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There are few things more liberating in this life than having your worst fear
realized. Disappointment will come. The beauty is that through disappointment you

can gain clarity, and with clarity comes conviction and true originality.
Conan O’Brien





Abstract
Tidal channels are ubiquitous features of the tidal landscape which

play a critical role in the morphodynamic evolution of these landscapes.
In addition, tidal channels represent a substantial ecological and eco-
nomic value, being however vulnerable to climate changes and increasing
anthropogenic pressures. Improving current knowledge on tidal channel
form and function is therefore key step to model and predict the evolu-
tion of tidal systems.

A number of studies have analyzed the evolution and equilibrium
configuration of tidal channels, focusing on the equilibrium profile of the
channel bed for a given channel-width distribution as well as on channel
equilibrium cross-sectional shape. However, the role that vegetation
growth on the marsh platform plays on the equilibrium morphology of
salt-marsh channels has received less attention. Here we developed a
model which analyzes the equilibrium configuration of a channel and the
adjacent salt-marsh platform and provides a useful tool for quantitative
analyses of long-term eco-morphodynamic studies in tidal landscapes.
The open channel flow is studied by a 1D hydrodynamic model developed
to describe the flow field within the channel and, if present, on the lateral
shoals. The 1D hydrodynamics was “validated” considering some test
cases comparing the results obtained with a full-fledged 2D model as a
reference.

The tidal channel evolution can be sought using three different setups
which single out landforming effects: purely erosional model, in which
the erosion is the only effect shaping the channel; depositional model, in
which erosion, sea level rise and settling deposition scour and promote
the vertical accretion of the basin; depositional model with vegetation,
in which vegetation effects are included in the previous setup.

Model results reproduce several observed channel characteristics which
are deemed to be relevant from a geomorphological point of view. Model
results also show that vegetation encroachment on the marsh surface pro-
duces two competing effects. Enhanced marsh accretion associated with
the increased particle trapping and with the organic production by halo-
phytic plants, increases marsh elevation in the tidal frame, thus reducing
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the landscape forming tidal prism and the channel cross-sectional area.
However, the increased flow resistance on the canopy promotes flow con-
centration within the channel, leading to more incised cross sections
characterized by smaller width-to-depth ratios. Our simulations indi-
cate that the second process is more important in marshes which are
lower in the tidal frame, whereas the first process is more important
in marshes higher in the tidal frame when most of the tidal fluxes are
already confined within the channel.



Sommario

I canali a marea innervano gli ambienti a marea costituendo dei per-
corsi preferenziali per il trasporto di acqua, sedimenti e nutrimenti. Inol-
tre, i canali a marea rappresentano un sostanziale valore ecologico ed
economico, essendo tuttavia vulnerabili ai cambiamenti climatici e alle
crescenti pressioni antropiche. La comprensione dei meccanismi che re-
golano la forma ed il funzionamento dei canali a marea è cruciale per
migliorare la previsione delle tendenze evolutive degli ambienti a marea.

Numerosi studi hanno analizzato l’evoluzione e la configurazione del-
l’equilibrio dei canali di marea, concentrandosi sul profilo di equilibrio
del letto di canale per una data distribuzione della larghezza del canale
e sulla forma della sezione trasversale di equilibrio del canale. Tutta-
via, il ruolo che la crescita della vegetazione sulla piattaforma di barena
svolge sulla morfologia di equilibrio dei canali a marea ha ricevuto meno
attenzione. In questa tesi è stato sviluppato un modello che analizza la
configurazione di equilibrio di un canale e l’adiacente barena e fornisce
uno strumento utile per analisi quantitative di tipo eco-morfodinamico
a lungo termine in ambienti a marea. L’idrodinamica è studiata attra-
verso un modello idrodinamico 1D sviluppato per descrivere il campo
di moto all’interno di un canale e, dove presenti, sui bassofondali late-
rali. L’idrodinamica 1D è stata validata considerando alcuni casi test e
confrontando i risultati ottenuti con un modello 2D scelto come riferi-
mento. L’evoluzione del canale a marea può essere analizzata utilizzando
tre diverse impostazioni che consentono di considerare separatamente o
congiuntamente gli effetti responsabili della formazione del canale: mo-
dello puramente erosivo, l’erosione è l’unico effetto che modella il canale;
modello deposizionale, in cui gli effetti considerati sono erosione, innal-
zamento del livello del mare e deposito per sedimentazione; modello con
vegetazione, in cui si aggiungono alla precedente configurazione gli effetti
di vegetazione.

I risultati del modello riproducono diverse caratteristiche osservate
del canale ritenute rilevanti dal punto di vista geomorfologico. I risul-
tati del modello mostrano anche che la presenza della vegetazione sulla
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superficie di barena produce due effetti contrastanti. La crescita della
vegetazione associata ad un incremento dell’effetto di intrappolamento
di particelle di sedimento e della produzione organica da parte di piante
alofite, aumenta la quota della superficie di barena rispetto all’escursio-
ne di marea, riducendo così il prisma di marea e l’area della sezione
trasversale del canale. Tuttavia, la maggiore resistenza al flusso sulle
piattaforme laterali promuove la concentrazione del flusso all’interno del
canale, portando a sezioni trasversali più incise caratterizzate da rappor-
ti larghezza-profondità più piccoli. Le nostre simulazioni indicano che il
secondo processo è più importante sulle superfici di barena a quote più
basse rispetto all’escursione di marea, mentre il primo processo è più im-
portante sulle superfici di barena a quote più alte rispetto all’escursione
di marea quando la maggior parte dei flussi di marea sono già confinati
all’interno del canale.
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Chapter 1
Introduction

1.1 Who cares?

People like living on the coast. The coastline provides resources for economy and
leisure activities attracting people and improving their health [Bowen et al., 2006].
Consequently, the coastline has become densely populated having 15 of 20 megacities
(population > 10 millions) sited on the coast [Luijendijk et al., 2018]. However, there
are some issues. Set at the boundary between land and sea, the coastline is subjected
to natural forcings, such as rivers, winds, tides, and anthropogenic pressure making
it a highly dynamic system (Coco et al. [2013], Figure 1.1). The mutual relations
only between these agents drive the evolution of such systems starting from their
geomorphology, sediment sources and climatic conditions. The feedback loops that
can be positive, if promoting a change in state, or negative, if self-regulating, lead
coastal systems to different outcomes (Figure 1.2). The physical processes occurring
in the system and mediated by the presence of vegetation may offset each other
leading the system to an ephemeral equilibrium state before the evolution starts
again as the system becomes off balance [D’Alpaos et al., 2016; Zhou et al., 2017].

Since many people live along the coasts and many economical activities take
place there, coastal landscapes and their fate are hot topics. In this regard the
effects of climate change has increased the variability of forcings acting on the
environment. According to the most recent data and global projections from the
IPCC [Church et al., 2013], in 2100 for the best case scenario the global mean sea
level (GMSL) is likely 1 to range between 0.3 − 0.6 m, whereas in the worst case
scenario these estimates rise up to 0.5 − 1.0 m. Hence, large areas along the coast

1Likely refers to a likelihood of outcome of 66-100 % [Church et al., 2013].
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Figure 1.1: Eco-morphodynamic approach (Image from Coco et al. [2013]).

Figure 1.2: Triangular diagram for coastal systems evolution (adapted from Dalrymple et al. [1992]).
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are likely to be flooded by the end of this century. Moreover, a rise in the mean sea
level will promote more frequent extreme sea-level events, namely any event, storm
surges of surface waves, exceeding a threshold level. Finally, because it extends
the wave action, sea level rise will enhance the erosion on the coasts causing the
shoreline to retreat.

Facing threatening physical impacts of climate change, long-term predictions
about coastal system become an urgent need [de Vriend et al., 1993]. In truth
long-term predictions are not absolute but, by the use of different models, the con-
stant signatures of the evolutionary trends outlined become of utmost importance
to coastal managements. Among coastal systems, tidal environments are systems
whose ephemeral equilibrium is the subject matter of this thesis.

1.2 Objectives

Early investigations on tide propagation over simple geometrical domains paved
the way for the development of the modern numerical models widely spread and
used nowadays. The need for predictions on the long term has challenged scientists
to implement robust package tools to be added in the numerical models library
at any user’s hand (Delft3D [Deltares, 2014], MIKE [DHI, 2017a,b], Telemac-
Mascaret [Tassi and Villaret, 2017], HEC-RAS [USACE, 2016]). Despite the
increasing computer performances, it is still unsure what feedback on a short time
scale will drive the system evolution on the long run [de Vriend et al., 1993]. Under
this perspective, simple geometrical domains have been brushed up to give insight
about the physical mechanisms that may drive to stable or unstable equilibrium.

The problem we seek to solve is the open channel flow in a schematical lagoon
formed by a rectangular basin cut through by a straight channel connected with the
sea just at one end. Specifically, we want to investigate the effects of sedimentation,
sea level rise and vegetation growth on the long-term configuration of a tidal channel
assuming non-negligible tidal propagation effects. The objectives of this thesis are to
answer multiple questions. What is the role exerted by sea level rise, sedimentation
and vegetation in the final configuration of a tidal channel flanked by lateral shoals?
Is the final configuration an equilibrium state? If so, which kind of equilibrium? Is
there evidence of any pattern in the synthetic cross sectional morphologies?

1.3 Background

Tidal environments are dissected by networks of channels which act as the prefer-
able routes for the tidal propagation and the transport of sediments, nutrients and
pollutants [Coco et al., 2013]. The network branches from a tidal inlet spreading
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out in different sites and driving the exchange between the sea and the tidal ecosys-
tem [Friedrichs and Perry, 2001; Hughes, 2012]. Depending on their bathymetric
distribution and functions, characteristic morphological features are recognizable in
tidal basins. Firstly, salt marshes are located above the MSL, they are periodically
submerged by the tide, typically every 12 hours in systems with semidiurnal tides.
These morphological structures are approximately flat areas, concave upward, cut
by small channels that feed and drain the surface. The periodic submergence al-
lows the growth of halophitic vegetation, resistant in brackish waters [Marani et al.,
2004; Silvestri and Marani, 2004]. Since the surface is not completely flat, vegeta-
tion encroaches salt marshes distributing in patches [Marani et al., 2004; Pennings
et al., 2005]. Vegetation has been proven to shield and stabilize salt marshes pre-
venting erosion [Marani et al., 2004; Mariotti and Fagherazzi, 2010] and mitigating
sediment suspension. Set below the MSL, tidal flats are always submerged except
for extreme low tides. The almost perpetual submergence hinders the growth of
vegetation except for seagrass, algae and mycrophitobenthos which create a thin
bio-film. The absence of vegetation makes tidal flats more vulnerable to erosion
and suspension of sediments that are carried away by the channels. Finally, tidal
channels dissect tidal flats and salt marshes exerting a chief control on the mor-
phodynamic evolution of tidal environments [DAlpaos et al., 2005; Lanzoni and
D’Alpaos, 2015]. The channels indeed connect far and close sites together creating
a network where multiple branches concur to form different outlines, such as linear,
dendritic, superimposed, reticulate, meandering (Figures 1.3 and 1.4 ). The tidal
channels have a funnel shape with lateral shoals which allow the flow, confined in
straight conduit at low tide, to expand in multiple directions at high tide. Flooded
and drained frequently during the tidal period, the lateral shoals make therefore
wetting and drying processes ubiquitous [Fagherazzi and Furbish, 2001].

Similarly to their fluvial counterparts, tidal networks have tree-like structures.
However, differently from their river relatives, tidal networks do not behave as scal-
ing invariant features [Fagherazzi et al., 1999]. Indeed, a number of studies showed
that the geomorphological relationships valid for fluvial networks do not hold in
tidal environments as the spatial scale changes [Rinaldo et al., 1999]. The abscence
of free-scale behaviour for tidal networks prompted to search for geomorphic (scal-
ing) relationships able to give insights about landforming processes. The study of
different tidal networks highlighted that geometric features as widths and wave-
lengths have a large variability increasing toward the seaward end [Marani et al.,
2002]. Notwithstanding, the curvature seems constant throughout the basin allow-
ing an analytical formulation of the morphodynamic problem [Solari et al., 2002].
Another important feature of tidal channels is the width-to-depth ratio β, defined
as the ratio between the width B and the depth D. Looking at the width-to-depth
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Figure 1.3: Tidal networks across the world. On panel a) the tidal channels at Cook Inlet in Alaska
(US, Photo by Ingo Arndt); on panel b) tidal channel of Guadalquivir at Isla Minima in Seville
(ES, Photo by Hector Garrido); on panel c) the tidal channel dissecting San Felice salt marsh in
the north-eastern portion of the Venice Lagoon (IT).

Figure 1.4: Tidal-network classification [Hughes, 2012].
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ratio of tidal channels, two different behaviors were detected on the marshes and
on the tidal flats in the Venice lagoon. The channel dissecting marshes are deeper
and narrower with β ranging between 5 and 7 because of vegetation which increases
friction on the platform favoring the flow within the channel. On the other hand,
channels dissecting tidal flats, where vegetation is absent, display higher width-to-
depth ratios with β ranging between 8 and 50, similarly to fluvial cross sections.
The two different behaviors are shown in figure 1.6.

Despite the variety of tidal networks, it is possible to bridge the gap between
the hydrodynamics and the morphology by the use of geomorphic relations. The
relationship between the tidal prism, P (which is the volume of water that flows
through a given cross section during flood or ebb) and the wetted cross-sectional
area, A , is described by the O’Brien-Jarrett-Marchi law (denoted as OBJM
law hereafter) [D’Alpaos et al., 2009a,b], empirically discovered studying harbor and
estuary inlets [Jarrett, 1976; O’Brien, 1931] and then theoretically derived [Marchi,
1990] and verified in the case of tidal channels [D’Alpaos et al., 2009b; Rinaldo et al.,
1999]. According to this relationship, the tidal prism and the cross sectional area
at the inlet are related through the following power law:

A ∝ aP b (1.1)

where A is the minimum cross sectional area at the inlet, P is tidal prism at spring
tide, a and b coefficients empirically set at 0.0025 and 6/7 respectively. Many
authors have proven that OBJM law is verified not only for the inlets but also for
the other cross sections along the channel except for those cross sections very far
from the inlet, where the quasi-static assumption, fundamental for the theoretical
derivation, does not hold [Di Silvio, 1992] and for those small cross sections highly
subjected to wetting and drying phenomena [Lanzoni and D’Alpaos, 2015; Marani
et al., 2002].

In tidal environments, as in all open systems, the existence of a morphody-
namic equilibrium is often questioned. The concept is elusive since it refers to the
real world, where all physical processes involved may balance out in a transient
equilibrium state, and, on the other hand, to the virtual world, reproduced by the
mathematical model under assumptions and approximations [Zhou et al., 2017]. All
in all, the equilibrium has to be conceived as a preferable state a system is tending
to given certain forcings with respect to the model in use [Rinaldo, 1997]. Long-
term predictions are hampered by uncertainties about boundary conditions and
lack of understanding about phenomena; hence simplified approaches are favored
to study the problem. In this regard, the equilibrium in tidal networks has been
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Figure 1.5: The Jarrett-O’Brien-Marchi
law [D’Alpaos et al., 2009a].

Figure 1.6: Channel morphology within salt
marsh and tidal flats [Marani et al., 2002],
where B is the channel width and D its depth.

investigated singling out their morphological features, the channel and its lateral
platforms, whether marshes, if vegetated, or tidal flats, if not.

Set at the fringe between land and sea and above MSL, marshes are highly ex-
posed to natural forcings offering a brief outlook of the health of tidal environments.
Marsh morphodynamics has been investigated both vertically, with respect to their
accretion/erosion, and horizontally, with respect to their progradation/retreat. The
vertical evolution of marshes has been widely modeled using 0D approaches account-
ing for sea level rise, sediment supply and vegetation encroachment [Allen, 1996;
French and Spencer, 1996; Kirwan and Temmerman, 2009; Krone, 1987; Marani
et al., 2007; Temmerman et al., 2007]. Despite the simple semblance, point models
capture the significant feedbacks driving marsh vertical evolution. As the marsh
rises, it is less flooded so that the accretion rate dwindles until it reaches an equi-
librium. If the marsh is not able to keep up with the sea level rise because the
sediment supply is scarcely available, it drowns. The presence of vegetation affects
depositional processes by trapping and organic production affecting the ability to
keep up with sea level rise. A tight coupling between physical and biological pro-
cesses allows the coexistence of multiple equilibrium states within tidal environment,
one for the subtidal plane and one for the marsh region [Marani et al., 2007, 2010].
By comparing different model outputs, Kirwan et al. [2010] highlighted how the
coupled processes described in point models are able to catch crucial evolutionary
trends without demanding cumbersome numerical formulations. Moreover, some
steps were made also to introduce within this simple approach feedbacks triggered
by algae mat coverage which shields submerged regions reducing erosion occurrence
[Pivato et al., 2019; Tambroni et al., 2015; Venier et al., 2012]. On the other hand,
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the marsh migration has been studied focusing on the fate of the scarp between
marsh platform and tidal flats under different scenarios which include sea level rise,
sediment supply and wind waves [Marani et al., 2011; Mariotti and Fagherazzi, 2010,
2013a,b; van de Koppel et al., 2005]. Set the sediment supply, the scarp shifts de-
pending on the rate of sea level rise: if the rate is low, the marsh edge progrades
becoming shallower, conversely, if the rate is high, the marsh edge retreats deepen-
ing the channel. The physical mechanisms retained in the marsh migration were
verified in lab works [Bendoni et al., 2014] and in the field [Bendoni et al., 2016].

Given the fundamental control on morphodynamics exerted by tidal channels,
many authors have analyzed tidal-channel morphodynamics focusing on the evolu-
tion of the longitudinal bed profile for a given channel-width distribution. Keeping
a constant width as in tidal flat conceived as a channel, the analytical equilibrium
profile tends to adjust in a tide dominated environment along a convex-linear trend
[Friedrichs and Aubrey, 1996]: linear profile throughout the basin except in the
landward part of the basin where a convex profile controlled by a sinusoidal eleva-
tion curve is established. This seminal theoretical framework was derived posing
peak uniform velocity, and thus shear stress, across the flat as condition for sta-
bility. This constrain was then proved to be reasonable since it leads to cancel
out non-uniformity in the hydrodynamic field and therefore in the sediment set-
tling [Pritchard and Hogg, 2003]. Numerical models have then managed to follow
the analytical results with constant width [Lanzoni and Seminara, 2002; Pritchard
et al., 2002] and to introduce channel convergence by a width distribution function
[Todeschini et al., 2008].

Analytical and theoretical results concerning straight channel morphodynamics
were confirmed by experimental works [Tambroni et al., 2005]. The experimental
set-up consisted in a tank, acting as a sea basin, attached to a straight channel
with a sharp or smooth inlet. The equilibrium profile is slightly concave except
at the landward end where a convex beach completes the channel. The landward
beach is the result of the landward net transport acting at the start of the runs;
this is the result of flood dominance at early stages of the experiments as confirmed
by other authors. Afterward, sediment begins to rearrange in the inner part while
at the seaward end the channel loses sediments creating an outer-delta. This ex-
perimental work was used as validation data set for the development of a 2D-1D
hydrodynamic model coupled with a morphodynamic model to investigate the inlet
dynamics [Tambroni et al., 2004]. Specifically, a 2D model copes with the dynamics
in the sea basin, while a 1D model, matched with the 2D model at the inlet, drives
the evolution in the rectangular channel. The longitudinal bed profile observed at
the seaward end was better predicted by the 1D-2D model than by a full 1D ap-
proach; however, landward the scouring effect has prevailed shaping a dip which was
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not observed nor predicted by the 1D model. Moreover, the outer-delta evolution
has been reproduced just qualitatively since turbulent structures issuing the inlet
edges turn out to play a significant role that cannot be simulated by the model. The
runs end up to be hefty and costly to long term predictions. Considering the 1D
model, Tambroni and Seminara [2005] investigated the effects of vegetation, wind
and sea level rise on the long term evolution of a straight channel without lateral
shoals. As soon as the channel bed emerged, vegetation started to encroach the
landward portion of the channel. The landward marsh platform aggraded and pro-
graded retreating only when the vegetation growth was not enough to keep up with
sea level rise. Wind effects triggered resuspension events that do not cancel out the
sea level rise action. In this framework morphodynamic equilibrium proved to be
hard to achieve.

In Seminara et al. [2010] the equilibrium length of a straight tidal channel has
been sought analytically considering or neglecting the funneling and presence of
tidal flats. Constant width channels develop a convergence length that depends on
the critical velocity, which assesses the erosional potential of the channel. Moreover,
the tapered shape of the channel acts on the downstream profile which becomes
more concave. The presence of adjacent embayments may reduce considerably the
convergence length (since the channel becomes more incised reducing the critical
velocity).

Besides the profile, the evolution of channel cross sections has also been inves-
tigated. Draining a rectangular tidal basin, the flow at the inlet was studied by
a quasi-static model accounting just for the purely erosive effects [Fagherazzi and
Furbish, 2001]. Aiming to reach a dynamic equilibrium, depositional effects were
introduced considering sediment supply, constant in space and time, and vegetation
[D’Alpaos et al., 2006]. Moreover, a complete modeling framework assessing both
altimetric and plani-metric equilibrium channel features has recently been proposed
[Lanzoni and D’Alpaos, 2015; Xu et al., 2019] aiming to numerically match theo-
retical results [Seminara et al., 2010]. The tidal basin was built by a succession of
cross sections intending to create a straight channel cutting through a rectangular
basin. Proceeding seaward, each cross section subtends a larger basin surface which
is flooded and drained by the use of a quasi-static hydrodynamics under the assump-
tion of a short channel [Lanzoni and D’Alpaos, 2015]. However, while a link in terms
of discharge is evident between cross sections, the cross sections do not engage with
each other in terms of momentum, in other words cross sections are hydraulically
disconnected one from the other. Despite this shortcoming, the static equilibrium
channel morphology matched roughly the cross sectional data measured on field
[Marani et al., 2002], derived analytically [D’Alpaos et al., 2009a] or computed by
other numerical models [Canestrelli et al., 2007]. The previous results prompted to
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numerically obtain a dynamic equilibrium by introducing depositional effects on the
same computational domain [Xu et al., 2019]. Differently from single cross section
equilibrium, the dynamic equilibrium was reached only relaxing the assumption of
sediment supply constant in space and time [Xu et al., 2019]. Synthetic morphol-
ogy proved to match real cross sectional data in spite of hydraulic cross-sectional
disconnection.

1.4 Overview

The thesis is structured in five chapters. Chapter 2 focuses on the hydrody-
namics of a rectangular tidal basin dissected by a straight channel. The problem is
tackled using different models: a two-dimensional model, which has been developed
in the ICEA Department for studying open channel flow in fluvial or tidal systems
and a one-dimensional model, which introduces further approximations to cut the
cumbersome bits in order to use it for long-term predictions. Conversely, Chapter 3
deals with the sediment transport mathematical model, whose equations are solved
separately from the hydrodynamic problems. Moreover, Chapter 4 describes the
bottom shear stress distribution used across the tidal basin putting into effect the
one-dimensional model described before. The new model configuration is tested
by repeating the runs in Lanzoni and D’Alpaos [2015]. The central core of the
thesis is in Chapter 5 which aims to put the hydrodinamic model and the mopho-
dynamic model described in the previous chapters to make long-term predictions
on the final configuration of a tidal channel subjected to different forcings. Finally,
in Chapter 6 the conclusions are drawn. Two appendixes are attached in the back
matter of the thesis: appendix A groups additional results for the validation of the
one-dimensional model developed, while appendix B focuses on the mathematical
derivation of the bottom shear stress distribution along a cross section.



Chapter 2
Hydrodynamics

This chapter focuses on the flow in a rectangular tidal basin, dissected by a
straight channel flanked by two lateral shoals. The objective is to develop a one
dimensional (1D) model that reproduces the main features of the flow that estab-
lishes within the tidal channel. The 1D model is then “validated” by considering
some reference tests and comparing the results with those of a two dimensional (2D)
full-fledged finite element model.

2.1 One-dimensional shallow water equations

The one-dimensional De Saint Venant equations hold provided the following
assumptions are satisfied:

• The fluid can be treated as incompressible, i.e. such that dϱ/dt = 0 and,
consequently, ∇ · u = 0, with ϱ the fluid density, u the turbulence averaged
velocity vector with components ux, uy, uz;

• The longitudinal scale of the flow is much larger that the cross section width
and depth; this implies that the flow is essentially one-dimensional, i.e., the
streamlines of the depth averaged flow deviate only very weakly from the
longitudinal direction and the water level across a given section is almost
horizontal;

• The local value of the vertical component of the velocity is much smaller than
the longitudinal component and, therefore, the mean pressure is hydrostati-
cally distributed in the vertical direction;

11
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• The average bed slope is small, such that the direction normal to the flow can
be approximated with the vertical;

• The effects of boundary friction and turbulence can be accounted for through
resistance laws analogous to those developed for uniform flow conditions.

