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Abstract

In the last decades, we have witnessed an explosion of wireless communications and networking,

spurring a great interest in the research community. The design of wireless networks is challenged

by the scarcity of resources, especially spectrum and energy. In this thesis, we explore the potential

offered by two novel technologies to cope with spectrum and energy scarcity: Cognitive Radio (CR)

and Energy Harvesting (EH). CR is a novel paradigm for improving the spectral efficiency in wireless

networks, by enabling the coexistence of an incumbent legacy system and an opportunistic system

with CR capability. We investigate a technique where the CR system exploits the temporal redundancy

introduced by the Hybrid Automatic Retransmission reQuest (HARQ) protocol implemented by the

legacy system to perform interference cancellation, thus enhancing its own throughput.

Recently, EH has been proposed to cope with energy scarcity in Wireless Sensor Networks

(WSNs). Devices with EH capability harvest energy from the environment, e.g., solar, wind, heat

or piezo-electric, to power their circuitry and to perform data sensing, processing and communication

tasks. Due to the random energy supply, how to best manage the available energy is an open research

issue. In the second part of this thesis, we design control policies for EH devices, and investigate

the impact of factors such as the finite battery storage, time-correlation in the EH process and battery

degradation phenomena on the performance of such systems.

We cast both paradigms in a stochastic optimization framework, and investigate techniques to

cope with spectrum and energy scarcity by opportunistically leveraging interference and ambient

energy, respectively, whose benefits are demonstrated both by theoretical analysis and numerically.

As an additional topic, we investigate the issue of channel estimation in Ultra Wide-Band (UWB)

systems. Due to the large transmission bandwidth, the channel has been typically modeled as sparse.

However, some propagation phenomena, e.g., scattering from rough surfaces and frequency distor-

tion, are better modeled by a diffuse channel. We propose a novel Hybrid Sparse/Diffuse (HSD)

channel model which captures both components, and design channel estimators based on it.





Sommario

Negli ultimi decenni, abbiamo assistito alla diffusione delle comunicazioni e reti wireless, susci-

tando un crescente interesse nella comunità scientifica. Tuttavia, la progettazione delle reti wireless

è resa difficile dalla scarsità di risorse, in particolare, spettro ed energia. In questa tesi, si esplora il

potenziale offerto da due nuove tecnologie nell’affrontare il problema della scarsità di spettro e di

energia nelle future reti wireless: "Cognitive Radio" (CR) ed "Energy Harvesting" (EH). CR è un

nuovo paradigma che consente di migliorare l’efficienza di utilizzo dello spettro nelle reti wireless,

abilitando la coesistenza di un preesistente sistema titolare dello spettro, comunemente denominato

Utente Primario, e un sistema opportunistico "intelligente", noto come Utente Secondario. In questa

tesi, si sviluppa una tecnica per sfruttare, da parte di un utente secondario, la ridondanza temporale in-

trodotta dal protocollo "Hybrid Automatic Retransmission reQuest" (HARQ) utilizzato da un Utente

Primario, per eseguire tecniche di cancellazione di interferenza, consentendo così di migliorare il

throuhgput secondario.

Recentemente, EH è stato proposto per superare il problema della scarsità di energia nelle "Wire-

less Sensor Networks" (WSNs). I dispositivi con capacità di EH accumulano energia resa disponibile

nell’ambiente circostante, come, per esempio, energia solare, eolica, termica o piezo-elettrica, per

alimentare il dispositivo e per eseguire compiti di "data sensing", processamento e comunicazione.

Dato che la disponibilità di energia è aleatoria e intermittente, il problema di come utilizzare al meglio

l’energia disponibile è di grande interesse nella comunità scientifica. Nella seconda parte di questa

tesi, si propongono politiche di controllo per dispositivi con capacità di EH, e si analizza l’impatto

di vari fattori quali la capacità finita della batteria, la correlazione temporale nel processo di EH, la

conoscenza imperfetta dello stato di carica della batteria e i fenomeni di degrado della batteria.

Si studiano entrambi i paradigmi in un framework di ottimizzazione stocastica, e vengono pro-

poste tecniche per far fronte alla scarsità di spettro ed energia sfruttando in modo opportunistico,

rispettivamente, l’interferenza e l’energia ambientale. Si dimostrano i benefici delle tecniche pro-



poste per mezzo sia di un’analisi teorica che per via numerica.

Come argomento di ricerca aggiuntivo, nell’ultima parte di questa tesi, si studia il problema della

stima di canale nei sistemi Ultra Wide-Band (UWB). Data la larga banda di trasmissione utilizzata

in questi sistemi, il canale è stato tipicamente modellato come sparso. Tuttavia, alcuni fenomeni

di propagazione come, per esempio, la dispersione dovuta a superfici scabrose e la distorsione in

frequenza, sono modellabili in modo più accurato da un canale diffuso. Si propone un nuovo modello

di canale denominato "Hybrid Sparse/Diffuse" (HSD) che cattura entrambe le componenti di canale,

e si propongono stimatori di canale basati sul modello proposto.
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Chapter1
Introduction

The development of wireless communications and networking in the last decades has enabled ap-

plications such as ubiquitous and mobile access to the internet, wireless sensor and cellular networks.

However, the widespread and pervasive diffusion of these technologies is challenged by the scarcity of

resources, most importantly, spectrum and energy. The spectrum licensing approach, commonly em-

ployed to reserve spectrum usage to specific classes of wireless users, has lead to a spectrum scarcity

problem. On the other hand, the design of wireless systems has typically relied on the use of batteries

to sustain the operation of the wireless terminals, posing an energy scarcity problem in those systems,

e.g., Wireless Sensor Networks (WSNs), where long-term and autonomous operation is required, and

factors such as the sheer number of nodes or inaccessibility render battery replacement unrealistic

and cost-prohibitive.

In this thesis, we investigate the potential offered by two approaches to cope with spectrum and

energy scarcity in wireless networks: Cognitive Radio (CR) and Energy Harvesting (EH). CR is a

novel paradigm for improving the efficiency of spectrum usage in wireless networks, by enabling

the coexistence of an incumbent legacy system, commonly referred to as Primary Users (PU), and an

opportunistic system with CR capability, known as Secondary Users (SU). The latter adapt their oper-

ation by opportunistically leveraging the information collected about the PUs, e.g., primary message,

channel state, idle/busy state, protocols, so as to earn a performance gain, e.g., in terms of secondary

throughput. In a widely used model for cognitive radio, the legacy system is oblivious to the presence

of the SUs, which need to satisfy given constraints on the performance loss caused to the PUs.

Within this framework, in Chapter 2, we investigate a technique to exploit the Type-I Hybrid

Automatic Retransmission reQuest (Type-I HARQ) protocol implemented by the PU. In fact, HARQ
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time

PU: PM1 PM1 PM1 PM2

NACK NACK ACK

time

SU: SM1 SM2 SM3

Figure 1.1. PU with HARQ scheme

introduces temporal redundancy in the wireless channel, in that copies of the same primary data

packet are retransmitted over subsequent time-slots. Opportunities thus arise for the SU to improve

its throughput, as explained in the following example. Consider the scenario depicted in Fig. 1.1,

where a PU subsequently retransmits the same packet PM1, in response to retransmission requests by

its intended receiver. Different options are available for the SU, depending on the side information

about the PU: if the SU does not know the codebook employed by the PU, then the secondary receiver

treats the signal coming from the primary transmitter as noise, which degrades the secondary outage

performance. If the primary codebook is known at the secondary receiver, such knowledge can be

leveraged for interference cancellation. For instance, if the signal from the primary transmitter is

strong, the secondary receiver can, in sequence, decode the primary message, remove its interference

from the received signal, and then take advantage of a "clean" channel to decode its intended message.

If, in addition, the secondary receiver is able to track the retransmission process of the PU then,

after decoding the primary message in the first time-slot, it can leverage this knowledge to perform

interference cancellation in the following PU retransmissions of PM1, not only in the first time-

slot where the actual decoding of PM1 takes place. It is thus clear that the use of HARQ by the

PU opens up intriguing opportunities for a more efficient utilization of the spectrum. We employ a

stochastic optimization approach to optimize the control policy of the SU, which determines its access

pattern, based on the state of the system, so as to maximize its own throughput, while bounding the

performance degradation incurred to the PU.

Recently, EH has been proposed to cope with energy scarcity in wireless systems. Devices with

EH capability harvest energy from the environment, e.g., solar, wind, heat or piezo-electric, to power

their circuitry and to perform data sensing, processing and communication tasks. By relying on a

potentially unlimited energy reservoir, the ambient energy, the EH technology is particularly appeal-

ing in the deployment of WSNs, where battery replacement is typically prohibitive. In contrast to

battery-operated sensors, where energy efficiency and conservation are crucial to prolong lifetime, in

EH powered systems the energy supply is unlimited, but its availability is random and intermittent
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Day Night Day Night

time

Energy
level

0

emax

(a) p(t) from battery-powered systems

Day Night Day Night

time

Energy
level

0

emax

(b) p(t) optimized for the EH setting

Figure 1.2. The battery is recharged during daylight, and discharged during night. Light gray boxes denote

time intervals during which part of the harvested energy is lost due to overflow. Gray boxes denote time

intervals during which the battery is depleted, hence the transmit power is forced to zero (p(t) = 0)

over time. The objective thus shifts from energy efficiency and conservation to the management of

the harvested energy, so as to provide a stable energy supply to the sensor node by minimizing the

deleterious impact of energy depletion. We remark that the random and intermittent nature of the EH

supply gives rise to new dynamics and trade-offs with respect to traditional battery powered systems.

For example, one aspect which plays a crucial role in determining the performance is the interplay

between the finite battery capacity and the intermittent EH process. Consider, for instance, a device

which aims at maximizing a time-average of a concave function g(p(t)) of the transmit power p(t).

In traditional battery powered systems, where energy conservation is typically handled as a time-

average power constraint β, the device should transmit with constant power β, owing to the concavity

of g(p(t)). In contrast, such solution may not be optimal for an EH powered device as can be seen

with the help of Fig. 1.2: assuming the device is powered by solar energy with average EH rate β

(i.e., the power supplied by the environment is, on average, β), by transmitting with constant power

p(t) = β, the device may quickly run out of energy during night (gray boxes in the figure), when the

power is solely supplied by the rechargeable battery, thus forcing the transmit power to zero; on the

other hand, the battery may be quickly recharged during daylight and, upon fully charging it, part of

the harvested energy may be lost due to overflow (light gray boxes in the figure). A better approach

would be, instead, to adapt the transmit power to the state of the EH process (day,night), hence to

transmit with a smaller power p(t) < β during night, so as to avoid energy depletion, and with a

larger power p(t) > β during daylight, in such a way as to avoid energy overflow.

In Chapter 3 of this thesis, we present a general model for EH-WSN where an EH Sensor (EHS)

needs to report data of varying importance to a Fusion Center (FC). The importance models, for ex-

ample, the priority of data packets, the importance of the sensed events, e.g., temperature or humidity,

the channel fading state, or the achievable rate in a Rayleigh fading channel. Using a stochastic op-

timization approach, we design control policies for EH devices, which determine, based on the state

of the system (energy level in the battery, state of the EH process and importance of the current data



4 Chapter 1. Introduction

packet), whether to report the data packet to the FC or to drop it. In particular, due to the limited

processing capability typically found in practical WSN deployments, we focus on the design of low-

complexity control policies, which are shown to achieve close-to-optimal performance with respect

to the globally optimal policy. We investigate the impact of factors such as the finite battery storage

and time-correlation in the EH process.

While in Chapter 3 it is ideally assumed that the battery used by the EH device to store the

incoming ambient energy can perpetually operate without incurring a performance degradation, in

Chapter 4 we investigate the impact of degradation phenomena, which cause the storage capability

of a battery to diminish over time. This poses a problem to the operation of the EH device, hence of

the WSN as a whole, since, the smaller the battery capacity, the faster the battery depletion during

periods of limited ambient energy supply, hence, in turn, the worse the performance. We propose

a stochastic framework, suitable for policy optimization, which captures the trade-off between QoS

and battery degradation, and its interplay with the control policy implemented by the EHS controller.

We believe that acknowledging the degradation of the battery capacity represents an important step

towards the realistic characterization of rechargeable batteries and, by extension, of WSNs and their

management strategies.

Despite the different objectives and application scenarios which CR and EH have been envisioned

to, in this thesis we employ similar methodologies and techniques based on stochastic optimization to

address the problem of spectrum and energy scarcity in wireless networks. In particular, we will resort

to the theory of Markov Decision Processes [1]. Stochastic optimization is of crucial importance

to optimize the operation of the wireless terminals and achieve the best performance in resource

limited settings, as the ones considered in this thesis. In fact, the common feature of CR and EH

is resource limitation. In CR, the SU is required to communicate over a shared wireless channel,

posing the problem of how to best manage the knowledge about the incumbent PU (e.g., the primary

HARQ process), and the interference to the PU, in order to maximize its own performance, while

bounding the performance loss to the PU. On the other hand, EH devices are required to operate

under a stochastic and intermittent energy supply, which poses the problem of how to best utilize the

available energy (as seen in the previous example, depicted in Fig. 1.2), in order to minimize the

deleterious impact of energy depletion and overflow.

As an additional topic, in the last part of this thesis, we investigate the issue of channel esti-

mation in Ultra Wide-Band (UWB) systems. This work is the result of my visit at the University



of Southern California, Los Angeles, USA, from January to July 2011, under the supervision of

Prof. Urbashi Mitra. Due to the large transmission bandwidth, the channel has been typically mod-

eled as sparse. However, some propagation phenomena, e.g., scattering from rough surfaces and

frequency distortion, are better modeled by a diffuse channel. In this context, we propose a novel

Hybrid Sparse/Diffuse (HSD) channel model, and design channel estimators based on it. Moreover,

we provide a Mean Square Error (MSE) analysis of the proposed estimators, and demonstrate, based

on a realistic channel emulator, the benefits in terms of MSE and Bit-Error-Rate performance, with

respect to unstructured and purely sparse estimators.

1.1 Organization of the Thesis

The rest of the thesis is subdivided into four chapters, each addressing a specific topic and the

corresponding results. Each chapter can be read separately.

In Chapter 2, we study the problem of designing optimal secondary access strategies in cognitive

radio networks, which leverage the HARQ protocol implemented by the primary user. This work is

based on the journal paper [J1] and on the conference papers [C1], [C2] (see page 193 for a list of my

publications).

In Chapter 3, we focus on the design of energy management polices for EH devices, and we

evaluate, both theoretically and numerically, the impact of factors such as the finite battery capacity

and time-correlation in the EH process. This work is based on the journal paper [J2] and on the

conference papers [C3], [C4] and [C5].

In Chapter 4, we investigate the impact of battery degradation on the lifetime of EH devices. This

work is based on the journal paper [J3] and on the conference paper [C6].

Chapter 5 concludes this thesis.

In Appendix A, we investigate the issue of channel estimation in UWB systems, which is based

on the journal papers [J4], [J5].





Chapter2
Optimal Secondary Access in Cognitive

Radio Networks

2.1 Introduction

Spectrum licensing has been traditionally employed to protect wireless systems against mutual

interference. While effective in avoiding multi user interference, this approach has led to an inef-

ficient utilization of the available resources, hence to spectrum scarcity [2–4], as can be seen from

the 2003 FCC spectrum allocation chart, depicted in Fig. 2.1. Cognitive radio networks, a concept

first proposed by Mitola in his seminal work [5], hold the promise to improve the spectral efficiency

of wireless networks with respect to conventional licensing, by allowing the coexistence of Primary

(licensed) and Secondary (unlicensed) Users (PUs and SUs, respectively) on the same radio band. In

order to achieve such objective, SUs are equipped with smart, cognitive radios through which they

can sense the radio environment and collect side information about the presence and the operation of

active primary transmitters. This information is then used by the cognitive radios to make decisions

and dynamically adapt their operation, so as to optimize a given performance metric, while limit-

ing their interference to the incumbent licensed system. For a survey on cognitive radio, dynamic

spectrum access and the related research challenges, we refer the interested reader to [4, 6–8].

Most prior works on cognitive radio networks are based on the assumption that the SUs are al-

lowed to operate only in time-frequency slots left unused by the licensed system (interweave cognitive

radio paradigm [7]). A crucial aspect in these systems is the ability of SUs to detect, as accurately

and quickly as possible, the activity of licensed users in a given time-frequency slot [9], so that lit-
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Figure 2.1. 2003 FCC spectrum allocation chart, from http://www.ntia.doc.gov/files/ntia/publications/2003-

allochrt.pdf

tle or no harm is caused to the licensed radios. In overlay systems, on the other hand, the SUs use

sophisticated signal processing and coding to maintain or even improve the performance of the PUs,

while also obtaining some additional bandwidth for their own communication. A more general and

advanced paradigm than interweave cognitive radio is underlay cognitive radio [7], where the SUs

are allowed to operate also in time-frequency slots used by PUs, but need to satisfy given constraints

on the performance loss caused to the PU, e.g., the interference to each PU should be kept within

a tolerable limit [4, 10]. Within this framework, the problem of how the SUs should best utilize the

side information about the primary system, e.g., codebook, protocol, retransmission schemes, channel

state information, is still an open research issue.

In the information theoretic community, cognitive radio network models have often been proposed

by assuming a genie-aided SU with non-causal access to the whole or part of the active primary

message (side information about the primary message) [7, 11, 12]. While this assumption allows

for analysis of information-theoretic optimal transmission strategies and codebook design, it is not

able to capture critical aspects of a cognitive radio network, related to the imperfect sensing and the

dynamic acquisition of the knowledge about the primary message. Another line of inquiry is resource

management, which employs various tools from stochastic optimization or machine learning to design

optimal secondary strategies which best utilize the available resources and the side information, e.g.,
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see [13] and references therein. This approach allows to consider network constraints, such as delay

or other QoS guarantees, as well as to model the dynamic acquisition of the side information by the

SUs, e.g., by a proper Markov chain representation of the system.

Based on the interweave cognitive radio paradigm, we propose to exploit the Hybrid Automatic

Retransmission reQuest (HARQ [14]) protocol implemented by the PU. The use of such protocol

introduces temporal redundancy in the wireless channel, in the form of copies of primary packets

transmitted in subsequent time-slots in response to retransmission requests by the primary receiver.

Opportunities for secondary access thus arise: by tracking the retransmission process of the PU and

by decoding the current primary message, the secondary receiver can remove its interference by em-

ploying Interference Cancellation (IC) techniques over the entire interval over which retransmissions

of the same primary message take place, thus enhancing the secondary outage performance and im-

proving the spectral efficiency of the system. We believe that the ability of the SU to best manage

the interference from nearby terminals is crucial to achieve high spectral efficiency in cognitive radio

networks, since interference is a limiting factor in wireless networks. For this reason, the strategy

of the SU, which prescribes whether to access the channel or remain idle, based on the HARQ state

of the PU and on the state of the SU, is optimized by using stochastic optimization tools. However,

interference cancellation may not be successfully employed by the PUs, which are typically assumed

to be oblivious to the presence of SUs in the network. Hence, the interference produced by the SUs

to the PUs should be kept within tolerable limits.

We consider a simple network topology consisting of a pair of PUs and a pair of SUs (transmitter

and receiver), as depicted in Fig. 2.2. Despite the simplicity of such network topology, understanding

its fundamental limits is still an open research issue which requires in-depth investigation. Moreover,

we believe that this topology represents a building block of more general network settings, consisting

of multiple primary and SU pairs.

The idea of exploiting the primary HARQ process to perform IC on future packets was put forth

by [15], which devises several cognitive radio protocols exploiting the HARQ protocol of the PU.

Therein, the PU employs HARQ with incremental redundancy and the ARQ mechanism is limited to

at most one retransmission. The SU receiver attempts to decode the PU message in the first time-slot.

If successful, the SU transmitter sends its packet and the SU receiver decodes it by using IC on the

received signal. In contrast, in this chapter, we address the more general case of an arbitrary number

of primary ARQ retransmissions, and we allow a more general access pattern for the SU pair over the
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entire primary ARQ window, as detailed in the next section.

Other related works include [16], which devises an opportunistic sharing scheme with channel

probing based on the ARQ feedback from the PU receiver. An information theoretic framework for

cognitive radio is investigated in [12], where the SU transmitter has non-casual knowledge of the PU’s

codeword. In [17], the data transmitted by the PU is obtained causally at the SU receiver. However,

this model requires a joint design of the PU and SU signaling and channel state information at the

transmitters. In contrast, we explicitly model the dynamic acquisition of the PU message at the SU

receiver, which enables IC. Moreover, the PU is oblivious to the presence of the SU.

2.1.1 Contributions

Within this framework, we propose to exploit the primary HARQ process and introduce two IC

schemes that work in concert, both enabled by the underlying retransmission process of the PU. With

Forward IC (FIC), SUrx, after decoding the PU message, performs IC in the next PU retransmission

attempts, if these occur. While FIC provides IC on SU transmissions performed in future time-slots,

Backward IC (BIC) provides IC on SU transmissions performed in previous time-slots within the

same primary ARQ retransmission window, whose decoding failed due to severe interference from

the PU. BIC relies on buffering of the received signals at the SU receiver. Based on these IC schemes,

we model the state evolution of the PU-SU network as a Markov Decision Process [1,18], induced by

the specific access policy used by the SU, which determines its access probability in each state of the

network.

As an application of this framework, we study the problem of designing optimal secondary access

policies that maximize the average long-term SU throughput by opportunistically leveraging FIC and

BIC, while causing a bounded average long-term throughput loss to the PU and a bounded average

long-term SU power expenditure. A similar problem has been studied in [19]. However, therein the

secondary receiver is not allowed to perform interference cancellation based on decoding of the PU’s

message. This aspect plays instead a central role in our work. We show that the optimal strategy

dictates that the SU prioritizes its channel access in the states where SUrx knows the PU message,

thus enabling IC; moreover, we provide an algorithm to optimally allocate additional secondary access

opportunities in the states where the PU message is unknown. In order to derive further insights in the

interaction between the PU and SU in the network, we consider a degenerate cognitive radio network
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Table 2.1. List of symbols.

D Primary HARQ deadline
t ∈ N(1, D) primary ARQ state (retransmission index)
b ∈ N(0, B) SU buffer state (number of received signals currently buffered at SUrx)
Φ ∈ {K,U} PU message knowledge state

(Φ = K, if the current PU message is known to SUrx; otherwise, Φ = U)
Rp PU transmission rate

RsU SU transmission rate when PU message is unknown at SUrx
RsK SU transmission rate when PU message is known at SUrx

T
(I)
p PU throughput when SU is idle

T
(A)
p PU throughput when SU is active
TsU SU throughput when Φ = U
TsK PU throughput when Φ = K
µ SU access policy

T̄s(µ) average long-term SU throughput under policy µ
W̄s(µ) average long-term SU access rate under policy µ
T̄p(µ) average long-term PU throughput under policy µ

q
(I)
pp outage prob. at PUrx, when SU is idle

q
(A)
pp outage prob. at PUrx, when SU is active

q
(I)
ps prob. that current PU message is in outage at SUrx, given that SU is idle

q
(A)
ps prob. that current PU message is in outage at SUrx, given that SU is active

ps,buf prob. that current SU message is buffered (it can be decoded via BIC)

scenario, where the SU transmitter is far away from the PU receiver and thus generates negligible

interference to the PU.

2.1.2 Structure of the chapter

This chapter is organized as follows. Sec. 2.2 presents the system model. Sec. 2.3 introduces the

secondary access policy, the performance metrics and the optimization problem, which is addressed

in Sec. 2.4. Sec. 2.5 discusses and analyzes the degenerate cognitive radio network scenario. Sec. 2.6

presents and discusses the numerical results. Finally, Sec. 2.7 concludes the chapter. The proofs of

the theorems and lemmas are provided in the appendices at the end of the chapter.

The main symbols used in this chapter are listed in Table 2.1. The notation N(x, y) for integers

x, y denotes the set N(x, y) ≡ {x, x+ 1, . . . , y}.
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SUtx SUrx

PUtx PUrx

γs

γp

γsp

γps

ACK/NACK

Buffering/PU message knowledge

Figure 2.2. System model

2.2 System Model

We consider a two-user interference network, depicted in Fig. 2.2, where a primary transmitter

and a secondary transmitter, denoted by PUtx and SUtx, respectively, transmit to their respective

receivers, PUrx and SUrx, over the direct links PUtx→PUrx and SUtx→SUrx. Their transmissions

generate mutual interference over the links PUtx→SUrx and SUtx→PUrx.

Time is divided into time-slots of fixed duration. Each time-slot matches the length of the PU

and SU packets, and the transmissions of the PU and SU are assumed to be perfectly synchronized.

We adopt the block-fading channel model, i.e., the channel gains are constant within the time-slot

duration, and change from time-slot to time-slot. Assuming that the SU and the PU transmit with

constant power Ps and Pp, respectively, and that noise at the receivers is zero mean Gaussian with

variance σ2
w, we define the instantaneous Signal to Noise Ratios (SNR) of the links SUtx→SUrx,

PUtx→PUrx, SUtx→PUrx and PUtx→SUrx, during the nth time-slot, as γs(n), γp(n), γsp(n) and

γps(n), respectively. We model the SNR process {γx(n), n = 0, 1, . . . }, where x ∈ {s, p, sp, ps},
as i.i.d. over time-slots and independent over the different links, and we denote the average SNR as

γ̄x = E[γx].

We assume that no Channel State Information (CSI) is available at the transmitters, so that the

latter cannot allocate their rate based on the instantaneous link quality, to ensure correct delivery of

the packets to their respective receivers. Transmissions may thus undergo outage, when the selected

rate is not supported by the current channel quality.

In order to improve reliability, the PU employs Type-I HARQ [14] with deadline D ≥ 1, i.e., at

mostD transmissions of the same PU message can be performed, after which the packet is discarded
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and a new transmission is performed (the PU is assumed to be backlogged). We define the primary

ARQ state t ∈ N(1, D)1 as the number of ARQ transmission attempts already performed on the

current PU message, plus the current one. Namely, t = 1 indicates a new PU transmission, and the

counter t is increased at each ARQ retransmission, until the deadline D is reached. We assume that

the ARQ feedback is received at the PU transmitter by the end of the time-slot, so that, if requested,

a retransmission can be performed in the next time-slot.

On the other hand, the SU, in each time-slot, either accesses the channel by transmitting its own

message, or stays idle. This decision is based on the access policy µ, defined in Sec. 2.3. The activity

of the SU, which is governed by µ, affects the outage performance of the PU, by creating interference

to the PU over the link SUtx→PUrx. We denote the primary outage probability when the SU is idle

and accesses the channel, respectively, as2

q(I)pp (Rp) , Pr

(

Rp > C (γp)

)

, q(A)
pp (Rp) , Pr

(

Rp > C

(

γp
1 + γsp

))

, (2.1)

where Rp denotes the PU transmission rate, measured in bits/s/Hz, C(x) , log2(1 + x) is the (nor-

malized) capacity of the Gaussian channel with SNR x at the receiver [20]. This outage definition,

as well as the ones introduced later on, assume the use of Gaussian signaling and capacity-achieving

coding with sufficiently long codewords. However, our analysis can be extended to include prac-

tical codes by computing the outage probabilities for the specific code considered. In (2.1), it is

assumed that SU transmissions are treated as background Gaussian noise by the PU. This is a rea-

sonable assumption in CRs in which the PU is oblivious to the presence of SUs. In general, we have

q
(A)
pp (Rp) ≥ q

(I)
pp (Rp), where equality holds if and only if γsp ≡ 0 deterministically. We denote the

expected PU throughput accrued in each time-slot, when the SU is idle and accesses the channel, as

T
(I)
p (Rp) = Rp[1− q

(I)
pp (Rp)] and T

(A)
p (Rp) = Rp[1− q

(A)
pp (Rp)], respectively.

2.2.1 Operation of the SU

Unlike the PU that uses a simple Type-I Hybrid ARQ mechanism, it is assumed that the SU uses

"best effort" transmission. Moreover, the SU is provided with side-information about the PU, e.g.,

1We define N(n0, n1) = {t ∈ N, n0 ≤ t ≤ n1} for n0 ≤ n1 ∈ N

2Herein, we denote the outage probability as q
(Z)
xy , where x and y are the source and the recipient of the message,

respectively (PU if x, y = p, SU if x, y = s), and Z ∈ {A, I} denotes the action of the SU (A if the SU is active and it
accesses the channel, I if the SU remains idle). For example, q(A)

ps is the probability that the PU message is in outage at
SUrx, when SUtx transmits.
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ARQ deadline D, PU codebook and feedback information from PUrx (ACK/NACK messages). This

is consistent with the common characterization of the PU as a legacy system, and of the SU as an

opportunistic and cognitive system, which exploits the primary ARQ feedback to create a best-effort

link with maximized throughput, while the flow control mechanisms are left to the upper layers.

By overhearing the feedback information from PUrx, the SU can thus track the primary ARQ state

t. Moreover, by leveraging the PU codebook, SUrx attempts, in any time-slot, to decode the PU

message, which enables the following IC techniques at SUrx:

• Forward IC (FIC): by decoding the PU message, SUrx can perform IC in the current as well as

in the following ARQ retransmissions, if these occur, to achieve a larger SU throughput;

• Backward IC (BIC): SUrx buffers the received signals corresponding to SU transmissions

which undergo outage due to severe interference from the PU. These transmissions can later be

recovered using IC on the buffered received signals, if the interfering PU message is success-

fully decoded by SUrx in a subsequent primary ARQ retransmission attempt.

We define the SU buffer state b ∈ N(0, B) as the number of received signals currently buffered

at SUrx, where B ∈ N(0, D − 1)3 denotes the buffer size. Moreover, we define the PU message

knowledge state Φ ∈ {K,U}, which denotes the knowledge at SUrx about the PU message currently

handled by the PU. Namely, if Φ = K, then SUrx knows the PU message, thus enabling FIC/BIC;

conversely (Φ = U), the PU message is unknown to SUrx.

Remark 2.2.1 (Feedback Information). Note that PUrx needs to report one feedback bit to inform

PUtx (and the SU, which overhears the feedback) on the transmission outcome (ACK/NACK). On

the other hand, two feedback bits need to be reported by SUrx to SUtx: one bit to inform SUtx as

to whether the PU message has been successfully decoded, so that SUtx can track the PU message

knowledge state Φ; and one bit to inform SUtx as to whether the received signal has been buffered,

so that SUtx can track the SU buffer state b. Herein, we assume ideal (error-free) feedback channels,

so that the SU can track (t, b,Φ), and the PU can track the ARQ state t. However, optimization is

possible with imperfect observations as well [21].

We now further detail the operation of the SU for Φ ∈ {K,U}.

3Note that B ≤ D− 1, since the same PU message is transmitted at mostD times by PUtx. Once the ARQ deadlineD
is reached, a new PU transmission occurs, and the buffer is emptied.
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2.2.1.1 PU message unknown to SUrx (Φ = U)

When Φ = U and the SU is idle, SUrx attempts to decode the PU message, so as to enable

FIC/BIC. A decoding failure occurs if the rate of the PU message, Rp, exceeds the capacity of the

channel PUtx→SUrx, with SNR γps. We denote the corresponding outage probability as q(I)ps (Rp) =

Pr(Rp > C(γps)).

If the SU accesses the channel, SU transmissions are performed with rate RsU (bits/s/Hz) and

are interfered by the PU. SUrx thus attempts to decode both the SU and PU messages; moreover, if

the decoding of the SU message fails due to severe interference from the PU, the received signal is

buffered for future BIC recovery. Using standard information-theoretic results [20], with the help of

Fig. 2.3, we define the following SNR regions associated with the decodability of the SU and PU

messages at SUrx, where Ac denotes the complementary set of A:4

Γp(RsU, Rp) ,
{

(γs, γps) : RsU ≤ C (γs) , Rp ≤ C (γps) , RsU +Rp ≤ C (γs + γps)
}

, (2.2)

⋃

{

(γs, γps) : RsU > C (γs) , Rp ≤ C

(

γps
1 + γs

)}

, (2.3)

Γs(RsU, Rp) ,
{

(γs, γps) : RsU ≤ C (γs) , Rp ≤ C (γps) , RsU +Rp ≤ C (γs + γps)
}

(2.4)

⋃

{

(γs, γps) : Rp > C (γps) , RsU ≤ C

(

γps
1 + γs

)}

, (2.5)

Γbuf(RsU, Rp) ,
{

Γp(RsU, Rp) ∪ Γs(RsU, Rp)
}c⋂{

(γs, γps) : RsU ≤ C (γs)
}

. (2.6)

The SNR regions (2.2) and (2.4) guarantee that the two rates Rp and RsU are within the multiple

access channel region formed by the two transmitters (PUtx and SUtx) and SUrx [20], so that both

the SU and PU messages are correctly decoded via joint decoding techniques. On the other hand,

in the SNR region (2.5) (respectively, (2.3)), only the SU (PU) message is successfully decoded at

SUrx by treating the interference from the PU (SU) as background noise. If the SNR pair falls outside

the two regions (2.4) and (2.5) (respectively, (2.2) and (2.3)), then SUrx incurs a failure in decoding

the SU (PU) message. Therefore, when (γs, γps) ∈ Γs(RsU, Rp), SUrx successfully decodes the SU

message. The corresponding expected SU throughput is thus given by

TsU(RsU, Rp) , RsUPr ((γs, γps) ∈ Γs(RsU, Rp)) . (2.7)

4Herein, we assume optimal joint decoding techniques of the SU and PU messages. Using other techniques, e.g.,
successive IC, the SNR regions may change accordingly, without providing any further insights in the following analysis.
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Figure 2.3. Decodability regions for PU message (rate Rp) and SU message (rate RsU) at SUrx, for a

fixed SNR pair (γs, γps); these regions change according to the fading state (γs, γps)

Similarly, when (γs, γps) ∈ Γp(RsU, Rp), SUrx successfully decodes the PU message. We denote

the corresponding outage probability as q(A)
ps (RsU, Rp) , Pr ((γs, γps) /∈ Γp(RsU, Rp)). Note that

q
(A)
ps (RsU, Rp) > q

(I)
ps (Rp), since SU transmissions interfere with the decoding of the PU message.

Finally, in (2.6), the decoding of both the SU and PU messages fails, since the SNR pair (γs, γps)

falls outside both regions Γp(RsU, Rp) and Γs(RsU, Rp). However, the rateRsU is within the capacity

region of the interference free channel (RsU ≤ C (γs)), so that the SU message can be recovered via

BIC, should the PU message become available in a future ARQ retransmission attempt. The received

signal is thus buffered at SUrx. We denote the buffering probability as

ps,buf(RsU, Rp) , Pr ((γs, γps) ∈ Γbuf(RsU, Rp))

= Pr ((γs, γps) ∈ Γs(RsU, 0))− Pr ((γs, γps) ∈ Γs(RsU, Rp)) > 0, (2.8)

where the second equality follows from inspection of Fig. 2.3.

2.2.1.2 PU message known to SUrx (Φ = K)

When Φ = K, SUrx performs FIC on the received signal, thus enabling interference free SU

transmissions. The SU transmits with rate RsK, and the accrued throughput is given by
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Figure 2.4. Example of operation of FIC/BIC schemes

TsK(RsK) = RsKPr (RsK < C(γs)).

We now provide an example to illustrate the use of FIC/BIC at SUrx.

Example 1. Consider a sequence of 3 primary retransmission attempts in which the SU always ac-

cesses the channel, as depicted in Fig. 2.4. Initially, the PU message is unknown to SUrx, hence the

PU message knowledge state is set to Φ = U in the first time-slot, and the SU transmits with rate

RsU. Assume that the SNR pair (γs(1), γps(1)) falls in Γbuf(RsU, Rp). Then, neither the SU nor

the PU messages are successfully decoded by SUrx, but the received signal is buffered for future BIC

recovery. In the second time-slot, (γs(2), γps(2)) ∈ Γs(RsU, Rp) ∩ Γp(RsU, Rp), hence both the SU

and PU messages are correctly decoded by SUrx, and the PU message knowledge state switches to

Φ = K. At this point, SUrx performs BIC on the previously buffered received signal to recover the

corresponding SU message. In the third time-slot, SUtx transmits with rate RsK, and decoding at

SUrx takes place after cancellation of the interference from the PU via FIC.

We now briefly elaborate on the choice of the transmission rate RsK. Since its value does not

affect the outage performance at PUrx (2.1) and the evolution of the ARQ process, RsK is chosen so

as to maximize TsK(RsK). Therefore, from (2.8) we obtain

TsK(RsK) ≥TsK(RsU) = TsU(RsU, Rp) + ps,buf(RsU, Rp)RsU > TsU(RsU, Rp). (2.9)

Conversely, the choice of the rate RsU is not as straightforward, since its value reflects a trade-

off between the potentially larger throughput accrued with a larger rate RsU and the corresponding

diminished capabilities for IC caused by the more difficult decoding of the PU message by SUrx.

In the following treatment, the rates RsK, RsU and Rp are assumed to be fixed parameters of the

system, and they are not considered part of the optimization (see Sec. 2.6 for further elaboration in

this regard). For the sake of notational convenience, we omit the dependence of the quantities defined
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above on them. Moreover, for clarity, we consider the case B = D − 1 in which SUrx can buffer up

to D − 1 received signals. However, the following analysis can be extended to a generic value of B.

2.3 Policy Definition and Optimization Problem

We model the evolution of the network as a Markov Decision Process [1,18]. Namely, we denote

the state of the PU-SU system by the tuple (t, b,Φ), where t ∈ N(1, D) is the primary ARQ state,

b ∈ N(0, B) is the SU buffer state and Φ ∈ {U,K} is the PU message knowledge state. (t, b,Φ) takes

values in the state space S ≡ SU ∪ SK, where SK ≡ {(t, 0,K) : t ∈ N(2, D)} and SU ≡ {(t, b,U) :
t ∈ N(1, D), b ∈ N(0, t− 1)} are the sets of states where the PU message is known and unknown to

SUrx, respectively.

The SU follows a stationary randomized access policy µ ∈ U ≡ {µ : S 7→ [0, 1]}, which de-

termines the secondary access probability for each state s ∈ S . Note that, from [22], this choice is

without loss of optimality for the specific problem at hand. Namely, in state (t, b,Φ) ∈ S , the SU

is "active", i.e., it accesses the channel, with probability µ(t, b,Φ) and stays "idle" with probability

1− µ(t, b,Φ). We denote the "active" and "idle" actions as A and I, respectively.

With these definitions at hand, we define the following average long-term metrics under µ: the

SU throughput T̄s(µ), the SU power expenditure P̄s(µ) and the PU throughput T̄p(µ), given by

T̄s(µ) = lim
N→+∞

1

N
E

[

N−1
∑

n=0

RsΦn1
(

{Qn = A} ∩Oc
s,n

)

+RsUBn1(O
c
ps,n)

∣

∣

∣

∣

∣

s0

]

, (2.10)

P̄s(µ) =Ps lim
N→+∞

1

N
E

[

N−1
∑

n=0

1 ({Qn = A})
∣

∣

∣

∣

∣

s0

]

, (2.11)

T̄p(µ) = lim
N→+∞

1

N
E

[

N−1
∑

n=0

Rp1
(

Oc
p,n

)

∣

∣

∣

∣

∣

s0

]

, (2.12)

where n is the time-slot index, s0 ∈ S is the initial state in time-slot 0; Φn ∈ {K,U} is the PU

message knowledge state and Bn is the SU buffer state in time-slot n; Qn ∈ {A, I} is the action of

the SU, drawn according to the access policy µ; Os,n and Ops,n denote the outage events at SUrx

for the decoding of the SU and PU messages, so that Oc
s,n and Oc

ps,n denote successful decoding of

the SU and PU messages by SUrx, respectively; Op,n denotes the outage event at PUrx, so that Oc
p,n

denotes successful decoding of the PU message by PUrx; and 1(E) is the indicator function of the

event E. Note that all the quantities defined above are independent of the initial state s0. In fact,
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starting from any s0 ∈ S , the system reaches with probability 1 the positive recurrent state (1, 0,U)

(new PU transmission) within a finite number of time-slots, due to the ARQ deadline. Due to the

Markov property, from this state on, the evolution of the process is independent of the initial transient

behavior, which has no effect on the time averages defined in (2.10), (2.11) and (2.12).

We study the problem of maximizing the average long-term SU throughput subject to constraints

on the average long-term PU throughput loss and SU power. Specifically,

µ∗ = argmax
µ

T̄s(µ) s.t. T̄p(µ) ≥ T (I)
p (1− ǫPU), P̄s(µ) ≤ P(th)

s , (2.13)

where ǫPU ∈ [0, 1] and P(th)
s ∈ [0, Ps] represent the (normalized) maximum tolerated PU throughput

loss with respect to the case in which the SU is idle and the SU power constraint, respectively. This

problem entails a trade-off in the operation of the SU. On the one hand, the SU is incentivized to

transmit in order to increase its throughput and to optimize the buffer occupancy at SUrx (i.e., failed

SU transmissions which are potentially recovered via BIC). On the other hand, SU transmissions

might jeopardize the correct decoding of the PU message at SUrx, thus impairing the use of FIC/BIC,

and might violate the constraints in (2.13).

Under µ ∈ U , the state process is a stationary Markov chain, with steady state distribution

πµ [18, 23]. πµ(s), s ∈ S , is the long-term fraction of the time-slots spent in state s, i.e., πµ(s) =

lim
N→+∞

1
N

∑N−1
n=0 Pr

(n)
µ (s|s0), where Pr(n)µ (s|s0) is the n-step transition probability of the chain from

state s0.5 In state (t, b,U), the SU accesses the channel with probability µ (t, b,U), thus accruing the

throughput µ (t, b,U)TsU. Moreover, if SUrx successfully decodes the PU message (with probabil-

ity 1 − q
(I)
ps − µ(t, b,U)(q

(A)
ps − q

(I)
ps )), bRsU bits are recovered by performing BIC on the buffered

received signals, yielding an additional BIC throughput. Similarly, in state (t, 0,K), the SU accrues

the throughput µ (t, 0,K)TsK. Then, we can rewrite (2.10) and (2.11) in terms of the steady state

distribution and of the cost/reward in each state as

T̄s(µ)=TsUW̄s(µ)+F̄s(µ)+B̄s(µ), P̄s(µ)=PsW̄s(µ), (2.14)

where the SU access rate W̄s(µ), i.e., the average long-term number of secondary channel accesses

5Similarly to (2.10), (2.11) and (2.12), πµ(s) is independent of the initial state s0, due to the recurrence of state (1, 0,U).
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per time-slot, the FIC throughput F̄s(µ) and the BIC throughput B̄s(µ) are defined as

W̄s(µ) ,
∑

s∈S
πµ (s)µ (s) , (2.15)

F̄s(µ) ,
D
∑

t=2

πµ (t, 0,K)µ (t, 0,K) (TsK − TsU), (2.16)

B̄s(µ) ,
D
∑

t=1

t−1
∑

b=0

πµ (t, b,U) bRsU

[

1− q(I)ps − µ (t, b,U)
(

q(A)
ps − q(I)ps

)]

. (2.17)

In (2.14), TsUW̄s(µ) is the SU throughput attained without FIC/BIC, while the terms F̄s(µ) and

B̄s(µ) account for the throughput gains of FIC and BIC, respectively. Conversely, the PU accrues the

throughput T (I)
p if the SU is idle and T

(A)
p if the SU accesses the channel, so that (2.12) is given by

T̄p(µ) = T (I)
p − (T (I)

p − T (A)
p )W̄s(µ). (2.18)

The quantity (T
(I)
p − T

(A)
p )W̄s(µ) is referred to as the PU throughput loss induced by the secondary

access policy µ [19]. The following result follows directly from (2.13), (2.14) and (2.18).

Lemma 2.3.1. The problem (2.13) is equivalent to

µ∗ = argmaxµ∈U T̄s(µ) s.t. W̄s(µ) ≤ min

{

(1− q
(I)
pp )ǫPU

q
(A)
pp − q

(I)
pp

,
P(th)
s

Ps

}

, ǫW. (2.19)

In the next section, we characterize the solution of (2.19). We will need the following definition.

Definition 2.3.1. Let µ be the policy such that secondary access takes place if and only if the PU

message is known to SUrx, i.e., µ(s) = 1, ∀s ∈ SK, µ(s) = 0, ∀s ∈ SU. We denote the SU access

rate achieved by such policy as ǫth = W̄ (µ). The system is in the low SU access rate regime if

ǫW ≤ ǫth in (2.19). Otherwise, the system is in the high SU access rate regime.

2.4 Optimal Policy

In this section, we characterize in closed form the optimal policy in the low SU access rate regime,

and we present an algorithm to derive the optimal policy in the high SU access rate regime.
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2.4.1 Low SU Access Rate Regime

The next lemma shows that, in the low SU access rate regime, an optimal policy prescribes that

secondary access only takes place in the states where the PU message is known to SUrx, with an

equal probability in all such states. It follows that only FIC, and not BIC, is needed in this regime to

attain optimal performance.

Lemma 2.4.1. In the low SU access rate regime ǫW ≤ ǫth, an optimal policy is given by6

µ∗(s) =
ǫW
ǫth

, ∀s ∈ SK, µ
∗(s) = 0, ∀s ∈ SU. (2.20)

Moreover, T̄s(µ
∗) = TsKǫW, P̄s(µ

∗) = PsǫW, and T̄p(µ
∗) = T

(I)
p − (T

(I)
p − T

(A)
p )ǫW.

Proof. For any policy µ ∈ U obeying the SU access rate constraint W̄s(µ) ≤ ǫW, we have T̄s(µ) ≤
W̄s(µ)TsK ≤ ǫWTsK. The first inequality holds since W̄s(µ)TsK is the long-term throughput achiev-

able when the PU message is known a priori at SUrx, which is an upper bound to the performance;

the second from the SU access rate constraint. The upper bound ǫWTsK is achieved by policy (2.20),

as can be directly seen by substituting (2.20) in (2.14), (2.15).

Remark 2.4.1. Note that secondary accesses in states SU, where the PU message is unknown to

SUrx, would obtain a smaller throughput, namely at most TsU + ps,bufRsU ≤ TsK, where TsU is

the "instantaneous" throughput and ps,bufRsU is the BIC throughput, possibly recovered via BIC in a

future ARQ retransmission. Therefore, SU accesses in states SK are more "cost effective".

2.4.2 High SU Access Rate Regime

In this section, we study the high SU access rate regime in which ǫW > ǫth, thus complementing

the analysis above for the regime where ǫW ≤ ǫth. It will be seen that, if ǫW > ǫth, unlike in the low

SU access rate regime, the SU should generally access the channel also in states SU where the PU

message is unknown to SUrx in order to achieve the optimal performance. Therefore, both BIC and

FIC are necessary to attain optimality. In this section, we derive the optimal policy. We first introduce

some necessary definitions and notations.

6The optimal policy in the low SU access rate is not unique. In fact, any policy µ such that µ(s) = 0, ∀s ∈ SU and
W̄s(µ) = ǫth is optimal, attaining the same throughput T̄s(µ) = TsKǫth as (2.20).
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Definition 2.4.1 (Secondary access efficiency). We define the secondary access efficiency under pol-

icy µ ∈ U in state s ∈ S as

ηµ (s) =

dT̄s(µ)
dµ(s)

dW̄s(µ)
dµ(s)

. (2.21)

The secondary access efficiency can be interpreted as follows. If the secondary access probability

is increased in state s ∈ S by a small amount δ, then the PU throughput loss is increased by an

amount equal to δ(T
(I)
p − T

(A)
p )dW̄s(µ)

dµ(s) (from (2.18)), the SU power is increased by an amount equal

to δPs
dW̄s(µ)
dµ(s) (from (2.14)), and the SU throughput augments or diminishes by an amount equal to

δ dT̄s(µ)
dµ(s) (depending on the sign of the derivative). Therefore, ηµ (s) yields the rate of increase (or

decrease if ηµ (s) < 0) of the SU throughput per unit increase of the SU access rate, as induced

by augmenting the secondary channel access probability in state s. Equivalently, it measures how

efficiently the SU can access the channel in state s, in terms of maximizing the SU throughput gain

while minimizing its negative impact on the PU throughput and on the SU power expenditure.

Remark 2.4.2. It is worth noting that the definition of ηµ (s) given in Def. 2.4.1 is not completely

rigorous. In fact, under a generic policy µ, the Markov chain of the PU-SU system may not be

irreducible [23], so that state s may not be accessible, hence πµ(s) = 0 and dT̄s(µ)
dµ(s) = dW̄s(µ)

dµ(s) = 0.

One example is the idle policy µ(s) = 0, ∀s: since the SU is always idle, the buffer at SUrx is always

empty, hence states (t, b,U) with b > 0 are never accessed. To overcome this problem, a formal

definition is given in Appendix 2.B, by treating the Markov chain of the PU-SU system as the limit

of an irreducible Markov chain. ηµ (s) is explicitly derived in Lemma 2.7.3 in Appendix 2.B.

We denote the indicator function of state s as δs : S 7→ {0, 1}, with δs(s) = 1, δs(σ) = 0, ∀σ 6=
s. Moreover, we denote the policy at the ith iteration of the algorithm as µ(i). We are now ready to

describe the algorithm that obtains an optimal policy in the high SU access rate regime. An intuitive

explanation of the algorithm can be found below.

Algorithm 1 (Derivation of the optimal policy).

1. INIT:

• Let µ(0) be the policy µ(0)(s) = 0, ∀ s ∈ SU, µ(0)(s) = 1, ∀ s ∈ SK, and i = 0.

• Let S(0)
idle ≡ {s ∈ S : µ(0)(s) = 0} ≡ SU be the set of states where the SU is idle.
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2. STAGE i:

(a) Compute ηµ(i)(s), ∀ s ∈ S(i)
idle and let s

(i) , argmax
s∈S(i)

idle

ηµ(i)(s).

(b) STAGE i ηµ(i)(s(i)) ≤ 0, go to STEP 3). Otherwise, let µ(i+1) = µ(i) + δ
s(i)

,

S(i+1)
idle ≡S(i)

idle \
{

s(i)
}

.

