
Sede Amministrativa: Università degli Studi di Padova
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Abstract(English)

Background: Ethiopia is a country with 9 ethnically-based administrative regions and 2

city administrations, often cited, among other things, with high fertility rates and rapid

population growth rate. Despite the country’s effort in their reduction, they still remain

high, especially at regional-level. To this end, the study of fertility in Ethiopia, particu-

larly on its regions, where fertility variation and its repercussion are at boiling point, is

paramount important. An easy way of finding different characteristics of a fertility dis-

tribution is to build a suitable model of fertility pattern through different mathematical

curves. ASFR is worthwhile in this regard. In general, the age-specific fertility pattern is

said to have a typical shape common to all human populations through years though many

countries some from Africa has already started showing a deviation from this classical bell

shaped curve. Some of existing models are therefore inadequate to describe patterns of

many of the African countries including Ethiopia. In order to describe this shape (ASF

curve), a number of parametric and non-parametric functions have been exploited in the

developed world though fitting these models to curves of Africa in general and that of

Ethiopian in particular data has not been undertaken yet. To accurately model fertility

patterns in Ethiopia, a new mathematical model that is both easily used, and provides

good fit for the data is required.

Objective: The principal goals of this thesis are therefore fourfold: (1). to examine the

pattern of ASFRs at country and regional level,in Ethiopia; (2). to propose a model that

best captures various shapes of ASFRs at both country and regional level, and then com-

pare the performance of the model with some existing ones; (3). to fit the proposed model

using Hierarchical Bayesian techniques and show that this method is flexible enough for

local estimates vis-á-vis traditional formula, where the estimates might be very imprecise,

due to low sample size; and (4). to compare the resulting estimates obtained with the

non-hierarchical procedures, such as Bayesian and Maximum likelihood counterparts.

Methodology: In this study, we proposed a four parametric parametric model, Skew

Normal model, to fit the fertility schedules, and showed that it is flexible enough in cap-

turing fertility patterns shown at country level and most regions of Ethiopia. In order

to determine the performance of this proposed model, we conducted a preliminary anal-

ysis along with ten other commonly used parametric and non-parametric models in de-

mographic literature, namely: Quadratic Spline function, Cubic Splines, Coale-Trussell

function, Beta, Gamma, Hadwiger distribution, Polynomial models, the Adjusted Error

Model, Gompertz curve, Skew Normal, and Peristera & Kostaki Model. The criterion fol-

lowed in fitting these models was Nonlinear Regression with nonlinear least squares (nls)

estimation. We used Akaike Information Criterion (AIC) as model selecction cri-

terion. For many demographers, however, estimating regional-specific ASFR model and

the associated uncertainty introduced due those factors can be difficult, especially in a
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situation where we have extremely varying sample size among different regions. Recently,

it has been proposed that Hierarchical procedures might provide more reliable parameter

estimates than Non-Hierarchical procedures, such as complete pooling and independence

to make local/regional-level analyses. In this study, a Hierarchical Bayesian procedure

was, therefore, formulated to explore the posterior distribution of model parameters (for

generation of region-specific ASFR point estimates and uncertainty bound). Besides, other

non-hierarchical approaches, namely Bayesian and the maximum likelihood methods, were

also instrumented to estimate parameters and compare the result obtained using these ap-

proaches with Hierarchical Bayesian counterparts. Gibbs sampling along with Metropolis-

Hastings argorithm in R (Development Core Team, 2005) was applied to draw the posterior

samples for each parameter. Data augmentation method was also implemented to ease the

sampling process. Sensitivity analysis, convergence diagnosis and model checking were also

thoroughly conducted to ensure how robust our results are. In all cases, non-informative

prior distributions for all regional vectors (parameters) were used in order to real the lack

of knowledge about these random variables.

Result: The results obtained from this preliminary analysis testified that the values of the

Akaike Information Criterion(AIC) for the proposed model, Skew Normal (SN), is lowest:

in the capital, Addis Ababa, Dire Dawa, Harari, Affar, Gambela, Benshangul-Gumuz, and

country level data as well. On the contrary, its value was also higher some of the models

and lower the rest on the remain regions, namely: Tigray, Oromiya, Amhara, Somali and

SNNP. This tells us that the proposed model was able to capturing the pattern of fertility

at the empirical fertility data of Ethiopia and its regions better than the other existing

models considered in 6 of the 11 regions. The result from the HBA indicates that most

of the posterior means were much closer to the true fixed fertility values. They were also

more precise and have lower uncertainty with narrower credible interval vis-á-vis the other

approaches, ML and Bayesian estimate analogues.

Conclusion: From the preliminary analysis, it can be concluded that the proposed model

was better to capture ASFR pattern at national level and its regions than the other existing

common models considered. Following this result, we conducted inference and prediction

on the model parameters using these three approaches: HBA, BA and ML methods. The

overall result suggested several points. One such is that HBA was the best approach to

implement for such a data as it gave more consistent, precise (the low uncertainty) than

the other approaches. Generally, both ML method and Bayesian method can be used to

analyze our model, but they can be applicable to different conditions. ML method can be

applied when precise values of model parameters have been known, large sample size can

be obtained in the test; and similarly, Bayesian method can be applied when uncertainties

on the model parameters exist, prior knowledge on the model parameters are available,

and few data is available in the study.
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Sommario(Italian)

Background: L’Etiopia è una nazione divisa in 9 regioni amministrative (definite su base

etnica) e due città. Si tratta di una nazione citata spesso come esempio di alta fecondità

e rapida crescita demografica. Nonostante gli sforzi del governo, fecondità e cresita della

popolazione rimangono elevati, specialmente a livello regionale. Pertanto, lo studio della

fecondità in Etiopia e nelle sue regioni – caraterizzate da un’alta variabilità – è di vi-

tale importanza. Un modo semplice di rilevare le diverse caratteristiche della distribuzione

della fecondità è quello di costruire in modello adatto, specificando diverse funzioni matem-

atiche. In questo senso, vale la pena concentrarsi sui tassi specifici di fecondità, i quali

mostrano una precisa forma comune a tutte le popolazioni. Tuttavia, molti paesi mostrano

una “simmetrizzazione” che molti modelli non riescono a cogliere adeguatamente. Per-

tanto, per cogliere questa la forma dei tassi specifici, sono stati utilizzati alcuni modelli

parametrici ma l’uso di tali modelli è ancora molto limitato in Africa ed in Etiopia in

particolare.

Obiettivo: In questo lavoro si utilizza un nuovo modello per modellare la fecondità in

Etiopia con quattro obiettivi specifici: (1). esaminare la forma dei tassi specifici per età

dell’Etiopia a livello nazionale e regionale; (2). proporre un modello che colga al meglio

le varie forme dei tassi specifici sia a livello nazionale che regionale. La performance del

modello proposto verrà confrontata con quella di altri modelli esistenti; (3). adattare

la funzione di fecondità proposta attraverso un modello gerarchico Bayesiano e mostrare

che tale modello è sufficientemente flessibile per stimare la fecondità delle singole regioni

– dove le stime possono essere imprecise a causa di una bassa numerosità campionaria;

(4). confrontare le stime ottenute con quelle fornite da metodi non gerarchici (massima

verosimiglianza o Bayesiana semplice)

Metodologia: In questo studio, proponiamo un modello a 4 parametri, la Normale Asim-

metrica, per modellare i tassi specifici di fecondità. Si mostra che questo modello è

sufficientemente flessibile per cogliere adeguatamewnte le forme dei tassi specifici a liv-

ello sia nazionale che regionale. Per valutare la performance del modello, si è condotta

un’analisi preliminare confrontandolo con altri dieci modelli parametrici e non parametrici

usati nella letteratura demografica: la funzione splie quadratica, la Cubic-Spline, i modelli

di Coale e Trussel, Beta, Gamma, Hadwiger, polinomiale, Gompertz, Peristera-Kostaki e

l’Adjustment Error Model. I modelli sono stati stimati usando i minimi quadrati non lineari

(nls) e il Criterio d’Informazione di Akaike viene usato per determinarne la performance.

Tuttavia, la stima per le singole regioni pu‘o risultare difficile in situazioni dove abbiamo

un’alta variabilità della numerosità campionaria. Si propoone, quindi di usare procedure

gerarchiche che permettono di ottenere stime più affidabili rispetto ai modelli non gerarchici

(“pooling” completo o “unpooling”) per l’analisi a livello regionale. In questo studia si for-

mula un modello Bayesiano gerarchico ottenendo la distribuzione a posteriori dei parametri
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per i tassi di fecnodità specifici a livello regionale e relativa stima dell’incertezza. Altri

metodi non gerarchici (Bayesiano semplice e massima verosimiglianza) vengono anch’essi

usati per confronto. Gli algoritmi Gibbs Sampling e Metropolis-Hastings vengono usati per

campionare dalla distribuzione a posteriori di ogni parametro. Anche il metodo del “Data

Augmentation” viene utilizzato per ottenere le stime. La robustezza dei risultati viene

controllata attraverso un’analisi di sensibilità e l’opportuna diagnostica della convergenza

degli algoritmi viene riportata nel testo. In tutti i casi, si sono usate distribuzioni a priori

non-informative.

Risultati: I risutlati ottenuti dall’analisi preliminare mostrano che il modello Skew Nor-

mal ha il più basso AIC nelle regioni Addis Ababa, Dire Dawa, Harari, Affar, Gambela,

Benshangul-Gumuz e anche per le stime nazionali. Nelle altre regioni (Tigray, Oromiya,

Amhara, Somali e SNNP) il modello Skew Normal non risulta il milgiore, ma comunque

mostra un buon adattamento ai dati. Dunque, il modello Skew Normal risulta il migliore

in 6 regioni su 11 e sui tassi specifici di tutto il paese.

Conclusioni: Dunque, il modello Skew Normal risulta globalmente il migliore. Da wuesto

risultato iniziale, si è partiti per costruire i modelli Gerachico Bayesiano, Bayesiano sem-

plice e di massima verosimiglianza. Il risultato del confronto tra questi tre approcci è che

il modello gerarchico fornisce stime più precise rispetto agli altri.
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1 INTRODUCTION

Demography1 is the scientific study of human population and its dynamics (viz.: their

composition, distributions, densities, growth and other characteristics as well as the causes

and consequences of changes in these factors). The five ”demographic processes” that often

determine the changes in population size (growth or decline), composition and distribution

in space are: Fertility, Mortality, Migration, Social Mobility and Marriage (Sharma, 2004),

as shown in Figure 1.1.

Fertility

Mortality

Migration

Social

Mobility
Marriage

Demographic

Process

Figure 1.1: The five demographic processes:Fertility, Mortality, Migration, Social Mobil-

ity and Marriage

Fertility is, therefore, one of among these demographic processes, playing a key major

role in changing population in size, composition and structure over time (Melake, 2005). It

is defined as the reproductive performance of an individual, a couple, a group or a popula-

tion; or the natural human capability of producing offspring. A fertility rate is a measure

of the average number of children a woman will have during her reproductive ages/years

(aka: childbearing ages)2 There are various measures of fertility. The main ones are: Crude

Birth Rate (CBR), General Fertility Rate (GFR), Age Specific Fertility Rate (ASFR) and

Total Fertility Rate (TFR). Analysis of fertility is not only required to understand the

1 Demography : the term ”demography” is derived from two Greek Words, namely Demos means popu-

lation ; and Graphics means to draw
2 Reproductive or childbearing age/year/: is the reproductive period or span of a woman, assumed for

statistical purposes to be 15-49 years of age.
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demographic nature of a given population, but also is needed as it affects public policy,

budgeting for education and health systems, and the likes. Government officials, policy

makers, and academics are concerned about fertility because it can influence the overall

development planning process.

Sub-Saharan Africa is still the most cited example of a continent in which those demo-

graphic elements as a whole and fertility in particular have hit a plateau. Compared to

many developing nations in Asia and Latin America, fertility rate in those countries is

higher, and its decline is later & slower yet, mainly due to social, economical, psycholog-

ical and cultural factors, favoring high fertility rate, and discouraging policy makers from

promoting strong family planning programmes (Caldwell et al., 1992). Ethiopia, where the

present thesis focuses on, is not an exception to this rhetoric and phenomenon.

1.1 Overview:Fertility in Ethiopia

To highlight, Ethiopia, a country in East Africa, with 9 ethnically-based administrative

regions (a.k.a: National Regional States) (viz.: Tigray, Afar, Amhara, Oromia, Gambella,

SNNP, Somali, Benishangul-Gumaz, Harari) and 2 city administrations (viz.: Addis Ababa,

Dire Dawa), as shown in Figure 1.2 below, is one of the developing nations, attributed,

among other things, with rapid population growth and high fertility3 rates. The country’s

population in the year 2014 was estimated at 96.6 million, increased by almost five-fold in

just half a century, from 19.2 million in 1950; and its population growth rate was also 2.9

percent, which is a growth of nearly 2.8 million people the country adds every year to the

total. This alarming figure in population size ranked the country as second most populous

nation in Africa following Nigera and 14th in the world (Teklu and Gebreselassie, 2013; The

World Factbook, 2014). Similarly, the fertility rate in the stated year was 5.23 children

per woman, which is among the highest in the planet. Rapid population growth and high

fertility rates have a lot of important repercussion in the country. Study indicates that the

rapid population growth and high fertility rates in Ethiopia are one of the major sticking

points and challenges in achieving important national goals, such as :-food self sufficiency,

universal primary education and accessibility of health services, increasing employment

opportunities and reducing underemployment (Farina et al., 2001).

3 High fertility is defined as a total fertility rate (TFR) of 5.0 or higher (World Population Perspec-

tive,2005). The TFR represents the average lifetime births per woman implied by the age-specific

fertility rates prevailing in one historical period.
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Figure 1.2: Ethiopia & its regions

Region Women in the study TFR

Tigray 1728 4.8

Affar 1291 5.5

Amhara 2087 4.1

Oromiya 2135 5.1

Somali 914 7.4

Benishangul-Gumuz 1259 5.1

SNNP 2034 5.1

Gambela 1130 3.1

Harari 1101 3.4

Addis Ababa 1741 1.6

Dire Dawa 1095 2.8

Table 1.1: Fertility across the regions,

2011 EDHS

Earlier studies point out that there are various reasons, which make fertility rate in Ethiopia

remain high to-date, including but not limited to: early and universal marriage4(Gezahegn,

2011), the high social and economic value attached to children, the low level of infertility
5(Gezahegn, 2011; Bertrand et al., 2000), cultural and traditional barriers to effectively

utilize modern birth control methods6(Bertrand et al., 2000), low socio-economic develop-

ment, deeply-ingrained cultural values for large family (Kinfu, 2001; Machera, 1997), as

well as poor health service, low economic status and autonomy of women, strong kinship

networks, high economic & social values attached to children, the desire for more chil-

dren and extremely low contraceptive/practice, high child mortality,and women’s limited

achievements in the sphere of educational & employment opportunities (Machera, 1997;

Bertrand et al., 2000).

In Africa, families often prefer large number of children since they are considered as an

economic asset rather than liabilities. In rural areas, parents want to have large number

of children to get assistance in farming activities (Bairagi, 2001) and emotional as well as

economic support during old ages (Fapohunda and Todaro, 1988). According to Caldwell

(1982), the economic importance of children is over lifetime. African children do not only

provide support during childhood and adolescent ages but also beyond these ages. More

psycho-social and economic support is expected when parents are getting older. Old-age

security is one of the major motivational forces for having as many children as possible in

Africa. In traditional societies, children are also expected to strengthen the extent of kin

4 The median age at first marriage is less than 17.1 years in 2011 and nearly all women are married before

they reach age 35.
5 Infertility is much lower in Ethiopia compared to other countries in Africa.
6 Only 28.6% of currently married non-pregnant women aged 15-49 reported as users of contraceptives in

2011.
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relations, which implies not only economic benefits but also physical protection. Getting

larger in number is tantamount to strength in physical security. These scenarios are also

true in Ethiopia. Like many countries in sub-Saharan Africa, traditional norms and values

in Ethiopia are in favor of high fertility. Having many children is considered as a virtue and

respect of God in a number of Ethiopian rural communities (Desta and Seyoum, 1998).

However, in the last few years, fertility in Ethiopia, like many African countries, has shown

a declining trend at the national level though this decline is insignificant and does not help

the country escape from high fertility zone. According to the 1990 National Family and

Fertility Survey, the Total Fertility Rate (TFR) of Ethiopia was 6.6 children per woman.

However, this rate declined to 5.5 in 2000, to 5.4 in 2005 (Teller and Hailemariam, 2011)

and further to 4.8 in 2011 (CSA and ICF International, 2012), which is a drop of almost a

child per woman over two decades of time.

As seen in Table 1.1, there are also clear and remarkable disparities in fertility levels

among the administrative regions, ranging from 1.6 children per woman (below the re-

placement level) in Addis Ababa, where annual growth rate was 2.1, to 7.4 children per

woman in Somali region, which had had annual growth rate of 2.6. Fertility level was also

observed to be higher than the national average in Oromiya, Benshangul-Gumuz, Affar

and SNNP regions; and lower than the national average in the remaining six regions (CSA

and ICF International, 2012). Given the fact that Ethiopia follows an ethnic based federal

system, the variation in total fertility rate across different regions of the country could

simply be a reflection of differences in cultural values and norms affecting fertility for most

of them, with the exception of Addis Ababa and Dire Dawa City Administrations, where

the population is of mixed type as they belong to different ethnic groups (ESPS, 2008).

It is palpable fact that high fertility rate affects the health status of mothers and the

survival chance of their offsprings. Its effects even go to the extent of affecting the socio-

economic development of a given country if proper care and action are not taken. For

instance, it detracts from human capital investment, slows economic growth, exacerbates

environmental threats, and many more (Mulugeta Eyasu, 2015; Casterline and Lazarus,

2010). Cognizant of this fact, the government of Ethiopia, like most in the developing

countries, has been found perpetrating several concerted efforts to reduce the prevailing

high fertility rate to a level the country sets as a target to achieve the Millennium Devel-

opment Goals (MGDs), which is 4.0 children per woman by 2015.

So as to clarify the reason behind the prevailing high fertility , the recent decline in it,

its variation & pattern observed at national and regional level, the important repercussion

that this high fertility has at national level and in regions, and consequently, design ef-
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fective family planning program to achieve the goal Ethiopia sets in 2015 and/or onward,

local-level analysis of fertility, such as modeling fertility, estimation its parameters, pre-

diction,and so on, is increasingly important so that one can effectively formulate flexible

region-specific strategies; and make planning, monitoring, and policies, which could be in

connection to education, reproductive health, child health services, population stabiliza-

tion, human development and other related issues at regional levels, such as to decide where

to build a new nursery-school, health center, health posts; where to increase midwifes or

obstetrics departments in hospitals; or which kind of services can be offered to mothers

and families; etc.

Until recently, many studies have been carried out particularly in developed countries

and developing countries outside of Africa to model and look at fertility variations and

explore further to understand factors and indicators influencing fertility level, but many of

them were limited to a country level (Drèze and Murthi, 2000). Nevertheless, much less

attention has been given to models for local or regional fertility curves, where we expect a

wider variety of patterns than for country level. Given this variety of possible fertility pat-

terns observed across region, in this thesis, we will propose a model that best captures the

different age-specific fertility patterns of Ethiopia at country and regional levels. However,

since there are regions in the study possessing lower number of observations like Somali,

Benshangul-Gumuz, etc, thus, local estimates might be very imprecise, due to their low

sample size. In this study, we, therefore, make use of a hierarchical Bayesian alternative

to the fertility formulas so as to show that the hierarchical model outperforms and is flex-

ible enough for most fertility pattern at different region of Ethiopia and in estimating the

parameters in the proposed model.

1.2 Summary and Main contribution

Needless to say, local-level fertility analysis in Ethiopia is paramount important for it

will help to effectively design flexible region-specific strategies or programs, which might

be worthwhile in implementation of family planning programs, and other socio-economic

policies down at regional levels. The modeling of fertility patterns is one of the essential

methods/ approaches researchers often use to understand the demographic nature of a

given population, and thereby, make budgeting, planning, and monitoring policy decisions

at different levels, national and regional-levels.

Chapter 2 deals with model development for the fertility patterns shown at both country

and regional levels. Putting it differently, in this chapter we first took advantage of real

data set from 2011 Demographic and Health Survey (DHS) of Ethiopia, from which we

extracted one-year age specific fertility rate (ASFR) and examined its pattern at both na-

tional and regional levels. Having thoroughly and attentively assessed all the patterns, we,
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then, proposed a four parametric Skew Normal model (Mazzuco and Scarpa, 2011) to fit

the fertility schedules, and eventually showed that it is flexible enough in capturing these

fertility patterns shown at both country and regional levels of Ethiopia. So as to determine

the performance of the proposed model, a preliminary analysis of fitting the model along

with ten other commonly used parametric and non-parametric models has been carried out.

Chapter 3 is primarily devoted to Bayesian inference to make local-level inference and

prediction on the fertility parameters of Skew Normal model (Mazzuco and Scarpa, 2015)

proposed this far, in Chapter 2, for fitting the Age-specific fertility rate data at country

and regional levels in Ethiopian. As outlined in Chapter 2, this study uses data amassed

from different regions, possessing varying sample sample sizes, some large and others small

number of observations (childbearing mothers), as expounded in Table 1.1 or displayed

in Figure 3.1. Moreover, study by Griffiths et al. (1987) suggests that inference based on

the conventional classical statistics via MLE, often leads to significant bias and hence, is

not accurate in a situation where the subject under scrutiny has small sample size. Con-

sequently, in this chapter Bayesian inference is predominantly adopted to make inference

and prediction on model parameters. Despite the issue of sample size in some regions,

maximum likelihood method was also conducted to estimate the parameters of the model

and compare the resulting values with Bayesian counterparts.

Besides, as another new contribution of this chapter, we first developed a fertility model

based on whether or not each mother involved in the study gives rise a birth at a specific

age, i.e., taking mother‘s birth status (Have birth, No birth) during a specific age as ma-

jor classification criterion. Given the result obtained in Chapter 1, we assume mother’s

birth status as a Bernoulli random variable having a probability distribution of the proposed

model. Further, we modeled the number of births at this particular age, which was a binary

data with non-negative valued random variable, as Binomial distribution having a proba-

bility, the value of proposed model at that age, and number of mother at that particular

age as model parameters and eventually, estimated this model using a Bayesian approach

using non-informative priors for the model parameters. Nevertheless, one stumbling block

encounter in using this methodology was computational intractability. That is, the joint

posterior distributions was non-linear, and too complex & intractable to easily drive the full

conditional in standard/closed form. Data Augmentation strategy (latent variable method)

had, hence, been instrumented as possible remedy in this respect. To wrap up, in this

chapter and, of course, the next as well, a skew-normal (Mazzuco and Scarpa, 2015) latent

variable methodology has been implemented in formulating our Bayesian model developed

from Binomially distributed fertility (birth) data so as to overcome this computational

plight. Hence, the fertility data from each of the 11 regions are modeled using a Bayesian

model with non-informative prior distributions, i.e., the priors are constructed by assuming

6



there is no information available about the process apart from the data. Furthermore, the

results and techniques developed in this section was used directly in developing and ana-

lyzing the subsequent hierarchical Bayesian models. One of the major sticking points with
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Figure 1.3: Thesis Structure

Bayesian Analysis/method utilized in Chapter 3 is that those region-specific ASFR pa-
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rameters had been imprecise estimates, particularly in those regions which contain smaller

observations(mothers of age 15-49), namely Somali region, Affar region and SNNP. Albert

and Chib (1993); Nilsson et al. (2011) have suggested that Hierarchical procedures might

provide more reliable parameter estimates than Non-Hierarchical procedures, the main-

stream Bayesian and maximum likelihood methods, especially with small sized regions.

Therefore, in this chapter, Chapter 4, Hierarchical Bayesian method was formulated and

briefly discussed to explore the posterior distribution of model parameters. Besides, other

non-hierarchical approaches, namely Bayesian and the maximum likelihood methods, were

also instrumented to estimate parameters and compare the result obtained using these

approaches with Hierarchical Bayesian counterparts.

Last but not certainly the least, Chapter 5 combines the thesis together by providing

summary conclusions of previous chapters and puts forward some policy recommendations

to be in place at both national and regional level in the country. The structural flow of

the contribution is described diagrammatically in Figure 1.3
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2 MODELING ASFR IN ETHIOPIA

2.1 Introduction

Ethiopia is characterized by distinct physiological and ethnic diversities which present chal-

lenges and opportunities for its development. Because of Ethiopian cultural, economical,

and geographical diversity, the magnitude of regional variation in fertility levels is antici-

pated to be much larger. In this vein, regional level fertility perspectives or analyses are

so important to understand existing disparities. This thesis in general focuses on regional

fertility patterns and its implication. Therefore, the remain parts of the chapter are un-

folded as in the following way: the next section is devoted to introduce about the data

utilized in the entire work of this thesis. Then, the pattern of ASFRs at national and

regional level is described in the upcoming section, in subsection 2.3. Following this, we

provide a brief review of some existing models for fertility patterns and then propose our

model in subsection 2.4 and subsection 2.5 respectively. Fitting fertility models to DHS

data is done in subsection 2.6. The results of fitting our model as well as other models to

the fertility data are presented in subsection 2.7. This paper concludes with a discussion

of the implications of our findings in the last section of the chapter.

2.2 Data Source

In developing countries like Ethiopia, population information is usually derived from cen-

suses and surveys collected occasionally as found necessary. Vital registration systems

that yield continuous flow of information are incomplete or non-existent (Farina et al.,

2001). In the absence of a complete and highly systematized vital registration system,

census and survey data are used to estimate demographic parameters with all their defects

and shortcomings. In this thesis, we make use of data obtained from the 2011 Ethiopia

Demographic and Health Survey (EDHS), available online on ICF International’s website

http://www.measuredhs.com. This is the third Demographic and Health Survey (DHS) in

Ethiopia, which is funded by USAID and conducted by Central Statistical Agency(CSA),

Ethiopia, and ICF International (the owner of the raw data) in Calverton, Maryland as

part of the worldwide MEASURE DHS project, a five-year project engaging in collect-

ing and analyzing data needed to plan, monitor, and evaluate population, health, and

nutrition programs in countries worldwide. The survey contains ample data on fertility,

health, contraceptive use, breast-feeding practices, nutrition of women and children, and

others though, on this work,we only focused on different key indicators relating to fer-

tility information of 16515 eligible women in the reproductive age (a.k.a.: childbearing

9
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age) 7, taken from 11 regions located across the country. Figure 2.1 shows the partial

Figure 2.1: Ethiopia DHS, 2011 (in SPSS format)

data structure of the survey in SPSS data format. Computation of important variables

such as Mother’s age and one year ASFR has been made for all women in each region.

Table 2.1 reveals roughly the summarized data template employed in the entire work of

the analysis. In this case, i = 1, . . . , I = 11 stands for the ith regions in the country. As

mentioned, since the number of regions are 11 in number, then, I = 11 and are coded for

analysis purpose as: 1 = Tigray (Region-1), 2 = Affar (Region-2), 3 = Amhara (Region-3),

4 = Oromiya (Region-4), 5 = Somali (Region-5), 6 = Benshangul Gumuz (Region-6), 7 =

SNNP (Region-7), 8 = Gambela (Region-12), 9 = Harari (Region-13), 10 = Addis Ababa

(Region-14), and,11 = Dire Dawa (Region-15); j = 1, . . . , ni is the jth woman(mother) in

the region ith; Likewise, Yij refers to the age of the jth mother in the reproductive age

living in the ith region in the study period; and fij corresponds to the ASFR of the jth

mother between 15-49 years old in the ith region in the country during the study period.

7 Reproductive or childbearing age:is the reproductive period or span of a woman, assumed for statistical

purposes to be 15-49 years of age.
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Mother (j ) Region (i) Region Code (i) Age (Yij) ASFR (fij)

1 Tigray y1(1) f1(1)

2 Tigray y1(1) f1(1)
...

... 1 (Region-1)
...

...

n1 Tigray yn1(1) fn1(1)

1 Affar y1(2) f1(2)

2 Affar y2(2) f2(2)
...

... 2 (Region-2)
...

...

n2 Affar yn2(2) fn2(2)

...
...

...
...

...

1 Dire Dawa y1(11) f1(11)

2 Dire Dawa y2(11) f2(11)
...

... 11(Region-15)
...

...

n11 Dire Dawa yn11(11) fn11(11)

Table 2.1: Data Layout

2.3 Pattern of ASFRs of Ethiopia

The age-specific fertility rate curve is, in general, a bell-shaped unimodal curve which first

rises slowly and then sharply in the age group 15-19, attains its modal value somewhere be-

tween ages 20-29, declines first slowly and then steeply till it approaches zero around the age

of 50 years even though some developed countries has already started showing a deviation

from this classical bell shaped curve. The magnitude of this pattern is often influenced by

different socioeconomic factors, like education, occupation, religion, contraceptive practice,

etc and demographic factors, like age at marriage, present family size, gender preference, et.

To address the first objectives of the study, we first took advantage of real data set

from 2000, 2005, 2011 Demographic and Health Survey (DHS) of Ethiopia, from which

we extracted one-year age specific fertility rate (ASFR) and examined its pattern at both

national and regional levels. The plot at national level, which is depicted in Figure 2.1,

indicates the age specific fertility patterns are characterized by reversed V-shape. Besides,

the 2011 pattern confirms that the ASFRs declined in this year much more than in the

previous surveys, especially in all of the women younger than age 44. This pattern rises

to reach the peak in the late twenties (age group 25-29) before it starts dropping rapidly.

This indicates that there was a shift in fertility towards younger age groups in 2011. It

is also observed that the highest ASFRs are in the age group 25-29. Therefore, this age

group is the most fertile period of Ethiopia women in the stated year. On the other hand,

the 2005’s pattern starts with a relatively higher rate and peaks in the early twenties (age

group 20-24). It does not demonstrate a rapid drop after the peak. In contrast to the 2005
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and 2011 fertility pattern, the pattern in 2000 depicts a broad peak shape that extends

from the early twenties to the early thirties before a rapid drop. It is also noticed that

the age group 30-35 was the most fertile years in 2000 while 20-24 age group was the most

fertile in 2005. The study also scrutinized how the pattern looks like at regional level. As

shown in Figure 2.3, Age-specific fertility levels markedly differ by regions. For instance,

mothers of aged 15-19 years have highest fertility rate in Affar region and lowest in Addis

Ababa showing a marked differences of 89 between maximum and minimum figures. Both

regions also show considerable deviation from the fertility level in other regions. It is also

learnt that the age specific schedules seems to have a similar pattern as of national level

for all regions except for Somali and Gambella, which could be due to the effect of small

sample size. Furthermore, we observe ASFRs of Addis Ababa was much smaller than any

other regions in the country in all age groups,which could be owning to the presence of

more socio-economically development on this region than the rest. In contrary, all other

regions have high ASFRs in some age groups and lower in other. There are also clear inter-

regional disparity in factors of fertility. For instance, 3% of young women in Addis Ababa

have started childbearing by age 19, compared with 21% of young women in Gambela.

