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Abstract 
ITER is the next milestone towards the development of a controlled thermonuclear 

fusion reactor. Based on the tokamak concept, among the systems used to heat the 

plasma, the Neutral Beam Injector (NBI) plays a fundamental role. The particle energy 

levels up to 1 MeV, the heating power to deliver to the plasma up to 16.5 MW and the 

steady state condition up to 3600 s, have never been simultaneously achieved before 

in such kind of device. A Neutral Beam Test Facility has been realised in Padova (Italy) 

at Consorzio RFX in order to host two experiments (SPIDER and MITICA) and solve 

the scientific and technological gaps. 

The research activity presented in this thesis work has been carried out in the 

framework of the development of the ITER full scale negative ion source (SPIDER) and 

of the full injector prototype for the ITER neutral beam (MITICA).  

The thesis is focused on two main topics: development of thermo-hydraulic one-

dimensional models with 3D sub-modelling, and customization of a finite element code 

for coupled 1D-3D thermo-hydraulic analyses. 

Proper models of the MITICA beam source, neutraliser and residual ion dump cooling 

systems have been developed since they are required, in support of the design, in 

order to predict under steady state conditions the flow partitioning, the coolant 

temperatures and pressure drops in complex and delicate pipework networks; all these 

results are useful, as boundary conditions, for further detailed simulations oriented to 

the localised heat transfer coefficients. The hydraulic behaviour of the components 

have been simulated both with analytical models and detailed 3D computational fluid 

dynamics (CFD) analyses. The optimised cooling circuits have been proposed and 

then implemented for the construction of the MITICA components. 

The coupled 1D-3D thermo-hydraulic analyses have been dedicated to the SPIDER 

beam dump (already procured) made of CuCrZr hypervapotrons as high heat flux 

elements. Suitable correlations for localised heat transfer coefficients and pressure 

drop for forced-convection and sub-cooled surface boiling in hypervapotron geometry 

have been implemented in a new customised FE code to allow coupled thermo-

hydraulic analyses in two-phase heat transfer. The customized code has been used to 

carry out detailed simulations of the local heat transfer mechanisms occurring along the 

cooling channels under different particle beam scenarios (in terms of divergence, halo 

fraction and horizontal misalignment). A synthesis of the simulation results has been 

undertaken by identifying in the model the locations of the thermocouples used during 

operations. The analysis results characterise the thermo-hydraulic behaviour of the 

beam dump to be used as a possible beam diagnostic in synergy with tomography and 

spectroscopy. 
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Riassunto 
ITER costituisce la prossima tappa verso lo sviluppo di un reattore a fusione 

termonucleare.  Basato sul concetto tokamak, utilizza diversi sistemi di riscaldamento 

per il plasma, tra questi sistemi l’iniettore di fascio di neutri gioca un ruolo 

fondamentale. Il livello di energia delle particelle fino a 1 MeV, la potenza di 

riscaldamento da rilasciare al plasma fino a 16.5 MW e l’operatività in condizioni 

stazionarie fino a 3600 s, non sono mai state simultaneamente raggiunte in macchine 

di questo tipo. Una Neutral Beam Test Facility è stata realizzata a Padova (Italia) 

presso il Consorzio RFX al fine di ospitare due esperimenti (SPIDER e MITICA) e 

colmare le lacune scientifiche e tecnologiche.  

L’attività di ricerca presentata in questo lavoro di tesi si inserisce nel contesto dello 

sviluppo di una sorgente a ioni negativi delle dimensioni pari a quelle richieste per 

ITER (SPIDER) e al prototipo di iniettore di fascio di neutri per ITER (MITICA). 

La tesi è focalizzata su due argomenti principali: sviluppo di modelli termo-idraulici uno-

dimensionali con sotto-modelli 3D, e l’adattamento di un codice agli elementi finiti per 

svolgere analisi termo-idrauliche accoppiate 1D-3D.  

Sono stati sviluppati appropriati modelli per i circuiti di raffreddamento di MITICA beam 

source, neutraliser, e residual ion dump in quanto necessari, in supporto alla 

progettazione, al fine di predire la distribuzione delle portate, le temperature e le cadute 

di pressione; tali risultati risultano particolarmente utili per successive analisi dettagliate 

orientate al calcolo del coefficiente di scambio termico locale. Il comportamento 

idraulico dei componenti è stato simulato sia con modelli analitici, che attraverso 

simulazioni CFD dettagliate. I circuiti di raffreddamento ottimizzati sono stati adottati 

per la realizzazione dei componenti di MITICA. 

Le analisi termo-idrauliche accoppiate 1D-3D sono state svolte per il componente 

SPIDER beam dump costituito di hypervapotron, realizzati in lega di CuCrZr, come 

elementi di scambio termico. In un nuovo codice agli elementi finiti sono state 

implementate opportune correlazioni per il coefficiente di scambio termico locale e per 

la perdita di pressione in regimi di convezione forzata ed ebollizione nucleata con vena 

fluida sottoraffreddata. L’adattamento di tale codice ha permesso di svolgere 

simulazioni dei diversi meccanismi di scambio termico che si verificano lungo i canali di 

raffreddamento con differenti scenari di fascio (in termini di divergenza, frazione di halo 

e disallineamento orizzontale). Una sintesi dei risultati è stata svolta identificando nel 

modello la posizione delle termocoppie usate durante le operazioni. I risultati 

caratterizzano il comportamento termo-idraulico del beam dump come possibile 

diagnostica di fascio in sinergia con tomografia e spettroscopia.  
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Chapter 1 
Fusion and NBI 

Environmental concerns and limited energy resources appear today as one of the most 

challenge for the human kind. Energy from nuclear fusion could represent an 

innovative way for the electricity production being sustainable, greenhouse gases free, 

intrinsically safe, with abundant fuel resources and without nuclear waste burden for 

future generations. 

Far from being commercially available, the international community is focused on the 

research. In particular the nuclear fusion obtained by magnetic fields, to confine an 

ionized gas in a vacuum chamber of toroidal shape, is one of the most promising 

concepts for a future fusion reactor. 

The first part of this chapter is dedicated to a short introduction of nuclear fusion and 

the ITER project, while the aim of the second part is given an overview of the ITER 

Neutral Beam Test Facility named PRIMA. 

1.1 Thermonuclear fusion 

Nuclear fusion is the reaction between two light nuclei that fuse into a heavier one, 

releasing energetic reaction products.  

For the production of nuclear energy three reactions that involve hydrogen isotopes 

(deuterium and tritium) and helium-3 may be advantageous.  

The most promising fusion reaction is: 

D + T → He4 (3.5MeV)+ n (14.1MeV) Eq. 1 

This reaction involves the fusion of a deuterium nucleus with a tritium nucleus and 

produces a high-energy neutron and a 3.5 MeV alpha particle. Because of tritium does 

not exist in nature, it has to be produced in the nuclear reactor from lithium by: 

Li6 + n → He +T + 4.8 MeV 

Li7 + n →He+ T + n -2.5 MeV 
Eq. 2 

The reason the D-T reaction is preferred to other reactions is shown in in Figure 1-1 

where the cross sections as function of the deuteron energy is reported: its cross-

section is considerably higher compare to the other reaction, except at impractically 

high energy. 
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Figure 1-1 Cross-sections for the reactions D-T, D-D and D-He3 [1] 

Fusion research is split in two main branches: magnetic and inertial confinement. Since 

this thesis work is devoted to some analyses and design of the Neutral Beam Injector 

for a fusion machine based on magnetic confinement, just this technology will be briefly 

described. 

Tokamak (a Russian acronym meaning “toroidal chamber with magnetic coils”) is the 

most promising candidate for producing controlled thermonuclear fusion power. This 

kind of device is essentially made of a toroidal vacuum chamber surrounded by a set of 

coils (Figure 1-2). The plasma is confined by using a strong magnetic field created by 

the toroidal coils around the vacuum vessel. Achieving a stable plasma equilibrium 

requires magnetic field lines that move around the torus in a helical shape. Such a 

helical field can be generated by adding a poloidal field, created by a toroidal electric 

current that flows inside the plasma, to the toroidal one. This current is induced inside 

the plasma by a central solenoid.  

Additional poloidal field coils are used mainly for the plasma shaping and stability. 

 

Figure 1-2 General sketch of a Tokamak device  
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The balance of a fusion reactor is given by: 

𝜕𝑊

𝜕𝑡
= 𝑃𝑅 + 𝑃𝐻 − 𝑃𝐿 Eq. 3 

where W is the plasma energy density (W~3nT by assuming equals the ion and the 

electron density and temperature), PR is the power per unit volume produced by the 

fusion reactions, PH the auxiliary heating per unit volume and PL the power loss per unit 

volume.  

Ignition is defined as the condition wherein the heating of the plasma given by the 

fusion reactions is sufficient to replace the energy losses without using external 

heating. It can be calculated considering that must be PR≥PL, the result is known as 

Lawson criterion [2] or triple product: 

𝑛𝜏𝐸𝑇 ≥ 3 × 1021[𝑚−3𝑘𝑒𝑉 𝑠] Eq. 4 

The triple product gives the requirements in terms of plasma density (n), temperature 

(T) and confinement time (τE) in order to have a burning plasma.  

In Figure 1-3 the values of the triple product achieved in the most important tokamak 

experiments are mapped. It is possible to find out the progress toward the ignition and 

how in the last decades the research have produced more and more encouraging 

results. The last step, proving the nuclear fusion feasibility, is missing and ITER could 

help in discovering this region. 

  

Figure 1-3 Triple product as a function of ion temperature for different 
tokamak experiment and for D-T reactions 
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1.2 ITER 

ITER is the next milestone towards the development of a reactor based on the 

controlled thermonuclear fusion reactions. 

In Cadarache (France), 35 nations are collaborating to build the world's largest 

tokamak,  designed to prove the feasibility of fusion as a large-scale. The ITER project 

is an agreement between seven international parties: European Union, United States of 

America, China, South Korea, Japan, India and Russian Federation.  

ITER will be the first fusion device to produce net energy and maintain fusion for long 

periods of time.  

The experimental campaign that will be carried on this device is crucial to advancing 

fusion science and preparing the way for the fusion power plants of tomorrow. With ten 

times the plasma volume of the largest machine operating today, ITER would offer the 

possibility of studying new physical regimes and technological issues allowing to make 

a straightforward step towards the demonstration of a nuclear fusion power plant. 

The main technical data and parameters of the ITER experiment are listed in Table 1-1. 

ITER has been designed to produce 500 MW of thermal fusion power from 50 MW of 

input power with an amplification factor Q (the ratio between the power produced by 

the fusion with respect to the external power supplying the reactor) of 10. As first of all 

fusion experiments in history to produce net energy gain, the electricity production is 

not foreseen. Scientists are confident that the plasmas in ITER will not only produce 

much more fusion energy, but will remain stable for longer periods of time achieving a 

deuterium-tritium plasma in which the reaction is sustained through internal heating. 

Another mission of the device is to prove the feasibility of producing tritium within the 

vacuum vessel. The world supply of tritium (used with deuterium to fuel the fusion 

reaction) is not sufficient to cover the needs of future power plants. ITER will provide a 

unique opportunity to test mockup in-vessel tritium breeding blankets in a real fusion 

environment. 

A cutway of ITER is shown in Figure 1-4 with the indication of the main components. 

Starting from the outside the stainless steel cryostat (about 29 m x 29 m) ensures a 

vacuum and cold environment, and surrounds the vacuum vessel and the 

superconducting magnets. It is used also to protects the reactor from external 

damages. Ten thousand tonnes of superconducting magnets will produce the magnetic 

fields to initiate, confine, shape and control the plasma. The stainless steel vacuum 

vessel allows the vacuum environment and acts as a first safety containment barrier. 

The blanket shields the interior part of the steel vacuum vessel and the external 

components from the heat load and high-energy neutron fluxes produced during the 

fusion reactions. On the bottom side of the vacuum vessel the divertor has the main 

functions of withstands the highest heat flux of the machine and control the exhaust of 

waste gas and impurities from the reactor. Three kind of auxiliary heating system are 

foreseen: neutral beam injectors, ion cyclotron antenna and electron cyclotron antenna. 

The maximum total power that these systems will supply is 73 MW: 33 MW from the 

neutral beam injectors (two NBIs - each one delivering a deuterium beam of 16.5 MW 

with particle energies of 1 MeV - are currently foreseen for ITER), 20 MW from the ion 

cyclotron antenna and 20 MW from the electron cyclotron antenna. 
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Table 1-1 Main ITER parameters 

Total fusion power  500 MW 

Amplification factor Q ∼10 

Plasma inductive burn time  ≥400 s 

Plasma major radius (R0)  6.2 m 

Plasma minor radius (r)  2.0 m 

Plasma current (Ip)  15 MA 

Safety factor (q)  3 

Toroidal magnetic field (B)  5.3 T 

Electron density (ne)  1020m−3 

Average ion temperature <Ti>  8.0 keV 

Average electron temperature <Te>  8.8 keV 

Plasma total external heating  ∼ 50 MW 

Neutral Beam Injector  33 MW 

Electron cyclotron antenna (170 GHz) 20 MW  

Ion cyclotron antenna (50 MHz) 20 MW  

Plasma type  deuterium-tritium 

Plasma volume  840 m 

 
 
 

 

Figure 1-4 3D cutaway model of ITER   
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1.3 NBI for fusion 

The main function of the NBI is to inject uncharged high-energy particles into the 

plasma where, by means of collisions, they transfer their energy to the plasma particles 

and increase the global temperature.  

In the ASDEX tokamak (in 1982), the injection of such beams caused spontaneous 

transition to a regime (called H-mode) characterised of an enhanced confinement with 

a transport barrier at the plasma edge [3]. Moreover, the NBI system is also capable to 

increase the efficiency of the current drive (essential for study advanced scenario in 

ITER).  

Only neutral particles can be injected in the plasma, otherwise the electrically-charged 

ions would be deflected by the strong magnetic field around the machine. In order to 

accelerate these particles to the required energy before the injection, an indirect way 

has to be follow: in principle positive or negative ions has to be generated; then they 

have to be accelerated trough grids at different voltages; at this point, ones the ions 

have the right energy is possible to neutralise them by using a neutral gas stripper in 

which charge exchange processes occur; the resulting beam is then filtered in a 

residual ion dump by using electric field to deflect the ions which did not get the 

neutralisation; finally the neutral beam can be injected in the plasma. As the neutrals 

enter the plasma, they are quickly ionized and remain trapped by the magnetic field of 

the device.  

Even if NBIs have been extensively used in the past fusion machines, the large plasma 

volume of ITER imposes new requirements: in order to penetrate far enough into the 

plasma the particles must move three to four times faster than in previous systems. 

The beam power has to be deposited inside the so-called H-mode barrier (located 

between 0.9 < r/a < 1, where r is the distance from the plasma centre and a is the 

minor radius of the plasma). For ITER this means that the ions energy must be >300 

keV. 

The ions created in the source can be either positive or negative, but as shown in 

Figure 1-5, only NBI based on negative ions can be used in the perspective of a highly 

energetic beam. 

ITER will use two NBIs to inject 33 MW of either 1 MeV deuterium (D0) or 870 keV 

Hydrogen (H0) into the plasma. A third heating beam may be added later.  

A different neutral beam will be used for diagnostic purposes (DNB). 
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Figure 1-5 Hydrogen ions neutralisation efficiency as a function of energy, 
measured in the NBIs at JT-60U [4] 
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1.4 PRIMA Test Facility  

As the required technology for the ITER NBIs is well beyond to the present 

performance for similar systems, it has been decided to build a new test facility to solve 

the scientific gap. 

This ITER Neutral Beam Test Facility, named PRIMA (Padova Research on ITER 

Megavolt Accelerator), is under construction in Padova (Italy). 

PRIMA will be host two experimental devices (and all the auxiliary systems): SPIDER 

and MITICA.  

SPIDER is a full size plasma source with low voltage extraction and MITICA a full size 

neutral beam injector at full beam power. 

The buildings are already realised and they have been erected in the National 

Research Council (C.N.R.) area of Padova, close to the 380 kV power station which 

already supplies the existing RFX machine. The project insists on an area of 17500 m2 

and the floors covered by the building are approximately 7000 m2.   

In Figure 1-6 a cutway of the main building with the two experiment is given. 

 

Figure 1-6 Cutway of the PRIMA buildings with a view of the two 
experiments 

The buildings layout is shown in Figure 1-7, three different main buildings are 

recognizable. 

The first building group consist of: 

- a main room (1) in which the two devices will be placed within the concrete 

bunkers (1.02 and 1.03) to shield the neutron fluxes. This room covers a 

surface of 3000 m2.  A crane of 50 tons of capacity will allow the movements of 

the components and neutron shielding concrete beams and block. Between the 

two devices a wide free space (∼ 1000 m2) is foreseen to storage materials, to 

SPIDE
R 

MITICA 



9 

 

assembly the components and to perform site acceptance tests on the 

components.  

- In the rooms (2) and (4) the auxiliary systems for cooling, cryogenic and 

vacuum are installed. Two cranes (10 tons each) have been foreseen. 

- The electric power supplies, the transformers, the switchboards and the 

diagnostic and control systems for SPIDER will be located in the room (6). 

- In the room (7) other conventional systems, like buildings power supplies and 

HVAC plants, are foreseen. 

The second building group (entirely dedicated to MITICA) is made of the room (8) 

where the -1 MV shielded deck, containing power supply systems and other devices 

set at -1 MV voltage to ground, will be placed, and room (3) for other electric supply 

systems at reduced voltage.  

The last building (12) connects the previous buildings and contains the central control 

rooms of both the experiments, meeting rooms and server room. 

In the external area there are the MITICA acceleration grid power supply (A) (five 

transformers from -200 to -1000 kV), the underground -1 MV transmission line (G), and 

two underground water basins for the cooling plant (F). 

 

 

Figure 1-7 PRIMA buildings layout   
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1.4.1 SPIDER 

SPIDER (Source for Production of Ion of Deuterium Extracted from RF plasma) is the 

full scale ITER NBI source. The aim of this experiment is to address the ITER 

performance requirements in terms of current density, current density uniformity, 

limitation of the electron/ion ratio and low source pressure, for the whole operating time 

(up to 1 hour). The operations on SPIDER are foreseen about 2.5 years before MITICA 

will start to operate. 

An overview of the device is given in Figure 1-8. 

 

Figure 1-8 Overview of the SPIDER experiment 

 

As SPIDER is focused on the ion source optimisation and not on the entire NBI 

aspects, it has been designed to accelerate the beam only up to 100 keV, with a total 

power of 6 MW [5]. It is equipped with eight RF drivers, followed by a plasma 

expansion chamber and an ion extraction region [5] (see Figure 1-9). 

In the driver coils, fed with 1 MHz RF current, the electrons become sufficiently 

energetic (15-30 eV) to cause collisional ionization and dissociation of the injected gas 

(hydrogen or deuterium). The results is a plasma mainly constituted by the species e-, 

H, H2, H
+, H2

+ (and the analogous for deuterium). In the expansion region the electrons 

are cooled down by a magnetic filter field (produced by a current vertically running 

through the Plasma Grid itself). 

In the expansion chamber, the production of the negative ions is made by the volume 

processes and surface processes [6]. The surface process dominate: negative ion 
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production is mainly due to the presence of atomic neutrals which combine with 

electrons, mostly at the cesiated surface of the Plasma Grid. 

The extraction and accelerator system for the SPIDER ion source is composed of three 

grids: the plasma grid (PG), the extraction grid (EG) and the grounded grid (GG). Each 

grid is 1600 mm high and 800 mm wide. 

The negative ions beamlets are extracted through 1280 apertures: 16 groups that are, 

in pairs, faced to a single driver; each group has 16 rows and 5 columns of beamlets. 

Upstream of the PG, a copper bias plate (BP) guarantees the same reference potential 

all around each beamlet group. The acceleration grid (EG) is biased at 10 kV with 

respect to the PG. The grounded grid (GG), further downstream, will provide the ions 

with the last acceleration step of 90 kV.  

 

Figure 1-9 Scheme of a RF plasma source 

 

The mission of the SPIDER experiment is to demonstrate the capability of the ion 

source to guarantee the extraction of a beam energy of 100 keV with a current density 

of 350 A/m2 in case of hydrogen and 290 A/m2 in case of deuterium. The beam shall be 

well uniform and the number of electrons with respect to the number of ions extracted 

from the source shall be limited to less than 1. The maximum beam source pressure 

shall be lower than 0.3 Pa.  

The SPIDER nominal parameters are reported in Table 1-2 and an exploded view is 

given in Figure 1-10 
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Table 1-2 SPIDER nominal parameters 

SPIDER H D Unit 

Beam energy 100 100 keV 

Extracted current 70 50 A 

Extracted current density >350 >290 A/m2 

Uniformity ±10 ±10 % 

Maxiumum Beam Source pressure <0.3 <0.3 Pa 

Beam-ON time up to 3600 3600 s 

Co-extracted electron fraction (e-/H- or e-/D-) <0.5 <1  

 

 

 

Figure 1-10 Exploded view of the SPIDER beam source 
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1.4.2 MITICA 

MITICA (Megavolt ITER injector & Concept Advancement) is the full scale prototype for 

the ITER heating neutral beam injector [7]. 

The injector has been designed to deliver about 16.5 MW neutral beam of 

deuterium/hydrogen particles obtained from a precursor beam of negative ions 

accelerated to 1 MeV. 

MITICA share the same Ion Source (made of the Plasma Source, the Bias Plate, the 

Plasma Grid and the Extraction Grid) of SPIDER [8]. The difference in the Ion Source 

between the two experiments is given by the hydraulic connections: to allow a higher 

flexibility to possible modifications, flanged connections are foreseen for SPIDER while 

welded connections are mandatory for MITICA. The other difference is the accelerating 

grid system of the extracted beam. 

The ion source is held at −1 MV, thus the ions are accelerated up to ground potential 

by five different grids at different potential (by steps of 200 kV between each grid 

couples). The system made of the five accelerating grids is named Accelerator. The 

composition of the ion source and the accelerator is called Beam Source. 

At the end of the accelerator the beam passes through the neutraliser and electron 

dump (NED) in order to generate a neutral beam. The NED is constitute of four vertical 

channels where the collision of the negative ions with the cloud of hydrogen/deuterium 

gas leads not only  the formation of neutral particles but also positive and negative ions 

due to different processes like simple stripping of the outer electron, double stripping 

and re-ionization. 

Following the neutraliser the beam passes through the residual ion dump (RID) which 

acts as an electrostatic field deflecting the undesired charged particles onto a set of 

plates. 

Finally the neutral beam dumps onto the calorimeter made of two panels arranged in a 

V-shape. In the ITER NBI, the calorimeter will be opened to allow the beam to reach 

the plasma inside the tokamak passing along the duct line.  

