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RIASSUNTO

Lo scopo di questa tesi € quello di presentare I'influenza di notazioni di ” tipo” su equazioni
differenziali alle derivate parziali in piu variabili complesse. Le notazioni di ”tipo” qui includono
il finito e il tipo di infinito, nel senso di Hérmander ”, e D’Angelo. In particolare, nella prima
parte, a condizione tipo finito, prenderemo in considerazione I’esistenza e I'unicita delle soluzioni
per il problema del valore iniziale associato ai operatore calore ds + [, su varieta CR. Il tipo
finito m & la condizione fondamentale per fornire stime puntuali del nucleo del calore attraverso
la teoria degli operatori integrali singolari sviluppate da E. Stein e A. Nagel, D.H. Phong ¢ E.
Stein. Prossimo, nella seconda parte, introdurremo un nuovo metodo per indagare la equazioni
Cauchy-Riemann du = ¢. Le soluzioni sono costruite con via metodo rappresentazione integrale.
Inoltre, mostreremo che il nuovo metodo qui viene applicato anche ben al complesso operatore
Monge-Ampere ere (dd®)™ in C". Il punto principale ¢ che il nostro metodo puo passare alcuni
risultati noti dal caso di tipo finito al tipo di infinito.

The shortest and best way between two truths of the real domain often passes
through the imaginary one - ”J. Hadamard”
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ABSTRACT

The aim of this thesis is to present influence of notations of ”type” on partial differential equa-
tions in several complex variables. The notations of ”type” here include the finite and the infinite
type in the sense of Hormander, and D’Angelo. In particular, in the first part, under the finite
type condition, we will consider the existence and uniqueness of solutions for the initial value
problem associated to the heat operator ds + [, on CR manifolds. The finite type m is the crit-
ical condition to provide pointwise estimates of the heat kernel via theory of singular integral
operators developed by E. Stein and A. Nagel, D.H. Phong and E. Stein. Next, in the second
part, we will introduce a new method to investigate the Cauchy-Riemann equations du = ¢.
The solutions are constructed via the integral representation method. Moreover, we will show
that the new method here is also applied well to the complex Monge-Ampere operator (dd®)™ in
C™. The main point is that our method can pass some well-known results from the case of finite
type to infinite type.

The shortest and best way between two truths of the real domain often passes
through the imaginary one - ”J. Hadamard”
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Chapter 1

Preliminaries

In Riemannian geometry, the Laplace-Beltrami operator acting on functions on a Riemannian
manifold M is A = d*d. In order to study the relation between geometrical objects and analytic
ones on M, one of well-known methods is to consider the heat equation associated to the Laplace-
Beltrami operator. Let u defined on R x M. We say that u solves the heat equation if

ou
— + Au=0.
05 + Au

Moreover, we also have the initial value problem for the heat equation. That is to find a function
u(s, x) solving the heat equation on M with

sll%lJr u(s,z) = f(x).

The well-known fact is that there is a unique fundamental solution H (s, z,y) of the initial value
problem, a distribution on R™ x M x M such that

u(s,z) = /M H(s,, ) f(4)dV (y).

The kernel H (s, z,y) is smooth.

Now, in the first part of this thesis, we will consider one analogue of the heat equation in
Cauchy-Riemann geometry. That is an equation associated to the [y-heat operator. Here, [J;
is a second-order system of partial differential operators associated to the tangential Cauchy-
Riemann operator d,. Unfortunately, both of these are non elliptic on Cauchy-Riemann manifolds
without boundary. Hence, the classical approach in Riemannian geometry is not able to proceed
the Op-heat equation.

The main purpose in this part is to introduce the singular integral operators approach in Nagel-
Stein sense to investigate kernels of solutions solving to heat [Jp- initial value problems. This
work is motivated to the fourth level in Fefferman’s hierarchy, deriving estimates directly from
the singularities of the integral kernels.



1.1 CR manifolds and Kohn-Laplacian Operator

We summarize the material background we will need. First of all, we begin with the basic
notations of CR manifolds, pseudo-convexity, Hermitian metrics, and operators 0y, (J,. For more
discussions, we refer the books by [FoKo72] and [ChShO1], or [Za0§].

Let M be a C*° compact, oriented manifold of real dimension 2n—1, n > 3. Let T'(M), T*(M) be
tangent bundle and cotangent bundle respectively associated with M . Let CT'(M) = T(M)®rC
, CT*(M) = T*(M)®rC be the complexified tangent bundle and complexified cotangent bundle
respectively over M .

Definition 1.1.1. An integrable Cauchy-Riemann (CR) structure on M is an (n—1)-dimensional
complex subbundle 70 of the complexified tangent bundle CT'(M) such that

1. THONT% = {0} where 70! = T1.0.
2. If Z and W are smooth sections of T10, then [Z, W] is as well.
Such a manifold M endowed with an integrable CR structure is called a CR manifold.

In particular, if M is an oriented real hypersurface in C, M inherits a CR structure, with
THO(M) = THO(C")NCT(M). Indeed, since TH0(C™)NT%1(C™), (1) holds. Now, take any vector

fields Z, W in T19(M) defined on some open subset U of M. By definition, Z = Z?:_ll aj(z)a—
j

. 0 _ 0

and W = Z?le b (z)a—zj, so [Z, W]:Z?:f cj(z)a—zj, that means [Z, W] is a section of T19(M).

Let 6 be a real, non-vanishing one form which annihilates 7% (and thus 71° @ T%1). It deter-

mines a Hermitian form Ly, the Levi form, on 710 by

L@(Zv W) = _Zde(Z7 W)v

for Z,W € T10 and where i = v/—1.

The conformal class of the Levi form does not depend of the choice of 8. It is an intrinsic
invariant of the CR structure, because any choice ¢’ is of the form f and Ly = fLg. Thus,
this is also true for the following definition.

Definition 1.1.2. The CR manifold M is called weakly pseudoconvex if there is a form 6 such
that the Levi form Lg is positive semi-definite. And M is called strongly pseudoconvex if there
is a form 6 such that the Levi form is positive definite.

Example 1.1.1. If M is the boundary of a sphere in C™, M 1is strongly pseudoconvezr. And if
M is the boundary of the complex ellipsoid Q@ = {(21,...., 2,) € C" ¢ |21*™ + |22 + ... +
|2,|?™ — 1 < 0}, for mq,...,my > 1, then M is weakly pseudoconvex manifold.

Definition 1.1.3. A Hermitian metric on the CR manifold M is a Riemannian metric, extended
to be Hermitian on CT'(M), such that 710 1L T%!.

4



In order to study the operator J, and its adjoint operator with Hilbert space techniques, we
must equip M with a such Hermitian metric, this induces an inner product of (p, ¢)-forms in
Hilbert space theory.

Now, denote by T*9(M) and T*%! (M) the dual spaces of TH°(M) and T*°(M) respectively
and T*(M) be the dual bundle of T'(M). Let

E = (TI,O @ TO,I)L’

and, we define AP to be the p-forms in CT* (M) which annihilate E@®TY. AP is the subbundle
of APT4(CT*(M)) generated by AP0 A A% where A% = A20.

The tangential Cauchy-Riemann operator d, : C®(AP4) — C*°(AP4TL) is defined as
follows -
Oy 1= pg+1d,

where 7, 411 is the orthogonal projection of APT4™! onto AP4*1 and d is exterior differentiation.
This operator forms the tangential Cauchy-Riemann complex

0 ——s C(API(M)) —2y coo(AP (M) —2s . % Coo(APPL(ML)) —— 0.

The operator 0, is a derivation, i.e, if ¢ € C*°(AP9), and ¢ € C®°(A"™*), then

Op(¢ N ) = (Bp¢) A + (=1)P T N Dyt

Moreover, from (2) in Definition we imply that 97 = 0.
Notice that p plays no role in the formulation of the tangential Cauchy-Riemann operators.
Thus, in this thesis, it suffices to consider the action of 9, on type (0, ¢)-forms, for 0 < ¢ <n-—1.

To describe 0, more explicitly, let U be an open set such that A'(U ) is trivial. We pick
an orthogonal basis {wi, w1, ...,Wn_1, 01,02, ..., n_1,wo} of A'(U) such that {wy,...,w,_1} is
a basis of AL9(U), and wy is a real annihilator of T1°. Next, let {L1,...,Ln_1, L1, ..., Ln_1,T}
be the (local) basis dual to {w1,w1,...,wp—1,w1, 02, ..., Wp—1,wo }. We may assume T is the real
vector field.

Definition 1.1.4. The Hermitian matrix (ij) defined by

k,j=1,...n—1

[Lk,fj] = icij, mOd(Ll, ceey Ln_l,fl, ...,Zn_l)

is called the Levi form associated with the given CR structure.

The Levi matrix (c;;) clearly depends on the choices of L, ..., L,—1 and T. However, the
number of nonzero eigenvalues and the absolute value of the signature of (c;) at each point are
independent of the choice of L1, ..., L,_1 and T. Hence, after changing 1" to —T', it makes sense

5



to consider positive definiteness of the matrix (c;;).

It turns out that if the Levi form is semi-definite positive, we say that M is a weakly pseudo-
convex manifold, but in this thesis, we will only require the weaker condition on the Levi form
(in the next section), that means the condition of pseudoconvexity does not necessarily hold.

We fix a Hermitian metric on CT'(M) such that Ly, ..., L,_1 is an orthonormal basis and
THO (M) LT (M), the adjoint operator of J, is defined relative to this metric.
We extend 0y to L?()’q) (M) in the sense of distribution, where L?()’q) (M) is the space of (0, q)-
forms on M whose coefficients belong to L?(M). In particular, we can define the domain of
Ob.
Definition 1.1.5. Dom(d;) is the subset of L%O,q)(M ) composed of all forms ¢ for which there
exists a sequence of {¢,,} in C°(A%9(M)) satisfying:

1. ¢ = limym—oo Om in L2,

2. {Oy¢m} is a Cauchy sequence in L%O,qul)(M)

For all ¢ € Dom(dy), let li_r}n Oypm = Oy which is thus well-defined. We have the complex

9 0 6]
0 —— L2 (M) —2 L2 (M) —2— .. —2 12

We define the domain of the adjoint 5;: as follows

Dom(0;) = {¢ € Laq(M) . there exixts a unique (0,q — 1)-form g € L%O,qfl)(M> such that

(6, 8415) = (g, ) for every (0,q — L)-form v € L3, (M)},

In this case, we define ég‘qﬁ = g. Next, we denote the domain of [, by

Dom([0,) = {¢ € L%()’q)(M) : ¢ € Dom(8) N Dom(d}),

dp¢ € Dom(8;) and J;¢ € Dom(d,)},
where, the Kohn-Laplacian operator
Ly = 5{,5; + 5;55,

Notice that [y is a linear, closed, densely defined self-adjoint operator from L%o q)(M ) into itself.
On U, we can express a smooth (0, ¢)-form ¢ as

6= ¢s@,,
|J|=q

where J = (ji, ..., jq) are multi-indices, and the prime means that we take the sum over only
increasing multi-indeces. In fact, any (0, ¢)-form can be expressed as this way. Then, the operator
Op is

n—1
Opp = ZI ZZj((bJ)wj Awy + terms of order zero, (1.1.1)
|J|=q j=1



and integration by parts yields

n—1
Ofp = — Z/ Z Lj(¢jr) Wk + terms of order zero. (1.1.2)
|K|=¢—1j=1

Then, a straightforward calculation shows that

!/ — / -
Do =— D jes, (LiLids)@Ws + Y jes, (L;iLids) @s
|J1=q [/|=q
T : (1.1.3)
+ Zj;ék, [Lj, Lilgsw; A (@r]ws)] + Lé
|J1=q
where Wi [wy = 0 if k ¢ {J}, otherwise Wi [wy, = (—=1)"'@j, A . AWy, AWj,, A ATy, if
k = ji, and L is a first order differential operator involving only differentiations in the directions
Ll, ceay Ln—l and Ll, ceny Ln—l-

Definition 1.1.6. The operator dj, is said to have the closed range in L? if range(d,) = range(Jp).
The closed range hypothesis implies that (kerélgo’q))L = range(éz(o’qﬂ)) and (kerd, (O’QH))L =
range(élgo’q)). Moreover, for given [ € range(glgo’q)), there exists u L kerélgo’(ﬁ such that 5150’Q)u =f
and ||UHL3,q(M) < ||f||Laq+1(M). In particular, this hypothesis is always satisfied when M =

bQ) C C™ is the boundary of a (smoothly bounded) pseudoconvex domain. If M is a compact,
oriented, weakly pseudoconvex manifold of dimension (2n—1),n > 3, embedded in CV, (n < N),
of codimension one or above, and endowed with the induced CR structure, then 9, has closed
range (see [Ni06]). Recently, in [Balll, the hypothesis of closed range holds when M is a smooth,
compact, connected, CR manifold of hypersurface type, pseudoconvex-oriented.

In this thesis, the considered CR-manifold M is an abstract one, so it is assumed to have
the closed range. Next, we will introduce two critical geometrical conditions in our approach.

1.2 The condition D(q)

This condition was introduced first by K. Koenig [Koe(02].
Let M be any CR-manifold of dimension 2n —1 with n > 3. For 1 < ¢ <n—1, let o, denote any

1 n—1
of the <n ¢ > sums of ¢ eigenvalues \; of the Levi matrix (c;) and 7 = Z Aj be the trace
j=1

Definition 1.2.1. Let U C M be an open subset. We say that the D(¢q) condition holds in U
if for every compact set K C U, there exists ex > 0 such that ex7 < 04 < (1 — €x)7, for all
possible sums o,. However, since this is a local condition, we can always assume that

exT <0y < (1 —eg)r V possible oy, (1.2.1)

in U, for some sufficiently small € > 0.



In particular, the condition D¢(1) implies that the Levi matrix (cg;) has comparable eigen-
values. And D¢(2) holds when at most one eigenvalue is degenerate with n > 5.

Example 1.2.1. Let M = b§2 be the boundary of the following domain
Q={(21,...,20) € C" : Tm z, > P(z1) + (|22|* + ... + |20_1]*)*}

in a neighborhood of the origin, forn > 5 and k > 1. Here P is a smooth, subharmonic function
such that P(0) = 0. We can see that the hypersurface M can be identified with C"~! x R via the
following map

(21, ey 2n—1,t) = (21, oy 2n—1,t + (P (21) + (\22|2 + ..+ |zn_1]2)k)).

We define
0 oP 0
3l = 5 Tie g
EL. — i + é f =2 -1
5L oz, zzja or j . 7} :
0
T = 5%

Then, M is pseudoconvex and satisfies the condition D(2) near the origin.

Definition 1.2.2. We say that M is weakly q-convexr near a point xg € M if every possible o,
is non-negative on some neighborhoods of zg.

Proposition 1.2.3. If M satisfies the D(q) condition near a point xy € M, then M is weakly
q-convex near xq.

Proof. Since € > 0 is small, so from D¢(q) condition, we have 7 > 0. Hence, M is weakly
q-convex. [

Next, we will consider the range of the D(q) condition, for some 1 < ¢ <n — 1.
Lemma 1.2.4. Fiz e > 0.

1. og>e€r, Yo, & op1-q<(1—¢€1, You_1-4.

2. 00< (=€), VYo, & op_1-q>e€r, You_1-4.

3. D(q) holds < D¢(n—1-—q) holds.

Proof. (1)
oq > €1, Vog & —0y < —er, Voyu
& T—04<T—¢€1, Vo
& opm1—g < (1 —e€1, Vop_i1_4.

Part (2) is obtained similarly to the proof of Part (1). Then, (1) and (2) immediately imply Part
(3). O



Proposition 1.2.5. 1. Assume thatq<n—1—gq

(a) If n =2q+1, then oy > er, Vo, < o0,<(l—¢€)1, Vo

(b) If n > 2q + 2, then o4 > e, Vo, = o4 < (1 — €)1, Vo, for some € > 0.
Similarly, op—1-q > €1, Vop_1-q = On-1-q < (1 — €)1, Von_1-4, for some
¢ > 0. However, the converse statements are not true in general.

2. Let 1 < qop <n—2, then the D(qy) condition implies D*(q) condition for min(qgp,n — 1 —
qo) < ¢ < min(go,n — 1 — qo).
Proof. Part (1)
(a). Since ¢ = n — 1 — ¢, this is the part (1) of the above lemma.
(b). Let ¢ < n—1—g¢, so, given n— 1 —q eigenvalues, choose ¢ at a time and apply the assumption
04 > €7, then taking the sum of all possible ¢ in those n — 1 — ¢ eigenvalues, we get

(") n—1-gq

—————Op-1-q 2> €T.
n—1—g¢q q

This implies that

n—1—¢q
———€T.

q
Therefore, replacing € to "_Tl_qe, the part (2) of the previous lemma implies o, < (1—¢€)7, where

On—-1—q =

n=129 ¢ The converse statement is not true. Indeed, the strictly inequality ¢ < n—1—g means

€=
we could have g zero eigenvalues and ¢ + 1 strictly positive eigenvalues in )\gs, j=1..,n—1
Final, also applying the part (1) of the previous lemma, we yield the assertion (b).

Part (2).

We already know that D(q) is equivalent to D(n—1—q). This means we have D(n—2—qq) if
D<(qo + 1) holds. We can assume that n > 2(gop + 1) + 1, and it is sufficent to prove that D¢(q)
implies D(gp + 1). This is a consequence of Part (1). Since €'7 < o441 < (1 — €”)7, then we

choose € = min{¢, e’ }. The proof of the proposition is completed.
O

The last statement in the above proposition says that : for 1 < gy < n — 1, if the D(qo)
holds, then D(q) conditions holds as well, for all min(gg,n — 1 — qo) < ¢ < min(qp,n — 1 — qp).
And we will always assume that gg < n — 1 — go for convenience.

Next, we will show that the condition D¢(q) implies the following mazimal L? estimates for
the operator [J, on (0, g)-forms.

Theorem 1.2.6. [Koc02] Let M be a (2n—1)-dimensional CR-manifold with n > 3 with hypoth-
esis of closed-range of 0. Assume that the condition D(q) holds near xo. Then, in neighborhood
U Of Zo,

n—1
! — _ _
0D (sl + 11Zjusll?) S 10sull® + [105ul® + [ful|® (1.2.2)
|J|=q j=1



for a smooth (0,q)-form u= Y ujw; with compact support in U.
|J]=q
Moreover, as Proposition the estimate (1.2.2) holds as well for all smooth (0,q")-forms,
withq<q¢ <n-1-—q.
Here and in what follows, < and > denote inequality up to a positive constant. Moreover,

we will use & for the combination of < and >.

Proof. For u = Z/ uywy, with 1 < g < n — 2, a direct computation shows that

|J|=q
n—1
. o B
Bl =Y ZHL w|l? +Zm o S & (Tyug Tour) + O(|[Tullul| + [lul?),
|J|= qJ 1, JI=q =1,
J i#]

where eg}] =0, unless i ¢ I, 7 ¢ J,and {i} UI = {j} U J, in which case ef}] is the sign of

. ol o
permutation ( ) J)' Similarly,
J

o= > > ZGJ e (Lyug, Liur) + O (|[Zul|-|ful| + [|ull?),

|K|=g—1 |I|=q %.j=1
Jl=q

if {j} UK = J(I), and is zero otherwise.

J(I))

where e(jf((]) is the sign of the permutation (j

Notice that, when i = j, ef] ¢ = 1if I = J (and is zero otherwise), when i # j, eJ e’IK = —eﬁ
Thereupon,
n—1 .
105 ul|* = Z Z (Ljug, Ljuy) Z\II — Y €5(Liug, Lijug) + O(|[Lul|-|[ul| + [[u]|?).
|J|=q j=1 [J1=¢q j,j=1
JjeJ i#]
In particular, if ¢ # j, € j = el?]K and eiI =€ ZIK = Z K, both of them are not zero when
i¢J,j¢ I Andso & e }K——eﬁ
Ifi=3j, e IKGK — 1 when I = J, if I # J, this equals to 0. Accordingly, we obtain
J €I
n—1
105ul[* = Z Z (Ljus, Ljuy) Zm —¢ > €it(Liug, Liur) + O(|[Lull.[[ul| + [Jul[*).
|J|=q j=1 |J|=a4,j=1
JjeJ i#]

We know that

L; = —L; + term of order 0, fj* = —L; + term of order 0,

10



and, [Li,fj] = ici; T, (CijT'U,J,U]) = (L,;uJ,Lqu) — (ZjUJ,zZ"LL]) + terms of order 0. Hence,
integration by parts, we obtain

n—1
105 ull* = Z ZHL gl +Z Z cjjTuy,wy) Zm o > €] (Ljus, Liur)

|J|=q 7=1 |J]=q j=1 =4i,j=1

jeJ jeJ 1#£]
n—1

=N ree S e Tug ur) + O(|[Zulljul] + lul2).

| | Qzé'l
17]

So,

n—1 n—1
_ — — /
l10sul* + 1105 ul® = | Zull> + > > (e Tus, uy) Zm ~ Z ei1(ciiTury,uy)

jed oy

+ O(I[Lul[-[ul] + [|ul?)

— / _
= || Zu|* + = (df;Tur, wg) + O(|[Lull-[ul| + [[ul[),
J|=q

(1.2.3)

-1 -1
where,the <n ) X <n > matrix (d%) I|=q is denoted by
q

1 =
dj; = Z Cii
i€l
d%} Zejjcw, for IT#J (in particular (db) = (cw))
i

To proceed the matrix (d? J) I|=¢> We need the following lemma (proved by induction in q)
|J1=q

Lemma 1.2.7. For fired 1 < g < n — 2, the eigenvalues of the matrix (d(}J) \I|=q ore the (”;1)

|7]=q
sums Nj, + ... + Aj,. Therefore, if D(q) condition holds, the matriz (df;)r,; is semi-definite
positive .

From this lemma, it is arised that ||Lu||* < ||9pul|* + |05 ul|? + ||ul|?, but we also have better
estimates by the method of microlocalization introduced in [De91] when ¢ = 1. In our case,
when ¢ > 1, we will replace the (n — 1) x (n — 1)- matrix with indexes j,k = 1 for (0, 1)-forms

—1 —1
in Derridj’s paper by the <n w (" >—matrix with indexes I, J, where |I| = |J| = q.

q q
In U, we choose the local coordinates (z,t) = (21, ..., Zan—2,1t), and let (£,7) be the dual coor-
dinates to R?"~! — (z,t). We define the following non-negative , C*°-functions whose ranges in
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¢ (€,7) such that 7 (€,7) = 0when7 <0
YT (€, 7) = 1whenT > 1,
¢~ (&,7) such that ¢7(§,7) = Owhen7 >0
Y~ (§,7) = 1whent < —1,
WOE ) =1—9H(ET) — v (€7,

so supp ¥° C {|7| < 1}. Let ¢ be a distribution on U, F denotes the Fourier transform in R?"~1,
we define

¢t = F Uyt o)
¢ = f—l[w—a?]
¢" = F 1 [y09).

The microlocal decomposition is interpreted as follows
6 =Pto+P 6+P,

where Pt, P, P are the pseudodifferential operators of order 0 defined by

Pt = (Fyto)
P=¢ = CF [ 9]
Plp=C(o—F W +v7)g)),

for all distribution ¢, where ¢ € C§°(U’), U C U’ and ¢ =1 on U.
Let 6 > 0 be determined later. It is sufficiently small since we can shrink U if necessary. We will
estimate (1 —9)||Lu||? from lower in (1.2.3). For any (0, q)-form u = >’ u @, by construction,

|71=q
we imply that B B )
1Ljusll? 2 (1L (P g + P un)|? = ||L;P%ull.
By the ellipticity of ||0,(.)]|* + ||9;(.)||* in complex directions, we also obtain (see [ChLSh01])
1L PPul [ < Co([[dyul® + (|85 ull* + [Jul?).
As a consequence,

1Zjugl? = 1L (P g + P~ ug)l[* = Co(l|pull + |95 ul® + ||ul*), (1.2.4)

for every (0,¢)-form u. On the other hand, ||L;(Ptuy + P~ uy)||* = ||L;PTus)|* + || L;PT —
wgs||> + 2Re(L;PTuy, LiyP uy). And also, the last term can be written as

(LjPYuy, LiP~uy) = (P~P* Ljuy, Lyus) + O(|lull-|| Lul| + [Jul[*),

12



Notice that P~P is the pseudodifferential operator of order zero since [P*,P~] is of order zero,
so, PP~ L; is of order zero. Then, (P~P*Lju;) = O(||u||). Thus, combine all of the above
estimates, we obtain

(1= 0)||Ljus||* = (1 = &||IL;PTup)|” + (1 = 0)||L; P~ uy)l]? (1.2.5)
+ O(|ul]- |1 Zul| + [|ul[*) — Co(||0pul|* + 10w||* + ||ul|?).

Now, let «, 8 be positive number, less than (1 — §), be chosen later. The same calculation yields
that

allLiPrugl|* = al|Li P ug | — oA TP ug, Prug) + O(full| Lul| + [[ul*); (1.2.6)
BIIL; Pyl = BIL;P~uy|[* = BOGTP us, P7ws) + O(|[ul || Lul| + [Jul|*).

Hence, from (1.2.3)) and rewriting || Lu|| = §||Lu||+(1—6)||Lu||, the following holds for (0, ¢)-form

u = Z/ Ugw
IJ1=q

n—1 n—1
_ _ _ / /
10sul|* + 1105 ull* > 6l Lul > + @) > ILPYusl*+ 8D Y |ILP usl?

|J]=q 7=1 [J|=q =1

n—1
+ Z,\I\:q (df;Tur, ug) — azl > (¢ TP uy, Pruy)

|J]=q |J]|=q j=1 (1.2.7)

n—1
/ _
=B Y (e TP ug, P uy) + O(||ull.[| Lul| + [Jul|*)
[J]=q j=1

= Co(llopul|* + {135 ull* + [[ull*),

when we choose 0 < a, 8 < (1 —9).
On the other hand,

(d2,Tur, ug) = (A% TP ur, Pruy) + (d%, TP ur, P uy) + (d4, TPy, POuy)
+ (4, TP ur, P~ uy) + (df, TP ur, Pouy) + (d4, TP ur, Ptuy)  (1.2.8)
+ (4, TP ur, PPuy) + (d, TP ur, PTuy) + (1, TP ur, P~ uy).

We have the symbols of PO, POP+ POP~= P+p= P=PF+ P+PY and P~PY supported in |7| <
1. Since the matrix (df,)s,s is positive semi-definite, the seven last terms in (1.2.8) equal to

13



O(|ul|?). Tt follows

n—1 n—1
_ _ _ / !
(Co + V)(||pul* + 155 ull?) = Sl|Lul* + @D Y NLPTuglP+ 8D Y Lyl

[J|=q 7=1 |J|=q j=1
+Z|]| q dIJTP tur, Ptuy) —i—Zm —q dIJTP ur, P uy)
|7]=q |1=q (1.2.9)
!/ /
—a)y Z(cjjTPWJ,PmJ) -8 Z(cjjTP—uJ,P—uJ)
|J|=q 5=1 [J|=q 5=1

+O([ull-|| Zul| + [[ul[?).

Now,we will apply the lemma to Z\II  (d1,;TPYur, Ptuy) — « S PO (ijTP+UJ,P+UJ),
|J|=q |J]=¢

n—1
Zl\llzq (d, TP ur, Pruy) — OZZ, > (e TP uy, Pruy)

|71=q |J|=q j=1
_Zm _ (A TP ur, Pruy) —GZ Z (¢j; TP uy, Pruy) (1.2.10)
|/1=a [J]=¢ =1
, t
+ (6 — OC)Z Z(ijTP+UJ7P+UJ).
[J]=q j=1

n—1
q
Dl =y 14

1 = dH Z Cjj-

By Lemma (1.2.7) and o4 > er, (D)1, is a positive semi-definite matrix. On the other hand
PHTPT has non-negative symbol (since ¢ is supported in 7 > 0), and is of degree 1. Thereupon,
from the fact of pseudodifferential operators in [LaNi66] (Section 3), we imply that

We define the following (n B 1) X < ) matrix
q

Zm (DL PTTP up, ug) > —C|ful[%.
|J|=q
So,

Zm =q d[JTP U17P+UJ _OZZ Z C]]T'P UJ,P+UJ)
[l=q |J]|=q j=1
n1 (1.2.11)
/
> (e—a)Y > (e TP us, Prug) + O(l[ul]?).
|[J]=q j=1
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Now, we put
EqJ = dU, I1#J

n—
E.(T]I = d?l — (1 — E)ZC]']'.