(c) Set i := i+1. If S(i)
idle ≡ ∅, go to STEP 3). Otherwise, repeat from STEP 2).

3. Let N = i, the sequence of states (s(0), . . . , s(N−1)) and of policies (µ(0), . . . , µ(N−1)).

4. Optimal policy: given ǫW,

(a) If W̄s(µ
(N−1)) ≤ ǫW, then µ∗ = µ(N−1).

(b) Otherwise, µ∗ = λµ(j)+(1−λ)µ(j+1), where j,max
{

i :W̄s

(

µ(i)
)

≤ǫW
}

and λ ∈ (0, 1]

uniquely solves W̄s(λµ
(j) + (1− λ)µ(j+1)) = ǫW.

The algorithm, starting from the optimal policy for the case ǫW = ǫth (Lemma 2.4.1), ranks the

states in the set SU in decreasing order of secondary access efficiency, and iteratively allocates the

secondary access to the state with the highest efficiency, among the states where the SU is idle. The

rationale of this step is that secondary access in the most efficient state yields the steepest increase

of the SU throughput, per unit increase of the SU access rate or, equivalently, of the PU throughput

loss and of the SU power expenditure. The optimality of Algorithm 1 is established in the following

theorem.

Theorem 2.4.2. Algorithm 1 returns an optimal policy for the optimization problem (2.19).

Proof. See Appendix 2.C.

2.5 Special Case: degenerate cognitive radio network scenario

We point out that Algorithm 1 determines the optimal policy for a generic set of system parame-

ters. However, the resulting optimal policy does not always have a structure that is easily interpreted.

In this section, we consider a special case of the general model discussed so far, a degenerate cogni-

tive radio network, where the activity of the PU is unaffected by the transmissions of the SU, i.e., the

channel gain between the SU transmitter and the PU receiver is zero.
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SUtx SUrx PUtx PUrx

TX
ran
ge

TX
ran
ge

Figure 2.5. Degenerate cognitive radio network

Consider the scenario depicted in Fig. 2.5, where PUrx is outside the transmission range of SUtx,

whereas SUrx is inside the transmission range of both SUtx and SUrx. In this scenario, the interfer-

ence produced by SU to PU is negligible. In contrast, the PU produces significant interference at the

SU receiver. The SU thus potentially benefits by employing the BIC and FIC mechanisms. We denote

this scenario as a Degenerate cognitive radio network, and we model it by assuming that the SNR of

the interfering link SUtx→PUrx is deterministically equal to zero, i.e., γsp = 0. From (2.1), we then

have q(I)pp = q
(A)
pp , qpp, i.e., the outage performance of the PU is unaffected by the activity of the SU,

and the primary ARQ process is independent of the secondary access policy. We define

∆s ,
TsK − TsU − ps,bufRsU

RsU
. (2.22)

From (2.9), it follows that ∆s ≥ 0, with equality if RsU = RsK. Therefore, RsU∆s is the marginal

throughput gain accrued in the states where the PU message is known to SUrx, over the throughput

accrued in the states where the PU message is unknown (instantaneous throughput TsU plus BIC

throughput ps,bufRsU, possibly recovered in a future ARQ retransmission). The following lemma

proves that, if the marginal throughput gain ∆s is "small", the secondary accesses in the high SU

access rate regime in a degenerate cognitive radio network are allocated, in order, to the states in SK

(Lemma 2.4.1), then to the idle states (t, b,U) in SU, giving priority to states with low b and t over

states with high b and t, respectively. An illustrative example of the optimal policy for this scenario

is given in Fig. 2.6.
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Lemma 2.5.1. In the degenerate cognitive radio network scenario with q
(A)
pp = q

(I)
pp = qpp, if

∆s <
1− q

(A)
ps

q
(A)
ps − q

(I)
ps

ps,buf , (2.23)

the sequence of policies (µ(0), . . . , µ(N−1)) returned by Algorithm 1 is such that, ∀i ∈ N(0, N − 1),

µ(i)(s) =1, ∀s ∈ SK, (2.24)

µ(i)(t, b,U) =







1 b < b(i)(t)

0 b ≥ b(i)(t),
, ∀(t, b,U) ∈ SU, (2.25)

where b(i)(t) is non-increasing in t and non-decreasing in i, with b(0)(t) = 0 and b(N−1)(t) =

b̄max(t), i.e.,

b̄max(t) = b(N−1)(t) ≥ · · · ≥ b(i)(t) ≥ b(i−1)(t) ≥ · · · ≥ b(0)(t) = 0. (2.26)

b(i)(1) ≥ b(i)(2) ≥ · · · ≥ b(i)(t− 1) ≥ b(i)(t) ≥ · · · ≥ b(i)(D), (2.27)

where

b̄max(t) =



























TsU
RsU

[

1− qpp

(

q
(A)
ps − q

(I)
ps

)

A0(t+ 1)
]

+

(

1−q
(A)
ps

q
(A)
ps −q

(I)
ps

ps,buf −∆s

)

qpp

(

q
(A)
ps − q

(I)
ps

)

A0(t+ 1)

(

q
(A)
ps − q

(I)
ps

)(

1− qpp(1− q
(I)
ps )A0(t+ 1)

)



























− 1 (2.28)

and we have defined

A0(τ) ,
1− qD−τ+1

pp q
(I)(D−τ+1)
ps

1− qppq
(I)
ps

, (2.29)

A1(τ) ,
1− qD−τ+1

pp

1− qpp
. (2.30)

Proof. See Appendix 2.D.

Remark 2.5.1. Interestingly, this is the same result derived in our work [24] for D = 2. However,

therein the result was shown to hold for general q(A)
pp ≥ q

(I)
pp (not necessarily a degenerate cognitive



26 Chapter 2. Optimal Secondary Access in Cognitive Radio Networks

1, 0,U 2, 0,U 3, 0,U 4, 0,U 5, 0,U

2, 1,U 3, 1,U 4, 1,U 5, 1,U

3, 2,U 4, 2,U 5, 2,U

4, 3,U 5, 3,U

5, 4,U

5, 0,K4, 0,K3, 0,K2, 0,K

Figure 2.6. Illustrative example of the structure of the optimal secondary access policy for the degenerate

cognitive radio network; the SU is active in the black states, idle in the white ones, and randomly accesses

the channel in the gray state; the arrows indicate the possible state transitions (transitions to state (1, 0,U)
are omitted).

radio network), whereas Lemma 2.5.1 holds for general D but only for a degenerate cognitive radio

network scenario.

The lemma dictates that, in the degenerate cognitive radio network scenario, the SU should re-

strict its channel accesses to the states corresponding to a low primary ARQ index and small buffer

occupancy at the SU receiver. Alternatively, the larger the ARQ index or the buffer occupancy, the

smaller the incentive to access the channel. By doing so, the SU maximizes the buffer occupancy

in the early HARQ retransmission attempts, and invests in the future BIC recovery. When the pri-

mary ARQ state t approaches the deadline D, the SU is incentivized to idle so as to help SUrx to

decode the PU message, thus enabling the recovery of the failed SU transmissions from the buffered

received signals via BIC, before the ARQ deadlineD is reached and the buffer is depleted. Moreover,

when the buffer state b grows, since q
(A)
ps > q

(I)
ps , the instantaneous reward accrued by staying idle

((1 − q
(I)
ps )bRsU) approaches and, at some point, becomes larger than the reward accrued by trans-

mitting (TsU + (1 − q
(A)
ps )bRsU), hence the incentive to stay idle grows. On the other hand, if ∆s
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is large, then the marginal throughput gain accrued in the states where the PU message is known to

SUrx, over the throughput accrued in the states where the PU message is unknown, is large. The SU

is thus incentivized to stay idle in the initial ARQ rounds, so as to help SUrx decode the PU message.

Therefore, for large∆s, the optimal policy may not obey the structure of Lemma 2.5.1.

As a final remark, note that, in the degenerate cognitive radio network scenario, the only limitation

to the activity of the SU is the secondary power expenditure P̄s(µ), since the primary throughput is

unaffected. In the special case P(th)
s = Ps in (2.13), neither the secondary power expenditure nor

the primary throughput degradation limit the activity of the SU, hence the optimal policy solves the

unconstrained maximization problem µ∗ = argmaxµ T̄s(µ), whose solution follows as a corollary of

Lemma 2.5.1.

Corollary 2.5.2. In the degenerate cognitive radio network scenario, the solution of the uncon-

strained optimization problem µ∗ = argmaxµ T̄s(µ) yields

µ∗(s) =1, ∀s ∈ SK, (2.31)

µ∗(t, b,U) =







1 b < b̄max(t)

0 b ≥ b̄max(t),
, ∀(t, b,U) ∈ SU, (2.32)

where b̄max(t) is defined in (2.28).

2.6 Numerical Results

We consider a scenario with Rayleigh fading channels, i.e., the SNR γx, x ∈ {s, p, sp, ps}, is an
exponential random variable with mean E[γx] = γ̄x. We consider the following parameters, unless

otherwise stated. The average SNRs are set to γ̄s = γ̄ps = 5, γ̄p = 10, γ̄sp = 2. The ARQ deadline is

D = 5. RsK is chosen as RsK = argmaxRs TsK(Rs). The PU rate Rp is chosen as the maximizer of

the instantaneous PU throughput under an idle SU, i.e., Rp = argmaxR T
(I)
p (R). For the rate RsU,

we evaluate the two cases RsU = R∗
sU and RsU = RsK, where R∗

sU = argmaxRs TsU(Rs, Rp).

The former maximizes the instantaneous throughput under interference from the PU, thus neglecting

the buffering capability at SUrx; therefore, the choice RsU = R∗
sU reflects a pessimistic expectation

of the ability of SUrx to decode the PU message and to enable BIC. As to the latter, from (2.9) we

have RsU = RsK = argmaxRs TsU(Rs, Rp) + ps,buf(Rs, Rp)RsK, hence RsU = RsK maximizes

the sum of the instantaneous throughput and the future throughput possibly recovered via BIC, thus
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PU

Rp ≃ 2.52 q
(I)
pp ≃ 0.38 q

(A)
pp ≃ 0.68

SU, RsU = argmaxRs
TsU (Rs, Rp)

RsU = 1.12 TsU ≃ 0.59

q
(I)
ps ≃ 0.61 q

(A)
ps ≃ 0.74 ps,buf = 0.26

RsK ≃ 1.91 TsK ≃ 1.10

SU, RsU = RsK

RsU ≃ 1.91 TsU ≃ 0.40

q
(I)
ps ≃ 0.61 q

(A)
ps ≃ 0.88 ps,buf = 0.37

RsK ≃ 1.91 TsK ≃ 1.10

Table 2.2. parameters of the SU and PU, for the SNRs γ̄s = 5, γ̄p = 10, γ̄ps = 5, γ̄sp = 2.

reflecting an optimistic expectation of the ability of SUrx to decode the PU message, which enables

BIC. The PU throughput loss constraint is set to ǫPU = 0.2, and the constraint on the SU power is set

to P(th)
s = Ps (inactive). The resulting values of the system parameters are listed in Table 2.2.

We consider the following schemes: "FIC/BIC", which employs both FIC and BIC; the optimal

"FIC/BIC" policy is derived using Algorithm 1 and Lemma 2.4.1; "FIC only", which does not employ

the buffering mechanism (i.e., B = 0; the optimal policy is obtained by letting psbuf = 0 in Algo-

rithm 1, i.e., SU transmissions are discarded in case of transmission failure); "no FIC/BIC", which

employs neither BIC nor FIC. In this case, the SU message is decoded by leveraging the PU codebook

structure [25]; however, possible knowledge of the PU message gained during the decoding operation

is only used in the slot where the PU message is acquired, but is neglected in the past/future PU re-

transmissions. For "no FIC/BIC", the optimal policy consists in accessing the channel with a constant

probability in all time-slots, independently of the underlying state, so as to attain the PU throughput

loss constraint with equality. "PM known" refers to an ideal scenario where SUrx perfectly knows the

current PU message in advance, and removes its interference; specifically, SUtx transmits with rate

RsK, thus accruing the throughput TsK at each secondary access; "PM known" thus yields an upper

bound to the performance of any other policy considered.

In Fig. 2.7, we plot the SU throughput versus the PU throughput, obtained by varying the SU

access rate constraint ǫW in (2.19) from 0 to 1. As expected, the best performance is attained by

"FIC/BIC", since the joint use of BIC and FIC enables IC at SUrx over the entire sequence of PU

retransmissions. "FIC only" incurs a throughput penalty (except in the low SU access rate regime

T̄p(µ) ≥ 1.37 where, from Lemma 2.4.1, "FIC/BIC" does not employ BIC), since the SU transmis-

sions which undergo outage due to severe interference from the PU are simply dropped. "no FIC/BIC"

incurs a further throughput loss, since possible knowledge about the PU message is not exploited to



2.6. Numerical Results 29

0.9 1 1.1 1.2 1.3 1.4 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

PU Throughput, T̄p(µ)

S
U

T
h
ro

u
g
h
p
u
t,

T̄
s
(µ

)

 

 

BIC/FIC, RsU = R∗

sU

BIC/FIC, RsU = RsK

FIC only, RsU = R∗

sU

FIC only, RsU = RsK

no BIC/FIC, RsU = R∗

sU

High Secondary
Access Rate
Regime

Low Secondary
Access Rate
Regime

Figure 2.7. SU throughput vs PU throughput. γ̄s = γ̄ps = 5, γ̄sp = 2, γ̄p = 10. The other parameters are
given in Table 2.2.

perform IC. Concerning the choice of the transmission rates, we note that the selection RsU = R∗
sU

outperforms RsU = RsK for the scenario considered. Note that, with RsU = R∗
sU, the SU accrues a

larger instantaneous throughput (TsU), but FIC and BIC are impaired, since both the buffering proba-

bility (2.8), ps,buf , and the probability that SUrx does not successfully decode the PU message, q(A)
ps ,

diminish. Hence, in this case the instantaneous throughput maximization has a stronger impact on the

performance than enabling FIC/BIC at SUrx.

In Fig. 2.8, we plot the SU throughput versus the SNR ratio γ̄sp/γ̄p, where γ̄p = 5 and RsU =

R∗
sU. Note that, when γ̄sp/γ̄p = 0, we obtain the degenerate cognitive radio network scenario,

investigated in Sec. 2.5, for which the optimal policy is defined in Corollary 2.5.2. We observe that,

for γ̄sp/γ̄p ≤ 0.5, the SU throughput increases. In fact, in this regime the activity of the SU causes

little harm to the PU, and the constraint on the PU throughput loss is inactive. The SU thus maximizes

its own throughput. As γ̄sp increases from 0 to 0.5γ̄p, the activity of the SU induces more frequent

primary ARQ retransmissions, hence there are more IC opportunities available and the SU throughput

augments. On the other hand, as γ̄sp grows beyond 0.5γ̄p, the constraint on the PU throughput loss

becomes active, secondary accesses become more and more harmful to the PU and take place more

and more sparingly, hence the SU throughput degrades.



30 Chapter 2. Optimal Secondary Access in Cognitive Radio Networks

0 0.1 0.2 0.3 0.4 0.5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

γ̄sp/γ̄p

T̄
s
(µ

)

 

 

BIC/FIC

FIC only

no BIC/FIC

PM known

Figure 2.8. SU throughput vs SNR ratio γ̄sp/γ̄p. PU throughput loss constraint ǫPU = 0.2. γ̄s = γ̄ps = 5,
γ̄p = 10. RsU = R∗

sU.

In Fig. 2.9, we plot the SU throughput versus the SNR ratio γ̄ps/γ̄s, where γ̄s = 5 and RsU =

R∗
sU, which is a function of γ̄ps. We notice that, when γ̄ps = 0, the upper bound is achieved with

equality, since the SU operates under no interference from the PU. The upper bound is approached

also for γ̄ps ≫ γ̄s, corresponding to a strong interference regime where, with high probability, SUrx

can successfully decode the PU message, remove its interference from the received signal, and then

attempt to decode the SU message. The worst performance is attained when γ̄ps ≃ γ̄s/2. In fact, the

interference from the PU is neither weak enough to be simply treated as noise, nor strong enough to

be successfully decoded and then removed.

In Fig. 2.10, we plot the SU throughput versus the SU rate ratio RsU/RsK, where RsK ≃ 1.91

is kept fixed. Clearly, "no FIC/BIC" attains the best performance for RsU = R∗
sU, which maximizes

the throughput TsU(RsU, Rp) achieved when neither FIC nor BIC are used. On the other hand,

the performance of "FIC/BIC" is maximized for a slightly larger value of RsU. In fact, this value

reflects the optimal trade-off between maximizing the throughput TsU (RsU ≃ 0.59RsK in Fig. 2.11),

maximizing the buffering probability, ps,buf (RsU → 1), and minimizing the probability that SUrx

does not successfully decode the PU message, q(A)
ps (RsU → 0). Finally, "FIC only" is optimized by
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constraint ǫPU = 0.2. γ̄s = 5, γ̄sp = 2, γ̄p = 10, γ̄ps = 5.
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Figure 2.11. Probabilities ps,buf , 1 − q
(A)
ps and normalized SU throughput TsU vs the SU rate ratio

RsU/RsK. RsK ≃ 1.91 is kept fixed. γ̄s = γ̄ps = 5, γ̄sp = 2, γ̄p = 10.

RsU ≃ 0.52RsK < R∗
sU. Since "FIC only" does not use BIC, this value reflects the optimal trade-off

between maximizing TsU and minimizing q(A)
ps (RsU → 0).

In Fig. 2.12, we plot the SU throughput versus the ARQ deadline D. We notice that, when

D = 1, all the IC mechanisms considered attain the same performance as "no FIC/BIC". In fact,

this is a scenario where the PU does not employ ARQ, hence no redundancy is introduced in the

primary transmission process. Interestingly, by employing FIC or BIC, the performance improves as

D increases. In fact, the larger D, the more the redundancy introduced by the primary ARQ process,

hence the more the opportunities for FIC/BIC at SUrx.

2.7 Conclusions

We have investigated the idea of leveraging the redundancy introduced by the ARQ protocol im-

plemented by a Primary User (PU) to perform Interference Cancellation (IC) at the receiver of a Sec-

ondary User (SU) pair: the SU receiver (SUrx), after decoding the PU message, exploits this knowl-

edge to perform Forward IC (FIC) in the following ARQ retransmissions and Backward IC (BIC) in

the previous ARQ retransmissions, corresponding to SU transmissions whose decoding failed due to
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Figure 2.12. SU throughput vs ARQ deadlineD. PU throughput loss constraint ǫPU = 0.2. γ̄s = γ̄ps = 5,
γ̄sp = 2, γ̄p = 10. RsU = R∗

sU.

severe interference from the PU. We have employed a stochastic optimization approach to optimize

the SU access strategy which maximizes the average long-term SU throughput, under constraints on

the average long-term PU throughput degradation and SU power expenditure. We have proved that

the SU prioritizes its channel accesses in the states where SUrx knows the PU message, thus enabling

FIC, and we have provided an algorithm to optimally allocate additional secondary access oppor-

tunities in the states where the PU message is unknown. Finally, we have shown numerically the

throughput gain of the proposed schemes.

Appendix 2.A: SU and PU performance metrics and properties

In this appendix, we compute T̄s(µ), W̄s(µ) and state properties of W̄s(µ).

Definition 2.7.1. We define Gµ(t, b,Φ), Vµ(t, b,Φ) and Dµ(t, b,Φ) as the average throughput, the

average number of secondary channel accesses and the average number of time-slots, respectively,

accrued starting from state (t, b,Φ) until the end of the primary ARQ cycle under policy µ (i.e., until

the recurrent state (1, 0,U) is reached). Starting from Xµ(D + 1, b,Φ) = 0, ∀b, ∀Φ ∈ {U,K},7

7We introduce the fictitious state (D + 1, b,Φ) for notational convenience.
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(I)
pp (1− q
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Figure 2.13. Transition probabilities
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whereXµ stands forGµ,Vµ orDµ (we writeX ∈ {G,V,D}), these are defined recursively as, for
t ∈ N(1, D), b ∈ N(0, t− 1),

Xµ(t, b,U) = xµ(t, b,U) + Prµ(t+ 1, b,U|t, b,U)Xµ(t+ 1, b,U) (2.33)

+ Prµ(t+ 1, b+ 1,U|t, b,U)Xµ(t+ 1, b+ 1,U) + Prµ(t+ 1, 0,K|t, b,U)Xµ(t+ 1, 0,K),

Xµ(t, 0,K) = xµ(t, 0,K) +
[

q(I)pp + µ(t, 0,K)(q(A)
pp − q(I)pp )

]

Xµ(t+ 1, 0,K), (2.34)

where xµ(t, b,Φ) is the cost/reward accrued in state (t, b,Φ) and Prµ(·|·) is the one-step transition

probability, which can be derived with the help of Fig. 2.13 by taking the expectation with respect to

the actions SU idle (I, with probability 1− µ(t, b,Φ)) and SU active (A, with probability µ(t, b,Φ)),

yielding

Prµ(t+ 1, b,U|t, b,U) = µ(t, b,U)q(A)
pp

(

q(A)
ps − ps,buf

)

+ (1− µ(t, b,U))q(I)pp q
(I)
ps , (2.35)

Prµ(t+ 1, b+ 1,U|t, b,U) = µ(t, b,U)q(A)
pp ps,buf , (2.36)

Prµ(t+ 1, 0,K|t, b,U) = µ(t, b,U)q(A)
pp

(

1− q(A)
ps

)

+ (1− µ(t, b,U))q(I)pp

(

1− q(I)ps

)

. (2.37)

Namely, if X = G (throughput), then xµ(t, b,Φ), Φ ∈ {U,K}, is the expected throughput accrued

in state (t, b,Φ), and is given by

xµ(t, 0,K) =µ(t, 0,K)TsK , gµ(t, 0,K), (2.38)

xµ(t, b,U) =
[

µ(t, b,U)(1− q(A)
ps ) + (1− µ(t, b,U))(1− q(I)ps )

]

bRsU + µ(t, b,U)TsU

,gµ(t, b,U), (2.39)

where the first term in (2.39) accounts for the successful recovery of the b SU messages from the

buffered received signals via BIC, when the PU message is decoded by SUrx; if X = V (secondary

access), then xµ(t, b,Φ) is the SU access probability in state (t, b,Φ), i.e.,

xµ(t, b,Φ) = µ(t, b,Φ) , vµ(t, b,Φ); (2.40)

finally, ifX = D (time-slots), then

xµ(t, b,Φ) = 1 , dµ(t, b,Φ), (2.41)
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corresponding to one time-slot. Moreover, we define, forX ∈ {G,V,D},

X′
µ(s) ,

dX′
µ(s)

dµ(s)
. (2.42)

The number of visits to state (1, 0,U) up to time-slot n is a renewal process [26]. Each renewal

interval (i.e., the ARQ sequence in which the PU attempts to deliver a specific packet) has average du-

rationDµ(1, 0,U), over which the expected accrued SU throughput isGµ(1, 0,U), and the expected

number of secondary channel accesses is Vµ(1, 0,U). Then, the following lemma directly follows

from the strong law of large numbers for renewal-reward processes [26].

Lemma 2.7.1. The average long-term SU throughput and access rate are given by T̄s(µ) =
Gµ(1,0,U)
Dµ(1,0,U)

and W̄s(µ) =
Vµ(1,0,U)
Dµ(1,0,U) , respectively.

We have the following lemma.

Lemma 2.7.2. We have

dW̄s(µ)

dµ(s)
≥ 0, ∀s ∈ S, ∀µ ∈ U . (2.43)

The inequality is strict if and only if state s is accessible from (1, 0,U) under policy µ, i.e., ∃ n > 0 :

Pr
(n)
µ (s|(1, 0,U)) > 0. Moreover, for all s ∈ S we have

V′
µ(s)−D′

µ(s)W̄s(µ) > 0. (2.44)

Proof. If state s is not accessible from state (1, 0,U) under policy µ, then the steady state distribution

satisfies πµ(s) = 0, hence W̄s(µ) is unaffected by µ(s). Otherwise, from Lemma 2.7.1 we have that

dW̄s(µ)

dµ(s)
=

dVµ(1,0,U)
dµ(s) − dDµ(1,0,U)

dµ(s) W̄s(µ)

Dµ(1, 0,U)
∝ V′

µ(s)−D′
µ(s)W̄s(µ), (2.45)

where ∝ represents equality up to a positive multiplicative factor, and the right hand side holds since,

∀X ∈ {V,D} and (t, b,Φ) ∈ S , dXµ(1,0,U)
dµ(t,b,Φ) = Pr

(t)
µ (t, b,Φ|1, 0,U)X′

µ(t, b,Φ).

If s ∈ SK, i.e., s = (t, 0,K), we have

dW̄s(µ)

dµ(t, 0,K)
∝ V′

µ(t, 0,K)−D′
µ(t, 0,K)W̄s(µ) ≥ V′

µ(t, 0,K)−D′
µ(t, 0,K) , Aµ(t), (2.46)
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where we have used the fact that W̄s(µ) ≤ 1 and, from (2.34) and (2.41), D′
µ(t, 0,K) = (q

(A)
pp −

q
(I)
pp )Dµ(t+ 1, 0,K) ≥ 0.

We now prove by induction that Aµ(t) > 0, ∀ t ∈ N(1, T ), so that (2.43) and (2.44) follow for

s ∈ SK. From (2.33), for t < D, after algebraic manipulation we obtain

Aµ(t) = 1 + (q(A)
pp − q(I)pp )[Vµ(t+ 1, 0,K)−Dµ(t+ 1, 0,K)]

= 1− q(A)
pp + Prµ(t+ 2, 0,K|t+ 1, 0,K)Aµ(t+ 1). (2.47)

Since Aµ(D) = 1 > 0, we obtain Aµ(t) > 0 by induction.

If s ∈ SU, i.e., s = (t, b,U), we have

dW̄s(µ)

dµ(t, b,U)
∝ V′

µ(t, b,U)−D′
µ(t, b,U)W̄s(µ). (2.48)

We prove that V′
µ(t, b,U)−D′

µ(t, b,U)W̄s(µ) > 0 in two steps, so that (2.43) and (2.44) follow for

s ∈ SU. First, we prove that Cµ(t, b) , D′
µ(t, b,U) ≥ 0. Then, since W̄s(µ) ≤ 1, we obtain

dW̄s(µ)

dµ(t, b, 0)
∝ V′

µ(t, b,U)− Cµ(t, b)W̄s(µ) ≥ V′
µ(t, b,U)−D′

µ(t, b,U) , Bµ(t, b). (2.49)

Finally, we prove that Bµ(t, b) > 0.

Proof of Cµ(t, b) ≥ 0: from (2.33), for t < D we have

Cµ(t, b) =[q(A)
pp (1− q(A)

ps )− q(I)pp (1− q(I)ps )]Dµ(t+ 1, 0,K) (2.50)

+ [q(A)
pp (q(A)

ps − ps,buf)− q(I)pp q
(I)
ps ]Dµ(t+ 1, b,U) + q(A)

pp ps,bufDµ(t+ 1, b+ 1,U).

Using the recursions (2.33) and rearranging the terms, we obtain the recursive expression

Cµ(t, b)=Prµ(t+2, b+2,U|t+ 1, b+ 1,U)Cµ(t+ 1, b+ 1)

+ q(A)
pp −q(I)pp + Prµ(t+ 2, b,U|t+ 1, b,U)Cµ(t+ 1, b)

+
[

(1− µ(t+ 1, 0,K))q(I)pp (1− q(I)ps ) + µ(t+ 1, 0,K)q(A)
pp (1− q(A)

ps )
]

(q(A)
pp − q(I)pp )Dµ(t+ 2, 0,K).

Since Cµ(D, b) = 0, ∀ b ∈ N(0, D − 1), it follows by induction on t that Cµ(b, t) ≥ 0.

Proof of Bµ(t, b) > 0: From (2.33), for t < D we obtain the following recursive expression for
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Bµ(t, b), after algebraic manipulation,

Bµ(t, b) = 1− q(A)
pp + Prµ(t+ 2, b,U|t+ 1, b,U)Bµ(t+ 1, b)

+ Prµ(t+ 2, b+ 2,U|t+ 1, b+ 1,U)Bµ(t+ 1, b+ 1)

+
[

(1− µ(t+ 1, 0,K))q(I)pp (1− q(I)ps ) + µ(t+ 1, 0,K)q(A)
pp (1− q(A)

ps )
]

Aµ(t+ 1), (2.51)

here Aµ(t) is defined in (2.46). The result follows by induction, since Bµ(D, b) = 1 > 0 and

Aµ(t+ 1) > 0.

Appendix 2.B: SU access efficiency

In this appendix, we give a rigorous definition of SU access efficiency, thus complementing

Def. 2.4.1. Moreover, in Lemma 2.7.3, we derive it. We recall that Pr(n)µ (s|s0) is the n-step transition
probability of the chain from s0 to s.

Definition 2.7.2. Let µ̃ ∈ U be a policy such that ∃n > 0 : Pr
(n)
µ̃ (s|(1, 0,U)) > 0, and µυ =

(1− υ)µ+ υµ̃, where υ ∈ (0, 1], µ ∈ U . We define the SU access efficiency under µ in state s as

ηµ (s) = lim
υ→0+

dT̄s(µυ)
dµυ(s)

dW̄s(µυ)
dµυ(s)

∣

∣

∣

∣

∣

∣

µυ

.

Remark 2.7.1. Notice that the condition ∃ n > 0 : Pr
(n)
µ̃ (s|(1, 0,U)) > 0 guarantees that state

s is accessible from state (1, 0,U) under policy µυ, for υ > 0. Under this condition, dW̄s(µ)
dµ(s) > 0

(Lemma 2.7.2 in Appendix 2.A), hence the fraction within the limit is well defined for υ > 0 and in

the limit υ → 0+. One such policy µ̃ is µ̃(s) = 0.5, ∀s ∈ S .

Using Lemma 2.7.1 and Def. 2.7.1 in Appendix 2.A and Def. 2.7.2, ηµ (s) can be derived accord-

ing to the following lemma.

Lemma 2.7.3. We have ηµ (s) =
G′

µ(s)−D′

µ(s)T̄s(µ)

V′

µ(s)−D′

µ(s)W̄s(µ)
.

Remark 2.7.2. This is well defined, since V′
µ(s) − D′

µ(s)W̄s(µ) > 0 from Lemma 2.7.2 in Ap-

pendix 2.A.
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Appendix 2.C: Proof of Theorem 2.4.2

Proof of Theorem 2.4.2. In the first part of the theorem, we prove that, by initializing Algorithm 1

with the idle policy µ(0), µ(0)(s) = 0, ∀s ∈ S , and with the set of idle states S(0)
idle ≡ S , we obtain an

optimal policy. In the second part of the proof, we prove the optimality of the specific initialization

of Algorithm 1 for the high SU access rate regime.

Let µ̃ be a policy under which all states s ∈ S are accessible from state (1, 0,U), i.e., ∃ n >

0 : Pr
(n)
µ̃ (s|(1, 0,U)) > 0. One such policy is µ̃(s) = 0.5, ∀s ∈ S . Consider a modified Markov

Decision Process, parameterized by υ ∈ (0, 1), obtained by applying the policy (1− υ)µ+ υµ̃ to the

original system, where µ ∈ U . Since µ, µ̃ ∈ U and υ ∈ (0, 1), it follows that (1− υ)µ+ υµ̃ ∈ U . We

define T̄s(µ, υ) , T̄s((1− υ)µ+ υµ̃) and W̄s(µ, υ) , W̄s((1− υ)µ+ υµ̃), and we study

µ∗(υ) =argmaxµ∈U T̄s(µ, υ) s.t. W̄s(µ, υ) ≤ ǫW, (2.52)

where the parameter υ is small enough to guarantee a feasible problem, i.e., ∃ µ ∈ U : W̄s(µ, υ) ≤ ǫW.

(2.19) is obtained in the limit υ → 0+. Notice that, ∀ µ ∈ U , under policy (1 − υ)µ + υµ̃, all the

states s ∈ S are accessible from state (1, 0,U), and the Markov chain is irreducible. Hence, from

Lemma 2.7.2 in Appendix 2.A, W̄s(µ, υ) is a strictly increasing function of µ(s), ∀s ∈ S . This is an
important assumption in the following proof.

Let D ⊂ U be the set of all the deterministic policies, and Gυ =
{(

W̄s(µ, υ), T̄s(µ, υ)
)

, µ ∈ D
}

.

With the help of Fig. 2.14, for any µ ∈ U , we have that
(

W̄s(µ, υ), T̄s(µ, υ)
)

∈ conv(Gυ), where

conv(Gυ) is the convex hull of the set Gυ. In particular, for the optimal policy we have
(

W̄s(µ
∗(υ), υ), T̄s(µ

∗(υ), υ)
)

∈ bd(Gυ), where bd(Gυ) denotes the boundary of conv(Gυ).

Algorithm 1 determines the sequence of vertices of the polyline bd(Gυ) in the limit υ → 0+ (bold

line in Fig. 2.14). For υ > 0, starting from the leftmost vertex of bd(Gυ), achieved by the idle policy

µ(0)(s) = 0, ∀s ∈ S (this follows from the fact that W̄s(µ, υ) is a strictly increasing function of

µ(s), hence it is minimized by the idle policy), the algorithm determines iteratively the next vertex of

bd(Gυ) as the maximizer of the slope

µ(i+1) = argmax
µ∈D:W̄s(µ,υ)>W̄s(µ(i),υ)

T̄s(µ, υ)− T̄s(µ
(i), υ)

W̄s(µ, υ)− W̄s(µ(i), υ)
. (2.53)

Since (2.19) has one constraint, the optimal policy µ∗(υ) is randomized in one state [22], and hence
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Figure 2.14. Geometric interpretation of problem (2.52)

each segment on the boundary bd(Gυ) between pairs (W̄s(µ
(i), υ), T̄s(µ

(i), υ)) achievable with de-

terministic policies is attained by a policy that is randomized in only one state. It follows that µ(i)

and µ(i+1) differ in only one state. Moreover, in (2.53) the maximization is over µ ∈ D such that

W̄s(µ, υ) > W̄s(µ
(i), υ), i.e., since W̄s(µ, υ) is a strictly increasing function of µ(s) and µ(i+1) and

µ(i) differ in only one position, µ(i+1) is obtained from µ(i) by allocating one more secondary access

to a state which is idle under µ(i). In (2.53), the maximization is thus over
{

µ(i) + δs : s ∈ S(i)
idle

}

,

and, after algebraic manipulation, µ(i+1) in (2.53) maximizes

max
s∈S(i)

idle

T̄s(µ
(i)+ δs, υ)− T̄s(µ

(i), υ)

W̄s(µ(i)+ δs, υ)− W̄s(µ(i), υ)
= max
s∈S(i)

idle

η(1−υ)µ(i)+υµ̃(s).

Stage i of the algorithm is thus proved. If η(1−υ)µ(i)+υµ̃(s) ≤ 0, we have W̄s

(

µ(i) + δs, υ
)

>

W̄s

(

µ(i), υ
)

and T̄s

(

µ(i) + δs, υ
)

≤ T̄s

(

µ(i), υ
)

. If this condition holds ∀ s ∈ S(i)
idle, any next vertex

of the polyline bd(Gυ) yields a decrease of the SU throughput and a larger SU access rate, hence a

sub-optimal set of policies, and the algorithm stops.

By construction, the algorithm returns a sequence of policies (µ(i), i ∈ N(0, N − 1)), character-

ized by strictly increasing values of the SU throughput and of the SU access rate. The optimal policy

belongs to the polyline with vertices Vυ ≡ {(W̄s(µ
(i), υ), T̄s(µ

(i), υ)), i ∈ N(0, N − 1)}, denoted by
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pl(Vυ) in Fig. 2.14. Then, (2.19) becomes equivalent to T
∗(υ)
s = max

(Ws,Ts)∈Vυ

Ts s.t. Ws ≤ ǫW, whose

solution is given in the last step of Algorithm 1. The result finally follows for υ → 0+.

To conclude, we prove the initialization of Algorithm 1 for the high SU access rate. Let

(µ(0), . . . , µ(N−1)) and (s(0), . . . , s(N−1)) be the sequence of deterministic policies and of states re-

turned by Algorithm 1, obtained by initializing the algorithm as in the first part of the proof. Let

D0 ≡ {µ ∈ D : µ(t, 0, 0) = 0 ∀ t ∈ N(1, T )} , (2.54)

D̃0 ≡ {µ ∈ D0 : µ(s) = 1, ∀s ∈ SK}, and N0 , max{i ∈ {0, . . . , N − 1} : W̄s(µ
(i)) < ǫth}.

We prove that µ(N0+1) ∈ D̃0, i.e., µ(N0+1)(s) = 1, ∀s ∈ SK. From the definition of D̃0 and the

construction of the algorithm, it follows that, for i > N0, µ(i)(s) = 1, ∀ s ∈ SK. Moreover, from

Lemma 2.7.4, W̄s(µ
(N0+1)) = ǫth. Hence, for the high SU access rate ǫ > ǫth, the optimal policy

µ∗ obeys µ∗(s) = 1, ∀s ∈ SK. Then, letting U1 ≡ {µ ∈ U : µ(s) = 1, ∀s ∈ SK}, the optimization

problem (2.19) can be restricted to the set of randomized policies µ ∈ U1 ⊂ U when ǫ > ǫth.

Equivalently, secondary accesses taking place in SU can be obtained by initializing the algorithm

with µ(0)(s) = 0, s ∈ SU, µ(0)(s) = 1, s ∈ SK, S
(0)
idle ≡ SU.

Proof of µ(N0+1) ∈ D̃0: We prove by induction that µ(i) ∈ D0 \D̃0, ∀i ≤ N0 and µ(N0+1) ∈ D̃0.

Assume that, for some i ≥ 0, µ(j) ∈ D0 \ D̃0, ∀j ≤ i. From Lemma 2.7.4, it follows that N0 ≥ i.

This clearly holds for i = 0. We show that this implies that either µ(i+1) ∈ D0 \ D̃0, hence N0 > i,

thus proving the induction step, or µ(i+1) ∈ D̃0, hence N0 = i, thus proving the property. The result

follows since N0 ≤ 1 + |S| < ∞ (i.e., i = N0 is reached within a finite number of steps).

From Lemma 2.7.5, ηµ(i)(s) = TsK > 0, ∀s ∈ SK∩S(i)
idle and ηµ(i)(t, 0,U) < TsK, ∀t ∈ N(1, D),

hence, from the main iteration stage of the algorithm it follows that µ(i+1) ∈ D0. In particular, if

µ(i+1) ∈ D0 \ D̃0, then N0 > i from Lemma 2.7.4. On the other hand, if µ(i+1) ∈ D̃0, then, from

Lemma 2.7.4, N0 = i. The property is thus proved.

Lemma 2.7.4. W̄s(µ) < ǫth, ∀µ ∈ D0 \ D̃0 and W̄s(µ) = ǫth, ∀µ ∈ D̃0.

Proof. Let µ ∈ D̃0. Since the states (t, b,U) with b > 0 are not accessible from (1, 0,U) under µ,

the transmission probability µ(t, b,U), b > 0, does not affect W̄s(µ). Then, from Def. 2.3.1, we have

W̄s(µ) = ǫth.

Let µ ∈ D \ D̃0. Letting Sµ = {s ∈ SK : µ(s) = 0}, we have that µ+
∑

s∈Sµ
δs ∈ D̃0. Finally,
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since every s ∈ Sµ is accessible from (1, 0,U) under µ, and Sµ is non-empty, from Lemma 2.7.2 in

Appendix 2.A and the previous case, it follows that W̄s(µ) < W̄s(µ+
∑

s∈Sµ
δs) = ǫth.

Lemma 2.7.5. Let µ ∈ U such that µ(t, 0,U) = 0 ∀ t ∈ N(1, D). Then, ηµ(t, 0,U) < TsK and

ηµ(t, 0,K) = TsK, ∀t.

Proof. Let µ ∈ U such that µ(t, 0,U) = 0 ∀ t ∈ N(1, D). It follows that the states (t, b,U) with

b > 0 are not accessible, hence their steady state probability satisfies πµ(t, b,U) = 0, ∀ t, ∀ b > 0.

It is then straightforward to show, by using the recursion (2.33), that Gµ(t, 0,U) = TsKVµ(t, 0,K),

Gµ(t, 0,K) = TsKVµ(t, 0,K) and T̄s(µ) = TsKW̄s(µ). Then, using these expressions, the recur-

sion (2.33) and Lemma 2.7.3, we obtain ηµ(t, 0,K) = TsK and

ηµ(t, 0,U) = TsK −
TsKV

′
µ(t, 0,U)−G′

µ(t, 0,U)

V′
µ(t, 0,U)−D′

µ(t, 0,U)W̄s(µ)
. (2.55)

We now prove that ηµ(t, 0,U) < TsK, which proves the lemma. Equivalently, using Lemma 2.7.2 in

Appendix 2.A and (2.33), we prove that

TsKV
′
µ(t, 0,U)−G′

µ(t, 0,U) = (TsK − TsU) + q(A)
pp ps,buf [TsKVµ(t, 1,U)−Gµ(t, 1,U)] > 0.

Letting

Mµ(t, b) = b(TsK − TsU) + q(A)
pp ps,buf [TsKVµ(t, b,U)−Gµ(t, b,U)] > 0, ∀ t, b ≥ 1, (2.56)

(2.56) is equivalent to Mµ(t, 1) > 0. We now prove by induction that Mµ(t, b) > 0, ∀ t, b ≥ 1,

yielding (2.56) as a special case when b = 1. For t = D + 1 we have Mµ(D + 1, b) = b(TsK −
TsU) > 0, since TsK > TsU and b ≥ 1. Now, let t ≤ D and assumeMµ(t+ 1, b) > 0. Using (2.33),

after algebraic manipulation we obtain

Mµ(t, b) = b(TsK − TsU)− q(A)
pp ps,buf

[

1− µ(t, b,U)q(A)
ps − (1− µ(t, b,U))q(I)ps

]

bRsU (2.57)

+ q(A)
pp ps,bufµ(t, b,U)(TsK − TsU) + Prµ(t+ 1, b,U|t, b,U)[Mµ(t+ 1, b)− b(TsK − TsU)]

+ Prµ(t+ 1, b+ 1,U|t, b,U)Mµ(t+ 1, b)− Prµ(t+ 1, b+ 1,U|t, b,U)(b+ 1)(TsK − TsU).
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Finally, sinceMµ(t+ 1, b) > 0 by the induction hypothesis, using inequality (2.9) we obtain

Mµ(t, b) > ps,bufbRsU

(

1− q(A)
pp

)

+ ps,bufbRsU(1− µ(t, b,U))q(I)ps (q
(A)
pp − q(I)pp ) > 0, (2.58)

which proves the induction step. The lemma is proved.

Appendix 2.D: Proof of Lemma 2.5.1

Proof of Lemma 2.5.1. Let D ⊂ U be the set of all the deterministic (non-randomized) policies. Let

D̃ ≡ {µ ∈ D : µ(t, b,U) = 1, ∀t, b < b(t); µ(t, b,U) = 0, ∀t, b ≥ b(t); µ(s) = 1, s ∈ SK;

∃ b(·) : b(t+ 1) ≤ b(t) ∀t} .

By inspection, we have that the sequences of policies (2.24) are such that µ(i) ∈ D̃, ∀i ∈ N(0, N−1).

Therefore, the first part of the lemma states that µ(i) ∈ D̃, ∀i ∈ N(0, N − 1). We prove this property

by induction. Namely, we show that µ(i) ∈ D̃ ⇒ µ(i+1) ∈ D̃. Then, since µ(0) ∈ D̃ (initialization of

Algorithm 1) it follows that µ(i) ∈ D̃, ∀i. Let µ(i) ∈ D̃, i.e., µ(i) is given by (2.24) for some b(i)(t)

non-increasing in t. The set of idle states is then given by

S(i)
idle ≡

{

(t, b,U) ∈ SU : t ∈ N(1, D), b ≥ b(i)(t)
}

. (2.59)

We then prove that, under the hypotheses of the lemma, ηµ(i)(t, b,U) > ηµ(i)(t, b + 1,U) and

ηµ(i)(t, b,U) > ηµ(t + 1, b,U), ∀(t, b,U) ∈ S(i)
idle. It follows that the SU access efficiency is maxi-

mized by the state in the idle set S(i)
idle with the lowest value of the primary ARQ state t, among the

states with the same buffer occupancy b, and with the fewest number of buffered received signals b,

among the states with the same primary ARQ state t. Therefore, in the main iteration stage of the algo-

rithm, the SU access efficiency is maximized by s(i) = argmax
s∈S(i)

idle

ηµ(i)(s), where s(i) = (t, b,U)

is such that τ ≥ t, β ≥ b, ∀ (τ, β,U) ∈ S(i)
idle. By inspection, we have that µ(i+1) = µ(i) + δ

s(i)
∈ D̃,

hence the induction step is proved.

We thus need to prove the induction step, i.e., letting µ(i) ∈ D̃, we show that

ηµ(i)(t, b,U) > ηµ(i)(t, b+ 1,U), ∀(t, b,U) ∈ S(i)
idle,

ηµ(i)(t, b,U) > ηµ(t+ 1, b,U), ∀(t, b,U) ∈ S(i)
idle. (2.60)
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To this end, note that, in the degenerate cognitive radio network scenario, the primary ARQ process is

not affected by the SU access scheme, hence, using the notation in Appendix 2.A,D′
µ(i)(t, b,U) = 0.

By the definition of SU access efficiency (2.7.3), we thus obtain

ηµ(i) (t, b,U) =
G′

µ(i)(t, b,U)

V′
µ(i)(t, b,U)

, (2.61)

where, using (2.33), (2.35-2.37), (2.39) and (2.40),

G′
µ(i)(t, b,U) =TsU +

(

q(I)ps − q(A)
ps

)

bRsU + qpp(q
(A)
ps − ps,buf − q(I)ps )Gµ(i)(t+ 1, b,U) (2.62)

+ qppps,bufGµ(i)(t+ 1, b+ 1,U) + qpp(q
(I)
ps − q(A)

ps )Gµ(i)(t+ 1, 0,K),

V′
µ(i)(t, b,U) =1 + qpp(q

(A)
ps − ps,buf − q(I)ps )Vµ(i)(t+ 1, b,U) (2.63)

+ qppps,bufVµ(i)(t+ 1, b+ 1,U) + qpp(q
(I)
ps − q(A)

ps )Vµ(i)(t+ 1, 0,K).

Using the fact that µ(i)(τ, β,U) = 0, ∀τ ≥ t, β ≥ b, it can be proved that

Vµ(i)(τ, β,U) = A1(τ)−A0(τ), (2.64)

Gµ(i)(τ, β,U) = (1− q(I)ps )βRsUA0(τ) + TsK(A1(τ)−A0(τ)), (2.65)

Vµ(i)(τ, 0,K) = A1(τ), (2.66)

Gµ(i)(τ, 0,K) = TsKA1(τ), (2.67)

where A0(·) and A1(·) are defined in (2.29) and (2.30), respectively. The expressions (2.64-2.67)

can be easily verified by induction, starting from τ = D + 1 backward. In fact, for τ = D + 1, we

have A0(D + 1) = A1(D + 1) = 0, hence we obtain Vµ(i)(D + 1, β,U) = Gµ(i)(D + 1, β,U) =

Vµ(i)(D + 1, 0,K) = Gµ(i)(D + 1, 0,K) = 0, which is consistent with Def. 2.7.1. The induction

step can be proved by inspection, using the recursive expression (2.33) and the fact that µ(τ, β,U) =

0, ∀τ ≥ t, β ≥ b. Substituting the expressions (2.64-2.67) in (2.62) and (2.63), we obtain

G′
µ(i)(t, b,U) =TsU +

(

q(I)ps − q(A)
ps

)

bRsU

[

1− qpp(1− q(I)ps )A0(t+ 1)
]

(2.68)

+ qppps,buf(1− q(I)ps )RsUA0(t+ 1) + qpp(q
(I)
ps − q(A)

ps )TsKA0(t+ 1),

V′
µ(i)(t, b,U) =1− qpp(q

(A)
ps − q(I)ps )A0(t+ 1). (2.69)
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Proof of ηµ(i)(t, b, 0) > ηµ(i)(t, b+ 1, 0)

By substituting (2.68) and (2.69) in (2.61), and noticing that V′
µ(i)(t, b,U) = V′

µ(i)(t, b + 1,U)

from (2.69) andV′
µ(i)(t, b,U) > 0 (from Lemma 2.7.2 withD′

µ(s) = 0), the condition ηµ(i)(t, b, 0) >

ηµ(i)(t, b+1, 0) is equivalent toG′
µ(i)(t, b,U) > G′

µ(i)(t, b+1,U), which is readily verified from (2.68),

since

G′
µ(i)(t, b,U)−G′

µ(i)(t, b+ 1,U) =
(

q(A)
ps − q(I)ps

)

RsU

[

1− qpp(1− q(I)ps )A0(t+ 1)
]

>
(

q(A)
ps − q(I)ps

) 1− qpp

1− qppq
(I)
ps

RsU > 0, (2.70)

where the first inequality follows from the fact thatA0(t+1) < 1

1−qppq
(I)
ps

, the second from q
(I)
ps < q

(A)
ps .

Proof of ηµ(i)(t, b, 0) > ηµ(t+ 1, b, 0)

SinceV′
µ(i)(t, b,U) > 0, the condition ηµ(i)(t, b, 0) > ηµ(t+ 1, b, 0) is equivalent to

G′
µ(i)(t, b,U)

(

V′
µ(i)(t+ 1, b,U)−V′

µ(i)(t, b,U)
)

> V′
µ(i)(t, b,U)

(

G′
µ(i)(t+ 1, b,U)−G′

µ(i)(t, b,U)
)

. (2.71)

Using (2.68) and (2.69), after algebraic manipulation we obtain the equivalent condition

(

1− q(A)
ps

)

ps,buf +
(

1− q(A)
ps

)(

q(A)
ps − q(I)ps

)

b+
(

q(I)ps − q(A)
ps

)

∆s > 0, (2.72)

where we have used the fact that TsK = ∆sRsU + TsU + ps,bufRsU. Since we require this condition

to hold ∀b ≥ 0 and the left hand expression is minimized by b = 0, the condition (2.72) should be

satisfied for b = 0, yielding the equivalent condition ∆s <
1−q

(A)
ps

q
(A)
ps −q

(I)
ps

ps,buf , which is an hypothesis of

the lemma.

