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ABSTRACT. In questa tesi viene presentata la costruzione di nuove con-

dizioni sufficienti per la verifica di una proprietà delle funzioni denomi-

nata steepness. Tale proprietà è un’ipotesi fondamentale per l’applicazione

del teorema di Nekhoroshev ad un sistema Hamiltoniano quasi integra-

bile, e la sua formulazione viene fornita da Nekhoroshev in maniera im-

plicita. Per questo motivo è necessario avere a disposizione delle con-

dizioni sufficienti per la verifica della stepness.

Nekhoroshev formulò negli anni settanta il suo celebre teorema, il quale

garantisce sotto opportune ipotesi una forte stabilità per quei sistemi di-

namici che non sono integrabili, ma possono scriversi come una pic-

cola perturbazione di un sistema integrabile. Il teorema di Nekhoroshev

costituisce un risultato fondamentale nell’ambito della Teoria delle Per-

turbazioni, in particolar modo per le sue importanti applicazioni nella

meccanica celeste.

Per la costruzione delle nuove condizioni sufficienti per la steepness

viene utilizzato un risultato dimostrato da Nekhoroshev. Le nuove con-

dizioni sono più deboli di quelle conosciute fino ad ora, e di conseguenza

permettono di individuare una classe più ampia di funzioni steep. In par-

ticolare, le nuove condizioni riguardano funzioni di due, tre e quattro

variabili rispettivamente.

Nell’ultimo capitolo di questa tesi viene costruito un algoritmo gen-

erale per la verifica della steepness di funzioni di tre o quattro vari-

abili. Inoltre, allo scopo di fornire qualche esempio concreto di ap-

plicazione delle nuove condizioni, tale algoritmo viene applicato a due

sistemi fisici: l’Hamiltoniana del problema dei tre corpi ristretto circo-

lare, e l’Hamiltoniana di una catena di quattro oscillatori armonici, con

l’energia potenziale del problema di Fermi-Pasta-Ulam. In entrambi i

casi le nuove condizioni sufficienti permettono di dimostrare numerica-

mente la steepness.





ABSTRACT. This Thesis presents the construction of new sufficient con-

ditions for the verification of a property of functions called steepness. It

is a peculiar property required for the application of the Nekhoroshev

Theorem to a quasi-integrable Hamiltonian system, and its formulation

is given by Nekhoroshev in an implicit way. Therefore sufficient condi-

tions are necessary for the verification of the steepness.

Nekhoroshev formulated his celebrated Theorem in the seventies, pro-

viding under suitable hypothesis a strong stability result for those dy-

namical systems which are not integrable, but can be considered as a

small perturbation of an integrable system. The Nekhoroshev Theorem

is a fundamental result in the framework of the Perturbation Theory, es-

pecially for its important applications in Celestial Mechanics.

For the construction of new sufficient conditions for steepness, a result

proved by Nekhoroshev is used. The new conditions are weaker than the

ones known up to now, hence they allow to detect a larger class of steep

functions. In particular, the new conditions concern functions of two,

three and four variables respectively.

In the last Chapter of this Thesis a general algorithm for the verification

of the steepness of functions of three or four variables is constructed.

Moreover, in order to provide some concrete examples of applicability

of the new conditions, such algorithm is applied to two physical sys-

tems: the Hamiltonian of the circular restricted three-body problem, and

the Hamiltonian of a chain of four harmonic oscillators, with the po-

tential energy of the Fermi-Pasta-Ulam problem. In both cases the new

sufficient conditions allow to prove numerical evidence of the steepness.
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Introduction

The development of the Hamiltonian Perturbation Theory received a

strong impulse from the study of long-term stability problems of Celestial

Mechanics. Since the fundamental pioneering works of Laplace, Lagrange

and Poincaré, the old problem of the stability of the Solar System motivated

most of the research in this field.

Many investigations of mechanical stability concern the Hamiltonian

systems which are not integrable, but are in some sense “close” to an inte-

grable one, the so-called quasi-integrable systems. There are important ex-

amples from Physics of systems which can be described by quasi-integrable

Hamiltonians, including the Planetary problem. The stability of quasi-

integrable systems is object of study of the Hamiltonian Perturbation The-

ory, whose most important results are the ce-lebrated KAM[38, 2, 47] and

Nekhoroshev[49, 50] Theorems.

Let us consider an analytic quasi-integrable system

H(I,ϕ) = h(I)+ ε f (I,ϕ), (0.1)

where (I,ϕ)∈D×Tn, D⊆Rn open, are action-angle variables, and ε is suf-

ficiently small. The KAM Theorem refers to results proved by Kolmogorov,

Arnol’d and Moser between the fifties and the sixties of the last century, and

ensures, under suitable hypotheses, perpetual stability of the motions of H,

for almost all initial conditions in the phase-space. Only a subset of the

phase-space of small Lebesgue measure, commonly called Arnol’d web, is

not included in those stable solutions. The KAM Theorem provides a strong

stability result and had many applications in Celestial Mechanics (see for
3



Introduction

example [3, 14, 15, 16, 13, 17, 20, 26, 42, 43, 61]). The stability of the or-

bits in the so-called Arnol’d web remains an open problem, which is known

under the name of Arnol’d diffusion [4].

The Nekhoroshev Theorem [49, 50], formulated by Nekhoroshev in

the seventies of the last century, provides an upper bound to the stability

times in the Arnol’d web. Precisely, if the Hamiltonian H is analytic and

its integrable approximation h satisfies a non-degeneracy assumption called

steepness, any possible instability of the action variables may occur only

after times which increase exponentially with an inverse power of ε . Since

the Nekhoroshev Theorem uniformly applies to all initial conditions of the

phase-space, by providing finite but very long stability times, it has impor-

tant consequences for the stability of the motions of systems of interest from

Physics (see for example [6, 9, 10, 11, 24, 25, 18, 12, 22, 23, 28, 31, 32, 36,
35, 34, 33, 40, 41, 46, 53, 63]).

A peculiar hypothesis of the Nekhoroshev Theorem concerns the geo-

metric properties of the integrable approximation, called steepness.

Precisely, Nekhoroshev defined a function h to be steep at a point Ī =

(Ī1, . . . , Īn) ∈ D if ∇h(Ī) 6= 0, and if for each m = 1, . . . ,n− 1, there exist

constants Cm > 0, δm > 0 and αm ≥ 1 such that, given any m-dimensional

linear space λ orthogonal to ∇h(Ī), we have:

max
0≤η≤ξ

(
min

I∈Ī+λ :‖I−Ī‖=η
‖∇(h|Ī+λ )(I)‖

)
>Cm ξ αm, ∀ξ ∈ (0,δm],

where ∇h|Ī+λ denotes the gradient of the restriction of h to the affine space

through Ī spanned by λ . In order to apply the Nekhoroshev Theorem to a

specific Hamiltonian, we therefore need to verify the steepness of its inte-

grable approximation, and it may be very difficult because the definition of

steepness is formulated in an implicit way.

Nekhoroshev indicated as the simplest examples of steep functions the

quasi-convex ones, and the functions satisfying a non-degeneracy property

on the 3-jet, namely the so-called 3-jet non-degenerate functions. More-

over, he formulated a general result about the steepness of functions whose
4



generic r-jet satisfies certain conditions defined by systems of equalities and

inequalities.1

We remark that quasi-convexity represents a special case of steepness.

In fact, for quasi-convex functions, the proof of the Nekhoroshev Theorem

greatly simplifies, due to the simpler geometry of resonances, and also to the

possibility of using energy conservation to provide the confinement of the

motions [9, 8, 56, 45]. Also, the stability times provided by the Nekhoro-

shev Theorem, are longer for the steep functions which are quasi-convex.

Unfortunately, quasi-convexity is a strong property rarely verified in

real physical systems, while steepness is, in some sense, a generic prop-

erty for an integrable Hamiltonian. Therefore the study of the steepness

is very important in view of the applications to systems of interest from

Physics. It happens, in fact, that Hamiltonians describing real systems have

an integrable approximation which is neither quasi-convex nor 3-jet non-

degenerate, as in the case of the circular restricted three-body problem in

a neighborhood of the Lagrangian points L4 and L5 for a specific value of

the mass ratio [6], and in the case of the Riemann ellipsoids [24]. We need,

therefore, conditions which let us identify the steepness also of a 3-jet de-

generate function.

In [49, 50] Nekhoroshev constructed sufficient conditions for steepness

of a function, based on the solvability of collections of systems C r(n) of

equalities and inequalities, depending on the number n of degrees of free-

dom, the derivatives of the function up to a certain order r, and some aux-

iliary parameters. For each n ≥ 2, r ≥ 2 and a fixed value Ī ∈ D, we denote

by σ r(n) the set of r-jets at Ī of functions with n degrees of freedom, such

1We follow the definition of r-jet used by Nekhoroshev in [49]. The r-jet of a function

h at a point Ī = (Ī1, . . . , Īn) is the vector Pr(h) consisting of the coefficients of the Taylor

polynomial of order r of the function h at Ī, with the exception of the constant term, that is

Pr(h) = {hµ , 1 ≤ |µ|1 ≤ r}, hµ :=
1
µ!

∂ |µ|1 h
∂ Iµ (Ī),

where µ = (µ1, . . . ,µn) is a multi-index, µi ≥ 0 are integers and |µ |1 = ∑n
i=1 µi .
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that at least one of the systems in C r(n) is solvable. Nekhoroshev proved

that if ∇h(Ī) 6= 0 and if the r-jet of h at Ī lies outside the closure of σ r(n),

then h is steep in a neighborhood of Ī.

Such conditions are really explicit for r = 2, corresponding to quasi-

convexity for all n ≥ 2. For r = 3 the conditions are only a slight modifica-

tion of the 3-jet non-degeneracy, and do not let us identify a class of steep

functions larger than the 3-jet non-degenerate ones. Therefore, weaker suf-

ficient conditions must involve also the 4-jet of the function.

For r ≥ 4, an explicit expression for such conditions has not yet been

investigated and formulated.

In order to produce explicitly the conditions provided by Nekhoroshev,

from a collection C r(n), one needs to construct a new collection of systems

describing the closure of σ r(n) or, when this is not possible, a closed set

containing σ r(n). Actually the new collection will represent the explicit

sufficient condition for steepness: if a r-jet at Ī does not solve any of the

systems in this collection, it means it lies outside the closure of σ r(n), and

consequently the function is steep in a neighborhood of Ī.

We remark that, performing the closure of a certain set whose ele-

ments satisfy equalities and inequalities, involves operations like limits of

sequences, and the limit values not necessarily satisfy the same inequalities.

The main result of this Thesis is the investigation of the case r = 4.

Precisely, we construct new sufficient conditions for the steepness of func-

tions of n = 2,3,4 degrees of freedom. We also prove that when n ≥ 5, the

Nekhoroshev result does not provide any extension of the 3-jet condition,

therefore the only interesting cases are n = 2,3,4.

In the construction of the new conditions, we first show that in some

cases one can formulate the systems of the collections C r(n) in a simplified

form, by reducing the number of the auxiliary parameters. Then, for the

case n = 2, we find the closure of the set σ4(2), while for the cases n = 3

and n = 4, we construct two closed sets containing respectively σ4(3) and

σ4(4) (see Propositions 2.3, 2.4 and 2.5, Chapter 2, and [59]).
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The new conditions may be effectively investigated numerically [60].

In order to test the new sufficient conditions for steepness, in Chapter 3

we construct an algorithm for the verification of the steepness of a given

function with n = 3,4, which extends the algorithm of [6] for functions

of three degrees of freedom. The extension consists in the fact that our

algorithm is able to verify the steepness also of 3-jet degenerate functions,

and can be used also for functions with four degrees of freedom. Moreover,

in Chapter 3 we illustrate the numerical investigation of the steepness of

two selected examples, one with n = 3 and one with n = 4.

The first example is the Hamiltonian of the circular restricted three-

body problem, whose stability properties in a neighborhood of the elliptic

equilibria L4 and L5 are still not completely known. In [6] Benettin, Fassò

and Guzzo provided numerical evidence of exponential stability for all the

values of the reduced mass µ below the Routh critical mass, except a fi-

nite number of values. For a special value µ3, the authors could not prove

stability, because the integrable approximation of the Hamiltonian is 3-jet

degenerate. Therefore, we decided to test the new sufficient condition for

steepness in the case µ = µ3, and we obtained that, also for this value of the

reduced mass, the Hamiltonian is steep in a neighborhood of the equilibria.

The second example we considered is the Hamiltonian of a chain of

four oscillators, with the potential of the famous Fermi-Pasta-Ulam problem

[27]. The Hamiltonian depends on two parameters α,β , that we assumed

in (0,1]. We investigated the steepness of the Hamiltonian in a neighbor-

hood of the origin for different values of α and β . In particular, we chose a

certain number of couples α,β , and found that, for all of them, the Hamil-

tonian is never quasi-convex neither 3-jet non-degenerate. Therefore, we

selected a couple of values, precisely α = 0.1 and β = 0.9, and we tested

the new sufficient condition for steepness. We obtained that the Hamilton-

ian is steep in a neighborhood of the origin.

The Thesis is organized as follows. In Chapter 1 we provide a gen-

eral description of the main results of the Hamiltonian Perturbation Theory,

7
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that is the KAM and Nekhoroshev Theorems, and we discuss the notion of

steepness. In Chapter 2 we report the sufficient conditions for steepness pro-

vided by Nekhoroshev in [49], with the detailed description of the systems

in the collections C r(n). Then, we formulate and prove the Propositions

2.3, 2.4 and 2.5, which are the new sufficient conditions for steepness for

functions of respectively two, three and four degrees of freedom. Finally, in

Chapter 3, we construct the algorithm for the verification of the steepness

of functions with three and four degrees of freedom, and we use it for the

verification of the steepness of two specific Hamiltonians.

8



CHAPTER 1

Long-term stability in Hamiltonian systems

In this Chapter we review the main ideas at the basis of the Hamilton-

ian Perturbation Theory, and we discuss the celebrated KAM [38, 2, 47]

and Nekhoroshev [49, 50] Theorems. Then, we focus our attention on the

steepness, which is the main argument of this Thesis.

1.1. Integrable and quasi-integrable Hamiltonian systems

A Hamiltonian system with n degrees of freedom is integrable when

it admits n first integrals satisfying suitable conditions, which in particular

allow us to describe the dynamics by linear motions along n-dimensional

invariant tori. Such a characterization is provided by the Liouville-Arnol’d

Theorem, which can be stated as follows.

THEOREM 1.1 (Liouville-Arnol’d [1]). Let H : B → R be a Hamil-

tonian, with B an open subset of R2n provided with canonical variables

(p,q), and assume there exist n first integrals F1, . . . ,Fn : B → R, such that

{Fi,Fj} = 0 in B for all i, j. Assume F1, . . . ,Fn are linearly independent,

that is:

rank
( ∂ (F1, . . . ,Fn)

∂ (p1, . . . , pn,q1, . . . ,qn)

)
= n,

on a level set

Σc = {(p,q) ∈ B : Fi(p,q) = ci}, c = (c1, . . . ,cn) ∈ Rn,

so that Σc is a n-dimensional sub-manifold of B. Further assume that Σc is

compact (or contains a compact component, and restrict the attention to it).

Then

i. Σc is diffeomorphic to the n-dimensional torus Tn = Rn/Zn

9



Long-term stability in Hamiltonian systems

ii. there exist a neighborhood C of c, an open set D ⊆ Rn and a

canonical diffeomorphism

w :
⋃

c′∈C

Σc′ −→ D×Tn

(p,q) 7−→ (I,ϕ)

such that H ◦w−1(I,ϕ) = h(I) and Fi ◦w−1(I,ϕ) = Fi(I).

Hence, when a Hamiltonian H satisfies the hypotheses of the Liouville-

Arnol’d Theorem, we can introduce new variables (I,ϕ), which are called

action-angle variables, such that the actions I are first integrals, and the

Hamilton’s equations assume the very simple form:

{
İ = 0

ϕ̇ = ∂h
∂ I =: ω(I) .

Such equations can be immediately integrated, providing for each initial

condition (I(0),ϕ(0)) a linear motion with constant velocity ω(I(0)) on

the invariant torus I = I(0):

{
I(t) = I(0)

ϕ(t) = ω(I(0)) t +ϕ(0) .

The presence of a set of linearly independent first integrals in mutual

involution is a very restrictive hypothesis, and corresponds to suitable sym-

metry properties of the system.

Most of the real physical systems do not satisfy this hypothesis, hence

they are not integrable. Nevertheless they can be often described by a quasi-

integrable Hamiltonian, that is a Hamiltonian that in action-angle variables

(I,ϕ) ∈ D×Tn, with D ⊆ Rn open, is of the form:

H(I,ϕ) = h(I)+ ε f (I,ϕ) (1.1)
10



1.2 The fundamental equation of the Perturbation Theory

where h(I) is the integrable approximation, and ε is a small parameter

(|ε| � 1) that measures the intensity of the perturbation f (I,ϕ). The corre-

spondent Hamilton’s equations are:{
İ =−ε ∂ f

∂ϕ
ϕ̇ = ∂h

∂ I + ε ∂ f
∂ I .

(1.2)

In this case the actions are not expected to be first integrals anymore, and

the Hamilton’s equations cannot be integrated by quadratures.

In a quasi-integrable system the action variables, in principle, may evolve

in time with a speed of order ε . Despite this, it typically turns out that after

a long time, even grater than 1/ε , the actions still differ only slightly from

their initial values. Motivated by this fact, we say that a solution (I(t),ϕ(t))
of (1.2) is stable in a given finite or infinite interval of time [0,Tε ] if we have

‖I(t)− I(0)‖< c(ε) (1.3)

for all t ∈ [0,Tε ], where c(ε) → 0 as ε → 0. The value Tε is called the

stability time of the solution (I(t),ϕ(t)). This notion of stability becomes

non-trivial if Tε grows at least as 1/ε , and when the interval of time is

infinite, we say that the solution is perpetually stable.

A fundamental question of the Hamiltonian Perturbation Theory is if

perpetually stable solutions of (1.2) exist and, in case, how many of them

there are; for solutions which are not perpetually stable, one would like to

estimate their time of stability Tε .

1.2. The fundamental equation of the Perturbation Theory

Let us consider an analytic Hamiltonian (1.1), and assume f (I,ϕ) is

bounded in C 1-norm by A, then from the Hamilton’s equations (1.2) the

so-called (trivial) a priori estimate for the variation of the actions follows:

‖I(t)− I(0)‖ ≤ εA|t| .

It means that up to times of order 1/
√

ε the variation of the actions remains
√

ε-limited.
11



Long-term stability in Hamiltonian systems

The Hamiltonian Perturbation Theory consists in some techniques which

try to improve the a priori estimate, that is to extend the stability time to

values grater than 1/
√

ε . Precisely, the classical approach is to search for

a near to identity canonical change of variables such that, in the new vari-

ables, the perturbation appears reduced, for example to the order ε2. This

way the time of stability would be extended to the order 1/ε . When such

a transformation exists, it means we can perform a so-called perturbation

step. The best we can expect is to be able to iterate the procedure, extend-

ing as much as possible the stability time of the system.

In Hamiltonian mechanics a way to obtain near to the identity canonical

transformations is the Lie series method: the transformation is given by

the flow at a fixed time of an autonomous auxiliary Hamiltonian system.

Precisely, given a Hamiltonian χ : R2n −→ R, its time-ε Hamiltonian flow

Φε
χ defines a near to identity canonical change of variables:

(I,ϕ) = Φε
χ(I

′,ϕ ′).

The idea is to search χ such that the flow Φε
χ conjugates H to a new

Hamiltonian H ′ = H ◦Φε
χ of the form

H ′(I′,ϕ ′) = h(I′)+ εg(I′)+ ε2 f ′(I′,ϕ ′) .

Standard computations show that χ must satisfy the equation

ω(I) · ∂ χ
∂ϕ

(I,ϕ) = f (I,ϕ)−〈 f 〉ϕ , (1.4)

where 〈 f 〉ϕ denotes the average over ϕ of f . Equation (1.4) is called the

fundamental equation of the Perturbation Theory, because the study of the

stability of a quasi-integrable system is based on the existence of a solution

of such equation.

Let us expand f and χ in Fourier series:

f = ∑
k∈Zn

fk(I)eik·ϕ χ = ∑
k∈Zn

χk(I)eik·ϕ

12



1.2 The fundamental equation of the Perturbation Theory

and denote by f̂ = {k ∈ Zn : fk 6= 0} the spectrum of f . Then equation (1.4)

implies:

χ =−i ∑
k∈ f̂

fk(I)
ω(I) · k

eik·ϕ , (1.5)

which is well defined only for those actions I such that:

ω(I) · k 6= 0 ∀k ∈ f̂ ,

that is actions corresponding to non-resonant values (we say that I corre-

sponds to a resonant value if ω(I) · k = 0 for some k ∈ f̂ ).

Actually, for the convergence of the series (1.5), we should keep suffi-

ciently far from resonances, hence the actions should satisfy a stronger con-

dition. For some positive constants γ, τ ∈R, for example, this is granted by

the so-called Diophantine condition:

|ω(I) · k| ≥ γ
‖k‖τ ∀k ∈ f̂ . (1.6)

1.2.1. The Poincaré difficulty. The presence of small divisors in equa-

tion (1.5) represents an essential problem in the Hamiltonian Perturbation

Theory. In particular Poincaré proved that in a general situation, small divi-

sors prevent the solvability of equation (1.4) in any open subset of the action

domain [54]. In fact, by assuming a local non-degeneracy of the frequency

map:

det
(∂ω

∂ I

)
= det

(∂ 2h
∂ I2

)
6= 0

at all I ∈ D, and a genericity condition on the spectrum of f , the relevant

resonances form a dense set in the action-space. Therefore we cannot even

define the series (1.5) in any open subset of the phase-space, and conse-

quently we cannot perform the perturbation step.

Nevertheless the Hamiltonian Perturbation Theory developed some tech-

niques to escape the Poincaré difficulty, and to extend the stability time for

both resonant and non-resonant motions.

The main idea is that the perturbation of a Hamiltonian (1.1) can be

written as the sum of two parts: one part has a finite spectrum, the other

one is sufficiently small, and does not influence significantly the motion of
13



Long-term stability in Hamiltonian systems

the actions for a very long time. This is the idea at the basis of the proofs

of the two main Theorems of the Perturbation Theory, the KAM and the

Nekhoroshev Theorems, leading on the one hand to perpetual stability in

closed sets, on the other hand to exponential stability in all the phase-space.

1.3. Perpetual stability of non-resonant motions

In [2, 5, 38, 48] Arnol’d, Moser and Kolmogorov proved that if h is an-

alytic and non-degenerate, in the phase-space of a Hamiltonian (1.1) there

exists a set of invariant tori which are only a slight deformation of the in-

variant tori of the unperturbed system.

