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Abstract

A new nonlocal theory of continuum, called Peridynamics, was introduced re-

cently. While the classical theory of solid mechanics employs partial derivatives in

the equation of motion and, consequently, requires the derivability of the displace-

ment field, Peridynamics employs an integral formulation which leads to the pos-

sibility to analyze structures without specific techniques whenever discontinuities,

like cracks, are involved. Peridynamics has proven to be very suitable to predict

failure of materials and to handle several phenomena such as crack branching and

multiple crack interaction in all its variants, bond-based and state-based. The for-

mer is a particular case of the latter, which can also be found in two versions, the

ordinary, in which the interaction force between two nodes is aligned with their

current relative position, and the non-ordinary, in which interaction forces can

have different directions and classical models may be directly introduced in the

formulation.

In this thesis, Peridynamics is adopted for numerical analyses. Both static and

dynamic solvers are employed to reproduce fracture patterns for brittle homoge-

neous isotropic materials. In particular, the static solver adopts a direct stiffness

matrix approach where the linear system of equations is solved by the biconjugate

gradient stabilized method, while the dynamic solver employs an explicit velocity-

Verlet time integration scheme.

Two types of convergence in the numerical implementation of Peridynamics are

investigated: δ-convergence, which is related to the maximum distance of nonlocal

interaction (called horizon, δ), and m-convergence, where the m-ratio is the ratio

between the grid spacing and the horizon. Both the bond-based formulation of a

brittle linear elastic material model (called “prototype microelastic brittle model”)

5



6 Abstract

and the corresponding ordinary state-based formulation (called “linear peridynamic

solid model”) are adopted. Differing failure criteria are discussed and implemented,

and numerical results are compared to analytical data and experimental tests found

in literature.



Summary

In the classical continuum theory of solid mechanics, the mathematical frame-

work involves partial derivatives to represent the state of deformation of a solid

body. A significant drawback due to derivatives is related to the unphysical results

given near the discontinuities, because they are undefined wherever a continuous

field of displacements is not verified, such as in the presence of dislocations, voids,

cracks, interfaces between different phases within the same body and grain bound-

aries.

Various techniques were employed for overcoming this incapability of the classi-

cal theory in describing material behavior in such conditions; in fact, spontaneous

formation and growth of discontinuities are of great importance in solid mechan-

ics: they lead to fractures and failures of systems that must be avoided, especially

in aerospace structures, primarily, for safety reasons and, secondly, for economic

purposes.

One of these new approaches concerns employing nonlocal theories, based on in-

tegral formulations (more precisely integro-differential formulations), defined even

when non-derivable displacement fields are involved. Peridynamics is one of these

theories: it was suggested by Stewart Silling in 2000 [1] in order to adopt a con-

sistent formulation describing material behavior not only when a continuous dis-

placement field is provided, but also whenever discontinuities are present, avoiding

partial differential equations or pre-setting of conditions which can influence the

results. There are two versions of peridynamic models: bond-based, which was

introduced first (see [1, 2]) and state-based. In the bond-based version, forces

between two material points depend solely on their relative displacement, their

relative initial position, and material properties. Due to its simplicity compared
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to the state-based version, most of the peridynamic applications have employed

bond-based Peridynamics. However, bond-based models result in several limita-

tions (the same of other atomistic or molecular dynamics models [3], although this

is a continuum theory, not a discrete one), the most important of these is the fixed

value of Poisson’s ratio: 1/4 in 3D or 2D plane strain, and 1/3 in 2D plane stress

(see e.g. [1, 4]). This peculiarity implies other restrictions, such as the impossibil-

ity of reproducing plastic incompressibility in an accurate way. Nevertheless, for

many purposes, bond-based Peridynamics fits the requirements and gives satisfy-

ing results. State-based peridynamic models remove these restrictions by allowing

the interaction (“bond”) between a pair of points to potentially depend on all other

bonds connected to the two points.

Moreover, there are two types of state-based peridynamic formulations: ordi-

nary and non-ordinary [2, 5, 6]. In the former, the forces between two material

points act along the vector connecting the points in the deformed configuration. In

the latter, such characteristic is not present. The ordinary state-based formulation

requires specific derivation of constitutive models, see examples of viscoelasticity

and plasticity models in [7, 8]. For non-ordinary state-based formulation, two

approaches have been proposed: the development of an explicit model for the peri-

dynamic force state [2] and the development of a map thanks to which classical

mechanics constitutive relations are incorporated to indirectly establish the rela-

tionship between the interaction force and the deformation. The latter approach

is called correspondence model [2].

The purpose of this thesis has been the investigation of possible advantages and

drawbacks of this new and unexplored theory, so to identify some guidelines for

choosing parameters fundamental for the analyses and the development of models

for particular structural analyses.

In the first year of the PhD course, the state of the art of this theory was studied

and the bond-based linear and nonlinear static solvers developed in Matlabr were

analyzed, employed and improved.

During the second year of PhD course, the author of this thesis has focused

her attention on the second version of the theory, based on concepts of advanced
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mathematics. She has become familiar with it, thanks to the functional analysis

course that she had attended in the first year.

One of the main original contributions of the present work to the existing

literature is the development of the 2D linearization of the state-based “linear

peridynamic solid” model in the state-based formulation. These models are useful

whenever simplifying assumptions of plane stress and plane strain can be adopted

for the simulation of a system, which, otherwise, would be described by a 3D model

requiring high computational resources (time and memory). Particular attention is

paid to this aspect, because, being a nonlocal model, implementing a peridynamic

code is, in general, more computationally expensive than a code based on a local

approach. The study of the state-based version started before going abroad and

the development of the 2D models was completed during the six month stay at the

University of Nebraska-Lincoln in USA. Both static and dynamic codes have been

developed and the relevant parameters of these models have been analyzed. These

linearized models are described in chapter 1.2.2.

The study of failure criteria in state-based Peridynamics and the improvement

of the algorithms in Matlabr to accelerate the codes and to optimize memory

resources have been the main issues of the third year research. Some failure criteria,

presented in section 1.2.3, have been proposed for brittle homogeneous linear elastic

materials. They are criteria based on the maximum admissible stretch: a given

bond fails at a critical stretch obtained by the work required to break that bond

and this work is related to the fracture energy of the material. The results are

compared to experimental data both for static and for dynamic cases, in bond-

based and in state-based formulations. The detailed description of the algorithms

can be found in chapter 3, while the results are illustrated in chapters 4 and 5.





Sommario

Nella teoria classica della meccanica dei solidi, la formulazione matematica

include derivate parziali, grazie alle quali si possono rappresentare stati di defor-

mazione come funzioni degli spostamenti relativi dei nodi in cui è discretizzato il

sistema continuo. Una carenza rilevante dovuto all’utilizzo delle derivate è legato ai

risultati privi di significato fisico ottenuti in prossimità delle discontinuità perché le

derivate non sono definite laddove manca un campo di spostamenti continuo, come

può capitare in presenza di dislocazioni, vuoti, cricche, interfacce tra fasi differenti

nello stesso corpo e bordi dei grani.

Dato che la formazione spontanea e la crescita di discontinuità sono di grande

importanza in meccanica dei solidi, diverse tecniche sono state utilizzate per su-

perare questa incapacità della teoria di descrivere il comportamento dei materiali

in tali condizioni, perché situazioni in cui le strutture sono incapaci di continuare

a svolgere la propria funzione devono essere evitate, specialmente per strutture

aerospaziali, in primo luogo, per ragioni di sicurezza ed, in secondo luogo, per

motivi economici.

Uno di questi nuovi approcci riguarda l’utilizzo di teorie non locali basate su

formulazioni integrali (più precisamente formulazioni integro-differenziali), definite

anche quando campi di spostamento non derivabili sono presenti. La teoria “Peri-

dynamics” è una di queste teorie: è stata proposta da Stewart Silling nel 2000

[1] così da adottare una formulazione unica e coerente capace di descrivere i com-

portamenti dei materiali in corpi sia continui che discontinui, evitando l’uso di

equazioni alle derivate parziali o la definizione a priori di alcune condizioni che

possono influenzare (e in un certo senso favorire) dei risultati. Ci sono due versioni

di modelli peridinamici: la state-based, e un suo caso particolare, la bond-based, che
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è stata introdotta per prima (vedi [1, 2]). Nella versione bond-based, le forze tra

due punti materiali dependono unicamente dal loro spostamento relativo e dalla

loro posizione relativa iniziale, oltre che dalle proprietà del materiale. Vista la sua

semplicità a confronto con la seconda versione, la maggior parte delle applicazioni e

degli articoli sulla Peridynamica ha adottato la formulazione bond-based. Tuttavia,

i modelli nella formulazione bond-based sono caratterizzati da alcune limitazioni

(le stesse dei modelli di altre teorie atomistiche e dei modelli di dinamica moleco-

lare [3], anche se la Peridinamica è una teoria del continuo, non discreta), la più

notevole di queste è il modulo di Poisson fisso: 1/4 nelle simulazioni 3D oppure in

caso di deformazione piana 2D, e 1/3 nelle simulazioni in stato di tensione piana

2D (si veda per esempio [1, 4]). Questa particolarità implica altre restrizioni, come

l’impossibilità di riprodurre la condizione di incomprimibilità plastica in maniera

accurata. Tuttavia, per la maggior parte degli scopi, la formulazione bond-based

è sufficiente e fornisce risultati approssimati soddisfacenti.

I modelli della versione state-based rimuovono queste restrizioni, permettendo

che le interazioni tra due punti possano dipendere da tutte le interazioni (i “bond”)

connessi ad almeno uno dei due punti, tramite delle mappe avanzate chiamate

“states”. Inoltre, ci sono due tipi di formulazioni state-based: la ordinary e la

non-ordinary [2, 5, 6]. Nella formulazione ordinary, le forze tra due punti materiali

agiscono lungo la congiungente i due punti nella configurazione deformata, mentre

nella formulazione non-ordinary, questa caratteristica non è più vera. La formu-

lazione ordinary della state-based necessita di modelli costitutivi appositamente

derivati, come per esempio i modelli di viscoelasticità e platicità in [7, 8]. Per la

formulazione non-ordinary della state-based, due approcci sono stati proposti: lo

sviluppo di un modello esplicito per l’espressione dello state della forza peridinam-

ica [2] e lo sviluppo di una mappa grazie alla quale le relazioni costitutive della

meccanica classica sono incorporate per stabilire indirettamente la relazione tra la

forza d’interazione e la deformazione. I modelli derivanti dal secondo approccio

sono chiamati modelli correspondence [2].

L’argomento di questa tesi è lo sviluppo di modelli per particolari tipi di analisi e

la ricerca di possibili vantaggi e inconvenienti di questa teoria nuova ed inesplorata,
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così da identificare alcune linee guida per la scelta di parametri fondamentali per

le analisi.

Durante il primo anno del corso di dottorato, lo stato dell’arte relativo a questa

teoria è stato studiato e i solutori statici lineari e non lineari nella formulazione

bond-based sviluppati precedentemente in ambiente Matlabr sono stati analizzati,

usati e migliorati.

Durante il secondo anno, l’autrice di questa tesi si è concentrata sulla seconda

versione, basata su concetti di matematica avanzata con cui ha preso dimestichezza

grazie al corso di analisi funzionale seguito il primo anno. Uno dei principali con-

tributi originali alla letteratura esistente presenti in questa tesi è lo sviluppo dei

modelli linearizzati 2D del modello solido lineare nella formulazione state-based.

Questi modelli sono particolarmente utili quando semplificazioni di stato piano di

tensione o di deformazione possono essere assunte per la simulazione di un sistema

tridimensionale, che altrimenti verrebbe descritto da un modello 3D che neces-

siterebbe di risorse computazionali più elevate (in termini di tempo e memoria).

Una particolare attenzione è richiesta per quest’aspetto, perché, essendo un approc-

cio non locale, implementare un codice basato sulla teoria peridinamica richiede in

generale più risorse computazionali di un codice basato su un approccio locale. Lo

studio della versione state-based è iniziato prima di andare all’estero e lo sviluppo

dei modelli 2D si è poi completato durante il soggiorno di sei mesi alla University

of Nebraska-Lincoln negli Stati Uniti. Sono stati sviluppati sia un codice dinamico

che uno statico. I parametri principali di questi modelli sono stati analizzati e i

modelli linearizzati si possono trovare descritti nel capitolo 1.2.2.

Lo studio dei criteri di frattura adottabili nella formulazione state-based e il

miglioramento degli algoritmi in Matlabr per accelerare i codici e ottimizzare le

risorse di memoria e gestione dei dati sono stati gli argomenti principali del terzo

anno. Alcuni criteri di frattura, presentati nel capitolo 1.2.3, sono stati proposti per

materiali lineari elastici omogenei e caratterizzati da frattura fragile. Sono criteri

basati sul massimo allungamento: un’interazione non locale (“bond”) viene meno

quando un valore critico di allungamento è raggiunto; questo valore di allungamento

critico è calcolato dal lavoro richiesto per rompere il bond e questo lavoro è a sua
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volta legato all’energia di frattura. I risultati ottenuti sono stati confrontati con

dati sperimentali per casi sia statici che dinamici, sia nella formulazione bond-

based che in quella state-based. La descrizione dettagliata degli algoritmi si trova

nel capitolo 3, mentre i risultati sono riportati nei capitoli 4 e 5.
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α1 rotation angle between global and local reference systems

β crack propagaton angle in a mixed mode case
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ω influence function
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c bond stiffness
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H set of all bonds in SBP

In−1
i , In−1

nx
integral of the internal forces at the n− 1 time step

Ibond matrix storing the initial bonds of the structure

K bulk modulus

[K] stiffness matrix

[K]T tangent stiffness matrix

k′, α constant related to material properties

K (x) shape tensor

K double state, derivative of the force state

kspring stiffness of a spring

k iteration number

Lu integral of internal forces

Lm set of all tensors of order m

m-ratio ratio of the horizon to the grid spacing

M deformation direction state

M maximum number of family nodes

n superscript indicating the time step

N total number of nodes

nx, np, nq ID numbers of nodes in SBP numerical discretization

P force applied on a specimen
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q,m weighted integration volumes in 2D and 3D

R,RT rotation matrix

Rs radius of the SCB specimen

s bond stretch

s0 critical stretch

S semi-distance between the two bottom supports in SCB test

t time

th thickness of a 2D system

t modulus state

T force state

ü acceleration vector relatively to the initial position

u displacement vector

U displacement state

{U} nodal displacement vector

W strain energy density

x reference scalar state

X reference state

xi,xj material points in BBP

x,p,q material points in SBP

ui,uj displacements of point xi,xj

y current position vector

ÿ current absolute acceleration vector
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Classical continuum mechanics

Continuum mechanics is a part of mechanics whose main objective is to predict

the response of a body under the action of external and internal forces. The main

assumptions are

1. that a body has a continuous distribution of matter in the Newtonian space-

time and no reference to its discrete structure at microscopic length scales is

made [13],

2. that contact forces are the only possible type of internal forces (see [14]).

