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Summary 

 

Tumor progression is usually associated with abnormal myelopoiesis and recruitment of 

several myeloid cell subsets into tissues. These cells heavily infiltrate the primary tumor 

and sustain its growth by providing local immune suppression and promoting 

angiogenesis. They also assist metastatic spreading by favoring the tumor invasion of 

adjacent tissues, and by supporting cancer cell seeding into distant sites. Recent advances 

have partially highlighted the mechanisms through which myeloid cells are recruited into 

the tumor mass and suppress the immune response against tumor cells, thus laying the 

basis for new antitumor immunotherapeutic approaches. However, very little is known 

about the molecular pathways which regulate myeloid cell differentiation and functions 

within the tumor microenvironment, especially in the context of the metastatic process. 

To obtain starting cues about new relevant molecular pathways acting in tumor-

infiltrating myeloid cells, we performed gene expression analysis in purified CD11b+ 

intratumoral myeloid cells isolated from different transplantable murine tumor models. 

Among the most upregulated genes, we got particularly interested in the disabled 

homolog 2, mitogen-responsive phosphoprotein (Dab2) gene. The DAB2 protein is a 

molecular adaptor which participates to endocytosis and signal transduction pathways. Its 

main function is to link membrane receptors with clathrin assemblies, allowing selective 

clathrin-mediated endocytosis of transmembrane proteins. The vesicular trafficking has 

the important function to distribute and organize the protein content of the plasma 

membrane, allowing the cell to spatially react to external stimuli. We thought that this 

process is of key-importance within the tumor microenvironment, where complex cell-to-

cell interactions occur and oriented stimuli are released. 

In this work we show that, once within the tumor, both monocytes and macrophages 

upregulated the DAB2 protein. Both the cytokines GM-CSF and M-CSF, which regulate the 

development of mononuclear phagocytes, were able to induce DAB2 expression by 

myeloid cells in vitro, through a mechanism requiring the transcription factor C/EBPβ. 

Conditional knockout of the Dab2 gene in the hematopoietic system resulted in a strong 

reduction of tumor-infiltrating monocytes and macrophages. In vivo tracking experiments 

showed that Dab2-knockout (Dab2-/-) monocytes were less efficient to generate tumor-
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associated macrophages than wild type ones, and this was accompanied by reduced 

recovery of Dab2-/- monocytes within the tumor mass. In vitro differentiation of bone 

marrow-derived macrophages indicated that Dab2-/- monocytes cannot efficiently carry 

out the autophagy process, suggesting a molecular mechanism that could explain their 

macrophage differentiation defects. Moreover, Dab2-/- tumor-associated macrrophages 

had increased expression of genes and membrane markers associated with the M2 

macrophage polarization. Finally, we found that spontaneous generation of metastases 

was impaired in Dab2-/- mice. These data strongly indicate that DAB2 is required for 

correct differentiation of tumor-associated macrophages, and suggest that this protein 

may be an optimal molecular target to obstruct myeloid cell-assisted dissemination of 

metastases in tumor-bearing hosts. 
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Riassunto 

 

La progressione della malattia neoplastica è solitamente accompagnata da una 

mielopoiesi anormale, con il richiamo di diverse sottopopolazioni mieloidi nei tessuti. 

Queste sottopopolazioni infiltrano fortemente il tumore primario e sostengono la sua 

crescita fornendo immunosoppressione e stimoli pro-angiogenici. Queste cellule 

assistono anche il processo metastatico favorendo l’invasione tumorale dei tessuti 

adiacenti, e sostenendo l’attecchimento delle cellule tumorali nei siti metastatici. Recenti 

scoperte hanno parzialmente compreso i meccanismi attraverso i quali le cellule mieloidi 

sono richiamate nella massa tumorale per sopprimere la risposta immunitaria contro le 

cellule tumorali, ponendo così le basi per nuovi approcci immunoterapeutici. Tuttavia, i 

meccanismi molecolari che regolano il differenziamento e le funzioni delle cellule mieloidi 

nel microambiente tumorale sono poco conosciuti, specialmente nel contesto del 

processo metastatico. 

Per ottenere indizi iniziali riguardo nuove vie molecolari che agiscono nelle cellule 

mieloidi infiltranti il tumore, abbiamo effettuato un’analisi dell’espressione genica in 

cellule mieloidi CD11b+ intratumorali purificate da diversi modelli murini di tumore 

trapiantabile. Fra i geni più espressi, abbiamo trovato particolarmente interessante il 

gene disabled homolog 2, mitogen-responsive phosphoprotein (Dab2). La proteina DAB2 

è un adattatore molecolare che partecipa all’endocitosi e a diverse vie di trasduzione del 

segnale. La sua principale funzione è di collegare i recettori di membrana con i 

raggruppamenti di clatrina, permettendo l’endocitosi selettiva delle proteine di 

membrana mediata dalla clatrina. Il traffico vescicolare ha l’importante funzione di 

distribuire ed organizzare il contenuto proteico della membrana plasmatica, consentendo 

alla cellula di reagire spazialmente agli stimoli esterni. Riteniamo che questo processo sia 

di importanza chiave all’interno del microambiente tumorale, dove avvengono complesse 

interazioni fra cellule e sono rilasciati stimoli orientati. 

In questo lavoro mostriamo che, raggiunto il tumore, sia i monociti che i macrofagi 

esprimono la proteina DAB2. Le citochine GM-CSF ed M-CSF, le quali regolano lo sviluppo 

dei fagociti mononucleati, inducono l’espressione di DAB2 nelle cellule mieloidi in vitro, 

attraverso un meccanismo che richiede il fattore di trascrizione C/EBPβ. Il knockout 
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condizionale del gene Dab2 nel sistema ematopoietico porta ad una forte riduzione dei 

monociti e macrofagi infiltranti il tumore. Esperimenti di tracciamento in vivo dei 

monociti Dab2-knockout (Dab2-/-) mostrano che questi ultimi, rispetto ai monociti wild 

type, sono meno efficienti nel generare i macrofagi associati al tumore, e questo effetto si 

accompagna con un ridotto recupero dei monociti Dab2-/- all’interno della massa 

tumorale. Il differenziamento in vitro di macrofagi ottenuti dal midollo osseo indica che i 

monociti Dab2-/- non riescono a sostenere efficientemente il processo autofagico, 

suggerendo un meccanismo molecolare che può spiegare il loro difetto di 

differenziamento in macrofagi. Inoltre, i macrofagi Dab2-/- associati al tumore hanno 

un’aumentata espressione di geni e marcatori di membrana correlati con la 

polarizzazione macrofagica M2. Infine, abbiamo scoperto che i topi Dab2-/- sono resistenti 

alla formazione di metastasi. Questi dati indicano fortemente che DAB2 è necessario per 

il corretto differenziamento dei macrofagi intratumorali, e suggeriscono che questa 

proteina potrebbe essere un ottimo target molecolare per ostacolare la disseminazione di 

metastasi assistita dalle cellule mieloidi negli individui con tumore. 
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Introduction 

 

Cancer is a pathologic multistep process in which normal cells acquire the ability to 

proliferate without control and spread throughout the body, usually killing their host in 

this process. To become malignant, neoplastic cells need to acquire several traits, which 

are common to all types of cancer and have been defined as “the eight hallmarks of 

cancer” (Hanahan and Weinberg 2011): 

1. Sustaining proliferative signaling; 

2. Evading growth suppressors; 

3. Resisting cell death; 

4. Enabling replicative immortality; 

5. Inducing angiogenesis; 

6. Activating invasion and metastasis; 

7. Deregulating cellular energetics; 

8. Avoiding immune destruction. 

Hallmarks 1-4 render neoplastic cells “masters of their own destiny”, allowing them to 

sustain chronic proliferation. This requires the subversion of the homeostatic control, 

which ensures normal tissue architecture and function. Hallmark 5 secures cell 

requirement for oxygen and nutrients, and give malignant cells an opportunity to enter 

the bloodstream and colonize distant tissues, which translates into hallmark 6. In order to 

sustain cell anabolism, hallmark 7 limits energy production largely to aerobic glycolysis 

(Lunt and Vander Heiden 2011). This ensures the availability of various glycolytic 

intermediates, which fuel both nucleoside and amino acid biosynthetic pathways. Finally, 

hallmark 8 allows cancer cells to avoid immune detection and escape immune 

surveillance (Schreiber, Old et al. 2011). 

The earliest vision of tumor progression postulated that all these traits are acquired by 

tumor cells only through genetic/epigenetic mutations and genomic instability, thinking 

that tumor biology could be understand simply elucidating the cell-intrinsic properties of 

cancer cells. However, research in the past decade has recognized tumors as complex 

organs in which recruited normal cells, composing the tumor-associated stroma, are 

essential to achieve most if not all the eight hallmarks of cancer (Hanahan and Weinberg 
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2011). With this concept in mind, we can assume that transformed tumor cells are not 

self-sufficient in their needs and so they recruit normal cells to receive assistance. For this 

reason, research efforts aiming to oppose cancer disease have focused on understanding 

the single cell types that compose the tumor microenvironment and how they 

orchestrate to manage tumor progression. 
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Components of the tumor microenvironment 

 

Cancer cells and cancer stem cells 

Cancer cells are the drivers of the disease, carrying the oncogenic and tumor suppressor 

mutations that confer them malignancy. Traditionally, cancer cells were believed to have 

a relative stable homogeneity within the tumor mass, until continuous proliferation 

(combined with genomic instability) spawn distinct clonal subpopulations. This clonal 

heterogeneity makes the tumor mass a mosaic of different regions with various degrees 

of differentiation, proliferation, and invasiveness. Recently, a new dimension of 

heterogeneity has been added by the discovery of the cancer stem cells (CSCs). CSCs are a 

rare subpopulation of cancer cells defined by the ability to efficiently seed new tumors 

when injected in recipient host mice (Cho and Clarke 2008). CSCs also express markers 

shared with normal stem cells of their tissue of origin (Al-Hajj, Wicha et al. 2003). CSCs 

may account in major part for the regenerative ability of tumors, providing to their own 

self-renewal and, at the same time, generating more differentiated progenies, which 

constitute the great bulk of the tumor mass. It is believed that CSCs arise from genetic 

mutations that disrupt the proliferative and differentiation program of normal stem cells 

(Lobo, Shimono et al. 2007). The presence of CSCs has important implications in therapy, 

because these cells are more resistant to many commonly used chemotherapeutic 

treatments (Creighton, Li et al. 2009; Singh and Settleman 2010). This trait, combined 

with their cancer stemness ability, could explain the almost certain relapse which, sooner 

or later, occurs after successful chemotherapy. Moreover, several studies have 

highlighted that activation of the epithelial to mesenchymal transition (EMT) program by 

cancer cells, which is fundamental for invasion and metastatic spreading (Katsuno, 

Lamouille et al. 2013), confers many features of CSCs (Mani, Guo et al. 2008; Singh and 

Settleman 2010). This finding suggests that the same transcriptional program that allows 

cancer cells to disseminate into distant sites, also allows them to locally proliferate and 

establish new tumors. 
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Endothelial cells 

Endothelial cells form the tumor-associated vasculature. Cancer cells need constant 

supply of oxygen and nutrients, and to fulfill this demand they induce the “angiogenic 

switch”, a cellular program that activates quiescent endothelial cells in order to construct 

new vessel (Hanahan and Folkman 1996). This process is regulated by a network of 

several signaling pathways, including the vascular endothelial growth factor (VEGF), 

angiopoietin, fibroblast growth factor (FGF), Notch, Neuropilin, Robo, and Eph-A/B signals 

(Carmeliet and Jain 2000; Ahmed and Bicknell 2009; Dejana, Orsenigo et al. 2009; 

Pasquale 2010). Recent researches  have unveiled gene expression profiles of tumor 

endothelial cells, thus allowing to identify distinct luminal surface markers that are not 

expressed on normal vessels. These studies have provided the opportunity to target 

specifically the tumor neo-vasculature with novel therapeutic strategies (Nagy, Chang et 

al. 2010; Ruoslahti, Bhatia et al. 2010). A particular kind of endothelial cells forms actively 

growing lymphatic vessels at the periphery of tumors and adjacent tissues. These vessels 

provide cancer cells with channels to seed metastases in draining lymph nodes (Tammela 

and Alitalo 2010). 

 

Pericytes 

Pericytes are mesenchymal cells with finger-like projections that wrap around the 

endothelial tubing of blood vessels. They provide paracrine signals to the quiescent 

endothelium, for example secreting low levels of VEGF with trophic function in 

endothelial homeostasis (Bergers and Song 2005). They also collaborate with endothelial 

cells in synthetizing the vascular basement membrane that sustains the hydrostatic 

pressure within blood vessels. Pharmacological inhibition of the platelet-derived growth 

factor (PDGF) receptor-mediated signaling in tumor pericytes reduced their coverage of 

tumor vessels, resulting in compromised vascular integrity and function (Gaengel, Genove 

et al. 2009). Intriguingly, pericytes of normal vessels were immune to such 

pharmacological destruction, providing another example of the therapeutic opportunities 

springing from the molecular diversity between normal and tumor vessels. 
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Cancer-associated fibroblasts 

Fibroblasts are often the major components of the tumor stroma. Within the tumor, two 

classes of fibroblasts can be found: (1) classic fibroblasts, which constitute the structural 

foundation supporting most epithelial tissues and (2) myofibroblasts, which are 

distinguished by expression of the α-smooth muscle actin (SMA) and can proliferate to 

physically sustain tissue repair (Hanahan and Weinberg 2011). Recruited myofibroblasts 

and reprogrammed variants of normal fibroblasts can enhance tumor proliferation, 

angiogenesis, invasion and metastasis. Fibroblasts can remodel the structure of the 

stroma through production of components of the extracellular  matrix (ECM), and are 

able to recruit endothelial cells and pericytes through secretion of growth factors and 

chemokines. Their pro-tumoral activities have been defined by transplantation of cancer 

cells admixed with cancer-associated fibroblasts in recipient mice, or by genetic and 

pharmacological perturbation of their functions (Kalluri and Zeisberg 2006; Shimoda, 

Mellody et al. 2010). 

 

Inflammatory leukocytes 

Understanding the regulation of immune cells within the tumor microenvironment and 

their influence on cancer progression is the main purpose of this study, so the following 

sections will focus on the current knowledge about these topics. 
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Properties and functions of tumor-infiltrating inflammatory 

leukocytes 

 

Histologic analysis of cancer biopsies indicate that virtually all tumors are infiltrated, 

although to various degrees, by leukocytes (Pages, Galon et al. 2010). These infiltrations 

are similar to those that arose in normal inflamed tissues, suggesting  that an 

inflammatory reaction usually occurs in tumors. Historically, this was interpreted as an 

attempt of the immune system to eradicate neoplastic lesions, which is partially true. 

However, in the last ten years it has become increasing evident that inflammation within 

the tumor microenvironment is created and controlled by cancer cells, through the 

recruitment of inflammatory cells mainly belonging to the myeloid branch of the immune 

system. From this point of view, inflammation is the occurrence of two opposite actions 

of immune cells: one tempting to control neoplastic growth and eliminate transformed 

cells, while the other favoring all the processes that cancer cells need in order to 

proliferate and seed elsewhere. 

 

The “good infiltrate”: theory of immune surveillance 

The theory of immune surveillance proposes that cells of the immune system constantly 

monitor tissues for the occurrence of malignant transformation, eliminating them before 

the onset of a clinically evident tumor can occur. The logical consequence is that tumor 

cells need to escape immune recognition and elimination in order to become a life-

threatening disease. This theory, initially proposed in the Fifties, received new attention 

thanks to the availability of transgenic mice that are deficient for various key components 

of the immune system (Schreiber, Old et al. 2011). Respect to immunocompetent 

littermates, these mice develop more frequently carcinogen-induced tumors, which grow 

more rapidly respect to controls. Moreover, cancer cells that arise in immunodeficient 

hosts fail to generate new tumors when transplanted in immunocompetent individuals, 

suggesting that tumor cells receive selective pressure from the immune system during 

their grow (Teng, Swann et al. 2008). The selective deficiency of particular immune cell 

types pinpointed a role for CD8+ cytotoxic T lymphocytes (CTLs), CD4+ TH1 helper T cells 

and natural killer (NK) cells in defending the host from tumor disease. Consistent with 
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these findings, colon and ovarian tumors, which are heavily infiltrated with CTLs and NK 

cells, have better prognosis than those lacking such infiltrates (Nelson 2008; Pages, Galon 

et al. 2010). Another clinical evidence comes from immunosuppressed organ transplant 

recipients who develop donor-derived cancers, suggesting that these cancer cells were 

kept in a dormant state by the functional immune system of the donor prior to 

transplantation (Strauss and Thomas 2010). 

To justify the occurrence of tumors in light of the immune surveillance theory, the three 

phase-model of “immunoediting” has been proposed (Schreiber, Old et al. 2011). The first 

phase is called “elimination”: cancer cells are constantly eliminated by immune 

surveillance each time they arise. In the second phase of “equilibrium”, some cancer cells 

manage to survive to immune elimination, and  a balance is established in which tumor 

cells constantly adapt and survive to the attempts of eradication by the immune system. 

In this phase immune killer cells (mainly CD8+ CTLs and NK cells) are still able to eliminate 

tumor clones that are excessively immunogenic or to deliver cytostatic signals that keep 

cancer cells dormant. It is believed that the equilibrium phase can persist even for 

decades, before cancer cells become fully competent in evading the immune system of 

the host. In the third phase, called “escape”, immune cells cannot eliminate tumor cells. 

Predictably, during the equilibrium phase there is a selective pressure for those tumor 

clones that somehow become less immunogenic (for example down-regulating the 

antigen presentation machinery); however it is increasingly evident that part of tumor-

infiltrating leukocytes, together with the environmental conditions established within the 

tumor microenvironment, actively suppress the cell-mediated immune response against 

cancer cells. 

 

The “bad infiltrate” and the “ugly outcome”: smoldering inflammation subverts anti-

tumor immunity and promotes cancer disease 

Chronic inflammation predisposes individuals to various types of cancer (Balkwill and 

Mantovani 2001). For example, inflammatory bowel disease (IBD) is associated with 

increased risk of developing colorectal cancer (Waldner and Neurath 2009). Conversely, 

chronic administration of non-steroidal anti-inflammatory agents reduces the incidence 

of several tumor types (Chan, Ogino et al. 2007). The positive relationship between 

cancer and inflammation seems counterintuitive, because inflammation activates the 
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immune system and facilitates the elimination of tissue-perturbing elements. Actually, 

the tumor microenvironment shows signs of “smoldering” inflammation, which are 

insufficient to trigger a fully operational cell-mediated immune response (Balkwill, 

Charles et al. 2005). Nonetheless, this condition provides the tumor with growth factors 

and anti-apoptotic signals, sustains angiogenesis, activates EMT, and produces ECM-

remodeling enzymes, which facilitate invasion and extravasation into the bloodstream 

(Grivennikov, Greten et al. 2010). Importantly, it also establishes an immunosuppressive 

environment that actively suppresses the adaptive immune response against tumor cells. 

This is achieved by secreting anti-inflammatory cytokines that block the antitumor TH1-

type immune response (TGF-β, IL-10, IL-4, IL-13, M-CSF, VEGF, IL-6); by inhibiting correct 

maturation and activation of professional antigen presenting cells (APCs), which are 

essential for correct priming of T lymphocytes (Gabrilovich 2004); and by either disabling 

or eliminating T lymphocytes that have successfully activated their tumoricidal functions, 

this task mainly being performed by particular classes of immune suppressive cells 

(Gabrilovich 2004). Recruitment of these cells also leads to their migration into secondary 

lymphoid organs and induction of immune tolerance to tumor antigens, further impairing 

the anti-tumor immune response (Nagaraj, Gupta et al. 2007; Ugel, Peranzoni et al. 2012). 

Tumor-induced immune suppression has important therapeutic implications, because it 

represents the main obstacle when anti-cancer immunotherapies are attempted 

(Zitvogel, Apetoh et al. 2008). 

Chronic inflammation induced by infections or autoimmune diseases increases the risk of 

cancer and, once established, promotes its progression. However, inflammatory cells and 

mediators are present virtually in all tumors, also in those types for which there is no 

epidemiological basis for inflammation. An explanation for this is that oncogenes and 

tumor-suppressors, whose genetic modifications can induce neoplastic transformation, 

also coordinate inflammatory transcriptional programs. For example, in vitro constitutive 

activation of the protein tyrosine kinase RET in freshly isolated human thyrocytes, which 

is sufficient to induce papillary thyroid carcinoma in vivo, also induces several 

inflammation-related genes (Borrello, Alberti et al. 2005). These include colony-

stimulating growth factors (CSFs), which recruit and promote the survival of leukocytes; 

IL-1β, one of the main pro-inflammatory cytokines; cyclooxygenase 2 (COX2), which 

synthetize prostaglandins (another class of proinflammatory molecules); ECM-degrading 
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enzymes; and various chemokines that recruit myeloid cells and promote angiogenesis 

(CCL2, CCL20, CXCL8). These proteins were also found in thyroid tumor specimens taken 

by biopsy. Another example is offered by activated oncogenic components of the RAS-

RAF signaling pathway, which induces the production of tumor-promoting inflammatory 

chemokines and cytokines (Sparmann and Bar-Sagi 2004; Guerra, Schuhmacher et al. 