Such set, which is called Kolmogorov set, almost fills the whole phase-

space. In fact, the measure of the complementary of the Kolmogorov set

tends to zero as ε → 0. In particular, all the solutions on the Kolmogorov

set are perpetually stable.

This is the celebrated KAM Theorem, that we recall here in the ver-

sion by Arnol’d, with a statement improved by Lazutkin, Chierchia and

Gallavotti, and Pöschel [39, 19, 55].

THEOREM 1.2 (KAM). Let the Hamiltonian (1.1) be analytic and bounded

in a complex neighborhood of the domain D×Tn, with D ⊆ Rn open, and

let h satisfy the non-degeneracy condition

det
(∂ 2h

∂ I2

)
6= 0 (1.7)

at all I ∈ D. Then we can find positive constants ε0, a1, a2 such that for all

0 ≤ ε < ε0 there exist

- a near to identity smooth canonical transformation

wε : D′×Tn −→ D×Tn

(I′,ϕ ′) 7−→ (I,ϕ)

with D′ ⊆ Rn open, such that ‖I − I′‖ ≤ a1
√

ε,‖ϕ −ϕ ′‖ ≤ a2
√

ε
- a subset Dε ⊆ D∩D′ with large Lebesgue measure, that is

meas(D−Dε)∼
√

ε

14



1.3 Perpetual stability of non-resonant motions

- an integrable Hamiltonian hε(I′) defined on D′×Tn

such that the new Hamiltonian H ◦wε coincides, together with all its deriva-

tives, with hε for all I′ ∈ Dε .

On the different invariant tori corresponding to the different I′ ∈ Dε , the

motions are quasi-periodic with frequencies ω ′ = ∇hε(I′), and it turns out

that such frequencies are Diophantine with suitable γ ∼
√

ε and τ = n.

We remark that several formulations of the KAM Theorem exist in lit-

erature, with different hypotheses on h and f . In particular, Arnol’d proved

that the non-degeneracy assumption (1.7) may be replaced by the so-called

iso-energetic non-degeneracy:

det

(
∂ 2h
∂ I2

∂h
∂ I

∂h
∂ I 0

)
6= 0 ,

which ensures abundance of invariant tori in each energy level surface.

This is particularly important for n = 2. In fact, in this case the energy

level is a 3-dimensional surface which contains a large measure set of in-

variant 2-dimensional tori. Such tori separate the energy level, so that a

generic trajectory either lies on a torus or is trapped between two of them.

In both cases the trajectory can not escape, and we have perpetual stability.

We remark that the conditions for non-degeneracy and iso-energetic

non-degeneracy are independent from one another, that means that a non-

degenerate system may be iso-energetically degenerate, and a iso-energetically

non-degenerate system may be degenerate.

Finally, we remark that the KAM Theorem concerns stability for infinite

times, but limited to open subsets of the phase-space. An important question

is related to what times of stability characterize fixed open domains.

The Nekhoroshev Theorem [49, 50], which is another fundamental The-

orem of the Perturbation theory, gives an answer to this question.
15
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1.4. Exponential stability

When the integrable approximation h of an analytic Hamiltonian (1.1)

satisfies suitable geometric conditions, a remarkable result of the Perturba-

tion Theory ensures that the stability time Tε , for an estimate as in (1.3), is

much larger than 1/ε for all initial conditions in the phase-space.

The mentioned result is the celebrated Nekhoroshev Theorem, which

applies under the hypothesis of steepness for h (see Section 1.5 for the defi-

nition), and ensures stability times increasing exponentially with an inverse

power of ε .

The Nekhoroshev Theorem [49, 50] is not a perpetual stability result,

but since it uniformly applies to all initial conditions of the phase-space, by

providing finite but very long stability times, it has important consequences

for the stability of systems of interest from Physics (see for example [6, 9,
10, 11, 24, 25, 18, 12, 28, 31, 32, 36, 46, 53]).

A possible statement of the Nekhoroshev Theorem is the following.

THEOREM 1.3 (Nekhoroshev Theorem [49, 50]). Let the Hamiltonian

(1.1) be analytic in the domain D×Tn, with D ⊆ Rn open, and let h satisfy

in D a non-degeneracy condition called steepness. Then there exist posi-

tive constants a,b,ε0, I0, t0 such that if 0 ≤ ε < ε0, for every initial datum

(I(0),ϕ(0)) ∈ D×Tn the solutions of system (1.2) satisfy

‖I(t)− I(0)‖ ≤ I0εa (1.8)

for all times t such that

|t| ≤ t0 exp
(ε0

ε
)b
. (1.9)

The parameters a and b depend on the steepness properties of h (see Section

1.5).

The simplest classes of steep functions are the convex and the quasi-

convex ones. We recall that h is convex at I ∈ D if ∑n
i=1

∂ 2h
∂ Ii∂ I j

(I)viv j > 0

or < 0 for all v = (v1, . . . ,vn) ∈ Rn \{0}. A convex function is steep at all

points I ∈ D such that ω(I) 6= 0.
16



1.4 Exponential stability

Instead, following Nekhoroshev, h is quasi-convex at I ∈ D, if ω(I) 6= 0 and

the only solution v = (v1, . . . ,vn) ∈ Rn of the system

{
∑n

i=1
∂h
∂ Ii
(I)vi = 0

∑n
i, j=1

∂ 2h
∂ Ii∂ I j

(I)viv j = 0
(1.10)

is v = (0, . . . ,0). Quasi-convexity is clearly a generalization of convexity,

hence a convex function is in particular quasi-convex at all points I where

ω(I) 6= 0.

Nekhoroshev in [49] indicates also another class of steep functions: the

3-jet non-degenerate functions, which are defined as follows.

A function h is 3-jet non-degenerate at I ∈ D, if ω(I) 6= 0 and the only

solution v = (v1, . . . ,vn) ∈ Rn of the system
∑n

i=1
∂h
∂ Ii
(I)vi = 0

∑n
i, j=1

∂ 2h
∂ Ii∂ I j

(I)viv j = 0

∑n
i, j,k=1

∂ 3h
∂ Ii∂ I j∂ Ik

(I)viv jvk = 0

(1.11)

is v = (0, . . . ,0).

Conditions (1.11) are weaker than (1.10), thus quasi-convex functions

are also 3-jet non-degenerate.

Moreover, Nekhoroshev formulated a general result about the steepness

of functions whose generic r-jet satisfies certain conditions, defined by sys-

tems of equalities and inequalities. Such result provides some sufficient

conditions for steepness, and we will see later that it turns out to be very

useful because the steepness is a property implicitly defined.

Remark. We follow the definition of r-jet used by Nekhoroshev in [49].

The r-jet of a function h at a point Ī = (Ī1, . . . , Īn) is the vector Pr(h) con-

sisting of the coefficients of the Taylor polynomial of order r of the function

h at Ī, with the exception of the constant term, that is

Pr(h) = {hµ , 1 ≤ |µ|1 ≤ r}, hµ :=
1
µ!

∂ |µ|1h
∂ Iµ (Ī),

17
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where µ = (µ1, . . . ,µn) is a multi-index, µi ≥ 0 are integers and |µ|1 =

∑n
i=1 µi.

The quasi-convexity represents a special case of steepness. In fact, for

quasi-convex functions, the proof of the Nekhoroshev Theorem greatly sim-

plifies, due to the simpler geometry of resonances and also to the possibil-

ity of using energy conservation to provide the confinement of the motions

[9, 8, 56, 45]. In fact, in the early eighties, Benettin and Gallavotti [9]

showed that when h is quasi-convex, the conservation of the energy plays

a fundamental role in the confinement of the actions near resonances. We

briefly report here the argument they used.

Let us consider a Hamiltonian (1.1) and a resonance of order d. Pre-

cisely, let L be a d-dimensional lattice which admits a basis of integer

n-dimensional vectors k(1),k(2), . . .k(d), such that ‖k(i)‖ ≤ (ε0/ε)b for all

i ∈ {1,2, . . . ,d}. The correspondent resonant manifold ML is clearly:

ML = {I ∈ D : k ·ω(I) = 0 ∀k ∈ L } .

In a small neighborhood of ML , and sufficiently far from other re-

sonances, Nekhoroshev proves that it is possible to define a near to identity

canonical transformation which conjugates the Hamiltonian H to a reso-

nant normal form adapted to the resonance L and with exponentially small

remainder, that is:

H ′ = h(I)+ εg(I,ϕ)+ e−
( ε0

ε

)b

f ′(I,ϕ) . (1.12)

In H ′ there is still a non-integrable term of order ε , but it contains only the

Fourier harmonics in L :

g(I,ϕ) = ∑
k∈L

gk(I)eik·ϕ .

If we neglect the term e−
( ε0

ε

)b

f ′(I,ϕ), from the Hamilton’s equations

we obtain that the new actions move on a plane ΠL (I(0)) parallel to L and

containing the initial point I(0). In fact İ is a linear combination of vectors
18



1.4 Exponential stability

of L :

İ =−ε ∑
k∈L

igk(I)k eik·ϕ .

The plane ΠL (I(0)) is called fast drift plane (see Figure 1).

FIGURE 1. The confinement of the actions in the fast drift plane

Since h is quasi-convex, then the resonant manifold ML is transversal

to the plane of fast drift ΠL . We call I∗ their intersection point: such point

is an extremal for h restricted to ΠL . This is easy to see if we expand h

around I∗:

h(I) = h(I∗)+ω(I∗) · (I − I∗)+
1
2

h′′(I∗)(I − I∗) · (I − I∗)+ . . .

and we observe that the linear term vanishes when I ∈ ΠL (h′′(I∗) denotes

the Hessian matrix of h computed at I∗). As a consequence, in a neigh-

borhood of I∗, and on the plane ΠL , the level surfaces of h are concentric

ellipsoids around I∗.

Now the energy conservation provides the confinement. In fact, we

observe that the term ε g has oscillations bounded by ε . Therefore the mo-

tion of the actions is practically confined between two nearby level surfaces

of h. Such behavior persists as long as the neglected perturbation term,
19
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e−
( ε0

ε

)b

f ′, does not sufficiently move the actions, that is up to exponen-

tially long times of the order e
( ε0

ε

)b

.

After Benettin and Gallavotti, in the nineties Pöschel and Lochak [56,
44], by combining the argument on the conservation of the energy with

new ideas about the treatment of resonances, proved that, for quasi-convex

functions, the parameters a and b appearing in the estimates (1.8) and (1.9),

assume the best possible values: a = b = 1
2n . Therefore we say that convex

functions are the most stable among the steep functions.

In literature the Nekhoroshev Theorem is often used with reference to

the convex case, therefore we recall here the statement of the Theorem pro-

vided by Pöschel in [56].

THEOREM 1.4 (Nekhoroshev Theorem in the convex case). Let the

Hamiltonian (1.1) be analytic in a complex neighborhood of D×Tn and let

h be m-convex, that is

h′′(I)u ·u ≥ mu ·u

for any u ∈ Rn, at any I ∈ D, where h′′ denotes the Hessian matrix of h.

There exist ε0,a0, t0,ε∗ > 0 such that if ε < ε0, then any motion (I(t),ϕ(t))
satisfies

‖I(t)− I(0)‖ ≤ a0ε
1
2n

for any time t such that

|t| ≤ t0 exp
(ε∗

ε
) 1

2n .

If the complex neighborhood of D×Tn where (1.1) is analytic has the form

DρI ×Tn
ρϕ , where

DρI = {I ∈ Cn : there exists I0 ∈ D with ‖I − I0‖ ≤ ρI}

Tn
ρϕ = {ϕ ∈ (C/2πZ)n : |ℑϕi| ≤ ρϕ for any i = 1, . . . ,n} ,

then possible values for ε0, t0,a0 and ε∗ are:

ε0 =
mρ2

I

210(11M
m )2n

, a0 = ρI

(
11

M
m

)−1
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1.5 Steepness

t0 =
(

11
M
m

)2 ρϕ

Ω
, ε∗ =

(ρϕ

6

)2n
ε0 ,

where M is such that ‖h′′(I)u‖ ≤ M‖u‖ for any u ∈Rn and any I ∈ DρI , and

Ω = supI∈DρI
‖∇h(I)‖.

It’s important to remark that convexity is a strong property rarely ver-

ified in real physical systems. On the other hand, steepness seems to be

in some sense generic for analytic functions [50, 52]. Therefore the study

of the steepness is very important in view of the applications to systems of

interest from Physics.

1.5. Steepness

Given a Hamiltonian (1.1), the steepness of the integrable approxima-

tion h at a point Ī ∈D concerns lower estimates of the gradient of h restricted

to any linear space λ orthogonal to ∇h(Ī). The definition is motivated by

the following simpler estimate [51]. Let us consider the real polynomial:

P(x) = akxk +ak−1xk−1 + . . .+a0 , ak 6= 0,

then there exists a constant c(ak) such that

max
0≤η≤ξ

min
|x|=η

|P(x)| ≥ c(ak)ξ k

for all a0, . . . ,ak−1.

Steepness is a multivariable generalization of this estimate, and is de-

fined as follows.

DEFINITION 1.5 (Steepness [49, 50, 51]). Let h : D → R be a smooth

function, with D⊆Rn open. We say that h is steep at a point Ī =(Ī1, . . . , Īn)∈
D if the following two conditions hold:

- ∇h(Ī) 6= 0 ;

- for each m = 1, . . . ,n − 1, there exist constants Cm > 0, δm > 0

and αm ≥ 1 such that, given any m-dimensional linear space λ
orthogonal to ∇h(Ī), we have:

max
0≤η≤ξ

(
min

I∈Ī+λ :‖Ĩ−Ī‖=η
‖∇(h|Ī+λ )(I)‖

)
>Cm ξ αm, ∀ ξ ∈ (0,δm],
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where ∇h|Ī+λ denotes the gradient of the restriction of h to the

affine space through Ī spanned by λ .

For each Ī, the numbers 0 < g ≤ ‖∇h(Ī)‖,C1, . . . ,Cn−1 and δ1, . . . ,δn−1

are called the coefficients, and α1, . . . ,αn−1 the indices of steepness of the

function h at Ī.

We also say that h is steep in D with coefficients g,C1, . . . ,Cn−1, δ1, . . . ,δn−1

and indices α1, . . . ,αn−1, if h is steep at each point of D with these coeffi-

cients and indices.

The definition of steepness is given implicitly, thus it cannot be used

to verify the steepness of a function. Therefore, we need some sufficient

conditions for steepness, and we will see in Chapter 2 a possible way to

construct them, following a suggestion by Nekhoroshev.

But first, let’s try to understand the geometrical meaning of steepness.

Let us suppose that a function h is steep at I and let us consider a m-

dimensional linear space λ orthogonal to ∇h(I). Let γ be any curve on

I +λ that joins I to another point at a distance d < δm from I.

Then, on this curve we can find a point Ĩ such that the norm of ∇(h|I+λ )

at Ĩ is bounded from below by a power of d: ‖∇(h|I+λ )(Ĩ)‖>Cm dαm .

This fact implies, in particular, that if a function h is steep at I, then on

every plane λ orthogonal to ∇h(I) there does not exist any curve γ that joins

I to some other point, such that ∇(h|I+λ ) identically vanishes along γ .

We also observe that if the plane λ in the definition is not perpendicu-

lar to ∇h(I), then ∇(h|I+λ )(I) 6= 0 and the coefficients and the indices of

steepness can be always found.

The indices of steepness are essential for the stability estimates (1.8)

and (1.9), because the parameters a and b depend only on them according

to the following expressions:

a =
2

12z+3n+14
, b =

3a
2αn−1

, (1.13)
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1.5 Steepness

where

z = [α1(α2 · · · (αn−3(αn−2 ·n+n−2)+n−3)+ . . .+2)+1]−1

for n > 2, whereas z = 1 for n = 2.

It is easy to see that the best estimates (1.8) and (1.9), and consequently

the best stability, correspond to the lowest possible values of the indices:

α1 = . . . = αn−1 = 1. These are the values that the indices of steepness

assume for the quasi-convex functions, which, as we already said, represent

the simplest class of steep functions.

Nekhoroshev asserts it is possible to prove that all the steep functions

which are not quasi-convex have at least one of their indices of steepness

greater than 1, for this reason we can say that the quasi-convex functions

are the “steepest”.

One may wonder if the exponential stability ensured by the Nekhoro-

shev Theorem is valid for an arbitrary Hamiltonian (1.1), with non-steep

integrable approximation. Nekhoroshev proved that it is not, in particular

he proved the existence of a rather large set M of non-steep functions with

the following property. Let h ∈ M , then a system with Hamiltonian (1.1)

and with an appropriate perturbation ε f , f = f (h), has for any ε > 0 so-

lutions (Iε(t),ϕε(t)) such that Iε(t) leaves its initial position Iε(0) with a

speed of order ε during the time interval 1/ε . Therefore the time of stabil-

ity of these solutions is much less than 1/ε , and coincides with the a priori

estimate.

For example, the Hamiltonian system

H =
1
2
(I2

1 − I2
2 )+ ε sin(ϕ1 −ϕ2)

admits the special solution I1 = −ε t, I2 = ε t, ϕ1 = −1
2ε t2, ϕ2 =−1

2ε t2,

which satisfies:

‖I(t)− I(0)‖=
√

2ε t .
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Therefore we have instability over a time of the order 1/ε . In particular this

solution moves along the line of equation I1 + I2 = 0, on which the inte-

grable approximation of H is not steep.

The set of the steep functions is considerably larger than the quasi-

convex and 3-jet non-degenerate functions. Moreover, many Hamiltonians

describing real physical systems, are neither quasi-convex nor 3-jet non-

degenerate. This is the case, for example, of the circular restricted three-

body problem in a neighborhood of the Lagrangian points L4 and L5 for a

specific value of the mass ratio [6], and also of the Riemann ellipsoids [24].

Hence, in order to apply the Nekhoroshev Theorem to systems of this

kind, it would be useful to have sufficient conditions for steepness weaker

than the 3-jet non-degeneracy.

Nekhoroshev provided a way to construct some sufficient conditions

involving the r-jets of the function, from the following general result that

he proved in [51, 50].

In what follows we denote by Jr(n) the space of the r-jets of all smooth

functions of n variables at a fixed point Ī.

THEOREM 1.6. For any r ≥ 2 and n ≥ 2, in Jr(n) there exists a semi-

algebraic set Σr(n) with the following properties:

a) let h be an arbitrary function of class C2r−1 in a neighborhood of

Ī with ∇h(Ī) 6= 0, and let Pr(h) lie outside Σr(n). Then h is steep

in some neighborhood of Ī;

b) for each m = 1, . . . ,n−1, the steepness index αm of h in this neigh-

borhood is not larger than αm, where

αm =


max

[
1,2r−3− n(n−2)

2 +2m(n−m−1)
]

when n is even

max
[
1,2r−3− (n−1)2

2 +2m(n−m−1)
]

when n is odd ;
(1.14)
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c) the co-dimension of Σr(n) in Jr(n) satisfies the following estimate

co-dimΣr(n)≥


max

[
0,r−1− n(n−2)

4

]
when n is even

max
[
0,r−1− (n−1)2

4

]
when n is odd .

(1.15)

In particular this co-dimension tends to infinity as r → ∞.

If we are able to explicitly represent the set Σr(n) by some algebraic con-

ditions, then we have the possibility of verifying the steepness of a function

through its r-jet.

Unfortunately, Nekhoroshev did not provide an explicit expression of

Σr(n), but provided a way to construct a certain subset σ r(n)⊆ Jr(n) whose

closure coincides with Σr(n).

For each r,n ≥ 2, the set σ r(n) is defined through a collection of sys-

tems C r(n), and such collection is the starting point for constructing some

explicit sufficient conditions for steepness.

Finally, we remark that there exist also alternative characterizations of

the steepness of a function. In [52] Niederman proved a geometric criterion

for steepness based on the existence of critical points. Precisely, he proved

that an analytic function h in an open set D ⊆ Rn is steep on any compact

set Σ ⊂ D, if and only if its restriction to any affine subspace of Rn admits

only isolated critical points.

Before Niederman, a similar sufficient condition for steepness had been

proved by Ilyashenko in [37]. There the author proves that a complex-

valued holomorphic function on a domain of Cn, whose restriction to any

affine subspace admits only C-isolated critical points, is steep on Cn.
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CHAPTER 2

New explicit sufficient conditions for steepness

This Chapter is devoted to the steepness of a function.

As anticipated in the previous Chapter, up to now the only known classes

of steep functions are the quasi-convex and the 3-jet non-degenerate ones.

Hence there is the problem of determining if a 3-jet degenerate function is

steep or not.

Here we first review the sufficient conditions for steepness introduced

by Nekhoroshev in [51, 49, 50]. Precisely, we give the complete character-

ization of the sets σ r(n) introduced at the end of Chapter 1, and we restrict

to the cases r = 4, n = 2,3,4.

For the case n= 2 we give the explicit expression of the systems forming

the collection C 4(2) and find the closure of the set σ4(2), instead for the

cases n = 3 and n = 4, after giving the explicit expression of the systems

in C 4(3) and C 4(4) respectively, for both sets we construct closed sets in

which they are contained. This way, we formulate new explicit sufficient

conditions for the steepness of functions with two, three and four degrees

of freedom [59].

2.1. The sufficient conditions for steepness formulated by
Nekhoroshev

In this Section we provide the characterization of the sets σ r(n)⊆ Jr(n)

introduced in Chapter 1, Section 1.5, for r ≥ 2 and n ≥ 2.

These sets are defined through collections C r(n) of systems of equal-

ities and inequalities, depending on the number n of degrees of freedom,

the r-jet of a function and some auxiliary parameters. A certain r-jet be-

longs to σ r(n) if and only if it satisfies at least one of the systems of C r(n).

From such collections it is possible to construct sufficient conditions for
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steepness, one for each choice of r and n. In fact the following Proposition

holds.

PROPOSITION 2.1. [49, 50] For each n ≥ 2 and r ≥ 2 we have

σ r(n)≡ Σr(n)

where σ r(n) denotes the closure of σ r(n).

As a consequence of Proposition 2.1, if h is a smooth function with

non-zero gradient at Ī, and Pr(h) lies outside σ r(n), then h is steep in some

neighborhood of the point Ī.

Hence, in order to construct the sufficient conditions for steepness, we

need to compute the closure of σ r(n), when possible, or eventually a closed

set containing σ r(n).

Before describing in details the set σ r(n), we introduce some notations.