From the 15th to the 18th century, two main areas of analysis were established sepa-

rately, one related to the deformation of solids and one concerning the flow of fluids

[15], while solid/fluid interaction concepts were studied later. Classic continuum

mechanics is a powerful tool which deals with the macroscopically relevant proper-

ties of the material through mathematical models easily treated either analytically

or numerically. The 20th century saw a prosperous development in modern contin-

uum mechanics, thanks to the enrichment of mathematical tools (such as concepts

in tensor calculus, partial differential equations, numerical analysis and so on) and

improvements in information technology allowing to handle big amount of data for

its numerical implementation.

Classical continuum mechanics can be applied whenever the characteristic length

of the deformation is larger than the representative volume element (i.e. the small-

est volume over which a measurement can be made that will yield a value represen-

tative of the whole) of the response of the material to a homogeneous deformation.

43
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Therefore, the classical continuum theory lacks an internal length parameter that

would allow modeling at different scales referring to the microstructure [16, 17].

Alternative Approaches

The assumptions on which the theory is based justify the use of partial deriva-

tives to represent the strain state of a body. However, these partial derivatives are

undefined along discontinuities, such as cracks, dislocations and interfaces, so any

method employing them breaks down. As a matter of fact, whenever deformation

localizes, the classical continuum theory starts to break down [18, 19, 20, 21, 22]

and eventually fails when discontinuities are involved. More precisely, if the char-

acteristic wavelength of the deformation field is longer than the resolution level

of the material model (i.e. the representative volume), a conventional continuum

description can be adequate [23].

In the last decades, new physical and mathematical models have been inten-

sively developed to overcome the shortcomings of the classical theory, not only to

be able to describe fracture behavior, but also to meet the needs of a growing de-

mand for cutting-edge applications concerning new technological processes and new

materials working either in extreme conditions or with miniaturized components

where microstructures or long-range forces play important roles for the component

behavior [24].

Several approaches were adopted to overcome this huge limitation, such as

higher order gradient continuum models [25, 26, 27, 28] or other remedies involving

cumbersome techniques that treat fracture as a special case instead of an inherent

material behavior [29, 30, 31, 32]. New approaches deal with models taking into

account the microstructure of the materials [33], trying to express macroscopic

behavior of solids from the microscopic level, such as lattice dynamics [34, 35, 36],

or by linking macroscopic properties to microscopic ones [37, 38].

If the displacement is still continuous, for example in a change of phase, then

partial derivatives can, actually, be employed in the weak solution of the underlying

partial differential equation [39], but this is not applicable with material cracks,

where the only useful method seems to be the one redefining the body, with the
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crack considered to be a boundary, where physical laws regarding merely the rel-

evant macroscopic properties are applied [40]. However, this technique can’t be

efficiently employed to keep track of defects if crack patters are complex. In both

cases, crack/discontinuity paths have to be known a priori and the techniques

provide reliable results only for a specific geometry/load configuration. In such

cases, analytical work get more difficult and numerical approximation methods

may become computationally costly.

Nonlocal theories

Material responses that couldn’t yet be described are the primary reason for

the massive development of nonlocal theories, able to take into consideration the

influence of microstructures in the response of elastic media (see [35, 41]). In the

1970s, although finite-element programs made it suddenly feasible to simulate the

distributed cracking observed in failure tests of concrete structures (e.g. concrete

vessels for nuclear reactors), they demonstrated that a local inelastic constitutive

law with strain-softening damage inevitably leads to spurious localization of dam-

age into a zone of limit-to-zero volume [42]. Therefore, new nonlocal models that

were variant with respect to a rescaling of partial coordinates and had an internal

length were proposed.

The nonlocal theory of continuous media establishes a connection between the

classical continuum mechanics and molecular dynamics models [43]. Atomistic

simulations are the most detailed and realistic ones among all the possible models

to describe material behavior, particularly material fractures [44, 45]. They have

been used mostly to understand the basic physical mechanisms of crack formation

and growth, rather than for prediction, because of the limited computational re-

sources available, which make them unsuitable for describing complete engineering

structures. In addition, nonlocal models where the long-range interaction length

is related to the statistical length of heterogeneities [46, 47, 48] have been consid-

erably employed in statistical continuum mechanics, providing the link between

the laws governing the elementary particles and those of gross matter [49]. There-

fore, they are particularly suitable to model phenomena both at small length scale
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related to the intimate structure of materials and at bigger ones.

Nonlocal elasticity [50, 51, 52] has been first developed to improve the agree-

ment between continuum theories and phenomena taking place in crystals on a

scale comparable to the range of interatomic forces (vacancies and dislocations).

For example, nonlocal models do not present classical singularities in the expres-

sions of the stress field at the crack tips [53, 54]. There were some attempts to

extend nonlocal theories to damage [55] and to plasticity [56, 57]. Although non-

local continuum theory leads to finite stress at the crack tips, it still preserves the

derivatives in the formulation which are unsuitable along discontinuities [43, 58].

Other types of nonlocal theories use displacement fields instead of their deriva-

tives to prevent this shortcoming [41, 50].

Peridynamic theory

Peridynamics [1] is a member of the larger class of nonlocal formulations [59] of

solid mechanics [35, 41, 50, 60]. It employs an integro-differential formulation with-

out using partial derivatives; differently from the first introduced nonlocal theories,

it includes nonlinear material behavior and damage within its original formulation,

while most nonlocal theories were proposed for limited material responses.

The word Peridynamics is a portmanteau word coming from two Greek words,

roots of near (peri, περί) and force (dynami, δύναµη). The peridynamic formula-

tion assumes that the body can be considered as a set of material points associated

with an infinitesimal volume of the body. The particles can interact with each other

not through contact (local) forces, like in the classical theory, but through nonlocal

forces. The behavior of each particle depends on these forces computed thanks to

an integral function of the displacement field within a neighborhood of the points

on which the forces are evaluated.

The obvious advantage is that it can be applied to discontinuities without par-

ticular treatment or ad hoc criteria. The motion equation is similar to that of

traditional molecular dynamics [59], in which interaction between discrete parti-

cles (i.e. atoms or molecules) is determined by integration of Newton’s second law

and forces and potential energy depends on molecular mechanic force fields (co-
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valent bonds, electrostatic forces, Van der Waals forces). However, a fundamental

difference between this two theories is that, while in molecular dynamics the mate-

rial body is seen as a collection of discrete particles, in Peridynamics the material

is considered continuous.

Peridynamics takes into consideration all the interaction forces of a point with

points within a finite distance, called horizon, and the stresses at a certain point

depend on the strain of all the points in the subregion corresponding to the horizon

neighborhood, while in classic continuum models the state of a material point is

influenced only by the points in its immediate vicinity, through contact forces. As

the horizon increases, peridynamic models become the continuum form of molec-

ular dynamic models. Peridynamics and molecular dynamics are so similar that

peridynamic integration was recently done with LAMMPS Molecular Dynamics

Simulator [61, 62]. Peridynamic theory turns out to be the link between molecular

dynamic discrete theory and local classical continuum theory, having the possibil-

ity of describing material behavior on different length scales, from macroscale to

nanoscale, since an internal characteristic length (the horizon) can be controlled.

Peridynamic theory also contemplates nonlinear material response and includes

damage as a feature of the original theory. As a result, this theory can capture

spontaneous processes of crack formation and propagation, or any process related

to discontinuities and singularities [63], wherever it is energetically favorable with-

out resorting to special crack growth criteria. EMU computer code [64], the first

peridynamic code, and Peridigm code [65], in which Silling is directly involved,

are continuously developing, since many aspects have yet to be investigated in this

theory.

State of the art

There are two main formulations for peridynamic models (see Figure 1): state-

based (SBP) and bond-based (BBP), which was introduced first [1, 2].
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BOND-BASED 

STATE-BASED 

ORDINARY 

NON-ORDINARY 

CORRESPONDENCE 

NON 

CORRESPONDENCE 

PERIDYNAMICS 

Figure 1: Different types of formulation in Peridynamics.

In the bond-based version, forces between two material points depend solely

on their relative displacement. Bond-based Peridynamics is characterized by some

limitations, such as a fixed Poisson’s ratio: 1/4 in 3D or 2D plane strain, and 1/3

in 2D plane stress [1, 4]. Its value is exactly the same found by the Cauchy relation

for a solid made of a lattice of points that interact only through a central force

potential [66]. Nevertheless, bond-based Peridynamics has been used to predict

dynamic crack growth (see e.g. [67, 68, 69, 70, 71, 72, 73]) and fatigue crack

growth (see e.g. [74, 75]). As a matter of fact, to date, most of the peridynamic

applications use the bond-based version. The effectiveness of peridynamic models

has already been demonstrated in several sophisticated applications, including the

fracture and failure of composites [71, 76], crack instability [77, 67], the fracture of

polycrystals [78, 79], and nanofiber networks [80, 73].

SBP models remove this restriction by allowing interactions between two points

to also depend on elongations of all other bonds connected to these two points.

There are two types of SBP formulations: ordinary and non-ordinary [2, 5, 6]. In

ordinary peridynamic formulations, the forces between two material points acts

along the vector connecting the points in the deformed configuration. In non-

ordinary formulation, this is not true. Ordinary state-based formulations require

explicit derivation of constitutive models [7, 8].

For non-ordinary state-based formulation, Silling proposed two approaches: the

development of explicit models for the peridynamic force states [2] and the devel-

opment of maps, called correspondence models [2], incorporating classic mechanics

constitutive relations to relate interaction forces and deformations. Non-ordinary
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SBP models have been applied to study material elasticity, plasticity, fatigue and

dynamic fracture [81, 82, 83, 84, 85, 86]. Correspondence models suffer from the

problem of zero-energy modes [81]. Zero-energy modes arise in the correspondence

formulation because of the weak coupling between peridynamic points and their

own families [87]. Non-ordinary Peridynamics is characterized by a formulation

similar to that of other meshfree methods: in fact, for uniform grid, the discretiza-

tions for the Element free Galerkin Method [88], the Reproducing Kernel Particle

method [89] and Smoothed-Particle Hydrodynamics [90, 91, 92] are equivalent to

SBP discretization [93]. All these methods seem to suffer from the zero-energy

mode problem and different techniques to control or minimize it have been pro-

posed in [94, 95, 96] and in particular in [97, 98, 99] for the correspondence formula-

tion. However, the problem is not completely solved [81, 87]. Ordinary state-based

formulation is not affected by zero-energy modes [85, 86].

Meshfree methods are characterized by other problems, such as how to impose

boundary conditions: in the discretization of the classical equation it has been an-

alyzed in papers as [100, 101, 102], while for Peridynamics this has been addressed

in [103, 104] and further investigated for coupling with FEM in [64, 105, 106].

In this thesis, a uniform grid discretization with either a bond-based formula-

tion or an ordinary state-based one are employed for all the numerical simulations.

The “peridynamic stiffness matrix” for a linearized ordinary SBP model was de-

rived, similarly to what was derived for peridynamic bond-based in [107]. The

peridynamic stiffness matrix was used to solve elastostatic problems to verify that

the peridynamic model is able to reproduce the intended elastic material proper-

ties, in particular different Poisson’s ratios. While the peridynamic model should

converge, in the limit to zero volume of the nonlocal region (the peridynamic hori-

zon neighborhood), to the classical elasticity model [5]), the practical size of the

nonlocal region to obtain solutions of acceptable engineering accuracy is analyzed.

In the thesis, the difference between the solution of peridynamic problems and the

exact solutions of the classical local problems is called “error”, even if it is not an

error: the two problems are distinct and the peridynamic formulation is expected

to converge to the classical one only in the limit to zero horizon.
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The main original contributions presented in this thesis are the following:

• the plane stress and the plane strain formulations for linearized 2D State-

Based Peridynamics were derived in section 1.2.2.

• A set of fracture criteria, for the State-Based Peridynamics, has been pro-

posed and numerically evaluated in section 1.2.3.

• A strategy to drastically reduce the computational time required for the

assembly of stiffness and tangent matrix was defined in section 3.3.

• Convergence of the peridynamic solution to the classical elasticity by means

of static analyses are studied in chapter 4.

• A new set of influence functions has been proposed and their effects on peri-

dynamic solutions has been studied in section 4.2.3.

• Numerous numerical analyses (both static and dynamic) have been performed

to show the capabilities of Peridynamics to reproduce experimentally ob-

tained crack paths (also in mixed mode fracture) in chapter 5.

In addition, chapter 1 shows in detail the two main formulations of Peridynam-

ics, in particular, it presents the linearized versions and the adopted failure criteria.

Chapter 2 shows the main aspects of Peridynamics in its discretized counterpart,

so to highlight important parameters for the numerical simulation to converge.

Chapter 3 shows the developed solvers. In chapters 4 and 5, the results of the peri-

dynamic problems are compared to the analytical solutions, when existing, or with

experimental data. Chapter 6 draws conclusions and highlights some comments

and possible future activities, with this thesis as a starting point.
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Mathematical Formulation

As previously mentioned, Peridynamics has been first introduced in 2000 by

Silling [1]. Its introduction is due to his author’s dissatisfaction with the existing

theories lacking a comprehensive description of some of the most important phe-

nomena involved in material responses, in particular formation of discontinuities

and growth of cracks. In fact, most of the existing theories have been employing

ad hoc criteria lacking generality, since they are developed according to specific

geometric and load conditions and give good approximate results merely for those

cases.

Differently from the classical theory, Peridynamics uses an integral formulation

to compute the forces on a material particle and such equation remains valid even

if discontinuities are involved. A unique framework of mathematical equations can

be used both when discontinuities are involved and when they are not, thanks to

the integral formulation. In this way, not only crack propagation direction do not

have to be known a priori, but also crack initiation points do not have to be located

in advance, since both phenomena are inherently captured.

Peridynamics is included in the set of nonlocal theories, since two body particles

can interact with each other even when separated by a finite distance, provided it

is smaller than a limit distance called horizon, which is a length scale similar to

the one in molecular dynamics; according to this approach, contact forces can be

considered a subset of integral forces in the limit to zero of the horizon and they are

included in the formulation as additional nodal force densities [108]. Nonlocal linear

elasticity and microcontinua have been studied for several decades [52, 60, 109] in

51
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an effort to account for the long-range effects; however, differential operators and

their limitations were still present in the formulation.

The fundamental element of this theory is the connection between two points,

called “bond ”, and two mathematical formulations have been proposed, based on

how bonds influence each other: if each bond acts independently of all the others,

the variant is called Bond-Based Peridynamics (BBP), otherwise it is called State-

Based Peridynamics (SBP).

