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RIASSUNTO

Lo scopo di questa tesi è quello di presentare l’influenza di notazioni di ” tipo” su equazioni
differenziali alle derivate parziali in più variabili complesse. Le notazioni di ”tipo” qui includono
il finito e il tipo di infinito, nel senso di Hörmander ”, e D’Angelo. In particolare, nella prima
parte, a condizione tipo finito, prenderemo in considerazione l’esistenza e l’unicità delle soluzioni
per il problema del valore iniziale associato ai operatore calore ∂s + �b su varietà CR. Il tipo
finito m è la condizione fondamentale per fornire stime puntuali del nucleo del calore attraverso
la teoria degli operatori integrali singolari sviluppate da E. Stein e A. Nagel, D.H. Phong e E.
Stein. Prossimo, nella seconda parte, introdurremo un nuovo metodo per indagare la equazioni
Cauchy-Riemann ∂̄u = φ. Le soluzioni sono costruite con via metodo rappresentazione integrale.
Inoltre, mostreremo che il nuovo metodo qui viene applicato anche ben al complesso operatore
Monge-Ampère ere (ddc)n in Cn. Il punto principale è che il nostro metodo può passare alcuni
risultati noti dal caso di tipo finito al tipo di infinito.

The shortest and best way between two truths of the real domain often passes
through the imaginary one - ”J. Hadamard”
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ABSTRACT

The aim of this thesis is to present influence of notations of ”type” on partial differential equa-
tions in several complex variables. The notations of ”type” here include the finite and the infinite
type in the sense of Hörmander, and D’Angelo. In particular, in the first part, under the finite
type condition, we will consider the existence and uniqueness of solutions for the initial value
problem associated to the heat operator ∂s +�b on CR manifolds. The finite type m is the crit-
ical condition to provide pointwise estimates of the heat kernel via theory of singular integral
operators developed by E. Stein and A. Nagel, D.H. Phong and E. Stein. Next, in the second
part, we will introduce a new method to investigate the Cauchy-Riemann equations ∂̄u = φ.
The solutions are constructed via the integral representation method. Moreover, we will show
that the new method here is also applied well to the complex Monge-Ampère operator (ddc)n in
Cn. The main point is that our method can pass some well-known results from the case of finite
type to infinite type.

The shortest and best way between two truths of the real domain often passes
through the imaginary one - ”J. Hadamard”
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METHODS VIA NAGEL-STEIN

THEORY
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Chapter 1

Preliminaries

In Riemannian geometry, the Laplace-Beltrami operator acting on functions on a Riemannian
manifold M is ∆ = d∗d. In order to study the relation between geometrical objects and analytic
ones on M , one of well-known methods is to consider the heat equation associated to the Laplace-
Beltrami operator. Let u defined on R+ ×M . We say that u solves the heat equation if

∂u

∂s
+ ∆u = 0.

Moreover, we also have the initial value problem for the heat equation. That is to find a function
u(s, x) solving the heat equation on M with

lim
s→0+

u(s, x) = f(x).

The well-known fact is that there is a unique fundamental solution H(s, x, y) of the initial value
problem, a distribution on R+ ×M ×M such that

u(s, x) =

∫
M
H(s, x, y)f(y)dV (y).

The kernel H(s, x, y) is smooth.
Now, in the first part of this thesis, we will consider one analogue of the heat equation in
Cauchy-Riemann geometry. That is an equation associated to the �b-heat operator. Here, �b
is a second-order system of partial differential operators associated to the tangential Cauchy-
Riemann operator ∂̄b. Unfortunately, both of these are non elliptic on Cauchy-Riemann manifolds
without boundary. Hence, the classical approach in Riemannian geometry is not able to proceed
the �b-heat equation.
The main purpose in this part is to introduce the singular integral operators approach in Nagel-
Stein sense to investigate kernels of solutions solving to heat �b- initial value problems. This
work is motivated to the fourth level in Fefferman’s hierarchy, deriving estimates directly from
the singularities of the integral kernels.
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1.1 CR manifolds and Kohn-Laplacian Operator

We summarize the material background we will need. First of all, we begin with the basic
notations of CR manifolds, pseudo-convexity, Hermitian metrics, and operators ∂̄b, �b. For more
discussions, we refer the books by [FoKo72] and [ChSh01], or [Za08].
Let M be a C∞ compact, oriented manifold of real dimension 2n−1, n ≥ 3. Let T (M), T ∗(M) be
tangent bundle and cotangent bundle respectively associated with M . Let CT (M) = T (M)⊗RC
, CT ∗(M) = T ∗(M)⊗RC be the complexified tangent bundle and complexified cotangent bundle
respectively over M .

Definition 1.1.1. An integrable Cauchy-Riemann (CR) structure onM is an (n−1)-dimensional
complex subbundle T 1,0 of the complexified tangent bundle CT (M) such that

1. T 1,0 ∩ T 0,1 = {0} where T 0,1 = T 1,0.

2. If Z and W are smooth sections of T 1,0, then [Z,W ] is as well.

Such a manifold M endowed with an integrable CR structure is called a CR manifold.

In particular, if M is an oriented real hypersurface in Cn, M inherits a CR structure, with
T 1,0(M) = T 1,0(Cn)∩CT (M). Indeed, since T 1,0(Cn)∩T 0,1(Cn), (1) holds. Now, take any vector

fields Z, W in T 1,0(M) defined on some open subset U of M . By definition, Z =
∑n−1

j=1 aj(z)
∂

∂zj

and W =
∑n−1

j=1 bj(z)
∂

∂zj
, so [Z,W ]=

∑n−1
j=1 cj(z)

∂

∂zj
, that means [Z,W ] is a section of T 1,0(M).

Let θ be a real, non-vanishing one form which annihilates T 1,0 (and thus T 1,0 ⊕ T 0,1). It deter-
mines a Hermitian form Lθ, the Levi form, on T 1,0 by

Lθ(Z,W ) = −idθ(Z,W ),

for Z,W ∈ T 1,0 and where i =
√
−1.

The conformal class of the Levi form does not depend of the choice of θ. It is an intrinsic
invariant of the CR structure, because any choice θ′ is of the form fθ and Lfθ = fLθ. Thus,
this is also true for the following definition.

Definition 1.1.2. The CR manifold M is called weakly pseudoconvex if there is a form θ such
that the Levi form Lθ is positive semi-definite. And M is called strongly pseudoconvex if there
is a form θ such that the Levi form is positive definite.

Example 1.1.1. If M is the boundary of a sphere in Cn, M is strongly pseudoconvex. And if
M is the boundary of the complex ellipsoid Ω = {(z1, ...., zn) ∈ Cn : |z1|2m1 + |z2|2m2 + ... +
|zn|2mn − 1 < 0}, for m1, ...,mn > 1, then M is weakly pseudoconvex manifold.

Definition 1.1.3. A Hermitian metric on the CR manifold M is a Riemannian metric, extended
to be Hermitian on CT (M), such that T 1,0⊥T 0,1.
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In order to study the operator ∂̄b and its adjoint operator with Hilbert space techniques, we
must equip M with a such Hermitian metric, this induces an inner product of (p, q)-forms in
Hilbert space theory.

Now, denote by T ∗1,0(M) and T ∗0,1(M) the dual spaces of T 1,0(M) and T 1,0(M) respectively
and T ∗(M) be the dual bundle of T (M). Let

E = (T 1,0 ⊕ T 0,1)⊥,

and, we define Λp,0 to be the p-forms in CT ∗(M) which annihilate E⊕T 1,0. Λp,q is the subbundle
of Λp+q(CT ∗(M)) generated by Λp,0 ∧ Λ0,q, where Λ0,q = Λq,0.

The tangential Cauchy-Riemann operator ∂̄b : C∞(Λp,q) → C∞(Λp,q+1) is defined as
follows

∂̄b := πp,q+1d,

where πp,q+1 is the orthogonal projection of Λp+q+1 onto Λp,q+1 and d is exterior differentiation.
This operator forms the tangential Cauchy-Riemann complex

0 −−−−→ C∞(Λp,0(M))
∂̄b−−−−→ C∞(Λp,1(M))

∂̄b−−−−→ ...
∂̄b−−−−→ C∞(Λp,n−1(M)) −−−−→ 0.

The operator ∂̄b is a derivation, i.e, if φ ∈ C∞(Λp,q), and ψ ∈ C∞(Λr,s), then

∂̄b(φ ∧ ψ) = (∂̄bφ) ∧ ψ + (−1)p+qφ ∧ ∂̄bψ.

Moreover, from (2) in Definition 1.1.1, we imply that ∂̄2
b = 0.

Notice that p plays no role in the formulation of the tangential Cauchy-Riemann operators.
Thus, in this thesis, it suffices to consider the action of ∂̄b on type (0, q)-forms, for 0 ≤ q ≤ n−1.

To describe ∂̄b more explicitly, let U be an open set such that Λ1(U) is trivial. We pick
an orthogonal basis {ω1, ω1, ..., ωn−1, ω1, ω2, ..., ωn−1, ω0} of Λ1(U) such that {ω1, ..., ωn−1} is
a basis of Λ1,0(U), and ω0 is a real annihilator of T 1,0. Next, let {L1, ..., Ln−1, L1, ..., Ln−1, T}
be the (local) basis dual to {ω1, ω1, ..., ωn−1, ω1, ω2, ..., ωn−1, ω0}. We may assume T is the real
vector field.

Definition 1.1.4. The Hermitian matrix
(
ckj
)
k,j=1,...,n−1

defined by

[Lk, Lj ] = ickjT, mod(L1, ..., Ln−1, L1, ..., Ln−1)

is called the Levi form associated with the given CR structure.

The Levi matrix (cij) clearly depends on the choices of L1, ..., Ln−1 and T . However, the
number of nonzero eigenvalues and the absolute value of the signature of (ckj) at each point are
independent of the choice of L1, ..., Ln−1 and T . Hence, after changing T to −T , it makes sense
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to consider positive definiteness of the matrix (cij).
It turns out that if the Levi form is semi-definite positive, we say that M is a weakly pseudo-
convex manifold, but in this thesis, we will only require the weaker condition on the Levi form
( in the next section), that means the condition of pseudoconvexity does not necessarily hold.

We fix a Hermitian metric on CT (M) such that L1, ..., Ln−1 is an orthonormal basis and
T 1,0(M)⊥T 0,1(M), the adjoint operator of ∂̄b is defined relative to this metric.
We extend ∂̄b to L2

(0,q)(M) in the sense of distribution, where L2
(0,q)(M) is the space of (0, q)-

forms on M whose coefficients belong to L2(M). In particular, we can define the domain of
∂̄b.

Definition 1.1.5. Dom(∂̄b) is the subset of L2
(0,q)(M) composed of all forms φ for which there

exists a sequence of {φm} in C∞(Λ0,q(M)) satisfying:

1. φ = limm→∞ φm in L2,

2. {∂̄bφm} is a Cauchy sequence in L2
(0,q+1)(M)

For all φ ∈ Dom(∂̄b), let lim
m→∞

∂̄bφm = ∂̄bφ which is thus well-defined. We have the complex

0 −−−−→ L2
(0,0)(M)

∂̄b−−−−→ L2
(0,1)(M)

∂̄b−−−−→ ...
∂̄b−−−−→ L2

(0,n−1)(M) −−−−→ 0.

We define the domain of the adjoint ∂̄∗b as follows

Dom(∂̄∗b ) = {φ ∈ L2
0,q(M) : there exixts a unique (0, q − 1)-form g ∈ L2

(0,q−1)(M) such that

(φ, ∂̄bψ) = (g, ψ) for every (0, q − 1)-form ψ ∈ L2
(0,q−1)(M)}.

In this case, we define ∂̄∗bφ = g. Next, we denote the domain of �b by

Dom(�b) = {φ ∈ L2
(0,q)(M) : φ ∈ Dom(∂̄b) ∩Dom(∂̄∗b ),

∂̄bφ ∈ Dom(∂̄∗b ) and ∂̄∗bφ ∈ Dom(∂̄b)},

where, the Kohn-Laplacian operator

�b = ∂̄b∂̄
∗
b + ∂̄∗b ∂̄b.

Notice that �b is a linear, closed, densely defined self-adjoint operator from L2
(0,q)(M) into itself.

On U , we can express a smooth (0, q)-form φ as

φ =
∑′

|J |=q

φJ ωJ ,

where J = (j1, ..., jq) are multi-indices, and the prime means that we take the sum over only
increasing multi-indeces. In fact, any (0, q)-form can be expressed as this way. Then, the operator
∂̄b is

∂̄bφ =
∑′

|J |=q

n−1∑
j=1

Lj(φJ)ωj ∧ ωJ + terms of order zero, (1.1.1)
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and integration by parts yields

∂̄∗bφ = −
∑′

|K|=q−1

n−1∑
j=1

Lj(φjK)ωK + terms of order zero. (1.1.2)

Then, a straightforward calculation shows that

�bφ =− [
∑′

j /∈J,
|J |=q

(LjLjφJ)ωJ +
∑′

j∈J,
|J |=q

(LjLjφJ)ωJ

+
∑′

j 6=k,
|J |=q

[Lj , Lk]φJ ωj ∧ (ωkcωJ)] + Lφ
, (1.1.3)

where ωkcωJ = 0 if k /∈ {J}, otherwise ωkcωL = (−1)l−1ωj1 ∧ ... ∧ ωjl−1
∧ ωjl+1

∧ ... ∧ ωjq if
k = jl, and L is a first order differential operator involving only differentiations in the directions
L1, ..., Ln−1 and L1, ..., Ln−1.

Definition 1.1.6. The operator ∂̄b is said to have the closed range in L2 if range(∂̄b) = range(∂̄b).

The closed range hypothesis implies that (ker∂̄
(0,q)
b )⊥ = range(∂̄

∗(0,q+1)
b ) and (ker∂̄

∗(0,q+1)
b )⊥ =

range(∂̄
(0,q)
b ). Moreover, for given f ∈ range(∂̄

(0,q)
b ), there exists u⊥ ker∂̄

(0,q)
b such that ∂̄

(0,q)
b u = f

and ||u||L2
0,q(M) . ||f ||L2

0,q+1(M). In particular, this hypothesis is always satisfied when M =

bΩ ⊂ Cn is the boundary of a (smoothly bounded) pseudoconvex domain. If M is a compact,
oriented, weakly pseudoconvex manifold of dimension (2n−1), n ≥ 3, embedded in CN , (n ≤ N),
of codimension one or above, and endowed with the induced CR structure, then ∂̄b has closed
range (see [Ni06]). Recently, in [Ba11], the hypothesis of closed range holds when M is a smooth,
compact, connected, CR manifold of hypersurface type, pseudoconvex-oriented.

In this thesis, the considered CR-manifold M is an abstract one, so it is assumed to have
the closed range. Next, we will introduce two critical geometrical conditions in our approach.

1.2 The condition Dε(q)

This condition was introduced first by K. Koenig [Koe02].
Let M be any CR-manifold of dimension 2n−1 with n ≥ 3. For 1 ≤ q ≤ n−1, let σq denote any

of the

(
n− 1

q

)
sums of q eigenvalues λj of the Levi matrix (ckj) and τ =

n−1∑
j=1

λj be the trace

Definition 1.2.1. Let U ⊂M be an open subset. We say that the Dε(q) condition holds in U
if for every compact set K ⊂ U , there exists εK > 0 such that εKτ ≤ σq ≤ (1 − εK)τ , for all
possible sums σq. However, since this is a local condition, we can always assume that

εKτ ≤ σq ≤ (1− εK)τ ∀ possible σq, (1.2.1)

in U , for some sufficiently small ε > 0.
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In particular, the condition Dε(1) implies that the Levi matrix (ckj) has comparable eigen-
values. And Dε(2) holds when at most one eigenvalue is degenerate with n ≥ 5.

Example 1.2.1. Let M = bΩ be the boundary of the following domain

Ω = {(z1, ..., zn) ∈ Cn : Im zn > P (z1) + (|z2|2 + ...+ |zn−1|2)k}

in a neighborhood of the origin, for n ≥ 5 and k ≥ 1. Here P is a smooth, subharmonic function
such that P (0) = 0. We can see that the hypersurface M can be identified with Cn−1×R via the
following map

(z1, ..., zn−1, t) 7→ (z1, ..., zn−1, t+ i(P (z1) + (|z2|2 + ...+ |zn−1|2)k)).

We define
1

2
L1 =

∂

∂z1
+ i

∂P

∂z1
(z1)

∂

∂t
;

1

2
Lj =

∂

∂zj
+ izj

∂

∂t
for j = 2, ..., n− 1;

T =
∂

∂t
.

Then, M is pseudoconvex and satisfies the condition Dε(2) near the origin.

Definition 1.2.2. We say that M is weakly q-convex near a point x0 ∈ M if every possible σq
is non-negative on some neighborhoods of x0.

Proposition 1.2.3. If M satisfies the Dε(q) condition near a point x0 ∈M , then M is weakly
q-convex near x0.

Proof. Since ε > 0 is small, so from Dε(q) condition, we have τ ≥ 0. Hence, M is weakly
q-convex.

Next, we will consider the range of the Dε(q) condition, for some 1 ≤ q ≤ n− 1.

Lemma 1.2.4. Fix ε > 0.

1. σq ≥ ετ, ∀σq ⇔ σn−1−q ≤ (1− ε)τ, ∀σn−1−q.

2. σq ≤ (1− ε)τ, ∀σq ⇔ σn−1−q ≥ ετ, ∀σn−1−q.

3. Dε(q) holds ⇔ Dε(n− 1− q) holds.

Proof. (1)
σq ≥ ετ, ∀σq ⇔ −σq ≤ −ετ, ∀σq

⇔ τ − σq ≤ τ − ετ, ∀σq
⇔ σn−1−q ≤ (1− ε)τ, ∀σn−1−q.

Part (2) is obtained similarly to the proof of Part (1). Then, (1) and (2) immediately imply Part
(3).
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Proposition 1.2.5. 1. Assume that q ≤ n− 1− q

(a) If n = 2q + 1, then σq ≥ ετ, ∀σq ⇔ σq ≤ (1− ε)τ, ∀σq.
(b) If n ≥ 2q + 2, then σq ≥ ετ, ∀σq ⇒ σq ≤ (1 − ε′)τ, ∀σq, for some ε′ > 0.

Similarly, σn−1−q ≥ ετ, ∀σn−1−q ⇒ σn−1−q ≤ (1 − ε′)τ, ∀σn−1−q, for some
ε′ > 0. However, the converse statements are not true in general.

2. Let 1 ≤ q0 ≤ n− 2, then the Dε(q0) condition implies Dε(q) condition for min(q0, n− 1−
q0) ≤ q ≤ min(q0, n− 1− q0).

Proof. Part (1)
(a). Since q = n− 1− q, this is the part (1) of the above lemma.
(b). Let q < n−1−q, so, given n−1−q eigenvalues, choose q at a time and apply the assumption
σq ≥ ετ , then taking the sum of all possible q in those n− 1− q eigenvalues, we get

q
(
n−1−q

q

)
n− 1− q

σn−1−q ≥
(
n− 1− q

q

)
ετ.

This implies that

σn−1−q ≥
n− 1− q

q
ετ.

Therefore, replacing ε to n−1−q
q ε, the part (2) of the previous lemma implies σq ≤ (1−ε′)τ , where

ε′ = n−1−q
q ε. The converse statement is not true. Indeed, the strictly inequality q < n−1−q means

we could have q zero eigenvalues and q + 1 strictly positive eigenvalues in λ′js, j = 1, ..., n − 1.
Final, also applying the part (1) of the previous lemma, we yield the assertion (b).
Part (2).
We already know that Dε(q) is equivalent to Dε(n−1−q). This means we have Dε(n−2−q0) if
Dε(q0 + 1) holds. We can assume that n ≥ 2(q0 + 1) + 1, and it is sufficent to prove that Dε(q0)
implies Dε(q0 + 1). This is a consequence of Part (1). Since ε′τ ≤ σq0+1 ≤ (1 − ε”)τ , then we
choose ε = min{ε′, ε”}. The proof of the proposition is completed.

The last statement in the above proposition says that : for 1 ≤ q0 ≤ n − 1, if the Dε(q0)
holds, then Dε(q) conditions holds as well, for all min(q0, n− 1− q0) ≤ q ≤ min(q0, n− 1− q0).
And we will always assume that q0 ≤ n− 1− q0 for convenience.

Next, we will show that the condition Dε(q) implies the following maximal L2 estimates for
the operator �b on (0, q)-forms.

Theorem 1.2.6. [Koe02] Let M be a (2n−1)-dimensional CR-manifold with n ≥ 3 with hypoth-
esis of closed-range of ∂̄b. Assume that the condition Dε(q) holds near x0. Then, in neighborhood
U of x0,

∑′

|J |=q

n−1∑
j=1

(
||LjuJ ||2 + ||LjuJ ||2

)
. ||∂̄bu||2 + ||∂̄∗bu||2 + ||u||2 (1.2.2)
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for a smooth (0, q)-form u =
∑′
|J |=q

uJωJ with compact support in U .

Moreover, as Proposition 1.2.5, the estimate (1.2.2) holds as well for all smooth (0, q′)-forms,
with q ≤ q′ ≤ n− 1− q.

Here and in what follows, . and >
∼

denote inequality up to a positive constant. Moreover,

we will use ≈ for the combination of . and >
∼

.

Proof. For u =
∑′
|J |=q

uJwJ , with 1 ≤ q ≤ n− 2, a direct computation shows that

||∂̄bu||2 =
∑′

|J |=q

n−1∑
j=1,
j /∈J

||LjuJ ||2 +
∑′
|I|=q,
|J |=q

n−1∑
i,j=1,
i 6=j

εjJiI
(
LjuJ , LiuI

)
+O

(
||Lu||.||u||+ ||u||2

)
,

where εjJiI = 0, unless i /∈ I, j /∈ J , and {i} ∪ I = {j} ∪ J , in which case εjJiI is the sign of

permutation

(
iI

jJ

)
. Similarly,

||∂̄∗bu||2 =
∑′

|K|=q−1

∑
|I|=q
|J |=q

n−1∑
i,j=1

εjKJ εiKI
(
LjuJ , LiuI

)
+O

(
||Lu||.||u||+ ||u||2

)
,

where εjKJ(I) is the sign of the permutation

(
jK

J(I)

)
if {j} ∪ K = J(I), and is zero otherwise.

Notice that, when i = j, εjKJ εiKI = 1 if I = J (and is zero otherwise), when i 6= j, εjKJ εiKI = −εjIiJ .
Thereupon,

||∂̄∗bu||2 =
∑′

|J |=q

n−1∑
j=1
j∈J

(
LjuJ , LjuJ

)
−
∑′
|I|=q
|J |=q

n−1∑
i,j=1
i 6=j

εiIjJ
(
LiuJ , LjuJ

)
+O

(
||Lu||.||u||+ ||u||2

)
.

In particular, if i 6= j, εjKJ = εijKiJ and εiKI = εjiKjI = −εjIijK , both of them are not zero when

i /∈ J, j /∈ I. And so εjKJ εiKI = −εjIiJ .

If i = j, εjKJ εiKI = 1 when I = J , if I 6= J , this equals to 0. Accordingly, we obtain

||∂̄∗bu||2 =
∑′

|J |=q

n−1∑
j=1
j∈J

(
LjuJ , LjuJ

)
−
∑′
|I|=q
|J |=q

n−1∑
i,j=1
i 6=j

εiJjI
(
LiuJ , LjuI

)
+O

(
||Lu||.||u||+ ||u||2

)
.

We know that

L∗j = −Lj + term of order 0, Lj
∗

= −Lj + term of order 0,

10



and, [Li, Lj ] = icijT ,
(
cijTuJ , uI

)
=
(
LiuJ , LjuI

)
−
(
LjuJ , LiuI

)
+ terms of order 0. Hence,

integration by parts, we obtain

||∂̄∗bu||2 =
∑′

|J |=q

n−1∑
j=1
j∈J

||LjuJ ||2 +
∑′

|J |=q

n−1∑
j=1
j∈J

(
cjjTuJ , uJ

)
−
∑′
|I|=q
|J |=q

n−1∑
i,j=1
i 6=j

εjJiI
(
LjuJ , LiuI

)

−
∑′
|I|=q
|J |=q

n−1∑
i,j=1
i 6=j

εjIiJ
(
cijTuJ , uI

)
+O

(
||Lu||.||u||+ ||u||2

)
.

So,

||∂̄bu||2 + ||∂̄∗bu||2 = ||Lu||2 +
∑′

|J |=q

n−1∑
j=1
j∈J

(
cjjTuJ , uJ

)
−
∑′
|I|=q
|J |=q

n−1∑
i,j=1
i 6=j

εiJjI
(
cijTuJ , uJ

)
+O

(
||Lu||.||u||+ ||u||2

)
= ||Lu||2 +

∑′
|I|=q
|J |=q

(
dqIJTuI , uJ

)
+O

(
||Lu||.||u||+ ||u||2

)
,

(1.2.3)

where,the

(
n− 1

q

)
×
(
n− 1

q

)
matrix

(
dqIJ
)
|I|=q
|J |=q

is denoted by

dqII =
∑
i∈I

cii

dqIJ = −
∑
i∈I
j∈J

εiJjIcij , for I 6= J
(
in particular

(
d1
IJ

)
= (cij)

)
.

To proceed the matrix
(
dqIJ
)
|I|=q
|J |=q

, we need the following lemma (proved by induction in q)

Lemma 1.2.7. For fixed 1 ≤ q ≤ n− 2, the eigenvalues of the matrix
(
dqIJ
)
|I|=q
|J |=q

are the
(
n−1
q

)
sums λj1 + ... + λjq . Therefore, if Dε(q) condition holds, the matrix (dqIJ)I,J is semi-definite
positive .

From this lemma, it is arised that ||Lu||2 . ||∂̄bu||2 + ||∂̄∗bu||2 + ||u||2, but we also have better
estimates by the method of microlocalization introduced in [De91] when q = 1. In our case,
when q ≥ 1, we will replace the (n− 1)× (n− 1)- matrix with indexes j, k = 1 for (0, 1)-forms

in Derridj’s paper by the

(
n− 1

q

)
×
(
n− 1

q

)
-matrix with indexes I, J , where |I| = |J | = q.

In U , we choose the local coordinates (x, t) = (x1, ..., x2n−2, t), and let (ξ, τ) be the dual coor-
dinates to R2n−1 − (x, t). We define the following non-negative , C∞-functions whose ranges in

11



[0, 1]:

ψ+(ξ, τ) such that ψ+(ξ, τ) = 0 when τ < 0

ψ+(ξ, τ) = 1 when τ > 1,

ψ−(ξ, τ) such that ψ−(ξ, τ) = 0 when τ > 0

ψ−(ξ, τ) = 1 when τ ≤ −1,

ψ0(ξ, τ) = 1− ψ+(ξ, τ)− ψ−(ξ, τ),

so supp ψ0 ⊂ {|τ | ≤ 1}. Let φ be a distribution on U , F denotes the Fourier transform in R2n−1,
we define

φ+ := F−1[ψ+φ̂]

φ− := F−1[ψ−φ̂]

φ0 := F−1[ψ0φ̂].

The microlocal decomposition is interpreted as follows

φ = P+φ+ P−φ+ P0φ,

where P+,P−,P0 are the pseudodifferential operators of order 0 defined by

P+φ = ζF−1[ψ+φ̂]

P−φ = ζF−1[ψ−φ̂]

P0φ = ζ(φ−F−1[(ψ+ + ψ−)φ̂]),

for all distribution φ, where ζ ∈ C∞0 (U ′), Ū ⊂ U ′ and ζ = 1 on U .
Let δ > 0 be determined later. It is sufficiently small since we can shrink U if necessary. We will
estimate (1− δ)||L̄u||2 from lower in (1.2.3). For any (0, q)-form u =

∑′
|J |=q

uJωJ , by construction,

we imply that
||L̄juJ ||2 ≥ ||L̄j(P+uJ + P−uJ)||2 − ||L̄jP0u||2.

By the ellipticity of ||∂̄b(.)||2 + ||∂̄∗b (.)||2 in complex directions, we also obtain (see [ChSh01])

||L̄jP0u||2 ≤ C0(||∂̄bu||2 + ||∂̄∗bu||2 + ||u||2).

As a consequence,

||L̄juJ ||2 ≥ ||L̄j(P+uJ + P−uJ)||2 − C0(||∂̄bu||2 + ||∂̄∗bu||2 + ||u||2), (1.2.4)

for every (0, q)-form u. On the other hand, ||L̄j(P+uJ + P−uJ)||2 = ||L̄jP+uJ)||2 + ||L̄jP+ −
uJ ||2 + 2 Re(L̄jP+uJ , L̄jP−uJ). And also, the last term can be written as

(L̄jP+uJ , L̄jP−uJ) = (P−P+L̄juJ , L̄juJ) +O(||u||.||L̄u||+ ||u||2),
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Notice that P−P+ is the pseudodifferential operator of order zero since [P+,P−] is of order zero,
so, P−P−L̄j is of order zero. Then, (P−P+L̄juJ) = O(||u||). Thus, combine all of the above
estimates, we obtain

(1− δ)||L̄juJ ||2 = (1− δ)||L̄jP+uJ)||2 + (1− δ)||L̄jP−uJ)||2

+O(||u||.||L̄u||+ ||u||2)− C0(||∂̄bu||2 + ||∂̄∗bu||2 + ||u||2).
(1.2.5)

Now, let α, β be positive number, less than (1− δ), be chosen later. The same calculation yields
that

α||L̄jP+uJ ||2 = α||LjP+uJ ||2 − α(λjjTP+uJ ,P+uJ) +O(||u||.||L̄u||+ ||u||2);

β||L̄jP−uJ ||2 = β||LjP−uJ ||2 − β(λjjTP−uJ ,P−uJ) +O(||u||.||L̄u||+ ||u||2).
(1.2.6)

Hence, from (1.2.3) and rewriting ||L̄u|| = δ||L̄u||+(1−δ)||L̄u||, the following holds for (0, q)-form
u =

∑′
|J |=q

uJ ω̄J

||∂̄bu||2 + ||∂̄∗bu||2 ≥ δ||L̄u||2 + α
∑′

|J |=q

n−1∑
j=1

||LjP+uJ ||2 + β
∑′

|J |=q

n−1∑
j=1

||LjP−uJ ||2

+
∑′
|I|=q
|J |=q

(
dqIJTuI , uJ

)
− α

∑′

|J |=q

n−1∑
j=1

(cjjTP+uJ ,P+uJ)

− β
∑′

|J |=q

n−1∑
j=1

(cjjTP−uJ ,P−uJ) +O(||u||.||L̄u||+ ||u||2)

− C0(||∂̄bu||2 + ||∂̄∗bu||2 + ||u||2),

(1.2.7)

when we choose 0 < α, β < (1− δ).
On the other hand,

(
dqIJTuI , uJ

)
= (dqIJTP

+uI ,P+uJ) + (dqIJTP
−uI ,P−uJ) + (dqIJTP

0uI ,P0uJ)

+ (dqIJTP
+uI ,P−uJ) + (dqIJTP

+uI ,P0uJ) + (dqIJTP
−uI ,P+uJ)

+ (dqIJTP
−uI ,P0uJ) + (dqIJTP

0uI ,P+uJ) + (dqIJTP
0uI ,P−uJ).

(1.2.8)

We have the symbols of P0,P0P+,P0P−,P+P−,P−P+,P+P0 and P−P0 supported in |τ | ≤
1. Since the matrix (dqIJ)I,J is positive semi-definite, the seven last terms in (1.2.8) equal to
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O(||u||2). It follows

(C0 + 1)(||∂̄bu||2 + ||∂̄∗bu||2) ≥ δ||L̄u||2 + α
∑′

|J |=q

n−1∑
j=1

||LjP+uJ ||2 + β
∑′

|J |=q

n−1∑
j=1

||LjP−uJ ||2

+
∑′
|I|=q
|J |=q

(dqIJTP
+uI ,P+uJ) +

∑′
|I|=q
|J |=q

(dqIJTP
−uI ,P−uJ)

− α
∑′

|J |=q

n−1∑
j=1

(cjjTP+uJ ,P+uJ)− β
∑′

|J |=q

n−1∑
j=1

(cjjTP−uJ ,P−uJ)

+O(||u||.||L̄u||+ ||u||2).

(1.2.9)

Now,we will apply the lemma to
∑′
|I|=q
|J |=q

(dqIJTP+uI ,P+uJ)− α
∑′
|J |=q

∑n−1
j=1 (cjjTP+uJ ,P+uJ),

∑′
|I|=q
|J |=q

(dqIJTP
+uI ,P+uJ)− α

∑′

|J |=q

n−1∑
j=1

(cjjTP+uJ ,P+uJ)

=
∑′
|I|=q
|J |=q

(dqIJTP
+uI ,P+uJ)− ε

∑′

|J |=q

n−1∑
j=1

(cjjTP+uJ ,P+uJ)

+ (ε− α)
∑′

|J |=q

n−1∑
j=1

(cjjTP+uJ ,P+uJ).

(1.2.10)

We define the following

(
n− 1

q

)
×
(
n− 1

q

)
matrix

Dq
IJ = dqIJ , I 6= J

Dq
II = dqII − ε

n−1∑
j=1

cjj .

By Lemma (1.2.7) and σq ≥ ετ , (Dq
IJ)I,J is a positive semi-definite matrix. On the other hand

P+TP+ has non-negative symbol (since ψ+ is supported in τ ≥ 0), and is of degree 1. Thereupon,
from the fact of pseudodifferential operators in [LaNi66] (Section 3), we imply that∑′

|I|=q
|J |=q

(Dq
IJP

+TP+uI , uJ) ≥ −C||u||2.