Large cryopumps are placed on each side of the beam path and the beamline 

components (neutraliser, residual ion dump and calorimeter) inside the injector to 

reduce the pressure downstream of the accelerator and downstream of the neutralizer 

exit. The pressure downstream of the accelerator must be low in order to minimize 

losses in the accelerator. The pressure downstream of the neutralizer must be low in 

order to minimize re-ionization of the neutral particles by collision with the background 

gas.  

An exploded view of MITICA is shown in Figure 1-11, while Table 1-3 listed the nominal 

parameters of the injector. 
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Table 1-3 MITICA nominal parameters 

MITICA H D Unità 

Neutral beam power 16.5 16.5 MW 

Beam energy 870 1000 keV 

Acceleration current 49 40 A 

Maximum Beam Source pressure <0.3 <0.3 Pa 

Beamlet divergence ≤7 ≤7 mrad 

Beam-ON time up to 3600 3600 s 

Co-extracted electron fraction (e-/H- or e-/D-) <0.5 <1  

 

 

 

Figure 1-11 Exploded view of MITICA with the relevant components  

 

 

Calorimeter 
RID NED 

Beam 

Source 
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1.4.3 Coolant supply and requirements 

A large amount of thermal power (up to 70 MW) has to be removed from the in-vessel 

components and from the auxiliary systems of the two experiments. A large cooling 

plant has been designed [9] and is now under construction at PRIMA site.  

The cooling plant (sketched in Figure 1-12) is composed of three main heat transfer 

systems exchanging the thermal power between them, the experimental test facilities 

and the environment. The Primary Heat Transfer System (PHTS) is made of ten closed 

primary circuits (PC) directly connected to the test facilities for cooling, thermal control 

and calorimetric purposes. They are filled with pure water (acting as dielectric fluid) 

because of the high voltages in some components.  

The two Secondary Heat Transfer System (SHTS) exchange the thermal power 

between the primary circuits and the water basins. They are filled with normal water 

allowing a significant reduction of the PHTS circuits extension, and they also act as a 

safety barrier. The Tertiary Heat Transfer System (THTS) are hydraulic circuits that 

transfer the thermal power from the water basins to the environment via cooling towers 

and dry coolers. 

 

 

Figure 1-12 Sketch of the PRIMA cooling plant 
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The cooling plant has been designed in order to work with variable heat loads but 

keeping the inlet temperature of the coolant constant by using variable speed pumps 

and two-way valves to regulate the flow rates. 

Two water basins (WB) are present in the cooling plant to store large amount of 

thermal energy. The capacities of the basis are 315 m3 for the WB1 and 545 m3 for the 

WB2. They allow a significant reduction of the installed active power of heat rejection: 6 

MW of cooling towers and 17 MW of air coolers compared to 70 MW of the total 

thermal loads (11 MW from SPIDER and 58.4 MW from MITICA). 

The cooling plant has been designed taking in account two different operative 

scenarios [9]: the first one (ITER-like scenario, to test the full NBI performance) 

foreseen two long pulses of 3600 s each one at the maximum power for MITICA only 

(Figure 1-13), while in the second one (typical experimental scenario) MITICA and 

SPIDER are foreseen two work both in parallel with ten pulses of 300 s each one 

during the entire day (Figure 1-14). 

 

 

Figure 1-13 MITICA full power long pulses 

 

Figure 1-14 SPIDER and MITICA simultaneous operations 
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Two independent Chemical Control Systems (CCS) based on ultrafiltration, reverse 

osmosis and electro-deionisation allow water treatment and filtration providing the 

following pure water type:  

- water W-I, with electrical resistivity between 5 and 10 MΩ•cm at 25 °C for the 

MITICA component (beam source and accelerator) 

- water W-II, with electrical resistivity between 1 and 2 MΩ•cm at 25 °C for the 

MITICA ground potential components and for the SPIDER components (except 

beam source); 

- water W-III, with electrical resistivity between 3.3 and 5 MΩ•cm at 25 °C for the 

SPIDER and MITICA ion source power supplies; 

- water DW, with electrical resistivity between 0,05 and 0,1 MΩ•cm at 25 °C for 

the MITICA SF6 plant. 

The main thermo-hydraulic parameters for the in-vessel components are listed in Table 

1-4 for SPIDER and in Table 1-5 for MITICA. For simplicity the same parameters for 

the primary circuits linked with the power supplies and auxiliaries are not reported.  

These parameters, in particular the mass flow rate, the inlet temperature and pressure, 

constitute the main boundary conditions for the following analyses. 

 

Table 1-4 Thermo-hydraulic requirements for the SPIDER in-vessel 
components 
(+) 40 kW and 80 kW are the powers of the instantaneous heater 
[10] 

Primary 
Circuit 

Component 
Max 

power 
[kW] 

Mass 
flow 
rate 

[kg/s] 

Tinlet 
[°C] 

Pinlet 
[MPa] 

Fluid 

PC02 

RF coils 25 0.5 20÷35 

2.0 W-II 
Extraction grid 1000 11 20÷35 

Grounded grid 700 8 20÷35 

Electron Dump 1000 31 20÷35 

PC03 

Faraday shields lateral wall 1 240 2.5 35÷45 

2.0 W-II 

Faraday shields lateral wall 2 240 2.5 35÷45 

Faraday shields back plate 73 2 35÷45 

Driver Plates 160 3 35÷45 

Source case lateral wall 100 2 35÷45 

Bias plate 
10 

0.125 35÷150 
+40 (+) 

Plasma grid 
20 

0.125 35÷150 
+80 (+) 

PC04 Beam dump 6100 64 20÷55 1.0 W-II 
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Table 1-5 Thermo-hydraulic requirements for the  MITICA in-vessel 
components 
(+) 120 kW is the power of the instantaneous heater [10] 

Primary 
Circuit 

Component 
Max 

power 
[kW] 

Mass 
flow 
rate 

[kg/s] 

Tinlet 
[°C] 

Pinlet 
[MPa] 

Fluid 

PC05 

Grid 1 MAMuG    (-800 kV) 2000 19.5 25÷45 

2.0 W-I 

Grid 2 MAMuG    (-600 kV) 2000 19.5 25÷45 

Grid 3 MAMuG    (-400 kV) 2000 19.5 25÷45 

Grid 4 MAMuG    (-200 kV) 2000 19.5 25÷45 

Grounded grid + frame 2000 19.5 25÷45 

PC06 

RF coils    

2595 33 35÷45 

2.0 W-I 

Faraday Shields Source 
Case 

Extraction grid 

Plasma grid and bias plate 
30 

+120 (+) 
0.25 35÷150 

PC07 

NED 6000 80 20÷55 

2.0 W-II RID 17200 100 20÷55 

Calorimeter 19460 100 20÷55 
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Chapter 2 
Thermo-hydraulic 1D models with 

3D sub-modelling 
 

The high heat fluxes on the accelerating grids due to stray particles, the temperature 

control required for optimal caesium deposition on plasma grid and plasma source 

walls, the highly concentrated load on the back plate due to back streaming ions, and 

the delicate RF drivers, make the MITICA beam source a very challenging system in 

which the correct predictions of the flow rate partitioning and coolant temperature are 

mandatory. The beam line components also deal with severe heat loads, high coolant 

temperature and pressure, thermal control of bulk materials and surfaces. By using 

one-dimensional models, several steady state thermo-hydraulic simulations have been 

carried out to analyse and evaluate possible modifications of the cooling circuits. 

2.1 One-dimensional model 

In fusion machines one of the most challenging issue, from an engineering point of 

view, is the reliability of the components faced to the plasma and to the particle beam. 

The high heat fluxes and power densities they are subjected to, make the cooling 

capability of these components one of the crucial aspects during the design phase. 

Thermo-hydraulic analyses are thus essential to design actively cooled components 

and relevant cooling circuits that ensure the correct flow rate, coolant temperature and 

pressure drop for the thermal control. 

3D computational fluid dynamics (CFD) simulations allow detailed prediction of the 

physical phenomena and, as they have been largely used and validated, usually with 

acceptable margin of error. On the contrary they are very time consuming and they 

cannot be used to simulate local effects of very large components and systems.  

When working with large cooling systems that incorporate different parallel branches 

interfaced with different components, 1D CFD simulations are the common choice 

because, even if they are not able to predict detailed results, they allow fast simulations 

and act as versatile tools suitable to evaluate the correctness of the cooling circuits and 

to analyse the general thermo-hydraulic parameters. 

1D codes use elements with input/output nodes where analytical equations are applied 

to manipulate the input parameters and give to corresponding outlet. The general 

governing equations for the thermo-hydraulic analyses for each elements are the 

conservation of mass (Eq. 5), of energy (Eq. 6) and momentum (Eq. 7). They ensure 

that the same amount of energy, mass and momentum that goes into a control volume 

then leave it. 

These equations are used to calculate the flow into and out of the components as a 

function of the pressure. Flow is then eliminated from the equations using continuity at 

each node and the resulting pressures are substituted back into the component 
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equations to calculate new estimates of the flows. The process is iteratively repeated 

until stable values are achieved. 

𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥
(𝜌𝑢) +

𝜕

𝜕𝑦
(𝜌𝑣) +

𝜕

𝜕𝑧
(𝜌𝑤) = 0 Eq. 5 

 

𝐸𝑖𝑛 + 𝐸𝑔 − 𝐸𝑜𝑢𝑡 = 𝐸𝑠𝑡 Eq. 6 

 

𝜌𝑔𝑥 −
𝜕𝑝

𝜕𝑥
+ 𝜇 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2) = 𝜌
𝑑𝑢

𝑑𝑡
 

𝜌𝑔𝑦 −
𝜕𝑝

𝜕𝑦
+ 𝜇 (

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
+

𝜕2𝑣

𝜕𝑧2) = 𝜌
𝑑𝑣

𝑑𝑡
 

𝜌𝑔𝑧 −
𝜕𝑝

𝜕𝑥
+ 𝜇 (

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
+

𝜕2𝑤

𝜕𝑧2 ) = 𝜌
𝑑𝑤

𝑑𝑡
 

Eq. 7 

From the Navier-Stokes equations (Eq. 7) the Bernoulli's equation can be derived: 

𝑣2

2𝑔
+ 𝑧 +

𝑝

𝜌𝑔
= 𝐶 

Eq. 8 

where v is the bulk velocity [m/s], g is the gravitational acceleration [m/s2], z is the 

elevation [m], p is the static pressure [Pa] and ρ the fluid density [kg/m3]. 

The MITICA beam source, neutraliser and residual ion dump are actively cooled by 

complex hydraulic networks made of a large number of pipes, manifolds, junctions, 

bends and experimental components. Their cooling system have been modelled and 

analysed with 1D CFD codes, simulating non-linear behaviour introduced by material 

properties depending on local temperature. 

Different software have been used (e.g. Flowmaster [11] and ANSYS APDL [12]) and 

also the analyses have been performed with different aims: the flow partitioning for the 

beam source has been simulated in order to design the arrangement of the cooling 

system, the coolant outlet temperature for the neutraliser to verify the PED (Pressure 

Equipment Directive) requirements, the flow uniformity and the boiling margin for the 

residual ion dump have been controlled. The results are useful, as boundary 

conditions, for further detailed simulations oriented to the localised heat transfer 

coefficients.   

The mentioned software use the well-known analytical models to simulate the standard 

components (like pipes and bends), while complex geometries whose hydraulic 

behaviours are not available in literature have been studied by detailed 3D CFD 

simulations. The 3D analyses have been carried out by imposing different values of 

mass flow rate as boundary condition in order to get the characteristic curves (pressure 

drop vs. mass flow rate) which allow to simulate the component as a localised pressure 

drop to fully characterize the circuit. Other cooling elements as swirl tubes, often used 

in fusion applications but not present in the commercial software, have been simulated 

by using appropriate correlations. 
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The integrated models have been developed with the following procedure: the cooling 

networks made of one-dimensional elements have been made by considering all the 

geometrical parameters (length of pipes, internal diameters and curvature radius of the 

bends) taken from the 3D geometrical model. The standard components (like pipes and 

bends) have been simulated with the analytical models, while for the experimental 

components with particular geometry, the information coming from the 3D CFD 

simulations have been used.  

In the following a description of the mathematical models used in Flowmaster and 

ANSYS APDL are reported. 

2.2 Flowmaster 1D elements 

Flowmaster is a 1D thermo-fluid software package to analyse complex pipework net 

providing a graphical virtual environment where it is possible to design, refine and test 

the entire fluid flow system. It is based on Don Miller's "Internal Flow Systems" [14] . 

The mathematical models used by Flowmaster are reported in the following. 

2.2.1 Pipe 

The pipe component (Figure 2-1) models the pressure drop along a straight pipe 

assuming a constant cross section area. 

 

Figure 2-1 Pipe symbol in Flowmaster code 

The distributed pressure drop is calculated with the Darcy-Weisbach equation: 

𝛥𝑝 = 𝑓
𝐿

𝐷

𝜌𝑣2

2
 Eq. 9 

where Δp is the pressure drop [Pa], f is the friction factor [-], L is the pipe length [m], D 

is the pipe diameter [m], ρ is the fluid density [kg/m3] and v is the fluid velocity [m/s]. 

The friction factor f is computed with the Colebrook-White equations: 

- laminar flow (Re<2000):    𝑓 = 𝑓𝑙 =
64

𝑅𝑒
 

- fully turbulent flow (Re>4000):       

 𝑓 = 𝑓𝑡 =
0,25

[log(
𝑘

3,7𝐷
+

5,74

𝑅𝑒0,9)]
2 

- transitional flow (2000<Re<4000):   𝑓 = 𝑥𝑓𝑡 + (1 − 𝑥)𝑓𝑡 

                                                                           𝑥 =
𝑅𝑒

2000
− 1 

Eq. 10 
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2.2.2 Bend 

The bend component (Figure 2-2) models the distributed and localised pressure drop in 

bends. 

 

Figure 2-2 Bend symbol in Flowmaster code 

The localized pressure drop given by the bend is calculated by the equation: 

𝛥𝑝 =
𝑘�̇�2

2𝜌𝐴2
 Eq. 11 

where Δp is the pressure drop [Pa], k is the loss coefficient [-], ṁ is the mass flow rate 

[kg/s], ρ is the fluid density [kg/m3] and A is the cross section [m2]. 

The loss coefficient k is given, for fully turbulent flow, by 

𝑘 = 𝑘𝑏𝐶𝑅𝑒𝐶𝑓 Eq. 12 

The three terms in Eq. 12 are respectively the loss coefficient of the bend (obtainable 

by Figure 2-3), a correction for the Reynolds Number (Figure 2-4) and a correction for 

the friction factor (equals to the ratio between the friction factor for the rough pipe and 

the friction factor for a smooth pipe). 
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Figure 2-3 Bend loss coefficient in function of the ratio between the 

curvature radious and the diameter (ln(r/d)) and the degree of the 

inclination (ln(THETA b))  

 

 

Figure 2-4 Reynolds number correction 
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2.2.3 T-joint 

The T-joint component has been used in the cooling circuit in order to replicate the 

behaviour of the manifolds. The component symbol is shown in Figure 2-5 

 

Figure 2-5 T-joint symbol in Flowmaster code 

The localized pressure drop given by the bend is calculated by the equation: 

𝛥𝑝𝑖𝑗 = 𝐶𝑅𝑒

𝑘𝑖𝑗�̇�
2

2𝜌𝐴2
 Eq. 13 

where CRe is the correction factor of Reynolds Number [-], Δpij is the pressure drop 

between two nodes i and j [Pa], kij is the loss coefficient between the two nodes  [-], ṁ 

is the mass flow rate [kg/s], ρ is the fluid density [kg/m3] and A is the cross section 

[m2]. 

The loss coefficient kij is given by different curves depending on whether the flow is. 

The curves are not shown, for simplicity. 

2.2.4 Discrete loss 

The discrete loss component (Figure 2-6) provides a way of modelling a pressure drop 
by defining a fixing value of the loss or a curve which describes the trend of the loss as 
function of the flow rate. 

 

Figure 2-6 Discrete loss symbol in Flowmaster code  

2.2.5 Heat exchanger 

The heat exchanger component (Figure 2-7) is an electric resistance that provides 
heating to the fluid by defining the thermal power: 

𝑃𝑡ℎ = �̇� 𝑐𝑝 (𝑇𝑜 − 𝑇𝑖) Eq. 14 

where Pth is the thermal power [kW], ṁ is the mass flow rate [kg/s], cp is the specific 

heat [kJ/(kg K)], To and Ti the outlet and inlet fluid temperature [°C]. 

 

Figure 2-7 Heat exchanger symbol in Flowmaster code 
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2.3 ANSYS APDL 

ANSYS APDL can be used as 1D code to solve complex hydraulic networks. The one-

dimensional element to be used is fluid116 (Figure 2-8). It allows the simulation of 

pipes, manifolds and other cooling elements. It is an element with the ability to conduct 

heat and transmit fluid between its two primary nodes. The element may have two 

different types of degrees of freedom, temperature and/or pressure.  

Fluid116 can have a friction factor to calculate the distributed pressure drop, and a loss 

coefficient (Kloss) for carry out the local pressure drop (i.e. bends, change of sections, 

inlet and outlet).  

 

Figure 2-8 Element Fluid116 
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2.4 Beam Source 

The MITICA beam source is composed of a radio frequency (RF) based ion source for 

negative ions generation and a five step electrostatic accelerator with multi-aperture 

grids (MAMuG) for ions accelerations [15]. An overall section view of the beam source 

is shown in Figure 2-9. 

 

Figure 2-9 Section view of the MITICA beam source 

 

The MITICA beam source is cooled down by six cooling circuits: one for the entire ion 

source and then one for each accelerating grid. As the accelerating grids have a 

devoted cooling system which fill only their four segments, their hydraulic pipework has 

not been analysed. On the other side the hydraulic networks for the ion source and for 

the grounded grid and electron dump needed of detailed models in order to analyse the 

flow partitioning of the coolant within each components.  

The two integral thermo-hydraulic models of the cooling systems have been realised 

and analysed by using Flowmaster code.  
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2.4.1 Ion Source 

In paragraph 1.4.1 it has been already explained how a RF ion source works. Figure 

2-10 shows the MITICA ion source where the complexity of the system is recognizable. 

 

Figure 2-10 Two views of the MITICA ion source: all the components and the 
cooling circuits are shown. 

 

The drivers’ plate is composed of two different plates: the rear drivers plate and the 

plasma drivers plate. The rear drivers plate is a stainless steel plate with the function of 

support the drivers; the plasma driver plate (PDP) is a CuCrZr alloy plate which facing 

the plasma allows the thermal expansion [8]. Stripping reactions in the accelerator are 

expected to generate back-streaming positive ions [16] which dumping on the PDP 

impose a dedicated cooling circuits to carry out the heat loads.  

The source case lateral wall (SCLW) which surround the entire RF source is divided in 

six sectors with cooling ducts machined on the internal surface. 

The drivers are the cylindrical structures where the flow current, running through the 

RF Coils, transfers the power and generates the plasma. High heat loads are foreseen 

on the drivers because of the interaction with the back-streaming positive ions [8] and 

two separate cooling circuits are devoted to remove these loads: the Faraday Shield 

Lateral Wall (FSLW) and the Faraday Shield Back Plate (FSBP).  

The extractor is made of the Bias Plate (BP), the Plasma Grid (PG) and the Extraction 

Grid (EG). Each grid is composed of four segments made by electro-deposition of pure 

copper onto a copper base plate. Channels with small cross section area run inside the 

grids allowing the cooling. 
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2.4.1.1 CFD Sub-Modelling 

Because of the particular geometry of the main experimental components, the 

hydraulic behaviour of complex geometries whose models are not available in 

literature, have been analysed and characterised with three dimensional CFD code 

(e.g. ANSYS CFX [13]). The k-ε turbulence model has been used for all the 

simulations. 

For each component three different analyses at different inlet mass flow rates have 

been carried out in order to get the characteristic curves (pressure drop vs. mass flow 

rate) to be inserted in the one-dimensional model where they are simulated as 

localised pressure drop.  

The Plasma Driver Plate (PDP) is composed of four identical quarters in which the 

water flows along two different branches named Channel 1 and Channel 2. One 

quarter is recognizable in Figure 2-11. The obtained results are listed in Table 2-1. The 

total heat load on the PDP is 520 kW [18] (65 kW for each channel). 

 

Figure 2-11 Magnification of one quarter Plasma Driver Plate 

 

Table 2-1 PDP Channel 1 and Channel 2: pressure drop as function of 
mass flow rate [17] 

PDP Channel 1 PDP Channel 2 

Mass flow rate  
[kg/s] 

Pressure drop  
[kPa] 

Mass flow rate  
[kg/s] 

Pressure drop  
[kPa] 

1.125 102 1.125 131 

2.25 397 2.25 516 

3.375 885 3.375 1160 

 

 

 

Channel 1 Channel 2 
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The Source Case Lateral Wall (SCLW) is divided in six parts (Figure 2-12). One sixth 
has been simulated and the results are listed in Table 2-2 The total heat load on the 
SCLW is 20 kW [19] (3.33 kW each sixth). 

 

Figure 2-12  Magnification of one sixth Source Case Lateral Wall  

 

Table 2-2 SCLW: pressure drop as function of mass flow rate [19] 

Mass flow rate  
[kg/s] 

Pressure drop  
[kPa] 

0.25 44 

0.5 177 

1 708 
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The obtained results of the Faraday Shield Lateral Wall (FSLW) (Figure 2-13) and the 
Faraday Shield Back Plate (FSBP) (Figure 2-14) are listed in Table 2-3. The thermal 
load for each FSLW is 40 kW [20] and for each FSBP 75 kW [21]. 

 

Figure 2-13  Magnification of one Driver (a) and one FSLW (b) 

 

Figure 2-14  Magnification of one Driver (a) and one FSBP (b) 

 

Table 2-3 FSLW and FSBP: pressure drop as function of mass flow rate 
[20][21] 

FSLW FSBP 

Mass flow rate  
[kg/s] 

Pressure Drop  
[kPa] 

Mass flow rate  
[kg/s] 

Pressure Drop  
[kPa] 

0.3 62 0.5 17 

0.45 135 1.5 137 

0.625 251 2 238 
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The RF Coil (Figure 2-15) has been simulated with the following main parameters of 
the mesh: 

- maximum element size: 1 mm; 
- inflation layer: 5 layers, first layer with height of 0.1 mm and grow rate equals 

to 1.2; 
- number of elements: 2.76x106. 

The meshed model is shown in Figure 2-16. 

The pressure drop results are listed in Table 2-4 and plotted in Figure 2-17. The 
thermal load expected at each RF Coil is of 5.7 kW [22].  

 

Figure 2-15  Magnification of one Driver (a) and one RF coil cooling circuit (b) 

 

 

Figure 2-16 Overview of the mesh for the RF Coil 
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Table 2-4 RF Coil: pressure drop as function of mass flow rate 

Mass flow rate  
[kg/s] 

Pressure Drop  
[kPa] 

0.0625 73 

0.125 253 

0.25 863 

 

 

Figure 2-17 RF Coil: characteristic curve pressure drop vs. mass flow rate 
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The Plasma Grid, Bias Plate and Extraction Grid belong to the MITICA Extractor and 

are shown in Figure 2-18. 