BBP version was the first proposed by Silling [1]. The peridynamic force ex-

erted through the bond can be unequivocally described by the relative initial and

current position vectors between the two points identifying the bond, provided that

the material properties have been associated to these points (not just microscopic

ones, such as density, but also macroscopic ones, such as Young’s modulus and

Poisson’s ratio): no further information from their surrounding points or bonds is

required. Even though the main concept is preserved, the second version, SBP,

has been innovative in its formulation. It has been introduced in 2007 [2] and

more extensively described in 2010 [110]. Bonds can influence each other thanks to

mathematical functions called states. Besides, the definitions of (nonlocal) strain

and stress are included in the formulation. In this way, limitations typical of molec-

ular dynamics or atomic lattice models, such as a fixed Poisson’s ratio [3, 66], are

overcome, so that general behaviors and complex phenomena can be described.

The peridynamic equation of motion for the BBP version is the following [1]:

ρ(xi)ÿ(xi, t)dVi =

[
∫

Hxi

f (uj (t)− ui (t) ,xj − xi) dVj + b(xi, t)

]

dVi (1.1)

usually found in the form where the dimension of the terms is [Force]/[Length3]

ρ(xi)ÿ(xi, t) =

∫

Hxi

f (uj (t)− ui (t) ,xj − xi) dVj + b(xi, t) (1.2)

where ρ(xi) is the density of the point at the located at xi, ÿ(xi, t) its current

acceleration vector (i.e. y(xi, t) is its current position vector, see Figure 1.1), Hxi

the neighborhood of the point xi containing all the points xj interacting with i,

f the pairwise force function, ui (t) is the displacement of point xi, dVj is the

infinitesimal volume associated to a xj point and b(xi, t) is the given body force

density.
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Figure 1.1: Description of the geometric quantities involved in Eq. (1.2) in a 2D

case.

As for the SBP, the integral of the internal forces is substituted by the integral

of the force state

ρ(x)ÿ(x, t) =

∫

H

{T [x, t] 〈p− x〉 − T [p, t] 〈x− p〉} dVp + b(x, t) (1.3)

where T [x, t] 〈p− x〉 is the force state at time t, applied to the bond 〈p− x〉 and

at point x, dVp is the infinitesimal volume associated to p.

In both formulations, the horizon δ is the maximum distance at which two

points are connected by a bond (i.e. the maximum initial length of a bond is

equal to δ), but that does not mean that it is the maximum distance at which

a peridynamic force acts between two points for both of them - this aspect is

explained in the linearization process.

As for the boundary conditions, the enforcement of nonstandard nonlocal dis-

placement loading conditions in Peridynamics has been studied in [103] and re-

quires special treatments similar to those in the meshfree Galerkin methods [111].

Coupling schemes with the finite element method [112, 113], ghost particles [61]

and alteration of particle volume integration near the boundary [114] have been

developed to impose essential boundary conditions.

Let us consider a body subjected to mechanical loads and divide it into two

domains (i.e. halves of the horizon neighborhood) [114, 115]: the material points

located in domain Ω+ interact with the points in domain Ω−, as shown in Figure

1.2. The force densities acting on points in domain Ω+ must be determined by

integrating the response function over domain Ω− as
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∫

Ω−

f dV− (1.4)

The resulting force can be computed by volume integration of these force den-

sities over domain Ω+

F =

∫

Ω+

∫

Ω−

f dV−dV+ (1.5)

 

  

Figure 1.2: Boundary conditions: interaction of a point in domain Ω+ with domain

Ω− and force densities acting on domain Ω+ due to domain Ω−.

Therefore, the tractions or point forces cannot be applied as boundary condi-

tions, since their volume integrations result in a zero value: they are applied over

the volumes as body forces, displacements, and velocities [114].

In general, being a nonlocal model, Peridynamics suffer from a “surface effect”:

the constant parameters linking the peridynamic model to the material properties

are computed assuming the horizon neighborhood of the point fully embedded in

the body, but this is not true whenever a point is near a surface. Due to the lack of

integration points, the behavior of the material near the boundary is unexpected.

Several studies have been done to avoid it or at least reduce it [64, 116], but in the

simulations in this thesis no surface correction are adopted because the existing

techniques are not general.
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The difference between these two variants is explained in the following para-

graphs through an image connected to simple concepts. Looking at Figure 1.3,

imagine that the rope is a bond of the structure and that each person in the pic-

ture represents a particle in the analyzed body. In Figure 1.3, the two nodes are

represented by the two individuals pulling with the same amount of force. They

“behave” similarly towards that specific bond (i.e. the rope), that’s the reason why

they are portrayed as twins (i.e. considering a different rope connected to one of

the two main protagonists of this figure, the individual will change aspect and will

look like a twin of the guy at the other end on the new rope). No other particle

(person in the figure) affects their pairwise interaction. The crowd is just there

and see their game and does not take part in it.

Figure 1.3: Representation of BBP theory through a play.

In order to compare the material behavior simulation of BBP and SBP, a more

detailed picture (Figure 1.5) of what the twins are actually pulling is needed. They

are not pulling one rope, but two at the same time through a rigid handle: one of

the ropes is connected to a fixed pole (Figure 1.3 shows it as a black stick while

Figure 1.5 as a black circle), the other is directly linking the twins. The force

exclusively exerted by one twin can be seen in the tension of the rope connected

to the fixed pole (see Figure 1.4: their forces are independent from each other, but

they turn out to be equal in magnitude due to the BBP formulation).
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Figure 1.4: Representation of the actual forces exerted by the twins on the rope

connected to the fixed pole (the black circle).

What can be computed through the BBP formulation is the tension of the rope

linking the two twins. The total tension acting along the rope is twice the single

twin force. Therefore, every node contributes for half of the total force acting along

a bond [110]. Huilong et al. in [117] describe them as the algebraic sum of the

active force exerted by the particle and the passive (or received) one exerted by the

other particle on the first one. In BBP, they are always equal in magnitude1 for a

homogeneous material. However, the internal force computed in the BBP theory

does not take into consideration these forces separately, its contribution is directly

the algebraic sum (i.e. points contributing for exactly half of the total force has

been formally pointed out only when SBP has been proposed, 10 years after the

introduction of BBP). Figure 1.5 shows the forces actively exerted by the single

twin on the upper part of the picture, and their algebraic sum (made by the two

forces and as a unique force vector) in the lower part. BBP explicitly deals with

the forces in the box, the half forces do not take part in the formulation.

1This is theoretically true, but when discretization is involved, issues related to type of grid

and horizon size of the single points might affect the validity of this statement, for example when

the horizon size is not constant throughout the structure, ghost forces arise at the interface and

this statement is not valid anymore.
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Figure 1.5: Representation of the actual ropes pulled by the twins. The forces

explicitly indicated in the BBP formulation are those in the box.

Figure 1.6 shows what happens in SBP. The behaviors of particles connected

by a bond differ from each other, because they depend on the influence of their

surrounding particles. Therefore, the amount of force they “actively” exert on the

other is different (see Figure 1.7).

Figure 1.6: Representation of SBP theory.

Figure 1.7: Representation of the different actual forces exerted by the two indi-

viduals on the rope connected to the fixed pole.

The active forces are those exerted on the rope connected to the fixed pole

(Figure 1.7): in general, they are different from each other. In this thesis, only the
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ordinary type of SBP has been investigated, but, as previously mentioned, SBP is

more general and the exerted forces can be not aligned with the current relative

position vector (in this case, this example would be not thorough).

Figure 1.8: Representation of the actual ropes pulled by the two people. The forces

explicitly indicated in the SBP formulation are those in the red box.

Figure 1.8 shows in the upper part the exerted forces by the guys distinctively,

while it shows their algebraic sum in the lower part. In SBP, the formulation deals

directly with the separate contributions of the two guys and their algebraic sum is

explicitly present in the equation of motion (Eq. (1.3)), while the BBP deals with

the sum (Eq. (1.2)) in a model too simplified to allow for a varying Poisson’s ratio.

In sections 1.1 and 1.2 the two formulations are described in a detailed way.

1.1 BBP Version

Suppose a body B occupies a region in a reference system Oxyz. This theory

assumes that the body is composed by material points located at generic positions

xi to which infinitesimal volumes dVi are associated. The body, differently from

molecular dynamics, is considered to be continuous (at least initially within its

boundary), even if not necessarily homogeneous (i.e. density ρ(xi) can change from

material point to material point) or isotropic. There are, indeed, no assumptions

on the material required for the validity or derivation of the theory, as well as no

assumptions that the internal forces are zero in the reference configuration.
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Consider two points identified by their initial position xi and xj (see Figure

1.9), define the relative position of these two material points in the reference con-

figuration (i.e. at time t = 0)

ξ = xj − xi (1.6)

and their relative displacement at time t ≥ 0 indicated by η

η = u (xj, t)− u (xi, t) = uj (t)− ui (t) (1.7)

xi 

xj Deformed 

yi 

yj 

Def ed

y

uj 

ui 

Undeformed 

 

uj 

ui 
 

Figure 1.9: Relative positions (initial and current), displacements and relative

displacement vector.

Their interaction, called bond, is a pairwise non local force, also called response

function force, which is a vector-valued function of their relative initial position and

of their relative displacement, as well as of the material properties at the points.

Its dimension is force per unit volume squared. In the equation of motion the

acceleration of each material point is influenced by this force through the following

integral.

Lu (xi, t) =

∫

B

f (u (xj, t)− u (xi, t) ,xj − xi) dVj ∀xj ∈ B t ≥ 0 (1.8)

where f is, in fact, the pairwise peridynamic force vector function that the material

point xj exerts on point xi and dVj is the infinitesimal volume associated to point

xj. Thus, the equation of motion proposed in the original version of peridynamic

theory is

ρ(xi)ÿ (xi, t) = ρ(xi)ü (xi, t) = Lu (xi, t) + b (xi, t) (1.9)
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where ρ (xi) is mass density, ÿ (xi, t) is the acceleration of the point2 and b (xi, t)

is a given body force density, which represents the external force per unit reference

volume.

In this first developed theory, each bond is independent of all other local con-

dition, as well as of the deformation steps which might lead to the deformed con-

figuration, since it is referred to the initial configuration. Therefore, any kind of

damage model related to the irreversible rupture of bonds is not yet included.

It is defined a positive number δ called horizon so that the peridynamic force

exists even if two particles are not in contact, provided that their distance is less

than the horizon length

f (η, ξ) = 0 ∀|ξ| > δ, ∀η (1.10)

It is reasonable (in comparison to molecular dynamics, where such a parameter

is not involved) to assume that no significant interaction occurs between points

which are farther than the horizon. As a consequence of this assumption, the

equation of motion is limited to the integration of the forces in the domain Hxi
,

which is a spherical neighborhood (in three-dimensional problems, while it is a

circular neighborhood in two-dimensional problems and a linear neighborhood in

mono-dimensional ones) of xi in B within the range identified by δ:

ρ(xi)ü (xi, t) =

∫

B

f (u (xj, t)− u (xi, t) ,xj − xi) dVj + b (xi, t) (1.11)

∀xi ∈ B, ∀xj ∈ Hxi
, t ≥ 0

in fact, in a more rigorous way, the mathematical domain in the BBP version is

Hxi
= {xj ∈ R

3 | |xj − xi| < δ} (1.12)

The pairwise peridynamic force has to satisfy Newton’s Third Law, for conservation

of linear momentum, so that it has to be

f (−η,−ξ) = −f (η, ξ) (1.13)

2Note that the acceleration of a node may be identified either by ÿ (xi, t) or ü (xi, t), because

they are equal, even though y (xi, t) 6= u (xi, t).
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Conservation of angular momentum has to be satisfied as well, verifying the

condition

(η + ξ)× f (η, ξ) = 0 (1.14)

which means that the force vector has to be parallel to the current relative position

vector, so f (η, ξ) can be also expressed as

f (η, ξ) = F (η, ξ) (η + ξ) ∀ η, ξ (1.15)

where F (η, ξ) is an appropriate scalar value even function.

In BBP, elasticity can be introduced through the definition of microelasticity.

A material is called microelastic if it fulfills the following condition [1]:

∮

Γ

f (η, ξ) · dη = 0 ∀ closed curve Γ, ∀ ξ 6= 0 (1.16)

where dη is an elementary vector path length along the closed curve Γ. Such con-

dition means that the line integral is path independent so that the net work done

by the response force along any closed curve is zero, similarly to elasticity in the

classical theory. In the same way, as Stokes’ Theorem states, if f = (f1, f2, f3) is

continuously differentiable with respect to η = (η1, η2, η3), a necessary and suffi-

cient condition for respecting the previous property is for the vector curl operator

evaluated with respect to the coordinates of η to be zero:

∇η × f = (1.17)

=

(
∂f3
∂η2

−
∂f2
∂η3

)

i+

(
∂f1
∂η3

−
∂f3
∂η1

)

j+

(
∂f2
∂η1

−
∂f1
∂η2

)

k = 0

∀ ξ 6= 0

where, if the orthonormal base of the reference configuration system Oxyz is

(i, j,k).

As a consequence of Stokes’ Theorem, since the vector force field is conservative

and irrotational, the pairwise force function can be derived from a micropotential

function ω, which is a differentiable and scalar-valued function, such that

f (η, ξ) =
∂ω

∂η
(η, ξ) (1.18)
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The micropotential depends only on the relative displacement vector through

the scalar distance between the deformed points. Therefore, a general peridynamic

force function for a microelastic material can be written as a scalar value depending

on the relative distance and is aligned with the relative position vector

f (η, ξ) = H (|η + ξ|, ξ) (η + ξ) ∀ η, ξ (1.19)

where H (|η + ξ|, ξ) is a scalar-valued even function obtained by derivation of the

micropotential (it is F (η, ξ) in Eq. (1.15), but here the dependence on the relative

distance is highlighted).

In BBP theory, the simplest developed model is the prototype microelastic

brittle (PMB) constitutive model [68]. The bonds in such material are similar to

springs in classic solid mechanics. The peridynamic force is a linear function of the

bond stiffness, also called spring stiffness, c, though, generally, it can be a varying

function of the relative position ξ. The ratio between the vector force f and this

spring constant is the bond stretch s; the bond breaks and, consequently, fails

when its stretch reaches a limit value s0, called critical stretch [68]. The details on

how to compute it are in section 1.1.2. After the rupture, the bond is not taken

into consideration anymore, because the process is irreversible. For this type of

material, the scalar-valued even function H (|η + ξ|, ξ) is a linear function of the

spring stiffness and of the bond stretch:

H (|η + ξ|, ξ) =
c (ξ)µ (ξ) s

|η + ξ|
(1.20)

where µ (ξ) is the history dependent scalar-valued function which takes into con-

sideration bond failure state and it is expressed as

µ (ξ) =

{
1 s < s0

0 s ≥ s0
(1.21)

and s is the current bond stretch, which is defined as

s =
|η + ξ| − |ξ|

|ξ|
(1.22)

A clarification has to be pointed out for Eq. (1.21): it would be correct to define

the condition on the maximum time-history stretch (max(s(t)) R s0, for t >
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0) because µ (ξ) = 0 even though the current stretch is lower than the critical

one, assuming that the stretch has overcome the limit s0 during the load history.