So, ∑′
|I|=q
|J |=q

(dqIJTP
+uI ,P+uJ)− α

∑′

|J |=q

n−1∑
j=1

(cjjTP+uJ ,P+uJ)

≥ (ε− α)
∑′

|J |=q

n−1∑
j=1

(cjjTP+uJ ,P+uJ) +O(||u||2).

(1.2.11)
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Now, we put

EqIJ = dqIJ , I 6= J

EqII = dqII − (1− ε)
n−1∑
j=1

cjj .

This matrix is negative semi-definite since σq ≤ (1 − ε)τ . However, P−TP− has non-positive
symbol (since ψ− is supported in τ ≤ 0), so we also have

∑′
|I|=q
|J |=q

(dqIJTP
−uI ,P−uJ)− β

∑′

|J |=q

n−1∑
j=1

(cjjTP−uJ ,P−uJ)

≥ (1− ε− β)
∑′

|J |=q

n−1∑
j=1

(cjjTP−uJ ,P−uJ) +O(||u||2).

(1.2.12)

Hence, combine (1.2.9, 1.2.11, 1.2.12),

(C0 + 1)(||∂̄bu||2 + ||∂̄∗bu||2) ≥ δ||L̄u||2 + α
∑′

|J |=q

n−1∑
j=1

||LjP+uJ ||2 + β
∑′

|J |=q

n−1∑
j=1

||LjP−uJ ||2

+ (ε− α)
∑′

|J |=q

n−1∑
j=1

(cjjTP+uJ ,P+uJ)

+ (1− ε− β)
∑′

|J |=q

n−1∑
j=1

(cjjTP−uJ ,P−uJ)

+O(||u||.||L̄u||+ ||u||2).

(1.2.13)

On the orther hand,

α
∑′

|J |=q

n−1∑
j=1

||LjP+uJ ||2 + β
∑′

|J |=q

n−1∑
j=1

||LjP−uJ ||2 ≥ inf(α, β)(
∑′

|J |=q

n−1∑
j=1

||LjP+uJ ||2 +
∑′

|J |=q

n−1∑
j=1

||LjP−uJ ||2)

≥ inf(α, β)||Lu||2 − C||LP0u||2

≥ inf(α, β)||Lu||2 − C(||∂̄bu||2 + ||∂̄∗bu||2 + ||u||2).

(1.2.14)

Next, we choose δ > 0 is small enough such that

α, β < 1− δ, ε− α ≥ γ > 0, 1− ε− β ≤ −γ.
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Immediately, we obtain

∑′

|J |=q

n−1∑
j=1

||LjP+uJ ||2 +
∑′

|J |=q

n−1∑
j=1

||L̄jP+uJ ||2+

+
∑′

|J |=q

(τTP+uJ ,P+uJ)−
∑′

|J |=q

(τTP−uJ ,P−uJ)

. ||∂̄bu||2 + ||∂̄∗bu||2 + ||u||2.

(1.2.15)

The property that
∑′
|J |=q

(τTP+uJ ,P+uJ)−
∑′
|J |=q

(τTP−uJ ,P−uJ) ≥ O(||u||2) implies the maxi-

mal L2 estimate.

Remark 1.2.8. The estimate (1.2.2) has showed that how we control the L2-norm of the deriva-
tives Lu and Lu. And applying this observation, combining a compactness estimate, the operator
�b is globally (real) analytic hypoelliptic. (see Appendix for more details).

1.3 Condition of finite commutator type (Hömander’s condi-
tion)

First, we recall the length of a commutator of vector fields.

{L1, ..., Ln−1, L1, ..., Ln−1} : are commutators of length 1;

{[L1, L2], [L1, L1], ...} : are commutators of length 2;

{[Lik , [..., [Li2 , Li1 ]...]], ...} for Lij ∈ {L1, ..., Ln−1, L1, ..., Ln−1}: are commutators of length k.

Let U ⊂M be an open subset. We say that U is of finite commutator type (shortly, finite-type)
m if m is the least strictly positive integer for which the vector fields L1, ..., Ln−1, L1, ..., Ln−1

and their commutators of length ≤ m span the tangent space at each point of U .
Now, we put Xj = Re(Lj) and Xn+j−1 = Im(Lj), for j = 1, ..., n− 1. The finite type associated
from the complex vector fields {L1, ..., Ln−1, L1, ..., Ln−1} is equivalent to the finite-type associ-
ated from the real vector fields {X1, X2, ..., X2n−2}

It is well-known that the condition of finite-type implies the subelliptic estimate for the
system of vector fields {X1, X2, ..., X2n−2} (eg, see [ChSh01], Theorem 8.2.5 ), that means

Theorem 1.3.1. Assume U ⊂ M is of finite-type m , then there exists ε > 0 depending on m
such that

||u||2ε .
∑′

|J |=q

2n−2∑
j=1

||XjuJ ||2 + ||u||2,
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for any smooth (0, q)-form u =
∑′
|J |=q

uJωJ with compact support in U . In particular, we can

choose ε ≤ 1
2m (ε here is different from the similar symbol in Definition of D(q) condition).

Where, we denote ||.||s is the usual Sobolev norm, for any s ∈ R.

1.4 The Szegö projection operators

Let Sq and S ′q denote the orthogonal projections in L2
0,q(M) onto ker(∂̄0,q

b ) and ker(∂̄∗0,qb ), re-

spectively, where ∂̄0,q
b and ∂̄∗0,qb mean ∂̄b, ∂̄

∗
b acting on (0, q)-forms. We also define Hq is the

orthogonal projection in L2
0,q(M) onto the space of CR harmonic (0, q)-forms ker(�b), where �b

acting on (0, q)-forms. We also notice that ker(�b) = {φ ∈ L2
0,q(M) : ∂̄bφ = ∂̄∗bφ = 0}

In this section, we assume that ∂̄b has the closed range in L2
0.q(M) if M is a general CR-

manifold, then
L2

0.q(M) = range(�b)⊕ ker(�b),

and
range(∂̄b∂̄

∗
b ) ⊥ range(∂̄∗b ∂̄b),

so, we have the strong Hodge type decomposition on L2
0,q(M)

L2
0,q(M) = ∂̄b∂̄

∗
b (Dom(�b))⊕ ∂̄∗b ∂̄b(Dom(�b))⊕ ker(�b).

Now, we could define the relative inverse of �b in L2
0,q(M). Let any α ∈ L2

0,q(M), if α ∈ ker(�b),
we set Kqα = 0. If α ∈ range(�b), we set Kqα = φ, where φ is the unique solution of �bφ = α
with φ ⊥ ker(�b). This definition implies that KqHq = HqKq = 0.
Therefore, for any α ∈ L2

0,q(M),

α = �bKqα+Hqα = ∂̄b∂̄
∗
bKqα+ ∂̄∗b ∂̄bKqα+Hqα,

and we say that Kq is the relative inverse operator of �b in the sense that

�bKq = Kq�b = I −Hq.

Three these operators have the following relations.

Properties 1.4.1. [Koe02]

1. Kq is self-adjoint.

2. For 1 ≤ q ≤ n− 2,

I = (I − Sq) + (I − S ′q) +Hq = Sq + S ′q −Hq.

3. For 1 ≤ q ≤ n− 2,

∂̄0,q−1
b ∂̄∗0,qb Kq = I − S ′q, and ∂̄∗0,q+1

b ∂̄0,q
b Kq = I − Sq
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4. For 1 ≤ q ≤ n− 1, ∂̄0,q−1
b Kq−1 = Kq∂̄0,q−1

b and ∂̄∗0,qb Kq = Kq−1∂̄
∗0,q
b .

Remark 1.4.2. We have some remarks for these properties.

1. We suppose that ∂̄b has closed range in L2
0,q(M). Since �bHqu = 0, for every u ∈ L2

0,q(M),(
I − Sq,Hq

)
u =

(
I − S ′q,Hq

)
u = 0.

Then, by Cauchy’s Inequality and the hypothesis of closed-range of ∂̄b, we imply

||u||2L2
0,q(M) . ||∂̄bu||

2
L2

0,q+1(M) + ||∂̄∗bu||2L2
0,q−1(M) + ||Hqu||2L2

0,q(M).

2. If q = 0, �b = ∂̄∗0,1b ∂̄0,0
b operates on functions in L2(M). In this case, K0 is the unique

relative inverse of �b in the sense �bK0 = I − S0, where S0 is the usual Szegö projection
on space of holomorphic functions in L2(M). And from the property (4), we have S0 = I−
∂̄∗0,1b K1∂̄

0,0
b . Similarly, if q = n−1, �b = ∂̄0,n−2

b ∂̄∗0,n−1
b operates on members of L2

0,n−1(M).
In this case, Kn−1 is the unique relative inverse of �b in the sense �bKn−1 = I − S ′n−1.

Definition 1.4.3. We say that a subelliptic estimate of order ε > 0 holds at x0 ∈M for (0, q)-
forms for ∂̄b-Neumann problem if there is a neighborhood U of x0, C > 0, 0 < ε < 1 such
that

||u||2ε ≤ C
(
||∂̄bu||2L2

0,q+1(M) + ||∂̄∗bu||2L2
0,q−1(M) + ||u||2L2

0,q(M)

)
,

where u(x) =
∑′
|I|=quI(x)ω̄I(x) defined on U .

Now, we assume that U ⊂ M satisfies the condition of Dε(q) and the condition of finite
commutator type of m. Then, from Theorem 1.3.1, we get the following subelliptic estimate

||u||2ε . ||∂̄bu||2L2
0,q+1(M) + ||∂̄∗bu||2L2

0,q−1(M) + ||u||2L2
0,q(M)

. ||∂̄bu||2L2
0,q+1(M) + ||∂̄∗bu||2L2

0,q−1(M) + ||Hqu||2L2
0,q(M)

= (�u, u)L2
0,q(M) + ||Hqu||2L2

0,q(M).

(1.4.1)

On the other hand, from the hypothesis of closed range of ∂̄b, ||u||L2
0,q(M) . ||�bu||L2

0,q(M),

accordingly, we have

||u||2ε . ||�bu||2 + ||Hqu||2 . ||�bu||2 + ||u||2. (1.4.2)

As a consequence of Theorem 1.2.6, the following a priori estimate holds

||u||2δ+ε + ||Lu||2 + ||L̄u||2 . ||�bu||2δ + ||u||2, (1.4.3)

for any (0, q)-form u =
∑′
|J |=q

uJωJ for each s ∈ R. It turns out that the inverse operator �−1
b :

H0
0,q(M) → Hε′

0,q(M) is compact, for 0 < ε′ < ε. By positivity of �b, the spectrum of �b is
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contained in [0,∞), see [FoKo72], Proposition (3.1.11).
Following the technique in [FoKo72], we also obtain the corresponding localized estimate

||ζu||2δ+ε . ||ζ1∂̄bu||2δ + ||ζ1∂̄
∗
bu||2s + ||ζ1u||2, (1.4.4)

where ζ ≺ ζ1 (i.e., ζ = 1 on supp(ζ1)), ζ, ζ1 ∈ C∞0 (U). This property says that the operator �b
is hypoelliptic on (0, q)-forms.

In the end, we summarize this section: The condition of finite commutator type and closed
range of ∂̄b provide the subelliptic estimate for the operator �b 1.4.2 on (0, q)-from. We can
insert ||Lu||L2 , ||Lu|||L2 into (1.4.2) by the condition of Dε(q) to get (1.4.3). And from the
range of Dε(q) and the following theorem, (1.4.3) also holds for all smooth (0, q′) forms, with
q′ ∈ [q, n− 1− q]. In [Ho91], we have

Theorem 1.4.4. If M satisfies condition of q-convexity near x0 ∈ M , and if a subelliptic
estimate holds for (0, q)-forms at x0, then a subelliptic estimate also holds for (0, r)-forms,
q ≤ r ≤ n− 1.

1.5 The heat equation

Let M be the boundary of a (smooth) domain in Cn, for n ≥ 3, or more generally any compact
CR-manifold of dimension 2n − 1 for which the range of ∂̄b is closed in L2. Assume that M
satisfies the condition of Dε(q) and the condition of finite commutator type. In this part, we
study the initial value problem and the regularity properties of the heat operator H on (0, q)-forms
defined on R+ ×M

H[u](s, x) :=
∂u

∂s
(s, x) +�bu(s, x) = 0 for s > 0 and x ∈M , and

lim
s→0+

u(s, .) = φ(.) with convergence in appropriate norm,
(1.5.1)

where u(s, x) =
∑′
|I|=quI(s, x)ω̄I(x).

The problem is to find a smooth (0, q′)-form u on R ×M such that u solves the heat equation
(1.5.1) with the given (0, q′)-form φ(z) defined on M , for all q ≤ q′ ≤ n− 1− q.
The sub-elliptic estimate for �b (1.4.2) on M also implies the hypoellipticity for the heat operator
on (0,∞)×M .

Theorem 1.5.1. Assume U ⊂ M is of finite commutator type and satisfies a Dε(q) condition
defined as above. Then, the heat operator H is hypoelliptic in (0,∞) × U on (0, q′)-forms, q ≤
q′ ≤ n− 1− q.

Proof. It suffices to prove the theorem on (0, q)-forms.
Since the conditions of finite type and Dε(q), the a priori estimate (1.4.2) holds. We have

||H[u]||2L2
0,q((0,∞)×M) = ||∂su||2L2

0,q((0,∞)×M) + ||�bu||2L2
0,q((0,∞)×M)

+ < ∂su,�bu >L2
0,q((0,∞)×M) + < �bu, ∂su >L2

0,q((0,∞)×M) .
(1.5.2)
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but �b is self-adjoint and ∂∗s = −∂s, then

||H[u]||2L2
0,q((0,∞)×M) = ||∂su||2L2

0,q((0,∞)×M) + ||�bu||2L2
0,q((0,∞)×M).

Let u = u(s, x), for s > 0 and x ∈ U . The condition of commutator finite type for X1, ..., X2n−2

in U also implies the commutator finite type for X1, ..., X2n−2, ∂s in (0,∞)×U . The well-known
subelliptic estimate ([Hor67]) implies

||u||2ε . ||∂su||2L2
0,q((0,∞)×M) + ||�b||2L2

0,q((0,∞)×M) + ||u||2L2
0,q((0,∞)×M),

or

||u||2ε . ||H[u]||2L2
0,q((0,∞)×M) + ||u||2L2

0,q((0,∞)×M).

Let ζ, ζ1 be two smooth real-valued cut-off functions supported in U , with ζ ≺ ζ1. For any δ ∈ R
and N > 0, by the same method to prove Theorem 8.2.9 in [ChSh01], the following estimate
holds

||ζu||δ+ε ≤ Cδ,N (||ζ1H[u]||δ + ||ζ1u||−N ).

Therefore, H is hypoelliptic on all (0, q)-forms defined on (0,∞) × U . Then, from the property
of q-convexity, the hypoellipticity of H holds as well on (0, q′)-forms, with q ≤ q′ ≤ n−1−q.

Moreover, as an immediate consequence of Appendix B, H is globally analytic hypoelliptic.
This means if H[u](s, x) = f(s, x), where f is globally analytic hypoelliptic on R×M , i.e,∣∣∣(∂s)kDαf(s, x)

∣∣∣ ≤ CfC2k+|α|
f (2k + |α|)!,

for any s > 0, x ∈ U , and α = (α1, ..., α2n−1), Dα = Xα1
1 ...X

α2n−2

2n−2 T
α2n−1 . Then, u is globally

analytic as well.

Definition 1.5.2. A fundamental solution of the �b-heat equation (1.5.1) is a one parameter
family of bounded operators Hs, s > 0, acting on L2

0,q(M) such that for φ ∈ Λ0,q
0 (M) (space of

(0, q)-forms with compact support in M):

1. For fixed s > 0, Hs[φ](x) satisfies the ∂̄b-Neumann boundary conditions

Hs[φ](x) ∈ Dom(∂̄∗b ),

∂̄b(Hs[φ](x)) ∈ Dom(∂̄∗b ),
(1.5.3)

so, Hs[φ](x) ∈ Dom(�b).

2. Hs[φ](x) solves the initial value problem for the heat equation, i.e.,

H[[Hsφ](x)] = 0 for s > 0 and x ∈M ;

lim
s→0+

Hs[φ](.) = φ(.) in L2
0,q(M).
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3. For s ∈ [0, T ] and (0, q)-form φ fixed, ||Hs[φ]|| ≤ C, C maybe only depends on T and φ,

4. Hs[φ] is differentiable in s,

5. Commutative with �b, i.e, �bHs[φ] = Hs�b[φ].

Now, we will construct a fundamental solution of the initial value problem (1.5.1) via spectral
theory.

Theorem 1.5.3. The fundamental solution Hs of the heat equation (1.5.1) exists and it is
unique. Furthermore, Hs is the semi-group generated by −�b. Hence, for each s > 0, Hs is
self-adjoint and positive.

Proof. (Existence). We know that �b is a closed-range, densely defined, self-adjoint operator on
L2

0,q(M). Then, Spectral Theorem (see Appendix A, the continuous functional calculus version)
guarantees the existence of a unique algebra homomorphism Φ from the algebra B = B[0,∞)
of bounded Borel (complex valued) functions on the non-negative real axis to the algebra
L(L2

0,q(M)) of bounded linear operators on L2
0,q(M). In particular, for each s ≥ 0, the function

es(a) = e−sa, a ≥ 0 is bounded, continuous on [0,∞). Then, we denote Φ[es] = Hs[.] = e−s�b [.]
be the corresponding bounded linear operator. Again, from the spectral theorem, the family of
bounded linear operators {e−s�b [.]}s≥0 is a strongly continuous semi-group generated by −�b,
called the heat semi-group for �b.
From properties of strongly continuous semi-group, Spectral Theorem and the observation that
d
ds(e

−sa) = −ae−sa, (1), (2), (3) and (4) in the definition 1.5.2 are satisfied . Now, we prove (5)
as following. (see [Na]).
Let f ∈ Dom(�b), f = (�b + iI)−1[g] with g ∈ L2

0,q(M). Putting F1(x) = x(x + i)−1, then
F1(�b)[g] = �b[g]. But,

(e−sa)(
a

a+ i
) = (ae−sa)(

1

a+ i
),

it now implies e−s�bF1(�b) = �be−s�b(�b + iI)−1. Hence

e−s�b [�b[f ]] = e−s�bF1(�b)[g] = �be
−s�b(�b + iI)−1[g] = �be

−s�b [f ].

(Uniqueness)
Let H′s be another fundamental solution of the heat equation (1.5.1). We define

Gs[f ] = (Hs −H′s)[f ],

for f ∈ Λ0,q(M), so Gs[f ] also solves (1.5.1). Let T > 0 and s ∈ [0, T ], since Hs and H′s satisfy
(3) and (5) in Definition 1.5.2, we obtain

(�bG[f ], Gs[f ]) = (Gs�b[f ], Gs[f ]) ∈ L1(M × [0, T ]).
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Similarly, (Gs[f ],�bGs[f ]) ∈ L1(M × [0, T ]). Let

g(t) = −
∫ t

0

∫
M

[(�bGs[f ], Gs[f ]) + (Gs[f ],�bGs[f ])]dV ds

= −
∫
M

∫ t

0
[(�bGs[f ], Gs[f ]) + (Gs[f ],�bGs[f ])]dsdV.

By (2) in Definition 1.5.2,

g(t) =

∫
M

∫ t

0
[(
∂

∂s
Gs[f ], Gs[f ]) + (Gs[f ],

∂

∂s
Gs[f ])]dsdV

=

∫
M

∫ t

0

∂

∂s
|Gs[f ]|2dsdV.

By the initial value condition,

g(t) =

∫
M
|Gt[f ]|2dV = ||Gt[f ]||2L2

0,q(M) ≥ 0.

In the other hand, the positivity of �b implies

g′(t) = −−
∫
M

[(�bGt[f ], Gt[f ]) + (Gt[f ],�bGt[f ])]dV ≤ 0.

Therefore, g(t) is non-negative, decreasing of t, g(0) = 0 . Immediately, g(t) = 0, for any t ∈
[0, T ]. Therefore, Gs[f ] = 0 for any f ∈ Λ0,q(M). By density of Λ0,q(M), we have Hs[f ] = H′s[f ],
for every f ∈ L2

0,q(M).

Now, we will see that the heat semi-group gives us a solution to the initial value problem
posed in (1.5.1).

Theorem 1.5.4. For each f ∈ L2
0,q(M), let u(s, x) = e−s�b [f ](x). Then u ∈ C∞0,q((0,∞) ×M)

satisfies the following properties

1.

[
∂

∂s
+�b

]
[u](s, x) = 0 in the sense of distributions for s > 0 and x ∈M ;

2. lims→0+

∫
M
|u(s, x)− f(x)|2dV (x) = 0,

where �b operating on x-variables.

Proof. Define a (0, q)-form Ψf on (0,∞)×M with distribution coefficients as follows,

< Ψf , ψ >=

∫ ∞
0

< e−s�b [f ], ψ̄s >L2
0,q(M) ds,
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for any (0, q)-form ψ whose coefficients in C∞0 ((0,∞)×M), and ψs(x) = ψ(s, x).
Note that e−s�b [f ] and ψs are differentiable in s-variables with values in L2

0,q-norm, hence the

function s 7→< e−s�b [f ], ψ̄s >L2
0,q(M) is in C∞0 (0,∞). Then, let the support of ψ be contained in

the set {(t, x) ∈ (0,∞)×M : 0 < a ≤ s ≤ b <∞}, we obtain

| < Ψf , ψ > | ≤ (b− a)||f ||L2
0,q(M) supa≤s≤b

||ψs||L2
0,q(M).

This implies that the distribution Ψf is continuous.
Let ψ ∈ C∞0 ((0,∞)×M),∫ ∞

0

d

ds
[< e−s�b [f ], ψ̄s >L2

0,q(M)]ds = 0

or

∫ ∞
0

< �be
−s�b [f ], ψ̄s >L2

0,q(M) −
∫ ∞

0
< e−s�b [f ], ∂sψ̄s >L2

0,q(M)= 0.

Since �b is self-adjoint,∫ ∞
0

< e−s�b [f ],�bψ̄s >L2
0,q(M) −

∫ ∞
0

< e−s�b [f ], ∂sψ̄s >L2
0,q(M)= 0,

and by the definition
< Ψf , [−∂s +�b]ψ >= 0.

That means [∂s + �b][Ψf ] = 0 in the sense of distributions. We know that H is hypoelliptic,

so u(s, x) = e−s�b [f ](x) is C∞0 ((0,∞) ×M). And then,

[
∂

∂s
+�b

]
[u](s, x) = 0 in the classical

sense.

Remark 1.5.5. Theory of the heat semigroup e−s�b also provides an argument to study the
relative inverse of the �b operator under the view point of the spectral theory for unbounded,
self-adjoint operators. In particular, recall that Hq be the orthogonal projection from L2

0,q(M)
onto null space of �b, then there exists the unique relative inverse of �b by Kq in the sense that
�bKq = Kq�b = I −Hq. Moreover, lims→∞ e

−s�b [f ] = Hq[f ] and∫ ∞
0

(
e−s�b [f ]−Hq

)
[f ]ds = Kq[f ].

In [NaSt06], from this observation, Alex Nagel and Eli Stein firstly applied pointwise estimates
of the heat kernel in C2 to investigate the operator Kq when M is the model of a decouple
boundary in Cn.

1.6 Some models of the �b-Heat equations in Several Complex
Varibles.

1.6.1 Strong pseudoconvexity case.

Let M be a compact strongly pseudoconvex CR manifold of dimension 2n− 1, n ≥ 3. In [St78],
the author proved that the fundamental solution p(s, x, y) of the heat equation for �b is a

23



smooth (0, q) ⊗ (0, q)-form on R+ ×M ×M . And then, in [StTa84], the authors also obtained
the smoothness of p(s, x, y) on R+ × ((M × M)\∆), where ∆ is the diagonal on M × M ,
∆ = {(x, y) ∈M ×M : x = y}. In particular, p(s, x, y) has singularities on {0} ×∆. Let δ(x, y)
be a pseudo-distance on M , the following estimate holds

||XI
XX

J
Y p(s, ., .)||L∞(M) ≤ Cε−ms−5n+m−3l

2 ,

where the given ε > 0 such that δ(x, y) > ε, m > 10n− 3(|I|+ |J |), C only depends on |I|, |J |.

1.6.2 Weakly Pseudoconvexity case.

In this case, the problem is more difficult.
Let M be the boundary of a weakly pseudoconvex domain of finite type in C2. In [NaSt01], the
authors showed that the singularities of the heat kernel H(s, x, y) of the solution are exactly the
same as those of kernel of Szegö projection. Moreover, the rapid decay estimate for H(s, x, y)
holds

|∂jsXI
zX

J
wH(s, x, y)| ≤ C{N,|I|,|J |,j}

dM (x, y)−2j−|I|−|J |

VM (x, y)

[ sN

sN + dM (x, y)2N

]
,

where dM (z, w) is the non-isotropic distance and VM (z, w) is correspondingly the volume of
a non-isotropic ball. It turns out that in the case of 3-dimension, we do not have any result
for hypoellipticity of �b in general. Hence, the heat operator is not hypoelliptic. However, the
authors proved that it is relative-hypoelliptic. The smoothness of the heat �b-operator is depend
on the smoothness of Szegö projection.
Second, when M is an unbounded polynomial model of finite type, i.e,

M = {(z, w) ∈ C2 : Im(w) = h(z)},

where h is a sub-harmonic, non-harmonic polynomial of degree m. In [BoRa10], the authors
provided the exponential decay estimates to the heat kernel via partial Fourier transform. More
general, the authors also investigated the case that M is a decoupled polynomial model. Here,
the considered metrics are non-isotropic and controlled by the tangent vectors fields. However,
higher regularity estimates for the heat kernel are not established.
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Chapter 2

Geometry and Analysis on
Carnot-Carathéodory Spaces

In this chapter, integral representations of the Szegö projections as well as their regularity
will be introduced. The basic ideals come from the earliest one by D.H. Phong and E. Stein
[PS83, PS86a, PS86b], in which a key connection with singular Radon transforms was first
identified there. Moreover, the notation of finite commutator type implies some important prop-
erties in Carnot-Carathéodory geometry, for more discussions, see [FP83, NSW85], [Na86],and
also [Koe02], [Na]. As claims later, we always assume that M is the boundary of a smoothly
bounded domain in Cn (n ≥ 3), or more generally any CR-manifold of dimension 2n − 1 for
which the range of ∂̄b is closed in L2. We also assume that the holomorphic vectors fields
L1, ..., Ln−1, L̄1, ..., L̄n−1 defined on U ⊂ M - a neighborhood of a base fixed point x0 ∈ M -
satisfy the condition of commutator finite-type of m. To obtain subelliptic estimates for higher
order forms, the Dε(q) is also assumed. The real vector fields X1, ..., X2n−2 are defined by
Xj = ReLj , Xn+j−1 = ImLj , j = 1, ..., n− 1. Finally, we choose a real vector field T such that
L1, ..., Ln−1, T is a local basic of the tangent space at each point of M .

2.1 Geometry on Carnot-Carathéodory Spaces

For each finite sequence i1, ..., ik of integers with 1 ≤ ij ≤ 2n− 2, setting I = (i1, ..., ik) and the
length |I| = k. We can write the commutator

[Xik , [Xik−1
, ..., [Xi2 , Xi1 ]...]] = λi1...ikT (modX1, ..., X2n−2),

where λi1...ik ∈ C∞(U).

Definition 2.1.1. For x ∈ U and r > 0, set

Λl(x) =
( ∑

2≤|I|≤l

|λi1...ik(x)|2
) 1

2 , l ≥ 2,
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and

Λ(x, r) =
m∑
l=2

Λl(x)rl.

Note that λl(x) is a function whose size measures how much T component the commutators
of X1, ..., X2n−2 of length ≤ k can have. Since M is of commutator finite type of m, Λm never
vanishes, so there are positive constants C1, C2 such that for 0 < r ≤ 1, we have

C1r
m ≤ Λ(x, r) ≤ C2r

2.

Definition 2.1.2. For each x, y ∈ U , the natural non-isotropic distance ρM (x, y) corresponding
to the vector fields X1, ..., X2n−2 is given by

ρM (x, y) = inf{δ > 0 :there exists a continuous piecewise smooth

map φ : [0, 1]→ U such that φ(0) = x, φ(1) = y,

and almost everywhere φ′(t) =

2n−2∑
j=1

αj(t)Xj ,

with |αj(t)| < δ, for j = 1, ..., 2n− 2}.

The non-isotropic ball centered at x ∈ U , with radius r > 0 is

BM (x, r) = {y ∈ U : ρM (x, y) < r}.

Remark 2.1.3. The fact that ρM is finite follows because there are commutators of finite length
of the vectors fields X1, ..., X2n−2 span the tangent space at each x ∈ U . This was first proved
by Carathéodory.

For any x, y ∈ U , we also define V (x, y) = |BM (x, ρM (x, y))| be the volume of the non-
isotropic ball centered at x with the radius is the non-isotropic distance of x, y.

Next, we define the family of exponential balls generated by exponential mapping corre-
sponding to the vector fields X1, ..., X2n−2. Let B0 denote the unit ball (defined by Euclidean
metric) in R2n−1. For x ∈ U and r > 0 we set

Φx,r(u) = exp(ru1X1 + ...+ ru2n−2X2n−2 + Λ(x, r)u2n−1T )(x),

where u = (u1, ..., u2n−1) ∈ B0.
There is R0 > 0 depending on the manifold M so that for all 0 < r < R0, the map Φx,r is a
diffeomorphism of the unit ball B0 to its image. Hereafter, 0 < r < R0 when we have calculations
on the exponential map Φx,r. Now, let

B̃M (x, r) = Φx,r(B0),
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that is

B̃M (x, r) = {y ∈ U :y = exp(a1X1 + ...+ a2n−2X2n−2 + aT )(x)

where |aj | < r for j = 1, ..., 2n− 2, and |a| < Λ(x, r)}.

We have the following facts about the size function Λ and the above families of non-isotropic
balls.

Theorem 2.1.4. Under the assumption of finite commutator type of m, there exists R0 > 0 so
that we have

1. There are positive constants C1, C2 so that for all x ∈ U and 0 < r < R0,

BM (x,C1r) ⊂ B̃M (x, r) ⊂ BM (x,C2r),

that means BM (x, r) is equivalent to B̃M (x, r).

2. |BM (x, r)| ≈ |B̃M (x, r)| ≈ r2n−2Λ(x, r) uniformly in x and 0 < r < R0.
In particular, there are two constants C3, C4 > 0 such that for all x, y ∈ U

C3 ≤
VM (x, y)

ρM (x, y)Λ(x, ρM (x, y))
≤ C4.

3. Let Jx,r(u) denote the Jacobian matrix of Φx,r(u), i.e,

Jx,r(u) = (dΦx,r

( ∂

∂u1

)
, ..., dΦx,r

( ∂

∂u2n−1

)
),

then |det(Jx,r(u))| ≈ r2n−2Λ(x, r) uniformly in x and 0 < r < R0.

4.

∣∣∣∣ ∂α∂uαdet(Jx,r(u))

∣∣∣∣ . r2n−2Λ(x, r) uniformly in x and 0 < r < R0, for each multi-index α.

About the proofs for these results, see [NSW85], Theorem 7.

Next, we will apply the exponential mapping to scaling method which was introduced in
[Ch91]. First of all, for any function f ∈ C1(B0), the scaled pullbacks to B0 of the vector fields
Xj on U are given by

(X̂jf)(u) = (X̂jf)x,r(u) = r(Xj f̌)(Φx,r(u)),

where f̌(y) = f ◦ Φ−1
x,r(y), for y ∈ B̃M (x, r). Therefore, X̂1, ..., X̂2n−2 may be written in the

u-coordinates as linear combinations of the vector fields
∂

∂u1
, ...,

∂

∂u2n−1
on B0. Also, we define

the scaled pullback to B0 of the function φ on B̃M (x, r) by

φ̂(u) = φ(Φx,r(u)),

for u ∈ B0.
The following facts are also from [NSW85].
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Theorem 2.1.5. 1. The vector fields X̂1, ..., X̂2n−2 are of finite type on B0, uniformly in x
and r. And |det(X̂1, ..., X̂2n−2, Z)| > C for a commutators Z (of the X̂j) of length ≤ m

such that X̂1, ..., X̂2n−2, Z span the tangent space. (C > 0 is independent of x and r ).

2. The coefficients of the X̂j (expressed in u-coordinates), together with their derivatives, are
bounded above uniformly in x and r, i.e, if

∂

∂uj
=

2n−2∑
l=1

bjlX̂l + bj,2n−1Z,

then bl,j and its derivatives are bounded above uniformly in x and r, for j, l = 1, ..., 2n−1.

Now, let L̂j and ̂̄Lj denote the scaled pullback of Lj and L̄j by

L̂j = X̂j + iX̂n+j−1,
̂̄Lj = X̂j − iX̂n+j−1,

and the basis of (0, 1)-forms dual to ̂̄L1, ...,
̂̄Ln−1 by ̂̄ω1, ..., ̂̄ωn−1.

We consider the equation on B̃(x, r)
L̄jφ = f,

from the definition,

̂̄Ljφ̂ = r(L̄jφ)(Φx,r(u)) = rf(Φx,r(u)) = rf̂ = r̂̄Ljφ
the equation ̂̄Ljφ = r−1 ̂̄Ljφ̂ is the scaled pullback of the equation L̄jφ = f . Now, L̄∗j = −Lj +aj ,
for some aj ∈ C∞(U), we also define

̂̄L∗j = −L̂j + râj .