The one-dimensional DSV equations can be easily obtained by depth integrating
the 2D continuity and x-y momentum equations [Vreugdenhil, 1992]:
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Here x is the longitudinal coordinate, y is the lateral coordinate, D(x, y) is the local
flow depth, h(x, y, t) is the water surface elevation, τh

x , τ
h
y are components of the

shear stress at the free surface, τη
x , τ

η
y are the components of the shear stress at the

bed interface,

U(x, y, t) = 1
D

∫ h

η
ux(x, y, z, t) dz, Uy(x, y, t) = 1

D

∫ h

η
uy(x, y, z, t) dz, (2.4)

Txx = 1
D

∫ h

η
2(µ+ µT )∂ux

∂x
dz, Tyy = 1

D

∫ h

η
2(µ+ µT )∂uy

∂y
dz, (2.5)

Txy = Tyx = 1
D

∫ h

η
(µ+ µT )

(
∂ux

∂y
+ ∂uy

∂x

)
dz, (2.6)

T (disp)
xx = − ϱ

D

∫ h

η
(ux − Ux)2dz, T (disp)

yy = − ϱ

D

∫ h

η
(uy − Uy)2dz, (2.7)

T (disp)
xy = T (disp)

yx = − ϱ

D

∫ h

η
(ux − Ux)(uy − Uy)dz, (2.8)

with µ the viscosity of water and µT the turbulent viscosity. The dispersive stresses,
denoted by a superscript “disp”, are a sort of macro-Reynolds stresses associated
with the deviations of the distribution along z of the local mean velocity from its
depth averaged value.

Under the assumption that the coordinate axis z normal to the flow nearly coin-
cides with the vertical direction (small bed slopes), the integration of the continuity
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equation (2.1) between BL and BR yields:

∫ BL

−BR

[
∂D

∂t
+ ∂

∂x
(DUx) + ∂

∂y
(DUy)

]
dy =

∂

∂t

∫ BL

−BR

Ddy + ∂

∂x

∫ BL

−BR

(DUx) dy + (DUy)|BL
− (DUy)|BR

, (2.9)

where the terms deriving from the application of Leibnitz rule have not been in-
cluded because at the channel banks (y = −BR and y = BL) we have that Uy(x,BL, t) =
Uy(x,−BR, t) = 0 and D(x,BL, t) = D(x,−BL, t) = 0. Noting that:

∫ BL

−BR

D(x, y, t) dy = A(x, t),
∫ BL

−BR

(DUx) dy = Q(x, t), (2.10)

where A is the cross sectional area and Q the flow discharge, the 1D continuity
equation eventually takes the form:

∂A

∂t
+ ∂Q

∂x
= 0. (2.11)

The lateral averaging of the the y−component of the shallow water equations
shows that the free surface elevation is constant in the y−direction, i.e. h = h(x, t).
On the other hand, the averaging of the x−momentum equation (2.2) leads to:

∫ BL

−BR

[
∂

∂t
(DUx)

]
dy = ∂Q

∂t
,∫ BL

−BR

[
∂

∂x
(DU2

x) − 1
ϱ

∂

∂x
(DT (disp)

xx )
]
dy = ∂

∂x

[∫ BL

−BR

dy

∫ h

η
u2

x dz

]
= ∂

∂x

(
βcor U

2A
)
,

∫ BL

−BR

[
∂

∂y
(DUx Uy) − 1

ϱ

∂

∂y
(DT (disp)

xy ) − 1
ϱ

∂

∂y
(D Txy)

]
dy = 0,∫ BL

−BR

[
g D

∂h

∂x

]
dy = g A

∂h

∂x
,∫ BL

−BR

[
−1
ϱ

(τh
x + τη

x )
]
dy = −1

ϱ
(B τw + c τb),∫ BL

−BR

[1
ϱ

∂

∂x
(D Txx)

]
dy = ∂AT

∂x
, (2.12)

where τb is the average shear stress along the wetted perimeter c, τw is the average
wind stress across the water surface of width B, and U,T are the cross sectionally
averages of the flow speed ux and Reynolds stress Txx, respectively. Moreover, βcor

is a correction (Coriolis) coefficient which represents the ratio between the actual
momentum flux of the stream and the momentum flux of a stream characterized by
the same cross sectional area and a constant velocity distribution equal to the cross
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sectionally averaged speed U = Q/A of the actual stream. Hence:

βcor =
∫ BL

−BR
dy
∫ h

η u
2
x dz

A U2 . (2.13)

In general, the corrective coefficient βcor incorporates also the effect of dispersive
stresses T (disp)

xx . The coefficient βcor is ≃ 1 for sufficiently compact cross sections,
whereas it may significantly differ from 1 in composite sections treated as a single
section.

Eventually, the 1D momentum equation reads:

∂Q

∂t
+ ∂

∂x

(
βcorQ

2

A

)
+ g A

∂h

∂x
− 1
ϱ

(B τw + c τb) − ∂(AT )
∂x

= 0. (2.14)

In order to close the 1D problem described by equations (2.11) and (2.14) closure
relationships are required for τ̄w, τ̄0 and T .

Denoting by Cf the cross sectionally averaged value of the friction coefficient of
the water flow and by Cfw the wind friction coefficient, we write:

τb = −ϱCf U |U |, τw = ϱaCfw Uw |Uw|. (2.15)

with ϱa and Uw the density and mean velocity of the wind flowing over the water
surface.

As far as T is concerned, typically this contribution is neglected and semiempir-
ical closures are necessary only when the 1D formulation is employed to investigate
processes characterized by fairly short spatial scales (e.g., roll wave formation).

Adopting (2.15) and setting T = 0, the 1D form of the momentum equation
takes the form:

∂Q

∂t
+ ∂

∂x

(
βcorQ

2

A

)
+ g A

∂h

∂x
− B

ϱa

ϱ
CfwUw|Uw| + cCf

Q |Q|
A2 = 0. (2.16)

A simplified version of this equation, often employed in fluvial contexts, is ob-
tained setting βcor = 1, introducing the hydraulic radius RH = A/c, neglecting the
wind contribution and using the continuity equation (2.11), to find:

∂U

∂t
+ U

∂U

∂x
+ g

∂h

∂x
+ Cf

U |U |
RH

= 0. (2.17)

The system formed by the partial differential equations (2.11) and (2.16) (or
2.17) is quasi-linear and hyperbolic. It needs suitable boundary and initial condi-
tions to be solved. Boundary conditions consist of known time dependent relation-
ships between h and U (or h and Q) at the end sections of the channel reach. In
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Figure 2.1: The control volume for deriving the 1D shallow water equations, coinciding with a
channel reach of length dx (Adapted from Cunge et al. [1980]). a) Lateral view; b) Top view; c)
Cross-sectional view of the control volume.

particular, two of such relationships must be assigned at the upstream boundary
under supercritical flow conditions, while one relationship must be assigned at each
boundary under subcritical conditions. Initial conditions for h and U (or h and Q)
at each cross section must also be assigned within the investigated reach.

The structure of the gravitational term g A∂h/∂x does not allow one to write
the system (2.11) and (2.16) in conservative form, i.e. such that:

∂Q

∂t
+ ∂F

∂x
= R (2.18)

with Q the unknown variable vector (e.g., A,Q), F the flux vector, and R a source
term vector.

Nevertheless, the gravitational term can be rewritten observing that (Figure
2.1):

h(x, t) = zb(x) +Dh(x, t) = zb(x) + ξ + dh(x, ξ, t), (2.19)
dzb

dx
= −sinθ ∼ − tan θ = −S0 (2.20)

A =
∫ h

η
D(x, y, t) dy =

∫ Dh

0
b(x, ξ) dξ (2.21)

with zb(x) the elevation of the lower point of the section (thalweg), coinciding with
the intersection of the x−axis with the cross section, Dh(x, t) the distance of this
point from the free surface, ξ a dummy variable (independent of x and t), θ the
angle that the x−axis forms with the horizontal, S0 the channel bed slope, b(ξ) the
cross sectional with at a distance ξ from the thalweg.

Further noting that ∂h/∂x and ∂zb/∂x keep constant across a given section, we
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write:

A
∂h

∂x
=
∫ Dh

0
b(x, ξ)∂h

∂x
dξ = A

dzb

dx
+
∫ Dh

0
b
∂dh

∂x
dξ (2.22)

= −AS0 +
∫ Dh

0

∂[b(x, ξ) dh(x, ξ, t)]
∂x

dξ −
∫ Dh

0
dh(x, ξ, t)∂b(x, ξ)

∂x
dξ (2.23)

with dh(x, ξ, t) = Dh(x, t) − ξ. Using the Leibnitz derivation rule and observing
that dh(x,Dh, t) = 0, it is straightforward to show that

∫ Dh

0

∂[b(x, ξ) dh(x, ξ, t)]
∂x

dξ = ∂

∂x

∫ Dh

0
[b(x, ξ) dh(x, ξ, t)] dξ, (2.24)

Setting:

I1 =
∫ Dh

0
[b(x, ξ) dh(x, ξ, t)] dξ I2 =

∫ Dh

0
dh(x, ξ, t)∂b(x, ξ)

∂x
dξ (2.25)

the gravitational term is eventually rewritten as:

g A
∂h

∂x
= ∂

∂x
(g I1) − g I2 − gASo (2.26)

The integral I1 is the static moment of the cross-sectional area referred to the
water surface and the corresponding contribution accounts for the difference in
pressures acting on the upstream and downstream cross sections of the streamtube
formed by a channel reach of length dx. The integral I2 is related to the resultant
of the pressure acting on the lateral area of this streamtube, projected along the
longitudinal direction.

With the above findings, the conservative form of the cross-sectionally averaged
momentum equation turns out to be [Cunge et al., 1980]:

∂Q

∂t
+ ∂

∂x

(
βcorQ

2

A
+ gI1

)
= g A(S0 − Sf ) + g I2, (2.27)

where the energy slope Sf reads

Sf = c
Cf

g

Q|Q|
A3 ,

Cf

g
= 1
χ2 = 1

k2
s

R
−1/3
H (2.28)

Here χ and ks are the Chezy and Gauckler-Strickler resistance coefficients, respec-
tively. In the following we will use the Gauckler-Strickler resistance relations and
rewrite the energy slope in terms of the conveyance KT :

Sf = Q|Q|
K2

T

, KT = ksAR
2/3
H (2.29)
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Figure 2.2: Tidal channel geometry

As long as all the unknowns (e.g., Q and A) are differentiable, there is no differ-
ence between the systems of partial differential equation formed by mass conserva-
tion (2.11) and the momentum equation written in either non-conservative (2.16) or
conservative (2.27) form. Conversely, when discontinuities (e.g., hydraulic jumps or
bores) come into play, the two systems of PDE differ from each other. The system
written in conservative form, solved with suitable numerical techniques, allows one
to reproduce correctly the position and shape of the discontinuity, while this is not
the case when the non-conservative form is adopted.

In tidal environments channel cross sections are often compound (Figure 2.2):
two adjacent intertidal areas flank a main channel providing the flow additional
storage volumes. While within the channel region the 1D assumptions hold, on
intertidal areas the stream may show a two-dimensional behavior (curvature of
longitudinal streamlines is no longer negligible). On the other hand, during each
tidal cycle intertidal areas flanking the main channel can be involved or not in the
channel flow, depending on whether the tide inundates or not the intertidal platform.
When the tidal flow is confined within the channel, the flow has a preferable direction
and the cross section can be usually treated as compact (1D flow). Conversely, as
overbank tide spills onto the intertidal (marsh or tidal flat) surface, the flow may
assume a two-dimensional character and, in any case, within a 1D framework the
cross section hosting the flow has to be treated as compound.

The intertidal areas flanking the main channel can be treated as additional
storage volumes with still water, without the need of tracking the flow over them
[Cunge et al., 1980; Dronkers, 1964; Toffolon and Lanzoni, 2010]. Equations (2.11)
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and (2.16) can then be rewritten as:

B rs
∂h

∂t
+ ∂Q

∂x
= 0 (2.30)

∂Q

∂t
+ ∂

∂x

(
βcor

Q2

A

)
+g A ∂h

∂x
+ g ASf = F (2.31)

where B is the main channel width at the water surface (Figure 2.2), A is the main
channel area, βcor is the Coriolis coefficient, while KT is the conveyance of the whole
cross section, including the lateral intertidal areas. Moreover the coefficients rs and
the term F read:

rs =
(

1 + BT − B

B

)
(2.32)

F =
(
Q

A
− Uin cos δ

)
B (rs − 1) ∂h

∂t
(2.33)

with BT the width of the entire tidal transect (Figure 2.2), Uin the velocity of the
flow entering the channel from the intertidal areas, and δ the angle between this
flow and the direction of the channel axis.

The coefficient rs accounts for the static effect of the intertidal areas when
they are inundated by the tide. The term F [Toffolon and Lanzoni, 2010] takes
into account the additional pressure forces acting at the interface with the main
channel (dotted lines in Figure 2.2c) when the water spills onto the intertidal areas
or, viceversa, goes into the channel. Note that, the direction of the flow on the
floodplain (i.e., the angle δ) has to be imposed a priori (i.e., it is not a result of
the hydrodynamic model) and generally varies during the tidal cycle depending on
bathymetry and friction [Lawrence et al., 2004]. In the presence of a quite rough
intertidal surfaces, δ ≃ π/2 [e.g., see Figure 9b of Lawrence et al., 2004] and equation
(2.33) becomes F =

(
Q
A

)
B(rs − 1)∂h

∂t . For the sake of simplicity, in the following
the term F is neglected.

For 1D modeling purposes, the case of a tidal channel head merging with a land-
ward intertidal areas has to be considered (Figure 2.3). Therefore, the 1D equations
governing the mass and momentum balance must hold for both the compact cross
section characterizing an intertidal transect (Figure 2.4a), and compound cross sec-
tions as those typical of a channelized region flanked by two intertidal areas (Figure
2.4b). In the former case, the cross section covers the entire tidal basin width
and, hence, the storage coefficient rs is equal to 1. Conversely, in the presence of
a main channel flow incised in the intertidal platform, the storage ensured by the
lateral intertidal areas increases rs, which becomes greater than 1. The friction in
the momentum equation (i.e., the conveyance coefficient KT ) is always computed



2.1. ONE-DIMENSIONAL SHALLOW WATER EQUATIONS 19

Figure 2.3: Channel from the mouth (a) to the head (d). Jiangsu Province (China).
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Figure 2.4: a) Compact cross section of an intertidal transect; b) compound cross section cross
sections.

considering the whole cross section 1. In compact intertidal transects, modeled as
a rectangular cross section of with BT , the channel bed acts as the only source of
friction and βcor ∼ 1; in compound cross sections both tidal flats and channel bed
concur to the flow resistance such that βcor > 1 .

In order to consider in the 1D model a unique type of cross section throughout
the entire length of the computational domain, in the following the compact cross
section characterizing any intertidal transect located upstream of the main channel
head is treated as a compound section with a rectangular main channel and two
small adjacent tidal flats with elevation equal to that of the main channel bed
(Figure 2.4a). This modeling choice allows one to treat each cross section of the 1D
model as compound, facilitating the computations of the coefficients rs, βcor and
KT (Figure 2.4b).

The system formed by the PDE equations (2.30) and (2.31) (with F = 0) needs
to be complemented with suitable initial and boundary conditions for the water
discharge Q(x, t) and the water surface elevation h(x, t). At the beginning of each
simulation, the computational domain is supposed to be still and fully wet:

h(x, 0) = a0

Q(x, 0) = 0
(2.34)

Assuming that the flow is subcritical, according to Figure 2.2, a no-flux condition
1The Gauckler-Strickler coefficient in a compact and compound cross section respectively are

[Cunge et al., 1980] :

ks,eq = p2/3(∑
i

pi

k
2/3
si

)2/3 ks,eq =
∑

i
ksiA

5/3
i /p

2/3
i

A5/3/p2/3

where pi is the i-part of the wet perimeter p, Ai is the i-part of the area A, ksi is Gauckler-Strickler
coefficient. If ksi is constant, keq = ks.
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is imposed at the upstream boundary (x = 0) of the computational domain while
downstream (x = L), at the channel mouth, the water stage is set equal to the tidal
oscillation:

h(L, t) = a0 cosωt

Q(0, t) = 0
(2.35)

where a0 is the tidal amplitude and ω = 2π/T is the wave number, with T the tidal
period.

2.2 3D domain schematization

The tidal domain to be investigated consists of a 3D schematical rectangular
basin incised symmetrically by a tidal channel along the longitudinal axis. The
basin geometry is described through M cross sections, each of which is a function of
the coordinates (y, z). In order to study the tide propagation over the domain using
a 1D model, each cross section is approximated by using the compact/compound
framework described in the previous section. Hence, the width B, the bed height zb

and the conveyance KT are computed for each cross section. In the computation of
KT the same value of the Gauckler-Strickler coefficient ks is assigned to the channel
and, if present, to the lateral shoals; as we will see in the next Chapters, only when
the vegetation encroaches the lateral platforms, different values of ks are assigned
to channel and, if present, to the lateral platforms. In this latter case, the region
pertaining to the main channel needs to be identified.

In general, a methodology to unambiguously separate the main channel area
from the lateral flow region does not exist. Approximately, the channel region
occupies the portion of basin where the streamlines are roughly straight, while the
streamlines over the intertidal areas are nearly straight only for a certain interval
of the tidal period, and tend to be deflected towards the channel during the initial
phases of the flooding phase and the final phase of the ebb. Actually, different tidal
forcings and degree of bed roughness may produce a certain flow exchange between
the main channel and the adjacent tidal flats. This exchange is likely minimized
(F ∼ 0 in equation (2.31) ) for rough intertidal surfaces [Lawrence et al., 2004].
We thus assume that the tidal flats concur only to water storage in the continuity
equation and use a simple geometrically-based criterion to identify the main channel
region. Specifically, a given bed point of a transect is assumed to belong to the main
channel when the angle between the normal to the bed and the vertical exceeds a
given threshold (say 1°), or in other words, when the local traversal slope exceeds
1 ÷ 2 (Figure 2.5).
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Figure 2.5: Sketch of the criterion adopted to distinguish channeled and unchanneled regions.

The channel cross-sectional width is then computed considering the position
of the first and the last channelized point. Simple weighting average of the bed
elevations zb(xi, yi) are then used to compute mean height zb,tf (xi) of the tidal flat
region and of the channel cross section zb,ch(xi). By analogy, given the friction
coefficients ksi(xi, yi) at each bed point, the mean average friction coefficients are
computed for the tidal flats ks,tf (xi) and the channel region ks,ch(xi).

2.3 Wetting and drying processes

Tidal environments are subjected to wetting and drying processes as a conse-
quence of the tidal cycle. Intertidal areas are flooded when the tide rise, spilling out
water on them, and are drained when the tide recedes. On areas subjected to cyclic
wetting and drying numerical issues may arise. Specifically, the flow depth becomes
quite small or vanishes in certain regions thus leading to unrealistically too large
values of the conveyance KT as well as to abrupt changes in the cross sectional area
A. These problems have been addressed by many numerical techniques, developed
to handle the wetting and drying problem ensuring mass conservation globally and
locally.

Focusing on tidal hydrodynamics and storm surges, Medeiros and Hagen [2013]
classified wetting and drying algorithms in four groups: thin film, element removal,
depth extrapolation and negative depth algorithms. The first type includes models
which assumes the existence of a thin fluid layer on all the computational domain,
that it is always wet; therefore the mass and momentum equations are computed
over the entire domain. The second category concerns algorithms that check if com-
putational elements are wet/dry or partially dry and remove dry elements from the
domain. Further considerations are then needed to include partially dry elements,
typically by checking if the bed roughness or the depth of the surrounding elements
is large enough to claim a dry element to be wet. The third category groups mod-
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els that extrapolate depth from wet elements into dry elements at the boundary
between wet and dry regions. The new depths are then used to compute the veloci-
ties. The last category concerns algorithms that manage water levels also below the
ground surface. Regions with negative depths are considered dry and they become
wet if depths, increasing, turn again positive. Independently from the classifica-
tion, these algorithms are highly tailored to the model they are coupled to. In this
regards, benchmarks have been suggested to test 1D and 2D models when small
depths or wetting and drying processes come into play [Balzano, 1998]. Specifically,
for 1D models the typical reference case consists of a sloping beach profile where
some convex contour are inserted, or the depletion of a 1D reservoir. In the case of
2D models, test cases exist for which analytical solutions are available, such as the
oscillations of a fluid mass contained within a paraboloid surface.

Another approach adopted to handle wetting and drying processes is based on
the observation that there is no sharp transition from wet to dry elements since the
terrain irregularities, negligible at high stages, drive the flow when the depths are
small, mitigating the wet-dry transition [Defina, 2000]. This approach introduces a
subgrid model to describe the ground elevation unevenness, whose mean distribu-
tion is defined by roughness parameter es. Averaging over bed irregularities allows
one to smooth the transition between wet and dry. Specifically, Defina [2000] de-
rived a new set of 2D equations by phase-averaging the Reynolds averaged Navier
Stokes equations (RANS) over the bed unevenness of a reference area element (REA-
R eference E lement Area). The resulting set of PDEs are then integrated over the
flow depth to obtain a form of the shallow water equations (SWEs) embedding di-
rectly the wetting/drying processes. This new set of SWE is equal to the classic
2D SWE for high depths, while they slightly differ for small or negative depths.
A similar procedure can be applied to derive the phase-averaged 1D shallow wa-
ter equations [Lanzoni and Seminara, 2002] and also the phase-averaged 2D Exner
equations [Lanzoni, 2008].

Following this phase-averaging approach, let us introduce the phase function
ψ(X):

ψ(X) =

1 z > zb(X)

0 z ≤ zb(X)
(2.36)

where X = x ix + y iy + z iz is a coordinate vector (ij being the unit vector of
the j−th axis) and zb(X) is the local bed elevation. The variable ψ detects the
ground points and behaves as a Dirac delta; the variable ∆ψ has the direction of
the unit normal to the ground iz. Denoting with ⟨·⟩ the phase-average procedure,
the phase-averaged value of a generic function f(X, t) is computed integrating the
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function over REA as follows:

⟨ψ(X)f(X, t)⟩ = 1
A

∫
A
ψ(X)f(X, t) dA (2.37)

where A is the REA area. Two functions Ψ and Ψh can be defined as follows:

Ψ(X) = ⟨ψ(x, y, z)⟩ = 1
A

∫
ψ(x, y, z) dA (2.38)

Ψh(x, y, h) = ⟨ψ(x, y,H)⟩ = 1
A

∫
ψ(x, y, h) dA (2.39)

The quantity Ψ(X) represents the area laying over the bed in a REA while
Ψh(x, y, h) detects the corresponding wetted area. Integrating Ψ(X) along the
depth, the phase-averaged depth is obtained:

D(X, t) =
∫ h

−∞
Ψ(X, t)dζ (2.40)

Assuming a statistical distribution of bed unevenness, the function Ψ(X) can
be interpreted as the cumulative non-exceedance probability (PDF) that the bed
elevation zb(x, y) is lower than the generic elevation h(x, y):

Ψ(X) = P(zb ≤ h) (2.41)

Under the approximation that the PDF is Gaussian, Ψh and Φh can be expressed
as [Defina, 2000]:

Ψh(x, y) = 1
2

erfc(ξh); ξ = −2 z − zb(x, y)
es

; ξh = −2h(x, y) − zb(x, y)
es

(2.42)

Φh = es

4

∫ ∞

ξH

erfc(ξ) dξ = es

4

[
1√
π

exp(−ξ2
h) − ξh erfc(ξh)

]
(2.43)

Finally, on the REA it is useful to define an equivalent water depth H whose
value reads [Defina, 2000] :

H = es F

(
D

es

)
; F ≈ D

es
+ 0.27

√
D

es
e−2 D/es (2.44)
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2.3.1 Local estimation of energy losses

For an infinitely wide rectangular cross section, the uniform flow reads U =
ksDS

1/2
f . In the presence of wetting and drying this relation can be generalized as:

U = ks

∫ h

−∞
(h− zb)2/3∂Ψ

∂z
dz S

1/2
f (2.45)

hence

S
1/2
f = U

ks
∫ h

−∞(h− zb)2/3 (∂Ψ/∂z) dz
(2.46)

The above integral can be approximated observing that:

∂Ψ
∂z

= 2
es

∂Ψ
∂ξ

= − 2
es

(
− 1√

π
e−ξ

)
= 2
es

1√
π
e−ξ

ξ = −2 z − zb

es
, ξh = −2 h− zb

es

Consequently, it results:

∫ h

−∞
(h− zb)2/3 ∂Ψ

∂ξ
dz =

(
es

2

)2/3
1√
π

∫ ∞

ξh

(ξ − ξh)2/3 eξ2
dξ (2.47)

= e2/3
s

[
D

es
+ a1

√
D

es
e−a2D/es

]2/3

(2.48)

The uniform flow velocity is eventually computed as:

U = ks Φ(2/3) Sf

with

Φ(a) =
∫ h

−∞
(h− zb)a∂Ψ

∂z
dz =

(
es

2

)a ∫ ∞

ξh

(ξ − ξh)a e−ξ2
dξ

In the case of an always wet rectangular section, the uniform flow velocity is
U = ksR

2/3
H S

1/2
f with:

R
2/3
H =

(
A

B + 2D

)2/3
= D2/3

(1 + 2D/B)2/3
∼=︸︷︷︸

D/B << 1

D2/3 (2.49)
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In the presence of wetting and drying the latter expression changes as:

R
2/3
H =

∫ h

−∞

(
H − zb

1 + 2(H − zb/B)

)2/3 ∂Ψ
∂z

dz ∼=
∫ h

−∞
(h− zb)2/3 ∂Ψ

∂z
dz (2.50)

A =
∫ h

−∞
(h− zb)

∂Ψ
∂z

dz (2.51)

namely

R
2/3
H

∼= Φ(2/3), (2.52)

Moreover,

A ∼= B Φ(1) (2.53)

while the flow discharge is:

Q =
∫ h

−∞
ks (h− zb)2/3 S

1/2
f B(h− zb)

∂Ψ
∂z

dz

namely

Q = B ks Φ(5/3) S
1/2
f (2.54)

In the case of a compound cross section, the uniform flow velocity within the
overall cross section is U = ks,eq R

2/3
H S

1/2
f while that corresponding to the i−th

sub-section is U = ksiR
2/3
Hi S

1/2
f , with ks,eq and ksi the corresponding values of the

Gauckler-Strickles roughness coefficient. Hence, the overall discharge can be written
as:

Q = ks,eq A R
2/3
H S

1/2
f =

∑
i

ksiR
2/3
Hi S

1/2
f (2.55)

Assuming that the energy slope keeps constant across the section, the overall
(equivalent) friction coefficient ks,eq reads:

ks,eq =
∑

i ksi AiR
2/3
Hi

A R
2/3
H

(2.56)

In the case of wetting and drying, the above relations need to be modified as
follows:

Q = ks,eq BT Φ(5/3) =
3∑
1
ksiR

2/3
Hi S

1/2
f
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Hence:

ks,eq BT Φ(5/3) =
∫ h

−∞

∑
ksi R

2/3
Hi︸ ︷︷ ︸

A
5/3
i /ci

∂Ψ
∂z

dz =
3∑
1
ksi B

5/3
i

∫ h

−∞

(h− zb)5/3

c
2/3
i

∂Ψ
∂z

dz

= ks

{
B5/3

∫ h

−∞

(h− zb)5/3

B2/3
∂Ψ
∂z

dz

+ 2
(

BT − B

2

)5/3 ∫ h

−∞

(h− zb)5/3

[(BT − B) /2 + (h− zb)]2/3
∂Ψ
∂z

dz

}

= ks

{
B Φ(5/3) + (BT − B)

∫ h

−∞

(h− zb)5/3

[1 + (h− zb)/(BT − B)]2/3
∂Ψ
∂z

dz

}

and, if 2 (h− zb)︸ ︷︷ ︸
D

≪ BT − B:

ks,eq BT Φ(5/3) = ks [B Φ(5/3) + (BT − B) Φ(5/3)]

= ks BT Φ(5/3)

i.e.,

ks,eq = ks

In other words, when 2 (h− zbi) ≪ BT − B, we can write:

ks,eq BT Φ(5/3) =
3∑
1
ksi Bi Φi(5/3)

and, hence:

ks,eq =
∑3

1 ksi Bi Φi(5/3)
BT Φ(5/3)

(2.57)

In conclusion, the friction term:

c τb

ϱ
= g

A

c
Sf c = gA Sf (2.58)

can be computes estimating Sf considering the contribution to resistance of the
entire section (main channel and lateral tidal flats):

Sf = Q |Q|[
ks,eq A5/3/c2/3] , A =

3∑
1

Ai (2.59)
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with A the total cross section and c the corresponding wetted perimeter.