The Plasma Grid is composed of four identical segments, for each one the nominal 

mass flow rate is 0.125 kg/s and the corresponding pressure drop is 6 kPa [23]. The 

characteristic curve (pressure drop vs. mass flow rate) has been assumed with an ideal 

parabolic trend. The heat load for each PG segment is 6.2 kW. 

The Extraction Grid is composed of four identical segments, for each one the nominal 

mass flow rate is 1.255 kg/s and the corresponding pressure drop is 102 kPa [23]. The 

characteristic curve (pressure drop vs. mass flow rate) has been assumed with an ideal 

parabolic trend. The heat load for each EG segment is 135.25 kW [10]. 

The Bias Plate (BS) has been simulated directly in Flowmaster by using the pipe 

elements. The total heat load on the grids is 6 kW. 

 

Figure 2-18  MITICA Extractor: Plasma Grid (a), Bias Plate (b) and Extraction 
Grid (c) 

 

  

(a) (b) (c) 
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2.4.1.2 Integrated RF ion source cooling circuit model  

In Figure 2-19 and Figure 2-20 the implemented cooling circuit model of the MITICA 

beam source is shown. The model replicates the geometry in only two dimensions and, 

being a schematic representation, the actual position in the space of the various parts 

isn’t important. The experimental components mentioned in the previous paragraph 

have been simulated by using discrete losses with the calculated pressure drop curves, 

followed by heat exchangers thermally loaded with the nominal power. In Table 2-5 the 

values used in the one-dimensional model for the pressure drops and for the thermal 

loads are listed and it is possible to note that, compared to the values stated in the 

previous paragraph, for the PG and the EG there is a variation in the mass flow rate 

and in the thermal power. The motivation is that the PG has been simulated by using 2 

parallel branches for each grid segment (8 parallel channels in total). For each branch 

the pressure drop has been kept equals to the entire pressure drop of one grid 

segment, while the flow rate and the thermal power have been split in 8 channels. The 

same procedure has been done to simulate the EG by using 10 branches for each grid 

segment (40 channels in total).  

Table 2-5 Mass flow rate, corresponding pressure drop and thermal load 
for each 1D element 

Component 
Mass flow rate 

[kg/s] 
Pressure drop 

[MPa] 
Pth 

[kW] 

PDP Channel 1 

1.125 102 

65 2.25 397 

3.375 885 

PDP Channel 2 

1.125 131 

65 2.25 516 

3.375 1156 

SCLW 

0.25 44 

3.33 0.5 177 

1 708 

FSLW 

0.3 62 

40 0.45 135 

0.625 251 

FSBP 

0.5 17 

75 1.5 137 

2 238 

FS Coil 

0.0625 73 

5.7 0.125 253 

0.25 863 

PG 

0.0078 2 

3.1 0.0156 6 

0.0172 7 

EG 

0.0628 26 

13.525 0.1255 102 

0.1381 123 
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Figure 2-19 Overview of the RF Ion Source hydraulic network in Flowmaster 
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Figure 2-20 Overview of the Extractor hydraulic network in Flowmaster  
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2.4.1.3 Results 

The CFD 1D thermo-hydraulic model has been used to evaluate the mass flow rate 

partitioning and outlet coolant temperatures in each cooling circuit in different scenarios 

and within different design. 

In the following the results of the simulations are reported using the nomenclature 

shown in Figure 2-21, Figure 2-22 and Figure 2-23. 

 

Figure 2-21 Nomenclature of the components used to show the results. Each 
Driver is composed of three cooling circuits: FSLW, FSBP and 
RF Coil 

 

Figure 2-22 Nomenclature of the components used to show the results 
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Figure 2-23 Nomenclature of the components used to show the results 
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2.4.1.3.1 Reference design 

The first analysed design is sketched in Figure 2-24.  

The boundary conditions for cooling water in the nominal case are the following: 

- the total mass flow rate at main inlet is 33 kg/s; 
- the water temperature at the main inlet is 35 °C; 
- another inlet is present in order to feed the Plasma Grid and Bias Plate, here 

the total mass flow rate is  0.25 kg/s while the inlet water temperature is 150 °C; 
- the pressure at the common outlet is 1.5 MPa; 
- the heat loads are those listed in Table 2-5. 

The detailed results are listed in Table 2-6 and shown in Figure 2-25 and Figure 2-26 
where the normalised mass flow rate (calculated over the nominal desired value) and 
the outlet temperature are plotted. 

 

Figure 2-24 Sketch of the previous MITICA Beam Source cooling design 

33 kg/s @ 35°C 

0.25 kg/s  

@ 150°C 
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Table 2-6 Mass flow rate and coolant outlet temperature in the reference 
design 

Component 
Mass flow rate 

[kg/s] 
Nominal mass 
flow rate [kg/s] 

Percentage 
change [%] 

Outlet 
temperature [°C] 

PDP#1 1.243 2.25 -45 60.1 

PDP#2 1.246 2.25 -45 60 

PDP#3 1.259 2.25 -44 59.8 

PDP#4 1.257 2.25 -44 59.8 

FSLW#1 0.93 0.625 49 45.4 

FSLW#2 1.021 0.625 63 44.4 

FSLW#3 0.869 0.625 39 46.1 

FSLW#4 0.955 0.625 53 45.1 

FSLW#5 0.826 0.625 32 46.7 

FSLW#6 0.909 0.625 45 45.6 

FSLW#7 0.776 0.625 24 47.4 

FSLW#8 0.855 0.625 37 46.3 

FSBP#1 1.41 2 -30 47.8 

FSBP#2 1.415 2 -29 59.7 

FSBP#3 1.385 2 -31 48 

FSBP#4 1.387 2 -31 60.2 

FSBP#5 1.366 2 -32 48.2 

FSBP#6 1.364 2 -32 60.6 

FSBP#7 1.356 2 -32 48.3 

FSBP#8 1.355 2 -32 60.8 

RF_Coil#1 0.082 0.1 -18 51.7 

RF_Coil#2 0.082 0.1 -18 68.3 

RF_Coil#3 0.083 0.1 -17 67.8 

RF_Coil#4 0.083 0.1 -17 51.4 

RF_Coil#5 0.079 0.1 -21 52.2 

RF_Coil#6 0.079 0.1 -21 69.4 

RF_Coil#7 0.08 0.1 -20 69 

RF_Coil#8 0.08 0.1 -20 52 

SCLW#DX 0.394 0.5 -21 41.1 

SCLW#SX 0.4 0.5 -20 41.1 

BP#1 0.011 0.0156 -29 166.3 

BP#2 0.007 0.0156 -55 176.7 

BP#3 0.006 0.0156 -62 178.0 

BP#4 0.006 0.0156 -62 178.0 

BP#5 0.006 0.0156 -62 178.0 

BP#6 0.006 0.0156 -62 178.0 

BP#7 0.007 0.0156 -55 176.8 

BP#8 0.01 0.0156 -36 167.1 

PG#1 0.025 0.0156 60 177.6 

PG#2 0.025 0.0156 60 178 

PG#3 0.024 0.0156 54 178.9 

PG#4 0.024 0.0156 54 179.2 

PG#5 0.023 0.0156 47 179.9 

PG#6 0.023 0.0156 47 180.2 

PG#7 0.023 0.0156 47 180.5 

PG#8 0.022 0.0156 41 182.3 

EG#1 3.394 1.255 170 44.6 

EG#2 3.37 1.255 169 44.7 

EG#3 3.356 1.255 167 44.7 

EG#4 3.342 1.255 166 44.8 

 



41 

 

 

Figure 2-25 Normalised mass flow rate (calculated over nominal value) and 
coolant outlet temperature in the reference design for PDP, 
FSLW, FSBP, RF Coils, SCLW, EG 

 

 

Figure 2-26 Normalised mass flow rate (calculated over nominal value) and 
coolant outlet temperature in the reference design for BP and PG  



42 

 

According to the results of the simulation, the total pressure drop of the entire cooling 

circuit is 370 kPa and the coolant outlet temperature 50.6 °C.  

In the model there are two different inlets (with a fixed flow rate) and a single outlet 

(with a fixed pressure), due to this fact there are two different pressure drops in the 

network: one for the main circuit and one for the Plasma Grid and Bias Plate circuit. 

The situation is only imaginary: in reality, the flow balance will be done by using 

regulating valves and the pressure drop of the parallel circuit will be the same. Here 

has been assumed that the total pressure drop is dominated by the main circuit.  

The cooling system which supplies the coolant water can vary the mass flow rate 

during the operations. Different case studies have been simulated to check the flow 

partitioning, the outlet coolant temperatures, and the total pressure drop. Only the 

mass flow at the main inlet has been changed while the flow rate for the Plasma and 

Bias Plate has been fixed at 0.25 kg/s: 

- SCENARIO#1: total mass flow rate equals to 16.5 kg/s (50% of the nominal 

mass flow); 

- SCENARIO#2: total mass flow rate equals to 24.75 kg/s (75% of the nominal 

mass flow); 

- SCENARIO#3: total mass flow rate equals to 36.3 kg/s (110% of the nominal 

mass flow). 

In all the possible scenarios mentioned above the temperature of the water at the main 

inlet has been set to 35 °C and the thermal loads on the components are always the 

nominal value. The results are listed in Table 2-7. 

The maximum temperatures (~90 °C) have been found at the RF Coils in the 

SCENARIO#1, which is the lowest mass flow scenario. Although this temperature is 

fully acceptable, this scenario is not considered as an operational one, but could occur 

in case of a failure in the cooling system. The proper accelerator grid alignment can be 

obtained by controlling the grid thermal elongation, thus in SCENARIO#2 and #3 the 

cooling water flow is modulated to obtain this effect. 

The total pressure drop of the circuit and the outlet temperature of the water in the 

different cases are reported Table 2-8. In Figure 2-26 the characteristic pressure drop 

of the entire cooling circuit is plotted. 
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Table 2-7 Mass flow rate partitioning and outlet temperature in different 
scenario 

 
SCENARIO#1        

(9.75 kg/s) 
SCENARIO#2       
(14.63 kg/s) 

SCENARIO#3       
 (21.45 kg/s) 

Component 
Mass flow 

rate   
[kg/s] 

Outlet 
temperature 

[°C] 

Mass 
flow rate  

[kg/s] 

Outlet 
temperature 

[°C] 

Mass flow 
rate  

 [kg/s] 

Outlet 
temperature 

[°C] 

PDP#1 0.796 74.09 1.042 64.88 1.313 58.76 

PDP#2 0.798 73.98 1.045 64.81 1.317 58.70 

PDP#3 0.806 73.59 1.056 64.50 1.330 58.46 

PDP#4 0.804 73.59 1.054 64.55 1.329 58.49 

FSLW#1 0.427 57.41 0.563 52.06 1.114 43.67 

FSLW#2 0.433 57.14 0.570 51.85 1.216 42.95 

FSLW#3 0.425 57.56 0.559 52.17 1.042 44.26 

FSLW#4 0.430 57.28 0.566 51.96 1.137 43.50 

FSLW#5 0.423 57.66 0.557 52.25 0.993 44.72 

FSLW#6 0.428 57.38 0.564 52.03 1.084 43.92 

FSLW#7 0.420 57.79 0.553 52.35 0.933 45.34 

FSLW#8 0.426 57.51 0.561 52.13 1.019 44.48 

FSBP#1 0.898 54.99 1.181 50.22 1.490 47.08 

FSBP#2 0.901 73.67 1.185 64.46 1.496 58.38 

FSBP#3 0.881 55.37 1.159 50.51 1.464 47.30 

FSBP#4 0.882 74.48 1.161 65.06 1.466 58.84 

FSBP#5 0.869 55.66 1.143 50.73 1.444 47.47 

FSBP#6 0.867 75.12 1.141 65.55 1.442 59.22 

FSBP#7 0.863 55.81 1.135 50.84 1.434 47.56 

FSBP#8 0.861 75.40 1.133 65.76 1.433 59.38 

RF_Coil#1  0.049 63.02 0.067 55.38 0.087 50.68 

RF_Coil#2 0.049 90.94 0.067 75.71 0.087 66.31 

RF_Coil#3 0.049 90.19 0.068 75.15 0.089 65.86 

RF_Coil#4 0.049 62.64 0.068 55.10 0.089 50.45 

RF_Coil#5 0.047 63.90 0.065 56.05 0.084 51.20 

RF_Coil#6 0.047 92.69 0.065 77.04 0.084 67.35 

RF_Coil#7 0.048 91.97 0.066 76.50 0.086 66.93 

RF_Coil#8 0.048 63.54 0.066 55.78 0.086 50.99 

SCLW#DX 0.256 44.39 0.332 42.25 0.416 40.84 

SCLW#SX 0.258 44.30 0.336 42.18 0.422 40.76 

EG#1 1.299 59.93 2.492 48.04 3.695 43.85 

EG#2 1.297 59.97 2.473 48.14 3.669 43.91 

EG#3 1.296 59.99 2.463 48.20 3.654 43.94 

EG#4 1.295 60.01 2.452 48.25 3.639 43.98 
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Table 2-8 System pressure drop and outlet temperature in different 
scenario 

  
Total Pressure Drop 

[kPa] 
Outlet temperature 

[°C] 

SCENARIO#1 150 67 

SCENARIO#2 258 56 

SCENARIO#3 414 50 

 

 

 

Figure 2-27 Characteristic curve Pressure Drop vs. Mass Flow rate for the 
entire RF ion source cooling system 

 

As shown in Figure 2-25 and Figure 2-26 the expected flow partitioning in the 

components is so far to be acceptable. In particular, a too low flow rate is foreseen in 

PDP and FSBP, while an higher flow rate is foreseen in FSLW and EG. The flow 

distribution in the BP and PG has been considered acceptable. 

In the following several different attempts to modify the cooling circuits are presented.  
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2.4.1.3.2 PDP connection modification 

In order to increase the flow rate in the Plasma Driver Plate, a new possible 

connections of the different PDP channels has been analysed by using the one-

dimensional model. In Figure 2-28 is shown a sketch of the new possible design: all the 

elements, named Channel 1 and Channel 2, are parallel connected in order to reduce 

the pressure drop and increase the mass flow. 

 The boundary conditions are the following: 

- the total mass flow rate at main inlet is 33 kg/s; 

- the water temperature at the main inlet is 35 °C; 

- another inlet is present in order to feed the Plasma Grid and Bias Plate, here 

the total mass flow rate is  0.25 kg/s while the inlet water temperature is 150 °C; 

- the pressure at the common outlet is 1.5 MPa; 

- the heat loads are those listed in Table 2-5.  

The results are shown in Figure 2-29 and Figure 2-30 where the nomenclature is the 

same used before with the exception of the PDP for which have been used that of 

Figure 2-28. By looking at the results for the PDP is clear that this solution is not able to 

solve the flow partitioning issue: the total mass flow rate into the entire PDP grid is 

higher compared to the reference design, but in each single channel, about half the 

flow rate is expected. According to the results of the simulation, the total pressure drop 

of the entire cooling circuit is 317 kPa and the coolant outlet temperature is 50.9 °C.  

 

Figure 2-28 Cooling connection of the Plasma Drivers Plate: (a) actual pipe 
line layout; (b) new pipe line layout investigated 
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Figure 2-29 Normalised mass flow rate (calculated over nominal value) and 
coolant outlet temperature for PDP, FSLW, FSBP, RF Coils, 
SCLW, EG, in case of parallel connection of all the PDP channels  

 

 

Figure 2-30 Normalised mass flow rate (calculated over nominal value) and 
coolant outlet temperature for BP and PG, in case of parallel 
connection of all the PDP channels 
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2.4.1.3.3 EG manifolds modification 

A different attempt to increase the mass flow through the PDP channels has been the 

restriction of the diameters that feed the Extraction Grid in order to reduce the mass 

flow in this component. By taking in account the nominal mass flow rate foreseen for 

the Extraction Grid (5.02 kg/s) and for each Extraction Grid segment (1.255 kg/s), an 

optimization has been done in order to select the correct pipe diameters with an 

acceptable fluid velocity. 

In the reference design, with respect to Figure 2-31, the diameters are: 

- PART#1: DN 2’’; 

- PART#2: DN 1’’1/2; 

- PART#3: DN 1’’1/2. 

To increase the pressure drop by reducing the diameters, and accepting a fluid velocity 

(in the nominal case) of about 3÷4 m/s (Table 2-9), in the one-dimensional model the 

dimensions have been changed as in the following: 

- PART#1: DN 1’’1/2; 

- PART#2: DN 3/4’’; 

- PART#3: DN 3/4’’. 

 

Figure 2-31 Extraction Grid manifolds diameters 

 

PART#1 

PART#2 

PART#3 
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Table 2-9 Extraction Grid manifolds: diameters optimisation  

PART#1  PART#2 and PART#3 

Nominal mass flow 5.02 kg/s Nominal mass flow 1.255 kg/s 

DN OD t ID v DN OD t ID v 

  mm mm mm m/s   mm mm mm m/s 

2'' 60.32 3.91 52.5 2.32 1''1/2 48.26 3.68 40.9 0.96 

1''1/2 48.26 3.68 40.9 3.83 1''1/4 42.16 3.56 35.04 1.30 

1''1/4 42.16 3.56 35.04 5.22 1'' 33.4 3.38 26.64 2.26 

1'' 33.4 3.38 26.64 9.02 3/4'' 26.67 2.87 20.93 3.65 

 

The boundary conditions are the following: 

- the total mass flow rate at main inlet is 33 kg/s; 

- the water temperature at the main inlet is 35 °C; 

- another inlet is present in order to feed the Plasma Grid and Bias Plate, here 

the total mass flow rate is  0.25 kg/s while the inlet water temperature is 150 °C; 

- the pressure at the common outlet is 1.5 MPa; 

- the heat loads are those listed in Table 2-5. 

 

The results are shown in Figure 2-32 and Figure 2-33. The flow rate in each EG 

segment is about 2.4 kg/s (instead of 3.4 kg/s of the reference design): by reducing the 

pipe diameters is possible to reduce the mass flow in the EG but the gained flow is 

distributed among all the other components and an improvement of the PDP cooling is 

not recognizable. 

According to the results of the simulation, the total pressure drop of the entire cooling 

circuit is 445 kPa and the coolant outlet temperature 60 °C.  
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Figure 2-32 Normalised mass flow rate (calculated over nominal value) and 
coolant outlet temperature for PDP, FSLW, FSBP, RF Coils, 
SCLW, EG, in case of EG manifolds optimized  

 

 

Figure 2-33 Normalised mass flow rate (calculated over nominal value) and 
coolant outlet temperature for BP and PG, in case of EG 
manifolds optimized  

  



50 

 

2.4.1.3.4 New design A 

Compared to the reference design the following modifications have been implemented: 

- PDP channels all parallel connected; 

- EG manifolds optimized as discussed in paragraph  2.4.1.3.3; 

- a localised pressure drop of 440 kPa has been put at the EG outlet in order to 

get the required mass flow; 

- four parallel connections of FSLW with two FSLW in series instead of eight 

parallel different connections.  

In Figure 2-34 the sketch of the circuits is shown. 

The boundary conditions are the following: 

- the total mass flow rate at main inlet is 33 kg/s; 

- the water temperature at the main inlet is 35 °C; 

- another inlet is present in order to feed the Plasma Grid and Bias Plate, here 

the total mass flow rate is  0.25 kg/s while the inlet water temperature is 150 °C; 

- the pressure at the common outlet is 15 bar; 

- the heat loads are those listed in in Table 2-5. 

 

Figure 2-34 Sketch of the design A for the MITICA Beam Source cooling  

33 kg/s @ 35°C 

0.25 kg/s  

@ 150°C 
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The results are plotted in Figure 2-35 and Figure 2-36. The total pressure drop of the 

entire cooling circuit  is 650 kPa and the coolant outlet temperature 51 °C.  

As shown in Figure 2-35, with the mentioned modifications, a good flow balancing has 

been achieve and only the FSLW has still an higher mass flow rate. 

 

Figure 2-35 Normalised mass flow rate (calculated over nominal value) and 
coolant outlet temperature in the design A for PDP, FSLW, FSBP, 
RF Coils, SCLW, EG 

 

Figure 2-36 Normalised mass flow rate (calculated over nominal value) and 
coolant outlet temperature in the design A for BP and PG  
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2.4.1.3.5 New design B 

Compared to the reference design the following modifications have been implemented: 

- PDP channels all connected in parallel; 
- EG manifolds optimized as discussed in paragraph 2.4.1.3.3; 
- a localised pressure drop of 440 kPa has been put at the EG outlet in order to 

get the required mass flow; 
- two localised pressure drops of 330 kPa have been put at the two FSLW outlet 

in order to get the required mass flow. 
 

The boundary conditions are the following: 

- the total mass flow rate at main inlet is 33 kg/s; 
- the water temperature at the main inlet is 35 °C; 
- another inlet is present in order to feed the Plasma Grid and Bias Plate, here 

the total mass flow rate is  0.25 kg/s while the inlet water temperature is 150 °C; 
- the pressure at the common outlet is 15 bar; 
- the heat loads are those listed in Table 2-5. 

 

Figure 2-37 Sketch of the design B for the MITICA Beam Source cooling 

33 kg/s @ 35°C 

0.25 kg/s  

@ 150°C 
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The results are plotted in Figure 2-38 and Figure 2-39. The total pressure drop of the 
entire cooling circuit 620 kPa and the coolant outlet temperature is 51 °C.  

As shown in Figure 2-38 the proposed modifications allow to achieve a really good flow 

balancing. The mass flow in some PDP channels is still under the nominal value, but is 

not possible to reach the nominal value in all the channels by using a total parallel 

connection which would requires 18 kg/s only for the PDP. 

 

Figure 2-38 Normalised mass flow rate (calculated over nominal value) and 
coolant outlet temperature in the design B for PDP, FSLW, FSBP, 
RF Coils, SCLW, EG  

 

Figure 2-39 Normalised mass flow rate (calculated over nominal value) and 
coolant outlet temperature in the design B for BP and PG 
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2.4.1.4 Discussion 

The developed integrated model of the MITICA RF ion source cooling system has been 

used as a versatile tool to analyse the proposed design. As the results didn’t fulfil the 

requirements in terms of flow partitioning, different arrangements of the cooling circuit 

have been simulated. 

First of all single minor modifications have been implemented by maintaining the 

original design as far as possible. The resulting improvement of the flow rate 

partitioning was not sufficient and new arrangements of the components have been 

modelled. 

The best results have been obtained by using the so called design B in which, 

compared to the previous proposed design, the following modification are required:  

- the PDP channels are all parallel connected; 

- the EG manifolds have been optimised by reducing the pipe diameter assuming 

a maximum bulk velocity of about 3÷4 m/s;  

- a localised pressure drop of 440 kPa has been inserted at the EG outlet; 

- two localised pressure drops of 330 kPa have been inserted at the two FSLW 

outlets.  