Similarly we obtain ̂̄L∗jφ = r−1 ̂̄L∗j φ̂. Therefore, the scaled pullback of ∂̄b-equation is

(̂∂̄bφ) = r−1 ̂̄∂bφ̂,
and also

(̂∂̄∗bφ) = r−1̂̄∂∗b φ̂.
Finally, we also extend the map Φx,r on B0 to the map Φ(s,x),r on R× B0 by

Φ(s,x),r(s, u) = (s2,Φx,r(u)),

with 0 < r < R0.
The scaled pullback of the heat equation on R×M to R× B0 is

((
∂

∂s
+�b)φ(s, x))̂ = r−2 ∂

∂s
φ̂(s, u) + r−2�̂bφ̂(s, u),
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where �̂b = ̂̄∂b̂̄∂∗b + ̂̄∂∗b ̂̄∂b is the scaled pullback of �b.

In [Koe02], the author applied this method to show that: the Szegö projections are smooth
away from the diagonal, and their kernels satisfy size estimates. Now, we again apply this method
to estimate the Szegö kernel in T -direction when x closed y.

Theorem 2.1.6. Suppose that U ⊂ M satisfies the condition of Dε(q) and finite commutator
type of m as above. Let Sq′ be the Szegö projection on (0, q′)-forms, for q ≤ q′ ≤ n − 1. Then,
the components SIJq′ (|I| = |J | = q′) of the kernel of Sq′ satisfies

|T kxT lySIJq′ (x, y)| ≤ Ck,lr−m(k+l)|B(x, r)|−1,

when x sufficiently closed y and r = ρM (x, y) > 0.
An analogous statement holds for the kernel of the projection S ′q′.

Proof. This theorem can be proved by applying the argument in [Koe02]. Let x, y be two different
points in U , then there is a constant C > 0 independent to x, y such that B̃(x, r) ∩ B̃(y, r) = ∅,
where r = C−1ρ(x, y).
Let f be a (0, q′)-form with coefficients in C∞0 (B̃(y, r)). Hence, for some (0, q′+ 1)-form u which

is orthogonal to Ker(∂̄∗b ), we have (I − Sq′)[f ] = ∂̄∗bu, so that ∂̄b∂̄
∗
bu = ∂̄bf = 0 on B̃(x, r).

Moreover,

T kz (∂̄∗bu)J(z) = −
∑
|I|=q′

∫
M
T kz S

IJ
q′ (z, y′)fI(y

′)dV (y′), (2.1.1)

for z ∈ B̃(x, r).
We will begin the proof by showing the following estimate

|T kz (∂̄∗bu)J(z)| ≤ Ckr−km|B(x, r)|−
1
2 ||f ||L2

0,q′ (M). (2.1.2)

On B̃(x, r), ∂̄b∂̄
∗
bu = ∂̄bf = 0, so with pullbacks given by the map gx,r, we have ̂̄∂b̂̄∂∗b û = 0 on

the Euclidean unit ball B0. Now, applying the same argument in [Koe02], we have

|D̂k(̂̄∂∗b û)J(v)| ≤ Ck|B(x, r)|−
1
2 r||f ||L2

0,q′ (M),

or

|D̂k(̂̄∂∗bu)J(v)| ≤ Ck|B(x, r)|−
1
2 ||f ||L2

0,q′ (M),

where v ∈ g−1
x,r(B̃(x, r2)) and D̂k be the composition of k factors of {X̂j , j = 1, ..., 2n− 2}. Since

the finite type condition, for some multi-indics α = (i1, ..., im), there is a smooth function λα 6= 0
on U such that

[Xim , [..., [Xi2 , Xi1 ]...] = λαT +

2n−2∑
j=1

βjXj ,

29



for some functions βj on M . Scaling this equality to B0, we have

λ̂αT̂ φ+

2n−2∑
j=1

β̂jX̂jφ = ̂[Xim , [..., [Xi2 , Xi1 ]...]φ,

where φ ∈ C∞0 (B0). This yields the formulae to the pullback of T -direction

T̂ φ(v′) =
1

λ̂α

(
rm[Xim , [..., [Xi2 , Xi1 ]...]φ̌(gx,r(v

′)) + r
2n−2∑
j=1

β̂jXjφ̌(gx,r(v
′))
)
.

We apply T̂ as the sum of derivatives

|T̂ kz (̂̄∂∗bu)J(v)| ≤ Ck|B(x, r)|−
1
2 ||f ||L2

0,q′ (M),

for v ∈ g−1
x,r(B̃(x, r2)). By rescaling, and then induction for k, it is not to hard to imply that

|T kz (∂̄∗bu)J(z)| ≤ Ckr−km|B(x, r)|−
1
2 ||f ||L2

0,q′ (M),

for z ∈ B̃(x, r2) with r is sufficiently small. This is also true in place of z ∈ B̃(x, r).
So, by L2-duality, we yield

||T kz SIJq′ (z, .)||
L2

0,q′ (B̃(y,r))
≤ Ckr−km|B(x, r)|−

1
2 ,

and
||T lwSIJq′ (., w)||

L2
0,q′ (B̃(x,r))

≤ Clr−lm|B(y, r)|−
1
2 ,

since SIJq′ (z, w) = SIJq′ (w, z). Again, by scaling and induction in k, we can show that

||T̂ kv′ŜIJq′ (v′, .)||L2
0,q′ (B0) ≤ Ck|B(x, r)|−1,

and
||T̂ lvŜIJq′ (., v)||L2

0,q′ (B0) ≤ Cl|B(x, r)|−1,

since r = C−1ρM (x, y) and so |B(x, r)|−
1
2 ≈ |B(y, r)|−

1
2 .

From [Koe02], we already know that∣∣∣∣∣∣∣∣ ∂α∂v′α
∂β

∂vβ
(|B(x, r)|Ŝ(v′, v))

∣∣∣∣∣∣∣∣
L2

0,q′ (B0×B0)

≤ Cα,β.

By Embedding Soblev Theorem,∣∣T̂ kv′ T̂ lv(|B(x, r)|Ŝ(v′, v))
∣∣ ≤ Ck,l uniformly,

and hence, by the same previous argument,

|T kxT lySIJq′ (x, y)| ≤ Ck,lr−m(k+l)|B(x, r)|−1,

when x closed y as well.
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Next, under condition of commutators finite type on M , we also define the parabolic non-
isotropic metric on R×M . Recall that the family of dilation δλ on R×M is

δλ(s, x) = (λ2s, λx),

for s ∈ R, x ∈M and the parameter λ > 0. This implies the following.

Definition 2.1.7. Denote by Y the vector fields
∂

∂s
on R, then the family of the vector fields

{Y,X1, ..., X2n−2} also satisfies the condition of finite commutator type. For every p = (s, x), q =
(t, y) ∈ R× U , the following function is finite

ρR×M (p, q) = ρM (x, y) +
√
|s− t|,

then
ρR×M (δλ(s, x), δλ(t, y)) = λρR×M ((s, x), (t, y)),

and ρR×M is called non-isotropic parabolic distance. This metric associates to the corresponding
balls BR×M ((s, x), r) on R×M . Note that

|BR×M ((s, x), |t− s|)| ≈ (t− s)2|BM (x, |t− s|)|.

Let B̃0 denote the unit ball in R2n−1. For each (u, u0) ∈ B̃0 the exponential mapping on R×M
is

Φ̃(s,x),r(u, u0) = exp(r2u0Y + ru1X1 + ...+ ru2n−2X2n−2 + Λ(x, r)u2n−1T )(s, x),

and
B̃R×M ((s, x), r) = Φ̃(s,x),r(B̃0).

2.2 Analysis on Carnot-Carathéodory Spaces

In this section, we briefly introduce the definition of the class of non-isotropic smoothing (NIS)
operators on the manifold M . These operators generalize the classical Calderón-Zygmund oper-

ators to do the standard coordinate vector fields

{
∂

∂x1
, ...,

∂

∂x2n−1

}
. For more discussions, see

[NaSt01], [Na], [Koe02].

Let ρM (x, y) be a non-isotropic metric on M defined as before, where M satisfies the
condition of finite commutator type. Let Ik denote the set of ordered k-tuples I of integers
I = (i1, ..., ik), 1 ≤ ij ≤ 2n − 2, and denote by XI = Xi1 ...Xik . The diagonal of M ×M is ∆M

and D′(M) denote the space of distributions on M .

We begin the definition of the class of NIS operators acting on functions on M .

Definition 2.2.1. An operator T : C∞0 (M) → D′(M) is called a non-isotropic smoothing
operator of order r if the following conditions hold:
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1. There is a function T0(x, y) ∈ C∞(M ×M \∆M ) so that if φ, ψ ∈ C∞0 (M) have disjoint
supports, 〈

T [φ], ψ
〉

=

∫
M

∫
M
φ(y)ψ(x)T0(x, y)dV (x)dV (y). (2.2.1)

2. For any s ≥ 0, there exist parameters α(s) <∞, β <∞ such that if ζ, ζ ′ ∈ C∞(M), ζ ≺ ζ ′,
then there is a constant Cs so that

||ζT [f ]||s ≤ Cs(||ζ ′f ||α(s) + ||f ||β) (2.2.2)

for all f ∈ C∞(M).

3. For any I ∈ Ik, J ∈ Il, there exists a constant Ck,l so that

|XIXJT0(x, y)| ≤ Ck,lρM (x, y)r−k−lVM (x, y)−1. (2.2.3)

4. For any ball BM (x0, r) ⊂ U , for each integer k ≥ 0, there is a positive integer Nk and a
constant Ck so that if φ ∈ C∞0 (BM (x0, r)) and I ∈ Ik, we have

sup
x∈BM (x0,r)

|XIT [φ](x)| ≤ Ckrr−k sup
y∈M

∑
|J |≤Nk

δ|J ||XJ [φ](y)|. (2.2.4)

5. The above conditions also hold for the adjoint operator T ∗ with kernel T0(y, x).

We have some remarks to this definition.

Remark 2.2.2. 1. The condition (1) says that the operator T has the distribution kernel which
is given by integration againts the function T0 is smooth away from the diagonal ∆M on
M . Thus, in addition to the condition (2) and (5), the operator T is pseudo-local, means, if
φ ∈ C∞0 (M), then away from the support of φ, T [φ] is given by the infinitely differentiable
function T [φ](x) =

∫
M T0(x, y)φ(y)dV (y). Moreover, the condition (2) was imposed in

order to prove that the class of NIS operators forming an algebra under composition.

2. The condition (3) clearly shows how large the sizes of singularities of the distribution
kernel T0(x, y) at diagonal on M are. And from the generalized theory of singular integral
operator developed by A. Nagel and E. Stein in [NaSt04], this estimate is critical to show
the Lp-boundedness for the operator T . In particular, in [Koe02], Koenig showed that if
T is a NIS operator of order zero on M , then T is bounded from Lp(M) to itself. The
analogue in C2 is also true in [NaSt04].

3. The condition (4) encodes the basic cancellation hypothesis needed to show that NIS
operators of order zero are bounded on L2(M). In the condition (3), when m ≤ 0, the

integral

∫
M
T0(x, y)φ(y)dV (y) is able not to converge absolutely, even if φ ∈ C∞0 (M).

Thus, the estimate in condition (4) is required for T [φ].
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Now, we generalize the class of NIS operators acting on (0, q)-forms. Let T be an operator
from C∞0,q1(M) into C∞0,q2(M), and φ =

∑′
|I|=q1φI ω̄I , then

T [φ](x) =
∑′

|J |=q2
(T [φ])J(x)ω̄J ,

where

(T [φ])J(x) =
∑′

|I|=q1
< T [φI(x)ω̄I ], ω̄J >L2 .

And we define T IJ [g](x) =< T [g(x)ω̄I ], ω̄J >L2 , for g ∈ C∞0 (M). Here, the appearing of the
primes in these sums means the follow forms are represented uniquely. Naturally, we say that
T is a NIS operator of order r on (0, q1)-form if and only if T and T ∗ satisfy the estimate in
condition (2) of the definition 2.2.1 and each T IJ is a NIS operator of order r on functions.

We will apply this definition to the Szegö projection Sq and S ′q. We can rewrite these operators
by

Sq[φ](x) =
∑′

|J |=q2

∑′

|I|=q1
< Sq[φI(x)ω̄I ], ω̄J >L2 ω̄J =

∑′

|J |=q2

(∑′

|I|=q1
SIJq [φI ](x)

)
ω̄J ,

S ′q[φ](x) =
∑′

|J |=q2

∑′

|I|=q1
< S ′q[φI(x)ω̄I ], ω̄J >L2 ω̄J =

∑′

|J |=q2

(∑′

|I|=q1
(SIJq )′[φI ](x)

)
ω̄J ,

for φ =
∑
|I|=q1 φI ω̄I . Now, by Riesz Representation theorem,

Sq[φ](x) =
∑′

|J |=q2

(∑′

|I|=q1

∫
M
SIJq (x, y)φI(y)dV (y)

)
ω̄J

S ′q[φ](x) =
∑′

|J |=q2

(∑′

|I|=q1

∫
M

(SIJq )′(x, y)φI(y)dV (y)
))
ω̄J .

With these integral representations and the fact that the identity operator is non-isotropic
smoothing of order zero, the operators Sq′ ,S ′q′ and Kq′ are the NIS operators, with q ≤ q′ ≤
n− 1− q.

Theorem 2.2.3. [Koe02] Assume the condition Dε(q) holds for q0 ≤ q ≤ n − 1 − q0 for some
fixed q0 ≥ 1 near a point of finite commutator type x0 ∈M . Then, there is a neighborhood U of
x0 such that

1. Sq and S ′q are NIS operators of order zero in U .

2. Sq0−1 and S ′n−q0 also are NIS operators of order zero in U .

3. Kq is a NIS operator of order 2 in U

As a consequence, we have
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Proposition 2.2.4. Let α be a muilti-index with |α| = k ≥ 1. For 0 ≤ j ≤
[
k

2

]
, there are NIS

operators Aj,1, Aj,2, Aj,3 smoothing of order zero such that

Xα(I −Hq) =

[
k

2

]
∑
j=0

(Aj,1 +Aj,2 +Aj,3)�jb.

In particular, if k = 2l, Al,1 = Al,2 = 0.

Proof. The proof really follows the lines in Proposition 3.4.7 [NaSt01] with the replacing of the
terms I − Sq by I −Hq. And we can omit here.

The scaling method also provides following Sobolev Type Theorem.

Theorem 2.2.5. Let M satisfy the conditions of Dε(q) and of finite commutator type. There is
a constant C , and an even integer Lm so that if f ∈ C∞(U), then for all x ∈ U and all r ≤ r0

sup
BM (x,r)

|f | ≤ C|BM (x, r)|−
1
2

∑
0≤|I|≤Lm,|I| even

r|I|||XIf ||L2(BM (x,2r)). (2.2.5)

If f ∈ Λ0,q′(C∞(M)) ∩ L2
0,q′(M), with q ≤ q′ ≤ n− 1− q. Moreover, if f ∈ (ker�b)⊥, then

sup
BM (x,r)

|f | ≤ C|BM (x, r)|−
1
2

Lm/2∑
j=0

r2j ||�jbf ||L2
0,q(BM (x,2r)). (2.2.6)

Proof. We apply the scaling method introduced before. From the property (1) in Theorem 2.1.4,
we can change the ball under supremum

sup
y∈BM (x,r)

|f(y)| ≤ sup
y∈B̃M (x,C1r)

|f(y)| ≤ sup
u∈B0

|f(Φx,C2r(u))|.

Setting F (u) = f(Φx,C2r(u)), for u ∈ B0. Let G(u) = F (u)θ(u), where θ ∈ C∞0 (R2n−1), θ = 1 on
B0, and θ = 0 outside the ball B(0, 2) ⊂ R2n−1. So,

sup
u∈B0

|F (u)| ≤ sup
u∈R2n−1

|G(u)| ≤
∫
R2n−1

|Ĝ(ξ)|dV (ξ)

≤ ||(1 + |ξ|4)1/2Ĝ(ξ)||L2(R2n−1)||(1 + |ξ|4)−1/2||L2(R2n−1)

≤ C(||Ĝ||L2(R2n−1) + |||ξ|2Ĝ||L2(R2n−1))

≤ C
∑

0≤|I|≤2,|I| even

||
( ∂
∂u

)I
F̂ ||L2(B(0,2)).
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Now, from the statement (2) in Theorem 2.1.5, there is an positive integer number l depending
on m such that

sup
B0

|F | ≤ C
∑

0≤|I|≤2l,|I| even

||
(
X̂
)I
F̂ ||L2(B(0,2)).

Then, after rescaling pullback, by Theorem 2.1.4, we have the first statement.
Now, we have the analogue version for (0, q)-form. Let f =

∑
|J |=q fJωJ ∈ Λ0,q(C∞(M)), we

also obtain

sup
BM (x,r)

|f | = sup
|J |=q

sup
BM (x,r)

|fJ |

≤ sup
|J |=q

C|BM (x, r)|−
1
2

∑
0≤|I|≤Lm,|I| even

r|I|||XIfJ ||L2(BM (x,2r))

≤ C|BM (x, r)|−
1
2

∑
0≤|I|≤Lm,|I| even

r|I|
∑
|J |=q

||XIfJ ||L2(BM (x,2r))

≤ C|BM (x, r)|−
1
2

∑
0≤|I|≤Lm,|I| even

r|I|||XIf ||L2(BM (x,2r)).

In order to estimate XIf in the terms of �jbf , with f = f − Hq[f ], we will apply the basic
decomposition in Proposition 2.2.4. Since |I| is even, there exists a NIS operator of smoothing
of order zero AI such that

XI(I −Hq) = AI�
|I|
2
b .

Therefore, let f be orthogonal to the null space of �b, we obtain the second assertion.

The main result in this part is following

Theorem 2.2.6. Let M satisfy the conditions of Dε(q) and be of finite commutator type. Then,
the heat operators e−s�b, with s > 0, are NIS operators smoothing of order zero on (0, q′)-forms,
with q ≤ q′ ≤ n− 1− q, and associated estimates are uniform in s > 0. As a consequence, e−s�b

is bounded from Lp0,q′(M) to itself.

We will prove this theorem in the next chapter.
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Chapter 3

The Initial Value Problem For The
Heat Operator ∂s +�b

In this chapter, for a (0, q)-form φ =
∑′
|I|=qφI ω̄I , we will show that the operator e−s�b [φ](x)

has the following form

e−s�b [φ](x) =

∫
M
H(s, x, y)φ(y)dV (y),

where the integral means that∫
M
H(s, x, y)φ(y)dV (y) =

∑′

|J |=q

(∑′

|I|=q

∫
M
HIJ(s, x, y)φI(y)dV (y)

)
ω̄J .

We require that M satisfies the condition of finite commutator type and Dε(q).

3.1 The heat kernel

For convenience, we recall some results about the heat semi-group of unbounded operators e−s�b

via Hilbert space theory.

Theorem 3.1.1. Assume the condition of finite commutator type and Dε(q) hold on M , and
also the operator ∂̄b has its closed-range in L2. Let φ ∈ L2

0,q(M), then :

1. lim
s→0
||e−s�b [φ]− φ||L2

0,q(M) = 0;

2. For s > 0, ||e−s�b [φ]||L2
0,q(M) ≤ ||φ||L2

0,q(M);

3. If φ ∈ Dom(�b), ||e−s�b [φ]− φ||L2
0,q(M) ≤ s||�b[φ]||L2

0,q(M);

4. For s > 0 and j is non-negative integer, ||(�b)je−s�b [φ]||L2
0,q(M) ≤

(
j

e

)j
s−j ||φ||L2

0,q(M);
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5. e−s�bHq[φ] = Hqe−s�b [φ] = Hq[φ];

6. e−s�b [φ] = (I −Hq)e−s�b [φ] +Hq[φ] = e−s�b(I −Hq)[φ] +Hq[φ];

7. For any φ ∈ L2
0,q(M), and any s > 0, the Hilbert space valued form Hs = e−s�b [φ] satisfies

[∂s +�b][Hs] = 0 for s > 0

lim
s→0

Hs = φ in L2
0,q((0,∞)×M).

Next, we have the self-adjointness for heat semi-group.

Lemma 3.1.2. For any s ≥ 0, e−s�b is a self-adjoint operator on L2
0,q(M).

Proof. Let s, t ≥ 0, since the self-adjointness of �b, we have

∂

∂s

〈
e−s�bφ, e−t�bψ

〉
L2

0,q(M)
=

∂

∂t

〈
e−s�bφ, e−t�bψ

〉
L2

0,q(M)
.

Then, ( ∂
∂s
− ∂

∂t

)〈
e−s�bφ, e−t�bψ

〉
L2

0,q(M)
= 0.

The transform of variables

{
u = s+ t
v = s− t or


s =

1

2
(u+ v)

t =
1

2
(s− t)

arises 
∂

∂u
=

1

2
(
∂

∂s
+
∂

∂t
)

∂

∂v
=

1

2
(
∂

∂s
− ∂

∂t
).

So,
∂

∂v
a(s, t) = 0,

where a(s, t) =
〈
e−s�bφ, e−t�bψ

〉
L2

0,q(M)
. That means a(s, t) is a function of only u-variables,

a(s, t) = F (u) = F (s+ t) = F (t+ s) = a(t, s).
In this case, we have 〈

e−s�bφ, e−t�bψ
〉
L2

0,q(M)
=
〈
e−t�bφ, e−s�bψ

〉
L2

0,q(M)
,

and in particular when t = 0,〈
e−s�bφ, ψ

〉
L2

0,q(M)
=
〈
φ, e−s�bψ

〉
L2

0,q(M)
.
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The next lemma says that the linear functional φ 7→ Xαe−s�b [φ](x) is bounded. The key fact
is that, when n ≥ 3, the operator �b has subelliptic estimates (1.4.2).

Lemma 3.1.3. Let |α| = a ≥ 0, and let K ⊂ M be a compact set. Choose a integer N so that
Nε > 2n − 1 + a, where ε defined in (1.4.2). Then, there is an allowable constant C such that
for each s > 0, if x ∈ K, and for all φ ∈ L2

0,q(M),

|Xαe−s�b [φ](x)| ≤ C(1 + t−N )||φ||L2
0,q(M). (3.1.1)

As a consequence of the condition of commutators finite type, for any derivative D on M ,

|Dαe−s�b [φ](x)| ≤ C(1 + t−N )||φ||L2
0,q(M).

Proof. Choose ζ ∈ C∞0 (M) with ζ(x) = 1, for all x ∈ K. Then, choose cut-off function ζ ≺ ζ1 ≺
... ≺ ζN = ζ ′. By Sobolev Imbedding Theorem, we have

|Xαes�b [φ](x)| = |Xαζ(x)es�b [φ](x)| ≤ C||ζes�b [φ]||2n−1+a.

Applying the basic subelliptic estimate (1.4.2), we have

||ζe−s�b [φ]||2n−1+a ≤ C.
[
||ζ1�be

−s�b [φ]||n+a−ε + ||ζ1e
−s�b [φ]||0

]
.

If we repeat this argument N times, by (4) in Theorem 3.1.1, we will obtain

||ζe−s�b [φ]||2n−1+a ≤ C.
N∑
j=0

||ζ ′�jbe
−s�b [φ]||0 ≤ C.(1 + t−N )||φ||L2

0,q(M),

this completes the proof.

As a consequence of Riesz Represenation Theorem, we have integral forms for Dae−s�b [φ].

Lemma 3.1.4. For s > 0, a be a non-negative integer, and x ∈M , and for any derivative Dα,
with |α| = a, there exist unique functions HIJ

s,x,a ∈ L2(M), where |I| = |J | = q, so that

Dαe−s�b [φ](x) =
∑′

|J |=q

(∑′

|I|=q

∫
M
HIJ
s,x,a(y)φI(y)dV (y)

)
ω̄J , (3.1.2)

or in short,

Dαe−s�b [φ](x) =

∫
M
Hs,x,a(y)φ(y)dV (y),

where φ =
∑′
|I|=qφI ω̄I . Moreover, if K ⊂M is compact and if C is the corresponding constant

in Lemma 3.1.1, then if x ∈ K,∑
I,J

∫
M
|HIJ

s,x,a(y)|2dy ≤ C2.(1 + t−N )2.
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Proof. For each s > 0, x ∈ M , we define the mapping φ 7→ Dαe−s�b [φ](x). By Lemma 3.1.1,
this functional is bounded. Moreover, since

Dαe−s�b [φ](x) =
∑′

|J |=q

∑′

|I|=q
〈DαHs[φI ω̄I ], ω̄J〉L2 (x)ω̄J ,

and so by Riesz Representation Theorem, there exist functions HIJ
s,x,a ∈ L2(M) so that

Dα(Hs)IJ(φI)(x) = 〈DαHs[φI ω̄I ], ω̄J〉 (x) =

∫
M
HIJ
s,x,a(y)φI(y)dV (y).

Hence, by duality, we obtain∑′

I,J

∫
M
|HIJ

s,x,a(y)dy| ≤ C2.(1 + t−N )2.

For each |α| = a, we would like to regard for each I, J , HIJ
s,x,a as a measurable function of

three variable (s, x, y). We proceed as follows. Each element HIJ
s,x,a is by definition an equivalence

class of measurable, square functions on M which differ only on sets of measure zero. For each
s, x, α, |α| = a, choose one representative of this class, defined for all y ∈M , which again called
HIJ
s,x,a. By this way, we can define a function HIJ

a (s, x, y) = HIJ
s,x,a(y). In particular, we write

HIJ(s, x, y) = HIJ
s,x,0. Moreover, we have

Proposition 3.1.5. For each |α| = a, HIJ
a is measurable on (0,∞)×M ×M .

Now, we can state the main result in this chapter.

Theorem 3.1.6. We define the following (0, q)-forms

HI
y (s, x) =

∑′

|J |=q
HIJ(s, x, y)ω̄J(x),

HJ
x (s, y) =

∑′

|I|=q
HIJ(s, x, y)ω̄I(y),

and for s > 0, we define the double form

Hs(x, y) =
∑′
|I|=q
|J |=q

HIJ(s, x, y)ωJ(x)⊗ ωI(y).

It turns out that e−s�b [φ](x) =
∑′
|J |=q < HJ

x (s, .), φ >L2
0,q(M) ω̄J .

For each fixed s > 0 and x ∈ U , the function y 7→ HIJ(s, x, y) belongs to L2(M), so each integral
above converges absolutely. Moreover, each component HIJ(s, x, y) of H(s, x, y) satisfies

1. For s > 0, and x, y ∈ U , HIJ(s, x, y) = HJI(s, y, x).

40



2. [∂s + (�b)x][HI
y ](s, x) = [∂s + (�b)y][HJ

x ](s, y) = 0.
And hence,

[∂s + (�b)x][Hs(x, y)] = [∂s + (�b)y][Hs(x, y)] = 0.

3. For any integer j, k ≥ 0,

(�b)
j
x(�b)

k
yH

IJ
s (x, y) = (�b)

j+k
x HI

y (s, x) = (�b)
j+k
y HJ

x (s, y).

4. For each s > 0 and y ∈ U , for any non-negative integer j, each function

x 7→ (�b)
j
xH

I
y (s, x)

is orthogonal to the null space of �b.

Proof. For fixed s > 0, since HIJ(s, x, y) = HIJ
s,x,0, for all I, J , then Lemma 3.1.4 says that the

maps y 7→ HIJ(s, x, y) belong to L2(M) for all I, J . and

e−s�b [φ](x) =
∑′

|J |=q

(∑′

|I|=q

∫
M
HIJ(s, x, y)φI(y)dV (y)

)
ω̄J .

We denote these sums as

∫
M
H(s, x, y)φ(y)dV (y).

Now,

Dα
x

( ∫
M
g(y)HIJ(s, x, y)dV (y)

)
=

∫
M
g(y)HIJ

a (s, x, y)dV (y)

Now, by Schwartz Kernel Theorem, the following holds

< Dα
x (Hs)IJ [ψ], φ >C =< (−1)|α|(Hs)IJ [ψ], Dα

xφ >

=< (−1)|α|HIJ , ψ ⊗Dα
xφ >,

for every φ, ψ ∈ C∞0 (M). On the other hand,

< Dα(Hs)IJ [ψ], φ > =< (DKHs)IJ [ψ], φ,>

=< HIJ
a , ψ(y)⊗ φ(x) >,

for every φ, ψ ∈ C∞0 (M). Hence,

< (−1)|α|HIJ , ψ ⊗Dα
xφ >=< HIJ

a , ψ(y)⊗ φ(x) >, for every φ, ψ ∈ C∞0 (M) ,

so
DαHIJ(s, x, y) = HIJ

a (s, x, y) (3.1.3)

in the sense of distributions.
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1. The fact that the operator Hs = e−s�b is self-adjoint, and so for φ =
∑′
|I|=qφI ω̄I , ψ =∑′

|J |=qψJ ω̄J in C∞0 (Λ0,q(M)), we have

∑′

|J |=q

∫
M

(∑′

|I|=q
[HIJ

s [φI ]](x)
)
.ψ̄J(x)dV (x) =

∑′

|I|=q

∫
M

(∑′

|J |=q
[HJI

s [ψJ ]](y)
)
φI(y)dV (y).

Now, substituting integral representation of GIJ
s , we have

∑′

|J |=q

∫
M

(∑′

|I|=q
HIJ(s, x, y)φI(y)dV (y)

)
.ψ̄J(x)dV (x)

=
∑′

|I|=q

∫
M

(∑′

|J |=q
HJI(s, y, x)ψJ(x)dV (x)

)
φI(y)dV (y).

As a sequence, HIJ(s, x, y) = HJI(s, y, x), this is the first assertion.

2. We know that for fixed s > 0, x ∈M , the component function y 7→ HIJ(s, x, y) is square
integrable on M . So for fixed y ∈ M , the function x 7→ HIJ(s, x, y) = HJI(s, y, x) belongs to
L2(M). Similarly, the functions y 7→ HIJ

a (s, x, y) and x 7→ HIJ
a (s, x, y) also belong to L2(M).

According to (3.1.3), every derivative of HIJ
K (s, x, y) in x-variables and y variables belongs

to L2(M). That means all of derivatives of HIJ(s, x, y) in x, y variables have L2(M) bounds.
Therefore, by Sobolev Embedding Theorem, HIJ(s, ., y) and HIJ(s, x, .) are smooth whenever
s > 0. As a consequence, every derivative (in x-variables and y-variables) in (3.1.3) exists in the
classical sense and every derivative Dα

x or y is bounded in L2(M)-norm. Hence, again by Sobolev

Embedding Theorem, HIJ(s, ., .) belongs to C∞(M ×M).
Now, let φ ∈ L2

0,q(M). Since

[∂s +�b][Hs[φ]] = 0 (3.1.4)
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and then, fixing x ∈ U , we can integrate against test forms on (0,∞)×M , we have

0 =

〈( ∂
∂s

+�b
)
[Hs[φ]](x), ψ(., x)

〉
L2

0,q((0,∞))

=

〈
Hs[φ](x),

(
− ∂

∂s
+�b

)
[ψ](., x)

〉
L2

0,q((0,∞))

=

〈
Hs[φ](x),− ∂

∂s
[ψ](., x)

〉
L2

0,q((0,∞))

+ 〈Hs[φ](x), (�b)x[ψ](., x)〉L2
0,q((0,∞))

=

〈∑′

|J |=q

(∑′

|I|=q
(Hs)IJ [φI ](x)

)
ω̄J ,

∑′

|J |=q

(
− ∂

∂s
ψJ(., x)

)
ω̄J

〉
L2

0,q((0,∞))

+

〈∑′

|J |=q

(∑′

|I|=q
(Hs)IJ [φI ](x)

)
ω̄J ,

∑′

|J |=q
(�bψ(., x), ω̄J)︸ ︷︷ ︸

ΨJ (.,x)

ω̄J

〉
L2

0,q((0,∞))

=
∑′

|J |=q

∫
(0,∞)

(∑′

|I|=q
(Hs)IJ [φI ](x)

)
.

(
− ∂

∂s
ψJ(s, x)

)
ds

+
∑′

|J |=q

∫
(0,∞)

(∑′

|I|=q
(Hs)IJ [φI ](x)

)
.ΨJ(s, x)ds

=
∑′

|J |=q

∫
(0,∞)

(∑′

|I|=q

∫
M
HIJ(s, x, y)φI(y)dV (y)

)
.

(
− ∂

∂s
ψJ(s, x)

)
ds

+
∑′

|J |=q

∫
(0,∞)

∑
|I|=q

∫
M
HIJ(s, x, y)φI(y)dV (y)

 .ΨJ(s, x)ds.

=
∑′

|J |=q

∑′

|I|=q

∫
(0,∞)

∫
M

∂

∂s
HIJ(s, x, y)φI(y)dV (y).ψJ(s, x)dV (y)ds

+
∑′

|J |=q

∑′

|I|=q

∫
(0,∞)

∫
M
HIJ(s, x, y)φI(y)dV (y).ΨJ(s, x)dV (y)ds.

Therefore,
∂

∂s
HI
y (s, x) = −(�b)xH

I
y (s, x)

in the sense of distributions. Then, we also get

∂2

∂s2
HI
s,y(x) = − ∂

∂s
(�b)xH

I
s,y(x) = (�b)

2
xH

I
s,y(x).

Iterating this computation, we really show that

∂j

∂sj
HI
y (s, x) = (−1)j(�b)

j
xH

I
y (s, x)

43



in the distributional sense. In the other hand, the fact that every derivative in x-variables and y-
variables of HIJ(s, x, y) belongs to L2(M×M) implies (�b)

j
xHI

y (s, x) ∈ L2
0,q((0,∞)×M) locally.

Then, from the above identity, all derivatives in s-variables of HI
s,y are in L2

0,q((0,∞)×M) locally.

This is enough to show that HIJ
q is indeed in C∞((0,∞)×M) from the standard elliptic theory.

That means
∂

∂s
HI
y (s, x) = −(�b)xH

I
y (s, x)

in the classical sense.
Iterating the same argument to y-variables, we also obtain

∂

∂s
HJ
x (s, y) = −(�b)yH

J
x (s, y)

in the classical sense.