2007). 

Once inflammation is established, inflammatory cells are recruited in response to 

secreted chemokines, cytokines and prostaglandins (Mantovani, Allavena et al. 2008). 

These cells sustain inflammation itself and actively contribute to almost all tumor-

promoting processes, including angiogenesis, metastatic spreading and immune 

suppression. Tumor-infiltrating inflammatory leukocytes are mainly composed of myeloid 

cells and include dendritic cells, granulocytes, myeloid derived suppressor cells, Tie2-

expressing monocytes/macrophages and tumor-associated macrophages. 

 

Dendritic cells 

Dendritic cells (DCs) are terminally differentiated myeloid cells whose main property is to 

efficiently process and present antigens to T cells. They differentiate in tissues from bone 

marrow progenitors and, at least in part, from monocytes (Liu and Nussenzweig 2010). 

Two major subsets of DCs exist, with different morphology, phenotypes and functions (Liu 

and Nussenzweig 2010; Swiecki and Colonna 2010). Conventional DCs normally uptake 

antigens in peripheral tissues, but they do not functionally present them to T cells unless 

they are activated by “dangerous” stimuli. These stimuli include molecules associated 

with viruses, bacteria or damaged tissues and are commonly referred as pathogen-

associated molecular patterns (PAMPs) and damage-associated molecular patterns 

(DAMPs). Both PAMPs and DAMPs are recognized by evolutionary conserved receptors 

called toll-like receptors (Rotta, Edwards et al. 2003). Their effect is to induce maturation 

of immature DCs, which involves both expression of co-stimulatory molecules and 

cytokines to promote T cell activation, and upregulation of chemokine receptors that 

drive migration of DCs to lymph nodes. The other subsets are plasmacytoid DCs, which 

have a morphology reminiscent of plasma cells and secrete high amounts of Interferon-α 

in response to viral nucleic acids or self DNA (Swiecki and Colonna 2010). 
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DCs in tumor-bearing hosts do not adequately stimulate immune responses. Tumor-

secreted factors induce abnormal myelopoiesis that impair DC maturation, with three 

main results: decreased production of mature functionally competent DCs; accumulation 

of immature DCs at the tumor site; and increased production of immature myeloid cells 

(Gabrilovich 2004). Tumor-secreted factors that block DC maturation include macrophage 

colony-stimulating factor (M-CSF), IL-6 and VEGF, which mainly act through shifting DC 

precursors towards macrophage differentiation, and by activating the transcription factor 

signal transducer and activator of transcription 3 (STAT3). However, other factors within 

the tumor microenvironment alter DC differentiation. Hypoxia induces in DCs the 

transcription factor hypoxia-inducible factor 1α (HIF1α), which drives the expression of 

adenosine receptor A2B. Adenosine stimulation of DCs impairs their allostimulatory 

activity and causes them to drive the development of TH2 rather than TH1 helper T cells, 

thus mining the TH1-type antitumor immune response (Yang, Ma et al. 2010). Moreover, 

adenosine-treated DCs secrete VEGF, IL-6, IL-8, IL-10, COX2, transforming growth factor-β 

(TGFβ) and activate the enzyme indoleamine 2,3-dioxygenase (IDO), which all favor tumor 

progression in several ways (Novitskiy, Ryzhov et al. 2008). Lactic acid, which is abundant 

at the tumor site due to increased glycolytic catabolism, also induces dysfunction of DCs 

(Gottfried, Kunz-Schughart et al. 2006). Increased accumulation of lipids, which occurs in 

DCs isolated from tumor-bearing hosts, impairs DC ability to process soluble antigens and 

mount T cell responses (Herber, Cao et al. 2010). Not only tumor-infiltrating DCs (TIDCs) 

are dysfunctional, but also actively suppress CD8+ T cell responses, through expression of 

the immune suppressive molecules arginase 1 (ARG1), IDO, IL-10 and TGFβ (Norian, 

Rodriguez et al. 2009; Watkins, Zhu et al. 2011). Plasmacytoid DCs exert their immune 

suppressive activity mainly through expression of IDO (Munn, Sharma et al. 2004). This 

enzyme limits T cell growth by consuming local L-tryptophan; it also enhances the 

regulatory activity of Treg cells, a particular subset of CD4+ T helper cells which maintains 

peripheral tolerance in tissues (Baban, Chandler et al. 2009). 

 

Granulocytes 

Granulocytes are leukocytes characterized by the presence of cytoplasmic granules and 

multi-lobed shape of the nuclei. The most abundant type of granulocytes in the body are 

the neutrophils, which can be distinguished from eosinophils and basophils on the basis 
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of their content by apposite histologic stainings. Neutrophils are phagocytic cells that 

rapidly respond to infections by destroying engulfed pathogens. They can be easily 

recognized in tissues by expression of the myeloid marker CD11b (also known as integrin 

αM) and LY6G, an isoform of the GR1 surface protein (Gabrilovich, Ostrand-Rosenberg et 

al. 2012). 

The role of tumor-infiltrating granulocytes in cancer is controversial. Neutrophils assist 

angiogenesis and metastasis in several metastatic tumor models. Tumors resistant to 

antiangiogenic therapy secrete granulocyte colony-stimulating factor (G-CSF), which 

induces production of neutrophils in the bone marrow and their recruitment to the 

tumor. Once there, neutrophils secrete prokineticin 2 (PROK2), which stimulates 

angiogenesis and compensates for the therapeutic effects of anti-VEGF therapy (Shojaei, 

Wu et al. 2007; Shojaei, Wu et al. 2009). Moreover, G-CSF induces early migration of 

Ly6G+Ly6C+ granulocytes in premetastatic lungs of tumor-bearing mice. Once in the 

premetastatic site, granulocytes secrete PROK2 that guides the arrival and seeding of 

metastatic cells through the activation of prokineticin receptor 1 (Kowanetz, Wu et al. 

2010). Granulocytes also facilitate angiogenesis through secretion of matrix 

metalloproteinase 9 (MMP9), which augments VEGF bioavailability through its release 

from the ECM (Nozawa, Chiu et al. 2006). In contrast with these reports, however, 

neutrophils were showed to inhibit the formation of metastasis in a model of 

transplantable murine mammary carcinoma. This was mediated through cytotoxic effect 

against tumor cells by production of reactive oxygen species (Granot, Henke et al. 2011). 

This dualistic role of neutrophils in cancer could be explained by the finding that these 

cells can acquire two opposite behaviors in the context of tumor disease (Fridlender, Sun 

et al. 2009). Tumor-infiltrating neutrophils become “N1” after TGFβ blockade, resulting in 

antitumor cytotoxic effects and secretion of proinflammatory cytokines. Conversely, 

depletion of “N2” neutrophils in untreated tumor-bearing control mice resulted in 

reduced tumor growth and increased activation of CD8+ CTLs. This “N2” state was 

characterized by expression of ARG1 and low levels of proinflammatory molecules. 

 

Myeloid-derived suppressor cells 

Tumor progression has two main consequences on myeloid cells. The first one is blockade 

of the differentiation program of several myeloid lineages, leading to the accumulation of 
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immature myeloid cells at the tumor site and secondary lymphoid organs.  The second 

one is induction of powerful immune suppressive activity against CD8+ CTLs (Gabrilovich, 

Ostrand-Rosenberg et al. 2012). Highly immune suppressive immature myeloid cells are 

defined as myeloid-derived suppressor cells (MDSCs), which have further been divided in 

polymorphonuclear MDSCs (PMN-MDSCs) and monocytic MDSCs (M-MDSCs). Both these 

subsets have been described in cancer patients, although there are some differences in 

the hierarchy and the mechanisms of immune suppression between human and mouse 

species (Gabrilovich, Ostrand-Rosenberg et al. 2012). 

PMN-MDSCs exert their suppressive activity through production of reactive oxygen 

species (ROS), which down-regulate the T cell receptor (TCR) ζ-chain of CD8+ T cells 

(Schmielau and Finn 2001). PMN-MDSCs can be distinguished from granulocytes for their 

suppressive activity and for higher levels of CD115 and CD244 but lower levels of CXC-

chemokine receptor 1 (CXCR1) and CXCR2 than neutrophils (Youn, Nagaraj et al. 2008).  

M-MDSCs are mainly recognized for expression of CD11b and intermediate levels of GR1 

(Dolcetti, Peranzoni et al. 2010). They also express varying levels of classic monocyte 

markers as CD115, F4/80 and CC-chemokine receptor 2 (CCR2) (Youn, Nagaraj et al. 2008; 

Dolcetti, Peranzoni et al. 2010). Although this phenotype is reminiscent of inflammatory 

monocytes (discussed later), M-MDSCs are highly immune suppressive (even higher than 

PMN-MDSCs) and can co-express the enzymes inducible nitric oxide synthase (iNOS) and 

ARG1 (Gallina, Dolcetti et al. 2006). In contrast, inflammatory monocytes do not have a 

coordinate regulation of these two enzymes and are not immune suppressive. While iNOS 

expression alone confers tumoricidal activity to macrophages, concomitant expression of 

this enzyme with ARG1 results in production of peroxynitrite, which undermine CD8+ T 

cell responsiveness by desensitizing the TCR and interfering with IL-2 receptor signaling 

(Bronte and Zanovello 2005; Nagaraj, Gupta et al. 2007). By nitrating CC-chemokine ligand 

2 (CCL2), peroxynitrite also impair the ability of CD8+ CTLs to infiltrate the tumor mass, 

thus limiting their access to cancer cells for antigen-specific cell lysis (Molon, Ugel et al. 

2011).  

Synergistic role of ARG1 and iNOS in producing peroxynitirites is due to their sharing of 

the substrate L-arginine. Biochemical studies indicate that when iNOS catalyzes the 

synthesis of nitric oxide (NO) under sub-optimal concentration of L-arginine, the main 

product of the reaction becomes the anion superoxide O2
- (Xia, Roman et al. 1998). O2

- is 
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highly reactive and instantly combines with other molecules, thus generating reactive 

nitrogen-oxide species that include peroxynitrite. ARG1 alone is also immune suppressive: 

by depleting local L-arginine, ARG1+ MDSCs deprive lymphocytes of an essential nutrient, 

resulting in down-regulation of the TCR ζ-chain and blockade of antigen-stimulated 

proliferation (Bronte and Zanovello 2005). ARG1 also allows MDSCs to convert naïve CD4+ 

T helper cells into induced Treg cells (Serafini, Mgebroff et al. 2008), thus exerting another 

(indirect) inhibitory effect on CD8+ CTLs. Other mechanisms of Treg expansion by MDSCs 

include CD40-CD40L interactions and production of soluble factors as IFN, IL-10, TGFβ, 

and retinoic acid (Huang, Pan et al. 2006; Pan, Ma et al. 2010; Hoechst, Gamrekelashvili et 

al. 2011). 

MDSCs can migrate to secondary lymphoid organs (lymph nodes and spleen), where they 

exert their immune suppressive activity against CD8+ CTLs in an antigen-specific manner. 

CD11b+GR1+ cells were found in the lymph nodes of tumor-bearing mice and cancer 

patients, where they made CD8+ T lymphocytes unresponsive to antigen stimulation. 

Suppression required cell-to-cell contact between MDSCs and T cells and involved 

antigen-specific recognition between the TCR and peptide-major histocompatibility 

complex (MHC) class I dimers expressed by MDSCs (Nagaraj, Gupta et al. 2007). This 

allowed nitration of the TCR through short range-diffusion of peroxinitrite produced by 

MDSCs. TCR modification compromises its ability to recognize antigens exposed by MHC 

class I on APC cells, thus undermining T cell ability to mount antigen-specific responses 

(Nagaraj, Gupta et al. 2007). It is likely that the same mechanism also occurs in the 

spleen; however, we found that splenectomy is sufficient to restore completely CTL 

reactivity against tumor antigens (Ugel, Peranzoni et al. 2012). Further experiments 

indicated that CD11b+GR1int M-MDSCs have high proliferative potential and expand in the 

marginal zone of the spleen during tumor progression. In this site they closely associate 

with circulating CD8+ T lymphocytes, cross-presenting tumor antigens and inducing 

immune tolerance. Conversely, it is believed that tumor-infiltrating MDSCs inhibit nearby 

T cells without the need for cellular contact, resulting in antigen-unspecific suppression 

(Gallina, Dolcetti et al. 2006; Corzo, Condamine et al. 2010). Both ARG1 and iNOS are 

implicated in the process, probably through depletion of local L-arginine, production of 

NO, which interferes with IL-2 receptor signaling (Mazzoni, Bronte et al. 2002), and 

induction of Treg cells. Interestingly, IFN produced by activated CD8+ CTLs and TH1 cells is 
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required to induce the immune suppressive activity of MDSCs, suggesting that these cells 

might represent a “shut down” system aimed to counteract excessive immune responses 

(Bronte, Wang et al. 1998; Gabrilovich, Ostrand-Rosenberg et al. 2012). 

Although MDSCs have been mainly characterized for their immune suppressive 

properties, several studies reported a role for immature myeloid cells in sustaining other 

fundamental processes of tumor progression (Gabrilovich, Ostrand-Rosenberg et al. 

2012). Examples are: support tumor invasion through secretion of MMP2 and MMP9 

(Kitamura, Kometani et al. 2007); angiogenesis promotion through secretion of MMP9 

and differentiation into endothelial-like cells (Yang, DeBusk et al. 2004); creation of a 

suitable environment for the arrival of cancer cells in future metastatic sites (Hiratsuka, 

Watanabe et al. 2006); induction of the EMT through TGFβ, epidermal grow factor (EGF) 

and hepatocyte grow factor (HGF) signaling pathways (Toh, Wang et al. 2011). 

Unfortunately, the majority of these studies did not verify whether these immature 

myeloid cells were immune suppressive or not, making improper to assert that they were 

indeed MDSCs. However, conditional deletion of the gene encoding p120 catenin, whose 

product is involved in cell-to-cell adhesion and signaling, caused the formation of invasive 

squamous cell cancer and desmoplasia in mice. Analysis of the tumor lesions showed 

production of several pro-inflammatory cytokines (GM-CSF, M-CSF, CCL2, TNFα) and 

accumulation of CD11b+GR1+CD124+ immune suppressive immature myeloid cells, which 

promoted tumor progression by converting normal fibroblasts in cancer-associated 

fibroblasts (Stairs, Bayne et al. 2011). It should be noted that immature myeloid cells are 

recruited early during tumor progression; acquisition of an immune suppressive program 

could occur later on, when consistent mounting of TH1-type adaptive immune response is 

sufficient to trigger MDSC functions (Gallina, Dolcetti et al. 2006; Marigo, Dolcetti et al. 

2008; Gabrilovich, Ostrand-Rosenberg et al. 2012), thus preventing cancer cells from 

being harmed. 

 

Tie2-expressing monocytes/macrophages 

A fraction of blood resident monocytes weakly express the angiopoietin (ANG) receptor 

Tie2, which modulates endothelial cell biology and destabilizes blood vessels to facilitate 

angiogenesis (Augustin, Koh et al. 2009). Once within the tumor, these monocytes 

upregulate Tie2 expression and differentiate in perivascular macrophages (De Palma, 
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Venneri et al. 2005; Pucci, Venneri et al. 2009). Their proximity to blood vessels suggests 

that these cells provide paracrine signals to the angiogenic vasculature. Consistently with 

this hypothesis, TEM-specific depletion in tumor-bearing mice reduced tumor vasculature 

and impaired tumor growth (De Palma, Venneri et al. 2003; De Palma, Venneri et al. 

2005).  TEMs isolated from mammary tumors display a distinctive gene expression 

signature consistent with increased proangiogenic activity and reduced proinflammatory 

activity respect to Tie2-negative tumor macrophages (Pucci, Venneri et al. 2009). ANG2 

stimulates leukocyte adhesion to vascular endothelium by enhancing expression of the 

adhesion protein intercellular adhesion molecule 1 (ICAM1) and vascular cell adhesion 

molecule 1 (VCAM1) on endothelial cells (Fiedler, Reiss et al. 2006). In vitro experiments 

demonstrated that ANG2-stimulated TEMs up-regulate the proangiogenic genes 

thymidine phosphorylase and cathepsin-B, and secrete several proangiogenic factors 

(Coffelt, Tal et al. 2010), indicating that ANG2 acts as a TIE2 agonist on TEMs to enhance 

their proangiogenic functions. 
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Tumor-associated macrophages: functional versatility on demand 

  

Macrophages are terminally differentiated myeloid cells that are specialized in engulfing 

pathogens and cellular debris through phagocytosis. Almost all tissues have a resident 

population of macrophages, whose markers and functions reflect their site of action. 

Their main functions in healthy individuals are to eliminate infectious agents, promote 

wound healing and regulate adaptive immunity. They also contribute to maintain tissue 

homeostasis by remodeling the ECM, clearing out apoptotic cells and monitoring immune 

activation. Macrophages are essential players during situations of intense tissue 

remodeling like embryogenesis, chronic inflammation, wound healing, fibrosis, and 

cancer (Mosser and Edwards 2008). 

Macrophages can acquire opposite roles in the context of immune responses. Usually the 

term “macrophage polarization” is used to indicate the acquisition of particular functional 

states. “M1” or “classically activated” macrophages are induced by IFN and microbial 

products, secrete high levels of IL-12 and low levels of IL-10, and can efficiently kill 

engulfed bacteria and intracellular pathogens. Unlike DCs, macrophages are not 

professional APCs, but M1 macrophages upregulate MHC class II and the co-stimulatory 

molecule CD86, which allow them to present antigens to CD4+ TH cells. This, combined 

with high secretion of IL-12, drives the induction of TH1 cells and the initiation of a TH1-

type adaptive immune response (Biswas and Mantovani 2010). M1 macrophages 

upregulate iNOS and ROS-generating enzymes, allowing the production of reactive 

nitrogen and oxygen intermediates. This allows efficient destruction of engulfed 

pathogens but can trigger tissue-disruptive reactions (Gordon and Taylor 2005).  

Conversely, “M2” or “alternatively activated” macrophages are induced by TH2 cell-

derived IL-4 and IL-13, which are produced during helminth infection and allergy. M2 

macrophages produce low levels of IL-12 and high levels of IL-10, thus precluding them 

from inducing TH1 cells. Conversely, they produce a distinct set of chemokines including 

CCL17, CCL22 and CCL24, which attract TH2 and Treg cells, thus amplifying TH2-type 

adaptive immune response and immune suppression (Biswas and Mantovani 2010). M2 

macrophages upregulate ARG1, allowing production of polyamines, which sustain 

vascularization and fibrosis for wound healing (Bronte and Zanovello 2005). ARG1 also 
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suppress CD8+ CTL responses through local depletion of L-arginine, as discussed above. It 

should be noted that, contrary to MDSCs, macrophages do not co-express both iNOS and 

ARG1, whose alternate expression reflects either the M1 or M2 polarization, respectively. 

Actually, macrophages are believed to form in vivo a continuum of phenotypes, with the 

full M1 and M2 polarizations being the extremities. The M1/M2 nomenclature is a useful 

oversimplification to understand the many functions that macrophages can potentially 

exploit within tissues. M1 and M2 macrophages were initially outlined based on their 

immune functions, but the M2 classification has been progressively expanded to include 

many other functional states, which are not strictly connected to immune responses. Few 

years ago, Mosser and Edwards proposed that M2 macrophages should be further divided 

in two partially overlapping groups, named “wound-healing macrophages” and 

“regulatory macrophages” (Mosser and Edwards 2008). Like the “classic” M2 group, 

wound-healing macrophages are induced by IL-4 and IL-13 and contribute to the 

clearance of parasitic infections. However, this new classification stress their ability to 

facilitate tissue repair. Through ARG1, these macrophages furnish polyamines and L-

proline, which are fundamental for the production of the ECM and nourishment of 

proliferating cells (Bronte and Zanovello 2005). From this point of view, the immune 

suppressive activity of ARG1 can be seen as another additional way to promote wound 

healing. Interestingly, the excessive fibrosis which is consequent to chronic 

schistosomiasis has been attributed to the uncontrolled activation of wound-healing 

macrophages (Hesse, Modolell et al. 2001). 

Regulatory macrophages are induced by anti-inflammatory stimuli like IL-10 and 

glucocorticoids (Mosser and Edwards 2008). In response to LPS, they produce high levels 

of IL-10 and low levels of IL-12, thus clearly contrasting with M1 proinflammatory 

macrophages. Interestingly, these regulatory macrophages can present antigens to T cells 

and also secrete TGFβ, suggesting that they can induce the development of antigen-

specific CD4+ Treg cells (Savage, de Boer et al. 2008). This macrophage subset has also 

been named “M2-like” macrophages (Biswas and Mantovani 2010). It must be pointed 

out that despite these differences, all those Authors agree that macrophages represent a 

circular continuum of phenotypes, with multiple overlapping functions, which can be 

individually attributed to discrete macrophage classification groups. 
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In the context of cancer, tumor-infiltrating M1 macrophages are cytotoxic to tumor cells 

and can sustain TH1-type antitumor immune response, while M2 and M2-like 

macrophages facilitate tumor progression (Gabrilovich, Ostrand-Rosenberg et al. 2012). 

