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Sommario

Ci concentriamo sui metodi statistici utilizzati in Biogeografia per modellare

la distribuzione spaziale delle specie di uccelli. A causa della difficoltà nello

specificare una struttura multivariata congiunta della covarianza spaziale nei

processi ambientali, fattorizziamo tale distribuzione congiunta in una serie di

modelli condizionati connessi asieme in un modello gerarchico. Abbiamo un

processo che corrisponde ad una mappa non osservabile con le informazioni

effettive su una specie di uccelli, ed i dati corrispondono alle osservazioni che

sono collegate a tale processo. Vengono utilizzati gli approcci di simulazione

Markov chain Monte Carlo (MCMC) per i modelli a piú livelli che incorporano

strutture di dipendenza. Usiamo un algoritmo Bayesiano per estrarre campioni

dalla distribuzione a posteriori al fine di ottenere stime dei parametri e ricostru-

ire la vera immagine basata sui dati. Presentiamo diversi metodi per superare il

problema del calcolo della distribuzione del campo aleatorio markoviano che

viene utilizzato nell’ algoritmo MCMC. Durante l’analisi, é opportuno elim-

inare alcuni predittori dal modello e utilizzare solo un sottoinsieme di covariate

nella procedura di stima. Usiamo il metodo di Kuo & Mallick (1998) (KM) per

la selezione delle variabili che, combinato all’uso dei piú catene independenti,

incrementa con successo il mixing delle catene. Negli studi di simulazione, pre-

sentiamo le migliori prestazioni della pseudo-verosimiglianza rispetto agli altri

metodi di approssimazione e le buone prestazioni del metodo KM per queso

tipo di dati. Illustriamo l’applicazione dei metodi con l’analisi completa della

distribuzione spaziale di due specie di uccelli (Sturnella magna e Anas rubripes),

basandoci su di un insieme di dati reale. Dimostriamo i vantaggi nell’uso della

struttura latente e del parametro di interazione spaziale nel modello spaziale

markoviano latente rispetto agli altri modelli piú semplici, come l’ordinario

modello logistico o il modello autologistico senza errori di osservazione.





Abstract

We concentrate on the statistical methods used in Biogeography for mod-

elling the spatial distribution of bird species. Due to the difficulty of specifying

a joint multivariate spatial covariance structure in environmental processes,

we factor such a joint distribution into a series of conditional models linked

together in a hierarchical framework. We have a process that corresponds to

an unobservable map with the actual information about a bird species, and the

data correspond to the observations that are connected to that process. Markov

chain Monte Carlo (MCMC) simulation approaches are used for models invol-

ving multiple levels incorporating dependence structures. We use a Bayesian

algorithm for drawing samples from the posterior distribution in order to ob-

tain estimates of the parameters and reconstruct the true map based on data.

We present different methods to overcome the problem of calculating the dis-

tribution of the Markov random field that is used in the MCMC algorithm.

During the analysis it is desirable to delete some of the predictors from the

model and only use a subset of covariates in the estimation procedure. We use

the method by Kuo & Mallick (1998) (KM) for variable selection and combine it

with multiple independent chains which successfully improves the mixing be-

haviour. In simulation studies we show the better performance of the pseudo-

likelihood over other likelihood approximation methods, and the good perfor-

mance of the KM method with this type of data. We illustrate the application

of the methods with the complete analysis of the spatial distribution of two

bird species (Sturnella magna and Anas rubripes) based on a real data set. We

show the advantages of using the hidden structure and the spatial interaction

parameter in the spatial hidden Markov model over other simpler models, like

the ordinary logistic model or the autologistic model without observation er-

rors.
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Chapter 1

Introduction

1.1 Overview

Biogeographical studies intend to give a description of the spatial distribution

of animal or vegetal species. The information is obtained via atlas surveys in

which the study area is divided into a grid of sites, which are typically squares

of equal size. The purpose is to record the presence of the target species at

each site. In this type of study, the resulting map with the observations tend to

underestimate the true presence because of coverage problems in the fieldwork

producing “non-detected presences”(Heikkinen & Högmander, 1997). On the

contrary, presence could be recorded in sites that are actually not inhabited

by the target species, referred to as “false observations.”These two types of

observation errors require the inclusion of two maps in the model, the actual

map of real presence/absence of the species, and the observed map.

In the formulation of a statistical model, it is expected that adjacent sites

tend to have the same condition of presence or absence of the species. The

force of this association is included in the model as a parameter that is consid-

ered constant for all the sites in the study area; thus the probability of presence

of the species in a specific site is determined by its presence in the neighbour-

ing sites, weighted by this spatial interaction parameter. This simplification

of the dependence of a specific site on the rest of the configuration to a local

dependence of that site on its neighbourhood, creates a Markov random field

(MRF), and the fact that the series of values are arranged in a two dimensional

way produces a spatial MRF. Moreover, since the observed map could differ

from the true one, the latter is said to be hidden and the model is referred as a

spatial hidden Markov model (SHMM).
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When relevant environmental information is available for each study site,

corresponding to climatic and land use covariates, it can be used to refine the

model that explains the probability of presence of the target species. The inclu-

sion of this information produces a non-homogeneous model since the proba-

bility of presence of the species becomes dependent on the site. Besag (1974)

proposed the autologistic model for spatial data with binary responses. In the

first formulation of this model, no explanatory variables were included; how-

ever, Hughes et al. (2010) defined the autologistic model using covariates as

part of a term that captures the non-homogeneity of the model. When a high

number of covariates is available, it is important to define a procedure to se-

lect a suitable subset of covariates that ensures the most reliable predictions.

Many methods for variable selection have been proposed but their limitations

increase with the number of covariates. Starting with the method presented by

George & McCulloch (1993), who used a hierarchical normal mixture model,

Kuo & Mallick (1998) proposed another method that includes indicator vari-

ables embedded in the regression equation in such a way that all possible sub-

models are considered. Their method was modified later by Paroli & Spezia

(2008) who proposed the acceptance of the vector of the covariate coefficients

and the vector of the indicator variables in a single Metropolis step. They

demonstrated that the algorithm has a better performance in the case of non-

homogeneous hidden Markov models and Markov switching auto-regressive

models when the explanatory covariates are strongly correlated.

In the following chapters we develop the ideas of hierarchical models in a

Bayesian approach for the construction of statistical models in Biogeography.

In Chapter 2 , we present a review of the ideas and methods of Biogeography

and explain the details of the data that are analysed in Chapter 6. Chapters 3

and 4 are devoted to giving the methodological bases for the estimation pro-

cedures used in hierarchical models and variable selection. In Chapter 5 we

present several simulation studies with the aim of testing the methodology ex-

posed in Chapters 3 and 4. Finally, in Chapter 6 we perform the analysis of the

spatial distribution of two selected species based on a real data set.

1.2 Main contributions of the thesis

The main contributions that we make with this thesis can be divided in two

categories. In the first category we consider the contributions made to the sta-

tistical methodology. These results are obtained in Chapter 5 using simulation

studies:
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• We show the better performance of the pseudo-likelihood approxima-

tion over other methods of approximation to the likelihood function. In

particular, we study the path sampling and the ratio of two normalising

constants.

• We prove the good performance of the method by Kuo & Mallick (1998)

for variable selection in the case of presence/absence data with high ob-

servation errors. We consider the special case when these errors are influ-

enced by the amount of effort in the data collection stage. This method

has been applied to time series and multiple regression data. With our

simulations we show that it can be successfully applied when the data

have a spatial structure and there is a hidden image in addition to the

observed data.

The second type of contributions are in the applicative area. We present a

complete analysis in Chapter 6 where we use a real data set:

• We show the advantages of using the hidden structure and the spatial in-

teraction parameter in the spatial hidden Markov model over other sim-

pler models like the ordinary logistic model or the autologistic model

without observation errors. We present the analysis of the spatial distri-

bution of two species of birds: Sturnella magna and Anas rubripes, com-

monly known as the Eastern Meadowlark and American Black Duck, re-

spectively.

• A useful application of a SHMM is the creation of maps based on the

posterior probabilities of presence rather than the reconstructed map as

proposed by Heikkinen & Högmander (1994). Furthermore, this type of

map could be created for new scenarios that reflect climate change and

intensive land use, showing their effect on the distribution of the target

species.





Chapter 2

Biogeography

In this chapter we present a review of general ideas related to Biogeography

and introduce the problem of spatial autocorrelation and related sources. We

concentrate on the statistical methods used in modelling the spatial distribu-

tion of bird species as a particular problem which has been considered by many

ecologists and approached by various means. The interest in this problem is

motivated by a particular data set which we describe. We explain the details of

how these data are transformed to be used for the analysis presented in Chap-

ter 6.

2.1 Biogeographical studies

Biographers observe, record and explain the geographic ranges of living things

(Pielou, 1979). A geographic range of a wildlife population at some point

in time can be defined as the collection of the locations of the individuals in

the population at that moment (Gaston, 1994). Obtaining the complete collec-

tion of these locations becomes an impossible task in most cases, thus a so-

lution is mapping the geographic ranges to coarsen the geographic accuracy

which is used in the recording or reducing of the temporal resolution (dura-

tion of the study). The use of statistics in Biogeography is important because

of the stochastic nature of the models used to explain the observed phenom-

ena. One of the branches of Biogeography is the analysis of data from atlas

surveys which is a popular method for mapping geographic ranges (Heikki-

nen & Högmander, 1997).

Spatial autocorrelation in data is a common phenomenon in ecology. Tobler

(1970) formulates his Law of Geography to explain this concept in a natural
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way stating that ”everything is related to everything else, but near things are

more related than distant things.” Sources of spatial autocorrelation can be di-

vided into exogenous and endogenous factors. Habitat preferences for spa-

tially structured environmental gradients are exogenous factors (e.g. climate,

soil type, stochastic disturbances) and may lead to a similar probability of

occurrence in neighbouring sites, simply because the external factors show a

specific autocorrelation pattern. Endogenous factors are due to the biology of

the species under consideration (e.g. dispersal, colonial breeding, home-range

size, competition, host availability, predation, parasitization risk) (Dormann,

2007). Exogenous factors can ideally be included into the statistical model as

environmental covariates, reducing and even removing the residual spatial au-

tocorrelation, while endogenous causes of spatial autocorrelation are usually

much more difficult to quantify. In the analysis of species distribution data,

ignoring spatial autocorrelation may lead to two kinds of possible errors: bi-

ased parameter estimates and standard errors that are more optimistic than

they should be (Dormann, 2007). Although the consideration of spatial au-

tocorrelation is fundamental, models may be wrongly specified because they

contain the wrong explanatory variables which may lead to far worse models

than ignoring spatial autocorrelation (Haining, 2003).

The problem of spatial autocorrelation in species distribution data has been

addressed since Augustin et al. (1996), when they estimated the geographi-

cal distribution of plant and animal species from incomplete field survey data.

They were inspired by the use of generalized linear models (GLMs) for mod-

elling wildlife distributions, and noticed that in GLMs, spatial autocorrelation

in the residuals was ignored. The approach they proposed used the autologis-

tic model already introduced by Besag (1974), and was based on the extension

of the logistic model to include an extra covariate derived from the responses

at neighbouring sites. Several applications since then have been presented

in modelling the distribution of plant species, insects, amphibians, birds, and

mammals (e.g. Wu & Huffer (1997), Gumpertz et al. (2000), Knapp et al. (2003),

Osborne et al. (2001), Teterukovsky & Edenius (2003)). Dormann et al. (2007)

presented a review of different frequentist methods to account for spatial au-

tocorrelation which are divided in three categories: 1) autocovariate regression

and spatial eigenvector mapping; 2) generalized least squares methods; and 3)

generalized estimating equations.

On the Bayesian side, the use of Bayesian image analysis in estimating bio-

geographical distributions was introduced by Högmander & Møller (1993),

while Heikkinen & Högmander (1994) developed an alternative fully Bayesian
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approach to decide whether the blank squares in a map of observations of com-

mon toads (Bufo bufo) indicate true absence or merely a lack of study there. This

is essentially an image restoration problem, but it has properties that make the

common empirical Bayesian procedures inadequate. Maps derived from ob-

served occurrences of wildlife distributions surveys are profoundly affected

by the duration and intensity of the observation and by methods used to de-

lineate distributions, especially when detection is uncertain (Sargeant et al.,

2005); thus these maps are imperfect and incomplete images. In this sense,

maps of observations are analogous to degraded digital images, which com-

monly are restored via Markov chain Monte Carlo (MCMC) methods (Green,

1995a). Sargeant et al. (2005) produced an estimate of the underlying distri-

bution of the Swift Fox (Vulpes velox) in western Kansas, rather than a map of

observed occurrences, that reflected the uncertainty associated with estimates

of model parameters. They used MRFs without including habitat covariates

in their model. The problem of modelling the distribution of plant species in

terms of variables such as temperature and rainfall was studied by Wu & Huf-

fer (1997) also with an approach using MCMC methods, although not under

the Bayesian framework.

The concept of MRF is explained in detail in Chapter 2 as the basis of the

approach that we develop in this thesis. The inclusion of the aspects that we

have introduced in this review, when modelling distributions of animal or veg-

etal species is crucial to obtaining a better explanation of the phenomenon that

we study, which is the spatial distribution of the target species. These consid-

erations include the important spatial autocorrelation, the exogenous factors

as covariates that can also reduce or even remove the residual spatial auto-

correlation, and the fact that the observed map of observations are imperfect

representations of the actual map.

2.2 Data

In subsequent chapters, we will explain different approaches to the analysis

of the spatial distribution of two species of birds in the Northeastern part of

the United States. The data come from the eBird Reference Data set run by

the National Audubon Society and the Cornell Lab of Ornithology (Munson

et al., 2011). We select a region composed by the neighbouring states of New

York, New Jersey, Pennsylvania, Rhode Island, Connecticut, New Hampshire,

Massachusetts, Vermont, Delaware, Washington D.C., Maryland, Virginia, and

West Virginia. We analyse the presence of the species Sturnella magna and Anas
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rubripes (Fig. 2.1), commonly known as the Eastern Meadowlark and American

Black Duck, respectively. These two species have the characteristic that the first

one is more generalist while the second one is more specialist. A generalist

species is able to thrive in a wide variety of environmental conditions and can

make use of a variety of different resources, while a specialist species can only

thrive in a narrow range of environmental conditions or have a limited diet.

We analyse the impact of some covariates on the distribution of each type of

species.

Figure 2.1: An individual of the species Sturnella magna (Eastern Meadowlark)

perched on a post (Salaroli, 2011) and a male preening showing speculum of the species

Anas rubripes (American Black Duck)(Boland, 2007) .

We use data that correspond to a total of 205,304 sampling events for this

area in 2010. In some cases, the same location was visited more than once

during the year; in those cases, we consider the species as observed in that

location if it was observed at least in one of the events. We get a total of 35,878

different locations. In an atlas survey the study area is divided into a grid of

sites, which are typically squares of equal size. The aim is to confirm at each site

whether it is inhabited by the target species or not (Heikkinen & Högmander,

1997). Since the available data are not in a grid format, as it occurs in an atlas

survey, we artificially create a grid of 15km by 15km squares or sites. This size

of square is close to the size used in atlas surveys and at the same time avoids

excess number of sites with missing information. Atlas surveys are usually

vast projects and a typical size of an atlas square is 10km by 10km. The size of

the site determines the spatial resolution (Heikkinen & Högmander, 1997).
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Figure 2.2: Presence of the Eastern Meadowlark (top) and the American Black Duck

(bottom) in a selected area of Northeastern U.S. Left: original sites where the species

was observed (blue dots) at corresponding longitude and latitude. Right: 15km by

15km sites at x-y coordinate system with two colours to differentiate sites where the

species was observed and not observed.

The latitude and longitude of each location is projected in a x-y coordinate

system using the spectralGP library (Paciorek, 2007) in R. The projection cal-

culates (for all points) the great circle distance in the x direction to the mean

longitude and in the y direction to the mean latitude, and uses these distances

as the x-y coordinates of the location. In each square we consider the species

as observed if it is observed in at least one of the locations sampled inside

that site. The result is an irregular grid of 2,195 sites with information about

the presence or absence of the species, and several squares in the interior with

missing information (see Fig. 2.2).
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The chance of observing the species of interest in a specific site can be in-

fluenced by many factors that are external to the covariates which we want

to model, and can be considered as noise induced either by the observers or

by the different conditions during the sampling activities. Osborne & Tigar

(1992) and Heikkinen & Högmander (1994) include a measurement of the ob-

servational effort as a covariate to account for uneven coverage. In our data

set, the number of sample events varies a lot from location to location, 55% of

the locations were sampled only once, but there are extreme cases as high as

1,384 samples (a case where samples were taken several times a day during

for many days). Also the number of locations visited in each site varies over a

wide range with a median of 18 locations per site, 52 sites visited in only one

location and a few sites visited in more than 400 locations. Thereby, in addi-

tion to the information provided by the static environment covariates and the

habitat statistics, the total effort hours devoted to each site (sum of the effort

hours in all the locations visited in a site) should be taken into account. The

duration of the observation in hours is available for 88.4% of the 205,304 loca-

tions. The missing values are imputed using the average of the effort hours for

the locations in the same site that do have that information. If all the locations

in a site have missing values, we use the median of all the available locations.

Once we have imputed the missing values, we add the number of effort hours

for all the locations in each site. In Fig. 2.3 we observe that in the middle and

upper section towards the right of the study area, the observation effort tends

to be stronger than in the rest.

Hours

[ 0  −  3.7 )
[ 3.7  −  13 )
[ 13  −  40 )
[ 40  −  126 )
[ 126  −  4148 ]

Figure 2.3: Effort hours per site.
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We use the available information for each location to create covariates at

square level using kriging interpolation (Cressie, 1993). Kriging is a weighted

linear combination of the known sample values around the point to be esti-

mated. We use the fields library (Furrer et al., 2012) in R, with a maximum of

200 known values for each interpolation, chosen in such a way that they are the

closest points to the square for which we do the interpolation. Each square is

divided into a smaller grid with 36 points separated 5km from each other; we

obtain the estimated values for these points and take their mean as an estimate

of the variable in the square. In Fig. 2.4, we present the values of the variable

Patch density of deciduous forest for the points in the square formed by the

set of vertices {(−150,−325), (−125,−325), (−125,−300), (−150,−300)}. The

square has 10 points and we use a bigger region for the interpolation that con-

tains 301 points. The values of the variable inside the small square have a range

from 2.9 to 25.9. The average of these values is 17.4, while the estimated values

for the 36 points in the grid (crosses in red) produce an average of 14.2. Fig.

2.5 shows the results of the interpolation procedure for the variable Elevation

categorised into 5 groups according to quantiles (for illustration purposes).

x

y
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32
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17.62.9
20.9 25.919

19.9

Figure 2.4: Interpolation of the values in the grid (red crosses) using all 301 points in

the big square. Original points within the small square in blue with the corresponding

values of the variable Patch density of deciduous forest.
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We have some measurements that are static in the sense that they are de-

rived from environmental snapshots tied to a wide time frame independent of

exactly when the observations are made. We select 9 static environment covari-

ates (Table 2.1) based on a preliminary descriptive analysis to make sure that

they are spread in a range that allows some variability for an interesting future

predictive analysis. Two of the covariates (CANOPY MEAN and IMPERV MEAN)

are recorded at three different spatial extents to cover local ecological processes

at small, medium and large ranges. The scale of the covariate is indicated by

the “radius”of the neighbourhood (in meters). The neighbourhood border is

twice the radius since it represents the radius of a circle inscribed within the

neighbourhood square.

Elevation

[ −7.55  −  51 )
[ 51  −  174 )
[ 174  −  313 )
[ 313  −  441 )
[ 441  −  1128 ]

Elevation

[ −7.55  −  51 )
[ 51  −  174 )
[ 174  −  313 )
[ 313  −  441 )
[ 441  −  1128 ]

Figure 2.5: Plot of a variable in the original locations (left) and the interpolation in

15km by 15km sites (right).

Habitat statistics are computed from the National Land Cover Data from

source data for the year 2006 (Fry et al., 2011). They include a landscape statis-

tic (LPI), and land cover statistics (PD) by class using 14 categories described

in Table 2.2. These statistics are calculated for the three different scales (75, 750

and 7500), but we use only the 750 radius (see Table 2.2). We end up with 9

static environment covariates, one landscape statistic, and 14 class level statis-

tics, which results in a total of 24 covariates to start the analysis.
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Variable Name Description

Static Environment Covariates

POP Population per square mile (2000 census) for the census

block group containing the location.

ELEV Elevation (in meters). Horizontal resolution is roughly

1km by 1km.

T AVG Mean daily average temperature(1).

PREC Mean total precipitation(1).

CANOPY MEAN Mean canopy cover (in meters) in square neighbourhood

around location with radius 750m.

IMPERV MEAN Mean imperviousness to water (in meters) in square neigh-

bourhood around location with radius 750m.

DIST FLOW FW Distance (in meters) from flowing fresh water.

DIST STD FW Distance (in meters) from standing fresh water.

DIST WETVEG FW Distance (in meters) from wet vegetation, fresh water.

Habitat Statistics

LPI Percentage of landscape area occupied by the largest patch (any

habitat class) around location with radius 750m.