This matrix is negative semi-definite since o, < (1 — €)7. However, P~TP~ has non-positive
symbol (since 1~ is supported in 7 < 0), so we also have

n—1
!/ !/
D =g (@, TP ur, P uy) = B8 Y (e TP uy, P uy)
= =g =1
(1.2.12)

n—1
>(1—e—=8)> > (cjyTP us, P uy) + O(|[ul?).

|J|=q j=1

Hence, combine ((1.2.9} [1.2.11] [1.2.12]),

n—1 n—1
_ _ _ ! /
(Co+ D)(|10sull* + 105 ull?) = 6| Lull* + ) Y ILPTugll* +8) Y IL;P ugll®

|7|=q j=1 |J|=q j=1
n—1
/
+ (e — a)z Z(ijTP+UJ, Puy)
S (1.2.13)
(1—e—p Z Z cii TP uy, P uy)
[J|=q =1

O(Ifull-[| Ll | + [[ul ).
On the orther hand,

oy ZHL Prus+8Y ZHL Pyl > inf(e, B)(> ZHL PraglP+ > ZHL Pugl?)

|J|=q 5=1 |J]=q 5=1 [J|=q =1 JI=qi=1 (1.2.14)
> inf(a, B)||Lul[® — C||LPul[?
> inf(a, B)||Lul[® — C(||9pul* + [|F5ul[* + |[ul[?).

Next, we choose § > 0 is small enough such that
O[)/B<175a€7a27>05 17675§*7
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Immediately, we obtain

n—1 n—1
SN NPl + Y S L PP

[J]=q j=1 |[J]=q j=1
+ 3 TP ug, Prug) = S (TP s, Puy) (1.2.15)
|J|=q [J1=q

S 110ull® + (105 ul|* + [Jul .

The property that > (tTPTuy, Ptuy) — Y (tTP us, P uy) > O(||u|[?) implies the maxi-
|71=q |71=q
mal L? estimate. O

Remark 1.2.8. The estimate (1.2.2)) has showed that how we control the L?-norm of the deriva-
tives Lu and Lu. And applying this observation, combining a compactness estimate, the operator
Oy is globally (real) analytic hypoelliptic. (see Appendix for more details).

1.3 Condition of finite commutator type (H6mander’s condi-
tion)

First, we recall the length of a commutator of vector fields.

{L1,...;Lpn_1,L1,...;L,_1} :are commutators of length 1;
{[L1, Ls),[L1, L1], ...} :are commutators of length 2;
{[Liy, [ [Liy, Liy ). ], -} for Ly, € {Ly, ..., Lyp_1, L1, ..., Ly_1}: are commutators of length k.

Let U C M be an open subset. We say that U is of finite commutator type (shortly, finite-type
m if m is the least strictly positive integer for which the vector fields L1, ..., L1, L1, ..., Ln_1
and their commutators of length < m span the tangent space at each point of U.

Now, we put X; = Re(L;) and X,4;—1 = Im(L;), for j =1,...,n — 1. The finite type associated
from the complex vector fields {L1, ..., L1, L1, ..., L1} is equivalent to the finite-type associ-
ated from the real vector fields { X7, Xo, ..., Xop—2}

It is well-known that the condition of finite-type implies the subelliptic estimate for the
system of vector fields {X1, X, ..., Xo,—2} (eg, see [ChShO1], Theorem 8.2.5 ), that means

Theorem 1.3.1. Assume U C M is of finite-type m , then there exists € > 0 depending on m

such that
2n—2

/
lull2 S > IXusll® + lull?,

[J|=q j=1
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for any smooth (0,q)-form u = Z/ uywy with compact support in U. In particular, we can
|J1=q

choose € < 2% (e here is different from the similar symbol in Definition of D(q) condition).

Where, we denote ||.||s is the usual Sobolev norm, for any s € R.

1.4 The Szego projection operators

Let S; and S; denote the orthogonal projections in L%’q(M) onto ker(gl?’q) and ker(ézo’q), re-

spectively, where 51?"1 and 5;0"7 mean O, 5;‘ acting on (0, ¢)-forms. We also define H, is the
orthogonal projection in Laq(M) onto the space of CR harmonic (0, q)-forms ker([Jy), where [,
acting on (0, ¢)-forms. We also notice that ker(Cy) = {¢ € L§ (M) : o = 07 = 0}

In this section, we assume that 0, has the closed range in L%_Q(M ) if M is a general CR-
manifold, then
L%.q(M) = range([y) @ ker([y),

and _ L
range(0y0;,) L range(0}0h),

so, we have the strong Hodge type decomposition on L(QJ, q (M)
L§ (M) = 8,05 (Dom(0,)) @ 0;0,(Dom())  ker(Dy).

Now, we could define the relative inverse of U, in L(2J,q (M). Let any o € Lg,q(M), if a € ker(O),
we set Cqao = 0. If a € range(0y), we set Ky = ¢, where ¢ is the unique solution of (¢ = «
with ¢ L ker(0,). This definition implies that KCqH, = HqKq = 0.

Therefore, for any « € L(Q)’q(M),

a = OpKea + Hea = 00 Ky + O 0K g + Hyav,
and we say that K, is the relative inverse operator of [J; in the sense that
Ky = Kglp = 1 — H,.

Three these operators have the following relations.
Properties 1.4.1. [Koe02/

1. K4 is self-adjoint.

2. For1 <qg<n-—2,

IT=(I-8)+I-8)+M;=8,+8;—H,
3. For1 <qg<n-—2,

8y U, =1 - 8,y and FOHOYIK, =1 - S,
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4. For1<qg<n-—1, ég’q_lqu_l = Kqég’q_l and 5;0"]qu = Kq_légo’q.

Remark 1.4.2. We have some remarks for these properties.

1. We suppose that 0, has closed range in Lg,q(M). Since LpHqu = 0, for every u € L%,q(M)7
(I —8gHy)u= (I -8}, Hg)u=0.
Then, by Cauchy’s Inequality and the hypothesis of closed-range of 0y, we imply

||u||i§,q(M) N Hébuuig’qH(M) + ||5gu||ig’q71(z\/j) + ||Hqu||iqu(M)-

2. If¢q=0,0, = 3;0’15,?’0 operates on functions in L?(M). In this case, Ko is the unique
relative inverse of [, in the sense [J,Co = I — Sy, where Sy is the usual Szego projection
on space of holomorphic functions in L?(M). And from the property (4), we have Sy = I —
5ZO’IIC15£’O. Similarly, if g = n—1, 0, = 5£’n_2550’”_1 operates on members of L(%,n—1(M)-
In this case, K,,_1 is the unique relative inverse of [, in the sense (,K,,—1 =1 — 8] _;.

Definition 1.4.3. We say that a subelliptic estimate of order ¢ > 0 holds at xg € M for (0, q)-
forms for Op-Neumann problem if there is a neighborhood U of zg, C > 0, 0 < € < 1 such
that

lali? < € (10sullZs oy + 10502y +ulB )
where u(z) = Z‘/”:qul(x)&q(x) defined on U.

Now, we assume that U C M satisfies the condition of D(q) and the condition of finite
commutator type of m. Then, from Theorem [I.3.1], we get the following subelliptic estimate

2 3 2 Ok 2 2
lJulle S ||abu||L(2]yq+1(M) + |‘6bu”Lg’q71(M) + ||UHL3,q(M)
3 2 % 2 2
5 ||abu”L%,q+l(M) + HabuHLquil(M) + ||HqUHL(2)’q(M) (141)

= (Du7u)Lg7q(M) + HHq“H%gqq(M)-

On the other hand, from the hypothesis of closed range of Jj, |\u||L3 M) S HDbUHLg (M)
:q 4
accordingly, we have

[lul 2 < 118sull* + [[Hqull* < 10ull® + [Jul . (1.4.2)
As a consequence of Theorem the following a priori estimate holds

lull5 e + 1Ll + || Zul* < [15pullf + lull?, (1.4.3)
for any (0,q)-form u = " u;@; for each s € R. It turns out that the inverse operator D;l :

|J1=q
Hqu(M) — ngq(M) is compact, for 0 < ¢ < e. By positivity of [Jy, the spectrum of [ is
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contained in [0, 00), see [FoKoT72], Proposition (3.1.11).
Following the technique in [FoKo72], we also obtain the corresponding localized estimate

1Cull3 ye < NG186ull3 + (115 ullZ + [[rull, (1.4.4)

where ¢ < (i (i.e., ( =1 on supp((1)), ¢,¢1 € C§°(U). This property says that the operator O,
is hypoelliptic on (0, ¢)-forms.

In the end, we summarize this section: The condition of finite commutator type and closed
range of 0y provide the subelliptic estimate for the operator [J, on (0,q)-from. We can
insert ||Lul|z2,||Lul||z2 into by the condition of D¢(q) to get (1.4.3). And from the
range of D(q) and the following theorem, also holds for all smooth (0,q’) forms, with
q €lg,n—1—q]. In [Ho91], we have

Theorem 1.4.4. If M satisfies condition of q-convexity near xog € M, and if a subelliptic
estimate holds for (0,q)-forms at xo, then a subelliptic estimate also holds for (0,r)-forms,
g<r<n-—1.

1.5 The heat equation

Let M be the boundary of a (smooth) domain in C", for n > 3, or more generally any compact
CR-manifold of dimension 2n — 1 for which the range of dJ, is closed in L?. Assume that M
satisfies the condition of D¢(q) and the condition of finite commutator type. In this part, we
study the initial value problem and the regularity properties of the heat operator $) on (0, ¢)-forms
defined on R™ x M

0
Hu](s,x) = 8—u(s,x) + Opu(s,z) =0 for s >0 and x € M, and ( )
S 1.5.1
lim wu(s,.) = ¢(.) with convergence in appropriate norm,

s—0t

where u(s,z) = ZTI‘:q'U,[(S, x)wr(x).

The problem is to find a smooth (0, ¢')-form u on R x M such that u solves the heat equation
(1.5.1)) with the given (0, ¢")-form ¢(z) defined on M, for all¢ < ¢ <n—-1-—gq.

The sub-elliptic estimate for [, on M also implies the hypoellipticity for the heat operator
on (0,00) x M.

Theorem 1.5.1. Assume U C M s of finite commutator type and satisfies a D(q) condition
defined as above. Then, the heat operator § is hypoelliptic in (0,00) x U on (0,q’)-forms, q <
d<n-1-gq.

Proof. 1t suffices to prove the theorem on (0, ¢)-forms.

Since the conditions of finite type and D¢(q), the a priori estimate (|1.4.2)) holds. We have

2 2 2
Hﬁ[u]HLaq((O,oo)XM) = ||88u”L(2)’q((O,oo)><M) + |||:|buHL(2),q((O:OO)XM) (1 5 2)
+ < O, Opu > 12 ((0,00) ) T < Obth st > 12 ((0,00) ) -
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but [y is self-adjoint and 07 = —0J,, then

||~6[U]||ig’q((o7oo)xM) = HﬁsU\lig’q((om)xM) + HDbUH%g’q((o,oo)ij)-

Let u = u(s,x), for s > 0 and « € U. The condition of commutator finite type for X1, ..., Xop—2
in U also implies the commutator finite type for X7, ..., Xo,_2,9s in (0,00) X U. The well-known
subelliptic estimate ([Hor67]) implies
2 2 2 2
[lulle S 1105ullz (0.00pxan) + 1BB11Z2 (0,00 xa0) T 11ILZ (0.00)%20)
or
2 2 2
Jullf S H'ﬁ[u]HLaq((O,oo)xM) + HuHLg,q((O,oo)xM)'

Let ¢, (1 be two smooth real-valued cut-off functions supported in U, with { < (;. For any 6 € R
and N > 0, by the same method to prove Theorem 8.2.9 in [ChShO1], the following estimate
holds

[ICullsre < Csn([ICiHullls + [|Crull-~)-

Therefore, $ is hypoelliptic on all (0, ¢)-forms defined on (0,00) x U. Then, from the property
of g-convexity, the hypoellipticity of $) holds as well on (0, ¢')-forms, with ¢ < ¢ <n—1—¢. O

Moreover, as an immediate consequence of Appendix [B], § is globally analytic hypoelliptic.
This means if H[u|(s,xz) = f(s,x), where f is globally analytic hypoelliptic on R x M, i.e,

()5 D f(s,)| < OO 2k + o)),

for any s > 0, x € U, and a = (a1, ..., a2p—1), D* = X1 X525 Tn-1, Then, u is globally
analytic as well.

Definition 1.5.2. A fundamental solution of the Oy-heat equation ((1.5.1)) is a one parameter
family of bounded operators Hy, s > 0, acting on L(Q),q(M) such that for ¢ € Ag’q(M) (space of
(0, g)-forms with compact support in M):

1. For fixed s > 0, H[¢](x) satisfies the J;-Neumann boundary conditions

(1.5.3)

so, Hs[¢](z) € Dom(p).
2. H[¢](x) solves the initial value problem for the heat equation, i.e.,

H[[Hso)(z)] =0 for s >0 and z € M;
T H[6() = 6() in L, (M),
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3. For s € [0,7] and (0, q)-form ¢ fixed, ||H;[¢]|| < C, C maybe only depends on T" and ¢,
4. H[¢] is differentiable in s,
5. Commutative with O, i.e, OpHs[¢] = HOy[o)].

Now, we will construct a fundamental solution of the initial value problem (|1.5.1)) via spectral
theory.

Theorem 1.5.3. The fundamental solution Hy of the heat equation (1.5.1) exists and it is
unique. Furthermore, H; is the semi-group generated by —U,. Hence, for each s > 0, Hy is
self-adjoint and positive.

Proof. (Existence). We know that [y is a closed-range, densely defined, self-adjoint operator on
Lqu (M). Then, Spectral Theorem (see Appendix |A] the continuous functional calculus version)
guarantees the existence of a unique algebra homomorphism ® from the algebra B = B[0, c0)
of bounded Borel (complex valued) functions on the non-negative real axis to the algebra
’C’(L%,q (M)) of bounded linear operators on L(Q),q(M)' In particular, for each s > 0, the function
es(a) = e*%, a > 0 is bounded, continuous on [0,00). Then, we denote ®[es] = H[.] = e[ ]
be the corresponding bounded linear operator. Again, from the spectral theorem, the family of
bounded linear operators {e *™[.]}s>¢ is a strongly continuous semi-group generated by —j,
called the heat semi-group for [p.

From properties of strongly continuous semi-group, Spectral Theorem and the observation that
%(6_‘%) = —ae ", (1), (2), (3) and (4) in the definition are satisfied . Now, we prove (5)
as following. (see [Nal).

Let f € Dom(0y), f = (O + il) " '[g] with g € L§,(M). Putting Fi(z) = x(z +4)~", then
F1(0y)[g] = Os[g]. But,

—sa a _ —sa L
(e )(m)—(ae )(a+i

it now implies e~*™ Fy (0,) = Oye ™™ (0, + i)', Hence

),

e [O,[f]] = e Fi (D) [g) = Ope*(0p + i)' [g] = Dpe™*[f].

(Uniqueness)
Let H, be another fundamental solution of the heat equation ([1.5.1]). We define

Gs[f] = (H, — HY)[f],

for f € A%(M), so G[f] also solves (1.5.1)). Let 7' > 0 and s € [0, 7], since Hg and H/, satisfy
(3) and (5) in Definition we obtain

(DGLf], Gslf]) = (GsDhf], Gslf]) € L (M x [0, T)).
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Similarly, (Gs[f], OpGs[f]) € LY (M x [0,T]). Let

o(t) = / /MKDbGS 1], Galf]) + (Gl f), DGl f)dVids

- /M /0 (@Gl f), Golf]) + (Gslf), DyGilf)dsav.

By (2) in Definition [1.5.2]

o) = [ [ UGG G + (Gulr) 5 GulrdsaV

_ /M /Ot i]Gs[f]]zdst.

By the initial value condition,

o) = [ 1GIAPAY =GN ar) = O

In the other hand, the positivity of [J, implies

J(t)=—— /MKDbGt[f], Gulf)) + (Gelf), TyGl DAV < 0.

Therefore, g(t) is non-negative, decreasing of ¢, g(0) = 0 . Immediately, g(t) = 0, for any ¢ €
[0, T]. Therefore, Gs[f] = 0 for any f € A%4(M). By density of A%9(M), we have H,[f] = H.[f],
for every f € Laq(M). O

Now, we will see that the heat semi-group gives us a solution to the initial value problem

posed in (|1.5.1)).

Theorem 1.5.4. For each f € Lg7q(M), let u(s,z) = e *2o[f](x). Then u € 65 ((0,00) x M)
satisfies the following properties

0
1. [88 + Db} [u](s,z) = 0in the sense of distributions for s >0 and x € M;

2t i [ Julsia) = fla)PdV () =0,
M
where [y operating on x-variables.

Proof. Define a (0, g)-form ¥¢ on (0,00) x M with distribution coefficients as follows,

<\I/f,w >_/ <€7SDb[f]7w78 >qu(M) dSv
0 ,
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for any (0, ¢)-form ) whose coefficients in C§°((0,00) x M), and 9s(z) = (s, x).
Note that e~*M¢[f] and 1, are differentiable in s-variables with values in Laq—norm7 hence the
function s —>< e 5 [f], g >r2 (ary 18 in C§°(0,00). Then, let the support of ¢ be contained in
»q
the set {(¢,z) € (0,00) x M : 0 < a < s <b< oo}, we obtain
<0 > | < (b- )Lz onysupe. s IWosllz -

This implies that the distribution ¥y is continuous.
Let ¢ € C§°((0,00) x M),

o 4 i _
/0 £[< e[ f],1bs >r2 (nlds =0

or /0 < Dbeisljb[fL,lES >L%,q(M) _\/O < eisljb[f],asdjs >Lqu(M): 0.

Since [, is self-adjoint,

o] oo
/0 < e_smb[f]a Uptds >L§,q(M) _/0 < e_sub[f]788¢s >Lg!q(M): 0,
and by the definition
< Vs, [—0s + O >=0.
That means [0s + 0,)[¥¢] = 0 in the sense of distributions. We know that § is hypoelliptic,

so u(s, ) = e~ [f](z) is C§°((0,00) x M). And then, [(‘is + Db] [u](s,z) = 0 in the classical

sense. ]

Remark 1.5.5. Theory of the heat semigroup e *9¢ also provides an argument to study the
relative inverse of the [, operator under the view point of the spectral theory for unbounded,
self-adjoint operators. In particular, recall that H, be the orthogonal projection from Laq(M )
onto null space of [y, then there exists the unique relative inverse of [, by K, in the sense that
OpKq = KqOp = I — Hy. Moreover, lim, oo e 50 [f] = H,[f] and

Aw@ﬂ%m—ﬂawm=ﬁw1

In [NaSt06], from this observation, Alex Nagel and Eli Stein firstly applied pointwise estimates
of the heat kernel in C? to investigate the operator Kq when M is the model of a decouple
boundary in C™.

1.6 Some models of the [J,-Heat equations in Several Complex
Varibles.

1.6.1 Strong pseudoconvexity case.

Let M be a compact strongly pseudoconvex CR manifold of dimension 2n — 1,n > 3. In [St78],
the author proved that the fundamental solution p(s,x,y) of the heat equation for [J, is a
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smooth (0,q) ® (0, q)-form on RT x M x M. And then, in [StTa84], the authors also obtained
the smoothness of p(s,z,y) on RT x ((M x M)\A), where A is the diagonal on M x M,
A ={(z,y) € M x M : x = y}. In particular, p(s, z,y) has singularities on {0} x A. Let §(z,y)
be a pseudo-distance on M, the following estimate holds

m—3l

HX}T(Xigp(s,.,.)HLOQ(M)Sce—ms—5n+ =

where the given € > 0 such that 6(z,y) > €, m > 10n — 3(|I| + |J|), C only depends on |I|,|J|.

1.6.2 Weakly Pseudoconvexity case.

In this case, the problem is more difficult.

Let M be the boundary of a weakly pseudoconvex domain of finite type in C2. In [NaSt01], the
authors showed that the singularities of the heat kernel H (s, z,y) of the solution are exactly the
same as those of kernel of Szegd projection. Moreover, the rapid decay estimate for H(s,z,y)
holds

dg(z, y) =2~ HI=1Jl N

Vule) SV dule g

where dps(z,w) is the non-isotropic distance and Vj;(z,w) is correspondingly the volume of
a non-isotropic ball. It turns out that in the case of 3-dimension, we do not have any result
for hypoellipticity of [, in general. Hence, the heat operator is not hypoelliptic. However, the
authors proved that it is relative-hypoelliptic. The smoothness of the heat [y-operator is depend
on the smoothness of Szegd projection.

Second, when M is an unbounded polynomial model of finite type, i.e,

0IXIXH (s, 2,y)| < Cyn 11,0153

M = {(z,w) € C* : Im(w) = h(2)},

where h is a sub-harmonic, non-harmonic polynomial of degree m. In [BoRal0], the authors
provided the exponential decay estimates to the heat kernel via partial Fourier transform. More
general, the authors also investigated the case that M is a decoupled polynomial model. Here,
the considered metrics are non-isotropic and controlled by the tangent vectors fields. However,
higher regularity estimates for the heat kernel are not established.
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Chapter 2

Geometry and Analysis on
Carnot-Carathéodory Spaces

In this chapter, integral representations of the Szegd projections as well as their regularity
will be introduced. The basic ideals come from the earliest one by D.H. Phong and E. Stein
[PS83] [PS86al, [PS86D], in which a key connection with singular Radon transforms was first
identified there. Moreover, the notation of finite commutator type implies some important prop-
erties in Carnot-Carathéodory geometry, for more discussions, see [FP83, INSW85], [Na86],and
also [Koe02], [Na]. As claims later, we always assume that M is the boundary of a smoothly
bounded domain in C" (n > 3), or more generally any CR-manifold of dimension 2n — 1 for
which the range of 0, is closed in L?. We also assume that the holomorphic vectors fields
Li,...Lp_1,L1,...,L,_1 defined on U C M - a neighborhood of a base fixed point zy € M -
satisfy the condition of commutator finite-type of m. To obtain subelliptic estimates for higher
order forms, the D(q) is also assumed. The real vector fields Xi, ..., Xo,_o are defined by
X;j=RelL;, X,yj1=ImL;,j=1,..,n— 1. Finally, we choose a real vector field T" such that
Li,...,L,_1,T is a local basic of the tangent space at each point of M.

2.1 Geometry on Carnot-Carathéodory Spaces

For each finite sequence i1, ..., iy of integers with 1 < i; < 2n — 2, setting I = (i1, ...,4;) and the
length |I| = k. We can write the commutator

[Xl [Xik—w ceey [X7/27X'Ll]]] = )\ZleT (InOXm, ...,Xgn_g),

ko
where \;, _;, € C®(U).
Definition 2.1.1. For z € U and r > 0, set

M) = (Y P @P)?, =2

2<|1|<!
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and

Note that A;(z) is a function whose size measures how much 7' component the commutators
of Xq,..., Xon_o of length < k can have. Since M is of commutator finite type of m, A,, never
vanishes, so there are positive constants C1, Cy such that for 0 < r < 1, we have

Cir™ < Az, r) < Cor?.

Definition 2.1.2. For each x,y € U, the natural non-isotropic distance pys(z,y) corresponding
to the vector fields X7, ..., Xo,_9 is given by

pum(z,y) = inf{d > 0 :there exists a continuous piecewise smooth
map ¢ : [0,1] — U such that ¢(0) =z, ¢(1) =y,
2n—2
and almost everywhere ¢'(t) = Z a;(t)X;
j=1
with |a;(t)] <0, for j =1,...,2n — 2}.

The non-isotropic ball centered at « € U, with radius r > 0 is
Buy(z,m) ={y € U: pu(z,y) <r}.

Remark 2.1.3. The fact that pys is finite follows because there are commutators of finite length
of the vectors fields X1, ..., Xo,—2 span the tangent space at each x € U. This was first proved
by Carathéodory.

For any z,y € U, we also define V(z,y) = |By(z, pam(z,y))| be the volume of the non-

isotropic ball centered at x with the radius is the non-isotropic distance of x,y.

Next, we define the family of exponential balls generated by exponential mapping corre-
sponding to the vector fields X1, ..., Xo,—2. Let By denote the unit ball (defined by Euclidean
metric) in R?*~1. For z € U and r > 0 we set

O, r(u) = exp(rur Xy + ... + rugp—2Xon—2 + Az, r)ugpn—17T)(x),
where u = (uq, ..., u2n—1) € By.
There is Ry > 0 depending on the manifold M so that for all 0 < r < Ry, the map ®,, is a
diffeomorphism of the unit ball By to its image. Hereafter, 0 < r < Ry when we have calculations
on the exponential map @, ,. Now, let

By(z,7) = ., (Bo),
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that is

By (z,r) ={y € Uy =exp(a1 X1 + ... + agn—2Xopn—2 + aT)(z)
where |a;| <7 for j=1,...,2n — 2, and |a| < A(z,7)}.

We have the following facts about the size function A and the above families of non-isotropic
balls.

Theorem 2.1.4. Under the assumption of finite commutator type of m, there exists Ry > 0 so
that we have

1. There are positive constants C1,Cy so that for all x € U and 0 < r < Ry,
By (z,Ci7) C EM(LE,T’) C By(x, Car),
that means By(x,r) is equivalent to By (x,7).

2. |By(x,7)| &~ | Bas(z, )| ~ r2=2A(z, r) uniformly in x and 0 < r < Ry.
In particular, there are two constants C3,Cy > 0 such that for all x,y € U

Vaur(z,y)

O < @ A i (@, 9)

< (4.

3. Let Jgr(u) denote the Jacobian matriz of ®,,(u), i.e,

9

ouq

then |det(Jyr(u))| = r*=2A(z,r) uniformly in x and 0 < r < Ry.

;adet(Jx,r(u))’ < r=2A(z,7) uniformly in x and 0 < r < Rg, for each multi-indez o.
u

About the proofs for these results, see [NSW85], Theorem 7.

0

nyr(u) — (d®3}77’( m

), e A

4.

Next, we will apply the exponential mapping to scaling method which was introduced in
[Ch91]. First of all, for any function f € C'(By), the scaled pullbacks to By of the vector fields
Xj on U are given by

(X £) () = (Xj o (u) = r(XGF) (B (),
where f(y) = f o <I>;}(y), for y € EM(J,‘,T). Therefore, )?1,...,)/(\'2”,2 may be written in the
0

u-coordinates as linear combinations of the vector fields —, ..., o on Bg. Also, we define
Uy U2n—1

the scaled pullback to By of the function ¢ on B M (z,7r) by
P(u) = ¢(Par(u)),

for u € By.
The following facts are also from [NSW85].
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Theorem 2.1.5. 1. The vector fields )/(\1, ...,)?Qn_g are of finite type on By, uniformly in x
and r. And |det(X1, ..., Xon—2,2Z)| > C for a commutators Z (of the X;) of length < m
such that X1, ...7)?2n_27 Z span the tangent space. (C > 0 is independent of x and r ).

2. The coefficients of the )A(j (expressed in u-coordinates), together with their derivatives, are
bounded above uniformly in x and r, i.e, if

P 2n—2
90 = b1 X + bjon-12,
ws
J I=1
then by ; and its derivatives are bounded above uniformly in x and r, for j,l =1,...,2n— 1.

Now, let Ej and Ej denote the scaled pullback of L; and Ej by

= ~

Ej = X] + fL’Xn—Q—j—lv LJ = X] - fL’Xn—Q—j—lv

~
~

and the basis of (0, 1)-forms dual to El, o Ln_1 by @1, ooy On 1.
We consider the equation on B(z, ) B

from the definition,
Ljd = r(L;0)(®y, () = rf(®up(u) = 1f = rL;o

the equation l:/j\qﬁ = rilfj;b\ is the scaled pullback of the equation I_Lj¢ = f. Now, Z_L; = —Lj+aj,
for some a; € C*°(U), we also define

—

L; = —Lj + TZL\]‘.