Nevertheless, this expression is commonly found in literature, since as soon as the

stretch overcomes the limit, the bond is irreversibly broken and it is not considered

anymore in the computation (no stretch or other variables are computed for the

next steps). This means that, if the current stretch is less than the limit (i.e.

it is still computed), all the stretch values of the previous time steps satisfy this

condition too.

Hence, the pairwise peridynamic BBP force vector for a prototype microelastic

brittle material is

f (η, ξ) = c (ξ)µ (ξ) s
η + ξ

|η + ξ|
(1.23)

The spring constant c for a prototype microelastic brittle material in three

dimensional models results [68]

c =
18K

πδ4
=

6E

πδ4 (1− 2ν)
(1.24)

where K is the bulk modulus of the material, δ the horizon length, E Young’s

modulus and ν Poisson’s ratio. The peridynamic spring constant c for a two-

dimensional structure can be determined by surface-integration of an infinitely

large plate3 in which a uniform expansion loading and a pure shear are applied

separately, so that the elastic energy can be computed both for plane stress and

plane strain conditions [4], from which the values of the bond stiffness is

c =
12E

πthδ3 (1 + ν)

{
plane stress ν = 1

3

plane strain ν = 1
4

(1.25)

where th is the plate thickness.

1.1.1 Linearized prototype microelastic brittle model

In this thesis, the studied cases taken into consideration are mainly focused

on elastic response of materials, even though general peridynamic theory does not

restrict its validity to such limitations and it can be applied to large deformation

3This equation is not valid near the boundary, thus the surface effect arises.
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cases. Dealing with small displacements and deformations, a linearization of the

vector force function can be introduced, by solving the equation in an incremental

approach.

Assume η ≪ 1, the vector force function in a neighbor of the point (0, ξ) can be

represented by a Taylor’s series expansion of the first order. Keeping ξ constant,

the vector force function becomes

f (η, ξ) = C (ξ)η + f (0, ξ) (1.26)

where C (ξ) is a second-order tensor, called micromodulus, of the vector force

which in general can be computed as

C (ξ) =
∂f

∂η
(η, ξ) =








∂fx
∂ηx

(η, ξ) ∂fx
∂ηy

(η, ξ) ∂fx
∂ηz

(η, ξ)

∂fy
∂ηx

(η, ξ) ∂fy
∂ηy

(η, ξ) ∂fy
∂ηz

(η, ξ)

∂fz
∂ηx

(η, ξ) ∂fz
∂ηy

(η, ξ) ∂fz
∂ηz

(η, ξ)








(1.27)

The tensor from Eq. (1.27) can be written as

C (ξ) = ξ ⊗
∂F

∂η
(0, ξ) + F (0, ξ) I (1.28)

where ⊗ is the dyadic product or tensor product between two vectors which

gives as a result a tensor of second order and F is a scalar-valued even function

which relates the force vector to the current relative position vector. C (ξ) is

symmetric, due to the Stokes’ theorem validity for a microelastic material. This

means that a number λ (ξ) exists so that

ξ ⊗
∂F

∂η
(0, ξ) = λ (ξ) ξ ⊗ ξ + F (0, ξ) I (1.29)

Hence, the linearized vector force function can be explicitly reformulated as

f (η, ξ) = [λ (ξ) ξ ⊗ ξ + F (0, ξ) I]η + f (0, ξ) (1.30)

For the prototype microelastic brittle model,

F (η, ξ) = H (|η + ξ|, ξ) (1.31)

where H (|η + ξ|, ξ) is taken from Eq. (1.20). So

F (η, ξ) =
c (ξ)µ (ξ) s

|η + ξ|
(1.32)
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Therefore

∂F

∂η
(η, ξ) =

c (ξ)µ (ξ)

|ξ|

∂

∂η

(

1−
|ξ|

|η + ξ|

)

= −c (ξ)µ (ξ)
∂

∂η

1

|η + ξ|
(1.33)

This derivative becomes [118]

∂F

∂η
(η, ξ) =

c (ξ)µ (ξ)

|η + ξ|3
(η + ξ) (1.34)

and its evaluation at (0, ξ) is

∂F

∂η
(0, ξ) =

c (ξ)µ (ξ)

|ξ|3
ξ (1.35)

From Eq. (1.28)

C (ξ) =








ξx

ξy

ξz







⊗
c (ξ)µ (ξ)

|ξ|3








ξx

ξy

ξz







=
c (ξ)µ (ξ)

|ξ|








ξ2x
|ξ|2

ξxξy
|ξ|2

ξxξz
|ξ|2

ξyξx
|ξ|2

ξ2y
|ξ|2

ξyξz
|ξ|2

ξzξx
|ξ|2

ξzξy
|ξ|2

ξ2z
|ξ|2








(1.36)

where the matrix contains the directional cosines of the bond vector in the global

reference system. The force vector at (0, ξ) is

f (0, ξ) =
c (ξ)µ (ξ)

|ξ|








ξ2x
|ξ|2

ξxξy
|ξ|2

ξxξz
|ξ|2

ξyξx
|ξ|2

ξ2y
|ξ|2

ξyξz
|ξ|2

ξzξx
|ξ|2

ξzξy
|ξ|2

ξ2z
|ξ|2















ηx

ηy

ηz








(1.37)

This procedure can be employed for any starting point, not only for (0, ξ), as

described in Eq. (1.26).

1.1.2 Failure Criterion

The adopted failure criterion for BBP is a maximum stretch criterion introduced

in [68]. The bond stretch s has the same form of the engineering strain in the

classic continuum theory, a linear proportionality between bond elongation and

macroscopic elongation is expected. The critical bond stretch s0 can be related to

macroscopic known quantities such as the energy release rate when the structure

is subjected to isotropic extension till its critical value G0 or the dissipated energy

per unit area of fracture surface during the growing of a crack. This relation can be

established under the assumptions of complete separation of the fracture surfaces
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and of the absence of other dissipative mechanisms [68]. The work required to

break a single bond for the PMB model is equal to

ω0 =

∫ s0

0

H (s) dη =

∫ s0

0

H (s) ξds =
cs20ξ

2
(1.38)

In order to create a new fracture surface, all the bonds crossing the mentioned

surface (i.e. connecting pairs of points of different subregions separate by the sur-

face itself) have to be broken and the energy per unit surface area required to

break them all is equal to the critical energy release rate G0 of classic continuum

theory, as assumed in Griffith’s theory. Griffith’s criterion [119] is a nonlocal cri-

terion, since it is based on the energy balance of the whole material surrounding

the crack. The two energies can be related as

G0 =

∫ 2π

0

∫ δ

0

∫ δ

z

∫ arccos( z
ξ )

0

(
cs20ξ

2

)

ξ2 sinφ dφ dξ dz dθ =
πcs20δ

5

10
(1.39)

where the variables can be seen in Figure 1.10.

z 

 

 

 

 

Figure 1.10: Variables involved in the computation of the critical stretch value.

s0 can be evaluated as

s0 =

√

10G0

πcδ5
=

√

5G0

9Kδ
(1.40)

for three-dimensional structures, while for two-dimensional it becomes

s0 =

√

4πG0

9Eδ
(1.41)
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For mode I opening, the energy release rate can be related to the stress intensity

factor KI or to the fracture toughness through the relation

G0 =
K2

I

E ′
(1.42)

where E ′ = E for plane stress conditions while E ′ = E/ (1− ν2)

The local damage index at the point located at xi is denoted by the function

φ (xi, t) defined as

φ (xi, t) = 1−

∫

B
µ (xi, t) dVj
∫

B
dVj

(1.43)

Therefore, it is the ratio of the sum of broken interactions and all the initial

interactions of the points.

1.2 SBP Version

Peridynamic states were first introduced by Silling in [2] and then described in

a more sistematic way in [110]. They can be considered as functions useful to map

pair of points (or better bonds) into some quantity.

Consider a body B and a positive number representing the maximum inter-

action length, called horizon, usually identified by the Greek letter δ (see Figure

1.11 ). In this body, consider a material point, usually identified by an ID number

nx and its position x in an inertial reference system, and all its family nodes, np

located at p, within its horizon sphere.
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Figure 1.11: Horizon sphere of the material point x within the body B and one of

its family point p.

The general equation of motion is

ρ(x)ÿ(x, t) =

∫

H

{T [x, t]〈p− x〉 − T [p, t]〈x− p〉} dVp + b(x, t) (1.44)

where ρ(x) is the density of the point x, ÿ(x, t) its acceleration at time t, T [x, t]〈p−

x〉 the force exerted by x on p, T [p, t]〈x−p〉 the force exerted by p on x, dVp the

infinitesimal volume associate to point p, and b(x, t) the force density.

Differently from the domain in BBP which is stated in Eq. (1.12), in SBP a

new set of elements, called bond domain, is employed to define the “states”. The

set is

H = {ξ ∈ (R3
r 0) | (ξ + x) ∈ Hx ∩B} (1.45)

H contains vectors, called bonds and it’s centered at 0.

A peridynamic state is a function defined in the bond domain: it is applied

to one or more bonds, so that every state maps them into a quantity. A state is

called scalar if the output quantity is scalar (i.e. the state belongs to the set of

all tensor of order 0, called L0
4), vector if this quantity is a vector (first order) or

4
Lm denotes the set of all tensors of order m, thus L0 = R [2]
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double state if it maps pairs of bonds (ξ, ζ) ∈ H into second order tensors5.

A vector state is equivalent to a second order tensor in the classical theory of

solid mechanics, since it maps vectors into vectors, but it is not required to be

either a linear transformation of ξ or a continuous one. As a matter of fact, any

state may be a noncontinuous, nonlinear function of bonds, differently from the

usual tensors. Besides, while the set of vector states (identified by V) is an infinite-

dimensional real Euclidean space, the set L2 of second order tensors in classical

mechanics has dimension 9. Although the sets are mathematically different, both

of them are real Euclidean spaces, and thus denoted by the same symbols, bearing

in mind the broader meaning when used in the peridynamic formulation.

States usually are identified by an underscore, angle brackets 〈·〉 identify the

bond on which they are applied, parentheses (·) identify the state on which the

state depends (if any) and square brackets [·] identify other quantities on which

the state may depend, such as the source point and the time step.

Several mathematical definitions are provided in [2, 110, 120]. The sum and

the difference are defined for two states of the same order as

A〈·〉 : H 7→ Lm, B〈·〉 : H 7→ Lm 7→
(A+B) 〈ξ〉 = A 〈ξ〉+B 〈ξ〉

(A− B) 〈ξ〉 = A 〈ξ〉 − B 〈ξ〉
(1.46)

The composition of states A : H 7→ Lm and V 〈·〉 : H 7→ L1
6 is

(A ◦ V ) 〈ξ〉 = A 〈V 〈ξ〉〉 (1.47)

In a Cartesian coordinate system, an order m state has m components that

are written as Ai1,i2,··· ,im
. The point product of two states A : H 7→ Lm+p and

B : H 7→ Lp is a state in Lm defined by

(AB)i1,i2,··· ,im 〈ξ〉 = Ai1,i2,··· ,im,j1,j2,··· ,jp
〈ξ〉Bj1,j2,··· ,jp

〈ξ〉 (1.48)

Interesting states for a first implementation are the scalar state, the dot product

(between states of the same order and between states of different orders) and the

5There are higher order of set of states, but they are not involved in the formulation.
6
L1 is also denoted as V, the set of all vector states; the composition is possible only with a

vector state
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Fréchet derivative: these are briefly illustrated in the following paragraphs since

they are useful for the numerical analyses.

The scalar state of A〈·〉 : H 7→ Lm is defined as

|A|〈ξ〉 =
√

(AA)〈ξ〉 ∀ ξ ∈ H (1.49)

If another vector state B〈·〉 : H 7→ Lm is taken into account, the dot product

is

A •B =

∫

H

A〈ξ〉 · B〈ξ〉 dVξ (1.50)

Note that here the notation introduced by Silling in [2] for state-based Peri-

dynamics is adopted: although the differential volume dVξ is equivalent to the

differential volume dVj (i.e. is the differential volume associated to the node to

which the source node is connected through bond ξ), the domain of states is for-

mally composed by bonds, so the author changed the notation consistently.

Dealing with a double state K, the right product of K and A is defined by

(K • A)i〈ξ〉 =

∫

H

Kij〈ξ, ζ〉Aj〈ζ〉 dVζ ∀ξ ∈ H (1.51)

in which Einstein’s notation is adopted.

As for the Fréchet derivative, if we consider a state (function) of a state T (·) :

Ln 7→ Lm and if a state-valued function ∇T ∈ Ln+m exists such as that for any

state A ∈ Ln and any small increment of it ∆A

T (A+∆A) = T (A) +∇T (A) •∆A+ o(‖∆A‖) (1.52)

then T is defferentiable and ∇T is its Fréchet derivative.

The two most important states in the setting of Peridynamics are the force

state T , which is supplied by the constitutive model containing all the information

about the material response, and the deformation state Y , which connects bonds

to their deformed image.

Silling et al. in 2007 [2] have derived the linear peridynamic solid model (LPS)

in a general framework, then Quang et al. in 2014 [121] have developed the 2D

plane stress and 2D plane strain models. In section 1.2.2 the linearized isotropic

elastic models are illustrated.
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1.2.1 Linear isotropic elastic models

In [2] the force state T is described as the product of its modulus state t and its

deformed direction state M(Y )

T (Y ) = t(Y ) ·M(Y ) (1.53)

where the modulus state is expressed as

t =
3Kθ

m
ωx+ αωed (1.54)

in which K and α are positive constants related to material properties (the former

is the bulk modulus and the latter is proportional to the shear modulus), the other

quantities are states and are defined in the following paragraphs, together with

basic states involved in the computation, even though not explicitly mentioned in

Eq. (1.54). The force state, as well as the deformation state, is decomposed in the

force determining a pure change of volume of the horizon sphere (Figure 1.12b)

and in the force causing a change of shape of the horizon sphere (Figure 1.12b).

These two terms are called the co-isotropic and the co-deviatoric parts of the force,

rispectively corresponding to the first and the second terms of t in Eq. (1.54).

(a)
(b)

Figure 1.12: Decomposition of deformation state: (a) is related to a pure change

of volume of the horizon sphere, while (b) refers to a pure change of shape.