CC PD(2) Patch density. Number of patches of habitat class CC(3)

per 100 hectares in surrounding landscape with radius 750m.
(1)Annual aggregate statistics averaged over 30 years (1961-1990).
(2) NA occurs if habitat class is not in landscape, recoded as 0.
(3) Habitat classes are described in Table 2.2.

Table 2.1: Covariate list.

Class Description Class Description

C11 Open water. C43 Mixed forest.

C21 Developed, open space. C52 Shrub/scrub.

C22 Developed, low intensity. C71 Grassland/herbaceous.

C23 Developed, medium intensity. C81 Pasture/hay.

C24 Developed, high intensity. C82 Cultivated crops.

C41 Deciduous forest. C90 Woody wetlands.

C42 Evergreen forest. C95 Herbaceous wetlands.

Table 2.2: Habitat classes.





Chapter 3

Hierarchical modelling

Due to the difficulty of specifying a joint multivariate spatial covariance struc-

ture in environmental processes, it may be much easier to factor such joint dis-

tributions into a series of conditional models linked together in a hierarchical

framework (Wikle, 2003). For complicated processes in the presence of data,

the idea is to approach the problem by breaking it into three primary stages:

Stage 1. Data model: [data | process, parameters].

Stage 2. Process model: [process|parameters].

Stage 3. Parameter model: [parameters].

In biogeographical studies, the process corresponds to an unobservable map

with the actual information about an animal or vegetal species, and the data

correspond to the observations that are connected to that process. The first

stage is concerned with the observations or “data model”, which specifies the

distribution of the data given the process of interest and some parameters. The

second stage describes the process, conditional on other parameters. Finally,

the last stage accounts for the uncertainty in the parameters. In applications,

each of these stages may have multiple sub-stages.

Modelling the parameters as random instead of fixed effects allows the in-

troduction of spatial autocorrelation structures among them, hence among the

observed data as well (Banerjee et al., 2003). Hierarchical Bayesian methods

enjoy broad application in the analysis of spatial data. When prior information

is included in the model, the level of complexity increases and the Bayesian

paradigm becomes necessary. Markov chain Monte Carlo (MCMC) simula-

tion approaches like the Gibbs sampler and Metropolis-Hastings algorithm are
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popular for almost any model involving multiple levels incorporating depen-

dence structures (Gelman et al., 2003).

In this chapter we explain the three stages of a spatial hidden Markov

model and how they are connected in a hierarchical way. Then, we introduce

the Bayesian algorithm for drawing samples from the posterior distribution

in order to obtain estimations of the parameters and reconstruct the true map

based on data. Subsequently, we present different methods to overcome the

problem of calculating the distribution of the Markov random field that is used

in the MCMC algorithm.

3.1 Spatial hidden Markov models

Spatial hidden Markov models (SHMM) are pairs of stochastic processes ({X},
{Y }), whereX is a collection of N variables from a latent unobserved process,

and Y is a vector ofN observed variables normally called data or observations

that masks or hides the process X . This process {X} is referred to as a hid-

den MRF (HMRF) which is a map degraded by (conditionally) independent

noise. We emphasise in the term HMRF its latent unobserved nature and the

Markov random field (MRF) assumption that is explained later. One context

in which such models have been much used is image analysis, going back to

Besag (1986) and beyond; another is disease mapping in epidemiology (e.g.,

Elliott et al. (2000)).

We deal with a special type of the SHMMs where eachX and Y are binary

vectors with state space {0, 1}. In this section we explain each stage of a SHMM

in order to model the data and construct the posterior distribution of our in-

terest, which is the joint distribution of the latent process and the parameters,

given the data.

3.1.1 Data model

In biogeographical studies, the information is obtained via atlas surveys in

which the study area is divided into a grid of sites, which are typically squares

of equal size. The purpose is to record the presence of the target species at

each site. In this type of study, the resulting map with the observations tend

to underestimate the true presence because of coverage problems in the field-

work producing non-detected presences (Heikkinen & Högmander, 1997). In

the case of bird surveys, many factors influence the probability of detecting

birds during auditory point counts. There are “measurement error” factors
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associated with observer skill in identifying and localising individual birds,

and hearing ability. There are other factors that include the spectral qualities of

songs, song volume, singing rate, time of day, the orientation of singing birds

(toward or away from observers), the number of species and number of indi-

viduals singing during a count, pairing status, stage of nesting cycle, mobility

of bird species (mobile species may move in and out of the count area), veg-

etation structure, topography, weather, temperature, humidity, and ambient

noise. Systematic variation in any of these factors will impart a systematic bias

in count data (Simons et al., 2009).

As opposed to non-detected presences, the target species could be regis-

tered as present in sites that are actually not inhabited by that species. These

type of records are referred to as false observations. These two types of obser-

vation errors require the inclusion of two maps in the model, the actual map of

real presence/absence of the species, and the observed map. Thus, we assume

that there is a true map of sites that we do not observe perfectly, but we collect

data instead that are connected to that map.

In the first stage of the hierarchical model, we want to obtain the distri-

bution of the data given the latent process. We define S= {1, . . . , N}, the

set of sites. The true map is represented by the vector of hidden values x=

(x1, . . . , xN )′, while y= (y1, . . . , yN )′ is the vector that corresponds to the ob-

served map.

In our biogeographical application, when a species is observed at the ith

site we assign value 1 to Yi, Yi = 1, and 0 when it is not observed, Yi = 0. The

Xi values indicate if a species is actually present, Xi = 1, or absent, Xi = 0.

The observed value yi could differ from the corresponding true value xi (at the

same site) due to a false observation or because a real presence is not observed.

We want to connect the data with the actual values. We express this con-

nection through the conditional distribution of the data given the hidden pro-

cess and the parameters that are associated to the probability of observation

errors. Let θ= (θ0, θ1)′, where θ0 is the probability of a false observation (i.e.

θ0 = Pr(Yi = 1|Xi = 0) (i ∈ S)), while θ1 is the probability of a true observation

(i.e. θ1 = Pr(Yi = 1|Xi = 1) (i ∈ S)).

We assume that Y , given X , is a vector of conditionally independent ran-

dom variables, and that the conditional distributions of Yi (i ∈ S) are indepen-

dent of the true values in other pixels, hence the conditional distribution can

be factorised as

f(y|x) =
∏
i∈S

f(yi|x) =
∏
i∈S

f(yi|xi) .

We assume that the conditional distribution of Yi, given Xi, is Bernoulli
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with the corresponding probability θ0 or θ1, thus we model the data given the

latent process as

f(y|x,θ) =
∏
i∈S

θyixi(1− θxi)
1−yi , (3.1)

where we use the abbreviated notation θxi to represent θ0 when Xi = 0, and θ1
when Xi = 1.

We could also consider the case when the observation errors are also non-

homogeneous (i.e. they are site dependent). We could take into consideration

covariate information, e.g. we use effort hours instead of research activity used

by Heikkinen & Högmander (1994). Thereby, we can model θ0,i (probability of

false observation at the ith site) and θ1,i (probability of true observation at the

ith site) as a function of effort hours. The vector of parameters used in this

case is θ = (θ0,1, . . . , θ0,N , θ1,1, . . . , θ1,N )′, and the conditional distribution of

the data given the latent process is expressed as

f(y|x,θ) =
∏
i∈S

θyixi,i(1− θxi,i)
1−yi , (3.2)

where we use the abbreviated notation θxi,i to represent θ0,i when Xi = 0, and

θ1,i when Xi = 1.

3.1.2 Process model

Regardless of the data that we obtain, there exists a true map that, when there

is observation error, is not observed. This map is obtained from a distribution

of maps with some characteristics. In this stage we want to explain how these

maps are produced.

We base the construction of a spatial model on the conditional probabilities.

A special type of spatial model is the MRF (Besag, 1974) which is based on the

assumption that the dependence of a specific site on the rest of the configura-

tion is reduced to the local dependence of that site on its neighbourhood. The

MRF assumption can be expressed in the following way:

Pr[xi|x−i] = Pr[xi|x(i)] ∀i ∈ S ,

where x−i= {xj : j ∈ S, j 6= i} and x(i) is the set of neighbours of the ith

site. When the map corresponds to a lattice of regular sites, as is the case of our

application, the neighbouring set of the ith site is defined as the set of nearby

sites within a radius of r. In the first order neighbourhood system, every (in-

terior) site has four neighbours (horizontally or vertically adjacent), while in

a second-order neighbourhood there are eight neighbours for every (interior)

site (additionally including diagonal adjacencies).
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Under the MRF assumption, we need an expression for the conditional dis-

tribution of Xi (i ∈ S), given its neighbours. For the case of a binary MRF,

Besag (1974) introduced the autologistic model. The idea of the autologistic

model is to add an extra explanatory variable to the logistic model that cap-

tures the effect of other response values in the spatial neighbourhood. The

conditional probability of a single Xi in the autologistic isotropic model is de-

fined as

f(xi|x(i), φ0, β) =
exp

[
xi

(
φ0 + β

∑
j∼i xj

)]
1 + exp

(
φ0 + β

∑
j∼i xj

) , (3.3)

where j ∼ i indicates that j is a neighbour of i, φ0 is called the external field

and β is called the spatial interaction parameter. The coefficient φ0 controls the

relative abundance of 0’s and 1’s, while β represents the strength of the spatial

interaction amongst sites, large values of β lead to realisations of {X} having

patches of 0’s and 1’s. In the simpler case when there is a single spatial inter-

action parameter β regardless of the direction of the location of the neighbour,

we are in front of an isotropic process (Li, 1995); otherwise, when there is more

than one parameter that is direction dependent we have anisotropy.

It is possible to incorporate covariate information into the model structure.

When covariates are included in the model, the conditional probability of pres-

ence is related to the values of the covariates in the site where the probability is

evaluated. In this case, the model becomes non-homogeneous. The homogene-

ity is a property of independence of the relative position of the site where the

probability is calculated (Li, 1995). For q spatial covariates we define the vec-

tor of covariates for the ith site as zi= (1, zi1, . . . , ziq)
′ (i ∈ S). The conditional

probability (3.3) can be modified in the following way:

f(xi|x(i), β,φ, zi) =
exp

[
xi

(
β
∑
j∼i xj + z′iφ

)]
1 + exp

(
β
∑
j∼i xj + z′iφ

) , (3.4)

where φ= (φ0 , . . . , φq )
′ is the (q + 1) vector of regression parameters includ-

ing the external field φ0. This is just one way to introduce covariates in the

autologistic model: by modifying the marginal distributions.

Finally, we are able to write the joint probability distribution of the MRF,

which is given by

f(x|β,φ, z) =
1

C(β,φ, z)
exp

∑
i∈S

xi

β
2

∑
j∼i

xj + z′iφ

 , (3.5)

where C(β,φ, z) is a normalising constant calculated over all possible vectors
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x:

C(β,φ, z) =
∑
x

exp

∑
i∈S

xi

β
2

∑
j∼i

xj + z′iφ

 . (3.6)

In general, the number of possible vectors can be extremely high; in the case

for which we want to apply the procedure, the length of x is N = 2, 195, thus

we have a total of 22195 vectors and the calculation becomes computationally

prohibitive.

3.1.3 Parameter model

In the third stage of the hierarchy we have the parameters. Due to their un-

certainty, in the Bayesian approach to statistical analysis, the vector of un-

known parametersψ= (β,φ′,θ′)′ is supposed to be a random quantity (Baner-

jee et al., 2003). The distribution of ψ is denominated the prior distribution

π(ψ|λ), where λ is in turn a vector of hyperparameters. We assume that the

distributions of β, φ, and θ are a priori mutually independent, i.e. π(ψ|λ) =

π(β|λ)π(φ|λ)π(θ|λ).

We choose a uniform distribution on [0, B] (B > 0) as the prior for β. The

spatial interaction parameter can be assumed positive for the kind of data that

we want to analyse where we expect that neighbouring sites tend to have a

similar condition of either presence or absence of the species. Negative spatial

autocorrelation can occur as a function of processes such as competition and

allelopathy, typically at finer scales than positive autocorrelation (Miller, 2012).

The larger the β, the more probability exists that large patches with the same

condition appear. When this parameter is extremely high (usually more than

3.5, based on simulations), vectors with only 0’s or only 1’s are produced, thus

B = 3.5.

To avoid vectors with a composition of only 0’s or only 1’s, we use a com-

pact parameter space for the coefficients φk (k = 0, . . . , q). We choose indepen-

dent normal priors with mean 0 and high variance σ2, truncated in the range

[−A,A]. Since the variables in our database are all standardised, we expect

these coefficients φk (k = 0, . . . , q) to be no greater than 5 in absolute value,

thus A = 5. The variance is selected to obtain a relatively diffuse distribution.

The expression for the prior of φ is

π(φ|σ2, A) ∝
q∏

k=0

exp

(
− 1

2σ2
φ2k

)
I[−A,A](φk) .

For the probabilities associated to observation errors, since θ1 corresponds

to a correct event while θ0 corresponds to an error, it is natural to expect that
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θ
0
< θ

1
. The priors for these parameters are not invariant which produces non-

identifiability of these two components, which would lead to so called label

switching in the MCMC output. Following the recommendation by Frühwirth-

Schnatter (2001) to impose an identifiability constraint based on expert judge-

ment when the parameters have a physical meaning, in order to avoid label

switching, it seems reasonable to require that θ0 < θ1 . A simple prior could be

a uniform prior over the triangle; π(θ) ∝ I(0,1)(θ0) I(0,θ0)(θ1) holds the previ-

ous constraint. In the case when we take into consideration effort hours with

non-homogeneous observation errors, we model θ0,i and θ1,i in the following

way:

θ0,i =
exp(α1 + α2wi)

1 + exp(α1 + α2wi)

θ1,i =
exp(α3 + α4wi)

1 + exp(α3 + α4wi)
(i ∈ S) ,

(3.7)

where αk (k = 1, . . . , 4) are hyperparameters with independent diffuse Gaus-

sian priors with a mean of 0 and high variance, and wi is the effort hours at the

ith site. The vector of parameters to be estimated becomes ψ = (β,φ′,α′)′ and

the joint prior of the parameters π(ψ) = π(β)π(φ)π(α).

The posterior distribution, p(x, ψ|.), summarises the current state of knowl-

edge about all the uncertain quantities (including unobservable parameters

and also missing, latent, and unobserved potential data) under the Bayesian

approach (Gelman, 2002). We can construct the posterior distribution of inter-

est, which is the joint distribution of the process (MRF) and parameters (ψ),

updated by the data (Y ) with some fixed explanatory covariates (Z) and ef-

fort hours (W ). Although W is a covariate, we do not include it in the set

of explanatory covariates since it is used to model the observation errors. We

assume that the true map (X) comes from a distribution that is independent

of the observation errors in θ. We consider that the parameters in β and φ, as

well as the covariates in Z, affect directly only the MRF (X), while Y is inde-

pendent from all these elements, given X . The posterior distribution is given

by

p(x,ψ |y, z,w) ∝ f(y|x,ψ, z,w) f(x|ψ, z,w)π(ψ)

= f(y|x,α,w) f(x|β,φ, z)π(β)π(φ)π(α) ,
(3.8)

where f(y|.) corresponds to the distribution of the data model given in (3.2)

with the definition of θ0,i and θ1,i given in (3.7), f(x|.) is the distribution of

the process model given in (3.5), and π(.) are the prior distributions of the

parameter model.
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3.2 Markov chain Monte Carlo algorithm for

SHMMs

In this section we explain the algorithm to draw samples from the posterior

distribution ofX and ψ given in (3.8). Due to the factorised form of this distri-

bution, we can proceed in a sequence of steps within the framework of MCMC

methods. This is a general method based on drawing values of a parameter

from approximate distributions and then correcting those draws to better ap-

proximate the target posterior distribution (Gelman et al., 2003). Two partic-

ular Markov chain simulation methods are used, the Gibbs sampler and the

Metropolis-Hastings. The Gibbs sampler is used to draw from the distribution

of the vector X , and each Xi is considered a parameter to be updated. We use

Metropolis-Hastings to draw from the marginal posterior distributions of β, φ

and θ. The whole MCMC algorithm can be split into four steps at each itera-

tion. At the tth iteration we draw x(t), β(t), φ(t), and α(t) that depend on the

previous draw x(t−1), β(t−1), φ(t−1), andα(t−1). We explain each of these steps

to draw the tth sample.

Step 1. Given the previous vector x(t−1), we draw x(t) using Gibbs sampler.

This vector has N parameters, thus we draw sequentially the N components

x
(t)
i (i ∈ S) from the conditional distribution

f(x
(t)
i |x(i), β,φ, zi, yi,θ) ∝ f(x

(t)
i |x(i), β,φ, zi)f(yi|x(t)i ,θ), (3.9)

which involves the conditional probability of the autologistic model given in

(3.4) and the conditional probabilities of Yi given Xi. Thus, to obtain each

component in x(t) we use the conditional probability

f(X
(t)
i = 1 |x(i), β,φ, zi, yi,θ) =

θ1,i exp
[(
β
∑
j∼i xj + z′iφ

)]
θ0,i + θ1,i exp

(
β
∑
j∼i xj + z′iφ

) . (3.10)

At each step of the Gibbs sampler we use the values of the components that

have already been updated. The other given parameters (β,φ,θ) correspond

to the draws in the previous step (β(t−1),φ(t−1),θ(t−1)), but to simplify the

notation we leave them without the index (t−1).

Step 2. We use Metropolis-Hastings to update the parameter β. We draw

β∗ from a transition distribution that depends on the previous draw β(t−1).

We describe the procedure of drawing a generic parameter λ∗ from the tran-

sition distribution q(λ∗|λ(t−1)), in two steps. First we have a random variable
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U distributed as

N
(

log
λ(t−1) −A
B − λ(t−1)

, σ2
ελ

)
,

where the values A and B are the extremes of the prior parameter space for λ.

Then we draw the proposal λ∗ from the distribution of the transformed U, as

follows:

λ∗ =
A+Bexp(U)

1 + exp(U)
.

This selection for the transition distribution q(λ∗|λ(t−1)) ensures that the chain

will move within the interval (A,B), which is the specified range for λ a priori

(Spezia, 2010).

We accept β∗ with probability min{1,ρβ}, and acceptance ratio

ρβ =
p(β∗|x,φ, z)

p(β(t−1)|x,φ, z)

q(β(t−1)|β∗)
q(β∗|β(t−1))

=
f(x|β∗,φ, z)π(β∗)

f(x|β(t−1),φ, z)π(β(t−1))

Jβ(t−1)

Jβ∗
,

(3.11)

where the proposal ratio q(β(t−1)|β∗)/q(β∗|β(t−1)) is simplified to the ratio

Jβ(t−1)/Jβ∗ due to the symmetry of the Gaussian distribution, with Jβ being

the Jacobian of the transformation, i.e. Jβ = B−A
(β−A)(B−β) (see explanation of

this simplification in Appendix A). If β∗ is accepted then β(t) = β∗, otherwise

β(t) = β(t−1).

Step 3. We use Metropolis-Hastings to update the vector of coefficients

φ. We draw independently each proposal φ∗k (k = 0, . . . , q) from a transition

distribution q(φ∗k|φ
(t−1)
k ) as explained in the previous step. We accept in block

the vector φ∗ = (φ∗0, . . . , φ
∗
q)
′ with probability min{1, ρφ}, and acceptance ratio

ρφ =
p(φ∗|x, β, z)

p(φ(t−1)|x, β, z)

q(φ(t−1)|φ∗)
q(φ∗|φ(t−1))

=
f(x|β,φ∗, z)π(φ∗)

f(x|β,φ(t−1), z)π(φ(t−1))

J
(t−1)
φ

J∗φ
,

(3.12)

where

Jφ =

q∏
k=0

Bk −Ak
(φk −Ak)(Bk − φk)

,

and the ratio q(φ(t−1)|φ∗)/q(φ∗|φ(t−1)) is simplified to the ratio Jφ(t−1)/Jφ∗ . If

φ∗ is accepted then φ(t)k = φ∗k, otherwise φ(t)k = φ
(t−1)
k ∀ k = 0, . . . , q.

Step 4. We use Metropolis-Hastings to update α. We draw independently

α∗k (k = 1, . . . , 4) from a Gaussian transition distribution q(α∗k|α
(t−1)
k ) with
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mean α
(t−1)
k and variance σ2

εα . We proceed to the acceptance in block of α∗

with probability min{1, ρα}, and acceptance ratio

ρα =
p(α∗|x,y)

p(α(t−1)|x,y)

q(α(t−1)|α∗)
q(α∗|α(t−1))

=
f(y|x,α∗,w)π(α∗)

f(y|x,α(t−1),w)π(α(t−1))
,

(3.13)

where the ratio q(α(t−1)|α∗)/q(α∗|α(t−1)) = 1 due to the symmetry of the

Gaussian distribution. With the previous acceptance rule we obtain α(t) and

apply (3.7) with each value wi (i ∈ S) to obtain θ(t).

Estimation. The algorithm is run for a high number of iterations. Usually a

part of the sequence is discarded to diminish the effect of the starting distribu-

tion and ensure convergence of the sequence. The discarded early iterations are

referred as the burn-in period (Gelman et al., 2003). Also there is the practice

of thinning the sequence, i.e. once approximate convergence has been reached,

whereby every kth simulation draw from the sequence is kept and the rest is

discarded. The remaining draws from the sequence (after burn-in and thin-

ning) are used directly for inferences about the parameters. We also obtain a

reconstruction x̂ of the true map x using the empirical posterior mode of each

cell in the vector x by counting the number of 0s and 1s in the vector for each

xi (i ∈ S) and assigning the value with the highest frequency.