It is thus proved that the sequence of policies returned by Algorithm 1 has the structure defined

by (2.24), where b(i)(t) satisfies the inequality (2.26). Moreover, the inequality (2.27) holds since, by

the algorithm construction, µ(i+1) is obtained from µ(i) by "activating" one additional state from the

set of idle states S(i)
idle.

The second part of the lemma states that b(N−1)(t) = b̄max(t), where b̄max(t) is given by (2.28).

This is a consequence of the fact that Algorithm 1 stops if the SU access efficiency becomes non-
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positive, i.e., ηµ(i)(s) ≤ 0, ∀s ∈ S(i)
idle. From (2.61), this condition is equivalent to G′

µ(i)(t, b,U) ≤ 0,

∀(t, b,U) ∈ S(i)
idle. By using (2.68) and by solving G′

µ(i)(t, b,U) ≤ 0 with respect to b, the result

follows.



Chapter3
Optimal Management Policies for Energy

Harvesting Wireless Sensor Networks

3.1 Introduction

In the previous chapter, we have addressed the problem of secondary access in cognitive radio net-

works, using stochastic optimization tools to determine the optimal access policy of secondary users

in the network. We have shown that the exploitation of side information about the licensed (primary)

users, e.g., the HARQ protocol and the current primary message, jointly with the optimization of the

available resources, can help alleviate the spectrum scarcity problem, thus enabling the coexistence

of primary and secondary users and improving the spectral efficiency.

While the previous chapter dealt with a spectrum scarcity problem, in this chapter we face the

problem of energy scarcity, with special emphasis on Wireless Sensor Networks (WSN), composed

of miniaturized devices with sensing and communication capabilities [27]. Recent technological

advances and enhancements of consumer electronics have led to the widespread diffusion of WSNs.

One key requirement of such networks is a prolonged and unsupervised sensor operation over time,

which poses the problem of their energy autonomy.

The use of non-rechargeable batteries is currently widespread for powering WSN sensor nodes.

However, in many WSN applications, autonomous operation is required and factors such as the sheer

number of nodes or inaccessibility render battery replacement unrealistic and cost-prohibitive [28],

hence lifetime and energy scarcity becomes a critical concern in the design of WSNs [29–31]. Recent

advances in the field of small-scale Energy Harvesting (EH) will enable the sensor to use ambient
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energy absorbed, for instance, from solar, wind, piezo-electric, thermal or RF sources [32–36], to

power its circuitry and to perform data sensing, processing and communication tasks. By relying on

a potentially unlimited energy reservoir (ambient energy), the EH approach, combined with an intel-

ligent use of the local energy storage, is envisioned to greatly prolong the WSN operating life [37],

and could, in principle, lead to perpetual operation, thus alleviating the energy scarcity problem in

WSNs.

In contrast to battery-operated sensors (without EH capability), where energy efficiency and con-

servation are crucial to prolong lifetime, in EH powered Sensors (EHSs) the energy supply is poten-

tially unlimited, but its availability is random and intermittent over time. Present technologies require

a local energy storage element to filter out the fluctuations in the EH process, as data sensing and pro-

cessing, transmission/reception tasks, and higher layer operations (e.g., routing) rely on a continuous

and stable energy reserve. The objective thus shifts from lifetime maximization and energy conserva-

tion to the optimal management of the harvested energy, so as to provide a stable energy supply to the

sensor node by minimizing the deleterious impact of energy depletion. However, one critical aspect

of WSN design is that sensor nodes typically have limited processing capabilities. Therefore, a spe-

cial focus should be dedicated to the design of energy management policies with small computational

overhead.

In this chapter, we are concerned with a fundamental question: how should statistical informa-

tion on the ambient energy supply be exploited in order to optimize EHS operation? We consider a

WSN consisting of multiple EHSs, as depicted in Fig. 3.1, which judiciously report data of varying

importance to a Fusion Center (FC). Practical examples of this setting include: temperature sensors,

where higher temperature readings, being indicators of overheating or fire, are more important; sen-

sors which act as a relay of different priority packets in a wireless network [38]; data transmission

over a fading channel, where the number of bits which can be reliably transmitted depend on the

instantaneous channel realization. Energy is harvested from an ambient source modeled by a two-

state Markov chain, where “GOOD” and “BAD” correspond to an abundance and scarcity of ambient

energy, respectively, and is stored in a rechargeable battery. Given that data transmission incurs an en-

ergy cost, our objective is to characterize low-complexity energy management policies, which achieve

near-optimal performance in terms of the average long-term importance of the reported data, at a frac-

tion of the complexity. Initially, we focus on the operation of a single EH device. Then, we address

the problem of multiaccess in a WSN.



3.1. Introduction 49

FC EHS1 V1,k

B1,k

EHS2

V2,k

B2,k

EHS3

V3,k

B3,k

EHS4

V4,k

B4,k

EHS5V5,k

B5,k

EHS6
V6,k

B6,k

EHS7

V7,k

B7,k

EHS8

V8,k

B8,k

Figure 3.1. Energy Harvesting Wireless Sensor Network (EH-WSN)

The issue of energy management for solar-powered EHSs and RFIDs has previously been ad-

dressed in [39] and [40], respectively, primarily from a numerical standpoint. [41] derived the policy

which maximizes the long-term detection probability of a random event and, in [42], a similar prob-

lem was considered in the context of body sensor networks. [43] studied data transmission for a two-

state fading channel, and properties of the policy that maximizes the long-term discounted throughput

were derived. In [44,45], policies which stabilize the data queue of an EHS with random data arrivals

were proposed and analyzed. [46–48] derived policies that maximize the data throughput of the EHS

by a deadline, relying, however, on the assumption that energy arrivals (and also the channel fading

profile in [46]) are known beforehand. Other related works include [49], which explored activation

policies in a network of EHSs, and [50], which derived power management algorithms for EHSs with

battery inefficiencies. The contribution of our work with respect to, e.g., [41–43, 45], is to explicitly

take into account the impact of a finite battery capacity on the performance and its interplay with the

EH process. The problem of maximizing the average long-term importance of the reported data for

a replenishable sensor is formulated in [51], for a continuous-time model with Poisson EH and data

processes. In addition, we introduce time-correlation in the energy supply, and investigate its impact

on the performance. [38] investigates the relaying of packets of different priorities in a network of

energy-limited sensors, but does not account for EH capability.

Despite the intense research effort in the design of optimal energy management policies for a sin-
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gle EH device, e.g., see [41,42,44,45], the problem of analyzing and modeling the interaction among

multiple EH nodes in a network has not received much attention so far. Some notable exceptions

are [52, 53], which address the design of Medium Access Control (MAC) protocols for EH-WSNs,

focusing on TDMA and (dynamic) framed Aloha; [54], which develops efficient energy manage-

ment policies that stabilize the data queues, as well as efficient MAC policies; [55], which focuses

on the design of a MAC protocol for multi-hop EH-WSN that can achieve high throughput and fair-

ness, using a probabilistic polling mechanism that adapts to changing energy harvesting rates or node

densities to manage packet collisions and channel contention; [49], which addresses the problem of

how sensor nodes should be activated dynamically so as to optimize the sensing and event detection

performance of the network.

3.1.1 Contributions

Within this framework, we first analyze the performance of a single EHS. Specifically, we derive

analytically the performance of a Balanced Policy (BP), which adapts the transmission probability

based only on the harvesting state, but not on the current energy level in the battery, such that, on

average, energy harvesting and consumption are balanced. Numerical results demonstrate that the

optimal BP performs very well with respect to the globally optimal policy, and the gap between

the two is reduced even further if the sensor is forced to transmit when the battery is fully charged.

The main implication of these results is that near-optimal performance can be achieved with simple

adaptation to the ambient energy supply, without precise knowledge of the energy stored in the sensor

battery at any given time.

A key result is that the EHS performance is heavily dependent on the power-to-depletion ρ, de-

fined as the power that a fully charged battery can supply over a BAD EH period, such that, on

average, it is depleted at the end of the period. Essentially, ρ captures the ability of the battery to ab-

sorb the ambient energy fluctuations and provide a stable energy supply to the sensor circuitry. In the

spirit of the “offline” optimization framework of [46–48], we also study an EHS with a deterministic

and periodic energy supply and show that the optimal policy depends exclusively on ρ. Based on this

analysis, we propose a heuristic BP which is shown to perform well in the original stochastic model.

Then, we extend the model to include multiple EHSs in an EH-WSN, which randomly access the

wireless channel to transmit data packets of random importance to a common fusion center. Assum-

ing that data transmission incurs an energy cost and simultaneous transmission from multiple EHSs
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causes collision and packet loss, we study the problem of designing optimal random access policies,

so as to maximize the network utility, defined as the average long-term aggregate network impor-

tance of the data packets successfully reported to the fusion center. Due to the generally non-convex

structure of the optimization problem, we resort to approximate solutions. In particular, we use a

mathematical artifice based on a game theoretic formulation of the multiaccess problem, where each

sensor node is a player which attempts to selfishly maximize the network utility. We characterize

the Symmetric Nash Equilibrium (SNE) of this game, where all the sensor nodes employ the same

policy, and we provide an algorithm to compute it. Moreover, we propose low-complexity policies

which only loosely depend on the exact amount of energy available in the battery, while attaining

near-optimal data reporting performance.

3.1.2 Structure of the chapter

This chapter is organized as follows. In Sec. 3.2, we describe the system model for the sce-

nario with a single EHS. The optimization problem and the formal policy definitions are presented

in Sec. 3.3, followed by the analysis of the BP in Sec. 3.4. Sec. 3.5 is devoted to the analysis of a

continuous-time, deterministic model, and the discussion of its connection to the stochastic model.

Numerical results for the scenario with a single EHS are presented in Sec. 3.6. Then, we shift to

the analysis of a multiaccess problem in EH-WSN. The multiaccess model is presented in Sec. 3.7.

Sec. 3.8 defines the control policies and states the optimization problem, which is further developed

in Sec. 3.9. In Sec. 3.10, we design low-complexity policies, which are suitable for practical imple-

mentation. In Sec. 3.11, we present some numerical results for the multiaccess scenario. Finally,

Sec. 3.12 summarizes our main conclusions. The proofs of the theorems and lemmas are provided in

the appendices at the end of the chapter.

We close this section with a note on the notation employed throughout this chapter: x̄ = 1 − x

is the complement of x ∈ [0, 1] and χ(·) is the indicator function; random variables are denoted by

uppercase letters, and their values by lowercase ones. The list of symbols is provided in Table 3.1.

3.2 System Model: single EHS

The block diagram of a wireless EHS is shown in Fig. 3.2. The energy harvesting unit collects

ambient energy, which is stored in a battery (or super-capacitor) and then used to power the sensing

apparatus and the RF circuitry. A processing unit, e.g., a micro-controller, manages the energy con-
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Table 3.1. List of symbols

λG EH probability in GOOD EH state
β Average EH rate

pG Transition probability from GOOD to GOOD EH state
pB Transition probability from BAD to BAD EH state

πA(G) Probability of GOOD EH state
πA(B) Probability of BAD EH state

DG Average duration of GOOD EH period
DB Average duration of BAD EH period

γ = DG

DB
= πA(G)

πA(B) Ratio of average durations of GOOD and BAD EH periods

emax Battery capacity
ρ = emax

DB
Power-to-depletion

θ ∈ {0, 1} Overflow Avoidance parameter
η Transmission probability induced by threshold policy µ

Sensor

Temperature /
Pressure etc...Rechargeable

Microbattery

+−

Power
Processing

Unit Microcontroller
Unit

Antenna

Radio
Tx/Rx

Ambient
Energy

Harvesting
Unit

Harvested
Energy

Load
Demand

Stored
Energy

Figure 3.2. Block diagram of an EHS

sumption of the EHS. The sensing apparatus collects data and measurements from the sensing field,

which are collected in data packets to be reported to FC. We consider a slotted-time system, where

slot k is the time interval [kT, kT + T ), k ∈ Z
+, and T is the slot duration. At each time instant k,

the EHS has a new data packet to send to FC with importance Vk. We assume that a stringent delay

requirement is enforced at the EHS: the packet is either sent to FC over the interval [kT, kT + δT ),

where δ ∈ (0, 1] is the duty cycle,1 or it is dropped. Note that typical WSN applications are loss

tolerant, since sensing data exhibit redundancy and correlation over space and time.

The EHS battery is modeled by a buffer. As in previous work [41,42,57], we assume that each po-

sition in the buffer can hold one energy quantum and that the transmission of one data packet requires

the expenditure of one energy quantum.2 The maximum number of quanta that can be stored, i.e., the

battery capacity, is emax and the set of possible energy levels is denoted by E = {0, 1, . . . , emax}. At
1δ ∈ (0, 1] models a typical characteristic of EHS systems (see, e.g., [56]): the energy to perform a given task (transmit

a packet) is spent much faster than it is collected. Note that the value of δ has no impact on the subsequent analysis.
2We only consider the energy expenditure associated with RF transmission.
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Figure 3.3. Energy Harvesting process

time k + 1, k ∈ Z
+, the amount of energy in the buffer is

Ek+1 = min {Ek −Qk +Bk, emax} , (3.1)

where {Bk} is the energy arrival process and {Qk} is the action process. Qk = 1 if the current

data packet is transmitted, which results in the expenditure of one energy quantum, and Qk = 0

otherwise. Bk models the randomness in the energy harvested in slot k. We assume that Bk ∈ {0, 1},
i.e., either one energy quantum is harvested, or no energy is harvested at all. Moreover, the energy

harvested in time-slot k can be used only in a later time-slot. As a consequence, if the battery is

depleted, i.e., Ek = 0, then Qk = 0. We model the underlying EH process {Ak} as a two-state

Markov chain, with state space {G,B}, where G and B denote the GOOD and BAD harvesting

states, respectively, as depicted in Fig. 3.3. If Ak = G (GOOD state), then Bk = 1 with probability

λG, where λG ∈ (0, 1], and Bk = 0 with probability 1 − λG; if Ak = B (BAD state), then Bk = 0.

When λG < 1, energy is harvested at a slower rate than it is consumed for data transmission: on

average, 1/λG time-slots are required to harvest one energy quantum in the GOOD state. We denote

the transition probabilities of {Ak} from G to G and from B to B as pG = Pr(Ak = G|Ak−1 = G)

and pB = Pr(Ak = B|Ak−1 = B), respectively. The steady-state distribution of {Ak} is thus

πA(G) =
p̄B

p̄B + p̄G
, πA(B) =

p̄G
p̄B + p̄G

. (3.2)

The average durations of the GOOD and BAD EH periods are denoted by DG and DB , respectively,

and their ratio by γ = DG/DB . Simple calculations yield that DG = 1/p̄G, DB = 1/p̄B and

γ = πA(G)/πA(B). Finally, since one energy quantum is harvested with probability λG in every
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GOOD time-slot, the average EH rate, i.e., the average long-term amount of energy harvested by the

EH unit in one time-slot, is

β = lim
K→∞

1

K
E

[

K−1
∑

k=0

Bk

]

= λGπA(G), (3.3)

where β ∈ (0, 1). Note that β, γ and λG are related as

β =
λGγ

γ + 1
. (3.4)

We now formally define the events of energy outage and overflow.

Definition 3.2.1 (Outage). In slot k, energy outage occurs if Ek = 0.

Definition 3.2.2 (Overflow). In slot k, energy overflow occurs if (Ek = emax)∩(Bk = 1)∩(Qk = 0).

Under energy outage, no transmissions can be performed, i.e., Qk = 0. Energy overflow occurs

when a harvested energy quantum (Bk = 1) cannot be stored due to a fully charged battery (Ek =

emax) in an idle time-slot (Qk = 0), and is thus lost.

The state of the EHS at time k is given by (Sk, Vk), where Sk = (Ek, Ak−1) ∈ S is the joint

energy level and EH state, with S = E × {G,B}, and Vk ∈ R
+ is the importance value of the current

data packet. We model Vk as a continuous random variable with probability density function (pdf)

fV (v), v ≥ 0, with support (0,+∞), and assume that {Vk} are i.i.d. Note that, at time k, the EHS

controller can infer the posterior distribution of Ak−1, Pr(Ak−1 = a|B0, . . . , Bk−1) for a ∈ {G,B},
from the observation of the EH process {B0, . . . , Bk−1}. In fact, Pr(Ak−1 = a|B0, . . . , Bk−1) can

be computed recursively as

Pr(Ak−1 = a|B0, . . . , Bk−1) (3.5)

=
Pr(Bk−1|Ak−1 = a)

∑

a0
Pr(Ak−1 = a|Ak−2 = a0)Pr(Ak−2 = a0|B0, . . . , Bk−2)

∑

a1
Pr(Bk−1|Ak−1 = a1)

∑

a0
Pr(Ak−1 = a1|Ak−2 = a0)Pr(Ak−2 = a0|B0, . . . , Bk−2)

,

where Pr(Ak−2 = a0|B0, . . . , Bk−2) is the posterior distribution of Ak−2, given the EH sequence

B0, . . . , Bk−2, computed in the previous time-slot. The state Ak−1 can then estimated from the

posterior distribution (3.5). For example, the Maximum-A-Posteriori (MAP) criterion yields

Âk−1 = argmax
a

Pr(Ak−1 = a|B0, . . . , Bk−1). (3.6)
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In this thesis, we assume that perfect knowledge of Ak−1 is available at the EHS controller, and leave

the problem of estimating Ak−1 as future work.

3.3 Optimization Problem and Policy Definitions

3.3.1 Optimization Problem

Given sk = (e, a) ∈ S and Vk = v ∈ R
+, the policy µ implemented by the controller in Fig. 3.2

is defined by the probability µ(1; e, a, v) of transmitting the data packet in slot k. The respective

probability of discarding the data packet is µ(0; e, a, v) = 1 − µ(1; e, a, v).3 Given an initial state

S0 ∈ S , the average long-term importance of the reported data (from now on referred to as average

reward for brevity) under policy µ is

G(µ;S0) = lim
K→∞

inf
1

K
E

[

K−1
∑

k=0

QkVk

∣

∣

∣

∣

∣

S0

]

. (3.7)

The expectation in (3.7) is taken with respect to {Bk, Ak, Qk, Vk}, where, at each instant k, Qk is

drawn according to policy µ and depends on the state (Ek, Ak−1, Vk), and Ek is given by (3.1).

The optimization problem at hand is to determine the optimal policy µ∗ such that

µ∗ = argmax
µ

G(µ;S0). (3.8)

We now establish that µ∗ has a threshold structure with respect to the data importance.

Lemma 3.3.1. For each state (e, a) ∈ S , there exists a threshold v∗th(e, a) such that

µ∗(1; e, a, v) =











1, v ≥ v∗th(e, a),

0, v < v∗th(e, a).
(3.9)

Proof. See Appendix 3.A.

Intuitively, Lemma 3.3.1 states that, for a given transmission probability budget EV [µ(1; e, a, V )],

the optimal policy prioritizes the transmission of high over low importance data. As a consequence,

we henceforth only consider policies with the structure defined in (3.9). For a threshold policy µ, the

3For the sake of maximizing an average long-term reward function of the state and action processes, it is sufficient to
consider only stationary policies depending on the present state [22].
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transmission probability in state (e, a) is

η(e, a) = EV [µ(1; e, a, V )] = F̄V (vth(e, a)), (3.10)

where F̄V (v), v ≥ 0, is the complementary cumulative distribution function (ccdf) of the importance

value process. The expected reported data importance in state (e, a) is g(η(e, a)), where g(x), x ∈
[0, 1], is a function defined as

g(x) = EV

[

χ
(

V ≥ F̄−1
V (x)

)

V
]

=

∫ ∞

F̄−1
V (x)

νfV (ν)dν, (3.11)

and F̄−1
V (x) denotes the inverse of F̄V (v). In words, g(x) is the expected accrued reward when only

the data with importance above the threshold v = F̄−1
V (x) is reported. The function g(x) has the

following properties, which are stated without proof.

Lemma 3.3.2. The function g(x) is strictly increasing, strictly concave in x and g′(x) = F̄−1
V (x),

with limx→0 g
′(x) = +∞.

From (3.9) and (3.10), it is seen that the mapping between a threshold policy µ and its respective

vth(·) and η(·) is one-to-one. Moreover, due to the independence between (Ak, Bk) and Vk, the tran-

sition probabilities of the time-homogeneous Markov chain {Sk} are governed by η. Therefore, in the
remainder of the chapter, we refer to a threshold policy µ in terms of its corresponding transmission

probability function η(e, a), (e, a) ∈ S .

3.3.2 Policy Definitions

For the sake of mathematical tractability and without loss of optimality in (3.8), we only consider

the set of policies that result in an average reward independent of the initial state S0.

Definition 3.3.1. The set U of admissible policies is defined as

U = {η : η(0, a) = 0, η(emax, a) ∈ (0, 1], η(e, a) ∈ (0, 1), e = 1, . . . , emax − 1, ∀a ∈ {G,B}}.

It can be shown that the Markov chain {(Ek, Ak−1)} under policy η ∈ U has a unique closed

communicating class. Hence, there exists a unique steady-state distribution, πη(e, a), (e, a) ∈ S ,



3.3. Optimization Problem and Policy Definitions 57

independent of S0 [18]. From (3.7), for any η ∈ U , we have

G(η) = lim
K→∞

1

K
E

[

K−1
∑

k=0

χ
(

Vk ≥ F̄−1
V (η(Ek, Ak−1))

)

Vk

∣

∣

∣

∣

∣

S0

]

=

emax
∑

e=1

∑

a∈{G,B}
πη(e, a)g(η(e, a)). (3.12)

The optimization problem (3.8) over the class of admissible policies is stated as

η∗ = argmax
η∈U

G(η). (3.13)

The optimal policy η∗ can be found numerically using the Policy Iteration Algorithm (PIA) for infi-

nite horizon, average cost-per-stage problems [1,58]. In general, η∗ is a function of the EH stateAk−1

and the energy available in the battery, Ek. This implies a high implementation complexity for three

reasons: the controller must make decisions based on the energy level, which may be too computa-

tionally intensive for the ultra-low power electronics typically found in practical EHSs (for example,

PIA requires to update iteratively the transmission probability η(e, a) for each value of the energy

level e ∈ E and of the EH state a ∈ ×{G,B}); the transmission probability for each state needs to be

stored in an 2× emax look-up table, which takes up an amount of memory proportional to the size of

the battery; and knowledge of Ek might be hard to obtain or imprecise at best [59, 60]. Motivated by

these observations, we focus on the low-complexity Balanced Policy (BP), defined below.

Definition 3.3.2. A BP is any policy η ∈ U such that, for a ∈ {G,B},

η(e, a) =











ηa, e ∈ {1, 2, . . . , emax − 1},

θ + θ̄ηa, e = emax,

(3.14)

where θ ∈ {0, 1} is the Overflow Avoidance (OA) parameter and ηG and ηB are such that

πA(G)ηG + πA(B)ηB = β. (3.15)

If θ = 0, the transmission probability of the BP depends only on the EH state, i.e., it is ηG in the

GOOD state and ηB in the BAD state. If θ = 1, the sensor always transmits when the battery is fully

charged, thus avoiding energy overflow (Def. 3.2.2). OA introduces a mild dependence of the BP on

the energy level, since the controller is required to know when the battery is fully charged.
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According to (3.15), the BP “balances” the average energy consumption rate (left hand side

of (3.15)) with the average EH rate (right hand side of (3.15)), if the impact of energy outage

and overflow due to the finite battery capacity is neglected. Alternatively, since γ = DG/DB =

πA(G)/πA(B) and β = λGπA(G), (3.15) is equivalent to DG(λG − ηG) = DBηB , i.e., under the

BP, an equilibrium amongst the recharge/discharge phases is achieved, in the sense that the expected

energy recharge over the GOOD EH period, DG(λG − ηG), equals the expected energy discharge

over the BAD EH period, DBηB .

From (3.14) and (3.15), it is seen that a BP is uniquely defined by the parameters (ηG, θ), where

ηG ∈ (max{λG − γ−1, 0}, λG) and θ ∈ {0, 1}. In the remainder of the chapter, we thus refer to a

BP η in terms of its corresponding pair (ηG, θ). The next section is devoted to the derivation of the

average reward under the BP and the characterization of the optimal BP.

3.4 Performance Analysis of the BP

The main theoretical result of this section is a closed-form expression for the average reward of

the BP and is presented in Theorem 3.4.1. The proof involves a crafty manipulation of the steady-state

equations of the Markov chain (Ek, Ak−1) and is found in Appendix 3.B. The complicated general

expression hardly lends itself to interpretation. We thus consider an asymptotic regime where energy

arrivals are highly correlated and the battery capacity is very large. In this regime, we derive the aver-

age reward and its main properties (Theorem 3.4.3), and characterize the optimal BP (Lemma 3.4.4).

Theorem 3.4.1. The average reward of the BP (ηG, θ) is

G(η) =(πA(G)− πη(0,G))g(ηG) + (πA(B)− πη(0,B))g(ηB)

+ θπη(emax,G) (g(1)− g(ηG)) , (3.16)

where





πη(0,G)

πη(0,B)



 = ZJemax−1t(θ)πη(emax,G), (3.17)

πη(emax,G) =

(

[

1 1
]

ZJemax−1t(θ) +

emax−1
∑

e=0

[

1 1
]

Jet(θ)− θ
η̄G
ηG

)−1

(3.18)
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and

t(θ) =





θ 1
ηG

+ θ̄

θ̄ γ−1η̄G
DBηB+η̄B



 , (3.19)

Z =
1

λG





ηGλ̄G ηBλ̄G

γ−1ηG ηB[γ
−1λ̄G + (DB − 1)λG]



 , (3.20)

J=
ηB/λG

η̄B + ηB(DB − γ−1)





ηB
η̄G

1





[

ηGγ
−1

ηB
;DB − 1

]

+
λ̄G

λG





ηG
η̄G

ηB
η̄G

1
η̄B+ηB(DB−γ−1)

0 − ηB(DB−1−γ−1)
η̄B+ηB(DB−γ−1)



 . (3.21)

Proof. See Appendix 3.B.

The interpretation of (3.16) is as follows. The terms (πA(G) − πη(0,G))g(ηG) and (πA(B) −
πη(0,B))g(ηB) are the average rewards accrued in the GOOD and BAD states, respectively, where

the terms πη(0,G) and πη(0,B) account for the performance loss due to energy outage events. The

last term θπη(emax,G) (g(1)− g(ηG)) accounts for the impact of OA, i.e., the fact that, in state

(emax,G), a data packet is always transmitted irrespective of its value.

In general,G(η) does not admit a simple expression, due to the presence of the matrix exponential

Je in (3.17) and (3.18). However, a simple expression can be obtained when λG = 1, i.e., when one

energy quantum is always harvested in the GOOD state.

Lemma 3.4.2. If λG = 1, the average reward of a BP η with parameters (ηG, θ) is

G(η) =βg(ηG) + β̄
emax − ηG − θη̄G

emax + ηB(DB − 1)− θη̄G
g(ηB)

+ θβ
1 + ηB(DB − 1)− θη̄G

emax + ηB(DB − 1)− θη̄G
(g(1)− g(ηG)) . (3.22)

Proof. Letting λG = 1 in (3.21), the second term becomes zero and we can verify that Jn = J, ∀n ≥ 1.

Therefore, (3.17)-(3.18) can be readily computed and Eq. (3.22) follows from (3.16).

In order to understand (3.22), let us focus on a simple Non-Adaptive BP (NABP) which always

transmits with probability β and performs no OA, i.e., (ηG, θ) = (β, 0). In this case,

G(η) = g(β)

(

β + β̄
emax − β

emax + β(DB − 1)

)

. (3.23)

Moreover, let emax ≫ 1. This is typical of real EHS deployments, e.g. in [56], the capacitance is
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much larger than the energy of a transmit pulse. In slow-changing environments, it is also reasonable

to assume that DB ≫ 1. In this setting, we can approximate G(η) in (3.23) as

G(η) ≃ g(β)

(

β + β̄
ρ

ρ+ β

)

, (3.24)

where we have defined ρ , emax
DB

. Note that ρ is the normalized power4 that can be continuously

supplied from a fully charged battery over a BAD period, such that, on average, the battery is empty at

the end of the period; we thus name ρ the power-to-depletion. Its effect on the performance of NABP

can be explained as follows. In an ideal scenario with infinite battery capacity, NABP is optimal,

owing to the concavity of function g(x) (Lemma 3.3.2). DBβ is the expected energy amount drawn

from the battery during the BAD period, and DG(λG − β) = DBβ is the expected energy amount

by which the battery is recharged over the GOOD period. If a system with finite battery capacity is

operated under this policy, ρ captures the extent to which the battery can absorb the fluctuations in the

EH process. If ρ ≫ β, i.e., the power-to-depletion is much larger than the transmission probability,

the battery has a “large” capacity and can sustain a constant energy consumption rate β, rarely being

subject to outage and overflow events. In contrast, if ρ ≪ β, the battery has a “small” capacity, hence

it is deeply discharged over the BAD EH period, and fully recharged over the GOOD EH period.

The performance is thus severely affected by energy outage and overflow, as can be seen from (3.24):

letting ρ → 0, G(η) ≈ βg(β), i.e., transmitting with constant probability β achieves only a fraction

β of the theoretical upper bound g(β). This indicates that, for ρ ≪ β, adaptation to the EH state is

critical to achieve good performance.

In order to study the impact of ρ on the performance of a general BP, we focus on the asymptotic

regime DB → ∞, DG → ∞ and emax → ∞, where the ratios ρ = emax/DB and γ = DG/DB

(hence β = λGγ/(1+γ)) are kept fixed. This regime corresponds to a scenario of extreme correlation

in the EH process, where the GOOD and BAD periods are much longer than a time slot, and the

battery capacity is much larger than an energy quantum. For the BP (ηG, θ), we denote the asymptotic

average reward as G(∞)(ηG, θ; ρ) = limDB→∞G(η). In Theorem 3.4.3, we derive G(∞)(ηG, θ; ρ)

and characterize its main properties.

4Note that ρ has units of [energy quanta]/[time-slots], hence it represents a normalized power.
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Theorem 3.4.3. The asymptotic average reward for the BP (ηG, θ) is

G(∞) (ηG, θ; ρ) =πA(G)g(ηG) + πA(B)
ρ

ρ+ ηB
g(ηB)

+ θπA(G)
λG − ηG
1− ηG

ηB
ρ+ ηB

(g(1)− g(ηG)). (3.25)

Moreover:

1. G(∞) (ηG, 1; ρ) > G(∞) (ηG, 0; ρ);

2. G(∞) (ηG, θ; ρ) is an increasing function of ρ, with

lim
ρ→∞

G(∞) (ηG, θ; ρ) = πA(G)g(ηG) + πA(B)g(ηB), (3.26)

lim
ρ→0

G(∞) (ηG, θ; ρ) = πA(G)

[

g(ηG) + θ
λG − ηG
1− ηG

(g(1)− g(ηG))

]

. (3.27)

Proof. See Appendix 3.C.

Eq. (3.25) is a generalization of (3.24) to any BP (ηG, θ) and any λG ≤ 1. Property 1) shows

that OA increases the (asymptotic) average reward for any ηG and ρ. Intuitively, without OA, part of

the energy is lost due to overflow, whereas, with OA, all the harvested energy is used towards data

transmission. Property 2) generalizes our previous observations on the performance of NABP: for any

BP (ηG, θ), the (asymptotic) average reward increases with ρ, i.e., as the battery capacity becomes

larger with respect to DB . For ρ → ∞, there is no outage nor overflow, which explains the limit

in (3.26). In contrast, for ρ → 0, the battery is almost surely led to outage in the BAD state and, in

the long term, reward is only accrued in the GOOD state; hence the limit in (3.27).

Having derived the asymptotic average reward for any BP, we now characterize the optimal BP in

the asymptotic regime. Let η∗G(θ; ρ) = argmaxηG G(∞) (ηG, θ; ρ).

Lemma 3.4.4. The optimal BP in the asymptotic regime, η∗G(θ; ρ), is the unique solution of

L(ηG, θ; ρ) = 0 (3.28)
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in ηG ∈ (max{λG − γ−1, 0}, λG), where

L(ηG, θ; ρ) =

(

1 +
ηB
ρ

)2

g′(ηG) +
g(ηB)

ρ
−
(

1 +
ηB
ρ

)

g′(ηB) (3.29)

− θ
ηB
ρη̄2G

(

η̄G + λ̄G +
ηB
ρ
λ̄G

)

(g(1)− g(ηG))− θ
λG − ηG
1− ηG

ηB
ρ

(

1 +
ηB
ρ

)

g′(ηG).

Moreover:

1. η∗G(θ; ρ) ∈ (β, λG);

2. η∗G(1; ρ) < η∗G(0; ρ);

3. η∗G(θ; ρ) is a decreasing function of ρ, for ρ ≥ β, with

lim
ρ→∞

η∗G(θ; ρ) = β, (3.30)

lim
ρ→0

η∗G(θ; ρ) = λG. (3.31)

Proof. See Appendix 3.D.

The main implication of Lemma 3.4.4 is that the optimal BP in the asymptotic regime can be

easily found numerically: from property 1), we know that η∗G lies in (β, λG). Moreover, L(ηG, θ; ρ)

is a decreasing function of ηG, with L(β, θ; ρ) > 0 and L(λG, θ; ρ) < 0 (see Appendix 3.D). Hence,

L(ηG, θ; ρ) = 0 can be solved using the bisection method [61].

Property 2) reveals that the optimal BP without OA is more “aggressive” in the GOOD state than

the optimal BP with OA. In other words, since there is no protection from overflow, the policy itself

tries to minimize energy spillover by forcing a higher consumption rate when energy is available.

Finally, property 3) provides yet further insight as to the characteristics of η∗G(θ; ρ). In the limit

ρ → ∞, the battery capacity is large enough that transmitting with constant probability β is optimal.

From (3.26), it is seen that G(∞) → g(β), i.e., the upper bound is achieved. In contrast, when ρ → 0,

the battery capacity is so small relative to the time scale of the EH process that it is optimal to use all

the energy as it is being harvested during the GOOD state, i.e., η∗G → λG. In this case, (3.26) yields

G(∞) → πA(G)g(λG). As ρ takes values from 0 to∞, η∗G decreases from λG to β (correspondingly,

η∗B = γ(λG−η∗G) increases from 0 to β), and the optimalG(∞) increases from πA(G)g(λG) to g(β).
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3.5 Continuous-Time Model with Deterministic EH process

In this section, we investigate a continuous-time model with a deterministic and periodic EH pro-

cess. We refer to this model as CDM, to differentiate it from the discrete-time stochastic model of

Sec. 3.2, which, in this section, we denote as DSM. The motivation for considering CDM is twofold.

In the asymptotic regime DB, DG, emax → ∞ with ρ = emax/DB and γ = DG/DB fixed, DSM re-

sembles a continuous-time-energy model, in that the time-slot duration is much smaller than the time

scale of the EH process and the battery capacity is much larger than an energy quantum. Moreover,

in CDM, the controller has perfect knowledge of the EH profile, similar to the offline optimization

problems addressed in [47,48]. It is thus of interest to derive further insight on DSM using CDM and

also to draw parallels with [47, 48].

Adhering to the notation in Sec. 3.2, in CDM, the battery capacity is denoted by emax. The EH

process is periodic with periodDG +DB , whereDG andDB denote the (deterministic) durations of

the GOOD and BAD periods. Mathematically, letting t be a time counter, when t ∈ TG, the EH state

is GOOD and, when t ∈ TB , it is BAD, where TG = ∪k∈ZTG(k), TG(k) = [k(DG +DB), k(DG +

DB) +DG) and TB = ∪k∈ZTB(k), TB(k) = [k(DG +DB) +DG, (k + 1)(DG +DB)) denote the

sets of GOOD and BAD time intervals, respectively. During the GOOD period, energy is harvested

with rate λG, and, during the BAD period, no energy is harvested; therefore, as in DSM, the average

EH rate is β = λGDG/(DG + DB), and we denote the average long-term fraction of time spent

in the GOOD and BAD EH periods as πA(G) = DG

DG+DB
and πA(B) = DB

DG+DB
, respectively,

with γ = DG/DB = πA(G)/πA(B). A policy for CDM is defined by the energy drawing rate

η(CDM)(t) ∈ [0, 1], which specifies the rate according to which energy is drawn from the battery. In

particular, if the battery is empty, then η(CDM)(t) = 0; if it is full for t ∈ TG, then η(CDM)(t) ≥ λG,

so that no energy is lost due to overflow. The energy level at time t, E(t), is thus given by

E(t) = min
{

E(k(DG +DB)) +
∫ t
k(DG+DB)(λG − η(CDM)(τ))dτ, emax

}

, t ∈ TG(k),

E(t) = E(k(DG +DB) +DG)−
∫ t
k(DG+DB)+DG

η(CDM)(τ)dτ, t ∈ TB(k).

(3.32)

Since the EH process is periodic, it is sufficient to consider a periodic policy

η(CDM)(t+ k(DG +DB)) = η(CDM)(t), ∀t ∈ [0, DG +DB), ∀k ∈ Z.
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Therefore, the following boundary conditions must hold for k ∈ Z (after, possibly, an initial transient

phase, whose impact on the average long-term reward is negligible)

E(k(DG +DB)) = eL, E(k(DG +DB) +DG) = eH , (3.33)

i.e., during the GOOD period, the battery is recharged from eL to eH and, during the BAD period, it

is discharged from eH to eL. By definition, eL, eH ∈ [0, emax] and eL ≤ eH .

We define the instantaneous reward in CDM as g(η(CDM)(t)). Note that we employ the same

mathematical reward function as DSM for the purpose of comparing the twomodels later in Lemma 3.5.2.

However, it is emphasized that the physical meaning of g(x) is different for each model: in CDM,

the argument x is the rate according to which energy is drawn from the battery, and g(x) is the corre-

sponding instantaneous reward; in DSM, x is the transmission probability and g(x), defined in (3.11),

is the corresponding expected data importance. With these remarks in place, the average long-term

reward in CDM is

GCDM(η(CDM)) =

∫ DG

0 g(η(CDM)(τ))dτ +
∫ DG+DB

DG
g(η(CDM)(τ))dτ

DB +DG
. (3.34)

The optimal policy in CDM is the solution of

η(CDM)∗ = arg max
η(CDM)

GCDM(η(CDM)). (3.35)

The following lemma determines η(CDM)∗ and the respective optimal average reward. As in DSM,

let ρ = emax/DB be the power-to-depletion in CDM.

Lemma 3.5.1. The optimal policy for CDM is

η(CDM)∗(t) =











λG − 1
γ min{β, ρ}, t ∈ TG,

min{β, ρ}, t ∈ TB,
(3.36)

and the optimal average reward

GCDM(η(CDM)∗) = πA(G)g

(

λG − 1

γ
min{β, ρ}

)

+ πA(B)g (min{β, ρ}) . (3.37)

Proof. See Appendix 3.E.
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Figure 3.4. Operation of CDM under the optimal policy. Cases ρ = emax/DB < β (left) and ρ =
emax/DB ≥ β (right).

Lemma 3.5.1 distinguishes two regimes of operation in CDM which are determined exclusively

by the relation between ρ and β. As illustrated in Fig. 3.4, if ρ ≥ β, energy can be drawn with constant

rate β and the optimal average reward is thus g(β). If ρ < β, energy is drawn with rate λG − ρ/γ =

λG − emax/DG > β during the GOOD phase, and with rate emax/DB < β during the BAD phase,

i.e., the battery is completely recharged and discharged over each cycle (eH = emax, eL = 0). Under

the prism of [47, 48], the optimal energy expenditure curve in the interval [k, k + 1](DG + DB)

is the unique minimum-length curve that lies in the feasible energy “tunnel” defined by the energy

arrival curve, and its downward-shifted version by emax. If ρ ≥ β, the slope of the expenditure curve

is constant and equal to β, whereas, if ρ < β, it is λG − emax/DG during the GOOD phase and

emax/DB < β during the BAD phase.

Note that, both in Lemma 3.4.4 and in Lemma 3.5.1, the value of ρ essentially determines the

optimal policy. The main difference is that in CDM the EH profile is completely known, thus the

energy consumption rate can be optimally adjusted to avoid outage and overflow. In contrast, in

DSM energy outage may occur, and energy may also be wasted (if OA is not employed) due to the

randomness in the energy arrivals. In the following lemma, we formalize these intuitive remarks by

comparing the asymptotic average reward for DSM, G(∞)(ηG, θ; ρ), with GCDM(η(CDM)∗).

Lemma 3.5.2. For any BP (ηG, θ) in DSM,

G(∞)(ηG, θ; ρ) ≤ GCDM(η(CDM)∗). (3.38)

Proof. See Appendix 3.F.

We close this section by proposing the following suboptimal policy for DSM, based on the optimal
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policy found for CDM in Lemma 3.5.1:

η(e,G) = λG − min{β, ρ}
γ

, η(e,B) = min{β, ρ}, ∀e ∈ E \ {0}. (3.39)

This is a BP for DSM, as can be verified from Def. 3.3.2, and its performance can thus be evaluated

analytically from Theorem 3.4.1.

3.6 Numerical Results: single EHS

In this section, we present numerical performance results for the scenario with a single EHS, for

the following policies:

• Optimal policy (OP), obtained numerically via the PIA [1];

• Optimal BP with OA (OBP-OA) and without OA (OBP), determined by solving (3.28) for θ = 1

and θ = 0 using the bisection method [61];

• Heuristic BP (HBP), defined in (3.39);

• Non-Adaptive BP (NABP), the BP with (ηG, θ) = (β, 0);

• Greedy Policy (GP), which always transmits when there is energy in the buffer.

The average reward of OP is computed numerically via the PIA [1]; those of OBP-OA, OBP, HBP

and NABP can be computed analytically from Theorem 3.4.1. By definition, the average reward of

GP is βg(1).

For the purposes of this section, we let Vk = log2(1+ΛHk), whereHk is exponentially distributed

with unit mean and Λ > 0 is a scaling parameter. This choice of Vk corresponds to the information

rate achievable on a Rayleigh fading channel with gainHk, where Λ is the average receive SNR, and

the transmitter and receiver have full channel state information, so that the former can perform rate

adaptation, whereas the latter can employ coherent detection [20]. The ccdf of the data importance is

F̄V (v) = Pr
(

Hk ≥ 2v−1
Λ

)

= exp
{

−2v−1
Λ

}

. From (3.11),

g(x) =

∫ ∞

− lnx
log2(1 + Λh)e−hdh = x log2(1− Λ lnx) + log2(e)e

1
ΛE1(Λ

−1 − lnx), (3.40)

where E1(x) is the exponential integral function [62], defined as E1(t) =
∫∞
t e−τ/τdτ , and com-

puted in Matlab using expint(t). Note that (3.40) is a generalization of [63, Eq. (17)] and [64,
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Figure 3.5. Average reward as a function of emax for the considered policies. The respective asymptotic

average rewards, obtained from (3.25), are plotted with bold markers in the right side of each subplot. The

performance is heavily dependent on ρ and only mildly affected by the absolute value of emax. (β = 0.25,
λG = 0.5 and SNR= 8dB)

Eq. (5)] for x ≥ 1. Unless otherwise stated, we let β = 0.25 and λG = 0.5; hence, from (3.4), γ = 1.

Moreover, we set Λ = 6.31, which corresponds to an average SNR of 8dB.

The numerical results provided in this section are derived for representative values of the system

parameters. However, we have verified that the following observations hold for broader parameter

ranges and pdf of the data importance process.

In Fig. 3.5, we plot the average reward as a function of emax, for ρ ∈ {0.2β, β, 5β}. For each

value of ρ, DB is determined as DB = emax/ρ and DG as DG = γDB . The asymptotic average

reward (3.25) is shown with a bold marker in the right side of each subplot. Note that, for all policies,

G(η) quickly approaches the asymptotic value, i.e., for emax & 20, and displays a constant behavior

as a function of emax. This suggests that the absolute value of emax only mildly affects the system

performance in the range emax & 20. In general, the performance of all policies except GP improves

with increasing ρ, and approaches more closely the upper bound g(β). It is seen that OBP incurs only

a small performance degradation with respect to OP: within 6%, for all values of ρ and emax ≥ 12.
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Figure 3.6. Asymptotic average reward (3.25) vs. ρ/β. (β = 0.25, λG = 0.25 and SNR= 8dB)

OA reduces the gap even further: within 3% of OP, for emax ≥ 4. As discussed in Sec. 3.4, NABP,

which does not adapt the transmission probability to the EH state, approaches OBP for large values

of ρ, but incurs a significant performance loss for small values of ρ (∼ 35% compared to OP).

In Fig. 3.6, we plot the asymptotic average reward (3.25) for the considered policies as a function

of ρ/β, and, in Fig. 3.7, the respective ηG for the BPs (in Fig. 3.7, we do not plot OP and GP, since the

former is also a function of the energy level in the battery, whereas the latter transmits with probability

one whenever energy is available). For OP in particular, an approximation of the asymptotic average

reward is obtained from the PIA for emax = 100. In Fig. 3.6, we also plot the curve for CDM, which

is an upper bound to the asymptotic average reward achieved by any BP, as proved in Lemma 3.5.2.

We note that OBP and OBP-OA are within 5% and 2.5% of OP, respectively, for all values considered.

HBP, proposed in Sec. 3.5, attains close to optimal performance for very large values of ρ/β and for

ρ/β → 0. This behavior is explained in Fig. 3.7, where it is seen that the transmission probability of

HBP approaches that of OBP for these ranges of ρ. However, for ρ in the vicinity of β, HBP incurs

a performance loss, which serves to illustrate the unsuitability of offline policies in a random setting.

NABP performs poorly for small values of ρ (60% loss compared to OP) and approaches OBP (and
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Figure 3.7. Transmission probability in the GOOD EH state vs. ρ/β corresponding to Fig. 3.6. HBP

resembles OBP for small and large ρ/β; this explains the behavior of the respective reward curves in

Fig. 3.6. (β = 0.25, λG = 0.5, SNR= 8dB)

the upper bound g(β)) for large values of ρ. The properties of the optimal transmission probability

for OBP and OBP-OA, derived in Lemma 3.4.4, are confirmed in Fig. 3.7.

Overall, OBP performs so well with respect to OP because it adjusts the transmission probability

in the BAD state to avoid outage and in the GOOD state to avoid overflow, which are the main factors

that compromise the performance in a finite-capacity system. If they are avoided, then close-to-

optimal performance can be achieved, without exact knowledge of the energy level in the battery at

any given time. As the power-to-depletion ρ increases, the battery becomes more and more resilient

to the randomness in the ambient energy, and the adaptation is less crucial. As shown in Figs. 3.6

and 3.7, in the limit of large ρ, it becomes optimal to transmit with constant probability β irrespective

of the state of the EH process.

In Fig. 3.8, we explore the impact of the SNR Λ on the asymptotic average reward (3.25). HBP is

not plotted since it is identical to NABP when ρ = β. As previously, we confirm that OBP-OA and

OBP achieve near-optimal performance (within 3% and 5% of OP, respectively). A more significant

degradation is incurred by NABP (17−23%) and GP (18−44%). Interestingly, for small SNR values,
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Figure 3.8. Asymptotic average reward (3.25) as a function of the SNR Λ. (β = 0.25, λG = 0.5, ρ = β)

NABP outperforms GP, and the trend is reversed for high SNR values.

Finally, in Fig. 3.9, we plot the asymptotic average reward (3.25) as a function of λG, setting

ρ = 0.25 and γ = 1. Since β = λGγ/(1 + γ) = λG/2, note that β also increases linearly with

λG. For all policies, the average reward increases with λG, since β increases, i.e., energy becomes

more abundant. In agreement with all previous results, the performance loss of OBP-OA and OBP

with respect to OP is small, within 2.5% and 4%, respectively, for all the considered values of λG. In

contrast, while NABP approaches OP for small λG, its performance significantly degrades for large

λG (20% of OP for λG → 1), and is outperformed by GP for λG & 0.9. The trend is explained by

noting that, as λG (equivalently β) increases, the battery is driven more often to outage and overflow

due to the fact that the power-to-depletion ρ is fixed, whereas the transmission probability (ηG =

ηB = β for NABP) increases.



3.7. Multiaccess model: multiple EHSs 71

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

λG

G
η

 

 

OP (emax = 100)

OBP-OA

OBP

HBP

NABP

GP

CDM

Figure 3.9. Asymptotic average reward (3.25) vs. λG. (γ = 1, ρ = 0.25, SNR= 8dB)

3.7 Multiaccess model: multiple EHSs

We now consider a network of U EHSs, which communicate concurrently via a shared wireless

link with a FC, as depicted in Fig. 3.1. Regarding the operation of each single EHS, we refer to

Sec. 3.2. In particular, we denote the following quantities related to EHS u at time k:

• Vu,k ∈ R
+: importance of the current data packet;

• Bu,k ∈ {0, 1}: harvested energy;

• Qu,k ∈ {0, 1}: action of the EHS controller (transmit or idle);

• Eu,k ∈ E : energy level in the battery, governed by

Eu,k+1 = min {Eu,k −Qu,k +Bu,k, emax} . (3.41)

Unlike the single EHS scenario, we model the EH process as i.i.d. (pG = 1−pB), where β denotes the

probability to harvest one energy quantum in one time-slot. As a consequence, Bu,k is independent
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of the underlying EH state Au,k, hence Au,k need not to be taken into account. Nevertheless, the

following results can be generalized to the scenario where the EH process is a two-state Markov

chain. Moreover, we define

Bk = (B1,k, B2,k, . . . , BU,k) ∈ {0, 1}U , (3.42)

Ek = (E1,k, E2,k, . . . , EU,k) ∈ EU , (3.43)

Qk = (Q1,k, Q2,k, . . . , QU,k) ∈ {0, 1}U , (3.44)

Vk = (V1,k, V2,k, . . . , VU,k) ∈ [R+]U . (3.45)

The data importance Vu,k and the EH arrival Bu,k are assumed to be statistically independent across

the EHSs and over time.

