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Abstract

Patients with type 1 diabetes (T1D) require lifelong insulin therapy in order to
maintain their blood glucose (BG) concentration within the euglycemic range
preventing long-term complications associated with hyperglycemia and avoid-
ing dangerous episodes of hypoglycemia. To achieve proper glycemic con-
trol, people with T1D need to perform a constant learning process about how
daily conditions (e.g. insulin administrations, meals schedule and composi-
tion, physical activity, and illness) affect BG levels. More than 500,000 op-
erations can be needed during the lifetime of a T1D patient to manage the
therapy. For this reason, management of diabetes is burdensome for patients,
and results in deteriorating their quality of life. One of the major issues in the
daily management of T1D concerns with the amount of insulin that has to be
administered, by a subcutaneous bolus injection, in order to compensate the
increase of BG associated with meals. So far, a standard simple mathematical
formula (SF), designed by clinical investigators on an empirical basis, is com-
monly used by patients to calculate the size of insulin boluses. SF leverages
on the current BG level obtained from self monitoring blood glucose (SMBG)
samples, the estimated amount of carbohydrates (CHOs) present in the meal,
and patient specific therapy parameters. While the SF is well-established in
clinical practice, the insulin amount determined through its use could be sub-
optimal due to several reasons, including the error patients make in estimating
CHO, the intrinsical sparseness of SMBG, and the inability of accounting for
many important factors such as patients’ intra-/interday variability.
Margins of improvement over the SMBG-based SF emerged in the past decade,
when diabetes management has been transformed by the introduction of min-
imally invasive continuous glucose monitoring (CGM) sensors, which have
been recently approved by regulatory agencies, such as the Food and Drug Ad-
ministration (FDA), to be usable to make treatment decisions, such as insulin
dosing. Of course, CGM provides an increased amount of available features
on BG, such as the rate of change (ROC), that could be exploited to improve
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insulin standard therapy. As a matter of fact, several attempts have been pro-
posed in the literature to account for CGM-derived information and adjust SF
accordingly, but unfortunately, they fall short in personalizing such an adjust-
ment patient-by-patient.

In this thesis we propose new methodologies for determining a dose of in-
sulin bolus able to effectively account for the "dynamic" information on BG
provided by the ROC and patient characteristics, the final aim being to per-
sonalize the standard insulin therapy and eventually improve the glycemic
control. In particular, to identify the possible margins of improvement, in the
first part of the thesis we assess and analyze the criticalities of three popular
literature techniques that exploit the ROC magnitude and direction to adjust
the insulin bolus amount computed through SF. To such a scope, we designed
ad-hoc in silico clinical trials implemented using a popular powerful simula-
tion tool, i.e. the UVa/Padova T1D Simulator. Then, in the second part, we
propose two novel machine learning based algorithms that, being fed by in-
formation on current patient status and characteristics, provide patients with
new tools to adjust SF in a personalized manner. Finally, in the third part of
the thesis, we abandon the idea of using the insulin bolus provided by SF as
a sort of initial estimate to be simply adjusted, and we design a brand new
formula for insulin bolus determination that naturally takes into account for
CGM-derived information and current patient status and characteristics. This
represents an innovation in the literature because no insulin bolus formulae
specifically designed for use with CGM have been proposed yet.

The thesis is organized in six chapters. In Chapter 1, after introducing T1D
therapy, the importance of designing new personalized insulin dosing guide-
lines leveraging on CGM is discussed. Then, some insulin dosing techniques
proposed in the literature to adjust SF according to ROC are reviewed. The
chapter ends with the statement of the aim of the thesis.

In Chapter 2, we assess in depth, by means of data of 100 virtual subjects
generated by the UVa/Padova T1D Simulator, strengths and the limitations
of the above cited literature techniques for the adjustment of SF according to
ROC. In particular, we demonstrate that these techniques fall short in univer-
sally improve the glycemic control in the T1D population due to their inability
of personalizing the adjustment of SF at the patient level.

In Chapter 3, we develop a new method based on a neural network fed by
CGM information and easily accessible patient parameters to improve the per-
formance, in term of glycemic control, over the available literature methods.
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The new technique consists in using the SF parameters, ROC, body weight,
insulin pump basal infusion rate and insulin sensitivity as features to train a
neural network to "optimally" adjust SF. Using the UVa/Padova T1D Simula-
tor, we generated data of 100 subjects. Specifically, we simulated each subject
several times to analyze different meal conditions in terms of carbohydrate in-
takes, preprandial BG and ROC, and determine, by trial-and-error, the optimal
adjustment, in terms of units of insulin, that would have been needed to be ap-
plied to SF to obtain optimal glycemic control. Finally, using the consolidated
machine learning paradigm, a subset of data associated to 80 subjects are ex-
tracted to be used for training and validation of the neural network while data
associated to the remaining 20 subjects are extracted and used to assess the
model performance. Results demonstrate that the proposed model is able to
significantly improve glycemic control.

Given the encouraging results obtained in Chapter 3, in Chapter 4, a differ-
ent approach is developed which still use tools popular in the machine learn-
ing field. In particular, CGM data, together with commonly recorded data, i.e.
CHO intake and insulin bolus infusion recordings, are used to train a gradi-
ent boosted tree model that allows to classify, at meal-time, the postprandial
glycemic status (i.e., BG concentration being too low, too high, or within the
target range). Then such an outcome is used to reduce or increase the corre-
sponding meal bolus dose provided by SF accordingly. Results obtained on
data of 100 simulated subjects show that, when used to adjust, in real-time,
meal insulin boluses obtained with a bolus calculator, the proposed approach
improves glycemic control.

The results we obtained in Chapter 3 and Chapter 4 showed that our strat-
egy, i.e. leveraging on machine learning to adjust SF, allows to improve glycemic
control. However, possible margins of improvement rose by the possibility of
abandoning the idea of using the insulin bolus computed through SF and de-
sign a new formula that naturally include patient characteristics and status
to compute the insulin dose. As such, in Chapter 5, different types of linear
regression models have been analysed and applied in order to design new
formulae for insulin meal bolus calculation. Results, obtained on data of 100
subjects generated by the UVa/Padova T1D Simulator, show that, when com-
pared with state-of-art insulin dosing guidelines, the proposed formulas im-
prove glycemic control over the population encouraging further development
of these promising methods.

Finally, the major findings of the work carried out in this thesis, possible
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applications and margins of improvements are summarized in Chapter 6.
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Sommario

I pazienti affetti da diabete di tipo 1 (T1D) necessitano, durante l’intera durata
della loro vita, di una terapia basata su amministrazioni di insulina esogena
al fine di mantenere la propria concentrazione di glucosio nel sangue (BG)
all’interno del range euglicemico e quindi prevenire complicazioni a lungo
termine dovute ad episodi di iperglicemia ed evitare al contempo pericolosi
episodi ipoglicemici. Per assicurare un adeguato controllo glicemico, i soggetti
affetti da T1D necessitano di un continuo processo di apprendimento al fine
di capire come, condizioni quotidiane, che includono, ad esempio, ammin-
istrazioni di insulina esogena, dieta, attivita’ fisica, e malesseri, impattano il
livello di BG. Durante la vita di un paziente affetto da T1D, si stima pos-
sano essere necessarie piu’ di 500,000 azioni (es. assunzioni di boli correttivi
di insulina, misurazioni di BG tramite dispositivi pungidito). Per questa ra-
gione, il pesante carico dovuto alla gestione del diabete si traduce in una ri-
dotta qualita’ della vita. Uno dei problemi piu’ importanti della gestione quo-
tidiana del T1D riguarda l’ammontare di insulina esogena da amministrare,
tramite l’iniezione di un bolo sottocutaneo, al fine di compensare l’incremento
di BG associato ai pasti. Ad oggi, una semplice formula matematica stan-
dard (SF), sviluppata da ricercatori clinici su base empirica, viene comune-
mente utilizzata dai pazienti per il calcolo della dimensione del bolo di in-
sulina. SF sfrutta il livello di BG corrente, misurata da campioni di sangue
ottenuti tramite dispositivi di automonitoraggio capillare (SMBG), la quantita’
stimata di carboidrati (CHO) assunti, e parametri di terapia paziente speci-
fici. Anche se SF e’ ben affermata nella pratica clinica, l’ammontare di in-
sulina calcolato tramite SF puo’ risultare subottimo a causa di diversi fattori
come l’errore commesso dai pazienti nella stima di CHO, l’intrinseca spar-
sita’ delle misure SMBG, e l’incapacita’ di tenere conto di importanti fattori
come, per esempio, la variabilita’ intra/inter-giornaliera della sensibilita’ in-
sulinica dei pazienti. Negli ultimi anni, diverse possibilita’ di miglioramento
sono emerse grazie all’introduzione, nella terapia per il diabete, di sensori min-

ix



imamente invasivi per il monitoraggio in continua del glucosio (CGM), i quali
sono stati recentemente approvati dai vari enti regolatori, come la Food and
Drug Administration (FDA), per essere utilizzati al fine di formulare decisioni
terapeutiche come il dosaggio di insulina. I sensori CGM offrono molta piu’
informazione su BG, come, per esempio, il valore dell’attuale trend glicemico
(ROC), che idealmente puo’ essere sfruttato per migliorare la terapia standard
del diabete. A tale fine, in letteratura, diversi sono stati i tentativi di inte-
grare l’informazione su BG derivata dai sensori CGM al fine di aggiustare
l’ammontare di insulina calcolato tramite SF. Sfortunatamente, questi tentativi
falliscono nel personalizzare tale correzione a livello del singolo paziente.

In questa tesi, allo scopo di personalizzare la terapia standard del diabete
e migliorarne i benefici in termini di controllo glicemico, proponiamo nuove
metodologie per il dosaggio di insulina capaci di tenere conto in maniera effi-
cace dell’informazione "dinamica" su BG descritta dalla ROC e dalle caratter-
istiche peculiari del singolo paziente. In particolare, con lo scopo di individ-
uarne i possibili margini di miglioramento, la prima parte della tesi vertera’
sulla valutazione e l’analisi delle criticita’ di tre popolari tecniche stato dell’arte
che, sfruttando il modulo e il segno della ROC, correggono l’ammontare di
insulina calcolato tramite SF. A tal fine, abbiamo progettato, in silico, trial
clinici ad-hoc implementati tramite l’utilizzo di un tanto diffuso quanto po-
tente strumento di simulazione: il simulatore di T1D UVa/Padova. Quindi,
nella seconda parte della tesi, proponiamo due algoritmi innovativi basati sul
machine learning che, utlizzando come input l’informazione sullo stato cor-
rente del paziente e le sue caratteristiche, rappresentano nuovi strumenti per
la correzione personalizzata di SF. Infine, nella terza parte, abbandoniamo
l’idea di utilizzare il bolo di insulina ottenuto da SF come una sorta di punto
di partenza da correggere, e proponiamo una formula completamente nuova
per la determinazione del bolo di insulina che integra, nella sua definizione,
l’informazione aggiuntiva portata dall’utilizzo dei sensori CGM, lo stato cor-
rente del paziente e le sue caratteristiche. Quest’ultimo punto rappresenta
un’innovazione nella letteratura dato che, ad oggi, nessuna formula, che sia
stata progettata nello specifico per essere utilizzata con i sensori CGM, e’ stata
ancora proposta.

La tesi e’ organizzata in sei capitoli. Nel Capitolo 1, dopo aver descritto
come si presenta, ad oggi, la terapia standard per il T1D, viene discussa
l’importanza di progettare nuove linee guida per il calcolo della dose di in-
sulina capaci di fare leva sulle potenzialita’ offerte dai sensori CGM. Successi-
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vamente, vengono presentate alcune tecniche di letteratura per la correzione di
SF tramite ROC. Il capitolo termina con la dichiarazione formale dell’obiettivo
di questa tesi.

Nel Capitolo 2, valutiamo approfonditamente, utilizzando dati di 100 pazi-
enti virtuali generati tramite il simulatore di T1D UVa/Padova, i punti di forza
e di debolezza, delle tecniche di letteratura sopra citate per la correzione di SF
tramite ROC. In particolare, dimostriamo come queste tecniche falliscono nel
migliorare universalmente il controllo glicemico nella popolazione virtuale a
causa della loro incapacita’ di personalizzare tale correzione di SF a livello del
singolo paziente.

Nel Capitolo 3, sviluppiamo un nuovo metodo per la correzione di SF
basato su una rete neurale con lo scopo di migliorare la performance in termini
di controllo glicemico ottenute con i metodi di letteratura stato dell’arte sopra
citati. Al fine di correggere in maniera "ottima" SF, tale rete neurale viene al-
lenata tramite l’utilizzo dell’informazione derivata da CGM e alcuni parametri
paziente specifici facilmente accessibili che sono: i parametri di SF, la ROC, il
peso del paziente, il rate di infusione della pompa insulinica, e la sensibilita’ in-
sulinica del paziente. Con il simulatore di T1D UVa/Padova abbiamo generato
dati di 100 pazienti virtuali. Nello specifico, abbiamo simulato ogni soggetto
piu’ volte per analizzare diverse condizioni al pasto in termini di CHO, BG e
ROC preprandiale, e abbiamo determinato, con una procedura trial-and-error,
il valore di correzione ottimo, in termini di unita’ di insulina, che sarebbe stato
necessario applicare a SF al fine di ottenere il controllo glicemico ottimo. In-
fine, utilizzando il consolidato paradigma del machine learning, un subset di
dati associati a 80 pazienti e’ stato utilizzato per allenare e validare la rete neu-
rale, mentre i dati associati ai rimanenti 20 pazienti sono stati utilizzati per
valutare le performance del modello. I risultati ottenuti dimostrano come il
modello proposto sia capace di migliorare significativamente le performance
glicemiche.

Dati i risultati incoraggianti ottenuti nel Capitolo 3, nel Capitolo 4, utiliz-
zando ancora comuni strumenti propri del machine learning, proponiamo un
diverso approccio al problema. In particolare, dati CGM e dati comunemente
raccolti dal paziente, come l’ammontare di boli di insulina e di carboidrati as-
sunti, sono stati utilizzati per allenare un albero decisionale con lo scopo di
classificare, al momento del pasto, lo stato glicemico postprandiale (ossia se il
livello di BG postprandiale e’ troppo basso, troppo elevato, o nell’intervallo
target). Successivamente, l’output dell’albero decisionale e’ stato utilizzato
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come indicazione per ridurre o aumentare la dose di insulina calcolata tramite
SF. I risultati ottenuti su dati di 100 soggetti virtuali mostrano come il nuovo
approccio sia capace di migliorare il controllo glicemico.

I risultati che abbiamo ottenuto nel Capitolo 3 e nel Capitolo 4 mostrano
come la strategia da noi proposta, ossia sfruttare algoritmi di machine learn-
ing per correggere SF, sia capace di migliorare il controllo glicemico. Ad ogni
modo, nuovi margini di miglioramento possono essere individuati nella pos-
sibilita’ di abbandonare l’idea di utilizzare la dose di insulina calcolata tramite
SF e progettare una nuova formula per il dosaggio di insulina che integra nat-
uralmente la caratteristiche del paziente e il suo stato glicemico. A tale scopo,
nel Capitolo 5, diversi tipi di modelli di regressione lineare sono stati anal-
izzati e applicati per costruire nuove formule per il calcolo della dose di in-
sulina. I risultati ottenuti su dati di 100 pazienti generati tramite il simulatore
di T1D UVa/Padova, dimostrano che, quando confrontati con le linee guida
stato dell’arte per il dosaggio di insulina, le formule proposte migliorano il
controllo glicemico nella popolazione diabetica virtuale suggerendo quindi di
proseguire lo sviluppo di tali metodologie.

Infine, nel Capitolo 6 vengono riassunti i principali risultati ottenuti in
questo lavoro di tesi, le applicazioni pratiche, e i possibili margini di migliora-
mento da perseguire nel futuro.
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Chapter 1

Type 1 diabetes and open loop
control of blood glucose
concentration

1.1 Type 1 diabetes (T1D) mellitus and standard in-

sulin therapy

Type 1 diabetes (T1D) is a chronic autoimmune disease which consists of the
destruction of the pancreatic beta cells that are responsible for insulin produc-
tion [1] [2]. As a consequence, patients affected by T1D can be treated only by
exogenous administrations of insulin to avoid their blood glucose (BG) con-
centration to exceed the safe range, i.e. 70-180 mg/dL, and resulting in hy-
perglycemic events that, in the long term, lead to neuropathy, retinopathy, and
serious micro-/macrovascular heart diseases. On the other hand, excessive ad-
ministrations of exogenous insulin are even more dangerous, since they trigger
hypoglycemic events that, in the short term, result to dizziness, lightheaded-
ness, fainting, and, in extreme cases, to coma or even death [3].
T1D standard therapy is an "open-loop" control approach that aims at main-
taining BG in the safe range during the day and consists in injecting exogenous
insulin either via multiple daily injections (MDI) (Figure 1.1, panel A), where
fast-acting insulin is used to counterbalance glucose fluctuations due to meal
carbohydrate intakes, and long-acting insulin is used once or twice per day
to keep BG to its basal level, or via continuous subcutaneous insulin infusion
(CSII) by means of an insulin pump (Figure 1.1, panel B). Insulin dosing is
an extremely delicate and challenging task. Usually, each injection is tuned ac-
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1 Type 1 diabetes and open loop control of blood glucose concentration

cording, but not limited to, diet [4], physical activity [5], and BG concentration,
that is commonly obtained through the use of self monitoring of blood glucose
(SMBG) meters [6], i.e. portable systems that allow measuring BG concentra-
tion, usually 3-4 times per day, on a drop of capillary blood as shown in Figure
1.2.

Figure 1.1: Insulin delivery via multiple daily injections (A) or via insulin pump (B).
(Source: [7], [8])

Figure 1.2: SMBG procedure: Patients with T1D collect a blood sample from their
finger and measure the BG concentration by a portable sensor device. (Source: [9])

1.2 The standard formula (SF) used in clinical prac-

tice to compute the insulin dose

So far, in order to maximize the benefits of the open-loop insulin therapy,
an empirical simple standard formula (SF), that estimates the insulin bolus
thought to be able to maintain BG within the safe range, is commonly used in
clinical practice [10]. Such a formula is defined as follows:

IMB =
CHO
CR

+
GC − GT

CF
− IOB (1.1)
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1.2 The standard formula (SF) used in clinical practice to compute the insulin
dose

where IMB (U) is the estimated insulin bolus amount.
SF consists of three terms. The first term compensates for the carbohydrate
amount planned to be eaten and it is computed as the ratio between CHO (g),
i.e. the estimated carbohydrate intake, and the carbohydrate-to-insulin ratio
(CR) (g/U), i.e. a therapy parameter that specifies the number of grams of
carbohydrate covered by each unit of insulin [11]. The second term consists in
increasing or reducing the needed amount of insulin according to how much
the patient is currently far from its target BG level (GT). It is calculated as the
ratio between the difference between the current BG concentration (GC) and
GT, and the correction factor CF (mg/dL/U), i.e. a therapy parameter that
quantifies the drop in blood glucose level caused by the administration of 1
unit of insulin [12]. Finally, in order to avoid insulin overdosing, the third term
corrects the total insulin amount IMB by subtracting the so-called insulin-on-
board (IOB), i.e. an estimate of the amount of insulin in the body that has been
previously injected and that has not been assimilated by the organism yet.
To help patients in computing SF, it is possible to adopt the so-called bolus
calculators (BC) [13], i.e. simple software tools implementing SF that are com-
monly integrated in all major insulin pumps or available as standalone mobile
applications (Figure 1.3 shows as example of BC mobile application in action).
BCs resulted to be very useful in T1D management [14][15], indeed, for most
people, bolus insulin equations are difficult and time consuming to solve by
mental calculations. In this regard, many literature studies document a high
frequency of poor numeracy skill among adults with T1D. For example, in a
study conducted by Marden et al. [16], 201 adults with T1D were asked to
manually compute the required amount of insulin needed to compensate for a
specific amount of carbohydrate in a meal. It resulted that 57% of the subjects
came to a wrong insulin dose computation. On the contrary, when provided
with a BC, the proportion of wrong computations was reduced to 7% con-
firming the beneficial effects brought by the integration of BC in T1D therapy.
Moreover, Gross et al. [14] demonstrated that BCs significantly reduced the
number of insulin boluses required to contrast postprandial hyperglycemia
(due to meal-insulin under-dosage) and the amount of rescue carbohydrates
needed to recover from postprandial hypoglycemia (due to meal-insulin over-
dosage).
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1 Type 1 diabetes and open loop control of blood glucose concentration

Figure 1.3: Example of a bolus calculator app in action (Accu-Check Connect [17]).

1.3 Open problems of current methodologies for in-

sulin therapy

There are multiple disadvantages related to the standard insulin therapy which
make it sub-optimal. First of all, the patient lacks motivation to collect SMBG
measurements or does not have sufficient education on how to interpret them.
Moreover, the standard insulin therapy is very demanding as it greatly impacts
the quality of life of patients with T1D that are required to perform, for the
entirety of their life, a huge number of tasks. Just to give an example, to effec-
tively counterbalance the BG fluctuation due to a meal, patients are required to
measure preprandial BG via SMBG, to inject insulin boluses to contrast pran-
dial hyperglycemia and eventually to repeat the whole procedure until BG
gets back within the target range. As a matter of fact, it can be estimated that a
subject suffering from T1D can potentially perform more than 500,000 actions
during its lifetime. Additionally, although BCs implementing SF have been
proven to be clinically effective, they are still far from being optimal. First
of all, SF relies on SMBG measurements which are sparse [18] [19], thus not
able to properly capture both the shortcoming of hypo-/hyperglycemic events
and the information on glucose trend. This can be particularly dangerous for
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1.4 New scenarios in T1D management

patients with impaired awareness of hypoglycemia, in whom the ability to
perceive the onset of hypoglycemia is reduced or even absent [20]. In these
patients, the incidence of severe low glucose episodes that requires external
assistance for recovery is up to six fold higher than in subjects with normal
awareness of hypoglycemia [21]. This limitation can be in part overtaken by
resorting to the new continuous glucose monitoring sensors, as discussed later
on in Subsection 1.4.1. Moreover, focusing on the SF definition, parameters CR
and CF may vary during the day according to intra-/interday insulin sensi-
tivity variability, physical activity, alcohol consumption and other factors that
could affect the patient metabolism, such as hormone cycles, illness, and stress
[22] [23]. Finally, effectiveness of SF strongly depends on the patients’ skill
of correctly estimating CHO intakes (inaccuracy of ±20 g significantly affects
postprandial glycaemia in children [24]).