3. From the proof of a result before, we know that (�b)Hs = Hs(�b). Then,

< (�b)(Hs[φ]), ψ >=< Hs(�bφ), ψ >,

and so
< Hs[φ],�bψ >=< Hs(�bφ), ψ >,

for any φ =
∑′
|I|=qφI ω̄I , ψ =

∑′
|K|=qψK ω̄K ∈ C∞0 (Λ0,q(M)). We can rewrite�bψ =

∑
|J |=q(�bψ)J ω̄J .

Wrting out what this means in the terms of the each componnent HIJ
q (s, x, y), we have∑′

|J |=q

∫
M

(∑′

|I|=q

∫
M
HIJ
q (s, x, y)φI(y)dV (y)

)
.(�bψ)J(x)dV (x)).

=
∑′

|J |=q

∫
M

(∑′

|L|=q

∫
M
HLJ(s, x, y)(�bφ)L(y)dV (y)

)
.ψJ(x)dV (x).

By The Schwart Kernel Theorem and the self-adjointness of �b, this implies that

〈(�b)xHs(x, y), φ⊗ ψ〉 = 〈(�b)yHs(x, y), φ⊗ ψ〉 (3.1.5)

for every φ, ψ ∈ C∞(Λ0,q(M)).
Therefore, for each s > 0, (�b)xHs(x, y) = (�b)yHs(x, y) in the sense of distributions, and also
this holds in the classical sense as the arguments before. From this identity, it is not so hard to
show that for each s > 0

(�b)
j
x(�b)

k
yHs(x, y) = (�b)

j+k
x Hs(x, y) = (�b)

j+k
y Hs(x, y).

4. Since Hq(�b)j = (�b)jHq = 0, then Hq(�b)jHs = 0. And the fact that Hq is self-adjoint

implies the following identity for each s > 0 and for all test forms φ =
∑′

|I|=q
φI ω̄I , ψ =∑′

|J |=q
φJ ω̄J , 〈∑′

|I|=q
< Hq(�b)jHI

y (s, .), ψ > ω̄I , φ

〉
= 0.
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Hence, for fixed s > 0 and y ∈ U , Hq(�b)jxHI
y (s, .) = 0, and then the following map

x 7→ (�b)
j
xH

I
y (s, x)

belongs to the orthogonal complement of the null space of �b. This completes the proof of the
theorem.

3.2 The heat equation on R×M

In this section, we will study the operator ∂s +�b on whole space R×M . We will show that for
fixed x ∈M , we can define distributions HIJ

x on R×M such that

HIJ
x (s.y) =

{
HIJ(s, x, y) if s > 0
0 if s ≤ 0

in the sense of each component.

To do this, we recall some materials from distributions theory on R×M .

Definition 3.2.1. Let S be a distribution on R and T be a distribution on M , then from
Appendix, Theorem A.2.2, we can define the distribution S ⊗ T on R×M by〈

S ⊗ T, χ⊗ ψ
〉

=
〈
S, χ

〉〈
T, ψ

〉
,

where χ ∈ C∞0 (R), and ψ ∈ C∞0 (M).
Now, for each fixed x ∈M , we define the distribution SR on R by follows

SR[ψx] = SR[ψ](x) =

∫ ∞
0

ψ(s, x)ds,

for every ψ ∈ C∞0 (R×M), where ψx = ψ(s, x) for fixed x ∈M .
For each distribution T on M , we also have the corresponding one TR×M on R×M defined by〈

TR×M , ψ
〉

=
〈
T,SR[ψx]

〉
,

where ψ ∈ C∞0 (R×M). Again, by Theorem A.2.2, it can be rewritten is that〈
TR×M , ψ

〉
= SR(T [ψs]

)
=

∫ ∞
0

〈
T, ψs

〉
ds,

where ψs = ψ(s, x) for each fixed s ∈ R.
Let ∂x be the any derivative on M in x-variables, we have

∂xS
R[ψ] = SR[∂xψ],

and
∂xT

R×M [ψ] = TR×M [∂xψ].
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Now, from the theory above, we begin our approach with the following definition.

Definition 3.2.2. For ψ ∈ Λ0,q(C∞0 (R×M)), set

〈Hx, ψ〉 = lim
ε→0+

∫ ∞
ε

∫
M
H(s, x, y)ψ(s, y)dV (y)ds

The main object in this chapter is to show that the above limit exists. It follows that the
kernel of this distribution has the following components

HIJ
x (s.y) =

{
HIJ(s, x, y) if s > 0
0 if s ≤ 0

Lemma 3.2.3. The limit defining Hx exists. Moreover,

[∂s + (�b)y][Hx] = δ0 ⊗ δx

in the sense of distributions (for the components), i.e,

〈Hx, [−∂s +�b]ψ〉 = ψ(0, x).

Proof. Setting ψs(y) = ψ(s, y). Then, ψs ∈ Λ0,q(C∞0 (M)). Choose a positive integer N so that
Nε > 2n−1

2 . Choose ζ ≺ ζ1 ≺ ... ≺ ζN = ζ ′ with ζ(x) = 1. Then, again, by Sobolev Imbedding
Theorem and the basic subelliptic estimate applied N times, we obtain∣∣∣∣∫

M
H(s, x, y)ψ(y)dV (y)

∣∣∣∣ =
∣∣ζe−s�b [ψs](x)

∣∣
≤ C.||ζe−s�b [ψs]||Nε
≤ C.[||ζ1�b[e

−s�b [ψs]]||(N−1)ε + ||ζ1e
−s�b [ψs]||0]

≤ ...repeating N -times as above

≤ C.
N∑
j=0

||ζ ′�jb[e
−s�b [ψs]]||0.

(3.2.1)

But since the operators �b and e−s�b are commutative, hence,∣∣∣∣∫
M
H(s, x, y)ψ(y)dV (y)

∣∣∣∣ ≤ C N∑
j=0

||ζ ′e−s�b [�jbψs]||0 ≤ C.
N∑
j=0

||�jbψs||0.

The right hand side is uniformly bounded in s, and then, taking integral on [η1, η2], we have∣∣∣∣∫ η1

η1

∫
M
H(s, x, y)ψ(y)dV (y)ds

∣∣∣∣ ≤ C.|η2 − η1| sup
s

N∑
j=0

||�bψs||0.
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We see that the left hand side goes to zero as η1 → η1, so the limit defining Hx exists. Again,
let ψ ∈ Λ0,q(C∞0 (R×M), then

〈Hx, [−∂s +�b]ψs〉 = lim
ε→0

∫ ∞
ε

e−s�b [[−∂s +�b]ψs]ds

= − lim
ε→0

∫ ∞
ε

e−s�b [[∂s]ψs]ds+ lim
ε→0

∫ ∞
ε

e−s�b [[�b]ψs]ds

= − lim
ε→0

∫ ∞
ε

∫
M
H(s, x, y)∂sψ(s, x)dV (y)ds

+ lim
ε→0

∫ ∞
ε

∫
M
H(s, x, y)�bψ(s, y)dV (y)ds.

(3.2.2)

Now, for the first term,

−
∫ ∞
ε

∫
M
H(s, x, y)∂sψ(s, x)dV (y)ds

= −
∫ ∞
ε

∂s
∑′

|J |=q

(∑′

|I|=q

∫
M
HIJ(s, x, y)ψI(s, y)dV (y)

)
ω̄Jds

+

∫ ∞
ε

∑′

|J |=q

(∑′

|I|=q

∫
M
∂sH

IJ(s, x, y)ψI(s, y)dV (y)

)
ω̄Jds

=
∑′

|J |=q

(∑′

|I|=q

∫
M
HIJ(ε, x, y)ψI(ε, y)dV (y)

)
ω̄J

+

∫ ∞
ε

∑′

|J |=q

(∑′

|I|=q

∫
M
∂sH

IJ(s, x, y)ψI(s, y)dV (y)

)
ω̄Jds.

=
∑′

|J |=q

(∑′

|I|=q

∫
M
HIJ(ε, x, y)ψI(ε, y)dV (y)

)
ω̄J

+

∫ ∞
ε

∑′

|J |=q

〈
∂sH

J
x (s, .), ψ(s, .)

〉
ω̄Jds.

(3.2.3)

And the second term,∫ ∞
ε

∫
M
H(s, x, y)�bψ(s, y)dV (y)ds =

∫ ∞
ε

∑′

|J |=q

〈
HJ
x (s, .),�bψ(s, .)

〉
ω̄Jds

=

∫ ∞
ε

∑′

|J |=q

〈
(�b)yH

J
x (s, .), ψ(s, .)

〉
ω̄Jds.

(3.2.4)

Hence, since [∂s + (�b)y]HJ
x (s, y) = 0, (3.2.2), (3.2.3), and (3.2.4) imply

−
∫ ∞
ε

∫
M
H(s, x, y)∂sψ(s, x)dV (y)ds+

∫ ∞
ε

∫
M
H(s, x, y)�bψ(s, y)dV (y)ds

=
∑′

|J |=q

(∑′

|I|=q

∫
M
HIJ(ε, x, y)ψI(ε, y)dV (y)

)
ω̄J .

(3.2.5)
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It follows that

〈Hx, [−∂s +�b]ψs〉 = lim
ε→0+

∑′

|J |=q

(∑′

|I|=q

∫
M
HIJ(ε, x, y)ψI(ε, y)dV (y)

)
ω̄J

= ψ(0, x) = δ0 ⊗ δx.
(3.2.6)

Hence, this completes the proof of the lemma.

A remark that, by translation, we also have

〈Hx, [−∂s +�b]ψs+t〉 = δt ⊗ δx.

3.3 Pointwise estimates for the heat kernel

We begin by recalling the scaled pullback of heat equation on R×M to R× B0 by[
∂s + �̂bφ̂(s, u)

]
= r2 ̂([∂s +�b]φ(s, x)).

Now, we define the pullback of the heat kernel H(s, x, y) using the same change of variable
Φ(s,x0),r, with s > 0, x0 ∈M , u, v ∈ B0,

W IJ(s, u, v) = W IJ
x0,r(s, u, v) = HIJ(r2s,Φx0,r(u),Φx0,r(v)),

for each |I| = |J | = q, and 0 < r < R0. Hence, from the main results in previous chapter, with
the changing map Φ(s,x0),r, we have

[∂s + (�̂b)u][W I
v ](s, u) = 0,

[∂s + (�̂b)v][W
J
u ](s, v) = 0,

(3.3.1)

where W I
v (s, u), and W J

u (s, v) defined by the same formulation to HI
y (s, x), and HJ

x (s, y).
By the similar way, for s > 0, and φ ∈ Λ0,q(C∞0 (B0)), we can define

Ws[φ](u) =

∫
B0

W (s, u, v)φ(v)dv =

∫
B0

H(r2s,Φx0,r(u),Φx0,r(v))φ(v)dv.

The key point is that we can bound the norm of the operator Ws on L2
0,q(B0).

Lemma 3.3.1. There is a constant C which is independent of x0, r and s > 0 so that

||Ws[φ]||L2
0,q(B0) ≤ C|B(x0, r)|−1||φ||L2

0,q(B0).
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Proof. Let x ∈ B(x0, r), by change of variables, we have

Ws[φ](Φ−1
x0,r(x)) =

∫
B0

H(r2s,Φx0,r(Φ
−1
x0,r(x)),Φx0,r(v))φ(v)dv

=

∫
M
H(r2s, x, y)(φ ◦ Φ−1

x0,r)(y)JΦ−1
x0,r(y)dV (y)

= e−r
2s�b [(φ ◦ Φ−1

x0,r)JΦ−1
x0,r](x).

(3.3.2)

Here and later, every integral representing to the heat operator is understood by the formulations
in Lemma 3.1.4.
Since, ||e−r2s�b [(φ ◦ Φ−1

x0,r)JΦ−1
x0,r]||L2 ≤ ||(φ ◦ Φ−1

x0,r)JΦ−1
x0,r||L2 , it follows that∫

M
|Ws[φ](Φ−1

x0,r(x))|2dV (x) ≤
∫
M
|φ(Φ−1

x0,r(x))|2(JΦ−1
x0,r(x))2dV (x)

=

∫
B0

|φ(u)|2(JΦ−1
x0,r(Φx0,r(u)))2JΦx0,r(u)du

≤ C.|B(x0, r)|−1

∫
B0

|φ(u)|2du.

(3.3.3)

Here, we have used the facts that JΦ−1
x0,r(Φx0,r(u)) = JΦx0,r(u)−1, and JΦX0,R(u) ≥ C−1|B(x0, r)|

for 0 < r < R0 according to Theorem 2.1.4. On the other hand,∫
M
|Ws[φ](Φ−1

x0,r(x))|2dV (x) ≥ C−1|B(x0, r)|
∫
B0

|Ws[φ](u)|2du.

Hence, we obtain
||Ws[φ]||L2

0,q(B0) ≤ C|B(x0, r)|−1||φ||L2
0,q(B0),

and this completes the proof.

Next, we will obtain local estimates for the functions HIJ ’s, |I| = |J | = q, and certain of its
derivatives in terms of s and the control metric ρ.

Theorem 3.3.2. Let j, k, l be non-negative integers. For every positive integer N , there is a
constant CN = CN,j,k,l so that if |α| = k, |β| = l,

|∂jsXα
xX

β
yH

IJ(s, x, y)| ≤

CNρ(x, y)−2j−k−l|B(x, ρ(x, y))|−1

(
s

ρ(x, y)

)N
if s ≤ ρ(x, y)2,

CNs
−j−k/2−l/2|B(x,

√
s)|−1 if s ≥ ρ(x, y)2

,

(3.3.4)
for all (s, x, y) with ρR×M ((s, x), (0, y)) = |s|1/2 + ρ(x, y) ≤ 1.

The proof is based the scaling method which was introduced M. Christ [Ch88], and then
developed in higher dimensions by K. Koenig [Koe02]. We need the following subelliptic estimate
for the pullback of �b operator on B1 which is a consequence of (1.4.2), and Theorem 2.1.4.
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Proposition 3.3.3. Fix ζ, ζ ′ ∈ C∞0 (B0), with ζ ≺ ζ ′. For smooth (0, q)-forms, φ =
∑′
|K|=qφK

¯̂ωK
on B0 and δ ≥ 0,

||ζφ||2δ+ε ≤ Cδ
(
||ζ ′ ̂̄∂bφ||2δ + ||ζ ′̂̄∂∗bφ||2δ + ||ζ ′φ||20

)
,

where Cδ is a positive constant independent of x and 0 < r < R0. As a consequence, the heat
operator ∂s + �̂b also satisfies the subelliptic estimate

||ζφ||2δ+ε ≤ Cδ
(
||ζ ′[∂s + �̂b]φ||2δ + ||ζ ′φ||20

)
.

Proof. ((Proof of Theorem 3.3.2)) We will prove the theorem with N = 0 first. By compactness,
if R0 ≤ |s|1/2 + ρ(x, y) ≤ 1, the estimates are trivial. Hence, it suffices to show that that the
estimates hold when |s|1/2 + ρ(x, y) ≤ R0. Now, let fix (s0, x0) ∈ R×M , and let (s, x) ∈ R ×M
be another point so that ρR×M ((s0, x0), (s, x)) = r ≤ R0. There exists a unique point (t0, v0) ∈
(−1, 1)× B0 such that (s, x) = (s0 + r2t0,Φx0,r(v0)). Let τ > 0 such that |t0|1/2 + |v0| ≥ τ .
For (t1, u), (t2, v) ∈ (−1, 1)× B0, put

W#((t1, u), (t2, v)) = H(r2(t2 − t1),Φx0,r(u),Φx0,r(v)),

in the sense that
(
W#

)IJ
((t1, u), (t2, v)) = HIJ(r2(t2 − t1),Φx0,r(u),Φx0,r(v)). Then

[−∂t1 + (�̂b)u][(W#)Iv] = 0,

[∂t2 + (�̂b)v][(W
#)Ju ] = 0,

(3.3.5)

and

[∂jsX
α
xX

β
yH](r2(t2 − t1),Φx0,r(u),Φx0,r(v)) = r−2j−k−l[∂jt2X̂

α
u X̂

β
v ]((t1, u), (t2, v)). (3.3.6)

Now, for φ ∈ C∞0 (Λ((−1, 1)× B0)), setting

T #[φ](t1, u) =

∫ ∫
R×B0

W#((t1, u).(t2, v))φ(t2, v)dvdt2,

in the sense as above, i.e.,(
T #[φ](t1, u)

)
J

=

(∑′

|I|=q

∫ ∫
R×B0

(W#)IJ((t1, u).(t2, v))φI(t2, v)dvdt2

)
J

,

then,

T #[φ](t1, u) =
∑′

|J |=q

(
T #[φ](t1, u)

)
J
̂̄ωJ .

Put

B1 =

{
(t1, u) : |t1|1/2 + |u| < 1

3
τ

}
,

B2 =

{
(t2, v) : |t2 − t0|1/2 + |v − v0| <

1

3
τ

}
.

(3.3.7)

50



Then, the non-isotropic balls B1 and B2 are disjointed. Choose cut-off functions ζ ≺ ζ ′ ≺ ζ” ∈
C∞0 (B2) with ζ(t0, v0) = 1, and η ≺ η′ ∈ C∞0 (B1) with η(0, 0) = 1. Then, by Sobolev Inequality

and the basic subelliptic estimate for the operator ∂t2 + �̂b, we have∣∣∣[∂jt2X̂β
v (W#)Ju ]((0, 0), (t0, v0))

∣∣∣ =
∣∣∣ζ(t0, s0)[∂jt2X̂

β
v (W#)Ju ]((0, 0), (t0, v0))

∣∣∣
≤ C.

∣∣∣∣∣∣ζ ′(W#)Ju((0, 0).(., .))
∣∣∣∣∣∣

2n+j+k+l

≤ C.
[∣∣∣∣∣∣ζ”[∂t2 + (�̂b)v](W

#)Ju((0, 0), (., .))
∣∣∣∣∣∣

2n+j+k+l−ε

+
∣∣∣∣∣∣ζ”(W#)Ju((0, 0), (., .))

∣∣∣∣∣∣
0

]
≤ C

∣∣∣∣∣∣ζ”(W#)Ju((0, 0), (., .))
∣∣∣∣∣∣

0

≤ C sup
φ∈C∞(B2)
||φ||=1

∣∣∣T #[ζ ′φ](0, 0)
∣∣∣ .

Where we have used the facts that: [∂t2 + (�̂b)v](W#)Ju((0, 0), (., .)) = 0 on B2 which contains
supp(ζ ′), and by Hilbert space duality to convert each operator (W#)Ju to (T #)Ju .
Now, to estimate the term with the supremum sign, again, we use the basic subelliptic for
−∂t1 + (�̂b)u,

sup
φ∈C∞(B2)
||φ||=1

∣∣∣T #[ζ ′φ](0, 0)
∣∣∣ = sup

φ∈C∞(B2)
||φ||=1

∣∣∣η(0, 0)T #[ζ ′φ](0, 0)
∣∣∣

≤ C.
∣∣∣∣∣∣ηT #[ζ ′φ]

∣∣∣∣∣∣
2n

≤ C sup
φ∈C∞(B2)
||φ||=1


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣η′ [−∂t1 + (�̂b)u]T #[ζ ′φ]︸ ︷︷ ︸

=0 on B1 containing supp(η′)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2n−ε

+
∣∣∣∣∣∣η′T #[ζ ′φ]

∣∣∣∣∣∣
0


= C sup

φ∈C∞(B2)
||φ||=1

∣∣∣∣∣∣η′T #[ζ ′φ]
∣∣∣∣∣∣

0

≤ C sup
φ∈C∞(B2)
||φ||=1

∣∣∣∣∣∣T #[ζ ′φ]
∣∣∣∣∣∣

0

≤ C.||T #||.

Therefore, we have shown that∣∣∣∂jsXβ
yH(r2t0, x0, x)

∣∣∣ ≤ C.r−2j−l||T #||.

By the same argument, we can prove that∣∣∂jsXα
xH(r2t0, x0, x)

∣∣ ≤ C.r−2j−k||T #||,
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and combing these estimates, we have∣∣∣∂jsXα
xX

β
yH(r2t0, x0, x)

∣∣∣ ≤ C.r−2j−k−l||T #||.

The last problem is to estimate the norm ||T #||. Let φ, ψ be (0, q)-forms whose coefficients are
C∞0 ((−1, 1)×B0), and let φs(v) = φ(s, v), ψt(u) = ψ(t, u). Then, in the sense as above, we have∣∣∣∣∫ ∫

R×B0

T #[φ](t, u)g(t, u)dudt

∣∣∣∣
=

∣∣∣∣∑′

|J |=q

∫ ∫
R×B0

(
T #[φ](t, u)

)
J
ψJ(t, u)dudt

∣∣∣∣
=

∣∣∣∣∑′

|J |=q

∫ ∫
R×B0

(∑′

|I|=q

∫ ∫
R×B0

(W#)IJ((t, u).(s, v))φI(s, v)dvds

)
ψJ(t, u)dudt

∣∣∣∣
=

∣∣∣∣∑′

|J |=q

∑′

|I|=q

∫ ∫
R×B0

∫ ∫
R×B0

(W#)IJ((t, u).(s, v))φI(s, v)ψJ(t, u)dsdtdudv

∣∣∣∣
=

∣∣∣∣∑′

|J |=q

∑′

|I|=q

∫ ∫ ∫ ∫
HIJ(r2(s− t),Φx0,x(u),Φx0,r(v))φI(s, v)ψJ(r, u)dsdtdudv

∣∣∣∣
=

∣∣∣∣∑′

|J |=q

∑′

|I|=q

∫ ∫ ∫ ∫
HIJ(r2s,Φx0,x(u),Φx0,r(v))φI(s+ t, v)ψJ(t, u)dsdtdudv

∣∣∣∣
=

∣∣∣∣∑′

|J |=q

∫ ∫ ∫
(Ws[φs+t](u))JψJ(t, u)dsdtdu

∣∣∣∣
≤ C

∑′

|J |=q

∫ ∫
R2

∫
R0

|(Ws[φs+t](u))JψJ(t, u)dsdtdu|dudsdt

≤ C
∫ ∫

R2

||Ws[φs+t]||L2
0,q(B0).||ψt||L2

0,q(B0)dsdt.

Now, by Lemma 3.3.1, ||Ws[φs+t]||L2
0,q
≤ C.|B(x0, r)|−1||φs+t||L2

0,q(B0). Then∣∣∣∣∫ ∫
R×B0

T #[φ](t, u)g(t, u)dudt

∣∣∣∣
≤ C|B(x0, r)|−1

∫ ∫
R2

||φs+t||L2
0,q(B0).||ψt||L2

0,q(B0)dsdt

= C|B(x0, r)|−1

∫
R
||φs||L2

0,q(B0)ds.

∫
R
||ψt||L2

0,q(B0)dt

≤ C|B(x0, r)|−1||φ||R×B0 ||ψ||R×B0 ,

here the last inequality has been verified by Schwarz’s Inequality, and the the supports of φ, ψ
are contained in (−1, 1)× B0. So, in the case N = 0,∣∣∣∂jsXα

xX
β
yH(s, x, y)

∣∣∣ ≤ C.(ρR×M (s, x), (0, y))−2j−k−l|B(x, ρR×M (s, x), (0, y))|−1.
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This is actually the statement of Theorem 3.3.2 when N = 0 using the basic doubling property.
To deal with the case N > 0, using Taylor’s Formulae via s-variables, and note that when x 6= y,
the infinitely differential map s 7→ HIJ(s, x, y) and its derivatives are zero at s = 0. Then

|HIJ(s, x, y)| ≤ 1

(N − 1)!

∫ s

0
|∂Nt H(t, x, y)|(s− t)N−1dt

≤ C0
1

(N − 1)!
ρ(x, y)−2N |B(x, ρ(x, y)|−1

∫ s

0
(s− t)N−1dt

≤ C0
1

N !

(
s

ρ(x, y)

)N
|B(x, ρ(x, y)|−1,

when s ≤ ρ(x, y), and replace ρ(x, y) by s1/2. This argument also provides the same results when
s ≥ ρ(x, y). Finally, estimates for other derivatives of HIJ(s, x, y) are handle in the same way.
Therefore, this completes the proof of the theorem.

Next, action of the heat operator on bump function will be provided.

Theorem 3.3.4. Fix s > 0, 0 < r < R0, for each multi-index α, there is an integer Nα and a
constant Cα so that if φ ∈ Λ0,q(C∞0 (B(x, r))), then

|Xα
x e
−s�b [φ](x)| ≤ Cαr−|α| sup

y∈M

∑
|β|≤Nα

r|β||Xβφ(y)|. (3.3.8)

Proof. By Sobolev Type Theorem 2.2.5, and the argument before, with Nε ≥ 2n−1+ |α|+ |Lm|
we have

r|α||Xαe−s�b [φ](x)|

≤ C.|BM (x, r)|
−1
2

∑
0≤|β|≤Lm,|β| even

r|β|+|α|||Xα+βe−s�b [φ]||L2
0,q(BM (x,2r))

≤ C.|BM (x, r)|
−1
2

Lm∑
l=0, l even

rl+|α|
N∑
j=0

||e−s�b [(�b)jφ||L2
0,q(BM (x,2r))

≤ C.|BM (x, r)|
−1
2

Lm∑
l=0, l even

rl+|α|
N∑
j=0

||(�b)jφ||L2
0,q(BM (x,2r))

≤ C.|BM (x, r)|
−1
2

Lm∑
l=0, l even

rl+|α|
2N∑
|β|=0

||Xβφ||L2
0,q(BM (x,2r)).

(3.3.9)

This yields the desired estimate.

Theorem 3.3.2 and Theorem 3.3.4 say that for each s > 0, the heat operator e−s�b is a
NIS operator smoothing of order zero on (0, q′)-forms, q ≤ q′ ≤ n − 1 − q, and the associated
estimates are uniform in s > 0.
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Part II

f-APPROACHES
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Chapter 4

Cauchy-Riemann Equations in C2

In this chapter, we will discuss methods of integral representations in several complex variables.
These methods are generalizations of the Cauchy integrals in complex analysis from one variable
to several variables. In particular, these methods are applied to estimate solutions of the Cauchy-
Riemann equations in several complex variables, which were pioneered in 1969 by Grauert and
Lieb, and, independently, by Henkin. Thus far, these methods have been a most ”beautiful”
argument in the case of domains being strongly pseudoconvex. For instance, formulaes for such
integral representations of functions holomorphic in strongly pseudoconvex were developed by
Henkin in [He70]. Then, there is a long history of proving Lp estimates for the ∂̄-equation
based on these such formulaes can be referred in [Ker71, Ovr71]. Also, in [Kr76], Krantz proved
essentially optimal Lipschitz and Lp estimates on strongly pseudoconvex domains. In the case of
weak pseudoconvexity, there are also some results being obtained on convex domains. The well-
known papers by Range [Ra78], Diederich et al. [DFW86] show that the success of these methods
has depend on the existence of fairly explicit holomorphic support functions at each boundary
point of the domain under consideration. However, it is not true that any pseudoconvex domain
has a holomorphic support function, even admitting a real analytic boundary. It was discovered
by Kohn and Nirenberg [KoNi73]. In some positive cases , in [BdC84, CKM93, DFF99], these
methods were applied to provide Hölder estimates and Lp regularity for solutions of ∂̄-equations.
The domains in these papers have a same property : they satisfy the condition of finite type
in D’Angelo sense. And obviously, the analysis in the referenced works depends in an essential
fashion on the type. In C2, Chang et. al. [CNS92] proved Lp estimates for the ∂̄-Neumann
operator on weakly pseudoconvex domains of finite type. See [CKM93, FLZ11] and the references
within for a more complete history.
Naturally, we will ask that what happens if these above domains are not finite D’Angelo type,
i.e. infinite type. Recently, the L2 regularity for solutions of ∂̄ Neumann equations has been
established by Kohn, Khanh and Zampieri [Ko02, KZ10]. The superlogarithmic estimates hold
on the such type in stead of the subelliptic ones. Nevertheless, the sup-norm and also Lp-norm
(with p 6= 2) have been still unknown on such cases. In [FLZ11], Fornaess et al. provided the
sup-norm estimates which are available when the domains are convex and of infinite type. In
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particular, let 0 < α < 1, the following domains in C2 were considered

Ω = {ρ(z) = Re z2 + exp (−1/|z1|α) < 0} ,
or

Ω = {ρ(z) = Re z2 + exp (−1/|Re z1|α) < 0} .
(4.0.1)

Their result asserts that on the such domains, there is a solution (in particular, Henkin integral
solution) to the ∂̄-equation ∂̄u = φ, for φ ∈ C1

(0,1)(Ω) and ∂̄φ = 0, so that ||u||L∞ . ||φ||L∞ . The

main purpose in this chapter is to develop this result on general domains in C2 as well as to give
the positive answer to the question that if the Hölder and Lp estimates hold on such domains
while it was not accessible by the classical L2-approach.

4.1 Preliminaries

Let Cn be the n-dimensional complex Euclidean space, Cn = {(z1, z2, ..., zn)}, n ≥ 1. Where
zj = xj + iyj , and xj , yj ∈ R. We identify Cn ≈ R2n by (z1, ..., zn) ≈ (x1, y1, ..., xn, yn). As usual,

∂

∂zj
=

1

2

(
∂

∂xj
− i ∂

∂yj

)
, j = 1, ..., n

∂

∂zj
=

1

2

(
∂

∂xj
+ i

∂

∂yj

)
.

(4.1.1)

For a complex-valued functions u, the gradient ∇u is the 2n-vector

∇u =

(
∂u

∂x1
,
∂u

∂y1
, ...,

∂u

∂xn
.
∂u

∂yn

)
.

For any multi-index α = (α1, ..., αn) ∈ Z+, we define

Dα =
∂|α|

∂zα1
1 ...∂zαnn

,

and

D
α

=
∂|α|

∂zα1
1 ...∂zαnn

.

B(z, r) stands for the ball of center z ∈ Cn and radius r, B(z, r) = {z′ ∈ Cn : |z − z′| < r}.
The notation V b W means that the closure of V is a compact subset of W (V and W are
contained in some topological space X). W c is the complement in X of W and A\W = A∩W c.

Let Ω be a bounded domain in Cn, n ≥ 2, not necessarily with a smooth boundary. For
k = 0, 1, ...,, 0 < ε < 1 , 1 ≤ p < ∞ and V is the Lebesgue measure on Ω. We recall some
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classical functional spaces.

Ck(Ω) =
{
u defined on Ω : ||u||Ck(Ω) := sup{|DαD

β
u(z)|, z ∈ Ω, |α|+ |β| ≤ k} <∞

}
;

Ck(0,1)(Ω) =

u =

n∑
j=1

ujdzj : ||u||Ck
(0,1)

(Ω) = max
1≤j≤n

||uj ||Ck(Ω) <∞

 ;

Λε(Ω) =

{
u ∈ C0(Ω) : ||u||Λε(Ω) = ||u||C0(Ω) + sup

{
|u(z)− u(w)|
|z − w|ε

: z, w ∈ Ω, z 6= w

}
<∞

}
;

Λε(0,1)(Ω) = {u =
n∑
j=1

ujdzj : ||u||Λε
(0,1)

(Ω) = max
1≤j≤n

||uj ||Λε(Ω) <∞};

Lp(0,1)(Ω) =

u =

n∑
j=1

ujdzj : ||u||Lp0,1(Ω) =
n∑
j=1

∫
Ω
|uj(z)|pdV <∞

 ;

L∞(0,1)(Ω) =

u =
n∑
j=1

ujdzj : ||u||L∞
(0,1)

(Ω) = max
1≤j≤n

ess sup
Ω

uj <∞

 .

(4.1.2)

Since the components of any φ ∈ Lp(0,1)(Ω), 1 ≤ p ≤ ∞, are locally integrable, it makes

sense to define ∂̄φ in the distribution sense. That mean, ∂̄φ =
∑n

j=1

(
∂̄φj

)
∧ dzj , where ∂̄φj =

n∑
k=1

(
∂φj
∂zk

)
dzk, and dzk ∧ dzj = −dzj ∧ dzk. Hence, ∂̄φ = 0 (∂̄-closed) means

∂φj
∂zk

=
∂φk
∂zj

, j, k = 1, ..., n,

where the derivatives being in the distribution sense. This is a necessary condition in order that

there exists a function u such that ∂̄u = φ, more clearly,
∂u

∂zj
= φj , j = 1, ..., n.

Now, the ∂̄ problem on (0, 1)-forms is to study the existence of solutions u of Cauhy-Riemann
equations

∂̄u = φ in Ω,

where φ is a (0, 1) form satisfying ∂̄φ = 0. We recall here the definition concerning the differen-
tiability of the boundary of a domain.

Definition 4.1.1. A domain Ω in Rm, m ≥ 2, is said to have Ck (1 ≤ k ≤ ∞) boundary at the
boundary point p if there exists a real-valued Ck function ρ defined in some open neighborhood
U of p such that

1. Ω ∩ U = {x ∈ U : ρ(x) < 0};
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2. bΩ ∩ U = {x ∈ U : ρ(x) = 0};

3. ∇ρ(x) 6= 0 on bΩ ∩ U .

The function ρ is called a Ck local defining function for Ω near p. If U is an open neighborhood
of Ω, then ρ is called a global defining function for Ω, or simply a defining function for Ω. A remark
that if ρ′ is another Ck defining function of Ω, then ρ(x) = h(x)ρ′(x), and dρ(x) = h(x)dρ′(x),
for some positive Ck−1 function h.

Definition 4.1.2. Let Ω be a bounded domain in Cn with n ≥ 2, and let ρ be a C2 defining
function for Ω. Then, Ω is called pseudoconvex, or Levi pseudoconvex, at p ∈ Ω if the Levi form

Lp(ρ, t) :=
n∑

j,k=1

∂2ρ

∂zj∂zk
(p)tjtk ≥ 0,

for all t ∈ T 1,0(bΩ). The domain Ω is said to be strongly pseudoconvex at p if the above Levi
form is strictly positive for all such t 6= 0. Ω is called a (Levi) pseudoconvex domain if Ω is (Levi)
pseudoconvex at every point of Ω. We also have the similar definition for strong pseudoconvexity
to Ω.