By adopting this solution, the total pressure drop of the cooling circuit is 620 kPa 

(instead of the 370 kPa expected in the first design). 

As shown in Figure 2-38 the new design guarantee the correct flow rate in all the 

component except to the PDP#1, PDP#2, PDP#3 and PDP#4 for whom the water 

flowing in the channels is about 40% less than the desired value. The major constrain 

is given by the total inlet mass flow rate, thus by adopting an arrangement in which the 

PDPs are in parallel connected, the nominal required flow rates are not achieving 

everywhere.  

The design B has been officially adopted for the MITICA RF ion source. 
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2.4.2 Grounded Grid and Electron Dump 

The MITICA Grounded Grid (GG) and Electron Dump (ED) are cooled down by a 

common cooling system (shown in Figure 2-40). 

 

Figure 2-40 Overview of the grounded grid and electron dump cooling 
system 

 

The cooling circuit has been analysed in order to get the foreseen mass flow rate 

partitioning inside each component, the outlet coolant temperature and the pressure 

drop of the entire system. 

The GG is composed of 4 identical segments. Each grid segment is connected to the 

main manifolds and it is fed in parallel with the others. The ED is made of four panels: 

the right and top ones are hydraulically connected in series and then fed in parallel with 

the series of the bottom and left ED panels. The cooling water is derived directly from 

the main inlet manifold and returns through the main outlet manifold. 
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2.4.2.1 CFD Sub-Modelling 

The Grounded Grid has been analysed by using ANAYS CFX in order to obtain the 

characteristic curve (pressure drop vs. mass flow rate) of each segment. 

The nominal mass flow rate for one segment is 4.7 kg/s and the corresponding 

pressure drop equals to 414 kPa [23].  

An ideal parabolic trend of the pressure drop has been assumed. The total heat load is 

1485 kW for the entire Grounded Grid [23]. 

The cooling channels of the four Electron Dump panels have been simulated directly in 

Flowmaster by using the pipe elements. The total heat load is 7.5 kW for each panel 

[24]. 

2.4.2.2 Integrated 1D model 

In Figure 2-41 the implemented cooling circuit model of the MITICA GG and ED is 

shown. The experimental components have been simulated by using discrete losses 

with the calculated pressure drop curve following by heat exchangers. 

Each GG segment has been simulated by using 12 parallel channels where each 

localise pressure drop has the characteristic curve reported in Table 2-10 and an 

imposed thermal power of 31 kW. A magnification of one Grounded Grid segment is 

shown in Figure 2-42 where it is possible to distinguish between the 12 different 

channels. 

 

Table 2-10 Grounded Grid: pressure drop vs. mass flow rate values 

Mass flow rate  
[kg/s] 

Pressure Drop  
[kPa] 

0.20 104 

0.39 414 

0.59 932 
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Figure 2-41 Overview of the hydraulic network in Flowmaster 
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Figure 2-42 Magnification of one Grounded Grid segment 

 

  



59 

 

2.4.2.3 Results 

The 1D CFD thermo-hydraulic model has been used to evaluate the mass flow rate 

partitioning and outlet coolant temperatures in each cooling circuit in different 

scenarios. In the following, the results of the simulations are reported by using the 

nomenclature shown in Figure 2-43. 

 

Figure 2-43 Nomenclature of the components used to show the results 

 

2.4.2.3.1 Nominal scenario 

The boundary conditions for cooling water in the nominal case are the following: 

- the total mass flow rate at the inlet is 19.5 kg/s; 

- the water temperature at the inlet is 35 °C. 

According to the results of the simulation, the total pressure drop of the entire cooling 

circuit is 624 kPa and the coolant outlet temperature 54 °C. With respect to the 

nomenclature in Figure 2-43, the detailed results for each sub-component are reported 

in Table 2-11 and plotted in Figure 2-44. 
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Table 2-11 Mass flow rate and coolant outlet temperature in the nominal 
case 

Component 
Mass flow rate  

[kg/s] 
Outlet temperature 

[°C] 

GG#1 4,84 53 

GG#2 4,82 54 

GG#3 4,81 54 

GG#4 4,80 54 

ED#bottom 0,11 51 

ED#left 0,11 67 

ED#right 0,11 51 

ED#top 0,11 67 

 

 

Figure 2-44 Mass flow rate and coolant outlet temperature in the nominal 
case  

 
In order to understand how the pressure drops are distributed along the cooling circuit, 

with respect to the Figure 2-45, five different parts have been identified and the 

pressure drop along each part is reported in Table 2-12. 

Please note that the Electron Dump cooling circuit is not shown: the total pressure drop 

is dominated by the Grounded Grid part. 
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Figure 2-45 Overview of the cooling system without the electron Dump 
circuits 

 

Table 2-12 Pressure drop distribution along the Grounded Grid cooling 
system 

Item  Pressure drop  [kPa] 

PART1 20 

PART2 12 

PART3 27 

PART4 36 

PART5 447 

 

Φ
i
 = 65.18 mm 

Φ
i
 = 40.44 mm 

  

Φ
i
 = 10 

mm 

PART1 

PART2 

PART3 
mm 

PART4 

PART5 
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2.4.2.3.2 Other possible scenario 

The cooling system which supplies the coolant water can vary the mass flow rate 

during the operations. Different case studies have been simulated to check the flow 

partitioning and the outlet coolant temperatures: 

- SCENARIO#1: total mass flow rate equals to 9.75 kg/s (50% of the nominal 

mass flow); 

- SCENARIO#2: total mass flow rate equals to 14.63 kg/s (75% of the nominal 

mass flow); 

- SCENARIO#3: total mass flow rate equals to 21.45 kg/s (110% of the nominal 

mass flow). 

In all the possible scenarios mentioned above, the temperature of the water at the inlet 

has been set to 35 °C and the thermal powers on the components are always set to the 

nominal values (1485 kW for the entire Grounded Grid and 7.5 kW for each Electron 

Dump panel). 

 

Table 2-13 Mass flow rate partitioning and outlet temperature in different 
scenarios 

 
SCENARIO#1        

(9.75 kg/s) 
SCENARIO#2       
(14.63 kg/s) 

SCENARIO#3        
(21.45 kg/s) 

Component 

Mass 
flow 
rate  

[kg/s] 

Outlet 
temperature 

[°C] 

Mass 
flow 
rate  

[kg/s] 

Outlet 
temperature 

[°C] 

Mass 
flow 
rate  

[kg/s] 

Outlet 
temperature 

[°C] 

GG#1 2,42 72 3,63 60 5,32 52 

GG#2 2,41 72 3,62 60 5,31 52 

GG#3 2,41 72 3,61 60 5,29 52 

GG#4 2,40 72 3,60 60 5,28 52 

ED#bottom 0,05 68 0,08 57 0,12 50 

ED#left 0,05 100 0,08 78 0,12 64 

ED#right 0,05 68 0,08 57 0,12 50 

ED#top 0,05 100 0,08 78 0,12 64 

 

The water flow distribution among the segments is highly uniform in all the different 

scenarios. 

The maximum temperatures (~100 °C) are found at the Right Electron Dump and 

Bottom Electron Dump in the SCENARIO#1 which is the lowest mass flow scenario. 

Although this temperature is fully acceptable, this scenario is not considered as an 

operational one, but could occur in case of a failure in the cooling system. 

The proper accelerator grid alignment can be obtained by controlling the grid thermal 

elongation, thus in SCENARIO#2 and #3 the cooling water flow is modulated to obtain 

this effect. 
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The total pressure drop of the circuit and the outlet temperature of the water in the 

different cases are reported in Table 2-14. In Figure 2-46 the characteristic pressure 

drop of the entire cooling circuit is reported. 

 

Table 2-14 System pressure drop and outlet temperature in different 
scenario 

  
Total Pressure Drop 

[bar] 
Outlet temperature 

[°C] 

SCENARIO#1 1.58 72.18 

SCENARIO#2 3.53 59.85 

SCENARIO#3 7.54 52.08 

 

 

Figure 2-46 Characteristic curve Pressure Drop vs. Mass Flow rate for the 
entire Grounded Grid and Electron Dump cooling system 

2.4.2.4 Discussion 

The one-dimensional thermo-hydraulic model of the MITICA grounded grid and 

electron dump has been developed and used to analyse the flow partitioning and the 

coolant outlet temperature for each active cooled element of the cooling circuit. The 

results (Figure 2-44) show a flow distribution and outlet temperature fully acceptable. 

The total pressure drop of the system is equal to 624 kPa with the nominal flow of 19.5 

kg/s.  

Other scenarios have been simulated in order to characterise the cooling circuit at 

different mass flow rate (Figure 2-46). 
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2.5 Neutraliser 

The MITICA Neutraliser, being the first Beam line Component (BLC), plays an 

important role and it is subjected to heating by beam and co-accelerated particles. An 

isometric view, with the component naming of the visible elements, is shown in Figure 

2-47. 

The neutralisation of beam ions occurs in the Neutraliser along four vertical channels of 

rectangular cross-section, each 3 m long and 1.7 m high, laterally delimited by five 

OFHC copper walls. The panels are cooled down by demineralised water running 

inside 14 vertical channels (manufactured by deep-drilling). The closed cooling circuit is 

realised by welded plugs. Other oxygen free (OF) copper panels are placed at the top 

and bottom sides of the Neutraliser. The edges of the five panels, at the beam entrance 

section, subjected to high heat loads due to power deposition from accelerated beam 

ions and electrons that are stripped in the accelerator, are protected by leading edge 

elements (LEEs) made of CuCrZr alloy with twisted tapes as turbulence promoters. 

Additional copper panels, placed around the Neutraliser entrance section, constitute 

the ion and electron dumps that represent a protection against accelerated particles 

with diverging trajectories towards the cryopumps and vessel [25]. 

The Neutraliser cooling circuit is shown in Figure 2-48. The design shall guarantee the 

suitable flow rate partitioning among the different circuits and the analyses have been  

focused in particular on the bulk coolant temperature: a maximum outlet temperature of 

110 °C must be guaranteed inside the panel channels, according to requirements from 

PED (Pressure Equipment Directive) hazard classification, in order to simplify the 

procedure to affix the CE marking. The same requirement is not foreseen for the LEEs 

because of their small water volume.  
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Figure 2-47 Isometric NED view and naming of the main visible elements  

 

Figure 2-48 NED cooling circuit view and its main elements; a vertical panel 
is also shown 
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2.5.1 Thermal Loads 

The thermal loads on the actively cooled elements depend on the beam parameters.  

The reference beamlet parameters are defined by maximum deposition of power onto 

the component: 7 mrad beam core divergence, 30 mrad halo divergence with 15% halo 

power fraction; this beamlet scenario has been considered. 

The cooling circuit simulation considers as input data the values of heat power due to 

ions and electrons [26] calculated by means of the codes Trigo and Backscat [27]. 

As shown in Figure 2-49, each panel is divided into 14 sectors; this sub-division 

replicates the scheme of the cooling circuits that are composed by 14 vertical 

segments, thus, the sectors represent the surfaces from which the heat is collected by 

each single segment. The upstream sector (1/14 of the surface, first from left) of each 

panel is shadowed by the previous panel or by the leading edge element, and receives 

less beam halo power. In the attempt of uniformly collect the halo power, the 

positioning of the channel circuit inside the panels is therefore non-symmetrically 

placed, and the surface is divided in accordance. 

 

Figure 2-49 Power densities on the surfaces dividing the panels according to 
the cooling circuit routing 

 

 

0                       550   

  kW/m
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2.5.2 Sub-Modelling of piping elements 

Because of the particular geometry of some piping elements, the development of sub-

models is needed in order to predict their hydraulic behaviour. 

In particular the following sub-models have been obtained: 

1) swirl tube; 

2) expansion joint pipes. 

2.5.2.1 Swirl channels modelling 

Twisted tapes are foreseen inside the Leading Edge Elements (LEE) as turbulence 

promoters. The hydraulic behaviour of these elements have been characterised by 

using analytical formulas in order to find the characteristic curve pressure drop vs. 

mass flow rate. 

The hydraulic diameter is defined as: 

𝐷ℎ =
4𝐴

𝑃𝑤
= 𝐷𝑖

𝜋𝐷𝑖 − 4𝛿

2𝐷𝑖 + 𝜋𝐷𝑖 − 2𝛿
 Eq. 15 

where A is the flow area [m2], Pw the wetted perimeter [m], Di the inner diameter and δ 

the twisted tape thickness [m] 

The Reynolds number, referred to the hydraulic diameter and swirl flow, is given by Eq. 

16 (Ksw=πDh/pitch is the twist ratio, and pitch is the distance between two homologous 

consecutive elements of the inserted twisted tape [m], Dh the hydraulic diameter [m], v 

is the axial component of the fluid velocity [m/s], ρb is the mass density of the bulk 

[kg/m3], μb is the dynamic viscosity of the bulk [Pa s]). 

𝑅𝑒𝑠𝑤 = (1 + 𝐾𝑠𝑤
2 )0.5 (

𝑣 𝜌𝑏𝐷ℎ

𝜇𝑏
) Eq. 16 

The non-linear Colebrook-White correlation for turbulent flow [29] modified in order to 

take in account the swirl flow, has been used for the friction factor fsw calculation (in the 

Fanning form): 

1

√4𝑓𝑠𝑤
= −2 𝑙𝑜𝑔10(

2.51

𝑅𝑒𝑠𝑤 √4𝑓𝑠𝑤
+

휀𝑟

3.71
) Eq. 17 

where εr=ε/Dh is the reduce roughness. 

Finally, the pressure drop along the swirl channel is given by:  

𝛥𝑝 = 4𝑓𝑠𝑤
𝐿

𝐷ℎ
 𝜌𝑏(1 + 𝐾𝑠𝑤

2 )
3
2  

𝑣2

2
 Eq. 18 

where L is the tube length [m]. 
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A Matlab [28] routine has been implemented to solve the above listed equations. The 

characteristic pressure drop curve shown in Figure 2-50 have been obtained for the 

following geometrical parameters: 

- internal diameter: 18 mm; 

- pitch: 70 mm; 

- tape thickness: 4 mm; 

- length: 1.85 m. 

 

Figure 2-50 Leading Edge Element: characteristic curve Pressure drop vs. 

Mass flow rate   

 

2.5.2.2 Expansion joint pipes modelling 

The hydraulic behaviour of the expansion joint pipes (Figure 2-51) have been analysed 

with ANSYS CFX in order to obtain the characteristic curve Pressure drop vs. Mass 

flow rate to be used in the global model of the cooling circuit. The sub-models have 

been simulated by using the k-ε turbulent model. These joints consist of bent tubes 

providing some flexibility to accommodate differential thermal expansions of end parts 

connected by the tubes. 

Two main groups of expansion joints are recognizable: the Leading edge outlet 

expansion joints and the Panel inlet/outlet expansion joints. 
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Figure 2-51 Expansion joints: magnifications of the two main groups. (a) 

Leading edge outlet expansion joints; (b) Panel inlet/outlet 

expansion joints 

For the Leading edge outlet expansion joints (one of them is visible in Figure 2-52) the 

following main mesh parameters have been used and the results are shown in Figure 

2-53 with the characteristic parabolic trend: 

- maximum element size: 1 mm; 

- inflation layer: 5 layers, first layer height equals to 0.5 mm and grow rate 

equals to 1.2; 

- number of elements: 2.9x106. 

 

Figure 2-52 Leading edge outlet expansion joint #1: overview and 

magnification of the mesh 
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Figure 2-53 Leading edge outlet expansion joints: characteristic curve 

Pressure drop vs. Mass flow rate 

 

The same analyses have been carried out for the Panel inlet/outlet expansion joints 
and the results are in Figure 2-54. 

 

Figure 2-54 Panel inlet/outlet expansion joints: characteristic curve Pressure 
drop vs. Mass flow rate 
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2.5.3 Integrated Neutraliser cooling circuit model 

The following cooling circuits have been identified and they are sketched in Figure 

2-55: 

- five vertical panels within which the cooling circuits are separated in two lines, 

the downstream circuits and the upstream circuits (D and U). Due to the 

expected power density distribution on the panel surfaces, the upstream circuits 

are longer than the downstream circuits; 

- the top spacer cooling circuits (TS) and the bottom spacer cooling circuits (BS); 

- the cooling circuits inside the Leading Edge Elements (LEE); 

- the cooling circuit inside the Ion Dump (ID); 

- the cooling circuit inside the Electron Dump (ED); 

- the cooling circuits inside the Right Electron Dump (RED); 

- the cooling circuits inside the Left Electron Dump (LED). 

The thermo-hydraulic 1D model (Figure 2-56) has been made with Flowmaster code 

and it has been used to evaluate the mass flow rate partitioning and outlet coolant 

temperatures in each cooling circuit. 

 
Figure 2-55  Cooling scheme of the Neutraliser 
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Figure 2-56 Entire view of the model created in Flowmaster of the Neutraliser 

cooling system. Due to its large extension the figure is not really 

understandable but all the cooling circuits are indicated and a 

magnification of a small part is present in the bottom part 

2.5.4 Results 

Even if the PRIMA cooling plant is able to supply the MITICA Neutraliser up to 80 kg/s 

with inlet water temperature within the range of  20÷55 °C [10], the operations on ITER 

are foreseen with 50÷55 kg/s at 35 °C, the remaining mass flow rate is considered 

unnecessary.  

Two different scenarios have been taken in account: 

- SCENARIO#1 in which the total mass flow rate is 50 kg/s; 

- SCENARIO#2 in which the total mass flow rate is 55 kg/s. 

The inlet water temperature for both the cases is 35 °C and the outlet pressure has 

been set at 1.7 MPa. 

Figure 2-57 shows the mass flow rate and the water velocity inside each component for 

both the scenarios. The total pressure drop for the SCENARIO#1 is 300 kPa, while 360 

kPa has been found for the SCENARIO#2. 
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Figure 2-57 Mass flow rate partitioning for the Neutraliser cooling system 

 

Figure 2-58 shows the coolant outlet temperature for all the components for both the 

scenarios. The maximum outlet temperatures are 87 °C for the panels and 106 °C for 

the three central LEEs with a total mass flow rate of 50 kg/s and inlet temperature of 35 

°C. The maximum outlet temperatures decrease to 83 °C for the panels and 100 °C for 

the three central LEEs when the total mass flow rate is 55 kg/s and the inlet 

temperature is equals to 35 °C. 

In order to consider the different operating conditions of the inlet water temperature 

(20÷55 °C), in Figure 2-59 vertical bars are used to show the resulting outlet 

temperature range in case of 50 kg/s of inlet mass flow rate. The maximum 

temperature is 107 °C for the panels and 126 ° for the LEEs.  

The same plot, in case of 55 kg/s as inlet mass flow rate, is shown in Figure 2-60 

where the maximum temperature is 103 °C for the panels and 120 ° for the LEEs. 
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Figure 2-58 Outlet coolant temperatures for SCENARIO#1 and SCENARIO#2. 
For both the scenarios the inlet temperature is equals to 35 °C 
(ITER requirement) 

 

Figure 2-59 Influence of inlet coolant temperature in outlet coolant 
temperatures in the case of SCENARIO#1 (total mass flow rate 
equals to 50 kg/s) 

 

Figure 2-60 Influence of inlet coolant temperature in outlet coolant 
temperatures in the case of SCENARIO#2 (total mass flow rate 
equals to 55 kg/s) 
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2.5.5 Discussion 

A one-dimensional model has been developed as a versatile tool in order to have a 

complete characterisation of the MITICA Neutraliser cooling system. The flow 

partitioning and the outlet temperature of each active cooled element have been 

analysed. 

The maximum outlet temperatures are 87 °C for the panels and 106 °C for the three 

central LEEs with a total mass flow rate of 50 kg/s. The maximum outlet temperatures 

decrease to 83 °C for the panels and 100 °C for the three central LEEs with a total 

mass flow rate of 55 kg/s. These maximum temperatures have been calculated for the 

operation in the ITER HNB injectors at full beam power with inlet water temperature of 

35 °C.  

A maximum coolant temperature of 110 °C should be guaranteed inside the panels 

channels, according to requirements from PED (Pressure Equipment Directive) hazard 

classification, in order to simplify the procedure to affix the CE marking. 

The PRIMA cooling plant supplies the Neutraliser within coolant temperature in the 

range of 20÷55 °C. Thus, by fixing the mass total inlet mass flow rate at 50 kg/s, the 

maximum temperature for the panel channels is 107 °C. This value has not been 

considered sufficiently below the limit of 110 °C. An increased inlet mass flow rate (up 

to 55 kg/s) has been proposed, and accepted by ITER, because the maximum outlet 

temperature for the panel channels decreases at 103 °C, allowing to simplify the 

procedure to affix the CE marking. 

The total pressure drop of the cooling system is equals to 300 kPa in case of the 

SCENARIO#1 with 50 kg/s of mass flow, and 360 kPa for the SCENARIO#2 with 55 

kg/s of total mass flow. 
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2.6 Residual Ion Dump 

The MITICA Residual Ion Dump (RID) consists of five vertical dump walls, a support 

frame, manifolds and headers for the water cooling supply (see Figure 2-61 and Figure 

2-62). The five walls realise four channels crossed by the particle beam.  

Electrostatic fields are used to deflect the ions that are dumped onto the five walls. The 

fields are produced by applying zero potential to the two external panels and to the 

central one named grounded walls, and negative potential (- 20kV +/- 5kV @ 50Hz with 

trapezoidal wave form) to the two remaining named biased walls. 

Each dumped panel consists of 18 vertical beam stop elements (BSEs) shown in 

Figure 2-63 and made of CuCr1Zr alloy (2.3 tons for the 5 walls). The BSEs have a 

rectangular cross-section (22mmx100mm) with four internal channels of 14mm in 

diameter for active cooling; the cooling channels are machined by deep drilling from 

both ends and caps are welded at the end sides to produce the close cooling circuits. 

AISI 316L twisted tapes with a pitch of 50 mm are inserted inside the cooling channels 

as turbulence promoters. 

The BSEs are supported and positioned at the bottom between the two halves of a 

panel clamping bar. An upper bar similarly clamps the BSEs top end, but with gaps 

allowing free thermal expansion of the BSEs in the vertical direction. The wall assembly 

rests on two transverse bars and its support allows free axial thermal expansion. Walls 

biased at high voltage are connected to the transverse bars via cylindrical ceramic 

insulators. 

All the manifolds are made of AISI 316L. The panel manifold is a single pipe DN 100 

and the main headers are DN 200.  

A gas baffle is mounted on the frame at the RID exit section to subdivide the injector 

volume and therefore to achieve differential pumping for reduction in ITER of re-

ionisation losses in the duct liner. 

