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Abstract

In the following pages are described the projects developed during the PhD.
The basic idea followed since from the beginning of the doctorate is the devel-
opment of several skills in order to increase the personal knowledge in optics
and instrumentation for scientific research and for Astronomy. This thesis is
focused on specialized arguments and the obtained results. Any theoretical or
general introduction is reduced as much as possible.

The interest of Adaptive Optics and the Multi-Conjugate and Layer Oriented
techniques leads to the specialization in the team of Adaptive Optics in the
Observatory of Padova.

The first collaboration is for the characterization of a sensor for a spatial
mission on Mars, designed for the analysis of dust and fluids and take place
in the Spacelight company and in the laboratory of the Observatory of Padua.
The collaboration took longer for the characterization of a pyramid sensor in
the INAF laboratories and the characterisation and the acceptance tests of the
optical derotator project for the Large Binocular Telescope (LBT) in Arizona.

A collaboration developed with EIE Group performed in 2011 has repre-
sented the right opportunity to learn the basis of the optical design used for
a specific ray tracing simulation on the radio telescope of ALMA in Cile. The
collaboration with the Adaptive Optics team in Padova and the Max Plank
Institute for Astronomy in Heidelberg is not related and connected with the
only optical derotator but also take place for the very first optical design of a
telescope simulator for the whole alignment of the LINC-NIRVANA wavefront
sensor of LBT.
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Introduzione In queste pagine é descritta l’attivitá condotta durante il dot-
torato di ricerca in Astronomia e svoltasi presso il gruppo di Ottica Adattiva
dell’Osservatorio di Padova (INAF) e il Dipartimento di Astronomia.

I progetti sono stati sviluppati nell’ambito dell’Ottica Adattiva applicata
all’Astronomia e riguardano, in generale, sensori di fronte d’onda a piramide e
metodologie di ricostruzione tomografica con tecniche multi-coniugate e Layer
Oriented.

La necessitá di sviluppare abilitá scientifiche e tecnologiche mirate alla spe-
cializzazione ottica hanno portato alla collaborazione con aziende del settore,
quali Spacelight s.r.l., EIE Group ed il Max Planck Institute for Astronomy
(MPIA) di Heidelberg. Tali collaborazioni hanno prodotto risultati tecnologici
di rilievo quali la realizzazione di un sensore di polveri per ambiente marziano
e di un sensore di fronte d’onda per l’analisi tridimensionale di polveri e fluidi
a densitá variabile.

La collaborazione congiunta tra Spacelight, INAF e MPIA ha permesso la
realizzazione, la caratterizzazione e l’allineamento di due derotatori ottici per il
Large Binocular Telescope in Arizona ed il primo disegno ottico del telescope
simulator per l’allineamento di LINC-NIRVANA. Una collaborazione specifica
con la ditta EIE Group ha permesso inoltre di acquisire e approfondire ulteriori
abilitá nell’ambito nel disegno ottico finalizzato a simulazioni di ray tracing per
il progetto del radio telescopio ALMA in Cile.



Chapter 1

Introduction

The construction of the LBT began in 1996 in Emerald Peak on Mount
Graham in southeastern Arizona at 3000m altude in the Pinaleno mountains .
In 1997 the foundations were completed and the ring was built to support the
rotating dome. LBT is a telescope with an altazimuth mount and double pupil
in a Gregorian configuration and provide the two primary active mirrors, two
adaptive secondaries. Two tertiary mirrors for tip-tilt wavefront correction fold
the beam into the gregorian focus in the direction of the LINC-NIRVANA wave
front sensor implemented on a huge carbon fiber bench.

NIRVANA means Near-IR/Visible Adaptive iNterferometer for Astronomy
and provide four wave front sensors, two for each side of the telescope arm [13].
The Ground Layer Wave Front Sensor (GWS) analyze the turbulence generated
in the first 100m of atmosphere and send the signal for the correction to the
adaptive secondary mirror. The sensor uses up to 12 natural guide star selected
in a 6x6arminute field of view. The Mid High Wave Front Sensor (MHWS)
analyze the turbulence of the high layers of the atmosphere (8km) and uses up
to 6 natural guide star from a 2x2arminute field of view.

The pyramid sensor is the main concept of the wave front sensors and is
designed to work on LBT in a multi-Conjugate an Layer Oriented Adaptive
Optics configuration. The sensor can correct the atmospheric turbulence while
the LINC camera can combine the two wave fronts collected by the two big arms
of LBT into the Fizeau interferometer to reach a resolution which is comparable
with a 22m telescope [6]. Such caracteristic place LBT in the vert first era of the
giant telescope as a representative opportunity for a technological and scientific
test bed for any future Astronomical research [12], [10].

The two primary monolithic and parabolic mirrors F/1.14 have a diameter of
8.4m and are glass built and coated with a thin layer of aluminum. The distance
between the extremes of the two primary mirrors is called baseline and measures
approximately 22.8m. These mirrors are equipped with a system of active optics
to correct the load deformation. The two adaptive secondary mirrors with a
diameter of 911mm have a concave ellipsoidal design and transform the F ratio
from F/1.14 to F/15.28. The secondary mirrors have also an undersized design

3
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Figure 1.1: picture collection with images of Large Binocular Telescope (LBT)
in Arizona, the Mid High Layer Wave Front Sensor (MHWS), the LINC-
NIRVANA bench tilted of 60deg, the Ground Layer Wave Front Sensor, the
successful flexure test on the K-mirror unit for LBT.

to avoid IR noise coming from the environmental thermal radiation.

1.1 The Pyramid Sensor

The pyramid sensor used on LBT, initially designed for optical microscopes,
has been applied to astronomy by R. Ragazzoni [19]. The main optical element
is a glass prism looking like a pyramid whose vertex lies on the focal plane of
the telescope on a reference natural guide star. The four faces of the prism
refract the light into four different directions. A collimator intercepts the beam
and recreates four images of the pupil of the telescope on a CCD simulating a
4-quadrant sensor.

The position of the four pupils on the detector is a function of the pyra-
mid vertex and the F number of the incident beam. The speckle, that usually
characterize the PSF of a seing limited star, are selected by the four faces of
the pyramid and the light is turned towards for different direction forming four
images of the telescope pupil.

From the analysis of the light distribution on the four pupils is possible to
retrive the derivate of the wavefront, than the shape and the aberration cor-
rection required. The Pyramid sensor provide several advantagen with respect
other classical AO sensor as dempnstrated by MAD [15] and [3]:

• A great advantages of the pyramid sensor is with respect to the Shack-
Hartmann (SH) because it allows the possibility to select the sampling
of the pupil. Is it possible to map the pupil with a variable spatial and
temporal resolution (CCD binning and Hz) in function of the seeing lo-
cal parameter. The maximum sample is obtained when a sub-aperture
correspond to single pixel o the CCD.

• Another great advantage is low Poisson signal to noise ratio S/N with re-
spect to the Shack-Hartmann sensor. The pyramid allows to add optically
photons on the CCD and the photon number N increase faster than the
Poisson noise that increase as

√
N .
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Figure 1.2: WFPC3 in the H band for Hubble (left) and LBT (right) for a
20 minute and 8minute of exposure time respectively. The LBT and FLAO
obtained the results with a seeing of 0.7” and a limit Rmag=11.5. The sampling
of the pupill is 15x15 sub-apertures, the correction frequency is 0.5kHz with 153
corrected modes.

• Is it also possible to adjust the sensitivity of the Pyramid sensor (not
possible with SH) in relation to the degree of correction to the wavefront.
This feature coupled with a closed loop, can improve performance. As the
correction of wave fronts becomes more accurate, there is a decrease of
the size of the star on top of pyramid and this increases the sensitivity of
the sensor [7].

• A corrected star means a more dense PSF1 increase the limit magnitude
for the reference star of a factor two with respect to the SH.

However, a to high sensitivity of the pyramid could decrease the sensor perfor-
mances. It could happen when the size of the star on top of the pyramid became
as small as the diffraction limit a sudden atmospherical fluctuation can move
the spot outside the sensor acquisition range causing a consequent failure of the
correction of the wavefront.

The non corrected turbulence enlarge the PSF of the spot and the sensor
can restart to implement the correction. To avoid too frequent oscillations is
possible to decrease the sensitivity of some pyramids by using a diffuser to their
culmination or applying a modulation (ie, an oscillating movement of the PSF
around the vertex) with higher frequency wrt the reading velocity of the sensor.

On NIRVANA is used a similar concept based on the turbulence properties
described by the kolmogorov theory [14]. The observed intensity turbulence
depends on the wave observing wave length λ−11/6. This means that a good
correction in the IR is not good at visible wave length [22]. On this relation are
designed the GWS and the MHWS. The sensors aquisition signal is in the visible
band while the correction is done for the IR wave front. In such condition the IR-
PSF is diffraction limit (or close to) while the VIS-PSF is partially uncorrected.
The uncorrected PSF sostitute previously suggest pyramid modulation [16].

The adaptive optics Multi-conjugate (MCAO) is a technique introduced by
Beckers [4] and based on the principle of using more than one reference star to

1Is it possible to reach a Strell ratio up to 80% which is close to the resolution theoretical
limit



6 Introduction

measure the turbulence in several directions. A classical adaptive optics limit
is, in fact, due to small size of the corrected field of view [20].

It is necessary to have a reference source as close as possible to the scientific
object almost into the isoplanatic angle (region where the turbulence can be
defined as constant). Often also the brightness of the reference star is not
sufficient to obtain a good correction even within this angle.

With respect to the Star Oriented SOAO technique (total correction of
the turbulence on the line of sight) the MCAO represent an opposite concept.
MCAO instead observing a single star, measure and observe a single layer. It
is therefore possible to use more star to observe and correct more layers with
appropriate Deformable mirrors (DM).

1.2 MCAO Technique

A MCAO adaptive optics system [4] uses a sensor that is conjugated with a
DM. The sensor could be placed in the pupil plane of the telescope observing
the conjugated layer at entrance pupil of the telescope. The corresponding
DM should so placed in the same conjugated plane. Is necessary tu reproduce
twice this region into the light optical path in order to place the the DM in
the first plane and the sensor in the second one (closed loop2 configuration
[8]). In this configuration the sensor can measure the turbulence introduced
near the pupil of the telescope, the so called Ground Layer Turbulence. A
second sensor can measure independently the high altitude layer as happen
in NIRVANA for the MHWS. Generally speaking has been observed that the
most contribute comes by Ground layers. The height of conjugation of the DM
does not coincide exactly with the layer of most turbulent, but coincides with
the height which minimizes the residual correction. In other words, a sensor
conjugated to a certain height can observe also low turbulence frequencies of
the near layers3that appear blurred over the sensor. The reconstruction of the
turbulence on the different layers can be obtained by two established techniques:

• Star Oriented (SO)

• Layer Oriented (LO)

In the first case the number of sensors is equal to the number of reference
stars and reconstruction of the turbulence is done numerically by the sum of
the signals received from each sensor. Since the sum is the RON, the S/N ratio
does not change, and there are no improvements by increasing the number of
stars. in a more realistic case the optically sum of the signals happen on a single
sensor in order to increase the S/N proportionally with number of stars. The
Star-oriented method is called ”global reconstruction” and uses many sensors
as many are the stars of the field you want to use to produce a map of the
turbulence A computer program analyzes the data collected by each sensor and
completely rebuild the structure of the atmosphere, calculates the necessary
correction and sends it to the deformable mirrors conjugated atmospheric layers.
This method has the the same magnitude limit adaptive optics. In addition the
amount of data collected requires a big processing time and a greater capacity
computer calculation. The layer oriented technique, however, uses many sensors
as are the turbulent layers. Each detector is coupled to a layer where is placed

2In this configuration the sensor iterate the measurement on a wave front partially cor-
rected. By the iterated measurement of residuals it is possible to reach high correction in few
cycle

3The focal deep is bounded with the field of view of the sensor itself. A wide angle correction
reduce the focus deep of the sensor and the correction is possible only for low orders.
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Figure 1.3: In the left figure is shown the Star Oriented technique: the number
of sensors is equal to the number of reference stars and reconstruction of the
turbulence is done numerically by the sum of the signals received from each
sensor. Is also summed the RON and the S/N ratio doesn’t change for an
improvements of the number of stars. In the right the Layer Oriented technique
where the sum of the signals is done optically on a single sensor increasing S/N
proportionally with number of stars.

a deformable mirror(DM), and everyone collects at the same time the signal
coming from all the reference stars. The co-add of the light is optical (but could
be done via software) with the advantage to decrease the readout noise and
to increase the limit magnitude. In this case the correction doesn’t depend on
magnitude of a single star, but on the sum of the magnitudes of the reference
stars. Each star should reach a pyramid sensor.

The light coming from the same face of the used pyramids is optically super-
imposed on the CCD where are formed four pupils. To measure an high layer it
is necessary to conjugate the sensor that height by a shift from the pupil plane.

The light footprint of the stars is not here completely superimposed for
geometrical reasons. The so called metapupil is well corrected by the sensor in
the common intersection where the optical co-add is efficient.

An advantage of the LO is the possibility to vary the height of conjuga-
tion, the pupil or metapupil sampling, and the temporal acquisition frequencies
according to the spatial and temporal characteristics of turbulence.

Thanks to these characteristics is no longer necessary to make a correction
on a column atmosphere (as it was for the classical adaptive optics), but it could
be sufficient to correct several layers in different independent loops.

1.3 Multiple Field of View

As mentioned previously, the MCAO method [4] can be used to correct
simultaneously in multiple layers of atmospheric turbulence. The concept of
the Multiple Field of View (MFoV) is to divide the light from the reference
stars in two fields of view that are observed separately by two wavefront sensors
[18]. In NIRVANA the GWS and MHWS sensors are designed according to the
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Figure 1.4: on the right the field of view of 6x6arcminute of the GWS. The light
from from stars overlaps allowing a good correction of the pupil, turbulence. On
the left is represented the increasing pupils separation with the altitude. For
angles beyond 2’ in the MHWS the pupils do not overlap and optical co-add is
not efficient anymore.

scheme of the MFoV [11]:

• Ground-Layer Wave Front Sensor (GWS), which uses an annular area from
2’ to 6’ diameter, to correct the Ground layers.

• The Mid-High Wave Front Sensor (MHWS), which uses a field of 2’in
diameter, for correct the layers at the higher elevation, between 4 and 20
km.

The distortion introduced on the wavefront from the Ground layers is the
same for all stars because the pupils are perfectly superimposed. For this reason
we can obtain information on the perturbation to the ground based on stars
guides angularly away from the object of science.

For the high-altitude turbulence the reference star are selected in a small
region close the scientific object in order to have a good metapupil coverage.
Beyond a certain critical angle is loosed the superposition of the pupils and, in
the central area the density of photons doesn’t increase significantly [2]. The
critical angle depends on the turbulent layer altitude and the diameter D of the
telescope.

For the null altitude which is for the ground layer, there is no theoretical
limits. The overlap of the pupils is perfect for the Ground Layer, while it
decreases for layers at high altitude. The LBT design MFoV concept is to
choose reference stars from a wide field of view of 6x6arcminute to correct the
turbulence of the Ground Layer. The focal depth in the case of GWS is less
than that in the case of MHWS, This means that for the GWS the turbulent
layers are although very close and blurred. In the case of MHWS the situation
is reversed because the field of view is smaller, and the focal depth is greater
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and it is able to correct partially the closer turbulent layers [24].
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Chapter 2

Two K-M unit for LBT

The optical derotator consists of three mirrors, M1, M2 and M3 mounted
together in a stiff and stable and rotating stage that define the internal optical
axis. The derotator is also called K-Mirror (KM) and its name arise from the
k optical configuration of the mirrors in the instrumental design. The principal
characteristic of a derotator is to rotate the incoming wavefront of and angle
that is the double wrt the rotation angle of the three mirrors.

LBT provides an altazimutal mount that produces a rotation of the focal
plane during the tracking. To fix the FoV on the detector to solution are allowed:

• Rotating the detector with the same angular velocity of the FoV.

• Using a K-mirror to introduce a contra-rotation of the FoV.

Both concept are used for the wave front sensor of LBT. Between the two big
primary mirrors of the telescope is placed LINC-NIRVANA which is an interfer-
ometer and beam combiner with an MCAO-LO Adaptive Optics system. Nir-
vana is divided into two parts connected respectively with the two apertures of
the telescope. The connection of the two signal will occur in the Fizeau interfer-
ometric configuration. Four wavefront sensors (two for one side of NIRVANA)
measure the atmospheric turbulence using up to 12 reference natural guide stars.
Two GWSs measure the Ground Layer turbulence and two MHWSs measure
the Hig Layer Turbulence. The GWS sensor can rotate around its optical axis
to follow the rotation of the focal plane of LBT while the MHWS are fixed to
the carbon fiber bench. It’s necessary to maintain fixed the FoV on the two
MHWSs using an optical derotator for each sensor. To compensate for the ro-
tation of the sky, one KM is placed and aligned with the optical axis defined by
the MHWS and the FP/20 Camera. This unit lies between the first and second
lens groups of the FP/20 Camera, closer to the second one. The KM provide
several adjustment systems for the internal alignment and a different one for the
alignment wtt the FP/20 Camera (named external alignment). The following
sections will describe several phases of the construction of the two k-mirrors
starting from the requirements of the instrument, the design, the mounting, the
internal alignment and test done. Both instruments are now in the laboratory
of the Max Planck Institute for Astronomy in Heidelberg (Germany) for the
final acceptance tests.

2.1 Requirements

The KMs have to rotate during a scientific exposure to introduce a contro-
rotation of the field of view of the MHWS wave front sensor. To have the correct

11
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Figure 2.1: The K-mirror picture with the explanation of the name origin due
to the K configuration of the three mirrors.