Given a smooth function h : D → R, with D ⊆ Rn, and a point Ī ∈ D, for

any v1, . . . ,vk ∈ Rn, k ≥ 1, we define

hk[v1, . . . ,vk] :=
n

∑
i1,...,ik=1

∂ kh
∂ Ii1 . . .∂ Iik

(Ī)v1
i1 . . .v

k
ik , (2.1)

and we also denote by hk+1[v1, . . . ,vk, ·] the vector such that, for any v ∈Rn,

hk+1[v1, . . . ,vk,v] = hk+1[v1, . . . ,vk, ·] · v. (2.2)

Then if ∇h(Ī) 6= 0, we denote by Λ the (n− 1)-dimensional linear space

orthogonal to ∇h(Ī) and by ΠΛ the orthogonal projection on Λ.

Now let us precisely see the way the set σ r(n) is defined. It is the set

which contains the r-jets at Ī of functions h of n variables such that:

- ∇h(Ī) 6= 0;

- in the action-space there exists a curve γ(t) = (γ1(t), . . . ,γn(t)) of

the type:
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γl(t) = Il + t

γi(t) = Ii +∑βm−1
j=1 bi jt j i 6= l

(2.3)

with the following properties: first, it is contained in a m-dimensional

space λ ⊆ Λ, moreover the gradient of the restriction of the func-

tion h to λ has a zero of order not smaller than βm−1 with respect

to the parameter t on the curve γ at t = 0, that is:

dp

dt p

∣∣∣
t=0

‖∇(h|λ )|I=γ(t)‖= 0, p = 0,1, . . . ,βm −1 ,

where βm ∈ {2, . . . ,r} is a parameter which depends on r, n and m,

and is defined as follows:

βm =
1
2
(αm +3) (2.4)

where αm is defined in (1.14).

2.1.1. Algebraic characterization of σ r(n). Nekhoroshev gave an al-

gebraic characterization to σ r(n) by introducing (n−1) systems Sm(h), m=

1, . . . ,n−1, one for each possible dimension of the space λ ⊆ Λ.

Each of these systems consists of four subsystems of polynomial equa-

tions and inequalities:

Sm(h) :=


Sm1(h)

Sm2(h,Ai)

Sm3(h,Ai)

Sm4(h,Ai,bi j)

m = 1, . . . ,n−1 (2.5)

defined below. The systems Sm1, . . . ,Sm4 depend on:

- linearly independent vectors A1, . . . ,Am ∈ Rn, which represent a

basis for λ ;

- real coefficients bi j (i = 2, . . . ,m; j = 1, . . . ,βm − 1) which deter-

mine a curve γ as in (2.3);

and are defined as follows:

- Sm1 imposes the gradient of h to be non-zero at the point Ī:

∇h(Ī) 6= 0;
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- Sm2 imposes the vectors A1, . . . ,Am to be linearly independent:

rank[A1, . . . ,Am] = m ;

- Sm3 imposes the vectors A1, . . . ,Am to belong to Λ:
h1[A1] = 0
...

h1[Am] = 0;

- Sm4 contains a system of m(βm − 1) equations that we obtain in

the following way. First we write the restriction of the Taylor poly-

nomial p of order r of the function h to the space I +λ , where λ
is spanned by A1, . . . ,Am, and we truncate it at order βm. Let us

first represent this polynomial by p(y) = ∑1≤|ν |1≤r hν yν , where

y = I − Ī ∈ Rn and yν = yν1
1 yν2

2 · · ·yνn
n .

In order to compute the restriction of p(y) to λ , we introduce

the coordinates x ∈Rm on λ by y = y(x) = Ax, where the columns

of the matrix A are the vectors Ai : A := ((A1)T , . . . ,(Am)T ). We

obtain the polynomial p̃(x) = p(y(x)) in x1, . . . ,xm.

Then, by truncating p̃(x) at the order βm, we obtain f (x) =

∑1≤|µ|1≤βm fµ xµ . The coefficients fµ form the βm-jet of the re-

striction of h to λ . We find useful to represent the coefficients fµ

by using also the notation introduced in (2.1).

Precisely, from

p̃(x) =
m

∑
i=1

h1[Ai] xi +
1
2

m

∑
i, j=1

h2[Ai,A j] xix j +
1
6

m

∑
i, j,k=1

h3[Ai,A j,Ak] xix jxk

+
1

24

m

∑
i, j,k,l=1

h4[Ai,A j,Ak,Al] xix jxkxl + . . . (2.6)

we immediately obtain that:

– the coefficients fµ with |µ|1 = 1 are h1[Ai], with

i = 1, . . .m;

– the coefficients fµ with |µ|1 = 2 are h2[Ai,A j]/2, with i, j =

1, . . .m;
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2.1 The sufficient conditions for steepness formulated by Nekhoroshev

– if βm ≥ 3, the coefficients fµ with |µ|1 = 3 are h3[Ai,A j,Ak]/6,

with i, j,k = 1, . . .m;

– if βm ≥ 4, the coefficients fµ with |µ|1 = 4 are h4[Ai,A j,Ak,Al]/24,

with i, j,k, l = 1, . . .m.

Then we consider the curve x(t), t ∈ R, defined by:{
x1(t) = t

xi(t) = ∑βm−1
j=1 bi j t j for i = 2, . . . ,m

and we compute the partial derivatives ∂ f
∂xi

at x(t), i = 1, . . . ,m.

In such a way, we obtain m polynomials in t: by setting all

the coefficients of t, t2, . . . , tβm−1 of these polynomials to zero we

obtain the system Sm4 of m(βm −1) equations.

We say that Sm(h) is solvable for h if there exist A1, . . . ,Am and bi j such

that all the subsystems Sm1, . . . ,Sm4 are verified.

The systems Sm(h), m = 1, . . . ,n−1, form the collection C r(n), hence

we say that the r-jet Pr(h) belongs to σ r(n) if there exists m ∈ {1, . . . ,n−1}
such that Sm(h) is solvable for h.

We will focus our attention on the case r = 4 for the following reason:

if r = 2 or r = 3, Theorem 1.6 is not useful to produce new sufficient condi-

tions for steepness. In fact, when r = 2 the conditions provided by Theorem

1.6 correspond to quasi-convexity for all n ≥ 2, while for r = 3 they are only

a slight modification of the 3-jet non-degeneracy. In particular, for r = 3 the

conditions provided by Theorem 1.6 do not let us identify a class of steep

functions larger than the 3-jet non-degenerate ones.

2.1.2. Explicit expression of the systems defining σ r(n). Now let us

see the explicit expression of the systems defining σ r(n). For any r,n ≥ 2,

the set σ r(n) contains the r-jets of all functions h(I), smooth in a neighbor-

hood of Ī, for which at least one of the systems S1(h), . . . ,Sn−1(h) described

previously, is solvable.
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As we saw before, each system Sm(h), m = 1, . . . ,n− 1, is formed by

four subsystems Sm1, . . . ,Sm4. The subsystems Sm1,Sm2,Sm3 are eas-

ily expressed for all n,m (see Subsection 2.1.1), while the expression of the

subsystem Sm4 depends on the value of βm: the lower is βm, the simpler is

Sm4.

Let us consider generic n ≥ 2 and r ≥ 2.

The special case m = 1

We first observe that 2 ≤ β1 ≤ r. In fact,

• if n = 2k with k ≥ 1 integer, the function

fp(k) := 2r−3− n(n−2)
2

+2(n−2) = 2r−7−2k2 +6k (2.7)

is strictly monotone decreasing for k ≥ 2, and has its maximum

2r− 3 both for k = 1 and k = 2. Correspondingly, from (2.4) we

have the maximum value of β1 = r;

• if n = 2k+1 with k ≥ 1, the function

fd(k) := 2r−3− (n−1)2

2
+2(n−2) = 2r−3−2(k−1)2 (2.8)

is strictly monotone decreasing for k ≥ 1, and has its maximum

2r− 3 for k = 1. Correspondingly, from (2.4) we have the maxi-

mum value of β1 = r.

According to the specific value of β1, the system S1(h) is defined by:

S1(h) :=



∇h(I) 6= 0

h1[A] = 0

h2[A,A] = 0

. . .

hβ1[A, . . . ,A] = 0

(2.9)

where A ∈ Rn. In fact,

• S11 provides: ∇h(I) 6= 0;

• S12 provides the condition: A := A1 6= 0;
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• S13 provides the condition: h1[A] = 0;

• S14: the polynomial f (x) is defined by:

f (x) = h1[A] x+
1
2

h2[A,A] x2 + . . .+
1

β1!
hβ1[A, . . . ,A]xβ1,

hence by setting to zero the coefficients in t, t2, . . . , tβ1−1 of

∂ f/∂x computed at x(t) = t, we obtain the conditions h2[A,A] =

0, . . . ,hβ1[A, . . . ,A] = 0.

According to the definitions given previously, the system S1(h) is solvable

for h if it has a solution vector A ∈ Rn \{0}.

The special cases β1 = 2 and β1 = 3

It is possible to prove that when β1 = 2 or β1 = 3, the conditions Pr(h) 6∈
Σr(n) and ∇h(Ī) 6= 0 correspond respectively to the quasi-convexity and the

3-jet non-degeneracy of h at Ī. Therefore in such cases Theorem 1.6 is not

useful to produce new sufficient conditions for steepness.

In particular, when r = 4 we have β1 = 4 for n = 2,3,4, and β1 ≤ 3 in

all the other cases. In fact

• if n = 2k, with k ≥ 1, the function fp(k) defined in (2.7) for r = 4

is

fp(k) = 1−2k2 +6k,

which is equal to 5 if k = 1 and k = 2, that is if n = 2 and n = 4.

Correspondingly, in both cases from (2.4) we have β1 = 4. Instead

for k ≥ 3 we have fp(k)≤ 1, and then from (2.4) β1 = 2;

• if n = 2k+ 1, with k ≥ 1, the function fd(k) defined in (2.8) for

r = 4 is

fd(k) = 5−2(k−1)2

which is equal to 5 if k = 1, that is if n = 3. Correspondingly from

(2.4) we have β1 = 4. Instead when k ≥ 2, it is fd(k) ≤ 3, and

consequently β1 ≤ 3.
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For these reasons, we will investigate in details only the cases r = 4 and

n = 2,3,4, that is we will construct new sufficient conditions for steepness

involving the 4-jet of functions of two, three and four variables.

Example: the set σ4(3)

As an example, we report here the explicit expression of the systems defin-

ing σ r(n) when r = 4 and n = 3. Since n = 3, the collection C 4(3) contains

the two systems S1(h) and S2(h), defined by:

S1(h) :=



∇h(Ī) 6= 0

h1[A] = 0

h2[A,A] = 0

h3[A,A,A] = 0

h4[A,A,A,A] = 0

S2(h) :=



∇h(Ī) 6= 0

h1[A1] = 0

h1[A2] = 0

h2[v,A1] = 0

h2[v,A2] = 0

2 b22 h2[A1,A2]+h3[v,v,A1] = 0

2 b22 h2[A2,A2]+h3[v,v,A2] = 0

where A, A1, A2 ∈ R3, b21, b22 ∈ R and v = A1 +b21A2.

The system S1(h) is solvable for h if it is verified by some vector A 6= 0,

while system S2(h) is solvable for h if there exist two linearly independent

vectors A1, A2 and real coefficients b21, b22 such that S2(h) is verified.

2.2. Statement of new sufficient conditions for steepness

Consider a smooth function h : D −→ R, with D ⊆ Rn open. Before

stating the results, we give the following

DEFINITION 2.2. For any Ī ∈ D, the function h is called 4-jet non-

degenerate at Ī if the system
h1[v] = 0

h2[v,v] = 0

h3[v,v,v] = 0

h4[v,v,v,v] = 0

(2.10)
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2.2 Statement of new sufficient conditions for steepness

has only the trivial solution v = (v1, . . . ,vn) = 0. Otherwise, it is called 4-jet

degenerate.

It is important to remark that, except for the special case n = 2, the 4-jet

non-degeneracy is not a sufficient condition for steepness.

As an example, we consider the following function of three degrees of

freedom h(I1, I2, I3) =
1
2(I1 −

I2
2
2 )

2 + I3: it is 4-jet non-degenerate and non-

steep at the point Ī = (0,0,0). In fact, the gradient of the restriction of h to

the 2-dimensional space Λ orthogonal to ∇h(Ī) = (0,0,1) vanishes on the

curve

γ :=

{
I1 =

I2
2
2

I3 = 0.

Similarly, the function h(I) = 1
2(I1 −

I2
2
2 )

2 + I2
3 + I4, with four degrees of

freedom, is 4-jet non-degenerate but non-steep at Ī = (0,0,0,0).

The sufficient conditions for steepness we propose are stated in the fol-

lowing three Propositions, which refer to functions of two, three and four

variables respectively.

PROPOSITION 2.3. [59] Let h : D−→R, with D⊆R2 open, be a smooth

function, and let Ī ∈ D satisfy ∇h(Ī) 6= 0. If h is 4-jet non-degenerate at Ī,

then h is steep in a neighborhood of Ī.

PROPOSITION 2.4. [59] Let h : D−→R, with D⊆R3 open, be a smooth

function, and let Ī ∈ D satisfy ∇h(Ī) 6= 0. If

1. h is 4-jet non-degenerate at Ī;

2. the system 
h1[v] = 0

ΠΛ h2[v, ·] = 0

h3[v,v,v] = 0

(2.11)

has the only solution v = (v1,v2,v3) = 0;

then h is steep in a neighborhood of Ī.
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We remark that an equivalent formulation of condition 2 of Proposition

2.4, is the following one: for all v ∈ R3 \{0} such that
h1[v] = 0

h2[v,v] = 0

h3[v,v,v] = 0

(2.12)

the system 
v ·w = 0

h1[w] = 0

h2[v,w] = 0

(2.13)

has the only solution w = (w1,w2,w3) = 0. 1

PROPOSITION 2.5. [59] Let h : D−→R, with D⊆R4 open, be a smooth

function, and let Ī ∈ D satisfy ∇h(Ī) 6= 0. If

1. h is 4-jet non-degenerate at Ī;

2. the restriction of the Hessian operator h′′(Ī) to the linear space Λ
is non-degenerate, that is to say it is a non-singular matrix;

3. for all v ∈ R4 \{0} such that
h1[v] = 0

h2[v,v] = 0

h3[v,v,v] = 0

(2.14)

the system
v ·w = 0

h1[w] = 0

h2[v,w] = 0

h2[w,w]h4[v,v,v,v] = 3(h3[v,v,w])2

(2.15)

has the only solution w = (w1,w2,w3,w4) = 0;

then h is steep in some neighborhood of Ī.

1Notice that from Proposition 2.4 it follows that if h is 3-jet non-degenerate, than it is

steep. Analogous evident implications of the same result hold for any number of degrees

of freedom n.
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2.3 Examples of 3-jet degenerate steep functions

2.3. Examples of 3-jet degenerate steep functions

Example 1. The function of three variables h(I) = I1 +
I2
2
2 − I2

3
2 − I4

3
4 is 3-jet

non-degenerate at all points I = (I1, I2, I3) with I3 6= 0. Then, we consider

I with I3 = 0 and prove that at these points h satisfies the hypotheses of

Proposition 2.4. Clearly, h is 3-jet degenerate and 4-jet non-degenerate at I.

Since ∇h(I1, I2,0) = (1, I2,0), the space Λ is spanned by the orthonor-

mal vectors e′ = (0,0,1), e′′ = (−I2,1,0)/
√

1+ I2
2 .

The restriction of the Hessian matrix h′′(I) to Λ in the basis e′,e′′ is

represented by the matrix

h′′Λ(I) =

(
h′′e′ · e′ h′′e′ · e′′

h′′e′′ · e′ h′′e′′ · e′′

)
=

(
−1 0

0 (1+ I2
2 )

−1

)

which is non-degenerate. Therefore, the only solution of system (2.11) is

v = (0,0,0).

Example 2. The function of four variables h(I) = I1 +
I2
2
2 +

I2
3
2 − I2

4
2 +

I4
4
4 is

3-jet non-degenerate at all points I = (I1, I2, I3, I4) with I4 6= 0. Then, we

consider I with I4 = 0 and prove that at these points h satisfies the hypothe-

ses of Proposition 2.5.

Clearly, h is 3-jet degenerate and 4-jet non-degenerate at I. For I4 = 0,

the space Λ is generated by the orthogonal vectors e′ = (0,0,0,1), e′′ =

ρ1(−I2 − I3,1,1,0) and e
′′′
= ρ2(−I2 + I3,1+ I2I3 + I2

3 ,−1− I2
2 − I2I3,0),

with

ρ1 = 1/
√

1+(I2 + I3)2

ρ2 = 1/
√

(I3 − I2)2 +(1+ I2I3 + I2
3 )

2 +(1+ I2
2 + I2I3)2

By direct computation we obtain the restriction of the Hessian matrix h′′(I)

to Λ in the basis e′,e′′,e′′′

h′′Λ(I) =

 −1 0 0

0 2ρ2
1 (I2

3 − I2
2 )ρ1ρ2

0 (I2
3 − I2

2 )ρ1ρ2 ((1+ I2I3 + I2
2 )

2 +(1+ I2I3 + I2
3 )

2)ρ2
2
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whose determinant is −ρ2
1 ρ2

2 (2 + (I2 + I3)
2)2 6= 0, so that h′′Λ(I) is non-

degenerate, with eigenvalues λ1 =−1, λ3 ≥ λ2 > 0 (since λ2λ3, λ2 +λ3 > 0).

Being h′′(I) a symmetric matrix, we introduce an orthonormal basis e1,e2,e3,e4

in R4 with e4 parallel to ∇h(I), and e1,e2,e3 eigenvectors of h′′Λ(I), re-

lated to the eigenvalues λ1,λ2,λ3 respectively. Then, we consider v 6= 0

such that h1[v] = h2[v,v] = h3[v,v,v] = 0, and a vector w ∈ Λ\{0} such that

v ·w = 0, h2[v,w] = 0, h2[w,w] = 0 (for I4 = 0, the last equation of (2.15) is

h2[w,w] = 0).

By denoting v = ∑3
i=1 v′iei, w = ∑3

i=1 w′
iei, from (2.14) and (2.15) we

obtain: 
v′1w′

1 + v′2w′
2 + v′3w′

3 = 0

v′21 = λ2v′22 +λ3v′23
w′2

1 = λ2w′2
2 +λ3w′2

3

v′1w′
1 = λ2v′2w′

2 +λ3v′3w′
3.

(2.16)

We can consider v′1 6= 0 and w′
1 6= 0, otherwise from the second and third

equations of (2.16) we would obtain also v′2 = v′3 = 0 and w′
2 = w′

3 = 0.

Then, from the same equations, there exist α,β ∈ R such that

v′2
v′1

=
1√
λ2

cosα ,
v′3
v′1

=
1√
λ3

sinα ,
w′

2

w′1
=

1√
λ2

cosβ ,
w′

3

w′1
=

1√
λ3

sinβ .

From the first and last equations of (2.16) we obtain

(λ3 −λ2)sinα sinβ = (1+λ2)λ3

which cannot be satisfied by any value of α,β (this is evident if λ2 = λ3,

while if λ3 > λ2 > 0 we have (1+λ2)λ3/(λ3 −λ2)> 1).

2.4. Proofs of Propositions 2.3, 2.4 and 2.5

To prove Propositions 2.3, 2.4 and 2.5 we need to apply the Theorem

1.6, that is to compute the closure of σ r(n), or eventually a closed set con-

taining σ r(n), for specific values of r and n.

We call ψ1(n) the set which contains the r-jets at Ī of all functions h

such that the set S1(h), given by (2.9), is solvable with respect to h. Let us
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introduce also the larger set ψ∗
1 (n) containing the r-jets at Ī of all functions

h such that the system 
h1[A] = 0

h2[A,A] = 0

. . .

hβ1[A, . . . ,A] = 0

(2.17)

has a non-trivial solution A ∈ Rn \{0}. We prove the following

LEMMA 2.6. We have:

ψ1(n) = ψ∗
1 (n). (2.18)

PROOF. We first prove that ψ∗
1 (n) is closed. In fact, let us consider a

convergent sequence of elements of ψ∗
1 (n), that is r-jets Pr(hk) such that for

each k ≥ 0 there exists a vector Ak ∈ Rn \{0} that verifies:
h1

k [Ak] = 0

h2
k [Ak,Ak] = 0

. . .

hβ1
k [Ak, . . . ,Ak] = 0

(2.19)

and such that limk→∞ Pr(hk) = Pr(h), where Pr(h) is the r-jet of some func-

tion h. We prove that Pr(h) belongs to ψ∗
1 (n).

Since Ak 6= 0 ∀k, we consider the sequence Ak = Ak
‖Ak‖ ∈ Sn−1 which

still verifies (2.19). We can extract from Ak a convergent subsequence Ak j :

lim j→∞ Ak j = A ∈ Sn−1, hence from system (2.19) we have
lim j→∞ h1

k j
[Ak j ] = h1[A] = 0

lim j→∞ h2
k j
[Ak j ,Ak j ] = h2[A,A] = 0

. . .

lim j→∞ hβ1
k j
[Ak j , . . . ,Ak j ] = hβ1[A, . . . ,A] = 0.

Since A 6= 0, we have proved that Pr(h) ∈ ψ∗
1 (n).

Finally, we prove ψ∗
1 (n) = ψ1(n). It is evident that ψ1(n) ⊆ ψ∗

1 (n),

therefore since ψ∗
1 (n) is closed, we immediately obtain ψ1(n)⊆ ψ∗

1 (n).
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It remains to prove that ψ∗
1 (n)⊆ ψ1(n), that is for each element Pr(h) ∈

ψ∗
1 (n) there exists a sequence of elements of ψ1(n) convergent to Pr(h).

If ∇h(I) 6= 0, there is nothing more to prove. Therefore, we consider the

case ∇h(I) = 0, and we denote by A ∈ Rn \{0} the solution of (2.17).

We consider A⊥ ∈Rn\{0} such that A⊥ ·A= 0, and we define f (I) :=A⊥ ·I.

Since ∇ f (I) = A⊥ 6= 0 and f 1[A] = f 2[A,A] = . . . = f β1[A, . . . ,A] = 0, we

take the following sequence of functions

hk := h+
1
k

f

and we observe that each function hk satisfies{
∇hk(I) = A⊥

k 6= 0

h1
k [A] = h2

k [A,A] = . . .= hβ1
k [A, . . . ,A] = 0 .

Moreover we have limk→∞ Pr(hk) = Pr(h), and this completes the proof.

2.4.1. Proof of Proposition 2.3. We fix r = 4 and n = 2, and consider

the set σ4(2). The collection of systems which defines σ4(2) contains only

the system S1(h). Since β1 = 4, from (2.9) we have:

S1(h) :=



∇h(I) 6= 0

h1[A] = 0

h2[A,A] = 0

h3[A,A,A] = 0

h4[A,A,A,A] = 0

(2.20)

where A ∈ R2.

Hence, σ4(2) is the set of the 4-jets P4(h) such that there exists A ∈ R2 \{0}
satisfying S1(h), that is σ4(2) =ψ1(2), where ψ1(2) has been defined at the

beginning of this Section.