All in all, considerable variation in the pattern of ASFRs of women is reflected at regions

vis-á-vis national level. The figure also reveals not only fertility intensity (TFR) but also

ASFR shapes varies across regions. This variation in the pattern and other fertility indica-

tors revealed at inter-regional level in Ethiopia calls for designing a more flexible fertility

model with which we can provide a good fit and parameter estimation in all regions in the

country.
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2.4 Summary on Fertility Models (Literature Review)

An easy way of finding out different characteristics of a fertility distribution is to build

a suitable model for fertility distribution and derive various important characteristics of

fertility distribution from the fitted model. While building any model we have to keep the

following points in our mind. Models are alternative means for describing a given data.

The basic objective of any modeling is to reduce confusing mass of numbers to a few in-

telligible basic parameters. Experts appreciate those models where number of parameters

are as small as possible and are interpretable in physical terms and are also good enough

to approximate all the relevant variations that are observable in the data (Pasupuleti and

Pathak, 2010).

A large number of parametric and nonparametric models have been proposed in demo-

graphical literature for modelling the age specific fertility curves of many populations, but

fitting these models to curves of Ethiopian data has not been undertaken yet. Among these

models applied to ASFR data of different countries are:

2.4.1 Parametric Fertility Models

For estimating mortality and fertility patterns several parametric and non-parametric tech-

niques have been proposed. The parametric ones are non linear models that represent the

mortality pattern as a function of age and a number of parameters

F Hadwiger function: the Hadwiger function (Hadwiger, 1940; Gilje, 1972) is ex-

pressed by,

f(x) =
ab

c

(c
x

) 3
2

exp
{
−b2(c

x
+

x

c
− 2)

}
(1)

where, f(x) is the ASFR of mothers in the study at age x, and a,b,c are the three

parameters of the model to be estimated, in which case, the parameter a refers to

total fertility,the parameter b determines the height of the curve, the parameter c is

related to the mean age of motherhood, while the term ab
c

is related to the maximum

age-specific fertility rate (or modal age-specific fertility rate)(Chandola et al., 1999).

F Gamma function: the Gamma function (Hoem et al., 1981) is given by,

f(x) = R
1

Γ(b)cb
(x− d)b−1exp

{
−
(
x− d

c

)}
, for x > d (2)

where, f(x) is the ASFR of mothers in the study at age x, d represents the lower

age at childbearing, while the parameter R determines the level of fertility. The

parameters b, c have no direct demographic interpretation, but Hoem et al. (1981)

have substituted these by the mode m, the mean µ and the variance δ2 of the density,

for c = µ− m and b = µ−d
c

= δ2

c2
.
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F Beta function: the Beta function proposed by Hoem et al. (1981) which is given

by the formula,

f(x) = R
Γ(A + B)

Γ(A)Γ(B)
(β − α)−(A+B−1)(β − x)(A−1)(x− α)(B−1), for α < x < β (3)

where f(x) is the ASFR of mothers in the study at age x, and R determines the level

of fertility. Hoem et al. (1981) showed that A and B are related to the mean v and

the variance τ 2 through the relations

B =

{
(v− α)(β − v)

τ 2
− 1

}
β − v

β − α
and A = B

v− α
β − v

but not in a simple, easily interpretable way. He also stated that α and β represent

lower and upper age limits of fertility, but Peristera and Kostaki (2007) showed that

in several cases the value of β far exceeds the maximum age.

F Peristera and Kostaki Model: Peristera and Kostaki (2007) noted that the form

of the fertility curve has changed in recent years in various countries, as did Chandola

et al. (1999) before them. To this end, they proposed flexible models that capture

both the standard (classical) age-specific fertility pattern and the distorted, as the

pattern shown in countries such as the United Kingdom, Ireland, and Spain.

⇒ Their basic model resembles the normal distribution but is asymmetrical, as the

spread before and after the peak differs, and is expressed:

f(x) = c1exp

[
−
(
x− µ1
σ1(x)

)2
]

(4)

where f(x) is the ASFR of mothers in the study at age x; c1 and µ are parameters

to be estimated while

σ(x) =

{
σ11 if x ≤ µ1,

σ12 if x > µ1,

The parameter c1 describes the base level of the fertility curve and is associated

with the total fertility rate, µ reflects the location of the distribution, i.e. the

modal age, while σ11, σ12 reflect the spread of the distribution before and after

its peak, respectively.

⇒ An alternative version of this model, which captures the distorted shape of the

fertility pattern, is

f(x) = c1exp

[
−
(
x− µ1
σ1(x)

)2
]

+ c2exp

[
−
(
x− µ2
σ2

)2
]

(5)

where,
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σ1(x) =

{
σ11 if x ≤ µ1,

σ12 if x > µ1,

where f(x) is the ASFR of mothers in the study at age x, and c1, c2, µ1, µ2, σ11,

σ12 are parameters to be estimated. Moreover, the parameters c1 and c2 reflect

the level of fertility at the first and second peak respectively; µ1 and µ2 are

related to the mean age of the two subpopulations, the one with earlier fertility

and the other with fertility at later ages; and the parameters σ11, σ12 reflect the

spread of the distribution of the most intense hump before and after each peak,

and σ2 reflects the variance of the less intense one.

F Skew Normal Model: Mazzuco and Scarpa (2015) have introduced a different

model based on skew-normal density function (Azzalini, 1985), which has 4 param-

eters. Because of the skewness parameter, that model has been suitable (flexible)

for almost all types of fertility patterns, not only unimodal but also bimodal fertility

patterns. The one which is flexible for unimodal is given as defined in Equation 6:-

f (x; ξ, ω, α) =
2R

ω
φ

(
x− ξ
ω

)
Φ

(
α
x− ξ
ω

)
, x ∈ IR, ξ ∈ IR, ω > 0, α ∈ IR (6)

where, φ and Φ are respectively the pdf and cdf of standard normal distribution;

f (x) is ASFR at age x of a mother, R is the TFR parameter of the model; ξ and α

are the location parameter and the shape parameter of the model respectively

while ω is the scale parameter of the model. More detail discussion on this model

is given in the forthcoming part, subsection 3.2 of Bayesian Analysis.

F Gompertz Curve: the Gompertz model is widely used in demography and in var-

ious branches of science. Initially, the model was developed by Gompertz (1825) to

describe age patterns of mortality

f (x) = F (x+ 1)− F (x) (7)

F(x) = Rab
(x−xo)

where f (x) is the age specific fertility rate at age x and F (x) is the average number of

children born by exact age x. The parameter R is the total fertility rate (TFR), a is

the proportion of total fertility attained by age xo, b is the intrinsic rate of growth of

cumulative age specific fertility rate by age. Wunsch (1966), Martin (1967) , Murphy

and Nagnur (1972), Farid (1973), Brass (1981); have suggested using Gompertz curve

to model fertility distributions.

2.4.2 Non-Parametric Fertility Models

Instead of specifying a statistical model, one may use a non-parametric model for

smoothing age patterns of fertility. The structure of a non-parametric model is not
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specified a priori but is determined from the data. Non-parametric does not mean

that the model does not include parameters, but that the number of parameters is

not fixed in advance and that the parameters lack a clear statistical interpretation.

There are several approaches to estimating non-parametric models. The most widely

applied are local polynomial regression and smoothing splines (Fox, 2000). To the

best of my knowledge, local polynomial regression is not applied to fitting fertility

schedules. Quadratic and cubic splines are very flexible and so may provide an

accurate fit of various types of fertility curves

F Quadratic Spline: Schmertmann (2003) proposes fitting splines by choosing as

knots particular ages that can be interpreted. Schmertmann fits the age pattern

of fertility by a quadratic spline including four knots, which means that the age

schedule is described by five quadratic pieces. A quadratic spline is a piecewise

quadratic function that can be described by

f(x) = a + b(x− m) +
n∑

j=1

cj (x− m− kj)
2
Dj (8)

where Dj = 0 if x− m ≤ kj and Dj = 1 otherwise, m is the minimum age, x ≥ m, kj

are the knots, n is the number of knots, and a, b, and cj are the coefficients to be

estimated(de Beer, 2011).

F Cubic Splines: are very flexible (McNeil et al., 1977; Gilks, 1986) and can be

described by:

f(x) = a + b(x− m) + c(x− m)2 +
n∑

j=1

dj (x− m− kj)
3
Dj (9)

where Dj = 0 if x− m ≤ kj and Dj = 1 otherwise, m is the minimum age, x ≥ m, kj are

the knots, n is the number of knots, and a, b, c, and dj are the coefficients to be

estimated(de Beer, 2011).

A detailed descriptions of the mathematical formulae of most of the models can be found

in (de Beer, 2011), (Hoem et al., 1981) and (Peristera and Kostaki, 2007).

To accurately model fertility patterns at country and regional levels in Ethiopia and make

inter-regional fertility analyses, a new mathematical model that is both easily used, and

provides good fit for the data is required. Such a model could reveal important parameters

which need to be taken into account when comparing fertility between regions and across

time. This undoubtedly would increase our understanding of fertility scenarios in the re-

gions of the country. In this study, we proposed to use the four parameter Skew Normal

Model (Mazzuco and Scarpa, 2015), given in Equation 6.
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2.5 (Proposed)Fertility Model: Skew Normal Model in Brief

As categorically elaborated by Singh et al. (2015), fertility analysis of human population

is done usually by two ways:-

(i). The first way is primarily concerned with the estimation of parameters of standard

measures of fertility. Demographic factors like age at marriage, present family size,

gender preference (Mahadevan, 1979; Bhasin and Bhasin, 1990; Asari and John, 1998;

Chachra and Bhasin, 1998; Bhasin and Nag, 2002) and socioeconomic factors like

education, occupation, religion, contraceptive practice, etc. (Bhatia, 1970; Asari and

John, 1998) are the determinants of desired family size and the generally considered

as cause of the variation in fertility. Place of residence, family type, mass media

exposure are some factor that indirectly plays an important role and it affects the

fertility. The couple’s decision about their next child affects the birth interval and

indirectly this affect the fertility.

(ii). The second way of fertility analysis deals with the fertility pattern through math-

ematical curves. Due to its simplicity, the modeling of fertility pattern through

different mathematical curves have attracted the interest of demographers and still

the researcher who were working in the field of demography are using different math-

ematical curve to graduate the trend of fertility analysis. Among other reasons, the

interest in fertility modeling through curves is due to the fact that it is helpful in pop-

ulation projection, which is very useful for government planning. Fertility analysis

plays an important role to measure the intensity of population growth.

Fertility studies in Ethiopia date back to decades and have examined a wide range of topics

on fertility: Determinants (Alemayehu et al., 2010), Differentials of fertility (Alene and

Worku, 2008), Level and Differentials of fertility (Gebremedhin, 2006; Gebremedhin and

Betre, 2009), Fertility preferences and the demand (Short and Kiros, 2002), Differentials

of fertility (Fitaw et al., 2003), Impact of child mortality and fertility preferences (Fitaw

et al., 2004), The influence of socio-demographic factors (Eshetu and Habtamu, 1998),

Fertility decline driven by poverty (Gurmu and Mace, 2008), Fertility transition driven by

poverty (Gurmu, 2005), The quiet revolution (Kinfu, 2001), The demographic component of

fertility decline(Lindstrom and Woubalem, 2003), The Proximate Determinants(Sibanda

et al., 2003) to name the important ones.

Despite their remarkable contribution on the overall study of fertility, those previous studies

have also a lot major similar features (limitations) in common. Of those, some are:-

(a). Almost all study done thus far used the approach explicated in (i) to make analysis

of fertility. In other words, none of the works done so far had dealt with ASFR and
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analysis of fertility using mathematical modeling, which is one of the targets of this

thesis.

(b). Furthermore, many of the researches at country, regional and district levels were

focused on the pooled data rather than multilevel and were also conducted using

only non-Bayesian setting, which is the second major gap this thesis need to bridge.

In view of this, in this thesis, we propose a four parametric skew normal mathematical

model of Mazzuco and Scarpa (2015), described in Equation 6, to model the pattern of

ASFR, at national and regional level, and fit the parameters in the model by means of

simple Bayesian and Hierarchical Bayesian analyses, as discussed more in the subsequent

chapters. The merit behind using mathematical model in Bayesian setting to make fertility

analysis is that:

(a). Its simplicity: Due to its simplicity, the modeling of fertility pattern through dif-

ferent mathematical curves have attracted the interest of demographers, and still the

researcher who were working in the field of demography are using different mathe-

matical curve to graduate the trend of fertility analysis.

(b). Its applicability: Among other reasons, the interest in fertility modeling through

curves is due to the fact that it is helpful in population projection, which is very

useful for government planning. Fertility analysis plays an important role to measure

the intensity of population growth. As we are using multilevel regional level data,

such analysis will have a remarkable role to make regional-specific inferences.

Analogously, using simple Bayesian analysis in general and Hierarchical Bayesian analyses

in particular to estimate the parameters of the proposed model have also some interesting

plus points and issues to resolve particularly from multilevel data perspective.

(a). Issue of Biasedness and accuracy: since we have regions of varying sample sizes

( for more see: Table 1.1), as outlined in Griffiths et al. (1987), using non-Bayesian

methods, particularly, the MLE will result in a significant bias, particularly for these

regions whose small sample size is very low, such as Somali (see Figure 2.3), Dire

Dawa, Harari, Gambela, etc; and therefore, our inference based on classical approach

will be not accurate when we have regions having small observation (Zellner and

Rossi, 1984).Therefore, one of the reason behind using Bayesian approach to make

inference on our model parameters is, hence,that it is a good way out to overcome

such problem.

(b). Issue of Borrowing information/ strength:

Simple Bayesian analysis, we estimate our parameters assuming that each of the 11

regions has an identical fertility model parameters, such as all regions have the same
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Figure 2.4: Patter of Age-Specific Fertility Rates for Somali Region, 2011

fertility rate, R, the same fertility shape parameter, α, etc. The assumption of a

common fertility model parameters, however, is quite strong, and may be inappro-

priate even in Ethiopian regions. Suppose that instead of a common fertility model

parameters, we consider the fertility model parameters for each region, as a sample

from an overall population distribution. Thus, by treating the fertility model pa-

rameters, as exchangeable, we develop the following hierarchical model. This model

allows the mothers for each region to have its own fertility model parameters, but it

also models each fertility model parameters, as coming from a common population

distribution. Thus, hierarchical structure allows us to borrow strength for the estima-

tion of each fertility model parameters. In particular, the estimation of each fertility

model parameters is improved by using the fertility data from the other regions.

Bayesian analysis is less dependent on the asymptotic assumptions and is able to produce

reliable results with smaller sample sizes (Lee, 2007) with prior distributions having a sig-

nificant role when sample sizes are small or moderate (Lee, 2007).

To sum up, thoroughly assessing the patterns of ASFR at country and regional level,

developing a model and fitting these model with the aid of Hierarchical Bayesian Method,

which are the main purposes of thesis, not only possess the aforementioned merits but also

are a new approach that opens a new avenue to Ethiopian demographic research develop-

ment activities. Such a work will also shade some light on how integrate demographic data
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with Bayesian statistics. In-depth discussion on the model, the Bayesian procedures and

on how these can be implemented with the data, the ASFR mothers in the study, and to

estimated model parameters is given in subsequent sections

2.6 Fitting the model to Real Data

2.6.1 Preliminary Analysis

In order to determine the performance of the proposed model, we conducted some prelim-

inary analysis of fitting the model along with ten other commonly used parametric and

non-parametric models, described in subsection 2.7, namely: the Quadratic spline (QS),

Cubic spline (CS), Beta function (BF), Gamma function (GF), Hadwiger function (HF),

Skew Normal (SN), Gompertez curve (GC), Adjusred Error Model(AEM), Polynomial

function (PF) and Model-1 of Peristera et.al.

The purpose of fitting various models is to compare the performance of the proposed model,

Skew Normal Distribution, with other models mentioned thus far. The criterion followed

in fitting these models is Nonlinear Regression with nonlinear least squares estimation,

obtained by minimizing the following sum of square residual (SSQ) equation:-

SSQ(x; R, θ2, · · · , θr−1) =
∑
x

{
f(x; R, θ2, · · · , θr−1)− f̂x

}2
(10)

where

√
f(x;R, θ2, · · · , θr−1) is an analytical function, considered to model the single year age

specific fertility schedule, related as

f(x; R, θ2, · · · , θr−1) = R · h(x; R, θ2, · · · , θr−1), (11)

with h(x;R, θ2, · · · , θr−1) is a probability density function ( pdf ) on the real line

with r− 1 parameter and can be one of the above fertility models, such as SN, Beta,

Gamma, etc,

√
f̂x is the estimated of fx , and

√
R is the rth(≡ θk) parameter in Equation 10 and refers to the total fertility rate

(TFR) of our data.

The majority of these fertility models described above are nonlinear in nature. In general,

if f is nonlinear in θ, it is not usually possible analytically to obtain an explicit solution for

the MLE estimate and to conduct fitting the model to the data, especially when the model,

f , involves many parameters and is highly non-linear. Instead an iterative procedure is

needed. In such situations, the MLE estimate and model fitting must be sought numerically
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using nonlinear optimization algorithms. This is true for these models. In our case, the R

function nls was employed for the purpose of fitting these models, plotting the empirical

values of the models with the observed curves.

2.6.2 Model selection

A measure of the relative quality of a statistical model, known as, Akaike Information

Criterion (AIC, for short), has been instrumented so as to compare the performance of

these candidate fertility models and select which, the proposed or the other fertility models

aforementioned above, is the best description of the current data under scrutiny. The AIC

is a criterion for comparing various functions by adjusting the SSQ for the number of

observations and the number of parameters in the model. The criterion can be used to

decide if the improved fit is worth with the decreased degrees of freedom and the increased

complexity of the function caused by the addition of another parameter to a model. The

variant of the AIC used in this paper is given by

AIC = 2 ∗ k + n ∗ ln
{

SSQ

n− k

}
(12)

where k is the number of parameters in the model,SSQ =
∑

x(fx − f̂x)
2 is the sum of square

residuals in which case fx is the empirical fertility rate at age x and f̂x is its estimate, and n

is the number of observations. When comparing the performances of a number of models,

the model with least AIC is usually preferred as the best. The AIC procedure has been

discussed and successfully used to identify model with best fit by Akaike (1976), Tong

(1977); Ozaki (1977), Larimore and Mehra (1985), and Koehler and Murphree (1988),

among others.

2.7 Result of the fit

We have fitted the functions given in subsection 2.7 to the one-year ASFR data extracted

from 2011 EDHS, at national level and for each regions. Table 2.2 recaps the result of the

fit at country level, and for visual comparison, the result is further given in Figure 2.5. A

similar result for two regions has been given in Figure 2.6 & Figure 2.7. In all cases, the

observed(empirical) age specific fertility rates for the study populations have been listed

in column 2. In columns 3 to 10, we have given the fitted function values. One remarkable

observation from the results obtained is that the AIC of SN is smaller at national level data

and for A.A., Tigray, Harar, Dire Dawa, Oromiya and SNNP.
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Table 2.2: Empirical and fitted values for the ASFR at national level with values

of minimization and model selection criterion

Age DHS Gamma Quad.S CubicS Beta PeristeraK Gomp Hadwiger SkewN

15-19 0.0787964 0.07941014 0.11433305 0.08149314 0.07877457 0.10468448 0.08250132 0.08432734 0.1037879

20-24 0.2072576 0.20540353 0.16846207 0.20130199 0.20747701 0.18113166 0.20109639 0.19978583 0.18096631

25-29 0.2272192 0.22973613 0.19356891 0.22640882 0.22621386 0.22427694 0.23274250 0.23139501 0.22460378

30-34 0.1807907 0.18213480 0.18965356 0.18965356 0.18332391 0.19872525 0.18305005 0.18509950 0.19893728

35-39 0.1264974 0.11955640 0.15671604 0.12387612 0.12274915 0.12600844 0.11782620 0.11952747 0.12610677

40-44 0.0664233 0.06964088 0.09475633 0.06191641 0.06957800 0.05717740 0.06835614 0.06751603 0.05739148

45-49 0.0342798 0.03735370 0.00377444 0.03661436 0.03306453 0.01856638 0.03757527 0.03490573 0.01881487

AIC -49.7963 -20.8742 -45.1797 -53.9988 -27.3542 -46.2284 -46.4085 -55.5031

RSS 7.99e-05 0.0066253 0.00015458 3.29e-05 0.0019728 0.00017259 0.0019728 3.54e-05
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Figure 2.5: Plot of Observed and Estimated ASFR at country level, 2011 DHS.

Table 2.3: Empirical and fitted values for Addis Ababa with values of minimiza-

tion and model selection criterion

AgeGroup DHS Qud Spline Cub.Spline Gamma Dist PeristeraK Hadwiger Skew Normal

15-19 1.233490e-02 0.03773830 0.0152599786 0.05484471 0.012073362 0.020961944 0.012179910

20-24 9.288160e-02 0.06446411 0.0869424238 0.11450746 0.093431208 0.086993854 0.093080214

25-29 1.036736e-01 0.07654115 0.0990194666 0.12935400 0.099068819 0.104542567 0.101127084

30-34 5.446270e-02 0.07396942 0.0739694238 0.10918384 0.066857306 0.065694543 0.064346043

35-39 4.935040e-02 0.05674893 0.0342706120 0.07768684 0.032241838 0.028244347 0.031778451

40-44 4.420000e-10 0.02487966 0.0024013480 0.04939944 0.011110913 0.009550461 0.012241331

45-49 7.540000e-10 -0.02163837 0.0008399484 0.02900817 0.002736142 0.002749299 0.003677994

AIC -24.93042 -34.81144 -15.98306 -35.69982 -35.84763 -35.96744

RSS 0.0037115 0.0006799 0.01001338 0.000599 0.0007804 0.0005762
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Table 2.4: Empirical and fitted values for Harari with values of minimization

and model selection criterion

AgeGroup DHS Qud Spline Cub.Spline Gamma Dist PeristeraK Hadwiger Skew Normal

15-19 1.021462e-01 0.07592061 0.096193645 0.08330303 0.101653339 0.08379656 0.100657698

20-24 1.725509e-01 0.10469356 0.189036670 0.19446002 0.173690715 0.19296910 0.174473906

25-29 2.113519e-01 0.11867410 0.200077112 0.20417907 0.208278303 0.20583789 0.208553080

30-34 1.584689e-01 0.11786221 0.157761457 0.14674206 0.166063092 0.14736166 0.165187648

35-39 9.633450e-02 0.10225791 0.090536188 0.08444879 0.083174387 0.08372554 0.083795796

40-44 1.474320e-02 0.07186118 0.026847789 0.04198894 0.026169145 0.04115787 0.026522879

45-49 5.090000e-09 0.02667203 -0.004857255 0.01882348 0.005172171 0.01838065 0.005140335

AIC -26.0029 -35.25019 -26.39688 -38.53939 -28.91044 -38.85986

RSS 0.003184297 0.0006385693 0.002261967 0.0003991529 0.002101956 0.0003813
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Figure 2.6: Plot of Observed & Es-

timated ASFR for Addis

Ababa, 2011 DHS.
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Figure 2.7: Plot of Observed & Esti-

mated ASFR at Harari, 2011

DHS.

2.8 Conclusions

Results obtained from this preliminary analysis reveal that the values of the AIC for the

proposed model, Skew Normal (SN), is lowest in the capital, Addis Ababa, Dire Dawa,

Harari, Affar, Gambela, Benshangul-Gumuz and country level data as well. On the con-

trary, its value is higher some of the models and lower the rest on the remain regions,

namely Tigray, Oromiya, Amhara, Somali and SNNP, indicating SN is not the best in fit-

ting (capturing the available information on ASFR curve) in these region compared to the

rest. However, since still the values of AIC for SN model is lowest not only at country level

but also for majority regions, i.e., in 6 of the 11 regions , we conclude that the proposed

model is better able to reproduce the empirical fertility data of Ethiopia and its regions

23



than the other existing models considered. In the next two sections, we will present Skew

Normal Distribution in-depth to estimating ASFR, which serve as the foundation for the

hierarchical Bayesian model developed herein.
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3 BAYESIAN MODELING

3.1 Introduction

A Micro-demographic variables, namely fertility is not only the main drivers of demo-

graphic dynamics but are also key elements to describe the behaviour of populations, both

at national and regional levels. Both regional population forecasting and inter-regional

comparisons to support policy making require the accurate data on such variables, and

good model and its estimation method (Castro et al., 2015). As described in the previous
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Figure 3.1: Ethiopian regions

chapter, this study uses the 2011 EDHS data amassed from different regions, possessing

varying sample sample sizes, some large and others small number of observations (child-

bearing mothers), as expounded in Figure 3.1. The whole objective of this chapter is

to make local-level inference and prediction on the fertility parameters of Skew Normal

model (Mazzuco and Scarpa, 2015) proposed this far for fitting the Age-specific fertility

rate data at country and regional levels in Ethiopian. Griffiths et al. (1987) pointed out

that inference based on the conventional classical statistics via MLE, often leads to sig-
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nificant bias and hence, is not accurate in a situation where the subject under scrutiny

has small sample size. Therefore, in this chapter Bayesian inference is primarily adopted

to make inference and prediction on model parameters. By and large, Bayesian methods

are a statistical approach for making inferences from data using probability models for

quantities (parameters) underlying the study system (Gelman et al., 2014). Naturally, us-

ing Bayesian inference with this model would allow any additional information about the

processes to be incorporated as prior information. Despite some intense debate between

Bayesian supporters and ”frequentists”, Bayesian methods are increasingly popular among

scientists of all fields, from medical (Spiegelhalter et al., 2004) and social (Snijders and

Bosker) sciences, to ecology (Latimer et al., 2009) and fisheries (Millar, 2002; Fernández

et al., 2002; Chen and Fournier, 1999; Fernández et al., 2010), among many others. Several

reasons lead to the popularity of Bayesian methodologies. Most of those reasons lie within

the nature of Bayesian inference as it accommodates the increasing need for maximizing

all the information available (Gelman et al., 2014; McCarthy, 2007) and also the need for

a more flexible and holistic approach to data analysis, including the estimation of uncer-

tainties in key parameters that in conventional analyses are often forced to be constant

for analytical tractability (Gelman et al., 2014). Additionally, Bayesian methods provide

a natural framework for accounting for missing values without the need to rely on ad hoc

imputation (Lunn et al., 2000). A review of this debate is beyond the scope of this thesis.

However, a brief overview of the Bayesian framework and a discussion of its main advan-

tages are given in order to clarify the choice of methodology used and give context to some

of the analysis performed in this thesis.

To wrap up, as a new contribution of this chapter, we first developed a fertility model

based on whether or not each mother involved in the study gives rise a birth at a specific

age, i.e., taking mother‘s birth status (Have birth, No birth) during a specific age as major

classification criterion. Given the result obtained in previous chapter, we assume mother’s

birth status as a Bernoulli random variable having a probability distribution of the pro-

posed model. Furthermore, the number of births at this particular age, which is a binary

data with non-negative valued random variable, can be modeled using Binomial distribu-

tion having a probability, the value of proposed model at that age, and number of mother

at that particular age as model parameters. Eventually, we estimated this model using a

Bayesian approach using non-informative priors for the model parameters. Nevertheless,

one stumbling block encounter in using this methodology was computational intractability.

That is, the joint posterior distributions was non-linear, and too complex & intractable

to easily drive the full conditional in standard/closed form. Data Augmentation strategy

(latent variable method) has, hence, been instrumented as possible remedy in this respect.

Therefore, as another new contribution, in this study a skew-normal (Mazzuco and Scarpa,
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2015) latent variable methodology has been implemented in our Bayesian model developed

from Binomially distributed fertility (birth) data so as to overcome this computational

plight. Detail discussion of the model formulation and the use of Bayesian analysis on it

is provided on subsection 3.5. Hence, the fertility data from each of the 11 regions are

modeled using a Bayesian model with non-informative prior distributions, i.e., the priors

are constructed by assuming there is no information available about the process apart from

the data. Furthermore, the maximum likelihood is discussed briefly to compare these two

methods. The results and techniques developed in this section are used directly in analyz-

ing the subsequent hierarchical Bayesian models.

In a nutshell, this chapter begins introducing about skew normal model and its family

distribution in subsection 3.2. Following this, the fundamental concepts behind Bayesian

inference and the computational methods used with it are recapped in subsection 3.3 and

subsection 3.4 respectively. Formulation of models is one part of Bayesian inference. Thus,

modeling ASFR in Bayesian Analysis is dealt in subsection 3.5. Furthermore, subsec-

tion 3.6 also introduces pertaining how to estimate model parameters and subsection 3.7

gives details of two MCMC techniques which are used in the remainder of this thesis. The

results of this chapter are then discussed in subsection 3.8.

3.2 Skew Normal Model

3.2.1 More on Skew Normal Model

The normal distribution is symmetric and enjoys many important properties, such as its

analytical simplicity, associated Central Limit Theorem, its multivariate extension-both

the marginals and conditionals being normal, additivity and other properties. That is why

it is widely used in practice. However, there are numerous situations, where the Gaussian

distribution assumption may not be valid. Asymmetry in data is one situation where the

normality assumption fails, and in such a condition, we need to device alternative models

to fit the data. In literature, there are various near normal distributions that have been

proposed by many authors (Dey, 2010). The skew-normal is one in this regard. Formally,

first introduced by (Azzalini, 1985), the skew-normal (SN) distribution attracted a great

deal of attention in the literature because of their flexibility in modeling skewed data, math-

ematical tractability and inclusion of the normal distribution as a special case (Azzalini

and Capitanio, 2014). While the normal distribution with its symmetry has only location

and scale parameters, the skew normal distribution has an additional shape parameter de-

scribing the skewness. From practical standpoint, this is a very desirable property, where

in many real life situations, some skewness is always present in the data. In addition, the

skew normal distribution shares many important properties of the normal distribution: for
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example, the skew normal densities are unimodal, their support is the real line, and the

square of a skew normal random variable has the Chi-square distribution with one degree

of freedom.

By definition, a random variable X is said to have a Standard SN distribution with shape

or skewness parameter α, denoted by X ∼ SN (α), if its probability density function (pdf)

is of the form:

g (x;α) = 2φ (x) Φ (αx) , x ∈ IR, α ∈ IR (13)

where φ(·) and Φ(·) denote the probability density function(pdf) and the cumulative density

function (cdf) of standard normal distribution respectively. One of the benefits of this

distribution is that the skewness can be introduced by a single parameter α. This parameter

controls the shape of the distribution.

For instance, when α = 0,

f (x;α) corresponds to the

standard normal distribution.

Plots of the univariate density

(44) for α = −5,−2, 0, 2, 5,

given in Figure 3.2, illustrate

the effects of changing α on the

shape of the density.

In general, a more flexible

random variable can be built

by incorporating location and

scale parameters, ξ and ω,

respectively such as
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Figure 3.2: SN density function when

..................α = −5,−2, 0, 2, 5

Y = ξ + ωX, where X ∼ SN (α)

and this random variable Y is said to follow a skew normal distribution, written as

Y ∼ SN (ξ, ω2, α), the density of which is given as:-

g (y; θ) = g
(
y; ξ, ω2, α

)
=

2

ω
φ

(
y − ξ
ω

)
Φ

(
α
y − ξ
ω

)
, (14)

where, here again, as outlined thus far, φ and Φ are respectively the pdf and cdf of stan-

dard normal distribution; y ∈ IR; and θ = (ξ, ω2, α) is vector of model parameters with
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ξ, α ∈ IR and ω2 > 0 8.