Tumor-infiltrating macrophages with tumor-promoting functions are termed tumor-

associated macrophages (TAMs). Their presence among human tumor-infiltrating 

leukocytes is usually associated with poor clinical outcome (Qian and Pollard 2010). TAMs 

represent a mixture of M2-like macrophage subsets, which resemble those those 

promoting tissue formation during development (Pollard 2009). They essentially create an 

advantageous environment for cancer cells, supporting their growth and spreading. The 

multiplicity of functions exploited by macrophages in normal tissues reflects the number 

of tumor processes where TAMs can intervene. With regard to this, Jeffrey Pollard 

proposed five main classes in which TAMs can be divided (Qian and Pollard 2010). 

 

Immune regulation of the tumor microenvironment by tumor-associated macrophages 

TAMs are not efficient APCs and when tumor-infiltrating macrophages are purified and 

stimulated in vitro with microbial products, high levels of IL-10 and low/absent levels of 

IL-12 are measured in culture supernatants (Sica, Saccani et al. 2000). Consistently, TAMs 

do not support the activation of NK cells and TH1 cells and hence fuel the cell-mediated 

antitumor cytotoxic responses. Conversely, the high production of IL-10 induces the 

development of TH2 cells, whose secretion of IL-4 maintains the M2-like phenotype in 

TAMs (DeNardo, Barreto et al. 2009). CCL22 secretion by TAMs recruites Treg cells (Curiel, 

Coukos et al. 2004); it is also possible that IL-10 produced by TAMs enhances Treg cell 

activity, thus further strengthening immune suppression within the tumor (Murai, 

Turovskaya et al. 2009). In addition to their ability to skew CD4+ TH cells toward an 

immune regulatory phenotype, TAMs contribute directly to immune suppression of CD8+ 

CTLs by secreting TGFβ and prostaglandin E2 (PGE2), by up-regulating ARG1, and by 

expressing PD1 ligand 1 (PDL1) that binds to its receptor programmed cell death protein 1 

(PD1) on activated T cells (Murai, Turovskaya et al. 2009). Besides TH2 cells, also Treg cells 

promote macrophage M2 polarization by (1) inhibiting macrophage responsiveness to 

lipopolysaccharide (LPS), a prototype inducer of M1 polarization; (2) increasing expression 

of the mannose receptor CD206 and scavenger receptor CD163 in macrophages. This is 

achieved by secretion of IL-10, IL-4 and IL-13 (Tiemessen, Jagger et al. 2007). Tumor cells 
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also induce the M2 phenotype by secreting TNFα, which upregulates macrophage 

scavenger receptor types I and II (Summers, Rankin et al. 2010). 

Interesting, the composition of M1/M2 polarized intra-tumoral macrophages changes 

spatially and temporally during tumor progression. Through analysis of both Ly6C and 

MHC class II marker expression in tumor-infiltrating myeloid cells, Movahedi and 

colleagues were able to identify two distinct populations of TAMs (Movahedi, Laoui et al. 

2010). Molecular comparison of these two populations indicated that Ly6ClowMHC IIhi 

macrophages were more M1-oriented respect to Ly6ClowMHC IIlow macrophages, which 

had a prominent M2-like phenotype. During progression of either lung or mammary 

carcinoma, the percentage of Ly6ClowMHC IIlow macrophages progressively increased with 

respect to Ly6ClowMHC IIhi ones, indicating a progressive shift of tumor-infiltrating 

macrophages toward the M2 polarization. Interestingly, O’Sullivan and colleagues found 

that, in the absence of adaptive immunity, M1 macrophages become the main leukocyte 

population responsible for the immunoediting.  In this study M1 polarization was found to 

be induced by NK cell-secreted IFN at the tumor site (O'Sullivan, Saddawi-Konefka et al. 

2012). It could be speculated that tumor-infiltrating macrophages, continuously recruited 

by tumor inflammatory stimuli, can acquire an M1-oriented phenotype in the presence of 

IFN secreted by NK cells and/or IFN-secreting T lymphocytes. However, during tumor 

progression, there is a shift toward a progressive accumulation of M2-oriented 

macrophages, possibly due to deletion of IFN-producing cells and interaction of 

macrophages with the regulatory elements of the adaptive immune system. Polarization 

of macrophages is controlled at the transcriptional level by nuclear factor κB (NF-κB), 

which is the central transducer of signals that cause inflammation downstream of TLR 

activation (Karin and Greten 2005). NF-κB activity induces the expression of IL-12, TNFα 

and iNOS, which are hallmarks of M1 polarization. NF-κB signaling in tumor-infiltrating 

macrophages is inhibited by massive overexpression of the p50 NF-κB inhibitory subunit. 

p50 homodimers translocate to the nucleus and negatively regulate NF-κB activity; as a 

consequence, macrophages display the M2-like phenotype (Saccani, Schioppa et al. 

2006). 

Another class of transcription factors that regulates macrophage polarization is the signal 

transducer and activator of transcription (STAT) family, in particular the STAT1, STAT3 and 

STAT6 members. STAT1 is activated in response to M1-orienting signals; however its role 
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in the context of immune surveillance is controversial. Experiments with mice lacking 

functional STAT1 have shown increased resistance to chemical induction of tumors 

(Kaplan, Shankaran et al. 1998), and these results were confirmed using preclinical tumor 

models (Zhou, Wang et al. 2001; Lesinski, Anghelina et al. 2003). However, other studies 

have shown a protumoral role for STAT1. For example, STAT1-activation in TAMs was 

necessary for suppression of T cell responses in transplantable models of fibrosarcoma 

and colon-carcinoma (Kusmartsev and Gabrilovich 2005). Moreover, in a murine 

squamous cell carcinoma, STAT1 deficiency enhanced IL-12-mediated tumor rejection by 

a T cell-dependent mechanism (Torrero, Xia et al. 2006). These discrepancies could be 

attributed to the heterogeneity of examined tumor models. However, it should be noted 

that activation of IFN-dependent signaling, which requires STAT1,  is necessary for the 

induction of immune suppressive program in MDSCs (Gallina, Dolcetti et al. 2006). In this 

sense, abrogation of STAT1 activity could have a dualistic effect within the tumor-bearing 

host (abrogation of both M1 macrophage-mediated antitumor activity and MDSC-

mediated immune suppressive activity), and the net result on tumor growth could be 

dependent on the specific tumor model examined. 

STAT3 and STAT6 are associated with M2 macrophage polarization. STAT3 constitutive 

activation in TAMs leads to inhibition of proinflammatory cytokine production and release 

of factors which block DC maturation (Kortylewski, Kujawski et al. 2005). STAT3 has also a 

profound role in the cancer-associated block of immature myeloid cell maturation and DC 

development, as described later. TAMs from Stat6-/- mice display an M1 phenotype, with 

low levels of ARG1 and high iNOS-mediated production of NO, which promotes tumor cell 

death (Sinha, Clements et al. 2005). 

 

Proangiogenic TAMs 

TAMs greatly contribute to tumor angiogenesis. Depletion of these cells using the null 

mutation of the Csf1 gene, which encodes for the macrophage growth factor CSF-1, 

strongly impairs the angiogenic switch in mammary tumors, and this effect is reversed by 

re-expression of CSF-1 in the mammary epithelium (Lin, Li et al. 2006). Conversely, 

overexpression of CSF-1 in wild type mice results in premature accumulation of 

macrophages in hyperplastic lesions, with concomitant early appearance of the 

angiogenic switch and progression to malignancy (Lin and Pollard 2007). Similar results 
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were obtained in an osteosarcoma model and with different strategies of macrophage 

depletion (Zeisberger, Odermatt et al. 2006; Gazzaniga, Bravo et al. 2007; Kubota, Takubo 

et al. 2009). 

TEMs probably account for most of TAM contribution to angiogenesis. Transcriptional 

profiling of Ets2-deficient TAMs showed that the transcriptional factor ETS2 regulates the 

expression of many proangiogenic molecules, whose mRNA transcripts are enriched in 

TIE2+ TEMs with respect to TIE2- TAMs (Ojalvo, King et al. 2009; Zabuawala, Taffany et al. 

2010). Consistently, conditional ablation of the Ets2 gene in vivo inhibits angiogenesis 

(Zabuawala, Taffany et al. 2010). TEM transcriptional signature is predictive of poor 

survival when compared with available clinical databases (Ojalvo, King et al. 2009; 

Zabuawala, Taffany et al. 2010), which is in accord with the clinical observations in breast 

cancer correlating macrophage density with increased microvessel density and poor 

prognosis (Leek and Harris 2002). 

Macrophages constitutively express the transcription factor HIF1α (Murdoch, Muthana et 

al. 2008), which modulates their CCL2- and endothelin-mediated recruitment to tumor 

hypoxic areas. HIF1α also regulates the transcription of several genes associated with 

angiogenesis, including VEGF (Lewis and Hughes 2007). Macrophages not only can 

produce VEGF, but also make it available through the production of MMP9, which 

releases VEGF from extracellular depots (Giraudo, Inoue et al. 2004). CCL2 is generally 

required for recruitment of macrophages; however, in many tumor models CCL2 is 

dispensable because of the compensatory recruitment of MMP9-producing neutrophils 

(Pahler, Tazzyman et al. 2008). 

 

Macrophages assist cancer cells in all phases of the metastatic process 

Metastatic disease account for as much as 90% of cancer-associated mortality (Chaffer 

and Weinberg 2011). Although the majority of cancer clinical cases eventually end up 

with the occurrence of metastases, this process is very inefficient and requires multiple 

steps in order to be completed (Joyce and Pollard 2009). Supposing that a connection to 

blood vessels has been reached, metastatic  cells need to invade the surrounding stroma, 

intravasate into the blood stream, and extravasate in a distant site. Once there, 

metastatic cells must seed and proliferate in situ, which represents the most limiting step 
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(Joyce and Pollard 2009). Myeloid cells, in particular macrophages, play essential roles in 

all the process. 

A particular subset of invasive TAMs lead the way to cancer cells across the stroma. These 

macrophages are transcriptionally similar to fetal macrophages that promote tissue 

formation during embryogenesis (Ojalvo, Whittaker et al. 2010). They are enriched in 

developmental pathway genes, in particular the Wnt signaling pathway. It has been 

shown in vitro that co-culture of tumor cells with macrophages induces the expression of 

Wnt5a in the latter. This regulates tumor cell migration through activation of the Wnt 

non-canonical pathway, while in macrophages it determines expression of MMP7 that 

increases their ECM-remodeling ability (Pukrop, Klemm et al. 2006). 

Macrophage assistance to breast tumor invasion requires a strict interplay with cancer 

cells. These cells, in fact, synthetize M-CSF that stimulates macrophages to move and 

produce EGF, a factor that in turn activates migration of the tumor cells (Wyckoff, Wang 

et al. 2004). Both cell types require each other continuous assistance to progress into 

tissues by this mechanism, and inhibition of either M-CSF or EGF signaling completely 

blocks the entire process. Several in vitro experiments have demonstrated that 

macrophages and tumor cells are sufficient for this paracrine interaction (DeNardo, 

Barreto et al. 2009; Green, Liu et al. 2009). M-CSF production by mammary tumor cells is 

regulated by steroid hormone receptor coactivator-1 (SRC-1), and SRC-1 deficiency in vivo 

impairs macrophage recruitment and inhibits tumor intravasation without affecting 

tumor growth (Wang, Yuan et al. 2009). IL-4 produced by either CD4+ TH2 cells or tumor 

cells is also required to induce the invasive phenotype in macrophages (DeNardo, Barreto 

et al. 2009). Several cytokines, like heregulin and CXCL12, can initiate the co-migration of 

tumor cells and macrophages, but the M-CSF/EGF paracrine loop is always required to 

sustain it (Hernandez, Smirnova et al. 2009). Importantly, M-CSF is abundant at the 

invasive edge of human tumors, a site abundantly populated by macrophages (Lin, Leu et 

al. 2011). 

The ECM plays a major role in cancer invasiveness. Macrophages secrete osteonectin, 

which is important for deposition of collagen IV. Interestingly, osteonectin is necessary for 

spontaneous metastases from the primary tumor (Sangaletti, Di Carlo et al. 2008). 

Macrophages and tumor cells move approximately ten times faster on collagen structures 

than through the stroma itself. These collagenous fibrils anchor blood vessels, thus 
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leading metastatic cells toward the blood stream (Condeelis and Segall 2003). Once close 

to the abluminal side of the vessel, macrophages cluster on its surface to assist cancer 

cells in the intravasation process (Wyckoff, Wang et al. 2007). This localized movement 

near to vessels has been confirmed by intravital imaging of xenografted tumors 

(Gligorijevic, Kedrin et al. 2009). 

Tumor cell migration requires proteolytic destruction of the ECM to allow detachment of 

cancer cells from the basement membrane, and for migration through the stroma. 

Macrophages are strong producers of many proteases, such cathepsins, MMPs, and serin 

proteases (Egeblad and Werb 2002). Loss of cathepsin B, S and urokinase in macrophages 

inhibits metastasis formation (Almholt, Lund et al. 2005; Gocheva, Wang et al. 2010). 

Cancer is a systemic disease, and neoplastic cells in the primary tumor can influence 

metastatic outcome at distant sites. Once in the bloodstream, circulating cancer cells 

need to extravasate and seed to a new site. This steps are the most limiting in all the 

metastatic process, and tumor cells require the support of myeloid cells, which are 

mobilized and recruited in future metastatic tissues by soluble factors released by the 

primary tumor. The colonization of anatomic sites by the arrival of myeloid cells is 

referred to as the formation of the “premetastatic niche”, and interfering with its 

establishment impairs the metastatic process. Kaplan et colleagues described for the first 

time the presence of clusters formed by bone-marrow derived cells in the lungs, prior to 

the arrival of metastatic cells (Kaplan, Riba et al. 2005). These clusters accommodate 

incoming cancer cells and sustain their growth in situ. The niche-forming cells are CD11b+ 

and VEGFR1+, indicative of mononuclear phagocytic cells (Kaplan, Riba et al. 2005; 

Hiratsuka, Watanabe et al. 2006). It is not clear what is the exact function of these niches: 

it is believed that they provide sites for tumor cells to adhere and prosper, supplying 

nourishment and possibly protection from antitumor immune responses. The choice of 

the organ for the formation of the premetastatic niches is determined by tumor-released 

soluble factors, postulating that the spectrum of molecules secreted by a particular tumor 

will influence the tissues in which metastases will occur (Kaplan, Riba et al. 2005). The 

myeloid chemoattractants S100A8 and S100A9 are among the tumor-produced factors 

required for the premetastatic niche formation (Hiratsuka, Watanabe et al. 2006). Tumor 

cells can induce the recruitment of myeloid cells in premetastatic sites by also remodeling 

the ECM in distant tissues. By releasing Lysyl oxidase (LOX), breast tumor cells can 
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crosslink collagen IV in the premetastatic sites, inducing the recruitment of CD11b+ 

myeloid cells. Adherence of these cells to cross-linked collagen IV induce their secretion 

of MMP2, which cleaves collagen and enhances the extravasation of circulating tumor 

cells (Erler, Bennewith et al. 2009). 

It is not clear whether macrophages participate to the premetastatic niche formation. 

However, a population of CCR2+ metastases-associated macrophages (MAMs) were 

shown to facilitate extravasation of circulating tumor cells, and to sustain their in situ 

growth (Qian, Deng et al. 2009). MAMs origin from circulating CCR2+ inflammatory 

monocytes, which are recruited through CCL2 secreted by tumor cells and the stroma. 

Blocking of the CCL2-CCR2 chemokine axis reduces the recruitment of MAMs and impairs 

metastatic seeding (Qian, Li et al. 2011). Physical interactions have been observed 

between MAMs and tumor cells at the metastatic site, suggesting short-range 

transmission of growth and survival signals (Qian, Deng et al. 2009). 
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Developmental origin of TAMs and MDSCs 

 

Bone marrow is the source of circulating blood leukocytes. It is also where most 

terminally differentiated myeloid cells originate. Myeloid cells have a common origin in 

bone marrow-resident hematopoietic stem cells (HSCs) and develop through the process 

of  myelopoiesis, along several myeloid progenitors and differentiation pathways. This 

process is inherently governed by interaction of myeloid progenitors with the bone 

marrow stroma, which creates an organized microenvironment where trophic and 

differentiation stimuli are strictly regulated (Kiel and Morrison 2008). However, the bone 

marrow dynamically changes its myeloid output in response to external stimuli, like those 

generated by infections and other tissue homeostasis-perturbing situations. Inflamed 

tissues release soluble factors which reach the bone marrow through the blood stream 

and alter the rate and composition of myeloid cell production. Considering the myeloid 

nature of several components of the tumor microenvironment, it is not unexpected that 

tumor cells can influence myelopoiesis. The following part will first focus on the 

hematopoietic development of the mononuclear phagocyte system under steady state. 

Then the focus will shift to discuss how tumors manage to obtain the two most essential 

tumor-infiltrating myeloid populations, that is TAMs and MDSCs. 

 

Differentiation of monocytes, macrophages and dendritic cells 

Current models propose that mononuclear phagocytic cells origin from HSC-progenitors 

with myeloid-restricted differentiation potential. Successive commitment steps include 

common myeloid progenitors (CMPs), granulocyte-macrophage precursors (GMPs), and 

macrophage/DC progenitors (MDPs) (Geissmann, Manz et al. 2010). MDPs are 

proliferating cells which give rise to many subsets of macrophages and DCs but cannot 

generate granulocytes, thus representing the step in which the mononuclear phagocytic 

commitment occurs in myelopoiesis (Fogg, Sibon et al. 2006). Still within the bone 

marrow, MDPs differentiate to monocytes and to common DC precursors (CDPs). CDPs 

are proliferating cells which differentiate into plasmacytoid DCs and the precursors of 

classical DCs (pre-cDCs), but have lost the potential to generate monocytes (Liu, Victora et 

al. 2009). Pre-cDCs migrate through the blood into lymphoid tissues, where they acquire a 
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mature DC phenotype and morphology. Monocytes enter the blood and migrate into 

tissues under inflammatory conditions. Once there, they differentiate into subsets of 

macrophages and inflammatory DCs, which share many functions with classical DCs like 

the ability to process and present antigens to T cells (Geissmann, Jung et al. 2003; Auffray, 

Fogg et al. 2009; Murray and Wynn 2011). 

 

Monocytes consist of two distinct subsets 

Monocytes are immune effector cells that circulate in the blood, spleen and bone marrow 

and do not proliferate under steady state (Auffray, Sieweke et al. 2009). They can 

produce inflammatory cytokines and engulf cellular and toxic molecules. They are also 

equipped with chemokine receptors and adhesion molecules that allow them to migrate 

to inflamed tissues, where they differentiate into inflammatory DCs or macrophages 

(Serbina, Jia et al. 2008). Migration and differentiation of monocytes are likely regulated 

by the inflammatory milieu and microbial products (PAMPs). 

Monocytes can be recognized by expression of the myeloid marker CD11b and the 

monocyte/macrophage marker CSF-1 receptor (CSF-1R, also known as CD115), whose 

agonist is the macrophage colony stimulating factor (M-CSF, also known as CSF-1). M-CSF 

regulates the proliferation, survival, differentiation and motility of both monocytes and 

macrophages (Pixley and Stanley 2004). Circulating monocytes can further be divided in 

two distinct subsets. Inflammatory monocytes have high expression of the LY6C marker. 

They are termed as such because they migrate to inflamed tissues and differentiate into 

inflammatory DCs or macrophages (Geissmann, Manz et al. 2010). For example, during 

infection with Listeria monocytogenes, LY6Chigh monocytes differentiate into DCs that 

produce inflammatory mediators as TNFα, NO and ROS (Narni-Mancinelli, Campisi et al. 

2007). These cells are called TNFα and iNOS-producing dendritic cells or TipDCs; however, 

some Authors assert they can be considered just a variant of M1 macrophages (Murray 

and Wynn 2011). Ly6Chigh monocytes are also required against infection with Toxoplasma 

gondii, but in this case they differentiate into mucosal macrophages (Dunay, Damatta et 

al. 2008). The spleen harbors large numbers of LY6Chigh monocytes in the subcapsular red 

pulp that can rapidly emigrate to inflammatory sites (Swirski, Nahrendorf et al. 2009). 

Inflammatory monocytes express high levels of CCR2 and L-selectin, and respond to CCL2 

to exit the bone marrow and enter inflamed tissues (Kim, Kamada et al. 2011; Shi, Jia et 
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al. 2011). Interestingly, inflammatory monocytes are phenotypically similar to 

LY6ChighCCR2+ M-MDSCs, which migrate within tumors in response to CCL2 (Ugel, 

Peranzoni et al. 2012).  

A population of LY6Cneg monocytes is also found in the spleen, blood and bone marrow. 

These monocytes lack expression of CCR2 but have high quantities of CX3C chemokine 

receptor 1 (CX3CR1) and integrin LFA-1 on their surface. They are termed resident 

monocytes because of their longer half-life in vivo and their localization to both resting 

and inflamed tissues after adoptive transfer (Auffray, Fogg et al. 2007). Resident 

monocytes patrol the luminal side of the vascular endothelium and ideally survey 

endothelial cells and surrounding tissues for damage or infection. They also accumulate in 

the ischemic myocardium at a late phase, to promote healing through VEGF-induced 

angiogenesis and deposition of collagen (Nahrendorf, Swirski et al. 2007). The orphan 

nuclear receptor NR4A1 is required for the development of resident monocytes (Hanna, 

Carlin et al. 2011). Inflammatory monocytes have been seen to shuttle between the blood 

and bone marrow and lose their LY6C expression (Varol, Landsman et al. 2007); however, 

the hypothesis of a developmental relationship between the two monocyte subsets still 

waits a formal proof. 