As the mention before, we want to solve the ∂̄-equations in Hölder and Lp spaces. The
well-known facts by Kerman [Ker71], and then improved by Krantz [Kr76] are followings

Theorem 4.1.3. Let Ω b Cn, n ≥ 2 be strongly pseudoconvex with C5 boundary bΩ. For any
∂̄-closed (0, 1) form φ ∈ Lp(0,1)(Ω), 1 ≤ p ≤ ∞ , there exists a function u on Ω such that ∂̄u = φ

(in the distribution sense), and u satisfies the following estimates:

1. ||u||Lq(Ω) ≤ Ap||φ||Lp
(0,1)

(Ω), where
1

q
=

1

p
− 1

2(n+ 1)
, if 1 < p < 2(n+ 1).

2. For any small ε > 0 , ||u||
L

2n+2
2n+1−ε(Ω)

≤ Aε||φ||L1
(0,1)

(Ω), if p = 1.

3. ||u||Λε(Ω) ≤ Ap||φ||Lp
(0,1)

(Ω), where ε =
1

2
− n+ 1

p
, if 2n+ 2 < p ≤ ∞.

In [Kr76], the author also provided an example which was due to Stein to show that the
above estimates can not be improved.
Going on domains of weakly pseudoconvex type, we can also seek an analogue version for these
estimates. For instance, Cauchy-Riemann equations on ellipsoids in Cn were considered. In
particular, on complex ellipsoids (EC), and also real ellipsoids (ER)

EC = {(z1, ..., zn) ∈ Cn : |z1|m1 + ...+ |zn|mn < 1};

ER = {(z1, ..., zn) ∈ Cn : |Re z1|m1 + | Im z1|m
′
1 + ...+ |Re zn|mn + | Im zn|m

′
n < 1}.
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Both of these models are of finite type in D’Angelo sense. More precise, Diederich et. al. [DFW86]
and Chen et. al. [CKM93] used the support functions constructed on such domains to obtain
the optimal Lp and Hölder estimates for solutions of ∂̄-equations. These papers illustrated a
clear effect of the type. In particular, on the complex ellipsoids defined as EC, the holomorphic
support functions is defined by

Φ(ζ, z) =
n∑
j=1

∂ρ

∂ζj
(ζ)(ζj − zj), for ζ ∈ bΩ, z ∈ Ω,

and if Φ̂ := Φ(ζ, z)− ρ(ζ), for all ζ, z ∈ Ω, then we have

|Φ̂(ζ, z)| &

|ρ(ζ)|+ |ρ(z)|+ | Im Φ(ζ, z)|+
n∑
j=1

∂2ρ

∂ζj∂ζj
(ζ)|ζj − zj |2 +

n∑
j=1

|ζj − zj |mj

 .(4.1.3)

This inequality plays a critical role in the boundary behaviour of the solution constructed via
Henkin integral. By this, the kernel can be estimated dependently on the type of the domain un-
der integral sign that we will see later. It turns out that when Ω is a sphere, strongly pseudocon-
vex domain, the inequality goes back the classical one |Φ̂(ζ, z)| & |ρ(ζ)|+ |ρ(z)|+ | Im Φ(ζ, z)|+
|ζ − z|2. In these cases, the null-sets of the corresponding holomorphic support functions are
strong barrier for bΩ, that is for an small ball B,

{z : Φ(ζ, z) = 0} ∩B ∩ Ω = {ζ}, for any ζ ∈ B ∩ bΩ.

However, it is natural to ask whether the existence of Φ as well as the inequality (4.1.3) are
shared by general pseudoconvex domains. For weakly pseudoconvex domains (even with real
analytic boundary), there are singularities, related to the existence of barrier functions Φ for
bΩ. There is an immediate negative answer given by Kohn and Nirenberg :

Proposition 4.1.4. (Kohn, Nirenberg 1973).
Let Ω be the following pseudoconvex domain in C2 :

Ω = {(z1, z2) ∈ C2 : Re(z2) + |z1.z2|2 + |z1|8 +
15

7
|z1|2.Re(z6

1) < 0}.

Let h be a function holomorphic in a neighborhood of the point (0, 0) ∈ bΩ, and equal to zero at
this point. Then, the set {(z1, z2) : h(z1, z2) = 0} necessarily has both some points in the interior
as well as in the exteriorof the domain Ω.

We know that both real analytic pseudoconvex domains in C2 and strictly pseudoconvex
domains are of finite type. The precise notion of type is still a topic of research; essential
contributions are due to Catlin and D’Angelo. For a finite type domain, holomorphic support
functions, if they exist, may still admit non-trivial contact sets A which are, it is true, not too
large. Nevertheless, their existence would be an obstruction to good estimates for integral ker-
nels constructed from these support functions. But we might hope to construct better support
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functions. This problem gives rise to many interesting open questions. We shall now discuss a
case where a solution has recently been found.

Now, in order to begin our answer for the above problems, following the setup by Khanh
in [Kha13], we introduce some generalized versions for these above models in C2, which include
many convex domains of D’Angelo infinite type. We investigate domains of the following form:
Ω ⊂ C2 is a smooth, bounded domain with the origin 0 in the boundary bΩ. Moreover, there
exists δ > 0 so that bΩ \ B(0, δ/2) is strictly convex and there exists a defining function ρ so
that

Ω ∩B(0, δ) = {z = (z1, z2) ∈ C2 : ρ(z) = F (|z1|2) + r(z) < 0} (4.1.4)

or

Ω ∩B(0, δ) = {z = (z1, z2) ∈ C2 : ρ(z) = F (x2
1) + r(z) < 0} (4.1.5)

where zj = xj + iyj , for xj , yj ∈ R, j = 1, 2, and i =
√
−1. We also assume that the functions

F : R→ R and r : C2 → R satisfy:

1. F (0) = 0;

2. F ′(t), F
′′
(t), F

′′′
(t) and

(
F (t)

t

)′
are non-negative on (0, δ);

3. r(0) = 0 and
∂r

∂z2
6= 0;

4. r is convex and strictly convex away from 0.

This class of domains includes two well-known examples. If F (t) = tm, with m ≥ 1, then Ω is of
finite type 2m. On the other hand, if F (t) = exp(−1/tα), then Ω is of infinite type, and this is
our main case of interest. On these exponential type domains, recently [FLZ11], Fornaess et. al.
provided the sup-norm estimates for the Cauchy-Riemann equations. The authors again obtained
the solutions via Henkin’s integral formula, with support functions discovered in [DFF99] on
convex domains.
Associated to these classes of such domains, we also define the f -Hölder spaces.

Definition 4.1.5. Let f be an increasing function such that lim
t→+∞

f(t) = +∞. For Ω ⊂ Cn,

define the f -Hölder space on Ω̄ by

Λf (Ω̄) = {u : ‖u‖∞ + sup
z,w∈Ω

f(|z − w|−1) · |u(z)− u(w)| <∞}

and set
‖u‖f = ‖u‖∞ + sup

z,w∈Ω

f(|z − w|−1) · |u(z)− u(w)|.
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Note that the f -Hölder space includes the standard Hölder space Λα(Ω̄) by taking f(t) = tα

(so that f(|h|−1) = |h|−α) with 0 < α < 1.
Here, we recall the construction of the Henkin kernel and Henkin solution to ∂̄-equations. For
complete details, see [He70, Ra86], or for a more modern treatment, see [?], with the support
function introduced in [DFF99].

Definition 4.1.6. A C2-valued C1 function G(ζ, z) = (g1(ζ, z), g2(ζ, z)) is called a Leray map
for Ω if g1(ζ, z)(ζ1 − z1) + g2(ζ, z)(ζ2 − z2) 6= 0 for every (ζ, z) ∈ bΩ × Ω. A support function
(or Ramı́rez-Henkin function) Φ(ζ, z) for Ω is a smooth function defined near bΩ× Ω̄ so that Φ
admits a decomposition

Φ(ζ, z) = 2
2∑
j=1

Φj(ζ, z)(ζj − zj)

where Φj(ζ, z) are smooth near bΩ × Ω̄, holomorphic in z, and vanishes only on the diagonal
{ζ = z}.

For a convex domain, it is well known that G(ζ, z) =
∂ρ

∂ζ
=

(
∂ρ

∂ζ1
,
∂ρ

∂ζ2

)
is a Leray map [?,

Lemma 11.2.6], and Φ defined by Leray map

Φj(ζ, z) =
∂ρ(ζ)

∂ζj
, j = 1, 2,

is a support function for Ω.

Taylor’s Theorem and the convexity of F implies a lower bound on bΩ, which generalizes the
inequality (4.1.3) in the case of finite type

Lemma 4.1.7. Let Ω ⊂ C2 be as in (4.1.4) or (4.1.5) with Φ as above. Then there exist ε, c > 0
so that

Re Φ(ζ, z) ≥ −ρ(z) +

{
c|z − ζ|2 ζ ∈ bΩ \B(0, δ)

P (z1)− P (ζ1)− 2 Re
{
∂P
∂ζ1

(ζ1)(z1 − ζ1)
}

ζ ∈ bΩ ∩B(0, δ)
. (4.1.6)

for all z ∈ Ω̄ with |z − ζ| ≤ ε,where P (z1) = F (|z1|2) or P (z1) = F (x2
1).

Proof. Let h be a R-valued smooth function in C2 = R4 and x, y ∈ R4. If α(t) = tx+ (1− t)y,
and ϕ(t) = h(α(t)), then it follows from Taylor’s Theorem applied to ϕ(t) that there exists
ỹ ∈ α([0, 1]) so that

h(x) = h(y) +

4∑
j=1

∂h(y)

∂yj
(x− y) +

1

2

4∑
j,k=1

∂2h(ỹ)

∂yj∂yk
(xj − yj)(xk − yk).
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Set z = (z1, z2) = (x1 + ix2, x3 + ix4) and ζ = (ζ1, ζ2) = (y1 + iy2, y3 + iy4). Translating the first
order component of the Taylor series expansion to complex coordinates, we compute

2 Re

{
∂h(ζ)

∂ζj
(zj − ζj)

}
= Re

{(
∂h(ζ)

∂y2j−1
− i∂h(ζ)

∂y2j

)(
(x2j−1 − y2j−1) + i(x2j − y2j)

)}
=

∂h(ζ)

∂y2j−1
(x2j−1 − y2j−1) +

∂h(ζ)

∂y2j
(x2j − y2j),

j = 1, 2. Consequently, if [ζ, z] is the line segment connecting ζ and z, then

h(z) ≥ h(ζ) + 2
2∑
j=1

Re

{
∂h(ζ)

∂ζj
(zj − ζj)

}
+ min
ỹ∈[ζ,z]

1

2

4∑
j,k=1

∂2h(ỹ)

∂yj∂yk
(xj − yj)(xk − yk). (4.1.7)

Applying (4.2.1) to the defining function ρ, with ρ(ζ) = 0, ζ ∈ bΩ, yield

ρ(z) ≥ −Re Φ(ζ, z) + min
ỹ∈[ζ,z]

1

2

4∑
j,k=1

∂2ρ(ỹ)

∂yj∂yk
(xj − yj)(xk − yk).

Since ρ is strictly convex on bΩ\B(0, δ), there exists c > 0 so that

∣∣∣∣∑4
j,k=1

∂2ρ(ỹ

∂yj∂yk
(xj − yj)(xk − yk)

∣∣∣∣ ≥
c|x− y|2 if y ∈ bΩ \B(0, δ) and ε > 0 is sufficiently small. The first case of (4.4.1) now follows.

For the remaining case, we use (4.2.1) and the convexity of r to observe that

−ρ(z) + P (z1)− P (ζ1)− 2 Re
{∂P
∂ζ1

(ζ1)(z1 − ζ1)
}

= r(ζ)− r(z) + 2 Re
{∂P
∂ζ1

(ζ1)(ζ1 − z1)
}

≤ 2

2∑
j=1

Re
{∂r(ζ)

∂ζj
(ζj − zj)

}
+ 2 Re

{∂P
∂ζ1

(ζ1)(ζ1 − z1)
}

= Re Φ(ζ, z).

This completes the proof.

We take the ε constructed in Lemma 4.4.2 to be a global constant in the paper, though we
reserve the right to decrease it.
The lemma says that when ζ is far away from the origin, one’s problem goes back ∂̄-equation
on strongly pseudoconvex, and this is trivial. The problematic point is that ζ closed to z.

Choose χ ∈ C∞(C2 × C2) such that 0 ≤ χ ≤ 1, χ(z, ζ) = 1 for |z − ζ| ≤ 1

2
ε and χ(z, ζ) = 0 for

|z − ζ| ≥ ε. And for j = 1, 2, we define

Φ#
j (z, ζ) = χ

∂ρ

∂ζj
(ζ) + (1− χ)(ζj − zj),
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and
Φ#(z, ζ) = Φ#

1 (z, ζ)(ζ1 − z1) + Φ#
2 (z, ζ)(ζ2 − z2).

The new support function also has the following properties for any ζ ∈ bΩ.

1.

Re Φ#(z, ζ) ≥ −ρ(z) +

{
c|z − ζ|2 ζ ∈ bΩ \B(0, δ)

P (z1)− P (ζ1)− 2 Re
{
∂P
∂ζ1

(ζ1)(z1 − ζ1)
}

ζ ∈ bΩ ∩B(0, δ)
.

(4.1.8)

for all |z − ζ| ≤ 1

2
ε and z ∈ Ω.

2. Φ#(z, ζ) and Φ#
j , j = 1, 2, are holomorphic on {z : |z − ζ| ≤ 1

2
ε}.

We are now already to represent the integral solution of the ∂̄. Let φ =
∑2

j=1 φjdz̄j be a bounded,

C1, ∂̄-closed (0, 1)-form on Ω. The solution u of the ∂̄-equation, ∂̄u = φ, provided by the Henkin
kernel is given by

u = Tφ(z) = Hφ(z) +Kφ(z). (4.1.9)

where

Hφ(z) =
1

4π2

∫
ζ∈bΩ

Φ#
1 (ζ̄2 − z̄2)− Φ#

2 (ζ̄1 − z̄1)

Φ#(ζ, z)|ζ − z|2
φ(ζ) ∧ ω(ζ);

Kφ(z) =
1

4π2

∫
Ω

φ1(ζ)(ζ̄1 − z̄1)− φ2(ζ)(ζ̄2 − z̄2)

|ζ − z|4
ω(ζ̄) ∧ ω(ζ)

(4.1.10)

where ω(ζ) = dζ1 ∧ dζ2. This function is called the solution of ∂̄-equation via Ramı́rez-Henkin
kernel, or simply, Ramı́rez- Henkin solution. So we have solved the Cauchy-Riemann equations
on Ω by exhibiting an explicit solution in terms of a linear integral formula.
Through this chapter, we only consider solution in this way.

4.2 Preparatory Lemmas

In this section, we will provide some tools in the proof of our main results later [Kha13, HKR13]

Lemma 4.2.1. Let F be a convex function on [0, δ]. Then we have

F (p)− F (q)− F ′(q)(p− q) ≥ 0 (4.2.1)

for any p, q ∈ [0, δ]. Furthermore, with the extra assumptions F ′(0) = 0 and F ′′(t) increasing,
we have

F (p)− F (q)− F ′(q)(p− q) ≥ F (p− q), (4.2.2)

for any 0 ≤ q ≤ p ≤ δ.
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Proof. The proof of (4.2.1) is simple and is omitted here. For (4.2.2), let s := p − q ≥ 0
and g(s) := F (s + q) − F (q) − sF ′(q) − F (s). Hence, g′(s) = F ′(s + q) − F ′(q) − F ′(s) and
g′′(s) = F ′′(s+ q)−F ′′(s). Using the assumption F ′′(t) increasing, we have g′′(s) ≥ 0, thus g′(s)
is increasing. This implies g′(s) ≥ g′(0) = 0 (since F ′(0) = 0). This means g(s) is also increasing,
so we obtain g(s) ≥ g(0) = 0 (since F (0) = 0). This completes the proof of (4.2.2).

Lemma 4.2.2. For δ > 0 small enough, let F be an invertible function on [0, δ] such that
F (t)

t
is increasing on [0, δ]. Then

1.

∫ δ

0

dr

ρ+ F (r2)
.

√
F ∗(ρ)

ρ
,

2.

∫ δ

0

| ln r|
ρ+ F (r2)

dr .

√
F ∗(ρ)| ln

√
F ∗(ρ)|

ρ
,

for any sufficiently small ρ > 0, where F ∗ is the inverse function of F .

Proof. 1. In order to prove the first assertion, we divide the integration into two terms

∫ δ

0

dr

ρ+ F (r2)
=

∫ √F ∗(ρ)

0

dr

ρ+ F (r2)
+

∫ δ

√
F ∗(ρ)

dr

ρ+ F (r2)
.

. For the first term, it is easy to see that

∫ √F ∗(ρ)

0

dr

ρ+ F (r2)
.

√
F ∗(ρ)

ρ
.

Since
F (t)

t
is increasing, then we have

F (r2)

r2
≥ F (F ∗(ρ))

F ∗(ρ)
=

ρ

F ∗(ρ)
, i.e.

F (r2)

ρ
≥ r2

F ∗(ρ)
,

for any r ≥
√
F ∗(ρ). Applying this observation to the second integration, we obtain∫ δ

√
F ∗(ρ)

dr

ρ+ F (r2)
≤ 1

ρ

∫ δ

√
F ∗(ρ)

dr

1 + r2

F ∗(ρ)

≤
√
F ∗(ρ)

ρ

∫ ∞
1

dy

1 + y2
=
π

4

√
F ∗(ρ)

ρ
.

2. The second assertion is proved by the same way, in particular, we divide the integration into
two terms ∫ δ

0

| ln r|
ρ+ F (r2)

dr =

∫ √F ∗(ρ)

0

| ln r|
ρ+ F (r2)

dr +

∫ δ

√
F ∗(ρ)

| ln r|
ρ+ F (r2)

dr.
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. For the first term, it is easy to see that∫ √F ∗(ρ)

0

| ln r|
ρ+ F (r2)

dr .
1

ρ

∫ √F ∗(ρ)

0
| ln r|dr .

√
F ∗(ρ)| ln

√
F ∗(ρ)|

ρ
.

For the second term,∫ δ

√
F ∗(ρ)

| ln r|
ρ+ F (r2)

dr . | ln
√
F ∗(ρ)|

∫ δ

√
F ∗(ρ)

dr

ρ+ F (r2)
dr .

√
F ∗(ρ)| ln

√
F ∗(ρ)|

ρ
,

where the last inequality follows from the same tool above.

The following will generalize Hardy-Littlewood Lemma when G(t) = tα. In that case, we can
find a proof in [ChSh01].

Lemma 4.2.3. ( General Hardy-Littlewood Lemma ). Let Ω be a bounded Lipschitz do-
main in RN , and let δbΩ(x) denote the distance function from x to the boundary of Ω. Let

G : R+ → R+ such that
G(t)

t
is increasing and

∫ d

0

G(t)

t
dt < ∞ for d > 0 small enough. If

u ∈ C1(Ω) such that

|∇u(x)| . G(δbΩ(x))

δbΩ(x)
for every x ∈ Ω, (4.2.3)

then |u(x)− u(y)| . f(|x− y|−1)−1, for x, y ∈ Ω, x 6= y, and where f(d−1) :=

(∫ d

0

G(t)

t

)−1

Proof. Since u ∈ C1 in the interior of Ω, we only need to prove the assertion when z and w are
near the boundary bΩ. Using a partition of unity, we can assume that u is supported in UΩ,
where U is a neighborhood of a boundary point x0 ∈ bΩ. After a linear change of coordinates,
we may assume x0 = 0, and for some δ > 0,

U ∩ Ω =
{
x = (x′, xN ) : xN > ϕ(x′), |x′| < δ, |xN | ≤ δ

}
,

where ϕ(0) = 0 and ϕ is some Lipschitz function with Lipschitz constant M . Let x = (x′, xN ),
y = (y′, yN ) ∈ Ω, x̃′ = θx′ + (1 − θ)y′, x̃N = θxN + (1 − θ)yN , and d = |x − y|. For a ≥ 0, we
define the line segment La by θ(x′, xN + a) + (1− θ)(y′, yN + a), 0 ≤ θ ≤ 1, and . Applying the
Lipschitz property of ϕ, we obtain

x̃N +Md = θ(xN +Md) + (1− θ)(yN +Md)

≥Md+ θϕ(x′) + (1− θ)ϕ(y′)

≥Md+ θ(ϕ(x′)− ϕ(x̃′)) + (1− θ)(ϕ(y′)− ϕ(x̃′)) + ϕ(x̃′)

≥ ϕ(x̃′).

(4.2.4)

This implies that the line segment La lies in Ω, for any a ≥ Md. Since u ∈ C1(Ω), using Mean
Value Theorem, there exists some (x̃′, x̃N + 2Md) ∈ L2Md such that

|u(x′, xN + 2Md)− u(y′, yN + 2Md)| ≤ |∇u(x̃′, x̃N + 2Md)|.d.
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The distance function δbΩ(x′, xN ) is comparable to xN −ϕ(x′), i.e., there are positive constants
c, C such that

c(xN − ϕ(x′)) ≤ δbΩ(x′, xN ) ≤ C(xN − ϕ(x′)). (4.2.5)

Using the assumptions on G and combining with (4.2.3) and (4.2.5), it follows that

|u(x′, xN + 2Md)− u(y′, yN + 2Md)| . G(δbΩ(x̃′, x̃N + 2Md))

δbΩ(x̃′, x̃N + 2Md)
d

.
G(c.(x̃N + 2Md− ϕ(x̃′)))

c.(x̃N + 2Md− ϕ(x̃′))
d

.
G(cMd)

cMd
d . G(d).

(4.2.6)

Here the last inequality follows by considering two cases: if cM < 1, we use thatG(t) is increasing;

otherwise, we use that
G(t)

t
is decrasing. We also have

|u(x)− u(x′, xN + 2Md)| =
∣∣∣∣∫ d

0

∂u(u′, xN + 2Mt)

∂t
dt

∣∣∣∣
.
∫ d

0

G(δbΩ(x′, xN + 2Mt))

δbΩ(x′, xN + 2Mt)
dt .

∫ d

0

G(t)

t
dt.

(4.2.7)

Therefore, for any x, y ∈ Ω,

|u(x)− u(y)| ≤ |u(x)− u(x′, xN + 2Md)|+ |u(y)− u(y′, yN + 2Md)|
+ |u(x′, xN + 2Md)− u(y′, yN + 2Md)|

. G(d) +

∫ d

0

G(t)

t
.
∫ d

0

G(t)

t
.

(4.2.8)

Here, the last inequality holds since

G(d) =

∫ d

0

G(d)

d
≤
∫ d

0

G(t)

t
.

Hence, this completes the proof.

4.3 Sup-norm and Hölder estimates for ∂̄-Solutions

The first goal of the current section is to prove sup-norm estimates on domains satisfying (4.1.4)
or (4.1.5) which both generalize the class of domains of finite type as well as the exponential
type considered in [FLZ11].

Theorem 4.3.1 (Theorem 1.2, [Kha13]). If
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1. Ω is defined by (4.1.4) and there exists δ > 0 so that

∫ δ

0
| lnF (t2)| dt <∞, or

2. Ω is defined by (4.1.5) and there exists δ > 0 so that

∫ δ

0
| ln(t) lnF (t2)| dt <∞,

then for any bounded, ∂̄-closed (0, 1)-form φ on Ω, there exists a function u defined on Ω satisfies
∂̄u = φ and

||u||L∞(Ω) ≤ C‖φ‖L∞(Ω).

where C > 0 is independent of φ.

Proof. It is well known that (e.g., [Fol99], Theorem 6.18)

||Kφ||L∞(Ω) . ||φ||L∞
(0,1)

(Ω).

Moreover, we have

Hφ(z) =
1

4π2

∫
ζ∈bΩ

Φ#
1 (ζ̄2 − z̄2)− Φ#

2 (ζ̄1 − z̄1)

Φ#(ζ, z)|ζ − z|2
φ(ζ) ∧ ω(ζ);

=
1

4π2

∫
ζ∈bΩ
|z−ζ|≤ε

Φ#
1 (ζ̄2 − z̄2)− Φ#

2 (ζ̄1 − z̄1)

Φ#(ζ, z)|ζ − z|2
φ(ζ) ∧ ω(ζ);

+
1

4π2

∫
ζ∈bΩ
|z−ζ|>ε

Φ#
1 (ζ̄2 − z̄2)− Φ#

2 (ζ̄1 − z̄1)

Φ#(ζ, z)|ζ − z|2
φ(ζ) ∧ ω(ζ);

=
1

4π2

∫
ζ∈bΩ
|z−ζ|≤ε

Φ#
1 (ζ̄2 − z̄2)− Φ#

2 (ζ̄1 − z̄1)

Φ#(ζ, z)|ζ − z|2
φ(ζ) ∧ ω(ζ),

(4.3.1)

since Φ#
1 (ζ̄2 − z̄2)− Φ#

2 (ζ̄1 − z̄1) = 0 if |z − ζ| > ε. Hence, let dS be a surface area measure on
bΩ, we have

|Hφ(z)| . ||φ||L∞
(0,1)

∫
ζ∈bΩ
|z−ζ|≤ε

dS(ζ)

|Φ(z, ζ)|.|ζ − z|
.

Now, setting t = Im Φ(z, ζ). It is easy to check that
∂t

∂ζ2
6= 0. Hence, we can change coordinates

and obtain ∫
ζ∈bΩ
|z−ζ|≤ε

dS(ζ)

|Φ(z, ζ)|.|ζ − z|
.
∫
|t|≤δ,|ζ1|<δ
|z1−ζ1|≤ε

dtd(Re ζ1)d(Im ζ1)

(|t|+ |Re Φ|)|ζ1 − z1|

.
∫
|ζ1|<δ
|z1−ζ1|≤ε

| ln |Re Φ||d(Re ζ1)d(Im ζ1)

|ζ1 − z1|
.

(4.3.2)
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Now, let Ω defined by (4.1.4), and for some δ > 0,

∫ δ

0
| lnF (t2)| dt < ∞, then we apply the

identity 2 Re ab = |a+ b|2 − |a|2 − |b|2 in (4.4.1) to obtain

Re Φ(z, ζ) ≥ −ρ(z) + F (|z1|2)− F (|ζ1|2) + 2F ′(|ζ1|2) Re
(
ζ1(z1 − ζ1)

)
≥ −ρ(z) +

(
F ′(|ζ1|2)|z1 − ζ1|2 + F (|z1|2)− F (|ζ1|2)− F ′(|ζ1|2)(|z1|2 − |ζ1|)

)
≥ −ρ(z) +

(
F ′(|ζ1|2)|z1 − ζ1|2

)
.

(4.3.3)

Therefore, since | ln(t)| is decreasing when 0 ≤ t is small, (4.3.2) becomes

∫
ζ∈bΩ
|z−ζ|≤ε

dS(ζ)

|Φ(z, ζ)|.|ζ − z|
.
∫
|ζ1|<δ
|z1−ζ1|≤ε

| ln(|F ′(|ζ1|2)||z1 − ζ1|2|)|
|ζ1 − z1|

d(Re ζ1)d(Im ζ1)

.
∫

|ζ1|<δ
|z1−ζ1|≤ε
|ζ1|<|ζ1−z1|

| ln(|F ′(|ζ1|2)||z1 − ζ1|2|)|
|ζ1 − z1|

d(Re ζ1)d(Im ζ1)

+

∫
|ζ1|<δ
|z1−ζ1|≤ε
|ζ1|≥|ζ1−z1|

| ln(|F ′(|ζ1|2)||z1 − ζ1|2|)|
|ζ1 − z1|

d(Re ζ1)d(Im ζ1)

.
∫

|ζ1|<δ
|z1−ζ1|≤ε
|ζ1|<|ζ1−z1|

| ln(|F ′(|ζ1|2)|ζ1|2)|
|ζ1|

d(Re ζ1)d(Im ζ1)

+

∫
|ζ1|<δ
|z1−ζ1|≤ε
|ζ1|≥|ζ1−z1|

| ln(|F ′(|z1 − ζ1|2)||z1 − ζ1|2|)|
|ζ1 − z1|

d(Re ζ1)d(Im ζ1)

.
∫ δ′

0
| lnF (r2)|dr <∞

(4.3.4)

where δ′ = max{δ, ε}, and the last inequality follows from the fact F ′(t)t & F (t) (since F
convex). Hence, ||H(φ)||L∞(Ω) ≤ C.||φ||L∞0,1(Ω).

Let Ω defined by (4.1.5), and for some δ > 0,

∫ δ

0
| ln(t) lnF (t2)| dt < ∞, let z1 = x1 + iy1,

ζ1 = ξ1 + iη1, the same argument shows that

Re Φ(z, ζ) ≥ −ρ(z) + F (x2
1)− F (ξ2

1)− 2F ′(ξ2
1)ξ1(x1 − ξ1)

≥ −ρ(z) + F ′(ξ2
1)(x1 − ξ1)2 +

(
F (x2

1)− F (ξ2
1)− F ′(ξ2

1)(x2
1 − ξ2

1)
)

≥ −ρ(z) +
(
F ′(ξ2

1)(x1 − ξ1)2
)
.

(4.3.5)
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Hence, apply (4.3.5) to (4.4.1), we obtain∫
ζ∈bΩ
|z−ζ|≤ε

dS(ζ)

|Φ(z, ζ)|.|ζ − z|
.
∫
|ζ1|<δ
|z1−ζ1|≤ε

| ln |(F ′(ξ2
1)|(x1 − ξ1)2)||

|x1 − ξ1|+ |y1 − η1|
d(ξ1)d(η1)

.
∫
|ξ1|<δ
|x1−ξ1|≤ε

∣∣ln |x1 − ξ1| ln |(F ′(ξ2
1)|(x1 − ξ1)2)|

∣∣ d(ξ1)

.
∫

|ξ1|<δ
|x1−ξ1|≤ε
|ξ1|<|x1−ξ1|

∣∣ln |x1 − ξ1| ln |(F ′(ξ2
1)|(x1 − ξ1)2)|

∣∣ d(ξ1)

+

∫
|ξ1|<δ
|x1−ξ1|≤ε
|ξ1|≥|x1−ξ1|

∣∣ln |x1 − ξ1| ln |(F ′(ξ2
1)|(x1 − ξ1)2)|

∣∣ d(ξ1)

.
∫

|ξ1|<δ
|x1−ξ1|≤ε
|ξ1|<|x1−ξ1|

∣∣ln |ξ1| ln |(F ′(ξ2
1)|(ξ1)2)|

∣∣ d(ξ1)

+

∫
|ξ1|<δ
|x1−ξ1|≤ε
|ξ1|≥|x1−ξ1|

∣∣ln |x1 − ξ1| ln |(F ′((x1 − ξ2
1))|(x1 − ξ1)2)|

∣∣ d(ξ1)

.
∫ δ′

0

∣∣ln |r|. ln |F (r2)|
∣∣ dr <∞.

(4.3.6)

Hence, ||H(φ)||L∞(Ω) ≤ C.||φ||L∞0,1(Ω). Therefore, we have the sup-norm estimates for solutions

of ∂̄-equation when Ω defined by (4.1.4) or (4.1.5)

||T (φ)||L∞(Ω) ≤ C.||φ||L∞0,1(Ω).

Next, we will provide the f -Hölder estimates for Henkin solutions to the equation ∂̄u = ϕ.

Theorem 4.3.2. 1. Let Ω is defined by (4.1.4) and there exists δ > 0 so that

∫ δ

0
| lnF (t2)| dt <

∞. Then for any bounded, ∂̄-closed (0, 1)-form φ on Ω, there exists a solution u defined on Ω
satisfies ∂̄u = φ and

||u||f . ‖φ‖L∞(Ω).

where

f(d−1) :=

(∫ d

0

√
F ∗(t)

t
dt

)−1

.

2. Let Ω is defined by (4.1.5) and there exists δ > 0 so that

∫ δ

0
| ln t lnF (t2)| dt < ∞. Then for

any bounded, ∂̄-closed (0, 1)-form φ on Ω, there exists a solution u defined on Ω satisfies ∂̄u = φ
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and
||u||f . ‖φ‖L∞(Ω).

where

f(d−1) :=

(∫ d

0

√
F ∗(t) ln

√
F ∗(t)

t
dt

)−1

Proof. It is well-known that
||Kφ||f . ||φ||L∞

for any f with 0 < f(d−1) < d−1 (see Lemma 1.15, p. 157 in [Ra86]). Hence, it is sufficient to
estimate H(φ). Now, we will control the gradient of H(φ) by following

|∇H(φ)(z)| . ||φ||L∞0,1(Ω)

∫
ζ∈bΩ
|z−ζ|<ε

(
1

|Φ(z, ζ)|.|ζ − z|2
+

1

|Φ(z, ζ)|2.|ζ − z|

)
dS(ζ)

. ||φ||L∞0,1(Ω)


∫
ζ∈bΩ\B(0,δ)
|z−ζ|<ε

(
1

|Φ(z, ζ)|.|ζ − z|2
+

1

|Φ(z, ζ)|2.|ζ − z|

)
dS(ζ)

+

∫
ζ∈bΩ∩B(0,δ)
|z−ζ|≤ε

(
1

|Φ(z, ζ)|.|ζ − z|2
+

1

|Φ(z, ζ)|2.|ζ − z|

)
dS(ζ)


. ||φ||L∞0,1(Ω)

(
|ρ(z)|−1/2 + L(z)

)
,

(4.3.7)

where the last inequality follows from (4.4.1), and

L(z) =

∫
ζ∈bΩ∩B(0,δ)
|z−ζ|<ε

(
1

|Φ(z, ζ)|.|ζ − z|2
+

1

|Φ(z, ζ)|2.|ζ − z|

)
dS(ζ).