— PPN —
Similarly we obtain L;‘f¢ = rile ¢. Therefore, the scaled pullback of Op-equation is

— =~

(Opd) = 1O,
and also . .
(05 ¢) = 17105 ¢.
Finally, we also extend the map ®;, on By to the map ®(,,), on R x By by
q)(s,x),r(sa u) = (327 él',’l’(u))y

with 0 < r < Ryp.
The scaled pullback of the heat equation on R x M to R x By is

<<§S + Op) (s, )= ﬂfﬁs, w) + 1Oy (s, u),
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where Db aba* + 8*8b is the scaled pullback of .

In [Koe02], the author applied this method to show that: the Szegb projections are smooth
away from the diagonal, and their kernels satisfy size estimates. Now, we again apply this method
to estimate the Szegd kernel in T-direction when x closed .

Theorem 2.1.6. Suppose that U C M satisfies the condition of D(q) and finite commutator
type of m as above. Let Sy be the Szegd projection on (0,q')-forms, for ¢ < ¢ < n —1. Then,
the components Sé,‘] ([I| = |J| = ¢') of the kernel of Sy satisfies

TETLSE (,y)| < Crgr™ 00| B, )|,

when x sufficiently closed y and r = ppr(x,y) > 0.
An analogous statement holds for the kernel of the projection S(’I,.

Proof. This theorem can be proved by applying the argument in [Koe02)]. Let z, y be two different
points in U, then there is a constant C' > 0 independent to x,y such that B(x )N B(y, r) =10,
where r = C~1p(z, y).

Let f be a (0, ¢')-form with coefficients in C5°(B B(y,r)). Hence, for some (0, ¢’ + 1)-form u which
is orthogonal to Ker(d;), we have (I — Sy)[f] = Ofu, so that 9dju = Opf = 0 on B(z,r).
Moreover,

TF(Ofu)s(z) == / TESY (2,0) f1(y)dV (), (2.1.1)

=g
for z € B(x,7).
We will begin the proof by showing the following estimate
- B N
T O5w) 5 (2)] < Cor™ ™| B(x, 7)| 72| f]] 2

o'

(2.1.2)

On E(w, ), 5b5§u = Opf = 0, so with pullbacks given by the map g, ,, we have 5\;,5;;@ =0 on
the Euclidean unit ball By. Now, applying the same argument in [Koe02], we have

~p == _1
[DM(8;)5(v)] < Crl B, m) 727 If]I 2 s (M)

or

|D*(05u) 1 (v)] < Ck|B(w,r)|~ 2|\f\IL2 ()

where v € g;}q(é(x, %)) and D* be the composition of k factors of { i,j=1,...,2n — 2}. Since
the finite type condition, for some multi-indics a = (i1, ..., i, ), there is a smooth function A\, # 0

on U such that
2n—2

(Xi s [ [Xins Xiy]oo] = AaT + Z B3 X,
j=1
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for some functions 3; on M. Scaling this equality to Bg, we have

2n—2
)\af(ﬁ"i‘ Z B\Jj(\j¢: [Xim7[" [XZQaX ] ]¢

j=1
where ¢ € C5°(By). This yields the formulae to the pullback of T-direction

2n—2
j:qb(vl) = i(7‘771[)(1'7,1a [ [XzzaX ] 'Mv)(g:v,r(vl)) +r Z @Xjé(gx,r(vl)))-
A
a J=1

We apply T as the sum of derivatives
TGy (v)] < Cr|B(a,r)[ 72 11z ),
for v € g, T(E (x,%)). By rescaling, and then induction for &, it is not to hard to imply that

T (Gyu) 5 (2)] < Ck?“_km\B(%?“)l_EHfHﬂ ()
for z € B(x, %) with r is sufficiently small. This is also true in place of z € Bz, ).
So, by L?- duahty, we yield

kqlJ —k _1
||Tz Sq/ (Z,.)||Lg’q/(§(y,r)) S CkT m|B($,T)| 2,

and

_ _1
178 SE (., w) < Cr~ "By, )| 2,

22 (B
since Sg;’ (z,w) = Sé,‘] (w, z). Again, by scaling and induction in k, we can show that
Tk QIJ -1
HT”U,S(], (’Ul?')HL(Q)yq,(BO) < Ck’B(JJ,T)‘ )

and R
HTqiSé/J( )HL2 ,(Bo) < C|B(z,r)|” 17

since r = C~pp(x,y) and so |B(:L',r)|_% ~ |B(y, 7‘)|_%.
From [Koe(2], we already know that

H v 9P

57 508 (|B(x r)]S(v v)) < Cqp-

L3 /(BoxBo)

By Embedding Soblev Theorem,

’ﬁiﬁféﬂB(x,r)\g(v/,v))‘ < Ck,; uniformly,
and hence, by the same previous argument,

5T, Sy (2,y)| < Crar™ ™| B(a, )|,

when z closed y as well.
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Next, under condition of commutators finite type on M, we also define the parabolic non-
isotropic metric on R x M. Recall that the family of dilation §) on R x M is

5)\(8,.%') = ()‘257 )\IE),
for s € R,x € M and the parameter A > 0. This implies the following.

Definition 2.1.7. Denote by Y the vector fields f? on R, then the family of the vector fields

s
{Y, X1, ..., Xo,—2o} also satisfies the condition of finite commutator type. For every p = (s,x),q =
(t,y) € R x U, the following function is finite

prx M (P, q) = par(z,y) + /|5 — t],

then
prM(éA(87$)7 6/\(t7y)) = )‘pRXM((SWTJ)? (t7y)>7

and prx s is called non-isotropic parabolic distance. This metric associates to the corresponding
balls Brxar((s,x),r) on R x M. Note that

| Broar ((s,2), [t = s|)| =~ (t = 5)*| Ba (w, [t = s])].

Let By denote the unit ball in R2"~!. For each (u, uo) € By the exponential mapping on R x M
is
D(5,2),r (U, u0) = exp(r2u0Y +rur X1 + ... + rugn—2Xon—o + Alx, r)ugn,—17T)(s, x),

and

ERXM((Sa $)7 T) = q)(s,x),r(@O)'

2.2 Analysis on Carnot-Carathéodory Spaces

In this section, we briefly introduce the definition of the class of non-isotropic smoothing (NIS)
operators on the manifold M. These operators generalize the classical Calderén-Zygmund oper-

0

ators to do the standard coordinate vector fields ¢ —, ..., ———
O0x1 O0x2p—1

[INaSt01], [Na], [Koe02].

}. For more discussions, see

Let py(z,y) be a non-isotropic metric on M defined as before, where M satisfies the
condition of finite commutator type. Let I denote the set of ordered k-tuples I of integers
I = (i1, .. i), 1 <i; < 2n —2, and denote by X! = X;,...X;,. The diagonal of M x M is Ay
and D’(M) denote the space of distributions on M.

We begin the definition of the class of NIS operators acting on functions on M.

Definition 2.2.1. An operator 7 : C§°(M) — D'(M) is called a non-isotropic smoothing
operator of order r if the following conditions hold:
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1. There is a function Ty(z,y) € C°(M x M \ Ajpr) so that if ¢,7p € C§°(M) have disjoint
supports,

(T, 0) = /M /M B0 (@) To(z, y)dV (2)dV (y). (2.2.1)

2. For any s > 0, there exist parameters a(s) < oo, 8 < oo such that if , (' € C°(M),{ < ¢,
then there is a constant C, so that

STl < CslIS Fllags) +11£115) (2.2.2)
for all f e C>(M).
3. For any I € I, J € [, there exists a constant Cj; so that

(XX To(x,y)| < Crapn (2, 9)" " WVar(z,y) 7" (2.2.3)

4. For any ball Bys(xg,r) C U, for each integer k > 0, there is a positive integer Ny and a
constant Cy, so that if ¢ € C§°(Bar(zo,7)) and I € I, we have

sup | XTT(0)(z)| < Cor™ Fsup > X[ (y)]. (2.2.4)
:EGBM/(:EQ,T) yeM |J|§Nk

5. The above conditions also hold for the adjoint operator T with kernel Ty(y, ).
We have some remarks to this definition.

Remark 2.2.2. 1. The condition (1) says that the operator 7 has the distribution kernel which
is given by integration againts the function Ty is smooth away from the diagonal Ajp; on
M. Thus, in addition to the condition (2) and (5), the operator T is pseudo-local, means, if
¢ € C5°(M), then away from the support of ¢, T[¢] is given by the infinitely differentiable
function T[¢](x) = [;, To(x, y)d(y)dV (y). Moreover, the condition (2) was imposed in
order to prove that the class of NIS operators forming an algebra under composition.

2. The condition (3) clearly shows how large the sizes of singularities of the distribution
kernel Ty(z,y) at diagonal on M are. And from the generalized theory of singular integral
operator developed by A. Nagel and E. Stein in [NaSt04], this estimate is critical to show
the LP-boundedness for the operator 7. In particular, in [Koe02], Koenig showed that if
T is a NIS operator of order zero on M, then 7 is bounded from LP(M) to itself. The
analogue in C2 is also true in [NaSt04].

3. The condition (4) encodes the basic cancellation hypothesis needed to show that NIS
operators of order zero are bounded on L?(M). In the condition (3), when m < 0, the

integral / To(z,y)p(y)dV (y) is able not to converge absolutely, even if ¢ € C§°(M).
M
Thus, the estimate in condition (4) is required for 7[¢].
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Now, we generalize the class of NIS operators acting on (0, ¢)-forms. Let 7 be an operator
from C§5, (M) into Cg5, (M), and ¢ = Z‘/”:qlqﬁlaq, then

Tlolw) =Y, (Tl6)s()y.
where

(TTeN) () =

< Tr(@)wr], 05 >z2
[I|=q1

And we define TH[g](z) =< Tlg(x)w;],@; >z, for g € C(M). Here, the appearing of the
primes in these sums means the follow forms are represented uniquely. Naturally, we say that
T is a NIS operator of order r on (0, q1)-form if and only if 7 and 7* satisfy the estimate in
condition (2) of the definition and each 77 is a NIS operator of order r on functions.

We will apply this definition to the Szeg6 projection S; and S(’J. We can rewrite these operators
by

Slel@) =3, 3, <Sler@ear>per=3 (37 87 b@)er,
8(/1 [d)] (ac) - Z;lewz;ﬂqu < S;[qbl(x)@[],@ 712 W= Z\/J\:cn (Z\lllzm (SqIJ)'[¢1](:J:))@J,

for ¢ = z| =1 ¢ror. Now, by Riesz Representation theorem,

Siela) =321, (0, | SE ey w)es
Syiela) =320, (7 [ SEY @ montmav ).

With these integral representations and the fact that the identity operator is non-isotropic
smoothing of order zero, the operators Sq/,S(’l/ and K, are the NIS operators, with ¢ < ¢/ <
n—1—gq.

Theorem 2.2.3. [Koe02] Assume the condition D(q) holds for qo < g < n —1— qo for some
fized qo > 1 near a point of finite commutator type xo € M. Then, there is a neighborhood U of
T such that

1. §; and St/z are NIS operators of order zero in U.

2. Sgo—1 and S},

_qo @lso are NIS operators of order zero in U.
3. Kq is a NIS operator of order 2 in U

As a consequence, we have
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k
Proposition 2.2.4. Let a be a muilti-index with |o] =k > 1. For 0 < j < [2], there are N1S

operators Aj1,Aj2, Aj3 smoothing of order zero such that

Xa(l — ,Hq) = (A]"l + Aj’Q + Aj,3)|:|Z-
=0

In particular, if k = 21, Ajy = Ajp = 0.

Proof. The proof really follows the lines in Proposition 3.4.7 [NaSt01] with the replacing of the
terms I — S, by I —H,. And we can omit here. O

The scaling method also provides following Sobolev Type Theorem.

Theorem 2.2.5. Let M satisfy the conditions of D(q) and of finite commutator type. There is
a constant C' , and an even integer Ly, so that if f € C*°(U), then for all x € U and all v < rg

_1
swp |f] < CBu(ar) ™2 D XSl (2:25)
By () 0<|I|<Lim,|I| even

If f € A% (C=(M)) N L%7q,(M), with ¢ < ¢ < n —1—q. Moreover, if f € (kerlJy)*, then

Lpm/2
_1 ; i
sup |f’ < C’BM(-'I};T)’ 2 E T2]‘|Dif“Lgq(B]p[(IQT))' (226)
B (z,r) Jary )

Proof. We apply the scaling method introduced before. From the property (1) in Theorem
we can change the ball under supremum

sup  |f(y)l < sup  [f(y)] < sup [f(Pa,cor(w))]-
yE€EBMm (:L‘,?“) yeEM (x,clT‘) u€Bo

Setting F'(u) = f(®s.cyr(u)), for u € Bo. Let G(u) = F(u)0(u), where § € C§°(R?*~1), § =1 on
By, and 6 = 0 outside the ball B(0,2) C R?"~!. So,

sup [P < swp |60 < [ (GEOIaVE)

u€Bo u€eR2n -1

< N+ 1€ 2C )] 2 an-1y 11+ 614 7] 2 en-r,)
< C(I|Gl2zn-1) + PGl 2m2n-1))

0 ~
<¢ > ) Flleees:

0<|1/<2,1| even
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Now, from the statement (2) in Theorem there is an positive integer number ! depending
on m such that

swp|F|<C Y (X)) Fllremoa)-

0 0<|I|<2L,|I] even

Then, after rescaling pullback, by Theorem we have the first statement.
Now, we have the analogue version for (0,¢)-form. Let f = -, ,_, fsw € A%9(C%°(M)), we
also obtain

sup |f| = sup sup |f/|
By (z,r) |J|=q B (z,r)

_1
< sup C|Bu(z,7)| "2 > r X £l 2By o2
[7]=q 0<|I|<Lm,|I| even

_1
< C|Bu(w,r)| "2 > S Xl L2 By o)

0<|I|<Lm,|I|even |J|=¢

_1
< C‘BM([E,T)‘ 2 Z TulHXIfHLQ(BM(m,QT))'

0<|I|<Lm,|I|even

In order to estimate X’f in the terms of DZ f, with f = f — Hy[f], we will apply the basic
decomposition in Proposition Since |I| is even, there exists a NIS operator of smoothing
of order zero Ay such that

11
XI(T = Hy) = A0,
Therefore, let f be orthogonal to the null space of [, we obtain the second assertion. O
The main result in this part is following

Theorem 2.2.6. Let M satisfy the conditions of D(q) and be of finite commutator type. Then,
the heat operators e =™, with s > 0, are NIS operators smoothing of order zero on (0,¢")-forms,

with ¢ < ¢ < n—1—gq, and associated estimates are uniform in s > 0. As a consequence, e 7

is bounded from Lp7q,(M) to itself.

We will prove this theorem in the next chapter.
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Chapter 3

The Initial Value Problem For The
Heat Operator 0, + [,

In this chapter, for a (0,¢)-form ¢ = Z\/1|:q¢1@17 we will show that the operator e~ [¢](z)
has the following form

=505 4](z) = / H(s, 2, y)d(y)dV (1),
M

where the integral means that

/M H(s,z,y)0(y)dV(y) = szq (Zﬂ:q /M HU(s,x,:U)@(?JMV(y)) @y

We require that M satisfies the condition of finite commutator type and D(q).

3.1 The heat kernel

For convenience, we recall some results about the heat semi-group of unbounded operators e~

via Hilbert space theory.

Theorem 3.1.1. Assume the condition of finite commutator type and D<(q) hold on M, and
also the operator Oy has its closed-range in L?. Let ¢ € L%’q(]\/[), then :

1. lim lle™*[¢] — Az ) = 0;
2. For s >0, [[es Iz an) < 19llzz (an)s
5. If ¢ € Dom(Th), lle= ¢l — dllzz oy < sIToldlllzz_qany
4 iV
4. For s >0 and j is non-negative integer, ||(Op)7 e~ [(b]HLg ) = (> 5_]H¢HL3 (M)7
.q e .q
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5. e U [g] = Hee 0[] = Hqlo);
6. e D[] = (I — Hq)e*Db[g] + Hylp] = e (I — Hy)[d] + Holo):
7. For any ¢ € L§ (M), and any s > 0, the Hilbert space valued form H, = e~*2¢[¢] satisfies

[0s + Op][Hs]) =0 for s >0
lim Hy = ¢ in L§,((0,00) x M).
s—0 ’

Next, we have the self-adjointness for heat semi-group.
Lemma 3.1.2. For any s > 0, e ™ is a self-adjoint operator on L%vq(M).

Proof. Let s,t > 0, since the self-adjointness of [, we have

o, o 0, .
%@ P, e tDbWLg’q(M):@@ Qi e tDb¢>Lg’q(M)‘

Then,
o 0., _ _
(% _ &) <6 sDbgf)’ e tDb?’[)>Lg’q(M) =0.

The transform of variables

1
{u:3—|—t 5:?(U+U)
v=s85—1t tzi(s—t)
arises
g_l(ﬁ . 8)
=55+ 5
RN
v 2'0s t’
So,
—va(s,t)z(),

. That means a(s,t) is a function of only u-variables,

where a(s,t) = <e*SDb¢, e*tDb1/1>Lz (M)
0,9

a(s,t) = F(u) = F(s+t) = F(t+s) = a(t, s).
In this case, we have

—sd —tO _ —td —sd
(€707 0y = (€70 M)y
and in particular when ¢t = 0,

<6—sDb b, ¢>L3’Q(M) = <¢)’ e_SDbQ’Z)>L(2)7q(M) .

38



The next lemma says that the linear functional ¢ — X%e~*"%[¢](x) is bounded. The key fact
is that, when n > 3, the operator [J;, has subelliptic estimates (|1.4.2]).

Lemma 3.1.3. Let |a| =a > 0, and let K C M be a compact set. Choose a integer N so that
Ne > 2n — 1+ a, where € defined in (1.4.2). Then, there is an allowable constant C' such that
for each s >0, if v € K, and for all ¢ € L(%,q(M),

XY™ [9)(x)] < C(L+ ¢ V)¢l Lz (r)- (3.1.1)
As a consequence of the condition of commutators finite type, for any derivative D on M,
(D™ [g](2)] < CO+t)0llz

Proof. Choose ¢ € C§°(M) with ((z) =1, for all z € K. Then, choose cut-off function ¢ < ¢; <
.. < {y = ¢'. By Sobolev Imbedding Theorem, we have

X [g](2)| = |X¢()e* ™ [¢](2)] < Cl1¢e"[8]]l2n—1-+a-
Applying the basic subelliptic estimate ((1.4.2), we have

16e™* 2 [@]ll2n-14a < C- [[IG0he ™ [8]lln+a—c + lICLe™[]llo] -

If we repeat this argument N times, by (4) in Theorem we will obtain

N
1¢e™ 2 [@)l|2n-11a < C. ZO 1¢'TheP[elllo < C.(L+ )8l )
]:
this completes the proof. O

As a consequence of Riesz Represenation Theorem, we have integral forms for D%e= [¢].

Lemma 3.1.4. For s > 0, a be a non-negative integer, and x € M, and for any derivative D%,
with |a| = a, there exist unique functions H!Z € L?(M), where |I| = |J| = q, so that

$,2,a

e alw) = Y (L [ eV ), (312

or in short,
D D [g)(z) = /M Hs 2.0(y)o(y)dV (y),

where ¢ = Z/I _ gzb]@[ Moreover, if K C M is compact and if C is the corresponding constant
in Lemma “then ifre K,

Z/ HI () Pdy < C2.(1+ V)2,
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Proof. For each s > 0, z € M, we define the mapping ¢ — D% *™[¢](z). By Lemma
this functional is bounded. Moreover, since

DaefsEIb [(b] (1‘) _ Z;J‘:qz;nzq <DO‘HS [¢[@[],@J>L2 («T)(DL

and so by Riesz Representation Theorem, there exist functions H!/ = € L?(M) so that

S,T,a

D%(Hs)1(¢r)(2) = (D*Hs[prcor], ) () = /M H3 o (9)1(y)dV (y).

Hence, by duality, we obtain

S, [ Wl < 0+ N
Ly fy e

O]

For each |a| = a, we would like to regard for each I,J, H L{‘ia as a measurable function of

three variable (s, z,y). We proceed as follows. Each element H, g‘ia is by definition an equivalence

class of measurable, square functions on M which differ only on sets of measure zero. For each
s, x,a, |a] = a, choose one representative of this class, defined for all y € M, which again called
H!Z . By this way, we can define a function H!/(s,z,y) = H!Z .(y). In particular, we write

s,T,a° S,T,a

H!(s,2,y) = HL ,. Moreover, we have

Proposition 3.1.5. For each |a| = a, HI’ is measurable on (0,00) x M x M.
Now, we can state the main result in this chapter.

Theorem 3.1.6. We define the following (0, q)-forms

!/

H;(S,.T) = ZlJ‘:qHIJ(S,CL',y)(I}J(I),

/

J _ IJ -
H](s,y) = i (& T Y@,
and for s > 0, we define the double form

!/

o) = g1 s, 2)21() ©1(0).

It turns out that e~ [¢](x) = Zileq < Hl(s,.), ¢ >3 (M) @
For each fized s > 0 and x € U, the functiony — H'/ (s, 2,%) belongs to L>(M), so each integral
above converges absolutely. Moreover, each component H'' (s, x,y) of H(s,z,y) satisfies

1. Fors>0, and x,y € U, H(s,2,y) = H/(s,y, x).
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2. Efs ;rh(Db)m] [Hy)(s,2) = 85 + (D)) [H]](s,y) = 0.
’ [0s + (D)) [Hs (2, y)] = [0s + (Op)y[[Hs (2, y)] = 0.

3. For any integer j, k > 0,

(Do) Do)y HY (0, y) = (Op)3 T H) (s, ) = (3p)) 7 H (s, y).

4. For each s > 0 and y € U, for any non-negative integer j, each function
T (Db);Hé(s,x)
is orthogonal to the null space of L.

Proof. For fixed s > 0, since H'/ (s, z,y) = HSI;LO, for all 1, J, then Lemma says that the
maps y — H'/(s,z,y) belong to L?(M) for all I, J. and

@ =Y, (S, [ e nemae) )

We denote these sums as / H(s,z,y)o(y)dV (y).
M
Now,

D?(/M g(y)H" (5,2,9)dV (y)) = /M gW)HL (s, 2,y)dV (y)

Now, by Schwartz Kernel Theorem, the following holds

< DS(H.)1[¥), ¢ >c =< (—1)1*(H,)1,[¢], Dfo >
=< (-)PHY ¢ ® D¢ >,

for every ¢,1 € C§°(M). On the other hand,

< D*(H,) 4[], ¢ > =< (DXH,) 5[0, ¢, >
=< H! 4(y) ® ¢(z) >,

for every ¢,v € C3°(M). Hence,
< (=D)MHY @ D¢ >=< HI7 (y) ® ¢(x) >, for every ¢, € C(M) ,

SO
D*H" (s,2,y) = H! (s,z,y) (3.1.3)

in the sense of distributions.
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1. The fact that the operator Hy = e~ is self-adjoint, and so for ¢ = Z"I‘:q@@b@/} =
Yl =gty in CgE(A%9(M)), we have

S [ B ) s @av@) =3O8 B )V ().

Now, substituting integral representation of GX/, we have

> /M e ”W’y>¢1<y>dv<y>)%<x>dvm>
_Zm q/ e (& @) (2)d V(z))pr(y)dV (y).

As a sequence, H'/ (s, x,y) = H'I(s,y, x), this is the first assertion.

2. We know that for fixed s > 0,2 € M, the component function y — H'/(s,z,y) is square
integrable on M. So for fixed y € M, the function x +— H'/(s,x,y) = H/I(s,y, ) belongs to
L?(M). Similarly, the functions y — H!I/(s,z,y) and z — H!’(s,z,y) also belong to L?(M).
According to , every derivative of H II(J (s,z,y) in z-variables and y variables belongs
to L?(M). That means all of derivatives of H!/(s,z,y) in x,y variables have L?(M) bounds.
Therefore, by Sobolev Embedding Theorem, H!’(s,.,y) and H!’(s,z,.) are smooth whenever
s > 0. As a consequence, every derivative (in z-variables and y-variables) in exists in the
classical sense and every derivative D7 ., is bounded in L?(M)-norm. Hence, again by Sobolev
Embedding Theorem, H'/ (s, .,.) belongs to C*°(M x M).

Now, let ¢ € Lg’q(M). Since

[0s + D) [His[¢]] = 0 (3.1.4)
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and then, fixing x € U, we can integrate against test forms on (0,00) x M , we have

- <Hs[¢] (), = 51010 w>> + (HL[8)(@), (D) [9)(-2)) 120000
Lg ’
/ ' B ! 0 _
- <ZJI=<1 <Z|I=q(HS)1J[¢I](x)> wJ,Z\JFq <—85¢J(.,w)> wj>Lg ((0,00))
+ <Z|J|q (lelq(Hs)IJ[¢I]($)> @, Z|J|:q (Db¢(~7$),@J)@J>

vs(2) L2 ,((0,00))

S (S Enlen@) . (- gt as
DI q/ . (Z;I )11 (a )) Wy (s,2)ds

(0,

) (=, / HY 2oV ) ). (L)) ds
3, /0 - (Z/ H (5,2, 9)61(y)dV (y )) W (s, ) ds.

IT|=q

= / / asH”<$ 2,9)61(y)dV (y)05 (s, 2)dV (3)ds
+ Lai- / 0 / H (5,2, 9)61(y)dV (y)-9 5 (s, 2)dV (y)ds.

Therefore,

0 H(s,) = —(Cp)H] (5,2)

in the sense of distributions. Then, we also get

2
Ol @) = (@) (0) = @2HL @)

S

Iterating this computation, we really show that



in the distributional sense. In the other hand, the fact that every derivative in z-variables and y-
variables of H!” (s, x,%) belongs to L2(M x M) implies (Db)ggﬂé(s, x) € Lg’q((O, o0) x M) locally.
Then, from the above identity, all derivatives in s-variables of H, s{y are in Lg?q((O, 00) x M) locally.

This is enough to show that H, é 7 is indeed in C°°((0,00) x M) from the standard elliptic theory.
That means

0
%Hé(s,m) = —(Db)wHé(s,x)

in the classical sense.
Iterating the same argument to y-variables, we also obtain

0
%H%](Sv y) = _(Db)ij<s7 y)

in the classical sense.

3. From the proof of a result before, we know that (O,)H; = Hs(Op). Then,

< (Db)(HS[gb])vw >=< Hs(Dbgb)’w >,

and so
< His[], Optp >=< Hs(Tp9), ¥ >,

for any ¢ = Zm:qqﬁ]aq, P = Z"m:quKwK € C5°(AY(M)). We can rewrite (i) = 2 171=g(Ost0) 0.
Wrting out what this means in the terms of the each componnent H(f J (s,z,y), we have

Z;J|zq /M <Z,1|:q /M H;J(S»ﬂf,y)éﬁl(y)dv(y)) (Op) g (z)dV (z)).
- Z;ﬂ:q /M <Z;L|=q /M HLJ(S,x,y)(Dbé)L(y)dV(y)> apy(x)dV (z).

By The Schwart Kernel Theorem and the self-adjointness of [Jp, this implies that

<<Db):cHs<xv y)7 ¢ & ¢> = <(Db)st(337 y)v ¢ ® ¢> (315)

for every ¢,1 € C®(A%(M)).

Therefore, for each s > 0, (0y)s Hs(z,y) = (Oy)y Hs(x,y) in the sense of distributions, and also
this holds in the classical sense as the arguments before. From this identity, it is not so hard to
show that for each s > 0

(O)2(Op)y Hi(@, y) = (On)F Hy(x,y) = (Op)y) ™" Hy(, ).

4. Since Hqy(Op) = (Op)?Hy = 0, then Hy(Op)Hg = 0. And the fact that H, is self-adjoint
/
implies the following identity for each s > 0 and for all test forms ¢ = Z orir, Y =

: l1=q
Z|J|:q¢JCDJ7
<§ ‘/I|:q < Hy(Op) HJ(S, Dy > w1,¢> —0.
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Hence, for fixed s > 0 and y € U, Hq(Db)f,;H;(s, .) =0, and then the following map
T (Db)iHé(s, x)

belongs to the orthogonal complement of the null space of [J,. This completes the proof of the
theorem. ]

3.2 The heat equation on R x M

In this section, we will study the operator ds + [, on whole space R x M. We will show that for
fixed x € M, we can define distributions HZ” on R x M such that

H' (s, x, ifs>0
Hi’J(S‘y):{o ) if 5 <0

in the sense of each component.

