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Sommario

Le strutture a termine affine con diffusione a salti (AJTSMs) stanno recentemente ricevendo molta
attenzione in finanza matematica, perché spesso è semplice analizzare le funzioni di distribuzione
ad esse associate. Questa tesi riguarda tre diversi aspetti della finanza matematica, applicati su
certe classi di AJTSMs.

Il primo aspetto riguarda il problema del prezzaggio, nel caso particolare in cui il processo
sottostante Xt sia una Catena Markoviana a Tempo Continuo (CTMC). Per opzioni esotiche, dove
il “claim”, cioè il “payoff” del derivato è dipende dal tempo oppure dalle traiettorie, solitamente i
prezzi devono essere stimati attraverso simulazioni di tipo Monte Carlo. Mostriamo che, quando
si condiziona prima sul numero Nt,T dei salti della catena, il calcolo di questa stima si semplifica.
Viene proposta una ricorsione per calcolare il valore atteso del “payoff” scontato, dato Nt,T = k;
in seguito si calcola il valore atteso del “payoff” rispetto alla distribuzione di Nt,T attraverso un
metodo Monte Carlo. Questo condizionamento comporta una riduzione della varianza. Presen-
tiamo i risultati di vari test numerici, che indicano che, per diversi tipi di “claims”, il metodo
proposto supera spesso un semplice “vanilla” Monte Carlo.

Il secondo aspetto riguarda la calibrazione, cioè la stima dei parametri di un modello fi-
nanziario, dove il processo sottostante (una Catena Markoviana finita) è solo parzialmente osserv-
abile tramite i prezzi corrotti del titolo. In questo lavoro, assumiamo che anche i salti del prezzo
del titolo corrispondenti ai tempi dei salti della catena Markoviana siano osservabili. Questo è un
caso particolare della classe di modelli trattati in [FR10b]. I loro parametri possono essere sti-
mati mediante l’algoritmo “expectation-maximization” (EM), seguendo l’approccio di [EAM08],
che, nel caso delle catene a tempo discreto, coinvolge il filtro di Kalman. Estendiamo questo
approccio al caso CTMC, usando invece il filtro di Wonham. Il contributo principale di questa
parte della tesi è l’approssimazione numerica dei filtri e degli “smoothers” dell’algoritmo EM. Con-
frontiamo i classici metodi di Eulero e di Milstein con una nuova strategia, simile a [PR10a], che
chiamiamo “soluzione quasi-esatta” e che è anche collegata al metodo di “splitting-up” di [BGR90]
e [Gla92]. Dimostriamo che tale schema ha un ordine di convergenza forte di almeno 0.5 e che
pertanto è almeno tanto efficace quanto lo schema di Eulero. Presentiamo alcuni risultati numerici
che indicano che, di fatto, in certi casi il nuovo metodo converge più velocemente di entrambi i
metodi di Eulero e di Milstein.

Il terzo aspetto riguarda un quadro unificato per la modellazione del rischio di “equity” e
“credit”, con applicazioni alla gestione del rischio. Trattiamo un AJTSM di un’azione con un’unica
discontinuità (“jump-to-default”), dove il tempo di fallimento dell’azione è un tempo aleatorio
doppiamente stocastico con intensità determinata da un sottostante processo affine. Questo ap-
proccio permette una piena trattabilità analitica pur lasciando flessibilità nel definire le interazioni
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tra il prezzo dell’azione fallibile, la volatilità stocastica e l’intensità del fallimento. Infine carat-
terizziamo tutte le misure di rischio neutrale che conservano la struttura affine del modello e
mostriamo che sia la gestione del rischio che i problemi del prezzaggio possono essere trattati
in modo efficiente passando a misure di sopravivenza appropriate. Come esempio, estendiamo il
modello di volatilità stocastica di Heston considerando la possibilità di un “jump-to-default”.



Abstract

Affine jump-diffusion term structure models (AJTSMs) are recently receiving much attention in
mathematical finance, because they often lead to a tractable analysis of the price distribution
functions. This thesis concerns three aspects of mathematical finance, when applied to certain
classes of AJTSMs.

The first aspect concerns the pricing problem in the special case when the underlying process
Xt is a Continuous-Time Markov Chain. For exotic options, where the claims are time or path
dependent, prices can only be estimated by Monte-Carlo simulation, in most cases. We show
that this computation is simplified by conditioning first on the number Nt,T of the jumps of the
chain. A recursion is proposed to compute the expected discounted payoff given Nt,T = k; Monte
Carlo is then used to average out the result over the distribution of Nt,T . This leads to a variance
reduction by conditioning. We present results of numerical tests which indicate that the method
often outperforms plain vanilla Monte Carlo for different kinds of claims.

The second aspect concerns the calibration of a financial model by parameter estimation,
when the underlying, a finite state Markov chain, is only partially observed through noisy asset
prices. Here, we assume that the jumps of the asset price occurring at the jump-times of the
Markov chain are observable as well. Such a model is a special case of the class of models treated
in [FR10b]. Their parameter estimation can be addressed via the EM algorithm, following the
approach by [EAM08] which, in the case of discrete-time chains, involves the Kalman filter. We
extend this approach to to the case of CTMCs via the use of the Wonham filter. Our main
contribution is the numerical approximation of the filters and smoothers in the EM algorithm.
We compare the classical Euler and Milstein schemes to a new scheme, inspired by [PR10a], that
we call a quasi-exact solution and is related to the splitting-up method of [BGR90] and [Gla92].
We prove that such a scheme is of strong convergence order at least 0.5, hence it performs at least
as well as the Euler scheme. We present numerical evidence indicating that in fact, in certain
cases the method outperforms both the Euler and the Milstein scheme.

The third aspect concerns a unified framework for equity and credit risk modeling, with
applications to risk management. Here we treat an affine jump-diffusion model with a single
jump-to-default, where the default time is a doubly stochastic random time with intensity driven
by an underlying affine factor process. This approach allows for flexible interactions between
the defaultable underlying asset price, its stochastic volatility and the default intensity, while
maintaining full analytical tractability. We characterize all risk-neutral measures which preserve
the affine structure of the model and show that risk management as well as pricing problems can
be dealt with efficiently by shifting to suitable survival measures. As an example, we consider a
jump-to-default extension of the Heston stochastic volatility model.
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Chapter 0

Introduction

0.1 Introduction

This work consists of three parts, each of which relates to one of three important problem domains
in mathematical finance, namely the pricing problem, the risk-management problem, and the
calibration problem. We do not aim to provide an exhaustive survey of these problem domains,
nor to present a unifying framework by which these three problems can be treated in synthesis
within a single model. Rather, we have chosen to focus our attention only on one class of models,
which is receiving increasing attention lately, namely the class of affine models with jumps. For
each problem domain, we tackle different, specific aspects of this class which are, nevertheless
interrelated.

The class of affine models is a popular choice for many financial applications, especially in
tackling the pricing problem for the term structure of interest rates. The models in this class are
widely regarded as highly computationally tractable and are able to capture empirical features
of given financial time series. Affine models have also seen applications beyond interest rates,
for example in stochastic volatility option pricing and in credit risk models. For comprehensive
treatments of affine models, see [DK96], [DFS03], [DF09], as well as the book [Fil09].

Most of the literature on affine term-structure models assume a diffusion model or a jump-
diffusion model for the interest rate. To illustrate with a simple example for the case of diffusions,
in [DK96], the authors propose a model for the “short rate” process rt under which rt is a function
r(Xt) of a process Xt 2 D ⇢ Rn that is a solution to the SDE

dXt = µ(Xt)dt+ �(Xt)dWt

X
0

2 D ⇢ Rn, t � 0.

Here µ and ��> are assumed to be affine functions of X, that is µ(X) = a + bX and ��> =

A+B ·X, for a, b, A, and A constant parameters of the appropriate (scalar / vector) dimensions,
satisfying certain conditions. The authors of [DK96] show that the yield then has the form

Y (t, T ) := logP (t, T ) = ↵(T � t) + �(T � t) ·Xt,

where P (t, T ) denotes the zero coupon bond price at t maturing at T .

1



2 CHAPTER 0. INTRODUCTION

Within the general class of affine models also belong models for which r(Xt) is a pure-jump
process. An example is the case when X is a Finite State, Continuous Time Markov Chain
(CTMC). The affine property of r(Xt) is discussed in more detail in [Pre10] and in the paper
[BKR97] concerning jump-diffusions, of which CTMC’s are a special case.

Concerning the pricing of derivatives in the context of CTMCs, some references are the papers
[Nor03], [Nor05], [PR10b], and the original work [MPR13]. In Part I we present [MPR13] where
we tackle the pricing problem for generic, possibly exotic derivative payoffs, when the underlying
process is a CTMC; this represents an alternative to the techniques presented in [Nor03], [Nor05]
and is an extension of [PR10b].

On the other hand the paper [EHJ00] deals with a CTMC term-structure model in the context
of model calibration by parameter estimation. In Part II of the present work, we also deal with the
calibration problem for derivatives with CTMC payoffs. Our approach is an extension of [EHJ00]
to a continuous-time filter setup, where we assume that only continuous noise corrupted time-
series of prices are observable and the calibration is performed by combined Wonham filtering
and Expectation-Maximization (EM). The contribution of our work is to propose quasi - exact
solutions to the Wonham Filters via strong approximation schemes for the corresponding Zakai
SDEs. We provide results on the strong order of such schemes, an algorithm for serial filtering
due to the presence of jumps in the observation process, and some numerical results on simulated
data.

In the third part, we present the original paper [FM14] which deals with a risk-management
framework that jointly models equity and credit-type risks for affine-diffusion equity price pro-
cesses of stocks that may default. Our proposed risk-management framework is able to also incor-
porate information about derivatives prices in a structure-preserving way, via the risk-premium.
While in this third part we depart from the CTMC context of Part I and Part II, nevertheless
we are still treating affine processes with jumps in so far as the default event represents a single
jump-process added to the state dynamics.



Part I

Pricing Aspects
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Chapter 1

Monte Carlo Variance Reduction by

conditioning for pricing when the

Underlying Dynamics follow a

Continuous-Time Finite State Markov

Process

1.1 Introduction

Traditional pricing formulae concern market models either in continuous or discrete time. There
are however situations, in which it is more natural to model the evolution of the underlying as
a continuous time Markov chain (CTMC) that combines features of both, continuous as well as
discrete time models; in fact, while being a model in continuous time, it has an embedded Markov
chain that corresponds to a discrete time one. A CTMC has the following relevant features:

i) it jumps at random points in time;

ii) the number of jumps in a fixed time interval is random.

Market models based on CTMC appear to be relevant in the following specific situations:

a) One such situation arises in the pricing of bonds and interest rate derivatives, where the “un-
derlying” can be considered as given by the short rate of interest. This covers, similarly,
all those situations where the “underlying” is a rate (e.g. exchange rate) or an intensity
(e.g. default intensity). The evolution of a rate or intensity is generally modeled as a diffu-
sion process, but the actual evolution may present jumps. Continuous-time term structure
models that allow for jumps have already been considered in the literature and we limit
ourselves to mention here just a couple of them. For the case of jump-diffusions, the article
[BKR97] illustrates how, by assuming an appropriate affine structure, the bond price can
be expressed in terms of a system of ODEs. This approach is theoretically interesting, but
it does not consider derivative pricing and turns out to be difficult to implement in practice,

5
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especially in the multivariate case. For a more general Levy driven interest rate model, the
article [EK06] considers also Caps and Swaptions and the authors obtain explicit analytic
solution formulae in the scalar case which require however rather sophisticated mathemati-
cal tools; moreover, their numerical results do not concern the prices as such, which is our
main goal. While less general than jump-diffusions or Levy models, CTMCs still retain the
basic features of the actual evolution of rates and allow to obtain explicit pricing formulae
by which to compute numerical values. This has been shown for simple claims and time
homogeneous CTMC in [PR10b], where bond prices, Caps and Swaptions are shown to be
particular cases or linear combinations of what is called there a “Prototype product” that is
an analog here of Arrow-Debreu prices.

b) A further more general situation, where CTMCs appear to be natural models, arises whenever
one considers small time scales on which asset prices vary by tick sizes at random times in
reaction to trading or to the arrival of significant new information. With respect to a), here
the jumps are in general much more frequent.

In this chapter we shall consider a generic underlying, of which the evolution is given by a
CTMC and that may be multivariate and/or time inhomogeneous. We derive a method that
allows for an explicit computation also of path dependent claims. It is a mixture of an analytic
expression and a Monte Carlo (MC) simulation and corresponds to an MC method with variance
reduction by conditioning. The basic idea, illustrated for the moment for the case of simple claims,
is as follows.

Denote by Xt the underlying, evolving as a CTMC with infinitesimal generator Q (below
we shall denote by the same symbol also the transition intensity matrix that is equivalent to
the generator, but has zeroes on the main diagonal) and let H = H(XT ) be, for the moment, a
simple claim with maturity T . Let ˜P ⇠ P be an equivalent (to the physical measure P ) martingale
measure that is used for pricing and that will typically result from a calibration to the market.
The arbitrage-free price at t < T of the claim H, when Xt = xi is then

⇧i(t) = E
˜P

⇢

exp



�
Z T

t
rsds

�

H | Xt = xi
�

(1.1.1)

A theory of financial markets, when the underlying follows a time homogeneous CTMC has been
developed in [Nor03] according to which the price ⇧i(t) of a simple claim H can be computed as

⇧i(t) = [exp{(Q�R) (T � t)}H]i (1.1.2)

where [z]i denotes the i�th component of the vector z, R is the diagonal (N ⇥N)�matrix with
elements ri (i = 1, · · · , N) and Q is assumed here to be time homogeneous.

As mentioned above, the main purpose of the present study is to extend the basic theory
and to provide an efficient semianalytic method to compute the price ⇧i(t) for these extensions,
for which the explicit formula (1.1.2) cannot be applied or is difficult to apply. The extension
concerns basically path dependent claims that in many cases can be reduced to simple claims by
augmenting the dimension of the underlying. In some cases this may lead to a time homogeneous,
although multivariate, underlying; in many cases however one ends up with a time inhomogeneous
underlying. We shall also consider barrier options that lead to an intrinsically time inhomogeneous
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situation. In the time inhomogeneous case the explicit formula (1.1.2) cannot be applied and it
may become cumbersome to apply it also in the time homogeneous case when the underlying
is multivariate. In all these more general cases one can always resort to a Monte Carlo (MC)
simulation to compute the expectation in (1.1.1). As it will appear also from the numerical results
below, a plain MC approach has various drawbacks: in addition to a possibly large variance, it
may also lead to biased results, unless one performs an extremely large number of simulation
runs. The MC-based approach proposed in this chapter and that we shall call “conditional MC”
approach, results from first conditioning on the number Nt,T of transitions of the chain Xt between
t and T . It results from rewriting the expression in (1.1.1) as

⇧i(t) = E
˜P
n

e�
R
T

t

r
s

dsH(XT ) | Xt = i
o

= E
˜P
n

E
˜P
n

e�
R
T

t

r
s

dsH(XT ) | Nt,T , Xt = i
o

| Xt = i
o

(1.1.3)

We shall show that the inner expression allows for an explicit analytic computation also in the
case of claims that are not simple claims and this is by itself one of the other contributions
of the present work. In this way there remains to possibly simulate only Nt,T (an explicit, but
cumbersome formula for computing the distribution of Nt,T can be found in [PR10b] for Xt scalar).
The fact that a fair portion of what is computed by simulation in plain MC is here computed
explicitly, makes it intuitively clear that one can thus obtain more precise results.

The outline of this chapter is as follows. In section 1.2 we describe more specifically our
CTMC market model. In section 1.3 we show how to reformulate conveniently path dependent
claims with a CTMC underlying so that they can be priced according to what we call “Prototype
product” and for which we describe our conditional MC approach in section 1.4. In section 1.5
we then show how to apply the conditional MC approach to the pricing of path dependent and
barrier options. Finally, in section 1.6, we present numerical results and comparisons.

1.2 The model

Let Xt be a CTMC with values in {x1, · · · , xN} and transition intensity matrix Q that we assume
for the moment to be time homogeneous. Below we shall occasionally identify xi with i , (i =

1, · · · , N). By a transition intensity matrix Q we mean here the matrix, where the off-diagonal
elements qi,j represent the transition rates from state i to state j, while the diagonal elements qi,i
are equal to zero. This is different from the infinitesimal generator matrix, where qi,i = �

P

j 6=i qi,j ,
while qi,j remain the same for i 6= j (notice that the information content is the same in both types
of matrices).

For a given maturity T let there be given a simple claim of the form

H = H(XT ) =
⇥

H(x1), · · · , H(xN )

⇤0 where 0 denotes transposition

and which, given the finite state assumption for Xt, can be represented as a vector.
Denoting by ⌧n the random time at which the n�th transition of the chain Xt takes place,

put, for simplicity, Xn := X⌧
n

so that Xs = Xn for s 2 [⌧n, ⌧n+1

).
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Assume also that the short rate of interest rt is related to the underlying Xt in the sense that
rt = r(Xt) so that rt can undergo a change only at the time points ⌧n and we let rn := r⌧

n

=

r(Xn) 2 {r1, · · · , rN}.
Starting from the pricing formula (1.1.1) and denoting by Nt := sup{n | ⌧n  t} the number

of transitions of Xt up to a given time t so that Nt,T = NT �Nt, one may write

⇧i(t) = E
˜P
n

exp[rt(t� ⌧N
t

) exp

"

�
N

T

�1

X

i=N
t

ri(⌧i+1

� ⌧i)� rT (T � ⌧N
T

)

#

H(XT ) | Xt = i
o

= exp[rt(t� ⌧N
t

)E
˜P

(

exp

"

�
N

T

�1

X

i=N
t

ri(⌧i+1

� ⌧i)� rT (T � ⌧N
T

)

#

H(XT ) | Xt = i

)

(1.2.1)
where we have used the fact that ⌧N

t

is known at time t and so exp[rt(t � ⌧N
t

) can be taken as
being deterministic. As a consequence, we may without loss of generality assume t = ⌧N

t

and
consider the computation of

VH,t,T (Xt) = E
˜P

(

exp

"

�
N

T

�1

X

i=N
t

ri(⌧i+1

� ⌧i)� rN
T

(T � ⌧N
T

)

#

H(XT ) | Xt

)

(1.2.2)

where VH,t,T (Xt) denotes the vector with components VH,t,T (Xt)1{X
t

=xi} that occasionally we
shall also denote by VH,t,T (Xt)|X

t

=xi

and where

H(·) := H
0

(·) =
N
X

i=1

w0

i 1{·=xi}, x
i 2 E, w0

i 2 R (1.2.3)

with w0

i representing the value H(xi).
A plain MC approach consists now in simulating the successive transition times ⌧n of the chain

Xt and the values Xn of Xt at ⌧n and then averaging over the values obtained in each simulation
run for the argument in the expectation of the right hand side of (1.2.2). To be precise, consider
for a moment again a time homogeneous chain with transition intensity matrix Q. Putting

qi :=
X

i 6=j

qi,j , (1.2.4)

one has that, if Xn = X⌧
n

= xi, then the inter-jump times ⌧n+1

� ⌧n are exponentially distributed
with parameter qi and the transition probability of the embedded chain, namely the probability
that X⌧

n+1 = xj 6= xi is given by
pi,j =

qi,j
qi

(1.2.5)

implying, as it should be, that pi,i = 0. Given these values for qi and pi,j , one can then simulate
the successive values of ⌧n and of the corresponding Xn.

Contrary to the plain MC approach, by our semi-analytic approach only the number of jumps
is being simulated while the remaining calculations are performed on the basis of an explicit
analytic formula.

We close this section by mentioning the notation that we shall use for the time inhomogeneous
and multivariate case. In the time inhomogeneous case, instead of a fixed transition intensity
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matrix Q, we shall consider a sequence Q(n) where n refers to the n�th transition time ⌧n of the
underlying Xt. For the multivariate case let us take the special case of a bivariate CTMC (Xt, Yt)

with Xt 2 {x1, · · · , xN}, Yt 2 {y1, · · · , yM}. Letting ⌧n denote the n�th jump time of the pair
(Xt, Yt), assume again that the short rate rt changes only at the time points ⌧n, i.e. assume that
rn := r⌧

n

= r(Xn, Yn) with (Xn, Yn) = (X⌧
n

, Y⌧
n

). For the (time inhomogeneous) multivariate
transition intensity matrix we shall put

Q(n) =
�

q
(i,h),(j,k)(n)

 

i,j=1,··· ,N
h,k=1,··· ,M

(1.2.6)

Notice that the multivariate case may arise not only when the underlying itself is multivariate, but
also when the underlying is scalar and one has a path dependent claim that can be transformed
into a simple claim by increasing the dimension of the underlying as we shall discuss in the next
section. Furthermore, the multivariate case may also arise e.g. in defaultable bond pricing, where
the underlying is Xt = rt and the price is given by

⇧(t) = 1{⌧>t}E
˜P

⇢

exp



�
Z T

t
(rs + �s) ds

�

| Ft

�

(1.2.7)

with ⌧ denoting the default time and �t the default intensity. The pair (rt, �t) may then be taken
to form a bivariate CTMC, i.e. Xt = rt, , Yt = �t. To take correlation into account, one may put
rt = r(Xt, Zt) and �t = �(Yt, Zt) with Xt, Yt, Zt three independent CTMCs.

1.3 Path dependent claims

Here we show how, for an underlying evolving as a CTMC, some of the standard path dependent
claims can be transformed into simple claims with an underlying evolving as a multivariate (pos-
sibly time inhomogeneous) CTMC. In this section we shall limit ourselves to lookback and Asian
options but later on we shall also consider barrier options, discussing in particular knock-out
options, since for this case formula (1.1.2) can clearly not be applied but our approach turns out
to be relatively simple to apply.

1.3.1 Lookback options

Given is an underlying CTMC Xt 2 {x1, · · · , xN} where for simplicity we shall occasionally
identify xi with i, (i = 1, · · · , N). Consider a claim of the form

HT =

�

XT � g(XT
0

)

�

+ (1.3.1)

where g(·) is a measurable function of the generic trajectory Xt
0

:= (X
0

, · · · , Xt) for t  T of the
process Xt for which, recalling that ⌧n denote the transition times of Xt, we assume

g(X⌧
n

0

) = G(X⌧
n

, g(X⌧
n�1

0

)) for some measurable G(·, ·) (1.3.2)

Put Yt := g(Xt
0

) and notice that, for t 2 [0, T ], the process Yt also takes a finite number of
possible values; denote them by h = 1, · · · ,M . More importantly, Yt can make a transition only
at the transition times of Xt and it can be easily seen that (Xt, Yt) forms a bivariate CTMC.
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Furthermore we have that HT = (XT � YT )+ and we also recall that (XT , YT ) = (XN
T

, YN
T

). To
deal with the chain (Xt, Yt) and to price HT , we need to derive the transition intensity matrix Q

for (Xt, Yt), for which we have

Proposition 1.3.1. Given a chain Xt with transition intensity matrix Q = {qi,j}i,j=1,··· ,N , the
chain (Xt, Yt) has

�

q
(i,h),(j,k)(n)

 

i,j=1,··· ,N
h,k=1,··· ,M

with
q
(i,h),(j,k) = qi,j1{G(j,h)=k} (1.3.3)

Proof. Recall first that (see (1.2.5)), if for a scalar CTMC Xt the Q�matrix is Q = {qi,j}, then
the transition probabilities of the embedded chain Xn are pi,j =

q
i,j

q
i

with qi =
P

j 6=i qi,j (qi,i =

pi,i = 0). Viceversa, given pi,j , there are various possible qi,j that lead to the same pi,j . They
differ by the choice of qi since we have qi,j = qipi,j . Given that in our case Yt jumps exactly when
Xt does, we may put

q
(i,h) =

X

j,k

q
(i,h),(j,k) = qi 8h = 1, · · · ,M (1.3.4)

and notice that at a generic ⌧n the process Xt actually leaves the current state, while Yt may
jump to itself. To conclude, it thus suffices to construct p

(i,h),(j,k). Recalling that we had put
Xn = X⌧

n

, Yn = Y⌧
n

, we have

p
(i,h),(j,k) := P{Xn+1

= j, Yn+1

= k | Xn = i, Yn = h}

= P{Xn+1

= j,G(Xn+1

, Yn) = k | Xn = i, Yn = h}

= P{G(Xn+1

, Yn) = k | Xn+1

= j,Xn = i, Yn = h}
·P{Xn+1

= j | Xn = i, Yn = h}

= 1{G(j,h)=k}P{Xn+1

= j | Xn = i} = 1{G(j,h)=k}pi,j

(1.3.5)

from which
q
(i,h),(j,k) = p

(i,h),(j,k) · qi = qi,j1{G(j,h)=k} (1.3.6)

Example 1. As an example consider the standard case where

Yt = g(Xt
0

) := min

st
Xs (1.3.7)

Notice that in this case Yt has the same finite number of possible values as Xt and the assumptions
on g(·) are satisfied since

G(X⌧
n

, g(X⌧
n�1

0

)) = min



X⌧
n

, min

s⌧
n�1

Xs

�

= g(X⌧
n

0

) (1.3.8)

The relation (1.3.5) particularizes into

p
(i,h),(j,k) = 1{G(j,h)=k}pi,j = 1{min{j,h}=k}pi,j (1.3.9)
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which, with the states xi in increasing order of magnitude, implies that

p
(i,h),(j,k) =

8

>

<

>

:

pik if k < h

pij if k = h, j � k

0 if k > h

=

8

>

<

>

:

q
ik

q
i

if k < h
q
ij

q
i

if k = h, j � k

0 if k > h

(1.3.10)

and, consequently,

q
(i,h),(j,k) = p

(i,h),(j,k) · qi =

8

>

<

>

:

qik if k < h

qij if k = h, j � k

0 if k < h

(1.3.11)

Notice that the chain (Xt, Yt), as described above, is multivariate but still time homogeneous so
that the pricing of the claim could be performed by the explicit analytic formula (1.1.2), although
it is more complex due to the increased dimensionality. If, however, one would consider a claim
of the form HT = (XT � g(XT

T��))
+ for a given 0 < � < T , then our process Yt may be defined

as taking a suitable fixed value for t  T � � and thereafter evolves as in the case of g(XT
0

) by
letting t = 0 correspond to t = T � �. In the specific case of Example 1, the process Yt may then
be defined as

Yt =

8

>

<

>

:

maxi xi for t  T � �

minT��<stXs for t > T � �

(1.3.12)

It is then quite evident that the chain (Xt, Yt) is not anymore time homogeneous, even if Xt is.
The transition intensity matrix is then a sequence Q(n) that has a certain expression for all n such
that ⌧n  T � � and another one for those n for which ⌧n > T � �. Notice also that the change
from one expression to the other one depends on ⌧n and therefore on the individual trajectory
of Xt. Formula (1.1.2) then does not apply anymore, but by the approach described in the next
section 1.4 we shall still be able to compute the price as we shall discuss in subsection 1.5.2.

1.3.2 Asian options

Given an underlying CTMC process Xt, define the process

Yt :=

Z t

0

Xsds =
X

⌧
n

t

X⌧
n�1(⌧n � ⌧n�1

) +X⌧
n

(t� ⌧n) (1.3.13)

and write Xn and Yn for X⌧
n

and Y⌧
n

respectively.
The claim of a standard (average price) Asian option can then be represented as

HT =

✓

1

�

Z T

T��
Xsds� 

◆

+

=

✓

1

�
(YT � YT��)� 

◆

+

(1.3.14)

for a given 0 < � < T and where  denotes the strike. While Xt is finite-state, Yt is continuous-
valued. If we want the pair (Xt, Yt) to be finite-state Markov, we have to discretize the values of
Yt. While for this purpose one might introduce an optimal quantization (see e.g. [BPP01]), for
simplicity we shall use here a standard discretization based on an equipartition of the range of
the values of Yt. Assuming that Xt 2

�

x1, · · · , xN
 

, where the values xi are in increasing order
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of magnitude (as before, we may identify xi with i) the range for the values for Yt, when t  T ,
is [0, T maxtT Xt] =

⇥

0, TxN
⇤

. Partition now
⇥

0, TxN
⇤

into intervals of equal length � > 0

assuming that TxN = K� for a suitable positive integer K. The generic k�th interval of the
partition is then

Ak
= [ak�1, ak) = [(k � 1)�, k�), k = 1, · · · ,K (1.3.15)

Denote by yk the midpoint of Ak (other choices are possible) and let the discretized process Y �

t

for t  T be such that Y �

t = yk if Yt 2 Ak. In what follows we may denote this value simply by
k , (k = 1, · · · ,K). Since Y

0

= 0, we have also to allow for the value y = 0 that we may consider
as corresponding to k = 0.

We introduce next the bivariate finite-state process (Xt, Y �

t ) that below we shall simply denote
by (Xt, Yt) and where the state transitions occur only at the jump times ⌧n of the chain Xt so
that occasionally we shall denote this process by (Xn, Y �

n ) = (X⌧
n

, Y �

⌧
n

). The transitions of the
component Xn are those of the given underlying CTMC Xt, while for Yn we have the following

i) For ⌧
0

= 0 put Y
0

= 0.

ii) Forn > 0with ⌧n  T let

Yn = yk $ Yn�1

+Xn�1

(⌧n � ⌧n�1

) 2 Ak

$ (k � 1)�  Yn�1

+Xn�1

(⌧n � ⌧n�1

) < k�

iii) Forn > 0with ⌧n > T let

YT = yk $ Yn�1

+Xn�1

(T � ⌧n�1

) 2 Ak

$ (k � 1)�  Yn�1

+Xn�1

(T � ⌧n�1

) < k�

(1.3.16)

Since the distribution of ⌧n�⌧n�1

is completely determined by the value of Xn�1

(it is exponential
with parameter qi if Xn�1

= xi), we see that the pair is Markov as long as it is restricted to the
event ⌧n  T , afterwards ⌧n has to be added to the state to have Markovianity.

In order to deal with the chain (Xt, Yt) for t  T and to price HT we need to derive, as for
the lookback case, the transition intensity matrix

Q =

�

q
(i,h),(j,k)(n)

 

i,j=1,··· ,N
h,k=1,··· ,K

For this purpose notice that, considering the second component of the finite state process (Xt, Yt)

as described above, we may rewrite the claim HT in (1.3.14) as follows (for simplicity of presen-
tation we put here � = T )

HT =

✓

YT
T

� 

◆

+

=

✓

YN
T

T
� 

◆

+

=

1
X

n=1

✓

Yn
T

� 

◆

+

1{n=N
T

} (1.3.17)

so that we need the transition intensities only for those values of n that correspond to the event
{n  NT }. On the other hand, since, as in the lookback case, Yt makes a transition exactly
when Xt does, the jump intensity for the pair (Xt, Yt) is the same as that for Xt, i.e. q

(i,h) =

P

j,k q(i,h),(j,k) = qi 8h = 1, · · · ,K and so, by q
(i,h),(j,k) = qi p

(i,h),(j,k), it suffices to construct
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p
(i,h),(j,k) (i, j = 1, · · · , N ; h, k = 1, · · · ,K), namely the transition probabilities for the embedded

chain. Given the comment after (1.3.17), we shall now determine p
(i,h),(j,k) restricted to those

transition times for which ⌧n  T, (n  NT ). On the event ⌧n  T the definition of the discretized
process Yt is limited to that in point ii) of (1.3.16) above and so we obtain

p
(i,h),(j,k) =

˜P{Xn+1

= j, Yn+1

= k | Xn = i, Yn = h}

= P{Yn = yk | Xn = xj , Xn�1

= xi, Yn�1

= yh} pi,j

= P{Yn 2 Ak | Xn�1

= xi, Yn�1

= yh} pi,j

= P
n

(k�1)��yh

xi

 ⌧n � ⌧n�1

< k��yh

xi

o

pi,j

= e�q
i

(k�1)��y

h

x

i

h

1� e�q
i

�
x

i

i

q
ij

q
i

(1.3.18)

It follows that
q
(i,h),(j,k) = qi,j e

�q
i

(k�1)��y

h

x

i

h

1� e�q
i

�
x

i

i

(1.3.19)

Notice that the probabilities computed in (1.3.18) are relative to the event ⌧n  T and so do not
in general sum up to 1. At this point we can determine a Q�matrix

Q =

�

q
(i,h),(j,k)

 

i,j=1,··· ,N
h,k=1,··· ,K

with the elements according to (1.3.19). Since the p
(i,h),(j,k) do not necessarily sum up to 1, this

Q is not necessarily a transition intensity matrix but, in view of the above, it suffices to compute
the price of HT in (1.3.14).

1.4 Background for the Monte Carlo method by conditioning

We recall formula (1.2.2) for the price of a contingent claim H(XT ), namely

VH,t,T (Xt) = E
˜P

(

exp

"

�
N

T

�1

X

i=N
t

ri(⌧i+1

� ⌧i)� rN
T

(T � ⌧N
T

)

#

H(XT ) | Xt

)

(1.4.1)

recalling also that VH,t,T (Xt) stands for the vector with components VH,t,T (Xt)1{X
t

=xi} =

VH,t,T (Xt)|X
t

=xi

. We shall call this Prototype product since various more general derivatives can
be obtained either as particular cases or as linear combinations of prototype products. This is
in particular the case when Xt = rt and one has to deal with interest rate derivatives where e.g.
Caps and Swaptions can be expressed as linear combinations of prototype products (see [PR10b]).
Notice also the analogy between the prototype product and Arrow-Debreu prices.