An alternative representation of the skew-normal that is especially popular in model-

ing Bayesian analysis is its stochastic representation discussed by Azzalini (1986); Henze

(1986). The idea is that if Z v T N [0,∞)(0, 1) and ε v N (0, 1) are independent, and

δ ∈ (−1, 1), then the stochastic representation for the skew normal random variable X is

given by

Xi = δZi +
√

1− δ2 ε (15)

and, analogously, the stochastic representation for the skew normal random variable Y ,

where Y = ξ + ωX for X v SN (x;α), Z v T N (0, 1)I{Z > 0}, ε v N (0, 1) with Z ⊥ ε,

and δ = α√
1+α2 , is

Yi = ξ + ωXi = ξ + ω
(
δZi +

√
1− δ2ε

)
= ξ + ωδZi + ω

√
1− δ2ε (16)

Some properties of this distribution includes:

E[Y ] = ξ +

√
2

π

α√
1 + α2

ω ; (17)

and

V [Y ] =

{
1− 2α2

π (1 + α2)

}
ω2 (18)

As far as this study is concerned, as outlined in subsubsection 2.4.1 and subsection 2.5 , a

special case of this skew normal model of Mazzuco and Scarpa (2015) is applied to model

one year age specific fertility data and thereby estimate the parameters in the model. The

model in a more explicit way is:

f (y; ξ, ω, α) =
2R

ω
φ

(
y− ξ
ω

)
Φ

(
α
y− ξ
ω

)
(19)

where f (y) is fertility rate at age y of a mother, R is the TFR parameter of the model,

takes values in the interval (0, 16). As paraphrased in subsubsection 2.4.1, ξ and α are the

location parameter and the shape parameter of the model and they assume values in

the interval (−∞,∞) = IR while ω is the scale parameter of the model and it takes values

in the interval (0,∞). It should be noted that ξ is not the mean of the distribution (so it

cannot be interpreted, as one might be tempted to do, as the average age at childbearing)

but it is a function of it, as shown by (Arellano-Valle and Azzalini, 2008) for the skew

normal. Similarly, ω is not the variance of the distribution but it is proportional to it

(Mazzuco and Scarpa, 2015). Apparently, if α < 0 the distribution has a negative skewness

and if α > 0 the skewness is positive.

8 The square of ω2 in SN
(
ξ, ω2, α

)
is for analogy with ω2 in the notation N

(
ξ, ω2

)
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3.2.2 Unified Skew Normal Distribution (SUN)

The study of SN class of distribution has been a resumption of interest because of two

reasons: first, it opened the door for robustness study. Second, it includes the normal

density, and has very similar properties as that of normal density. However, because of

the popularity of this class of distribution there have been intense developments in the

theory of this class of distribution. Some among them are: the closed skew-normal (CSN)

of Gonzalez-Farias et al. (Dominguez-Molina et al., 2003), the hierarchical skew-normal

(HSN) of Liseo and Loperfido (Liseo and Loperfido, 2003) and the unified skew normal

(SUN) of Azzalini Arellano (Arellano-Valle and Azzalini, 2006). With this view in mind,

Arellano-Valle and Azzalini (2006) developed a skew normal model and named it unified

skew normal model with the acronym SUN. They showed that this multivariate skew

normal model includes or at least is equivalent to the earlier versions of skew normal

models.

In general, suppose (Uo,U1) is a multivariate normal vector of dimension m+ d with the

density

U =

(
U0

U1

)
vNm+d(0,Ω

∗); Ω∗ =

(
Γ ∆T

∆ Ω

)
where Ω∗ is the correlation matrix, and Ω = ωΩω is the covariance matrix with ω, a

d× d diagonal matrix. Now, suppose Ω∗ is positive definite and consider the distribution

of Z = (U1|U0 + γ > 0). Then the density of y = µ+ ωZ is

f (y) = φd (y− µ; Ω)
Φm

(
γ + ∆TΩ

−1

ω−1 [y− µ] ; Γ−∆TΩ
−1

∆
)

Φm (γ; Γ)
(20)

for y ∈ <d. The notation φd(y− µ; Ω) is used to denote the d dimensional multivariate

normal distribution with the mean vector µ and the covariance Ω, Φd(y− µ; Ω) denotes

the corresponding distribution function. This density is called SUN (acronym for unified

skew normal distribution) and is denoted by

y v SUNd,m (µ, γ,ω,Ω∗)

, where Ω = ω1d.

Note that if ∆ equal to zero, then the density reduces to the d dimensional multivariate

normal distribution. The derivation of the SUN density was given in Arellano-valle and

Azzalini (2006).

3.3 Basic Theory: Bayesian Inference

Statistics involves the collection, analysis and interpretation of data for the purpose of

making statements or inferences about one or more physical processes that give rise to the
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data. Statistical inference concerns unknown parameters that describe certain population

characteristics such as the true mean efficacy of a treatment for cancer or the probability of

experiencing an adverse event. Inferences are made using data and a statistical model that

links the data to the parameters. The statistical model might be very simple such that, for

example, the data are normally distributed with some unknown but true population mean,

µ say, and known population variance, σ2 say, so that our objective is to make inferences

about µ through a sample of data. In practice, statistical models are much more complex

than this.

There are two main and distinct approaches to inference, namely frequentist and Bayesian

statistics, although most people, when they first learn about statistics, usually begin with

the frequentist approach (also known as the classical approach).

Bayesian inference is a process of fitting a probability model to the data set and sum-

marizing the posterior probability distribution on model parameters and on unobserved

quantities. Instead of producing maximum likelihood estimates for unknowns totally based

on the sample data, Bayesian methods use the probability for quantifying uncertainty in

inferences based on the statistical data analysis (Congdon, 2003).

A Bayesian analysis synthesizes two sources of information about the unknown param-

eters of interest. The first of these is the sample data, expressed formally by the likelihood

function (sampling distribution). The second is the prior distribution, which represents

additional (external) information that is available to the investigator (Figure 3.3). If we

Figure 3.3: The Bayesian method. Figure 3.4: Example of a triplot.

represent the data by the symbol y and denote the set of unknown parameters by θ, then

the likelihood function is p(y|θ), the distribution of the data or the probability of observing

the data y being conditional on the values of the parameter θ. If we further represent the

prior distribution for θ by p(θ), giving the probability that θ takes any particular value

based on whatever additional information might be available to the investigator, then, the
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joint distribution or full probability model can be written as

p(θ,y) = p(y|θ)p(θ) (21)

and with the application of Bayes’s theorem, an elementary result about conditional prob-

ability named after the Reverend Thomas Bayes, we have:

p(θ|y) =
p(θ,y)

p(y)
=
p(y|θ)p(θ)

p(y)
(22)

where p(y) is the probability distribution of y, called marginal likelihood for the data,

y, used as a normalizing constant or normalization factor to ensure the posterior density

proper, i.e.,
∫
θ
p(y|θ)p(θ)dθ = 1 or

∑
θ p(y|θ)p(θ) = 1 (Lynch, 2007) and is given by

p(y) =

∫
θ

p(y|θ)p(θ)dθ if θ is continuous, and

p(y) =
∑
θ

p(y|θ)p(θ) if θ is discrete.

Here, Equation 22, p(θ|y) is called posterior distribution of θ, the distribution of the pa-

rameter after the data is observed. It expresses what is now known about θ based on both

the sample data and prior information.

Since marginal likelihood, p(y) , does not depend on θ, it can be considered as a con-

stant with fixed y. Therefore, Equation 23 can be given up to normalizing constant as,

p(θ|y) ∝ p(y|θ)p(θ) (23)

that is, posterior distribution is proportional to9 the product of the likelihood function

and the prior distribution. Using numerical methods described in the next section, we can

work with Equation 23 for model estimation and avoid computing the normalizing constant

which is not easily obtained.

The posterior distribution for θ is a weighted compromise between the prior information

and the sample data. In particular, if for some value of θ the likelihood in the right-hand

side of Equation 23 is small, so that the data suggests that this value of θ is implausible,

then the posterior distribution will also give small probability to this θ value. Similarly, if

for some value of θ the prior distribution in the right-hand side of Equation 23 is small,

so that the prior information suggests that this value of θ is implausible, then, again, the

posterior distribution will also give small probability to this θ value. In general, the poste-

rior probability will be high for some θ only when both information sources support that

value.Therefore, the choice of prior distribution function will affect the posterior distribu-

tion function; thus we need to take into account all prior knowledge of the experiment and

9 The symbol ∝ stands for ”(directly)proportional to”
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assign an appropriate prior distribution function(Gelman et al., 2014).

Within the Bayesian framework, prediction is possible through the predictive distribution,

which describes how likely different outcomes of a future experiment are. Let ỹ denote a fu-

ture/new observation with probability density function p(ỹ|θ), and p(θ|y) is the posterior

distribution of θ given the data y. Then,

p(ỹ|y) =

∫
θ

p(ỹ|θ)p(θ|y)dθ (24)

is the predictive distribution of ỹ given y.

Bayesian inference offers several potentially attractive advantages over classical inference.

First, it offers more intuitive and meaningful inferences. This is to say, Bayesian approach

enables direct probability statements to be made about parameters of interest, whereas

frequentist methods make indirect inferences by considering the data and more extreme

but unobserved situations conditional on the null hypothesis being true; that is, p-values.

Second, it gives the ability to tackle more complex problems. Statistical modeling can often

generate quite complex problems and these can quickly become difficult to deal with or to

construct exact test statistics from using a frequentist approach. Often it is necessary to

rely on large-sample approximations by assuming asymptotic normality. In contrast,

Bayesian inferences can be used to compute approximate values in highly complex situa-

tions; and third, it allows the incorporation of prior information in addition to the data.

The use of prior information in addition to sample data is fundamental to the Bayesian

approach. Prior information of some degree almost always exists and can make important

contributions to strengthen inferences about unknown parameters and/or to reduce sample

sizes. So, if a suitable prior distribution can be specified, there are good reasons to choose

Bayesian procedures. One reason for rejecting these Bayesian procedures is the difficulty in

computing the integral in Equation 24. This problem can be overcome by using simulation

based techniques such as Markov chain Monte Carlo (MCMC) to simulate realiza-

tions of the posterior distribution. Estimates of the posterior distribution could then be

obtained from the simulated sample.

3.4 Bayesian Computation: Methods

3.4.1 Rejection Sampling

Rejection sampling uses one distribution to sample from another by exploiting information

relating the two; Von Neumann (1951) provided an algorithm for this method. Suppose

that we want to sample from a target distribution F with probability density function f(x).

Suppose further that we can sample from a proposal distribution Q whose probability den-
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sity function q(x) can be scaled by a constant factor M to provide an upper bound on f(x),

e.g., we might be able to scale a normal distribution so that our distribution

of interest lies below it everywhere. If we satisfy these requirements, then we can

use rejection sampling to generate proposals from Q that we stochastically accept or reject

according to the relative difference between Mq(x) and f(x). Specifically, to produce one

sample:

Step-1: Generate a proposal x from the proposal distribution q(x).

Step-2: Draw a sample u uniformly from the interval [0, q(x)].

Step-3: If u < (1/M) ∗ f(x), accept x. Otherwise, reject x and return to Step 1.

Rejection sampling is most efficient in the limit where the scaled proposal density equals

the target density, in which case all proposals are accepted. More generally, in expectation,

this procedure accepts proposals at a rate given by∫
f(x)

Mq(x)
dx ≤ 1

Succinctly, the algorithmic representation of the Accept-Reject method is as follows

Algorithm 1:Accept-Reject Algorihm

Step-1: Generate x from q(x)

Step-2: Generate u uniform on [0, q(x)]

Step-2: If u < (1/M) ∗ f(x), then accept x. Otherwise reject and repeat

3.4.2 Markov Chain Monte Carlo (MCMC) Techniques

In complicated Bayesian models, it is often not easy to obtain the posterior distribution

analytically. This analytic bottleneck has been eliminated by the emergence of Markove

Chain Monte Carlo (MCMC). MCMC simulates the posterior distribution p(θ|y), and it

is used when it is not possible to sample directly from p(θ|y). It works by simulating

direct draws from probability distributions of interest and then correcting those draws to

better approximate the target posterior distribution p(θ|y). The samples are drawn se-

quentially and the previous sample values are used to randomly generate the next sample

value (hence, forming a Markov chain). This technique is successful because the approx-

imate distributions are improved at every step until convergence to the unknown target

distribution (Gelman et al., 2014). As such, in order to achieve full convergence of the
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MCMC approximation to the true posterior distribution, it is common to discard the first

few samples (a process known as burn-in).

The Gibbs sampler, which is a particular Markov chain algorithm designed to sample

from a high dimensional distribution (or joint probability distribution), is crucial in the

Bayesian model fitting process because p(y) is extremely difficult to calculate or approx-

imate directly. However, the Gibbs sampler allows us to generate a sample from the

parameters of the conditional distributions which will be proportional to, but does not

require p(θ|y). Therefore, the power of Gibbs sampling is that the joint distribution of

the parameters will converge to the joint probability of the parameters given the observed

data. This means that the Gibbs sampler finds estimates for the parameters of interest in

order to determine how well the observable data fits the model of interest, and also whether

or not data independent of the observed data fits the model described by the observed data.

MCMC techniques provide a way of simulating from complex distributions by simulating

from Markov chains which have the target distributions as their stationary distributions.

There are many MCMC techniques of which two are described below. The specific details

of how these techniques are used will be given later. There is much literature available on

the theory behind MCMC techniques and on applications of the techniques. Introductions

to the area are provided by Besag et al. (1995), (Gamerman) and Besag (2001). Below,we

outline the specific steps for sampling the fertility parameters.

3.4.3 The Gibbs Sampler

The Gibbs sampler was used by Gelman et al. (2003) for models with the Gibbs distribution

and was extended to the general form given here by Gelfand and Smith (1990). The Gibbs

sampler enables simulation from multivariate distributions by simulating only from the

conditional distributions. So, suppose the density of interest is p(θ), where θ = (θ1, · · · , θd)
′

and the full conditionals are given by

π(θi|θ1, · · · , θi−1, θi+1, · · · , θd) = π(θi|θ−i), i = 1, · · · , d (25)

If it is possible to simulate from the full conditionals then the Gibbs sampler can be used

by using the following algorithm:

1. Initialise the counter to j = 1 and the state of the chain to θ0 = (θ0
1, · · · , θ0

d)
′

35



2. Obtain a new value θj from θ(j−1) by successive simulation from the full conditionals:

θj1 v π(θ1|θ(j−1)
2 , · · · , θ(j−1)

d )

θj2 v π(θ2|θ1, θ
(j−1)
3 , · · · , θ(j−1)

d )

...

θjd v π(θ1|θ(j−1)
2 , · · · , θ(j−1)

d−1 )

3. Increase counter from j to j + 1 and return to step 2.

If it is possible to simulate from the full conditionals of the posterior distribution Equa-

tion 22, then it is also possible to simulate from the posterior itself. The Gibbs sampler

should be run after initializing the sampler somewhere in the support of θ. The resulting

chain will converge, after an initial ”burn-in” period, to the posterior distribution.

3.4.4 Metropolis-Hastings Sampling

The Gibbs sampler provides a way of simulating from multivariate distributions provided

that the full conditional distributions can be simulated from. It may not be straightforward

to simulate from these full conditionals but Metropolis-Hastings schemes provide a way.

These schemes come from work by Metropolis et al. (1953) and Hastings (1970). Given

a distribution of interest, f , a reversible Markov chain, which has this distribution as its

stationary distribution, can be constructed. Simulating from such a Markov chain will

result in values from the distribution of interest.

The procedure is to construct a transition kernel p(θ, φ) such that the equilibrium distri-

bution of the chain is f . This transition kernel is made up of two elements; an arbitrary

transition kernel q(θ, φ) also known as the proposal distribution, and an acceptance prob-

ability ρ(θ, φ). The acceptance probability

ρ(θ, φ) = min {R, 1} = min

{
f(φ)

f(θ)

q(θ|φ)

q(φ|θ)
, 1

}
was suggested by Hastings (1970). The algorithm below can then be followed to obtain a

chain with limiting distribution f .

The particular type of MCMC method used in this thesis is based on simulation of a

random walk chain. Here, the proposed value φ at point j is φ = θ(j−1) + ωj. The ωj

are IID random variables and have density f(·). Supposing f(·) is easy to simulate from,

an innovation, ωj, can be simulated. The candidate point is then set to φ = θ(j−1) + ωj

and the transition kernel is given by q(θ, φ) = f(φ− θ). This is then used to calculate the

acceptance probability. The variance of the innovation affects the acceptance probability: if

the variance is too low most proposals will be accepted, resulting in very slow convergence,

and if it is too high very few will be accepted and the moves in the chain will often be large
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Algorithm 2:Metropolis-Hastings

√
Step-1: Start with arbitrary θ(0) from the support of target distribution, f

√
Step-2: At stage j,j = 1, · · · , Nsim, generate proposal value, φj from the pro-

posal density q, given the current state θ(j). That is,

φj v q
(
φj|θ(j)

)
, t = 1, · · · , Nsim

√
Step-3: Take, then, θ[j+1] = φj (meaning: if we accepted, take the next value,

θ[j+1] being the proposed value, ψj) with probability of ρ(θ(j), φj). Otherwise,

take θ[j+1] = θ(j) (meaning: if we don‘t accepted, take the next value, θ[j+1]

being the current value, θ(j)), that is:-

θ[j+1] =

{
φj with probability of ρ(θ(j), φj)

θ(j) with probability of 1− ρ(θ(j), φj)

where,

ρ(θ, φ) = min {R, 1} = min

{
f(φ)

f(θ)

q(θ|φ)

q(φ|θ)
, 1

}
, called MH-Acceptance Probability.This ensures that our probability is a

number between 0 and 1, and

R =
f(φ)

f(θ)

q(θ|φ)

q(φ|θ)

also called Acceptance Rate. This random acceptance is done by generating

a uniform on (0, 1) random variable U and accepting the proposal φj if U ≤
ρ(θ(j), φj)

√
Step-4: Increase n and return to Step-2.

3.5 Model Development:Bayesian Inference of Binary Fertility

Data using Skew Normal Latent Variable

The aim of this section is to develop fertility model for which inference and learning can be

carried out in a unified way, without the need for making potentially conflicting assump-

tions. Given the status of mothers(Have birth, No birth) in the study, one can develop

a new model which use to estimate the fertility parameters of the model proposed in

the previous chapter. Therefore, in this section, a Binomial model of number of moth-

ers, nx, who gave rise a birth at particular age x with fertility probability of πx, where,

πx = R ·SN(x; ξ, ω2, α), during the study period is formulated for each of the 11 regions for
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use along with appropriate non-informative priors in our Bayesian analysis. Nevertheless,

one stumbling block encounter in using this methodology was computational intractability.

That is, the joint posterior distributions was non-linear, and too complex & intractable

to easily drive the full conditional in standard/closed form. Data Augmentation strategy

(latent variable method) has, hence, been instrumented as possible remedy in this respect.

This section starts with a detailed discussion of developing Binomial based model. This

is followed by detailed description of the choice of priors subsubsection 3.5.2 with par-

ticular reference to issues that arise in analyses involving fertility data. Discussions on

formulations of model likelihood and evaluation of the resulting posterior distribution will

be addresses respectively in subsubsection 3.5.3 and subsubsection 3.5.4 methods for its

computation (3.4.3). Further issues that arise in Bayesian implementations such as the

use of data augumentation approach and its computational mechanism are outlined in the

next consecutive sections. Eventually, discussion on the results obtained is presented on

subsection 3.8.

3.5.1 Model Specification: Modeling Fertility Data

To begin with, consider a woman, i, found in the year [x,x+1), in which case {x : 15 ≤ x ≤ 49},
is mother’s age, and i = 1, 2, . . . , n, with n is the total number of mothers of year 15-49 in

the study. On the top of this, we assume a random variable Wi(x) in {0, 1} in such a way

that Wi(x) denotes 1 if the ith woman of age 15-49 (reproductive age) gives birth

to a child during the year [x,x+1), and 0 otherwise. Symbolically, this indicator

random variable Wi is then explicated as:

Wi(x) =


1 if the ith woman of age 15-49 gives

birth to a child during the year [x, x+ 1),

0 elsewhere

(26)

for i = 1, 2, . . . , n. In the same fashion, if we further suppose πi(x) is the correspond-

ing fertility probability of success at this particular age x, i.e., the probability that

a woman in the reproductive age has given birth to a child during the year

[x,x+1), (say: when a mother is 24 years old), then (1− πi(x)) will be the probability

when this woman failed to deliver during this stated year,[x,x+1). This is to say,

we have:-

P (Wi(x) = 1|X = x) = πi(x),

P (Wi(x) = 0|X = x) = 1− πi(x) (27)

Taking Equation 26 and Equation 27 all together, it can be shown that the status of mother

Wi, for 1 ≤ i ≤ n, or W1, · · · ,Wn, are independent and identically Bernoulli Distributed
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Random Variable10 with fertility probability πi for the value 1 and (1− πi) for the

value 0, i.e.,

Wi(x) v Bernoulli (πi(x)) (28)

for i = 1, 2, . . . , n, as shown being recapped in Table 3.1 below. Moreover, if we take a

closer look at the vector w = (w1, w2, w3, · · · , wn) of all indicator variables, and assume

independence among the status of mothers, Wi, the distribution of W can be written as

P (W = w|X = x) =
n∏
i=1

πwix (1− πx)1−wi (29)

Table 3.1: Total number of women in the reproductive age group and their cor-

responding indicator function

Women Indicator function
Pr. of giving birth at

age [x, x+ 1)

1 W1(x) =


1 if the 1st woman has

birth in the year [x, x+ 1)

0 elsewhere

{
π1(x) if W1 = 1

1− π1(x) if W1 = 0

...
...

...

i Wi(x) =


1 if the ith woman has

birth in the year [x, x+ 1)

0 elsewhere

{
πi(x) if Wi = 1

1− πi(x) if Wi = 0

...
...

...

n Wn(x) =


1 if the nth woman has

birth in the year [x, x+ 1)

0 elsewhere

{
πn(x) if Wn = 1

1− πn(x) if Wn = 0

Without loss of generality, if every woman of the same age x (all women at age 24, for

instance) has the same probability of giving birth to a child, say πi(x), then it is useful

to summarize these women of equal age x and to introduce the scalar random variable

Wx =
∑nx

x=jWj(x), the sum of nx - independent Bernoulli random variables, denoting the

number of women delivered births during this specified age, x. In doing so, we assume the

total number of women at age x by nx, as outlined previously and in the Table 3.2 as well,

and since Wx is, as explained, a sum of nx-independent Bernoulli random variables at age

x, then it follows that Wx is Binomially distributed random variable with parameters nx

and πx, i.e., Wi(x) ∼ Bin (nx, πx). Thus,

p (Wx = dx|X = x) = p (Wx = dx) = p (dx) =

(
nx
dx

)
πdxx (1− πx)nx−dx (30)

10 The Bernoulli random variable Y , is one with binary outcomes chosen from 0, 1 and its probability

density function is fY (y) = py(1− p)1−y, where p = P (Y = 1) is the pr.of success

39



Table 3.2: Total number of women in the reproductive age group and their

corresponding indicator function

Agea TW at age xb R.Variablec TWDB at age xd Pr.e

15 n15 W1(15), · · · ,Wn15(15) W15 =
∑n15

x=jWj(15) = d15 π15

16 n16 W1(16), · · · ,Wn16(16) W16 =
∑n16

x=jWj(16) = d16 π16

..
... ..

... ..
... .....

...
...

x nx W1(x), · · · ,Wnx(x) Wx =
∑nx

x=jWj(x) = dx πx

..
... ..

... ..
... .....

...
...

49 n49 W1(49), · · · ,Wn49(49) W49 =
∑n49

x=jWj(49) = d49 π49

n =
∑49

x=15 nx W ...........d

a
Women’s age x, 15 ≤ x ≤ 49 ; b Total number of women at age x; c Random Variables at

age x; d Total number of women delivered births at age x; e Probability of giving birth at

age x

Further more, if d is a vector with elements dx, x = 0, 1, . . . , n, where n is the total number

of mothers in the study, then the distribution in Equation 30 can be extended to account

the distribution of d and this joint probability is described by:-

p (W = d) = p (d) =
n∏
x=0

(
nx
dx

)
πdxx (1− πx)nx−dx (31)

Donating the fertility intensity for age x as fx, the skew normal curve is usually defined as

fx
(
x; ξ, ω2, α, R

)
= R · g

(
x; ξ, ω2, α

)
= 2Rω−1φ

(
x− ξ
ω

)
Φ

(
α
x− ξ
ω

)
(32)

3.5.2 Prior Specification/ Elicitation

Prior elicitation is one of the most crucial issues in Bayesian data analysis. It is the most

debated topic in theoretical research and is also a challenging issue to practitioners. Op-

ponents of Bayesian approach criticize the arbitrariness in the choice of prior, whereas

proponents praise it as a manageable way of introducing flexibility in Bayesian analysis

(Kass and Wasserman, 1996) . Berger (1985) noted that whenever a practitioner can sum-

marize historical or subjective information about the unknown parameter, an informative

prior should be used. On the other hand, more often either historical or subjective infor-

mation is unavailable, or incorporating such information into a prior distribution is difficult
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for a real problem, thus noninformative prior11 distributions are needed. Bayesian analysis

with noninformative priors preserves the appearance of objectivity, and is being increas-

ingly recognized by classical statisticians.

Therefore, to perform a Bayesian analysis, we first have to select a prior for the model

parameters. It should be noted that, in general, the prior distribution has to be selected

carefully in the Bayesian modeling. First of all, it is not possible to choose an improper

prior because this leads to an improper posterior density (see,e.g. Frühwirth-Schnatter,

2006, 2006, Section 3.2). Furthermore, as noted by Jennison (1997), one should avoid

trying to be as “noninformative as possible” by choosing large prior variances because

the choice of the prior of the parameters strongly affects the posterior. For this reason,

we adopt the priors introduced by Canale and Scarpa (2013) in the context of students’

performance in university examinations. Canale and Scarpa (2013) suggested that pro-

posed a joint prior distribution for the location, scale and shape parameters in the case

of skew normal model. Therefore, we introduce two noninformative prior distributions for

the scalar shape parameter α. The first is simply a normal and the second proposal is a

skew-normal distribution since from previous studies we came to understand the shape of

ASFR follows in most cases either of the patterns mentioned.

However, to specify priors for the location and scale parameter, ξ and ω2 respectively,

we used the stochastic representation considered in Equation 16. Such representation

offers several advantages. First, a conditionally conjugate prior12 for ξ and ω2 is available

(see subsection 3.6) and, second, straightforward estimation using a Gibbs sampler becomes

feasible. Therefore, it allows to us to sample those parameters jointly from a closed-form

posterior. Eventually, we make use of the demographic interpretation to assume a gamma

prior for the total fertility rate parameter, R. In conclusion, the priors for the parameters

and hyperprior for the hyperparameters are given as follows.

(a). Prior for R:

R ∼ Gamma (a, b) , where a, b > 0

(b). Prior for ξ:

ξ ∼ N
(
ξo, κω

2
)
, where ξo ∈ < and ω2 > 0

11 Noninformative priors: are also called automated priors, default priors, vague priors, or priors of igno-

rance
12 P , a family of prior distributions, is a conjugate prior of F , a family of likelihood functions, if for any

likelihood function f ∈ F and for any prior distribution p ∈ P , the corresponding posterior distribution

p∗ satisfies p∗ ∈ P ,i.e., the posterior is the same family of the prior, and moreover we have an explicit

formula for for the posterior hyperparameters. The conjugacy is popular because of its mathematical

ease, once the conjugate pair likelihood/prior is found, the posterior is found easily
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(c). Prior for ω2:

ω2 ∼ InvGamma (c, d) , where a, d > 0

(d). Prior for α: we assume two prior cases

(i). Case-1: when α is supposed to to be normally distributed parameter, i.e.,

α ∼ N
(
αo, ψ

2
o

)
, or , where αo ∈ < and ψ2

o > 0

(ii). Case-2: when α is supposed to have a skew normal distribution, i.e.,

α ∼ SN
(
αo, ψ

2
o , λo

)
, where αo, λo ∈ < and ψ2

o > 0

The hyperparameters in our model a, b,ξo,c, d, αo,ψo, and λo are all assumed known.

3.5.3 Model Likelihood Function

As outlined in Equation 31 above, we have n independent binary random variables, W1. · · · ,Wn

are observed, where mother’s status, Wi, is distributed Bernoulli with fertility probability,πx.

That is:

dx|πx ∼ Bin (nx, πx) (33)

for dx, x = 0, 1, . . . , n .Therefore, the model likelihood is given as

p (d|π) =
n∏
x=0

(
nx
dx

)
πdxx (1− πx)nx−dx (34)

Taking the fact that:

πx = f̂x
(
x; ξ, ω2, α, R

)
= R · g(x; ξ, ω2, α, R)

= 2Rω−1φ

(
x− ξ
ω

)
Φ

(
α
x− ξ
ω

)
∈ [0, 1] (35)

we can re-write the model likelihood in Equation 34 as

p
(
d|ξ, ω2, α, R

)
=

(
n∏
x=0

(
nx
dx

)[
R · 2

ω
φ

(
x− ξ
ω

)
Φ

(
α
x− ξ
ω

)]dx
{

1−
[
R · 2

ω
φ

(
x− ξ
ω

)
Φ

(
α
x− ξ
ω

)]}nx−dx)
(36)

Note that both the right and the left hand sides of the Equation 36 assume values in the in-

terval [0, 1]as πx is a probability value and hence is in the interval[0, 1], and this holds for

the right hand side expression as well for it is the product of a R ∈ [0, 1] and the density

g(x; ξ, ω2, α, R) ∈ [0, 1].
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3.5.4 Posterior Distribution

The posterior distribution summarizes the current state of knowledge about all the un-

certain quantities (including unobservable parameters and also missing, latent, and unob-

served potential data) in a Bayesian analysis (Gelfand, 2014). Analytically, the posterior

density is the product of the prior density and the likelihood. Thus, in our case, de-

noting p (θ∗) the prior distribution for θ∗, where θ∗ = (R, ξ, ω2, α), it follows that for

d = dx, x = 0, 1, . . . , n, the resulting posterior distribution is of the form:-

p
(
R, ξ, ω2, α|d

)
=

(
n∏
x=0

(
nx
dx

)[
R · 2

ω
φ

(
x− ξ
ω

)
Φ

(
α
x− ξ
ω

)]dx
{

1−
[
R · 2

ω
φ

(
x− ξ
ω

)
Φ

(
α
x− ξ
ω

)]}nx−dx)
× p

(
R, ξ, ω2, α

)
(37)

Assuming prior independence of model parameters, this joint posterior distribution can be

re-written as in what follows:

p
(
R, ξ, ω2, α|d

)
∝ p

(
d|R, ξ, ω2, α

)
· p (R) · p (ξ) · p

(
ω2
)
· p (α)

=

(
n∏
x=0

(
nx
dx

){
R · 2

ω
φ

(
x− ξ
ω

)
Φ

(
α
x− ξ
ω

)}dx
{

1−
[
R · 2

ω
φ

(
x− ξ
ω

)
Φ

(
α
x− ξ
ω

)]}nx−dx)
×Ra−1e−bR × 1

ω
e−

1
2κω2

(ξ−ξo)2 ×
(
ω2
)−c−1

e−d/ω
2 × pi (α) (38)

, where i=1, 2 and, hence:

p1 (α) ∝ φ

(
α− αo
ψo

)
, and p2 (α) ∝ φ

(
α− αo
ψo

)
Φ

(
λo
α− αo
ψo

)
, which is complex and intractable.