2.3.2 Phase-averaged Coriolis factors

The phase-averaged Coriolis coefficient in (2.13) turns in [Defina, 2000]:

βcor =
∫ BL

−BR
dy
∫ h

η

(
U

Ψh

)2
dz

A U2 . (2.60)

In a compact cross section the velocity is uniform (ux
∼= U) and, as a conse-

quence, the correction coefficient βcor ∼ 1. Conversely, in a compound cross section,
instead of performing the cumbersome computations in (2.60), an heuristic approach
is used to approximate the correction coefficient as follows:

βcor = AT

K2
T

(
K2

ch

A
+
K2

tf

Atf

)
(2.61)

where AT , KT , Kch, A , Ktf , Atf are phase-averaged variables whose values are
shown in the following section. Using this procedure the coefficient βcor ranges
between 1.0 and 1.15 as commonly reported in literature [Henderson, 1966].

2.3.3 Phase-averaged one dimensional equations

Let us consider a generally compound cross section in which wetting and drying
phenomena may affect both the lateral tidal flats and main channel (Figure 2.6). A
phase-averaged version of the governing equations (2.30) and (2.31) (with F = 0)
has to be used, similarly to [Lanzoni and Seminara, 2002]. However, the functions
Ψh, D, and Φh derived above to deal with wetting and drying have to be defined for
both the tidal flats and the main channel, choosing the appropriate bed elevation
zb. Eventually, the storage coefficient rs, the channel cross-sectional area A and
the overall conveyance KT take the expressions reported in Table 2.1, where the
corresponding relationships for a compact cross section are also shown.

Recalling that the coefficient rs accounts for the storage capacity of the lateral
intertidal areas, we note that when the floodplains are dry (Dtf ≈ es), this addi-
tional storage capacity vanishes and rs is equal to 1. Conversely, when the intertidal
areas are flooded (Dtf >> es), the value of rs is greater than 1 implying that the
whole cross section contributes to the mass balance. Wetting and drying effects
on intertidal areas are embedded in rs through Ψh,tf and Ψh,ch. Conversely, these
intertidal areas have no effects in the momentum equation, since the additional stor-
age they provide is assumed to be made of still water. On the other hand, wetting
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Compact Compound

rs = 1 rs = Ψh,ch

(
1 + Ψh,tf

Ψh,ch

BT −B
B

)
A = BTDch A = BDch

Atf = 0 Atf = (BT − B)Dtf

AT = A + Atf AT = A + Atf

K = ks,chBΦh,ch K = ks,chBΦh,ch

Ktf = 0 Ktf = ks,tf (BT − B)Φh,tf

KT = Kch +Ktf KT = Kch +Ktf

βcor = 1 βcor = AT

K2
T

(
K2

ch
A + K2

tf

Atf

)
Table 2.1: Compact and compound cross section coefficients.

Figure 2.6: Wetting and drying approach applied to compact and compound cross sections.

and drying can affect the conveyance KT appearing in the momentum equation,
allowing the friction to significantly increase for small or negative depths.

2.3.4 The numerical scheme of 1D shallow water equations

The system of PDEs (2.30) and (2.31) (with F = 0) is solved using the Preissman
method, an implicit finite difference scheme. The Preissman method is based on
approximating each term of the PDEs by a weighted average on a four-point box,
whereby a given variable f and its derivatives are discretized as follows (Figure 2.7,
Abbott and Basco [1989]; Cunge et al. [1980]):

f(x, t) = (1 − ν)[(1 − θ)fn
j + θfn+1

j ] + ν[(1 − θ)fn
j+1 + θfn+1

j+1 ] (2.62)

∂f(x, t)
∂x

= (1 − θ)
fn

j+1 − fn
j

∆x
+ θ

fn+1
j+1 − fn+1

j

∆x
(2.63)

∂f(x, t)
∂t

= (1 − ν)
fn+1

j − fn
j

∆t
+ ν

fn+1
j+1 − fn

j+1
∆t

(2.64)

Here, θ and ν are time and space weighting coefficients, respectively, subscript
indexes denote spatial nodes and superscript indexes represent time steps.
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Figure 2.7: Four point box scheme

Crucial to the model stability is how inertial and resistance terms are discretized.
Following Verwey’s variant of Preissman scheme [Cunge et al., 1980; Gibbons, 1986],
those terms are treated as follows:

∂

∂x

(
βcor

Q2

A

)
≈ 1

∆x

(
β

n+1/2
cor,j+1

Qn
j+1Q

n+1
j+1

A
n+1/2
j+1

− β
n+1/2
cor,j

Qn
jQ

n+1
j

A
n+1/2
j

)
(2.65)

Q|Q|
K2

T

≈ 1
2

[
|Qn

j+1|Qn+1
j+1

(Kn+1/2
T,j+1 )2

+
|Qn

j |Qn+1
j

(Kn+1/2
T,j )2

]
(2.66)

A ≈
A

n+1/2
j+1 + A

n+1/2
j

2
(2.67)

B ≈
B

n+1/2
j+1 + B

n+1/2
j

2
(2.68)

rs ≈
r

n+1/2
s,j+1 + r

n+1/2
s,j

2
(2.69)

On substituting these approximations into the continuity equation (2.30) leads
to:

ν B rs

hn+1
j+1 − hn

j+1
∆t

+ (1 − ν) B rs

hn+1
j − hn

j

∆t

+θ
Qn+1

j+1 −Qn+1
j

∆x
+ (1 − θ)

Qn
j+1 −Qn

j

∆x
= 0 (2.70)
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Grouping the variables at time n + 1 on the left hand side of the equation,
multiplying by ∆x and rearranging, the discretized continuity equation becomes:

A1j Q
n+1
j +B1j h

n+1
j + C1j Q

n+1
j+1 +D1j h

n+1
j+1 = E1j (2.71)

where

A1j = −θ

B1j = (1 − ν)Brs
∆x
∆t

C1j = θ

D1j = νBrs
∆x
∆t

E1j = (1 − θ) (Qn
j −Qn

j+1) +B1jh
n
j +D1jh

n
j+1

On the other hand, the discretization of the momentum equation (2.31) equa-
tions implies:

ν
Qn+1

j+1 −Qn
j+1

∆t
+(1−ν)

Qn+1
j −Qn

j

∆t
+
[
β

n+1/2
cor,j+1

Qn
j+1Q

n+1
j+1

A
n+1/2
j+1

−βn+1/2
cor,j

Qn
j Q

n+1
j

A
n+1/2
j

]
1

∆x

+gA
θ(hn+1

j+1 − hn+1
j ) + (1 − θ)(hn

j+1 − hn
j )

∆x
+ gA

2

[
|Qn

j+1|Qn+1
j+1

(Kn+1/2
T,j+1 )2

+
|Qn

j |Qn+1
j

(Kn+1/2
T,j )2

]
= 0

(2.72)

Grouping the variables at time n + 1 on the left hand side of the equation,
multiplying by ∆x and rearranging, the discretized form of the momentum equation
becomes:

A2j Q
n+1
j +B2j h

n+1
j + C2j Q

n+1
j+1 +D2j h

n+1
j+1 = E2j (2.73)

where

A2j = (1 − ν) ∆x
∆t

− β
n+1/2
cor,j

Qn
j

A
n+1/2
j

+ gA

2
|Qn

j |

(Kn+1/2
T,j )2

∆x

B2j = −g θA

C2j = ν
∆x
∆t

+ β
n+1/2
cor,j+1

Qn
j+1

A
n+1/2
j+1

+ gA

2
|Qn

j+1|

(Kn+1/2
T,j+1 )2

∆x

D2j = −B2j

E2j = ∆x
∆t

[(1 − ν)Qn
j + νQn

j+1] − (1 − θ) gA (hn
j+1 − hn

j )

In domain discretized by means of M cross sections, a system composed by
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2M − 2 equations in 2M unknowns is obtained:

L1 L2
A11 B11 C11 D11

A21 B21 C21 D21
. . . . . . . . . . . .

. . . . . . . . . . . .
A1M−1 B1M−1 C1M−1 D1M−1

A2M−1 B2M−1 C2M−1 D2M−1

R1 R2





Qn+1
1

hn+1
1

Qn+1
2
...
...

hn+1
M−1
Qn+1

M

hn+1
M



=



L3

E11

E21
...
...

E1M−1

E2M−1

R3



(2.74)

where L1Q
n+1
1 + L2 h

n+1
1 = L3 and R1Q

n+1
1 + R2 h

n+1
1 = R3 are the boundary

conditions at the landward and seaward ends, respectively, necessary for defining a
well-posed problem.

Setting both the weighting coefficients θ and ν equal 0.5, the finite difference
approximation is equivalent to a centered-difference scheme of second order accuracy
[Cunge et al., 1980]. However, for Courant number Cr (c∆t/∆x) greater than 1,
spurious oscillations may appear in the solution. Setting θ between 0.6 and 1.0
avoids this inconvenience [Abbott and Basco, 1989]. In all runs, the time weighting
coefficient θ has been set equal to 0.7, while space weighting coefficient equal to 0.5.

An important quantity to be discretized is the energy slope Sf which, as it will
be seen in Chapter 4, plays a fundamental role in determining the shape of cross
sections. It can be computed using different averaging methods [French, 1986], such
as arithmetic mean, geometric mean, harmonic mean, and conveyance mean. Even
considering a 1D steady, gradually varied flow, different averaging methods can give
different approximations, depending on the test case considered [Artichowicz and
Mikos-Studnicka, 2014; Artichowicz and Prybytak, 2015]. For a drop-down profile,
the harmonic mean fits better; conversely, for a backwater curve, the more suitable
averaging technique is the conveyance average. Finally, for the spillway case, the
arithmetic average performs better. For these reasons in the HEC-RAS code the
energy slope is averaged differently along the channel depending on the investigated
water surface profile [USACE, 2016].

Since it will be cumbersome to implement energy slope computations depending
on the hydraulic conditions, here Sf is computed by using the conveyance mean,
implemented in the four point Preissman box as [Wu, 2008]:

Sf =
{

(1 − ν) [(1 − θ)Qn
j + θ Qn+1

j ] + ν [(1 − θ)Qn
j+1 + θ Qn+1

j+1 ]
(1 − ν) [(1 − θ)Kn

T,j + θKn+1
T,j ] + ν [(1 − θ)Kn

T,j+1 + θKn+1
T,j+1]

}2

(2.75)
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2.3.5 Modeling flow transitions

The mathematical problem provided by the PDEs (2.30) and (2.31), subject to
the upstream and downstream boundary conditions (2.35) is well-posed only for
sub-critical flow conditions. Indeed, for super-critical flows two conditions must be
applied at the upstream boundary. On the other hand, when a transition is encoun-
tered in the domain, the external boundary conditions result in being too many or
not enough making the problem ill-posed. In the transition from supercritical to
subcritical, for example, two conditions are needed upstream and one condition is
required downstream for a total of three boundary conditions. Differently, in the
transition from subcritical to supercritical, one condition has to be set upstream
and none downstream. Meselhe and Holly Jr. [1997] have shown by linear stability
analysis that Preissman scheme is marginally stable when the flow is approaching
critical conditions. Nevertheless, the simplicity retained in this bi-diagonal implicit
finite difference scheme has encouraged several authors to find adaptations to the
method suitable for transcritical flows [Freitag and Morton, 2007; Johnson et al.,
2002; Sart et al., 2010]. The key idea of these adaptations applied to equations
(2.30) and (2.27) consists of introducing internal boundary conditions in each sec-
tion depending on the local direction of characteristics. Despite the changes, the
algebraic system to be solved keeps the simple diagonal form, typical of Preissman
discretization, but allows one to handle flow transitions without suffering from in-
stability. This approach avoids tracking of the critical interfaces in the domain to
include internal conditions.

Another practical approach for achieving stability of the classical Preissman
scheme when transcritical flows occur consists of reducing or dropping selectively
the convective term (or the whole inertia term) in the momentum equation. The
Local Partial Inertia (LPI ) filter, developed by Fread et al. [1996], introduces a γ
coefficient that multiplies the convective term in the momentum equation ( 2.31),
defined as:

γ =

1 − Fm
r Fr > Frm

0 Fr ≤ Frm

(2.76)

where Fr is the Froude number, Frm and m are tuning parameters. The parameter
Frm is the Froude number threshold over which the inertia is dropped, while m is
the parameter that drives the magnitude of the inertia reduction when the Froude
number is below the threshold (Figure 2.8). The closer Fr is to Frm, the greater
is the inertia reduction. Well known 1D models, such as MIKE11 [DHI, 2017a]
and HEC-RAS [USACE, 2016], have implemented LPI filter to deal robustly with
internal transitions. Here we follow this practical approach and set Frm = 1 and
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Figure 2.8: The LPI Filter [Fread et al., 1996].

m = 2. Besides the LPI filter, to ensure stability to the model, some care must be
paid to treat geometry discontinuities, such as the transition from a compound to a
compact cross section. This is for example the case (Figure 2.9) of a main channel
that undergoes a progressive deepening due to the concomitant aggradation of the
intertidal areas flanking it. As a result, the main channel head, characterized by a
compound section, tends to merge with the compact cross section of the landward
intertidal region.

The discontinuity when easily detectable can be handled by means of interior
boundary conditions whereby the discretized equations (2.71) and (2.73) are substi-
tuted by compatibility conditions. One of this conditions ensures the mass continu-
ity; the other may specify the water stage or the energy grade line [Cunge, 1975].
Typical examples are as follows.

• Abrupt change in the cross section (Figure 2.10):

a) Qj = Qj+1

b) hj +αcor,jQj/(2 g Aj) = hj+1+αcor,jQj+1/(2 g Aj+1) neglecting head loss,
or simply hj = hj+1

2

• Free flow weir separating a given channel reach into two independent parts:
2αcor,j+1 is a correction (Coriolis) coefficient which represents the ratio between the actual

kinetic energy of the stream and the kinetic energy of a stream characterized by the same cross
sectional area and a constant velocity distribution equal to the cross sectionally averaged speed
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Figure 2.9: A bathymetry with an abrupt change in the cross section.

a) Qj = Qj+1

b) none

• Submerged weir;

a) Qj = Qj+1

b) f(hj , hsill, hj+1) = 0

Specifically, in the case of an abrupt change in the cross section, the above
internal conditions, discretized using the Preissman approach, lead to:

U = Q/A of the actual stream. Hence:

αcor =

∫ BL

−BR
dy
∫ h

η
U3 dz

A U3 . (2.77)

The coefficient αcor is equal to 1 in a compound cross section, while in a compound cross section,
by analogy with βcor, is computed as follows:

αcor = AT

K3
T

(
K3

ch

A
+

K3
tf

Atf

)
(2.78)
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Figure 2.10: Abrupt change of width.

(1 − θ)Qn
j + θ Qn+1

j = (1 − θ)Qn
j+1 + θ Qn+1

j+1 (2.79)

(1 − θ)hn
j + θ hn+1

j +
α

n+1/2
cor,j

2g
|Qn

j |Qn+1
j

(A
n+1/2
j+1 )2

(2.80)

= (1 − θ)hn
j+1 + θ hn+1

j+1 +
α

n+1/2
cor,j+1
2g

|Qn
j+1|Qn+1

j+1

(A
n+1/2
j+1 )2

Grouping together the variables at time n + 1 on the left hand side of the
equation, these algebraic equations become:

A1j Q
n+1
j +B1j h

n+1
j + C1j Q

n+1
j+1 +D1j h

n+1
j+1 = E1j (2.81)

A2jQ
n+1
j +B2jh

n+1
j + C2jQ

n+1
j+1 +D2jh

n+1
j+1 = E2j (2.82)
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where

A1j = −θ

B1j = 0

C1j = θ

D1j = 0

E1j = (1 − θ) (Qn
j −Qn

j+1)

A2j = −
α

n+1/2
cor,j

2g
|Qn

j |

(A
n+1/2
j )2

B2j = −θ

C2j =
α

n+1/2
cor,j+1
2g

|Qn
j+1|

(A
n+1/2
j+1 )2

D2j = −B2j

E2j = (1 − θ) (hn
j − hn

j+1)

However, when the basin bathymetry is evolving in a long term simulation, the
discontinuity could not be easy to localize and thus using internal boundary con-
ditions may become cumbersome to implement. Hence, despite the approximation
introduced, the LPI filter is a preferable option since it can be applied in all the
domain without the need to detect, classify and treat the discontinuity with suitable
internal boundary conditions.

2.3.6 Double-sweep method

The set of algebraic equations (2.71) and (2.73) implies a tridiagonal system
than can be solved using an iterative procedure such as the double sweep method
(or Thomas algorithm). This algorithm can be set up making a first sweep from
seaward to landward and then a second sweep from landward to seaward (or invert-
ing the direction of both the steps). In present applications, the first procedure was
implemented.

1st sweep: from seaward to landward - 2nd sweep: from landward to
seaward

The double sweep method is based on this initial relation:

Qn+1
j = Fj h

n+1
j +Gj (2.83)
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where Fj and Gj are variables whose values are determined later. By substituting
the relation (2.83) in (2.71) and (2.73), we obtain:

(B2j +A2j Fj)hn+1
j + C2j Q

n+1
j+1 +D2j h

n+1
j+1 = E2j −A2j Gj (2.84)

From the first equation, it is straightforward to derive hn+1
j :

hn+1
j = Hj Q

n+1
j+1 + Ij h

n+1
j+1 + Jj (2.85)

where Hj , Ij , Jj are defined as follows:

Hj = − C1j

B1j +A1j Fj
, Ij = − D1j

B1j +A1j Fj
, Jj = E1j −A1j Gj

B1j +A1j Fj
(2.86)

To eliminate hn+1
i , we multiply equation (2.84) by (B2j +A2jFj) and, viceversa,

equation (2.84) by (B1j +A1jFj) and subtract them side by side:

[C1j (B2j +A2j Fj) − C2j (B1j +A1j Fj)]Qn+1
j+1

+ [D1j (B2j +A2j Fj) −D2j (B1j +A1j Fj)]hn+1
j+1

= (B2j +A2j Fj)(E1j −A1j Gj) − (B1j +A1j Fj)(E2j −A2j Gj) (2.87)

From the previous equation, putting εj = (B1j +A1j Fj), it follows:

Qn+1
j+1 = − εj Ij +D2j

εj Hj + C2j
hn+1

j+1 + E2j −A2j Gj − εj Jj

εj Hj + C2j
(2.88)

and:

Fj+1 = − εj Ij +D2j

εj Hj + C2j
, Gj+1 = E2j −A2j Gj − εj Jj

εj Hj + C2j
(2.89)

Equations (2.83) and (2.85) are used to compute upwardly values of Fj , Gj , Hj ,
Jj and Ij . The procedure consists of four steps:

• By the definition of the upstream boundary condition (j=0), G0 and F0 are
computed;

• In the first sweep is upstrem-downstream and allows one to compute Fj+1 and
Gj+1 (j=0,1,...,M-1) through (2.83) and Hj , Jj and Ij (j=1,...,M), using (2.85)
and (2.86);

• By the definition of the upstream boundary condition (j=M), GM and FM

are computed;
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Figure 2.11: Different iterative procedure depending on the choice of first cross section.

• The second sweep is downstream-upstream, and allow one to determine the
values of Qj and hj (j=M-1,M-2,...,1)

The coefficients F1 and G1 at the upstream boundary are computed as:

F1 = L2
L1
, G1 = L3

L1
(2.90)

Since no-flux condition is imposed at the upstream boundary, L1 ̸= 0 while
L2 = L3 = 0. Conversely, at the downstream boundary the stage condition leads
the following relation:

hn+1
M = R3 −R1GM

R2 +R1 FM
(2.91)

Finally, after some algebra, we obtain R3 = H, R1 = R2 = 0.

1st sweep: from landward to seaward - 2nd sweep: from seaward to
landward

The double sweep method is based on this initial relation:

hn+1
j = Fj Q

n+1
j +Gj (2.92)

where Fj and Gj are variables to be determined later. By substituting (2.92) in
(2.71) and (2.73) we obtain:

(A1j +B1j Fj)Qn+1
j + C1j Q

n+1
j+1 +D1j h

n+1
j+1 = E1j −B1j Gj (2.93)
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From the first of the above equations, it is straightforward to obtain:

Qn+1
j = − C1j

A1j +B1j Fj
Qn+1

j+1 − D1j

A1j +B1j Fj
hn+1

j+1 + E1j −B1j Gj

A1j +B1j Fj

hn+1
j = Hj Q

n+1
j+1 + Ij h

n+1
j+1 + Jj (2.94)

where Hj , Ij , Jj are defined as follows:

Hj = − C1j

A1j +B1j Fj
, Ij = − D1j

A1j +B1j Fj
, Jj = E1j −B1j Gj

A1j +B1j Fj
(2.95)

To eliminate Qn+1
i , we multiply equation (2.93) by (A2j + B2j Fj), equation

2.93 by (A1j +B1j Fj) and subtract them side by side:

[C1j (A2j +B2j Fj) − C2j (A1j +B1j Fj)]Qn+1
j+1

+ [D1j (A2j +B2j Fj) −D2j (A1j +B1j Fj)]hn+1
j+1

= (A2j +B2j Fj)(E1j −B1j Gj) − (A1j +B1j Fj)(E2j −B2j Gj) (2.96)

From the previous equation, setting εj = (A1j +B1j Fj), hn+1
j+1 it follows:

hn+1
j+1 = −εj Hj + C2j

εj Ij +D2j
Qn+1

j+1 + E2j −B2j Gj − εj Jj

εj Ij +D2j
(2.97)

Moreover,

Fj+1 = −εj Hj + C2j

εj Ij +D2j
, Gj+1 = E2j −B2j Gj − εj Jj

εj Ij +D2j
(2.98)

Equations (2.92) and (2.94) are used to compute upward the values of Fj , Gj ,
Hj , Jj and Ij . The procedure consists of four steps:

• By the definition of the downstream boundary condition (j=M), GM and FM

are computed;

• In the first downstream-upstream sweep Fj+1 and Gj+1 (j=M-1,...,0) are eval-
uated through relation (2.83), Hj , Jj and Ij (j=M-1,...,1) using (2.85) and
(2.86);

• By the definition of the downstream boundary condition (j=1), G0 and F0 are
computed;

• The second upstream-downstream sweep allow one to determine the values of
Qj and hj (j=1,...,M-2,M-1)
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Figure 2.12: Different iterative procedure depending on the choice of first cross section.