As already mentioned in section 1.2, the plain MC approach consists in simulating ⌧n and
the values Xn of Xt at ⌧n and then averaging over the values obtained in each simulation run
for the argument in the expectation of the right hand side of (1.2.2) (see also (1.4.1)). In the
MC approach based on conditioning on the number of state transitions of Xt that we are going
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to present here, we are simulating only the number of transitions Nt,T of Xt between t and T

and, conditionally on Nt,T , perform the remaining calculations in an explicit analytic way. From
(1.4.1) we now obtain that the price of the claim H(XT ), conditionally on Nt,T , is given by

V
N

t,T

H,t,T (Xt) = E
˜P

(

exp

"

�
N

T

�1

X

i=N
t

ri(⌧i+1

� ⌧i)� rN
T

(T � ⌧N
T

)

#

H(XT ) | Xt, Nt,T

)

(1.4.2)

and we have
VH,t,T (Xt) = E

˜P
n

V
N

t,T

H,t,T (Xt) | Xt

o

(1.4.3)

so that, if we are able to compute in an exact analytic way V
N

t,T

H,t,T (Xt) in (1.4.2), then we may
compute the expectation in (1.4.3) by MC simulations of only Nt,T . It turns out that the exact
analytic computation of V

N
t,T

H,t,T (Xt) in (1.4.2) is made difficult by the presence of the random
variables rN

T

and ⌧N
T

both in the sum appearing in the exponential as well as in the last term
thus preventing the use of a double conditioning to separate the expectation of the exponential of
the sum from that of the last term. As we shall show below, it is however possible to compute in
an exact analytic way both an upper and a lower bound on V

N
t,T

H,t,T (Xt), which we shall denote by
¯V
N

t,T

H,t,T (Xt) and V
N

t,T

H,t,T (Xt) respectively and that are defined as follows. First, let for i = 1, · · · , N

V
N

t,T

,0
H,t,T (Xt) = E

˜P

(

exp

"

�
N

T

�1

X

i=N
t

ri(⌧i+1

� ⌧i)

#

H(XT ) | Xt, Nt,T

)

(1.4.4)

and

V
N

t,T

,1
H,t,T (Xt) = E

˜P

(

exp

"

�
N

T

X

i=N
t

ri(⌧i+1

� ⌧i)

#

H(XT ) | Xt, Nt,T

)

(1.4.5)

denoting, furthermore, by V
N

t,T

,0
H,t,T (x) and V

N
t,T

,1
H,t,T (x) the vectors with components V N

t,T

,0
H,t,T (Xt)|X

t

=xi

and V
N

t,T

,0
H,t,T (Xt)|X

t

=xi

respectively. Then put

¯V
N

t,T

H,t,T (Xt); = max

h

V
N

t,T

,0
H,t,T (Xt), V

N
t,T

,1
H,t,T (Xt)

i

(1.4.6)

V
N

t,T

H,t,T (Xt) := min

h

V
N

t,T

,0
H,t,T (Xt), V

N
t,T

,1
H,t,T (Xt)

i

(1.4.7)

considering, analogously to V
N

t,T

,i
H,t,T (x), i = 0, 1, also here the vectors ¯V

N
t,T

H,t,T (x) and V
N

t,T

H,t,T (x). We
also recall that XT = XN

T

in (1.4.4) and XT = XN
T

+1

in (1.4.5).

Remark 1.4.1. Since for each Xt = xi the argument of the expectation in the right hand side
of (1.4.5) is a.s. smaller than the corresponding one in (1.4.4), one might wonder why we did
not define the upper and lower bounds directly as V

N
t,T

,0
H,t,T (Xt) and V

N
t,T

,1
H,t,T (Xt) respectively. The

reason is that it is the norm of the entire vector V
N

t,T

,1
H,t,T (x) determined according to (1.4.5) that is

guaranteed to be smaller than or equal to that determined according to (1.4.4), but the individual
components of V

N
t,T

,1
H,t,T (x) may not necessarily be smaller than those of V

N
t,T

,0
H,t,T (x). In fact, in

our computations the individual components of V
N

t,T

,0
H,t,T (x) and V

N
t,T

,1
H,t,T (x) turned out to exhibit

an initial oscillatory behavior. It is however always the case that the actual price VH,t,T (Xt) in
(1.4.1) belongs to the interval with extreme points given by the corresponding values of ¯V

N
t,T

H,t,T (Xt)

and V
N

t,T

H,t,T (Xt).
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Instead of computing analytically the exact value of V N
t,T

H,t,T (Xt) in (1.4.2), we shall now deter-
mine analytically the approximation given by the midpoint between ¯V

N
t,T

H,t,T (Xt) and V
N

t,T

H,t,T (Xt),
namely

V
N

t,T

H,t,T (Xt) ⇠ ˜V
N

t,T

H,t,T (Xt) :=
1

2

⇣

¯V
N

t,T

H,t,T (Xt) + V
N

t,T

H,t,T (Xt)

⌘

(1.4.8)

which, combined with (1.4.3), leads to the approximation

VH,t,T (Xt) ⇠ E
˜P
n

˜V
N

t,T

H,t,T (Xt)

o

:=

1

2

E
˜P
n

¯V
N

t,T

H,t,T (Xt) + V
N

t,T

H,t,T (Xt)

o

(1.4.9)

where the expectation is with respect to Nt,T .

Remark 1.4.2. Concerning the accuracy of the approximation in (1.4.8) and (1.4.9) it will be
shown in Corollary 1.4.9 below that the norm of the difference ¯V n

H,t,T (x)�V n
H,t,T (x) tends to zero

for n tending to infinity so that the approximation can be expected to be rather precise in situations
where there are many transitions of Xt. This is also in line with the fact that, as can be easily
shown, the norm of the difference ¯V

N
t,T

H,t,T (x)�V
N

t,T

H,t,T (x) is bounded from above by ⇢̄ := maxiN
r
i

q
i

,
which is in general a small value, especially if the transitions of Xt are frequent. In section 1.6
we perform some numerical tests to assess the accuracy of the approximation of VH,t,T (Xt) by
E

˜P
n

˜V
N

t,T

H,t,T (Xt)

o

.

The expectation with respect to Nt,T in (1.4.9) will be computed by MC simulations. In order
to simulate just the number of jumps Nt,T , for each simulation run we cannot avoid determining
also the successive values of ⌧n and Xn, but we do not have to record them. As we shall mention
in Remark 1.4.10 at the end of the next subsection 1.4.1, instead of determining the value of
E

˜P
n

˜V
N

t,T

H,t,T (Xt)

o

by MC simulations of Nt,T , one might also compute this expectation in a fully
analytical way, but the corresponding procedure is rather cumbersome.

In the next subsection we shall now present our approach to determine in an analytically exact
way the value of ˜V

N
t,T

H,t,T (Xt) for each given value of Nt,T .

1.4.1 Derivation of the algorithm

Given t and Nt (recall that, see description following (1.2.1), we had assumed without loss of
generality that t = Nt and so Xt = XN

t

) fix an M 2 N and define the sequence of functions
Hn(·), n = 0, · · · ,M recursively as follows: H

0

(·) is given by the Prototype payoff, namely (see
(1.2.3)

H
0

(·) =
N
X

i=1

w0

i 1{·=xi} (1.4.10)

and, for 0 < n  M ,

Hn(XN
t

+M�n) = E
˜P
n

e�r
N

t

+M�n

(⌧
N

t

+M�n+1�⌧
N

t

+M�n

)Hn�1

(XN
t

+M�n+1

) | XN
t

+M�n

o

(1.4.11)

This definition has been inspired by an approach described in [FZ02], where the authors derive the
analog in discrete time of the continuous time affine term structure models, and here we use the
fact that Xt is Markov and that, given XN

t

, the distribution of the inter-arrival time ⌧N
t

+1

� ⌧N
t

depends only on XN
t

. Notice also that from (1.4.11) it follows that

HM (XN
t

) = E
˜P

(

exp

"

�
N

t

+M�1

X

m=N
t

rm(⌧m+1

� ⌧m)

#

H
0

(XN
t

+M ) | XN
t

)

(1.4.12)
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Since Xt takes a finite number of possible values, just as with H(·) = H
0

(·), also each of the
Hn(x) can be represented as a vector. More precisely, letting x = [x1, · · · , xN ]

0, we have

Hn(x) = [wn
1

, · · · , wn
N ]

0 (1.4.13)

with wn
i representing the value Hn(xi).

Remark 1.4.3. Notice the immediate relationship between the vectors Hn(x) defined recursively in
(1.4.11) above and the basic quantities of our MC-with-conditioning approach, namely the vectors
V

N
t,T

,0
H,t,T (x) and V

N
t,T

,1
H,t,T (x) with components defined for each value of Xt = xi, i = 1, · · · , N ac-

cording to (1.4.4) and (1.4.5) respectively. From (1.4.4), (1.4.5), the equality H(XT ) = H
0

(XT ),
the representation of HM (·) in (1.4.12), and recalling that Nt,T = NT �Nt, we have in fact that

V
N

t,T

,0
H,t,T (x) = HN

t,T

(x) ; V
N

t,T

,1
H,t,T (x) = HN

t,T

+1

(x) (1.4.14)

From the definitions of ¯V
N

t,T

H,t,T (x) and V
N

t,T

H,t,T (x) with components defined for each value of
Xt = xi, i = 1, · · · , N according to (1.4.6) and (1.4.7), from that of ˜V

N
t,T

H,t,T (Xt) in (1.4.8), from
the equalities (1.4.14), and recalling that XT = XN

T

in (1.4.4) and XT = XN
T

+1

in (1.4.5),
one obtains immediately the following corollary where, in line with the other analogous vectors
defined previously, ˜V

N
t,T

H,t,T (x) denotes the vector with components ˜V
N

t,T

H,t,T (Xt)|X
t

=xi

, i = 1, · · · , N.

Corollary 1.4.4. We have

¯V
N

t,T

H,t,T (x) = max

⇥

HN
t,T

(x), HN
t,T

+1

(x)
⇤

; V
N

t,T

H,t,T (x) = min

⇥

HN
t,T

(x), HN
t,T

+1

(x)
⇤

˜V
N

t,T

H,t,T (x) =
1

2

⇣

¯V
N

t,T

H,t,T (x) + V
N

t,T

H,t,T (x)
⌘

=

1

2

�

HN
t,T

(x) +HN
t,T

+1

(x)
�

This Corollary shows clearly the relevance of the functions Hn(·) computed recursively in
(1.4.11).

We shall now derive an easily implementable procedure to analytically compute the functions
Hn(·). Considering the general case, where the transition intensity of the process Xt is given as
a sequence of Q�matrices Q(n) = {qi,j(n)}, define the sequence of matrices eQ(n) as

eQ(n) = (q̃i,j(n))
1i,jN with q̃i,j(n) =

(

q
i,j

(n)
ri+q

i

(n)
i 6= j

0 i = j
(1.4.15)

where ri = r(X) when X = xi and qi(n) =
P

j 6=i qi,j(n) =
P

i,j qi,j(n).
We have now

Proposition 1.4.5. Starting from the given H
0

(·), the functions Hn(·) in (1.4.11) can be com-
puted recursively by the following matrix multiplication

Hn(x) = eQ(n)Hn�1

(x) (1.4.16)

Proof. Fixing a generic n, by the representation of Hn(x) in (1.4.13) we have to prove that

[wn
1

, · · · , wn
N ]

0
=

eQ(n) [wn�1

1

, · · · , wn�1

N ]

0
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For this purpose it suffices to show that for a generic i 2 {1, · · · , N} we have

wn
i =

N
X

j=1

qi,j(n)

ri + qi(n)
wn�1

j (1.4.17)

where, due to the fact that qi,i = 0, the sum extends actually only over the j 6= i.
We next have, see (1.4.11)

wn
i = Hn(XN

t

+M�n = xi)

= E
˜P
n

e�r
N

t

+M�n

(⌧
N

t

+M�n+1�⌧
N

t

+M�n

)Hn�1

(XN
t

+M�n+1

) | XN
t

+M�n = xi
o

= E
˜P
n

e�ri(⌧
N

t

+M�n+1�⌧
N

t

+M�n

)

PN
j=1

wn�1

j 1{X
N

t

+M�n+1=xj} | XN
t

+M�n = xi
o

=

PN
j=1

wn�1

j E
˜P
n

e�ri(⌧
N

t

+M�n+1�⌧
N

t

+M�n

)

1{X
N

t

+M�n+1=xj} | XN
t

+M�n = xi
o

(1.4.18)

where we have used the fact that, at a generic transition time ⌧n, we have rn = ri if Xn = xi. We
have also used the definition of wn�1

j according to (1.4.13) with n� 1 replacing n.
Next, by the general properties of CTMCs we have that, conditional on XN

t

+M�n, the inter-
arrival time ⌧N

t

+M�n+1

� ⌧N
t

+M�n is independent of XN
t

+M�n+1

. Recalling furthermore that,
for XN

t

+M�n = xi, the distribution of ⌧N
t

+M�n+1

� ⌧N
t

+M�n is (negative) exponential with
parameter qi, we obtain

E
˜P
n

e�ri(⌧
N

t

+M�n+1�⌧
N

t

+M�n

)

1{X
N

t

+M�n+1=xj} | XN
t

+M�n = xi
o

= E
˜P
n

e�ri(⌧
N

t

+M�n+1�⌧
N

t

+M�n

) | XN
t

+M�n = xi
o

E
˜P
n

1{X
N

t

+M�n+1=xj} | XN
t

+M�n = xi
o

=

R1
0

e�riuqi(n)e�q
i

(n)udu ˜P
�

XN
t

+M�n+1

= xj | XN
t

+M�n = xi
 

=

q
i

(n)
ri+q

i

(n)
pi,j(n) =

q
i,j

(n)
ri+q

i

(n)

(1.4.19)
where in the last passage we have used the fact that (see (7) for the case of a time homogeneous
Q) one has that pi,j =

q
i,j

q
i

.
Combining (1.4.18) with (1.4.19) we obtain (1.4.17) and thus the statement of the Proposition.

Notice that (1.4.16) implies Hn(x) =

eQ(n) eQ(n � 1) · · · eQ(1)H
0

(x) which in the time homo-
geneous case becomes Hn(x) =

eQnH
0

(x). Notice also that in the bivariate (multivariate) case,
putting z = (x, y)0 with x = (x1, · · · , xN ), y = (y1, · · · , yM ) we have H

0

(z) = [w0

1

, · · · , w0

N ·M ]

0

and Hn(z) = eQ(n)Hn�1

(z) where

eQ(n) =

⇢

q
(i,h),(j,k)(n)

ri,h + qi,h(n)

�

i,j=1,··· ,N
h,k=1,··· ,M

(1.4.20)

whereby ri,h = r(X,Y ) when X = xi and Y = yh and qi,h(n) =
P

j 6=i,k 6=h q(i,h),(j,k)(n).



18 CHAPTER 1. PRICING ASPECTS: MC VARIANCE REDUCTION UNDER A CTMC

The computation of ˜V
N

t,T

H,t,T (Xt) by recursive matrix multiplication and then that of the expec-

tation E
˜P
n

˜V
N

t,T

H,t,T (Xt)

o

by simulating Nt,T forms the backbone of our (hybrid) MC method with
conditioning. It is based on the rather immediate next Proposition, which in fact follows from
(1.4.9), Proposition 1.4.5 and Corollary 1.4.4.

Proposition 1.4.6. The value of E ˜P
n

˜V
N

t,T

H,t,T (Xt)

o

, by which (see (1.4.9)) we determine the price
VH,t,T (Xt) of the Prototype product, is given by

E
˜P
n

˜V
N

t,T

H,t,T (Xt)

o

|X
t

=xi

=

1

2

E
˜P
nh⇣

1 +

eQ(Nt,T + 1)

⌘

eQ(Nt,T ) · · · eQ(1)H
0

(x)
i

i

o

(1.4.21)

where [z]i denotes the i�th component of the vector z and where the expectation is with respect to
Nt,T . In the time homogeneous case the above expression reduces to

E
˜P
n

˜V
N

t,T

H,t,T (Xt)

o

|X
t

=xi

=

1

2

E
˜P
nh⇣

1 +

eQ
⌘

eQN
t,TH

0

(x)
i

i

o

(1.4.22)

Remark 1.4.7. The expressions in (1.4.22) can be further simplified if eQ is diagonalizable (see
[PR10b]).

Based on the above Proposition 1.4.6, our conditional MC approach (hybrid MC) can now be
synthesized as follows:

i) Simulate a sufficiently large number of realizations of the random variable Nt,T .

ii) Record the maximum value, say M , of Nt,T obtained during the simulations and determine
the empirical distribution of Nt,T derived from the simulations.

iii) Compute recursively the values of
⇣

1 +

eQ(n+ 1)

⌘

eQ(n) · · · eQ(1)H
0

(x) for n = 1 up to n = M .

iv) Determine the average of the values computed in iii) with respect to the empirical distribution
of Nt,T determined in ii).

Applications of this approach are discussed in the next section 1.5 and in section 1.6 we then
present numerical results and comparisons.

As already mentioned in Remark 1.4.2, the accuracy of the approximation of the exact price
VH,t,T (Xt) in (1.4.1) by the E ˜P

n

˜V
N

t,T

H,t,T (Xt)

o

, where ˜V
N

t,T

H,t,T (Xt) is the midpoint between the upper

and lower bounds ¯V
N

t,T

H,t,T (Xt) and V
N

t,T

H,t,T (Xt) respectively, can also be seen as a consequence of
Corollary 1.4.9 below. For this purpose consider the operator, acting on RN with values in
RN , that is associated with the matrix eQ(n) defining the recursions (1.4.16). It is given by the
expectation operator in (1.4.11) which, for the generic i�th component of Hn(x) can be expressed
as (recall that we had assumed ri = r(xi))

eQ(n)Hn�1

(Xn�1

)|X
n�1=xi

= E
˜P
n

e�riIH(Xn) | Xn�1

= xi
o

(1.4.23)

with I denoting a (negative) exponential random variable with parameter qi. We have the fol-
lowing
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Proposition 1.4.8. The operator eQ(n) in (1.4.23) is a contraction operator in RN with contrac-
tion constant

� := max

iN,n2N

qi(n)

ri + qi(n)
< 1

.

Proof. By Jensen’s inequality we have

k eQ(n)H(x)� eQ(n) ¯H(x)k  sup

i,n
E

˜P
n

e�ri I
o

kH(x)� ¯H(x)k

where
sup

i,n
E

˜P
n

e�ri I
o

= sup

i,n

Z 1

0

e�risqi(n)e
�q

i

(n)sds = max

i,n

qi(n)

ri + qi(n)

This Proposition 1.4.8 as well as Corollary 1.4.4 lead immediately to the following

Corollary 1.4.9. By the contraction property of the operator associated with eQ(n) we have that

lim

n!1
k ¯V n

H,t,T (x)� V n
H,t,T (x)k = 0

Remark 1.4.10. As already mentioned at the end of the introductory part to this section, instead
of determining, on the basis of (1.4.21), the value of E ˜P

n

˜V
N

t,T

H,t,T (Xt)

o

by MC simulations of Nt,T ,
one might compute this expectation in a fully analytical way as

E
˜P
n

˜V
N

t,T

H,t,T (Xt)

o

|X
t

=xi

=

1

2

1
X

n=0

h⇣

1 +

eQ(n+ 1)

⌘

eQ(n) · · · eQ(1)H
0

(x)
i

i

˜P (Nt,T = n | Xt = xi)

The difficulties for an actual use of this formula consist in the infinite sum and the probability
distribution of Nt,T . Concerning the infinite sum notice that, since (see Proposition 1.4.8) the
operator associated with eQ(n) is contracting, for the actual computations one may truncate the
infinite sum thereby introducing an approximation that can be made arbitrarily precise provided the
truncation is chosen to be sufficiently large. On the other hand, the probability distribution of Nt,T

can in fact be determined explicitly, however the corresponding procedure is rather cumbersome.
Details for the case of a scalar Xt can again be found in [PR10b].

1.5 Applications of the conditional MC approach to the pricing
of path dependent options

Recall that the proposed conditional MC method is described in steps i) to iv) in subsection 1.4.1.
As already mentioned, with respect to a plain MC this method allows to reduce the variance
(“variance reduction by conditioning”) and, as we shall see from the numerical results in the next
section 1.6, also a possible bias. The great advantage lies however in the wide applicability, in
particular in the time inhomogeneous and multivariate cases, of our method that is based on
successive matrix multiplications. In subsection 1.5.1 we shall show this first for barrier options
(knock-out options) for which formula (1.1.2) cannot be used not even in the time homogeneous
case. Successively, in subsections 1.5.2 and 1.5.3 we shall then show it for the lookback and Asian
options as we had described them in subsections 1.3.1 and 1.3.2 and for which our method allows
to overcome the difficulties alluded to in Section 1.3.
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1.5.1 Barrier options (knock-out options)

Barrier options include various kinds of derivatives, in particular they include also credit risky
derivatives in the context of the structural approach. As an example we consider here a specific
case, namely knock-out options.

We consider the case when an option with underlying Xt is knocked out as soon as Xt reaches or
falls below a level L. Using a notation corresponding to (1.2.3), assume that for the “background”
(not knocked out) option we have

¯H(·) = ¯H
0

(·) =
N
X

i=1

w̄0

i 1{·=xi}, x
i 2 E, w0

i 2 R (1.5.1)

Assume furthermore that the values xi are arranged in increasing order of magnitude and put

` := min[i 2 {1, · · · , N} | xi > L] (1.5.2)

For the knock-out option we may then start from

H(Xt) = H
0

(XT ) =

N
X

i=1

w̄0

i 1{X
T

=xi,i�`} :=
N
X

i=1

w0

i 1{X
T

=xi} (1.5.3)

having put w0

i := w̄0

i 1{i�`}.
In order to be able to apply our conditional MC approach, we want also here to obtain a

relation of the form (1.4.16) for a suitable eQ(n). We have now the rather immediate

Proposition 1.5.1. Starting from

H
0

(·) =
N
X

i=1

w̄0

i 1{·=xi,i�`} :=
N
X

i=1

w0

i 1{·=xi} (1.5.4)

with w0

i := w̄0

i 1{i�`} we have, for n  NT ,

Hn(·) =
N
X

i=1

wn
i 1{·=xi} (1.5.5)

where wn
= [wn

1

, · · · , wn
N ]

0 are given recursively by

wn
= I` eQ(n)wn�1 (1.5.6)

with I` a unit matrix having the first ` rows equal to zero and, as before,

eQ(n) =

⇢

qi,j(n)

ri + qi(n)

�

i,j=1,··· ,N
(1.5.7)

As a consequence of Proposition 1.5.1 we may restrict attention to an (N � `)�vector w̃n for
which

w̃0

i = w0

i := w̄0

i 1{i�`} and w̃n
=

eQ`(n)w̃
n�1 (1.5.8)
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where eQ`(n) is the (N�`)⇥(N�`) sub matrix of eQn formed by the last N�` rows and columns.
We have the equivalent representations

Hn(XN
T

�n) =

N
X

i=1

wn
i 1{X

N

T

�n

=xi} =
N�
X̀

i=1

w̃n
i 1{X

N

T

�n

=xi} (1.5.9)

Notice the importance here of having the recursive relation (1.5.6) even if the underlying is time-
homogeneous. Notice also that, in the case of barrier options, the time in-homogeneity arises not
only if the underlying Xt is time in-homogeneous, but also if the barrier L is time varying.

1.5.2 Lookback options

In the general case of a lookback option of the form HT = (XT � g(XT
T��))

+ with 0 < � < T

our conditional MC approach (see steps i) to iv) in subsection 1.4.1) appears to be particularly
appropriate since the expression to be averaged, namely

h

1 +

eQ(n+ 1)

i

eQ(n) · · · eQ(1)H
0

(x) can
be computed separately for each individual simulated trajectory.

1.5.3 Asian options

In subsection 1.3.2 we had derived the transition intensity matrix Q for the bivariate Markov
process (Xt, Yt) on the event {n  NT } = {⌧n  T}, which suffices to evaluate the claim HT =

⇣

Y
N

T

T � 
⌘

+

(see (1.3.17)). In the MC-with-conditioning the basic quantities are V
N

t,T

,0
H,t,T (Xt)

in (1.4.4) and V
N

t,T

,1
H,t,T (Xt) in (1.4.5) where, for the case of V

N
t,T

,1
H,t,T (Xt), we need the transition

intensities of (Xt, Yt) on the larger event {n  NT + 1} = {⌧n+1

 T}. However, since the
last discounting factor in (1.4.5) is exp [�rN

T

(⌧N
T

+1

� ⌧N
T

)] rather than exp [�rN
T

(T � ⌧N
T

)]

as in the expression (1.2.2) for the exact price (see also (1.4.1) and (1.4.2)), we can still use the
definition for the discretization of Yt as described in point ii) of (1.3.16) to compute the transition
intensities also on the larger set {n  NT +1} so that they keep the same expression as in (1.3.19).
Accordingly, we may consider also here a matrix eQ constructed in line with (2.4.12), namely

q̃
(i,h),(j,k) =

(

q(i,h),(j,k)
ri+q

i

i 6= j

0 i = j
(1.5.10)

where, as in (2.4.12), ri = r(X) when X = xi and qi =
P

j 6=i qi,j . This matrix can now be used
to compute VH,t,T (Xt) according to (1.4.9) and (1.4.21), namely it can be used to implement our
conditional MC approach as described in steps i) to iv) in subsection 1.4.1.

For simplicity of presentation, the analysis in subsection 1.3.2 was carried out for the case
of a time homogeneous Xt and for � = T and so the Q�matrix for (Xt, Yt) turned out to be
time homogeneous. In this time homogeneous case one may compute the price of HT also via the
explicit analytic formula (1.1.2) and, in fact, in the next numerical section 1.6 we perform also this
computation for comparison purposes (it will, though, not be the exact price, but a sufficiently
good “proxy” since it is based on the discretization of Yt). If, however, Xt is time inhomogeneous
and/or � < T , then formula (1.1.2) is not applicable anymore, but our MC-with-conditioning can
still be used.
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1.6 Numerical results and comparisons

The purpose of this section is to implement numerically our suggested approach and thereby
to show that, with respect to a plain MC, in the MC with conditioning the variance is indeed
reduced and the results themselves are more precise. To apply our method, we have first to specify
a transition intensity matrix Q. For actual applications, this matrix would have to be calibrated
to actual market data. Here the purpose is however that of providing some test examples and
for this it may be convenient to choose the matrix freely. In fact, even if we would perform a
calibration, we would end up with one specific matrix Q. To test the behavior of our algorithm
it may thus be more significant to try more than one Q�matrix which is what we do below at
least in one case. While calibration is thus beyond the scope of this work, we still want to make
the following

Remark 1.6.1. Concerning calibration we would like to mention that, for an actual calibration
to become feasible, one would have to choose specific patterns of Q�matrices, parametrized by a
small number of parameters, and so calibrate just these parameters. One such pattern can for
example be obtained by taking a classical continuous-time affine term structure model and (see
section 1.6.2 below) perform a space discretization according e.g. to [KD01] thus obtaining a cor-
responding CTMC with a transition matrix that turns out to be tri-diagonal and is characterized
by the same parameters as the continuous-time model. We also mention that, for a time homoge-
neous Xt it is possible to set up a filtering approach to estimate the values of the Q�matrix, either
by combined filtering and parameter estimation, or by filtering and EM-parameter estimation (see
e.g.[EAM08], see also Part 2 of this thesis).

The section is structured as follows. In subsection 1.6.1, we discuss the performance criteria,
which is the convergence of the empirical estimator variance per sample. Then in each of the
succeeding subsections we present the performance of MC with conditioning for different types of
financial products as described in previous sections. We start in subsection 1.6.2 by discussing the
pricing of zero-coupon bonds for which, at least in the time homogeneous case, comparison with
theoretically exact values is possible; this may thus serve as an assessment of the quality of our
approach which is then applied to situations where a comparison is not possible anymore. Prices
of zero-coupon bonds previously computed via MC with conditioning in [PR10b] are here reported
and compared against prices computed using other methods, in particular almost exact ones. It is
shown that our approach yields comparable values. In subsection 1.6.3 we present the numerically
tested performance of MC with conditioning for pricing barrier options (knock-out options); in
subsections 1.6.4 and 1.6.5 we present the analogous numerical tests for the performance of our
approach in the case of lookback options as well as Asian options prices.

1.6.1 Monte Carlo criterion

The book [Gla04] treats comprehensively the MC method and its applications to finance, including
techniques to improve the performance of the vanilla MC by analyzing various more sophisticated
kinds of MC. In order to compare two different MC estimators it is important to establish the
relevant performance criterion. Let ˆCn denote the MC estimate for the random variable C,
computed after n simulations that are each i.i.d. Due to the central limit theorem, it is well



1.6. NUMERICAL RESULTS AND COMPARISONS 23

known that under an unbiased estimator ˆC, the error

ˆCn � C ) N (0,�2C/n)

in distribution, so the convergence rate
�

�

�

Var[ ˆCn � C]� �2C/n
�

�

�

/n

is a simple performance criterion in the ideal case. This is however not applicable in our situation.
In the first place, given the underlying CTMC X, we often do not explicitly have the theoretical
distribution of the derivative price, especially when treating complicated payoffs, i.e., there are
no closed-form pricing formulas that could provide a basis of comparison for more complicated
derivatives. In the second place, estimator bias depends on the parameters of the CTMC X.
Indeed, in our various experiments for the case when the theoretical distribution of prices is
available, it has been empirically observed that certain choices of parameters for X lead to MC
estimators that converge to the theoretical mean faster than others.

For methods that improve on a plain MC, additional computational effort is necessary to
ensure that it is an asymptotically unbiased estimator. It is therefore observed in [Gla04] that a
better criterion must take into account both the convergence rate of the error variance and also
the bias reduction rate. A criterion proposed was the mean square error (MSE), which is the
sum of the squared bias and the variance (see [Gla04]), more explicitly, if ↵̂ is an estimator of a
quantity ↵ then

MSE(↵̂) =E[(↵̂� ↵)2]

=(E[↵̂]� ↵)2 + E[(↵̂� E[↵̂])2]

=Bias2(↵̂) + Variance(↵̂).

In the absence of explicit expressions for the theoretical mean of the prices, we are in general
unable to use the component Bias2(↵̂) of the MSE, and therefore we shall assume the estima-
tor variance as the basis of our principal performance criterion instead of the entire MSE. The
performance criterion we will therefore use is

Var
h

ˆCn

i

n

which reflects the estimator variance per number of simulations.
We remark that a possible future improvement to our study is therefore to investigate bias

estimators for the case of complicated derivative payoffs, allowing hence to evaluate the estimator
on the basis of MSE performance, as well as investigating bias reduction techniques. Nevertheless
we wish to point out that, since the MC with conditioning approach provides analytic expressions
for quantities that are on the other hand left as random variables in plain MC, intuitively there is
less bias in the MC with conditioning approach (it is more closely related to the explicit formula).

1.6.2 Zero Coupon Bonds

As mentioned at the beginning of this section 1.6, the pricing of zero coupon bonds is simple
enough to allow for a comparison also with theoretically almost exact values and corresponds to
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our setup by putting Xt = rt and H(XT ) ⌘ 1. The CTMC for Xt = rt can for example be chosen
as the approximation, obtained via a space discretization in the spirit of [KD01], of well-known
affine diffusion models for the short rate of interest rt, for which the exact price can be computed
analytically. We report here results from [PR10b], where the CTMC Xt = rt is obtained from a
space discretization according to [KD01] of the CIR model for a corresponding continuous-time
short rate r̃t, namely

(

dr̃t = k(✓ � r̃t)dt+ �dWt

r̃
0

= r̄
(1.6.1)

The bond prices obtained from the MC method with conditioning are compared not only with
the theoretically exact price eP (t, T ) for model (1.6.1), but also with the prices obtained by other
methods, including plain MC. While in the present work we consider the midpoint between the
upper and lower bounds as the value to be computed analytically in our (hybrid) MC method
with conditioning (see (1.4.8) and Corollary 1.4.4), in [PR10b] the authors consider just the
upper bound that in general does not differ much from the midpoint. In the Tables below,
prices for various maturities T and different initial values for the short rate r̃

0

= r
0

= r̄, as
well as for different values of the parameters in (1.6.1) are reported from [PR10b]. As already
mentioned, eP (t, T ) denotes the exact bond price for model (1.6.1), while the other reported prices
are: PRBT (t, T ) the bond price obtained from a recombining binomial tree model, PFZ(t, T )

the price computed for a time discretization of (1.6.1) and computed according to the recursive
pricing method described in [FZ02], PExp(t, T ) the price computed by formula (1.1.2) (recall that
Q is here time homogeneous), Ppl(t, T ) the price computed by plain MC and P ub

c (t, T ) the upper
bound on the price computed by MC with conditioning.

The following parameters were used: t = 0 years, T = 0.5, 2 and 5 years. The number of MC
simulations M and the RBT steps ¯M were taken to be 500, which, while it is a low number with
respect to what is typical, was enough because a very fine space discretization was chosen. In
Table 1 and Table 2 the numerical results are presented when the values of the initial spot rate r̄

and the mean-reversion constant ✓ are of the order of one hundredth; in Table 3 the values of r̄
and ✓ are of the order of one tenth.

Table 1: Bond prices eP (t, T ), P
RBT

(t, T ), P
FZ

(t, T ), P
Exp

(t, T ) and Pub

c

(t, T )

(M = M̄ = 500)

T (years) 0.5 2 5 0.5 2 5

r̄(= ri) 0.01 0.01 0.01 0.02 0.02 0.02

k 0.01 0.01 0.01 0.02 0.02 0.02

✓ 0.8 0.8 0.8 0.5 0.5 0.5

� 0.1 0.1 0.1 0.05 0.05 0.05

eP (t, T ) 0.995014 0.980244 0.951462 0.990051 0.960821 0.905046

P
RBT

(t, T ) 0.995042 0.980302 0.951556 0.99007 0.960898 0.905226

P
FZ

(t, T ) 0.995014 0.980244 0.951463 0.990051 0.960821 0.905046

P
Exp

(t, T ) 0.995012 0.979568 0.947174 0.990051 0.960821 0.905047

P

ub
c (t, T ) 0.995024 0.980276 0.951621 0.990143 0.960734 0.905318

Table 2: Bond prices eP (t, T ), P
RBT

(t, T ), P
FZ

(t, T ), P
Exp

(t, T ) and Pub

c

(t, T )

(M = M̄ = 500)
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T (years) 0.5 2 5 0.5 2 5

r̄(= ri) 0.03 0.03 0.03 0.02 0.02 0.02

k 0.03 0.03 0.03 0.02 0.02 0.02

✓ 1.1 1.1 1.1 1.2 1.2 1.2

� 0.1 0.1 0.1 0.1 0.1 0.1

eP (t, T ) 0.985116 0.941861 0.861094 0.990052 0.960849 0.905072

P
RBT

(t, T ) 0.985146 0.941974 0.86135 0.990072 0.960926 0.905251

P
FZ

(t, T ) 0.985116 0.941861 0.861094 0.990052 0.960849 0.905072

P
Exp

(t, T ) 0.985116 0.941841 0.861042 0.990052 0.960738 0.904656

P

ub
c (t, T ) 0.985128 0.941968 0.861319 0.990059 0.95647 0.90193

Table 3: Bond prices eP (t, T ), P
RBT

(t, T ), P
FZ

(t, T ), P
Exp

(t, T ), P
pl

(t, T ), P
c

(t, T )

(M = M̄ = 500)

T (years) 0.5 0.5 0.5 0.5

er(= ri) 0.01 0.02 0.03 0.02

k 0.8 0.5 1.1 1.2

✓ 0.01 0.02 0.03 0.02

� 0.1 0.05 0.1 0.1
eP (t, T ) 0.995014 0.990051 0.985116 0.990052

P
RBT

(t, T ) 0.995042 0.99007 0.985146 0.990072

P
FZ

(t, T ) 0.995014 0.990051 0.985116 0.990052

P
Exp

(t, T ) 0.995012 0.990051 0.985116 0.990052

P
pl

(t, T ) 0.995012 0.990051 0.985067 0.989930

P
c

(t, T ) 0.981921 0.990059 0.985041 0.989885

1.6.3 Barrier options (knock-out options)

Following the pricing approach in section 1.5.1 for barrier options, we are able to compare the
barrier options price estimator variance rate for plain MC and MC with conditioning. With
N = 5, we define the following Q matrix:

Q =

2

6

6

6

6

6

6

4

�190 30 25 50 85

5 �185 140 25 15

5 135 �230 70 20

5 40 165 �230 20

5 10 45 60 �120

3

7

7

7

7

7

7

5

For the other parameters, we set the (non-knocked-out) terminal payoff H(XT ) as

H(XT ) = [1, 1, 1, 1, 1]>,

the Down-and-Out barrier level L = x2 (x 2 {x1, · · · , x5}), the interest rate values rt as

rt = r(Xt) = [0.01, 0.015, 0.02, 0.025, 0.05],

the initial state X
0

= x4 again with x 2 {x1, · · · , x5}, initial time t = 0 and terminal time T = 1

year.
Down-and-Out barrier options were hence computed using these specified parameters. Figure

1.1 shows a graph of the estimator with plain MC (dotted line) and MC with conditioning (dashed
line), over the number of MC simulations, from 1000 to 10,000.