 

Differentiation potential of monocyte subsets 

It is classically accepted that monocytes are plastic cells with multiple differentiation 

options, allowing them to generate macrophages and DC-like cells with several possible 

phenotypes. This concept of plasticity is largely based on the effects of cytokines on 

monocytes in vitro. The main cytokines which drive myeloid differentiation are the CSFs 

(Burgess and Metcalf 1980), molecules termed in this way according to their ability to 

drive in vitro formation of colonies comprising  mature myeloid cells from bone marrow 

precursors. G-CSF and M-CSF generate granulocytic and monocyte/macrophage colonies 

respectively, while GM-CSF generates a mixture of both colonies. Monocytes exposed in 

vitro to a combination of GM-CSF and IL-4 generate DCs, while exposure to M-CSF induces 

monocyte differentiation into macrophages (Sallusto and Lanzavecchia 1994; Zhang, 

Goncalves et al. 2008). The latter can further be stimulated in vitro with either IFN and 

LPS or IL-4 and IL-13, in order to obtain M1 and M2 macrophages, respectively (Mosser 

and Zhang 2008). GM-CSF alone is able to induce macrophage differentiation, however 
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these macrophages are not similar to those obtain with M-CSF. GM-CSF-exposed 

macrophages secrete the proinflammatory cytokines TNFα, IL-6, IL-12p70 and IL-23 

following stimulation with microbial products; these macrophages have antigen-

presenting and other DC-like capabilities. Conversely, M-CSF-exposed macrophages 

produce IL-10 and CCL2, have phagocytic functions and a more macrophage-like 

morphology (Hamilton 2008). Although reductive, it could be summarized that GM-CSF-

induced macrophages are primed toward a proinflammatory “M1-like” phenotype, while 

M-CSF-induced macrophages have an anti-inflammatory behavior which resemble M2 

polarization. To explain these observations, it has been proposed that tissue-resident 

macrophages are maintained in an anti-inflammatory status by the continuous exposure 

to M-CSF, which circulates at detectable levels under steady-state. M-CSF could have the 

function to prevent inappropriate activation of macrophages by proinflammatory signals, 

in order to avoid unwanted inflammation and tissue damage. Conversely, GM-CSF is 

detected in the blood only after perturbation of the steady-state, for example in the case 

of infections. Exposure of macrophages to increasing levels of GM-CSF and other 

proinflammatory stimuli could induce a sort of “M-CSF resistance”, where M-CSF signaling 

is reduced or cut out (Hamilton 2008). When proinflammatory stimuli gradually decrease, 

the continuous presence of M-CSF in tissues should facilitate the macrophage-mediated 

resolution of inflammation. 

Both monocyte subsets have the same differentiation behavior when stimulated in vitro. 

However, when adoptively transferred to mice carrying L. monocytogenes infection, 

resident monocytes initiate a macrophage differentiation program that resembles the 

one described for M2 macrophages (Auffray, Fogg et al. 2007). Conversely, inflammatory 

monocytes that enter the site of infection initiate a differentiation program that mimics 

the one leading to either TipDCs or M1 macrophage skeweing (Narni-Mancinelli, Campisi 

et al. 2007). These evidences seemingly contradict the notion of a general plasticity of 

monocytes and macrophages, rather suggesting a programmed evolution from different 

precursors; in vitro studies may not, however, fully recapitulate in vivo differentiation of 

mononuclear phagocytes (Geissmann, Manz et al. 2010). This stresses the need for in vivo 

studies to rigorously understand, both spatially and temporally, the differentiation and 

cell fate decisions of monocytes and macrophages, both under steady-state and 

inflammatory conditions. 
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Hematopoietic stem cell-independent origin of macrophages 

Recent findings indicate that macrophages can sometimes undergo self-renewal in tissues 

without the contribution of bone marrow-derived precursors. During helminth infection, 

macrophages were shown to proliferate in situ in response to IL-4 produced by Th2 cells 

(Jenkins, Ruckerl et al. 2011). This resulted in increased numbers of M2 effector 

macrophages, which contributed to expel the worms. The mechanism used by IL-4-

signaling to induce proliferation is not clear at the moment, but may be related to the 

regulation of the transcription factors macrophage-activating factor (MAF) and MAFB, 

which suppress proliferation in mature monocytes and macrophages (Aziz, Soucie et al. 

2009). 

A recent paper by the group of F. Geissmann has shown that the transcription factor 

myeloblastosis oncogene (MYB), which is essential for the development of the 

hematopoietic system, is dispensable for the generation of yolk sac-derived macrophages 

found in several tissues (Schulz, Gomez Perdiguero et al. 2012). These macrophages 

comprehend liver Kupffer cells, epidermal Langerhans cells and microglia, which can 

persist in adult mice independently of HSCs. The HSC-independent generation of 

macrophages requires the transcription factor PU.1, which operates also the bone 

marrow-dependent macrophage development. 

 

Transcriptional regulation of mononuclear phagocyte lineage commitments 

Lineage potentials are progressively restricted during differentiation of mononuclear 

phagocytes; this requires the selection of specific gene expression programs. In vivo 

knockout murine models have shown a role for several transcription factors, but their 

deficiency often causes broad effects in multiple cell types (Auffray, Sieweke et al. 2009). 

However, some exceptions have been found, like the Kruppel-like factor 4 (KLF4), whose 

depletion affects in vivo the generation of inflammatory monocytes (Alder, Georgantas et 

al. 2008), or the role of NR4A1 in the development of resident monocytes (Hanna, Carlin 

et al. 2011). Nevertheless, important functions in specific commitment events have been 

found for various transcription factors, despite their knockouts cause broad effects on 

many myeloid lineages in vivo. The transcription factor PU.1 is necessary for the early 

steps of myeloid lineage commitment of HSCs and its absence results in general myeloid 

deficiency (McKercher, Torbett et al. 1996). However, it has key functions during specific 
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commitment choices of the myeloid lineage diversification, in particular the macrophage-

versus-DC choice of monocytes. Generally, the balance between antagonistic 

transcription factors drives the commitment fate of myeloid progenitors. In line with this 

concept, high expression of PU.1 is required to induce DC fate in monocytes and to 

antagonize the macrophage differentiation-inducing transcription factors MAF and MAFB 

(Bakri, Sarrazin et al. 2005).  

Gain-of-function experiments have been used to determine the potential of transcription 

factors in defining the differentiation fate of myeloid progenitor cells. 

Monocyte/macrophage commitment in early myeloid progenitors is driven by ectopic 

expression of the transcription factors MAFB, MAF, early growth response 1 (EGR1), 

interferon regulatory factor 8 (IRF8), KLF4 and PU.1, while DC differentiation is induced by 

PU.1 and viral reticuloendotheliosis (v-rel) oncogene homolog B (RelB) (Geissmann, Manz 

et al. 2010). It is important to note that lineage commitments ground on the coupling of 

these transcription factors with cytokine receptor signaling. In the case of the M-CSF-

dependent signaling, which is pivotal for monocyte/macrophage commitment and 

differentiation, it has been established that MAFB limits M-CSF signals and inhibits PU.1 

activation in HSCs (Sarrazin, Mossadegh-Keller et al. 2009), while MAFB and MAF together 

inhibit M-CSF-instructed proliferative signals in mature monocytes and macrophages, 

thus assuring their withdrawal from cell cycle (Aziz, Soucie et al. 2009). 

 

Monocyte/macrophage differentiation mainly depends on the M-CSF-induced signaling 

pathways and requires autophagy 

M-CSF-signaling is the main regulator of monocytes and macrophages developments. 

Mice that are homozygous for a null allele of the Csf1 gene are termed osteopetrotic 

(Csf1op/op), due to the negative effects on the bone reabsorption consequent to a strong 

decrease in osteoclasts (Wiktor-Jedrzejczak, Bartocci et al. 1990). These mice also have 

developmental defects in many tissues, due to a reduction of resident macrophages. 

Although GM-CSF induces macrophage differentiation, GM-CSF-deficient mice have only 

an isolated lung lesion reminiscent of pulmonary alveolar proteinosis, index of impaired 

scavenger activity by alveolar macrophages (Dranoff, Crawford et al. 1994). The apparent 

GM-CSF-independency of most macrophages for their development in vivo highlights the 

importance of M-CSF as the main growth factor for monocytes and macrophages. It 
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should be noted that monocytes secrete M-CSF when they are stimulated with GM-CSF in 

vitro, thus suggesting that GM-CSF-induced macrophage differentiation could actually be 

M-CSF-dependent (Chomarat, Banchereau et al. 2000). 

CSF-1R (CD115) is a lineage specific marker and is expressed on MDPs, monocytes and 

macrophages (Geissmann, Manz et al. 2010). It is a receptor tyrosine kinase, whose 

stimulation by M-CSF induces strong tyrosine phosphorylation of intracellular proteins 

(Pixley and Stanley 2004). CSF-1R activation also results in increased size and number of 

complexes containing phosphotyrosine proteins, which include cytoskeletal and 

cytoskeleton-interacting molecules (Yeung and Stanley 2003). Through its receptor, M-

CSF controls the survival, proliferation, differentiation and motility of macrophages. The 

CSF-1R downstream pathways are, however, poorly understood, in particular those 

controlling cell growth and differentiation programs (Pixley and Stanley 2004). Moreover, 

we have a poor knowledge of the cellular processes that sustain macrophage 

differentiation and how these processes are governed by the CSF-1R downstream signals. 

Interestingly, the M-CSF-dependent differentiation of macrophages was recently linked to 

the process of autophagy (Jacquel, Obba et al. 2012; Zhang, Morgan et al. 2012).  

Autophagy allows cells to degrade cytoplasmic material in the lysosome, in order to 

produce new building blocks and energy for cellular renovation and homeostasis. 

Autophagy is classically seen as an adaptive metabolic response to cell starvation: by 

recycling their amino acids, autophagic cells can build new proteins and readapt their 

proteome to new environmental conditions (Mizushima and Komatsu 2011). Nitrogen 

starvation induces the highest levels of autophagy in yeasts and mammalian cells; when 

local levels of amino acids are restored, the serine/threonine protein kinase mammalian 

target of rapamycin complex 1 (mTORC1) is activated and this determines termination of 

autophagy (Yu, McPhee et al. 2010). During starvation, recycled amino acids are mainly 

used to synthetize vacuolar/lysosomal enzymes, respiratory chain proteins, antioxidant 

enzymes, and proteins involved in pathways of amino acid biosynthesis (Suzuki, Onodera 

et al. 2011). These proteins have the main purpose to maintain the functionality of 

mitochondria: autophagy-deficient yeast cells are not able to sustain their respiratory 

functions, and as a result, high levels of ROS accumulate, compromising mitochondrial 

DNA integrity and cell survival (Suzuki, Onodera et al. 2011). Fresh amino acids are also 

converted in intermediates of the tricarboxylic acid cycle, thus fueling ATP production and 
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protein synthesis in spite of nutrient starvation (Guo, Chen et al. 2011). Nevertheless, 

different types of cells also display basal autophagic activity under nutrient-rich 

conditions, indicating other roles for autophagy that are not strictly related to metabolic 

needs. These include the quality check of organelles and intracellular proteins, and the 

recycling of unnecessary material during development and renovation of tissues 

(Mizushima and Komatsu 2011). These functions are based on the ability of cells to 

selectively target specific proteins and organelles to the autophagic machinery, thus 

exploiting “selective autophagy”. 

Two independent research groups reported that monocytes activate autophagy after 

either M-CSF or GM-CSF in vitro stimulation. This was required to undergo macrophage 

differentiation, as assessed by genetic and pharmacological approaches (Jacquel, Obba et 

al. 2012; Zhang, Morgan et al. 2012). In the study by Zhang et colleagues, blocking 

autophagy had a detrimental effect on monocyte survival; however, the group of Jacquel 

reported that autophagy inhibition impaired the maturation of macrophages without 

evident effects on monocyte viability. This discrepancy could be explained by the use of 

different stimuli (either GM-CSF or M-CSF) to trigger macrophage differentiation, and by 

the choice of different approaches to inhibit autophagy. Interestingly, both reports 

indicate that autophagy impairment also compromise macrophage functionality, as 

assessed by measurement of cytokine production and phagocytic functions. Zhang et 

colleagues reported that induction of autophagy by GM-CSF required the enzymatic 

activity of c-jun N-terminal kinase 1 (JNK1). Activated JNK1 induces phosphorylation of B-

cell lymphoma 2 (Bcl2), allowing dissociation of the Bcl2-Beclin 1 complex and consequent 

Beclin 1-mediated triggering of autophagy (Wei, Pattingre et al. 2008). Interesting, Bcl2 

has anti-apoptotic functions, which are exploited by physical interaction with the pro-

apoptotic protein BCL2-associated X protein Bax (Pope 2002). Dissociation from Beclin 1 

could allow Bcl2 to interact with Bax and inhibit loss of mitochondrial transmembrane 

potential, thus explaining the anti-apoptotic protective effect of autophagy on 

monocytes. 

 

Description of the autophagy process 

The autophagy process is based on the function of a short-lived organelle called the 

“autophagosome”. An isolation membrane, termed “phagophore”, sequesters a small 
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portion of the cytoplasm together with its content, to form the autophagosome. 

Autophagosomes fuse with late endosomes or mature lysosomes in order to degrade 

their cargo (Mizushima and Komatsu 2011). A major concern in our understanding of 

autophagy is where the autophagosome membrane comes from. So far, the main 

candidate has been the endoplasmic reticulum (ER), because autophagosomes are usually 

generated in close proximity to it (Mizushima, Yoshimori et al. 2011). However, several 

studies have suggested that the Golgi complex, the mitochondria, and the plasma 

membrane also contribute to autophagosome formation (Hailey, Rambold et al. 2010; 

Ravikumar, Moreau et al. 2010; Tooze and Yoshimori 2010).  

Mechanically, the autophagy process is conducted by the protein products of several 

genes originally identified in yeast, which have been called “autophagy-related” (ATG) 

genes (Nakatogawa, Suzuki et al. 2009). Among the 35 Atg proteins thus far identified in 

yeast, Atg1-10, 12-14, and 18 are the “core Atg proteins”. These proteins, together with 

Atg17, 29, and 31, are necessary for autophagosome formation (Nakatogawa, Suzuki et al. 

2009), and are highly conserved in other eukaryotes. In mammals, autophagy is initiated 

by the Atg1/Unc-51-like Kinase (Atg1/ULK) complex, which comprises ULK1, mAtg13, focal 

adhesion kinase family interacting protein of 200 kDa (FIP200) and Atg101 (Mizushima, 

Yoshimori et al. 2011). This complex is present in the cytosol, but it relocates to some 

domains of the ER upon autophagy induction, possibly forming pre-autophagosomal (PAS) 

structures (Itakura and Mizushima 2010). The  function of the ULK1 complex is to organize 

PAS by ULK1-mediated phosphorylation of several downstream autophagy-related 

proteins. The main target of its kinase activity is the class III phosphatidylinositol (PtdIns) 

3-kinase (PI3K) complex, which includes Beclin 1, Atg14(L)/Barkor, vacuolar protein 

sorting 15 (Vps15), Vps34, and autophagy/beclin 1 regulator 1 (AMBRA1). The PI3K 

complex is localized to the ER membrane thanks to Atg14(L), and this requires 

phosphorylation of the latter by the ULK1 complex (Matsunaga, Morita et al. 2010). The 

PI3K complex produces PtdIns(3)P on the membrane of the ER; this allows the 

recruitment of FYVE-containing protein 1 (DFCP1) through its PtdIns(3)-binding FYVE 

domain (Axe, Walker et al. 2008). During autophagy, DFCP1 concentrates in spots on the 

ER; these spots provide a platform for the expansion of the phagophore (Axe, Walker et 

al. 2008). “Omegasome” is the name of the -like shaped PtdIns(3)P-enriched ER region 

which is specific to autophagosome biogenesis (Mizushima, Yoshimori et al. 2011). 
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Two ubiquitin-like conjugation systems are required for the expansion and closure of the 

isolation membrane. The two conjugates, Atg12-Atg5 and microtubule-associated protein 

1 light chain 3-phospatidyl ethanolamine (LC3-PE; also known as LC3-II) are good markers 

for the detection of autophagy-related membrane structures and autophagosomes 

(Suzuki, Kubota et al. 2007). Atg12-Atg5 interacts with Atg16L1 to create a complex that is 

necessary for LC3-PE formation (Hanada, Noda et al. 2007). The LC3 precursor (LC3-I) is 

cleaved by the cysteine protease Atg4; the resulting C-terminal glycine-exposed form of 

LC3 is activated by the E1 enzyme, transferred to the E2 enzyme, and finally covalently 

linked to an amino group of PE (Ichimura, Kirisako et al. 2000). LC3-PE has membrane 

tethering and hemifusion activities (Nakatogawa, Ichimura et al. 2007), which are 

required for expansion of the phagophore. Another important function of LC3 is to serve 

as receptor for selective autophagy. LC3 recognizes the WXXL-like sequence in substrate 

proteins or adaptors like sequestosome 1 (SQSTM1/p62), which is selectively 

incorporated into autophagosomes (Johansen and Lamark 2011). The protein p62 has an 

ubiquitin-associated domain through which it can mediate sequestration of ubiquitinated 

proteins into autophagosomes. Impairment of autophagy leads to intracellular 

accumulation of p62 and the formation of large p62-ubiquitin aggregates (Komatsu, 

Kurokawa et al. 2010). 

 

Abnormal myelopoiesis in cancer: development of MDSCs 

Immature myeloid cells accumulate in the blood and lymphoid organs of tumor-bearing 

hosts (Bronte, Chappell et al. 1999; Almand, Resser et al. 2000; Bronte, Apolloni et al. 

2000; Gabrilovich, Velders et al. 2001). As discussed above, these cells initiate highly 

immune suppressive programs when triggered by activation of a cell-mediated immune 

response, thus becoming MDSCs. They also accumulate in patients with chronic 

infections, trauma, and autoimmune diseases, suggesting that MDSCs represent an 

emergency system that hampers excessive immune activation (Gabrilovich, Ostrand-

Rosenberg et al. 2012). Cancer cells induce the development of MDSCs by releasing 

several tumor-derived soluble factors (TSFs) that directly act on the HSC (Gabrilovich, 

Ostrand-Rosenberg et al. 2012). TSFs not only augment the production of immature 

myeloid cells in the bone marrow, but also determine a blockade of their maturation skills 

(Bronte, Chappell et al. 1999; Bronte, Apolloni et al. 2000; Bronte, Serafini et al. 2001). 
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GM-CSF, G-CSF, M-CSF, stem cell factor (SCF), VEGF and IL-3 are well-known TSFs which 

alter normal myelopoiesis during cancer (Bronte, Serafini et al. 2001; Gabrilovich 2004; 

Serafini, Carbley et al. 2004). 

So far the GM-CSF has been shown to have a fundamental action on MDSC development. 

GM-CSF is one of the most common cytokines secreted by tumors, and its chronic 

production impairs the antigen-specific responsiveness of CD8+ CTLs (Bronte, Chappell et 

al. 1999). Knockdown of GM-CSF in tumor cells inhibits in vivo the recruitment of M-

MDSCs, thus resulting in the interruption of tumor-induced tolerance (Dolcetti, Peranzoni 

et al. 2010). Recently, the prevalent role of GM-CSF in inducing tumor-associated immune 

dysfunction has been confirmed using spontaneous models of pancreatic carcinoma. In 

early stage neoplastic lesions, the oncogene Kras(G12D) activates GM-CSF secretion in 

pancreatic ductal epithelial cells (Pylayeva-Gupta, Lee et al. 2012). The suppression of 

GM-CSF production in tumor cells has a negative impact on the recruitment of 

CD11b+GR1+ MDSCs, resulting in CD8+ CTL-dependent inhibition of tumor growth (Bayne, 

Beatty et al. 2012; Pylayeva-Gupta, Lee et al. 2012). Importantly, the Authors found that 

human pancreatic carcinomas abundantly secrete GM-CSF in vivo. GM-CSF is often used 

as an adjuvant in antitumor immunotherapies because it stimulates DC differentiation; 

however, excessive administration of this cytokine exacerbates immune suppression in 

vivo, thus mining the therapeutic outcome of antitumor vaccination (Serafini, Carbley et 

al. 2004). 

The transcription factor STAT3 has been implicated as the main mediator of TSF-induced 

arrest of myeloid maturation. The normal differentiation of early myeloid progenitor cells 

require STAT3 activation, which progressively decreases during the late stages of DC 

differentiation (Smithgall, Briggs et al. 2000; Nefedova, Huang et al. 2004). However, 

STAT3 is found constitutively activated in MDSCs (Nefedova, Huang et al. 2004), and its 

activation blocks the differentiation of CD11c+CD86+ mature DCs (Wang, Niu et al. 2004). 

