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Abstract

In this thesis, we study from a physics perspective three problems related to

how turbulence affects living systems. The first problem is an aim to quantify

how turbulence changes the uptake of nutrients of micro-organisms, using

analytical and numerical simulations. The second problem is a quantification

of the relationship between the marine turbulence level depicted as the mixed

layer depth and the distribution of foraging points of pelagic birds while the

third problem is a verification of the theory of olfactory cued navigation in

pelagic birds. In the latter we used calculation from turbulence theory and

statistical analysis of real GPS tracks.



0.1 A turbulent introduction

Turbulence is ubiquitous in nature, from far galaxies to the milk stirred by

the spun in our morning cup. Natural turbulent flows are highly chaotic

and irregular on the small scales, but often characterized by coherent struc-

tures on large scales and both of them that can deeply influence underlying

dynamics. The exemplary case is the ocean, where the great currents are

responsible for general oceanic circulation while the turbulent mixing in the

upper layer of the sea, called the mixed layer is crucial for micro-organism

life. Ecologically, both scales are deeply related as in the majestic phenom-

ena of plankton blooms. These are initialized by the change in depth of the

mixed layer during spring times, which enhances the growth of planktonic or-

ganisms, which finally are advected by the oceanic currents over thousands of

kilometers. Furthermore, turbulence enhances the rate of encounters among

micro-organisms, an important factor both for reproduction and for preda-

tion, and increases the nutrient uptake of algae and bacteria. In the process

of stirring and mixing, substances dissolved in turbulent waters are on the

one hand homogenized on the large scale but, on the other, form fractal

structures on small scales. Quantifying the impact on nutrient uptake due

turbulence in micro-organisms is still an open question, given the many tem-

poral and spatial scales involved. The intensity of turbulence in the upper

layer of the sea, and so its depth penetration, can strongly influence the

marine ecology, since beside the already mentioned importance for phyto-

plankton survival, it can influence the distribution and survival of eggs of

pelagic fishes and all other microorganisms. On even a greater scale, the dif-

ferent species that inhabit the sea produce unique odour bouquets that can

be learnt and associated to the respective macro-areas. These odour bou-

quets evaporate from the oceans and are transported by the wind far away

from the source and stirred and dispersed by the wind associated turbulence.

In the visibly featureless ocean, this irregular and stochastic signal can be
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used by birds for navigation that, otherwise, in long trips would become

impracticable.

0.2 Topics of the thesis

This thesis studies how turbulence affects living systems. As far as turbu-

lence has many scales, it affects all living creatures, from micro-organisms to

big animals in many ways: increasing the amount of nutrient uptakes, shap-

ing the nutrient rich areas in the sea, and transporting precious information

over the sea. Therefore, after a short fluid dynamic introduction in section

1, we will move to study how turbulence changes the uptake of nutrients

by micro-organism in section 2. This study was motivated by some recent

articles that brought evidences that E. Coli has an enhanced growth rate

in turbulence beyond the theoretical expected values. Section 2 is therefore

devoted to the study of how turbulence affects the nutrient uptake of E.

Coli, by means of numerical simulations and analytical calculations. We will

provide stronger evidences that the growth rates depicted in the experiments

can not be explained with the turbulence levels reported in the latter. In

section 2, we also present a study on the role of temporal correlation in fluid

flow in nutrient uptake of small organisms. In section 3, we change subject

and we study the distribution of foraging points of pelagic birds, specifically

shearwaters, with respect to the depth of mixed layer and other candidate

variables. Finally in section 4, we will relate the pdf of unidirectional flights

in shearwaters and atmospheric turbulence depicted as the mean wind, pro-

viding strong evidences of odour-cued navigation in shearwaters.
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Chapter 1

Essentials of fluid dynamics

There is a physical problem that is

common to many fields, that is very

old, and that has not been solved. It

is not the problem of finding new

fundamental particles, but

something left over from a long time

ago, over a hundred years. Nobody

in physics has really been able to

analyze it mathematically

satisfactorily in spite of its

importance to the sister sciences. It

is the analysis of circulating or

turbulent fluids.

Feynmann, The Feynman Lectures

on Physics Vol 1

The dynamics of sea waves, the bathtub vortex as water drains from the

home wash basin, or the complicated motion pattern of the honey dripping

from a spoon on a slice of cheese, can be all described by the same equation,

namely the Navier-Stokes equation, that for an incompressible fluid flow e.g.
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a fluid flow for which

∇ · u = 0 (1.1)

can be written as

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u + ρg (1.2)

where

• ρ is the density (SI units: kg/m3),

• u is the flow velocity,

• ∇ is the divergence,

• µ is the dynamic viscosity (SI units: Pa·s),

• p is the pressure,

• t is the time,

• g represents external body acceleration like gravity, inertial accelera-

tions and so on.

It is worth noting that the Navier-Stokes equations, although well known for

more than a century, are still an active and prolific field of research since the

macroscopic phenomena associated with them can be extremely complex and

articulated. The great variety of phenomena, emerging from the same equa-

tions, is associated with the non-linearity which is present in the governing

equations (although also the boundary conditions at the fluid interface can

be non-linear). One of the most fascinating phenomena of fluid dynamics is

the so-called transition to turbulence, of which the best-known example is

still the original experiment, made by Reynolds, of a fluid flow through a cir-

cular tube. Reynolds showed that, as the flow rate is increased beyond some

critical value, the flow passes from a time-independent one-dimensional flow,

called laminar, to a time-dependent and fully three-dimensional flow, called

2



turbulent. Reynolds showed that an adimensional number called Reynolds

number, Re, can describe this transition. The Reynolds number weights the

importance of the destabilizing non-linear advective term and the smoothing

Laplacian term in equation 1.2, and it is defined as:

Re =
ρuL

µ
=
uL

ν
(1.3)

where:

• u is a characteristic magnitude of velocity (m/s),

• L is a characteristic linear dimension (m),

• ν is the kinematic viscosity of the fluid (m2/s),

• µ is the dynamic viscosity (SI units: Pa·s).

Now we can have a better definition of laminar and turbulent flow: laminar

flow occurs at low Reynolds numbers, so when the viscous forces are dom-

inant and is therefore characterized by smooth and constant fluid motion;

instead, turbulent flow is characterized by chaotic eddies and unpredictability

and occurs at high Reynolds numbers, namely when the inertial non-linear

forces are dominant. For very high Reynolds numbers, however, we can re-

cover a predictability in a statistical sense: the statistics of the velocity field

in a certain range of scales becomes universal and the flow is characterized

by scale invariance. These properties are an effect of the tendency of large

eddies to disrupt into smaller eddies and so forth, a process that is well

described by a poem of 1921 by Lewis Fry Richardson:

Big whirls have little whirls

Which feed on their velocity;

And little whirls have lesser whirls,

And so on to viscosity

in the molecular sense.
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The idea of a scale invariance in turbulence was firstly formalized in 1941

by Kolmogorov in a series of articles, in which he presented a theory that we

will shortly describe in subsection 1.3. In the following, we will choose a more

quantitative approach, adimensionalizing the NS equations and looking at

their behaviour in the two opposite limits of high and low Reynolds numbers.

1.1 Adimensionalisation of NS equations

In order to simplify the equation, it is common to introduce a modified

pressure that effectively combines the effects of nominal pressure and the

external field term g when the latter is a conservative field. Therefore, if

g = −∇φ, we can define a new pressure term p = p + φ, reducing the

Navier-Stokes equations to

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u (1.4a)

∇ · u = 0. (1.4b)

In order to adimensionalize equations 1.4, we have to specify at least three

independent dimensional parameters: a characteristic length scale, lc; a char-

acteristic velocity scale, Uc; and a characteristic time scale Tc. The length

scale is usually evident from the geometry of the flow domain; for example,

for a sphere moving in an unbounded domain the sphere radius is taken,

while the characteristic velocity scale Uc represents a typical magnitude of

fluid velocities in the flow. The choice of Tc depends on the boundary con-

ditions: if the boundary conditions are steady, the natural choice for Tc is

lc/Uc, namely the time that a fluid element employs to travel a distance lc,

while if either the boundaries are not static or the flow at large distances is

time-dependent, we have to choose another time scale. If the boundary con-

ditions are periodic, then Tc is proportional to the inverse of the frequency,

while in other cases the definition of Tc is not straightforward. For the pres-

sure scale, it exists more than a natural choice: for high Reynolds numbers

4



is usually taken p∗ = p
ρU2 and for low Reynolds numbers p∗ = pL

µU . For high

Reynolds numbers, by substituting the scales, using the correct one for the

pressure, the non-dimensionalized equation obtained is

1

St

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∇2u. (1.5)

We can clearly see that, for high Reynolds numbers, the viscous term is sub-

dominant, although can not be neglected, since the limit ν = 0 is a singular

limit [1]. Instead, in case of low Reynolds numbers the equation becomes:

Re

(
1

St

∂u

∂t
+ (u · ∇)u

)
= −∇p+∇2u. (1.6)

For very low Reynolds numbers and St ∼ O(1), we can neglect the inertial

and the time derivative terms, obtaining the Stoke equation:

∇2u−∇p = 0. (1.7)

We will now treat separately the two limits.

1.2 Low Reynolds number

In order to obtain the Stokes-equations, also called the creeping-flow equa-

tions, we have to satisfy both the conditions Re� 1 and Re/St� 1, or just

Re � 1 when the boundary conditions are steady. When these conditions

are satisfied, the time derivative in the equations of motion can be neglected.

Therefore, even if a time dependence can still be present in the problem, as

it happens when boundary conditions are changing over time, time is rather

a parameter than a variable. In fact, the flow field adjusts instantaneously

with respect to the time scale of the boundary conditions, being so always

in the steady state with respect to the respective boundary conditions. For

this reason, creeping flows are also called quasi-steady flows.
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1.2.1 Swimming at low Reynolds Numbers

Bacteria like E. Coli has a typical velocity of 20 µm/s and a dimension of

2µm. The Reynolds number for a swimming E.Coli in water at 20◦ where1

ν ∼ 10−6 m2/s, is 4 × 10−5 and allows us to use the Stokes equation to

describe the fluid flows in its surroundings. Equations 1.7 are linear and

time-independent. It follows that, in order to move itself, a swimming micro-

organism has to perform cyclic non-reciprocal motion. The so-called scallop

theorem [2] summarizes the precedent statement: a scallop is known to have

only one degree of freedom in configuration space and is allowed to perform

only reciprocal motion, namely open or close its shell. If we minimize the

scallop into the bacterial microscopic world, it would only be able to wobble

back and forth around its initial position. Therefore, in order to swim at low

Reynolds numbers, microorganisms have developed peculiar ways of motion,

for example, by means of helical flagella or flexible oars. It is a common

experience that if we suddenly stop swimming while doing it, we still advance

of a significant portion of our body. It is interesting to see what happens

in the microscopic world of bacteria if they perform the same operation.

Let us start with the fdrag ∼ ηul, the coasted distance is so d ∼ u2/a =

mbacu
2/fdrag = mbacu/ηl where mbac is the bacterial mass. Expressing mbac

as ρbacl3 we find that d/l = Reρbac/ρ, that for the typical values of an E.Coli

brings to d ∼ 0.1 nm. We can see that for small Re, the Reynolds number

can be interpreted as the coasting distance expressed in body length unity.

Once again, we showed that inertial forces at low Reynolds numbers are

neglectable. As a direct consequence, Newton’s law can be replaced by an

instantaneous balance between external and fluid forces and external and

fluid torques:

Fext + Fint = 0 Lext +Lint = 0. (1.8)
1see appendix for a table of kinematic viscosity at various temperatures
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The hydrodynamic force F and torque L, acting on the body immersed in

a fluid flow, are found by integrating the stress tensor σ = −p1 + η(2E),

where 1 is the identity tensor, over the body surface S, namely

F =

∫
S
σ · ndS, L =

∫
S
x× (σ · .n)dS. (1.9)

x is the position on the surface with respect to an arbitrary origin o and

n is the normal to the surface pointing into the fluid. The linearity of the

stokes equation forces a linear relationship between the couple velocity ub

and rotation rate ωb, and the couple external force and external torque,

namely  F

L

 =

 A Bo

BT
o Co

 ub

ωb

 . (1.10)

The matrix in 1.10 is called the resistance matrix of the body, and its inverse

matrix is called the mobility matrix. The matrices Bo, BT
o and Co depend

on the arbitrary point o chosen as origin of the reference system. However

there exists a unique point, p, inside the particle where Bp = BT
p . This

point is called the centre of reactions of the particle. For highly symmetric

bodies, like a sphere, in the centre of reaction Bp = 0, and p is called the

hydrodynamic point of the particle. For this kind of bodies, translational

motion and rotation are disentangled. This obviously is not the case of chiral

bodies as the helical flagella of E.Coli where there is a coupling between

angular motion and trust.

1.2.2 Analytical solutions

Although the Stokes equations are linear, their solution even for simple ge-

ometries can be a difficult task. Like in electromagnetism, an approximation

with the first few terms of the multipoles decomposition of the flow field is

adopted. This description can be sufficient to describe the flow field only far

away from the bacteria itself, although it succeeds in describing the circular

motion of E. Coli near a surface [3]. In the following, instead, we will be

7



interested in the complete analytical solution of the Stokes equation. The

solutions for a still sphere in a uniform flow or in a general linear flow, are one

of the few known (reported in the appendix). The solutions for an ellipsoid

in the same kind of flows are known but difficult to handle, both numerically

and analytically [4], while for more general geometries numerical methods

are mandatory, for which we refer to chapter 2.

1.3 High reynolds number

Doue la turbolenza dellacqua

rigenera, doue la turbolenza

dellacqua simantiene plugho, doue la

turbolenza dellacqua siposa

Leonarda da Vinci, Codice Atlantico

In his 1941 paper, Kolmogorov argued that, in the chaotic energy trans-

fer through scales, the directional biases present in large scales are lost along

with all the information about the eddies geometry. It follows that eddies

down a certain scale become homogeneous and isotropic. This fact was sum-

marized by Kolmogorov in his first similarity hypothesis:

At sufficiently high Reynolds numbers,the local average properties of the small-

scale components of any turbulent flow are statistically isotropic and deter-

mined entirely by kinematic viscosity ν and the average rate of dissipation

per unit mass ε.

Therefore the statistics of small-scale motions are universal in every high

Reynolds number turbulent flow, independently from the mean flow field

and the boundary conditions. From this hypothesis, it is easy to find the

so-called Kolmogorov microscales namely the smallest scales present in the

turbulent flow, where viscosity dominates and the turbulent kinetic energy is

dissipated into heat: As we saw in eq. 1.5 for high Reynolds numbers there

8



Kolmogorov length scale η =
(
ν3

ε

)1/4

Kolmogorov velocity scale uη = (νε)1/4

Kolmogorov time scale τη =
(
ν
ε

)1/2
exists a whole range of scales where dissipation is negligible. Kolmogorov

formulated [5] this concept in his second similarity hypothesis that states:

In every turbulent flow at sufficiently high Reynolds number, there is an up-

per subrange called inertial subrange in which the local average properties

are determined only by the rate of dissipation per unit mass ε (then being

independent on ν).

