be focused on efficiency by comparing the results ob-

tained with the combined composite likelihood with those obtained with

the standard likelihood.

This chapter will be organized as follows. Section 3.2 is devoted to

the definition of combined composite likelihood and the study of its exact

and asymptotic properties. The exact properties lead us to the identifica-

tion of a possible strategy for finding the range of admissible values for

the constant which combines the independence and pairwise likelihood.

In Section 3.3, two examples of combined composite likelihood are ana-

lyzed in detail. In the first, the parameter is scalar and it is the common

partial correlation of a multivariate normal model. An empirical check at

consistency of the combined composite likelihood estimator is performed

by simulation in the case in which the number of sample units is fixed and

the dimension of the observed vector increases. Moreover, several empir-

ical studies of efficiency suggest the conclusion that a good, although not

optimal, choice for the value of the constant lead to the pairwise condi-

tional likelihood. The second example deals with a model for microarray

data and the overall parameter is four-dimensional. The efficiency of the
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estimator for each component is considered. Also here, a good choice for

the value of the constant leads again to the pairwise conditional likelihood.

3.2 Definitions and properties

Let Yi = (Yi1, . . . , Yiq)
T, i = 1, . . . , n, be a q-dimensional random vector

with joint density f(yi; θ), where θ is some unknown d-dimensional real

parameter. Suppose that the full q-dimensional distribution is not eas-

ily tractable, but it is possible to evaluate both univariate and bivariate

marginal distributions. Moreover, in the following, we assume that both

such marginal distributions depend on θ.

In order to make inference on θ, one may consider the combined com-

posite log likelihood, which is defined as

c`a(θ; yi) = 2c`P(θ; yi)− a(q − 1)c`I(θ; yi),

where, c`P(θ; yi) =
∑q−1

r=1

∑q
s=r+1 logf(yir, yis; θ) and c`I(θ; yi) =

∑q
r=1 logf(yir; θ)

are the unweighted pairwise and independence log likelihoods for a sin-

gle observation, respectively. Under random sampling of size n, c`a(θ) =∑n
i=1 c`

a(θ; yi), c`
P(θ) =

∑n
i=1 c`

P(θ; yi) and c`I(θ) =
∑n

i=1 c`
I(θ; yi) will de-

note the combined composite, pairwise and independence log-likelihood,

respectively. Some values of a lead to notable composite likelihoods. In

fact, a = 0 corresponds to the pairwise likelihood, while a = 1 corresponds

to the pairwise conditional log likelihood, which is based on all possible

conditional distributions of one component given another. Indeed, as an

example, for simplicity with n = 1, a = 1 and q = 2, we obtain

c`1(θ) = 2logf(y11, y12; θ)− logf(y11; θ)− logf(y12; θ)

= logf(y11 | y12; θ) + logf(y12 | y11; θ).

3.2.1 Exact properties

We now consider whether the desirable exact properties of the composite

likelihood, defined in Section 2.3, are satisfied by c`a(θ). Property (a) is
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definitely satisfied for a = 0 and a = 1, because such values correspond to

well-known composite likelihoods. For other values of a, knowing that

Eθ0

{
c`P(θ)

}
≤ Eθ0

{
c`P(θ0)

}
and Eθ0

{
c`I(θ)

}
≤ Eθ0

{
c`I(θ0)

}
,

and rewriting the property (a) as follows,

2
[
Eθ0

{
c`P(θ0)

}
− Eθ0

{
c`P(θ)

}]
≥ a(q − 1)

[
Eθ0

{
c`I(θ0)

}
− Eθ0

{
c`I(θ)

}]
,

we see that (a) will be automatically satisfied for any a ≤ 1, since the

latter inequality is satisfied for a = 1. On the other hand, for a > 1,

the property (a) is not guaranteed. Property (b) is always satisfied since

Ua(θ) = ∂c`a(θ)/∂θ is a linear combination of two unbiased terms. Finally,

as regards to property (c), with θ scalar, we have that

d2

dθ2
c`a(θ) = 2

d2

dθ2
c`P(θ)− a(q − 1)

d2

dθ2
c`I(θ),

hence,

Eθ0

[
d2

dθ2
c`a(θ)

]∣∣∣∣
θ=θ0

= −2HP(θ0) + a(q − 1)H I(θ0),

whereHm(θ0) = Eθ0

[
− d2

dθ2
c`m(θ)

]∣∣∣
θ=θ0

, m=P,I. Then, the expectation of the

second derivative will be negative if

−2HP(θ0) + a(q − 1)H I(θ0) < 0.

Quantities HP(θ0) and H I(θ0) are positive, due to the fact that c`P(θ) and

c`I(θ) satisfy the Wald inequality and therefore we get that a must satisfy

a <
2

q − 1

HP(θ0)

H I(θ0)
= Aq(θ0)· (3.1)

The quantity Aq(θ0) is positive and depends only on θ0, since in practice

q is known. For the multiparameter case, it is difficult to derive a con-

dition similar to (3.1). It will be necessary to use one of the properties

of positive definite matrices, as for instance through the eigenvalues of

Ha(θ0) = Eθ0

[
− ∂2

∂θ∂θT
c`a(θ)

]∣∣∣
θ=θ0

, which should all be positive, as done in

Example 3.3.2 below.
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3.2.2 Asymptotic properties

We now turn to the asymptotic properties of the combined composite li-

kelihood quantities, such as consistency, asymptotic distribution of the es-

timator and of the likelihood ratio statistic. To this end, two scenarios

are considered. The first one concerns the case in which q is fixed and

n −→∞, while the second considers n fixed and q −→∞.

i) q fixed and n −→∞

We start by looking at the problem of consistency of the maximum com-

bined composite likelihood estimator. To this end, we define

UP
1i(θ) =

∂

∂θ

q−1∑
r=1

q∑
s=r+1

logf(yir, yis; θ), UP
1 (θ) =

n∑
i=1

UP
1i(θ),

U I
1i(θ) =

∂

∂θ

q∑
r=1

logf(yir; θ), U I
1(θ) =

n∑
i=1

U I
1i(θ),

UP
2i(θ) =

∂2

∂θ∂θT

q−1∑
r=1

q∑
s=r+1

logf(yir, yis; θ), UP
2 (θ) =

n∑
i=1

UP
2i(θ),

U I
2i(θ) =

∂2

∂θ∂θT

q∑
r=1

logf(yir; θ), U I
2(θ) =

n∑
i=1

U I
2i(θ),

Ua(θ) = 2UP
1 (θ)− a(q − 1)U I

1(θ)·

The maximum combined composite likelihood estimator will be denoted

by θ̂aC . Since Ua(θ̂aC) = 0, the expansion of Ua(θ̂aC) around θ can be written

Ua(θ̂aC) = 0

=̇2UP
1 (θ)− a(q − 1)U I

1(θ) + {2UP
2 (θ)− a(q − 1)U I

2(θ)}(θ̂aC − θ).
(3.2)

From equation (3.2), we obtain

(θ̂aC − θ)=̇−
{

2UP
2 (θ)− a(q − 1)U I

2(θ)
}−1 {

2UP
1 (θ)− a(q − 1)U I

1(θ)
}
· (3.3)

The first quantity in curly brackets on the right-hand side of equation (3.3)

is the inverse of a p × p matrix where each element is of order OP (n), this
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is, n−1 times a p× p matrix with each element of order OP (1). Instead, the

second quantity is a p × 1 vector where each of its elements is of order

OP (n1/2). Their product produces a p × 1 vector with elements of order

OP (n−1/2). Hence, we get

(θ̂aC − θ) =̇OP (n−1/2).

This result suggests that the combined composite likelihood estimator is a

consistent estimator of θ.

We now focus on the determination of the asymptotic distribution of

the combined composite likelihood estimator. Exploiting the above expan-

sion, (3.2) may be written as

−{2UP
1 (θ)−a(q−1)U I

1(θ)}=̇n
{

2
1

n
UP

2 (θ)− a(q − 1)
1

n
U I

2(θ)

}
(θ̂aC−θ)· (3.4)

In the following, the subscript one on the matrices H and J will indicate

that the quantity is calculated with only one observation. Applying the

law of large numbers to each term of the matrices 1
n
UP

2 (θ) and 1
n
U I

2(θ), we

get

1

n
UP

2 (θ)
p−→ Eθ{UP

2i(θ)} = −HP
1 (θ),

1

n
U I

2(θ)
p−→ Eθ{U I

2i(θ)} = −H I
1(θ).

This means that

n

{
2

1

n
UP

2 (θ)− a(q − 1)
1

n
U I

2(θ)

}
p−→ −{2HP(θ)− a(q − 1)H I(θ)}.

Noting thatHa(θ) = 2HP(θ)−a(q−1)H I(θ), the above expression becomes

n

{
2

1

n
UP

2 (θ)− a(q − 1)
1

n
U I

2(θ)

}
p−→ −Ha(θ),

recalling that for n independent and identically distributed observations

Ha(θ) = nHa
1 (θ), HP(θ) = nHP

1 (θ) and H I(θ) = nH I
1(θ). The quantity on

the left-hand side of equation (3.4) has zero expectation under θ, since it is
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the score based on c`a(θ); hence from the central limit theorem it follows

that

{2UP
1 (θ)− a(q − 1)U I

1(θ)} ∼̇Nd(0, J
a(θ)),

where

Ja(θ) = Varθ{2UP
1 (θ)− a(q − 1)U I

1(θ)}

= 4Varθ{UP
1 (θ)}+ a2(q − 1)2Varθ{U I

1(θ)} − 4a(q − 1)×

Covθ{UP
1 (θ), U I

1(θ)}

= 4JP(θ) + a2(q − 1)2J I(θ)− 4a(q − 1)JPI(θ),

with JPI(θ) = Covθ{UP
1 (θ), U I

1(θ)} which represents the covariance be-

tween vectors UP
1 (θ) and U I

1(θ) and, it may be calculated as follows

Covθ{UP
1 (θ), U I

1(θ)} = Eθ

[(
UP

1 (θ)− Eθ[UP
1 (θ)]

) (
U I

1(θ)− Eθ[U I
1(θ)]

)T
]

= Eθ

[
UP

1 (θ)U I
1(θ)T

]
.

Exploiting the above developed quantities, (3.4) may be written as

−{2UP
1 (θ)− a(q − 1)U I

1(θ)}=̇−Ha(θ)(θ̂aC − θ)·

Thus, we get

(θ̂aC − θ)=̇Ha(θ)−1{2UP
1 (θ)− a(q − 1)U I

1(θ)}· (3.5)

It follows from (3.5) that

(θ̂aC − θ) ∼̇Nd(0, G
a(θ)−1),

where, Ga(θ) = Ha(θ)Ja(θ)−1Ha(θ) is the Godambe information.

As a last step, we consider the asymptotic distribution of the combined

composite likelihood ratio statistic, W a(θ). An expansion of c`a(θ) around

θ̂aC gives

c`a(θ) = {2c`P(θ̂aC)− a(q − 1)c`I(θ̂aC)}+ (θ − θ̂aC)T
{

2UP
1 (θ̂aC)

−a(q − 1)U I
1(θ̂aC)

}
+

1

2
(θ − θ̂aC)T

{
2UP

2 (θ̂aC)

−a(q − 1)U I
2(θ̂aC)

}
(θ − θ̂aC) +R·
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where the remainder term R involves a d× d× d array of third order par-

tial derivatives. It is straightforward to show that R is of order OP (n−
1
2 ).

Replacing c`a(θ) in W a(θ), we obtain after some simplification that

W a(θ) = 2{c`a(θ̂aC)− c`a(θ)}

= −(θ − θ̂aC)T
{

2UP
2 (θ̂aC)− a(q − 1)U I

2(θ̂aC)
}

(θ − θ̂aC) +OP (n−
1
2 )

= −n(θ − θ̂aC)T

{
2

1

n
UP

2 (θ̂aC)− a(q − 1)
1

n
U I

2(θ̂aC)

}
(θ − θ̂aC) +OP (n−

1
2 ).

Applying the law of large numbers to each term of the matrix

2 1
n
UP

2 (θ̂aC)− a(q− 1) 1
n
U I

2(θ̂aC), and taking into account that θ̂aC
P−→ θ, we

get

W a(θ) = n(θ − θ̂aC)T{2HP
1 (θ)− a(q − 1)H I

1(θ)}(θ − θ̂aC) +OP (n−1/2)

= (θ̂aC − θ)THa(θ)(θ̂aC − θ) +OP (n−1/2),

whereHa(θ) = 2HP(θ)−a(q−1)H I(θ). Since θ̂aC is asymptotically normally

distributed with mean θ, covariance matrix Ga(θ)−1 and Ha(θ) is a d × d

nonnegative definite, matrix, we can apply Theorem 8.5 of Severini (2005,

page 245), which states thatQ = (θ̂aC−θ)THa(θ)(θ̂aC−θ) has asymptotically

cumulant-generating function

KQ(t) = −1

2

d∑
k=1

log(1− 2tλk),

where λ1, . . . , λd are the eigenvalues of the matrix

Ga(θ)−1Ha(θ) = Ha(θ)−1Ja(θ).

We can easily recognize that KQ(t) is the cumulant-generating function

of a random variable
∑d

k=1 λkXk, where X1, . . . , Xd are independent χ2
1

random variables. Therefore,

W a(θ) ∼̇
d∑

k=1

λkXk.

ii) n fixed and q −→∞
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Even in this case, we start by looking at the problem of consistency of

the maximum combined composite likelihood estimator. We assume for

simplicity that θ is scalar and we consider without loss of generality n = 1.

For a good understanding of the steps, we define

UP
rs(θ) =

d

dθ
logf(yr, ys; θ), UP

rs

′
(θ) =

d

dθ
UP
rs(θ),

U I
r(θ) =

d

dθ
logf(yr; θ), U I

r

′
(θ) =

d

dθ
U I
r(θ),

Ua(θ) =
d

dθ
c`a(θ) = 2

q−1∑
r=1

q∑
s=r+1

UP
rs(θ)− a(q − 1)

q∑
r=1

U I
r(θ), Ua′(θ) =

d

dθ
Ua(θ).

Exploiting the fact that Ua(θ̂aC) = 0, we can expand Ua(θ̂aC) around θ, to

first order and get

Ua(θ) + (θ̂aC − θ)Ua′(θ) =̇ 0.