Again, by setting t = Im Φ(z, ζ), and we can change coordinates as before and obtain

L(z) .
∫
|t|≤δ
|ζ1|<δ
|z1−ζ1|≤ε

dtd(Re ζ1)d(Im ζ1)

(|t|+ |Re Φ(z, ζ)|)(|ρ(z)|2 + |ζ1 − z1|2)

+

∫
|t|≤δ
|ζ1|<δ
|z1−ζ1|≤ε

dtd(Re ζ1)d(Im ζ1)

(|t|2 + |Re Φ(z, ζ)|2)(|ρ(z)|+ |ζ1 − z1|)

. | ln(|Re Φ(z, ζ|). ln(−ρ(z))|+
∫
|ζ1|<δ,|z1−ζ1|≤ε

d(Re ζ1)d(Im ζ1)

|Re Φ(z, ζ)|.|ζ1 − z1|

≤ | ln(|ρ(z)|)|2 +

∫
|ζ1|<δ,|z1−ζ1|≤ε

d(Re ζ1)d(Im ζ1)

|Re Φ(z, ζ)|.|ζ1 − z1|
.

(4.3.8)

Hence, combining with these above equalities, we have showed that

|∇H(φ)(z)| . ||φ||L∞0,1(Ω)

(
|ρ(z)|−1/2 + +

∫
|ζ1|<δ,|z1−ζ1|≤ε

d(Re ζ1)d(Im ζ1)

|Re Φ(z, ζ)|.|ζ1 − z1|

)
. (4.3.9)
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We will estimate the last integral on the right hand side separately when Ω defined by (4.1.4)

and (4.1.5), for convenience, set M(z) =

∫
|ζ1|<δ,|z1−ζ1|≤ε

d(Re ζ1)d(Im ζ1)

|Re Φ(z, ζ)|.|ζ1 − z1|
.

Now, let Ω defined by (4.1.4) and F satisfies

∫ δ

0
| lnF (r2)|dr <∞ for some positive δ. Applying

the inequality (4.3.3),

M(z) ≤
∫
|ζ1|<δ
|z1−ζ1|≤ε

d(Re ζ1)d(Im ζ1)

(|ρ(z)|+ F ′(|ζ1|2)|z1 − ζ1|2)|ζ1 − z1|

≤
∫

|ζ1|<δ
|z1−ζ1|≤ε
|ζ1|≤|z1−ζ1|

d(Re ζ1)d(Im ζ1)

(|ρ(z)|+ F ′(|ζ1|2)|z1 − ζ1|2)|ζ1 − z1|

+

∫
|ζ1|<δ
|z1−ζ1|≤ε
|ζ1|≥|z1−ζ1|

d(Re ζ1)d(Im ζ1)

(|ρ(z)|+ F ′(|ζ1|2)|z1 − ζ1|2)|ζ1 − z1|

≤
∫
|ζ1|<δ
|z1−ζ1|≤ε

d(Re ζ1)d(Im ζ1)

(|ρ(z)|+ F ′(|ζ1|2)|ζ1|2)|ζ1|

+

∫
|ζ1|<δ
|z1−ζ1|≤ε

d(Re ζ1)d(Im ζ1)

(|ρ(z)|+ F ′(|z1 − ζ1|2)|z1 − ζ1|2)|ζ1 − z1|

≤
∫
|ζ1|<δ
|z1−ζ1|≤ε

d(Re ζ1)d(Im ζ1)

(|ρ(z)|+ F (|ζ1|2))|ζ1|
+

∫
|ζ1|<δ
|z1−ζ1|≤ε

d(Re ζ1)d(Im ζ1)

(|ρ(z)|+ F (|z1 − ζ1|2))|ζ1 − z1|
.

(4.3.10)

Choosing δ′ = max{δ, ε}, the previous inequality reads

M(z) .
∫ δ′

0

dr

|ρ(z)|+ F (r2)
.

√
F ∗(|ρ(z)|)
|ρ(z)|

, (4.3.11)

here the last inequality follows from (i) in Lemma 4.2.2.
We have showed that

|∇u(z)| = |∇T (φ)(z)| .
√
F ∗(|ρ(z)|)
|ρ(z)|

.

Now, in order to apply the general Hardy-Littlewood Lemma, we must prove that

√
F ∗(|ρ(z)|)
|ρ(z)|

satisfies the hypothesis of Lemma 4.2.3. Since F (t) and
F (t)

t
are increasing, non-negative func-

tions, it follows that F ∗(t) ia also increasing but

√
F ∗(t)

t
is decreasing. Moreover, for some small

δ > 0, the function | ln(F (t2))| is decreasing when 0 ≤ t ≤ δ, so we can estimate

| lnF (ε2)|ε ≤
∫ ε

0
| lnF (t2)|dt ≤

∫ δ

0
| lnF (t2)|dt <∞

73



for any 0 ≤ ε ≤ δ. Consequently,
√
F ∗(t)| ln t| <∞ for any 0 ≤ t ≤

√
F ∗(t) and lim

t→0
t| lnF (t2)| =

0. By change of variables via y =
√
F ∗(t), this implies∫ d

0

√
F ∗(t)

t
dt =

∫ √F ∗(d)

0
y
(
lnF (y2)

)′
dy

=
√
F ∗(d) ln d−

∫ √F ∗(d)

0

(
lnF (y2)

)
dy <∞

(4.3.12)

for d sufficiently small, The boundedness in the above inequalities are finite by the hypothesis
on F . Therefore, by setting

f(d−1) =

(∫ d

0

√
F ∗(t)

t
dt

)−1

,

we have proved that ||u||f . ||φ||L∞0,1(Ω) to the first case of the theorem.

Now, let Ω defined by (4.1.5) and F satisfies

∫ δ

0
| ln t lnF (t2)| dt <∞ for some δ > 0. Now, since

the previous observations, we only need to estimate of the integral term M(z) on ζ ∈ bΩ∩B(0, δ).
Applying the inequality (4.3.5), and repeating the comparing as before to |ξ1| and |x1 − ξ1|

M(z) ≤
∫
|ζ1|<δ
|ζ1−z1|≤ε

dξ1dη1

(|ρ(z)|+ F ′(ξ2
1)(x1 − ξ1)2)(|x1 − ξ1|+ |y1 − η1|)

.
∫
|ξ1|<δ
|x1−ξ1|≤ε

| ln |x1 − ξ1||dξ1

|ρ(z)|+ F ′(ξ2
1)(x1 − ξ1)2

.
∫
|r|<max{δ,ε}

| ln r|
|ρ(z)|+ F (r2)

dr

.

√
F ∗(|ρ(z)|)| ln

√
F ∗(|ρ(z)|)|

|ρ(z)|
,

(4.3.13)

where the last inequality follows from (ii), Lemma 4.2.2. Then, similarly to the setup in the
proof of (1), we obtain ∫ d

0

√
F ∗(t)| ln

√
F ∗(t)|

t
dt <∞,

for some d, δ > 0 sufficiently small, under the hypothesis

∫ δ

0
| ln t lnF (t2)| dt < ∞. Hence, by

setting

f(d−1) =

(∫ d

0

√
F ∗(t)| ln

√
F ∗(t)|

t
dt <∞

)−1

,

we have ||u||f . ||φ||L∞0,1(Ω).
This completes the proof of the theorem.
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4.3.1 Examples

To illustrate these theorems we will give some examples in which the functions F and f are
computed more explicitly.

Example 4.3.1. Let Ω = {(z1, z2) ∈ C2 : F (|z1|2) + |z2 − 1|2 < 1}. Then, the sup-norm and
f -Hölder estimates hold for the integral representation solution of ∂̄-equation in the following
examples:

1. If F (t2) = t2m, then f(d−1) = d−1/2m, this case essentially is of D’Angelo finite type of
2m.

2. If F (t2) = 2 exp
(−1
tα

)
, with 0 < α < 1, then f(d−1) = (− ln d)

1
α
−1. This domain is of

D’Angelo infinity type.

3. If F (t2) = 2 exp
(
−1

t| ln t|α

)
, with 2 < α, then f(d−1) = (ln(− ln d))α−1. This domain is also

of D’Angelo infinity type.

Example 4.3.2. Let Ω = {(z1, z2) ∈ C2 : F (|Re z1|2) + G(| Im z1|2) + |z2 − 1|2 < 1}, where
G(t) = 0 in a neighborhood of 0 and there is a positive constant c such that t ≥ c if G(t) ≥ 1.
Then, the sup-norm and f -Hölder estimates hold for the integral representation solution of
∂̄-equation in the following examples:

1. If F (t2) = t2m, then f(d−1) = d−1/2m| ln d|−1.

2. If F (t2) = 2 exp
(−1
tα

)
, with 0 < α < 1, then f(d−1) = (− ln d)

1
α
−1(ln(− ln d))−1.

3. If F (t2) = 2 exp
(
−1

t| ln t|α

)
, with 2 < α, then f(d−1) = (ln(− ln d))α−2.

Next, we will provide an example to show that the index f in Theorem 4.3.2 can not be
improved. The idea behinds the following example is due to E. M. Stein with a modern setup
by M. C. Shaw.
Let

Ω = {z = (z1, z2) ∈ C2 : ρ(z) = F (|z1|2) + |z2 − 1|2 < 1}, (4.3.14)

where F satisfies the conditions in Theorem 4.3.2. Setting φ(z) =
dz1

ln(z2)
and v(z) =

z1

ln(z2)
.

Hence, one can check that φ is a C1, ∂̄-closed (0, 1)-form , and v(z) is a solution of the equation
∂̄u = φ. One already know that the solution of ∂̄-equation via Henkin kernel belongs to Λf (Ω),
then, the following lemma says that it can not be in Λg(Ω).

Lemma 4.3.3. Let φ and v defined as above. Then, φ ∈ C∞(0,1)(Ω), v ∈ Λf (Ω) where f defined

as in Theorem 4.3.2. Moreover , let g satisfy lim
t→∞

g(t)

f(t)
=∞. If u is a solution of ∂̄u = φ in the

weak sense, then u /∈ Λg(Ω).
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Proof. Since v gets its singularities on Sing = {z = (z1, z2) ∈ C2 : z2 = 0}, hence it is sufficiently
to show that v admits a Hölder estimate in a small neighborhood of each singularity. The fact
that v ∈ C∞(Ω \ Sing) guarantees that v is Hölder regularity in standard sense outside these
neighborhoods.
Following the example in [HKR13], one can choose a small neighborhood U around 0 such that
|ρ(z)| ≤ c|z2|, with c should be big enough. Then, on U \ {0},

∇v(z) =

(
0,

1

ln(z2)
,
−z1

[ln(z2)]2z2
, 0

)
.

Now, on Ω ∩ U , since |ρ(z)|, |z2| < 1∣∣∣∣ 1

ln(z2)

∣∣∣∣ ≤ 1

| ln |ρ(z)||
< C,

where the appearance of C follows from the fact that lim
z→0
| ln |ρ(z)|| = +∞.

Next, from the property that F (|z1|2) ≤ 1− |z2 − 1|2 ≤ 2(1− |z2 − 1|),

|z1|
|z2|.| ln(z2)|2

≤ c
√
F ∗(1− |z2 − 1|2)

|z2|.| ln |ρ(z)||2
≤ c

√
F ∗(1− |z2 − 1|)
|ρ(z)|

≤ c
√
F ∗(|z2|)
|z2|

≤ C0

√
F ∗(|ρ(z)|)
|ρ(z)|

,

(4.3.15)

where the last inequality holds since the function

√
F ∗(t)

t
is decreasing. Therefore, v ∈ Λf (Ω).

In order to prove the non-existence part, by contradiction, one assume that some function u
satisfies ∂̄u = φ and u ∈ Λg(Ω). Since ∂̄(u− v) = 0, by Cauchy’s Theorem on F (r2) + ξ2 < 1∫

|z1|=r
z2=ξ

u(z1, z2)dz1 =

∫
|z1|=r
z2=ξ

v(z1, z2)dz1 =
Kr2

ln ξ
. (4.3.16)

By assumption u ∈ Λg(Ω), one obtain∣∣∣∣∣∣
∫
|z1|=r,
z2=ξ

u(z1, z2 + h)− u(z1, z2)dz1

∣∣∣∣∣∣ ≤ C.r.g(|h|−1)−1. (4.3.17)

Now, let ξ = 2δ, h = δ, r = f(δ−1)−1, with δ > 0 is small so that (z1, ξ), (z1, ξ + h) belong to Ω
if |z1| = r. Hence, applying these terms to (5.4.1), (4.3.17) , one have∣∣∣∣Kf(δ−1)−2

ln(2δ)
− Kf(δ−1)−2

ln δ

∣∣∣∣ ≤ Cf(δ−1)−1g(δ−1)−1.
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That is Cf(δ−1)−1 ≤ Cg(δ−1)−1. Therefore, since lim
t→∞

g(t)

f(t)
= ∞, taking δ → 0, one yield a

contradiction.

A remark that, in this section, to obtain the sup-norm estimates, we do not need to use the
extra assumptions that F

′′′
(t) are non-negative on (0, δ). They will be applied in the proof of

Lp-estimates.

4.4 Lp-Estimates for ∂̄-Solutions

In this section, we will study the Lp boundedness for integral representation solutions of ∂̄-
equations on the classes of convex domains defined by (4.1.4) and (4.1.5), with 1 ≤ p ≤ ∞.

Theorem 4.4.1. (joint work with Khanh, T. V., Raich, A. [HKR13]) If either of the following
conditions hold:

1. Ω is defined by (4.1.4) and there exists δ > 0 so that

∫ δ

0
| lnF (t2)| dt <∞,

2. Ω is defined by (4.1.5) and there exists δ > 0 so that

∫ δ

0
| ln(t) lnF (t2)| dt <∞,

then for any ∂̄-closed (0, 1)-form φ in Lp(Ω) with 1 ≤ p ≤ ∞, the solution via Henkin kernel u
on Ω satisfies ∂̄u = φ and

‖u‖Lp(Ω) ≤ C‖φ‖Lp(Ω).

where C > 0 is independent of φ.

In fact, the sup-norm estimate has been showed in the previous section. Hence, by Riesz-
Thorin Interpolation Theorem, it is sufficiently to prove the L1 boundedness for Henkin solutions.
Before the proof, we will re-call the estimate for the support function Φ with a little modification
.

Lemma 4.4.2. Let Ω ⊂ C2 and Φ defined as above. Then there exist ε, c > 0 so that

Re Φ(ζ, z) ≥ ρ(ζ)− ρ(z) +

{
c|z − ζ|2 ζ ∈ S0,2δ \B(0, δ)

P (z1)− P (ζ1)− 2 Re
{
∂P
∂ζ1

(ζ1)(z1 − ζ1)
}

ζ ∈ S0,2δ ∩B(0, δ)
.

(4.4.1)
for all z ∈ Ω̄ with |z − ζ| ≤ ε,where P (z1) = F (|z1|2) or P (z1) = F (x2

1), and S0,2δ := {z ∈ Ω̄ :
ρ(z) ≥ −2δ}.
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4.4.1 Proof of Theorem 4.4.1

As a consequence of the Riesz-Thorin Interpolation Theorem and Theorem 4.3.1, proving that T
is a bounded, linear operator on L1(Ω) suffices to establish that T is a bounded linear operator
on Lp(Ω), 1 ≤ p ≤ ∞.

The L1-estimate of |Kφ(z)| is standard and does not require interpolation. Indeed, since
|ζ − z|−3 ∈ L1(Ω) in both ζ and z (separately), Lp boundedness of K, 1 ≤ p ≤ ∞, follows from
[Fol99, Theorem 6.18].

For the boundedness of H, we first begin the analysis of Hφ(z) by using Stokes’ Theorem.
Using the assumption that φ is ∂̄-closed, we observe

Hφ(z) =
1

2π2

∫
Ω
∂̄ζ

( ∂ρ(ζ)
∂ζ1

(ζ̄2 − z̄2)− ∂ρ(ζ)
∂ζ2

(ζ̄1 − z̄1)

(Φ(ζ, z)− ρ(ζ))(|ζ − z|2 + ρ(ζ)ρ(z))

)
∧ φ(ζ) ∧ ω(ζ).

We abuse notation slightly and let H(ζ, z) be the integral kernel of H. Direct calculation
shows that we can decompose

|H(ζ, z)| ≤

∣∣∣∣∣∣∂̄ζ
( ∂ρ(ζ)

∂ζ1
(ζ̄2 − z̄2)− ∂ρ(ζ)

∂ζ2
(ζ̄1 − z̄1)

(Φ(ζ, z)− ρ(ζ))(|ζ − z|2 + ρ(ζ)ρ(z))

)∣∣∣∣∣∣
.

1

|Φ(ζ, z)− ρ(ζ)|2(|ζ − z|2 + ρ(ζ)ρ(z))1/2
+

1

|Φ(ζ, z)− ρ(ζ))(|ζ − z|2 + ρ(ζ)ρ(z))
.

(4.4.2)

Since (ρ(ζ)− ρ(z))2 . |ζ − z|2, this implies ρ(ζ)2 . |ζ − z|2 + ρ(ζ)ρ(z), hence |ζ − z|+ |ρ(ζ)| .
(|ζ − z|2 + ρ(ζ)ρ(z))1/2. Thus

|Φ(ζ, z)− ρ(ζ)| . |ζ − z|+ |ρ(ζ)| . (|ζ − z|2 + ρ(ζ)ρ(z))1/2. (4.4.3)

Combining (4.4.2) and (4.4.3), we obtain

|H(ζ, z)| . 1

|Φ(ζ, z)− ρ(ζ)|2(|ζ − z|2 + ρ(ζ)ρ(z))1/2

≤ 1

|Φ(ζ, z)− ρ(ζ)|2|ζ − z|

≤ 1

(|Re Φ(ζ, z)− ρ(ζ)|2 + | Im Φ(ζ, z)|2)|ζ1 − z1|
.

(4.4.4)

We will show that ∫∫
(ζ,z)∈Ω×Ω

H(ζ, z)φ(ζ)dV (ζ, z) . ‖φ‖L1(Ω) <∞. (4.4.5)
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Then, apply the Fubini’s Theorem to obtain

‖Hφ‖L1(Ω) =

∫
z∈Ω

Hφ(z)dV (z)

=

∫
z∈Ω

∫
ζ∈Ω

H(ζ, z)φ(ζ)dV (ζ)dV (z)

=

∫∫
(ζ,z)∈Ω×Ω

H(ζ, z)φ(ζ)dV (ζ, z) . ‖φ‖L1(Ω).

(4.4.6)

In order to prove (5.4.8), we remark that it is enough to assume that z, ζ ∈ Ω∩B(0, δ) = {ρ(z) =
P (z1) + r(z) < 0} because if ζo, z ∈ Ω̄ \B(0, δ/2), then the estimates following classically using
the strict convexity of r. If one of {z, ζ} is in B(0, δ/2) and other is an element of B(0, δ)c, then
the integrand of H is bounded and bounded away from 0, and the estimate is trivial. We will
investigate the complex and real ellipsoid cases separately to show∫∫

(ζ,z)∈(Ω∩B(0,δ))2

H(ζ, z)φ(ζ)dV (ζ, z) . ‖φ‖L1(Ω). (4.4.7)

4.4.2 Complex Ellipsoid Case

In this subsection, Ω is defined by (4.1.4). Since the argument of F is |ζ1|2, the chain rule shows

that
∂

∂ζ1
F (|ζ1|2) = ζ̄1F

′(|ζ1|2). Similarly to Khanh [Kha13, (4.1)], Lemma 4.4.2 shows that

Re
{

Φ(ζ, z)
}
− ρ(ζ) ≥ −ρ(z) + F (|z1|2)− F (|ζ1|2)− 2F ′(|ζ1|2) Re

{
ζ̄1(z1 − ζ1)

}
= −ρ(z) + F ′(|ζ1|2)|z1 − ζ1|2 +

(
F (|z1|2)− F (|ζ1|2)− F ′(|ζ1|2)

(
|z1|2 − |ζ1|2

))
.

(4.4.8)

Now, we consider two case of F ′(0). If F ′(0) 6= 0, then there is a suitable δ > 0 such that
F ′(|ζ1|2) > 0 for any |ζ1| < δ. Hence,

Re
{

Φ(ζ, z)
}
− ρ(ζ) >

∼
−ρ(z) + |z1 − ζ1|2,

and

|H(ζ, z)| ≤ 1

(|ρ(z)|2 + | Im Φ(ζ, z)|2 + |ζ1 − z1|4)|ζ1 − z1|
.

Our problem goes back to the case of strongly pseudoconvex domain, and the result is trivial.
So we only assume that F ′(0) = 0. We will have

Lemma 4.4.3. Let F be defined in Section 1 with the extra assumption F ′(0) = 0. Then

|H(ζ, z)| .


1

(|ρ(z) + i Im Φ(ζ, z)|2 + F 2(|z1 − ζ1|2))|z1 − ζ1|
if |ζ1| ≥ |z1 − ζ1|,

1

(|ρ(z) + i Im Φ(ζ, z)|2 + F 2(1
2 |z1|2))|z1|

if |ζ1| ≤ |z1 − ζ1|,
(4.4.9)
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Proof. Using Lemma 4.2.1 for the expression in the parenthesis of in the second line of (4.4.8),
we obtain

Re
{

Φ(ζ, z)
}
− ρ(ζ) ≥ −ρ(z) +

{
F ′(|ζ1|2)|z1 − ζ1|2 for all 0 < |z1|, |ζ1| < δ,

F (|z1|2 − |ζ1|2) only for |ζ1| ≤ |z1| ≤ δ.
(4.4.10)

We compare |ζ1| and |z1 − ζ1|2.

Case 1: |ζ1| ≥ |z1 − ζ1|. Using the first case (4.4.10) with the fact that F ′ is increasing and

F ′(t)t ≥ F (t) (since
F (t)

t
is increasing), we obtain

Re
{

Φ(ζ, z)
}
− ρ(ζ) ≥ −ρ(z) + F (|z1 − ζ1|2).

The first line of (4.4.9) follows by above inequality and (4.4.4).

Case 2: |ζ1| ≤ |z1 − ζ1|. In this case, we need to compare |ζ1| and 1√
2
|z1|. If |ζ1| ≥ 1√

2
|z1|,

then same argument above in Case 1 provides that

Re
{

Φ(ζ, z)
}
− ρ(ζ) ≥ −ρ(z) + F (

1

2
|z1|2).

Hence, we get the second line of (4.4.9). Otherwise, if |ζ1| ≤ 1√
2
|z1|, this implies |z1| ≥ |ζ1| and

|z1 − ζ1| ≥ (1− 1√
2
)|z1|. So we can use the second case of (4.4.10) and obtain

Re
{

Φ(ζ, z)
}
− ρ(ζ) ≥ −ρ(z) + F (|z1|2 − |ζ1|2) ≥ −ρ(z) + F (

1

2
|z1|2),

and

(|Re Φ(ζ, z)− ρ(ζ)|2 + | Im Φ(ζ, z)|2)|ζ1 − z1| >∼ (|ρ(z) + i Im Φ(ζ, z)|2 + F 2(
1

2
|z1|2))|z1|.

This completes the proof.

Proof of the Theorem 4.4.1.i. Using Lemma 4.4.3, we have∫∫
(ζ,z)∈(Ω∩B(0,δ))2

H(ζ, z)φ(ζ)dV (ζ, z)

=

∫∫
(ζ,z)∈(Ω∩B(0,δ))2 and |ζ1|≥|z1−ζ1|

· · ·+
∫∫

(ζ,z)∈(Ω∩B(0,δ))2 and |ζ1|≤|z1−ζ1|
· · ·

.(I) + (II)

(4.4.11)

where

(I) :=

∫∫
(ζ,z)∈(Ω∩B(0,δ))2

|φ(ζ)|dV (ζ, z)

(|ρ(z) + i Im Φ(ζ, z)|2 + F 2(|z1 − ζ1|2))|z1 − ζ1|
;

(II) :=

∫∫
(ζ,z)∈(Ω∩B(0,δ))2

|φ(ζ)|dV (ζ, z)

(|ρ(z) + i Im Φ(ζ, z)|2 + F 2(1
2 |z1|2))|z1|

.

(4.4.12)
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For the integral (I), we make the change variables (ψ,w) = (ψ1, ψ2, w1, w2) = (ζ1, ζ2, z1 −
ζ1, ρ(z) + i Im Φ(ζ, z)). Direct calculus the Jacobian of this transformation is the matrix

J =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
−1 0 0 0 1 0 0 0
0 −1 0 0 0 1 0 0

0 0 0 0 ρ(z)
∂(Re z1)

ρ(z)
∂(Im z1)

ρ(z)
∂(Re z2)

ρ(z)
∂(Im z2)

∂ Im Φ(ζ,z)
∂(Re ζ1)

∂ Im Φ(ζ,z)
∂(Im ζ1)

∂ Im Φ(ζ,z)
∂(Re ζ2)

∂ Im Φ(ζ,z)
∂(Im ζ2)

∂ Im Φ(ζ,z)
∂(Re z1)

∂ Im Φ(ζ,z)
∂(Im z1)

∂ Im Φ(ζ,z)
∂(Re z2)

∂ Im Φ(ζ,z)
∂(Im z2)


To check that this coordinate change is legitimate, we compute

det(J) = −∂ Im(Φ(ζ, z))

∂ξ2

∂ρ(ζ)

∂η2
+
∂ Im(Φ(ζ, z))

∂η2

∂ρ(ζ)

∂ξ2
.

By a possible rotation of Ω, we can assume that ∇ρ(0) = (0, 0, 0,−1). Direct calculation then

establishes that if δ is chosen sufficiently small (so that ∂ρ(ζ)
∂ξ2

dominates the other parts of ρ and

|ζ − z| are small), then det(J) 6= 0. Since Φ is smooth, we can assume that there exists δ′ > 0
that depends on Ω and ρ so that

(I) .
∫∫

(ψ,w)∈(Ω∩B(0,δ))×B(0,δ′)

|φ(ψ)|
(|w2|2 + F 2(|w1|2)|w1|

dV (ψ,w)

.‖φ‖L1(Ω)

∫ δ′

0

∫ δ′

0

r1r2dr2dr1

(r2
2 + F 2(r2

1))r1

.‖φ‖L1(Ω)

∫ δ′

0
lnF (r2

1)dr1 <∞.

(4.4.13)

Here, the last inequality follows by the hypothesis of φ and F .

Repeating this argument with the change coordinates (ψ,w) = (ψ1, ψ2, w1, w2) = (ζ1, ζ2,
1√
2
z1, ρ(z)+

i Im Φ(ζ, z)) for the integral (II), we obtain the same conclusion. Therefore, this completes the
estimate in complex case.

4.4.3 Real Ellipsoid Case

In this subsection, one will consider the case Ω is defined by (4.1.5). The argument from (4.4.8)
now yields

Re{Φ(ζ, z)} − ρ(ζ) ≥ −ρ(z) + F ′(ξ2
1)(x1 − ξ1)2 +

(
F (x2

1)− F (ξ2
1)− F ′(ξ2

1)(x2
1 − ξ2

1)
)
,

where z1 = x1 + iy1, ζ1 = ξ1 + iη1. Following the setup in the complex case, with the same proof,
one also have
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Lemma 4.4.4. Let F be defined in Section 1 with the extra assumption F ′(0) = 0. Then

|H(ζ, z)| .


1

(|ρ(z) + i Im Φ(ζ, z)|2 + F 2((x1 − ξ1)2))(|x1 − ξ1|+ |y1 − η1|)
if |ξ1| ≥ |x1 − ξ1|,

1

(|ρ(z) + i Im Φ(ζ, z)|2 + F 2(1
2x

2
1))( 1√

2
|x1|+ |y1 − η1|)

if |ξ1| ≤ |x1 − ξ1|,
(4.4.14)

Proof of Theorem 4.4.1.ii. Using Lemma 4.4.4, we have∫∫
(ζ,z)∈(Ω∩B(0,δ))2

H(ζ, z)φ(ζ)dV (ζ, z) . (I) + (II), (4.4.15)

where

(I) :=

∫∫
(ζ,z)∈(Ω∩B(0,δ))2

|φ(ζ)|dV (ζ, z)

(|ρ(z) + i Im Φ(ζ, z)|2 + F 2((x1 − ξ1)2))(|x1 − ξ1|+ |y1 − η1|)
;

(II) :=

∫∫
(ζ,z)∈(Ω∩B(0,δ))2

|φ(ζ)|dV (ζ, z)

(|ρ(z) + i Im Φ(ζ, z)|2 + F 2(1
2x

2
1))( 1√

2
|x1|+ |y1 − η1|)

.
(4.4.16)

We make the change variables (ψ,w) = (ψ1, ψ2, w1, w2) = (ζ1, ζ2, z1 − ξ1, ρ(z) + i Im Φ(ζ, z))
for (I) and (ψ,w) = (ψ1, ψ2, w1, w2) = (ζ1, ζ2,

1√
2
x1 − i(y1 − η1), ρ(z) + i Im Φ(ζ, z)) for (II).

Similar the Subsection 3.1, we can check that det(J) 6= 0 for both integrals. Therefore

(I) + (II) .
∫∫

(ψ,w)∈(Ω∩B(0,δ))×B(0,δ′)

|φ(ψ)|
(|w2|2 + F 2((Rew1)2)(|Rew1|+ | Imw1|)

dV (ψ,w)

.‖φ‖L1(Ω)

∫ δ′

0

∫ δ′

0

∫ δ′

0

r2dr2d(Rew1)d(Imw1)

(r2
2 + F 2((Rew1)2))(|Rew1|+ | Imw1|)

.‖φ‖L1(Ω)

∫ δ′

0

∫ δ′

0

ln(F ((Rew1)2)d(Rew1)d(Imw1)

|Rew1|+ | Imw1|

.‖φ‖L1(Ω)

∫ δ′

0
ln(|Rew1|) ln(F ((Rew1)2)d(Rew1) <∞.

(4.4.17)

Here, the last inequality follows by the hypothesis of φ and F . This completes our proof of
Theorem 4.4.1.

4.4.4 Examples

In this section, we present an example to show that our estimates are optimal in the sense that
the inequality ‖u‖Lq(Ω) . ‖φ‖Lp(Ω) cannot hold if 1 ≤ p < q ≤ ∞. Specifically, let 0 < α < 1,
1 ≤ p < q ≤ ∞, and

Ω = {(z1, z2) ∈ C2 : e
1− 1
|z1|α + |z2|2 < 1}. (4.4.18)
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We will show that there is a ∂̄-closed (0, 1)-form φ ∈ Lp0,1(Ω) for which there does not exist a

function u ∈ Lq(Ω) so that ∂̄u = φ in Ω. Indeed, let

φ(z) =
(1− ln(1− z2))k

(1− z2)2/q
dz̄1 and v(z) =

(1− ln(1− z2))k

(1− z2)2/q
(4.4.19)

where k := [ q+2
qα ] + 1 ∈ N. The function

(1− ln(1− z2))k

(1− z2)1/q
is holomorphic on Ω with the principle

branch of the logarithm 0 < arg(1−z2) < 2π. The form φ is a ∂̄-closed (0, 1)-form on Ω and func-
tion v is a solution of the equation ∂̄u = φ. Moreover, we observe that v is L2-orthogonal to all
holomorphic functions on Ω (by Mean Value Theorem). By directly calculating (see Lemma 4.4.5
in below), we obtain φ ∈ Lp1,0(Ω), v ∈ Lp(Ω) and v 6∈ Lq(Ω). Let P be the Bergman projection

on Ω, i.e., the L2-orthogonal projection onto all holomorphic functions on Ω. In recently, Khanh
and Thu [KT13] have proven that P of domain of domain defined in (4.4.18) is a bounded op-
erator form Lq(Ω) to Lq(Ω) for any q > 1 (see Appendix). Therefore if u ∈ Lq(Ω) is a solution
to ∂̄u = φ, then v = u − P (u) is in Lq(Ω). This is impossible. Therefore, there is no solution
u ∈ Lq(Ω) with q ≥ p.

Lemma 4.4.5. Let φ and v be defined in (4.4.19). Then, φ ∈ Lp1,0(Ω), v ∈ Lp(Ω) and v ∈ Lq(Ω).

Proof. We now show that φ ∈ Lp0,1(Ω). We have∫
Ω
|φ(z)|pdV (v) =

∫
Ω

|1− ln |1− z2|+ i arg(1− z2)|kp

|1− z2|2p/q
dV (z)

≤
∫
|z2|<1

(
(1− ln |1− z2|)2 + 4π2

)kp/2
|1− z2|2p/q

∫
|z1|<(1−ln(1−|z2|2))−1/α

1 dV (z1) dV (z2)

.
∫
|z2|<1

(
(1− ln |1− z2|)2 + 4π2

)kp/2
|1− z2|2p/q((1− ln(1− |z2|2))2/α

dV (z2)

.
∫
|z2|<1

(
(1− ln |1− z2|)2 + 4π2

)kp/2
|1− z2|2p/q

dV (z2)

.
∫
|z2|<1,|z2−1|≥1

· · ·+
∫
|z2|<1,|z2−1|<1

· · · .