The author of [7] explains the mathematical definition of several states and

shows how the Fréchet derivative is calculated for the linearized model. Here,
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in the following paragraphs, some of these states are described, because they are

employed extensively in the following sections. These states are:

• the reference state is the state which associates each pair of points to their

initial relative position vector (see Figure 1.13):

X〈ξ〉 = p− x = ξ (1.55)

• the scalar reference state is the state which associates each pair of points to

their bond length and it practically refers to the relative initial distance:

x = |X〈ξ〉| = |p− x| = |ξ| (1.56)

• the deformation state is the state which associates each pair of points to their

relative current position (see Figure 1.13):

Y [x, t]〈ξ〉 = y(p, t)− y(x, t) = η + ξ (1.57)

Figure 1.13: Reference state X at the initial time and defomation state Y at a

generic time t.

• the deformation direction state is the state which associates each pair of

points to their relative position unit vector and it can be seen as their relative

current unit position vector (note that the quantities on which Y depends

are omitted in the first part of the equation for simplicity):

M(Y ) =
Y [x, t]〈ξ〉

|Y [x, t]〈ξ〉|
=
η + ξ

|η + ξ|
(1.58)
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• the displacement state is the state which associates to each pair of points

their relative displacement:

U [x, t]〈ξ〉 = u(p, t)− u(x, t) = η (1.59)

• the scalar extension state is the state which associates each pair of points to

the elongation of the bond (i.e. in the BBP version, this is equivalent to the

numerator of the stretch):

e(Y ) = |Y [x, t]〈ξ〉| − |X〈ξ〉| = |η + ξ| − |ξ| (1.60)

• the influence function state ω is introduced in [2] and it is a scalar state to

be used to select which bonds within a deformation state are to participate

in determining the force state. It is used also to determine the different

weights of bond contributions to the global behavior of the material. Its only

restriction is the non-negative condition in the entire bond domain, and if it

depends only on the scalar reference state, it is said to be spherical. For the

linear ordinary peridynamic model, it is spherical, so the described material

is isotropic.

• a weighted volume, identified by the letter m, takes into consideration how

many bonds are in the horizon sphere (Figure 1.14), it shows if the source

point is near a surface or if its horizon sphere is completely embedded within

the body7:

m = (ωx) • x =

∫

H

ω(|ξ|)|ξ|2dVp (1.61)

7In fact, it is analytically computed assuming the horizon sphere fully embedded, but this is

not true for points near the boundaries and thus it affects the behavior of material in the region,

thus it is called surface effect
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x
1
 

x
2
 

 

Figure 1.14: m weight for different points within the body.

• the dilatation θ is a scalar state indicating the deformation of the horizon

neighborhood of a point; it depends on the point, on the deformation state

Y of all its bonds and on the m weight. It takes into consideration how the

radius of the horizon sphere changes during the deformation (Figure 1.12a):

θ(Y ) =
3

m
(ωx) • e =

3

m

∫

H

ω(|ξ|)|ξ||ξ + η|dVp − 3 (1.62)

• the deviatoric extension state is the state which associates each pair of points

to the portion of elongation of the bond which is related to a change of shape

of the horizon sphere:

ed(Y ) = e(Y )−
θ(Y )|X 〈ξ〉 |

3
= |η + ξ| −

[θ(Y ) + 3] |ξ|

3
(1.63)

In [122], the BBP version is shown as a particular case of the SBP version,

assuming for the 3D model

ν =
1

4
, ω〈ξ〉 =

1

|ξ|
(1.64)

In [121], Le et al. have developed the two linearized models for the plane

stress and plane strain cases: the strain tensor and the stress tensor of classical

mechanics are taken into consideration, so the authors can derive the peridynamic

equivalent of the strain energy.

For the plane stress case, while all the stress components not in the x−y

plane are zero, the strain component orthogonal to the plane εzz is not null. By

rearranging its expression in terms of volume dilatation, the new expression for the
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energy density in classical mechanics becomes

W =

[

K

2
+ µ

(
ν + 1

3(2ν − 1)

)2
](

dV

V

)2

+ µ
∑

i,j=x,y

εdijε
d
ij (1.65)

(
dV
V

)
is equivalent, for small homogeneous deformation, to the peridynamic scalar-

valued dilatation function θ which is computed for this case as

θ =
2(2ν − 1)

ν − 1

ωx • e

q
(1.66)

in which the states are those previously defined, ν is Poisson’s ratio and q is the

weighted volume in two dimensions (equivalent to m in 3D cases, although its

integration volume is a disk).

After some mathematical manipulation, in the two-dimensional plane stress

model, the force modulus state is expressed as

t =
2(2ν − 1)

ν − 1

(

k′θ −
α

3
(ωed) • x

) ωx

q
+ αωed (1.67)

where k′ and α are positive constants depending on the bulk modulus K and the

shear modulus µ as following

k′ = K +
µ

9

(ν + 1)2

(2ν − 1)2
α =

8µ

q
(1.68)

In the plane strain case, while all the strain components not in the x−y plane

are zero, the stress component σzz orthogonal to the plane is not null. This means

that

εdzz = εzz −
1

3

dV

V
= −

1

3

dV

V
(1.69)

Thus, the new expression for the energy density becomes

W =

[
K

2
+
µ

9

](
dV

V

)2

+ µ
∑

i,j=x,y

εdijε
d
ij (1.70)

where
(
dV
V

)
is equal to θ, which in this case is computed as

θ = 2
ωx • e

q
(1.71)

while other parameters are previously defined. After rearrangement, in the two-

dimensional plane strain model, the force modulus state is expressed as

t = 2
(

k′θ −
α

3
(ωed) • x

) ωx

q
+ αωed (1.72)
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where k′ and α are positive constants depending on the bulk modulus K and the

shear modulus µ as following

k′ = K +
µ

9
α =

8µ

q
(1.73)

1.2.2 Linearized models

In classical mechanics, one of the common strategies to work with is the concept

that any configurations can be obtained as a superposition of small incremental

displacements. This can be carried out with a model linear with respect to dis-

placements. The main idea is that a small displacement field can be superposed on

a reference configuration in which displacements can be large with respect to the

initial configuration, provided that it is a complete known and equilibrated config-

uration and assumed the material response to be linear in a small neighborhood of

the configuration itself. The Fréchet derivative of the force state is needed for the

model linearization, since the peridynamic models are, in general, not linear with

respect to the displacements.

The linearized model is theoretically developed in [120], while the mathematical

expression is derived for 3D models in [7]. In this section, the method is explained

and the linearized model for 2D cases is developed.

Consider a reference configuration, with a 0 superscript, and a small displace-

ment field dY ≃ dU superposed to it. At the following step the deformation is

Y 0 + dU , while the strain energy is

W(Y 0 + dU) = W(Y 0) + T (Y 0) • dU +
1

2
dU • dT (Y 0) (1.74)

where dT (Y 0) can be written as

dT (Y 0) = K(Y 0) • dU (1.75)

in which K(Y 0) is the double state computed as the second Fréchet derivative of

the strain energy, as well as the first Fréchet derivative of force state:

K(Y 0) = ∇T (Y 0) =
∂

∂ǫ
T (Y 0 + ǫU)|ǫ=0 (1.76)

Assuming that the body B in Eq. (1.2) is subjected to a body force density b0

resulted in an equilibrated deformation y0, if an additional body force density b̂ is
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applied, the motion equation can be written as

ρ(x) (ÿ0 + ü) (x, t) =

∫

B

{(T 0[x] +K[x] • U [x])〈p− x〉 (1.77)

− (T 0[p] +K[p] • U [p])〈x− p〉} dVp +
(

b0 + b̂
)

(x, t)

Since we assume that the previous time step t0 is equilibrated, then
∫

B

{T 0[x]〈p− x〉 − T 0[p]〈x− p〉} dVp + b0(x) = ÿ0 = 0 (1.78)

and Eq. (1.44) becomes

ρ(x)ü(x, t) =

∫

B

{(K[x]•U [x])〈p−x〉− (K[p]•U [p])〈x−p〉} dVp+ b̂(x, t) (1.79)

Writing the dot products explicitly, it becomes

ρ(x)ü(x, t) =

∫

B

∫

B

{K[x]〈p− x,q− x〉(u(q, t)− u(x, t)) (1.80)

−K[p]〈x− p,q− p〉(u(q, t)− u(p, t))} dVqdVp + b̂(x, t)

where q ∈ (Hx ∪Hp). q and x can interact with each other indirectly (so even if

δ < |q− x| < 2δ, see Figure 1.15) because of the intermediate point p which has

both of them as family nodes (it can be seen from the computation of K[p] ).

Figure 1.15: Points located at x and q are both in the family of point p, which is

why they “interact” with each other (see Eq. (1.80)).

In [7] the double state K for the linear elastic model is equal to

K[x]〈ζ, ξ〉 =

(
9K − αmx

m2
x

)

ω(|ζ|)ω(|ξ|) |ζ| |ξ|M(Y 0)〈ζ〉 ⊗M(Y 0)〈ξ〉

+ αω(|ζ|)M(Y 0)〈ζ〉 ⊗M(Y 0)〈ξ〉∆(ζ − ξ) (1.81)

+ t(Y 0)〈ζ〉

(
I −M(Y 0)〈ξ〉 ⊗M(Y 0)〈ξ〉

|Y 0|〈ξ〉

)

∆(ζ − ξ)
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where ζ and ξ are bonds of the source point x on which the double state depends

(see Figure 1.168) and ∆(·) is the Dirac delta function in R3, K is the bulk modulus,

α a constant related to material properties, the states are those previously defined,

I identifies the identity 3 × 3 matrix and mx identify the weight of Eq. (1.61),

where the subscript x is added to underline the dependence on the point.

Figure 1.16: Pairs of bonds involved in the computation of the double state for the

discretized system.

Note that, bearing in mind that Eq. (1.81) shows the expression of K, from a

computational point of view, the subcases are several: for instance if q ∈ (HxrHp),

K[p] is null, if q ∈ (HprHx), K[x] is null; besides, there are cases in which q = p

or q = x and the Dirac ∆-functions are not null.

In [123], the authors have developed the linearized formulation for the 2D plane

stress and plane strain models.

The linearized model of a force state can be decomposed in two components

(Figure 1.17): one aligned to the force state at the previous time step and one

perpendicular to it, similarly to the derivation of a generic vector.

8Points in the neighborhood of the point located as x are located at a pi position here. Using

q may have been misleading, because the point located at q may be outside of the neighborhood

of the point located at x.
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T

dt ·M
t · dM

dT

y

x

z

Figure 1.17: Decomposition of the linearized force state with respect to the dis-

placement.

In fact, a force state can be considered as the product between the modulus

force state t and its direction state M and its Fréchet derivative is computed by

the chain rule. Consider a small infinitesimal variation in the force state due to an

infinitesimal change in the deformation state dY , it is computed as

dT (dY ) = d(tM) = dt ·M + t · dM (1.82)

As shown by Silling in [120], an infinitesimal change in the deformation state

dY ≃ dU produces an infinitesimal change of the scalar extension state such as

de 〈ξ〉 =
Y 〈ξ〉 · dY 〈ξ〉

|Y 〈ξ〉 |
≃
Y 〈ξ〉 · dU 〈ξ〉

|Y 〈ξ〉 |
(1.83)

since the scalar extension state is defined as

e〈ξ〉 = |Y 〈ξ〉| − |X〈ξ〉| (1.84)

In the same way, since

M〈ξ〉 =
Y 〈ξ〉

|Y 〈ξ〉|
(1.85)

a small change in the deformation state induces

dM〈ξ〉 =
I −M〈ξ〉 ⊗M〈ξ〉

|Y 〈ξ〉|
(1.86)

where ⊗ is the dyadic product.
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Another useful property is that a state A depending on the single bond can be

seen as an integral of that state times the Dirac delta function in the bond domain,

for example

A〈ξ〉 =

∫

H

A〈ζ〉∆(ζ − ξ) dVζ (1.87)

Thus, the Fréchet derivative of the force state T can be computed as shown in

the following formulas.

Consider the force state for the plane stress model: its modulus is expressed

in Eq. (1.67) and applying the chain rule shown in Eq. (1.82), the infinitesi-

mal increments are needed. For simplicity, the modulus state is divided in three

contributions in the following derivations:

t〈ξ〉 =
2(2ν − 1)

ν − 1
k′dθ

ω〈ξ〉x〈ξ〉

q
︸ ︷︷ ︸

dt1〈ξ〉

−
2(2ν − 1)

3(ν − 1)

α

q

(
ωded • x

)
ω〈ξ〉x〈ξ〉

︸ ︷︷ ︸

dt2〈ξ〉

+αωded
︸ ︷︷ ︸

dt3〈ξ〉

(1.88)

dT 1〈ξ〉 = dt1〈ξ〉 ·M〈ξ =
2(2ν − 1)

ν − 1
k′dθ

ω〈ξ〉x〈ξ〉

q
M〈ξ〉 (1.89)

=
2(2ν − 1)

ν − 1
k′
2(2ν − 1)

ν − 1

∫

H

ω〈ζ〉x〈ζ〉M〈ζ〉dU〈ζ〉

q
dVp

ω〈ξ〉x〈ξ〉

q
M〈ξ〉

=

∫

H

{[
2(2ν − 1)

q(ν − 1)

]2

k′ω〈ξ〉ω〈ζ〉|ξ||ζ|M〈ξ〉 ⊗M〈ζ〉

}

· dU〈ζ〉dVp

=

∫

H

K1〈ξ, ζ〉 · dU〈ζ〉dVp

= K1〈ξ, ζ〉 • dU〈ζ〉
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dT 2〈ξ〉 = dt2〈ξ〉 ·M〈ξ = −
2(2ν − 1)

3(ν − 1)

α

q

(
ωded • x

)
ω〈ξ〉x〈ξ〉M〈ξ〉

= −
2(2ν − 1)

3(ν − 1)

α

q

∫

H

ω〈ζ〉x〈ζ〉

(

M〈ζ〉dU〈ζ〉 −
dθx〈ζ〉

3

)

dVpω〈ξ〉x〈ξ〉M〈ξ〉

(1.90)

=

∫

H

{

−
2(2ν − 1)

3(ν − 1)

α

q
ω〈ξ〉ω〈ζ〉|ξ||ζ|M〈ξ〉 ⊗M〈ζ〉

}

· dU〈ζ〉dVp

+
2(2ν − 1)

9(ν − 1)

α

q
ω〈ξ〉x〈ξ〉 dθ

∫

H

ω〈ζ〉|ζ|2dVpM〈ξ〉

=

∫

H

K2a〈ξ, ζ〉 · dU〈ζ〉dVp +
2(2ν − 1)

9(ν − 1)

α

q
ω〈ξ〉x〈ξ〉 dθ q M〈ξ〉

=

∫

H

K2a〈ξ, ζ〉 · dU〈ζ〉dVp

+

∫

H

{
4(2ν − 1)2

9(ν − 1)2
α

q
ω〈ξ〉ω〈ζ〉|ξ||ζ|M〈ξ〉 ⊗M〈ζ〉

}

dU〈ζ〉dVp

=

∫

H

{[

−
2(2ν − 1)

3(ν − 1)
+

4(2ν − 1)2

9(ν − 1)2

]
α

q
ω〈ξ〉ω〈ζ〉|ξ||ζ|M〈ξ〉 ⊗M〈ζ〉

}

· dU〈ζ〉dVp

=

∫

H

K2〈ξ, ζ〉 · dU〈ζ〉dVp

= K2〈ξ, ζ〉 • dU〈ζ〉

dT 3〈ξ〉 = dt3〈ξ〉 ·M〈ξ = αωdedM〈ξ〉

= αω〈ξ〉

(

M〈ξ〉dU〈ξ〉 −
dθx〈ξ〉

3

)

M〈ξ〉 (1.91)

=

∫

H

{αω〈ξ〉M〈ξ〉 ⊗M〈ξ〉∆(ξ − ζ)} · dU〈ζ〉dVp −
α

3
ω〈ξ〉x〈ξ〉 dθ M〈ξ〉

=

∫

H

K3a〈ξ, ζ〉 · dU〈ζ〉dVp

+

∫

H

{

−
α

q

2(2ν − 1)

3(ν − 1)
ω〈ξ〉x〈ξ〉ω〈ζ〉x〈ζ〉M〈ξ〉 ⊗M〈ζ〉

}

· dU〈ζ〉dVp

=

∫

H

K3a〈ξ, ζ〉 · dU〈ζ〉dVp

+

∫

H

{

−
α

q

2(2ν − 1)

3(ν − 1)
ω〈ξ〉ω〈ζ〉|ξ||ζ|M〈ξ〉 ⊗M〈ζ〉

}

· dU〈ζ〉dVp

=

∫

H

K3〈ξ, ζ〉 · dU〈ζ〉dVp

= K3〈ξ, ζ〉 • dU〈ζ〉
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The last contribution comes from the dT 4 = t · dM derivation, which is the

product of the modulus state in Eq. (1.67) and the derivation of the direction

state computed in Eq. (1.86).