This is equivalent to{
2

q−1∑
r=1

q∑
s=r+1

UP
rs(θ)− a(q − 1)

q∑
r=1

U I
r(θ)

}
+ (θ̂aC − θ)

{
2

q−1∑
r=1

q∑
s=r+1

UP
rs

′
(θ)

−a(q − 1)

q∑
r=1

U I
r

′
(θ)

}
=̇ 0·

It may also be written as

q−2

{
2

q−1∑
r=1

q∑
s=r+1

UP
rs(θ)− a(q − 1)

q∑
r=1

U I
r(θ)

}
+ q−2(θ̂aC − θ)×{

2

q−1∑
r=1

q∑
s=r+1

UP
rs

′
(θ)− a(q − 1)

q∑
r=1

U I
r

′
(θ)

}
=̇ 0·

(3.6)

Since the second quantity in curly brackets in (3.6) has expectation differ-

ent from zero, it follows that its order in probability depends on the order

of its mean which, multiplied by q−2, is of order OP (1). The first quan-

tity in curly brackets has zero expectation and this means that its order in
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probability depends on the order of its variance which is given by

q−4

[
4Varθ

{
q−1∑
r=1

q∑
s=r+1

UP
rs(θ)

}
+ a2(q − 1)2Varθ

{
q∑
r=1

U I
r(θ)

}
− 4a(q − 1)×

Covθ

{
q−1∑
r=1

q∑
s=r+1

UP
rs(θ),

q∑
r=1

U I
r(θ)

}]
·

(3.7)

Assuming that each pair of observations has the same bivariate distribu-

tion, as in Cox & Reid (2004), the first summand in (3.7) can be calculated

as

Varθ

{
q−1∑
r=1

q∑
s=r+1

UP
rs(θ)

}
= N1Varθ

{
UP
rs(θ)

}
+ 2N2Covθ{UPst(θ), UPsv(θ)}

+ 2N3Covθ{UPst(θ), UPvw(θ)}

= N1Eθ

{
UP
rs(θ)

2
}

+ 2N2Eθ{UPst(θ)UPsv(θ)}

+ 2N3Eθ{UPst(θ)UPvw(θ)},

where, given that we have q indices, N1 = q(q − 1)/2 is the number of

pairs of ordered indices and N1(N1 − 1)/2 is the number of pairs of pairs

of ordered indices. Then, N2 = q
(
q−1

2

)
= q(q − 1)(q − 2)/2 is the number of

pairs of pairs of ordered indices which have one element in common.

Finally, N3 = N1(N1 − 1)/2− q(q− 1)(q− 2)/2 = q(q− 1)(q− 2)(q− 3)/8 is

the number of pairs with no common elements. Hence,

Varθ

{
q−1∑
r=1

q∑
s=r+1

UP
rs(θ)

}
=
q(q − 1)

2
Eθ

{
UP
rs(θ)

2
}

+ q(q − 1)(q − 2)×

Eθ{UPst(θ)UPsv(θ)}+
q(q − 1)(q − 2)(q − 3)

4
×

Eθ{UPst(θ)UPvw(θ)}·

Moreover, we have that

Covθ

{
q−1∑
r=1

q∑
s=r+1

UP
rs(θ),

q∑
r=1

U I
r(θ)

}
= N3Eθ {UPst(θ)UIs(θ)}

+N4Eθ {UPst(θ)UIv(θ)} ,
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where N4 = q(q−1)
2
× (q − 2) corresponds to the number of cases in which

the two terms of the covariance have no common elements. Instead, N3 =
q(q−1)

2
× q − q(q−1)

2
× (q − 2) = q(q − 1) is the number of cases in which the

two terms of the covariance have one element in common. Therefore,

Covθ

{
q−1∑
r=1

q∑
s=r+1

UP
rs(θ),

q∑
r=1

U I
r(θ)

}
= q(q − 1)Eθ {UPst(θ)UIs(θ)}

+
q(q − 1)(q − 2)

2
Eθ {UPst(θ)UIv(θ)} .

Finally,

Varθ

{
q∑
r=1

U I
r(θ)

}
= qEθ{UIs(θ)}+ q(q − 1)Eθ{UIs(θ)UIt(θ)}.

Going back to (3.7), we can conclude that the leading term in q is given by

Eθ{UPst(θ)UPvw(θ)}+ aEθ {UPst(θ)UIv(θ)}+ a2Eθ{UIs(θ)UIt(θ)}·

This means that both the first and second quantities in curly brackets in

(3.6) have the same order in probability, that is OP (1). As a result, it turns

out that (θ̂aC−θ) = OP (1). This result suggests that the estimating equation

will not usually lead to a consistent estimator of θ, which is something to

be expected even for ordinary (composite) likelihoods.

3.3 Examples

In this section we highlight properties of estimators based on combined

composite likelihood, comparing results with those of estimators based

on full likelihood. In particular, the two examples considered deal with

multivariate normal distributions with structured covariance matrix. The

first one has a scalar parameter while the second one has a multidimen-

sional parameter. In both examples, situations in which a is fixed and q

changes and viceversa, are considered.
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3.3.1 Common partial correlation model

This example has been suggested in Lindsay et al. (2011). Assume we have

n i.i.d. normal variables where each realization Yi = (Yi1, . . . , Yiq)
T, has

mean zero and covariance matrix Σ, i.e Yi ∼ Nq(0,Σ), where the inverse of

Σ is given by

Σ−1 = (1− β)Iq + β1q1
T
q ,

where, Iq denotes the q-dimensional identity matrix and 1q the q-dimensional

vector with all elements equal to one. Denoting by Σrs the element with

position (r, s) of the matrix Σ, we have

Σrs =
1

1− β

[
δrs −

β

1 + (q − 1)β

]
,

where δrs = 1 when r = s and 0 otherwise. Therefore, the variance of each

component of the vector is given by

Varβ(Yir) =
1 + β(q − 2)

(1− β){1 + β(q − 1)}
,

and the correlation between any two components of the same vector is

Corβ(Yir, Yis) = − β

1 + β(q − 2)
·

Moreover, the determinant of Σ is given by

|Σ| = 1

(1− β)q−1{1 + β(q − 1)}
,

and is positive for β > − 1
q−1

, which is a necessary condition for Σ to be a

covariance matrix.

Full likelihood

Considering a single observation, the density function of the q-dimensional

normal distribution is

fYi(yi; β) =
1

(2π)
q
2 |Σ| 12

exp

(
−1

2
yT
i Σ−1yi

)
·
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Since yT
i Σ−1yi = (1− β)

∑q
r=1 y

2
ir + β (

∑q
r=1 yir)

2
, the likelihood calculated

for a single observation is

L(β) ∝ (1−β)
q−1
2 {1 +β(q− 1)}

1
2 exp

−1

2
(1− β)

q∑
r=1

y2
ir −

β

2

(
q∑
r=1

yir

)2
 ·

Therefore, the log likelihood based on n independent observations is given

by

`(β) =
n(q − 1)

2
log(1− β) +

n

2
log{1 + β(q − 1)} − (1− β)

2

n∑
i=1

q∑
r=1

y2
ir

− β

2

n∑
i=1

(
q∑
r=1

yir

)2

·

Since
∑q

r=1 y
2
ir =

∑q
r=1 (yir − ȳi)2 + qȳ2

i =
∑q

r=1 (yir − ȳi)2 + (
∑q

r=1 yir)
2
/q,

we can also write

`(β) =
n(q − 1)

2
log(1− β) +

n

2
log{1 + β(q − 1)} − (1− β)

2
×

n∑
i=1

q∑
r=1

(yir − ȳi)2 − {1 + β(q − 1)}
2q

n∑
i=1

(
q∑
r=1

yir

)2

=
n(q − 1)

2
log(1− β) +

n

2
log{1 + β(q − 1)}+ β

(
1

2

n∑
i=1

q∑
r=1

(yir − ȳi)2

−(q − 1)

2q

n∑
i=1

(
q∑
r=1

yir

)2


=
n(q − 1)

2
log(1− β) +

n

2
log{1 + β(q − 1)}+ β

(
1

2
SSW

−(q − 1)

2q
SSR

)
,

where SSW =
∑n

i=1

∑q
r=1 (yir − ȳi)2 and SSR =

∑n
i=1 y

2
i·,with yi· =

∑q
r=1 yir.

From the expression of `(θ), we see that the full likelihood function be-

longs to a one-parameter exponential family with sufficient statistic given

by SSW/2− (q − 1)SSR/(2q) and canonical parameter β.
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For later use, we study the distribution of SSW and SSR.

We can rewrite SSW =
∑n

i=1

∑q
r=1(Yir − Y i)

2 =
∑n

i=1 Qi, where

Qi =

q∑
r=1

(Yir − Y i)
2

=

q∑
r=1

Y 2
ir − qY

2

i

=

q∑
r=1

Y 2
ir −

1

q

q∑
r=1

Yir

q∑
r=1

Yir

= Y T
i

(
Iq −

1

q
1q1

T
q

)
Yi.

In order to determine the distribution of SSW , we define Xi = (1− β)
1
2Yi.

Therefore, Xi ∼ Nq(0, R), where R = Iq − β
1+β(q−1)

1q1
T
q , and consequently,

Qi = Y T
i

(
Iq −

1

q
1q1

T
q

)
Yi = (1− β)−1XT

i

(
Iq −

1

q
1q1

T
q

)
Xi.

Noting that the matrix R
(

Iq − 1
q
1q1

T
q

)
is idempotent, we can conclude,

according to Theorem 8.6 of Severini (2005, p. 246) that

XT
i

(
Iq −

1

q
1q1

T
q

)
Xi ∼ χ2

m,

where m = tr
{
R
(

Iq − 1
q
1q1

T
q

)}
= tr

{(
Iq − 1

q
1q1

T
q

)}
= q − 1. Therefore,

exploiting the fact that the observations are independent, we get that

SSW ∼ 1

1− β
χ2
n(q−1)·

Analogously, we have
q∑
r=1

Yir = Yi· = 1T
q Yi ∼ N(0, 1T

q Σ1q)

∼ N

(
0,

q

1 + β(q − 1)

)
,

and therefore

SSR =
n∑
i=1

Y 2
i· =

n∑
i=1

[{
q

1 + β(q − 1)

} 1
2

Zi

]2

=

{
q

1 + β(q − 1)

} n∑
i=1

Z2
i .
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This implies, due to the independence of the observations, that

SSR ∼ q

1 + β(q − 1)
χ2
n·

Taking into account the fact that SSW is a function of Y T
i

(
Iq − 1

q
1q1

T
q

)
Yi

and SSR a function of Yi·, the variables SSW and SSR will be indepen-

dent if and only if Y T
i

(
Iq − 1

q
1q1

T
q

)
Yi and Yi· are independent. Defining

A =
(

Iq − 1
q
1q1

T
q

)
, through result (viii) of Rao (1973, p. 188), for which the

necessary and sufficient condition for independence is that

ΣAΣ1q = 0,

we have

ΣAΣ1q =
1

(1− β)2

(
Iq −

β

1 + β(q − 1)
1q1

T
q

)(
Iq −

1

q
1q1

T
q

)
×(

Iq −
β

1 + β(q − 1)
1q1

T
q

)
1q

=
1

(1− β)2

(
Iq −

β

1 + β(q − 1)
1q1

T
q

)(
Iq −

1

q
1q1

T
q

)
1q

=
1

(1− β)2

(
Iq −

1

q
1q1

T
q

)
1q

=
1

(1− β)2

(
1q −

1

q
q1q

)
= 0.

This implies that SSW and SSR are independent.

The score function is given by

U(β) = −n(q − 1)

2(1− β)
+

n(q − 1)

2{1 + β(q − 1)}
+

1

2
SSW − q − 1

2q
SSR·

The observed information is

j(β) = − d

dβ
U(β)

=
n(q − 1)

2(1− β)2
+

n(q − 1)2

2{1 + β(q − 1)}2

=
nq(q − 1){1 + β2(q − 1)}
2(1− β)2{1 + β(q − 1)}2

·

Since the observed information is a constant, we also have that i(β) =

Eβ{j(β)} = j(β).



40 Chapter 3. Combined composite likelihood

Combined composite likelihood

We now consider a combined composite likelihood, which might be ap-

propriate since both univariate and bivariate marginal densities depend

on the parameter of interest. The pairwise likelihood with all weights

equal to 1 is based on the bivariate marginal distributions, that is

Yi =

(
Yir

Yis

)
∼ N2

((
0

0

)
,

[
1+β(q−2)

(1−β){1+β(q−1)} − β
(1−β){1+β(q−1)}

− β
(1−β){1+β(q−1)}

1+β(q−2)
(1−β){1+β(q−1)}

])
.

Let us define

Σ2 =
1

(1− β){1 + β(q − 1)}

(
1 + β(q − 2) −β
−β 1 + β(q − 2)

)
.

The pairwise likelihood corresponding to only one observation is given by

CLP(β) ∝
q−1∏
r=1

q∏
s=r+1

|Σ2|−
1
2 exp{−1

2
yT
i Σ−1

2 yi}

∝
q−1∏
r=1

q∏
s=r+1

[
1 + β(q − 3)

(1− β)2{1 + β(q − 1)}

]− 1
2

exp

{
−(1− β){1 + β(q − 2)}

2{1 + β(q − 3)}
×

q−1∑
r=1

q∑
s=r+1

(y2
ir + y2

is)−
β(1− β)

2{1 + β(q − 3)}

q−1∑
r=1

q∑
s=r+1

2yiryis

}
·

The corresponding pairwise log-likelihood calculated for n independent

observations is

c`P(β) = −nq(q − 1)

4
log

[
1 + β(q − 3)

(1− β)2{1 + β(q − 1)}

]
− (1− β){1 + β(q − 2)}

2{1 + β(q − 3)}
×

n∑
i=1

q−1∑
r=1

q∑
s=r+1

(y2
ir + y2

is)−
β(1− β)

2{1 + β(q − 3)}

n∑
i=1

q−1∑
r=1

q∑
s=r+1

2yiryis·
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Noting that

q−1∑
r=1

q∑
s=r+1

(y2
ir + y2

is) =

q−1∑
r=1

q∑
s=r+1

y2
ir +

q−1∑
r=1

q∑
s=r+1

y2
is

=

q∑
r=1

(q − r)y2
ir +

q∑
r=1

(r − 1)y2
ir

= (q − 1)

q∑
r=1

y2
ir

and
∑q−1

r=1

∑q
s=r+1 2yiryis = (

∑q
r=1 yir)

2−
∑q

r=1 y
2
ir, the pairwise log-likelihood,

after some simplifications, can be rewritten as

c`P(β) = −nq(q − 1)

4
log

[
1 + β(q − 3)

(1− β)2{1 + β(q − 1)}

]
− (1− β){q − 1 + β(q2 − 2q + 1)}

2q{1 + β(q − 3)}
SSR

− (1− β){q − 1 + β(q2 − 3q + 1)}
q{1 + β(q − 3)}

SSW ·

Therefore, the pairwise likelihood function belongs to a curved exponen-

tial family where SSW and SSR are components of the sufficient statistic.

We need the expectation and variance of the variables SSW and SSR

to calculate quantities related to the pairwise likelihood. The results are

Eβ(SSW ) =
n(q − 1)

1− β
Eβ(SSR) =

nq

1 + β(q − 1)

Varβ(SSW ) =
2n(q − 1)

(1− β)2

Varβ(SSR) =
2nq2

{1 + β(q − 1)}2
·
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The score based on the pairwise likelihood is

cUP(β) =
d

dβ
c`P(β)

= −nq(q − 1){2β(2q − 3) + 2β2(q2 − 4q + 3)}
4(1− β){1 + β(q − 1)}{1 + β(q − 3)}

+
(q − 1){β2(q2 − 4q + 3) + 2β(q − 1)− 1}

2q{1 + β(q − 3)}2
SSR

+
{β2(q3 − 6q2 + 10q − 3) + β(2q2 − 6q + 2) + 1}

2{1 + β(q − 3)}2
SSW ·

The quantities required for the calculation of the Godambe information

are
d

dβ
cUP(β) = − nq(q − 1)g1(β, q)

2(1− β)2{1 + β(q − 3)}2{1 + β(q − 1)}2
+

2(q − 2)(q − 1)

{1 + β(q − 3)}3
SSR

+
(q − 2)2

{1 + β(q − 3)}3
SSW,

where

g1(β, q) = β4(q4 − 8q3 + 22q2 − 24q + 9) + β3(4q3 − 22q2 + 36q − 18)

+ β2(2q2 − 6q + 6) + β(2q2 − 8q + 6) + 2q − 3.