Regarding the interaction between the EHSs in the network, we assume a collision model, i.e., if

EHS u transmits in time-slot k, the packet is successfully delivered to FC if and only if all the other

EHSs remain idle. As in the single EHS scenario, the data packet is discarded if a collision occurs or

the EHS decides to remain idle.

3.8 Policy Definition and Optimization Problem

The state of the system at time k is given by (Ek,Vk), However, each EHS is assumed to have

only local knowledge about the state of the system. Namely, EHS u, at time k, only knows its

own energy level and data importance (Eu,k, Vu,k), but does not know the energy level and data

importance of the other EHSs in the network. As a result, the decision of EHS u on whether to

transmit or remain idle is based solely on (Eu,k, Vu,k). In particular, as proved for the single EHS

scenario (Lemma 3.3.1), the following threshold policy is optimal:

Qu,k =











1, Vu,k ≥ vth,u(Eu,k),

0, Vu,k < vth,u(Eu,k),

(3.46)

where vth,u(e) is some importance threshold, and is a function of the energy level e. As in the

single EHS scenario, we denote by ηu(e) the corresponding transmission probability of EHS u in

energy level e, induced by the random importance Vu,k, and by g(ηu(e)) the expected data importance

reported by EHS u to FC in state e, assuming that all the other EHSs remain idle (no collisions occur).
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In the following, we refer to ηu as the policy of EHS u. Moreover, we denote the aggregate policy

used by all the EHSs in the network as η = (η1, η2, . . . , µU ).

Given an initial state of the energy levels E0 = e0 ∈ EU , we denote the average long-term

importance of the data reported by EHS u to FC, under the aggregate policy η, as

R
(u)
η (e0) = lim inf

K→∞
1

K
E





K−1
∑

k=0

Qu,kVu,k

∏

i 6=u

(1−Qi,k)

∣

∣

∣

∣

∣

∣

e0





= lim inf
K→∞

1

K
E





K−1
∑

k=0

g(ηu(Eu,k))
∏

i 6=u

(1− ηi(Ei,k))

∣

∣

∣

∣

∣

∣

e0



 . (3.47)

The expectations above are taken with respect to {Bk,Qk,Vk}where, at each instant k,Qi,k is given

by (3.46) for appropriate threshold vth,i(Ei,k), and Ei,k evolves according to (3.41). In the last step,

we have used the fact that Qi,k only depends on (Ei,k, Vi,k), and Vi,k is i.i.d. across the EHSs, hence

E



Qu,kVu,k

∏

i 6=u

(1−Qi,k)

∣

∣

∣

∣

∣

∣

Ek



 = E [Qu,kVu,k|Eu,k]
∏

i 6=u

(1− E [Qi,k|Ei,k])

= g(ηu(Eu,k))
∏

i 6=u

(1− ηi(Ei,k)).

The term Qu,k
∏

i 6=u(1 − Qi,k) = 1 if and only if EHS u transmits the current data packet, and all

the other EHSs remain idle, so that no collision occurs and the transmission is successful. Moreover,

we define the average long-term aggregate importance of the reported data (from now on referred to

as network utility for brevity) as

Rη(e0) =
U
∑

u=1

R
(u)
η (e0). (3.48)

The objective is to design control policies η which maximize the network utility, i.e.,

η∗ = argmax
η

Rη(e0). (3.49)

However, in order to guarantee fairness among the EHSs in the network, we consider only symmetric

control policies, i.e., all the EHSs employ the same policy ηu = η, ∀u. The optimization in (3.49) is

then restricted to such symmetric policies, yielding

η∗ = argmax
η

R(η,η,...,η)(e0). (3.50)
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The optimization in (3.50) is carried out in the next section.

It can be shown that, since g(x) is strictly concave, the optimal policy η∗ is unique and belongs

to the set of admissible policies U that result in an average reward independent of the initial state e0,

as defined below.

Definition 3.8.1. The set U of admissible policies is defined as

U = {η : η(0) = 0, η(emax) ∈ (0, 1], η(e) ∈ (0, 1), e 6= 0, emax}.

It can be shown that the Markov chain {Ek} under the aggregate policy η ∈ UU is irreducible.

Hence, there exists a unique steady-state distribution, πη(e), e ∈ EU , independent of e0 [18]. From (3.47),

we thus obtain

R
(u)
η =

∑

e∈EU

πη(e)g(ηu(eu))
∏

i 6=u

(1− ηi(ei)). (3.51)

Moreover, since the actionQu,k is based only on (Eu,k, Vu,k) and does not depend on (Ei,k, Vi,k), i 6=
u, and harvesting is i.i.d. across EHSs, in the steady state regime, the energy level of EHS u is inde-

pendent of the energy levels of all the other EHSs, so that we can write πη(e) =
∏

u πηu(eu), where

πηu(eu) is the steady state distribution of the energy level of EHS u, {Eu,k}, which is characterized

in the following lemma.

Lemma 3.8.1. The steady state distribution of the energy level Eu,k under policy ηu ∈ U is given by

πηu(e) =
e−1
∏

i=0

Wηu(i)πηu(0) =
1

∏emax−1
i=e Wηu(i)

πηu(emax), (3.52)

where we have defined

Wηu(i) =
βη̄u(i)

β̄ηu(i+ 1)
, i = 0, 1, . . . , emax − 1, (3.53)

and

πηu(0) =
1

1 +
∑emax−1

e=0

∏e
i=0Wηu(i)

. (3.54)

Proof. With the help of Fig. 3.10, the balance equation πηu(e − 1)βη̄u(e − 1) = πηu(e)β̄ηu(e), for
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0 e e+ 1 emax

β̄ βηu(e) + β̄η̄u(e)

βηu(e+ 1) + β̄η̄u(e+ 1)

β + β̄η̄u(emax)

β

β̄ηu(e)

βη̄u(e)

β̄ηu(e+ 1)

βη̄u(e+ 1)

β̄ηu(emax)

Figure 3.10. Markov chain and transition probabilities of energy level Eu,k

1 ≤ e ≤ emax, yields

πηu(e) = Wηu(e− 1)πηu(e− 1). (3.55)

The expression (3.52) is then obtained by induction, and (3.54) after normalization.

Letting

G(ηu) =

emax
∑

e=1

πηu(e)g(ηu(e)), P (ηi) =

emax
∑

e=1

πηi(e)ηi(e), (3.56)

we can rewrite (3.51) as

R
(u)
η = G(ηu)

∏

i 6=u

(1− P (ηi)). (3.57)

Eq. (3.57) can be interpreted as follows. G(ηu) is the average reward of EHS u, assuming that all

the other EHSs remain idle, so that no collisions occur. P (ηi) is the average long-term transmission

probability of EHS i, so that
∏

i 6=u(1−P (ηi)) is the steady-state probability that all the EHSs, except

u, remain idle. From (3.48), the network utility under the aggregate policy η then becomes

Rη =

U
∑

u=1

G(ηu)
∏

i 6=u

(1− P (ηi)). (3.58)

In the symmetric scenario with ηu = η, ∀u, which is the main focus of this work, (3.58) becomes

Rη = UG(η)(1− P (η))U−1. (3.59)
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The optimization problem (3.50) over the class of admissible and symmetric policies is stated as

η∗ = argmax
η∈U

UG(η)(1− P (η))U−1, (3.60)

and is carried out in the next section.

3.9 Optimization and Analysis

The optimization problem (3.60) when U = 1 can be solved by using the Policy Iteration Algo-

rithm (PIA) [1] (Algorithm 3 with λ = 0 in this section). However, in general, when U > 1 (3.60)

cannot be recast as a convex optimization problem, hence we resort to approximate solutions. In

particular, in order to determine a local optimum of (3.60), we use a mathematical artifice based on a

game theoretic formulation of the multiaccess problem considered in this work: we model the opti-

mization problem as a game, where it is assumed that each EHS, say u, is a player which attempts to

maximize the common payoff (3.58) with respect to its own policy ηu.5 We proceed as follows. We

first characterize the general Nash Equilibrium (NE). Then, we study the existence of the Symmetric

NE (SNE) for this game, i.e., such that all EHSs employ the same policy η∗u = η∗, ∀u, and have no

incentive to deviate from it. In Theorem 3.9.2, we show that the SNE is unique, and we also provide

Algorithm 2 to compute it. In Theorem 3.9.3, we prove that the SNE, and thus the policy returned by

Algorithm 2, represents a local optimum of the original optimization problem (3.60).

If a NE exists for this game (not necessarily symmetric), defined by the policy profile

η∗ = (η∗1, η
∗
2, . . . , η

∗
U ), then it solves

η∗u =arg max
ηu∈U



G(ηu)
∏

i 6=u

(1− P (η∗i )) + (1− P (ηu))
∑

n 6=u

G(η∗n)
∏

i 6=n,u

(1− P (η∗i ))





=arg max
ηu∈U



G(ηu)− P (ηu)
∑

n 6=u

G(η∗n)
1− P (η∗n)



 , ∀u, (3.61)

where, in the last step, we have removed positive multiplicative factors and additive terms independent

of ηu, which do not affect the optimization problem. In particular, we are interested in characterizing

5We point out that this formulation is only a mathematical artifice to determine the optimal policy, which is then followed
by all EHSs (which are not assumed to behave strategically).
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the SNE. Then, by further imposing η∗u = η∗, ∀u, in (3.61), we obtain

η∗ = argmax
η∈U

[G(η)− Λ(η∗)P (η)] , (3.62)

where we have defined

Λ(η) = (U − 1)
G(η)

1− P (η)
. (3.63)

Note that η∗ defined in (3.62) is simultaneously optimal for all the EHSs, i.e., any unilateral deviation

of a single EHS from the SNE η∗ yields a smaller network utility Rη. The interpretation of (3.62) is

as follows. G(η) is the reward when the network contains only one user, so that the unique EHS has

no constraint on the collisions caused to other users in the network. The term Λ(η∗) is interpreted

as a Lagrange multiplier constant associated to a constraint on the transmission probability of each

EHS, so as to limit the collisions to the other EHSs in the network. The overall objective function

is thus interpreted as the maximization of the individual reward of each user, with constraint on the

average transmission probability to limit collisions, which are deleterious to network performance.

Interestingly, the Lagrange multiplier (3.63) increases with the number of EHSs U , so that, the larger

the network size, the more stringent the constraint on the average transmission probability of each

EHS. In order to carry out (3.62), we solve the more general optimization problem, for λ ≥ 0,

η(λ) = argmax
η∈U

[G(η)− λP (η)] . (3.64)

The following properties of η(λ) can be proved, which follow from the fact that g(x) is a strictly

concave function of x (other properties are provided in Theorem 3.10.1):

Proposition 3.9.1. 1. η(λ) is uniquely defined, i.e.,

G(η(λ))− λP (η(λ)) > G(η)− λP (η), ∀η 6= η(λ); (3.65)

2. η(λ) is continuous in λ;

3. η(λ) ∈ int(U), where int(U) denotes the interior of U ;

4. 0 < P (η(λ)) ≤ β, 0 < G(η(λ)) < g(P (η(λ))) ≤ g(β).
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Remark 3.9.1. The first property is a consequence of the fact that (3.64) can be recast as a convex

optimization problem, where the objective function is strictly concave. The second property follows

from the strict concavity of g(x). The third property follows from the fact that η(λ)(e) ∈ (0, 1), ∀e 6=
0, as proved in Theorem 3.10.1. The last property is a consequence of the fact that, for any policy η ∈
U , the average long-term transmission probability cannot be larger than the average harvesting rate

β, since the transmission of one packet requires the expenditure of one energy quantum. Moreover,

from the strict concavity of g(x), using Jensen’s inequality we obtainG(η) < g(P (η)) ≤ g(β), since

g(x) is an increasing function of x and P (η) ≤ β.

By comparing (3.62) and (3.64), we then obtain that η∗ is optimal for (3.62) if and only if η∗ =

η(λ
∗), for λ∗ ≥ 0 and Λ(η(λ

∗)) = λ∗. The following theorem proves the existence and uniqueness of

such η∗.

Theorem 3.9.2. There exists a unique η∗ ∈ U solution of (3.62), i.e., ∃! η∗ ∈ U such that

G(η∗)− Λ(η∗)P (η∗) > G(η)− Λ(η∗)P (η), ∀η 6= η∗, η ∈ U .

Moreover, P (η∗) ≤ min{β, 1
U }.

Proof. The existence and uniqueness of η∗ solution of (3.62) is proved by using Lemma 3.12.2 in

Appendix 3.G. In fact, h(λ) = Λ(η(λ))−λ is a continuous decreasing function of λ (since Λ(η(λ)) is

continuous non-increasing), with limits h(0) = Λ(η(0)) > 0 and limλ→∞ h(λ) = −∞, hence there

exists a unique λ∗ ∈ (0,+∞) such that h(λ∗) = 0, i.e. Λ(η(λ
∗)) = λ∗, which guarantees that η(λ

∗)

is optimal for (3.62).

We now prove that P (η(λ
∗)) ≤ min{β, 1

U }. From Prop. 3.9.1, we have P (η(λ
∗)) ≤ β, hence

it is sufficient to prove that P (η(λ
∗)) ≤ 1

U . This is trivially true if P (η(0)) ≤ 1
U , since P (η(λ))

is a non-increasing function of λ (Lemma 3.12.1). Now, assume that P (η(0)) > 1
U . Then, since

limλ→∞ P (η(λ)) = 0, there exists λ̂ ∈ (0,∞) such that P (η(λ̂)) = 1
U . For such λ̂, from (3.64) we

have

G(η(λ̂))− λ̂
1

U
= G(η(λ̂))− λ̂P (η(λ̂)) = max

η∈U
G(η)− λ̂P (η) > G(0)− λ̂P (0) = 0, (3.66)
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and, using (3.63) and the fact that P (η(λ̂)) = 1
U ,

UG(η(λ̂))− λ̂ = (U − 1)
G(η(λ̂))

1− 1/U
− λ̂ = Λ(η(λ̂))− λ̂ > 0.

Therefore, we obtain Λ(η(λ̂)) > λ̂. Since Λ(η(λ)) − λ is a decreasing function of λ (Lemma 3.12.2)

and Λ(η(λ
∗))−λ∗ = 0, necessarily λ̂ < λ∗. Finally, using Lemma 3.12.1, we obtain P (η(λ̂)) = 1

U ≥
P (η(λ

∗)), since P (η(λ)) is a non-increasing function of λ. The second part of the theorem is thus

proved.

We have the following result.

Theorem 3.9.3. The SNE η∗ in (3.62) is a local optimum for the optimization problem (3.60).

Proof. Since η∗ is globally optimal for the optimization problem (3.64) when λ = Λ(η∗), and

η∗ ∈ int(U) from Prop. 3.9.1, then the gradient with respect to η, ∆η(·), of the objective func-

tion in (3.62), computed in η∗, is equal to zero, and its Hessian with respect to η,Hη(·), computed in

η∗, is semidefinite negative. More precisely, since g(x) is a strictly concave function of x, it can be

proved that the Hessian of the objective function in (3.62), computed in η∗, is negative definite, i.e.,

for the SNE η∗ we have

[∆η(G(η))− Λ(η∗)∆η(P (η))]η=η∗ = 0, (3.67)

[Hη(G(η))− Λ(η∗)Hη(P (η))]η=η∗ ≺ 0. (3.68)

On the other hand, the gradient of (3.59) is given by

∆η (Rη) = U(1− P (η))U−1∆η (G(η))− U(U − 1)G(η)(1− P (η))U−2∆η (P (η)) . (3.69)

The Hessian matrix of (3.59) is then obtained by further computing the gradient of each component

of (3.69), yielding

Hη (Rη) = U(U − 1)(U − 2)G(η)(1− P (η))U−3∆η (P (η))∆η(P (η))T

− U(U − 1)(1− P (η))U−2∆η (P (η))∆η(G(η))T − U(U − 1)G(η)(1− P (η))U−2Hη (P (η))

− U(U − 1)(1− P (η))U−2∆η (G(η))∆η(P (η))T + U(1− P (η))U−1Hη (G(η)) . (3.70)
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By computing (3.69) under the SNE η∗, and by using (3.63) and substituting (3.67) in (3.69), we then

obtain [∆η (Rη)]η=η∗ = 0. Moreover, since [Hη(G(η))]η=η∗ ≺ Λ(η∗) [Hη(P (η))]η=η∗ from (3.68),

substituting (3.68) in (3.70) we obtain

[Hη (Rη)]η=η∗ ≺ −U2(U − 1)G(η∗)(1− P (η))U−3
[

∆η(P (η))∆(P (η))T
]

η=η∗
� 0,

where we have used the fact that the product of the column vector ∆η(P (η)) by its transpose is

semidefinite positive. Therefore, [Hη (Rη)]η=η∗ ≺ 0 and [∆η(Rη)]η=η∗ = 0, hence η∗ is a local

optimum for (3.60).

To conclude, we present an algorithm to determine the SNE η∗ in (3.62), hence, from Theo-

rem 3.9.3, a local optimum of (3.60). In particular, letting h(λ) = Λ(ηλ) − λ, we employ the

bisection method [61] to compute the unique λ∗ such that h(λ∗) = 0, which determines the SNE

η∗ as η∗ = η(λ
∗). We use the fact that, from Lemma 3.12.2 in Appendix 3.G, h(λ) is a continuous

decreasing function of λ, with h(0) > 0 and limλ→∞ = −∞, so that, if h(λ) > 0 (respectively,

h(λ) < 0) for some λ, then necessarily λ < λ∗ (λ > λ∗). We need upper and lower bounds to λ∗,

denoted as λmax and λmin, respectively, so that λmin ≤ λ∗ ≤ λmax. These bounds are then iteratively

updated and refined, by testing the sign of h(λ) for the new λ = (λmin + λmax)/2, until the desired

accuracy is attained. The initialization of the lower bound is chosen as λmin = 0. As to the upper

bound, note that P (η∗) ≤ min{β, 1
U } from Prop. 3.9.1, hence G(η∗) < g(P (η∗)) ≤ g(min{β, 1

U }).
Therefore, from (3.63) we obtain

λ∗=Λ(η(λ
∗))<min

{

U − 1

1− β
g(β), Ug

(

1

U

)}

=λmax. (3.71)

Algorithm 2 (Bisection method).

1. INIT: accuracy ǫ > 0, λmin = 0 and λmax as in (3.71);

2. MAIN: λ := (λmin + λmax)/2; DETERMINE η(λ) using the PIA (Algorithm 3);

COMPUTE h(λ) = Λ(η(λ))− λ.

• IF |h(λ)| < ǫ, RETURN the optimal policy η(λ);

• IF h(λ) > ǫ, UPDATE λmin := λ and λmax := min{λmax,Λ(η
(λ))}; REPEAT MAIN;

• IF h(λ) < −ǫ, UPDATE λmax := λ and λmin := max{λmin,Λ(η
(λ))}; REPEAT MAIN;
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3. RETURN optimal policy η∗ = η(λ).

Remark 3.9.2. Note that the UPDATE step updates both λmin and λmax. This is because h(λ) is a

decreasing function of λ and Λ(η(λ)) is a non-increasing function of λ (Lemma 3.12.2), hence, if

h(λ) > 0, then λ < λ∗ = Λ(η(λ
∗)) ≤ Λ(η(λ)), and therefore λ < λ∗ ≤ min{λmax,Λ

(η(λ))}. Similarly,

if h(λ) < 0, then λ > λ∗ = Λ(η(λ
∗)) ≥ Λ(η(λ)), and therefore λ > λ∗ ≥ max{λmin,Λ

(η(λ))}.

We now present the PIA [1] to compute η(λ). Starting from an initial policy η, this algorithm

iteratively computes the Policy Evaluation and Policy Improvement steps, until convergence. In the

Policy Evaluation step, the metric G(η) − λP (η) is computed under the current policy η, and the

relative value function vη : E 7→ R is determined as the unique solution of

vη(0) = 0, (3.72)

vη(e)−
∑

j∈E
Prη(Eu,k+1 = j|Eu,k = e)vη(j) = g(η(e))− λη(e)−G(η) + λP (η), ∀e ∈ E . (3.73)

We have the following lemma.

Lemma 3.9.4. The relative value function under policy η is given by

vη(e) =
e−1
∑

j=0

∑j
i=0 πη(i)[G(η)− λP (η)− g(η(i)) + λη(i)]

πη(j)βη̄(j)
. (3.74)

Proof. Trivially, (3.74) is consistent with (3.72) for e = 0. Moreover, from (3.73) for e = 0, using

the fact that η(0) = 0 and vη(0) = 0, we obtain

vη(1) =
G(η)− λP (η)

β
, (3.75)

yielding (3.74) for e = 1. From (3.73) for e = 1, 2, . . . , emax − 1, using the expression of the

transition probabilities of Eu,k (see Fig. 3.10), we have

vη(e)− β̄η(e)vη(e− 1)− (βη(e) + β̄η̄(e))vη(e)− βη̄(e)vη(e+ 1)

=g(η(e))− λη(e)−G(η) + λP (η). (3.76)
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By solving the above equation with respect to vη(e+ 1), we obtain

vη(e+ 1)=
−g(η(e))+λη(e) +G(η)− λP (η)− β̄η(e)vη(e− 1) + (βη̄(e) + β̄η(e))vη(e)

βη̄(e)
. (3.77)

Finally, the expression (3.74) for e > 1 is proved by induction: assuming that vη(e) and vη(e−1) are

given by the expression (3.74), and substituting these expressions in (3.77), it can be proved, using

the expression of the steady state distribution πη(·), given in Lemma 3.8.1, that vη(e+1) is also given

by the expression (3.74), thus proving the induction step. Since we have proved that (3.74) holds for

e = 0 and e = 1, the induction is proved.

In the Policy Improvement step, an improved policy η̂ is determined by solving, for each e ∈
E \ {0}, the convex optimization problem

η̂(e) = arg max
η̃(e)∈[0,1]

g(η̃(e))− λη̃(e) +
∑

j∈E
Prη̃(Eu,k+1 = j|Eu,k = e)vη(j), (3.78)

or equivalently, using the expression of the transition probabilities of Eu,k, we obtain

η̂(e) = arg max
x∈[0,1]

g(x)− λx− β̄xδη(e)− βxδη(e+ 1), ∀e ∈ E \ {0}, (3.79)

where we have defined δη(emax + 1) = 0 and, for e ∈ E \ {emax},

δη(e) = vη(e)− vη(e− 1) =

∑e−1
i=0 πη(i)[G(η)− λP (η)− g(η(i)) + λη(i)]

πη(e− 1)βη̄(e− 1)
. (3.80)

Owing to the concavity of g(x), the optimal η̂(e) can be found by using the bisection method [61].

We are now ready to state the PIA to solve the optimization problem (3.64).

Algorithm 3 (PIA). 1. INIT: ηold ∈ U ; accuracy ǫPIA;

2. Policy evaluation: compute, using Lemma 3.8.1 and (3.56),

δηold(e) =

∑e−1
i=0 πηold(i)[G(ηold)− λP (ηold)− g(ηold(i)) + ληold(i)]

πηold(e− 1)βη̄old(e− 1)
, e = 1, 2, . . . , emax + 1;

3. Policy improvement: determine a new policy, ηnew, as the solution of

ηnew(e) = arg max
x∈[0,1]

g(x)− λx− β̄xδη(e)− βxδηold(e+ 1), ∀e ∈ E \ {0}; (3.81)
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4. Termination test: If |G(ηnew)−G(ηold)| < ǫPIA, return the policy η(λ) = ηnew; other-

wise, let ηold := ηnew and repeat from step 2).

3.10 Low Complexity Policies

Note that the PIA may be computationally intensive for the ultra-low power electronics typically

found in practical EHSs. In this section, we design low-complexity policies, which are then shown to

achieve near-optimal performance. In particular, we use two different approaches. The first approach,

developed in Sec. 3.10.1, is based on replacing the PIA in the main iteration stage of Algorithm 2,

which is used to compute the optimal policy η(λ) maximizing G(η)−λP (η), with a computationally

less intensive algorithm, which determines an approximation η̃(λ) of the optimal policy η(λ). The

second approach, developed in Sec. 3.10.2, is based on the approximation of large battery capacity.

3.10.1 Low complexity approximation of η(λ)

The following theorem presents structural properties of the optimal policy η(λ), which are then

used to design a low-complexity policy η̃(λ).

Theorem 3.10.1. η(λ) has the following properties:

P1) η(λ) is a strictly increasing function of e ∈ E .

P2) η(λ) ∈ (ηlow, ηup), ∀e ∈ E\{0}, where, letting x∗ = argmaxx[g(x)−λx], ηlow ∈ (0,min{β, x∗}),
ηup ∈ (min{β, x∗}, x∗) uniquely solve

g(ηlow) + (1− ηlow)g
′(ηlow) = λ+

g(min{β, x∗})− λmin{β, x∗}
β

, (3.82)

g(ηup)− ηupg
′(ηup) = g(min{β, x∗})− λmin{β, x∗}. (3.83)

Proof. See Appendix 3.H.

Remark 3.10.1. P1) of Theorem 3.10.1 states the intuitive fact that the more energy available in the

buffer, the higher the incentive to transmit. The larger transmission probability in the high energy

states reflects the incentive to minimize the impact of energy overflow. In contrast, the smaller trans-

mission probability in the low energy states aims to minimize the impact of energy outage.
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Figure 3.11. Comparison between the low complexity policy (3.84) (LCP1) and the optimal policy (PIA)

computed with Algorithm 3. λ = 1, emax = 10, β = 0.1, Vu,k is exponentially distributed.

Based on Theorem 3.10.1 and the fact that transmitting with constant probability min{β, x∗}
is asymptotically optimal for large battery capacity (see Lemmas 3.10.2 and 3.10.3), we construct a

heuristic policy which (a) is conservative when energy is low, (b) transmits with probabilitymin{β, x∗}
in the middle-energy levels, (c) is aggressive when the battery capacity is approached. In particular,

we choose the following low-complexity policy η̃(λ)(e) (LCP1), depicted in Fig. 3.11 along with the

optimal policy η(λ)(e), obtained with the PIA:

η̃(λ)(e) =



















4−e
3 ηlow + e−1

3 min{β, x∗}, 1 ≤ e ≤ 3

min{β, x∗}, 4 ≤ e ≤ emax − 3

emax−e
3 min{β, x∗}+ e+3−emax

3 ηup, emax − 2 ≤ e ≤ emax.

(3.84)

The terms ηlow and ηup can be computed from Theorem 3.10.1 e.g., using the bisection method [61].

In Fig. 3.11, we notice a good match between the low-complexity and the optimal policies.

Moreover, in Fig. 3.12, the curves G(η)− λP (η) versus λ perfectly match under the two policies.
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Figure 3.12. G(η)− λP (η) as a function of λ, computed under the low complexity policy (LCP1) and the

optimal policy (PIA). λ = 1, emax = 10, β = 0.1, Vu,k is exponentially distributed.

3.10.2 Large battery capacity approximation

In this section, we design a low complexity policy based on the approximation of large battery

capacity. The approximation is based on the following lemma, which follows from property 4) of

Prop. 3.9.1.

Lemma 3.10.2. We have the following upper bounds to the network utility (3.59):

Rη < Ug(P (η))(1− P (η))U−1 ≤ Ug(p∗)(1− p∗)U−1, (3.85)

where p∗ = β if β < 1/U and g′(β)(1− β)− (U − 1)g(β) > 0; otherwise, p∗ uniquely solves

g′(p∗)(1− p∗)− (U − 1)g(p∗) = 0, for p∗ ∈ (0, 1/U). (3.86)

Proof. The first inequality in (3.85) directly follows from property 4) of Prop. 3.9.1, sinceG(η(λ)) <

g(P (η(λ))). The second inequality is obtained by maximization over η ∈ U . In particular, since
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P (η) ∈ (0, β] from property 4) of Prop. 3.9.1, we have

max
η∈U

Ug(P (η))(1− P (η))U−1 = max
p∈(0,β]

Ug(p)(1− p)U−1. (3.87)

Let p∗ = argmaxp∈(0,β][Ug(p)(1− p)U−1]. The derivative of Ug(p)(1− p)U−1 with respect to p is

positive if and only if

h(p) , g′(p)(1− p)− (U − 1)g(p) > 0. (3.88)

h(p) is a decreasing function of p, with limp→0 h(p) = +∞ and h(1/U) = −(U − 1)[g(1/U) −
1/Ug′(1/U)] < 0 (since g(x) is concave increasing and g(0) = 0), therefore we have the following

cases:

• if h(β) > 0 (necessarily, β < 1/U ), then p∗ = β;

• otherwise, p∗ uniquely solves h(p∗) = 0.

The lemma is thus proved.

Based on this result, we propose the following policy, which is then shown to be asymptotically

optimal for large battery capacity:

η̃(e) = p∗, ∀e ∈ E \ {0}. (3.89)

It can be verified, by using the expression of the steady state distribution in Lemma 3.8.1 that, under

policy η̃,

G(η̃) =
1−

(

β̄p∗

β(1−p∗)

)emax

1− p∗

β

(

β̄p∗

β(1−p∗)

)emax
g(p∗) → g(p∗), (3.90)

P (η̃) =
1−

(

β̄p∗

β(1−p∗)

)emax

1− p∗

β

(

β̄p∗

β(1−p∗)

)emax
p∗ → p∗, (3.91)

where the limit holds for emax → ∞, and we have used the fact that p∗ ∈ (0, β], so that the expo-

nential terms decay to zero (if p∗ < β; the expressions of G(η̃) and P (η̃) when p∗ = β are obtained

in the limit p∗ → β, yielding the same limiting behavior for emax → ∞). The following lemma is a

consequence of this limiting behavior for large battery capacity.
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Lemma 3.10.3. The policy η̃ defined in (3.89) is asymptotically optimal for emax → ∞, i.e.,

lim
emax→∞

Rη̃ = lim
emax→∞

max
η

Rη. (3.92)

Proof. We have

Rη̃ ≤ max
η

Rη < Ug(p∗)(1− p∗)U−1, (3.93)

where the second inequality follows from Lemma 3.10.2. Computing the limit for emax → ∞ and

using (3.90) and (3.91), we obtain

Ug(p∗)(1− p∗)U−1 = lim
emax→∞

Rη̃ ≤ lim
emax→∞

max
η

Rη. (3.94)

The lemma is thus proved by combining (3.93) and (3.94).

3.11 Numerical Results

In this section, we present some numerical results. We model Vu,k as an exponential random

variable with unit mean, with pdf fV (v) = e−v, v ≥ 0. From (3.10) and (3.11), we obtain

g(x) = x(1− lnx). (3.95)

In Fig. 3.13, we plot the network utility (3.48) under the policy (3.62), computed using Algo-

rithm 2, We consider different scenarios differing in the battery capacity emax ∈ {1, 10} and the EH

rate β ∈ {1/U, 0.1, 0.01}, as a function of the number of EHSs in the network U . In particular, when

β = 1/U the total expected energy harvested by the network in one time-slot is 1. Interestingly, the

network utility increases with the number of EHSs U . This behavior is due to the strict concavity of

g(x), such that a diminishing return is associated to a larger transmission probability x. Therefore, the

smaller the number of EHSs U , the more the transmission opportunities for each EHS, but the smaller

the marginal gain, so that the network utility decreases. Clearly, the scenario with emax = 10 outper-

forms the scenario with emax = 1. Note that, for U < 10, the best performance is attained in the case

β = 1/U , since more energy is available to the EHSs. In contrast, for U > 10 and emax = 10, the

best performance is attained in both cases β = 1/U and β = 0.1, despite a larger energy availability
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Figure 3.13. Network utility (3.48) for different values of the battery capacity emax ∈ {1, 10} and for

different EH rates β ∈ {1/U, 0.1, 0.01}, as a function of the number of EHSs in the network U .
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in the latter case. This is due to the fact that, as proved in Theorem 3.9.2, under the optimal policy

η∗, P (η∗) ≤ min{β, 1/U} = 1/U , hence the performance bottleneck is due to the number of EHSs

in the network, rather than the energy availability. Clearly, in the case β = 0.1, a large amount of

energy cannot be employed to perform data transmission, and is lost via overflow. This amounts to

β − P (η∗) ≥ β − 1/U . In contrast, when β = 0.01, we have P (η∗) ≤ min{β, 1/U} = β for all

values of U considered, hence the performance bottleneck is energy availability.

A different trend is observed when emax = 1. In this case, for U > 10, the scenario β = 0.1

outperforms β = 1/U . This is a consequence of the fact that, when emax = 1, whenever an EHS

transmits, its battery is emptied, hence it enters a recharge phase, with expected duration 1/β = U ,

during which the EHS is inactive. In contrast, the recharge phase in the scenario β = 0.1 is much

faster, and the EHS becomes quickly available for data transmission.

In Fig. 3.14, we plot the optimal λ∗ = Λ(η∗) versus the number of EHSs U . We notice that,

the larger the number of EHSs, the larger λ∗. In fact, for a given policy η, the larger U , the more

frequent the collisions. A larger λ∗ thus balances this phenomenon by penalizing the average trans-

mission probability P (η)∗ in (3.62), and in turn forces each EHS to transmit more sparingly, so as

to accommodate the transmissions of more nodes in the network. Moreover, the larger the EH rate

β, the larger λ∗. In fact, the larger β, the larger the energy availability for each EHS, which could,

in principle, transmit more frequently and, at the same time, cause more collisions. The effect of a

larger β (having more transmissions, hence more collisions in the system) is thus balanced by a larger

λ∗, which penalizes high transmission probabilities.

In Fig. 3.15, we compare the network utility computed under the optimal policy (PIA), obtained

using Algorithm 2, and the following low-complexity policies:

• LCP1, obtained using Algorithm 2; however, the PIA in the main iteration stage of the algo-

rithm is replaced with policy (3.84), studied in Sec. 3.10.1;

• LCP2, given by (3.89) and studied in Sec. 3.10.2; LCP2 transmits with a fixed probability p∗

(see Lemma 3.10.2) whenever the battery is non-empty.

We notice that LCP1 closely approaches the performance of the optimal policy, for all values of emax

and U considered. On the other hand, LCP2 incurs a performance degradation for small number of

EHSs and small battery capacity. Nonetheless, the larger the battery capacity, the closer LCP2 to

PIA. This behavior is consistent with Lemma 3.10.3, since LCP2 is asymptotically optimal for large

battery capacity. Regarding the impact of the number of EHSs U on the performance, we observe



90 Chapter 3. Optimal Management Policies for Energy Harvesting Wireless Sensor Networks

5 10 15 20 25 30 35 40 45 50

0.29

0.3

0.31

0.32

0.33

 

 

PIA

LCP1

LCP2

5 10 15 20 25 30 35 40 45 50
1.315

1.32

1.325

1.33

1.335

1.34

N
et

w
o
rk

re
w

a
rd

,
R

η

 

 

PIA

LCP1

LCP2

5 10 15 20 25 30 35 40 45 50
2.1

2.105

2.11

2.115

2.12

Battery capacity, emax

 

 

PIA

LCP1

LCP2

Number of EHSs U = 1

Number of EHSs U = 10

Number of EHSs U = 100

Figure 3.15. Comparison of optimal policy, computed with the PIA, and the low complexity policies LCP1

and LCP2. β = 0.1

that, the larger U , the closer LCP2 to PIA, and the smaller the impact of the battery capacity on the

performance (of all policies). This can be explained by noticing that the transmission probability

of LCP2 satisfies p∗ < 1/U . Therefore, the larger U , the less frequent the transmissions, and the

more the energy availability. In particular, when 1/U ≤ β, i.e., U ≥ 10, then p∗ < β, hence the

energy recharge process is faster than the energy consumption process. It follows that the battery is

seldom discharged, and energy outage events seldom occur, so that the finite battery capacity has a

negligible impact on the performance. A similar behavior holds for the optimal policy, as discussed

in the comments to Fig. 3.13.
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3.12 Conclusions

In this chapter, we have considered the general problem of optimizing the data reporting per-

formance of an EH-WSN in the presence of a stochastic ambient energy source. The choice of

the performance metric was the aggregate average long-term importance of the reported data, which

reflects both the value of reporting high-importance data and the demand for perpetual operation, typ-

ically required in practice. For the single EHS scenario, due to the high implementation complexity

of the globally optimal policy, we considered low-complexity balanced policies that solely adapt to

the EH state, such that, on average, energy consumption and harvesting are balanced. For the broad

range of parameter values considered in this work, the optimal BP was shown to attain near-optimal

performance; the gap with respect to the globally optimal policy is narrowed even further, if a sim-

ple overflow avoidance scheme is employed. We have demonstrated that the salient parameter is the

power-to-depletion ρ, which essentially reflects the ability of the battery to filter out the fluctuations

in the harvested energy. Intuitively, as ρ decreases, the adaptation of the transmission probability to

the energy supply becomes more critical.

We have then studied the problem of multiaccess in a EH-WSN, where each EHS randomly

accesses the shared wireless channel to report data of varying importance to the common fusion

center. Simultaneous transmission by multiple EHSs incurs a collision and data loss. We have studied

the problem of designing random access policies so as to maximize the overall network utility, defined

as the average long-term aggregate network importance of the data packets successfully reported to

the fusion center. It is shown that the interaction among multiple EHSs in the network introduces

new dynamics in the system, which are not accounted for in the single EHS model. In particular, for

small number of EHSs, few collisions occur, hence the bottleneck of the system is energy availability,

due to the random and limited energy supply. On the other hand, for large number of EHSs, frequent

collisions occur, hence the bottleneck of the system is multiaccess rather than energy availability.

Overall, our results and analysis are encouraging for practical EHS design, as they indicate that

near-optimal data reporting performance can be achieved with low-complexity policies that simply

adapt to the state of the ambient energy source (single EHS scenario), or that only loosely depend on

the energy level in the battery (multiple EHSs scenario).
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Appendix 3.A: Proof of Lemma 3.3.1

Proof of Lemma 3.3.1. Let µ be a stationary randomized policy, and Rµ be the set of stationary ran-

domized policies which induce the same transmission probability as µ with respect to the data im-

portance random variable, i.e., EV [µ̃(1; e, a, V )] = EV [µ(1; e, a, V )], ∀(e, a) ∈ S , ∀µ̃ ∈ Rµ. Then,

since µ ∈ Rµ, from (3.7) we have

Gµ(S0) ≤ max
µ̃∈Rµ

Gµ̃(S0). (3.96)

We now show that the maximizer of the right hand side of (3.96) has a threshold structure with

respect to the data importance. From (3.7), for any µ̃ ∈ Rµ, we have

Gµ̃(S0) =
∑

(e,a)∈S
πµ̃(e, a;S0)EV [µ̃(1; e, a, V )V ], (3.97)

where, for each (e, a) ∈ S , we have defined the steady state distribution of {(Ek, Ak−1)}

πµ̃(e, a;S0) = lim
K→∞

inf
1

K

K−1
∑

k=0

Prµ̃(Ek = e,Ak−1 = a|S0),

and we have used the fact that Vk is independent of (Ek, Ak−1) and, given (Ek, Ak−1, Vk) = (e, a, v),

Qk = 1 with probability µ̃(1; e, a, v), independently of S0. From the independence between Vk and

{(Ei, Ai−1), i = 0, . . . , k}, ∀k, it can be proved by induction on k that the probability Prµ̃(Ek =

e,Ak−1 = a|S0) depends on µ̃ only through the expectation η(e, a) = EV [µ̃(1; e, a, V )], which is

common to all µ̃ ∈ Rµ. Then, since EV [µ̃(1; e, a, V )] = η(e, a), ∀µ̃ ∈ Rµ, it follows that the steady

state distribution of {(Ek, Ak−1)} is the same for all µ̃ ∈ Rµ, i.e., πµ̃(e, a;S0) = πµ(e, a;S0).

Therefore, from (3.96) and (3.97) we obtain

Gµ(S0) ≤ max
µ̃∈Rµ

G(µ̃,S0) =
∑

(e,a)∈S
πµ(e, a;S0)EV [µ

∗(1; e, a, V )V ], (3.98)

where, for each (e, a) ∈ S , µ∗(1; e, a, ·) is defined as

µ̃∗(1; e, a, ·) = argmax
µ̃(e,a,·):R+ 7→[0,1]

EV [µ̃(1; e, a, V )V ], s.t. EV [µ̃(1; e, a, V )] = η(e, a). (3.99)

Since (3.99) is a convex optimization problem, it can be solved using the Lagrangian method [65],
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which yields the threshold structure in (3.9).

Appendix 3.B: Proof of Theorem 3.4.1

Proof of Theorem 3.4.1. Let us consider a BP η with parameters (ηG, θ). With the help of Fig. 3.16.a),

we have the following steady-state equation in state (emax,B):

πη(emax,B) = πη(emax,B)pB(1− η(emax,B)) + πη(emax,G)p̄G(1− η(emax,G))

= πη(emax,B)pB θ̄η̄B + πη(emax,G)p̄Gθ̄η̄G, (3.100)

where the last expression follows from the definition of BP in (3.14). Then, substituting pB = 1−D−1
B

and pG = 1− γ−1D−1
B , and letting t(θ) as in (3.19), after algebraic manipulation we obtain





πη(emax,G)

πη(emax,B)



 = (θηG + θ̄)t(θ)πη(emax,G). (3.101)

In the long-term, the frequency of transitions from energy level e − 1 to e and from e to e − 1 must

be the same. Therefore, with the help of Fig. 3.17, for e ∈ {1, . . . , emax} we have

πη(e− 1,G)pGλGη̄(e− 1,G) + πη(e− 1,B)p̄BλGη̄(e− 1,B)

= πη(e,G)
(

pGλ̄G + p̄G
)

η(e,G) + πη(e,B)
(

p̄Bλ̄G + pB
)

η(e,B). (3.102)

Moreover, with the help of Fig. 3.16.b), we have the following steady-state equation in state

(e− 1,B), for e ∈ {1, . . . , emax}:

πη(e− 1,B) =πη(e− 1,B)pB η̄(e− 1,B) + πη(e− 1,G)p̄Gη̄(e− 1,G)

+ πη(e,B)pBη(e,B) + πη(e,G)p̄Gη(e,G). (3.103)

Solving the system of equations (3.102), (3.103) with respect to πη(e − 1,G), πη(e − 1,B), for
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e ∈ {1, . . . , emax} we obtain





πη(e− 1,G)

πη(e− 1,B)



 = K(e− 1)





πη(e,G)

πη(e,B)



 , (3.104)

where we have defined the 2× 2 matrix

K(e− 1) =





KGG(e− 1) KGB(e− 1)

KBG(e− 1) KBB(e− 1)



 , (3.105)
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with components

KGG(e− 1) = η(e,G)
(DBλ̄G + γ−1λG)η(e− 1,B) + λ̄Gη̄(e− 1,B)

η̄(e− 1,G)λG[DBη(e− 1,B) + η̄(e− 1,B)− η(e− 1,B)γ−1]
,

KGB(e− 1) = η(e,B)
η̄(e− 1,B)λ̄G + η(e− 1,B)[DB − λG]

η̄(e− 1,G)λG[DBη(e− 1,B) + η̄(e− 1,B)− η(e− 1,B)γ−1]
,

KBG(e− 1) =
γ−1η(e,G)

λG[DBη(e− 1,B) + η̄(e− 1,B)− η(e− 1,B)γ−1]
,

KBB(e− 1) =
η(e,B)[γ−1λ̄G + (DB − 1)λG]

λG[DBη(e− 1,B) + η̄(e− 1,B)− η(e− 1,B)γ−1]
. (3.106)

In particular, substituting the expression of the BP in Def. 3.3.2, we have K(0) = Z, where Z

is defined in (3.20), K(e) = J, ∀e ∈ {1, 2, . . . , emax − 2}, where J is defined in (3.21), and

K(emax − 1) = θJ





1
ηG

0

0 1
ηB



+ θ̄J. Using (3.104), (3.101), and the fact that

K(emax − 1)t(θ) = Jt(θ)(θ̄ + θ/ηG), we then obtain





πη(e,G)

πη(e,B)



 = Jemax−et(θ)πη(emax,G), for e ∈ {1, . . . , emax − 1}, (3.107)

and [πη(0,G);πη(0,B)]
T = Z [πη(1,G);πη(1,B)]

T , yielding (3.17). πη(emax,G) is finally obtained

by the law of total probability
∑emax

e=0 [πη(e,G) + πη(e,B)] = 1, yielding (3.18).

The average reward under the BP directly follows by substituting the expressions of the BP and

of the steady state distribution in (3.12), and using the fact that, by marginalization over the battery

state,
∑emax

e=0 πη(e, a) = πA(a), ∀a ∈ {G,B}, and, when overflow avoidance is employed (θ = 1),

πη(emax,B) = 0 from (3.101).

Appendix 3.C: Proof of Theorem 3.4.3

Proof of Theorem 3.4.3. Proof of (3.25): In this proof, the notation f(DB) = h(DB) + O(Dn
B) is

equivalent to lim sup
DB→∞

∣

∣

∣

f(DB)−h(DB)
Dn

B

∣

∣

∣
< ∞. If f(DB) is a matrix, this definition applies to each

component.

It can be shown that the eigenvalue decomposition of matrix J in (3.21) is given by J = VDV−1,
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where, letting ν = ηGλ̄G

η̄GλG

(

1− 1
1+ηB(DB−1−γ−1)

)

,

V =





γ 1

1 0



+D−1
B





0 λ̄G−ηB
ηB

0 − η̄GηG
η2
B



 , D =





1 0

0 ν



 . (3.108)

SinceVV−1 = I2, where I2 is the 2× 2 identity matrix, it can be shown that

V−1 =





0 1

1 −γ



+D−1
B

1

η2B





η̄GηG

−λ̄GηB + η2B − γη̄GηG





[

1 −γ
]

+O(D−2
B ). (3.109)

Moreover, from (3.19) and (3.20) we have

t(θ) =

(

θ
1

ηG
+ θ̄

)





1

0



+D−1
B θ̄

γ−1η̄G
ηB





0

1



+O(D−2
B ), (3.110)

Z = DBηB





0

1





[

0 1
]

+O(1). (3.111)

Now, letting emax = ρDB , where ρ is fixed, we have

ZJemax−1t(θ)
(a)
= ZV





1 0

0 νemax−1



V−1t(θ)
(b)
= ZV





1

0





[

1 0
]

V−1t(θ) +O(D−1
B ),

(3.112)

where (a) follows from the eigenvalue decomposition of J, (b) follows from the fact that limDB→∞ ν ∈
(0, 1), hence νemax−1 = O(D−2

B ). From (3.109) and (3.110), we have that

[

1 0
]

V−1t(θ) = D−1
B

η̄G
η2B

(θ + θ̄λG) +O(D−2
B ). (3.113)

Moreover, from (3.108) and (3.111) we obtain

ZV





1

0



 = DBηB





0

1



+O(1). (3.114)
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Then, substituting (3.113) and (3.114) in (3.112), we obtain

ZJemax−1t(θ) =
η̄G
ηB

(θ + θ̄λG)





0

1



+O(D−1
B ). (3.115)

Using a similar approach, it can be proved that

emax−1
∑

e=0

[

1 1
]

Jet(θ) =
[

1 1
]

V





emax 0

0 1−νemax

1−ν



V−1t(θ)

= ρ(γ + 1)
η̄G
η2B

(θ + θ̄λG) +
γη̄GλG

ηB

(

θ
1

ηG
+ θ̄

)

+O(D−1
B ). (3.116)

Then, substituting (3.115) and (3.116) in (3.18), we obtain

πη(emax,G) = πA(G)
λG − ηG
1− ηG

ηB
ρ+ ηB

(

θ + θ̄
1

λG

)

+O(D−1
B ), (3.117)

where we have used the fact that
(

1 +O(D−1
B )
)−1

= 1 + O(D−1
B ). Then, from (3.17) and (3.115),

we obtain

πη(0,G) = O(D−1
B ), (3.118)

πη(0,B) =
η̄G
ηB

(θ + θ̄λG)πη(emax,G) +O(D−1
B ) = πA(B)

ηB
ρ+ ηB

+O(D−1
B ). (3.119)

The asymptotic expression (3.25) is finally obtained by substituting (3.117), (3.118) and (3.119)

in (3.16), and letting DB → ∞, where the terms O(D−1
B ) → 0 for DB → ∞.

Proof of property 1): The inequality G(∞) (ηG, 1; ρ) > G(∞) (ηG, 0; ρ) is proved by direct in-

spection of (3.25), since g(1) > g(ηG) and λG > ηG.

Proof of property 2): We want to prove thatG(∞) (ηG, θ; ρ) is an increasing function of ρ. Equiv-

alently, dG(∞)(ηG,θ;ρ)
dρ > 0. The derivative of (3.25) with respect to ρ is given by

dG(∞) (ηG, θ; ρ)

dρ
= πA(B)

ηB
(ρ+ ηB)2

[g(ηB)− ηBg(1)] + θ̄πA(B)
η2B

(ρ+ ηB)2
g(1)

+ θπA(G)ηB
λG − ηG
1− ηG

1

(ρ+ ηB)2
[g(ηG)− ηGg(1)] > 0,

where we have used the fact that, since g(x) is a concave function of x and g(0) = 0 (Lemma 3.3.2),

g(x) > xg(1). The limits for ρ → ∞ and ρ → 0 are finally obtained by computing the corresponding
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limit in (3.25).