To do this, we recall some materials from distributions theory on R x M.

Definition 3.2.1. Let S be a distribution on R and T be a distribution on M, then from
Appendix, Theorem we can define the distribution S ® T on R x M by

(ST, x®¢) = (S, x)(T,¥),

where x € C§°(R), and ¢ € C§°(M).
Now, for each fixed z € M, we define the distribution S® on R by follows

R = SR[y](z) = h s, x)ds
S[up,] = SR (x) /Ow<,>d,

for every ¢ € Cg°(R x M), where ¢, = (s, x) for fixed x € M.
For each distribution 7' on M, we also have the corresponding one T%*M on R x M defined by

(TN ) = (T, 8 [W]),
where ¢ € C3°(R x M). Again, by Theorem it can be rewritten is that
(190 ) = SH(T]) = [ (T

where 15 = 1(s,x) for each fixed s € R.
Let 0, be the any derivative on M in x-variables, we have

025" 1] = S¥[0v],

and
895TRXM[¢] — TRXM[axib].
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Now, from the theory above, we begin our approach with the following definition.

Definition 3.2.2. For 1) € A%(C§°(R x M)), set

<Hx,¢_hm/ /sty (s,y)dV (y)ds

e—0t

The main object in this chapter is to show that the above limit exists. It follows that the
kernel of this distribution has the following components

H (s,z,y) ifs>0
Hij(s'y)_{o ) if s <0

Lemma 3.2.3. The limit defining H, exists. Moreover,

[0 + (B)y ] [He] = 0 @ 0,
in the sense of distributions (for the components), i.e,

(Ha, [=0s + OpJt)) = ¢(0, 7).
Proof. Setting 1s(y) = ¥(s,y). Then, s € A%(C5°(M)). Choose a positive integer N so that
Ne > 2”—2_1 Choose ¢ < (1 < ... < (ny = ¢’ with ((z) = 1. Then, again, by Sobolev Imbedding
Theorem and the basic subelliptic estimate applied N times, we obtain
[ sz e = e o)
< ClICe™ [l l|ve

< CllGOp[e = [s]]ll(v—1)e + lICre ™ [s][fo] (3.2.1)
< ...repeating N-times as above

N
<O NIKKT e [llo-

=0

But since the operators [, and e *7 are commutative, hence,

[ e sar ’<02||¢ Tl < €. 3 Dbl

7=0

The right hand side is uniformly bounded in s, and then, taking integral on [n;, n2], we have

N
< Cllnz —mlsup Y [[Tetis lo-
s

/7:1 /M H(s,z,y)¢(y)dV (y)ds
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We see that the left hand side goes to zero as 11 — 11, so the limit defining H,, exists. Again,

let ¢ € A%(CS°(R x M), then

(B, [0, + i) = limy [ ([0, + Dyluslds

e} o0

= —lim e [[0,]nbs]ds + lim e [OpJnps)ds
:—li_rg[l)//Hsa:ysz/Jsx)dV()
+lim / | s,z Bt g)av ()ds

Now, for the first term,

_ /eoo /M H(s, z, )00 (s, 2)dV (y)ds

- /:O 030, (Z]I_q /M H' (s,2,y)¢1(s. y)dV(y>> @yds
+ / ) ZIJ‘_q <Z'I|_q / 8SH”(svx,y)wI(s,y)dV(y)> @yds
=Y ( =q / HY (e, 2,y )i (e y)dV (y >) @
+ / Dy < . / o.H"7 (s,w,y)wf(s,y)dwy)> ©ds.
-3, (2 / 1Y (2. )iV () ) @

/ IFIRCEHEPRICRIETS

And the second term,

/ /Hs:zyDbi/J(sde ds_/ Zm (H(s,.),Opb(s,.)) @yds

:/ Z|J|:q (Db)yHm(S, D), (s, ')>@Jd8.

Hence, since [0s + (0p)y|H (s,y) = 0, (3.2.2), (3:2.3), and (3.2.4) imply
[ Heapowsivwis+ [ [ Hw s navids
€ M € M

= Z‘ljlzq (lezq /M H”(@ﬂ?ay)ibf(@y)dv(y)> Wy
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It follows that

(Hy, [~05 + Oplebs) = lim Z]leq <Z' /M Jie2l (67a:,y)1/11(e,y)dV(y)) &y

e—0+ [T|=q (3.2.6)
=Y(0,2) = 0y ® Iy
Hence, this completes the proof of the lemma. O

A remark that, by translation, we also have

<HJ:7 [_88 + Db]ws+t> = 5t ® 5.1‘

3.3 Pointwise estimates for the heat kernel

We begin by recalling the scaled pullback of heat equation on R x M to R x By by
0s + Ty, )| = (0, + Tl 6(5.2)).

Now, we define the pullback of the heat kernel H(s,x,y) using the same change of variable
D (s5,20),r» With s > 0, xg € M, u,v € By,

WIJ(Sv u, U) = Wa{(;],r(sv u, U) = HIJ(T2S’ (I)Io,r(u)v (bl‘oﬂ‘(v))’
for each |I| = |J| = q, and 0 < r < Ry. Hence, from the main results in previous chapter, with
the changing map @, ;) ., we have

—~ (3.3.1)

where W/ (s,u), and W;/(s,v) defined by the same formulation to H;(s, z), and H/(s,v).
By the similar way, for s > 0, and ¢ € A®¢(C§°(By)), we can define

Wslgl(u) = | W(s,uw,v)év)dv = | H(r?s, @, (1), Pag.r (v))(v)dv.

The key point is that we can bound the norm of the operator W, on L%’q(Bo).

Lemma 3.3.1. There is a constant C which is independent of xo, r and s > 0 so that
W.l6lllzz 2oy < C1BG0. )| 16111250
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Proof. Let x € B(xg,r), by change of variables, we have

Ws[0)(25,,(2) = A H(1?s, ®aq (D51 (2)), Pag,r(v))$(v)dv

= / H(r?s, 2, y)(¢ 0 05,,) ()T 05, (y)dV (y) (3.3.2)

T SDb[((Zjo(I)xOr)Jq)xOr]( )-

Here and later, every integral representing to the heat operator is understood by the formulations

in Lemma m
Since, |[e™" *s0s [(¢o (I)mo, )J® 0, r”|L2 <|l(¢o (I)mo r)J® o, r‘ |2, it follows that

| sl @)Pavia / 602 ()P )2V ()
[ IO @ (0) T (339
-1 2
< CIBteur) . totufa

Here, we have used the facts that J®, ! T(Cbzojr(u)) = J®,, (v)~! and J@x, r(u) > C~|B(zq,7)|
for 0 < r < Ry according to Theorem [2.1.4. On the other hand,

/ W, [0)(@7,.())[dV (z) > C7H|B(zo,r I/ W (6] (u) [*du.
M

Hence, we obtain
W[z mo) < ClB(20, 7)™ |\<Z>||L2 J(Bo)?

and this completes the proof. O

Next, we will obtain local estimates for the functions H!”’s, |I| = |J| = ¢, and certain of its
derivatives in terms of s and the control metric p.

Theorem 3.3.2. Let j,k,l be non-negative integers. For every positive integer N, there is a
constant Cn = Cn j i, so that if |a| =k, |B] =1,

N
. —2j—k—I1 -1 S . < 9
XX ) < | OV ) B ) <p($’y)> s < play)?

Cns—I=%/2=12|B(z, \/5)| L if s> p(x,y)?
(3.3.4)

)

for all (s,x,y) with pryar((s,z), (0,1)) = |s|'/2 + p(z,y) < 1.

The proof is based the scaling method which was introduced M. Christ [Ch88], and then
developed in higher dimensions by K. Koenig [Koe02]. We need the following subelliptic estimate
for the pullback of [0, operator on By which is a consequence of ([1.4.2)), and Theorem m
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Proposition 3.3.3. Fiz (,{ € C5°(By), with ¢ < ¢'. For smooth (0, q)-forms, ¢ = ZimzqqﬁK@K
on By and 6 > 0,

16l < Cs (11C'Buol3 + 11T 8113 + 11C'6113)

where Cys 1s a positive constant independent of x and 0 < r < Ry. As a consequence, the heat
operator 0s + Uy also satisfies the subelliptic estimate

113+ < G5 (11610, + Tulgll3 + 1113 -

Proof. ((Proof of Theorem ) We will prove the theorem with NV = 0 first. By compactness,
if Ry < |s|? + p(z,y) < 1, the estimates are trivial. Hence, it suffices to show that that the
estimates hold when |[s|'/2 + p(z,y) < Ro. Now, let fix (so,zo) € R x M, and let (s,z) € R x M
be another point so that prxar((so, o), (s,2)) = r < Ry. There exists a unique point (tg,vo) €
(—1,1) x By such that (s,z) = (so + r2tg, ®sy(v0)). Let 7 > 0 such that |to|"/2 + |vg| > 7.

For (t1,u), (t2,v) € (—1,1) x By, put

W#((tla u)v (t27 U)) = H(TQ(t2 - t1)> (I)froﬂ’(u)v (bmo,r(v))>

in the sense that (W#)U ((t1, ), (ta,v)) = HIT (r2(ta — t1), @y (1), Py (v)). Then

]
]

(=0, + (D)) [(WH)]
= J

3.3.5
(01, + (B)u] (W) (3:3:)

0,
0,
and

(XX H|(2(t2 — 1), By (1), By (0)) = 2 F 0] REX) (01,0), (t2,0)).  (33.6)

Now, for ¢ € Cg°(A((—1,1) x By)), setting

Tﬂwmﬂo:/ WH (t1, ). (t2, 0))d(t2, v)dvdts,

RXBQ

in the sense as above, i.e.,

(T#[qﬁ](tl,U))J = (Z;”:q//ﬂw (W#)”((h,u).(tg,v))¢1(t2,v)dvdt2>J,

then,

THE (b)) = 3

|J|=q

(T#l6l(t1,w) &
Put

1
b= {(tlv“) P 4 Jul < 37},
. (3.3.7)
By = {(t%’u) Sta — to] Y2 + v — v < 37—}.
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Then, the non-isotropic balls By and By are disjointed. Choose cut-off functions ¢ < (' < (" €
C§°(Bz) with ((tg,v9) = 1, and n < 0’ € C§°(B1) with 7(0,0) = 1. Then, by Sobolev Inequality
and the basic subelliptic estimate for the operator 0y, + [Jp, we have

[0, X2(W#)11((0,0), (to, vo)) ‘ = ’C (to, 50)[0], X2 (W#)7]((0,0), (t()av[)))’

¢'(W#)((0,0).(.,.)

2n+j+k+l
<c HC” 90 + G JWH)L((0,0), (..))
UL H]

<c| C”(W# D,

Tﬁcwmﬂﬂ.

2n+j+k+l—e
+]

<C sup
PpeC™>(Bz2)
ll#ll=1

Where we have used the facts that: [0y, + (O Tb)o J(W#)7((0,0),(.,.)) = 0 on By which contains
supp(¢’), and by Hilbert space duality to convert each operator (W#) to (T7).
Now, to estimate the term with the supremum sign, again, we use the basic subelliptic for

_8t1 + (Db)ua

sup |TH[C0)(0,0)| = sup [n(0,0)T#[¢'6](0,0)
P P

<c el

<C swp i (=0 + (@)l THCY)
¢eC>(Bg)
[lo||=1 =0 on B; containing supp(n’)

nT* [C’cb]‘ ;

nT#(('¢] ’ ‘ .

2n—e

=C sup
PeC™>(Bz2)
llol|=1

<C sup
PpeC>(Ba2)
ll#l|=1

< C||IT#]|.

Therefore, we have shown that

e,

BngH(rztg,xg,a:)‘ < Cr 27T,
By the same argument, we can prove that

|09 X2 H (r?tg, wo, x)| < C.r= 2R T#]],
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and combing these estimates, we have

8§X§‘X5H(r2t0, zo, )| < Cr=H=k=4 |77

The last problem is to estimate the norm ||77||. Let ¢, be (0, ¢)-forms whose coefficients are
C3((—1,1) x By), and let ¢5(v) = ¢(s,v), ¥e(u) = ¢(t,u). Then, in the sense as above, we have

[ [, Tt

=[S L (), e o
=12 / /MO (Z][q / /R XBO(W#V"((Lu)-(s,v>)¢z(s,v)dvds> ¢J(t,U)dudt‘
=SS [ L 0 seerts, oy st
= ZIﬂ:qZ;qu / / / / H' (r2(s — ), B 2 (10), By 1 (v)) b1 (5, )11 (r, u)dsdtdudy
=Y, / / / / HY (125, @0 (1), @y (0)) 1 (5 + £, 0)105 (8, w)dsdtcdudy
=I5 st wasird

<O [ L L 1o e ydsaradaudsa

< C’//R2 |’Ws[¢s+t]|’Laq(EO)-Hwt‘|Lqu(]BO)d3dt.

Now, by Lemma B30, [[Wy[dssilllsz < CIB(zo.7)| " |ésselliz (s, Then

[ [ Tl st
RX]B()
<c1Bon [ [ sl gm0l onydsdt

= C1BGea ™ [ Nl s [ Idlzg i
< O1B(wo, )] ™ 16l 1] o

here the last inequality has been verified by Schwarz’s Inequality, and the the supports of ¢, ¥
are contained in (—1,1) x By. So, in the case N =0,

8§X§X5H(S,$,y) < C-(pRXM(&x)a (an))_Qj_k_l|B($7prM(&x)a (an))|_1'
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This is actually the statement of Theorem when N = 0 using the basic doubling property.
To deal with the case N > 0, using Taylor’s Formulae via s-variables, and note that when = # y,
the infinitely differential map s — H'”(s,2,y) and its derivatives are zero at s = 0. Then

1 5 _
15,0, < ey [ O Al =0
< Cogrmgypela) Bl [ (=0
<k (=2) 1B ol
= ON' p(:L",y) T, p\x,y )

when s < p(z,y), and replace p(z,y) by s'/2. This argument also provides the same results when
s > p(z,y). Finally, estimates for other derivatives of H'”(s,x,y) are handle in the same way.
Therefore, this completes the proof of the theorem. O

Next, action of the heat operator on bump function will be provided.

Theorem 3.3.4. Fiz s > 0, 0 < r < Ry, for each multi-index «, there is an integer N, and a
constant Cy, so that if ¢ € A% (C§°(B(z,7))), then

XS [g)(2)] < Car T sup Y P XFp(y)). (3.3.8)
yEM 151<N,

Proof. By Sobolev Type Theorem and the argument before, with Ne > 2n— 1+ ||+ |Ly,|
we have

rlel| X e ) (x)

-1
< C.|By(z,7)| 2 Z plBlFlad) xatBe=sty 911122, (Bar(e.2r)
0<|8|<Lm,|B| even
—1 Lm N .
< C.|By(z,7)| 2 Z rllel Z ‘|€_8Db[(Db)J¢||L(2)7q(BM(x,2r))
=0, even j=0 (339)
. Im N
-2 l+ ]
< C|Bu(z,r)z > oty @) @Iz (Bar (,20))
1=0,l even Jj=0
. Lnm 2N
=1 I
< C|By(z,r)z > oty |’X6¢||L(2)7q(BM(x,2T))‘
1=0,leven |B]=0
This yields the desired estimate. O

Theorem and Theorem say that for each s > 0, the heat operator e ™ is a
NIS operator smoothing of order zero on (0, ¢)-forms, ¢ < ¢’ < n — 1 — ¢, and the associated
estimates are uniform in s > 0.
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Chapter 4

Cauchy-Riemann Equations in C?

In this chapter, we will discuss methods of integral representations in several complex variables.
These methods are generalizations of the Cauchy integrals in complex analysis from one variable
to several variables. In particular, these methods are applied to estimate solutions of the Cauchy-
Riemann equations in several complex variables, which were pioneered in 1969 by Grauert and
Lieb, and, independently, by Henkin. Thus far, these methods have been a most ”beautiful”
argument in the case of domains being strongly pseudoconvex. For instance, formulaes for such
integral representations of functions holomorphic in strongly pseudoconvex were developed by
Henkin in [He70]. Then, there is a long history of proving LP estimates for the J-equation
based on these such formulaes can be referred in [Ker71), [Ovr71]. Also, in [Kr76], Krantz proved
essentially optimal Lipschitz and L? estimates on strongly pseudoconvex domains. In the case of
weak pseudoconvexity, there are also some results being obtained on convex domains. The well-
known papers by Range [Ra78], Diederich et al. [DEWS&6| show that the success of these methods
has depend on the existence of fairly explicit holomorphic support functions at each boundary
point of the domain under consideration. However, it is not true that any pseudoconvex domain
has a holomorphic support function, even admitting a real analytic boundary. It was discovered
by Kohn and Nirenberg [KoNi73|]. In some positive cases , in [BdC84, [CKM93| [DFF99], these
methods were applied to provide Holder estimates and L regularity for solutions of d-equations.
The domains in these papers have a same property : they satisfy the condition of finite type
in D’Angelo sense. And obviously, the analysis in the referenced works depends in an essential
fashion on the type. In C?, Chang et. al. [CNS92] proved LP estimates for the d-Neumann
operator on weakly pseudoconvex domains of finite type. See [CKM93|,[FLZ11] and the references
within for a more complete history.

Naturally, we will ask that what happens if these above domains are not finite D’Angelo type,
i.e. infinite type. Recently, the L? regularity for solutions of @ Neumann equations has been
established by Kohn, Khanh and Zampieri [Ko02, [KZ10]. The superlogarithmic estimates hold
on the such type in stead of the subelliptic ones. Nevertheless, the sup-norm and also LP-norm
(with p # 2) have been still unknown on such cases. In [FLZI1], Fornaess et al. provided the
sup-norm estimates which are available when the domains are convex and of infinite type. In

57



particular, let 0 < « < 1, the following domains in C? were considered

Q={p(z) =Rezg +exp(—1/|z1|*) < 0},
or (4.0.1)
Q= {p(z) =Rezy +exp(—1/|Rez|*) < 0}.

Their result asserts that on the such domains, there is a solution (in particular, Henkin integral
solution) to the d-equation Ju = ¢, for ¢ € 0(1071)(9) and 0¢ = 0, so that ||u||re~ < ||@||pee. The
main purpose in this chapter is to develop this result on general domains in C? as well as to give
the positive answer to the question that if the Holder and LP estimates hold on such domains
while it was not accessible by the classical L?-approach.

4.1 Preliminaries

Let C" be the n-dimensional complex Euclidean space, C" = {(z1, 22, ...,2,)}, n > 1. Where
zj = xj+iyj, and x;,y; € R. We identify C" ~ R?" by (21, ..., 2n) & (T1, Y1, --s Tn, Yn). As usual,

o _1(9 0N iy
0z; 2\ Ox; dy; )’ I
o _1(o .0
853‘ 2 3£Cj 8yj .

For a complex-valued functions u, the gradient Vu is the 2n-vector

o (D0 P 0w u
N 81‘1783/1’.“’83771‘6%1 ‘

(4.1.1)

For any multi-index o = (a, ..., ) € ZT, we define

Hlel
DY = —(————
Dzt 0z
and
e olel

9zt ..oz
B(z,r) stands for the ball of center z € C™ and radius r, B(z,7) = {2/ € C" : |z — 2/| <r}.

The notation V' € W means that the closure of V is a compact subset of W (V and W are
contained in some topological space X). W€ is the complement in X of W and A\ W = AnW¢.

Let © be a bounded domain in C”, n > 2, not necessarily with a smooth boundary. For
k=0,1,...,,0<e<1,1<p< ooandV is the Lebesgue measure on 2. We recall some
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classical functional spaces.

cF(Q) = {u defined on Q : [[ul|cr(q) = sup{\Do‘Eﬁu(z)],z € o+ |8 <k} < oo};

«Q = max ||u;|crq) <00 ¢

Cloy() = qu= Y u;dz; : |Jul|

(0,1) 1<j<n
AE(Q):{UGC’O(Q):HUHAE = [[ullcoq +sup{W:z,w€Q,z7éw}<oo};
Q) = {u="3_ujdz;  |lullag, , @ = max llujllac) < ook (4.12)

Loy = u= Z“jd}j Hullee @) = Z/Q luj(2)PdV < oo p;
J=1 j=1

L = u:Zudz = max ess sup u; < 0o
0,1)() ) i) lullLes @ 02X €8s SUp 1

Since the components of any ¢ € LI(JO 1)(Q), 1 < p < oo, are locally integrable, it makes
sense to define d¢ in the distribution sense. That mean, 0¢ = Z?:l (5@) A dzj, where 5¢j =

Z <g?]) dzg, and dzy A dz; = —dz; A dz. Hence, 9¢ = 0 (O-closed) means
2k

0¢; _ Oy

=—, 4 k=1,...,n,
0z, an J

where the derivatives being in the distribution sense. This is a necessary condition in order that

_ U
there exists a function u such that du = ¢, more clearly, o o5, j=1,...,n.
J

Now, the @ problem on (0, 1)-forms is to study the existence of solutions u of Cauhy-Riemann
equations
ou=¢ in Q,

where ¢ is a (0, 1) form satisfying d¢ = 0. We recall here the definition concerning the differen-
tiability of the boundary of a domain.

Definition 4.1.1. A domain Q in R™, m > 2, is said to have C* (1 <k < o) boundary at the
boundary point p if there exists a real-valued C* function p defined in some open neighborhood
U of p such that

1. ANU ={zx €U : p(x) < 0};
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2.00NU ={x€U:p(x)=0}

3. Vp(x) #0on bQNU.

The function p is called a C* local defining function for Q near p. If U is an open neighborhood
of Q, then p is called a global defining function for €2, or simply a defining function for . A remark
that if p’ is another C* defining function of Q, then p(z) = h(z)p'(x), and dp(x) = h(z)dp' (),
for some positive C*~! function h.

Definition 4.1.2. Let © be a bounded domain in C* with n > 2, and let p be a C? defining
function for Q. Then, €2 is called pseudoconvex, or Levi pseudoconvex, at p € Q if the Levi form

n a2p B

for all t € T10(bQ2). The domain  is said to be strongly pseudoconvex at p if the above Levi
form is strictly positive for all such ¢ # 0. Q is called a (Levi) pseudoconvex domain if €2 is (Levi)
pseudoconvex at every point of 2. We also have the similar definition for strong pseudoconvexity
to Q.

As the mention before, we want to solve the d-equations in Holder and LP spaces. The
well-known facts by Kerman [Ker71], and then improved by Krantz [Kr76] are followings

Theorem 4.1.3. Let 2 € C", n > 2 be strongly pseudoconvex with C5 boundary bS). For any
0-closed (0,1) form ¢ € L](DOJ)(Q), 1 <p<oo, there exists a function u on Q such that Ou = ¢
(in the distribution sense), and u satisfies the following estimates:

1 1 1 )
L ullpao) < Azp||€f>||L§'0 (@) where Pl ,if1<p<2(n+1).

p 2(n+1)

2. For any small e >0 , ||u\|L%_ < AEH¢HL%O71)(Q)7 if p=1.

‘()

n—+1

1 .
3. oy < Apllélug, oy, where e = 5 = "2, if 2n+2 <p < .

(0,1

In [K176], the author also provided an example which was due to Stein to show that the
above estimates can not be improved.
Going on domains of weakly pseudoconvex type, we can also seek an analogue version for these
estimates. For instance, Cauchy-Riemann equations on ellipsoids in C" were considered. In
particular, on complex ellipsoids (E¢), and also real ellipsoids (ER)

Eg = {(21,.y 2n) € C" 1 |21 |™ + .. + |2 ™ < 1};
Bg ={(21,..,20) € C" 1 [Rezy|™ + [Im 21|™ + .. + | Re 2™ + [ Im 2,,|™™ < 1}.
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Both of these models are of finite type in D’ Angelo sense. More precise, Diederich et. al. [DEWS6]
and Chen et. al. [CKM93| used the support functions constructed on such domains to obtain
the optimal LP and Holder estimates for solutions of O-equations. These papers illustrated a
clear effect of the type. In particular, on the complex ellipsoids defined as E¢, the holomorphic
support functions is defined by

(C2) =) @(g)(cj —zj), for¢eb,zeq,

and if & := (¢, z) — p(¢), for all ¢, z € ©, then we have

n

- 3@}

[2(¢,2) Z § (O] + [p(2)] + | Tm B(C, 2)

OIG — 2> + Z G — 2™ b (4.1.3)

This inequality plays a critical role in the boundary behaviour of the solution constructed via
Henkin integral. By this, the kernel can be estimated dependently on the type of the domain un-
der integral sign that we will see later. It turns out that when € is a sphere, strongly pseudocon-
vex domain, the inequality goes back the classical one |®(C, 2)| = |p(O)| + |p(2)] + | Im B(C, 2)| +
|¢ — 2|%. In these cases, the null-sets of the corresponding holomorphic support functions are
strong barrier for b2, that is for an small ball B,

{2:®((,2) =0}NBNQ={¢}, forany € BNH.

However, it is natural to ask whether the existence of ® as well as the inequality are
shared by general pseudoconvex domains. For weakly pseudoconvex domains (even with real
analytic boundary), there are singularities, related to the existence of barrier functions ® for
b). There is an immediate negative answer given by Kohn and Nirenberg :

Proposition 4.1.4. (Kohn, Nirenberg 1973).
Let Q be the following pseudoconvex domain in C? :

15
Q= {(21,22) € C*: Re(z2) + |21.20* + |21 |® + 7|21]2.Re(zf) < 0}.

Let h be a function holomorphic in a neighborhood of the point (0,0) € bQ2, and equal to zero at
this point. Then, the set {(z1,z2) : h(z1, z2) = 0} necessarily has both some points in the interior
as well as in the exteriorof the domain Q.

We know that both real analytic pseudoconvex domains in C? and strictly pseudoconvex
domains are of finite type. The precise notion of type is still a topic of research; essential
contributions are due to Catlin and D’Angelo. For a finite type domain, holomorphic support
functions, if they exist, may still admit non-trivial contact sets A which are, it is true, not too
large. Nevertheless, their existence would be an obstruction to good estimates for integral ker-
nels constructed from these support functions. But we might hope to construct better support
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functions. This problem gives rise to many interesting open questions. We shall now discuss a
case where a solution has recently been found.

Now, in order to begin our answer for the above problems, following the setup by Khanh
in [Khal3|, we introduce some generalized versions for these above models in C2, which include
many convex domains of D’Angelo infinite type. We investigate domains of the following form:
Q) C C? is a smooth, bounded domain with the origin 0 in the boundary b§2. Moreover, there
exists 0 > 0 so that b2\ B(0,0/2) is strictly convex and there exists a defining function p so
that

QN B(0,8) = {z = (21,22) € C?: p(2) = F(|z1]*) + r(2) < 0} (4.1.4)
QN B(0,8) = {z = (21,22) € C*: p(2) = F(2?) + r(2) < 0} (4.1.5)

where z; = x; + iy, for z;,y; € R, j = 1,2, and ¢ = v/—1. We also assume that the functions
F:R — Rand r:C? — R satisfy:

1. F(0) = 0;
/ 7" 1" F(t) ! .
2. F'(t),F (t),F (t) and — ) are non-negative on (0, 9);

or
3. 7(0) =0 and P # 0;

4. r is convex and strictly convex away from 0.

This class of domains includes two well-known examples. If F(t) = t™, with m > 1, then  is of
finite type 2m. On the other hand, if F'(t) = exp(—1/t%), then Q is of infinite type, and this is
our main case of interest. On these exponential type domains, recently [FLZ11], Fornaess et. al.
provided the sup-norm estimates for the Cauchy-Riemann equations. The authors again obtained
the solutions via Henkin’s integral formula, with support functions discovered in [DFF99] on
convex domains.

Associated to these classes of such domains, we also define the f-Holder spaces.