The downstream the coefficients FM and GM are computed as:

FM = R2
R1

, GM = R3
R1

(2.99)

Since a no-flux condition is imposed at the upstream boundary, R1 ̸= 0 while
R2 = R3 = 0. Conversely, at the downstream boundary the stage condition leads
to the following relation:

hn+1
1 = R3 −R1G1

R2 +R1 F1
(2.100)

After some algebra, we finally obtain R3 = H, R1 = R2 = 0.

2.4 Results

The robustness of the model has been tested by considering i) a tidal water front
that propagates over a sloping beach and ii) the depletion of a 1D reservoir with a
linearly sloping bed with an intermediate sawtooth-like berm. Both tests have been
suggested by Balzano [1998] to evaluate the ability of a 1D model to account for
wetting and drying processes.

In the first test the domain consists of a rectangular basin, 14 400 m wide,
connected to the sea at one side and closed at the other sides. The domain is
discretised through eleven cross sections, with a spacing of 1200 m. The time step
used in the simulations is 600 s. Moreover, the Grauckler Strickler friction coefficient
is set equal to 50 m1/3s−1. The tide at the seaward open boundary has an amplitude
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of 2 m and a period of 43 200 s. Three slightly different bed configurations are
investigated: a linearly sloping beach; a linearly sloping beach interrupted by an
intermediate berm; a linearly sloping beach interrupted by an intermediate crooked
(irregular) contour. Although these bed configurations do not allow for an analytical
solution of the problem nor for experimental results to be used for comparison, the
spatio-temporal variations of the water surface during flood and ebb phases offer the
opportunity to evaluate whether the wetting and drying algorithm leads to possibly
unphysical behaviors.

The panels reported in Figure 2.13 show flood and ebb water levels for the three
beach profiles introduced above. In the first configuration (linearly sloping beach,
upper panels), the water surface fall regularly during the ebb phase, with a wave
front that recedes smoothly and bends slightly as low tide is approached. A similar
behavior is evident also for the flood phase, except when the upper beach edge is
approached, with a shoreline that tends to move forward irregularly. Note that the
present treatment of wetting/drying, based on a sub-grid model that accounts for
possible ground unevenness of mean amplitude es, the water level is computed also
below the local mean elevation. In the presence of an intermediate berm (middle
panels) the water surface rises and falls smoothly, without the wiggles, similarly to
the previous case.

Finally, when a crooked (sawtooth-like) berm in inserted in the middle of a
linearly sloping beach (lower panels), the free surface is only weakly affected by the
presence of the bed irregularity. Indeed, the sawtooth-like berm has an amplitude
comparable with that of es and, hence, cannot be detected by the sub-grid scale
model set at the basis of the wetting/drying algorithm. Overall, the 1D model
performance is satisfactory showing almost no wiggles in water levels in both flood
and ebb phases.

The second test suggested by Balzano [1998], consists in the outflow from a 1D
reservoir that starts from a water level of 2.0 m and lasts 100 h, having imposed a
sinusoidal depletion downstream. The grid spacing is 1200 m, while the times step
is 600 s. Four different values of the roughness parameter es has been considered:
es = 0.003 m (upper left panel of Figure 2.14); es = 0.3 m (upper right panel of
Figure 2.14); es = 0.6 m (lower left panel of Figure 2.14); es = 2 m (lower right
panel of Figure 2.14). In all cases, the water surface does not feel the approaching
bed until it reaches the lowest point of the crooked contour.

As es is increased, the curvature of the free surface progressively becomes neg-
ligible even when it encroaches the sawtooth-like berm. In order to let the free
surface feel possible bed irregularities a value of es = 0.3 m is considered a good
tradeoff between the need to ensure stable free surface solutions and the need to
account for bed geometrical singularities.
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Figure 2.13: Water level oscillations on a linearly sloping beach with or without intermediate
irregularities, as suggested by Balzano [1998]. Left panels: ebb phase; right panels: flood phase.
Input data are: ∆x = 1200 m, ∆t=600 s, ks=50 m1/3s−1, a0 = 2.0 m, T = 43 200 s. The roughness
parameter es in equations (2.43), (2.44) has been set to 0.3 m. Thin lines denote water levels at
every time step; thick lines correspond to water level plotted every 5 time steps (i.e., 50 min).
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Figure 2.14: Outflow from a 1D basin with reservoir by sinusoidal depletion (reference case sug-
gested in Balzano [1998]) for different es values from left to right 0.003, 0.3, 0.6, 2.0 m. These are
the run input data: ∆x = 1200 m, ∆t=600 s, ks=50 m1/3s−1, a0 = 2.0 m, Trun = 100 h.
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The 1D model was also used to simulate the tidal propagation on a rectangular
basin, 200 m wide and 2000 m long. Three bed configurations were considered: a
horizontal flat bed throughout the entire basin (Figure 2.15a); a convergent chan-
nel extending along the entire basin (Figure 2.15b); a convergent channel merging
landward in a flat bed, thus implying a quite rapid change of cross-section geometry
(Figure 2.15c). The bed elevation of the lateral boundaries in all the three cases is
set at 0.0 m. The channel axis, when present, it tilted seawards with a 0.04% slope.
The basin was discretised by using 21 cross sections with a spacing of 100 m. The
Gauckler-Strickler friction coefficient was set to 30 m1/3s−1. The basin is closed at
the landward and lateral boundaries, while the seaward boundary is subjected to
a semi-diurnal tide of 0.5 m amplitude. The time-step used in the simulations is
equal to 200 s.

The 1D model has been compared with a 2D model, FEM model developed at
department ICEA in Padova (2DEF, Carniello et al. [2005]; Defina [2000]; Viero
et al. [2013]), which uses 27 930 triangular elements to discretise the whole basin.
The mesh is staggered and has a minimun element size of 1 m, and a maximum size
of 20 m. The bed heights were assigned to elements automatically. Given 21 cross
sections data points, a temporarily mesh was built and used to assign the elevations
of each grid element of the staggered mesh. In both the 1D and 2D models, the
roughness parameters es was set equal to 0.3 m (as suggested by the above tests).
The application of the seaward boundary condition in the 2D model needs some
explanation. Indeed, the tidal forcing was applied at the end of an additional sloping
ramp, 100 m long, extending seaward beyond the last cross section of the 1D model.
The aim is to ensure that in the 2D model the last row of elements is always wet,
such that the wetting and drying processes gradually affect the tidal propagation.
Conversely, in 1D hydrodynamics, it was preferred to multiply function Ψh,ch for the
tidal oscillation at the seaward cross section, as Ψh,ch a0 cosωt, to handle wetting
and drying processes. This expedient avoids the use of an additional sloping ramp
extending seaward that would have required adding other cross sections beyond the
channel inlet.

The comparison between the two models is performed in terms of water levels,
maximum velocity and shear stresses along the basin axis and discharges in some
relevant cross sections. Additional results (see Appendix A) concern the effects on
the three bathymetries of Figure 2.15 induced by the presence of tidal flats set at
−0.45 m.

Figure 2.16 shows the comparison between the water oscillations computed by
the present 1D model and the 2DEF at three cross sections: seaward, in the middle,
and landward. For each cross section, the 2DEF water levels are monitored at the
channel axis, at left lateral boundary and in the middle of the tidal flats. Obviously,
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Figure 2.15: The three bathymetries used to test the present 1D model: a) channel with com-
pact cross sections; b) channel with compound cross sections; c) channel with both compact and
compound cross sections.

the 1D model provides only one cross sectional value of the water level. The flat bed
topography leads to an overall 1D character of the flow. Indeed, the water levels
computed by 2DEF are equal except when approaching the lateral boundary of the
tidal domain (green lines) where the flow is forced to satisfy a non flux conditions
for both the components of the velocity. The values of the free surface elevations at
the channel axis and in the middle of the tidal flats are quite similar for both the
models. Some differences are however observed at the seaward cross section, where
the automatic procedure to assign height to each triangular element of the 2DEF
leads to some small errors when estimating the water surface elevations. Overall, the
initially sinusoidal tidal wave tends to change its shape as it propagates throughout
the tidal basin, smoothing the crests and flattening the troughs as a consequence
of the topographic influence. The relatively small differences exhibited by the re-
sults provided by the two models are possibly due to the different treatment of the
convective terms in the two models. Indeed, the 2DEF model used a simplified
lagrangian framework to compute the convective terms [Defina and Bonetto, 1998],
while an eulerian approach is adopted in the 1D model.

Figure 2.17 shows the temporal distribution of the cross-sectional discharge at
the above considered cross sections. All the diagrams are characterized by an evident
asymmetry, with and ebb phase that is flatter and lasts longer than the flood phase
which, in turn, is more peaked and shorter. Despite the constant width of the tidal
domain and the flatness of the cross sections, a slight flood dominance behavior is
evident from the results. The 1D model appears to reproduce correctly the trends
emerging from the 2DEF calculations.

These results are confirmed by the Q− h diagrams plotted in Figure 2.18. The
matching between the two model remains reasonably good. The skewness of the
curves is quite evident, especially at the seaward section. Note that the presence of
a sloping ramp near to the seaward boundary, introduced to impose the sinusoidal
wave forcing in 2DEF model and absent in the 1D model, is likely responsible for
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Figure 2.16: Water level oscillations computed for bathymetry 1 (ztf = 0.0 m). a) landward
section; b) halfway cross section; c) seaward section. The water levels are tracked on the channel
axis (black), on the tidal flat edge (red) and on the lateral boundary of the tidal domain (green).

Figure 2.17: Temporal distribution of the cross-sectional discharge Q computed for bathymetry 1
(ztf = 0.0 m). a) landward section; b) halfway cross section; c) seaward section.
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the slightly different shapes of the Q− h computed by the two models.

Figure 2.18: The cross sectional discharge Q is plotted as a function of the water stage h for
bathymetry 1 (ztf = 0.0 m) a) landward section; b) halfway cross section; c) seaward section.

The effect of the ramp clearly appears also in Figure 2.19, showing the maximum
values of the shear stresses τmax and of the velocity Umax calculated during a tidal
cycle along the longitudinal axis of the basin. Indeed, at the seaward section both
the velocity and the shear stress resulting from the 2DEF model are larger that
those provided by the 1D model. Note also the spikes of both τmax and Umax induced
by the sloping ramp which bends the streamlines making the velocity and the shear
stress especially during the ebb phase. Overall, the the concordance between the
two models is reasonably good.

Figure 2.19: a) Maximum shear stress τmax and b) velocity Umax computed during a tidal cycle
along the longitudinal axis fo the tidal basin with bathymetry 1 (ztf = 0.0 m).

It is worth focusing also on the energy slope distribution along the basin due
to its importance for the bottom shear stress distribution as it will be discussed
in Chapters 4 and 5. The flat bed resembles the initial configuration of the basin
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Figure 2.20: Behavior of the 1D model energy slope Sf along the channel in the bathymetry 1 a)
in ebb and b) in flood phase.

before any erosional or depositional effects start to shape the channel. In this case,
the 1D model energy slope is smooth along the channel in both tidal phases without
any wiggles or spikes (Figure 2.20). Despite the simple domain, the energy slope
values are different in the two tidal phases, higher in the ebb than in flood phase.

The overall picture emerging from the analysis of the results corresponding the
bathymetry 1 (Figures 2.16, 2.17, 2.18, 2.19) are confirmed by those obtained for
bathymetry 2.

In particular, Figure 2.21 shows that the differences in water levels between the
two models gradually mitigate when moving landward, owing to wetting and drying
effects. The channel, in fact, has a slightly descending slope and the lateral shoal
are not completely flat. The tidal wave propagating over the basin tends to change
its shape, smoothing the crests and flattening the troughs only on tidal flats, but
not within channel. The difference between the water levels computed by the two
models inside the channel are thus very small.

The temporal distributions of the cross-sectional discharge at different cross sec-
tions (Figure 2.22) confirm the good performance of the 1D model as compared to
the 2DEF model. The 1D model reproduces appropriately the flood dominant be-
havior of the tidal wave, resulting from the concurrent action of channel convergence
and tidal flats [Todeschini et al., 2008]. The flood dominant asymmetry gradually
reduces moving landwards, where the channel funneling has less influence and tidal
flats occupy all the basin width.

The reasonably good matching between the results provided by the 1D model
and the 2DEF model, and the ability of the former to deal properly with wetting and
drying situations are confirmed by the Q− h diagrams (Figure 2.23) and the plots
of the maximum shear stresses τmax and the maximum velocity Umax calculated
during a tidal cycle along the longitudinal axis of the basin (Figure 2.24). In
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Figure 2.21: Water level oscillations computed for bathymetry 2 (ztf = 0.0 m). a) landward
section; b) halfway cross section; c) seaward section. The water levels are tracked on the channel
axis (black), on the tidal flat edge (red) and on the lateral boundary of the tidal domain (green).

Figure 2.22: Temporal distribution of the cross-sectional discharge Q computed for bathymetry 2
(ztf = 0.0 m). a) landward section; b) halfway cross section; c) seaward section.
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Figure 2.23: The cross sectional discharge Q is plotted as a function of the water stage h for
bathymetry 2 (ztf = 0.0 m) a) landward section; b) halfway cross section; c) seaward section.

Figure 2.24: a) Maximum shear stress τmax and b) velocity Umax computed during a tidal cycle
along the longitudinal axis for the tidal basin with bathymetry 2 (ztf = 0.0 m).
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Figure 2.25: Behavior of the 1D model energy slope Sf along the channel in the bathymetry 2 a)
in ebb and b) in flood phase.

particular, Figure 2.24 still emphasizes the effects of the sloping ramp introduced
in the 2DEF model to apply a sinusoidal tide at the seaward boundary. This is
why the overall performance of the 1D model, as compared to the 2DEF model, is
quite good in the inner part of the tidal basin, while at the seaward boundary the
shear stresses are overestimated and the velocities are underestimated.

As it will be shown in Chapters 4 and 5, bathymetry 2 could represent a channel
in its route toward an equilibrium configuration. Despite the presence of lateral
shoals, the energy slope is smooth along the channel in both tidal phases (Figure
2.25). The energy slope values are higher in the flood phase compared to the ebb
phase.

Finally, let us consider the results of the two models applied to bathymetry
3. Figure 2.26 shows that the differences among the water levels computed inside
the channel by the 1D model and the 2DEF model are very small. The basin is
completely flat only in the landward part, where the channelized region vanishes
and wetting and drying processes repeat periodically during the tidal cycle. This
topographical feature is responsible for the strong mitigation experienced landward
by the water levels are mitigated by the wetting and drying algorithm gradually
moving landward.

Also the temporal distributions of the cross-sectional discharge (Figure 2.27) and
the Q−h diagrams 2.28 highlight the flood dominant behavior of the tidal basin due
to channel convergence and the role played by tidal flats. However, differently from
bathymetry 2, the degree of hydraulic asymmetry does not reduce landwards. Only
the cross sections where the main channel disappear, merging with the tidal flats,
exhibit a less evident degree of flood dominance. The matching between the 1D
model and the 2DEF model is in general quite good for cross sections located along
the main channel and at the main channel head, while some discrepancies appear in
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Figure 2.26: Water level oscillations computed for bathymetry 3 (ztf = 0.0 m). a) landward
section; b) halfway cross section; c) seaward section. The water levels are tracked on the channel
axis (black), on the tidal flat edge (red) and on the lateral boundary of the tidal domain (green).

Figure 2.27: Temporal distribution of the cross-sectional discharge Q computed for bathymetry 3
(ztf = 0.0 m). a) landward section; b) halfway cross section; c) seaward section.
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Figure 2.28: The cross sectional discharge Q is plotted as a function of the water stage h for
bathymetry 3 (ztf = 0.0 m) a) landward section; b) halfway cross section; c) seaward section.

Figure 2.29: a) Maximum shear stress τmax and b) velocity Umax computed during a tidal cycle
along the longitudinal axis for the tidal basin with bathymetry 3 (ztf = 0.0 m).

the landward portion of the tidal basin where the two-dimensional character of the
flow likely play some role, completely neglected in the 1D model. Despite this, the
1D model, to the 2DEF model, appears to reproduce the along axis distribution of
τmax and Umax with a degree of accuracy (Figure 2.29) with respect similar to that
observed for the previously examined bathymetries. In particular, the 1D model
is able to replicate the spike at the channel head, where the transition between
compact and compound cross sections leads to a jump in the bed geometry.

As it will be described in Chapters 4 and 5, the geometric discontinuity due to
an abrupt change in cross sections may occur in the channel evolution. The sharp
transition from a compact to a compound cross section affects the 1D model energy
slope distribution along the channel in both tidal phases (Figure 2.30). Specifically,
the topografic jump due to the abrupt change in the cross section triggers a peak
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Figure 2.30: Behavior of the 1D model energy slope Sf along the channel in the bathymetry 3 a)
in ebb and b) in flood phase.

in the energy slope at the toe of the jump. This unrealistic behavior of the slope
energy distribution over a topografic jump may cause wiggles in the scouring at the
toe of the jump as the channel is approaching an equilibrium state (see Chapters 4
and 5).

2.5 Concluding remarks

A 1D model has been developed to study the propagation of a tidal wave in a
schematical rectangular basin. The model describes the flow within a main channel
and, if present, over the lateral tidal flats flanking it. The wetting and dying
processes are tackled using a physics-based procedure which introduces a subgrid
model to account for ground irregularities [Defina, 2000].

The model has been validated considering the test cases proposed by Balzano
[1998] and three additional bathymetries where geometrical complexities were grad-
ually introduced. Overall, the model shows enough robustness and stability to be
used for long-term runs.





Chapter 3
Morphodynamics

This chapter discusses the main features of the morphodynamic modeling, which
relies on the 1D hydrodynamics described in the previous chapter. The aim is to
develop a simple bed evolution model that includes i) erosion (E), ii) deposition (D)
due to settling, as well as trapping and organic production due to vegetation, iii)
rate of Relative Sea Level Rise (RSLR), but neglects bedload fluxes. As a first rough
approximation, the sediment transport occurring in the tidal basin is assumed to
be driven by a concentration constant in space and time (i.e., such that a uniform
sediment input is applied throughout the entire basin surface). Despite this strong
assumption, the model appears to capture the principal features exhibited in the
long-term by the tidal channels observed in the field (see Chapter 5).

3.1 Modeling suspended sediment transport

The morphodynamic evolution of a tidal environment is governed by the 2D
Exner equation [Lanzoni, 2008]:

(1 − p)∂z
∗
b

∂t
+ ∂(C D)

∂t
+ ∇xy · Qs = 0 (3.1)

where p is porosity, z∗
b is the local bed elevation referred to m.s.l., C is the mean

concentration of sediment suspended in the water column, D is the local water depth,
Qs the total sediment flux which accounts for both bed load Qsb and suspended load
Qss. Separating the effects of bed load and suspended load, the sediment balance

57
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can be re-written as follows:

(1 − p)∂z
∗
b

∂t
= D − E − ∇ ·Qsb (3.2)

where the net sediment supply reads as follows:

D − E = −∂(CD)
∂t

− ∇ ·Qss (3.3)

The morphodynamic evolution is hence described by two equations, one controlling
the bedload fluxes and one driving the suspended sediment exchange, which reads
as follows:

(1 − p)∂z
∗
b

∂t
+ ∂Qsbx

∂x
+ ∂Qsby

∂y
+ E − D = 0 (3.4)

∂(C D)
∂t

+ ∂(DUxC)
∂x

+ ∂(DUy C)
∂y

− ∂

∂x

(
DKxC

)
− ∂

∂y

(
DKyC

)
= E − D

(3.5)

where Ux and Uy denote the components of the depth averaged velocity vector, E

is the erosion rate (function of the local bed shear stress and soil properties), D is
the deposition rate (function of the local concentration, and and of the local soil
properties through the settling velocity), while Kx, Ky are the dispersion coeffi-
cients along the longitudinal direction x and the lateral direction y, respectively.
Considering a rectangular tidal basin dissected by a main straight channel, a 1D
approach can be used to describe the processes occurring within the channel and
on lateral shoals. In a 1D framework, the traversal velocity Uy vanishes identically,
and the above equations become:

(1 − p)∂z
∗
b

∂t
+ ∂Qsbx

∂x
+ E − D = 0 (3.6)

∂(C D)
∂t

+ ∂(DUxC)
∂x

− ∂

∂x

(
DKxC

)
= E − D (3.7)

The bedload rate Qsbx can be computed by estimating the unit width bedload
rate through the classical predictors such as the Meyer-Peter-Muller formula [Goud
and Aubrey, 1985; Meyer-Peter and Müller, 1948]:

Qsb = 8
√
g d3

(
ϱ

ϱs
− 1

)
(µ θ̂ − θ̂c)3/2 (3.8)

where d is the mean sediment diameter, θ̂ is the Shield parameter defined as
u∗

2/[(ϱ/ϱs − 1) g d], u∗ is the friction velocity, θ̂c is its critical value for incipient



3.1. MODELING SUSPENDED SEDIMENT TRANSPORT 59

sediment motion, and µ is a ripple factor.

The morphodynamic model should be applied to the 3D domain coherently with
1D hydrodynamic model. According to this latter model, the tidal flow is assumed
to concentrate within the main channel as far as the momentum conservation is con-
cerned, while the lateral shoals contribute to the overall friction and act as storage
volumes in the continuity equation. By analogy, the mophodynamic model would
in principle describe the sediment transport within the channel and would account
for the possible sediment exchange between the channel and the lateral intertidal
areas. In the present modeling framework, bed load transport is neglected with
respect to suspended load (Figure 3.1, Di Silvio [1978a,b]). In addition, the sedi-
ment concentration equation is simplified drastically, assuming that the suspended
concentration C does keep everywhere constant in space and in time (Figure 3.2).
This implies that the local deposition rate (or the total local accretion rate) varies
spatially only in relation to different values of the hydroperiod (i.e., the time in-
terval during which the bed is flooded by the tide), the soil composition (through
the critical bed shear stress below which particles can settle) and of the local value
of the bottom shear stress. This implies that the total local accretion rate then
depends on the difference between local deposition and erosion.

Figure 3.1: Sketch of the sediment fluxes in the main channel and on its lateral shoals (adapted
from Di Silvio [1978a]).

In reality, the concentration would change both along the channel and on the
intertidal areas, decreasing progressively in the landward direction and moving away
from the main channel. The constant concentration assumption thus imply some
overestimation of the deposition rates within the channel and the tidal flats. Keeping
in mind this limitation, the bed evolution at each location of the tidal basin is
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Figure 3.2: The sediment fluxes considered in the morphodynamic model, with C0(x, t) = const.
the concentration of the externally imposed input of sediment.

described by the equation:

∂z∗
b

∂t
= D − E − ∂Qsbx

∂x
(3.9)

In the previous equations the bed elevation z∗
b is referred to the MSL; however,

when RSLR is taken into account, MSL grows entailing the use of a moving reference
frame. To refer the bed elevation zb to a fixed reference system, we consider the
following position assuming a constant RSLR over time:

∂z∗
b

∂t
= ∂zb

∂t
+ r

where r is the Rate of Sea Level Rise (RSLR). Substituting the last position in the
equation (3.9), the effect of RSLR is singled out in a fixed reference frame and turns
into a sort of additional erosional effect constant in time and space:

∂zb

∂t
= D − E − ∂Qsbx

∂x
− r (3.10)

The erosion rate E is computed by means of the following empirical-based for-
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mula [Metha, 1984]:

E = E0

(
τ

τce
− 1

)
H

(
τ

τce
− 1

)
(3.11)

where τ is the local bed shear stress, τce is the critical threshold for erosion, H is the
Heaviside step function, while E0 is the constant erosion rate derived empirically
from sediment features (continuous line in Figure 3.3). Assuming that the critical
threshold is distributed according to a probability density function, Carniello et al.
[2012] suggested to modify the relation (3.11) introducing a smooth transition be-
tween τ > τce and τ ≤ τce, as depicted in Figure 3.3. The relation used to describe
this smooth transition in the erosion rate is:

E = E0

{
−1 +

[
1 +

(
τ

τce

)]1/e}
(3.12)

where e is a suitable parameter (here set equal to 2) used to change the degree of
smoothing (Figure 3.3).

Figure 3.3: Erosion rate curves as a function of the bed shear stress. Original formulation based
on a well defined threshold for incipient erosion (continuous line) and gradual transition from an
immobile bed to an eroding bed as proposed by Carniello et al. [2012].