Figure 1.4: Representative BG monitoring data obtainable with SMBG (red dots) and
with CGM (blue line).

1.4 New scenarios in T1D management

1.4.1 Continuous glucose monitoring (CGM)

Exciting perspectives in the management of T1D were opened in the last 20
years by the introduction of minimally invasive needle sensors for real-time
continuous glucose monitoring (CGM) [25][26][27]. CGM delivers an almost
continuous glucose trace providing a BG measurement every 1-5 minutes, mit-
igating the need of the SMBG, and greatly increasing the information on BG
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1 Type 1 diabetes and open loop control of blood glucose concentration

fluctuations (see Figure 1.4 which shows that, using CGM, one can detect
hypoglycemic and hyperglycemic episodes otherwise undetectable through
SMBG use).

Since the first CGM prototype approved for commercialization by the US
Food and Drug Administration (FDA) back in 1999 [28], CGM evolved rapidly.
Indeed, until few years ago, CGM devices were only approved to be used in
adjunct to SMBG (the so-called adjunctive use), i.e. before making therapy de-
cisions such as insulin dosing, BG concentration provided by CGM needed to
be confirmed by an SMBG due to CGM poor accuracy. As such, CGM mea-
surements resulted to be unreliable and, more importantly, this problem lim-
ited the early adoption of CGM devices by both patients and clinicians who felt
unsafe in integrating CGM in diabetes treatment. This completely changed in
the last few years thanks to the constant efforts, both in terms of money and
time, of CGM manufactures to push forward glucose sensing technologies. In-
deed, many commercialized CGM sensors now achieve accuracies close to, or
even within, the SMBG accuracy range [29][30]. This technological improve-
ment led to the regulatory approval of CGM for the so-called non-adjunctive
use [31], i.e. allowing CGM to be used to make treatment decision without
the need of confirmatory fingersticks, whose safety have been proven by com-
puter simulations and a randomized non-inferiority clinical trial [32].
The beneficial impact brought by CGM use has been proved through many
other randomized clinical trials [33] [34] [35] [36] [37]. CGM resulted to be
effective in improving glycemic control, mitigating hypoglycemic events, and
reducing glycemic variability, not only for patients with T1D, but also subjects
suffering of type 2 diabetes, and gestational diabetes just to mention a few.
Clinical evidence is constantly growing in support of CGM encouraging and
motivating its spreading across the diabetes population.

Exploiting CGM to improve bolus calculators

Besides achieving good measurement accuracy, improving diabetes treatment,
and guaranteeing all the basic requirements needed for long-term wearable
biosensors [38], i.e. bio-compatibility, lifetime, safety, sensitivity, and speci-
ficity, state-of-the-art CGM systems provide users with a set of smart features
to improve patient self-management. Indeed, a very interesting and appealing
perspective lies in the possibility of designing and developing new algorithms
for diabetes care exploiting CGM-derived information. Specifically, BC based
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1.4 New scenarios in T1D management

on SF can be targeted and improved by including the information provided
by CGM sensors [39]. For example, in Herrero et al. [40], an approach to au-
tomatically adjust CR and CF exploiting the CGM measurements is presented
and demonstrated to improve glycemic control. The method is based on a
run-to-run (R2R) control technique, i.e., an iterative procedure in which the
values of CR and CF are updated daily according to a performance metric,
e.g., the distance between the minimum postprandial glucose concentration
and the patient’s target BG. Another work by Herrero et al. [41] improved the
performance achieved by R2R by integrating case-based reasoning (CBR), i.e.,
an artificial intelligence technique that solves new problems by applying solu-
tions learned from solving similar problems in the past.
All of the above cited methods rely on SF calculation, which takes into account
only a single BG measurement. Intuitively, this might be suboptimal given that
one can exploit the CGM measurements to obtain more information on the pa-
tients’ current status. Indeed, in a non-adjunctive CGM scenario, SF can still be
implemented and used by simply substituting the BG reading obtained using
SMBG with the value provided by CGM at the time of the bolus calculation.
However, this approach not only leaves the "static" nature of SF unaltered, but
also does not use the additional information brought by CGM. Present CGM
systems, such as the Dexcom G5 Mobile (Dexcom Inc, San Diego, California,
USA) [42] or the Senseonics Eversense (Senseonics, Inc., Germantown, MD,
USA) [43] system, provide users with the so-called rate-of-change (ROC) ar-
rows (see Figure 1.5), i.e., a graphical indication of the current direction and
velocity of changing glucose. It is natural to think of improving BCs outcomes
by modulating the recommended insulin dosage according to the patient’s
current ROC. Indeed, such an information is intuitively helpful to better de-
termine the amount of exogenous insulin to be administered. As such, new
insulin dosing strategies are needed to fully benefit of non-adjunctive CGM
use.

Adjustment of SF according to ROC

The ROC information provided by CGM can be usefully exploited to adjust
SF. Intuitively, when ROC is negative, i.e. BG is decreasing, one would like to
reduce the insulin bolus computed using SF to preventively avoid the possible
shortcoming of dangerous hypoglycemic episodes. On the other hand, when
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Figure 1.5: Example of CGM systems that provide ROC. To the left, the Dexcom G5
CGM system (taken from [42]). To the right, the Senseonics Eversense CGM system
(taken from [43]). Both systems report the ROC magnitude and direction by mean of
an arrow in the upper panel of their mobile app.

ROC is positive, one would think of increasing the insulin bolus amount pro-
vided by SF to prevent, or at least mitigate, hyperglycemia.
Following this concept, several methodologies have been proposed in the lit-
erature the aim being adjusting SF according to ROC direction and magnitude.
The most popular methodologies include those of Buckingham et al. [44],
Scheiner [45], and Pettus and Edelman [46], and provide patients with simple
guidelines to integrate ROC in the insulin bolus computation. However, to the
best of our knowledge, despite such guidelines are intuitive and are based on
clinician’s experience, no study has evaluated their impact on glycemic con-
trol either quantitatively nor qualitatively. The main reason is that a clinical
study that would generate statistically-meaningful clinical data to support the
superiority of one method over another, may not be feasible to conduct [47].
Indeed, testing new insulin dosing strategies may induce patients to risky sce-
narios, such as severe hypoglycemia, that are so varied and rare that would
require a huge amount of data in order to be properly studied.

1.4.2 In silico clinical trials to assess new insulin therapy strate-

gies

In vivo versus in silico clinical trials

Development of new strategies for diabetes treatment and their assessment
on human subjects is a really time consuming, costly process. According to
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the Tufts Center for the Study of Drug Development, the commercialization
of new pharmaceutical products has been increasing exponentially mainly be-
cause of clinical assessment [48]. Clinical assessment requires the enrollment of
a sufficient number of subjects in order to provide actual proof of a new prod-
uct/treatment superiority. More importantly, clinical studies have to guaran-
tee patient safety, but this is not easy as it strongly depends on which strat-
egy one has to test. To overcome this issue, in silico clinical trials can be per-
formed. In silico clinical trials allow the set up of computer simulation environ-
ment where virtual subjects are modeled by initializing a disease/intervention
model with quantitative information either measured on an individual (sub-
ject specific model), or inferred from population distributions of those values
(population specific model). Specifically to diabetes, they consist of using an
individualized simulation model of glucose-insulin dynamics to preliminary
design and test new methodologies for BG control in a safe and cost efficient
environment. In silico clinical trials can be used to overcome the limitations of
clinical trials. Indeed, they allow to explore the impact of new treatments both
in a average low risk situation and in numerous high risk scenarios which are
impossible, dangerous, and unethical to replicate in a real-life setting. Specifi-
cally, they allow to run multiple tests on the same virtual subject maintaining
the same surrounding conditions, i.e. something impossible to replicate in
real-life since patient’s behaviour and physiological status are never the same.
For this purpose, multiple simulation models have been proposed in the lit-
erature so far including those of Hovorka et al. [49], Willinska et al. [50],
Kanderian et al. [51], and Haidar et al. [52]. In particular, one of the most
used model of T1D physiology is the UVa/Padova T1D Simulator [53], firstly
developed in 2008 by the University of Padova and University of Virginia and
briefly described in the following Subsection.

The UVa/Padova T1D Simulator

The UVa/Padova T1D Simulator is a large-scale maximal model describing
the glucose insulin regulatory system by means of 13 differential equations
and 35 subject-specific parameters. The simulator is equipped with 300 "vir-
tual" subjects (100 adults, 100 adolescents, 100 children) spanning the real T1D
population variability observed in vivo. In addition, the simulator is equipped
with models reproducing CGM sensor errors, e.g. virtual sensors that can be
placed on the subjects to evaluate the impact BG measurement error during
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1 Type 1 diabetes and open loop control of blood glucose concentration

Figure 1.6: Schematic of the model included in the FDA-accepted T1D simulator
(2013 version). Note: exogenous glucagon delivery is not shown in the scheme be-
cause not used in this thesis.

the in silico experiments. Subcutaneous insulin delivery is modeled as well,
allowing to place virtual insulin pumps on the virtual subjects and assessed
predefined insulin treatment strategies. Each of the virtual patient parameters
have been derived by a unique data set of 204 normal individuals who un-
derwent a triple tracer meal protocol that allowed to measure not only plasma
glucose and insulin, but also crucial fluxes of the glucose-insulin system i.e.
plasma rate of appearance of ingested CHO, endogenous glucose production,
glucose utilization and insulin secretion [54]. Specifically, in order to obtain the
model parameters for patients with T1D from those obtained for the healthy
subjects, clinical relevant modifications were introduced. A schematic repre-
sentation of the UVa/Padova T1D Simulator is shown in Figure 1.6. Briefly, it
takes as input CHO intakes and exogenous insulin administrations to provide,
as outputs, BG and interstitial glucose (IG) concentrations.
The UVa/Padova T1D Simulator was approved in January 2008 by the FDA
as a substitute to animal trials for the preclinical testing of control strategies
in artificial pancreas studies. This means that in silico clinical trials can pro-
duce reliable preclinical results in a fraction of the time and cost required for
animal trials. Then, in 2013, a new more sophisticated version of the simulator
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has been developed improving the model of glucose dynamics in the hypo-
glycemic range and incorporating new models of glucagon kinetics, secretion,
and action. Moreover, a new refined way to generate the virtual population
was adopted. As a result, the new version of the simulator showed better
agreement with the real patient-specific parameters population. As the previ-
ous version, in 2013, the new simulator has been accepted by FDA as a substi-
tute for preclinical trials. In 2013, the use of the UVa/Padova T1D simulator
was furtherly extended from single meal to multiple days by incorporation of
a model of intra- and inter-day variability of insulin sensitivity [55] derived
from data collected in 20 T1D subjects studied with the triple-tracer method
[56]. Finally, the 2013 release of the UVA/Padova T1D simulator with incorpo-
ration of the time-variability of insulin sensitivity was validated on 141 glucose
traces collected in 47 T1D subjects [57] and have been approved by FDA as a
substitute for preclinical trials as the previous version [58].
In conclusion, the UVa/Padova T1D Simulator is the right tool to perform in
silico clinical trials aimed to preliminary assess the clinical safety and feasibil-
ity of new treatments for the manual control of BG in T1D.

1.5 Beyond SF: Toward a personalized insulin ther-

apy

In the last few years, the increasing availability of patient data gathered through
wearable biosensors, such as CGM devices, enabled the creation of rich datasets
in which CGM measurements have been integrated with other data of differ-
ent "nature", e.g. insulin infusion recordings, and physical activity history, e.g.
the Ohio dataset [59]. This unlocked many possibilities, such as the develop-
ment of new personalized decision making tools and applications that aim to
fit each patient physiology around their personal needs [57][52]. These strate-
gies have the potential of greatly improving the outcome of current standard
therapy and at the same time allow to reduce the burden brought by diabetes
care to healthcare agencies which can potentially design specific prevention
plans to save money and resources and at the same time increase treatment
quality.
Following this rationale, "smarter" BCs can be designed the aim being per-
sonalizing the insulin dosing both at the individual and population level. In-
deed, CGM data can be used to discover daily, weekly, and even seasonal pat-
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terns that can be exploited to modulate meal-insulin bolus accordingly. Fur-
thermore, insulin therapy outcomes can be used to fed cluster algorithms to
automatically divide patients into different insulin sensitivity categories and,
again, tune the insulin bolus amount accordingly, i.e. the more the insulin sen-
sitivity associated to a specific subject, the smaller the insulin dose.
Given the complexity of the problem at hand, the non linear nature of glucose-
insulin dynamics and the necessity of exploiting information coming from dif-
ferent domains, suitable techniques, able to implement data driven techniques
to deliver personalized medical treatment, must be devised. With such a scope,
methodologies belonging to the field of machine learning [60][61], e.g. linear
regressions, neural networks and random forests just to mention a few, could
be fed not only with features extracted from the CGM data stream, such as, the
ROC information, but also other (easily accessible) therapy parameters, such
as CR, CF, and the insulin pump basal rate, that implicitly reflect and char-
acterize the individual patient physiology and have influence on the glycemic
outcome during a meal [62]. Therefore, they appear natural candidates to con-
stitute the backbone of the methodologies for insulin dosing personalization
proposed in the remainder of the present thesis.

1.6 Aim and structure of the thesis

The main goal of this thesis is to improve the glycemic control achievable with
the standard T1D insulin therapy by developing new personalized techniques
for insulin dosing. In particular, we will build new data driven methodologies
models that exploit both CGM data and easily accessible patient characteris-
tics. To do so, in Chapter 2 we review the current literature techniques for the
personalization of SF using CGM information (previously mentioned in Sub-
section 1.4.1) and perform in silico clinical trials to evaluate them both quanti-
tatively and qualitatively. In Chapter 3 we preliminary show how, by adopting
a NN-based algorithm fed with CGM information and easily accessible pa-
rameters, it is possible to adjust SF and improve the glycemic control obtained
with the current literature techniques, thus demonstrating the potential of in-
tegrating machine learning methods in T1D treatment tracing back to machine
learning. In Chapter 4, a different personalized approach to insulin dosing is
proposed. Specifically, a new model based on eXtreme Gradient Boosted trees
is used in a two step procedure: first an eXtreme Gradient Boosted tree model
classifies, at meal time, the postprandial glycemic status using CGM data to-
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gether with carbohydrate intakes data and insulin infusion recordings, then its
outcome is used to proactively improve glycemic control through the real time
modulation of SF. Then, in Chapter 5 we design a new formula for insulin bo-
lus calculation based on linear regression models. In particular, our idea is to
release the hypothesis of using SF as a starting point and adjusting it according
to patient status and characteristics, and provide patients with new rules that
naturally take into account for this information. To conclude, final considera-
tions on the work carried out in this thesis as well as its future developments
are discussed in Chapter 6.
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Chapter 2

Literature methodologies for insulin
dosing accounting for glucose rate
of change: review and assessment

1 In this chapter, we first present three popular methodologies that have been
proposed in the literature by Buckingham et al. [44], Scheiner [45], and Pet-
tus and Edelman [46] to account for ROC to adjust the insulin meal bolus
amount calculated using SF. Then, by using a simulation framework, based
on the UVA/Padova T1D Simulator, we assess their relative performance. The
analysis will suggest how to orient our strategy to the solution of the insulin
dosing personalization problem described in Chapter 3-5.

2.1 Literature algorithms for the adjustment of SF

according to ROC

The method developed by Buckingham et al., hereafter label as BU, was firstly
proposed in 2008 and consisted in modulating the insulin bolus amount cal-
culated using SF according to ROC magnitude and direction. In practice, it
consists of reducing/increasing insulin bolus by 10% when CGM sensor indi-
cates that BG is falling/rising by 1-2 mg/dL/min. On the other hand, when
CGM indicates that BG is falling/rising by 2-3 mg/dL/min or more, BU sug-
gests to decrease/increase insulin bolus by 20%.

1This chapter contains material published in the article [63]
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2 Literature methodologies for insulin dosing accounting for glucose rate of
change: review and assessment

Formally, the computation of IMB through BU can be formulated as:

IMBBU = (
CHO
CR

+
GC − GT

CF
− IOB) · (1 + fBU(ROC)) (2.1)

where fBU is a deterministic function depending on ROC. Specifically, in BU,
fBU is defined as:

fBU(ROC) =



0.2 ROC ≥ 2 mg/dL/min

0.1 1 ≤ ROC < 2 mg/dL/min

0 −1 < ROC < 1 mg/dL/min

−0.1 −2 < ROC ≤ −1 mg/dL/min

−0.2 ROC ≤ −2 mg/dL/min

(2.2)

A different approach is proposed by Scheiner (SC). Instead of modulating
SF according to ROC, it suggests using ROC as a "predictor" to infer the future
value of BG in the next 30-60 minutes under the assumption that such a ROC
will be steady by the time the insulin starts to act. In practice, this translates in
adjusting SF by substituting GC with its predicted value obtained by projecting
GC 30-60 minutes ahead following the ROC direction and magnitude.
Specifically, SC suggests to subtract/add 25 mg/dL to GC when CGM indicates
that BG is falling/rising by 1-3 mg/dL/min. Instead, if BG is falling/rising by
more than 3 mg/dL/min, SC advise patients to subtract/add 50 mg/dL to the
measured GC.
Formally, the computation of IMB through SC can be formulated as:

IMBSC =
CHO
CR

+
(GC + fSC(ROC))− GT

CF
− IOB (2.3)

where fSC is a deterministic function depending on ROC. Specifically, in SC,
fSC is defined as:

fSC(ROC) =



50 ROC ≥ 2 mg/dL/min

25 1 ≤ ROC < 2 mg/dL/min

0 −1 < ROC < 1 mg/dL/min

−25 −2 < ROC ≤ −1 mg/dL/min

−50 ROC ≤ −2 mg/dL/min

(2.4)
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2.2 In silico assessment of the methodologies by the UVa/Padova T1D
Simulator

A strategy similar to that of SC is adopted in the method proposed by
Pettus and Edelman, in the following denoted by PE. PE consists in subtract-
ing/adding 50 mg/dL to GC if BG is falling/rising by 1 mg/dL/min. More-
over, PE subtracts/adds 75 mg/dL to the measured BG, when BG is changing
by 2-3 mg/dL/min. Finally, PE suggests to decrease/increase the measured
GC by 100 mg when CGM indicates that BG is falling/rising by more than 3
mg/dL/min.
Formally, the computation of IMB through PE can be formulated as:

IMBPE =
CHO
CR

+
(GC + fPE(ROC))− GT

CF
− IOB (2.5)

where fPE is a deterministic function depending on ROC. Specifically, in PE,
fPE is defined as:

fPE(ROC) =



100 ROC ≥ 2 mg/dL/min

50 1 ≤ ROC < 2 mg/dL/min

0 −1 < ROC < 1 mg/dL/min

−50 −2 < ROC ≤ −1 mg/dL/min

−100 ROC ≤ −2 mg/dL/min

(2.6)

Such modifications of GC, more aggressive than in SC, were motivated by
recent studies investigating how T1D patients use CGM and ROC to make
therapy decisions [64][65]. This study revealed that patients with T1D make
make much larger corrections to insulin dose compared to both BU and SC.
For example, when GC is 110 mg/dL and BG is rapidly rising (BG is increas-
ing by more than 3 mg/dL/min) patients reported to increase the insulin dose
amount computed using SF by 81% (instead of 20% suggested by BU).
Table 2.1 reports a summary of the methods specifics.

2.2 In silico assessment of the methodologies by the

UVa/Padova T1D Simulator

2.2.1 Rationale

Assessing methodologies for determining insulin dosing is challenging. In-
deed, as already discussed in Chapter 1, to fairly evaluate and compare the
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2 Literature methodologies for insulin dosing accounting for glucose rate of
change: review and assessment

Table 2.1: Comparison of the literature guidelines for the adjustment of SF based on
ROC.

ROC indication BU SC PE

Constant: glucose is steady
IMB∗ = IMB G∗C = GC G∗C = GCor is not decreasing/increasing

by more than 1 mg/dL/min
Slowly rising: glucose is rising IMB∗ = IMB + 10% G∗C = GC + 25 G∗C = GC + 50by 1-2 mg/dL/min

Rising: glucose is rising IMB∗ = IMB + 20% G∗C = GC + 25 G∗C = GC + 75by 2-3 mg/dL/min
Rapidly rising: glucose is rising IMB∗ = IMB + 20% G∗C = GC + 50 G∗C = GC + 100by more than 3 mg/dL/min
Slowly falling: glucose is falling IMB∗ = IMB− 10% G∗C = GC − 25 G∗C = GC + 50by 1-2 mg/dL/min

Falling: glucose is falling IMB∗ = IMB− 20% G∗C = GC − 25 G∗C = GC − 75by 2-3 mg/dL/min
Rapidly falling: glucose is falling IMB∗ = IMB− 20% G∗C = GC − 50 G∗C = GC − 100by more than 3 mg/dL/min

effect of different insulin bolus adjustment strategies on glycemic control, it
would be necessary to have data collected in the same patient, in the same
time window, but with different insulin therapies, which is clearly impossible
in real life. To circumvent this problem, simulations can be exploited to design
an ad-hoc in silico clinical trial, where the same time window, with identical
patient’s physiological characteristics and behaviour can be reproduced.
Here, to evaluate the performance of BU, SC, and PE, and to compare them
against SF, we resort to the 2013 version of the UVa/Padova T1D Simulator
(hereafter indicated as S2013) [66], being, at the best of our knowledge the best
available tool to perform such an analysis in a safe and cost efficient environ-
ment. In the following, details on the data and the simulation setup we used
during the assessment are provided, as well as, the rationale that led us to the
design of the in silico clinical trial.