Figure 2.2: A rotation of 45deg of the KM system around its optical axis produces
a rotation of the image of the double angle of 90deg.
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Figure 2.3: The environmental specifications and general definitions for the KM
unit.

response from the the sensor its necessary to fulfill the design requirements. The
common concept to use a monolithic glass fused prism design in place of such KM
was neglected because of dimension, weight, costs and technological limitation.
A better solution as been identified in a tre separate mirrors configuration.

2.1.1 Decentering of the Chief Ray

The first important requirment for the KM is the decentering of the beam
transmitted. The decentering o the beam produces a rigid shift of the stars on
the MHWS focal plane, forcing the SEs of the MHWS to be re-centered con-
tinuously on the reference stars instead only at the beginning of each exposure
(through the patrol camera input).

A rigid shift of the stars on the FP during a single exposure produces a tilt
signal on the WFS, which is the same for all the reference stars and can be
retrieved and used as a feedback to reposition the SEs with a pre-determined
frequency during one exposure.

A reasonable stars rigid shift after which the SEs would not need to be repo-
sitioned is 1/10 of FoV for a single SE, that is to say 0.11 arcsec, corresponding
to 88µm on the FP20 focal plane. Moreover, this acceptable decenter should be
somehow divided between the KM and the FP20 optics error budgets.

Assuming the same contribution for the KM and the FP20, quadratically
summed, the KM acceptable chief ray decentering would become 62µm. Con-
sidering that this requirement on the decentering should include bearing wobble,
alignment results, thermal effects and flexures, a 62µm requirement seems to be
too strict to be fulfilled [5].

A SE optional recentering during an exposure is, then, required to be imple-
mented at a SW level. A realistically achievable decentering requirement could
be, instead, 100µm (this value was the original specification). Since the KM
is placed in between the FP20 optics, the decentering of the chief ray slightly
affects also the pupil position, because the beam reaches the SE entrance fo-
cal plane with a little tilt, but this effect, for a beam decentering lower than
300µm, is negligible, resulting in a shift of less than 1/20 of subaperture in the
1x1 binning mode.

Decentering requirement: 62µm without SE re-centering during one exposure
100µm with SE re-centering during one exposure.
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Figure 2.4: Metapupil diameter on the MHWS CCD at different conjugation
heights. In the LINC mode the MHWS is conjugated at 0km, the MHWS possible
conjugation range is between 4km to 15km (original conjugation range for the
DM, when it was expected to be movable), while 7.1km is the actual conjugation
range of the DM correcting the high layer perturbation.

2.1.2 Telecentricity Angle

A deflection of the beam produce a deviation from the required telecentricity
angle of the beam at the level of the MHWS entrance focal plane. This fact
produce a rigid shift of the 4 pupils on the CCD, according to the following
expression:

Tilt(rad)fPRI/KSE = pupil shift (2.1.2.1)

where fPRI is the equivalent focal length of the MHWS Pupil Re-Imager,
and kSE is the Star Enlarger enlarging factor. Since, in the MHWS, fPRI =
99mm and kSE = 11.25, the resulting pupil shift for a given tilt is:

pupil shift(microns) = 8.8x103Tilt(rad) (2.1.2.2)

Considering a reasonably acceptable rigid pupil shift of a 1/10 of sub-aperture
of the WFS, the corresponding tilt depends of course on the sub-aperture di-
mension on the CCD, which is varying accordingly to the binning mode required
for each considered conjugation height.

Considering a conjugation height of 0km, as for the LINC mode, the 1x1
binning mode is required (by design the pupil image has a diameter of 18.3
pixels, with a required minimum metapupil sampling of 11x11 sub-apertures.
In such a case, the sub-aperture diameter is the CCD39 pixelsize, corresponding
to 24µm, and resulting in a 56arcsec tilt to shift the pupils of about a tenth of
sub-aperture.

Considering, instead, the 7.1km conjugation of the MHWS in linc-NIRVANA
mode, the metapupil diameter becomes 27 pixels, and a 2x2 binning would
still allow the minimum required pupil sampling. In a 2x2 binning mode the
acceptable tilt introduced before the FP20 focal plane becomes 112arcsec.

The first equation (eq4.7.0.3) would apply perfectly if the KM was the last
optical system before the MHWS entrance focal plane. In the real case in
which the KM is placed in between the FP20 optics, the deflection of the chief
ray affects the pupil position slightly less than what said before, and a non-
negligible rigid shift of the stars on the focal plane occurs too e.g. a 50arcsec
deflection of the beam at the level of KM, would cause a 150um shift of the
stars on the SE entrance focal plane.

Quadratically combining this effect with the shift due to chief ray decen-
tering, the overall shift to take into account is

√
1002 + 1502 = 180mm, which

corresponds to 1/5 of the SE FoV.
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Figure 2.5: KM acceptable chief ray deflection, accordingly to different binning
modes.

A SE adjustment during an exposure may turn out to be necessary, and it
is required to be implemented at a SW level.

Requirement: 40arcsec for LINC mode 80arcsec for LINC-NIRVANA mode

2.1.3 Strehl Ratio

The required Strehl Ratio (SR) is 90% for the KM + FP20 camera system.
Because of that, the KM Strehl Ratio will be kept as high as possible, in order
to match this combined requirement and leave a not so strict requirement in
terms of SR to the FP20 camera. We decided to fix the minimum of KM Strehl
Ratio to 95%, supposing an analogous value for the FP20 camera.

2.1.4 Mirrors Flatness

An inverse sensitivity analysis has been performed in order to evaluate the
requirements on the flatness. The purpose is to define the maximum surface
RMS (in waves) which is required to guarantee a SR better than 95%. Notice
that the large angle of incidence on M1 and M2 (55deg) leads to a less stringent
requirement on the surface flatness, compared to M2, whose angle of incidence
is 20deg. The mirror flatness is estimated over the optically clear area, the
Strehl is estimated at the wavelength of 1µm and using only the portion of the
mirror surface interested by the footprint of a single beam. The used reference
wavelength is 800 nm, and the results are the following:

• RMS M1: 25 nm (l/32)

• RMS M2: 14 nm (l/57)

• RMS M3: 24 nm (l/33)

2.1.5 Mirrors Reflectivity

The required reflectivity for each of the three KM mirror is 96%.

2.1.6 Bearing Motion Requirements

The main KM motion requirements were calculated and can be summarized
as follows: the minimum step motion required at the level of the flange of the
bearing can be calculated as:
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• where r is the radius of the focal plane of the camera, ∆ is the point spread
function radius (at 0.6µm, assuming diffraction limited conditions). Using
the values of the camera, δ turns out to be about 0.008◦.

δ =
1

2
· 360
2πr

·∆ (2.1.6.1)

Bearing minimum incremental motion: 0.008◦

• The velocity and acceleration of the K-mirror can be evaluated by studying
the field motion as a function of the object celestial coordinates (Right
Ascension and Declination) and the UT time. If L is the observer latitude
(32.7N), the star field is centered at a zenith distance z and azimuth A,
then the field will rotate at a rate given by:

δη

δt
= −0.262

cos(L)cos(A)

cos(z)
[rad/hr] (2.1.6.2)

As for any altazimutal mount, a cone of avoidance must be defined, i.e. the
minimum angular distance between the pointing direction and the zenith:
in such angle was assumed to be 6arcminute. The resulting maximum
angular velocity (accordingly to (4.7.0.4), with A = 90◦ and z = 90◦ −
6arcminute = 89.9◦) is 2.0deg/s and the maximum acceleration obtained
taking into account for the variation of A and z with time was 0.35deg/s2.

Maximum derotation angular velocity: 2 deg/s

Maximum derotation angular acceleration: 0.35 deg/s2

• Motor power consumption: motor power consumption is required to be
low to avoid the heat dissipated by the motor to generate turbulence just
before the MHWS, leading to a loss of performances of the adaptive optics
system. A power consumption larger than 2W would require a cooler.

Power consumption: ≤2W

2.1.7 Internal Optical Path

The distance between the three mirrors of the KM, namely its internal optical
path (nominally, 640mm), is strictly correlated to the nominal distance between
the vertexes of M1 and M3 (by design, 218.89mm), because the real optical path
added between the FP20 optics by the KM itself is the difference between those
2 values: 640 - 218.89 = 421.11±1mm (additional optical path). This value
is important since, even if it has no optical power, the KM will be inserted
in a position inside the FP20 camera in which the beam is focussing, so a
non-conformance with the expected additional optical path would translate in a
de-focus on the MHWS. The tolerance in the additional optical path comes from



2.1 Requirements 17

the MHWS position adjustment range, which is 2mm. All these considerations
lead to the following requirement:

Additional optical path: 421.11±1mm

2.1.8 Adjustment Travels

Adjustment travel ranges have been selected to be reasonably wide to prop-
erly position the KM on LINC-NIRVANA optical bench and to align it with
respect to the FP20 camera (external alignment).

• Lateral and Vertical Adjustment Travel: 5mm

• Tip-Tilt Adjustment Travel: 0.5◦

2.1.9 Adjustment Resolutions

Adjustment minimum incremental steps have to be reasonably smaller than
the precision required in positioning and aligning the system with respect to
LINC-NIRVANA optical bench. Both tip-tilt and shift adjustment resolutions
directly derive from the chief ray deflection and decentering requirements, re-
duced of a factor 10.

• Lateral and Vertical Adjustment Travel: 10µm

• Tip-tilt Adjustment Resolution: goal 5”.

A relaxed 10arcsec resolution is still accepted, due to KM adjustment system
manufacturable)
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Figure 2.6: Tabelle with the requirements for the two K-mirrors unit. Deflection
and decentering are to be intended as the maximum (Peak to Valley)end through
a contiguous span of ±30◦ in the pupil plane, corresponding to ±15◦ of rotation
of the physical frame of the K-mirror.
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Figure 2.7: Required dimensions of the mirrors. Green and red ellipses represent,
respectively, the footprints of the chief ray beam and their envelopes considering
MHWS 2 FoV. Green arrows show the light path direction.

2.2 Design

The mirrors of figure 2.7 are numbered from the closest one to the KM
rotating bearing (M1) to the farthest one (M3)while the position angle is defined
between a line perpendicular to M2 and LN optical bench. The position angle
value is 0◦ when M2 is perpendicular to the optical bench. Then, rotating it
clockwise, looking at the entrance pupil of the FP20 camera through the KM,
it is 90◦ when M2 is parallel to the optical bench, and 180◦ when perpendicular
again to the optical bench.

The values expressed in figure 2.8 give the torque of M standard screws
according to DIN ISO 261 for metric threading, DIN EN ISO 4762, DIN EN
ISO 4032, DIN EN ISO 4014 and DIN 931-2,6912,7984 and 7990 for the screws
head pull. They will be considered to tight all screws in KM, except the screws
used for the adjustment of tip tilt, and decenter, in particular, the ones used
for the alignment of M1, M2 and M3 and the ones on the base-plate that will
be used to align the KM to the FP20. Moreover also the grubs screwed in the
base plate under the bearing and on the side of the base plate need to be less
tight, because they are used just to make more rigid the mechanical guide of
the decenter adjustment.

The KM is shipped within a plastic box. The KM is fixed to a stainless steel
plate placed inside the box with four M12 nuts. The plate is fixed to supports
with six bolts and the supports are linked to the box. It is recommended to use
a fork lift having arms whose distance can be adjusted, to lift the box evenly
from its shorter side. Alternatively the box can be fixed to a pallet (for instance
by using straps placed in such a way to prevent relative displacement of the box
with respect to the pallet) and then a fork lift can be used to move the whole
assembly.

A detailed description of the packing / unpacking procedure is given, focus-
ing on:

• list of tools to pack the system

• sequence of operations to properly pack the system
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Figure 2.8: The optical bench of LINCK-NIRVANA with the derotator position
signed for both units..

• sequence of operations to properly unpack the system

2.2.1 Packing

It is assumed that the starting point is with the KM placed over an optical
bench. It is necessary to have the following tools:

1. Mirror covers

2. 4 lift bars 4 M12 screws and washers

3. Lift plate

4. M12 eyebolt

5. Small crane or overhead traveling crane

6. Fork lift, pallet

7. Belts

8. start rotating the KM bearing until M2 reflective surface is orthogonal to
the direction of gravity

9. Protect the mirrors with optical paper and covers

10. Remove the box cover

11. Mount the threaded bars on the KM (completely assembled)

12. Mount the lifting plate on the threaded bars and fix them with 4 M12
screws + washers
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Figure 2.9: rotation of the KM with counterweight not properly mounted. Repo-
sitioning of the eyebolt is needed.

13. Insert the eyebolt on one threaded hole of the lifting plate (central one is
suggested)

14. Attach a belt or a steel cable to the eyebolt and to the crane hook

15. Unscrew the bolts fixing the KM to the optical bench

16. Tighten the cable/belt using the crane

17. Slightly raise the KM

18. Verify whether any rotation of the KM occurs

19. If a rotation occurs, slowly bring down the KM onto the bench

20. Adjust the position of the eyebolt on the lifting plate and repeat from 9
to 10. Repeat until the KM is in equilibrium

21. Lift up the KM and move it towards the box

22. Place the KM inside the box

2.2.2 Unpacking

It is assumed that the starting point is with the KM placed inside the box
and the box is fixed to a pallet with belts. It is necessary to have a small crane
or overhead traveling crane, a fork lift, pallet, a steel cable and a belt. N.B.
Usually small cranes like do not allow to put the KM box between the two legs.
Two situations typically occur, depending on the type of available crane.

If it is not possible to extend the arm of the crane to place the KM inside
the box, with the box placed outside the legs of the crane, since the maximum
load of the crane is too low or the distance between crane’s legs is smaller than
the shortest side of the box. Then:

1. Remove the belts

2. Remove the box cover

3. Place the pallet box assembly over crane’s legs with the fork lift.
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4. Attach the eyebolt to the lifting plate

5. Attach the steel cable to the eyebolt and to the crane.

6. Tighten the cables.

7. Loosen the bolts which fix the KM to the steel plate inside the box.

8. If no other modification occurred after packing (like removal or compo-
nents/subsystems from the KM) it is not necessary to change the position
of the eyebolt.

9. Slightly remove the bolts which fix the KM to the steel plate

10. Lift the KM (completely assembled) with the small crane

11. Remove the box from the legs of the crane

12. Place the KM over the optical bench, following the same procedure used
to put it inside the box.

13. The crane maximum load with the arm fully extended is high enough to
place the KM inside the box, with the box outside the legs of the crane.

14. In this case it is not necessary to place the pallet over the legs of the crane.

15. Then, the previous procedure shall be used, with the pallet placed outside
the legs of the crane.

If the crane maximum load with the arm fully extended is high enough, place
the KM inside the box, with the box outside the legs of the crane.

• In this case it is not necessary to place the pallet over the legs of the crane.

• Then, the previous procedure shall be used, with the pallet placed outside
the legs of the crane.

2.2.3 Handling Procedures

The plate to lift the km up is fixed to the KM through four bars, threaded
at one end and with a threaded hole on the other side. The threaded part of
the bar is screwed to the KM base-plate, while the threaded hole on the other
side is used to fix the lift plate. This plate is provided with several threaded
holes: one eyebolt placed in one hole is sufficient to lift the KM. The selection
of the hole depends on centre of mass of the KM.

The centre of mass position might change in case of KM maintenance (for
instance removal of one or more mirrors). For that reason several holes have
been made on the plate. A practical procedure is used to verify what is the best
position to place the eyebolt:

• the bars, plate and ring bolt are mounted

• the KM assembly is lifted

• a possible rotation of the KM is observed

• if any rotation occurs, the KM is taken down and the position of the
eyebolt is changed

• the operation is repeated until an acceptable balance of the assembly is
reached
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As during the handling operation of the KM the base-plate can hardly hit the
supporting surface (optical bench), it is recommended to place the KM over a
surface with comparable hardness or suitable protected with a thick layer of
shock-absorbing material.

2.2.4 Assembling and Installing

The KM instrument is subdivided into seven sub-systems:

• base-plate

• bearing

• motor assembly

• frame

• M1 unit

• M2 unit

• M3 unit

2.2.5 KM Mounting and Dismounting Procedure

First, a mounting procedure KM sub-systems is described; then the mount-
ing procedure of each subsystem which is supposed to need maintenance during
its life is described. Such procedures indicated throughout this document should
be followed during any repairing or replacing of one of the KM components.
Unless otherwise specified dismounting procedures are the same as mounting
procedures but in reverse order.

1. Base-plate mounting

Fix the base-plate to a bench (LN optical bench, standard optical bench,
box steel plate) The base-plate is fixed to the interface columns (see AD2) on
bench, or to the threaded supports in the box, using the attachment points, and
fastening with a washer and and an M12 nut.

2. Bearing mounting

The bearing is mounted on three points over the base-plate. Use 3 bolts
M6x25 to fix the rotation stage. The rotation stage must be mounted oriented
with the motor in the upper position.

3. Mounting of the motor on the rotation stage

The motor is fixed to the bearing shaft through a flexible coupler. The
flexible coupler is tightened to the bearing shaft and to the motor shaft with
two grub screws, while the motor mount is fixed to the bearing body with four
M4 bolts. It is sufficient to loosen the screws of the coupler on the side of
the bearing and to remove the four bolts to dismount the subsystem from the
bearing. The opposite for mounting. There is a hole to fix the upper screw
(screw1) as first. The position of the motor shaft shall be adjusted by powering
the motor to make the screw and the hole position coincident. To mount the
subsystem to the bearing:
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1. power the motor and rotate it until the position of the hole on the motor
mount is coincident with the screw1 on the coupler.