Figure 1.2 shows the estimator variance rate of plain MC (dotted line) and MC with condi-
tioning (dashed line); the y-axis is given in log

10

scale to improve readability. It is clear that
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Figure 1.1: Estimator for barrier options using Plain MC (dotted line) and MC with

conditioning (dashed line) over total number of MC simulations. Final estimated price

is Barpl(t, T ) = 0.021811, std. dev= 0.14443, and Barc(t, T ) = 0.021461, std. dev=
0.005472, n = 10000.

Figure 1.2: The estimator variance rate for barrier options using Plain MC (dotted line) and

MC with conditioning (dashed line), shown on a log

10

scaled y-axis, over the total number

of simulations. For n = 10000 the Plain MC variance rate is 2.085972⇥ 10

�6

while the MC-

with-conditioning variance rate is 2.994255⇥ 10

�9

. The performance gain with conditioning

is evident (lower is better).
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MC with conditioning performs better for barrier options pricing compared to plain MC using
estimator variance rate as our performance criterion.

1.6.4 Lookback options

We performed the MC pricing for lookback options as discussed in subsections 1.3.1 and 1.5.2
considering the case where g(Xt

0

) := minstXs (Example 1) assuming, furthermore, that � =

T . This implies that, if the chain Xt is time-homogeneous, also the bivariate chain (Xt, Yt) is
and has thus a time homogeneous transition intensity matrix. Since the claim HT = (XT �
YT )+ is furthermore a simple claim, it is possible to compute the price also according to the
analytic formula (1.1.2). We thus computed lookback prices for a plain MC (gLB(t, T )), for MC
with conditioning (LB(t, T )). and according to formula (1.1.2) ( ¯LB(t, T )) for different sets of
parameters. We report here just two of the tests that we performed, which however show two
quite different situations that may occur.

In both cases, we assumed a state space E = [0.8, 0.9, 1.0, 1.1, 1.2] with N = 5; initial state
X

0

= 1.1, and maturity T = 2 years. For Test 1, we used the following Q-matrix:

Q =

2

6

6

6

6

6

6

4

�1440 360 360 360 360

7.2 �28.8 7.2 7.2 7.2

0.72 0.72 �2.88 0.72 0.72

2.52 2.52 2.52 �10.08 2.52

480 480 480 480 �1920

3

7

7

7

7

7

7

5

and, for Test 2:

Q =

2

6

6

6

6

6

6

4

�0.8 0.2 0.2 0.2 0.2

0.7¯3 �2.5¯3 0.¯6 0.6 0.5¯3

0.02 0.02 �0.08 0.02 0.02

0.6 0.5¯3 0.¯6 �2.4¯6 0.¯6

0.4 0.4 0.¯3 0.4 �1.5¯3

3

7

7

7

7

7

7

5

where the over-bar denotes repeated decimals. Notice that the basic difference in the two cases
consists in the fact that, in the first case, we obtain more frequent jumps/transitions of Xt.

The results are as follows: for Test 1, the plain MC estimate of the lookback price isgLB(t, T ) =

0.216839 (std. dev ˜� = 0.128226) (Figure 1.3), for the MC-with-conditioning the estimated
price is LB(t, T ) = 0.194265 (std. dev � = 0.011603), while ¯LB(t, T ) = 0.194707. Note that
gLB(t, T )� ˜� < LB(t, T )� � < LB(t, T ) + � <gLB(t, T ) + ˜�.
Figure 1.3 and Figure 1.4 show the graphs of the empirical mean as a function of the total
iteration count of the MC simulation, together with a plot of the 1.5 standard deviations interval
for gLB(t, T ) and LB(t, T ) in Test 1, respectively. For comparison, each of the Figures includes
also the level corresponding to ¯LB(t, T ).

For Test 1, Figure 1.5 is a graph of the estimator variance rate over the total number of
MC simulations for the plain MC estimator (solid line) and the MC-with-conditioning estima-
tor (dashed line). Again here we see that the MC-with-conditioning performs better under the
variance criterion.
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Figure 1.3: Plain MC estimator for lookback options showing the 1.5 standard deviation

interval (Test 1). lookback price gLB(0, 2) = 0.216839 (dashed line), sample std dev =

0.128226, ¯LB(t, T ) = 0.194707 (dotted line), n = 10000

Figure 1.4: MC-with-Conditioning estimator for lookback options showing the 1.5 standard

deviation interval (Test 1). lookback price LB(0, 2) = 0.194265 (dashed line), sample std
dev = 0.011603, ¯LB(t, T ) = 0.194707 (dotted line), n = 10000
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Figure 1.5: The estimator variance rate for lookback options using Plain MC (solid line) and

MC with conditioning (dashed line), shown on a log

10

scaled y-axis, over the total number

of MC simulations (Test 1). For n = 10000 the Plain MC variance rate is 1.644202⇥ 10

�6

while the MC-with-conditioning variance rate is 1.346261⇥10

�8

. The performance gain with

conditioning is evident (lower is better).

Figure 1.6: Plain MC estimator for lookback options showing the 2 standard deviation

interval (Test 2). lookback price = 0.147932 (dashed line), sample std dev = 0.118036,
¯LB(t, T ) = 0.056398 (dotted line), n = 10000



30 CHAPTER 1. PRICING ASPECTS: MC VARIANCE REDUCTION UNDER A CTMC

For Test 2, where the jump intensities are considerably lower, the lookback price with the
plain MC estimator is gLB(t, T ) = 0.147932 (std. dev ˜� = 0.118035), the MC-with-conditioning
price has empirical mean LB(t, T ) = 0.118050 (std. dev � = 0.037996) and ¯LB(t, T ) = 0.056398.
Unlike in the previous test, we now have that gLB(t, T ) + ˜� < LB(t, T ) � � (see Figure 1.6 and
Figure 1.7) and we need to plot the 2 standard deviation interval so that it includes ¯LB(t, T ).
This may indicate that, since we have less frequent state transitions, it takes more simulations
to obtain sufficiently reliable estimates. In fact, clustering problems may arise, i.e., the drawn
samples in the simulation belong to just a small subset of the event space. This is a well known
phenomenon that may lead to highly biased MC estimators. Indeed we find that in our MC tests,
samples are sometimes not drawn over a large enough subset of the event space for the random
variable Nt,T - not every possible transition count in [t, T ] is achieved by the simulated paths (see
Figures 1.8 and 1.9 which show the empirical distribution of jump counts for test 1 and test 2).
As a result, many of the possible outcomes are weighted too low, causing the empirical mean,
that is the weighted average, to be unreliable (see Figures 1.10 and 1.11 which show respectively
the sampled price and the theoretical price for each possible jump count).

Nevertheless we still observe better performance for MC-with-conditioning under the empirical
variance rate criterion as well as a considerably smaller squared bias with respect to the value
¯LB(t, T ) calculated from (1.1.2). Figure 1.12 shows in fact the estimator variance rate over

the number of simulations, which just as before reflects the improved performance of MC-with-
conditioning. This suggests that in order to meaningfully apply MC, in particular plain MC, it
must be understood what conditions on the parameters may lead to models that are susceptible
to clustering, and in that case, it may be better to apply a Quasi-MC approach.

Figure 1.7: MC-with-Conditioning estimator for lookback options showing the 2 standard

deviation interval (Test 2) lookback price = 0.118050 (dashed line), sample std dev =

0.037996, ¯LB(t, T ) = 0.056398 (dotted line), n = 10000
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Figure 1.8: Empirical Distribution of Jump Counts for Test 1 samples, for N = 0 . . . 40

jumps

1.6.5 Asian options

The pricing for Asian options, as discussed in Section 1.5.3, can be performed using MC with
conditioning by obtaining first a suitable bi-variate Markov process that, for simplicity of pre-
sentation, we choose here to be time-homogeneous. Following the procedure outlined in section
1.3.2 and restricting ourselves (see section 1.5.3) to events for which ⌧n < T , we first obtain the
matrix P of transition probabilities for (Xt, Yt) for the case when � = T . Due to the restriction
⌧n < T and the effect of the space discretization of Yt, the matrix P is not a true probability
transition matrix of the Markov chain (Xt, Yt), i.e., its rows will not necessarily sum up to one.
Nevertheless we can obtain the pricing formula to compute the right-most expression in (1.4.21)
(see also (1.4.9)), using the Q-matrix that corresponds to P .

In this section, we present the prices obtained by plain MC according to (1.4.1) and by MC
with conditioning according to (1.4.21). Recalling that the Y�component of the bi-variate Markov
process (Xt, Yt) involves a time discretization (see subsection 1.3.2), we also wanted to investigate
the effect of this discretization. For this purpose, thanks to the time homogeneity of Q and the
fact that, for � = T , we obtain a simple claim, we include also a proxy for the theoretical price,
by computing (1.1.2) on the basis of this Q-matrix. Here we call it “proxy” because it is the
theoretical price for discretized Yt instead of the actual continuous one. We shall see that, indeed,
we achieve a reduction in the estimator variance, as well as a reduction in the squared-bias with
respect to the proxy for the theoretical price. We also tested the effect of varying the discretization
level of Yt.

For the CTMC X we have specified the following Q-matrix:
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Figure 1.9: Empirical Distribution of Jump Counts for Test 2 samples, for N = 0 . . . 40

jumps

Figure 1.10: Conditional mean of prices per jump count (Test 1 samples). Dashed line -

sample price (Plain MC); Solid line - theoretical price (MC -with-Conditioning)
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Figure 1.11: Conditional mean of prices per jump count (Test 2 samples). Dashed line -

sample price (Plain MC); Solid line - theoretical price (MC-with-Conditioning)

Figure 1.12: The estimator variance rate for lookback options using Plain MC (solid line)

and MC with conditioning (dashed line), shown on a log

10

scaled y-axis, over the total number

of MC simulations (Test 2). For n = 10000 the Plain MC variance rate is 1.393242⇥ 10

�6

while the MC-with-conditioning variance rate is 1.443663⇥ 10

�7

.The performance gain with

conditioning is evident (lower is better).
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Figure 1.13: The variance rate for Asian options using Plain MC (dotted line) and MC

with conditioning (dashed line), shown on a log

10

scaled y-axis, over the total number of MC

simulations. The discretization level is K = 100 for Yt. For n = 10000 the Plain MC variance

rate is 3.431721 ⇥ 10

�7

while the MC-with-conditioning variance rate is 5.65751 � ⇥10

�8

.

The performance gain with conditioning is evident (lower is better).
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.

The other parameters are: t = 0, T = 1.5 years; E = [0.8, 0.9, 1.0, 1.1, 1.2]>,
R = [0.1, 0.12, 0.13, 0.14]>, X

0

= 1.1, strike price = 0.9.
We start in Figure 1.13 by giving numerical evidence for the fact that by MC with conditioning

we achieve a lower variance. We do this only for one discretized level of K (for the definition of
this level K see subsection 1.3.2), since K does not affect the frequency of jumps and thus the
variance.

We also want to give some numerical evidence for the fact that MC with conditioning allows
to reduce a possible bias. To this effect we compare the prices for MC with conditioning with
those of the proxy for the theoretical price. We present two figures, Fig. 1.14 and Fig. 1.15 in
order to furthermore show that the bias decreases with increasing level of K.

1.6.6 Computation Times

The Table 4 shows the example computation times in running each of the various numerical ex-
periments. They represent the computational cost to obtain the performance corresponding to
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Figure 1.14: Estimator for Asian options using Plain MC (dotted line) and MC with con-

ditioning (dashed line), over total number of MC simulations. We take K = 25 states

for Yt. The proxy for the theoretical price is also shown (solid line). Final estimated price

is AsianOptpl(t, T ) = 0.032274, std. dev= 0.064392, and AsianOptc(t, T ) = 0.052327,

std. dev= 0.024023, n = 10000. The value of the proxy for the theoretical price is

˜AsianOpt(t, T ) = 0.060617

each test as reported in Sections 1.6.2-1.6.5. The computations were performed using the software
package MATLAB Release 2012b on a 2.6 GHz Intel Core i7 processor, with 16GB Memory, under
an OS X Version 10.9.1 operating system.

For the MC pricing, we distinguish the time spent on the simulation of paths and the actual
time for computing prices. It can be observed that whenever an explicit, analytic formula is
available, that is, for simple claims such as zero-coupon bonds, the total computation time by
analytic formula is lower compared to the MC, which is expected, in general. For the case of
Asian Options, the times reported under the column Analytic Formula are indicated with an (*)
since they refer to the proxy and not an actual analytic formula (see the discussion at the end of
Section 1.5.3).

Comparing the computation times of plain MC to those of the MC with conditioning, it can
be seen that the latter is slightly faster than the former in the case of Zero-Coupon Bonds, Barrier
Options and Lookback Options. However, it is significantly slower than the former in the case
of Asian Options (space discretization size K = 25, and K = 100). This can be explained by
the fact that scientific computing packages such as MATLAB are generally optimized for matrix
computations. However this computation advantage with matrices holds only up to a certain
dimension. Indeed, pricing Asian Options under MC with conditioning involves high-dimensional
matrices (namely, the matrices eQ(n) ) representing such a case.

In summary, the MC with conditioning still presents a comparable, if not slightly better,
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Figure 1.15: Estimator for Asian options using Plain MC (dotted line) and MC with con-

ditioning (dashed line), over total number of MC simulations. We take K = 100 states

for Yt. The proxy for the theoretical price is also shown (solid line). Final estimated price

is AsianOptpl(t, T ) = 0.030362, std. dev= 0.058581, and AsianOptc(t, T ) = 0.047291,

std. dev= 0.023786, n = 10000. The value of the proxy for the theoretical price is

˜AsianOpt(t, T ) = 0.048981

method over plain MC, not only for variance reduction but also with respect to computational
cost, except in cases such as Asian Options, that lead to very large eQ(n) matrices. The added
computational cost in that case is certainly undesirable but is the trade-off for the variance- and,
possibly, bias - reduction. One usually applies pre-conditioning techniques on large matrices (see
for example [Ben02]), however we did not apply this in the implementation our computer algo-
rithms.

Test Simulation Time Plain MC MC with Conditioning Analytic Formula

Zero-Coupon Bonds 59.57 s 0.602 s 0.503 s 0.00635 s
Barrier Options 505.4 s 1.803 s 1.721 s N.A.

Lookback Options 15.774 s 5.611 s 2.321s N.A.
Asian Options (K = 25) 38.51 s 3.212 s 5.909 s 0.0622* s
Asian Options (K = 100) 36.82s 3.182 s 141.8 s 0.293* s

Table 4: Computation Time for the Numerical Tests
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Chapter 2

Calibrating Market Models when the

underlying factor dynamics is a

Continuous-Time Markov Chain

2.1 Introduction

Financial models are often specified under complete information (i.e. the investor filtration is the
model filtration itself) and perfect knowledge of the true model parameters. These are, of course,
idealized assumptions that are no longer true when implementing a model. Two related problems
have therefore been tackled in order to arrive at more practical models. The first is the stochastic
filtering problem that arises from specifying the model under incomplete information, and the
second is the calibration problem, also known as system identification or parameter estimation in
the control theory literature.

In the former, one typically assumes an incomplete investor filtration Ft, such that the
model values are measurable only under some enlarged filtration Gt ◆ Ft. The investor is
then constrained to perform computations such as those necessary for derivatives pricing, un-
der the Ft-conditional expectation. Hence there is a need to obtain the Ft-conditional density
⇡t(·) := P [· | Ft]. Given a state process X and an observation process Y , that is a noise-corrupted
function of X, if we define the investor filtration as Ft = FY

t , i.e. the observation process rep-
resents the investors’ direct source of information, then the computation of optimal estimates
\f(Xt) := E[f(Xt) | FY

t ] for any measurable function f(·), amounts to the stochastic filtering
problem.

In the parameter estimation problem, on the other hand, one considers a parametrized family
of probability measures (P✓)✓2⇥ where the parameters ✓ belong to some set of admissible param-
eters. Let us denote by ✓⇤ 2 ⇥ the true model parameters, namely, we suppose that the true
or “physical” system induces the probability measure P✓⇤ . Next we assume that the investor a
priori can only make an initial guess ✓

0

of the model parameters (or equivalently, an initial guess
P✓0 of the model induced probability measure). The goal of parameter estimation is to obtain a
parameter estimate ˜✓ that induces P

˜✓, an estimate of the probability measure P✓⇤ . We will adopt
in this work a well-known recursive algorithm to obtain a sequence (

˜✓k)k of parameter estimates,

39



40 CHAPTER 2. CALIBRATING MARKET MODELS UNDER A CTMC

is the Expectation-Maximization (EM) algorithm, so named because in order to obtain ˜✓k at
each iteration of the algorithm, one must compute the expectation of the log-likelihood function
log

dP
✓

k

dP
✓̃

and then perform the maximization of this expectation ([Wu83]).
In fact, the parameter estimation problem by EM is itself connected to the stochastic filtering

problem. This is a central topic throughout the book [EAM08]. One approach that applies
filter-based EM to the case of pricing payoffs F (t,H, ⇠) that depend on a CTMC state process ⇠
with values in a finite set E is due to [EHJ00]. The authors of [EHJ00] specify ⇠ in continuous
time and suppose that markets can only indirectly observe the price F (t,H, ⇠) of future claims
H depending on ⇠, since the price is corrupted by multiplicative noise. Specifically, they assume
a discrete-time i.i.d. Gaussian noise sequence vk = v(tk) defined over the L+ 1 fixed observation
times 0 = t

0

< t
1

< . . . tL = T . For each generic observation time tl, the authors of [EHJ00] then
define the time discretized observations Y as the noise-corrupted yield, that is the instantaneous
spot rate, of

F (tl, H, ⇠)e⌘(⇠tl )vl =: e�Y
l

(T�t
l

)

for some function ⌘(·). Since the observations are not defined for t outside of {t
0

, t
1

, . . . , tL}, in
effect this approach only considers the time discretized ⇠t, i.e. the sequence (⇠l)l = (⇠t

l

)l . 1

Having defined the observation process Y in this way, and denoting by Xn = e⇠
n

where ei

is the i-th basis vector in RN (i.e. e
1

= (1, 0, . . .)>, e
2

= (0, 1, . . . 0)>, etc.), [EHJ00] perform
parameter estimation by filter-based EM on the system

(

Xn = QXn�1

+Mn

Yn = � 1

T�t logF (tn, H, ⇠n)� �(⇠
n

)

T�t vn.
(2.1.1)

where Q is the generator matrix of ⇠t, and the dynamics for X come from its discrete-time mar-
tingale representation. The filter-based EM technique (see [EAM08]), is essentially an application
of the Kalman filter.

Due to the fixed time-step discretization, the randomness in the jump times of the original
(non-discretized) CTMC ⇠t is effectively lost. We believe that this discrete-time set-up could lead
to inefficient estimators for the CTMC ⇠; indeed, to capture the random dynamics of a continuous
trajectory via a time discretization with a deterministic choice of time points, a fine time step
must be chosen. The true jump times of ⇠ now occur very rarely, with respect to this fine time
discretization, and hence the estimators for the model parameters in Q may become quite biased.
This would create difficulties especially in Monte-Carlo based pricing.

One way to retain the randomness in the jump-times of the CTMC X is to define the obser-
vation noise as a Brownian Motion instead of an i.i.d. Gaussian sequence. Then, to perform an
EM-based parameter estimation algorithm, in the spirit of [EHJ00], we must use the Wonham
filter (see [Won65]). In continuous time, the filter equations are given by a Zakai SDE. The filter
also forms the basis of an EM-algorithm, analogous to the filter recursions in discrete time. In
general a numerical scheme must be chosen to obtain the solutions of these SDEs. Here one

1The choice to define the observations process from the yield of a bond instead of its price is not an arbitrary
choice - in practice, bonds are indeed quoted in terms of their yield. [EHJ00] note that a disadvantage of this
set-up is the possibility to observe prices larger than 1 (negative yields). Here we remark that, while in the past,
negative yields were considered to be an impossible phenomenon, more recently this phenomenon has also been
observed, albeit still in rare cases. Hence this may now actually be considered an advantage of the model.
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typically applies a fixed-time discretization such as the Euler-Maruyama or the Milstein scheme
to discretize the SDE into recursive difference equations. These are so-called Ito Taylor approx-
imation schemes. This is different from the approach in [EHJ00] where the filter model is itself
discrete; here instead one has a continuous-time model on which a discretization is applied.

The standard numerical schemes approximate the solution to the SDE via the truncated
Ito-Taylor expansion of the SDE’s corresponding differential operator. This is analogous to the
numerical solution of deterministic ODEs. These schemes suffer from a cumulative discretization
error due to the fact that, like in the deterministic ODE case, they behave as slope estimates,
in the sense that they estimate the next value by projecting it along the approximate tangent
curve starting from the previous estimated value.Therefore to achieve sufficient accuracy, the
fixed-time discretization must be fine, especially near the jump times. However, using a fixed-
time discretization still causes information about the randomness of jumps to be lost. By using a
jump-time adapted discretization one recovers the randomness due to the jumps. Such a random
time discretization scheme first takes a fixed-time discretization, and then joins to its time points
the set of random jump-times of X.

We then propose the following extension to [EHJ00], which is an alternative approach inspired
by [PR10a]. Here we apply jump-adapted time discretization and investigate the use of standard
numerical schemes as well as quasi-exact approximation schemes. The quasi-exact approximation
is essentially a proxy for a highly accurate, exact explicit scheme, that incurs no discretization
errors. This is due to the fact that an exact scheme approximates the process itself instead of the
SDE. The term quasi-exact refers to the use of the exact - explicit solution if this is available or a
quasi - exact solution otherwise. [PR10a] numerically solve the Zakai equation using such a jump
- adpated quasi-exact approximation. They observed that such a scheme converges faster than
an Euler-Maruyama or Milstein discretization scheme even for coarse time-discretization steps.
[PR10a] treated the quasi-exact solutions of the Zakai SDE the state filters; however they did not
treat the problem of the quasi-exact solutions to the Zakai SDE’s for the EM-based estimation of
parameters, which is the main contribution of this work.

The rest of Part II is structured as follows: Section 2.2 contains the background for the
concepts and tools we will use. Section 2.3 focuses on the quasi-exact scheme, while Section 2.4
describes our proposed calibration model. Section 2.5 presents some results of a numerical test
to check the effectiveness of our proposed algorithm for a simple case.

2.2 Basic Concepts and Tools: CTMCs, Filtering, Parameter Es-
timation, and Strong Approximations

In this Section we review the basic concepts and probabilistic tools we will use, such as CTMCs,
Wonham filtering, parameter estimation by EM, and we will briefly recall the Euler-Maruyama
and the Milstein scheme.

2.2.1 Basic facts concerning Continuous-Time Markov Chains

Let (⌦,F , P ) be a probability space with a Continuous-Time Markov Chain (CTMC) ⇠ =

(⇠t)t�0

with values in E :=

�

x1, x2, . . . , xN
 

⇢ R that we assume for the moment to be time-
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homogeneous. We assume that P is the risk-neutral measure under which the no-arbitrage con-
dition is guaranteed, hence prices are computed under P .

The state values x1, . . ., xN are real scalars, but in general may be in RN or in any arbitrary
space. As we will see, it is convenient to consider an N -dimensional CTMC X = (Xt)0tT that
is identical to ⇠ under a state space transformation (see Section 2.2 of [EAM08]). We define the
state space for X to be the set E := {e

1

, . . . , eN} of unit vectors in RN , with e
1

= (1, 0, 0, . . . , 0)>,
e
2

= (0, 1, 0, . . . , 0)T and so on. Then we define the transformation from X to ⇠ as

⇠t = X>
t x =: hXt,xi

with x = (x1, x2, . . . , xN )

> 2 RN , and where we have denoted the scalar product of vectors by
h·, ·i. On the other hand the transformation from ⇠ to X is

Xt = e⇠
t

.

Under the probability measure P , X is characterized by a given Q-matrix Q = (qij)1�i,j�N ,
where qii = �

P

j 6=i qij and the jump intensity of state i is qi = �qii. The transition probabilities
pij := P (Xt+s = ej | Xt = ei) from state i to state j for i, j 2 E and 8t, s � 0 are defined as

pij :=

(

q
ij

q
i

if i 6= j

0 if i = j.
(2.2.1)

We denote the jump times as ⌧
1

< ⌧
2

, . . . ⌧⌫ < T where the distribution of the jump time intervals
is (⌧k+1

� ⌧k | Xk = ei) ⇠ Exp(qi) 8k � 0. We also denote the sequences Xn and ⇠n of the values
of X and ⇠ respectively, i.e. Xn = Xt if ⌧n  t < t and analogously for ⇠.

Associated to the jump process Xt (and ⇠t) are the state-wise jump counts N j
t , j = 1, . . . , N

defined by

N j
t =

1
X

k=0

1{⌧
k

t}1{⇠
k

=j} =
1
X

k=0

1{⌧
k

t}1{X
k

=e
j

},

and the counting process Nt =
PN

i=1

Nt(i).

Functions of the type f(t, ⇠t) =
PN

i=1

f i
(t)1{⇠

t

=i} are equivalent to f(t,Xt) with the vector
notation

f(t,Xt) = hf(t),Xti,

where f(t) = (f1

(t), f2

(t), . . . , fN
(t))>.

Martingale Representation We state two known results concerning martingale representations
for CTMCs.

Theorem 2.2.1 (Martingale Representation Theorem for Markov Chains). The process Mt de-
fined as

Mt = Xt �X
0

�
Z t

0

QXsds (2.2.2)

is a martingale.

Proof. This is a standard result in Markov Chain theory due to Dynkin (see Appendix B of the
book [EAM08] for an example of a proof).
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Let us also recall the following

Proposition 2.2.2 (Martingale Representation Theorem for functions of a Markov Chain). A
function f(t,Xt) that is differentiable in t and which has the vector form

f(t,Xt) = f(t)>Xt = hf(t),Xti

where f(t) = (f
1

(t), . . . , fN (t))>, satisfies the following differentiation rule and representation
result:

f(t,Xt) = f(0,X
0

) +

Z t

0

h ˙f(s),Xsids+
Z t

0

hf(s),QXs�ids+
Z t

0

hf(s), dMsi. (2.2.3)

Here
R t
0

hf(s), dMsi is an Ft-martingale.

Proof. See Appendix B of the book [EAM08]. This representation result is just a corollary of the
generalized Ito formula for semi-martingales and an application of Theorem 2.2.1.

Remark 2.2.3. Note that the preceding differentiation rule can be remembered easily by substi-
tuting the differential dXt. Hence, equation (2.2.3) is just

f(t,Xt) = f(0,X
0

) +

Z t

0

h ˙f(s),Xsids+
Z t

0

hf(s), dXsi (2.2.4)

2.2.2 Wonham Filters

Let us now suppose that the CTMC Xt represents the hidden state that one observes the process
yt. We shall assume that Xt and yt satisfy a stochastic dynamical system of the type

Xt = X
0

+

Z t

0

QXsds+Mt

y(t) =

Z t

0

h(s,Xs)ds+

Z t

0

⌘dWs.
(2.2.5)

We suppose throughout this work that the parameters that enter into the dynamics of X and
y satisfy sufficient conditions that guarantee a well-defined solution to (2.2.5). In particular we
shall assume that h(t,Xt) is a bounded (and hence also square integrable) process.

Systems of the type (2.2.5) form the basis for the Wonham filter problem, namely, compute
the estimates cXt = E[Xt | Fy

t ]. The derivation of Wonham filters can be obtained through the
change-of-measure technique, which we present in the Appendix 2.A.1; here we shall only state
the filter equations2.

2.2.2.1 Kallianpur-Striebel Formula

Define a probability measure ¯P by setting

d ¯P = ⇤

�1

T dP

2For more details on deriving the filters see the original paper [Won65], Chapter 8 of the textbook [EAM08] or
Chapter 7 of the lecture notes [Han07b].
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with

⇤T = exp

⇢

�1

2

Z T

0

⌘�2kh(s,Xs)k2 +
Z T

0

⌘�1h(s,Xs)dys

�

.

Note that by the boundedness of h(t,Xt), we have that E[⇤T ] = 1. By the Girsanov Theorem (see
Theorem 2.2.9 below or Theorem 8.6.5 of the book [Øks10]) the process ȳ := ⌘�1y is a ¯P -Wiener
process. Here ⇤t =

dP
d ¯P

�

�

F
t

is the corresponding Radon-Nikodym derivative from ¯P ⇠ P restricted
to Ft. By applying the Ito formula under ¯P we have that ⇤t satisfies

⇤t = 1 +

Z t

0

⇤s · ⌘�1 · h(s,Xs)dys, (2.2.6)

and hence ⇤ is a ¯P -martingale.
For each i 2 E let us define the unnormalized P -conditional probability �i(⇠t) for the CTMC

to be in state xi 2 E at time t, by the ¯P -conditional expectation3

�i(⇠t) := ¯E[1{⇠
t

=i}⇤t | Fy
t ],

for t 2 [0, T ]. It follows from the Kallianpur-Striebel formula, see [FKK72], that the P -conditional
probabilities of ⇠t given Fy

t are

P (⇠t = i | Fy
t ) = E[1{⇠

t

=i} | F
y
t ] =

�i(⇠t)
PN

j=1

�(⇠t)j
,

for t 2 [0, T ]. We can write the vector process �(⇠t) = (�1(⇠t), . . . ,�N (⇠t))> and define �(Xt) by

�(Xt) = h�,Xti = �(⇠).

The least-squares estimate at time t for f(⇠t) with respect to the observations available at
time t, i.e. with respect to Fy

t , is then the Wonham filter, which is given by the P -conditional
expectation

⇡t(f) = E[f(⇠t) | Fy
t ] =

PN
i=1

f(i)�(⇠t)i
PN

i=1

�(⇠t)i
(2.2.7)

for t 2 [0, T ].

2.2.2.2 The Zakai Equations

From equation (2.2.7) we see that for a given measurable function f , the Wonham filter for f(⇠t)
can be computed by knowing the unnormalized conditional expectation �(⇠t). This unnormalized
conditional expectation satisfies an SDE, the Zakai equation, whose derivation we present in
Appendix 2.A.1, following the proof of Theorem 3.2 in Chapter 8 of [EAM08].

3The P -conditional probability (normalized) of ⇠
t

= i is

P [⇠
t

= i | Fy

t

] =

¯E[1{⇠t=i}⇤t

| Fy

t

]

¯E[⇤

t

| Fy

t

]

while the unnormalized P -conditional probability is

¯E[1{⇠t=i}⇤t

| Fy

t

] := �i

(⇠
t

).
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Proposition 2.2.4 (Zakai Equation for the state Xt). The unnormalized conditional expectation
�(Xt) =

¯E [⇤tXt | Fy
t ] satisfies the following SDE

(

d�(⇠t) = Q�(⇠t)dt+ ¯D(t)�(⇠t)dȳt,

�(X
0

) = P (X
0

),
(2.2.8)

for t 2 [0, T ]. This is a homogeneous linear Ito SDE in ¯P .

Proof. See Appendix 2.A.1.1

For the parameter estimation problem that we will discuss in Section 2.2.3, we shall need some
more Zakai equations.

2.2.2.3 The Zakai Equation for the Transition Count Process N i,j
t

Define N i,j
t the counting process at time t for transitions of ⇠s from i to j for s 2 [0, t). Define

the martingale M i,j
t as

M i,j
t :=

Z t

0

hXs�, eiie>j dMs (2.2.9)

We then have, from the martingale representation of X, that

M i,j
t =

Z t

0

hXs�, eiie>j dXs �
Z t

0

hXs�, eiie>j QXs�ds.

Note that the first term is
Z t

0

hXs�, eiie>j dXs =

Z t

0

1{⇠
s�=i}e

>
j dXs = N i,j

t

and the integrand in the second term simplifies to

hXs�, eiie>j QXs� = hXs�, eiiqij .

Therefore,

N i,j
t =

Z t

0

hXs�, eiiqijds+
Z t

0

hXs�, eiie>j dMs. (2.2.10)

observe that N i,j
t = hN i,j

t Xt,1i, and hence

�(N i,j
t ) = �(hN i,j

t Xt,1i) = h�(N i,j
t Xt),1i,

so that it is enough to compute �(N i,j
t Xt) which is given in the following

Theorem 2.2.5. The counting process for transitions from i to j, �(N i,j
t Xt), satisfies the fol-

lowing Zakai equation:
8

<

:

d�(N i,j
t Xt) =

n

h�(Xt), eiiqi,jej +Q�(N i,j
t Xt)

o

dt+ ¯D(t)�(N i,j
t Xt)dȳt

�(N i,j
0

X
0

) = 0.
(2.2.11)

Proof. See Appendix 2.A.1.2.
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2.2.2.4 The Zakai Equation for the State Occupation - Time Tt(i)

Next, define the occupation time Tt(i) of state i in [0, t),that is

Tt(i) :=
Z t

0

hXs, eiids, 1  i  N.

We have analogously that
Tt(i) = hTt(i)Xt,1i,

hence also
�(Tt(i)) = h�(Tt(i)Xt),1i.

Theorem 2.2.6. The Zakai equation for the unnormalized conditional expectation �(Tt(i)Xt) is
(

d�(Tt(i)Xt) = {h�(Xt), eiiei +Q�(Tt(i)Xt)} dt+ ¯D(t)�(Tt(i)Xt)dȳt
�(T

0

(i)X
0

) = 0.
(2.2.12)

Proof. See Appendix 2.A.1.3.

2.2.2.5 The Zakai Equation for the Drift Estimator �t(i)

Lastly, we define the process �t(i) under P as

�t(i) :=

Z t

0

hXs, eiidys =
Z t

0

hihXs, eiids+
Z t

0

hXs, eii�dWs,

which we shall use in the estimator for the drift components hi(s) of the vector h(s) that enters
in the drift of yt. Hence we shall call �(�t(i)) the unnormalized drift component estimator or
simply estimator for the drift. Again we have that

�t(i) = h�t(i)Xt,1i

hence in the same manner as with �(N i,j
t ) and �(Tt(i)) the following holds:

�(�t(i)) = h�(�t(i)Xt),1i.