From Lemma 2.6, we have

σ4(2) = ψ1(2) = ψ∗
1 (2) .

The proof of Proposition 2.3 follows immediately from Theorem 1.6 and

Proposition 2.1.
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2.4.2. Proof of Proposition 2.4. We fix r = 4 and n = 3, and consider

the set σ4(3). We first formulate the explicit expression of the collection of

systems that defines σ4(3) and provide a more compact formulation. Then,

we find a closed set containing σ4(3) and conclude the proof of Proposition

2.4.

2.4.2.1. Explicit formulation of σ4(3). The collection of systems which

defines σ4(3) contains the two systems S1(h) and S2(h).

Since β1 = 4 and β2 = 3, we have:

S1(h) :=



∇h(Ī) 6= 0

h1[A] = 0

h2[A,A] = 0

h3[A,A,A] = 0

h4[A,A,A,A] = 0

S2(h) :=



∇h(Ī) 6= 0

h1[A1] = 0

h1[A2] = 0

h2[v,A1] = 0

h2[v,A2] = 0

2 b22 h2[A1,A2]+h3[v,v,A1] = 0

2 b22 h2[A2,A2]+h3[v,v,A2] = 0
(2.21)

where A, A1, A2 ∈ R3, v = A1 +b21A2 and b21, b22 ∈ R.

For any h, we say that S1(h) is solvable for h if the system S1(h) is

satisfied by some A 6= 0; we say that S2(h) is solvable for h if S2(h) is

satisfied by two linearly independent vectors A1,A2 and real coefficients

b21,b22.

The expression of S1(h) has been already obtained in Section 2.1. There-

fore, it remains to show how we obtained the expression of S2(h).

In such a case:

• S21 provides: ∇h(Ī) 6= 0;

• S22 provides the condition rank[A1,A2] = 2, which means that the

vectors A1,A2 must be linearly independent;

• S23 provides the conditions: h1[A1] = 0, h1[A2] = 0;

• S24: since for n = 3 we have β2 = 3, the polynomial f (x) is de-

fined by
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f (x) =
2

∑
i=1

h1[Ai] xi +
1
2

(
h2[A1,A1]x2

1 +2h2[A1,A2]x1x2 +h2[A2,A2]x2
2

)
+

1
6

(
h3[A1,A1,A1]x3

1 +3h3[A1,A1,A2]x2
1x2 +3h3[A1,A2,A2]x1x2

2

+ h3[A2,A2,A2]x3
2

)
.

We set to zero the coefficients of t, t2 of ∂ f/∂xi computed at

x1(t) = t, x2(t) = b21t +b22t2.

The coefficients of t provide the additional conditions

h2[A1,A1]+b21h2[A1,A2] = h2[A1,A1 +b21A2] = 0

h2[A2,A1]+b21h2[A2,A2] = h2[A2,A1 +b21A2] = 0 ,

that is, by introducing the compact notation v = A1 +b21A2,

h2[v,A1] = 0 , h2[v,A2] = 0.

The coefficients of t2 provide the additional conditions

b22h2[A1,A2]+ 1
2h3[A1,A1,A1]+b21h3[A1,A1,A2]+ 1

2b2
21h3[A1,A2,A2] = 0

b22h2[A2,A2]+ 1
2h3[A2,A1,A1]+b21h3[A2,A2,A1]+ 1

2b2
21h3[A2,A2,A2] = 0 ,

that is

b22h2[A1,A2]+ 1
2h3[A1,v,v] = 0

b22h2[A2,A2]+ 1
2h3[A2,v,v] = 0 .

Therefore, the expression of S2(h) in (2.21) follows.

2.4.2.2. A reduced formulation of S2(h). The system defining S2(h) in

(2.21) depends on the variables A1,A2 ∈ R3 and b21,b22 ∈ R. We here
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2.4 Proofs of Propositions 2.3, 2.4 and 2.5

rewrite S2(h) in a more compact form, by reducing also the number of vari-

ables. Precisely, the system S2(h) can be also formulated as:

S2(h) =



∇h(Ī) 6= 0

h1[v] = 0

h1[u] = 0

ΠΛ h2[v, ·] = 0

ΠΛ(2α h2[u, ·]+h3[v,v, ·]) = 0 ,

(2.22)

and it is solvable for h if there exist two linearly independent vectors v,u ∈
R3, and a real number α , which verify (2.22).

In fact, let us consider two linearly independent vectors A1,A2, and

b21,b22 ∈ R satisfying the system S2(h) in (2.21) for some function h.

In particular, A1,A2 is a basis for Λ, and using the notation introduced

in (2.2), we have

h2[v,A1] = h2[v, ·] ·A1 = 0

h2[v,A2] = h2[v, ·] ·A2 = 0
⇐⇒ ΠΛh2[v, ·] = 0 .

Similarly we obtain ΠΛ(2b22h2[A2, ·] + h3[v,v, ·]) = 0. Therefore, the

vectors u = A2, v = A1 + b21A2 are linearly independent and, with the pa-

rameter α = b22, they solve the system (2.22) for h.

Vice versa, if α ∈ R and u,v linearly independent vectors are such that

they solve the system (2.22), then A2 = u, A1 = v−u, b21 = 1, b22 =α solve

the system in (2.21) and A1,A2 ∈ Λ are linearly independent.

2.4.2.3. A closed set containing σ4(3). The set σ4(3) contains the 4-

jets P4(h) such that at least one of the systems S1(h) and S2(h) is solvable

for h.

We will prove that the closure of σ4(3) is contained in the union of two

closed sets: the set ψ∗
1 (3) defined at the beginning of this Section, and a set

ψ∗
2 (3) that we define below.
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New explicit sufficient conditions for steepness

LEMMA 2.7. We denote by ψ∗
2 (3) the set of 4-jets P4(h) such that there

exist a 2-dimensional space λ and a vector v ∈ λ \{0} verifying:
Πλ ∇h(Ī) = 0

Πλ h2[v, ·] = 0

h3[v,v,v] = 0 .

(2.23)

The set ψ∗
2 (3) is closed.

PROOF. Let us consider a sequence of 4-jets P4(hk) in ψ∗
2 (3), conver-

gent to some P4(h). Hence, for any k there exist a 2-dimensional space λk

and a vector vk ∈ λk \{0}, which verify:
Πλk

∇hk(Ī) = 0

Πλk
h2

k [vk, ·] = 0

h3
k [vk,vk,vk] = 0 ,

(2.24)

and limk→∞ P4(hk) = P4(h). We prove that P4(h) ∈ ψ∗
2 (3).

For each k, let us choose uk ∈ λk \{0} orthogonal to vk. Then the system

(2.24) implies: 
h1

k [vk] = h1
k [uk] = 0

h2
k [vk,vk] = h2

k [vk,uk] = 0

h3
k [vk,vk,vk] = 0

vk ·uk = 0 .

(2.25)

Since vk, uk 6= 0, we consider the two sequences vk =
vk
‖vk‖ and uk =

uk
‖uk‖ in

the unit sphere S2, still verifying (2.25).

From the sequence (vk,uk), defined on the compact set S2 ×S2, we can

extract a convergent subsequence (vk j ,uk j): lim j→∞(vk j ,uk j) = (v,u)∈ S2×
S2, and from system (2.25) it follows:

lim j→∞ h1
k j
[vk j ] = h1[v] = 0

lim j→∞ h1
k j
[uk j ] = h1[u] = 0

lim j→∞ h2
k j
[vk j ,vk j ] = h2[v,v] = 0

lim j→∞ h2
k j
[vk j ,uk j ] = h2[v,u] = 0

lim j→∞ h3
k j
[vk j ,vk j ,vk j ] = h3[v,v,v] = 0

lim j→∞ vk j ·uk j = v ·u = 0

⇐⇒


Πλ ∇h(Ī) = 0

Πλ h2[v, ·] = 0

h3[v,v,v] = 0
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where λ is the 2-dimensional space generated by v and u, which are linearly

independent.

Finally, we prove the following

LEMMA 2.8. We have:

σ4(3)⊆ ψ∗
1 (3)∪ψ∗

2 (3) . (2.26)

PROOF. σ4(3) is the union of two sets: the set of 4-jets P4(h) such that

S1(h) is solvable for h, and the set of 4-jets P4(h) such that S2(h) is solvable

for h. The first one is the set ψ1(3) defined at the beginning of this Section,

and we call ψ2(3) the second one.

From Lemma 2.6 we immediately obtain ψ1(3) =ψ∗
1 (3). Therefore, we

prove ψ2(3) ⊆ ψ∗
2 (3). It is sufficient to prove that ψ2(3) ⊆ ψ∗

2 (3). Then,

since ψ∗
2 (3) is closed, ψ2(3)⊆ ψ∗

2 (3) follows immediately.

Let P4(h) ∈ ψ2(3), and let us consider linearly independent vectors

u,v ∈ R3 and α ∈ R satisfying S2(h). From the last two equations of S2(h)

it follows that v ∈ Λ satisfies also h3[v,v,v] = 0, hence it is also a solution

of (2.23) with λ = Λ.

We now consider h with ∇h(Ī) 6= 0, so that P4(h) ∈ ψ∗
2 (3) if and only if

condition (2.23) is satisfied by λ = Λ and some v ∈ Λ\{0}. Then, Propo-

sition 2.4 follows from Theorem 1.6 and Proposition 2.1.

2.4.3. Proof of Proposition 2.5. We fix r = 4 and n = 4, and consider

the set σ4(4). We first formulate the explicit expression of the collection

of systems defining σ4(4), and provide a more compact formulation. Then,

we find a closed set containing σ4(4) and conclude the proof of Proposition

2.5.

2.4.3.1. Explicit formulation of σ4(4). The collection C 4(4) contains

the three systems S1(h), S2(h) and S3(h).
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New explicit sufficient conditions for steepness

Since β1 = 4, β2 = 4 and β3 = 2, we have:

S1(h) :=



∇h(I) 6= 0

h1[A] = 0

h2[A,A] = 0

h3[A,A,A] = 0

h4[A,A,A,A] = 0

(2.27)

with A ∈ R4;

S2(h) :=



∇h(I) 6= 0

h1[A1] = 0

h1[A2] = 0

h2[v,A1] = 0

h2[v,A2] = 0

2b22 h2[A1,A2]+h3[v,v,A1] = 0

2b22 h2[A2,A2]+h3[v,v,A2] = 0

6b23 h2[A1,A2]+6b22 h3[v,A2,A1]+h4[v,v,v,A1] = 0

6b23 h2[A2,A2]+6b22 h3[v,A2,A2]+h4[v,v,v,A2] = 0
(2.28)

with A1, A2 ∈ R4, v = A1 +b21A2, and b21, b22, b23 ∈ R;

S3(h) :=



∇h(I) 6= 0

h1[A1] = 0

h1[A2] = 0

h1[A3] = 0

h2[v,A1] = 0

h2[v,A2] = 0

h2[v,A3] = 0

(2.29)

with A1, A2,A3 ∈ R4, v = A1 +b21A2 +b31A3, and b21, b31 ∈ R.

According to the definitions given in Section 2.1, we say that S1(h) is

solvable for h if it has a non-trivial solution A 6= 0; S2(h) is solvable for h

if there exist two linearly independent vectors A1, A2 and real coefficients

b21, b22, b23 such that it is verified; S3(h) is solvable for h if there exist
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2.4 Proofs of Propositions 2.3, 2.4 and 2.5

three linearly independent vectors A1, A2, A3 and real coefficients b21, b31

such that it is verified.

In fact, the expression of S1(h) follows from β1 = 4 (see Section 2.1),

while the system S2(h) is obtained the following way:

• S21 provides: ∇h(I) 6= 0;

• S22 provides the condition rank[A1,A2] = 2, that means that the

vectors A1,A2 must be linearly independent;

• S23 provides the conditions: h1[A1] = 0, h1[A2] = 0;

• S24: since for n = 4 we have β2 = 4, the polynomial f (x) is de-

fined by

f (x) =
2

∑
i=1

h1[Ai] xi +
1
2

(
h2[A1,A1]x2

1 +2h2[A1,A2]x1x2 +h2[A2,A2]x2
2

)
+

1
6

(
h3[A1,A1,A1]x3

1 +3h3[A1,A1,A2]x2
1x2 +3h3[A1,A2,A2]x1x2

2

+ h3[A2,A2,A2]x3
2

)
+

1
24

(
h4[A1,A1,A1,A1]x4

1 +4h4[A1,A1,A1,A2]x3
1x2

+ 6h4[A1,A1,A2,A2]x2
1x2

2 +4h4[A1,A2,A2,A2]x1x3
2 +h4[A2,A2,A2,A2]x4

2

)
.

We set to zero the coefficients of t, t2, t3 of ∂ f/∂xi computed

at x1(t) = t, x2(t) = b21t +b22t2 +b23t3.

The coefficients of t, t2 can be computed exactly as for the case

n= 3, m= 2. In particular, by introducing the compact formulation

v = A1 +b21A2, the coefficients of t provide the conditions

h2[v,A1] = 0 , h2[v,A2] = 0

while from the coefficients of t2 we obtain

b22h2[A1,A2]+ 1
2h3[v,v,A1] = 0

b22h2[A2,A2]+ 1
2h3[v,v,A2] = 0 .

Finally, the coefficients of t3 provide the additional conditions
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New explicit sufficient conditions for steepness

b23h2[A1,A2]+b22h3[A1,A1,A2]+b21b22h3[A1,A2,A2]+
1
6

h4[A1,A1,A1,A1]

+
1
2

b21h4[A1,A1,A1,A2]+
1
2

b2
21h4[A1,A1,A2,A2]+

1
6

b3
21h4[A1,A2,A2,A2] = 0

b23h2[A2,A2]+b22h3[A1,A2,A2]+b21b22h3[A2,A2,A2]+
1
6

h4[A1,A1,A1,A2]

+
1
2

b21h4[A1,A1,A2,A2]+
1
2

b2
21h4[A1,A2,A2,A2]+

1
6

b3
21h4[A2,A2,A2,A2] = 0

which can be written in the simplified form

b23h2[A1,A2]+b22h3[v,A1,A2]+
1
6

h4[A1,v,v,v] = 0

b23h2[A2,A2]+b22h3[v,A2,A2]+
1
6

h4[A2,v,v,v] = 0 .

It remains to show how we obtained the expression of S3(h):

• S31 provides: ∇h(I) 6= 0;

• S32 provides the condition rank[A1,A2,A3] = 3, that means that

the vectors A1,A2,A3 must be linearly independent;

• S33 provides the conditions: h1[A1] = 0, h1[A2] = 0, h1[A3] = 0;

• S34: since for n = 4 we have β3 = 2, the polynomial f (x) is de-

fined by

f (x) =
3

∑
i=1

h1[Ai] xi +
1
2

(
h2[A1,A1]x2

1 +h2[A2,A2]x2
2

+ h2[A3,A3]x2
3 +2h2[A1,A2]x1x2 +2h2[A1,A3]x1x3 +2h2[A2,A3]x2x3

)
.

We set to zero the coefficient of t of ∂ f/∂xi computed at x1(t) = t,

x2(t) = b21t, x3(t) = b31t, obtaining the additional conditions

h2[A1,A1]+b21h2[A1,A2]+b31h2[A1,A3] = 0

b21h2[A2,A2]+h2[A1,A2]+b31h2[A2,A3] = 0

b31h2[A3,A3]+h2[A1,A3]+b21h2[A2,A3] = 0,

which can be written in the simplified form

h2[v,A1] = 0 , h2[v,A2] = 0 , h2[v,A3] = 0,
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2.4 Proofs of Propositions 2.3, 2.4 and 2.5

where v = A1 +b21A2 +b31A3.

2.4.3.2. A reduced formulation of S2(h) and S3(h). We formulate S2(h)

and S3(h) in the more compact forms:

S2(h) =



∇h(I) 6= 0

h1[v] = 0

h1[u] = 0

Πλ h2[v, ·] = 0

Πλ (2α h2[u, ·]+h3[v,v, ·]) = 0

Πλ (6β h2[u, ·]+6α h3[v,u, ·]+h4[v,v,v, ·]) = 0

(2.30)

where λ denotes the linear space spanned by u and v, and α,β ∈ R;

S3(h) =


∇h(I) 6= 0

h1[v] = 0

ΠΛ h2[v, ·] = 0

(2.31)

where Λ is the linear space orthogonal to ∇h(I).

With such formulations, we say that S2(h) is solvable for h if it is

satisfied by two linearly independent vectors v,u ∈ R4, and coefficients

α,β ∈ R, while S3(h) is solvable for h if it is satisfied by a vector v ∈
R4 \{0}.

In the formulation (2.30), the system S2(h) depends on the vectors

v,u ∈R4 and on α,β ∈R, while in (2.28) it depends on the vectors A1,A2 ∈
R4 and on b21,b22,b23 ∈ R. In the formulation (2.31), the system S3(h)

depends on the vector v ∈ R4, while in (2.29) it depends on the vectors

A1,A2,A3 ∈R4 and on b21,b31 ∈R. Thus, in both systems we have reduced

the number of parameters.

2.4.3.3. A closed set containing σ4(4). The set σ4(4) contains the 4-

jets P4(h) such that at least one of the systems S1(h), S2(h) and S3(h) is

solvable for h.

We will make use of the following technical remarks.
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New explicit sufficient conditions for steepness

Remark 1. If S2(h) is solvable for h with α = 0, then the vector v 6= 0 is

also a solution of S1(h).

Remark 2. If S2(h) is solvable for h and the restriction Πλ h′′Πλ of the

Hessian matrix of h to λ is completely degenerate, then the vector v 6= 0 is

also a solution of S1(h). In fact, from S2(h), we have

h2[v,v] = h′′v · v = (Πλ h′′Πλ v) · v = 0

h3[v,v,v] = h3[v,v, ·] · v = (Πλ h3[v,v, ·]) · v =−2αh′′u · v = 0,

and similarly h3[v,v,u] = 0. Finally, we have

h4[v,v,v,v] = h4[v,v,v, ·]·v=−6βh2[u,v]−6αh3[u,v,v] = 12α2 h
′′
[u,u] = 0.

Consequently the set σ4(4) can be represented as the union of the three sets:

σ4(4) = ψ1(4)∪ψ2(4)∪ψ3(4)

where ψ1(4) is the set defined at the beginning of this Section with β1 = 4;

ψ2(4) is the set of 4-jets P4(h) such that S2(h) is solvable for h with α 6= 0

and Πλ h′′Πλ not completely degenerate; ψ3(4) is the set of 4-jets P4(h)

such that S3(h) is solvable for h.

We will prove that the closure of σ4(4) is contained in the union of three

closed sets: the set ψ∗
1 (4) defined at the beginning of this Section, and the

two sets ψ∗
2 (4) and ψ∗

3 (4) that we define below.

LEMMA 2.9. We denote by ψ∗
2 (4) the set of 4-jets P4(h) such that there

exist two linearly independent vectors v,u ∈ R4 that verify:

v ·u = 0

h1[v] = 0

h1[u] = 0

h2[v,v] = 0

h2[v,u] = 0

h3[v,v,v] = 0

h2[u,u]h4[v,v,v,v] = 3(h3[v,v,u])2 .

(2.32)

The set ψ∗
2 (4) is closed.
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2.4 Proofs of Propositions 2.3, 2.4 and 2.5

PROOF. Let us consider a convergent sequence of elements in ψ∗
2 (4),

that is 4-jets P4(hk) such that for each k ≥ 0 there exist two linearly inde-

pendent vectors vk,uk ∈ R4 which verify:

vk ·uk = 0

h1
k [vk] = 0

h1
k [uk] = 0

h2
k [vk,vk] = 0

h2
k [vk,uk] = 0

h3
k [vk,vk,vk] = 0

h2
k [uk,uk]h4

k [vk,vk,vk,vk] = 3(h3
k [vk,vk,uk])

2

(2.33)

and such that limk→∞ P4(hk) = P4(h), where P4(h) is the 4-jet of some func-

tion h. We prove that P4(h) ∈ ψ∗
2 (4).

Since vk, uk 6= 0 ∀k and all equations of (2.33) are homogeneous in

‖uk‖,‖vk‖, we define the sequences of unit vectors v̄k = vk
‖vk‖ , ūk = uk

‖uk‖
which still satisfy (2.32) ∀k.

The sequence (v̄k, ūk) is defined on the compact set S3 ×S3, therefore

we can extract a subsequence (v̄k j , ūk j) convergent to some (u,v) ∈ S3×S3.

From system (2.33) it follows

lim j→∞ v̄k j · ūk j = v ·u = 0

lim j→∞ h1
k j
[v̄k j ] = h1[v] = 0

lim j→∞ h1
k j
[ūk j ] = h1[u] = 0

lim j→∞ h2
k j
[v̄k j , v̄k j ] = h2[v,v] = 0

lim j→∞ h2
k j
[v̄k j , ūk j ] = h2[v,u] = 0

lim j→∞ h3
k j
[v̄k j , v̄k j , v̄k j ] = h3[v,v,v] = 0

lim j→∞ h2
k j
[ūk j , ūk j ]h

4
k j
[v̄k j , v̄k j , v̄k j , v̄k j ]−3(h3

k j
[v̄k j , v̄k j , ūk j ])

2 =

h2[u,u]h4[v,v,v,v]−3(h3[v,v,u])2 = 0

with v,u both non-zero. Hence P4(h) ∈ ψ∗
2 (4).
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New explicit sufficient conditions for steepness

LEMMA 2.10. We denote by ψ∗
3 (4) the set of 4-jets P4(h) such that there

exist a 3-dimensional space λ and a vector v ∈ λ \{0} which verify:

{
Πλ ∇h(Ī) = 0

Πλ h2[v, ·] = 0 .
(2.34)

The set ψ∗
3 (4) is closed.

PROOF. Let us consider a convergent sequence of elements in ψ∗
3 (4),

that is 4-jets P4(hk) such that for each k ≥ 0 there exist a 3-dimensional

space λk and a vector vk ∈ λk \{0} which satisfy

{
Πλk

∇hk(Ī) = 0

Πλk
h2

k [vk, ·] = 0 ,
(2.35)

and limk→∞ P4(hk) = P4(h) for some h. We prove that P4(h) ∈ ψ∗
3 (4).

Let us first choose two arbitrary vectors uk,wk ∈ λk \ {0} such that

vk,uk,wk are mutually orthogonal (they always exist). Hence the system

(2.35) implies:


h1

k [vk] = h1
k [uk] = h1

k [wk] = 0

h2
k [vk,vk] = h2

k [vk,uk] = h2
k [vk,wk] = 0

vk ·uk = vk ·wk = uk ·wk = 0 .