2. Loosen the screw without removing it.

3. Insert the coupler on the bearing shaft

4. Slightly squeeze the screw of the coupler

5. Insert the four bolts C and tighten them a bit

6. Tighten the grub screw 1

7. Tighten the four bolts.

4. Mounting of the KM frame

It is recommended the operation to be done by two people and not to lift
the frame taking it with a belt or a cable from its upper part. The frame is
mounted on the bearing using the three holes. The bolts must be fixed at the
lower position of the holes. The safer procedure to mount the frame is the
following:

1. One person takes the frame from the lower part, which is more solid

2. A second person inserts one bolt (preferably the uppermost one)

3. The position of the frame over the bearing is adjusted until the three bolts
entered and are fixed

5. Mounting of M1 unit

M1 unit is the smallest one among the two rectangular mirror sub-units. To
properly mount M1 unit the following tools are necessary:

• Six special M10 bolts

• Proper allen key

Insert the unit on its proper position of the frame, close to the bearing. Take
care to avoid hits of the mirror onto the frame. The holes on the frame structure
have been threaded to simplify the mounting procedure. Just place the mirror
mount in position and screw the M10 screws into the holes.

6. Mounting of M2 unit

M2 unit is mounted on the frame using seven micrometric screws, in a push-
pull configuration. Three of the screws are pushing M2 mount, while the other
four screws pull it to fix it to the main structure.

7. Mounting of M3 unit

To properly mount M3 unit the following tools are necessary:

• Eight special M10 screws
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Figure 2.10: KM Base-plate: the arrows show the attachment points of the base-
plate to LN optical bench.

• Proper allen key

Insert the unit on its proper position of the frame, far from the bearing and
screw the M10 screws into the holes. Take care to avoid hits of the mirror onto
the frame.

2.2.6 M1 unit assembly/disassembly

Always take care to properly cover and protect the mirror. The unit is
assembled in such a way to have the coated surface of mirror, protected with
optical paper, laying on a surface. To assemble the sub-system the following
procedure shall be followed:

1. The mirror is provided with three pads glued on its rear surface

2. The three shortest bars are vertically screwed on the pads, avoiding torques
on the bars using pliers.

3. The three longest bars are laterally screwed on the pads, three nuts are
inserted on the outer part of the horizontal bars.

4. The tilting plate is inserted from top and blocked in correspondence of the
vertical bars with nuts and lock nuts.

5. The lateral and horizontal bar supports are inserted in correspondence of
the horizontal bars and fixed to the tilting plate with proper M4 screws.
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Figure 2.11: mechanical interface between the KMs baseplate and the optical
bench of NIRVANA. Nut and washer used to fasten the base-plate to the optical
bench through one of its attachment points. The adjustable bells (two for each
unit showed in the left) allows to positioning the instrument on a flat configu-
ration using the four interface columns.

Figure 2.12: motor subsystem design and mechanical part attached to the bear-
ing.
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Figure 2.13: Frame. The mounting holes are the elongated ones, but only the
three ones in the red circles have been used to optimize the performances. To
have the frame fixed only on 3 points (defining a plane),a washer has been placed
between the frame itself and the bearing, in correspondence of each screw. An
enlarged image of the hole is shown on the right. The frame shall be mounted
at the bottom of the hole.

Figure 2.14: Left: M1 unit mounting concept i, 2 screws are used for each side
for tip-tilt regulation. Center: top view of the frame in correspondence with the
M2 unit. The red arrows show the pushing micrometric screws, while the green
dotted arrows show the pulling screws. Right: M3 unit.
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Figure 2.15: Some phases of mirrors gluing.
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Figure 2.16: M1 lateral pins (with a nut inserted on the outer end) screwed on
the side of the pads. With the tilting plate fixed to the vertical bars with nuts
and lock nuts. Connecting the fixing plate to M1 mount: the fixing plate is then
used to connect the mount to the frame.

Figure 2.17: The gluing concept is to keep in touch the upper edge of the invar
pad and the backside of the mirror. The glue is placed on the lower edge of the
pad but thanks to the surface tension it can reach the glass surface and start
curing. The contraction of the glue produce a sort of preload (F⃗ ). The pre-load
on a small area maintain in contact the pad and the mirror without introducing
mechanical stress.

6. Another plate is assembled: this plate will be fixed to the KM frame, while
the rest of the mirror mount is regulated in tip-tilt using three couples of
micrometric screws.

7. Safety arms are mounted on two opposite corners of the mirror mount
with M4 screws. Reverse the previous operation to disassemble the unit.

2.2.7 M2 unit assembly/disassembly

Always take care to properly cover and protect the mirror. The unit is
assembled in such a way to have the coated surface of mirror, protected with
optical paper, laying on a surface. To assemble the sub-system the following
procedure shall be followed:

1. The mirror is provided with three pads glued on its rear surface

2. The three shortest bars are vertically screwed on the pads, avoiding torques
on the bars using pliers

3. The three longest bars are laterally screwed on the pads, three nuts are
inserted on the outer end of horizontal bars
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Figure 2.18: M2 unit mounting: the 6 bars are screwed on the pads. M2 with
the tilting plate fixed to the horizontal bars with nuts and lock nuts, through bar
supports.

4. The tilting plate is inserted from top and blocked in correspondence of the
vertical bars with nuts

5. The lateral and horizontal bar supports are inserted in correspondence of
the horizontal bars and fixed to the tilting plate with proper M4 screws.

6. A safety plastic ring is mounted through 4 plastic columns just above M2
mirror (be careful to avoid contact between the mirror and the ring).

To disassemble the sub-system follows the previous steps in reverse order.

2.3 Internal Alignment Procedure

In this section is described the internal alignment procedure used to verify
the performance of both K-Ms units. The all KM is mounted and screwed to
the optical test bench in four points using special interface plates, which should
be disposed on the optical bench as indicated in the following. Alignment Tools:

• Generic lab tools (screwdrivers, hex keys...)

• A laser source (λ = 632.8nm) equipped with x-y movements

• 1 beam expander (dia.=1inch)

• 1 variable diaphragm (0.5mm-2mm)

• 2 folding mirrors on tip-tilt mounts

• 1 flat mirror (diameter=1inch)

• 1 beam splitter (50:50)

• 1 lens (f =750mm, diameter=1inch) with tip-tilt-x-y movements

• CCD detector (pixelsize=5.2mm) with x-y movements

• Tip-tilt mount to hold a 1inch mirror integral with the rotating bearing

• 1 corner cube (diameter=1inch)

• Generic holders and bases
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Figure 2.19: Interface plates to fix KM to a standard optical bench. They can be
fixed to the bench with a maximum of 8 M6 screws, then the interface column
will be inserted into the M8 threaded hole.

2.3.1 Alignment Bench Configuration

In the description below we assume the following coordinate system: z is
coincident with the rotation axis of the KM, y is perpendicular to the optical
bench, the origin is located at the aperture of the laser source used for the
alignment. The configuration of the bench used to align the KM is set as
follows (see figures below for more details).

The used setup is divided into two parts: before the K-mirror (accordingly
to the light path direction), hereafter bench-side 1, and after the K-mirror,
bench-side 2. The two optical setups are used for two main phases of the KM
alignment:

• Materialization of the rotating axis

• Alignment of the KM mirrors

Materialization of the Rotating Axis

This setup is aligned on the bench-side 1. A laser beam is expanded using
a beam expander. A variable diaphragm, integral with the laser head and
the beam expander, selects the inner area of the beam. The whole source is
mounted on a linear and vertical stage in order to regulate the translation of
the beam. A folding mirror reflects the beam towards the KM; the mirror is
equipped with tip-tilt capabilities to adjust the angle between the laser beam and
the mechanical axis of rotation of the bearing. To materialize the mechanical
rotation axis of the KM we need to adjust the laser beam:

• translation in the x-y plane (laser stage)

• rotation around x and y (tip-tilt mount of the mirror)

No neutral density filters are placed between the source and the rest of the opto-
mechanics in order to avoid refraction. Anyway a filter can be used in front of
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Figure 2.20: Drawing of a standard optical bench, showing the places where
interface plates should be put for KM SX on the left and for KM DX on the
right.

Figure 2.21: An image of the KM.
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the detector. A reference flat mirror (dia=1inch), with tip-tilt capabilities, is
fixed to the rotating bearing of the KM through a dedicated crescent flange
and a magnetic repositionable plate. The same mount is used to hold the CCD
camera in the following part of the procedure. The light reflected by the flat
mirror comes back to the beam splitter and is reflected towards a 1inch plano-
convex lens (focal length 750 mm) and a CCD (pixelsize=5.2µm), placed in the
focal plane of the lens. The lens and the CCD are mounted on x/y stages.

Alignment of the Mirrors

The beam passing through the bearing is reflected by M1, M2, M3. All
mirrors are equipped with tip-tilt mounts for the tip-tilt adjustment. M2 must
use also its three screws to adjust his vertical position which is an important
requirement for the optical path inside the KM. The setup prepared on the
bench-side 2 is used to check the direction of the beam coming out from the
KM. This bench-side can assume two possible configurations. In the first con-
figuration the CCD camera is placed close to M3 and measures the decenter of
the exit beam due to a tiptilt misalignment of M1. In the second configuration
the lens and the CCD camera are used to measure the tip-tilt of the exit beam.

2.3.2 Alignment Procedure Concept

The goal of the alignment procedure is to properly orient mirrors M1 and M3
so that a laser beam materializing the axis of rotation is transmitted through the
KM with decentering and tilt complying with the specifications. To achieve this
it’s necessary to align the laser to the axis of rotation and then align the KM to
the laser beam. Furthermore, the alignment consists of correcting both tilt and
decentering for either the laser and the KM. The optical properties of the KM
can be used to distinguish between the off-set and tilt of the laser (with respect
to the axis of rotation) and the misalignment of the KM itself. A lens placed
after the KM can be used to separate the alignment on tilt from the alignment
on decentering. When an off-set and/or tilted beam is transmitted through a
perfectly aligned KM, a 180 degrees rotation of the KM generates a 360 degrees
rotation of a transmitted beam. When a beam coincident with the axis of
rotation is transmitted through a misaligned KM, a 180 degrees rotation of the
KM generates a 180 degrees rotation of the transmitted beam. In practice,
both errors will contemporary define the trajectory of a spot, reimaged on a
CCD test camera, and an iterative procedure must be used to align the system.
The resulting trajectory will be a spiral: the larger the distance between the
starting point and the ending point of the spiral, the larger will be the KM
misalignment. In the very beginning of the procedure, when the KM and the
laser are severely affected by misalignments, it is better to project the laser spot
on a screen placed few meters away from the KM. The same corrections based
on the properties of the trajectory will then be then performed using a CCD
camera for smaller misalignments.

Materialization of the rotating axis of the bearing

To materialize the mechanical rotation axis of the K-mirror a flat mirror is
implemented as a reference inside the k-mirror with tip-tilt regulations. The
laser station is equipped with a micrometric regulation for decenter corrections
along XY axis. A beam expander and a variable diaphragm allow, respec-
tively, to adjust collimation and to select a small central portion of the beam to
minimize aberrations. The tip-tilt of the laser beam entering the bearing and
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reflected by the reference mirror is regulated by the first folding mirror of the
setup. The beam splitter reflects the beam coming from the reference inside
the bearing into the lens direction. The lens focuses the beam, which is then
reflected by another folding mirror into the CCD camera, to measure the beam
angle and to adjust the reference mirror axis in order to make it parallel to
the mechanical axis of rotation of the bearing. To perform the reference mir-
ror tip-tilt regulation, the bearing is rotated of 180 degrees and the movement
of the reflected spot on a screen is recorded. The inclination of the reference
is adjusted in order to make the spot not move during an entire rotation of
the bearing. At the very beginning of the procedure, the tip-tilt regulation is
implemented by observing the spot movement on a screen placed between the
reference and the beam splitter. A second regulation is done with the screen
close to the camera position. Once the spot hits the camera, the tip-tilt of the
reference mirror is adjusted looking at the spot position on the CCD, where the
accuracy of the alignment is measured thanks to an IDL software showing the
spot movement in real-time using the pixel scale units of the CCD.

Laser alignment

Next step is to reach a parallelism between the mechanical rotation axis of
the bearing and the laser beam. A corner cube (retro-reflector) is positioned on
the bench 1 setup, to compare the angle of the beam coming from the reference
and the one directly coming from the laser (retro-reflected by the corner cube).
The tip-tilt of the laser is regulated adjusting the first setup folding mirror tip-
tilt. The position of the spot back-reflected by the corner cube is first recorded
thanks to the CCD test camera and then compared with the position of the spot
reflected by the reference. The tiptilt of the first flat setup mirror is adjusted
looking at these two spots until their positions are coincident.

Center the laser beam on the mechanical axis

To adjust the decenter of the laser beam with respect to the mechanical
rotation axis of the bearing the reference flat mirror is removed and replaced by
a test camera. Two micrometric translating stages are used to adjust the laser
beam, in a way it stay fixed on a position of the CCD camera for an entire 180◦

rotation of the bearing. At the beginning of the procedure the spot produces a
half circle on the CCD, then the laser is shifted towards the mechanical axis of
the bearing reaching an accuracy of about 10 microns.

2.3.3 Alignment of the K-mirror Mirrors

An iterative procedure is used to align M1 and M3. The first step is to
align M1 observing the decenter of the beam, passed through the K-mirror,
with respect to the beam entering the K-mirror itself. To do that, a CCD is
placed on bench-side 2 very close to M3 and the bearing is rotated. If M1 is
aligned, the beam reflected by M2 reaches the surface of M3 in the point defined
by the intersection of the mirror surface and the rotation axis. A misalignment
of M1 lead the spot above or below this point. The spot produces a spiral or a
semi-circle on the CCD where the radius must be minimized using the tip-tilt
correction of M1. The second step is to align M3 observing the tip-tilt of the
beam outcoming from the K-mirror, positioning the CCD on the focal plane
of a lens. In this phase, M3 tip-tilt is adjusted minimized again the radius of
the spiral or the semi-circle drawn by the spot in a 180 degrees rotation of the
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Figure 2.22: the corner cube placed in the laser beam to reflect back the laser with
the same direction. The position on the CCD is compared with the position given
by the window. The middle point on the CCD represent the zero position angle
of the beam in respect to the rotation axis. That test describe how to correct the
tip-tilt of the folding mirror to make the laser parallel to the mechanical rotation
axis..

bearing on the CCD. If the spiral or the semi-circle become a circle instead of
a point it probably means that will need a residual correction of the tip-tilt of
the laser (using the first setup folding mirror on bench-side 1).

M1 and M3 are moved iteratively, accordingly with the already described
observable. When, after a complete 180◦ rotation, the path drawn by the trans-
mitted beam on the setup CCD (in both configurations) becomes a circle, the
mirrors are aligned, because the KM is de-rotating the incoming beam. At this
point, the incoming laser beam can be tilted or shifted laterally, of an amount
lower than the indetermination in materializing the bearing rotation axis. When
the circles diameters on the CCDs are minimized, the incoming laser is placed
on the real rotation axis of the system.

2.3.4 Alignment of M2 (Additional Optical Path Analy-
sis)

The optical path inside the K-mirror, between the mirror M1 and M3 has
to be 640 1mm. A distantiometer (accuracy of 1mm) is placed on bench-side
2 in the optical beam and adjusted in decenter and tip-tilt. Its beam has the
opposite versus of propagation with respect to the laser beam used for the
alignment. A reference screen is placed on bench-side 1. To roughly adjust the
tip-tilt of the distantiometer, the beam is sent back inside the laser head. Tests
on the distantiometer show that a statistic measure of the distance can give the
required accuracy. The distantiometer is moved integrally with the reference
screen, to measure their relative distance with and without the KM in between,
in order to retrieve the additional optical path introduced by the KM itself. The
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Figure 2.23: the CCD camera placed on the rotation axis. The rotation of the
KM and of the CCD consequently produce a semi-circle on the camera. Adjust
the x-y linear stages below the laser to correct the decenter. In this test the laser
will overlap the rotation axis. During an entire rotation of the bearing the spot
didn’t move more than 2 pixels of the test camera, that is to say 10µm in both
KMs.

alignment of the laser pointer of the distantiometer to the mechanical axis can
reach an accuracy of about 200arcsec which is enough for the target because
any optical misalignment increases the optical path only of a few microns.The
internal optical path distance is adjusted with a piston movement of M2 inside
the K-mirror, which can be done adjusting its three tilting systems at the same
time. Of course, the M1+M3 and the M2 alignments have to be repeated
iteratively, to achieve the best configuration.

2.3.5 KM Alignment on the LN Optical Bench

Once the KM is internally aligned, it can be placed on the optical path of
the camera FP20 and aligned with respect to the optical axis. In the descrip-
tion below we assume the following coordinate system: z is coincident with the
rotation axis of the KM, y is perpendicular to the optical bench, the origin is
located at the aperture of the laser source used for the alignment. In the follow-
ing procedure the KM is aligned with respect to a given beam, materializing the
optical axis. The concept to be used for the KM alignment to a given optical
axis is the same used to materialize the bearing rotation axis during the KM
internal alignment, but in this case the proper KM actuators for external align-
ment (implemented on the base plate) are used. In the figure is shown the setup
used for the KM alignment on LN optical bench. First of all, a flat mirror is
implemented as a reference inside the k-mirror with tip-tilt regulations. A beam
splitter reflects the beam coming from the reference inside the bearing towards
a lens. The lens focuses the beam, which is then reflected by a folding mirror
into a CCD test camera, to measure the beam angle and to adjust the refer-
ence mirror in order to make it orthogonal to the mechanical axis of rotation



2.3 Internal Alignment Procedure 37

Figure 2.24: decenter regulation is given by a tip-tilt regulation of M1. The exit
beam must hit the intersection point between the surface of M3 and the rotation
axis. If the CCD is placed very close to M3, its inclination become negligible.
Alignment of M3 is done by using a lens and a CCD. The spot produces at first a
semicircle, or a spiral and finally a ”point” or a circle. The spot must be placed
in the middle point computed between the first and the last position obtained on
the CCD, corresponding to rotation of the KM of 0◦ and 180◦.