Hence,

HP(β) = Eβ

{
− d

dβ
cUP(β)

}
=

nq(q − 1)g1(β, q)

2(1− β)2{1 + β(q − 3)}2{1 + β(q − 1)}2

− 2(q − 2)(q − 1)

{1 + β(q − 3)}3
Eβ(SSR)− (q − 2)2

{1 + β(q − 3)}3
Eβ(SSW )

=
nq(q − 1)g1(β, q)

2(1− β)2{1 + β(q − 3)}2{1 + β(q − 1)}2

− 2nq(q − 2)(q − 1)

{1 + β(q − 1)}{1 + β(q − 3)}3
− n(q − 1)(q − 2)2

(1− β){1 + β(q − 3)}3

=
nq(q − 1)g2(β, q)

2(1− β)2{1 + β(q − 3)}2{1 + β(q − 1)}2
,

where

g2(β, q) = β4(q4 − 8q3 + 22q2 − 24q + 9) + β3(4q3 − 22q2 + 36q − 18)

+ β2(4q2 − 12q + 10)− 2β + 1.
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Finally we also have

JP(β) = Varβ{cUP(β)}

=

[
(q − 1){β2(q2 − 4q + 3) + 2β(q − 1)− 1}

2q{1 + β(q − 3)}2

]2

Varβ(SSR)

+

[
{β2(q3 − 6q2 + 10q − 3) + β(2q2 − 6q + 2) + 1}

2{1 + β(q − 3)}2

]2

Varβ(SSW )

=
n(q − 1)2{β2(q2 − 4q + 3) + 2β(q − 1)− 1}2

2{1 + β(q − 3)}4{1 + β(q − 1)}2

+
n(q − 1)g3(β, q)

2{1 + β(q − 3)}4(1− β)2
,

where, g3(β, q) = {β2(q3 − 6q2 + 10q − 3) + β(2q2 − 6q + 2) + 1}2.

The independence likelihood, with all weights equal to 1, is based on

the univariate marginal distributions, that is

Yir ∼ N

(
0,

1 + β(q − 2)

(1− β){1 + β(q − 1)}

)
r = 1, . . . , q.

The independence likelihood for one observation is

CLI(β) =

q∏
r=1

f(yir; β)

∝
[

1 + β(q − 2)

(1− β){1 + β(q − 1)}

]− q
2

exp

{
−(1− β){1 + β(q − 1)}

2{1 + β(q − 2)}

q∑
r=1

y2
ir

}
·

Hence, the independence log likelihood calculated for n independent ob-

servations is

c`I(β) = −nq
2

log

[
1 + β(q − 2)

(1− β){1 + β(q − 1)}

]
− (1− β){1 + β(q − 1)}

2{1 + β(q − 2)}

n∑
i=1

q∑
r=1

y2
ir·

As with the pairwise, substituting
∑n

i=1

∑q
r=1 y

2
ir = SSW + 1

q
SSR, we fi-

nally get

c`I(β) = −nq
2

log

[
1 + β(q − 2)

(1− β){1 + β(q − 1)}

]
− (1− β){1 + β(q − 1)}

2{1 + β(q − 2)}
SSW

− (1− β){1 + β(q − 1)}
2q{1 + β(q − 2)}

SSR·
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Even the independence likelihood belongs to a curved exponential family

with the components of the sufficient statistic given by SSW and SSR.

Therefore, the combined composite likelihood is also a curved exponential

family.

Now, we calculate some quantities of the interest related to the in-

dependence likelihood. We start with the score function and the second

derivative of c`I(β) which are given by

cU I(β) =
d

dβ
c`I(β)

= − nqβ(q − 1){2 + β(q − 2)}
2(1− β){1 + β(q − 2)}{1 + β(q − 1)}

+
β(q − 1){2 + β(q − 2)}

2{1 + β(q − 2)}2
SSW +

β(q − 1){2 + β(q − 2)}
2q{1 + β(q − 2)}2

SSR·

d

dβ
cU I(β) = − nq(q − 1)g4(β, q)

2(1− β)2{1 + β(q − 2)}2{1 + β(q − 1)}2
+

(q − 1)

{1 + β(q − 2)}3
SSW

+
(q − 1)

q{1 + β(q − 2)}3
SSR,

where g4(β, q) = {β4(q3 − 5q2 + 8q − 4) + β3(4q2 − 12q + 8) + β2(2q − 2) +

β(2q − 4) + 2}. Therefore

H I(β) = Eβ

{
− d

dβ
c`I(β)

}
=

nq(q − 1)g4(β, q)

2(1− β)2{1 + β(q − 2)}2{1 + β(q − 1)}2

− (q − 1)

{1 + β(q − 2)}3
Eβ(SSW )− (q − 1)

q{1 + β(q − 2)}3
Eβ(SSR)

=
nqβ2(q − 1)2{2 + β(q − 2)}2

2(1− β)2{1 + β(q − 2)}2{1 + β(q − 1)}2
·

Now, let us calculate the Godambe information as defined in Subsec-

tion 3.2.2. In order to simplify the expression of Ja(β) = Varβ{cUa(β)},
where cUa(β) = dc`a(β)/dβ, we can rewrite cUP(β) and cU I(β) as follows

cUP(β) = k1 + k2SSR + k3SSW, cU
I(β) = e1 + e2SSR + e3SSW,
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where the coefficients k1, k2, k3, e1, e2, e3 are given by

k1 = −nq(q − 1){2β(2q − 3) + 2β2(q2 − 4q + 3)}
4(1− β){1 + β(q − 1)}{1 + β(q − 3)}

k2 =
(q − 1){β2(q2 − 4q + 3) + 2β(q − 1)− 1}

2q{1 + β(q − 3)}2

k3 =
{β2(q3 − 6q2 + 10q − 3) + β(2q2 − 6q + 2) + 1}

2{1 + β(q − 3)}2

e1 = − nqβ(q − 1){2 + β(q − 2)}
2(1− β){1 + β(q − 2)}{1 + β(q − 1)}

e2 =
β(q − 1){2 + β(q − 2)}

2q{1 + β(q − 2)}2

e3 =
β(q − 1){2 + β(q − 2)}

2{1 + β(q − 2)}2
·

Therefore, we have that

cUa(β) = 2cUP(β)− a(q − 1)cU I(β)

= 2(k1 + k2SSR + k3SSW )− a(q − 1){e1 + e2SSR + e3SSW}

= 2k1 − a(q − 1)e1 + {2k2 − a(q − 1)e2}SSR + {2k3 − a(q − 1)e3}SSW,

and it follows that

Ja(β) = {2k2 − a(q − 1)e2}2Varβ(SSR) + {2k3 − a(q − 1)e3}2Varβ(SSW )

Ha(β) = 2HP(β)− a(q − 1)H I(β).

Using these two quantities, we get the Godambe information

Ga(β) = Ha(β)Ja(β)−1Ha(β) =
Ha(β)2

Ja(β)
·

Now, we consider the problem of finding the admissible values for the

constant a for which the combined composite likelihood satisfies the prop-

erties given in Section 2.2. In the present context, condition (3.1) leads to

the following constraint

a ≤ Aq(β) =
2{1 + β(q − 2)}2c(q, β)

β2(q − 1)2{1 + β(q − 3)}2{2 + β(q − 2)}2
,
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where,

c(q, β) = β4(q4 − 8q3 + 22q2 − 24q + 9) + β3(4q3 − 22q2 + 36q − 18)

+ β2(4q2 − 12q + 10)− 2β + 1.

We note here that the thresholdAq(β) depends on both β and q. Since β

is not known in advance, the aim is to determine a value for the threshold

which does not depend on the parameter β. On the other hand, once faced

with a real problem, the dependence on q is no longer an issue.

Thus, a conservative choice would be to find the minimum value of

Aq(β) with respect to β, in the range (− 1
q−1

, 1). We note in this example

that q is generic. Hence, we wish to find an upper bound for the constant

a which is a valid for any q. To this end, we will study graphically the

behavior of minβ Aq(β) with increasing q. Figure 3.1 displays the behavior

of minβ Aq(β) as a function of q and therefore, the plot leads us to the con-

clusion that the upper bound for the constant a corresponds to the lower

bound of minβ Aq(β), which is equal to 1 in this case. In other words, the

constant a assumes values less than or equal to 1 independently of q. As

a result, for a ≤ 1, the combined composite likelihood for this particular

model satisfies the requirement of being a sensible pseudo-likelihood.

As an illustration, if we consider the values for the constant a which

are not admissible, that is, values greater than 1, the combined compo-

site likelihood estimator may lose some of its fundamental properties and

hence, may not be suitable for inference on β. Figure 3.2 displays plots of

the combined composite likelihood in a simulated dataset for four differ-

ent values of a and highlights the cases in which the combined composite

likelihood is not useful.

We now perform a numerical assessment of consistency of the com-

bined composite likelihood estimator. Here, we only focus attention on

the case where n is fixed and q increases. In the opposite case, i.e. q fixed

and n increases, we have shown in Subsection 2.2.2 that the consistency

of β̂a is guaranteed. To this end, we ran a simulation experiment, with

n = 1, q = 3, 10, 10, 1000, 5000 and a ∈ {−10,−5,−1, 0, 0.5, 1, 2, 3, 5}. For
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Figure 3.1: Common partial correlation model. Behavior of minβ Aq(β) as

a function of q.

each combination, we performed 2000 iterations. The true value of β was

fixed to 0.7. Table 3.1 reports the mean squared errors (MSE) and as we see,

for the admissible values of a, they decrease toward zero as q increases.

This seems to suggest, although empirically, consistency of β̂a. Instead, as

expected, for values of a greater than one, the MSE of the estimator does

not decrease to zero.

We now compare in terms of efficiency the estimator based on full li-

kelihood with the one based on the combined composite likelihood. This
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Figure 3.2: Common partial correlation model. Combined composite like-

lihood for β, for a simulated sample with n = 10, q = 4 and true parameter

β0 = 0.7, in cases a = 1, 1.5, 1.82, 2 .

comparison is based on the asymptotic relative efficiency defined in (2.8).

Figure 3.3 displays the relative efficiencies in different situations. From

the plots, we note that for fixed values of a, as q increases, there is a loss

of efficiency of β̂a with respect to β̂. This result is more or less expected

when one uses a pseudo-likelihood in place of the full likelihood. Instead,

the plots in Figure 3.4 seem to suggest that for fixed values of q the effi-

ciency improves for increasing values of a although, for large values of q,
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Table 3.1: Common partial correlation model. Mean squared error of β̂a,

when n = 1, a = −10,−5,−1, 0, 0.5, 1, 2, 3, 5 and q = 3, 10, 100, 1000, 5000.

Results are obtained with 2000 simulated samples, and β0 = 0.7.

a

-10 -5 -1 0 0.5 1 2 3 5

q

3 0.18119 0.17503 0.17326 0.16978 0.16759 0.17749 0.20214 0.24283 0.27699

10 0.04473 0.04733 0.04584 0.04642 0.04271 0.04265 0.30427 0.40254 0.41615

100 0.00205 0.00204 0.0019 0.00198 0.00206 0.002 0.45859 0.48957 0.48991

1000 0.00017 0.00018 0.00017 0.00017 0.00018 0.00018 0.47504 0.48991 0.48991

5000 0.000035 0.000034 0.000035 0.000035 0.000036 0.000036 0.47800 0.48879 0.48879

different choices of a seem to lead to the same results. See also Table 3.1.

Therefore, a = 1 seems to be the best choice among the admissible values.

In other words, for this example the combined composite likelihood which

works better is the pairwise conditional likelihood.

3.3.2 A model for microarray data

Let us consider here a model for a microarray data. An application of this

particular model is suggested in Roverato & Di Lascio (2011). As in the

previous example, the aim is to compare the properties of the full max-

imum likelihood estimator with the one based on combined composite

likelihood, focusing the attention on the loss of efficiency. For the goals of

this study, we do not take into account the biological aspects.

Here, XV = (X1, . . . , Xp, Xtf ) is a vector of random variables and it is

assumed to have a multivariate normal distribution. In addition,X1, . . . , Xp

are (mutually) conditionally independent givenXtf . In particular, the model
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Figure 3.3: Common partial correlation model. Comparisons of the rela-

tive efficiency for fixed a and different values of q.

is characterized as follows:

E(Xtf ) = µtf

Var(Xtf ) = σ2
tf

E(Xr | Xtf = xtf ) = β0,r + β1,rxtf , r = 1, . . . , p,

Var(Xr | Xtf = xtf ) = σ2
r , r = 1, . . . , p,

where µtf , σ2
tf , β0,r, β1,r and σ2

r , r = 1, . . . , p, are parameters to be estimated.
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Figure 3.4: Common partial correlation model. Comparisons of the rela-

tive efficiency for fixed q and different values of a.

The components of the correlation matrix Σ = Cor(XV ) are given by

Cor(Xr, Xtf ) = ρr, Cor(Xr, Xs) = ρrρs,

where

ρr = sgn(β1,r)

(
ηrσ

2
tf

ηrσ2
tf + 1

) 1
2

,

with sgn(·) denoting the sign function and ηr = β2
1,r/σ

2
r the signal-to-noise

ratio for the regression of Xr on Xtf . After some algebra, we obtain that
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Cov(Xr, Xtf ) = β1,rσ
2
tf and Cov(Xr, Xs) = β1,rβ1,sσ

2
tf . It is also of interest

the submodel which assumes that the linear regressions of Xr on Xtf have

all the same signal-to-noise ratio ηr = η, this means that either β1r ∝ σr

or β1r = β and σr = σ. In the following, we consider the latter case,

with the further simplification of β0r = 0, for r = 1, . . . , p. Therefore,

the resulting model will have a four dimensional unknown parameter,

θ = (β1, σ
2, µtf , σ

2
tf ).

The determinant of Σ is

| Σ |= (σ2)pσ2
tf ,

and the corresponding determinant of the principal minor of order p is

|Mp×p |= (σ2)p
[
1 + p

β2
1σ

2
tf

σ2

]
·

As we can see, the determinants of all principal minors are positive and

therefore, the covariance matrix Σ is positive definite for any θ.

Full likelihood

The resulting model can be summarized as follows: Xtf ∼ N(µtf , σ
2
tf ) and

Xr | Xtf ∼ N(β1xtf , σ
2), r = 1, . . . , p. Considering a single observation, the

density function of XiV can be written as

f(xiV ) = f(xi1, . . . , xip, xitf )

= f(xi1 | xitf )f(xi2 | xitf ) . . . f(xip | xitf )f(xitf )

=

p∏
r=1

1√
2πσ2

exp

{
− 1

2σ2
(xir − β1xitf )

2

}
1√

2πσ2
tf

×

exp

{
− 1

2σ2
tf

(xitf − µtf )2

}

=
(
2πσ2

)−p/2
exp

{
− 1

2σ2

p∑
r=1

(xir − β1xitf )
2

}(
2πσ2

tf

)−1/2×

exp

{
− 1

2σ2
tf

(xitf − µtf )2

}
·
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The full likelihood based on n independent observations is given by

L(θ) ∝
(
σ2
)−np

2
(
σ2
tf

)−n/2
exp

{
− 1

2σ2

n∑
i=1

p∑
r=1

(xir − β1xitf )
2

}
×

exp

{
− 1

2σ2
tf

n∑
i=1

(xitf − µtf )2

}
,

and the corresponding log likelihood is

`(θ) = − 1

2σ2

n∑
i=1

p∑
r=1

(xir − β1xitf )
2 − 1

2σ2
tf

n∑
i=1

(xitf − µtf )2 − np

2
log(σ2)

= −n
2

log(σ2
tf )−

1

2σ2
SS1(β1)− 1

2σ2
tf

SS2(µtf )−
np

2
log(σ2)− n

2
log(σ2

tf ),

where SS1(β1) =
∑n

i=1

∑p
r=1 (xir − β1xitf )

2 and SS2(µtf ) =
∑n

i=1 (xitf − µtf )2 .