(4.4.20)

Since the function
((1−ln |1−z2|)2+4π2)

kp/2

|1−z2|2p/q
is bounded on {|z2| < 1, |z2 − 1|}, so the first integral∫

|z2|<1,|z2−1|≥1 · · · is also bounded. For the second integral, we have∫
|z2|<1,|z2−1|<1

· · · ≤
∫
|z2−1|<1

· · ·

=

∫ 1

0

((1− ln t)2 + 4π2)kp/2

t2p/q−1
dt <∞,

(4.4.21)
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since 2p/q − 1 < 1 The proof of v ∈ Lp(Ω) is automatically follows by our computation that
φ ∈ Lp0,1(Ω) since |z1| is bounded. Now, we prove that v 6∈ Lq(Ω). We have∫

Ω
|v(z)|qdV (z) =

∫
Ω

|1− ln(1− z2)|kq |z1|q

|1− z2|2
dV (z)

=

∫
|z2|<1

|1− ln |1− z2|+ i arg(1− z2)|kq

|1− z2|2

∫
|z1|<(1−ln(1−|z2|2))−1/α

|z1|q dV (z1) dV (z2)

≥ 2πα

q + 2

∫
|z2|<1

|1− ln |1− z2||kq

|1− z2|2(1− ln(1− |z2|2))
q+2
α

dV (z2)

&
∫
z2∈D

|1− ln |1− z2||kq

|1− z2|2(1− ln(1− |z2|2))
q+2
α

dV (z2),

(4.4.22)

where

D = {z2 = 1 + reiθ ∈ C : 0 < r <
1

3
,
3π

4
< θ <

5π

4
} ⊂ {|z2| < 1, |z2 − 1| < 1

3
} ⊂ {|z2| < 1}.

The domain of the integral forces 1− |z2|2 = −2r cos θ − r2 ≥
√

2r − r2 ≥ r(
√

2− r) ≥ r (since√
2 = r ≥

√
2− 1

3 ≥ 1). So we obtain∫
Ω
|v(z)|qdV (z) &

∫ 1
3

0

(1− ln r)kq−
q+2
α

r
dr ≥

∫ 1
3

0

dr

r
(divergence). (4.4.23)

Here, the last inequality follows by kq − q+2
α > 0 by the choice of k.
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Chapter 5

Complex Monge-Ampère Equations
in Cn

In this chapter, we will discuss one of most important non-linear partial differential equations
in several complex variables, Complex Monge-Ampère Equations.
During the last four decades, complex Monge-Ampère equations have been the subject of inten-
sive studies. These equations have a simplest form which is a fully non-linear equation of elliptic
type

CMA(u) := det

(
∂2u

∂zj∂zk

)
= h,

where the solution u should be a (continuous) plurisubharmonic functions in Cn. The real Monge-
Ampère equations have been studied deeply in relation to many problems in Riemann Geometry,
and also in the modern applications of partial differential equations field. However, it seems to
be difficult to solve them in a completely acceptable way. The notation of convex surfaces was
applied by A.D.Alexandrov to provide the existence and uniqueness of solutions in a general
sense to certain real Monge-Ampère equations. Nevertheless, there is a lacking for a suitable
geometric interpretation of the complex Monge-Ampère equations. And the techniques used for
real Monge-Ampère equations are not enough to consider the complex one.
In 1976, Bedford and Taylor [BT76] applied methods in pluripotential theory to construct
plurisubharmonic solutions of the Dirichlet problem for complex Monge-Ampère equation with
continuous data in a strictly pseudoconvex domain. In this well-known fundamental paper, there
are two considerations. The right hand side is understood as a non-negative Borel measure when
u is plurisubharmonic, and not necessarily C2. The left hand side is the positive bidegree cur-
rent, which is an essential ingredient was introduced by LeLong. In the book by S. Kolodziej
[Kol05], the reader will find a detailed exposition of the complex Monge-Ampère equations and
Pluripotential theory.
Now, we will make a short history for complex Monge-Ampère equations with regularities on
pseudoconvex domains.
Let Ω be a bounded, weakly pseudoconvex domain of Cn with C2-smooth boundary bΩ. For
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given functions h ≥ 0 defined in Ω and φ defined on bΩ, the Dirichlet problem of the complex
Monge-Ampère consists in finding a continuous, plurisubharmonic function u on Ω such that{

det(uij) = h in Ω

u = φ on bΩ,
(5.0.1)

where ui =
∂u

∂zi
, uij =

∂2u

∂zi∂z̄j
and (uij) is a n× n-matrix with its (i, j)th-entry is uij .

5.1 The operator (ddc)n

We will recall the notation of (ddc)n and give some its properties. First of all, d = ∂ + ∂̄,
and dc = i(∂ − ∂̄). For Ω an open set in Cn, let P(Ω) denote the space of all plurisubharmonic
functions on Ω, and C(Ω), Ck(Ω) the usual spaces of continuous functions, kth order continuously

differentiable functions. For u ∈ C2(Ω), H(u) =

[
∂2u

∂zj∂zk

]
denote the complex Hessian of u.

Then
4nn! det(H(u))βn = ddcu ∧ ... ∧ ddcu = (ddcu)n,

where the volume form βn =

(
i

2

)n n∏
j=1

dzj ∧ dzj . Next, we will define the left hand side via

theory of currents introduced by Bedford and Taylor, as well as via a general measure theoretic
construction given by Goffman and Serrin.
Let D(p,q)(Ω) denote the space of test forms in Ω of bidegree (p, q) equipped with Schwartz’s
topology.

Definition 5.1.1. Any continuous linear functional on the space D(p,q)(Ω) is called a current
of bi-degree (n− p, n− q) (equivalent: of bi-dimension (p, q)) in Ω.
We equip the space of currents of bi-degree (n − p, n − q) with a weak-topology by follows: a
sequence Tj of currents of bi-degree (n−p, n−q) converges to T if and only if lim

j→∞
Tj(φ) = T (φ)

for any φ ∈ D(p,q)(Ω).
Let T be a current of bi-dimension (p, p) in Ω, if we have

(T, ω) ≥ 0,

for any simple positive test form ω = ipω1 ∧ ω1 ∧ ...∧ ωp ∧ ωp, with ωk’s ∈ C∞(1,0), the T is called
a positive current.

For two (p, p)-currents S, T , the inequality

S ≤ T

means that T − S is a positive current.
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For an increasing ordered multi-index J , we denote by J ′ the unique increasing multi-index
such that J ∪ J ′ = {1, 2, ..., n} such that |J | + |J ′| = n. Let us denote by αJK the form
complementary to dzJ ∧ dz̄K , that is

αJK = λdzJ ′ ∧ dz̄K′ ,

where λ is chosen so that dzJ ∧ dz̄K ∧ αJK = βn.
Let us observe that one can identify a current T ∈ D′(p,q)(Ω) with a differential form which has
distribution coefficients

T =
∑′

|J |=n−p,|K|=n−q
TJKdzJ ∧ dz̄K .

The coefficients TJK are defined by

(TJK , φ) = (T, φαJK).

Moreover, all TJK are non-negative Radon measures if T is positive. For a current T with
measure coefficients, one can define a norm

||T ||E =
∑′

|J |=n−p,|K|=n−q
|TJK |E ,

where |TJK |E is the total variation of TJK on a compact set E.
One may also define a wedge product of a current and a smooth form ω setting

(T ∧ ω, φ) := (T, ω ∧ φ)

for any test form φ. If T is positive and ω is a positive (1, 1)-form, then T ∧ ω is again positive.
In particular, for a positive (p, p)-current T , and a (n− p, n− p) simple form, the current T ∧ ω
is a non-negative Borel measure.
We differentiate currents according to the formula

(DT, φ) = −(T,Dφ),

for a first order differential operator D.
Now, let u ∈ P(Ω)∩L∞(Ω), then ddcu is a bounded, positive of bidimension (1, 1) current, and
u.ddcu is a well-defined current, so is

ddcu ∧ ddcu := ddc(u.ddcu),

in the sense that ∫
φ.ddcu ∧ ddcu =

∫
u.ddcφ ∧ ddcu.

The latter current is also closed and positive. By this way, we may defined closed positive currents

ddcu ∧ ddcu ∧ ... ∧ ddcu,

for u ∈ P(Ω) ∩ L∞(Ω). This definition is well-defined since the following theorem by Chern-
Levine-Nirenberg
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Theorem 5.1.2. (Chern-Levine-Nirenberg Inequality).
If K ⊂⊂ U ⊂⊂ Ω, then for a constant C = C(K,U,Ω), the following holds

||ddcu0 ∧ ddcu1 ∧ ... ∧ ddcuk ∧ T ||K ≤ C.||u0||U ||u1||U ...||uk||U ||T ||U ,

for any closed positive T and any set of uj ∈ P(Ω) ∩ L∞(Ω). Moreover,

||ddcu1 ∧ ddcu2 ∧ ... ∧ ddcuk||K ≤ C(K,Ω)||u1||Ω||u2||Ω...||uk||Ω,

and
||u0 ∧ ddcu1 ∧ ddcu2 ∧ ... ∧ ddcuk||K ≤ C(K,Ω)||u0||L1(Ω)||u1||Ω||u2||Ω...||uk||Ω.

This gives us a definition of (ddcu)n for u ∈ P(Ω) ∩ L∞loc(Ω) as a positive Borel measure.

Let C denote the cone of n× n non-negative Hermitian matrixes and define on C a homoge-
neous super-additive functional

F(A) = det(A)1/n, A ∈ C.

Now, let µ = (µjk) be a matrix of Borel measures on Ω such that for any Borel set E ⊂ Ω,
(µjk(E)) ∈ C. Choose a nonnegative Borel measure λ on Ω such that µ is absolutely continuous
with respect λ, i.e, dµ = Adλ, where A is a Borel measurable function on Ω with values in the
cone C. Then, we define

F(µ) = F(A)λ.

If u ∈ P(Ω), the matrix of Borel measures

(
∂2u

∂zj∂zk

)
takes values in the cone C since ddcu is a

positive (1, 1) current. Then, we can define

Φ(u) = 4(n!)1/nF
([

∂2u

∂zj∂zk

])
.

Note that for smooth u, we have
(ddcu)n = Φn(u)dV,

that means Φ(u) is essentially [(ddcu)n]1/n.

Proposition 5.1.3. 1. Φ(tu) = tΦ(u), for t ≥ 0, and Φ(u+ v) ≥ Φ(u) + Φ(v).

2. If α is a test function, then Φ(u ∗ α) ≥ Φ(u) ∗ α.

3. If a sequence of plurisubharmonic functions uj tends ewakly to u, and Φ(uj) is weakly
convergent, then Φ(u) ≥ limj→∞Φ(uj).

4. For the standard regularization limε→0 Φ(uε) = Φ(u).

5. Φ(max(u, v)) ≥ min(Φ(u),Φ(v)).
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Therefore, for h ≥ 0, h ∈ C(Ω), the complex Monge-Ampère equation (5.0.1) is understood
by the following ways

(ddcu)n = hdV

in the sense of positive bidegree currents, or

Φ(u) = h1/ndV

in the Borel measure sense.
The fact that the unique solutions of (5.0.1) defined via these setups are coincide. In this chapter,
we will concentrate solutions of (5.0.1) defined in the sense of currents.

5.2 Some well-known facts and the main result

When Ω is a smooth, bounded strongly pseudoconvex domain in Cn, a great deal of work has
been done about the existence, uniqueness and regularity of this problem (cf. []). The following
we briefly review some significant, classical results.

1. The classical solvability of the Dirichlet problem in [BT76] was established by Bedford and
Taylor. They proved that if Ω is a strongly pseudoconvex, bounded domain in Cn with C2

boundary, and if φ ∈ Lipα(bΩ), 0 ≤ h
1
n ∈ Lip

Ω
2 (Ω), where 0 < α ≤ 1, then there is an

unique solution of (5.0.1) u ∈ Lip
α
2 (Ω). The pluripotential theory allows the authors to

study weak solutions for the right hand side being just a nonnegative Borel measure. This
result is sharp.

2. In [CKNS85], the smoothness of solution of (5.0.1) was also established. In particular, on
a bounded strongly pseudoconvex domain with smooth boundary, and φ ∈ C∞(bΩ), then
there exixsts uniquely solution u ∈ C∞(Ω) and also u ∈ C1,1(Ω) when h satisfies some
critical conditions. Their approach followed the one taken for the real Monge-Ampère
equations.

3. More generally, Blocki also considered the Dirichlet problem (5.0.1) on hyperconvex do-
mains in [Blo96]. In the paper, when data φ ∈ C(bΩ) can be continuously extended to
a plurisubharmonic function on Ω and the right hand is nonnegative, contiunous, then
the plurisubharmonic solution exists uniquely and continuously. The author also gave an
example to show this existence on some hyperconvex domain but not B-regular which was
first considered by Bedford and Taylor in [BT76]. However, the Hölder continuity for the
solution on these domains was not verified.

4. In [Co97], Coman showed how to connect some geometrical conditions on domains in
C2 to the existence of plurisubharmonic upper envelope in Hölder spaces. In particular,
the weakly pseudoconvexity of finite type m and the fact that the Perron-Bremermann
function belongs to Lip

α
m with corresponding data in Lipα are equivalent. Again, this

means the condition of finite type plays the critical role in Hölder regularity for complex
Monge-Ampère equations.
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5. Recently, in [Li04], these results have been extended in the case that Ω is a weakly
pseudoconvex, bounded domain in Cn of plurisubharmonic type m. In particular, when
0 < α ≤ 2

m , and φ ∈ Lipmα(bΩ) and if h
1
n ∈ Lipα, then the unque existence of the solution

for (5.0.1) u ∈ Lipα(Ω) holds. The author also gives the example on complex ellipsoid to
show that this result is optimal. The critical point in the proof is based on the observation
by Catlin and main results of Fornaess and Sibony in [FS89] about the existence of a family
of weighted functions on a such domain.

The main purpose in this chapter is to generalize above results to pseudoconvex domains,
not necessarily of finite type, but admitting an f -Property. The f -Property introduced in the
followings is generalized the Catlin’s family of weights which is sufficient for an f -estimate for
the ∂̄-Neumann problem [Cat87, KZ10]. This is new point in the theory of complex Monge-
Ampère equations, the techniques follow from solving to Cauchy-Riemann equations applied to
seek complex Monge-Ampère equations.

Definition 5.2.1. For a smooth, monotonic, increasing function f : [1 +∞) → [1,+∞) with
f(t)

t1/2
decreasing, we say that Ω has an f -Property if there exist a neighborhood U of bΩ and a

family of functions {φδ} such that

(i) the functions φδ are plurisubharmonic, −1 ≤ φδ ≤ 0 and C2 on U ;

(ii) i∂∂̄φδ >∼
f(δ−1)2Id and |Dφδ| . δ−1 for any z ∈ U ∩ {z ∈ Ω : −δ < r(z) < 0}, where r is

a defining function of Ω.

Remark 5.2.2. 1. The f -Property is a consequence of the geometric finite type of pseudocon-
vex domains. In [Cat83, Cat87], Catlin proved that every smooth, pseudoconvex domain Ω

of finite type m in Cn is of the f -Property with f(t) = tε with ε = m−n
2mn

2

. Specially, if Ω
is strongly pseudoconvex, or else it is pseudoconvex of finite type in C2, or else decoupled or

convex in Cn then ε =
1

m
where m is the finite type (cf. [Cat89, Kha10, McN91a, McN92a]).

2. The relation of the general type (both finite and infinite type) and the f -Property has
been studied by Khanh and Zampieri [Kha10, KZ12]. Moreover, they proved if P1, ..., Pn :

C → R+ are functions such that ∆Pj(zj) ≥
F (|xj |)
x2
j

or
F (|yj |)
y2
j

for any j = 1, ..., n, then

the pseudoconvex ellipsoid

C = {(z1, . . . , zn) ∈ Cn :
n∑
j=1

Pj(zj) ≤ 1}

has f -Property with f(t) = (F ∗(t−1))−1. Here we denote F ∗ is the inverse function of F .

In this paper, using the f -Property we prove a “weak” Hölder regularity for the solution of
the Dirichlet problem of complex Monge-Ampère equation. For convenience, we recall a suitable
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definition of the Hölder continuous spaces in the last chapter, but here we define function be
continuous up to the boundary bΩ.

Definition 5.2.3. Let f be an increasing function such that lim
t→+∞

f(t) = +∞. For Ω ⊂ Cn,

define the f -Hölder space on Ω̄ by

Λf (Ω̄) = {u : ‖u‖∞ + sup
z,w∈Ω

f(|z − w|−1) · |u(z)− u(w)| <∞},

and set
‖u‖f = ‖u‖∞ + sup

z,w∈Ω

f(|z − w|−1) · |u(z)− u(w)|.

Note that the f -Hölder space includes the standard Hölder space Λα(Ω̄) by taking f(t) = tα

(so that f(|h|−1) = |h|−α) with 0 < α < 1. Our main result is

Theorem 5.2.4. (joint work with Khanh, T. V. [HK13]) Let f be in Definition 5.2.1 such that

g(t)−1 :=

∫ ∞
t

da

af(a)
< ∞. Assume that Ω is a bounded, pseudoconvex domain admitting the

f -Property. Then, for any 0 < α ≤ 1, if φ ∈ Λt
α
(bΩ), and h ≥ 0 on Ω with h

1
n ∈ Λg

α
(Ω), then

the following Dirichlet problem of complex Monge-Ampère equation{
det(uij) = h in Ω,

u = φ on ∂Ω,
(5.2.1)

has an unique plurisubharmonic solution u ∈ Λg
α
(Ω).

We organize the paper as follows. In Section 2, we will establish the sufficiently fine defining
functions, as a consequence of f -Property, to construct the unique solution of (5.0.1), this
solution should be contiunous and plurisubharmonic. We will also see that this condition is a
generalization of the one named by plurisubharmonic of finite type m in [Li04]. Then, we will
prove the main theorem 5.2.4 in the Section 3. Finally, an example in the Section 4 will show
that our result can not be improved.

5.3 The f-Property

In this section, under the f -Property assumption we construct a strictly plurisubharmonic defin-
ing function with g2-Hölder continuous, where g defined in the following theorem.

Theorem 5.3.1. Let f be in Definition 5.2.1 such that g(t)−1 :=

∫ ∞
t

da

af(a)
< ∞. Assume

that Ω is a bounded, pseudoconvex domain admitting the f -Property. Then there exists a strictly
plurisubharmonic defining function of Ω which belongs to g2-Hölder space of Ω̄, that means, there
is a plurisubharmonic function ρ such that
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1. z ∈ Ω if and only if ρ(z) < 0, bΩ = {z ∈ Cn : ρ(z) = 0}.

2. ρ ∈ C2(Ω) and i∂∂̄ρ(L, L̄) ≥ |L|2.

3. ρ is in g2-Hölder space of Ω̄, that is, |ρ(z)− ρ(z′)| ≤ g(|z − z′|−1)−2 for any z, z′ ∈ Ω̄.

The proof of Theorem 5.3.1 is based on the result about the existence of a family of plurisub-
hamonic peak functions, Theorem 5.3.2, which is proven by Khanh [Kha13]. Moreover, a remark

that the f -Property with the requirement

∫ ∞
t

da

af(a)
< ∞ is stronger than the sup-log condi-

tion, i.e , lim
a→∞

f(a)

ln a
= ∞, which implies that the Bergman metric has a lower bound with the

rate g(t) =
f

ln
(t1−η), for some η > 0 [KZ12]. The following theorem is a generalization of the

well-known result by Fornaess and Sibony in the case of finite type.

Theorem 5.3.2. Under the assumptions of Theorem 5.3.1, for any w ∈ bΩ there is a C2-
plurisuhharmonic function ψw on Ω and peaking at w, that means, ψw(z) < 0 for all z ∈ Ω̄\{w}
and ψw(w) = 0. Moreover, for any constant 0 < η < 1, there are a positive constants c such that
the followings hold

1. |ψw(z)− ψw(z′)| ≤ c|z − z′|η for any z, z′ ∈ Ω̄,

2. ψw(z) ≤ −Gη(|z − w|) for any z ∈ Ω̄,

where G(δ) :=
(
g∗(γδ−1

)
)−1. Here, the superscript ∗ denotes the inverse function and γ > 0

sufficiently small.

Remark 5.3.3. We also note that if Ω is strongly pseudoconvex, we can choose η = 1.

Before giving the proof of Theorem 5.3.1, we need the following technique lemma

Lemma 5.3.4. Let ω(t) := g(t
− 1
η )−2. Then we have

1. ω is increasing function on (0, 1) and h(0) = 0.

2. For a suitable choice of η > 0, there is δ > 0 such that ω is concave upward on (0, δ).

3. The inequality
|ω(t)− ω(s)| ≤ ω(|t− s|)

holds for any t, s ∈ [0, δ).

4. For a constant c > 0, there is c′ > 0 such that ω(ct) ≤ c′ω(t).

Proof. Before going to proof the lemma, we give some calculations on function g. By the defini-

tion of g, i.e.,
1

g(t)
:=

∫ ∞
t

da

af(a)
<∞, we have

ġ(t)

g(t)
=

g(t)

tf(t)
. (5.3.1)
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and

g̈(t)

ġ(t)
=

2ġ(t)

g(t)
− 1

t
− ḟ(t)

f(t)
. (5.3.2)

Since
f(t)

t1/2
is decreasing on (1,+∞), we obtain

f(t)

g(t)
= f(t)

∫ ∞
t

da

af(a)
= f(t)

∫ ∞
t

a1/2

f(a)
· da
a3/2

≥ f(t)
tε

f(t)

∫ ∞
t

da

a3/2
= 2.

i.e.,
g(t)

f(t)
≤ 1

2 , and also
tḟ(t)

f(t)
≤ 1

2 . We notice that the equalities hold if and only if f(t) = c
√
t

for constant c > 0 (this holds if and only if Ω is strongly pseudoconvex), that means

g(t)

f(t)
+
tḟ(t)

f(t)
= 1.

Otherwise, if Ω is not strongly pseudoconvex, then

g(t)

f(t)
+
tḟ(t)

f(t)
< 1.

Now, we are ready for proving Lemma 5.3.4. We have ω̇(t) = 2
η t
− 1
η
−1
ġ(t
− 1
η )g−3(t

− 1
η ) ≥ 0

and

ω̈(t) =

(
2

η2
t
− 1
η
−2
ġ(t
− 1
η )g−3(t

− 1
η )

)[
−

(
η + 1 +

t
− 1
η g̈(t

− 1
η )

ġ(t
− 1
η )

− 3
t
− 1
η ġ(t

− 1
η )

g(t
− 1
η )

)]

=

(
2

η2
t
− 1
η
−2
ġ(t
− 1
η )g−3(t

− 1
η )

)[
−

(
η − t

− 1
η g(t

− 1
η )

f(t
− 1
η )

− t
− 1
η ḟ(t

− 1
η )

f(t
− 1
η )

)]
.

(5.3.3)

If Ω is strongly pseudoconvex, we can choose η = 1 such that the estimates in Theorem 5.3.2
hold. Otherwise there is a constant η < 1 such that the bracket term [. . . ] in the last line of
(5.3.3) is non-negative. Therefore, ω is concave upward.

Now we prove that |ω(t) − ω(s)| ≥ ω(|t − s|) for any t, s ∈ (0, δ). Assume t ≥ s, for a fixed
s ∈ [0, δ) we set k(t) := ω(t)−ω(s)−ω(t−s). Since ω is concave upward, k̇(t) = ω̇(t)−ω̇(t−s) ≥ 0.
That is k is increasing, so we obtain k(t) ≥ k(s) = 0. That is the proof of inequality.

For the inequality (4), we notice that if c ≤ 1 then ω(ct) ≤ ω(t) since ω is increasing.

Otherwise, if c > 1 we use the fact that
g(t)

t1/2
is decreasing (this is obtained from

tġ(t)

g(t)
=
g(t)

f(t)
≤

1

2
), we have

ω(ct) = (ct)1/2 ω(ct)

(ct)1/2
≤ (ct)1/2 ω(t)

(t)1/2
=

1√
c
ω(t).

This completes the proof of Lemma 5.3.4.
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Now, we will prove the aim of this section .

Proof of Theorem 2.1. Fix w ∈ bΩ, we define

ρw(z) = − 2

γ2
ω (−ψw(z)) + |z − w|2. (5.3.4)

We will show that the function ρw(z) satisfies the following properties

1. ρw(z) < 0, for z ∈ Ω, ρw(w) = 0,

2. ρw ∈ C2(Ω) and ∂∂̄ρw(L, L̄) ≥ |L|2 in distribution sense for z ∈ Ω, and L ∈ T 1,0
z Cn.

3. ρw is in g2-Hölder space in Ω̄.

Proof of (1). From (1) in Theorem 5.3.2 and ω increasing, we have

ω(−ψw(z)) ≥ ω(Gη(|z − w|))

=
(
g
(
G(|z − w|)−1

))2
=
(
g(g∗((γ|z − w|)−1))

)−2

= γ2|z − w|2.

(5.3.5)

Hence, we have

ρw(z) = − 2

γ2
g

(
(−ψw)

−1
η (z)

)−2

+ |z − w|2 ≤ −|z − w|2 < 0,

where w ∈ bΩ, and z ∈ Ω. Moreover, since ψw(w) = 0 and ω(0) = 0, that implies ρw(w) = 0 for
any w ∈ bΩ.

Proof of the assertation (2). Fix w ∈ bΩ, the Levi form of ω(−ψw) on Ω is following

i∂∂̄ω(−ψw)(X, X̄) =ω̇i∂∂̄ψw(X, X̄)− ω̈|Xψw|2 ≥ 0 (5.3.6)

Proof of (3). Lemma 5.3.4, we have∣∣ω(−ψw(z))− ω(−ψw(z′))
∣∣ ≤ω (|ψw(z)− ψw(z′)|

)
≤ω(c|z − z′|η)
≤c′ω(|z − z′|η) = g(|z − z′|−1)−2.

(5.3.7)

Finally, since Ω is bounded and g(t) . t
1
2 , we can show that

||z − w|2 − |z′ − w|2| . |z − z′| . g
(
|z − z′|−1

)−2
. (5.3.8)
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The last two inequalities verify that ρw(z) ∈ Λg
2
(Ω) for any w ∈ bΩ.

Now, we define
ρ(z) = sup

w∈bΩ
ρw(z).

The above properties of ρw imply that the function ρ is plurisubharmonic in Ω since the well-
known result by LeLong, and since g(0) = 0, and g : [0,∞] → [0,∞], then ρ is also g2-Hölder
continuous in Ω̄ due to the fact that, from theory of Modulus of continuity, the superior envelope
of these such functions belongs to the same space. Moreover in the distribution sense we have

∂∂̄ρ(L, L̄) ≥ |L|2.

�

5.4 Proof of the main theorem 5.2.4

Let Ω be a bounded open set in Cn, and P(Ω) denote the space of plurisubharmonic functions
on Ω. The following proof of Theorem 5.2.4 is adapted from the argument given by Bedford
and Taylor [BT76, Theorem 6.2] for weakly pseudoconvex domains. Based on the approach in
[BT76], we need the following proposition.

Proposition 5.4.1. Let Ω be bounded, pseudoconvex domain. Assume that there is a strictly
plurisubharmonic defining function ρ of Ω such that ρ ∈ Λg

2
(Ω̄). Let 0 < α ≤ 1, and φ ∈ Λt

α
(bΩ),

and let h ≥ 0 with h1/n ∈ Λg
α
(Ω). Then, for all ζ ∈ bΩ, there exists vζ ∈ Λg

α
(Ω) ∩ P(Ω) such

that

(i) vζ(z) ≤ φ(z) for all z ∈ bΩ, and vζ(ζ) = φ(ζ);

(ii) ‖vζ‖Λgα (Ω) ≤ C0;

(iii) det (H(vζ)(z)) ≥ h(z).

where C0 is a positive constant depending only on Ω and ||φ||Λtα (bΩ).

Proof. For each ζ ∈ bΩ, we may choose the family {vζ} by

vζ(z) = φ(ζ)−K[−2ρ(z) + |z − ζ|2]
α
2 , z ∈ Ω

where ρ is defined by Theorem 5.3.1, and K will be chosen step by step later.

It is easy to see that vζ(ζ) = φ(ζ). Moreover, with the choice K such that K ≥ cφ where

cφ = sup
z 6=ζ∈bΩ

|φ(z)− φ(ζ)|
|z − ζ|α

, we have

vζ(z) ≤ −K|z − ζ|α + φ(ζ) ≤ φ(z), for all z ∈ bΩ. (5.4.1)
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This proves (i).

For the proof of (ii), we have the following estimates

|vζ(z)− vζ(z′)| =
∣∣∣∣[−2ρ(z) + |z − ζ|2]

α
2 − [−2ρ(z′) + |z′ − ζ|2]

α
2

∣∣∣∣
≤
∣∣∣∣− 2ρ(z) + |z − ζ|2 + 2ρ(z′)− |z′ − ζ|2

∣∣∣∣α2
≤
[
2|ρ(z)− ρ(z′)|+ ||z − ζ|2 − |z′ − ζ|2|

]α
2

.

. g−α(|z − z′|−1).

(5.4.2)

Here, the first inequality follows by the fact that |t
α
2 − s

α
2 | ≤ |t− s|

α
2 for all t, s small and α ≤ 1;

the last inequality follows by Theorem 5.3.1 and (5.3.8). This implies vζ ∈ Λg
α
(Ω) for all ζ ∈ bΩ.

Moreover ‖vζ‖Λgα (Ω) is independent on ζ.

To prove (iii), we compute (vζ)ij on Ω

(vζ(z))ij =K
α

2
(−2ρ(z) + |z − ζ|2)

α
2
−2

[
(−2ρ(z) + |z − ζ|2)(2ρ(z)ij − δij)

+
(
1− α

2
)(−2ρi + z̄i − ζ̄i)(−2ρj + z̄j − ζ̄j)

)]
.

(5.4.3)

Hence

i∂∂̄vζ(X,X) ≥ Kα

2
(−2ρ(z)+|z−ζ|2)

α
2
−1(2i∂∂̄ρ(X,X)−|X|2) ≥ Kα

2
(−2ρ(z)+|z−ζ|2)

α
2
−1|X|2.

for any X ∈ T 1,0Cn. Here the last inequality follows from Theorem 5.3.1(2).Thus vζ is plurisub-
harmonic and furthermore we obtain

det[(vζ)ij ](z) ≥
[
K
α

2
(−2ρ(z) + |z − ζ|2)

(
α
2
−1
)]n

. (5.4.4)

Now, let’s choose

K ≥ max

{
2

α
max

z∈Ω,ζ∈bΩ
(−2ρ(z) + |z − ζ|2)1−α

2 ‖h1/n‖L∞(Ω), cφ

}
.

Then
det[(vζ)ij ](z) ≥ ‖h1/n‖nL∞(Ω) ≥ (h1/n(z))n = h(z), (5.4.5)

for all z ∈ Ω, and ζ ∈ bΩ. This completes the proof of Propoition 5.4.1.
�

Before to give a proof of Theorem 5.2.4, we re-call the existence theorem for the problem
(5.0.1) by Bedford and Taylor [BT76, Theorem 8.3, page 42].
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Theorem 5.4.2 (Bedford-Taylor [BT76]). Let Ω be a bounded open set in Cn. Let φ ∈ C(∂Ω)
and 0 ≤ h ∈ C(Ω). If the Perron Bremermman family

B(φ, h) :=

{
v ∈ P(Ω) ∩ C(Ω) : det [(v)ij ] ≥ h and lim sup

z→z0
v(z) ≤ φ(z0), for all z0 ∈ bΩ

}
.

is empty, and its upper envelope

u = sup{v : v ∈ B(φ, h)} (5.4.6)

is continuous on Ω̄ with u = φ on ∂Ω, then u is a solution to the Dirichlet problem (5.0.1).

Proof of Theorem 5.2.4. First, we see that the set B(φ, h) is non-empty, in particular, it
contains the family of {vζ}ζ∈bΩ in Proposition 5.4.1. The proof of this theorem will be completed
if the upper envelope defined in (5.4.6) has the properties

1. u(ζ) = φ(ζ) for all ζ ∈ ∂Ω;

2. u ∈ Λg
α
(Ω̄).

We note that the uniqueness of solution follows from the Minimum Principle.

Now, we define another upper envelope, for each z ∈ Ω,

v(z) := sup
ζ∈bΩ
{vζ(z)}.

Since the first property of {vζ} in Proposition 5.4.1, we have

v(ζ) ≥ vζ(ζ) = φ(ζ) for all ζ ∈ bΩ,
v(z) ≤ φ(z) for all z ∈ bΩ.

(5.4.7)

and so v = φ on bΩ.
Then, from the second property in Proposition 5.4.1

|vζ(z)− vζ(z′)| ≤ C0(gα(|z − z′|−1))−1 for all z, z′ ∈ Ω̄.

notice that C0 is independent on ζ so taking the supremum in ζ, theory Modulus of continuity
again implies that

|v(z)− v(z′)| ≤ C0(gα(|z − z′|−1))−1 for all z, z′ ∈ Ω̄.

By Proposition 2.8 in [BT76], the following inequality holds

det[(v)ij ](z) ≥ inf
ζ∈bΩ
{det[(vζ)ij ](z)} ≥ h(z), for all z ∈ Ω.
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Thus, we conclude that v ∈ B(φ, h) ∩ Λg
α
(Ω) and v(ζ) = φ(ζ) for any ζ ∈ ∂Ω.

By a similar construction there exists a plurisuperharmonic function w ∈ Λg
α
(Ω̄) such that

w(ζ) = φ(ζ) for any ζ ∈ ∂Ω. Thus, v(z) ≤ u(z) ≤ w(z) for any z ∈ Ω̄, and hence u(ζ) = φ(ζ)
for any ζ ∈ ∂Ω. We also obtain

|u(z)− u(ζ)| ≤ max{‖v‖Λgα (Ω̄), ‖v‖Λgα (Ω̄)}(gα(|z − ζ|−1)−1 for any z ∈ Ω̄, ζ ∈ ∂Ω. (5.4.8)

Here, the inequality follows by w, v ∈ Λg
α
(Ω̄) and v(ζ) = u(ζ) = w(ζ) = φ(ζ) for any ζ ∈ ∂Ω.