Theorem 2.2.7. The unnormalized conditional expectation �(�t(i)Xt) satisfies the following
Zakai equation

8

>

<

>

:

d�(�t(i)Xt) =
�

hih�(Xs), eiiei +Q�(�itXr)
 

dt+
�

¯D(t)�(�t(i)Xt) + h�(Xt), eiiei
 

dȳt

�(�
0

(i)X
0

) = 0.
(2.2.13)

Proof. See Appendix 2.A.1.4.

We have seen that computing the Wonham filter amounts to computing the solutions of certain
Zakai SDEs that, in general, have to be performed numerically. In the next section, we show an
application of Wonham filters in treating the problem of parameter estimation of a model of the
type (2.2.5).
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2.2.3 Parameter Estimation

In this section we will show that the parameter estimation of systems of the type (2.4.22) can be
done on the basis of the Wonham filter, which enters in the context of a recursive, EM algorithm.
This is discussed in Ch. 8 of [EAM08] and is based on the work of [DZ86] and [ZD88]. Here we
give a review of this procedure.

To solve the parameter estimation problem, one must specify an objective function Q(✓⇤,✓k)

and a sequence of maximizing parameter estimates (

˜✓k)k 2 ⇥ such that

˜✓k := argmax

✓2⇥
Q(✓k�1

,✓)

converges to ✓⇤, i.e.
�

�

�

˜✓k � ✓⇤
�

�

�

! 0

for some norm | · | on ⇥. A milder criterion that typically leads to an easier choice of an approx-
imating sequence (

˜✓k)k is that
�

�

�

˜✓k � ˜✓k�1

�

�

�

! 0. (2.2.14)

This leads to a recursive algorithm to estimate ✓⇤. Usually a stopping criterion ✏ is chosen so
that the algorithm stops when

�

�

�

˜✓k � ˜✓k�1

�

�

�

< ✏.

It has been shown in [Wu83] that assuming⇥ to be a compact Euclidean subset and that specifying
Q(

˜✓k�1

,✓) to be the log-likelihood, i.e.

Q(

˜✓k�1

,✓) = E

"

log

dP✓
k�1

dP✓

�

�

�

�

F
t

| Fy
t

#

(2.2.15)

leads to a converging algorithm under the criteria (2.2.14). It is then our interest in this section
to compute and maximize (2.2.15) with respect to each of our parameters.

Let us define the parameter vector ✓ as

✓ := (qi,j , 1  i, j  N, hi, 1  i  N)

>.

Suppose we have the latest estimate

✓ = (qi,j , h
i, 1  i, j  N)

and we wish to determine the updated estimates

˜✓ = (q̃i,j , ˜h
i, 1  i, j  N)

which maximizes the log-likelihood in (2.2.15). To compute such maximum, first we observe that
the process dP✓

k�1
/dP✓|F

t

appearing in the likelihood in (2.2.15) is the Radon-Nikodym derivative
that enters in an absolutely continuous measure transformation from P✓ to P✓

k�1
. There are two

components to such a measure transformation, the first is the change in the intensity of the CTMC
and the second is the Girsanov Transformation to translate the drift term.
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2.2.3.1 Change Of Measure for CTMCs

Suppose the given E-valued, Time-Homogeneous CTMC ⇠t, defined on the finite time interval
[0, T ], is specified under P by a given intensity matrix Q = (qi,j)1i,jN . Let us suppose that the
given q0i,js correspond to the elements of ✓, and hence we define our given measure P itself to be
P✓.

Theorem 2.2.8. Define Li,j
t , for i, j = 1 . . . N as

Li,j
t =:

✓

q̃i,j
qi,j

◆N i,j

t

exp

⇢

Z t

0

(qi,j � q̃i,j)hXs�, eiids
�

, (2.2.16)

and let
Lt :=

Y

i 6=j

Li,j
t (2.2.17)

Let P be the measure defined by the Radon-Nikodym derivative

dP

dP
|F

t

:= Lt.

Then under P , ⇠t is a CTMC with intensity matrix eQ = (q̃i,j)1i,jN . The transition probability
matrix eP = (p̃i,j)1i,jN under P is determined from eQ in the usual manner (see (2.2.1)).

Proof. See Proposition 11.2.3 of [BR02].

According to Theorem 2.2.8, the probability measure P (·) :=

E
⇥

Lt1{·}
⇤

E [Lt]
is the probability

measure equivalent to P under which the process ⇠t is a CTMC with the desired new state
transition intensities q̃i,j . We still need the change of measure to translate the drift parameter.

2.2.3.2 Change Of Measure to Translate the Drift

We recall the Girsanov Theorem for Ito processes allows us to apply an absolutely continuous
measure change dP

dP

�

�

�

F
t

that transforms the drift from h(t) = (h1(t), . . . , hN )

> (under P ) to
˜h(t) = (

˜h1(t), . . . , ˜hN (t))> (under P ). Indeed, let us suppose that the P -dynamics of yt satisfy

dyt = hh(t),Xtidt+ ⌘dW ✓
t

Let us further recall the Girsanov Theorem (see Theorem 8.6.5 of [Øks10]),

Theorem 2.2.9. If one defines d eP
dP

�

�

�

F
t

:= ⇤t where

⇤t := exp

⇢

Z t

0

hXs, ⌘
�1

(

˜h� h)idW ✓
s � 1

2

Z t

0

(hXs, ⌘
�1

˜hi2 � hXs, ⌘
�1hi2)ds

�

,

i.e.
d⇤t = ⇤thXs, ⌘

�1

(

˜h� h)idWP
t , ⇤

0

= 1, (2.2.18)

then the dynamics of yt under the probability measure eP defined by d eP
dP

�

�

�

F
t

is

dyt = h˜h(t),Xtidt+ ⌘dW
˜✓
t ,
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where

dW
˜✓
t =

hXt,h(t)i � hXt, ˜h(t)i
⌘

+ dW ✓
t

is a Brownian Motion under eP .

From Theorem 2.2.9, we have that the probability measure defined as eP (·) :=
E
⇥

⇤t1{·}
⇤

E [⇤t]
is

the probability measure equivalent to P under which y has the drift parameter ˜h with respect
to the Brownian Motion W

˜✓
t . Recalling the definition of P in terms of the measure P , the new

measure eP in terms of P is

eP (·) =
E
⇥

⇤t1{·}
⇤

E [⇤t]
/ E

⇥

Lt · ⇤t1{·}
⇤

.

We define P
˜✓ to be the new probability measure eP . Hence, the combined measure transformation

to change the entire parameter vector from ✓ to ˜✓ is given by4:

dP
˜✓

dP✓

�

�

�

�

F
t

:= Lt·⇤t =

Y

i 6=j

Li,j
t exp

⇢

Z t

0

hXs, ⌘
�1

(

˜h� h)idW ✓
s � 1

2

Z t

0

(hXs, ⌘
�1

˜hi2 � hXs, ⌘
�1hi2)ds

�

(2.2.19)
where Li,j

t are defined as in (2.2.16).

2.2.3.3 Maximizing the Log-Likelihood

Taking the log of both sides of (2.2.19), we obtain,

log

dP
˜✓

dP✓

�

�

�

�

Ft

=

X

i 6=j

log

n

Li,j
t

o

+

Z t

0

hXs, ⌘
�1

(

˜h� h)idW ✓
s � 1

2

Z t

0

(hXs, ⌘
�1

˜hi2 � hXs, ⌘
�1hi2)ds

=

X

i 6=j

N i,j
t (log q̃i,j � log qi,j)�

Z t

0

(q̃i,j � qi,j)hXs, eiids

+

Z t

0

hXs, ⌘
�1

˜hidW ✓
s � 1

2

Z t

0

(hXs, ⌘
�1

˜hi2)ds+
n

terms independent of

˜✓
o

=

X

i 6=j

N i,j
t log q̃i,j �

Z t

0

q̃i,jhXs, eiids

+

Z t

0

hXs, ⌘
�1

˜hidW ✓
s � 1

2

Z t

0

(hXs, ⌘
�1

˜hi2)ds+
n

terms independent of

˜✓
o

. (2.2.20)

Recalling from the definition of the processes Tt(i) and �t(i) at the end of the Section 2.2.2.2 that

Tt(i) :=
Z t

0

hXs, eiids

and

�t(i) :=

Z t

0

hXs, eiidW ✓
s

4See Equation 5.1 of Section 8.5 in [EAM08] or the analogous Equation 10.3.18 in [PBL10].
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hence

1

2

Z t

0

(hXs, ⌘
�1

˜hi2)ds =1

2

N
X

i=1

⌘�2

(

˜hi)2
Z t

0

hXs, eiids

=

1

2

N
X

i=1

⌘�2

(

˜hi)2Tt(i)

and
Z t

0

hXs, ⌘
�1

˜hidW ✓
s =

N
X

i=1

⌘�1

˜hi
Z t

0

hXs, eiidW ✓
s

=

N
X

i=1

⌘�1

˜hi�t(i).

Continuing from (2.2.20)

=

X

i 6=j

N i,j
t log q̃i,j � q̃i,jTt(i)) +

N
X

i=1

⌘�1

˜hi
�t(i)�

1

2

⌘�2

(

˜hi
)

2Tt(i) +
n

terms independent of

˜✓
o

We then take the Fy
t -conditional expectation on both sides of (2.2.20). Applying theb· := E[· | Fy

t ]

notation, we obtain the following expression:

E



log

dP
˜✓

dP✓
| Fy

t

�

=

N
X

i,j=1
i 6=j

(

bNt(i, j) log q̃i,j � q̃i,j bTt(i))+ (2.2.21)

+

N
X

i=1

(⌘�1

˜hib�t(i)�
1

2

⌘�2

(

˜hi)2 bTt(i)) +
n

terms independent of ˜✓
o

.

We have the following partial derivatives @
@˜✓

l

in each of the components of the parameter vector
˜✓:

@

@q̃i,j
E

(

log

dP
˜✓

dP✓

�

�

�

�

F
t

| Fy
t

)

=

1

q̃i,j
bN i,j
t � [Tt(i) (2.2.22)

and
@

@˜hi
E

(

log

dP
˜✓

dP✓

�

�

�

�

F
t

| Fy
t

)

= ⌘�1

b

�t(i)� ⌘�2

˜hi bTt(i). (2.2.23)

The unique maximum of (2.2.21) over ˜✓, obtained by equating to zero the partial derivatives
(2.2.22) and (2.2.23), is therefore given by

q̃⇤i,j =
�(N i,j

t )

�(Tt(i))
, (2.2.24)

˜h⇤i = ⌘
�(�t(i))

�(Tt(i))
. (2.2.25)

The parameter ˜✓⇤ formed by taking (2.2.24) and (2.2.25) gives P✓̃, the next probability measure
in the sequence of steps in the EM procedure. The sequence of log-likelihoods constructed this
way is increasing and so converges. The convergence of the sequence of ✓ is discussed in [DZ86]
and [ZD88].
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2.2.4 Standard Numerical Schemes

We have seen in the previous sections that parameter-estimation by EM can be achieved through
the use of filters. In turn, these are computed by solving certain Zakai SDEs. In practice such
computation must be performed numerically. We may use either an Euler- Maruayama scheme
or a Milstein scheme (see Section 2.2.4). We will propose a different approach to numerically
solve the Zakai SDEs, following Section 2 of the paper [PR10a], that is an approximation based
on quasi-exact solutions (to be discussed in Section 2.3.1).

The Euler and Milstein Approximation Schemes
The standard procedure in numerical solution of SDE’s over a time horizon [t

0

, t) is first to chose
a fixed time discretization

n

t
0

:= t(�)

0

 t(�)

1

. . .  t(�)

n = t
o

=: T � parametrized by a chosen

maximum step size � = maxl {�l} where �l := t(�)

l+1

� t(�)

l . We shall drop the superscript “(�)”
and write tl to mean t(�)

l in the following discussion. One can then define a time-discretization
of the SDE, which takes the form of recursive equations. Two popular time-discretizatons are the
Euler - Maruyama scheme and the Milstein scheme:

Definition 2.2.10. Let Wt be a standard Brownian-motion and let St be the unique solution of
a general SDE

dSt = ↵(t,St)dt+ �(t,St)dWt

then the discrete-time stochastic process S�

= (S�

k )

n
k=0

defined by

S�

k+1

= S�

k + ↵(tk,S
�

k )�tk + �(tk,S
�

k )�Wk, S�

0

= St0

is called an Euler-Maruyama scheme of the process S, where �tk := tk+1

� tk and �Wk :=

Wt
k+1 �Wt

k

.

Definition 2.2.11. Let Wt be a standard Brownian-motion and let St be the unique solution of
the SDE

dSt = ↵(t,St)dt+ �(t,St)dWt

then the discrete-time stochastic process S�

= (S�

k )

n
k=0

defined by

S�

k+1

= S�

k + ↵(tk,S
�

k )�tk + �(tk,S
�

k )�Wk +

1

2

�(tk,S
�

k )�v(tk,S
�

k )(�W 2

k ��tk), S�

0

= St0

is called a Milstein scheme of the process S, where �tk := tk+1

� tk, �Wk := Wt
k+1 �Wt

k

and

�v :=

@

@V
�.

The Euler- Maruyama and Milstein schemes are very simple to implement and they have the
property that the values of the discretized process S�

(tk) at each time point tk can be made as
close as desired to the value of the continuous process St

k

by taking � small enough. This is
formalized in the concept of the strong-order of an approximation.

Definition 2.2.12 (Strong Order). Let us consider on the interval [t
0

, t] ✓ R+ a family of time-

discretizations T �

:=

n

t(�)

l

on�

l=0

parametrized by a decreasing sequence of the maximum step size

�. Following Section 5.3 of [PBL10] we shall say that a discrete time approximation scheme S�
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of a stochastic process St is of order � if (S�

k )k is an approximating sequence for St such that its
global error satisfies

¯E
�

�

�St � S�

t
n

�

�

 

< K ·��

where |·| denotes the Euclidean norm for vectors and K is a constant independent of the maximum
step-size �. We shall refer to an approximating sequence (S�

k )k with strong order � as a strong
approximation of order � to the stochastic process St.

The Euler - Maruyama and Milstein schemes are known to have strong order of at least 0.5 and
1.0, respectively (see [PBL10] Section 5.2). They belong to the class of Ito-Taylor approximations,
which is a stochastic analogue of numerical methods for ODEs where, for some k, one takes only
the first k terms of the Taylor expansion of the differential operator, and then replaces each
derivative by a difference ratio. For example, when k = 1, the resulting approximation, in the
deterministic ODE case, is just the (deterministic) Euler scheme. In the case of Ito processes,
instead of a Taylor expansion one must apply a stochastic analogue such as a Wagner-Platen
expansion (Chapter 4 of [PBL10]). The Euler - Maruyama scheme is an approximation that
includes the first order (drift and diffusion) terms of a Wagner-Platen expansion, while the Milstein
scheme is an approximation that includes the additional second order term due to the Quadratic
Variation.

In such schemes, the successive values are approximated by projecting an imaginary tangent
curve starting from the previous value, and whose “slope” is due to the differential operator.
In other words, while these schemes capture the direction of a path well they do not capture
the point-by-point values of the path. This inevitably leads to a discretization error. Starting
from a known true value, the one-step error, so-called local error, may still be small, but the
accumulated error or global error grows with each successive time point. The concept of strong
order of a scheme provides us with a lower bound on the rate by which the global error can be
reduced by taking a smaller step-size �.

2.2.4.1 Numerical Implementation of the filter-based EM Algorithm

We now apply the standard numerical schemes to the filter-based parameter estimation by EM, as
discussed in Section 2.2.3. Namely, we must numerically compute, the unnormalized conditional
expectations �(Xt), �(N i,j

t ), �(Tt(i)) and �(�t(i)).
The Zakai equation for �(Xt), see (2.2.8), has the form

dZt = AZtdt+D(t)ZtdWt, (2.2.26)

where D is a diagonal matrix. On the other hand, the Zakai equation for �(N i,j
t ) (see 2.2.11)

and �(Tt(i)) (see 2.2.12) has the form

dSt = {¯a(�(Xt)) +ASt} dt+D(t)StdWt, (2.2.27)

a so-called linear SDE in the narrow sense. Finally the Zakai equation for �(�t(i)) (see 2.2.13)
has the form

dSt = {a(�(Xt)) +ASt} dt+ {b(�(Xt)) +D(t)St} dWt, (2.2.28)

which is called a general linear SDE.
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For a practical computation of the solutions of these SDEs, one considers a given time-
discretization T � which, for instance, corresponds to the observation times or some sparse subset
thereof. Then, the standard procedure is to apply an Euler-Maruyama or Milstein scheme. For
example the Euler- Maruyama scheme for an SDE of the form (2.2.26) is

Z�

k+1

= (I +A�k +D(tk+1

)�Wk) ·Z�

k

while for an SDE of the form (2.2.28) it is

S�

k+1

= (I +A�k +D(tk+1

)�Wk) · S�

k + a(Z�

k )�k + b(Z�

k )�Wk. (2.2.29)

The Euler-Maruyama scheme for an SDE of the form (2.2.27) is (2.2.29) with b(·) = 0, the zero
vector.

On the other hand, the Milstein scheme for an SDE of the form (2.2.26) is

Z�

k+1

= (I +A�k +D(tk+1

)�Wk +
1

2

D(tk)
2

(�W 2

k ��tk)) ·Z�

k

while for an SDE of the form (2.2.28) it is

S�

k+1

= (I+A�k+D(tk+1

)�Wk+
1

2

D(tk)
2

(�W 2

k��tk))·S�

k +a(Z�

k )�k+b(Z�

k )�Wk. (2.2.30)

and the analogous scheme for (2.2.27) given by (2.2.30) with b(·) = 0.

2.2.4.2 Including the Jump Times

For an SDE with jumps, analogous strong approximations of a given strong order are very chal-
lenging to compute because the Wagner - Platen expansion must then also include the terms of the
Poisson random measure due to the jumps (see Chapter 8 of [PBL10]). Higher terms of such ex-
pansions become rather complicated. In this regard, [Pla82] observes that within each inter-jump
interval, the process is just a continuous diffusion. Hence he proposed the class of jump-adapted
schemes. Here, one joins the jump-times to the time points T � (fixed grid) and then applies
a standard strong approximation scheme within the inter-jump intervals. At the jump times,
the approximated value is incremented by the value of the jump-measure at that time. [PBL10]
observes that even for mark-dependent jumps, the strong order from such jump-adapted schemes
are in general, equal to the strong order of the scheme used for the diffusive part.

It is important to qualify that the trade-off for a scheme to have a higher strong order is a
higher computational complexity, so that one must either take a very fine step-size � or use a
complicated scheme, in order to attain the desired accuracy. In Section 8.6 of [PBL10], they discuss
jump-adapted exact schemes, which, on the other hand, results in highly accurate approximations
and whose formulae still relatively simple expressions. It is an approach that applies to the case
when explicit solutions to SDEs can be obtained. Unlike the standard schemes mentioned above,
it does not apply a discretization of the differential of the process. Rather, this scheme computes
directly the exact values of the process at the discretization points, and hence there is no time-
discretization error. In [PR10a], a quasi-exact jump-adapted scheme is treated, in which a related
quasi-exact solution is applied in the case when the exact explicit solution to the SDE cannot
be obtained. In Section 2.3 we explore the use of this method for the Zakai SDEs that enter in
filter-based EM.
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2.3 Quasi - Exact Schemes

In this section, we discuss an alternative to the standard numerical schemes reviewed in Section
2.2.4. We shall refer to these as Quasi - Exact Approximation schemes. It is inspired by the
jump - adapted quasi - exact solution proposed in [PR10a] (see also Section 8.6 of [PBL10]). We
proceed as follows: first, in sub-section 2.3.1 we treat the exact solutions of Zakai SDEs, from
which the quasi-exact solutions are defined. Then in Section 2.3.2 we derive the discretization
scheme utilizing the quasi - exact solutions defined in Section 2.3.1.

2.3.1 Exact Solutions of the Zakai Equations

Let A : R ! RN⇥N and D : R ! RN⇥N be deterministic matrix functions, where A(t) and
D(t) are both defined for all t 2 [0, T ]. We restrict D(t) to be a diagonal matrix, and further
impose that A(t) and D(t) satisfy the condition sup

0tT {|A(t)|+ |D(t)|} < 1, where |·| is
some matrix norm. Consider under some probability measure P and a time horizon [0, T ], the
scalar P - Brownian Motion dWt and the RN - vector stochastic process Zt, t 2 [0, T ) that is a
solution to the N -dimensional SDE

dZt = A(t)Ztdt+D(t)ZtdWt (2.3.1)

for a given deterministic initial value Zt0 = Z
0

.

The Zakai equation (2.2.8) for the unnormalized conditional expectation of the state �(Xt)

and which is defined under ¯P , is an equation of the type (2.3.1). Indeed we can see this if we
substitute the process ȳt (which is a ¯P -Brownian motion) from (2.2.8) to the process Wt in (2.3.1).
We have the following

Proposition 2.3.1. Suppose that for every fixed t 2 [0, T ], the matrices A(t) and D(t) commute,
i.e.

A(t)D(t) = D(t)A(t),

then an explicit solution of the SDE (2.3.1) can be expressed by

Zt = �tZ0

, (2.3.2)

for t 2 [0,1), where

�t = exp

⇢

Z t

0

✓

A(s)� 1

2

(D)

2

(s)

◆

ds+

Z t

0

D(s)dWs

�

, (2.3.3)

for t 2 [0, T ), and where exp {·} is the matrix exponential defined for any real or complex valued
square matrices M as

exp {M} :=

1
X

k=0

Mk

k!
.

(Recall that this sum always converges for any real or complex matrix M and is bounded if the
matrix-norm kMk is bounded).



2.3. QUASI - EXACT SCHEMES 55

Proof. A proof for the more general case when Z is driven by k multiple noise factors (i.e., k

independent Brownian Motions) is given in [PR10a]. In Appendix 2.A.2 we show the proof,
following the approach in [PR10a] simplified to the present case with a scalar Brownian Motion.
The proof entails computing d(�tZ0

) = d(�t)Z0

by using the Ito product formula to obtain the
SDE (2.3.1) with Zt = �tZ0

.

Thus a sufficient condition for an SDE of type (2.3.1) to have an explicit solution is if A and
D commute. In the SDE (2.2.8) we need to check Q, and D(t); in that equation the matrices in
general are not commuting due to the general structure of Q.

Remark 2.3.2. Since D is diagonal, it commutes with other diagonal matrices, otherwise it may
not commute. In the case when Xt is a CTMC whose Q-matrix possesses a special structure,
such that it commutes with D, the explicit solution (2.3.2) holds, and the filtering and parameter
estimation procedure outlined in Sections 2.2.3 and 2.2.2 can be performed easily.

The authors in [PR10a] observe that, even in the case when A does not commute with the
Dk’s, if nevertheless one takes the matrix exponential (2.3.3) formally into (2.3.2) then one
obtains a “proxy” of the solution of the equation (2.3.1). It is noted in [PR10a] that this so-called
quasi-exact solution provides an excellent approximation of the exact solution. They numerically
tested the performance of such an approximation against time-discretization schemes such as the
Euler-Maruyama and Milstein schemes, and showed that their quasi-exact approximation is able
to produce good results - provided they use a jump-adapted time discretization - even for large time
steps of � for which the other schemes fail to provide good approximations.

Definition 2.3.3 (Quasi-Exact Solution). When A(t) and D(t) do not commute, we shall call
the vector stochastic process Zt defined by

Zt = �tZ0

, (2.3.4)

where Z
0

is a given initial vector value Zt0 = Z
0

and where

�t = exp

⇢

Z t

0

✓

A(s)� 1

2

(D)

2

(s)

◆

ds+

Z t

0

D(s)dWs

�

, (2.3.5)

for t 2 [0, T ), a quasi-exact solution to the SDE

dZt = A(t)Ztdt+D(t)ZtdWt (2.3.6)

Remark 2.3.4 (On the relationship between the true solution and the quasi - exact solution for
the non-commutative case). Applying such quasi - exact solutions in solving SDEs requires an
understanding of the precise relationship between the quasi-exact and the true solution. A study
of this relationship is not pursued in the present work; we observe only that the commutativity of
A(t) and D(t) is necessary and sufficient for the following equality to hold

exp

⇢

Z t

0

A(s)ds

�

exp

⇢

�1

2

Z t

0

(D)

2

(s)ds+

Z t

0

D(s)dWs

�

= exp

⇢

Z t

0

✓

A(s)� 1

2

(D)

2

(s)

◆

ds+

Z t

0

D(s)dWs

�

, (2.3.7)

while in the general case, this equality may not be true. In the proof for Proposition2.3.1, the
commutativity is needed only for such an identity. If one follows the proof without applying
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substitutions that use (2.3.7), then one can show that if we define �t itself to be the left hand side
of (2.3.7) and if we do not assume commutativity of A(t) and D(t), it turns out that in this case
�t is the solution to the SDE

d�t = A(t)�tdt+�tD(t)dWt. (2.3.8)

Hence, understanding the relationship between (2.3.6) and the SDE (2.3.8) may suggest what link
exists between the quasi-exact and the true solution.

One may also look at log(eAeD) when A and D do not commute5. We do not pursue this
question further in this study, instead as in [PR10a], we will present a simulation study for a
simple case using the quasi - exact approximation scheme to be discussed in sub-section 2.3.2.

2.3.1.1 Quasi-Exact Solutions for the Counting Process, the Occupation Time, and
the Drift Estimator

To estimate parameters according to Section 2.2.3, we also need to solve the Zakai equations
(2.2.11), (2.2.12), and (2.2.13) for �(N i,j

t Xt), �(Tt(i)Xt) and �(�t(i)Xt) respectively. Recall
that the equations (2.2.11) and (2.2.12) for �(N i,j

t Xt) and �(Tt(i)Xt) are each vector SDEs of
the narrow-sense linear form. That is if we denote by A(t) : R ! RN⇥N and D(t) : R ! RN⇥N

matrix valued maps that are deterministic, and a(·) : RN⇥N ! RN is a deterministic vector
functional defined on RN⇥N . Then (2.2.11) and (2.2.12) are SDEs of the form

dSt = {A(t)St + a (�(t, t
0

))} dt+D(t)StdYt. (2.3.9)

On the other hand, denoting b(·) : RN⇥N ! RN a deterministic vector functional defined on
RN⇥N , then the equation (2.2.13) for �(�t(i)Xt) is an SDE of the general linear vector form

dSt = {A(t)St + a(�(t, t
0

))} dt+ {D(t)St + b (�(t, t
0

))} dYt (2.3.10)

where Yt is the observations process, that is a ¯P -Brownian Motion, and the matrix �(t, t
0

) is the
solution to the SDE

d�(t, t
0

) = A(t)�(t, t
0

)dt+D(t)�(t, t
0

)dYt, �(t
0

, t
0

) = I.

Remark 2.3.5. The form of the drift translation term a(�(t, t
0

)) is that of a function a(·)
evaluated at �(t, t

0

) because any function f(�(Xt)) can be represented as f(�(t, t
0

) · �(X
0

)),
noting that �(Xt) = �(t, t0) · �(X0

) (see Proposition 2.3.1).

We now obtain the quasi-exact solutions for these SDEs. First we have the following propo-
sition concerning the existence of exact, explicit solutions

Proposition 2.3.6. If A(t) and D(t) are commuting, then the matrix �(t, t
0

) is given by the
exact solution

�(t, t
0

) = exp

⇢

Z t

0

✓

A(s)� 1

2

(D)

2

(s)

◆

ds+

Z t

0

D(s)dYs

�

(2.3.11)

5see the remarks in Section 4.2 about the Baker-Campbell-Hausdorff formula that is used to compute such
logarithms
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Proof. This is immediate, following the proof of Proposition 2.3.1, in particular see equation
(2.3.3).

Proposition 2.3.7. If A(t) and D(t) are commuting RN⇥N matrices, and given the initial value
St0 = S

0

at t
0

, then the vector linear SDE (2.3.9) has the solution

St = �(t, t0)

✓

S
0

+

Z t

t0

�(s, t
0

)

�1

[a(�(s, t
0

))] ds

◆

, (2.3.12)

where the matrix stochastic process �(t, t
0

) is given by (2.3.11) with the initial condition �(t
0

, t
0

) =

I, the identity matrix.

Proposition 2.3.8. If A(t) and D(t) are commuting RN⇥N matrices, and given the initial value
St0 = S

0

at t
0

, then the vector linear SDE (2.3.10) has the solution

St = �(t, t0)

✓

S
0

+

Z t

t0

�(s, t
0

)

�1

[a(�(s, t
0

))�D(s)b(�(s, t
0

))] ds+

Z t

t0

�

�1

(s, t
0

)b(�(s, t
0

))dYs

◆

,

(2.3.13)

where the matrix stochastic process �(t, t
0

) is given by equation (2.3.11).

Proof. See Appendix 2.A.3. Note that Proposition 2.3.7 follows from Proposition 2.3.8 as the
special case when b(�) = 0, the zero vector, for any RN⇥N matrix �. Hence in Appendix 2.A.3
we only prove Proposition 2.3.8.

In light of the fact that the coefficient matrices in equations (2.2.11), (2.2.12) and (2.2.13) do
not commute in general, then the process defined in (2.3.13) represents a quasi-exact approxima-
tion to the true solution.

Definition 2.3.9. When the coefficient matrices A(t) and D(t) do not commute, we shall call
the process St defined in (2.3.12) and (2.3.13) the quasi-exact solutions to the SDEs (2.3.9) and
(2.3.10), respectively.

2.3.2 Discrete Approximations

In this section we derive the time-discretization schemes for SDEs that we shall call quasi-exact
approximations. We shall derive two such approximations, one for the Zakai SDE of the state
(sub-section 2.3.1), and another for general linear SDEs (sub-section 2.3.1.1).

2.3.2.1 Quasi - Exact Approximation for the �(Xt)

Let us recall that the Zakai equation (2.2.8) to solve the unnormalized conditional probabilities
Zt := �(Xt) for the Wonham filter of (2.2.5), noting that ¯D(t)Ztdȳt = D(t)Ztdyt (see 2.A.4):

(

dZt = QZtdt+D(t)Ztdyt,

Z
0

⇠ P (Z
0

),
(2.3.14)

defined under ¯P . Let us further recall that in this case, the process

Zt = �tZ0

,
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with
�t = exp

⇢

Qt� 1

2

Z t

0

D2

(s)ds+

Z t

0

D(s)dys

�

is either the exact solution, if Q and D(t) commute, or is a quasi-exact solution if they do not
commute.

Remark 2.3.10. We will permit ourselves the slight abuse of terminology in the sequel, whereby
we always refer to the process Zt = �tZ0

as the quasi-exact solution of (2.3.14), even if such a
process is in fact the exact solution in the case when Q and D(t) commute.

Let us now propose a strong approximation to Zt. First, notice that at a generic time point
t = tk+1

we can write Zt
k+1 as

Zt
k+1 = Zt0 +

Z t
k+1

t0

dZs.

The standard approach here would be to apply an Euler-Maruyama (or Milstein) discretization
scheme � ˜Zk to the differential dZt and replace the integral with a summation in terms of dis-
cretized increments of Zt, that is

Zt0 +

Z t
k+1

t0

dZs ⇡ Zt0 +

k
X

l=0

�

˜Z�

k = Zt0 +

k
X

l=0

(

˜Z�

l+1

� ˜Z�

l ) =

˜Z�

k+1

,

where the sequence ( ˜Z�

k )k is defined by the Euler-Maruyama (or equivalently, Milstein) discretion
of dZt, i.e. � ˜Z�

k ⇡ dZt .
However, we wish to approximate the quasi-exact solution Zt to (2.3.14) itself, and so, we

shall follow a different approach. We wish to define each Z�

k such that

Z�

k ⇡ Zt
k

.

Now notice that
Zt = exp

⇢

Qt� 1

2

Z t

0

D2

(s)ds+

Z t

0

D(s)dys

�

·Z
0

, (2.3.15)

In order to write the right-hand expression in (2.3.15) as a recursion, let us first approximate
the integrals with a summation of increments.

Lemma 2.3.11. Suppose that Q commutes with D(t). If we define a matrix stochastic process
⇣t by the SDE

d⇣t =

⇢

Q� 1

2

D2

(t)

�

dt+D(t)dyt with ⇣
0

= 0 (2.3.16)

then Zt = exp {⇣t}Z0

, where exp {·} denotes the matrix exponential. If Q and D(t) do not
commute, then Zt = exp {⇣t}Z0

where exp {·} denotes the matrix of component-wise exponentials.

Proof. The proof for the commuting case is analogous to the proof for Proposition 2.3.1. The
proof for the non-commuting case entails applying the Ito formula component-wise to compute
the matrix of component-wise differentials (d(e⇣i,j ))

1i,jN .

Remark 2.3.12. In the sequel we shall define exp {⇣t}Z0

to be the quasi-exact solution Zt

instead of exp {⇣t}Z0

, when Q and D(t) do not commute.
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Next we take a fixed time-discretization t
0

= s
0

< s
1

< · · · < sn = T , such that sk = k�, for
k = 0, 1, . . . , T

�

, i.e. � = �l, 8l = 0 . . . n. We shall define the matrix sequence denoted by (⇣�k )k

- with ⇣�k = ⇣�(sk) - to be an Euler-Maruayma approximation of ⇣t arising from a discretization
of d⇣t. Hence the sequence (⇣�k )k takes the form of the following recursive equation

⇣�k+1

= ⇣�k +Q�sk �
1

2

D2

(sk)�+D(sk)�Yk, with ⇣�
0

= ⇣t0 = 0. (2.3.17)

Notice that, since exp {⇣t}Z0

= Zt, the equation (2.3.17) suggests that we approximate (2.3.15)
by writing the integrals as summations of increments as follows

Zt = exp

⇢

Qt� 1

2

Z t

0

D2

(s)ds+

Z t

0

D(s)dys

�

·Z
0

⇡ exp

(

Qt� 1

2

k
X

l=1

D2

(sl)�sl +
k
X

l=1

D(sl)�yl

)

·Z
0

,

which we can write in a recursive form as follows

= exp

(

Q · k ·�sk �
1

2

k
X

l=1

D2

(sl)�sl +
k
X

l=1

D(sl)�yl

)

·Z
0

=

k
Y

l=1

exp

⇢

Q ·�sl �
1

2

D2

(sl)�sl +D(sl)�yl

�

Z
0

=

k
Y

l=1

exp

�

⇣�l
 

=: Z�

k (2.3.18)

Notice that we have essentially defined our approximating sequence (Z�

k )k for Zt by equating
Z�

k /Z�

k�1

to exp

�

⇣�k
 

at each step k. The sequence Z�

s
k

is then expressed recursively by

Z�

k+1

= exp

⇢

Q�sk �
1

2

D2

(sk)�+D(sk)�yk

�

Z�

k with Z�

0

= Zs0 , (2.3.19)

for sk = s
0

, s
1

, . . . , T .