The score function has components

∂`(θ)

∂β1

= − 1

2σ2

n∑
i=1

p∑
r=1

2 (xir − β1xitf ) (−xitf ) =
1

σ2

n∑
i=1

p∑
r=1

(xir − β1xitf )xitf

∂`(θ)

∂µtf
=

1

σ2
tf

n∑
i=1

(xitf − µtf )

∂`(θ)

∂σ2
=

1

2(σ2)2
SS1(β1)− np

2σ2

∂`(θ)

∂σ2
tf

=
1

2(σ2
tf )

2
SS2(µtf )−

n

2σ2
tf

·

The likelihood equations can be solved explicitly producing the following

estimates:

β̂1 =
1

p

∑n
i=1 (xitf

∑p
r=1 xir)∑n

i=1 (xitf )
2

µ̂tf =

∑n
i=1 xitf
n

σ̂2 =
SS1(β̂1)

np

σ̂2
tf =

SS2(µ̂tf )

n
·
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The observed information matrix

j(β1, µtf , σ
2, σ2

tf ) =


jβ1β1 jβ1µtf jβ1σ2 jβ1σ2

tf

jβ1µtf jµtfµtf jµtfσ2 jµtfσ2
tf

jβ1σ2 jµtfσ2 jσ2σ2 jσ2σ2
tf

jβ1σ2
tf

jµtfσ2
tf

jσ2σ2
tf

jσ2
tfσ

2
tf


has elements

jβ1β1 = −∂
2`(θ)

∂β2
1

=
1

σ2

n∑
i=1

p∑
r=1

(xitf )
2 ,

jβ1µtf = − ∂2`(θ)

∂β1∂µtf
= 0,

jβ1σ2 = − ∂2`(θ)

∂β1∂σ2
=

1

(σ2)2

n∑
i=1

p∑
r=1

(xir − β1xitf )xitf ,

jβ1σ2
tf

= − ∂2`(θ)

∂β1∂σ2
tf

= 0,

jµtfµtf = −∂
2`(θ)

∂µ2
tf

=
n

σ2
tf

,

jµtfσ2 = − ∂2`(θ)

∂µtf∂σ2
= 0,

jµtfσ2
tf

= − ∂2`(θ)

∂µtf∂σ2
tf

=
1

(σ2
tf )

2

n∑
i=1

(xitf − µtf ) ,

jσ2σ2 = −∂
2`(θ)

∂(σ2)2
=

1

(σ2)3

n∑
i=1

p∑
r=1

(xir − β1xitf )
2 − np

2(σ2)2
,

jσ2σ2
tf

= − ∂
2`(θ)

∂σ2σ2
tf

= 0,

jσ2
tfσ

2
tf

= − ∂2`(θ)

∂(σ2
tf )

2
=

1

(σ2
tf )

3

n∑
i=1

(xitf − µtf )2 − n

2(σ2
tf )

2
·

The Fisher information matrix is

i(θ) = Eθ{j(θ)} =


iβ1β1 iβ1µtf iβ1σ2 iβ1σ2

tf

iβ1µtf iµtfµtf iµtfσ2 iµtfσ2
tf

iβ1σ2 iµtfσ2 iσ2σ2 iσ2σ2
tf

iβ1σ2
tf

iµtfσ2
tf

iσ2σ2
tf

iσ2
tfσ

2
tf





3.3 Examples 55

with elements

iβ1β1 = Eθ{jβ1β1} =
npEθ

{
(Xitf )

2}
σ2

=
np
{
σ2
tf + µ2

tf

}
σ2

,

iβ1µtf = Eθ{jβ1µtf} = 0,

iβ1σ2 = Eθ{jβ1σ2} =
1

(σ2)2

{
n∑
i=1

p∑
r=1

Eθ (XitfXir)− β1p

n∑
i=1

Eθ (Xitf )
2

}
=

1

(σ2)2

{
np
(
β1σ

2
tf + β1µ

2
tf

)
− npβ1

(
σ2
tf + µ2

tf

)}
= 0,

iβ1σ2
tf

= Eθ{jβ1σ2
tf
} = 0,

iµtfµtf = Eθ{jµtfµtf} =
n

σ2
tf

,

iµtfσ2 = Eθ{jµtfσ2} = 0,

iµtfσ2
tf

= Eθ{jµtfσ2
tf
} =

1

(σ2
tf )

2

n∑
i=1

Eθ {(Xitf − µtf )} = 0,

iσ2σ2 = Eθ{jσ2σ2} =
1

(σ2)3

n∑
i=1

p∑
r=1

Eθ

{
(Xir − β1Xitf )

2}− np

2(σ2)2
,

=
npσ2

(σ2)3
− np

2(σ2)2
=

np

2(σ2)2
,

iσ2σ2
tf

= Eθ{jσ2σ2
tf
} = 0,

iσ2
tfσ

2
tf

= Eθ{jσ2
tfσ

2
tf
} =

1

(σ2
tf )

3

n∑
i=1

Eθ

{
(Xitf − µtf )2}− n

2(σ2
tf )

2
,

=
nσ2

tf

(σ2
tf )

3
− n

2(σ2
tf )

2
=

n

2(σ2
tf )

2
·

Combined composite likelihood

We now consider the combined composite likelihood which might be ap-

propriate since both univariate and bivariate marginal densities depend

on all parameters of interest, except for the parameter µtf . Indeed, only

the univariate marginal densities depend on µtf .

For this model, the pairwise likelihood is based on the following two
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bivariate marginal distributions(
Xir

Xis

)
∼ N2

([
β1µtf

β1µtf

]
,

[
σ2 + β2

1σ
2
tf β2

1σ
2
tf

β2
1σ

2
tf σ2 + β2

1σ
2
tf

])
, r 6= s,

(
Xir

Xitf

)
∼ N2

([
β1µtf

µtf

]
,

[
σ2 + β2

1σ
2
tf β1σ

2
tf

β1σ
2
tf σ2

tf

])
,

and thus the pairwise likelihood based on n independent observations is

given by

CLP(θ) =
n∏
i=1

p−1∏
r=1

p∏
s=r+1

f(xir, xis; θ)
n∏
i=1

p∏
r=1

f(xir, xitf ; θ),

and the corresponding pairwise log likelihood, after some algebra, is

c`P(θ) = −
{pσ2 + β2

1σ
2
tf (p+ 2)}

2σ2(σ2 + 2β2
1σ

2
tf )

SS1 +
β1µtf (p− 1)

σ2 + 2β2
1σ

2
tf

SS2 +
β2

1σ
2
tf

2σ2(σ2 + 2β2
1σ

2
tf )

× SS3 −
(σ2 + β2

1σ
2
tf )p

2σ2
tfσ

2
SS4 +

µtfp

σ2
tf

SS5 +
β1

σ2
SS6 −

np(p− 1)

4
×

log
{
σ2(σ2 + 2β2

1σ
2
tf )
}
− np

2
log(σ2

tfσ
2)−

npµ2
tf{σ2 + β2

1σ
2
tf (p+ 1)}

2σ2
tf (σ

2 + 2β2
1σ

2
tf )

,

where,

SS1 =
n∑
i=1

p∑
r=1

x2
ir, SS2 =

n∑
i=1

p∑
r=1

xir, SS3 =
n∑
i=1

(
p∑
r=1

xir

)2

,

SS4 =
n∑
i=1

x2
itf , SS5 =

n∑
i=1

xitf , SS6 =
n∑
i=1

p∑
r=1

xirxitf .

(3.8)

The independence likelihood, with all weights equal to 1, is based on the

following univariate marginal distributions

Xitf ∼ N(µtf , σ
2
tf ),

Xir ∼ N(β1µtf , σ
2 + β2

1σ
2
tf ), r = 1, . . . , p,
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and is given by

c`I(θ) =
n∏
i=1

p∏
r=1

f(xir; β1, µtf , σ
2, σ2

tf )
n∏
i=1

f(xitf ;µtf , σ
2
tf )

=
n∏
i=1

p∏
r=1

1√
2π(σ2 + β2

1σ
2
tf )

exp

{
− 1

2(σ2 + β2
1σ

2
tf )

(xir − β1µtf )
2

}
n∏
i=1

1√
2πσ2

tf

exp

{
− 1

2σ2
tf

(xitf − µtf )2

}

= − 1

2(σ2 + β2
1σ

2
tf )
SS1 +

β1µtf
σ2 + β2

1σ
2
tf

SS2 −
1

2σ2
tf

SS4 +
µtf
σ2
tf

SS5

−
nµ2

tf{σ2 + β2
1σ

2
tf (p+ 1)}

2σ2
tf (σ

2 + β2
1σ

2
tf )

− np

2
log(σ2 + β2

1σ
2
tf )−

n

2
logσ2

tf .

The resulting combined composite likelihood for this model is therefore

c`a(θ) = −
{2β4

1(p+ 2)}(σ2
tf )

2 + {(4− 2a)β2
1p+ 4β2

1}σ2σ2
tf + (2− a)p(σ2)2

2σ2(σ2 + β2
1σ

2
tf )(σ

2 + 2β2
1σ

2
tf )

SS1

−
β1µtf [{(2a− 2)β2

1p+ 2β2
1}σ2

tf + {(a− 2)p+ 2}σ2]

(σ2 + β2
1σ

2
tf )(σ

2 + 2β2
1σ

2
tf )

SS2

+
β2

1σ
2
tf

σ2(σ2 + 2β2
1σ

2
tf )
SS3 −

p(2β2
1σ

2
tf + (2− a)σ2)

2σ2σ2
tf

SS4 −
(a− 2)µtfp

σ2
tf

SS5

+
2β1

σ2
SS6 −

np

2
{(p− 1)log{σ2(σ2 + 2β2

1σ
2
tf )} − aplog(σ2 + β2

1σ
2
tf )}

+
npµ2

tf{(2a− 2)β2
1σ

2
tf + (a− 2)σ2}{(β2

1p+ β2
1)σ2

tf + σ2}
2σ2

tf (σ
2 + β2

1σ
2
tf )(σ

2 + 2β2
1σ

2
tf )

− np

2
(2log(σ2σ2

tf )− alogσ2
tf )·

(3.9)

For compactness of notation, we rewrite c`a(θ) as

c`a(θ) = h1SS1 + h2SS2 + h3SS3 + h4SS4 + h5SS5 + h6SS6 + h7,

where h1 is the factor that multiplies SS1 in (3.9); and so on. For the cal-

culations and simplifications of some quantities related to the c`a(θ) we

have used the Computer Algebra System Maxima (version 5.20.1); see
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http://maxima.sourceforge.net/ for information about the software. For

the calculation of the matrixHa(θ), it is necessary to calculate the expected

values of the statistics defined in (3.8), that are

Eθ(SS1) = npEθ(X
2
ir) = np(σ2 + β2

1σ
2
tf + β2

1µ
2
tf ),

Eθ(SS2) = npEθ(Xir) = npβ1µtf ,

Eθ(SS3) = nEθ


(

p∑
r=1

Xir

)2
 = n

Varθ

(
p∑
r=1

Xir

)
+

{
Eθ

(
p∑
r=1

Xir

)}2
 ,

= β1µtf (3β
2
1σ

2
tf + 3σ2 + β2

1µ
2
tf ),

Eθ(SS4) = nEθ(X
2
itf ) = n(σ2

tf + µ2
tf ),

Eθ(SS5) = nEθ(Xitf ) = nµtf ,

Eθ(SS6) = npEθ(XirXitf ) = np{Covθ(Xir, Xitf ) + Eθ(Xir)Eθ(Xitf )},

= np(β1σ
2
tf + β1µ

2
tf ).

The elements of the matrix

Ha(θ) =


Ha
β1β1

Ha
β1µtf

Ha
β1σ2 Ha

β1σ2
tf

Ha
β1µtf

Ha
µtfµtf

Ha
µtfσ2 Ha

µtfσ
2
tf

Ha
β1σ2 Ha

µtfσ2 Ha
σ2σ2 Ha

σ2σ2
tf

Ha
β1σ2

tf
Ha
µtfσ

2
tf

Ha
σ2σ2

tf
Ha
σ2
tfσ

2
tf


are reported in Section A.1 of the Appendix A. In order to calculate the

terms of the matrix Ja(θ), it is necessary to know the variance of each ran-

dom variable defined in (3.8) and also the correlation between each pair of

variables. As regards the calculation of the mixed moments or moments

of order greater than two, we used the moment generating function of the

multivariate normal. Thus it follows that

Varθ(SS1) = n


p∑
r=1

Varθ(X2
ir) +

p∑
r=1

p∑
s=1
s 6=r

Covθ(X
2
ir, X

2
is)


= n

{
pVarθ(X2

ir) + p(p− 1)Covθ(X
2
ir, X

2
is)
}
,
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= n
[
p
[
Eθ(X

4
ir)−

{
Eθ(X

2
ir)
}2
]

+ p(p− 1)
{

Eθ(X
2
irX

2
is)

−Eθ(X
2
ir)Eθ(X

2
is)
}]

= 2np
[
β4

1p(σ
2
tf )

2 + 2β2
1σ

2σ2
tf + 2β4

1µ
2
tfpσ

2
tf + (σ2)2 + 2β2

1µ
2
tfσ

2
]
,

Varθ(SS2) = n


p∑
r=1

Varθ(Xir) +

p∑
r=1

p∑
s=1
s 6=r

Covθ(Xir, Xis)


= n(β2

1p
2σ2

tf + pσ2),

Varθ(SS3) = nVarθ


(

p∑
r=1

Xir

)2


= n

Eθ


(

p∑
r=1

Xir

)4
−

Eθ


(

p∑
r=1

Xir

)2

2

= 2np2(pβ2
1σ

2
tf + σ2)(pβ2

1σ
2
tf + σ2 + 2pβ2

1µ
2
tf ),

Varθ(SS4) = nVarθ(X2
itf ) = n

[
Eθ(X

4
itf )−

{
Eθ(X

2
itf )
}2
]

= 2nσ2
tf (σ

2
tf + 2µ2

tf ),

Varθ(SS5) = nVarθ(Xitf ) = nσ2
tf ,

Varθ(SS6) = n

{
Varθ

(
p∑
r=1

XirXitf

)}
= np(2β2

1p(σ
2
tf )

2 + σ2σ2
tf + 4β2

1µ
2
tfpσ

2
tf + µ2

tfσ
2).

We now calculate the covariance between each pair of variables. Thus we

have that

Covθ(SS1, SS2) = Eθ(SS1SS2)− Eθ(SS1)Eθ(SS2).