3.6 Bayesian Inference using Data Augmentation Approach

As seen in Equation 38, the joint posterior distribution, p (R, ξ, ω2, α|d), is nonlinear with

respect to the model parameters, θ∗ = (R, ξ, ω, α). Thus, no matter what prior struc-

ture we choose for θ∗, the conditional distributions are intractable, difficult to evaluate

or derive; and even if derived, none of them are in closed or standard functional forms

(e.g. gamma, multivariate normal, etc). Consequently, the Gibbs sampler cannot be used

directly to draw samples from the given distributions and the resulting conditional distri-

butions are,therefore, difficult or impossible to simulate.

Recent advances in Bayesian simulation, however, have shown that Gibbs sampling al-

gorithms based on the method of data augmentation can overcome such computational
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plights and provide reliable model fitting (Geweke et al., 1994). In what follows, we, there-

fore, introduce n independent latent variables, Z1, · · · , Zn into the problem, where Zi is

distributed R · SN(ξ, ω2, α). The advantage of the strategy is straightforward: those prin-

cipal observations, combined with the tool of Gibbs Sampling, will allow us to simulate

from the posterior distribution of, θ∗ = (R, ξ, ω2, α).

3.6.1 Data Augmentation Approach: using Special SN latent variable model

The term data augmentation (DA) refers to methods for constructing iterative optimiza-

tion or sampling algorithms via the introduction of unobserved data or latent variables. It

was first proposed by (Tanner and Wong, 1987), and is an important development in the

field of Markov Chain Monte Carlo algorithms. As mentioned, when it is combined with

the pioneer works of (Metropolis et al., 1953) and (Hastings, 1970), it makes the Bayesian

analysis of more complex models possible and suitable for Gibbs Sampler. In principle,

different augmented-data models can be used to construct different DA algorithms with

the different properties. In this work, we choose the Skew normal model (Mazzuco and

Scarpa, 2015) proposed so far as latent variable model to derive the full conditionals from

the augmented joint posterior model and implement the Gibbs sampling with ease.

It is easy to show that the Bernoulli random variable given in Equation 26, i.e., the

status of the ith childbearing age mother (Have birth; No birth), where, i = 1, 2, · · · , n; n,

total number of childbearing age mothers in the study,

Wi(x) ∼ Bern (πi(x)) where πi(x) = Pr
(
Wi(x) = 1|R, ξ, ω2, α

)
= R · SN(x; ξ, ω2, α) (39)

is equivalent to considering that

Wi =

{
1 if zi > 0

0 if zi ≤ 0
(40)

where z = (z1, · · · , zn)
′

is a vector of unknown latent (unobserved/auxiliary) variable

corresponding to W , distributed as:

zi ∼ R · SN(ξ, ω2, α) (41)

for i = 1, 2, · · · , n. As to this study is concerned, this auxiliary variable has no any prac-

tical meaning, yet adopted here in our model for the sake of computational convenience,

i.e., so as to avoid working with observed data likelihood model in Equation 37, which led

to intractable posterior distribution in Equation 38.

From Equation 41, it is apparent the sampling distribution of zi conditional onR, ξ, ω, and α

is:-

p
(
zi|R, ξ, ω2, α

)
∝ R · φ

(
zi − ξ
ω

)
Φ

(
α
zi − ξ
ω

)
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and, this, in turn, yields its joint density of the form:-

p
(
z|R, ξ, ω2, α

)
∝

n∏
i=1

R · φ
(
zi − ξ
ω

)
Φ

(
α
zi − ξ
ω

)
(42)

As for conditional for Wi in Equation 40 given R, ξ, ω, α, zi, viz., p (wi|zi, R, ξ, ω, α), it is

essential first to recall and note that when zi > 0, then Wi will equal to 1 while when

zi ≤ 0, then Wi assumes a value zero. In other words, the sign of zi perfectly predicts the

value of W . Hence, we write the conditional for W as:-

p
(
wi|zi, R, ξ, ω2, α

)
= I (zi > 0) I (Wi = 1) + I (zi ≤ 0) I (Wi = 0) (43)

with I denoting the indicator function which assumes the value 1 if the statement on the

parenthesis is true, and 0,otherwise. Then, the joint conditional distribution is

p
(
w|z,R, ξ, ω2, α

)
=

n∏
i=1

{I (zi > 0) I (Wi = 1) + I (zi ≤ 0) I (Wi = 0)} (44)

Thus, we can now “augment” the observed data w = (w1, · · · , wn)
′

with latent data z =

(z1, · · · , zn)
′

to form the complete-data or augmented-data vector,(w, z),and its likelihood

as provided in the subsequent subsection.

3.6.2 Complete-data Likelihood Model

As the name indicates, putting the pieces in Equation 42 and Equation 44 together , we

obtain the likelihood or the joint density of the complete data vector, {w, z}, referred

to complete-data likelihood function or augmented data joint density, L (R, ξ, ω2, α|w, z),

which is given as:-

L
(
R, ξ, ω2, α|w, z

)
= p (w, z|R, ξ, ω, α) => In general, L (θ|y, z) = p (y, z|θ) = p (y|z, θ) p (z|θ)

= p
(
w|z, R, ξ, ω2, α

)
p
(
z|R, ξ, ω2, α

)
=

n∏
i=1

{I (zi > 0) I (Wi = 1) + I (zi ≤ 0) I (Wi = 0)}

·
n∏
i=1

R

ω
φ

(
zi − ξ
ω

)
Φ

(
α
zi − ξ
ω

)

=
n∏
i=1

[
[I (zi > 0) I (Wi = 1) + I (zi ≤ 0) I (Wi = 0)]

· R
ω
φ

(
zi − ξ
ω

)
Φ

(
α
zi − ξ
ω

)]
(45)

The complete data likelihood is not of much direct use since the latent data is not observed.

Where the complete data likelihood comes into use is in the design of algorithms to estimate

θ∗ = (ξ, ω2, α, R)
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3.6.3 Joint Posterior Distributions of the augmented data

Having used the notion of Bayes’ theorem in and assumption of prior independence, the

full posterior distribution corresponding to the proposed model parameters R, ξ, ω2, α and

the auxiliary variable z is proportional to the product of the complete-data likelihood in

Equation 45, and the prior specifications given in subsubsection 3.5.2 up to normalizing

constant,i.e.,

p
(
R, ξ, ω2, α, z|w

)
∝ ( Complete-data Likelihood )× ( Prior )

∝ p
(
w, z|R, ξ, ω2, α

)
p
(
R, ξ, ω2, α

)
∝

n∏
i=1

[
[I (zi > 0) I (Wi = 1) + I (zi ≤ 0) I (Wi = 0)]

· R
ω
φ

(
zi − ξ
ω

)
Φ

(
α
zi − ξ
ω

)]
× p (R, ξ, ω, α)

∝
n∏
i=1

[
[I (zi > 0) I (Wi = 1) + I (zi ≤ 0) I (Wi = 0)]

· R
ω
φ

(
zi − ξ
ω

)
Φ

(
α
zi − ξ
ω

)]
× p (R)× p (ξ)× p

(
ω2
)
× pi (α) (46)

, where i = 1, 2 and

p (R) = ba

Γ(a)
Ra−1e−bR ∝ Ra−1e−bR,

p (ξ) = 1√
2πκω2

e−
1

2κω2
(ξ−ξo)2 ∝ (ω)−1e−

1
2κω2

(ξ−ξo)2 ,

p
(
ω2
)

= dc

Γ(c)
(ω2)

−c−1
e−d/ω

2 ∝ (ω2)
−c−1

e−d/ω
2
,

p1 (α) = 1√
2πψ2

o

e
− 1

2ψ2
o

(α−αo)2 ∝ e
− 1

2ψ2
o

(α−αo)2 ∝ φ
(
α−αo
ψo

)
, and

p2 (α) = 2
ψo
φ
(
α−αo
ψo

)
Φ
(
λo

α−αo
ψo

)
∝ φ

(
α−αo
ψo

)
Φ
(
λo

α−αo
ψo

)
3.6.4 Full Conditional Distributions of Augmented data

Evidently, it is not easy to draw (independent) samples directly from the joint posterior

described in Equation 46 above. Thus, we use the Gibbs sampler13, a class of MCMC

algorithm to make (slightly) dependent, approximate draws from this target(posterior)

13 Gibbs sampling is applicable when the joint distribution is not known explicitly or is difficult to sample

from directly, but the conditional distribution of each variable is known and is easy (or at least, easier)

to sample from.

46



distribution and thereby effectively approximate it. To implement Gibbs sampler, however,

we have to have the full conditionals14 of each of the parameters stated in the model.In

our case, driving those conditionals from the posterior in Equation 46 is a simple but

tedious matter in a sense that we need only to select the terms containing the parameter

of interest,then discard all other multiplicative terms as proportionality constants, and

at last, rearrange what’s left to determine the resulting distribution. Accordingly, what

follows are the conditionals of each parameter given in the joint posterior distribution of

Equation 46.

Sampling Z:

Given ξ, ω2, α and R, the variables zi are independent, and zi|ξ, ω2, α, R is distributed as

the SN(ξ, ω2, α) truncated at the left by 0 if wi = 1 and truncated at the right by 0 if

wi = 0 , for i = 1, · · · , n

p(zi|R, ξ, ω2, α,W ) ∝
{

[I (zi > 0) I (Wi = 1) + I (zi ≤ 0) I (Wi = 0)] · R
ω
φ

(
zi − ξ
ω

)
Φ

(
α
zi − ξ
ω

)}
∝

{
1
ω
φ
(
zi−ξ
ω

)
Φ
(
α zi−ξ

ω

)
I (zi > 0) if wi = 1

1
ω
φ
(
zi−ξ
ω

)
Φ
(
α zi−ξ

ω

)
I (zi ≤ 0) if wi = 0

∝

{
SN (zi; ξ, ω

2, α) I (zi > 0) if wi = 1

SN (zi; ξ, ω
2, α) I (zi ≤ 0) if wi = 0

(47)

Therefore,

zi|R, ξ, ω2, α,W v

{
SN (zi; ξ, ω

2, α) I (zi > 0) if wi = 1

SN (zi; ξ, ω
2, α) I (zi ≤ 0) if wi = 0

(48)

Since zi distributed truncated Skew normal and the simulation need to be performed on its

density, normalization the conditional in Equation 48 should, therefore, be made so that

it becomes a density on its support and will also integrate to 1. Therefore, the conditional

distribution in Equation 48 can be rewritten

zi|Rj, ξj, ω
2
j , αj,w, a, b v


C1SN

(
zi; ξj, ω

2
j , αj

)
if zi > 0 & wi = 1

C2SN
(
zi; ξj, ω

2
j , αj

)
if zi ≤ 0 & wi = 0

(49)

in which case, C1 and C2 are normalization constants provided as

C1 =
1∫ +∞

0
SN
(
zi; ξj, ω

2
j , αj

)
dzi

=
1

cdf
SN
(
zi; ξj, ω

2
j , αj

)
and

C2 =
1∫ 0

−∞ SN
(
zi; ξj, ω

2
j , αj

)
dzi

=
1

1−
∫∞

0
SN
(
zi; ξj, ω

2
j , αj

)
dzi

=
1

1− cdf
SN
(
zij; ξj, ω

2
j , αj

)
14 Full Conditional Distributions/Full Conditional Posterior Distributions:-this is the conditional distribu-

tion of one parameter conditional on the known information and all the other parameters, p(θj |θ−j , y)

for any parameter θ in the model
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We can sample from this univariate truncated skew-normal distribution (40) in a similar

fashion as the Accept-Reject procedure, along with Gibbs sampling algorithm described in

(Griggio, 2013/2014; Canale and Scarpa, 2013) to sample from truncated distributions.

Sampling R:

Analogously, the relevant terms in the conditional posterior for fertility rate parameter, R

are

p(R|zi, ξ, ω2, α,W ) ∝

[
n∏
i=1

R

]
·Ra−1e−bR

∝ Rn ·Ra−1e−bR

∝ Rn+a−1e−bR (50)

Therefore,

R|zi, ξ, ω2, α,W vGamma (n+ a, b) (51)

In a similar manner, sampling (ξ, ω2) and α can be done using the following conditional

distributions

p
(
ξ, ω2|α,Z,W

)
∝

{
n∏
i=1

1

ω
φ

(
zi − ξ
ω

)
Φ

(
α
zi − ξ
ω

)}
× p (ξ)× p

(
ω2
)

∝

{
n∏
i=1

SN
(
zi; ξ, ω

2, α
)}
× N

(
ξ; ξo, κω

2
)
× Inv.Gamma

(
ω2; c, d

)
(52)

and

p
(
α|ξ, ω2, Z,W

)
∝

{ [∏n
i=1

1
ω
φ
(
zi−ξ
ω

)
Φ
(
α zi−ξ

ω

)]
× p1 (α) , where p1 (α) is a normal prior[∏n

i=1
1
ω
φ
(
zi−ξ
ω

)
Φ
(
α zi−ξ

ω

)]
× p2 (α) , where p2 (α) is a SN prior

∝

{
{
∏n

i=1 SN (zi; ξ, ω
2, α)} × SN (α;αo, ψ

2
o)

{
∏n

i=1 SN (zi; ξ, ω
2, α)} × SN (α;αo, ψ

2
o , λo)

(53)

Sampling from (ξ, ω2):

We can observe from Equation 41 that

zi v SN(ξ, ω2, α), i = 1, 2, · · · , n (54)

Note that zi are latent variable introduced previously. In addition, using the stochastical

representation for the skew normal distribution (Henze, 1986) we can write

zi = ξ + ωδηi + ω
√

1− δ2εi, , i = 1, 2, · · · , n (55)

where, εi v N(0, 1), the standard normal distribution and ηi v TN[0,∞)(0, 1), the half

normal distribution.It follows that the conditional distribution zi|ηi is a normal distribution
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with mean ξ+ωδηi and variance ω
√

1− δ2 where δ = α/
√

1 + α2.By considering this result,

a hierarchical formulation of the model is given as follow:

FZ|ηi, ω−2, ξ, δ v N
(
ξ + ωδηi, ω

√
1− δ2

)
=> p(Z|ηi, ω−2, ξ, δ) ∝

n∏
i=1

1

ω
√

1− δ2
e
− 1

2ω
√

1−δ2
(zi−ξ−ωδηi)2

(56)

Fηi v TN[0,∞)(0, 1)

=> p(ηi) ∝ e−
1
2
η2i Iηi>0 (57)

Putting together Equation 56 and Equation 57 with the prior specification given thus far,

we obtain the complete posterior conditional distributions given by

p(ηi, ω
−2, ξ, δ|Z) ∝

{
n∏
i=1

1

ω
√

1− δ2
e
− 1

2ω
√

1−δ2
(zi−ξ−ωδηi)2 × e−

1
2
η2i Iηi>0

× 1√
κω2

e−
1

2κω2
(ξ−ξo)2 × (ω−2)c−1e−d/ω

−2

}
(58)

Note that all of the full conditional distributions for Gibbs sampling are straightforward

to derive and are given as follows:

N ηi|ω−2, ξ, δ, Z v TN

(
δ(zi − ξ)

ω2
, 1− δ2

)
(59)

N ξ|ηi, ω−2, δ, Z v N
(
µ̂, κ̂ω2

)
(60)

where,

µ̂ =
κ
∑n

i=1(zi − δηi) + ξo(1− δ)2

nκ+ (1− δ2)
and κ̂ =

κ(1− δ2)

nκ+ (1− δ2)

N ω−2|ηi, ξ, δ, Z v InvGamma

(
c+

1

2
(n+ 1), d+ d̂

)
(61)

d̂ =
1

2ω2(1− δ2)

n∑
i=1

(zi − ξ − ωδηi)2 +
1

2κω2
(ξ − ξo)2

=
1

2(1− δ2)

{
δ2

n∑
i=1

η2
i − 2δ

n∑
i=1

ηi(zi − ξ) +
n∑
i=1

ηi(zi − ξ)2 +
(1− δ2)

κ
(ξ − ξo)2

}

Sampling from α:

We have instrumented pretty much the same approach as employed by (Canale and Scarpa,

2013) so as to update and draw samples for skewed parameter, α, from Equation 41. To

this end,without loss of generality, we assume the distribution of latent variables z1, · · · , zn
in Equation 41 as standard skew normal distribution .Putting it differently, we considered

the fact that ξ and ω in Equation 41 are known, and ξ = 0 and ω = 1.Following this, the
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expression in Equation 41, then, reduces to

p (α|z) ∝

{ [∏n
i=1

1
ω
φ
(
zi−ξ
ω

)
Φ
(
α zi−ξ

ω

)]
× p1 (α) , where p1 (α) is a normal prior[∏n

i=1
1
ω
φ
(
zi−ξ
ω

)
Φ
(
α zi−ξ

ω

)]
× p2 (α) , where p2 (α) is a SN prior

∝
n∏
i=1

φ (zi) Φ (αzi)× pi (α) , i = 1, 2 (62)

where,

p1(α) =
1

ψo
φ

(
α− αo
ψo

)
and p2(α) =

2

ψo
φ

(
α− αo
ψo

)
Φ

(
λo
α− αo
ψo

)
, which are two noninformative prior distributions of α(Canale and Scarpa, 2013). Hav-

ing made simplification on the derivations, the full conditional posterior distribution,

α|ξ, ω2, z,w, under the two prior cases is given as follows:

When using Normal Prior, p1(α) = 1
ψo
φ
(
α−αo
ψo

)
α|z v SUN1,n (αo,∆1αo/ψo, ψo,Ω

∗) , or

α|z v SUN1,n (αo,∆1αo/ψo, ψo, 1,∆1,Γ1) (63)

and

When using Skew Normal Prior, p2(α) = 2
ψo
φ
(
α−αo
ψo

)
Φ
(
λo

α−αo
ψo

)
α|z v SUN1,n+1 (αo, γ2, ψo, 1,∆2,Γ2)

α v π(α|v∗) (64)

where y∗ = (yi − ξ)/ω for i = 1, · · · , n and π(α|y), j = 1, 2. The details on the derivation

of those conditional distributions are given on the appendix.

3.7 Bayesian Computation: Markov Chain Monte Carlo Imple-

mentation

We use a combination of the Accept-Reject and the Gibbs sampler algorithm to draw

samples from each full posterior conditional distribution, and thereby, estimate the param-

eters, θ∗i = (ξi, ω
2
i , αi) of the proposed ASFR model for each region. We utilize the the

Accept-Reject Sampling (aka: rejection sampling) method here to obtain posterior samples

for the shape parameter, α, from the truncated Skew-Normal distribution. Here, we used

R-optimization command, nlminb to determine upper bound (global maximum). Unlike to

αi, Gibbs Sampling algorithm was rendered to draw posterior samples for all other model

parameters of each region from their respective full conditionals. Algorithm 4 below
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recapitulates all the conditions of the model parameters used in evaluation of posterior

samples.

We set, z
(t+1)
ij equal to a random draw using accept-reject algorithm from a TSN(ξ

(t)
j , ω

2(t)
j , α

(t)
j )

distribution based on U(j − 1/2, j + 1/2). Then, for (t + 1)st iteration of MCMC, for

j = 1, · · · , 11 , we set R
(t+1)
j equal to a random draw from Gamma(n+ a(t), b(t)) distribution

given in (ii) above, with the conditioning arguments , z, ξj, ω
2
j , αj,w, a, b , respectively. Fol-

lowing this, we set we set η
(t+1)
ij equal to a random draw from TN

(
δ
(t)
j (z

(t)
ij −ξ

(t)
j )

ω
2((t))
j

, 1− δ2(t)
j

)
,

where, δ
(t)
j = α

(t)
j /
√

1− α(t)
j distribution given in (ii) above, with the conditioning argu-

ments , z, ξj, ω
2
j , αj,w, a, b , respectively. Similarly, to sample ξ

(t+1)
j , we set we set ξ

(t+1)
j

equal to a random draw from N
(
µ̂, κ̂ω

2(t)
j

)
distribution, where

µ̂ =

κ

nj∑
i=1

(z
(t+1)
ij − δ(t)

j η
(t+1)
ij ) + ξo(1− δij)2

nκ+ (1− δ2(t)
j )

and κ̂ =
κ(1− δ2(t)

j )

nκ+ (1− δ2(t)
j )

We also set ω
−2(t+1)
j equal to a random sample from InvGamma

(
c+ 1

2
(n+ 1), d+ d̂

)
dis-

tribution given in (v) above, where,

d̂ =
1

2(1− δ2(t)
j )

{[
δ

2(t)
j

nj∑
i=1

η
2(t+1)
ij − 2δ

(t)
j

nj∑
i=1

η
(t+1)
j (z

(t+1)
ij − ξ(t+1)

j )

]

+

nj∑
i=1

η
(t+1)
ij (z

(t+1)
ij − ξ(t+1)

j )2 +
(1− δ2

j (t))

κ
(ξ

(t+1)
j − ξo)2

}
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Summary of full conditions for Posterior simulation

(i). zij|Rj, ξj, ω
2
j , αj,w, a, b v

{
C1SN

(
zij; ξj, ω

2
j , αj

)
if zij > 0 & wij = 1

C2SN
(
zij; ξj, ω

2
j , αj

)
if zij ≤ 0 & wij = 0

where, C1 and C2 are normalization constants given by

C1 =
1

cdf
SN
(
zij; ξj, ω

2
j , αj

) and C2 =
1

1− cdf
SN
(
zij; ξj, ω

2
j , αj

)
(ii). Rj|z, ξj, ω2

j , αj,w, a, b v Gamma (n+ a, b) for j = 1, · · · , J = 11

(iii). ηij|ω−2
ij , ξj, δij, z v TN

(
δ(zij − ξj)

ω2
j

, 1− δ2
ij

)
, i = 1, 2, · · · , nj; j = 1, 2, · · · , J

(iv). ξj|ηij, ω−2
j , δij, z v N

(
µ̂, κ̂ω2

j

)
, j = 1, 2, · · · , J

where,

µ̂ =

κ

nj∑
i=1

(zij − δijηij) + ξo(1− δij)2

nκ+ (1− δ2
ij)

and κ̂ =
κ(1− δ2

ij)

nκ+ (1− δ2
ij)

(v). ω−2
j |ηij, ξj, δij, z v InvGamma

(
c+

1

2
(n+ 1), d+ d̂

)
, j = 1, 2, · · · , J

d̂ =
1

2(1− δ2
ij)

{
δ2
ij

nj∑
i=1

η2
ij − 2δij

nj∑
i=1

ηij(zij − ξj) +

nj∑
i=1

ηij(zij − ξj)2 +
(1− δ2

ij)

κ
(ξj − ξo)2

}

(vi). αj|z v


SUN1,n (αo,∆1αo/ψo, ψo,Ω

∗)

SUN1,n (αo,∆1αo/ψo, ψo, 1,∆1,Γ1)

(65)

Following this, we set we set η
(t+1)
ij equal to a random draw from TN

(
δ
(t)
j (z

(t)
ij −ξ

(t)
j )

ω
2((t))
j

, 1− δ2(t)
j

)
,

where, δ
(t)
j = α

(t)
j /
√

1− α(t)
j distribution given in (ii) above, with the conditioning argu-

ments , z, ξj, ω
2
j , αj,w, a, b , respectively. Similarly, to sample ξ

(t+1)
j , we set we set ξ

(t+1)
j

equal to a random draw from N
(
µ̂, κ̂ω

2(t)
j

)
distribution, where

µ̂ =

κ

nj∑
i=1

(z
(t+1)
ij − δ(t)

j η
(t+1)
ij ) + ξo(1− δij)2

nκ+ (1− δ2(t)
j )

and κ̂ =
κ(1− δ2(t)

j )

nκ+ (1− δ2(t)
j )
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We also set ω
−2(t+1)
j equal to a random sample from InvGamma

(
c+ 1

2
(n+ 1), d+ d̂

)
dis-

tribution given in (v) above, where,

d̂ =
1

2(1− δ2(t)
j )

{[
δ

2(t)
j

nj∑
i=1

η
2(t+1)
ij − 2δ

(t)
j

nj∑
i=1

η
(t+1)
j (z

(t+1)
ij − ξ(t+1)

j )

]

+

nj∑
i=1

η
(t+1)
ij (z

(t+1)
ij − ξ(t+1)

j )2 +
(1− δ2

j (t))

κ
(ξ

(t+1)
j − ξo)2

}
Comparison between maximum method and Bayesian method is organized and given the

analysis section, a practical data set is used to compare the two methods.

3.8 Empirical Results:

3.8.1 Sensitivity of priors:

Sensitivity refers to how sensitive a model’s performance are to minor changes in the model

parameters. Prior sensitivity analysis plays an important role in applied Bayesian analyses

as it aids to assess the robustness of the model using different prior distributions. Thus,

with regards our model, it is important to examine the sensitivity of our results to the

prior information for ξo, k, αo, ψ
2
o , λo, a and b. To this effect, we first use noninformative

priors of:

Gamma (mo, no) , where mo = 0.01, mo = 0.01

Gamma (ro, so) , where ro = 0.01, so = 0.01

N
(
ξo, kω

2
j

)
, where ξo = 20, k = 0.6

SN
(
αo, ψ

2
o , λo

)
, where αo = 1, ψ2

o = 4, λo = 2

However, to examine whether or not our estimates are robust to reasonable changes in the

prior, we repeated the analysis for alternative choices of:

Gamma (mo, no) , where mo = 0.001, mo = 0.001

Gamma (ro, so) , where ro = 0.001, so = 0.001

N
(
ξo, kω

2
j

)
, where ξo = 3, k = 0.9

SN
(
αo, ψ

2
o , λo

)
, where αo = 2, ψ2

o = 5, λo = 3

The resulting posterior findings for our model parameters in each region, θ∗i = (Ri, ξi, ω
2
i , αi)

were assessed. The overall values were similar to what we obtained previous. Finally, we

repeated the analysis for a flatter prior

Gamma (mo, no) , where mo = 0.1, mo = 0.1

Gamma (ro, so) , where ro = 0.1, so = 0.1

N
(
ξo, kω

2
j

)
, where ξo = 4, k = 2

SN
(
αo, ψ

2
o , λo

)
, where αo = 0.5, ψ2

o = 5, λo = −2
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and, our the posterior findings were determined. The result obtained were almost identical

to what determined before, indicating the results are robust to changes in prior information.

3.8.2 Model Adequacy

The posterior predictive distribution provides diagnostics for assessing models as well as

statistics for making inferences about the discrepancy between data and model. The pos-

terior predictive distribution assigns probabilities to hypothetical or future values of y,

written yrep, integrating over uncertainty about the posterior distribution of the parame-

ters (159-177, Gelman et al., 2014):

p (yrep|y) = P [T (yrep) ≥ T ((yrep)|yrep]

=

∫
p (yrep|θ∗) p (θ∗|y) dθ (66)

Sampling

Distribution

Posterior

Distribution

The integral defining the posterior predictive distribution has two parts. The first part

gives the probability density of yrep given particular values of θ∗. The form of this den-

sity is given by the sampling distribution for y. The second part of the integral is the

posterior distribution for the model parameters, θ∗. The posterior predictive distribution

incorporates two kinds of uncertainty:sampling uncertainty about y given θ∗, and para-

metric uncertainty about θ∗. The posterior predictive distribution can be compared to

the observed data to assess model fit. If a model fits the data well, the observed data

are relatively likely under the posterior predictive distribution. On the other hand, large

discrepancies between the observed data and the posterior predictive distribution indicate

that the model fits poorly. The posterior predictive distribution is straightforward to sim-

ulate for Bayesian models estimated with Markov Chain Monte Carlo (MCMC) methods.

Given random draws,θ∗t from the posterior distribution and the sampling distribution,

p (yrep|θ∗) rep can be generated by a random draw fromp (yrep|θ∗t).

The discrepancy between the model and the data can be assessed with a test statistic,

T (y), that summarize some substantively important feature of y. Model fit can be judged

by comparing the observed T (y) to the distribution of T (yrep). A Bayesian p-value is

defined by,

p = Pr [T (yrep) ≥ T (yrep)|yrep] . (67)

The p-value describes, conditional on the model, the probability of observing data at least

as extreme as that actually observed. An extreme value for p indicates the data are unlikely
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under the model. Note that the p-value does not describe the probability that a particular

model is correct, nor nor does the p-value provide evidence against a null in favor of an

alternative. Instead, small p-value indicate the implausibility of the data under the model

and the utility of examining other models(Albert and Chib, 1993).

3.8.3 Convergence diagnosis

It is important to establish whether a sequence of Markov chain Monte Carlo iterations has

converged, that is, reached its stationary distribution. A number of different iteration tech-

niques have been developed to determine whether Markov chain Monte Carlo algorithms

have reached convergence. Cowles and Carlin (1996) provided a useful summary of these

techniques. It is important to be able to determine when a chain has not converged, but

many researchers believe that the available convergence appraisal techniques are essentially

unstable because the stationary distributions will never be identified. Cowles and Carlin

(1996) suggested techniques for avoiding this problem, proposing that diagnostics should

be used with vigilance and that multiple methods should be used rather than just a single

method.

In this thesis, three of the most popular diagnostic tests will be used to determine whether

the chains of parameters have achieved convergence for the models discussed. Any type

of MCMC sampler can be used with these methods which include Geweke (1992), Heidel-

berger and Welch (1983) and Raftery et al. (1992). The chains of parameters are considered

to have reached convergence if the z-score of the Geweke diagnostic test lies between -2

and 2, which is considered to have a 5% significance level (Geweke, 1992). The chains of

parameters are also considered to have achieved convergence if the p-value of the Heidel-

berger and Welch (1983) diagnostic test is lower than 95%, indicating the acceptance of the

null hypothesis. Under the Raftery et al. (1992) diagnostic test the chains of parameters

are considered to have converged if the dependence factor (I) is lower than 5, indicating

that the sample is less correlated Raftery et al. (1992). Informaly, we can also examine the

convergence with the help of time series trace plot, as displaced in the next section below.

3.8.4 Posterior Findings

Gibbs sampling algorithm in R was implemented to draw samples from the full conditionals

given above and there by, estimate the parameters, ξ, ω2, α and R, in the proposed ASFR

model for each of the eleven regions in the country. A total of 6,000 iterations were con-

ducted, but only the final 1,000 iterations were of use in determining our posterior findings:

posterior point and interval estimates, assessing convergence, etc to mention some.

Table 3.3 presents the Bayesian posterior point estimates, i.e., posterior moments (pos-
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terior mode, posterior mean, posterior median, standard deviations) and its 95% credibil-

ity interval for the model parameters in Somali region: ξSomali, ω
2
Somali, αSomali and RSomali.