Remark 2.3.13. Defining Z�

k as the exponential of the Euler-Maruyama approximating sequence
arising from the discretization of the differential of the logarithm of Zt may seem indirect; indeed
one may ask why not instead compute the Euler-Maruyama approximating sequence arising from
the differential of Zt directly. In fact, the indirect approach is a standard procedure in the numeri-
cal simulation of Geometric Brownian Motion SDEs (see for example Section 5.2 of [PBL10]) that
ensures non-negative and log-normally distributed approximations Z�

k . Indeed, note that taking
the Euler-Maruyama discretization of dZt = QZtdt+D(t)Ztdyt, one obtains the sequence

˜Z�

k+1

=

˜Z�

k +QZk�sk +D(sk)Zk�yk,

which is different from Z�

k - observe that ˜Z�

k may take negative values and it is Fs
k�1-conditionally

N (µ̃k, ˜⌃2

k)-distributed, with µ̃k =

˜Z�

k�1

+QZk�sk and ˜

⌃k = diag {D(sk)Zk} . Instead, each Z�

k

is non-negative for each k and it is Fs
k

- conditionally log-normally distributed, i.e.

(logZ�

k | Fs
k

) ⇠ N (µk,⌃k)
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where µk = logZk�1

+Q�sk � 1

2

D2

(tk)� and ⌃k = diag {D(sk)} .
Moreover, discretizing the differential of Zt is more in line with the use of a standard scheme as

discussed in Section 2.2.4, whereas our approach corresponds to the exact approximation schemes
as we explained sub-section 2.2.4.2.

Remark 2.3.14 (Similarity to Splitting-up Schemes [Gla92], [BGR90]). If Q and D are com-
muting, then (2.3.19) can be expressed as

Z�

k+1

= exp {Q�sk} exp
⇢

�1

2

D2

(sk)�+D(sk)�yk

�

Z�

k with Z�

0

= Zs0 , (2.3.20)

for sk = s
0

, s
1

, . . . , T .
In this way, each step in the recursion can be seen as the product of two matrix operators

Q�

k := exp {Q�sk}

and

P�

k := exp

⇢

�1

2

D2

(sk)�+D(sk)�yk

�

applied to the value estimated in the previous time-step:

Z�

k+1

= Q�

k · P�

k Z�

k .

The matrix operators Q�

k and P�

k can be understood as approximating certain matrices Q
[t
k

,t) and
P
[t
k

,t) that are the solution operators to the ODE

d eZ1

t = Q eZ
(1)

t dt, eZ
(1)

t
k

= P
[t
k

,t)
eZ(2)

(tk)

and the SDE
d eZ(2)

t = D(t) eZ(2)

t dyt, eZ(2)

(tk) = Zt
k

,

t 2 [tk, tk+1

), respectively. Thus, the approximation is analogous to the splitting-up approximation
scheme proposed in [Gla92] for solving SDEs in filtering, see also [BGR90]. Under such schemes,
the SDE to be solved is split-up into two equations involving simpler (possibly deterministic) dif-
ferential operators. The split-up recursions are then defined in-terms of the semigroups associated
to each of the differential operators. The semigroups are, in this case, analogous to the matrix
operators Q�

k and P�

k .

We have the following result about the convergence of the approximation scheme (Z�

k )k.

Proposition 2.3.15. Supose that sufficient boundedness and regularity conditions on the coeffi-
cients of the SDE (2.3.14) hold to guarantee the existence and uniqueness of the solution. Define
the sequence

�

Z�

k

 m(t)

k=0

according to (2.3.19). Then this sequence forms a strong approximation
scheme of order 0.5 to the quasi-exact solution (Zs)s2[t0,t) of SDE (2.3.14).

Proof. See Appendix 2.A.4.
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2.3.2.2 Quasi - Exact Approximation for �(N i,j
t ), �(Tt(i)) and �(�t(i))

Analogously to (2.3.19), we are then able to compute quasi-exact approximations also of the
solutions for �(N i,j

t ), �(Tt(i)), and �(�t(i)) on the basis of (2.3.13). To do this, we will now
define suitable approximating sequences S�

k for the solution (2.3.13) to equation (2.3.10), for
each step-size �. We shall derive such an approximation following the lines of our derivation for
Z�

k , which is to approximate the solution St directly rather than the increment dSt. Indeed, we
note that at time tk+1

we can express St
k+1

St
k+1 = �(tk+1

, t
0

)

✓

St0 +

Z t
k+1

t0

�(s, t
0

)

�1

[a(�(s, t
0

))�D(s)b(�(s, t
0

))] ds

+

Z t
k+1

t0

�

�1

(s, t
0

)b(�(s, t
0

))dYs

◆

. (2.3.21)

First, we observe that �(t, t
0

) is a process that we can approximate by the quasi-exact ap-
proximation

�(t, t
0

) ⇡ exp

�

⇣�k
 

=: �

�

k (2.3.22)

given in (2.3.17), for ��

0

= �(t
0

, t
0

) = I.
Next, in order to write the right-hand expression in (2.3.21) as a summation of increments, let

us replace the integral in dt with a trapezoidal approximation since it is just a Riemann integral.
In other words

Z t
k+1

t0

�(s, t
0

)

�1

[a(�(s, t
0

))�D(s)b(�(s, t
0

))] ds

⇡
k
X

l=0

�

(�

�

l+1

)

�1

⇥

a(��

l+1

)�D(tl+1

)b(��

l+1

)

⇤

+ (�

�

l )
�1

⇥

a(��

l )�D(tl)b(�
�

l )
⇤ 

�

2

=:

k
X

l=0

�

¯ l+1

+

¯ l

�

�

2

=

k
X

l=0

 l
�

2

where we have defined
¯ l := (�

�

l )
�1

⇥

a(��

l )�D(tl)b(�
�

l )
⇤

and
 l =

¯ l+1

+

¯ l.

Furthermore, we shall replace the stochastic integral in dY with the approximating sequence
that is the sums of increments �Yl multiplied by the values at the left-endpoints of the integrand,
that is

Z t
k+1

t0

�

�1

(s, t
0

)b(�(s, t
0

))dYs ⇡
k
X

l=0

(�

�

l )
�1b(��

l )�Yl.

Recalling that Y is a ¯P -Brownian Motion, then by Donsker’s invariance principle, the summation
on the right hand side converges to the stochastic integral on the left-hand side, if the integrands
satisfy appropriate boundedness and measurability conditions . (In our case, boundedness of the
elements of the Q-matrix is sufficient).
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Applying the foregoing approximations for the integral terms in the right hand side of (2.3.21),

Stk+1 = �(tk+1

, t
0

)

✓

St0 +

Z tk+1

t0

�(s, t
0

)

�1

[a(�(s, t
0

))�D(s)b(�(s, t
0

))] ds

+

Z tk+1

t0

�

�1

(s, t
0

)b(�(s, t
0

))dYs

◆

⇡ ��

k+1

 

S�

k +

k
X

l=0

 l
�tl
2

+

k
X

l=0

(�

�

l )
�1b(��

l )�Yl

!

. (2.3.23)

This motivates the definition of S�

k+1

as the right hand expression in (2.3.23). We finally have

Definition 2.3.16. On the same jump-adapted time discretization for ��

k , we define the sequence
(S�

k )

m(t)
k=0

as follows

S�

k+1

= �

�

k+1

 

S�

0

+

k
X

l=0

 l
�tl
2

+

k
X

l=0

(�

�

l )
�1b(��

l )�Yl

!

(2.3.24)

S�

0

= St0

where

 k =

¯ k+1

+

¯ k

¯ k =(�

�

k )
�1

⇥

a(��

k )�D(tk)b(�
�

k )
⇤

(2.3.25)
¯ 
0

=0.

Each S�

k in the sequence can also be written in the following recursive form

S�

k+1

=�

�

k+1

✓

S�

k

�

�

k

+  k
�tk
2

+ (�

�

k )
�1b(��

k )�Yk

◆

(2.3.26)

S�

0

=St0 .

In Proposition 2.3.17 we shall state another result, namely, that the scheme S�

k approximates St

with a strong order of at least 0.5. We have the following result concerning the convergence of
the approximation scheme S�

k :

Proposition 2.3.17. Supose that sufficient boundedness and regularity conditions on the coeffi-
cients of the SDE (2.3.10) hold to guarantee the existence and uniqueness of the solution. Define
the sequence

�

S�

k

 m(t)

k=0

according to (2.3.26), with ��

k as given in (2.3.22). Then this sequence
forms a strong approximation scheme of order at least 0.5 to the process (Ss)s2[t0,t] given in
(2.3.13) that is the quasi-exact solution of the general linear SDE (2.3.10).

Proof. See Appendix 2.A.5.

2.4 The Calibration Model

In this Section we describe our proposed calibration method for a market model based on CTMCs.
It extends the approach proposed by [EHJ00] to the continuous-time case, retaining the random
jump-times of the CTMC X. First we formulate the state-observations system to which the
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Wonham filter can be applied, in conjunction with Bayesian updating at jump-times. Calibration
is performed by applying the filter-based EM algorithm. In order to numerically implement this
algorithm, we propose the use of Quasi-Exact approximations to compute the Wonham filters.
In Section 2.4.1 we review the pricing of payoffs that depend on CTMCs. In Section 2.4.2 we
formulate the Filtering Problem applied to noisy-observations of the log-price. Finally in Section
2.4.3 we present the Calibration Algorithm by Filter-based EM.

2.4.1 Review of Pricing for CTMCs

Let us first consider payoffs that are simple functions of the terminal value of ⇠ (equivalently, X),
i.e. H(⇠T ) =

P

i h
i
1{⇠

T

=i} = hH,XT i with H = (h
1

, h
2

, . . . , hN )

>. In the general case, payoffs
may depend on the entire path. Let Ft be the natural filtration of ⇠. Let r(t) =

PN
i=1

⇢i1{⇠
t

=i},
⇢i 2 R+ 8i = 1 . . . N be the risk-free short rate. We then have r(t) = hR,Xti where R :=

(⇢
1

, ⇢
2

, . . . , ⇢N )

>. The price at time t of a payoff H(⇠T ) = hH,XT i is given by

E
h

e�
R
T

t

r(s)dsH(⇠T ) | Ft

i

= E
h

e�
R
T

t

hR,X
s

idshH,XT i | Ft

i

.

By the Markov Property

E
h

e�
R
T

t

hR,X
s

idshH,XT i | Ft

i

= E
h

e�
R
T

t

hR,X
s

idshH,XT i | ⇠t
i

=: F (t,HT , ⇠t).

Since ⇠t 2 E, we can compute this as follows

F (t,HT , ⇠t) =
N
X

i=1

E
h

e�
R
T

t

r(s)dsH(⇠T ) | ⇠t = i
i

1{⇠
t

=i} (2.4.1)

=:

N
X

i=1

F i
(t,HT )1{⇠

t

=i} (2.4.2)

=hF (t,HT ),Xti, (2.4.3)

with
F (t,H) = (F 1, F 2, . . . , FN

)

>
(t,H).

As we have seen in Part I, there are two approaches to compute F (t,HT , ⇠t) = hF (t,HT ),Xti.
The first approach which applies to simple claims H(·) is treated in [Nor03] (see also [EHJ00] for
the case of bonds), while the second approach, discussed in [PR10b] and extended in [MPR13],
applies to path-dependent claims and to the time-inhomogeneous case as well.

2.4.1.1 Direct ODE approach for simple claims

In the first approach one considers an ODE in F (t,HT ) using martingale arguments related to
the no-arbitrage condition. The solution is then available in explicit form as a matrix exponential.
It can be shown that

Proposition 2.4.1. The vector F (t,HT ) whose components are the
�

⇠t = xi
 

-conditional prices
F i

(t,H) satisfies
dF

dt
(t,HT ) = (R�Q)F (t,HT ), F (T,HT ) = H (2.4.4)

for all t 2 [0, T ].
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Proof. Since this is a well-known result, we do not give the proof, but instead cite various refer-
ences where this pricing equation is derived. For example, in Section D Equation 3.14 of [Nor03],
which treats the general setting of markets with CTMC-driven stocks, this equation is obtained
by applying Ito’s lemma to the value function of portfolios and then applying the martingale
property that is due to the no-arbitrage condition; equation (2.4.4) is just the special case of a
portfolio consisting only of one bond. Other references are Section 3 of [EHJ00]. In Proposition
3.1 in [Lan00] where it is obtained for more general Markovian jump-diffusion processes and in
Corollary 6.4 [BKR97], which treats general Levy processes.

In component form, (2.4.4) is given by the equation

d

dt
F i

(t,Ht) = ⇢iF i
(t,Ht)

i � qiF
i
(t,Ht)�

X

j=1,...,N
j 6=i

F j
(t,Ht)qij , (2.4.5)

for i = 1, . . . , N . Equation (2.4.5) will be needed in Section 2.4.2.4.

Remark 2.4.2. In general one may be dealing with a payoff function H such that the function
F (t,H) is not continuously differentiable and hence Proposition 2.4.1 does not hold. Sufficient
conditions are discussed in detail in [Nor05] for the continuous differentiability of F (t,H, ⇠). In
that paper it was also noted that most derivative payoffs in practice satisfy these conditions, hence
we shall simply assume this in what follows.

We immediately get that

Proposition 2.4.3. The vector F (t,H) is given by

F (t,HT ) = exp {(Q�R)(T � t)}H, (2.4.6)

where exp(·) denotes the matrix exponential

exp(A) =

1
X

k=0

Ak

k!
.

For the case of zero-coupon bonds, with H = (1, 1, . . . , 1)> := 1 and denoting V (t, T ) =

F (t,1) we have

Corollary 2.4.4. The price vector V (t, T ) for zero-coupon bonds is given by

V (t, T ) = exp {(Q�R)(T � t)}1. (2.4.7)

2.4.1.2 Prototype Product approach for simple and complex claims

The main topic of Part I, see also [MPR13] is the so-called Prototype Product approach, that
is an alternative pricing approach applicable also to complex claims, such as path-dependent
payoffs. For general time-inhomogeneous CTMCs, the elements of the Q-matrix vary in time, i.e.,
Q = Q(t). By restricting our attention to those time-inhomogeneous CTMCs whose Q-matrices
change only at the jump times ⌧n, we have that Q(t) = Q(n) for each t = tn. If we further restrict
our attention to the case when

(⌧n+1

� ⌧n | Xn = ei) ⇠ Exp(qi(n))
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holds, where qi(n) =
P

j 6=i qi,j(n) =
P

i,j qi,j(n), then for such time-inhomogeneous CTMCs, the
Prototype Product is also applicable. We shall recall here this approach, omitting details and
proofs since they have already been discussed in Part I.

Let us suppose, without loss of generality, that t = ⌧
0

. We have that

F (t,HT , ⇠t) = E

(

exp

"

�
N

T

�1

X

i=N
t

ri(⌧i+1

� ⌧i)� rN
T

(T � ⌧N
T

)

#

H(⇠T ) | ⇠t

)

. (2.4.8)

Let us define Nt,T := NT �Nt and consider the Nt,T conditional expectation

F (t,HT , ⇠t | Nt,T ) = E

(

exp

"

�
NT�1

X

i=Nt

ri(⌧i+1

� ⌧i)� rNT (T � ⌧NT )

#

H(⇠T ) | ⇠t, Nt,T

)

, (2.4.9)

where we have
F (t,HT , ⇠t) = E {F (t,H, ⇠t | Nt,T ) | Xt} . (2.4.10)

The expectation in (2.4.10) is just

E {F (t,H,Nt,T ) | Xt} =

1
X

k=0

F (t,H, k)P (Nt,T = k | Xt). (2.4.11)

The difficulty in computing this expression is due to the fact that it involves a quite cum-
bersome calculation of the weights P [Nt,T | Xt], for very general Markov Chains. Instead, as we
have seen in Part I Section 1.4.1, an approximation to the expectation can be computed more
efficiently by Monte Carlo. We recall here how such an approximation is computed, for details
see Part I Section 1.4.1.

Let us define the sequence of matrices eQ(n) as

Q(n) = (q̄i,j(n))
1i,jN with q̄i,j(n) =

(

q
i,j

(n)
ri+q

i

(n)
i 6= j

0 i = j
(2.4.12)

where ri = r(⇠) when ⇠ = xi. Let ⇠ be any E-valued random variable and let us define

H
0

(·) = H(·) =
N
X

i=1

hi1{·=i}

and define the vectors Hn, representing the sequence of Prototype Payoffs according to (1.4.11) in
Part I, Section 1.4. These vectors can be computed recursively as follows (see Proposition 1.4.5,
Part I, Section 1.4.1):

Hn(⇠) = eQ(n)Hn�1

(⇠). (2.4.13)

Recall that F (t,HT , Xt) = hF (t,HT ),Xti with F (t,HT ) = (F 1

(t,HT ), . . . , FN
(t,Ht))

>. Finally,
the components F i

(t,HT ) can be approximated as follows (see Proposition 1.4.6 from Part I,
Section 1.4.1)

Proposition 2.4.5.

F i
(t,HT ) ⇡E

n

˜F (t,H,Nt,T ) | X = ei

o

=

1

2

E
n

e>i

⇣

1 +

eQ(Nt,T + 1)

⌘

eQ(Nt,T ) · · · eQ(1)H
0

(⇠)
o

. (2.4.14)
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The expectation in Proposition 2.4.5 may be efficiently computed by Monte - Carlo simulation.
In fact, applying a Monte - Carlo simulation to compute the expectations in (2.4.14) converges
faster than applying Monte-Carlo directly to compute (2.4.8). That is due to the Variance Re-
duction effect by conditioning on Nt for each Prototype Product. Hence the Prototype Product
approach also leads to an improved Monte-Carlo scheme over a plain vanilla Monte - Carlo.

We have shown how to apply the Prototype Product approach only to the case of path-
independent claims. In Part I, it was shown that this approach also extends to the case of
path-dependent claims. Hence the Prototype Product approach, while seemingly indirect, never-
theless offers the important advantage of being easily generalized to the case of path-dependent
derivative payoffs and time-inhomogeneous CTMCs.

2.4.2 Filtering in Continuous - Time with Bayesian Updating

We now present a calibration approach which extends the approach in [EHJ00] to the continuous-
time case, retaining the random jump-times of the CTMC X. To this effect, we must first
define our incomplete-information problem with continuous-time observation noise, in the form
of a scaled Brownian Motion ⌘Wt. In [EHJ00], the observations are the yield of noise-corrupted
prices, where the noise is multiplicative on the price; in order to simplify the presentation we
shall instead define as our observations process the noise-corrupted log-price6, that is, the log of
F (t,H,X) multiplied by a scaled lognormal process:

F (t,H,X)e⌘Wt

=: e�y
t ,

or equivalently
yt = logF (t,H,Xt) + ⌘Wt. (2.4.16)

Let us now derive the state-observations system for X and yt in a form suitable for the application
of filtering. Re-writing (2.4.16) gives

yt = logF (t,H,Xt) + ⌘Wt

= log {hF (t,HT ),Xt)i}+ ⌘Wt

Let the vector function C(t) be defined such that

hC(t),Xti = log {hF (t,HT ),Xti} = hlog(F (t,HT )),Xti,

hence

yt = hC(t),Xti+ ⌘Wt, (2.4.17)
6Defining the observations process to be the yield of noise-corrupted prices leads to the equation

ȳ
t

= � 1

T � t
logF (t,H,X

t

)� 1

T � t
⌘W

t

(2.4.15)

instead of (2.4.16). Since no generality is lost by working with the log-price instead of the yield, we choose to
work on the log-price in order to avoid unwieldy formulas involving the time-derivative due to the 1

T�t

coefficient.
In practice, our results can be applied to the case of noisily observed yields by a simple transformation of the
observations process ȳ

t

= � 1
T�t

y
t

.
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Let c(t,Xt) := hC(t),Xti. We shall further re-write equation (2.4.17) in a jump-diffusion form.
To this end, let us recall the Theorem 2.2.1 and also Proposition 2.2.2. Applying Proposition
2.2.2 to c(t,Xt) then substituting in equation (2.4.17), we obtain

yt = hC,Xti+
Z t

0

⌘dWs

= hC(0),X
0

i+
Z t

0

h ˙C(s),Xsids+
Z t

0

hC(s),QXs�ids+
Z t

0

hC(s), dMsi+
Z t

0

⌘dWs (2.4.18)

We shall therefore work with the following state-observations system:

8

<

:

Xt = X
0

+

R t
0

QXsds+Mt

yt = hC(0),X
0

i+
Z t

0

h ˙C(s),Xsids+
Z t

0

hC(s),QXs�ids+
Z t

0

hC(s), dMsi+
Z t

0

⌘dWs

(2.4.19)
We wish now to compute the filtered estimates E[f(⇠t) | Fy

t ] := ⇡t(f). Note that to apply
filtering to system (2.4.19) it is not enough to apply a Wonham filter because the observations
process includes also the martingale term

Z t

0

hC(s), dMsi

for the jumps, whereas in the Wonham filter problem, the jump process enters only in the jump-
modulated drift coefficient. Therefore, a direct filtering approach would require the use of filters
for Jump-Diffusions, for example, using a combination of the techniques in Chapter 7 and Chapter
8 of [EAM08]. Instead we shall take a different approach that will still allow us to use the Wonham
filter, inspired by [FR10b] (see also [CC12]) whereby we utilize Bayesian updating at the jump
times. First, note that if we write c(t,Xt) := hC(t),Xti = c(0,X

0

) +

R t
0

dc(s,Xs) and apply the
differentiation rule from Proposition 2.2.2, then (2.4.19) is simply the following

8

>

>

<

>

>

:

Xt = X
0

+

Z t

0

QXsds+Mt

yt = c(0,X
0

) +

Z t

0

dc(s,Xs) +

Z t

0

⌘dWs

(2.4.20)

The key is then to re-write Xt and c(t,Xt) initialized at the time ⌧N(t�)

instead of t
0

, that is

8

>

>

>

<

>

>

>

:

Xt = XN(t�)

+

Z t

⌧
N(t�)

QXsds+

Z t

⌧
N(t�)

Ms

yt = c(⌧N(t�)

,XN(t�)

) +

Z t

⌧
N(t�)

dc(s,Xs) +

Z t

0

⌘dWs

(2.4.21)

Supposing that t 2 (⌧N(t�)

, ⌧N(t�)+1

], this leads to a much simpler analysis, distinguishing only
two possible cases: either t = ⌧N(t�)+1

, i.e. t falls on the next jump time, or t 2 (⌧N(t�)

, ⌧N(t�)+1

),
i.e. t is in-between jumps.
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2.4.2.1 The case when t falls in between jump times

Denoting by y1t the observation process yt in between jump times, the system (2.4.19) reduces to

8

>

>

>

<

>

>

>

:

Xt = X⌧
N(t�)

+

Z t

⌧
N(t�)

QXsds+

Z t

⌧
N(t�)

dMs

y1t = hC(⌧N(t�)

),XN(t�)

i+
Z t

⌧
N(t�)

h ˙C(s),Xsids+
Z t

0

⌘dWs

(2.4.22)

To this system one can directly apply the Wonham Filter for t 2 (⌧N(t�)

, ⌧N(t�)+1

). Note that
the equation for y1t in (2.4.22) arises from the differentiation rule (2.2.4) and the fact that dX is
zero in between jump times. By translating the system to the initial time ⌧N(t) instead of t = 0,
and then substituting y1(t) into y(t) and h ˙C(t),Xti into h(t, ⇠t), we obtain exactly the system
(2.2.5) in Section 2.2.2.

2.4.2.2 The case when t falls on the next jump time

In the case when t falls on the next jump time, that is, when t = ⌧N(t�)+1

then the increment
dX is non-zero at t. Let us suppose that at t a transition from Xt� = ei to Xt = ej occurs, so
at time t, dXt = ej � ei. Then

c(t,Xt) = hC(⌧N(t)),XN(t)i+
Z ⌧

N(t�)+1

⌧
N(t�)

h ˙C(s),Xsids+
Z ⌧

N(t�)+1

⌧
N(t�)

hC(s), dXsi

= hC(⌧N(t�)

), eii+
Z ⌧

N(t�)+1

⌧
N(t�)

h ˙C(s), eiids+ hC(⌧N(t�)+1

), eji � hC(⌧�
N(t�)+1

), eii

Therefore

yt = hC(⌧N(t�)

),XN(t�)

i+
Z t

⌧N(t�)

h ˙C(s),Xsids+
Z t

0

�dWs + c(t,Xt)� c(t�,Xt�)

= hC(⌧N(t�)

),XN(t�)

i+
Z t

⌧N(t�)

h ˙C(s),Xsids+
Z t

0

�dWs + hC(t),XN(t�)+1

i � hC(t�),XN(t�)

i

= y1t + hC(t),XN(t�)+1

i � hC(t�),XN(t�)

i.

the system (2.4.19) becomes

8

>

<

>

:

Xt = X⌧
N(t�)

+

Z t

⌧
N(t�)

QXsds+

Z t

⌧
N(t�)

Ms

yt = y1t + hC(t),XN(t�)+1

i � hC(t�),XN(t�)

i.
(2.4.23)

In order to deal with this system, we note that, by defining y2t as the increments of c(t,Xt), that
is

y2t := c(t,Xt)� c(t�,Xt�),



2.4. THE CALIBRATION MODEL 69

then system (2.4.23) is equivalent to a system with two observation processes
8

>

>

>

>

>

<

>

>

>

>

>

:

Xt = X
0

+

Z t

0

QXsds+Mt

y1t = hC(⌧N(t)),XN(t)i+
Z t

⌧
N(t)

h ˙C(s),Xsids+
Z t

0

�dWs

y2t = hC(t,XN(t�)+1

i � hC(t�),XN(t�)

i

(2.4.24)

of which, the subsystem
�

Xt, y1t
�> is a state-observations system to which we can apply the

Wonham filter up to time t� = ⌧�N(t); the resulting filter must then be updated to time t = ⌧N(t)

using the information from y2t at the jump times.
At first glance, it may not seem obvious that the observations process

yt = y1t + y2t

can indeed be decomposed and represented as the vector Yt = (y1t , y
2

t )
> so that yt = hYt,1i.

Such a decomposition is indeed possible - it stems from the fact that y and c(t,Xt) have common
jumps, hence the jump times ⌧k are fully observed, and moreover, all the jump increments y2t =

c(t,Xt) � c(t�,Xt�) can be directly observed from the jump increments yt � yt� . In fact they
coincide and are zero in-between jumps:

y2t =

(

yt � yt� if t is a jump time,
0 otherwise.

(2.4.25)

We express this in the following

Remark 2.4.6. Since yt and Xt share the same jump times, then every ⌧k for k = 0, 1, . . . , N(t)

is Fy
t -measurable. From (2.4.25),

y2t = c(t,Xt)� c(t�,Xt�) =

N(t)
X

k=0

(yt � yt�)1{t=⌧
k

},

which is Fy
t measurablefor all t.

The component y1 is simply the continuous part of y in between jump times, and the com-
ponent y2 simply comes from observing the jump increments of y at each point of discontinuity,
that is, at each jump time of y.

On the basis of these foregoing observations, we propose a serial filtering algorithm where we
iterate between the following steps:

1. We observe y2t = yt � yt� continuously. At each jump time t = ⌧k it is non-zero and equal
to c(⌧k, ⇠k)� c(⌧k�, ⇠k�1

), hence we can fully observe the history of c(⌧k, ⇠k) from y2t .

2. For t in between jump times, that is t 2 (⌧N(t), ⌧N(t)+1

) apply the Wonham Filter to the
system (2.4.22) to compute ⇡t+⌧

N(t)
(Xt) for all t 2 [⌧N(t), ⌧N(t)+1

), using the initial condition
⇡⌧

N(t)
(X⌧

N(t)
) previously obtained at t = ⌧N(t) (Note that ⇡⌧

N(t)
(X⌧

N(t)
) 6= ⇡⌧

N(t)
(X⌧

N(t)�))

3. For t falling on a jump time ⌧N(t) := ⌧n, we shall update the Fy
t -conditional expectation

⇡t�(Xt�) to obtain ⇡t(Xt) in the following manner:
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2.4.2.3 Procedure for updating the filter at jump times

First, observe that ⇡t(Xt) = (⇡1t ,⇡
2

t , . . . ,⇡
N
t )

>Xt, where ⇡it(Xt) = ⇡t(1{⇠
t

=i}). Hence

⇡it(Xt) =P [⇠t = i | Fy
t ]

=E[1{⇠
t

=i} | F
y
t ]

=E
⇥

E[1{⇠
t

=i} | ⇠t� ] | F
y
t

⇤

=E

2

4

N
X

h=1,h 6=i

E[1{⇠
t

=i} | ⇠t� = h]1{⇠
t

�=h} | F
y
t

3

5

=

N
X

h=1,h 6=i

P [⇠t = i | ⇠t� = h] · P [⇠t� = h | Fy
t ]

=

N
X

h=1,h 6=i

ph,i · P [⇠t� = h | Fy
t ]

Next, for each h = 1 . . . , N , h 6= i, we obtain an expression for P [⇠t� = h | Fy
t ] in terms of

⇡t�(Xt�) as follows:

P [⇠t� = h | Fy
t ] = P [⇠t� = h | Fy

t� , yt � yt� ]

=

N
X

k=1

P [⇠t� = h | Fy
t� , yt � yt� = k]1{y

t

�y
t

�=k}

/
N
X

k=1

P [yt � yt� = k | Fy
t� , ⇠t� = h] · P [⇠t� = h | Fy

t� ]1{yt�y
t

�=k}

= ⇡ht�(⇠t�) ·
N
X

k=1

P [yt � yt� = k | Fy
t� , ⇠t� = h]1{y

t

�y
t

�=k},

where the form of the emmission probabilities P [yt�yt� = k | Fy
t� , ⇠t� = h] is specified according

to the particular dependence between yt and ⇠t as defined in c(t, ⇠t).

Remark 2.4.7. This updating procedure is analogous to Corollary 4.2 (see also Algorithm 4.3) of
[FR10b] . In our case the counting process is itself the factor process so that all jumps are common
and, in particular, the jumps of the counting process are identical to the jumps of the factor process.
Furthermore, unlike in [FR10b], we are considering only a single issuer of a financial derivative,
that is, our counting process consists of only one component. Since, evidently, we are considering
a much simpler model, the derivation of the updating procedure for the filter is much simpler in
our case compared with the proof of Corollary 4.2 in [FR10b].

Remark 2.4.8 (Procedure for updating the filter for generic functions f(Xt) at jump times). The
update of the filter ⇡t(f(Xt)) = ⇡t(HtXt) from ⇡t�(f(Xt�)) at jump times follows a procedure
completely analogous to the update of ⇡t(Xt), by simply applying the state transformation xi 7!
f(xi) := f i, for i = 1, . . . , N . In this case, the update is applied to ⇡t�(Ht�Xt�) instead of
⇡t�(Xt�).
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Remark 2.4.9. A subtle consequence that arises, however, from the Remark 2.4.6 must be men-
tioned, namely, if the map (t, x) 7! c(t, x) is bijective (here we assume perfect knowledge of the true
parameters that enter in c(·, ·)) then for every jump time t = ⌧k, the inverse map c(t, x) 7! x allows
us to identify the value for ⇠t at a jump time t = ⌧k on the basis of the value of c(t, ⇠t)�c(t�, ⇠t�).
Hence, it follows from the bijectivity (t, x) 7! c(t, x) and the fact that y2 is Fy

t -measurabale, that
the value of ⇠t can be backed-out from c(t, ⇠t) and from observations of y2 in this case. In other
words (2.4.21) reduces to a degenerate filtering problem.

Nevertheless, in the case of a bijective map (t, x) 7! c(t, x), in a practical model the parameters
are unknown and y (hence also c(t, ⇠t) is not continuously observed, therefore the value of ⇠t
cannot be backed-out from observations of y2, and instead one must still rely on the conditional
distributions of ⇠t via the filters.

2.4.2.4 Example: The case of zero-coupon bonds

In the particular case when F (t,H,Xt) represents the payoff function of a zero-coupon bond,
recall that Proposition 2.4.3 holds with HT = 1. Substituting the formula in Proposition 2.4.3
for F (t,HT ) in F (t,H,X) = hF (t,HT ),Xti we have the following particular expression for yt:

yt = log {hF (t,HT ),Xt)i}+ �Wt

= log {hexp {(Q�R)(T � t)}HT ,Xt)i}+ �Wt (2.4.26)

Now observe that G(t) := exp {(Q�R)(T � t)}H is a product of a matrix (i.e. the matrix
exponential exp {(Q�R)(T � t)}) with the vector H, hence G(t) is a vector,

G(t) = (g
1

(t), g
2

(t), . . . , gN (t))>.

The value of the scalar product hexp {(Q�R)(T � t)}H,Xti can be written as

hexp {(Q�R)(T � t)}H,Xti =hG(t),Xti

=

N
X

i=1

gi(t)1{⇠
t

=i},

hence

log {hG(t),Xti} = log

(

N
X

i=1

gi(t)1{⇠
t

=i}

)

=

N
X

i=1

log(gi(t))1{⇠
t

=i}.

Hence ¯C(t) = (log {g
1

(t)} , log {g
2

(t)} , . . . , log {gN (t)})>. We then have that

log {hG(t),Xti} = h ¯C(t),Xti.

Let us suppose that ⇠N(t�)

= i. Then, for t 2 [⌧N(t�)

, ⌧N(t�)+1

)

c(t,Xt) = logF (t,H, ⇠N(t�)

) = logF (t,H, i).
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Note that F (t,H, i) = hF (t,H), eii = F (t,H)

i. Let us recall from (2.4.5) that

d

dt
F (t,H, i) = ⇢iF (t,H, i)� qiF (t,H, i)�

X

j=1,...,N
j 6=i

F (t,H, j)qij

and hence

d

dt
logF (t,H, i) =

1

F (t,H, i)

d

dt
F (t,H, i)

= ⇢i � qi �
X

j=1,...,N
j 6=i

F (t,H, j)

F (t,H, i)
qij .

Since Xt = ei is fixed for all t 2 [⌧N(t), t), we have

c(t,Xt) =c(⌧N(t),XN(t)) +

Z t

⌧
N(t)

dc(s,Xs)

=c(⌧N(t), ei) +

Z t

⌧
N(t)

dc(s, ei)

=c(⌧N(t),XN(t)) +

Z t

⌧
N(t)

ċ(s, i)ds

where
ċ(t, i) = ⇢i � qi �

X

j=1,...,N
j 6=i

F (t,H, j)

F (t,H, i)
qij ,

due to the fact that c(s,Xt) = c(s, i) is a deterministic function of t in between jump times. There-
fore if we consider a generic value Xt for t 2 (⌧N(t�)

, ⌧N(t�)+1

), and define ˙C(s) = (ċ(s, 1), . . . , ċ(s,N))

>,
then we have

c(t,Xt) = c(⌧N(t�)

,XN(t�)

) +

Z t

⌧
N(t�)

h ˙C(s),Xsids

Remark 2.4.10 (Using the Prototype Product approach for Path-dependent Claims). For a path
dependent claim, we have seen that Proposition 2.4.3 does not hold and so we do not have the equa-
tion (2.4.26). However F (t,HT ) and hence log {hF (t,HT ),Xt)i} can still be computed using the
techniques in [Pre10] and [MPR13] that are summarized in Section 2.4.1.2. While cumbersome,
the subsequent computations can be modified accordingly, replacing the computations involving
F (t,HT ) with a Monte-Carlo average; in particular, the computation of ˙C(t) = d

dtF (t,HT ) must
be performed approximately. In such a way, the techniques in this chapter can be extended to path
dependent claims up to approximations. We will, however, not show this in the sequel.