3.3 Likelihood of the hidden map

In steps 2 and 3 of the algorithm of the previous section we need to calculate

the distribution of x given in (3.5). This distribution requires the calculation of

the normalising constant C(β,φ, z) which is a sum over all possible vectors x,

and, for most cases, the calculation becomes computationally prohibitive. We

use a simplified notation to refer to this normalising constant asC(ψ), defining

the p-parameter vector asψ = (β, φ0, φ1, . . . , φq)
′ and omitting the dependence

of this constant on z.

A wide range of approximative techniques and stochastic approximations

have been proposed to circumvent the problem of intractable normalising con-

stants. The fact that C(ψ) also depends on the values of the covariates imposes

a computational difficulty that has not been resolved. Pettitt et al. (2003) pro-

posed a method using a computational analytical procedure where the lattice

is wrapped onto the cylinder, while Reeves & Pettitt (2004) presented an exact

method, termed the recursion method, used to calculate C(ψ) for a normalised
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distribution expressible as a product of factors. Since this proposal was re-

stricted to small lattices, Friel et al. (2009) extended the recursion method to

arbitrary sized lattices; however, it is limited in that the study area must be reg-

ular and the process homogeneous. Bartolucci & Besag (2002) also presented a

recursive algorithm for directly computing the likelihood of a MRF, in the form

of a product of conditional probabilities. Hardouin & Guyon (2009) presented

a recursive algorithm for the calculation of the marginal of a Gibbs distribution,

and as a direct consequence the calculation of the normalising constant.

Several approaches are based on Monte Carlo methods since Geyer & Thom-

pson (1992). The stochastic approximation expectation algorithm by Gu & Zhu

(2001) and Zhu et al. (2007) is used to compute the maximum likelihood estima-

tor for HMRF models. An alternative approach was presented by Liang (2007)

in which a kernel density estimate ofC(ψ) is formulated based on Monte Carlo

draws from f(x|ψ).

New approaches avoid direct approximations of C(ψ). One method is pre-

sented by Møller et al. (2006) in which they introduce an auxiliary variable into

a Metropolis-Hastings algorithm for the posterior of ψ. The normalising con-

stants are cancelled out from the Metropolis-Hastings ratio. This method is

applicable whenever samples may be drawn from the likelihood without ap-

proximation, by perfect sampling for example. Another method in this line is

the exchange algorithm and developments by Murray (2007) which also makes

use of an auxiliary variable on the support of the data. The auxiliary variable

in this case depends only on an additional auxiliary variable on the support of

the parameter which in turn depends on the parameter.

With numerous antecedents, Lindsay (1988) crystallized the notion of a

composite likelihood, defining it as a combination of valid likelihood entities.

We use one particular composite likelihood which is the pseudo-likelihood

(PL) introduced by Besag (1975). Then we explore an adjustment to the PL

inspired by the work by Cooley et al. (2012) for another type of composite

likelihood, the pairwise likelihood. Smith & Stephenson (2009) employed a

pairwise likelihood within a Bayesian analysis to estimate the parameters in

a different problem of an extended Gaussian max-stable process model for

spatial extremes. As an alternative to using the PL we also apply two other

methods of approximation, the first is the path sampling (Gelman & Meng,

1998), which approximates C(ψ) directly, and the second is an approximation

of C(ψ(t−1))/C(ψ(t)), the ratio of two normalising constants (Zhou & Schmi-

dler, 2009), which are needed in (3.11) and (3.12) (Metropolis steps 2 and 3 of

the MCMC algorithm).
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3.3.1 Pseudo-likelihood approximation

The most common approach to overcome the problem of calculating the nor-

malising constant in the likelihood function is to use the PL approximation,

first presented by Besag (1975). PL estimation has been employed in a wide

variety of settings. In particular, it has been used in the current context of

HMRF by, e.g. Besag et al. (1991), Ryden & Titterington (1998), and Heikkinen

& Högmander (1994).

The likelihood is approximated by the PL which is the product of likelihood

objects, where each likelihood contribution is based on a conditional event with

probability defined in (3.4). Formally the PL is defined as

fP (x|β,φ, z) =
∏
i∈S

exp
[
xi

(
β
∑
j∼i xj + z′iφ

)]
1 + exp

(
β
∑
j∼i xj + z′iφ

) . (3.14)

The posterior distributions based on the PL tend to have higher variances

than those that could be obtained based on the full likelihood. We apply an

adjustment method (Cooley et al., 2012) modifying the curvature of the PL in

order to get a more concentrated posterior with the practical aim of using the

PL to provide valid inferences. The strategy consists of modifying the curva-

ture of the PL around its maximum ψ̂c. For a given parameter ψ, the PL is

calculated at the adjusted vector

ψ∗ = (β∗,φ∗′)′ = ψ̂c +D(ψ − ψ̂c) ,

whereD is a p× p matrix. We write the logarithm of the PL function as

p`(ψ;x) =
∑
i∈S

[xiw
′
iψ − log(1 + exp (w′iψ))] , (3.15)

where wi = (
∑
j∼i xj , 1, zi1, . . . , ziq)

′, we omit the conditioning on z and use

the notation p`(ψ;x) to emphasise that we treatψ as a variable while x is fixed.

The logarithm of the adjusted PL (APL) function becomes

p`A(ψ;x) = p`(ψ∗;x) =
∑
i∈S

[xiw
′
iψ
∗ − log(1 + exp (w′iψ

∗))] . (3.16)

There is not a unique way to select the matrix D, but it must be semi-

definite negative such that

D′H(ψ0)D = H(ψ0)J(ψ0)−1H(ψ0)′ ,

where ψ0 is the true parameter, H(ψ0) = −E[∇2p`(ψ0;x)], and J(ψ0) =

Var[∇p`(ψ0;x)]. The PL function for a vector is the sum of the values of the
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function calculated at each element of the vector, i.e. p`(ψ0;x) =
∑
i∈S p`i(ψ0;xi),

with p`i(ψ;xi) = xiw
′
iψ − log(1 + exp(w′iψ)). We take the first and second

derivatives of p`i(ψ;xi):

∂p`i(ψ;xi)

∂ψj
= wij

(
xi −

exp(w′iψ)

1 + exp(w′iψ)

)
,

∂2p`i(ψ;xi)

∂ψjψk
= −wijwik

exp(w′iψ)

(1 + exp(w′iψ))2
.

(3.17)

We get an estimate of the matrix H evaluating it at the maximum PL estimate

ψ̂c instead of the unknown ψ0. The estimate ofH is the negative of the sum of

the Fisher information for each element of the vector,

Ĥ(ψ̂c) = −
∑
i∈S

E[∇2p`i(ψ̂c;xi)] ;

however, we use the observed information instead of the Fisher information,

such that

Ĥ(ψ̂c) = −
∑
i∈S
∇2p`i(ψ̂c;xi) . (3.18)

The estimation of J is more complicated since it involves the second mo-

ment of the first derivative of p`(ψ;x). We know that E[∇p`(ψ0;x)] = 0 since

∇p`(ψ;x) is an unbiased estimating function, then we get

J(ψ0) = E[∇p`(ψ0;x)∇p`(ψ0;x)′]− E[∇p`(ψ0;x)]2

= E[∇p`(ψ0;x)∇p`(ψ0;x)′] .

In this case we cannot use the the maximum PL estimate ψ̂c instead of the un-

known ψ0 because∇p`(ψ̂c;x) = 0 and the estimate would be always Ĵ(ψ̂c) =

0. Heagerty & Lumley (2000) propose the use of sub-sampling with overlap-

ping windows to estimate the variance of estimating functions. Windows are

contiguous regions usually with a fixed size for which the estimated function

is calculated. To show the construction process of the windows, we use matrix

notation to identify the cells in the grid, i.e. the (i, j)th cell is located in the ith

row and the jth column. As it is illustrated in Fig. 3.1, we start with a squared

window whose upper left corner is the (1, 1)th cell, then we choose the next

window by moving the upper left corner of the window s cells to the right

from the previous one, and continue in this way until we finish that row. We

proceed by moving the upper left corner s cells down to complete the next row

of windows and continue until we finish the entire grid. At the end we get a

collection of m windows denoted D1, . . . ,Dm.

We denote n = |S|, where |A| denotes the cardinality of A, and use Jn
instead of J to make evident the influence of the size of the vector in the
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Figure 3.1: Windows of size 4× 4 in a 10× 10 grid with s = 2.

calculation. We assume that a limit is obtained in probability, such that

Jn(ψ0)

n

n→∞−−−−→ J∞(ψ0) ,

thus we obtain first an estimate of J∞ and then we get an estimate of Jn. We

define the window sub-sampling empirical variance (WSEV) estimator of J∞
in two steps, first we get the second moment at each window as a local estimate

of the variance, and next we average all these estimates resulting

Ĵ∞(ψ̂c) =
1

m

m∑
i=1

1

|Di|
∑
j,k∈Di

∇p`j(ψ̂c;xj)∇p`k(ψ̂c;xk)′ . (3.19)

Finally, the estimate for J is given by

Ĵ(ψ̂c) = n Ĵ∞(ψ̂c) = |S| 1

m

m∑
i=1

1

|Di|
∑
j,k∈Di

∇p`j(ψ̂c;xj)∇p`k(ψ̂c;xk)′ . (3.20)
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3.3.2 Path sampling

Instead of using an approximation for the whole likelihood function, as in the

case of the PL, we present a method here that approximates only the normal-

ising constant. Gelman & Meng (1998) propose a method called path sam-

pling (PS) based on the ratio of the normalising constant of our interest, de-

nominated by C(ψ1), and another normalising constant calculated exactly for

a convenient selection of ψ0, i.e. they intend to calculate C(ψ1)/C(ψ0). PS

has been employed by authors (e.g. Green & Richardson (2002) and Dryden

et al. (2003)), where they extend the problem to one of model selection with

the number of hidden states as a parameter. They use an off-line approach to

calculate the normalising constant.

In the selection of ψ0 it is very convenient to set β = 0, independently from

the values of φ. In that case the normalising constant becomes

C(ψ0) =
∑
x

exp

(∑
i∈S

xiz
′
iφ

)
.

Although this expression seems difficult to calculate due to the inclusion of all

possible vectors x, it can be simplified to

C(ψ0) =
∏
i∈S

[1 + exp(z′iφ)] , (3.21)

which does not consider x vectors (see proof in Appendix A).

We need to select a continuous path that links ψ0 and ψ1 indexed by t ∈
[0, 1]. The path is defined as ψ(t) = (β(t), φ0(t), φ1(t), . . . , φq(t))

′, with β(t) =

tβ, φk(t) = φk (k = 0, . . . , q), ψ(0) = ψ0 = (0,φ′)′, and ψ(1) = ψ1 = (β,φ′)′.

Selecting ψ0 in this way we get the closest distance between ψ0 and ψ1 with

the condition β = 0.

The normalised joint distribution of a vector is labelled q(x|ψ), while log q(x|ψ)

is called energy function and can be expressed as a linear combination of the

parameters and the corresponding potentials Uk(x), in the following way:

log q(x|ψ) =

p∑
k=1

ψkUk(x)

⇒ Uk(x) =
∂log q(x|ψ)

∂ψk
; (k = 1, . . . , p).

We express the normalising constant at a given point t of the path as

C(ψ(t)) =

∫
q(x|ψ(t))µ(dx) .
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Taking logarithms and then differentiating both sides with respect to t, and as-

suming the legitimacy of interchange of integration with differentiation yields

d

dt
logC(ψ(t)) =

d

dt
log

∫
q(x|ψ(t))µ(dx)

=

∫
d
dtq(x|ψ(t))µ(dx)∫
q(y|ψ(t))µ(dy)

=

∫ d
dtq(x|ψ(t))

q(x|ψ(t))

q(x|ψ(t))

C(ψ(t))
µ(dx)

=

∫
d

dt
log q(x|ψ(t))f(x|ψ(t))µ(dx)

= Eψ(t)

[
d

dt
log q(x|ψ(t))

]
.

Defining the derivative of ψk(t) with respect to t as ψ̇k(t) (k = 1, . . . , p), the

derivative inside the expected value can be expressed as

d

dt
log q(x|ψ(t)) =

∂log q(x|ψ)′

∂ψ

dψ(t)

dt

=

(
∂log q(x|ψ)

∂ψ1
, . . . ,

∂log q(x|ψ)

∂ψp

)(
dψ1(t)

dt
, . . . ,

dψp(t)

dt

)′
= (U1(x), . . . , Up(x))

(
ψ̇1(t), . . . , ψ̇k(t)

)′
=

p∑
k=1

ψ̇k(t)Uk(x) ,

Thus
d

dt
logC(ψ(t)) = Eψ(t)

[
p∑
k=1

ψ̇k(t)Uk(x)

]
.

Integrating both sides of the previous expression from 0 to 1 yields

λ = log
C(ψ1)

C(ψ0)
=

∫ 1

0

Eψ(t)

[
p∑
k=1

ψ̇k(t)Uk(x)

]
dt . (3.22)

The PS estimator for λ is obtained using MCMC methods as

λ̂ =
1

m

m∑
h=1

[
p∑
k=1

ψ̇k(th)Uk(x(h))

]
, (3.23)

wherem is the number of MCMC iterations, the th’s are drawn uniformly from

[0, 1], and x(h) is obtained from the distribution f(x|ψ(th)). From (3.5) we get

the energy function

log(q(x|ψ)) =
∑
i∈S

xi

β
2

∑
j∼i

xj + z′iφ

 ,
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with the following potentials:

U1(x) =
∑
i∈S

xi
∑
j∼i

xj ,

U2(x) =
∑
i∈S

xi ,

Uk(x) =
∑
i∈S

xizi,k−2 ; (k = 3, . . . , p) ,

and the derivatives ψ̇1(t) = β, and ψ̇k(t) = 0 (k = 2, . . . , p), which simplifies

the calculation of (3.23) to

λ̂ =
1

m

m∑
h=1

β

2

∑
i∈S

x
(h)
i

∑
j∼i

x
(h)
j , (3.24)

with x(h) vectors generated by Gibbs sampler with the full conditional

f(xi|x(i),ψ(th)) =
exp

[
xi

(
thβ

∑
j∼i xj + z′iφ

)]
1 + exp

(
thβ

∑
j∼i xj + z′iφ

) ; (i ∈ S) . (3.25)

The number of iterations in the Gibbs sampler to generate each vector was

defined to ensure sampling from the stationary distribution of x. That number

can be as low as 200 iterations. On the other hand, the number of iterationsm in

the MCMC was selected at a level where the estimator of logC(ψ1) converges.

That number can be from 200 to 400 iterations (see justification below).

Finally, we get the approximation of the desired normalising constant by

logC(ψ1) = λ̂+ logC(ψ0) , (3.26)

using (3.21) to calculate C(ψ0).

Although PS provides a good approximation of the normalising constant,

its direct use at each step of an MCMC algorithm is computationally expensive.

We propose instead to perform the calculation of logC(ψi) for a selected set of

r vectors ψi (i = 1, . . . , r) and interpolate using a regression model. The first

proposal is a non-parametric regression model that uses a B-spline (BS) (Hastie

& Tibshirani, 1990). The second proposal is a parametric polynomial regression

(PR) defined as

ω̂i = δ0 +ψi
′δ +ψi

′∆ψi + εi ; (i = 1, . . . , r) , (3.27)

where ωi = logC(ψi), δ = (δ1, . . . , δp)
′, ∆ = (δjk), (j, k = 1, . . . , p) is sym-

metric, and εi is a random error. There are 1 + p + 1
2p(p + 1) parameters to be

estimated that are obtained using the least squares method.
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The whole estimation algorithm is the following:

Step 1. Apply the estimation algorithm using the PL approximation and

obtain estimations of β and φ (β̂ and φ̂, respectively) with the corresponding

posterior means.

Step 2. Create a multidimensional grid of points centered onψ∗ = (β̂, φ̂0, φ̂1, . . . , φ̂q)
′.

The resulting grid is Ω= ξ1 × . . . × ξp, with ξk = {ψ∗k − dk, ψ∗k − ck, ψ∗k, ψ∗k +

ck, ψ
∗
k + dk} (k = 1, . . . , p). We choose c1 = β̂/4 and d1 = 3β̂/4 to cover a

good range for β, while ck = 0.5, dk = 2.5 if |φk| ≤ 5, and ck = 2, dk = 10 if

|φk| > 5 (k = 2, . . . , p).

Step 3. For each point in Ω apply PS to obtain an approximation of the

normalising constant.

Step 4. Construct a regression model to allow interpolation within the p-

dimensional parameter space.

Estimation MCMC. The estimation MCMC is modified in steps 2 and 3.

At each iteration, when the likelihood function needs to be calculated, we use

the interpolation from the regression model as an approximation of the corre-

sponding normalising constant.

3.3.3 Ratio approximation

Instead of the direct approximation of the normalising constant like those pre-

sented in the previous subsection, Zhou & Schmidler (2009) propose the use

of importance sampling to estimate the ratio of the two normalising constants

involved in the Metropolis-Hastings algorithm. We referred to it as to the ratio

approximation (RA).

We start by defining the normalising constant as

C(ψ) =

∫
q(x|ψ)µ(dx) .

Importance sampling requires choosing a good distribution g(x) that takes

values in {0, 1}S . We multiply and divide the integrand by this distribution

to yield an expectation of a certain quantity with respect to the density g(x),

such that

C(ψ) =

∫
q(x|ψ)

g(x)
g(x)µ(dx) = Eg

[
q(x|ψ)

g(x)

]
. (3.28)
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We obtain m vectors x(h) (h = 1, . . . ,m) from the distribution g(x), and

calculate the estimate of the normalising constant by

Ĉ(ψ) =
1

m

m∑
h=1

q(x(h)|ψ)

g(x(h))
. (3.29)

In the calculation of the acceptance probabilities of the Metropolis algorithm

we have the likelihood ratio

f(x|ψ)

f(x|ψ(t−1))
=

q(x|ψ)/C(ψ)

q(x|ψ(t−1))/C(ψ(t−1))
=

q(x|ψ)

q(x|ψ(t−1))

C(ψ(t−1))

C(ψ)
,

thus we can approximate the ratio of the two normalising constants instead of

calculating each one separately. The approximation becomes

Ĉ(ψ(t−1))

Ĉ(ψ)
=

1

m

m∑
h=1

q(x(h)|ψ(t−1))

g(x(h))

/
1

m′

m′∑
h=1

q(x(h)|ψ)

g(x(h))
.

Zhou & Schmidler (2009) propose the use of g(x) = f(x|ψ) which simpli-

fies the calculation to

Ĉ(ψ(t−1))

Ĉ(ψ)
=

1

m

m∑
h=1

q(x(h)|ψ(t−1))

f(x(h)|ψ)

/
1

m′

m′∑
h=1

q(x(h)|ψ)

f(x(h)|ψ)

=
1

m

m∑
h=1

q(x(h)|ψ(t−1))

q(x(h)|ψ)/C(ψ)

/
1

m′

m′∑
h=1

q(x(h)|ψ)

q(x(h)|ψ)/C(ψ)

=
1

m

m∑
h=1

q(x(h)|ψ(t−1))

q(x(h)|ψ)
.

(3.30)

MCMC. The MCMC is modified by using (3.30) in steps 2 and 3 instead

of the likelihood ratio in equations (3.11) and (3.12). In each of these steps we

update either β or φ, thus the vector ψ represents (β,φ(t−1)′)′ in Step 2, and

(β(t),φ′)′ in Step 3.





Chapter 4

Model selection

In the formulation of the process model in Chapter 3 (Section 3.1) we include

a fix number q of covariates or predictors . In many cases, the original set in-

cludes a large number p (p � q) of covariates that can be classified into three

groups: covariates known to be important in the field of application, covariates

thought to be important, and covariates included as pure speculation (Kuo &

Mallick, 1998). During the analysis it is desirable to delete some of the predic-

tors from the model and use only the selected q covariates in the estimation

procedure. Mitchell & Beauchamp (1988) refer to the predictors that are can-

didates for deletion as vulnerable predictors and discuss some reasons for un-

dertaking the search for a subset of covariates: (a) to express the relationship

between the response and the predictors as simply as possible; (b) to reduce

future cost of prediction; (c) to identify important and negligible predictors;

and (d) to increase the precision of statistical estimates and predictions.

The classical Bayesian methods for variable selection that include selec-

tion criteria (Bayesian information criterion, asymptotic information criterion,

Bayes factor, pseudo-Bayes factor) have to consider an extremely high num-

ber of possible sub-models (2p), which is an overwhelming task of calculation.

George & McCulloch (1993) proposed the stochastic search variable selection

(SSVS) method for identifying promising subsets of predictors, but avoiding

the calculation of the posterior probabilities of all 2p models. They derive the

subset from a hierarchical normal mixture model with the specification of a

mixture prior which uses the data to assign larger posterior probability to the

more promising models. Gibbs sampler is used to search for promising models

rather than compute the entire posterior. In order to obtain convergence, the

algorithm requires tuning - specification of fixed prior parameters which are

data dependent (O’Hara & Sillanpää, 2009).
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Using the SSVS method as a motivating starting point, Kuo & Mallick (1998)

proposed a simpler method that includes indicator variables embedded in the

regression equation in such a way that all possible sub-models are considered.