2.2.2 Simulated dataset

Using S2013, we performed an in silico clinical trial in 100 virtual adults sub-
jects (see Table 2.2 for a description of average and range of the key metabolic
parameters of the virtual adult population enclosed in S2013). For each subject,
we performed a single-meal simulation of 9-hours starting at 1:00 PM, where
a meal of 50g of CHO was placed. In particular, each simulation was studied
for different preprandial conditions in terms of BG and ROC values in order
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Simulator

Table 2.2: Main metabolic and demographic parameters of the virtual adult popula-
tion of S2013 (taken from [66]).

Parameter Mean(SD) Minimum Maximum

Mean weight (kg) 69.7 (12.4) 46.7 106.1
Total daily insulin (U/day/kg) 0.61 (0.18) 0.27 1.19

CR (g/U) 15.9 (5.3) 7.2 29.5
Fasting BG 119.6 (6.7) 107.5 137.8

to evaluate the impact of the adjustment of SF when different meal conditions
are met. To do so, we tuned by trial-and-error the timing and amount of morn-
ing breakfast and snack and amount of the respective insulin boluses in the
6 hours preceding the start of the simulation to get the patient to the desired
BG and ROC preprandial conditions. The resulting set of scenarios consists,
for each patient, in 24 different preprandial conditions, i.e. the combination of
four different ROC intervals (-3 to -2 mg/dL/min, -2 to -1 mg/dL/min, 1 to 2
mg/dL/min, and 2 to 3 mg/dL/min) and six BG intervals (60 ± 5, 70 ± 5, 80
± 5, 100 ± 5, 150 ± 5, and 250 ± 5).
Regarding the other possible preprandial conditions, we decided not to gener-
ate scenarios having constant ROC (when glucose is steady or is not increas-
ing/decreasing by more than 1 mg/dL/min) since in this particular case in-
sulin bolus computed using SF is the same as BU, SC, and PE. Moreover, we
did not generate scenarios having extreme ROC intervals (ROC lower than -3
mg/dL/min or greater than 3 mg/dL/min) since not possible to reproduce
with S2013 with realistic manipulations of time, carbohydrate content, and in-
sulin bolus of morning breakfast and snack.
To assess the performance of each BC method per se, we decided to limit the
exposition of the study to possibly confounding factors (e.g., patient behavior
in making treatment decisions to mitigate hyper/hypoglycemia, changes in in-
dividual insulin sensitivity, low or high preprandial insulin/carbohydrate on
board amount, CGM errors and artifacts that can also alter the estimation of
the ROC value) and run the simulations in a noise free environment, that is,
using optimal therapy parameters, allowing neither postprandial correction
boluses nor hypotreatments, without simulating errors in meal CHO count-
ing, BG measurement and ROC estimation.
To better grasp the dataset composition, two simulated examples are described
below. Figure 2.1 shows the BG and ROC traces obtained for the virtual sub-
ject adult#1 when the target preprandial conditions at 1:00 PM are BG 100 ±
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5 mg/dL and ROC -2 to -1 mg/dL/min. From visual inspection, it can be
observed that a morning breakfast of 82.5 g of CHO (5.5 g of CHO equally
distributed over 15 minutes) and an insulin bolus of 17 U have been placed at
around 10:15 and 10:30 AM, respectively. These events allowed the BG concen-
tration and trend to reach the desired target range (here highlighted in yellow)
at lunch time, i.e. 1:00 PM. A different simulated scenario is shown in Figure

Figure 2.1: Representative simulated scenario for adult#1 when preprandial BG and
ROC target are 100 mg/dL and -2 to -1 mg/dL/min. Left panels, show the CHO intake
and insulin infusion placed within the morning time window in order to achieve the
target preprandial conditions (here highlighted in yellow). Right panels show the
obtained BG and ROC traces respectively. Red crosses represent the BG and ROC
values at lunch time, i.e. 1:00 PM.

2.2. BG and ROC traces are shown for adult#1 when the target preprandial
conditions at 1:00 PM are BG 70 ± 5 mg/dL and ROC 1 to 2 mg/dL/min.
Here, a morning breakfast of 30 g CHO (2 g of CHO equally distributed over
15 minutes), a snack of 20 g of CHO (4 g of CHO equally distributed over 5
minutes) and insulin bolus of 9 U, have been placed at 7:00 AM, 11:30 AM and
7:10 AM, respectively, in order to meet the target BG and ROC values at lunch
time.
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Figure 2.2: Representative simulated scenario for adult#1 when preprandial BG and
ROC target are 70 mg/dL and 1 to 2 mg/dL/min. Left panels, show the CHO intake
and insulin infusion placed within the morning time window in order to achieve the
target preprandial conditions (here highlighted in yellow). Right panels show the
obtained BG and ROC traces respectively. Red crosses represent the BG and ROC
values at lunch time, i.e. 1:00 PM.

2.3 Criteria for performance evaluation and statisti-

cal analysis

2.3.1 Performance evaluation

For each subject and each (BG, ROC) pairs, we compared the BG profile ob-
tained using the SF with the BG profiles obtained from the adoption of BU, SC,
and PE. Note that, for each particular meal condition scenario, we discarded
those virtual subjects whose insulin bolus computed with SF resulted to be
zero or negative (e.g., because of too much elevated IOB values), since in such
a situation the methods would not be comparable. The quality of glucose con-
trol was assessed, first of all, by calculating the blood glucose risk index (BGRI)
in the postprandial 9-h time window. Briefly, this metric, thanks to the glucose
scale symmetrization, is equally sensitive to hypoglycemia and hyperglycemia
and condenses glycemic excursions in a single quantity, facilitating interpreta-
tion and comparison of the results. In details, the BGRI, first introduced by
Kovatchev et al. [67], is composed by the sum of 2 terms: the Low Blood Glu-
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cose Index (LBGI) and the High Blood Glucose Index (HBGI). The definition of
LBGI and HBGI derives from a logarithmic transformation of the BG scale that
balances the amplitude of hypo-/hyperglycemic ranges (enlarging the former
and shrinking the latter) and makes the transformed data symmetric around
zero and fitting a normal distribution [68]. This symmetrization is performed
because in the standard BG scale, hypoglycemia (BG < 3.9 mmol/l) and hy-
perglycemia (BG > 10 mmol/L) have very different ranges, and euglycemia is
not central in the entire blood glucose range (1.1-33.3 mmol/L). Consequently,
the scale is not symmetric and its clinical center (6-7 mmol/L) is far from its
numerical center (17 mmol/L). As a result, a logarithmic data transformation
that matches the clinical and numerical center of the BG scale have been ap-
plied, thus making the transformed data symmetric [69]. If BG measurements
are expressed in mg/dl, the transformed data f (BG) are given by:

f (BG) = 1.509 · [(log BG)1.084 − 5.381] (2.7)

and are used to define a BG risk function r(BG) as:

r(BG) = 10 · f (BG)2 (2.8)

that associates to each BG reading a measure of its risk, as expressed with a
number in the 0 to 100 range. For the definition of this metric, the risk index of
equation 2.8 is used and thus the LBGI and HBGI are computed and added in
order to generate the overall BGRI as follows:

LBGI =
1
N

N

∑
i=1

r(BG(i))1( f (BG(i)) < 0) [dimensionless] (2.9)

HBGI =
1
N

N

∑
i=1

r(BG(i))1( f (BG(i)) > 0) [dimensionless] (2.10)

BGRI = LBGI + HBGI [dimensionless] (2.11)

Finally, to give a picture of the relative performance of the three methods more
focused on hypoglycemia, we computed, for each subject, LBGI. Specifically,
we considered LBGI obtained using the methods BU, SC, and PE under com-
parison and the LBGI obtained using SF, and we calculated the respective av-
erage ratio.
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2.3.2 Statistical analysis

To evaluate the between-methods differences, a two-tailed Wilcoxon signed-
rank test with 1% significance was performed. In particular, we applied the
Bonferroni correction for multiple comparisons, thus dividing the significance
level by the total number of comparisons we made. To assess whether or not
some patient characteristics can impact the outcome, for each scenario we com-
puted the Spearman’s correlation coefficient between body weight (BW), total
daily insulin (TDI), basal insulin infusion rate (Ib), GT, CR, CF, IOB, and the
BGRI difference (∆BGRI) between BU versus SF, SC versus SF, and PE versus
SF. The statistical significance of the obtained correlation was evaluated using
as significance level α = 1%.

2.4 Results

Figure 2.3 presents two examples of BG traces obtained using both ROC-modified
BC literature methods and SF. Top panel represents adult#6 with preprandial
BG 100 ± 5 mg/dL and ROC -3 to -2 mg/dL/min. In this case adjusting
the original insulin bolus amount according to ROC allows to achieve a bet-
ter glucose control both during and after the meal, reducing and even zeroing
(when using PE) time spent in hypoglycemia. In particular, PE correction is
the one that performs best (BGRI(SF) = 6.39, BGRI(BU) = 5.00, BGRI(SC) =
3.84, BGRI(PE) = 1.81). The second example, reported in the bottom panel,
represents adult 20 with preprandial BG 150 ± 5 mg/dL and ROC 2 to 3
mg/dL/min. This case presents worse glycemic outcomes compared to SF
when applying either SC, PE, and BU correction (BGRI(SF) = 7.80, BGRI(BU)
= 13.86, BGRI(SC) = 9.14, BGRI(PE) = 14.93) which drive the virtual subject to
hypoglycemia. Below, for each of the considered ROC intervals, we analyze
and compare the obtained glycemic outcomes resulting from the adoption of
SF, BU, SC, and PE in the virtual population.

2.4.1 ROC -3 to -2 mg/dL/min

In Figure 2.4A, the distributions of the ∆BGRI between BU versus SF, SC ver-
sus SF, and PE versus SF obtained in all the 100 virtual subjects when prepran-
dial ROC is -3 to -2 mg/dL/min are shown via boxplot representation. Ac-
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Figure 2.3: Example of BG trace obtained with SF (in blue), BU (in violet), SC (in red),
PE (in green), and BU (in violet) methods. Top panel. BG profiles obtained for the
virtual subject adult 6 when preprandial ROC is -3 to -2 mg/dL/min and preprandial
BG is 100 ± 5 mg/dL. Bottom panel. BG profiles obtained for the virtual subject adult
20 when ROC is 2 to 3 mg/dL/min and preprandial BG is 150 ± 5 mg/dL.

cording to Figure 2.4A, all methods improve significantly the BGRI (p < 0.01)
obtained with SF. This is visible also in Table 2.3, where we report the me-
dian/interquartile range of the BGRI distribution obtained using SF, BU, SC,
and PE. However, the boxplots in Figure 2.4A also evidence that several sub-
jects obtained worse glycemic outcomes when the dose is corrected according
to either BU, SC, or PE compared to SF. In Figure 2.5A, we report the box-
plot representation of the ∆BGRI distributions obtained by comparing SC ver-
sus BU, PE versus BU, and PE versus SC when preprandial ROC is -3 to -2
mg/dL/min. Indeed, except for preprandial BG 150 ± 5 mg/dL where all
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Figure 2.4: Boxplot representation of the distribution of ∆BGRI obtained comparing
BU versus SF (in blue), SC vs SF (in red), PE versus SF (in green) when ROC is -3 to -2
mg/dL/min (panel A), -2 to -1 mg/dL/min (panel B), 1 to 2 mg/dL/min (panel C),
and 2 to 3 mg/dL/min (panel D). Red horizontal lines represent median, boxes mark
interquartile ranges, dashed lines are the whiskers, red crosses indicate outliers. Black
stars indicate statistical significant between-distribution differences. Lower ∆BGRI
means better glucose control quality.
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methods achieve equivalent performance, PE obtained significantly (p < 0.01)
better BGRI values compared to both BU and SC. Furthermore, as visible in
Table 2.3A, comparing SC versus BU, better BGRI are achieved using BU. As
far as the correlation analysis is concerned, comparing BU, SC, and PE with
the SF, we find that, when ROC is -3 to -2 mg/dL/min, the respective ∆BGRI
are weakly but significantly correlated (p < 0.01) with CR and IOB. No signifi-
cant correlation has been found for the other considered patients’ parameters.
Table 2.4A reports the average ratio between the LBGI obtained using the con-
sidered methods and the LBGI obtained using the SF when ROC is -3 to -2
mg/dL/min. Results show that, as expected, the LBGI decreases using BU,
SC, and PE, as the computed insulin bolus amount decreases as well. In par-
ticular, PE achieves lower ratios, being the most conservative.

2.4.2 ROC -2 to -1 mg/dL/min

Figure 2.4B shows the distributions of ∆BGRI obtained by comparing the con-
sidered methods against SF when preprandial ROC is -2 to -1 mg/dL/min.
In this case, the outcomes are strongly dependent on the specific preprandial
BG level. Indeed, although all methods allowed obtaining statistically signif-
icant better performance than SF for preprandial BG 80 ± 5, 100 ± 5 and 250
± 5 mg/dL, there are no statistically significant (p < 0.01) differences when
comparing BU, SC, and PE versus SF for preprandial BG 60 ± 5 and 150 ±
5 mg/dL, and PE versus SF for preprandial BG 70 ± 5 mg/dL. Considering
the median results (see Table 2.3), the best outcomes were achieved without
adjusting the reference insulin bolus when preprandial BG is 150 ± 5 mg/dL
and using PE for the other preprandial BG conditions. As shown in Figure
2.4B, the fact that the considered methods do not perform better than SF is due
to the presence of a non-negligible number of subjects whose BGRI is higher
when using BU, SC, and PE. Moreover, such a worsening of BGRI is more pro-
nounced if larger corrections are applied to SF, like using the PE guideline.
Indeed, the bigger the correction of SF, the higher the variability obtained in
terms of BGRI. Figure 2.5B shows the ∆BGRI distributions obtained compar-
ing the considered methods between each other. In these scenarios we cannot
detect any statistically significant difference between the methods. Further-
more, the correlation analysis obtains same qualitative results as ROC -3 to -2
mg/dL/min. Specifically, comparing BU versus SF, SC versus SF, and PE ver-
sus SF when ROC is -2 to -1 mg/dL/min, we find weak but significant correla-
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Table 2.3: Median [interquartile range] BGRI results obtained for different prepran-
dial BG level when ROC is -3 to -2 mg/dL/min (Panel A), -2 to -1 mg/dL/min (Panel
B), 1 to 2 mg/dL/min (Panel C), and 2 to 3 mg/dL/min (Panel D).

Preprandial BG (mg/dL)
60 ± 5 70 ± 5 80 ± 5 100± 5 150 ± 5 250 ± 5

(A) ROC =

SF 14.72 12.84 13.91 12.88 8.03 10.91

-3 to -2

[6.85-27.47] [4.86-21.67] [5.09-31.16] [5.03-30.58] [5.12-21.45] [7.93-21.71]

mg/dL/min

BU 11.45 8.63 9.25 9.10 7.86 10.53
[5.35-22.88] [5.13-18.49] [4.84-26.15] [4.97-26.94] [5.17-15.92] [7.44-16.26]

SC 12.23 7.95 10.09 9.01 7.77 10.29
[5.54-23.84] [3.98-18.70] [4.58-26.19] [4.97-26.66] [5.04-17.85] [7.28-17.67]

PE 10.95 7.55 9.18 8.36 7.70 9.80
[5.18-20.86] [4.00-17.00] [4.49-24.59] [5.01-25.16] [4.97-15.14] [7.22-15.28]

(B) ROC =

SF 5.51 5.88 5.70 6.50 5.92 10.56

-2 to -1

[3.77-13.07] [3.74-13.72] [3.75-15.57] [3.95-20.64] [4.61-9.62] [7.95-15.06]

mg/dL/min

BU 5.39 5.60 5.68 6.75 6.26 9.96
[3.96-10.09] [3.77-10.85] [3.62-13.08] [4.08-18.15] [4.23-8.96] [7.92-14.51]

SC 5.20 5.68 5.61 6.23 6.07 10.31
[4.03-10.02] [3.87-11.50] [3.65-12.41] [3.90-17.35] [4.31-8.61] [7.81-14.00]

PE 5.15 5.31 5.31 5.74 6.13 9.90
[4.03-9.70] [3.89-9.61] [3.81-10.40] [4.11-13.95] [4.34-8.38] [7.95-13.67]

(C) ROC =

SF 9.15 8.07 7.52 8.98 10.16 14.30

1 to 2

[6.81-12.28] [6.27-10.99] [5.82-10.95] [6.56-11.35] [8.25-12.60] [11.19-20.77]

mg/dL/min

BU 8.45 7.54 7.21 8.51 9.79 14.26
[6.36-11.78] [5.57-10.15] [5.57-9.65] [6.21-10.59] [7.57-12.93] [11.19-20.77]

SC 8.38 7.66 7.32 8.59 9.85 14.49
[6.42-12.05] [5.84-10.38] [5.66-10.03] [6.19-10.98] [7.77-13.56] [10.86-21.82]

PE 8.17 7.63 7.40 8.53 9.67 14.28
[6.21-11.28] [5.52-9.82] [5.27-9.93] [6.02-10.68] [7.63-13.39] [11.47-21.63]

(D) ROC =

SF 16.99 13.11 12.34 11.03 13.65 16.89

2 to 3

[11.85-22.01] [9.81-17.89] [9.24-17.47] [8.40-16.21] [9.52-18.71] [12.70-20.80]

mg/dL/min

BU 14.58 11.48 10.66 9.93 12.88 16.43
[10.70-19.21] [8.49-15.42] [8.15-15.00] [7.57-14.98] [8.99-18.21] [12.24-21.39]

SC 14.72 11.24 10.37 9.89 13.54 16.54
[10.56-19.05] [8.59-15.46] [8.37-15.18] [7.82-15.77] [8.78-19.38] [12.81-21.65]

PE 14.14 11.08 10.94 9.96 13.11 15.95
[10.36-18.09] [8.41-15.69] [8.08-15.98] [7.60-15.25] [9.38-19.55] [12.58-23.27]
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Figure 2.5: Boxplot representation of the distribution of ∆BGRI obtained compar-
ing SC versus BU (in gray), PE versus BU (in violet), and PE versus SC (in green)
when ROC is -3 to -2 mg/dL/min (panel A), -2 to -1 mg/dL/min (panel B), 1 to
2 mg/dL/min (panel C), and 2 to 3 mg/dL/min (panel D). Red horizontal lines
represent median, boxes mark interquartile ranges, dashed lines are the whiskers,
red crosses indicate outliers. Black stars indicate statistical significant between-
distribution differences. Lower ∆BGRI means better glucose control quality.
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Table 2.4: Mean (SD) ratio between the LBGI obtained using the considered methods
(BU,SC, and PE) and the LBGI obtained using the SF. Results are obtained for different
preprandial BG level when ROC is -3 to -2 mg/dL/min (Panel A), -2 to -1 mg/dL/min
(Panel B), 1 to 2 mg/dL/min (Panel C), and 2 to 3 mg/dL/min (Panel D).

Preprandial BG (mg/dL)
60 ± 5 70 ± 5 80 ± 5 100± 5 150 ± 5 250 ± 5

(A) ROC =

BU-SF 0.84 0.83 0.83 0.85 0.78 0.70

-3 to -2

(0.16) (0.19) (0.20) (0.18) (0.22) (0.24)

mg/dL/min

SC-SF 0.83 0.82 0.81 0.84 0.80 0.73
(0.16) (0.18) (0.20) (0.17) (0.19) (0.22)

PE-SF 0.77 0.77 0.76 0.79 0.74 0.65
(0.20) (0.22) (0.24) (0.21) (0.24) (0.27)

(B) ROC =

BU-SF 0.88 0.87 0.87 0.87 0.83 0.76

-2 to -1

(0.14) (0.14) (0.14) (0.14) (0.17) (0.18)

mg/dL/min

SC-SF 0.88 0.87 0.87 0.87 0.83 0.81
(0.15) (0.15) (0.14) (0.14) (0.17) (0.14)

PE-SF 0.79 0.78 0.78 0.79 0.73 0.68
(0.23) (0.23) (0.22) (0.21) (0.25) (0.23)

(C) ROC =

BU-SF 1.13 1.17 1.21 1.21 1.33 1.56

1 to 2

(0.21) (0.26) (0.32) (0.30) (0.40) (0.61)

mg/dL/min

SC-SF 1.13 1.16 1.19 1.19 1.25 1.25
(0.24) (0.27) (0.31) (0.32) (0.40) (0.32)

PE-SF 1.44 1.52 1.61 1.62 1.78 1.64
(0.84) (0.93) (1.06) (1.10) (1.48) (0.90)

(D) ROC =

BU-SF 1.19 1.27 1.42 1.53 1.93 2.73

2 to 3

(0.49) (0.54) (0.76) (0.83) (1.34) (2.16)

mg/dL/min

SC-SF 1.21 1.29 1.40 1.47 1.72 1.62
(0.55) (0.70) (0.84) (0.95) (1.47) (0.86)

PE-SF 1.50 1.75 1.97 2.10 2.52 2.21
(1.20) (1.75) (1.12) (1.55) (2.18) (1.89)

tion (p < 0.01) between ∆BGRI and CR and IOB. Table 2.4B reports the average
ratio between the LBGI obtained using the considered methods and the LBGI
obtained using the SF when ROC is -2 to -1 mg/dL/min. Results show same
qualitative outcomes as ROC -3 to -2 mg/dL/min. Specifically, average LBGI
decreases when BU, SC, and PE are adopted.