On the other hand, the overall sediment deposition rate D is in general the sum
of three contributions:

D = Qs +Qt +Qo (3.13)
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where Qs is the deposition rate due to sediment settling, Qt is the deposition rate
due to vegetation trapping, and Qo the organic production rate. Clearly, when
no vegetation encroaches the lateral shoals, only the settling rate contributes to
deposition can be computed as [Einstein and Krone, 1962; Krone, 1962]:

Qs = wsC0

(
1 − τ

τcd

)
H

(
1 − τ

τcd

)
(3.14)

where τcd is the critical threshold for incipient deposition, ws is the settling velocity,
assumed to be constant, C0[−] is the local value of the suspended sediment concen-
tration while H is the Heaviside step function (Figure 3.4). The use of equation
(3.14) for cohesive sediments is debated [Winterwerp, 2007], owing to the effects of
flocculation that, under some conditions, can become important. However, assum-
ing mean sediment sizes d50 up to 0.05 mm, flocculation likely does not play any
role and equation 3.14 is still valid [Metha, 1984].

0 τdep τ

Qs

Inorganic deposition

Figure 3.4: Deposition rate curve as a function of the bed shear stress.

The presence of vegetation on the intertidal platform leads to additional contri-
butions to sedimentation, limits sediment resuspension, and increases flow resistance.
In order to take into account vegetation growth, a relation for biomass has to be
introduced [Mudd et al., 2004]. Biomass b is here defined as the weight per unit
surface of the vegetal mass lying above the marsh surface. Its generally depends on
plant species, soil salinity, hydroperiod, nutrient availability [Silvestri and Marani,
2004]. In a simplified framework in which only one vegetation species is present,
namely Spartina alterniflora in this case [Morris et al., 2002], b is related to platform
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height as follows:

b =


0 zb < zbmin

bmax
zbmax−z

zbmax−zbmin
zbmin ≤ zb ≤ zbmax

0 zb > zbmax

(3.15)

where bmax is the maximum value that can be attained by b, while zbmax and zbmin

denote the interval of ground elevations at which plants can survive. According to
this formula biomass production peaks at zbmin and then linearly decays as the plat-
form height increases and the hydroperiod is decreases. Above zbmax, the biomass
vanishes because plants cannot survive any longer (Figure 3.5). The biomass re-
lation (3.15) describes the typical behavior of species for which maximum organic
production occurs at low marsh elevations like in the case of Spartina alterniflora
[Morris et al., 2002; Mudd et al., 2004].

zbmin zbmax zb

bps

bmax

biomass

Figure 3.5: Plant biomass curve as a function of the bed elevation zb

The organic production rate is proportional to biomass through the relation
[Randerson, 1979]:

Qo = Qb0
b

bmax
(3.16)

where Qb0 is the maximum rate (m/years) at which the marsh elevation can increase
owing to organic production.

The trapping deposition is expressed as [Palmer et al., 2004]:

Qt = C0 U0 η ds ns hs (3.17)
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where U0 is a characteristic velocity value of the flow trough vegetation, ds is the
stem diameter, ns the stem density per unit area and hs is average stem height.
The coefficient η represents trapping efficiency and is defined as:

η = αη

(
U0 ds

ν

)βη
(
dp

ds

)γη

where dp is the particle diameter, ν kinematic viscosity, αη, βη, and γη are experi-
mental coefficients [Palmer et al., 2004]. The stem density ns and the average stem
height hs, the projected plant area per unit volume as, and the stem diameter ds

are related to biomass as follows [Mudd et al., 2004]:

ns = αn b
βn

hs = αh b
βh

as = αa b
βa

ds = αd b
βd

where αn, βn, αh, βh, αa, βa, βd, βd are empirical coefficients.

3.2 Results

3.2.1 Morphodynamic equilibrium considerations

The choice of the critical thresholds for erosion and deposition processes could
become crucial for the final configuration of the channel, especially under the as-
sumption of a constant sediment supply, whereby the sediment concentration C0

keeps approximately constant in space and time. If τce < τcd, erosion and depo-
sition can occur at the same time; conversely, if τce > τcd, one process rules the
other out (Figure 3.6). The assumption of a constant sediment supply might be
incompatible with the attainment of different equilibrium conditions on the tidal
flats and within the main channel. We will return back (see Chapter 5) on this
question.

Below, we investigate whether the choice of the critical thresholds for erosion
and deposition allows equilibrium states for both the main channel and the adjacent
tidal flats. For the sake of simplicity, only sediment settling is considered. The 1D
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sediment balance equation then reads:

∂zb

∂t
= wsC0

(
1 − τ

τcd

)
H

(
1 − τ

τcd

)
︸ ︷︷ ︸

Fd(τ)

−Qe0

(
τ

τce
− 1

)
H

(
τ

τce
− 1

)
︸ ︷︷ ︸

Fe(τ)

−∂Qsbx

∂x
− r

(3.18)

where H (. . . ) is the Heaviside step function used to describe erosion and deposition
rates in compact form.

Denoting by ⟨. . . ⟩ the time average over T :

⟨. . . ⟩ =
∫ t∗+T

t∗
. . . dt (3.19)

the tidal averaging of the sediment balance equation is:

zb(t∗ + T ) − zb(t∗) = wsC0 ⟨Fd(τ)⟩ −Qe0 ⟨Fe(τ)⟩ − ∂

∂x
⟨Qsbx⟩ − R T (3.20)

where R is the RSLR in one tidal cycle, while ⟨Fd(τ)⟩ and ⟨Fe(τ)⟩ can be defined
through the hydroperiod tH as:

⟨Fe(τ)⟩ = tH

(
τ̄

τce
− 1

)
(3.21)

⟨Fd(τ)⟩ = tH

(
1 − τ̄

τcd

)
(3.22)

The equilibrium condition implies that zb(t∗ + T ) = zb(t∗) and, consequently:

wsC0 ⟨Fd(τ)⟩ = Qe0 ⟨Fe⟩(τ) + ∂

∂x
⟨Qsbx⟩ + R T (3.23)

According to the diagram reported in Figure 3.6a (τcd < τce), equilibrium would
require that the term ∂⟨Qsbx⟩/∂x is negative. In the absence of any significant
contribution by longitudinal bedload fluxes, as typically occurs on tidal flats, equi-
librium can be attained only in the absence of any erosion, i.e. for τ̄ < τcd, and is
such that sea level rise and deposition balance each other out:

∂⟨Qsbx⟩/∂x ≃ 0, τ̄ < τcd ⇒ wsC0 ⟨Fd(τ)⟩ = R T (3.24)

On the other hand, the possible presence of a negative longitudinal bedload flux
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Figure 3.6: Possible combinations of erosion/deposition thresholds. a) The critical bed shear stress
for deposition is higher than critical bed shear stress for erosion. An intermediate interval of shear
stresses then exists, such that the bed does not experience erosion nor deposition. b) The critical
bed shear stress for deposition is higher than that for erosion. An intermediate interval of shear
stresses then exists, such that both processes can occur at the same time.

implies that equilibrium can exist also in the presence of erosion:

∂⟨Qsbx⟩/∂x < 0, τ̄ > τce − ∂

∂x
⟨Qsbx⟩ = Qe0 ⟨Fe(τ)⟩ + R T (3.25)

As pointed out above, bedload fluxes are likely to be negligible on intertidal areas.
There tidal currents are very weak (of the order of a few cm/s, see e.g. Table A1 of
Rinaldo et al. [1999]) to trigger the bedload. As a consequence, intertidal areas tend
towards an equilibrium whereby deposition (controlled, through C0 by suspended
sediment supplied externally to the system and the hydroperiod) compensates RSLR
(equation (3.24)). In the absence of bedload, the fate of an initially channelized
region is controlled by a similar balance and the channel unavoidably destined to
transform in a tidal flat. Conversely, an equilibrium can be attained in the channel
provided a negative bedload flux exists that compensates the rates of erosion and
sea level rise (equation (3.25)). This implies that some bedload must be feeded in
the channel from upstream, a condition unlikely to occurs in tidal channels, but
that can be encountered in estuaries.

Under the assumption that τcd < τce, the existence of different equilibrium bed
elevations for channelized regions and intertidal areas is ensured by relaxing the
assumption of a well defined threshold for erosion, as proposed by Carniello et al.
[2012] (Figure 3.3). In this case, a certain rate of erosion always occur that allows
the establishment of different equilibrium conditions on tidal flats and within the
channel, also in the absence of any bedload flux in the latter.
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On the other hand, according to the diagram reported in Figure 3.6b (τcd > τce),
three different equilibrium conditions exist, depending on whether erosion occurs or
not. In the absence of both erosion (τ̄ < τce) and tidally averaged bedload transport
(⟨Qsbx⟩ = 0), only deposition takes place, and morphodynamic equilibrium requires
that:

∂⟨Qsbx⟩/∂x = 0, τ̄ < τce ⇒ wsC0 ⟨Fd(τ)⟩ = R T (3.26)

On the other hand, the condition that τcd > τce implies that erosion and depo-
sition can coexist for τce < τ̄ < τcd. As a consequence, assuming a non vanishing
bedload flux, the equilibrium conditions becomes:

∂⟨Qsbx⟩/∂x ̸= 0 τce < τ̄ < τcd ⇒ wsC0 ⟨Fd(τ)⟩ = Qe0 ⟨Fe⟩(τ) + ∂

∂x
⟨Qsbx⟩ + R T

(3.27)

Finally, in the absence of any deposition term as follows

∂⟨Qsbx⟩/∂x < 0 τ̄ > τcd ⇒ − ∂

∂x
⟨Qsbx⟩ = Qe0 ⟨Fe(τ)⟩ + R T (3.28)

The condition (3.26) likely controls the tidal flat equilibrium. If applied to an
initially channelized region, it leads to a transition towards a tidal flat configuration.
The condition (3.27) could be applied both to a tidal flat region (vanishing bedload)
or to the channel bed (bedload flux different from zero). The two environments thus
can tend towards different equilibrium configurations. Finally, the condition (3.28)
can be applied to a channel in which erosion and sea level rise are compensated by
a negative bedload flux (resulting from a landward input of sediment).

3.3 Concluding remarks

In this chapter a simplified bed evolution model is developed and its numerical
solution is discussed. The model accounts for erosion, deposition and sea level rise,
while neglects bed load transport. The role of suitable bed shear stress thresholds
for deposition and erosion has been discussed with reference to a tidal basin feeded
externally with a constant suspended sediment supply, surrogated by assuming a
spatially and temporally constant concentration C0. Under this simplified condition,
it is demonstrated that the choices of the above thresholds is critical for the existence
of distinct equilibrium states on the tidal flat areas and within the channel region.
In particular, if erosion and deposition rule each other out, the only equilibrium
configuration for an initially channelized region is to transform into a tidal flat.

Further modeling attempts should be made in the near future to include in the
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morphodydnamic model bed load and suspended sediment transport, relaxing the
assumption of constant suspended sediment concentration in space and time.



Chapter 4
The plano-altimetric equilibrium
configuration

As stated in Chapter 3 the aim of the present work is to investigate the equi-
librium configuration of tidal channels in the presence of: i) non negligible tidal
propagation effects (i.e., relaxing the quasi-static assumption adopted in previous
approaches); ii) external inputs of suspended sediments (surrogated through a spa-
tially and temporally constant concentration); iii) sea level rise; iv) vegetation en-
croachment of the intertidal areas. These aspects of the problem are investigated
with reference to a rectangular tidal basin whose final equilibrium configuration
consists of a main channel, flanked by two symmetrical intertidal regions. A 1D
hydrodynamic model (Chapter 2) is used to describe the hydrodynamics of the
tidal basin and, in particular, the spatio-temporal distribution of the energy slope.
This information is then used to compute the distribution of bed shear stresses
along each lateral transect of the basin and each instant of the tidal cycle. Next,
these stresses are used to compute the erosion and deposition rates within the basin,
thus controlling its evolution towards a possible equilibrium configuration. The bed
evolution model accounts for the main physical processes responsible for shaping
the main channel and the adjacent intertidal regions, namely sediment deposition,
bed particle erosion and sea level rise, possibly mediated by halophytic vegetation
growth. The novel feature of this model is provided by the possibility to analyze the
mutual role of tidal forcing, suspended sediment concentration (SSC), relative sea
level rise (RSLR) and vegetation encroachment on the morphodynamic evolution of
a tidal channel.

The chapter is organized as follows. In Section 4.1 the notion of stable cross-
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sectional geometry is discussed. Section 4.2 describes how the distribution of the
bed shear stresses across a given cross section can be computed, accounting also for
the possible effects of the halophytic vegetation that grows on the intertidal areas
as a certain bed elevation is exceeded. The numerical approach used to solve the
relevant equations is described in Section 4.3. Some sensitivity and validation tests
are presented in Section 4.4. Finally, in Section 4.6 some conclusive remarks are
drawn.

4.1 Stable cross sections

The problem of determining a morphologically stable cross section in both flu-
vial and tidal settings has been investigated by many researchers [Fagherazzi and
Furbish, 2001; Glover and Florey, 1951; Henderson, 1966; Pizzuto, 1990; Tubino and
Colombini, 1992]. Indeed, this problem has a great relevance for engineering design
purposes as well as environmental reasons (e.g., rehabilitation and re-naturalization
projects, habitat suitability analysis, etc.). Here we are specifically interested in
determining the cross-sectional distribution of bed shear stresses in a tidal channel.

Under uniform flow conditions, the cross-sectionally averaged shear stress τ is
given by the classical formula

τ = ϱ g RH S (4.1)

with ϱ water density, g gravitational acceleration, RH hydraulic radius of the cross-
section and S bed slope. However, another approach has to be sought to gain insight
into the cross sectional distribution of bed shear stresses. In the case of a straight
channel with prismatic cross section, the problem has been tackled analysing the ve-
locity contours within the section and the related shear stress distribution [Leighly,
1932]. The flow field characteristics within the cross section are investigated drawing
a network of isovels and their orthogonal rays (Figure 4.1). All the rays are converg-
ing on a specific ray which is just below the water surface and also cuts orthogonally
the isovels. By construction, no shear stresses are acting on these orthogonal rays.
The cross section can then be subdivided in small wedge-shaped volumes, bounded
by the orthogonal rays, the water surface and the bed contour. The equilibrium of
each of these volumes is assessed investigating the forces acting on its boundaries,
namely gravity, acting downward, and the bed shear stresses, opposing to the flow.
Note that the equilibrium of each wedge-shaped volume, enclosed only by the water
surface and the orthogonal rays, is possible only by assuming that the downward
action of gravity is balanced by additional shear stress arising along the dashed ray
owing to the presence of secondary currents (denoted by red arrows in Figure 4.1).

Taking into account all the processes emerging from the isovel partitioning is a
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Figure 4.1: Network of isovels and their orthogonal rays (Adapted from [Leighly, 1932]).

difficult task and should be addressed numerically through suitable numerical simu-
lations of the turbulent flow field that establishes within the cross section. In engi-
neering applications simpler methods are usually used to reduce the effort needed to
compute the shear stress distribution along the cross-sectional wet boundary. Vari-
ous attempts have been made to determine such a distribution [Guo and Julien, 2005;
Khodashenas and Paquier, 1998; Knight et al., 2007; Pizzuto, 1990; Ramana Prasad
and Russell Manson, 2002; Yang et al., 2004]. In this regard, Khodashenas et al.
[2008] reviewed six methods with increasing degree of complexity for assessing the
shear stresses distribution in a generic cross section and evaluated them by means
of experimental results. Here we recall the Vertical Depth Method (VDM) and the
Merged Perpendicular Method (MPM). The Vertical Depth Method [Khodashenas
and Paquier, 1998] is the easiest approach. The cross-sectional area is subdivided
in sub-areas by means of vertical rays, and the mean shear stress acting on the wet
perimeter of each sub-area is computed with the relation (4.1). The VDM method
is applicable to cross sections of any shape but it neglects the momentum exchange
due to secondary currents and is poorly reliable for high values of the trasversal bed
slope. The Merged Perpendicular Method [Khodashenas and Paquier, 1998] uses
rays orthogonal to the bed derived for the cross-sectional area subdivision. However,
differently from the VDM method, some problems can arise around convex corners,
where the rays can intersect. A correction is then needed, by taking the average
of the two intersecting rays. The method produces a smoothing of the shear dis-
tribution around convex corners and provides a full description of the shear stress
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distribution along the wetted perimeter of complex sections.
Choosing among these methods poses the question of which approach encom-

passes the essential physical mechanisms needed to evaluate correctly the cross
sectional stability of a straight channel. As shown by Parker [1978b], computing
the shear stresses according to the Vertical Depth Method also at the banks of a
gravel river would force the channel to widen indefinitely. The method, in fact, is
unable to describe a river with mobile bed and stable banks. To overcame this
problem, Lundgren and Jonnson [1964] derived a shear stress distribution for wide
cross sections that neglects secondary currents but accounts for lateral momentum
exchange by turbulent diffusion. This has been the theoretical framework which has
been used to allow mobile bed and stable banks to coexist in gravel rivers [Parker,
1978a,b]. The shear stress distribution developed by Lundgren and Jonnson [1964]
is the key ingredient for the model we developed to obtain stable cross sections, as
described below.

4.2 The shear stress distribution across the channel sec-
tion

The generic transect of the tidal basin is typically characterized by a compound
cross section. This general geometry is described through a local curvilinear refer-
ence frame of axis x, n, ζ, where x is the longitudinal straight coordinate coinciding
with the main channel axis, n is the lateral curvilinear coordinate, locally tangent
to the sediment bed, and ζ is the local normal to the bed, pointing upward (Figure
4.2). Moreover, the cross section is described in a global reference frame x, y, z,
where z is the vertical axis upward oriented, while x and y define a horizontal plane
set at MSL. In order to account for the the curvilinear nature of the n coordinate,
a traversal metric coefficient hn is introduced [Pletchter et al., 2013; Tubino and
Colombini, 1992]:

hn = 1 − ζ

R
(4.2)

where the radius of curvature R reads:

R = − 1
cosα

∂2D

∂n2 , cos α̂ =

√
1 −

(∂D
∂n

)2
(4.3)

with α̂ the angle that the vertical direction z forms with the normal to the bed ζ,
and D is the local water depth.

The starting point to derive the shear stress distribution across the channel sec-
tion, is the momentum balance equation along the longitudinal direction x, averaged
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Figure 4.2: Sketch of a typical cross-section of the tidal basin, formed by a main channel flanked
by intertidal areas, and notations.

over turbulence:

ϱ
∂ux

∂t
+ ϱ

hn

[
∂(hn u

2
x)

∂x
+ ∂(ux uy)

∂n
+ ∂(hn ux uz)

∂ζ
− u2

y

∂hn

∂x

]
=

− ϱ
∂

∂x

(
p

ϱ
+ gh

)
+ 1
hn

[
∂(hn Txx)

∂x
+ ∂Tnx

∂n
+ ∂(hn Tζx)

∂ζ
− Tnn

∂hn

∂x

]
(4.4)

where ϱ is the fluid density, ux, uy, uz are the components in the x, y, z direction
of the turbulence averaged velocity vector, and Txx, Tnx, Tnn are components of the
shear stress tensor. The local reference frame x, n, ζ allows one to track the bed
shear stress along the bed accounting for its curvature.

Equation (4.4) is associated with the following kinematic and dynamic conditions
to be satisfied at the bed (ζ = ζ0) and the water surface (ζ = Dζ):

[
∂Dζ

∂t
+ ux

∂Dζ

∂x
+ uy

hn

∂Dζ

∂n
− uz

]
ζ=Dζ

= 0,
[
∂ζ

∂t
+ ux

∂ζ

∂x
+ uy

hn

∂ζ

∂n
− uz

]
ζ=ζ0

= 0,

(4.5)

[
Tζx + 1

hn

∂Dζ

∂n
Tnx − Txx

∂Dζ

∂x

]
ζ=Dζ

= 0,
[
Tζx − 1

hn

∂ζ

∂n
Tnx − Txx

∂ζ

∂x

]
ζ=ζ0

= τ

(4.6)

where Dζ = D cos α̂.
In the case of a straight tidal channel, some assumptions can be put forward to

simplify the hydrodynamic problem [Lanzoni and D’Alpaos, 2015]:

1. the cross sections are shallow such that horizontal scales are much larger than
the local flow depth. This implies that in the direction normal to the main
flow the velocity are much smaller and the pressure can be assumed to be
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distributed hydrostatically, namely:

∂

∂x

(
p

ϱ
+ g h

)
= g

∂H

∂x
(4.7)

2. the flow is gradually varying in time, such that at each instant of the tidal
cycle temporal acceleration is negligibly small, ∂ux

∂t
∼= 0;

3. the cross sectional flow can be modeled as 1D, thus neglecting the role of
secondary currents within the cross section;

4. longitudinal variations of the metric coefficient are negligible, ∂hn
∂x

∼= 0;

5. momentum exchange between the isovels is negligible;

6. a logarithmic velocity profile establishes along the normal to the sediment
bed;

7. the longitudinal variations of shear stresses are negligible with respect to those
in the traversal and normal directions, ∂Txx

∂x
∼= 0 .

The x−momentum equation then simplifies to:

∂(hn u
2
x)

∂x
+ hn

∂(g H)
∂x

= 1
ϱ

[
∂Tnx

∂n
+ ∂(hn Tζx)

∂ζ

]
(4.8)

Integrating this equation along ζ, making use of relations (4.5) and (4.6) and
assuming a gently varying traversal slope (i.e., such that the normal ray to isovels
can be approximated using straight lines), lead to the following integro-differential
equation for determining the cross-sectional shear stress distribution [Lundgren and
Jonnson, 1964]:

τ = ϱ g S
dA

dn
+ ∂

∂n

∫ Dζ

ζ0
Tnxdζ (4.9)

where S is the energy slope, dn is the wet perimeter between two normals and dA

is the area between two normals. In the Appendix B we explained in detail how
to derive the above equation. The shear stress distribution described by equation
(4.9) was widely adopted in river morphodynamics [Diplas, 1990; Ikeda et al., 1988;
Parker, 1978a,b; Pizzuto, 1990; Schippa, 1992], and was recently used to address the
morphodynamic evolution of cross sections in tidal environments [D’Alpaos et al.,
2006; Fagherazzi and Furbish, 2001; Lanzoni and D’Alpaos, 2015; Xu et al., 2019].

4.2.1 The turbulence model

In equation (4.9) the shear stress distribution is expressed as the sum of two
terms: the first depends on the energy slope S, the second term is instead due to
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the turbulent mixing across the normals to the sediment bed. The latter contribu-
tion can be determined assuming the Boussinesq closure model for the shear stress
components:

(Txx, Tnx, Tζx) = ϱνT

(
2∂ux

∂x
,

1
hn

∂ux

∂n
,
∂ux

∂ζ

)
(4.10)

where νT is the eddy viscosity, here assumed to be distributed according to a
parabolic function. Indeed, several researches have shown that a parabolic model
describes properly the momentum exchange in channels subjected to a oscillating
water level, as in tidal channels [Rodi, 1993]. The parabolic eddy viscosity is thus
assumed to read:

νT (ζ̂) = u∗Dζ N (ζ̂), N (ζ̂) = κ ζ̂(1 − ζ̂) (4.11)

where κ is the Von Karman constant, u∗ =
√
τ/ϱ is the shear stress velocity, ζ̂ = ζ

Dζ

is the dimensionless coordinate along the normal, Dζ is the flow depth measured
along the normal to the sediment bed and Γ is a dimensionless parabolic function.
The logarithmic velocity profile along ζ reads:

u(ζ̂) = U

C
G(ζ̂), G(ζ̂) = 1

κ
ln ζ̂

ζ0
(4.12)

where U is the mean velocity along the normal and C is the local flow conductance

C = U

u∗
= χ

√
g

= ks

g
R

1/6
H (4.13)

with χ and ks the Chezy and Gauckler-Strickler friction coefficients, respectively.
Making use of these relations, allows one to write equation (4.9) in the form

[Lanzoni and D’Alpaos, 2015]:

τ = ϱ g S
dA

dn
+ d

dn

[
K
dτ

dn

]
, (4.14)

where

K =
Γ(ζ)D2

ζ

2
(4.15)

Γ(ζ) =
∫ 1

0
N (ζ) G(ζ̂) dζ̂ = 1

6
ln
( 1
ζ̂0

)
− ζ̂3

0
9

+ ζ̂2
0
4

− 5
36

(4.16)

Equation (4.14) clearly shows that the shear stress distribution across a tran-
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sect is controlled by two contributions: the first depending on the cross-sectional
geometry, embedded in the term dA/dn, and the energy slope S; the second due to
dispersive effects and proportional to the quantity K which controls the momentum
exchange between adjacent cross-sectional sub-areas.

Given a certain water level in a cross section, the larger is the discharge, the
higher is the energy slope and, therefore, the shear stress. On the other hand, the
larger is the term K the higher is the momentum exchange between the various sub-
areas in which the cross section has been divided. Figure 4.3 shows the different
contributions concurring to the shear stress distribution when they peak during a
tidal cycle. Within the channel the dispersive term is negative and, hence, subtracts
momentum from the channel, reducing the shear stresses. In turn, the subtracted
momentum concurs to increase shear stresses at the edge of the lateral intertidal
platforms. Overall, the momentum exchange smooths the distribution of bed shear
stresses over the cross section [D’Alpaos et al., 2006]. In the following we will use
this shear stress distribution to drive erosion and deposition processes within a cross
section.