The cooling circuit is shown and sketched in Figure 2-64. All the five walls are 

hydraulically connected in parallel: three of them (the grounded ones) are top filled and 

two (biased ones) are bottom filled. Inside the BSEs, the water runs through two swirl 

tubes in parallel, up to the other edge of the BSE and back (see Figure 2-65). 

The RID is fed with 100 kg/s of demineralised water supplied by the PRIMA cooling 

plant with an inlet range temperature of 20÷55 °C and 2.0 MPa of inlet pressure. The 

total power to exhaust is up to 18 MW.  

The 1D model of the cooling circuit has been developed in ANSYS APDL. 
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Figure 2-61 MITICA RID assembly, rear-top view 

 

 

Figure 2-62 MITICA RID assembly, front-bottom view 
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Figure 2-63 MITICA RID wall sub-assemblies with the 18 BSEs 

 

 

 

Figure 2-64 RID cooling system: 3D overview and sketch 

 

 

PANEL #1 

PANEL #2 

PANEL #4 

PANEL #3 

PANEL #5 
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Figure 2-65 BSE magnification with the internal channels  
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2.6.1 CFD sub-modelling 

Because of the particular geometry of the BSE inlet and outlet sections (Figure 2-66), 

their hydraulic behaviour has been analysed with ANSYS CFX in order to obtain the 

loss coefficient to be used in global models of the cooling circuit. The k-ε turbulence 

model has been used . 

The Total Pressure drops Δp have been obtained from the simulations, and the 

localised loss coefficients have been calculated as: 

𝐾 =
∆𝑝

𝜌 (
𝑣2

2
)
 

Eq. 19 

where K is the loss coefficient [-], Δp the pressure drop [Pa], ρ the bulk density of the 

coolant [kg/m3] and v bulk fluid velocity [m/s]. 

 

 

Figure 2-66 RID overview with BSE inlet and outlet magnification 

  



81 

 

2.6.1.1 BSE inlet 

The dependence of the results on the mesh size has been analysed by comparing 

three different meshes named A, B, C. The nominal mass flow rate (1.1 kg/s) has been 

used in each simulation. In Table 2-15 the main mesh parameters and the results are 

reported. 

Table 2-15 Main mesh parameters 

Mesh name 
Elements 
number  
[x106] 

Minimum 
element size 

[mm] 

Pressure 
drop  
[kPa] 

A 1.86 1 12.51 

B 4.6 0.5 13.54 

C 7.75 0.4 15.45 

 

The mesh sensitivity has been evaluated as shown in Figure 2-67 which shows the 

trend of the pressure drop as function of the mesh number of elements, which can be 

considered as a quantitative index of the accuracy of the mesh for simulating the 

coolant flow. The mesh named “C” appears a good mesh, pretty close to the 

computational limits for a usable CFD model; even though oscillation is found in Figure 

2-67 due to simplifications in the convergence criteria, a more sophisticated mesh 

would not bring big improvements.  

 

Figure 2-67 Total pressure drop for the BSE inlet with different meshes 

 

Mesh A 

Mesh B 

Mesh C 
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Figure 2-68 Overview of the mesh for the BSE inlet 

 

 

Figure 2-69 Particular of the inflation layer around the turbulence promoter 
(6 layers, first layer height equals to 0.04 mm and grow rate 
equals to 1.2) 
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Figure 2-70 Particular of the inflation layer around the inlet pipe (6 layers, 
first layer height equals to 0.5 mm and grow rate equals to 1.2) 

 

The stream lines and velocity distribution for case C are shown in Figure 2-71. 

With the mesh “C” three simulations at different mass flow rate have been carried out, 

to obtain the loss coefficient as shown in Table 2-16. The values have been calculated 

by considering an internal diameter of the pipe equals to 18 mm which is the diameter 

of the tube before the enetrance in the BSE. The loss coefficient is constant at 1.1 kg/s 

(nominal mass flow rate) and 0.5 kg/s but it grows when the mass flow rate is very low 

(0.1 kg/s).  

The value K=1.65 has been used in the hydraulic model.  

Table 2-16 BSE inlet loss coefficient 

Mass flow 
rate [kg/s] 

Water 
velocity [m/s] 

Pressure 
drop [kPa] 

K 

0.1 0.39 0.1616 2.09 

0.5 1.96 3.093 1.60 

1.1 4.32 15.41 1.65 
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Figure 2-71 Stream lines and velocity distribution 

 

  

2.6.1.2 BSE outlet 

The study of the BSE outlet geometry has been performed with the following main 

mesh parameters: 

- minimum element size: 0.4 mm; 

- inflation layer around the turbulence promoter: 6 layers, first layer height 

equals to 0.04 mm and grow rate equals to 1.2; 

- inflation layer around the outlet pipe: 6 layers, first layer height equals to 0.5 

mm and grow rate equals to 1.2. 

- number of elements: 10.6x106; 

 

The meshed model is shown in Figure 2-72, Figure 2-73 and Figure 2-74. 

For the BSE outlet, a mesh similar to the BSE inlet has been used, and the sensitivity 

analysis has not been carried out as a certain confidence on the CFD models has been 

achieved. 
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Figure 2-72 Overview of the mesh for the BSE outlet 

  

 

Figure 2-73 Particular of the inflation layer around the turbulence promoter 
(6 layers, first layer height equals to 0.04 mm and grow rate 
equals to 1.2) 
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Figure 2-74 Particular of the inflation layer around the outlet pipe (6 layers, 
first layer height equals to 0.5 mm and grow rate equals to 1.2) 

 

The stream lines and velocity distribution are shown in Figure 2-75. 

Three simulations at different mass flow rate have been carried out to obtain the loss 

coefficient, as summarized in Table 2-17. The values have been calculated by 

considering an internal diameter of the pipe equals to 18 mm which is the diameter of 

the tube at the BSE outlet. The loss coefficient is constant at 1.1 kg/s (nominal mass 

flow rate) and 0.5 kg/s but it grow when the mass flow rate is very low (0.1 kg/s).  

The value K=3.1 has been used in the hydraulic model.  

 

Table 2-17 BSE outlet loss coefficient 

Mass flow 
rate [kg/s] 

water velocity 
[m/s] 

Pressure 
drop [kPa] 

K 

0.1 0.39 0.3279 4.25 

0.5 1.96 5.877 3.04 

1.1 4.32 28.63 3.06 
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Figure 2-75 Stream lines and velocity distribution on sections of the flow 
domain 

 

2.6.2 Integrated cooling circuit model 

The geometry of the RID cooling system has been replicated in ANSYS APDL (Figure 

2-76) by using the one-dimensional element fluid116 to model pipes, manifolds and 

swirl tubes. 

The material properties of the water have been implemented in the finite element 

model by using polynomial equations to simulate their proprieties in function of the 

temperature [61].  

Different material properties have been defined for the different friction correlations due 

to the presence or not of the swirl channel elements and in order to take into account 

the specific hydraulic diameter. In particular, for the swirl channel the Eq. 15, Eq. 16, 

Eq. 17 and Eq. 18 have been implemented. 

In order to compute the localised pressure drop in bends, T-junction, inlet and outlet, 

the loss coefficients given in Table 2-18 [63] have been used. As already stated, for the 

BSE inlet and outlet the localised loss coefficients have been set to 1.65 and 3.1 

respectively.  

The boundary condition of the one-dimensional model are: 

- total mass flow rate: 100 kg/s; 

- outlet pressure: 2 MPa. 
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Table 2-18 Localised loss coefficient 

Type of element K 

90° bend 0.5 

45° bend 0.1 

Outlet loss 1 

Inlet loss 0.5 

T junction through pipe (DN70) 0.3 

T junction through pipe (DN125) 0.2 

T junction branch pipe (DN70) 1.5 

 

 

 

Figure 2-76 One-dimensional model in ANSYS APDL of the RID cooling 
circuit. Different colours indicate a different material number. 
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2.6.3 Results 

The model has been used as a versatile tool to analysed the flow partitioning of the 

coolant along each BSE in two different cooling circuit configurations.  

For both the configurations the cooling channel diameter inside the RID walls is 14 mm. 

A balanced solution, which corresponds to identical twisted tapes with 4 mm thickness 

installed inside all the wall cooling channels, has been compared to an unbalanced 

solution for which an increasing of the flow rate inside the central BSEs is realised by 

using different tape thickness. 

2.6.3.1 Balanced solution 

The balanced solution corresponds to a design in which all the cooling channels inside 

the BSEs have the same geometrical parameters: 

- internal diameter: 14 mm; 

- tape thickness: 4 mm; 

- tape pitch: 50 mm. 

The resulting flow partitioning has been analysed by using the following definition of 

flow non-uniformity for each panel: 

Δflow =
Φmax − Φmin

Φmin
 Eq. 20 

where Φmax  and Φmin are the maximum and minimum mass flow rate along one BSE. 

With respect to the panels numbering shown in Figure 2-64, the flow non-uniformity is: 

- panel 1:  1.24 %; 

- panel 2:  0.54 %; 

- panel 3:  1.25 %; 

- panel 4:  0.75 %; 

- panel 5:  1.25 %. 

An overall non-uniformity can also be calculated considering the absolute maximum 

and minimum, which is 3.43% (between BSE#18 of panel 2 and BSEs #9 and #10 of 

panel 5). 

Figure 2-77 is a schematic top view of the RID and shows the mass flow rate inside 

each BSE for each panel. These results mean that the flow is well distributed within 

each wall panel.  

The total pressure drop is 710 kPa (the local pressure along the circuit is shown in 

Figure 2-78). 

The average mass flow rate inside one BSE (1.1 kg/s) has been used to calculate the 

temperature of the coolant at the outlet of the BSEs (Table 2-19).  The maximum 

foreseen heat loads on the wall are: 547 kW for the double side heated middle panels 

(panel #2 #3 #4) and 303 kW for the single side heated side panels (panel #1 #5). 

These thermal powers have been calculated with the BTR code by assuming a 

gaussian shape of the beam profile passing through each beam channel of the RID 

[30]. With respect to the saturation temperature (calculated at the minimum possible 
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pressure) the boiling margin between the bulk and the saturation temperature is 35 °C 

in the middle panels and 87 °C for the two side panels.  

 

 

Figure 2-77 Balanced solution: mass flow distribution of the water in BSEs 
elements 
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Figure 2-78 Balanced solution: overview of the local pressure [Pa] in the 
system 

 

Table 2-19 Cooling parameters and boiling margin for the balanced RID 
cooling scheme 

Total mass flow rate [kg/s] 100 

Tinlet [°C] 38 

  Middle panels Side panels 

mpanel [kg/s] 59.4 39.6 

mBSE [kg/s] 1.1 1.1 

Internal diameter [m] 0.014 0.014 

Tape thickness [m] 0.004 0.004 

Tape pitch [mm] 50 50 

Hydraulic diameter, Dh [m] 6.12E-03 6.12E-03 

Heat capacity, cp [J/(kg °C)] 4200 

BSE max heating power [W] 5.47E+05 3.03E+05 

BSE max bulk temp rise, T [°C] 118 66 

BSE max bulk outlet temp [°C] 156 104 

Minimum pressure [MPa]  1.29 1.29 

Saturation water temperature [°C] 191 191 

Boiling margin at the BSE outlet [°C] 35 87 
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2.6.3.2 Unbalanced solution 

In order to increase the boiling margin a unbalanced solution has been analysed. 

Different flow rates are realised in BSEs as twisted tape thickness is properly set: 4 mm 

thickness of twisted tapes inserted inside all the cooling channels except for the BSEs 

located in the centre and middle walls for which 2 mm of tape thickness is foreseen to 

increase the mass flow rate (9 BSE from no. 7 to no. 15, see Figure 2-79).  

 

Figure 2-79 Highlighting of BSEs with reduced twisted tape thickness (2 mm) 

 

Figure 2-80 is a schematic top view of the RID and shows the results in terms of mass 

flow rate inside each BSE for the unbalanced design. The flow non-uniformity has not 

been considered here because would not make sense. The results clearly show the 

increased flow rate in the central BSEs with the reduced tape thickness: about 1.35 

kg/s are expected in these BSEs while 1.01 kg/s for the other. 

The total pressure drop is 610 kPa (the local pressure along the circuit is shown in 

Figure 2-81). 

The outlet temperatures are reported in Table 2-20 in which, for simplicity, only the 

BSEs with reduced tape thickness have been considered for the middle walls. With 

respect to the saturation temperature (calculated at the minimum possible pressure) 

the boiling margin between the bulk and the saturation temperature is 60 °C in the 

middle panels and 85 °C for the two side panels. Compared to the balanced solution, 

with the unbalanced design the boiling margin, in the most heated BSEs, is increased 

from 35 to 60 °C.  

This solution has been adopted for the final design of the RID cooling system. 

Beam
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Figure 2-80 Unbalanced solution: mass flow distribution of the water in 
BSEs elements 
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Figure 2-81 Unbalanced solution: overview of the local pressure [Pa] in the 
system 

 

Table 2-20 Cooling parameters and boiling margin for the unbalanced RID 
cooling scheme 

Total mass flow rate [kg/s] 100 

Tinlet [°C] 38 

  Middle panels Side panels 

mpanel [kg/s] 63.7 36.4 

mBSE [kg/s] 1.35 1.01 

Internal diameter [m] 0.014 0.014 

Tape thickness [m] 0.002 0.004 

Tape pitch [mm] 50 50 

Hydraulic diameter, Dh [m] 7.41E-03 6.12E-03 

Heat capacity, cp [J/(kg °C)] 4200 

BSE max heating power [W] 5.47E+05 3.03E+05 

BSE max bulk temp rise, T [°C] 96 71 

BSE max bulk outlet temp [°C] 134 109 

Minimum pressure [MPa]  1.39 1.39 

Saturation water temperature [°C] 194 194 

Boiling margin at the BSE outlet [°C] 60 85 
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2.6.4 Draining and dry procedure 

The RID cooling channels have to be dried in order to allow a safe removal from the 

vacuum vessel of the component without water and contaminants. The draining and 

drying procedure has not yet been defined, in particular as regards the required 

blowing out pressure level.  

This pressure is estimated, as presented in the following, by considering the cooling 

circuit geometrical characteristics and by a dedicated CFD sub-modelling of the 

compressible Nitrogen gas flow inside the BSE channels to be used for this purpose. 

The coolant trapped inside the circuits will be evacuated only if the pressure difference 

applied at its opposite boundaries is greater than the pressure given by the coolant 

column height that inside the RID panels is p = ρ g h = 1000x9.81x2.74=26.9 kPa 

(Figure 2-82). This static pressure must be smaller than the pressure drop for gas 

flowing across the circuits. 

In particular, one can imagine the case in which only one BSE has been fully 

evacuated, and all the others are partially filled with water; one can imagine as well the 

case in which all the BSE channels have been evacuated, apart from one. In both 

extreme cases, the pressure difference between the inlet and outlet manifold will have 

to be higher than the pressure produced by the coolant column height.  

During gas blowing, the pressure losses will determine the pressure difference 

between the inlet and outlet manifolds. In particular, if the pressure losses in the 

external circuit are neglected, these pressures will be given uniquely by the gas flow 

inside the swirl channels. It is to be expected, in any case, that the pressure losses in 

the gas feeding lines are much smaller than the losses inside the BSEs. 

The pressure drop for gas flowing has been estimated with ANSYS CFX considering 

half the swirl channel inside the BSE. 

Figure 2-83 shows the mesh used. The k-ε model has been used in all the simulations 

with the hypothesis of isothermal gas at 343 K. 

As the swirl channel is the element with the highest pressure drop, the other 

contributions have not been taken in account: in a first approximation their contribution 

is not significant, moreover in this way we are in conservative hypothesis.  
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Figure 2-82 Maximum RID water column height 

 

 

Figure 2-83 Particular of the inflation layer around the turbulent promoter (20 
layers, first layer height equals to 0.06 mm and grow rate equals 
to 1.05) 
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Different scenarios have been simulated by considering different fluid velocity inside 

the swirl channel. Figure 2-84 shows the pressure drop as function of the fluid velocity 

for a swirl channel of 3662 mm (1831x2 mm because the path inside the BSE panel is 

composed by two swirl channels), and Figure 2-85 the stream lines in the case with 30 

m/s of inlet fluid velocity. 

 

Figure 2-84 Pressure drop in the swirl channel as function of the fluid 
velocity 

 

Figure 2-85 Stream lines inside a portion of the swirl channel in case of inlet 
Nitrogen velocity of 30 m/s 
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Results are reported in Table 2-21 where the inlet pressure ranging between 119 and 

156 kPa. By assuming the outlet pressure equals the atmospheric pressure (101 kPa), 

the inlet pressure for blowing out and draining has been obtained considering: 

pinlet=poutlet+Δp. 

This calculation gives the minimum nitrogen gas flow rate that must be provided to the 

RID cooling circuit during blowing-out, in order to realize the pressure drop between the 

manifolds of 27 kPa.  

In the case of evacuation of a single channel, the mass flow rate is 6.54E-3 kg/s; in the 

case of complete evacuation, with one single BSE channel still to be evacuated, the 

mass flow rate of  1.18 kg/s will be sufficient (6.54E-3x2x18x5).  

Therefore, if additional losses are neglected, a minimum pressure of 133 kPa and 

mass flow rate of 1.18 kg/s of nitrogen will permit complete blowing out of the RID 

cooling circuit. 

 

Table 2-21 Swirl channel pressure drop as function of different mass flow 

rate 

Mass flow rate for 
one swirl channel 

[kg/s] 

Average fluid 
velocity [m/s] 

Swirl channel 
pressure drop 

[kPa] 

Outlet 
pressure 

[kPa] 

Inlet 
pressure 

[kPa] 

4.33E-03 20 17.5 101 119 

5.42E-03 25 22.2 101 124 

6.54E-03 30 31.4 101 133 

7.67E-03 35 42.1 101 143 

8.82E-03 40 54.5 101 156 
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2.6.5 Discussion 

A one-dimensional FE model has been developed as a versatile tool in order to have a 

complete characterisation of the RID cooling system. The flow partitioning inside the 

BSE elements has been analysed. 

Two different designs of the cooling circuit have been explored. In the case of 

homologous BSE channels and nominal flow rate, the results show a very good flow 

distribution inside each BSE of each panel. The average mass flow rate inside one 

BSE is about 1.1 kg/s and an overall non-uniformity (calculated between the maximum 

and the minimum flow found) equal to 3.43% has been calculated. The maximum 

temperature at the BSE outlet is 156 °C with a boiling margin of 35 °C.  

A modification of the design concerns the increase of the flow area inside the BSE 

(through the reduction of the tape thickness) in order to have a higher mass flow where 

the thermal power is expected to be higher, in the middle of the RID. A case with 2 mm 

of tape thickness for the central BSEs and 4 mm for the others have been analysed. 

The results show a sufficient increase in the mass flow where desired (1.35 kg/s 

instead of the previous 1.1 kg/s for the most heated BSEs). By using this unbalanced 

solution, the maximum temperature at the BSE outlet is 134 °C and the boiling margin 

increases at 60 °C. This second design has been officially adopted for the MITICA RID. 

In order to allow a safe removal of the component from the vacuum vessel, the RID 

cooling channel will have to be dried by using a system able to blow nitrogen inside the 

BSEs and remove the water trapped inside. The coolant trapped inside the circuits will 

be evacuated only if the pressure difference applied at its opposite boundaries is 

greater than the pressure given by the coolant column height inside the RID. The water 

column height has been calculated analytically, and the nitrogen mass flow rate 

needed has been computed with CFD analysis. A mass flow of 1.18 kg/s of nitrogen 

with a minimum pressure of 133 kPa will permit complete blowing out of the RID 

cooling circuit. 
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Chapter 3 
Combined 1D-3D  

thermo-hydraulic model 
High heat loads, wall temperatures and pressures characterize the SPIDER Beam 

Dump. Integrated analyses with shared and linked degree of freedom between 1D and 

3D models within the non-linear process of the ANSYS APDL finite element code have 

been carried out in order to examine the sensitivity of the beam dump as diagnostic 

device. 

3.1 SPIDER Beam Dump 

The SPIDER Beam Dump has been designed to allow two main functions: dumping all 

the beam power coming from the RF beam source, and measuring the temperatures 

on the dumping panels for beam diagnostic. 

To limit the incident power density, the Beam Dump consists of two walls arranged in 

V-shape with an angle between them of 60°. Each panel is composed of 31 actively 

cooled hypervapotrons (HVs) vertically stacked.  

An hypervapotron is a high heat flux element made of finned surface of high 

conductivity material in which the flow direction is perpendicular to the fins in order to 

create a turbulent regime. 

The HVs are made of CuCrZr alloy in order to absorb a total heat flux of 5 MW in case 

of D2 and 6.1 MW in case of H2 with power densities up to 8 MW/m2 [31].  

Thermal sensors are installed at the outlet of each HV to monitor the temperature of 

the cooling water for calorimetric purposes, and in the bottom side of the HVs for 

structural material protection and power deposition profile evaluation. 

A picture of the Spider Beam Dump is shown in Figure 3-1. The main dimensions of 

each panel are: 2060 mm height and 800 mm width. 

The detailed drawings, with the thermocouples (TCs) position, of the hypervapotrons 

intercepting the centre of the beamlet groups (four each panel), are in Figure 3-2 and 

Figure 3-3 for the left and right panel respectively. Other HVs have a reduced set of 

holes for TCs: only ten corresponding to the intercept of each beamlet axis. Initially not 

all holes are equipped with a thermocouple, but only 14 holes of the hypervapotrons 

intercepting the centre of the beamlet groups, 7 for each beamlet group: one in the 

centre and three on each side to measure the gradient of the power density profile. 

Complete and thorough analyses of thermal exchange inside the HVs have been 

carried out by means of multiphysics simulations, involving multiple simultaneous 

physical phenomena and combining thermal conduction with fluid mechanics. 
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Figure 3-1 Picture of the SPIDER Beam Dump 
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Figure 3-2 Detailed drawing of one hypervapotron for the left panel with the 
position of the thermocouples  
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Figure 3-3 Detailed drawing of one hypervapotron for the right panel with 
the position of the thermocouples 
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3.2 Heat transfer and pressure drop correlations for 
hypervapotron 

Along a hypervapotron, because of a variation of surface temperature, fluid 

temperature, and pressure, different heat transfer mechanisms can occur 

simultaneously: 

- forced convection; 

- transition from forced convection to nucleate boiling; 

- nucleate boiling at the channel surface; 

- critical heat flux. 

Considering the above mechanisms, the heat exchange will occurs in forced-

convection surface boiling where three distinct regions can be found [38]. The heat 

transfer is governed by forced convection at low wall superheat; by increasing the 

superheat a combined effect of forced convection and surface boiling occurs; at high 

wall superheat the effect of forced convection seems to disappear and fully developed 

boiling dominates. 