Since the corresponding expected values are known, we only need to cal-

culate the expected value of SS1SS2, which can be formally rewritten as

SS1SS2 =
n∑
i=1

p∑
r=1

X2
ir

n∑
j=1

p∑
s=1

Xjs =
n∑
i=1

Ti1

n∑
j=1

Tj2

=
n∑
i=1

Ti1Ti2 +
n∑
i=1

n∑
j=1

j 6=i

Ti1Tj2,



60 Chapter 3. Combined composite likelihood

where Ti1Ti2 can in turn be rewritten as

Ti1Ti2 =

p∑
r=1

X2
ir

p∑
s=1

Xis =

p∑
r=1

X3
ir +

p∑
r=1

p∑
s=1
s 6=r

X2
irXis.

Considering the expected values, it follows that

Eθ(Ti1Ti2) = pEθ(X
3
ir) + p(p− 1)Eθ(X

2
irXis),

Eθ(SS1, SS2) = n{pEθ(X
3
ir) + p(p− 1)Eθ(X

2
irXis)}+ n(n− 1)Eθ(Ti1)Eθ(Tj2)

= n{pEθ(X
3
ir) + p(p− 1)Eθ(X

2
irXis)}+

(n− 1)

n
Eθ(SS1)Eθ(SS2).

Therefore, we have

Covθ(SS1, SS2) = n{pEθ(X
3
ir) + p(p− 1)Eθ(X

2
irXis)}+

(n− 1)

n
Eθ(SS1)Eθ(SS2)

− Eθ(SS1)Eθ(SS2),

= 2npβ1µtf (β
2
1pσ

2
tf + σ2).

Proceeding in the same way for the calculation of the remaining covari-

ances, we get the following results

Covθ(SS1, SS3) = n{pEθ(X
4
ir) + p(p− 1)Eθ(X

2
irX

2
is) + 2p(p− 1)Eθ(X

3
irXis)

+ p(p− 1)(p− 2)Eθ(X
2
irXisXiv)}+

(n− 1)

n
Eθ(SS1)Eθ(SS3)

− Eθ(SS1)Eθ(SS3)

= 2np(β2
1pσ

2
tf + σ2)(β2

1pσ
2
tf + σ2 + 2β2

1µ
2
tfp),

Covθ(SS1, SS4) = 2npβ2
1σ

2
tf (σ

2
tf + 2µ2

tf ),

Covθ(SS1, SS5) = 2npβ2
1µtfσ

2
tf ,

Covθ(SS1, SS6) = 2npβ1(β2
1p(σ

2
tf )

2 + σ2σ2
tf + 2β2

1µ
2
tfpσ

2
tf + µ2

tfσ
2),

Covθ(SS2, SS3) = 2np2β1µtf (β
2
1pσ

2
tf + σ2),

Covθ(SS2, SS4) = 2npβ1µtfσ
2
tf ,

Covθ(SS2, SS5) = npβ1σ
2
tf ,

Covθ(SS2, SS6) = npµtf (2β
2
1pσ

2
tf + σ2),

Covθ(SS3, SS4) = 2np2β2
1σ

2
tf (σ

2
tf + 2µ2

tf ),

Covθ(SS3, SS5) = 2np2β2
1µtfσ

2
tf ,
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Covθ(SS3, SS6) = 2np2β1(β2
1p(σ

2
tf )

2 + σ2σ2
tf + 2β2

1µ
2
tfpσ

2
tf + µ2

tfσ
2),

Covθ(SS4, SS5) = 2nµtfσ
2
tf ,

Covθ(SS4, SS6) = 2npβ1σ
2
tf (σ

2
tf + 2µ2

tf ),

Covθ(SS5, SS6) = 2npβ1µtfσ
2
tf .

Using the above quantities we can compute the elements of the matrix

Ja(θ) = Var

{
∂c`a(θ)

∂θ

}
=


Jaβ1β1 Jaβ1µtf Jaβ1σ2 Ja

β1σ2
tf

Jaβ1µtf Jaµtfµtf Jaµtfσ2 Ja
µtfσ

2
tf

Jaβ1σ2 Jaµtfσ2 Jaσ2σ2 Ja
σ2σ2

tf

Ja
β1σ2

tf
Ja
µtfσ

2
tf

Ja
σ2σ2

tf
Ja
σ2
tfσ

2
tf


which are reported in Section A.2 of the Appendix A. Finally, the Godambe

information will be given by

Ga(θ) = Ha(θ)Ja(θ)−1Ha(θ).

Since in this example the parameter is a vector, we need a condition

similar to the one defined in (3.1), in order to determine the values of

a for which the eigenvalues of Ha(θ) are all positive. The eigenvalues

are required to be positive so that the matrix Ha(θ) is positive definite.

Several combinations of values of θ lead to the conclusion that a ≤ 1. In

other words, for those values, the combined composite satisfies the re-

quirements of being a proper pseudo-likelihood with the desirable prop-

erties defined in Subsection 3.2.1. This result is independent of the length

of the random vector.

Next we focus attention on the properties of the maximum combined

composite likelihood estimator. We first perform a numerical assessment

of the consistency of the combined composite likelihood and the full like-

lihood estimators. We consider two scenarios: in the first one n is fixed

and p increases, while p is fixed and n increases in the second case. We

start with the first case, running a simulation experiment, with n = 10, q =

3, 10, 100, 1000, 5000 and a ∈ {−5,−1, 0, 0.5, 1, 2, 5}. For each combination,
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Table 3.2: Model for microarray data. Mean squared error of θ̂aC =

(β̂a1 , µ̂
a
tf , σ̂

2a, σ̂2a
tf ), when n = 10, a = −5,−1, 0, 0.5, 1, 2, 5 and p =

3, 10, 100, 1000, 5000. Results are obtained with 2000 simulated samples,

and with the true parameter value θ0 = (−1, 0, 1, 1).
a

p -5 -1 0 0.5 1 2 5

MSE(β̂a
1)

3 0.0592 0.0440 0.0432 0.0430 0.0433 1.716867×105 3.093910×105

10 0.0228 0.0139 0.0139 0.0140 0.0140 2.618219×105 3.422988×105

100 0.0047 0.0012 0.0012 0.0012 0.0012 2.343502×105 3.696692×105

1000 0.0210 0.0229 0.0146 0.0093 0.0034 1.833506×105 3.053121×105

5000 0.2529 0.2157 0.1890 0.1221 0.0652 1.968528×105 2.720468×105

MSE(µ̂a
tf)

3 0.1085 0.1056 0.1029 0.0999 0.0980 7.502026×104 4.030207×104

10 0.1061 0.1059 0.1055 0.1050 0.1034 5.749886×104 4.107768×104

100 0.1054 0.1052 0.1051 0.1051 0.1050 4.781126×104 7.102014×104

1000 0.1190 0.1292 0.1154 0.1199 0.1106 3.808045×104 4.680990×104

5000 0.2203 0.2247 0.2228 0.2140 0.1943 3.841907×104 3.908486×104

MSE(σ̂2a)

3 0.0703 0.0679 0.0679 0.0680 0.0681 4.245588×10103 1.660055×10302

10 0.0227 0.0223 0.0222 0.0222 0.0222 4.163829×1062 7.005268×10301

100 0.0020 0.0020 0.0020 0.0020 0.0020 5.147217×1024 7.396962×10302

1000 0.0002 0.0002 0.0002 0.0002 0.0002 2.096144×105 4.821654×10301

5000 0.0000 0.0000 0.0000 0.0000 0.0000 1.290243×104 1.295549×10300

MSE(σ̂2a
tf )

3 0.1714 0.1713 0.1716 0.1721 0.1752 1.311488×10305 8.153252×10298

10 0.1874 0.1877 0.1878 0.1878 0.1881 4.013616×10302 3.367751×10298

100 0.2128 0.2096 0.2095 0.2096 0.2095 1.151755×10294 3.419950×10292

1000 0.4412 0.3913 0.3241 0.4060 0.2629 2.082348×10292 1.384276×10291

5000 2.2101 2.3075 2.2067 2.5153 1.6164 5.781598×10291 1.107073×10291

we performed 2000 iterations. The results correspond to θ0 = (−1, 0, 1, 1)

and θ0 = (−2, 1, 3, 2) as the true parameter values. Table 3.2 and Table 3.3

report the mean squared errors (MSE) based on the combined composite

likelihood and the full likelihood, respectively. The results in both tables

are obtained by means of the first set of true parameter values, while the

results in Table 3.4 and Table 3.5 are obtained with the second set of true

parameter values. As we can see from Table 3.2 and Table 3.4, for ad-

missible values of a, only the mean squared errors of σ̂2a decrease toward

zero as p increases. This seems to suggest, although empirically, that the
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Table 3.3: Model for microarray data. Mean squared error of θ̂ =

(β̂1, µ̂tf , σ̂
2, σ̂2

tf ), when n = 10 and p = 3, 10, 100, 1000, 5000. Results are

obtained with 2000 simulated samples, and with the true parameter value

θ0 = (−1, 0, 1, 1).

MSE(β̂1) MSE(µ̂tf) MSE(σ̂2) MSE(σ̂2
tf)

p = 3 0.0415 0.0961 0.0647 0.1714

p = 10 0.0135 0.1010 0.0202 0.1880

p = 100 0.0012 0.1035 0.0020 0.2093

p = 1000 0.0001 0.1032 0.0002 0.2342

p = 5000 0.0000 0.1090 0.0000 0.4086

combined composite likelihood estimator is not consistent. Instead, for

values of a greater than one, some fundamental properties of a pseudo-

likelihood may not be satisfied by the combined composite likelihood and

we see that the estimates based on it are extremely far from the true val-

ues. Here, it is important to note that, empirically, not only the combined

composite likelihood estimator is not consistent, but also the one based on

the full likelihood is not consistent. In fact, Table 3.3 and Table 3.5 show

that only the MSE of β̂1 and σ̂2 decrease toward zero as p increases. Hence,

the lack of consistency is not due to the use of the combined combined

likelihood in place of the standard likelihood, but rather it may be related

to the structure of the model.

In the second scenario we ran a simulation experiment with p = 9, n =

10, 100, 500, 1000, 5000 and a ∈ {−5,−1, 0, 0.5, 1, 2, 5}. Table 3.6 and Ta-

ble 3.8 report the mean squared errors based on the combined composite

likelihood obtained with θ0 = (−1, 0, 1, 1) and θ0 = (−2, 1, 3, 2), respec-

tively. We notice that for admissible values of a, the MSE decreases to-

ward zero as n increases. This seems to suggest, although empirically,

the consistency of the combined composite likelihood estimator. For val-
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Table 3.4: Model for microarray data. Mean squared error of θ̂aC =

(β̂a1 , µ̂
a
tf , σ̂

2a, σ̂2a
tf ), when n = 10, a = −5,−1, 0, 0.5, 1, 2, 5 and p =

3, 10, 100, 1000, 5000. Results are obtained with 2000 simulated samples,

and with the true parameter value θ0 = (−2, 1, 3, 2).
a

p -5 -1 0 0.5 1 2 5

MSE(β̂a
1)

3 0.0424 0.0420 0.0419 0.0419 0.0420 5.278710×104 1.570991×105

10 0.0126 0.0125 0.0125 0.0125 0.0125 1.709610×105 1.656774×105

100 0.0015 0.0012 0.0012 0.0012 0.0012 1.572923×105 2.157054×105

1000 0.0716 0.0312 0.0204 0.0172 0.0098 1.444416×105 2.099350×105

5000 0.6107 0.4775 0.3180 0.2842 0.2296 1.143040×105 1.544233×105

MSE(µ̂a
tf)

3 0.2074 0.2050 0.2024 0.1991 0.2121 5.895803×104 3.177277×104

10 0.2121 0.2119 0.2114 0.2108 0.2081 5.063908×104 2.192632×104

100 0.1988 0.2004 0.2004 0.2004 0.2004 2.888373×104 2.868215×104

1000 0.2618 0.2201 0.2152 0.2149 0.2114 3.081039×103 1.072239×104

5000 0.8730 0.7566 0.6918 0.6246 0.5360 3.618577×103 6.011371×103

MSE(σ̂2a)

3 0.6507 0.6281 0.6288 0.6318 0.6391 1.653355×10180 8.636679×10301

10 0.1904 0.1891 0.1892 0.1895 0.1903 2.417218×10156 2.489486×10300

100 0.0186 0.0185 0.0185 0.0185 0.0184 8.378486×1079 4.098673×10302

1000 0.0020 0.0019 0.0019 0.0019 0.0018 3.187088×1064 3.967151×10301

5000 0.0005 0.0005 0.0005 0.0005 0.0004 1.982706×1060 7.388832×10300

MSE(σ̂2a
tf )

3 0.7161 0.7153 0.7134 0.7109 0.7451 7.350199×10305 7.164529×10301

10 0.7544 0.7619 0.7624 0.7503 0.7549 9.085017×10304 3.115345×10301

100 0.7835 0.7870 0.7862 0.7859 0.7826 6.782670×10294 1.213578×10294

1000 1.2892 0.9880 0.9420 0.9378 0.7877 2.220682×10293 4.607355×10292

5000 4.4799 3.8167 3.4749 3.2181 2.6509 5.204166×10293 2.012821×10292
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Table 3.5: Model for microarray data. Mean squared error of θ̂ =

(β̂1, µ̂tf , σ̂
2, σ̂2

tf ), when n = 10 and p = 3, 10, 100, 1000, 5000. Results are

obtained with 2000 simulated samples, and with the true parameter value

θ0 = (−2, 1, 3, 2).

MSE(β̂1) MSE(µ̂tf) MSE(σ̂2) MSE(σ̂2
tf)

p = 3 0.0416 0.1958 0.5925 0.7067

p = 10 0.0124 0.2067 0.1764 0.7445

p = 100 0.0012 0.2009 0.0182 0.7895

p = 1000 0.0001 0.2452 0.0018 1.0832

p = 5000 0.0000 0.4275 0.0004 3.4067

ues of a greater than one, the combined composite likelihood estimates

are very far from the true values. On the other hand, Table 3.7 and Ta-

ble 3.9 report the analogous quantities based on the full likelihood. The

MSE decreases toward zero which confirms empirically the consistency of

the maximum likelihood estimator. In this situation, the consistency of

the estimator based on both combined composite and full likelihood was

expected from large-sample theory.

We now look at the efficiency of the combined composite likelihood

estimator (θ̂aC) with respect to the full likelihood estimator (θ̂). Since the

parameter is multidimensional, we suppose that it is of interest to com-

pare the efficiency of the estimators for the single component β1, being the

regression parameter, we use the appropriate measure defined in (2.10).