Figure 2.25: measurement of the optical path inside the KM. The distantiometer
is aligned with the optical axis of the KM using decenter and tip-tilt correction
on the distantiometer holder. Is reached an accuracy of about 200” for tiptilt
and 0.5mm for decenter. The vertical position of M2 can be adjusted using the
3 screws over the mirror mount of M2.
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Figure 2.26: Setup used to align the KM to a given optical axis, materialized
with a reference beam.

of the bearing. To perform the reference mirror tip-tilt regulation, the bearing
is rotated of the maximum allowed amount (which is 180◦ for the first KM po-
sitioned on the LN bench, and 120◦ for the second one) and the movement of
the reflected spot on a screen is recorded. The inclination of the reference is
adjusted in order to make the spot not move during an entire rotation of the
bearing.

At the very beginning of the procedure, the tip-tilt regulation is implemented
by observing the spot movement on a screen placed between the reference and
the beam splitter. A second regulation is done with the screen close to the
camera position. Once the spot hits the camera, the tip-tilt of the reference
mirror is adjusted looking at the spot position on the CCD, where the accu-
racy of the alignment can be measured thanks to a software showing the spot
movement in real-time using the pixel scale units of the CCD. Next step is to
reach a parallelism between the mechanical rotation axis of the bearing and the
laser beam. A corner cube (retro-reflector) is positioned on the bench setup, to
compare the angle of the beam coming from the reference mirror and the one
materializing the optical axis (retro-reflected by the corner cube). The position
of the spot back-reflected by the corner cube is compared with the position of
the spot reflected by the reference mirror. The tiptilt of the KM base plate
is adjusted looking at these two spots until their positions are coincident. To
adjust the decenter of the KM with respect to the reference beam, the reference
flat mirror is removed and replaced by a test camera. The KM base plate lateral
and vertical adjustment screws are used to adjust the KM position, in a way
the reference beam is fixed on a position of the CCD camera for the allowed
rotation of the bearing.
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Figure 2.27: Actuators below the mount of the mirrors M1 and M3..

2.3.6 Actuators for Internal Alignments

The units M1 and M3 have actuators to adjust the mirror orientation. They
are very similar, so the description for just one unit will be given. There are
three couples of screws placed at 120◦ to rotate the mirror around one direction
with a large angle use one screw and unlock the opposite screws; to reverse the
motion do the opposite using two screws to push the mirror mount and unlock-
ing the other screw. For fine adjustments lock every screw forcing the motion
against their threading. The pushing screws enter into a threaded bushing fixed
to the plate which is rigidly connected to the K-Mirror frame (bottom plate);
the screw head arrives onto the plate which is connected to the mirror (mirror
plate) and on this place a countersink hole is made allowing some play between
the screw head and the housing. The pulling screws enter into passing holes
made on the bottom plate and are screwed to another set of threaded bushing
which are now fixed to the mirror plate. The play between every mechanical
part ensures the possibility to adjust the mirror orientation, while the mirror
mount deformation prevent damages and deformation of the mirror. It is rec-
ommended to make adjustments along one direction as far as practicable, as
the unidirectional repeatability is very good. In case of reversal motion the
hysteresis of the actuators and the elasticity of the mount could give the wrong
sensation that the actuation has no effect on the base-plate position. Continue
adjusting along the same direction until the hysteresis is recovered. M2 unit
exploits the same concept of push-pull screws, which allows the translation of
the mirror along the direction orthogonal to its reflecting surface and allows also
angular adjustment in case is needed.

2.3.7 Actuators for Alignment to a Given Optical Axis

The actuators for the alignment to an external optical axis (the FP20 cam-
era) are placed on the base-plate of the KM (see figure 2.28). Z is along the
optical axis and doesn’t need of adjustment system, Y is along the vertical direc-
tion. To perform the adjustment is useful to: unlock the screws a bit; make the
necessary adjustments by unscrewing one of the two actuators and by screwing
the opposite one; lock the screws; put the actuator which has been unscrewed
in contact with the mounting base. The system regulation repeatability suffers
of mechanical hysteresis and it is then suggested to perform unidirectional ad-
justments as far as possible to minimize this effect. The available degrees of
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freedom of the baseplate are:

1. pitch - in figure 3 (red) and figure 4 (red) are shown the adjustment and
the locking screws respectively.

Travel range: ±1.35degree

Resolution: 10”

2. roll - in figure 3 (blue) and figure 1 (black) are shown the adjustment and
the locking screws respectively.

Travel range: ±2.3degree

Resolution: 10”

3. X linear displacement - in figure 2 (red) and figure 1 (white) are shown
the adjustment and locking screws respectively.

Travel range: ±5mm

Resolution: 10µm

4. Y linear displacement - in figure 5 and figure 6 are shown the adjustment
and locking screws respectively.

Travel range: ±5mm

Resolution: 10µm

Pitch and roll are a bit coupled and it is recommended not to fully unscrew
the locking screws: keep them always tighten to obtain the best sensitivity and
to decouple the actuators. Furthermore, the rotational degrees of freedom are
disentangled from the translational ones. It is recommended to make adjust-
ments along one direction as far as practicable, as the unidirectional repeatabil-
ity is very good. In case of motion reversal the hysteresis of the actuators and
the elasticity of the mount could give the wrong sensation that the actuation
has no effect on the base-plate position. Continue adjusting along the same
direction until the hysteresis is recovered.

2.3.8 Electrical Interface

Figure 2.29 show some pictures of the KM patch box. The colored flat cable
connects the motor encoder with the electric board provided by MPIA, while the
black cables connect the limit switches (the connectors have different number
of pins, 4 and 5 respectively, to avoid any connection mistake) and the motor
(3 pins).

2.4 Verification

In this document the results of the mechanical and optical tests done on
the components of the derotator. Here are described the alignment procedure
verification tests for both units KM1 and KM2. The assembly, integration and
verification of both the K-Mirrors was finished in April 2011. The systems were
integrated and aligned in the optical laboratory of the Astronomical Observatory
of Padova. The K-mirror Unit 1 and Unit 2 have been assembled, aligned and
tested in the optical laboratory of the Astronomical Observatory of Padova, and
they will be integrated on the Linc-Nirvana optical bench, with the aim of de-
rotating the 2’ field of view which can be used by the corresponding Mid-High
Wavefront Sensor. Both units now are at the MPIA in Heidelberg. A technical
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Figure 2.28: The actuator of figure 2 are for the decentering in the X direction
and the locking screws are shown in figure 1 in white. The actuators for pitch
and yaw alignment are in figure 3 and the pitch and roll locking screws are in
figure 1 and 4 in black and red respectively. Pitch adjustment is achieved by
screwing one of the related actuators, depending on the adjustment direction.
Figure 4 in red shows the locking screws of the pitch actuators while in figure 1
in black are shown the roll actuators. Figure 5 shows actuators for the vertical
adjustment while figure 6 shows the locking screws.
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Figure 2.29: The KM patch box connected to the motor of the rotating bearing
and the limit switches.

support from Padua as been given ton MPIA several time to perform flexure test
and the cheque of the performance after the shipment. After the integration on
the MPIA laboratory the thermal test will be done in the climatic chamber of the
institute to verify the alignment maintenance in a temperature range from 20◦

to -20◦C. Each system is composed by 3 flat mirrors, with tip-tilt capabilities,
fixed on a common frame, which is able to perform a 180 degrees of rotation,
thanks to a rotating stage, corresponding to a 360 degrees rotation on the sky.
However, this rotation range has been reduced to 90 degrees to avoid collisions
with the other K-mirror. Furthermore, during observing operations, the system
will be asked to perform a rotation only on a ±15 degrees range, corresponding
to a ±30 degrees rotation of the FoV. The verification test concerns this topics:

• SHIFT AND TIP-TILT ADJUSTMENT RESOLUTIONS TEST:

• BASE-PLATE FLEXURES TEST

• MIRRORS FLATNESS TEST

• INTERNAL ALIGNMENT TEST

Laboratory equipment for the performance verification test :

• generic lab tools (screwdrivers, hex keys...)

• needed a spirit level

• needed 2 dial gauges

• needed an interferometer

• A laser source (λ=632.8µm) equipped with x-y movements

• beam expander (dia.=1”)

• variable diaphragm (0.5mm-2mm)

• folding mirrors on tip-tilt mounts

• flat mirror (dia=1”)

• beam splitter (50:50)

• lens (f =750mm, dia=1”) with tip-tilt-x-y movements

• CCD detector (pixelsize=5.2µm) with x-y movements
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Figure 2.30: 1Verification Method: D=review of design, T=test, A=analysis,
I=inspection, S=by similarity. 2These are to be intended as the maximum (Peak
to Valley) deflection and decentering through a contiguous span of ±30deg in
the pupil plane, corresponding to ±15 deg of rotation of the physical frame of
the K-mirror. 3While the mirror flatness is estimated from the measurement
taken over the optically clear area, the Strehl is estimated at the wavelength of
one micron and using only the portion of the mirror surface interested by the
footprint of a single beam. 4This number is due to the maximum heat dissipa-
tion accepted from the motor, to avoid the turbulence formation just before the
MHWS. 5Travel adjustments are given for the unit as a whole.



44 Two K-M unit for LBT

• Tip-tilt mount to hold a 1” mirror integral with the rotating bearing

• 1 corner cube (dia=1”)

• Generic holders and bases

2.4.1 Mirrors Reflectivity

Mirrors coating reflectivity is guaranteed by the mirrors manufacturer as
above 98% in all the required range. A reflectivity curve of protected silver,
provided by the company itself, is shown in figure 2.31. The requirement is
fulfilled.

Figure 2.31: Protected silver coating reflectivity.

2.4.2 Bearing Motor Power Consumption

The selected motor dissipated power is 1.16W. The requirement is fulfilled.
Further test can be performed only with the final KMs electronics.

2.4.3 Bearing Minimum Incremental Motion

The selected motor minimum measurable step motion is 0.0036◦. The re-
quirement is fulfilled. Further test can be performed only with the final KMs
electronics.

2.4.4 Shift and Tip-Tilt Adjustment Resolution Test

The repeatability of the shift movements of the entire K-mirror on a bench
has been individually tested at the Tomelleri company place, by Tomelleri,
Spacelight and Padova teams. The vertical repeatability has been measured
taking the central travel position as a reference, shifting several times the sys-
tem of a known amount in one direction and measuring the true shift with a
mechanical comparator, to compare the reached positions. These measurements
have been taken in both directions, to check the bidirectional repeatability too.
An analogous procedure has been used to measure the lateral adjustment re-
peatability. The repeatability has been measured taking the central travel po-
sition as a reference, tilting several times the system of a known amount in one
direction and measuring the true tilt with at least two dial gauges, to compare
the reached positions. These measurements have been taken in both directions,
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Figure 2.32: Vertical adjustment of the k-mirror as a whole. On the left, the two
screws used to fix the vertical position are unscrewed to allow the vertical ad-
justment test. On the right, two screws placed on the upper part of the k-mirror
are used for the vertical regulation, with push and pull functions respectively.On
the left, the system is tilted using two dedicated screws. On the right, three me-
chanical comparators are used to measure the combination of tip and tilt of the
system.Mechanical comparators used to measure the horizontal tilt directly on
the base of the k-mirror
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to check the bidirectional repeatability too. It has been found out in both cases
that it would be required to proceed on the same direction for the tuning. In
such a case, the requirement is fulfilled and referring to figure 2.28 the results
are:

1. pitch - in figure 3 (red) and figure 4 (red).

Travel range: ±1.35degree

Resolution: 10”

The unidirectional repeatability: 4”

2. roll - in figure 3 (blue) and figure 1 (black).

Travel range: ±2.3degree

Resolution: 10”

The unidirectional repeatability: 3”

3. X linear displacement - in figure 2 (red) and figure 1 (white).

Travel range: ±5mm

Resolution: 10µm

The unidirectional repeatability: 2 microns

Bidirectional repeatability: 16 microns

4. Y linear displacement - in figure 5 and figure 6.

Travel range: ±5mm

Resolution: 10µm

The unidirectional repeatability: 2 microns

Bidirectional repeatability: 20 microns

2.4.5 Base-Plate Flexure Test

A complete, optical test of the KM behavior for different inclination angles of
LN bench could not be performed with our facilities, being the tilting bench too
small to include an optical setup on it; so this topic needs further investigations,
to be performed at MPIA. A quick check of the behavior of the KM beam in
a tilted configuration, has been carried out at the Tomelleri company place, by
Tomelleri, Spacelight and Padova teams. The KM mechanical structure (with
only M2 mounted on it) was tilted of 60o in the direction shown in Figure 17
and the resulting shift of the structure in the tested point was 46 µm. Flexures
will be combined with the thermal effects and internal KM misalignments, to
verify their compliance with requirements.
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Figure 2.33: Left: a tilting bench is used to change the inclination of the system,
while the flexures are measured using a mechanical comparator. Right: flexure
test at the Max Plank Institute for Astronomy in Heidelberg after the internal
alignment technical support. The KM SX was placed on the linc-NIRVANA
bench that will be at the LBT telescope in the next future.

In Heidelberg has been performed a second flexures test on the complete and
aligned KM. The tests was performed on the real linc-NIRVANA carbon bench
that can tilt from 0deg to 60deg. After calibration of the autocollimator setup,
K-Mirror SX and DX was inserted into the optical path. It was aligned to a
reasonable low absolute tilt on the auto-collimation telescope (error angle less
than 150”) Then, the bench has been tilted continuously to 70 degrees. The
tilt angles where recorded by the autocollimator and saved by the INCOLINK
software. The tests have been carried out in 2 different configurations:

1. KM at 90 degrees: In this position, the tilt signal due to flexure is dom-
inated by the y-component (up-down direction with respect to the bench
surface). The contribution of tilt in x direction (left-right) is small.

2. KM at 45 degrees: With the K-Mirror rotated to a 45 degree position, the
tilt sensitivity is almost equal for x and y direction.

For each configuration we used two different measurement procedures. The
bench was tilted continuously or by steps of 10 degrees. In the following plots
the results of our measurements are displayed. The magenta curves show the
combined tilt of both (x and y) directions. In conclusion, the total chief ray tilt
angle due to K-Mirror flexure is:

• KM at 90 deg: 22.5 arcseconds

• KM at 45 deg: 17 arcseconds

The maximum of the tilt occurs at an bench inclination of around 45 degrees.
In the figure ?? is shown the flexure of the baseplate of the KM SX. In the first
figure is described a single elevation of the bench (up and down) with the KM
rotated of an angle of 90◦. In the second figure are described three elevation of
the bench (up and down) with the KM rotated of the same angle of 90◦. In the
third figure is described a single elevation of the bench (up and down) with the
KM rotated of an angle of 45◦ as visualized in the second of figure 2.33. In the
last figure is described the flexures during three elevations of the bench (up and
down) with the KM rotated of an angle of 45◦.
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Figure 2.34: Two images to describe the flexure measurement of the baseplate of
the KM SX roteted of an angle of 90degrees. The ”sinusoidal” shape describe the
elevation of the NIRVANA bench performed three times.Here the setup allows to
measure tip and not the tilt because of the inclination angle of the frame(90deg)
that make one measurement insensitive.
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Figure 2.35: Two images to describe the flexure measurement of the baseplate of
the KM SX rotated of 45degrees. The ”sinusoidal” shape describe the elevation
of the NIRVANA bench performed three times. In this case both tip and tilt are
sensitive
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2.4.6 Mirrors Flatness Test

The mirror flatness measurements have been performed by the manufac-
turer, they are summarized in figure 2.36. The mirror flatness in the central
part of each mirror has been re-checked also using an interferometer (reference
wavelength = 633nm, beam diameter = 100mm) in the Observatory of Padova.
Of course, a smaller aperture probably means a smaller flatness PtV value, so
these measurements are just a check. The results, summarized in figure 2.36
and obtained by the manufacturer and in our test, are both inside specifications.
The requirement is then fulfilled.

Figure 2.36: Interferometric measurement performed in Padova, taken in a cen-
tral portion with diameter = 100mm. The left column represents the KM SX
with mirrors M1, M2 and M3. The right column is for for KM DX. Mir-
rors flatness interferometric RMS measurements results from the manufacturer
compared with the values obtained obtained in the Adaptive Optics laboratory in
Padova.
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Figure 2.37: Optical setup. The part on the right of the K-mirror is labeled
”bench-side 1”, used for the bearing rotation axis materialization. The part on
the left of the K-mirror is labeled ”bench-side 2”, used to check the direction of
the beam coming out from the KM.

2.5 Internal Alignment Verification

In the following the result of the alignment procedure on the transmitted
beam. The beginning of the procedure from item 1 to item 3 define the accuracy
of the materialization of the bearing rotation axis while the following steps define
the correct internal alignment of the derotator. The adjustment of the internal
optical path is important because define the focal position of the FoV on the
MHWS. The maximum deflection and decentering of the chief ray through a
contiguous span of ±30deg in the pupil plane, corresponding to ±15 deg of
rotation of the physical frame of the K-mirror, has been quantified using the
setup for the M1 and M3 alignment.