In Figure 3-4 the regions and the temperature trends are shown. From A to B the 

exchange heat mechanism is forced convection. At a certain point located in B, the wall 

temperature has exceeded the saturation temperature of the coolant so that the 

surface has an amount of superheat that allows the bubble nucleation. This point is 

known as Onset of Nucleate Boiling (ONB) and represents the incipient boiling 

condition. After the ONB, the heat transfer rate increases because of an increasing 

amount of vapour, from B to B’ the heat transfer mechanism is named Partial 

Developed Boiling (PDB). Finally at a certain location B’ the boiling effect becomes 

dominant and the region is called Fully Developed Boiling (FDB).  

The advantage of using boiling heat transfer is limited by a condition known as Critical 

Heat Flux (CHF), or alternately Departure from Nucleate Boiling (DNB), which 

represents the maximum exchanged heat flux that the system can withstand. 

At the CHF the presence of bubbles is so high that a vapour film is present along the 

surface and limits the heat exchange causing a dramatic increase of the wall 

temperature. 
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Figure 3-4 Sub-cooled flow boiling regions: schematic of bubble growth 
with wall and bulk temperatures along the channel axis [38]  

3.2.1 Forced convection  

When the wall temperature at the cooling channel is less than the incipient boiling 

temperature, the heat transfer method is forced convection. The correlation able to 

describe the phenomenon is the Modified Dittus Boelter correlation [32][33]: 

𝑁𝑢 = 𝑘 0.023(𝑅𝑒)0.8(𝑃𝑟)0.33 Eq. 21 

where Nu is the Nusselt Number, k an empirical constant used to account the 

turbulence which occurs in the channel formed by the fins, Re the Reynolds Number 

and Pr the Prandt Number. 

The amplification factor k=1.35 has been obtained experimentally and with finite 

element analyses by Falter for different geometry and flow velocities [34] and used also 

in [32]. 

The Reynolds number is: 

𝑅𝑒 =
𝜌𝑏𝑣𝐷ℎ

𝜇𝑏
 Eq. 22 

where ρb is the mass density of the bulk [kg/m3], v the bulk water velocity [m/s], Dh the 

hydraulic diameter [m] and μb the dynamic viscosity of the bulk [Pa s].  

The hydraulic diameter to be used in the Reynolds Number is the hydraulic diameter of 

the flow channel between the fins [34] and is defined as follow (A is the flow section, Pw 

the wetted perimeter, b and h the dimension of the channel): 

𝐷ℎ =
4𝐴

𝑃𝑤
= 4

𝑏ℎ

2(𝑏 + ℎ)
 Eq. 23 
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The Prandt number is defined as: 

𝑃𝑟 =
𝜇𝑏𝑐𝑝

𝜆
 Eq. 24 

where cp is the specific heat of the coolant [J/(kg K)] and λ is the thermal conductivity of 

the water at the bulk temperature [W/(m K)]. 

The heat transfer coefficient in single-phase and forced convection for hypervapotron is 

given by: 

ℎ𝐹𝐶 =
𝑁𝑢 𝜆

𝐷ℎ
=  𝑘 0.023(𝑅𝑒)0.8(𝑃𝑟)0.33

𝜆

𝐷ℎ
 Eq. 25 

The heat flux exchanged in forced convection is (Tw is the channel wall temperature 

and Tb the temperature of the bulk): 

𝑞𝐹𝐶 = ℎ𝐹𝐶  (𝑇𝑤 − 𝑇𝑏) Eq. 26 

3.2.2 Onset of nucleate boiling 

In steady state condition, in order to activate the bubble nucleation, the surface 

temperature has to exceed the saturation temperature of the coolant at the local 

pressure. At the same location, until the temperature of the bulk remains below the 

saturation, a significant increase in the exchanged heat flux occurs [38]. The process is 

known as sub-cooled flow boiling. 

A procedure for predicting the required conditions to activate the bubble nucleation has 

been proposed by Hsu and Graham [36] but the solution does not lead to an explicit 

formula for the incipient heat flux. 

Bergles and Rohsenow presented a much more convenient graphical solution which 

lead to the following expression for the incipient heat flux qONB [37] (the exchanged heat 

flux corresponding the ONB point), the equation is valid in the pressure range  

0.1034 ≤ p ≤ 13.79 MPa [39]): 

𝑞𝑂𝑁𝐵 = 49.2 (
𝑝

6895
)
1.156

[1.8 (𝑇𝑂𝑁𝐵 − 𝑇𝑆𝐴𝑇)]

2.3

(
𝑝

6895
)
0.0234

 
Eq. 27 

where p is the local pressure of the water [Pa], TONB the temperature at which there is 

the onset of nucleate boiling and TSAT the saturation temperature of the water at the 

local pressure. 

The onset nucleate boiling temperature TONB is obtained by imposing the equality 

between the exchanged heat flux in forced convection (Eq. 26) and the incipient heat 

flux (Eq. 27). The solution has to be found by an iterative process: 

ℎ𝐹𝐶  (𝑇𝑤 − 𝑇𝑏) = 49.2 (
𝑝

6895
)
1.156

[1.8 (𝑇𝑂𝑁𝐵 − 𝑇𝑆𝐴𝑇)]

2.3

(
𝑝

6895
)
0.0234

 
Eq. 28 
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In Eq. 28, TSAT is the saturation temperature at the local pressure and it can be 

calculated by using the Steltz and Silvestri equation [40] valid in the pressure range 

620.52 < p < 4688396 Pa: 

𝑇𝑆𝐴𝑇 = 255.38 + ∑𝐴𝑖[ln(0.00145 𝑝)]𝑖
𝑖=8

𝑖=0

− 273.15 

Eq. 29 

 𝐴0 = 19.5322 

 𝐴1 = 13.6626 

 𝐴2 = 1.17678 

 𝐴3 = −0.189693 

 𝐴4 = 0.087453 

 𝐴5 = −0.0174053 

 𝐴6 = 0.00214768 

 𝐴7 = −0.138343 ∗ 10−3 

 𝐴8 = 0.38 ∗ 10−5 

 

3.2.3  Fully Developed Boiling 

At the onset of nucleate boiling, the heat flux becomes nonlinear with respect to the 

wall temperature.  Where strong nucleate boiling occurs the exchanged heat flux qFDB 

can be expressed by [37]: 

𝑞𝐹𝐷𝐵 = 𝐶 (𝑇𝑤 − 𝑇𝑆𝐴𝑇)𝑛 Eq. 30 

where n is a constant in the vicinity of 4 for most surfaces and C a constant function of 

pressure and fluid-surface combination. 

Thom developed a correlation for sub-cooled (or saturated) flow boiling of water under 

conditions where the nucleate boiling contribution is predominant over forced 

convection [41]. The equation neglects the channel geometry and the flow rate and it is 

function of the local pressure and of the difference temperature between the channel 

wall and the saturation temperature:  

𝑞𝐹𝐷𝐵 = 106 [
𝑒

𝑝
87∗105

22.65
(𝑇𝑤 − 𝑇𝑆𝐴𝑇)]

2

 Eq. 31 

the ranges of validity of Eq. 31 are: 0.50 < p <13.8 MPa [39]. 

Schlosser and Boscary modified the Thom formula by using an exponent equals to 2.8 

instead of 2 [42][43]. The correlation has been obtained from experimental campaigns 

on mockups under thermonuclear fusion conditions but it has been developed for swirl 

tubes and in literature it has not been found information about other geometries. On the 

contrary Eq. 31 has been used in [32] for hypervapotron. 
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3.2.4 Partial Boiling Region  

The region between the forced convection and the fully developed boiling is called 

partial boiling. This transition region, which is frequently neglected, is important to 

correctly predict the entire heat transfer curve for a particular system.  

Different procedures have been proposed [37]: 

- McAdams [44] suggested only to use the forced convection and the fully 

developed boiling curves. The transition point is given by the intersection of the 

two curves: for wall temperature below this point the forced convection has to 

be used, while the fully developed boiling curve has to be used above the 

transition point. 

- Kutateladze [45] proposed the following equation that includes a ratio of heat 

transfer coefficients for fully developed boiling and forced convection: 

𝑞𝑃𝐵𝐷

𝑞𝐹𝐶
=

[
 
 
 

1 + {
(

𝑞𝐹𝐷𝐵

(𝑇𝑤 − 𝑇𝑆𝐴𝑇)𝐹𝐷𝐵
)

𝑞𝐹𝐶

(𝑇𝑤 − 𝑇𝑆𝐴𝑇)𝐹𝐶

}

2

]
 
 
 
0.5

 Eq. 32 

- Rohsenow [46] considered the combined effects of forced convection and 

nucleate boiling in the transition region as superimposition of the two effects:  

𝑞 = 𝑞𝐹𝐶 + 𝑞𝐹𝐷𝐵 Eq. 33 

- K. Engelberg-Forster and R. Greif [47] suggested a method in which the 

interception between the forced convection curve and the fully developed 

boiling curve is called (q0); with this value a new point (q1) is calculated as 

follow: 

𝑞1 = 1.4 𝑞0 Eq. 34 

q1 represents the point at which the fully developed boiling occurs; the transition 

region is located between the incipient boiling and q1 and it is represented by a 

straight line, however it’s not explained how the incipient boiling point should be 

found.  
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Figure 3-5 Procedures for estimation of heat transfer with forced 
convection boiling [37] 

 

With other experiments, the constant in Eq. 34  was found to vary from 1.3 to 2.8. A 

modified Kutateladze correlation has been proposed by Bergles and Rohsenow [37]: 

𝑞 = 𝑞𝐹𝐶  [1 + {
𝑞𝐹𝐷𝐵

𝑞𝐹𝐶
(1 −

𝑞𝐹𝐷𝐵𝑖

𝑞𝐹𝐷𝐵
)}

2

]

0.5

 Eq. 35 

where qFDBi is the fully developed boiling heat flux calculated at the incipient boiling. 

The equation has to be used after the incipient boiling to calculate the heat flux curve 

which, in this way, asymptotically approaches the fully developed boiling. 
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3.2.5 Critical Heat Flux 

When the Critical Heat Flux (CHF) is achieved, a boiling crisis occurs accompanied by 

a sudden increase of the surface temperature or deterioration of the heat transfer rate. 

The CHF imposes a limit in designing and operating boiling heat transfer equipment in 

power industries such as nuclear fission, fusion, and fossil power plants [48]. 

As shown in Figure 3-6 after the CHF the wall temperature rises and starts to oscillate. 

By further increasing the heat flux a region named Film Boiling is reached. Here the 

surface is entirely covered with steam, the heat exchange is reduced and the wall 

temperature rises approximately linearly with the heat flux without oscillations.  

 

Figure 3-6 Surface temperature as function of heat flux after CHF [49] 

 

As CHFw is the Critical Heat Flux at the channel wall, the resulting Incident Critical Heat 

Flux (ICHF) has to be carried out by finite element analyses because it depends on the 

configuration and geometry (Figure 3-7) [50].   
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Figure 3-7 Heat flux at the channel wall (q’’c) for a given incident heat flux 
(IHF) [50] 

 

In order to increase the CHF in sub-cooled flow boiling conditions several techniques 

can be used: electrical fields, pressure wave generation, tangential fluid injection, 

surface roughness, swirl tubes, helically coiled wires and hypervapotron [70]. 

The design concept of “vapotron” or “hypervapotron” has been proposed initially by Le 

Franc [67] to provide good heat transfer and CHF performance. 

Positive experimental results have been obtained at the Joint European Torus (JET) 

[68][69] and for the experimental programme supporting the Next European Torus 

(NET) divertor design [54][55]. 

Boscary reported that hypervapotron (and swirl tube) are the most efficient cooling 

technique to remove high incident heat fluxes and at high bulk velocity (10 m/s) an 

hypervapotron is able to withstand an ICHF 1.4 times higher than a swirl tube with two 

cooling channels (Figure 3-8) [43]. 

Cattadori performed experiments on the water cooled hypervapotron CHF taking in 

account different geometries of the internal fin structure (2 and 4 mm width; 3, 5, 7 mm 

high; 2 and 4 mm gap between fins) and different coolant thermo-hydraulic parameters 

(pressure, inlet temperature and bulk velocity) [70]. The maximum obtained CHF has 

been 29.4 MW/m2 under the conditions p=0.9 MPa, axial velocity 9 m/s, and inlet 

temperature 60 °C but the hypervapotron effect (the continuous boiling and 

condensation between two adjacent fins) has not been detected as it occurs more 

easily as the coolant velocity and the sub-cooling are low [70]. 
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Figure 3-8 Incident CHF as function of water axial velocity for Association 
Euratom-CEA tests (width device 27 mm, p=3.5 MPa, 
ΔTsub,out=100°C) [43] 

 

The evaluation of CHF with high power density, as frequently occurs under fusion 

condition, is a key factor. The correlations developed for fission reactor have been the 

starting point and then extended to account the fusion conditions (one-sided heating, 

peaked heat flux profile, higher flow velocity, higher sub-cooling, lower coolant 

pressure and lower coolant temperature) [50]. 

The well-known Tong-75 CHF correlation [51] has been modified by Schlosser et al., in 

order to fit the CHF under one-side heating data for different cooling channel 

geometries [50][52][53]: 

𝐶𝐻𝐹𝑊 = 0.23 𝑓 𝐺 𝐻𝑓𝑔  [1 + 0.00216 (
𝑝

𝑝𝑐
)
1.8

𝑅𝑒0.5𝐽𝑎] 𝐶𝑓 Eq. 36 

with 

𝑅𝑒 =
𝐺𝐷ℎ

𝜇𝑓
 Eq. 37 

 

𝐽𝑎 =
𝜌𝑓

𝜌𝑔
 
𝑐𝑝(𝑇𝑆𝐴𝑇 − 𝑇)

𝐻𝑓𝑔
 Eq. 38 

 

 𝑓 = 8 𝑅𝑒−0.6 (
𝐷ℎ

𝐷0
)
0.32

 Eq. 39 
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and where:  CHFw is the CHF at the channel wall [W/m2], f is the friction factor 

calculated by Eq. 39, G is the mass velocity of the coolant [kg/(m2 s)], T is the coolant 

temperature at a local position [°C], p is the local pressure of the coolant [MPa], pc is 

the critical pressure of the water equal to 22.1 MPa, TSAT the saturation temperature 

corresponding to the pressure p [°C], Hfg is the latent heat of vaporization at TSAT [J/kg], 

Re is the Reynolds Number calculated as reported in Eq. 37, Dh the hydraulic diameter 

[m], μf is the water density at T [kg/m3], μg is the vapour density at TSAT [kg/m3], Ja is the 

Jakob number defined as Eq. 38, cp is the specific heat at T [J/(kg K)], D0 is the 

reference diameter equals to 12.7x10-3 m and Cf is a factor used to account for the 

configuration. 

In Eq. 36, Cf is a corrective factor to account for the configuration and the incident heat 

flux profile. 

Several design concepts (smooth pipes, swirl tubes, swirl rod inserts and 

hypervapotrons) with the same external width of 27 mm have been characterized by 

Schlosser et al. [52]. Conversely, the more the flux is peaked the higher is the CHF, 

and in this condition is possible to find for one geometry (or for geometries close to) the 

same corrective factor Cf between uniform heated tube and one side heated without 

any dependency on the thermal hydraulic condition. However Cf depends on the 

incident heat flux profile [52]. 

A corrective factor Cf = 1.97 [52][72] can be used for a geometry with the main 

dimensions as reported in Table 3-1 (with respect to the Figure 3-9). This value doesn’t 

appears appropriate for the considered SPIDER geometry as listed in Table 3-1: the 

main difference is the HV width. 

The influence of the width in the ICHF (the corresponding data for the CHF have not 

been found) is shown in Figure 3-10 both for uniform power deposition and peaked 

power density with 90% of the power deposited in a disc of 1.5 mm of diameter. 

Because the available information is very scarce, a possible solution would be to use a 

corrective factor Cf = 1.2 [52][72] valid for smooth channel with internal diameter of 10 

mm thus ensuring a high safety margin, or alternatively using only the Tong-75 CHF 

correlation without any corrective factor. 

 

Figure 3-9 HV cross section scheme  
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Table 3-1 Comparison of the main geometrical dimension for the 
hypervapotron used by Schlosser in [52] and foreseen for 
SPIDER  

 Literature  SPIDER 

h1 [mm] 3 4 

h2 [mm] 4 4 

h3 [mm] 5 4 

h4 [mm] 20 18 

w [mm] 27 65 

Fins width [mm] 3 3 

Groove between fins [mm] 3  3 

 

 

Figure 3-10  ICHF as function of hypervapotron width [73] 

3.2.6 Pressure Drop 

The knowledge of pressure drop is essential in the SPIDER Beam Dump thermo-

hydraulic model because the correlations for Partial and Fully Developed Boiling needs 

the local value of the coolant pressure to calculate the exchanged heat flux. 

A summary of hypervapotron pressure drop data in terms of the friction factor as 

function of the Reynolds number is shown in Figure 3-11. 

By using the existing data on hypervapotron geometry [32][34][54][56][57] Baxi 

proposed the following correlation for friction factor [50][58]: 

𝑓𝐻𝑉 = 0.153 𝑅𝑒−0.2 Eq. 40 

where Eq. 22 and Eq. 23 are still valid. 
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The pressure drop along the hypervapotron is then calculated as follow: 

 

𝛥𝑝 = 4 𝑓𝐻𝑉  
𝐿

𝐷ℎ
 𝜌 

𝑣2

2
  Eq. 41 

Where Δp is the pressure drop [Pa], fHV is the friction factor, L is the channel length [m], 

Dh is the hydraulic diameter [m], ρ is the mass density of the water and v is the bulk 

velocity [m/s]. 

The results indicate that the measured friction factors are significantly lower than the 

predicted values with the Baxi correlation probably due to the poor accounting of 

entrance/exit effect [50]. 

 

 

Figure 3-11 Friction factor as function of Reynolds number for 
hypervapotron geometry and smooth tube for comparison [50] 
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3.3 ANSYS Customization  

The correlations reported in paragraph 3.2 require the calculation of heat flux and 

pressure drop as a function of local parameters (channel wall and coolant bulk 

temperature, coolant pressure, saturation temperature and pressure, flow rate, channel 

geometry, coolant density, velocity, viscosity, and thermal conductibility); these detailed 

formulations have been programmed in ANSYS APDL finite element code to realise a 

custom version of the software to be used for special analyses. 

The standard ANSYS APDL routines give only the possibility to perform simulations in 

single-phase heat transfer condition without simulation of nucleate boiling, hence a 

code customization was required. Furthermore, the customization shall consider the 

geometry of the heat transfer element and the characteristic conditions for coolant flow 

and heat transfer.  

A user programmable routine with the hypervapotron correlations has been written in 

FORTRAN and then linked to ANSYS APDL. As the formulas are non-linear, the main 

program calls the modified routine at each step and for each element to solve 

iteratively the balance equations and check the convergence criteria. 

3.3.1 Material Proprieties  

All the materials have been implemented in the finite element model by using 

polynomial equations to simulate their proprieties as function of temperature.  

3.3.2 Water 

The thermo-physical proprieties of the water have been obtained from the NIST data 

[61]. The following properties have been programmed in the model: 

- mass density in the range 0÷150 °C (Figure 3-12) 
 

 

Figure 3-12 Water mass density as function of temperature 
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- thermal conductivity in the range 0÷150 °C (Figure 3-13) 
 

 

Figure 3-13 Water thermal conductivity as function of temperature 

 
 
 
 

- Specific heat in the range 0÷150 °C (Figure 3-14) 
 

 

Figure 3-14 Water specific heat as function of temperature 
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- Dynamic viscosity in the range 0÷150 °C (Figure 3-15) 
 

 

Figure 3-15 Water dynamic viscosity as function of temperature 

 

3.3.3 CuCrZr alloy 

The thermal conductibility of the CuCrZr alloy has been obtained from the ITER 

Documentation [62] (Figure 3-16). 

 

Figure 3-16 Thermal conductibility for unirradieted CuCrZr as function of 
temperature 
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3.4 Thermal loads and boundary conditions 

The thermal loads on the SPIDER Beam Dump are determined by the beam 

parameters. They have been calculated by using the vector code Trigo and Backscat 

Monte Carlo codes [27][59]. 

The shape of the power density deposition is approximately a bi-gaussian. Each of the 

gaussian distribution represent a fraction of the beamlet power: one is used for the core 

fraction with divergence ωc, and one for the halo fraction with divergence ωh [60]. The 

power density is given by: 

𝑃𝜔

𝑃𝑡𝑜𝑡
= {

1 − 𝑓

𝜋(𝑋𝜔𝑐)
2
𝑒𝑥𝑝 [− (

𝜔

𝜔𝑐
)]

2

+
𝑓

𝜋(𝑋𝜔ℎ)2
𝑒𝑥𝑝 [−(

𝜔

𝜔ℎ
)]

2

} Eq. 42 

where Pω is the power density [W/m2] in the ω direction which is the angle with respect 

to the beamlet axis, X is the distance from the Grounded Grid (GG), f the fraction of the 

power present in the halo, Ptot the total power of one beamlet.  

The starting point of the beamlets are the 1280 apertures on the GG (Figure 3-17) 

defined by a text file together with the positions of the GG centre and the distance from 

the beam dump panels obtained from the SPIDER 3D geometrical model. 

The two beam dump panel have been assumed as rectangular plane surfaces and 

regular grids on them have been used as mesh. 

Different scenarios have been taken into account as reported in Table 3-2.  

The results are available in a plot format (an example of obtained heat loads data is 

given in Figure 3-18) or in tabular format ready for the load application in ANSYS. 

 

Table 3-2 Beam parameters used for the heat loads on the SPIDER Beam 
Dump. The horizontal misalignment is positive in the left 
direction 

Scenario 
ωc 

[mrad] 

ωh 

[mrad] 

f 

[%] 

Horizontal 
misalignment 

[rad] 

#1a 3 3 15 0 

#1b 3 30 15 0 

#1c 3 3 15 2 

#2a 5 5 15 0 

#2b 5 30 15 0 

#2c 5 5 15 2 

#3a 7 7 15 0 

#3b 7 30 15 0 

#3c 7 7 15 2 

 

 



121 

 

 

Figure 3-17 Beamlet aperture arrangements on the SPIDER Grounded Grid  
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Figure 3-18 Heat load on the Beam Dump panels in case of Scenario#1a 
(3mrad divergence, no halo, no misalignment) 

 

The heat fluxes from the Trigo and Backscat codes have been applied to the external 

wall of the Beam Dump by using tabulated data and ANSYS ADPL scripts. As the heat 

fluxes are obtained for simple vertical walls, the values corresponding to the regions in 

which there are chamfers have been scaled with a factor equals to the cosine of the 

angle of incidence. 

Two examples of heat loads applied on the FE model are shown in Figure 3-19 and 

Figure 3-20. 

The boundary conditions for the simulation are: 

- inlet mass flow rate: 32 kg/s [10]; 

- inlet temperature of the coolant: 20 °C [10]; 

- outlet pressure: 0.9 MPa.   