2.4.3 ROC 1 to 2 mg/dL/min

Figure 2.4C reports, via boxplot representation, the ∆BGRI distributions ob-
tained comparing BU, SC, and PE versus SF. In this case, adjusting insulin
bolus according to ROC we almost always obtained better results in terms
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of glycemic control. In particular, best median BGRI values (see Table 2.3)
are achieved using PE for preprandial BG 60 ± 5 and 150 ± 5 mg/dL, BU
for preprandial BG 70 ± 5, 80 ± 5, and 250 ± 5 mg/dL and SC for prepran-
dial BG 100 ± 5 mg/dL. However, when preprandial BG is 250 ± 5 mg/dL
there is no statistically significant difference between BU, SC, and PE and SF,
due to a substantial degradation of the glucose control performance in almost
half of the considered subjects when a correction is applied to SF. Focusing on
the between-methods comparison (see Figure 2.5C), results suggest that, when
preprandial BG is 150± 5 mg/dL, the best outcomes are achieved by the PE in-
dication. On the other hand, when preprandial BG is 250 ± 5 mg/dL, the best
results are obtained using BU. Notably, SC presents worse BGRI results com-
pared to both BU and PE, in all of the considered scenarios. Furthermore, as re-
ported in Table 2.4C, comparing SC versus BU, better BGRI are achieved using
the latter. Concerning the correlation analysis results, comparing BU versus
SF, SC versus SF, and PE versus SF when ROC is 1 to 2 mg/dL/min, we find
that ∆BGRI is significantly correlated (p < 0.01) with BW and GT. No signifi-
cant correlation has been found for the other considered patients’ parameters.
Finally, in Table 2.4C we report the average ratio between the LBGI obtained
using the considered methods and the LBGI obtained using the SF when ROC
is 1 to 2 mg/dL/min. Again, these results are not surprising, since BU, SC, and
PE increase the insulin bolus amount when ROC > 0 mg/dL/min. Specifically,
higher ratios are obtained using the PE method, since it implements the most
aggressive adjustment of the SF.

2.4.4 ROC 2 to 3 mg/dL/min

Figure 2.4D shows the ∆BGRI distributions obtained by comparing the consid-
ered correction methods against SF. Results show that adjusting the reference
insulin bolus according to ROC significantly (p < 0.01) improved, on average,
the glycemic outcomes. In particular, best median BGRI results (see Table 2.3)
are achieved using PE for preprandial BG 60 ± 5, 70 ± 5, and 250 ± 5 mg/dL,
SC for preprandial BG 80 ± 5 and 100 ± 5 mg/dL and BU for preprandial
BG 150 ± 5 mg/dL. However, there are no statistically significant differences
comparing BU, SC, and PE versus SF when preprandial BG is 250 ± 5 mg/dL,
since correcting SF leads to a degradation of the glycemic outcomes in a con-
sistent part of the population. In Figure 2.5D we show the ∆BGRI distributions
of SC versus BU, PE versus BU, and PE versus SC via boxplot representation.
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Results show that BU and PE get almost the same performance and outper-
form SC when preprandial BG is 150 ± 5 mg/dL. On the other hand, when
preprandial BG is 250 ± 5 mg/dL, PE and SC are not significantly different
from each other and the best results are achieved using BU. Finally, as far as
the correlation analysis is concerned, we find that, comparing BU, SC, and PE
with the SF when ROC is 2 to 3 mg/dL/min, ∆BGRI is significantly correlated
(p < 0.01) with BW, GT and CR. Table 2.4D reports the average ratio between
the LBGI obtained using the considered methods and the LBGI obtained using
the SF when ROC is 2 to 3 mg/dL/min. Results show the same qualitative
results as ROC 1 to 2 mg/dL/min.

2.5 Outcome of the assessment and indications for

new developments

Our results showed that, overall, none of the considered approaches clearly
prevails on the others, since the best modulation of the insulin bolus results
strongly related to preprandial conditions. In the scenarios in which prepran-
dial BG is rapidly decreasing (ROC -3 to -2 mg/dL/min), we observed the best
performance for PE which allowed reducing the insulin bolus amount more
than the other methods, thus resulting in better glycemic outcome. When BG
is slightly decreasing (ROC -2 to -1 mg/dL/min), none of the three "dynamic"
methods is superior for all the preprandial BG levels tested. The same com-
ment applies to positive ROC scenarios, in which in particular no statistically
significant BGRI improvement was obtained by either SC, BU and PE com-
pared to SF when BG was 250 ± 5 mg/dL. Finally, our results showed that
none of the methods to correct SF according to ROC perform well in all the
subjects. Indeed, even if all the methods achieved significantly better results in
median BGRI compared to SF, this improvement was not achieved for all the
subjects, with several individuals obtaining worse glycemic outcomes when
either BU, SC, or PE were applied. In particular, our results show an impor-
tant limitation of BU, SC, and PE. In fact, when ROC is positive, the risk for
hypoglycemia systematically increases even if, following the intuition, the in-
creased amount of administered insulin should compensate the positive ROC
without inducing hypoglycemia.
Our results also demonstrated the existence of a weak, but significant, cor-
relation between the obtained glycemic outcomes and some of the patient’s
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specific parameters. Specifically, our analysis suggests that, when ROC is neg-
ative, the insulin bolus dose should be modulated exploiting also CR and the
IOB amount instead of just ROC. On the other hand, when ROC is positive, re-
sults indicates that BW, GT and CR should also be accounted in the adjustment
of the SF.
In conclusion, the assessment of BU, SC, and PE suggests that using CGM
trend information for insulin dosing requires particular attention. Indeed, al-
though having information about ROC can potentially improve the current
SF for insulin bolus calculation, the rules for integrating ROC information in
BC must be carefully devised and comprehensively assessed to ensure their
safety. Therefore, further investigations are needed to design new BCs able to
effectively take advantage of the "dynamic" information on BG available from
CGM. In particular, new methodologies should personalize the correction of
SF taking into account also the subject’s characteristics.
Following the lessons learnt in the present chapter, we decided to explore
novel insulin bolus adjustment approaches based on tools such as neural net-
works, extreme gradient boosted trees, and multiple linear regression, tracing
back to machine learning in order to develop new methodologies able to take
into account also patient’s specific parameters and current physiological sta-
tus.
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Chapter 3

Development of a neural network
based algorithm to personalize the
insulin dosing

1 In the following, to surpass the limitations of existing literature discussed
in the previous chapter, we propose a novel strategy based on a neural net-
work (NN) for the adjustment of the insulin bolus dose provided by SF that,
instead of accounting for ROC only as in BU, SC, and PE, exploit additional
information regarding patient current physiological status.

3.1 Rationale

As presented in Chapter 2, BU, SC, and PE, consist in increasing or reducing
the insulin bolus computed with SF as a function of ROC. In particular, fo-
cusing on SC and PE, both methods integrate SF with a correction based on a
prediction of future BG by computing B as:

IMB =
CHO
CR

+
(GC + f (X))− GT

CF
− IOB (3.1)

where f (·) is a deterministic function ranging from -100 to 100 mg/dL depend-
ing on a set of variables X (here X = {ROC}). Notably, the main limitation of
these two methods is that the ROC-based adjustment is equal for all individ-
uals and for all preprandial BG level. A possible margin of improvement is to
develop methods to design a function f (·), in Equation 3.1, able to take into ac-

1This chapter contains material published in the article [70]
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count simultaneously some individual parameters of the patient (i.e., CF, CR,
insulin pump basal infusion rate, GT, body weight, insulin sensitivity) as well
as the state (i.e., GC, CHO, ROC, IOB) at the time of the bolus.
Therefore, the leading idea here is to develop a NN-based "corrector", here-
after labeled as NNC, to determine how to optimally correct the insulin bolus
amount calculated with SF by exploiting the information on patient’s CHO in-
take, preprandial conditions and the aforementioned individual parameters.
The NNC will be developed and assessed by using a simulated dataset de-
scribed in the following section.

3.2 Simulated dataset

To develop and assess NNC, we used the same dataset simulated for the as-
sessment of BU, SC, and PE, which consist in data of 100 virtual adult subjects
each simulated several times in a single meal noise-free scenario with different
conditions at meal time in terms of BG and ROC where, for the sake of sim-
plicity and practicality, ROC values at meal time are discretized as in Figure
3.1. See Section 2.2.2 for more details on how the dataset was built.

Figure 3.1: ROC discretization. Specifically, ROC was set to -3 if ROC ≤ -3
mg/dL/min, -2 if -3 < ROC ≤ -2 mg/dL/min, -1 if -2 < ROC ≤ -1 mg/dL/min, 0
if -1 < ROC < 1 mg/dL/min, 1 if 1 ≤ ROC < 2 mg/dL/min, 2 if 2 ≤ ROC < 3, and 3 if
ROC ≥ 3.
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In order to determine how to determine how to correct insulin bolus amount
calculated by SF, it is important to have an ideal reference. To provide such
a reference, let’s consider a specific patient p and a meal condition m (that
is, meal amount, preprandial BG and ROC values). The problem is to iden-
tify the "optimal" f (·) = Ypm correction value to be applied to SF such that it
allows to achieve the best glycemic outcome, quantified here by BGRI. For
this purpose, given p and m, we analyzed multiple simulations where we
computed the meal insulin bolus using Equation 3.1 with different values of
Ypm chosen from an equally spaced manually specified grid of values F :=
{−200 + 10 · k | k = 0, ..., 40}. As a result, for each p and m, we obtained
a total of 41 BG profiles that we quantitatively evaluate by calculating the re-
spective BGRI, i.e. BGRIpm. Then, we set the "optimal" correction Ypm as the
value of F associated to the minimum BGRIpm. In particular, if two or more
Ypm allow to get the minimum BGRIpm, Ypm is defined as the most "conserva-
tive" correction f (·), that is, the closer value to 0. Notably, some Ypm are equal
to ± 200 due to the fact that F is finite. We decided to remove those cases from
the dataset to get it loose from the F definition. As a result, the final dataset
is composed by a total of 9963 records, identified by p, m and the respective
Ypm . It is important to remark that the set of target Ypm values together with
Equation 3.1 represent a sort of "optimal" bolus calculator, hereafter labeled as
OPT. The OPT correction will be used both in the training of the NNC and, as
a reference, in the evaluation of the methods.
Figure 3.2 shows the optimal correction Ypm values, as a function of prepran-
dial BG and ROC values, obtained for a selected patient (adult#1) and meal
CHO intake (50 g). It is possible to observe that the optimal correction value
is strongly dependent from the specific preprandial condition and far from the
adjustments proposed by both SC and PE.

3.3 The new NN-based insulin bolus calculator for-

mula

The chosen NNC structure is summarized in Figure 3.3A. See Appendix A for a
detailed description on neural networks, how to choose their structure, as well
as their training procedure. It consists of a feed-forward fully connected NN
composed of three hidden layers. Network structure has been chosen through
a preliminary investigation on the training set data, following the rationale
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Figure 3.2: Optimal correction Ypm values as a function of preprandial BG and ROC
values obtained for patient adult#1 when meal CHO intake is 50 g.

of obtaining a compromise between capability of fitting the training data and
ability to generalize. In addition, two dropout layers have been interposed
between each hidden layer to prevent overfitting and improve the generaliza-
tion capability of NNC [71]. For each dataset record, we build a record con-
sisting of 10 patient-related characteristics, hereafter labeled as Xpm. Among
those, a subset of three features are related to the patient preprandial status:
GC, ROC, and IOB. Then, we also considered four patient-specific therapy pa-
rameters: CR, CF, GT and the insulin pump basal infusion rate, Ib. In addition
to those, we stored two physiology related features, that is, the body weight,
BW, and the interday insulin sensitivity variability profile class, VC (as defined
in Visentin et al. [55]). Finally, we memorized the meal carbohydrate amount,
that is, CHO.
The NNC input layer consists of 10 neurons, each of which associated to a
feature of Xpm, while the output layer is composed of one single neuron that
combines the outputs of the last fully connected layer to produce an estimate
of Ypm , that is, Ŷpm.
Training of NNC is performed through gradient descent training algorithm
applied in a mini-batch mode [72]. In particular, we build a software frame-
work (schematized in Figure 3.3B) to solve two problems: first, we want to
tune the NNC hyper-parameters and structure, second we want to automa-
tize the model selection and training procedure. In detail, block A splits the
abovementioned dataset to define training and test data, assigning 80% of the
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Figure 3.3: (a) Structure of the proposed NNC neural network. (b) Scheme of the soft-
ware framework implemented to tune NNC hyper-parameters h: block A randomly
initializes h values and splits the dataset to define test and training set; block B assesses
the performance of h in a 5-fold CV setting over the training set; block C implements
TPE to optimize h; block D selects the best h set and finally; block E evaluates the
performance of NNC on the test set.
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available (Xpm, Ypm) pairs to the training set, that is, (XpmTR , YpmTR), and the
remaining 20% to the test set, that is, (XpmTE , YpmTE). Moreover, block A is in
charge of randomly initializing the 9 NNC hyper-parameters that we identify
as critical and required to be tuned: the number of hidden units and the ac-
tivation function type of each hidden layer, the dropout percentage of each
dropout layer, and the mini batch size.
Then, for a given set of hyper-parameters h, block B assesses its performance in
a 5-fold cross-validation setting. In practice, the training set is divided into five
folds, then four folds are used for training the NNC and the fifth one is used
for validation and evaluation. Finally, block B computes the average intrafold
mean squared error (MSE) defined as:

CVMSEh =
1
5

5

∑
k=1

MSEk (3.2)

where subscript h indicates the hyper-parameter set at hand and MSEk

stands for the MSE computed by considering the k-th fold as validation set:

MSEk =
1

Nk

Nk

∑
k=1

(Ypmk − Ŷpmk)
2 (3.3)

where Nk is the cardinality of the k− th fold, Ypmk are the target corrections
associated to the k-th fold and Ŷpmk are the respective estimates obtained by
the trained NNC.
To solve the hyper-parameter optimization task, block C is iterated 100 times
to implement the tree-structured Parzen estimator (TPE) technique [73], that
is, an sequential model-based global optimization algorithm where new ob-
servation (a set of hyper-parameters) is collected and analyzed at the end of
each iteration to decide which set of hyper-parameters will be tried next (see
Appendix A for a detailed description of TPE). Finally, in block D, we select the
final set of hyper-parameters h by which we obtained the minimum CVMSEh

and, in block E, we eventually obtain the estimated optimal corrections associ-
ated to the test set, that is, ŶpmTE .

3.4 Assessment of glycemic outcomes

For each test set scenario in (XpmTE , YpmTE), we compared the BG profile ob-
tained using SF, with the BG profiles obtained from the adoption of Equation
3.1. In particular, Equation 3.1 is calculated using different definitions of f (·),
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that is, f (·) = fSC(ROC) (see Equation 2.4), f (·) = fPE(ROC) (see Equation
2.6), f (·) = YpmTE and f (·) = ŶpmTE . The quantitative assessment of postpran-
dial glucose control has been performed by calculating BGRI.
By mean of these comparisons we want to verify whether machine learning
based methodologies have room to perform better than both the gold stan-
dard, that is, SF, and if they improve the performance of currently available
methodologies for computing Equation 3.1, that is, SC and PE (here we de-
cide not consider BU since its definition is not expressible in terms of Equation
3.1). Moreover, comparing the estimated corrections, ŶpmTE , against their tar-
get value, YpmTE , we want to assess how good the NNC is in predicting the
optimal value of f (·) and, if not, discuss which are the possible causes. Fi-
nally, to statistically evaluate the between-methods differences, we performed
a non-parametric multi-way ANOVA test, explicitly considering the virtual
patient and the associated correction method as factors, followed by a multi-
comparison using Dunn’s post hoc test with 0.1% significance level. The rea-
son for choosing such a statistical test is that the test set could contain traces
coming from the same virtual patient (same physiology, but different initial
conditions). Therefore, we need to perform the appropriate statistical analysis
to be able to consider dependencies between observations within subjects.

3.5 Performance of NNC against literature techniques

3.5.1 Representative example

Figure 3.4 shows two examples of BG profiles obtained with the considered
methods. In the top panel case (adult#26, GC = 250 ± 5, ROC = -1 mg/dL/min
and CHO = 100 g) the NNC achieves significantly better results compared
to SF, SC and PE being able to avoid hypoglycemia. Moreover, comparing
the glycemic outcomes obtained using Equation 3.1 with OPT (Ypm = -170.00
mg/dL) versus its estimate provided by NNC (Ŷpm= -167.65 mg/dL), it is pos-
sible to observe how the NNC provides a good approximation of the target
correction value. In Figure 3.4, the BG profiles have been zoomed in to high-
light traces around minimum level. Notably, while SF, SC and PE lead adult#26
to severe hypoglycemia, NNC allows to keep BG greater than 70 mg/dL sig-
nificantly reducing BGRI. In detail, the obtained BGRI values are: BGRI(SF)
= 14.27, BGRI(OPT) = BGRI(NNC) = 12.10, BGRI(SC) = 13.59, and BGRI(PE)
= 13.07. Qualitatively equal results are obtained in the bottom panel case
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Figure 3.4: Example of BG trace obtained with SF (in blue), OPT (in red), NNC (in
yellow) SC (in violet), and PE (in green) methods. X-axis have been truncated at 840
min since, thereafter, the BG traces coincides. Top panel. BG profiles obtained for the
virtual subject adult#26 when GC = 250 ± 5 mg/dL, ROC = -1 mg/dL/min and CHO
= 100 g. Bottom panel. BG profiles obtained for the virtual subject adult#59 when GC
= 80 ± 5 mg/dL, ROC = 2 mg/dL/min and CHO = 80 g. Profiles have been zoomed
in to highlight BG traces around minimum level.

(adult#59, GC = 80 ± 5 mg/dL, ROC = 2 mg/dL/min, and CHO = 80 g). In
particular, the NNC estimated f (·) value (Ŷpm = 54.36 mg/dL) achieves better
BGRI compared with SF, SC and PE. Again, comparing the BG traces using the
optimal f (·) value (Ypm = 60.00 mg/dL) versus its estimate provided by the
NNC, the error introduced by NNC does not lead to significant differences.
In particular, the obtained values of BGRI are: BGRI(SF) = 4.01, BGRI(OPT) =
BGRI(NNC) = 3.26, BGRI(SC) = 3.27, and BGRI(PE) = 3.39.

3.5.2 Assessment of the methods in terms of BGRI

In Figure 3.5, the distributions of the BGRI difference (∆BGRI) between SF ver-
sus OPT, SF versus NNC and OPT versus NNC are shown via boxplot rep-
resentation. Numerical values (median and interquartile range) are reported
in the first three columns of Table 3.1. SF versus OPT distribution represents
the best achievable improvement by mean of Equation 3.1. In particular, using
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Figure 3.5: Boxplot representation of the distribution of ∆BGRI obtained comparing
(a) SF versus OPT, SF versus NNC, OPT versus NNC, SC versus NNC, and PE versus
NNC. Red horizontal lines represent median, boxes mark interquartile ranges, dashed
lines are the whiskers, red crosses indicate outliers. Black dots indicate statistical sig-
nificant between-distributions differences.

the optimal correction, we obtained a statistically significant (p < 0.001) me-
dian BGRI improvement of 0.40 (see Table 3.1). Focusing on SF versus NNC,
as for SF versus OPT, the obtained results are better in NNC (see Table 3.1).
Notably, the median ∆BGRI and interquartile range is almost the same as in SF
versus OPT, meaning that the NNC estimates the optimal target values with
good precision. As further proof of the capability of the NNC in estimating
the optimal correction values and improving the glycemic outcomes, in Fig-
ure 3.5 we report the distribution of the difference between BGRI in OPT and
NNC. No statistically significant difference between the two distributions is

Table 3.1: Median [interquartile range] results of ∆BGRI (first row) obtained compar-
ing SF versus OPT, SF versus NNC, OPT versus NNC, SC versus NNC and PE versus
NNC and p-values obtained using the Dunn’s post hoc test (second row).

SF-OPT SF-NNC OPT-NNC SC-NNC PE-NNC

∆BGRI 0.40 0.37 0 0.23 0.20
[0.04, 1.56] [0.02, 1.51] [-0.02, 0.01] [0.01, 0.99] [0.01, 0.95]

p-value <0.001 <0.001 0.30 <0.001 <0.001
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found (median difference equal to 0, p = 0.30). However, Figure 3.5 points out
that, in several scenarios, the NNC error is relevant and, compared to SF, lead
to worse BGRI values. In particular, BG control worsens when using NNC to
estimate f (·) due to the error the model makes in approximating OPT. This
shortcoming represents a limit of the NNC and future work will be performed
to properly investigate how to deal with this drawback to guarantee safety
and effectiveness in all conditions. Figure 3.5 shows the ∆BGRI distribution
and median/interquartile results obtained comparing the NNC with SC and
PE. Numerical values (median and interquartile range) are reported in the last
two columns of Table 3.1. Overall, according to Figure 3.5, NNC introduces a
small but statistical significant improvement (p < 0.001) equal to 0.23 and 0.20
if compared with SC and PE, respectively. However, as above, boxplots show
that, in several scenarios, NNC lead to worse glycemic outcomes due to the
error in the estimate of the optimal f (·) value.