K-MIRROR DX (UNIT 1) deflection and decentering of chief ray verification
results

The data obtained with verifications of the out-coming beam deflection and
decentering for position angle ranging from 0◦ to 90◦ (range in which KM unit 1
could work avoiding collisions with KM unit 2) are shown in Figure 18, resulting
in a 31 arcsec and a 70µm ranges, respectively. However, deflection and decen-
tering of the chief ray requirements, according to the requirements contained in
AD4, are to be intended as the maximum (Peak to Valley) deflection and de-
centering through a contiguous span of ±30◦ in the pupil plane, corresponding
to ±15◦ of rotation of the physical frame of the KM.

K-MIRROR SX (UNIT 2) deflection and decentering of chief ray verification
results

The data obtained with verifications of the out-coming beam deflection and
decentering for position angle ranging from 90◦ to 180◦ (range in which KM
unit 2 could work avoiding collisions with KM unit 1) are shown in Figure
18, resulting in a 5 arcsec and a 80 µm ranges, respectively. The system is
then fulfilling the requirements in all the possible working range. Moreover,
deflection and decentering of the chief ray, according to the requirements, are
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Figure 2.38: Top images: graphics for KM1 with the accuracy obtained for
the materialization of the axis in tip-tilt (left)and decentering (right).The stars
represent the angle of the beam reflected by the reference mirror during a rotation
of 180◦. The squared dot is the beam reflected by the corner cube. Deflection and
decentering of the beam out-coming from the K-mirror DX, for a position angle
ranging from 0◦ to 90◦.On the left, the tilt measurements are shown, resulting
in a tilt range (for a 180◦ field rotation) of about 22 arcsec. On the right, the
de-centering measurements show an overall range of 97µm.
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Figure 2.39: Top images: graphics for KM1 with the accuracy obtained for
the materialization of the axis in tip-tilt (left)and decentering (right).The stars
represent the angle of the beam reflected by the reference mirror during a rotation
of 180◦. The squared dot is the beam reflected by the corner cube. Deflection
and decentering of the beam outcoming from the K-mirror DX, for a position
angle ranging from 0◦ to 90◦. On the left, the tilt measurements are shown,
resulting in a tilt range (for a 180◦ field rotation) of about 16 arcsec. On the
right, the de-centering measurements show an overall range of about 94µm.
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to be intended as the maximum (Peak to Valley) deflection and decentering
through a contiguous span of ±30◦ in the pupil plane, corresponding to ±15◦

of rotation of the physical frame of the KM.

1. Alignment of a reference setup mirror, making it orthogonal to the bearing
rotation axis:

• for KM1, the resulting tilt range is about 32 arcsec, corresponding
to 32/2 16 arcsec of mirror wobble, mainly due to a bearing wobble.

• for KM2, the resulting tilt range is about 25 arcsec, corresponding
to 25/2 13 arcsec of mirror wobble, again mainly due to a bearing
wobble.

2. Laser beam alignment, to reach a parallelism between the mechanical ro-
tation axis of the bearing and the laser beam, using a corner cube:

• the non-parallel error angle produces a spot that hit the detector
in the middle of the point distribution range defined by the perfor-
mances of the bearing. This means that the accuracy is of about 5
arcsec.

3. Centering of the laser beam on the mechanical axis, the reference flat
mirror is removed and replaced by a test camera:

• the laser alignment reaches an accuracy of about 25µm for KM1.

• the laser alignment reaches an accuracy of about 10µm for KM2.

4. Deflection and decentering of the chief ray regulated adjusting M1 and
M3.

• the deflection and decenterin alignment reaches respectively an ac-
curacy of about 13arcsec and 92µm for KM1.

• the deflection and decenterin alignment reaches respectively an ac-
curacy of about 11arcsec and 62µm for KM2.

2.5.1 Optical Path

The internal optical path has been measured during the K-mirror alignment
procedures, as described in Section Error! Reference source not found.Although
the manufacturer declare a maximum error of ±3mm for measurements up to 12
m, we elected to perform an in house verification of the error just in the range
where we are supposed to carry out our own measurement. The distantiometer
was used to measure the distance from a screen positioned on a linear stage,
equipped with a micrometric actuator. The stage was moved in a 1.5mm range
and 10 measurements have been taken with the distantiometer for each screen
position. The mean values obtained are displayed in figure , showing that a
±0.5mm error bar is enough to consider all the measurements as consistent with
the true distance of the distantiometer from the screen. At that point the deter-
mination of the KM Unit 1 additional optical path was carried out (consisting
in the average of 10 measurements), resulting in 420.3±0.5mm. The analogous
optical path determination for KM Unit 2 resulted in 419.9±0.5mm. In both
cases the error bars intersect the requirement range, which was 421±1mm, so
the requirement is fulfilled, as far as our means allow to check it. However, con-
sidering the quite-large error bars, a shorter additional optical path has been
preferred to a longer one, since in the first case an adjustment (MHWS shim-
ming) is possible.
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• The optical path determination results is 420.3±0.5mm for KM1.

• The optical path determination results is 419.9±0.5mm for KM2.

Figure 2.40: Distantiometer sensitivity verification. On the x-axis there are the
micrometer positions, while the y-axis is the distance obtained with the distan-
tiometer. The black line, which is a straight line with angular coefficient equal
to -1, represents the expected (true) values., while the blue spots are the obtained
measurements. Each measurement has a ±0.5mm error bar.

2.5.2 Strehl Ratio

KM optical quality requirement is Strehl ratio S > 90% The optical quality
has been verified retrieving the flatness of the beam transmitted by the KM
optics in a double pass configuration. The actual Strehl calculation requires
complex math, but a simple empirical expression gives a very close approxi-
mation of the Strehl ratio in terms of the RMS wavefront error: where e is
the natural logarithm base (2.72, rounded to two decimals), and ù is the RMS
wavefront error in units of the wavelength. With that expression, the require-
ment in terms of Strehl ratio can be translated into a RMS WFE requirement:
measured RMS WFE must be lower than 50nm. In figure 2.41, the setup used
for the interferometric measurement is shown. A Zygo interferometer measures
the RMS WFE of the K-mirror in double pass with a previously verified mirror
as a reference (for KM1 verification the M2 mirror of KM2, 10 nm RMS, has
been used as a reference, while for KM2 verification another flat mirror, 7 nm
RMS, has been used). As shown in figure 2.41, the KM1 mean measured RMS
WFE is less than 60 nm, since we know the reference mirror contribution (10 nm
RMS) and since this is a double pass measurement, the RMS WFE contribution
introduced by the KM can be retrieved as nm 30µm RMS

The KM DX mean measured RMS WFE is less than 22 nm, since we know
the reference mirror contribution (7 nm RMS) and since this is a double pass
measurement, the RMS WFE contribution introduced by the KM can be re-
trieved as 10.5µm RMS. The requirement is then fulfilled by both the K-mirrors:

S = e−(2πω) (2.5.2.1)
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Figure 2.41: Setup for the interferometric measurements concerning the KM
optical quality in double pass configuration. Examples of WF retrieved during
KM1 (left) and KM2 (right) Strehl ratio verification test.
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2.6 Conclusions

One of the possible key reference element in optical alignment is represented
by a rotational stage, a mechanical bearing, or any similar suitable device with
enough accuracy and precision in the rotation such that the optical tolerances
are reasonably larger than the imperfections in the rotational movement. NIR-
VANA on LBT provide three flat mirrors system arranged in a so called K-
mirror layout, moving together on a precision rotating stage. Care has to be
given when internally aligning and aligning externally with respect to an ex-
isting opto-mechanical system, are to be accomplished within a certain degree
of precision. To further make the situation more complex, the technical over-
all requirements can be tight enough that the distribution of the error budget
between the various component (imperfect mechanical rotation, imperfect inter-
nal alignment, flexures during rotations) is not dominated by a single item. In
this case, two optical derotators within the specification are implemented and
running in the final Linc-NIRVANA bench. A lot of experience on the testing
procedure, modification solution and optics are the best opportunity to evolve
any future design and application for giant telescope [17] and for instrumenta-
tion for medical and industrial purposes.
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Chapter 3

Dust and Fluid Sensor

In this chapter are described two sensor prototype for the analysis of dust
and fluids in dense or less dense environment as space or planet atmosphere. The
results are obtained after more than one year collaboration with the Spacelight
company.

A sensor for the study of the martian atmosfere was developed in the Space-
light company and several optical test were necessary to define the best optical
design of the prototype. The science concept is the measurement of the scattered
light deflected by the dust particles with a size comparable with the wavelength
of the incident light. The amount of energy measured per time unit gives a
statistical value about the dust diametral dimension.

A second sensor developed in Padova is able to see the discontinuity of a
volume filled with dense or less dens fluid (air, water or glass) and can measure
in a single shot the local distribution of refraction index. The pyramid wavefront
sensor is the main components and gives to the prototype an high sensitivity
measurements with respect to the Shac-Hartman or the curvature sensor.

The synergy of both sensor can produce surely interesting results for a lot of
human application. However the purpose was to start getting friendly with the
wavefront sensing techniques in order to test and upgrade the performance up
to the top of the requirements for current application with rewarding results.

3.1 Dust Sensor

Dust and water vapor are fundamental components of the study of planet
atmosphere and to understand the climate and its evolution [23]. In such envi-
ronment dust and water vapor have (and have had) a strong influence. Generally
speaking the analysis of dust or fluid for planet and moons of the solar system
can provide a technological solution for a lot of human application starting from
medical research to industrial purpose [9]. The tests described in this chapter
characterize the beam produced by an optical fiber source for the dust sensor.
The instrument breathe the dust and illuminate the particles flux with a thin
”knife” of light in order to measure the light scattered backward and forward.
The scattering is measured by a photodiode and from the bump energy intensity
and distribution it is possible to derive the dimension of the dust particles. In
this report we describe two optical bench setup to test multi-mode laser diode
and fiber optic coupling. The light of a laser diode is focused inside an optical
fiber. The output signal is studied to measure the numerical aperture (NA) of
the fiber, the speckle pattern and the top flat intensity as a remark of a correct
light input in fiber core.

59



60 Dust and Fluid Sensor

Figure 3.1: One lens of about 5.6mm of focal length collimate laser diode light
into the focusing lens with FC fiber adapter. The fiber pass in a ”mode scram-
bler” and ended in front of the CCD camera observe where the signal is recorded.

3.1.1 NA<0.22 input Beam

The laboratory setup:

• Multymode laser diode 808nm wavelength, L808P200

• Laser diode with λ=808µm and temperature controller, ITC510

• Neutral density filter with 0,01% trasmissivity, ND40A

• Multymode FC fiber optic with 100um core and 2m length

• Aspheric lens LT220P-B with NA=0,25 f=11,0mm and diam=5,6mm.

• Focusing pacage F810FC-780, with aspheric lens, NA=0,25 and f=35,9mm

• Camera CCD uc480 from Edmund, with computer USB interface

The first tests uses a 808µm laser diode allocated inside a laser temperature
controller. The effective laser diode astigmatism is measured with a micrometer
by using a fluorescence screen because of the mechanical impossibility to put
closely to the diode emitting surface the camera and the filter. We measured
all distances with a micrometer We assume a distance of 0.5mm from the diode
surface to the glass window. First results gives:

• 3.6 deg for horizonal axis.

• 37.3 deg for vertical axis.

The vertical angle is limited by the window aperture that produce an evident
and marked light loss. This diode features will bring to a collimation beam with
a thin profile in one direction and a divergent/convergent beam for the other
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Figure 3.2: Table with the values estimated for the horizontal and vertical astig-
matism of the laser diode.

axis because of the marked astigmatism. The beam is collimated by using the
aspheric lens LT220P-B. To collimate the beam in the other axis It should need
a cylindrical lens not used here for the purpose.

Focus alignment: the laser screwed box allows to adjust lens in focus. De-
centering adjustment are not required here because any effect is considered
negligible. To minimize any deceneterig effect is decided to use a V-mount and
a micrometer to adjust collimation. Collimation of the beam is adjusted when
measuring fiber output variation and stopped when top luminosity is reached
on the detector.

Tip-tilt alignment: the focusing lens mounted in the conic mount from Thor-
labs is mounted on a 10arcsec sensitivity tip-tilt mount. This adjustment allows
to appreciate on the focal plane of the lens where is placed the fiber core a shift
of about 20µm of the laser diode image, depending on screws and manual rota-
tion. To ensure the light spot on the fiber core we observe with camera CCD
the fiber intensity output curve in function of focusing package tip-tilt.

The collimated laser beam footprint on the focusing lens have a rectangular
shape of about 1.5x5 mm with the bigger axis quasi parallel to the gravity
because of orientation of laser diode emitting surface. The way the light enter
inside the circular fiber core depends on tilt regulation so it is possible to observe
on the detector a circular distribution of light that became a bright ring just
before disappearing. This effect is not visible during tip regulation. That is
because there is not an homogeneous light angle distribution in pupil aperture
of the focusing lens. Some angles can excite high fiber mode (visible ring) when
moving along y axis direction.

When the fiber output transmit maximum power (in correspondence of the
maximum of luminosity curve) we can suppose the best diode image overlapping
on fiber core.

3.1.2 Numerical Aperture

The NA is measured by using a couple of images of the fiber light output.
First image is acquired from a zero reference position that correspond to a value
on camera micrometer. The second image is obtained by shifting the camera
from the zero reference position of a certain quantity. The radial difference
between a couple of images and the distance between them returns the NA
value of the fiber output. R1 and R2 are the returned radial value of an IDL
program. To be sure that NA value measured is independent from the intensity,
from the speckle pattern, or from alignment defocus or tip-tilt, are analyzed
images with different zero position and focal length.

Two IDL software measure the radial variation. One program return NA
obtained as a parameter of the Gaussian normalized fit. The other one, returns
NA% value of table, obtained from a ”circularization” of the area calculated as
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Figure 3.3: Output shape of the fiber. The specke pattern change with respect to
the incident light angle of the input beam inside the core of the fiber.

Figure 3.4: Result of calculation of the NA of the fiber output beam. The input
beam angle is smaller than 0.22 and this produce an output profile which is far
from the requirement of a flat and uniform distribution profile with NA=0.22
even if the threshold is varied between 1%, 10%, 20%.

a sum of pixels with normalized intensity upper 1%, 10%, or 20% cut off. We
can also consider the radius of one disc image and numerical aperture measured
on both images. We can calculate the distance D1 and D2 of fiber output from
CCD surface for both images by the formula:

It’s not possible to know the absolute distance with high accuracy but to
know easily the relative distance by shifting the fiber placed on a micrometric
stage. The distance between the two position of the stage compared with the
dimension of the disk on the CCD returns the NA angle.

Both methods return an NA not comparable with the required value. The
expected ”top hat” intensity distribution is not visible and the speckle pattern
generate a non uniform light distribution with an intensity variation of about
50%. A ”mode scrambler” is used to stress the fiber in order to simulate a
long fiber cable. This tool should provide for a speckle merging but no marked
evidence of smoothing effect were observed.
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Figure 3.5: Table with the values estimated for the horizontal and vertical astig-
matism of the laser diode.

3.1.3 NA≈0.25 Input Beam

A second setup was changed to change the diameter of the collimated beam
(by using a beam expander) and the telecentric angle of on the fiber core. In-
struments and optical setup:

• Multimode laser diode 808nm wavelength, L808P200

• Laser diode and temperature controller, ITC510

• Aspheric lens, diam=25mm, f=150mm

• Neutral density filter with 0,01% transmissivity, ND40A

• Beam expander

• Focusing package, F810FC-780, with aspheric lens, NA=0.25 and f=35.9mm

• Multi-mode FC fiber optic with 100µm core and 2m length

• Camera CCD uc480, with computer USB interface

Is not possible to chance the astigmatic angle but it’s possible to select the
inner part of the beam to reduce the astigmatic contribution and make the
footprint on the focusing lens as circular as possible. A collimated beam is
generated by a lens with a 150mm focal length and with a 1” diameter is placed
150mm far from laser diode source. The horizontal beam divergence (3.6 deg)
cover all the diameter of the lens.
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Is used a beam expander between collimation lens and filter, to select with
focusing lens aperture a portion of a more uniform wavefront in order to excite
all modes with the same input power. All the focusing lens is now illuminated.
In this configuration disappear any ”luminous ring” during tip tilt regulation.
The light cone that focus on the fiber has got a NA of about 0.25rad.

Figure 3.6: collection of images that show the exited modes during the decenter-
ing of the central obscuration in placed in the collimated beam of figure 3.5.

The NA was measured with the Gaussian fit program but it doesn’t gave a
stable result. ”Circularization” program returns the expected value except when
cut off level was set at 0.1%. That is because of the background noise could
add ”hot pixels” and force the program to overestimate the effective illuminated
area of the CCD and NA value consequently.

The mode scrambler doesn’t add a great benefit as previous test. In both
cases the top hat intensity profile shows a speckle average variation of about
30%. The obstruction tool was occasionally used to stop chief rays to demon-
strate that marginal rays excite high orders frequencies clearly visible as a ring
form fiber output as shown in figure 3.6to that shows the obstruction moving
up-down with the speckle pattern changing.

The expected value for NA=0.22 was measured with a background cut-off of
10%−20% of normalized intensity and an error of 1%. Mode Scrambler doesn’t
modify NA.

To know how a top hat profile could influence our optical project we finally
measure the intensity distribution when the circular spot virtually collapse in
one axis in order to simulate the laser blade power distribution on the anas-
tigmatic objective prism. That situation allows an integration of speckle that
gives a more uniform profile with the fulfill of the RMS energy requirement.

The fiber output depends strongly on the fiber input angle. This angle must
be telecentric and must have also the same NA accepted by the fiber or more.
We use a 0.25NA focusing lens but since the collimated beam diameter remain
smaller than our focusing lens aperture, we produce a light cone on the fiber
core with lower NA that lens’ one.