2.4.3 The Calibration Algorithm

Here we synthesize the results of Sections 2.2 - 2.4 into an algorithm for estimating the parameters
of (2.4.19).

We specify the of calibration parameters ✓ of the model to include the elements of the Q-
matrix, (qi,j)1i,jNand the the parameters, previously denoted hi, that are those which enter
in the function c(t, ⇠t). Each of the hi’s are determined by the corresponding value of ⇢i of the
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interest rate r(⇠t). That is, ✓ =

�

⇢i, qi,j | 1  i, j  N
 

. We may then assume that either a
subset of ✓ is already known or that a good guess is known. For example, in the numerical results
presented in 2.5, we assume that the true values for ⇢i are known 8i = 1, . . . , N . We have also
assumed that the scaling coefficient of the noise, that is, the coefficient ⌘, is already known. For
example, it can be taken as the average empirical variance of the time series y(t) taken over
inter-jump intervals.

We fix Q0, the initial guess for the matrix Q by taking q0i,j to be the empirical transition
counts for transitions from state i to j, divided by the average occupation time in state i.

The parameter estimation algorithm is the following:

1. Make an initial guess ✓
0

of the unknown parameters (Q0 as defined above).

2. Observe yt over a fixed time discretization s
1

< s
2

< . . . < sm = Tof [0, T ] as well as over
the jump times ⌧

1

, ⌧
2

, ...

3. Form the jump adapted time discretization as follows: Take the fixed discretization s
1

<

s
2

< . . . < sm = T and join the jump times ⌧
1

, ⌧
2

, ..., ⌧⌫ < T to form the jump-adapted time
points t

1

< t
2

< . . . < tn(T )

< T .

4. Iterate the following steps:

(a) Observe y1t = yt for all t before the first jump time.

Serial Filtering with Bayesian Updating at the Jumps

i. On the basis of the process y1(t) and the initial parameters ✓
0

, also initialize
�(Xt), �(N i,j

t ), �(Tt(i)) and �(�t(i)) using the quasi-exact approximation
scheme on the jump-adapted time discretization, see equations (2.3.19) and
(2.3.26).

ii. At a jump-time ⌧k, apply Bayesian updating to re-initialize the filters starting
from ⌧k and compute �(Xt), �(N i,j

t ), �(Tt(i)) and �(�t(i)) until the next
jump-time ⌧�k+1

.
iii. Iterate between re-initializing and filtering over the inter-jump intervals (⌧k, ⌧k+1

]

until the terminal time T is reached.

Expectation Step Compute ˆ�(Xt) using the Quasi - Exact Approximation (2.3.19)
and then also compute ˆ�(N i,j

t ), ˆ�(Tt(i)) and ˆ�(�t(i)) by the corresponding
Quasi - Exact Approximation (2.3.26).

Maximization Step Obtain ˜✓ for the next iteration of the EM (see (2.2.24) and
(2.2.25)).

(b) Repeat the step (a) with ✓
0

replaced by ˆ✓ successively from each E - M step, until a
stopping criterion is reached, for example |ˆ✓k � ˆ✓k�1

| < ✏ for some threshold ✏.

2.5 Numerical Results

In this section we present the numerical results from implementing our proposed calibration
algorithm for a simple test case, where the time series for yt is generated by simulating the
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CTMC ⇠t, instead of taking market data. We chose as our CTMC model the same used by
[PR10a] in their numerical tests, that is, the CTMC has Q-matrix

Q =

2

6

4

�1 1 0

0.5 �1 0.5

0 1 �1

3

7

5

,

the diffusion coefficient of the noise term W of the observations process y is ⌘ = 1.0 and the
diffusion matrix of the Zakai SDE for the Wonham filter of the state is D is

D =

2

6

4

0.05 0 0

0 0 0

0 0 �0.05

3

7

5

. (2.5.1)

We note that in this set-up, the drift and diffusion matrix coefficients of the Zakai SDE are not-
commuting, and hence this is not a trivial set-up, i.e. we are able to test the performance of the
quasi-exact scheme in a way that takes into account errors arising from the use of the quasi-exact
solution as proxy. Financial Interpretation In [PR10a] this set-up served as a simple numerical
test to show that the quasi-exact scheme works when approximating the Zakai SDE for the state-
filter. Here we also attempt to give these choice of parameters a financial interpretation. First
we observe that they arise from taking the price F (t,H, ⇠t) defined as

F (t,H, ⇠t) =

8

>

<

>

:

e0.05(T�t) if ⇠t = x1

1 if ⇠t = x2

e�0.05(T�t) if ⇠t = x3.

(2.5.2)

Indeed in that case, c(t, ⇠t) = log {F (t,H, ⇠t)} is

c(t, ⇠t) =

8

>

<

>

:

0.05(T � t) if ⇠t = x1

0 if ⇠t = x2

�0.05(T � t) if ⇠t = x3
,

h(t, ⇠t) = ċ(t, ⇠t) equals

h(t, ⇠t) =

8

>

<

>

:

0.05 if ⇠t = x1

0 if ⇠t = x2

�0.05 if ⇠t = x3
,

and finally D(t) = diag {h}, which is exactly (2.5.1).

Remark 2.5.1. A price F (t,H, ⇠t) that is given as (2.5.2) arises as follows: Let V (t,H, ⇠t) be the
price of a zero-coupon bond whose value depends on ⇠t, as in the Example 2.4.2.4. Then F (t,H, ⇠t)

is the value at time t of a dynamically re-balanced portfolio consisting of e0.5(T�t)/V (t,H, ⇠t) units
of the bond if ⇠t = x1, e�0.5(T�t)/V (t,H, ⇠t) units of the bond if ⇠t = x3 and 1/V (t,H, ⇠t) units
of the bond if ⇠t = x2. A possible interpretation of this is that it replicates a double-touch digital
caplet on the short rate r(⇠t). This simple example can serve as a basis for applications with other
types of payoffs. Indeed, under a general Markov functional model (see the remarks of Section 4.2),
the calibration of digital caplets is the basis for completely determining all the price functionals of
market-traded derivatives.
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Figure 2.1: A sample path of

ˆ⇠�k , � = 2

�3

. The dashed line is the true path.

Returning to the numerical test itself, we first computed the discrete time approximation ˆ⇠�k
of the Wonham filter for the state, ˆ⇠t, using the Euler-Maruyama, Milstein, and Quasi-Exact
Schemes, and a jump-adapted time grid, where the fixed time points had time step sizes of
� = 2

�3, 2�4, . . . , 2�7. As a first experiment, we use the true parameters in the computation of
the filters. We used an ultra-fine discretization of 2�10 to obtain a proxy for the true solution ˆ⇠t.
Figures 2.1 and 2.2 show graphs of the sample paths obtained using each scheme, at a discretization
level of 2�3 and 2

�4, respectively. The implementation was performed using textitMatlab R2012b
for OS X 10.8.3 on a Macbook Pro with a 2.6 GHZ Intel Core i7 processor and 16 GB of memory.

At each discretization level we then computed the global error at the final time point tn(T ).
We also computed the (path wise) L2-error, that is

s

X

k

⇣

ˆ⇠�k � ˆ⇠t
k

⌘

2

.

In order to compare the quality of each scheme, we plotted the logarithm (base 2) of the global
error versus the logarithm (base 2) of the discretization size �. Figure 2.3 shows the log

2

-log
2

plots for the three schemes. We can see that, while an error reduction is achieved in all three
schemes by decreasing the step-size �, the Quasi-Exact Scheme has a relatively quite low error
at the coarsest discretization level. We see a similar comparison in the log

2

-log
2

plot of the L2

error versus � (Figure 2.4).
We then implemented the Wonham filters for the occupation time bTt(i) and the counting

process for transitions bN i,j
t . As before, we varied the step-size � and compared the global error
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Figure 2.2: A sample path of

ˆ⇠�k , � = 2

�4

. The dashed line is the true path.

and the L2-error. For brevity, we show here only the log

2

-log
2

plots of the global error (Figure
2.6) and the L2 error (Figure 2.7) for the filter bTt(2) (Figure 2.5). In this case we see again that in
the coarsest time-discretization, the Quasi-Exact Scheme attains the lowest error, while for a fine
time-discretization it has a similar accuracy to the Milstein Scheme. The Euler Scheme performs
relatively poorly for this filter, due to the more complicated Zakai SDEs. Similar results were
observed for the filter bN i,j

t .
Finally we also implemented the filter-based EM algorithm, when the true parameters in the

Q matrix of ⇠ are

Q =

2

6

4

�1 1 0

0.4 �1 0.6

0 1 �1

3

7

5

,

and we estimate only q
2,3, assuming that qi = 1 for i = 1, 2, 3. We take as our initial guess the

matrix Q
0

Q
0

=

2

6

4

�1 1 0

0.5 �1 0.5

0 1 �1

3

7

5

.

The estimate for q
2,3 is computed by taking bN2,3

T /bTT (2) (see sub-section 2.2.3) at each iteration
of the EM algorithm. We compare the results for bN2,3

T /bTT (2) computed using each of the three
discretization schemes (Quasi-Exact, Euler-Maruyama and Milstein).

We noted, over several different simulated time series for ⇠t and observations yt, that the
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Figure 2.3: log

2

-log

2

plot of the global error of

ˆ⇠� at the final time point T , versus step-size

�. The solid, dashed, and dotted lines correspond to the Quasi-Exact, Euler-Maruyama and

Milstein scheme, respectively. At the coarsest discretization level, � = 2

�3

, the respective

global errors are 0.145, 0.823, and 0.523.
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Figure 2.4: log

2

-log

2

plot of the L2

-error of

ˆ⇠�, versus step-size �. The solid, dashed,

and dotted lines correspond to the Quasi-Exact, Euler-Maruyama and Milstein scheme, re-

spectively. At the coarsest discretization level, � = 2

�3

, the respective L2

-errors are 1.344,

1.859, and 1.586.

Figure 2.5: Sample path of

bT (2)

�

k by the Quasi-Exact, Euler-Maruyama and Milstein

Scheme at � = 2

�10

.
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Figure 2.6: log

2

-log

2

plot of the global error of

bT (2)

�

at the final time point T versus

step-size �. The solid, dashed, and dotted lines correspond to the Quasi-Exact, Euler-

Maruyama and Milstein scheme, respectively. At the coarsest discretization level, � = 2

�3

,

the respective global errors are 0.6084, 3.2337, and 0.3473.
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Figure 2.7: log

2

-log

2

plot of the L2

-error of

bT (2)

�

versus step-size �. The solid, dashed,

and dotted lines correspond to the Quasi-Exact, Euler-Maruyama and Milstein scheme, re-

spectively. At the coarsest discretization level, � = 2

�3

, the respective L2

-errors are 1.30,

1.76, and 2.91.
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scheme series 1 error series 2 error
Euler-Maruyama 0.6133 �0.0133 0.8821 �0.2821

Milstein 0.4486 0.1514 0.4551 0.1449

Quasi-Exact 0.4841 0.1159 0.5796 0.0204

Table 2.1: EM Parameter Estimates for the true model parameter q
2,3 = 0.6, using an initial

guess q0
2,3 = 0.5

results of parameter estimation are quite variable from one time series to another and, while
in general the algorithm yields parameter estimates approaching the true parameters, there are
several instances when the estimate exceeds the true value, or oscillates near the true value, i.e.,
the convergence is not always observed and is not always monotonic.

In Table 2.1 we show the results of one of the simulation studies we performed. It lists some of
the estimated values for q

2,3 computed using each of the three discretization schemes. The series’
correspond to each EM step (we show only 2 EM iterations in the table). The fixed step-size
� = 2

�7 was used, and each time series was simulated from t = 0 to T = 10 (1280 points in the
fixed time-discretization).

2.5.0.1 Final comments on the numerical results

From the parameter estimates attained in Table 2.1 (which reflect the also nature of the results
over various simulations performed), these results perhaps do not definitively confirm whether the
EM algorithm using our proposed discretization scheme is a good choice. The Euler - Maruyama
estimate is the most accurate in Series 1, while the Quasi-Exact estimate is the most accurate in
Series 2. This may be explained by the presence of oscillations when using an Euler-Maruyama
scheme, which results in certain fluctuating estimates over each iterations. Perhaps more puzzling
is why the Milstein scheme underperforms both schemes. A more thorough numerical test would
need to also investigate the issue of stability of this algorithm. It is well known that the EM-
based parameter estimation may lead to convergence of the objective function to local maxima,
and therefore several simulation studies using several different initial values is necessary to fully
ascertain by experiments, the effectiveness of this approach. Unfortunately due to constraints in
time and resources, we are unable to do such a thorough study in the present work and must
leave it to a possible future investigation. Nevertheless, we have shown that the core discretization
scheme performs relatively as expected.

2.A Technical Proofs

2.A.1 Derivation of the Wonham Filter Equations

In order to derive the filter equations for the state Xt, the transition counts N i,j
t , the occupation

time Tt(i) and the drift estimator �t(i) given respectively in Proposition 2.2.4, Theorem 2.2.5,
Theorem 2.2.6 and Theorem 2.2.7, we must first derive a general equation for the filter of a generic
measurable function of Xt, and then particularize such an equation to obtain each of the specific
filter equations.
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Let us then denote by Ht := f(Xt) the process defined by f that is a generic, measurable
function of Xt. From the differentiation rule (2.2.3) we may assume that Ht takes the general
semi-martingale form:

Ht := H
0

+

Z t

0

↵sds+

Z t

0

�>s dMt +

Z t

0

�sdWt,

↵t, �t 2 R and �t 2 RN .
Let us observe that

Ht = hHtXt,1i,

hence
�(Ht) = �(hHtXt,1i) = h�(HtXt),1i,

so that, in order to compute �(Ht) it suffices to know �(HtXt).
We shall now derive equations for 7 �(HtXt). For the following formulas we define h(t) to be

the vector such that
h(t,Xt) = hh(t),Xti,

and we shall also define
D(t) := diag

�

⌘�1 · h(t)
 

, (2.A.1)

the diagonal matrix having in its main diagonal the elements of the vector ⌘�1 · h(t). For conve-
nience of notation, we further define

¯D(t) := diag {h(t)} . (2.A.2)

We now have the following

Theorem 2.A.1. Let Ht := H
0

+

Z t

0

↵sds+

Z t

0

�>s dMt +

Z t

0

�sdWt for a P -Wiener process W .

Then the equation for the unnormalized estimate �(HtXt) is given by the following linear SDE:
8

>

<

>

:

d�(HtXt) = {�(↵tXt) +Q�(HtXt)} dt
+

PN
i,j=1

h�(�jtXt � �itXt), eiiqi,j(ej � ei)dt

+

�

�(�tXt) +
¯D(t)�(HtXt)

 

dȳt

(2.A.3)

where ȳt = ⌘�1yt.

Note that, by the definition of ȳ together with equations (2.A.1) and (2.A.2), we have

¯D(t)ȳt = ⌘�1

¯D(t)yt = D(t)yt. (2.A.4)

Remark 2.A.2. This theorem is analogous to Theorem 3.2 in Chapter 8 of [EAM08], the dif-
ference being that in [EAM08], the coefficient matrix D(s) ⌘ D is constant, whereas the present
Theorem 2.A.1 considers a time varying D(s). This is due to the fact that we are now considering
a time varying drift coefficient h(s,Xs) in the observations process. While the proof is completely
analogous, we provide it here in detail for completeness of our discussion.

7We may also directly derive equations in �(H
t

), however, as explained in Remark 2 of [Ell93], this results
in filter equations that are quite cumbersome to deal with, whereas equations in �(H

t

X
t

) turn out to be more
convenient.
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Proof. Analogous to the proof of Theorem 3.2 from Chapter 8 of [EAM08], our approach is to first
obtain the differential equation for ⇤tHtXt, and then apply the ¯E [· | Fy

t ]-conditional expectation.
From the Ito product rule we have

HtXt = H
0

X
0

+

Z t

0

↵sXs�ds+

Z t

0

�sXs�dMs +

Z t

0

�sXs�dWs

+

Z t

0

Hs�QXs�ds+

Z t

0

Hs�dMs +

X

0<kN(t)

(�>
k �Xk)�Xk. (2.A.5)

where �k = �⌧
k

as before. Let us observe that if ⇠t jumps from state i to state j at time t, then
�⇠t = ⇠t � ⇠t� = j � i and

�Xt = Xt �Xt� = (ej � ei). (2.A.6)

Note further that
1{⇠

t

=j}1{⇠
t

�=i} = hXt, ejihXt� , eii,

by definition. Hence

�Xt =

N
X

i,j=1

(ej � ei)1{⇠
t

=j}1{⇠
t

�=i}

=

N
X

i,j=1

(ej � ei)hXt, ejihXt� , eii.

Let us denote by �it the i-th component of the vector �t. By a similar argument as before, one
can easily show that

�>t �Xt =�
>
t

N
X

i,j=1

(ej � ei)hXt, ejihXt� , eii

=

N
X

i,j=1

(�>t ej � �>t ei)hXt, ejihXt� , eii

=

N
X

i,j=1

(�jt � �it)hXt, ejihXt� , eii.

We further have that

(�>
t �Xt)�Xt =

0

@

N
X

i,j=1

(�j
t � �i

t)hXt, ejihXt� , eii

1

A ·
N
X

i,j=1

(ej � ei)hXt, ejihXt� , eii

=

N
X

i,j=1

(�j
t � �i

t)hXt, ejihXt� , eii(ej � ei)

=

N
X

i,j=1

(�j
t � �i

t)hXt �Xt� , ejihXt� , eii(ej � ei),

where the third equation is due to the fact that when there is a transition from Xt� = ei to
Xt = ej , then hXt� , eji = 0. The last term in (2.A.5) can then be rewritten as

X

0<kN(t)

(�>
k �Xk)�Xk =

N
X

i,j=1

Z t

0

(�j
s � �i

s)hXs�, eii(ej � ei)hej , dXsi. (2.A.7)
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Substituting dXs from the martingale representation

dXs = QXs�ds+ dMs

into equation (2.A.7) gives

X

0<kN(t)

(�>
k �Xk)�Xk =

N
X

i,j=1

Z t

0

(�j
s � �i

s)hXs�, eii(ej � ei)hej , dMsi

+

N
X

i,j=1

Z t

0

(�j
s � �i

s)hXs�, eii(ej � ei)hej ,QXs�dsi

=

N
X

i,j=1

Z t

0

(�j
s � �i

s)hXs�, eii(ej � ei)hej , dMsi

+

N
X

i,j=1

Z t

0

(�j
s � �i

s)hXs�, eiiqi,j(ej � ei)ds. (2.A.8)

The second term in the right-hand side of equation (2.A.8) is obtained by observing that, in the
event of a transition from Xs� = ei to Xs = ej , the expression hQXs�ds, eji equals

hQXs�ds, eji = qi,jds.

Continuing,

=

N
X

i,j=1

Z t

0

(�j
s � �i

s)hXs�, eii(ej � ei)hej , dMsi

+

N
X

i,j=1

Z t

0

h�j
sXs� � �i

sXs�, eiiqi,j(ej � ei)ds (2.A.9)

Substituting the expression from (2.A.9) into (2.A.5) we get

HtXt = H
0

X
0

+

Z t

0

↵sXs�ds+

Z t

0

�>
s Xs�dMs +

Z t

0

�sXs�dWs

+

Z t

0

Hs�QXs�ds+

Z t

0

Hs�dMs

+

N
X

i,j=1

Z t

0

(�j
s � �i

s)hXs�, eii(ej � ei)hej , dMsi

+

N
X

i,j=1

Z t

0

h�j
sXs� � �i

sXs�, eiiqij(ej � ei)ds. (2.A.10)

The term
N
X

i,j=1

Z t

0

(�js � �is)hXs�, eii(ej � ei)hej , dMsi

can be written as
N
X

i,j=1

Z t

0

(�js � �is)hXs�, eii · (ej � ei) · e>j dMs.
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Let us define ↵̄s 2 R, ¯�s 2 RN , and ¯�s 2 R as follows

↵̄s =: ↵sXs� +Hs�QXs� +

N
X

i,j=1

h�jsXs� � �isXs�, eiiqij(ej � ei)

¯�s =: �>s Xs� +Hs� +

N
X

i,j=1

(�js � �is)hXs�, eii · (ej � ei) · e>j

¯�s =: �sXs�.

Hence equation (2.A.10) is

HtXt = H
0

X
0

+

Z t

0

↵̄sds+

Z t

0

(

¯�s)
>dMs +

Z t

0

¯�sdWs (2.A.11)

Once again applying the Ito product rule, and recalling that the differential d⇤t is given in
(2.2.6) as

d⇤t = ⇤t · ⌘�1 · h(t,Xt)dyt, with ⇤
0

= 1

we obtain the following expression

d(⇤tHtXt) =⇤t↵̄tdt+ ⇤t(
¯�t)

>dMt + ⇤t
¯�tdWt

+ ⇤t · ⌘�1 · h(t,Xt)Ht�Xt�dyt + d [⇤, HX]t

=⇤t↵̄tdt+ ⇤t(
¯�t)

>dMt + ⇤t
¯�tdWt

+ ⇤t · ⌘�1 · h(t,Xt)Ht�Xt�dyt + “⇤t · ⌘�1 · h(t,Xt)↵̄tdtdyt”

+ ⇤t · ⌘�1 · h(t,Xt)
¯�>
t d [y,M ]t + ⇤t · ⌘�1 · h(t,Xt)

¯�td [y,W ]t . (2.A.12)

The expression inside the quotation marks “· ” represents higher order terms which can be ne-
glected due to the fact that in computing the quadratic variation [⇤, HX]t we are performing a
limiting operation8. Note also that

[y,W ]t =



Z t

0

h(s, ⇠s)ds+ ⌘Wt,Wt

�

= ⌘hW it = ⌘ · t,

following standard arguments from the calculus of Ito processes. Hence d[y,W ]s = ⌘ · ds.
We then write the integrated expansion of ⇤tHtXt,

⇤tHtXt = H
0

X
0

+

Z t

0

d(⇤sHsXs),

8The quadratic variation [⇤, HX]

t

is the limit in probability of the product of increments, i.e.

[⇤, HX]

t

= P-lim
�#0

n(t)
X

k=0

(⇤

�
k+1 � ⇤�

k

)((HX)

�
k+1 � (HX)

�
k

),

as the time discretization step � =

t

n(t) is taken to be infinitesimally small, and where ⇤�
k

and (HX)

�
k

are families
of sequences, having a time step size of �, that are approximating sequences for ⇤

t

and H
t

X
t

, respectively. See
for example [Pro05].
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by integrating both sides of (2.A.12).

⇤tHtXt =H
0

X
0

+

Z t

0

⇤s↵̄sds+

Z t

0

⇤s(
¯�s)

>dMs +

Z t

0

⇤s
¯�sdWs

+

Z t

0

⇤s · ⌘�1 · h(s,Xs)Hs�Xs�dys

+

Z t

0

⇤s · ⌘�1 · h(s,Xs)
¯�>
s d [y,M ]s +

Z t

0

⇤s · ⌘�1 · h(s,Xs)
¯�s⌘ds

=H
0

X
0

+

Z t

0

⇤s↵̄sds+

Z t

0

⇤s(
¯�s)

>dMs +

Z t

0

⇤s
¯�sdWs

+

Z t

0

⇤s · ⌘�1 · h(s,Xs)Hs�Xs�dys

+

Z t

0

⇤s · ⌘�1 · h(s,Xs)
¯�>
s d [y,M ]s +

Z t

0

⇤sh(s,Xs)
¯�sds. (2.A.13)

Next we take the ¯E [· | Fy
t ]-conditional expectation of both sides of (2.A.13), applying Fubini’s

theorem to interchange the order of expectations and integrals. This has the following con-
sequences: first, the Fy

t -conditional ¯P -expectation of the quadratic variation term in d [y,M ]s

vanishes because y ·M is a martingale under ¯P (see the proof of Proposition 1.1.10 in [Han07a]).
Secondly, we recall that the Fy

t -optional projections under ¯P of the dys (as well as the dWs)
integrals are dys (respectively dWs) integrals of the optional projections, and thirdly we note that
the ¯E [· | Fy

t ]-conditional expectations of the dMs terms vanish (see [Han07b], Lemma 7.2.7 for
both properties). Define the b· notation as

bw =

¯E [w | Fy
t ] , w a random variable.

We are left with

\
⇤tHtXt = H

0

X
0

+

Z t

0

[z }| {
⇤s↵̄sds+

Z t

0

\z }| {

⇤s
¯�sdWs+

Z t

0

\z }| {

⇤s⌘
�1h(s,Xs)HsXsdys+

Z t

0

\z }| {

⇤sh(s,Xs)
¯�sds. (2.A.14)

From the definitions of ↵̄s and ¯�s and the equality

h(s,Xs)ei = hh(s),Xsiei = hi(s)ei

the right hand side of (2.A.14) equals

\
⇤tHtXt = H

0

X
0

+

Z t

0

\
⇤s↵sXs�ds+

Z t

0

\z }| {

�s⇤sXs�dWs

+

Z t

0

\z }| {

⇤sHs�QXs�ds

+

N
X

i,j=1

Z t

0

\z }| {

h�j
s⇤sXs� � �i

⇤sXs�, eiiqi,j(ej � ei)ds

+

N
X

i=1

Z t

0

\z }| {

h⇤sXs, eii · ⌘�1 · hi(s)Hseidys +
N
X

i=1

Z t

0

\z }| {

h⇤sXs�, eii�shi(s)eids. (2.A.15)
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We can re-write the terms

Z t

0

�s⇤s�Xs�dWs +

N
X

i=1

Z t

0

h⇤sXs�, eii�shi(s)eids

=

Z t

0

⇤s��sXs�dWs +

Z t

0

⇤s�shh(s),Xs�iXs�ds

=

Z t

0

⇤s��sXs�dWs +

Z t

0

⇤s�sXs�h(s,Xs�)ds

=

Z t

0

⇤s�sXs�dȳs.

and also

N
X

i=1

Z t

0

h⇤sXs�, eii · ⌘�1 · hi(s)Hs�eidys =

Z t

0

⇤s
¯D(s)Hs�Xs�dȳs

where we recall that we have defined ȳt = ⌘�1yt.

Hence (2.A.15) simplifies to

\
⇤tHtXt = H

0

X
0

+

Z t

0

\
⇤s↵sXs�ds+

Z t

0

\z }| {

⇤sHs�QXs�ds

+

N
X

i,j=1

Z t

0

\z }| {

h�j
s⇤sXs� � �i

⇤sXs�, eiiqi,j(ej � ei)ds

+

Z t

0

¯D(s)
\z }| {

⇤sHs�Xs�dȳs +

Z t

0

\z }| {

⇤s�sXs�dȳs. (2.A.16)

Recalling the definition of �(f(Xt)) for any function f(Xt), we observe that

�(f(Xt)) =
¯E[⇤tf(Xt) | Fy

t ] =
\
⇤tf(Xt).

Applying this observation to (2.A.16) gives us the result.

Now we particularize the filter equations to obtain the filter equations from Proposition 2.2.4,
Theorem 2.2.5, Theorem 2.2.6 and Theorem 2.2.7.

2.A.1.1 Proof of Proposition 2.2.4

Proof. Taking Ht = H
0

= 1, ↵s = 0, �s = 0 2 RN , and �s = 0, and applying Theorem (2.A.1),
we obtain the result.

2.A.1.2 Proof of Theorem 2.2.5

Proof. We would like to obtain the Zakai equation for the unnormalized conditional expectation
�(N i,j

t ). First observe that N i,j
t = hN i,j

t Xt,1i, and hence

�(N i,j
t ) = �(hN i,j

t Xt,1i) = h�(N i,j
t Xt),1i.
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This allows us to apply Theorem 2.A.1 to �(N i,j
t Xt). Take Ht = N i,j

t , H
0

= 0, ↵t = hXt� , eiiqi,j ,
�t = hXt� , eiiej , and �s = 0, to obtain

�(N i,j
t Xt) =

n

h�(Xt�), eiiqi,jXt� +Q�(N i,j
t Xt)

o

dt

+

N
X

k,l=1

h�(�ltXt � �kt Xt), ekiqk,l(el � ek)dt

+

¯D(t)�(N i,j
t Xt)dȳt.

Since hXt� , eiiXt� = hXt� , eiiei we find that

N
X

k,l=1

h�ltXt � �kt Xt, ekiqk,l(el � ek) =(hXt� , eiie>i ei)qi,j(ej � ei

=hXt� , eiiqi,j(ej � ei).

Hence

�(N i,j
t Xt) =

n

h�(Xt�), eiiqi,jei +Q�(N i,j
t Xt)

o

dt+ h�(Xt�), eiiqi,j(ej � ei)dt

+

¯D(t)�(N i,j
t Xt)dȳt

=

n

h�(Xt�), eiiqi,jej +Q�(N i,j
t Xt)

o

dt+ ¯D(t)�(N i,j
t Xt)dȳt.

2.A.1.3 Proof of Theorem 2.2.6

Proof. To prove Theorem 2.2.6, we can apply Theorem 2.A.1 with Ht = Tt(i), H
0

= 0, ↵s =

hXs, eii, �s = 0 2 RN , and �s = 0.

2.A.1.4 Proof of Theorem 2.2.7

Proof. Again, Theorem 2.2.7 is derived by applying Theorem 2.A.1, with Ht = �t(i), H0

= 0,
↵s = hi(s)hXs, eii, �s = 0, and �s = hXs, eii. Note that Xs↵s = hi(s)hXs, eii and Xs�s =

XshXs, eii = hXs, eiiei.

2.A.2 Proof of Proposition 2.3.1

Proof. We recall that for Rk⇥k - matrix stochastic processes X and Y , the Ito product formula,

d(XY ) = XdY + dXY + d [X,Y ]t ,

is analogous to the scalar case with the obvious difference that the matrix product is not, in
general, commutative.

We also recall two properties of the matrix exponential (see [PP12]): the first is that

exp {M
1

+M
2

} = exp {M
1

} exp {M
2

} = exp {M
2

} exp {M
1

}
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if and only if M
1

and M
2

commute. The second is that if
R t
0

M(s)ds is deterministic then (see
[PP12])

d

✓

exp

⇢

Z t

0

M(s)ds

�◆

= exp

⇢

Z t

0

M(s)ds

�

M(t)dt = M(t)exp

⇢

Z t

0

M(s)ds

�

dt. (2.A.17)

In particular if M is a constant matrix and t 2 R, then

d

dt
exp {M · t} = M · exp {M · t} = exp {M · t} ·M .

We then have

d(�t) = d

✓

exp

⇢

Z t

0

✓

A(s)� 1

2

(D)

2

(s)

◆

ds+

Z t

0

D(s)dWs

�◆

(by commutativity of A(t) and D(t))

= d

✓

exp

⇢

Z t

0

A(s)ds

�

exp

⇢

�1

2

Z t

0

(D)

2

(s)ds+

Z t

0

D(s)dWs

�◆

= exp

⇢

Z t

0

A(s)ds

�

d

✓

exp

⇢

�1

2

Z t

0

(D)

2

(s)ds+

Z t

0

D(s)dWs

�◆

+ d

✓

exp

⇢

Z t

0

A(s)ds

�◆

exp

⇢

�1

2

Z t

0

(D)

2

(s)ds+

Z t

0

D(s)dWs

�

(2.A.18)

+ d

✓

exp

⇢

Z t

0

A(s)ds

�◆

d

✓

exp

⇢

�1

2

Z t

0

(D)

2

(s)ds+

Z t

0

D(s)dWs

�◆

.

We can apply the property (2.A.17) to compute the d(exp {A(s)}) terms in (2.A.18). Next we
claim that the term

exp

⇢

�1

2

Z t

0

(D)

2

(s)ds+

Z t

0

D(s)dWs

�

=: Y (t), (2.A.19)

where Y (t) is a matrix stochastic process, has the Ito differential

dYt = D(t)YtdWt = YtD(t)dWt. (2.A.20)

Indeed, we can easily see this by first observing that �1

2

R t
0

(D)

2

(s)ds +

R t
0

D(s)dWs is a
diagonal matrix, and hence Yt, which is the left hand side of (2.A.19), is also a diagonal matrix:

Y (i,j)
(t) =

8

<

:

exp

⇢

�1

2

Z t

0

(D)

2

i,i(s)ds+

Z t

0

Di,i(s)dWs

�

if i = j

0 otherwise

Hence each entry on the main diagonal satisfies the scalar SDE

dY (i,i)
(t) = Di,i(t)Y

(i,i)
(t)dWt = Y (i,i)

(t)Di,i(t)dWt.

Let us now compute dY (t) = (d(Y (t))(i,j))
1i,jN :

dY (i,j)
t =

(

Di,i(t)Y (i,i)
(t)dWt = Y (i,i)

(t)D(t)dWt, if i = j

0 otherwise
,

hence we immediately obtain (2.A.20).
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From (2.A.17) and (2.A.20) we can re-write equation (2.A.18) as follows:

d(�t) = exp

⇢

Z t

0

A(s)ds

�

exp

⇢

�1

2

Z t

0

(D)

2

(s)ds+

Z t

0

D(s)dWs

�

D(t)dWt

+

✓

A(t)exp

⇢

Z t

0

A(s)ds

�

dt

◆

exp

⇢

�1

2

Z t

0

(D)

2

(s)ds+

Z t

0

D(s)dWs

�

(2.A.21)

+

✓

exp

⇢

Z t

0

A(s)ds

�

A(t)dt

◆

exp

⇢

�1

2

Z t

0

(D)

2

(s)ds+

Z t

0

D(s)dWs

�

D(t)dWt

= D(t)exp

⇢

Z t

0

A(s)ds� 1

2

Z t

0

(D)

2

(s)ds+

Z t

0

D(s)dWs

�

dWt

+ A(t)exp

⇢

Z t

0

A(s)ds� 1

2

Z t

0

(D)

2

(s)ds+

Z t

0

D(s)dWs

�

dt (2.A.22)

= A(t)�tdt+D(t)�tdWt. (2.A.23)

where (2.A.22) is due to the commutativity of A(t) and D(t), and since terms in “dt · dW"
represent higher order terms that can be neglected.

2.A.3 Proof of Proposition 2.3.8

Proof. From Proposition 2.3.6 we know that �(t, t
0

) is the solution of

d�(t, t
0

) = A(t)�(t, t
0

)dt+D(t)�(t, t
0

)dYt, �(t
0

, t
0

) = I.