Appendix 3.D: Proof of Lemma 3.4.4

Proof of Lemma 3.4.4. Proof of (3.28) and property 1)We first prove that the optimal BP (η∗G(θ; ρ), θ)

uniquely solves (3.28). After algebraic manipulation, we find that the derivative of G(∞) (ηG, θ; ρ)

in (3.25) with respect to ηG is positive if and only if L(ηG, θ; ρ) > 0, where L(ηG, θ; ρ) is given

in (3.29). Moreover,

dL(ηG, θ; ρ)

dηG
∝ρg′′(ηG) + g′′(ηG)

ηB
η̄G

(θλ̄G + θ̄η̄G) + γρg′′(ηB)

− 2θ
λ̄2
Gγ

η̄3G
(g(ηG) + η̄Gg

′(ηG)− g(1))− θ̄γ2g′(ηG) < 0, (3.120)

where ∝ denotes proportionality up to a positive multiplicative factor, and the inequality holds since

g(ηG) + η̄Gg
′(ηG) − g(1) > 0 and g′′ < 0, from the concavity of g(x). Therefore, L(ηG, θ; ρ) is a

decreasing function of ηG. Moreover,

L(λG, θ; ρ) =g′(λG)− g′(0) < 0, for ηG = λG, ηB = 0,

L(β, θ; ρ) =θ̄
g(β)

ρ
+ θ̄

β

ρ

(

1 +
β

ρ

)

g′(β) + θ
β

ρβ̄2

(

β̄ + λ̄G +
β

ρ
λ̄G

)

(g(β) + β̄g′(β)− g(1))

+ θ
1

ρ
(g(β)− βg′(β)) > 0, for ηG = ηB = β.

We conclude that there exists a unique ηG ∈ (β, λG) which maximizes G(∞) (ηG, θ; ρ), obtained as

the unique solution of L(ηG, θ; ρ) = 0.

Proof of property 2) Since L(ηG, 1; ρ) < L(ηG, 0; ρ), it follows that, under the optimal BP,

L(η∗G(0; ρ), 0; ρ) = 0 = L(η∗G(1; ρ), 1; ρ) < L(η∗G(1; ρ), 0; ρ).

Since L(ηG, 0; ρ) is a decreasing function of ηG, it follows that η∗G(1; ρ) < η∗G(0; ρ).

Proof of property 3): We now prove that η∗G(θ; ρ) is a decreasing function of ρ, for ρ ≥ β, i.e.,
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dη∗G(θ;ρ)
dρ < 0. For the optimal BP η∗G(θ; ρ), we have L(η

∗
G(θ; ρ), θ; ρ) = 0, hence

dL(η∗G(θ; ρ), θ; ρ)

dρ
=

[

dL(ηG, θ; ρ)

dρ
+

dL(ηG, θ; ρ)

dηG

dη∗G(θ; ρ)

dρ

]

ηG=η∗G(θ;ρ)

= 0.

Then, since dL(ηG,θ;ρ)
dηG

< 0 from (3.120),
dη∗G(θ;ρ)

dρ < 0 is equivalent to dL(ηG,θ;ρ)
dρ

∣

∣

∣

ηG=η∗G(θ;ρ)
< 0.

Moreover, since L(η∗G(θ; ρ), θ; ρ) = 0, we have

dL(ηG, θ; ρ)

dρ

∣

∣

∣

∣

ηG=η∗
G
(θ;ρ)

=

(

1 +
ηB
ρ

)2 d
[

L(ηG, θ; ρ) · ρ2

(ρ+ηB)2

]

dρ

∣

∣

∣

∣

∣

∣

ηG=η∗G(θ;ρ)

.

Finally, from (3.29) and since ηG = η∗G(θ; ρ) ∈ (β, λG) and ηB = γ(λG − ηG) ∈ (0, β), we have

(ρ+ ηB)
3
d
[

L(ηG, θ; ρ) · ρ2

(ρ+ηB)2

]

dρ
= −θ̄ (ρ− ηB) g(ηB)− θ̄ (ρ+ ηB) ηBg

′(ηB)

− θ[g(ηB)− ηBg
′(ηB)] (ρ− ηB)− 2θ[g′(ηB)− g′(ηG)]ρηB

− θ
ηB
η̄2G

(g(ηG) + η̄Gg
′(ηG)− g(1))

[

η̄G(ρ− ηB) + λ̄G(ρ+ ηB)
]

< 0,

where the inequality holds for ρ ≥ β (which implies ρ ≥ ηB , since ηB ≤ β), and we have used the

fact that g(x) is a concave increasing function of x with g(0) = 0 (Lemma 3.3.2), hence g(ηB) −
ηBg

′(ηB) > 0, g′(ηB) > g′(ηG) (since ηB < ηG) and g(ηG) + η̄Gg
′(ηG) − g(1) > 0. Equivalently,

dL(ηG,θ;ρ)
dρ

∣

∣

∣

ηG=η∗G(θ;ρ)
< 0 and

dη∗G(θ;ρ)
dρ < 0.

In the limit ρ → ∞, we have limρ→∞ L(ηG, θ; ρ) = g′(ηG) − g′(ηB), which is equal to zero if

and only if η∗G(θ;∞) = β, proving (3.30). For ρ → 0, we have

lim
ρ→0

ρ2L(ηG, θ; ρ) = θ̄η2Bg
′(ηG) + θ

η2B
η̄2G

λ̄G(g(ηG) + η̄Gg
′(ηG)− g(1)) > 0. (3.121)

Hence, for ρ → 0, the asymptotic reward is a strictly increasing function of ηG, for ηG ∈ (β, λG),

and is maximized by ηG = λG, proving (3.31).
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Appendix 3.E: Proof of Lemma 3.5.1

Proof of Lemma 3.5.1. From the concavity of g(x) and Jensen’s inequality [65], (3.34) implies that

GCDM(η(CDM)) ≤
DGg

(

1
DG

∫ DG

0 η(CDM)(τ)dτ
)

+DBg
(

1
DB

∫ DB

0 η(CDM)(τ)dτ
)

DG +DB
,

which is attained with equality if and only if the energy drawing rates are constant over the GOOD

and BAD periods, i.e., η(CDM)(t) = ηG, ∀t ∈ TG and η(CDM)(t) = ηB, ∀t ∈ TB , where ηG and ηB

are constants in (0, 1). Substituting in (3.34), we obtain

GCDM(η(CDM)) = πA(G)g(ηG) + πA(B)g(ηB). (3.122)

Moreover, from (3.32) and (3.33), ηB and ηG are related to eL and eH by

eH = min {eL +DG(λG − ηG), emax} , eL = eH −DBηB. (3.123)

Note that a policy such that eL + DG(λG − ηG) > emax incurs energy overflow, hence it is strictly

sub-optimal. This can be shown by defining an improved policy η̂(CDM), with η̂(CDM)(t) = η̂G >

ηG, ∀t ∈ TG, where η̂G is the unique solution of eL +DG(λG − η̂G) = emax. Under the new policy,

we have

GCDM(η̂(CDM)) = πA(G)g(η̂G) + πA(B)g(ηB) > πA(G)g(ηG) + πA(B)g(ηB) = GCDM(η(CDM)).

We thus only consider ηG such that eL+DG(λG− ηG) ≤ emax. From (3.123), letting∆ = eH − eL,

ηG and ηB are then given by

ηG = λG − ∆

DG
, ηB =

∆

DB
. (3.124)

Note that ∆ ∈ [0,min{λGDG, DB, emax}] since, during the GOOD EH period, the battery cannot

be recharged by more than λGDG and, during the BAD EH period, it cannot be discharged by more

than DB . Substituting (3.124) in (3.122), we obtain

GCDM(η(CDM)) = πA(G)g

(

λG − γ−1 ∆

DB

)

+ πA(B)g

(

∆

DB

)

. (3.125)
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We now maximize the right hand side with respect to ∆ ∈ [0,min{DG, DB, emax}]. We have that

d
d∆GCDM(η(CDM)) > 0 if and only if∆ < βDB . Therefore, GCDM(η(CDM)) is maximized by

∆∗ = min{βDB, λGDG, DB, emax} = DB min{β, λGγ, 1, ρ} = DB min{β, ρ}, (3.126)

where the last equality follows from the fact that β < min{λGγ, 1}. The optimal energy drawing

rates ηG and ηB are obtained by substituting (3.126) in (3.124) and (3.125), thus proving (3.36)

and (3.37).

Appendix 3.F: Proof of Lemma 3.5.2

Proof of Lemma 3.5.2. We consider a BP for DSM with parameters (ηG, θ). Without loss of gener-

ality, we assume that ηG ∈ (β, λG), i.e., ηB ∈ (0, β), since the optimal BP, which maximizes the

asymptotic average reward (3.25), satisfies this condition (Property 1) of Lemma 3.4.4). If ρ ≥ β,

then GCDM(η(CDM)∗) = g(β) and (3.38) holds from Jensen’s inequality and Lemma 3.3.2. If ρ < β,

let

Z(ηG)=











πA(G) ρ
ηB

g(ηG) + πA(G)ηB−ρ
ηB

g(λG) + πA(B)
ρ
ηB

g(ηB) if ηG<λG − ρ
γ (ηB>ρ),

πA(G)g(ηG) + πA(B)g(ηB) if ηG≥λG − ρ
γ (ηB≤ρ).

(3.127)

We have that Z(ηG) ≤ GCDM(η(CDM)∗). This can be proved by applying Jensen’s inequality to

Z(ηG) when ηG < λG − ρ
γ , and by using the fact that Z(ηG) is a decreasing function of ηG, for

ηG ≥ λG − ρ
γ . From this and property 1) of Theorem 3.4.3, it follows that

G(∞) (ηG, θ; ρ)−GCDM(η(CDM)∗) ≤ G(∞) (ηG, 1; ρ)− Z(ηG). (3.128)

We finally prove that the right hand side above is negative. In fact, if ηG ≥ λG − ρ
γ , from (3.127) and

Lemma 3.3.2 we obtain

G(∞) (ηG, 1; ρ)− Z(ηG) = −πA(B)
ηB

ρ+ ηB

[

(g(ηB)− ηBg(1)) +
ηB
η̄G

(g(ηG)− ηGg(1))

]

< 0.
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On the other hand, if ηG < λG − ρ
γ , we obtain

G(∞) (ηG, 1; ρ)− Z(ηG) = − ρ2

ρ+ ηB
πA(B)

[

g(ηB)

ηB
− g(ηG)

ηG

]

(3.129)

− ρ2

ρ+ ηB
πA(B)

γλG

ηB

[

g(ηG)

ηG
− g(λG)

λG

]

− η2B
ρ+ ηB

πA(B)

[

g(λG)− g(ηG)

λG − ηG
− g(1)− g(ηG)

1− ηG

]

< 0.

where the inequality holds from the concavity of g(x) (Lemma 3.3.2), which implies

(g(y) − g(x))/(y − x) > (g(z) − g(x))/(z − x), for any x < y < z, and from the fact that

0 < ηB < ηG < λG ≤ 1. The lemma is thus proved.

Appendix 3.G: Useful lemmas for the multiaccess model

Lemma 3.12.1. P (η(λ)) is a non-increasing function of λ, for λ ≥ 0, with limits P (η(0)) > 0 and

limλ→∞ P (η(λ)) = 0.

Proof. Assume by contradiction that λ1 > λ2 and P (η(λ2)) < P (η(λ1)). Then we have

G(η(λ2))− λ2P (η(λ2)) ≥ G(η(λ1))− λ1P (η(λ1)) + (λ1 − λ2)P (η(λ1))

>G(η(λ1))− λ1P (η(λ1)) + (λ1 − λ2)P (η(λ2)) ≥ G(η(λ2))− λ1P (η(λ2)) + (λ1 − λ2)P (η(λ2))

=G(η(λ2))− λ2P (η(λ2)), (3.130)

where the first inequality follows fromG(η(λ2))−λ2P (η(λ2)) ≥ G(η(λ1))−λ2P (η(λ1)) (since η(λ2)

maximizes G(η) − λ2P (η)), the second inequality follows from the hypothesis, the last inequality

from the fact that G(η(λ1))− λ1P (η(λ1)) ≥ G(η(λ2))− λ1P (η(λ2)) (since η(λ1) maximizes G(η)−
λ1P (η)). It follows that G(η(λ2))− λ2P (η(λ2)) > G(η(λ2))− λ2P (η(λ2)), yielding a contradiction.

The lemma is thus proved.

Lemma 3.12.2. Λ(η(λ)) is a continuous, non-increasing function of λ, for λ ≥ 0, with limits

Λ(η(0)) ∈ (0,∞) and limλ→∞ Λ(η(λ)) = 0.

Proof. For λ = 0 we have η(0) = argmaxη∈U G(η). Then, we obtain

Λ(η(0)) = (U − 1)
G(η(0))

1− P (η(0))
∈ (0,∞). (3.131)
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Λ(η(0)) is positive and bounded since 0 < G(η(0)) ≤ g(1) < ∞ and P (η(0)) ≤ b̄ < 1. On the other

hand, for λ → ∞, we have η(λ) → 0, hence G(η(λ)) → 0, P (η(λ)) → 0 and limλ→∞ Λ(η(λ)) = 0.

To conclude, we prove that Λ(η(λ)) is a non-increasing function of λ, i.e., Λ(η(λ1)) ≤ Λ(η(λ2))

for λ1 > λ2 ≥ 0. Using (3.63), this is true if and only if

G(η(λ2))(1− P (η(λ1)))−G(η(λ1))(1− P (η(λ2))) ≥ 0.

Equivalently, by rearranging the terms,

A(λ1, λ2) ,(G(η(λ2))− λ2P (η(λ2)))(1− P (η(λ1)))− (G(η(λ1))− λ1P (η(λ1)))(1− P (η(λ2)))

+ λ2P (η(λ2))(1− P (η(λ1)))− λ1P (η(λ1))(1− P (η(λ2))) ≥ 0.

Using the fact that η(λ2) is optimal for (3.64) when λ = λ2, hence G(η(λ2)) − λ2P (η(λ2)) ≥
G(η(λ1))− λ2P (η(λ1)) a sufficient condition which guarantees that A(λ1, λ2) ≥ 0 is that

(G(η(λ1))− λ2P (η(λ1)))(1− P (η(λ1)))− (G(η(λ1))− λ1P (η(λ1)))(1− P (η(λ2)))

+λ2P (η(λ2))(1− P (η(λ1)))− λ1P (η(λ1))(1− P (η(λ2))) ≥ 0.

After rearranging the terms, it can be readily verified that this is equivalent to

(P (η(λ2))− P (η(λ1)))[G(η(λ1)) + λ2(1− P (η(λ1)))] ≥ 0,

which clearly holds from G(η(λ1)) + λ2(1 − P (η(λ1))) > 0 and Lemma 3.12.1. The lemma is thus

proved.

Appendix 3.H: Proof of Theorem 3.10.1

Proof of Theorem 3.10.1. For notational conciseness, we let Zλ(η) = G(η) − λP (η) and zλ(x) =

g(x)− λx. From Lemma 3.3.2, zλ(x) is a strictly concave function of x (but not necessarily increas-

ing).
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After algebraic manipulation, the derivative of Zλ(η) with respect to η(1) is given by

dZλ(η)

dη(1)
∝ zλ(η(1)) + (1− η(1))z′λ(η(1))−

Zλ(η)

β

> zλ(η(1)) + (1− η(1))z′λ(η(1))−
zλ(min{β, x∗})

β
, L(η(1)),

where the second step follows from the fact that Zλ(η) < zλ(min{β, x∗}) and x∗ = argmaxx zλ(x).

From the concavity of zλ(x) it can be shown that L(x) is a decreasing function of x, with

limx→0+ L(x) > 0 ( since zλ(x) = g′(x)− λ → ∞ for x → 0 ) and L(min{β, x∗}) < 0. In fact, if

β < x∗ we have

L(min{β, x∗}) = zλ(β) + (1− β)z′λ(η(1))−
zλ(β)

β
= − β̄

β

(

g(β)− βg′(β)
)

< 0, (3.132)

where in the second step we have used the fact that zλ(x) = g(x)− λx and g(x)− xg′(x) > 0, from

the concavity of g(x). On the other hand, if β ≥ x∗, we have

L(x∗) = (1− x∗)z′λ(x
∗)− zλ(x

∗)
β̄

β
= −zλ(x

∗)
β̄

β
< 0, (3.133)

where we have used the fact that x∗ maximizes zλ(x), hence z′λ(x
∗) = 0 and zλ(x∗) > 0. Therefore,

there exists a unique ηlow ∈ (0,min{β, x∗}) that solves L(ηlow) = 0 (equivalent to (3.82)). Then, for

all η(1) ≤ ηlow we have L(η(1)) ≥ 0, hence dZλ(η)
dη(1) > 0, which proves that η(1) ≤ ηlow is strictly

suboptimal.

Similarly, after algebraic manipulation, the derivative of Zλ(η) with respect to η(emax) is given

by

dZλ(η)

dη(emax)
∝ −zλ(η(emax)) + η(emax)z

′
λ(η(emax)) + Zλ(η)

< −zλ(η(emax)) + η(emax)z
′
λ(η(emax)) + zλ(min{β, x∗}) , U(η(emax)).

Since zλ(x) is concave, it can be proved that U(x) is a decreasing function of x. Moreover, if β < x∗,

U(min{β, x∗}) = βz′λ(β) > 0, U(x∗) = −zλ(x
∗) + zλ(β) < 0.

On the other hand, if β ≥ x∗, thenU(x∗, β) = 0. Therefore, there exists a unique ηup ∈ (min{β, x∗}, x∗)
(in particular, ηup = x∗ if β ≥ x∗) that solves U(ηup) = 0 (equivalent to (3.83)). Then, for all
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Figure 3.18. Transmission transfer technique

η(emax) ≥ ηup we have U(η(emax)) ≤ 0, hence dZλ(η)
dη(emax)

< 0. It follows that η(emax) ≥ ηup is

strictly suboptimal.

We now prove P1) by contradiction, by using a similar technique employed in [19]. In particular,

since we have proved that η(emax) ≥ ηup (and, in particular, η(emax) ≥ x∗) is strictly suboptimal,

we assume that η(emax) < x∗. It follows that z′λ(η(emax)) > 0. Let η ∈ U be a generic transmission

policy such that η(emax) < x∗, which violates P1). Then, there exists ǫ ∈ {1, . . . , emax − 1} such

that

η0(ǫ− 1) < η0(ǫ) ≥ η0(ǫ+ 1). (3.134)

Note that P1) is violated since η0(ǫ) ≥ η0(ǫ + 1), i.e., η0 is not strictly increasing from ǫ to ǫ + 1.

With the help of Fig. 3.18, we now define a new transmission policy, ηδ,6 parameterized by δ > 0, as:

ηδ(e) =































η0(e), e ∈ E \ {ǫ− 1, ǫ, ǫ+ 1},
η0(ǫ− 1) + h(δ), e = ǫ− 1,

η0(ǫ)− δ, e = ǫ

η0(ǫ+ 1) + r(δ), e = ǫ+ 1.

Intuitively, policy ηδ is constructed from the original policy η0 by transferring some transmissions

from energy state ǫ to states (ǫ+1) and (ǫ−1), whereas transmissions in all other states are unaffected.

The functions r(δ) > 0 and h(δ) ≥ 0 are uniquely defined as follows. If ǫ > 1, the transfer of

transmissions is done so as to preserve the steady state distribution of visiting the lower energy states

{0, . . . , ǫ − 2} and the higher energy states {ǫ + 2, ǫ + 3, . . . , emax}. On the other hand, if ǫ = 1,

h(δ) = 0 and r(δ) is chosen so as to preserve the steady state distribution of visiting the higher energy

states {3, . . . , emax}. By using this technique, on the one hand, the new policy ηδ partially corrects

6With a slight abuse of notation, in this proof we use the subscript δ as a parameter of the policy ηδ , whereas the
subscript i in ηi is used in Sec. 3.7 and in the following sections to indicate EHS i.
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the violation of P1), by diminishing the gap η(ǫ)− η(ǫ+ 1) by a quantity δ + r(δ) > 0; on the other

hand, the perturbation on the steady state distribution is confined only to the states {ǫ − 1, ǫ, ǫ + 1},
thus simplifying the analysis. Formally,

1. if ǫ = 1, let h(δ) = 0 and r(δ) such that πηδ(emax) = πη0(emax), ∀δ < κ;

2. if ǫ > 1, let h(δ) and r(δ) be such that







πηδ(emax) = πη0(emax)

πηδ(0) = πη0(0)
, ∀δ < κ, (3.135)

where 0 < κ ≪ 1 is an arbitrarily small constant, which guarantees an admissible policy ηδ ∈ U .

Then, we prove that dZλ(ηδ)
dδ

∣

∣

∣

δ=0
> 0. It follows that there exists κ > 0 such that

Zλ(ηδ) > Zλ(η0), ∀δ ∈ (0, κ), hence η0 is strictly sub-optimal. By contradiction, any policy

violating P1) is strictly suboptimal, hence the property is proved.

Note that the policy ηδ is unaffected in states e ∈ {0, 1, . . . , ǫ − 2} ∪ {ǫ + 2, ǫ + 3, . . . , emax},
i.e., ηδ(e) = η0(e). Therefore, using (3.52), for e ≥ ǫ+ 2 it can be shown that

πηδ(e) =
1

∏emax−1
i=e Wηδ(i)

πηδ(emax) =
1

∏emax−1
i=e Wη0(i)

πη0(emax) = πη0(e), (3.136)

hence the steady-state distribution of visiting states e ≥ ǫ + 2 is unaffected by policy ηδ (not only

state e = emax). Similarly, for ǫ > 1 and e ≤ ǫ− 2, we have

πηδ(e) =

e−1
∏

i=0

Wηδ(i)πηδ(0) =

e−1
∏

i=0

Wη0(i)πη0(0) = πη0(e), (3.137)

so that the steady-state distribution of visiting states e ≤ ǫ − 2 is unaffected by policy ηδ (not only

state e = 0). Therefore, the perturbation in the steady-state distribution, induced by policy ηδ, is

confined to states {ǫ− 1, ǫ.ǫ+ 1} only, hence the average reward under policy ηδ is given by

Zλ(ηδ) = Zλ(η0)− πη0(ǫ− 1)zλ(η0(ǫ− 1))− πη0(ǫ)zλ(η0(ǫ))− πη0(ǫ+ 1)zλ(η0(ǫ+ 1)).

+ πηδ(ǫ− 1)zλ(η0(ǫ− 1) + h(δ)) + πηδ(ǫ)zλ(η0(ǫ)− δ) + πηδ(ǫ+ 1)zλ(η0(ǫ+ 1) + r(δ)).
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By computing the derivative in zero of Zλ(ηδ) with respect to δ, we obtain

dZλ(ηδ)

dδ

∣

∣

∣

∣

δ=0

= πη0(ǫ− 1)z′λ(η0(ǫ− 1))h′(0)− πη0(ǫ)z
′
λ(η0(ǫ)) + πη0(ǫ+ 1)z′λ(η0(ǫ+ 1))r′(0)

+
dπηδ(ǫ− 1)

dδ

∣

∣

∣

∣

δ=0

zλ(η0(ǫ− 1)) +
dπηδ(ǫ)

dδ

∣

∣

∣

∣

δ=0

zλ(η0(ǫ)) +
dπηδ(ǫ+ 1)

dδ

∣

∣

∣

∣

δ=0

zλ(η0(ǫ+ 1)). (3.138)

The derivative of the steady state distribution is computed as follows. Using (3.52) and the fact that

πηδ(emax) = πη0(emax) and Wηδ(i) = Wη0(i) for i < ǫ− 2 and i > ǫ+ 1, we obtain

πηδ(ǫ+ 1) =

(

χ(ǫ = emax − 1) + χ(ǫ < emax − 1)
Wη0(ǫ+ 1)

Wηδ(ǫ+ 1)

)

πη0(ǫ+ 1) (3.139)

πηδ(ǫ) =
Wη0(ǫ)

Wηδ(ǫ)

(

χ(ǫ = emax − 1) + χ(ǫ < emax − 1)
Wη0(ǫ+ 1)

Wηδ(ǫ+ 1)

)

πη0(ǫ) (3.140)

πηδ(ǫ− 1) =
Wη0(ǫ− 1)

Wηδ(ǫ− 1)

Wη0(ǫ)

Wηδ(ǫ)

[

1− χ(ǫ < emax − 1)

(

1− Wη0(ǫ+ 1)

Wηδ(ǫ+ 1)

)]

πη0(ǫ− 1). (3.141)

Then, using (3.53) and the structure of the perturbed policy ηδ in (3.135), the derivative of (3.139), (3.140)

and (3.141) with respect to δ is given by

dπηδ(ǫ+ 1)

dδ

∣

∣

∣

∣

δ=0

= χ(ǫ < emax − 1)
1

η̄0(ǫ+ 1)
r′(0)πη0(ǫ+ 1), (3.142)

dπηδ(ǫ)

dδ

∣

∣

∣

∣

δ=0

=

(

r′(0)
η0(ǫ+ 1) (1− χ(ǫ < emax − 1)η0(ǫ+ 1))

− 1

η̄0(ǫ)

)

πη0(ǫ), (3.143)

dπηδ(ǫ− 1)

dδ

∣

∣

∣

∣

δ=0

=

(

r′(0)
η0(ǫ+ 1) (1− χ(ǫ < emax − 1)η0(ǫ+ 1))

− 1

η0(ǫ)η̄0(ǫ)
+

1

η̄0(ǫ− 1)
h′(0)

)

× πη0(ǫ− 1). (3.144)

The terms h′(0) and r′(0) in (3.138), (3.142), (3.143) and (3.144) are computed as follows. If ǫ > 1,

ηδ is such that πηδ(emax) = πη0(emax) and πηδ(0) = πη0(0). Therefore, from (3.52) with e =

emax − 1 we obtain

emax−1
∏

i=0

Wηδ(i) =

emax−1
∏

i=0

Wη0(i). (3.145)

By computing the derivative of each side of the above expression with respect to δ, we obtain

emax−1
∑

k=0

dWηδ
(k)

dδ

∣

∣

∣

δ=0

Wη0(k)
= 0, (3.146)
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and using the structure of the policy ηδ in (3.135), we obtain, after algebraic manipulation,

h′(0) =
η̄0(ǫ− 1)η0(ǫ− 1)

η̄0(ǫ)η0(ǫ)
− r′(0)

η̄0(ǫ− 1)η0(ǫ− 1)

η0(ǫ+ 1) (1− χ(ǫ < emax − 1)η0(ǫ+ 1))
. (3.147)

Note that the above expression holds also for ǫ = 1. In fact, in this case we have η0(ǫ − 1) = 0,

hence we obtain h′(0) = 0, which is consistent with the fact that h(δ) = 0 for δ > 0. Moreover,

by normalization we have
∑

e πηδ(e) =
∑

e πη0(e) = 1. Using the fact that πηδ(e) = πη0(e) for

e < ǫ− 1 and eǫ + 1, we then obtain

πηδ(ǫ− 1) + πηδ(ǫ) + πηδ(ǫ+ 1) = πη0(ǫ− 1) + πη0(ǫ) + πη0(ǫ+ 1). (3.148)

From (3.52), using the fact that πηδ(emax) = πη0(emax), (3.148) yields

1
∏emax−1

i=ǫ−1 Wηδ(i)
+

1
∏emax−1

i=ǫ Wηδ(i)
+

1
∏emax−1

i=ǫ+1 Wηδ(i)

=
1

∏emax−1
i=ǫ−1 Wη0(i)

+
1

∏emax−1
i=ǫ Wη0(i)

+
1

∏emax−1
i=ǫ+1 Wη0(i)

. (3.149)

By computing the derivative of each side above, using (3.53) and the structure of policy ηδ in (3.135),

we obtain, after algebraic manipulation,

r′(0)
1− χ(ǫ = emax − 1)η0(ǫ+ 1)

η0(ǫ+ 1)η̄0(ǫ+ 1)Wη0(ǫ)

(

1 +
1

Wη0(ǫ− 1)
+ χ(ǫ < emax − 1)η0(ǫ+ 1)Wη0(ǫ)

)

− 1

Wη0(ǫ)

1

η0(ǫ)η̄0(ǫ)

(

η0(ǫ) +
1

Wη0(ǫ− 1)

)

+ h′(0)
1

Wη0(ǫ− 1)

1

Wη0(ǫ)

1

η̄0(ǫ− 1)
= 0. (3.150)

Finally, by replacing (3.147) into (3.150), solving for r′(0), and then substituting r′(0) into (3.147)

to obtain h′(0), we obtain

r′(0) =
1− χ(ǫ < emax − 1)

(

β + β̄η0(ǫ+ 1)
)

β + (β̄ − βχ(ǫ < emax − 1))η0(ǫ)

η0(ǫ+ 1)

η̄0(ǫ)
, (3.151)

h′(0) =
β

η0(ǫ)

η̄0(ǫ− 1)η0(ǫ− 1)

β + (β̄ − βχ(ǫ < emax − 1))η0(ǫ)
. (3.152)

Note that both h′(0) ≥ 0 and r′(0) > 0, which is consistent with the fact that h(δ) ≥ 0 and r(δ) > 0.
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Substituting these expressions into (3.142)-(3.144), we obtain

dπηδ(ǫ+ 1)

dδ

∣

∣

∣

∣

δ=0

= χ(ǫ < emax − 1)
β

β + (1− 2β)η0(ǫ)
πη0(ǫ), (3.153)

dπηδ(ǫ)

dδ

∣

∣

∣

∣

δ=0

=
β̄ − χ(ǫ < emax − 1)β

β + (β̄ − χ(ǫ < emax − 1)β)η0(ǫ)
πη0(ǫ), (3.154)

dπηδ(ǫ− 1)

dδ

∣

∣

∣

∣

δ=0

= − β̄

β + (β̄ − χ(ǫ < emax − 1)β)η0(ǫ)
πη0(ǫ). (3.155)

Finally, by substituting the above expressions in (3.138), we obtain

dZλ(ηδ)

dδ

∣

∣

∣

∣

δ=0

∝ −β̄
[

zλ(η0(ǫ− 1))− η0(ǫ− 1)z′λ(η0(ǫ− 1))
]

− βz′λ(η0(ǫ)) (3.156)

+ (β̄ − βχ(ǫ < emax − 1))
[

zλ(η0(ǫ))− η0(ǫ)z
′
λ(η0(ǫ))

]

+ χ(ǫ = emax − 1)
β

β̄
z′λ(η0(ǫ+ 1))

+ χ(ǫ < emax − 1)β
[

zλ(η0(ǫ+ 1)) + z′λ(η0(ǫ+ 1))η̄0(ǫ+ 1)
]

, w(η0(ǫ− 1), η0(ǫ), η0(ǫ+ 1)).

We now show that the w(η0(ǫ − 1), η0(ǫ), η0(ǫ + 1)) > 0, thus proving P1). The derivative of

w(η0(ǫ − 1), η0(ǫ), η0(ǫ + 1)) with respect to η0(ǫ − 1) is negative, since zλ(x) is strictly concave.

Then, since η(ǫ− 1) < η(ǫ), we obtain

w(η0(ǫ− 1), η0(ǫ), η0(ǫ+ 1)) > w(η0(ǫ), η0(ǫ), η0(ǫ+ 1)) (3.157)

=− βχ(ǫ < emax − 1)[zλ(η0(ǫ)) + η̄0(ǫ)z
′
λ(η0(ǫ))]− βχ(ǫ = emax − 1)z′λ(η0(ǫ))

+ χ(ǫ = emax − 1)
β

β̄
z′λ(η0(ǫ+ 1)) + χ(ǫ < emax − 1)β

[

zλ(η0(ǫ+ 1)) + z′λ(η0(ǫ+ 1))η̄0(ǫ+ 1)
]

.

Similarly, the derivative of w(η0(ǫ), η0(ǫ), η0(ǫ + 1)) with respect to η0(ǫ) is positive. Then, since

η(ǫ) ≥ η(ǫ+ 1), we obtain

w(η0(ǫ− 1), η0(ǫ), η0(ǫ+ 1)) > w(η0(ǫ), η0(ǫ), η0(ǫ+ 1)) ≥ w(η0(ǫ+ 1), η0(ǫ+ 1), η0(ǫ+ 1))

=χ(ǫ = emax − 1)
β2

β̄
z′λ(η0(ǫ+ 1)) ≥ 0, (3.158)

where the last inequality follows from the fact that, if ǫ < emax−1, thenw(η0(ǫ+1), η0(ǫ+1), η0(ǫ+

1)) = 0, and, if ǫ = emax − 1, then w(η0(ǫ+ 1), η0(ǫ+ 1), η0(ǫ+ 1)) > 0 since η0(ǫ+ 1) < x∗ and

z′λ(η0(ǫ+ 1)) > 0. P1) is thus proved.

Finally, P2) is proved by combining P1) with the fact that η(1) ≤ ηlow and η(emax) ≥ ηup are
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strictly suboptimal, yielding, for the optimal policy,

0 < ηlow < η(1) < η(2) < · · · < η(emax) < ηup ≤ x∗. (3.159)



Chapter4
Battery-lifetime maximization in Energy

Harvesting Wireless Sensor Networks

4.1 Introduction

In the previous chapter, we have investigated optimal energy management policies for energy

harvesting devices. A common assumption employed in the previous models and in the literature is

that the rechargeable battery used to store the incoming ambient energy, and from which energy is

drawn to power the device, is ideal and not subject to degradation phenomena, i.e., it can operate

perpetually without incurring a performance degradation.

In reality, batteries involve more complex mechanisms than just storing and drawing energy on-

demand and without side effects. The focus of this chapter is on degradation effects, which cause

the storage capability of a battery to diminish over time, depending on how the battery is used [66].

Degradation phenomena due to deep discharge are particularly strong for Lithium-Ion (Li-Ion) batter-

ies, which represent the reference case of rechargeable batteries in consumer electronics. Importantly,

it is recognized that the deeper the discharge of the battery, the faster the degradation. Thus, for ex-

ample, an appropriate approach to enhancing the battery lifetime could be to have very frequent and

shallow discharge periods, compatibly with the operating constraints of the network and the intermit-

tent nature of the ambient energy supply. In contrast, performing deep discharge cycles, e.g, in time

intervals during which ambient energy is scarcely available, should be avoided as it is detrimental to

battery lifetime.

In an Energy Harvesting system, the ambient energy source often provides most of the energy
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within certain periods of time, during which the on-board battery is recharged. In the remaining

periods, little or no energy is available from the source, and the on-board battery is partially or totally

discharged, depending on the load demand. The charge/discharge process of the battery is called

cycling, and the percentage amount D of energy withdrawn from the battery during discharge, with

respect to its nominal capacity, is termed Depth of Discharge (DoD). In a photovoltaic scavenger,

for instance, battery cycling is determined on a daily basis by the availability of solar energy. Other

energy sources, such as RF, thermal or mechanical may present different trends. In general, the target

application and deployment scenario of the WSN play an important role in determining the cycling

period and its degree of randomness. Denoting with C0 the nominal battery capacity in milliampere-

hours (mAh) and with E(Ncyc) the total energy delivered by the battery afterNcyc cycles at DoDD,

one might expect that

E(Ncyc) = Ncyc · C0 ·D. (4.1)

Two fundamental facts, however, complicate the deceptively simple scenario implied by (4.1). First, a

rechargeable battery has a finite cycle life, i.e., it cannot cycle indefinitely due to irreversible degrada-

tion mechanisms, which ultimately reduce C0 to unrecoverable levels [66]. Manufacturers typically

define the battery cycle life Ncyc as the number of cycles a battery delivers at DoD D = 1 before

C0 drops below a given threshold, e.g., 80% or 50% of the initial value [67]. Secondly, the forego-

ing degradation process is strongly dependent on how the battery is cycled. More precisely, shallow

DoDs result in a slower degradation of C0 and ultimately in increased cycle life [66, 68–70]. For

instance, a microbattery rated with Ncyc = 100 cycles at 100% DoD may last up to Ncyc = 1000

cycles at 20% DoD, indicating that roughly twice the energy is extracted from the battery in the latter

case [67]. A simple heuristic model for the Ncyc vs. D dependence, which captures the ongoing

battery degradation, is

Ncyc(D) = Ncyc,0 · eα(1−D), (4.2)

where Ncyc,0 represents the cycle life at 100% DoD, and α is a characteristic constant of the battery.

Exponential-based models like (4.2) have been proven to be a good fit for data from a rather wide

range of battery chemistries and sizes [68–71]. Eq. (4.2) may therefore be taken as representative

also for microbatteries targeted for low-power equipment. Note, however, that different Ncyc(D) re-
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lationships could be employed depending on the available experimental data and the desired accuracy.

Acknowledging the degradation of the battery capacity and the dependence ofNcyc onD open up

intriguing options for more advanced energy-aware policies, which are the main focus of this work,

and represent an important step towards the realistic characterization of rechargeable batteries and,

by extension, of WSNs and their management strategies. In this chapter, the foregoing qualitative

discussion is formulated within the framework of a stochastic model which captures the essential

features of the problem, such as source pseudo-periodicity, battery cycling and cycle life vs DoD

dependence found in commercial microbatteries.

Remarkably, a strong suit of the approach taken in this chapter is to join two different perspectives,

namely, those of microelectronics and network engineering. Microelectronic characterizations of

batteries often give a very detailed parametric description but fail to provide a behavioral analysis

over time and in a broader context. Conversely, network models may be entirely flawed if they do

not properly account for a correct physical characterization. In this sense, we aim at bridging the gap

between these two approaches.

In the literature, a limited number of works attempted to model realistic battery imperfections

and non-idealities, and their impact on the performance of harvesting based devices and networks. In

this context, the offline model considered in [72], where energy arrivals are known non-causally at

the controller, includes battery leakage effect, and accommodates also the degradation of the battery

capacity over time; however, it assumes that battery degradation is deterministic and not influenced

by the charge/discharge policy; in contrast, we explicitly model this interaction. [73] models the

non-linearity between the energy storage level and the power delivered by a battery. [74] presents

a stochastic model to capture the recovery effect of electrochemical cells, based on which efficient

battery management policies can be designed.

4.1.1 Contributions

We propose a stochastic Markov chain framework, suitable for policy optimization, which cap-

tures the degradation status of the battery and its interplay with the energy management policy, which

determines the discharge/recharge process of the battery. Based on this stochastic model, we develop

a stochastic optimization problem which accounts explicitly for the trade-off between battery life-

time and Quality of Service (QoS) of the EHS. We prove a general result of Markov chains, which
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exploits the timescale separation between the communication time-slot of the device and the battery

degradation process, and enables an efficient optimization.

The battery degradation parameters of the stochastic model are then extrapolated frommanufacturer-

provided data [67], based on the exponential battery degradation model (4.2). We show that this

model fits well the behavior of real batteries for what concerns their storage capacity degradation

over time. We demonstrate that a degradation-aware policy significantly improves the lifetime of the

sensor compared to "greedy" policies, while guaranteeing the minimum required QoS. Finally, a sim-

ple heuristic policy, which never discharges the battery below a given threshold, is shown to achieve

close-to-optimal performance in terms of battery lifetime.

4.1.2 Structure of the chapter

This chapter is organized as follows. In Sec. 4.2, we present the general stochastic framework and

define the optimization problem, which is further developed in Sec. 4.3. In Sec. 4.4, we extrapolate

the battery degradation probabilities from experimental data and models available in the literature. In

Sec. 4.5, we provide numerical results. Sec. 4.6 concludes the chapter. The proof of the main theorem

is provided in the appendix at the end of this chapter.

4.2 System Model

We consider a generalization of the single Energy Harvesting Sensor (EHS) model of the previous

chapter. However, unlike it, the following model does not account for the importance of the current

data packet Vk, i.e., the importance is assumed constant over time.

Time is slotted, where slot k is the time interval [kT, kT +T ), k ∈ Z
+, and T is the slot duration.

The battery is modeled by a buffer with nominal capacity C0, and is uniformly quantized to a number

of energy levels, using a quantization step (energy quantum) ∆c ≪ C0. The maximum number of

quanta that can be stored at the nominal capacity is emax =
⌊

C0
∆c

⌋

and the set of possible energy levels

is denoted by E = {0, 1, . . . , emax}. Due to the aforementioned battery degradation mechanisms, the

nominal battery capacity emax is not always entirely available, but rather decreases over time. Let

Emax(k) be the battery capacity at time k, with Emax(k) ≤ Emax(k − 1) and Emax(0) = emax.

Denote the (quantized) energy level of the battery at time k as Ek. The evolution of Ek is given by

Ek+1 = min
{

[Ek−Qk]
+ +Bk, Emax(k+1)

}

, (4.3)
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where [x]+ = max{x, 0} and:

• {Bk} is the energy harvesting process, taking values in B , {0, 1, . . . , B}. We define an

underlying energy harvesting state process {Ak}, and we model it as an irreducible stationary

Markov chain with transition probabilities pA(a1|a0) , Pr(Ak+1 = a1|Ak = a0) and steady

state distribution πA(a), taking values in a finite state space A. Given Ak ∈ A, the energy

harvest Bk is drawn from B according to the distribution pB(b|a) , Pr(Bk = b|Ak = a).

Then, we denote the average harvesting rate as β ,
∑

a∈A πA(a)
∑

b∈B bpB(b|a). We assume

that a new energy quantum harvested in slot k can only be used in a later slot.

• {Qk} is the action process, which is governed by the EHS controller, as detailed in Sec. 4.2.1,

and takes values in Q , {0} ∪ {Qmin, . . . , Qmax}. Qmin and Qmax represent a minimum

and maximum load requirements, respectively. Action Qk = 0 accounts for the possibility to

remain idle in time-slot k, due to either a controller’s decision or energy outage.

We model the battery degradation process, which causes the battery capacityEmax(k) to diminish

irreversibly over time, as follows. We define the battery health state, Hk, taking values in H ≡
{0, 1, . . . , Hmax}, whereHmax > 0. For a givenHk = h, the battery capacity at time k, i.e., the total

amount of energy delivered by a fully charged battery over a discharge phase, is given by

Emax(k) =

⌊

h

Hmax
emax

⌋

, (4.4)

and the set of available energy levels is denoted by E(h) =
{

0, 1, . . . ,
⌊

h
Hmax

emax

⌋}

. We assume that

{History up to time k − 1} → (Hk, Ek) → Hk+1 forms a Markov chain, i.e., Hk+1 is independent

of the history up to time k− 1, given (Hk, Ek). We denote the transition probability from health state

Hk = h to health stateHk+1 = h− 1 as

pH(h; e) , Pr(Hk+1 = h− 1|Hk = h,Ek = e). (4.5)

Moreover, Pr(Hk+1 = h̃|Hk = h,Ek = e) = 0 if h̃ /∈ {h− 1, h}, ∀e ∈ E(h), so that no transition is
possible between two non-consecutive or to a higher health state. As a consequence, the probability of

remaining in health state h is 1− pH(h; e). We further make the following assumptions on pH(h; e):

Assumption 1. a) pH(h; e) > 0, ∀h ∈ H, e ∈ E(h),

b) pH(h; e) ≪ 1, ∀h ∈ H, e ∈ E(h),
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h+ 1 h h− 1

1− pH(h+ 1;E) 1− pH(h;E) 1− pH(h− 1;E)

pH(h+ 2;E) pH(h+ 1;E) pH(h;E) pH(h− 1;E)

Figure 4.1. Transition probabilities of health state Hk, which depend on the current energy level Ek = E

c) pH(h1; e1) ≥ pH(h2; e2), ∀h2 ≥ h1, e2 ≥ e1.

Ass. 1.a) implies that the battery health state will eventually reach state Hk = 0, so that the

lifetime, defined in Def. 4.2.1 in Sec. 4.2.1, is finite; Ass. 1.b) expresses the fact that aging processes

taking place in the battery operate over time scales that are much longer than the cycling period and

the communication time-slot of the EHS; Ass. 1.c) means that the more discharged and degraded the

battery, the faster the battery degradation process [66].

At time k, Sk = (Ek, Hk, Ak−1) is the EHS state, taking values in the state space S ≡ E× H×A.

In practice, Sk should be inferred and estimated from measurements of the battery energy level,

capacity, and input energy flows. For simplicity, we assume that Sk is perfectly known to the EHS

controller. Note that the harvesting state Ak is unknown at time k, as reflected by state Sk, since

Bk has not been observed yet, hence Ak can only be inferred from the a-priori transition probability

pA(Ak|Ak−1). On the other hand, the posterior distribution of Ak−1 can be inferred recursively from

the observed harvesting sequence {B0, . . . , Bk−1}, as in (3.5) of the previous chapter. For example,

for a solar harvesting source, we may have A = {day, night}. The state Ak−1 ∈ A may then be

estimated as, for appropriate choice of the threshold λth and of the window N ,

Âk−1 =











day if 1
N

∑k−1
i=k−N Bi > λth,

night otherwise.
(4.6)

4.2.1 Policy definition and Optimization problem

Given Sk = (Ek, Hk, Ak−1), the EHS controller determines Qk ∈ Q at time k according to a

given policy µHk
. Formally, µHk

is a probability measure on the action space Q, parameterized by

the state (Ek, Ak−1), i.e., µh(q; e, a) is the probability of requesting q energy quanta from the battery,

when operating in state Sk = (Ek, Hk, Ak−1) = (e, h, a).1 Under any policy µ, the state process

1For the sake of maximizing a long-term average reward function of the state and action processes, it is sufficient to
consider only state-dependent stationary policies [1].
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{Sk} is a Markov chain, so that the whole decision problem is a Markov Decision Process [1].

The instantaneous reward accrued in time-slot k, in state Sk = (Ek, Hk, Ak−1) under action Qk,

is defined as

g(Qk, Ek) =







0, Qk > Ek,

g∗(Qk), Qk ≤ Ek,
(4.7)

where g∗(Qk) is a concave increasing function of Qk with g∗(0) = 0.2 When the amount of energy

requested by the controller exceeds that available in the battery (case Qk > Ek), the task cannot be

successfully completed, and the battery is depleted while no reward is earned.

We define the hitting times of the health states as

Kh = min{k ≥ 0 : Hk = h}, h ∈ H. (4.8)

Kh is a random variable, which depends on the realization of {(Bk, Qk, Hk)}. Given an initial state

S0 = (E0, Hmax, A−1) and a policy µ, we define the total average reward Gtot
µ (h,S0), the battery

lifetime Tµ(h,S0) and the average reward per time-slot Gµ(h,S0) of health state h as

Gtot
µ (h,S0) = E

[Kh−1−1
∑

k=Kh

g(Qk, Ek)

∣

∣

∣

∣

S0

]

, (4.9)

Tµ(h,S0) = E [Kh−1 −Kh |S0] , (4.10)

Gµ(h,S0) =
Gtot

µ (h,S0)

Tµ(h,S0)
, (4.11)

where the expectation is taken with respect to {(Bk, Ak, Hk, Qk)} and Qk is drawn according to µ.

In particular, Gtot
µ (h,S0) is the expected cumulative reward earned over health state h; Tµ(h,S0)

is the expected number of time-slots spent in health state h; and Gµ(h,S0) represents the expected

reward per time-slot accrued in health state h.

With these definitions at hand, let G∗ be a minimum QoS requirement, which is met in health state

h if Gµ(h,S0) ≥ G∗. We give the following definition.

Definition 4.2.1. (Battery Lifetime) If Gµ(Hmax,S0) ≥ G∗, the battery lifetime Tµ(G∗,S0) under

2Note that such choice of a concave increasing reward function models many cases of interest, and is widely used in the
literature, e.g., see [46].
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policy µ is defined as

Tµ(G∗,S0) =
∑

h≥h∗

µ

Tµ(h,S0), (4.12)

where h∗µ = max {h : Gµ(h,S0) < G∗}+ 1 (4.13)

is the index of the lowest health state in which the QoS is met. Otherwise, Tµ(G∗,S0) = 0.

The conditionGµ(Hmax,S0) ≥ G∗ guarantees that the problem is feasible; otherwise, the lifetime

is zero as there is no satisfactory reward even in the healthiest state. The lifetime is defined such that

the QoS requirement G∗ is guaranteed at each health state h ≥ h∗µ, i.e., Gµ(h,S0) ≥ G∗. In particu-

lar, the QoS constraint inherently assumes that the battery degradation processes taking place in the

battery operate over time scales which are much longer than the communication time-slot (Ass. 1.b)),

so that the system approaches a steady state operation in each health state. For the lower health state

h∗µ − 1, we have Gµ(h
∗
µ − 1,S0) < G∗, i.e., the EHS can no longer sustain the QoS requirement, and

battery failure is declared. Note that a QoS requirement on each health state h ≥ h∗µ is stricter than an

average QoS requirement over the entire lifetime, defined as
∑

h≥h∗

µ
Gtot

µ (h,S0)/
∑

h≥h∗

µ
Tµ(h,S0).

The latter may induce policies that exhibit wide performance variability across the health states, as

made clear in the following example.

Example 2. Consider a system with G∗ = 1.5 and Hmax = 2, and a policy µ such that

Gµ(h,S0) = h, Tµ(h,S0) = 106, ∀h ∈ {0, 1, 2}. (4.14)

Then, according to Def. 4.2.1, we have Tµ(G∗,S0) = 106, since the QoS G∗ can be supported only at

health state 2. However, an average QoS of

Gtot
µ (2,S0) +Gtot

µ (1,S0)

Tµ(2,S0) + Tµ(1,S0)
= 1.5 = G∗ (4.15)

can be supported over a time-interval of duration 2 × 106, which is twice as long as Tµ(G∗,S0),

despite the fact that a poor performance is attained in health state 1.

The optimization problem at hand is to determine the optimal µ∗ such that the battery lifetime is
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maximized, under a given constraint on the minimum QoS G∗, i.e.,

µ∗ = argmax
µ

Tµ(G∗,S0) = argmax
µ

∑

h≥h∗

µ

Tµ(h,S0), (4.16)

where h∗µ is given in (4.13). The solution to (4.16) is carried out in the next section.

4.3 Optimization

In this section, we develop problem (4.16), showing that it can be recast as an independent Linear

Program (LP) on each health state, under Ass. 1.b) on pH(h; e). The solution to the optimization

problem relies on the timescale separation between the communication time-slot of the EHS and the

battery degradation process, i.e., the EHS achieves a steady state operation in each health state. In

this light, we give the following definition.