(2.36)

Since vk,uk,wk 6= 0 ∀k, we can consider the sequences of unit vectors

v̄k =
vk
‖vk‖ , ūk =

uk
‖uk‖ and w̄k =

wk
‖wk‖ which still verify (2.36) ∀k.

The sequence (v̄k, ūk, w̄k) is defined on the compact set S3 × S3 × S3,

therefore we can extract a subsequence (v̄k j , ūk j , w̄k j) convergent to some

(v,u,w) ∈ S3 ×S3 ×S3.
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From system (2.36) we obtain

lim j→∞ h1
k j
[v̄k j ] = h1[v] = 0

lim j→∞ h1
k j
[ūk j ] = h1[u] = 0

lim j→∞ h1
k j
[w̄k j ] = h1[w] = 0

lim j→∞ h2
k j
[v̄k j , v̄k j ] = h2[v,v] = 0

lim j→∞ h2
k j
[v̄k j , ūk j ] = h2[v,u] = 0

lim j→∞ h2
k j
[v̄k j , w̄k j ] = h2[v,w] = 0

lim j→∞ v̄k j · ūk j = v ·u = 0

lim j→∞ v̄k j · w̄k j = v ·w = 0

lim j→∞ ūk j · w̄k j = u ·w = 0

⇐⇒

{
Πλ ∇h(Ī) = 0

Πλ h2[v, ·] = 0

where λ is the 3-dimensional space spanned by the linearly independent

vectors v,u and w.

LEMMA 2.11. We have:

σ4(4)⊆ ψ∗
1 (4)∪ψ∗

2 (4)∪ψ∗
3 (4) .

PROOF. From Lemma 2.6 we have ψ1(4) = ψ∗
1 (4).

We proceed by proving ψ2(4) ⊆ ψ∗
2 (4). First, we prove that P4(h) ∈

ψ2(4) if and only if there exist two linearly independent vectors v,w ∈ R4

which verify: 

∇h(I) 6= 0

v ·w = 0

h1[v] = h1[w] = 0

h2[v,v] = h2[v,w] = 0

h2[w,w] 6= 0

h3[v,v,v] = 0

h3[v,v,w] 6= 0

3(h3[v,v,w])2 = h2[w,w]h4[v,v,v,v] .

(2.37)

As a consequence ψ2(4) ⊆ ψ∗
2 (4): in fact, if P4(h) ∈ ψ2(4), then it

satisfies system (2.37), and therefore P4(h) ∈ ψ∗
2 (4). Finally, since ψ∗

2 (4) is

closed, ψ2(4)⊆ ψ∗
2 (4) follows immediately.
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New explicit sufficient conditions for steepness

Let us assume P4(h) ∈ ψ2(4), and consider v,u ∈ R4 linearly indepen-

dent, β ∈ R, α ∈ R\{0} which solve the system S2(h) in (2.30).

From Πλ h2[v, ·] = 0 we obtain Πλ h′′Πλ v = 0, that is v is eigenvec-

tor with eigenvalue λ1 = 0. Since Πλ h′′Πλ is symmetric non-completely

degenerate, it has a second real eigenvalue λ2 6= 0, with eigenvector w ∈
λ \{0} which is orthogonal to v.

Therefore, (v,w) is an orthogonal basis on λ , and we have

h2[v,v] = h2[v,w] = 0 , h2[w,w] = λ2 |w|2 6= 0 , v ·w = 0 , u = u1v+u2w

(2.38)

with some u1 ∈ R, u2 ∈ R\{0}.

From S2(h) we have

∇h(I) 6= 0

h1[v] = 0

h1[w] = 0

h2[v,v] = 0

h2[v,w] = 0

h3[v,v,v] = 0

2αu2 h2[w,w]+h3[v,v,w] = 0

6αu2 h3[v,v,w]+h4[v,v,v,v] = 0

6βu2 h2[w,w]+6αu1 h3[v,v,w]+6αu2 h3[v,w,w]+h4[v,v,v,w] = 0

=⇒



∇h(I) 6= 0

h1[v] = 0

h1[w] = 0

h2[v,v] = 0

h2[v,w] = 0

h3[v,v,v] = 0

u2 =− h3[v,v,w]
2α h2[w,w] 6= 0

3(h3[v,v,w])2 = h2[w,w]h4[v,v,v,v]

6βu2 h2[w,w]+6αu1 h3[v,v,w]+6αu2 h3[v,w,w]+h4[v,v,v,w] = 0 .
(2.39)
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2.4 Proofs of Propositions 2.3, 2.4 and 2.5

From (2.38) and (2.39) it follows that P4(h) satisfies all conditions in (2.37)

with respect to the vectors v and w.

Let us now assume that P4(h) satisfies all the conditions (2.37) with

respect to two linearly independent vectors v and w. Let us denote by λ the

2-dimensional space spanned by v,w. Since h2[v,v] = h2[v,w] = 0, we have

Πλ h2[v, ·] = 0, so that Πλ h′′Πλ is degenerate; since h2[w,w] 6= 0, the linear

operator Πλ h′′Πλ is not completely degenerate.

We claim that P4(h) satisfies also all the conditions defining S2(h) in

(2.30) with v and u = w, with suitable definition of α 6= 0 and β . We first

project the last two equations of the system in (2.30) over the vectors v,u:

h3[v,v,v] = 0

2αh2[u,u]+h3[v,v,u] = 0

6αh3[v,v,u]+h4[v,v,v,v] = 0

6βh2[u,u]+6αh3[v,u,u]+h4[v,v,v,u] = 0 . (2.40)

From (2.37), we immediately obtain that the first of these equations is

satisfied by v; since h2[u,u] 6= 0, the second and third equations are satisfied

by α = −h3[v,v,u]/(2h2[u,u]) 6= 0; finally, the fourth equation is satisfied

by β =−(6αh3[v,u,u]+h4[v,v,v,u])/(6h2[u,u]).

We conclude by proving ψ3(4) = ψ∗
3 (4). First, we prove that the limit

of each convergent sequence of elements of ψ3(4) belongs to ψ∗
3 (4). It is

sufficient to observe that ψ3(4)) ⊆ ψ∗
3 (4) and, since ψ∗

3 (4) is a closed set

for Lemma 2.10, the thesis follows.

Then, we prove that for a given element P4(h) ∈ ψ∗
3 (4), there always

exists a sequence of elements of ψ3(4) convergent to it.

If ∇h(I) 6= 0, then P4(h) ∈ ψ3(4). Therefore we consider the case

∇h(I) = 0. We take v = (v1,v2,v3,v4) ∈ R4 \ {0} solving (2.34), and de-

fine f (I) := α1I1 +α2I2 +α3I3 +α4I4, where α = (α1,α2,α3,α4) is the

non-zero vector orthogonal to the space λ .
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New explicit sufficient conditions for steepness

The vector v is a solution of (2.34) also for h = f , moreover ∇ f (I) 6= 0.

Thus the sequence of functions:

hk := h+
1
k

f

is such that P4(hk) ∈ ψ3(4) for each k, and limk→∞ P4(hk) = P4(h).

The proof of Proposition 2.5 follows from Theorem 1.6 and Proposition

2.1.
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CHAPTER 3

Numerical verification of the steepness of a function

In this Chapter we provide an algorithm for the verification of the steep-

ness of a smooth integrable Hamiltonian h(I) : D ⊆ Rn −→ R, n = 3,4

h(I) =
n

∑
i=1

ωiIi +
1
2

n

∑
i, j=1

Ai jIiI j +
1
6

n

∑
i, j,k=1

Bi jkIiI jIk +
1

24

n

∑
i, j,k,l=1

Ci jklIiI jIkIl ,

(3.1)

with ωi,Ai j,Bi jk,Ci jkl known coefficients, in a neighborhood of Ī = 0.

We also assume ω = (ω1, . . . ,ωn) 6= 0.

Our algorithm represents an extension of an algorithm already provided

by Benettin, Fassò and Guzzo in [6]. There the authors, in order to study the

stability of the Hamiltonian of the circular restricted three-body problem in

a neighborhood of the elliptic equilibria L4 and L5, constructed an algorithm

for the verification of the steepness of a function h(I) with 3 degrees of

freedom of the form:

h(I) =
n

∑
i=1

ωiIi +
1
2

n

∑
i, j=1

Ai jIiI j +
1
6

n

∑
i, j,k=1

Bi jkIiI jIk ,

precisely identifying if h is quasi-convex, 3-jet non-degenerate, or satisfies

a property called directional quasi-convexity.

We recall that a function h(I) is directionally quasi-convex at Ī = 0 if

the restriction of the quadratic form h2[v,v] to the space orthogonal to ω
does not vanish in the first octant, that is if the system

h1[v] = 0

h2[v,v] = 0

v1, . . . ,vn ≥ 0

admits the only solution v = (v1, . . . ,vn) = 0.
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Numerical verification of the steepness of a function

The directional quasi-convexity is not a sufficient condition for steep-

ness, but it is an important property for the study of the stability of a quasi-

integrable Hamiltonian in a neighborhood of an elliptic equilibrium. Here,

in fact, due to the singularity of the actions, we can not introduce action-

angle variables, therefore the Nekhoroshev Theorem [49, 50] can not be

applied.

In [25, 32, 6] a Nekhoroshev like stability for analytic Hamiltonians in a

neighborhood of an elliptic equilibrium has been proved, under the assump-

tion that the Birkhoff normal form of order four of the Hamiltonian exists

and is convex, quasi-convex or directionally quasi-convex. In particular, in

[6], Benettin, Fassò and Guzzo proved similar results also for Hamiltonians

with three degrees of freedom whose Birkhoff normal form of order 8 exists

and is 3-jet non-degenerate.

Our algorithm extends the algorithm provided in [6] in the following

way. For n = 3, with a minor modification of the algorithm of [6], we

introduce the verification of the steepness of functions (3.1) which are 3-jet

degenerate but satisfy the hypotheses of Proposition 2.4.

Instead for n = 4, we need to specifically adapt the algorithm to the

higher dimensionality and to the trickiness of the hypotheses of Proposition

2.5.

We also apply these algorithms for the verification of the steepness of

two specific Hamiltonians. The first one is the Hamiltonian of the circular

restricted three-body problem in a neighborhood of the elliptic equilibria

L4 and L5, for the only value of the reduced mass µ = µ3 whose 6th order

Birkhoff normal form was found 3-jet degenerate [6].

The second one is the Hamiltonian of a chain of n = 4 harmonic oscilla-

tors with potential energy derived from the well known Fermi-Pasta-Ulam

problem (see, for example, [7, 57, 58]).

In both cases, since we are dealing with elliptic equilibria, we verify the

steepness of a suitable Birkhoff normal form. Precisely for each problem,
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3.1 Description of the algorithm

we construct the Birkhoff normal form of order eight:

h(8) = k2(I)+ k4(I)+ k6(I)+ k8(I)+O(9)

where ki are homogeneous polynomials of degree i/2 in the actions I (see

Appendix A for the construction of the Birkhoff normal forms in a neigh-

borhood of an elliptic equilibrium).

The verification of the steepness, as well as the computation of the nor-

mal forms, are performed numerically by the software Mathematica.

3.1. Description of the algorithm

We verify the steepness in a neighborhood of the origin of a Hamiltonian

(3.1) such that ω 6= 0. We denote by A = (Ai j)i, j=1,...,n the Hessian matrix

of h computed at the origin, and by Λ the linear space orthogonal to ω .

3.1.1. The algorithm in the case n = 3.

The first three steps constitute the algorithm constructed in [6]. The last

one represents the extension of the algorithm to the case of a function h

which is 3-jet degenerate and satisfies the hypotheses of Proposition 2.4 at

the origin.

(1) We perform a rotation of the coordinates I in order to carry the vector ω
into the first coordinate axis, and we denote by R the rotation matrix. Then

we take the appropriate 2×2 sub-matrix AΛ of the rotation of A, which rep-

resents the restriction of the Hessian matrix to the space Λ. We compute

the two eigenvalues of AΛ: if they are both positive or negative, then we

conclude that h(I) is quasi-convex at the origin.

(2) We suppose h(I) is not quasi-convex at the origin, so that we compute

the vectors v ∈ Λ\{0} such that h2[v,v] = 0.

Let λ1 ≤ λ2 be the eigenvalues of AΛ, and let x = (x1,x2), y = (y1,y2)

be eigenvectors of λ1 and λ2 respectively. According to the definition (see
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Numerical verification of the steepness of a function

Chapter 1), the function h(I) is 3-jet non-degenerate at the origin if and only

if all vectors v ∈ Λ\{0} such that

h2[v,v] = 0, (3.2)

satisfy also h3[v,v,v] 6= 0. Given any v ∈ Λ \ {0} such that (3.2) holds, we

can write

v = RT (0,d)

where d ∈ R2 solves

AΛd ·d = 0 . (3.3)

We search the solutions of (3.3). Since the matrix AΛ is symmetric, we can

diagonalize it by an orthogonal matrix S:

ST AΛS =

(
λ1 0

0 λ2

)
=: D.

Then AΛ = SDST , and equation (3.3) becomes:

λ1w2
1 +λ2w2

2 = 0 (3.4)

where w = (w1,w2) ∈ R2 is such that w = ST d.

We distinguish between different cases, depending on the values of

λ1,λ2.

A) λ1 < 0 < λ2

Equation (3.4) determines two lines through the origin, which

contain the vectors w =
(√

−λ2
λ1

w2,w2

)
, and

w =
(
−
√
−λ2

λ1
w2,w2

)
, with w2 ∈ R. We can fix ‖w‖= 1, there-

fore equation (3.4) has the two solutions:

wA = 1√
λ1−λ2

(
√
−λ2,

√
λ1)

wB = 1√
λ1−λ2

(−
√
−λ2,

√
λ1) .
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3.1 Description of the algorithm

Consequently, the two vectors vA,vB ∈ Λ\{0} defined by

vA = RT (0,dA) with dA =
√

λ1
λ1−λ2

y+
√

−λ2
λ1−λ2

x

vB = RT (0,dB) with dB =
√

λ1
λ1−λ2

y−
√

−λ2
λ1−λ2

x ,

satisfy (3.2). If it happens that

h3[vA,vA,vA] 6= 0

h3[vB,vB,vB] 6= 0 ,

then h(I) is 3-jet non-degenerate at the origin. If it happens that

h3[vA,vA,vA] = 0 or h3[vB,vB,vB] = 0, then the function is 3-jet de-

generate, and its steepness will be tested using Proposition 2.4.

B) One of the two eigenvalues λ1,λ2 vanishes

We first suppose λ1 = 0. Then λ2 > 0, and equation (3.4) is

solved by the vectors w = (w1,0) with w1 ∈ R, and in particular

by w = (1,0). Consequently the vector v ∈ Λ\{0} defined by

v = RT (0,x) ,

satisfies (3.2), and therefore h(I) is 3-jet non-degenerate at the ori-

gin if and only if h3[v,v,v] 6= 0.

We suppose now λ2 = 0. Then λ1 < 0, and equation (3.4) is

solved by the vectors w = (0,w2) with w2 ∈ R, and in particular

by w = (0,1). Consequently the vector v ∈ Λ\{0} defined by

v = RT (0,y) ,

satisfies (3.2), and therefore h(I) is 3-jet non-degenerate at the ori-

gin if and only if h3[v,v,v] 6= 0.

C) λ1 = λ2 = 0

In this case equation (3.4) is solved by all the vectors w ∈ R2.

We can fix ‖w‖= 1, therefore equation (3.4) has the solutions:

wγ = (cosγ,sinγ) γ ∈ [0,2π) .
61



Numerical verification of the steepness of a function

Then the vectors v ∈ Λ\{0} such that (3.2) holds are:

vγ = RT (0,dγ) with dγ = xcosγ + ysinγ

for all γ ∈ [0,2π). As a consequence, h(I) is 3-jet non-degenerate

at the origin if and only if for each γ ∈ [0,2π), the vector vγ satis-

fies h3[vγ ,vγ ,vγ ] 6= 0.

(3) From step (2), we obtained all the vectors v ∈ Λ \{0} satisfying (3.2).

We can therefore check if h(I) is directionally quasi-convex at the origin,

which is verified if and only if all such vectors v have two components with

opposite signs.

(4) We finally suppose that h(I) is 3-jet degenerate at the origin, so that

there exists at least one vector v ∈ Λ\{0} such that{
h2[v,v] = 0

h3[v,v,v] = 0 .
(3.5)

The function h(I) satisfies the hypotheses of Proposition 2.4 at the origin

if, for all vectors v ∈ Λ \ {0} verifying (3.5), the following two conditions

hold:

(1) h4[v,v,v,v] 6= 0

(2) the system 
v ·w = 0

h1[w] = 0

h2[v,w] = 0

(3.6)

admits the only solution w = (w1,w2,w3) = 0.

Since Λ is a 2-dimensional space, for any v ∈ Λ \ {0} there is only one

vector v⊥ ∈ Λ\{0} such that v ·v⊥ = 0. Hence, if for all vectors v ∈ Λ\{0}
which verify (3.5), it holds:

h4[v,v,v,v] 6= 0

h2[v,v⊥] 6= 0 ,

then h(I) satisfies the hypotheses of Proposition 2.4 at the origin.
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3.1 Description of the algorithm

3.1.2. The algorithm in the case n = 4.

The first three steps constitute the generalization to functions with four

degrees of freedom of the algorithm constructed in [6]. The last step rep-

resents the extension of the algorithm to the case of a function h which is

3-jet degenerate and satisfies the hypotheses of Proposition 2.5 at the origin.

(1) We proceed as in the case n = 3. We perform a rotation of the coor-

dinates I in order to carry the vector ω into the first coordinate axis, and

we denote by R the rotation matrix. Then we take the appropriate 3× 3

sub-matrix AΛ of the rotation of A, which represents the restriction of the

Hessian matrix to the space Λ.

We compute the three eigenvalues of AΛ: if they are all positive or all

negative, then h(I) is quasi-convex at the origin.

(2) We suppose h(I) is not quasi-convex at the origin, so that we compute

the vectors v ∈ Λ\{0} such that h2[v,v] = 0.

Let λ1 ≤ λ2 ≤ λ3 be the eigenvalues of AΛ, and let x = (x1,x2,x3),

y = (y1,y2,y3), z = (z1,z2,z3) be eigenvectors of λ1, λ2 and λ3 respectively.

According to the definition (see Chapter 1), h(I) is 3-jet non-degenerate at

the origin if and only if all vectors v ∈ Λ\{0} such that:

h2[v,v] = 0 (3.7)

satisfy also h3[v,v,v] 6= 0. Given any v ∈ Λ \ {0} such that (3.7) holds, we

can write

v = RT (0,d)

where d ∈ R3 solves

AΛd ·d = 0 . (3.8)
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Numerical verification of the steepness of a function

We search the solutions of (3.8). Since the matrix AΛ is symmetric, we can

diagonalize it by an orthogonal matrix S:

ST AΛS =

 λ1 0 0

0 λ2 0

0 0 λ3

=: D .

Then AΛ = SDST , and equation (3.8) becomes:

λ1w2
1 +λ2w2

2 +λ3w2
3 = 0 (3.9)

where w = (w1,w2,w3) ∈R3 is such that w = ST d. We distinguish between

different cases, depending on the values of λ1,λ2,λ3.

A) λ1,λ2,λ3 6= 0

In particular, since h(I) is not quasi-convex, we have λ1 < 0

and λ3 > 0.

• λ2 > 0

In this case equation (3.9) describes two elliptical cones with

vertex in the origin and height along w1: one with positive

values of w1 and one with negative values of w1. Because of

the symmetry, we can restrict to the first cone, hence we take

w1 ≥ 0. We can fix ‖w‖ = 1, and we also introduce polar

coordinates, so that equation (3.9) is solved by:

wγ =
(√

1− r2,r cosγ,r sinγ
)

with r =
√

−λ1
λ2 cos2 γ+λ3 sin2 γ−λ1

and γ ∈ [0,2π). Consequently,

the vectors in the space Λ such that (3.7) holds are

vγ = RT (0,dγ) with dγ = x
√

1− r2 + yr cosγ + zr sinγ

for all γ ∈ [0,2π). Then, h(I) is 3-jet non-degenerate at the

origin if and only if, for each γ ∈ [0,2π), the vector vγ satisfies

h3[vγ ,vγ ,vγ ] 6= 0.
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3.1 Description of the algorithm

• λ2 < 0

In this case equation (3.9) describes two elliptical cones with

vertex in the origin and height along w3: one with positive

values of w3 and one with negative values of w3. Because of

the symmetry, we can restrict to the first cone, hence we take

w3 ≥ 0. We can fix ‖w‖ = 1, and we also introduce polar

coordinates, therefore equation (3.9) has the solutions:

wγ =
(

r cosγ,r sinγ,
√

1− r2
)

with r =
√

λ3
λ3−λ1 cos2 γ−λ2 sin2 γ and γ ∈ [0,2π). Consequently,

the non-vanishing vectors in the space Λ such that (3.7) holds

are

vγ = RT (0,dγ) with dγ = xr cosγ + yr sinγ + z
√

1− r2

for all γ ∈ [0,2π). Then, h(I) is 3-jet non-degenerate at the

origin if and only if for each γ ∈ [0,2π), the vector vγ satisfies

h3[vγ ,vγ ,vγ ] 6= 0.

B) One of the three eigenvalues λ1,λ2,λ3 vanishes

• λ1 = 0 or λ3 = 0

We suppose λ1 = 0. Then 0 < λ2 ≤ λ3, and equation (3.9)

is solved by the vectors w = (w1,0,0) with w1 ∈ R. We fix

‖w‖= 1, therefore equation (3.9) has the solution:

w = (1,0,0) .

Consequently the vector v ∈ Λ\{0} such that (3.7) holds is:

v = RT (0,x) ,

and if h3[v,v,v] 6= 0, then h(I) is 3-jet non-degenerate at the

origin.

We suppose now λ3 = 0. Then λ1 ≤ λ2 < 0, and equation
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Numerical verification of the steepness of a function

(3.9) is solved by the vectors w = (0,0,w3) with w3 ∈ R. We

fix ‖w‖= 1, therefore equation (3.9) has the solution:

w = (0,0,1) .

Consequently the vector v ∈ Λ\{0} such that (3.7) holds is:

v = RT (0,z) ,

and if h3[v,v,v] 6= 0, then h(I) is 3-jet non-degenerate at the

origin.

• λ2 = 0

Then λ1 < 0 and λ3 > 0. In this case equation (3.9) describes

two planes through the origin in R3: one containing the vec-

tors w =
(√

λ3
−λ1

w3,w2,w3

)
, and the other one containing

the vectors w =
(
−
√

λ3
−λ1

w3,w2,w3

)
, with w2,w3 ∈ R. We

can fix ‖w‖ = 1 and consider in both cases w2 ≥ 0, then the

solutions of (3.9) are w = (±
√

λ3
−λ1

w3,

√
λ1+(λ3−λ1)w2

3
λ1

,w3),

with w3 ∈ R.