Rearranging all the terms, the Fréchet derivative of the force state is a 2 × 2

tensor9 given by the following expression

K〈ξ, ζ〉 =
γ

q2
ω(|ξ|)ω(|ζ|)|ξ||ζ|M〈ξ〉 ⊗M〈ζ〉

+
4E

q (1 + ν)
ω(|ξ|)M〈ξ〉 ⊗M〈ξ〉∆(ξ − ζ) (1.92)

+ t(Y )〈ξ〉

(
I −M(Y )〈ξ〉 ⊗M(Y )〈ξ〉

|Y |〈ξ〉

)

∆(ζ − ξ)

where

γ =
2(3ν − 1)E

1− ν2
(1.93)

in which E is Young’s modulus and ν Poisson’s ratio.

The same approach can employed fot the plane strain derivations, where the

mathematical contributions are taken from Eq. (1.72)

dT 1〈ξ〉 = dt1〈ξ〉 ·M〈ξ = 2k′dθ
ω〈ξ〉x〈ξ〉

q
M〈ξ〉

= 4k′
∫

H

ω〈ζ〉x〈ζ〉M〈ζ〉dU〈ζ〉

q
dVp

ω〈ξ〉x〈ξ〉

q
M〈ξ〉 (1.94)

=

∫

H

{
4

q2
k′ω〈ξ〉ω〈ζ〉|ξ||ζ|M〈ξ〉 ⊗M〈ζ〉

}

· dU〈ζ〉dVp

=

∫

H

K1〈ξ, ζ〉 · dU〈ζ〉dVp

= K1〈ξ, ζ〉 • dU〈ζ〉

9The linearization is relative to 2D models, thus the force state is a 2× 2 tensor.
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dT 2〈ξ〉 = dt2〈ξ〉 ·M〈ξ = −
2α

3q

(
ωded • x

)
ω〈ξ〉x〈ξ〉M〈ξ〉

= −
2α

3q

∫

H

ω〈ζ〉x〈ζ〉

(

M〈ζ〉dU〈ζ〉 −
dθx〈ζ〉

3

)

dVpω〈ξ〉x〈ξ〉M〈ξ〉 (1.95)

=

∫

H

{

−
2α

3q
ω〈ξ〉ω〈ζ〉|ξ||ζ|M〈ξ〉 ⊗M〈ζ〉

}

· dU〈ζ〉dVp

+
2α

9q
ω〈ξ〉x〈ξ〉 dθ

∫

H

ω〈ζ〉|ζ|2dVpM〈ξ〉

=

∫

H

K2a〈ξ, ζ〉 · dU〈ζ〉dVp +
2α

9q
ω〈ξ〉x〈ξ〉 dθ q M〈ξ〉

=

∫

H

K2a〈ξ, ζ〉 · dU〈ζ〉dVp

+

∫

H

{
4α

9q
ω〈ξ〉ω〈ζ〉|ξ||ζ|M〈ξ〉 ⊗M〈ζ〉

}

· dU〈ζ〉dVp

=

∫

H

{

−
2α

9q
ω〈ξ〉ω〈ζ〉|ξ||ζ|M〈ξ〉 ⊗M〈ζ〉

}

· dU〈ζ〉dVp

=

∫

H

K2〈ξ, ζ〉 · dU〈ζ〉dVp

= K2〈ξ, ζ〉 • dU〈ζ〉

dT 3〈ξ〉 = dt3〈ξ〉 ·M〈ξ = αωdedM〈ξ〉

= αω〈ξ〉

(

M〈ξ〉dU〈ξ〉 −
dθx〈ξ〉

3

)

M〈ξ〉 (1.96)

=

∫

H

{αω〈ξ〉M〈ξ〉 ⊗M〈ξ〉∆(ξ − ζ)} · dU〈ζ〉dVp −
α

3
ω〈ξ〉x〈ξ〉 dθ M〈ξ〉

=

∫

H

K3a〈ξ, ζ〉 · dU〈ζ〉dVp

+

∫

H

{

−
2α

3q
ω〈ξ〉x〈ξ〉ω〈ζ〉x〈ζ〉M〈ξ〉 ⊗M〈ζ〉

}

· dU〈ζ〉dVp

=

∫

H

K3a〈ξ, ζ〉 · dU〈ζ〉dVp

+

∫

H

{

−
2α

3q
ω〈ξ〉ω〈ζ〉|ξ||ζ|M〈ξ〉 ⊗M〈ζ〉

}

· dU〈ζ〉dVp

=

∫

H

K3〈ξ, ζ〉 · dU〈ζ〉dVp

= K3〈ξ, ζ〉 • dU〈ζ〉

The last contribution is due to the dT 4 = t · dM so the first Fréchet derivative of

the force state is
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K〈ξ, ζ〉 =
γ

q2
ω(|ξ|)ω(|ζ|)|ξ||ζ|M〈ξ〉 ⊗M〈ζ〉 (1.97)

+
4E

q (1 + ν)
ω(|ξ|)M〈ξ〉 ⊗M〈ξ〉∆(ξ − ζ) (1.98)

+ t(Y )〈ξ〉

(
I −M(Y )〈ξ〉 ⊗M(Y )〈ξ〉

|Y |〈ξ〉

)

∆(ζ − ξ)

where

γ =
2 (4ν − 1)E

(1− 2ν) (1 + ν)
(1.99)

in which E is Young’s modulus and ν Poisson’s ratio. It is interesting to notice,

since it is expected, that the γ constant is equal to zero for a Poisson’s ratio equal

to 1
3

for the plane stress model and to 1
4

for the plane strain one. To summerize, the

modulus states have the same mathematical components, with different constants,

related to different properties in the two cases (Table 1.1).

Term Plane Stress Plane Strain

dT 1 〈ξ〉
[
2(2ν−1)
q(ν−1)

]2

k′ 4
q2
k′

dT 2 〈ξ〉
[
4(2ν−1)2

9(ν−1)2
− 2(2ν−1)

3(ν−1)

]
α
q

−2
9
α
q

dT 3 〈ξ〉 α; −2(2ν−1)
3(ν−1)

α
q

α; −2
3
α
q

dT 4 〈ξ〉 1 1

Table 1.1: Material constants of the different terms of the force modulus state that

are linearized separately.

The double tensor is employed in the computation of the contributions to the

components of the stiffness matrix, as shown in section 3.2.

1.2.3 Failure Criteria in SBP

In SBP, the force contributions are related not only to the isotropic part of the

deformation (i.e. the stretch of the single bond), but also to the the deviatoric
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part of the deformation (i.e. the change in the relative position between a bond

and those contained in the same set) [2]. For this reason, several failure criteria

have been employed in literature, such as equivalent strain criterion [6] or imple-

menting the standard Johnson-Cook damage model where the failure occurs when

the damage parameter reaches the unit value [98]. In this thesis, criteria based on

the maximum stretch or the maximum energy are implemented.

The energy in the single bond is stored both in terms of elongation and in terms

of change of relative position with respect to the surrounding bonds, but employing

a maximum stretch criterion implies that the energy is considered stored merely

during the elongation process. This approximation is due to the dependence of the

bond total stored energy on the stepwise bond positions.

So the obvious question is: which critical value of which quantity should be

employed? If a failure stretch is known a priori, then that can be used for the

simulation, but this case is not so common. In this thesis three different critical

values are computed:

• the critical value s0 is the limit stretch computed in the BBP variant. To

take into account this value means, as previously mentioned, to neglect the

contribution of the deviatoric strain tensor to the total stored elastic energy

in the sample. In this case, the maximum storable energy is linearly propor-

tional to the initial bond length, in fact s0 ∝
ω0

ξ
, in particular s0 is expressed

by Eqs. (1.40) and (1.41).

• a limit energy ω0 storable in the bond, independently of other properties of

the bond (i.e. ω0 is constant), so it can be computed for a 2D structure as

G0 =

∫

Hi

ω0 (ξ) dVj =
2

3
ω0 (ξ) δ

3th 7→ ω0 (ξ) =
3G0

2δ3th
(1.100)

where th is the thickness of the structure, where at every time t, if x and p

are the points connected by the bond ξ

ωt (ξ) = ωt0 (ξ) +

∫ t

t0

{(T [p, t]− T [x, t]) · U} dt (1.101)

• a limit energy ω0 storable in the bond computed as in the previous criterion,

but the amount of energy stored in the bond is considered to be equal to an
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average energy between the two nodes connected by it

ωt (ξ) =
W [p, t] +W [x, t]

2
(1.102)

where W is the energy density associated to each node, computed as expressed

in Eq. (1.70) for plane strain analyses and in Eq. (1.65) for plane stress ones.



Chapter 2

Numerical aspects

2.1 Spatial integration

The body B is discretized into a grid of nodes (Figure 2.1) associated to small

finite volumes Vj in the reference configuration. The problems for the proper

definition of the geometric boundary of the body are the same of FEM: the ap-

proximation of real boundaries by the the geometrical representation defined by

the finite volumes improves as the finite volumes decreases and, thus, the number

of nodes increases.

Figure 2.1: Uniform discretization of the body B into nodes.

In all the examples, the meshfree method proposed by Silling and Askari in

[68] is adopted: no elements or other geometrical connections between nodes are

87
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present. In addition, a 1-point Gaussian quadrature rule is adopted, as it leads

to a simpler and unambiguous way of defining the crack path (Figure 2.2). More

complex algorithms can be used to ensure faster and more robust convergence of

peridynamic models [9, 124]. However, Seleson shows that this is quite accurate.

As a consequence, the non-monotonic behavior appearing in the results may be

partly due to the approximate partial volume integration algorithm and partly to

the nonlocal nature of the theory.

i 

j 

Figure 2.2: Uniform discretization of the body B into nodes.

In the discretized form of the equation of motion in BBP (Eq. (1.2)), the

integral is replaced by a finite sum:

ρiÿ
n
i =

∑

j

fnij
(
un
j − un

i ,xj − ui

)
fVj
Vj + bn

i (2.1)

where ρi is the density of the node, fnij the pairwise force function exerted by j on

i, n the time step, the subscript i or j the node ID numbers (i is the source node

while j the family node), fVj
the integration weight associated to point j, Vj the

volume of node located at xj, and ÿn
i is a concise expression for ÿ (xi, t

n). In all

the simulated cases, a constant grid spacing in all directions ∆x = ∆y = ∆z is

assumed, so that the volume associated to each node is V = ∆x ·∆y ·∆z = ∆x3.
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The algorithm adopted for the computation of weight fVj
is the one adopted by

EMU1 [125] for the BBP code and the PA-HHB algorithm in [9] for the SBP code.

The body can be visualized as a structure made by linear springs2, where the

maximum initial length of the springs is equal to δ.

The classical linear spring behavior may be expressed in matrix form in the

local reference system as







f loc
1

f loc
2






= kspring·




1 −1

−1 1











uloc1

uloc2






or

{
f loc

}
=

[
kloc

] {
uloc

}
(2.2)

In the local reference system, the nodes move in the x direction (see Figure

2.3).

 

 

 

 
 

 

 

 

 

 

 

Figure 2.3: Representation of a spring with its two degrees of freedom associated

to its two nodes in the local reference system and rotation angle from the local to

the global reference system in a 2D case.

The local stiffness matrix of each spring can be expressed in the global coordi-

nate system, by an appropriate rotation matrix (i.e. in 2D, one angle α1 is enough

to define the rotation, in 3D two angles are required), and add to a global stiffness

matrix composed by a superposition of the individual element stiffness matrices

for the same element nodal displacement.

1the BBP code developed at Sandia National Laboratories by Silling.
2This is valid for the PMB model, the springs can be nonlinear if other models are adopted.
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In particular, Eq. (2.1) has to be linearized with respect to the displacement,

so, employing the linearized PMB model, at every time step n, it can be written

as

ρi
(
ün
i + ÿn−1

i

)
=

∑

j

Cn−1
ij ηn

ijfVj
Vj + bn

i + In−1
i (2.3)

where ün
i is the incremental acceleration at time step n, bn

i the prescribed force

density at n, Cn−1
ij the micromodulus of Eq. (1.28) at time step n − 1, ηn

ij the

relative displacement vector at n, and In−1
i is the sum of internal forces at the

previous time step3.

The stiffness matrix in the global reference system can be easily computed

from this formulation of the force vector in Eq. (1.37): a first contribution may be

interpreted, after an appropriate rearrangement, as an entry of the stiffness matrix

and the relative displacement vector as an entry of the displacement vector.