The given definition of the Reynolds number allows us to define a Reynold

number associated with every scale Re(l) = u(l)l/ν. The Reynolds number

at the Kolmogorov length scale Re(η) is equal to 1, consistently with the hy-

pothesis that the cascade proceeds until a scale where dissipation balances

the non-linearities present in the NS equation. For l� η, as for small bacte-

ria in normal marine flows, Re(l)� 1 implying that the flux is dominated by

dissipation and the flow field is smooth, although still time-dependent and

chaotic. A representative scheme of the energy spectrum for stationary tur-

bulence is depicted in figure 1.1: the kinetic energy is injected at the integral

length scales, namely the largest scales in the energy spectrum containing

the greatest amount of energy, and is transferred towards lower scales in the

inertial cascade until it reaches the dissipation range where it is transformed

into heat.

1.4 The gradient matrix

We will see that of great interest is the gradient matrix A = ∇u. The matrix

A is usually divided into its symmetric and anti-symmetric parts, namely

the strain rate tensor E = A+AT

2 and the rate of rotation tensor Ω = A−AT
2 .
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Figure 1.1: An illustrative scheme of the energy spectrum in turbulence.

For incompressible fluids, E is traceless and represents a gradual shearing

deformation, with no change in volume. The vorticity vector ω, that offers

a more immediate representation of the rotation, can be easily obtained by

the rate of rotation tensor:

ω = 2(Ω32e1 + Ω13e2 + Ω21e3).

1.4.1 Statistics of the gradient matrix in turbulence

In turbulence the dissipation rate ε = 2νEijEij displays large levels of inter-

mittency, nearly log-normal2 statistics.

Similar trends hold for the pseudodissipation, ε′ = 2νAijAij , whose statistics

is even closer to log-normality than ε.

The variance of the logarithm of dissipation is known to increase with Reynolds

number [6] and can be parametrized following Kolmogorov [7] as: σ2
ln ε =

A + (3µ/2) ln(Rλ). A depends on large-scale motions of length L and for

isotropic turbulence has been estimated as A = −0.863, while µ is an in-

termittency exponent estimated as µ = 0.25 and Rλ = (L/η)2/3. Obviously

the mean of the dissipation should be the mean dissipation rate, and there-

2we remind that the pdf of a log-normal is f(x) = e
− (ln x−µ)2

2σ2

x
√
2πσ

, x > 0.
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fore, in stationary turbulence, the amount of energy injected per unit time

at large scales .

1.5 Scalar transport

Of primary interest in physics, engineer and biology it is the problem of a

scalar, for example nutrients, ink, odours or even temperature when tem-

perature differences are not enough to produce significant density gradients,

advected by a fluid flow. This problem is well described by the advection-

diffusion equation,
∂C

∂t
= −u∇C +D∇2C, (1.11)

where C is the scalar concentration and D the molecular diffusivity. As for

the Navier-Stokes equation, as we will see in chapter 2, analytical solutions

of eq 1.11 are difficult to obtain even for simple geometries and boundary

conditions. The two terms in eq. 1.11 have opposite effects: while the

advective term tends to stretch, fold and stir the scalar, the diffusive term

tends to homogenize and smooth the concentration field. The Peclet number

Pe is an adimensional number, defined as the ratio of the advective transport

rate to the diffusive transport rate:

Pe =
lcuc
D

. (1.12)

In general, for low Pe the concentration field is smooth, while for high Peclet

the concentration field becomes more and more stirred reaching a fractal dis-

tribution [8] in case of chaotic flows and high Pe numbers. In turbulence

there is a cascade of the scalar concentration similar to the one of turbu-

lent kinetic energy, where the scalar concentration is transported to smaller

and smaller scales until the scalar molecular diffusivity dominates [9]. As

done for the turbulent energy we can define the scalar micro-scale, namely

the Batchelor microscale (λB), that describes the smallest length scales of

11



fluctuations in scalar concentration before they are smoothed by molecular

diffusion, defined as:

λB =
( η

Sc1/2

)
=

(
νD2

ε

) 1
4

(1.13)

where Sc is the Schmidt number, namely the ratio respectively momentum

and mass diffusivity: ν/D. For Sc > 1 the Batchelor scale is smaller than

the Kolmogorov micro-scales and therefore the scalar have structures smaller

than the smallest eddy size.
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Chapter 2

Micro-scale

Sea micro-organisms are the basis of the food chain and they have an extreme

importance in carbon cycle [10]. Sea waters are poor of food, making the

uptake of nutrients the bottleneck in their growth rate. Recent experiments

[11, 12] have shown an increased growth rate, and therefore an increased

uptake of nutrients, of E. Coli in turbulent flows far beyond the expected

theoretical value which has brought many authors to consider these exper-

iments as flawed [13]. However, no one has yet proposed clear evidences of

what the flaws of the experiments were, leaving the question of their valid-

ity still open. The effect of turbulence on the uptake of micro-organisms

is not trivial. At large scales it mixes both the nutrients and the micro-

organisms population1, it reduces chemotaxis [15], by "disorientating" the

micro-organisms while "rotating" them, and at micro-scales it enhances the

nutrients uptake. The linear dimension of micro-organisms, like bacteria

and algae (E. Coli typical dimension ∼ 2µm [16]), in ordinary natural flow

field (e.g. marine or lake turbulence), are usually far smaller than the Kol-

mogorov scale η (typical value ranging between 0.3mm and 2mm [17]) and

therefore than all the length-scales of the turbulent flow. Micro-organisms

can be denser than the surrounding water, but their inertia is not enough to
1although on the other side, it can clusterize them, see [14]
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avoid them to follow the flow lines. This can be seen by comparing two time

scales, the Kolmogorov time scale and the Stokes time,

τp =
a2

3νβ

where a is the linear dimension of the micro-organism and β is the density

contrast:

β =
3ρf

ρf + 2ρp

where ρf is the fluid density and ρp is the micro-organism density. Their

ratio, τp/τη, is called the Stokes number and it quantifies the departure

of inertial particles, which in our case are the micro-organisms, from fluid

particles trajectories. Using a density of 1.1ρf , as normally found for E.

Coli [16], and common values of turbulence levels and a dimension of 1 µm,

we obtain a Stokes number lower than 10−3, indicative that departures of

non-motile micro-organism trajectories from fluid particle trajectories are

negligible [18, 19]. Therefore, in the reference system of a non-motile bacte-

ria, the undisturbed flow field, namely the flow field without the presence of

the micro-organism, can be approximated in its surroundings with the first

term in the Taylor’s series expansion,

U∞(X) = +AX +K : XX + ...+ ∼ AX, (2.1)

where X = 0 is the hydrodynamic center of the organism and the matrix

A is the gradient matrix introduced in paragraph 1.4. A field that can

be expressed as ∼ AX is called a linear flow. As mentioned in section

1.2.1, the Reynold number at the bacteria scale is far below 1, and the

fluid flow surrounding the micro-organism, obeys the Stokes’s equation for

incompressible fluids, matching at first order the linear flow AX of equation

2.1 far from the micro-organism and no sleep boundary condition on the

micro-organism surface. The solution for this problem in the case of a sphere

is reported in appendix B.1.1. In turbulence the boundary conditions at
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infinity, namely the matrix A, are time dependent, e.g. A = A(t), but

as mentioned in section 1.2, since St ∼ 1 in turbulence, time is rather a

parameter than a variable and the flow field is considered quasi-steady in

the definition we gave in section 1.2. In order to obtain the uptake of a

micro-organism, we have to solve the advection-diffusion equation 1.11. In

order to simplify the problem, we will suppose, as boundary conditions, total

absorption on the micro-organism’s surface and a constant concentration far

away from the micro-organism, namely:

C(x ∈ S) = 0, lim
||x||→∞

C(x) = C∞ (2.2)

where S is the micro-organism’s surface and x = 0 is its hydrodynamic

center (or the center of reaction if the latter does not exist). Once solved

the time dependent equation 1.11 with boundary conditions as in equations

2.2, a time dependent matrix A(t) and an initial concentration field C0, the

instantaneous uptake of nutrients, due to the no sleep boundary condition

of the flow, imposed on the organism surface, is simply

F (t) = D0

∫
S
n ·∇C(t)dS. (2.3)

The change in the uptake of a micro-organism, by virtue of the fluid flow, is

quantified by the Sherwood number, Sh , which is analogous to the Nusselt

number for heat-fluid dynamics. The Sherwood number is defined as the

ratio of the advective nutrient uptake and the diffusive nutrient uptake.

Numerous works relate the Sherwood number to the Peclet number, Pe,

namely the ratio of the advective transport rate to the diffusive transport

rate. For a spherical particle in a stationary linear flow, Pe is defined, using

Einstein convention, as
√
EijEijr

2/D, where the matrix E is the symmetric

part of the matrix A in eq 2.1, e.g. E = (A + AT )/2 where the capital T

stands for transpose. In this configuration, there are analytical results for

the Sherwood number in the cases Pe � 1 with Sh ∼ 1 + 0.36Pe1/2 [20,

21] and Pe� 1 with Sh = 0.9Pe1/3 [22]. [23] presents a parametrization of
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Sh for Pe in range 0.1-90 : 0.82 + 0.63Pe0.4, obtained thanks to numerical

simulations and a fit with a formula a + bPec. Instead, the anti-symmetric

part of A, namely Ω the rotation tensor, can only reduce the uptake since

rotation tends to close the streamlines. When |Ω|/E < 1, the difference

in the uptake is lower than 10%, while when |Ω|/E � 1, counts only Eω,

namely the projection of E on the rotation vector ω. In this last case Sh =

1 + 0.4
(
r2|Eω|/D

)
.

In turbulence is used to decompose turbulent flows in mean and fluctu-

ating part, namely U =< U > +u. The same procedure can be applied to

the strain tensor:

E =< E > +e. (2.4)

Given that in turbulence flows << Eij >< Eij >>�< eijeij >, we can sup-

pose valid the following relationship between the shear rate and the kinetic

energy dissipation:

ε = 2ν < eijeij > . (2.5)

Hence, we can introduce the turbulent Peclet number:

Peturb =
r2

0

D

( ε
ν

)1/2
=
r2

0V Re
1/2

DL
. (2.6)

Using the mean E and Ω in an isotropic turbulent flow characterized by a

Reynolds number Re, the expected uptake should be[23] for low Peturb:

Sh = 1 + 0.29Pe
1/2
turb. (2.7)

while for high Peturb it is expected a relationship like Sh = 0.9Pe1/3. The

sub-linear dependence of Sh on Pe has led some authors [24] to believe that

the average nutrient uptake of a micro-organism in a turbulence flow should

be lower than the nutrient uptake calculated using Peturb. In particular [24]

calculated an expected reduction in the estimated uptake due to the micro-

scale turbulence intermittency between 6.26% and 19.07% for small Peturb

and a reduction between 21.22% and 61.78% for high Peturb using normal

values of marine turbulence.
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2.1 Case of study

In the two already mentioned articles [11, 12] (from now on we will refer to

them as Exp1 and Exp2) E. Coli have been put in an "oscillating grid reactor

under conditions of no oxygen transfer to the liquid phase." "The reactor

consisted of a Plexiglas chamber with dimensions 50 × 50 × 47 cm and a

vertically oscillating grid made from Plexiglas rods 48× 1.3× 1.3 cm." "The

rods were spaced 5 cm apart. The grid was powered by a rotating motor

with a speed controller. The grid was set to oscillate at four frequencies

(f=1, 2, 4, and 6 Hz). The stroke length was 3 cm." Measuring the E. Coli

concentration at different time intervals, they were able to deduce the growth

rate of the bacterial population, where the growth rate of a population is

the time constant in the exponential growth phase, and it is related to the

doubling time as Td = 1/(log2(e)µg) where Td is the doubling time and µg is

the growth rate. A summarizing table of their results is presented in table

2.1.

As it is possible to see, the values of Peturb for the turbulence levels

depicted in table 2.1 assuming a characteristic length of 1µm, are very low,

and so are the associated theoretical Sherwood numbers. If we assume an

equality between the Sherwood numbers and the growth rate, the predicted

growth rate should not be greater than 1.044 times the growth rate in still

water. Why this discrepancy? Are the experiments flawed? Are the pre-

dicted values wrong?

2.1.1 Hypothesis and proposed mechanisms

We want to test the following hypothesis:

Hypothesis The growth rates presented in experiments Exp1 and Exp2 for

E. Coli organisms are consequence of an increased uptake due to an isotropic

homogeneous turbulence characterized by the parameters presented in table
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Grid frequency (Hz) 0 1 2 4 6

ε (m2/s3)× 106 0.0 7.3 29.7 101.0 176.1

µg (1/h) 0.021 0.023 0.059 0.064 0.106

µg/µgs (-) 1.00 1.13 2.82 3.09 5.10

Re (-) 0 19 32 86 115

urms (mm/s) 0 1.4 2.2 4.9 6.2

vrms (mm/s) 0 1.4 2.3 4.7 5.9

〈v′〉rms (mm/s) 0 2.4 3.8 8.3 10.5

τη s ∞ 0.37 0.19 0.10 0.075

T s (-) 11.9 7.3 10.23 9.39

Peturb × 103 (-) 0 4.7 9.6 17.6 23.3

Sh(Peturb)× (-) 1.0 1.020 1.028 1.039 1.044

Table 2.1: Re is evaluated at the integral length scale. 〈v′〉rms was calculated by the

author from data as
√
u2
rms + v2rms + (urms + vrms)2/4 since no information

on zrms were available. Values under the middle rule, Peturb and Sh(Peturb),

are calculated by us, assuming a characteristic length of 1 µm and using formula

2.7.

2.1.

We proposed 3 different mechanisms for an enhance in the growth rate

and tested them separately:

• The particular geometry of E. Coli: E. Coli has a particular form,

different from spherical and possesses flagella. In section 2.2, we will

investigate the role of the particular E. Coli’s body form, the change in

its linear dimension while growing, and the possible role of its flagella

in its nutrient uptake.

• The role of temporal dynamic in the fluid flow: the known results of

the Sherwood number presented before were obtained by the authors
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in case of stationary flows, while [24] average stationary quantities,

neglecting the complex spatio-temporal structure of turbulence. In

section 2.3, we will investigate the role of temporal dynamics in fluid

flows, firstly in the simple geometry of a spherical bacteria, by use of

simple exemplary flows. We will show that, for temporal dynamics

"similar" to the turbulent ones, an enhanced uptake with respect to

the expected values, using the mean quantities, is obtained. We then

apply the same methodologies in the geometry of E. Coli, obtaining

similar results.

• E. Coli are adders: E. Coli divide with the adder principle. This implies

that they divide when the integral of the nutrient flux has reached a

certain value. Therefore the fluctuations present in the uptake can

boost the growth rate of the overall population.

Finally, in section 2.5 we obtain an upper growth limit combining all the

factors mentioned before, in order to reject definitively the hypothesis 1.

2.2 The E. Coli geometry

E. Coli body is usually described like a small cocktail sausage [16], of 0.8

µm of radial diameter and variable length, from 2 µm to 10 µm. It possess

usually 4-6 flagella of ∼ 10 µm of lengths and ∼ 20nm of radius disposed in

a helical shape with radius ∼ 0.2µm and pitch of ∼ 2.2µm.