Definition 4.3.1. (Steady State distribution of the non-absorbed chain) Assume that the EHS operates

indefinitely at health state h ∈H without being absorbed by the lower health state, i.e., pH(h; e) =

0, ∀e∈E(h). Denote the steady state distribution of (e, a)∈E(h)×A in health state h under policy

µh as3

πh
µh
(e, a) = lim

K→∞
1

K

K−1
∑

k=0

P (k)(e, a|S0), (4.17)

where S0 = (E0, h, A−1) is the initial state and

P (k)(e, a|S0) = Pr (Ek = e,Ak−1 = a|S0, pH(h; ·) = 0) .

We define the following quantities.

Definition 4.3.2. (Approximate reward per stage and lifetime of health state h)

Ĝµh
(h) =

∑

(e,a)∈E(h)×A
πh
µh
(e, a)Eµh(·;e,a) [g(Q, e)] , (4.18)

T̂µh
(h) =

(

∑

(e,a)∈E(h)×A
πh
µh
(e, a)pH(h; e)

)−1

, (4.19)

3We assume that µh induces a Markov chain with a single closed communicating class, so that πh
µh

(e, a) exists and is
independent of S0 [23].
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where Eµh(·;e,a) [g(Q, e)] =
∑

q∈Q µh(q; e, a)g(q, e) is the expected reward in state (e, a).

Remark: Note that πh
µh

in (4.17) is computed under the assumption that the EHS operates indef-

initely in health state h, i.e., pH(h; e) = 0, ∀e, whereas the term pH(h; e) in (4.19) is the actual

degradation probability. Ĝµh
(h) can be interpreted as the long-term average reward per time-slot in

health state h, whereas T̂µh
(h)−1 can be interpreted as the long-term average probability of making a

transition to the lower health state h− 1. Such observations are formalized in the following theorem.

Theorem 4.3.1. Let p∗H(h) = maxe pH(h; e). For p∗H(h) → 0,

Gµ(h,S0) = Ĝµh
(h) +O(p∗H(h)), (4.20)

Tµ(h,S0) = T̂µh
(h) +O(1), (4.21)

where f(x) = O(v(x)) for x → 0 denotes a quantity such that lim supx→0

∣

∣

∣

f(x)
v(x)

∣

∣

∣
< +∞.

Proof. The proof is provided in Appendix 4.A as a general result of Markov chains.

From Theorem 4.3.1, when maxe pH(h; e) ≪ 1, the duration of health state h, Tµ(h,S0),

can be approximated by T̂µh
(h), up to a bounded additive factor. Since Tµ(h,S0) → +∞ for

maxe pH(h; e) → 0 (in fact, the smaller maxe pH(h; e), the less likely the health process to be

absorbed by the lower health state h − 1, hence the longer the amount of time spent in health state

h), (4.21) is a good approximation. On the other hand, the average reward per time-slot in health state

h, Gµ(h,S0), can be approximated by Ĝµh
(h) up to an additive factor, which decays to zero at least

as quickly as maxe pH(h; e). Both approximations are independent of the initial state S0, and solely

depend on the steady state distribution (4.17) induced by policy µh, which is approached in each

health state. Since maxe pH(h; e) ≪ 1 by Ass. 1.b), we use Theorem 4.3.1 and replace (4.20-4.21)

in (4.12), yielding

Tµ(G∗,S0) ≃
∑

h≥h∗

µ

T̂µh
(h), where h∗µ = max

{

h : Ĝµh
(h) < G∗

}

+ 1. (4.22)

Finally, substituting (4.22) in (4.16), we obtain the approximation

µ∗ = argmax
µ

∑

h≥h∗

µ

T̂µh
(h). (4.23)
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Note that T̂µh
(h) and Ĝµh

(h) are independent of the policy µh̃ for h̃ 6= h. Therefore, (4.23) can be

solved independently for each health state h, yielding the following algorithm.

Algorithm 4. • INIT: set h = Hmax, REP=true

• WHILE REP=true AND h>0 SOLVE

µ∗
h = argmin

µh

∑

(e,a)∈E(h)×A
πh
µh
(e, a)pH(h; e) (4.24)

s.t.
∑

(e,a)∈E(h)×A
πh
µh
(e, a)

(

Eµh(·;e,a) [g(Q, e)]− G∗) ≥ 0.

If the problem is infeasible, set REP=false, h∗µ∗ = h + 1. If it is feasible and h = 1, set

h∗µ∗ = 1. Otherwise, update h := h− 1. END WHILE

• RETURN the optimal policy µ∗ = (µ∗
h)h≥h∗

µ∗
, with lifetime Tµ∗(G∗,S0) ≃

∑

h≥h∗

µ∗
T̂µ∗

h
(h).

Remark: Step 2) is equivalent to

µ∗
h = argmax

µh

T̂µh
(h), s.t. Ĝµh

(h) ≥ G∗, (4.25)

and is obtained by substituting the expressions of T̂µh
(h) and Ĝµh

(h) (see Def. 4.3.2) in (4.25).

It can be solved numerically via standard stochastic optimization tools, such as LP [1]. Thus, the

optimal policy µ∗
h maximizes the lifetime (equivalently, it minimizes the long-term probability of

battery degradation to the lower health state h−1) with a constraint on the minimum average QoS.

Step 2) also determines h∗µ∗ in (4.13), for the optimal policy µ∗. Finally, in step 3) the optimal policy

is found by concatenating the sub-policies µ∗
h for h ≥ h∗µ∗ , and the corresponding lifetime (4.2.1)

is computed using (4.21). The main advantage of this approach over a standard approach which

solves the original optimization problem (4.16) jointly is that (4.16) is decomposed into a sequence

of independent sub-problems (4.24) for each health state h, thus reducing the overall computational

burden.
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4.4 Extrapolation of the Degradation Probabilities from Experimental

Data

The battery degradation probabilities can be evaluated from manufacturer-provided data [67] by

employing the deterministic, continuous time battery degradation model (4.2). These probabilities

should be denoted as pH(h; e), depending on the health h and the energy e, as in (4.5). The de-

pendence of pH(h; e) on h is quite difficult to capture; however, in our numerical evaluations we

found that its effect is generally very mild. Even by neglecting it entirely, one can still obtain a very

good match with manufacturer data. Therefore, we drop any dependence on h and we denote the

degradation probability as pH(e), i.e., just depending on e.

In Sec. 4.4.1, (4.2) is used to simulate an experiment where the battery is cyclically discharged

and recharged at a given DoD until its capacity degrades to a fraction of the nominal capacity. First,

the number of cycles as a function of the DoD and of the battery degradation rate function is derived.

Then, the battery degradation rate function is found by matching the theoretical curve for the number

of cycles to manufacturer data and the exponential model (4.2). In Sec. 4.4.2, the pH(e)’s are found

by matching the deterministic degradation times derived in Sec. 4.4.1 with the average degradation

times in the proposed stochastic, discrete time model.

4.4.1 Deterministic Degradation Model

We employ model (4.2) for the relationship between number of cycles and DoD, where the con-

stants Ncyc,0 and α > 0 depend on the specific battery model employed. In particular, Ncyc(D)

is counted until the battery capacity degrades to a fraction x ∈ (0, 1) of the initial capacity (e.g.,

x ∈ {0.5, 0.8}), so that, in general, Ncyc,0 and α also depend on x.

Herein, we assume that the degradation process is a function of the instantaneous energy level

of the battery only, as discussed in the introduction to this section, and is described by the rate of

capacity degradation function ρ(e∆c/C0) (in mAh/s) at the energy level e∆c ∈ [0, C0], where

C0 is the nominal capacity, ∆c is the energy quantum and e is the energy level normalized to the

quantum∆c. Then, if the battery operates at energy level e∆c for δ seconds, its capacity degrades by

δρ(e∆c/C0) mAh. Moreover, we conjecture that, for proper coefficients θ > 0, ζ > 0,

ρ(e∆c/C0) = ζeθ(1−e∆c/C0). (4.26)
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In the following analysis, and by simulation in Sec. 4.5, we show that this choice fits well the expo-

nential model (4.2) for typical values ofD (e.g.,D ∈ [0.2, 1]). Let Cn, n ≥ 0 be the battery capacity

at the beginning of the nth discharge/recharge cycle. In the nth cycle, the battery discharges from Cn

to Cn − C0D (with DoD D), and it then recharges from Cn − C0D to Cn+1. Note that Cn+1 ≤ Cn,

i.e., the capacity at the end of the nth cycle cannot be larger than at the beginning of the cycle, due to

irreversible degradation mechanisms.

The battery degradation in the nth cycle as a function of ρ and D is denoted by ∆ρ(D,Cn) =

Cn − Cn+1. Assuming that ∆ρ(D,Cn) ≪ 2DC0, i.e., the battery degradation is much smaller than

the amount of energy exchanged by the battery over each cycle (this is a good approximation for typ-

ical values of D), and the discharge/recharge current is I , the duration of the nth discharge/recharge

cycle is denoted by Tn = [2DC0 −∆ρ(D,Cn)]/I ≃ 2DC0/I . The energy level over the nth cycle,

En(t)∆c, where t ∈ (0, Tn), evolves as

Discharge phase: En(t)∆c = Cn − It, t ∈ (0, Tn/2), (4.27)

Recharge phase: En(t)∆c = Cn −DC0 + I(t− Tn/2), t ∈ (Tn/2, Tn). (4.28)

Moreover, due to the ongoing degradation, the instantaneous battery capacity in the nth cycle, denoted

by Cn(t), t ∈ (0, Tn), obeys

dCn(t)

dt
= C ′

n(t) = −ρ

(

En(t)∆c

C0

)

, t ∈ (0, Tn), (4.29)

with the boundary conditions Cn(0) = Cn, Cn(Tn) = Cn+1. By integrating the energy flows in one

cycle, we then have

Cn+1 = Cn +

∫ Tn/2

0
C ′
n(τ)dτ +

∫ Tn

Tn/2
C ′
n(τ)dτ, (4.30)

and, substituting (4.29) in (4.30) and using the expression of ρ given in (4.26) and those for En(t)

given in (4.27) and (4.28) for the two integrals, we obtain

∆ρ(D,Cn) =
2C0ζ

Iθ
eθ(1−Cn/C0)(eθD − 1). (4.31)

Ncyc(D) is equivalently defined as Ncyc(D) = min{n : Cn < xC0}, since the number of cycles

is counted until the battery capacity degrades to a fraction x of the nominal capacity. Herein, based
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on the fact that the battery capacity slowly degrades from the nominal value C0 to the target xC0,

and that the number of cycles to obtain a small capacity degradation dC ≪ C0 from C ∈ (0, C0] to

C − dC are dC/∆ρ(D,C), we approximate Ncyc(D) with the integral expression

Ncyc(D) ≃
∫ C0

xC0

1

∆ρ(D,C)
dC. (4.32)

Substituting (4.31) in (4.32), we thus obtain

Ncyc(D) =

(

I

2ζ

1− e−θ(1−x)

1− e−θD

)

e−θD. (4.33)

Note that the term within the parentheses is a decreasing function of D, hence we obtain

Ncyc(D) ≥ I

2ζ

1− e−θ(1−x)

1− e−θ
e−θD , N̂cyc(D), (4.34)

where equality holds for D = 1. Finally, by approximating Ncyc(D) with its lower bound N̂cyc(D)

and by matching this expression to the exponential model (4.2), yields

α = θ and ζ =
I

2Ncyc,0

1− e−α(1−x)

eα − 1
in (4.26).

Remark 4.4.1. Note that the approximation (4.32) does not follow the exponential model (4.2). In

particular, forD → 0, in (4.32) we haveNcyc(D) → ∞. This is due to the fact that, in the derivation

of (4.32), we have assumed that ∆ρ(D,Cn) ≪ 2DC0, i.e., the DoD D is large with respect to the

battery degradation in each cycle. However, this is a good approximation for typical values of D

which the exponential model (4.2) has been fitted to [68–71], e.g., D ∈ [0.2, 1].

4.4.2 Stochastic Degradation Model

Based on the deterministic battery degradation model analyzed in the previous section, we now

derive the degradation probabilities pH(e) for the stochastic model. To this end, we compute the

deterministic time it takes for the battery to degrade from health state h, with capacity h
Hmax

C0, to

the next lower health state h − 1, with capacity h−1
Hmax

C0. Then, we relate the deterministic degra-

dation times to the average degradation times in the discrete-time stochastic model, and derive the

corresponding transition probability.

Assume that the battery operates indefinitely at energy level e∆c in the deterministic model stud-
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ied in Sec. 4.4.1. The initial battery capacity is C(0) = h
Hmax

emax∆c. From (4.29), the battery

capacity as a function of time is given by C(t) = C(0)−ρ(e∆c/C0)t and degrades to the next health

state with capacity h−1
Hmax

emax∆c over a time-interval of duration

Tdet(e) =
emax∆c

Hmaxρ(e∆c/C0)
. (4.35)

On the other hand, in the stochastic, discrete-time model, assuming that the battery operates indefi-

nitely at energy level e, measured in energy quanta, the average amount of time (in s) it takes for the

battery to degrade to the lower health state is

Tstoc(e) =
∆t

pH(e)
, (4.36)

where∆t is the time-slot duration. By forcing Tstoc(e) = Tdet(e), we finally obtain the relation

pH(e) = γ exp

{

α

(

1− e

emax

)}

, (4.37)

where γ = ∆tHmax
∆cemax

ζ is a dimensionless constant. We note that (4.37) obeys Ass. 1.a) (as long as

γ 6= 0) and Ass. 1.c) (since α > 0). Moreover, if γ ≪ 1, also Ass. 1.b) holds.

Remark 4.4.2. It is worth noting that the absolute value of γ does not affect the solution of the

optimization problem (4.24), which, under the relationship (4.37), becomes

µ∗
h = argmin

µh

∑

(e,a)∈E(h)×A
πh
µh
(e, a) exp

{

α

(

1− e

emax

)}

s.t.
∑

(e,a)∈E(h)×A
πh
µh
(e, a)

(

Eµh(·;e,a) [g(Q, e)]− G∗) ≥ 0.

4.5 Numerical Results

In this section, we present some numerical results. In particular, we validate the proposed stochas-

tic framework to model the battery degradation process, and we assess the performance of the pro-

posed lifetime aware policies in terms of maximizing the battery lifetime, while guaranteeing a target

QoS to the system. We consider a battery with capacity emax = 500 energy levels and Hmax = 50

health states. The parameter α, which determines the degradation probabilities pH(e) in (4.37), is

obtained by interpolating the data-sheet values in [67] of Li-Ion rechargeable micro batteries, which
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(b) α = 2.88
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Figure 4.2. Number of cycles versus DoD. The curve for the stochastic model is obtained by averaging the

number of cycles over 10 iterations.

may be envisioned for applications in WSNs. In particular, we refer to the battery type MS920SE,

which is declared to provide 100 cycles at 100% DoD until the battery capacity degrades to 50% of

the initial capacity C0, and 1000 cycles at 20% DoD. Assuming the exponential relationship (4.2)

yields Ncyc,0 = 100 and α ≃ 2.88, from which we compute the degradation probabilities pH(e),

given by (4.37). As discussed in Sec. 4.4.2, the constant γ in (4.37) does not affect the optimiza-

tion problem (4.24), hence we choose a small value γ = 2.5 · 10−5 so as to satisfy Ass. 1.b) and

Theorem 4.3.1.

In Fig. 4.2, we validate the proposed stochastic model against the experimental curve (4.2) for

theNcyc(D) versus DoDD dependence, for the battery model considered. In particular, these curves

are obtained by cyclically discharging and recharging the battery with different values of the DoDD.

The curves associated with the stochasticmodel are obtained by employing the stochastic model pro-

posed in this chapter to generate the health state process {Hk}, which determines the battery capacity

via (4.4). The curves associated with the deterministic model, instead, are obtained by employing the

deterministic degradation model developed in Sec. 4.4.1 to generate the battery degradation process.

The number of cycles for a specific value of the DoD D and a specific model are counted until the
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capacity degrades to 50% of the initial capacity C0. We notice that there is a good match between

the deterministic and stochastic models, which gives evidence of the fact that the proposed Markov

model captures the fundamental behavior of real batteries for what concerns their storage capacity

degradation over time. Moreover, the stochastic model exhibits a good fit to the experimental curve,

which validates our analysis in Sec. 4.4. The value α = 2.88 best matches the experimental curve

(we have verified that α = 2.88 minimizes the mean square error with respect to the experimental

curve, in the logarithmic domain).

In the following figures, the underlying energy harvesting process {Ak} is modeled as a two state

Markov chain with state space A = {G,B} and transition probabilities pA(G|G) = pA(B|B) =

0.96, where G and B denote the "good" and "bad" harvesting states, respectively. In the "bad" state

(Ak = B), no energy is harvested, i.e., Bk = 0; in the "good" state (Ak = G), the harvested energy is

Bk = 20 deterministically. The average harvesting rate is thus given by β = 10. In this case, we have

a one-to-one mapping between Ak and Bk, so that, by measuring Bk, the state Ak is known exactly.

We employ the reward function g∗(Qk) = log2(1 + σQk/β), with σ = 10, which models the

Shannon capacity of the static Gaussian channel, where σ is an SNR scaling parameter [20]. The

action space is Q = {0, . . . , 20}.
We consider the Constant Load Lifetime Unaware Policy (CLLUP), which supports a constant

load of β energy quanta, irrespective of the energy level available in the battery, and remains idle

under energy outage. This policy does not require communication between the EHS controller and

the power processing unit (Fig. 3.2), since the current energy need not be known.

Moreover, we consider the Lifetime Unaware Policy (LUP), which greedily maximizes the aver-

age long-term reward (4.18) for the actual value of the battery capacity, without taking into account

the impact of the policy on the battery lifetime. It is found via the Policy Iteration algorithm [1] as

the solution of

µ∗
h = argmax

µh

Ĝµh
(h), ∀h ∈ H. (4.38)

This policy requires full knowledge of the current energy level, hence communication between the

EHS controller and the power processing unit.

Finally, we consider the following policies, which explicitly take into account battery lifetime:

• Lifetime Aware Optimal Policy (LAOP): this is the optimal policy solution of problem (4.16),

found via Algorithm 4.
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Figure 4.3. Comparison via simulation of stochastic and deterministic degradation models. Each point

in the curve is obtained by a moving-average window of 5000 time-slots. QoS requirement G∗ = 2.59
(corresponding to 80% of the maximum reward maxµHmax

ĜµHmax

(Hmax) ≃ 3.24 in the maximum health

state).

• Constant Load Lifetime Aware Policy (CLLAP): This policy supports a constant load of β

energy quanta, equal to the average harvesting rate, when the battery energy level is above a

given DoD, and remains idle otherwise. If the battery capacity degrades to a value such that the

required DoD cannot be supported anymore, battery failure is declared.

In the following plots, for a given policy and QoS G∗, the battery lifetime is computed ac-

cording to (4.12), using standard results on absorbing Markov Chains, see [23]. The correspond-

ing minimum reward supported by policy µ over the battery lifetime is defined as Gmin(µ,G∗) =

minh≥h∗

µ
Gµ(h,S0), where h∗µ and Gµ(h,S0) are defined in (4.13) and (4.11), respectively. The

minimum reward represents the average reward per slot (averaged over a timescale much larger than

the communication time-scale, but smaller than the battery degradation process) that is guaranteed

over the entire battery lifetime.

To further validate the stochastic model proposed in this chapter, in Figs. 4.3 and 4.4 we plot the

result of a simulation, where the battery degradation process follows either the stochastic model of

Sec. 4.2, or the deterministic model of Sec. 4.4.1. However, notice that, in the latter case, the term

deterministic is only referred to the fact that, in each time-slot, the battery capacity degrades by a

deterministic quantity, which depends on the energy level, as in Sec. 4.4.1. On the other hand, the
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Figure 4.4. Capacity degradation under the stochastic and deterministic degradation models. QoS re-

quirement G∗ = 2.59.

energy level is a stochastic process, induced by the stochastic energy arrival and decision processes.

In particular, in Fig. 4.3, we plot the moving average curve associated with the reward sequence

{g(Qk, Ek)}, and, in Fig. 4.4, we plot the time-sequence of the battery capacity. We notice a good

match between the curves associated with the deterministic and stochastic models. Moreover, as

shown in Fig. 4.3, LUP achieves a larger reward than LAOP in the time-horizon [0, 20× 104], where

the battery capacity is larger than ∼ 150 (Fig. 4.4). This is because LUP exploits all the available

energy levels to earn the maximum reward, by performing deep charge/discharge cycles. However,

such behavior quickly deteriorates the battery capacity, which decays to zero much faster than LAOP.

In contrast, LAOP performs close to the QoS requirement, and it intelligently manages the battery

to prolong its lifetime. Finally, notice that the time-average reward sequence exhibits fluctuations

around its mean. This is due to the stochastic energy harvesting supply.

In Fig. 4.5, we plot the minimum reward Gmin(µ,G∗) versus the corresponding battery lifetime

normalized to the maximum lifetime, which is defined as the lifetime when the battery is always fully

charged, so that battery degradation mechanisms are slower, according to our extrapolated model

(4.37) and Ass. 1.c). We note that, for a given minimum guaranteed QoS (a value in the y-axis of

the figure), LAOP achieves a significant gain in terms of battery lifetime with respect to the "greedy"

policy LUP, which does not take into consideration battery degradation mechanisms. In particular,
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Figure 4.5. Minimum reward over the battery lifetime versus normalized lifetime. The dashed lines repre-

sent the minimum and maximum lifetime and the maximum reward maxµHmax
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(Hmax).

the lifetime is increased by a factor ∼ 2.5. The same observation holds when comparing CLLAP and

CLLUP. Moreover, although CLLAP incurs a loss with respect to LAOP, it provides a good heuristic

to enhance the battery lifetime, that is, battery lifetime can be significantly increased by allowing only

shallow battery discharges, and by avoiding battery discharge below a predetermined DoD value.

Finally, for all policies, the longer the lifetime, the smaller the minimum reward attained. This is

due to the inherent trade-off between lifetime and QoS. Namely, the battery lifetime is maximized

by performing shallow charge/discharge cycles, which in turn considerably limits the usable energy

levels, thus impairing the ability of the battery to filter out the fluctuations in the intermittent energy

harvesting process, and to provide a satisfactory QoS over time. Conversely, the QoS is maximized

by performing deep battery discharges, e.g., during a long period of energy shortage, which inevitably

shortens battery lifetime. This behavior is not captured by the models commonly used in the literature,

which assume a perpetual battery operation, e.g., [41, 42, 44, 45, 57, 60].

In Fig. 4.6, we plot the lifetime of each health state h ∈ H, defined in (4.10) (lines). We also plot

the lifetime approximation (4.19) (markers). We notice that the exact lifetime expression (4.10) is

closely approximated by (4.19), as proved in Theorem 4.3.1 when maxq pH(h; e) ≪ 1. Moreover,

LAOP maximizes the lifetime of all health states. In fact, LAOP is found using Algorithm 4, which,

in step 2), determines the optimal policy which minimizes, on each health state h ∈ H, the steady
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Figure 4.6. Normalized lifetime of each health state. Exact lifetime (4.10) (lines). Approximation (4.19)

(markers). QoS requirement G∗ = 2.59.

state probability of degradation (equivalently, it maximizes the lifetime of health state h), subject to

a QoS constraint G∗. Conversely, a much shorter lifetime is attained by LUP in each health state,

since this policy greedily maximizes the reward, without taking into account its impact on the battery

degradation. Similar considerations hold for CLLAP and CLLUP. In general, the more degraded the

battery, the faster the degradation. This behavior is consistent with Ass. 1.c).

Finally, in Fig. 4.7, we plot the cumulative steady state distribution of the energy levels, for the

maximum health state Hmax, for LUP and LAOP, for different QoS requirements (corresponding, in

sequence, to 80%, 84%, 88%, 92% and 96% of the maximum reward maxµHmax
ĜµHmax

(Hmax) ≃
3.24 in the maximum health state). We note that the steady state distribution of LUP, which does not

take into account the ongoing battery degradation mechanisms, is spread over all the battery energy

levels. In particular, this policy operates for a significant amount of time at low energy levels, thus

inducing a fast battery degradation. Conversely, LAOP spreads the steady state distribution over

the upper energy levels only, thus slowing down battery degradation. Moreover, the larger the QoS

requirement, the more spread the steady state distribution under LAOP over lower energy levels. This

is because deeper discharge cycles need to be performed, in order to meet a higher QoS requirement.
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4.6 Conclusions

We have analyzed the impact of battery management policies on the irreversible degradation of

the storage capacity of realistic batteries, affecting the lifetime of harvesting based Wireless Sensor

Networks. We have proposed a general framework, based on Markov chains and suitable for policy

optimization, which captures the degradation status of the battery. The proposed stochastic battery

degradation model has been extrapolated from manufacturer-provided data and realistic determinis-

tic models proposed in the literature, and has been shown to fit well the behavior of real batteries

for what concerns their storage capacity degradation over time. Note, however, that different battery

degradation models can be easily accommodated in the proposed framework, depending on the avail-

able experimental data and the desired accuracy. Based on the proposed model, we have formulated

the policy optimization problem as the maximization of the battery lifetime, subject to a minimum

guaranteed QoS in each battery degradation status. We have shown that this problem can be solved

efficiently by a sequential linear programming optimization algorithm over the degradation states of

the battery. The numerical evaluation gives evidence of the fact that a lifetime-aware management

policy significantly improves the lifetime of the sensor node with respect to a "greedy" operation

policy, while guaranteeing the QoS.
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Appendix 4.A: Proof of Theorem 4.3.1

Proof of Theorem 4.3.1. For the proof of the theorem, we present a general result of Markov chains.

The relationship to the specific problem considered in this paper is provided at the end of the proof.

Consider a finite Markov chain {Zk} ⊆ Z ≡ {1, 2, . . . , Nt+1}, where the state space S is partitioned

into a set of transient statesZt ≡ {1, . . . , Nt} forming a communicating class, and the absorbing state

Za ≡ {Nt + 1}, with transition matrix

Pǫ =





(INt − ǫPa)Pt ǫPa1Nt

0TNt
1



 , (4.39)

where 0K is aK×1 vector with all entries equal to zero; 1K is anK×1 vector with all entries equal

to one; IK is the K ×K identity matrix; Pt is the Nt × Nt transition probability matrix associated

with transitions in Zt, given that the Markov chain is not absorbed by Za; Pa is anNt ×Nt diagonal

matrix with strictly positive diagonal elements, and ǫPa(i, i) ∈ (0, 1) is the probability of moving

from state i to the absorbing state Nt + 1, where the scaling parameter ǫ can take any value in

(0, 1/maxiPa(i, i)) (we will be interested in ǫ → 0). In the following, e1,K denotes the first column

of IK . Moreover, for convenience we drop the dependence of 0K , 1K , IK and e1,K on K in the

notation whenever the sizeK can be deduced from the context.

We assume that Pt is a regular stochastic matrix (i.e., the associated Markov chain is irreducible

and aperiodic). Therefore, Xǫ = (I− ǫPa)Pt is a primitive matrix and, from the Perron-Frobenius

Theorem [75], there is a real positive eigenvalue λǫ ofXǫ, with algebraic multiplicity 1, such that any

other eigenvalue ξ of Xǫ has |ξ| < λǫ. Since Xǫ is continuous in ǫ, λǫ is also continuous. We denote

the corresponding right eigenvector as vǫ, i.e.,

(Xǫ − λǫI)vǫ = 0. (4.40)

We normalize the eigenvector vǫ so that the sum of its elements equals Nt
4, i.e., 1Tvǫ = Nt, so that

vǫ is uniquely defined for each ǫ > 0, and is continuous in ǫ. Since X0 = Pt is a regular stochastic

matrix, we have λ0 = 1 and λǫ < 1 for ǫ > 0. Moreover, v0 = 1 and there exists a unique πt,∞ such

4This is always possible since the Perron-Frobenius Theorem guarantees that there always exists an eigenvector associ-
ated to the eigenvalue λǫ with all positive elements [75].
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that πt,∞ = πt,∞Pt. We can thus writeX0 as

X0 = U0D0U
−1
0 , (4.41)

whereD0 is the Jordan normal form ofX0, andU0 is the matrix whose columns are the correspond-

ing generalized eigenvectors. Without loss of generality, D0 is given by

D0 =





1 0T

0 J0



 , (4.42)

where J0 is a block diagonal matrix, whose diagonal blocks are given by the Jordan blocks corre-

sponding to the eigenvalues of X0 inside the unit circle. Therefore, U0e1 = 1 and eT1 U
−1
0 = πt,∞,

since 1 and πt,∞ are, respectively, the right and left eigenvectors ofX0 associated to the eigenvalue 1.

Recall, from standard results on absorbing Markov Chains (see [23]), that the expected time until

absorption is given by

Tǫ(πt,0) = πt,0 (I−Xǫ)
−1

1, (4.43)

where πt,0 is an initial distribution over Zt. Note that, when ǫ > 0, the eigenvalues of Xǫ are all

strictly inside the unit circle, so that I−Xǫ is invertible and (4.43) is well defined. We prove that

Tǫ(πt,0) =
1

ǫπt,∞Pa1
+O(1), for ǫ → 0, (4.44)

or equivalently, by definition of O(x),

lim
ǫ→0

∣

∣

∣

∣

Tǫ(πt,0)−
1

ǫπt,∞Pa1

∣

∣

∣

∣

< ∞. (4.45)

We have

Tǫ(πt,0)−
1

ǫπt,∞Pa1

(a)
= πt,0 (I−Xǫ)

−1
1− πt,01

ǫπt,∞Pa1

=
1

ǫπt,∞Pa1
πt,0 (I−Xǫ)

−1 [ǫ1πt,∞Pa1− (I−Xǫ)1]

(b)
=

1

πt,∞Pa1
πt,0 (I−Xǫ)

−1 (1πt,∞ − I)Pa1 = πt,0 (I−Xǫ)
−1 (1πt,∞ − I)x, (4.46)
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where we have defined the vector x = (πt,∞Pa1)
−1Pa1. In step (a), we have used the fact that

1 = πt,01. In step (b), we have used the fact that Xǫ1 = (I− ǫPa)Pt1 = (I− ǫPa)1. Let

Uǫ = U0 + (vǫ − 1)eT1 . (4.47)

Since U0 is invertible, there exists ǫth > 0 such that Uǫ is also invertible, for all ǫ ∈ (0, ǫth), by

continuity. For any such ǫ, we can thus write

Xǫ = UǫDǫU
−1
ǫ , where Dǫ =





λǫ rǫ

0 Jǫ



 , (4.48)

and, using the fact that eT1 [0, I]
T = 0T , henceUǫ[0, I]

T = U0[0, I]
T ,





rǫ

Jǫ



 = U−1
ǫ XǫUǫ





0T

I



 = U−1
ǫ XǫU0





0T

I



 . (4.49)

Then, using (4.48) and the fact that I−Xǫ = Uǫ(I−Dǫ)U
−1
ǫ , we obtain

(I−Xǫ)
−1 = Uǫ





1− λǫ −rǫ

0 I− Jǫ





−1

U−1
ǫ = Uǫ





1
1−λǫ

1
1−λǫ

rǫ(I− Jǫ)
−1

0 (I− Jǫ)
−1



U−1
ǫ

=
1

1− λǫ
vǫe

T
1 U

−1
ǫ +

1

1− λǫ
vǫrǫ(I− Jǫ)

−1 [0, I]U−1
ǫ +Uǫ[0, I]

T (I− Jǫ)
−1[0, I]U−1

ǫ . (4.50)

In the last step, we have used the fact that I = e1e
T
1 + [0, I]T [0, I] andUǫe1 = vǫ, hence

Uǫ = vǫe
T
1 +Uǫ[0, I]

T [0, I], (4.51)

U−1
ǫ = e1e

T
1 U

−1
ǫ + [0, I]T [0, I]U−1

ǫ , (4.52)

and (I−Dǫ)
−1 =

1

1− λǫ
e1e

T
1 +

1

1− λǫ
e1rǫ(I− Jǫ)

−1[0, I] + [0, I]T (I− Jǫ)
−1[0, I]; (4.53)

the result is then obtained by substituting these expressions, by expanding the products and by noting

that [0, I]e1 = 0. Since J0 is the Jordan matrix corresponding to eigenvalues of X0 within the unit

circle, I − J0 is invertible, hence, by continuity, I − Jǫ is invertible for sufficiently small ǫ. By
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replacing (4.50) into (4.46), we thus get

Tǫ(πt,0)−
1

ǫπt,∞Pa1
= A(ǫ) +B(ǫ) + C(ǫ), (4.54)

where we have defined

A(ǫ) = 1
1−λǫ

πt,0vǫe
T
1 U

−1
ǫ (1πt,∞ − I)x,

B(ǫ) = 1
1−λǫ

πt,0vǫrǫ(I− Jǫ)
−1[0, I]U−1

ǫ (1πt,∞ − I)x,

C(ǫ) = πt,0Uǫ [0, I]
T (I− Jǫ)

−1 [0, I]U−1
ǫ (1πt,∞ − I)x.

(4.55)

We finally show that the limit of each term above exists and is finite for ǫ → 0, thus proving (4.45).

Regarding the first term A(ǫ), since eT1 U
−1
0 (1πt,∞ − I) = πt,∞ (1πt,∞ − I) = 0T , we obtain

A(ǫ) =
1

1− λǫ
πt,0vǫe

T
1

(

U−1
ǫ −U−1

0

)

(1πt,∞ − I)x. (4.56)

Moreover, from (4.47), we have

U−1
ǫ −U−1

0 = U−1
ǫ (U0 −Uǫ)U

−1
0 = −U−1

ǫ (vǫ − 1)eT1 U
−1
0 = −U−1

ǫ (vǫ − 1)πt,∞. (4.57)

Substituting (4.57) in (4.56), we obtain A(ǫ) = 0, since πt,∞ (1πt,∞ − I) = 0T .

For the second termB(ǫ), substituting the expression of rǫ = eT1 U
−1
ǫ XǫU0[0, I]

T given by (4.49)

into (4.55), and using the fact that eT1 U
−1
0 X0U0 [0, I]

T = πt,∞U0 [0, I]
T = 0T , we obtain

B(ǫ) =
1

1− λǫ
πt,0vǫe

T
1 (U

−1
ǫ Xǫ −U−1

0 X0)U0 [0, I]
T (I− Jǫ)

−1[0, I]U−1
ǫ (1πt,∞ − I)x. (4.58)

Moreover, using (4.47) and (4.41),UǫU
−1
0 X0U0 = X0U0+(vǫ−1)eT1 D0 = X0U0+(vǫ−1)eT1 ,

and therefore, sinceXǫ = (I− ǫPa)Pt,

(U−1
ǫ Xǫ−U−1

0 X0)U0=U−1
ǫ (XǫU0−UǫU

−1
0 X0U0)=−U−1

ǫ (ǫPaX0U0+(vǫ − 1)eT1 ). (4.59)

Therefore, by substituting (4.59) into (4.58), and noting that eT1 [0, I]
T = 0T , we obtain

B(ǫ) = − ǫ

1− λǫ
πt,0vǫe

T
1 U

−1
ǫ PaX0U0 [0, I]

T (I− Jǫ)
−1[0, I]U−1

ǫ (1πt,∞ − I)x. (4.60)
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Moreover, by left-multiplying each side of (4.40) by πt,∞, for ǫ > 0 we obtain

1− λǫ

ǫ
=

πt,∞PaPtvǫ

πt,∞vǫ
→ πt,∞Pa1 > 0, (4.61)

where the limit holds for ǫ → 0, since vǫ → 1, Pt1 = 1 and πt,∞1 = 1. Therefore, B(ǫ) for ǫ → 0

is bounded, since I − J0 is invertible. Similarly, the limit of C(ǫ) for ǫ → 0 is bounded. (4.44) is

thus proved.

Similarly, from [23], the total cost/reward accrued before the process is absorbed by Za is

Ctot
ǫ (πt,0) = πt,0 (I−Xǫ)

−1
c, (4.62)

where c = [c(s)]s∈S is the cost/reward vector. We prove that

Ctot
ǫ (πt,0)

Tǫ(πt,0)
= πt,∞c+O(ǫ). (4.63)

Equivalently,

lim
ǫ→0

∣

∣

∣

∣

Ctot
ǫ (πt,0)

ǫTǫ(πt,0)
− 1

ǫ
πt,∞c

∣

∣

∣

∣

< ∞. (4.64)

Using (4.62) and (4.43), we obtain

Ctot
ǫ (πt,0)

ǫTǫ(πt,0)
− 1

ǫ
πt,∞c =

Ctot
ǫ (πt,0)− Tǫ(πt,0)πt,∞c

ǫTǫ(πt,0)
=

πt,0 (I−Xǫ)
−1 (I− 1πt,∞) c

ǫTǫ(πt,0)
. (4.65)

We now compute the limit of the numerator and denominator of (4.65) separately. For the de-

nominator ǫTǫ(πt,0), from (4.44), ǫTǫ(πt,0) = (πt,∞Pa1)
−1 + O(ǫ), hence limǫ→0 ǫTǫ(πt,0) =

(πt,∞Pa1)
−1, which is positive and bounded. Therefore, (4.64) holds as long as the numerator

of (4.65) is bounded. This is directly shown since the numerator of (4.65) equals the last expression

of (4.46) when c = −x, which, as previously shown, is bounded for ǫ → 0, for any bounded x.

The connection to the problem at hand is obtained as follows. In health state h, the set of transient

states (Zt in the proof of the theorem) is E(h) × {h} × A. The absorbing state Za corresponds to

the set E(h − 1) × {h − 1} × A, so that Ctot
ǫ (πt,0) and Tǫ(πt,0) count, respectively, the expected

total cumulative reward earned and total time spent by the process {Sk} while in health state h, until

it is absorbed by the lower health state h − 1. The initial distribution πt,0 corresponds to the state
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distribution in the set E(h)× {h} × A, when the process {Sk} first hits the health state h (this event

occurs at timeKh, as defined in (4.8)), as induced by policy µ, by (4.3) and by the energy harvesting

process. The transition probability matrix Pt is associated to transitions within the transient states

E(h)×{h}×A. Pt is a function of the policy µh employed in health state h. The probability matrix

Pa has diagonal components given by the degradation probabilities pH(h; e). Therefore, Tǫ(πt,0)
and 1

ǫπt,∞Pa1
correspond to (4.10) and (4.19); Ctot

ǫ (πt,0)
Tǫ(πt,0)

and πt,∞c correspond to (4.11) and (4.18),

respectively.
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Conclusions

In this thesis, we have investigated the potential offered by Cognitive Radio and Energy Harvest-

ing to cope, respectively, with spectrum and energy scarcity in today’s wireless networks. We have

employed a stochastic optimization approach to optimize the utilization of the available resources,

recurring, in particular, to the theory of Markov Decision Processes.

Within the Cognitive Radio framework, we have investigated a technique to exploit the Type-I Hy-

brid Automatic Retransmission reQuest (Type-I HARQ) protocol implemented by the licensed users.

We have shown that the use of HARQ opens up opportunities for a more efficient utilization of the

spectrum by unlicensed users. In particular, the proposed scheme exploits the temporal redundancy

introduced by the use of HARQ by the licensed users to enable interference cancellation techniques

at the receiver of the unlicensed users.

Within the Energy Harvesting (EH) paradigm, we have studied a general model where an EH Sen-

sor (EHS) needs to report data of varying importance to a Fusion Center (FC), under a stochastic EH

process. For the single EHS scenario, we investigated the interplay between the finite battery storage

and the time-correlation in the EH process, demonstrating, both theoretically and numerically, that

near optimal performance can be attained by a balanced policy, which solely adapts to the EH state,

but not to the exact amount of energy available in the battery. We have then investigated a random

multiaccess problem, and designed policies that maximize the aggregate data reporting performance

of the network. Also for this scenario, we have designed low-complexity policies, which only loosely

depend on the energy level in the battery. Overall, our results and analysis are encouraging for prac-

tical EHS design, as they indicate that near-optimal data reporting performance can be achieved with

low-complexity policies, suitable for practical implementation.
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Finally, we have proposed a stochastic framework, suitable for policy optimization, to model the

degradation of the battery capacity over time, and we have formulated an optimization problem which

captures the trade-off between battery lifetime and Quality of Service. We have demonstrated that a

degradation-aware policy significantly improves the lifetime of the sensor compared to "greedy" poli-

cies, while guaranteeing the minimum required QoS. This study represents one step further towards

a more realistic performance characterization of harvesting based systems.



AppendixA
UWB Sparse/Diffuse Channel Estimation

A.1 Introduction

Ultra Wide-Band (UWB) signaling had been originally proposed as a technology for indoor mo-

bile and multiple-access communications [76–78]. Due to its significant bandwidth, UWB offers high

precision localization [79], robustness against multipath fading [80] and immunity to narrow-band

interference [81], thus representing a compelling solution for applications such as short-range, high-

speed broadband access [82], Wireless Body Area Networks (WBANs) [83], covert communication

links, through-wall imaging, high-resolution ground-penetrating radar and asset tracking [84–86].

However, the performance of coherent UWB transceivers relies on the availability of accurate chan-

nel estimates (e.g., [87–89]). Thus, it is important to design channel estimation strategies that exploit

the structural and statistical properties of UWB propagation to achieve the best estimation accuracy.

The significant transmission bandwidth of UWB systems enables a fine-grained delay resolu-

tion at the receiver, of the order of 1 ns. In many environments, only some of the resolvable delay

bins carry significant multipath energy, yielding a sparse channel structure [85, 90]. For this reason,

UWB channel estimation strategies based on compressive sensing and sparse approximation tech-

niques [91–94] have been proposed in the literature, and they have been shown to outperform con-

ventional unstructured estimators [95, 96]. Also, localization techniques that exploit the information

about the specular multipath structure of the UWB channel have been proposed (see, e.g., [97, 98]).

However, recent propagation studies suggest that, for some environments, such as indoor, WBANs

and vehicular scenarios, diffuse (dense) components of the impulse response arise. These are caused

by propagation processes such as diffuse scattering [99], or unresolvable MultiPath Components
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(MPCs). Moreover, UWB channels exhibit a significant frequency dispersion [100] due to the large

transmission bandwidth employed. While irrelevant for conventional narrow-band systems, this ef-

fect results in a pulse broadening and spreading of the MPC energy over multiple resolvable delay

bins. These propagation mechanisms are not properly modeled by a purely sparse channel.

Recent work explores these effects. In [101], a geometry-based stochastic UWB model is pro-

posed, consisting of a statistical model for the diffuse component. The model developed in [102]

combines a geometric approach to model the resolvable MPCs, and a stochastic approach to model

the diffuse tail associated with each MPC. In [99], the spatial structure of the diffuse MPCs is in-

vestigated, and its parameters are extracted from the measurements. In [103], the impact of diffuse

scattering on the characteristics of vehicular propagation channels in highway environments is evalu-

ated, and the Doppler frequency-delay characteristics of diffuse components are analyzed. In [104],

a low-complexity model of diffuse scattering is proposed for vehicular radio channels. While these

prior models were targeted towards performance assessment, herein we develop a simplified UWB

channel model suitable for channel estimation purposes and estimator analysis.

Exploitation of structure in channel models can lead to estimation strategies with strong perfor-

mance: in [88], a Maximum Likelihood (ML) estimator is designed which exploits the clustered

structure of the UWB channel. In [89], a joint channel estimation and decoding technique for Bit-

Interleaved Coded Orthogonal Frequency Division Multiplexing is designed, based on a two-state

Gaussian mixture prior to model the sparse/diffuse structure of the channel, and on an hidden Markov

prior to model clustering among the large taps. Therein, more structure is assumed, e.g., cluster-

ing of the taps, and further the scheme is semi-blind. In [105], an ML framework is developed for

parameter estimation in multi-dimensional channel sounding. Therein, the channel comprises a deter-

ministic component, resulting from specular reflection, and a stochastic component modeling diffuse

scattering.

A.1.1 Contributions

In this chapter, based on the analysis of the propagation mechanisms peculiar to UWB systems,

we present a novel Hybrid Sparse/Diffuse (HSD) UWB channel model. In particular, we propose

statistical models for the sparse and diffuse components. We identify three physically motivated

scenarios that differ in the amount of side information available at the receiver (e.g., channel sparsity

level, Power Delay Profile (PDP) of the diffuse or sparse component).
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In Sec. A.5, for each scenario, Bayesian channel estimators are derived. In particular, we propose

the Generalized MMSE (GMMSE) and the Generalized Thresholding (GThres) estimators, for the

scenario where the statistics of the specular coefficients are unknown. We present a Mean-Squared

Error (MSE) analysis of the GMMSE and the GThres estimators, in the asymptotic regimes of high

and low Signal to Noise Ratios (SNR). We also design an Expectation-Maximization (EM) algorithm

for the estimation of the PDP of the diffuse component, which exploits the structure of the PDP over

the channel delay dimension to enhance the estimation accuracy. Moreover, we analyze the scenario

with a non-orthogonal pilot sequence, and establish a connection between the GThres estimator and

conventional sparse approximation algorithms proposed in the literature.

Finally, in Sec. A.9, we compare the proposed algorithms to unconstrained estimators, which

do not exploit the structure of the UWB channel, and conventional sparse estimators, which, on

the other hand, ignore the diffuse component of the channel. We also validate the simplified HSD

channel model and the channel estimation strategies, based on a realistic UWB channel model de-

veloped in [102]. The numerical results show that the new channel estimation methods considerably

improve the Mean-Squared Error (MSE) accuracy and the Bit Error Rate (BER) performance over

conventional unstructured estimators, e.g., Least Squares (LS), and purely sparse estimators, thus

suggesting the importance of a proper model for the UWB channel. Specifically, a purely sparse esti-

mator, by ignoring the diffuse component, is not able to capture important phenomena in UWB, e.g.,

pulse distortion [106] and diffuse scattering [100], thus failing to accurately estimate the channel. In

contrast, the HSD model, despite its simplicity, can effectively capture important UWB propagation

mechanisms, such as fine delay resolution, scattering from rough surfaces and frequency dispersion.

Moreover, due to its hybrid structure, the HSD model is robust and covers a wide range of practical

scenarios, where the channel exhibits either a sparse, diffuse or hybrid nature.

A.1.2 Structure of the chapter

This chapter is organized as follows. In Sec. A.2, we introduce the notation. In Sec. A.3, we

overview the UWB propagation mechanisms. In Sec. A.4, we present the system model and we

introduce the HSD channel model. In Sec. A.5, we present channel estimators based on the HSD

model. In Sec. A.6, we perform an asymptotic MSE analysis of these estimation schemes, and we

discuss the results. In Sec. A.7, we present an EM algorithm for the PDP estimation of the diffuse

component. In Sec. A.8, we analyze the case with a non-orthogonal pilot sequence. In Sec. A.9, we
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present simulation results. Sec. A.10 concludes this chapter. The proofs of the theorems and lemmas

are provided in the appendices at the end of the chapter.

A.2 Notation

We use lower-case and upper-case bold letters for column vectors (a) and matrices (A), respec-

tively. The scalar ak (or a(k)) denotes the kth entry of vector a, and Ak,j (or A(k, j)) denotes the

(k, j)th entry of matrixA. A positive definite (positive semi-definite) matrixA is denoted byA ≻ 0

(A � 0). The transpose, complex conjugate of matrix A is denoted by A∗. We define the square

root of A � 0 with eigenvalue decomposition A = UDU∗ as
√
A = U

√
DU∗. The K ×K unit

matrix is defined as IK . The trace operator is denoted by tr (A) =
∑

k Ak,k. The vector a⊙b is the

component-wise (Schur) product of vectors a and b. The indicator function is given by I (·). We use

p(·) to indicate a continuous or discrete probability distribution, and Pr (·) to indicate the probability
of an event. The expectation of random variable x, conditioned on y, is denoted by E [x|y]. The

Gaussian distribution with mean m and covariance Σ is written as N (m,Σ), whereas the circularly

symmetric complex Gaussian distribution is denoted by CN (m,Σ);1 the Bernoulli distribution with

parameter q is denoted by B(q), and the exponential distribution with meanm by E(m). The indicator

function is denoted by I (·).

A.3 UWB channel propagation and modeling overview

In this section, we overview the state of the art of UWB channel propagation and modeling. The

aim is to determine an appropriate UWB channel model, which captures the main UWB propagation

mechanisms. Neglecting pulse distortion [106] for simplicity, a time-varying channel in the continu-

ous time can be represented as [107]

h(τ, t) =
∑

l

al(t)δ(τ − τl(t)), (A.1)

where δ (·) is the Kronecker delta function, t is the time dimension and τ is the channel delay. The

sum is over the MPCs, with time-varying amplitude al(t) and delay τl(t). If we consider a UWB

system with center frequency f0 and transmission bandwidth W , the discrete baseband time-varying

1For a vector x = xR + ixI ∼ CN (0,Σ), where xR = Re(x), xI = Im(x) and i =
√
−1, we define the covariance

matrices of its real and imaginary parts as E[xRx
∗

R] = E[xIx
∗

I ] =
Re(Σ)

2
and E[xIx

∗

R] = −E[xRx
∗

I ] =
Im(Σ)

2
.
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impulse response of the channel is given by

hbb(n, t) =
∑

l

al(t)e
−i2πf0τl(t)sinc (n−Wτl(t)) , (A.2)

where sinc(x) = sin(πx)
πx is the sinc function, and n ∈ Z is the discrete channel delay. Due to the

large transmission bandwidth of UWB systems, MPCs arising from reflections and scattering in the

environment spaced apart (in the delay domain) by more than 1
W , which is typically of the order of

a fraction of a ns, can be resolved at the receiver. Then, by neglecting leakage effects due to the

sampling of the sinc function off its peak, (A.2) is commonly approximated by the following sparse

discrete baseband representation:

hbb(n, t) ≃
∑

l

al(t)e
−i2πf0τl(t)δ (n− rd (Wτl(t))) , (A.3)

where rd(x) returns the closest integer to x.