Persistent STAT3 activation is induced in myeloid progenitor cells by in vitro treatment 

with TSFs, and this activation prevents DC maturation induced by appropriate stimuli 

(Nefedova, Huang et al. 2004). Similar results are obtained when immature myeloid cells 

from tumor-bearing mice are adoptively transferred in tumor-free versus tumor-bearing 

littermates (Kusmartsev and Gabrilovich 2003). STAT3 induces cell proliferation and 

prevents apoptosis  by upregulating the antiapoptotic proteins BCL-XL and survivin, and 
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the proproliferative proteins MYC and cyclin D1, thus sustaining the expansion of MDSCs 

(Yu, Pardoll et al. 2009). Moreover, STAT3 inhibits DC differentiation by upregulating the 

calcium-binding proinflammatory proteins S100A8 and S100A9, and by downregulating 

protein kinase Cβ isoform II (Cheng, Corzo et al. 2008; Farren, Carlson et al. 2010). 

The transcription factor CAAT-enhancer-binding protein-β (C/EBPβ) is also required for 

generation of M-MDSCs and acquisition of their immune suppressive functions (Marigo, 

Bosio et al. 2010). The C/EBP family of transcription factors is tightly regulated during 

macrophage and granulocyte differentiation (Rosenbauer and Tenen 2007). In normal 

individuals, C/EBPβ controls emergency granulopoiesis (Hirai, Zhang et al. 2006). C/EBPβ 

mediates the generation of M-MDSCs induced  by GM-CSF and IL-6, both of which are 

required for complete acquisition of the MDSC immune suppressive program (Marigo, 

Bosio et al. 2010). C/EBPβ expression is under the control of STAT3 (Zhang, Nguyen-

Jackson et al. 2010), and individual knockouts of these transcription factors have similar 

benefic results on the accumulation of mature myeloid cells in tumor-bearing mice 

(Nefedova, Huang et al. 2004; Wang, Niu et al. 2004; Marigo, Bosio et al. 2010). 

Interestingly, both STAT3 and C/EBPβ co-regulate MYC expression by modulating, at the 

promoter level, the dissociation of the Myc repressor C/EBPα (Zhang, Nguyen-Jackson et 

al. 2010). Considering that C/EBPα regulates granulopoiesis under steady-state 

conditions, it seems that both STAT3 and C/EBPβ cooperate to promote myeloid lineage 

commitments required during stress-responses, including cancer. 

 

Origin of TAMs 

Understanding the mechanisms governing TAM differentiation is of great importance for 

developing new therapeutic strategies. Oddly, there are only few reports which have 

focused on the origin and in situ differentiation of tumor-infiltrating macrophages. A 

relatively recent report by the group of Ginderachter showed that, in two different 

transplantable models of lung and mammary carcinomas, TAMs originated by circulating 

Ly6Chigh inflammatory monocytes (Movahedi, Laoui et al. 2010). Monocytes were shown 

to undergo progressive phenotypic changes during intratumoral differentiation, finally 

becoming Ly6Clow/negLy6GnegF4/80high macrophages. In the same report, Ly6Cneg resident 

monocytes were not shown to migrate to primary tumors, thus excluding their 

contribution to TAM replenishment (Movahedi, Laoui et al. 2010). However, this is in 
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contrast with a recent paper by Qian and colleagues showing that in a spontaneous 

model of metastatic mammary carcinoma, resident monocytes preferentially accumulate 

into the primary tumor, while inflammatory monocytes are found to migrate to 

metastatic sites (Qian, Li et al. 2011). This discrepancy could be ascribed to the use of 

different kind of tumor models (transplantable versus spontaneous one); however, the 

exact contribution of both monocyte subsets to TAM replenishment need to be further 

clarified. 

Another subject of discussion is the exact relationship between MDSCs and TAMs. It has 

been proposed that MDSCs could be the precursors of TAMs (Sica, Schioppa et al. 2006); 

a direct proof was given by Corzo and colleagues, showing that purified splenic 

CD11b+GR1+ MDSCs differentiate in CD11b+GR1negF4/80+ macrophages when injected in 

ascites induced by the EL4 tumor (Corzo, Condamine et al. 2010). The authors found that 

the same differentiation process could be induced by culturing MDSCs under hypoxic 

conditions and that the transcription factor HIF1α was responsible for it. Interestingly, 

hypoxia was able to induce the HIF1α-mediated upregulation of both iNOS and ARG1 in 

MDSC-derived macrophages without the need for  macrophage polarization stimuli 

(Corzo, Condamine et al. 2010). This evidence reflects the MDSC ability to co-express 

these two enzymes, which are mutually exclusive when induced in macrophages 

(Gabrilovich, Ostrand-Rosenberg et al. 2012).  

It should be noted that Corzo and co-workers used the CD11b and GR1 markers to isolate 

splenic MDSCs; unfortunately, these markers alone are not sufficient to discriminate 

these cells from other related myeloid subsets, like inflammatory monocytes. This issue 

raises the question whether the true source of macrophage precursors were transferred 

MDSCs or other cellular contaminants during in vivo differentiation experiments. 

Nevertheless, this paper highlights the regulatory potential of hypoxia in shaping the 

differentiation and behavior of TAMs. Consistent with this notion, Movahedi and 

colleagues found that M2 TAMs were enriched in hypoxic tumor areas (Movahedi, Laoui 

et al. 2010). HIF1α is constitutively expressed in macrophages, and its transcriptional 

activity modulates CCL2- and endothelin-mediated recruitment of macrophages  to 

hypoxic regions of the tumor (Murdoch, Muthana et al. 2008). In a mouse model of 

spontaneous mammary carcinoma, HIF1α increased the expression of iNOS and ARG1 

when macrophages were stimulated with either TH1 or TH2 citokines, and HIF1α 
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deficiency impaired the suppressive ability of TAMs (Doedens, Stockmann et al. 2010). 

This transcription factor also regulates the expression of a large panel of genes associated 

with angiogenesis, including VEGF (Murdoch, Muthana et al. 2008). All these findings 

highlight the importance of local oxygen tension in regulating macrophage differentiation 

and behavior. Proteins of the ECM have also been implicated in controlling macrophage 

protumoral activities. For example, the proteoglycan versican, which is secreted by Lewis 

lung carcinoma cells, stimulates metastasis through TLR2 signaling in macrophages (Kim, 

Takahashi et al. 2009). It is likely that both environmental factors and structural 

components of the tumor stroma, in concert with cytokines that promote macrophage 

differentiation (like M-CSF and IL-6), altogether regulate TAM development and functions; 

however, the underlying mechanisms still remain largely unresolved. 
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Aim of the present study 

 

At first sight, cancer seems a chaotic environment in which neoplastic cells proliferate 

without control, generating a disorganized mass that compromises nearby tissues. 

However, the arguments discussed so far indicate that tumors are highly organized 

systems, where cancer cells and normal cells strictly cooperate to sustain tumor growth 

and subvert host defenses. Tumor-infiltrating myeloid cells are of capital importance in 

this scenario, and for this reason tumor-myeloid cell interactions are the focus of intense 

research efforts. To obtain starting cues about new relevant molecular pathways acting in 

tumor-infiltrating myeloid cells, we performed gene expression analysis in purified 

CD11b+ intratumoral myeloid cells isolated from different transplantable mouse tumor 

models. The choice of these models was made in order to cover different genetic 

backgrounds and different tumor histologies. Using Affimetrix® high-density gene 

expression arrays, we analyzed the transcriptome of CD11b+ tumor-infiltrating myeloid 

cells, comparing them to splenic CD11b+ myeloid cells purified from healthy mice as 

baseline control. The comparison was operated matching the relative genetic 

backgrounds. Among the most upregulated genes, we were particularly interested in the 

disabled homolog 2, mitogen-responsive phosphoprotein (Dab2) gene. Fold-change 

results for this gene are shown in table 1. 

 

tumor model histology genetic background relative fold-change 

4T1 mammary carcinoma BALB/c 63.83 

C26GM colon carcinoma BALB/c 53.82 

MCA203 fibrosarcoma C57Bl/6 50.22 

EL4 thymoma C57Bl/6 33.02 

Table 1. Relative fold-changes of Dab2 gene expression in tumor-infiltrating CD11b+ 

myeloid cells isolated from different tumor models. 

 

The DAB2 protein is a molecular adaptor which participates to endocytosis and signal 

transduction pathways. Its main function is to link membrane receptors with clathrin 
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assemblies, allowing selective clathrin-mediated endocytosis of transmembrane proteins 

(Maurer and Cooper 2006). The vesicular trafficking has the important function to 

distribute and organize the protein content of the plasma membrane, allowing the cell to 

spatially react to external stimuli. We think that this process is of key-importance within 

the tumor microenvironment, where complex cell-to-cell interactions occur and oriented 

stimuli are released. Many of the processes we described above require cells to obtain 

spatial organization of their surface receptors and intracellular complexes. Interestingly, 

DAB2 regulates macrophage adhesion and cell spreading, and it is phosphorylated 

following M-CSF stimulation (Xu, Yang et al. 1995; Rosenbauer, Kallies et al. 2002). In the 

present study, we have characterized DAB2 expression in myeloid cells during tumor 

progression, and we have unclosed a novel function for this protein in the development 

and protumoral activities of myeloid cells. 

 

The disabled homolog 2, mitogen-responsive phosphoprotein 

The DAB2 protein was initially discovered in Drosophila Melanogaster, but human and 

mouse homologs have been characterized. It is a phosphoprotein with an actin-binding, 

N-terminal domain, a central domain with a high degree of similarity to the Drosophila 

disabled gene product, and a proline/serine-rich C-terminal domain with binding sites for 

SH3-domains (Xu, Yang et al. 1995). Two isoforms of DAB2 exist, with a molecular weight 

of 96 and 67 kilodaltons; these isoforms are generated through alternative splicing. DAB2 

was initially characterized in a macrophage cell line for its phosphorylation following 

exposure to the M-CSF cytokine (Xu, Yang et al. 1995). The protein has shown to have 

several functions, most of which are summarized in its role as “surface positioning gene” 

(Yang, Cai et al. 2007). DAB2 acts as an adaptor/linker protein between the plasma 

membrane receptors and the machinery responsible for the formation of the clathrin-

coated pits; this allows the clathrin-dependent endocytosis and the consequent 

internalization of several surface receptors. Combined with directional mechanisms of 

esocytosis, it also "concentrate” the proteins into specific sides of the cell membrane, 

thus contrasting their spontaneous diffusion in the phospholipidic bilayer (Spudich, 

Chibalina et al. 2007; Chetrit, Ziv et al. 2009).  These functions allow DAB2 to participate 

in processes like the spatial organization of epithelial cells in tissues (Yang, Cai et al. 

2007), the contact-dependent inhibition of the cellular growth in tumor cells (Fazili, Sun 
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et al. 1999), the cellular adhesion to the extracellular matrix, and the cellular migration 

and spreading (Rosenbauer, Kallies et al. 2002; Teckchandani, Toida et al. 2009). 

Moreover, DAB2 can act as an adaptor protein in several signal transduction pathways, in 

particular the WNT and TGF-β ones (Hocevar EMBO J 2003; Prunier J Biol Chem 2005). 

What we know about the endocytic properties of DAB2 are mainly based on the studies 

about the p96 isoform. The phosphotyrosine-binding (PTB) domain binds peptides 

containing the sequence FXN-PXY (Morris and Cooper 2001). This core sequence is found 

in the intracellular domains of several membrane receptors, and is important for their 

internalization. The low-density lipoprotein receptor (LDLR) family is a well-known DAB2-

interacting protein (Morris and Cooper 2001; Maurer and Cooper 2006). DAB2 transiently 

co-localizes with LDLR in clathrin-coated pits, but it is not present in endosomes and 

lysosomes (Morris and Cooper 2001). DAB2 induces clathrin assemblies at the plasma 

membrane, whose formation recruits additional endocytic proteins like adaptor protein 2 

(AP2). To achieve this effect, DAB2 requires a functional PTB domain, the ability to bind 

phospholipids, and a protein sequence that is present in p96, but not p67 (Chetrit, Ziv et 

al. 2009). This sequence contains both clathrin- and adaptor protein 2 (AP2)-binding 

motifs. Interaction of DAB2 with phospholipids is mediated by an evolutionarily 

conserved poly-lysine stretch, which precedes the PTB domain and interacts with 

negatively charged phosphoinositides. This interaction, which allows recruitment of DAB2 

at the inner leaflet of the plasma membrane, can be regulated by phosphorylation of 

Ser24 near the poly-lysine stretch (Huang, Cheng et al. 2004; Chetrit, Ziv et al. 2009). This 

phosphorylation has either positive or negative effects on DAB2 function depending on 

the cellular context (Rosenbauer, Kallies et al. 2002; Chetrit, Ziv et al. 2009; Chetrit, 

Barzilay et al. 2010). 

Intracellular transport of clathrin-coated vesicles requires myosin VI; this protein is the 

only known molecular entity that moves toward the minus ends of actin filaments 

(Morris, Arden et al. 2002). The cargo-binding domain of myosin VI interacts with the C-

terminus region of DAB2 (Morris, Arden et al. 2002; Yu, Feng et al. 2009). By this way, 

DAB2 acts as a molecular adaptor between myosin VI and clathrin, allowing the trafficking 

of clathrin-coated vesicles away from the plasma membrane into the cell (Spudich, 

Chibalina et al. 2007). 
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DAB2 has been shown to interact with several integrins (Huang, Cheng et al. 2004; Chao 

and Kunz 2009; Teckchandani, Toida et al. 2009). Cell migration is based on the forming of 

new focal adhesion contacts at the front of the cell. Integrins are cell surface receptors for 

various ECM components, with different combinations of integrin α and β subunits 

conferring ECM ligand specificity (Hynes 1992). Binding to both the ECM and cytoskeleton 

induces the clustering of active integrins into structures known as focal complexes or 

adhesions, from which signals are generated to regulate cellular responses. Conversely, 

unbound integrins are free to diffuse in the plane of the membrane (Carman and Springer 

2003). Cell migration requires active focal adhesion disassembly and integrin recycling, in 

order to allow new contacts to form near the front of the cell (Jones, Caswell et al. 2006). 

DAB2-mediated endocytosis of inactive integrins mediates their transport toward the 

leading edge of the cell movement, allowing the formation of new focal adhesion 

contacts (Teckchandani, Toida et al. 2009). 

Little is known about the functions of the p67 isoform. DAB2 is expressed in the visceral 

endoderm of mice embryos, and is required for uptake and internalization of megalin, its 

co-receptor cubilin, and a cubilin ligand, transferrin (Maurer and Cooper 2005). Prior to 

placental formation, transport across the visceral endoderm is the only way by which 

maternal proteins are transferred to the developing embryo. Dab2 knockout embryos 

arrest their development and they die prior to gastrulation (Morris, Tallquist et al. 2002). 

p96 expression is sufficient to fully rescue endocytosis in the visceral endoderm, thus 

allowing embryo development. Conversely, p67 only partially rescues endocytosis, and 

half of p67 knockin embryos are lost between E10.5 and P1 (Maurer and Cooper 2005). As 

discussed before, p67 lacks the exon encoding for the AP2- and clathrin-binding region, 

which conversely is present in p96. Nevertheless, it has been reported that p67 shows 

nuclear localization following treatment of fibroblast F9 cells with retinoic acid (Cho, Jeon 

et al. 2000). Once in the nucleus, p67 interacts with mDab2-interacting protein (mDIP), 

and can act as a transcriptional activator. However, the significance of this transcriptional 

activity in physiologic contexts has not been explored. 

There is only one report about DAB2 functions in myeloid cells. Rosenbauer and 

colleagues found that DAB2 is expressed in bone marrow-derived macrophages and 

required for cell adhesion and spreading (Rosenbauer, Kallies et al. 2002). DAB2 was 

found to regulate macrophage adhesion to laminin and collagen IV, two components of 
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the ECM. Cell adhesion to the substrate induced DAB2 phosphorylation and its 

translocation from the cytosol to the cytoskeletal fraction. Moreover, the Dab2 promoter 

was found to be recognized by the transcription factors IRF8 and PU.1; activation of IRF8 

by stimulation with IFN resulted in strong reduction of DAB2 expression. 
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Materials and methods 

 

Mice  

Eight-weeks-old C57BL/6 (H-2b), BALB/c (H-2d) and congenic CD45.1 (Ly5.1+) mice were 

purchased from Charles River Laboratories. OT-1 transgenic mice in C57BL/6 background 

(C57Bl/6-Tg(TCRαTCRβ))1100mjb), which bear a Vα2Vβ5.1-5.2 H2Kb restricted-TCR 

specific for ovalbumine peptide OVA257-264 on CD8+ T lymphocytes, were purchased from 

Charles River Laboratories. Tie2cre+/+ and Dab2flox/flox mice were a gift from P.J. Murray 

(Department of Immunology, St. Jude Children’s Research Hospital, Memphis, 

Tennessee). For simplicity, in this thesis Dab2flox/flox;Tie2cre+/-mice were named Dab2-/- 

mice. Animal care and experiments were approved by the institutional review board of 

Istituto Oncologico Veneto. All mice were maintained under specific pathogen-free 

conditions in the animal facilities of the Istituto Oncologico Veneto. Mice were inoculated 

s.c. on the left flank with tumor cells, and tumor growth was monitored every 2 days 

using a digital caliper. 

 

Cell lines  

MBL-2 lymphoma, MCA203 fibrosarcoma, EL4 thymoma and Lewis Lung carcinoma (LLC) 

cell lines are derived from C57BL/6 mice (aplotype H-2b). 4T1 mammary carcinoma and 

C26 colon carcinoma cell lines are derived from BALB/c mice (aplotype H-2d). C26-GM cell 

line was derived from C26 colon carcinoma cells genetically engineered to release GM-

CSF (Bronte, Serafini et al. 2003). This cell line was cultured in complete medium 

supplemented with geneticin antibiotic at concentration of 0.8 mg/ml. MCA-MN, a 

C57Bl/6 primary cell line of fibrosarcoma that spontaneously forms metastasis in lungs, 

was a gift of Antonio Sica (Istituto Humanitas, Milan, Italy). All cell lines were cultured in 

DMEM 10% FBS supplemented with 2mM L-glutammine, 10 mM HEPES, 20 μM 2β-ME, 

150 U/ml streptomycin, 200 U/ml penicillin. 

To generate the GFP-expressing LLC/F4 cell line, LLC cells were plated in 24 well-plates 

and allowed to grow until 80% of confluence. Cells were then exposed overnight to 

supernatants from 293T cells transfected with the GFP-reporter lentiviral vector, and 

finally cloned by limiting dilution. 
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MCA203 and EL4 cells were injected s.c. at the dose of 1x106 and 0.5x106 cells/mouse, 

respectively. C26-GM cells were injected in the inguinal fold at the dose of 0.5x106 

cells/mouse. 4T1 and LLC-GFP cells were injected s.c. at the dose of 0.5x106 and 2x106 

cells/mouse, respectively. MCA-MN were injected intra-muscle at the dose of 1x105 

cells/mouse. 

 

Cytokines and synthetic peptides  

Recombinant murine GM-CSF (100 ng/ml final concentration) and M-CSF (100 ng/ml final 

concentration) were purchased from Peprotech Inc. OVA257-264 (SIINFEKL) aplotype H-2b-

restricted peptide was synthetized by JPT. The lyophilized peptide was resuspended in 

DMSO (Sigma-Aldrich) and stored at –20°C until used. 

 

Organ cryoconservation and slice preparation  

Mice were euthanized and organs were explanted. Immediately after removal, organs 

were fixed in 3.7% formaldehyde for 3 hours at 4°C. After fixation, organs were 

dehydrated by solutions with increasing sucrose concentration for some days (PBS 20% 

sucrose and PBS 30% sucrose). Organs were included when they sunk to the bottom of 

the tubes. After dehydration, organs were included in optimal cutting medium (OCT), 

frozen on liquid nitrogen vapors and stored at -80°C. Frozen organs were cut with a 

cryostat (Leica) in 10 μm-thick slices, which were stored at room temperature.  

 

Immunofluorescence staining  

Organ slices were rehydrated in PBS for at least 10 minutes. Samples were fixed 5 

minutes in 3.7% formaldehyde at RT and washed; unspecific binding site were blocked 

with PBS 10% FBS 0.02% tween20 (blocking solution), and primary antibodies were 

incubated O.N. at 4°C in blocking solution. Slices were washed 3 times for 8’ in PBS 0.02% 

tween20 and conjugated secondary antibodies were added and incubated for 2 hours at 

37°C or O.N at 4°C. Slices were washed 3 times for 8’ in PBS 0.01% tween20 and once in 

PBS. Nuclear staining was performed with DAPI (Invitrogen) for 10 minutes at RT. Slices 

were mounted with ProLong® Gold Antifade Reagent (Invitrogen) and analyzed with a 

Leica confocal microscopy. The primary antibodies used were rat anti-mouse CD11b (BD 
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biosciences) and rabbit anti-mouse DAB2 H-110 (Santa Cruz Biotechnology, Inc.). 

Secondary antibodies were all purchased from Jackson Immune Research. 

 

Immunoblot 

Cells were collected and rinsed once in PBS, then immediately frozen in liquid nitrogen. 