They assume that the indicator variables and the regression coefficients are in-

dependent a priori. This formulation is referred to as the expanded regression

model (ERM) and is not limited only to the regular regression model, but is

also extended to the generalized linear model. Dellaportas et al. (2002) sug-

gested an alternative model formulation called Gibbs variable selection (GVS),

which is an hybrid of the SSVS and the approach of Kuo & Mallick (1998).

A different approach is the adaptive shrinkage in which indicator variables

are not used in the model, but instead a prior is specified directly on the regres-

sion parameters. The prior should work by shrinking values towards zero if

there is no evidence in the data for non-zero values, and there should be prac-

tically no shrinkage for data-supported values of covariate that are non-zero.

The method is adaptive in the sense that a degree of sparseness is defined by

the data, through the way it shrinks the covariates effects towards zero (O’Hara

& Sillanpää, 2009).

An alternative approach to placing priors on the individual covariate coef-

ficients is to view the model as a whole and place priors on q (the number of co-

variates selected in the model and their corresponding coefficients). The choice

of which covariates are in the model becomes a secondary problem (O’Hara &

Sillanpää, 2009). One of the model selection techniques under this approach is

the reversible jump MCMC introduced by Green (1995b). This flexible method

lets the Markov chain explore spaces of different dimensions. Another tech-

nique is the composite model space introduced by Godsill (2001), in which the

maximum q is fixed to something less than p, and indicator variables are used

to allow covariates to enter or leave the model.

We use the ERM as a basis for variable selection with the autologistic model

which we call expanded autologistic model (EAM). We include some concepts

of the evolutionary Monte Carlo (EMC) algorithm (Liang & Wong, 2000); in

particular, we use the mutation operator to increase the mixing behaviour of

the chain. Another technique in the attempt to improve the mixing is the use of

multiple independent chains (MIC) (Drugan & Thierens, 2010). At the end of

the chapter we present a method for the assessment of model fitness developed

by Gelman et al. (1996) in the Bayesian framework.
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4.1 Expanded Autologistic Model

The variable selection procedure can be seen as a method to choose the regres-

sion parameters φk (k = 1, . . . , p) that are equal to zero. We use the concept of a

slab and spike prior distribution for each φk (Mitchell & Beauchamp, 1988). The

prior should therefore have a probability mass (the spike) either exactly at or

around zero, and a flat slab elsewhere (the slab). We use an auxiliary indicator

variable γk (k = 1, . . . , p) that indicates inclusion or exclusion of the covariate

Zk in the model. When the covariate is included in the model (γk = 1), it is in

the slab part of the prior, whereas when it is excluded (γk = 0), the covariate

corresponds to the spike part of the prior. In the ERM, Kuo & Mallick (1998)

use a second auxiliary variable δk, which represents the effect size of each co-

variate, and is used as an intermediate value to obtain the coefficient φk, such

that φk = γk δk (k = 1, . . . , p).

In the expanded autologistic model the indicator variables γk and the auxil-

iary variable δk are easily embedded in the model. The conditional probability

of the autologistic model in (3.5) is expressed in the expanded form as

f(xi|x(i), β,γ, δ, zi) =
exp

[
xi

(
β
∑
j∼i xj + z′iΓδ

)]
1 + exp

(
β
∑
j∼i xj + z′iΓδ

) , (4.1)

where γ = (1, γ1, . . . , γp)
′, and Γ = diag(γ). We assume the intercept term is

always included in building the model, thus γ0 ≡ 1. The vector of indicator

variables γ dictates which predictors are included. When the indicator γk = 1,

the kth value in zi is included in the calculation of the conditional probability

in (4.1), whereas when γk = 0, that value is excluded. Consequently, the joint

distribution becomes

f(x|β, δ,γ, z) = C−1(β, δ,γ, z) exp

∑
i∈S

xi

β
2

∑
j∼i

xj + z′iΓδ

 . (4.2)

Although γ itself can be modelled as a realisation from any (nontrivial)

prior π(γ) on the 2p possible values of γ, priors with independent individual

components γk are easy to specify, substantially reduce computational require-

ments, and often yield sensible results (George & McCulloch, 1997). These

priors take the form

π(γ) =

p∏
k=1

vγkk (1− vk)(1−γk) .

By setting vk small, the prior can also be used to put increased weight on parsi-

monious models; however, in absence of any prior preference for the predictors
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we assume an indifference prior for each γk which are independent Bernoulli

with probability vk = 1/2 (k = 1, . . . , p); thus π(γ) = (1/2)p.

The joint posterior distribution of the process MRF and the parameter vec-

tor ψ = (β, δ′,γ′,ϑ′)′ becomes

p(x,ψ |y, z,w) ∝ f(y|x,ϑ,w) f(x|β, δ,γ, z)π(β)π(δ)π(γ)π(ϑ) , (4.3)

where f(y|.) is the conditional probability given in (3.3) and f(x|.) is the joint

distribution given in (4.2).

4.2 MCMC algorithm for model selection

We explain in this section how the algorithm from Section 3.2 is modified

to draw samples from the posterior distribution of X and ψ given in (4.3).

We include an extra step to generate γ after the update of δ. In the original

method proposed by Kuo & Mallick (1998) (KM) to generate and accept the

vectors δ and γ separately. As a variation, Paroli & Spezia (2008) proposed

the Metropolized-Kuo-Mallick (MKMK) method, in which the vector (δ′,γ′)′

is accepted in a single Metropolis step. They demonstrated in the case of non-

homogeneous hidden Markov models and Markov switching auto-regressive

models that this method performs well when the explanatory covariates are

strongly correlated.

In addition to the regular update of γ we include some ideas from the EMC

algorithm proposed by Liang & Wong (2000). This method has incorporated

many attractive features of simulated annealing and genetic algorithms into

a framework of MCMC. EMC works by simulating a population of Markov

chains in parallel, where a different temperature is attached to each chain. The

vector of parameters is updated by mutation, crossover and exchange opera-

tors. They presented numerical results showing that EMC offers an improve-

ment over the traditional MCMC algorithms. In the MCMC algorithm that we

propose here, we only apply the mutation operator to update γ with probabil-

ity pm (mutation rate) while we apply the KM update for γ with probability

1− pm.

The whole MCMC algorithm is executed in five sequential steps at each

iteration. At the tth iteration we draw x(t), β(t), δ(t), γ(t), and ϑ(t). We explain

each of these steps to draw the tth sample.

Step 1. The vector x of states is generated by Gibbs sampler in the same
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way as in Section 3.2. The full conditional is

f(x
(t)
i |x(i), β, δ,γ, zi, yi,θ) ∝ f(x

(t)
i |x(i), β, δ,γ, zi)f(yi|x(t)i ,θ) ; (i ∈ S) ,

(4.4)

which involves the conditional probability of the EAM given in (4.1).

Step 2. We use Metropolis-Hastings to update the parameter β with the

procedure described in Section 3.2. We accept β∗ with probability min{1, ρβ},
and acceptance ratio

ρβ =
f(x|β∗, δ,γ, z)π(β∗)

f(x|β(t−1), δ,γ, z)π(β(t−1))

Jβ(t−1)

Jβ∗
. (4.5)

Step 3. We use Metropolis-Hastings to update the parameter δ with the

procedure described in Section 3.2. We accept in block the vector δ∗ with prob-

ability min{1, ρδ}, and acceptance ratio

ρδ =
f(x|β, δ∗,γ, z)π(δ∗)

f(x|β, δ(t−1),γ, z)π(δ(t−1))

J
(t−1)
δ

Jδ∗
. (4.6)

Step 4. We update the auxiliary vector γ using one of the following alterna-

tives: the mutation operator from EMC with probability pm or the KM update

with probability 1− pm.

KM update. For the generation of the indicator γk (k = 1, . . . , p) we create

the vectors γk,0 and γk,1 which include the already updated values for γ (be-

fore the kth), and the previous values for the non-updated (after the kth), while

we force γk = 0 in γk,0 and γk = 1 in γk,1. The resulting vectors are

γk,1 = (1, γ
(t)
1 , . . . , γ

(t)
k−1, 1, γ

(t−1)
k+1 , . . . , γ(t−1)q )′ ,

γk,0 = (1, γ
(t)
1 , . . . , γ

(t)
k−1, 0, γ

(t−1)
k+1 , . . . , γ(t−1)q )′ .

(4.7)

The posterior probability of γk = 0 involves the density of x calculated with

γk,0, while the posterior of γk = 1 involves that with γk,1, as follows

pk,0 = p(γk = 0) = f(x|β, δ,γk,0, z) (1− π(γk)) ,

pk,1 = p(γk = 1) = f(x|β, δ,γk,1, z)π(γk) ,

where we omit all the conditioning on x, β and z. Each γ
(t)
k (k = 1, . . . , p) is

generated (in sequential order) from a Bernoulli distribution

qk(γ
(t)
k | δ,γk,0,γk,1) =

(
pk,1

pk,1 + pk,0

)γ(t)
k
(

pk,0
pk,1 + pk,0

)1−γ(t)
k

. (4.8)



40 Chapter 4. Model selection

We use Gibbs sampler to sequentially draw the value of γ(t)k with the prob-

ability

qk(γ
(t)
k = 1 | δ,γk,0,γk,1) =

pk,1
pk,1 + pk,0

. (4.9)

Mutation. We randomly select an index between 1 and p, say k. We flip the

value of γ(t−1)k such that γ∗k = 1 − γ(t−1)k , and keep the other values without

change, i.e. γ∗j = γ
(t)
j ∀j 6= k. This is a 1-point mutation, and we can also

use 2-point mutations where two indexes are randomly selected and the cor-

responding values are reversed. One extreme case is the uniform mutation in

which each element of γ(t−1) has a nonzero probability of mutating. We de-

note the transition probability between γ vectors with q(· |· ). All these muta-

tion operators are symmetric. We accept in block the vector γ∗ with probability

min{1, ργ}, and acceptance ratio

ργ =
p(γ∗|x, β, δ, z)

p(γ(t−1)|x, β, δ, z)

q(γ(t−1)|γ∗)
q(γ∗|γ(t−1))

=
f(x∗|β, δ,γ∗, z) π(γ∗)

f(x(t−1)|x, β, δ,γ(t−1), z) π(γ(t−1))
,

(4.10)

since q(γ(t−1)|γ∗)/q(γ∗|γ(t−1)) = 1.

Step 5. We update ϑ in the same way as in Section 3.2.

Model selection. In an attempt to improve the mixing behaviour of the

MCMC, one could make use of multiple chains that run independently (MIC).

The chains are started at different initial states and their output is observed

simultaneously at each iteration. It is hoped that this way a more reliable sam-

pling of the target distribution is obtained (Drugan & Thierens, 2010). It is im-

portant to note that no information exchange between the chains takes place. A

vector γ = (1, γ1, . . . , γp)
′ is obtained for each chain at each iteration of the pre-

vious MCMC for variable selection. The marginal posterior distribution of γ

is tabulated from the frequencies of all these vectors (combining all the chains)

and the vector γ∗ with the highest posterior probability is selected.

4.3 Posterior predictive assessment of

model fitness

If the proposed model fails to provide a reasonable summary of the data at

hand, it should be excluded; thus, any meaningful Bayesian analysis should at

least include a check of the conformance of the model with the data. Gelman
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et al. (1996) extend the essence of the classical approach of a goodness-of-fit test

to the Bayesian framework, with the aim of providing pragmatic methods of

assessing the fitness of a single model. They use the posterior predictive distri-

bution for a discrepancy between data and the proposed model. This method is

simple, both conceptually and computationally, and connects well to the clas-

sical goodness-of-fit methods that most researchers are familiar with. It is also

very general, applicable for comparing observations with model predictions in

any form. Crespi & Boscardin (2009) applied this method for evaluating the

fit of Bayesian models for multivariate data, while Yano et al. (2001) used it to

evaluate pharmacokinetic/pharmacodynamic models.

The focus of the method is to measure discrepancies between a model and

the data, not to test whether a model is true. The data come from a disturbed

map which, in the presence of high levels of observation error, tend to be very

different from the the true values. Thus, when we estimate the hidden map

we may obtain many values that differ from the data. This is not contradic-

tory. We define yr as the replicated data it would appear as if the experiment

that produced y today were replicated tomorrow with the same model and the

same values of the parameters in ψ that produced y. We expect yr to be close

to y. We refer to the data model as H and the distribution of the replicated

data as p(yr|H,ψ). In the Bayesian framework, the inference for ψ is provided

by its posterior distribution, p(ψ|H,y), where the model H includes the prior

distribution π(ψ). Correspondingly, the reference distribution of the future ob-

servation yr is its posterior predictive distribution,

p(yr|H,y) =

∫
p(yr|H,ψ)p(ψ|H,y)dψ .

We select a discrepancy measure D(y;ψ) with a reference distribution de-

rived from the joint posterior distribution of yr and ψ,

p(yr,ψ|H,y) = p(yr|H,ψ)p(ψ|H,y) . (4.11)

We measure the location of the realised value D(y;ψ) within its reference dis-

tribution with the classical tail-area approach. We can formally define a tail-

area probability of D under its posterior reference distribution as

pD(y) = Pr(D(yr;ψ) ≥ D(y;ψ)|H,y) . (4.12)

Computation of the reference distribution of discrepancies and the corre-

sponding tail-area probability is easily accomplished via Monte Carlo simula-

tion. We compare the realised discrepancy D(y;ψ) to its reference distribution
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under (4.11) by drawing a set of ψ(j) (j = 1, . . . , J) and performing the follow-

ing two steps for each j:

Step 1. Given ψ(j), draw a simulated replicated data set yr(j) from the

sampling distribution p(yr(j)|H,ψ(j)). We define this distribution based on

(3.2) as

p(yr(j)|x,θ(j)) =
∏
i∈S

(θ
(j)
xi,i

)y
r(j)
i (1− θ(j)xi,i)

1−yr(j)i . (4.13)

Step 2. Calculate discrepancies for each replicated data set, D(yr(j);ψ(j)),

and for the observed data, D(y;ψ(j)).

The proportion of pairs for whichD(yr(j);ψ(j)) exceedsD(y;ψ(j)) is an es-

timate pD(y) in (4.12). Once the replicates have been drawn in Step 1, the same

draws can be used for as many realised discrepancy measures as one wishes.

We use as a discrepancy measure the sum of squares of residuals of the data

with respect to their expectations under a posited model. We use the Pearson

residuals ri which are the standardised differences between the observed and

the expected values, ri = (yi −E(yi|θ))/
√

Var(yi|θ). The discrepancy measure

is

D(y;θ) =
∑
i∈S

(yi − E(yi|θ))2

Var(yi|θ)
=
∑
i∈S

(yi − θxi,i)2

θxi,i(1− θxi,i)
. (4.14)
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Simulation studies

This chapter is devoted to several simulation studies with the aim of testing

the methodology exposed in Chapter 3 (Hierarchical modelling) and Chap-

ter 4 (Model selection). The first evaluation corresponds to the approximation

methods of the likelihood of the hidden map presented in Section 3.3: pseudo-

likelihood (PL) approximation, path sampling (PS) and ratio approximation

(RA). We assess the performance of these methods in three stages. The first

part is based on a small vector of values for which we can calculate the exact

likelihood function. It is used to evaluate the performance of the PS approx-

imation. For the second and third parts, we generate maps that present the

same spatial configuration as our data set from Section 2.2 and include a co-

variate taken from that data set. We generate three maps that correspond to

a population of maps not so different from a real situation. These maps are

generated with three different levels of spatial autocorrelation. In the second

part, we compare the posterior distributions of each parameter, obtained us-

ing the different methods of approximation. In the third part, we evaluate the

complete estimation MCMC using observed maps obtained by disturbing the

corresponding true maps.

We also perform an evaluation of the Kuo & Mallick (1998) method (KM) for

variable selection. We use three maps generated with one covariate and three

maps generated with four covariates taken from the data set. In each case, the

three maps correspond to three different levels of spatial autocorrelation. We

observe the 95% credible intervals for each parameter and the misclassification

rates obtained with the different methods of approximation of the likelihood

function.



44 Chapter 5. Simulation studies

5.1 Performance of the approximations

In this section, we first evaluate the PS approximation using exact values of the

likelihood function calculated on a small vector. Then we use the PS as a good

reference for the true likelihood function when we evaluate the marginal pos-

terior distributions of each parameter, obtained using the different methods of

approximation. Finally, we make an evaluation of the approximations in more

complex situations where the whole MCMC is run to estimate all parameters

of the model.

5.1.1 Exact calculation

We start with a simple evaluation of the performance of the PS approximation

using a small vector of 16 values organised in a 4 × 4 rectangle. We include a

covariate with the values in Table 5.1.

-1 -1 0.5 0.5

-1 -1 0.5 0.5

-0.5 -0.5 1 1

-0.5 -0.5 1 1

Table 5.1: Image that corresponds to the vector x = (1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0,

0, 0, 0, 0, 0)′. Blue colour indicates presence and brown colour absence. Values of the

covariate are inside the cells.

For this evaluation we use 125 vectors ψ = (β, φ0, φ1)′ on the grid defined

by {0, 0.4, 0.8, 1.2, 1.6} × {−4,−3,−2,−1, 0} × {0.5, 1, 1.5, 2, 2.5}. We calculate

the exact value of the normalising constant using (3.6) for each ψ, and then

apply the PS approximation to the same vectors using (3.21), (3.24), and (3.26).

In Fig. 5.1 we plot the ratio of the path approximation and the exact C(ψ).

In general, the approximations are close enough to the exact values (within

a 5% distance). The bigger the value of β, the bigger the distance between

the approximation and the exact value. Also these distances decrease as φ0
increases, but we cannot conclude that they are related to big or small values

of φ1.

We construct a curve of the exact logC(ψ) for different values of φ1, while

β and φ0 are fixed (β = 1.6, φ0 = −4). We choose these values because the

produce the highest differences between the approximation and the exact nor-
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Figure 5.1: Ratio of PS approximation and exact C(ψ1) for 125 ψ vectors. Dashed

lines represent the limits where the approximation is 5% higher or lower than the exact

normalising constant.

malising constant. In Fig. 5.2 we plot this curve and the PS approximations of

logC(ψ); we observe that the approximations are around the exact curve.

Now we analyse the performance of the interpolations from the regression

models. We take x = (1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0)′, which is repre-

sented in the map in Table 5.1, and fix ψ∗ = (1,−1,−1.5)′. We choose this par-

ticularψ∗ in the example because it is close to the maximum pseudo-likelihood

estimator, and the estimates around this maximum are of special interest in the

MCMC algorithm. We randomly select 20 vectors in the interior of the hyper-

cube

{ψ : ψk = ψ∗k ± dk, k = 1, . . . , 3} ,

where dk is chosen as in the definition of Ω (multidimensional grid of points

in Step 2, Subsection 3.3.2), i.e. d1 = 0.75 and dk = 2.5 (k = 2, 3). For each

vector we calculate the exact log-likelihood, the PS approximation, and the
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Figure 5.2: Exact and PS approximated values of logC(ψ) against φ1, keeping β and

φ0 fixed.

interpolations (BS and PR) based on the estimations of the normalising con-

stant obtained from the PS algorithm with Ω centered on ψ∗. In Fig. 5.3 we

plot the ratio of each approximation to the exact likelihood and observe that

PS approximations are relatively accurate, out of the 20 approximations, 19 are

within a 3:2 ratio to the exact values, and one is within a 2:1 ratio to the exact

values. On the other hand, the interpolations based on the regression models

(BS and PR) show in general an inappropriate accuracy level, most of them are

outside of the limits of the 2:1 ratio to the exact values.

5.1.2 Posterior distributions

In this evaluation of the performance of the approximations, we generate maps

on a grid with N = 2195 values arranged in the same way as the study data

set presented in Section 2.2, with a single covariate taken from that data set.

We use the Temperature as an example of one of the covariates that is expected

to influence the presence of the species that we are studying. We generate

three maps with values of β that produce different levels of spatial interaction

(β = 0, 1, 1.5), and use the same regression coefficients for the Temperature in

the three maps (φ0 = −1.5, φ1 = 2) (see Fig B.1 in Appendix B for the generated

maps and the associated covariate). These coefficients are selected because they

produce reasonable maps with proportions of sites with presence between 0.30

and 0.70. We avoid maps with too low or too high proportions of presence. We
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notice how the influence of the covariate on the map increases as the spatial

dependence increases.

In all cases when we estimate the posterior distribution of β we assume that

it is uniformly distributed in the interval [0, 3.5]. For the coefficients φk (k =

0, . . . , q), we choose independent normal priors with mean 0 and high variance

σ2, truncated in the range [−A,A]. The tuning parameters σ2
εβ

and σ2
εφ

of Step

2 and Step 3 of the MCMC, respectively, are chosen to reach an acceptance rate

between 0.20 and 0.50.