However, in many practical scenarios of interest (e.g., indoor environments), diffuse components,

that cannot be described by the above model, arise. These are created mainly by the following phe-

nomena: a large number of unresolved paths, diffuse scattering [100], pulse distortion resulting from

the frequency dependence of the gain and efficiency of the antennas and of the dielectric or conduc-

tive materials, and diffraction effects [106]. In [101], the following frequency response has been

proposed, modeling the contribution from all these effects:

HUWB(f) =

(

SLOS(f) +
∑

k

Sk(f) +D(f)

)

f−m

F
, (A.4)

where f is frequency. In particular, we recognize in SLOS(f) and
∑

k Sk(f) the contributions from

the line of sight and the resolvable MPCs, respectively, i.e., the MPCs whose inter-arrival time is

larger than 1
W , giving rise to a sparse component in the time domain. The term D(f) represents the

diffuse component due to multipath interference, and is associated with the non-resolvable MPCs.

Finally, f−m

F models the frequency distortion of the channel, where F is a normalization factor andm

is the frequency decay exponent. Note that, in this model, the diffuse component is independent of the

realization of the discrete MPCs, while, in contrast, the work in [102] models the diffuse component

as a diffuse tail associated with each specular component.

It is worth noting that the level of channel diffuseness or sparseness depends primarily on two
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factors: the transmission bandwidth and the environment. In fact, the larger the transmission band-

width, the finer the delay resolution at the receiver, and the sparser the channel is expected to be.

On the other hand, an environment with many scatterers or rough surfaces, e.g., an indoor scenario

or WBANs, is more likely to give rise to a dense channel, due to the richer interaction among the

MPCs. Dense channels have been observed, e.g., in gas stations [101], industrial [108], office [85]

and vehicular environments [103]. We thus expect a dense or hybrid channel representation to be

relevant in these or similar scenarios.

Spatio-temporal scale of variation in the UWB channel

We now consider the spatio-temporal variation of the channel, due to the relative motion of the

scatterers, receiver and transmitter in the environment. For ease of exposition, we consider movement

of the receiver only. Ignoring Doppler effects, which are left for future investigations, the channel

time-variations affect the amount of side-information available at the receiver for the purpose of

channel estimation, as discussed in Sec. A.4.2.

From the discrete baseband model (A.2), the phase2 variation of the lth MPC over a time-interval

∆t is given by∆φl , 2π c0
λ0

|τl(t+∆t)− τl(t)|, where λ0 is the wavelength at the center frequency,

and c0 is the free space speed of light. Therefore, a significant phase variation (e.g., by more than π
2 )

occurs when∆φl >
π
2 . This quantity corresponds, in the spatial domain, to a wavelength or a fraction

of it. Therefore, phase changes are expected to occur on a very small spatio-temporal scale.

Similarly, the variation of the MPC delay, over the same time-interval ∆t, is given by ∆τl ,

|τl(t+∆t)− τl(t)|. Hence, a significant variation (e.g., by more than one channel delay bin, 1
W )

occurs when∆τl >
1
W , i.e., on a spatial scale of c0

W or roughly a number of wavelengths in the range

[0.5, 5], depending on the value of the transmission bandwidthW , relative to the center frequency f0.

Finally, significant variations of the MPC amplitude al(t), due to shadowing effects, typically

correspond to a spatial scale of several wavelengths.

Note that, due to mutual interference of the unresolvable MPCs contributing to the same tap

location, changes in the amplitude of the diffuse components arise over the same spatio-temporal

scale as the phase changes of the MPCs (small scale fading). On the other hand, the amplitude of the

resolvable MPCs vary over a much larger spatio-temporal scale (large scale fading).

2Note that "phase" is a narrow-band concept and can be used only as an approximation in UWB systems, in particular
when the lower band edge is at f = 0.
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Remark A.3.1. It is worth noting that the side-lobes of the sinc function in (A.2) introduce faster

time-variations of the amplitude of the resolvable MPCs than the large-scale fading, over the same

spatio-temporal scale as the delay variations, and account for the leakage of the MPC energy over

nearby channel taps. However, this phenomenon is limited, and can be quantified as follows. The

most severe leakage occurs when the MPC arrives exactly in the middle between two sampling times,

in which case most of the energy (2sinc(0.5)2 ≃ 80%) is spread equally between two nearby taps

(each with amplitude 1 − sinc(0.5) ≃ 37% smaller than in the no leakage scenario, where the MPC

delay is exactly an integer number of the sampling period), and the remaining 20% is leaked among

the nearby taps. Therefore, the side-lobes of the sinc function account for at most a 37% variation of

the amplitude of the main MPC tap in (A.2). The problem of MPCs falling in between two sample

points can be modeled as a basis mismatch [109].

In the next section, we present the observation and the channel models. In particular, in Sec. A.4.1

we present the HSD model, which represents a simplification with respect to other models presented

in the literature, e.g., (A.4), but at the same time it captures the main propagation phenomena of the

UWB channel discussed in this section: resolvable MPCs, modeled by the sparse vector (A.3), unre-

solvable MPCs, diffuse scattering and frequency distortion, modeled by a random, dense vector. Also,

based on the analysis of the spatio-temporal scale of variation in the UWB channel, in Sec. A.4.2 we

discuss different practical scenarios, differing in the side-information available at the receiver for the

purpose of channel estimation, which enables more accurate estimation techniques.

A.4 System Model and Hybrid Sparse-Diffuse channel model

We consider a single-user UWB system. The source transmits a sequence of M = N + L − 1

pilot symbols, x(k), k = −(L − 1), . . . , N − 1, over a channel h(l), l = 0, . . . , L − 1 with known

delay spread L ≥ 1. The received, discrete time, baseband signal over the corresponding observation

interval of duration N is given by

y(k) =
L−1
∑

l=0

h(l)x(k − l) + w(k), k = 0, . . . , N − 1, (A.5)

where w(k) ∈ CN (0, σ2
w) is i.i.d. noise.

If we collect the N received samples in the column vector y = [y(0), y(1), . . . , y(N − 1)]T , we
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have the following matrix representation:

y = Xh+w. (A.6)

Above,X ∈ C
N×L is theN×L Toeplitz matrix associated with the pilot sequence, having the vector

of the transmitted pilot sequence [x(−k), x(−k + 1), . . . , x(−k +N − 1)]T , k = 0, . . . , L − 1, as

its kth column, h = [h(0), h(1), . . . , h(L− 1)]T ∈ C
L is the column vector of channel coefficients,

and w = [w(0), w(1), . . . , w(N − 1)]T ∼ CN (0, σ2
wIN ) is the noise vector.

We assumeX∗X ≻ 0, so that the LS estimate hLS = (X∗X)−1
X∗y is a sufficient statistic [110]

for the channel. Therefore, without loss of generality for the purpose of channel estimation, we

consider the observation model

hLS = (X∗X)−1
X∗y = h+ (X∗X)−1

X∗w = h+
√
S
−1

n, (A.7)

where we have defined the SNR matrix S = X∗X

σ2
w

≻ 0, and n = 1
σ2
w

√
S
−1

X∗w ∼ CN (0, IL). With

a slight abuse of notation, we will refer to the LS estimate hLS as the "observed" sequence. Moreover,

we assume that the pilot sequence is orthogonal, so that S is a diagonal matrix. Then, the noise vector
√
S
−1

n in the LS estimate has independent entries. This assumption greatly simplifies the channel

estimation problem. In fact, when the channel has independent entries over the delay dimension (this

is the case for the HSD model we develop), a per-tap estimation approach, rather than a joint one, is

optimal. The case with non-orthogonal pilot sequences is considered in Sec. A.8.

A.4.1 HSD Channel Model

The channel h follows the HSD model developed in [111],

h = as ⊙ cs + hd, (A.8)

where the terms as ⊙ cs ∈ C
L and hd ∈ C

L represent the sparse3 and the diffuse components,

respectively. In particular, as ∈ {0, 1}L is the sparsity pattern, which is equal to one in the positions

of the specular MPCs, and equal to zero otherwise; its entries are drawn i.i.d. from B(q), where
q ≪ 1 so as to enforce sparsity. In the sequel, we refer to the non-zero entries of as ⊙ cs ∈ C

L as

3In the following, we use the terms sparse, specular and resolvable MPCs interchangeably. In fact, the physical specular
components (resolvable MPCs) of the channel can be modeled and represented by a sparse vector (A.3).
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active sparse components. The vector of sparse coefficients, cs ∈ C
L, is drawn from the continuous

probability distribution p(cs), with second order moment E [csc
∗
s] = Λs, where Λs is a diagonal

matrix with entries given by the PDP Λs(k, k) = Ps(k), k = 0, . . . , L − 1.4 Finally, we use the

Rayleigh fading assumption for the diffuse component, hd ∼ CN (0,Λd), where Λd is diagonal,

with entries given by the PDP Λd(k, k) = Pd(k), k = 0, . . . , L− 1.

Remark A.4.1. The Bernoulli model for as can be interpreted as a discretized Saleh-Valenzuela

model [112]. In fact, according to the latter, the inter-arrival times of the specular components have

an exponential distribution, whose discrete counterpart is the geometric distribution. This in turn can

be interpreted as the inter-arrival time of two consecutive "1"s in a sequence of i.i.d. Bernoulli draws.

Remark A.4.2. In general, the Rayleigh fading assumption does not hold for the distribution of the

sparse coefficients p(cs) (unlike the diffuse ones), since only very few propagation paths contribute

to an active tap in the sparse channel, thus limiting the validity of the central limit theorem. Channel

measurement campaigns have shown that the large scale fading, affecting the amplitude of the en-

tries of cs, can be modeled by a log-normal distribution [101]. However, for the sake of analytical

tractability, in the following we either treat cs as a deterministic unknown vector, when its second

order moment Λs is unknown, or we treat it using the Gaussian approximation, when knowledge of

Λs is available.

Remark A.4.3. Note that in [101] the amplitudes of the diffuse coefficients are modeled by a Weibull

distribution, with a delay dependent shape parameter σ < 2, and approach the Rayleigh fading distri-

bution (σ = 2) only for large excess delays. This distribution represents a fading worse than Rayleigh.

However, we adopt the Rayleigh fading approximation for simplicity and tractability. Also, the side-

lobes of the sinc function in (A.2) introduce correlation in the delay domain, which is not accounted

for under the Rayleigh fading model. This is a common assumption in standard cellular channel mod-

els, where measurements have well established the independence of fading on different taps [113].

Despite its simplicity, we argue that the HSD model is able to capture the main UWB propagation

mechanisms discussed in Sec. A.3. In fact, the resolvable specular components and the fine delay

resolution are appropriately modeled by the sparse vector as ⊙ cs, whereas diffuse scattering, multi-

path interference and the frequency distortion are approximated by the diffuse component hd. This

is confirmed by simulation results in Chapter A.9, where we validate the proposed HSD model based

on a realistic channel emulator [102].
4It is worth noting that this is not a PDP in the traditional sense, but rather represents the power profile of the active

sparse components, as a function of the delay.



150 Chapter A. UWB Sparse/Diffuse Channel Estimation

A.4.2 Channel Estimation scenarios

The HSDmodel is described by a number of deterministic parameters, namely, the sparsity level q,

the PDP of the diffuse component Pd and the PDP of the sparse component Ps. Accurate knowledge

about some or all of these parameters may not be available at the receiver, depending on a number

of factors, most importantly the length of the interval over which the channel is observed, and the

dynamics of the environment.

Let
{

h(j) = a
(j)
s ⊙ c

(j)
s + h

(j)
d , j = 0, . . . , Nch − 1

}

be a sequence of Nch channel realizations,

spaced apart in time by ∆t, corresponding to a spatial separation by ≃ λ0, resulting from the rel-

ative motion of the receiver with respect to the scatterers and the transmitter position. Under this

assumption, the samples of the diffuse component
{

h
(j)
d , j ≥ 0

}

can be approximated as drawn in-

dependently from CN (0,Λd), due to multipath interference (Sec. A.3).

On the other hand, the positions of the active sparse coefficients
{

a
(j)
s , j = 0, . . . , Nch − 1

}

ex-

hibit correlation with each other. In fact, as pointed out in Sec. A.3, a variation of the delay as-

sociated with a specular MPC by one channel delay bin occurs over a spatial scale of the order of

c0
Wλ0

∈ [0.5, 5] wavelengths. Therefore, the positions of the "1"s observed in subsequent realizations

of the sparsity pattern a
(j)
s are bound not to vary appreciably over a large spatial scale, relative to the

wavelength.

A similar consideration holds for the amplitudes of the specular components (i.e., the active sparse

components in the vector a(j)s ⊙ c
(j)
s ), which vary according to the large scale fading, i.e., over a

relatively large spatial scale, compared to the rate of variation of the diffuse component (however, the

side-lobes of the sinc function account for a 37% variation in the amplitude on the same spatial scale

as the delay variations, as discussed in Remark A.3.1 of Sec. A.3).

This correlation structure, i.e., slow amplitude and delay variations, may be exploited to enhance

the estimation accuracy of the sparse component a(j)s ⊙ c
(j)
s , by tracking the position and amplitude

of the resolvable MPCs over subsequent observation windows. However, in this work we consider

estimation of a(j)s ⊙c
(j)
s based on either only one channel realization, or the statistics of the ensemble

of realizations that ignores the information about the temporal sequence in which the realizations oc-

cur. We consider three different physical scenarios, dictated by the length of the observation window

Nch.



A.4. System Model and Hybrid Sparse-Diffuse channel model 151

A.4.3 Single Snapshot of the channel

If a very short observation window is available (Nch = 1, or less than a wavelength in the spa-

tial domain), averaging over the small scale and the large scale fading is not possible. Under this

assumption, statistical information about the channel cannot be reliably collected, and the channel

can reasonably be considered a deterministic and unknown vector. In this case, an LS estimate hLS

may be employed. In the absence of prior information about the channel, this is a robust approach for

channel estimation.

Alternatively, we may exploit further structure of the channel, e.g., exponential PDP of the diffuse

component, to average the fading over the delay dimension rather than over time. As shown in

Sec. A.7, under this assumption, an accurate PDP estimate of h(j)
d is possible even in the extreme

case Nch = 1. We may then assume that the PDP of h(j)
d is known at the receiver, whereas the vector

c
(j)
s is modeled as deterministic and unknown.

As to the sparsity level q, letting Nsc be the number of resolvable scatterers, we have q ≃ Nsc
L .

This number is not expected to vary appreciably over a relatively long observation interval, and can be

estimated by counting the number of resolvable MPCs which can be distinguished from the noise plus

diffuse background. However, an accurate estimate of Nsc is obtained by averaging the small-scale

fading and the noise over subsequent channel realizations. Hence, we model q as a deterministic and

unknown parameter.

A.4.4 Averaging over the Small scale fading

When a larger observation window is available (corresponding, in the spatial domain, to a few

wavelengths, Nch > 1), averaging over the small scale fading (amplitude and phase of the diffuse

component) may be possible. In this case, the PDP of h(j)
d can be estimated accurately by averaging

over subsequent realizations of the fading process.

In this scenario, we assume that Λd is perfectly known at the receiver. This knowledge can be

exploited by performing aMinimumMSE (MMSE) estimate of h(j)
d , which achieves a better accuracy

than LS. On the other hand, due to the inability to average over the large-scale fading, which affects

the variation of the amplitude of the resolvable MPCs, c(j)s is treated as deterministic and unknown.



152 Chapter A. UWB Sparse/Diffuse Channel Estimation

Table A.1. Estimation scenarios considered.

Scenario sparsity q PDP Λs PDP Λd

S0 Single snapshot (unstructured) unknown unknown unknown
S1 Single snapshot unknown unknown known

(PDP structure exploited)
S2 Avg. over Small scale fading known unknown known
S3 Avg. over Small&Large scale fading known known known

A.4.5 Averaging over the Small scale and the Large scale fading

Finally, when the observation interval spans several wavelengths (Nch ≫ 1), averaging over the

large scale, other than the small scale fading, is possible.

In this scenario, we assume that Λd, Λs and q are known at the receiver. This information can

be exploited to compute a linear-MMSE estimate of c(j)s and h
(j)
d , thus enhancing the estimation

accuracy over an unstructured estimate (e.g., LS).

The main scenarios of interest, and the side information at the receiver, are listed in Table A.1.

Scenario S0 will not be further considered, since the channel is estimated via LS. The next chapter is

devoted to the design and analysis of channel estimators based on the HSD model.

A.5 HSD estimators

A.5.1 MMSE Estimator

When Λd, Λs and q are known, we can devise an MMSE estimator. By exploiting the orthog-

onality of the pilot sequence, we can use a per-tap estimation approach. The MMSE estimate of

the kth delay bin is given by the posterior mean of the channel, given the observed channel sample

hLS(k) [110],

ĥMMSE(k) = Pr (as(k) = 0|hLS(k))E [hd(k)|hLS(k),as(k) = 0]

+ Pr (as(k) = 1|hLS(k))E [cs(k) + hd(k)|hLS(k),as(k) = 1] , (A.9)

where we have conditioned on the realization of the sparsity bit as(k). In particular, the sum is over

the posterior mean under the two hypotheses as(k) = 1 and as(k) = 0, weighted by their posterior

distribution Pr (as(k) = 1|hLS(k)) and Pr (as(k) = 0|hLS(k)), respectively.

In order to compute (A.9), we use the circular Gaussian approximation for cs(k).5 Under this

5As discussed in Remark A.4.2 in Sec. A.4, the large scale fading is commonly modeled by a log-normal prior; however,
due to the difficulty in handling it, the Rayleigh fading approximation is used, thus leading to the classical linear MMSE
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assumption, hLS(k)|{as(k) = a,h(k)} ∼ CN (h(k), 1/Sk,k), whereas the channel sample h(k),

conditioned on as(k) = a, is distributed as h(k)|as(k) = a ∼ CN (0,as(k)Ps(k) + Pd(k)). Then,

h(k)|{hLS(k),as(k) = a} ∼ CN (m(a),Σ), with posterior mean

m(a) = E [h(k)|hLS(k),as(k) = a] =
aPs(k) + Pd(k)

1/Sk,k + aPs(k) + Pd(k)
hLS(k). (A.10)

From (A.9), we finally obtain

ĥMMSE(k) = Pr (as(k) = 0|hLS(k))
Sk,kPd(k)

1 + Sk,kPd(k)
hLS(k)

+ Pr (as(k) = 1|hLS(k))
Sk,k (Ps(k) + Pd(k))

1 + Sk,k (Ps(k) + Pd(k))
hLS(k),

where, from Bayes’ rule and as(k) ∼ B(q), letting Qk =
Sk,kPs(k)

1+Sk,kPd(k)
, we have

Pr (as(k) = 1|hLS(k)) =

(

1 +
1− q

q

p (hLS(k)|as(k) = 0)

p (hLS(k)|as(k) = 1)

)−1

=
1

1 + 1−q
q (1 + Qk) exp

{

− Qk

1+Qk

Sk,k|hLS(k)|2
1+Sk,kPd(k)

}
. (A.11)

A.5.2 Generalized MMSE and Generalized Thresholding Estimators

In this section, we develop estimators for scenarios S1 and S2. In particular, Λd is assumed to be

known at the receiver, whereas cs is treated as a deterministic and unknown vector. The case where

Λd is unknown and is estimated from the observed sequence is treated in Sec. A.7.

For generality, we assume that the sparsity level q is unknown, and an estimate q̃ of q, which

might be different from the real q, is used in the estimation phase. This choice represents a gener-

alization with respect to [111], where the true sparsity level q is used. We will show by simulation

in Chapter A.9, and by analysis in Sec. A.6, that assuming a sparsity level q̃ < q often improves the

estimation accuracy, thus implying that knowledge of this parameter is not crucial to the performance

of the estimators.

We proceed as follows. cs is estimated by Maximum Likelihood (ML). Then, the estimate ĉs is

used to perform either an MMSE or a Maximum A Posteriori (MAP) estimate of the sparsity pattern

estimator. We have numerically evaluated the performance loss incurred by using the linear MMSE estimator over an
MMSE estimator based on the log-normal prior, for the simple scalar model y = cs + n, where cs = eνs+iθs , with
νs ∼ N (0, 1) and θs uniform in [0, 2π], is the channel coefficient with log-normal amplitude, n ∼ CN (0, σ2

w) is the noise;
we found that the performance loss is at most 1.67 dB, at 0 dB SNR level.



154 Chapter A. UWB Sparse/Diffuse Channel Estimation

as, denoted by âs, assuming the prior as ∼ B(q̃)L. We refer to these estimators as the GMMSE and

GThres estimators, respectively. Finally, the diffuse component hd is estimated via MMSE, based

on the residual estimation error hLS − âs ⊙ ĉs. The ML estimate of cs(k) is given by

ĉs(k) = argmin
cs(k)∈C

{− ln p (hLS(k)|cs(k),as(k) = 1)} = hLS(k), (A.12)

where we have used the fact that, when conditioned on as(k) = 0, the observation hLS(k) does

not depend on cs(k), and hLS(k)| {cs(k),as(k) = 1} ∼ CN
(

cs(k), [Sk,k]
−1 + Pd(k)

)

. We thus

obtain ĉs = hLS. Using the estimate ĉs(k) = hLS(k) and conditioning on as(k) = a, a ∈ {0, 1},
the MMSE estimate of the diffuse component hd(k) is given by

ĥ
(a)
d (k) = E [hd(k)|hLS(k), ĉs(k), âs(k) = a] =

Sk,kPd(k)

1 + Sk,kPd(k)
(1− a)hLS(k). (A.13)

Finally, by combining the estimates âs, ĉs and ĥ
(a)
d , the overall HSD estimate is given by

ĥ(k) = âs(k)hLS(k) + (1− âs(k))
Sk,kPd(k)

1 + Sk,kPd(k)
hLS(k). (A.14)

We now develop the MMSE and MAP estimates of as(k).

A.5.3 Generalized MMSE Estimator

The MMSE estimate of the sparsity bit as(k) is given by

â(GMMSE)
s (k) = E [as(k)|hLS(k), ĉs(k)] = Pr (as(k) = 1|hLS(k), ĉs(k)) . (A.15)

Using Bayes’ rule, ĉs(k) = hLS(k), and assuming as(k) ∼ B(q̃), we have

â(GMMSE)
s (k) =

1

1 + eα exp
{

−Sk,k|hLS(k)|2
1+Sk,kPd(k)

} , (A.16)

where we have defined α = ln
(

1−q̃
q̃

)

.
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A.5.4 Generalized Thresholding Estimator

Using Bayes’ rule and the ML estimate ĉs(k) = hLS(k), the MAP estimate of as is given by

â(GThres)
s (k) = arg max

a∈{0,1}
{ln Pr (as(k) = a|hLS(k), ĉs(k))} (A.17)

= arg min
a∈{0,1}

{

(1− a)
Sk,k |hLS(k)|2
1 + Sk,kPd(k)

+ a ln

(

1− q̃

q̃

)

}

= I
(

|hLS(k)|2 ≥ α (1/Sk,k + Pd(k))
)

.

This solution consists in a thresholding of the LS estimate, hence the name Generalized Thresholding

estimator, where the diffuse component represents noise for the estimation of the sparse coefficients.

For this reason, the threshold is proportional, by a factor α, to the sum of the noise strength 1/Sk,k

and the power of the diffuse component Pd(k). It is worth noting that, if α ≤ 0 (i.e., q̃ ≥ 1
2 ), then

â
(GThres)
s (k) = 1, and the GThres estimator trivially reduces to the LS solution.

A.6 MSE analysis

Let ĥ(X) be any estimator, where X is an estimator label. We define the MSE of the estimator

ĥ(X), as a function of the SNR matrix S, as

MSE(X) (S) =
1

L
E

[

∥

∥

∥
ĥ(X) − h

∥

∥

∥

2

2

]

=
1

L

∑

k

MSE
(X)
k (Sk,k) , (A.18)

where, owing to the use of per-tap estimation approaches, the sum is over the MSE terms associated

with the estimation of the kth channel coefficient, i.e.,

MSE
(X)
k (Sk,k) = E

[

∣

∣

∣
ĥ(X)(k)− h(k)

∣

∣

∣

2
]

. (A.19)

The expectation is computed with respect to the joint probability distribution p(as)p(cs)p(hd)p(n).

In this section, we study the asymptotic behavior of each term MSE
(X)
k (Sk,k) , k = 0, . . . , L− 1, in

the limit of high (Sk,k → +∞) and low (Sk,k → 0+) SNR.

For the sake of a more concise notation, we define y = hLS(k), ĥ(y) = ĥ(k), as = as(k),

cs = cs(k), hd = 1√
Pd(k)

hd(k) (normalized to have unit variance), h = h(k), n = n(k), S = Sk,k

and Pd = Pd(k). From (A.8) and (A.7), we can then rewrite the observation model associated with

the kth channel entry as y = ascs+
√
Pdhd+

1√
S
n,where as ∼ B(q), hd ∼ CN (0, 1), n ∼ CN (0, 1).

For the LS estimator, we have mse
(LS)
k (S) , SMSE

(LS)
k (S) = E

[

S |y − h|2
]

= 1. Hence,
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the normalized MSE, mse
(LS)
k (S), is a constant, independent of the SNR. Herein, we show that the

GMMSE andGThres estimators exhibit the same behavior in the asymptotic high and low SNR, i.e.,

letting mse
(X)
k (S) , SMSE

(X)
k (S) , we have

lim
S→0(∞)

mse
(X)
k (S) = const. > 0, X ∈ {GMMSE,GThres},

for a proper constant, which depends on the asymptotic regime and on the estimator. To this end, let

f (X)
(√

Sy, n
)

= S
∣

∣

∣
ĥ (y)− h

∣

∣

∣

2
. (A.20)

Then, we have

mse
(X)
k (S) = E

[

f (X)
(√

Sh+ n, n
)]

, (A.21)

where the expectation is calculated with respect to h = ascs +
√
Pdhd and n ∼ CN (0, 1), which

are independent of the SNR S. From Lemma A.10.1 in Appendix A.A, we can exchange the limit

operator with the expectation, yielding, for Slim ∈ {0,+∞},

lim
S→Slim

mse
(X)
k (S) = E

[

lim
S→Slim

f (X)
(√

Sh+ n, n
)

]

. (A.22)

We evaluate (A.22) for the GMMSE and GThres estimators in Secs. A.6.1 and A.6.2, respectively.

A.6.1 Generalized MMSE estimator

Substituting the expression of the GMMSE estimator (A.14) and (A.16) in (A.20), we obtain,

after some algebraic manipulation,

f (GMMSE)
(√

Sy, n
)

=

∣

∣

∣

∣

∣

∣

n−
eα exp

{

−S|y|2
1+SPd

} √
Sy

1+SPd

1 + eα exp
{

−S|y|2
1+SPd

}

∣

∣

∣

∣

∣

∣

2

. (A.23)

We distinguish the three cases S → +∞ with Pd = 0, S → +∞ with Pd > 0, and S → 0.
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A.6.1.1 High SNR with no diffuse component: S → +∞, Pd = 0

When Pd = 0, we have
√
Sy =

√
Sascs + n and

f (GMMSE)
(√

Sascs + n, n
)

=

∣

∣

∣

∣

∣

∣

∣

∣

n−
eα exp

{

−
∣

∣

∣

√
Sascs + n

∣

∣

∣

2
}

1 + eα exp

{

−
∣

∣

∣

√
Sascs + n

∣

∣

∣

2
}

(√
Sascs + n

)

∣

∣

∣

∣

∣

∣

∣

∣

2

.

In the limit of high SNR, we obtain











lim
S→+∞

f (GMMSE)
(√

Scs + n, n
)

= |n|2 , as = 1, a.e.,

lim
S→+∞

f (GMMSE) (n, n) = |n|2

(1+eα exp{−|n|2})2 , as = 0,

where a.e. stands for almost everywhere, i.e., the limit holds except on a set with probability measure

zero. In particular, this set is given by {cs = 0}, which has probability measure zero since cs is a

continuous random variable. From (A.22), by averaging over as ∼ B(q) and n ∼ CN (0, 1), we thus

obtain

lim
S→+∞

mse
(GMMSE)
k (S) = qE

[

|n|2
]

+ (1− q)E







|n|2
(

1 + eα exp
{

− |n|2
})2






= q + (1− q)g(α),

where we have defined g(α) = e−α ln (1 + eα) and we have used Lemma A.10.2 in Appendix A.A.

Therefore, in the high SNR regime (i.e., letting σ2
w → 0, which scales the SNR matrix S to infinity)

with no diffuse component, Pd(k) = 0, ∀k, using (A.18), we obtain the limiting MSE behavior

MSE(GMMSE)(S) =
1

L

L−1
∑

k=0

mse
(GMMSE)
k (Sk,k)

Sk,k
≃∞ MSE(LS)(S) (q + (1− q)g(α)) ,

where we have defined ≃∞ as the high SNR approximation, and we have denoted the MSE of the LS

estimator asMSE(LS)(S) = 1
Ltr

(

S−1
)

.

A.6.1.2 High SNR with diffuse component: S → +∞, Pd > 0

From (A.23), we have limS→+∞ f (GMMSE)
(√

Sh+ n, n
)

= |n|2. Then, from (A.22),

lim
S→+∞

mse
(GMMSE)
k (S) = E

[

|n|2
]

= 1. (A.24)
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From (A.18), the limiting behavior of the overall MSE in the high SNR, with Pd(k) > 0, ∀k, is given
byMSE(GMMSE)(S) ≃∞ MSE(LS)(S).

A.6.1.3 Low SNR: S → 0

From (A.23), we have

lim
S→0

f (GMMSE)
(√

Sh+ n, n
)

=

∣

∣

∣

∣

∣

∣

n

1 + eα exp
{

− |n|2
}

∣

∣

∣

∣

∣

∣

2

.

Then, using (A.22) and Lemma A.10.2 in Appendix A.A, we obtain

lim
S→0

mse
(GMMSE)
k (S) = E





∣

∣

∣

∣

∣

∣

n

1 + eα exp
{

− |n|2
}

∣

∣

∣

∣

∣

∣

2

 = g(α).

Then, from (A.18), the overall MSE in the low SNR regime behaves like

MSE(GMMSE)(S) ≃0 MSE(LS)(S)g(α), (A.25)

where we have defined ≃0 as the low SNR approximation.

A.6.2 Generalized Thresholding estimator

Substituting the expression of theGThres estimator (A.14) and (A.17) in (A.20), we obtain, after

some algebraic manipulation,

f (GThres)
(√

Sh+ n, n
)

= I
(

∣

∣

∣

√
Sh+ n

∣

∣

∣

2
≥ α(1 + SPd)

)

|n|2

+ I
(

∣

∣

∣

√
Sh+ n

∣

∣

∣

2
< α(1 + SPd)

)

∣

∣

∣

∣

∣

√
Sh− SPdn

1 + SPd

∣

∣

∣

∣

∣

2

. (A.26)

Note that, if α ≤ 0, then we have a trivial thresholding operation, and the estimator is equivalent to

LS. This case is of no interest. In the following, therefore, we study the case α > 0.

Similarly to the GMMSE estimator, we distinguish the three cases S → +∞ with Pd = 0,

S → +∞ with Pd > 0, and S → 0.
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A.6.2.1 High SNR with no diffuse component: S → +∞, Pd = 0

When Pd = 0 we have y = ascs +
√
S
−1

n and

f (GThres)
(√

Sascs + n, n
)

= I
(

∣

∣

∣

√
Sascs + n

∣

∣

∣

2
≥ α

)

|n|2 + I
(

∣

∣

∣

√
Sascs + n

∣

∣

∣

2
< α

)

∣

∣

∣

√
Sascs

∣

∣

∣

2
.

We have











lim
S→+∞

f (GThres)
(√

Scs + n, n
)

= |n|2 , as = 1, a.e.,

lim
S→+∞

f (GThres) (n, n) = I
(

|n|2 ≥ α
)

|n|2 , as = 0,

where the first limit holds a.e., i.e., except on the set with zero probability measure {cs = 0}.
From (A.22), we then obtain

lim
S→+∞

mse
(GThres)
k (S) = qE

[

|n|2
]

+ (1− q)E
[

I
(

|n|2 ≥ α
)

|n|2
]

= q + (1− q)w(α),

where in the last step we have used the fact that |n|2 ∼ E (1) to compute the second expectation term,

and we have defined w(α) = e−α (1 + α). Then, from (A.18), the overall MSE in the high SNR

regime with Pd(k) = 0, ∀k, behaves like

MSE(GThres) (S) ≃∞ MSE(LS) (S)
(

q + (1− q)e−α (1 + α)
)

.

A.6.2.2 High SNR with diffuse component: S → +∞, Pd > 0

From (A.26), we have lim
S→+∞

f (GThres)
(√

Sh+ n, n
)

= |n|2. Then, from (A.22), we obtain

lim
S→+∞

mse
(GThres)
k (S) = E

[

|n|2
]

= 1. (A.27)

Therefore, in the high SNR regime with Pd(k) > 0, ∀k, the GThres estimator performs like

MSE(GThres) (S) ≃∞ MSE(LS) (S) . (A.28)
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A.6.2.3 Low SNR: S → 0

From (A.26), we have

lim
S→0

f (GThres)
(√

Sh+ n, n
)

= I
(

|n|2 ≥ α
)

|n|2 . (A.29)

Then, from (A.22), we obtain

lim
S→+∞

mse
(GThres)
k (S) = E

[

I
(

|n|2 ≥ α
)

|n|2
]

= w(α).

Therefore, in the low SNR regime, the GThres estimator performs like

MSE(GThres) (S) ≃0 MSE(LS) (S) e−α (1 + α) . (A.30)

A.6.3 Discussion

The asymptotic MSE behavior of the GMMSE and GThres estimators is summarized in Table

A.2. A plot is given in Fig. A.1. We compare their limiting behavior with the (unstructured) LS

estimator and with the Oracle estimator, which assumes the HSD model, perfect knowledge of as,

and treats cs as a deterministic unknown vector. The latter, by knowing as, performs an LS estimate

of cs and anMMSE of hd. Its MSE as a function of the SNR matrix S is given by

MSE(Oracle) (S) = qMSE(LS) (S) +
1− q

L

L−1
∑

k=0

Pd(k)

1 + Sk,kPd(k)
.

The limiting MSE behavior in the table is normalized toMSE(LS) (S). Then, a value smaller than

1 indicates that the estimation accuracy, in the corresponding regime, improves over LS. Moreover,

the smaller the value, the better the asymptotic MSE accuracy.

Notice that, in the high SNR with diffuse component, all estimators achieve the LS MSE ac-

curacy. In fact, in this regime the diffuse component is strong compared to the noise level, i.e.,

Pd(k) ≫ 1/Sk,k, hence the observed channel exhibits a dense structure, yielding the same accuracy

as LS. On the other hand, in the high SNR with no diffuse component, the GMMSE and GThres

estimators achieve a better estimation accuracy than LS. Their limiting behavior can be explained as

follows. When as(k) = 1 (with probability q), the active sparse coefficients cs(k), which are much

stronger than the noise background in the high SNR, are always correctly detected, and are estimated
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Table A.2. Asymptotic MSE behavior of LS, Oracle, GMMSE and GThres estimators. α =

ln
(

1−q̃
q̃

)

, g(α) = e−α ln (1 + eα) , w(α) = e−α (1 + α).

MSE(X)(S)

MSE(LS)(S)

High SNR, High SNR,
Low SNR

Λd = 0 Λd ≻ 0

LS,GThres, α ≤ 0 1 1 1

Oracle q 1 q

GMMSE q + (1− q)g(α) 1 g(α)

GThres, α > 0 q + (1− q)w(α) 1 w(α)

−5 0 5 10
10

−4

10
−2

10
0

α

li
m

S
→

0
m

se
(X

)
k

(S
)

Low SNR

 

 

GMMSE

GThres

−5 0 5 10
10

−1

10
0

α

li
m

S
→

+
∞

m
se

(X
)

k
(S

)

High SNR, no diff. comp., q = 0.1

 

 

GMMSE

GThres

−5 0 5 10
10

−3

10
−2

10
−1

10
0

α

li
m

S
→

+
∞

m
se

(G
M

M
S

E
)

k
(S

)

GMMSE, High SNR, no diff. comp.

 

 

q = 0.1

q = 0.01

q = 0.001

−5 0 5 10
10

−3

10
−2

10
−1

10
0

α

li
m

S
→

+
∞

m
se

(G
T

h
r
e
s
)

k
(S

)

GThres, High SNR, no diff. comp.

 

 

q = 0.1

q = 0.01

q = 0.001

Figure A.1. High and Low asymptotic SNR behavior of theGMMSE andGThres estimators as a function

of α = ln
(

1−q̃
q̃

)

.

with the same estimation accuracy as LS. On the other hand, when as(k) = 0 (with probability

1− q), the GMMSE (respectively, GThres) estimator incurs a mis-detection errorMSE(LS)(S)g(α)

(MSE(LS)(S)w(α)), due to strong noise samples which are mis-detected as active sparse components.

Moreover, since g(α) and w(α) are decreasing functions of α ∈ R (i.e., increasing functions of

q̃ ∈ (0, 1)), with limα→−∞ g(α) = w(0) = 1 and limα→+∞ g(α) = limα→+∞w(α) = 0, the MSE

is a decreasing function of α (i.e., an increasing function of q̃). In particular, for small values of α, the

estimates of as in (A.16) and (A.17) approach 1 for both the GMMSE and the GThres estimators,

hence the overall HSD estimate (A.14) approaches the LS solution, yielding the same LS accuracy.

Conversely, for increasing values of α, the GMMSE and GThres estimators approach the MSE
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accuracy of the Oracle estimator. Note that, the larger α, the larger the threshold level of the GThres

estimator in (A.17), hence the fewer noise samples are mis-detected as active sparse components, and

the smaller the overall mis-detection error and MSE accuracy (a similar interpretation holds for the

GMMSE estimator).

Similarly, in the low SNR, the MSE of the GMMSE and GThres estimators is a decreasing

function of α. In particular, a better MSE than the Oracle estimator is achieved for α sufficiently

large. In fact, the main source of error is associated with the LS estimates of the sparse coefficients.

On the other hand, theMMSE estimate of the diffuse component is forced to zero at small SNR values,

hence the resulting MSE approaches the channel energy floor. Therefore, the larger α (alternatively,

the smaller q̃), the smaller the weight given to the LS estimates of the sparse coefficients in (A.14)

with respect to the MMSE estimates of the diffuse coefficients, and the better the estimation accuracy.

In the limit α → +∞ (i.e., q̃ → 0+), the GMMSE and GThres estimators treat the channel as being

purely diffuse, hence the MMSE estimate of the channel is forced to zero and the MSE approaches

the channel energy floor.

We conclude that, in the asymptotic SNR regimes, using α > ln 1−q
q (i.e., q̃ < q) improves the

performance of the GMMSE and GThres estimators compared to assuming the true sparsity prior

q. Hence, it is beneficial to use a conservative approach, i.e., to assume the sparse component to be

sparser than it actually is. However, this behavior does not always hold for medium SNR, where in

fact a larger α (i.e., a smaller q̃) may induce a larger MSE. This behavior can be seen by studying the

two extreme cases α → −∞ and α → +∞, i.e., q̃ → 1 and q̃ → 0, respectively. In the first case

(α → −∞, q̃ → 1), the two estimators are equivalent to LS, yielding the same MSE accuracy as

LS. Conversely, when α → +∞ (i.e., q̃ → 0+), the channel is treated as being diffuse only and is

estimated viaMMSE. The MSE in this case is given by

MSE(Diff)(S) =
1

L

L−1
∑

k=0

E

[

∣

∣

∣

∣

Sk,kPd(k)

1 + Sk,kPd(k)
hLS(k)− h(k)

∣

∣

∣

∣

2
]

=
1

L

L−1
∑

k=0

(

q
Ps(k)

(1 + Sk,kPd(k))
2 +

Pd(k)

1 + Sk,kPd(k)

)

, (A.31)

which performs worse than LS, for any value of the SNR matrix S, for sufficiently large values of

Ps(k), k = 0, . . . , L − 1. Hence, in medium SNR we expect a trade-off between large values of α

(i.e., small values of q̃), which induce sparsity in the estimate of the sparse component, and small

values of α, which, on the other hand, induce a less sparse solution and privilege the diffuse channel
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component.

It is worth noting that the MMSE estimator of the channel, which assumes perfect knowledge of

q, Λs and Λd, minimizes the MSE when the true sparsity level q̃ = q is employed. We conclude that

the uncertainty about the sparse coefficients, which are treated as deterministic and unknown under

the GMMSE and GThres estimators, is compensated by employing a conservative approach in the

estimation of the sparse component.

Finally, for a given value of α, the GMMSE estimator achieves a better MSE accuracy than the

GThres estimator, in the asymptotic regimes. In fact, the MMSE estimate of as(k) (A.16), i.e.,

the posterior probability of as(k) = 1, incorporates also the reliability associated with an active

sparse component, and therefore, the closer the estimate to one, the more likely an active sparse

component. On the other hand, the MAP estimate of as(k), by allowing only the two extreme values

of âs(k) ∈ {0, 1}, completely discards the reliability associated with these estimates, thus incurring

a performance degradation.

A.7 Structured PDP Estimation of the diffuse component

In the derivation of theGMMSE andGThres estimators in the previous section, we have assumed

that the PDP of the diffuse component hd is perfectly known at the receiver. However, in a practical

system, this is unknown, and therefore needs to be estimated.

Herein, we develop a structured estimate of the PDP Pd, when the observation interval is too

short to allow time-averaging over the small scale fading. By exploiting prior information about the

structure of the PDP, we can average the small scale fading over the delay dimension, rather than over

subsequent realizations of the fading process, thus enhancing the estimation accuracy.

We assume an exponential PDP model [101, 113, 114] Pd(k) = βe−ωk, k = 0, . . . , L − 1,

where the deterministic, unknown parameters β ≥ 0 and ω ≥ 0 represent the relative power and

the decay rate of the PDP, respectively. We derive an ML estimate of these parameters, using the

EM algorithm (the general EM framework is presented in, e.g., [115]). For simplicity, we assume a

single channel snapshot. However, the following derivation can be extended to include a sequence of

channel realizations. Moreover, we treat the vector cs as a deterministic unknown parameter, and we

assume a sparsity level q̃ (possibly, 6= q), which is consistent with the design choice of the GMMSE

and GThres estimators.

Let the HSD channel and the observed sequence be given by (A.8) and (A.7), respectively.
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From (A.8), if as(k) = 1, then hLS(k) = cs(k) + hd(k) +
√

Sk,k
−1

n(k). In this case, since

cs(k) is a deterministic, unknown parameter, the observed sample hLS(k) does not provide statistical

information to estimate the diffuse component (hence, its power). In fact, the ML estimate of cs(k)

is ĉs(k) = hLS(k) (A.12). The estimated contribution from the noise and the diffuse component is

then hLS(k) − ĉs(k) = 0, and the estimate of hd(k), given by (A.13), is forced to zero. Therefore,

the observations corresponding to the active sparse components should be neglected. Conversely,

all the statistical information to estimate the PDP parameters ω and β is contained in the vector

(1−as)⊙hLS = (1−as)⊙ (hd+
√
S
−1

n), which is obtained by zeroing the contribution from the

active sparse components. Unfortunately, as is unknown in advance, hence it needs to be estimated

from the observed sequence.

In employing the EM algorithm to estimate the PDP parameters β and ω, we assume as and

(1 − as) ⊙ hd as the hidden variables. Moreover, we discard the contribution of the active sparse

components to the observed sequence, as justified above. Then, letting β̂, ω̂ be the current estimates

of the deterministic unknown parameters β and ω, respectively, in the E-step we compute

L(β, ω; β̂, ω̂) , −E

[

ln p ((1− as)⊙ hLS, (1− as)⊙ hd,as|β, ω)|hLS, β̂, ω̂
]

(A.32)

(a)
= − E

[

ln p ((1− as)⊙ hLS| (1− as)⊙ hd,as)|hLS, β̂, ω̂
]

− E

[

ln p (as)|hLS, β̂, ω̂
]

− E

[

ln p ((1− as)⊙ hd|as, β, ω)|hLS, β̂, ω̂
]

(b)∝ −E

[

ln p ((1− as)⊙ hd|as, β, ω)|hLS, β̂, ω̂
]

(c)
= −

∑

x∈{0,1}L
Pr
(

as=x|hLS, β̂, ω̂, ĉs = hLS

)

E

[

ln p ((1− as)⊙ hd|as = x, β, ω)|hLS,as = x, β̂, ω̂
]

=
L−1
∑

k=0

(1− q̂post(k))



ln
(

βe−ωk
)

+
E

[

|hd(k)|2
∣

∣

∣
hLS(k),as(k) = 0, β̂, ω̂

]

βe−ωk



 , R(β, ω; β̂, ω̂)

where, in the last step, we have defined the posterior probability of an active sparse component

q̂post(k)=Pr
(

as(k) = 1|hLS(k), β̂, ω̂, ĉs(k) = hLS(k)
)

=
1

1 + 1−q̃
q̃ exp

{

−Sk,k|hLS(k)|2

1+Sk,kβ̂e−ω̂k

} . (A.33)

In particular, in step (a) we have expressed the likelihood function in terms of its conditional proba-

bilities. Moreover, we have used that fact that the term (1− as)⊙hLS = (1− as)⊙ (hd +
√
S
−1

n)

is independent of the PDP parameters β, ω, when conditioned on (1− as)⊙hd and as, and the prior

distribution of as is independent of β, ω. In step (b), we have neglected the terms which are indepen-

dent of the optimization parameters β, ω. In step (c), the expectation is first conditioned on as = x,
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and then averaged over the posterior probability of as ∈ {0, 1}L. The conditional expectation of

|hd(k)|2 is given by

E

[

|hd(k)|2
∣

∣

∣
hLS(k),as(k) = 0, β̂, ω̂

]

=
P̂d(k)

2

(P̂d(k) + 1/Sk,k)2
|hLS(k)|2 +

P̂d(k)

1 + P̂d(k)Sk,k

, (A.34)

where P̂d(k) = β̂e−ω̂k is the current estimate of the prior variance of hd(k). In the M-step, the term

L(β, ω; β̂, ω̂) is minimized with respect to the optimization parameters β, ω. We obtain

{

β̃, ω̃
}

= argmin
β≥0,ω≥0

L(β, ω; β̂, ω̂) = argmin
β≥0,ω≥0

R(β, ω; β̂, ω̂) = argmin
β≥0,ω≥0

L−1
∑

k=0

(1− q̂post(k)) ln
(

βe−ωk
)

+
L−1
∑

k=0

(1− q̂post(k))
E

[

|hd(k)|2
∣

∣

∣
hLS(k),as(k) = 0, β̂, ω̂

]

βe−ωk
. (A.35)

By defining, for k = 0, . . . , L− 1,











Ak =
L(1−q̂post(k))E[ |hd(k)|2|hLS(k),as(k)=0,β̂,ω̂]

∑L−1
p=0 (1−q̂post(p))

,

Z =
∑L−1

p=0 p(1−q̂post(p))
∑L−1

p=0 (1−q̂post(p))
,

(A.36)

the M-step (A.35) is equivalent to

{

β̃, ω̃
}

= arg min
β≥0,ω≥0

lnβ − ωZ +
1

βL

L−1
∑

k=0

Ake
ωk. (A.37)

We have the following theorem.

Theorem A.7.1. There is a unique solution
{

β̃, ω̃
}

to

{

β̃, ω̃
}

= arg min
β≥0,ω≥0

lnβ − ωZ +
1

βL

L−1
∑

k=0

Ake
ωk. (A.38)

If
∑L−1

k=0 (Z − k)Ak > 0, then ω̃ is the unique solution in (0,+∞) of

L−1
∑

k=0

(Z − k)Ake
ω̃k = 0. (A.39)

Otherwise, ω̃ = 0. In both cases, β̃ = 1
L

∑L−1
k=0 Ake

ω̃k.
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Proof. See Appendix A.B.

Note that, when
∑L−1

k=0 (Z − k)Ak > 0, the solution is a zero of aLth order polynomial, therefore

we must recur to approximate solutions. Since the solution we seek satisfies e−ω̃ ∈ (0, 1], and we

have proved that it is unique, we recur to the bisection method [61] to determine an approximate zero

x̃ = e−ω̃ of (A.39).

Finally, the overall EM algorithm consists in the iterations of the E-step (A.33), (A.36) and the

M-step (A.37). The algorithm may be initialized by neglecting the noise and the sparse component,

i.e., assuming Sk,k → +∞ and q̃ = 0 in the first stage. In this case, we have q̂post(k) = 0, ∀k
in (A.33) and the parameters of the E-step (A.36) are given by







Ak = |hLS(k)|2 , k = 0, . . . , L− 1

Z = L−1
2 .

(A.40)

It is worth noting that, if we had assumed the diffuse component hd, rather than (1 − as) ⊙ hd,

as the hidden variable, and we had used all the observed sequence hLS to estimate the unknown PDP

parameters instead of (1− as)⊙ hLS, then in the M-step we would have

{

β̃, ω̃
}

= arg min
β≥0,ω≥0

L−1
∑

k=0

(1− q̂post(k))



ln
(

βe−ωk
)

+
E

[

|hd(k)|2
∣

∣

∣
hLS(k),as(k) = 0, β̂, ω̂

]

βe−ωk





+
L−1
∑

k=0

q̂post(k)



ln
(

βe−ωk
)

+
β̂e−ω̂k

βe−ωk
(

1 + Sk,kβ̂e−ω̂k
)



 , (A.41)

where we have used the fact that, since ĉs = hLS, E
[

|hd(k)|2
∣

∣

∣
hLS(k), ĉs(k),as(k) = 1, β̂, ω̂

]

=

β̂e−ω̂k

1+Sk,kβ̂e−ω̂k
. By comparing this expression with (A.35), we note one additional term. In particular,

the observations associated with high probability q̂post(k) → 1 with an active sparse component give

a significant contribution to the log-likelihood function. However, these observations do not provide

information about the diffuse component hd, since cs is a deterministic, unknown vector. Conversely,

in (A.35), these observations yield a negligible contribution.