Definition 4.1.5. Let f be an increasing function such that th? f(t) = 4o00. For Q C C",
—r+00
define the f-Holder space on Q by

A(Q) = {u: [Julloe + sup_f(lz —w|™") - Ju(z) = u(w)| < oo}

ERVISIY)
and set

lull f = llullos + sup_f(|z —w[™) - [u(z) = u(w)|.
ERVISIY)
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Note that the f-Hélder space includes the standard Holder space A, () by taking f(t) =
(so that f(|h|™') = |h|™®) with 0 < a < 1.
Here, we recall the construction of the Henkin kernel and Henkin solution to 0-equations. For
complete details, see [He70l [Ra86], or for a more modern treatment, see [?], with the support
function introduced in [DFEF99].

Definition 4.1.6. A C?-valued C' function G((, 2) = (g1(¢, 2), g2(¢, 2)) is called a Leray map
for Q if g1(¢,2)(¢1 — 2z1) + 92(¢, 2) ({2 — 22) # 0 for every ((,z) € b2 x Q. A support function
(or Ramirez-Henkin function) ®((, z) for € is a smooth function defined near bQ2 x Q so that ®
admits a decomposition

_2Zc1> (¢, 2)(¢ — )

where ®;((,2) are smooth near b§) x 2, holomorphic in z, and vanishes only on the diagonal

{¢= 7z}

For a convex domain, it is well known that G((,z) = @ = (ap, 8,0) is a Leray map [?,
a¢ ¢ 9¢y
Lemma 11.2.6], and ® defined by Leray map
ap(C) .
(I) j C’ Z = 9 j = 17 27

is a support function for ).
Taylor’s Theorem and the convexity of F' implies a lower bound on bf2, which generalizes the
inequality (4.1.3]) in the case of finite type

Lemma 4.1.7. Let Q C C? be as in (4.1.4) or [A.1.5) with ® as above. Then there exist ¢,c > 0
so that

clz = ¢ ¢ € b2\ B(0,0)

P(z) — P(C1) — 2Re{§TIZ(C1)(Z1 - C1)} ¢ €N B(0,5) (4.1.6)

Re®(C,2) > —p(2) + {

for all z € Q with |z — ¢| < e,where P(z1) = F(|z1]?) or P(z1) = F(2?).

Proof. Let h be a R-valued smooth function in C?> = R* and =,y € R*. If a(t) = tz + (1 — t)y,
and ¢(t) = h(a(t)), then it follows from Taylor’s Theorem applied to ¢(t) that there exists
g € a([0,1]) so that

Oh(y)

Mgyl s

j=1 % k=1

— i) Tk — yr)-

l\DM—A

y) +
yj 8yk
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Set z = (z1,22) = (x1 +ix9, x3 +izyg) and ¢ = (¢1,C2) = (y1 +iy2, y3 + iys). Translating the first
order component of the Taylor series expansion to complex coordinates, we compute

oh oh oh
2Re{ 825) (zj — Cj)} = Re { (31/255)1 — 8;;)) ((woj—1 — y2j—1) + (w2 — y2j))}
oh(¢)

0h(¢)
0Yya2j—1 0ya;

= (2j—1 — y2j-1) + (w25 — y25),

j = 1,2. Consequently, if [, 2] is the line segment connecting ¢ and z, then

2 4 ~
) = 1@ +2 3 Red T (s = )+ i é; D ypen - ). (4L)

Applying (4.2.1)) to the defining function p, with p(¢) = 0, ¢ € b2, yield

> —Re®(C,2) + min - — ) (on — ).
pz) = ~Re®((,2) + min Z 3%3% ;) (k)

%p(y
Since p is strictly convex on bQ\ B(0, d), there exists ¢ > 0 so that ZJ k=13 pa(y (xj —yj)(zk — yk)‘ >
y y
clz —y|? if y € b2\ B(0,0) and € > 0 is sufficiently small. The first case of ( now follows.
For the remaining case, we use (4.2.1)) and the convexity of r to observe that

~pl2) + Plar) - P(G1) — 2Re { 8 Lo () -G}

:r(()—r(z)+2Re{ ()G —Zl)}

761
2
0
<23 Ref gé? (G- =)} +2Rre {7 o (@G -]
j=1
— Re®((, ).
This completes the proof. 0

We take the e constructed in Lemma to be a global constant in the paper, though we
reserve the right to decrease it.
The lemma says that when ( is far away from the origin, one’s problem goes back d-equation
on strongly pseudoconvex, and this is trivial. The problematic point is that ¢ closed to z.
1
Choose Y € C°(C? x C?) such that 0 < x <1, x(z,¢) =1 for |z — (| < 7€ and x(z,¢) =0 for
|z — (| > €. And for j = 1,2, we define



and
o (2,0) = ¥ (2,0)(C1 — 1) + @F (2. O) (G2 — ).

The new support function also has the following properties for any € bS).
1.
clz = ¢J? ¢ € b2\ B(0,9)

P(21) = P(G1) = 2Re { 2(Q)(51 — )} ¢ €b2NB(0,6)
(4.1.8)

Re ®#(z,¢) > —p(2) + {

1 _
for all |z — (| < 7€ and z € ().

1
# # ; s -
2. &% (z,() and @7, j = 1,2, are holomorphic on {z:|]z=(| < 26}.

We are now already to represent the integral solution of the 0. Let ¢ = 2521 ¢;dZz; be a bounded,
C*, O-closed (0,1)-form on Q. The solution u of the d-equation, du = ¢, provided by the Henkin
kernel is given by

w=Té(z) = Ho(z) + Ko(2). (4.1.9)
where
1 O (Cy — 29) — ®F(() — 2
Ho(2) =1 /gem 1 (42@#(5,)2)!4“ 2(ZC|12 L0 10 (4.1.10)
Ko(2) :471T2/Q $1(Q)(C1 — Z|14):jz(§)((2 - Ez)w@ Aw(©)

where w(¢) = d{; A d{s. This function is called the solution of d-equation via Ramirez-Henkin
kernel, or simply, Ramirez- Henkin solution. So we have solved the Cauchy-Riemann equations
on ) by exhibiting an explicit solution in terms of a linear integral formula.

Through this chapter, we only consider solution in this way.

4.2 Preparatory Lemmas

In this section, we will provide some tools in the proof of our main results later [Khal3l [ HKR13]
Lemma 4.2.1. Let F be a convex function on [0,0]. Then we have
F(p) = F(q) = F'(g)(p—q) = 0 (4.2.1)

for any p,q € [0,0]. Furthermore, with the extra assumptions F'(0) = 0 and F"(t) increasing,
we have

F(p)—F(q) — F'(q)(p—q) > F(p — q), (4.2.2)

for any 0 <q <p<4.
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Proof. The proof of is simple and is omitted here. For , let s :=p—q >0
and g(s) := F(s+q) — F(q) — sF'(q) — F(s). Hence, ¢'(s) = F'(s+q) — F'(q) — F'(s) and
g"(s) = F"(s+q) — F"(s). Using the assumption F”(t) increasing, we have ¢”(s) > 0, thus ¢/(s)
is increasing. This implies ¢'(s) > ¢/(0) = 0 (since F’(0) = 0). This means ¢(s) is also increasing,
so we obtain g(s) > g(0) = 0 (since F(0) = 0). This completes the proof of (4.2.2). O

F(t)
t

Lemma 4.2.2. For § > 0 small enough, let F' be an invertible function on [0, 0] such that

is increasing on [0,9]. Then

, /5 el V) F ()
‘ 0

p+F(r?) "~ p
for any sufficiently small p > 0, where F* is the inverse function of F.

Proof. 1. In order to prove the first assertion, we divide the integration into two terms

/56“"_/ F*()C““Jr/a _dar
o p+F(r?) 0 p+F@?) g e+ Fr?)

. For the first term, it is easy to see that

/\/W) dr_ _ Fp)

0 ptE(r?)~  p
F(t
Since ®) is increasing, then we have
2 * 2 2
F(z)ZF(f: () _ LA Fir) S T
r F*(p) F*(p) p F*(p)

for any r > \/F*(p). Applying this observation to the second integration, we obtain

/5 dr _ 1/5 dr \/ / _ 1/F*(p)
\/F*(p)p+F(T2) - VF(p) 1 + F*(p 1—|—y p

2. The second assertion is proved by the same way, in particular, we divide the integration into

two terms
/5 | In7| J /VF*(p) | In7| d Jr/‘S | In7| d
————dr = — dr — _dr
o p+F(r?) 0 p+ F(r?) VE@ P E(r?)
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. For the first term, it is easy to see that

/ e ﬁd < 1 /\/}T(p)\lnr]drg \/F*(p)|ln\/F*(p)|
0 0

N
p+F(r?) p p

For the second term,

/6 |1Il?"| )d’l"gyh’l\/_FT(p”/é dr dr < \/F*(p)“n\/F*(p”’

T ~Y
VE @) P E(r? VE () Pt E(r?) P
where the last inequality follows from the same tool above. O

The following will generalize Hardy-Littlewood Lemma when G(t) = t*. In that case, we can
find a proof in [ChShO1].

Lemma 4.2.3. ( General Hardy-Littlewood Lemma ). Let Q be a bounded Lipschitz do-
main in RY, and let Syq(x) denote the distance function from x to the boundary of Q. Let

d
G : RT — RT such that Git) s increasing and / Giwdt < oo for d > 0 small enough. If
0

u € CH(Q) such that

|[Vu(x)| S Gloa(z) for every x € (, (4.2.3)

v ()
SEON
then ’U(IL') - U(y)‘ 5 f(‘l’ - y‘—l)—l’ fO’I” T,y € Q7 xz 7& Y, and where f(d_l) = </ t>
0

Proof. Since u € C! in the interior of €2, we only need to prove the assertion when z and w are
near the boundary bQ. Using a partition of unity, we can assume that wu is supported in USQ,
where U is a neighborhood of a boundary point zy € b§2. After a linear change of coordinates,
we may assume xg = 0, and for some § > 0,

UNnQN= {x = (2',zN) s an > p(@), 2] <4, |en] < 5},

where ¢(0) = 0 and ¢ is some Lipschitz function with Lipschitz constant M. Let z = (2/, zy),
y=(y,yn) € Q, 7 =02+ (1 -0)y, zny = 0xy + (1 — O)yn, and d = |z — y|. For a > 0, we
define the line segment L, by 6(z', 2y +a) + (1 —0)(y',yn +a), 0 <6 <1, and . Applying the
Lipschitz property of ¢, we obtain
TN+ Md= H(QZN +Md) + (1 — 0)(yN +Md)

> Md+0p(a') + (1= 0)e(y)

> Md+0(p(a) — @) + (1 = 0)(e(y) — (@) + (@)

> (@)
This implies that the line segment L, lies in Q, for any a > Md. Since u € C*(£2), using Mean
Value Theorem, there exists some (', Zx + 2Md) € Lapsq such that

(4.2.4)

lu(z’,zn +2Md) — u(y',yn + 2Md)| < |[Vu(Z',Zx + 2Md)|.d.
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The distance function 0y (2, ) is comparable to xy — ¢(2'), i.e., there are positive constants
¢, C such that

clry —o(2") < pa(a,2n) < Clay — o(2)). (4.2.5)
Using the assumptions on G' and combining with (4.2.3) and (4.2.5)), it follows that
G0 (T, TN + 2Md))

(T, TN + 2Md)
Gle.@x +2Md — o(@)))

(!, + 2Md) — uly, yx + 2Md)| <

< Glek @), (4.2.6)
c(Tny +2Md — o(T"))
G(cMa)
S "t 15,

Here the last inequality follows by considering two cases: if cM < 1, we use that G(t) is increasing;

G(®)
t

otherwise, we use that is decrasing. We also have

lu(z) —u(x', 2y + 2Md)| =

/d ou(u', xn + 2Mt)
0 ot

4

g 4 (4.2.7)
< G(ébg(x,, N + 2Mt)) G(t)
S ; dt < ——=dt.
0 (55Q($,.’L’N+2Mt) 0 t
Therefore, for any x,y € €Q,
u(z) —uy)| < |u(z) —u(@, a2y +2Md)| + u(y) — uly',yn + 2Md)|
! 2Md) — u(y’ 2M
t t
SG(d)+/ G()S/ G(t)
o ¢ o ¢
Here, the last inequality holds since
d d
d t
ot - [ < ['e,
o d o ¢t
Hence, this completes the proof. O

4.3 Sup-norm and Hoélder estimates for 0-Solutions

The first goal of the current section is to prove sup-norm estimates on domains satisfying (4.1.4)
or (4.1.5) which both generalize the class of domains of finite type as well as the exponential
type considered in [FLZ11].

Theorem 4.3.1 (Theorem 1.2, [Khal3]). If
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0
1. Q is defined by (4.1.4) and there exists 6 > 0 so that/ |In F(#?)|dt < oo, or
0

1)
2. Q is defined by (4.1.5) and there exists 6 > 0 so that/ |In(t) In F(t%)| dt < oo,
0

then for any bounded, 0-closed (0,1)-form ¢ on Q, there exists a function u defined on Q satisfies
ou = ¢ and
ull L) < Cll9l| Lo (@)

where C' > 0 is independent of ¢.

Proof. Tt is well known that (e.g., [Fol99], Theorem 6.18)

< o
1K llz=(y S 16115 , @

Moreover, we have

—Z (G — 2
1 / (G —2) — 5 (G 1)¢(C)/\W(C);
ceb

e S, 2)[C— 2P

471r2 / cem. = 31,;(?)2)|£(jé_21)¢<<>Aw<<>;

Tim / e 2_527) >|<§_¢(,jlz_zl)¢<<>w<<>; o
T /cem i _(ZQ? )|f(jé_zl)¢<c>w<c>,

since @f (G — 22) — @f(fl —z1) = 0if |z — (| > €. Hence, let dS be a surface area measure on
b2, we have

dS(¢)
‘H(;S( )| S ‘|¢HL(01) /CEbQ |<I>(Z,C)HC_Z|

|z—=(|<e

ot
Now, setting t = Im ®(z, (). It is easy to check that f # 0. Hence, we can change coordinates
2

/ dS(C) </ dtd(ReCl) (ImCl)
et [D(z,Q)[.|¢ —2[ ™ t|<5‘<1|<5 (It] + [Re @[)|¢1 — 21

lz—¢|<e
/ \ln|Re ®||d(Re (1)d(Im (1)
[C1]<d ’Cl — Zl‘ '

and obtain

(4.3.2)

|Z1 C1|<6
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1
Now, let  defined by (4.1.4]), and for some § > 0, / |In F(t?)| dt < oo, then we apply the
_ 0
identity 2Reab = |a + b]? — |a|? — [b|? in (#.4.T)) to obtain

Re®(z,¢) > —p(2) + F(|z1]*) = F(IG11*) + 2F'(IG11*) Re (1 (21 — 1))
> —p(2) + (F'(IG1P)|z1 = QPP + F(|z11?) = F(1G ) = F'(1GP) (|21 = [¢i])) (4.3.3)
>

=p(2) + (F(|G ) = i) -

Therefore, since | In(t)| is decreasing when 0 < ¢ is small, (4.3.2)) becomes

dS(¢) | In([F'(|¢1[*)]]21 = GP))]
1112 2
< [ e PUEUGDIE =Dl e ¢yagim )
|z1—C1]<e 1 — 21
[C1]<|¢1—21]
/ 2 _ 2
s |1H(F(||CC1| z||21 G1 |)|d(ReC1)d(ImC1)
PRI 1= 21
[C11>[¢1—21] (4.3.4)
! 2 2
<[ s |1H(!F(;g1| )G )’d(ReQ)d(ImQ)
|z1—C1]<e 1
[C1I<]¢1—=1]
! _ 2 _ 2
[ s DG =G
|z1—C1[<e 1= 21
[C1|>]C1—21]

6/
§/ |In F(r?)|dr < oo
0

where & = max{0, €}, and the last inequality follows from the fact F'(t)t = F(t) (since F
convex). Hence, ||H(¢)||r=(0) < C[|9llLg, (@)

0
Let Q defined by (4.1.5), and for some § > 0, / |In(t)In F(t)|dt < oo, let 21 = x1 + iy1,
0

(1 = & + iny, the same argument shows that

Re ®(2,¢) > —p(2) + F(a}) — F(é%) —2F(&))61(z1 — &1)
> — (z) + F(&) (1 — &) + (F(a}) — F(&) — F/(§) (2] — &) (4.3.5)
> —p(z) + (F'(&))(z1 — &)°) -
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Hence, apply (4.3.5)) to (4.4.1]), we obtain

d5(¢) [In | (F(&D)[(x1 = &)1,
d
Jen T 0nic S st et 00
le=Cl<e |1 —Cil<e
/5 <5 |Infar1 — & [ (F'(€D)|(z1 — &) d(&)
lz1—&1|<e
S oeles |l =&l (F(E€D)|(x1 - €))]| d(&)
|z1—&1]<e
€1 1<[z1—&1]
+ | jajes Iz =&l [(F(E)|(x1 — &) d(&) (43.6)
lz1—&1|<e e
|€1]=>]@1—E1]
S e i€l [(F/ED)IE))I] d(&)
|z1—&1|<e
|§1]<|z1 &1
+ | jalcs Iz = &l |(F (21— €))(x1 — &)*)]] d(&1)
|z1—&1[<e
\§1|12|$i*€1\
6/
/ ‘ln|r| In |F(r? |’dr<oo
Hence, [|H(¢)|p~) < C.||4]] g, (). Therefore, we have the sup-norm estimates for solutions

of d-equation when €2 defined by (|4 1 4) or (4.1.5)

IT(@)l|z(0) < CllollLge, o)

O

Next, we will provide the f-Hélder estimates for Henkin solutions to the equation du = .

6
Theorem 4.3.2. 1. Let Q is defined by (4.1.4]) and there exists § > 0 so that/ |In F(t?)| dt <
0

co. Then for any bounded, 0-closed (0,1)-form ¢ on Q, there exists a solution u defined on §
satisfies Ou = ¢ and
ully < 8l Lee ()

1y . 4 VF)
(s

o
2. Let Q) is defined by (4.1.5)) and there exists § > 0 so that/ |Intln F(t?)| dt < co. Then for
_ _ 0 _
any bounded, 0-closed (0,1)-form ¢ on ), there exists a solution u defined on Q) satisfies Ou = ¢

where
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and
ullf < @)L (a)-

o ([VFOLVED )
fdh = (/ ; dt)

0

where

Proof. 1t is well-known that

1K3lly S NIl oo
for any f with 0 < f(d~!) < d~! (see Lemma 1.15, p. 157 in [Ra86]). Hence, it is sufficient to
estimate H(¢). Now, we will control the gradient of H(¢) by following

SO Wi [ oo (Beoie—r * Beore—s) ©5©
S Iellzgzion {ﬁezﬂ\fg@ (@0 * Fearr ) O o
*Ze;»yrgfgg& (Fear— * meore) “)}
S liellzze (o) 72 + L(2))
where the last inequality follows from (L.4.1), and
2= famrmon (e orie =27 + i) SO

|z—(|<e

Again, by setting ¢t = Im ®(z, (), and we can change coordinates as before and obtain

dtd(Re ¢;)d(Im (1)
1o [ B i+ TRe @z OD(I()P + 61 — 21P)
|z1—(1|<e
. dtd(Re ¢1)d(Tm 1)
[t]<é t2+ | Re® , 2 + -
i ([t + [Re (2, O1?)(|p(2)] + |& — 21) (4.3.8)
d(Re¢1)d(Im¢;)
< |In(|Re ® n(—
< |In(|Re @(z, ¢). In( p(Z))’+/§1|<5,|z1C1|<6‘Re®(zﬂg)"|cl_z1’
d(Re ¢1)d(Im ¢1)

2
SO+ [ el T

Hence, combining with these above equalities, we have showed that

d(Re (1)d(1
VHE] S ol (|p(z>|_1/2 ! +/|< |<6)z1—C1|< IRe(@((azCIC))I(.!ZSI)le> 89
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We will estimate the last integral on the right hand side separately when € defined by (4.1.4)

I
and (4.1.5)), for convenience, set M(z) = / d(Re ¢1)d(Im () '
|C1|<5 |z1—C1]<e | Re ®(z, ()].|¢1 — 21

Now, let Q defined by (4.1.4) and F satisfies / |In F(r2)|dr < oo for some positive §. Applying

the inequality - ,

/ d(Re¢1)d(Im¢;)
Gl<s (Ip(2)] + F'(|C1[2) |21 — i

[ -Gil<e ==l
_ d(Re ¢)d(Im ¢;)
- ‘ch,lgfge (Ip(2)] + F'([C1[?) |21 — C1[*) |G — =1
€1 ]<]21—C1|
n d(Re¢1)d(Im (y)
SO (e + PGP — QPG — 1]
IC1[>]21—Cal (4.3.10)
/ ReCl) (Im{l)
|<1|<5 (lo(2)| + F'(IG2)|G )¢

/ d(Re ¢1)d(Im 1)
\Cl|<5 (|p(2)] + F'(|21 — ¢1]?)]21 = G1]?)[¢1 — 21

/ d(Re¢1)d(Im ¢;) / d(Re ¢1)d(Im (1)
|<1|<‘5 (Ip(2)] + F(|¢11*))I¢1] |<1‘<5 (Io(2)] + F(lz1 = Q)61 — z1|

Choosing §' = max{J, €}, the previous inequality reads

Y g o))
MEOS [ morrEem S e (4.3.11)

here the last inequality follows from (i) in Lemma [1.2.2]
We have showed that

ooy < YEUED
IVu(z)| = [VT($)(2)| < EE

F(lp(=)])
|p(2)]

are increasing, non-negative func-

Now, in order to apply the general Hardy-Littlewood Lemma, we must prove that

satisfies the hypothesis of Lemma [4.2.3] Since F'(t) and
F (1)

tions, it follows that F™*(t) ia also increasing but is decreasing. Moreover, for some small

§ > 0, the function |In(F(¢?))| is decreasing when 0 < t < §, so we can estimate
€ é
T F(e2)]e < / In F(2)|dt < / I F(£2)|dt < oo
0 0
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for any 0 < e < 4. Consequently, \/F*(t)|Int| < oo for any 0 <t < \/F*(t) and Pr%ﬂ In F(t?)] =
—
0. By change of variables via y = \/F*(t), this implies

/d @dt = My (In F(y%))" dy
0 0

VE*(d)

:\/F*(d)lnd—/o (lnF(yQ))dy<oo

for d sufficiently small, The boundedness in the above inequalities are finite by the hypothesis
on F'. Therefore, by setting
-1
d
Fx(t
fa) = (/ VI )dt) ,
0

we have proved that [[ul[s < [|]|rg () to the first case of the theorem.
’ 5
Now, let  defined by (4.1.5) and F' satisfies / |Int1n F(t?)| dt < oo for some § > 0. Now, since

(4.3.12)

0
the previous observations, we only need to estimate of the integral term M (z) on ¢ € bQ2NB(0,9).
Applying the inequality (4.3.5)), and repeating the comparing as before to |£;| and |z1 — & |

d&1dm
M(2) < / <6 (Ip(2)| + F'(&)(z1 — &) (|21 = &l + [yr — m)

[C1—21]<e

</ |In |21 — &1]|déy
SES8 Tp()]+ F(Ed) (@1 — &) (4.3.13)

| In 7| -
S A|<max{6,e} |p(2)| + F(TQ)d
< VF(p()D]n /F*([p(2)])]
~ p(2)] ’

where the last inequality follows from (ii), Lemma Then, similarly to the setup in the
proof of (1), we obtain

/d VE* ()| /F*(t)]
0 t

dt < oo,

1

for some d,d > 0 sufficiently small, under the hypothesis / |Intln F(t?)|dt < co. Hence, by
0

setting

-1
Fd-1) = ( /Od V@ VL, OO) |

we have [[ul|f < [|9]] g, ()-
This completes the proof of the theorem. O
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4.3.1 Examples

To illustrate these theorems we will give some examples in which the functions F' and f are
computed more explicitly.

Example 4.3.1. Let Q = {(z1,22) € C* : F(|z1]*) + |22 — 1|* < 1}. Then, the sup-norm and
f -Hélder estimates hold for the integral representation solution of 0-equation in the following
examples:

1. If F(t?) = t*™, then f(d~') = d=Y/?™, this case essentially is of D’Angelo finite type of
2m.

2. If F(t*) = 2exp (72), with 0 < a < 1, then f(d™') = (—lnd)é_l. This domain is of
D’Angelo infinity type.
3. If F(t?) = 2exp (ﬁ), with 2 < «a, then f(d™') = (In(—1Ind))*~!. This domain is also
of D’Angelo infinity type.
Example 4.3.2. Let Q = {(z1,22) € C? : F(|Rez1|?) + G(|Tm 21]?) + |22 — 1|? < 1}, where
G(t) = 0 in a neighborhood of 0 and there is a positive constant ¢ such that t > c if G(t) > 1.

Then, the sup-norm and f -Hélder estimates hold for the integral representation solution of
0-equation in the following examples:

1. If F(t?) = t*™, then f(d~') = d~Y/?"|Ind|~".
2. If F(t?) = 2exp (32), with 0 < o < 1, then f(d~!) = (—Ind)a~(In(—Ind))~".
3. If F(t?) = 2exp (ﬁ), with 2 < a, then f(d~!) = (In(—Ind))*2.

Next, we will provide an example to show that the index f in Theorem [4.3.2| can not be
improved. The idea behinds the following example is due to E. M. Stein with a modern setup
by M. C. Shaw.

Let

Q={z=(21,2) € C2: p(z) = F(|z1|*) + |22 — 1]* < 1}, (4.3.14)

dzy oz
In(z2) ~ In(z2)
Hence, one can check that ¢ is a C*, d-closed (0, 1)-form , and v(z) is a solution of the equation
Ou = ¢. One already know that the solution of d-equation via Henkin kernel belongs to Af(Q),
then, the following lemma says that it can not be in A9(2).

where F satisfies the conditions in Theorem [4.3.2] Setting ¢(z) = and v(z)

Lemma 4.3.3. Let ¢ and v defined as above. Then, ¢ € C’&?D(Q), v € A (Q) where f defined
g(t)

as in Theorem|4.3.2. Moreover , let g satisfy tlim 2 = 00, Ifu is a solution of Ou = ¢ in the
—00

(1)
weak sense, then u ¢ A9(2).
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Proof. Since v gets its singularities on Sing = {z = (21, 22) € C? : 23 = 0}, hence it is sufficiently
to show that v admits a Holder estimate in a small neighborhood of each singularity. The fact
that v € C°(2\ Sing) guarantees that v is Holder regularity in standard sense outside these
neighborhoods.

Following the example in [HKR13], one can choose a small neighborhood U around 0 such that
|p(2)| < ¢|z2], with ¢ should be big enough. Then, on U \ {0},

o 1 —Z1
V(0 = (0 iy )

Now, on QN U, since |p(2)], |z2| < 1

Ll ! <C
In(z) | = [Inlp(2)[] ~
where the appearance of C' follows from the fact that liH(l) |In|p(2)|] = +oo.
z—
Next, from the property that F(|z1]?) <1 — |22 — 1|2 < 2(1 — |22 — 1|),
— * _ _ 1|2 * _ _
IR/ s o R/ (R )
|22]-[In(z2)] |22]-[In |p(2)] |p(2)]
*
< Yl (4.3.15)
|22
< o, VETN
(2]

VE*(?)

In order to prove the non-existence part, by contradiction, one assume that some function u
satisfies Ju = ¢ and u € A9(€2). Since (u — v) = 0, by Cauchy’s Theorem on F(r?) + £2 < 1

where the last inequality holds since the function is decreasing. Therefore, v € A/ ().

dz = dy = KT 4.3.16
o1 u(z1,29)dz = ‘z1|:T’U(21722) 21 = E (4.3.16)
z2=¢ z2=¢
By assumption u € A9(2), one obtain
/z = u(z1, 22 + h) — u(z1, 22)dz| < Corg(Jh|71) 71 (4.3.17)
1=,

22=E€

Now, let &€ =235, h =0, r = f(6~ )71, with 6 > 0 is small so that (z1,¢), (21, & + h) belong to
if |z1| = r. Hence, applying these terms to (5.4.1)), (4.3.17) , one have

Kf(o~H)™ Kf( )~

In(24) Iné < CHOT) g0
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t
That is Cf(671)~! < Cg(6=1)~L. Therefore, since lim 9(t) = 00, taking § — 0, one yield a

% f(1)

contradiction. O

A remark that, in this section, to obtain the sup-norm estimates, we do not need to use the
extra assumptions that F' () are non-negative on (0,4). They will be applied in the proof of
LP-estimates.