Figure 3.5 displays the efficiency of the estimator of β1 based on com-

bined composite likelihood compared to the one based on the full likeli-

hood for fixed a as p increases. As expected, using a combined composite

likelihood in place of the standard likelihood, the four plots illustrate a

loss of efficiency as p increases. In order to choose a value of a for which

the efficiency is high, we present Figure 3.6 which shows the behavior of
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Table 3.6: Model for microarray data. Mean squared error of θ̂aC =

(β̂a1 , µ̂
a
tf , σ̂

2a, σ̂2a
tf ), when p = 9, a = −5,−1, 0, 0.5, 1, 2, 5 and n =

10, 100, 500, 1000, 5000. Results are obtained with 2000 simulated samples,

and with the true parameter value θ0 = (−1, 0, 1, 1).
a

n -5 -1 0 0.5 1 2 5

MSE(β̂a
1)

10 0.0224 0.0144 0.0144 0.0144 0.0145 3.759398×105 4.472782×105

100 0.0011 0.0011 0.0011 0.0011 0.0011 6.274038×105 2.562903×105

500 0.0002 0.0002 0.0002 0.0002 0.0002 8.194322×105 2.596649×105

1000 0.0001 0.0001 0.0001 0.0001 0.0001 8.822953×105 2.609885×105

5000 0.0000 0.0000 0.0000 0.0000 0.0000 1.323419×106 2.707208×105

MSE(µ̂a
tf)

10 0.1097 0.1094 0.1088 0.1081 0.1061 6.286917×104 5.163544×104

100 0.0102 0.0101 0.0101 0.0100 0.0098 2.098034×105 1.261197×104

500 0.0022 0.0022 0.0022 0.0022 0.0021 2.741952×105 7.834310×103

1000 0.0010 0.0010 0.0010 0.0010 0.0010 2.817887×105 6.783551×103

5000 0.0002 0.0002 0.0002 0.0002 0.0002 4.572647×105 4.673932×103

MSE(σ̂2a)

10 0.0247 0.0239 0.0239 0.0239 0.0239 1.397317×1065 1.045596×10302

100 0.0023 0.0024 0.0024 0.0024 0.0024 1.941055×10118 4.634396×10123

500 0.0005 0.0005 0.0005 0.0005 0.0005 3.818256×10121 6.211956×10105

1000 0.0002 0.0002 0.0002 0.0002 0.0002 7.612732×1066 2.968534×10104

5000 0.0000 0.0000 0.0000 0.0000 0.0000 4.819678×1067 5.418265×10105

MSE(σ̂2a
tf )

10 0.1835 0.1835 0.1836 0.1838 0.1842 5.840136×10299 4.808050×10294

100 0.0196 0.0196 0.0196 0.0196 0.0196 2.742888×10299 3.540877×10293

500 0.0041 0.0041 0.0041 0.0041 0.0041 4.778824×10302 1.624803×10291

1000 0.0021 0.0021 0.0021 0.0021 0.0021 8.562701×10302 6.307040×10290

5000 0.0004 0.0004 0.0004 0.0004 0.0004 6.211489×10301 2.687328×10287
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Table 3.7: Model for microarray data. Mean squared error of θ̂ =

(β̂1, µ̂tf , σ̂
2, σ̂2

tf ), when p = 9 and n = 10, 100, 500, 1000, 5000. Results are

obtained with 2000 simulated samples, and with the true parameter value

θ0 = (−1, 0, 1, 1).

MSE(β̂1) MSE(µ̂tf) MSE(σ̂2) MSE(σ̂2
tf)

n = 10 0.0139 0.1032 0.0220 0.1832

n = 100 0.0011 0.0096 0.0022 0.0195

n = 500 0.0002 0.0021 0.0005 0.0041

n = 1000 0.0001 0.0010 0.0002 0.0021

n = 5000 0.0000 0.0002 0.0000 0.0004

the efficiency for different values of a when p is fixed. As we see in each

plot, except for a small range of values of β1, the efficiency improves as a

increases. Hence, a = 1 seems to be the best choice among the admissible

values.

Figure 3.7 displays the efficiency of the estimator of µtf based on com-

bined composite likelihood compared to the one based on the full likeli-

hood. In each plot, a is fixed and p increases. As we see from the plots,

the efficiency improves as p increases. This result is due to the fact that

only the one-dimensional marginal distributions depend on µtf and hence,

there is more information as p increases. Even when p is fixed, the effi-

ciency improves as a increases. This result is highlighted by plots in Figure

3.8. In addition, it seems that a = 1 is the best choice among the admissible

values.

Figure 3.9 displays the efficiency of the estimator of σ2 based on com-

bined composite likelihood compared to the one based on the full like-

lihood. Each plot shows the behavior of the efficiency for a fixed as p

increases. This is one of the situations in which one could not draw con-

clusions on the behavior of efficiency as p increases because the curves of



68 Chapter 3. Combined composite likelihood

Table 3.8: Model for microarray data. Mean squared error of θ̂aC =

(β̂a1 , µ̂
a
tf , σ̂

2a, σ̂2a
tf ), when p = 9, a = −5,−1, 0, 0.5, 1, 2, 5 and n =

10, 100, 500, 1000, 5000. Results are obtained with 2000 simulated samples,

and with the true parameter value θ0 = (−2, 1, 3, 2).
a

n -5 -1 0 0.5 1 2 5

MSE(β̂a
1)

10 0.0144 0.0143 0.0143 0.0142 0.0142 6.593243×10104 9.280760×10151

100 0.0011 0.0011 0.0011 0.0011 0.0011 2.995195×10104 1.689540×10104

500 0.0002 0.0002 0.0002 0.0002 0.0002 1.846842×10104 8.140274×10103

1000 0.0001 0.0001 0.0001 0.0001 0.0001 1.610371×10104 7.525042×10103

5000 0.0000 0.0000 0.0000 0.0000 0.0000 9.306610×10103 2.966837×10103

MSE(µ̂a
tf)

10 0.2110 0.2105 0.2099 0.2092 0.2071 3.465411×10159 2.600087×10157

100 0.0196 0.0195 0.0195 0.0194 0.0192 5.174811×10159 4.316354×10156

500 0.0042 0.0042 0.0042 0.0042 0.0041 8.848096×10158 1.804273×10155

1000 0.0020 0.0020 0.0020 0.0020 0.0019 3.915642×10133 4.469000×10120

5000 0.0004 0.0004 0.0004 0.0004 0.0004 3.744291×10159 1.256356×10155

MSE(σ̂2a)

10 0.2186 0.2164 0.2165 0.2167 0.2171 1.659716×10103 1.625001×10100

100 0.0213 0.0213 0.0213 0.0213 0.0213 1.004332×10102 8.915114×10100

500 0.0044 0.0044 0.0044 0.0044 0.0044 4.855651×10102 2.188066×10100

1000 0.0021 0.0021 0.0021 0.0021 0.0021 4.302051×10103 4.802324×1099

5000 0.0004 0.0004 0.0004 0.0004 0.0004 1.131754×10103 1.048383×1099

MSE(σ̂2a
tf )

10 0.7415 0.7432 0.7437 0.7435 0.7428 3.223752×1071 1.287497×1027

100 0.0794 0.0796 0.0797 0.0796 0.0791 3.850310×1043 2.876550×1025

500 0.0166 0.0167 0.0167 0.0166 0.0165 3.523973×1048 2.801829×1021

1000 0.0082 0.0082 0.0082 0.0082 0.0082 4.900425×1068 2.114810×1021

5000 0.0016 0.0016 0.0016 0.0016 0.0016 2.164125×1046 2.947112×1020
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Table 3.9: Model for microarray data. Mean squared error of θ̂ =

(β̂1, µ̂tf , σ̂
2, σ̂2

tf ), when p = 9 and n = 10, 100, 500, 1000, 5000. Results are

obtained with 2000 simulated samples, and with the true parameter value

θ0 = (−2, 1, 3, 2).

MSE(β̂1) MSE(µ̂tf) MSE(σ̂2) MSE(σ̂2
tf)

n = 10 0.01403 0.20632 0.19786 0.73268

n = 100 0.00113 0.01918 0.01963 0.07818

n = 500 0.00023 0.00414 0.00407 0.01638

n = 1000 0.00011 0.00194 0.00196 0.00821

n = 5000 0.00002 0.00042 0.00041 0.00154

efficiency corresponding to different values of p, intersect in some values

of β. However, the plots in Figure 3.10 suggest that for fixed p, the effi-

ciency gets better as a increases except for smaller values of σ2. Also in

this case, a = 1 seems to be the best choice.

Figures 3.11 and 3.12 display the efficiency of the estimator of σ2
tf based

on combined composite likelihood compared to the one based on the full

likelihood. From this graphical analysis, it follows that overall one may

consider a = 1 as the best choice.

For this model, the efficiency is particularly high in all cases. Therefore,

the combined composite likelihood may be considered as a good alterna-

tive to the full likelihood. In both examples we propose as the best choice

to use a = 1, which corresponds to the pairwise conditional likelihood.
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Figure 3.5: Model for microarray data. Comparisons of efficiency of β̂a1
relative to β̂1 for fixed a, different values of p and fixed values for the other

parameters.
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Figure 3.6: Model for microarray data. Comparisons of efficiency of β̂a1
relative to β̂1 for fixed p, different values of a and fixed values for the other

parameters.
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Figure 3.7: Model for microarray data. Comparisons of efficiency of µ̂atf
relative to µ̂tf for fixed a, different values of p and fixed values for the

other parameters.
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Figure 3.8: Model for microarray data. Comparisons of efficiency of µ̂atf
relative to µ̂tf for fixed p, different values of a and fixed values for the

other parameters.
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Figure 3.9: Model for microarray data. Comparisons of efficiency of σ̂2a

relative to σ̂2 for fixed a, different values of p and fixed values for the other

parameters.
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Figure 3.10: Model for microarray data. Comparisons of efficiency of σ̂2a

relative to σ̂2 for fixed p, different values of a and fixed values for the other

parameters.
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Figure 3.11: Model for microarray data. Comparisons of efficiency of σ̂2a
tf

relative to σ̂2
tf for fixed a, different values of p and fixed values for the other

parameters.



3.3 Examples 77

0 2 4 6 8 10

0.
93

0.
95

0.
97

0.
99

p=3

σtf
2

R
el

at
iv

e 
ef

fic
ie

nc
y 

  

a=−0.5
a=0
a=0.5
a=1

0 2 4 6 8 10

0.
90

0.
94

0.
98

p=10

σtf
2

R
el

at
iv

e 
ef

fic
ie

nc
y 

  
a=−0.5
a=0
a=0.5
a=1

0 1 2 3 4

0.
92

0.
94

0.
96

0.
98

1.
00

p=50

σtf
2

R
el

at
iv

e 
ef

fic
ie

nc
y 

  

a=−0.5
a=0
a=0.5
a=1

0 1 2 3 4

0.
95

0.
97

0.
99

p=100

σtf
2

R
el

at
iv

e 
ef

fic
ie

nc
y 

  

a=−0.5
a=0
a=0.5
a=1

Figure 3.12: Model for microarray data. Comparisons of efficiency of σ̂2a
tf

relative to σ̂2
tf for fixed p, different values of a and fixed values for the other

parameters.





Chapter 4

Weighted independence

likelihood and prediction

4.1 Introduction and motivations

We consider multivariate problems where the ordinary likelihood is un-

known or too time-consuming to compute and where the prediction of the

future observations of a subset of variables could be of interest. The use

of an appropriate pseudo-likelihood in a prediction framework could be

a possible solution to this problem. In this situation, it may be useful a

well-known example of composite marginal likelihood, the independence

likelihood (Chandler & Bate, 2007), which is constructed by using only

the univariate marginal densities under the working assumption of inde-

pendence. Since in the construction of the independence likelihood it is

assumed the independence between variables when they are actually de-

pendent, it might be appropriate to give different weights to the univariate

marginal densities, obtaining a weighted independence likelihood. In this

way, we seek to improve prediction on the variables of interest.

The focus here is on determining the set of weights in order to have

a good prediction of the variables of interest, considering the remaining

components as auxiliary variables, and also to find suitable definition of
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weighted independence likelihood. We use a cross-validation procedure

based on a particular empirical measure as a criterion for determining the

weights.

The present chapter is a first attempt to enter this topic and provide

some directions for future works. In particular, Section 4.2 defines the

weighted independence likelihood and proposes a criterion for choosing

the weights, while Section 4.3 gives two simple examples with preliminary

simulation results.

4.2 Weighted independence likelihoods

We want to choose the weights that lead to a good prediction of the vari-

ables of interest. Before taking into account the criterion, we describe the

forms of the weighted independence likelihood that we have in mind.

Let F =
{
f(y; θ) : θ ∈ Θ ⊆ Rd, y ∈ Y ⊆ Rq

}
be a statistical parametric

model. Let Y1, . . . , Yq be dependent random vectors, where Yr = (Y1r, Y2r,

. . . , Ynr)
T, r = 1, . . . , q,with probability density functions f1(·; θ), . . . , fq(·; θ).

We assume that Y1r, Y2r, . . . , Ynr are independent and identically distributed

random variables, for any given r = 1, . . . , q. Moreover, we also suppose

without loss of generality that the prediction of Y(n+1)1 is of interest. In

this situation, it could be interesting to use a weighted independence log-

likelihood of the form

c`I
1(θ; y) = `(θ; y1) +

q∑
i=2

wi`(θ; yi), 0 < wi ≤ 1, i = 2, . . . , q. (4.1)

As we can see in this first form, the likelihood contribution of the variable

Y1 has weight equal to 1, while the remaining components could be down-

weighted. In this way, we implicitly seek to give more importance to the

variable Y1 being of interest the prediction of its future observation, while

assuming that the remaining variables could still provide useful informa-

tion on θ.
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A different proposal is a classic convex combination of the weights,

with which we get the weighted independence log-likelihood

c`I
2(θ; y) =

q∑
i=1

wi`(θ; yi),where

q∑
i=1

wi = 1. (4.2)

Returning to the primary aim, a good prediction of Y(n+1)1 with min-

imal error is given by φ(θ) = Eθ{Y(n+1)1 | Yn1, Y(n−1)1, . . . , Y11} = Eθ{Y11}
due to the independence assumption. As in Wang & Zidek (2005) in a

weighted likelihood framework, we use the delete-one approach in a cross

validation procedure based on the empirical measure

D(w) =
n∑
i=1

(
yi1 − φ(θ̃(−i))

)2

,

where w = (w1, . . . , wq) is the set of weights and θ̃(−i) is the estimate of

θ without using yi1, yi2, . . . , yiq. In D(w), we predict Yi1, i = 1, . . . , n, by

φ(θ̃(−i)), the estimator of φ(θ) based either on one of the two forms of the

weighted independence likelihood defined in (4.1) and (4.2), or on the un-

weighted independence likelihood where all weights are equal. The opti-

mum weights are obtained minimizing D(w). We can easily see from the

form of D(w) that the weights are therefore data-dependent.

4.3 Examples and simulation results

In this section we present two examples in order to evaluate the perfor-

mance on the prediction of the variable of interest using a weighted in-

dependence likelihood in place of the standard likelihood. Moreover, we

also compare the results with the classical unweighted independence li-

kelihood. In particular, the first example deals with a bivariate Poisson

model and the second one with a bivariate normal model. In both exam-

ples, the parameter is scalar.
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4.3.1 Bivariate Poisson model

Let Xi ∼ Poisson(θi) , i = 1, 2 and X0 ∼ Poisson(θ), be independent

random variables. Consider the random variables Y1 = X1 + X0 and Y2 =

X2 + X0, then (Y1, Y2) is a bivariate Poisson, (Y1, Y2) ∼ BP (θ1, θ2, θ), with

joint distribution function given by

P (Y1 = y1, Y2 = y2) = e−(θ1+θ2+θ) θ
y1
1

y1!

θy22

y2!

min(y1,y2)∑
i=1

(
y1

i

)(
y2

i

)
i!

(
θ

θ1θ2

)i
.

The marginal distributions are Poisson, i.e.