Path sampling and pseudo-likelihood approximations

For each parameter, we approximate the posterior distribution on a vector ofm

values on the interval defined for the prior distribution of that parameter (ψ∗k),

while the other two parameters are fixed at their corresponding true values

(ψ∗−k). We create the vectors ψk = (ψ1,k, . . . , ψm,k)′ (k = 1, 2, 3) and calculate

the approximation to the likelihood function f∗(x|ψj,k,ψ∗−k, z) for each point

ψj,k (j = 1, . . . ,m; k = 1, 2, 3) using the approximation with the PL. We also

approximate the likelihood by using the PS approximation calculated directly

on each point. For each calculation we run the algorithm for a total of 500
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iterations, from which the first 200 draws are discarded in the burn-in and the

remaining 300 draws are used to estimate the posterior distribution. In Ap-

pendix A we show that, in general for this algorithm, the chain stabilises at

around 200 iterations and it converges at around 200 to 400 iterations. Next we

obtain the interpolations (BS and PR) based on the estimations of the normal-

ising constant obtained from the PS algorithm with a multidimensional grid

of points Ω centered on ψ∗. We calculate the posterior function for each ψj,k

using the following approximation:

p(ψj,k|x,ψ∗−k, z) ≈
f∗(x|ψj,k,ψ∗−k, z)π(ψj,k)∫
f∗(x|t,ψ∗−k, z)π(ψt)dt

≈
f∗(x|ψj,k,ψ∗−k, z)π(ψj,k)

m−1∑
i=1

µ(ψi,k) ∆(ψi,k)

,

where µ(ψi,k) = 1
2{f∗(x|ψi+1,k,ψ

∗
−k, z)π(ψi+1,k) + f∗(x|ψi,k,ψ∗−k, z)π(ψi,k)},

and ∆(ψi,k) = ψi+1,k − ψi,k .

We take the PS approximation calculated directly on each point as a refer-

ence since it was the most accurate approximation in the previous simulations

(Fig. 5.2 and Fig. 5.3). In Fig. 5.4 we plot the posterior distribution of β for

the three maps. When β = 0 the PL is no longer an approximation but is

equal to the true distribution (from 3.5, 3.14 and 3.21); this is confirmed with

the closeness of the PL and the PS. We observe the poor performance of the

interpolations based on PR when β is high. In Fig. 5.5 we plot the posterior

distributions of φ0 and φ1. The interpolations based on PR are the worst for

φ1, and also the interpolations based on BS are poor when β > 0, the bigger

the value of β the worse the performance. In all cases, the PL approximation is

close to the reference PS.

We evaluate the adjustment to the PL directly with the same maps (gen-

erated with one covariate). We obtain the approximation to the posterior dis-

tribution as it was explained before. For the calculation of the window sub-

sampling empirical variance (WSEV) estimate we take windows of size 10×10

and move s = 3 cells to the right and down. Due to the irregular border of

the maps, in some cases the selected rectangle has a low number of cells with

information, then we consider in the calculation only those rectangles with in-

formation in at least 50% of the cells. We plot the posterior distribution of β,

φ0 and φ1 for the three maps (see Fig. B.6 and Fig. B.7 in Appendix B). In all

cases the adjustment does not produce any important difference compared to

the PL.
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Figure 5.4: Posterior distribution of β using approximations for the likelihood (PS,

PL, BS, PR), and keeping φ fixed at the true value. Vertical lines indicate true values

of β.

Ratio approximation

Since the RA is used directly in the MCMC algorithm, we evaluate its perfor-

mance with draws from the marginal posterior distribution of each parameter

obtained from the estimation MCMC (Section 3.2). We only run one step of the

MCMC to update the parameter for which we want to obtain the posterior, and

keep the other parameters fixed at their true values.

The MCMC is run for a total of 10,000 iterations, from which the first 5,000

draws are discarded in the burn-in and the remaining 5,000 draws are used

to estimate the posterior distribution. This number of iterations is enough to

ensure convergence and good mixing of the chains, as well as no problems of

strong autocorrelation (in Fig. B.4 and Fig. B.5, Appendix B, we show the trace,

ergodic mean and ACF of the samples for one of the maps using both methods

of approximation).
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Figure 5.5: Posterior distribution of φ0 (left) and φ1 (right) using approximations for

the likelihood (PS, PL, BS, PR), and keeping the other parameters fixed at their true

values. Vertical lines indicate true values of φ0 or φ1.

For each calculation of the ratio in (3.30) we generate 200 vectors x(h), from

which the first 100 draws are discarded in the burn-in; we thin the chain by tak-

ing a draw every two vectors to reduce autocorrelation, resulting on 50 draws
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Figure 5.6: Posterior distribution of β using the RA in the MCMC, and keeping φ

fixed at the true value.

for the calculation of the ratio.

In Fig. 5.6 and Fig. 5.7 we plot the posterior distribution of β, φ0 and φ1

obtained from the estimation MCMC for the three maps. The distributions

using RA are very close to the PL. In general, the variability of the posteriors

obtained with RA are similar to or slightly smaller than the variability of those

obtained with the PL.

5.1.3 MCMC

In this subsection we make an evaluation of the procedure in more complex

situations. We apply the MCMC with observed maps obtained from the true

maps by disturbing them with α = (−2.5,−0.5, 1.2, 2)′, which produces values

of θ0,i and θ1,i with means θ̄0 = 0.08 and θ̄1 = 0.68, respectively. We first

perform this evaluation for the three maps generated with Temperature, and

second with three more maps generated using more than one covariate. In the
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Figure 5.7: Posterior distribution of φ0 (left) and φ1 (right) using the RA in the

MCMC, and keeping the other parameters fixed at their true values.

second case, we generate three new maps with the same values of β as before,

which produces different levels of spatial interaction (β = 0, 1, 1.5). We use the

following four covariates: Temperature, Open water, Distance from standing

fresh water, and Grassland/herbaceous/pasture/crops (see Fig. C.1, Fig. C.2
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and Fig. C.3 in Appendix C). We use the same coefficientsφ = (−2,−1.5, 2, 2, 1)′

to generate the three maps. These coefficients are selected in such a way that

we do not get maps with too low or too high proportions of presence. We

also obtain the corresponding observed maps by disturbing the true maps with

α = (−2.5,−0.5, 1.2, 2)′ (see Fig. B.3 in Appendix B for the generated true and

observed maps).

The MCMCs are run for a total of 210,000 iterations, from which the first

10,000 draws are discarded in the burn-in; we thin the chain by taking a draw

every 20 iterations to reduce autocorrelation. The remaining 10,000 draws are

used to estimate the parameters with convergence and good mixing of the

chains (in Fig. B.8, Appendix B, we show the trace, ergodic mean and ACF

of the samples for one of the maps using PL approximation). In addition, for

the calculation of the ratio in the RA method we use 100 draws obtained from

the generation of 400 vectors x(h) (the first 200 draws are discarded in the burn-

in and we take a draw every two vectors). The CPU time cost per 1000 runs on

a 2.2GHz computer is: 2s for PL, 19s for BS, 17s for PR, and 173s for RA.

In Fig. 5.8 we have 95% credible intervals for β, φ0 and φ1 for the three maps

generated with one covariate. The results with RA and PL are very similar to

each other. They are concentrated around the true values of β and not far from

the true values of φ0 and φ1. The variability of the estimates with these two

methods increases with the size of β, i.e. a map generated with a higher β cor-

responds to estimates with more variability. This is more noticeable on the PL.

We confirm what we already observed in the marginal posterior distributions

of Subsection 5.1.2, that the distributions for BS and PR tend to be away from

the true values of the parameters, in particular when the map is generated with

β > 0.

We now extend the analysis to the case of maps generated with more than

one covariate. Since the methods based on PS do not perform well in the case of

one variable, we make the comparisons only for the other two methods (PL and

RA). Credible intervals for the parameters are narrower in this case with four

covariates (Fig. 5.9) than in the previous one with only one covariate (Fig. 5.8).

We basically get a confirmation of what have been noticing, that the RA and

PL produce similar results for all the estimates. All the parameters have distri-

butions near the true values.
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Figure 5.8: 95% credible intervals for β (left), φ0 (center), and φ1 (right) from the

complete estimation MCMC, using different methods of approximation (PL, BS, PR

and RA). Vertical lines indicate true values of the parameter.

In a simulation study we can compare the reproduced map x̂ with the true

map x. We calculate the misclassification rate δx(x∗) as the proportion of sites

that are different between a particular map x∗ and the true map:

δx(x∗) = 1− 1

N

∑
i∈S

I{xi}(x
∗
i ) .

Furthermore, we take as a baseline δx(y), the proportion of misclassified sites

between the observed map y and the true map.

In Table 5.2 we present the misclassification rates for the three maps gen-

erated with one covariate and the three maps generated with four covariates.

In the case of one covariate we observe that for the two methods based on

interpolations from the PS (BS and RA), the reproduced map presents a higher

dissimilarity than the baseline. We observe the opposite situation with the PL

and RA: as β increases, the misclassification rates obtained with the reproduced

map are always lower than the baseline. The misclassification rates are very

similar with both methods and also they are similar between maps generated
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with one and four covariates; thus, the size of the interaction parameter (β) is

the only factor that has an influence on the misclassification rate.
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Figure 5.9: 95% credible intervals for β and φk (k = 0, . . . , 4) from the complete

estimation MCMC, using different methods of approximation (PL and RA). Vertical

lines indicate true values of the parameter.

δx(x∗)
One covariate Four covariates

β = 0 β = 1 β = 1.5 β = 0 β = 1 β = 1.5

PL 0.10 0.08 0.04 0.08 0.10 0.06

BS 0.20 0.44 0.64 - - -

PR 0.28 0.29 0.09 - - -

RA 0.10 0.08 0.04 0.11 0.09 0.07

δx(y) 0.12 0.20 0.24 0.12 0.18 0.22

Table 5.2: Misclassification rates from MCMC using different methods of approxima-

tion (PL, BS, PR, RA) for three maps generated with one covariate and three maps

generated with four covariates.
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5.2 Evaluation of variable selection algorithm

We perform an evaluation of the KM method using the same maps as in the

previous section, i.e. three maps generated with one covariate and three maps

generated with four covariates, using in both cases three different levels of spa-

tial autocorrelation (β = 0, 1, 1.5) . In the first case q = 1, while in the second

case q = 4. We extend the number of covariates to be used in the variable

selection MCMC to p (p > q) and consider the following three scenarios:

• SC1. A small number of vulnerable predictors with p = q + 1.

• SC2. A medium number of vulnerable predictors with p = q + 7.

• SC3. The case with all the available covariates in our study (p = 17) (see

Table 6.1).

For each map we consider the three scenarios and run the MCMC several times

to make sure of the consistency of the results. Each time we add p− q new co-

variates randomly selected from the database described in Section 2.2, which

are not necessarily the same in each repetition (except for the last scenario

when we have always all 17 covariates). For example, the maps in the sec-

ond case were generated using the set of covariates {Z3, Z8, Z11, Z16}; in the

first scenario we use p = 5, thus, we need to add one new covariate and obtain

a set like {Z3, Z6, Z8, Z11, Z16} which is used in the variable selection MCMC.

The goal of the simulation is to run the MCMC and observe how many of the

original covariates are erroneously excluded (s1) and how many of the addi-

tional covariates are erroneously included (s2). The ideal result would be to

get s1 = 0 and s2 = 0, which would indicate that at the end of the procedure

we obtain exactly the same covariates that were used in the generation of the

map.

We obtain the correlation matrix for the database (Fig 5.10) and observe that

the variables used to generate the maps (marked with an asterisk) do not show

high correlations (more than 0.6) with any of the other covariates. At most they

present medium correlations with some covariates (between 0.4 and 0.6). The

problem could be more complicated if there are very high correlations among

the covariates. In order to ensure that a variety of possibilities are considered,

we select the covariates to be added in each repetition in a random way.

The MCMCs are run for a total of 30,000 iterations, from which the first

10,000 draws are discarded in the burn-in and the remaining 20,000 draws are

used to estimate the marginal posterior distribution of γ using each chain sep-

arately without combining them. The vector γ∗ with the highest frequency is



Chapter 5. Simulation studies 57

P
O

P

E
LE

V

T
_A

V
G

P
R

E
C

C
A

N
O

P
Y

M
E

A
N

IM
P

E
R

V
M

E
A

N

D
IS

T
_F

LO
W

_F
W

D
IS

T
_S

T
D

_F
W

D
IS

T
_W

E
T

V
E

G
_F

W LP
I

O
P

_W
AT

E
R

D
E

V
_L

O

D
E

V
_H

I

F
O

R
E

S
T

S
H

R
U

B

G
R

A
S

S

W
E

T
LA

N
D

POP

ELEV

T_AVG

PREC

CANOPYMEAN

IMPERVMEAN

DIST_FLOW_FW

DIST_STD_FW

DIST_WETVEG_FW

LPI

OP_WATER

DEV_LO

DEV_HI

FOREST

SHRUB

GRASS

WETLAND
( 0 , 0.4 ]
( 0.4 , 0.6 ]
( 0.6 , 0.8 ]
( 0.8 , 1 ]

*

*

*

*

Figure 5.10: Absolute correlation coefficients among covariates in four categories. Co-

variates with an asterisk (*) are used to generate the maps.

selected. We repeat the selection algorithm five times for each combination

of β, number of original covariates and number of additional covariates. We

want to see the performance of the KM method without using mutation or the

principle of MICs; the purpose of running repeated chains is to determine if

the final model is consistently selected in the repetitions. The CPU time for

running this number of iterations on a 2.2GHz computer is 315 seconds (5.25

minutes).

The model with the highest frequency was very consistent in the five rep-

etitions; in only very few cases the selected model was not the true model. In

Table 5.3 we present the results of one repetition for the maps generated with

one covariate, while in Table 5.4 we present the results for the maps generated

with four covariates. In these tables we include the three models with the high-

est frequencies. In all cases the statistic s1 is equal to zero, which indicates that

the algorithm always includes all the original covariates. In addition, for the

model with the highest frequency, in most of the cases s2 is equal to zero, and

in the only case where it is different from zero, it is equal to one, i.e. the al-

gorithm selects erroneously at most one additional covariate. The frequencies

for the modal models (with the highest frequency) are very high when there
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is just one additional covariate regardless of the number of original covariates.

These probabilities decrease as the number of additional covariates increases,

reaching the lowest values when the map is generated with four covariates,

and there are 13 additional covariates. The mode of the posterior distribution

is the desired vector even when there are more competing models and the dis-

tribution is flatter.

Scenario Image Covariates s1 s2 Frequency

SC1: +1

β = 0

3 0 0 0.96

3,11 0 1 0.04

- - - -

β = 1

3 0 0 0.99

3,11 0 1 0.01

- - - -

β = 1.5

3 0 0 0.99

3,11 0 1 0.01

- - - -

SC2: +7

β = 0

3 0 0 0.50

1,3 0 1 0.23

3,9 0 1 0.08

β = 1

1,3 0 1 0.43

3 0 0 0.30

3,9 0 1 0.05

β = 1.5

3 0 0 0.59

1,3 0 1 0.21

4,3 0 1 0.04

SC3: 17(+13)

β = 0

3 0 0 0.39

3,14 0 1 0.09

3,1 0 1 0.09

β = 1

3 0 0 0.37

3,1 0 1 0.17

3,14 0 1 0.07

β = 1.5

3 0 0 0.30

3,1 0 1 0.21

3,6 0 1 0.03

Table 5.3: Number of the original covariates erroneously excluded (s1), additional

covariates erroneously included (s2), and posterior frequency for the three models with

the highest frequencies for maps generated with one covariate.
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Scenario Image Covariates s1 s2 Frequency

SC1: +1

β = 0

3,8,11,16 0 0 0.96

1,3,8,11,16 0 1 0.04

- - - -

β = 1

3,8,11,16 0 0 0.97

1,3,8,11,16 0 1 0.03

- - - -

β = 1.5

3,8,11,16 0 0 0.93

1,3,8,11,16 0 1 0.07

- - - -

SC2: +7

β = 0

3,8,11,16 0 0 0.47

3,8,11,16,17 0 1 0.11

3,8,11,12,16 0 1 0.09

β = 1

3,8,11,16 0 0 0.64

3,8,9,11,16 0 1 0.07

2,3,8,11,16 0 1 0.06

β = 1.5

3,8,11,16 0 0 0.64

2,3,8,11,16 0 1 0.08

3,8,10,11,16 0 1 0.06

SC3: 17(+13)

β = 0

3,8,11,16 0 0 0.26

3,8,11,12,16 0 1 0.07

3,8,11,16,17 0 1 0.07

β = 1

3,8,11,16 0 0 0.32

3,4,8,11,16 0 1 0.12

3,8,9,11,16 0 1 0.05

β = 1.5

3,8,11,16 0 0 0.25

3,4,8,11,16 0 1 0.15

2,3,8,11,16 0 1 0.08

Table 5.4: Number of the original covariates erroneously excluded (s1), additional co-

variates erroneously included (s2), and frequency for the three models with the highest

frequencies for maps generated with four covariates.

5.3 Summary of evaluations

The motivation to use the interpolations (BS and PR) instead of the accurate

PS approximations is the computer time, since the PS is extremely expensive

in terms of computation effort. In the simulation with a small vector where we

can calculate the exact likelihood, the results of the PS approximations are rela-

tively accurate. However, the interpolations that use the PS approximations as

a base, show in general an inappropriate accuracy level. The poor performance
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of these interpolations is confirmed in the marginal posterior distributions of

the parameters and in the results of the MCMC.

In the examples that we present, the performance of the MCMC is more

satisfactory when the original map is generated with more covariates, which

produces a higher reduction of the misclassification rate than in the case with

only one covariate. Two methods (PL and RA) have a similar performance, ei-

ther in the size of the credible intervals or in the misclassification rate; however,

the PL is much faster than the RA. In a simulation run of the MCMC, the CPU

time with the RA is 80 times longer than with the PL. This enormous difference

makes the PL approximation more appealing when the MCMC requires long

chains.

The KM method for variable selection performs very well in the simula-

tions. Although the frequency of the modal model tends to decrease in the

situations when we have a high number of covariates, as is the case of our

application, the procedure selects the original covariates in most cases.



Chapter 6

Real data analysis

In this chapter, we perform the analysis of the spatial distribution of two se-

lected species (Sturnella magna and Anas rubripes), where the first one is gen-

eralist and the second one, specialist. A generalist species is able to thrive

in a wide variety of environmental conditions and can make use of a variety

of different resources, while a specialist species can only thrive in a narrow

range of environmental conditions or have a limited diet. We start by giv-

ing a description of the species under study; then we perform the analysis of

the data by using three models that are interrelated and are presented in in-

creasing complexity: the logistic model, the autologistic model and the spatial

hidden Markov model (SHMM). For each model we apply the model selec-

tion procedures from Chapter 4, estimate the parameters of the selected model

with the algorithm from Chapter 3, and produce maps of the predictions. For

the SHMM we provide ecological interpretations to the results and produce

maps of the posterior probabilities of presence and maps of observation errors.

Finally we perform a posterior predictive assessment of the model fitness and

a sensitivity analysis.

6.1 Species description

6.1.1 Eastern Meadowlark

The Eastern Meadowlark (Sturnella magna) lives in the eastern part of Canada

and the United States, Mexico, Central America and Cuba, and migrates south

to several South American countries. These species lives year-round through-

out most of its range (Lanyon, 1995) (see Fig. 6.1).
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Although Eastern Meadowlarks commonly inhabit native grasslands, pas-

tures and savannas, it also uses a wide variety of anthropogenic grassland

habitats (COSEWIC, 2011). No consistent pattern of preference between the

two grassland types has been documented (Walk & Warner, 1999). The Eastern

Meadowlark closely resembles the Western Meadowlark (S. neglecta). Where

the range of both species overlaps, Eastern Meadowlarks tend to use wetter,

lower-lying grasslands (Lanyon, 1995).

Herkert (1991) states that Eastern Meadowlarks prefer large tracks over

smaller fragments and also that breeding densities are associated with grass-

land area. Territory sizes have been reported in a range of 1.2 to 6 ha (Lanyon,

1957; Francq, 1972). The area required for Eastern Meadowlarks was estimated

at 5 ha, in which the area required was defined as the “area at which a species’

probability of occurrence equals 50% of its maximum“ (Herkert, 1994). Habitat

fragmentation is not consistently reported as a determinant factor for breeding

density; while a study in Illinois considered the species to be moderately sen-

sitive to grassland habitat fragmentation attributes (Hull, 2000, revised 2002),

in Missouri and New York breeding density was not influenced by patch size

and the species was not found to be affected by attributes such as edge density,

distance to another patch of grassland/forest, cover, patch size, or core area of

grassland/forest (Winter, 1998; Horn et al., 2000).

6.1.2 American Black Duck

The American Black Duck (Anas rubripes) breeds across northeastern North

America from the eastern edge of the Great Plains east to the Atlantic coast

and from the Hudson Bay south to the Mid-Atlantic region (see Fig. 6.1). They

hide in plain sight in shallow wetlands and often flock with the ubiquitous

Mallard (Anas platyrhynchos), as they look quite similar to female Mallards.

American Black Ducks nest in eastern wetlands including freshwater and salt-

marshes (Longcore et al., 2000). They prefer protected bodies of water such as

saltmarshes and ponds. During migration and winter, they rest and forage in

protected ponds, marshes, and bays. Land-use changes (including drainage

associated with agriculture, deforestation, and urbanisation) have altered his-

torical breeding habitats.