By applying Ito’s formula and since A(t), D(t) and �(t, t
0

) commute, we can compute the
differential d�(t, t

0

)

�1 (note that �(t, t
0

) > 0 8t)

d�(t, t
0

)

�1

= ��(t, t
0

)

�1

�

A(t)�D2

(t)
 

dt��(t, t
0

)

�1D(t)dYt (2.A.24)

Let us define  t := �(t, t0)�1 · St and compute d t = d(��1S)t by the Ito product formula

d(��1S)t = (�

�1

t )dSt + d(��1

t )St + d
⇥

�

�1,S
⇤

t

d(��1S)t = �(t, t0)
�1 {A(t)St + a (�(t, t

0

))} dt+�(t, t
0

)

�1 {D(t)St + b (�(t, t
0

))} dYt

��(t, t
0

)

�1

�

A(t)�D2

(t)
 

Stdt��(t, t0)�1D(t)StdYt

��(t, t
0

)

�1D(t) · {D(t)St + b (�(t, t
0

))} dt. (2.A.25)

After cancellations we have

d(S��1

)t = d t = �(t, t0)
�1 {a(�(t, t

0

)) +D(t)b(�(t, t
0

))} dt+�(t, t
0

)

�1b(�(t, t
0

))dYt

which has the integrated form (note that  
0

= S
0

· I):

 t = S
0

+

Z t

0

�(s, t
0

)

�1

[a(�(s, t
0

))�D(t)b(�(s, t
0

))] ds+

Z t

0

�(s, t
0

)

�1b(�(s, t
0

))dYs (2.A.26)

Finally, the equality

St =�t t

gives us the result.
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2.A.4 Proof of Proposition 2.3.15

We shall need a probabilistic analogue of the mean value theorem in order to obtain the strong
order of the approximating sequence (Z�

k )k.

Definition 2.A.3. We denote by the symbol st, the inequality operator in the usual stochastic
sense, to mean the following relation:
Two real random variables A and B are said to satisfy the inequality A st B if and only if
P (A > x)  P (B > x) for all x 2 R.

Lemma 2.A.4. If E[A] < E[B] < 1 and A st B, then there exists an absolutely continuous
non-negative random variable C having probability density function

fC(x) =
P [B > x]� P [A > x]

E[B]� E[A]

, x � 0.

Let g be a measurable and differentiable function such that E[g(A)], E[g(B)] < 1, and let its
derivative g0 be measurable and Riemann-integrable on the interval [x, y] for all y � x � 0. Then
E[g0(Z)] is finite and

E[g(B)]� E[g(A)] = E[g0(C)] · (E[B]� E[A]) .

Proof. See the paper [Cre99].

Lemma 2.A.5. Let (⌦,F , P ) be a probability space and B, the Borel �-algebra on R. Let A,
B be real random variables in (⌦,F , P ) with E[A], E[B] < 1. Define C := max {A,B} and
C := min {A,B, }, and C := A � B. Then C and C and |C| are real random variables with
C st C, E[C]  E[C], and moreover

|C| = C � C.

Proof. The (F ,B)-measurability of C, C and |C| are immediate, due to the measurability of
min {·}, max {·} and |·| (see any book on measure theory).To prove the first part of the claim,
let us take a generic x 2 R and define the subset A := {! 2 ⌦ | A(!) � B(!)} . Since A =

[x2R {A(!) � x} \ {x � B(!)} and the sets {A(!) � x} , and {B(!) � x} are B-measurable,
then A is (F ,B)-measurable.

Note that A \Ac
= ⌦ and for any ! 2 ⌦, we can write

C(!) = A(!)1{A} +B(!)1{Ac},

and
C(!) = A(!)1{Ac} +B(!)1{A}.

Let us then prove that the claim holds for all ! 2 A and also for all ! 2 Ac. Take ! 2 A. Then

C(!) = A(!) C(!) = B(!)

and for any x 2 R,

P
�

C(!) > x
 

= P {A(!) > x} P {C(!) > x} = P {B(!) > x} .
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We can write

{A(!) > x} = {A(!)� x > 0} = {A(!)� x � B(!) + x > 0} [ {A(!)� x > 0 � B(!)� x} ,

and on the other hand

{B(!) > x} = {B(!)� x > 0} = {A(!)� x � B(!)� x > 0}

since ! 2 A. Hence

P
�

C(!) > x
 

= P {A(!) > x} > P {B(!) > x} = P {C(!) > x} .

If we then take ! 2 Ac and interchange the role of A and B, we obtain analogously that

P
�

C(!) > x
 

= P {B(!) > x} > P {A(!) > x} = P {C(!) > x} .

That proves
C st C.

Since C st C if and only if E['(C)]  E['(C)] for any non-decreasing functions ' for which
the expectations exist (see [SS07], Section 1.A.1), then E[C]  E[C] immediately follows. To
prove the second part of the claim, note that for any real numbers a, b < 1, then |a� b| =
max {a, b}�min {a, b} by definition of |·|. Thus the equality

|C(!)| = C(!)� C(!)

holds for any arbitrary fixed ! 2 ⌦, and hence

|C| = C � C.

We shall make use of the following

Definition 2.A.6. The induced operator norm k·k for matrices A 2 Rk⇥k is defined as

kAk := max

⇢

kAxk
kxk | x 2 Rk

�

,

where kk are any vector p-norms. In the case when the operator norm k·k is induced by the
Euclidean (p = 2) norm, we shall distinguish it by the symbol k·k

2

.

As a consequence of the definition, it is immediate that

|Ax|  kAk |x| .

Note also that this norm is a so-called sub-multiplicative norm, that is

kABk  kAk · kBk .

Proposition 2.A.7. Given a matrix A 2 Rk⇥k, then kAk
2

=

p

�
max

(A>A) where �
max

(A>A)

is the largest eigenvalue of A>A.
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Proof. See [PP12].

We now prove Proposition 2.3.15

Proof. We shall prove the case when the initial vector Z
0

may itself be any random vector, in
particular we will not have independence of Z

0

and Zt nor Z
0

and Z�

k .
Let t = tk. Let us recall that for any Euler-Maruyama scheme, the strong order is � = 0.5

(see [PBL10] section 5.2), that is, for any initial vector z
0

,

¯E
�

�

�⇣tz0 � ⇣�k z
0

�

�

 

 K ·�0.5 (2.A.27)

for some constant matrix K.
Now we consider the following global error:

¯E
�

�

�

exp {⇣t}Z0

� exp

�

⇣�k
 

Z
0

�

�

 

Observe that t = tk and we can factor out exp {Q · t} = exp {Q · tk}, which is deterministic,
from exp {⇣t}Z0

� exp

�

⇣�k
 

Z
0

. Let

¯⇣t := Q · t� ⇣t

and
¯⇣�k := Q · t� ⇣�k .

¯E
�

�

�

(exp {⇣t}� exp

�

⇣�k
 

) ·Z
0

�

�

 

=

¯E
�

�

�eQ·t
k ·
�

exp

�

¯⇣t
 

� exp

�

¯⇣�k
 �

Z
0

�

�

 

 ¯E
�

�

�eQ·t
k

�

�

2

·
�

�

�

exp

�

¯⇣t
 

� exp

�

¯⇣�k
 �

Z
0

�

�

 

=

�

�eQ·t
k

�

�

2

· ¯E
�

�

�

(exp

�

¯⇣t
 

� exp

�

¯⇣�k
 

) ·Z
0

�

�

 

Let us focus on the following global error

¯E
�

�

�

(exp

�

¯⇣t
 

� exp

�

¯⇣�k
 

)Z
0

�

�

 

,

since the factor
�

�eQ·t
k

�

�

2

is a scalar constant which does not depend on �. We have that

¯E
�

�

�

(exp

�

¯⇣t
 

� exp

�

¯⇣�

k

 

)Z
0

�

�

 

=

¯E

⇢

q

Z>
0

(exp

�

¯⇣t
 

� exp

�

¯⇣�

k

 

)

>
(exp

�

¯⇣t
 

� exp

�

¯⇣�

k

 

)Z
0

�

Note that, since D(t) is a diagonal matrix, then also ¯⇣t and ¯⇣�k are just diagonal matrices with
the component-wise exponential functions on each element of the main diagonal. Hence

(exp

�

¯⇣t
 

� exp

�

¯⇣�k
 

)

>
(exp

�

¯⇣t
 

� exp

�

¯⇣�k
 

)

is also diagonal. We can then write

=

¯E

8

<

:

v

u

u

t

N
X

j=1

(Z
(j)
0

)

2 ·
⇣

e¯⇣
(j)
t � e

¯⇣�,j

k

⌘

2

9

=

;

 ¯E

(

s

N ·max

j

⇢

(Z
(j)
0

)

2 ·
⇣

e¯⇣
(j)
t � e

¯⇣�,j

k

⌘

2

�

)
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Let i = argmaxj

n

�

�

�

e
¯⇣
(j)
t � e

¯⇣�,j

k

�

�

�

o

. Then

=

¯E

(

r

N · (Z(i)
0

)

2 ·
⇣

e¯⇣
(i)
t � e

¯⇣�,i

k

⌘

2

)

=

p
N ¯E

n

�

�

�

(Z
(i)
0

) ·
⇣

e
¯⇣
(i)
t � e

¯⇣�,i

k

⌘

�

�

�

o

Let us define the scalar real random variable A(i) = min

n

¯⇣
(i)
t , ¯⇣�,i

k

o

+ log(Z
(i)
0

), and B(i) =

max

n

¯⇣
(i)
t , ¯⇣�,i

k

o

+log(Z
(i)
0

). Then, by Lemma 2.A.5 A(i) st B(i) and B(i)�A(i) =
�

�

�

¯⇣
(i)
t � ¯⇣�,i

k

�

�

�

,

and by (2.A.27)

¯E {B(i)�A(i)}  Ki ·�0.5. (2.A.28)

Note that if x st y, then ex st ey since exp {·} is an increasing function. Hence

¯E
n

�

�

�

(Z
(i)
0

) ·
⇣

e
¯⇣t

(i)

� e⇣
�,i
k

⌘

�

�

�

o

=

¯E
n

�

�

�

e
¯⇣t

(i)
+log(Z(i)

0 ) � e⇣
�,i
k +log(Z(i)

0 )

�

�

�

o

=

¯E
n

eB(i) � eA(i)
o

by Lemma 2.A.5.
We can then apply the Lemma 2.A.4 to g(A(i)) and g(B(i))with g(·) = exp {·} (the scalar

exponential function). Let C(i) denote the random variable C from Lemma 2.A.4. We have

¯E
n

eB(i) � eA(i)
o

 ¯E [exp {C(i)}] ·
�

¯E[B(i)]� ¯E[A(i)]
�

=

¯E [exp {C(i)}] ·
�

¯E[B(i)�A(i)]
�

=

¯E [exp {C(i)}] ·
⇣

¯E
n

�

�

�

¯⇣
(i)
t � ¯⇣�,i

k

�

�

�

o⌘

=µC(i) ·K
2

·�0.5

where µC(i)
:=

¯E {exp {C(i)}} and where in the last equation we have used the fact that, since
⇣�,i
k can be considered as an Euler-Maruyama discretization which is a strong approximation

scheme of order 0.5 for ⇣
(i)
t , the global error ¯E

n

�

�

�

¯⇣
(i)
t � ¯⇣�,i

k

�

�

�

o

can be bounded as in (2.A.28).
Hence

¯E
�

�

�

exp {⇣t}� exp

�

⇣�k
 

�

�

 


�

�eQ·t
k

�

� · µC(i) ·K
2

·�0.5

2.A.5 Proof of Proposition 2.3.17

Proof. Let us compute the expected global error that is

¯E
�

�

�St
k+1 � S�

k+1

�

�

 

.

To prove that the approximation is of strong order 0.5, we must show that the expected global
error has an upper bound of the form M · �0.5, where M is a constant independent of �. We
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have

¯E
n

�

�

�

S
tk+1 � S�

k+1

�

�

�

o

=

¯E

⇢

�

�

�

�

�(t
k+1, t0)

✓

S
t0 +

Z

tk+1

t0

�(s, t0)
�1

[a(�(s, t0))�D(s)b(�(s, t0))] ds

+

Z

tk+1

t0

��1
(s, t0)b(�(s, t0))dYs

◆

���
k+1

 

S�
0 +

k

X

l=0

 
l

�t
l

2

+

k

X

l=0

(��
l

)

�1b(��
l

)�Y
l

!

�

�

�

�

�

)

=

¯E

⇢

�

�

�

�

�(t
k+1, t0)St0 +�(t

k+1, t0)

Z

tk+1

t0

�(s, t0)
�1

[a(�(s, t0))�D(s)b(�(s, t0))] ds

+�(t
k+1, t0)

Z

tk+1

t0

��1
(s, t0)b(�(s, t0))dYs

���
k+1S

�
0 ���

k+1

k

X

l=0

 
l

�t
l

2

���
k+1

k

X

l=0

(��
l

)

�1b(��
l

)�Y
l

�

�

�

�

�

)

=

¯E

⇢

�

�

�

�

�(t
k+1, t0)St0 ���

k+1S
�
0 +�(t

k+1, t0)

Z

tk+1

t0

�(s, t0)
�1

[a(�(s, t0))�D(s)b(�(s, t0))] ds

���
k+1

k

X

l=0

 
l

�t
l

2

+�(t
k+1, t0)

Z

tk+1

t0

��1
(s, t0)b(�(s, t0))dYs

���
k+1

k

X

l=0

(��
l

)

�1b(��
l

)�Y
l

�

�

�

�

�

)

 ¯E
n

�

�

�

�(t
k+1, t0)St0 ���

k+1S
�
0

�

�

�

o

+

¯E

(

�

�

�

�

�

�(t
k+1, t0)

Z

tk+1

t0

�(s, t0)
�1

[a(�(s, t0))�D(s)b(�(s, t0))] ds���
k+1

k

X

l=0

 
l

�t
l

2

+�(t
k+1, t0)

Z

tk+1

t0

��1
(s, t0)b(�(s, t0))dYs

���
k+1

k

X

l=0

(��
l

)

�1b(��
l

)�Y
l

�

�

�

�

�

)

Since St0 = S�

0

and by ¯E
�

�

�

(�(tk+1

, t
0

)���

k+1

) · St0

�

�

 

< K�0.5 according to Proposition
2.3.15, replacing S�

0

with St0 , we have

 K
3

·�0.5

+

¯E

(

�

�

�

�

�

�(tk+1

, t
0

)

Z tk+1

t0

�(s, t
0

)

�1

[a(�(s, t
0

))�D(s)b(�(s, t
0

))] ds���

k+1

k
X

l=0

 l
�tl
2

+�(tk+1

, t
0

)

Z tk+1

t0

�

�1

(s, t
0

)b(�(s, t
0

))dYs ���

k+1

k
X

l=0

(�

�

l )
�1b(��

l )�Yl

�

�

�

�

�

)

 K
3

·�0.5

+

¯E

(

�

�

�

�

�

�(tk+1

, t
0

)

Z tk+1

t0

�(s, t
0

)

�1

[a(�(s, t
0

))�D(s)b(�(s, t
0

))] ds���

k+1

k
X

l=0

 l
�tl
2

�

�

�

�

�

)

+

¯E

(

�

�

�

�

�

�(tk+1

, t
0

)

Z tk+1

t0

�

�1

(s, t
0

)b(�(s, t
0

))dYs ���

k+1

k
X

l=0

(�

�

l )
�1b(��

l )�Yl

�

�

�

�

�

)

(2.A.29)
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We can re-write and bound the second expectation in (2.A.29) as follows:

¯E

(

�

�

�

�

�

�(tk+1

, t
0

)

Z tk+1

t0

�(s, t
0

)

�1

[a(�(s, t
0

))�D(s)b(�(s, t
0

))] ds���

k+1

k
X

l=0

 l
�tl
2

�

�

�

�

�

)

=

¯E

(

�

�

�

�

�

�(tk+1
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0

)

Z tk+1

t0

�(s, t
0

)

�1

[a(�(s, t
0

))�D(s)b(�(s, t
0

))] ds��(tk+1
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0

)

k
X

l=0
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�tl
2

+�(tk+1
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0

)

k
X

l=0

 l
�tl
2

���

k+1

k
X
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 l
�tl
2

�

�

�
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�
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 ¯E
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0

)
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))�D(s)b(�(s, t
0

))] ds��(tk+1
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k
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�tl
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+

¯E

(

�

�

�

�

�

�(tk+1

, t
0

)

k
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�tl
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���
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X
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�tl
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)

The first expectation is just the global error of a trapezoidal approximation to the integral in dt.
Such a trapezoidal approximation is of strong order at least one (see Section 5 of [PBL10]). Hence

 K
4

·�+

¯E

(

�

�

�

�

�

(�(tk+1

, t
0

)���

k+1

) ·
k
X
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�tl
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�

�

�

)

 K
4

·�+

(k + 1) ·�
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¯E
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(�(tk+1
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)���
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l
 l
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�

 K
4

·�+

(k + 1)�

2

·K
5

·�0.5
(2.A.30)

= K
4

·�+K
6

�

1.5.

The last inequality follows again from Proposition 2.3.15 letting the initial vector Z
0

:= maxl  l.

(We recall that in the proof for Proposition 2.3.15 we did not require the initial vector Z
0

to
be known. Indeed, we proved it for the general case when it may be random and there may be
dependence between the initial vector and the other terms of the approximation.)

It remains to bound the expectation in the third term on the right hand side of (2.A.29),
which is
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where the last term in the right -hand side is a bound that can be obtained following the same
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argument as with inequality (2.A.30). It remains then to bound the term
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Let us recall the following Lyapunov inequality:
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. (2.A.31)

Hence, if we can find a constant M such that
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 M�, (2.A.32)

then by Lyapunov’s inequality (2.A.31) it would follow that
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We shall now obtain a constant M for which the inequality (2.A.32) holds. We have
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. (2.A.33)

The expectation of the squared integral in dY is the variance of an Fy
t -martingale (recall that Y

is a ¯P -Brownian Motion). By the Ito isometry, it is
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Due to the smoothness and local boundedness assumptions, we can apply Fubini’s theorem and
hence
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Analogously, define the number
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Hence continuing from (2.A.33) and applying the previous two passages,
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+ µ̄ · (k + 1) ·�. (2.A.34)

We can write the integral in the expectation in (2.A.34) as follows
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Let us define the random variables
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where we have used the independence property of the Brownian increments �Yj ⇠ N (0,�tj) and
�Yi ⇠ N (0,�ti) whenever i > j, hence E[�Yi�Yj ] = 0. Finally, by the Ito isometry
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This proves (2.A.32) and the claim.
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Part III

Risk-management Aspects
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Chapter 3

A unified approach to pricing and risk

management of equity and credit risk

3.1 Introduction

The last few years have witnessed an increasing popularity of hybrid equity/credit risk models, as
documented by the recent papers [Bay08, CPS09, CL06, CM10, CS08, CW10, CW12, CK12]. One
of the most appealing features of such models is their capability to link the stochastic behavior
of the stock price (and of its volatility) with the randomness of the default event and, hence,
with the level of credit spreads. The relation between equity and credit risk is supported by
strong empirical evidence (we refer the reader to [CL06, CK12] for good overviews of the related
literature) and several studies document significant relationships between stock volatility and
credit spreads of corporate bonds and Credit Default Swaps ([CT03, CDMW08]).

In Part III of this work, we propose a general framework for the joint modeling of equity and
credit risk which allows for a flexible dependence between stock price, stochastic volatility, default
intensity and interest rate. The proposed framework is fully analytically tractable, since it relies
on the powerful technology of affine processes (see e.g. [DFS03, KR09] for financial applications of
affine processes), and nests several stochastic volatility models proposed in the literature, thereby
extending their scope to a defaultable setting. Affine models have been successfully employed in
credit risk models, as documented by the papers [CW12, Duf05, GS09]. A distinguishing feature of
our approach is that, unlike the models proposed in [Bay08, CL06, CM10, CS08, CW12, CK12], we
jointly consider both physical and risk-neutral probability measures, ensuring that the analytical
tractability is preserved under a change of measure, while at the same time avoiding unnecessarily
restrictive specifications of the risk premia. This aspect is of particular importance in credit risk
modeling, where one is typically faced with the two problems of computing survival probabilities
or related risk measures and of computing arbitrage-free prices of credit derivatives. In this
paper, we provide a complete characterisation of the set of risk-neutral measures which preserve
the affine structure of the model, thus enabling us to efficiently compute several quantities which
are of interest in view of both risk management and pricing applications.

The third part of this work is structured as follows. Section 3.2 introduces the modeling
framework, while Section 3.3 gives a characterisation of the family of risk-neutral measures which
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preserve the affine structure of the model. In Sections 3.4-3.5, we show how most quantities of
interest for risk management and pricing applications, respectively, can be efficiently computed
under suitable (risk-neutral) survival measures (we refer the reader to Sect. 2.5 of [Fon12a] for
more detailed proofs of the results of Sections 3.4-3.5). Section 3.6 illustrates the main features
of the proposed approach within a simple example, which corresponds to a defaultable extension
of the Heston [Hes93] model. Finally, Section 4.3 concludes.

3.2 The modeling framework

This section presents the mathematical structure of the modeling framework. Let (⌦,G, P ) be
a reference probability space, with P denoting the physical/statistical probability measure (we
want to emphasise that our framework will be entirely formulated with respect to the physical
measure P ). Let T 2 (0,1) be a fixed time horizon and W = (Wt)0tT an Rd-valued Brownian
motion on (⌦,G, P ), with d � 2, and denote by F = (Ft )0tT its P -augmented natural filtration.

We focus our attention on a single defaultable firm, whose default time ⌧ : ⌦! [0, T ][{+1}
is supposed to be a (P,F)-doubly stochastic random time, in the sense of Def. 9.11 of [MFE05].
This means that there exists a strictly positive F-adapted process �P = (�Pt )0tT such that

P (⌧ > t | FT ) = P (⌧ > t | Ft ) = exp

✓

�
Z t

0

�Pu du

◆

, for all t 2 [0, T ] .

In order to emphasize the role of the reference measure P , we call the process �P the P -intensity
of ⌧ . Let the filtration G = (Gt)0tT be the progressive enlargement1 of F with respect to ⌧ ,
i.e., Gt :=

T

s>t

�

Fs _ �(⌧ ^ s)
 

, for all t 2 [0, T ], and let G = GT . It is well-known that G is the
smallest filtration (satisfying the usual conditions) which makes ⌧ a G-stopping time and contains
F, in the sense that Ft ⇢ Gt for all t 2 [0, T ].

The price at time t 2 [0, T ] of one share issued by the defaultable firm is denoted by St .
We assume that the G-adapted process S = (St)0tT is continuous and strictly positive on the
stochastic interval [[0, ⌧ [[ and satisfies S1

[[⌧,T ]]

= 0. This means that S drops to zero as soon as the
default event occurs and remains thereafter frozen at that level. By relying on the Sect. 5.1 of
[BR02] together with the fact that all F-martingales are continuous, it can be proved that there
exists a continuous strictly positive F-adapted process ˜S = (

˜St)0tT such that St = 1{⌧>t} ˜St
holds for all t 2 [0, T ]. We shall refer to the process ˜S as the pre-default value of S.

The pre-default value ˜S is assumed to be influenced by the F-adapted stochastic volatility
process v = (vt)0tT and by an Rd�2-valued F-adapted factor process Y = (Yt)0tT . The
process Y can include macro-economic covariates describing the state of the economy as well
as firm-specific and latent variables, as considered e.g. in [Fon12b, FR10a]. Let us define the
process L = (Lt)0tT by Lt := log

˜St and the Rd-valued F-adapted process X = (Xt)0tT by
Xt := (vt, Y >

t , Lt)
>, with > denoting transposition.

The processes v, Y and L are jointly specified through the following square-root-type SDE
for the process X on the state space Rm

++

⇥ Rd�m, where we let Rm
++

:= {x 2 Rm
: xi > 0, 8i =

1Due to Lemma 6.1.1 and Lemma 6.1.2 of [BR02], the fact that P (⌧ > t | F
T

) = P (⌧ > t | F
t

), for all t 2 [0, T ],
implies that all (P,F)-martingales are also (P,G)-martingales. In particular, W = (W

t

)0tT

is a Brownian motion
with respect to both F and G. This important fact will be used in the following without further mention.
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1, . . . ,m}, for some fixed m 2 {1, . . . , d� 1}:

dXt = (AXt + b) dt+⌃
p

Rt dWt , X
0

=

⇣

v
0

, Y >
0

, logS
0

⌘>
= x̄ 2 Rm

++

⇥Rd�m ,

(3.2.1)
where (A, b,⌃) 2 Rd⇥d ⇥ Rd ⇥ Rd⇥d and Rt is a diagonal (d ⇥ d)-matrix with elements R i,i

t =

↵i + �>i Xt, for all t 2 [0, T ], with ↵ := (↵
1

, . . . ,↵d)
> 2 Rd

+

and � := (�
1

, . . . ,�d) 2 Rd⇥d
+

.
Following the notation adopted in Chapt. 10 of [Fil09], for a given m 2 {1, . . . , d � 1}, we

define the sets I := {1, . . . ,m}, J := {m + 1, . . . , d} and D := I [ J = {1, . . . , d}. Intuitively,
the set I collects the indices of the first m elements of the Rd-valued process X, while the set J

collects the remaining ones. In order to guarantee the existence of a strong solution to the SDE
(3.2.1), we introduce the following assumption.

Assumption 3.2.1. The parameters A, b,⌃,↵,� satisfy the following conditions:

1. bi � (⌃i,i)
2�i,i/2 for all i 2 I;

2. Ai,j = 0 for all i 2 I and j 2 J and Ai,j � 0 for all i, j 2 I with i 6= j;

3. ⌃i,j = 0 for all i 2 I and j 2 D with j 6= i;

4. �j,i = 0 for all i 2 D and j 2 J , �i,i > 0 for all i 2 I and �i,j = 0 for all i, j 2 I with i 6= j;

5. ↵i = 0 for all i 2 I and ↵j > �
P

i2I �i,j for all j 2 J .

For any x̄ 2 Rm
++

⇥Rd�m, Assumption 3.2.1 ensures the existence of a unique strong solution
X = (Xt)0tT to the SDE (3.2.1) on the filtered probability space (⌦,G,F, P ) such that X

0

= x̄

and Xt 2 Rm
++

⇥ Rd�m P -a.s. for all t 2 [0, T ]. Indeed, the same arguments used in the proof of
Lemma 10.6 of [Fil09] give the existence of a unique strong solution X = (Xt)0tT on Rm

+

⇥Rd�m,
while Lemma A.3 of [DK96] together with Ex. 10.12 of [Fil09] implies that X actually takes values
in Rm

++

⇥Rd�m. Due to conditions (iv)-(v) of Assumption 3.2.1, this also implies that the matrix
Rt is positive definite for all t 2 [0, T ]. In the remaining part of the paper, we shall always assume
that Assumption 3.2.1 is satisfied without further mention.

Remark 3.2.2. The parameter restrictions imposed by Assumption 3.2.1 bear resemblance to
the canonical representation of [DS00]. However, we do not require the matrix ⌃ to be diagonal,
since this may lead to unnecessary restrictions on the model if 2  m  d � 2, as pointed out in
[CFK10].

The following proposition describes the dynamics of the defaultable stock price process S.

Proposition 3.2.3. The process S = (St)0tT satisfies the following SDE on (⌦,G,G, P ):

dSt = St�

 

s̄+µ
1

logSt�+µ
2

vt+
d�2

X
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⌘iY
i
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m�1

X
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!

dt+St� �
p
vt dW

1

t +St�

d
X

i=2

⌃d,i

q

R i,i
t dW i

t�St� d1{⌧t}

(3.2.2)

with the convention St� logSt� = 0 on {⌧  t} and where

s̄ := bd +
1

2

d
X

k=m+1

(⌃d,k)
2 ↵k , µ

1

:= Ad,d , µ
2
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1

2

(⌃d,1)
2 �
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X
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(⌃d,i+1

)

2 �i+1,i+1

+

1

2

d
X

k=m+1

(⌃d,k)
2 �i+1,k .
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Proof. Observe first that dSt = 1{⌧>t�} ˜St�
�

dLt + dhLit/2
�

� ˜St� d1{⌧t}, due to Itô’s formula
and integration by parts. Equation (3.2.2) then follows from (3.2.1) together with Assumption
3.2.1 by means of simple computations.

Remark 3.2.4. The defaultable price process S has a rich structure, influenced by the factor
process Y in both the drift and diffusion terms. Furthermore, there are three levels of dependence
between S and the stochastic volatility v: (1) a direct interaction, since v explicitly appears in the
dynamics of S; (2) a semi-direct interaction, since the Brownian motion W 1 driving the process
v is also one of the drivers of S; (3) an indirect interaction, since S and v both depend on the
factor process Y .

To complete the description of the modeling framework, we specify as follows the P -intensity
process �P = (�Pt )0tT and the risk-free interest rate process r = (rt)0tT :

�Pt :=

¯�P + (⇤

P
)

>Xt , rt := r̄ +⌥>Xt , for all t 2 [0, T ] , (3.2.3)

where ¯�P , r̄ 2 R
+

and ⇤P ,⌥ 2 Rm
+

⇥{0}d�m, with ¯�P +

Pm
i=1

⇤

P
i > 0 and r̄+

Pm
i=1

⌥i > 0. This
ensures that the P -intensity and the risk-free rate are correlated and strictly positive, since 0 is an
unattainable boundary for Xi, 8i 2 I. Furthermore, the linear structure (3.2.3) permits to obtain
analytically tractable formulae for several quantities of interest, as shown in Sections 3.4-3.5. The
specification (3.2.3) allows for a direct dependence of �P on the stochastic volatility v, this feature
being consistent with several empirical observations (see e.g. [CT03, CDMW08]). Furthermore,
the defaultable price process S and the P -intensity �P are linked through the common factor
process Y . Finally, we want to remark that the proposed modeling framework generalises to a
defaultable setting several stochastic volatility models considered in the literature. For instance,
defaultable versions of the models considered in [AR09, CS08] and Sect. 4.3 of [DPS00] can be
easily recovered within our general setting. As an example, in Section 3.6 we shall study in detail
an extended defaultable version of the Heston [Hes93] stochastic volatility model.

Remark 3.2.5. We want to point out that multifactor stochastic volatility models are naturally
embedded within our modeling framework. Indeed, the first m�1 components of the factor process
Y are strictly positive processes and can be interpreted as additional stochastic volatility factors,
as can also be seen from equation (3.2.2). For instance, in the case d = 3 and m = 2, we can easily
obtain (a defaultable version of) the two-factor stochastic volatility model proposed by [CHJ09].

Remark 3.2.6. The modeling framework described in this section can be easily extended to the
case of M > 1 defaultable firms if we suppose that their random default times {⌧

1

, . . . , ⌧M} are
F-conditionally independent (see [MFE05], Sect. 9.6). In that case, the process L is an RM -valued
process representing the logarithm of the pre-default values of the M stock prices (and, similarly,
the process v representing the stochastic volatilities of the M stocks is also RM -valued). If the
processes L, v and the factor process Y are jointly modeled as an affine diffusion of the type (3.2.1)
and if the P -intensity processes �P,` = (�P,`t )

0tT , for ` = 1, . . . ,M , are of the form (3.2.3),
then the multi-firm extension of the model is still fully analytically tractable. This generalization
can be of particular interest in view of portfolio credit risk modeling.



3.3. EQUIVALENT CHANGES OF MEASURE 107

3.3 Equivalent changes of measure which preserve the affine struc-
ture

The modeling framework introduced in Section 3.2 has been formulated entirely with respect
to the physical probability measure P . However, since we aim at dealing with pricing as well
as risk management applications, we need to study the structure of the model under a suitable
risk-neutral probability measure, formally defined as a probability measure Q ⇠ P on (⌦,G) such
that the discounted defaultable price process exp

�

�
R ·
0

rudu
�

S is a (Q,G)-local martingale2.
It is important to be aware of the fact that most of the appealing features of the framework

described in Section 3.2 may be lost after a change of measure. Aiming at a model which is
analytically tractable under both the physical and a risk-neutral measure, we shall consider all
risk-neutral measures Q which preserve the affine structure of (X, ⌧), in the sense of the following
Definition.

Definition 3.3.1. Let Q be a probability measure on (⌦,G) with Q ⇠ P . We say that Q preserves
the affine structure of (X, ⌧) if the following hold:

1. the process X = (Xt)0tT satisfies an SDE of the type (3.2.1) on (⌦,G,F, Q) with re-
spect to an Rd-valued (Q,F)-Brownian motion WQ

= (WQ
t )

0tT and for some parameters
AQ, bQ,⌃,↵, � satisfying Assumption 3.2.1;

2. the default time ⌧ is a (Q,F)-doubly stochastic random time with Q-intensity �Q = (�Qt )0tT

of the form �Qt =

¯�Q+(⇤

Q
)

>Xt, for ¯�Q 2 R
+

and ⇤Q 2 Rm
+

⇥{0}d�m with ¯�Q+

Pm
i=1

⇤

Q
i >

0.

We denote by Q the family of all risk-neutral measures which preserve the affine structure of
(X, ⌧), in the sense of Definition 3.3.1. The next theorem gives a complete characterisation of the
family Q. This result follows from a more general one in Chapt. 2 of [Fon12a], but we outline a
self-contained proof for the convenience of the reader. We denote by E the stochastic exponential
and by M = (Mt)0tT the (P,G)-martingale defined by Mt := 1{⌧t}�

R t^⌧
0

�Pu du (see [BR02],
Prop. 5.1.3).

Theorem 3.3.2. Let Q be a probability measure on (⌦,G). Then we have Q 2 Q if and only if

dQ

dP
= E

✓

Z

✓ dW +

Z

� dM

◆

T

= exp

 

d
X

i=1

Z T

0

✓it dW
i
t �

1

2

d
X

i=1

Z T

0

(✓it)
2dt�

Z ⌧^T

0

�t �
P
t dt

!