3.6 Summary of the outcome and indications for the

next steps

In this chapter, the development of a new NN-based methodology to personal-
ize insulin bolus calculation exploiting GC, ROC, IOB, CR, CF, Ib, GT, BW, VC,
and CHO has been described. Both intuition and evidence provided by the ob-
tained results suggest that the optimal modulation of insulin bolus is strongly
related to preprandial conditions and individual parameters of the patient.
An in silico study performed in 100 virtual subjects in noise-free conditions,
showed that, in terms of glycemic outcomes measured as BGRI, the new method
outperforms the literature approaches SF, SC, and PE, and is close to the op-
timum determined by exhaustive search. Although the quantitative improve-
ments might seem minor, these preliminary results encourage further inves-
tigations on machine learning based methodologies to provide patients with
decision support tools able to ease their daily insulin therapy routine. With
regard to this aspect, it is important to stress that other non linear machine
learning techniques (e.g., kernel support vector machines or regression trees)
could be considered for the scope as well. Implementation of alternative strate-
gies for the adjustment of SF will be discussed in Chapter 4.
Finally, the effectiveness of the optimal correction Ypm to be applied to the SF
is, not surprisingly, related to the structure of the SF itself. Indeed, an accurate
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analysis of the results of our simulations showed that building a tool able to
correct optimally SF seems possible only if, during the training phase, all the
possible physiological classes/typologies of the patients at hand are available.
While this highlights a restriction of the domain of validity of the NNC pre-
sented here, it also suggests that limitations in predicting the optimal correc-
tion Ypm are intrinsically related to the strict constraints related to the original
structure of SF. Indeed, we found that there is no correlation between Ypm and
the actual insulin bolus amount. To better illustrate the point, let us consider
two patients having the same meal conditions, that is, same GC, CHO and IOB,
whose optimal insulin boluses are both 0. Since, in general, two patients have
different therapy parameters, that is, GT, CR and CF, this will result in different
optimal Ypm values. This consideration suggests that correcting SF by a fixed
values as defined by fSC(ROC) and fPE(ROC) can be, in general, suboptimal.
A possible margin of improvement, hence, lies in releasing the hypothesis of
using the insulin bolus amount provided by SF as a starting point and devis-
ing new methods that naturally take into account for CGM-derived informa-
tion and current patient status and characteristics to compute the meal insulin
bolus. This will be extensively discussed in Chapter 5 where we develop new
dosing rules based on linear regression models.
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Chapter 4

Classification of postprandial meal
status with application to insulin
dosing

1

As showed in the previous chapter, machine learning based algorithms,
thanks to their ability of capturing and exploiting non linear relationships,
such as glucose-insulin dynamics, seem to be viable candidates to personal-
ize insulin dosing with the aim of improving T1D therapy and achieving bet-
ter glycemic control. In view of these findings, in this chapter we explore an
approach based on eXtreme Gradient Boosted (XGB) trees [75] aiming at clas-
sifying, at meal time, the postprandial glycemic status (i.e., BG concentration
being too low, too high, or within the target range). Then such an outcome is
used to reduce or increase the corresponding meal bolus dose provided by SF
accordingly.

4.1 Method overview

As depicted in Figure 4.1, the XGB-based method implements a two step pro-
cedure:

• Step 1: given a set of input features, XGB is used to predict, at meal time,
the future glycemic status, i.e. to determine a classification of BG concen-
tration as too low, too high, or within target range, in the postprandial

1This chapter contains material published in the article [74]
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Figure 4.1: Schematic representation of the method rationale. In Step 1, input features
are used to train XGB and predict the future postprandial status. Then, in Step 2, the
XGB outcome is used to modulate IMB accordingly and obtain the "adjusted dose",
i.e. IMB∗.

time window, i.e. between 2h and 6h after meal, exploiting the knowl-
edge of preprandial CGM measurements, carbohydrate intake estimates
and insulin infusion recordings. In particular, to define the glycemic sta-
tus in the postprandial time window, i.e. if after the meal the individ-
ual glycemia will be in hypoglycemia, hyperglycemia, or within a target
range, the CGM-based metric described by Herrero et al. [40] was em-
ployed. It consists in computing the minimum postprandial CGM (Gmin)
level within a predefined postprandial time window as:

Gmin = min
t∈[tm+2h,tm+6h]

CGM(t) (4.1)

where, tm is the time of the meal. The rationale for choosing a post-
prandial time window from two to six hours after meal time is that we
are interested in computing the minimum postprandial glucose after the
glucose peak time. Note that a typical glucose peak after meals is around
70 min but can potentially be longer for low-absorption meals. We then
chose to end the window at six hours post meal to make sure that the
effect of the short-acting meal insulin bolus is over [76]. Finally, the as-
sumption that basal insulin (i.e., long-acting insulin) is correctly adjusted
is made. Then, the classification target Y consists of three classes defined
as follows:

Y =


C1 if Gmin < thhypo

C2 if thhypo ≤ Gmin ≥ thhyper

C3 if Gmin > thhyper

(4.2)

where thhypo and thhyper are the hypoglycemia and hyperglycemia thresh-
olds, respectively. Here, these thresholds were set to thhypo = 70 mg/dL
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and thhyper = 140 mg/dL. Figure 4.2 shows a graphical representation of
the used classification criterion.

• Step 2: the future glycemic status produced as XGB outcome is used to
improve glycemic control by a suitable real time modulation of SF. Specif-
ically, the IMB computed through SF will be increased if the XGB out-
come indicates a future postprandial hyperglycemia. On the other hand,
IMB will decreased if XGB forecast an hypoglycemic event.

Figure 4.2: Graphical representation of the classification scheme. Black dots are the
CGM samples. Blue stem indicates the meal event. Red dot is the minimum glucose
level Gmin reached in the fixed postprandial window [tm + 2h, tm + 6h] (highlighted
in light blue). Horizontal magenta lines denote the thresholds used to discretize Gmin
into the classification target Y.

4.2 Classification of future postprandial glycemic sta-

tus: method description and assessment

4.2.1 eXtreme Gradient-Boosted tree model

XGB is an highly effective and efficient implementation of gradient boosted
trees (GBT), i.e. supervised learning algorithms that have been shown to pro-
vide state-of-the-art results in many classification tasks [75]. See Appendix B
for a more detailed description of GBT. It is particularly well-known for being
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Figure 4.3: Structure of the proposed XGBp software framework. After data prepa-
ration, for patient p, block A initializes h and splits the data in training and test; block
B computes the performance of the hyperparameter set in a 3-fold CV setting over
the training set; block C implements a Tree-structured Parzen Estimator to optimize h;
block D selects the best h set and evaluates the performance of XGBp on the test set.

robust against outliers, to work well for relatively small datasets, and to au-
tomatically handle feature selection; thus, it well fit the purpose of this work.
Moreover, XGB associates each input to the probability of belonging to each
one of the three considered target classes, i.e. p(C1), p(C2), p(C3). This feature
will result very useful, as described later in Section 4.3. The adoption of XGB,
for the classification of future postprandial glycemic status, is furtherly sub-
stantiated by the fact that, if compared to other machine-learning approaches,
such as NNs, it naturally provides a model that is interpretable by associating
a certain level of importance to each of the input features.
For each studied subject p, we trained a different XGB model, XGBp, the aim
being accounting for inter-subject variability and personalizing the methodol-
ogy at the individual level. For this purpose, a software framework (schema-
tized in Figure 4.3) was built to automatically manage data preparation, model
tuning, and testing.

Features vector and data preparation The selected input (features vector)
(Xip) for the XGB model is composed by the following entities:

• Estimated amount of ingested carbohydrates (CHOi);

• Meal insulin bolus (IMBi);

• Two binary indicators denoting whether there was a hypo/hyperglycemic
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event in the last three hours. This feature allows to capture the phys-
iological response to hypoglycemia (e.g. secretion of glucagon) or the
ingestion of rescue carbohydrates;

• The hour-of-day of tmi and three binary indicators representing the meal
type (i.e. breakfast, lunch, or dinner), which are used to capture the sub-
ject’s intra-day variability (e.g. circadian rhythms);

• Two features describing the time elapsed since the last insulin bolus and
meal intake, respectively. This feature might help to capture specific pa-
tient behaviors, such as using multiple boluses to treat the same meal
and/or snacking pattern;

• CGM data within the time window [tmi − 1h, tmi ];

In addition, data were preprocessed in order to obtain additional features. In
detail, for each ingested meal at time tmi , CGM data, the estimated amount of
carbohydrates (CHO), and insulin data (INS), were considered within the time
window [tmi − 1h, tmi ]. Then, such data were processed as follows:

• CGM was used to obtain the corresponding glucose rate of change, static
risk (SR), and dynamic risk (DR) [77] time series, which empower the
model with additional features that capture the dynamics of the CGM
signal (e.g. glycemic variability);

• CHO was used to calculate the rate of glucose appearance in the blood
(Ra) within [tmi − 1h, tmi ] through the use of a gastrointestinal model [49]
that describes carbohydrate digestion and glucose absorption as follows:

Ra(t) =
CHO(t) · CHOBIO · t · exp(−t/tMAXG)

t2
MAXG

(4.3)

where CHOBIO (dimensionless) is the carbohydrate bioavailability, tMAXG

(min) is the time of maximum appearance rate of glucose. Here, Ra is
generated setting tMAXG and CHOBIO to population values, i.e. 50 min
and 0.8, respectively;

• INS data were transformed into two continuous signals representing an
estimate of plasma insulin concentration (IP) [78] and IOB [79] to account
for insulin absorption and clearance as follows:
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

Ċ1(t) = INS(t)− C1(t)
tDIA

Ċ2(t) =
(C1(t)−C2(t))

tDIA

İP(t) = −ke IP(t) +
C2(t)
tDIA

IOB(t) = C1(t) + C2(t)

(4.4)

where C1 and C2 are the subcutaneous insulin absorption compartments,
tDIA (min) is the duration of insulin action, and ke (min−1) is the decay
rate. Here, tDIA and ke have been set to population values, i.e. 120 min
and 0.98 min−1. As per the Ra signal, IP and IOB was estimated within
[tmi − 1h, tmi ] assuming no additional insulin infusion in that period.

Model tuning and testing For each subject, training of XGBp was performed
through gradient descent algorithm [60]. Figure 4.3 schematizes the model
tuning and testing procedure. In detail, referring to Figure 4.3, block A splits
the dataset (Xip, Yip) into training and testing data. Block A was also in charge
of initializing the hyper-parameters to random values. These hyper-parameters
are: the number of trees, the maximum depth of each tree, the subsample ra-
tio of the training instances, the L2 regularization term on weights, and the
learning rate. Then, in block B, training data were used to tune the model and,
given a set of hyper-parameters h, performance was assessed in a three-fold
cross validation setting. Specifically, training data were split in three folds, of
which two folds were used for training, and the third one was used to validate
and evaluate the model. Then, performance of the k-th hyper-parameter set
was quantified in terms of intra-folds macro-average area under the receiver
operator characteristic curve (AUROC) [80]:

CVAUROCk =
1
3

3

∑
j=1

AUROCmacroj (4.5)

where AUROCmacroj denotes the intra-folds macro-average AUROC computed
using the j-th fold as validation set:

AUROCmacroj =
1
3

3

∑
c=1

AUROCCC (4.6)

where AUROCCC stands for the AUROC of the c-th class computed in a one-
vs-all fashion.
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4.2 Classification of future postprandial glycemic status: method description
and assessment

Hyper-parameters were optimized by iterating block C using the TPE tech-
nique [73]. Finally, block D selected the set of hyper-parameters k associated
to the maximum CVAUROCk and it obtained the predicted classes on the test
set.

4.2.2 Simulated dataset used for the assessment

To evaluate the proposed XGB model, data of 100 virtual adult subjects were
generated by simulation over two months using a state-of-the-art mathemat-
ical model of a T1D subject decision-making (T1D-DM) [81]. This model is
an evolution of S2013, which in addition to the glucose-insulin dynamics, in-
cludes a model of intraday variability of insulin sensitivity [55], models of glu-
cose sensors error [82][83], and a behavioral model for a T1D population. We
decided to use a more sophisticated version of the UVa/Padova T1D Simulator
given that, to train XGB in order to challenge the algorithm to classify the post-
prandial glycemic status in the presence of errors and uncertainty, and we did
not necessitate of noise-free data since here we did not compare XGB against a
sort of ideal algorithm as for NNC. The obtained dataset consists, for each in-
dividual, of one continuous time series, i.e. CGM; and two impulsive signals,
i.e. INS and CHO, respectively. The first month of recordings was used to train
and tune the model, while the second month was used for testing purposes. In
particular, this choice allowed making a trade-off between model performance
and the possibility of deploying such a model in real life. In fact, using more
training data tends to improve model performance, but at the same time it re-
quires more time to collect them, which might jeopardize patient’s adherence
to the therapy.

4.2.3 Classification results

Figure 4.4 shows the AUROC distributions computed in the test set for class
C1 , C2 , C3 , and their macro-average obtained in the population. On average,
good performance is achieved. Specifically, the obtained average [interquar-
tile range] AUROC values are: AUROC(C1) = 0.89 [0.86-0.93], AUROC(C2) =
0.76 [0.69-0.82], AUROC(C3) = 0.86 [0.80-0.91], AUROC(MACRO-AVERAGE)
= 0.84 [0.78-0.87]. Particularly, C2 results to be the most difficult class to predict.
This is due to the discretization applied to Gmin. Specifically, since each Gmin

is hard-assigned to a single class, the classification error is likely higher when
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4 Classification of postprandial meal status with application to insulin dosing

Figure 4.4: Boxplot representation of the distribution of AUROC obtained for C1
(in blue), C2 (in orange), C3 (in green), and their macro-average (in red) obtained in
the population. Black horizontal line represents median, the black box marks the in-
terquartile range, vertical black lines are the whiskers and black diamonds indicate
outliers.

the original Gmin was close to the thhypo/thhyper thresholds before being dis-
cretized. So, given that C2 is both upper (thhyper) and lower (thhypo) bounded,
it is more likely that the error increases because of this discretization.
Notably, best performance is obtained for C1, meaning that the model is ac-
curate in detecting hypoglycemia. Finally, several critical outliers are present
in C2 and C3. However, they are strictly higher than 0.5, meaning that XGB
always behaves better than the "random" classifier [60].
Finally, Figure 4.5 (left panel) shows the ROC curves obtained for a represen-
tative subject (adult#1). The model achieves very good performance. In par-
ticular, AUROC computed for class C1, C2, and C3 are 0.97, 0.83, and 0.95, re-
spectively. Figure 4.5 (right panel) reports the corresponding confusion matrix.
Moreover, analyzing the classification error that XGB makes when it predicts
the wrong class, it can be seen that only picks adjacent classes. This is very
important, since it avoids dangerous counter-actions by the patient, i.e. clas-
sifying an actual hypoglycemia as a hyperglycemia could lead the patient to
increase the severity of the episode.
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4.3 Using the XGB classifier to adjust meal insulin bolus: method description
and assessment

4.2.4 Potential utility of the XGB-based estimates

In a real-time setting, the developed XGBp classifier can be applied at meal-
time to forecast the post-prandial glycemic status (i.e., hyperglycemia, eug-
lycemia or hypoglycemia). Such information on the future glycemic status can
be used for multiple purposes. For instance, it can be used to generate smart
alerts when future adverse events are forecasted; temporarily suspend basal
insulin delivery, or suggest carbohydrate intake, to prevent hypoglycemia;
and, the application which occupies us in this thesis, to recommend to modu-
late the insulin dose obtained with SF to be delivered at meal time.
In the next Section, XGB application is shown, the aim being improving glycemic
control by using its outcome in real-time to adjust the meal insulin bolus amount
computed using SF.

Figure 4.5: Classification results obtained with XGB corresponding to adult#1. Left
panel. ROC curves obtained with XGB for C1, C2, and C3. Right panel. The corre-
sponding confusion matrix.

4.3 Using the XGB classifier to adjust meal insulin

bolus: method description and assessment

4.3.1 Meal insulin dose adjustment strategy

Here, we present a proof of concept for a simple empirical strategy to adjust
the meal insulin bolus according to the real-time post-prandial glucose classi-
fication provided by the XGB model at meal-time. Specifically, at meal time
tm, if XGB classified future Gmin belonging to Ci, IMB computed using SF is
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4 Classification of postprandial meal status with application to insulin dosing

adjusted using Equation 4.7 hereafter labeled as XGB-IMB:

IMB∗(tm) = IMB(tm)(1 + p(Ci) fi(IMB(tm))) (4.7)

where p(Ci) is obtained by XGB and denotes the probability of Gmin belonging
to class Ci; and fi(·) is an empirical modulation function associated to Ci which
depends on the original IMB amount. In particular, fi(·) is defined in Equation
4.8:

f1(IMB(tm)) =



f1LOW if IMB(tm) < 5U

f1LOW + 1
3 ∆ f1 if 5 ≤ IMB(tm) < 10U

f1LOW + 2
3 ∆ f1 if 10 ≤ IMB(tm) < 15U

f1HIGH if IMB(tm) ≥ 15U

f2(IMB(tm)) = 0 (4.8)

f3(IMB(tm)) =



f3LOW if IMB(tm) < 5U

f3LOW + 1
3 ∆ f3 if 5 ≤ IMB(tm) < 10U

f3LOW + 2
3 ∆ f3 if 10 ≤ IMB(tm) < 15U

f3HIGH if IMB(tm) ≥ 15U

where ∆ fi = ( fiHIGH − fiLOW )i=1,...,3. Intuitively, if C2 is predicted, no adjust-
ment of IMB is performed. Moreover, by multiplying the modulation function
by p(Ci), the adjustment of IMB became directly proportional to how much
XGB was "certain" about assigning the current input to class Ci. This makes
the adjustment robust to outliers, since in these cases, p(Ci) results smaller,
along with the IMB increment/reduction. Finally, the choice of using differ-
ent adjustment depending on the original IMB amount allows avoiding too
conservative, or too aggressive, adjustments when IMB is small, or big.

4.3.2 Simulated dataset and statistical criteria used for the as-

sessment

XGB-IMB was tested in silico on a new dataset generated from the 100 virtual
adult subjects of T1D-DM. Note that such dataset is different from the one used
to train and test the XGB model. In particular, two scenarios were created. In
scenario A, 20 out of 100 subjects were used to tune the four XGB-IMB param-
eters ( f1LOW , f1HIGH , f3LOW , and f3HIGH ) over one-week simulation. Specifically,

54



4.3 Using the XGB classifier to adjust meal insulin bolus: method description
and assessment

the parameter set was chosen by using a grid-search strategy, which uses a cost
function that minimizes BGRI of the studied population. In scenario B, the re-
maining 80 subjects were evaluated over one-month simulation with the aim
of evaluating the performance of XGB-IMB strategy (with parameters obtained
from scenario A). Finally, a comparison with the same metrics obtained by the
use of SF was performed.

For each subject of scenario B, performance of XGB-IMB and SF were com-
pared in terms of: mean (MEANBG) and standard deviation of glucose concen-
tration (SDBG); BGRI, percentage time in hypoglycemia (<70 mg/dL) (%THYPO);
percentage time in hyperglycemia (>180 mg/dL) (%THYPER); percentage time
in glucose target range ([70-180] mg/dL) (%TTARGET); and percentage time in
tight glucose target range [90-140] mg/dL (%TTTARGET). These metrics are
commonly used to assess glycemic outcomes in T1D, and follow a recent con-
sensus report on outcome measures for artificial pancreas clinical trials evalu-
ation [84].
These population metrics are reported as mean (± standard deviation) for
Gaussian distributed metrics or median [interquartile range]. For this purpose,
non-Gaussianity of each distribution was checked by mean of the Lilliefors
test with a 5% confidence level. Finally, assessment of statistical significance
between-method differences was performed, with a 1% confidence level, us-
ing a paired t-test or the Wilcoxon rank sum test if the compared distributions
were both Gaussian or not, respectively.

4.3.3 Performance of XGB-IMB in terms of glycemic control

Scenario A The four XGB-IMB parameters obtained from scenario A are f1LOW

= -0.3, f1HIGH = -0.1, f3LOW = 0.8, f3HIGH = 0.5. Note that, while XGB-IMB reduces
IMB up to 30/10% if future hypoglycemia (C1) is detected, it is quite aggres-
sive at increasing IMB if future hyperglycemia is predicted (C3), i.e. up to
80/50% if the original IMB is smaller/bigger than 5/15 units.

Scenario B Figure 4.6 presents an example of BG traces obtained for adult#1
using SF and XGB-IMB in scenario B. It can be observed that adjusting the
original IMB amount allows to achieve a better glucose control both during
and after the meal, reducing hyperglycemia and allowing to avoid one out of
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4 Classification of postprandial meal status with application to insulin dosing

Figure 4.6: Top panel: Example of BG trace obtained in the first three days of simula-
tion in adult#1 when SF (in red) and XGB-IMB (in light blue) are adopted to compute
meal insulin dose in scenario B. Center panel: IMB doses computed using SF. Bottom
panel: IMB doses computed with XGB-IMB.

two hypoglycemic episodes. In details, obtained results of SF vs. XGB-IMB are
%THYPO = 1.25% vs. 1.10%, %THYPER = 41.47% vs. 30.98%, %TTARGET = 57.29%
vs. 67.92%, %TTTARGET = 26.81% vs 29.07%, BGRI = 9.92 vs. 8.16, MEANBG

175.43 mg/dL vs. 166.42%, and SDBG = 58.29 mg/dL vs. 53.24 mg/dL.