Introducing polar coordinates, the solutions of (3.9) can be

written as:

wγ =


(√

λ3
λ3−λ1

cosγ,sinγ,
√

−λ1
λ3−λ1

cosγ
)

γ ∈ [0,π)(
−
√

λ3
λ3−λ1

cosγ,−sinγ,
√

−λ1
λ3−λ1

cosγ
)

γ ∈ [π,2π) .

Then the non-vanishing vectors in the space Λ such that (3.7)

holds are vγ = RT (0,dγ), with

dγ =

 x
√

λ3
λ3−λ1

cosγ + y sinγ + z
√

−λ1
λ3−λ1

cosγ γ ∈ [0,π)

−x
√

λ3
λ3−λ1

cosγ − y sinγ + z
√

−λ1
λ3−λ1

cosγ γ ∈ [π,2π) .

If for each γ ∈ [0,2π) the vector vγ satisfies h3[vγ ,vγ ,vγ ] 6= 0,

then h(I) is 3-jet non-degenerate at the origin.

C) λ1 = λ2 = 0 or λ2 = λ3 = 0

66



3.1 Description of the algorithm

We suppose λ1 = λ2 = 0. Then equation (3.9) is solved by

the vectors w = (w1,w2,0) with w1,w2 ∈ R. We fix ‖w‖ = 1 and

we introduce polar coordinates, therefore equation (3.9) has the

solutions:

wγ = (cosγ,sinγ,0) γ ∈ [0,2π) .

Then the non-vanishing vectors in the space Λ such that (3.7) holds

are:

vγ = RT (0,dγ) with dγ = x cosγ + y sinγ

for all γ ∈ [0,2π). If for each γ ∈ [0,2π) the vector vγ satisfies

h3[vγ ,vγ ,vγ ] 6= 0, then h(I) is 3-jet non-degenerate at the origin.

We suppose now λ2 = λ3 = 0. Then equation (3.9) is solved

by the vectors w = (0,w2,w3) with w2,w3 ∈ R. We fix ‖w‖ = 1

and we introduce polar coordinates, therefore equation (3.9) has

the solutions:

wγ = (0,cosγ,sinγ) γ ∈ [0,2π) .

Then the non-vanishing vectors in the space Λ such that (3.7) holds

are:

vγ = RT (0,dγ) with dγ = y cosγ + z sinγ

for all γ ∈ [0,2π). If for each γ ∈ [0,2π) the vector vγ satisfies

h3[vγ ,vγ ,vγ ] 6= 0, then h(I) is 3-jet non-degenerate at the origin.

D) λ1 = λ2 = λ3 = 0

In this case equation (3.9) is solved by all the vectors w ∈ R3.

We can fix ‖w‖= 1, therefore equation (3.9) has the solutions:

wθ ,γ = (sinθ cosγ,sinθ sinγ,cosθ) θ ∈ [0,π),γ ∈ [0,2π) .

Then the non-vanishing vectors in the space Λ such that (3.7) holds

are:

vθ ,γ = RT (0,dθ ,γ) with dθ ,γ = x sinθ cosγ + y sinθ sinγ + z cosθ
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Numerical verification of the steepness of a function

for all θ ∈ [0,π),γ ∈ [0,2π). If for each couple (θ ,γ) the vec-

tor vθ ,γ is such that h3[vθ ,γ ,vθ ,γ ,vθ ,γ ] 6= 0, then h(I) is 3-jet non-

degenerate at the origin.

(3) From step (2), we obtained all the vectors v ∈ Λ\{0} satisfying (3.7).

We can therefore check if h(I) is directionally quasi-convex at the origin,

that is verified if and only if all such vectors v have two components with

opposite signs.

(4) We suppose h(I) is 3-jet degenerate at the origin. Therefore there exists

at least one vector v ∈ Λ\{0} such that{
h2[v,v] = 0

h3[v,v,v] = 0 .
(3.10)

The function h(I) satisfies the hypotheses of Proposition 2.5 at the origin if

and only if:

(1) the matrix AΛ is non-degenerate, that is all eigenvalues λ1,λ2,λ3

of AΛ are non-vanishing;

(2) for all vectors v ∈ Λ\{0} satisfying (3.10), the following two con-

ditions hold:

(2a) h4[v,v,v,v] 6= 0

(2b) the system
v ·w = 0

h1[w] = 0

h2[v,w] = 0

h2[w,w]h4[v,v,v,v] = 3(h3[v,v,w])2

(3.11)

admits only the solution w = (w1,w2,w3,w4) = 0 .

Let v ∈ Λ \ {0} be such that (3.10) is verified. We consider the system

formed by the first three equations of (3.11), which is linear in the variables
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freedom
w1,w2,w3 and w4. Precisely:

B :=


v ·w = 0

h1[w] = 0

h2[v,w] = 0 .

The system B has maximal rank. The first two equations are linearly inde-

pendent because the vectors v and ω are orthogonal, while the third equa-

tion is linearly independent from each of the first two, because the vec-

tor h2[v, ·] is orthogonal both to v and ω . In fact, if it was h2[v, ·] ‖ ω ,

then ΠΛh2[v, ·] = 0 ⇐⇒ AΛv = 0, and this is impossible because AΛ is non-

degenerate.We can fix ‖w‖= 1, therefore system B admits a unique solution

w̄ ∈ R4 \{0}.

Finally, we can state what follows. If AΛ is non-degenerate and if, for

each v ∈ Λ\{0} verifying (3.10), it holds:

h4[v,v,v,v] 6= 0

h2[w̄, w̄]h4[v,v,v,v] 6= 3(h3[v,v, w̄])2 ,

where w̄ is the unique non-zero solution of B, then h(I) satisfies the hy-

potheses of Proposition 2.5 at the origin.

3.2. Verification of the steepness of a function with three degrees of
freedom: the Hamiltonian of the circular restricted three-body

problem

In this Section we implement the algorithm described in Section 3.1 for

the verification of the steepness on the Hamiltonian of the circular restricted

three-body problem.

The system consists in two primary bodies M1 and M2 with masses m1

and m2, and a third body M. The two primaries perform circular orbits

around their common center of mass, while the third body M moves under

the effect of the force field generated by the primaries.

We consider a coordinate system x1,x2,x3 with the origin in the center

of mass, so that at time t = 0 the two primaries are both on the x1 axis. The
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motion of M1 and M2 takes place in the plane x1,x2. Then we choose the

units of length, mass and time such that:

- the reciprocal distance between M1 and M2 is 1;

- m1 +m2 = 1; then denoting by

µ =
m2

m1 +m2

the reduced mass, we have m1 = 1−µ and m2 = µ;

- the period of rotation of M1 and M2 is 2π .

By denoting with Q̃ the barycentric rotating coordinates and with P̃ the

conjugate momenta, the Hamiltonian of the system is:

H̃(Q̃, P̃; µ) =
1
2
(P̃2

1 + P̃2
2 + P̃2

3 )− Q̃1P̃2 + Q̃2P̃1 −
1−µ

d1
− µ

d2
. (3.12)

For all the values of the reduced mass µ > 0, the system admits 5 equi-

librium points L1,L2,L3, L4,L5, which are called Lagrangian equilibria and

are represented in Figure 1.

FIGURE 1. Configurations of the Lagrangian equilibrium

points in the baricentric rotating system.
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3.2 Verification of the steepness of a function with three degrees of
freedom

The triangular points L4 and L5 are elliptic for all values of the reduced

mass µ below the Routh’s critical mass

µR =
1
2
(1−

√
69
9

)≈ 0.0385209 .

We will investigate the steepness of the Birkhoff normal form of order

eight of the Hamiltonian (3.12) in a neighborhood of the elliptic equilibrium

L4, for a certain value of the reduced mass lower than µR.

In [25, 32, 6] Nekhoroshev like stability results for analytic Hamilto-

nians in a neighborhood of an elliptic equilibrium have been proved. Pre-

cisely, the stability has been proved for Hamiltonians whose Birkhoff nor-

mal form of order four exists and is convex, quasi-convex or direction-

ally quasi-convex, and for Hamiltonians of three degrees of freedom whose

Birkhoff normal form of order eight exists and is 3-jet non-degenerate.

In [6] Guzzo, Fassò and Benettin use these results to provide numerical

evidence of the stability of the Hamiltonian (3.12) in a neighborhood of

L4, for all µ < µR except a finite number of values of the reduced mass.

Precisely:

- for the following values of µ the Birkhoff normal form of order

four is neither quasi-convex nor directionally quasi-convex, and

the Birkhoff normal form of order eight does not exist:

µ(1,3,0) ≈ 0.0135160 having the resonance (1,3,0)

µ(1,2,0) ≈ 0.0242939 having the resonance (1,2,0)

µ(0,3,1) ≈ 0.0148525 having the resonance (0,3,1)

µ(3,3,−2) ≈ 0.0115649 having the resonance (3,3,−2)

- for µ3 ≈ 0.0147808 the Birkhoff normal form of order four is nei-

ther quasi-convex nor directionally quasi-convex, and the Birkhoff

normal form of order eight exists, but is 3-jet degenerate.

Benettin, Fassò and Guzzo obtain the stability results by a numerical

verification of the steepness of the Hamiltonian (3.12). Since for the case

µ = µ3, because of the 3-jet degeneracy of the 6th order Birkhoff normal
71



Numerical verification of the steepness of a function

form, they could not provide numerical evidence of stability, we decided to

verify the hypotheses of Proposition 2.5 of the 8th order Birkhoff normal

form. Actually, we find numerical evidence of such steepness.

3.2.1. The Hamiltonian in a neighborhood of L4. Following [6], we

perform some changes of variables which are needed in order to perform ef-

fectively the Birkhoff steps around L4. We consider the Hamiltonian (3.12)

for µ = µ3. The equilibrium L4 has the following coordinates

(Q̃L4, P̃L4) =
(1−2µ3

2
,

√
3

2
,0,−

√
3

2
,
1−2µ3

2
,0
)
.

We first introduce the coordinates (Q,P) = (Q̃− Q̃L4, P̃− P̃L4), which con-

jugate the Hamiltonian (3.12) to:

H(Q,P)=
1
2
(P2

1 +P2
2 +P2

3 )−Q1P2+Q2P1−
1−2µ3

2
Q1−

√
3

2
Q2−

1−µ3

ρ+(Q)
− µ3

ρ−(Q)
(3.13)

where ρ±(Q) =
√

Q2
1 +Q2

2 +Q2
3 ±Q1 +

√
3Q2 +1 .

The linearization of the Hamiltonian vector field of (3.13) in a neigh-

borhood of the equilibrium Q = P = 0, gives a system of the form:

Ẋ = LX ,

where X =(Q,P), and L is a 6×6 matrix. The eigenvalues of L are all imag-

inary, according to the ellipticity of the equilibrium, and are ±i f+,±i f− and

±i, with:

f± =

√
1± f

2
, f =

√
1−27µ3 +27µ2

3 .

In a neighborhood of the equilibrium there exists a linear change of vari-

ables (q, p) = (q(Q,P), p(Q,P)) which conjugate the quadratic part k2(q, p)

of the Hamiltonian (3.13) to:

k2(I) = ω · I, (3.14)
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where ω = ( f+,− f−,1), and I = (I1, I2, I3), Ii =
p2

i +q2
i

2 . In [6] the matrix of

the transformation (q, p) = T (Q,P) has been explicitly computed:

T =



−3k f+g+ (7+2 f )g− 0 (7−2 f )g+ −3k f−g− 0

(2 f −3) f+g+ −3kg− 0 −3kg+ −(2 f +3) f−g− 0

0 0 1 0 0 0

−4 f+g+ 3k f 2
+g− 0 3k f 2

−g+ −4 f−g− 0

0 (4 f f−g−)−1 0 (4 f f+g+)−1 0 0

0 0 0 0 0 1


where k =

√
3(1−2µ3) and g± = 1/

√
f f±(9k2 ∓10 f −1).

It is convenient to introduce the complex variables (see [6, 25, 32]):

z j :=
p j − iq j

i
√

2
, w j :=

p j + iq j√
2

, j = 1, . . . ,3

where z = (z1,z2,z3) are the coordinates and w = (w1,w2,w3) the momenta.

Hence the Hamiltonian of which we will compute the Birkhoff normal form

of order eight is:

h(z,w) = H(T−1C (z,w)) (3.15)

where

C =



− 1√
2

0 0 − i√
2

0 0

0 − 1√
2

0 0 − i√
2

0

0 0 − 1√
2

0 0 − i√
2

i√
2

0 0 1√
2

0 0

0 i√
2

0 0 1√
2

0

0 0 i√
2

0 0 1√
2


is the matrix such that (q, p) =C (z,w).

3.2.2. The verification of the steepness. We construct the Birkhoff

normal form of order eight of the Hamiltonian (3.15), according to the pro-

cedure described in Appendix A. Precisely, we take the Taylor expansion

of order eight around the origin of (3.15)

h(2) = k2(I)+h(2)3 +h(2)4 +h(2)5 +h(2)6 +h(2)7 +h(2)8 +O(9)
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and we construct

h(8) = h(2) ◦φχ3 ◦φχ4 ◦φχ5 ◦φχ6 ◦φχ7 ◦φχ8

where the functions χ j, j = 3, . . . ,8, are defined in Appendix A, and φχ j

denotes the time-1 Hamiltonian flow of χ j. By suitable choice of the χ j, we

obtain the polynomial

h(8) = k2(I)+ k4(I)+ k6(I)+ k8(I)+O(9)

where

k4(I) = 〈h(3)4 〉0

k6(I) = 〈h(5)6 〉0

k8(I) = 〈h(7)8 〉0

with

h(3)4 = h(2)4 +
1
2
Lχ3h(2)3

h(5)6 = h(3)6 +
1
2
Lχ4(h

(3)
4 + k4)

h(3)6 = h(2)6 +Lχ3h(2)5 +
1
2
L 2

χ3
h(2)4 +

1
8
L 3

χ3
h2

3

h(7)8 = h(4)8 +
1
2
Lχ5h(3)5 +Lχ6k4

h(3)5 = h(2)5 +Lχ3h(2)4 +
1
3
L 2

χ3
h(2)3

h(4)8 = h(3)8 +Lχ4h(3)6 +
1
3
L 2

χ4
h(3)4 +

1
6
L 2

χ4
k4

h(3)8 = h(2)8 +Lχ3h(2)7 +
1
2
L 2

χ3
h(2)6 +

1
6
L 3

χ3
h(2)5 +

1
24

L 4
χ3

h(2)4 +
1

144
L 5

χ3
h(2)3 .

We report here the explicit expression of the integrable approximation

h(I) = k2(I)+ k4(I)+ k6(I)+ k8(I)

= a1I1 +a2I2 + I3 +b1I2
1 +b2I1I2 +b3I2

2 +b4I1I3 +b5I2I3 +b6I2
3 + c1I3

1

+c2I2
1 I2 + c3I1I2

2 + c4I3
2 + c5I2

1 I3 + c6I1I2I3 + c7I2
2 I3 + c8I1I2

3 + c9I2I2
3

+c10I3
3 +d1I4

1 +d2I3
1 I2 +d3I2

1 I2
2 +d4I1I3

2 +d5I4
2 +d6I3

1 I3 +d7I2
1 I2I3
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+d8I1I2
2 I3 +d9I3

2 I3 +d10I2
1 I2

3 +d11I1I2I2
3 +d12I2

2 I2
3 +d13I1I3

3 +d14I2I3
3

+d15I4
3

where

a1 = 0.943129 a2 =−0.332428 b1 = 0.161402 b2 =−2.75156 b3 = 0.127405

b4 = 0.114703 b5 = 0.260248 b6 =−0.00270827 c1 =−0.540594 c2 = 2.89302

c3 = 1122.67 c4 = 137.613 c5 = 0.670007 c6 = 24.4582

c7 = 4.32674 c8 =−0.0812255 c9 =−0.217382 c10 =−0.0000752361

d1 = 3.16392 d2 =−187.931

d3 =−118322. d4 =−105166.

d5 =−6680.33 d6 = 4.49506

d7 = 255.299 d8 = 5179.18

d9 = 465.806 d10 = 3.362 d11 =−106.782

d12 =−23.1704 d13 = 0.0651032 d14 = 0.105165 d15 = 0.000631065 .

The explicit expression of the functions χ j will be reported in Appendix

B.

In confirmation of the results obtained in [6], we first show that h(I)

is not quasi-convex, not directionally quasi-convex and 3-jet degenerate at

I = 0. After that, we show that h(I) satisfies the hypotheses of Proposition

2.5 at the origin.

(1) Verification of the quasi-convexity
We denote by Λ the 2-dimensional linear space orthogonal to ω and by A

the Hessian matrix of h(I) computed at the origin.

We construct an orthonormal vector basis {e1,e2,e3} such that e1 ‖ ω ,

and we perform a rotation of the coordinates I. We denote by R the rotation

matrix. Then we take the appropriate 2×2 sub-matrix AΛ of the rotation of

A, which represents the restriction of the Hessian matrix to the space Λ. We
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compute the eigenvalues λ1,λ2 of AΛ:

λ1 =−2.33242, λ2 = 1.86534 .

Since they have opposite signs, h(I) is not quasi-convex at the origin.

(2) Verification of the 3-jet non-degeneracy
The two eigenvalues of AΛ are both non-vanishing, therefore there are two

directions in the space Λ on which the quadratic form h2[v,v] vanishes, and

they are:

vA = RT
(

0,
√

λ2
λ2−λ1

x1 +
√

−λ1
λ2−λ1

y1,
√

λ2
λ2−λ1

x2 +
√

−λ1
λ2−λ1

y2

)
vB = RT

(
0,
√

λ2
λ2−λ1

x1 −
√

−λ1
λ2−λ1

y1,
√

λ2
λ2−λ1

x2 −
√

−λ1
λ2−λ1

y2

)
,

where x = (x1,x2) and y = (y1,y2) are eigenvectors of the eigenvalues λ1

and λ2 respectively. We computed the vectors vA,vB, and we obtained:

vA = (0.729513,0.0125508,−0.683852)

vB = (−0.0697574,−0.964467,−0.254826) .

Since it holds:

h3[vA,vA,vA] = 0

h3[vB,vB,vB] =−197.75 6= 0 ,

we can conclude that h is 3-jet degenerate at the origin, according to the

results obtained in [6].

(3) Verification of the directional quasi-convexity
Since the vector vA has two components with opposite signs, then h(I) is

not directionally quasi-convex at the origin.

(4) Verification of the hypotheses of Proposition 2.4
The vector vA is the only non-vanishing vector in Λ verifying:

h2[vA,vA] = 0

h3[vA,vA,vA] = 0 .
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freedom

We computed the unique vector vA⊥ ∈ Λ\{0} such that vA · vA⊥ = 0:

vA⊥ = (0.745154,4.76855,0.882426) .

Since it holds:
h4[vA,vA,vA,vA] =−12.4955 6= 0

h2[vA,vA⊥] =−10.234 6= 0 ,

then h(I) satisfies the hypotheses of Proposition 2.5, and therefore it is steep

at the origin.

3.3. Verification of the steepness of a function with four degrees of
freedom:

the Hamiltonian of a chain of four harmonic oscillators

In this Section we implement the algorithm for the verification of the

steepness on the Hamiltonian of a system of four particles connected each

other by non-linear springs. We also introduce two additional particles

whose position is fixed. Precisely, if x j denotes the displacement of the j-th

particle from its equilibrium position, for j = 0, . . . ,5, then the following

condition holds:

x0 = x5 = 0 .

We denote by y = (y1,y2,y3,y4) the momenta conjugated to the coordinates

x = (x1,x2,x3,x4), hence the Hamiltonian of the system can be written as:

H(x,y;α,β )=
1
2

4

∑
j=1

y2
j +

4

∑
j=0

1
2
(x j+1−x j)

2+
4

∑
j=0

(
α
2
(x j+1−x j)

3+
β
3
(x j+1−x j)

4
)

(3.16)

where α and β are positive parameters which measure the non-linearity in

the forces between the particles in the chain. For the sake of simplicity, we

set equal to 1 the mass of the particles and the harmonic constant of the

springs.

The system has n = 4 degrees of freedom, and in the limit on big values

of n, it represents the famous Fermi-Pasta-Ulam problem [27].

In the fifties Fermi decided to perform numerical experiments on such a

model, with the collaboration of Pasta and Ulam. His intention was to prove
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the ergodic property of non-linear systems, which states that a non-linear

dynamical system behaves as ergodic. He wanted to prove such property,

in particular, for a system subject to an arbitrarily small non-linear pertur-

bation. The results of the numerical experiments, however, turned out to be

in contradiction with the ergodic hypothesis: the system, in fact, showed an

integrable-like behavior. This fact gave rise to the so-called Fermi-Pasta-

Ulam paradox, which is still largely under investigation.

We are interested in small perturbations of the system, therefore we will

take α,β ≤ 1.

The origin of the system is an equilibrium point, in particular it can

be proved that such equilibrium is elliptic. Hence in a neighborhood of

the origin there exists a linear change of variables (q, p) = (q(x,y), p(x,y)),

such that the quadratic part of the Hamiltonian (3.16) in the new variables

is:

k2(I) = ω · I

where ω = (ω1,ω2,ω3,ω4), with ω j = 2sin jπ
10 , and I = (I1, I2, I3, I4), with

I j =
p2

j+q2
j

2 .

The transformation is given by:

x j =
√

2
5 ∑4

k=1 qk sin k jπ
5

y j =
√

2
5 ∑4

k=1 pk sin k jπ
5 , j = 1, . . . ,4

and we denote by T the matrix such that (q, p) = T (x,y).

We will investigate the steepness of the Birkhoff normal form of order

eight of (3.16) in a neighborhood of the origin. For this reason we introduce

the complex variables (z,w) = (z1,z2,z3,z4,w1,w2,w3,w4), and the Hamil-

tonian of which we will construct the normal form is:

h(z,w;α,β ) = H(T−1C (z,w);α,β ) (3.17)

where C is the matrix such that (q, p) =C (z,w).
78
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3.3.1. The verification of the steepness. We construct the Birkhoff

normal form of order eight of the Hamiltonian (3.17), according to the pro-

cedure described in Appendix A. Precisely we take the Taylor expansion of

(3.17) around the origin, which is of degree four:

h(2)(Z;α,β ) = k2(I)+h(2)3 (Z;α,β )+h(2)4 (Z;α,β )

where Z = (z,w), and we construct:

h(8)(I;α,β ) = h(2) ◦φχ3 ◦φχ4 ◦φχ5 ◦φχ6 ◦φχ7 ◦φχ8

where the functions χ j, j = 3, . . . ,8, are defined in Appendix A. We obtain

the polynomial:

h(8)(I;α,β ) = k2(I)+ k4(I;α,β )+ k6(I;α,β )+ k8(I;α,β )+O(9)

where:

k4 = 〈h(3)4 〉0 k6 = 〈h(5)6 〉0 k8 = 〈h(7)8 〉0

with

h(3)4 = h(2)4 +
1
2
Lχ3h(2)3 , h(5)6 = h(3)6 +

1
2
Lχ4(h

(3)
4 + k4)

h(3)6 =
1
2
L 2

χ3
h(2)4 +

1
8
L 3

χ3
h2

3, h(7)8 = h(4)8 +
1
2
Lχ5h(3)5 +Lχ6k4

h(3)5 = Lχ3h(2)4 +
1
3
L 2

χ3
h(2)3 ,

h(4)8 = h(3)8 +Lχ4h(3)6 +
1
3
L 2

χ4
h(3)4 +

1
6
L 2

χ4
k4

h(3)8 =
1
24

L 4
χ3

h(2)4 +
1

144
L 5

χ3
h(2)3 .