4.4 [P-Estimates for J-Solutions

In this section, we will study the LP boundedness for integral representation solutions of O-
equations on the classes of convex domains defined by (4.1.4) and (4.1.5)), with 1 < p < co.

Theorem 4.4.1. (joint work with Khanh, T. V., Raich, A. [HKR13]) If either of the following
conditions hold:

4
1. Q is defined by (4.1.4) and there exists § > 0 so that / |In F(t?)] dt < oo,
0

4
2. Q is defined by (4.1.5)) and there exists § > 0 so that/ |In(t) In F(t%)| dt < oo,
0

then for any 9-closed (0,1)-form ¢ in LP(2) with 1 < p < oo, the solution via Henkin kernel u
on § satisfies Ou = ¢ and

[ullLr@)y < Cli9llLr()-

where C' > 0 is independent of ¢.

In fact, the sup-norm estimate has been showed in the previous section. Hence, by Riesz-
Thorin Interpolation Theorem, it is sufficiently to prove the L' boundedness for Henkin solutions.
Before the proof, we will re-call the estimate for the support function ® with a little modification

Lemma 4.4.2. Let Q C C? and ® defined as above. Then there exist €,¢ > 0 so that

C|Z—C‘2 C S SQQg\B(O,&)

P(z1) = P(C1) — 2Re {%(Cl)(zl - Cl)} ¢ € S026 N B(0,6)

(4.4.1)
for all z € Q with |z — (| < e,where P(21) = F(|z1]?) or P(21) = F(2?), and Sp25 := {z € Q:
p(z) = —26}.

Re ®((, 2) = p(¢) — p(z) + {
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4.4.1 Proof of Theorem [4.4.1

As a consequence of the Riesz-Thorin Interpolation Theorem and Theorem [£.3.1] proving that T'
is a bounded, linear operator on L!() suffices to establish that T is a bounded linear operator
on LP(2), 1 <p < oo.

The L'-estimate of |K¢(z)| is standard and does not require interpolation. Indeed, since
I — 2|73 € L}(Q) in both ¢ and z (separately), LP boundedness of K, 1 < p < oo, follows from
[Fol99, Theorem 6.18].

For the boundedness of H, we first begin the analysis of H¢(z) by using Stokes’ Theorem.
Using the assumption that ¢ is O-closed, we observe

7(9)

; 1 aC1 (C2 Z2) — (Cl 1) w
196 = 32 | 0 (G = A= s @) A0 Al

We abuse notation slightly and let H((, z) be the integral kernel of H. Direct calculation
shows that we can decompose

[H(C,2)| < ®(¢, 2) — p(O)(IC = 212 + p(O)p(2))

1 1
S@(C’ 2= pQPUC — 22+ (O [8(8.2) — OIS — 2P + p(Q)pl=))

a % (G- 2) - B - a) )
(®( (4.4.2)

Since (p(¢) — p(2))? < |¢ — 2|2, this implies p(¢)? < |¢ — 2% + p(C)p(2), hence |¢ — 2| + |p(O)] <
(I¢ — 2>+ p(C)p(z))l/Q. Thus

[@(¢,2) = POl S 1¢ = 2]+ [p(Q)] S (1€ = =7 + (=) V2. (4.4.3)

Combining (4.4.2)) and (4.4.3), we obtain

el [®(¢,2) — q(C)IQ(Icl— 22 + p(C)p(2))1/2
[B(C ) — p(OPIC = 1 (444
STReBC 5~ A (OF + [ d(C PG — ol
We will show that
J[ o B0 S ol < o0 (4.45)

78



Then, apply the Fubini’s Theorem to obtain
[Holle = [ HoE)av(:)
z€Q
= / H(¢,2)¢(¢)dV (¢)dV (2) (4.4.6)
z€Q J(EN

_ / / H(¢,2)$(Q)dV (¢, 2) S ol oo
(¢,2)EQXQ

In order to prove , we remark that it is enough to assume that z,{ € QNB(0,9) = {p(z) =
P(z1)+r(z) <0} because if ¢,, 2 € O\ B(0,/2), then the estimates following classically using
the strict convexity of r. If one of {z,(} is in B(0,d/2) and other is an element of B(0,d)¢, then
the integrand of H is bounded and bounded away from 0, and the estimate is trivial. We will
investigate the complex and real ellipsoid cases separately to show

// H(G 20OV (¢, 2) < 16, (4.47)
(¢,2)€(QNB(0,9))?

4.4.2 Complex Ellipsoid Case

In thls subsection, 2 is defined by (4.1.4 - Since the argument of F is (1|2, the chain rule shows
that —F(Kl] ) = C1F'(|¢1]%). Similarly to Khanh [Khal3, (4.1)], Lemma |4.4.2| shows that

Re {®(¢,2)} — p(Q) = —p(2) + F(|=1*) = F(IG*) = 2F' (|G Re {21 — ¢1) }
= —p(2) + F(lc1 )\z1—<1|2+ (P = FAGP) = FaP) (12 = 16 )-

Now, we consider two case of F'(0). If F'(0) # 0, then there is a suitable § > 0 such that
F'(]¢1]?) > 0 for any |¢1| < d. Hence,

Re {®(C,2)} —p(¢) > —p(2) + |21 — G,

(4.4.8)

and
1

A < R T T R + 16— Dl — o

Our problem goes back to the case of strongly pseudoconvex domain, and the result is trivial.
So we only assume that F’'(0) = 0. We will have

Lemma 4.4.3. Let F be defined in Section 1 with the extra assumption F'(0) = 0. Then

1 .
H(Go) < d WO F TG PGP - 1 l=lmak

(Ip(2) +iIm @ (¢, 2)|2 + F2(3|21[2))| 21| if |Gl <z —=al,
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Proof. Using Lemma for the expression in the parenthesis of in the second line of (4.4.8)),
we obtain

Re {®(¢,2)} — p(¢) > (4.4.10)

o) ¢ AE UGz =GP forall 0 <[al. |G <4,
F(lz1f? = |Gf*)  only for |G < || <.

We compare |(1] and |21 — (1|2

Case 1: |(1| > |21 — (1. Using the first case (4.4.10) with the fact that F’ is increasing and

E(t
F'(t)t > F(t) (since i) is increasing), we obtain

Re {®((,2)} — p(¢) = —p(2) + F(|z1 = G).
The first line of (4.4.9)) follows by above inequality and (4.4.4)).

Case 2: (1| < |z1 — (1]. In this case, we need to compare |(;]| and %|z1|. If |G| > %]zﬂ,

then same argument above in Case 1 provides that

Re {®(C.2)} — p(0) 2 —plz) + F(5 1),
Hence, we get the second line of (£.4.9). Otherwise, if |¢1] < %|z1|, this implies |z1| > [¢1| and
|21 — G| > (1 — %)pl\ So we can use the second case of and obtain
Re {®(C,2)} —p(¢) = —p(2) + F(|z1]* — [1]*) = —p(=2) + F(%!ZHQ),

and

(IRe®(¢,2) = p(O)F + [Im @(C, 2)*)[C1 — 21| > (p(2) + i Im @(C, 2)[* + F2(%|31’2))|Z1|-
This completes the proof. ]

Proof of the Theorem [4.4.1}i. Using Lemma [£.4.3] we have

// H(¢, 2)¢(¢)dV (¢, 2)
(¢,2)€(2NB(0,8))2

:// +// o (4411
(C,2)E(QNB(0,6))? and [¢1|>]z1—C1 | (€:2)€(2nB(0,6))* and [G1[<[z1 =1
S() + (1)
where
(D) = // | |¢(C2)|dV(2C> z) ! :
(¢2)e@nBa)? (Ip(2) +1Im &(C, 2)[2 + F2([z1 = Gi2))|z1 = G (4.4.12)

SOV (G, 2)
) // @By (p() + im®(C,2)P + F2(3 )l
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For the integral (I), we make the change variables (¢, w) = (¢1, Y2, w1, w2) = ((1, (2,21 —
C1,p(z) +iIm P(C, 2)). Direct calculus the Jacobian of this transformation is the matrix

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
J= -1 0 0 0 1 0 0 0
0 -1 0 0 0 1 0 0

0 0 0 0 oYy ol ot ate

OIm®(¢,z) O0ImP(¢,z) OImP(¢,z) IImP({,z) IImP((,z) IImP({,z) IImP({,z) IImP({,2)
O(Re (1) O(Im ¢q) O(Re(2) O(Im ¢2) O(Rez1) O(Im z1) O(Re z2) O(Im z2)

To check that this coordinate change is legitimate, we compute

_ 0Im(@(¢, 2)) 9p(¢) n 0Im(®(¢, 2)) 9p(C)
& on o 0&

By a possible rotation of €2, we can assume that Vp(0 ) (0,0,0,—1). Direct calculation then

det(J) =

establishes that if § is chosen sufficiently small (so that p (C) dominates the other parts of p and
|¢ — z| are small), then det(J) # 0. Since ® is smooth, we can assume that there exists ¢’ > 0
that depends on €2 and p so that

[2(¥)]
W <//( w)e@nB(0,6)x B0, ([wa]? + F2(|wy[? )’wl‘dV(w,w)

6/ 5/
ri17rodrodry
< 4.4.13
||¢HL1 / / 7,2 F2( Tl)) ( )

<ol / In F(r2)dry < oo,
0

Here, the last inequality follows by the hypothesis of ¢ and F'.

Repeating this argument with the change coordinates (¢, w) = (¢1, ¥2, w1, w2) = ({1, (2, %217 p(z)+
iIm ®((, 2)) for the integral (II), we obtain the same conclusion. Therefore, this completes the
estimate in complex case.

4.4.3 Real Ellipsoid Case

In this subsection, one will consider the case Q is defined by (4.1.5). The argument from (4.4.8)
now yields

Re{®((,2)} — p(¢) = —p(2) + F'(&1) (21 — &) + (F(a1) — F(&1) — F'(€1)(a1 - €1)) ,

where z1 = x1 +1y1, (1 = & +1in1. Following the setup in the complex case, with the same proof,
one also have
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Lemma 4.4.4. Let F be defined in Section 1 with the extra assumption F'(0) = 0. Then

1
(In(z) +iIm ®(C, 2)* + Fi((évl = &1)?))(Jx1 = &l + |y — ml)

(Ip(2) +iIm (¢, 2)* + F2(521)) (51| + lyr —ml)

[H(C,2) S

Proof of Theorem ii. Using Lemma [4.4.4] we have

I/ H(C 26OV (=) < (1) + (1), (4.4.15)
(¢,2)€(QNB(0,6))?
where
_ 6OV (. 2) |
1) = //< ensosy: (2(2) +imeQ, 2P + F2((z1 — €)D) (w1 — &l + o1 — )
6]V (G, 2) (4.4.16)

- (
1) //( se@nsosy? (o) +iIm@(C 2P + F2(5ad) (G| + v —ml)

We make the change variables (¢, w) = (¥1, ¥2, w1, w2) = (C1, (2, 21 — &1, p(2) + i Im (¢, 2))
for (I) and (4, w) = (¢1,¥2, w1, w2) = (ChC%%ﬂt’l —i(yr = m), p(2) + iIlm ®((, 2)) for (II).
Similar the Subsection 3.1, we can check that det(.J) # 0 for both integrals. Therefore

6(0)
O+ //w sy o (w2 - FE(Rewn)?)(| Row| | Tmwn)

<H¢H /5’/5//51 rszQd(Rewl)d(Imwl)
o (r3 + F2((Rew:)?))(| Rewr| + | Imws )

& 6’1 R dR J
<H¢rm// n(F((Rew:)?)d(Re wy)d(Im w)

| Rews | + [ Im wy|

V(Y w)

(4.4.17)

<léllio /0 In(| Re wy ) In(F((Rew))d(Rew; ) < oo.

Here, the last inequality follows by the hypothesis of ¢ and F. This completes our proof of
Theorem [.4.1]

4.4.4 Examples

In this section, we present an example to show that our estimates are optimal in the sense that
the inequality [|ullreq) S I4llrr(@) cannot hold if 1 < p < g < co. Specifically, let 0 < o < 1,
1<p<qg< oo, and

1—

1
QO ={(z1,22) €C2: e AT 4 |52 < 1}. (4.4.18)
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We will show that there is a d-closed (0, 1)-form ¢ € Lg}l(Q) for which there does not exist a
function u € L(Q) so that du = ¢ in Q. Indeed, let

(1 —In(1 — z2))
(1 . 22)2/‘7

(1 —1In(1 — 29))*

k
dz; and wv(z) = TESEL

¢(z) = (4.4.19)

(1 —1In(1 — z9))*

(1 — 2’2)1/ q ~
branch of the logarithm 0 < arg(1—=z3) < 27. The form ¢ is a 0-closed (0, 1)-form on € and func-
tion v is a solution of the equation du = ¢. Moreover, we observe that v is L?-orthogonal to all
holomorphic functions on 2 (by Mean Value Theorem). By directly calculating (see Lemmam
in below), we obtain ¢ € LY 4(2), v € LP(2) and v ¢ LI(Q2). Let P be the Bergman projection
on €, i.e., the L2-orthogonal projection onto all holomorphic functions on €. In recently, Khanh
and Thu [KT13] have proven that P of domain of domain defined in is a bounded op-
erator form L7(Q2) to LI(Q2) for any ¢ > 1 (see Appendix). Therefore if v € LI(2) is a solution
to Ou = ¢, then v = u — P(u) is in L49(2). This is impossible. Therefore, there is no solution
u € L1(Q) with ¢ > p.

is holomorphic on €2 with the principle

where k := [%12] +1 € N. The function

Lemma 4.4.5. Let ¢ and v be defined in ([4.4.19). Then, ¢ € LY 4(2), v € LP(Q) and v € LI(Q).
Proof. We now show that ¢ € L ,(Q). We have

—1In|1 — 2| +iarg(l — 2o)|"
Q Q

|1 — zo|2P/4
</ ((l—lnl—zQD2+47r2)kp/2/
" Sz« |1 — 2zo|2P/a 21| <(1—In(1—| z2[2))~ 1/
</ ((1—ln]1—zz\)2+47r2)kp/2
™ Jjzal<r 11— 222P/2((1 = In(1 — |22]2))%/@

</ ((1—1n\1—22|)2+4772)kp/2
jzl<a |1 — zo|?P/a

< 4 S
~Y
|Z2|<l,|Z271‘21 |22‘<1,|2271|<1

((1=In [1—20])2+42)"7/?
|1722|2p/q
is also bounded. For the second integral, we have

/ e
|z2|<1,|z2—1|<1 |z2—1|<1

B 1 (1 —1Int)? + 4772)kp/2
~Jo +2p/q—1

1 dV(Zl) dV(ZQ)

AV (z2) (4.4.20)

dV(ZQ)

Since the function is bounded on {|z2| < 1,|z2 — 1|}, so the first integral

f\ZQ|<1,|zr1|21 o

(4.4.21)
dt < oo,
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since 2p/q — 1 < 1 The proof of v € LP(Q) is automatically follows by our computation that
¢ € Lpy 1 () since |z1] is bounded. Now, we prove that v ¢ L9(Q). We have

—In(1 — 29)|F |z ]?
/‘U(Z)|qu(Z):/ |1 1(1 2)| |1| dV(Z)
Q Q

|1 — 22|2
1—In|l— arg(1 — )|

:/ | n |1 — 2| ‘1‘2321”%( 22)| / 12119dV (21) dV (22)

|22 <1 1= 2] |21 <(1-In(1—|2p[2)) /e

kg (4.4.22)

2T |1 —1In|1— 2|
> — 12 dV(ZQ)

4+ 2 Jiz)<1 1 — 292(1 — In(1 — |22]2)) &

1—1In|l— 2|~

2/ Lol 2l gy,

26D |1 — 292(1 — In(1 — |22/?)) =

where

; 13 ) 1
DZ{Z2:1+T’619€CIO<T<§,%<0<Z7T}C{|ZQ‘<1,’22—1‘<§}C{‘Z2|<1}.

The domain of the integral forces 1 — |z|? = —2rcos@ — r2 > /2r — r2 > r(v/2 — 1) > r (since
ﬁerf—%Zl). So we obtain

3 (1-— lnr)kq_%2 3 dr
/ lv(2)]%dV (z) Z / dr > / — (divergence). (4.4.23)
Q 0 r 0 r
Here, the last inequality follows by kq — % > 0 by the choice of k. O
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Chapter 5

Complex Monge-Ampere Equations
in C"

In this chapter, we will discuss one of most important non-linear partial differential equations
in several complex variables, Complex Monge-Ampere Equations.

During the last four decades, complex Monge-Ampere equations have been the subject of inten-
sive studies. These equations have a simplest form which is a fully non-linear equation of elliptic

type

2
CMA (u) := det ( i > — b,
2j0Z),
where the solution u should be a (continuous) plurisubharmonic functions in C". The real Monge-
Ampere equations have been studied deeply in relation to many problems in Riemann Geometry,
and also in the modern applications of partial differential equations field. However, it seems to
be difficult to solve them in a completely acceptable way. The notation of convex surfaces was
applied by A.D.Alexandrov to provide the existence and uniqueness of solutions in a general
sense to certain real Monge-Ampere equations. Nevertheless, there is a lacking for a suitable
geometric interpretation of the complex Monge-Ampere equations. And the techniques used for
real Monge-Ampere equations are not enough to consider the complex one.
In 1976, Bedford and Taylor [BT76] applied methods in pluripotential theory to construct
plurisubharmonic solutions of the Dirichlet problem for complex Monge-Ampere equation with
continuous data in a strictly pseudoconvex domain. In this well-known fundamental paper, there
are two considerations. The right hand side is understood as a non-negative Borel measure when
w is plurisubharmonic, and not necessarily C2. The left hand side is the positive bidegree cur-
rent, which is an essential ingredient was introduced by LeLong. In the book by S. Kolodziej
[Kol05], the reader will find a detailed exposition of the complex Monge-Ampere equations and
Pluripotential theory.
Now, we will make a short history for complex Monge-Ampere equations with regularities on
pseudoconvex domains.
Let © be a bounded, weakly pseudoconvex domain of C" with C?-smooth boundary b2. For
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given functions A > 0 defined in 2 and ¢ defined on b§2, the Dirichlet problem of the complex
Monge-Ampere consists in finding a continuous, plurisubharmonic function v on € such that

{det(uij) =h inQ

(5.0.1)
u=q¢ on b},

ou d%u

o Ui = 5
0z 7 020z

where u; = and (u;;) is a n x n-matrix with its (i, j)"-entry is w;;.

5.1 The operator (dd°)"

We will recall the notation of (dd°)" and give some its properties. First of all, d = 0 + 0,
and d° = i(0 — 9). For  an open set in C", let P(Q2) denote the space of all plurisubharmonic
functions on 2, and C(Q2), C*(£2) the usual spaces of continuous functions, kth order continuously

2
differentiable functions. For u &€ CQ(Q), H(u) = [ 0 qi
0207z},
Then

} denote the complex Hessian of wu.

A"nldet(H(uw))Bn = ddu A ... AN ddu = (ddu)",

. n n
where the volume form 3, = (;) Hdzj N dzj. Next, we will define the left hand side via
j=1
theory of currents introduced by Bedford and Taylor, as well as via a general measure theoretic
construction given by Goffman and Serrin.
Let Dy, q)(§2) denote the space of test forms in Q of bidegree (p,q) equipped with Schwartz’s
topology.

Definition 5.1.1. Any continuous linear functional on the space D, 4)(€2) is called a current
of bi-degree (n — p,n — q) (equivalent: of bi-dimension (p, q)) in €.

We equip the space of currents of bi-degree (n — p,n — q) with a weak-topology by follows: a
sequence T} of currents of bi-degree (n —p,n —q) converges to T if and only if ]lingo Ti(¢) = T(9)

for any ¢ € D, ¢)(€2).
Let T be a current of bi-dimension (p, p) in 2, if we have

(T,w) 20,

for any simple positive test form w = Pwi AW A ... Awp AWy, with wy’s € CE’fO), the T is called
a positive current.

For two (p,p)-currents S, T, the inequality
S<T

means that T'— S is a positive current.
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For an increasing ordered multi-index .J, we denote by J’ the unique increasing multi-index
such that J U J" = {1,2,...,n} such that |J| + |J'| = n. Let us denote by a ik the form
complementary to dzj A dZg, that is

ajg = Mdzy NdZgr,

where X is chosen so that dz; A dzZg N ajx = By.
Let us observe that one can identify a current T' € sz 9 (©) with a differential form which has
distribution coefficients

/
T = Z|J|:n—p,|K\:n—qTJKdZJ NdZg.
The coefficients T';i are defined by
(TJK7 ¢) = (T7 ¢aJK)~

Moreover, all Tjx are non-negative Radon measures if T is positive. For a current T with
measure coefficients, one can define a norm

!/
|T|e = Z|J|:n_p7|K‘:n_q|TJK|Ea

where |Tjk|g is the total variation of Ty on a compact set E.
One may also define a wedge product of a current and a smooth form w setting

(T Aw, @) == (T,w A @)

for any test form ¢. If T is positive and w is a positive (1, 1)-form, then 7' A w is again positive.
In particular, for a positive (p, p)-current 7', and a (n — p,n — p) simple form, the current T'A w
is a non-negative Borel measure.

We differentiate currents according to the formula

(DT, ¢) = —(T’, Do),

for a first order differential operator D.
Now, let u € P(2) N L*>(R2), then dd“u is a bounded, positive of bidimension (1,1) current, and
u.ddu is a well-defined current, so is

ddu A ddu := dd°(u.ddu),

in the sense that

/(Z).ddcu A ddu = /u.ddcqﬁ A ddu.
The latter current is also closed and positive. By this way, we may defined closed positive currents
dd“u A ddu A ... A dd‘u,

for u € P(Q) N L>*(R). This definition is well-defined since the following theorem by Chern-
Levine-Nirenberg
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Theorem 5.1.2. (Chern-Levine-Nirenberg Inequality).
If K cc U ccC Q, then for a constant C = C(K,U,Q), the following holds

|[dd®ug A dd®uy A ... A ddu, AT || e < Cufuollo||wa||v--|[url v TN,
for any closed positive T' and any set of uj € P(2) N L>®(Q2). Moreover,
dd®us A ddus A .. A ddfu|xc < (K, ) fur] ozl ol

and
Huo A ddui A ddug A ... A ddcukHK < C(K, Q)H’U,O"Ll(Q)HUlHQH’UQHQH’U,kHQ

This gives us a definition of (ddu)™ for u € P(Q2) N L$S

7o (€2) as a positive Borel measure.

Let C denote the cone of n X n non-negative Hermitian matrixes and define on C a homoge-
neous super-additive functional

F(A) =det(A)Y™, Aec.

Now, let 1 = () be a matrix of Borel measures on € such that for any Borel set E C €,
(1jk(E)) € C. Choose a nonnegative Borel measure X on €2 such that u is absolutely continuous
with respect A, i.e, du = AdA, where A is a Borel measurable function on €2 with values in the
cone C. Then, we define

0u
8Zj 0Zy,

If u € P(Q), the matrix of Borel measures ( ) takes values in the cone C since dd‘u is a

positive (1,1) current. Then, we can define

(u) = 4(n)"/"F ({afjauzzcb |

Note that for smooth u, we have

(ddu)"™ = " (u)dV,
that means ®(u) is essentially [(ddu)"]'/™.
Proposition 5.1.3. 1. ®(tu) = t®(u), for t >0, and ®(u+v) > ®(u) + P(v).
2. If a is a test function, then ®(u * o) > ®(u) * .

3. If a sequence of plurisubharmonic functions u; tends ewakly to u, and ®(u;) is weakly
convergent, then ®(u) > limj_oo ®(u;).

4. For the standard regularization lim¢_,o ®(ue) = ®(u).

5. ®(max(u,v)) > min(®(u), ®(v)).
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Therefore, for h > 0, h € C(2), the complex Monge-Ampere equation (5.0.1)) is understood
by the following ways
(dd°u)"™ = hdV

in the sense of positive bidegree currents, or
®(u) = h/mdv

in the Borel measure sense.
The fact that the unique solutions of ([5.0.1]) defined via these setups are coincide. In this chapter,
we will concentrate solutions of (5.0.1]) defined in the sense of currents.

5.2 Some well-known facts and the main result

When €2 is a smooth, bounded strongly pseudoconvex domain in C", a great deal of work has
been done about the existence, uniqueness and regularity of this problem (cf. []). The following
we briefly review some significant, classical results.

1. The classical solvability of the Dirichlet problem in [BT76] was established by Bedford and
Taylor. They proved that if € is a strongly pseudoconvex, bounded domain in C" with C?
boundary, and if ¢ € Lip®*(bQ2), 0 < hn € Lip%(ﬁ), where 0 < o < 1, then there is an
unique solution of u € Lip%(ﬁ). The pluripotential theory allows the authors to
study weak solutions for the right hand side being just a nonnegative Borel measure. This

result is sharp.

2. In [CKNS85], the smoothness of solution of was also established. In particular, on
a bounded strongly pseudoconvex domain with smooth boundary, and ¢ € C*°(b2), then
there exixsts uniquely solution u € C°°(Q) and also u € C*!(Q) when h satisfies some
critical conditions. Their approach followed the one taken for the real Monge-Ampere
equations.

3. More generally, Blocki also considered the Dirichlet problem on hyperconvex do-
mains in [Blo96]. In the paper, when data ¢ € C(bS2) can be continuously extended to
a plurisubharmonic function on €2 and the right hand is nonnegative, contiunous, then
the plurisubharmonic solution exists uniquely and continuously. The author also gave an
example to show this existence on some hyperconvex domain but not B-regular which was
first considered by Bedford and Taylor in [BT76]. However, the Holder continuity for the
solution on these domains was not verified.

4. In [Co97], Coman showed how to connect some geometrical conditions on domains in
C? to the existence of plurisubharmonic upper envelope in Holder spaces. In particular,
the weakly pseudoconvexity of finite type m and the fact that the Perron-Bremermann
function belongs to Lip% with corresponding data in Lip® are equivalent. Again, this
means the condition of finite type plays the critical role in Holder regularity for complex
Monge-Ampére equations.
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5. Recently, in [Li04], these results have been extended in the case that Q is a weakly
pseudoconvex, bounded domain in C" of plurisubharmonic type m. In particular, when
O<a< %, and ¢ € Lip™*(b82) and if h € Lip®, then the unque existence of the solution
for u € Lip*(Q) holds. The author also gives the example on complex ellipsoid to
show that this result is optimal. The critical point in the proof is based on the observation
by Catlin and main results of Fornaess and Sibony in [FS89] about the existence of a family
of weighted functions on a such domain.

The main purpose in this chapter is to generalize above results to pseudoconvex domains,
not necessarily of finite type, but admitting an f-Property. The f-Property introduced in the
followings is generalized the Catlin’s family of weights which is sufficient for an f-estimate for
the 0-Neumann problem [Cat87, [KZ10]. This is new point in the theory of complex Monge-
Ampere equations, the techniques follow from solving to Cauchy-Riemann equations applied to
seek complex Monge-Ampeére equations.

Definition 5.2.1. For a smooth, monotonic, increasing function f : [1 4+ o0) — [1,400) with

{1(2 decreasing, we say that (2 has an f-Property if there exist a neighborhood U of 0{) and a

family of functions {¢s} such that
(i) the functions ¢s are plurisubharmonic, —1 < ¢5 < 0 and C? on U;

(ii) i00¢s > f(671)%Id and |Dgs| <671 for any z € UN{z € Q: —6 < r(2) < 0}, where 7 is

a defining function of 2.