Black Ducks frequently mix with other species of ducks, especially Mal-

lards. It has been proposed that in the past, Black Ducks and Mallards were

formerly separated by habitat preference, with the dark-plumage Black Ducks

having a selective advantage in shaded forest pools in eastern North Amer-

ica, and the lighter plumage Mallards in the brighter, more open prairie and
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Figure 6.1: Current global range of Eastern Meadowlark and American Black Duck

(NatureServe, 2012).

lakes in the plains. Deforestation in the East and tree planting on the plains are

pointed as causes of the breakdown of habitat separation which, in turn, lead

to the high levels of hybridisation now observed (Johnsgard, 1967). Mallard

abundance has increased in eastern North America with a concomitant decline

in the number of Black Duck in some parts of their range. It has been spec-

ulated that hybridisation or competitive exclusion have been the mechanisms

for the opposing population trajectories of these species (Seymour & Mitchell,

2006).

6.2 Models for species distribution

We start the analysis with the 24 selected covariates described at the end of

Section 2.2. We make an additional reduction in the number of covariates by

grouping the habitat classes according to their similarity. We refer to the co-

variates as Z1, . . . , Z17 according to Table 6.1, where the new habitat classes

are Z11, . . . , Z17. We illustrate these covariates using a two-dimensional repre-

sentation and quantile categorisation in Appendix C (see Fig C.1, Fig C.2 and

Fig C.3). We observe that some of them are spatially correlated and exhibit

spatial patterns, as it would be expected for Temperature and Precipitation.
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In this section we present the analysis of three models that are interrelated.

They are presented in increasing complexity:

• Logistic model: the basic model where we assume that the observed map

corresponds to the true map, and theN observed values are independent.

• Autologistic model: a model with a spatial interaction parameter but

no observation errors, i.e. we also assume that the observed map cor-

responds to the true map.

• Spatial hidden Markov model: a model that considers a map degraded

by (conditionally) independent noise and the spatial component is mod-

elled under the Markov random field (MRF) assumption.

Code Name Short description

Z1 POP Population

Z2 ELEV Elevation

Z3 T AVG Average temperature

Z4 PREC Precipitation

Z5 CANOPYMEAN Mean canopy cover (radius 750)

Z6 IMPERVMEAN Mean imperviousness to water (radius 750)

Z7 DIST FLOW FW Distance from flowing fresh water

Z8 DIST STD FW Distance from standing fresh water

Z9 DIST WETVEG FW Distance from wet vegetation

Z10 LPI Percentage area occupied by largest patch (radius 750)

Z11 OP WATER Patch density: Open water

Z12 DEV LO Patch density: Developed, open space and low intensity

Z13 DEV HI Patch density: Developed, medium and high intensity

Z14 FOREST Patch density: Deciduous, evergreen and mixed forest

Z15 SHRUB Patch density: Shrub/scrub

Z16 GRASS&CROPS Patch density: Grassland/herbaceous/pasture/crops

Z17 WETLAND Patch density: Woody and herbaceous wetlands

Table 6.1: Codes and names of the covariates included in the model selection procedure.

6.2.1 Logistic model

The first model for data analysis consists of an ordinary logistic regression on

the presence of each species separately, assuming no observation errors. This

is a natural and popular statistical model that has been used to explain the ob-

served wildlife distributions by environmental factors (Heikkinen & Högman-

der, 1997). This approach has been applied, among others, by Walker (1990)
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to model presence of kangaroos in Australia and by Osborne & Tigar (1992)

to predict the presence of bird species across Lesotho. The logistic model is

equivalent to the autologistic model in (3.5) when no spatial autocorrelation is

assumed in the process model. The prior of β has all the mass concentrated on

β = 0, i.e. π(β) = I{0}(β).

Model selection

We select a smaller subset of covariates using the variable selection algorithm

with π(β) = I{0}(β). In the ordinary logistic model we assume no observation

errors, i.e. the observed map corresponds to the true map (x = y). Thus, we

only perform Steps 3 and 4 in the MCMC algorithm of Section 4.2 to update

the parameters φ and γ, respectively. We run the MCMC for a total of 100,000

iterations, with a burn-in of 50,000 samples; the remaining 50,000 samples are

used to estimate the marginal posterior distribution of γ and select the pos-

terior mode γ∗. We repeat the algorithm several times with different initial

values for γ(0); however, the posterior mode that we get in different repeti-

tions is not always the same. We run 10 independent chains (MIC) to obtain

the posterior distribution with a total of 500,000 samples. We repeat the MIC

and obtain the same posterior mode of γ. The CPU time for running this num-

ber of iterations on a 2.2GHz computer is 950 seconds (15.8 minutes).

Eastern Meadowlark American Black Duck

Covariates Frequency Covariates Frequency

3,4,5,6,11,13 0.19 2,3,6,7,14 0.15

3,5,6,11,13 0.16 2,3,6,9,14,17 0.11

3,4,5,6,13 0.09 2,3,6,7,14,17 0.10

Table 6.2: Highest frequency models with the logistic model for the Eastern Mead-

owlark and the American Black Duck.

In Table 6.2 we present the three models with the highest frequencies for

each species. The proposed subset includes the following covariates: Z3, Z4, Z5,

Z6, Z11, Z13 for the Eastern Meadowlark with a frequency of 0.19, and Z2, Z3,

Z6, Z7, Z14 for the American Black Duck with a frequency of 0.15. The models

with the second highest frequency have covariates very similar to the modal

models. Logistic regression for this type of data poses the problem that it tends

to produce non-parsimonious models (Wu & Huffer, 1997). By using models

that allow for spatial autocorrelation, we hope to require fewer covariates in an
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empirical model for the distribution of plant or animal species (Augustin et al.,

1996).

Parameter estimation

Once we have selected the variables for each species, we run the MCMC to

estimate the parameters of the model for a total of 260,000 iterations, with a

burn-in of 10,000 samples and taking a sample every 25 iterations. A total of

10,000 samples are used for estimation. The CPU time for running this number

of iterations on a 2.2GHz computer is 131 seconds (2.2 minutes). Diagnostic

plots for all the parameters are presented in Appendix C (Fig C.4 and Fig C.5),

showing convergence of the chains. Autocorrelation plots show a steep de-

crease which indicates no strong autocorrelation among samples. In Table 6.3

we present the 95% credible intervals for the regression coefficients of the lo-

gistic model for both species.

The fitted values, pi = Pr(Xi = 1), in the logistic model are obtained in a

straightforward way by using the median value of the posterior distributions

of the parameters from Table 6.3 in the following expression:

pi =
exp (z′iφ)

1 + exp (z′iφ)
, (6.1)

Eastern Meadowlark American Black Duck

Coeff. q0.025 q0.50 q0.975 Coeff. q0.025 q0.50 q0.975

φ0 -1.07 -0.96 -0.86 φ0 -0.58 -0.47 -0.35

φ3 0.31 0.43 0.54 φ2 -1.32 -1.14 -0.95

φ4 -0.30 -0.19 -0.08 φ3 -0.64 -0.51 -0.39

φ5 -0.81 -0.68 -0.55 φ6 0.62 0.80 1.00

φ6 0.19 0.37 0.56 φ7 0.14 0.27 0.40

φ11 -0.28 -0.18 -0.08 φ14 -0.35 -0.23 -0.12

φ13 -0.70 -0.51 0.32

Table 6.3: Quantiles 2.5%, 50% and 97.5% for the parameters of the logistic model for

the Eastern Meadowlark and the American Black Duck.

We use the Pearson residuals ri which are the standardised differences be-

tween the observed values and the fitted values, ri = (yi − pi)/
√
pi(1− pi).

In Fig 6.2 we show maps of the residuals, it is clear the spatial dependence of

the residuals for both species, with adjacent squares that tend to have similar

values or colours in the map.
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Residuals (Eastern Meadowlark)

[ −2.31  −  −0.74 )
[ −0.74  −  −0.49 )
[ −0.49  −  −0.32 )
[ −0.32  −  1 )
[ 1  −  4.4 ]

Residuals (American Black Duck)

[ −9  −  −0.69 )
[ −0.69  −  −0.46 )
[ −0.46  −  0.05 )
[ 0.05  −  0.83 )
[ 0.83  −  11 ]

Figure 6.2: Map of the residuals from the logistic regression model for the Eastern

Meadowlark and the American Black Duck.

Posterior maps

The fitted values are probabilities, thus they are values between 0 and 1. Pres-

ence for each species is accepted at a threshold probability. We define this

threshold in the most intuitive and common way of a fixed cut-off of pi = 0.5.

Manel et al. (2002) have investigated the effects of varying this probability

threshold on the performance of presence/absence modelling in ecology us-

ing receiver operating characteristic (ROC) curves.

Predicted

Observed

Eastern Meadowlark American Black Duck

Absent Present Absent Present

Absent 1355 456 1127 337

Present 164 220 180 551

Total 1519 676 1307 888

Table 6.4: Classification of sites according to the observed and predicted values with

the logistic model for the Eastern Meadowlark and the American Black Duck.

A good model should produce predicted values very close to the observed

ones. From Table 6.4 we obtain the misclassification rates for observed values

as present (predicted as absent), which are 67% and 38% for the Eastern Mead-

owlark and for the American Black Duck, respectively. These percentages seem

to be very high and are reflected in Fig 6.3, where we plot the observed map



68 Chapter 6. Real data analysis

and also the predicted map. We observe how the patches with goldenrod

colour (absence or non-observed) dominate the predicted maps. For the other

type of misclassification (absent predicted as present) we obtain 11% and 14%.

Observed Eastern Meadowlark

non−observed
observed

Observed American Black Duck

non−observed
observed

Predicted image

absence
presence

Predicted image

absence
presence

Figure 6.3: Observed and predicted maps obtained with the logistic model for the

Eastern Meadowlark (left) and the American Black Duck (right).

6.2.2 Autologistic model

The second model that we use to analyse the data is the autologistic model

introduced by Besag (1974), in which we add an extra explanatory variable to

the logistic model that captures the effect of other response values in the spatial

neighbourhood. The conditional probability of a single Xi in the autologistic

isotropic model with covariates is defined in (3.4), and the joint probability dis-

tribution of the whole vector X is defined in (3.5). In this case we also assume

that the observed map corresponds to the true map, i.e. the data are observed

with no error. The strength of the spatial autocorrelation is assumed to be pos-

itive (π(β) = I[0,3.5](β)).
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Model selection

We apply the variable selection algorithm with (π(β) = I[0,3.5](β)), assuming

that the observed map corresponds to the true map (x = y). In this case we

only perform Steps 2, 3 and 4 in the MCMC algorithm of Section 4.2 to update

the parameters β, φ and γ, respectively. We run 10 independent chains (MIC)

to obtain the posterior distribution of the indicator variables γ with a total of

500,000 samples, where each chain has 100,000 samples with a burn-in of 50,000

samples. The CPU time for running this number of iterations on a 2.2GHz

computer is 985 seconds (16.4 minutes).

In Table 6.5 we present the three models with the highest frequencies for

each species. The proposed subset includes three covariates for the Eastern

Meadowlark (Z3, Z5, Z13) with a frequency of 0.11, and five covariates for the

American Black Duck (Z2, Z3, Z5, Z6, Z11) with a frequency of 0.37. We notice

how the inclusion of the interaction parameter reduces the number of covari-

ates for the Eastern Meadowlark with respect to the logistic model. In the case

of the American Black Duck we get the same number of covariates as before,

but some of them are the same as and some are different from those of the

logistic model.

Eastern Meadowlark American Black Duck

Covariates Frequency Covariates Frequency

3,5,13 0.11 2,3,5,6,11 0.37

3,5,12 0.09 2,3,6,11,14 0.07

3,5 0.08 2,3,5,6,11,16 0.05

Table 6.5: Highest frequency models with the autologistic model for the Eastern Mead-

owlark and the American Black Duck.

Parameter estimation

We estimate the parameters of the autologistic model with the covariates pre-

viously selected. We use the same number of iterations as in the logistic model.

The CPU time for running this number of iterations on a 2.2GHz computer is

245 seconds (4.1 minutes). Plots of the trace and ergodic mean of the sam-

ples for all the parameters are presented in Appendix C (Fig C.6 and Fig C.7),

showing convergence of the chains. Autocorrelation plots show a steep de-

crease which indicates no strong autocorrelation among samples. In Table 6.6
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we present the 95% credible intervals for the regression coefficients of the au-

tologistic model for both species.

Eastern Meadowlark American Black Duck

Coeff. q0.025 q0.50 q0.975 Coeff. q0.025 q0.50 q0.975

β 0.55 0.65 0.75 β 0.64 0.74 0.85

φ0 -1.89 -1.72 -1.55 φ0 -1.80 -1.60 -1.41

φ3 0.11 0.23 0.35 φ2 -0.68 -0.49 -0.30

φ5 -0.60 -0.48 -0.35 φ3 -0.42 -0.29 -0.15

φ13 -0.26 -0.16 -0.06 φ5 -0.39 -0.25 -0.12

φ6 0.33 0.51 0.70

φ11 0.12 0.24 0.37

Table 6.6: Quantiles 2.5%, 50% and 97.5% for the parameters of the autologistic

model for the Eastern Meadowlark and the American Black Duck.

We obtain the fitted values using the median value of the posterior distribu-

tions of the parameters from Table 6.6 and the expression for pi = Pr(Xi = 1)

derived from (3.4):

pi =
exp

(
β
∑
j∼i xj + z′iφ

)
1 + exp

(
β
∑
j∼i xj + z′iφ

) , (6.2)

We obtain the Pearson residuals which are shown in Fig 6.4. Although we

expect no spatial dependence among the residuals in this case due to the in-

clusion of the interaction parameter β, we observe in the maps that the spatial

dependence of the residuals has not disappeared.

Predicted

Observed

Eastern Meadowlark American Black Duck

Absent Present Absent Present

Absent 1353 399 1130 272

Present 166 277 177 616

Total 1519 676 1307 888

Table 6.7: Classification of sites according to the observed and predicted values with

the autologistic model for the Eastern Meadowlark and the American Black Duck.
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Residuals (Eastern Meadowlark)

[ −2.74  −  −0.67 )
[ −0.67  −  −0.44 )
[ −0.44  −  −0.3 )
[ −0.3  −  0.92 )
[ 0.92  −  3.8 ]

Residuals (American Black Duck)

[ −8.94  −  −0.6 )
[ −0.6  −  −0.37 )
[ −0.37  −  0.09 )
[ 0.09  −  0.67 )
[ 0.67  −  6.9 ]

Figure 6.4: Map of the residuals from the autologistic regression model for the Eastern

Meadowlark and the American Black Duck.

Observed Eastern Meadowlark

non−observed
observed

Observed American Black Duck

non−observed
observed

Predicted image

absence
presence

Predicted image

absence
presence

Figure 6.5: Observed and predicted maps obtained with the autologistic model for the

Eastern Meadowlark (left) and the American Black Duck (right).
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Posterior maps

We define the presence of the species in the predicted maps in the same way

as the logistic model, with a threshold probability of 0.5. From Table 6.7 we

obtain the misclassification rates, which are slightly smaller than in the logistic

model: for observed values as present they are 59% and 31% for the Eastern

Meadowlark and for the American Black Duck, respectively. The predicted

maps in Fig 6.5 do not differ much from those of the logistic model (Fig 6.3).

6.2.3 Spatial hidden Markov model

Model selection

We include the 17 covariates to select a subset for each species using the SHMM.

We assume that there is positive spatial autocorrelation (π(β) = I[0,3.5](β)). The

spatial interaction parameter can be assumed positive for the kind of data that

we want to analyse where we expect that neighbouring sites tend to have a

similar condition of either presence or absence of the species. We also include

the effort hours to model the probabilities of observation errors. We run the

MCMC using 10 independent chains, each one for a total of 100,000 iterations,

with a burn-in of 50,000 samples. The model with the highest frequency (modal

model) obtained in these chains is not always the same. In Table 6.8 we show

the selected variables in each chain and observe that some variables are se-

lected in most of the chains while other variables are selected in only a small

number of them. In order to have a model that is more consistently selected,

we obtain the posterior distribution combining all 10 independent chains, that

is with a total of 500,000 samples. We perform this procedure three times an

consistently obtain the same modal models each time. The CPU time for run-

ning this number of iterations on a 2.2GHz computer is 1,110 seconds (18.5

minutes).

In Step 4 of the variable selection MCMC, we use different mutation prob-

abilities, pm = 0, 0.05, 0.20, 0.50, 0.70. In the first case, when pm = 0, we have

the original KM method, while in the other cases, we have the combination of

KM and mutation. Low values for the mutation probability are usually rec-

ommended in order to avoid the disruption of good schemata. The mutation

operator does not produce any improvement in the mixing of the chains. The

results are very similar with either mutation probability.

In Table 6.9 we present the three models with the highest frequencies for

each species. The proposed subset includes Z3, Z5, Z11, Z12, Z15, Z16 for the

Eastern Meadowlark with a frequency of 0.15, and Z3, Z5, Z7, Z11, Z13 for the
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Cov. Eastern Meadowlark American Black Duck

Z1
× × ×

Z2
× × × × × × ×

Z3
× × × × × × × × × × × × × × × × × × ×

Z4
×

Z5
× × × × × × × × × × × × × × × × × × ×

Z6
× ×

Z7
× × × × × ×

Z8
× × ×

Z9

Z10

Z11
× × × × × × × × × × × × × × × ×

Z12
× × × × × × × ×

Z13
× × × × × × ×

Z14
×

Z15
× × × × × × ×

Z16
× × × × × × × ×

Z17
× × ×

Table 6.8: Modal models obtained in 10 chains for each species with the SHMM. Each

column corresponds to the posterior mode of one chain.

American Black Duck with a frequency of 0.07. The proposed model for the

American Black Duck does not include the covariate Z17, which corresponds

to patch density of woody and herbaceous wetlands. In these areas, forest

or shrubland vegetation accounts for greater than 20% of vegetative cover,

or perennial herbaceous vegetation accounts for greater than 80% of vegeta-

tive cover. The soil or substrate is periodically saturated with or covered with

water. American Black Ducks breed mostly in freshwater wetlands including

beaver ponds, brooks lined by speckled alder, shallow lakes with reeds and

sedges, bogs in boreal forests, and wooded swamps (Longcore et al., 2000).

Wetlands are important to reproduction for two general purposes: cover (avail-

ability of protective structure), and abundance and accessibility of forage orga-

nisms. Palustrine emergent, scrub-shrub and deciduous forested wetlands pro-

vide optimal cover and forage conditions for brood-rearing (Ringelman et al.,

1982). Thus, we consider important to include this covariate in the model.

We run again the MCMC for variable selection with γ17 = 1 fixed. We

follow the same procedure explained above and obtain a new model with the

following covariates: Z3, Z5, Z11, Z13, Z17, with a frequency of 0.08 (see model

(II) in Table 6.9). This model excludes the covariate Z7, which corresponds to
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Eastern Meadowlark American Black Duck

Covariates Freq. Covariates (I) Freq. Covariates (II) Freq.

3,5,11,12,15,16 0.15 3,5,7,11,13 0.07 3,5,11,13,17 0.08

3,5,11,12,15,16,17 0.07 2,3,5,6,7,11 0.04 3,5,7,11,13,17 0.04

3,4,5,11,12,15,16 0.03 3,5,6,7,11 0.04 5,11,13,17 0.04

Table 6.9: Highest frequency models with the SHMM for the Eastern Meadowlark and

the American Black Duck.

distance from flowing fresh water. In the case of the American Black Duck, it

is less important to make depend the presence of the species on a variable that

accounts for an habitat not frequented by this species.

When we observe the posterior distributions of the indicators (γk; k =

1, . . . , p) in the individual chains, there are some covariates that are never se-

lected in the modal models corresponding to those distributions. For the East-

ern Meadowlark, five covariates are never selected: mean imperviousness to

water (Z6), distance from flowing fresh water (Z7), distance from wet vegeta-

tion (Z9), percentage of area occupied by largest patch (Z10), and patch density

of deciduous, evergreen and mixed forest (Z14). For the American Black Duck,

four covariates are never selected in the modal models corresponding to indi-

vidual posterior distributions of independent chains: precipitation (Z4), dis-

tance from wet vegetation (Z9), percentage of area occupied by largest patch

(Z10), and patch density of shrub/scrub (Z15).

Parameter estimation

We estimate the posterior distribution of the parameters of the selected models

using 10,000 samples (burn-in of 10,000 samples and taking a sample every 25

iterations). The CPU time for running this number of iterations on a 2.2GHz

computer is 585 seconds (9.8 minutes). Plots of the trace and ergodic mean of

the samples for all the parameters are presented in Appendix C (Fig C.8 and

Fig C.9), showing convergence of the chains. Autocorrelation plots indicate no

strong autocorrelation among the samples for all the parameters.

In Table 6.10 we present the median and the quantiles (2.5% and 97.5%)

that define 95% credible intervals for the parameters of the model for the East-

ern Meadowlark. In Fig 6.6 we present the marginal posterior distributions of

these parameters which are unimodal and symmetric. The parameter space

for the prior distribution of β is [0, 3.5], and for φk it is [−5, 5] (k = 0, . . . , q).
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Coeff. q0.025 q0.50 q0.975

β 0.60 0.78 0.96

φ0 -1.71 -1.32 -0.94

φ3 0.13 0.31 0.50

φ5 -0.92 -0.69 -0.48

φ11 -0.41 -0.23 -0.05

φ12 -0.62 -0.46 -0.30

φ15 -0.38 -0.22 -0.08

φ16 0.06 0.23 0.43

Table 6.10: Quantiles 2.5%, 50% and 97.5% for the parameters of the SHMM for the

Eastern Meadowlark.