We denote by h(I;α,β ) the integrable approximation of h(8)(I;α,β ).
We consider many couples α,β ∈ (0,1], and we find that h(I;α,β )

is never quasi-convex but always directionally quasi-convex at the origin.

To test the 3-jet degeneracy, we restrict our attention to a sample of 11 of

such couples, and for all of them we find that h(I;α,β ) is 3-jet degener-

ate at the origin. We continue by choosing one of the couples, precisely

α = 0.1, β = 0.9, and we show that for these values h(I;α,β ) satisfies the
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hypotheses of Proposition 2.5 at the origin.

(1) Verification of the quasi-convexity
We denote by Λ the 3-dimensional linear space orthogonal to ω and by Aα,β

the Hessian matrix of h(I;α,β ) computed at the origin.

We construct an orthonormal vectors basis {e1,e2,e3,e4} such that e1 ‖
ω , and we perform a rotation of the coordinates I. We denote by R the

rotation matrix.

Then we take the appropriate 3×3 sub-matrix AΛ,α ,β of the rotation of

Aα ,β , which represents the restriction of the Hessian matrix to the space Λ.

For fixed α,β , we denote by λ1 ≤ λ2 ≤ λ3 the eigenvalues of AΛ,α,β , and

by x = (x1,x2,x2), y = (y1,y2,y3), z = (z1,z2,z3) eigenvectors of λ1,λ2 and

λ3 respectively.

We analyzed the sign of the function P(α,β ) := λ1 λ3 for α,β varying

in (0,1] and we found that P(α,β ) is always negative for all the values

considered of α and β , so that the eigenvalues of AΛ,α,β never have the

same sign.

In figure 2(a) we represent an example of our results for α ∈ (0,1] and

fixed β = 0.1. To better appreciate the sign of P(α,β ) near α ∼ 0, in figure

2(b) we also represent a zoom of figure 2(a).

In figure 3(a) we represent the function P(α,β ) for α = 0.1 and β ∈
(0,1]. Also in this case, to better appreciate the sign of P(α,β ) near β ∼ 0,

in figure 3(b) we represent a zoom of figure 3(a).

Therefore, for all the couples α,β considered, h(I;α,β ) is never quasi-

convex at the origin.
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FIGURE 2. P(α,β ) for β = 0.1, and for α in (0,1] (a), α in

(0,0.25] (b)
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FIGURE 3. P(α,β ) for α = 0.1, and for β in (0,1] (a), β in

(0,0.15] (b)

(2) Verification of the 3-jet non-degeneracy
From point A), we obtained λ1 < 0 and λ3 > 0 for all the couples α,β we

considered.

We also found that the intermediate eigenvalue λ2 changes its sign de-

pending on the values of α and β , and accordingly one has to refer to the

corresponding method of computation of the vectors v ∈ Λ\{0} such that

h2[v,v] = 0.
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Precisely, when λ2 6= 0, the vectors of the space Λ on which the qua-

dratic form h2[v,v] vanishes are:

• λ2 > 0

vγ = RT (0,dγ) dγ = x
√

1− r2 + yr cosγ + zr sinγ

with r =
√

λ1
λ2 cos2 γ+λ3 sin2 γ−λ1

and γ ∈ [0,2π).
• λ2 < 0

vγ = RT (0,dγ) dγ = xr cosγ + yr sinγ + z
√

1− r2

with r =
√

λ3
λ3−λ1 cos2 γ−λ2 sin2 γ and γ ∈ [0,2π).

For the verification of the 3-jet non-degeneracy, we fixed several values

of the parameters α,β ∈ (0,1], all such that λ2 6= 0, and we considered the

function F(γ) := h3[vγ ,vγ ,vγ ] : [0,2π) → R. For each choice of α and β ,

there is always at least one value γ̄ ∈ [0,2π) (usually there are two of them)

such that F(γ̄) = 0. In figures 4 and 5 we represent F(γ) for some values of

α,β ∈ (0,1].
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FIGURE 4. F(γ) for α = β = 0.1,0.2,0.3,0.4,0.5
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FIGURE 5. F(γ) for α = β = 0.6,0.7,0.8,0.9,1

Therefore, for all the couples α,β considered, and presumably for all

α,β ∈ (0,1], h(I;α,β ) is always 3-jet degenerate at the origin.

(3) Verification of the directional quasi-convexity
For fixed α and β , we considered the following function: B(γ) := Mγmγ ,

where Mγ and mγ are respectively the greatest and the smallest component

of the vector vγ .

We analyzed the sign of B(γ) for fixed values of α,β in (0,1], and we

found that B(γ) is always strictly negative for all the couples α,β consid-

ered, so that h(I;α,β ) is always directional quasi-convex at the origin.

In figure 6 we represent an example of our results.
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3.3 Verification of the steepness of a function with four degrees of
freedom
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FIGURE 6. B(γ) for α = β = 0.1,0.2,0.3,0.4,0.5

(4) Verification of the hypotheses of Proposition 2.5
We select α = 0.1 and β = 0.9, and in figure 7 we represent the function

F(γ) = h3[vγ ,vγ ,vγ ]: as we can see, h(I;α,β ) is 3-jet degenerate at the

origin.

Precisely, there are two values γ1,γ2 ∈ [0,2π) such that F(γ1) = F(γ2) = 0.

We computed approximatively these values:

γ1 = 2.29830744307 , γ2 = 5.71819341588 .
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FIGURE 7. F(γ) for α = 0.1 and β = 0.9
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The eigenvalues of AΛ,α,β are:

λ1 =−9.60123, λ2 = 1.48302, λ3 = 3.76194 ,

hence they are all non-vanishing, and in particular λ2 > 0. Therefore the

two vectors vγ1, vγ2 ∈ R4 \{0} which solve:
h1[v] = 0

h2[v,v] = 0

h3[v,v,v] = 0

are:

vγ1 = (−0.553501,−0.164378,−0.176342,0.43144)

vγ2 = (0.775441,−0.212722,−0.120282,−0.0181689) .

The unique solution wγ1 ∈ R4, with ‖wγ1‖= 1, of the system:
vγ1 ·w = 0

h1[w] = 0

h2[vγ1,w] = 0

is wγ1 = (0.208442,−0.873288,0.426641,0.109072), and is such that

h2[wγ1,wγ1]h4[vγ1,vγ1,vγ1,vγ1] 6= 3(h3[vγ1,vγ1,wγ1])2 .

In fact we have:

h2[wγ1,wγ1]h4[vγ1,vγ1,vγ1,vγ1] =−658.539 and 3(h3[vγ1,vγ1,wγ1])2 = 231.187 .

The unique solution wγ2 ∈ R4, with ‖wγ2‖= 1, of the system:
vγ2 ·w = 0

h1[w] = 0

h2[vγ2,w] = 0

is wγ2 = (0.110936,0.761750,−0.637325,0.035308), and is such that

h2[wγ2,wγ2]h4[vγ2,vγ2,vγ2,vγ2] 6= 3(h3[vγ2,vγ2,wγ2])2 .

In fact we have:

h2[wγ2,wγ2]h4[vγ2,vγ2,vγ2,vγ2] = 41.2909 and 3(h3[vγ2,vγ2,wγ2])2 = 90.6655 .
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3.3 Verification of the steepness of a function with four degrees of
freedom

Finally, since
h4[vγ1,vγ1,vγ1,vγ1] =−551.733 6= 0

h4[vγ2,vγ2,vγ2,vγ2] = 27.3614 6= 0 ,

we can conclude that for α = 0.1 and β = 0.9, the function h(I;α,β ) sat-

isfies the hypotheses of Proposition 2.5, and therefore it is steep in a neigh-

borhood of the origin.
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Conclusions

Among the most useful and interesting applications of the Nekhoroshev

Theorem there are problems from Celestial Mechanics. When the perturb-

ing parameter ε is sufficiently small, in fact, the stability time proved by

Nekhoroshev may be comparable to the age of the Universe, and therefore

can exceed the lifetime of a real system [18, 23, 27, 29, 30].

Starting from the Planetary problem, many physical systems of interest

can be studied by the Theory of Perturbations, and for some of them an

investigation of the stability has been already performed, using the notions

and the instruments known up to now. Among the most recent works I men-

tion as an example [14, 16, 18, 20, 21, 28, 42, 61].

I think the results proved in my Thesis may be useful to perform a step

forward in the study of the stability of such systems.

In Chapter 3 I already provided two examples of applicability of my re-

sults, which are the Hamiltonian of the circular restricted three-body prob-

lem and the Hamiltonian of a chain of four harmonic oscillators, with the

potential energy derived from the famous Fermi-Pasta-Ulam problem. For

such systems I showed that the new sufficient conditions for steepness ob-

tained in this Thesis are useful to prove steepness, which is a fundamental

property for the applicability of the Nekhoroshev Theorem.

A widely investigated physical system, for which the steepness repre-

sents a relevant problem, is the motion of an asteroid in the main belt, which

is the region of the space between Mars and Jupiter. Such system, like the

most of the astronomical systems of interest, is degenerate, that is to say the
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Conclusions

Hamiltonian has a number of first integrals of the motion which is strictly

greater than the number of degrees of freedom.

In [36, 46] a Nekhoroshev like stability result has been proved for the

asteroids problem, providing long time stability in particular for the eccen-

tricity and the inclination of an asteroid. In [53] the authors investigated the

fulfillment of the conditions for the validity of such result, precisely they

considered the Koronis and Veritas families of asteroids, and analized their

steepness properties.

They obtained that almost all asteroids in those families are convex,

quasi-convex or 3-jet non-degenerate: 71 elements in the Koronis family

and 13 in the Veritas family turned out to be 3-jet degenerate, therefore

their steepness properties are still unknown. Such particular asteroids may

represent a concrete example on which testing the new sufficient condition

for the steepness of functions with three degrees of freedom, proved in this

Thesis.

The Riemann ellipsoids are another interesting example of physical sys-

tem whose stability properties have been widely investigated for a long

time, and still have some open questions.

The Riemann ellipsoids are steady motions of an ideal, incompressible

and self-gravitating fluid with ellipsoidal shape. The interest in such mo-

tions originated from the attempt to explain the shape of the planets. Al-

ready Newton and McLaurin discovered the first examples of such ellip-

soides. From a mathematical point of view, the Riemann ellipsoids repre-

sent elliptic equilibria of a quasi-integrable Hamiltonian system.

In [24] the authors investigated the stability of those ellipsoids which

are spectrally stable, but of unknown Lyapunov stability. They obtained

that all the ellipsoids which are non-resonant up to the fourth order, are di-

rectionally quasi-convex, and therefore stable. But still the stability of some

different kinds of ellipsoids, such as the axisymmetric Riemann ellipsoids

or the McLaurin spheroids, has to be investigated. Therefore such ellipsoids
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may represent a possible example of system on which testing the new suffi-

cient conditions for the steepness of functions with four degrees of freedom,

proved in this Thesis.

Finally it is interesting to mention a system with four degrees of freedom

which has not been yet investigated from the point of view of the stability

properties: the elliptic restricted three-body problem. A possible investiga-

tion of the applicability of the Nekhoroshev Theorem to such system, may

need the new sufficient conditions for steepness obtained in this Thesis.

The Nekhoroshev’s result that I used for the construction of new suf-

ficient conditions for steepness, leaves open the possibility of many other

developments. It is possible to construct new sufficient conditions for steep-

ness for all values of n, being n the number of degrees of freedom of the sys-

tem, and for all values of r (I recall that r denotes the maximum derivative

order of the function involved). But the construction of such conditions be-

comes rapidly very elaborated with n and r increasing. Therefore it would

be interesting to investigate the existence of some recursion in the suffi-

cient conditions, for example depending on n and for fixed values of r, or

correspondingly for r increasing and fixed values of n.
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APPENDIX A

The Birkhoff normal forms in a neighborhood of an
elliptic equilibrium

We consider a quasi-integrable analytic Hamiltonian system H with n

degrees of freedom, having an elliptic equilibrium at the origin. That means

that there exists a set of canonical variables (p,q)∈R2n (defined in a neigh-

borhood of the origin) such that in these variables H takes the form

H(p,q) = k2(p,q)+ f (3)(p,q) (A.1)

where

k2(p,q) =
n

∑
j=1

ω j
p2

j +q2
j

2
,

ω = (ω1, . . . ,ωn) is the frequency vector of H at the origin, and f (3) is a

smooth function having a zero of order three at the origin.

Introducing the action functions I =(I1, . . . , In) such that I j(p,q)=
p2

j+q2
j

2 ,

j = 1, . . . ,n, then the Hamiltonian (A.1) may be represented as

H = k2(I)+ f (3) . (A.2)

The Birkhoff Theorem ensures that, under suitable non-resonance con-

ditions on the frequency vector, in a neighborhood of the elliptic equilib-

rium it is possible to construct normal forms of (A.2). Precisely

THEOREM A.1 (Birkhoff). Let us fix an integer N ≥ 2 and suppose the

frequency vector ω of (A.2) does not satisfy any resonance condition up to

the order N, that is

ω ·ν 6= 0 for all ν ∈ Zn \{0}, |ν | ≤ N, where |ν |=
n

∑
j=1

|ν j| ,
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The Birkhoff normal forms in a neighborhood of an elliptic
equilibrium

then there exists a neighborhood UN of the origin and a canonical trans-

formation wN : UN ⊂ R2n −→ R2n which puts the Hamiltonian (A.2) in

Birkhoff normal form up to order N, namely such that

H ◦wN = k2(I)+
[N/2]

∑
j=2

k2 j(I)+ f (N+1) (A.3)

where each k2 j(I) is a homogeneous polynomial of degree j in I1, . . . , In.

The remainder f (N+1) is a Taylor series in p,q which starts at order N +1

and is convergent in UN .

The Birkhoff normal form of order N is in a quasi-integrable form, in

fact the term f (N+1) represents a small perturbation of the integrable Hamil-

tonian k2(I)+∑[N/2]
j=2 k2 j(I).

Constructing a Birkhoff normal form consists in a sequence of pertur-

bation steps which are not performed in the standard way, since we are not

working in action-angle variables. It is convenient to introduce, in place of

the coordinates (p,q), the conjugate complex variables:

z j :=
p j − iq j

i
√

2
, w j :=

p j + iq j√
2

, j = 1, . . . ,n

(z = (z1, . . . ,zn) are the coordinates and w = (w1, . . . ,wn) the momenta), so

that I j = iw jz j , j = 1, . . . ,n .

In view of finding a solution of the fundamental equation of the Pertur-

bation Theory (see Chapter 1), we need to define a Fourier expansion for

analytic functions g(z,w).

We decide to use an idea of Siegel (see [62, 6, 25]), who defined a

suitable Fourier series in the variables (z,w) which, for a quasi-integrable

analytic Hamiltonian coincides, out of the manifolds I j = 0, to the Fourier

series in action-angle variables.

Precisely, if we consider the Taylor expansion of an analytic function

g(z,w):

g(z,w) = ∑
p,m∈Nn

gpmzpwm ,
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then for any integer vector k ∈ Zn, the k-th Fourier harmonic of g is defined

by:

〈g〉k(z,w) = ∑
p,m∈Nn

p−m=k

gpmzpwm . (A.4)

Each step of the construction of the Birkhoff normal form of order N,

consists in a canonical change of variables performed by the time-1 flow of a

suitable auxiliary Hamiltonian. Precisely, we consider the Taylor expansion

of H around the origin up to the order N, and we denote it by h(2):

h(2) = k2(I)+h(2)3 + . . .+h(2)N +O(N +1) (A.5)

where h(2)j are homogeneous polynomial of degree j in (z,w).

For all j = 3, . . . ,N, the Birkhoff normal form of order j will be

h( j) = k2(I)+ . . .+ k2[ j
2 ]
(I)+h( j)

j+1 + . . .+h( j)
N +O(N +1)

with h( j)
l homogeneous polynomial of degree l in (z,w), and kl homoge-

neous polynomial of degree l/2 in I. The normal forms h( j) are obtained

through an iterative procedure:

h( j) = h( j−1) ◦φχ j j = 3, . . . ,N

where φχ j is the time-1 flow of the Hamiltonian χ j, and χ j is the solution

of the fundamental equation of the perturbation theory:

{k2,χ j}= h( j−1)
j −〈h( j−1)

j 〉0

that is

χ j =−i ∑
k∈Zn\{0}

〈h( j−1)
j 〉k

iω · k
.

With evidence, the definition of all the auxiliary Hamiltonians is possi-

ble when the frequency vector ω does not satisfy any resonance condition

up to order N.
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APPENDIX B

The 8th order Birkhoff normal form of the Hamiltonian of
the circular restricted three-body problem

In this Appendix we report the explicit expressions of the functions

χ3,χ4,χ5 and χ6, involved in the construction of the 8th order Birkhoff nor-

mal form of the Hamiltonian of the circular restricted three-body problem

(see Chapter 3).

The normal form is computed in a neighborhood of the elliptic equilib-

rium L4 and for a fixed value of the reduced mass µ = µ3.

We remark that, even though χ7 and χ8 are required to construct the

normal form of order eight, they do not contribute to k8(I), and therefore do

not need to be explicitly constructed. We only check that no resonances of

order seven or eight prevent their construction.

χ3(z,w) =

(0.314326+1.19549 i)w3
1 +(2.74776−2.79607 i)w2

1w2

−(5.32268+0.319699 i)w1w2
2 +(0.767883+4.62586 i)w3

2

−(0.179638+0.0889783 i)w1w2
3 − (0.0236156+0.234035 i)w2w2

3

−(0.567936−1.54841 i)w2
1z1 +(6.27098+0.897071 i)w1w2z1

−(4.40193+7.13861 i)w2
2z1 +(0.247783+0.500247 i)w2

3z1

−(1.54841−0.567936 i)w1z2
1 +(4.36103+3.22364 i)w2z2

1

−(1.19549+0.314326 i)z3
1 − (3.22364+4.36103 i)w2

1z2

−(4.8931−12.1586 i)w1w2z2 +(12.4272+0.916175 i)w2
2z2

+(0.167323+0.016884 i)w2
3z2 − (0.897071+6.27098 i)w1z1z2
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The 8th order Birkhoff normal form of the Hamiltonian of the
circular restricted three-body problem

−(12.1586−4.8931 i)w2z1z2 +(2.79607−2.74776 i)z2
1z2

+(7.13861+4.40193 i)w1z2
2 − (0.916175+12.4272 i)w2z2

2

+(0.319699+5.32268 i)z1z2
2 − (4.62586+0.767883 i)z3

2

−(0.555332−1.12116 i)w1w3z3 +(2.34799−0.236928 i)w2w3z3

−(1.12116−0.555332 i)w3z1z3 +(0.236928−2.34799 i)w3z2z3

−(0.500247+0.247783 i)w1z2
3 − (0.016884+0.167323 i)w2z2

3

+(0.0889783+0.179638 i)z1z2
3 +(0.234035+0.0236156 i)z2z2

3

χ4(z,w) =

(1.69379+0.233854 i)w4
1 +(4.28931−11.5592 i)w3

1w2

−(26.4783+1.53214 i)w2
1w2

2 − (44.3035−34.995 i)w1w3
2

+(14.3266−2.60582 i)w4
2 − (0.197511−0.14474 i)w2

1w2
3

+(0.189755+0.489293 i)w1w2w2
3 − (0.456577−0.435692 i)w2

2w2
3

−0.000338534 iw4
3 +(5.48859−2.22304 i)w3

1z1 − (4.3988+

+9.80995 i)w2
1w2z1 +(0.864678−4.2146 i)w1w2

2z1 − (19.2549

+0.284727 i)w3
2z1 +(0.0323889−0.0127796 i)w1w2

3z1 − (0.483593

−0.0898874 i)w2w2
3z1 − (11.4384+10.4269 i)w1w2z2

1 +(16.1037

+7.55428 i)w2
2z2

1 +(0.492813−0.151455 i)w2
3z2

1 +(5.48859

+2.22304 i)w1z3
1 − (9.13472+3.27905 i)w2z3

1 +(1.69379−0.233854 i)z4
1

−(9.13472−3.27905 i)w3
1z2 +(17.4053+30.0956 i)w2

1w2z2

+(13.3553−30.8111 i)w1w2
2z2 +(5.51231+17.4136 i)w3

2z2

+(0.292424−0.543855 i)w1w2
3z2 +(0.0715228−0.0362568 i)w2w2

3z2

−(11.4384−10.4269 i)w2
1z1z2 − (38.3978+0.903033 i)w2

2z1z2

−(0.184434+0.656401 i)w2
3z1z2 − (4.3988−9.80995 i)w1z2

1z2

+(17.4053−30.0956 i)w2z2
1z2 +(4.28931+11.5592 i)z3

1z2
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+(16.1037−7.55428 i)w2
1z2