The flagella arise at random from the sides of the cell. If the flagella rotate

all CCW they form a bundle at one pole of the bacterium that pushes the

cell, while if one or more starts to rotate CW these ones detach from the

bundle and disorient the E. Coli. This mechanism is the base of the so called

run and tumble way of motion of E. Coli, namely the alternation of periods

of traveling and periods of disorientations. This strategy is used by E. Coli

to perform chemotaxis [16]. As the cell grows, it gets longer and then divides
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in the middle, a mechanism that we will define better in section 2.4.

Therefore in next sections we will schematise the E. Coli body as a solid

of revolution with plane projection as a stadium and use as radius of the

hemispherical cap R = 0.4µm and variable length h. We call h1 the length

of the cylindrical part in the middle h1 = h− 2R.

2.2.1 E. Coli body

In stagnant waters the flux toward a micro-organism depends on its geometry.

In literature is usually reported a version of the Sherwood number defined

as

Sh0 =
Qlc

SDC∞
(2.8)

where lc is a characteristic length that has to be chosen so that the sur-

face area S is equal to 4πl2c [25]. We stress that in literature often other

characteristic lengths are used (and sometimes different definitions of Sh0)

complicating the comparison among different results, and requiring extra-

care in order to not fall in errors. For a general linear flow with no rotation

and low Peclet numbers, it is usually reported in literature the formula:

Sh = 1 + αSh0Pe
1/2 + α2Sh2

0Pe+O(Pe3/2) (2.9)

where Pe is calculated as Pe = El2c/D, while for high Pe number we did

not find reported formulas. In order to investigate the latter, we performed

numerical simulations using an axi-symmetric linear fluid flows, namely a

flow field that can be written in the appropriate reference system as:
Ux(∞)

Uy(∞)

Uz(∞)

 =


−a/2 0 0

0 −a/2 0

0 0 a



x

y

z

 (2.10)

where a is the parameter that controls the intensity of the flow field and its

direction.
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2.2.2 Calculation of Sh0 for an E. Coli

In order to calculate Sh0, we solved the diffusion equation using as external

boundary condition a sphere with radius Rext = 104R. The results are

reported in figure 2.1a, together with the analytical prediction of Sh0 for a

prolate ellipsoid of semi-axis length R and h/2, often used as a proxy for

the E. Coli geometry, see appendix B.1.5. As it is possible to see, the Sh0

of a prolate ellipsoid overestimates the Sh0 of the stadium of revolution.

The shape factors Π defined as Pi = Q/(DC∞), for both the stadium of

revolution and the ellipsoid are reported in figure 2.1b where is clear that

the shape factor of the stadium is bigger than the shape factor of the ellipsoid.

This is expected since both surface and the volume of the stadium are bigger

than the respectives of the ellipsoid.

2.2.3 The Uptake of E. Coli in stationary flows

We performed numerical simulations varying the flows intensity parameter

a. Instead of searching for an exact theory, we simply performed a fit of the

results using the formula:

Sh = (0.5 + (0.125 + 0.27Sh0c1(Pe)0.5c2) + c3(1/Sh0)(0.93)Pe)1/3 (2.11)

for every value of h with free parameters c1, c2, and c3. We then fit again the

obtained values c1, c2, and c3 against h, obtaining the complicated formula

reported in appendix, section B.1.6, that can describe the flux for every value

of a and h with a precision lower than 5 in all the range of the considered

values. Finally, we used this formula to perform numerical simulation of the

growth of a bacteria, in order to calculate how the doubling time changes for

different flows intensity and initial length of the bacteria, called ∆, and we

assume that the bacteria divides when it reaches a length 2∆. The results

of these calculations are depicted in figure 2.2.
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Figure 2.1: Sh0 and Π for an ellipsoid and a stadium of revolution.

2.2.4 The possible role of E. Coli flagella

The mass of the E. Coli flagella is negligible compared to the mass of its

body. However, the hydrodynamic resistance of the E. Coli’s flagella to a

translational flow directed along its axis is lower but still comparable to

the hydrodynamic resistance of its body. In a linear flow the flow intensity

scales linearly with the distance. The combination of these two facts implies
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Figure 2.2: Relative growth rate, µ/µs for different values of Pe1 and different values of

∆.

that in a linear axysimmetrical flow, when the E. Coli is directed along the

axis of symmetry, the centre of the linear flow cannot be the centre of the

bacterial body, but instead should be skewed toward the flagella. The actual

difference between the two positions relies on the precise geometries of the

E. Coli itself and in particular on the number of present flagella. We will

therefore parametrize the position of the linear flow, that can be recast as

a linear flow plus a translational flow maintaining the centre of the linear

flow in the center of the bacterial body. Naively we might think that the

nutrient uptake of the bacteria due to the combination of the two flows,

namely the translational and the shear one, is always greater than the the

flux due to any of the single ones. Actually, this argument is not true as

depicted in [26] where the authors studied the Sherwood number of a sphere

in a translational-shear flow at high Pe numbers, finding

Sh = k(Petras + Peshear)
1/3f(Petras/Peshear) (2.12)
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flow.

where k is a constant and f a complicated function involving elliptic integrals

of first and second kind, that we will not show, that has a minimum for

Petras/Peshear ∼ 1. We extended the results of [26] performing numerical

simulations for the case of a stadium of revolution for various values of h, a

and Ucost, where the latter is the module of the translational flow added. It is

evident that 0 < |Ucost| < (h/2 +L/2)a where L is the length of the flagella,

and the expected value is around ah/2. Results are presented in figure 2.3.

As it is possible to see, adding a constant flow to a linear flow for a stadium

of revolution, brings to a greater uptake than the case of just a linear flow,

although the difference is very low, . 1%, for the range of parameters we

are interested: Ucost ∼ ah/2. It is interesting to note that the opposite case

of adding a linear flow to a translational flow brings to a decrease in uptake

for Ucost ∼ ah/2.

24



2.3 The role of temporal dynamic on instantaneous

nutrient uptake

We will begin with a spherical organism and then pass to an elongated object.

2.3.1 Spherical organism

We will begin showing the results obtained using axi-symmetric flow, e.g.

flows that can be described as in eq. 2.10, where now the parameter a,

namely the parameter controlling the intensity of the flow field, will be time-

dependent, e.g. a = a(t). We will show that time dynamics in fluid flows

greatly influences the nutrient uptake of small-organisms. Furthermore, the

time dynamics in the fluid flow can produce an enhanced uptake with respect

to the stationary case with the same mean Peclet number presented by the

former. This conclusion invalidates the arguments of [24], and shows that in

every attempt of calculating nutrient uptakes in turbulent flows, corrections

due to time dynamics should be taken into account.

In order to demonstrate this, we first analyzed the transient time in the

nutrient uptake when a sudden change in the fluid flow occurs. Hence, we

considered a fluid flow that passes from U(a1) to U(a2) at time t = 0, and

a concentration field that for t < 0 is the stationary solution obtained with

a stationary U = U(a1). Then, we recorded the transient instantaneous

uptake F (t). We define F ∗, the adimensionsional re-scaled uptake, as

F ∗(t) =
F (t)− F (a1)

F (a2)− F (a1)
(2.13)

where F (t) is the instantaneous uptake at time t and, F (a2) and F (a1) are

the stationary uptake for, respectively, U = U(a1) and U = U(a2). From the

simulations it becomes clear that when the sign of a1 is equal to the sign of

a2, the transient time depends on the ratio a1/a2. If the latter is greater than

1, then the normalized flux, for t > 1/a1, is proportional to (ta1)0.5exp(−ta2)

while in the opposite case the normalized flux has a exponential dependency
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on a2 with a weak dependency on a1. As a result the transient time in the

case a1/a2 > 1 is greater than in the case a1/a2 < 1. Using this argument

we were able to construct simple time dynamics were the mean uptake is

greater than the uptake obtained with a stationary flux characterized by

the same mean Peclet number. For a complete diving into the results we

refer the reader to the section in appendix devoted: A However the results

presented prove the impossibility of obtaining an instantaneous Sherwood

number greater than Sh(Pe(Emax)) where Emax is the maximum value of

the shear tensor encountered in the flow history. We checked by mean of

full 3-D simulation if this is true for any possible combination of two matrix,

verifying that this is true.

2.3.2 Time dynamics for an elongated object

As for the spherical case, we used axi-symmetric flows to the transient time

in the uptake for a stadium of revolution. Applying the same procedure

depicted previously we change suddenly the linear flow intensity parameter

from a1 to a2 and looked at the transient time. The elongation has mostly

no effect on the transient time, and the results depicted before are still

valid. The addiction of a constant velocity has the effect of reducing the

transient time when a1/a2 < 1 while few differences are found for a1/a2 >

1 implying the possibility of having an even greater uptake due to time

dynamics than the expected value obtained using the mean values. However,

even for elongated object in general axi-symmetric flows we did not find

any possibility of accessing values greater than F (Emax, Ucost(Emax)). We

will use this result in section 2.5. In section B.1.2 in supplementary, we

simulate an ellipsoid in a turbulent flow in order to show that, increasing

the eccentricity of the ellipsoid, the correlation time of the projection of the

shear tensor on the axis of symmetry increase. This effect can contribute

to reduce the depression in uptake due to rotation, but cannot completely
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eliminate it, especially in case |Ω|/|E| > 1 when the streamlines far away

from the bacteria are closed.

2.4 The adders hypothesis

E. Coli belongs to the class of micro-organism that divides itself according to

the adder principle [27], namely a thresholding mechanism in the size added

between birth and division, ∆ = sd − sb, where sd is the size at division

and sb is the size when the bacteria is born. ∆, although with a certain

degree of noise, is constant for a an overall population in a given growth

condition [27]. This model implies that for any initial bacterial population

size distribution, the asymptotic distribution of new born bacteria lengths

will have a mean ∆ and the asymptotic distribution of dividing bacteria will

have a mean 2∆. The standard deviation of the distributions of sb and sd

increases with ∆, while the coefficient of variation is quite constant for all the

growth conditions examined by the authors. The basal rate of the bacteria is

very low2, implying that in normal growing conditions most of the nutrient

uptake is directly converted into length of the bacteria and therefore in the
2The maximal reported value of the basal activity that we found in literature is of

3000W/kg (with an actual mean of 300W/kg). We can have a rough estimate [28] of

the basal activity of an E coli Wb ∼ 10−14W . Using the Stokes law in order to have an

estimate of the energy consumption of an E. Coli for traveling we obtain:

WT = 6πlηu2 ∼ 7.5× 10−18J/s

where we used l = 8µm in order to have an upper bound. Using the glucose concentration

as reported in the experiment Exp1 ,CG = 100mg/L = 10−1Kg/m3, the diffusion constant

of glucose, DG = 5.7 10−10m2/s, and the glucose energy density, EG = 1.56107J/Kg, we

can have an estimate of the energetic uptake of a E Coli:

WU = 4πlDGCGEG ∼ 10−8J/s.

where instead we used l ∼ 1. It’s clear to see that although our estimate are very rough

there are orders of magnitude between WU and WT +Wb.
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diffusion-limited regime, the division time will depend on the cumulative flux

of nutrient to the surface of the E. Coli. In presence of a time dependent

fluid flow, the flux fluctuates in time and so does the division time. In

case of turbulent flows, fluctuations can be large. We are now questioning

if these fluctuations can result in a significant increase in the growth-rate.

Assuming random, independently and identically distributed division times

we can formalize the process as a renewal3 process where the events are

divisions and the holding times are the intervals between the divisions. Let

us consider independent, identically distributed holding times Tn with pdf

f(T ) and cdf F (T ) and let tn =
∑n

i=1 Ti be the epoch at which the n-th

event occurs. The number of events at time t is

N(t) =
∞∑
n=1

1(tn ≤ t) (2.14)

where 1(C) is the indicator function, which is 1 if the condition C is true

and 0 otherwise. Suppose now that the overall bacterial population of the

experiment is divided in bacterial patches that remain together for all the

experiment, feeling the same fluxes and therefore replicating all at the same

times. If a patch begins with a population B0, the number of bacteria after a

time t is B02N(t). The asymptotic rate of growth ρ of the overall population

is

ρ ≡ lim
t→∞

1

t
log2E

[
2N(t)

]
(2.15)

3A renewal process [29] is a generalization of the Poisson process. In essence, the Pois-

son process is a continuous-time Markov process on the positive integers (usually starting

at zero) which has independent identically distributed holding times at each integer i (ex-

ponentially distributed) before advancing (with probability 1) to the next integer: i + 1

. In the same informal spirit, we may define a renewal process to be the same thing,

except that the holding times take on a more general distribution. (Note however that the

independence and identical distribution (IID) property of the holding times is retained).
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For the Jensen’s inequality4

1

t
log2E

[
2N(t)

]
≥ E(N(t))

t
(2.17)

where the equality can hold only if N(t) does not fluctuate. Taking the limit

of large times on both sides, it follows that

ρ ≥ log(2)

E(T )
(2.18)

that is, fluctuations in the division times always enhance the growth rate.

A simple example Let us take T to be the first-exit-time at the origin

of a constant drift-diffusion process dXt = −udt +
√

2DdWt , starting at

X0 = x, with u > 0. Following calculation expressed in appendix B.1.6, the

growth rate is

ρ = k(ln2) =
ln(2)

x/u
+

(ln(2))2

x2/D
(2.19)

In equation 2.19 x/u is the ballistic time for absorption and is equal to

E(T ) while x2/D is the diffusive time. For x . D/u, the diffusive time is

comparable with or shorter than the average time, and fluctuations have a

strong effect on the growth rate.

We performed several simulations of the adder mechanism using different

solutions to derive the uptake, different geometries and growing mechanisms

and different algorithms to simulate the matrix A. None of these trials have

produced a growth rate even comparable with the one presented by E1.

Instead of presenting these results, we present in the next section a general

rejection of the E1 results.
4Suppose that X is a random variable and φ is a convex function, namely a function

for which all the line segments between any two points on the graph of the function itself

lies above or on the graph, then the famous Jensen’s inequality states that:

φ(E [X]) ≤ E [φ(X)] (2.16)
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2.5 Conclusions

The scope of this section is to find an upper bound in the growth rate in

order to definitely reject the hypothesis 1. The growth rate of the population

ρ must follow:

ρ ≤ 1

tminlog2(e)

where tmin is the minimum doubling time of a single bacteria in all the pop-

ulation.

As presented in section 2.3 firstly for a spherical organism and then for an

elongated object, if we change the matrixE over time, thenQ(t) ≤ Q(Emax),

where Emax is the maximum value of E in the considered temporal interval.

Since tmin depends on the nutrient flux, tmin is then related with Emax,

where this time Emax is the maximum value of E experimented by all the

population between the respective doubling.

In particular, tmin ≥ Td(∆, Emax) where Td(∆, Emax) is the doubling time

of a bacteria with ∆ and in a linear stationary flow with E = Emax.

In this line of reasoning we can see the results of section 2.2.3 as Td(∆, Emax).