Figure 4.3: Dispersive and energy slope contributions to the cross sectional distribution of bed
shear stresses as they peak during a tidal cycle.

4.2.2 Vegetation effects on velocity and shear stress distribution

When the intertidal areas adjacent to the main channel reach a high enough
elevation, halophytic vegetation starts to colonize them. The presence of vegetation
affects the resistance to the flow and the sediment transport, eventually influencing
the morphodynamic configuration attained by the system. Several experimental
and field studies have been carried out to investigate how the mutual feedbacks
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among hydrodynamics, sediment dynamics and vegetation dynamics interact to-
gether, determining the morphological features emerging in river and tidal environ-
ments [Bouma et al., 2007; Caroppi et al., 2018; Solari et al., 2015; Tambroni et al.,
2015].

Overall, the presence of vegetation increases the resistance to the flow, favoring
flow concentration within the channel, modifies turbulent structures within vege-
tated patches, changing the intensity of bed shear stresses and, as described previ-
ously (chapter 3), enhancing sediment deposition. We describe in the following how
the essential effects triggered by vegetation (i.e., increased friction, different shear
stress distribution) are included in the present modeling framework.

Concerning shear stress distribution in (4.9), different studies have described the
velocity profile over vegetated surfaces. A first approach assumes that a logarith-
mic velocity profile still holds, and the presence of vegetation is accounted for by
increasing the resistance coefficient (i.e., accounting for the drag force due to plant
stems) and by modifying the eddy viscosity formulation [Kean and Smith, 2005a].
This model was applied to the study the flow and bed shear stresses distributions
in some reaches of the Rio Puerco (New Mexico, US) and Whitewater (Kansas, US)
rivers, validating the model on the basis of the collected field data [Griffin et al.,
2005; Kean and Smith, 2005b]. A second approach assumes that the logarithmic ve-
locity profile does not hold anymore, thus introducing new formulations depending
on the type of vegetation [Nepf and Vivoni, 2000; Nepf, 1999].

Here we follow the first approach. On the marsh region, we account for the
increased resistance to the flow by simply assuming a smaller value of the Gauckler-
Strickler friction coefficient ks [Belliard et al., 2015; D’Alpaos et al., 2006], which is
also assumed to lumps dispersive effects (Figure 4.4).

The additional friction due to vegetation and conceptualized through a coeffi-
cient ks,v is computed by taking a balance between drag, friction and gravity acting
on a control volume encompassing a vegetated patch [Mudd et al., 2004]. The
resulting expression is:

ks,v = [1/2cD as]−1/2D−2/3 g1/2 (4.17)

where cD and as are parameters for drag coefficient and stem density, respectively.
The values of these parameters are here assigned on the basis of field measurements
carried out in South Carolina on a marsh dominated by Spartina alterniflora [Mudd
et al., 2004]. This approach was already adopted to study the altimetric evolution
of a single transect of a tidal basin [D’Alpaos et al., 2006]. The expression (4.17)
depends on the water depth, which generally varies in space and in time, thus
introducing a further source of non-linearity in the model.
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Figure 4.4: Overall framework for computing the cross-sectional distribution of bed shear stresses
in the main channel and in the presence of intertidal platforms encroached by saltmarsh vegetation.
Here, S is the energy slope, dn is the elementary wetted perimeter delimited by two normals to
the sediment bed, dA is the infinitesimal area between the two normals, K is the factor that drives
the momentum exchange between the normals.

Eventually, the overall Gauckler-Strickler coefficient ks is computed as follows
[Belliard et al., 2015]:

k−2
s = k−2

s,g + k−2
s,r + ϕv k

−2
s,v (4.18)

where ks,g and ks,r account for grain roughness and bedform roughness, respectively.
The greater is vegetation encroachment, the larger is the friction, i.e., the smaller
is ks. Note that, the coefficient ks,v is mediated by a parameter ϕv, which is equal
to the ratio b/bmax between the local biomass and the max biomass that plants are
able to produce. Owing to the cohesive character of the sediment bed considered in
the present research, bedforms are unlikely to form and, therefore, in the following,
ks,r is set equal to zero. Moreover, in all simulations we assume that the local
biomass reaches its max production, i.e. ϕv = 1.

4.3 Numerical approach

4.3.1 The computational domain

The computational domain consists of a rectangular tidal basin dissected by
a straight channel along the longitudinal axis. The basins is subdivided in M
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transects, each one discretized with N nodes. Previous researches [D’Alpaos et al.,
2006; Fagherazzi and Furbish, 2001] considered a single transect subject to a tidal
forcing applied directly to the water elevation within the section. Conversely, in the
present approach the various transects are considered to be connected hydraulically,
as described in Chapter 2, and the tidal forcing is applied to the seaward boundary.

Figure 4.5: Sketch of the computational domain.

Re-gridding techniques

A proper description of the cross sectional geometry requires the use of re-
gridding techniques to vary the nodal distribution along each transect, refining the
mesh within the channel region. The mathematical problem of re-gridding could be
tackled in a general way through the use of unstructured meshes. The numerical im-
plementation of these techniques is described in Quarteroni [2014]. Recently, some
new methods (e.g., virtual element method and mimetic finite difference) have been
developed whereby the classical mesh properties, such as aspect ratio and delauney
condition, do not need to be satisfied [see, e.g. Manzini, 2011; Manzini et al., 2014].
In the present contribution, non uniform spacing functions have been used to define
the nodal positions along each transect. Two useful algebraic relationships for nodal
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distribution are [Date, 2009]:

y(i)
L

=
[
i− 1
N − 1

]n̂

,
y(i)
L

= 1 −
[
1 − i− 1

N − 1

]n̂

(4.19)

where n̂ is a positive number which drives the nodal density. Here we used the
second relation for nodal distribution assuming n̂ equal to 1.5 .

Initial bathymetry

The formation of a tidal channel is simulated starting from a submerged horizon-
tal plane with a prescribed incision along the axis domain. This initial bathymetry is
also used to delineate initially channeled and un-channeled regions. Three different
functions have been used to define the initial incision.

• Cosine function;

zb(y) = cos(ωy + φ) (4.20)

with ω = 2π/BT the angular frequency, φ the phase and BT the overall width
of the tidal basin.

• Witch of Agnesi (or versoria);

zb(y) = 8 a3

y2 + 4 a2 (4.21)

where the parameter a controls the curve convexity.

• Gaussian function;

zb(y) = 1
σ

√
2π

e
− (y−µy)2

2 σ2
y (4.22)

where the mean µy sets the position of the symmetry axis , while σy controls
the curve shape.

4.3.2 The Exner equation finite difference scheme

The numerical approach to be used for the solution of equation (3.10) has to
deal with two time scales. A short time scale t, which spans each tidal cycle of
period T , and a long time scale t, which covers time intervals larger than a day,
eventually reaching the time span T . The following sections describe the numerical
schemes implemented with respect to this time scale distinction.
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Figure 4.6: The qb finite difference issue.

Short-term numerical scheme

For short time scales, many numerical schemes have been used to discretize the
bed evolution equation (3.10) [Wu, 2008]. A quite common approach, based on a
semi-implicit finite difference approximation, reads as follows:

(1 − p) 1
∆t

{
zn+1

j,i −
[
(1 − λ) zn

j,i + λ

2
(zn

j−1,i + zn
j+1,i)

]}
+ 1

2∆x
(Qsbx

n
j+1,i −Qsbx

n
j−1,i) = Dn

j,i − En
j,i (4.23)

where zn
i,j in the bed elevation at the generic grid node located at the position of

coordinates i∆x, j∆y and at time n∆t. Here, i and j refer to the longitudinal and
lateral directions, respectively, ∆x is the longitudinal grid step, ∆y is the lateral grid
step, and ∆t is the time-step used to advance during each tidal period. Finally, λ is
a weighting coefficient used to introduce (when λ > 0) dissipative interfaces which
may stabilize the numerical solution. Specifically, for 0 < λ < 1/2 the procedure is
conditionally stable while it is unconditionally stable for 1/2 ≤ λ < 1 [Abbott and
Basco, 1989]. On the other hand, setting λ = 0 avoids any dissipation interface,
and the scheme becomes fully explicit:

(1 − p) 1
∆t

(zn+1
j,i − zn

j,i) + 1
2∆x

(Qsbx
n
j+1,i −Qsbx

n
j−1,i) = Dn

j,i − En
j,i (4.24)

However, within the present hydrodynamic framework, the use of schemes such
as those provided by the algebraic equations (4.23) and (4.24) to obtain a 3D de-
scription of the bed evolution can lead to flawed results. Indeed, when centered or



82 4. THE PLANO-ALTIMETRIC EQUILIBRIUM CONFIGURATION

weighted difference approximations are adopted with respect to spatial variables,
elimination of physically meaningful topographic features may be forced. Specifi-
cally, when the weighted difference discretization (4.23) is applied across the bound-
ary between the main channel and the adjacent tidal flats (Figure 4.6), the numerical
scheme favors the progressive smoothing of differences in bed elevation and drives
a progressive loss of convergence in the main channel. In other words, the channel
width tends to become constant along the whole tidal basin. This is due to the fact
that the 1D hydrodynamic model describes the flow only within the main channel,
while the tidal flats are assumed to concur only to store water and to the overall
friction. Hence, even though the erosion/deposition rates, computed on the basis of
the local values of the bed shear stresses, can be quite close to the actual values (as
emerging from the comparison with a 2D model described in the previous Chapter),
the use of three-points difference schemes such as those of equations (4.23) and
(4.24) can lead to a distorted bed evolution. In summary, a 2D hydraulic approach
has to be used in conjunction with the discretized bed evolution equations (4.23)
and (4.24).

In order to overcome the above difficulties, we used forward difference schemes
for spatial variables. Neglecting the contribution of the bed load transport and
relying on fully explicit schemes, the discretized form of the bed evolution equation
reads (with p = 0):

zn+1
j,i = zn

j,i + ∆t (Dn
j,i − En

j,i) (4.25)

where the values of D and E are computed by considering the bed shear stresses
resulting from equation (4.14).

Clearly, the decoupled approach used here to describe separately the spatio-
temporal distribution of the bed shear stresses and the corresponding bed evolution,
raises the question of how one can update in time the bed domain [Roelvink, 2006].
Two methodologies are possible: offline bed update and online bed update. The
first technique is based on the assumption that morphological changes occurring
within a tidal cycle do not influence the hydrodynamics. If this hypothesis holds,
the bed is considered fixed during a tidal cycle and the bed is updated at the end of
the tidal cycle. Conversely, the online technique applies the scheme (4.25) at every
time step, updating the bed just after the spatial distribution of the bed shear
stresses is computed through the procedure described in Section 4.2.

Long-term numerical scheme

In the case of long term simulations, the bed updating approach described in the
previous section generally requires too long computational times. A morphological
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factor is thus commonly adopted to accelerate the bed evolution computations ( [e.g.,
MORfological acceleration FACtor, Roelvink, 2006]). Specifically, the bed update
is accelerated introducing in the sediment balance equation a coefficient, whose
magnitude is a measure of the bed update acceleration. For example, running a
simulation for a day and then applying a morphological acceleration factor of 30,
the updated bed is assumed to describe the bathymetry that would occur after 30
days. The greater is the morphological factor, the faster is the update.

The correct use of morphological acceleration factors is still a hot topic in mor-
phodynamics. Experimental attempts have been made to use laboratory data for
model validation [Knaapen and Joustra, 2012]. Theoretical analyses have also been
put forward to determine the largest value that can be attributed to the morpho-
logical factor [Carraro et al., 2018; Ranasinghe et al., 2011], and to determine new
morphodynamic upscaling techniques [Carraro et al., 2018]. At the moment, a trial
procedure is commonly used to tune the morphological factor for the considered
model and the computational domain under investigation [Deltares, 2014].

Adopting the offline bed update procedure described above, the sediment bal-
ance equation is integrated over the long time scale T :

∫ T

0

dzj,i

dt
dt =

∫ T

0
(Dj,i − Ej,i) dt (4.26)

where E and D represent the long term erosion and deposition rates, respectively.
The integral on the left hand side can be approximated as a sum of erosion and
deposition rates over the considered time window, namely:

Z =
T∑
i

(Dj,i − Ej,i) ∆ti (4.27)

=
( T∑

i

(Dj,i − Ej,i) ∆ti
)
fMOR (4.28)

where T = NT ti.
Conversely, when using the online bed update, the acceleration is achieved by

simply multiplying the erosion and deposition rates (4.25) by the morphological
factor:

zn+1
j,i = zn

j,i + fMOR ∆t
(

Dn
j,i − En

j,i

)
(4.29)

In the present thesis a offline approach have been used, in accordance with
previous analyses on long term simulations of tidal environments [D’Alpaos et al.,
2006; Fagherazzi and Furbish, 2001; Lanzoni and D’Alpaos, 2015].
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4.3.3 The shear-stress distribution finite difference scheme

For each transect, the numerical integration of equation (4.14) is obtained by
using a center difference scheme on a non-uniform spaced grid [Ferziger and Perić,
2002]. Following the procedure of Pizzuto [1990], we obtain:

τj − 2
∆nR + ∆nL

(
KR

τj+1 − τj

∆nR
− KL

τj − τj−1
∆nL

)
= ϱ g Sj

1
2

[
Aj−1
∆nL

+ Aj

∆nR

]
(4.30)

where nR and nL denote the value attained by the transversal coordinate n at
the right and left ends, respectively, of discretization stencil. Collecting the terms
containing the shear stresses at nodes j − 1, j, j + 1, this equation yields:

[
− 2

∆nR + ∆nL

KL

∆nL

]
τj−1 +

[
1 + 2

∆nR + ∆nL

(
KL

∆nL
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∆nR

)]
τj+

[
− 2

∆nR + ∆nL
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∆nR

]
τj+1 = ϱ g Sj

1
2

[
Aj−1
∆nL

+ Aj

∆nR

]

Figure 4.7: Discretization stencil. L:left; R:right.

Setting

∆nR = Pj , ∆nL = Pj−1, KL = 1
2

(Kj + Kj−1) KR = 1
2

(Kj+1 + Kj) (4.31)

and re-arranging all terms, the previous equation becomes:

[
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namely

Âj−1 τj−1 + B̂j τj + Ĉj+1 τj+1 = R̂j (4.32)

The linear algebraic system resulting from the discretization of equation (4.14)
must be complemented with suitable boundary conditions. Here we require that no
momentum exchange is allowed at the lateral cross section boundaries:

τj = g S Dj j = 1, n (4.33)

where Dj is the local water depth measured along the normal passing through the
node j.

The overall tridiagonal system build up by assembling all the algebraic equations
(4.32) (j = 2, n− 1) takes the form:



1 0
Â2 B̂2 Ĉ2

. . . . . . . . .
Âj B̂j Ĉj

. . . . . . . . .
Ân−1 B̂n−1 Ĉn−1

0 1
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τ2
...
τj

...
τn−1

τn


=



ϱ g S D1

R̂2
...
R̂j

...
R̂n−1

ϱ g S Dn


(4.34)

where the number of rows and columns equals the number of nodes along the cross
section.

When vegetation encroaches the marsh platform, the previous linear system
slightly changes, owing to the vanishing of dispersive terms over the vegetated sur-
face (Figure 4.4). Thereby, the overall algebraic system becomes:



1 0
0 1 0

. . . . . . . . .
Âj B̂j Ĉj

. . . . . . . . .
Âj+m B̂j+m Ĉj+m
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...
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...
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...
ϱ g S Dn−1

ϱ g S Dn



(4.35)

Differently from Pizzuto [1990] and Fagherazzi and Furbish [2001], who applied
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the Thomas algorithm, the tridiagonal systems (4.34) and (4.35) are solved by a
LU factorization [D’Alpaos et al., 2006; Lanzoni and D’Alpaos, 2015].

4.3.4 Cross-sectional geometry issues

Let us for the moment consider a quasi-static propagation of the tidal wave and
disregard additional effects such as sea level rise, external suspended sediment supply
and vegetation encroachment. Under these conditions, the numerical solution of
equation (4.14) has been used to investigate various aspects of short tidal channels
morphology D’Alpaos et al. [2006]; Fagherazzi and Furbish [2001]; Lanzoni and
D’Alpaos [2015] that have been then compared with field observations [Lanzoni and
D’Alpaos, 2015; Marani et al., 2002]. The computed channel cross sections were
usually wide enough to satisfy the assumption of a gently varying bottom curvature
set at the basis of equation (4.14) [Lundgren and Jonnson, 1964].

However, when the above mentioned additional effects are taken into account,
tidal channels may become narrower and deeper, thus implying relatively smaller
width-to-depth ratios. Under these conditions, the normal rays can start to intersect
each other (Figure 4.8), thus complicating the identification of the various sub-areas
and, consequently, the computation of the coefficient K driving the momentum
exchange between rays. The narrower the cross sections become, the harder it
becomes evaluating not only the energy slope term, because area subdivisions are
unreliable, but also the dispersive term, because normal depths used to compute
the coefficient K are also questionable. The issue arises in narrow cross sections
for which the assumption of a bed gently sloping in the transverse direction does
not hold any more, even though it must be noted that the interception between
normal rays usually occurs for high water stages, when the velocity, and hence the
shear stresses are likely to be small. Note also that the assumption of a logarithmic
velocity profile along the normal to the wall can in principle be used also when
normal rays intersects [Marchi, 1961]. Clearly, other processes, such as secondary
currents neglected so far, may start to affect the shear stress distribution.

In order to overcome the above mentioned problems, here we consider a very
simple approach. If interceptions occur, the normal rays are corrected automatically
such that rays, no longer orthogonal to the bed, intercept at the water surface (red
lines in Figure 4.8). Assumed a logarithmic profile is assumed up along the corrected
ray, the new outline of rays and sub-areas is used to perform the computations of
shear stress distribution in equation (4.9).
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Figure 4.8: Examples of interceptions between normal rays (blue lines) and approximations used
(red lines) to manage these situations.

4.3.5 Numerical code flowchart

The model is composed by four modules: the hydrodynamic module that is used
to compute the 1D hydrodynamics of the tidal basin; the shear stress distribution
module, that uses the energy slope provided for each cross section by the hydro-
dynamic module; the morphodynamic module that uses the spatial distribution of
shear stress to compute accretion/erosion rates and, eventually, evolves the bed of
the tidal basin (Figure 4.9).

For each simulation, the relevant input data and parameters are prescribed (Ta-
ble 4.1) with reference to an initially prescribed or a previously computed bathymetry.
At each time step of the long term time scale on which the tidal domain bed evolves,
the hydrodynamic module is used to compute the 1D flow field that establishes in
the domain under the action of the seaward imposed tidal forcing. At the other
three boundaries no flux conditions are imposed and, during the the whole tidal
cycle the domain bed is kept fixed (Chapter 2).

The energy slope provided by the 1D model at each instant of the tidal cycle for
the various cross sections is then used to determine the cross-sectional shear stress
distribution as described in Section 4.2. It is worthwhile to note that, differently
from earlier researches [D’Alpaos et al., 2006; Fagherazzi and Furbish, 2001; Lanzoni
and D’Alpaos, 2015], in the present approach, the value of the energy slope results
from 1D hydraulic computations, rather than from an iteration procedure carried
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out to ensure that a suitable discharge (computed though a quasi-static continuity
balance) flows within the section.

The spatio-temporal distribution of bed shear stresses is used to estimate the
local erosion and deposition rates that are eventually needed by the morphodynamic
module to evolve the bed of the tidal domain (chapter 3). Specifically, relying on an
offline technique, at the end of a tidal cycle the tidally averaged values of erosion and
deposition rates are used to update the local bed elevations using an acceleration
factor of 30 days.

The updated bathymetry then becomes the new computational domain and
the above described procedure is repeated until the system reaches an equilibrium
configuration. The overall run duration is set by a test/trial procedure such that
it is long enough to let the basin reach everywhere asymptotically constant bed
elevations.

The overall model can be used with three different setups.

1. Purely erosional model: sediment erosion is the only process shaping the chan-
nel;

2. Depositional model: erosion, sea level rise (SLR) and settling deposition (SSC)
are the mechanisms that concur to determine the fate of the tidal basin;

3. Vegetated model: vegetation effects are included in the depositional model.

In the following sections the results of these setups will be discussed in detail. In
particular, the purely erosional model will be used to validate the present framework
by comparison with a previously developed model [Lanzoni and D’Alpaos, 2015] and
field observations.

4.4 Model sensitivity to the acceleration of the morpho-
logical factor

The sensitivity of the present modeling framework to changes in the morpholog-
ical factor has been addressed by considering a rectangular basin, 2000 m long and
200 m wide, with a small incision, 0.05 m deep, along the axis. The basin is initially
set at an elevation of −0.5 m a.m.s.l., and is subjected to a semi-diurnal tide of am-
plitude 0.5 m, and to a RSLR rate of 3.5 mm/yr. The external suspended sediment
supply is surrogated by assuming a concentration C0 = 10.0 mg/l, constant in space
and time as described in Chapter 3. For a given bed topography of the basin, the
1D model described in Chapter 2 was used to compute the energy slope Sf at each
cross section and at each instant of the tidal cycle. The spatio-temporal distribution
of Sf was then used to determine the bed shear stress distribution τi,j across each
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Figure 4.9: Code flowchart.
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basin transect, as described in Section 4.14. Different values of the morphological
factor fMOR (5, 15, 30, 60, 120) were then used to accelerate the computations,
starting from the same initial conditions up to an equilibrium configuration (i.e.,
when the mean difference in bed elevations throughout the basin at two consecutive
time steps, normalized by the average depth, was smaller than a given tolerance,
say 5%).

Figure 4.10a shows the bed elevation of the channel axis at the seaward end for
different values of fMOR. Note that bed elevations are not corrected for the sea
level rise, i.e., they are computed with respect to a fixed reference frame. Erosion
clearly prevails at the beginning, producing a net scour of the channel bed. As the
channel deepens, shear stresses reduce and deposition starts. At the end of the sim-
ulation (300 years) all processes (i.e., erosion, deposition and sea level rise) concur
to produce a dynamic equilibrium. Small differences are evident in the bed evolu-
tion when using different values of fMOR. Nevertheless, the equilibrium elevation
attained by the channel axis elevation (Figure 4.10b) varies relatively weakly. The
decrease in the equilibrium elevation as fMOR increases is approximately linear, and
exceeds 10 cm only for fMOR > 30. Based on this sensitivity analysis, we then will
set fMOR = 30 in all the following simulations.

Figure 4.10: Effects on the equilibrium channel configuration of different values of the morphological
factor fMOR. a) Temporal evolution of the channel axis elevation at the seaward cross-section; b)
Equilibrium elevation of the seaward channel axis for different fMOR values.

4.5 Model validation

Model validation has been carried out by considering the purely erosional setup.
The morphological time used for these simulations is 300 years, i.e., 3600 months.
For any new bathymetry, the hydrodynamic model runs for two tidal cycles, in order
to ensure a full adaptation of the flow field to the new bed topography. The tidally
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averaged erosion and deposition rates resulting from the last of these three cycles
are then multiplied for an acceleration factor of 30. The input data and parameters
fixed in all runs are reported in Table 4.1.

P arameter V alue Unit

ρs 2650 kg/m3

ws 2 · 10−4 m/s
D50 0.5 mm
τcd 0.1 N/m2

τce 0.4 N/m2

E0 2 · 10−4 kg/m2/s
T 12 h

Table 4.1: Parameters adopted in the runs carried out for validating the model: ρs sediment density;
ws settling velocity; D50 mean sediment grain size; τcd critical threshold for deposition; τce critical
threshold for erosion; E0 empirically-based erosion rate due to sediment features.

4.5.1 General features of the morphodynamic evolution

Let us consider a tidal basin 2000 m long and 200 m wide. The basin is subjected
to a sinusoidal tide with an amplitude of 0.5 m, acting at the seaward boundary.
No-flux conditions are imposed at the landward and lateral boundaries. The initial
bed, set at an elevation of −0.5 m a.m.s.l. is perturbed by an incision shaped by a
cosine function with amplitude of 0.05 m to trigger the channel formation. Figure
4.11 shows successive stages of the tidal channel evolution. A main channel starts to
grow, deepening and stretching in the landward direction and developing a certain
degree of convergence. Gradually, the distinction between lateral shoals and the
main channel becomes clearer. Once the main channel has reached its maximum
length, it keeps on adjusting its depths. On the contrary, the elevation of the tidal
flats remains constant approximately at the initial elevation, owing to the “small”
values (smaller than the critical threshold for erosion) attained by the bed shear
stresses acting on them. Eventually, the channel head vanishes abruptly in the
landward unchanneled platform.

The various evolution stages clearly appear from the longitudinal profiles shown
in Figure 4.12a. At the beginning, the channel axis deepens exhibiting an almost
linear profile. As the simulation goes on, the erosion progressively leads to the
incision of a deeper (and larger) channel that, as the landward head eventually tends
to form an abrupt transition to the landward platform. This transition behaves as
a bathymetric jump which prevents the developing of a convex profile in the upper
part of the tidal basin. At the foot of this jump, wiggles are observed to form
as a consequence of the abrupt changes in the energy slope associated with the
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Figure 4.11: Evolution of a 2000 m long and 200 m wide tidal basin computed for purely erosional
conditions. The reference case depicted here corresponds to a sinusoidal tidal forcing of amplitude
0.5 m; the initial elevation of the tidal flats flanking the main channel is −0.5 m a.m.s.l.

bathymetric jump. Except for this channel head region, the final longitudinal bed
configuration resembles the analytical profiles obtained under equilibrium conditions
by various authors, e.g. Friedrichs and Aubrey [1996]; Schuttelaars and De Swart
[1999]; Seminara et al. [2010]; Toffolon and Lanzoni [2010] as well as experimental
profiles [Tambroni et al., 2005].