Test shows that a tip-tilt misalignment with respect to the fiber axis can
produce a light ring shape with a radius bigger than expected. The non telecen-
tric angle can easily excite the high order inside the fiber while subtract light
power at low order. This effect is clearly visible in figure 3.6.

This fact can explain also why mode scrambler doesn’t run correctly in this
case: it has not high order to merge with low order so speckle pattern don’t
change significantly. Expanding the collimated beam to increase the numerical
aperture of focusing lens can provide the correct configuration to.



3.1 Dust Sensor 65

Figure 3.7: left: image of the output of the fiber with the mode scrambler modu-
lation. Right the same setup condition without the mode scrambler. The speckle
merging effect is not evident and the inhomogeneous profile show variation of
about 30% of light intensity due to speckle interference.

Figure 3.8: Result of calculation of the NA of the fiber output beam. The input
beam angle is 0.25rad and this produce an output profile which fullfill the require-
ment with NA=0.22 for different threshold varying between 1%, 10%, 20%. The
constraint on the profile uniformity is calculated by collapsing the disk on one
axis merging all speckles in a sort of mean distribution.
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3.2 Wave Front Sensor

In this chapter are described several tests and results coming from the char-
acterization and analysis of a pyramid wave front sensor able to perform the
reconstruction of a perturbed wavefront thanks to the Zernike polynomials. The
concept of the thomografic reconstruction of a transparent medium (atmosphere,
liquid, plastic, biological fluids) is here referred and connected to the concept
based on the Multi-conjugated Adaptive Optics Layer oriented (MCAO). The
laboratory setup is here simplified by using a single source reference for the data
acquisition.

The test are performed in the laboratory of the Observatory of Padua on a
prototype that observe the pupil plane. In the laboratory setup a pupil aperture
is simulated by several lenses to have the possibility to variate the F number
of the optical system in order to characterize the variation of sensibility of the
prototype. The main idea of the setup is to characterize the static optical
aberration of different lenses. At the end of the characterization are given some
analyzed and reconstructed wavefronts. Some lenses are also placed in a liquid
solution to demonstrate that the prototype can analyze the wavefront in a wide
range of condition.

The sensor is mounted on a XYZ stage to scan the focal plane of the lens
with high accuracy in terms of decentering, defocus and tip-tilt. The sensor is
built using the pyramid prism and a CCD camera while the test lenses are fixed
to the bench setup.

A laser He-Ne is used to aligns all the optical components before the cali-
bration of the instrument while the visible light fiber source is used to perform
the analysis. A collimation lens is placed at the focal distance from the fiber to
collimate the beam. The fiber is placed on a tip-tilt magnetic mount in order
to allows the tip-tilt and defocus alignment with respect to the collimation lens.
The magnetic mechanism allows to remove the fiber and use the laser for align-
ment check. An optical window is used to hold the liquids for the test with the
lens inside the fluid.

The two transparent surfaces (characterized by an excellent surface quality)
are separated by a thick rubber that maintains a distance of about 2 mm apart.
A paste applied on the outside of the silicone rubber tube keeps it all together.

To have a correct dimension and separation of pupils on the detector a Star
enlarger was placed in front of the pyramid sensor in order to magnify the spot
on the pyramid changing the F number. This simple solution is adopted instead
of the modification of the vertex angle of the pyramid prism. The laboratory
setup used for the experiment is described as follows:

• A laser was used for the purpose of aligning the various optical components
in the experiment.

• In front of the laser is positioned (with the aid of a magnetic base that
allows the temporary removal) an optical fiber which is the white light
source that uses the sensor.

• The lens L1 collimate the beam coming from the optical fiber.

• An optical window can hold the lens in the liquid solution.

• The focal plane of the lens is located on the top of a pyramid which
divide the light into 4 parts to form four pupils. Two lenses (L2 and L3),
located between the test lens and the pyramid itself, enlarge the size of
the spot created by the intraocular lens with a magnification factor of
approximately 13.9 in order to decrease the size of the pupils avoiding the
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Figure 3.9: The Pyramid wave front sensor mounted on a three axis motorized
stage.

pupil overlapping due to the small angle at the apex of the pyramid. This
optical system is called Star Enlarger.

• A photographic objective collects the 4 beams from the pyramid form-
ing pupil optical plane on the CCD detector, the last component of the
prototype.

The following are the main tests carried:

1. Characterization of the setup.

2. Repeatability test on the measurement of the wave front.

3. Estimation of sensitivity, accuracy, stability and linearity range for decen-
tering (the measured values by the sensor are tip and tilt) and defocus.

4. Measurement of optical aberrations.

3.2.1 Alignment

The alignment of the setup is performed thanks to a laser that pass trough
the lenses of the setup. By observing the Newton ring it is possible to adjust all
the lenses in decenter(accuracy of about 50µn) and tip-tilt (accuracy of about
0.1deg).The motorized stage along the z axis is also aligned parallel to the optical
axis with an accuracy of about 0.3deg.

3.2.2 Zernike Polynomials

In the analysis of an optical wavefront is often accomplished by breaking
down the so-called Zernike polynomials, mathematical functions that allow to
recognize and describe the aberrations that affect the wavefront.

Usually the turbulence of a medium such as the atmosphere could be de-
scribed by using a finite number of aberration coefficient with different power.
Generally speaking the most power is distributed among low order of aberration
and define the low spatial frequency of a wave front.

The lower order is the piston that is usually considered for interferometric
purpose. For Adaptive Optics and Tomographic analysis are used tip, tilt,
defuous, astigmatism, spherical, trifoil and few orders more.
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Figure 3.10: first 14 terms of the Zernike polynomials with the numbers associ-
ated to the aberration recalled in this document.

Figure 3.11: characterization of the motorized linear stages used to the position-
ing of the sensor. The accuracies of positioning is obtained for each motor as
the standard deviation of 10 re-positioning measurements.

3.2.3 Focal Length and Sensibility Relation

The purpose of this test is to scan the focal plane of several lenses with
different focal length, derive the position of the focal plane by measuring the
coefficient of defocus obtained from the analysis of the Zernike polynomials.

The position of the focal plane of the lens is expressed in mm with respect to
a reference position called ”home” that is recorded in the electronic controller
of the linear stage. At the end of the characterization a calibration allows to
give the focal position as an absolute value instead of a relative one.

The aberration coefficient are plotted as a function of the sensor location to
define the linear range of the sensor. A linear interpolation of these measures
provides the equation of a straight line called the ”best fit”, where m is the
inclination as shown in the following equation.

This line provides an empirical law that connects the aberration coefficient
and the position of the stage expressed in mm. This law is based on a proportion
that binds the calculated intervals (y) and the displacement of the sensor (x).
The steps of the stage are then converted to mm and by using the equation of
the line we get the location that should match the coefficient of zero defocus:

y = mx+ q (3.2.3.1)

The motor can moves in the position of zero defocus and measure the coefficient
as a check. This procedure is usually iterated twice. Ideally this measure would
provide a defocus of zero, but in a real case is useful to quantify how much
the measured value deviates from the ideal one to quantify the accuracy and
repeatability.

It must be noted that the location depends on the value of the inclination
m of the best fit line. The proportion (4.7.0.2) leads to table with 3.11 in which
is described the value of the defocus coefficient (y-axis) that correspond to the
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Figure 3.12: in the table is shown the relation between the resolution power of
the sensor (in terms of defocus coefficient) and the corresponding shift interval
expressed in mm for lenses with different focal length. The values are compared
with the requirements.

displacement of the stages that move the sensor (expressed in millimeters, or
steps).

In the table of fig. 3.12 characterize the resolution of the sensor motor shift
wrt the focal length of the test lens. The relation is retrieved from the equation
(4.7.0.2) that gives different line with different angular coefficient for each focal
length.

3.2.4 Range of Linearity (Defocus)

In this section is tested the linearity range of the Pyramid sensor for a lens
of 100mm focal length. When the sensor is placed far from the best focus of
the lens the signal saturate on the detector and the acquisition procedure fails
the calculation. It is important to define and characterize the range useful for
a correct behavior of the sensor in order to estimate the final performances of
the prototype.

The prototype aims to measure the wave front but it can also estimate the
focal length of the lens with high accuracy. Usually a commercial lens is certified
with focal length associated error of about 1% of the focal length. This sensor
is able to reach extremely higher accuracy as reported in the following section.
With regard to saturation values, it can be seen, from the graph in figure 3.13,
that the line tends to became horizontal asymptotically at the margin of the
range.

This limit define the acquisition range of the sensor and the linearity range
for a lens with 100mm focal length. The linearity range is smaller than the
acquisition range and is located in the graph into the central 4mm area in
which the data are on a line. The limit of the non linear response of the sensor
are form 0mm to 5mm and from 15mm to 20mm.

• Estimated linearity range : 4mm

3.2.5 Range of Linearity (Decentering)

In this section is tested the linearity range of the Pyramid sensor for the
same lens with a 100mm focal length and a second one with a 150 mm focal
length. The purpose of this test is to characterize the decentering of the sensor
with respect to the tested lens.

It is necessary to analyze the Zernike polynomials connected with the tip
and the tilt of the wave front. In different words what is considered as a tip-tilt
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Figure 3.13: Trends in the value of the coefficients for the defocus lens with f =
100 mm. The interval is not perfectly symmetrical to show the saturation range
on the right part of the graphic. The linearity range is represented by the central
4mm area in which the data are on a line.

by the sensor is translated in a linear displacement of the sensor itself thanks
to the motorized axis in X and Y direction.

For each lens are taken measurements of the tip and tilt coefficients values.
Two position of the sensor can define a direction for the motor adjustment that
minimize the value of the coefficient. The procedure aims to the null value of
the coefficient of tip and of tilt because that’s the way to estimate properly the
defocus coefficient.

There is a small dependence of defocus from the tip-tilt coefficients. In this
scenario it’s better to find the best centering before the defocus measurement.
A plot of the ratios of tip and tilt function with respect to the sensor position
make evidence that data are arranged in a straight line.

As for the characterization of defocus is here calculated the ”best fit” line
along the both axes. Is so measured the relative conversion factor between
the coefficients of tip-tilt and displacement of the motors expressed in mm.
From the graphs (f=100mm lens) it is observed that the variation is linear in
a small range, corresponding to about 0.3 mm, in which the four pupils are all
illuminated. In the situation where only 2 pupils are illuminated the program
fails and coefficients of tip and tilt are not trusted (extremes of the graph).

• Estimated linearity range for decentering: 200µm

3.2.6 Accuracy of Measurement

The aberrations of a lens is calculated from the values of the Zernike coef-
ficients. Each wavefront is reconstructed using the first 14 polynomials while
the high orders are neglected because the general assumption is that the optical
power dominates at low modes. Before each acquisition, the wavefront sensor
is centered and focused by minimizing the tip-tilt and defocus signal respec-
tively. The remaining tip, tilt and defocus are then subtracted from the same
wavefront. The PtV of each aberration is expressed in nanometers.

To obtain the wave front in nanometers it is necessary to calculate a con-
version factor that allows to transform the aberration coefficients in a linear
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Figure 3.14: Conversion coefficients for two lenses with 100 and 150 mm focal
length. The conversion coefficient links the decenter (measured as tip/tilt) with
the equivalent displacement of the motorized stages in which is mounted the
pyramid wavefront sensors. Tip end Tilt are measured in the x(horizontal) and
y(vertical) axes respectively.

Figure 3.15: tip and tilt coefficients for a single lens with 100mm focal length.
Tip end Tilt are measured by the wavefront sensor and processed as decentering
signal to adjust lateral displacement (left) and vertical displacement (right) of
the sensor. The estimated linearity range for decentering is rawly 200µm.
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Figure 3.16: Values of the conversion coefficient that allows to quantify the
magnitude of the aberrations in nm expressed here as a function of the dioptric
power of the three examined lenses.

measurement depending by the F number of the lens.
The conversion factor is calculated by the following formula:

DefocusCoeff. =
1

16
√
3
· D

2

f2
· ∆l

∆c
(3.2.6.1)

where D is the effective illuminated diameter of the lens, ∆l is calculated from
linearity graphic and represent the shift in mm of the sensor along the optical
axis, ∆c is the equivalent range of the defocus coefficient1.

The ratio l/c is calculated in a neighborhood of the best focus of the lens
and is expressed in mm. This value is extrapolated from the line fit of defocus
signal to minimize random errors. It is multiplied by the square of the focal
ratio appropriately scaled to the value 2, which allows you to switch between
the RMS values to PtV. This coefficient changes with the focal length of the lens
and this evidence is plotted as a function of the three focal lengths (expressed
in diopters).

Any further analysis could demonstrate that probably there is a law that
binds the conversion coefficients and focal lengths. Despite the small number of
points (3) we obtained a fit which seems to highlight the existence of a relation-
ship between the conversion coefficients and the dioptric power of lenses. It is
important to understand how much the conversion factor measured by the sen-
sor depend by the environment condition of the laboratory setup. Repeatability
test performed in the laboratory on a f=100mm, D=50.8mm glass lens measure
the conversion coefficient at different times and in different setup condition. The
values gives a variation between 2.9nm and 3.3nm. Considering that the average
PtV static aberration is approximately equal to 100nm it is possible to deduce
that the coefficient variation would lead to an errors of 13 nm on the wavefront
analysis. This fact allows to estimate the wavefront with an accuracy of λ/50
because the visible light wave length is rawly 0.55nm. Moreover, by repeating
the measurement of the slope and position of best focus for 10 measures on the
same interval, the results are in accordance with fluctuations.

• Accuracy of measurement: λ/ 50

1the ratio could be intended also as the inverse of the angular coefficient of the best fit
line.
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Figure 3.17: Analysis of aberrations on the 100 mm focal length lens. For each
measurement the sensor was adjusted in order to minimize defocus and tip-tilt.
The measurements are recorded in different in days or in response to small
changes in the setup (removal,reinsertion,rotation of the light source or flip of
the lens) to estimate the repeatability of the measurement of the wavefront.

3.2.7 Prototype Stability

The following test represent the analysis of the stability of the prototype by
observing the measured value of the lens aberrations in different condition.

The light shining on the lens through an aperture diameter of 6mm. In the
table fo fig. 3.17 is highlighted the value of the wavefront PtV and the value of
spherical aberration, which dominates the other aberrations. During some tests
the source was removed and replaced (Test3,Test4), the lens was rotated by 90◦

(Test5), the magnetic base on which the source is located was removed(Test6)
and any of this perturbation didn’t change the performances and reveal a very
stable prototype.

When lens is reversed (Test7) the coefficient of spherical aberration increases,
and consequently the value of the PtV. In any case the values of PtV aberrations
are less than 100nm, and therefore lower than λ/6, so it can be concluded that
the static aberrations intruduced by the setup and the lens are negligible.
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Figure 3.18: Test3 and Test4 are obtained by repositioning the light source (fiber
optic) to see the stability of the setup. Test5 is obtained by rotating the fiber in
place of about 90deg. Test7 rapresents wavefront of the ”flipped” lens inside the
setup. The other wave fronts are taken at different date to see the stability during
time. For each measurement the sensor was adjusted in order to minimize
defocus and tip-tilt.

Figure 3.19: Test1, Test2 and Test3 are here obtained at different date to see the
stability during time. For each measurement the sensor was adjusted in order
to minimize defocus and tip-tilt.
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Figure 3.20: Test1, Test2 and Test3 are here obtained at different date to see the
stability during time. For each measurement the sensor was adjusted in order
to minimize defocus and tip-tilt.

3.2.8 Wave Front Analysis

The box within the liquid is placed in front of the lens with f=100mm with
the known wavefront. The contribution of the lens is subtracted in order to
measure the contribute given by the fluid and the transparent box. The box
introduces about 37nm of astigmatism due, probably, a slight curvature of the
surfaces of the container, however, it is concluded that this aberration is neg-
ligible. This residue was calculated by subtracting the two wave fronts and
making the fit of Zernike polynomials on the resulting wavefront. In this test
is calculated the repeatability of the measurement position given for the best
focal plane and are compared several measurement of the same wave front. The
measurement is performed by minimizing the values of tip, tilt and defocus.
The lens is inside the transparent box fulfilled with the liquid (water). All the
system is supported by a tip-tilt mount previously aligned with respect the laser
beam with an accuracy of about 0.3deg. During the test the system as been
placed and removed away 10 times to measure the positioning accuracy.

For each of the ten measurements the focus position is calculated with respect
to a fixed reference in the linear stage. For simplicity we show the differences
calculated with respect to the average position. We note that the maximum
interval that separates measures WF4 and WF6 is 255µm, a value that is ac-
ceptable within the specifications required because for a focal length of rawly
95.2 mm the maximum error in focusing correspond to 1.15 mm which is close
to value for the f=100 mm lens of figure 3.12. For a statistical distribution of
10 measures the 3σ correspond to 0.2% of the lens focal length, value that is
abundantly within the requirements.

The proper functioning of the procedure depends on the value of focal length
that fits by default. It is important to provide a value that approximates the
real focal that is to measure. This part is strictly bounded with the calibration
of the prototype by using lenses with high accuracy measurement of the focal
length. With regard to the repeatability of the measure for the wave front, since
the lens can moves inside the transparent box is helpful to rotate properly the
wavefronts via software to be able to compare all of them. The correct angle is
obtained by maximizing the correlation coefficient as a function of the rotation
of one of the two wavefronts. The reference wavefront is the first one and all of
the following wavefronts are rotated to orient as the first one of figure 3.22. The
figure shows the plot of the values obtained by the fit of the aberrations of the
ten already rotated wavefronts. The last value is the total wavefront PtV, who
recalls being dependent on the value of the conversion factor (2.9 · 10−6 mm)
described before. It as been calculated that an error in the input focal length
can give a different value of the conversion factor. An error of 5 mm on the
input focal length which is the 5% leads to a conversion coefficient which varies
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Figure 3.21: the lens aberration, the lens and the transparent box aberration with
fluid, the contribution of the box with fluid. The vertical coordinate represent
the defocus coefficients multiplied by the conversion factor in order to get the
scale in nanometers. The upper value of the displayed scale corresponds to the
maximum ”defocus coefficients” imposed by the requirements of 0.125 diopters.