2 − (38.3978−0.903033 i)w1w2z2
2

−(0.352382−0.137904 i)w2
3z2

2 +(0.864678+4.2146 i)w1z1z2
2

+(13.3553+30.8111 i)w2z1z2
2 − (26.4783−1.53214 i)z2

1z2
2

−(19.2549−0.284727 i)w1z3
2 +(5.51231−17.4136 i)w2z3

2

−(44.3035+34.995 i)z1z3
2 +(14.3266+2.60582 i)z4

2

+(0.0934021+0.551296 i)w2
1w3z3 +(4.26194−0.157583 i)w1w2w3z3

−(0.416793+3.10622 i)w2
2w3z3 −0.00135414w3

3z3 − (1.0184

−1.25 i)w2w3z1z3 +(0.0934021−0.551296 i)w3z2
1z3 − (1.0184

+1.25 i)w1w3z2z3 +(4.26194+0.157583 i)w3z1z2z3 − (0.416793

−3.10622 i)w3z2
2z3 +(0.492813+0.151455 i)w2

1z2
3 − (0.184434

−0.656401 i)w1w2z2
3 − (0.352382+0.137904 i)w2

2z2
3 +(0.0323889

+0.0127796 i)w1z1z2
3 +(0.292424+0.543855 i)w2z1z2

3 − (0.197511

+0.14474 i)z2
1z2

3 − (0.483593+0.0898874 i)w1z2z2
3 +(0.0715228

+0.0362568 i)w2z2z2
3 +(0.189755−0.489293 i)z1z2z2

3 − (0.456577

+0.435692 i)z2
2z2

3 −0.00135414w3z3
3 +0.000338534 i z4

3

χ5(z,w) =

(23.6776+5.60465 i)w5
1 − (47.409+175.03 i)w4

1w2 − (447.191

−329.705 i)w3
1w2

2 +(774.449+444.385 i)w2
1w3

2 +(92.4234

−715.858 i)w1w4
2 − (340.8−70.0965 i)w5

2 − (1.30314−0.850712 i)w3
1w2

3

+(0.186131+0.439028 i)w2
1w2w2

3 +(3.15832+6.6943 i)w1w2
2w2

3

+(8.70484−5.34965 i)w3
2w2

3 +(0.0237389−0.006909 i)w1w4
3

+(0.146066−0.107917 i)w2w4
3 +(26.6093+11.8102 i)w4

1z1

+(35.3907−252.565 i)w3
1w2z1 − (762.357−88.6466 i)w2

1w2
2z1

+(449.728+893.539 i)w1w3
2z1 +(424.948−445.808 i)w4

2z1
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−(3.98847+1.37492 i)w2
1w2

3z1 − (1.32442−8.96575 i)w1w2w2
3z1

+(4.03999+6.11297 i)w2
2w2

3z1 − (0.0480885−0.000195137 i)w4
3z1

−(1.94202−11.0964 i)w3
1z2

1 +(139.325−100.215 i)w2
1w2z2

1

−(397.311+225.77 i)w1w2
2z2

1 +(10.8179+396.674 i)w3
2z2

1

−(0.92526+4.31137 i)w1w2
3z2

1 − (7.56516−7.3996 i)w2w2
3z2

1

+(11.0964−1.94202 i)w2
1z3

1 +(63.3881−54.6346 i)w1w2z3
1

−(166.916+2.95525 i)w2
2z3

1 +(1.66498−3.26142 i)w2
3z3

1 +(11.8102

+26.6093 i)w1z4
1 +(41.3492−97.5736 i)w2z4

1 +(5.60465+23.6776 i)z5
1

−(97.5736−41.3492 i)w4
1z2 +(479.807+438.42 i)w3

1w2z2 +(392.695

−1442.26 i)w2
1w2

2z2 − (1724.98−315.6 i)w1w3
2z2 +(502.146

+905.474 i)w4
2z2 +(3.07518−3.50268 i)w2

1w2
3z2 +(8.17429

−1.37227 i)w1w2w2
3z2 − (12.2044+21.037 i)w2

2w2
3z2 − (0.0957693

−0.097198 i)w4
3z2 − (54.6346−63.3881 i)w3

1z1z2 +(103.041

+330.416 i)w2
1w2z1z2 +(842.528−390.174 i)w1w2

2z1z2 − (965.583

+628.344 i)w3
2z1z2 +(10.5457+1.00084 i)w1w2

3z1z2 +(5.65319

−3.36995 i)w2w2
3z1z2 − (100.215−139.325 i)w2

1z2
1z2 +(330.416

+103.041 i)w1w2z2
1z2 +(197.685−529.568 i)w2

2z2
1z2 +(0.920263

+7.44498 i)w2
3z2

1z2 − (252.565−35.3907 i)w1z3
1z2 +(438.42

+479.807 i)w2z3
1z2 − (175.03+47.409 i)z4

1z2 − (2.95525

+166.916 i)w3
1z2

2 − (529.568−197.685 i)w2
1w2z2

2 +(552.051

+608.995 i)w1w2
2z2

2 +(630.523−168.261 i)w3
2z2

2 − (3.01354

−3.09051 i)w1w2
3z2

2 − (13.8104−4.65778 i)w2w2
3z2

2 − (225.77

+397.311 i)w2
1z1z2

2 − (390.174−842.528 i)w1w2z1z2
2 +(608.995

+552.051 i)w2
2z1z2

2 − (4.87077−1.7315 i)w2
3z1z2

2 +(88.6466

−762.357 i)w1z2
1z2

2 − (1442.26−392.695 i)w2z2
1z2

2 +(329.705
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−447.191 i)z3
1z2

2 +(396.674+10.8179 i)w2
1z3

2 − (628.344

+965.583 i)w1w2z3
2 − (168.261−630.523 i)w2

2z3
2 +(2.34491

+0.400813 i)w2
3z3

2 +(893.539+449.728 i)w1z1z3
2 +(315.6

−1724.98 i)w2z1z3
2 +(444.385+774.449 i)z2

1z3
2 − (445.808

−424.948 i)w1z4
2 +(905.474+502.146 i)w2z4

2 − (715.858

−92.4234 i)z1z4
2 +(70.0965−340.8 i)z5

2 +(9.2822+18.2817 i)w3
1w3z3

+(54.1487−74.5425 i)w2
1w2w3z3 − (145.293+18.6019 i)w1w2

2w3z3

+(27.9522+121.901 i)w3
2w3z3 − (0.623552+0.244055 i)w1w3

3z3

−(0.703858+1.6666 i)w2w3
3z3 +(7.7796+9.65092 i)w2

1w3z1z3

+(65.1709−17.4315 i)w1w2w3z1z3 − (72.6585+67.0003 i)w2
2w3z1z3

−(0.516955+1.58614 i)w3
3z1z3 +(9.65092+7.7796 i)w1w3z2

1z3

+(0.320338−24.4621 i)w2w3z2
1z3 +(18.2817+9.2822 i)w3z3

1z3

−(24.4621−0.320338 i)w2
1w3z2z3 +(9.0056+112.04 i)w1w2w3z2z3

+(109.458−60.1262 i)w2
2w3z2z3 − (0.432843−0.207139 i)w3

3z2z3

−(17.4315−65.1709 i)w1w3z1z2z3 +(112.04+9.0056 i)w2w3z1z2z3

−(74.5425−54.1487 i)w3z2
1z2z3 − (67.0003+72.6585 i)w1w3z2

2z3

−(60.1262−109.458 i)w2w3z2
2z3 − (18.6019+145.293 i)w3z1z2

2z3

+(121.901+27.9522 i)w3z3
2z3 − (3.26142−1.66498 i)w3

1z2
3

+(7.44498+0.920263 i)w2
1w2z2

3 +(1.7315−4.87077 i)w1w2
2z2

3

+(0.400813+2.34491 i)w3
2z2

3 − (1.27385−3.81436 i)w1w2
3z2

3 +

(11.0663−2.01585 i)w2w2
3z2

3 − (4.31137+0.92526 i)w2
1z1z2

3 +

(1.00084+10.5457 i)w1w2z1z2
3 +(3.09051−3.01354 i)w2

2z1z2
3

+(3.81436−1.27385 i)w2
3z1z2

3 − (1.37492+3.98847 i)w1z2
1z2

3

−(3.50268−3.07518 i)w2z2
1z2

3 +(0.850712−1.30314 i)z3
1z2

3

+(7.3996−7.56516 i)w2
1z2z2

3 − (3.36995−5.65319 i)w1w2z2z2
3
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+(4.65778−13.8104 i)w2
2z2z2

3 − (2.01585−11.0663 i)w2
3z2z2

3

+(8.96575−1.32442 i)w1z1z2z2
3 − (1.37227−8.17429 i)w2z1z2z2

3

+(0.439028+0.186131 i)z2
1z2z2

3 +(6.11297+4.03999 i)w1z2
2z2

3

−(21.037+12.2044 i)w2z2
2z2

3 +(6.6943+3.15832 i)z1z2
2z2

3 − (5.34965

−8.70484 i)z3
2z2

3 − (1.58614+0.516955 i)w1w3z3
3 +(0.207139

−0.432843 i)w2w3z3
3 − (0.244055+0.623552 i)w3z1z3

3 − (1.6666

+0.703858 i)w3z2z3
3 +(0.000195137−0.0480885 i)w1z4

3 +(0.097198

−0.0957693 i)w2z4
3 − (0.006909−0.0237389 i)z1z4

3 − (0.107917

−0.146066i)z2z4
3

χ6(z,w) =

(135.483−115.076 i)w6
1 − (1373.47+770.464 i)w5

1w2 − (227.438

−5712.53 i)w4
1w2

2 +(10772.5−4955. i)w3
1w3

2 − (9615.74

+10712.4 i)w2
1w4

2 − (7204.29−8053.42 i)w1w5
2 +(3689.23

+1328.72 i)w6
2 +(0.130953−11.711 i)w4

1w2
3 − (43.0304

−43.1233 i)w3
1w2w2

3 +(116.8+113.165 i)w2
1w2

2w2
3 +(22.8293

−157.607 i)w1w3
2w2

3 − (28.0997+3.91441 i)w4
2w2

3 +(0.74729

+0.473462 i)w2
1w4

3 − (0.107668+2.17556 i)w1w2w4
3 − (2.98394

−0.735748 i)w2
2w4

3 − (0.000546859−0.0075 i)w6
3 +(531.179

−187.445 i)w5
1z1 − (2716.23+3472.61 i)w4

1w2z1 − (6911.44

−11088. i)w3
1w2

2z1 +(20301.9+12533.6 i)w2
1w3

2z1 +(1640.55

−22090.4 i)w1w4
2z1 − (9136.41−2402.9 i)w5

2z1 − (1.3949

+1.57867 i)w3
1w2

3z1 − (41.8893−67.0125 i)w2
1w2w2

3z1 +(134.265

+94.4878 i)w1w2
2w2

3z1 +(38.3338+6.92625 i)w3
2w2

3z1 +(0.225633

+0.739753 i)w1w4
3z1 +(2.51306−2.17243 i)w2w4

3z1 +(792.47
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+423.232 i)w4
1z2

1 +(160.899−6375.63 i)w3
1w2z2

1 − (15597.

−5221.23 i)w2
1w2

2z2
1 +(12263.5+18462.4 i)w1w3

2z2
1 +(7639.14

−8860.24 i)w4
2z2

1 +(2.07331+18.9239 i)w2
1w2

3z2
1 − (14.6496

−5.81483 i)w1w2w2
3z2

1 +(13.9082−10.9149 i)w2
2w2

3z2
1 − (0.0397215

−0.256686 i)w4
3z2

1 +(4770.82−3503.83 i)w2
1w2z3

1 − (10652.6

+6284.49 i)w1w2
2z3

1 − (2257.19−9193.53 i)w3
2z3

1 − (17.3743

−13.5795 i)w1w2
3z3

1 +(24.7532−10.4885 i)w2w2
3z3

1 − (792.47

−423.232 i)w2
1z4

1 +(3363.65+1359.7 i)w1w2z4
1 − (505.897

+4858.13 i)w2
2z4

1 − (3.7256−9.43303 i)w2
3z4

1 − (531.179

+187.445 i)w1z5
1 +(614.372+1305.02 i)w2z5

1 − (135.483+115.076 i)z6
1

−(614.372−1305.02 i)w5
1z2 +(10481.7−645.264 i)w4

1w2z2 +

−(17862.1+26745.9 i)w3
1w2

2z2 − (25268.9−40845.8 i)w2
1w3

2z2

+(25616.4+16503.2 i)w1w4
2z2 − (699.657+15384. i)w5

2z2 +(23.1547

+57.821 i)w3
1w2

3z2 +(151.931−249.266 i)w2
1w2w2

3z2 − (402.712

+22.7688 i)w1w2
2w2

3z2 +(114.904+219.009 i)w3
2w2

3z2 − (2.40376

+0.294013 i)w1w4
3z2 +(1.15723+3.71107 i)w2w4

3z2 − (3363.65

−1359.7 i)w4
1z1z2 +(19394.1+15156.1 i)w3

1w2z1z2 +(11842.3

−63082.3 i)w2
1w2

2z1z2 − (76867.3−13954.8 i)w1w3
2z1z2 +(17169.9

+30704.1 i)w4
2z1z2 − (6.10228−47.5006 i)w2

1w2
3z1z2 +(178.847

−93.6383 i)w1w2w2
3z1z2 − (79.7468+112.521 i)w2

2w2
3z1z2 − (0.675672

+2.02693 i)w4
3z1z2 − (4770.82+3503.83 i)w3

1z2
1z2 +(56557.1

−30916.3 i)w1w2
2z2

1z2 − (30042.4+27871.5 i)w3
2z2

1z2 − (46.9745

−35.4328 i)w1w2
3z2

1z2 +(38.4941+176.606 i)w2w2
3z2

1z2 − (160.899

+6375.63 i)w2
1z3

1z2 − (19394.1−15156.1 i)w1w2z3
1z2 +(25234.9

+12707.7 i)w2
2z3

1z2 − (54.5268+4.62775 i)w2
3z3

1z2 +(2716.23
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−3472.61 i)w1z4
1z2 − (10481.7+645.264 i)w2z4

1z2 +(1373.47

−770.464 i)z5
1z2 +(505.897−4858.13 i)w4

1z2
2 − (25234.9

−12707.7 i)w3
1w2z2

2 +(60240.1+37702.5 i)w2
1w2

2z2
2 +(9954.13

−73218.3 i)w1w3
2z2

2 − (32513.5−14246.9 i)w4
2z2

2 − (105.404

+88.4464 i)w2
1w2

3z2
2 − (121.883−491.01 i)w1w2w2

3z2
2 +

+(314.509−228.742 i)w2
2w2

3z2
2 +(1.97852−0.666286 i)w4

3z2
2

+(10652.6−6284.49 i)w3
1z1z2

2 − (56557.1+30916.3 i)w2
1w2z1z2

2

+(69697.5−29225.5 i)w3
2z1z2

2 − (18.6338+100.418 i)w1w2
3z1z2

2 +

−(334.512−117.713 i)w2w2
3z1z2

2 +(15597.+5221.23 i)w2
1z2

1z2
2

−(11842.3+63082.3 i)w1w2z2
1z2

2 − (60240.1−37702.5 i)w2
2z2

1z2
2

+(49.607−84.0962 i)w2
3z2

1z2
2 +(6911.44+11088. i)w1z3

1z2
2

+(17862.1−26745.9 i)w2z3
1z2

2 +(227.438+5712.53 i)z4
1z2

2

+(2257.19+9193.53 i)w3
1z3

2 +(30042.4−27871.5 i)w2
1w2z3

2

−(69697.5+29225.5 i)w1w2
2z3

2 +(135.93+40.2501 i)w1w2
3z3

2

+(2.22645−255.609 i)w2w2
3z3

2 − (12263.5−18462.4 i)w2
1z1z3

2

+(76867.3+13954.8 i)w1w2z1z3
2 − (9954.13+73218.3 i)w2

2z1z3
2

+(48.1672+101.933 i)w2
3z1z3

2 − (20301.9−12533.6 i)w1z2
1z3

2

+(25268.9+40845.8 i)w2z2
1z3

2 − (10772.5+4955. i)z3
1z3

2 − (7639.14

+8860.24 i)w2
1z4

2 − (17169.9−30704.1 i)w1w2z4
2 +(32513.5

+14246.9 i)w2
2z4

2 − (58.3927+7.80757 i)w2
3z4

2 − (1640.55

+22090.4 i)w1z1z4
2 − (25616.4−16503.2 i)w2z1z4

2 +(9615.74

−10712.4 i)z2
1z4

2 +(9136.41+2402.9 i)w1z5
2 +(699.657−15384. i)w2z5

2

+(7204.29+8053.42 i)z1z5
2 − (3689.23−1328.72 i)z6

2 +(217.048

+31.7914 i)w4
1w3z3 − (324.174+1194.6 i)w3

1w2w3z3 − (2276.03

−1886.27 i)w2
1w2

2w3z3 +(1765.01+1397.63 i)w1w3
2w3z3 +(465.867
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−1632.35 i)w4
2w3z3 +(6.1319−7.14195 i)w2

1w3
3z3 − (22.2392

+2.3829 i)w1w2w3
3z3 +(0.990667+16.3723 i)w2

2w3
3z3 +(0.0496894

+0.408979 i)w5
3z3 +(380.848+290.639 i)w3

1w3z1z3 +(501.129

−2410.45 i)w2
1w2w3z1z3 − (4520.19−826.708 i)w1w2

2w3z1z3

+(1231.41+2839.84 i)w3
2w3z1z3 +(0.940242−5.02873 i)w1w3

3z1z3

−(4.82972+3.79455 i)w2w3
3z1z3 +(1930.83−1248.97 i)w1w2w3z2

1z3

−(2156.66+1684.88 i)w2
2w3z2

1z3 +(1.74825+4.26134 i)w3
3z2

1z3

−(380.848−290.639 i)w1w3z3
1z3 +(1189.36+357.75 i)w2w3z3

1z3

−(217.048−31.7914 i)w3z4
1z3 − (1189.36−357.75 i)w3

1w3z2z3

+(4079.15+3451.41 i)w2
1w2w3z2z3 +(2153.4−9085.62 i)w1w2

2w3z2z3

−(5359.92−1090.32 i)w3
2w3z2z3 − (9.051−24.3137 i)w1w3

3z2z3 +

(42.5684−9.89061 i)w2w3
3z2z3 − (1930.83+1248.97 i)w2

1w3z1z2z3

+(7647.19−3210.88 i)w2
2w3z1z2z3 − (16.4571−10.0844 i)w3

3z1z2z3

−(501.129+2410.45 i)w1w3z2
1z2z3 − (4079.15−3451.41 i)w2w3z2

1z2z3

+(324.174−1194.6 i)w3z3
1z2z3 +(2156.66−1684.88 i)w2

1w3z2
2z3

−(7647.19+3210.88 i)w1w2w3z2
2z3 +(1.57014−21.2178 i)w3

3z2
2z3

+(4520.19+826.708 i)w1w3z1z2
2z3 − (2153.4+9085.62 i)w2w3z1z2

2z3

+(2276.03+1886.27 i)w3z2
1z2

2z3 − (1231.41−2839.84 i)w1w3z3
2z3

+(5359.92+1090.32 i)w2w3z3
2z3 − (1765.01−1397.63 i)w3z1z3

2z3

−(465.867+1632.35 i)w3z4
2z3 +(3.7256+9.43303 i)w4

1z2
3 +(54.5268

−4.62775 i)w3
1w2z2

3 − (49.607+84.0962 i)w2
1w2

2z2
3 − (48.1672

−101.933 i)w1w3
2z2

3 +(58.3927−7.80757 i)w4
2z2

3 +(60.1746

+76.3395 i)w2
1w2

3z2
3 +(98.4543−231.676 i)w1w2w2

3z2
3 − (271.425

+21.1344 i)w2
2w2

3z2
3 +(1.63096−0.0769577 i)w4

3z2
3 +(17.3743

+13.5795 i)w3
1z1z2

3 +(46.9745+35.4328 i)w2
1w2z1z2

3 +(18.6338
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−100.418 i)w1w2
2z1z2

3 − (135.93−40.2501 i)w3
2z1z2

3 +(276.371

−129.747 i)w2w2
3z1z2

3 − (2.07331−18.9239 i)w2
1z2

1z2
3 +(6.10228

+47.5006 i)w1w2z2
1z2

3 +(105.404−88.4464 i)w2
2z2

1z2
3 − (60.1746

−76.3395 i)w2
3z2

1z2
3 +(1.3949−1.57867 i)w1z3

1z2
3 − (23.1547

−57.821 i)w2z3
1z2

3 − (0.130953+11.711 i)z4
1z2

3 − (24.7532

+10.4885 i)w3
1z2z2

3 − (38.4941−176.606 i)w2
1w2z2z2

3 +(334.512

+117.713 i)w1w2
2z2z2

3 − (2.22645+255.609 i)w3
2z2z2

3 − (276.371

+129.747 i)w1w2
3z2z2

3 +(14.6496+5.81483 i)w2
1z1z2z2

3 − (178.847

+93.6383 i)w1w2z1z2z2
3 +(121.883+491.01 i)w2

2z1z2z2
3 − (98.4543

+231.676 i)w2
3z1z2z2

3 +(41.8893+67.0125 i)w1z2
1z2z2

3 − (151.931

+249.266 i)w2z2
1z2z2

3 +(43.0304+43.1233 i)z3
1z2z2

3 − (13.9082

+10.9149 i)w2
1z2

2z2
3 +(79.7468−112.521 i)w1w2z2

2z2
3 − (314.509

+228.742 i)w2
2z2

2z2
3 +(271.425−21.1344 i)w2

3z2
2z2

3 − (134.265

−94.4878 i)w1z1z2
2z2

3 +(402.712−22.7688 i)w2z1z2
2z2

3 − (116.8

−113.165 i)z2
1z2

2z2
3 − (38.3338−6.92625 i)w1z3

2z2
3 − (114.904

−219.009 i)w2z3
2z2

3 − (22.8293+157.607 i)z1z3
2z2

3 +(28.0997

−3.91441 i)z4
2z2

3 − (1.74825−4.26134 i)w2
1w3z3

3 +(16.4571

+10.0844 i)w1w2w3z3
3 − (1.57014+21.2178 i)w2

2w3z3
3 − (0.940242

+5.02873 i)w1w3z1z3
3 +(9.051+24.3137 i)w2w3z1z3

3 − (6.1319

+7.14195 i)w3z2
1z3

3 +(4.82972−3.79455 i)w1w3z2z3
3 − (42.5684

+9.89061 i)w2w3z2z3
3 +(22.2392−2.3829 i)w3z1z2z3

3 − (0.990667

−16.3723 i)w3z2
2z3

3 +(0.0397215+0.256686 i)w2
1z4

3 +(0.675672

−2.02693 i)w1w2z4
3 − (1.97852+0.666286 i)w2

2z4
3 − (1.63096

+0.0769577 i)w2
3z4

3 − (0.225633−0.739753 i)w1z1z4
3 +(2.40376

−0.294013 i)w2z1z4
3 − (0.74729−0.473462 i)z2

1z4
3 − (2.51306
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+2.17243 i)w1z2z4
3 − (1.15723−3.71107 i)w2z2z4

3 +(0.107668

−2.17556 i)z1z2z4
3 +(2.98394+0.735748 i)z2

2z4
3 − (0.0496894

−0.408979 i)w3z5
3 +(0.000546859+0.0075 i)z6

3
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[41] Lega E., Froeschlé C. and Guzzo M.: “Diffusion in Hamiltonian quasi-integrable

systems”, in Topics in Gravitational Dynamics, edited by D. Benest, C. Froeschlé
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Mathematica program he wrote for the verification of the steepness of a

function, and also for the useful suggestions he gave me after my seminar.

And I also sincerely thank Prof. Franco Cardin, who was the first one

who believed in me.

115