We observe that most of the distribution of each parameter is concentrated

in a small range of the parameter space, which is an indication that the data

are very informative. Annual average temperature (Z3) is an important co-

variate because Eastern Meadowlarks eat crops and seeds; sites with higher

average temperatures facilitate the conditions for a longer period of crop pro-

duction. During the summer months most of their food consists of insects and

closely allied forms. They eat practically all of the principal pests of the fields

and are particularly destructive to the dreaded cutworms, caterpillars, beetles,

and grasshoppers. In the autumn, and especially in winter, when insect life is

scarce, they resort in a large measure to seeds. They do feed on certain grains

useful to man, such as corn, wheat, rye, and oats; but most of these are waste

left behind at harvest time (Bent, 1989). Soon after his arrival to a new territory,

the resident male leaves his companions and selects preferably a grassland or

meadow, because of the great abundance of food as well as his decided liking

for this type of habitat. Although, the coefficient of patch density of grassland,

herbaceous, pasture and crops (Z16) is not as high as expected, this variable

is definitely an important determinant of the presence of the Eastern Mead-

owlark.

There are four covariates with negative coefficients: mean canopy cover

(Z5), patch density of open water (Z11), patch density of developed, open

space and low intensity (Z12), and patch density of shrub and scrub (Z15). The

first one (Z5) indicates the clear absence of interest of Eastern Meadowlarks

on visiting forests, mainly because they are not adequate for foraging or nest-

ing. These birds usually nest directly on the ground in litter or under dense,

overhanging grasses (Lanyon, 1995); thus, they build their nests in grasslands,
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Figure 6.6: Posterior distribution of the parameters of the SHMM for the Eastern

Meadowlark. Vertical red lines indicate the quantiles (2.5% and 97.5%) that define

95% credible intervals for the parameters.

meadows, and pastures, but never on the trees. For the second one (Z11), we

consider the fact that passeriformes are species that in general avoid open wa-

ters. The third one (Z12) could be related to habitat fragmentation due to low

intensity development. This variable accounts for the number of patches of

areas with a mixture of some constructed materials, vegetation in the form

of lawn grasses, and areas where impervious surfaces account for less than

50% of total cover. These areas most commonly include large-lot single-family

housing units, parks, golf courses, and vegetation planted in developed set-

tings for recreation, erosion control, or aesthetic purposes (Fry et al., 2011).

Eastern Meadowlarks prefer large grassland areas over small areas for breed-

ing (Herkert, 1994); thus, their presence is diminished when the land is frag-

mented by human presence. The last one (Z15) confirms the preference of the
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Eastern Meadowlarks of grasslands over shrub or scrub. They find the main

sources of food in the grass, but when these sources are scarce, they move to

this sub-optimal habitat to get insects or small fruits.

Coeff. q0.025 q0.50 q0.975

β 0.77 0.97 1.16

φ0 -1.66 -1.19 -0.62

φ3 -0.47 -0.26 -0.06

φ5 -0.79 -0.56 -0.34

φ11 0.28 0.61 1.00

φ13 0.19 0.46 0.76

φ17 0.03 0.26 0.55

Table 6.11: Quantiles 2.5%, 50% and 97.5% for the parameters of the SHMM for the

American Black Duck.

In Table 6.11 we have the median and the quantiles (2.5% and 97.5%) that

define 95% credible intervals for the parameters of the model for the Ameri-

can Black Duck. In Fig 6.7 we present the marginal posterior distributions of

these parameters, which are unimodal and symmetric. We observe that the es-

timate of the coefficient of patch density of woody and herbaceous wetlands

(Z17) is positive, as we expected. Other positive coefficients correspond to the

covariates patch density of open water (Z11), and patch density of developed,

medium and high intensity (Z13). The first one (Z11) includes areas of open

water, generally with less than 25% cover of vegetation or soil. Food availabil-

ity, freedom from disturbance, protection from severe weather, and presence of

large bodies of open water are interrelated factors that appear to affect habitat

use by American Black Ducks in winter (Lewis & Garrison, 1984). The second

one (Z13) is an interesting covariate from the fact that urban areas tend to have

ponds. Some ponds are created specifically for habitat restoration, including

water treatment. Others, like water gardens, water features and koi ponds

are designed for aesthetic ornamentation as landscape or architectural features

(Clegg & Mansell, 1986). American Black Ducks are so ever present in all of the

inner city ponds. In the ponds, they have almost become domesticated because

so many people in the city feed them. When hunting season starts, wild ducks

move into city ponds where there is no shooting allowed (de Leon, 2010). Co-

variates Z11, Z13 and Z17 altogether are complementary in the sense that wild

individuals are found in the open waters and wetlands, while domestic ones
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Figure 6.7: Posterior distribution of the parameters of the SHMM for the American

Black Duck. Vertical red lines indicate the quantiles (2.5% and 97.5%) that define 95%

credible intervals for the parameters.

live in the ponds of urban areas.

Two covariates have negative coefficients: annual average temperature (Z3)

and mean canopy cover (Z5). The fact that Z5 has a negative coefficient indi-

cates that American Black Ducks do not look for trees in covered areas, they

just need them for isolated nests and always surrounded by sources of water.

The female selects the nest site, usually in a clump of grass, under a shrub or

tree, or in a hole or fork in a tree, near the ground (Wright & Wyndham, 2005).

Weather and temperature (Z3) are very important for migration. As tem-

peratures drop and the feeding areas freeze over one by one, the southward

migration starts. Cold, windy, and snowy fronts that lock up food and wa-

ter stimulate major movements. Birds go where they find food, water, and

safety. They stay as long as these habitat qualities satisfy their needs. Migration
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is an adaptive strategy hinged on finding suitable habitats. Waterfowl may

remain north of traditional terminuses until harsh environmental conditions

force them southward. The reason to do that is because migration is physically

costly, and the real rewards are survival and fitness; hence, some waterfowl

remain as close to the breeding grounds as their bodies and resources per-

mit (Kaminski, 2007). All ducks tend to return in fall and winter to the same

marshes that they visited the previous year, but this trait is most pronounced

in the American Black Duck. When tidal feeding areas have become frozen in

New England, some American Black Ducks have starved rather than migrate

farther south to unfamiliar ground (Wright & Wyndham, 2005). Although, cold

temperatures condition southward movements, it is also clear that American

Black Duck’s original breeding grounds correspond to places with lower tem-

peratures.

Posterior maps

The median of the spatial interaction parameter β in the SHMM is expected

to be between 0.60 and 0.96 for the Eastern Meadowlark, while it is expected

to be between 0.77 and 1.16 for the American Black Duck (with 95% chance)

(see Table 6.10 and Table 6.11). Thus, we expect medium size patches of sites

with presence of the Eastern Meadowlark and even larger patches of sites with

presence of the American Black Duck.

As a result of the estimation procedure of the parameters, we get the pos-

terior distribution of X . Now, we are interested on the conditional probability

of presence for each Xi (i ∈ S), given Y . An estimate of this probability can be

obtained as the proportion of times that the species of interest is present at the

ith site, that is the number of times that Xi = 1, divided by the number of sam-

ples used to estimating the posterior distribution. These probabilities are used

to create posterior maps of presence of the species. One way to create a map is

by categorising the probabilities by levels of evidence of presence or absence of

the species at each site. We use a total of 6 categories for the following levels:
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• Strong evidence of absence: Pr(Xi = 1|y) < 0.1.

• Medium evidence of absence: 0.1 ≤ Pr(Xi = 1|y) < 0.3.

• Weak evidence of absence: 0.3 ≤ Pr(Xi = 1|y) < 0.5.

• Weak evidence of presence: 0.5 ≤ Pr(Xi = 1|y) < 0.7.

• Medium evidence of presence: 0.7 ≤ Pr(Xi = 1|y) < 0.9.

• Strong evidence of presence: Pr(Xi = 1|y) ≥ 0.9.

In the maps (Fig. 6.8), we use shades of blue for the three categories that corres-

pond to evidence of presence, where darker blue indicates stronger evidence

of presence. On the other hand, we use shades of goldenrod for evidence of

absence, where darker goldenrod indicates stronger evidence of absence.

In addition to the maps of probability of presence, we can obtain a recon-

struction of the true map. These maps are obtained by using the posterior mode

of each site. We assign a value of 1 to sites where the unconditional probability

of presence is equal or greater than 0.5; otherwise, we assign a value of 0.

Differences between observed and reconstructed maps arise due to non-

observed presences rather than false observations. We use the median of the

posterior distribution of θ0,i and 1 − θ1,i, as an estimate of the probabilities of

error at each site. The estimated probabilities of false observation are small for

both species: θ0,i < 0.001 (∀ i ∈ S) for the American Black Duck, and 95% of the

sites have θ0,i < 0.007 for the Eastern Meadowlark. The probabilities of non-

observed presence have a higher variability among sites (0 ≤ 1−θ1,i < 0.71) for

both species. We use the inter-quartile range (IQR) of the posterior distribution

of θ0,i and 1− θ1,i as a measure of the uncertainty of these estimates. The IQR

for θ1,i is always lower than 0.04 (see Fig. C.12 in Appendix C), which is an

indication of the high precision of the estimates of these probabilities.

Because of the influence of effort hours on determining the probabilities of

error, these probabilities are very similar for both species, as we can observe in

Fig. 6.9 (the graphs in the center panel look very similar). The higher the effort

hours, the lower the probability of error. Nonetheless, the sites that are classi-

fied with presence in the reconstructed maps even when the species was not

observed (non-observed presence), vary from one species to the other. These

sites are coloured with dark blue in the top panel of Fig. 6.9. The categories

with lighter colours correspond to the sites that match between the observed
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Figure 6.8: Observed map, map of posterior probability of presence, and reconstructed

map obtained with the SHMM for the Eastern Meadowlark (left) and the American

Black Duck (right).

map and the reconstructed map (the species was observed in the site and it

was classified as present in the reconstructed map, or the species was not ob-

served and it was classified as absent). Out of the total sites with reported



82 Chapter 6. Real data analysis

Reconstructed Non-observed Observed Total

map (%) (%) (%)

Eastern Meadowlark

Absent 1139 0 1139

(65) (0) (52)

Present 380 676 1056

(35) (100) (48)

Total 1519 676 2195

(%) (69) (31) (100)

American Black Duck

Absent 822 0 822

(63) (0) (37)

Present 485 888 1373

(37) (100) (63)

Total 1307 888 2195

(%) (60) (40) (100)

Table 6.12: Classification of sites according to the observed and reconstructed maps

for the Eastern Meadowlark and the American Black Duck with the SHMM. Numbers

in parenthesis correspond to column percentages.

absence of the species, those classified with presence (non-observed presence)

represent 35% for the Eastern Meadowlark and 37% for the American Black

Duck. On the other hand, none of the sites where the species was observed,

was classified with absence in the reconstructed maps (false observations) (see

Table 6.12). Thus, the reconstruction of the map could be seen as filling gaps

on the observed map, by changing some goldenrod cells to blue ones and cre-

ating in this way bigger blue patches (see top and bottom panels in Fig. 6.8).

We obtain a map for the Eastern Meadowlark with 48% of blue sites from an

observed map with 31% of them; while the number of blue sites raises from

40% to 63% for the American Black Duck.

The fact that the data correspond to a whole year introduces noise; different

sites were visited in different dates. Some sites may have been visited when the

American Black Duck was not present due to migration; however, the map in-

tends to represent the distribution over the year. Thus, American Black Ducks

could be non-observed in sites where they actually live during a period of the

year. On the other hand, Eastern Meadowlarks are less affected by this source

of error, instead, their presence is underestimated mainly by other factors like
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Eastern Meadowlark

false observation
'identical' absence
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American Black Duck
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Figure 6.9: Top: classification of sites according to matching between observed and

reconstructed maps. Middle: map of the probability of non-observed presence obtained

with the SHMM for the Eastern Meadowlark (left) and the American Black Duck

(right). Bottom: Effort hours per site.

song volume, time of day when the observation was done, pairing status, and

stage of nesting cycle.
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Hyperparameters

We use four hyperparameters for modelling the observation error probabilities

θ0,i and 1 − θ1,i. These hyperparameters are αk (k = 1, . . . , 4) and they are

assumed to have independent diffuse Gaussian distributions with a mean of

0 and high variance. The first two hyperparameters α1 and α2 are used to

determine θ0,i, while α3 and α4 are used to determine θ1,i (see equation 3.7).

In Fig. C.10 and Fig. C.11 (Appendix C) we observe that it remains some

autocorrelation only for the two hyperparameters related to θ0,i (α1 and α2).

However, plots of the ergodic means show convergence for these hyperparam-

eters. We take the median of the posterior distribution of θ0,i and 1− θ1,i as an

estimate of the probabilities of error at each site. The estimated probabilities

of false observation (θ0,i) are very small for both species, and we could even

hypothesise that they are equal to zero; thus, the hyperparameters α1 and α2

could be eliminated from the model.

6.3 Posterior predictive assessment

In the context of regression models, we expect the model to provide a good fit

of the data, i.e. the differences between observed and predicted values should

be as small as possible. When we use a SHMM, the closeness between the ob-

served and reconstructed map depends on the amount of error present in the

data. If the data are recorded with small error we would expect a reconstructed

map very similar to the observed one; however, when the data are subject to

high levels of observation error, they tend to be very different from the the true

values. Thus, when we reconstruct the map we may obtain many values that

differ from the data. Differences between observed and reconstructed maps are

not necessarily an indication of a wrong model. We use the discrepancy mea-

sure defined in (4.14) with 1,000 vectors θ(j) = (θ
(j)
0,1, . . . , θ

(j)
0,N , θ

(j)
1,1, . . . , θ

(j)
1,N )′,

and the corresponding maps x(j) (j = 1, . . . , 1, 000). For each pair (x(j),θ(j))

we generate a replicated data vector yr(j) using (4.13). Next, we calculate dis-

crepancies for each replicated data set,D(yr(j);θ(j)), and for the observed data,

D(y;θ(j)).

In Fig. 6.10 we observe that the predictive discrepancies are higher than the

realised discrepancies over half of the times for the SHMM (for both species).

The tail-area probabilities deduced from this plots are 0.59 for the Eastern Mead-

owlark and 0.62 for the American Black Duck (see Table 6.13), which are the

proportion of points above the 45◦red line in the figures. This is not saying that

the models are correct, but only that the values of the discrepancy measures we
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Figure 6.10: Scatterplot of predictive (D(yr;θ)) vs. realised (D(y;θ)) discrepancies

for the logistic model(top), the autologistic model (middle) and the SHMM (bottom)

for the Eastern Meadowlark (left) and the American Black Duck (right).

have examined are reasonable under the posited models. We know that the lo-

gistic and autologistic models show spatially correlated residuals (see Fig. 6.2

and Fig. 6.4). This problem is due to the absence of a spatial component in the

logistic model and the strong influence of effort hours that generates observa-

tion errors not considered in these two models. However, the tail-area prob-

abilities for the Eastern Meadowlark are 0.72 and 0.73 for the logistic and the
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autologistic models, respectively. These values are even higher than the corre-

sponding value for the SHMM. We complement these results with the fact that

the reconstructed map obtained from the SHMM for the American Black Duck

differs from the predicted maps obtained with the other two models. The logis-

tic and autologistic models assume that the observed map corresponds to the

true map which is clearly contradicted with the high levels of observation er-

rors obtained with the SHMM. The result reveals the low power of the measure

being used in this case. Other measures as Bayes factor and deviance informa-

tion criteria (DIC) for hidden Markov models (McGrory & Titterington, 2009)

should be used to clarify this issue. For the American Black Duck we get evi-

dence against the logistic model since the tail-area probability is 0.01, and also

a fairly low value for the autologistic model (0.13) compared to the value for

the SHMM (0.62).

Model Eastern Meadowlark American Black Duck

Logistic 0.72 0.01

Autologistic 0.73 0.13

SHMM 0.59 0.62

Table 6.13: Tail-area probabilities for discrepancies under the logistic model, the au-

tologistic model and the SHMM for the Eastern Meadowlark and the American Black

Duck.

In Table 6.14 we summarise the covariates selected in each model and show

the median of the posterior distributions of the corresponding parameters. It

is noticeable the differences in the selected covariates in the three models. The

logistic and the autologistic miss important variables for the Eastern Mead-

owlark, e.g. patch density of shrub/scrub (Z15) and patch density of grassland

and crops (Z16), or they include unimportant variables, e.g. patch density of

developed, medium and high intensity (Z13). For the Easten Meadowlark the

covariates selected by the logistic model are almost totally different from those

selected by the SHMM. We notice the concordance with the signs of the coef-

ficient among the three models when a covariate is included in more than one

of them, even if the magnitude is not always similar (for both species). For

example, the magnitude of φ5 for the SHMM (-0.56) is as double as that for the

autologistic model (-0.25) in the case of the American Black Duck.
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Coeff.
Eastern Meadowlark American Black Duck

Logistic Autologistic SHMM Logistic Autologistic SHMM

β - 0.65 0.78 - 0.74 1.16

φ0 -0.96 -1.72 -1.32 -0.47 -1.60 -1.19

φ1 - - - - - -

φ2 - - - -1.14 -0.49 -

φ3 0.43 0.23 0.31 -0.51 -0.29 -0.26

φ4 -0.19 - - - - -

φ5 -0.68 -0.48 -0.69 - -0.25 -0.56

φ6 0.37 - - 0.80 0.51 -

φ7 - - - 0.27 - -

φ8 - - - - - -

φ9 - - - - - -

φ10 - - - - - -

φ11 -0.18 - -0.23 - 0.24 0.61

φ12 - - -0.46 - - -

φ13 -0.51 -0.16 - - - 0.46

φ14 - - - -0.23 - -

φ15 - - -0.22 - - -

φ16 - - 0.23 - - -

φ17 - - - - - 0.26

p-discr. 0.72 0.73 0.59 0.01 0.13 0.62

Freq. 0.19 0.11 0.15 0.15 0.37 0.08

Table 6.14: Median values of the parameters for the logistic, autologistic and SHMM

for the Eastern Meadowlark and the American Black Duck. Tail-area probabilities (p-

discr.) and frequencies of the modal models are included.

6.4 Sensitivity analysis

Finally, we perform a sensitivity analysis on the assumptions for β. In Sec-

tion 3.1. We estimate the vector of parametersφ under four priors, and observe

if the estimates change:

• (A1) We assume the spatial interaction parameter to be positive since we

expect that neighbouring sites tend to have a similar condition of either

presence or absence of the species: π(β) = I[0,3.5](β).

• (A2) We relax assumption (A1) by allowing β to take negative values:

π(β) = I[−3.5,3.5](β). Negative values of β would be expected under com-

petition and allelopathy. Although, we think this is not the case of the
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species under study, we want to assess if the procedure is able to select a

reasonable value of β even under such a wide range of possibilities.

• (A3) We assume π(β) = I[−3.5,3.5](β) as in the case of the logistic regres-

sion, but in this case we still have a hidden map and an observed map.

• (A4) We use the same prior for β as in (A1), but we suppress the hidden

structure by assuming no observation errors: π(β) = I[0,3.5](β) and x =

y.

We include the same set of covariates for the four priors (Z3, Z5, Z11, Z12,

Z15, Z16 for Eastern Meadowlark and Z3, Z5, Z11, Z13, Z17 for American Black

Duck). In Fig. 6.11 and Fig. 6.12 we present 95% credible intervals for the pa-

rameters estimated using the previous assumptions. Results under (A1) and

(A2) are almost identical, which shows robustness of the algorithm under the

extension of the parameter space for β. We confirm that it is reasonable to ex-

pect the formation of medium size patches of sites inhabited by each of these

two species.

The results under (A3) are not very different from (A1) for most of the co-

efficients. The only one that changes dramatically is φ0. In this case, all the

information of the neighbourhood is cancelled (since β = 0), and the external

field (φ0) intends to substitute it in the model. Thus, it is not surprising that

φ0 changes so much. Another noticeable change is that of φ17 for the American

Black Duck, whose credible interval in (A3) is moved to the right from (A1).

Furthermore, the variability of the posterior distribution of all the coefficients

increase.

The last prior (A4) produces estimates with less variability than (A1). This

is reasonable because the noise induced by the hidden structure is eliminated

and the model assumes that the data correspond to the real values. Although,

this is not a good assumption, we observe how the estimates change in the

expected direction when we impose a strong condition as this one.
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Eastern Meadowlark
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Figure 6.11: 95% credible intervals for β and φk (k = 0, . . . , q) with different

assumptions: (A1) π(β) = I[0,3.5](β); (A2) π(β) = I[−3.5,3.5](β); (A3) π(β) =

I[−3.5,3.5](β); and (A4) π(β) = I[0,3.5](β) and x = y. Models for the Eastern Mead-

owlark.
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American Black Duck
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Figure 6.12: 95% credible intervals for β and φk (k = 0, . . . , q) with different as-

sumptions: (A1) π(β) = I[0,3.5](β); (A2) π(β) = I[−3.5,3.5](β); (A3) π(β) =

I[−3.5,3.5](β); and (A4) π(β) = I[0,3.5](β) and x = y. Models for the American

Black Duck.