Beside to these values, maximum likelihood estimates are also determined to make compar-

ison with their Bayesian counterparts, and to trace which approach, Bayesian or maximum

likelihood, yields better result in terms of precision. These result are given on the second

and third column of the table respectively. From the result in the table, one can extract

or draw a lot of worthwhile points. For instance,

=> the posterior mean of location parameter, which is important to recognize the condi-

tion of fertility in the region, was 19.92 with 95% credible interval of (18.87, 20.98),

which is a strong evidence that the majority of the childbearing mothers in the area

gave birth at early age, that is, earlier than 21 year old, mean age. The result from

maximum likelihood also strongly shares this notion.

=> So as to have an idea on how the pattern of fertility rate, specially age specific rate,

looks like in the region, the shape parameter has also been examined. The underlined

result in the table indicates that the shape parameter of this region, αSomali, had a

posterior mean of value 3.59 with 95% credible interval of (3.26, 3.92), indicating a

strong evidence of positive skewness. The MLE of this parameter was also close the

Bayesian value , which is, about 3.00 with 95% credible interval of (2.85, 3.56). These

results strongly support the idea that most of the people in the region delivered

their first birth at early age. This results also signals an abstract message to the

government or any other concerned body so as to carry out much work on the factors

that exacerbates and favors this early fertility, among others.

=> Scientific evidence on the rate of fertility is also another crucial element for policy

makers and demographers. To this end, the mean fertility rate has been under

scrutiny using the two approaches as seen in the table. Both the posterior and the

maximum likelihood estimates of the region also confirms the fertility rate, RSomali, in

the area was high, with an average children of about 7 per single mother. This result

also indicates the posterior mean was much closer to the true value fixed fertility

value (R = 7.1) than the value of obtained from the maximum likelihood method.

Thus, it can be concluded that the Gibbs Sampler algorithm (Bayesian method) gave

more consistent fertility estimate than the maximum likelihood approach since its

true value was also inside the 95% credible interval . The result in the table

also reveals that the credible interval of this fertility rate parameter (6.49, 7.48), was

narrower than its maximum likelihood compliment, that is, (6.19, 7.73) suggesting

that the use of the Gibbs sampler gave more precise result with lower uncertainty

than its maximum likelihood analogue.
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Table 3.3: Bayesian and ML estimates for fertility data set of Somali Region

Parameters
Bayesian Estimates ML Estimate

Mean Median SD 95%[ Conf Int] MLE 95%[ Conf Int]

ξ 19.923 19.889 0.6234 18.86945 20.97655 19.460 17.311 21.609

ω2 8.4102 8.3813 0.3168 7.874808 8.945592 8.207 7.301 9.113

α 3.5883 3.5133 0.1941 3.260271 3.916329 3.002 2.853 3.561

R 6.9853 6.7915 0.2941 6.488271 7.482329 6.962 6.193 7.731

As outlined in the previous section, there are two methods to check convergence. One is

examining trace plots of the sample values and the other is iteration method. Figure 3.5

through Figure 3.8 show trace plots for Somali region fertility model parameters: ξSomali,

ω2
Somali, αSomali and RSomali respectively. We can be reasonably confident that convergence

has achieved since all the chains appear to be well mixed, suggesting the stability of the

model parameters. This is an informal approach to convergence diagnosis. A quantitative

way of checking convergence is based on an analysis of variance. The results of the MCMC

convergence diagnostics conducted using coda(coda package) (Cowles and Carlin, 1996)

in R are presented, followed by the results for the estimation of parameters.

Table 3.4: MCMC convergence diagnostic test for Somali Region fertility model

parameters using Geweke, H-W and R-L

Parameters
Heidelberger & Welch (H-W) Geweke R-L test

St.testa P-value HW testb HW testc Z-score Dep. factor(I)d

ξ passed 0.539 passed 0.00241 -0.9414 1.36

ω2 passed 0.632 passed 0.055 -0.459 3.73

α passed 0.962 passed 0.00171 0.1039 2.11

R passed 0.633 passed 1.25 1.076 1.31

a
Stationary Test ; b Half-width test; c Half-width test; d Dependence factor(I)

Only the convergence of the estimated ξSomali was examined. The Geweke, Heidelberger

& Welch (H-W), and Raftery & Lewis (R-L) tests were the convergence diagnostic tests

used. The results are given in Table 3.4. The z-score for ξSomali obtained using the Geweke

test was -0.9414. As this value lay between -2 and 2 it could be concluded that ξSomali con-

verged at a 5% significance level. The stationary test for the H-W diagnostic was passed.

The p-value obtained was 0.525 which indicated that the null hypothesis for ξSomali was
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not rejected. The half-width test was also passed. Furthermore, the dependence factor

(I) obtained was 1.36. As the value of I obtained was lower than 5, the sample was less

correlated. All of these diagnostic tests indicated that the chains had converged.

In the same way, we can interpret the convergence of the other parameters: ω2
Somali, αSomali

and RSomali, whose value is given in the stated table. The overall result in the Table 3.4

indicates us all the parameters are believed to have converged.

Unlike to the rest of Ethiopian region, Addis Ababa is one of the city administrations

( the eleven regions) which has extraordinarily low fertility rate, with fertility rate of 1.9

number of children per woman of age 15-49. Evidence on this region has also organized on

58



the table.

=> Despite the condition of fertility in Somali region, Addis Ababa had higher average

fertility age, as calulated using the formula. To put it differently, the posterior mean

of the location parameter ξ was 33.70 with 95% credible interval of (33.04, 34.36).

This figure results a mean age of 32.5 years old, which is a strong evidence that the

mean age of mothers in the city to give rise their first birth was 31.6.

=> the standard deviation of ξAA obtained by Bayesian procedure was also 0.39. As this

value was smaller than standard deviation of ξSomali, which is 0.62, then the spread

of the data in Addis Ababa was significantly smaller.

Table 3.5: Bayesian and ML estimates for fertility data set of Addis Ababa City

Administration

Parameters
Bayesian Estimates ML Estimate

Mean Median SD 95%[ Conf Int] MLE 95%[ Conf Int]

ξ 33.697 33.823 0.3914 33.03553 34.35847 32.654 29.049 36.262

ω2 8.328 8.536 0.2678 7.846228 8.809772 8.654 7.698 9.610

α -3.3028 -3.2102 0.1581 -3.570019 -3.035641 -3.117 -3.461 -2.773

R 1.8947 1.9176 .0432 1.821692 1.967708 1.985 1.766 2.204

Unlike to Somali region, the shape parameter of Addis Ababa had a posterior mean of

-3.30 with 95% credible interval of (−3.57,−3.03), and its maximum likelihood estimation

was also of -3.12, with 95% confidence interval of (−3.46,−2.77) . Those figures suggest a

strong evidence for skewness, particularly negative skewness. Hence, it can be concluded

that there was a strong evidence suggesting most of the people in the capital gave rise

birth at latter age of early 30 and on. In spite of their meager variation in values, the

credible interval of this skewness parameter was shorter than its confidence interval. Once

again, this Bayesian estimate was more precise and had lower uncertainty vis-á-vis its value

obtained by maximum likelihood method.

The posterior mean and the maximum likelihood estimate of this parametric value also

confirms the fertility rate in the area was very low and the number of birth per mother was

also high. The result in the table also reveals that its posterior mean was much closer to

the true value fixed fertility value (R = 1.9) than the value of obtained from the maximum

likelihood method. Thus, it can be concluded that the Gibbs Sampler algorithm (Bayesian

method) gave more consistent fertility estimate than the maximum likelihood approach

since its true value was also inside the 95% credible interval. Moreover, the
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result also indicate that the credible interval of this fertility rate parameter (1.82, 1.96),

was narrower than its maximum likelihood compliment, that is, (1.77, 2.20) suggesting

that the use of the Gibbs sampler gave more precise result with lower uncertainty than its

maximum likelihood analougy. The standard deviations for this parameter obtained using

this formula were also smaller than results obtained by other approaches, indicating that

the data was less spread out. The trace of the parameters for Addis Ababa are shown in
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the plot of Figure 3.9 to Figure 3.12, and as the same time results from those various Con-

vergence diagnostic tests mentioned earlier are displayed in Table 3.6, suggesting almost

all estimators, ξAA, ω2
AA, αAA, RAA, showed nice behaviour with very little fluctuations.

Consequently, we can deduce that the chain mixed well, once gain suggesting the stability

of these parameters. we also render the quantitative way of checking convergence, and

the result shows the simulation is believed to have converged. Another important point to

mention is that, due to the skewness of the fertility distribution, in both regions: Somali

and Addis Ababa, the posterior medians is superior to posterior mean. Therefore, poste-

rior median instead of the mean should be chosen to be the estimated value and even for

comparison with with the ML result. This also holds for other skewed region. In addition

Table 3.6: MCMC convergence diagnostic test for Addis Ababa fertility model

parameters using Geweke, H-W and R-L

Parameters
Heidelberger & Welch (H-W) Geweke R-L test

St.testa P-value HW testb HW testc Z-score Dep. factor(I)d

ξ passed 0.372 passed 0.00952 1.827 0.951

ω2 passed 0.669 passed 0.00171 0.594 1.02

α passed 0.487 passed 0.00103 -0.7289 0.982

R passed 0.499 passed 0.00097 -0.2828 1.02

a
Stationary Test ; b Half-width test; c Half-width test; d Dependence factor(I)

to those result for Addis Ababa and Somali region, we also managed to determine results

for other regions in the study during the study period, as shown in Appendix B. All-in-all,

the result for other region revealed that most of the credible intervals for the parameters

obtained using the Gibbs sampler formulation were narrower than the credible intervals

obtained using maximum likelihood estimation. The results obtained also suggested that

the Gibbs sampler algorithm formulation was a better approach for estimating parameters

for the ASFR fertility model than the other approach considered, which is maximum like-

lihood estimation .

Generally, both ML method and Bayesian method can be used to analyze our model,

but they can be applicable to different conditions.

ML method can be applied when:

♣ ML method can be applied when:

♠ precise values of model parameters have been known

♠ large sample size can be obtained in the test
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and,

♣ Bayesian method can be applied when:

♠ uncertainties on the model parameters exist

♠ prior knowledge on the model parameters are available

♠ few data is available in the test
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4 HIERARCHICAL BAYESIAN MODELING

4.1 Introduction

In many social science setting, the data available for analysis comprise multiple groups.

In these settings it is often plausible that any statistical model we might fit to the data

need to be flexible, so as to capture variation across the groups, typically accomplished

by letting some or all of the parameters vary across the groups. Examples include survey

data gathered over a set of locations (e.g., states, countries, congressional districts, etc);

experimental studies deployed in multiple locations; studies of educational outcomes which

the subjects are students, who are grouped in schools, which nest in school districts, which

in turn nest in states. In studies of data of this type, it is potentially of great important

to deal with group-level or between-group parameter variation as well because it improves

not only our estimates but also our group-level knowledge.

In spite of its importance, many common statistical methods, however, assume either:-

(i). Complete pooling model (assumes homogeneity across groups, see Figure 4.1 or Fig-

ure 4.3 (a) ) (e.g., fixed-effects meta-analysis); or

(ii). Complete independence across groups15(as in No pooling model, which estimates sta-

tistical models group-by-group, see Figure 4.2 or Figure 4.3 (c))
to fit heterogeneous data.

4.1.1 Approach 1: Complete pooling

As its name suggests, the complete pooling approach first averages the data across all

groups/regions, and then estimates the model’s parameters for the averaged data. In other

words, the researcher effectively analyzes the data as if they were generated by a single

group/region (Nilsson et al., 2011). By and large, this approach assumes homogeneity

between groups, and hence attempts to completely ignore the difference or the variability

between (across) the groups, and combines every thing together into one big pool to make

inference on the data. As to our study is concerned, the concept of complete pooling is

meant to think of homogeneity across regions in the study and consider identical fertility

model parameters for each of the 11 regions,

θ∗1 = · · · = θ∗7 = θ∗12 = · · · = θ∗15 = θ∗ = (R, ξ, ω2, α) (68)

This is to say, we assume that all 11 regions in study have the equal or common total

fertility rate(R), the equal or common fertility shape pattern (α), the same average age in

15 Group:the terminology groupis here defined in the context of any number of people or things, and may

mean different classes, schools,departments, regions, populations, countries, etc
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fertility(' ξ), the same variability in fertility( ' ω2), etc, and infer them with Bayesian

analysis.

Nevertheless, this assumption of a common fertility model parameters for all regions,

θ∗j = θ∗ = (R, ξ, ω2, α), ∀j = 1, · · · , J = 11 (69)

is quite strong, and may be inappropriate and is questionable since one would expect some

variation in the true rates in general; and that of Ethiopia in particular, where sound and

visible disparity in fertility clearly shown among regions, as stated above. Therefore, un-

fortunately, this approach comes with a serious drawback. Especially, when regions/groups

differ, conclusions drawn from the complete pooling approach are known to be potentially

misleading and could lead to fallacy: For instance:- the policy recommendation on fer-

tility that would seem to work for the ”average region” could perform poorly or even in

a counter-productive way in any given region as it ignores any information conveyed by

the region variable, which is wasteful. In particular, Estes and others have shown that

region/group differences, when ignored, can induce averaging artifacts in which the data

that are averaged over regions/groups are no longer representative for any of them (Estes,

2002; Heathcote et al., 2000). For example:- consider a situation in which one half of the

women’s in a certain locality is risk-seeking on woman’s fertility whereas the other half is

risk-averse. When complete pooling is fitted to the average data it may support the conclu-

sion that the women are risk-neutral, a conclusion that is correct for none of the individual

participant women. Owning to these facts this approach, which gives identical estimates

for all regions, is particularly inappropriate for this study, whose goal is to scrutinize and

make region-level inference.

Note that in this application, the number of sampling units are large (n is large) as this

approach pools all the data in all groups/regions into one big pool; and the variability

is also high as it assumes homogeneity across groups. Therefore, the resulting estimated

means or parameters will have large variance and low bias, which may lead to over-fitting.

4.1.2 Approach 2: Complete Independence

The assumption that all regions/groups are identical is clearly unrealistic, and this is why

many researchers now estimate model parameters for each regions/groups separately (e.g.:

Brown and Heathcote, 2003; Estes and Maddox, 2005; Haider and Frensch, 2002). This

complete independence approach implicitly assumes that each region/group is unique and

has variations across/among them; and estimates model parameters group-by-group. By
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Figure 4.1: Approach-1: Complete pooling
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Figure 4.2: Approach-2:Complete independence (no pooling)

considering each region/group as a separate unit of analysis, the complete independence

approach avoids the averaging artifacts that plague the complete pooling approach, and

allows for statistical inferences both for the entire group and for individual region/group

(Gelman and Hill, 2007; Scheibehenne and Pachur, 2013).

However, this assumption of estimating statistical models group-by-group, which in our

case is region-by-region independently, is often just not feasible, if even it were desirable.

The main draw back of this approach is that the amount of data in any given region can

sometimes be small such that the within-group or region analysis yields parameter esti-

mates that are relatively too noisy, unreliable and imprecise to be useful (Albert and Chib,
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1993; Nilsson et al., 2011). This is because this application provides us estimates which

have high bias and low variance, which may cause the problem of underfitted.

To sum up, fundamental problems are associated with all current methods to estimate

parameters in ASFR model. The complete pooling model, although robust, may lead to

averaging artifacts- participants are not identical. The complete independence model, al-

though it avoids averaging artifact, may lead to noisy and extreme parameter estimates-

the price that has to be paid for assuming that each participant is unique (Nilsson et al.,

2011)

4.1.3 Approach 3: Hierarchical or partial pooling

As outlined previously, there is a tension here, between the high bias/low-variance re-

sults that might be obtained with an analysis that ignores between(among) regional-level

parameter heterogeneity (viz.: Complete Pooling), and the low-bias/high-variance results

from region-specific analyses (viz.: Complete Indepence). Therefore, hierarchical statis-

tical models offer a principled way to compromise or trade-off this tension between the

extremes of complete pooling and complete independence (Gelman and Hill, 2007; Shiffrin

et al., 2008).

Roughly speaking, hierarchical, or multilevel, modeling is a statistical method that can be

used to quantitatively and coherently combine heterogeneous information. It is commonly

used in a variety of research areas, such as educational research, sociological science, bio-

metric research and econometric research. A Hierarchical Data Structure is a multilevel

structure consisting of higher (macro) level and lower (micro) levels. Lower levels con-

sisting of individuals are grouped (nested) into higher levels. Higher levels are grouped

again into even higher levels. For example, in an educational research context, students

as individuals are nested within classes as a lower level are nested within the higher level

schools, schools are within districts and so on.

In previous chapter, a ”Complete independent (no pooling) modeling” technique had been

considered to estimate parameters in our fertility model (see ??). In such application,

each of the 11 regions was thought of independent and had its own separate fertility model

parameters, i.e.,,

θ∗j = (Rj, ξj, ω
2
j , αj), for j = 1, · · · , J = 11 (70)

(i.e., every region was assumed to have its own fertility rate, R, shape pattern, α, etc) before

estimating them separately (region- by-region) by means of simple Bayesian analysis. As

pointed out above, one of the major stumbling block with previous method when utilized
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Figure 4.3: The Classical estimates: complete pooling (a) and no pooling (c); and hier-

archical model (b)

to our dataset is that those region-specific ASFR parameters, θ∗j = (Rj, ξj, ω
2
j , αj) for

j = 1, · · · , J = 11, could be in imprecise estimates, particularly for the regions which

contain smaller number of observations, number of mothers in the reproductive age, namely

Somali region, Affar region, SNNP, etc. Therefore, in the entire of this chapter, Hierarchical

Bayesian models will be instrumented as a possible solution to trade-off the predicaments

in parametric estimation (over-fitting/under-fitting) in using non-hierarchical Complete-

independent and Complete-pooling model reviewed above (Albert and Chib, 1993; Nilsson

et al., 2011). The implementation of this modeling approach has a lot of plus points to

offer in our fertility model parameter estimation, specifically compared to non-hierarchical

alternatives discussed earlier (Schaub and Kéry, 2012). The orthodox and trivial ones are:

(i) . “Borrowing strength” via exchangeability:- the purpose of hierarchical Bayesian

approach is to find an optimal compromise between the extremes of complete pool-

ing and complete independence; the imposed group-level structures simultaneously

inform the individual level, such that the individual estimates can borrow strength

from the information available about the other individuals in a sample (Gelman et al.,

2014). This means, in our case, for larger regions we have good estimates, for smaller

regions we may be able to borrow information from other regions to obtain more

accurate estimates.

(ii) . Hierarchical Modeling as a ”Shrinkage” Estimator:- In the hierarchical ap-

proach, individual parameter estimates that are deemed unlikely given the overall

distribution of parameter values (because they are located at the periphery of the

distribution) are ”corrected” by pulling them closer toward the group mean. This

property, which is an attractive feature of borrowing of strength, sometimes referred
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to as shrinkage16, prevents potentially unreliable information from having a dispro-

portionate influence on the group level (Nilsson et al., 2011) and ”dampers” the

sample size effects. Therefore, the estimates for regions with large sample sizes are

shrunk less than those based on smaller sample sizes (Dey et al., 2000). For these

reasons, it has been argued that hierarchical methods provide a more thorough and

efficient evaluation of models in many studies (Shiffrin et al., 2008; van Ravenzwaaij

et al., 2011).

(iii) . Hierarchical modeling as a ”Semi-Pooling” estimator:- Hierarchical model-

ing is a compromise between complete-independent (no pooling), which models unique

characteristics of each region but ignores shared information, and complete- pooling,

in which the opposite is the case. Hierarchical Bayesian modeling increased pre-

diction accuracy over no or complete pooling by making optimal use of information

for regions represented in the estimation set. In particular, the estimation of each

fertility model parameters, θ∗j = (Rj, ξj, ω
2
j , αj) is improved by using the fertility

data from the other regions. That is, it has potential to provide parameter estimates

that are less prone to measurement error, and thus more stable (Atkinson and Nevill,

1998). This advantage is well justified on theoretical grounds (Gelman and Hill, 2007;

Rouder and Lu, 2005), and the hierarchical approach has also proved successful when

applied to empirical data (e.g., Rouder et al., 2008; Scheibehenne and Studer, 2014)

.

(iv) . Hierarchical modeling as regional (group) level comparison:- Hierarchial

Bayesian model allows the mothers for each region to have its own fertility model

parameters, θ∗j = (Rj, ξj, ω
2
j , αj), but it also infers each of those parameters, θ∗j =

(Rj, ξj, ω
2
j , αj) as coming from a common population distribution. Hence, hierar-

chical modeling techniques might be beneficial for comparisons on the regional-level

(Gelman and Hill, 2007), where the goal is not to improve reliability on the individ-

ual level but to drive robust estimates for each region (Scheibehenne and Pachur,

2013). Thus, it is extraordinarily significant for this application, one of it principal

objectives of which is to scrutinize and make region-level inference, not inference at

national level.

(v) . Hierarchical modeling as easing robustness:-Although parameters are tradi-

tionally estimated independently for each single participant, it has recently been pro-

posed that more reliable estimates might be achieved by using hierarchical Bayesian

16 If the present fertility rate of region, say k is lower than the average mean, its predictive score will

be pushed up because this first poor performance may happen due to bad luck. In reverse case, the

predictive will be diminished. This effect is known as the shrinkage effect
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procedures, which exploit group-level distributions to inform individual-level estima-

tion (e.g., Gelman and Hill, 2007; Lee and Webb, 2005). As was pointed out by

Nilsson et al. (2011), this borrowing of strength should increase the reliability of pa-

rameter estimates for individual participants, and thus provide more robust results

(see also van Ravenzwaaij et al., 2011)

Though increasingly popular, Bayesian hierarchical implementations have been developed

for only relatively few fertility models in general and ASFR model in particular (but see:-

Griggio, 2013/2014; Canale and Scarpa, 2015). Below we develop, to our knowledge for the

first time, a hierarchical model for estimating ASFR model parameters. Consequently, in

this chapter, we will extend all the works done in previous chapter and illustrate a full im-

plementation of Bayesian hierarchical modeling based on data augmentation and Markov

chain Monte Carlo (MCMC) sampling, and demonstrate the ease of implementation and

accuracy of results. Hence, in the remaining work, general impression on the theoretical

framework of Hierarchical Bayesian Inference will be given in subsection 3.2; Brief discus-

sion pertaining to the notion of exchangeable will follow in subsection 3.3; Hierarchical

model development and its estimation mechanism will also addressed in subsection 3.4 and

subsection 3.5; respectively. Last but not certainly the least, we will discuss the empirical

result in subsection 3.6.

4.2 Hirarchical Bayesian Inference

In chapter 2, we introduce Bayesian modeling in which the hyperparameters, i.e., the

parameters of prior distribution, are known. However in many real-world applications,

such information is not available. Thus, hierarchical Bayesian model is introduced to

resolve this predicament. From a broadest point of view, hierarchical model is a Bayesian

statistical model, with many levels and structured in terms of a sequence of conditional

distributions with the capacity to cope with high-dimensional complex models typically

needed for inferences and predictions (Clark, 2005, 2007; Clark and Gelfand, 2006; Cressie

et al., 2009; Wikle, 2003) , where the prior distribution, p(θ), is decomposed into several

or multiple conditional levels (i.e., hierarchies) of probability distributions(Robert, 2001),

as:-

p1(θ|θ1), p2(θ1|θ2), p3(θ2|θ3), · · · , pn−1(θn−1|θn) (71)

that represent relationships between information arising within single population or group,

as well as relationships between information arising from different populations or groups

(Kwok and Lewis, 2011).

The parameters θi are called hyper-parameters17 of level i, for 1 ≤ i ≤ n. The most com-

mon hierarchical Bayesian model is the case when n = 2. At the first stage, a distribution

17 Hyper-parameters are the parameters of prior parameters
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for the data given parameters is specified. At the second stage, prior distributions for pa-

rameters given hyper-parameters are specified and distributions for hyper-parameters are

specified at the third stage. Figure 4.4 and Figure 4.5 show a typical hierarchical Bayesian

model of our data set. The ”hierarchy” arises because the model for the parameters sits

”above” the model for the data and analogously,the model for the hyperparameters sits

”above” the model for the parameters.

As outlined in subsection 2.2, suppose that y = (y1(1), · · · , yij, · · · ynJ (J)), where yij corre-

sponds to the age of the ith mother in the reproductive age( between 15-49 year old) living

in the jth region in the study period, where, j = 1, . . . , J,with J = 11 referring the total

number of regions; and i = 1, . . . , nj,with nj, the total sampled mothers between 15-49

taken from the jth region. Let y, the data, be i.i.d. drawn from a distribution with un-

known parameters θ∗ = (ξj, ω
2
j , αj, Rj). The unknown parameters are drawn from a prior

distribution with unknown hyperparameters φ = (a, b), which themselves are random

variables and are drawn from a distribution with parameters η then the joint distribution

of the parameter and hyperparameters is

p(θ∗,φ) = p(θ∗|φ)p(φ) (72)

and, hence, the posterior density for hierarchical model is

p(θ∗,φ|y) ∝ p(y|θ∗,φ)p(θ∗,φ)

= p(y|θ∗,φ)p(θ∗|φ)p(φ) = p(y|θ∗,φ)p(θ∗|φ)p(φ|η)
(73)

Table 4.1 shows the form of a general hierarchical model with three levels.

Table 4.1: Hierarchical model structure with three levels

Level Variables Densities Description

1(Data levela) Observation|Parameters p(y|θ,φ) Model for the data or

Likelihood model
2(Parameter levelb) Parameters|Hyperparameters p(θ|φ) Between-group model

or “Prior distribution”
3(Hyperparametersc) Hyperparameters p(φ) Hyperprior distribution

a

aka:The observational model for the data ; baka: The structural model for the parameters;
c

aka: The hyperparameter model for the parameters of the structural model

Bayesian inference allows the flexibility in explicitly modeling hierarchical models. How-

ever, one of the common problems in the Bayesian hierarchical models is that the posterior

distributions may not tractable algebraically in many cases, as the hierarchical models con-

sidered in this study. Moreover, posterior densities for the hierarchical models often lead
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to nonstandard densities. To overcome such analytical limitations, sampling-based estima-

tion methods have been used. Markov Chain Monte-Carlo (MCMC) methods (Gilks, 1986)

using Gibbs sampler and the Metropolis-Hastings algorithm, Rejection Sampling, etc, are

widely applied to generate a large number of samples from posterior distributions. Any

distribution summary (such as mean, median or quantiles) of the posterior distributions of

model parameters or unknowns can then be approximated by their sample analogue

η

α

θ∗1 θ∗2 θ∗J. . .

y1,1 y2,1 yn,1. . . y1,2 y2,2 yn,2. . . y1,J y2,J yn,J. . .

Figure 4.4: A hierarchical model in full

Bayesian framework

η

α

θ∗i

yi,j

n

yi,j

JJ

θ∗i

n

yi,j

n

Figure 4.5: An equal model with a

plate representation.

4.3 Exchangeability

A tacit assumption in statistic learning is that theN =
∑J

j=1 nj observations y = (y11, · · · , ynjJ)

are exchangeable, i.e., the joint distribution p(y11, · · · , ynjJ) of the data is invariant if the

indices of the variables are permuted. Let ν = {ν(11), · · · , ν(njJ)} denote a permutation

of the indies from 1 to N , the exchangeability assumption yields:

p(y11, · · · , ynjJ) = p
(
yν(11), · · · , yν(njJ)

)
(74)

Furthermore, when the number of the variables is infinite, i.e. N 7−→ ∞, the variables

are infinite exchangeable, if any finite subset of variables are exchangeable. Based on the

exchangeability assumption, it is natural to model the data as independently and identically

distributed given model parameters θ∗,

p(y11, · · · , ynjJ |θ∗) =

nj∏
i=1

J∏
j=1

p(yij|θ∗) (75)

The exchangeability relations in a model can be illustrated in a graphical representation,

referred to as plate, which is a template that allows the subgraphs can be replicated.
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Figure 4.4 shows the model discussed in subsection 4.1. Figure 4.5 shows the equal model

in a plate. In the plate language, variables (not random) are represented directly by their

names, e.g. the hyperparameters α. Random variables, e.g. θ, are represented as circles

with their names. The n exchangeable variables {y1, · · · , yn}are represented as a single

variable yi in a rectangle. The number n at the corner specifies the number of the variables.

An arrow, e.g. from α to θ denotes that the probability distribution of θ is conditioned

on α. Note, that the arrow from θ to yi specifies each of the n variables yi depends on

θ. The plate representation is often used to illustrate probability models. It clarifies the

exchangeability relations in a compact and elegant way.

4.4 Model Development: Hierarchical Bayesian Inference of Bi-

nary fertility data using Skew Normal latent Variable

4.4.1 Data Augmentation Approach: using Special SN latent variable model

To illustrate hierarchical Bayesian analysis, we extend the Bayesian setting discussed in

Chapter 3. In addition, the model development is carried out in the same fashion as

the Bayesian analysis of the previous section. Consequently, we consider, once more, the

binary random variable given in previous chapter of subsubsection 4.6.1, Wij, the status

of the ith childbearing age mother (Have birth; No birth), where, i = 1, 2, · · · , nj; nj is

total number of childbearing age mothers in the study, living in the jth region, where,

j = 1, . . . , J,with total number of regions in the study J = 11, i.e., symbolically:-

Wij(xij) =


1 if the ith woman of age 15-49 living in jth region gives

birth to a child during the year [x, x+ 1),

0 elsewhere

(76)

for i = 1, 2, . . . , nj; j = 1, . . . , J . Thus, mother‘s birth status is a Bernoulli distributed

random variable with fertility probability of

πij = Pr
(
Wij = 1|Rj, ξj, ω

2
j , αj

)
= Rj · SN(xij; ξj, ω

2
j , αj)

In a nutshell, we have

Wij ∼ Bern (πij) ,

πij = Pr
(
Wij = 1|Rj, ξj, ω

2
j , αj

)
= Rj · SN(xij; ξj, ω

2
j , αj)

(77)

However, as mentioned in subsubsection 4.6.1, this consideration is equivalent with defining

mother’s birth status, W as:-

Wij =

{
1 if zij > 0

0 if zij ≤ 0
(78)

where

zij ∼ Rj · SN(ξj, ω
2
j , αj) (79)
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which is a latent (unobserved) variable corresponding to Wij.

Thus, the sampling distribution of zij conditional onRj, ξj, ωj, and αj for j = 1, . . . , J,with J =

11 can be provided as

p
(
zij|Rj, ξj, ω

2
j , αj

)
∝ Rj · φ

(
zij − ξj
ωj

)
Φ

(
αj
zij − ξj
ωj

)
(80)

and, thus, the joint density is

p
(
z|Rj, ξj, ω

2
j , αj

)
∝

nj∏
i=1

J∏
j=1

Rj · φ
(
zij − ξj
ωj

)
Φ

(
αj
zij − ξj
ωj

)
(81)

In the same fashion, we can write the conditional for W as:-

p
(
wij|zij, Rj, ξj, ω

2
j , αj

)
= I (zij > 0) I (Wij = 1) + I (zij ≤ 0) I (Wij = 0) (82)

with I denoting the indicator function which assumes the value 1 if the statement on the

parenthesis is true, and 0, otherwise.Thus, the joint conditional distribution is

p
(
w|zij, Rj, ξj, ω

2
j , αj

)
=

nj∏
i=1

J∏
j=1

[
I (zij > 0) I (Wij = 1)

+ I (zij ≤ 0) I (Wij = 0)

]
(83)

By introducing the zij’s, we are “augmenting” the observed data y = (y11, · · · , ynjJ)
′
with

latent data z = (z11, · · · , znjJ)
′

to form the complete-data vector,(w, z).