⇣

1+1{⌧T}�⌧
⌘

(3.3.1)

where ✓ = (✓t)0tT and � = (�t)0tT are F-adapted processes of the following form:

✓t = ✓(Vt) := R�1/2
t

�

ˆ✓ +⇥Xt

�

, �t = �(Vt) :=

�

¯�Q � ¯�P
�

+

�

⇤

Q � ⇤P
�>

Xt

¯�P +

�

⇤

P
�>

Xt

, (3.3.2)

for some ˆ✓ 2 Rd and ⇥ 2 Rd⇥d such that:

1.
Pd

k=1

⌃i,k
ˆ✓k � (⌃ i,i)

2�i,i/2� bi for all i 2 I;
2Due to the fundamental result of [DS94], this is equivalent to the validity of No Free Lunch with Vanishing

Risk (NFLVR) condition for the financial market (S,G), being the process exp

�

�
R ·
0
r
u

du
�

S locally bounded.
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2.
Pd

k=1

⌃i,k⇥k,j = 0, for all i 2 I and j 2 J , and
Pd

k=1

⌃i,k⇥k,j � �Ai,j, for all i, j 2 I with
i 6= j;

for some ¯�Q 2 R
+

and ⇤Q 2 Rm
+

⇥ {0}d�m with ¯�Q +

Pm
i=1

⇤

Q
i > 0 and if the following equality

holds P -a.s. on {⌧ > t}, using the notation introduced in Proposition 3.2.3:

s̄+µ
1

logSt�+

✓

µ
2

+�
✓1tp
vt

◆

vt+
d�2

X

i=1

⌘iY
i
t +

m�1

X

i=1

⌘̄iY
i
t +

d
X

i=2

⌃d,i

q

R i,i
t ✓it = rt+�

P
t (1+�t) . (3.3.3)

Proof. Let ✓ = (✓t)0tT and � = (�t)0tT be two F-adapted processes satisfying (3.3.2). Since
✓ and � are continuous functions of X and the process X is continuous, hence locally bounded,
the process Z := E

⇣

R

✓ dW +

R

� dM
⌘

is well-defined as a strictly positive (P,G)-local martingale
and, as a consequence of Fatou’s lemma, it is also a (P,G)-supermartingale. Moreover, Thm. 2.4
and Remark 2.5 of [CFY05] allow to conclude that E[ZT ] = 1, thus implying that Z is a uniformly
integrable (P,G)-martingale. So, we can define a probability measure Q on (⌦,G) via (3.3.1).
Part (i) of Definition 3.3.1 then follows from Girsanov’s theorem together with (3.3.2), while part
(ii) follows from Thm. 6.3 of [CJN12], Girsanov’s theorem together with (3.3.2) and Prop. 6.2.2
of [BR02]. Finally, the (Q,G)-local martingale property of exp

�

�
R ·
0

rudu
�

S easily follows from
Girsanov’s theorem together with Proposition 3.2.3 and (3.3.3). Conversely, suppose that Q 2 Q.
The existence of a representation of the form (3.3.1) follows from Cor. 5.2.4 of [BR02], while
(3.3.2) and (3.3.3) follow from Girsanov’s theorem together with Definition 3.3.1 and Proposition
3.2.3, respectively.

Note that the process � = (�t)0tT introduced in (3.3.2) satisfies �t > �1 P -a.s. for all t 2
[0, T ], due to the restrictions imposed on the parameters ¯�P , ¯�Q, ⇤P and ⇤Q. In particular, this
ensures that, for every probability measure Q 2 Q, both the P -intensity process �P = (�Pt )0tT

and the Q-intensity process �Q = (�Qt )0tT are P -a.s. strictly positive.
Due to Theorem 3.3.2, the preservation of the affine structure of (X, ⌧) does not prevent the

default intensity to change significantly from the physical to a risk-neutral probability measure
Q 2 Q, due to the presence of the risk premium � (see also the comments below). From the
practical perspective, this is an important aspect of our modeling approach, especially in view
of the possibility of valuing credit/equity financial derivatives whose payoff also depends on the
P -intensity of default through, for instance, the rating score attached to a defaultable firm or the
corresponding statistical survival/default probability.

Remark 3.3.3. The processes ✓ = (✓t)0tT and � = (�t)0tT admit the financial interpretation
of risk premia (or market prices of risk) associated to the randomness generated by the Brownian
motion W and by the random default time ⌧ , respectively. More specifically:

1. The process ✓ = (✓t)0tT represents the risk premium associated to the diffusive risk gen-
erated by the Brownian motion W . Since the stock price, its stochastic volatility, the default
intensity and the interest rate all depend on W through X, the risk premium ✓ can be
considered as a market-wide non-diversifiable risk premium3.

3In the context of default-free term structure modeling, in [CFK07] the authors demonstrate that the speci-
fication (3.3.2) has a considerably better fit to market data than the simpler market price of risk specifications
traditionally considered in the literature (see e.g. [CW10, DS00, Duf99, Duf02, Hes93]).
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2. The process � = (�t)0tT represents the risk premium associated to the default event or,
more precisely, the risk premium associated to the idiosyncratic component of the risk gen-
erated by the occurrence of the default event (to this effect, see also [CPS09, NEK01] and
Sect. 9.3 of [MFE05]).

The importance of explicitly distinguishing between ✓ and � has been demonstrated in [Dri05].
Assuming � ⌘ 0 means that the idiosyncratic component of default risk can be diversified away in
the market, as explained in [JLY05], and, therefore, market participants do not require a compen-
sation for it. However, the jump-type risk premium can be significant when it is difficult to hedge
the risk associated with the timing of the default event of a given firm. Note that, as can be seen
from (3.3.2), the risk premia ✓ and � both depend on the common driving process X.

Due to Theorem 3.3.2, our modeling framework enjoys full analytical tractability under both
the physical measure P and any risk-neutral measure Q 2 Q, thus enabling us to efficiently solve
risk management as well as a pricing problems, as we are going to show in Sections 3.4-3.5. We
close this section with the following fundamental result, which follows from Thm. 10.4 of [Fil09]
together with part (i) of Definition 3.3.1, (3.2.1) and Assumption 3.2.1. For z 2 Cd we denote by
<(z) and =(z) the real and imaginary parts of z, respectively, and Cm

� :=

�

z 2 Cm
: <(z) 2 Rm

�
 

.
For Q 2 Q[ {P}, we denote by EQ the (conditional) expectation operator under the measure Q.

Proposition 3.3.4. For every Q 2 Q [ {P} and for all z 2 Cm
� ⇥ iRd�m, there exists a unique

solution
�

�

Q
(·, z), Q

(·, z)
�

: [0, T ] ! C⇥ Cd to the following system of Riccati ODEs:

@t�
Q
(t, z) = (bQ)> Q

(t, z) +
1

2

d
X

k=m+1

[⌃

>
 

Q
(t, z)]2k ↵k � ¯�Q � r̄ 1Q 6=P ,

�

Q
(0, z) = 0 ,

@t 
Q
i (t, z) =

d
X

k=1

AQ
k,i 

Q
k (t, z) +

1

2

[⌃

>
 

Q
(t, z)]2i�i,i +

1

2

d
X

k=m+1

[⌃

>
 

Q
(t, z)]2k �i,k � ⇤Q

i �⌥i1Q 6=P , 8i 2 I ,

@t 
Q
j (t, z) =

d
X

k=m+1

AQ
k,j  

Q
k (t, z) , 8j 2 J ,

 

Q
(0, z) = z .

(3.3.4)

Furthermore, for any Q 2 Q [ {P}, the following holds for all 0  t  u  T and for all
z 2 Cm

� ⇥ iRd�m:

EQ



exp

✓

�
Z u

t
(�Qs + rs1Q 6=P ) ds+ z>Xu

◆

�

�

�

�

Ft

�

= exp

⇣

�

Q
(u� t, z) + Q

(u� t, z)>Xt

⌘

.

(3.3.5)

3.4 Risk management applications

Many quantities of interest in view of risk management applications can be computed as condi-
tional expectations under the physical measure P . As a first and basic application, let us compute
the Gt-conditional survival probability of the defaultable firm up to the final horizon T . We denote
by �P

(·, ·) and  P
(·, ·) the solutions to the Riccati ODEs (3.3.4) with Q = P .
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Proposition 3.4.1. For any t 2 [0, T ], the following holds:

P (⌧ > T | Gt) = 1{⌧>t} exp
⇣

�

P
(T � t, 0) + P

(T � t, 0)>Xt

⌘

. (3.4.1)

Proof. Cor. 5.1.1 of [BR02] implies that P (⌧ > T | Gt) = 1{⌧>t}E[exp(�
R T
t �

P
s ds) | Ft ]. The result

then follows by applying (3.3.5) with Q = P , z = 0 and u = T .

As can be easily checked from (3.3.4), the right-hand side of (3.4.1) only depends on {Xi
:

i 2 I}, i.e., on the components of the process X on which the P -intensity �P depends. For
computing conditional expectations (under the measure P ) of more general quantities needed for
risk management purposes, it turns out to be convenient to introduce the T -survival measure
P T ⇠ P on (⌦,G) defined by dP T /dP := exp

�

�
R T
0

�Pt dt
�

/E
⇥

exp

�

�
R T
0

�Pt dt
�⇤

.

Lemma 3.4.2. For any random variable F 2 L1

(P,FT ) and for any t 2 [0, T ] the following holds:

E
⇥

F 1{⌧>T} | Gt

⇤

= P (⌧ > T | Gt)E
PT

[F | Ft ] . (3.4.2)

Proof. Cor. 5.1.1 of [BR02] implies that E
⇥

F 1{⌧>T} | Gt

⇤

= 1{⌧>t}E
⇥

F exp

�

�
R T
t �

P
s ds

�

| Ft

⇤

.
Equation (3.4.2) then follows by using the definition of the measure P T together with the condi-
tional version of Bayes’ formula (see e.g. [Fil09], Ex. 4.9).

Lemma 3.4.2 shows that the computation of the Gt-conditional expectation of an FT -measurable
random variable F in the case of survival up to time T reduces to the computation of the Ft-
conditional expectation of F under the T -survival measure P T , the term P (⌧ > T | Gt) being
given as in (3.4.1). As can be seen from equation (3.4.2), the T -survival measure P T allows to
decompose the conditional expectation of the product F 1{⌧>T} into the product of two condi-
tional expectations. Note also that, from the point of view of practical applications, the term
P (⌧ > T | Gt) does not necessarily have to be computed, since it can often be deduced from
publicly available data, notably from rating transition matrices published by rating agencies.
Furthermore, as shown in the next lemma, the Ft-conditional characteristic function of the vector
XT under the T -survival measure P T can be computed in closed form.

Lemma 3.4.3. For any z 2 iRd and for any t 2 [0, T ] the following holds:

'PT

t (z) := EPT

⇥

e z>X
T | Ft

⇤

= exp

⇣

�

P
(T�t, z)��P

(T�t, 0)+
�

 

P
(T�t, z)� P

(T�t, 0)
�>

Xt

⌘

.

(3.4.3)

Proof. The definition of the measure P T together with the conditional version of Bayes’ formula
gives EPT

⇥

e z>X
T | Ft

⇤

= E
⇥

exp

�

�
R T
t �

P
s ds + z>XT

�

| Ft

⇤

/E
⇥

exp

�

�
R T
t �

P
s ds

�

| Ft

⇤

. By applying
(3.3.5) with Q = P , u = T and z 2 iRd (z = 0, resp.) to the numerator (to the denominator,
resp.), we then obtain equation (3.4.3).

Due to Lemma 3.4.2 and Lemma 3.4.3, we can compute the Gt-conditional expectation (under
the physical probability measure P ) of arbitrary functions of the random vector XT in the case of
survival by relying on well-known Fourier inversion techniques. As an example, we can explicitly
compute quantiles of the Gt-conditional distribution of the defaultable price ST in the case of
survival. This is crucial for the computation of Value-at-Risk and related risk measures.
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Proposition 3.4.4. For any x 2 (0,1) and for any t 2 [0, T ] the following holds:

P (ST  x, ⌧ > T | Gt) = P (⌧ > T | Gt)

 

1

2

� 1

⇡

Z 1

0

=
�

e�iy log x 'PT

t (0, . . . , 0, iy)
�

y
dy

!

(3.4.4)

where P (⌧ > T | Gt) and 'PT

t (·) are explicitly given in (3.4.1) and Lemma 3.4.3, respectively.

Proof. Note that P (ST  x, ⌧ > T |Gt)=P (LT  log x, ⌧ > T |Gt)=P (⌧ > T |Gt)P T
(LT  log x|Ft),

where the second equality follows from Lemma 3.4.2. Equation (3.4.4) then follows from standard
Fourier inversion techniques (see e.g. [Fon12a], Prop. 2.5.12, and [Pao07], Sect. 1.2.6).

3.5 Valuation of default-sensitive payoffs and defaultable options

Throughout this section, we fix an element Q 2 Q. For the purpose of valuing default-sensitive
payoffs, the u-survival risk-neutral measure Qu, for u 2 [0, T ], turns out to be quite useful. The
measure Qu is defined by dQu/dQ = exp

�

�
R u
0

(rs + �Qs ) ds
�

/EQ
⇥

exp

�

�
R u
0

(rs + �Qs ) ds
�⇤

. For
u = T , the measure QT bears resemblance to the T -survival measure P T introduced in Section
3.4, except that QT is defined with respect to some Q 2 Q and the density dQT /dQ also involves
the risk-free interest rate besides the Q-intensity �Q (compare also with [BR02], Def. 15.2.2).
Following the same logic of Section 3.4, we show that many pricing problems can be simplified by
shifting to the measure Qu, for some u 2 [0, T ]. As a preliminary, let us compute the arbitrage-free
price ⇧(t, T ) of a zero-coupon defaultable bond. We denote by �Q

(·, ·) and  Q
(·, ·) the solutions

to the Riccati ODEs (3.3.4). The proof of the following lemma is completely analogous to that
of Proposition 3.4.1 but we include it for the convenience of the reader.

Lemma 3.5.1. For any t 2 [0, T ] the following holds:

⇧(t, T ) = 1{⌧>t} exp
⇣

�

Q
(T � t, 0) + Q

(T � t, 0)>Xt

⌘

. (3.5.1)

Proof. Note first that⇧(t, T ) = EQ
⇥

exp(�
R T
t rsds)1{⌧>T}|Gt

⇤

= 1{⌧>t}E
Q
⇥

exp(�
R T
t (rs+�

Q
s ) ds)|Ft

⇤

,
where the second equality follows from Thm. 9.23 of [MFE05]. Equation (3.5.1) then follows from
Proposition 3.3.4 with u = T and z = 0.

Of course, coupon-bearing corporate bonds can be valued as linear combinations of zero-
coupon defaultable bonds (see [BR02], Sect. 1.1.5). More generally, most default-sensitive payoffs
can be decomposed into linear combinations of zero-recovery and pure recovery payments, the
latter being paid only in the case of default, see e.g. Sect. 9.4 of [MFE05]. The next proposition
provides general valuation formulas for zero-recovery and pure recovery payments.

Proposition 3.5.2. For any t 2 [0, T ] and for any measurable function G : Rm
++

⇥ Rd�m ! R
+

the following hold:
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dsG(XT )1{⌧>T}
�

�Gt

i

= ⇧(t, T )EQT

[G(XT ) | Ft ] , (3.5.2)
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t
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[�Qu G(Xu) | Ft ] du . (3.5.3)
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Proof. Note first that, due to Thm. 9.23 of [MFE05], we can write:

EQ
h

e�
R
T

t

r
s

dsG(XT )1{⌧>T}
�

�Gt

i

= 1{⌧>t}E
Q
h

e�
R
T

t

(r
s

+�Q

s

) dsG(XT )
�

�Ft

i

,

1{⌧>t}E
Q
h

e�
R
⌧

t

r
s

dsG(X⌧ )1{⌧T}
�

�Gt

i

= 1{⌧>t}E
Q



Z T

t
e�

R
u

t

(r
s

+�Q

s

) ds�Qu G(Xu) du
�

�

�

Ft

�

.

Equations (3.5.2)-(3.5.3) then follow by using the definition of the measure Qu, for u 2 [t, T ],
together with the conditional version of Bayes’ formula and also, for (3.5.3), with Tonelli’s theo-
rem.

We want to point out that, in view of practical applications, the quantities ⇧(t, u), for u 2
[t, T ], appearing in equations (3.5.2)-(3.5.3) do not necessarily have to computed, since they can be
directly observed on the corporate bond market. This fact represents one of the main advantages
of using risk-neutral survival measures for the valuation of defaultable claims (see also [Sch03] for
a related discussion and other applications of survival measures to credit risk modeling).

As an application of Lemma 3.5.1 and Proposition 3.5.2, we compute the fair spread ⇡CDS
(t, T ),

at time t 2 [0, T ], of a Credit Default Swap (CDS) which exchanges a fixed stream of payments
in arrears equal to ⇡CDS

(t, T ) at the dates {t
1

, . . . , tN}, with t  t
1

< . . . < tN  T , (premium
payment leg) against the payment at the default time ⌧ (if the latter happens before the maturity
T ) of a default protection term equal to a fraction � 2 (0, 1) of the unitary nominal value (default
payment leg), see e.g. Sect. 9.3 of [MFE05].

Corollary 3.5.3. For any t 2 [0, T ] and t
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:= t  t
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< . . . < tN  T , the following holds on
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Proof. Due to Lemma 3.5.1, the arbitrage-free price of the premium payment leg is given by:
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On the other hand, due to equation (3.5.3), the arbitrage-free price of the default payment leg is
equal to:
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Equation (3.5.4) then follows by recalling that, by definition, the fair spread ⇡CDS
(t, T ) is the

premium payment which equates the values of the two legs of the CDS (see [MFE05], Sect.
9.3).

For 0  t  u  T , the next lemma gives the explicit expression of the Ft-conditional
characteristic function 'Qu

t of the random vector Xu under the u-survival risk-neutral measure
Qu. Its proof follows from (3.3.5) and, being analogous to that of Lemma 3.4.3, is omitted.

Lemma 3.5.4. For any 0  t  u  T and for any z 2 iRd the following holds:
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(3.5.5)
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By combining Proposition 3.5.2 with Lemma 3.5.1 and Lemma 3.5.4 and using well-known
Fourier inversion techniques, we can obtain semi-explicit formulas for a wide range of default-
sensitive as well as equity/credit hybrid products. In particular, we now derive valuation formulas
for Call and Put options (issued by a default-free third party) written on the defaultable stock S.
We denote by ⇧rf (t, T ) := EQ

⇥

exp(�
R T
t rsds) | Gt

⇤

= EQ
⇥

exp(�
R T
t rsds) | Ft

⇤

the arbitrage-free
price at time t 2 [0, T ] of a zero-coupon default-free bond.

Corollary 3.5.5. For any t 2 [0, T ] and for any strike price K > 0 the following hold:
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for some w > 1 and y < 0 such that the system of Riccati ODEs (3.3.4) has a unique solution for
the initial conditions z = (0, . . . , 0, w)> and z = (0, . . . , 0, y)>.

Proof. Observe first that:
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where the second equality follows from (3.5.2). As in [CM99] and [Fil09], Lemma 10.2, it can be
shown that:
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for some w > 1. Equation (3.5.6) then follows by Fubini’s theorem (see Cor. 2.5.21 of [Fon12a]
for more details). Equation (3.5.7) follows by an analogous computation once we observe that:
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If the discounted defaultable price process exp(�
R ·
0

rudu)S is not only a (Q,G)-local martin-
gale but also a true (Q,G)-martingale (this is for instance the case for the Heston with jump-
to-default model considered in Section 3.6; see [Fon12a], Prop. 2.4.7), then the classical put-call
parity relation holds between the arbitrage-free prices of Call and Put options (issued by a default-
free third party) with the same maturity T and strike price K, written on the defaultable stock
S:
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= St�K ⇧rf (t, T ), 8t 2 [0, T ].

(3.5.8)
Note that, if the options are issued by an entity defaulting at ⌧ (for instance, the defaultable
firm itself), then the put-call parity relation (3.5.8) still holds if the default-free bond ⇧rf (t, T )

is replaced with the defaultable bond ⇧(t, T ).
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3.6 An example: the Heston with jump-to-default model

In this section, we illustrate some of the essential features of the proposed modeling framework
within a simple example, which corresponds to a generalisation of the stochastic volatility model
introduced by Heston [Hes93], here extended by allowing the stock price process to be killed by
a jump-to-default event, in the spirit of [CS08].

3.6.1 The model

Using the notations introduced in Section 3.2, we let d = 3 and consider the following specification:
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(3.6.1)
with kv̂ � �̄2/2, k

0

ŷ � �2
0

/2 and ⇢ 2 [�1, 1]. The P -intensity (�Pt )0tT is specified as in (3.2.3),
i.e., we have �Pt =
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> 0. For
simplicity, we assume that rt = r̄ 2 R

+

for all t 2 [0, T ]. Note that this specification extends
the Heston jump-to-default model considered in [CS08] by allowing �Pt to depend on vt and on
the additional stochastic factor Yt. It can be easily checked that the specification (3.6.1) satisfies
Assumption 3.2.1 and, due to Proposition 3.2.3, the defaultable stock price process S = (St)0tT

has the following dynamics:
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where M = (Mt)0tT is the (P,G)-martingale defined by Mt := 1{⌧t} �
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(3.6.3)

3.6.2 Risk-neutral measures which preserve the Heston with jump-to-default
structure

By relying on Theorem 3.3.2, we now characterise the family of all risk-neutral measures Q 2 Q
which preserve the Heston with jump-to-default structure, namely all risk-neutral measures Q 2 Q
which leave unchanged the structure of the SDEs (3.6.2)-(3.6.3) (compare also with [Fon12a],
Sect. 2.4.1).

Lemma 3.6.1. A risk-neutral measure Q 2 Q preserves the Heston with jump-to-default structure
if and only if dQ/dP admits the representation (3.3.1) for some F-adapted processes ✓ = (✓t)0tT

and � = (�t)0tT of the form (3.3.2) with ¯✓ 2 R3 and ⇥ 2 R3⇥3 satisfying the following
restrictions:
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with ˆ✓
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.
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Proof. The result follows from conditions (3.3.2)-(3.3.3) of Theorem 3.3.2, noting that the preser-
vation of the Heston with jump-to-default structure consists in the additional restriction ⇥

1,2 =

⇥

2,1 = 0.

Remark 3.6.2. The parameter restrictions of Lemma 3.6.1 are significantly weaker than typical
parameter restrictions found in the literature. For instance, let us consider the simpler default-free
case (i.e., ⌧ = +1 P -a.s.) without the additional stochastic factor Y . In that case, the model
(3.6.1)-(3.6.3) reduces to the classical (default-free) Heston [Hes93] stochastic volatility model. In
their analysis of the existence of risk-neutral measures in stochastic volatility models, [WH06] show
that there exists a risk-neutral measure Q (preserving the Heston structure) if ˆ✓

1

= 0 and ⇥
1,1

satisfies ⇥
1,1 � �k/�̄ (see [WH06], Thm. 3.5). In Lemma 3.6.1, we show that such a risk-neutral

measure exists without any restriction on ⇥
1,1 and also for non-trivial values of ˆ✓

1

.

The main benefit of working with risk-neutral measures which preserve the Heston with jump-
to-default structure consists in the possibility of obtaining closed-form solutions to the system of
Riccati ODEs (3.3.4), as shown in the next lemma (see also Remark 3.6.4), which follows from
Lemma 10.12 of [Fil09] by means of simple (but tedious and, hence, omitted) computations.

Lemma 3.6.3. Let Q 2 Q be a risk-neutral measure which preserves the Heston with jump-to-
default structure. Then the system of Riccati ODEs (3.3.4) admits the following solution, for all
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By combining the above lemma with the results of Sections 3.4-3.5, we can efficiently solve
risk management problems and compute arbitrage-free prices of general default-sensitive payoffs.

Remark 3.6.4. In the context of the model (3.6.1)-(3.6.3), it may seem simplistic to restrict
the attention to the set of risk-neutral measures which preserve the Heston with jump-to-default
structure, i.e., to the set of risk premia processes ✓ = (✓t)0tT which satisfy the restriction
⇥

1,2 = ⇥

2,1 = 0 (see the proof of Lemma 3.6.1). However, due to Theorem 4.1 of [GT08], the
system of Riccati ODEs (3.3.4) for the model (3.6.1)-(3.6.3) admits an explicit solution if and
only if ⇥

1,2 = ⇥

2,1 = 0. In other words, the set of risk-neutral measures which preserve the
Heston with jump-to-default structure characterised in Lemma 3.6.1 coincides with the set of all
measures under which system (3.3.4) admits a closed-form solution, which is given in Lemma
3.6.3. Of course, by relying on Theorem 3.3.2, we can relax the requirement of the preservation of
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the Heston with jump-to-default structure with the weaker requirement of the preservation of the
affine structure of (X, ⌧) but, in that case, one has to rely on numerical techniques for solving the
Riccati system (3.3.4).

3.6.3 Numerical results

This section reports the results of some numerical experiments for the Heston with jump-to-default
model (3.6.1)-(3.6.3). We adopt the following parameters’ specification: k = 0.565, v̂ = 0.07,
�̄ = 0.281, k

0

= 0.325, ŷ = 0.003, �
0

= 0.036, µ = 0.1, ⇢ = �0.558. These values have been
obtained in [CW10] by calibrating (via filtering and maximum likelihood techniques) an analogous
stochastic volatility jump-to-default model to market quotes of equity options and CDS spreads
on the Citigroup company (period: 5/2002 - 5/2006). The remaining parameters appearing in
(3.6.4) are specified as r̄ = 0, ⇥

1,1 = ⇥2,2 = 0.002, ˆ✓
1

=

ˆ✓
2

= 0.001 and ⇤P
1

= ⇤

P
2

=

¯�P = 0.1225.
As a first application, we compute the distribution function of the defaultable stock price ST

in the case of survival. More specifically, we consider the model (3.6.1)-(3.6.3) under the physical
probability measure P and, by relying on formula (3.4.4) together with Lemma 3.6.3, we compute
the surface (T, x) 7! P (ST  x, ⌧ > T ), for T 2 [0.5, 3.0] and x 2 [0.7, 1.3], for S

0

= 1. Note that,
from the computational point of view, this is an easy task in our modeling framework, since it only
requires a one-dimensional numerical integration. As can be observed from Figure 3.1, the shape
of the distribution function strongly depends on the time horizon T , with a distinct behavior for
small and large values of x, due to the combined effects of diffusive and jump-type risks. Figure
3.2 shows that the distribution function of the defaultable stock price can be quite different
under the physical and a risk-neutral probability measure, even in the case where the overall
default probability is kept at the same level (i.e., we have P (⌧  T ) = Q(⌧  T ) = 0.4), thus
accounting for risk-aversion and providing an evidence of the flexibility induced by the possibility
of changing the default intensity from the physical to a risk-neutral probability measure (to this
regard, compare also the discussion preceding Remark 3.3.3).

Figure 3.1: Surface (T, x) 7!
P (S

T

x, ⌧>T ) for the Heston with
Jump-to-Default model.

Figure 3.2: Distribution functions under
physical (P ) and risk-neutral (Q) probabil-
ity measures.

As a second application, we show the implied volatility surface generated by the model (3.6.1)-
(3.6.3). To this effect, we first compute a matrix of prices PK(0, T ) of Put options on the default-
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able stock ST , issued by a default-free third party, with maturity T 2 [0.5, 3.0] and moneyness
K/S

0

2 [0.7, 1.3], letting ¯�Q = 0.001 and ⇤Q
i = ⇤

P
i , for i = 1, 2. The computation is performed

via the Fast Fourier Transform method of [CM99], by relying on Corollary 3.5.5 and Lemma
3.6.3. The corresponding implied volatilities are then computed by using the blsimpv function in
Matlab c� (R2012a 64-bit version).

Figure 3.3: Implied volatility surfaces:
standard Heston (solid) and Heston +
Jump-to-Default (mesh).

Figure 3.4: Implied volatility skew for
different Q-intensities (for T = 1.75).

Figure 3.3 compares the implied volatility surface generated by the model (3.6.1)-(3.6.3) with
the implied volatility surface obtained from a standard (default-free) Heston [Hes93] model, i.e.,
by letting ¯�Q = ⇤

Q
1

= ⇤

Q
2

= 0. It is evident that the introduction of default risk (through a
jump-to-default) increases the implied volatility along all maturities and strikes. The increase
is more pronounced for deep out-of-the-money options, due to the possibility of obtaining K in
the case of default (compare also with equation (3.5.7)), thus confirming the fact that default
risk is the main responsible for the value of out-of-the-money put options with short maturities.
There is also a strong skew effect, which tends to flatten as the maturity increases but is always
more significant than in the default-free case. The impact of default risk is also shown in Figure
3.4, which depicts the implied volatility skew for different specifications of the parameters which
determine the default intensity �Q together with the skew generated by a standard default-free
Heston model, for the fixed maturity T = 1.75. As expected, the implied volatility skew is more
pronounced for a higher risk of default as measured by larger values of the default intensity
parameters.
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Chapter 4

Further Developments

In this final chapter we discuss some further developments of interest for Part I, Part II and Part
III.

4.1 Further Developments of the Pricing Model

In the context of pricing, we have seen that our approach based on CTMCs is versatile enough to
cover many different types of exotic payoffs. One possible shortcoming of the model, however, is
the fact that interest rates are modeled as the short rate, which is, in fact, an idealized quantity.
It would then be of interest to further investigate the extension of the pricing approach to the
case, for example, of forward LIBOR rate models. A possible step towards this direction is to
study how our proposed pricing approach may be translated to a generalized Markov functional
model under a forward LIBOR rate term-structure setting, in the case when the Markovian driver
is a CTMC. LIBOR Markov functional models (see [HKP00] and Chapter 27 of [Fri07]) are a class
of interest rate models that are gaining attention due to their ability to fit perfectly any market-
derived interest rate curves. Under this framework one supposes only that the price processes of
the elementary traded financial instruments are each functionals of a Markovian driving process;
in particular, the interest rates’ functionals may be implied directly from a specification of the
functionals for the equity prices. However most work in this area have focused only on the case
when the Markovian driver is a Brownian Motion. To briefly illustrate this case, suppose we
denote Tk, k = 1 . . .m to be the tenors of forward yields quoted in the market. Denote by
P (t, Tk, Tk+1

) the value of a discount bond at time t with expiry date Tk and maturity Tk+1

.
Under a LIBOR Markov functional model with a Brownian Motion driver, one assumes that the
forward LIBOR rate L(t, Tk), defined as (see Section 27.3 of [Fri07])

L(Tk) =
1� P (Tk, Tk+1

)

P (Tk, Tk+1

)(Tk+1

� Tk)

is a deterministic function L(Tk) = L(Tk;x(Tk)) of x(Tk), where x is a Markov process of the
form

dx = �(t)dW under QN , x(0) = x
0

,

and where the choice of numeraire may, for example, be the Tm-bond, i.e. N(Ti) := P (Ti, Tm)

(this leads to a so-called model under terminal measure). In this set-up, it can be shown (Lemma

119
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233 of [Fri07]) that the numeraire is also given by a functional of x(Ti), and as a consequence, also
the prices of market-quoted derivatives such as Caplets and Swaps. In particular, if the functional
of L(Tk) is specified in some parametrized form, then the price functionals of all market-quoted
derivatives are automatically determined. The entire model can be calibrated efficiently on the
basis of the prices of digital caplets alone (Section 27.3.1.2 [Fri07]). An extension to the case when
the Markovian driver is a CTMC could then provide a connection to our work and an extension
to forward rates under a LIBOR Market Model.

Concerning the MC -based pricing under our approach, it was noted that while a variance
reduction is attained and a possible bias reduction is also numerically observed, these effects are
still quite dependent on the parameters of the CTMC. Numerical experiments suggest that the
MC sample distributions of jump transitions tend to be highly clustered, that is, trajectories that
lead to certain jump-count numbers are a priori more likely and hence other types of trajectories
are under-represented in the sample. This clustering problem is very well known in the field
of Monte-Carlo simulation. A possible solution that may also be of interest to investigate is
the application of the so-called Quasi-Monte Carlo (QMC). In QMC, the sampling is no-longer
performed in a fully random manner, but rather, a semi-deterministic sampling is performed in
order to even-out the number of observations of the different possible trajectories.

Finally, we note that the numerical tests reported were only on the basis of two MC techniques
and the analytic formula in the case of simple claims. It would be important to also subsequently
compare the numerical tests on techniques based on solving the backward ODE for the price. One
such example in this regard is [Nor05], which, however, due to time-constraints could, could not
be included in this thesis.

4.2 Further Developments of the Calibration Method

As with the preceding remarks, the calibration method we propose has the shortcoming that
it is defined under a short rate model, whereas financial practitioners more often work directly
with market-derived rates. Just as with pricing, it would then be of interest to also extend
the calibration method to the case of a forward LIBOR rate model, again possibly by means of
the LIBOR Markov functional model framework. An interesting extension would be to look at
generalized Markov functional models under incomplete information.

An interesting possible extension of our calibration method is to treat the case of credit ratings
migrations. Indeed, several credit rating migrations models, as described in Chapter 12 of [BR02]
are based on the assumption that the credit rating transitions follow a CTMC. By combining
ideas from Part III, it seems plausible to define a suitable change-of-measure that would allow
calibration of the historical credit rating transition probabilities on the basis of time-series of price
data of defaultable bonds or equities and other derivatives issued by defaultable entities.

From the theoretical perspective, an important further study is to understand better the
role of quasi - exact solutions and their relationship to the true solution. The study of the
logarithm of eAeB when A and B do not commute, goes beyond the scope of the present thesis,
and would involve results from Lie Algebras. Indeed, one computes such a logarithm using the
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Baker-Hausdorff-Campbell Formula1. It is connected to numerical methods for ODE through
the splitting-up schemes ([Gla92], [BGR90]). Such schemes were inspired by the application of
the Lie-Trotter formula to numerically approximating the solutions of PDEs. The Lie-Trotter
formula, a direct result of the Baker-Hausdorff-Campbell formula, states that, for matrices A and
B that are possibly non-commuting, then

eA+B
= lim

N!1

⇣

e
A
N e

B
N

⌘N
.

Roughly, splitting-up schemes generalizes the Lie-Trotter formula to the semigroup operators
associated with the split-up differential operators, instead of exponentials of matrices. In the
commuting case, the proposed quasi-exact scheme is perfectly analogous to a splitting-up scheme
(see the Remark 2.3.14). This suggests that the splitting-up scheme convergence may suggest
a way to conjecture whether the quasi-exact scheme also approximates the true solution in the
non-commuting case.

Finally, it is evident that sharper bounds for the Quasi - Exact Approximations be found -
indeed, the numerical results suggest that they are able to attain a higher strong order than the
Euler scheme (0.5) but perform at least as good as the Milstein scheme (1.0).

4.3 Extensions of the unified affine model for pricing and risk-
management

We have proposed a general framework based on an affine process X and on a doubly stochastic
random time ⌧ for the modeling of a defaultable stock. This approach allows to jointly model
equity and credit risk, together with stochastic volatility and stochastic interest rate. Moreover,
analytical tractability is ensured under both the physical and a set of risk-neutral probability
measures, thanks to a flexible characterisation of all risk-neutral measures which preserve the
affine structure of (X, ⌧).

In the present paper, we have chosen to specify the driving process X as an affine diffusion on
Rm
++

⇥Rd�m, for some m 2 {1, . . . , d� 1}. However, our techniques can be easily adapted to the
more general case where X is a continuous matrix-valued affine process (e.g., a Wishart process),
as recently considered e.g. in [CFMT11]. We also want to mention that the characterisation of
risk-neutral measures which preserve the affine structure of (X, ⌧) provided in Theorem 3.3.2 (or
in Lemma 3.6.1 for the more specific case of the Heston with jump-to-default model) can also be
useful in insurance mathematics for the valuation of mortality-indexed insurance contracts in the
context of intensity-based mortality models (see e.g. [Bif05]).

1See Yu.A. Bakhturin (2001), "Campbell - Hausdorff formula", in Hazewinkel, Michael, Encyclopedia of Math-
ematics, Springer.
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