Note that the total mass flow rate for the Spider Beam Dump is 64 kg/s (32 kg/s for 

each panel) and the outlet pressure has been set to 0.902 MPa in order to get an inlet 

pressure equal to 1 MPa [10]. 

Left 
panel 

Right 
panel 

Beam 
direction 
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Figure 3-19 Beam Dump Left Panel: applied heat fluxes [W/m2] in case of  
ωc = 3 mrad and no halo 
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Figure 3-20 Beam Dump Left Panel: applied heat fluxes [W/m2] in case of  
ωc = 7 mrad and no halo 
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3.5 FE Model 

The three dimensional coupled solid-fluid model has been developed with the following 

elements and it is shown in Figure 3-21: 

- the element “solid70” is a solid thermal element which has been associated with 

the material proprieties of the CuCrZr copper alloy; 

- the element “fluid116” is a fluid thermal element able to simulate pipes and 

cooling channel geometries and it has been associated with the water 

proprieties; 

- the element “surf152” is a surface element with the ability to link the fluid 

elements with the solid ones. It has been associated with the customized 

routine to transfer the heat flux form the channel surface to the bulk. 

 

Figure 3-21 Overview of the FE model with elements of the fluid and solid 
domains 

 

  

Fluid domain 

Solid domain 
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3.5.1 Fluid Domain 

The one-dimensional element fluid116 (already described in 2.3) has been used to 

simulate pipes, manifolds and hypervapotron channels.  

For the standard pipes, the friction factor (and the resulting pressure drop) is 

automatically calculated in ANSYS APDL, whereas for the hypervapotron channels the 

Eq. 40 has been included in the code for the friction factor. In order to compute the 

pressure drop in bends, inlet and outlet, the loss coefficients in Table 3-3 have been 

used [63]. 

Table 3-3 Localised loss coefficients 

Type of element Kloss 

Manifold inlet/outlet 0.2 

90° bend 0.5 

HV inlet 0.5 

HV outlet 1 

 

The overall fluid domain is shown in Figure 3-22 where the dimension of the internal 

diameter of the pipes and the hydraulic diameter (calculated as in Eq. 23) of the 

hypervapotron channels are also reported.  

 

 

Figure 3-22 Beam Dump model: overview of the fluid domain made of 
fluid116 elements 
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3.5.2 Solid Domain 

The element solid70 (Figure 3-23) has been used to simulate the solid part that 

constitutes the Beam Dump. Solid70 is an element with 3-D thermal conduction 

capability. It has eight nodes with a single degree of freedom (temperature) at each 

node.  

 

Figure 3-23 ANSYS element solid70 

In Figure 3-24 the section of one hypervapotron with the main dimensions is reported. 

The cross section of the flow (57 mm x 4 mm) is modelled without considering the fins 

(as required for the correlations listed in 3.2.1). The thickness of CuCrZr directly 

exposed to the beam is 5.7 mm (the real thickness without considering the fins should 

be 4 mm but a layer of 1.7 mm has been added  to account the additional material of 

the fins, a discussion of this will be given in paragraph 3.6.3). 

 

Figure 3-24 Cross section of one hypervapotron with main dimensions in 
millimetres  
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3.5.3 Surface elements 

The element surface152 is a thermal surface element that may be overlaid onto an 

area face of any 3D thermal elements. By using this element type is possible to transfer 

information from the fluid domain to the solid one (and vice versa) so that the coupled 

1D-3D model is realised. This coupling is realised by placing the surface152 link, 

named extra node, onto the fluid116 node. 

3.5.4 Mesh 

The used mesh consists of more than 11.9 million of elements and a magnified detail is 

shown in Figure 3-25. 

Along the hypervapotron axial direction the same mesh has been used for ANSYS 

APDL and for the generation of the heat loads in order to get an overlap of the nodes 

where the heat fluxes have to be imposed.  

In the orthogonal direction a fine mesh in the thickness exposed to the beam and a 

coarser mesh on the back side have been adopted. The finer mesh on the front side 

allows a much easier convergence because this is the region where the heat transfer 

mainly occurs. On the contrary, the back side has a coarse mesh which has been 

adopted because the temperature gradients here are not high and this choice allows 

faster simulations.  

 

Figure 3-25 Magnification of the mesh used for the SPIDER Beam Dump 
model 



129 

 

3.6 Results 

The thermocouples installed along the hypervapotrons and at each outlet pipe are used 

for protection of the SPIDER Beam Dump, for calorimetry, and can provide information 

about the particle beam using the Beam Dump as a diagnostic.  

Housings of thermocouples are not modelled in the geometrical model as the good 

thermal contact realised at the thermocouple-hypervapotron interface will not introduce 

thermal discontinuities; indeed, the small radial gap of 0.1 mm between thermocouple 

and hypervapotron will be filled with a thermal conducting silver based cement. 

Locations of thermocouples are detailed in the following when readings of 

measurements are discussed. 

In the following the results of the carried out simulation listed in Table 3-2 are reported. 

It has been decided to group these results in order to show the capability of the 

component to diagnose the beam divergence, the beam halo and the horizontal 

misalignment. 

To facilitate the reading of this paragraph only the main results are reported with the 

legend given in Figure 3-26 

 

Figure 3-26 SPIDER Beam Dump: legend used for the results 

Left panel Right panel 
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3.6.1 Nominal Conditions 

The following results have been obtained in the thermo-hydraulic nominal conditions 

(determined by the cooling plant) in which the main boundary conditions are: 

- Inlet mass flow rate for one panel : 32 kg/s [10]; 

- Inlet temperature of the coolant: 20 °C [10]; 

- Outlet pressure: 0.9 MPa. 

Note that the outlet pressure has been set to 0.902 MPa in order to get an inlet 

pressure equal to 1 MPa [10]. 

A general estimate of the heat transfer expected in the simulation is given in Figure 

3-27: the plot gives the heat transfer (q) as function of the wall temperature at the 

cooling channel (Tw) within the assumptions given in the caption. By considering a bulk 

temperature of the coolant of 25 °C and a pressure of 1 MPa, the onset of the nucleate 

boiling (TONB) occurs at 188 °C. As long as the wall temperature is under that value the 

heat transfer mechanism is forced convection (qFC); when the TONB is reached the 

partial developed boiling starts, causing an increase of the heat transfer. 

 

 

Figure 3-27 Estimate of heat transfer for hypervapotron geometry with 
forced convection (qFC), partial developed boiling (qPDB) 
calculated with the Bergles and Rohsenow procedure and fully 
developed  boiling (qFDB), for Tb=25 °C, p=1 MPa, Dh=7.48 mm and 
ṁ=1.03 kg/s 
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3.6.1.1 Beam divergence  

The divergence of the beamlets can be detected by the shape of the temperature 

profile along the hypervapotron. 

In the hypothesis of no halo (ωh = ωc) and by changing the divergence of the beamlet 

core (ωc) the results for the HV#13 are shown in Table 3-4 and in the following. 

 

Table 3-4 HV#13: temperatures at the thermocouples position in different 
beam scenarios without  

 

ωc = 3 mrad ωc = 5 mrad ωc = 7 mrad 

Thermocouples 
position [mm] 

T [°C] T [°C] T [°C] 

151 21 25 38 

171 34 59 75 

191 116 122 121 

211 216 180 164 

231 191 206 196 

251 224 210 206 

271 193 209 210 

291 222 210 210 

311 191 209 209 

331 220 209 204 

351 192 202 190 

371 211 177 162 

391 96 112 115 

411 42 63 77 

431 36 41 53 

471 36 43 56 

491 46 69 84 

511 133 132 130 

531 212 181 167 

551 197 204 192 

571 219 210 206 

591 199 211 210 

611 219 211 211 

631 201 211 210 

651 220 212 206 

671 202 203 190 

691 207 177 164 

711 123 130 130 

731 57 77 91 

751 51 57 69 
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Figure 3-28 HV#13 left panel: temperatures at 3 mm depth and at the 
positions of the thermocouples in case of ωc = ωh = 3 mrad (no 
halo) 

 

Figure 3-29 HV#13 left panel: temperatures at 3 mm depth and at the 
positions of the thermocouples in case of ωc = ωh = 5 mrad (no 
halo) 

 

Figure 3-30 HV#13 left panel: temperatures at 3 mm depth and at the 
positions of the thermocouples in case of ωc = ωh = 7 mrad (no 
halo) 

 

From the Figure 3-28, Figure 3-29 and Figure 3-30 it becomes evident that only in case 

of 3 mrad of core divergence is possible to detect the peaks and the valleys of 

temperature caused by the different beamlets; an almost uniform temperature is 

produced in the central part of the heated regions for larger beam divergence. A 

comparison of these three cases is shown in Figure 3-31: the higher the core 
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divergence, the higher the temperatures at the tails of the beam (e.g for the first 

thermocouple located at 151 mm the temperature is 21 °C in case of ωc=3 mrad and 

38° C in case of ωc=7 mrad, the percentage increase is therefore of 81%). 

 

Figure 3-31 HV#13 left panel: comparison of temperatures at 3 mm depth 

and at the positions of the thermocouples in case of ωc = 3 mrad, 

ωc = 5 mrad and ωc = 7 mrad (no halo) 

 

It must be considered that initially not all the housing will be equipped with a 

thermocouple, but only 14 holes of the hypervapotrons intercepting the centre of the 

beamlet groups, 7 for each beamlet group: one in the center and three on each side to 

measure the gradient of the power density profile, as shown in Figure 3-32. 

 

Figure 3-32 Example of temperatures measured by the thermocouples. 

Highlighted with yellow bars are the position at which initially 

the thermocouples will be mounted 

For a better understanding of the difference of the temperature profiles with different 

beamlet core divergence, the contour plot of the external temperature for the left panel 

is shown in Figure 3-34 for ωc = 3, in Figure 3-35 for ωc= 5 mrad and in Figure 3-36 for 

ωc= 7 mrad. 

For 3 mrad beamcore divergence, the maximum temperature of 277 °C is visible in 

Figure 3-34 and this value can be compared with the maximum allowable temperature 

of the CuCrZr alloy, of which the hypervapotrons are made. This copper alloy reaches 

an optimum in mechanical strength after a thermal treatment involving solution 
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annealing and water quenching, followed by a certain amount of cold work, and finally 

by ageing at an intermediate temperature (450÷500 °C) to decompose the 

supersaturated solid solution into a fine distribution of Cu3Zr and Cr precipitates. As 

ageing can continue after the components are manufactured, temperature-time limits 

must be considered to preserve the mechanical strength. For a total beam-on time of 

5500 hours (common design parameter to ITER HNB injector, MITICA, and SPIDER) 

[64][65], the mechanical strength will be maintained by limiting the operation 

temperature at 350 °C (see Figure 3-33). 

 

Figure 3-33 Vickers hardness against time for CuCrZr [66] 
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Figure 3-34 Beam Dump left panel: contour plot of the temperature [°C] in 
case of ωc = ωh = 3 mrad (no halo) 
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Figure 3-35 Beam Dump left panel: contour plot of the temperature [°C] in 
case of ωc = ωh = 5 mrad (no halo) 
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Figure 3-36 Beam Dump left panel: contour plot of the temperature [°C] in 
case of ωc = ωh = 7 mrad (no halo) 
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A particular situation has been found in case of ωc =3 mrad that can help to diagnose 

this value of divergence: the temperature measured by the thermocouples along the 

hypervapotrons, increases from the top to the bottom side of the Beam Dump. Figure 

3-37 shows the temperature profiles for the HV#7, HV#13, HV#19 and HV#25. The 

maximum temperature measured in the HV#7 is 206 °C while for the HV#25 the 

maximum is 254 °C. 

 

Figure 3-37 Left panel: comparison of temperatures at 3 mm depth and at the 
positions of the thermocouples in case of ωc = 3 mrad for 
different hypervapotrons 

 

The phenomenon is explained because of the position of the beamlets on the 

hypervapotrons: from the top to the bottom of a Beam Dump panel, the beamlets fall 

closer to the bottom part of the hypervapotrons where the thermocouples are located 

(Figure 3-38). 

 

 

Figure 3-38 Modelled beamlet position on HV#7 and HV#25 of the left panel 
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3.6.1.2 Beam halo 

The divergence of the beamlet halo (ωh) appears difficult to measure by using the 

thermocouples along the hypervapotron. 

In Figure 3-39 and Figure 3-40 two examples are shown: the difference of the 

measured temperature with or without halo is really hardly appreciable. 

 

Figure 3-39 HV#13 left panel: temperature at 3 mm depth and at the positions 
of the thermocouples in two cases: ωc = 3 mrad with no halo 
fraction and ωc = 3 mrad, ωh = 30 mrad, f=15% 

 

Figure 3-40 HV#13 left panel: temperature at 3 mm depth and at the positions 
of the thermocouples in two cases: ωc = 7 mrad with no halo 
fraction and ωc = 7 mrad, ωh = 30 mrad, f=15% 

 

The calorimetric measurements seem more useful in understanding the halo fraction. 

At each hypervapotron outlet there are thermocouples to measure the temperature of 

the water, thus knowing the inlet temperature of the coolant and the mass flow rate in 

each channel is possible to calculate the total power deposited on the hypervapotron 

by using the Eq. 43: 

𝑃𝑡ℎ = �̇� 𝑐𝑝(𝑇𝑜𝑢𝑡 − 𝑇𝑖𝑛) Eq. 43 
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where: Pth is the total power deposited on the hypervapotron [kW], ṁ the mass flow 

rate [kg/s], cp is the specific heat [kJ/(kg K)], Tout the outlet temperature of the coolant 

[°C] and Tin the inlet temperature of the coolant [°C]. 

The expected temperature of the water at the hypervapotron outlet can be estimate by 

considering the simple system in Figure 3-41: in the stationary condition the entire 

amount of the thermal power is rejected to the water and the outlet temperature can be 

calculated by using Eq. 43. 

 

Figure 3-41 Simplified model of one hypervapotron 

 

By considering a constant specific heat cp of 4.186 kJ/(kg K) and a constant mass flow 

rate of 1.03 kg/s, the expected outlet temperatures of the water, as function of the 

thermal power, are plotted in Figure 3-42 for two different inlet water temperature (20 

and 55 °C). 

 

Figure 3-42 Outlet temperature as function of different thermal power at 
different inlet water temperature considering a mass flow rate of 
1.03 kg/s 
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In Table 3-5 the results of the calorimetric measurements for the left panel in case of 

ωc= 3 mrad with and without halo are reported. The results are then plotted in Figure 

3-43 and Figure 3-44. The effect of the halo is an increase of the area over which the 

power is deposited and, as a consequence, an higher thermal power is detectable in 

the hypervapotrons between the beamlet groups (HV#10, HV#16 and HV#22) where 

an increase of about 10 kW has been calculated compared to the case without halo. 

Table 3-5 Total power by using calorimetric measurements for the left 
panel of the Beam Dump in case of ωc = 3 mrad with and without 
halo 

 
ωc= 3 mrad, no halo ωc= 3 mrad, ωh= 30 mrad, f=15% 

HV# ṁ Tout Pth ṁ Tout Pth 

 
kg/s °C kW kg/s °C kW 

1 1.02 20 0 1.02 20 0 

2 1.02 20 0 1.02 20 0 

3 1.02 20 0 1.02 20 2 

4 1.02 22 9 1.02 24 15 

5 1.03 53 142 1.03 51 136 

6 1.03 53 142 1.03 53 140 

7 1.03 53 142 1.03 53 142 

8 1.03 53 142 1.03 53 141 

9 1.03 53 142 1.03 52 138 

10 1.03 30 42 1.03 32 52 

11 1.04 53 141 1.04 52 138 

12 1.04 53 141 1.04 52 140 

13 1.04 52 141 1.04 52 141 

14 1.04 52 141 1.04 52 140 

15 1.05 52 141 1.05 51 138 

16 1.05 30 42 1.05 32 52 

17 1.05 52 142 1.05 52 138 

18 1.04 52 142 1.04 52 140 

19 1.04 53 142 1.04 52 141 

20 1.04 53 142 1.04 52 141 

21 1.04 53 142 1.04 52 138 

22 1.03 30 43 1.03 32 53 

23 1.03 53 142 1.03 52 139 

24 1.03 53 143 1.03 53 141 

25 1.03 53 143 1.03 53 142 

26 1.03 53 143 1.03 53 141 

27 1.03 53 143 1.03 52 136 

28 1.02 21 6 1.02 23 12 

29 1.02 20 0 1.02 20 2 

30 1.02 20 0 1.02 20 0 

31 1.02 20 0 1.02 20 0 

   
2980 

  
2980 
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Figure 3-43 Total power by using calorimetric measurements for the left 
panel of the Beam Dump in case of ωc = 3 mrad and no halo 

 

 

Figure 3-44 Total power by using calorimetric measurements for the left 
panel of the Beam Dump in case of ωc= 3 mrad, ωh= 30 mrad and 
f=15% 
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3.6.1.3 Horizontal misalignment  

The horizontal misalignment of the beam (to the left or right direction) can be detected 

both with the calorimetric measurement and the temperature profile. 

In case of beamlet core divergence of 3 mrad, the beamlets are so focused that even 

with a horizontal misalignment of 2 mrad, the footprint of the power is still in the correct 

panel. In this case the calorimetric measurements are not useful to detect the 

misalignment. On the contrary, the misalignment is visible by using the temperature 

profile along the hypervapotrons. 

In Figure 3-45 and Figure 3-46 the temperature profiles with and without misalignment 

are reported. In particular it appears evident that in case of misalignment the profiles 

are shifted (respectively in the left and right direction). When the beam is shifted in the 

left direction (Figure 3-45) it is also possible to see that the peaks and the valleys no 

longer correspond to the correct thermocouple; on the contrary with a beam shifted in 

the right direction (Figure 3-46) the temperature profile appears more flattened.  

In order to explain this effect, in Figure 3-47 the heat flux on a path along the HV#13 is 

shown in case of no misalignment. The vertical straight lines represent the position of 

the thermocouples; these lines intercept the heat flux curve where the peaks and 

valleys are present. A similar condition is also present in Figure 3-48 in case of 2 mrad 

horizontal misalignment in the left direction: the thermocouples intercept the heat flux 

with peaks and valley shifted. If the horizontal misalignment is of 2 mrad in the right 

direction, the situation is given in Figure 3-49: the straight vertical lines that represent 

the thermocouples position, intercept the heat flux curve more or less at the same 

amplitude generating the flat profile shown in Figure 3-46. 

 

Figure 3-45 HV#13 left panel: temperature at 3 mm depth and at the positions 
of the thermocouples for ωc = 3 mrad and no halo, in case of no 
misalignment and with 2 mrad of horizontal misalignment in the 
left direction.  
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Figure 3-46 HV#13 left panel: temperature at 3 mm depth and at the positions 
of the thermocouples for ωc = 3 mrad and no halo, in case of no 
misalignment and with 2 mrad of horizontal misalignment in the 
right direction. 

 

Figure 3-47 HV#13 left panel: heat flux profile along a path with ωc = 3 mrad 
and no halo in case of no misalignment. The vertical straight 
lines represent the position of the thermocouples. 

 

Figure 3-48 HV#13 left panel: heat flux profile along a path with ωc = 3 mrad 
and no halo in case of 2 mrad of horizontal misalignment in the 
left direction. The vertical straight lines represent the position of 
the thermocouples. 
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Figure 3-49 HV#13 left panel: heat flux profile along a path with ωc = 3 mrad 
and no halo in case of 2 mrad of horizontal misalignment in the 
right direction. The vertical straight lines represent the position 
of the thermocouples. 

 

In case of 7 mrad beamlet core divergence, the horizontal misalignment can be 

detected both with the calorimetric measurement and the temperature profile.  

In Figure 3-50 and Figure 3-51 the temperature profiles with and without misalignment 

are reported: the misalignment is evident in both cases. 

The calorimetric measurements are listed in Table 3-6 and plotted in Figure 3-52: an 

increase of 43 kW of thermal power is measured in the left panel in case of horizontal 

misalignment, a corresponding reduction is present (but not reported for simplicity) on 

the right panel. 

 

Figure 3-50 HV#13 left panel: temperature at 3 mm depth and at the positions 
of the thermocouples for ωc = 7 mrad and no halo in case of no 
misalignment and with 2 mrad of horizontal misalignment in the 
left direction. 
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Figure 3-51 HV#13 left panel: temperature at 3 mm depth and at the positions 
of the thermocouples for ωc = 7 mrad and no halo in case of no 
misalignment and with 2 mrad of horizontal misalignment in the 
right direction. 

 

Figure 3-52 Total power by using calorimetric measurements for the left 
panel of the Beam Dump in case of ωc= 7 mrad and no halo with 
and without horizontal misalignment  
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Table 3-6 Total power by using calorimetric measurements for the left 
panel of the Beam Dump in case of ωc = 7 mrad with and without 
horizontal misalignment  

 
No misalignment 

Horizontal misalignment  of 2 mrad 
in the left direction 

HV# ṁ Tout Pth ṁ Tout Pth 

 kg/s °C kW kg/s °C kW 

1 1.02 20 0 1.02 20 0 

2 1.02 20 0 1.02 20 0 

3 1.02 20 0 1.02 20 0 

4 1.02 24 19 1.02 24 19 

5 1.03 51 135 1.03 52 137 

6 1.03 53 141 1.03 53 143 

7 1.03 53 141 1.03 53 143 

8 1.03 53 141 1.03 53 143 

9 1.03 52 138 1.03 52 140 

10 1.03 32 53 1.03 32 54 

11 1.04 52 137 1.04 52 139 

12 1.04 52 141 1.04 53 143 

13 1.04 52 141 1.04 53 143 

14 1.04 52 141 1.04 53 143 

15 1.05 51 137 1.05 52 139 

16 1.05 32 53 1.05 32 53 

17 1.05 52 138 1.05 52 140 

18 1.04 52 141 1.04 53 143 

19 1.04 52 141 1.04 53 143 

20 1.04 52 141 1.04 53 143 

21 1.04 51 136 1.04 52 138 

22 1.03 32 54 1.03 33 54 

23 1.03 52 139 1.03 53 141 

24 1.03 53 141 1.03 53 143 

25 1.03 53 141 1.03 53 143 

26 1.03 53 141 1.03 53 143 

27 1.03 51 133 1.03 51 135 

28 1.02 24 16 1.02 24 16 

29 1.02 20 0 1.02 20 0 

30 1.02 20 0 1.02 20 0 

31 1.02 20 0 1.02 20 0 

   
2978 

  
3021 
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3.6.1.4 Identification of the heat transfer mechanism  

As already stated, the hypervapotron is able to withstand different mechanisms of 

thermal exchange along its cooling channel: forced convection, partial developed 

boiling and fully developed boiling. The results of the simulations with the nominal 

boundary conditions have been above presented, but the heat transfer mechanism has 

not been identified yet. 