4.4.2 Stage I (individual level, within-region model): Complete-data Likeli-

hood Model

This complete-data likelihood function or augmented data joint density, L (R, ξ, ω2, α|w, z)

is obtained by putting together the pieces in Equation 81 and Equation 83, as given in

Equation 84.

L
(
Rj, ξj, ω

2
j , αj|w, z

)
= p

(
w, z|Rj, ξj, ω

2
j , αj

)
= p

(
w|z, Rj, ξj, ω

2
j , αj

)
p
(
z|Rj, ξj, ω

2
j , αj

)
=

J∏
j=1

nj∏
i=1

{I (zij > 0) I (Wij = 1) + I (zij ≤ 0) I (Wij = 0)}

·
J∏
j=1

nj∏
i=1

Rj

ωj
φ

(
zij − ξj
ωj

)
Φ

(
α
zij − ξj
ωj

)

=
J∏
j=1

nj∏
i=1

[
[I (zij > 0) I (Wij = 1) + I (zij ≤ 0) I (Wij = 0)]

· Rj

ωj
φ

(
zij − ξj
ωj

)
Φ

(
α
zij − ξj
ωj

)]
(84)
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4.4.3 Stage II (between Regions, Second stage/regional-level priors):Prior

Distributions

The parameter θ∗j in the second stage of the hierarchy is assumed exchangeable across the

J regions, and also arising from a Gamma distribution with hyperparameters (a, b)

(θ∗j |a, b) ∼ Gamma(a, b) (85)

for j = 1, · · · , J = 11, where a > 0 and b > 0 are pre-specified by the investigator.

(a). Prior for Rj:

Rj ∼ Gamma (a, b) , where a, b > 0 (86a)

(b). Prior for ξj:

ξj ∼ N
(
ξo, κω

2
j

)
, where ξo ∈ < and ω2

j > 0 (86b)

(c). Prior for ω2
j :

ω2
j ∼ InvGamma (c, d) , where c, d > 0

and each hyperparameter is small (0.01 or 0.001) (86c)

(d). Prior for αj : we assume two prior cases:-

Case-1: when αj is supposed to to be normally distributed parameter, i.e.

αj ∼ N
(
αo, ψ

2
o

)
,where αo ∈ < and ψ2

o > 0 or (86d)

Case-2: when α is supposed to have a skew normal distribution, i.e.,

αj ∼ SN
(
αo, ψ

2
o , λo

)
, where αo, λo ∈ < and ψ2

o > 0 (86e)

4.4.4 Stage III (common across all regions):Hyperparameter Distribution

One extension to Bayesian model deemed in Chapter-II is to consider a set of hyperprior

distributions for the parameters of our model. The model given in Equation 84 has eight

hyperparameters, a, b, ξo, c, d, αo, ψo, and λo. Here, we assume all the hyperparameters,

except a and b, are fixed and known, and hence, must be specified before analysis. There-

fore, in this thesis we concern ourselves only with the first two of these, which are the

hyperparameter of the prior Rj. The reason behind why hierarchical structure is preferred

only on this regional fertility rate parameter is that the other parametric vectors were not

varying as large as this fertility rate parameter across regions (For more, see the result of

Bayesian analysis, Chapter-II ).

Priors for these hyperparameters, a and b, are often taken to be gamma distributions

with parameters (mo, no) and (ro, so) respectively

(a|mo, no) ∼ Gamma(mo, no) (87a)

(b|ro, so) v Gamma(ro, so) (87b)
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where all of the parameters mo, no, ro and ro take on positive values, with mo, no, ro, so ≥ 1.

The gamma distributions hyperprior is chosen for the hyperparameter a because of con-

jucacy. Various non-informative prior distributions for b have been suggested in Bayesian

literature and software, including an improper uniform density on b (Gelman et al., 2003),

proper distributions such as b v inverse− gamma(0.001, 0.001) Spiegelhalter et al. (2004)

, and distributions that depend on the data-level variance (Box and Tiao, 1973). In this

thesis, we explore and make recommendations for prior distributions for b a similar gamma

distribution. The main difference between the two- and three-stage models is that the

third stage provides a hyperprior over the Rj parameters that should provide for improved

estimation when the R’s are distributed as assumed

4.4.5 Joint Posterior Distributions of the augmented data

Taking in to account the assumption of prior independence and making use of Bayes’

theorem, the joint posterior distribution of the model parameters and the augmented data,

p
(
Rj, ξj, ω

2
j , αj, a, b, z|w

)
is proportional to the product of the complete-data likelihood representation in Equa-

tion 81, and the prior and hyperprior specifications given in Equation 82 and Equation 87a-

b up to normalizing constant,i.e.,

p
(
Rj, ξj, ω

2
j , αj, a, b, z|w

)
∝ ( Complete-data Likelihood )× ( Prior )× ( Hyperprior )

∝ p
(
w, z|Rj, ξj, ω

2
j , αj, a, b

)
p
(
Rj, ξj, ω

2
j , αj|a, b

)
p (a, b)

∝
J∏
j=1

nj∏
i=1

[
[I (zij > 0) I (Wij = 1) + I (zij ≤ 0) I (Wij = 0)]

· Rj

ω
φ

(
zij − ξj
ωj

)
Φ

(
αj
zij − ξj
ωj

)]
× p

(
Rj, ξj, ω

2
j , αj|a, b

)
p (a, b)

∝
J∏
j=1

nj∏
i=1

[
[I (zij > 0) I (Wij = 1) + I (zij ≤ 0) I (Wij = 0)]

· Rj

ωj
φ

(
zij − ξj
ωj

)
Φ

(
αj
zij − ξj
ωj

)]
× p (Rj)× p (ξj)× p

(
ω2
j

)
× pk (α)× p (a)× p (b) (88)
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, where k = 1, 2 and the following prior and hyperprior distributions

Prior Distributions : −

p (Rj) =
ba

Γ(a)
Ra−1
j e−bRj =

ba

Γ(a)
Ra−1
j e−bRj , a, b > 0

p (ξj) =
1√

2πκω2
j

e
− 1

2κω2
j

(ξj−ξo)2
∝ (ωj)

−1e
− 1

2κω2
j

(ξj−ξo)2
, c, d > 0

p
(
ω2
j

)
=

dc

Γ(c)

(
ω2
j

)−c−1
e−d/ω

2
j ∝

(
ω2
j

)−c−1
e−d/ω

2
j ,

Prior Distributions : −

p
(
ω2
j

)
=

dc

Γ(c)

(
ω2
j

)−c−1
e−d/ω

2
j ∝

(
ω2
j

)−c−1
e−d/ω

2
j , (89a)

p1 (αj) =
1√

2πψ2
o

e
− 1

2ψ2
o

(αj−αo)2 ∝ e
− 1

2ψ2
o

(αj−αo)2 ∝ φ

(
αj − αo
ψo

)
, and

p2 (αj) =
2

ψo
φ

(
αj − αo
ψo

)
Φ

(
λo
αj − αo
ψo

)
∝ φ

(
αj − αo
ψo

)
Φ

(
λo
αj − αo
ψo

)
Hyperprior Distributions : −

p (a) =
nmoo

Γ(mo)
amo−1e−(no)·a ∝ amo−1e−(no)·a, a,mo, no > 0 (89b)

p (b) =
sroo

Γ(ro)
bro−1e−(so)·b ∝ bro−1e−(so)·b, b, ro, so > 0

4.4.6 Full Conditional Distributions of Augmented data

Our aim is to construct an MCMC Algorithm to get samples from the joint posterior

distribution of Rj, ξj, ω
2
j , αj, a, b, z and w. To do this we follow the approach of a Gibbs

sampler, that is sequentially updating the parameters Rj, ξj, ω
2
j , αj, a, and b by using the

full conditional distributions, i. e., the distribution of one parameter given all others and

the data. In this section, we derive the full conditional distribution of the parameters.

(i).Sampling Z:

Given ξj, ω
2
j , αj, Rj, a, b andw, the variables zi are independent, and zij|ξj, ω2

j , αj, Rj, a, b, and w

is distributed as the SN(ξj, ω
2
j , αj) truncated at the left by 0 if wij = 1 and truncated at
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the right by 0 if wij = 0 , for i = 1, · · · , nj and j = 1, · · · , J . That is,

p(zij|Rj, ξj, ω
2
j , αj,w, a, b) ∝

[
[I (zij > 0) I (Wij = 1) + I (zij ≤ 0) I (Wij = 0)]

· Rj

ωj
φ

(
zij − ξj
ωj

)
Φ

(
αj
zij − ξj
ωj

)]

∝


1
ωj
φ
(
zij−ξj
ωj

)
Φ
(
αj

zij−ξj
ωi

)
I (zij > 0) if wij = 1

1
ωj
φ
(
zij−ξj
ωj

)
Φ
(
αj

zij−ξj
ωj

)
I (zij ≤ 0) if wij = 0

∝


SN
(
zij; ξj, ω

2
j , αj

)
I (zij > 0) if wij = 1

SN
(
zij; ξj, ω

2
j , αj

)
I (zij ≤ 0) if wij = 0

(90)

Therefore,

zij|Rj, ξj, ω
2
j , αj,w, a, b v


C1SN

(
zij; ξj, ω

2
j , αj

)
if zij > 0 & wij = 1

C2SN
(
zij; ξj, ω

2
j , αj

)
if zij ≤ 0 & wij = 0

(91)

after normalizing the marginal distribution. In this case, C1 and C2 are normalization

constants and provided as

C1 =
1∫ +∞

0
SN
(
zij; ξj, ω

2
j , αj

)
dzij

=
1

cdf
SN
(
zij; ξj, ω

2
j , αj

)
and

C2 =
1∫ 0

−∞ SN
(
zij; ξj, ω

2
j , αj

)
dzij

=
1

1−
∫∞

0
SN
(
zij; ξj, ω

2
j , αj

)
dzij

=
1

1− cdf
SN
(
zij; ξj, ω

2
j , αj

)
Like the previous chapter, the Accept-Reject procedure has been rendered to simulate

this conditional from truncated skew-normal distribution in Equation 91.

(ii).Sampling R:

This is one of the important parameters in our model, which can use to make fertility

within and between regions in our model. In order to draw samples for this parameter, we

have to determine its conditional distribution, given as follows:

p(Rj|z, ξj, ω2
j , αj,w, a, b) ∝

[
n∏
i=1

Rj

]
·Ra−1

j e−bRj

∝ Rn
j ·Ra−1

j e−bRj

∝ Rn+a−1
j e−bRj (92)
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Therefore,

Rj|z, ξj, ω2
j , αj,w, a, b vGamma (n+ a, b) for j = 1, · · · , J = 11; a, b > 0 (93)

.

(iii).Sampling (ξj, ω
2
j ) and αj::

Like what has been done in the previous chapter, here again it is straight forward to

sample (ξj, ω
2
j ) and αj for j = 1, · · · , J = 11. The sampling can be done from their

conditional distributions in Equation 94 and Equation 95 respectively.

p
(
ξj, ω

2
j |αj, Rj, z,w, a, b

)
∝

{
n∏
i=1

1

ωj
φ

(
zij − ξj
ωj

)
Φ

(
αj
zij − ξj
ωj

)}
× p (ξj)× p

(
ω2
j

)
∝

{
n∏
i=1

SN
(
zij; ξj, ω

2
j , αj

)}
× N

(
ξj; ξo, κω

2
)
× Inv.Gamma

(
ω2
j ; c, d

)
(94)

and

p (αj|the rest) ∝



[
n∏
i=1

1

ω
φ

(
zij − ξj
ωj

)
Φ

(
αj
zij − ξj
ωj

)]
× p1 (αj) , where p1 (αj) is

a Normal prior[
n∏
i=1

1

ω
φ

(
zij − ξj
ωj

)
Φ

(
αj
zij − ξj
ωj

)]
× p2 (αj) , where p2 (αj) is

a SN prior

∝



{
n∏
i=1

SN
(
zij; ξj, ω

2
j , αj

)}
× N (αj;αo, ψ

2
o)

{
n∏
i=1

SN
(
zij; ξj, ω

2
j , αj

)}
× SN (αj;αo, ψ

2
o , λo)

(95)

Therefore,

αj|ξj, ω2
j , Rj, z,w, a, b v



{
n∏
i=1

SN
(
zij; ξj, ω

2
j , αj

)}
× N (αj;αo, ψ

2
o)

{
n∏
i=1

SN
(
zij; ξj, ω

2
j , αj

)}
× SN (αj;αo, ψ

2
o , λo)

(96)

(a).Sampling (ξj, ω
2
j )::
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From Equation 84, it is trivial that

zij v SN(ξj, ω
2
j , αj), i = 1, 2, · · · , n; j = 1, 2, · · · , J (97)

As in the previous section, it is, therefore, admissible to describe this a skew normal

distributed auxiliary random variable zij using the stochastical representation of the model

(Henze, 1986), which is of the form :-

zij = ξj + ωjδηij + ωj

√
1− δ2

j εij i = 1, 2, · · · , n; j = 1, 2, · · · , J (98)

where, εij v N(0, 1), the standard normal distribution and ηij v TN[0,∞)(0, 1), the half

normal distribution. Results from Equation 98 follow that the conditional distribution

zij|ηij, ω−2
j , ξj, δj is a normal distribution with mean

E(zij) =E
{
ξj + ωjδηij + ωj

√
1− δ2

j εij

}
= ξj + ωjδηij + ωj

√
1− δ2

jE {εij}

= ξj + ωjδjηij since E {εij} = 0 (99)

and variance

E(zij) =V ar
{
ξj + ωjδηij + ωj

√
1− δ2

j εij

}
= V ar {ξj + ωjδηij}+ ω2

j

(
1− δ2

j

)
V ar {εij}

= 0 + ω2
j

(
1− δ2

j

)
V ar {εij}

= ω2
j

(
1− δ2

j

)
since V ar {εij} = 1 (100)

where δj = αj/
√

1 + α2
j . Having taken these results into consideration, a hierarchical

formulation for zij v SN(ξj, ω
2
j , αj) in Equation 85 is given as a new model in what follows:

Fzij|ηij, ω−2
j , ξj, δj v N

(
ξj + ωjδjηij, ω

2
j

(
1− δ2

j

))
=> p(z|ηij, ω−2

j , ξj, δj) ∝
J∏
j=1

nj∏
i=1

1

ωj
√

1− δ2
j

e
− 1

2ωj(1−δ2
j)

(zij−ξj−ωjδjηij)2

(101)

Fηij v TN[0,∞)(0, 1)

=> p(ηij) ∝ e−
1
2
η2ijIηij>0 i = 1, 2, · · · , nj; j = 1, 2, · · · , J (102)

Hence, sampling (ξj, ω
2
j ) from Equation 85 becomes analogous with taking the sample of

these parameters from the following complete posterior conditional distribution:-

p(ηij, ω
−2
j , ξj, δij|z) ∝


 J∏
j=1

nj∏
i=1

1

ωj
√

1− δ2
ij

e
− 1

2ωj

√
1−δ2

ij

(zij−ξj−ωjδηij)2


×e−
1
2
η2ijIηij>0 ×

1√
κω2

j

e
− 1

2κω2
j

(ξj−ξo)2
× (ω−2

j )c−1e−d/ω
−2
j

 (103)
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Clearly, Equation 103 tells us the full conditional distributions for Gibbs sampling are all in

standard form and straightforward to derive. Having simplified, the resulting conditional

distributions the parameters involved are:-

N ηij|ω−2
ij , ξj, δij, z v TN

(
δ(zij − ξj)

ω2
j

, 1− δ2
ij

)
, i = 1, 2, · · · , nj; j = 1, 2, · · · , J (104)

N ξj|ηij, ω−2
j , δij, z v N

(
µ̂, κ̂ω2

j

)
, j = 1, 2, · · · , J (105)

where,

µ̂ =

κ

nj∑
i=1

(zij − δijηij) + ξo(1− δij)2

nκ+ (1− δ2
ij)

and κ̂ =
κ(1− δ2

ij)

nκ+ (1− δ2
ij)

N ω−2
j |ηij, ξj, δij, z v InvGamma

(
c+

1

2
(n+ 1), d+ d̂

)
, j = 1, 2, · · · , J ; c, d > 0

(106)

d̂ =
1

2ω2
j (1− δ2

ij)

nj∑
i=1

(zij − ξj − ωjδijηij)2 +
1

2κω2
j

(ξj − ξo)2

=
1

2(1− δ2
ij)

{
δ2
ij

nj∑
i=1

η2
ij − 2δij

nj∑
i=1

ηij(zij − ξj) +

nj∑
i=1

ηij(zij − ξj)2 +
(1− δ2

ij)

κ
(ξj − ξo)2

}

(b).Sampling α::

The trick utilized by (Canale and Scarpa, 2013) is implemented to draw samples for the

skewed parameter, α. The notion behind is that for simplicity, we assume the distribution

of latent variables zij associated with the ith woman in jth region, as deemed in Equation 85,

is standard skew normal distribution. Hence, the scale and the location parameters, ξj and

ωj respectively in Equation 88 are vanished because ξj = 0,∀j = 1, · · · , J and ωj = 1, j =
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1, · · · , J . Eventually, the expression in Equation 88, then, reduces to :-

p (αj|z) ∝



[
n∏
i=1

1

ω
φ

(
zij − ξj
ωj

)
Φ

(
αj
zij − ξj
ωj

)]
× p1 (αj) , where p1 (αj) is

a Normal prior[
n∏
i=1

1

ω
φ

(
zij − ξj
ωj

)
Φ

(
αj
zij − ξj
ωj

)]
× p2 (αj) , where p2 (αj) is

a S-Normal prior

∝
nj∏
i=1

φ (zij) Φ (αjzij)× pk (αj) , k = 1, 2 (107)

where, αj v N
(
αj;αo, ψ

2
o

)
or αj v SN

(
αj;αo, ψ

2
o , λo

)
, which is equivalent to ,

p1(αj) =
1

ψo
φ

(
αj − αo
ψo

)
and p2(αj) =

2

ψo
φ

(
αj − αo
ψo

)
Φ

(
λo
αj − αo
ψo

)
, which are two informative prior distributions of αj(Canale and Scarpa, 2013).

The full conditional posterior distribution, αj|ξj, ω2
j , z,w,under the two prior cases is given

as follows:
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When using Normal Prior, p1(αj) = 1
ψo
φ
(
αj−αo
ψo

)

p (αj|z) ∝
n∏
i=1

φ (zij) Φ (αjzij)
1

ψo
φ

(
αj − αo
ψo

)
∝

n∏
i=1

Φ (αjzij)φ

(
αj − αo
ψo

)
∝ Φn (αjz; In)φ

(
α− αo
ψo

)
∝ Φn (αoz − αoz + αjz; In)φ

(
αj − αo
ψo

)
∝ Φn (αoz + z (αj − αo) ; In)φ

(
α− αo
ψo

)
∝ φ

(
αj − αo
ψo

)
Φn (αoz + z (αj − αo) ; In)

∝ φ

(
αj − αo
ψo

)
Φn

(
∆1αo
ψo

+
∆1

ψo
(αj − αo) ; In

)
, in which case, z =

∆1

ψo
.

∝ φ

(
αj − αo
ψo

) Φn

(
∆1αo
ψo

+ ∆1

ψo
(αj − αo) ; In

)
Φn

(
∆1αo
ψo

; In
) , the denominator is a constant w.r.t. αj

This in general is of the form ,

y v SUNd,m (µ, γ,ω,Ω∗)

having the pdf:

f (y) = φd (y− µ; Ω)
Φm

(
γ + ∆TΩ

−1

ω−1 [y− µ] ; Γ−∆TΩ
−1

∆
)

Φm (γ; Γ)

where,ω = ω1d,Ω = ωΩω, a covariance matrix with a d× d diagonal matrix

ω, and Ω∗ =

(
Γ ∆T

∆ Ω

)
, a correlation matrix.Particularly, in our case,we have:

µ = αo, γ =
∆oαo
ψo

, ∆T = ∆1, Ω = 1, ω = ψo, Ω = ωΩω = ψ2
o

Ω∗ =

[
Γ ∆

∆T Ω

]
=

[
Γ1 ∆T

1

∆1 1

]
and In = Γ−∆TΩ∆ = Γ1 −∆T

1 ∆1

Thus,

αj|z v SUN1,n (αo,∆1αo/ψo, ψo,Ω
∗) , or

αj|z v SUN1,n (αo,∆1αo/ψo, ψo, 1,∆1,Γ1) (108)

(v).Sampling the hyperparameter a:: As for the hyperparameter a, it is apparent from
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(3.1.4) that this parameter’s full conditional distribution is such that

p
(
a|ξj, ω−2

ij , αj, b,z,w
)
∝ ba

Γ(a)
Ra−1
j ×Gamma(mo, no)

∝ ba

Γ(a)
Ra−1
j × amo−1e−(no)·a

∝ ba

Γ(a)
Ra
j × amo−1e−(no)·a

∝ 1

Γ(a)
amo−1 ·

[
bRje

−no
]a
, a, b,mo, no > 0

∝ amo−1 ·
[
bRje

−no
]a

[Γ(a)]−1
I (a ∈ (0,∞)) (109)

Generating a random draw from this distribution is a slightly more complicated task, but

it may be accomplished by making use of the procedure set out in the paragraph below.

As seen, the conditional does not have a standard form. Therefore, the Gibbs sampler can

not be implemented.

(v).Sampling the hyperparameter b::

Finally, the full conditional distribution of the other hyperparameter is

p
(
b|ξj, ω−2

ij , αj, Rj, a,z,w
)
∝ bae−bRj × bro−1e−(so)·b

∝ ba+ro−1e−(Rj+so)b, a, b, ro, so > 0 (110)

Therefore, the gamma hyperprior on b allows for direct sampling from the conjugate con-

ditional posterior

b|ξj, ω2
j , αj, Rj, a,z,w vGamma (a+ ro, Rj + so) (111)

In this thesis, a Metropolis-Hastings within Gibbs sampling algorithm is used. In particu-

lar, we use Metropolis-Hastings step to generate samples from the full conditional density

of the hyperparameter, a, in Equation 110 owning to the fact that this conditional posterior

is not of any known closed forms (does’t appear to be any of the standard distributions,

such as normal, gamma, etc), and that Gibbs sampling is not straightforward under this

condition. On the other hand, we develop a Gibbs sampling algorithm to sample from the

conditional posterior distribution of all other parameters of interest, ξj, ω
2
j , αj, Rj, and b,

upon acceptance of a.

In what follows, we shall discuss on how to approximate these conditional posteriors using

Gibbs Sampling and Metropolis-Hastings Algorithm, using a proposal standard Gaussian

distribution.

4.5 Parameter Estimation

4.5.1 Bayesian Computation: Markov Chain Monte Carlo Implementation

In complicated Bayesian models, it is often not easy to obtain the posterior distribution

analysitically. This analytic bottleneck has been eliminated by the emergence of Markove
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Chain Monte Carlo (MCMC). We use a combination of the Accept-Reject and MCMC (the

Gibbs sampler and single-component Metropolis-Hastings algorithm) Sampling method to

estimate the fertility rate parameters for each region. The former, the Accept-Reject Sam-

pling (aka: rejection sampling) method, has been conducted to sample from the truncated

Skew-Normal distribution. In this case, upper bound (global maximum) is determined

with the aid of the R-optimization command, nlminb. Where as, all the other parameters

are sampled using MCMC (the Gibbs sampler and Metropolis-Hastings algorithm). This

requires the full conditional distributions for each parameter, which are summarized as

follows: Having used the valuable approaches of the paper by Canale and Scarpa (2013)

and R simulation codes obtained from as a clue, we developed an R program/script for

simulation a truncated Skew Normal Model and unified skew normal distribution. We

use a Rejection sampling to draw samples from Truncated skew normal given above. In

this case, the simulation is carried out using uniform distribution as proposal density, and

upper bound computed by nlminb, R optimization function.

We set, z
(t+1)
ij equal to a random draw using accept-reject algorithm from a TSN(ξ

(t)
j , ω

2(t)
j , α

(t)
j )

distribution based on U(j − 1/2, j + 1/2). Then, for (t + 1)st iteration of MCMC, for

j = 1, · · · , 11 , we set R
(t+1)
j equal to a random draw from Gamma(n+ a(t), b(t)) distribution

given in (ii) above, with the conditioning arguments , z, ξj, ω
2
j , αj,w, a, b , respectively. Fol-

lowing this, we set we set η
(t+1)
ij equal to a random draw from TN

(
δ
(t)
j (z

(t)
ij −ξ

(t)
j )

ω
2((t))
j

, 1− δ2(t)
j

)
,

where, δ
(t)
j = α

(t)
j /
√

1− α(t)
j distribution given in (ii) above, with the conditioning argu-

ments , z, ξj, ω
2
j , αj,w, a, b , respectively. Similarly, to sample ξ

(t+1)
j , we set we set ξ

(t+1)
j

equal to a random draw from N
(
µ̂, κ̂ω

2(t)
j

)
distribution, where

µ̂ =

κ

nj∑
i=1

(z
(t+1)
ij − δ(t)

j η
(t+1)
ij ) + ξo(1− δij)2

nκ+ (1− δ2(t)
j )

and κ̂ =
κ(1− δ2(t)

j )

nκ+ (1− δ2(t)
j )

We also set ω
−2(t+1)
j equal to a random sample from InvGamma

(
c+ 1

2
(n+ 1), d+ d̂

)
dis-

tribution given in (v) above, where,

d̂ =
1

2(1− δ2(t)
j )

{[
δ

2(t)
j

nj∑
i=1

η
2(t+1)
ij − 2δ

(t)
j

nj∑
i=1

η
(t+1)
j (z

(t+1)
ij − ξ(t+1)

j )

]

+

nj∑
i=1

η
(t+1)
ij (z

(t+1)
ij − ξ(t+1)

j )2 +
(1− δ2

j (t))

κ
(ξ

(t+1)
j − ξo)2

}

To sample a(t+1), we set a candidate point a∗ equal to a random draw from a proposal

distribution N(0, 1)I(x > 0). As a general heuristic, we choose the standard deviation of

the proposal distribution so that the candidate acceptance probability is between 0.25
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Summary of full conditionals for Posterior simulation

(i). zij|Rj, ξj, ω
2
j , αj,w, a, b v

{
C1SN

(
zij; ξj, ω

2
j , αj

)
if zij > 0 & wij = 1

C2SN
(
zij; ξj, ω

2
j , αj

)
if zij ≤ 0 & wij = 0

where, C1 and C2 are normalization constants given by

C1 =
1

cdf
SN
(
zij; ξj, ω

2
j , αj

) and C2 =
1

1− cdf
SN
(
zij; ξj, ω

2
j , αj

)
(ii). Rj|z, ξj, ω2

j , αj,w, a, b v Gamma (n+ a, b) for j = 1, · · · , J = 11

(iii). ηij|ω−2
ij , ξj, δij, z v TN

(
δ(zij − ξj)

ω2
j

, 1− δ2
ij

)
, i = 1, 2, · · · , nj; j = 1, 2, · · · , J

(iv). ξj|ηij, ω−2
j , δij, z v N

(
µ̂, κ̂ω2

j

)
, j = 1, 2, · · · , J

where,

µ̂ =

κ

nj∑
i=1

(zij − δijηij) + ξo(1− δij)2

nκ+ (1− δ2
ij)

and κ̂ =
κ(1− δ2

ij)

nκ+ (1− δ2
ij)

(v). ω−2
j |ηij, ξj, δij, z v InvGamma

(
c+

1

2
(n+ 1), d+ d̂

)
, j = 1, 2, · · · , J

d̂ =
1

2(1− δ2
ij)

{
δ2
ij

nj∑
i=1

η2
ij − 2δij

nj∑
i=1

ηij(zij − ξj) +

nj∑
i=1

ηij(zij − ξj)2 +
(1− δ2

ij)

κ
(ξj − ξo)2

}

(vi). αj|z v


SUN1,n (αo,∆1αo/ψo, ψo,Ω

∗)

SUN1,n (αo,∆1αo/ψo, ψo, 1,∆1,Γ1)

(vii). p
(
a|ξj, ω2

j , αj, b,z,w
)
∝ amo−1 ·

[
bRje

−no
]a

[Γ(a)]−1
I (a ∈ (0,∞))

(viii). b|ξj, ω2
j , αj, Rj, a,z,w v Gamma (a+ ro, Rj + so) , b ≥ 0 (112)

and 0.45 (Gelman et al., 1995). For this proposal distribution, the candidate acceptance

probability is

A = min {1, R}

in which case,

R =
(a∗)mo−1

[
b(t)R

(t+1)
j exp(−no)

](a∗)

[Γ(a∗)]−1

(a)mo−1
[
b(t)R

(t+1)
j exp(−no)

](a)

[Γ(a)]−1
(113)
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Finally, we set b(t+1) equal to a random draw from a Gamma(a(t+1) + ro, R
(t+1)
j + so)

distribution with the conditioning arguments , ξj, ω
2
j , αj, Rj, a,z,w , respectively.

4.5.2 Maximum Likelihood Estimation(MLE)

There are two different approaches for parameter estimation, which is either Bayesian or

maximum likelihood. Bayesian parameter estimation requires the assignment of a prior

distribution for the unknown parameter θ∗ . The objective is then to calculate the poste-

rior distribution of θ∗ given the observed data. When a point estimate of θ̂∗ is required,

some feature of this posterior distribution can be provided. The common Bayesian estima-

tors are the posterior mean, posterior median, and the posterior mode, or the maximum

a posteriori probability (MAP) estimate. There are several Monte Carlo based methods

for Bayesian parameter estimation when exact calculation of the posterior distribution is

not available. Alternatively, the maximum likelihood approach regards the likelihood of

the observed data, which is a function of θ∗, to contain all relevant information for esti-

mating θ̂∗. The point estimate of θ̂∗ is the maximising argument of the likelihood. When

maximum likelihood estimation (MLE) cannot be done analytically, iterative searchbased

algorithms such as expectation-maximisation (EM) and gradient ascent guarantee max-

imising the likelihood locally given certain regularity conditions on densities of the random

variables involved.

Whether one should in principle use the Bayesian or maximum likelihood approach for

estimating θ̂∗ is a fundamental debate which we will not go into. There are indeed cases

when these two approaches do produce dramatically different suggestions on what θ̂∗ might

be, especially when the observed data is of small size and a highly informative prior for

Bayesian estimation is used. However, as data size tends to infinity, the likelihood of the

data sweeps away the effect of the prior in the posterior distribution and the difference

between the estimates of the two approaches vanishes (say when the MAP estimate is used

for Bayesian estimation), provided that the prior is well-behaved (i.e., it does not assign

zero density to any “feasible” parameter value). Note that the maximum likelihood (ML)

estimation methods used commonly in multilevel or hierarchical analysis are asymptotic,

which translates to the assumption that the sample size must be sufficiently large. This

raises questions about the acceptable lower limit to the sample size, and the accuracy of

the estimates and the associated standard errors with relatively small sample sizes.