The probability that the maximum of a sequence of n independent and identi-

cally distributed random variables Xi, with cumulative distribution function

F , is under a certain threshold, can be easily derived:

Pr(X1 ≤ z, . . . ,Xn ≤ z) = Pr(X1 ≤ z) · · ·Pr(Xn ≤ z) = (F (z))n. (2.20)

By using now the values present in table 2.1 for the turbulent parameters,

and assuming for the matrix E a log-normal distribution parametrized as

defined in section 1.4, extended for low Reynolds number as depicted in

appendix B.1.4, for E, we can calculate how many uncorrelated gradient

matrix #A we have to generate in order to find a E that produces a growth

rate as depicted the case of study experiments. The doubling time Td in

still water, in the studied experiments, is ∼ 33 h. The smallest time for

the gradient matrix A is τη, the Kolmogorov time, although it has also a
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slow dependence on the integral time. Assuming a decorellation time as

τη, every bacterium experiments, during an usual doubling time, at most

Td/τη uncorrelated gradient matrix during the doubling time. Using the

computed values of Td(∆, Emax), we can find Emax(Td,∆) by mean of simple

interpolation. Using as Td the values of the studied experiments, and using

as parameter of the E. Coli, ∆ = 4µm and R = 0.4, we obtain the results

in table 2.2. In order to express the flow field in an unambiguous way, we

express E as the corresponding Pe of sphere of radius 1µm and using the

glucose molecular diffusion constant D. We call this measure Pe1. Pe1 nec is

the same measure, but calculated using Emax, namely Pe1nec = Emaxr
2/D

with r = 1mum.

Grid frequency (Hz) 0 1 2 4 6

ε (m2/s3)× 106 0.0 7.3 29.7 101.0 176.1

µg/µgs (-) 1.00 1.13 2.82 3.09 5.10

L/η (-) (-) 29.1 44.5 70 92.5

τη s ∞ 0.37 0.19 0.10 0.075

Td/τη105 (-) ∞ 2.8 2.2 3.8 3.1

Pe1 turb × 103 (-) 0 4.7 9.6 17.6 23.3

Pe1 nec (-) (-) 0.125 34 50 280

#A (-) (-) 4 104 1020 5 1018 1.5 1020

Table 2.2

The initial concentration of bacteria in the experimental apparatus is

106 cells/mL, implying a total amount of ∼ 1.31011 bacteria, #B. Between

the division times, all the population will experience an overall number5 of

independent gradient matrices #B × Td/τη. We can clearly see that, for
5Since the bacteria number is far way greater than V/η3 with V the volume of the

experiment, and η the smallest scale in the flow, we are over estimating the number of

possible independent gradient matrices
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all the experiments except the one with low Re, none of the bacteria ever

experience a gradient matrix that can barely explain such a great growth

rate. It is worth noting that in every passage we used a strictly upper

bound, ignoring all the possible mechanisms that will lower the uptake, e.g.

rotations, making our statement even stronger. Therefore, we can conclude

that, even combining together all the mechanisms proposed in section 2.1.1,

the growth rate reported in the experiments Exp1 and Exp2, are impossible.

We than reject as far as we know the thesis 1.

However, this does not mean that the experiments are necessarily flawed.

A careful analysis of the documentation of the experimental apparatus shows

that the turbulence is far away from being isotropic [30] and the flow is

subject to large scale bistability as reported in [31]. Experiments conducted

in similar apparatus [32] showed that: “even in the homogeneous region in

the center we see a surprisingly strong dependence on the large scale velocity

that remains at all scales. Previous work has shown that similar correlations

extend to very high Reynolds numbers.” Once again, reporting only the

mean quantities could lead to errors and a full record of the flow field should

be taken into account. However, if the explanation of such high growth

rates is deeply connected with a particular apparatus, a full investigation

of the experiment is less interesting since there is a lack of universality in

the experiment itself. We have to mention that we ignored the possibility

that the E. Coli could be trapped in some regions of high shear flow, or

more in general, that the gradient matrix statistics perceived by the E. Coli

is different from the gradient matrix statistic of normal fluid particles as

presented in literature [14] for flows like cellular or vortical flows. However,

recent results [33] concluded that, in case of turbulent flows, the clustering

and trapping effects are small if compared to the reported case observed in

the simpler flows just mentioned above. Therefore, we can conclude that

since the differences between the growth rates recorded in the experiment

32



and the theoretical expected ones are so big, this last argument can not still

explain the enhanced growth rate measured in Exp1 or in Exp2.
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Chapter 3

From micro to Macro scales

In this chapter, we will analyze how turbulence in the ocean, parametrized by

the mixed layer depth, a quantity that we will introduce later on, changes the

food resources availability for shearwater birds and therefore their habitat

selection.

3.1 The mixed layer

Phytoplankton, in order to grow, needs both light and nutrients. In open

sea, these two sources come from different directions: the light comes from

the sun and is absorbed by water, decreasing exponentially with depth, while

the source of nutrients is at depth. The Euphotic zone is defined as the layer

of water in which there is enough light for photo-synthesis to take place,

and its depth varies “from only a few centimeters in highly turbid eutrophic

lakes, to around 200 meters in the open ocean” [34]. Water currents in ocean

are crucial for the ecosystem, since they bring in the euphotic zone the

necessary nutrients for life, that otherwise would rapidly become depleted.

Since the source of light comes from above, and so the heat, upper waters

are warmer than lower waters. However, the temperature profile does not

follow a theoretical absorption curve since a strong mixing - due to the
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Figure 3.1: A shearwater.

active turbulence generated by different mechanisms like wind, convective

cooling, breaking waves, shear flows, and other physical processes - tends to

uniform the temperature. As temperature is mixed, so all the other physical

parameters - like salinity and density - are mixed. The oceanic mixed layer is

then defined as the layer between the ocean surface and a certain depth where

a given physical parameter of the ocean state (e.g. temperature, salinity,

density) is almost vertically uniform [35]. The penetration of mixing to a

certain depth (the mixed layer depth, MLD) is determined by a balance

between the stability of the sea water and the incoming energy [36]. Mixed

layer is of extreme importance for phytoplankton since if it is much deeper

than the euphotic zone, the phytoplankton will have not enough light, while

if it is too low, there will be a poor quantity of nutrients in the euphotic zone.

Furthermore, MLD has been proven to be involved in the oceanic production

of dimethyl sulphide (DMS; [37]). Two plots of the calculated MLD1 are

depicted in figures 3.2 and 3.3, the MLD2 is higly correlated to MLD1.
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Figure 3.2: An heat map of the calculated MLD1 for the month of June 2008.

Figure 3.3: An heat map of the calculated MLD1 for the month of August 2008.
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3.2 Shearwaters

Pelagic seabirds, and among them shearwaters, offer a peculiar case for

studying behavioural responses to temporal and spatial variation in resource

availability. Shearwaters are long-living birds (the oldest known wild bird

in the world is a Manx shearwater breeding on Copeland Island, Northern

Ireland, with 55 years old) [38] which can use both environmental character-

istics and their own experience to target foraging areas [39]. Thanks to their

flight strategy, pelagic seabirds are able to range across oceans for hundreds

of kilometers apparently without ecological barriers, supporting the idea that

they can likely reach any profitable prey field. Shearwaters come to islands

and coastal cliffs only to breed. They visit the colonial breeding sites only

at night, preferring moonless nights in order to minimize predation. The

birds tend to form life lasting couples. Among the shearwaters we will study

the behaviour of animals of the genus Calonectris and specifically on the

species Cory’s shearwater, C. borealis, Scopoli’s shearwater, C. diomedea,

Cape Verde shearwater, C. edwardsii, 3 of the 4 species of Calonectris. The

breeding season, during which they grow a single brood, is unusually long:

over one full year in Diomedeidae. Both adult and offspring are very resistant

to starvation, allowing parents to perform long-lasting foraging trips during

which they target known profitable foraging areas which can be located at

hundreds of kilometers from the breeding colony. However, at least during

the early chick-rearing, offspring needs to be fed regularly, forcing parents

to forage closer to the colony. This behaviour results in a so called dual for-

aging strategy, where the birds can decide between long and short foraging

trips and so between different environmental resources. The dual foraging

strategy is more evident for colonies of shearwaters in which the surrounding

waters are of bad environmental quality. Longer trips are also more frequent

for larger colonies, like Linosa, where the surrounding waters are exploited

by a large amount of individuals and so rapidly depleted of available food
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Figure 3.4: Several trajectories of shearwaters from Linosa during self-foraging trips.

resources.

3.3 The relationship between MLD and shearwa-

ters

The study of factors affecting the at-sea distribution of pelagic seabirds has

grown during the last ten years mainly thanks to the development of more

and more performing tracking technologies, which help scientists to assess

ecological aspects that previously could have never been investigated. De-

spite several studies have assessed the habitat use in procellariiform seabirds

(e.g. petrels: [40]; albatrosses: [41]), and a fewer number of studies have fo-

cused their attention on at-sea habitat selection or preferences (e.g. petrels:

[42]; sherawaters: [39]; albatrosses: [43]), the variation of ecological needs

through the long lasting breeding season of these procellariiform seabirds
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Figure 3.5: Several trajectories of shearwaters from Linosa during chicken-rearing trips.

is a poorly investigated issue of potentially high relevance for conservation

purposes. Resource availability is one of the main factors driving the ecology

and the biology of animal species. It can have important effects on demogra-

phy [44], breeding success [45], physiology [46], and of course on distribution

[47] and habitat use [48].

One of the main reasons that makes it challenging to carry out studies

on habitat preference of seabirds is represented by the difficulty in obtaining

a good number of spatially explicit variables which can potentially describe

movement patterns of pelagic seabirds across the apparently featureless ma-

rine environment. Given the difficulty to have distribution maps of prey

abundance covering all the range potentially exploited by pelagic birds, re-

searchers are often forced to use remote sensing information which can play

as proxy for prey abundance. Chlorophyll-a concentration, as a proxy of

primary production, sea surface temperature, indicating water masses dis-
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tribution, baroclinic currents and fronts, and net primary productivity, which

might be relevant for determining the availability of small pelagic fishes [49],

are the most used variables to model at-sea distribution of pelagic seabirds

(for a review see [50]. However, also the mixed layer depth may have a

role in determining seabird selection of foraging areas, as it is linked to the

distribution of pelagic fishes spawning areas [51, 52] and it is involved in

the oceanic production of dimethyl sulphide, which is known to be used by

procellariiform seabirds as a cue for both ocean navigation as presented in

section 4 and for spotting productive areas [53]. Moreover, the mixed layer

depth influences all the ecological food web, starting from roots namely the

phytoplankton, as already mentioned. It is quite surprising that to date

any studies have used mixed layer depth to model the at-sea distribution

of seabirds, and confronted it with other possible predictors like, sea depth,

physical oceanographic characteristics (such as shelf edges, frontal zones, and

upwellings; [54], concentration of fishing vessels (because of the exploitation

of fish discards [55, 39]) or social constraints acting as intra-specific compe-

tition [56] and variation in parental care with offspring age [57].

3.4 The MLD extimation

There are numerous methods for estimating theMLD from profile data (see

[58] for a review). For the purpose of this study we used two threshold

methods, both based on potential density ρθ (see below) as estimator, which

is considered preferable to other parameters because the density structure

directly affects the stability and degree of turbulent mixing in the water col-

umn [58]. The first method defines the base of the mixed layer as the depth

at which ρθ is 0.01 kg/m3 higher than the surface value (herewith called

MLD1; [59]). This is the standard method for MLD estimation, however

this definition is probably too narrow for biological applications, since it

often neglects the underlying water of near-identical density encompassing
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high chlorophyll, nutrient, and particle concentrations [58]. Therefore we

also took into consideration a second threshold difference method (MLD2;

used in the NOAA climatology, [60]) with the potential density threshold set

to 0.125 kg/m3. For MLD estimation, we obtained high resolution maps of

3D monthly mean fields of potential temperature and salinity in the Mediter-

ranean from the Copernicus Marine Environment Monitoring Service website

[61]. This product originates from a 60-year reanalysis of the physical state of

the Mediterranean Sea that has been produced by combining, every day, the

output of an ocean model (Nucleos for European Modelling of the Ocean,

NEMO) and quality controlled ocean observations. The model horizontal

grid resolution is 0.0625◦ (ca. 6-7 km), while the vertical grid is composed

of 72 unevenly spaced vertical levels (from -5500.0 m to 0 m; as an exam-

ple, between -100 m and the surface there are 17 levels;). For each pixel we

computed the seawater pressure corresponding to the depth value of each

vertical level, using the formula described by [62], that takes into account

the gravity variation with latitude and the atmospheric pressure, while as-

suming an ocean water column at 0◦C and with a salinity of 35 PSU. Given

the values of salinity, temperature and pressure, we then computed for each

3D pixel the potential density ρθ, defined as the density that a fluid parcel

would have if its pressure was changed to a fixed reference pressure pr in an

isentropic and isohaline manner [63], using the gsw package (Gibbs Sea Wa-

ter Functions) in R. Finally, we estimated the MLD1 and MLD2 as defined

above, interpolating the potential density value between vertical levels when

required.

3.5 Identification of behavioural modes

In order to find foraging behaviours in the shearwaters trajectories, we fol-

lowed a thresholding procedure in velocity and turning behaviour, supposing

that movements related to searching and foraging behaviour are the segments
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Figure 3.6: One of the birds trajectories labeled.

characterized by low velocities and large turning angles. In order to estimate

the proper thresholds, we used as classification algorithm the Expectation-

Maximization Binary Clustering (EMbC), an algorithm based on the maxi-

mum likelihood estimation of a Gaussian mixture model [64]. This method

allows to identify behavioural modes in animal trajectories, minimizing prior

assumptions and computational costs, making it particularly suitable to the

behavioural annotation of large amounts of movement data [64]. With the

EMbC algorithm the whole set of data is partitioned by a set of delimiters

that split each movement variable into a binary discretization (either low

(L) or high (H) values). In our case, we based our classification on velocity

and turning angles. Following [65], we interpreted the labeling as follows:

low velocities and low turns (LL) as resting on the water, low velocities and

high turns (LH) as intensive search, high velocities and low turns (HL) as

relocation, and high velocities and high turns (HH) as extensive search. We

then applied a post-processing smoothing implemented in the EMbC pack-

age and based on the temporal behavioural correlations to minimize the case

of incorrect labeling of single localizations. A figure that shows the points

of the trajectory labeled is presented in figure 3.6.
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3.6 Preparing data for fit

Localizations classified as “intensive search” were used as “use of habitat”

points, while the ones labeled as “relocation” were considered as “non-use”

points. During relocation, in fact, tracked birds fly over marine areas without

slowing down and searching for food, likely for the absence of profitable

food sources or other environmental characteristics that favour searching

behaviour. Hence, this behavioural mode can be actually considered as non-

use of habitat. One advantage of using these localizations as control points

is that they have virtually the same distribution of distances from Linosa

island as the “use of habitat” points, and therefore it was not necessary to

include any kind of constraint, e.g. physical or social, as potential predictor.

3.6.1 Results

Among all the polynomial relationships tested between the searching-nonsearching

points and MLD1 and MLD2, the best AIC was obtained with a linear re-

lationship: search = a+ bMLD1. The best fit results are reported in table

3.1.

Estimate P

Intercept −2.06± 0.08 < 0.0001

MLD1 0.18± 0.08 0.0246

Table 3.1: Selected model for chick-provisioning trips

3.7 Including all the environmental predictors

The MLD has correlations with other variables, for example a negative cor-

relation with distance from mainlands and a positive with the sea depth,
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meaning that the fit presented in table 3.1 can be just a spurious effect.