Samples were dissolved in Laemmli buffer and denatured for 10 min at 100°C. Samples 

were electrophoretically separated on a 8-15% SDS-PAGE gel and transferred onto 

Immobilon P membranes (Millipore). Rabbit anti-mouse ARG1, anti-mouse NOS2 and 

anti-mouse DAB2 H-110 antibodies were purchased from Santa Cruz Biotechnology, Inc. 

Rabbit anti-mouse p62/SQTM1 and anti-mouse LC3 antibodies were purchased from 

Sigma-Aldrich. Secondary HRP-conjugated anti-rabbit antibody was purchased from GE 

Healthcare. 

 

Total RNA purification and Real-time PCR 

Total RNA was extracted by TRIzol (Invitrogen) from CD11b+Ly6G/C-F4/80+ sorted 

macrophages, according to the manufacturer’s instructions with minor modifications. The 

quality and quantity of RNA samples were determined by Agilent RNA 6000 Nano Chip 

(Agilent Technologies). cDNA from purified total RNA was produced by SuperScript II 

reverse transcriptase (Invitrogen) according to the manufacturer’s protocol. Five 

nanograms of template cDNA was used in TaqMan real-time PCR (TaqMan Gene 

Expression Assay; 2 minutes at 50°C, 10 minutes at 95°C, 15 seconds at 95°C, 1 minute at 

60°C, for 45 cycles) performed on an ABI PRISM 7700 (Applied Biosystems). Inventoried 

Taqman probes for genes of interest were purchased by Applied Biosystems. 

 

Spleen and tumor disaggregation  

Mice were euthanized and spleens and tumors were collected. Spleens were 

mechanically disaggregated and filtered with nylon mesh filter. Splenocytes were 

centrifuged and red blood cells were lysed with a hypotonic solution. Tumors were cut in 

small pieces with a scissor; pieces were covered with a digestive solution composed of 

collagenase IV (1 mg/ml) hyaluronidase (0.1 mg/ml) and DNase (0.03 KU/ml) and 

incubated at 37°C; every 10 minutes tumors were mechanically disaggregated using a 5 
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ml pipette. After 1 hour, cells were collected and washed in complete medium twice to 

remove all digestive solution.  

 

Immunomagnetic sorting  

Total CD11b+ cells were isolated from the tumor mass through an anti-CD11b antibody 

conjugated with magnetic microbeads (Miltenyi Biotec). 1x108 cells were resuspended in 

900 μl sorting buffer (PBS 1X, 0.5% BSA, 2mM EDTA) and 100 μl anti-CD11b microbeads 

were added. Samples were incubated at 4°C for 15’ and washed with sorting buffer. 

Samples were resuspended in 2 ml sorting buffer and eluted with LS columns according to 

manufacturer instructions (Miltenyi Biotec).  

 

Cytofluorimetric staining and fluorescence-activated cell sorting 

After hypotonic lysis of red blood cells (when necessary), 5x105-1x106 cells were washed 

in PBS and incubated with an anti-Fc-γ receptor (2.4G2 clone) for 10 minutes at 4 °C to 

reduce unspecific binding. Samples were then stained with antibodies of interest or their 

relative isotype controls for 20 minutes at 4°C, then washed in PBS and resuspended in 

300 μl of PBS for cytofluorimetric analysis. Anti-CD11b-PerCPCy5.5, anti-GR1-APC, anti-

GR1-Pacific Blue, anti-CD115-PE, anti-CD115-APC, anti-F4/80-APCe780, anti-CD86-biotin, 

anti CD45.1-PE, anti-c-Kit-APCe780, and anti-FLT3-PE were from eBioscience; anti-IA/IE 

(MHC-II) and anti-LY6G-FITC were from BD Biosciences; anti-CD206-Alexa647, anti-LY6C-

FITC, anti-LY6C-APC, and anti-LY6G-Pacific Blue were from Biolegend. Anti-CCR2-APC was 

from R&D systems. To analyze cell viability, cells were stained with live/dead aqua dye for 

20 minutes at 4oC and then washed with PBS. Samples were acquired with a FACS LSR-II 

cytofluorimeter (BD Biosciences) and analyzed with FlowJo (Tree Star, Inc.) software. To 

perform fluorescence-activated cell sorting, cells were stained as described above, 

resuspended in FACS buffer (PBS 1X, EDTA 0.5 mM, FBS 3%, 150 U/ml streptomycin, 200 

U/ml penicillin) and then sorted with a FACS Aria (BD Biosciences). 

 

In vivo tracking of monocytes 

Tibiae and femurs of C57BL/6 and Dab2-/- healthy mice were removed with sterile 

techniques and bone marrow cells were flushed with medium. CD11b+ cells were 

enriched by immunomagnetic sorting and then stained with anti-LY6G-FITC and anti-
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CD115-PE as described above. Ly6G-CD115+ monocytes were sorted with a FACS Aria (BD 

Biosciences). Purified monocytes were labeled in PBS with 1 μM of Carboxyfluorescein 

Succinimidyl Ester (CFSE) for 5 minutes at 37 °C (Invitrogen Molecular Probe). The staining 

was blocked by adding 1/5 volume of FBS, cells were then washed twice with PBS 2% FBS 

and resuspended in culture medium. CFSE-labeled monocytes from C57Bl/6 and Dab2-/- 

were admixed 1:1 and 0.2x106 cells/mice cells were injected i.v. in tumor-bearing Ly5.1 

mice. 

 

Evaluation of CTL response (immune suppression assay)  

Mixed lymphocyte peptide culture (MLPC) on C57BL/6 background was prepared by 

mixing -irradiated C57BL/6 splenocytes with OT-1 splenocytes, in order to obtain 1% 

OVA-specific CFSE labeled lymphocytes in the final culture (typical ratio 20:1). After 5 

days, cultures were tested for ability to lyse specific target (MBL-2 loaded with the 

OVA257-264 peptide) in a 5-hour 51Cr-release assay, using 2x103 target cells previously 

labeled with 100 µCi of Na2
51CrO4 for 60 minutes. The percentage of specific lysis was 

calculated from triplicate samples as follows: (experimental cpm x spontaneous 

cpm)/(maximal cpm x spontaneous cpm)/100. Lytic units (L.U.) were calculated as the 

number of cells giving 30% specific lysis of 2x103 specific target cells per 106 effector cells 

(L.U.30/106 cells). When present, the percent nonspecific lysis of unloaded MBL-2 control 

targets was subtracted from that obtained with MBL-2 target cells. The number of 

L.U.30/106 cells was then used to calculate L.U.30 per culture from the number of viable 

cells recovered in the cultures. The percentage of L.U.30 was calculated as follows: L.U.30 

of experimental group/L.U.30 of control group x 100 (Dolcetti, Peranzoni et al. 2010). 

 

Generation of bone marrow-derived macrophages 

Tibiae and femurs of C57BL/6 and Dab2-/- mice were removed with sterile techniques and 

bone marrow cells were flushed with medium. Red blood cells were lysed with hypotonic 

solution. To obtain macrophages from bone marrow cultures, 2.5x105 cells were plated in 

33 mm petri dishes (Falcon, Becton Dickinson) in 1.5 ml of RPMI medium supplemented 

with either GM-CSF (100 ng/ml) or M-CSF (100 ng/ml). Cultures were incubated for 7 days 

at 37°C with 5% CO2. Cells from both the non-adherent and adherent fraction were 

removed by rinsing the dishes with PBS 2mM EDTA. 
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Metastasis induction  

In order to induce lung metastasis, C57BL/6 mice and Dab2-/- transgenic mice were 

injected i.m. with 1x105 MCA-MN cells. After 26 days, when tumors exceeded 200 mm2, 

mice were euthanized and lungs were collected and fixed in Bouin solution (a picric acid, 

formalin and glacial acetic acid saturated solution). Number of lung metastasis was 

counted blindly.  

 

Statistical analysis  

Values are reported as mean ± standard error (SE). Student’s t-test was performed on 

parametric groups. Values were considered significantly with p≤0,05 and are indicated as 

*=p≤0,05; **=p≤0,01 and ***=p≤0,001. 
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Results 

 

Expression of DAB2 protein in CD11b+ myeloid cells 

According to our Affimetrix® transcriptional profiling, the Dab2 gene was overexpressed 

in intratumoral CD11b+ myeloid cells regardless of the examined tumor model and 

genetic background. To confirm these data, we analyzed DAB2 protein expression by 

immunoblot. Tumor single-cell suspensions were obtained after enzymatic digestion of 

tumor tissues, and CD11b+ myeloid cells were purified by immunomagnetic sorting. In 

accordance with the Affimetrix® profiling experiment, we used purified, splenic CD11b+ 

myeloid cells from healthy mice as control, matching for the tumor genetic background. 

Detection with a specific α-DAB2 antibody showed that both isoforms of DAB2 were 

expressed in intratumoral myeloid cells, but not in control splenic myeloid cells (Figure 1A 

and 1B). DAB2 was detected regardless of the tumor model, although we noticed a 

tumor-specific relative expression of the two DAB2 isoforms, p96 and p67. Upregulation 

of the DAB2 protein by myeloid cells was specific for the tumor microenvironment, 

because analysis of CD11b+ myeloid cells purified from the spleen (Figure 1A and 1B) and 

bone marrow (Figure 1C) of tumor-bearing mice showed no expression of the protein. 

Only injection of the C26GM tumor cell line induced a slight upregulation of the p96 

isoform in splenic myeloid cells, however this was not reproduced in other examined 

tumor models (Figure 1B). We concluded that induction of DAB2 expression in CD11b+ 

myeloid cells is a general feature of the tumor microenvironment, regardless of both the 

histologic origin of the tumor and the genetic background of the organism. 
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Figure 1. Expression of DAB2 protein in CD11b+ myeloid cells. 

Immunoblot analysis for the expression of DAB2 isoforms (p96 and p67) in CD11b+ cells isolated from the 

spleen and tumor of mice injected with different tumor cells both in (A) C57Bl/6 (EL4 and MCA203) and (B) 

BALB/c (C26GM and 4T1) backgrounds. Splenic CD11b+ cells from healthy mice matching genetic 

backgrounds were used as negative controls (ctrl). (C) Immunoblot analysis for DAB2 expression in CD11b+ 

cells isolated from the bone marrow and tumor of mice injected with MCA203 cells. Actin was used as 

loading control. 

 

Knockout of DAB2 affects accumulation of intratumoral monocytes and macrophages 

The tumor-specific induction of DAB2 in myeloid cells prompted us to speculate that this 

protein could have a specific function within the tumor microenvironment. To establish 

the consequences of DAB2 deficiency in intratumoral myeloid cells, we generated a 

conditional knockout mouse strain based on the flox/cre deletion system. The 

Dab2flox/flox;Tie2Cre+/- (Dab2-/-) mice express the CRE recombinase under the control of the 

Tie2 gene promoter, allowing a specific deletion of the floxed Dab2 gene in the 

hematopoietic precursors (Marigo, Bosio et al. 2010). 

As a model of tumor disease we chose the MCA203 fibrosarcoma cell line, which has been 

extensively used to study the altered myelopoiesis and immune tolerance induced by 

neoplastic cells (Marigo, Bosio et al. 2010; Ugel, Peranzoni et al. 2012). Subcutaneous 
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injection of MCA203 cells in Dab2-/- mice resulted in a modest delay of the tumor growth 

respect to wild type C57Bl/6 mice, as determined by daily measurement of the tumor 

area (Figure 2). 

 

Figure 2. Tumor growth is delayed in Dab2-/- mice. 

Tumor growth curve of MCA203 in C57Bl/6 and Dab2-/- mice. Animals were injected subcutaneously with 

1x106 MCA203 tumor cells. Tumors were measured blindly every 2 days with a digital caliper (N = 12, * = 

p<0.05; ** = p<0.01). 

 

We supposed that a modification of the tumor microenvironment occurs in Dab2-/- mice, 

thus resulting in a diminished growth of neoplastic cells. To understand better the nature 

of this modification, we decided to check the composition of the myeloid tumor infiltrate, 

using a multiparameter cytofluorimetric analysis of tumor-derived, single-cell 

suspensions. The analysis was performed two weeks after injection of MCA203 cells, 

when the tumor growth in Dab2-/- mice started to significantly diverge from the C57Bl/6 

group. The gating strategy for this analysis is reported in Appendix A. Strikingly, we found 

a significant reduction of intratumoral CD11b+Ly6G-Ly6ChighF4/80+ monocytes and 
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CD11b+Ly6G-Ly6Clow/negF4/80+CD115+ macrophages in Dab2-/- mice with respect to 

control. Conversely, the percentage of CD11b+Ly6G+ granulocytes was augmented within 

the tumor of Dab2-/- versus C57Bl/6 mice (Figure 3A). We also found a significant 

increment in a population of CD11b+Ly6G-F4/80-CD115- myeloid cells (either positive or 

negative for Ly6C, Fig. 3A), however we were not able to find additional markers for this 

subset, thus precluding its further characterization. 
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Figure 3. Knockout of DAB2 affects accumulation of intratumoral monocytes and macrophages. 

(A) Multicolor cytofluorimetric analysis of intratumoral myeloid cells two weeks after injection of MCA203 

cells in either C57Bl/6 or Dab2-/- mice. Analysis was performed gating on CD11b+ living cells. Populations 

were defined as described in Appendix A (Gran: granulocytes; Mono: monocytes; Mφ: macrophages). All 

graphs are representative of three independent experiments with 3-4 mice per group (* = p<0.05; *** = 

p<0.001). (B) Immunoblot analysis for DAB2 expression in intratumoral myeloid subsets, two weeks after 

injection of MCA203 cells in C57Bl/6 mice. Cells were purified by FACS; myeloid subsets were defined as 

described in Appendix A (CD11b+: total myeloid cells; Gran: granulocytes; Mono:  monocytes; Mφ: 

macrophages). (C) Thin cryosections of MCA203 tumors showing distribution of the DAB2+CD11b+ myeloid 

infiltrate. Samples were stained with α-DAB2 (red), α-CD11b (blue) and counterstained with DAPI (white). 

 

Analysis of the myeloid tumor infiltrate showed that DAB2 deficiency affects myeloid cells 

in a cell type-specific manner. For this reason we decided to better characterize DAB2 

expression in intratumoral myeloid cells. Wild type intratumoral myeloid subsets as 

defined in Figure 3A were sorted using Fluorescence Activated Cell Sorting (FACS), and 

protein lysates were analyzed for DAB2 expression by immunoblot. Interestingly, 

granulocytes had no expression of DAB2 isoforms, while both p96 and p67 were 

expressed in monocytes, macrophages and CD11b+Ly6G-F4/80- cells (Figure 3B). Relative 

expression of DAB2 isoforms was not constant in these subsets. To characterize DAB2 

expression in regard to cell position within the tumor mass, we performed confocal 

analysis of thin MCA203 tumor microsections. We found that DAB2 was preferentially 

expressed in CD11b+ myeloid cells localized to the border zone of the tumor (Figure 3C). 

All these data demonstrate that DAB2 is mainly expressed in cells of the myelomonocytic 

lineage localized to the border of the tumor mass, and its depletion affects accumulation 

of intratumoral monocytes and macrophages. 

 

Dab2-/- monocytes cannot efficiently generate intratumoral macrophages 

The reduction of intratumoral monocytes and macrophages in Dab2-/- mice could be the 

consequence of a defective myelomonocytic lineage development. This hypothesis is 

supported by the fact that DAB2 is phosphorylated following activation of the M-CSF 

signaling pathway, the main cytokine driving monocyte and macrophage differentiation 

(Cecchini, Dominguez et al. 1994; Xu, Yang et al. 1995). Moreover, the Dab2 promoter is 

transactivated in vitro by the transcription factor PU.1, which is a master regulator of 
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macrophage development (McKercher, Torbett et al. 1996; Rosenbauer, Kallies et al. 

2002). 

We decided to monitor myelopoiesis during tumor progression in Dab2-/- mice, by 

performing multiparameter cytofluorimetric analysis of ex vivo bone marrow cells. The 

gating strategy for this analysis is reported in Appendix B. Healthy Dab2-/- mice showed a 

significant reduction in the percentage of bone marrow CD11b+Ly6G-CD115+Ly6ChighCCR2+ 

inflammatory monocytes, CD11b+Ly6G-CD115+Ly6Clow/neg resident monocytes, and 

CD11b+Ly6C/G-F4/80high macrophages respect to C57Bl/6 mice, while the percentage of 

CD11b+Ly6G+ granulocytes was not affected (Figure 4A, left panel). However, the same 

analysis performed two weeks after injection of MCA203 cells showed a reduction only in 

the percentage of bone marrow macrophages in Dab2-/- mice (Figure 4A, right panel). To 

understand the reason for the constitutive lack of bone marrow monocytes in healthy 

Dab2-/- mice, we monitored the percentage of Macrophage/Dendritic Cell Progenitors 

(MDPs) (which generate monocytes) and Common Dendritic Cell Precursors (CDP) (which 

originate from MDPs). Results revealed no differences between Dab2-/- and C57Bl/6 mice, 

both under steady-state conditions and during tumor-induced myelopoiesis (Figure 4B).  
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Figure 4. Healthy Dab2-/- mice have reduced percentage of monocytes in lymphoid organs. 

(A) Multicolor cytofluorimetric analysis of bone marrow myeloid cells in C57Bl/6 versus Dab2-/- mice, both 

in healthy (left graph) and tumor-bearing (right graph) mice. Analysis was performed gating on CD11b+ 

living cells. Populations were defined as described in Appendix B and C (Gran: granulocytes; Ly6Chigh: 

inflammatory monocytes; Ly6Clow/neg: resident monocytes; Mφ: macrophages). (B) Analysis of MDPs (Lin-

CD115+FLT3+c-Kithigh cells) and CDPs (Lin-CD115+FLT3+c-Kitlow cells) in C57Bl/6 versus Dab2-/- mice, following 
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injection of MCA203 tumor cells. (C) Multicolor cytofluorimetric analysis of splenic myeloid cells in C57Bl/6 

versus Dab2-/- mice, both in healthy (left graph) and tumor-bearing (right graph) mice. Analysis was 

performed gating on CD11b+ living cells. All graphs are representative of three independent experiments 

with 3-4 mice per group (* = p<0.05; ** = p<0.01; *** = p<0.001). 

 

It was recently reported that during tumor progression, inflammatory monocytes are 

mobilized from the bone marrow and colonize a specialized niche in the spleen, where 

they induce peripheral tolerance to tumor antigens and form a pool of precursors able to 

replenish TAMs (Cortez-Retamozo, Etzrodt et al. 2012; Ugel, Peranzoni et al. 2012). 

Interestingly, in our analysis the percentage of bone marrow inflammatory monocytes, 

but not resident monocytes, was greatly diminished in wild type tumor-bearing mice with 

respect to healthy littermates (1.119±0.421% versus 5.172±0.525% respectively; Figure 

4A). We supposed that lack of bone marrow monocytes in Dab2-/- mice was masked 

during tumor progression by splenic extramedullary myelopoiesis, and that an altered 

accumulation of monocytes in this organ could explain the reduction of intratumoral 

macrophages in Dab2-/- mice. Cytofluorimetric analysis of the spleen revealed that 

healthy Dab2-/- mice had a reduced percentage of inflammatory monocytes and 

macrophages compared to C57Bl/6 mice, with a concomitant increase in the percentage 

of granulocytes (Figure 4C, left panel). However, these differences were lost two weeks 

post-injection of MCA203 cells (Figure 4C, right panel). All together, these data show that 

Dab2-/- mice have a defect in the accumulation of monocytes in lymphoid organs; 

however, this defect is lost under conditions of tumor-driven myelopoiesis, thus not 

reflecting phenotypic landscape of the tumor infiltrate. 

To understand better the reason for the lack of intratumoral monocytes and 

macrophages in Dab2-/- mice, we set up in vivo tracking of bone marrow monocytes in 

tumor-bearing mice. We purified monocytes from the bone marrow of healthy congenic 

CD45.1 wild type and CD45.2 Dab2-/- mice, using FACS. Purified cells were stained with 

the fluorescent dye CFSE and mixed 1:1, then injected in tumor bearing CD45.2 wild type 

mice (Figure 5A). Four days post-adoptive transfer of monocytes, we checked for the 

presence of CFSE+ cells in the blood and tumor of CD45.2 host mice, using 

cytofluorimetric analysis (Figure 5B). While the ratio of CFSE+ CD45.1+ wild type and 

CD45.2+Dab2-/- monocytes was 1:1 in the blood, thus demonstrating their equal access to 
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the bloodstream, this ratio dramatically changed in favor of CD45.1+ wild type monocytes 

within the tumor (Figure 5C, left). Moreover, the remaining CFSE+ CD45.2+ Dab2-/- 

monocytes seemed less prone to differentiate into macrophages with respect to CD45.1+ 

wild type monocytes (Figure 5C, right). Altogether, these data suggest that alteration of 

the tumor myeloid infiltrate in Dab2-/- mice is tumor-intrinsic and imputable to a 

defective ability of monocytes to differentiate to macrophages. 
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Figure 5. Dab2-/- monocytes cannot efficiently generate intra-tumoral macrophages 

(A) Schematic representation of the monocyte in vivo tracking experiment. (B) Gating strategy to monitor 

monocyte differentiation to macrophages. (C) The percentage of wild type versus Dab2-/- adoptively 

transferred, CFSE+ monocytes in the blood and tumor of host mice is reported on the left graph. The 
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differentiation of monocytes in macrophages was determined as the ratio between Gr-1- and Gr-1+ cells 

among CFSE+ transferred monocytes detected within the tumor (right graph; N=4 mice per group in two 

independent experiments). 