Figure 3.22: The extent of the focus position provides values within a range of
about 255µm, with a value of 3σ of 210µm. The correlation referred to the first
wavefront WF1 returns higher values for rotation angles that determine the best
matching between the two wavefronts.
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Figure 3.23: the first 14 values of the aberration coefficients for the reconstruc-
tion of the wavefront generated by a lens with a focal length of about 100mm.
Each color is related to a measure of the wavefront described also in figure 3.22.
The x-axis from left to right are tip, tilt, defocus, astigmatism, etc...The re-
peatability of the measurements is higher for wavefront that have a null mutual
rotation.

of about 0.3 · 10−6 nm, with a consequent change in the wavefront PtV average
of about 20 nm (from 170 to 190 nm ). The error/accuracy on the estimation
of the wavefront PtV should be in this case the 10%.

3.2.9 Conclusion

The wave front sensor prototype is based on the Multi-Coniugate Adaptive
Optics (MCAO) used in astronomy for the tomographic analysis and reconstruc-
tion of the atmosphere. The concept is used for the LBT telescope associate
with the layer Oriented technique to visualize a 3D model of the atmosphere.
Both concepts are here simplified to get friendly with the optical components,
the alignment, and the data reduction. The target of the test was to acquire
skills to understand the physical and optical behavior of the light in order to
project and design such instrumentation for astronomy or human application.
The instrumental capability can be applied to a wide range of human techno-
logical application for example medical research and industrial metrology. The
Prototype operational range was tested in the Adaptive Optics Laboratory of
the Observatory of Padua (INAF) for lenses with a focal length starting of 50mm
up tu 150mm. The measured wavefront accuracy for a lens, in the middle range,
with an f=100mm focal length is of about λ/50 while the repeatability is of the
order of 95% (described by the correlation factor). The aquisition/linearity
range of the prototipe is of about 4mm for defocus and 200µm for decentering.
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Chapter 4

Magic F/15.28 Lantern

In the instrument alignment scheme for LINC-NIRVANA, the instrument
will be aligned to the straight LN internal F/15 focal planes. A light source
(FISBA interferometer) will be installed at the nominal center of FLN,s on
each side and serves as reference for the entire alignment of the instrument.
The only exception is the GWS system on each side. In the optical path it is
located before FLN,s. Hence, it cannot be directly referenced to the FISBA
interferometers. A different reference has to be introduced before the annular
mirror. Such a different reference has to reproduce the important characteristics
of FLN,s (lateral position, axial focus position, tip/tilt). In addition, it must
be picked up in the annular field of view of the GWS Sensor. It was decided to
introduce an F/15 light source named Magic F/15 Lantern or (ML), which is
a telescope simulator. The light source shall allow to simulate a seeing limited
PSF anywhere in the straight (FLN,s ) and bent focal planes (FLN,F). The
alignment of the GWS System to the Instrument will then include the following
steps:

1. Alignment or calibration of the motion plane and axial distance of the ML
to FLN,s.

2. Alignment of the GWS System to the ML.

The ML can be used also for other alignment and test purposes. In the order
of priority:

• Alignment of the GWS System to the rest of the Instrumentation.

• Correlation of the various coordinate systems in the instrument (Star En-
largers, GWS, MHWS, Patrol Camera, Science Camera, Fringe Tracker).

• Pupil image simulation on the CCD for Software tests and Patfinder ex-
periiment.

• Verification of the alignment of the GWS SEs to the GWS internal focal
plane.

A is the Annular Mirror surface with the origin in the pivot point of the an-
nular mirror, directions y and l in the surface of the mirror, z in direction
of straight light propagation, FLN,S is the straight LN internal F/15.28 focal
plane (SX/DX) to which the full instrument arm (SX or DX) is aligned to. The
straight telescope FP has to coincide with FLN .

FLN,S is the folded LN internal F/15 focal plane (SX/DX) is defined by
FLN,S and the position and orientation of the annular mirror; FGWS is the GWS
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Figure 4.1: First design of the Magic F15 lantern location in the left side (SX)
of LINC-NIRVANA in grey colour.

Sensor internal focal plane, defined by the common nominal focus position of
the SEs and the rotation axis of the GWS bearing; L is the plane parallel to the
tangential plane passing through the vertex of FLN,S but in front of the annular
mirror. The ’magic F/15.28 lantern’ will be positioned along this plane. ML is
the Magic F/15.28 lantern.

4.1 Requirements

• Location: The ML shall be installed in front of the Annular Mirror.

• Motion plane: The ML shall move in a plane that is centered on and
normal to the axis to which the warm optics is aligned to.

• Motion plane tip/tilt adjustment: The motion plane shall be adjustable
in tip/tilt to align it to the axis.

• Travel range: The travel range of the ML will cover a large fraction of
the Focal Plane of the GWS. Goal: The outer rim of the GWS focal
plane (diameter: 217 mm) can be accessed by the F/15 beam in a circular
pattern with a spacing of 90deg.

• Travel range: The travel range of the ML shall cover more than 75% of the
accessible field of each SE. This is given for a travel range with a diameter
of 200 mm.

• Focus adjustment: The ML shall be able to move also along z-direction
to adjust the focus.

• Motorized adjustment: The lateral positioning in the motion plane and
the focus positioning shall be motorized.
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• Beam tip/tilt adjustment: The beam direction with respect to the motion
plane shall be adjustable. It shall be possible to make the axis of the beam
parallel to the optical axis of the instrument.

• Beam tip/tilt adjustment: The beam tip/tilt adjustment mechanism shall
be lockable.

• Fiber fed: The ML shall be fed by optical fibers. The fibers shall be
exchangeable.

• Fiber connector: FC

• Employment: The ML shall be temporarily installable and removable on
the LN optical bench for alignment and testing purposes. The installation
shall be possible also when LN is on the telescope. It shall also be possible
to install it on the GWS Testbed for Pathfinder commissioning.

• Flexible design: Only one ML shall be used for both, the SX and the DX
alignment.

• Gravity stable: The ML will be used only in horizontal orientation (”Zenith
pointing”).

Mechanical Requirements:

• Travel range: x, y: = 200 mm, z: = 15 mm

• Motion plane tip/tilt tolerance: ±123 arcsec (TBD)

• Lateral positioning accuracy per stage: ±5µm

• Bidirectional repeatability in z: ±10µm

• Max. angular deflection per direction (sum of all stages): ±137µrad

• Beam tip/tilt adjustment sensitivity: ±15 arcsec

Optical Requirements:

• F-Number: 15.28

• Light source type: incoherent white light

• Bandpass for alignment: narrow band, centered on λ=0.630µm

• Bandpass for coordinate system mapping: 0.6-1.25µm

• PSF diameter: similar to seeing limited PSF allowing for linear response
of the pyramid WFSs in both GWS and MHWS

• Exit pupil position: 14 m

• Design wavelength: λ=0.630µm. Achromatic design, if possible

• Oversized collimator: A fraction of the collimated beam, which is part of
the F/15 optics, shall be able to bypass the remaining optics. Collimated
light shall be accessible in the GWS focal plane at a constant offset from
the F/15 beam.
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4.2 Tip/Tilt Adjustment Tolerance

Relevant for the tolerance δtt is the peak-to-valley variation of the length
of the optical path between the last lens of the ML and the motion plane of
the SEs. In a perfectly aligned instrument, this variation must not exceed the
tolerance x for the distance FP15 and SE lens1. This tolerance is partially used
up by the focus alignment of each SE. Here the tolerance is assumed to be a
factor of 2 lower. Furthermore, the tip/tilt tolerance δAM of the annular mirror
has to be considered (but is negligible).

δ2tt = arctan2(
x/2

d
)− δ2AN (4.2.0.1)

However, the outer tip/tilt adjustment is not necessary at all, if the axial
position of the ML is adjusted as function of the position in the motion plane.
In this case, the inclination of the motion plane with respect to the optical axis
of the instrument has to be determined. The procedure would be similar to the
procedure of the actual tip/tilt adjustment of the motion plane: The focus is
measured with the MHWS at several positions in the MHWS FoV. But instead
of minimizing it by adjusting a tip/tilt mechanism, it is minimized by moving
the ML in axial direction. A spherical model can be fitted to extrapolate the
focal plane into the GWS FoV. In this case, the positioning device can be much
simpler. The inclination of the motion plane with respect to the optical axis of
the instrument can be arbitrary, as long as it is covered by the z-travel range.
Second advantage: the ML will simulate the focal plane curvature.

• Tolerance for the distance FP15 and lens1 (x): ±0.13mm

• GWS focal plane diameter (d): 217 mm

• Annular Mirror unidirectional repeatability (δAM ): 15arcsec

• tip/tilt tolerance (δtt): ±60 arcsec

4.3 Lateral Positioning Accuracy

Plate scale of the FP15: 613µm/arcsec. The required lateral positioning
accuracy is driven by the task to relate the various coordinate systems in the
instrument to each other. Coordinate transformations should be accurate to
±0.1 arcsec on sky (the resolution of the patrol cameras). To calibrate the
coordinate systems, several points in the focal plane have to be reached by the
ML. Each of these points may be revisited with an error of less than 61.3µm.

• Positioning accuracy in the focal plane: ±60µm

• The positioning accuracy in the focal plane is a function of the accuracy
of the stages and the stages pitch/yaw.

• (Assumed) accuracy per axis (per 100 mm): ±5µm

• (Assumed) focal length of ML (f): 400 mm

• Max. lateral shift in FP due to angle errors : ±55µm

However, the outer tip/tilt adjustment is not necessary at all, if the axial position
of the ML is adjusted as function of the position in the motion plane. In this
case, the inclination of the motion plane with respect to the optical axis of



4.4 Beam Tip/Tilt Adjustment 83

the instrument has to be determined. The procedure would be similar to the
procedure of the actual tip/tilt adjustment of the motion plane: The focus is
measured with the MHWS at several positions in the MHWS FoV. But instead
of minimizing it by adjusting a tip/tilt mechanism, it is minimized by moving
the ML in axial direction. A spherical model can be fitted to extrapolate the
focal plane into the GWS FoV. In this case, the positioning device can be much
simpler. The inclination of the motion plane with respect to the optical axis of
the instrument can be arbitrary, as long as it is covered by the z-travel range.
Second advantage: the ML will simulate the focal plane curvature.

• Max. angular deflection (sum of all stages): ±137µrad(arctan[55/4 · 105])

• Max. pitch/yaw per stage (3 stages1): ±45µrad

If this is given, a calibration of stage positions with the help of a focal plane
mask is not necessary. The discussed method of introducing a focal plane mask
has several disadvantages:

• The alignment of the mask to the optical axis in the straight focal plane
FLN,s is difficult (esp. in tip/tilt)

• The position calibration procedure is lengthy

• There is no easy feedback for the calibration procedure in the 2-6 arcmin
annulus (outside of the FoV of the Patrol Camera)

• For pathfinder, placing the focal plane mask in the bent focal plane would
be difficult.

It seems to be beneficial to invest in a positioning system with low pitch and
yaw and to get rid of the focal plane mask.

4.4 Beam Tip/Tilt Adjustment

The commonly used specification for the tilt of the incoming beam was
derived from the famous 1/10 of the sub-aperture criterion.

• Max. angle between beam-SE motion plane: ±1 arcmin

• Beam tip/tilt adjustment sensitivity2: ±15 arcsec

This requirement, however, is necessary primarily for the superposition of
several light sources on the CCD. This will not be the case for the ML. More-
over, the ML cannot simulate the non-telecentricity of the focal plane, which is
considered in the design of the pupil re-imager. The constant angle of incidence,
the ML produces over the entire field, will result in a field dependent shift of
the pupil images on the CCD. The CCD will have to be repositioned in order to
maintain the position of the pupil images on the CCD.For the GWS the angle

• will change from 9 arcmin to 27 arcmin

• angle of incidence change across the field: 18 arcmin

• pupil image shift on the CCD 1.8 sub-apertures = 3.6 pixels = 86,4µm

1The actual pitch/yaw requirement depends on the mounting of the stages
2Annular mirror doubles the angle. And annular mirror has a unidirectional repeatability

of 15 arcsec.
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For this purposes the angle of incidence of the beam, and with that the zero
point in the motion plane of the CCD is somewhat arbitrary. For the verification
of the alignment of the GWS SEs, however, it might be interesting to have a
90◦ angle of incidence. The aforementioned static (pseudo-telecentric) angle
already introduces a circular trajectory of the pupil images on the CCD, as the
bearing rotates (and the ML follows). A non perpendicular angle of incidence
will increase the radius of the circular trajectory. So we might want to stick to
the original requirement and ask for:

• beam tip/tilt adjustment sensitivity: ±15 arcsec

4.5 z Travel

For the z-travel range the following has to be considered:

• Focal plane curvature

• focus tolerance

• Tip/tilt tolerance of the motion plane, if it is not adjustable

• focal plane curvature radius: 1024 mm

• FP axial shift @3 arcmin radius: 6 mm

• (Assumed) tip/tilt tolerance of motion plane 4 mm

• (Assumed) focus tolerance 5 mm

• required travel range in z: 15 mm

The bidirectional repeatability is driven by the lower value for the depth of focus

• MHWS depth of focus (for λ=0.633µm): ±0.24 mm

• GWS depth of focus: ±0.13 mm

• Magic F/15 Lantern Design

Because some of the tolerance is already used up by the focus alignment of the
SEs, the actual repeatability should be better.

• bidirectional repeatability in z: ±10µm

This can easily be achieved by normal micro-positioning stages.

4.6 Light source

For the alignment of the GWS to the instrument, the focus has to be de-
termined by the MHWS. The MHWS is more sensitive in terms of chromatic
effects and, thus, defines the requirements. The requirements are derived from
the MHWS flexure test

• light source type: white light

• band pass: narrow, centered on λ=0.630µm

• fiber: multimode

• fiber core diameter:
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• fiber connector type: FC

For the MHWS flexure test a 300µm core multimode fiber was used to achieve a
linear response of the pyramid wavefront sensor. The produced spot size should
correspond to that of a seeing limited PSF. Note that for the MHWS flexure
test, the F/20 simulator was introduced immediately in front of the SEs, without
the magnification of the FP20 optics.

This has to be considered for the size of the fiber core of the ML. The white
light source and the narrow band filter can be reused from the MHWS flexure
test. To allow for an instrument wide coordinate system mapping which includes
the focal planes in the cryostat, a broad band with the low end being > 1µm
has to be injected. Our thermal light source should cover this.

4.7 Optical Design

The focal number should correspond to the focal number that is provided by
the Telescope under consideration of the 300mm focus shift for LINC-NIRVANA.
The exit pupil should be compliant with the distance to the secondary mirror
in the telescope:

• F number (300mm focus shift): 15.28

• Exit pupil position 14m

The design should be achromatic in the range from 0.6µm-1.25µm. This would
allow using the ML without any adjustment for both, GWS external alignment
and coordinate system mapping. If an achromatic design is not possible, it
should be optimized for λ=0.630µm, to suit its main purpose: the external
GWS alignment because of its adjustable z-axis, it should be easy to introduce
a focus compensation for the coordinate system mapping in the Near-IR.

It was suggested to design the optics as a two lens system, the first lens is
used to collimate the beam, the second to focus it with the appropriate focal
length.

Collimated light directly injected into the SEs can be useful for the identifi-
cation of the pupil image positions. A design with an oversized collimated beam
was suggested, which allows some of the collimated light to bypass the second
lens. The design concept is to use polychromatic light, an optical fiber, a pupil
stop and two lenses to collimate and focusing the beam with the correct focal
number F/15. The optical fiber source could be exchangeable to vary the core
dimension between 50 and 400 micron in order to simulate the dimension of the
PSF corrected or seeing limited.

The magic Lantern (ML) will be used to align all the components of Linc-
NIRVANA so this beam will be aligned with respect to the optical axis defined
by the MHWS which will define the reference for the alignment of the all optical
components. The ML will take place on the edge of the optical bench of Linc-
NIRVANA in the area of the GWS to simulate the Gregorian focal plane of LBT
as shown in figure 4.1 and it could be used to align both sides DX and SX of
NIRVANA.

The beam propagates with a F/15.28 focal ratio in the direction of the anular
folding mirror that split the light to the GWS sensor dividing the FoV in two
areas the inner one of 2x2arminute and the outer part which is is 6x6arcminute.

The Magic lantern is designed to have a 500mm focal length to allows free
space between the L2 and the focal plane of LBT. An XYZ and tip-tilt stage
adjustment hold the optics on a mechanical interface. The travel range could
allows the decentering and tip-tilt regulation in order to map all the FoV of
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Figure 4.2: Geometric calculation of te pupil stop position with respect to the
L2 lens.

LBT from 0-6arcmin. The Magic lantern can be placed in different position in
order to hit the anular mirror and reach the GWS or to pass the mirror central
hole in the MHWS direction.

The optical path of the light out coming form the fiber source is collimated
by the first lens L1 with a focal length of 250mm and D=50mm. A Pupil
stop with a diameter of D=33.7mm simulate the exit pupil of LBT placed at a
distance of 14m.