Remark 5.2.2. 1. The f-Property is a consequence of the geometric finite type of pseudocon-
vex domains. In [Cat83, [Cat87], Catlin proved that every smooth, pseudoconvex domain {2
TL2 . .
of finite type m in C" is of the f-Property with f(¢) = t¢ with e = m~""m"" Specially, if
is strongly pseudoconvex, or else it is pseudoconvex of finite type in C2, or else decoupled or

1
convex in C" then e = — where m is the finite type (cf. [Cat89, [Khal0, McN91al McN92al).
m

2. The relation of the general type (both finite and infinite type) and the f-Property has
been studied by Khanh and Zampieri [Khal0, [KZ12]. Moreover, they proved if P, ..., P, :

F(lz; F(ly;
C — R* are functions such that APj(z;) > (’?D or (1) for any j = 1,...,n, then

j v
the pseudoconvex ellipsoid

C={(z1,..,2n) ec":ij(zj) <1}

has f-Property with f(t) = (F*(¢t7!))~!. Here we denote F* is the inverse function of F.

In this paper, using the f-Property we prove a “weak” Holder regularity for the solution of
the Dirichlet problem of complex Monge-Ampere equation. For convenience, we recall a suitable
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definition of the Holder continuous spaces in the last chapter, but here we define function be
continuous up to the boundary bf2.

Definition 5.2.3. Let f be an increasing function such that tliin f(t) = +o0. For Q C C",
—+00
define the f-Hélder space on Q by

AT(Q) = {u: Jlulloo + Supﬁf(lz —w|[™) - Ju(z) - u(w)| < oo},

and set
lully = llulloo + sup f(lz —w[™") - Ju(z) — w(w)].
ERTISIY)

Note that the f-Hélder space includes the standard Holder space A, () by taking f(t) = t®
(so that f(|h|™!) = |h|™®) with 0 < & < 1. Our main result is

Theorem 5.2.4. (joint work with Khanh, T. V. [HK13]) Let f be in Definition such that

* d

gt)y™t = / af(aa) < 00. Assume that Q is a bounded, pseudoconvexr domain admitting the
t

f-Property. Then, for any 0 < a < 1, if ¢ € A¥"(bQ), and h > 0 on Q with ha € A9 (Q), then

the following Dirichlet problem of complex Monge-Ampére equation

det(uij) =h in Q,
u=0¢ on 0,

(5.2.1)

has an unique plurisubharmonic solution u € A" (Q).

We organize the paper as follows. In Section 2, we will establish the sufficiently fine defining
functions, as a consequence of f-Property, to construct the unique solution of , this
solution should be contiunous and plurisubharmonic. We will also see that this condition is a
generalization of the one named by plurisubharmonic of finite type m in [Li04]. Then, we will
prove the main theorem [5.2.4] in the Section 3. Finally, an example in the Section 4 will show
that our result can not be improved.

5.3 The f-Property

In this section, under the f-Property assumption we construct a strictly plurisubharmonic defin-
ing function with g2-Holder continuous, where g defined in the following theorem.

> d
Theorem 5.3.1. Let f be in Definition |5.2.1 such that g(t)~! := / f?)
. af(a

that 2 is a bounded, pseudoconvexr domain admatting the f-Property. Then there exists a strictly
plurisubharmonic defining function of Q which belongs to g>-Hélder space of Q, that means, there
s a plurisubharmonic function p such that

< 00. Assume
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1. z € Qif and only if p(z) <0, bQ = {z € C™ : p(z) = 0}.

2. p€ C?(Q) and i00p(L, L) > |L|?.

3. p is in g>-Hélder space of Q, that is, |p(2) — p(2')| < g(|z — 2'|~1) 72 for any z,2' € Q.

The proof of Theorem is based on the result about the existence of a family of plurisub-
hamonic peak functions, Theorem [5.3.2] Whicl}x}s proven by Khanh [Khal3]. Moreover, a remark
that the f-Property with the requirement /t

tion, i.e , lim f(a)
a—oco Ina

< o0 is stronger than the sup-log condi-

af(a)

= 00, which implies that the Bergman metric has a lower bound with the

rate g(t) = li(tl_“)7 for some n > 0 [KZ12]. The following theorem is a generalization of the
n
well-known result by Fornaess and Sibony in the case of finite type.

Theorem 5.3.2. Under the assumptions of Theorem for any w € bSY there is a C2-
plurisuhharmonic function 1., on Q and peaking at w, that means, ¥,(z) < 0 for all z € Q\ {w}

and P, (w) = 0. Moreover, for any constant 0 < n < 1, there are a positive constants ¢ such that
the followings hold

1. [pu(2) = Yu ()| < clz = 2| for any 2,2’ € Q,
2. Yu(2) < =G"(|z — w|) for any z € Q,

where G(08) := (g*(y6~1))~'. Here, the superscript * denotes the inverse function and v > 0
sufficiently small.

Remark 5.3.3. We also note that if 2 is strongly pseudoconvex, we can choose 1 = 1.
Before giving the proof of Theorem we need the following technique lemma
Lemma 5.3.4. Let w(t) := g(t_%)_Q. Then we have
1. w is increasing function on (0,1) and h(0) = 0.

2. For a suitable choice of n > 0, there is § > 0 such that w is concave upward on (0,0).

3. The inequality
w(t) —w(s)| < w(|t —s])
holds for any t,s € [0,0).
4. For a constant ¢ > 0, there is ¢ > 0 such that w(ct) < dw(t).

Proof. Before going to proof the lemma, we give some calculations on function g. By the defini-

i i = [T da 00, we have
tion of g, i.e., @ = /t o7 (a) < 00, h
9(t) _ g(t)
g(t) — tf(t) 53.1)



and

i) _ 200 1

gt) _ _L_ 7@ 5.3.2
ORFIONSINIO (032
Since () is decreasing on (1, +00), we obtain
t1/2 g Y Y
O g [T g [0 s [T s
g(t) ¢+ af(a) v fla) a2 7700 f() )y ad2
ie., gig < %, and also t}f((;) < % We notice that the equalities hold if and only if f(t) = cv/t
for constant ¢ > 0 (this holds if and only if Q is strongly pseudoconvex), that means
o) , 1) _
f@)  f@)
Otherwise, if € is not strongly pseudoconvex, then
g(t) _tf()
— 4+ = < L
f@)  f@)

Now, we are ready for proving Lemma [5.3.40 We have w(t) = %t_%_lg(t_%)g*?’(t_n) >0

and
5(0) = (79 e ) |- (ne t‘ia@‘%_gf%g(r“)]
(t) <n2t gt m)g " (t ))[ <n+ n s p

- 3—%—2~ —% -3 —% B _t_’l’g(t_%)_t_%f(t_%) |
<n2t g(t g™ (t ))[ (17 P = >]

If Q is strongly pseudoconvex, we can choose n = 1 such that the estimates in Theorem [5.3.2
hold. Otherwise there is a constant n < 1 such that the bracket term [...] in the last line of
(5.3.3) is non-negative. Therefore, w is concave upward.

Now we prove that [w(t) —w(s)| > w(|t — s|) for any ¢,s € (0,0). Assume ¢ > s, for a fixed
s € [0,0) we set k(t) := w(t)—w(s)—w(t—s). Since w is concave upward, k(t) = w(t)—w(t—s) > 0.
That is k is increasing, so we obtain k(t) > k(s) = 0. That is the proof of inequality.

For the inequality (4), we notice that if ¢ < 1 then w(ct) < w(t) since w is increasing.

Otherwise, if ¢ > 1 we use the fact that % is decreasing (this is obtained from w = @ <
| tl/ gt)  f(t)
5), we have " o
w(ct w(t 1
w(ct) = (ct)'/? < (ct)/? = —uw(t).
(ct) /2 O~ Ve
This completes the proof of Lemma O
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Now, we will prove the aim of this section .

Proof of Theorem 2.1. Fix w € b2, we define

pu(2) = —jzw(—%(z)) + 2wl (5.3.4)

We will show that the function p,,(z) satisfies the following properties
1. pw(z) <0, for z € Q, py(w) =0,
2. pw € C2(Q) and 8dpy (L, L) > |L|? in distribution sense for z € Q, and L € T3°C".
3. py is in g>-Holder space in Q.

Proof of (1). From (1) in Theorem and w increasing, we have

w(=1w(2)) > w(G"(]z —w|))
= (9 (G(lz—w))™"))

2

- (5.3.5)
= (9(g" (7)== w]) ™))
=7z — wl*.
Hence, we have
2 -1 —2
PM@:—Wﬂ<FWD"@O Flz—wf < -z —wf <0,

where w € b2, and z € Q. Moreover, since 1,,(w) = 0 and w(0) = 0, that implies p,,(w) = 0 for
any w € bS2.

Proof of the assertation (2). Fix w € b€, the Levi form of w(—1,,) on Q is following
100w (=1 ) (X, X) =0iddpy (X, X) — 0| X¢w|*> > 0 (5.3.6)
Proof of (3). Lemma we have

|w(=tu(2)) = w(=tw(2))| <w ([Yu(z) — Pu(2)])
<w(c|z = 2" (5.3.7)
<dw(lz = 2" = g(]z = 2|72
Finally, since 2 is bounded and g(t) < t%, we can show that
Iz —wl? = 2 —wP| Sz — 2| S g(lz— 27 % (5.3.8)

~
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The last two inequalities verify that p,(z) € A9 (Q) for any w € bS2.

Now, we define

p(z) = sup pu(2).
web)

The above properties of p,, imply that the function p is plurisubharmonic in €2 since the well-
known result by LeLong, and since g(0) = 0, and g : [0,00] — [0, 00], then p is also g?-Holder
continuous in  due to the fact that, from theory of Modulus of continuity, the superior envelope
of these such functions belongs to the same space. Moreover in the distribution sense we have

99p(L, L) = | L|2.

5.4 Proof of the main theorem [5.2.4

Let © be a bounded open set in C™, and P(2) denote the space of plurisubharmonic functions
on ). The following proof of Theorem is adapted from the argument given by Bedford
and Taylor [BT76, Theorem 6.2] for weakly pseudoconvex domains. Based on the approach in
IBT76], we need the following proposition.

Proposition 5.4.1. Let Q be bounded, pseudoconver domain. Assume that there is a strictly
plurisubharmonic defining function p of Q such that p € AY? (Q). Let0 < a < 1, and ¢ € A (bQ),
and let h > 0 with h'/™ € AI*(Q). Then, for all { € bQ, there exists v € A" (Q) NP(Q) such
that

(i) ve(z) < @(2) for all z € bQ, and ve(C) = ¢(C);
(i) ”UCHAgo‘(ﬁ) < Co;

(1it) det (H(v¢)(2)) > h(z).
where Cy 1s a positive constant depending only on Q and ||¢\|Ata(bg).

Proof. For each ¢ € b2, we may choose the family {v;} by

ve(z) = 6(C) — K[-2p(2) + |2 — (]2, 2€Q

where p is defined by Theorem [5.3.1] and K will be chosen step by step later.

It is easy to see that vs(¢) = ¢((). Moreover, with the choice K such that K > c, where

#(2) — ¢(9)]
Cy = S e —ce , we have
ve(2) < =Kz = (|* + ¢(() < ¢(2), forall ze bQ. (5.4.1)
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This proves (i).

For the proof of (ii), we have the following estimates

|vg(2) = ve(2)] = '[—QP(Z)HZ—C\Z] —[=20(z) + | = ()3

< ' Cop() 4 [z — ¢+ 20 — ¢ — (2|

(5.4.2)
[2|p <z'>|+|z—<|2—|z'—<|2r
<o (- ).

Here, the first inequality follows by the fact that |t2 —s2| < [t —s|2 for all ¢, s small and a < 1;
the last inequality follows by Theorem [5.3.1{and (5.3.8]). This implies v¢ € A" (Q) for all ¢ € bQ.
Moreover ||v¢|| As® (@) Is independent on (.

To prove (iii), we compute (v¢);; on €2

(v¢(2));5 =K (=2p(2) + |2 — ()52 {(—29(2) + 1z = ¢ (2p(2)i5 — 6i5)

[\]

(5.4.3)

1 - 2) (=201 + 2 — ) (~2p; + 75 - @'))} :

+(2

Hence

100 (X, X) = Ko (=2p(2)+|2=¢*) 37 2i09p(X, X) | X[?) = K5 (=2p(x)+|2=¢[) 3 7 |X

for any X € T10C". Here the last inequality follows from Theorem [5.3.1{(2).Thus v is plurisub-
harmonic and furthermore we obtain

deil(v0)(2) = [k (-2002) +1 - ¢ (0] (5.4.4

Now, let’s choose

2 _a
Kz a2 max (<2000 + | = ¢ E I oo
QA 2cQ,Ceb

Then
det[(vg)is)(2) > 1B/ By = (B/™(2)" = h(2), (5.4.5)

for all z € 2, and ¢ € b€). This completes the proof of Propoition [5.4.1
O

Before to give a proof of Theorem [5.2.4] we re-call the existence theorem for the problem
(5.0.1) by Bedford and Taylor [BT76, Theorem 8.3, page 42].
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Theorem 5.4.2 (Bedford-Taylor [BT76]). Let 2 be a bounded open set in C™. Let ¢ € C(92)
and 0 < h € C(R). If the Perron Bremermman family

B(p,h) = {v e P(Q)NC(Q) : det[(v);;] > hand lim sup v(z) < ¢(z), for all zg € bQ} .

Z—20

1s empty, and its upper envelope
u=sup{v:v e B(o,h)} (5.4.6)
is continuous on 0 with u = ¢ on 0N, then u is a solution to the Dirichlet problem (5.0.1]).

Proof of Theorem m First, we see that the set B(¢,h) is non-empty, in particular, it
contains the family of {v¢}ccpo in Proposition The proof of this theorem will be completed
if the upper envelope defined in ([5.4.6)) has the properties

1. u(¢) = ¢(¢) for all ¢ € 9
2. u € A (Q).

We note that the uniqueness of solution follows from the Minimum Principle.

Now, we define another upper envelope, for each z € Q,

v(z) == sup{v¢(2)}-

Cebn

Since the first property of {v¢} in Proposition we have

v(C)
v(z)

ve(€) = B(¢) for all ¢ € bQ,

$(z) for all z € bS). (5.4.7)

>
<

and so v = ¢ on bf2.
Then, from the second property in Proposition [5.4.1

lve(2) —ve(2)] < Colg™(lz — Z/|7H)™! for all 2,2" € Q.

notice that Cy is independent on ( so taking the supremum in ¢, theory Modulus of continuity
again implies that

lv(z) — ()| < Co(g™(|z — 2/|71))™ forall z,2" € Q.
By Proposition 2.8 in [BT76], the following inequality holds

det[(v)45](2) > Cienbfg{det[(vg)ij](Z)} > h(z), forall z€ Q.
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Thus, we conclude that v € B(¢, h) N A" () and v(¢) = ¢(¢) for any ¢ € 9.

By a similar construction there exists a plurisuperharmonic function w € A9 (Q) such that
w(¢) = ¢(C) for any ¢ € Q. Thus, v(z) < u(z) < w(z) for any z € €2, and hence u(¢) = ¢(¢)
for any ¢ € 0Q2. We also obtain

u(2) = u(Q)] < max{[|v]lsen (), [Vllaom @} (g2 = ¢|7) ™" forany =z €Q,¢ €. (54.8)
Here, the inequality follows by w,v € A" (Q) and v(¢) = u(¢) = w(¢) = ¢(¢) for any ¢ € I0.

Finally, we want to show that (5.4.8]) also holds for ¢ € €. For any small vector 7 € C", we
define

 u(z) if 2+7¢Q,2€Q,
VizT) = { max{u(z), Va()},if 2,2+ 7 € O
where
Vi(2) = u(z +7) + (Ki|2> = K2 — K3) g7(I7| ™)
and here

1/k
n 1
Kz (1) I ey Koz KabP, and Ko 2 max(lye . ol o)

We will show that V(z,7) € B(¢,h). Observe that V(z,7) € P(Q2) for all z, 7. Moreover, for
z €08, z+ 1 € Q, we have

Ve(2) = u(2) =u(z + 1) —u(z) + (Ki|z® = Kz — K3) g~(I7[ ™)
<max{[[v]| xox @), 0]l a0 (@ 2o *(ITI71) + (Kil2]* = K2 — K3) g~(|7|7")(5.4.9)
<0.

Here the first inequality follows by (5.4.8]) and the second follows by the choices of K9 and K.
This implies that limsup,_,. V' (2, 7) < ¢(() for all ¢ € 9. For the proof of det[V (z, 7)i;] > h(2),
we need the following lemma.

Lemma 5.4.3. Let (a;j) > 0 and 8 € (0,+00). Then

detla; + BI] > B det(a;) "R/
k=0
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Proof of Lemmal[5.4.3 Let 0 < A; < ---, A, be the eigenvalue of (). We have

det[eyj + 8] = H A+ B)

3

Y

e J IR (5.4.10)
0 j=k+1

B
S |l

A\

(" detfa] /)

iy
o

Here the last inequality follows by
n/(n—k)

n n
detlay;] = H H Aj

j=k+1

Continuing the proof of Theorem for any z,z + 7 € Q we have
det[(V(2))i] = detlui;(z +7) + Klg_a(\ﬂ_l) 1]

> detui;(z + 7)) ZKl (717 k.det[uij(z—i—q-)]n%k (5.411)

> h(z+7) +ZK1 (e . (h(z + 7))
k=1

where the first inequality follows by Lemma [5.4.3| Since hw € A9 (Q), we obtain
hie(z) — b (z 4 7) < g—a(m-l)uhzuma, for any z,2+71€Q,

and hence

b < bt )+ Y ()G OB (e Db ) G412
k=1

Combining (5.4.11)), (5.4.12) with the choice of K, we get
det[(V;)ij](2) > h(z), forany z,z+4+7€Q.

We conclude that V(z,7) € B(¢, h). It follows that for all z € Q, V(z,7) < wu(z). If z4+ 7 € Q,
this yields

u(z +7) —u(z) <V(1,2) = (Ki|z]* = Ko = K3) g~ *(|7]7") — u(2)
< (=Ki|z* + Ko+ K3) g7 (7|7 (5.4.13)
<(Kz2+ K3)g~ (7"

By reversing the role of z and z + 7, we assert that u € A9" (Q2). This completes the proof. [
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5.5 A special domain

In this section, we will 1give an example to show why the above estimates cannot be improved.
For domains satisfied ¢=-Property, the exmaple in [Li04] supports our claim. As a next step, we
consider the problem on the following complex ellipsoid of exponential type in C?

1
E= {(zl,zg) € C?: p(z1,2) = exp (1 - W) + |20 < 1} , (5.5.1)
1

with 0 < a < 1/2.

In [Li04], the author also considered the complex Monge-Ampere equation on this domain. The
unique solution stills be continuous, but it can not belong to any classical Holder space. Here, we
will give a new view point for this example, in particular, the solution should be in some weak

Holder spaces. The exponeniall complex ellipsoid E satisfies f-Property, with f(d) := (1+log 6)5
([KhalQ, [KZ12]).
We consider the following complex Monge-Ampere equation on E:
ddu)* =0 E
(dd*) Ton (5.5.2)
u=q¢ Ton bE,

where

B(2) = |21)** € A" (bE).
We can easily check that u is the unique solution of (5.5.2)) on E.

u(z) = (F*(l - ’z2‘2))a7 zek,

where F*(0) = (1 —log 5)_5 We want to prove that u(z) € AY" (E), where g defined in the main
theorem, and

o) = (5= 1) (1+1ogayit

a
Now, let F(z) = (F*(1 — |2[%))®, then since F* is increasing and also concave

(F(I1=1> = 12'P1)"
(F*(|z — 2|z + z']))a

|F(z) = F()]

(5.5.3)

AN NI IA
Q@ =

£(0)
t

where the third inequality follows from the fact that F™ (j) < again. Therefore, this

implies the first assertation, u(z) € A9" (E).
U
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Remark 5.5.1. This example again says that no matter how smooth is the boundary data ¢,
even ¢ € C°°(€), and that no matter how smooth is 2/ on Q, the unique plurisubharmonic
solution u may not belong to AY(2), for any such g and f as the above example. However, as the
mention in the introduction, in [CKNS85], the authors provided the hypoelliptcity for complex
Monge-Ampere operator, although this case is actually of F-type, with F(t) = 2. The factor is
that the non-vanishing right hand side and the constant boundary data play a critical role in
their consideration. Hence, elliptic regularity theory was applied successfully. In our case, the
singularity is vanishing of the right hand side at some points. Naturally, the question is that if
we could improve the result in [CKNS85] when the right hand side has only one zeros and this
zeros is of finite order. For instance, we consider

2
CMA (u) := det < el > — b,
2j0Z),

where h =~ |z|?™, with m > 1. Clearly, 0 is the unique singularity of finite order 2m in the sense
[CKNSS85|. Let h is belongs to Sobolev space H*(£2), the open question is that if the solution
u € H", for some r = r(s,m).
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Appendix A

Functional Analysis

A.1 Spectral Theorem ( continuous functional calculus)

Theorem A.1.1. Let A be a bounded, self-adjoint operator on a Hilbert space H. Let o(A)
denote the spectrum of A. Then, there exists a unique map ® : B(o(A)) — L(H) such that

1. ® is an algebra homomorphism, that is ®(fg) = ®(f)®(g), and

(1) = LO(Af +g) = AR(f) + 2(9); (f) = 2(f)".

2. ® is continuous.
3. If f(x) =z, then ®(f) = A.

Since ([, ¢)L(2)’q(M) > 0, for any ¢ € L(Q),q(M)7 and whenever the a priori estimate

holds, () C [0, 00). Therefore, there exists a unique algebra homomorphism ® : B([0, 00)) —
E(L(Q),q (M)) is continuous. The corresponding bounded,linear operator for es := e~ is denoted

by e *. Notice that %( — e_sz) = ze %%, so

d

£( — e_SD”) =0, [e_SDb].

A.2 Distributions in Product spaces

Definition A.2.1. Let Qj, Q9 contained in M. and let u; € C(1),us € C(€2), then the
function w1 ® ug in 1 X Q9 C M x M is defined by

(w1 ® ug)(x1, 22) = ui(z1)uz(x2),

for 1 € Q1,x9 € Q9, is called the tensor product of u; and us

103



Theorem A.2.2. If u; € D'(Q;),7 = 1,2, then there is a unique distribution u € D' (1 x Q)
such tha

u(Pr ® ¢2) = u1(P1)uz(¢2), @5 € C°(SY)).
Also, we have
u(¢) = uifua(w1, ¥2))] = uzfui(z1,22))], ¢ € C5°(21 x Qa),
where u; acts on the following function as a function of x; only.

Theorem A.2.3. (The Schwartz Kernel Theorem) Every K € D'(Q21 x Q2) defines a linear map
R from C§° () to D'(1) by

<R, Y >=K(¢@v), ¢ € C5° (), v € C5° (),

which is continous in the sense that ¢; — 0 in D'(Q1) if ¢p; — 0 in CF°(Qa).
Conversely, to every such linear map R, there is a unique distrbution K such that

A.3 Interpolation Theorem

Definition A.3.1. Let (X, ) and (Y, v) be two measure spaces and let 7" be a linear operator
from a linear subspace of measurable functions on (X, u) into measurable functions defined on
(Y,v). T is called an operator of type (p, q) if there exists a constant M > 0 such that

T flLacyy < MLfllLe(x) (A.3.1)
for all f € LP(X). The least M is called the (p, ¢)-norm of T'.

Theorem A.3.2. (Marcinkiewicz) Let (X, p) and (Y,v) be two measure spaces and let T be
a linear operator from a linear subspace of measurable functions on (X, u) into measurable
functions defined on (Y,v). Let po,p1,q0,q1 be numbers such that 1 < p;,q; < oo fori = 0,1.
Then, if T is of type (pi, q;) with (p;, q;)-norm M;, i = 0,1, then T is of type (p,q) and

T fl Lo vy < My~ ML f 1] Lo (x)- (A.3.2)
provided
1 1—t ¢t 1 1—t
—=—+— and — = +—,
by Po 4! at qo0 q1
with 0 <t < 1.
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Appendix B

On the globally analytic
hypoellipticity for L],-operator on
compact CR manifolds

In this appendix, we will discuss the global analytic regularity of the [, operator on a general
CR manifold of real (2n — 1) dimension, with n > 3. In particular, if M is a C'R-manifold
satisfying the conditions Dj and (CR — F;), we consider the following equation

Opv = f.
If f is globally analytic, we conclude that v is globally analytic as well. The methods applied in
this paper are inspired from [Ta76|, [Ta81].

B.0.1 Analytic Class and Some Geometrical Conditions

First, we recall the standard definition of analytic class.

Definition B.0.3. A smooth function f belongs to the analytic class A(M) at xy provided
there exists a neighborhood U C M of zp and constant C} such that for all multi-indices

a = (041) "'>a2n—1)
D8 f(2)] < CF (o)1,

for any x € U, where the derivative symbol D% = (Xl):l...(XQn_2)32"_2Tan_l.
The following proposition is necessary

Proposition B.0.4. The space A(M) is a vector space and a ring, with respect to the arithmetic
product of functions. Moreover it is also closed under differentiation.

The natural definition of analytic class of (0,¢)-forms is: a (0, q)-forms f = Z\I\=q frwr
belongs to the analytic class A,(M) if its each coefficient is in A(M).
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In order to state our results, we need some critical geometrical conditions on M. The first
one is the D(q) condition defined in Chapter 1. Note that the Y (q) condition, i.e., 0 < o4 < T,
for all possible o4, implies the D(¢q) condition.

Definition B.0.5. Seting correspondingly 0 < s¥(z),s (z),5%(z) < n — 1 the number of
positive, negative and zero eigenvalues of the Levi form at the point z € M, we assume
that s’(z) = s be a constant, uniformly in x. That means the Levi form has constant rank
st(x)+s () =n—s"—1, forall z € M.

Proposition B.0.6. If the D(q) condition holds and the Levi matriz (c;;) has constant rank
n —q, the Y(q) condition holds as well.

Proof. 1t is easily to derive that 7 > 0. Now, if 7 > 0, we are done. Otherwise, we can see that
o4 = 0 for all possible one, since D(g) holds. Now, the constant rank n — ¢ means that the Levi
matrix has (¢ — 1) zero-eigenvalues, all the rest are non-zeros. This implies that there is some
o4 different from zero, and we have a contradiction. Therefore, the Y (¢) condition holds. O

Next, we will introduce a ”good” vector field T” playing a critical role in our computing.
on some open subset of M such that the Lie brackets of TV with L1, ..., L,—1,L1,...,L,—1 are
independent on T

”Good”-(T) Condition. Suppose that T is real analytic, nowhere zero. M is called to
satisfy the good — T condition if there exist a finite sequence of aq, ..., an_1, b1, ..., by,—1 such that
the following vector field

n—1 n—1
T'=T+) a;Lj+ Y biL; (B.0.1)
j=1 j=1
has the same properties as T and
[T/,,C] =0 mod (Ll,...,Ln_ljfl,...,fn_l),

for all £ € span{L1,...,Lp_1}.

For example, when the Levi matrix is invertible, the sequence of a1, ...,a,_1, b1, ..., b,—1 is deter-
mined from the coefficients of T in the commutator [T, L;] and [T, L], for k =1,....,n — 1.

In the local frame, we can identify the operator [y with

n—1 n—1 n—1 n—1
Op= > apliLe+ Y dipLil+ Y biLi+Y ViLj+a (B.0.2)
Gk=1 Gk=1 j=1 j=1

The next condition was introduced in [KPZ12]. Let ¢ be a smooth function, denote by (¢;;) the
matrix of the Levi form L4 = (99, — 0,0) (), and by << )\i’_l the ordered eigenvalues
of [,qg.
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Definition B.0.7. Let ¢ be a point of M and ¢ an index in the range 1 < ¢ < n — 1. We say
that M satisfies property (CR — P,) at xg if there exists a family of smooth weights {¢“} in a
neighborhood U of z( such that

¢°(2)] <1, z €U,

i )\j’;(x) >e !, 2z € Uand Ker(Levi form at z) # 0. j; € {1,...,n — 1}.

It is obvious that (CR — F,) implies (CR — P) for any k > q.

Lemma B.0.8. Let M be a compact CR manifold of dimension 2n — 1, with n > 3. Assume
that (CR — P,;) and D*(q) hold for a fized ¢ with 1 < q < 5% over a covering {U} of M. Then
we have the following full compactness estimates: given K > 0, there is C,Ck such that

n—1
/ —
S S (Ll + Bl n) + Kl < CQGuw) + Ccllulfyr. (B0
|[J]=q 5=1
for any (0,k)-form uw € Dom((p) and ¢ <k <n—1-—q.