In Figure 4.7, the distributions of %THYPO, %THYPER, %TTARGET, %TTTARGET,
BGRI, MEANBG, and SDBG obtained when SF and XGB-IMB are adopted to
compute IMB in scenario B are shown via boxplot representation. Numerical
values are reported in Table 4.1. Overall, XGB-IMB improves glycemic control
across the population. In particular, when comparing SF vs. XGB-IMB, a statis-
tically significant (p<0.01) reduction of the overall glucose control in terms of
MEANBG and SDBG is achieved, i.e. 6.07 mg/dL and 4.95 mg/dL, respectively.
Additionally, XGB-IMB lowers the glycemic risk in terms of BGRI (p>0.01) by
1.36. Consistently, percentage time metrics show better results when XGB-IMB
is used. In detail, a significant improvement (p<0.01) in %THYPER (5.34%, from
35.18% to 29.84%), %TTARGET (5.02%, from 61.98% to 67.00%) and %TTTARGET

(2.95%, from 28.22% to 31.17%) was observed, while a non-significant improve-
ment (p = 0.34) of %THYPO (0.11%, from 1.93% to 1.82%) was observed.
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strategies

Figure 4.7: Boxplot of %THYPO, %THYPER, %TTARGET, %TTTARGET, BGRI, MEANBG,
and SDBG obtained when SF (in red) and XGB-IMB (in light blue) are adopted to com-
pute IMB in scenario B.

4.4 Summary of the obtained results and ideas for

new insulin dosing strategies

In this chapter, a new methodology based on a state-of-the-art machine learn-
ing model, i.e. the XGB model, is used to predict at meal-time postprandial
glycemic status. Results obtained with in silico data generated using a state-of-
the-art T1D simulator, show that XGB is accurate at discriminating between the
selected target classes (i.e., hypoglycemia, hyperglycemia, and euglycemia).
Here we showed how the prediction for the postprandial glycemic status at
meal-time provided by XGB can be used to adjust the meal insulin bolus dose
computed by SF. Results obtained through a simple set of heuristic rules to ad-
just the meal insulin bolus, confirm that the proposed technique has the poten-
tial to improve post-prandial glycemic control in a T1D population. Moreover,
from a practical point of view, the proposed XGB model-based technique can
be easily integrated in currently available insulin pumps, or implemented in a
stand-alone mobile application.

The results we obtained in both Chapter 3 and Chapter 4 showed that our
strategy, i.e. leveraging on machine-learning to adjust SF, allows to improve
glycemic control. However, a question rise: what if we get rid of SF and we de-
sign a brand new formula for insulin bolus dosing? Indeed, possible margins
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4 Classification of postprandial meal status with application to insulin dosing

Table 4.1: Median [interquartile range] is reported for MEANBG, SDBG, BGRI,
%THYPO, %TTTARGET; mean (± standard deviation) are reported for %THYPER,
%TTARGET.
*: Statistically significant difference between XGB-IMB and SF using the Wilcoxon
rank sum test.
**: Statistically significant difference between XGB-IMB and SF using the t-test.

SF XGB-IMB p-value

MEANBG
167.12 161.05 <0.01∗[155.28-181.16] [151.74-169.33]

SDBG
54.97 51.02 <0.01∗[48.03-63.95] [44.92-59.97]

BGRI 9.36 8.00 <0.01∗[7.06-11.43] [6.60-9.83]

%THYPO
1.93 1.82 0.34[0.07-3.81] [0.09-3.81]

%THYPER
35.18 29.84 <0.01∗∗(± 14.06) (± 11.50)

%TTARGET
61.98 67.00 <0.01∗∗(± 13.89) (± 11.54)

%TTTARGET
28.22 31.17 <0.01∗∗[18.54-40.56] [24.49-42.60]

of improvement rose by the possibility of computing the IMB through new for-
mulae that naturally include patient characteristics and status. As such, in the
next chapter, different types of linear regression models have been analysed
and applied in order to design new formulae for insulin meal bolus calcula-
tion.

58



Chapter 5

New linear regression models for
insulin dosing

1 In the previous chapters, we demonstrated that a possible approach to im-
prove insulin dosing consists in abandoning the idea of correcting SF and com-
pute IMB by adopting new formulas that naturally include ROC and patient
features. In the present chapter, we propose a new linear regression modelling
approach for the scope. Here, we chose linear regression models as they guar-
antee interpretability (by quantifying the contribution of each of the input fea-
tures with a coefficient) and, at the same time, are computationally efficient
and easily embeddable into standard BC. Development and test is performed
by a suitably devised procedure that leverages data generated by means of
S2013. Specifically, we firstly evaluated how precise are the developed formu-
lae in approximating the optimal IMB, i.e. the IMB guaranteeing the optimal
glycemic control. Secondly, performance of each formula has been assessed by
computing proper glycaemic control indices.

5.1 Rationale

Developing new models for meal insulin dosing is far from trivial. Indeed,
huge amount of data are necessary in order to cover all the possible scenarios
one can face at meal time. Specifically, the problem is twofold:

1. for each patient, different preprandial scenarios have to be studied. In-

1This chapter contains material of an article submitted for publication: G. Noaro, G.
Cappon, S. Del Favero, G. Sparacino, and A. Facchinetti,âĂIJNew machine learning based
formulas for insulin dosing in type 1diabetes leveraging continuous glucose monitoring
data,âĂİIEEE Trans Biomed Eng, 2019.
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deed, it is necessary to analyze the effect of a specific insulin bolus on
patient’s glycemia for different preprandial BG values and trends, but
also for different meal CHO amount;

2. for each preprandial scenario, the "optimal" insulin bolus, i.e. the target
amount, has to be identified.

Of course, as previously mentioned in Chapter 2, ad-hoc clinical studies aim-
ing to gather these kind of datasets are both unfeasible and dangerous since, in
order to identify the optimal insulin dose, they would require, for a given meal
condition, to administer at the same time a multitude of insulin boluses, that
is clearly impossible in real life. Moreover, is very difficult to easily observe a
specific preprandial scenario in a free-living condition as it would require the
exact chain of events in a preprandial time window in terms of CHO intake
and insulin bolus amount and timing.
To overcome these limitations, as we did in the previous chapter 2, we re-
sorted to S2013. Indeed, in silico simulations allow to safely and efficiently
generate the desired preprandial scenarios in a virtual population of diabetic
subjects and, more importantly, to identify by trial-and-error which insulin
bolus would have been needed in order to optimally control each patient post-
prandial BG.
However, having access to such a dataset alone is not enough. In fact, one has
to properly design the structure of the new formula in order to be interpretable
and easy to compute. These two requirements are both equally necessary in
order to let the formula be accepted by clinicians and adopted by patients as
the standard of care. To do so, as already mentioned and demonstrated later
in the present chapter, linear regression models can be used given their pecu-
liar characteristic of being highly interpretable, computationally efficient, and
easily embeddable into currently commercialized BC.

5.2 Creation of the simulated dataset for the model

development and assessment

To develop and assess new models for insulin dosing, the dataset used in
Chapter 2 is not sufficient. In fact, to build reliably such new methodologies
the availability of "all the possible" preprandial scenarios in terms of BG and
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ROC is necessary. As a result, in the following we describe how we generated
a new, more complete, dataset for the scope.

S2013 has been used to generate data of 100 virtual adult subjects. For
each subject, a simulated scenario of 12 hours (from 7 am to 7 pm) has been
generated in a noise-free set up. As in Chapter 2, noise-free means that we did
not introduced any confounding factors, allowing no corrective postprandial
boluses and hypotreatment, without simulating errors in meal CHO counting,
BG measurement and ROC estimation.
Specifically, simulations are conceptually divided in two parts:

• Pre-meal: it consists of the first 6 hours of simulation (from 7 AM to 1
PM), and it is used to bring the patient desired preprandial meal scenario
in terms of preprandial BG and ROC;

• Post-meal: a meal was placed at 1PM and the respective meal insulin
bolus was administered. Then, the remaining 6 hours of simulation (from
1 PM to 7 PM) were used to evaluate glycemic control and quantify the
insulin bolus "performance".

In the following, a detailed description of the two parts is provided.

5.2.1 Generation of the preprandial meal scenarios

For each patient, the aim being obtaining specific preprandial BG and ROC at
1 PM, three events have been placed between 7 AM and 1 PM, namely two
CHO intakes and one insulin bolus. Both CHO intakes and the insulin bolus
were described by two parameters: the time of the event, and its "amount"
(expressed in grams of CHO or units of insulin, accordingly). The resulting six
parameters, i.e. p̂ = (tCHO1 , CHO1, tCHO2 , CHO2, tIMB1 , IMB1), were obtained
by solving the following minimization problem:

p̂ = argmin p̂ f (p̂) (5.1)

with:
f (p̂) = (BGT − BG(p̂))2 + K · (ROCT − ROC(p̂))2 (5.2)

where BGT and ROCT are the target preprandial BG and ROC, respectively,
BG(p̂) and ROC(p̂) are the BG and ROC value at 1 PM resulting from p̂, and,
K = 1000 is a factor that normalizes the magnitude of the two quantities in
order to make them weight the same.
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For each patient, we generated, a total of 108 preprandial scenarios, resulting
from the combination of 12 possible preprandial BG values, i.e. {70 ± 5, 80 ±
5,90± 5,. . . ,170 ± 5,180 ± 5} mg/dL, and 9 possible preprandial ROC values,
i.e. {-2 ± 0.25, -1.5 ± 0.25,. . . , 1.5 ± 0.25, 2 ± 0.25} mg/dL/min. Note that
an error of ± 5 mg/dL and ± 0.25 mg/dL/min is allowed for preprandial BG
and ROC, respectively, due to the difficulty to bring certain patients to specific
preprandial conditions with realistic manipulations of p̂. Anyway, this error
guarantees that no overlapping scenarios are present in the dataset. Finally,
we decided to limit the possible preprandial BG value within the euglycemic
range and the possible preprandial ROC value between -2 and 2 since, at this
stage, we only want to cover scenarios where patients can normally eat and
administrate insulin bolus without any need of additional rescue treatments.

Figure 5.1 shows the BG and ROC traces obtained for the virtual subject

Figure 5.1: Representative simulated scenario for adult#1 when preprandial BG and
ROC target are 140 ± 5 mg/dL and 1 ± 0.25 mg/dL/min, respectively. Left panels,
show the CHO intake and insulin infusion placed within the morning time window in
order to achieve the target preprandial conditions (here highlighted in yellow). Right
panels show the obtained BG and ROC traces respectively. Red crosses represent the
BG and ROC values at lunch time, i.e. 1:00 PM.

adult#1 in a representative preprandial scenario, i.e. when the target prepran-
dial conditions at 1:00 PM are BG 140± 5 mg/dL and ROC 1± 0.25 mg/dL/min.
Estimated p̂ is (9:00 AM, 5.00 g, 00:30 PM, 23.00 g, 9:00 AM, 0.55 U).
A different simulated scenario is shown in Figure 5.2. BG and ROC traces are
shown for adult#1 when the target preprandial conditions at 1:00 PM are BG
100 ± 5 mg/dL and ROC -2 ± 0.25 mg/dL/min. Here, estimated p̂ is (10:00
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Figure 5.2: Representative simulated scenario for adult#1 when preprandial BG and
ROC target are 100 ± 5 mg/dL and -2 ± 0.25 mg/dL/min, respectively. Left panels,
show the CHO intake and insulin infusion placed within the morning time window in
order to achieve the target preprandial conditions (here highlighted in yellow). Right
panels show the obtained BG and ROC traces respectively. Red crosses represent the
BG and ROC values at lunch time, i.e. 1:00 PM.

AM, 105.00 g, 11:15 AM, 18.00 g, 11:00 AM, 12.20 U). In both examples, it can
be observed how the estimated p̂ allowed to bring the virtual patient to the
desired preprandial scenario.

To sum up, we simulated for each adult 108 preprandial scenarios, i.e. the
combination of the nine different ROC intervals and eleven BG intervals, in
which, at 1 PM, each subject presents specific BG and ROC relying on CHO
intake and insulin bolus between 7 AM and 1 PM.

5.2.2 Identification of the optimal insulin bolus dose to con-

trol post-meal glycaemia

In our simulation framework, the transition between pre-meal and post-meal
phases happens at 1 PM, when subjects consumed a total of 15 different pos-
sible CHO intakes, i.e. {10, 20,. . . , 140, 150}. Then, for each meal the optimal
insulin bolus to control BG, i.e. IMBOPT, was defined as:

ˆIMBOPT = argminIMBBGRI(IMB) (5.3)
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i.e. the insulin bolus IMB that allows to obtain the minimum BGRI in the post-
prandial time window defined between 1PM to 7PM.
We chose to minimize BGRI since it balances hypo- and hyperglycemic events,
despite their original scale are not symmetric. Through the minimization of
BGRI function, we derived the target needed to develop the new formula for
insulin bolus dosing. Hereafter, we will label as OPT, the "optimal" BC, i.e. the
BC that, for a given preprandial condition gives IMBOPT as output.
It is important to remark that, the obtained dataset represent an expanded ver-
sion of the dataset used in Chapter 2. Indeed, since the same simulator and
the same setup are used to find the optimal insulin bolus value, for a given
preprandial condition in terms of BG and ROC values, and meal CHO of 50g,
the optimal value obtained in Chapter 2 is the same as the one obtained here
by solving the optimization problem.

Figure 5.3: Representative BG curve obtained for adult#1 using SF and OPT when
preprandial BG and ROC target are 140± 5 mg/dL and 1± 0.25 mg/dL/min, respec-
tively.

Two representative scenarios are shown in Figure 5.3 and Figure 5.4 where
adult#1 assumes 50 g of CHO at 1:00 PM. In particular, Figure 5.3 shows the
BG curves obtained using SF and OPT when preprandial BG and ROC target
are 140 ± 5 mg/dL and 1 ± 0.25 mg/dL/min, respectively. From visual in-
spection, it is possible to observe that using OPT it is possible to mitigate the
time spent in the hyperglycemic range without inducing any hypoglycemia.
In Figure 5.4, the BG curves obtained using SF and OPT when preprandial BG
and ROC target are 140 ± 5 mg/dL and 1 ± 0.25 mg/dL/min, are shown.
Again, compared to SF, OPT allows to tighten the BG fluctuation due to the
CHO intake.
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Figure 5.4: Representative BG curve obtained for adult#1 using SF and OPT when
preprandial BG and ROC target are 100 ± 5 mg/dL and -2 ± 0.25 mg/dL/min, re-
spectively.

5.2.3 Choice of the features to be included in the LR models

The aim being to develop a methodology for insulin dosing relying on eas-
ily accessible parameters only, we chose 11 features that are already well-
established in current standard insulin therapy. This could make the potential
integration of the new model in diabetes standard of care easier. In partic-
ular, features defining patients’ characteristics and preprandial physiological
condition for each preprandial scenario consists of 11 parameters:

• CR: the patient’s carbohydrate-to-insulin ratio;

• CF: the patient’s correction-factor;

• GT: the patient’s target glucose level;

• Ib: the patient’s insulin pump basal infusion rate;

• BW: the patient’s body weight;

• BG: the patient’s preprandial BG at 1 PM;

• ROC: the patient’s preprandial ROC at 1 PM;

• CHO: the meal carbohydrate amount the patient assume at 1 PM;

• COB: the patient’s preprandial carbohydrate-on-board at 1 PM;

65



5 New linear regression models for insulin dosing

• IOB: the patient’s preprandial insulin-on-board at 1 PM;

• SF: the insulin bolus amount that would have been administered using
the SF described in Equation 1.1.

5.2.4 Final dataset preparation

The resulting dataset used in this study is composed of 162000 records, i.e. the
possible combinations of 108 preprandial scenarios, 15 meal CHO, and 100 vir-
tual subjects, and the respective IMBOPT. Each record contains the 11 features
chosen in the previous section.
Data have been divided into training and testing set, in a way that the training
set is composed of independent subjects from the ones of testing set. Therefore,
data of 80 subjects have been assigned to the training set, while the testing has
the remaining 20. In particular, each subject has been assigned either to the
training set or to the testing set in order to provide an unbiased evaluation of
a final model fit on the training dataset. Because of the different measurement
units among the 11 features, the variables have been standardized, removing
the mean and scaling to unit variance. The pre-processing was performed in
the same way for training and testing set.

5.3 Pre-analysis: Correlation between features and

optimal bolus

Before starting with the creation of the regression models, it has been checked
whether the selected features and the optimal bolus are correlated or not. This
was done in order to both analyze the relationship of the target variable with
all the other variables, and check whether the optimal bolus amount is pre-
dictable or not.
To quantify the linear correlation between two general features X and Y, the
sample Pearson correlation coefficient (PCC) has been computed:

PCCXY =
∑N

i=1(Xi − X̄)(Yi − Ȳ)√
∑N

i=1(Xi − X̄)2
√

∑N
i=1(Yi − Ȳ)2

(5.4)

where N is the sample size, Xi and Yi are the i-th samples of feature X and Y,
respectively, and X̄ and Ȳ are the sample mean of feature X and Y, respectively.
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Figure 5.5 shows the absolute values of PCC obtained for each of the dataset

Figure 5.5: Bar plot of the absolute value of PCC between dataset features and target
BOPT.

Figure 5.6: Heatmap of PCC between dataset features.

feature against the target variable, i.e. IMBOPT through a bar plot. It can be
clearly seen that the most correlated variables with the target is SF, with PCC =
0.91, followed by CHO (PCC = 0.69). Also CR and ROC result correlated with
the target (both PCC = 0.37), although less compared to CHO and SF.
In addition, PCC between each feature has been computed, so as to state if
multicollinearity exists. In regression, multicollinearity refers to predictors
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that are correlated with other predictors, indeed multicollinearity occurs when
the model includes multiple factors that are correlated not just to your target
variable, but also to each other. In other words, multicollinearity is associated
with features being redundant. In Figure 5.6 it can be noted that several vari-
ables are correlated with each other, but some are more correlated than others,
in particular SF and CHO having PCC = 0.76, while CR and CF have PCC =
0.65. The ROC is highly correlated with COB, showing a correlation coefficient
of 0.74, while CF and u2ss are negative correlated (PCC = -0.72). All the other
correlation coefficient are lower compared to the previous mentioned ones, but
in general all the variables have a correlation, although low, with at least an-
other variable.
In conclusion, significant information can be extracted from this correlation
analysis, i.e. the target is highly correlated with several variables, suggesting
that these variable (CHO, SF, CR and ROC) are relevant regressors for the mod-
els. Moreover, it can be stated that multicollinearity is present in the dataset. In
this scenario, the coefficient estimates of the multiple regression may change in
an irregular manner in response to small changes in the model or the data, as
such, particular attention will be paid when we will analyze the trained models
in order to assess their coherence with the target IMBOPT value. Specifically,
we will check whether each of the coefficient signs associated to each model
feature is coherent, e.g. CHO should be associated to a positive coefficient
since the higher the CHO th higher should the IMB be.

5.4 The three candidate linear regression (LR) mod-

els

5.4.1 Multiple linear regression model (MLR)

MLR has the following structure:

ŷi = β̂0 +
p

∑
j=1

β̂ jxij (5.5)

where yi is the i-th sample of the target variable, i.e. IMBOPT, xij is the i-th
sample of the j-th variable of the dataset, β j is the coefficient of each variable
which quantifies the association between the j-th variable and the target, β0 is
the intercept of the model, and p refers to the number of features.
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Here, β j are unknown and must be estimated. Indeed, given estimates β̂ j one
can compute (5.5).
Let’s define the residual sum of square (RSS) as:

RSS = e2
1 + e2

2 + · · ·+ e2
N (5.6)

where e2
i refers to the error the model makes in estimating the i-th target value

yi, i.e. ei = yi − ŷi.
The unknown parameters β j can be estimated using a least square approach,
i.e. choosing the β j coefficients that minimizes RSS. To do so, let’s rewrite
Equation 5.6 as:

RSS =
N

∑
i=1

(yi − ŷi)
2 (5.7)

=
N

∑
i=1

(yi − β̂0 −
p

∑
j=1

β̂ jxij)
2 (5.8)

(5.9)

that can be expressed in matrix form as a function of β, i.e. the unknown vector
of model coefficients, as:

RSS(β) =(y− Xβ)T(y− Xβ) (5.10)

where y is the N x 1 vector composed of the target variable values, and X is a
N x (p + 1) matrix containing in each row i the p features of the i-th row of the
dataset.
In order to obtain β such that it minimizes RSS, Equation 5.10 has to be differ-
entiated with respect to β:

δRSS(β)

δβ
=− 2XT(y− Xβ) (5.11)

(5.12)

Assuming that X has full column rank, the β value which minimizes RSS can
be obtained by setting the derivative to zero, thus obtaining β̂ as:

β̂ = (XTX)−1XTy (5.13)
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5.4.2 LASSO model

In order to deal with the multicollinearity problem, here, we propose the use
of shrinkage methods, and in particular, the LASSO algorithm. Indeed, some
regression techniques may be more sensitive to collinearity than others. Past
developments in model selection methods have introduced methods for bal-
ancing model complexity and fit. Although not necessarily designed to be
tolerant to collinearity, they offer approaches that may be less sensitive to this
aspect [85]. In particular, to reduce the risk of overfitting and dealing with
multicollinearities that could be present between dataset features, regulariza-
tion based techniques can be used. Specifically, coefficient estimation through
regularization strategies consists of minimizing not only RSS but also a further
term F(β), i.e. a function that puts a price on β in order to discourage coeffi-
cients to become, in absolute value, too large, as it may happen in MLR. Hence,
the function to minimize becomes:

L(β, λ) = RSS(β) + F(β) (5.14)

where, in LASSO, it becomes:

L(β, λ) = RSS(β) + λ
p

∑
j=1
|β j| (5.15)

One of the most popular models that leverage regularization are the so called
least absolute shrinkage and selection operator (LASSO) models. In LASSO β̂

can be obtained by solving:

β̂ = arg min
β

RSS(β) + λ
p

∑
j=1
|β j| (5.16)

where the coefficients of the multivariate model are penalized by considering
the sum of their absolute values (λ ≥ 0). By using Lagrangian multipliers [61],
it can be shown that an equivalent way to write the minimization problem is
as follows:

β̂ =arg min
β

RSS(β) (5.17)

subject to
p

∑
j=1
|β j| ≤ t (5.18)
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where t is proportional to λ. Because of the nature of the constraints, making t
sufficiently small will cause some of the coefficients to be exactly zero, leading
to a sparse solution.