Inference is a central problem in many studies of fertility. Like Bayesian inference, there

are various parameter estimation techniques , which are widely used in frequentist frame-

work as well. In the paper, the maximum likelihood approach has been adopted in order to

estimate model parameters and compare the result obtained with the Bayesian settings as
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it is done with the previous chapter, Chapter 3. It is a commonly used procedure (Harter

and Moore, 1965), and (Cohen, 1965) with many desirable properties18. The idea is: let

x1, x2, x3, · · · , xn, be a random variables of size n drawn from a probability density function

f(x; θ), where θ is an unknown parameter. The likelihood function of this random sample

is the joint density of the n random variables and is a function of the unknown parameter.

Thus,

L(θ) =
n∏
i=1

f(xi; θ) (114)

is the Likelihood function. The Maximum Likelihood Estimator (MLE) of θ, say θ̂ , is the

value of θ, that maximizes L or, equivalently, the logarithm of L, called log-likelihood. As

a practical matter, when computing the maximum likelihood estimate it is often easier to

work with the log-likelihood, l(θ) := log f(x; θ). Because the logarithm is monotonic, it

does not affect the argmax:

θ̂ = arg max
θ

l(θ)

Often, but not always, the MLE of θ̂ is a solution of

∂LogL

∂θ
= 0 (115)

As described categorically in Equation 36, the likelihood function of the model under study

is given as

L
(
R, ξ, ω2, α|d

)
=

n∏
x=0

{(
nx
dx

)[
R · g(x; ξ, ω2, α)

]dx [
1−R · g(x; ξ, ω2, α)

]nx−dx}

∝
n∏
x=0

{[
R · 2

ω
φ

(
x− ξ
ω

)
Φ

(
α
x− ξ
ω

)]dx
(116)[

1−R · 2

ω
φ

(
x− ξ
ω

)
Φ

(
α
x− ξ
ω

)]}nx−dx
Thus, the corresponding log-likelihood function is

l
(
R, ξ, ω2, α|d

)
= log

{
n∏
x=0

(
nx
dx

)[
R · g(x; ξ, ω2, α)

]dx
[
1−R · g(x; ξ, ω2, α)

]nx−dx}
= log

{
n∏
x=0

[
R · 2

ω
φ

(
x− ξ
ω

)
Φ

(
α
x− ξ
ω

)]dx
(117)[

1−R · 2

ω
φ

(
x− ξ
ω

)
Φ

(
α
x− ξ
ω

)]}nx−dx
18 By far the best justification for the use of the maximum likelihood method of estimation is its ability

to satisfy the following crucial properties: sufficiency,invariance, consistency, efficiency,and asymptotic

normality
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which is simply the natural logarithm of (55).The maximum likelihood estimate of θ∗ =

(ξ, ω, α,R), that is, θ̂∗ = (ξ̂∗, ω̂∗, α̂∗, R̂∗),is a value of θ∗ that maximizes the likelihood

Equation 116, or equivalently the log likelihood Equation 117. However, such estimates

are extremely complicated nonlinear functions of the observed data. As a result, closed

form expressions for the MLEs doesn‘t generally exist for the models that we are work-

ing with. and therefore a numerical or analytical approximation is required. However,

analytical approximation approaches often fail to give entirely satisfactory results. There-

fore,instead of computing analytically, the maximation of the log-likelihood function is

made using numerical approach. In this regard, we utilized the nlminb19(non-linear mini-

mization subject to box constraints)function in R software to compute the desired MLEs

for the model parameters20. Results for two regions (Addis Ababa and Somali region) are

shown as Table 4.2 and Table 4.3 where as the results of the remaining regions are given

in Appendix C.

4.6 Empirical Results

4.6.1 Application to ASFR data

We implemented a Bayesian hierarchical estimation procedure for our ASFR data, as fol-

lows. First, recall that ASFR model has four parameters: R is the TFR parameter of

the model, which reflects the fertility circumstance of childbearing age mothers in each of

the regions, and assumes values in the interval (0, 16). As paraphrased in subsection 3.2,

ξ and α are the location parameter and the shape parameter of the model and they

assume values in the interval (−∞,∞) = IR where as ω is the scale parameter of the

model and it takes values in the interval (0,∞). ξ indicates the function of the average

age of mother at childbearing in each region, and ω stands for a value proportional to the

variance or variability in fertility rate of mothers in each region during childbearing age.

Apparently, α is interpreted as how the shape of ASFR resembles for mothers in the study

across each of the 11 regions, as described by Mazzuco and Scarpa (2015).

19 nlminb finds the parameter estimates that minimize a function. Thus, in order to perform maximum

likelihood estimation, the user must provide nlminb with the negative of the log likelihood function.
20 Another standard algorithm to find ML point estimates or posterior modes is the expectation maxi-

mization (EM) algorithm. Mathematically finding ML estimates or posterior modes is done by taking

the partial derivatives of the likelihood or posterior distribution and solve a set of equations. Usually

the set of equations cannot be solved directly. Latent variables are added to the model which formulate

the model more easily, notably they make it easy to estimate the parameters given the latent variables.

Latent variables and parameters cannot be estimated simultaneously. The EM algorithm estimates the

latent variables and parameters alternatingly until convergence. It can be proven that each iteration of

the EM algorithm increases the log likelihood or log posterior density. The latent variable representation

of the binomial model makes EM widely applicable.
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So far, three major approaches have been discussed that may affect the estimates: Complete

Pooling, Complete Independence, and Hierarchical. In addition, the estimation methods,

Bayesian or not, may be important. Multilevel or Hierarchical modeling mostly uses ML

estimation. After our ASFR data sets had been generated, the parameters of ASFR model

were estimated using both MLE and our hierarchical Bayesian method for comparison pur-

pose. For the latter method, posterior distributions were approximated by a total of 6,000

MCMC samples, after a burn-in of 1000 samples. To examine how robust our result is,

we conducted sensitivity analysis, convergence diagnosis and model checking as stated in

what follows.

4.6.2 Sensitivity Analysis: Sensitivity analysis on hyperprior distribution

Posterior inferences, namely point estimation (posterior mean,posterior median, etc), in-

terval estimation (posterior credible interval), and hypothesis testing on the classification

probabilities are often highly dependent on the choice or specification of priors, especially

when the sample sizes are small.

In presence of model uncertainty, the priors on the parameters need to be specified with

care, and a sensitivity analysis should always be performed and discussed for a number of

sensible priors (King et al., 2009).

We, therefore, performed a sensitivity analysis to examine the effect of noise on parameter

by changing the values for hyper-parameters to investigate whether results in the analy-

sis remained unaffected/unchanged in the presence of different prior information (Nilsson

et al., 2011). Vague21 but proper prior distributions, namely:-

Gamma (mo, no) , where mo = 0.01, mo = 0.01

Gamma (ro, so) , where ro = 0.01, so = 0.01

N
(
ξo, kω

2
j

)
, where ξo = 20, k = 0.6

SN
(
αo, ψ

2
o , λo

)
, where αo = 1, ψ2

o = 4, λo = 2

were first specified for the country-level shape parameter,a, the country-level scale param-

eter, b, region-specific average age parameter, ξj and region-specific fertility shape param-

eter, αj respectively. Moreover, we use inverse Gamma(0.01, 0.01) prior distributions, as

they provide little prior information. As the same time, we use a N(20, 0.06) prior for

ξo, as this support covers the factors natural range of variability. Then we made some

21 Vague Priors: are also called non-informative priors, automated priors, default priors, or priors of

ignorance
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modifications to the hyperprior distributions as in what follows,

Gamma (mo, no) , where mo = 0.001, mo = 0.001

Gamma (ro, so) , where ro = 0.001, so = 0.001

N
(
ξo, kω

2
j

)
, where ξo = 3, k = 0.9

SN
(
αo, ψ

2
o , λo

)
, where αo = 2, ψ2

o = 5, λo = 3

, recomputed the posterior quantities of interest and checked whether they imposed a prac-

tical impact on interpretations or decisions. At last, we adapted the following informative

prior distribution

Gamma (mo, no) , where mo = 0.1, mo = 0.1

Gamma (ro, so) , where ro = 0.1, so = 0.1

N
(
ξo, kω

2
j

)
, where ξo = 4, k = 2

SN
(
αo, ψ

2
o , λo

)
, where αo = 0.5, ψ2

o = 5, λo = −2

for this purpose. The three distributions gave almost identical results for all the param-

eters, indicating the results are robust to changes in prior information. All the analyses

were performed using the R programming language/environment, (R programming lan-

guage/environment,R version 3.0.2 Development Core Team, 2005), which is a free down-

loadable software.

4.6.3 Diagnosing Convergence

Convergence of the MCMC chains was confirmed by visual inspection using trace plot and

by computing the R statistic developed by Heidelberger and Welch (1983); Geweke

(1992); Raftery et al. (1992), which are available in the package Bayesian Output Analysis

Program (BOA and coda ) (Smith, 2005) within R (Development Core Team, 2005). We used

the default values of BOA and coda to define the length of the burn-in stage, thin the chain

check stationarity and define the adequate sample size to achieve the precision required,

when sampling from the posterior distribution. Both, the traceplots and convergence

diagnostic tests of the parameters show excellent mixing and rapid convergence. The

procedure is not sensitive to the initial choices of the parameters. Results are shown in

subsubsection 4.6.5.

4.6.4 Goodness of Fit or Model Checking

Bayesian prior-to-posterior analysis conditions on the whole structure (likelihood and prior

distribution) of a probability model and can yield very misleading inferences when the

model is far from reality. A good Bayesian analysis, therefore, should at least check to see

if the fit of the model to the data is so poor that the model should be rejected without
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other evidence. In the classical setting, this checking is often facilitated by a goodness-of-fit

test, which quantifies the extremeness of the observed value of a selected measure of dis-

crepancy (e.g., differences between observations and predictions) by calculating a tail-area

probability given that the model under consideration is true. Assessment of any statistical

model can be aided by computing appropriate diagnostic measures that characterize the

model’s fit to the observed data. When a Bayesian analysis is employed, posterior predic-

tive distributions can be used for model assessment (Gelman et al., 1996). The posterior

predictive distribution is the distribution of an unknown observation from the same process

given the observed data. In a general sense, the goal of posterior predictive assessment is

to evaluate the “closeness” of data generated from the fitted model to the actual observed

data. In what follows, we discussed how to employ a Bayesian test of model fit using the

posterior predictive distribution (Gelman and Meng, 1996).

Posterior predictive checking uses a replicated data set generated by the model in question

to compare with the observed data. For y the observed data and θ the vector of all param-

eters, yrep is defined as the replicated data that could have been observed. The distribution

of yrep or the posterior predictive distribution is

p (yrep|y) =

∫
p (yrep|θ) p (θ|y) dθ (118)

4.6.5 Results:Hierarchical Bayesian Estimation(HBE) vs Maximum Likeli-

hood Estimation (MLE)

Posterior Findings:- In the same fashion as the previous Chapter 3, the Gibbs sam-

pling along with Metropolis-Hastings algorithm in R software was applied to the data

set of ASFR from 11 regions. In each case 6000 iterations of the algorithm were carried

out, of which the first 1000 were discarded as the so-called “burn-in” period22 of the pro-

cess. Thus, the remaining 5000 simulations can then be regarded as realizations of the

marginal distributions of the posterior, and were used to calculate the posterior moments

(mean, mode, median, sd) and 95% credible interval of for model parameters in each region.

As a posterior summary, we, therefore, determined the posterior point and interval es-

timates. This is to say, as posterior point estimate, we computed the posterior moments

such as means, median and standard deviations ; and as posterior interval estimate, we were

also able to figure out the the 95% highest density region (also termed the 95% credible in-

terval) for the ASFR model parameters for each regions. On top of this, we also manage to

22 “Burn-in”: is a colloquial term that describes the practice of throwing away some iterations at the

beginning of an MCMC run. The idea is that you start somewhere, say at x, then you run the Markov

chain for n steps, from which you throw away all the data (no output). This is the burn-in period. After

the burn-in you run normally, using each iterate in your MCMC calculations.
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incorporate findings from the maximum likelihood methods as it enables us to comprehend

better on whether or not our hierarchical model outperforms and is flexible enough for

the traditional formulas. Table 3-4, given in what follows, wraps up these aforementioned

posterior summaries and the the finding from maximum likelihood method for two regions,

namely: Somali and Addis Ababa. The result for all other regions is also scrutinized in the

same manner as those regions. The detail is, however, provided in Appendix C.

Table 4.2: Hierarchical Bayesian and ML estimates for fertility data set of Somali

Region

Parameters
Bayesian Estimates ML Estimate

Mean Median SD 95%[ Conf Int] MLE 95%[ Conf Int]

ξ 20.530 20.528 0.0734 20.400 20.648 19.460 17.311 21.609

ω2 8.653 8.657 0.1858 8.371 8.924 8.207 7.301 9.113

α 3.789 3.790 0.0461 3.711 3.883 3.002 2.853 3.561

R 7.099 7.102 0.0518 7.047 7.166 6.962 6.193 7.731

Table 4.2 offers a lot more information: the posterior mean of the shape parameter for

Somali Region, α, was more or less 3.79 with 95% credible interval of (3.71, 3.88), re-

vealing strong evidence of skewness (positive skewness). Analogously, we also observe the

posterior mean of the location parameter ξ was 20.5 with 95% credible interval of (20.40,

20.65) (the probability that (20.40, 20.65) contains ξ is 95%), which implies the average

age, calculated as

E[Y ] = ξ +

√
2

π

α√
1 + α2

ω

is more or less about 27.20. As the distribution is positively skewed, it is intuitive the modal

age will be far less than the average age for those mothers in this region incorporated up

on the study. Thus, we can conclude that there is a strong evidence which supports the

vast majority (i.e., about the modal value) of women age 15-49 in the study became fertile

(deliver their first birth) in early 20 or younger, a proof for early fertility. This could be

have various justifications and also be associated with different problems prevailing to date

in the region. One deriving factor behind in early fertility is that the region is one of the

remotes and the four least developing regions 23 with a mobile nomadic population, which

significantly suffers from social and physical infrastructure developments. It is also a region

where Cultural and traditional barriers to effectively utilize modern birth control methods,

23 Least developing regions in Ethiopia: are regions, such as Gambella, Afar, Somali, and Benshangul-

Gumuz
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low status of women and gender inequality, as well as poor health service coverage are quite

visible. The other point we observe in our result for this region is that the posterior mean

of the scale parameter ω2 was 8.65 with 95% credible interval of (8.37,8.92) indicating the

presence of nearly 5.50 uncertainty (variability) in the ASFR data in the region. The result

also reveals the posterior mean total fertility rate in the region was about 7.10 with 95%

credible interval of (7.05,7.17), testifying strong evidence the total fertility rate was quite

high.

As outlined previous, maximum likelihood estimators of the parameters of our proposed

model were also determined for all regions. The rationale behind the need of the esti-

mates obtained from this underlining procedure is to simply compare with estimates of

its Bayesian counterparts. As recapped in the last column of Table 4.2, the maximum

likelihood estimates of the location, ξ, the scale, ω2, the shape, α and the fertility, R pa-

rameters was respectively 19.46 years, 8.21, 3.00 and 6.96 with their corresponding 95%

confidence interval of (17.31 21.61), (7.301 9.11), (2.85 3.56), and (6.19 7.73). Our result

showed the 95% confidence interval of those parameters was wider than the 95% credible

interval, which suggested the maximum likelihood estimates were less precise compared to

its Hierarchical Bayesian analogues. This, in turn, implied the fact that we had a lot of

uncertainty about the true parameter values with ML method. On the other hand, the

Hierarchical Bayesian estimates seemed more precise. They had narrower credible interval

for all model parameters: location, ξ, scale, ω2, shape, α and fertility, R. The discrepancy

between credible and confidence interval was due to sample size (n = 346). As the sample

size gets large, the approximate 95% CI found from maximum likelihood estimates will have

very nearly probability of 0.95 of covering the true value of our model parameters. Thus,

the Hierarchical Bayesian method performed better in this small-sample setting (Royle

et al., 2009; Brown et al., 2004).

The other issue of concern is convergence. Trace plots of MCMC samples are very useful

in assessing convergence. In general, the trace tells whether or not the chain has converged

to its stationary distribution-that is, whether the chain needs a longer burn-in period,

and is also mixing well. As to this study is pertained, the MCMC sampling appears to

be convergent 5000 post burn-in samples were generated from the posterior distribution.

Figure 4.7 through Figure 4.10 display the trace plots for parameters the location, ξ, the

scale, ω2, the shape, α and the fertility, R parameters of this region, Somali region. All

our figures showed a ”perfect” trace plot, with the center of the chain appears to have

very small fluctuations. This indicates that the chain was mixing well; the mixing was

quite good here. Besides, The MCMC convergence diagnostics using CODA (Cowles and

Carlin, 1996) were applied to test the chains of parameters for convergence. The estimates
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Figure 4.6: Left: 95% Confidence interval for the MLE fitted ASFR model ;

Right:95% credible interval for the Posterior Predictive distribu-

tion of Somali Region
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Figure 4.7: MCMC trace plots after

burn-in for the fertility parameter of So-
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Figure 4.8: MCMC trace plots after

burn-in for the fertility parameter of So-

mali, ωSomali

using MCMC were then summarised for statistical inference in Table 4.3. The z-scores for

parameters the location, ξ, the scale, ω2, the shape, α and the fertility, R were all between

-2 and 2 for the Geweke diagnostic test. The stationarity tests for parameters ξ, ω2, α and

R were passed with p-values greater than 0.05, suggesting that the null hypothesis of being

stationary was not rejected for each of parameter. The half-width tests of all parameters

were passed as their values were less than the product of eps (0.1) with the corresponding

sample mean for each parameter. The dependence factors (I) for the R-L diagnostic test

were all below 5.0, which suggested that the sample was less correlated. All of these results
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together suggested that the chains of parameters had converged.

Table 4.3: MCMC convergence diagnostic test for Somali Region fertility model

parameters ξSomali,ω
2
Somali,αSomali,RSomali using Geweke, H-W and R-L

Parameters
Heidelberger & Welch (H-W) Geweke R-L test

St.testa P-value HW testb HW testc Z-score Dep. factor(I)d

ξ passed 0.8433 passed 0.0021 -0.3624 1.53

ω2 passed 0.7270 passed 0.0641 -0.2561 1.62

α passed 0.3692 passed 0.0452 -1.243 1.86

R passed 0.1521 passed 0.0825 -1.0451 1.17

a
Stationary Test ; b Half-width test; c Half-width test; d Dependence factor(I)

Figure 4.6 visualizes the 95% confidence bound of the fitted MLE of ASFR model (left),

and 95% credible bound for posterior predictive distribution of the model (right). The

shaded area between the blue line 2.5% lower bound and 97.5% upper bound represents

95% confidence bound for the maximum likelihood estimated ASFR (left), and the latter

represents 95% credible bound for Posterior Predictive distribution while the solid line in

the center represents the maximum likelihood estimated ASFR (left), and posterior predic-

tive mean (right). By inspecting the two figures, we could also reaffirm that the confidence

interval for MLEs was larger than the credible interval for HBEs (the distance between
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the two blue lines in the left of the figure was larger than that between the two lines on

the right). Our result tells us the Bayesian Credible Interval is shorter or narrower than

the confidence interval from Maximum likelihood estimation suggesting more uncertain-

ties with MLEs. In this empirical work , we also observed that Hierarchical procedure

allowed for borrowing of information across each of the regions. In similar manner, results

Table 4.4: Hierarchical Bayesian and ML estimates for fertility data set of Addis

Ababa City Administration

Parameters
Bayesian Estimates ML Estimate

Mean Median SD 95%[ Conf Int] MLE 95%[ Conf Int]

ξ 33.928 33.630 0.0734 33.498 33.748 32.654 29.049 36.262

ω2 8.343 8.347 0.1862 8.056 8.613 8.654 7.698 9.610

α -3.289 -3.292 0.0506 -3.390 -3.195 -3.117 -3.461 -2.773

R 1.883 1.880 0.0578 1.822 1.956 1.985 1.766 2.204

for Addis Ababa, as shown in Table 4.3, clearly indicate that the posterior moments and

their credible intervals were different from respective the maximum likelihood estimates

of the model parameters. For instance, the posterior mean of the location parameter, ξ,

was 33.928 with 95% credible interval of (33.498, 33.748) while the corresponding values

from maximum likelihood method was 32.654 with 95% credible interval of (29.049,36.262),

certain disparity both on the value of the estimate and its interval.These analysis shows

that the use of reasonable prior information in our Hirarchical Bayesian Analysis led to a

result different from that of the frequentist analysis. The Hirarchical Bayesian estimate

was not only different but also more efficient than the maximum likelihood counterpart.

The result also reports the fertility rate of Addis Ababa was estimated to be more or

less 10% larger under MLEs than under HBEs, and also its uncertainty was larger in the

former procedure. In contrast, both approaches gave about the same estimated mean age

of delivery the first child.

Furthermore, the MLEs of ξ, ω, α and R were once again less precise than their Hier-

archical Bayesian analogy for Addis Ababa as well. But, unlike to Somali region, the

posterior mean of the shape parameter, i.e., α, which was -3.289 with 95% credible in-

terval of (-3.381,-3.183), indicates strong evidence of negative skewness for Addis Ababa.

Thus, the majority of mothers age 15-49 became fertile at later ages,i.e., in early 30 and

96



on24 in the Capital, Addis Ababa. By the same token, both estimates, MLEs and HBEs,

show a strong evidence that the fertility rate of most of the women age 15-49 were quite

low, specially compared to Somali region. This provides strong evidence the fertility rate

in the Capital was declining and even was below replacement level, which is 2.1 chirdren

per woman. In a nut shell, result shows most mothers in childbearing age in Addis Ababa

gave birth their first birth very late when became older than 30 years and the fertility

rate was more or less 2 births(children)per woman during the study period, which is the

exact opposite of Somali region. The rise in costs of living & in school-related costs, the

increase demand for family planning, violating the traditionally dominant fertility norms

and intentions, unprecedented unemployment and under employment crises, rationalizing

on the quality of children rather than the number of children they would have could be

some of the reasons to result in increased age at first marriage and shortened the exposure

to childbearing before menopause in Addis Ababa. Hence, The result seems persuasive.

The MCMC trace plots for the ASFR model parameters are given in Figure 4.11 through
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Figure 4.14. To check that the chains had converged to the correct place, the same diagnos-

tic test was carried out using Geweke, Heidelberger & Welch (H-W), and Raftery & Lewis

(R-L) tests. The results of the MCMC convergence diagnostics using CODA are presented

in the following table,Table 4.5. Here again, the over all result indicated the chains for the

all parameters converged very well. For instance, The z-score for ξAA 2 was -1.481 for the

24 This is the average age calculated using the formula for SN. As the resulting distribution was negatively

skewed. Thus, we have:modalage > medianage > 30
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Geweke test. As this value was between -2 and 2, it could be concluded that the chains

of parameters had reached convergence at a 5% significance level. The stationarity test

forξAA was passed with a p-value of 0.3567 for the H-W diagnostic test, under the null

hypothesis that the MCMC chain was stationary. Furthermore, the half-width test was

passed as the ratio between the half-width and the mean was lower than eps = 0.1 for the

HW test. This also suggested that the chains of parameters had reached convergence. The

R-L test showed that the dependence factor (I) forξAA was also2.63, which is lower than

5.0, indicating that the sample was less correlated confirming the convergence.

Table 4.5: MCMC convergence diagnostic test for Addis Ababa fertility model

parameters ξAA,ω2
AA,αAA,RAA using Geweke, H-W and R-L

Parameters
Heidelberger & Welch (H-W) Geweke R-L test

St.testa P-value HW testb HW testc Z-score Dep. factor(I)d

ξ passed 0.3567 passed 0.03450 -1.481 2.63

ω2 passed 0.2710 passed 0.0883 0.0029 2.01

α passed 0.4211 passed 0.0782 0.1012 1.77

R passed 0.1453 passed 0.0628 -0.3748 1.64

a
Stationary Test ; b Half-width test; c Half-width test; d Dependence factor(I)

Figure 4.6 illustrates the agreement between the model predictions and the observations,

after updating the input distributions. The posterior predictive distributions of the fitted
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data along with the observation. The fact that the posterior predictive distributions agree

well with the observed data suggests a successful calibration. Our proposed methods pro-
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Figure 4.15: Left: 95% Confidence interval for the MLE fitted ASFR model ;

Right: 95% credible interval for the Posterior Predictive distri-

bution of Addis Ababa

duce more precise estimates of the model parameters, in particular conferring statistical

significance to the regions from which smaller number of childbearing age mothers were

sampled as compared to the other procedures, which is mainly due to the ability of the

Hierarchical procedure to allow for borrowing of information/strength across each of the

other regions.
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5 CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS

Fertility rate is one of the most important determinants of overall population growth and

demographic transitions in a given country. It has important consequences for economic

growth, poverty reduction, and improved health and nutrition outcomes. Ethiopia cur-

rently has one of the highest fertility rates in the world, with marked differences among its

regions. In 1993, government launched an explicit national population policy for the first

time which aimed at reducing total fertility rate from the then 7.7 children per woman

to 4.0 by 2015, and since then, several efforts have been made to reduce this high fertil-

ity levels (NOP, 1993). But, despite the effort, the rate still remains high, especially at

regional-level.

Needless to say, local-level fertility analysis in Ethiopia is paramount important for it

will help to effectively design flexible region-specific strategies or programs, which might

be worthwhile in implementation of family planning programs, and other socio-economic

policies down at regional levels. The modeling of fertility patterns is one of the essential

methods/ approaches researchers often use to understand the demographic nature of a

given population, and thereby, make budgeting, planning, and monitoring policy decisions

at different levels, national and regional-levels.

In this work, we first took advantage of real data set from 2011 Demographic and Health

Survey (DHS) of Ethiopia, from which we extracted one-year age specific fertility rate

(ASFR) and examined its pattern at both national and regional levels. All in all, the

plot under scrutiny revealed that the pattern of ASFRs at regional level was similar to

that of at national level, except for some regions sampling units of which is much smaller

compared to the others. On top of this, considerable variation in the pattern of ASFRs

of women was also reflected across regions. To wrap up, the figure reveals the presence of

huge disparity not only fertility intensity but also ASFR shapes across regions, and, this

variation, in turn, calls for a flexible model, which can capture all the available information

in and provide a good fit for the pattern in each region.

A large number of parametric and non-parametric models have been proposed in demo-

graphic litratures for modeling the one-year age specific fertility pattern of different coun-

tries, yet no model has been put forward to fit local-level curves(age specific fertility pat-

tern)of developing countries including Ethiopian to date.

In this study, we, therefore, proposed a four parametric Skew Normal model (Mazzuco

and Scarpa, 2011) to fit the fertility schedules shown at both country and regional levels of

Ethiopia. This model has many similar properties to normal distribution and include extra

parameters which regulates (represents) its skewness (Lin, 2009; Azzalini, 1985; Azzalini
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and Dalla Valle, 1996; Flecher et al., 2009; Gupta and Chen, 2004; Gupta et al., 2004;

Lin et al., 2007) and fertility intensity. The main capability of this class of distributions

in applications is its ability in capturing and modeling departures from symmetry, whilst

retaining tractability and closeness (Azzalini, 1985; Liseo and Loperfido, 2003; Minozzo

and Ferracuti, 2012).

In order to determine the performance of this proposed model, we further conducted some

preliminary analysis of fitting the model along with ten other commonly used parametric

and non-parametric models in demographical litratures, namely: the Quadratic Spline func-

tion (Schmertmann, 2003), Cubic Splines (Hoem and Rennermalm, 1977) ,Coale-Trussell

function (Coale and Trussell, 1978), the Beta and Gamma (Hoem et al., 1981), the Had-

wiger distribution (Hadwiger, 1940),the Polynomial models (Brass, 1960), the Adjusted

Error Model (Gayawan et al., 2010),Gompertez curve (Pasupuleti and Pathak, 2010),Skew

Normal(Mazzuco and Scarpa, 2011), and Model 1 and Model 2 (Peristera and Kostaki,

2007). The purpose of fitting various models was to compare the performance of the pro-

posed model, Skew Normal Distribution, with those other models mentioned. The criterion

followed in fitting these models was Nonlinear Regression with nonlinear least squares (nls)

estimation. We used Akaike Information Criterion (AIC) as model selecction crite-

rion and the results obtained from this preliminary analysis testified that the values of the

AIC for the proposed model, Skew Normal (SN), is lowest: in the capital, Addis Ababa,

Dire Dawa, Harari, Affar, Gambela, Benshangul-Gumuz, and country level data as well.

On the contrary, its value was also higher on some of the models and lower the rest on the

remain regions, namely: Tigray, Oromiya, Amhara, Somali and SNNP. This tells us that

the proposed model was better able to capturing the pattern of fertility at the empirical

fertility data of Ethiopia and its regions than the other existing models considered since

still the values of AIC for SN model was lowest not only at country level but also for

majority regions, i.e., in 6 of the 11 regions.

For many demographers, however, estimating regional-specific ASFRs and the associated

uncertainty introduced due those factors can be difficult, especially in a situation where

we have extremely varying sample size among different regions. Recently, it has been

proposed that Hierarchical procedures might provide more reliable parameter estimates

than Non-Hierarchical procedures, such as complete pooling and independence to make

local/regional-level analyses. In this study, a Hierarchical Bayesian model was formulated

to explore the posterior distribution of model parameters (for generation of region-specific

ASFR point estimates and uncertainty bound). Beside to this procedure, in this thesis,

maximum likelihood and Bayesian procedures had also been implemented to estimate the

parameters of the proposed ASFR model and compare the result obtained from those pro-
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cedures with our Hierarchical Bayesian counterparts.

Hierarchical Bayesian models offer many advantages, including the ability to borrow strength/

information for smaller regions from other regions to obtain more accurate estimates and

the ability to specify complex models that reflect physical realities, to estimate the uncer-

tainties in parameter estimates due to other approaches and factors. Because model fitting

takes place in a single step, estimation uncertainty is properly propagated at all levels.

One stumbling block encounter in using this methodology was computational intractability.

That is, the joint posterior distributions was non-linear, and too complex & intractable

to easily drive the full conditional in standard/closed form. Data Augmentation strategy

(latent variable method) has, hence, been instrumented as possible remedy in this respect.

Although Griggio (2013/2014) incorporated the skew-normal latent variables in inference

from a multimonial model, no studies were found considering skew-normal model proposed

by Mazzuco and Scarpa (2015) as latent variables in analysis of binary data modeled via

Bayesian Analysis. Therefore, as another new contribution, in this study a skew-normal

(Mazzuco and Scarpa, 2015) latent variable methodology has been implemented in our

Hierarchical Bayesian model developed from Binomially distributed fertility (birth) data

so as to overcome this computational plight.

Eventually, the results from the all analyses are then combined, and inferences are made

from these results. Thus, the overall result indicates that the Hierarchical Bayesian model

had offered results that are superior to, more precise and reliable than those of other

methods employed here, the mainstream Bayesian model as well as the maximum likeli-

hood method. Therefore, the proposed methodology based on the augmenting skew-normal

latent variables in analyzing binary fertility data is an adequate and appropriate model,

and a novel way for fitting or inferring the ASFR model parameters.