C (ξ)ηfV V =
c (ξ)µ (ξ)

|ξ|
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|ξ|2

ξxξy
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fV V
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[K]glo
bond
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︸ ︷︷ ︸

{U}glo
bond

(2.4)

where the subscripts and superscripts are omitted for simplicity. In particular,

η is the current relative displacement vector un
j − un

i , so [K]globond for each bond

connecting node j to node i has to be added with the proper sign:

3j − 2

3j − 1

3j

3i− 2

3i− 1

3i

(3j − 2 3j − 1 3j) (3i− 2 3i− 1 3i)























+[K]glo















−[K]glo















−[K]glo















+[K]glo
























(2.5)

The dynamic solver does not involved the computation of the stiffness matrix,

while the static solver algorithm does involve it and the method employed to solve

3It does not depend on the displacement vector at n, thus it can be separated from the sum

of internal forces at the current time step n
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Eq. (3.2) is the biconjugate gradient stabilized, simply abbreviated as BiCGSTAB.

It is an iterative method developed by Van der Vorst [126] in order to find numerical

solution of non-symmetrical linear systems and it does not require for the system

matrix to be invertible. If the system is nonlinear, a Newton-Raphson approach

is adopted for which the tangent stiffness matrix is computed. In section 3.2 the

static solver and the tangent stiffness matrix are illustrated in detail.

As for what concerns SBP, Eq. (1.44) may be expressed with Riemann sums

over the total number of nodes N of the discretized structure:

ρnx
ÿn
nx

=
N∑

np=1

{

T n
nx
〈p− x〉 − T n

np
〈x− p〉

}

fVp
Vp + bn

nx
(2.6)

where ρnx
is the density of the node nx, ÿ

n
nx

is the acceleration of node nx at time

tn, T n
nx
〈p − x〉 (i.e. concise expression for T [x, tn]〈p − x〉) is the force exerted by

nx on np at time tn, T n
np
〈x − p〉 is the force exerted by np on nx at time tn, n is

the time step number, fVp
is the integration volume weight associated to np, Vp is

the volume associated to node np, and bn
nx

the force density at time tn.

As for the linearized version, the integral at node x in Eq. (1.77) becomes a

finite sum:

ρnx
ÿn
nx

= ρnx

(
ÿn−1
nx

+ ün
nx

)
(2.7)

=
N∑

np=1

{(T n−1
nx

+K
n−1
nx

• Un
nx
)〈p− x〉

− (T n−1
np

+K
n−1
np

• Un
np
)〈x− p〉} fVp

Vp + bn
nx

where ÿn
nx

is the acceleration of node nx at time tn, ün
nx

is the change in the

acceleration, Kn−1
nx

and K
n−1
np

the double state evaluated at nx and np at the time

step tn−1, Un
nx

and Un
np

the displacement state evaluated at nx and np at the time

step tn, and bn
nx

the body force density at tn.

In this thesis, this formulation is adopted for the static solver where Eq. (2.7)

can be simplified. Therefore, assuming that the body is equilibrated at tn−1, Eq.

(1.79) becomes

ρnx

(
ÿn−1
nx

+ ün
nx

)
=

N∑

np=1

N∑

nq=1

{Kn−1
nx

〈p− x,q− x〉 · Un
nx
〈q− x〉 (2.8)

−K
n−1
np

〈x− p,q− p〉 · Un
np
〈q− p〉} fVp

VpfVq
Vq + bn

nx
+ In−1

nx
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where In−1
nx

is the sum of internal forces at the previous time step, similarly to what

was done in the BBP formulation. Most of the contributions are actually zero, the

double state is not zero only within the horizon spheres of nx or np, which means

that the nodes considered for each node nx in the algorithm are located at a distance

of less than 2δ from nx (the maximum distance of a family node np is δ and δ is

the maximum distance of a family node nq from np, see Figure 1.15).

Notice that, dimensionally, K is a force per length to the power of 10 ([ N
m10 ]),

since it has to multiply by a displacement once and by a volume three times to have

the dimension of the force ρ (x) ü (x, tn)Vx ; but this numerical integration can be

tricky in the discretized form, since there’s a Dirac ∆-function in the formula. In

fact, from the definition of Eq. (1.87) the contributions which contain a Dirac

∆-function have to be multiplied by a volume just twice (not Vnq
) for integrating

in a correct way.

Since all the example presented in this thesis are 2D, the relative vector equation

has two components4. Thus, suppressing the explicit bond dependence formality,

it can be written for each node in matrix form as:

N∑

np=1

N∑

nq=1










K

n−1
nx,xx K

n−1
nx,xy

K
n−1
nx,yx K

n−1
nx,yy











Un
nx,x

Un
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−




K

n−1
np,xx K

n−1
np,xy

K
n−1
np,yx K

n−1
np,yy











Un
np,x

Un
np,x












fVp

VpfVq
Vq

+







bnnx,x

bnnx,y






+







In−1
nx,x

In−1
nx,y






= ρnx







ÿnnx,x

ÿnnx,y






(2.9)

As the method aforementioned for BBP, rows 2nx − 1 and 2nx are associated

with the horizontal and vertical degrees of freedom of each node nx to write all

the terms of the equations in matrix form: all the K terms can be collected in a

2N × 2N matrix (the stiffness matrix ), all the U contributions in a displacement

vector (2N × 1) and all the b(x) + I(x) components in the known force vector

(2N × 1). The detailed algorithm of the stiffness matrix computation for SBP is

illustrated in section 3.3.

4In a general 3D case, there are 3 components, the equation becomes more complex, although

the extension can be done intuitively.
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2.2 Time integration

For what concerns time integration for the dynamic solver, Silling and Askari

adopted an explicit central difference formula for the acceleration

ün
i =

un+1
i − 2un

i + un−1
i

∆t2
(2.10)

where ∆t is the time step size.

The time integration scheme adopted for all the dynamic simulations in this the-

sis is an explicit algorithm with a velocity-Verlet time integration scheme for con-

sistency with most existing publications about Peridynamics: in fact, this scheme

is commonly used in molecular dynamics for particle trajectories [127] and Peri-

dynamics is strongly related to it (molecular dynamics is the discrete version of

Peridynamics and its length scale δ is infinite), so it has spontaneously inherited

it, at least after the implementation of Peridynamics within LAMMPS [62, 61].

Velocity-Verlet has a good numerical stability and is similar to the leapfrog method

[128], because velocity is computed not only at the step size but also at half step

size. Time steps for stable solutions are suggested in several papers, such as [108].

The algorithm is the following (see Figure 2.4), provided the initial conditions for

each node (u0
i , u̇

0
i , ü

0
i ), the time step ∆t and the time sampling tn+1 = tn +∆t,

1. compute u̇
n+ 1

2
i = u̇n

i +
1
2
ün
i ∆t

2. compute un+1
i = un

i + u̇
n+ 1

2
i ∆t

3. compute ün+1
i from the total potential of the system (internal and external

forces) employing the updated time configuration un+1
i

4. compute u̇n+1
i = u̇

n+ 1
2

i + 1
2
ün+1
i ∆t

The critical time step for the prototype microelastic brittle model was evaluated

by Silling and Askari [68] as follows

∆tcrit =

√

2ρ
∑

p VpCp

(2.11)



94 2. Numerical aspects

where ρ is the density, p iterates over all the neighbors of the given material

point, Vp is the volume associated with neighbor p, and Cp is the micromodulus

between the given material point and neighbor p.

Another option commonly found in the literature is the maximum critical time

step given by the Courant-Friedrichs-Lewy (CFL) approach [108],

∆tcrit =
∆x

cw
(2.12)

where ∆x is the grid spacing and cw is the wave speed as

cw =

√

K

ρ
(2.13)

with K as the bulk modulus. Thus,

∆tcrit = ∆x

√
ρ

K
(2.14)

This is a very conservative estimate of the critical time step for peridynamic models,

since the wave speed is related to the horizon, not to the grid spacing. This critical

value is employed in all the explicit dynamic simulations. However, the sudden

release of energy in some cases and local feature may produce the unrealistic effect

of breaking bonds connected to loaded nodes. To prevent rupture in this area, all

the bonds connected to loaded nodes cannot be broken, creating a “no-fail” zone

[67, 71, 113]: damage initiation is not allowed in this zone and damage cannot

spread further. This no-fail zone should be limited and far away from the crack

propagation area, according to Saint-Venant’s Principle.
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START 

Initial conditions: 

-  

- position   

- velocity  

- acceleration  

 

 

Compute  

 

 

 
YES 

NO 

END 

Figure 2.4: Flow chart of the velocity-Verlet time integration scheme.
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2.3 Numerical convergence

The parameters related to the number of interactions that have to be considered

in a numerical simulation for each node are two: the horizon and the m-ratio

= δ/∆x, that is related the number of nodes within a horizon sphere5.

Bobaru et al. [130] and Bobaru et Duangpanya [131] have introduced three

different types of convergence that can be used to compare the numerical peridy-

namic solutions with the classical elasticity solutions for regular problems (without

discontinuities).

The peridynamic model is nonlocal and its nonlocality is related to the horizon

δ. Since the classical equations of elasticity have no intrinsic length scale, a first

type of convergence for Peridynamics is δ-convergence (Figure 2.5a), in which the

peridynamic horizon goes to zero. More precisely, δ-convergence is carried out by

keeping the m-ratio constant while decreasing the horizon (δ → 0). The numerical

solution converges to an approximation of the local classical solution, although not

uniformly.

The second type is related to the m-ratio, thus called m-convergence (Figure

2.5b), carried out by keeping the horizon fixed while increasing the m-ratio (m

−→ ∞). By increasing the m-ratio, the number of nodes within the horizon neigh-

borhood increases as well. The results converge to the exact nonlocal peridynamic

solution for the given δ.

 

(a)

 

(b)

Figure 2.5: Two types of convergence in Peridynamics: (a) δ-convergence, (b)

m-convergence.

Figure 2.6 shows the third type which is a combination of the previous ones:

5It can be correctly defined only for uniform discretized grids. It is not employed for non-

uniform grids, such as in [78, 129].
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(δm-convergence, where the m-ratio increases with a higher rate than the rate of

decrease of δ). In this case, the numerical peridynamic approximation converges

not only to the exact peridynamic solution but also to the local classical solution

in a uniform way.

 

Figure 2.6: mδ-convergence in Peridynamics: δ decreases while the m-ratio in-

creases with a higher rate of change.





Chapter 3

Algorithms for solvers

All the codes have been developed in Matlabr. During the three years of

PhD research, an important task was to develop a robust and efficient code, since

Peridynamics, being a nonlocal method, is computationally expensive.

Peridynamic solutions in elasticity or dynamic fracture problems use, almost

exclusively1, explicit solver code (e.g. [67, 83]). Most works dealing with peridy-

namic static solutions utilize quasi-dynamic solution methods, like dynamic relax-

ation ([114, 130]) or energy minimization ([121]), methods that avoid building the

stiffness matrix. Explicit solvers are easier to implement and parallelize, but small

time steps are required for stability reasons especially whenever nonlinear problems

are considered. Besides, equilibrium is not usually imposed in explicit methods and

the numerical solution may be subjected to a drift, as the computation progresses.

Implicit solvers offer some benefits in terms of stability over a wide range of

time steps and of accuracy of the converged equilibrated solution. On the other

hand, implicit solvers usually require a high computational time because they are

based on the inversion of the stiffness matrix. When using Newton-type schemes

(see e.g. [132, 133]) for implicit solutions of classical elastostatic and elastodynamic

problems, building the stiffness matrix might be one of the main steps.

In section 3.1 the algorithm for the dynamic solver is illustrated, while the

algorithm for static analyses is written in section 3.2, where the stiffness matrix

assembling is investigated in detail in section 3.2.2. These algorithms are presented

for the SBP formulation: the BBP version is basically the same, even though

1The exceptions are some examples in Sandia Reports [8, 7, 108].

99



100 3. Algorithms for solvers

slightly simpler.

Lastly, section 3.3 focuses on the development of the code from the first imple-

mentation to the vectorized notation which has produced a faster code to execute.

3.1 Dynamic Solver

The algorithm for the dynamic solver is made of the following steps:

1. Acquire Material and Geometric Data,

2. Associate Load and Boundary Conditions to the appropriate set of nodes,

3. Define the initial conditions for every node:

(a) Set the initial position u (x, t0) and velocity u̇ (x, t0) for each node lo-

cated at x,

(b) Compute two nested loops for all nodes located at x and for all their

family nodes p, then compute, in the following order these states or

matrices:

i. X, |X| the reference state and its scalar state (this state has to be

computed just at this point for the all simulation),

ii. m (or q in 2D simulations) the weighted volume computed just at

t0 as expressed in Eq. (1.61),

iii. Y , |Y | the deformation state and its scalar state, which at the initial

time step t0 are respectively equal to X and |X|,

iv. e(Y ) the scalar extension state, which is null at t0, if the configura-

tion is undeformed,

v. θ the dilatation, a scalar value associated to each node x computed

as Eq. (1.62) for 3D cases, Eq. (1.66) for 2D plane stress cases and

Eq. (1.71) for 2D plane strain cases.

(c) Compute two nested loops for all nodes located at x and for all their fam-

ily nodes p: all those states, which require θ to be computed beforehand,

can be now calculated:

i. ed the scalar deviatoric state, corresponding to the deviatoric com-

ponent of the extension scalar state, as expressed in Eq. (1.63),

ii. t the modulus force state as expressed in Eq. (1.54) for 3D cases,

Eq. (1.67) for 2D plane stress cases and Eq. (1.72) for 2D plane

strain cases,



3.1 Dynamic Solver 101

iii. T the force state as expressed in Eq. (1.53).

(d) Compute the initial acceleration ü (x, t0) for every node located at x.

4. Time step integration loop for each time step tn: the parameters are computed

for each iteration, starting from t1 = t0 +∆t in the following order (using a

velocity-Verlet explicit algorithm):

(a) Compute u̇n+ 1
2

and un+1 from the previous step node accelerations,

(b) Compute two nested loops for all nodes located at x and for all their

family nodes p, in which calculate the following states:

i. Y (tn), |Y | (tn), which require the displacement of all the nodes cal-

culated at the previous time step,

ii. e(Y ) (tn),

iii. θ (tn).

(c) Once θ is known for every node, compute two nested loops for all nodes

located at x and for all their family nodes p for all those states depending

on the dilatation:

i. ed (tn) the current scalar deviatoric state,

ii. t (tn) the current modulus force state,

iii. T (tn) the current force state.

(d) Compute the integral of all the force state,

(e) Update the acceleration ün+1 and velocity u̇n+1 for all the nodes.

5. Save data.

The overall algorithm is shown in Figure 3.1



102 3. Algorithms for solvers

START 

Material and 

Geometric Data 

 

Load and Boundary 

Conditions 

Compute  

- position    

- velocity  

- acceleration    

 

 

YES 

NO 

Save Data 

END 

START 

 

 

Compute  

 

END 

START 

 

 

 

 

 

 

 

 

 

 

 

 

END 

Figure 3.1: Flow chart of the algorithm of the dynamic solver.