Numerical methods for computing LASSO estimates

Unfortunately, Equation 5.16 is not differentiable when β contains zero values.
Hence, a solution of 5.16 in closed form is not available and iterative methods
are necessary to compute an approximate solution. As a consequence, for com-
puting the LASSO solution, a wide variety of approaches have been proposed
in the literature. Here, an iterative technique based on Newton’s method is
presented [86]. These methodologies update the vector β at each iteration ac-
cording to:

βk+1 = βk − α∇L(βk)/∇2L(βk) (5.19)

where subscript k represents the k− th iteration.
Since the gradient ∇L(βk) does not exist it some β j are zero, sub-gradients
based algorithms can be used [86]. Here, for the sake of brevity, we do not
present these methodologies. However, for an exhaustive explanation of sub-
gradients algorithms we refer the reader to [87][88][89].

5.4.3 Multiple linear regression model with non-symmetric cost

function (MLRNS)

In general, overestimation of IMB is something that should be avoided. In-
deed, people with diabetes are concerned more about the probability that a
hypoglycemia event occurs (due to insulin overdosing) rather than hyper-
glycemia (due to insulin underdosing), being the short-term consequences of
hypoglycemia more severe. Therefore, we decided to developed another mul-
tiple linear regression model, labeled as MLRNS, whose cost function, used
during its training procedure, is non-symmetric and specifically designed to
penalize heavily the overestimation of IMB rather than its underestimation.
To do so, we resort to the gradient descent algorithm, which allowed us to
define arbitrary differentiable cost function to be used during the training pro-
cess [60].
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Here, we set such a cost function as:RSS if IMBOPT ≥ ˆIMB

3 · RSS if IMBOPT < ˆIMB
(5.20)

where ˆIMB is the IMB estimated using MLRNS.

5.5 Identification of the models

5.5.1 MLR

MLR model has been identified on the training set using the least squares al-
gorithm. The resulting MLR is:

ŷ =4.35− 0.17 · CR− 0.19 · CF− 0.19 · Ib − 0.36 · BW+ (5.21)

+ 0.43 · Gb + 0.53 · COB− 0.19 · IOB− 0.14 · GC+ (5.22)

+ 0.30 · ROC + 0.25 · CHO + 2.82 · SF (5.23)

Few comments can be done about MLR coefficient signs. It can be seen that
negative or positive contributions given by each term are consistent. In par-
ticular, it is reasonable that CHO, COB and GC have a positive sign within
the model, since the greater their value, the higher should the injected insulin
be. The ROC gives a positive contribution to the model, indeed if its value
is falling, the IMB will be lower, while if the glucose trend is rising the IMB
will be higher. A negative contribution is given by CR, since the lower is CR
the more resistant is the subject in terms of insulin response to CHO, thus the
IMB should be higher. A similar reasoning can be applied to CF, which has
a negative sign, indeed a high CF means that the patient needs a lower IMB.
In addition, it can be seen that, as expected, IOB has a negative contribution,
since if any insulin amount is still active in the subject, then the IMB should
be lower. In conclusion, the signs of the different terms are reasonable in terms
of interpretability of the model.
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5.5.2 LASSO

The resulting LASSO model, identified on the training set, is the following:

ŷ =4.35− 0.19 · CR− 0.22 · BW + 0.39 · Gb + 0.46 · COB (5.24)

− 0.09 · IOB− 0.09 · GC + 0.36 · ROC + 0.19 · CHO (5.25)

+ 2.86 · SF (5.26)

where the parameter λ has been set equal to 0.03 through a grid search proce-
dure. In this model, most of the coefficients have been shrunk towards zero,
in particular the CF coefficient and Ib coefficient have been set exactly equal
to zero. Again, as MLR, model coefficients are consistent. Moreover, it can be
observed that the ROC and SF coefficients are the only two values which show
an increase.

5.5.3 MLRNS

The resulting MLRNS model, identified on the training set, is the following:

ŷ =3.95− 0.31 · CR− 0.05 · CF− 0.09 · Ib − 0.29 · BW+ (5.27)

+ 0.31 · Gb + 0.40 · COB− 0.26 · IOB− 0.07 · GC+ (5.28)

+ 0.37 · ROC + 0.40 · CHO + 2.50 · SF (5.29)

Looking at the absolute values of the coefficients, we can notice that many of
them show lower magnitude compared to MLR, except for IOB, ROC, and
CHO. Interestingly, also the coefficient associated with SF has a smaller mag-
nitude, while the coefficients signs are consistent as the ones of the previous
models.

5.6 Results in terms of capabilities of the the mod-

els in targeting optimal insulin bolus

Performance of each of the candidate models tested in the present chapter in
predicting IMBOPT has been evaluated by quantifying model accuracy and
goodness of fit. Specifically, we computed the mean squared error (MSE) and
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Table 5.1: Comparison between prediction performance obtained using SF, BU, SC,
and PE vs. MLR, LASSO, and MLRNS on the testing set.

Metric SF BU SC PE MLR LASSO MLRNS

MSE 2.00 1.98 1.73 1.96 0.82 0.79 0.93
R2 0.74 0.78 0.81 0.78 0.91 0.91 0.90

the coefficient of determination (R2) that are defined as:

MSE =
RSS

N
(5.30)

R2 = 1− RSS
TSS

(5.31)

where TSS indicates the total sum of squares defined as:

TSS =
N

∑
i=1

(yi − ȳi)
2 (5.32)

where ȳ is the mean value of the target variable y.

5.6.1 MLR

In Table 5.1 we compared the MSE and R2 distribution obtained using SF, BU,
SC, and PE vs. MLR, the aim being assessing and quantifying whether the de-
veloped model is able to approximate more accurately the optimal target IMB,
i.e. IMBOPT, with respect to state-of-the-art methodologies. Compared to all
the other methods, it can observed that MLR outperforms the other approaches
since it is able to estimate IMB values closer to the IMBOPT. Specifically, ob-
tained MSE is 0.82 U using MLR and 2.00 U, 1.98 U, 1.73 U, and 1.96 U with SF,
BU, SC, and PE respectively, while obtained R2 are 0.91 using MLR and 0.74,
0.78, 0.81, 0.78 using SF, BU, SC, and PE, respectively.

5.6.2 LASSO

In Table 5.1 MSE and R2 obtained using SF, BU, SC, and PE are compared
against LASSO. Again, the developed model allowed to achieve better predic-
tion accuracy in terms of both MSE and R2 outperforming the other considered
methods and obtaining slightly better performance than MLR.
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5.6.3 MLRNS

Observing Table 5.1, it can be stated that the metrics slightly deviate from the
values computed in the preceding models, even though the difference is not
quantitatively significant. Anyway, as MLR and LASSO, MLRNS outperforms
all the other considered literature methodologies by halving their error in esti-
mating IMBOPT.

5.6.4 Recap of the results

In this subsection, a brief recap and analysis of the results obtained with MLR,
LASSO, and MLRNS is reported.
When considering the MSE and R2 as evaluation metrics, LASSO provides the
best performance, with a MSE of 0.79 and a R2 equal to 0.91. However, the
metrics of the other proposed models differ just slightly from LASSO. In addi-
tion, all the models improve considerably not only the metrics resulting from
SF but also from all the literature methodologies considered in Chapter 2, i.e.
BU, SC, and PE.
In conclusion, satisfactory performance has been achieved in terms of MSE
and R2. However, an in silico evaluation in term of glycemic outcomes is
needed. To do so, in the next section we will run in silico simulations to com-
pare the glycemic control achieved by the adoption of the proposed models
against SF, BU, SC, and PE.

5.7 Performance of the models in terms of glycemic

control indexes

In this Section, for each subject of the testing set, for each scenario, perfor-
mance of MLR, LASSO, and MLRNS were compared against the considered
literature methods the aim being assessing whether or not, beside being more
accurate in estimating the optimal IMB, they achieve better glucose control
within the population. Specifically, performance of each methods have been
compared against the same performance achieved through the use of OPT in
terms of ∆BGRI, percentage time in hypoglycemia (<70 mg/dL) (∆%THYPO);
percentage time in hyperglycemia (>180 mg/dL) (∆%THYPER); and percentage
time in glucose target range ([70-180] mg/dL) (∆%TTARGET). By mean of this
comparison we are able to assess which of the considered methods better ap-
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Table 5.2: Median [interquartile range] ∆BGRI, ∆%THYPO, ∆%THYPER ∆%TTARGET,
obtained by comparing SF, BU, SC, PE, MLR, LASSO, and MLRNS against OPT on the
test set.

∆BGRI ∆%THYPO ∆%THYPER ∆%TTARGET

SF-OPT 0.59 0.00 0.00 -2.77
[0.06, 2.50] [0.00, 19.11] [-3.32, 1.66] [-15.79, 0.00]

BU-OPT 0.51 0.00 0.00 -1.94
[0.05, 2.37] [0.00, 19.94] [-3.60, 1.11] [-15.51, 0.00]

SC-OPT 0.53 0.00 0.00 -2.22
[0.06, 2.31] [0.00, 28.81] [-3.32, 1.39] [-15.24, 0.00]

PE-OPT 0.52 0.00 0.00 -2.22
[0.05, 2.70] [0.00, 21.88] [-4.16, 0.83] [-17.17, 0.00]

MLR-OPT 0.31 0.00 0.00 -1.39
[0.05, 1.24] [0.00, 1.11] [-1.39, 1.94] [-6.65, 0.00]

LASSO-OPT 0.29 0.00 0.00 -1.39
[0.05, 1.15] [0.00, 1.11] [-1.39, 1.94] [-6.09, 0.00]

MLRNS-OPT 0.27 0.00 0.28 -1.66
[0.04, 0.85] [0.00, 0.00] [0.00, 3.60] [-4.99, 0.00]

proximate the "optimal" bolus calculator.
As we did in Chapter 4, these metrics are reported as mean (± standard de-
viation) for Gaussian distributed metrics or median [interquartile range]. For
this purpose, non-Gaussianity of each distribution was checked by mean of
the Lilliefors test with a 5% confidence level.

5.7.1 Assessment against the "optimal" bolus calculator

Figure 5.7 shows the distributions of ∆BGRI, ∆%THYPO, ∆%THYPER ∆%TTARGET,
obtained by comparing SF, BU, SC, PE, MLR, LASSO, and MLRNS against
OPT on the test set. It is possible to observe that, consistently with what we
obtained in the Section 5.6, MLR, LASSO, MLRNS outperform the other con-
sidered methods. In particular, MLR, LASSO, and MLRNS distributions show
that they are all better approximation of OPT compared to SF, BU, SC, and PE.
Indeed, Figure 5.7 shows that MLR-OPT, LASSO-OPT, and MLRNS-OPT dis-
tributions are squished around zero. Analyzing the numerical results reported
in Table 5.2 this aspect can be furtherly appreciated. For example, focusing
on the third quartile of ∆%THYPO, obtained results are 19.11 for SF-OPT, 19.94
for BU-OPT, 28.81 for PE-OPT, 1.11 for MLR-OPT, 1.11 for LASSO-OPT, and
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Table 5.3: Median [interquartile range] ∆BGRI, ∆%THYPO, ∆%THYPER ∆%TTARGET,
obtained by comparing MLR vs. LASSO, MLR vs. MLRNS, and LASSO vs. MLRNS
on the test set.

∆BGRI ∆%THYPO ∆%THYPER ∆%TTARGET

MLR-LASSO 0.00 0.00 0.00 0.00
[-0.04, 0.08] [0.00, 0.00] [-0.28, 0.28] [-0.28, -0.28]

MLR-MLRNS 0.00 0.00 -1.11 0.55
[-0.24, 0.40] [0.00, 1.66] [-2.22, 0.00] [-0.83, 1.66]

LASSO-MLRNS 0.01 0.00 -1.39 0.83
[-0.26, 0.39] [0.00, 1.94] [-1.94, 0.00] [-0.83, 1.66]

0.00 for MLRNS-OPT, demonstrating that the adoption of the developed mod-
els for the computation of IMB is able to significantly reduce hypoglycemia
within the virtual population. In particular, results obtained for MLRNS-OPT
are expected since the cost function used during the training of MLRNS penal-
izes IMB overestimation. Considering the median results (see Table 5.2), the
best outcomes were achieved using MLRNS in terms of ∆BGRI and ∆%THYPO,
LASSO in terms of ∆%TTARGET, while both MLR and LASSO perform the same
in terms of ∆%THYPER. Again, this is expected since higher prediction accu-
racy (MLR and LASSO) should translate in better ∆%TTARGET, while better
∆%THYPO should be obtained using MLRNS due to the nature of the cost func-
tion we used during its training.

5.7.2 Comparison among MLR, LASSO, and MLRNS

Figure 5.8 shows the distributions of ∆BGRI, ∆%THYPO, ∆%THYPER and ∆%TTARGET

obtained by comparing MLR vs. LASSO, MLR vs. MLRNS and LASSO vs.
MLRNS on the test set. Numerical results are reported in Table 5.3. It can
be noticed that, MLR and LASSO obtain basically the same results being the
∆BGRI, ∆%THYPER and ∆%TTARGET distributions symmetrical around 0 and
all median values equal to 0.00. Moreover, there are no differences in terms
of ∆%THYPO. Numerical results are reported in Table 5.3. Different results are
obtained comparing MLR vs. MLRNS. Of course, this is due to the asymmet-
ric cost function used to train MLRNS. Indeed, using MLRNS we get %THYPO

but higher %THYPER. However, obtained ∆%THYPER is acceptable (on average
-1.11 %). Same results are obtained comparing LASSO vs. MLRNS. Indeed,
since MLR and LASSO obtained the same results, this is expected.
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Figure 5.7: Boxplot distributions of ∆BGRI, ∆%THYPO, ∆%THYPER ∆%TTARGET, ob-
tained by comparing SF, BU, SC, PE, MLR, LASSO, and MLRNS against OPT on the
test set.

5.8 Summary of the obtained results and ideas for

future developments

In this chapter we developed new models for the calculation of insulin bo-
luses, exploiting machine learning approaches, with the aim of improving the
standard formula used for bolus insulin dosage. Results show that linear re-
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Figure 5.8: Boxplot distributions of ∆BGRI, ∆%THYPO, ∆%THYPER ∆%TTARGET, ob-
tained by comparing MRL vs. LASSO, MLR vs. MRLNS, LASSO vs. MLRNS on the
test set.

gression models are viable techniques for the scope. In particular, they outper-
form SF, BU, SC, and PE in approximating OPT by maintaining interpretability,
simplicity, and, from a practical point of view, being easily implementable in
currently available insulin pumps as a substitute of SF. Moreover, a compari-
son between the glycemic outcomes obtained with the proposed models and
literature methodologies for IMB calculation is performed. As a result, we can
state that each of the models makes a significant contribution to this improve-
ment. In particular, use of LASSO, allowed to obtain results closer to what
can be achievable with the "optimal" BC, i.e. OPT, suggesting that it could
represent a promising method for the diabetes treatment management. Fur-
thermore, we would like to highlight the significant improvement brought by
MLRNS. When tested in silico the model reaches the minimum average time
spent in the hypoglycemic range among all the proposed models at the cost of
a slightly increase of the time spent in hyperglycemia. This result will lead us
to further investigate this type of approaches method during future develop-
ments of the this line of research. In particular, MLRNS represents the ideal
IMB calculation methodology for those patients that, are highly insulin sensi-
tive and, more in general, they have to necessarily avoid IMB overestimation.
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Chapter 6

Conclusion and future development

6.1 Summary of the main achievements

Use of CGM devices opened new scenarios in T1D management. In particu-
lar, FDA approval of non-adjunctive use of CGM increased the interest toward
methods to "correct" insulin therapy in order to account for CGM-derived in-
formation such as the glucose ROC. The primary aim of this thesis was to de-
velop novel insulin dosing techniques, usable for T1D treatment, to leverage
this information and improve glycemic control through the population.
For this purpose, in Chapter 2 we first reviewed three popular methods, namely
BU, SC, and PE, that use ROC magnitude and direction to correct SF. The aim
was to evaluate whether these algorithms help in improving the performance
of SF and to identify their criticalities and limitations as well as margins for
improvement by new approaches. In particular, by an ad-hoc in silico clinical
trial based on the 2013 version of the UVa/Padova T1D Simulator, we showed
that, overall, none of the considered approaches clearly prevails on the oth-
ers, since the best modulation of the insulin bolus results strongly related to
preprandial conditions and patient characteristics.
The above results suggested us to explore new algorithms for the adjustment
of SF which leverage not only CGM data, but also accessible patient parame-
ters including, for example, preprandial BG concentration, body weight, and
meal carbohydrate intake. Therefore, given their ability of capturing complex
non linear input-output relationships, such as glucose-insulin dynamics, we
decided to adopt a NN. Specifically, we assessed whether or not it can be ap-
plicable to the considered case of study, i.e. the insulin dosing personalization.
Therefore, in Chapter 3 we developed a new algorithm to correct SF, based on
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NN, trained to learn the optimal insulin dose using the SF parameters, ROC,
body weight, insulin pump basal infusion rate, and insulin as features. Results
on simulated data show that this approach outperforms the other considered
algorithms by bringing to a small but statistically improvement of glucose con-
trol. Moreover, this suggested us to investigate other strategies based on ma-
chine learning models to furtherly improve glycemic control across the popu-
lation.
Following these results, in Chapter 4 we proposed a different personalized ap-
proach to SF adjustment. Specifically, a new model based on XGB was used
firstly to classify, at meal time, the postprandial glycemic status using CGM
data together with carbohydrate intakes data and insulin infusion recordings,
then its outcome was used to modulate, in real-time, the insulin bolus amount
obtained through SF. Results obtained on simulated data show that, when used
to adjust SF, the proposed approach improves glycemic control. In particular,
percentage time in target [70, 180] mg/dL improved without increasing hypo-
glycemia.
The results we obtained in Chapter 3 and Chapter 4 showed that our strategy,
i.e. leveraging machine-learning power to learn the underneath relationships
between optimal insulin dose and patient status, is promising in improving
the glycemic outcomes achievable through the use of SF. Indeed, we showed
that using SF alone one obtains bad glucose control due to its definition. How-
ever, this aspect is critical. In fact, since both methodologies were designed to
correct something sub optimal, this can represent a possible limitation. There-
fore, this drove us to develop new models for insulin dosing that get rid of
SF and provide patients with new rules that naturally take into account for
the information on their physiological status. For this scope, in Chapter 5 we
investigated the use of three different LR models labelled in the thesis MLR,
LASSO, and MLRNS. Results on simulated data demonstrate the superiority
of MLR, LASSO, and MLRNS when compared to SF, BU, SC, and PE.
In conclusion, the developed algorithms are promising tools to improve glycemic
control in patients affected with T1D, since they properly use the available
information on patient, available at meal-time, to provide effective insulin
dosage.
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6.2 Limitations of the study

Regarding the review of state-of-the-art techniques to correct SF according to
CGM data carried out in Chapter 2, we acknowledge that it is not exhaustive
since it does not include the latest methodologies published after the beginning
of that part of the work, e.g. the one proposed by Aleppo et al. [90], Ziegler
et al. [91], and Klonoff et al. [92]. For this reason, work currently under way
involve their inclusion in a new study aimed at comparing their performance
with BU, SC, and PE 1.
As far as the NN-based methodology of Chapter 3 is concerned, it is impor-
tant to stress that, in the present investigation of tools to predict the optimal
correction of SF, we limited ourselves to evaluating neural networks only. Of
course, other non linear machine learning techniques (e.g., kernel support vec-
tor machines or regression trees) could be considered for the scope as well.
Implementation of alternative methods will be matter of future investigations,
together with a comprehensive analysis of the relative performance of the so-
obtained SF "corrector". In addition, another interesting aspect would be fur-
therly exploring both the NNC structure by reducing the number of nodes
in the middle layer and introducing fuzzification as a way to accommodate
person-to-person variation and expanding the feature set we used to train
NNC. For example, it will be worth adding as inputs also a preprandial win-
dow of CGM values to exploit fully the information on BG dynamic provided
by CGM devices. Finally, it would be also interesting to investigate how the
NNC performance is influenced by the variability of CGM sensor accuracy, for
example, observed for different days of sensor wear or different number of
sensor’s calibrations per day.
Regarding the development of the methodology based on XGB, described in
Chapter 4, the presented study has some limitations that need to be addressed
in future work. An important aspect that needs to be further studied is the fea-
ture selection process. Given the inherent capability of XGB at automatically
discriminating important features, no preliminary feature selection was per-
formed during the data preparation phase. However, future work is needed
to investigate if it is possible to reduce its dimensionality and improve the in-
terpretability of the results. Additional work can be done to develop a more

1G. Noaro, G. Cappon, S. Del Favero, G. Sparacino, and A. Facchinetti,"In silico assess-
ment of insulin dosing algorithms accounting for glucose rate of change provided by continu-
ous glucose monitoring data," in the 13th International Conference on Advanced Technology
Treatment for Diabetes, ATTD, 2020. (submitted)
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specific and optimized policy to adjust the meal insulin bolus according to
XGB classifications. Furthermore, future work will study the impact of each
of the input features in characterizing the target classes. Indeed, such a study
is fundamental to fully interpret XGB and furtherly improve its performance.
Finally, future work will also compare XGB with neural networks and deep
learning techniques to assess whether, by sacrificing model interpretability, it
is possible to achieve better classification accuracy.
Some additional comments can be done about the methodologies we presented
in Chapter 5. Describing the IMB dose with a model which is linear in the pa-
rameters is challenging, although using a linear model has many advantages,
in terms of interpretability but also computational burden. Indeed, with high
probability, a non linear model could further improve the performances, since
glucose and insulin dynamics are non linear. A first attempt exploiting gradi-
ent boosted decision tree was carried out. This type of non linear model has
been chosen for its comprehensibility compared to other types of non linear
algorithms such as NNs or support vector machines. Current works under-
going in our laboratory show that the application of non linear models can
further improve the performance, but the results should be tested in-silico and
the method further investigated.
Finally, of course the results obtained using a state-of-the-art in silico environ-
ment are very encouraging. However, in order to fully validate each method-
ology, the next logical step will certainly involve their assessment using ret-
rospective clinical data and its subsequent evaluation in a prospective clini-
cal trial. With respect to this aspect, the developed methodologies, especially
NNC and the new formula for insulin dosing developed in Chapter 5, share
the same limitation: their training will not be possible in a clinical setting since
no such a thing as the optimal target bolus will be available. To overcome this
issue, a possible solution is represented by, first training models on in silico
data generated using the UVa/Padova T1D Simulator, then calibrating these
model on real patient data in order to adjust model parameters, thus obtain-
ing a model representation of the processes of interest on the real population.
Future work will investigate extensively this approach.
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6.3 Possible further developments

6.3.1 Methodological aspects

The results achieved in this thesis encourage further investigations on machine
learning-based methodologies to provide patients with new tools to ease their
daily insulin therapy routine. In this context, big data analysis can be exploited
to discover daily or weekly patterns, whether patients perform better than oth-
ers and even cluster each subject into different categories according to their
outcomes. For example, a possible advantage of having "clusters" of patients
instead of a single one is the possibility of using not only that subject infor-
mation for the insulin bolus calculation, but also the whole cluster informa-
tion, that, containing much more data, makes it possible to deploy powerful
deep learning techniques. To give an example, it is known that, in general,
the amount of injected insulin strongly depends on the CR of a subject: a low
CR leads to higher amounts of insulin needed to compensate a meal, while
subjects having a high CR require less insulin compared to the previous case.
Hence, the idea of exploiting this information applying clustering methodolo-
gies to the subjects, obtaining two (or more) clusters of patients which shows
similar characteristics in terms of CR parameter will be explored.