Therefore, a more comprehensive analysis using other potential candidate

variables for the foraging site selection has to be done. In order to perform

that, apart from the MLD, we selected 8 other predictors for the analysis

of environmental suitability for Scopoli’s shearwater in the Sicily channel:

(1) sea depth, (2) sea surface temperature, (3) Chlorophyll-a concentration,

(4) net primary productivity, (5) distance to the coast (mainland and main

islands), (6) an index of distance from fishing harbors as a proxy for avail-

ability of fish discards which are exploited by shearwaters, (7) the distance

from the breeding colony (herewith called DB), and (8) an index of distance

from other Scopoli’s Shearwater colonies as a proxy for intra-specific com-

petition. All remote-sensing derived variables were acquired on a monthly

scale according to tracking data. Sea depth, SD, was obtained from the Gen-

eral Bathymetric Chart of the Oceans (GEBCO 08) of the British Oceano-

graphic Data Centre [66]as a 30 arc-second grid (approx. 1 km). Monthly

data (level 3) of Chlorophyll-a concentration (herewith called CHL) and

sea surface temperature (herewith called SST ) were downloaded from the

NASA’s OceanColor website [67]for a spatial resolution of 4 km. Monthly

net primary production (herewith called NPP ) data (standard Vertically

Generalized Production Model based on monthly MODIS-aqua r2009) were

downloaded from the Ocean Productivity site [68] for a spatial resolution of

10 minutes (approx. 18 km). For successive analyses, the values of NPP

were log-transformed (log(NPP ); [39]).

GLMMs [69] were performed in R with the glmer function of the “lme4”

package. We used a binomial error distribution and a logit model link func-

tion. To account for model selection uncertainty, all models with a substan-

tial support (∆AICc ≤ 4) were considered, then models performing worse

than any of their nested sub-models were discarded as likely containing un-

informative variables. The area under the ROC curve (AUC) was calculated
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to measure accuracy of the model.

3.7.1 Results

Best-performing model for self-provisioning trips included only the distance

to fishing harbors (DH), with a significant selection of areas closer to har-

bors. Other models with a substantial support included a significant positive

effect of MLD1 and non-significant effects of distance to the coast DC and

sea depth, see table 3.2. These results confirm the results of section 3.6.1. It

is interesting that the next values selected are DC and SD, both correlated

with MLD1. On the other hand, the model selected for chick-provisioning

trips included only sea depth in the quadratic form, with a significant selec-

tion of both shallower and deeper waters 3.3. This is not surprising since, as

already mentioned, chick-provisioning trips are usually shorter, and shear-

waters cannot reach high quality foraging grounds. Also the disappearance

of the harbor distance is not surprising since boat-fish discharges1 are bad

quality food not suitable for breeding.

Estimate P

Intercept −1.98± 0.08 < 0.0001

DH −0.41± 0.15 0.006

MLD1 0.18± 0.08 0.02

DC −0.15± 0.09 0.09

SD 0.12± 0.08 0.13

Table 3.2: Model-averaged coefficients for self-provisioning trips.

1except for anchovies, where entire fishes are discharged just for law or market reason

45



Estimate P

Intercept −2.21± 0.17 < 0.0001

SD 0.50± 0.21 0.018

SD2 0.36± 0.11 < 0.001

Table 3.3: Selected model for chick-provisioning trips.

3.8 Conclusions

In the present study, we show that foraging habitat preferences of Scopoli’s

shearwaters changed during the breeding period according to foraging trip

types. Habitat selection models showed that the probability of intensive

search behaviour during self-provisioning trips was higher in areas closer to

harbours and with a deeper mixed layer, while it mainly depended on sea

depth during offspring-provisioning. These results suggest that the species

is able to vary the prey item target in accordance with the environmental

characteristics of the exploited habitats. The preference for areas in the

proximity to a high number of fishing harbours or to harbours with large

fishing fleets during self-provisioning trips may be explained by the higher

probability to find, in such areas, fishing vessels throwing discards due to

the fish processing during the returning trip. Vessels and discarding location

behave indeed as central-place foragers, where the harbour represents the

"central place". This result is in accordance with [39] which showed that

long-distance trips performed during incubation are undertaken by Scopoli’s

shearwaters to forage close to fishing harbours, suggesting that these areas

represent profitable locations which may compensate for the greater travel-

ling costs. The consumption of fish discards by Scopoli’s Shearwaters has

been also described by [70], as well as for another shearwater species breeding

in the Mediterranean, the Balearic Shearwaters foraging off the Ebro Delta

[71]. While the relation with fishing harbours was expected, the preference
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for deeper mixed layer represents a novelty in the knowledge of pelagic birds

ecology. Despite shallower mixed layer in the ocean is associated to a higher

density of phytoplankton [72], in the Mediterranean deeper mixed layer are

areas of plankton retention and are associated to the presence of anchovy

and sardine in the central Mediterranean (see [73] for a study in the Aegean

Sea). These small pelagic fish species are indeed key prey items for Scopoli’s

shearwater [74]. Overall, the analysis of habitat preference during long-

distance trips suggested that the Scopoli’s shearwater targets two different

resources during self-provisioning, i.e. fish discards and small pelagic fishes.

It has been shown that, for another pelagic bird species, the Cape Gannets

Morus capensis, non-breeding individuals can complement their diet with

fishery discards but that nestlings fed with fishery wastes have a lower prob-

ability of survival [75]. During long-lasting foraging trips (corresponding to

long-distance trips, [76]), shearwaters exploit profitable areas so as to both

restore their own physical condition and obtain larger meals for their off-

spring [77, 78]. Thus, we can conjecture that areas close to fishing harbours

are mainly used by breeders to forage on discards and restore themselves

after long trips, while deeper mixed layer areas are used to feed on natural

preys, which might also be used to feed nestlings after hatching.

During offspring-provisioning trips, in fact, areas closer to fishing har-

bours are no longer preferred, likely because they are not easy to reach in

such a short time (<4 days) or because fishery discards do not represent a re-

source of sufficient quality for their nestlings. The selection of foraging areas

during these trips only depended on sea depth, but with a not linear relation-

ship. Shearwaters are in fact more likely to search for food in both deeper

and shallower water, possibly suggesting the exploitation of two different re-

sources. Close association to shallow waters has been reported for different

species of sardines [73, 79], in particular for young (of the year) fishes which

dominate the sardine population during early summer in the Mediterranean.
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On the other hand, the selection of deeper waters finds no easy explanation.

Despite shearwater diet is mainly based on pelagic fishes [74], recent studies

suggest that Scopoli’s shearwater breeding in the Mediterranean coasts may

also feed on planktonic crustaceans (krill) or fish larvae [80, 75]. Thus, the

exploitation of deeper waters by shearwaters might be due to the markedly

increasing species-richness gradient of krill from coastal to offshore areas [81].

Overall, these results support the foraging plasticity of Calonectris shear-

waters [82, 74] and the importance to consider all to plan management and

conservation actions targeting the species.

The MLD has been shown to be an important factor in determining

the habitat selection of shearwaters and should be included in all successive

studies of the habitat of pelagic animals and in particular of pelagic birds.

It is worth noting that the MLD is a quantity that varies in space and

time and with our reanalysis we couldn’t capture fully its dynamics. Among

the predictors used is the one affected by the greatest error: it relies on

empirical formulas, applied on monthly averaged data that are results of a

reconstruction. Therefore, on small temporal trips and shorter scales, the

MLD is the predictor more difficult to estimate. We expect that a finer

resolution in this quantity will be extremely helpful in determining the effect

ofMLD on habitat selection, possibly enhancing the prediction power of this

quantity on habitat selection of shearwaters. Overall this work is another

example of how physical processes and reanalysis based on physical modelling

are becoming key elements in biological science.
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Chapter 4

Macro scales

After foraging in the open ocean pelagic birds can pinpoint their breeding

colonies, located on remote islands in visually featureless seascapes. This

remarkable ability to navigate over vast distances has been attributed to

the birds being able to learn an olfactory map on the basis of wind-borne

odors. Odor-cued navigation has been linked mechanistically to displace-

ments with exponentially-truncated power-law distributions that are ex-

pected to be wind dependent. In this chapter, we will show that the pdf

of unidirectional flights in shearwaters is compatible with the expected one.

Later we will show that the distributions are wind-speed dependent, in accor-

dance with theoretical expectations, providing strong evidence of odour-cued

navigation in shearwaters. Our novel analysis is consistent with the results of

more traditional, non-mathematical, invasive methods and thereby provides

independent evidence for olfactory-cued navigation in wild birds.

4.1 Introduction to animals movement patterns

In all fields of science, several phenomena can be described, at a macro-

scopic level, by a Gaussian distribution. This ubiquity is due to the central

limit theorem, which states that when independent identical random vari-
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ables with finite variance are added, the distribution of their sum converges

to a Gaussian. Brownian motion (BM) itself is a result of the central limit

theorem: in a viscous fluid, a large number N of iid impulses to a particle

bring to a particle displacement Gaussianly distributed. BM was the start-

ing point for the study of Random walks, namely a path that consists of a

succession of random steps where every step i is characterized by a ri taken

from a probability function φ(ri). The most simple case is a Markovian pro-

cess, with φ(r) being isotropic and with a unique step length, namely |r| = l.

The Donsker’s theorem states that in the limit of l → 0 the random walk,

defined before, is indistinguishable from a Wiener process, and therefore to

a BM in the over-damped regime. Although at large scales many animal

trajectory data resemble Brownian motion, at low scales is evident that un-

correlated random walks cannot describe animal motion, since a degree of

directional persistence should be present. In order to include directional per-

sistence on short scales, Correlated Random Walks (CRW) are usually used

to describe the movement pattern of many animals [83, 84]. Restricting our

analysis to two-dimensional random walk, a CRW can be defined choosing a

non-uniform distribution of the angles θi between two displacements ri, ri+1.

Maintaining Markovianity, we can just specify a pdf for the angles θ. If the

angle pdf is symmetric, we can define the mean angle ρ =< cos(θ) > and it is

possible to find that the correlation time is proportional to −1/ ln ρ and that

the autocorrelation function decays exponentially. Therefore, CRW is char-

acterized by a spatial (or temporal) scale, namely the scale after which the

walk becomes uncorrelated. Therefore, at large scale, there is no difference

between CRW and BM, a result due to the exponential decay presents in

the correlation function of CRW. A simpler model that mimics the CRW in

achieving temporal persistence in movement pattern, is obtained specifying a

pdf in step length exponentially distributed. This model is more suitable to

be generalized to multi-scale movement patterns, namely movement patterns
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with more than a scale. This can be easily obtained by specifying a multi-

modal pdf of step lengths or summing more exponentials with different scale

lengths. Bi-scale (or even 3 scales) movement patterns are common in na-

ture and particularly important for animal performing searches. Mono-scale

movement patterns are indeed characterized by a great degree of redundancy

in visited places, a characteristic that in case of not renewable targets is time

consuming and so biologically not advantageous. Multi-scale movement pat-

terns instead can alternate short scale compact search and long distance

relocation, greatly reducing redundancy in visited places.

4.2 Lévy walks

Distributions with not finite variance have been reported, for example in

the field of physics in turbulence, as we already saw, and more notoriously

in phase transitions, while in geology it is very well known for the pdf of

earthquakes. Despite these famous examples, in fields like biology or eco-

nomics, distributions with not finite variance were relegated for decades as

pure mathematical models and only recently had become notorious with

many fertile applications. Lévy walks, that are also known as Lévy flights in

the biological literature (a fact that confuses the communications between bi-

ologists and mathematicians/physicists), named after the French mathemati-

cian Paul Lévy, are defined as random walks in which the step-lengths have a

probability distribution that is heavy-tailed1. Among the distributions with

infinite variance, power laws, namely distributions that up to a certain mini-

mum x can be expressed as xµ are the most studied and applied due to their

simplicity and some interesting properties, like scale invariance. In order to

be a power law, the power-law exponent µ has to satisfy 1 < µ ≤ 3, ensuring
1An heavy-tailed distribution is a distribution in which one side of the probability

distribution is not exponentially bounded. In particular, we will be interested only in the

right side of the distribution.
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that the distribution is normalizable and has a divergent variance. The first

finding of a Lévy walk in movement ecology was the famous article by [85]

on wandering albatross. The author explains this result stressing that Lévy

walks are characterized by super-diffusivity, fractality, and scale invariance

and therefore compared to CRW, Lévy walks reduce the possibility of visiting

multiple time the same location, a property surely advantageous in a search.

Later demonstrated this result [86] showing that Lévy walks with exponent

µ = 2 are optimal for searching random diluted sources compared to CRW.

A new paradigm, the so-called Lévy Flight Optimal Foraging Hypothesis

(LFOFH), stating that "Since Lévy flights and walks can optimize search

efficiencies, therefore natural selection should have led to adaptations for

Lévy flight foraging", was forged. These findings brought a lot of attention

on Lévy walks and many reports of Lévy Walks appear.

Unfortunately, the concept of Lévy walks is prone to be misunderstood

by researchers not familiar with pure mathematics, and special care has to be

used in analysing the data. As a result, many reports of Lévy walks resulted

flawed, including the seminal study of Viswanathan [85], leaving the doubt

of the validity at all of this model in movement ecology. However, a complete

re-analysis confirmed compelling evidence that movement patterns of many

organisms can be described as Lévy walks, although with a cut off at some

higher scale, as cells, mollusc, microorganisms, insects, fishes, and birds.

4.3 How to determine if a movement pattern is a

Lévy walk

Given an animal trajectory, firstly we have to identify the turning points,

namely the points where the animals change their direction of motion. This

procedure, that naively can be thought to be very easy, hides several diffi-

culties. Animal trajectory data are usual GPS-track data that suffer from
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a trade-off between battery charge duration and period of fixes, meaning

that the accuracy of the recorded data can be not enough to reconstruct

exactly the original pdf. Moreover, if the researcher is interested in large-

scale movement, the small-scale pattern of animals, like bypass an obstacle,

can deeply influence the results if not properly filtered away. The procedure

on how identifying turning points is therefore still an active field of research

[83] and several methods are reported in the literature, and general objective

methods have still to be found. Once the turning points are obtained, if the

speed of the animal is constant (we have to note that this is a prerequisite

for a Lévy walk), we can analyze the pdf of the lengths of the unidirectional

steps.

If high noise at small scales is present, the distributions can be cut at low

scales, but extra care should be taken in order to not eliminate significative

signal as in [87]. Afterward, the distribution is compared to other model

distributions reported in the literature, like exponential or bi-exponential.

The parameters of every proposed model are fitted via Maximum likelihood

methods and then the models are compared via AIC. If the difference in

AIC is significative in favor of the Lévy walk, then evidence of Lévy walk

are present and reported. Moreover, other parameters like mean square

displacement can be fitted in order to confirm the model. It is important

to mention that pure Lévy walks are very improbable in a living system.