The most critical scenario, in terms of heat fluxes and thus temperatures, is identified 

with 3 mrad of core divergence and no halo, as the beamlets are well focused and the 

power density is the highest. In this scenario the most critical situation is present in the 

HV#23: in Figure 3-53 the trends of the bulk temperature, the wall temperature at the 

cooling channel and the onset boiling temperature are shown. The maximum wall 

temperature is 160 °C and the corresponding onset boiling temperature 187 °C: the 

boiling margin is 27 °C. As the wall temperature at the cooling channel is always under 

the onset boiling temperature only forced convection heat transfer is expected. The 

pressure drop along the same hypervapotron channel is shown in Figure 3-54. 

At the channel outlet with coolant pressure of 0.9 MPa, the corresponding saturation 

temperature is 175 °C. As the temperature of the coolant at the outlet (about 50 °C) is 

well below the corresponding saturation temperature, the fully bulk boiling condition is 

excluded.  

The temperature of the water at the Beam Dump inlet is within the range 20÷55 °C. 

The worst critical possibility is a scenario in which the inlet temperature is 55 °C and 

the beamlets well focused (3 mrad of divergence and no halo). In general it is possible 

to imagine the bulk and wall temperatures translated of 35 °C in Figure 3-53. In this 

case the nucleation of the bubbles can locally starts, but only in small regions in which 

the heat transfer regime correspond to the first part of the partial boiling curve, so that a 

real increasing of the heat transfer efficiency is not foreseen. 

 

Figure 3-53 HV#23 left panel: trends of bulk temperature, wall temperature at 
the cooling channel and onset boiling temperature in case of  
ωc = 3 mrad and no halo 
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Figure 3-54 HV#23 left panel: trend of the pressure drop along the 
hypervapotron channel 

 

3.6.2 Off normal conditions 

Within the nominal mass flow rate of 32 kg/s the boiling regime is not achieved. Some 

simulations have been carried out to verify the possibility of reducing the flow rate in 

each panel in order to improve the calorimetric measurements and the temperature 

profiles. The simulations are also useful to verify the behaviour of the system in the 

event of a reduction of flow caused by a fault at the cooling system. 

In the following the results for a simulation with changed boundary conditions are 

reported and discussed: 

- inlet mass flow rate: 16 kg/s; 

- inlet temperature of the coolant: 20 °C; 

- outlet pressure: 0.97 MPa; 

- heat fluxes corresponding to the scenario: ωc= 3 mrad and no halo. 

Note that the outlet pressure has been set to 0.97 MPa in order to get an inlet pressure 

equal to 1 MPa. 

A general estimate of the heat transfer expected in the simulation is given in Figure 

3-55: the plot gives the heat transfer (q) as function of the temperature of the wall at the 

cooling channel (Tw) within the assumptions given in the caption. By considering a bulk 

temperature of the coolant of 25 °C and a pressure of 1 MPa, the onset temperature of 

the nucleate boiling (TONB) is 188 °C. Compared to the Figure 3-27, because of the 

reduction of mass flow rate, the heat transfer curve for forced convection is about 40% 

of the previous one (at Tw=75 °C), the fully developed boiling curve is still the same 

because it is independent of the flow rate, and the partial boiling curve slightly changes.   



150 

 

 

Figure 3-55 Estimate of heat transfer for hypervapotron geometry with 
forced convection (qFC), partial developed boiling (qPDB) 
calculated with the Bergles and Rohsenow procedure and fully 
developed  boiling (qFDB), for Tb=25 °C, p=1 MPa, Dh=7.48 mm and 
ṁ=0.52 kg/s 

 

The temperatures measured at the thermocouple positions are shown in Figure 3-56 

while the contour plot of the external temperature for the left panel is depicted in Figure 

3-57 where the maximum temperature is 356 °C (instead of 277 °C reached in the 

nominal conditions).  

 

Figure 3-56 HV#13 left panel: temperature at 3 mm depth and at the positions 
of the thermocouples for ωc= 3 mrad and no halo in case of 
ṁ=16 kg/s 
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Figure 3-57 Beam Dump left panel: contour plot of the temperature [°C] in 
case of ωc = 3 mrad, no halo and reduced mass flow rate of 16 
kg/s 
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Figure 3-58 shows the trends of the bulk temperature along the hypervapotron, the 

temperature at the wall of the cooling channel, and the onset boiling temperature. The 

maximum wall temperature is 250 °C and the corresponding onset boiling temperature 

187 °C. At the two heated regions, the wall temperature at the cooling channel exceeds 

the onset of boiling temperature and the bubble nucleation occurs.  

The pressure drop along the same hypervapotron channel is shown in Figure 3-59. 

At the outlet pressure (0.97 MPa), the corresponding saturation temperature is 178.5 

°C. As the temperature of the coolant at the outlet (about 80 °C) is well below the 

corresponding saturation temperature, the fully bulk boiling condition is excluded.  

 

Figure 3-58 HV#23 left panel: trends of bulk temperature, wall temperature at 
the cooling channel and onset boiling temperature in case of  
ωc = 3 mrad and no halo and with a reduced mass flow of 16 kg/s 

 

 

Figure 3-59 HV#23 left panel: trend of the pressure drop along the 
hypervapotron channel in case of mass flow rate equals to 16 
kg/s 
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3.6.3 Discussion on the hypervapotron cross section 

The cross section of one hypervapotron used for the thermo-hydraulic analyses is 

shown in Figure 3-24. The cross section of the flow (57 mm x 4 mm) is modelled 

without fins as required for the correlations in paragraph 3.2.1. The thickness of CuCrZr 

directly exposed to the beam is 5.7 mm, instead of 4 mm which is the real thickness 

without considering fins. This assumption has been done in order to account for the 

additional material of the fins. 

The absence of fins constitute the major simplification in the model. By considering the 

real cross section with fins, the highest wall temperatures are expected at the locations 

in which the thickness is only 4 mm. Two simulations have been carried out to estimate 

the influence of the thickness: the first one with the same model used for the above 

results (5.7 mm of thickness) and a second one with a reduced thickness of 4 mm. The 

two sections are shown in Figure 3-60.  

The boundary conditions for the two simulations are a constant temperature of 200 °C 

on the external wall of the Beam Dump, an inlet mass flow rate of 32 kg/s at 20 °C and 

an outlet pressure of 0.9 MPa. 

 

Figure 3-60 Sections of one hypervapotron with different thickness of 
CuCrZr directly exposed to the beam 

 

The results are shown in Figure 3-61 in case of 5.7 mm thickness and in Figure 3-62 

for 4 mm thickness. The wall temperature at the cooling channel differs of 6 °C 

between the two cases. This value can be considered as a deviation from the average 

value previously calculated to be taken into account. 

5.7 4 

 

Beam Beam 

(a) (b) 
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Figure 3-61 Thickness of 5.7 mm: magnification of the temperature [°C] 
distribution along one hypervapotron 

 

 

 

Figure 3-62 Thickness of 4 mm: magnification of the temperature [°C] 
distribution along one hypervapotron 

  

200 °C 

150 °C 

156 °C 

200 °C 
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3.6.4  Critical Heat Flux 

The Critical Heat Flux at the channel wall (CHFw) has been calculated by using the 

Tong-75 formula and the modified Tong-75 formula with a corrective factor Cf =1.2 valid 

for smooth tube (Eq. 36).  

Table 3-7 reports the CHFW in case of nominal mass flow rate (about 1 kg/s in each 

hypervapotron) and in case of reduced mass flow rate (about 0.5 kg/s in each 

hypervapotron). For both the cases the calculation has been carried out in the extreme 

conditions of inlet and outlet water temperature: 

- nominal mass flow case: coolant bulk temperature of 20 and 85 °C (this last 

value is the outlet temperature when the inlet temperature is 55 °C); 

- reduced mass flow case: coolant bulk temperature of 20 and 115 °C (this last 

value is the outlet temperature when the inlet temperature is 55 °C); 

The worst results correspond to the cases with the higher bulk temperature. By 

considering only the Tongh-75 formula, CHFW = 17 MW/m2 and CHFW = 10 MW/m2 

have been obtained respectively for the nominal and the reduced mass flow rate. The 

results become CHFW = 21 MW/m2 and CHFW = 12 MW/m2 when the corrective factor 

is considered.  

 

Table 3-7 CHFw calculated with the modified Tong-75 formula for the 
SPIDER Beam Dump in different scenarios 

Dh [m] 0.007475 

Cross section [m2] 2.28E-04 

mass flow [kg/s] 1.03 0.52 

G [kg/(s m2)] 4518 2281 

v [m/s] 4.53 4.66 2.28 2.41 

p [Mpa] 1 0.90 1 0.97 

Tsat [°C] 179.886 175.358 179.886 178.566 

Tb [°C] 20 85 20 115 

ρf @Tb [kg/m3] 998.16 968.59 998.16 947.07 

ρg @Tsat [kg/m3] 5.16 4.62 5.16 4.89 

μ [Pa s] 1.00E-03 3.33E-04 1.00E-03 2.43E-04 

cp [J/(kg K)] 4184.4 4200.8 4184.4 3691.2 

λ W/(m K) 5.98E-01 6.73E-01 5.98E-01 6.83E-01 

Re 3.37E+04 1.01E+05 1.70E+04 7.02E+04 

f 0.012962 0.006699 0.019534 0.008349 

Hfg [J/kg] 2.01E+06 2.30E+06 2.01E+06 2.22E+06 

Ja 64.27 34.68 64.27 20.51 

CHFwTONGH [MW/m2] 30 17 22 10 

Cf 1.2 

CHFw [MW/m2] 36 21 26 12 
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The maximum power density is in the scenario with ωc = 3 mrad and no halo. The heat 

flux at the channel wall has been calculated with the FE model. As shown in Figure 

3-63 the maximum value is equals to 63 W and corresponds to an element whose area 

is 1.06x10-5 m2. The heat flux is thus 5.9 MW/m2, well below all the calculated CHF. 

Even though an appropriate corrective factor Cf has not been found in literature, for 

hypervapotron geometry with peaked power density profiles it is expected that the CHF 

will be higher compared to smooth tube or uniform power profile. The calculated values 

with Cf =1.2 can be considered as a first rough estimation.  

 

Figure 3-63 Magnification of the heat flow [W] for the left panel in case of  
ωc = 3 mrad and no halo 
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Within the scenario in which the power density is the highest (ωc = 3 mrad and no halo 

fraction), the corresponding Incident Heat Flux (IHF) has been already shown in Figure 

3-19 where the higher value is 8.6 MW/m2. 

A further verification can be done by extrapolating the data presented by Escurbiac 

regarding the influence of the width in the ICHF [73]. In Figure 3-64 the ICHF as 

function of the HV width is shown both for uniform and picked profile. For an 

hypervapotron width of 65 mm is possible to extend these values obtaining 13 MW/m2 

and 20 MW/m2 as ICHF respectively for uniform and peaked profile. Being the 

maximum incident heat flux on the SPIDER beam dump of 8.6 MW/m2 (Figure 3-19) 

the possibility of reaching the CHF condition is excluded. 

 

 

Figure 3-64 ICHF (MW/m2) as function of HV width (mm) for uniform and 
peaked profile (bulk velocity 4 m/s and sub-cooling 120 °C) 
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3.7 Validation 

The validation of the developed customized ANSYS APDL code has been performed 

with a comparison to the results obtained at the JET Neutral Beam Test Bed by Falter 

at al. [34]. The same results have been also used in [32] for the validations of the 

developed analytical model for hypervapotron performance prediction. 

The test section with hypervapotron used at JET Test Bed was 500x27x19 mm3 (Figure 

3-65) with the internal fin structure as detailed in Table 3-8. 

 

 

Figure 3-65 Hypervapotron test section for the JET Test Bed [34] 

 

Table 3-8 Hypervapotron internal fin structure dimensions [34] 

Fin height 4 mm 

Fin width 3 mm 

Groove between fins 3 mm 

Water channel height 3 mm 

 

The same geometry has been replicated in ANSYS APDL and the analyses carried out 

with the following boundary conditions: 

- inlet mass flow rate: 0.54 kg/s; 

- inlet temperature of the coolant: 20 °C; 

- outlet pressure: 0.6 MPa. 

In [34] is not clearly defined the shape of the beam profile which gives the power 

density on the hypervapotron surface, but a gaussian shape is declared. The same 

apparatus is described by Falter in [35], here it is stated that the power density profile is 

essentially flat across the elements, with a variation over the illuminated 175 mm 

vertical section of  ±15 %. 

For the validation, the power densities have been applied in the central part of one side 

of the hypervapotron model for 175 mm length. The maximum values, corresponding to 

different experimental parameters from 2.4 to 24.9 MW/m2, have been imposed in the 
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centre with a linear reduction up to the 15% at the edges. This linear reduction is an 

attempt to take into account the total energy of the beam, even if the parameters of the 

gaussian distribution are unknown. The results of the comparison between the Falter 

experiment and the FE analyses are listed in Table 3-9 and plotted in Figure 3-66. A 

good agreement between these analyses and the experimental results has been found: 

the maximum absolute error is of 14°C at the highest power density, while the 

maximum percentage error is 14.5 % for the lowest power density. 

Falter presented also experimental results for an higher flow rate (0.73 kg/s) but the 

surface temperatures are about the same for both the cases and the comparison would 

not add new information. 

Figure 3-67 and Figure 3-68 show the contour plot of the temperatures for two different 

simulations. The maximum surface temperature at the cooling channel wall, located in 

the centre of the hypervapotron, has been taken for each simulation.  

Table 3-9 Comparison of experimental and FE analysis results 

Power density 
[MW/m2] 

Experimental 
temperature 

[°C] 

FE analysis 
temperature 

[°C] 

Absolute error 
[°C] 

Percentage error  
[%] 

2.4 55 63 8 14.5 

5 110 113 3 2.7 

10 220 237 17 7.7 

15 310 299 -11 -3.5 

20 420 410 -10 -2.4 

24.9 550 564 14 2.5 

 

 

Figure 3-66 Comparison of experimental and FE analysis results 
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Figure 3-67 Contour plot of wall temperatures [°C] at the cooling channel for 
a power density of 2.4 MW/m2 

 

Figure 3-68 Contour plot of temperatures [°C] at the cooling channel for a 
power density of 5 MW/m2 
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3.8 Discussion 

The SPIDER Beam Dump has been designed to allow two main functions: dumping all 

the beam power coming from the RF beam source, and measuring the temperatures 

on the dumping panels for beam diagnostic. 

31 hypervapotrons (made of CuCrZr alloy) for each panel constitute the heat transfer 

elements of the SPIDER beam dump. Here, different heat transfer mechanism can 

occur simultaneously because of a variation of surface temperature, bulk temperature, 

and coolant pressure. A FE model has been developed in ANSYS APDL in order to 

predict the behaviour of the component in different possible scenarios. As the two-

phase heat transfer mechanism is not foreseen in the standard library, a customization 

of the code has been performed by implementing a Fortran routine with suitable 

thermo-hydraulic correlations and by linking it to ANSYS APDL.  

The developed model has been used to carry out several analyses taking into account 

different beam conditions in terms of divergence, halo fraction and horizontal 

misalignment. The results show that, by using the thermocouples installed along the 

hypervapotron and at each outlet pipes, the SPIDER beam dump can be used for 

beam diagnostic purposes to detect divergence and horizontal misalignment.  

In case of 3 mrad of core divergence is possible to recognize the peaks and valleys of 

temperature caused by the different beamlets, while an almost uniform temperature is 

produced in the central part of the heated regions for larger beam divergence; 

moreover the higher the divergence, the higher the temperature at the tails of the beam 

(a percentage increase of 81% at the first thermocouple has been calculated between 

the cases with ωc=7 mrad and ωc=3 mrad).  

The horizontal misalignment can be detected only by looking at the shifted temperature 

profiles when the beamlets are well focused, while in case of higher divergence also 

the calorimetric measurements are useful. For instance, an increasing of 43 kW of 

thermal power is expected on the panel in which the beam is deviated in case of  

ωc=7 mrad (with a corresponding reduction of power for the other panel).  

The detection of the halo fraction appears hardly appreciable, but not impossible 

considering that other diagnostics (as tomography and spectroscopy) are foreseen. 

The thermo-hydraulic proprieties given by the cooling plant (coolant pressure and inlet 

temperature), the beam power and its density profile doesn’t lead, under normal 

boundary condition, to boiling heat transfer mechanism, even in the worst condition 

with well concentrated beamlets. 

The capability of the system to withstand the thermal power during a possible flow 

reduction has been analysed and verified. 

Temperature deviation of 6 °C from the average value has been calculated because of 

the addition material layer used to considered the fins. 

The Critical Heat Flux has been analytically calculated with the modified Tong-75 

formula by using a corrective factor Cf =1.2 not corresponding to the SPIDER beam 

dump hypervapotron geometry: 21 MW/m2 is the calculated CHF with 1 kg/s mass flow, 

bulk temperature of 85 °C and local pressure of 0.9 MPa. Really poor correlation are 

available in literature and the results have to be considered as general estimation but, 



162 

 

as the maximum heat flux at the channel is 5.9 MW/m2, the possibility of reaching the 

CHF condition is excluded.  

The ICHF has been also verified considering experimental measurements and 

extrapolating data applicable to the present design; also in this case the verification is 

satisfied, even if with reduced margin of 4.4 MW/m2 (in the worst hypothesis of uniform 

power density profile) that is about the 50% of the maximum applied power density. 

In the end the validation of the developed code has been presented demonstrating a 

fitting against experimental results with a maximum error of 14% only at the lowest 

power density.  
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Chapter 4 
Conclusions and future works 

The research activity presented in this thesis work has been carried out in the 

framework of the development of the negative ion source (SPIDER) and of the full 

injector prototype of the ITER neutral beam (MITICA).  

In fusion machines one of the most challenging issue, from an engineering point of 

view, is the reliability and thermal control of components faced to the plasma and 

particle beam. The high heat fluxes and power densities they are subjected to, make 

the cooling capability of these components one of the crucial aspects during the design 

phase. 

Two main topics have been presented in the thesis: integrated thermo-hydraulic one-

dimensional models with 3D sub-modelling of the MITICA beam source and beam line 

components, and FE model of the SPIDER beam dump. 

When working with large and complex cooling pipe circuits, the 1D CFD simulations 

are the common choice because they act as versatile tools to evaluate the flow 

partitioning, the coolant temperature along the network and the pressure drop.  

Three different models have been separately developed for the MITICA beam source, 

neutraliser and residual ion dump by using two codes (e.g. Flowmaster and ANSYS 

APDL). The well-known analytical models of standard elements have been used to 

simulate parts of the complex injector components while, to fully characterize local 

effects in the circuits, 3D CFD sub-modelling have been used for custom geometries.  

The focus of the analyses have been different.  

The model of the beam source have been used mainly to modify the flow partitioning in 

the entire system. Different design solutions have been explored in order to find the 

best compromise between flow rates, temperatures and pressure drops. A new cooling 

system, able to guarantee the correct flow in almost all the elements, has been 

proposed and adopted to be realised in the components under procurement. The new 

design guarantees the correct flow rate in all the component except to the PDP#1, 

PDP#2, PDP#3 and PDP#4 for whom the water flowing in the channels is about 40% 

less than the desired value. The differences with the previous solution are a parallel 

connection of the plasma driver plate channels, a reduction of the pipe and manifold  

diameters of the extraction grid and the insertion of localised pressure drops at the 

faraday shield lateral wall and extraction grid outlet.  

The neutraliser cooling circuit has been modelled in particular to predict the outlet 

temperature at the most heated elements. The analysis results have been used to 

undertake the PED hazard classification for the MITICA Beam Line Components 

(BLCs). With 55 kg/s as inlet mass flow rate, the maximum temperatures are 103 °C for 

the panels and 120 ° for the LEEs: the CE marking of each BLC is not required as the 

belong to the PED category SEP meaning that they have to be designed by applying 

the Sound Engineering Practice.  

The residual ion dump cooling circuit has been also modelled considering different 

designs: a balanced solution with the same tape thickness for all the swirl channels that 
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constitute the BSEs and a configuration with a reduced tape thickness where the 

expected heat loads are higher. The second design has been adopted considering the 

higher boiling margin in the middle panels, from 35 to 60 °C. Detailed 3D CFD analyses 

of a swirl channel have been carried out in order to define the main boundary 

conditions of the draining and dry procedure which requires Nitrogen gas with at least a 

minimum velocity of 30 m/s at the inlet. 

The 1D models are available at Consorzio RFX for further improvements and possible 

modifications. Experimental comparison will be performed once MITICA will be 

operative. Models can be used especially during the first experimental campaigns 

when off-normal experimental conditions can be recognised among simulated 

scenarios, or un-predicted and unexpected conditions can be further simulated. The 

research activity has been published in [74]. 

The second part of the thesis has been dedicated to the SPIDER beam dump for which 

a FE model has been developed by using ANSYS APDL. 

A programmable routine for the calculation of the local heat transfer coefficients in sub-

cooled nucleate boiling conditions has been wrote in Fortran and linked to ANSYS 

code. Suitable heat transfer and pressure drop correlations have been implemented in 

the routine in order to allow coupled thermo-hydraulic analyses for hypervapotron 

geometries. 

The customization of ANSYS APDL represents a new tool that could be used to 

perform simulations in two-phase heat transfer conditions for several high heat flux 

elements (like plasma and beam facing components) eventually with minor 

modifications of the correlations in case of different cooling channel geometry (for 

instance in case of swirl tubes). 

The FE model of the SPIDER beam dump has been used to predict for the first time 

the temperature measurements at the thermocouple positions under different beam 

scenarios verifying the possibility to use the beam dump not only to remove the 

incident thermal power but also to characterize the beam.  

Encouraging results have been obtained in diagnosing the beamlet core divergence 

and the horizontal misalignment. The detection of the halo fraction is rather difficult but 

not impossible together with the other diagnostics like tomography and spectroscopy.  

A scenario with a reduced flow rate has been analysed in order to prove the ability of 

the beam dump to withstand higher temperature working in a fully developed boiling 

regime. 

Scares data are available in literature for hypervapotron configuration, in particular, 

even if several experimental investigations have been carried out, general correlations 

with a wide range of validity in terms of thermodynamic proprieties and geometry are 

really few. The major difficulties have been encountered in the calculation of the critical 

heat flux for which an appropriate formula has not been found therefore its prediction 

has been performed following a general procedure which ensure, however, an higher 

safety margin. The ICHF has been also verified considering experimental 

measurements and extrapolating data applicable to the present design: the verification 

is also in this case satisfied, with a margin of 4.4 MW/m2 (in the worst hypothesis of 

uniform power density profile) that is about the 50% of the maximum applied power 

density. 
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The developed customized code is fully parametric and it allow analyses on 

hypervapotrons with different dimensions, thus the validation has been performed 

comparing the obtained results at the JET Neutral Beam Test Bed facility, 

demonstrating a fitting against experimental results with a maximum error of 14% only 

at the lowest power density. 

Further works is planned to extend the analyses on a wide range of beam parameters. 
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