The time tracking of channel axis elevation and lateral shoal elevations at the
seaward cross section over the entire duration of the simulation highlights the route
towards morphodynamic equilibrium (Figure 4.12b). Tidal flats do not change
their initial elevation, owing to the small values attained by the bed shear stresses
acting on them. Conversely, flow concentration in the initially (cosine shaped)
channelized region triggers an erosion that rapidly scours the main channel bed,
whose depth after a quite fast increase, later on tends asymptotically towards a
constant value. Indeed, as the run proceeds, channel deepening implies a reduction
of flow velocities bed shear stresses and, hence, erosion rates. When shear stresses
fall below the critical threshold erosion, erosion rates slowly vanish (recall relation
(3.12) ). Eventually, a static equilibrium is reached [Seminara et al., 2010], whereby
a no erosion condition establishes everywhere throughout the tidal basin.

4.5.2 Sensitivity analysis

The model robustness has been tested performing a sensitivity analysis involv-
ing domain dimensions (L, BT ), initial bathymetry height (zin,tf ), tidal amplitude
a0, critical shear stress (τce), friction coefficient ks and the basin aspect ratio as
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Figure 4.12: a) Longitudinal profiles obtained at different times with the purely erosional model.
b) Temporal evolution of channel axis elevation and tidal flat elevation computed at the seaward
boundary. Reference case as explained in the caption of Figure 4.11.

in Lanzoni and D’Alpaos [2015] (Table 4.2). The results have been compared with
those obtained by Lanzoni and D’Alpaos [2015]. Their model (hereafter denoted
as LD15) differs from the present one for the following aspects. The LD15 hydro-
dynamics is based on a 0D quasi-static approach, whereby the water level keeps
horizontal when oscillating in response to the tidal forcing. Wetting and drying
processes are not accounted for explicitly, but at the beginning of a given simula-
tion, when the basin is very shallow, the tidal amplitude is increased gradually up
to the prescribed value. To this aim, a suitable tidal lag is adopted. Finally, the
energy slope employed to compute the shear stresses distribution across a section is
determined through an iteration procedure which stops when the discharge flowing
through the section (sum of the discharges in the sub-areas) equals that provided
by the continuity equation.

The longitudinal profile and the width distribution computed in the various tests
(Table 4.2) are represented in Figure 4.13. As the basin widens, the channel gets
deeper and larger, conveying more flow in both the ebb and flood phases. Note
that the typical saw-like trend characterizing the longitudinal distribution of main
channel width is due to the criterion used for detecting it. Successive cross sections
can exhibit the same width if the traversal slope of the channel borders remains
almost the same in adjacent transects. Overall, the width distribution shows a
quite linear trend, except close to the main channel head where the channel bed
wets and dries during the tidal cycle and the width decreases faster than linearly,
in agreement with previous findings [Lanzoni and Seminara, 2002]. Considering the
tidal forcing, the larger the tidal amplitude, the deeper is the channel.

The longitudinal profile shows an approximately linear trend except towards the
channel head, where it joins to the landward intertidal platform with a sharp transi-
tion. As the amplitude increases, this transition becomes sharper and some wiggles
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Run L BT zin,tf a0 τce ks

[m] [m] [m] [m] [N/m2] [m1/3/s]

I1 2000 100 −0.5 0.5 0.4 30
I2 2000 200 −0.5 0.5 0.4 30
I3 2000 300 −0.5 0.5 0.4 30
I4 2000 400 −0.5 0.5 0.4 30
I5 2000 500 −0.5 0.5 0.4 30
II1 2000 300 −0.5 0.3 0.4 30
II2 2000 300 −0.5 0.4 0.4 30
II3 2000 300 −0.5 0.6 0.4 30
II4 2000 300 −0.5 0.7 0.4 30
III1 2000 300 −0.1 0.7 0.4 30
III2 2000 300 −0.3 0.7 0.4 30
III3 2000 300 −0.7 0.7 0.4 30
III4 2000 300 −1.0 0.7 0.4 30
IV 1 2000 300 −0.5 0.5 0.2 30
IV 2 2000 300 −0.5 0.5 0.3 30
IV 3 2000 300 −0.5 0.5 0.5 30
IV 4 2000 300 −0.5 0.5 0.6 30
V 1 2000 300 −0.5 0.5 0.4 20
V 2 2000 300 −0.5 0.5 0.4 25
V 3 2000 300 −0.5 0.5 0.4 35
V 4 2000 300 −0.5 0.5 0.4 40
V I1 3000 450 −0.5 0.5 0.4 30
V I2 4000 600 −0.5 0.5 0.4 30
V I3 6000 900 −0.5 0.5 0.4 30
V I4 3000 75 −0.5 0.5 0.4 30
V I5 500 75 −0.1 0.5 0.4 30

Table 4.2: Runs used to validate the purely erosional model, as described in Lanzoni and D’Alpaos
[2015].
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arise at the tow of the jump. Moreover, an increasing tidal amplitude not only does
lead to a deeper channel, but also to a longer channel. Looking at the width distri-
butions, it is clear that for small tidal amplitudes the channel region extends just
for half of the basin length. Above a certain amplitude, all the bathymetries have
the same channel length, but different depths. A change in the initial elevation
of the intertidal flats influences the initial rate of scouring. The shallower is the
initial tidal basin, the deeper eventually becomes the main channel. Indeed, as no
deposition is here considered, the channel has no possibilities to recover from this
intense initial scour. In addition, an initially shallower tidal basin does not promote
the formation of wiggles at the transition from the channel head to the landward
intertidal platform. This result is due to the much intense erosion that occurs in
a shallower basin, whereby a deeper main channel is generated and the final static
equilibrium is reached faster. Essentially, the trends observed for the main channel
width and the channel bed profile for a shallower initial basin are quite similar to
those observed for a wider tidal basin. In both cases the initial channel scour is
enhanced and, therefore, morphological equilibrium is reached faster. The critical
threshold for erosion has interesting effects on the channel evolution. It seems to
affect the equilibrium channel depth throughout most of the basins, except at the
seaward boundary. As the critical threshold decreases, erosion increases making
the channel to stretch landward and to get deeper. Moreover, the wiggles forming
towards the channel head tend to disappear. Far enough from the channel head,
the bed profile keeps an almost linear trend, the width changes slightly such that
the degree of convergence does not change so much as well. Finally, the larger the
friction coefficient, the deeper and shorter is the channel. As ks increases, the profile
gets smoother keeping the same linear-convex shape. On the other hand, a higher
friction implies a progressive stretching of the main channel until the maximum
length is attained; the bed wiggles near to the channel head increase as well.

The overall features of the channel morphologies obtained in the various tests
is synthesized in the plots of Figure 4.14. They report: the cross-sectional area,
A, as a function of the tidal prism, P ; the mean channel depth, D, plotted versus
channel width, B; the width-to-depth ratio, β, as a function of B. The first rela-
tion appears to follow the so called O’Brien-Jarrett-Marchi (OBJM) law, implying
a power law relation with slope 6/7 throughout the entire main channel length. A
small difference in the intersection with the A axis is however observed, suggesting
larger values of A with respect to those prescribed by the empirically determined
OBJM law. This difference is likely due to the different overall friction experienced
by the synthetically generated topographies with respect to the calibration value
determined on the basis of experimental data [D’Alpaos et al., 2009a]. The compli-
ance with the OBJM law indicates that the cross sections within the main channel
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eventually reach an equilibrium configuration. This equilibrium is invariably static,
since just erosional effects are taken into account [D’Alpaos et al., 2009a].

Regarding the other two types of plot shown in Figure 4.14, we must note that
widths are computed according to the criterion described in Chapter 2, while depths
are those of the equivalent rectangular section having the same area and same width
of the main channel cross section. Overall, the trends produced through the present
model for purely erosive conditions are similar to those obtained through LD15’s
model. This is clearly shown in Figure 4.15 where the results of the present model
under purely erosive conditions are denoted by red circles (bottom panel) while those
of Lanzoni and D’Alpaos [2015] correspond to black circles (top panel). Despite the
very similar trends shown by the A − P plots, some systematic differences emerge
in the D−B and β −B plots. This suggests that the morphologies generated with
the present model are characterized by larger widths and smaller depths and, hence,
larger width-to-depth ratios with respect to those produced by LD15’s model. On
the other hand, the comparison with the field data collected by [Marani et al., 2002],
also shown in Figure 4.15 as crosses, indicates that the new synthetic cross sectional
data match the field data better than the LD15’s model.

In conclusion, despite the small wiggles which arise near to the channel head
when the transition towards the landward intertidal platform becomes too steep, the
overall geomorphic features of synthetically generated geometries match reasonably
well literature data.

4.6 Concluding remarks

The theoretical framework adopted to compute the bed shear stress across any
cross section of the tidal basin is found to produce realistic geometries. The novel
feature is due to the hydraulic connection between the cross sections ensured by the
1D approach described in Chapter 2, which relaxes the assumption of a quasi-static
propagation of the tidal wave commonly adopted in previous models and treats
specifically wetting and drying processes. The need to use a suitable morphological
factor to accelerate long-term simulations is also discussed and a offline procedure
is selected for the present thesis. According to a trial procedure, MORFAC is set
at 30 so that each timestep computation allows to update the bathymetry as after
30 days.

Under purely erosional conditions, used to test the model by comparison with
previous numerical results and field data, a sharp edge tends to form near to the
channel head, marking the transition to the upper intertidal flats located landward.
In other words, the model does not produce a relatively smooth transition as that
predicted by previous analytical computations [Friedrichs and Aubrey, 1996; Schut-
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Figure 4.13: Width and bed profiles obtained using a purely erosional model. The red line denotes
the reference test (see test I3 in Table 4.2). The ranges of the investigated paramenters are those
reported in Table 4.2.
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Figure 4.14: a) The cross-sectional area, A, is plotted versus the tidal prism, P , emphasizing the
compliance with the O’Brien-Jarret-Marchi law; b) the mean flow depth, D, of the main channel
cross section is plotted versus the corresponding width, B; c) the main channel width-to-depth, β,
is plotted versus the main channel width, B relation.
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Figure 4.15: Comparison between the present computations, LD15’s model and the field data
measured in the Venice lagoon [Marani et al., 2002]. Red circles represent the present model
results considering purely erosional effects (bottom panel). Black circles represent LD15’s model
results considering purely erosional effects (top panel). Field cross sectional data in Marani et al.
[2002] are represented as crosses, if referred to channels dissecting salt marshes, as pluses, if referred
to channels dissecting tidal flats.

telaars and De Swart, 1999; Seminara et al., 2010]. Despite these local effects, the
OBJM law is satisfied along the entire channel, suggesting the establishment of
morphological equilibrium conditions. This equilibrium is invariably static, because
only erosional effects are accounted for. Overall, the geomorphological features of
channel cross sections compare reasonably with those already found numerically or
arising from field observations [Lanzoni and D’Alpaos, 2015; Marani et al., 2002].
In general, channel geometries produced by the present model cover a wider ranger
of width-to-depth ratios, pointing at a wider variability of synthetically generated
morphologies, in accordance with field observations.

Given these very encouraging results, in the following the modeling framework
so far described will be used relaxing the assumption of purely erosive conditions.
In the next chapter we will then analyze the consequences that deposition (possibly
enhanced by the presence of vegetation) and sea level rise have on the tidal basin
equilibrium topography.





Chapter 5
Results

This chapter reports and discusses the simulations performed considering the
model setups including depositional effects (in the absence and in the presence of
vegetation) and sea level rise (SLR). The aim is to analyze the effects exerted on tidal
channel evolution by initial basin topography, suspended sediment concentration
(SSC), the sea level rise (SLR) and the vegetation cover. Finally, the question
whether an equilibrium condition can be obtained and which type of equilibrium is
possibly established is addressed.

5.1 Purely erosive effects on initial conditions

Before tackling the SRL and SSC effects, it is worthwhile to analyze the con-
sequences of using different initial slightly channelized geometries to trigger the
formation of a main tidal channel. In particular, changing the shape and the dimen-
sion of the initial incision we investigate whether the system eventually forgets its
initial geometry or is affected by it at equilibrium. The purely erosional model has
been used to these purposes.

At the beginning of each simulation, the tidal basin is assumed to consist of a
flat platform with a given elevation. This platform is incised by means of a slightly
channelized region, whose depth and width are alternatively prescribed through: a
cosine function of amplitude ain; a gaussian function with variation coefficient CV ;
a witch of Agnesi in which a parameter a drives the convexity (Figure 5.1). All cross
sections within the initially channelized region are compact cross sections according
to the definition given in Chapter 2 (i.e., the transversal slope does not exceed 1−2
%). The other parameters used in the tests are those of the Test Case I3 in Table
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4.2.

Figure 5.1: Examples of initial cross-sectional shapes used to trigger the formation of a main
channel within a rectangular tidal basin. a) Cosine function; b) Gaussian function; c) Witch of
Agnesi.

An overview of the bed topographies obtained at the end of the various simula-
tions is presented in Figures 5.2 and 5.3. In all runs, the longitudinal distribution
of the main channel width (Figures 5.2a,c,e) displays an approximately linear trend.
The use of a cosine function leads to wider cross sections in the mid and landward
portions of the basin, while, close to the sea, the width changes keep relatively small.
Conversely, adopting the other two functions eventually produces wider channels.
The longitudinal profiles shown in Figures 5.2b,d,f, indicate that initial incisions
shaped according to gaussian and witch of Agnesi functions cause much more scour-
ing. Anyhow, all profiles are characterized by a channel head that connects to the
upper landward platform through a quite step slope, which sometimes presents weak
wiggles. Specifically, the stepping transition is about 1 m high for the cosine func-
tion, while the other two shaping functions generate a step whose height is about 2
m.

The A − P , D − B, β − B relations shown in Figure 5.3 demonstrate how the
initial incision shape can exert a great influence on the final configuration. When
the initial incision is shaped by a cosine function, the final depths and widths
remain the same, no matter what is the cosine amplitude ain. Conversely, gaussian
and witch of Agnesi functions eventually lead to wider and deeper cross sections,
depending on the value assigned to CV and a, respectively. The larger is CV (or
a), the smaller is the width-to-depth ratio which ranges from 40 − 50 for small CV
(or a) to 10 − 15 for high CV (or a). These results likely depend on the sensitivity
of the final geometry to the criterion, based on transverse slope thresholds (see
Chapter 2), adopted to extract automatically the cross-sectional widths. When just
erosional effects are considered, the initial bed topography associated with gaussian
and witch of Agnesi functions is thus found to affect the final channel configuration.
Despite these differences, the final bed configurations always follow the OBJM law,
exhibiting just a slight offset of the intercept with the A axis, as already discussed
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Figure 5.2: Longitudinal distribution of a,c,e) main channel with; b,d,f) channel depth at the axis.
Initial channel incision prescribed through: a,b) cosine function; c,d) gaussian function; e,f) width
of Agnesi. All simulations have been carried out with the purely erosional model. Parameters are
those of the Test Case I3 in Table 4.2.
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in Section 4.5. In the following, a cosine function will be always used for the initial

Figure 5.3: a) The cross-sectional area, A, is plotted versus the tidal prism, P ; b) the mean flow
depth, D, of the main channel cross section is plotted versus the corresponding width, B; c) the
main channel width-to-depth, β, is plotted versus the main channel width, B relation. Simulation
conditions are the same of Figure 5.2.

incision, in order to minimize as much as possible the influence of the initial bed
topography on the final basin configuration.

5.2 Depositional model

The depositional model considered in this section, besides erosional effects, ac-
counts also for sea level rise and deposition of suspended sediment, as described in
Chapter 3. Here, we are interested in assessing under which conditions a dynamic
equilibrium can be attained both on the main channel and the adjacent tidal flat,
depending on the rate of SLR and the external availability of suspended sediment,
embodied by the prescribed SSC.

5.2.1 Sediment settling and sea level rise

Let us refer to the typical parameter set of Test Case I2 in Table 4.2. The
depositional model has been implemented first considering a SLR of 3.5 mm/yrs

and a SSC equal to 7.5 mg/l. The evolution of the tidal channel is represented in
figure 5.4, where bed elevations are referred to the mean sea level (MSL). A flat
bed with a small longitudinal cosine-shaped incision is prescribed at the beginning
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of the run. Erosional effects are found to prevail at the beginning of the simulation.
The initially channelized region progressively deepens, stretching throughout the
basin and assumes a funnel shape. Meanwhile, the adjacent intertidal platforms,
differently from the purely erosive setting, gradually increase their elevation due to
sediment settling. This accretion is also related to the small values attained by bed
shear stresses on the platform, implying a negligible rate of erosion. On the other
hand, within the channel region, where shear stresses and, hence, erosional effects
are stronger, accretion only starts after the flow depth has reached its maximum
value (about −5.95 m).

Gradually, the bed variations throughout the basin become progressively smaller
and the system finally tends towards an equilibrium configuration. At the seaward
boundary, the intertidal platform flanking the channel reaches an elevation of 0.38
m, while the channel bed converges to an elevation of −5.95 m. The lateral tidal flats
reach their equilibrium elevation before the channel bed. The concurrent presence
of both depositional and erosional effects as well as of a certain rate of sea level
rise, implies that the equilibrium finally established is dynamic, i.e. in a reference
frame moving with MSL and averaging over a tidal cycle, erosional effects equal the
depositional effects.

Figure 5.4: Three-dimensional view of the morphodynamic evolution of a rectangular tidal domain
computed with the depositional model. Relevant parameters are those corresponding to the Test
Case I2 of Table 4.2 and to Table 4.1. In addition, SLR =3.5 mm/yrs, SSC =7.5 mg/l).

The longitudinal profiles reported in Figure 5.5a, indicate that during the early
evolutionary stages a step-like transition forms at the conjunction between the land-
ward platform and the channel head. Downstream of this transition the channel
bed progressively deepens and this deepening slows down in time. In addition, as
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the landward platform accretes because of sediment settling, downstream of the
step-like transition erosion can locally produce a scour that, later on, smooths out.
Progressively, the bed profile tends to assume a convex shape in the upper portion
of the tidal basin. The perturbations observed in the longitudinal profiles of Figure
5.5a are possibly due to wetting and drying as well as to subcritical-supercritical
flow transitions near to the channel head, where the channel joins the landward
tidal platform and the flow characteristics (and hence, the energy slope gradients)
are poorly described by a 1D hydraulics model. Despite these issues, at the seaward
boundary, the temporal evolution of the channel bed and of the tidal flats proceeds
smoothly (Figure 5.5b). The intertidal platform accretes regularly from the very be-
ginning of the simulation, finally reaching a constant elevation. The adjustment in
elevation of the adjacent tidal flats, in turn, reflects into the channel bed evolution,
that in a first phase decreases, reaching a minimum elevation, and then accretes
progressively tending towards a constant elevation.

Figure 5.5: a) Longitudinal bed profiles at different stages of the tidal basin evolution; b) temporal
trajectories of the elevations of two points located at the seaward boundary on the channel bed
(red line) and the adjacent tidal flat (green line). The simulation is that referred to in Figure 5.4.

5.2.2 Effects of SSC and SLR variations

The results of simulations carried out varying the SSC and SLR values are
shown in Figure 5.6. Overall, the greater is SSC, the shallower becomes the channel
for all SLR values here considered. The increase in SSC enhances the difference in
elevation between the main channel bed and the landward tidal platform, promoting
the formation of a step-like transition that tends to produce a localized scour as its
height increases too much. For SSC = 5.0 mg/l the longitudinal channel profile
is relatively smooth, while for higher SSC values wiggles arise nearby the step-like
transition and progressively migrate seaward, perturbating the entire channel bed.
Increasing the rate of relative sea level rise, the profiles get progressively smoother
and the effects of wiggles generated at the channel head tend to disappear. This
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is likely due to the reduced importance of wetting and drying for higher values of
the rate of RSLR. Anyhow, far enough from the channel head, the channel bed
profile tends to develop a concave shape for high enough values of convergence,
while an almost linear profile tends to be attained when the channel width keeps
almost constant along the channel, in accordance with previous findings [Friedrichs
and Aubrey, 1996; Seminara et al., 2010; Toffolon and Lanzoni, 2010]. Finally,
the channel length (∼ 1700 m) does not change significantly in response to SSC
variations.

On the other hand, the cross sections become narrower as the SSC increases. At
the seaward boundary, if the SSC doubles from 5.0 mg/l to 10.0 mg/l, the width
decreases accordingly from 40 m to 20 m for all values of the considered rate of RSLR.
Channel convergence tends to reduce this trend, as cross sections narrow upstream.
The width distribution can be approximated with a linear trend, except near to the
channel head where the spatial channel-width gradients are larger. Cross sectional
widths are not influenced much by varying the rate of RSLR, at least within the
investigated range.

Figure 5.6: Longitudinal distributions of main channel width and bed profiles computed using
depositional model for different values of the SLR. (a) SLR = 2.5 mm/yrs; (b) SLR = 3.5 mm/yrs;
(c) SLR = 4.5 mm/yrs.

The overall effects of changes in SSC are summarized in Figure 5.7, showing the
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A − P , D − B and β − B relations. When SSC = 5.0 mg/l, the OBJM law is
satisfied throughout the basin. As the SSC increases behind this value, the smaller
cross sections (i.e., located far from the seaward boundary) start to depart from
the straight line expressing the OBJM law. This finding is due to the fact that
the narrower and shallow cross sections are more frequently subjected to wetting
and drying and, hence, they do not match the power law relationship in accordance
with field observations [Marani et al., 2002]. On the other hand, D −B and β −B

relations turn out to be only slightly influenced by the investigated SSC changes.
Finally, varying SLR does not appreciably modify the above described trends.

Figure 5.7: a) The cross-sectional area, A, is plotted versus the tidal prism, P ; b) the mean flow
depth, D, of the main channel cross section is plotted versus the corresponding width, B; c) the
main channel width-to-depth, β, is plotted versus the main channel width, B relation. Simulation
conditions are the same of Figure 5.6.

5.3 Vegetation effects

The parameters used to model the production of vegetation biomass are reported
in Table 5.1 and were kept fixed for all runs. Note that, according to the biomass
model implemented in Chapter 3, vegetation growth is max at zmin and then decays
linearly. Despite this relationship between biomass production and elevation does
not correspond to any specific halophytic species, this behavior has been adopted in
many previous studies. The considered relationship between biomass and elevation,
promotes vegetation growth at low elevations and, consequently, exerts a greater
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influence on the channel bed evolution.

P arameter V alue Unit

zmax 0.49 m
zmin 0.01 m
bmax 1000 g/m2

Qb0 2.5 mm/yrs
cD0 1.1
αcD −0.0003
U0 0.1 m/s

Table 5.1: Parameters adopted to model biomass production by vegetation: zmax maximum stem
height within the vegetation pattern; zmin minimum stem height within the vegetation pattern;
bmax max biomass value; Qb0 max organic production rate; cD0 drag coefficient without vegetation;
αcD fitting parameter linking drag coefficient to biomass; U0 is a characteristic velocity value of
the flow trough vegetation.

5.3.1 Comparison with the test case I2.

The vegetation model was run considering the set of parameters typical of Test
case I2, assuming SLR = 3.5 mm/yr, SSC = 7.5 mg/l and for the vegetation prop-
erties reported in Table 5.1. The corresponding channel evolution is represented in
Figure 5.8, where all bed elevations are referred to MSL. As long as bed elevation is
below the minimum height allowing for vegetation growth, no difference is evident
with respect to the results of Figure 5.4. When bed elevation exceeds zmin, vege-
tation encroachment enhances sediment deposition (by trapping) as well as organic
soil production, fastening the accretion of the intertidal platforms until a maximum
elevation of ∼ 0.42 m is achieved. A faster platform accretion, in turn, echoes into
channel bed evolution. In a first phase, the main channel becomes deeper, reaching
a minimum elevation of ∼ −5.79 m at the seaward boundary. Subsequently, in a
second phase of the morphodynamic evolution, sediment deposition becomes domi-
nant and the channel bed accretes, eventually converging to an asymptotic elevation
of ∼ −5.19 m.

The longitudinal channel bed profiles reported in Figure 5.9a are quite irregular.
This is due to the scour (and the consequent wiggles) produced at the channel head
when the height of the step-like transition towards the landward tidal platform
becomes too large. Overall, the final profile tends to develop a convex profile. These
findings point out the need of a better description of the processes that take place
at the transition between the channel head and the landward upper tidal flats.
There, frequent wetting and drying processes, and possible shifts from supercritical
to subcritical flow conditions as the longitudinal slope steepens, strongly affect the
1D hydrodynamics and, consequently, the bed shear stress redistribution across the
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Figure 5.8: Three-dimensional view of the morphodynamic evolution of a rectangular tidal domain
computed with the depositional model and allowing the growth of vegetation. Relevant parameters
are those corresponding to the Test Case I3 of Table 4.2. In addition, SLR =3.5 mm/yrs, SSC =7.5
mg/l).

section.