In this area could be placed a turbulent screen to simulate the atmospheric
turbulence for the Pathfinder experiment. A second lens L2 with a focal length
of f=500mm and D=50mm is placed 483mm far from the stop pupil to fix the
focal ratio. To define the stop position and so the image position of the pupil
is used this relation as described in figure 4.2

A : a = L : l (4.7.0.2)

A = (L+ f)sen(α) (4.7.0.3)

a =
1

2
· f/15.28 (4.7.0.4)

α = arctan(a/f) (4.7.0.5)

L = 14000mm (4.7.0.6)

l = 483.0mm (4.7.0.7)
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Figure 4.3: table with the variation of the stop image position in function of the
variation of the pupill stop positioning error inside the Magic F15 Lantern.

The formula gives the distance of the stop pupil from the lens L2 in order to
simulate the exit pupil of LBT which is placed al 14.0m far from the gregorian
focal plane. The accuracy for the positioning of the stop pupil is defined on the
limit of 1m to the error allowed on the positioning of the exit pupil. This error
is translated to 1mm in the position of the stop. The variation of the stop image
position (A) is written in funtion of the variation of the pupill stop position (L)
in table of figure 4.3:

4.7.1 First Layout

The design take in account that the dimension of the PSF of the ML should
be comparable with the PSF of an uncorrected/corrected star. The fiber source
could be changed in order to vary the dimension of the simulated star. The
magnification factor of the Magic Lantern is M=2 and so a 100µm fiber core
can produce an image of 200µm diameter. The foldimg mirror close to L2 will
provide tip-tilt adjustment to regulate the angle of the telescope simulator beam.
The first lens L1 is placed 250±2mm far from the fiber source in order to colli-
mate the beam. then the pupil stop with an aperture of D=33.7mm calculated
by using equation (4.7.0.2). The stop could be placed on a micrometric stage to
adjust the distance with respect to the lens L2 which define the position of the
simulate pupil telescope. At a distance of 483.0mm far from the stop is placed
the lens L2 which have a 500±2mm focal length. Two folding mirrors make the
ML more compact while the mirror close to L2 is to regulate the tip-tilt of the
beam and for the alignment with an external optical axis.

Distances between the components of the ML:

• fiber source and L1 lens: 250±2mm

• L1 lens and the stop: 17mm

• Stop and first folding mirror: 50mm

• First folding mirror and the second one: 200mm

• Second folding mirror and L2 lens: 233mm

• L2 lens and the third folding mirror: 50mm
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Figure 4.4: table with the characteristics of the commercial lenses from Thorlabs
used for the design of the ML.

4.8 Conclusions

The concept of the ML for LINC-NIRVANA is already tested for a current
application in the Adaptive Optics laboratory in Padua for the alignment phase
of the Ground Layer Wave Front Sensor (GWS) for LBT. A ML has bean aligned
and used during the test and the alignment of the Star Enlarger (SE) because of
the necessity to simulate the correct F number of LBT (F/15.28) and the correct
size of the pupil (33.7mm). The turbulence was also simulated for a small check
on the instrumentation performances and sensitivity. The design of the ML is
still in review because of possibility to make the ML more compact. In such
condition it could be used also for flexure test of the whole LINC-NIRVANA
bench once all the optical components and sensors will be installed.
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Figure 4.5: Zemax layout of the ML. Three folding mirrors make the ML more
compact.
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Chapter 5

Alma Antenna

The Atacama Large Millimiter Array (ALMA) is under construction in the
Northern Chile [1]. The European Consortium composed by TAS-F, TAS-I,
MTM and the Italian company EIE-Group where a scientific collaboration took
place in December 2011 for Optical simulations. The concept of the new an-
tenna, the design, construction and erection are realized by Alcatel and Eu-
ropean Industrial Engineering (EIE-Group) for ESO [21]. Some of the main
concepts and technologies adopted on the antennas are the large use of extreme
composite materials, the direct drive system, the use of a dedicate metrology
system for the correction of the errors induced by the external environmental
condition.

The array will be made by a large number (up to 64) of 12m diameter
antennas and a number of smaller ones, to be operated on the Chajnantor
plateau at an altitude of 5000 m. The antennas will operate up to 950GHz
(≈ 300µm) so that their mechanical performances, in terms of surface accuracy,
surface scattering of the solar radiation, pointing precision and dimensional
stability, are very tight. The successful realization of the antenna prototype
was designed, constructed and delivered by the AEC Consortium (made by
Alcatel and European Industrial Engineering (EIE). A collaboration with EIE
company was performed in December 2012 to simulate via software the ray-
tracing between the antenna mirrors in order to understand the solar burning
effect on the secondary mirror area, the Apex, during the sun tracking test.

5.1 Antenna Main Characteristics

The antennas will be fully operative at an altitude of 5000 m, in the open air,
working night and day. The antenna is a symmetrical 12m-diameter paraboloid
reflector, with Cassegrain geometry, installed over an azimuth mount. The sub-
reflector is supported by feed legs in a quadripod configuration. A remotely
servo-controlled mechanism, an hexapod inside the Apex, is used for focusing
and collimating the beam . The back-up structure is a box with front and
backplane connected by radial ribs and tangential plates, to provide stiffness
and prevent local buckling. It is made of 16 individual slices which were glued
and bolted together under dimensional control using a laser tracker. The BUS
has been divided into two halves which remain separated and consent an easier
shipment.

The panels of the antenna are largely made of a core of unidirectional
pitch carbon fibre, which guarantees low temperature gradients in the struc-
ture and good dimensional stability under varying ambient temperature con-
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Figure 5.1: Reflector Panels assembly phase and a general view of the work-site
during different mounting and acceptance phases of the antennas.

ditions, thanks to a high thermal conductivity but a low expansion coefficient.
A coating film protects the external layers of the sandwich against moisture.
The primary reflector consists of 5 panel rings for a total of 120 panels with an
area of about 1m2 each. The value of [400-600]nm for the rough manufacturing
tolerance and small gravity deformation was achieved with the panel mounted
on real adjusters and it was made possible by the replica technology, used in
the sandwich panels.

The panels are coated with 200 nm of Rhodium to increase the reflectivity in
visible and sub-millimeter band. The high reflectivity reduces the thermal ab-
sorption, while protecting the panel from corrosion and oxidation. To prevent
any infiltration of water inside the panel, the edges are sealed with a special
silicon rubber. A special valve allows for air pressure equalization during air
transport and installation at 5000 m. The panels were subjected to a very
stringent campaign of development and production test. Each panel is mounted
on five adjusters, four at the corners of the panel, and one at the center, con-
stituted by a bell fixed to the BUS on which an Invar rod is mounted. The
differential thermal expansion between the Nickel panel and the BUS is ab-
sorbed by flexure in the corner adjusters, whereby the central adjuster defines
the absolute horizontal position of the panel.

5.2 Temperature Sensor

This document contains the description and the analysis of the issue of apex
surface burn marks appeared when the ALMA European antenna points towards
the sun. The analysis is necessary to understand the phenomenon and the real
causes behind this issue as scattering of primary reflector that should avoid solar
concentration as defined in the requirement document. During the shakedown
tests with ALMA antenna, a limited area of the apex structure suffered burns
due to concentration effect of parabola. A specific test showed that under certain
conditions, temperature rise over the critical limit of 80◦C on the structure that
hold the sub-reflector of the antenna, the Apex. This temperature limit is
critical for the carbon fibre structure as it changes its mechanical properties.
This test made on site, highlighted that temperature increase quickly reaching
up to 80◦C during the track in proximity of the sun with an off-axis of about
2.5◦ - 3.0◦ angle (maximum effect with 2.8◦). Resuming, the on site test results
are:
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Figure 5.2: View of the simulated propagation of rays from the primary mirror
to the Apex structure. Are visible the virtual detectors and the beam footprint
dominated by the COMA aberration for an off-axis of 3deg, while no scattering
is here simulated.

• Sun incidence off axis wrt antenna boresight axis: 2.8◦

• Temperature rise: 27.5◦C

• Time interval observed: 5minutes (300s)

A first calculation is performed to understand the amount of power energy
reaches the Apex structure. Several temperature sensors has been placed on
the edge of the Apex during the temperature test and one of them measured a
increasing heat of about 27.5◦C in a 5minutes time for an off-axis of the sun of
2.8◦. It is possible to estimate from these data the solar flux Peak Irradiance
fot a comparison with the simulation results. The aluminium sensor head is
25x10x5mm dimension and it is fixed with a white screw on the Apex. The
absorbed heat is proportional to:

mCp∆T = Q∆τ (5.2.0.1)

Were Q ≈ 0.17W is the absorbed heat, m is the sensor mass, the Cp is the
specific heat, ∆T and ∆τ are the increasing temperature and the time range,
respectively. The thermal equilibrium equation is:

Q ≈ I0al − STotεσ(TAtm − TSky)− C (5.2.0.2)

where a ≈ 0.25 is the absorption coefficient of the sensor material (alu-
minium), l ≈ 2.5cm2 is the face-on area of the sensor, STotis the unknown total
flux, ϵ ≈ 0.2 is the emissivity and σ ≈ 5, 67 · 10−8 is black-body constant.

C = aα(Tsensor − Tair) (5.2.0.3)

C represent the convection term and α = 10 is a constant to calibrate the
convection of local parameters (wind velocity) given in the design document.
The calculated irradiance I0 at the Apex position is

I0 = 5251W/m2 = 0.5W/cm2 (5.2.0.4)

A second test is also performed by using a potentiometer after the reflection
on the secondary mirror close to the focal plane of the antenna above the primary
mirror (Feed) give a power irradiance of:
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Figure 5.3: simulation of the peak intensity and total power on the virtual de-
tectors positioned in the apex structure of the ALMA antenna. With an off-axis
of 6◦ the rays are not involving significantly the apex and that the peak effect is
obtained when the off-axis is about 3◦ to 4◦.

IFeed ≈ 0.13W/cm2 (5.2.0.5)

To study the effect of the scattering, it is necessary to build a model which
can reproduce the most real behavior of the parabola. Than, a series of inves-
tigations require to be made to see the following section.

5.2.1 Off Axis Analysis

The analysis is carried out in Zemax importing a 3D file .iges including the
surfaces of the primary reflector, the surface of the sub-reflector and finally
the outer surface of the apex structure as in figure 5.2. Three detectors were
positioned on the model on a side of the apex in order to capture the incident
rays. The scattering present in the primary parabola is not considered at the
moment as the analysis aims to verify the amount of incident rays in a variable
off-axis configuration. It was imposed an incoming power energy of 1W on the
primary reflector of the Antenna and the direction of the Sun was tilted, starting
from 1◦, up to the limit of 6◦ where the rays are not incident on apex anymore.
These angle will be increased of 0.5◦ steps, investigating the percentage of power
which converge on each detector. The table of figure 5.3 shows that the peak
intensity correspond to an off-axis angle of 3◦-3.5◦ which is close the observed
value of 2.8deg1. The presence of the scattering effect could only smooth the
peak power angle dependence.

1The power peak was measured after the burning happened. When the temperature in-
creased more than 80◦C the antenna was quickly turned to avoid an overheating of carbon
fiber.
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Figure 5.4: Left: plot with the intensity profile obtained by the image analysis of
the burned area on the Apex structure compared with the fit form the simulation.
The shift of the two curves is to see better both profiles. Right: Zemax model
with the ray tracing from the primary mirror to the Apex and the Feed plane.
The simulated off-axis is 3deg.

5.3 Simulated Coating and Absorbtivity

To model the ALMA antenna surfaces with Zemax are used the design values
of

• Primary mirror reflectivity 70%.

• Primary mirror absorption 30%.

• Sub-reflector reflectivity 60%.

• Sub-reflector absorption 40%.

5.4 Geometrical Consideration

In the Alma antenna the diameter of the burned area dimension estimated
from figure ?? is 250mm at a distance of 4700mm from the primary mirror on
with the scatter occur. By using a simple geometric relation, is it possible to
estimate the angular radial dimension of:

1

2
arctan(

250

4700
) ≈ 1.5◦ (5.4.0.1)

One other way to estimate the scattering (described in the following sec-
tioon)is to find the best fit of the burned area in terms of width of the gaussian
profile and position with respect the vertical direction of the Apex as explained
in the left picture of figure 5.4. Form the gaussian profile it is possible to obtain
a scattering value of σ = 0.004 while from the position on the virtual detector
it is possible to obtain the off-axis best angle of 3.0◦ that is in agreement with
the measured angle on the ALMA site.

From the position of the burned area wrt the Apex edge it is possible to
retrive geometrically the incoming direction of rays and so the area on the
primary mirror that reflect the major amount of energy. The resulted area is the
parabola rest between R=1700mm and R=3000mm. By using the bolometric
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Figure 5.5: Images of he area interested by the overheating that caused the color
change in the white painting of the apex structure close to the secondary mirror.
The burned area is estimated to be 200-250mm large.

Sun intensity power (1280W/m2) is possible to write the formula to define the
power intensity in the apex area:

IApex =
ISun · S ·R · σ

s
≈ 0.5W/cm2 (5.4.0.2)

Were theS = 1.7m2 is the area in the primary mirror that send the majority
of rays on the Apex, R ≈ 0.8 is the reflectivity, , s ≈ 400cm2 is the burned
estimated area and σ ≈ 0.2 is peak scattering profile given in the test report of
the panels and is of about 1-2%. This formula takes in account the scattering
effect that reduce the geometric radiation propagation at value of 1%. This
formula is in agreement with the value of equation (5.4.0.2). The result make
evident that the only the 1-2% of the incident light on the primary mirror is
back reflected by the panels in a geometrical way directly on the Apex. This
radiation can burn the Apex.

5.5 Scattering

In this section are simulated the surface scattering properties of the primary
mirror and the sub-reflector. To simulate the surface scattering of the primary
mirror we set for simplicity a Gaussian scattering profile. The profile contain
more than 99% of energy distribution at a radial distance of 3σ. More than the
50% of the energy is contained into the σ radial value for this reason is decided
to convert the 1σ value to an angle (σS) in order to describe the efficiency of
the scattering surface of the antenna panels.All the simulation are performed
with a non resolved source, but in the real case the Sun have an angular radial
dimension of 0.27deg. The σ that define the scattering of a surface is varied from
0.002 to 1 corresponding rawly to angles of 0.2deg and 40deg respectively. The
off-axis has been fixed to the value of 3◦ and the sigma parameter as been varied
in order to obtain a power profile on the detector that match the 250mm area.
The simulated scattering is modeled in order to fit the profile of the burned
area returning the value of σ=0.004.The angle defined by a σ=0.004 is of about
0.5deg.

The σ parameter of the sub-reflector is then fixed to the value of σ= 0.04.
The simulation returns a power Intensity IZ on the virtual detector number 3
and IApex in the detector placed in the Feed.

• IApex ≈ 102W/m2
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• IFeed ≈ 16W/cm2

The scattering curve provided in the test report by the company returns a
peak value that varies between of 1-2% of the incident beam on axis. To scale
the simulation values is necessary to multiply the results for 0.01 finding an
extremely comparable value wrt equation (5.4.0.2) and (5.2.0.5):

• I%Apex ≈ 1.0W/m2

• I%Feed ≈ 0.16W/cm2

5.6 Conclusions

In such a situation the simulation suggest that the 1% of the surface panel
of the primary mirror behave mostly as a mirror producing a scattering of rawly
0.5deg (σ = 0.004). The amount of IR power could be dominant with respect to
the visible light because the roughness of the panels is around 500 nanometer.
Any error theory consideration is difficult because of the uncertainty in the
input data used to fit the simulations. However is here considered the order
of magnitude of the results insted small differences of a factor two or three.
Any further simulation could be compared in the near future with tests that
are planned in the ALMA Antenna by the EIE company after this very first
simulation results.
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Figure 5.6: simulation of the scattering of the primary mirror and sub-reflector.
On the top the detector placed in the Apex. The red detector have a 1cm2 size
and is used to calculate the real irradiance on the apex structure. Down the
virtual detector placed in the Feed.



5.6 Conclusions 99

thanks to my all friends and colleagues for the support.



100 Alma Antenna



Bibliography

[1] M. Apers, G. Marchiori, M. Pozzobon, P. Emde, P. Lapeyre, M. Suita,
F. Rampini, and S. Stanghellini. Manufacturing and on-site assembly of
the European ALMA production antennas: a status report. In Society of
Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol-
ume 7012 of Society of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series, Aug. 2008.

[2] C. Arcidiacono, E. Diolaiti, R. Ragazzoni, J. Farinato, and E. Vernet-Viard.
Sky coverage for layer-oriented MCAO: a detailed analytical and numerical
study. In D. Bonaccini Calia, B. L. Ellerbroek, & R. Ragazzoni, editor, So-
ciety of Photo-Optical Instrumentation Engineers (SPIE) Conference Se-
ries, volume 5490 of Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series, pages 563–573, Oct. 2004.

[3] C. Arcidiacono, M. Lombini, R. Ragazzoni, J. Farinato, E. Diolaiti,
A. Baruffolo, P. Bagnara, G. Gentile, L. Schreiber, E. Marchetti, J. Kolb,
S. Tordo, R. Donaldson, C. Soenke, S. Oberti, E. Fedrigo, E. Vernet, and
N. Hubin. Layer oriented wavefront sensor for MAD on sky operations.
In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference
Series, volume 7015 of Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series, July 2008.

[4] J. M. Beckers. Detailed compensation of atmospheric seeing using multi-
conjugate adaptive optics. In F. J. Roddier, editor, Society of Photo-Optical
Instrumentation Engineers (SPIE) Conference Series, volume 1114 of Soci-
ety of Photo-Optical Instrumentation Engineers (SPIE) Conference Series,
pages 215–217, Sept. 1989.

[5] T. Bertram, C. Arcidiacono, J. Berwein, P. Bizenberger, F. Briegel, E. Di-
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