Finally, we want to show that (5.4.8) also holds for ζ ∈ Ω. For any small vector τ ∈ Cn, we
define

V (z, τ) =

{
u(z) if z + τ /∈ Ω, z ∈ Ω,
max{u(z), Vτ (z)}, if z, z + τ ∈ Ω

where

Vτ (z) = u(z + τ) +
(
K1|z|2 −K2 −K3

)
g−α(|τ |−1)

and here

K1 ≥ max
k∈{1,...,n}

(
n

k

)1/k

‖h
1
n ‖Λgα (Ω), K2 ≥ K1|z|2, and K3 ≥ max{‖v‖Λgα (Ω̄), ‖w‖Λgα (Ω̄)}.

We will show that V (z, τ) ∈ B(φ, h). Observe that V (z, τ) ∈ P(Ω) for all z, τ . Moreover, for
z ∈ ∂Ω, z + τ ∈ Ω, we have

Vτ (z)− u(z) =u(z + τ)− u(z) +
(
K1|z|2 −K2 −K3

)
g−α(|τ |−1)

≤max{‖v‖Λgα (Ω̄), ‖v‖Λgα (Ω̄)}g−α(|τ |−1) +
(
K1|z|2 −K2 −K3

)
g−α(|τ |−1)

≤0.

(5.4.9)

Here the first inequality follows by (5.4.8) and the second follows by the choices of K2 and K3.
This implies that lim supz→ζ V (z, τ) ≤ φ(ζ) for all ζ ∈ ∂Ω. For the proof of det[V (z, τ)ij ] ≥ h(z),
we need the following lemma.

Lemma 5.4.3. Let (αij) ≥ 0 and β ∈ (0,+∞). Then

det[αij + βI] ≥
n∑
k=0

βk det(αij)
(n−k)/n
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Proof of Lemma 5.4.3. Let 0 ≤ λ1 ≤ · · · , λn be the eigenvalue of (αij). We have

det[αij + β] =

n∏
j=1

(λj + β)

≥
n∑
k=0

βk n∏
j=k+1

λj


≥

n∑
k=0

(
βk det[αij ]

(n−k)/n
)
.

(5.4.10)

Here the last inequality follows by

det[αij ] =

n∏
j=1

λj ≤

 n∏
j=k+1

λj

n/(n−k)

.

�
Continuing the proof of Theorem 5.2.4, for any z, z + τ ∈ Ω we have

det[(Vτ (z))ij ] = det[uij(z + τ) +K1g
−α(|τ |−1)I]

≥ det[uij(z + τ)] +
n∑
k=1

Kk
1 [gα(|τ |−1)]−k.det[uij(z + τ)]

n−k
n

≥ h(z + τ) +
n∑
k=1

Kk
1 [gα(|τ |−1)]−k.(h(z + τ))

n−k
n .

(5.4.11)

where the first inequality follows by Lemma 5.4.3. Since h
1
n ∈ Λg

α
(Ω), we obtain

h
1
n (z)− h

1
n (z + τ) ≤ g−α(|τ |−1)‖h

1
n ‖Λgα , for any z, z + τ ∈ Ω,

and hence

h(z) ≤ h(z + τ) +
n∑
k=1

(
n

k

)
h(z + τ)(n−k)/n

(
g−α(|τ |−1)‖h

1
n ‖Λgα

)k
(5.4.12)

Combining (5.4.11), (5.4.12) with the choice of K1, we get

det[(Vτ )ij ](z) ≥ h(z), for any z, z + τ ∈ Ω.

We conclude that V (z, τ) ∈ B(φ, h). It follows that for all z ∈ Ω, V (z, τ) ≤ u(z). If z + τ ∈ Ω,
this yields

u(z + τ)− u(z) ≤V (τ, z)−
(
K1|z|2 −K2 −K3

)
g−α(|τ |−1)− u(z)

≤
(
−K1|z|2 +K2 +K3

)
g−α(|τ |−1)

≤ (K2 +K3) g−α(|τ |−1)

(5.4.13)

By reversing the role of z and z + τ , we assert that u ∈ Λg
α
(Ω). This completes the proof. �
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5.5 A special domain

In this section, we will give an example to show why the above estimates cannot be improved.
For domains satisfied t

1
m -Property, the exmaple in [Li04] supports our claim. As a next step, we

consider the problem on the following complex ellipsoid of exponential type in C2

E =

{
(z1, z2) ∈ C2 : ρ(z1, z2) = exp

(
1− 1

|z1|α

)
+ |z2|2 < 1

}
, (5.5.1)

with 0 < α ≤ 1/2.
In [Li04], the author also considered the complex Monge-Ampère equation on this domain. The
unique solution stills be continuous, but it can not belong to any classical Hölder space. Here, we
will give a new view point for this example, in particular, the solution should be in some weak
Hölder spaces. The exponeniall complex ellipsoid E satisfies f -Property, with f(δ) := (1+log δ)

1
α

([Kha10, KZ12]).

We consider the following complex Monge-Ampère equation on E:{
(ddcu)2 = 0 T on E

u = φ T on bE,
(5.5.2)

where
φ(z) = |z1|2α ∈ Λt

α
(bE).

We can easily check that u is the unique solution of (5.5.2) on E.

u(z) = (F ∗(1− |z2|2))α, z ∈ E,

where F ∗(δ) = (1− log δ)−
1
α . We want to prove that u(z) ∈ Λg

α
(E), where g defined in the main

theorem, and

g(δ) =

(
1

α
− 1

)
(1 + log δ)

1
α
−1.

Now, let F̃ (z) = (F ∗(1− |z|2))α, then since F ∗ is increasing and also concave

|F̃ (z)− F̃ (z′)| ≤
(
F ∗
(
||z|2 − |z′|2|

))α
≤
(
F ∗
(
|z − z′||z + z′|

))α
. f(|z − z′|−1)−α

. g(|z − z′|−1)−α

(5.5.3)

where the third inequality follows from the fact that F ∗
(
δ

t

)
≤ F ∗(δ)

t
again. Therefore, this

implies the first assertation, u(z) ∈ Λg
α
(E).

�
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Remark 5.5.1. This example again says that no matter how smooth is the boundary data φ,
even φ ∈ C∞(Ω), and that no matter how smooth is h1/n on Ω, the unique plurisubharmonic
solution u may not belong to Λg(Ω), for any such g and f as the above example. However, as the
mention in the introduction, in [CKNS85], the authors provided the hypoelliptcity for complex
Monge-Ampère operator, although this case is actually of F -type, with F (t) = t2. The factor is
that the non-vanishing right hand side and the constant boundary data play a critical role in
their consideration. Hence, elliptic regularity theory was applied successfully. In our case, the
singularity is vanishing of the right hand side at some points. Naturally, the question is that if
we could improve the result in [CKNS85] when the right hand side has only one zeros and this
zeros is of finite order. For instance, we consider

CMA(u) := det

(
∂2u

∂zj∂zk

)
= h,

where h ≈ |z|2m, with m > 1. Clearly, 0 is the unique singularity of finite order 2m in the sense
[CKNS85]. Let h is belongs to Sobolev space Hs(Ω), the open question is that if the solution
u ∈ Hr, for some r = r(s,m).
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Appendix A

Functional Analysis

A.1 Spectral Theorem ( continuous functional calculus)

Theorem A.1.1. Let A be a bounded, self-adjoint operator on a Hilbert space H. Let σ(A)
denote the spectrum of A. Then, there exists a unique map Φ : B(σ(A))→ L(H) such that

1. Φ is an algebra homomorphism, that is Φ(fg) = Φ(f)Φ(g), and

Φ(1) = I; Φ(λf + g) = λΦ(f) + Φ(g); Φ(f̄) = Φ(f)∗.

2. Φ is continuous.

3. If f(x) = x, then Φ(f) = A.

Since (�bφ, φ)L2
0,q(M) ≥ 0, for any φ ∈ L2

0,q(M), and whenever the a priori estimate 1.4.3

holds, σ(�b) ⊂ [0,∞). Therefore, there exists a unique algebra homomorphism Φ : B([0,∞))→
L(L2

0,q(M)) is continuous. The corresponding bounded,linear operator for es := e−sx is denoted

by e−s�b . Notice that d
ds

(
− e−sx

)
= xe−sx, so

d

ds

(
− e−s�b

)
= �b

[
e−s�b

]
.

A.2 Distributions in Product spaces

Definition A.2.1. Let Ω1, Ω2 contained in M . and let u1 ∈ C(Ω1), u2 ∈ C(Ω2), then the
function u1 ⊗ u2 in Ω1 × Ω2 ⊂M ×M is defined by

(u1 ⊗ u2)(x1, x2) = u1(x1)u2(x2),

for x1 ∈ Ω1, x2 ∈ Ω2, is called the tensor product of u1 and u2
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Theorem A.2.2. If uj ∈ D′(Ωj), j = 1, 2, then there is a unique distribution u ∈ D′(Ω1 × Ω2)
such tha

u(φ1 ⊗ φ2) = u1(φ1)u2(φ2), φj ∈ C∞0 (Ωj).

Also, we have

u(φ) = u1[u2(x1, x2))] = u2[u1(x1, x2))], φ ∈ C∞0 (Ω1 × Ω2),

where uj acts on the following function as a function of xj only.

Theorem A.2.3. (The Schwartz Kernel Theorem) Every K ∈ D′(Ω1×Ω2) defines a linear map
K from C∞0 (Ω2) to D′(Ω1) by

< Kφ, ψ >= K(φ⊗ ψ), φ ∈ C∞0 (Ω2), ψ ∈ C∞0 (Ω1),

which is continous in the sense that φj → 0 in D′(Ω1) if φj → 0 in C∞0 (Ω2).
Conversely, to every such linear map K, there is a unique distrbution K such that

< Kφ, ψ >= K(φ⊗ ψ), φ ∈ C∞0 (Ω2), ψ ∈ C∞0 (Ω1).

A.3 Interpolation Theorem

Definition A.3.1. Let (X,µ) and (Y, ν) be two measure spaces and let T be a linear operator
from a linear subspace of measurable functions on (X,µ) into measurable functions defined on
(Y, ν). T is called an operator of type (p, q) if there exists a constant M > 0 such that

||Tf ||Lq(Y ) ≤M.||f ||Lp(X) (A.3.1)

for all f ∈ Lp(X). The least M is called the (p, q)-norm of T .

Theorem A.3.2. (Marcinkiewicz) Let (X,µ) and (Y, ν) be two measure spaces and let T be
a linear operator from a linear subspace of measurable functions on (X,µ) into measurable
functions defined on (Y, ν). Let p0, p1, q0, q1 be numbers such that 1 ≤ pi, qi ≤ ∞ for i = 0, 1.
Then, if T is of type (pi, qi) with (pi, qi)-norm Mi, i = 0, 1, then T is of type (p, q) and

||Tf ||Lqt (Y ) ≤M1−t
0 .M t

1.||f ||Lpt (X). (A.3.2)

provided
1

pt
=

1− t
p0

+
t

p1
and

1

qt
=

1− t
q0

+
t

q1
,

with 0 < t < 1.
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Appendix B

On the globally analytic
hypoellipticity for �b-operator on
compact CR manifolds

In this appendix, we will discuss the global analytic regularity of the �b operator on a general
CR manifold of real (2n − 1) dimension, with n ≥ 3. In particular, if M is a CR-manifold
satisfying the conditions Dε

q and (CR− Pq), we consider the following equation

�bv = f.

If f is globally analytic, we conclude that v is globally analytic as well. The methods applied in
this paper are inspired from [Ta76], [Ta81].

B.0.1 Analytic Class and Some Geometrical Conditions

First, we recall the standard definition of analytic class.

Definition B.0.3. A smooth function f belongs to the analytic class A(M) at x0 provided
there exists a neighborhood U ⊂ M of x0 and constant Cf such that for all multi-indices
α = (α1, ..., α2n−1)

|Dα
xf(x)| ≤ C |α|+1

f (|α|)!,

for any x ∈ U , where the derivative symbol Dα
x =

(
X1

)α1

x
...
(
X2n−2

)α2n−2

x
T
α2n−1
x .

The following proposition is necessary

Proposition B.0.4. The space A(M) is a vector space and a ring, with respect to the arithmetic
product of functions. Moreover it is also closed under differentiation.

The natural definition of analytic class of (0, q)-forms is: a (0, q)-forms f =
∑
|I|=q fJωI

belongs to the analytic class Aq(M) if its each coefficient is in A(M).
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In order to state our results, we need some critical geometrical conditions on M . The first
one is the Dε(q) condition defined in Chapter 1. Note that the Y (q) condition, i.e., 0 < σq < τ ,
for all possible σq, implies the Dε(q) condition.

Definition B.0.5. Seting correspondingly 0 ≤ s+(x), s−(x), s0(x) ≤ n − 1 the number of
positive, negative and zero eigenvalues of the Levi form at the point x ∈ M , we assume
that s0(x) = s0 be a constant, uniformly in x. That means the Levi form has constant rank
s+(x) + s−(x) = n− s0 − 1, for all x ∈M .

Proposition B.0.6. If the Dε(q) condition holds and the Levi matrix (cij) has constant rank
n− q, the Y (q) condition holds as well.

Proof. It is easily to derive that τ ≥ 0. Now, if τ > 0, we are done. Otherwise, we can see that
σq = 0 for all possible one, since Dε(q) holds. Now, the constant rank n− q means that the Levi
matrix has (q − 1) zero-eigenvalues, all the rest are non-zeros. This implies that there is some
σq different from zero, and we have a contradiction. Therefore, the Y (q) condition holds.

Next, we will introduce a ”good” vector field T ′ playing a critical role in our computing.
on some open subset of M such that the Lie brackets of T ′ with L1, ..., Ln−1, L1, ..., Ln−1 are
independent on T .

”Good”-(T) Condition. Suppose that T is real analytic, nowhere zero. M is called to
satisfy the good−T condition if there exist a finite sequence of a1, ..., an−1, b1, ..., bn−1 such that
the following vector field

T ′ = T +

n−1∑
j=1

ajLj +

n−1∑
j=1

bjLj (B.0.1)

has the same properties as T and

[T ′,L] = 0 mod (L1, ..., Ln−1, L1, ..., Ln−1),

for all L ∈ span{L1, ..., Ln−1}.
For example, when the Levi matrix is invertible, the sequence of a1, ..., an−1, b1, ..., bn−1 is deter-
mined from the coefficients of T in the commutator [T, Lk] and [T, Lk], for k = 1, ..., n− 1.
In the local frame, we can identify the operator �b with

�b =

n−1∑
j,k=1

ajkLjLk +

n−1∑
j,k=1

a′j,kLjLk +

n−1∑
j=1

bjLj +

n−1∑
j=1

b′jLj + a (B.0.2)

The next condition was introduced in [KPZ12]. Let φ be a smooth function, denote by (φij) the

matrix of the Levi form Lφ = 1
2

(
∂̄∂̄b − ∂̄b∂̄

)
(φ), and by λφ1 ≤ ... ≤ λ

φ
n−1 the ordered eigenvalues

of Lφ.
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Definition B.0.7. Let x0 be a point of M and q an index in the range 1 ≤ q ≤ n− 1. We say
that M satisfies property (CR − Pq) at x0 if there exists a family of smooth weights {φε} in a
neighborhood U of x0 such that

|φε(x)| ≤ 1, x ∈ U,∑q
k=1 λ

φε

jk
(x) ≥ ε−1, z ∈ U and Ker(Levi form at x) 6= 0. jk ∈ {1, ..., n− 1}.

It is obvious that (CR− Pq) implies (CR− Pk) for any k ≥ q.

Lemma B.0.8. Let M be a compact CR manifold of dimension 2n − 1, with n ≥ 3. Assume
that (CR− Pq) and Dε(q) hold for a fixed q with 1 ≤ q ≤ n−1

2 over a covering {U} of M . Then
we have the following full compactness estimates: given K > 0, there is C,CK such that

∑′

|J |=q

n−1∑
j=1

(
||LjuJ ||2L2(M) + ||LjuJ ||2L2(M)

)
+K.||u||2L2 ≤ C.Q(u, u) + CK ||u||2H−1 , (B.0.3)

for any (0, k)-form u ∈ Dom(�b) and q ≤ k ≤ n− 1− q.

Proof. Let x0 ∈ M , for a suitable neighborhood U of x0, using the modified Kohn-Morrey-
Hörmander Estimate in [KPZ12] combined with Kohn’s microlocalization as above, we have

||∂̄bu||2L2(M) + ||∂̄∗bu||2L2(M) & ||Lu||
2
L2(M) +

∑
|K|=q−1

n−1∑
i,j=1

(
cijuiK , ujK

)
+O

(
||Lu||.||u||+ ||u||2

)
,

(B.0.4)

for any u ∈ Λ0,q(C∞0 (M)). Now, as a consequence, with the sufficiently small ε > 0. Dε(q)
implies that any sum of distinct q values among λ1, ..., λn−1 is non-negative, i.e,

∑q
k=1 λjk ≥ 0,

for λjk ∈ {λ1, ..., λn−1}. This property is called weak q-convexity (see [Ho91]). By a unitary
change of coordinates, we can assume that the Levi matrix (cij)

n−1
i,j=1 is diagonal. Hence, from

these observations, the following inequality follows:

∑
|K|=q−1

n−1∑
i,j=1

(
cijuiK , ujK

)
≥ 0, (B.0.5)

for any (0, q)-form u. This means

||∂̄bu||2L2(M) + ||∂̄∗bu||2L2(M) & ||Lu||
2
L2(M) +O

(
||Lu||.||u||+ ||u||2

)
, (B.0.6)

for any u =
∑
|I|=q uIωI . Furthermore, following the setup by Ho [Ho91], the estimate (B.0.6)

is also true for any u =
∑
|I|=k uIωI , with n− 1 ≥ k ≥ q.
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Next, arguments in [Appendix, [Koe02]] (also hold for the considering T ′ instead of T ) apply to
show that

||∂̄bu||2L2(M) + ||∂̄∗bu||2L2(M) & ||Lu||
2
L2(M) + ||Lu||2L2(M) +O

(
||Lu||.||u||+ ||u||2

)
, (B.0.7)

and we know that if Dε(q) condition holds, then Dε(k) does also, with the range q ≤ k ≤ n−1−q.
Therefore, again, the estimate (B.0.7) is true for any (0, k)-forms, with q ≤ k ≤ n− 1− q.
Finally, applying the above inequality (B.0.5) to the proof of the main result in [KPZ12], the
same compactness estimate holds, and then we have the full estimate (B.0.3) as desired.

We also have the closed range property when M satisfies the conditions of (CR − Pq) and
Dε(q).

Corollary B.0.9. Let M be a compact CR manifold of dimension 2n− 1, with n ≥ 3. Assume
that (CR − Pq) and Dε(q) hold for a fixed q with 1 ≤ q ≤ n−1

2 over a covering {Uj} of M .
Then the hypothesis of closed-range for the operator ∂̄b holds in the spaces L2

0,k(M), where
q ≤ k ≤ n− 1− q.

Proof. We want to show that

||u||L2
0,k(M) ≤ C||∂̄bu||L2

0,k(M), (B.0.8)

for all (0, k)-form u ∈ Dom(∂̄b) ∩Ker(∂̄b)⊥, where q ≤ k ≤ n− 1− q.
If (B.0.8) does not hold, we can find a sequence of (0, k)-forms {uj} ⊂ Dom(∂̄b) ∩ Ker(∂̄b)⊥,
||uj ||L2 = 1 such that

||uj ||L2
0,k(M) > j||∂̄buj ||L2

0,k(M), (B.0.9)

this implies
lim
j→∞

||∂̄buj ||L2
0,k(M) = 0.

Now, take a subsequential L2-weak limit u0 of {ujl} ⊂ {uj}, this limit belongs to Ker(∂̄b) ∩
Ker(∂̄b)

⊥, so u0 = 0 and ||u0||2H−1 = 0. Finally, to get contradiction, take the limit in the fully
compactness estimate with ujl , and notice that limj→∞ ||uj ||L2 = 1 as it’s definition.

In fact that, the assertion of closed range for ∂̄b operator can be proved if we assume only
(CR − Pq) and weak q-convexity (see in [Ho91]). But, here we need more than closed range
property.

Now, we can state the main theorem.

Theorem B.0.10. Let M be a compact CR-manifold of dimension 2n − 1 (n ≥ 3) satisfying
(CR−Pq) and Dε(q) condition, and that is also analytic. Assume that the good− (T ) condition
holds and the vector fields {L1, ..., Ln−1, L1, ..., Ln−1, T} also belong to the analytic class. Then
if u is in Λ0,q′(C∞0 M)), q ≤ q′ ≤ n− 1− q, and

�bu = f,

with f ∈ Aq′(M) , then u belongs to the analytic class Aq′(M).
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Before proving the theorem, we will introduce a ”suitable” partition of unity globally defined
on M . This family exists by using localizing functions due to Ehrenpreis (1960).

Definition B.0.11. A family of functions {ψj}j=1,2...,N in C∞0 (M) such that
∑

j=1 ψj = 1 on
M is said to be an analytically localizing family provided there exists a constant C independent
of j such that

|ψ(k)
j (x)| ≤ Ck+1jk,

for k ≤ 3j.

B.1 Proof of the Theorem B.0.10

Proof. We follow the approach by Tartakoff [Ta76]..
We have to show that, for any multi-indexes α = (α1, ..., α2n−1) and k ≥ 0, there is a constant
Cu depending on u such that

|Dα
xu(x)| ≤ C |α|+1

u |α|!. (B.1.1)

Equivalently, we must prove that there exists an constant Cu (of course, it is different from the
previous one), such that for all a = |α|, (see Proposition 1.4.2, [Ro93])

|Op(a)u(x)| ≤ Ca+1
u a!, (B.1.2)

where Op(a) is any a-th order differential operator formed by a successive applications of the
Lj ’s, Lj ’s, and T acting in x-variables.
The key point in our proof is that for every K > 0, there is a constant CK > 0 such that

2n−2∑
j=1

||
(
Xj

)
x
u||2L2

0,q(M) +K.||u||2

≤ C0

∣∣〈�bu, u〉L2
0,q(M)

∣∣+ CK .||u||2H−1
0,q (M)

.

(B.1.3)

By Sobolev’s Lemma, it is sufficient to provide that for given ω1 ⊂⊂ ω2 ⊂⊂ (0,∞) ×M , and
ψ ∈ C∞0 (ω2), ψ = 1 on ω1, the following holds

||ψOp(a)u||L2 ≤ Ca+1
u (a!). (B.1.4)

We also denote by Op(l, a) any Op(a) with exactly l terms of Lj or Lj (without T -direction).
We have

Op(l, a) = WOp(k − 1, a− 1) modulo operators of the form Op(l, a− j), j ≥ 1,

where W ∈ {L1, ..., Ln−1, L1, ..., Ln−1}. Since T is the weakest of the tangential vector fields in
the estimate, we will begin with terms of pure powers of T , i.e, ψT pu. From the good − (T )
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condition, it is suffices to proceed on the T ′-direction.
Now, from (B.1.3), we obtain that

I2
p,ψ :=

n−1∑
j=1

||WjψT
′pu||2L2

0,q(M) +K.||ψT ′pu||2

≤ C0

∣∣〈�bψT ′pu, ψT ′pu〉L2
0,q(M)

∣∣+ CK .||ψT ′pu||2H−1
0,q (M)

≤ C0

∣∣〈ψT ′p�bu, ψT ′pu〉L2
0,q(M)

∣∣+ CK .||ψT ′pu||2H−1
0,q (M)

+ C0

∣∣〈ψ[�b, ψ]T ′pu, T ′pu〉L2
0,q(M)

∣∣+ C0

∣∣〈[�b, T ′p]u, ψ2T ′pu
〉
L2

0,q(M)

∣∣.
(B.1.5)

The first term in the right-hand side of (B.1.5) is bounded from above by Cε||ψT ′pf ||2L2
0,q(M)

+

ε||ψT ′pu||2
L2

0,q(M)
, for sufficiently small ε > 0. The term ε||ψT ′pu||2

L2
0,q(M)

can be absorbed in the

left-hand side of B.1.5.
Now, the third term in the right-hand side of (B.1.5) is following∣∣Re〈ψ[�b, ψ]T ′pu, T ′pu〉L2

0,q(M)

∣∣ ≤ ∣∣〈[ψ, [�b, ψ]]T ′pu, T ′pu〉L2
0,q(M)

∣∣
≤ C.||ψ′T ′pu||2L2

0,q(M).
(B.1.6)

The appearance of ψ′ is the reason that our problem must be global, not local. So, we have
to assume that T , and then T ′p, is globally defined.
Now, the last term in the right-hand side of (B.1.5) is more complicated. We will need an
expression for the more complicated bracket

[
�b, T

′p] =

p−1∑
p′=0

T ′p
′[
�b, T

′]T ′p−p′−1.

By Property (B.0.1) and (B.0.2), we have[
�b, T

′] =
∑
j,k

((T )(A− coef.)j,k)WjWk +
∑
j

(A− coef.)jWj + (A− coef.),

where the term (T ′)(A − coef.)j,k) denotes (at most) of first derivative in x-variables of (A −
coef.)j,k).
Hence, [

�b, T
′p] =

p∑
p′=1

(
p′

p

)∑
j,k

T ′p
′
(A− coef.)j,k))WjWkT

′p−p′ + ...

where ”...” are the similar terms with lower order of W and no more T ′, and the underlining of(
p−1
p′

)
means for each p′, there are possibly

(
p
p′

)
terms of the indicated form.
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Now, for example, we will concentrate the terms of highest power of T ′, i.e , p.aW1W2T
′p−1,

applying a weighted Schwartz inequality to these terms, we obtain

∣∣〈p.aW1W2T
′p−1, ψ2T ′pu

〉∣∣ ≤ p2Cε||WψT ′p−1u||2L2
0,q(M) + ε||WψT ′pu||2L2

0,q(M), (B.1.7)

Again, the term ε||WψT ′pu||2
L2

0,q(M)
is absorbed in the left-hand side of (B.1.3). More generally,

we have

∣∣〈[�b, T ′p]u, ψ2T ′pu
〉
L2

0,q(M)

∣∣ ≤ C̃ε p∑
p′=1

((
p

p′

)
RcoefR

p′

coef (p′!)||WψT ′p−p
′
u||L2

0,q(M)

)2

+ ε-terms of ||WψT ′pu||2L2
0,q(M)︸ ︷︷ ︸

absorbed again

.
(B.1.8)

Iterating the principle terms, we get lower order terms

∣∣〈[�b, T ′p]u, ψ2T ′pu
〉 1

2

L2
0,q(M)

∣∣ ≤ C̃ p∑
p′=1

(
p

p′

)
RcoefR

p′

coef (p′!)

{〈
ψT ′p−p

′
f, ψT ′p−p

′
u
〉 1

2

L2 + ||ψ′T ′p−p′u||L2

+ C ′K ||ψT ′p−p
′
u||H−1 +

p−p′∑
k=1

(
p− p′

k

)
RcoefR

k
coef (k!)||WψT ′p−p

′−ku||L2

}
.

(B.1.9)

Now, we need to estimate the terms making the global regularity, ||ψ′T ′p−p′u||L2 , for p′ = 1, ..., p.
To do this, by assuming T ′ globally defined, we recall the family of standard partition of unity
{ψj} ∈ C∞0 (M),

∑N
j=1 ψj = 1 on M . We can assume that 0 ≤ ψj ≤ 1, j = 1, ..., N , then

||ψ′T ′p−p′u||L2 ≤
N∑
j=1

||ψ′ψjT ′p−p
′
u||L2 ≤ sup

j=1,...,N
|ψ′j |︸ ︷︷ ︸

Cψ

N∑
j=1

||ψjT ′p−p
′
u||L2 . (B.1.10)
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Hence, the compactness estimate for T ′pu can be rewritten as follows

I2
p,ψ =

N∑
i=1

{ n−1∑
j=1

||WjψiT
′pu||L2

0,q(M) +K.||ψiT ′pu||L2

}

≤ C.
N∑
i=1

||ψiT ′pf ||L2 + CK

N∑
i=1

||ψiT ′pu||H−1

+ C̃ ′ψ

N∑
i=1

{ p∑
p′=1

(
p

p′

)
RcoefR

p′

coef (p′!)

{〈
ψiT

′p−p′f, ψiT
′p−p′u

〉 1
2

L2 + ||ψiT ′p−p
′
u||L2

+

p−p′∑
k=1

(
p− p′

k

)
RcoefR

k
coef (k!)||WψiT

′p−p′−ku||L2

}}
+ C ′K

N∑
i=1

||ψiT ′p−p
′
u||H−1 .

≤ C.
N∑
i=1

||ψiT ′pf ||L2 + CK

N∑
i=1

||ψiT ′pu||H−1

+ C̃ ′ψ

N∑
i=1

{ p∑
p′=1

(
p

p′

)
RcoefR

p′

coef (p′!)

{
||ψiT ′p−p

′
f ||L2 + ||ψiT ′p−p

′
u||L2

+

p−p′∑
k=1

(
p− p′

k

)
RcoefR

k
coef (k!)||WψiT

′p−p′−ku||L2

}}

+ C ′K

N∑
i=1

p∑
p′=1

(
p

p′

)
RcoefR

p′

coef (p′!)||ψiT ′p−p
′
u||H−1 .

(B.1.11)

where the new constants in the above estimates are independent of u and p, and K is sufficiently
large.
On the other hand,

CK .||ψjT ′pu||2H−1
0,q (M)

≤ CK .||T ′ψjT ′p−1u||2
H−1

0,q (M)
+ CK .||[T ′, ψj ]T ′p−1u||2

H−1
0,q (M)

≤ CK,ψ.
N∑
i=1

||ψiT ′p−1u||2L2
0,q(M) ≤ CK,ψI

2
p−1,ψ.

Now, we can see that, the order of direction T in the right hand side is less than p, only the
data term of f is not. Therefore, in all, from (B.1.5), with new constant independent of u and p

I2
p,ψ ≤ C.RfR

p
f (p!) + Cψ

p∑
p′=1

p−p′∑
k=0

R2
coefR

p′+k
coef

(
p

p′

)(
p− p′

k

)
(p′!)(k!)Ip−p′−k,ψ. (B.1.12)

Now, when p = 0, we can see that I0 ≤ Ru, so by induction in 0 ≤ q < p,

Iq ≤ CuCqu(q!),
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we have

I2
p,ψ ≤ C.RfR

p
f (p!) + Cψ

p∑
p′=1

p−p′∑
k=0

R2
coefR

p′+k
coef

(
p

p′

)(
p− p′

k

)
(p′!)(k!)CuC

p−p′−k
u ((p− p′ − k)!).

(B.1.13)
Choosing Cu is large enough, we obtain

||ψT ′pu|| ≤ CuCpu(p!). (B.1.14)

And hence, the main estimate (B.1.14) in our approach is true for T -derivative.
By this estimate, we will analyze the term of full-order Op(l, p) with l ≥ 1. We know that

ψOp(l, p) = WψOp(l − 1, p− 1)

modulo operators of the forms ψOp(l, p − j)u, j = 1, 2, ..., which have the lower order of T ′

direction. Hence, principally, we must consider the term WψOp(l− 1, p− 1). This is dominated
by

||ψOp(l − 1, p− 1)f ||2L2 + ||ψ′Op(l − 1, p− 1)u||2L2

+ |
〈
[�b,Op(l − 1, p− 1)]u, ψ2Op(l − 1, p− 1)u

〉
L2 |.

(B.1.15)

The most important term is the last one, and as before, we obtain

|
〈
[�b,Op(l − 1, p− 1)]u, ψ2Op(l − 1, p− 1)u|L2

≤ Cε
p∑

p′=1

((
p

p′

)
||ψOp(l, p− p′)u||L2

)2

+ ε -terms of the form ||ψOp(l, p)u||2L2 ,

(B.1.16)

again, the terms with ε is absorbed in the left, and the terms with large constant are bounded
by induction hypothesis.
Up to all, modulo with the term of f and less harmful terms (the terms with lower power can
be estimated by induction), we have

p∑
l=1

||ψOp(l, p)u||L2 ≤ p.C.
p∑
l=1

||ψOp(l, p− 1)u||L2︸ ︷︷ ︸
inductive hypothesis

+ C.

p∑
l=1

||ψ′Op(l, p− 1)u||L2 + C. ||ψT pu||L2︸ ︷︷ ︸
≤RuRpu(p!)

.

(B.1.17)

Notice that we can not choose some ψ in the partition of unity as before since there is some W
in the construction ψ′Op(l, p− 1)u are possible not global, so we will iterate the estimate above
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for this term with ψ chosen among partition of unity by Tartakoff in (B.0.11). In particular,
leading us to estimate the following terms

Ip−p′,ψ(p′) = ||ψ(p′)Op(l, p− p′)u||, p′ = 1, ..., p. (B.1.18)

By the construction of the partition of unity, when p′ = p, there is ψ = ψp

I0(ψ(p)) = ||ψ(p)u|| ≤ Cu.Cpu(p!).

Now, let p0 ≥ 0, we will estimate ||ψ(p0)Op(l, p− p0)u|| by the inductive hypothesis at the time
p ≥ p′ > po ≥ 0

Ip−p′,ψ(p′) = ||ψ(p′)Op(l, p− p′)u|| ≤ CuCp
′
u (p′!).C̃p−p

′
u ((p− p′)!). (B.1.19)

Again, modulo some less harmful terms, as before

p∑
l=1

||ψ(p0) Op(l, p− p0)||L2 ≤ (p− p0).C.

p∑
l=1

||ψ(p0) Op(l, p− p0 − 1)u||L2︸ ︷︷ ︸
≤C′C′P0 (p0!)δC”p−p0−1((p−p0−1)!)

+ C.

p∑
l=1

u||ψp0+1 Op(l, p− p0 − 1)u||L2 + C. ||ψT p−p0u||L2︸ ︷︷ ︸
≤RuR

p−p0
u ((p−p0)!)

.

(B.1.20)

Therefore, up to all, with the new constant (sufficiently large) depending of u,

p∑
l=1

||ψOp(l, p)u||L2 ≤ CuCpu(p!), ∀p.. (B.1.21)

This completes the proof.
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