Despite the perturbations arising nearby the channel head, the seaward section
evolves smoothly toward an equilibrium configuration both on the marsh surface
and within the channel, as shown in Figure 5.9b. As marsh elevation exceeds MSL,
the accretion trend shows a kink which is due to enhanced sediment deposition
induced by vegetation growth. This increased accretion reflects into channel bed
evolution, such that the bed profile experiences a slight inflection before the system
tends to a higher elevation.

Figure 5.9: a) Longitudinal bed profiles at different stages of the tidal basin evolution; b) temporal
trajectories of the elevations of two points located at the seaward boundary on the channel bed
(red line) and the adjacent tidal flat (green line). The simulation is that referred to in Figure 5.8.
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5.3.2 SSC and SLR variations

As for the case of pure sediment settling, simulations were run to test the effects
of different SSC and SLR values. Figures 5.10 and 5.11 show the results of this
numerical exercise.

According to the width distributions depicted in Figure 5.10, channel cross sec-
tions narrow as the SSC increases. However, for a given cross section, channel width
does not change considerably. For example, considering a rate of RSLR equal of 3.5
mm/yrs, the inlet widths range between 28 − 33 with a difference of 5 m in a basin
200 m wide. Moreover, the width distribution assumes an almost linear behavior
except close to the channel head, where the rate of channel funneling increases. Fi-
nally, the main channel widths do not seem to be influenced significantly by the
considered variations in the rate of RSLR.

Figure 5.10: Longitudinal channel width and bed profiles obtained adding vegetation growth to
the depositional model. (a) SLR=2.5 mm/yrs; (b) SLR=3.5 mm/yrs; (c) SLR=4.5 mm/yrs.

The longitudinal channel bed profiles reported in Figure 5.10, indicate that the
larger is SSC, the shallower becomes the channel for every value considered for the
rate of RSLR. As already observed under the pure settling scenario, an increase in
the SSC enhances the difference in elevation between the landward platform and
the channel head. Thus, for SSC equal to 5.0 mg/l, the channel bed profile is
quite smooth, while for higher SSC values, the step-like transition at the channel
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head increases its height, a scour localizes at that point and wiggles perturbate the
channel bed. Increasing the rate of RSLR, these perturbations smooth progressively
out. As explained, a higher rate of RSLR reduces the occurrence of wetting and
drying cycles, improving the performance of the model.

An overall picture of the cross sectional morphology is represented in Figure
5.11, showing the A− P , D −B and β −B relations. As observed also in the case
of pure settling, the OBJM law is satisfied throughout the whole channel if the SSC
is equal to 5.0 mg/l. Conversely, for larger values of the SSC, the narrower cross
sections located far away from the seaward boundary depart from the OBJM law, in
accordance with field observations [Marani et al., 2002]. The considered variations
in the rate of RSLR does not change these trends. Similarly, the D−B and β −B

relations do not seem to be particularly affected by the considered variations in the
SSC.

Figure 5.11: a) The cross-sectional area, A, is plotted versus the tidal prism, P ; b) the mean
flow depth, D, of the main channel cross section is plotted versus the corresponding width, B;
c) the main channel width-to-depth, β, is plotted versus the main channel width, B. Simulation
conditions are the same of Figure 5.10.

5.4 Overall comparison of the results

Figures 5.12 and 5.13 show the overall comparison among the results obtained
by considering alternatively: i) only erosion (erosional scenario); ii) erosion, set-
tling deposition and RSLR (depositional scenario); iii) erosion, settling deposition,
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vegetation trapping, organic soil production and RSLR (vegetated scenario).
Because in the previous section we have seen that the considered RSL variations

do not strongly affect the final equilibrium configuration of the tidal basin, in the
following we refer to the case of SLR = 3.5 mm/yrs. We thus concentrate on the
effects exerted by SSC and vegetation growth.

The width distributions reported in the left panels of Figure 5.12 indicate that
variations in SSC (at least for the investigated range) induce relatively restrained
changes. Specifically, at the seaward boundary the width ranges between 28 − 32 m
in the presence of vegetation, while for the depositional scenario the range widens
to 21 − 46 m. Hence, vegetation acts as a width stabilizer. On the other hand, the
bed profiles depicted in the right panels of Figure 5.12 suggest that vegetation likely
has two different effects, depending on the elevation of the intertidal areas adjacent
to the main channel. When these lateral platforms are above MSL but close to it,
as in the plots (a) of Figure 5.12 where the platform is set at 0.32 m, the additional
friction due to vegetation favors the concentration of the flow within the channel.
The corresponding bed profile thus gets deeper, and the channel bed elevation at the
seaward boundary reaches the value −5.7 m. Conversely, when the lateral platforms
are much higher than MSL, as in the plots (c) of Figure 5.12 where the platform is
set at 0.45 m, the flow is already concentrated within the channel and vegetation
concurs to reduce the tidal prism, both slowing down the flow on the vegetated
platform and increasing its accretion rate. As a result, the longitudinal channel bed
profile is characterized by much shallower sections, and indeed the elevation at the
seaward section grows up to −2.9 m. The intermediate conditions represented in
the plots (b) of Figure 5.12 where the tidal platform elevation is 0.42 m, leads to
results very similar to those obtained for the case (c).

The different role exerted by vegetation described above, appears clearly also
from the A − P , D − B and β − B relations shown in Figure 5.13. In the purely
erosional scenario, as already pointed out in Chapter 4, the tidal prism-cross sec-
tional area relationship invariably follows the OBJM law, even though the intercept
with the vertical axis has a slightly larger value than that obtained empirically. The
inclusion of additional effects such as setting deposition, sea level rise and vegeta-
tion, generally leads to a deepening of the cross sections. Indeed, in the purely
erosional scenario width-to-depth ratios fall in the range 30 − 40 while, for a SSC of
5.0 mg/l (panels (a) in Figure 5.13), this range becomes 15 − 30 in the depositional
scenario and 10 − 15 in the presence of vegetation. Despite this, the OBJM law is
still satisfied along most of the tidal channel, except for the smaller sections, where
wetting and drying phenomena lead to a departure from the law [D’Alpaos et al.,
2009a; Marani et al., 2002].

Differently, increasing SSC to 10.0 mg/l (panels (c) in Figure 5.13), deposition
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Figure 5.12: Longitudinal channel width and bed profile computed with reference to the erosional
(black line), depositional (red line) and vegetated (blue line) scenarios, for different values of sus-
pended sediment availability: (a) SSC=5.0 mg/l; (b) SSC=7.5 mg/l; (c) SSC=10.0 mg/l.
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processes, enhanced by the presence of vegetation, promote a significant reduction of
the tidal prism, and a departure from the OBJM law is observed not only for small
cross sections but also for larger cross sections. On the other hand, the width-to-
depth ratio falls in the range 15 − 50 for both depositional and vegetated scenarios,
while in the erosional scenario the range becomes 10 − 30. In conclusion, vegetation
appears to have two counteracting effects. On one hand, it tends to concentrate the
flow within the channel, promoting the formation of deeper channels. On the other
hand, it slows down the flow on the intertidal platform and enhances the accretion of
these areas, tending to reduce the tidal prism and, consequently, fostering shallower
cross sections. These two counter-acting effects due to vegetation rule out one
another, depending on the elevation of the tidal platform flanking the channel. The
former mechanism prevails for elevations slightly larger than MSL, while the latter
dominates for tidal flat elevations much higher than MSL.

Figure 5.13: The relations A − P , D − B and β − B are plotted for the equilibrium channel bed
topographies computed with reference to the erosional (black line), depositional (red line) and
vegetated (blue line) scenarios, for different values of suspended sediment availability: (a) SSC=5.0
mg/l; (b) SSC=7.5 mg/l; (c) SSC=10.0 mg/l.

All the synthetic cross sectional morphologies computed with the present model
considering SSC, SLR and vegetation growth are compared with the available field
data [Marani et al., 2002]. In this regard, the A−P , D−B and β−B relations are
shown in Figure 5.14. Looking at the panel on the left, it is clear that the OBJM law
is satisfied considering the purely erosional conditions (black circles) throughout the



116 5. RESULTS

basin. When sediment supply, sea level rise and vegetation are taken into account,
the OBJM law still holds but deviations are evident in landward cross sections, far
from the inlet and highly subjected to wetting and drying processes, as observed in
the field [Lanzoni and D’Alpaos, 2015; Marani et al., 2002]. Looking at the central
and right panel, it is clear that the cross sections computed under purely erosive
conditions (black circles) are wider and shallower (15<β<20) matching more the
features of channels cutting through actual tidal flats(pluses). Conversely, introduc-
ing SSC and vegetation, the cross sections narrow and deepen (β<10) matching
more the shape of channel dissecting actual salt marshes (crosses).

Figure 5.14: Comparison between the present computations and the field data measured in the
Venice lagoon [Marani et al., 2002]. Black circles represent the results obtained considering the
purely erosional setup, red circles represent the results obtained considering the depositional
setup (SSC+SLR), blue circles represent the results obtained considering the vegetated setup
(SSC+SLR+vegetation). Field cross sectional data in Marani et al. [2002] are represented as
crosses, if referred to channel dissecting salt marshes, as pluses, if referred to channel dissecting
tidal flats.

5.5 Endangering the survival of the tidal landscapes

In all simulations conducted the channel strives to reach an equilibrium between
erosional and depositional processes eventually mediated by the vegetation encroach-
ment. Once the equilibrium is reached, the follow-up question is if a sudden change
in external forcings, whether RSLR or SSC, may endanger the survival of the tidal
environment just formed. In this regard additional scenarios have been investigated
starting from the equilibrium reached with a sediment supply equal to 7.5 mg/l and
RSLR equal to 3.57 mm/yrs. The vegetation effects are also considered in these
new scenarios. For sake of simplicity, the evolution is described just at the seaward
cross section of the basin.

Firstly we consider the effect of a sudden change in SSC. After 300 years, the
tidal environment fate is challenged by setting SSC either up to 22.5 mg/l or downot
to 2.5 mg/l. If the sediment supply reduces to 2.5 mg/l keeping constant all the
other parameters, the tidal system can no longer keep the pace of the RSLR and thus
it is doomed to drown (Figures 5.15 c and d). In 200 years the tidal-flat elevation
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drops almost to MSL and the channel becomes deeper reaching approximately an
elevation of −7.50 m (Figures 5.15 c). The vegetation tends to slightly mitigate
the speed at which the system sinks (Figures 5.15 d); specifically, the marshes set
above the MSL, while the channel reaches approximately a higher elevation, around
−7.0 m . Conversely, if the sediment supply increases up to 22.5 mg/l, the tidal
system tends to infill (Figures 5.15 a and b). The tidal flats reach the max tidal
elevation, while the channel progressively becomes shallower. No specific role seems
to be played by the vegetation when the system infills.

Figure 5.15: Seaward cross section evolution under a sudden change in SSC after 300 yrs: (a)
SSC=22.5 mg/l; (b) SSC=22.5 mg/l; (c) SSC=2.5 mg/l; (d) SSC=2.5 mg/l.

Similar effects are reproduced when, instead of a SSC change, a sudden RSLR
change is considered. After 300 years, the tidal environment fate is challenged by
increasing RSLR to 10.5 mm/years or redicing it to 1.2 mm/years. In this latter
case keeping constant the other forcings, the tidal system tends to infill since the sea
level rise is not able to counteract the sediment input (Figures 5.16 c and d). The
infilling process makes the tidal flats to reach the maximum tidal elevation and the
channel to rise quickly. As shown previously considering SSC effects, the vegetation
does not affect the evolution of the channel during the infilling process. On the other
hand, if the relative sea level rise increases up to 10.5 mm/yrs keeping constant the
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other forcings, the sediment input is not enough to keep the pace with RSLR and
the system drowns (Figures 5.16 a and b). In 200 years the lateral platforms sink
below MSL, while the channel drowns reaching an the elevation of about −9.0 m.
The presence of vegetation reduces the speed at which the system sinks: after 200
years the marshes are still above MSL while the channel reaches an approximated
elevation of −8.0 m.

Figure 5.16: Seaward cross section evolution under a sudden change in RSLR. (a) RSLR=10.5
mm/yrs; (b) RSLR=10.5 mm/yrs; (c) RSLR=1.2 mm/yrs; (d) SSC=1.2 mg/l.

5.6 Concluding remarks

In this chapter we used the modeling framework developed so far to investigate
three scenarios. The first is purely erosional (erosional scenario), in accordance with
previous research approaches. The second includes erosion, settling deposition and
sea level rise (depositional scenario). The third couples erosion, settling deposition,
vegetation trapping, organic soil production and sea level rise (vegetated scenario).

In the erosional scenario, the consequences of different shapes of the initial
incision imposed to trigger a channel have been analyzed. Cosine shaped incisions of
different amplitude are found to have negligibly small effects on the final topography
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of the tidal basin. Conversely, initial incisions described by gaussian or witch of
Agnesi functions seem to have a certain influence on the final bed configuration,
leading to narrower cross sections as the depth of the initial incision is reduced.

The present simulations highlight the numerical difficulties that arise near to the
transition between the tidal channel head and the upper intertidal platform located
landward. There, various phenomena operate: wetting and drying become more
frequent, the tidal flow may be subject to hydraulic transitions from supercritical to
subcritical conditions, and viceversa, and the flow field has likely a two dimensional
character. These processes are particularly difficult to handle numerically when
the step-like transition formed at the channel head grows substantially in height.
The temporal evolution of the energy slope computed throughout a tidal cycle
with the 1D hydraulic model is characterized by the formation of spikes as the bed
wets/dries. These spikes are responsible for the formation of large bed shear stresses
that, in turn, may alter significantly the local bed topography, with the consequent
formation of a local scour and of wiggles in the longitudinal bed profile.

Despite these numerical difficulties, some preliminary conclusions could be drawn
when SSC, SLR and vegetation are taken into account.

For the depositional scenario, the greater is SSC, the shallower and narrower
becomes the channel. As the rate of RSLR is increased, the wiggles that may form
near the channel head are progressively smoothed out. Indeed, higher SLR implies
that wetting and drying occurrence reduces, improving the model performance. The
vegetation cover acts as a width stabilizer, inducing small fluctuations in cross
sectional width for different SSC values. Additionally, vegetation encroachment
on the marsh surface produces two competing effects. On the one hand, enhanced
marsh accretion associated with the increased particle trapping and with the organic
production by halophytic plants, increases marsh elevation in the tidal frame, thus
reducing the landscape forming tidal prism and the size of channel cross sections.
On the other hand, the increased flow resistance on the vegetated marsh promotes
flow concentration within the channel, leading to channel cross sections with smaller
width-to-depth ratios, namely to more incised channel sections. Present simulations
indicate that the second process is more important in marshes which are lower in
the tidal frame, whereas the first process is more important in marshes higher in the
tidal frame when most of the tidal fluxes are already confined within the channel.

When forcings are not able to offset each other, the system cannot reach an
equilibrium but it evolves quickly: if the sediment input prevails, the basin tends
to infill, while if the sea level rise prevails, the basin is doomed to drown. When
forcings are off-balance, the effects of vegetation encroachment only retardates the
attainment of the final equilibrium but does not change its nature.





Chapter 6
Conclusions

The aim of this thesis was to study the plano-altimetric evolution of a tidal
channel relaxing few simplifying assumptions (i.e. the quasi-static approximation
for tide propagation and the related hydrodynamic field) embedded in previous
models and furthermore to consider wetting and drying phenomena and the effects
of sedimentation, sea level rise and vegetation growth. The study concerns the
evolution of a 3D rectangular basin cut through by a straight funneling channel,
flanked by lateral intertidal platforms. The open channel flow was solved by using
a one-dimensional (1D) hydrodynamic model developed to describe the flow field
accounting for the contribution of the lateral shoals, to handle a large variety of
channel morphology, to tackle wetting and drying processes that represent an ubiq-
uitous feature of channels and shoals in tidal landscapes. The 1D hydrodynamics
was “validated” by considering a few test cases suggested in Balzano [1998] and
adopted here to benchmark the results of the new model against those of a full-
fledged 2D model that solves the complete shallow water equations. Given the 1D
flow field and the spatio-temporal distribution of the energy slope, the distribution
of bed shear stress is computed along each transect of the tidal basin. Deposition
and erosion rates are then computed by assuming a constant sediment supply (SSC)
and neglecting the contribution of bed-load transport, and the bathymetry is then
suitably updated to account for changes in the morphology of the landscape through
the morphodynamic loop. The tidal channel evolution has been investigated in re-
lation to three different scenarios which progressively include different processes. In
the purely erosional scenario, only sediment erosion is assumed to shape the channel.
In the depositional scenario, erosion sums to sea lever rise (SLR) and settling depo-
sition driven by SSC: the intertidal platforms within the basin thus accrete as the
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channel incision proceeds. Finally, in the vegetation scenario sediment trapping by
vegetation and organic soil production sum to the previously considered processes.

The results of the simulations carried out to characterize the plano-altimetric
evolution of a tidal channel can be summarized as follows.

• Under purely erosive conditions, the model produces a larger variety of syn-
thetic channel morphologies which, overall, match cross sectional geometry
measured in the field [Marani et al., 2002] or computed by other models [Lan-
zoni and D’Alpaos, 2015].

• The synthetic channel morphologies follow the OBJM law, relating the cross-
sectional area A and the tidal prism P . A slight offset is observed for the
interception with the A axis, implying larger values of A for a given P . This
result is likely due to the friction relationship (Gauckler-Strickler) adopted
in the 1D model [D’Alpaos et al., 2009a]. Other deviations are observed for
small sections, far from the inlet and highly subjected to wetting and drying
cycles [Marani et al., 2002].

• The geometry initially imposed to the tidal basin is found to possibly affect the
final channel configuration only when considering the purely erosive scenario.
The use of a cosine function to shape the initial incision introduced to trigger
the tidal channel formation minimize the influence of the initial conditions.

• As soon as the intertidal platforms adjacent to the main channel grow up to
mean sea level (MSL), vegetation starts to grow on them affecting friction and
depositional processes. Vegetation encroachment exerts a stabilizing effect on
main channel widths, which keep approximately constant if sediment supply
is increased (at least for the investigated range of SSC).

• The equilibrium configuration reached by the tidal channel under the effects
of sea level rise, sediment supply and vegetation is controlled by two counter-
acting effects associated to the presence of vegetation and treated separately
by other models.

- When the lateral platforms set at an equilibrium just above MSL (i.e.,
for small SSC), the increased flow resistance on the lateral intertidal plat-
forms favors flux concentration within the channel [Temmerman et al.,
2007].

- Conversely, when the lateral platforms have elevations close to higher
water levels (i.e., for large SSC), the flow turns out to be already confined
within the channel and, hence, vegetation favors a decrease in the tidal
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prism due to the higher salt marsh elevations [DAlpaos et al., 2005]. In
this case, cross sections tend narrow and shallow and, consequently, large
deviations are evident with respect to OBJM law.

Clearly, further improvements can be introduced in the present modeling frame-
work. A more refined treatment of the step-like transition between the channel
head and the upper landward tidal platform has to be developed, in order to avoid
spikes in the temporal evolution of the energy slope and, therefore, unrealistic scour
and deposition peaks at the channel head. Bed load transport could be accounted
for when evolving the bed on the long term scale. The assumption of a constant
SSC to surrogate external sediment supply could be relaxed, through a 2D descrip-
tion of the spatio-temporal distribution of SSC to be used when updating in time
the bed topography. All these additional ingredients are deemed to improve the
verisimilitude of the computed equilibrium configuration.





Appendix A
1D model validation: additional
results

The 1D model described in chapter 2 has been tested setting the floodplain
height of the three reference bathymetries (Figure A.1) at ztf = −0.45 m. The
comparisons between 1D and 2D models are shown in the following pages.

Figure A.1: The three bathymetries tested: in the panel A prismatic channel with compact cross
sections, in the pannel B non-prismatic channel with compound cross sections and in the pannel C
a non-prismatic channel with both compact and compound cross sections.
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Figure A.2: Water level oscillations computed for bathymetry 1 (ztf = −0.45 m). a) landward
section; b) halfway cross section; c) seaward section. The water levels are tracked on the channel
axis (black), on the tidal flat edge (red) and on the lateral boundary of the tidal domain (green).

Figure A.3: Temporal distribution of the cross-sectional discharge Q computed for bathymetry 1
(ztf = −0.45 m). a) landward section; b) halfway cross section; c) seaward section.
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Figure A.4: The cross sectional discharge Q is plotted as a function of the water stage h for
bathymetry 1 (ztf = −0.45 m) a) landward section; b) halfway cross section; c) seaward section.

Figure A.5: a) Maximum shear stress τmax and b) velocity Umax computed during a tidal cycle
along the longitudinal axis fo the tidal basin with bathymetry 1 (ztf = −0.45 m).
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Figure A.6: Water level oscillations computed for bathymetry 2 (ztf = −0.45 m). a) landward
section; b) halfway cross section; c) seaward section. The water levels are tracked on the channel
axis (black), on the tidal flat edge (red) and on the lateral boundary of the tidal domain (green).

Figure A.7: Temporal distribution of the cross-sectional discharge Q computed for bathymetry 2
(ztf = −0.45 m). a) landward section; b) halfway cross section; c) seaward section.
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Figure A.8: The cross sectional discharge Q is plotted as a function of the water stage h for
bathymetry 2 (ztf = −0.45 m) a) landward section; b) halfway cross section; c) seaward section.

Figure A.9: a) Maximum shear stress τmax and b) velocity Umax computed during a tidal cycle
along the longitudinal axis fo the tidal basin with bathymetry 2 (ztf = −0.45 m).
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Figure A.10: Water level oscillations computed for bathymetry 3 (ztf = −0.45 m). a) landward
section; b) halfway cross section; c) seaward section. The water levels are tracked on the channel
axis (black), on the tidal flat edge (red) and on the lateral boundary of the tidal domain (green).

Figure A.11: Temporal distribution of the cross-sectional discharge Q computed for bathymetry 2
(ztf = −0.45 m). a) landward section; b) halfway cross section; c) seaward section.
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Figure A.12: The cross sectional discharge Q is plotted as a function of the water stage h for
bathymetry 3 (ztf = −0.45 m) a) landward section; b) halfway cross section; c) seaward section.

Figure A.13: a) Maximum shear stress τmax and b) velocity Umax computed during a tidal cycle
along the longitudinal axis fo the tidal basin with bathymetry 3 (ztf = −0.45 m).





Appendix B

Shear stress distribution equation
derivation

The shear stress distribution 4.9 is here derived. The momentum balance aver-
aged over turbulence along the coordinate x reads as follows:
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Assuming that the horizontal scale of the hydrodynamic processes are dominant
with respect to local depth ( ∂
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after multiplying each side for the metric coefficient hn:
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Hence, the integration over depth along the normal direction, from the free
surface Dζ to the bottom bed ζ0, reads as follows:
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Each term on the left side is computed using the Leibniz’ rule as follows1:
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Similarly, the depth integration on the right-hand side is computed as:
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Substituting the previous positions and singling out the kinematic and dynamic
boundary conditions, the depth integration along the normal direction yields:
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Hence, taking out the simplifications and assuming negligible the temporal ac-
celeration, the previous equation becomes:

ϱ
∂

∂x

∫ Dζ

ζ0
(hn u

2
x)dζ+ϱ ∂

∂n

∫ Dζ

ζ0
(ux uy)dζ = −τ−ϱg∂H

∂x

∫ Dζ

ζ0
hndζ+

∂

∂x

∫ Dζ

ζ0
(hn Txx)dζ+ ∂

∂n

∫ Dζ

ζ0
Tnxdζ

Moreover, we assume that the stream flow and shear stress variations experi-
enced along the longitudinal direction are much smaller than those occurring in the
traversal and vertical direction, which means:

∂

∂x

∫ Dζ

ζ0
(hn Txx)dζ ∼= 0

∂

∂x

∫ Dζ

ζ0
(ux uy)dζ ∼= 0

Considering these two positions, the depth averaged equation along the normal
direction reads:

τ = −ϱg∂H
∂x

∫ Dζ

ζ0
hndζ − ϱ

∂

∂x

∫ Dζ

ζ0
hnu

2
xdζ + ∂

∂n

∫ Dζ

ζ0
Tnxdζ

Looking at this equation, we note that
∫Dζ

ζ0
hndζ is a local hydraulic radius dA

dn ,
where dA is the area between two successive normals. Then, the velocity along the
normal is written as u = β̂U , where U is the mean velocity along the normal and
β̂ is a corrector coefficient, which is ∼= 1 when the velocity profile is log-distributed.
Since the cross section may be also compound, a Coriolis coefficient α is introduced
to take into account non-uniform velocity distribution in the cross-sectional area.
Given these considerations, the last equation yields what we were looking for:
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τ = ϱgS
dA

dn
+ ∂

∂n

∫ Dζ

ζ0
Tnxdζ (B.3)

S = − ∂

∂x

(
H + αcor

U2

2g

)
(B.4)
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