6.3.2 A possible application: development of a decision sup-

port system

The increased amount of available information brought by wearable devices,
such as CGM systems and physical activity monitoring bands, has led to the
development of decision making tools and applications, such as the method-
ologies developed in this thesis, that can enhance the management of the dis-
ease [93]. Decision support systems (DSSs) give the possibility to support users
with proactive and personalized decisions in any scenario of their daily living
and allows to react at shorter time scales. Over the past few years, DSSs for dia-
betes have been an emerging concept in health care. By means of this new tech-
nology, data can be automatically collected, transmitted, aggregated with other
physiological data, analyzed, stored, and presented to the patient. By integrat-
ing e-health and tele-monitoring systems, DSSs for T1D have the potential to
improve glycemic outcomes thanks to prevention of hypo- or hyperglycemic
events, reducing uncertainty when making critical self-management decisions
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[94]. A DSS for diabetes treatment provides an alternative to the closed-loop
system, the so-called artificial pancreas (AP). Indeed, a wide range of users do
not feel confident with the use of AP systems, being concerned about errors
occurring in the insulin pump, and they prefer an open-loop therapy, which
can be assisted by DSSs. Most of DSSs already available in the literature are
composed by a predictive glucose module (which alerts the user whenever its
BG is predicted to fall outside the safe range in the next future), an insulin sus-
pension module (which temporarily suspends basal insulin delivery to avoid
hypoglycemia when BG is critically low in patient using insulin pumps), and
a BC module to compute IMB at meal-time. Therefore, a straightforward ap-
plication of the work presented in this thesis, consist in designing a new BC
module that implements the proposed methodologies in order to develop a
new, more sophisticated, DSS that is able to achieve better glycemic control
when compared to other state-of-the-art algorithms.
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Appendix A

Neural networks (NN)

A.1 Introduction to neural networks

Neural networks (NNs) are complex and powerful machine learning based
models originally devised to represent the mechanisms regulating information
processing within biological systems [95]. So far, NN have been used to solve
a variety of problems [96]. Moreover, NN base structure has been exploited
to develop new, more sophisticated models to represent peculiar input-output
relationships, e,g, recurrent NN, LSTM, and so and so forth. In this thesis, we
will refer to the term NN as a specific class of NNs that have been proven to
be of great practical value for both classification (i.e. when the target variable
domain is a discrete finite set of values) and regression (i.e. when the target
variable domain is a continuous set of values) tasks, namely the multilayer
perceptron.

Figure A.1: Structure of a perceptron, i.e. a NN made of a single neuron.
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The most basic NN model: the perceptron

Figure A.1 shows the perceptron, i.e. a NN composed of a single "neuron". For-
mally, it can be described as a functional transformations. First, it constructs a
linear combination of the input variables x1, x2, . . . , xD in the form:

a =
D

∑
i=1

wixi + w0 (A.1)

where wi and w0 are commonly referred as weights and bias, respectively, and
a is the so-called activation. Then, the activation is transformed using a differ-
entiable, non linear function h(·), namely the activation function, to obtain:

z = h(a) (A.2)

where z is the output of the perceptron.

Figure A.2: A simple NN composed of 2 hidden layers, D inputs and K outputs.
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Putting perceptrons together In general, NN models consist of an ensemble
of perceptrons connected together to form the overall model. In particular, NN
are commonly organized in "layers" where each layer is composed of multiple
neurons each of them having as input all the outputs of the previous layer and
a specific activation function.
To visualize this concept, let’s describe how the simple NN model showed in
Figure A.2 works. First, a set of inputs, i.e. x1, x2, . . . , xD, are used to fed the
first layer of the NN (called the first "hidden" layer of the NN). Specifically,
in our case, the first hidden layer consists of a set of M perceptrons, which
transform the inputs into M linear combinations:

aj =
D

∑
i=1

w(1)
ji xi + w(1)

j0 (A.3)

where superscript (1) indicates the first hidden layer, and subscript j = 1, . . . , M
denotes the j-th neuron of the first hidden layer. Then, Equation A.2 can be
rewritten as:

zj = h(aj) (A.4)

These quantities correspond to the outputs of the first hidden layer.
Then, these values are again linearly combined to give the output of the second
hidden layer of the NN as:

ak =
M

∑
j=1

w(2)
kj zj + w(2)

k0 (A.5)

where k = 1, . . . , K, and K is the total number of outputs.
Finally, the output unit activations are transformed using an appropriate acti-
vation function to give a set of NN outputs yk as:

yk = f (ak) (A.6)

In particular, the choice of the activation function f (·) is determined according
to the nature of the data and the assumed distribution of target variables.
In summary, the overall NN model takes the form:

yk(x, w) = f (
M

∑
j=1

w(2)
kj h(

M

∑
j=1

w(1)
ji xi + w(1)

j0 ) + w(2)
k0 ) (A.7)

101



A Neural networks (NN)

where the set of all weights and bias parameters and input variables have been
grouped together in vector w and x, respectively. Thus, NN is simply a non
linear function from a set of input variables x to a set of output variables {yk}
controlled by a vector w which represents the NN unknown parameters that
need to be estimated.

A.2 Neural network training through gradient de-

scent: the backpropagation algorithm

Training, i.e. estimating w, of NN is usually performed by resorting to the back-
propagation algorithm, which consists in an iterative algorithm based on gradi-
ent descent that alternatively pass information forward and backward through
the network. In the following, derivation of backpropagation is described for
a general NN having arbitrary topology, arbitrary activation functions, and a
broad class of error functions (i.e. functions used to quantify the error the NN
makes in predicting the target {yk} given the current w).
Commonly, the error function E involve a sum of terms, one for each data point
in the training set, so that:

E(w) =
N

∑
n=1

En(w) (A.8)

Here, the problem is evaluating ∇En(w) for one such term in the error func-
tion.
Considering a general NN, each unit computes a weighted sum of its inputs
that is consequently non linearly transformed by an activation function to give
activation zj of unit j as follows:

zj = h(aj) = h(∑
i

wjizi) (A.9)

For each target variable of the training set, we know the corresponding input
vector to NN and the respective activations of its units. Then, considering the
evaluation of the derivative of En with respect to a weight wji, it is possible to
observe that En depends on the weight wji only by aj to unit j. As such, the

102



A.3 Choosing NN architecture

chain rule for partial derivatives can be applied to obtain:

δEn

δwji
=

δEn

δaj

δaj

δwji
= δjzi (A.10)

where, δj =
δEn
δaj

and zi =
δaj
δwji

.
For the output unit, it can be derived that:

δk = ŷk − yk (A.11)

where yk and ŷk are the true and the predicted target value (obtained from the
NN using the current w), respectively. Then, using again the chain rule for
partial derivatives on δj it is possible to obtain:

δj = ∑
k

δEn

δak

δak
δaj

(A.12)

Finally, using the definitions of δ, aj, and zj, it results the backpropagation for-
mula:

δj = h′(aj)∑
k

wkjδk (A.13)

which means that the value of δ for a particular unit can be obtained by prop-
agating the δ’s backward form units higher up in NN.

For the sake of clarity, the backpropagation algorithm has been summarized
as follows:

1. Apply an input vector xn to NN and find activations and outputs of
all units;

2. Evaluate the δk for all the outputs units;
3. Backpropagate the δ’s using the backpropagation formula for each uni
of the NN;

4. Evaluate the derivatives of each unit.

Algorithm 1: The backpropagation algorithm

A.3 Choosing NN architecture

While the design of the input and output layers of NNs is often straightfor-
ward, there can be a multitude of choices when choosing the structure of hid-
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den layers. Indeed, it is not possible to sum up the design process for the
hidden layers with few rules of thumb, so users developing NN have to fix
the number of units per layer, the number of layers, which kind of activation
function to use for each layer, and so on and so forth. These parameters are
commonly referred to "hyperparameters" of the NN since they define, from
the architectural point-of-view, the topology of the NN. The difficulty of tun-
ing NN hyperparameters is basically due to the fact that, for given hyperpa-
rameter set, the computational cost associated with the NN training is very
high. As such, this translates in the impossibility of searching for the optimal
hyperparameter set by a simple exhaustive grid search, i.e. where the can-
didate optimal hyperparameters are defined upon a fine fixed grid and NN
performance is evaluated for each of the possible grid points.
This problem calls for hyperparameter optimization techniques that are robust
and allow to tune the NN structure with an acceptable computational cost. In
the following, a state-of-the-art solution to this problem is discussed.

A.3.1 Sequential model-based global optimization

Sequential model-based global optimization (SMBO) algorithms are a class of
methodologies which have been widely used in the literature to tune models
that are very computationally heavy to evaluate, e.g. NN or gradient boosted
trees (described later in Appendix B) [97]. In particular, when the true fitness
function f : X −→ R is expensive to evaluate, SMBO algorithms approximate
f with another function g cheaper to evaluate. Therefore, at each iteration, the
point x∗ that maximizes g becomes the proposal for where the true function f
should be evaluated.
SMBO algorithms available in the literature, have different criterion they use
to obtain, at each iteration, x∗ given g, and different ways to model f via ob-
servation history H, i.e. the set of (x∗, f (x∗)) that have been evaluated upon
the current iteration of the SMBO algorithm.
Here, we formally describe the Tree-structured Parzen Estimator approach
(TPE), that is the SMBO algorithm we adopt in this thesis to optimize the hy-
perparameters of the developed machine learning models.
TPE belongs to a family of SMBO algorithms that optimize the criterion of Ex-
pected Improvement (EI) [98], i.e. the expectation under some model M of f
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that f (x) will exceed (negatively) some threshold y∗ defined as:

EIy∗(x) :=
∫ +∞

−∞
max(y∗ − y, 0)p(y|x)dy (A.14)

In TPE, p(y|x) is not modeled directly, instead it models p(x|y) and p(y).
To do so, by assuming that the space in which we search for the optimal hy-
perparameter setX can be described by a graph-structured generative process,
e.g. first choose the number of hidden layers of a neural network, then choose
each layer’s activation function, TPE models p(x|y) by transforming that gen-
erative process, replacing the distributions of the configuration prior with non-
parametric densities, i.e. uniform, log-uniform, quantized log-uniform, and
categorical variables. Then, TPE substitute uniform densities with truncated
Gaussian mixture densities, log-uniform densities with exponential truncated
Gaussian mixture densities, and categorical with re-weighted categorical. In
particular, using different observations {x1, x2, . . . , xk} these substitutions rep-
resent the learning algorithm that produces a variety of densities over X . TPE
defines p(x|y) using two such densities:

p(x|y) =

l(x) if y < y∗

g(x) if y ≥ y∗
(A.15)

where l(x) is the density formed by using the observations {xi} such that cor-
responding loss f (xi) was less than y∗ and g(x) is the density formed by using
the remaining observations. The TPE algorithm chooses y∗ to be some quantile
γ of the observed y values, so that p(y < y∗) = γ, but no specific model for
p(y) is necessary. Indeed, by maintaining the observed variables in H sorted,
the runtime of each iteration of TPE can scale linearly in |H| and linearly in the
number of variables being optimized.

How TPE optimize EI

Starting from the definition of EI for a given y∗

EIy∗(x) =
∫ y∗

−∞
(y∗ − y)p(y|x)dy =

∫ y∗

−∞
(y∗ − y)

p(x|y)p(y)
p(x)

dy
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by construction, it can observed that γ = p(y < y∗) and p(x) =
∫

R
p(x|y)p(y)dy =

γl(x) + (1− γ)g(x). It follows:

∫ y∗

−∞
(y∗− y)p(x|y)p(y)dy = l(x)

∫ y∗

−∞
(y∗− y)p(y)dy = γy∗l(x)+ (1−γ)l(x)

∫ y∗

−∞
p(y)dy

so that finally:

EIy∗(x) =
γy∗l(x)− l(x)

∫ y∗

−∞ p(y)dy
γl(x) + (1− γ)g(x)

∝ (γ +
g(x)
l(x)

(1− γ))−1

This shows that, probabilistically speaking, to maximize improvement, it is
necessary to have points with high probability under l and low probability
under g. From the practical point of view, given the tree form of l and g, it
is possible to easily draw candidates distributed according to l and evaluate
them according to g(x)/l(x). As such, on each iterations, TPE, draws many
candidates x under l, evaluates their improvement, and finally returns the can-
didate x∗ with the greatest EI.
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Gradient Boosted Trees (GBT)

Gradient boosted trees (GBT) [60], are powerful machine learning models that,
in the last years have been proven to outperform other machine learning based
techniques in many applications. Beside being accurate and efficient, GBT is
popular also because it is highly interpretable. GBT is an ensemble technique
that uses decision trees as base models where, at each step, a new decision
tree is trained to fit the residual between ground truth and current predic-
tion. Computationally speaking, many efficient implementations have been
proposed in the literature, such as the one used in present work, i.e. eXtreme
GBT (XGB) [75] that uses the second order gradient to guide the boosting pro-
cess and improve the accuracy. In the following, the derivation of the objective
function of GBT using the second order Taylor expansion, which is currently
used by the XGB implementation, is presented, as well as the rationale behind
the most used split finding methods, i.e. the methodologies decision trees im-
plement in order to find the best topology.

B.1 Derivation of the objective function

Let’s define D = {(xi, yi)|i = 1, ,̇n} as a dataset of n samples xi, of m features
x ∈ Rm, each associated to its target yi. In a decision tree, i.e. the base model
of a GBT, prediction of yi are calculated as:

ŷi = f (xi) = wq(x) (B.1)

where f : Rm −→ R is a function that maps a given xi into a scalar, q : Rm −→
[1, L] is a function which selects a leaf of the decision tree given x and w, L is
the number of leaves of the decision tree, and wi is the weight of the i-th leaf.
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I a GBT composed of K decision trees, the prediction ŷi is obtained as:

ŷi =
L

∑
k=1

fk(xi) (B.2)

To train a GBT, i.e. learn the set of function { fk|k = 1, . . . , K} associated to the
K decision trees, we want to minimize the following objective function:

L =
n

∑
i=1

l(ŷi, yi) +
K

∑
k=1
R( fk) (B.3)

where l is a loss function which quantifies the prediction error of the model,
andR is a regularization term used to penalize model complexity defined as:

R( f ) = γL +
1
2

λ||wq(x)||2 (B.4)

where γ is a parameter that weights the penalty contribution given by the
number of leaves of the given decision tree, and λ weights the penalty con-
tribution given by the decision tree weights.
The objective function cannot be minimized using traditional methods. In fact,
GBT is trained in an additive manner. To do so, let’s define ŷ(t)i as the predic-
tion of yi at the t-th iteration of the training algorithm. The objective function
becomes:

L(t) =
n

∑
i=1

l(ŷ(t)i + ft(xi), yi) +
K

∑
k=1
R( fk) (B.5)

hence, we add the ft function that minimizes the objective function greedily.
Then, by using the second-order Taylor expansion, we can approximate L(t)

as:

L(t) ≈
n

∑
i=1

[l(ŷ(t)i ) + gi ft(xi) +
1
2

hi f 2
t (xi)] +

K

∑
k=1
R( fk) (B.6)

where gi and hi are the first and the second order derivatives of l(ŷi, yi) with
respect to ŷi, respectively.
As such, by removing the constant terms, we obtain a simplified objective func-
tion at the t-th iteration of the training algorithm as:

L̃(t) =
n

∑
i=1

[gi ft(xi) +
1
2

hi f 2
t (xi)] +

K

∑
k=1
R( fk) (B.7)
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Then, by defining Isj = {i|q(xj) = j} as the instance set of leaf j, and expand-
ingR, we can obtain the following:

L̃(t) =
n

∑
i=1

[gi ft(xi) +
1
2

hi f 2
t (xi)] + γL +

1
2

λ
L

∑
j=1

w2
j (B.8)

=
L

∑
j=1

[( ∑
i∈Isj

gi)wj +
1
2
( ∑

i∈Isj

hi + λ)w2
j ] + γL (B.9)

Then, zeroing δL̃
δw , it results that, for a fixed q, we can obtain the optimal weight

w∗j as:

w∗j = −
∑i∈Isj

gi

∑i∈Isj
hi + λ

(B.10)

and the respective optimal value of the simplified objective function at itera-
tion t as:

L̃(t)(q) = −1
2

L

∑
j=1

(∑i∈Isj
gi)

2

∑i∈Isj
hi + λ

+ γL (B.11)

B.2 The split finding problem

One of the key problems of decision tree building is to find the best way to split
a node of the tree given a set of samples. In practice, it means that we want to
set a sort of optimal threshold T such that a set of samples {xi |i = 1, . . . , n}
are divided into:

xi ∈

left if xij ≤ T

right if xij > T
(B.12)

In this context, the optimal objective function after the split is reduced by:

1
2
[
(∑i∈IsL

gi)
2

∑i∈IsL
hi + λ

+
(∑i∈IsR

gi)
2

∑i∈IsR
hi + λ

− (∑i∈Is gi)
2

∑i∈Is hi + λ
]− γ (B.13)

where Is is the instance set associated to the node that has been split, IsL and
IsR are the instance sets of the left and right nodes after the split.
As such, the split finding problem can be reformulated as the finding of the
best threshold T such that it maximizes Equation B.13. Several algorithms have
been proposed in the literature [REF] to solve this problem. In the following,
we will discuss the rationale behind two of the most popular algorithms for
the scope: the exact split finding and the approximate split finding algorithms.
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Exact split finding algorithm The exact split finding algorithm, is the most
simple technique to find the best split. It consists of enumerating over all the
possible splits on all features in order to solve the problem at hand. Of course,
this is the most accurate split finding algorithm since it is possible to test all of
the possible combinations of splits by exhaustive search and identify the better
one. However, this is also computationally inefficient, especially in those cases
where the number of samples is very high. To improve efficiency, practical
implementations of the exact split search algorithm start sorting the samples
according to their value and then they visit the samples in the sorted order to
accumulate g and h which are used to compute Equation B.13.

Approximate split finding algorithm To ease the computational burden brought
by the exact search algorithm, it is necessary to resort to approximate solutions.
The rationale of these techniques is to divide samples into several subsets and
enumerate over these subsets instead of each single samples. As a results, the
complexity of the algorithm depends on the number of subsets instead of the
number of samples. To do so, in the literature two methodologies are cur-
rently used, i.e. the quantile-based [99] and the histogram-based [100]. While
the quantile-based strategy has the advantage of being distributable and re-
computable, the histogram-based approach is significantly faster as such in
the following we briefly describe the latter.
In the histogram-based approximate split finding algorithm, the sample space
is divided into b adjacent interval and each of the samples is associated to
one of these intervals accordingly. Specifically, the b intervals are built fol-
lowing the distribution of jth input column of the whole dataset. Then, keep-
ing these intervals unchanged, a sample xi is associated to the kth interval if
sk−1 < xij ≤ sk. In particular, the subset value of xij is obtained by binary-
search to reduce complexity.
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