Proof. Let xg € M, for a suitable neighborhood U of g, using the modified Kohn-Morrey-
Hormander Estimate in [KPZ12] combined with Kohn’s microlocalization as above, we have

n—1
‘|3bu||%2(M) + ||8Zu||%2(M) 2 HLUH%?(M) + Z Z (Cijuz’KanK)
|K|=g—1i,j=1

+ O(I[Zeull- | + [lul?),

(B.0.4)

for any u € A%4(C§°(M)). Now, as a consequence, with the sufficiently small € > 0. D(q)
implies that any sum of distinct g values among A1, ..., \,—1 is non-negative, i.e, Zzzl Aj >0,
for Aj, € {A1,..., \n—1}. This property is called weak g-convezity (see [Ho91]). By a unitary
change of coordinates, we can assume that the Levi matrix (c”)?;:ll is diagonal. Hence, from
these observations, the following inequality follows:

n—1
Z Z (cijuiK,qu) Z 0, (B.0.5)
|K|=q—14,j=1
for any (0, g)-form u. This means
15l ) + 18l By 2 [ ZulZay + OUITull Il + ). (B06)

for any u = le\:q urwr. Furthermore, following the setup by Ho [Ho91], the estimate (B.0.6))
is also true for any u = Z|I|:k urwyr, withn—1>k > q.
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Next, arguments in [Appendix, [Koe02]] (also hold for the considering 7" instead of T') apply to
show that

18bul B ary + 135l Baary 2 11 ZulZeqary + 1 TullZean + O(\Tulllul] + [[ul?),  (B0.7)

and we know that if D¢(¢) condition holds, then D¢(k) does also, with the range ¢ < k <n—1—gq.
Therefore, again, the estimate is true for any (0, k)-forms, with ¢ <k <n—-1-—gq.

Finally, applying the above inequality to the proof of the main result in [KPZ12], the
same compactness estimate holds, and then we have the full estimate as desired. ]

We also have the closed range property when M satisfies the conditions of (CR — P;) and
D<(q).
Corollary B.0.9. Let M be a compact CR manifold of dimension 2n — 1, with n > 3. Assume
that (CR — Py) and D(q) hold for a fized q with 1 < q < "Tfl over a covering {U;} of M.
Then the hypothesis of closed-range for the operator O, holds in the spaces Lg,k(M), where
g<k<n—-1-gq.
Proof. We want to show that

|’uHL87k(M) < CHabuHLgyk(M)v (B.0.8)

for all (0, k)-form u € Dom(0y) N Ker(dy)*, where ¢ <k <n—1—gq.
If does not hold, we can find a sequence of (0,k)-forms {u;} C Dom(0y) N Ker(dy)*,
||uj]|r2 = 1 such that
llujllez oy > 3110512z arys (B.0.9)
this implies
Jliglo ||5buj||L37k(M) =0.
Now, take a subsequential L?-weak limit up of {uj,} C {u;}, this limit belongs to Ker(d) N

Ker(dy)*, so ug = 0 and [|ug||3,-, = 0. Finally, to get contradiction, take the limit in the fully
compactness estimate with u;,, and notice that lim;_, ||u || 2 = 1 as it’s definition. O

In fact that, the assertion of closed range for 0, operator can be proved if we assume only
(CR — P;) and weak g-convexity (see in [Ho91]). But, here we need more than closed range

property.

Now, we can state the main theorem.

Theorem B.0.10. Let M be a compact CR-manifold of dimension 2n — 1 (n > 3) satisfying
(CR— FPy) and D*(q) condition, and that is also analytic. Assume that the good — (T') condition

holds and the vector fields {L1, ..., Ly_1,L1, ..., Ly_1,T} also belong to the analytic class. Then
if w is in Ao’q/(C’goM)), g<q¢ <n—1-g¢q, and

Uy = f,
with f € Ay(M) , then u belongs to the analytic class Ay (M).
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Before proving the theorem, we will introduce a ”suitable” partition of unity globally defined
on M. This family exists by using localizing functions due to Ehrenpreis (1960).

Definition B.0.11. A family of functions {¢;};—12.. n in C§°(M) such that ZFI ;=1 on
M is said to be an analytically localizing family provided there exists a constant C independent
of j such that

W](k) (z)] < CFFLk,

for k < 3j.

B.1 Proof of the Theorem [B.0.10]

Proof. We follow the approach by Tartakoff [Ta76]..
We have to show that, for any multi-indexes o« = (a1, ..., a9,—1) and k > 0, there is a constant
Cy depending on u such that

|D%u(z)| < ClHall. (B.1.1)

Equivalently, we must prove that there exists an constant C,, (of course, it is different from the
previous one), such that for all a = |a|, (see Proposition 1.4.2, [Ro93|)

|Op(a)u(z)| < C¥al, (B.1.2)

where Op(a) is any a-th order differential operator formed by a successive applications of the
Lj’s, L;’s, and T acting in z-variables.
The key point in our proof is that for every K > 0, there is a constant C'x > 0 such that

2n—2

1) ull22 ) + K-llul|?
; 0.4(M) (B.1.3)

< Co|(Opu, U>Lg’q(M)‘ + CK'HUHEJ,;(M)'

By Sobolev’s Lemma, it is sufficient to provide that for given wy CC wo CC (0,00) x M, and
P € C§°(we), ¥ =1 on wy, the following holds

1¥Op(a)ullr> < C5H (al). (B.1.4)

We also denote by Op(l,a) any Op(a) with exactly [ terms of L; or L; (without T-direction).
We have

Op(l,a) = WOp(k — 1,a — 1) modulo operators of the form Op(l,a — j), j > 1,

where W € {L1,...,Ln_1,L1, ..., L,_1}. Since T is the weakest of the tangential vector fields in
the estimate, we will begin with terms of pure powers of 7', i.e, ¥)TPu. From the good — (T')
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condition, it is suffices to proceed on the T’-direction.

Now, from (B.1.3)), we obtain that
n—1
By = S IWRTPully o+ KT
j=1
< Co}<Db¢T/pU,¢T'pU>L3 q(M)\ + CK~||¢TIPUH§{5;(M) (B.1.5)

< Col{¥T""Oyu, wT’pu>Lg q(M)‘ + C'K~|\T/1TIPUH§{0—1(M)
s »q

+ Co|(¢ [, 9] T, T/pu>Lg L) | + Co| (B, T, sz/pu>L(2) L) k

The first term in the right-hand side of (| is bounded from above by C.||¢T" f||?, +
Lg (M)
e|[pT"Pul]?, , for sufficiently small € > 0. The term e|\wT’puH can be absorbed in the

M)
left-hand 31de of Im
Now, the third term in the right-hand side of (B.1.5) is following

[ Re(W [On, 0] T, T7u) 5| < ([0 [Fo W]JTP0, TP 1]

(B.1.6)
< C-HWTIPUH%gq(M)

The appearance of 1)’ is the reason that our problem must be global, not local. So, we have
to assume that 7', and then TP, is globally defined.
Now, the last term in the right-hand side of is more complicated. We will need an
expression for the more complicated bracket

p—1
[DIn T/p] _ Z T/p/ [Db; T/] T/p_p/_]..

p'=0

By Property (B.0.1)) and -, we have

(05, T'] = Z((T)(A — coef.); p)W; Wy, + Z(A — coef.);W; + (A — coef.),
Jik J

where the term (7")(A — coef.); ;) denotes (at most) of first derivative in z-variables of (A —

coef.); k).
Hence,
P / / /
vaT/p = Z ( > ZTIP (.A — coef.)j,k))WjWkT'p’p + ...
where ”...” are the similar terms with lower order of W and no more 7", and the underlining of

(pg,l) means for each p’, there are possibly ( ) terms of the indicated form.
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Now, for example, we will concentrate the terms of highest power of 17, i.e , p.aWWoT"P~1,
applying a weighted Schwartz inequality to these terms, we obtain

[(p-aWA W TP~ TP u)| < p*Cl[WYT Ml (o) + el[WOTulls (o) (B.1.7)

Again, the term €||WyT"Pul|

we have

2 . . .
12 (o) 18 absorbed in the left-hand side of (B.1.3). More generally,

p 2
00 T2 770) 1 ) < 8 S (((B) B R I UT 7l 11
4 PN\ )

. (B.1.8)
+ e-terms of HW¢TPUHL3 (M) -
sq

absorbed again

Iterating the principle terms, we get lower order terms

1 L , , ;oL ,
‘<[DmT'p]u,¢2T/pU>23,q(M)| <C) <§’) Rcoengoef(p/!){<¢T/pp FATP P by + ([ TP P |2
7= o (B.1.9)

J— , 1
+ Ol T ul -1 + (p L ) Reoe Rbge f (W) [WHT? 7 r}
k=1 >~ 7

[y

Now, we need to estimate the terms making the global regularity, ||[¢/T"7 7 ul| .2, for p' = 1, ..., p.
To do this, by assuming 7" globally defined, we recall the family of standard partition of unity
{v;} € C§°(M), Z;VZI ¥; =1 on M. We can assume that 0 <1; <1, j=1,...,N, then

N N
1T P 2 <> |77 Pullp2 < up 51D [T a2 (B.1.10)
j:l J=L ]:1

Cy

111



Hence, the compactness estimate for T"7u can be rewritten as follows

N n—1
Iy = Z{ S IWTullzy ary + K.mT'PuHLz}

i=1 ~ j=1

N N
<C. Z [T fll 2 + Cre Y [T ul [

+C’wZ{ > (p) coemef( ){(v TP f TPV >g (| TP | 2

p'=1

p— p
s (p p)Rcoechoeﬂ W kuup}} O Tl
:1N7 =1 (B.1.11)
<O [T f|| 12 + Ck Z TP ul| -
=1

=1
p

N
+C’w2{ Z <p> CO@choef( ){leT’P P fllzz + [T | g2

p'=1

p—p
+ <p kp)Rcoelecgoef(k!”|W¢iT/p_p/_kUHL2}}
k=1~ 7
N p
+C}<Z Z <§>Rcoechoef( I TP P || 1.
i=1p/'=1

where the new constants in the above estimates are independent of u and p, and K is sufficiently
large.
On the other hand,

Cr[[¢;T"ul |12q(;;(

M)

< Ox T 65T ul [

! /p—1 2
+CK||[T7¢]]TP u||Ha;(M

N
< Cr YT ullfy gy < Crasly1
i=1 ’

Now, we can see that, the order of direction T in the right hand side is less than p, only the
data term of f is not. Therefore, in all, from (B.1.5)), with new constant independent of v and p

p p P /
p—p
I, < C.RyRY(p! +C¢ZZRcoefR£o:f<p>< B )( D(ED Ly o (B.1.12)
p'=1 k=0

Now, when p = 0, we can see that Iy < R,, so by induction in 0 < ¢ < p,

Iy < CuCi(dY),
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we have

p p—p /
Kk p—p i
<O+ Co Y S Rt (0) (U7 )uhmicuor K- - 0,
p'=1 k=0
(B.1.13)
Choosing C, is large enough, we obtain
[6TPul| < CuCE(p). (B.1.14)

And hence, the main estimate (B.1.14]) in our approach is true for T-derivative.
By this estimate, we will analyze the term of full-order Op(l,p) with [ > 1. We know that

YOp(l,p) = WyOp(l —1,p — 1)

modulo operators of the forms ¢ Op(l,p — j)u, j = 1,2,..., which have the lower order of T”
direction. Hence, principally, we must consider the term Wz/JOp(l —1,p—1). This is dominated
by

1pOp(l — 1,p — 1) f[|72 + [[¥/Op(l — 1,p — )ul7.

+ ’<[Db, Op(l—1,p— 1)]“a¢20p(l —1p— 1)U>L2‘. (B.1.15)

The most important term is the last one, and as before, we obtain
{[06,0p(l = 1,p = D]u, *Op(l = 1,p — Vul2

< Z (( wOp(L,p - p>u||Lz>2 (B.1.16)

+ € -terms of the form ||¢Op(l, p)ul|3,,

again, the terms with e is absorbed in the left, and the terms with large constant are bounded
by induction hypothesis.

Up to all, modulo with the term of f and less harmful terms (the terms with lower power can
be estimated by induction), we have

p

p
> 114 Op(l,p)ullz2 < p.C.> [[ Op(l,p — 1)ul| 2

=1 =1

inductive hypothesis

» (B.1.17)
+C) || Op(l,p — Dul|2 + C. [T ul| 2 .
N—_———

=1 <RuRY(p))

Notice that we can not choose some v in the partition of unity as before since there is some W
in the construction ¢’ Op(l,p — 1)u are possible not global, so we will iterate the estimate above
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for this term with ¢ chosen among partition of unity by Tartakoff in (B.0.11f). In particular,
leading us to estimate the following terms

Iy won = 19P0p(,p = pull, P =1,....p. (B.1.18)
By the construction of the partition of unity, when p’ = p, there is ¢ = 1,
L(®) = |[pPu| < Cu.CE(p)).

Now, let py > 0, we will estimate ||9)®)Op(l, p — po)u|| by the inductive hypothesis at the time
p=p >p,>0

I yon = [W*0p(l,p — p)ul] < CLCE (p1).CE7 ((p - p'))). (B.1.19)

Again, modulo some less harmful terms, as before

p p
> @) Op(l,p = po)llr2 < (p—po)-C. Y [[¥*) Op(l, p — po — 1)ul| 2
=1 =1

<C'C'Po(pe!)dC7P—Po—1((p—po—1)!) (B 1 20)

P

+C.Y_ullg?t Op(lp —po — Dullge + C. 9T P0ul[12
—
I=1 <R RO ((p—po))

Therefore, up to all, with the new constant (sufficiently large) depending of wu,

p
> 1w Op(l p)ull 2 < CLCE(PY), Vp.. (B.1.21)

=1

This completes the proof. ]

114



Bibliography

[Ball]

[BdCS4]

[Blo96]

[BoRal0]

[BT76]

[Cat83]

[Cat87]

[Cat89]

[CLsS]

[Cho1]

[ChShO1]

[CKMO93]

L. Baracco—The range of the tangential Cauchy-Riemann system on a CR em-
bedded manifold, arXiv:1105.3500v1, (2011)

J. Bruma, J. del Castillo—Holder and LP-estimates for the J-equation in some
convex domains with real-analytic boundary, Math. Ann.,, 296(4), 527-539 (1984).

Z. Blocki. The complex Monge-Amp‘ere operator in hyperconvex domains. Ann.
Scuola Norm. Sup. Pisa Cl. s¢i.23:721-747, 1996.

A. Boggess, A. Raich—Heat kernels, Smoothness estimates and Exponential
decay. Invent. Math., (190)2, 505-510 (2012)

E. Bedford and B. A. Taylor—The Dirichlet Problem for a Complex Monge-
Ampere Equation. Inventiones math. 37:1-44, 1976.

D. Catlin—Necessary conditions for subellipticity of the d-Neumann problem.
Ann. of Math. (2), 117(1):147-171, 1983.

D. Catlin— Subelliptic estimates for the 9-Neumann problem on pseudoconvex
domains. Ann. of Math. (2), 126(1):131-191, 1987.

D. Catlin— Estimates of invariant metrics on pseudoconvex domains of dimension

two. Math. Z., 200(3):429-466, 1989.

M. Christ—Regularity properties of the J, equation on weakly pseudoconvex CR
manifolds of dimension 3, J. Amer. Math. Soc, 1, 587-646 (1988).

M. Christ—On the J,-Equation for Three-Dimensional CR Manifolds, Proc. Sym-
pos. Pured Math. , Volume 52, Part 3, 63-82 (1991).

S. C. Chen, M. C. Shaw —Partial Differential Equations in Several Complex
Variables, Studies in Adv. Math, AMS Int. Press., 19, 2001

Z. Chen, S. G. Krantz, D. Ma—Optimal LP estimates for the d-equation on
complex ellipsoids in C", Manuscripta Math. 80, 131-149 (1993).

115



[CKNS85]

[CNS92]

[Co97]

[De91]

[DFWS6]

[DFF9Y]

[FLZ11]

[Fol99)]

[FoKoT72]

[FP83]

[FS89]

[He70]

[HKR13]

[HK13]

L. Caffarelli, J.J. Kohn, L. Nirenberg, and J. Spruck—The Dirichlet problem
for nonlinear second-order elliptic equations II. Complex Monge-Ampere equations
and uniformly elliptic equations. Comm. Pure Appl. Math.38: 209-252, 1985.

D.-C. Chang, A. Nagel, and E. L. Stein—Estimates for the 0-Neumann prob-
lem in pseudoconvex domains of finite type in C? . Acta Math., 169, 153-228, 1992.

D. Coman— Domains of finite and Holder continuity of the Perron-Bremermann
function. Proc. Amer. Math. Soc. 125(12): 3569-3574, 1997.

M. Derridj— Microlocalisation et estimations pour d, dans quelques hypersurfaces
pseudoconvexes, Invent. Math., 104, 631-642, (1991).

K. Diederich, J. E. Fornaess, J. Wiegerinck —Sharp Hélder estimates for 0
on ellipsoids, Manuscripta Math., 56, 399-417 (1986).

K. Diederich, B. Fischer, J. E. Fornaess—Holder estimates on convex domains
of finite type, Math. Z., 232 , 43-61 (1999).

J. E. Fornaess, L. Lee, Y. Zhang—On suporm estimates for 0 on infinite type
convex domains in C%, J. Geom. Anal., 21, 495-512 (2001).

G. B. Folland—Real Analysis : modern techniques and their application, 2nd
Edition Pured and Applied Mathematics (New York). John Wiley & Sons Inc., New
York (1999).

G. B. Folland, J. J. Kohn —The Neumann Problem for the Cauchy-Riemann
Complex, Ann.of Math Studies 75, Princeton Univ.Press, Princeton, N.J., 75
(1972).

C. Fefferman, D. H. Phong—Subelliptic eigenvalue problems. Conference on
harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981),
590-606, Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983.

J E. Fornaess and N. Sibony—Construction of P.S.H. functions on weakly pseu-
doconvex domains. Duke Math. J. 58 (3): 633655, 1989.

G. M. Henkin—Integral representation of functions in strictly pseudoconvex do-
mains and applications to the 9-problem, Mat. Sb., 124, 300-308 (1970).

L. K. Ha, T. V. Khanh, A. Raich—LP-estimates for the d-equation on a class
of infinite type domains. (in preparing)

L. K. Ha, T. V. Khanh—Boundary regularity for the Complex Monge-Ampere
equation on peudoconvex domains of infinite type. (in preparing)

116



[Ho91]

[Hor67]

[Ker71]

[Khal0]

[Khal2]

[Khal3]

[Ko02]

[Khal3]

[Koe02]

[Kol05]

[KoNi73]

[KPZ12]

[Kr76]

[KT13]

[KZ10]

L. P. Ho—0-problem on weakly g-convex domains, Math. Ann, Volume 290, 3-18
(1991).

L. Hormander—Hypoelliptic second order differential equations, Acta. Math.,
119, 147-171 (1967).

N. Kerzman —Holder and LP estimates for solution of Ju = f in strongly pseudo-
convex domains, Comm. Pure Appl. Math., 24 , 301-379 (1971).

T. V. Khanh—A general method of weights in the O-Neumann problem.
arxiv:1001.5093v1, 2010. Ph.D. thesis.

T. V. Khanh—Supnorm and f-Hélder estimates for 9 on convex domains of general
type in C? J. Math. Anal. Appl., 403: 522-531, 2013.

T. V. Khanh— Boundary behavior of the Kobayashi metric near a point of infinite
type. arXiw:1302.0789, 2013.

J. J. Kohn—Superlogarithmic estimates on pseudoconvex domains and CR man-
ifolds, Ann. Math. 156, 213-248 (2002).

T. V. Khanh—Supnorm and f-Hoélder estimates for di-bar on convex domains of
general type in C?, J. Math. Anal. Appl. 403:2, 522-531 (2013).

K. D. Koenig—On Maximal Sobolev and Hélder estimates for tangential Cauchy-
Riemann operator and Boundary Laplacian, Amer. J. of Maths., 124, 129-197
(2002).

S. Kolodziej—The Complex Momge-Ampere Equation and Pluripotential Theory,
Memoirs of AMS, 178(840) (2005).

J. J. Kohn, L. Nirenberg—A pseudoconvex domain not admitting a holomorphic
support function, Math. Ann., 201, 265-268 (1973).

T. V. Khanh, S. Pinton, G. Zampieri—Compactness estimates for [, on a CR
manifold, Proc. Amer. Math. Soc, 19, 32293236 (2012).

S. Krantz—Optimal Lipschitz and LP estimates for the equation du = f on
strongly pseudoconvex domains, Math. Ann., 219, 233-260 (1976).

T. V. Khanh, N. V. Thu—Bergman kernel function of complex ellipsoid of
general type (in preparation).

T. V Khanh and G. Zampieri— Regularity of the 9-Neumann problem at point
of infinite type. J. Funct. Anal., 259(11):2760-2775, 2010.

117



[KZ12]

[LaNi66]

[Li04]

[Naj

[Nag6]

[NaSt01]

[NaSt04]

[NaSt06]

[NSWS5]

[Ni06]

[Mags)]

[McN91al

[McN92a)

[Ovr71]

[PS83]

T. V. Khanh and G. Zampieri— Necessary geometric and analytic conditions
for general estimates in the 0-Neumann problem. Invent. Math., 188(3):729-750,
2012.

P. D. Lax, L. Nirenberg —On stability for differential schemes: a Sharp form of
Gérding inequality Comm. Pure Appl. Math., 19, 473 (1966).

S. Y. Li— On the existence and regularity of Dirichlet problem for complex Monge-
Ampere equations on weakly pseudoconvex domains. Calc. Var., 20:119-132, 2004.

A. Nagel—Analysis and Geometry on Carnot-Caratheodory Spaces,
http://www.math.wisc.edu/ nagel /2005Book.pdf.

A. Nagel—Vector fields and nonisotropic metrics, Beijing lectures in harmonic
analysis (Beijing, 1984)., Ann. of Math. Stud.,112, Princeton Univ. Press, Prince-
ton, NJ |, 241-306 (1986).

A. Nagel, E. M. Stein—The [J,-Heat equation on pseudoconvex manifolds of
finite type in C?, Math. Z., 238, 37-88 (2001).

A. Nagel, E. M. Stein—On the product theory of singular integrals,
Rev. Mat.Iberoamericana, 20, 531-561 (2004).

A. Nagel, E. M. Stein—The 0,-complex on decoupled boundaries in C*, Ann.
of. Math, 164, 649-713 (2006).

A. Nagel, E. M. Stein, S. Wainger—Balls and metrics defined by vector fields
I: Basic properties, Acta Math., 155, 103-147 (1985).

A. C. Nicoara—Global regularity for 9, on weakly pseudoconvex CR manifolds,
Adv. Math., 199, 356-447 (2006).

M. Machedon—=Szegt kernel on pseudoconvex domains with one degenerate eigen-
value, Ann. of Math., 128, 619-640 (1988).

J. D. McNeal— Local geometry of decoupled pseudoconvex domains. In Complex
analysis (Wuppertal, 1991), Aspects Math., E17, pages 223-230. Vieweg, Braun-
schweig, 1991.

J. D. McNeal—Convex domains of finite type. J. Funct. Anal., 108(2):361-373,
1992.

N. Ovrelid—Integral representation formulas and LP-estimates for O-
equation. Math. Scand. 29 , 137-160 (1971).

D. H. Phong, E. M. Stein— Singular integrals related to the Radon transform
and boundary value problems. Proc. Nat. Acad. Sci. U.S.A. 80, no. 24, Phys. Sci.,
7697-7701 (1983).

118



[PS86a)

[PSS6b]

[Ra78]

[Ra86]

[Ro93]

[Ta77]

[Ta76]

[Ta81]

[Sai80]

[Siu74]

[St78]

[StTa84]

[StTa85]

[St70]

D. H. Phong, E. M. Stein— Hilbert integrals, singular integrals, and Radon
transforms. 1. Acta Math. 157 | no. 1-2, 99-157 (1986).

D. H. Phong, E. M. Stein— Hilbert integrals, singular integrals, and Radon
transforms. I1. Invent. Math. 86, no. 1, 75-113 (1986).

M. Range—On the Holder estimates for Ou = f on weakly pseudoconvex domains,
In Several Complex Variables (Cortona, 1976/1977), 247-267. Scuola Norm. Sup.
Pisa, Pisa, 1978.

R. M. Range—Holomorphic Functions and Integral Representation in Several
Complex Variables, Grad.Text in Maths., Springer (108), 1986.

L. Rodino—Linear Partial Differential Operators in Gevrey Spaces, World Scien-
tific, 1993.

D. S. Tartakoff—On The Local Gevrey and Quasi-Analytic Hypoellipticity of [,
Comm. P. D. E., (2)7, 799-712 (1977).

D. S. Tartakoff—On the global real analyticity of solutions to [, on compact
manifolds, Comm. P. D. E., (1)4, 283-311 (1976).

D. S. Tartakoff—Elementary proofs of analytic hypoellipticity for 00, and the 0-
Neumann problem, Analytic solutions of partial differential equations, Asterisque,
89-90, 85-116 (1981)

T. Saito—Holder estimates on higher derivatives of the solution for d-equation
with C*-data in strongly pseudoconvex domain, J. Math. Soc. Japan Vol. 32, No.
2, 213-231-176 (1980).

Y. T. Siu—The 0 Problem with Uniform Bounds on Derivatives, Math. Ann. 207,
163-176 (1974).

N. K. Stanton—The Fundamental Solution of the Heat Equation associated with
the O-Neumann Porblem, J. d’Analyse Math., 34, 265-274 (1978).

N. K. Stanton, D. S. Tartakoff The Heat Equation for 0,-Laplacian, Comm.
Partial Differential Equation., 7, 597-686 (1984).

N. K. Stanton, D. S. Tartakoff—The real analytic and Gevrey regularity of
the Heat Kerkel for Oy, Pseudodifferential operators and applications (Notre Dame,
Ind., 1984), 247-259, Proc. Sympos. Pure Math., 43 (1985).

E. L. Stein—Singular Integrals and Differentiability Properties of Functions,
Princeton Univ.Press, Princeton, N.J., (1970).

119



[StWe75] E. L. Stein, G. Weiss—Introduction to Fourier Analysis on Euclidean Spaces,
Princeton Univ.Press, Princeton, N.J., (1975).

[Za08] G. Zampieri—Complex Analysis and CR Geometry, AMS ULECT 43, 2008.

120



	RIASSUNTO
	ABSTRACT
	ACKNOWLEDGEMENTS
	I SINGULAR INTEGRAL METHODS VIA NAGEL-STEIN THEORY
	Preliminaries
	CR manifolds and Kohn-Laplacian Operator
	The condition D(q)
	Condition of finite commutator type (Hömander's condition)
	The Szegö projection operators 
	The heat equation
	Some models of the b-Heat equations in Several Complex Varibles.
	Strong pseudoconvexity case.
	 Weakly Pseudoconvexity case.


	Geometry and Analysis on Carnot-Carathéodory Spaces
	Geometry on Carnot-Carathéodory Spaces
	Analysis on Carnot-Carathodory Spaces

	The Initial Value Problem For The Heat Operator s+b
	The heat kernel
	The heat equation on RM
	Pointwise estimates for the heat kernel


	II f-APPROACHES 
	Cauchy-Riemann Equations in C2
	Preliminaries
	Preparatory Lemmas
	Sup-norm and Hölder estimates for -Solutions
	Examples

	Lp-Estimates for -Solutions
	Proof of Theorem 4.4.1
	Complex Ellipsoid Case
	Real Ellipsoid Case
	Examples


	Complex Monge-Ampère Equations in Cn
	The operator (ddc)n
	Some well-known facts and the main result
	The f-Property 
	Proof of the main theorem 5.2.4
	A special domain

	Functional Analysis
	Spectral Theorem ( continuous functional calculus)
	Distributions in Product spaces
	Interpolation Theorem

	On the globally analytic hypoellipticity for b-operator on compact CR manifolds
	Analytic Class and Some Geometrical Conditions
	Proof of the Theorem B.0.10