 

GM-CSF and M-CSF induce DAB2 expression in myeloid cells through a mechanism 

requiring the C/EBPβ transcription factor 

Having demonstrated that monocytes require DAB2 to differentiate in intratumoral 

macrophages, we exploited the signals required to upregulate the protein within the 

tumor. We speculated that the same stimuli, which initiate macrophage differentiation, 

were also responsible for expression of DAB2. GM-CSF and M-CSF are two cytokines 

which are abundantly secreted in the tumor microenvironment (Gabrilovich 2004); both 

of them are known to drive the differentiation of monocytes and macrophages (Hamilton 

2008). To test whether DAB2 could be upregulated in response to these stimuli, we 

purified CD11b+ cells from the spleen of wild type tumor-bearing mice using 

immunomagnetic sorting. Purified myeloid cells were exposed in vitro for 24 hours to 

GM-CSF and M-CSF alone or in combination (see Figure 6A for schematic representation 

of the experiment). Cells were harvested and protein lysates were analyzed for DAB2 

expression by immunoblot. Fresh splenic and intratumoral CD11b+ cells were used as 

negative and positive controls, respectively. We found that after exposure to either GM-

CSF, M-CSF or a combination of both, cells upregulated both DAB2 isoforms compared to 

untreated cultured cells (Figure 6B). Conversely, cells exposed to G-CSF, which drives the 

differentiation of granulocytes, did not upregulate DAB2 proteins (Figure 6C). 
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Figure 6. GM-CSF and M-CSF induce expression of DAB2 in myeloid cells. 

(A) CD11b+ myeloid cells were isolated by immunomagnetic sorting from the spleen of tumor-bearing mice. 

Purified cells were either frozen for subsequent analysis or cultured for 24 hours with or without  GM-CSF 

and M-CSF cytokines. Total cell extracts were analyzed for the expression of DAB2 isoforms by immunoblot 

(B). Intratumoral CD11b+ cells from the same mice were used as positive control for DAB2 expression. t0 = 

splenic CD11b+ cells; - = splenic CD11b+  cells in culture without cytokines; GM = as before, with GM-CSF; M 

= as before, with M-CSF; GM + M = as before, with both GM-CSF and M-CSF; + = intratumoral CD11b+ cells. 

(C) Immunoblot showing  DAB2 expression in splenic CD11b+ cells after in vitro stimulation with G-CSF. t0 = 

splenic CD11b+ cells; - = splenic CD11b+  cells in culture without cytokines; G = as before, with G-CSF; GM = 

as before, with GM-CSF; GM + G = as before, with both GM-CSF and G-CSF; + = intratumoral CD11b+ cells. 

Actin was used as loading control in all the experiments. 

 

We previously demonstrated that the C/EBPβ transcription factor is required for the in 

vivo homeostasis of CD11b+Gr-1int monocytic MDSCs, likely acting as downstream 

transcription factor for GM-CSF and IL-6 signaling pathways (Marigo, Bosio et al. 2010). In 

fact, conditional knockout of this protein in the hematopoietic system resulted in a strong 

reduction of both splenic and intratumoral monocytic MDSCs; simultaneously, the tumor 

microenvironment was radically changed, with loss of myeloid immune suppressive 

activity and reduced metastatic spreading of tumor cells (Marigo, Bosio et al. 2010). 

Having seen a relationship between DAB2 and GM-CSF, we speculated that C/EBPβ could 
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be required for expression of DAB2 in intratumoral myeloid cells. First of all, we verified 

the effects of c/EBPβ deficiency on splenic inflammatory monocytes, which are 

considered to be a fraction of monocytic MDSCs (Geissmann, Manz et al. 2010; Ugel, 

Peranzoni et al. 2012). As expected, conditional knockout of the Cebpb gene in the 

hematopoietic lineage resulted in a strong reduction of splenic CD11b+Gr-1intCD115+ 

inflammatory monocytes in tumor-bearing mice (Figure 7A). Intratumoral CD11b+ myeloid 

cells isolated from the same mice showed a dramatic depletion of the DAB2 protein with 

respect to wild type C57Bl/6 controls (Figure 7B). Altogether, these data were consistent 

with our finding that DAB2 is mainly expressed by cells of the myelomonocytic lineage 

within the tumor. Finally, we verified whether splenic Cebpb-/- CD11b+ myeloid cells could 

upregulate DAB2 in vitro. Stimulation of these cells with GM-CSF and M-CSF failed to 

induce DAB2 expression, thus supporting a role for C/EBPβ in regulating this pathway 

(Figure 7C). 

 

 

Figure 7. C/EBPβ is required for expression of DAB2 in myeloid cells. 

(A) Cytofluorimetric analysis showing accumulation of CD115+Gr-1int monocytes in the spleen of either 

C57Bl/6 or Cebpb-/- mice, two weeks after injection of MCA203 cells. Analysis was performed gating on 

CD11b+ cells. (B) Immunoblot showing expression of DAB2 in CD11b+ myeloid cells purified from tumors of 
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either C57Bl/6 or Cebpb-/- mice. Actin was used as loading control. (C) Splenic CD11b+ myeloid cells from 

either C57Bl/6 or Cebpb-/- tumor-bearing mice were purified and in vitro stimulated with both GM-CSF and 

M-CSF for 24 hours. Cells were harvested and protein lysates were analyzed for DAB2 expression by 

immunoblot (t 0 = splenic CD11b+ cells; - = splenic CD11b+ cells in culture without cytokines; GM+M = 

splenic CD11b+ cells in culture with both GM-CSF and M-CSF). Actin was used as loading control. 

 

In summary, we suggest that CD11b+ intratumoral myeloid cells upregulate DAB2 due to 

exposure to locally secreted cytokines such as GM-CSF and M-CSF. Moreover, abrogation 

of C/EBPβ transcriptional activity can impair this process. 

 

Knockout of Dab2 alters M1/M2 macrophage balance and immune suppressive activity 

within the tumor 

DAB2 depletion in myeloid cells resulted in a strong reduction of intratumoral monocytes 

and macrophages. Both cell types have main roles in the regulation of the tumor 

microenvironment: monocytes suppress antitumor adaptive immunity and can promote 

angiogenesis (De Palma, Venneri et al. 2005; Gabrilovich and Nagaraj 2009), while 

macrophages virtually control all processes which influence tumor growth and tissue 

remodeling (Qian and Pollard 2010). Having observed a reduction in the tumor growth in 

Dab2-/- mice with respect to wild type controls, we decided to measure the immune 

suppressive activity of Dab2-/- intratumoral myeloid cells. CD11b+ cells were purified with 

anti-CD11b microbeads from the tumor of Dab2-/- versus wild type mice and co-cultured 

with ovoalbumin-specific CD8+ T cells in a Mixed Lymphocyte-Peptide Culture (MLPC). 

After five days, cytotoxic activity of CD8+ T cells was evaluated with 51Chromium release 

assay. Surprisingly, we found that Dab2-/- CD11b+ myeloid cells had increased suppressive 

activity with compared to wild type ones (Figure 8A). To explain this, we checked the 

expression of immune suppressive enzymes ARG1 and iNOS in Dab2-/- intratumoral 

CD11b+ cells(Bronte and Zanovello 2005). Immunoblot revealed an increased expression 

of both enzymes in Dab2-/- samples with respect to wild type ones, which might explain 

their increased suppressive activity (Figure 8B). 
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Figure 8. Increased suppressive activity of Dab2-/- intratumoral CD11b+ myeloid cells. 

(A) Ovoalbumin (OVA) antigen specific T lymphocytes were stimulated with the OVA immunodominant 

peptide in presence of CD11b+ cells isolated from MCA203 tumors growing in either C57Bl/6 or Dab2-/- 

mice. After 5 days of culture, the cytotoxic activity of T cells was evaluated in a 51Cr release assay. Values 

are indicated as lytic unit 30% (L.U.30), as a measure of the lytic potential of T lymphocytes. Graph shows 

results from three independent experiments (N=3). (B) CD11b+ cells were purified from MCA203 tumors of 

either C57Bl/6 or Dab2-/- mice. Protein lysates were analyzed for expression of ARG1 and iNOS by 

immunoblot. Actin was used as loading control. 

 

Regulation of ARG1 and iNOS expression in macrophages is classically considered 

antithetical and a reflex of their M1/M2 polarization (Gordon and Taylor 2005), whose 

balance controls the immune response within the tumor microenvironment (Qian and 

Pollard 2010). Having seen a reduction of macrophages and an altered expression of 

ARG1 and iNOS in Dab2-/- myeloid cells, we wondered whether DAB2 deficiency could 

influence the M1/M2 polarization. Using quantitative PCR, we measured the relative 

expression of a panel of genes associated with either M1 or M2 macrophages (Murray 

and Wynn 2011). Analysis was performed on FACS-purified, intratumoral macrophages 

from either Dab2-/- or wild type tumor-bearing mice. Interestingly, Dab2-/- macrophages 

had an increased M2 signature respect to those isolated from wild type mice (Figure 9A). 

Notably, Nos2 gene expression was also increased, reflecting protein expression data 

obtained by immunoblot. To confirm further these results, we analyzed expression of 

several M1/M2 macrophage surface markers in tumor myeloid infiltrates, using 



74 

 

multiparameter cytofluorimetric analysis. In accordance with gene expression data,  

Dab2-/- mice had a reduced percentage of MHCIIhighCD86+ M1 macrophages in their tumor 

infiltrates respect to C57Bl/6 controls (Figure 8B);  moreover, CD206 expression in Dab2-/- 

macrophages was increased respect to wild type ones, suggesting a more M2-oriented 

phenotype (Figure 8C; (Mosser and Zhang 2008). Concluding, our data suggest that DAB2 

deficiency shift the balance of macrophage polarization towards the M2 status, thus 

increasing immune suppression within the tumor. 



75 

 

 



76 

 

Figure 9. Knockout of Dab2 alters the M1/M2 balance of intratumoral macrophages. 

(A) Quantitative PCR evaluation of genes known to be associated with either M1 or M2 macrophage 

polarization. Data are expressed, on a base 2 logarithmic scale, as the fold change of mRNA abundance in 

CD11b+Ly6C/G-F4/80+ macrophages purified by FACS from MCA203 tumors of Dab2-/- mice, normalized to 

the expression of S18 housekeeping gene and compared to abundance in wild type C57BL/6 macrophages 

purified in the same way (N=4 mice per group in one experiment). (B) Top, cytofluorimetric analysis of 

tumor cell suspensions from either MCA203 tumor-bearing C57Bl/6 or Dab2-/- mice, showing the 

percentage of MHCIIhighCD86+ M1 macrophages. Analysis was performed gating on CD11b+Gr-1-F4/80+ 

macrophages. Bottom, the same gating strategy was used to analyze CD206 expression, reported as Mean 

Fluorescence Intensity (MFI; N=4 mice per group in one experiment). 

 

Dab2-/- mice have a metastasis resistant phenotype 

Metastatic spreading is a multistep process that begins in the primary tumor. Knowing 

that macrophages have a basic role in assisting all these steps, we wondered whether 

DAB2 depletion could limit the metastatic potential of tumor cells. To establish this, we 

used the MN/MCA1 sarcoma metastatic model, which induces macroscopic lung 

metastases four weeks after tumor injection (Sica, Saccani et al. 2000). In this model, we 

did not observe significant changes in the primary tumor growth between Dab2-/- and 

C57Bl/6 mice; however, the number of macrometastasis was dramatically reduced in 

Dab2-/- mice with respect to control group (Figure 10A). To confirm this result, we used 

another metastatic tumor model, the Lewis Lung Carcinoma (LLC) cell line (Kaplan, Riba et 

al. 2005). To allow direct observation of each single step of the metastatic process, we 

generated a LLC clone stably expressing the Green Fluorescent Protein (GFP). GFP 

expression allows accurate tracking of single fluorescent metastatic cells by a 

combination of in vivo imaging, confocal microscopy and quantitative-PCR of the gfp 

gene. The GFP+ LLC clone (LLC/F4) grew equally well and caused a similar composition of 

splenic, tumor and lung myeloid infiltrates with respect to its parental cell line in vivo. 

LLC/F4 growth in Dab2-/- mice was similar to its wild type counterparts (Figure 10B); 

however, even in this model we found a strong reduction of intratumoral macrophages, 

with a concomitant increase in the percentage of granulocytes (Figure 10C). To monitor 

the magnitude of the metastatic spreading, lungs were collected from tumor-bearing 

mice and total mRNA was extracted for subsequent cDNA synthesis. Presence of the gfp 

mRNA transcript was evaluated by PCR using specific primers. By this way, we could 
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detect GFP+ cells in the lungs starting from two weeks after subcutaneous injection of 

LLC/F4 cells. At this time point, the percentage of mice with GFP-positive lungs was 

reduced in the Dab2-/- group respect to wild type one (40% versus 80%, respectively). 

Three weeks after tumor injection we still found the same reduction, thus confirming an 

impairment of the metastatic spreading in Dab2-/- mice. In the present study we did not 

perform further experiments to explain these findings, which will be the aim of future 

research activity. However the LLC/F4 clone represents a tool to finely dissecting which 

steps of the metastatic process are regulated by DAB2+ myeloid cells, and how this 

regulation is accomplished. 
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Figure 10. Dab2-/- mice have a metastasis resistant phenotype. 

(A) 0.1x106 MN/MCA1 cells were intramuscularly injected in either Dab2-/- or C57Bl/6 mice. When the 

primary tumor reached 200 mm2, lungs were collected and superficial macrometastases were counted with 

Bouin staining. Number of metastases and tumor area were normalized to the C57Bl/6 group (N=22 mice 

per group, *** p<0.001). (B) Tumor growth curve of LLC/F4 in C57Bl/6 and Dab2-/- mice. Animals were 

injected subcutaneously with 2x106 LLC/F4 tumor cells. Tumors were measured blindly every 2 days with a 

digital caliper (N=8). (C) Multicolor cytofluorimetric analysis of intratumoral myeloid cells two weeks after 

injection of LLC/F4 cells in either C57Bl/6 or Dab2-/- mice. Analysis was performed gating on CD11b+ living 
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cells. Populations were defined as described in Appendix A (Gran: granulocytes; Mono: monocytes; Mφ: 

macrophages). Graph shows results from two independent experiments with 3-4 mice per group (N=8, * = 

p<0.05). (D) 2x106 LLC/F4 cells were injected subcutaneously in either C57Bl/6 or Dab2-/- mice. Mice were 

euthanized 2 (black) and 3 (red) weeks post-tumor injection and total RNA was extracted from lungs for 

subsequent cDNA synthesis. Presence of the gfp transcript was evaluated by PCR. Results are reported in 

tables on the right as percentage of mice with gfp+ lungs. 

 

Reduced number of monocytes during in vitro cultures of Dab2-/- bone marrow cells 

To describe the mechanism by which DAB2 influences the generation of intratumoral 

macrophages, we stimulated bone marrow cells with either GM-CSF or M-CSF, which 

represents a simplified in vitro model of macrophage differentiation (Fleetwood, 

Lawrence et al. 2007). Both cytokines induce expansion of bone marrow monocytes and 

their subsequent differentiation in macrophages, although with different extent and 

phenotypic traits (Hamilton 2008). As expected, treatment with either GM-CSF or M-CSF 

induced a progressive upregulation of the DAB2 protein, with a peak on day 6 (Figure 

11A). When we put in culture Dab2-/- bone marrow cells, we measured a reduced number 

of monocytes compared to wild type control, indicating a defect in the proliferation 

and/or survival of these cells if DAB2 is depleted (Figure 11B). Unexpectedly, Dab2-/- 

macrophages grew regularly during the culture, thus not reflecting the differentiation 

defect observed in vivo. These data cannot be easily reconciled with the literature and 

could indicate a DAB2- and monocyte-independent origin of the in vitro bone marrow-

derived macrophages. Further studies will be performed to address this issue. 
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Figure 11. Reduced number of monocytes during in vitro cultures of Dab2-/- bone marrow cells 

(A) Bone marrow cells collected from healthy C57Bl/6 mice were treated in vitro for 7 days with either GM-

CSF or M-CSF. Cells were collected every day and protein lysates were analyzed for DAB2 expression by 

immunoblot. Actin was used as loading control. (B) Number of monocytes (upper graphs) and macrophages 

(lower graphs) during in vitro GM-CSF/M-CSF-induced differentiation of bone marrow cells collected from 

either C57Bl/6 or Dab2-/- mice. Values were obtained multiplying the number of retrieved cells by the 

percentage of either monocytes or macrophages, as assessed by cytofluorimetric analysis. 
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Defects in the induction of autophagy during differentiation of Dab2-/- bone marrow-

derived macrophages 

It was recently published that autophagy is required for correct monocyte-macrophage 

differentiation (Jacquel, Obba et al. 2012; Zhang, Morgan et al. 2012). Knockout of the 

Atg7 gene, which impairs autophagy, caused a blockage of the differentiation of 

monocytes to macrophages. Moreover, inhibition of autophagy can lead to increased 

apoptosis (Moscat and Diaz-Meco 2009). Supposing that DAB2 deficiency induced cell 

death in monocytes, we wondered whether there could be a link between DAB2 and 

autophagy. To test this, we collected protein lysates from Dab2-/- and wild type bone 

marrow cells during M-CSF-induced macrophage differentiation. By immunoblot, we 

checked for p62 and LC3-II, two markers of autophagosome formation and degradation in 

the lysosome. Expression of p62 gradually incremented during M-CSF treatment; 

however, we measured a drastic reduction of the protein between day 6 and 7, 

suggestive of the autophagy process being activated. Interestingly, Dab2-/- bone marrow-

derived macrophages degraded p62 at a lesser extent with respect to wild type (Figure 

12A). Moreover, autophagosome formation seemed to be inhibited in Dab2-/- bone 

marrow-derived macrophages, because we detected reduced quantities of LC3-II respect 

to wild type controls, both in terms of LC3-II/LC3-I ratio and LC3-II expression per se  

(Figure 12B and 12C). Altogether, these data suggest that autophagy is inhibited when 

DAB2 is not available, and suggest a potential molecular mechanism explaining the in vivo 

and in vitro defects, which we observed in monocytes following DAB2 depletion. 
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Figure 12. Defects in the induction of autophagy during differentiation of Dab2-/- BM-derived 

macrophages. 

(A) Bone marrow cells isolated from healthy C57Bl/6 versus Dab2-/- mice were cultured with 100 ng/ml of 

M-CSF for 7 days. Protein lysates were collected at different time points and resolved on a SDS-page for 

detection of p62 protein by immunoblot. Actin was used as loading control. (B) The ratio between LC3-II 

and LC3-I in wild type versus Dab2-/- mice bone marrow-derived macrophages was quantified with ImageJ® 

after detection of the proteins by immunoblot. (C) Expression of LC3-II at day 7 in Dab2-/- bone marrow-

derived macrophages was normalized with respect to wild type control and expressed as Arbitrary Units 

(A.U.). Actin was used as loading control. 
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Discussion 

 

Macrophages are common members of the tumor microenvironment. They are found 

infiltrating many types of cancer, and their abundance usually correlates with poor 

patient prognosis (Bingle, Brown et al. 2002; Chen, Lin et al. 2005; Ryder, Ghossein et al. 

2008; Zhu, Zhang et al. 2008). This is probably due to their active contribution to almost 

all processes that sustain cancer progression (Qian and Pollard 2010). The present study 

highlights a new possible mechanism that regulates differentiation of TAMs and opening 

to additional therapeutic options for cancer patients. Based on our Affimetrix® data, the 

Dab2 gene show a strong expression in the myeloid infiltrate regardless of the histologic 

origin of the tumor; this was confirmed at protein level (Figure 1). This finding, in addition 

to our data showing a connection between the DAB2 protein and TAMs, suggests that 

artificial modulation of DAB2 expression and functions could have a beneficial therapeutic 

effect in many cancer diseases. 

According to our study, the main effect of Dab2 targeted deletion in the hematopoietic 

system is a strong reduction in monocyte and macrophage presence within the tumor. 

Cytofluorimetric analysis of the tumor infiltrate, together with in vivo monocyte tracking 

experiments strongly suggest that DAB2 is required for differentiation of TAMs (Figure 3A 

and 5); blockage of this process by DAB2 depletion also resulted in reduced accumulation 

of monocytes within the tumor, likely dependent on the negative impact on cell 

availability. At the moment we cannot exclude that DAB2 is required for the entry of 

monocytes into the tumor, a hypothesis which is supported by the notion that DAB2 

regulates integrin trafficking (Rosenbauer, Kallies et al. 2002; Chetrit, Ziv et al. 2009; 

Teckchandani, Toida et al. 2009). However our conclusion is sustained by the finding that 

in vitro macrophage differentiation of Dab2-/- bone marrow cells generated less 

monocytes compared to wild type cells (Figure 11). Interestingly, caspase activation and 

apoptosis are finely regulated during in vitro differentiation of monocytes to 

macrophages, and interfering with these pathways can lead to increased cell death 

(Meinhardt, Roth et al. 2000; Sordet, Rebe et al. 2002; Lin, Leu et al. 2011). 