Concluding remarks

The direct application of path sampling (PS) in simulation studies provided

accurate approximations to the likelihood of the Markov random field (MRF);

however, it is not computationally feasible. Furthermore, we obtained a poor

performance of the predictions based on the PS. On the other hand, the ratio

approximation performed very similar to the pseudo-likelihood (PL) approxi-

mation in terms of the size of the credible intervals and in the misclassification

rate for the reconstruction of the true image. Nevertheless, the enormous dif-

ference in computer time makes the PL approximation more appealing when

the MCMC requires long chains. The performance of the MCMC was more

satisfactory when the original image was generated with more covariates than

in the case with only one covariate, with a higher reduction of the misclassifi-

cation rate.

The method by Kuo & Mallick (1998) (KM) for variable selection performed

very well in the simulations. Although the frequency of the modal model was

lower in the situations when we included a high number of covariates, as is the

case of our application, the procedure selected the original covariates in most

cases.

When we used real data, repetitions of the KM procedure for variable selec-

tion produced different models. We run multiple independent chains (MIC) to

improve the mixing and obtained consistent models for both species. The mu-

tation operator from EMC did not improve the results. The final model selected

for the Eastern Meadowlark included a set of covariates with a reasonable eco-

logical interpretation, while the model for the American Black Duck missed an

important covariate. A second proposal for this species included that missing

covariate, leading to a satisfactory set of interpretable covariates.

Although the logistic regression is widely used for modelling species distri-

butions, it has the drawback that it does not take into account possible spatial

dependence. In addition, it does not allow to recognise that the actual states of

presence/absence of a bird species do not exactly correspond to the observed
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map. The autologistic model provided a solution to account for the spatial de-

pendence but it still did not resolve the problem of observation errors. Using

a hierarchical approach made possible to incorporate the hidden image in the

model and considerate observation errors.

We showed that there is a high probability of non-observed presence for the

two species analysed in this thesis. Differences between observed and recon-

structed images arose due to non-observed presences rather than false obser-

vations. The inclusion of effort hours was crucial when modelling observation

errors.

Many new roads could be taken after what is presented in this thesis. In

the methodological area, we could extend the study of pseudo-likelihood ap-

proximations and explore the possibility of building small blocks for which

we can calculate the exact likelihood, conditioning on the border of the block.

We calculated the conditional probability of a single site given the values of

its neighbours; instead we could calculate this conditional probability for the

block given the values of the neighbours of the whole block. We could also

consider non-regular grids when more natural arrangements of data are avail-

able, without restricting the analysis to the type of data that we used here.

There is also the relevant question of the level of the spatial dependence that

affects the conditional probability of presence in the MRF. During our work we

used a first order neighbourhood system, where every (interior) site had four

neighbours (horizontally or vertically adjacent). We could extend the analysis

to a second-order neighbourhood with eight neighbours for every (interior)

site (additionally including diagonal adjacencies). We encountered a limita-

tion when we analysed annual data, particularly for ducks that in the space of

one year experience the full spectrum of seasonal changes. Thus, comparative

analyses for different shorter periods during the year could give better infor-

mation. In addition, trend studies in the spatial lattice could be performed

since we have repeated measures over discrete time points, although these

measures are not genuine repeated measures in the same locations and fol-

lowing the same conditions each time. This type of analysis can be motivated

by the work presented by Zhu et al. (2008) on outbreaks of mountain pine bee-

tle, and the concept of Markov chain of Markov field (MCMF) introduced by

Guyon & Hardouin (2002) who define the MCMF on instantaneous interaction

potentials and time-delay potentials.



Appendix A

Results

Proof of (3.21)

We want to prove (3.21):

C(ψ0) =
∏
i∈S

[1 + exp(z′iφ)] .

Proof. Let us use SN instead of S to make evident the cardinality of S. We

need to prove that

∑
x∈ζN

exp

(∑
i∈SN

xiz
′
iφ

)
=
∏
i∈SN

[1 + exp(z′iφ)] ,

where ζN = {0, 1}N .

We make the proof by induction. We notice that the expression is valid

when N = 1 since

∑
x∈ζ1

exp

(∑
i∈S1

xiz
′
iφ

)
= 1 + exp(z′1φ) =

∏
i∈S1

[1 + exp(z′iφ)] .

Now we assume that the expression is valid whenN = n and prove its validity

for N = n+ 1. Thus, we assume that

∑
x∈ζn

exp

(∑
i∈Sn

xiz
′
iφ

)
=
∏
i∈Sn

[1 + exp(z′iφ)] .

We notice that the set ζn+1 can be split into two subsets as ζn+1 = ζ
(0)
n+1 ∪ ζ

(1)
n+1,
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with ζ(k)n+1 = {x : x ∈ ζn+1, xn+1 = k} (k = 0, 1). Now,

∑
x∈ζn+1

exp

 ∑
i∈Sn+1

xiz
′
iφ

 =
∑

x∈ζ(0)n+1

exp

 ∑
i∈Sn+1

xiz
′
iφ

+

∑
x∈ζ(1)n+1

exp

 ∑
i∈Sn+1

xiz
′
iφ


=
∑
x∈ζn

exp

(∑
i∈Sn

xiz
′
iφ

)
+

∑
x∈ζn

exp

(∑
i∈Sn

xiz
′
iφ+ z′n+1φ

)

=
∑
x∈ζn

exp

(∑
i∈Sn

xiz
′
iφ

)
[1 + exp(z′n+1φ)]

=
∏
i∈Sn

[1 + exp(z′iφ)] [1 + exp(z′n+1φ)]

=
∏

i∈Sn+1

[1 + exp(z′iφ)] .

Number of iterations to reach stationarity

We start from the fact that in the stationary distribution, every cell of any se-

quence has a fix probability of taking the value 1. We analyse the impact of the

number of iterations on the generation of a sequence x. For a given vector of

parameters ψ and values of two selected covariates from the data set, we gen-

erate iteratively sequences x using Gibbs sampler, and estimate the probability

of a 1 for each cell. At each iteration the estimated probability is calculated as

the average of the values obtained in that cell during the iterations performed

up to that one. In Fig. A.1 we plot the probabilities for 20 cells randomly se-

lected and observe that they stabilise at around 200 iterations.

Number of iterations for convergence of logC(ψ1)

We select 3 covariates from the data set, fix the parameter vector ψ∗ and con-

struct the grid Ω around ψ∗ which has 65 points. For each point we apply the

MCMC algorithm and plot the ergodic mean of logC(ψ1). Here we present the

plots for 9 of these points (Fig. A.2) with less stable patterns and observe that

they converge at around 200 to 400 iterations.
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Figure A.1: Convergence of the probability of presence for 20 cells randomly selected

(fix parameter ψ).

Transition distribution for a parameter λ with

Gaussian noise

Given the value of λ at the (t − 1)th iteration, λ(t−1), we want to find the con-

ditional distribution of λ, q(λ|λ(t−1)), that follows the random walk

h(λ) = h(λ(t−1)) + ε ; ε ∼ N (0, s) ,

for a known monotone function h(.). The distribution from where we generate

values for a new λ, q(λ|λ(t−1)), is called the transition distribution. Since we

know the function h(.) and the value λ(t−1), we have completely specified the

distribution of h(λ) which is also normal with mean h(λ(t−1)) and variance of

the noise s, i.e.:

f(h(λ)) = (2πs)−1/2 exp
[
−(2s)−1(h(λ)− h(λ(t−1)))2

]
.

Let x = h(λ), y = h−1(x) = λ, and g(.) = h−1(.), thus y = g(x) and x =

g−1(y). We get the distribution of the transformation of the random variable Y:

fY (y) = fX(g−1(y))

∣∣∣∣∂X∂Y
∣∣∣∣

⇒ f(λ) = f(h(λ))

∣∣∣∣∂h(λ)

∂λ

∣∣∣∣ .
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Figure A.2: Convergence of logC(ψ1) for 9 points in Ω (fix parameter ψ∗).

Since |∂h(λ)/∂λ| is a function of λ we call it Jλ. We substitute to get the condi-

tional distribution of λ given λ(t−1):

q(λ|λ(t−1)) = f(h(λ)) Jλ = (2πs)−1/2 exp
[
−(2s)−1(h(λ)− h(λ(t−1)))2

]
Jλ .

Similarly we can express the distribution of λ(t−1) for a given λ:

q(λ(t−1)|λ) = f(h(λ(t−1))) J
(t−1)
λ

= (2πs)−1/2 exp
[
−(2s)−1(h(λ(t−1))− h(λ))2

]
J
(t−1)
λ .

The ratio of the two previous distributions is called the proposal ratio:

q(λ(t−1)|λ)

q(λ|λ(t−1))
=

(2πs)−1/2 exp
[
−(2s)−1(h(λ(t−1))− h(λ))2

]
J
(t−1)
λ

(2πs)−1/2 exp
[
−(2s)−1(h(λ)− h(λ(t−1)))2

]
Jλ

=
J
(t−1)
λ

Jλ
.

The last simplification is due to the symmetry of the random noise.
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Figures from Chapter 5

Temperature
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Figure B.1: Images generated on a grid of N = 2195 values using the covariate

Average temperature with φ = (−1.5, 2)′, and β = 0 (top right), β = 1 (bottom left),

β = 1.5 (bottom right).
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Figure B.2: Observed maps (right) obtained by disturbing the true maps (left) with

α = (−2.5,−0.5, 1.2, 2)′. True maps are generated with Average temperature.
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Figure B.3: Observed maps (right) obtained by disturbing the true maps (left) with

α = (−2.5,−0.5, 1.2, 2)′. True maps are generated with Average temperature, Open

water, Distance from standing fresh water, and Grassland/herbaceous/pasture/crops,

with φ = (−2,−1.5, 2, 2, 1)′, and different values of β.
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Figure B.4: Diagnostic plots for β, φ0, φ1 with PL approximation.
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Figure B.5: Diagnostic plots for β, φ0, φ1 with ratio approximation.



Chapter B. Figures from Chapter 5 101

0.00 0.05 0.10 0.15 0.20

0
2

4
6

8
10

φ=(−1.5, 2)'

β

po
st

er
io

r 
de

ns
ity

PL
PL−adj

0.9 1.0 1.1 1.2

0
2

4
6

8

φ=(−1.5, 2)'

β

po
st

er
io

r 
de

ns
ity

PL
PL−adj

1.4 1.5 1.6 1.7

0
2

4
6

φ=(−1.5, 2)'

β

po
st

er
io

r 
de

ns
ity

PL
PL−adj

Figure B.6: Posterior distribution of β using the PL approximation for the likelihood

and the adjusted PL, and keeping φ fixed at the true value.
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Figure B.7: Posterior distribution of φ0 (left) and φ1 (left) using the PL approximation

for the likelihood and the adjusted PL, and keeping the other parameters fixed at their

true values.
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Figure B.8: Diagnostic plots for β and φk (k = 0, . . . , 4) with a simulated map using

PL approximation.
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Population

[ −0.56  −  −0.29 )
[ −0.29  −  −0.26 )
[ −0.26  −  −0.17 )
[ −0.17  −  0.07 )
[ 0.07  −  32 ]

Elevation

[ −1.29  −  −1.01 )
[ −1.01  −  −0.44 )
[ −0.44  −  0.21 )
[ 0.21  −  0.81 )
[ 0.81  −  4 ]

Average temperature

[ −2.38  −  −0.92 )
[ −0.92  −  −0.34 )
[ −0.34  −  0.38 )
[ 0.38  −  0.67 )
[ 0.67  −  1.9 ]

Mean canopy cover

[ −2.4  −  −1.27 )
[ −1.27  −  0.42 )
[ 0.42  −  0.47 )
[ 0.47  −  0.47 )
[ 0.47  −  3.1 ]

Mean imperviousness to water

[ −3.48  −  −0.91 )
[ −0.91  −  −0.26 )
[ −0.26  −  0.31 )
[ 0.31  −  0.95 )
[ 0.95  −  2.4 ]

Distance from flowing fresh water

[ −0.71  −  −0.51 )
[ −0.51  −  −0.4 )
[ −0.4  −  −0.27 )
[ −0.27  −  0.17 )
[ 0.17  −  10 ]

Figure C.1: Two-dimensional representation of selected covariates that are categorised

according to quantiles.
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Distance from flowing fresh water

[ −2.19  −  −0.66 )
[ −0.66  −  −0.36 )
[ −0.36  −  −0.09 )
[ −0.09  −  0.41 )
[ 0.41  −  4.7 ]

Distance from standing fresh water

[ −3.44  −  −0.76 )
[ −0.76  −  −0.28 )
[ −0.28  −  0.15 )
[ 0.15  −  0.74 )
[ 0.74  −  3.9 ]

Distance from wet vegetation

[ −2.72  −  −0.8 )
[ −0.8  −  −0.34 )
[ −0.34  −  0.06 )
[ 0.06  −  0.71 )
[ 0.71  −  4.4 ]

LPI

[ −1.97  −  −0.83 )
[ −0.83  −  −0.42 )
[ −0.42  −  0.05 )
[ 0.05  −  0.74 )
[ 0.74  −  4.3 ]

Open water

[ −1.36  −  −0.72 )
[ −0.72  −  −0.4 )
[ −0.4  −  −0.05 )
[ −0.05  −  0.53 )
[ 0.53  −  11 ]

Developed, open space and low intensity

[ −2.6  −  −0.82 )
[ −0.82  −  −0.46 )
[ −0.46  −  −0.04 )
[ −0.04  −  0.73 )
[ 0.73  −  4.1 ]

Figure C.2: Two-dimensional representation of selected covariates that are categorised

according to quantiles.
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Developed, medium and high intensity

[ −1.11  −  −0.73 )
[ −0.73  −  −0.53 )
[ −0.53  −  −0.18 )
[ −0.18  −  0.6 )
[ 0.6  −  5.4 ]

Deciduous, evergreen and mixed forest

[ −3.7  −  −0.91 )
[ −0.91  −  −0.39 )
[ −0.39  −  0.22 )
[ 0.22  −  0.91 )
[ 0.91  −  3.1 ]

Shrub/scrub

[ −1.7  −  −0.89 )
[ −0.89  −  −0.52 )
[ −0.52  −  −0.02 )
[ −0.02  −  0.66 )
[ 0.66  −  4.4 ]

Grassland/herbaceous/pasture/crops

[ −1.74  −  −0.85 )
[ −0.85  −  −0.34 )
[ −0.34  −  0.14 )
[ 0.14  −  0.74 )
[ 0.74  −  6.8 ]

Woody and herbaceous wetlands

[ −1.48  −  −0.98 )
[ −0.98  −  −0.49 )
[ −0.49  −  0.1 )
[ 0.1  −  0.8 )
[ 0.8  −  4.7 ]

Figure C.3: Two-dimensional representation of selected covariates that are categorised

according to quantiles.
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Figure C.4: Diagnostic plots for φ0, φ3, φ4, φ5, φ6, φ11, φ13 with the logistic model for

the Eastern Meadowlark.
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Figure C.5: Diagnostic plots for φ0, φ2, φ3, φ6, φ7, φ14 with the logistic model for the

American Black Duck.
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Figure C.6: Diagnostic plots for β, φ0, φ3, φ5, φ13 with the autologistic model for the

Eastern Meadowlark.
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Figure C.7: Diagnostic plots for β, φ0, φ2, φ3, φ5, φ6, φ11 with the autologistic model

for the American Black Duck.
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Figure C.8: Diagnostic plots for β, φ0, φ3, φ5, φ11, φ12, φ15, φ16 with the SHMM for

the Eastern Meadowlark.



Chapter C. Figures from Chapter 6 115

0 2000 4000 6000 8000 10000

0.
6

0.
8

1.
0

1.
2

Trace

Index

β

0 2000 4000 6000 8000 10000

0.
95

1.
00

1.
05

1.
10

Ergodic Mean

Index

β

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F 

β

0 2000 4000 6000 8000 10000

−2
.0

−1
.5

−1
.0

−0
.5

0.
0

Index

φ 0

0 2000 4000 6000 8000 10000

−1
.5

−1
.4

−1
.3

−1
.2

−1
.1

Index

φ 0

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F 

φ 0

0 2000 4000 6000 8000 10000

−0
.6

−0
.4

−0
.2

0.
0

Index

φ 3

0 2000 4000 6000 8000 10000

−0
.4

0
−0

.3
5

−0
.3

0
−0

.2
5

−0
.2

0

Index

φ 3

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F 

φ 3

0 2000 4000 6000 8000 10000

−1
.2

−1
.0

−0
.8

−0
.6

−0
.4

−0
.2

Index

φ 5

0 2000 4000 6000 8000 10000

−0
.7

0
−0

.6
5

−0
.6

0
−0

.5
5

Index

φ 5

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F 

φ 5

0 2000 4000 6000 8000 10000

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Index

φ 1
1

0 2000 4000 6000 8000 10000

0.
55

0.
60

0.
65

Index

φ 1
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F 

φ 1
1

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Index

φ 1
3

0 2000 4000 6000 8000 10000

0.
30

0.
35

0.
40

0.
45

0.
50

Index

φ 1
3

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F 

φ 1
3

0 2000 4000 6000 8000 10000

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

Index

φ 1
7

0 2000 4000 6000 8000 10000

0.
15

0.
20

0.
25

Index

φ 1
7

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F 

φ 1
7

Figure C.9: Diagnostic plots for β, φ0, φ3, φ5, φ11, φ13, φ17 with the SHMM for the

American Black Duck.
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Figure C.10: Diagnostic plots for α1, α2, α3, α4 with the SHMM for the Eastern

Meadowlark.
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Figure C.11: Diagnostic plots for α1, α2, α3, α4 with the SHMM for the American

Black Duck.
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Figure C.12: Uncertainty (inter-quartile range) for the probabilities of non-observed

presence from the SHMM for the Eastern Meadowlark and the American Black Duck.
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FRÜHWIRTH-SCHNATTER (2001). Markov chain Monte Carlo estimation of

classical and dynamic switching and mixture models. Journal of the Amer-

ican Statisistical Association 96 194–209.

FRY, J., XIAN, G., JIN, J., S. ADN DEWITZ, HOMER, C., YANG, L., BARNES,

C., HEROLD, N. & WICKHAM, J. (2011). Completion of the 2006 National

Land Cover Database for the Conterminous United States. Photogrammetric

Engineering and Remote Sensing 77 858–864.

FURRER, R., NYCHKA, D. & SAIN, S. (2012). fields: Tools for spatial data.

R package version 6.6.3. http://CRAN.R-project.org/package=fields.

Accessed: 07/10/2012.

GASTON, K. J. (1994). Rarity. Springer.

GELMAN, A. (2002). Posterior distribution. Encyclopedia of Environmetrics 3

1627–1628.

GELMAN, A., CARLIN, J., STERN, H. & RUBIN, D. (2003). Bayesian Data

Analysis. Chapman & Hall/CRC.

GELMAN, A. & MENG, X. L. (1998). Simulating normalizing constants: From

importance sampling to bridge sampling to path sampling. Statistical Science

13 163–185.

GELMAN, A., MENG, X. L. & STERN, H. (1996). Posterior predictive assess-

ment of model fitness via realized discrepancies. Statistica Sinica 6 733–807.

GEORGE, E. L. & MCCULLOCH, R. E. (1993). Variable selection via Gibbs sam-

pling. Journal of the American Statisistical Association 88 881–889.

GEORGE, E. L. & MCCULLOCH, R. E. (1997). Approaches for Bayesian variable

selection. Statisistica Sinica 7 339–373.

GEYER, C. J. & THOMPSON, E. A. (1992). Constrained Monte Carlo maximum

likelihood for dependent data. Journal of the Royal Statistical Society, Ser. B 54

657–699.

GODSILL, S. J. (2001). On the relationship between MCMC model uncertainty

methods. Journal of Computational and Graphical Statistics 10 230–248.



122 BIBLIOGRAPHY

GREEN, P. (1995a). MCMC in image analysis. Markov chain Monte Carlo in

practice 381–399.

GREEN, P. J. (1995b). Reversible jump Markov chain Monte Carlo computation

and Bayesian model determination. Biometrika 82 711–732.

GREEN, P. J. & RICHARDSON, S. (2002). Hidden Markov models and disease

mapping. Journal of the American Statisistical Association 97 1055–1070.

GU, M. G. & ZHU, H. T. (2001). Maximum likelihood estimation for spatial

models by Markov chain Monte Carlo stochastic approximation. Journal of

the Royal Statistical Society, Ser. B 63 339–355.

GUMPERTZ, M., WU, C.-T. & PYE, J. (2000). Logistic regression for southern

pine beetle outbreaks with spatial and temporal autocorrelation. Forest Sci-

ence 46 95–107.

GUYON, X. & HARDOUIN, C. (2002). Markov chain markov field dynamics:

models and statistics. Statistics: A Journal of Theoretical and Applied Statistics

36 339–363.

HAINING, R. (2003). Spatial Data Analysis - Theory and Practice. Cambridge

University Press.

HARDOUIN, C. & GUYON, X. (2009). Exact marginals and normalizing con-

stant for gibbs distributions. C. R. Acad. Sci. Paris, Ser. I 348 199–201.

HASTIE, T. J. & TIBSHIRANI, R. J. (1990). Generalized Additive Models. Chapman

& Hall/CRC.

HEAGERTY, P. J. & LUMLEY, T. (2000). Window subsampling of estimating

functions with application to regression models. Journal of the American Stati-

sistical Association 95 197–211.
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