Physical constraints are usually present, like diurnal cycles or land-sea dis-

tributions that can cut the distribution. This cut off is usually visible present

in all the before mentioned findings and therefore the model fitted is not a

pure power-law but instead a power-law with some sort of cut-off like for

example an exponential cut off.
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4.4 Shearwaters, beyond Lévy walks and the LFOFH

Shearwaters are pelagic birds as the albatross, the exemplary animal of Lévy

walks. Shearwaters during the breeding season are forced to go to the forag-

ing points and return back to their colony often localized in a small remote

island. For humans, the open ocean is mostly featureless, meaning that we

cannot pinpoint ourselves in a map just looking at the sea. It is impor-

tant to stress that being able to orientate, for example using the sun, is

different to pinpoint on a map and hence shearwaters need to have some

navigation mechanism. Homing experiments [88] conducted on shearwaters

evidence an important role of olfaction. In these experiments, shearwaters

were brought far away from their breeding colony and then released. Apart

from the control group, some birds were manipulated to be made anosmic,

while others have magnets attached. Anosmic birds take more time to reach

home and their trajectories are visibly and statistically different [88]. In the

article [89] the authors analysed the GPS tracks data of shearwaters. The

Shearwaters were of different species and come from different colonies in

different environments. Analyzing the step lengths distribution of unidirec-

tional flights of shearwaters, they brought evidence of a power law with an

exponential cut off and power-law exponent µ around -3/2. The explanation

of the authors is that shearwaters have a map of odours and rely on that

for navigation, although the map can be dynamical in time. In open sea

various odours are produced, among them the already cited DMS, depend-

ing on the marine populations in the waters. Then, odours are transported

over long distances by the mean wind and heavily distorted by the associ-

ated turbulence. Therefore, the birds can get information on their position,

both when they are over the odour source or when they are downwind to

it. Obviously, shearwaters cannot perceive odour under a certain threshold

and therefore, in some moments, they lose contact with their odour map.

This is due to turbulence; several experiments measured the time statistic
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of scalar concentration released from a source and advected by a turbulent

flow with a mean direction. This statistic, downwind and far enough from

the scalar source, becomes highly irregular. Of particular importance for us

is the statistic of periods over and under a defined threshold. In the article

[89], the authors calculated analytically this statistic by means of some as-

sumptions for the case of a small source, where small is related to the flow

scales, and verified their prediction by means of numerical simulations. One

of the main prediction of the models presented in the article is that periods

over the threshold are characterized by a power law with exponent -3/2,

an exponential cut-off at high scale and a cut off of non-specified form at

low scales. In order to elucidate the findings of [89], we will try to explain

their results with a simple stochastic model for time-series of odour concen-

trations. Let suppose that incremental changes in concentration are of the

form dc = a(c, t)dt + b(c, t)dW where a(c, t) is a relaxation term and b(c, t)

is the magnitude of the driving stochastic noise, dW is the driving stochastic

noise (let suppose an incremental white noise process). Therefore it follows

the associated Fokker-Planck Equation:

∂p(c)

∂t
= a(c, t)

∂p(c)

∂c
+
b2(c, t)

2

∂2p(c)

∂c2
(4.1)

If a(c, t) = −c/T and b(c, t) is constant, then we have the standard

Langevin equation and it can be shown that the distribution of odour con-

centrations, p(c) is Gaussian. Generally, the Fokker-Planck Equation (FPE)

determines the relationship between a(c, t), b(c, t) and p(c). Specifying a(c, t)

and b(c, t), the FPE gives us p(c), while specifying p(c), the FPE gives us

a(c, t) and b(c, t). Experimental observations report that odour concentra-

tions in turbulent flows follow a clipped-Gaussian distribution [90]; however

let us suppose for the moment an exponential distribution for p(c). The

associated FPE is then given by

∂p(c)

∂t
=
C

T

∂p(c)

∂c
+
C2

T

∂2p(c)

∂c2
(4.2)

55



where T is the autocorrelation timescale, i.e. the typical durations over which

concentrations remain significantly correlated, and C is the mean odour con-

centration over time. From this equation can be demonstrated that the time

τ over threshold cth starting from an initial point c0 is distributed as:

p(τ) = Nτ−3/2e−λ1τe−λ2/τ (4.3)

where N is a normalization constant,

λ1 ∝ 1/T (4.4)

and

λ2 ∝ T
(c0 − cth)2

C2
. (4.5)

An analogous result can be found for the distribution of durations during

which concentrations remain continually above some threshold concentra-

tion. A doubly exponentially truncated power law can be obtained also as-

suming a Gaussian distribution of odours (see subsection B.2.1 in Appendix).

The power law behaviour, τ−3/2 is a manifestation of the Sparre Andersen

Theorem [91] and so generic rather than model specific. We have seen so far

that an exponential cut off at large scale and a power law behaviour with ex-

ponent −3/2 is expected in all the models considered. A cut-off is expected

also at short scales, but its exact form is model dependent. In [92] the cut off

scales are related to the mean wind, the distance from the source, its dimen-

sion, and even the lateral displacement. In the simple example mentioned

before, we expect both T and C to be dependent on atmospheric conditions,

and especially on the mean wind speed. The existence of such dependence

can be seen with the aid of a simple heuristic argument. Imagine, for exam-

ple, a patch of ocean with area L2 releasing odor into the atmosphere at a

rate F which subsequently becomes dispersed by turbulence up to a height

H in the atmospheric boundary-layer. The total quantity of odor released

from the patch during a time interval of duration t is Q = FL2t and this
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will become distributed throughout a volume of air V = LHUt, where U is

the wind speed. The mean odor concentration is then C = Q/V ∝ F/U .

According to [93], empirical observations suggest that the flux of DMS and

so presumably other volatiles is itself dependent upon the mean wind speed,

such that F ∝ Uγ where estimates for the characteristic exponent, γ, range

between about 2 and 3. The autocorrelation timescale will also depend on

the mean wind speed U . Hence λ1 and λ2 must also depend on the mean

wind speed because they depend on the autocorrelation time scale and the

mean odour concentration.

Going back to the shearwaters, we can suppose that they will follow

unidirectional flights when they are in a puff of odour over threshold while

they will try to re-establish contact with the odour map when they are

experiencing a period under threshold. We can then suppose that their

unidirectional flight length distribution to be distributed as

p(l) = Nl−3/2e−λ1le−λ2/l (4.6)

with λ1 inversely related to the time scale T and λ2 depending on the at-

mospheric conditions. We have to stress that odour navigation is not an

accepted paradigm in the scientific community. Many researchers favour the

magnetic navigation hypothesis. The different behaviours found in experi-

ments conducted on anosmic birds might be explained by reasoning that in

the manipulating the birds in order to make them anosmic, the birds lose

both smell and magnetic senses. Therefore, a mechanistic demonstration of

olfactory-cued navigation in shearwaters is necessary. In order to verify our

model, we perform an MLE estimation of the parameter mu,λ1 and λ2 of

the function

p(l) = Nl−µe−λ1le−λ2/l (4.7)

on step length distribution of unidirectional flight lengths of each individual

bird trajectory. Successively we verified that:
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• BETPL are better fits of the step length distributions than the other

distributions proposed in the literature to model movement patterns

of birds.

• µ = −3/2

• λ1 is negatively related to the wind, namely we expect λ1 ∝ Uβ1 with

β1 ∼ −1

• λ2 depends on the wind, where heuristic arguments suggest a negative

dependence2, namely λ2 ∝ Uβ2 with 0 < β2 < −2.

4.5 Hypotheses testing

We collect GPS track data of birds from different colonies: three Mediter-

ranean colonies: Linosa island (35◦ 52′ N; 12◦ 52′ E), the Tremiti Archipelago

(42◦ 08′ N; 15◦ 31′ E), and La Maddalena Archipelago (41◦ 13′ N; 9◦ 24′E)

and three north Atlantic islands: Corvo (39◦ 40′ N; 31◦ 06′ W), Berlenga

(39◦ 24′N; 9◦ 30′W) and Selvagem Grande (30◦ 08′N; 15◦ 51′W) and Raso

islet (16◦ 36′N; 24◦ 35′W). We downloaded wind data from the NOAA [94]

web site from the rerdapp [95] package for R [96]. The data comes from

satellite measurements, have a spatial resolution of 0.5 degrees and time res-

olution of 6 hours and are indicative of the wind speed at 10 meters above the

sea level. We perform for each wind direction a simple linear interpolation

in space and time in order to estimate the wind speed at the spatiotempo-

ral coordinates of the birds (other methods like inverse distance weighted or

spline were tested on a subset and lead to not relevant differences). We com-

pare our model with competing models such a bi-exponential, simple power
2The dependence of λ2 on the mean wind is more difficult to estimate because it depends

on the details on the source like how the flux is increased by the wind, a complicated

mechanism that has to include the presence of waves, water bubbles in air, air bubbles in

water, the MLD etc...
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laws, a power law with only high scale truncation, simple exponential and

another distribution obtained by the sum of a BETPL and an exponential.

These alternative models have been clearly observed across taxa and are bi-

ological meaningful: a good fit to a bi-exponential would indicate a bimodal

search; a good fit to a power law would indicate a Lévy search pattern; an

exponential would be indicative of a single-scale search. BETPL are bet-

ter supported than all other models (more), while the second best model is

the bi-exponential, in particular, the BETPL for trips longer than 3 days

outperforms the bi-exponential in the 89% of cases.

The first prediction of our model is that µ, the exponent of the power

law in BETPL, is 3/2 and is independent of the wind. In Figure 4.1, we

plot the fitted µ of every trip against the maximum displacement from the

colony. The estimated µ value converges to the predicted value 3/2 as the

displacement increases.

A similar result can be obtained using the duration of the trip as in-

dependent variable, as we known that trip duration is correlated with the

maximum distance from the colony [76]. These convergences are due to the

increase of statistical power. As predicted, correlation between the mean

wind and the fitted µ are very low (r = 0.12, P = 0.23, df=108) and no

pattern is evident by visual inspection.
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Figure 4.1: Fitted value of µ plotted against the maximum displacement reached from the

colony. The horizontal line is the predicted value for µ. Data relative to seven

colonies in the Atlantic ocean (Red dots) and in the Mediterranean sea (Blue

dots).
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Figure 4.2: Data relative to seven colonies in the Atlantic ocean (dots) and in the Mediter-

ranean sea (squares). (a) Log-log plot of the mean wind against λ1 for trajec-

tories that last more than 4 days. (b) Log-log plot of the mean wind speed

against λ1 fitted with µ = 3/2 for trajectories that last more than 2 days. The

blue line is the 95% confidence limits for the mean predicted values and the

red line is the 95% confidence limits of the individual predicted values.

Since the prediction of the relationship of λ1 with the wind is expected

to be of inverse proportionality, we perform the fit λ1 ∼ Uβ1 . Figure 4.2a

shows a log-log plot of the fitted λ1 over the mean wind speed for trips

that last more than 4 days. The fitted regression coefficient is negative and

highly significant (β1 = −1.5± 0.3, P < 0.0001). As it can be seen, the fit is

clear although some outliers are clearly present. These outliers are perfectly

explained since the MLE estimation of λ1, λ2 and µ is highly noisy, as

demonstrated in a previous analysis performed on synthetic data. In order

to reduce the noise on λ1 and λ2, we, therefore, perform a second MLE

estimation of the parameter of the BETPL on the step length distributions

blocking µ = −3/2, the expected value. The fit of these new values of λ1

on the mean wind is depicted in figure 4.2b and the resulting fitted β1 is

−1.26 ± 0.26 (P < 0.0001). From the analysis of synthetic data, we found

that the noise is particularly high in the estimation of λ2. On the MLE
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estimations of λ2 obtained blocking µ = −3/2, we perform a fit λ2 ∼ Uβ2 .

Although very noisy, the fit indicates a clear negative β2 ( −0.7 ± 0.3, P =

0.012, df=43). Therefore, we brought new strong evidence for odour cued

navigation in shearwaters.

4.5.1 Possible mechanistic wind effect

We have tested the eventual presence of a direct effect of wind speed on

truncation parameters independently of odour cued navigation in appendix

B.2.2. We found a scarce, albeit significant, effect of wind speed of both

head- and tail- winds on the value of λ1 while λ2 appears unaffected by

head- and tail- winds.

4.6 Model validation using data from independent

data

Since the article of Edwards [97] a shadow has been cast on the Lévy flight

community and many scientists are very skeptical on the subject. In or-

der to provide another independent proof that our methods are useful and

correct, they should be able to correctly identify if a bird is or not doing olfac-

tory cued navigation. To challenge our method of data analysis we decided

to use the data provided by [88] available from Movebank. These authors

investigated the homing performance of Scopoli’s shearwaters (Calonectris

diomedea) breeding at Pianosa island (Italy). The following data were avail-

able: 11 anosmic, 8 control and 9 magnetically-disrupted birds (the experi-

mental methods used are fully reported in the original paper). After treat-

ment, birds were released in the Lion Gulf, 400 km west of the colony. The

dataset was reduced to meet the statistical exigencies of our analysis because

several trajectories were not complete and so were discarded. Thus our sam-

ple is constituted by 6 anosmic bird trajectories, 8 control bird trajectories
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and 7 magnetically-disrupted bird trajectories. Since in many cases the avail-

able statistic was not enough to perform our analysis on an individual basis

(the trajectory are quite short in time compared to ours), we decided to pool

the trajectories with identical treatment. The pooling produced a statistic of

around 1500 step lengths for the anosmic birds, 750 step lengths for the con-

trol group birds, and 770 step lengths for the magnetically disrupted birds.

We fit the data with the double exponentially truncated Lévy model and the

goodness-of-fit was tested using the Kolmogorov-Smirnov test weighted for

tails, KStail. Results are displayed in Figure 4.3.

The KStail gof values get stable for lima > 0.25 km. It is clear that

control birds outperform the test with respect to anosmic birds and at some

extent with respect to magnetically disrupted birds. We wish to stress that

such results are derived using exactly the same software which was employed

for the analyses in our paper. Using an independent dataset, this result con-

firms that our modelling approach is able to identify the presence of olfactory

navigation under natural conditions discriminating trajectories of birds using

olfactory navigation from birds using different navigation mechanisms. Both

our analysis and the one by [88] concur to the same conclusion that anosmic

birds present an impaired navigational mechanism. However, in our analysis

magnetic-deprived birds appear closer to anosmic birds while [88] stressed

that even magnetic-deprived birds navigate better than anosmic ones. How-

ever, we draw attention to the plots relative to the initial orientation of birds

(Fig. 3 in [88]) showing the initial homeward orientation. Control birds were

well orientated towards the home direction, while anosmic were significantly

oriented elsewhere and magnetic-deprived birds were only marginally ori-

ented towards home. The bivariate distribution of magnetic-deprived birds

appeared to be more scattered than the one of control birds. This pattern

fits very well with what we observed. We conclude that both our modelling

approach and the experimental approach of [88] get to identical conclusion.
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Figure 4.3: We display the Kolmogorov-Smirnoff statistics corrected for tails, KStail,

(smaller is better) (ordinates) as a function of lima. The value of lima (km) is

the value under which we cut the distribution, since there is an intrinsic noise

at small scales in GPS tracks and in the identification of step lengths.