Y1 ∼ Poisson(θ + θ1)

Y2 ∼ Poisson(θ + θ2)

and Cov(X, Y ) = θ, Cor(X, Y ) = θ/
√

(θ1 + θ)(θ2 + θ), which is always

positive.

In the following, θ1 and θ2 are considered as fixed and hence, the pa-

rameter of interest is θ. The calculation of the full likelihood based on n

independent observations is

`(θ) = −nθ +
n∑
i=1

log


min(yi1,yi2)∑

j=1

(
yi1
j

)(
yi2
j

)
j!

(
θ

θ1θ2

)j ,

while the weighted independence likelihoods defined in (4.1) and (4.2) are

respectively

c`I
1(θ) = −nθ(1 + w2) +

n∑
i=1

yi1log(θ1 + θ) + w2

n∑
i=1

yi2log(θ2 + θ),

c`I
2(θ) = −nθ + w1

n∑
i=1

yi1log(θ1 + θ) + (1− w1)
n∑
i=1

yi2log(θ2 + θ).

We now perform a numerical assessment of the mean squared predic-

tion error, whose expression is given by

MSPE = Eθ0

{(
Y(n+1)1 − φ(˜̃θ)

)2
}
,
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Table 4.1: Bivariate Poisson model. Comparison of the mean squared pre-

diction error based on the full likelihood (MSPEF ), the weighted inde-

pendence likelihood (MSPEW ) and the unweighted independence like-

lihood (MSPEU ), when n = 10, 50, 100, 200. Results are obtained with

2000 simulated samples, and with the true parameter values θ0 = (10, 1, 9),

θ0 = (10, 9, 1) and θ0 = (10, 10, 10). The weighted independence likelihood

estimator is based on c`I
1(θ).

θ0 = (10, 1, 9) θ0 = (10, 9, 1) θ0 = (10, 10, 10)

MSPEF MSPEW MSPEU MSPEF MSPEW MSPEU MSPEF MSPEW MSPEU

n= 10 12.0367 12.1020 12.1440 19.9311 20.1091 19.9224 20.9556 21.1209 20.9820

n= 50 11.3624 11.3659 11.4006 19.4642 19.4866 19.4633 20.5201 20.5470 20.5262

n=100 10.8148 10.8204 10.8280 18.5581 18.5715 18.5642 19.3630 19.3621 19.3584

n=200 10.5974 10.5956 10.6061 17.8972 17.9083 17.9055 19.8898 19.9128 19.8853

where ˜̃θ is the estimate of θ based on the weighted independence likeli-

hood corresponding to the optimal set of weights, or on the unweighted

independence likelihood, or on the full likelihood, when the latter is avail-

able. To this end, we ran a simulation experiment, with n = 10, 50, 100, 200.

For each combination, we performed 2000 iterations. Indicating by θ0 =

(θ, θ1, θ2), the results correspond to θ0 = (10, 1, 9), θ0 = (10, 9, 1) and θ0 =

(10, 10, 10) as the true parameter values. Table 4.1 reports the mean squared

prediction errors based on c`I
1(θ) compared to the ones based on both full

likelihood and unweighted independence likelihood. As we can see from

the table, for small sample sizes, in terms of prediction it appears that

the weighted independence likelihood is preferable to the unweighted in-

dependence likelihood when θ1 < θ2. In the other two situations, either

θ1 > θ2 or θ1 = θ2, it seems there is no gain in using the weighted indepen-

dence likelihood in place of the unweighted independence likelihood. As

expected, the full likelihood works better with respect to the two pseudo-

likelihoods.

Table 4.2 reports the mean squared prediction errors based on c`I
2(θ),

full likelihood and unweighted independence likelihood. As we can see,
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Table 4.2: Bivariate Poisson model. Comparison of the mean squared pre-

diction error based on the full likelihood (MSPEF ), the weighted inde-

pendence likelihood (MSPEW ) and the unweighted independence like-

lihood (MSPEU ), when n = 10, 50, 100, 200. Results are obtained with

2000 simulated samples, and with the true parameter values θ0 = (10, 1, 9),

θ0 = (10, 9, 1) and θ0 = (10, 10, 10). The weighted independence likelihood

estimator is based on c`I
2(θ).

θ0 = (10, 1, 9) θ0 = (10, 9, 1) θ0 = (10, 10, 10)

MSPEF MSPEW MSPEU MSPEF MSPEW MSPEU MSPEF MSPEW MSPEU

n= 10 12.0367 12.1663 12.1440 19.9311 20.1282 19.9224 20.9556 21.2277 20.9820

n= 50 11.3624 11.3752 11.4006 19.4642 19.4807 19.4633 20.5201 20.5840 20.5262

n=100 10.8148 10.8223 10.8280 18.5581 18.5621 18.5642 19.3630 19.3678 19.3584

n=200 10.5974 10.5917 10.6061 17.8972 17.8999 17.9055 19.8898 19.9144 19.8853

for small sample sizes, it still seems that the weighted independence li-

kelihood is preferable to the unweighted independence likelihood when

θ1 < θ2. While, when θ1 > θ2, the weighted independence likelihood

seems to work better for some values of n. In the last case, with θ1 = θ2,

the unweighted independence likelihood seems to be preferable.

4.3.2 Bivariate normal model

The random vector (Y1, Y2)T follows a bivariate normal model with mean

vector (µ, µ)T and covariance matrix

Σ =

(
σ2
y1

σy1σy2ρ

σy1σy2ρ σ2
y2

)
.

The parameter constraint for which Σ is positive definite is ρ ∈ (−1, 1) .

The unknown parameter is µ and the other parameters are considered as

fixed. The calculation of the full likelihood based on n independent obser-
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vations gives

`(µ) = − 1

(1− ρ2)

[
1

2σ2
y1

n∑
i=1

(yi1 − µ)2 − ρ

σ2
y1
σ2
y2

n∑
i=1

(yi1 − µ)(yi2 − µ)

+
1

2σ2
y2

n∑
i=1

(yi2 − µ)2

]
.

The maximum full likelihood estimator is given by

µ̂ =
ȳ1σ

2
y2

+ ȳ2σ
2
y1
− ρσy1σy2(ȳ1 + ȳ2)

σ2
y1

+ σ2
y2
− 2ρσy1σy2

,

where ȳ1 =
∑n

i=1 yi1/n and ȳ2 =
∑n

i=1 yi2/n. In this case, the calculation of

weighted independence likelihood defined in (4.1) and (4.2) gives

c`I
1(µ) = − 1

2σ2
y1

n∑
i=1

(yi1 − µ)2 − w2

2σ2
y2

n∑
i=1

(yi2 − µ)2

c`I
2(µ) = − w1

2σ2
y1

n∑
i=1

(yi1 − µ)2 − (1− w1)

2σ2
y2

n∑
i=1

(yi2 − µ)2,

respectively, with corresponding maximum weighted likelihood estima-

tors given by

µ̃1 =
ȳ1σ

2
y2

+ w2ȳ2σ
2
y1

σ2
y1

+ w2σ2
y1

,

µ̃2 =
w1ȳ1σ

2
y2

+ (1− w1)ȳ2σ
2
y1

w1σ2
y2

+ (1− w1)σ2
y1

.

As in the previous example, we ran a simulation experiment based

on the mean squared prediction errors with n = 10, 50, 100, 200. For each

combination, we performed 2000 iterations. Table 4.3 reports the mean

squared prediction errors based on the full likelihood, weighted inde-

pendence likelihood (c`I
1(µ)) and unweighted independence likelihood. It

seems that there is some gain in using the weighted independence likeli-

hood in place of the unweighted independence likelihood when σ2
y1
< σ2

y2
.

While, when σ2
y1
> σ2

y2
, the unweighted independence likelihood seems

preferable. Table 4.4 reports the mean squared prediction errors based
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Table 4.3: Bivariate normal model. Comparison of the mean squared pre-

diction error based on the full likelihood (MSPEF ), the weighted inde-

pendence likelihood (MSPEW ) and the unweighted independence likeli-

hood (MSPEU ), when n = 10, 50, 100, 200. Results are obtained with 2000

simulated samples, and with the true parameter values θ0 = (1, 5, 0.9),

θ0 = (5, 1, 0.9). The weighted independence likelihood estimator is based

on c`I
1(θ).

θ0 = (1, 5, 0.9) θ0 = (5, 1, 0.9)

MSPEF MSPEW MSPEU MSPEF MSPEW MSPEU

n= 10 1.0817 1.1511 1.1637 5.1834 5.4480 5.2752

n= 50 1.0711 1.0825 1.0849 5.2483 5.3326 5.2895

n=100 1.0124 1.0187 1.0197 5.0440 5.0664 5.0487

n=200 0.9756 0.9775 0.9779 4.8665 4.8759 4.8684

Table 4.4: Bivariate normal model. Comparison of the mean squared pre-

diction error based on the full likelihood (MSPEF ), the weighted inde-

pendence likelihood (MSPEW ) and the unweighted independence likeli-

hood (MSPEU ), when n = 10, 50, 100, 200. Results are obtained with 2000

simulated samples, and with the true parameter values θ0 = (1, 5, 0.9),

θ0 = (5, 1, 0.9). The weighted independence likelihood estimator is based

on c`I
2(θ).

θ0 = (1, 5, 0.9) θ0 = (5, 1, 0.9)

MSPEF MSPEW MSPEU MSPEF MSPEW MSPEU

n= 10 1.0817 1.1649 1.1637 5.1834 5.2683 5.2752

n= 50 1.0711 1.0848 1.0849 5.2483 5.2903 5.2895

n=100 1.0124 1.0188 1.0197 5.0440 5.0476 5.0487

n=200 0.9756 0.9777 0.9779 4.8665 4.8691 4.8684
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on the full likelihood, weighted independence likelihood (c`I
2(µ)) and un-

weighted independence likelihood with the same setting of Table 4.3. Over-

all it seems that the weighted independence likelihood is again preferable

to the unweighted independence likelihood when σ2
y1
< σ2

y2
. While, there

is little indication when σ2
y1
> σ2

y2
.

4.4 Discussion

This chapter sets out only preliminary results about the weighted indepen-

dence likelihood in a prediction framework, when the full likelihood is not

available. It could be a useful approach when we have no idea about the

dependence structure in the data, but we know the marginal distributions.

The weighted independence likelihood with less weight on the likeli-

hood components relative to the auxiliary variables seems to lead to some

gain when the variability in the auxiliary variables is greater than that in

the variable of interest.

Future work will consider different examples, different approaches for

the choice of the optimal weights, and possibly new definitions of weighted

independence likelihood.





Conclusions

In many multivariate problems, the standard likelihood may be unfeasible

or too time consuming to compute. In these situations, composite likeli-

hood is a very appealing alternative to the standard likelihood, being the

composition of likelihoods based on lower-dimensional margins.

Chapter 3 studied the combined composite likelihood which is a new

form of composite likelihood constructed as linear combination between

the pairwise and the independence likelihood through a constant to be

chosen. Identification of a possible strategy for finding the range of ad-

missible values for the constant which combines the independence and

pairwise likelihood was achieved by means of exact properties. The re-

sulting combined composite likelihood estimator is still asymptotically

consistent and normally distributed. After all, the inferential procedures

based on the combined composite likelihood have theoretical properties

similar to those based on a more conventional composite likelihood. As

for any pseudo-likelihood, the methods based on the combined composite

likelihood lead usually to a loss of efficiency because it is no longer valid

the information identity. The combined composite likelihood could lead

to better inference with respect to the pairwise and independence likeli-

hood despite the difficulty of choosing the optimal values of the constant

among the admissible ones. Both examples considered seem to suggest the

pairwise conditional likelihood, which is a particular case of the combined

composite likelihood, as a close to optimal choice.

Chapter 4 dealt with the weighted independence likelihood in a predic-
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tion framework. The weights were chosen by the delete-one approach in

a cross validation procedure and determined by minimizing the empirical

predictive discrepancy measure proposed in Wang & Zidek (2005). Al-

though this part is still under development, preliminary simulation stud-

ies based on the two simple examples, seem to suggest that there is little

gain in using the weighted independence likelihood instead of the un-

weighted independence likelihood. Situations in which such gain is present

is characterized by a larger variability in the auxiliary variables. The fu-

ture work will consider different examples, different approaches for the

choice of the optimal weights, and possibly new definitions of weighted

independence likelihood.



Appendix for Chapter 3

A.1 Elements of the matrix Ha(θ)

The elements of the matrix Ha(θ) defined in Section 3.3.2 are

Ha
β1β1

= Eθ

{
−∂

2c`a(θ)

∂β2
1

}
= −

(
∂2h1
∂β2

1

Eθ(SS1) +
∂2h2
∂β2

1

Eθ(SS2) +
∂2h3
∂β2

1
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∂2h4
∂β2
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2
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2
tf )

2
,
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[
8β8

1(σ
2
tf )

5 + [{(8− 8a)β6
1p+ 16β6
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2
tf ](σ
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tf )

4
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,

Ha
β1µtf

= Eθ

{
−∂

2c`a(θ)

∂β1∂µtf
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2
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,
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Ha
β1σ2
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1p+ (13a− 22)β4
1}(σ2)2(σ2

tf )
2

+(6a− 12)β2
1(σ

2)3(σ2
tf ) + (a− 2)(σ2)4

]
.
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A.2 Elements of the matrix Ja(θ)

The elements of matrix Ja(θ) defined in Section 3.3.2 are

Jaβ1β1
=

(
∂h1
∂β1

)2

Varθ(SS1) +

(
∂h2
∂β1

)2

Varθ(SS2) +

(
∂h3
∂β1

)2

Varθ(SS3)

+

(
∂h4
∂β1

)2

Varθ(SS4) +

(
∂h5
∂β1

)2

Varθ(SS5) +

(
∂h6
∂β1

)2

Varθ(SS6)

+ 2

(
∂h1
∂β1

∂h2
∂β1

)
Covθ(SS1, SS2) + 2

(
∂h1
∂β1

∂h3
∂β1

)
Covθ(SS1, SS3)

+ 2

(
∂h1
∂β1

∂h4
∂β1

)
Covθ(SS1, SS4) + 2

(
∂h1
∂β1

∂h5
∂β1

)
Covθ(SS1, SS5)

+ 2

(
∂h1
∂β1

∂h6
∂β1

)
Covθ(SS1, SS6) + 2

(
∂h2
∂β1

∂h3
∂β1

)
Covθ(SS2, SS3)

+ 2

(
∂h2
∂β1

∂h4
∂β1

)
Covθ(SS2, SS4) + 2

(
∂h2
∂β1

∂h5
∂β1

)
Covθ(SS2, SS5)

+ 2

(
∂h2
∂β1

∂h6
∂β1

)
Covθ(SS2, SS6) + 2

(
∂h3
∂β1

∂h4
∂β1

)
Covθ(SS3, SS4)

+ 2

(
∂h3
∂β1

∂h5
∂β1

)
Covθ(SS3, SS5) + 2

(
∂h3
∂β1

∂h6
∂β1

)
Covθ(SS3, SS6)

+ 2

(
∂h4
∂β1

∂h5
∂β1

)
Covθ(SS4, SS5) + 2

(
∂h4
∂β1

∂h6
∂β1

)
Covθ(SS4, SS6)

+ 2

(
∂h5
∂β1

∂h6
∂β1

)
Covθ(SS5, SS6)

=
c7(n, p, θ, a)