Choice of the sparsity level q̃

We next discuss the choice of the parameter q̃ used to estimate the parameters β, ω. Since the

EM algorithm solves the ML problem [115], we consider the general problem of maximizing the



A.7. Structured PDP Estimation of the diffuse component 167

likelihood function. Assuming the sparsity level q̃, the ML estimate of β, ω and cs is defined as

{β̂, ω̂, ĉs} = argmax
β≥0,ω≥0,cs

p(hLS|β, ω, cs) = argmax
β≥0,ω≥0,cs

−
L−1
∑

k=0

ln (1/Sk,k + Pd(k))

+

L−1
∑

k=0

ln

(

q̃ exp

{

−|hLS(k)− cs(k)|2
1/Sk,k + Pd(k)

}

+ (1− q̃) exp

{

− |hLS(k)|2
1/Sk,k + Pd(k)

})

,

where we have used the fact that hLS(k)|as(k) = a ∼ CN (acs(k),Pd(k) + 1/Sk,k) and Pd(k) =

βe−ωk. By maximizing over cs, we obtain ĉs = hLS. Then, letting tk(Pd(k)) = |hLS(k)|2
1/Sk,k+Pd(k)

,

s(q̃, t) = ln
(

t+ 1−q̃
q̃ te−t

)

and F(q̃, β, ω) =
∑L−1

k=0 s(q̃, tk(Pd(k))), we obtain

{β̂, ω̂} = argmax
β≥0,ω≥0

L−1
∑

k=0

[

ln tk(Pd(k)) + ln

(

1 +
1− q̃

q̃
e−tk(Pd(k))

)]

= argmax
β≥0,ω≥0

L−1
∑

k=0

s(q̃, tk(Pd(k))) = argmax
β≥0,ω≥0

F(q̃, β, ω),

where we have added the term
∑L−1

k=0 ln(|hLS(k)|2)−L ln q̃, which does not affect the maximization.

Consider a given pair of parameters (β, ω), and let

s′(q̃, t) ,
ds(q̃, t)

dt
=

q̃ − (1− q̃)e−t(t− 1)

q̃t+ (1− q̃)te−t
, (A.42)

F ′
β(q̃, β, ω) ,

dF(q̃, β, ω)

dβ
=

L−1
∑

k=0

s′(q̃, tk(Pd(k)))
dtk(Pd(k))

dβ
.

Similarly, we define F ′
ω(q̃, β, ω) as the derivative with respect to ω. Note that, if F ′

β(q̃, β, ω) > 0

(< 0), then there is an incentive to augment (diminish) β so as to increase the log-likelihood function

F(q̃, β, ω) (the same consideration holds for F ′
ω(q̃, β, ω)). We now prove that this derivative is a

decreasing function of q̃, so that, the larger q̃, the smaller the incentive to increase β (and, possibly,

the larger the incentive to decrease it, if the derivative becomes negative). In fact,

ds′(q̃, t)
dq̃

=
1

q̃2
exp{−2s(q̃, t)}t2e−t > 0,

dtk(Pd(k))

dβ
= − 1

β
tk(Pd(k))

Pd(k)

1/Sk,k + Pd(k)
< 0,

and therefore

dF ′
β(q̃, β, ω)

dq̃
=

L−1
∑

k=0

ds′(q̃, tk(Pd(k)))

dq̃

dtk(Pd(k))

dβ
< 0.
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Similarly, we can prove thatF ′
ω(q̃, β, ω) is an increasing function of q̃, so that, the larger q̃, the smaller

the incentive to decrease ω (and, possibly, the larger the incentive to increase it, if the derivative

becomes negative).

Moreover, note that, if q̃ ≥ 1
1+e2

≃ 0.12, then we have e−t(t − 1) ≤ e−2 ≤ q̃
1−q̃ (since the left

hand side is maximized for t = 2), which implies s′(q̃, t) ≥ 0, ∀t. We conclude that, when q̃ ≥ 1
1+e2

,

the derivatives F ′
β(q̃, β, ω) < 0, ∀β ≥ 0, ω ≥ 0 and F ′

ω(q̃, β, ω) > 0, ∀β ≥ 0, ω ≥ 0. Therefore, the

ML estimate of β, ω gives β̂ = 0, ω̂ → +∞, and the PDP estimate is forced to zero.

Conversely, if we let q̃ → 0+, then the contribution of the sparse component as⊙ cs is neglected,

and the channel is treated as being purely diffuse.

This analysis proves that the prior sparsity level q̃ ≥ 0.12 should never be used, and suggests the

existence of a trade-off in the optimal algorithm parameter q̃, which is confirmed by simulation in

Chapter A.9: in order not to force the PDP estimate to zero, q̃ should be "small"; however, in order

to take into account the presence of the sparse component in the observations, q̃ should not be "too

small". A further investigation on the optimal value of q̃ is left for future work.

A.8 Orthogonality vs non-Orthogonality of the pilot sequence

Thus far, we have assumed an orthogonal pilot sequence, which results in the optimality of per-

tap estimation approaches versus joint estimation methods. In this section, we consider the non-

orthogonal pilot scenario. We follow two approaches. In Sec. A.8.1, we examine the impact of

using an estimator designed under the assumption of an orthogonal pilot sequence on received signals

where the pilots are in fact non-orthogonal. We show that, from an MSE perspective, the effect of this

mismatch can be characterized via an effective SNR loss. In Sec. A.8.2, we establish a connection

between the GThres estimator and the classical sparse approximation algorithms [91–94].

A.8.1 GMMSE and GThres estimators with non-orthogonal pilot sequence

Note that in the non-orthogonal case the SNR matrix S is non-diagonal. In this case, the obser-

vation model associated with the kth delay bin is given by hLS(k) = h(k) +
[√

S
−1

n
]

k
, where the

noise term
[√

S
−1

n
]

k
∼ CN

(

0,
[

S−1
]

k,k

)

. Since the GMMSE and GThres estimators, designed

under the assumption of orthogonal pilot sequence, operate on a per-tap basis, the non-orthogonal

case is obtained by replacing Sk,k with 1/
[

S−1
]

k,k
in (A.14), (A.16) and (A.17).

We now evaluate the MSE performance loss induced by a non-orthogonal pilot sequence. Let
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X be the corresponding Toeplitz matrix. Then, the SNR matrix S = X∗X

σ2
w

has some non-zero off-

diagonal elements. The effective SNR at the kth delay bin is S
(NO)
k , 1/

[

S−1
]

k,k
. Therefore,

using (A.18) and (A.19), in the non-orthogonal case we have, for X ∈ {GMMSE,GThres},

MSE(X) (S) =
L−1
∑

k=0

MSE
(X)
k

(

1/
[

S−1
]

k,k

)

. (A.43)

Now, consider a second scenario where the pilot sequence is orthogonal. Letting X̃ be the as-

sociated Toeplitz matrix, and assuming that the pilot sequence has the same energy budget as in the

non-orthogonal case, we have the SNR matrix S̃ = diag (S), where diag (B) is a diagonal matrix

with the same diagonal elements as B. The SNR at the kth delay bin is S(O)
k , S̃k,k = Sk,k, and the

resulting MSE is given by

MSE(X)
(

S̃
)

=
L−1
∑

k=0

MSE
(X)
k (Sk,k) . (A.44)

We now prove that the effective SNRs in the non-orthogonal and orthogonal cases satisfy S(O)
k ≥

S
(NO)
k , ∀k. We can rewrite S as

S = U





S
(O)
k b

b∗ ∆



U∗, (A.45)

for a proper ∆ ≻ 0, row vector b, and permutation matrix U, where we have used the fact that

Sk,k = S
(O)
k . Then, from the inversion formula for 2× 2 block-matrices, we have

S
(NO)
k =

1

[S−1]k,k
=
[

U∗S−1U
]−1

1,1
= S

(O)
k − b∆−1b∗.

Finally, since ∆ ≻ 0, we obtain b∆−1b∗ ≥ 0 (with equality if and only if b = 0), which proves

the inequality S
(O)
k ≥ S

(NO)
k , ∀k. Therefore, imperfect orthogonality of the pilot sequence yields a

decrease of the effective SNR experienced on each channel delay bin, thus impairing the estimation

performance.

We can quantify the loss in the estimation accuracy in the high and low SNR regimes where, as

shown in Sec. A.6, for the GMMSE and GThres estimators we have limS→0(+∞) SMSE
(X)
k (S) =

constant > 0, for a proper constant, as given in Table A.2. To this end, we define the orthogonality
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coefficient of the pilot sequence associated with the kth delay bin as the ratio between the effective

SNR experienced in the non-orthogonal case and the SNR experienced in the orthogonal case, under

the same pilot energy budget, i.e.,

ηk =
S
(NO)
k

S
(O)
k

=
1

[S−1]k,k Sk,k
≤ 1. (A.46)

Then, in the high and low SNR regimes, the ratio between the MSE in the orthogonal case and the

MSE in the non-orthogonal case, in the kth channel bin, is given by

MSE
(X)
k

(

S
(O)
k

)

MSE
(X)
k

(

S
(NO)
k

) =
S
(NO)
k

S
(O)
k

×
S
(O)
k MSE

(X)
k

(

S
(O)
k

)

S
(NO)
k MSE

(X)
k

(

S
(NO)
k

) ≃ ηk,

where we have used the fact that lim
S→0(+∞)

SMSE
(X)
k (S) = constant and the definition (A.46).

A.8.2 Exploiting the non-orthogonality of the pilot sequence

We next investigate estimators designed for the non-orthogonal case, by establishing a connection

between the GThres estimator and classical sparse approximation algorithms [91–93]. In particular,

we show that the GThres estimator solves

{

ĉs, âs, ĥd

}

= arg max
cs,as,hd

p (hLS,as,hd|cs) . (A.47)

We have p (hLS,as,hd|cs) = p (hLS|as,hd, cs) p (as) p (hd) , where

hLS| {as,hd, cs} ∼ CN
(

as ⊙ cs + hd,S
−1
)

, hd ∼ CN (0,Λd) , (A.48)

p (as) =

(

q

1− q

)‖as‖0
(1− q)L =

(

q

1− q

)‖hs‖0
(1− q)L,

where ‖x‖0 is the L0-norm of vector x, and hs = as ⊙ cs is the sparse component.

Then, from (A.47) and (A.48), we have

{

ĉs, âs, ĥd

}

= argmax
cs,as,hd

ln p (hLS,as,hd|cs) (A.49)

= argmin
hs=as⊙cs,hd

(hLS − hs − hd)
∗
S (hLS − hs − hs) + α ‖hs‖0 + h∗

dΛ
−1
d hd,
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where α = ln
(

1−q
q

)

. This can be viewed as an LS regression problem, with a L0 regularization term

associated with hs, enforcing sparseness of the solution, and a L2 regularization term associated with

hd, enforcing its Gaussian nature.

Solving with respect to hd first, as a function of hs, we have

ĥd (hs) = Λd

(

Λd + S−1
)−1

(hLS − hs) , (A.50)

and substituting this solution into the cost function, we obtain the following optimization problem for

the sparse component:

ĥs = âs ⊙ ĉs = argmin
hs

α ‖hs‖0 + (hLS − hs)
∗ (

Λd + S−1
)−1

(hLS − hs) . (A.51)

In the orthogonal pilot case, the SNR matrix S is diagonal and the optimization problem (A.51)

factorizes into L separate problems, one for each channel delay bin, yielding the same solution as

the GThres estimator (A.17). Conversely, in the non-orthogonal case, the optimal solution requires

a combinatorial search over the 2L realizations of as. This is circumvented by the use of sparse

approximation algorithms [91, 116].

An equivalent problem has been addressed in [91], namely

ẑ = arg min
z∈CL

‖w − Φz‖22 + λ ‖z‖0 , (A.52)

where w is a noisy version of Φz, and Φ is known, with IL − Φ∗Φ ≻ 0. Eq. (A.51) is equivalent

to (A.52) by letting w =
√
ρ
(

Λd + S−1
)− 1

2 hLS, Φ =
√
ρ
(

Λd + S−1
)− 1

2 , λ = ρα, and z = hs,

where ρ > 0 is chosen so as to guarantee IL − Φ∗Φ ≻ 0. The Iterative Thresholding Algorithm

proposed in [91] may then be used to estimate hs, and equation (A.50) to estimate the diffuse com-

ponent hd.

Alternatively, in [92,93] the L0 cost associated with hs is relaxed and the L1 regularization norm

is used instead, thus yielding the convex problem

ĥs = argmin
hs

(hLS − hs)
∗ (

Λd + S−1
)−1

(hLS − hs) + α ‖hs‖1 ,

where we define the L1-norm ‖hs‖1 =
∑

k |hs(k)|.

As justified by the MSE analysis (Sec. A.6), a conservative q̃ < q may be assumed in the estima-
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tion of the sparse component, by using α = ln
(

1−q̃
q̃

)

> ln
(

1−q
q

)

.

The next chapter is devoted to the evaluation and validation of the proposed HSD channel model

and channel estimation schemes.

A.9 Simulation results

A.9.1 Hybrid Sparse/Diffuse channel model

In this section, we evaluate the performance of the GMMSE and GThres estimators in a system

whose channel perfectly follows the HSD model, and compare it with the asymptotic MSE behavior

derived in Sec. A.6. In particular, the HSD model allows us to control the parameters (e.g., spar-

sity level q̃, PDP profiles Pd, Ps) and to evaluate the performance of the proposed estimators in an

ideal setting, i.e., where the channel realizations follow exactly the HSD model, based on which the

estimators have been designed. Moreover, we evaluate the performance of the estimators under a

non-orthogonal pilot sequence, as discussed in Sec. A.8.

For the simulation results, we generate a channel h ∈ C
L with delay spreadL = 100. The sparsity

pattern as ∼ B(q)L, with parameter q = 0.1. The vector cs ∼ CN (0,Λs), where the covariance

matrix Λs is diagonal, with exponential PDP Λs(k, k) = Ps(k) = Pse
−ωk, and ω = 0.05. The

diffuse component hd ∼ CN (0,Λd), where the covariance matrix Λd is diagonal, with exponential

PDP Λd(k, k) = Pd(k) = βPse
−ωk. The parameter Ps > 0 is a normalization factor, and is chosen

so that the average channel energy is L, i.e.,
∑L−1

k=0 E
[

|h(k)|2
]

= Ps
∑L−1

k=0 (β + q)e−ωk = L.

Unless otherwise stated, we use β = 0.01, hence the ratio between the energy of the sparse and

diffuse components is given by [E[h∗
shs]/E[h

∗
dhd]] dB = 10dB, where hs = as ⊙ cs denotes the

sparse component. Unless otherwise stated, we assume an orthogonal pilot sequence, so that S is

diagonal. For simplicity, we assume that S = S · IL, for some S > 0, so that we can rewrite the

observation model (A.7) as

hLS = h+
√
S
−1

n. (A.53)

Moreover, we define the estimation SNR as the average estimation SNR per channel entry, SE[h∗h]/L.

We consider the following estimators:
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• GMMSE and GThres estimators, for different values of the assumed sparsity level

q̃ ∈ {0.1, 0.01, 0.001} (i.e., α = ln
(

1−q̃
q̃

)

∈ {2.2, 4.6, 6.9});

• unstructured LS estimator;

• MMSE estimator, which assumes perfect knowledge of q, Λd and Λs, and thus performs an

MMSE estimate of the channel. It provides a lower bound to the estimation accuracy;

• purely sparse estimator, which ignores the diffuse component. Since a per-tap approach is

optimal under an orthogonal pilot sequence, we choose a variation of the GThres estimator

which assumes no diffuse component (hd = 0);

• purely diffuse estimator, which ignores the sparse component (i.e., GMMSE or GThres esti-

mators with q̃ = 0).

In Sec. A.9.2 we compare the MSE (define in (A.18)) attained by these estimators with the asymptotic

MSE behavior derived in Sec. A.6, assuming perfect knowledge ofΛd. In Sec. A.9.3 we evaluate the

impact on the performance when the PDP profileΛd is unknown and is estimated using the PDP esti-

mator developed in Sec. A.7. In Sec. A.9.4 we evaluate the performance under a non-orthogonal pilot

sequence. Finally, in Sec. A.9.5, we evaluate the BER performance induced by channel estimation

errors, when the aforementioned estimators are employed for coherent detection.

A.9.2 Validation of the MSE analysis

In Fig. A.2, we plot the MSE of the estimators as a function of the estimation SNR, and their

asymptotic MSE behavior (bold lines, with the corresponding markers for the different values of α),

assuming perfect knowledge of Λd. We note that there is a perfect match between the MSE in the

high and low SNR regimes, and the asymptotic analysis developed in Sec. A.6. In particular, from an

MSE perspective, it is confirmed that it is beneficial to use a conservative approach in the estimation

process, i.e., by assuming the sparse component to be sparser than it actually is. In fact, the optimal

threshold for the GThres estimator represents a balance between the probability of mis-detecting an

active sparse component as diffuse contribution and the probability of false alarm (detecting a diffuse

contribution as active sparse component). A conservative approach, by employing a small threshold,

reduces the false alarm probability (a similar consideration holds for the GMMSE estimator). This

trend can also be observed in the medium SNR ranges. However, this property does not hold in
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Figure A.2. MSE of the GMMSE and GThres estimators, for the HSD channel model, with perfect

knowledge of the PDP Pd(k). The bold lines with the corresponding markers represent the low SNR MSE

behavior. The high SNR behavior is given by the LS estimate. β = 0.01, q = 0.1.

general, as we have discussed in Sec. A.6. To see that, we also plot the accuracy of the diffuse

estimator ĥ(Diff)(k) = SPd(k)
1+SPd(k)

hLS(k), which ignores the sparse component as ⊙ cs. This can

be interpreted as a limit case of the GMMSE and GThres estimators, for q̃ → 0, or equivalently

α → +∞. Also, as predicted by the MSE analysis, for a given value of q̃ the GMMSE estimator

outperforms the GThres estimator, in the asymptotic regimes. This is a consequence of the fact that

GThres allows only the extreme values â(GThres)
s (k) ∈ {0, 1}, whereas GMMSE allows a smoother

transition between these two extremes.

In Fig. A.3, we plot the MSE of the estimators as a function of the SNR S, for the case with no

diffuse component, β = 0. Even in this case, we notice a perfect match between the MSE in the high

and low SNR regimes, and the asymptotic analysis in Sec. A.6. In particular, the larger the factor α

used (the smaller q̃), the better the estimation accuracy. Unlike Fig. A.2, where the MSE approaches

the LS estimate for high SNR, in this case we note a performance improvement. In fact, when β = 0,

the estimate of hd is forced to zero. Therefore, whenever the GThres estimator correctly detects

âs(k) = as(k) = 0, the channel component h(k) is estimated with no error. On the other hand, when

β > 0, a residual MMSE estimation error is incurred.

In Fig. A.4, we let vary the ratio between the energies of the sparse and diffuse components,

E[h∗
shs]/E[h

∗
dhd] = q/β. The estimation SNR is [SE[h∗h]/L] dB = 10dB. The MSE of the
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Figure A.3. MSE of the GMMSE and GThres estimators, for the HSD channel model. The bold lines

with the corresponding markers represent the high/low SNR MSE behavior. β = 0 (no diffuse component),

q = 0.1.

purely sparse estimator is also plotted in this case. Similarly to Figs. A.2 and A.3, we note that

a conservative approach is beneficial from an MSE perspective. As expected, the sparse estimator

performs worse than the GThres estimator, due to its inability to exploit the diffuse component of

the channel. In particular, it performs closely to the GThres estimator for small values of β (i.e.,

large values of E[h∗
shs]/E[h

∗
dhd]), where the diffuse component is negligible with respect to the

sparse one, and incurs a performance degradation for large values of β, where the diffuse component

becomes significant. Moreover, as expected, the only diffuse estimator achieves good performance

for large values of β. However, it performs poorly for small values of β, where the sparse component

yields a significant contribution. Note that, excluding the MMSE estimator, the GThres estimator

with q̃ = 0.001 achieves the best performance over the entire range of values considered, very close

to the MMSE lower bound. This proves that the proposed methods are robust, and adapt to a wide

range of estimation scenarios, where the channel exhibits either a sparse, diffuse or hybrid nature

(corresponding to large, small and moderate values of E[h∗
shs]/E[h

∗
dhd], respectively).

A.9.3 Evaluation of the PDP estimator

Fig. A.5 compares the MSE of the GMMSE estimator, for the two cases where Λd is perfectly

known at the receiver, and where it is estimated from the observed sequence using the EM algorithm



176 Chapter A. UWB Sparse/Diffuse Channel Estimation

−10 −5 0 5 10 15 20 25 30 35
10

−2

10
−1

10
0

Sparse/Diffuse ratio, E[h∗

shs]/E[h∗

dhd] (dB)

M
S
E

 

 

LS

MMSE

GThres, q̃ =0.1

Sparse, q̃ =0.1

GThres, q̃ =0.001

Sparse, q̃ =0.001

Diffuse

Figure A.4. MSE of the channel estimators as a function of β, assuming perfect knowledge of the PDP of

the diffuse component Pd(k). [SE[h
∗h]/L] dB = 10dB, q = 0.1

(Sec. A.7), based on only one realization of the channel. We notice that, in general, there is a small

performance loss due to the unknown Λd, mainly in the low SNR range and for small values of q̃

(however, no performance degradation is observed for q̃ = 0.1). This behavior is explained by the

fact that the MMSE estimate of hd in (A.14) is more sensitive to errors in the estimation of Λd in the

low SNR than in the high SNR regime. In fact, for high SNR values, it approaches the LS solution.

On the other hand, for small values of q̃ we have the following. The posterior probability of the entries

of the sparsity pattern as, as a function of the factor α =
(

1−q̃
q̃

)

, is given by (A.16) with Sk,k = S.

This is a decreasing function of α (i.e., increasing function of q̃). As a consequence, the smaller q̃ the

more the weight given to the right-hand term of (A.14), associated with the MMSE estimate of hd(k),

which is sensitive to errors in the estimate of Pd(k), compared to the left-hand term, associated with

the LS estimate of cs(k), which is independent of the PDP estimate. As a consequence, a smaller

value of q̃ results in an overall estimate that is more sensitive to errors in the PDP estimate of hd.

Similar considerations hold for the GThres estimator.

Fig. A.6 plots the MSE of PDP estimator of the diffuse component developed in Sec. A.7, for

different values of q̃ and of the number of iterations of the EM algorithm, based on only one channel

realization, as a function of the SNR per diffuse channel entry SE[h∗
dhd]/L. In particular, letting
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Figure A.5. MSE of the GMMSE estimators, comparison between the cases where the PDP of the diffuse

component is known and estimated from the data, respectively. β = 0.01, q = 0.1. The two curves of the

GMMSE estimator with q̃ = 0.1 where the PDP is known and estimated overlap.

P̂d(k), k = 0, . . . , L− 1 be an estimate of Pd(k) = βe−ωk, we compute the following MSE metric:

MSEPDP =
1

L

L−1
∑

k=0

E

[

(

ln P̂d(k)− lnPd(k)
)2
]

. (A.54)

The performance is compared also with an oracle estimator, which assumes perfect knowledge of

as⊙cs, thus being able to perfectly remove the interference from the sparse component (in particular,

we use the EM estimator with q̃ = 0). In the figure, the MSE floor refers to the ML estimator

of β, ω in the noiseless scenario with no sparse component. It can be shown that, in this case, the

ML estimator is obtained by setting Ak = |hd(k)|2 and Z = L−1
2 in the E-step (A.36), and by

solving (A.38) using the results of Theorem A.7.1. As expected, the Oracle estimator achieves the

best performance, and approaches the MSE floor in the high SNR. Remarkably, the EM estimator

with q̃ = 0.001 and 300 iterations approaches the performance of the Oracle estimator, although it

cannot take advantage of prior knowledge of as⊙cs. This proves that the proposed method effectively

removes the interference from the sparse component, by discarding the observations associated, with

high probability, to the active sparse components. Interestingly, the case q̃ = 0.001 with 20 iterations

incurs a small performance degradation compared to the MSE achievable after 300 iterations, which

becomes negligible for moderate and large SNR values. On the other hand, when q̃ = 0 is used, the
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Figure A.6. MSE of the PDP estimator of hd. β = 0.01, q = 0.1.

presence of the sparse component is neglected and the channel is treated as being purely diffuse. In

this case, a significant performance degradation is incurred. Finally, we notice that the case q̃ = 0.15

incurs a performance degradation, compared to the case q̃ = 0.001, which confirms our analysis in

Sec. A.7. In fact, we have verified that the estimate of the PDP parameter ω diverges to +∞ as the

EM algorithm is iterated, so that the PDP estimate is forced to zero and the overall MSE diverges to

+∞.

A.9.4 Non-orthogonal pilot sequence

In Fig. A.7, we compare the MSE of theGThres estimator for the non-orthogonal and orthogonal

pilot sequence cases, under the same pilot energy budget, as discussed in Sec. A.8.1. Moreover,

we plot the curves associated with the modified Iterative Thresholding Algorithm (ITH), designed in

Sec. A.8.2 based on a variation of [91] which takes into account the presence of the diffuse component.

The non-orthogonal pilot sequence is generated from a CAZAC sequence of length M = 50 =

L/2 [117]. As expected, we observe a performance loss in the non-orthogonal case, compared to

the orthogonal pilot scenario with the same pilot energy budget. In fact, the GThres estimator,

by employing a per-tap estimation approach, neglects any correlation among the channel taps, thus

incurring a performance degradation. We measured that the orthogonality coefficient (A.46) ranges

in the interval ηk ∈ [0.625, 0.765] (note that this is a function of the delay k ∈ {0, . . . , L − 1}),
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Figure A.7. Comparison between the non-orthogonal and orthogonal pilot sequence cases. β = 0.01,
q = 0.1.

corresponding to an SNR loss in the range [1.16, 2.05] dB. These values are confirmed by simulation,

where the SNR loss induced by GThres under a non-orthogonal pilot sequence (by averaging over

all channel delay taps, as in (A.18)) is approximately [1.5, 2] dB. Interestingly, the performance

degradation incurred by the GThres estimator is partially recovered (fully, in the low SNR regime)

by the ITH algorithm, which exploits the correlation introduced by the non-orthogonal pilot sequence

by estimating the channel taps jointly.

A.9.5 BER performance

Finally, in Fig. A.8 we plot the BER induced by channel estimation errors, for the case where

the PDP of hd is known. To this end, we define an OFDM-UWB system, employing Ndft = 512

sub-carriers and a 4-QAM constellation with Gray mapping, and the bit sequence is uncoded. In

the estimation phase, we use an orthogonal pilot sequence. This may be achieved, for example, by

allocating an OFDM symbol with a constant modulus pilot sequence. Our observation for channel

estimation has noise; in contrast, we assume no noise when evaluating the BER. As a result, the BER

curves reflect the errors induced by channel estimation versus additive channel noise. In particular, let

X(n) be the 4-QAM symbol transmitted on the nth sub-carrier, and H(n) =
∑L−1

l=0 h(n)e
−i2π ln

Ndft

be the DFT of the channel. Then, the received symbol is Y (n) = H(n)X(n). This is equalized by
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Figure A.8. BER induced by channel estimation errors, with known PDP of hd. β = 0.01, q = 0.1.

using the estimate Ĥ(n) of H(n), i.e., X̃(n) = H(n)

Ĥ(n)
X(n), and the decision is based on a minimum

distance criterion, i.e., X̂(n) = minx∈4−QAM |X̃(n)− x|2. Moreover, the BER is averaged over the

"good" sub-carriers only, which are chosen based on the heuristic carrier selection scheme

{

k : |H(k)|2 ≥ λmax
n

|H(n)|2
}

, (A.55)

where λ ∈ (0, 1) is a threshold value. In particular, λ is chosen so that 30% of the sub-carriers are

classified as "good". The rationale behind this choice is that, in a practical system, the "bad" sub-

carriers would never be used, since they are not suitable to carry information. The SNR is referred

to the output of an ideal Rake receiver with perfect channel knowledge, where the estimation noise is

treated as additive Gaussian noise at the receiver. This is defined as SNRrake = Sh∗h.

We notice that GMMSE estimator with q̃ = 0.001 performs very closely to the lower bound,

represented by the BER induced by the MMSE estimator, defined in Sec. A.5.1. On the other hand,

both the diffuse and the purely sparse estimators perform poorly, due to their inability to exploit both

the sparse and the diffuse components jointly.
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A.9.6 Realistic UWB channel model

In this section, we evaluate the BER and MSE performance of the proposed estimators in a more

realistic UWB channel emulator developed in [102], which we refer to asK&Pmodel in the following.

This approach is important as a validation of the HSD model, of theGMMSE andGThres estimators

and of the analysis we have developed. We argue that the K&P model is more suitable than the model

in [101] to evaluate the robustness and sensitivity of the proposed HSD channel estimation strategies

to deviations from the HSD model. In fact, as explained in more detail in Sec. A.9.7, K&P models

the diffuse component as a diffuse tail associated with each specular component, whereas in the HSD

model the diffuse and sparse components are assumed to be independent. Therefore, it represents a

deviation from the HSD model. In contrast, the model developed in [101] exhibits a better fit to the

HSD model, since the diffuse component is generated independently of the specular MPCs arrivals.

A.9.7 K&P model

The K&P model combines both a geometric approach for the resolvable individual specular com-

ponents (echoes), arising from reflections from the scatterers in the environment, and a statistical

approach for the dense multipath clusters associated with each echo. The model also includes a

frequency dependent gain decay, so that the overall channel transfer function is expressed as

H(f) =
∑

l

Al(τl) (1 +Dl(f)) e
−i2πfτl

(

1 +
f

f0

)−ν

I
(

|f | ≤ B

2

)

, (A.56)

The sum is over the individual echoes, with the lth echo having amplitude Al(τl) and delay τl. Dl(f)

is the multipath cluster associated with the lth echo, with exponential PDP and circularly symmetric

Gaussian distribution in the time-domain, ν is the frequency domain decay exponent, f0 is the center

frequency, and B < R is the transmission bandwidth.

The time-domain baseband representation of the channel is obtained by performing an inverse

Fourier transform of (A.56), and by sampling at rate R samples per ns. We further clip the channel

in the delay domain, so that only the channel window carrying most of the energy is kept. This step

determines the delay spread of the channel (L = 600). The channel snapshot is finally normalized to

have energy L, i.e.,
∑L−1

l=0 |h(l)|2 = L.

It is worth noting that τl is quantized to discrete values, and equals an integer number of the

sampling interval R−1 ns. This is a simplification, which guarantees that the MPC arrival matches
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Table A.3. Main parameters for the Office LOS scenario in [102]

Ndft 2048 Number of channel samples in the delay domain
R 12.8 ns−1 Sampling rate in the delay domain
B 10GHz Bandwidth of the UWB system
f0 6GHz Center frequency
d0 0.8m Reference distance for individual echo power law
δ 3 Path loss exponent for individual echo power law

GMP −20 dB Cluster gain with respect to associated individual echo
GMP−LOS −13 dB Additional cluster gain for LOS individual echo

γ 10 ns Multipath cluster exponential decay parameter
ν 1.1 Frequency domain decay exponent

(xt, yt, zt) (1.78, 4, 1.5)m Coordinates of transmitter position
(xr, yr, zr) from (3.0, 1.5, 1.5)m Coordinates of mobile receiver position

to (4.5, 1.8, 1.5)m

exactly the sampling period. Therefore, in general, the K&P model [102] does not cope with the

side-lobes of the sinc pulse, which arise when the MPCs arrive in the middle of two sampling times.

However, the bandwidth limitation B < R introduces a sinc filtering of the channel, so that the

side-lobes of the sinc pulse affect the channel impulse response.

We choose the Office LOS scenario in [102] for our simulations. A summary of the main parame-

ters are given in Table A.3. In particular, 10000 channel snapshot are generated, each corresponding

to a different position of the mobile receiver along the line connecting the points (3.0, 1.5, 1.5)m and

(4.5, 1.8, 1.5)m (where (x, y, z)m represents a point in the three dimensional space with coordinates

x, y and z, measured in m relative to the origin). For each position of the mobile receiver, the arrival

pattern of the resolvable MPCs, i.e., their gain and delay, is determined by the relative positions of

the mobile receiver, transmitter and scatterers (these are positioned on a grid in the three dimensional

space). Moreover, for each channel snapshot, we generate an independent realization of the diffuse

component (Rayleigh fading) and of the additive noise. We refer the interested reader to [102] for

further details.

It is worth noting that the sparsity level q of the HSD model is not defined for the K&P model.

This parameter may be roughly estimated as the ratio between the number of active scatterers and

the delay spread L. For the Office LOS scenario defined in [102], we have 6 (virtual) scatterers and

L = 600, which gives q̂ ≃ 0.01. Moreover, the PDP estimator developed in Sec. A.7 for the HSD

model assumes an exponential PDP for the diffuse component, which is not defined for the K&P

model. In Fig. A.9, we plot the PDP of a channel snapshot as an example, and the exponential

PDP fitting, estimated using the EM algorithm developed in Sec. A.7. We note a good fitting of the

exponential PDP model to the PDP of the channel realization. Remarkably, although the K&P model
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Figure A.9. PDP of one realization of the K&Pmodel (with parameters given in Table A.3) and exponential

PDP, estimated using the EM algorithm developed in Sec. A.7.

defines the diffuse component as a diffuse tail associated with each specular component, the overall

effect, by summing the contribution from all MPCs, is that of a unique PDP tail, which fits well the

exponential shape.

The channel and the PDP of the diffuse component are estimated based on a single snapshot of

the channel. In particular, the PDP of the diffuse component is estimated using the EM algorithm

developed in Sec. A.7. Hence, the MSE and BER results are not affected by the structure of the

spatio-temporal correlation of the channel.

A.9.8 MSE performance

Figs. A.10 and A.11 plot the MSE of the GMMSE, GThres and purely sparse and diffuse esti-

mators, for different values of the assumed sparsity level q̃. Since a per-tap approach is optimal in

this case, for the sparse estimator we choose a variation of the GThres estimator, which assumes no

diffuse component (hd = 0). The diffuse estimator assumes a purely diffuse channel, and performs a

linear MMSE estimate based on the estimated PDP of the diffuse component.

In Fig. A.10, we observe that, the smaller q̃ (i.e., the larger α), the better the estimation accuracy

of the GMMSE and GThres estimators. Moreover, the GMMSE estimator outperforms the GThres

estimator, for a given value of q̃. This is the same behavior, predicted by the MSE analysis in Sec. A.6,
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Figure A.10. MSE of the GMMSE and GThres estimators, for the K&P channel model, LOS-Office

scenario. The bold lines with the corresponding markers represent the low SNR MSE behavior. The high

SNR behavior is given by the LS estimate.

that we have observed in the case where the channel follows the HSD model (Fig. A.2). Remarkably,

we notice a perfect match between the simulation results and the low/high SNR asymptotic behavior

of the estimators (bold lines). This is a surprising result, if we consider that the K&P channel emulator

deviates from the HSD model, and the PDP of the diffuse component is unknown and estimated from

the data. However, note that the value of the channel delay spread, L = 600, allows sufficient

averaging over the small scale fading in the delay dimension, so that the PDP is accurately estimated.

Moreover, we notice that the diffuse estimator outperforms the HSD estimators in the low SNR

(< −12.5 dB). This is an expected result, which is coherent with the simulation results based on the

HSDmodel (Fig. A.2) and with the asymptotic analysis in Sec. A.6, where we have proved that, in the

low SNR, the smaller q̃, the better the estimation accuracy (note that the diffuse estimator corresponds

to the limit case q̃ → 0). In fact, the diffuse estimator forces the channel estimate to zero in the low

SNR, thus approaching the channel energy floor. Conversely, a performance degradation is observed

for higher SNR values, with respect to the HSD estimators with q̃ = 0.001, which achieve the best

performance.

In Fig. A.11, we notice that the GMMSE estimator achieves better performance than the sparse

estimator, for the same values of q̃. In fact, the sparse estimator does not effectively capture the

diffuse component of the channel, thus incurring a performance degradation, mainly in medium and
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Figure A.11. MSE of the GMMSE and Sparse estimators, for the K&P channel model, LOS-Office sce-

nario.

high SNR (in particular, in the high SNR range (> 5 dB), it performs even worse than LS).

A.9.9 BER performance

Similarly to Sec. A.9.5, we evaluate the BER performance induced by channel estimation errors

in an OFDM-UWB system, with Ndft = 2048 sub-carriers, 4-QAM constellation and transmission

bandwidth B = 10GHz. Since we want to evaluate the impact of channel estimation errors on the

BER performance, we consider a noise-free setting, i.e., no noise is added to the information symbols,

whereas noise is added in the estimation phase, so as to induce channel estimation errors. The SNR is

referred to the output of an ideal Rake receiver. Moreover, the BER is averaged over only the "good"

sub-carriers, chosen according to the heuristic carrier selection scheme (A.55).

Fig. A.12 plots the BER associated with the GMMSE, LS, purely sparse and diffuse estimators,

for different values of q̃. Generally, we observe that the better the MSE estimation accuracy, the

smaller the BER. In particular, the best performance is achieved by the GMMSE estimator with

q̃ = 0.001. Moreover, similarly to the MSE, also the BER benefits from a conservative approach in

the estimation of the sparse component, i.e., it is beneficial to use small values of q̃. We notice that a

poor BER performance is incurred by the purely sparse estimator which, in the high SNR, performs

even worse than LS. Similarly, the diffuse estimator performs worse than GMMSE with q̃ = 0.001
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Figure A.12. BER induced by channel estimation errors, for the K&P channel model, LOS-Office scenario.

The BER is averaged over the "good" sub-carriers only (A.55).

in the medium SNR range. As in the MSE case, the purely sparse and diffuse estimators are unable

to exploit both the diffuse and sparse components of the channel jointly, thus incurring a performance

degradation. Finally, we observe an irregular behavior of the GMMSE and sparse estimators with

q̃ = 0.001 around 18 dB SNR. We argue that this is a consequence of the fact that we do not average

over independent realizations of the surrounding environment, i.e., we use the particular Office LOS

in [102], which specifies the relative positions of the scatterers, and of the transmitter/receiver pair as

well.

These results show that the GMMSE and GThres estimators effectively capture the main UWB

propagation phenomena, e.g., the resolvable MPCs of the channel, modeled by a sparse component,

unresolvable MPCs, scattering from rough surfaces and frequency dispersion, which are better mod-

eled by a diffuse component. Also, we observe that a small performance degradation is incurred by

the diffuse estimator. However, we argue that one of the strengths of the proposed HSD model and

channel estimation strategies relies in their robustness and adaptability to different scenarios of inter-

est, where the channel exhibits a sparse, diffuse or hybrid nature. Conversely, a diffuse (respectively,

sparse) estimator is expected to perform poorly in sparse (diffuse) channels.
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A.10 Conclusions

In this chapter, we have investigated the issue of channel estimation for UWB systems. In par-

ticular, we have proposed a novel hybrid sparse/diffuse model for the UWB channel, which is able

to capture the main UWB propagation mechanisms: fine delay resolution capability, scattering from

rough surfaces, frequency dispersion. We have then identified four scenarios of interest in practi-

cal systems, differing in the amount of side information available at the receiver for the purpose of

channel estimation, and we have proposed channel estimators exploiting the channel structure and the

side-information to enhance the estimation accuracy.

Of particular interest is the scenario where the PDP of the diffuse component is known at the

receiver, and the statistics of the specular component are unknown. This is relevant when the ob-

servation interval is large enough to allow averaging over the small scale fading, but not over the

large scale fading. For this scenario, we have proposed the Generalized MMSE and Generalized

Thresholding Estimators. We have carried out an MSE analysis of these estimators, in the asymptotic

regimes of high and low SNR. This analysis suggests that it is beneficial, from an MSE perspec-

tive, to use a conservative approach in the estimation of the sparse component, i.e., to assume the

sparse component to be sparser than it actually is. While this result cannot be extended to medium

SNR, simulation results show that a similar behavior often holds in this regime. We have proposed

an EM algorithm for the PDP estimation of the diffuse component, which exploits the exponential

structure of the PDP to average the fading over the channel delay dimension, rather than over sub-

sequent independent realizations of the fading process. Moreover, we have analyzed the case with a

non-orthogonal pilot sequence, and shown that the GThres estimator can be recast as a modification

of a sparse approximation algorithm proposed in the literature.

Finally, we have evaluated these estimation schemes based on a more realistic geometry-based

stochastic UWB channel emulator, developed in [102]. Simulation results for this case show that the

GMMSE and GThres estimators achieve better performance, in terms of both MSE and BER, than

conventional unstructured (Least Squares) and purely sparse or diffuse estimators, thus suggesting

that, although simplified (e.g., compared to [89]), the HSD model is able to capture key UWB prop-

agation mechanisms, such as resolvable MPCs, diffuse scattering from rough surfaces, unresolvable

MPCs, and frequency dispersion.
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Appendix A.A: Proofs for Section A.6

Lemma A.10.1 (Exchanging the limit with the expectation). For the GMMSE and GThres estima-

tors of the kth channel delay bin ĥ (y), where y = h+
√
S
−1

n is the observation, h = ascs+
√
Pdhd

is the HSD channel bin, n is the noise in the kth delay bin, we have, for X ∈ {GMMSE,GThres},

lim
S→Slim

mse
(X)
k (S) = E

[

lim
S→Slim

f (X)
(√

Sy, n
)

]

,

where Slim ∈ {0,+∞}, and mse
(X)
k (S) and f (X)

(√
Sy, n

)

are defined in (A.21) and (A.20), re-

spectively.

Proof. Note from (A.14) that, for X ∈ {GMMSE,GThres}, we can write

ĥ(y) = r(X)
(√

S|y|
)

y, (A.57)

where r(X) (z), for z ≥ 0, is given by

r(X) (z) = φ(X) (z) +
(

1− φ(X) (z)
) SPd

1 + SPd
. (A.58)

The function φ(X) (z) is the estimate of the sparsity bit as conditioned on |y| =
√
S
−1

z, and its

expression depends on the chosen estimator X ∈ {GMMSE,GThres}, specifically, from (A.16)

and (A.17),

φ(X) (z) =











1

1+eα exp
{

− z2

1+SPd

} , X = GMMSE,

I
(

z2 ≥ α (1 + SPd)
)

, X = GThres.

(A.59)

Let {Sj > 0, j = 0, . . . ,+∞} be a generic SNR sequence, indexed by j, such that limj→+∞ Sj =

Slim. From Lebesgue’s Dominated Convergence Theorem [118], if there exists a function g(X)(h, n)

such that







∣

∣f (X)
(√

Sjh+ n, n
)∣

∣ ≤ g(X)(h, n) a.e., ∀j
E
[

g(X)(h, n)
]

< +∞,
(A.60)

where a.e. stands for almost everywhere, i.e., the inequality holds except on a set with probability

measure zero (with respect to the random variables hd ∼ CN (0, 1), n ∼ CN (0, 1), as ∼ B(q) and
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cs), then

lim
j→+∞

mse
(X)
k (Sj) = E

[

lim
j→+∞

f (X)(
√

Sjh+ n, n)

]

.

If this property holds for any SNR sequence such that limj→+∞ Sj = Slim, then

lim
S→Slim

mse
(X)
k (S) = E

[

lim
S→Slim

f (X)(
√
Sy, n)

]

,

and the Lemma is proved.

We now prove the existence of such a function g(X) (·). Let x =
√
Sy. Then, from (A.20)

and (A.57), we have

f (X) (x, n) =
∣

∣

∣
r(X) (|x|)x−

√
Sh
∣

∣

∣

2
=
∣

∣

∣

(

1− r(X) (|x|)
)

x− n
∣

∣

∣

2
,

where in the last step we used the fact that
√
Sh = x − n. Using the inequality |A + B|2 ≤

2|A|2 + 2|B|2, we have

f (X)(x, n) ≤ 2
(

1− r(X) (|x|)
)2

|x|2 + 2 |n|2 . (A.61)

Moreover, from (A.58), we have, ∀x ∈ C,

1− r(X) (|x|) =
(

1− φ(X) (|x|)
) 1

1 + SPd
≤ 1− φ(X) (|x|) .

Lettingm(X)(|x|) =
(

1− φ(X) (|x|)
)

|x|, we finally obtain f (X)(x, n) ≤ 2m(X)(|x|)2 + 2 |n|2.

In order to proceed, we distinguish between the estimators.

A.10.1 Generalized MMSE Estimator

For the GMMSE estimator, using the expression of φ(GMMSE) (|x|) in (A.59), we have

m(GMMSE)(|x|) = eα exp
{

−|x|2
}

|x|
1 + eα exp {−|x|2} ≤ eα exp

{

−|x|2
}

|x|.
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The right hand side is maximized at |x| = 1√
2
, and therefore we obtain the bound m(GMMSE)(|x|) ≤

eα 1√
2e
. Then, we have the following bound on f (GMMSE)(x, n):

f (GMMSE)(x, n) ≤ e2α−1 + 2 |n|2 , g(GMMSE)(h, n). (A.62)

g(GMMSE)(h, n) is an integrable function, in fact E
[

g(GMMSE)(h, n)
]

= e2α−1 + 2 < +∞.

A.10.2 Generalized Thresholding Estimator

For theGThres estimator, using the expression of φ(GThres) (|x|) in (A.59), we havem(GThres)(|x|) =
I
(

|x|2 < α
)

|x|. For |x| ≥ √
α, we have m(GThres)(|x|) = 0. On the other hand, for |x| < √

α, we

havem(GThres)(|x|) = |x| ≤ √
α. In general, m(GThres)(|x|) ≤ √

α, ∀|x| ≥ 0, and therefore

f (GThres)(x, n) ≤ 2α+ 2 |n|2 , g(GThres)(h, n).

g(GThres)(h, n) is an integrable function, in fact we have

E

[

g(GThres)(h, n)
]

= 2α+ 2 < +∞. (A.63)

The Lemma is thus proved.

Lemma A.10.2. We have, for n ∈ CN (0, 1),

E

[

|n|2

(1 + eα exp{−|n|2})2

]

= e−α ln (1 + eα) . (A.64)

Proof. We have

E

[

|n|2

(1 + eα exp{−|n|2})2

]

=

∫ +∞

0

x

(1 + eα−x)2
e−xdx = lim

t→+∞

∫ t

0

x

(1 + eα−x)2
e−xdx, (A.65)

where we have used the substitution x = |n|2, and the fact that, since n ∼ CN (0, 1), x ∼ E(1).
Let B(x) = e−α

1+eα−x and B′(x) , dB(x)
x = e−x

(1+eα−x)2
. Then, from (A.65) we have

E

[

|n|2

(1 + eα exp{−|n|2})2

]

= lim
t→+∞

∫ t

0
xB′(x)dx. (A.66)
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By solving the integral in the limit by parts, we have

∫ t

0
xB′(x)dx = tB(t)−

∫ t

0
B(x)dx = tB(t)− e−α ln

(

et + eα
)

+ e−α ln (1 + eα) , (A.67)

where in the last step we used the fact that B(x) = e−α d
dx ln (e

x + eα). Finally, the result is straight-

forwardly obtained by substituting the expression above in (A.66), and by letting t → +∞.

Appendix A.B: Proof of Theorem A.7.1

Proof of Theorem A.7.1. Let f(x, β) = lnβ + Z lnx + 1
βL

∑L−1
k=0 Akx

−k, where we have defined

x = e−ω ∈ (0, 1] in the argument of the minimization in (A.38). By minimizing with respect to

β ≥ 0, for a fixed x, we have

β̃(x) = argmin
β≥0

{

lnβ +
1

βL

L−1
∑

k=0

Akx
−k

}

=
1

L

L−1
∑

k=0

Akx
−k.

Substituting into f(x, β), we obtain f(x, β̃(x)) = 1+ln β̃(x)+Z lnx. We now minimize f(x, β̃(x))

with respect to x ∈ (0, 1]. f(x, β̃(x)) is an increasing function of x ∈ (0, 1] if and only if

f ′(x, β̃(x)) =
df(x, β̃(x))

dx
=

β̃′(x)

β̃(x)
+

Z

x
> 0, (A.68)

where β̃′(x) = dβ̃(x)
dx = − 1

L

∑L−1
k=0 kAkx

−(k+1). Equivalently, multiplying both sides by xZ+1β̃(x) >

0, f(x, β̃(x)) is an increasing function of x ∈ (0, 1] if and only if

g(x) , xZ+1β̃(x)f ′(x, β̃(x)) =
1

L

L−1
∑

k=0

Akx
Z−k (Z − k) > 0. (A.69)

Note that g′(x) = dg(x)
dx = 1

L

∑L−1
k=0 Akx

Z−k−1 (Z − k)2 > 0, ∀x ∈ (0, 1]. Therefore, g(x)

is a continue monotone increasing function of x. Moreover, since Z < L − 1 from (A.36) and

limx→0+ xm = +∞ when m < 0, we have limx→0+ g(x) = −∞. Therefore, if g(1) > 0, i.e.,
∑L−1

k=0 (Z − k)Ak > 0, then there exists a unique x̃ ∈ (0, 1) solution of g(x̃) = 0 such that







g(x) > 0, ∀x > x̃

g(x) < 0, ∀x < x̃.
(A.70)



192 Chapter A. UWB Sparse/Diffuse Channel Estimation

Equivalently, x̃ ∈ (0, 1) is the unique solution of f ′(x, β̃(x)) = 0 such that







f ′(x, β̃(x)) > 0, ∀x > x̃

f ′(x, β̃(x)) < 0, ∀x < x̃.
(A.71)

As a consequence, x̃ is the unique minimizer of f(x), x ∈ (0, 1], and
{

β̃(x̃), ω̃ = − ln x̃
}

uniquely

minimizes (A.38).

Conversely, if g(1) ≤ 0, i.e.,
∑L−1

k=0 (Z − k)Ak ≤ 0, then g(x) ≤ 0, ∀x ∈ (0, 1]. This

is equivalent to f ′(x, β̃(x)) ≤ 0, ∀x ∈ (0, 1]. As a consequence, 1 is the unique minimizer of

f(x, β̃(x)), and
{

β̃(1), ω̃ = 0
}

uniquely minimizes (A.38).
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