The link between DAB2, macrophage differentiation and monocyte survival is further 

strengthened by our finding that both GM-CSF and M-CSF upregulate expression of the 
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protein in splenic CD11b+ myeloid cells and bone marrow cells (Figure 6 and 11A). Both 

cytokines control the proliferation, survival and differentiation of macrophages, and the 

balance between them influences the macrophage versus dendritic cell differentiation 

choice of monocytes (Menetrier-Caux, Montmain et al. 1998; Hamilton 2008). In this work 

we did not verify whether the deletion of Dab2 had consequences on the dendritic cell 

compartment too, an issue which will be addressed in future studies. If we assume that 

DAB2 expression is mandatory for macrophage differentiation, for what we know we can 

formulate at least three hypotheses regarding DAB2 function, which are not mutually 

exclusive. 

The first hypothesis consider the role of DAB2 as regulator of the integrin endocytic 

trafficking (Chetrit, Ziv et al. 2009; Teckchandani, Toida et al. 2009). It has been 

demonstrated that DAB2 regulates adhesion and spreading of macrophages in vitro 

(Rosenbauer, Kallies et al. 2002). DAB2 was shown to be phosphorylated and translocate 

from the cytosol to the cytoskeletal/membrane fraction following macrophage adhesion 

to the extracellular matrix. Forced overexpression of DAB2 leaded to increased adherence 

and spreading, suggesting that DAB2 is implicated in integrin signaling and cytoskeleton 

reorganization in macrophages (Rosenbauer, Kallies et al. 2002). Both phenomena are 

strictly interconnected to stemness and cell differentiation (Streuli 2009). Little is known 

about involvement of integrin signaling in macrophage differentiation; however, it was 

demonstrated that clustering of the β2 integrin Mac-1 (CD11b) can induce Csf1r 

expression through downregulation of the transcriptional repressor FOXP1, thus allowing 

monocyte maturation into macrophages (Shi, Zhang et al. 2004; Shi, Sakuma et al. 2008). 

Conversely, the M-CSF signaling pathway modulates integrin and cytoskeleton 

reorganization (Pixley and Stanley 2004). Considering our data regarding the tumor-

specific expression of DAB2 in myeloid cells and the in vivo behavior of adoptively 

transferred Dab2-/- monocytes (Figure 1 and 5), we can suppose that, once within the 

tumor, monocytes upregulate DAB2 in response to increased levels of tumor-secreted 

GM-CSF and M-CSF. This allows to re-organize integrins and respond to extracellular 

matrix and cell-to-cell contact stimuli, promoting intratumoral macrophage 

differentiation. Our confocal analysis of DAB2 distribution in tumor-infiltrated myeloid 

cells is in accordance with this model. We found that expression of the protein is mainly 
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localized in CD11b+ cells within the periphery of the tumor mass (Figure 3C), possibly 

indicating that DAB2 upregulation is an early event when cells infiltrate the tissue.  

The second hypothesis is based on the finding that the p67 isoform of DAB2 can 

translocate into the nucleus and function as a transcriptional activator in retinoic acid-

treated F9 cells (Cho, Jeon et al. 2000). This would add further complexity to the 

transcriptional changes orchestrated by GM-CSF and M-CSF signaling. Most important, 

this hypothesis would stress the necessity of determining the relative expression of p96 

and p67 within cells. Interestingly, we noticed a difference in the expression of DAB2 

isoforms between intratumoral monocytes and macrophages (Figure 3B). Cellular 

localization of p96 is dependent on a region of the protein which allows binding to the 

alpha-adaptin subunit of the clathrin-adaptor protein AP2 (Morris and Cooper 2001). This 

region is absent in p67, suggesting not-overlapping functions with p96. In our confocal 

studies we could not detect a nuclear distribution of the DAB2 protein in myeloid cells, 

neither in vivo nor in vitro. Nonetheless, changes in the relative expression of DAB2 

isoforms during myeloid development are a major point which needs to be addressed. 

The third hypothesis is based on our data regarding a possible involvement for DAB2 in 

autophagy. During differentiation of Dab2-/- bone marrow-derived macrophages we 

found an impairment of the autophagic process, as assessed by measurement of LC3-II 

intracellular levels and p62 degradation (Figure 12). These data can explain the negative 

impact of DAB2 depletion on macrophage differentiation, as autophagy is essential for 

the latter (Jacquel, Obba et al. 2012; Zhang, Morgan et al. 2012). Moreover, the reduced 

accumulation of transferred Dab2-/- monocytes within the tumor could be an effect of 

increased cell death caused by inefficient autophagy (Moscat and Diaz-Meco 2009). 

Although this hypothesis requires further experiments to be confirmed, evidences from 

the literature support it. Research activity in the field of autophagy has recently focused 

on where autophagosomes assume their membrane from. Presently it is believed that 

organelles such the endoplasmic reticulum, mitochondria and the Golgi complex are 

membrane sources for autophagosome formation (Mizushima and Komatsu 2011). 

However, a recent paper showed that also the plasma membrane contributes to the 

biogenesis of pre-autophagosomal structures, the so-called “phagophores” (Ravikumar, 

Moreau et al. 2010). The Authors demonstrated that ATG16L1-positive early 

autophagosome structures are generated from the plasma membrane through clathrin-
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mediated endocytosis; this requires the interaction between clathrin and ATG16L1 

through the adaptor AP2. Interestingly, knockdown of AP2 did not completely block the 

process, suggesting that other adaptor proteins could be implicated. DAB2 could be one 

of these adaptors, having already been demonstrated to substitute AP2 in endocytosis of 

LDLR (Maurer and Cooper 2006; Mulkearns and Cooper 2012). Another possibility is that 

DAB2 participates to the autophagic process through interaction of its PTB domain with 

phosphatidylinositol 4,5-bisphosphate, which promotes autophagosome biogenesis by 

influencing endocytic uptake of plasma membrane into autophagosome precursors 

(Howell, Lanier et al. 1999; Moreau, Ravikumar et al. 2012). These considerations make 

the relationship between DAB2 and autophagy quite conceivable and will be further 

explored in future studies. 

A major issue of our study is the exact origin of DAB2+ intratumoral myeloid cells, 

especially if we consider that an HSC-independent lineage of macrophages exists in 

tissues (Jenkins, Ruckerl et al. 2011; Schulz, Gomez Perdiguero et al. 2012). According to 

our immunoblot analysis, both monocytes and macrophages express DAB2 within the 

tumor (Figure 3B). At least a fraction of these DAB2+ cells probably originate from the 

blood stream, because adoptively transferred bone marrow monocytes efficiently 

generated macrophages within the tumor and splenic myeloid cells upregulated DAB2 

when properly stimulated with cytokines which induce macrophage differentiation 

(Figure 5 and 6). At the moment we cannot establish whether one or both monocyte 

subsets are the source of DAB2+ macrophages, and we do not know the anatomical site 

where they are stored (spleen or bone marrow). However, conditional knockout of the 

transcription factor c/EBPβ, which affected accumulation of splenic inflammatory 

monocytes, strongly impaired the expression of DAB2 in intratumoral CD11b+ cells, while 

splenic Cebpb-/- CD11b+ cells failed to upregulate DAB2 after in vitro stimulation with GM-

CSF and M-CSF (Figure 7). This indirectly supports the notion that inflammatory 

monocytes could, at least in part, be the source of intratumoral DAB2+ macrophages.  

Nevertheless, a population of intratumoral CD11b+Ly6G-F4/80- cells, which we were 

unable to classify, also expressed high levels of DAB2 (Figure 3). The presence of these 

cells in the myeloid tumor infiltrate increased in Dab2-/- mice with respect to wild type 

littermates, at least in the MCA203 tumor model. We can make several hypotheses 

regarding the nature of this population. If we assume that CD11b+Ly6G-F4/80- cells are 
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developmentally connected to CD11b+Ly6G/C-F4/80+ mature macrophages, they could 

represent an immature/intermediate precursor of the monocyte differentiation into 

macrophages. In this case, their accumulation within the tumor of Dab2-/- mice could be 

the consequence of the defective differentiation process. Otherwise, they could 

represent a distinct myeloid lineage, either originating from the bone marrow or 

reflecting HSC-independent local proliferation of macrophages (Jenkins, Ruckerl et al. 

2011; Schulz, Gomez Perdiguero et al. 2012). If part of the DAB2+ tumor myeloid infiltrate 

does not originate from the bone marrow, we cannot be sure that all intratumoral 

myeloid cells are targeted by conditional Dab2 deletion in Dab2flox/flox;Tie2Cre+/- mice, 

thus urging the need for alternative conditional knockout strategies. Finally, we cannot 

exclude the possibility that an impairment of the DAB2-regulated endocytic trafficking 

could alter the expression of surface markers like F4/80 and CD115, thus “masking” the 

true identity of cells when performing cytofluorimetric analysis. If this is the case, 

morphologic and confocal studies will surely be helpful in characterizing intratumoral 

CD11b+Ly6G-F4/80- cells. Noteworthy, a population of immature myeloid cells with similar 

phenotypic traits (CD11b+CD34+F4/80-Gr-1-) was shown to promote invasion of colorectal 

cancer cells by secreting MMP2 and MMP9 at the invasive front (Kitamura, Kometani et 

al. 2007). 

The concept of a partial monocyte-independent origin of macrophages comes in help 

when discussing the behavior of Dab2-/- bone marrow cells in vitro stimulated with GM-

CSF/M-CSF. Although the number of generated monocytes was diminished during the 

culture, thus reflecting our in vivo data, macrophage numbers were not affected and 

grew normally, indicating that proliferation of these cells could occur independently of 

monocyte fate (Figure 11B). Alternatively, considering that DAB2 availability is limiting for 

monocyte survival, a competition between monocyte clones could be established in 

Dab2-/- bone marrow cultures, in which those clones that stochastically do not delete the 

Dab2 gene shall prevail and replenish macrophage numbers. This possibility must be 

considered in light of the deleting efficiency of Tie2 promoter, which is not able to drive 

100% deletion in all examined mice during laboratory practice (P. Murray, personal 

communication). Finally, another technical issue concerns the inefficiency of in vitro 

differentiation systems at reproducing the complex signaling network of in vivo 

microenvironments. From this point of view, lacking of particular differentiation signals in 
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vitro could results in the discrepancies we observed during culture of Dab2-/- bone 

marrow cells. Based on the concept we discussed above regarding the role of integrins in 

regulating macrophage differentiation, we are planning to test if the use of components 

of the extracellular matrix can improve our in vitro differentiation systems. 

Although DAB2 deficiency mainly affected the differentiation of myeloid cells within the 

tumor, also the spleen and bone marrow of tumor-free mice showed reduced 

percentages of monocytes and macrophages (Figure 4). Unexpectedly, monocyte levels 

returned normal after tumor implantation, suggesting some rescue mechanisms activated 

by tumor-driven myelopoiesis. We were not able to detect DAB2 protein in CD11b+ 

myeloid cells isolated from the spleen and bone marrow, so we supposed that in these 

organs DAB2 could be expressed in Lineage- precursors of the myelomonocytic lineage, 

thus influencing the generation of monocytes. However, when we monitored the 

percentage of MDPs and CDPs during tumor progression, we did not find differences 

between Dab2-/- and wild type mice, thus excluding a defect in the generation/expansion 

of direct monocyte precursors. Noteworthy, macrophage percentages in lymphoid organs 

of Dab2-/- tumor-bearing mice were reduced despite normal monocyte levels, supporting 

the notion that DAB2 acts during macrophage maturation. 

The immunosuppressive activity of Dab2-/- intratumoral CD11b+ cells was increased 

(Figure 8A). When we measured the expression of ARG1 and iNOS enzymes, which can 

strongly suppress CD8+ T cell response, we found increased levels of both proteins in 

Dab2-/- CD11b+ tumor-infiltrating cells (Figure 8B). Considering how these enzymes are 

regulated in TAMs, we supposed that DAB2 could influence the macrophage M1/M2 

polarization (Gordon and Taylor 2005). By analyzing the expression of several genes and 

surface markers associated with either M1 or M2 status, we found that DAB2 depletion 

enhanced the M2 polarization of TAMs (Figure 9). This effect could be explained 

considering that the Dab2 gene is transcriptionally repressed by the IFN--responsive 

transcription factor IRF8 (Rosenbauer, Kallies et al. 2002). Although we do not know the 

meaning of this regulation, it is possible that DAB2 influences the macrophage response 

to IFN- and consequently, also their M1/M2 status. It should be noted that our data 

regarding macrophage polarization were obtained using the MCA203 tumor model, which 

paradoxically grew slower in Dab2-/- mice with respect to C57Bl/6 littermates (Figure 2). 

However, injection of either MN/MCA1 or LLC/F4 tumor cells did not resulted in slower 
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tumor growth (Figure 10A and 10B), suggesting that other factors, specific of the MCA203 

tumor model, concurred to alter the growth rate of tumor cells in Dab2-/- mice. 

Altogether these data suggest that DAB2 can potentially influence the immunologic 

equilibrium within the tumor. The nature of this influence could be addressed in an 

immunotherapy setting, for example by adoptively transferring tumor-specific cytotoxic 

CD8+ T cells in Dab2-/- mice to monitor their survival with respect to wild type mice. 

Abrogation of DAB2 functions in myeloid cells had the important consequence of 

hampering the metastatic potential of tumor cells, as assessed by studying two different 

metastatic tumor models (Figure 10). Considering the negative impact of DAB2 deficiency 

on macrophage differentiation, this is quite expected. However, we cannot exclude that 

DAB2 functionally participates to prometastatic functions of macrophages. From the 

invasion to the extravasation process into metastatic sites, macrophages have always 

proved to sustain complex interplays with metastatic cells (Joyce and Pollard 2009). These 

interplays require macrophages to respond to dynamically oriented stimuli in a spatial 

manner, thus conferring a fundamental role to the ability of the cells to orient its surface 

receptors and intracellular protein complexes where needed. The M-CSF/EGF paracrine 

loop described by Pollard and colleagues is an optimal example of this concept (Condeelis 

and Segall 2003; Wyckoff, Wang et al. 2004; Goswami, Sahai et al. 2005; Wyckoff, Wang 

et al. 2007). DAB2 could participate to this process in several ways, for example by 

concentrating CSF1R molecules toward extracellular M-CSF released by neighbouring 

tumor cells, or by docking integrins that interact with collagen fibers, thus allowing 

travelling through the stroma. Preliminary data obtained by our group support this 

hypothesis, as we found that DAB2 co-localizes with CSF1R+ intracellular vesicles in bone 

marrow-derived macrophages and intratumoral CD11b+ myeloid cells. Of interest, the 

DAB2 protein was found to be presented in the proteome of MDSCs isolated from 

metastatic mammary tumors (Boutte, McDonald et al. 2011). 

In conclusion, the present study reveales DAB2 to be an appealing target to hamper the 

recruitment and functionality of intratumoral myeloid cells which are of support to tumor 

progression. Block of DAB2 functions in myeloid cells, by gene silencing or 

pharmacological inhibitors, should impair accumulation and function of TAMs in cancer 

patients, with potential benefits for disease outcome. We are currently developing 



90 

 

molecular strategies to efficiently deliver small interfering RNA molecules in intratumoral 

myeloid cells, in order to silence the Dab2. 
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Appendix B: Gating strategy for myeloid cells in the spleen 
and bone marrow 
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Abbreviations 

 

AMBRA1 ............................................................................ Autophagy/beclin 1 regulator 1 

ANG ................................................................................................................. Angiopoietin 

APC ................................................................................................. Antigen presenting cell 

ARG1 .................................................................................................................. Arginase 1 

ATG ........................................................................................................ Autophagy-related 

Atg1/ULK ...................................................................................... Atg1/Unc-51-like Kinase 

AP2 ......................................................................................................... Adaptor protein 2 

Bax ............................................................................................. BCL2-associated X protein 

Bcl2 ........................................................................................................ B-cell lymphoma 2 

C/EBPβ .......................................................................... CAAT-enhancer-binding protein-β 

CCL .................................................................................................... CC-chemokine ligand 

CCR ................................................................................................ CC-chemokine receptor 

CDP ................................................................................................. Common DC precursor 

CMP ...................................................................................... Common myeloid progenitor 

COX2 ......................................................................................................... Cyclooxigenase 2 

CSC ............................................................................................................ Cancer stem cell 

CSF-1R ......................................................................................................... CSF-1 receptor 

CTL ................................................................................................. Cytotoxic T lymphocyte 

CXCL ................................................................................................ CXC-chemokine ligand 

CXCR ............................................................................................ CXC-chemokine receptor 

CX3CR1 ..................................................................................... CX3C chemokine receptor 1 

DAB2 ...................................... Disabled homolog 2, mitogen-responsive phosphoprotein 

DAMP .................................................................... Damage-associated molecular pattern 

DC ................................................................................................................... Dendritic cell 

DFCP1 ........................................................................................ FYVE-containing protein 1 

ECM ...................................................................................................... Extracellular matrix 

EGF ............................................................................................... Epidermal growth factor 

EGR1 ............................................................................................. Early growth response 1 

EMT .............................................................................. Epithelial-mesenchymal transition 
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ER ................................................................................................... Endoplasmic reticulum 

FGF ............................................................................................... Fibroblast growth factor 

FIP200 .................................. Focal adhesion kinase family interacting protein of 200 kDa 

G-CSF ...................................................................... Granulocyte colony-stimulating factor 

GM-CSF ............................................. Granulocyte/macrophage colony-stimulating factor 

GMP ......................................................................... Granulocyte-Macrophage progenitor 

HGF ............................................................................................ Hepatocyte growth factor 

HIF1α ...................................................................................... Hypoxia-inducible factor 1α 

HSC ............................................................................................... Hematopoietic stem cell 

IBD ......................................................................................... Inflammatory bowel disease 

ICAM .............................................................................. Intercellular adhesion molecule 1 

IDO........................................................................................Indoleamine 2,3-dioxygenase 

IFN ................................................................................................................... Interferon  

IL ........................................................................................................................ Interleukin 

iNOS .................................................................................... Inducible nitric oxide synthase 

IRF8 ...................................................................................... Interferon regulatory factor 8 

JNK1 ............................................................................................ c-Jun N-terminal kinase 1 

KFL4 .................................................................................................... Kruppel-like factor 4 

LC3-PE ............ Microtubule-associated protein 1 light chain 3-phospatidyl ethanolamine 

LDLR ................................................................................ Low-density lipoprotein receptor 

LOX ................................................................................................................. Lysyl oxidase 

LPS ........................................................................................................ Lipopolysaccharide 

M-CSF .................................................................... Macrophage colony-stimulating factor 

M-MDSC ........................................................ Monocytic myeloid-derived suppressor cell 

MAF ..................................................................................... Macrophage activating factor 

MAM .......................................................................... Metastasis-associated macrophage 

mDIP ......................................................................................... mDab2-interacting protein 

MDP ........................................................................................ Macrophage/DC progenitor 

MHC .............................................................................. Major histocompatibility complex 

MMP ........................................................................................... Matrix metalloproteinase 

mTORC1 ............................................................................ Target of rapamycin complex 1 

MYB ............................................................................................ Myeloblastosis oncogene 
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NFκB ........................................................................................................ Nuclear factor κB 

NK ................................................................................................................... Natural killer 

PAMP ................................................................... Pathogen-associated molecular pattern 

PAS ...................................................................................... Preautophagosomal structure 

PD1 .................................................................................Programmed cell death protein 1 

PDGF ................................................................................... Platelet-derived growth factor 

PDL1 ................................................................................................................ PD1 ligand 1 

PGE2 ......................................................................................................... Prostaglandin E2 

PI3K ........................................................... Class III phosphatidylinositol (PtdIns) 3-kinase 

PMN-MDSC ..................................... Polymorphonuclear myeloid-derived suppressor cell 

Pre-DC ........................................................................................................ Precursor of DC 

PROK2 ........................................................................................................... Prokineticin 2 

PTB ................................................................................ Phosphotyrosine-binding domain 

PtdIns ................................................................................................. Phosphatidylinositol 

RELB ............................................ Viral reticuloendotheliosis (v-rel) oncogene homolog B 

ROS ............................................................................................... Reactive oxygen species 

SCF .............................................................................................................. Stem cell factor 

SMA ................................................................................................ α-smooth muscle actin 

SQSTM1/p62 ............................................................................................. Sequestosome 1 

SRC ..................................................................... Steroid hormone receptor coactivator-1 

STAT ........................................................ Signal transducer and activator of transcription 

TAM ................................................................................. Tumor-associated macrophages 

TCR ............................................................................................................... T-cell receptor 

TEM .................................................................. Tie2-expressing monocytes/macrophages 

TGFβ .................................................................................... Transforming growth factor β 

TIDC .................................................................................. Tumor-infiltrating dendritic cell 

TipDC ................................................................... TNFα and iNOS-producing dendritic cell 

TLR ............................................................................................................ Toll-like receptor 

TNFα .............................................................................................. Tumor necrosis factor α 

TSF ........................................................................................ Tumor-derived soluble factor 

VCAM1 .......................................................................... Vascular cell adhesion molecule 1 

VEGF ............................................................................ Vascular endothelial growth factor 
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VEGFR1 ...................................................................................................... VEGF receptor 1 

Vps15 ............................................................................................ Vacuolar protein sorting 
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