σ2(β2
1σ

2
tf + σ2)4(2β2

1σ
2
tf + σ2)4

,

c7(n, p, θ, a) = np
[
64β16

1 (σ2
tf )

9 + (((32a2 − 64a+ 32)β14
1 p

3 + (64a− 64)β14
1 p

2

+ (160− 128a)β14
1 p+ 256β14

1 )σ2 + 64β16
1 µ

2
tf )(σ

2
tf )

8

+ (((64a2 − 192a+ 128)β12
1 p

3 + (64a2 + 64a− 192)β12
1 p

2

+ (640− 384a)β12
1 p+ 416β12

1 )(σ2)2 + ((16a2 − 32a+ 16)β14
1 µ

2
tfp

3

+ (32a− 32)β14
1 µ

2
tfp

2 + (80− 64a)β14
1 µ

2
tfp+ 320β14

1 µ
2
tf )σ

2)(σ2
tf )

7

+ (((48a2 − 208a+ 192)β10
1 p

3 + (160a2 − 208a− 120)β10
1 p

2

+ (984− 416a)β10
1 p+ 384β10

1 )(σ2)3 + ((64a2 − 144a+ 80)β12
1 µ

2
tfp

3

+ (16a2 + 112a− 144)β12
1 µ

2
tfp

2 + (400− 288a)β12
1 µ

2
tfp

+ 656β12
1 µ

2
tf )(σ

2)2)(σ2
tf )

6 + (((16a2 − 96a+ 128)β8
1p

3

+ (160a2 − 416a+ 160)β8
1p

2 + (736− 192a)β8
1p+ 260β8

1)(σ
2)4

+ ((104a2 − 264a+ 164)β10
1 µ

2
tfp

3 + (64a2 + 120a− 248)β10
1 µ

2
tfp

2

+ (820− 528a)β10
1 µ

2
tfp+ 704β10

1 µ
2
tf )(σ

2)3)(σ2
tf )

5

+ (((2a2 − 16a+ 32)β6
1p

3 + (80a2 − 280a+ 240)β6
1p

2 + (304− 32a)β6
1p
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+ 144β6
1)(σ

2)5 + ((88a2 − 252a+ 176)β8
1µ

2
tfp

3

+ (104a2 − 12a− 188)β8
1µ

2
tfp

2 + (880− 504a)β8
1µ

2
tfp

+ 416β8
1µ

2
tf )(σ

2)4)(σ2
tf )

4 + (((20a2 − 80a+ 96)β4
1p

2 + 96β4
1p+ 56β4

1)(σ
2)6

+ ((41a2 − 132a+ 104)β6
1µ

2
tfp

3 + (88a2 − 120a− 32)β6
1µ

2
tfp

2

+ (520− 264a)β6
1µ

2
tfp+ 128β6

1µ
2
tf )(σ

2)5)(σ2
tf )

3

+ (((2a2 − 8a+ 8)β2
1p

2 + 24β2
1p+ 16β2

1)(σ
2)7

+ ((10a2 − 36a+ 32)β4
1µ

2
tfp

3 + (41a2 − 96a+ 40)β4
1µ

2
tfp

2

+ (160− 72a)β4
1µ

2
tfp+ 16β4
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2
tf )(σ

2)6)(σ2
tf )

2

+ (4(σ2)8 + ((a2 − 4a+ 4)β2
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2
tfp

3 + (10a2 − 32a+ 24)β2
1µ

2
tfp

2

+(20− 8a)β2
1µ

2
tfp)(σ

2)7)(σ2
tf ) + (a2 − 4a+ 4)µ2

tfp
2(σ2)8

]
,

Jaµtfµtf
=

c8(n, p, θ, a)

σ2
tf (β

2
1σ

2
tf + σ2)2(2β2

1σ
2
tf + σ2)2

,

c8(n, p, θ, a) = np
[
((4a2 − 8a+ 4)β8

1p
3 + (8a2 − 16a+ 8)β8

1p
2

+ (4a2 − 8a+ 4)β8
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2
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4 + ((4a2 − 12a+ 8)β6
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3
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1)σ

2(σ2
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3 + ((a2 − 4a+ 4)β4
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]
,

Jaσ2σ2 =
c9(n, p, θ, a)
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1σ

2
tf + σ2)4(2β2
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2
tf + σ2)4

,
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(16β16

1 p
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1 p)(σ
2
tf )
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1 p
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1 p)σ

2(σ2
tf )

7
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3 + (248− 16a)β12
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2
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2)2(σ2
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3
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1 )(σ2)3(σ2
tf )

5

+ ((24a2 − 52a+ 24)β8
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1p

2
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1)(σ
2)4(σ2

tf )
4 + ((8a2 − 24a+ 16)β6

1p
3

+ (80a2 − 280a+ 288)β6
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1p+ 48β6

1)(σ
2)5(σ2

tf )
3

+ ((a2 − 4a+ 4)β4
1p

3 + (40a2 − 152a+ 144)β4
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2

+ (68− 8a)β4
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2)6(σ2

tf )
2 + ((10a2 − 40a+ 40)β2

1p
2

+8β2
1)(σ

2)7σ2
tf + (a2 − 4a+ 4)p2(σ2)8

]
,

Jaσ2
tfσ

2
tf

=
c10(n, p, θ, a)

2(σ2
tf )

2(β2
1σ

2
tf + σ2)4(2β2

1σ
2
tf + σ2)4
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c10(n, p, θ, a) = np
[
((16a2 − 32a+ 16)β16

1 p
3 + (32a2 − 64a+ 32)β16

1 p
2

+ (16a2 − 32a+ 16)β16
1 p)(σ

2
tf )

8 + ((32a2 − 96a+ 64)β14
1 p

3

+ (160a2 − 384a+ 224)β14
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7 + ((24a2 − 104a+ 96)β12
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3
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3
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tf )
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3
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tf )

2
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]
,
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=
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2
tf + σ2)2(2β2

1σ
2
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,
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2
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2
tf )
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2
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tf

−2β2
1p
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,
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1 p
2

+ (40− 144a)β10
1 p− 64β10
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tf )
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3
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1p
3
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1σ

2
tf

[
((16a2 − 32a+ 16)β12

1 p
3 + (16a2 − 16a)β12

1 p
2 + (16− 16a)β12

1 p

− 32β12
1 )(σ2

tf )
6 + ((32a2 − 96a+ 64)β10

1 p
3 + (96a2 − 176a+ 64)β10

1 p
2

+ 16aβ10
1 p− 128β10

1 )(σ2)(σ2
tf )

5 + ((24a2 − 104a+ 96)β8
1p

3

+ (184a2 − 476a+ 268)β8
1p

2 + (164a− 164)β8
1p− 200β8

1)(σ
2)2(σ2

tf )
4

+ ((8a2 − 48a+ 64)β6
1p

3 + (168a2 − 560a+ 432)β6
1p

2 + (256a− 336)β6
1p

− 160β6
1)(σ

2)3(σ2
tf )

3 + ((a2 − 8a+ 16)β4
1p

3 + (81a2 − 326a+ 328)β4
1p

2

+ (170a− 264)β4
1p− 80β4

1)(σ
2)4(σ2

tf )
2 + ((20a2 − 92a+ 112)β2

1p
2

+ (52a− 80)β2
1p− 32β2

1)(σ
2)5(σ2

tf ) + ((2a2 − 10a+ 12)p2

+(6a− 4)p− 8)(σ2)6
]
,

Jaµtfσ2 = 0,

Jaµtfσ2
tf

= 0,

Jaσ2σ2
tf

=
c14(n, p, θ, a)

2(β2
1σ

2
tf + σ2)4(2β2

1σ
2
tf + σ2)4

,

c14(n, p, θ, a) = npβ2
1

[
((16a2 − 24a+ 8)β12

1 p
3 + (16a2 − 32a+ 8)β12

1 p
2

+ (−8a− 16)β12
1 p)(σ

2
tf )

6 + ((32a2 − 72a+ 32)β10
1 p

3

+ (96a2 − 208a+ 72)β10
1 p

2 + (24a− 120)β10
1 p+ 16β10

1 )(σ2)(σ2
tf )

5

+ ((24a2 − 78a+ 48)β8
1p

3 + (184a2 − 472a+ 216)β8
1p

2 + (134a− 328)β8
1p

+ 64β8
1)(σ

2)2(σ2
tf )

4 + ((8a2 − 36a+ 32)β6
1p

3 + (168a2 − 508a+ 304)β6
1p

2

+ (192a− 432)β6
1p+ 96β6

1)(σ
2)3(σ2

tf )
3 + ((a2 − 6a+ 8)β4

1p
3

+ (81a2 − 280a+ 216)β4
1p

2 + (122a− 288)β4
1p+ 64β4

1)(σ
2)4(σ2

tf )
2

+ ((20a2 − 76a+ 72)β2
1p

2 + (36a− 88)β2
1p+ 16β2

1)(σ
2)5(σ2

tf )

+((2a2 − 8a+ 8)p2 + (4a− 8)p)(σ2)6
]
.



Bibliography

BESAG, J. (1974). Spatial interaction and the analysis of lattice systems.

Journal of the Royal Statistical Society 34 192–236.

CHANDLER, R. & BATE, S. (2007). Inference for clustered data using the

independence loglikelihood. Biometrika 94 167–183.

COX, D. R. & REID, N. (2004). A note on pseudolikelihood constructed

from marginal densities. Biometrika 91 729–737.

DAVISON, A. C. (2003). Statistical Models. Cambridge: Cambridge Univer-

sity Press.

EFRON, B. (1975). Defining the curvature of a statistical problem (with

applications to second order efficiency). The Annals of Statistics 3 1189–

1242.

FISHER, R. A. (1921). On the probable error of a coefficient of correlation

deduced from a small sample. Metron 1 3–32.

FISHER, R. A. (1922). On the mathematical foundations of theoretical

statistics. The Royal Society 222 309–368.

GODAMBE, V. P. (1960). An optimum property of regular maximum like-

lihood equation. Annals of Mathematical Statistics 31 1208–1211.

HJORT, N. L. & VARIN, C. (2008). Ml, cl and pl in markov chain models.

Scand. J. Stat. 35 64–82.



98 BIBLIOGRAPHY

LE CESSIE, S. & VAN HOUWELINGEN, J. (1994). Logistic regression for

correlated binary data. Applied Statistics 43 95–108.

LINDSAY, B. (1988). Composite likelihood methods. Comtemporary Mathe-

matics 80 221–240.

LINDSAY, B. G., YI, G. Y. & SUN, J. (2011). Issues and strategies in the

selection of composite likelihoods. Statistica Sinica 21 71–105.

MARDIA, K. V., HUGHES, G., TAYLOR, C. C. & SINGH, H. (2008). A multi-

variate von mises distribution with applications to bioinformatics. Cana-

dian Journal of Statistics 36 99–109.

MARDIA, K. V., KENT, J. T., HUGHES, G. & TAYLOR, C. C. (2009). Max-

imum likelihood estimation using composite likelihoods for closed ex-

ponential families. Biometrika 96 975–982.

MOLENBERGHS, G. & VERBEKE, G. (2005). Models for discrete longitudinal

data. Springer Verlag.

PACE, L. & SALVAN, A. (1997). Principles of statistical inference: from a Neo-

Fisherian perspective, vol. 4. Singapore: World Scientific Pub Co Inc.

PACE, L., SALVAN, A. & SARTORI, N. (2011). Adjusting composite likeli-

hood ratio statistics. Statistica Sinica 21 129–148.

R CORE TEAM (2012). R: A Language and Environment for Statistical Com-

puting. R Foundation for Statistical Computing, Vienna, Austria. ISBN

3-900051-07-0, URL http://www.R-project.org/.

RAO, C. R. (1973). Linear Statistical Inference and its Applications. New York:

Wiley.

ROVERATO, A. & DI LASCIO, F. M. (2011). Wilks’ λ dissimilarity mea-

sures for gene clustering: An approach based on the identification of

transcription modules. Biometrics 67 1236–1248.



BIBLIOGRAPHY 99

SEVERINI, T. A. (2000). Likelihood Methods in Statistics. Oxford: Oxford

University Press.

SEVERINI, T. A. (2005). Elements of Distribution Theory. Cambridge: Cam-

bridge University Press.

VARIN, C. (2008). On composite marginal likelihoods. Advances in Statis-

tical Analysis 92 1–28.

VARIN, C., REID, N. & FIRTH, D. (2011). An overview of composite like-

lihood methods. Statistica Sinica 21 5–42.

WANG, X. & ZIDEK, J. V. (2005). Selecting likelihood weights by cross-

validation. The Annals of Statistics 33 463–500.

XU, X. & REID, N. (2011). On the robustness of maximum composite

likelihood estimate. Journal of Statistical Planning and Inference 141 3047–

3054.



Euloge Clovis Kenne Pagui
CURRICULUM VITAE

Contact Information

University of Padova

Department of Statistics

via Cesare Battisti, 241-243

35121 Padova. Italy.

Tel. +39 049 827 4174

e-mail: kenne@stat.unipd.it

Current Position

expected completion: January 2013

PhD Student in Statistical Sciences, University of Padova.

Thesis title: Combined composite likelihoods

Supervisor: Prof. Nicola Sartori

Co-supervisor: Prof. Alessandra Salvan.

Research interests

• Likelihood methods

• Pseudo-likelihood methods

• Composite likelihood methods

• Asymptotic properties of pseudo-likelihood quantities



Education

October 2007 – Octover 2009

MSc in Statistics and Computer Science.

University of Padova, Faculty of Statistics

Title of dissertation: “Pairwise likelihood in multivariate normal models ”

Supervisor: Prof. Alessandra Salvan

Final mark: 109/110

October 2004 – July 2007

BSc in Statistics and computer’s tecnologies.

University of Padova, Faculty of Statistics

Title of dissertation: “Comparison between semi-parametric statistical mod-

els: An application to foot- ball championships”

Supervisor: Prof. Stuart Coles

Final mark: 107/110.

Visiting periods

April 2012 – July 2012

University of Toronto,

Toronto, Canada .

Supervisor: Prof. Nancy Reid

Computer skills

• R, LATEX, MS OFFICE, MS WINDOWS (expert level)

• SPSS, C, LINUS (intermediate level)

• HTML, SQL, PHP, C++, SAS (basic level)



Language skills

French: native language; Italian: fluent; English: good;

Conference presentations

Kenne Pagui Euloge Clovis. Combined composite likelihoods. (invited)

Approximate likelihood methods for high-dimensional dependencies , Venice, Italy,

October 8, 2012.

Kenne Pagui Euloge Clovis. Composite likelihood in multivariate normal

models. (invited) Approximate likelihood methods for high-dimensional depen-

dencies , Verona, Italy, May 2011.

References

Prof. Nicola Sartori

Department of Statistical Sciences,

University of Padova, Italy

Via Cesare Battisti, 241/243

Phone: (+39) 049 8274127

e-mail: sartori@stat.unipd.it

Prof. Alessandra Salvan

Department of Statistical Sciences,

University of Padova, Italy

Via Cesare Battisti, 241/243

Phone: +39 49 827 4166

e-mail: salvan@stat.unipd.it

Prof. Nancy Reid

Department of statistics, University

of Toronto, Canada

100 st George st, Toronto, Ontario

M5S 3G3, CANADA

Phone: (416) 978-5046

e-mail: reid@utstat.utoronto.ca