4.7 Conclusions

We have therefore shown that at-sea distribution patterns of foraging shear-

waters are clearly wind-dependent as suggested by the proposed olfactory

navigation mechanism. Our methods of analysis are novel and inspired

by a mathematical theory for how odours disperse within the atmospheric

boundary-layer and account for the complex ways in which turbulence dis-

torts and disperses packets of odour. The hypothesis that shearwaters rely on

odour-cues for navigation then becomes a sharply defined, falsifiable state-

ment about the distribution of flight-segments. Our model distribution con-

tains three parameters. One is uniquely determined by the theory and is

a pure number, 3/2, the other two, λ1 and λ2 are predicted to depend on

the mean wind speed. It is thus unlikely that good fits to our model predic-

tions can be attributed to other processes. We find that the characteristic

power-law exponent µ is clearly distributed around the expected value of
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3/2 and is independent of the mean wind speed, as expected, while the

other two parameters λ1 and λ2 depends on the wind. It is worth noting

that these dependencies are not generic ones but are specific to our theory

in sign and size. Therefore this results provide clear and compelling evi-

dence of olfactory-cued navigation in shearwaters and bolster significantly

the previous findings[89] who did not test for wind-speed dependences and

complements the evidence, obtained using more traditional methods [98, 88,

99]. We thereby linked flight patterns to underlying navigation mechanism

for the first time. According to the mechanism initially proposed by Kramer

and Gustav[100] the navigation should be a very precise and predictable

tool: once the animal is able to get its coordinates, can use a compass to

attain its target; on the contrary the mechanism we proposed is strongly

stochastic since it is influenced by the often unpredictable turbulence of the

atmosphere. On one hand, turbulence is indispensable for odour navigation

because it carries information to the birds. On the other hand, too much

turbulence might reduce the navigation ability due to the high variability

of the odour signal. This stochasticity might explain, at least in part, the

variability which has been observed in experiments with homing pigeons.

Indeed Walraff et al [101, Chapter 3.4] concluded that "The angular disper-

sion of bearings appeared to reflect stochastic noise and is most reasonably

compatible with the hypothesis that no one pigeon was able to gain clear-cut

information on the direction of home because noise was inherent already in

the environmental signals providing positional information". The observed

dependencies of λ1 and λ2 are crucial for detecting olfactory cued navigation

because a µ value of 3/2 can be also determined by other mechanisms. Fur-

ther evidence that our interpretation is correct is the exclusion from most of

the studied trajectories of alternative movement patterns such as simple ex-

ponential, bi-exponential, power-law and single truncated power law. To our

knowledge, there is no other mechanism which could explain the observed
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relationship of λ1 and λ2 with wind speed, if olfactory navigation it is not

involved. The estimation of λ2 differently to the estimation of λ1 suffers

from a lack of resolution in our trajectories. Indeed a sampling of 10 min-

utes is a compromise between resolution and battery duration. Only newest

GPS-logger generation may allow for a denser sampling of trajectories which

may improve the estimation of λ2. Small-scale behaviour unrelated to nav-

igation [102] is one such source of noise in the estimated λ2. Furthermore,

our simulations have shown that λ2 is the most difficult parameter to be es-

timated. Comparable results were obtained for both λ1 and λ2 where tested

with different sub-settings, bootstrap and different methods of estimation

(data not presented), all leading to comparable results. The mechanistic ef-

fect of wind on the flight pattern of shearwaters is not at all unexpected [103]

but its effect is much less relevant than the one determined by olfactory-cue

navigation.

According to Komolkin et al. [104] a bird could use a hierarchy of orienta-

tion systems such as geomagnetic navigation at very long distances, olfactory

at intermediate scales and piloting for short-range movements. Surprising

both Pollonara et al. [88] and our study found olfactory navigation in birds

from small Tyrrhenian islands, where we could have assumed that piloting

can be quite effective. In our study, we confirmed that shearwaters can rely

on olfactory maps over distances of several hundreds of kilometres. It would

be interesting to analyze the flight patterns of albatrosses that are wandering

for thousands of kilometres in the southern oceans and determine whether

olfactory navigation is the dominating mechanism also at such scales. Be-

sides the importance of olfactory cued navigation for homing, demonstrated

in Procellariformies and homing pigeons, recent researches have suggested

that lesser black-capped gulls may use olfactory cued navigation during mi-

gration [105]. Our model may represent an appropriate tool to investigate

this hypothesis on a large number of wild birds, especially when conserva-
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tion concerns do not allow for experimental manipulation of a large number

of birds. More generally our model may be applied to other taxa such as

ants [106], seals and marine turtles where there is evidence for olfactory cued

navigation at different spatial scales [107].
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Chapter 5

Conclusion and further

perspective

In this work we investigated how turbulence affects the nutrient uptake of

small organisms, the foraging grounds and the navigation mechanism of

shearwaters. We found that the time dynamic present in turbulence flows

can enhance the growth rate of small organisms beyond the values predicted

using the average values. This result is especially important because it con-

tradicts theoretical arguments that instead predict the opposite. Finally, we

provided stronger evidences that the growth rates depicted in the experi-

ments [11] and [12] can not be explained with the turbulence levels reported

in the latter. We also found for the first time that sea turbulence, depicted

using the MLD, is correlated with foraging spots of shearwaters and there-

fore with the distribution of their preys. These results are very important for

ecological and conservation porpouse and the mixed layer depth should be

incorporated in every future analysis in pelagic birds habitat use. Finally,

we provided strong evidence for olfactory-cued navigation in shearwaters,

relating their pdf of unidirectional flight segments to the air-turbulence de-

picted by the mean wind. All of the three mentioned topics are extremely

valuable of further investigations: a complete investigation of the nutrient
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uptake of an elongated motile organism in realistic turbulence is lacking,

and altough its numerical complexity, its value for micro-organism marine

ecology (and therefore the climate) is crucial. In open ocean the MLD is

even more important for the marine ecology and a study of the relationship

between the foraging spots of pelagic birds and the MLD for oceanic birds

can be very productive. More in general an extension of our study using

data from shearwaters from different habitat would show if variables that

affects habitat selection in shearwaters are general or geographically depen-

dent and will have the advantage of decrease the overall correlations among

the proposed predictors. Our results suffered from a lack of precision in the

MLD estimation and therefore repeating the analysis with more refined data

would possibly increase the prediction power of the MLD in habitat selec-

tion. Finally the odour-cued navigation mechanism that we presented has

to be investigated more in depth. Evidences of odour-cued navigation were

reported for several other animals beyond shearwaters like ants, seals and

marine turtles. Applying the same statistical methods to these animals in a

general multi-species analysis can be very interesting. Among the animals

performing odour-cued navigation, desert ants can be also suitable for an

experimental investigation with the highest degree of experimental control

on the odour concentration field, although their navigation mechanism could

be very different from the one of shearwaters.
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Appendix A

The role of time dynamics in

fluid flows for nutrients uptake

In this section we will study the role of temporal dynamics in fluid flows in

the uptake of a spherical small organism by virtue of some simple illustrative

examples. In particular, in order to reduce the numerical complexity while

capturing the key temporal ingredients, we shall consider only axi-symmetric

linear fluid flows, already defined in eq. 2.10. The Stationary solutions for

a stationary general linear flow near to a sphere are well known [25] and

reported in section B.1.1. The external boundary conditions for the fluid

flow are time dependent, namely U∂Γ = U(t) = U(a(t)). We will use for

each time t the fluid flow that is instantaneously the stationary solution for

the Stokes’s equation satisfying the fluid boundary conditions. The boundary

conditions for the nutrient concentration field, C are:

C(R, θ) = 0, C(Rext, θ) = 1, (A.1)

where R is the organism radius and Rext is the external boundary that

should satisfy Rext � R in order to represent the condition Rext →∞. The

axi-symmetry, present in the fluid flow and in the concentration boundary

conditions, allows, after a passage of the equation 1.11 in cylindrical coor-
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dinates, to perform 2-D instead of 3-D simulations (see section A.1 for the

equations solved and for the code ). We performed part of the simulations us-

ing the commercial software COMSOL Multiphysics R V5.2 [108] and part of

the simulations using the free software Freefem++ [109], where both of these

programs use finite elements to solve the equations. The mesh grid is con-

structed in order to produce a difference between the computed uptake and

the analytic prediction in the case Pe = 0 of the order of 10−3. The external

boundary is a sphere of radius Rext = 104r. The difference in the uptake be-

tween the analytic solutions with Rext →∞ and Rext = 104r is of the order

10−4, therefore less than the numerical error, see supplementary information

section B.1.3. We maintained the step time dt always lower than 0.01/A.

We define two quantities: the integral absolute variation in the concentration

field at each time step, e.g. ∆C(dt) =
∫

Γ |C(X, t+ dt)−C(X, t)|dX, where

Γ is the volume inside the boundaries and the total absolute possible varia-

tion in the concentration field defined as ∆CT
∫

Γ |C(X; a1)−C(X; a2)|dX,

where C(X; a1) and (X; a2) denotes the stationary solution for the concen-

tration field with a flow respectively U(a1) and U(a2). The parameter a1 and

a2 will be defined later, but they are also representative of the maximum and

minimum values, during each simulation, of the parameter a. This quanti-

ties are used as parameters in order to ensure enough precision at every step,

maintaining dt so that ∆C(dt) < 6.e−3CT .

A.1 Numerical methods

A.1.1 Diffusion equation

The stationary diffusion equation is

∇2C = 0 (A.2)
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that in cylidrical coordinate is

1

r
∂rr∂rC + ∂2

zzC = 0

where we consider ∂θC = 0 due to axial symmetry. Multiplying by r,

∂rr∂rC + ∂zr∂zC = 0

and for a test function T , we obtain:

T∂rr∂rC + T∂zr∂zC = 0.

Integrating over the volume and than proceeding with an integration by parts

we obtain:∫
Γ
r((∂rT )(∂rC) + (∂zT )(∂zC)) +

∫
∂Γ
rT ((∂rc)nr + (∂zC)nz) = 0

where Γ is the domain of integration, ∂Γ the external boundaries and nr, nz

are the r̂ and ẑ components of the normal to the exterior boundary.

A.1.2 Advection-diffusion equation

Starting from eq. 1.11 and proceeding as for the diffusion equation we can

come to∫
Γ
rT∂tC+.

∫
Γ
rT (Uz∂tC+Ur∂tC)D

∫
Γ
r((∂rT )(∂rC)+(∂zT )(∂zC))+

∫
∂Γ
rT ((∂rc)nr+(∂zC)nz) = 0.

(A.3)

A.2 Code

The advection part of equation A.3 is solved by the standard convection

operator present in FreeFem++ called convect that use Characteristics-

Galerkin Method

problem DYNCAX( C, T, eps=−1.0e−9 ) =

− int2d ( Th ) ( (C) ∗ T / dt∗x ) +int2d ( Th ) ( ( Cold ) ∗ T / dt∗x )
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+ int2d ( Th ) ( −(u1∗dx (C)∗T +u2∗dy (C)∗T )∗x )

+ int2d ( Th ) ( D i f f ∗( dx ( C ) ∗ dx ( T ) + dy ( C ) ∗ dy ( T )

)∗x )

+ int1d (Th, IntS ) ( D i f f ∗x∗T∗ ( dx (Cold )∗N. x+dy (Cold )∗N. y ) )

+ int1d (Th, ExtS ) ( D i f f ∗x∗T∗ ( dx (Cold )∗N. x+dy (Cold )∗N. y ) )

+ on (ExtS , C=1.0 )

+ on ( IntS , C=0.0 ) ;

where x and y stands for r and z in equation A.3, and Cold is C(t − dt).

ExtS is the external border while IntS is the internal border. Since the

matrix E is invariant for z reversal, we solved the equations A.3 only in

the first quadrant. The mesh generated has 589610 triangles, and 296366

vertices.

A.3 Results

A.3.1 Transient time

As a first step we want to analyze the transient time in the nutrient uptake

when a sudden change in the fluid flow occurs. Hence, we will consider a

fluid flow that passes from U(a1) to U(a2) at time t = 0, and a concentration

field that for t < 0 is the stationary solution obtained with a stationary

U = U(a1). Then, we record the transient instantaneous uptake F (t). A

selection of results with different a1 and a2 is plotted in figure A.5, in which is

possible to note a dependency of the transient time in the nutrient uptake on

both |a1| and |a2|. In order to proceed with clarity, we will start by showing

the results for two particular cases: a2 = 0 and a1 = 0 and afterwards

proceed to the general case. In the simple case of a2 = 0, we have to solve

the transient time of the diffusion equation initialized with a non equilibrium
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Figure A.1: Log-Log plot of F∗ against the dimensionless time t a1 for different values

of a1 and with a2 = 0. As is possible to see all the curves collapse and the

re-scaled flux decay as a power law with exponent -1/2 .

solution. We define F ∗, the adimensionsional re-scaled uptake, as

F ∗(t) =
F (t)− F (a1)

F (a2)− F (a1)
(A.4)

where F (t) is the instantaneous uptake at time t and, F (a2) and F (a1) are

the stationary uptake for, respectively, U = U(a1) and U = U(a2). In figure

A.1, we show the log-log plot of F ∗, plotted against the dimensionless time

t a1. All the curves of the re-scaled flux F ∗ collapse into a single curve,

which for t� 1/a1 is well fitted with a power law with exponent -1/2.

In the case a1 = 0, the concentration field is instead initialized with the

stationary solution of the diffusion equation and, for t > 0, the fluid flow

is turned on with U = U(a2). This case is qualitatively different from the

previous one: the uptake converges to the asymptotic value in a finite time,
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Figure A.2: Linear plot of the normalized flux against the dimensionless time always start-

ing from the stationary solution with a1 = 0 for different value of a2. As is

possible to see all the curves collapse and differently from the case of only

diffusion the asymptotic flux is reached in a finite time.

namely exponentially. The transient time scales with a2, as it can be seen in

figure A.2, in which we plot the re-scaled flux F ∗ against the adimensional

time ta2. As we can see, all the curves collapse into a single curve.

By taking into account all the possible values of a1 and a2, the results can

be classified with regards to the following possibilities: if a1 is of the same

sign of a2, and, if this is the case, if a1/a2 < 1. The cases in which a1

has the same sign of a2 and a1/a2 < 1 brings, as seen also for the case

a1 = 0, to a finite transient time in the uptake. The transient time scales

mostly with a2 and with a small dependence on a2/a1. In figure A.4 we

show the collapse of all the curves, if plotted against to a dimensionless time

obtained as t/a2 (1 + α(a1/a2)β). The parameters α and β are obtained by
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a non-linear fit, using as variables the inflection point time of every curve

against the parameters a1 and a2. The fitted values are α = 1.4 ± 0.2

and β = 0.26 ± 0.07. The small fitted value of β is indicative of a lower

dependence of the transient time on a1 respect to a2 . The cases in which

a1 has the same sign of a2 and a2/a1 < 1 instead F ∗ can be well fitted

for t � 1/a1 by an exponentially truncated power law as (ta1)−0.5e−ta2 . A

representative log-log plot of F ∗ versus ta1 and the proposed fitting function

for a1/a2 = 100 is shown in figure A.3.
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Figure A.4: Plot of the re-scaled uptake F ∗ versus the dimensionless time t/af , where

af = a2(1 + α(a1/a2)β), for different values of a1 and a2 with a1, a2 < 0 and

|a1|/|a2| < 1. As is possible to see by visual inspection the collapse can be

refined.

Changing sign from a1 to a2, where the most simple case is a2 = −a1,

result in a transient uptake where is present a time interval in which F (t) <

min(F (a2), F (a1)). There is no surprise in this since is well known that

rotations and so oscillations reduce the mean flux in the fluid flow [110].