The other point evident from the result is that almost all the regions had varied fertility

rate distribution or shape patterns, for example:-

F Somali, Affar, Gambela, and Benshangul-gumuz regions; Addis Ababa, Dire Dawa,

and Harari city administrations had asymmetric or skewed distributions. Of those,the

distribution of fertility in Somali, Affar, Gambela, and Benshangul-gumuz region

were characterized by negative skewness. The rest, however, had negatively skewed

fertility pattern or shape.

F In the same token, relatively mild symmetric distribution had also observed on on

the remaining regions, namely Tigray, Amhara, SNNP and Oromiya .

The posterior predictive distribution also clearly tells us:
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F a delay in childbirth for Addis Ababa, Dire Dawa, and Harari city administrations;

F an early in childbirth or fertilty ( delivery of the first child) for regions, such as

Somali, Affar, Gambela, and Benshangul-gumuz;

F the result also reports delivery of the first child at about a normal age (i.e., from

age 25 to 28) for the rest of the regions, viz., Tigray, Amhara, SNNP and Oromiya

regions.

Our fining also shows that the credible interval for the Hierarchical Bayesian Estimates was

much narrower than that of the Bayesian Estimates or the Maximum likelihood Estimates.

Similarly, the Bayesian credible intervals were also shown to be smaller than most of the

confidence interval of the the Maximum likelihood Estimates. This suggests the fact that

the Hierarchical Bayesian Estimates provided a more precise result in almost all the regions

compared its Non-Hierarchical Bayesian counterparts, which are Bayesian and Maximum

Likelihood Estimates. In contrary, Maximum Likelihood Estimate gave as similar result

as Bayesian Estimates though the former seemed prone to a larger uncertainty.

Last but not the least, our Hierarchical procedure produces more precise and reliable

estimates of the model parameters, in particular conferring statistical significance to the

regions from which smaller number of childbearing age mothers were sampled as compared

to the other procedures, which is mainly due to the ability of the Hierarchical procedure

to allow for borrowing of information/strength

5.2 RECOMMENDATIONS:

As matter of policy implications, we need to draw several proposals at both the regional

and national levels:

♣ At Regional-Level:- the lowering of high fertility rate need to be addressed through:

F integrating family planning and safe motherhood programmes into primary

health care systems,

F providing access to reproductive health services,

F promoting the responsibility of men in sexual and reproductive health,

F raising the minimum legal age at marriage,

F improving female education and employment opportunities,

F discouraging son preference, and

F providing low cost, safe and effective contraception

F creating awareness on early and universal marriage, the high social and economic

value attached to children,
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F fighting the cultural and traditional barriers to effectively utilize modern birth

control methods

F fighting the attitude of the desire for more children and extremely low contra-

ceptive/practice

F reducing the high child mortality,and womens limited achievements in the sphere

of educational

♣ At National-Level:- the government need to :

F design viable policies in relation family planning program , population and fer-

tility policies that can address all the above sticking points.

As a caveat, this study is not aimed at tackling the issues,”which approach of parameter

estimation is the most appropriate to address the study objectives?”. This issue is left for

future research
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Appendix A Demography Part:Results (Tables & Plots)

Table A1: Empirical and fitted values for Tigray Region with values of mini-

mization and model selection criterion

AgeGroup DHS Qud Spline Cub.Spline Gamma Dist PeristeraK Hadwiger Skew Normal

15-19 0.0817279 0.08630799 0.065074286 0.03295330 0.06794583 0.03558571 0.080467145

20-24 0.1588390 0.17439386 0.195627557 0.16938082 0.16094149 0.16854050 0.160139302

25-29 0.2383333 0.21971996 0.240953657 0.26335743 0.25420035 0.26421572 0.238886082

30-34 0.2675810 0.22228629 0.222286286 0.23218789 0.25435024 0.23254050 0.266190951

35-39 0.1587785 0.18209284 0.160859143 0.14679462 0.15369295 0.14606639 0.159586579

40-44 0.0406856 0.09913963 0.077905929 0.07456827 0.05399869 0.07414573 0.041499636

45-49 0.0114219 -0.02657336 -0.005339657 0.03244061 0.01073420 0.03264048 0.004680983

AIC -19.49772 -20.35797 -19.44974 -52.76935 -21.7426 -33.45919

RSS 0.00806507 0.00535985 0.006102407 5.2274e-05 0.005852363 0.0008247563

Table A2: Empirical and fitted values for Affar Region with values of minimiza-

tion and model selection criterion

AgeGroup DHS Qud Spline Cub.Spline Gamma Dist PeristeraK Hadwiger Skew Normal

15-19 9.467930e-02 0.13672459 0.1061441190 0.10087416 0.09474379 0.10622310 0.10985166

20-24 2.481186e-01 0.18339025 0.2139707167 0.23050349 0.24200980 0.22447948 0.24712998

25-29 2.083633e-01 0.20027239 0.2308528595 0.23331030 0.22335031 0.23463698 0.22223935

30-34 1.651468e-01 0.18737101 0.1873710143 0.16792891 0.16919914 0.17043986 0.16218115

35-39 1.462091e-01 0.1446861 0.1141056476 0.10009311 0.10557445 0.10031325 0.10303961

40-44 3.211070e-02 0.07221769 0.0416372262 0.05291610 0.05425861 0.05176682 0.05701502

45-49 2.310000e-10 -0.03003425 0.0005462169 0.02574503 0.02296823 0.02449042 0.02747613

AIC -18.70674 -23.50529 -22.06307 -23.45833 -23.57737 -24.54359

RSS 0.00902989 0.0034189 0.00420112 0.003441911 0.00450296 0.00294761

Table A3: Empirical and fitted values for Amhara Region with values of mini-

mization and model selection criterion

AgeGroup DHS Qud Spline Cub.Spline Gamma Dist PeristeraK Hadwiger Skew Normal

15-19 0.0668713 0.107001648 0.08032641 0.08009104 0.06687130 0.08717417 0.10307644

20-24 0.2181686 0.152341879 0.17901711 0.18890896 0.21001767 0.18390267 0.16417801

25-29 0.1729865 0.172169993 0.19884523 0.20241993 0.18965640 0.20103901 0.19342808

30-34 0.1475083 0.166485990 0.16648599 0.15526166 0.14974716 0.15655781 0.16873908

35-39 0.1310119 0.135289871 0.10861464 0.09888596 0.10337824 0.10024709 0.10911515

40-44 0.0524531 0.078581636 0.05190640 0.05593741 0.06239921 0.05681760 0.05236563

45-49 0.0192326 -0.003638717 0.02303652 0.02914290 0.03293127 0.02971272 0.01867461

AIC -19.97963 -23.84034 -24.19125 -29.75755 -25.28034 -20.08349

RSS 0.00752852 0.003259112 0.00309976 0.001399534 0.003530553 0.00557419

105



Table A4: Empirical and fitted values for Oromiya Region with values of mini-

mization and model selection criterion

AgeGroup DHS Qud Spline Cub.Spline Gamma Dist PeristeraK Hadwiger Skew Normal

15-19 0.0941743 0.13610875 0. 09296405 0.09254963 0.09221398 0.09744416 0.09426439

20-24 0.2173480 0.18302150 0.22616620 0.22546710 0.22521853 0.22062705 0.21402413

25-29 0.2661646 0.20352759 0. 24667229 0.24825021 0.24249969 0.24983312 0.26147107

30-34 0.1836348 0.19762701 0. 19762701 0.19539632 0.19833963 0.19776984 0.20304436

35-39 0.1172261 0.16531977 0. 12217507 0.12763248 0.13348039 0.12729374 0.11652082

40-44 0.0741960 0.10660587 0. 06346117 0.07402548 0.07391543 0.07200126 0.05327251

45-49 0.0609520 0.02148531 0. 06463001 0.03953608 0.03367925 0.03739313 0.01976478

AIC -16.7296 -33.60102 -31.47664 -27.80372 -33.13733 -25.573

RSS 0.01197701 0.0008082 0.0010948 0.001850131 0.0011492 0.002545

Table A5: Empirical and fitted values for Somali Region with values of mini-

mization and model selection criterion

AgeGroup DHS Qud Spline Cub.Spline Gamma Dist PeristeraK Hadwiger Skew Normal

15-19 0.0804650 0.114496355 0.08315714 0.08067907 0.08166555 0.08330195 0.08104655

20-24 0.2201506 0.184324971 0.21566419 0.21958816 0.21685691 0.21495268 0.21334690

25-29 0.2547025 0.218202936 0.24954215 0.25401872 0.25780156 0.25876103 0.26123423

30-34 0.2044675 0.216130248 0.21613025 0.20992757 0.20931267 0.20985499 0.20916301

35-39 0.1463118 0.178106907 0.14676769 0.14045959 0.13590498 0.13537261 0.13615367

40-44 0.0817731 0.104132914 0.07279370 0.07608717 0.07617382 0.07566442 0.07597935

45-49 0.0217321 -0.005791731 0.02554749 0.03336950 0.03847125 0.03845859 0.03650429

AIC -21.36322 -40.8871 -37.4672 -42.31808 -38.72417 -37.45082

RSS 0.006178298 0.000285419 0.0004652224 0.0002326493 0.0005173205 0.0004663124

Table A6: Empirical and fitted values for Benshangul Region with values of

minimization and model selection criterion

AgeGroup DHS Qud Spline Cub.Spline Gamma Dist PeristeraK Hadwiger Skew Normal

15-19 0.1238722 0.1460335048 0.08315714 0.11351211 12608168 0.11392909 0.12666666

20-24 0.2151792 0.1926315786 0.21566419 0.22381204 0.20893038 0.22245636 0.20682294

25-29 0.2248832 0.2108340643 0.24954215 0.23897705 0.23900296 0.24021093 0.23997957

30-34 0.2257467 0.2006409619 0.21613025 0.19074084 0.20330154 0.19127062 0.20468576

35-39 0.1093836 0.1620522714 0.14676769 0.12836562 0.13438618 0.12782876 0.13327614

40-44 0.0891213 0.0950679929 0.07279370 0.07721639 0.06903116 0.07662291 0.06862643

45-49 0.0187623 -0.0003118738 0.02554749 0.04289867 0.02755575 0.04276045 0.02868261

AIC -22.84393 -27.84823 -25.1824 -27.79231 -27.29466 -40.8871

RSS 0.005000371 0.001838405 0.002690513 0.00185315 0.002647707 0.000285419

106



Table A7: Empirical and fitted values for Gambela Region with values of mini-

mization and model selection criterion

AgeGroup DHS Qud Spline Cub.Spline Gamma Dist PeristeraK Hadwiger Skew Normal

15-19 0.0766938 07592061 0.06787381 0.04918594 0.06811252 0.05986901 0.06861532

20-24 0.0871907 0.10469356 0.11274036 0.11327848 0.10578113 0.11372587 0.10562596

25-29 0.1497611 0.11867410 0.12672090 0.13634118 0.12887706 0.13100025 0.12852152

30-34 0.1047982 0.11786221 0.11786221 0.12061097 0.12408076 0.11685628 0.12441163

35-39 0.1183587 0.10225791 0.09421111 0.08907685 0.09652425 0.09007362 0.09652952

40-44 0.0373788 0.07186118 0.06381438 0.05842111 0.06076234 0.06344817 0.06052297

45-49 0.0437603 0.02667203 0.03471883 0.03522449 0.03095271 0.04214314 0.03092546

AIC -26.0029 -24.91371 -23.88051 -25.93929 -25.93044 -26.49806

RSS 0.003184297 0.002795791 0.003240459 0.00241477 0.002417826 0.002966829

Table A8: Empirical and fitted values for Dire Dawa with values of minimization

and model selection criterion

AgeGroup DHS Qud Spline Cub.Spline Gamma Dist PeristeraK Hadwiger Skew Normal

15-19 5.010350e-02 0.08835550 0.0510356190 0.048460904 0.051253734 0.050085685 0.05412441

20-24 1.638853e-01 0.12252853 0.1598484119 0.161477650 0.160490112 0.159773533 0.15650967

25-29 1.654942e-01 0.13462922 0.1719491048 0.176166682 0.175080656 0.177321238 0.17886808

30-34 1.287507e-01 0.12465758 0.1246575809 0.113150784 0.117376355 0.113448283 0.11463077

35-39 5.535670e-02 0.09261361 0.0552937238 0.053275581 0.052961367 0.052623791 0.05203413

40-44 2.190000e-10 0.03849730 0.0011774169 0.020448552 0.016083252 0.019927123 0.01775147

45-49 5.340000e-10 -0.03769134 -0.0003714566 0.006791152 0.003287189 0.006589209 0.00457384

AIC -19.18482 -33.70871 -33.37825 -36.83299 -35.33994 -50.0479

RSS 0.008433755 0.0007958749 0.0008343482 0.0005093404 0.0008389264 7.711299e-05

Table A9: Empirical and fitted values for SNNP with values of minimization and

model selection criterion

AgeGroup DHS Qud Spline Cub.Spline Gamma Dist PeristeraK Hadwiger Skew Normal

15-19 0.0804650 0.114496355 0.08315714 0.08166556 0.08067907 0.08330196 0.08104655

20-24 0.2201506 0.184324971 0.21566419 0.21685691 0.21958816 0.21495268 0.21334690

25-29 0.2547025 0.218202936 0.24954215 0.25780156 0.25401872 0.25876103 0.26123423

30-34 0.2044675 0.216130248 0.21613025 0.20931267 0.20992757 0.20985499 0.20916301

35-39 0.1463118 0.178106907 0.14676769 0.13590498 0.14045959 0.13537261 0.13615367

40-44 0.0817731 0.104132914 0.07279370 0.07617383 0.07608717 0.07566443 0.07597935

45-49 0.0217321 -0.005791731 0.02554749 0.03847125 0.03336949 0.03845859 0.03650429

AIC -21.36322 -40.8871 -37.4672 -42.31808 - 38.72417 -37.45082

RSS 0.006178298 0.000285419 0.0004652 0.0005173 0.0005173205 0.0004663124

Appendix B Bayesian Part Part:Results of Bayesian

Analysis & Maximum likelihood estimates

B.0.1 Posterior moments of Simple Bayesian Analysis & Maximum likelihood

estimates
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Table B1: Bayesian and ML estimates for fertilty data set of Tigray Region

Parameters
Bayesian Estimates ML Estimate

Mean Median SD 95%[ Conf Interval] MLE

ξ 27.0255 27.0293 0.2870 26.4496 27.5856 28.601

ω2 8.4996 8.4988 0.1573 8.1947 8.8165 8.6145

α 0.0109 0.0107 0.0736 -0.1129 0.1362 0.0918

R 4.3912 4.3616 0.2459 3.9913 4.8791 4.301

Table B2: Bayesian and ML estimates for fertility data set of Afar Region

Parameters
Bayesian Estimates ML Estimate

Mean Median SD 95%[ Conf Interval] MLE

ξ 23.5317 20.5320 2.2910 19.0484 28.0269 21.699

ω2 9.2260 8.4564 0.8952 7.4710 10.9863 10.4781

α 1.6782 1.2815 0.6032 0.4905 2.8633 1.118

R 5.332 5.012 1.653 4.1269 6.5370 5.0168

Table B3: Bayesian and ML estimates for fertility data set of Amhara Region

Parameters
Bayesian Estimates ML Estimate

Mean Median SD 95%[ Conf Interval] MLE

ξ 27.0393 27.0357 0.2976 26.4502 28.6227 26.981

ω2 8.9972 8.9936 0.1135 8.7909 9.2288 8.8698

α -0.3475 -0.3472 0.0359 -0.4171 -0.2788 -0.2179

R 4.0369 4.4301 0.2510 3.5485 4.5297 4.3346
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Table B4: Bayesian and ML estimates for fertility data set of Oromiya Region

Parameters
Bayesian Estimates ML Estimate

Mean Median SD 95%[ Conf Interval] MLE

ξ 26.4417 26.4383 0.2867 25.8880 27.0117 26.0718

ω2 8.5072 8.5067 0.0586 8.3947 8.6246 8.5882

α 0.0441 0.0443 0.0331 -0.0209 0.1092 0.0864

R 4.9892 4.9818 0.1952 4.6059 5.3792 5.2115

Table B5: Bayesian and ML estimates for fertility data set of Somali Region

Parameters
Bayesian Estimates ML Estimate

Mean Median SD 95%[ Conf Interval] MLE

ξ 20.3679 19.0645 0.8835 18.6361 22.0996 19.4602

ω2 8.5087 8.00831 0.6588 7.2176 9.7966 8.2069

α 3.1491 2.8492 1.0316 1.1286 5.1704 3.0015

R 7.3932 7.0161 1.1521 5.1304 9.6516 6.962387

Table B6: Bayesian and ML estimates for fertility data set of Benishangul Gumuz

Region

Parameters
Bayesian Estimates ML Estimate

Mean Median SD 95%[ Conf Interval] MLE

ξ 23.7684 23.7688 0.2913 23.2003 24.3370 24.0867

ω2 8.5172 8.5161 0.06031 8.4011 8.6388 8.4859

α 0.26507 0.26569 0.1340 0.00243 0.52771 0.1184

R 5.1360 5.1369 0.1562 4.8248 5.4452 5.2202
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Table B7: Bayesian and ML estimates for fertility data set of SNNP Region

Parameters
Bayesian Estimates ML Estimate

Mean Median SD 95%[ Conf Interval] MLE

ξ 28.7132 28.7149 0.2887 28.1503 29.2865 28.6078

ω2 8.5051 8.5042 0.0582 8.3929 8.6210 8.5400

α -0.0378 -0.03762 0.0334 -0.1041 0.02813 0.01664

R 4.8120 4.8109 0.11671 4.5848 5.0401 4.7813

Table B8: Bayesian and ML estimates for fertility data set of Gambela Region

Parameters
Bayesian Estimates ML Estimate

Mean Median SD 95%[ Conf Interval] MLE

ξ 24.7697 24.7683 0.2822 24.2223 25.3278 24.6030

ω2 8.5001 8.4997 0.05745 8.3896 8.6138 8.26878

α 0.1166 0.1159 0.0328 0.0522 0.1810 0.0664

R 4.2184 4.2349 0.1230 3.9401 4.5184 4.3410

Table B9: Bayesian and ML estimates for fertility data set of Harari

Parameters
Bayesian Estimates ML Estimate

Mean Median SD 95%[ Conf Interval] MLE

ξ 30.79457 31.20562 0.9852944 28.6553 32.03131 28.601

ω2 8.499285 8.898356 0.56299 7.9488744 9.413138 9.340

α -1.07714018 -1.29857669 0.3329421 -1.893271 -0.745683 -1.118

R 3.791 4.393 2.651 4.137 4.850 3.948
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Table B10: Bayesian and ML estimates for fertility data set of Addis Ababa

Parameters
Bayesian Estimates ML Estimate

Mean Median SD 95%[ Conf Interval] MLE

ξ 32.0939 34.0472 1.2800 31.5851 36.6028 30.6539

ω2 8.1325 8.5017 0.2578 7.6272 9.0079 8.6538

α -3.3299 -3.0360 0.6327 -4.5699 -1.7954 -3.1168

R 1.9427 1.9452 0.3141 1.3271 2.5608 1.9848

Table B11: Bayesian and ML estimates for fertility data set of Dire Dawa

Parameters
Bayesian Estimates ML Estimate

Mean Median SD 95%[ Conf Interval] MLE

ξ 30.231 31.012 0.4521 30.6732 32.0943 27.432

ω2 8.7331 8.7336 0.05931 8.6182 8.8491 9.3407

α -1.0192 -1.0195 0.03531 -0.08823 0.04932 -1.1189

R 3.197 3.197 0.0131 3.102 3.2260 2.8389

B.0.2 Convergence Diagnosis: Trace Plots for some selected regions
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Figure B1: MCMC trace plots after

burn-in for the location
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Figure B3: MCMC trace plots af-

ter burn-in for the shape

parameter,αHarari ,of Harari
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Figure B4: MCMC trace plots af-

ter burn-in for the fer-

tility parameter,RHarari ,of

Harari
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Figure B5: MCMC trace plots after

burn-in for the location

parameter,ξHarari ,of Dire
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Figure B6: MCMC trace plots af-

ter burn-in for the scale

parameter,ωHarari ,of Dire

Dawa
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Figure B7: MCMC trace plots af-

ter burn-in for the shape

parameter,αHarari ,of Dire

Dawa
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Figure B8: MCMC trace plots after

burn-in for the fertility

parameter,RHarari ,of Dire

Dawa

Appendix C Hierarchical Bayesian Part Part:Results

of Hierarchical Bayesian Analysis & Max-

imum likelihood estimates

C.0.3 Posterior findings

Table C1: Hierarchical Bayesian and ML estimates for fertility data set of Tigray

Parameters
Bayesian Estimates ML Estimate

Mean Median SD 95%[ Conf Interval] MLE

ξ 28.72822 28.73009 0.07351024 28.59748 28.84806 30.6539

ω2 7.049991 7.055248 0.187495 6.768042 7.323103 8.6538

α 0.7716849 0.7694604 0.04478035 0.6896781 0.8612153 -3.1168

R 4.883442 4.880719 0.05767206 4.824510 4.956106 1.9848
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Table C2: Hierarchical Bayesian and ML estimates for fertility data set of Afar

Parameters
Bayesian Estimates ML Estimate

Mean Median SD 95%[ Conf Interval] MLE

ξ 22.72819 22.72966 0.07343009 22.59941 22.84841 30.6539

ω2 7.051629 7.057748 0.1872722 6.768042 7.323103 8.6538

α 1.77646 1.776453 0.04487827 6.767261 7.314874 -3.1168

R 6.883853 6.880495 0.05783069 6.821847 6.953273 1.9848

Table C3: Hierarchical Bayesian and ML estimates for fertility data set of

Amhara Region

Parameters
Bayesian Estimates ML Estimate

Mean Median SD 95%[ Conf Interval] MLE

ξ 26.02817 26.02997 0.07340693 25.89888 26.14898 26.981

ω2 8.55211 8.557161 0.1879005 8.256476 8.823803 8.8698

α -0.2193244 -0.2193754 0.0451623 -0.2989179 -0.1305847 -0.2179

R 4.399365 4.396553 0.05205303 4.344941 4.461359 4.3346

Table C4: Hierarchical Bayesian and ML estimates for fertility data set of

Oromiya Region

Parameters
Bayesian Estimates ML Estimate

Mean Median SD 95%[ Conf Interval] MLE

ξ 26.52822 26.52922 0.07339988 26.40038 26.64873 26.0718

ω2 8.553992 8.558146 0.1872623 8.264525 8.826085 8.5882

α 0.485459 0.4852391 0.04587836 0.4055632 0.5753489 0.0864

R 5.300462 5.297776 0.05258933 5.245917 5.364655 5.2115
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Table C5: Hierarchical Bayesian and ML estimates for fertility data set of Somali

Region

Parameters
Bayesian Estimates ML Estimate

Mean Median SD 95%[ Conf Interval] MLE

ξ 20.52834 20.53031 0.07339265 20.39961 20.64772 19.4602

ω2 8.653065 8.657814 0.1858623 8.370826 8.924242 8.2069

α 3.790433 3.789708 0.04608167 3.710736 3.883051 3.0015

R 7.102082 7.098769 0.05184025 7.047321 7.165859 6.962387

Table C6: Hierarchical Bayesian and ML estimates for fertility data set of Ben-

ishangul Gumuz Region

Parameters
Bayesian Estimates ML Estimate

Mean Median SD 95%[ Conf Interval] MLE

ξ 23.52824 23.52985 0.07346258 23.39906 23.64838 24.0867

ω2 8.653002 8.653458 0.1865011 8.365662 8.930263 8.4859

α 0.3945781 0.3923852 0.04712302 0.3124801 0.4903891 0.1184

R 5.300252 5.297851 0.05242365 5.245986 5.363053 5.2202

Table C7: Hierarchical Bayesian and ML estimates for fertility data set of SNNP

Region

Parameters
Bayesian Estimates ML Estimate

Mean Median SD 95%[ Conf Interval] MLE

ξ 28.52826 28.53004 0.07344476 28.39891 28.64850 28.6078

ω2 8.856343 8.86319 0.1874363 8.568206 9.140805 8.5400

α -0.2014707 -0.2028191 0.04773997 -0.2842188 -0.1085910 0.01664

R 5.12044 5.118172 0.05090992 5.067654 5.183093 4.7813
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Table C8: Hierarchical Bayesian and ML estimates for fertility data set of Gam-

bela Region

Parameters
Bayesian Estimates ML Estimate

Mean Median SD 95%[ Conf Interval] MLE

ξ 22.32815 22.33011 0.07338661 22.19918 22.44827 24.6030

ω2 5.25861 5.262248 0.1853738 4.973846 5.527638 8.26878

α 2.202881 2.201616 0.04859733 2.115641 2.298706 0.0664

R 2.883317 2.880293 0.05844014 2.821510 2.954272 4.3410

Table C9: Hierarchical Bayesian and ML estimates for fertility data set of Harari

Parameters
Bayesian Estimates ML Estimate

Mean Median SD 95%[ Conf Interval] MLE

ξ 30.32818 30.32953 0.07347812 30.19912 30.44869 28.601

ω2 7.340395 7.344207 0.1852949 7.054930 7.607353 9.340

α -2.093463 -2.095367 0.04928861 -2.181773 -1.992148 -1.118

R 3.383518 3.3808 3.324127 3.454066 3.948

Table C10: Hierarchical Bayesian and ML estimates for fertility data set of Addis

Ababa

Parameters
Bayesian Estimates ML Estimate

Mean Median SD 95%[ Conf Interval] MLE

ξ 33.92821 33.6300 0.0733869 33.49898 33.74815 32.6539

ω2 8.343236 8.347118 0.1862105 8.055792 8.612995 8.6538

α -3.289408 -3.292281 0.05056788 -3.380609 -3.183485 -3.1168

R 1.383188 1.37989 0.05781846 1.322299 1.455633 1.9848

116



Table C11: Hierarchical Bayesian and ML estimates for fertility data set of Dire

Dawa

Parameters
Bayesian Estimates ML Estimate

Mean Median SD 95%[ Conf Interval] MLE

ξ 29.72826 29.72939 0.07344202 29.59898 29.84742 27.432

ω2 8.172812 8.180471 0.1860283 7.893764 8.441436 9.3407

α -1.286179 -1.28903 0.05139713 -1.38127 -1.18204 -1.1189

R 2.883449 2.880347 0.05751831 2.822901 2.952694 2.8389

C.0.4 Convergence Diagnosis for Hierarchical Bayesian model:MCMC Trace

Plots for some selected regions
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Figure C1: MCMC trace plots after
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Figure C3: MCMC trace plots after

burn-in for the shape pa-
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Figure C4: MCMC trace plots after

burn-in for the fertility pa-

rameter of Tigray, RTigray
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Figure C5: MCMC trace plots after

burn-in for the location pa-

rameter of Afar, ξAfar
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Figure C6: MCMC trace plots after

burn-in for the scale pa-

rameter of Afar, ωAfar
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Figure C7: MCMC trace plots after

burn-in for the shape pa-

rameter of Afar,αAfar
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Figure C8: MCMC trace plots after
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Table C12: MCMC convergence diagnostic test for Hierarchical Bayesian Model

of Afar Region fertility model parameters using Geweke, H-W and

R-L

Parameters
Heidelberger & Welch (H-W) Geweke R-L test

St.testa P-value HW testb HW testc Z-score Dep. factor(I)d

ξ passed 0.431passed 0.2351 0.3421 0.39

ω2 passed 0.289 passed 0.0837 0.0093 1.13

α passed 0.197 passed 0.1129 -0.0934 1.42

R passed 0.152 passed 1.65 0.0671 3.01

a
Stationary Test ; b Half-width test; c Half-width test; d Dependence factor(I)
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Figure C9: MCMC trace plots after

burn-in for the location pa-

rameter of Amhara, ξAmhara
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Figure C10: MCMC trace plots af-
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Figure C11: MCMC trace plots after

burn-in for the shape

parameter of Amhara,

αAmhara
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Figure C12: MCMC trace plots af-
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ity parameter of Amhara,
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Table C13: MCMC convergence diagnostic test for Hierarchical Bayesian Model

of Amhara Region fertility model parameters using Geweke, H-W

and R-L

Parameters
Heidelberger & Welch (H-W) Geweke R-L test

St.testa P-value HW testb HW testc Z-score Dep. factor(I)d

ξ passed 0.823passed 0.2351 1.43 2.31

ω2 passed 0.397 passed 0.0837 0.1840 2.49

α passed 0.287 passed 0.1129 0.0451 1.81

R passed 0.185 passed 1.65 0.9871 2.08

a
Stationary Test ; b Half-width test; c Half-width test; d Dependence factor(I)
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Figure C13: MCMC trace plots after
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parameter of Oromiya,
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Figure C15: MCMC trace plots

after burn-in for the

shape parameter of

Oromiya,αOromiya
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Table C14: MCMC convergence diagnostic test for Hierarchical Bayesian Model

of Oromiya Region fertility model parameters using Geweke, H-W

and R-L

Parameters
Heidelberger & Welch (H-W) Geweke R-L test

St.testa P-value HW testb HW testc Z-score Dep. factor(I)d

ξ passed 0.517 passed 0.00893 -1.3 0.982

ω2 passed 0.345 passed 0.00162 0.5092 1.02

α passed 0.371 passed 0.00103 0.005691 1.02

R passed 0.133 passed 1.65 0.0889 1.64

a
Stationary Test ; b Half-width test; c Half-width test; d Dependence factor(I)
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C.0.5 Posterior Predictive Distribution
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Figure C17: 95% Credible interval

of the Posterior Pre-

dictive distribution for

Tigray Region
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Figure C18: 95% Credible interval

of the Posterior Pre-

dictive distribution for

Affar Region
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Figure C19: 95% Credible interval

of the Posterior Pre-

dictive distribution for

Amhara Region
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Figure C20: 95% Credible interval

of the Posterior Pre-

dictive distribution for

Oromiya Region
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Figure C21: 95% Credible interval

of the Posterior Pre-

dictive distribution for

Somali Region
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Figure C22: 95% Credible interval

of the Posterior Pre-

dictive distribution for

SNNP Region
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Figure C23: 95% Credible interval

of the Posterior Pre-

dictive distribution for

Benshangul Region
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Figure C24: 95% Credible interval

of the Posterior Pre-

dictive distribution for

Gambela Region
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Figure C25: 95% Credible interval

of the Posterior Pre-

dictive distribution for

Harari Region

15 20 25 30 35 40 45 50

0.
0

0.
2

0.
4

0.
6

0.
8

 

Mother‘s Age

A
S

F
R

 o
f A

dd
is

 A
ba

ba
 C

ity
 A

dm
.

Upper Credible Interval
Posterior Predictive Dist.
Lower Credible Interval
Observed ASFR

Figure C26: 95% Credible interval

of the Posterior Pre-

dictive distribution for

A.A. City Admin.

125



15 20 25 30 35 40 45 50

0.
0

0.
2

0.
4

0.
6

0.
8

 

Mother‘s Age

A
S

F
R

 o
f D

ire
 D

aw
a 

C
ity

 A
dm

.
Upper Credible Interval
Posterior Predictive Dist.
Lower Credible Interval
Observed ASFR

Figure C27: 95% Credible interval

of the Posterior Pre-

dictive distribution for

D.D. City Admin.

Appendix D Maximum Likelihood Estimation
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