For completeness we present in figure A.5 the plot of the uptake versus

time for different values of a1 and a2.
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Figure A.3: Log-log plot of F∗ for the case a1 = 100a2. The two time scale (a1)−1 and

(a2)−1 are showed in dotted. In red is plotted the function (ta1)−0.5e−ta2 that

well describe the flux for t� (a1)−1.
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Figure A.5: Log-Log plot of the uptake versus time for different values of a1 and a2, all

with a1, a2 < 0. As is possible to see the transient time for a2/a1 > 1 is faster

than if a2/a1 < 1. Also the transient time seems to depend strongly on a2.

A.3.2 Time dependent flow: Enhanced uptake

Due to the previous results we might expect that we can construct some

periodic flow with a mean uptake greater than the uptake of the mean flow.

In order to demonstrate this assumption, we perform a simple numerical ex-

periment: we switch between two static flows every time interval ∆T with

different values of a, that we will call again a1 and a2. We use as initial

concentration field the stationary solution of the advection-diffusion equa-

tion with a = (a1 + a2)/2 and, in order to achieve the asymptotic periodic

cycle for the uptake, each simulation lasts for the max between 10∆T and

10/max(a1, a2). A subset of exemplary results are shown in Figure A.6 where

is plotted the instantaneous uptake respect to time for different values of ∆T
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Figure A.6: Example of the nutrient uptake in time for different value of ∆Ta1 with

Pe(a1) ∼ 2.63 and a2 = 0/s. Each simulation last for the max between

10∆T and 10/a1, in order to be sure to achieve the asymptotic periodic cycle

for the flux. As it is possible to see the flux reach the asymptotic value for

∆T ∼ 1/a1. The concentration field is initialized with the static solution with

a = (a1 + a2)/2.

and Pe(a1) ∼ 2.63 and Pe(a2) = 0.

In figure A.8 we plot the dependence of the asymptotic mean uptake,

for different values of a1 and with a2 = 0./s. In order to see better the

variation respect to the expected values we plot the normalized variation

respect to F ((a1 + a2)/2). As it is possible to see, the average uptake has

a maximum for ∆T ∼ 1/a1 with a peak value that is greater than F ((a1 +

a2)/2). Instead, for ∆T << 1/a1 and ∆T >> 1/a1, the average value is

lower than F ((a1 + a2)/2). This effect is quite relevant since in turbulence

one of the time scales of the matrix A is expected to be of the order of

1/
√
AijAij . By inverting the sign of a1 the shown above result holds: in the
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Figure A.7: Flux with ∆T = 0.9/|a1| for Pe(a1) ∼ 2.63 and a2 = 0. As it is possible to

see the difference of sign change the time scale slightly for both the advective

and diffusive part. As it is possible to see in figure A.8 the difference of uptake

averaged on a period is largely under the error of measure.
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Figure A.8: Plot of Fmean, the normalized variation of the mean flux respect to the sta-

tionary uptake using the mean a, so <F (a)>−F (<a>)
F (<a>)

for different dimensionless

time periods. The calculation of < F (a) > is performed calculating the mean

of the flux over the last 3 periods (so 6∆T ). We use a simple trapezoidal

rule (Simpson rule has a difference of less than 1e-5). Three different possi-

bles values of a1 are used, and in legend is reported the equivalent Pe for a

stationary flow with a = (a1 + a2)/2. As is possible to see there is a peak for

a1∆T ∼ 1.
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Figure A.9: Plot of Fexp, the normalized variation of the mean uptake respect to the

expected average uptake: <F (a)>−(F (a1)+F (a2))/2
(F (a1)+F (a2))/2

for different dimensionless

period times. As it can be seen the variation growth with Pe(< a >) and it

can be significative already for small values of Pe(< a >).

range of parameters considered, the measured differences in the mean flux

are in the range of error. In figure A.10 we plot the normalized variation

respect to (F (a1) +F (a2))/2 and since (F (a1) +F (a2))/2 ≤ F ((a1 + a2)/2)

the variation is greater than 10%.

If instead a2 has a different sign respect to a1 the average uptake is

always lower than F ((|a2| + |a1|)/2). If a2 = −a2, for ∆T � 1/|a1| the

mean Sherwood number is heavily depressed on 1 as expected by previous

numerical results for oscillatory flows [110], and by analogy with the classical

results of [20] when |Ω|/|E| � 1 with Ω being the anti-symmetric part of

the gradient tensor A.
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Figure A.10: Plot of Fexp, the normalized variation of the mean uptake respect to the

expected average uptake: <F (a)>−(F (a1)+F (a2))/2
(F (a1)+F (a2))/2

for different dimensionless

period times. As it can be seen the variation growth with Pe(< a >) and it

can be significative already for small values of Pe(< a >).
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A.3.3 Conclusion

We have clearly demonstrated the importance of the temporal correlations

of the fluid flow in the nutrient uptake. The transient times of the nutrient

flux toward a small organism are not symmetric inverting a1 with a2. As a

result the average nutrient uptake is dependent on the flow time dynamics,

and can be greater than the stationary flux characterized by the same mean

Peclet number. These results open to more in depth investigations on the

nutrient uptake of micro-organisms in turbulent flows, since the more rele-

vant positive corrections to the mean uptake should occur when the duration

of the gradients in the flows, namely a in our model, is close to 1/a as in

turbulent flows. We want to stress that micro-organisms use the nutrient

uptake to increase their volume, and so their linear dimension. Therefore,

large positive fluctuations in the uptake lead to an increase in the Pe num-

ber, providing a positive feedback in the correlation between fluctuations in

the gradient matrix and the growth rate.
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Appendix B

Miscellaneous

B.1 Microscale

B.1.1 Velocity field near a sphere

The velocity field near a sphere is:

u = E · x
(

1− a5

r5

)
+

1

2
(ω ∧ x)(1− a3

r3
)− 5

2
x(x · E · x)

(
a3

r5
− a5

r7

)
(B.1)

B.1.2 Orientation

The orientations of a prolate ellipsoid in a linear general flow it is an old

result by Jeffery [111] that can be recast as:

dv

dt
= Ωv + γ (Ev − v(vEv)) , (B.2)

where v is the versor of the long axis of the ellipsoid and γ = 1−β2

1+β2 is a

parameter that take in account the aspect ratio of the ellipsoid β = a/c with

a being the short axis and c the long axis. The parameter γ is bounded

to be between 0 in case of sphere and tend to 1 for β → 0. We simulated

a synthetic turbulent matrix using the algorithm described in [112]. This

algorithm mimic the pdf of the gradient matrix A in turbulence as well

its geometrical properties and is characterized by two time scales Tc, the
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Figure B.1: Pdf of the projection of the shear tensor on a random initial axis for a sphere

and on the longer axis for an ellipsoid. The mean of the pdf for the sphere is

0, while for the ellipsoid is different from 0.

integral time scale and the Kolmogorov time scale τη =
(
ν
ε

)1/2. Then we

follow the orientation of 5 particles with different values of γ respectively

(0, 1/2, 2/3, 4/5, 9/10), using eq B.2. In particular we followed the dynamics

of the versor of the longest axis of the prolate ellipsoid and of a initial random

direction for the spherical case, and collect the projections of the matrix on

these versors, mean viE(i, j)vj . We discover that the elongation has a deep

influence both on the pdf of the projection and the auto-correlation time of

the projection. The pdf of the projection passes from being with 0 mean in

the spherical case, to a non zero mean in all other cases (see Figure B.1) while

the auto-correlation time of the projection increases with the elongation (see

Figures B.2).
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Figure B.2: Autocorrelation function for the projection of the shear tensor on a random

initial axis for a sphere and on the longer axis for an ellipsoid.

88



B.1.3 Analytical solution for uptake of a sphere in quiescent

fluids

Using the Laplacian in 3 dimensions the diffusion equation can be rewritten

as:

D

r2
∂rr

2∂rC = 0 (B.3)

From simple calculations and imposing the boundary conditions as defined

in equations A.1 the analytic solution of the nutrient concentration is:

C(r) =
Rext

Rext −R
− RextR

(Rext −R)r
(B.4)

Since the flux is proportional to ∂rC(R), the analytical ratio in the uptake

between an external boundary at a finite distance and the limit Rext → ∞

goes as Rext
(Rext−R) that in case Rext = 104R values only 1.0001

B.1.4 Extension for low Re

The relationship σ2
ln ε = A + (3µ/2) ln(Rλ) clearly lost sense when predict

σ2
ln ε < 0. Supposing that a relationship of the kind A +

R
2/3
λ

R
2/3
λ +k

· 0.25 ·

1.5 log(R
2/3
λ ) and extimating k using the data in [6] we obtain k = 83.

B.1.5 Comparison with an ellipsoid

Since many authors approximate the E.Coli with an ellipsoid of revolution

we recast the known formula for it in order to compare the results. If we

will call b the length of longest semi-axis of the prolate ellipsoid and c the

length of the two smallest semi-axis, and the ratio between the the semi-axis

χ = c/b < 1.

We remind the definition of the eccentricity and the formula for the dimen-

sional surface of the ellipsoid:

e =
(
1− χ2

)
, S = 2πc2

(
1 +

b

ce
· arcsin(e)

)
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In [113] is presented a general formula for Sh0 of a prolate ellipsoid Sh0 =

Sh0(c, d)

Sh0(c, b) = 2
√
πc/
√
S

√
1

χ2
− 1

[
log

(
1

χ
+

√
1

χ2
− 1

)]−1

(B.5)

In [114] is presented a formula for extrapolate the Sherwood number for

all Pe numbers and all χ:

Sh =
0.5 Π

Sae
+

1

S

(
0.125

(
Π

ae

)3

+ (7.85K[χ])3Pe

)1/3

(B.6)

where

K(χ) =

(
4

3

)1/3

χ−2/9(1−χ2)1/3

( (
2− χ2

)
2
√

1− χ2
log

(
1 +

√
1− χ2

1−
√

1− χ2

)
− 1

)−1/3

and S is the adimensional surface area1 defined as S∗/a2
e and Π is the

conductance (or shape factor), defined as:

Π = αS
D where α is the mass-transfer coefficient defined as α = Q

S∗C∞
In

[113] is presented a general formula for the conductance of a prolate ellipsoid

Π = Π(a, b)

Π(a, b) = 4πa

√
1

χ2
− 1

[
log

(
1

χ
+

√
1

χ2
− 1

)]−1

B.1.6 Numerical values for the fits of the fluxes

Assuming a fixed value of R, that in our case of study is R = 0.4µm, the

characteristic length is le(h) is equal to ((2R(h/2− R) + 4R2)/4)0.5. Using

the definition we gave of Pe1, the Peclet number referring to le it is Pe(le) =

(le(h))2Pe1. The equation fitted for the uptake in still water is:

h′(t) = (1 + 1.26(h(t))0.8), h(0) = ∆ (B.7)
1

S = S∗/a2e =
2π

χ1/3

(
χ+

1

e
· arcsin(e)

)
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While in case of Pe > 0, using the 3 functions obtained from the previous

fits:

K1(le) = −0.9316 + 2.3030(le(h));

K2(le) = 1.7141− 0.5647(le(h))−1.1372;

K3(le) = 1.0737− 0.5052(le(h));

(B.8)

the equation for the evolution of h is:

h′(t) = (1 + 1.26(h(t))0.8)

(
0.5 + (0.125 + 0.27K1(le)

(
Pe(le)0.5K2(le) +K3(le)0.93(Pe(le))

)1/3
)
×

(1 + 0.01(Pe(le))/(0.001 + (Pe(le))

(B.9)

Where le is obviously le = le(h(t)).

B.2 Macroscale

B.2.1 Power-laws with double-exponential truncation are a

robust defining characteristic of olfactory-cued navi-

gation

[89] obtained an analytic expression of the step-length distribution by assum-

ing that odor concentrations were exponentially distributed. The assumption

is broadly consistent with observations of odor concentrations and our pre-

dictions provide good fits to the shearwater flight pattern data. Their key

prediction is the occurrence of doubly-exponentially truncated 3/2 power-

laws which [89] took to be the hallmark of olfactory-cued navigation. Here

we provide evidence that this defining characteristic is not specific to the

model of [89] but instead arises generally from physically realistic models of

olfactory-cued navigation.

To do this we have calculated the step-length under the assumption that

odour concentrations are Gaussian distributed rather than exponentially dis-

tributed. This assumption is not very realistic but that does not matter
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Figure B.3: Figure Comparison of simulation data (o) and theoretical predictions (red

lines) for a variety of parameter values showing that the theory works.

because the goal here is to test the robustness of doubly-exponentially step-

length distributions with respect to modeling assumptions. The calculation

is long and tedious but mirror closely that of [115]. The end result can be

expressed most succinctly as

C = Rank.Freq.Distr. = erf

(
c0e
−t/T√

2(1− e−2t/T )σc

)
(B.10)

where for simplicity the detection threshold cT = 0. It follows that the

step-length (step-duration) distribution, p = −∂C
∂t , is given by

p(t) =
c0

πσc

T 1/2

t3/2
e−c

2
0T/(8σ

2
c t) (B.11)

for long times. And so once again we have doubly-exponentially trun-

cated 3/2 power-laws. This suggests that double-exponentially truncated

3/2 power-laws are a robust prediction that arises independently of mod-

eling assumptions about how odours are distributed. As in the shearwater

paper λ1 ∝ 1/T ,and λ2 ∝ Tc2
0.
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B.2.2 Mechanistic wind effects on trajectories

In principle the observed correlations between λ1 and λ2 and the wind speed

could be originated mechanistically by the impact of wind on the movement

of birds [103]. In particular we could expect that head-wind could reduce

and tail wind could impact sistematically both the cut off values (namelly

increasing λ2 and decreasing λ1). We have no specific predictions for cross

winds. To test for this effect, for each bird we computed the average pro-

jection of the wind on the movement direction (< v‖ >) and evaluated how

much this variable could explain the value of the cut offs. If the value of

the cut offs is only determined by the mechanistic effect of wind we should

find a significative effect and a model with both wind speed and < v‖ >

should outperform the models reported in figure 3 and 4 of the main text.

Inverselly, a non significant < v‖ > correlation mean that the mechanistic

effect of wind direction is not very relevant.

For all possible days of travel subsets we have two cases: or the best aic

is found using the model with only the mean wind, selecting so our model, or

the best aic is found using log(< v >) and < v‖ >, but still the significance

and the standardized coefficient of the term < v‖ > is poor compared to the

one of < v >, meaning that a mechanicistic effect of the wind if present, is

much less relevant than the olfactory navigation in determining the values

of both λ1 and λ2. Regarding λ1, subsetting the dataset for travels that last

more than four days (subset where there is the greatest advantage for the

alternative model among all the subsets) we have a ∆ AIC of −1.3 for the

model λ1 ∼ log(< v >)+ < v‖ >, but the ratio of the coefficients of the glm

between log(< v >) and < v‖ > is 2.5 and the p.values of log(< v >) and

< v‖ > is respectively: p < 0.0001 and p = 0.018.

Regarding λ2 sub-setting the data-set for travels that last more than four

days, the ∆ AIC is 1.99 and the model should be rejected.
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