3.2 Static Solver

Among the numerous static solvers employed in classical mechanics, the chosen

one for static analyses has been a stiffness matrix approach. Thus, the motion

equation of Peridynamics have been manipulated into the form:

{Fext} = [K] {U} (3.1)

where {Fext} is the external force vector, [K] the stiffness matrix and {U} the

nodal displacement vector. The internal forces can be expressed as the stiffness

matrix of the system [K] times the nodal displacement vector {U}. In particular,

if the load condition is divided into load steps then for a generic step n, Eq. (3.1)

becomes

{F n
ext} = [K (Un)] {Un} (3.2)

When nonlinearities are taken into consideration, the equation of external and

internal forces may be obtained by employing an iterative method. The reason is
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due to the stiffness matrix dependence on the nodal displacements. In this case

the tangent stiffness matrix [K (Un)]T is needed to reach the convergent values of

nodal displacements (i.e. the out of balance force {gn} becomes zero). The tangent

stiffness matrix is described in section 3.2.1.

For this formulation, the stiffness matrix of the system is required and two steps

have to be carried out in order to compute it:

1. to compute the linearized model with respect to the displacement state

2. to assemble the contributions, related to the bonds in the right position

within the stiffness matrix components.

The former step is described in section 1.2.2. The latter step is shown in this

section, in the following lines, explaining the structure of the algorithm.

The static solver includes the following steps:

1. Acquire Material and Geometric Data,

2. Associate Load and Boundary Conditions to the appropriate set of nodes,

3. Define the initial conditions for every node:

(a) Set the initial position and compute X, |X| for each node located at x,

(b) Compute the weighted volume m as expressed in Eq. (1.61),

(c) Compute a first stiffness matrix; some steps are required:

i. Compute Y , |Y | the deformation state and its scalar state equal to

the reference state and its scalar,

ii. Compute a loop for all the nodes: when analyzing a node x, all

the terms related to its motion equation is inputed in the stiffness

matrix rows corresponding to node x degrees of freedom; the stiffness

matrix is thus built as a column vector of pairs of rows. A detailed

algorithm for the stiffness matrix is described in section 3.2.2.

4. Load step integration for-loop, for every step n, the steps to be followed are:

(a) Building the external force vector {F n
ext} from the load conditions,

(b) Reducing the stiffness matrix [K (Un)] removing the rows and columns

corresponding to the degree of freedom corresponding to those nodes for

which the displacements are a priori known,
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(c) Employing a solving method to solve Eq. (3.1), where the unknown

vector is the reduced displacement vector ,

(d) Building the complete incremental displacement vector {∆Un} inserting

the rows corresponding to the known degrees of freedom and sum it up

to the previous total displacement vector {Un−1},

(e) Update the stiffness matrix in order to check the residual vector and if

needed iterate with a method to reach convergence or to move to the next

load step.

5. Save data.

The algorithm for the static code is shown in the flow chart in Figure 3.2. the

detail algorithm for the assembling of the stiffness matrix is shown in section 3.3.2.
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START 

Material and Geometric 

Data 

 

Load and Boundary 

Conditions 

Compute  
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NO 
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Compute  

 

 

 

Compute  

Compute  

 

YES 

NO 

 

 

Figure 3.2: Flow chart of the algorithm of the static solver.



106 3. Algorithms for solvers

3.2.1 The tangent stiffness matrix

In order to solve nonlinear problems, such as those where crack initiates and

propagates, a Newton-Raphson integration scheme may be employed. In this case,

the tangent stiffness matrix is needed. In a discretized system, the equation system

is

[K (U)] {U} = {Fext} (3.3)

The out of balance residual force g is, therefore, written as

{g (U)} = {Fext} − [K (U)] {U} (3.4)

It is equal to zero when the system is equilibrated.

The Newton-Raphson scheme becomes:

{g (U)} = 0 → {Uk+1} = {Uk} −
{g (Uk)}
d{g(Uk)}
d{Uk}

(3.5)

The derivative of the out of balance force with respect to the nodal displacement

is the slope of the stiffness matrix, the tangent stiffness matrix :

d {g (U)}

d {U}
=

d

d {U}
({Fext} − [K (U)] {U}) (3.6)

= [K (U)] +
d [K (U)]

d {U}
{U} = [K (U)]T

In particular, if N is the total number of nodes in the system, the (i, j) component

of the tangent stiffness matrix is

KT,ij = Kij +
N∑

m=1

dKim

duj
um (3.7)

If the current iteration is k and the next iteration to be computed is k + 1, the

Newton-Raphson formulation is derived as

{Uk+1} = {Uk} − [K (Uk)]
−1
T {g (Uk)} (3.8)

Numerically speaking, the condition for convergence is that its norm is less than

a given tolerance (|g (U)| < tol).

In section 3.2.2, the assembling of the stiffness matrix is illustrated. A similar

procedure is adopted to assemble the tangent stiffness matrix.
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3.2.2 The assembling of the Stiffness Matrix

The detailed algorithm to compute the stiffness matrix is described in the fol-

lowing lines where three nested loops are set in the stiffness matrix rows corre-

sponding to the degrees of freedom of the considered node:

• nx is the number of the node located at x. If N is the total number of nodes

of a three dimensional structure, the stiffness matrix is a 3N × 3N matrix.

Perform a cycle on all the nodes nx of the structure.

• For each nx, perform a cycle on all the nodes np ∈ Hx, where Hx is the set

of family nodes of nx located at p.

• Within the inner loop, a third loop is computed for all the nodes nq ∈

(Hx ∪Hp) located at q, where Hp is the set of family nodes of np.

• Compute K [x] 〈p− x,q− x〉 and K [p] 〈x− p,q− p〉 , which are 3× 3 ma-

trices, employing the appropriate terms in the formula.

• Add these contributions to the stiffness matrix in the right position. The

assembly method can be summarized as:

[K]3nx−2,3nx−2 3nx−2,3nx−1 3nx−2,3nx
3nx−1,3nx−2 3nx−1,3nx−1 3nx−1,3nx
3nx,3nx−2 3nx,3nx−1 3nx,3nx

= [K]3nx−2,3nx−2 3nx−2,3nx−1 3nx−2,3nx
3nx−1,3nx−2 3nx−1,3nx−1 3nx−1,3nx
3nx,3nx−2 3nx,3nx−1 3nx,3nx

−K [x] 〈p− x,q− x〉

[K]3nx−2,3np−2 3nx−2,3np−1 3nx−2,3np

3nx−1,3np−2 3nx−1,3np−1 3nx−1,3np

3nx,3np−2 3nx,3np−1 3nx,3np

= [K]3nx−2,3np−2 3nx−2,3np−1 3nx−2,3np

3nx−1,3np−2 3nx−1,3np−1 3nx−1,3np

3nx,3np−2 3nx,3np−1 3nx,3np

+K [p] 〈x− p,q− p〉 (3.9)

[K]3nx−2,3nq−2 3nx−2,3nq−1 3nx−2,3nq

3nx−1,3nq−2 3nx−1,3nq−1 3nx−1,3nq

3nx,3nq−2 3nx,3nq−1 3nx,3nq

= [K]3nx−2,3nq−2 3nx−2,3nq−1 3nx−2,3nq

3nx−1,3nq−2 3nx−1,3nq−1 3nx−1,3nq

3nx,3nq−2 3nx,3nq−1 3nx,3nq

−K [p] 〈x− p,q− p〉

+K [x] 〈p− x,q− x〉
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In this way, every step of the most external cycle, concerning a given node x,

fills out three rows corresponding to the three degrees of freedom of node x.

[K] =


























· · ·

· · ·

· · ·







k3nx−2,1 k3nx−2,2 · · · k3nx−2,3N−1 k3nx−2,3N

k3nx−1,1 k3nx−1,2 · · · k3nx−1,3N−1 k3nx−1,3N

k3nx,1 k3nx,2 · · · k3nx,3N−1 k3nx,3N








· · ·

· · ·

· · ·


























(3.10)

The code for the computation of the stiffness matrix is shown in Figure 3.3. As-

sembling the stiffness matrix is illustrated in section 3.3.
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Figure 3.3: Flow chart of the computation of the stiffness matrix.
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3.3 Code Optimization

In this section, the data structure of the developed code is described. This

is useful for the development of further codes. Pseudo-codes of the employed

algorithms are shown. Section 3.3.1 refers to the different command lines for BBP

code, while section 3.3.2 introduces further optimization with additional details

related to SBP code.

3.3.1 BBP Formulation

The first basic code and the final vectorized code are compared in Appendix A

for BBP formulation. The vectorization takes advantage of Matlabr environment

and Appendix B shows in detail the data structure for the assembling of the stiffness

matrix in the BBP code.

After initializing the geometric and material properties, the grid of nodes must

be defined: in all simulations of this thesis, the adopted grid is uniform, thus

∆x = ∆y = ∆z. A matrix collecting all the absolute position data is generated,

through nested loops; for convenience the volume of the node is collected in the

last column of the matrix. The algorithm shown in Figure 3.4 is for a rectangular

specimen, but it can be generalized to more complex shapes.

Algorithm for building the geometric matrix

1: {Initialize the node ID number}
2: nx = 1
3: {Compute the maximum number of nodes in x, y and z direction}
4: numx = Lx/∆x
5: numy = Ly/∆y
6: numz = Lz/∆z
7: {Sweep the three directions and define the positions of all nodes}
8: for i=−numx/2 : numx/2
9: for j=−numy/2 : numy/2

10: for k=−numz/2 : numz/2
11: position(nx, 1 : 3) = [i ·∆x j ·∆y k ·∆z]
12: position(nx, 4) = ∆x ·∆y ·∆z
13: nx = nx + 1
14: end for
15: end for
16: end for

Figure 3.4: Algorithm for building the position matrix for all the nodes of the grid.
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Note that there is no need to store the ID number, since it is identified by the

index of the rows in which data are stored. This is a strategy that is employed

throughout all codes to avoid unnecessary memory consumption.

The algorithm for the initial bond matrix has been developed by a colleague

of mine and it is reported here in Figure 3.5 to be thorough: it contains the ID

numbers of family nodes in the row corresponding to the source node. For source

nodes belonging to boundary layers, the rows are completed with zero element (i.e.

for a simulation of a plate where the parameters are set to have a maximum number

of family node M , a corner node row has 1/4 ·M nonzero entries and 3/4 ·M zero

elements).

Algorithm for building the initial bond matrix

1: {Estimate the maximum value of the bonds of an internal point}

2: cb = πδ2

∆x∆y
+ 10

3: {Initialize the bond matrix Ibond to a zero matrix}

4: Ibond = zeros(N, cb)

5: {Compute a loop within the node ID numbers}

6: for nx,1 = 1 : N

7: {Compute the distance between nx,1 and all the other points}

8: posr(:, 1 : 2) = position(:, 1 : 2)− position(nx,1, 1 : 2)

9: d(:, 1) = (posr(:, 1).2 − posr(:, 2).2).0.5

10: {Find the points within the horizon disk}

11: npj = find(d(:, 1) ≤ δ & d(:, 1) > 0)

12: n = numel(npj )

12: if n > cb

13: Ibond = [Ibond, zeros(N,n− cb)]

14: cb = n

15: endif

16: Ibond(nx,1, 1 : n) = npj

17: endfor

18: {Eliminate possible excess null column in Ibond}

19: [ , c] = find(Ibond)

20: maxc = max(c)

21: if maxc < cb

22: Ibond(:, (maxc + 1) : cb) = [ ]

23: endif

Figure 3.5: Algorithm for building the Initial bond matrix of the structure for 2D

systems.

However, the matrix Ibond containing the pristine bonds is conveniently com-
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puted with a slightly different data structure, in which the number of source node

(i.e. the row index) is inputed instead of null elements, because a simple sequence

of operations can be maintained with a small additional memory and computa-

tional cost (for example, I don’t need “if” conditions to consider exceptions in the

algorithm).

Ibond =

1

2
...
...











2 3 · · · 1 1 1

1 3 · · · · · · 2 2
...
...











(3.11)

While in the original code every property and quantity was computed “bond-

wise”, in the optimized developed code, every quantity has been stored in matrices

which, not only contain the relative value for all the bonds, but also all the oper-

ations are performed element-wise. The matrices are built in this way:

• if the property is associated to each node, then the matrix containing that

property is a column vector of length equal to the total number of nodes N

in the structure, for example the density ρ (x) is

̺ =














ρ1

ρ2
...

ρN−1

ρN














(3.12)

• if the property is associated to each bond and it is a scalar, the matrix has the

same size (N,M) of the bond matrix Ibond, like the scalar reference matrix

|X|

Ibond =

1

2

3

...

...





















2 3 4 · · · 0 0

1 3 4 · · · · · · 0

1 2 4 · · · · · · 0

...

...





















7→ |X| =





















|ξ|2−1 |ξ|3−1 |ξ|4−1 · · · 0 0

|ξ|1−2 |ξ|3−2 |ξ|4−2 · · · · · · 0

|ξ|1−3 |ξ|2−3 |ξ|4−3 · · · · · · 0

...

...





















(3.13)

• if the property is associated to each bond and it is a vector, three (for 3D

cases) or two (for 2D cases) matrices are built of the same size (N,M) of

Ibond containing (x, y, z) components separately.
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Ibond =

1

2

3
...
...














2 3 4 · · ·

1 3 4 · · ·

1 2 4 · · ·
...
...














7→

Xx =














ξx,(2−1) ξx,(3−1) ξx,(4−1) · · ·

ξx,(1−2) ξx,(3−2) ξx,(4−2) · · ·

ξx,(1−3) ξx,(2−3) ξx,(4−3) · · ·
...
...














Xy =














ξy,(2−1) ξy,(3−1) ξy,(4−1) · · ·

ξy,(1−2) ξy,(3−2) ξy,(4−2) · · ·

ξy,(1−3) ξy,(2−3) ξy,(4−3) · · ·
...
...














Xz =














ξz,(2−1) ξz,(3−1) ξz,(4−1) · · ·

ξz,(1−2) ξz,(3−2) ξz,(4−2) · · ·

ξz,(1−3) ξz,(2−3) ξz,(4−3) · · ·
...
...














(3.14)

The most advanced code for these matrices is shown in Figures 3.6, 3.7 and 3.8.

These algorithms take advantage of some built-in function of Matlabr, such

as:

• reshape, a function that changes the size of a matrix by keeping the total

number of elements constant.

• repmat, a function that replicate matrix, so that the original matrix is a

sub-matrix of the final one

• “ .” operator, an operator allowing for element-wise operations on matrices

• bsxfun, a function that apply or verify element-by-element conditions in a

matrix

• sparse, a function that automatically add contributions to a given entry
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Algorithm for building the Xx, Xy , Xz and |X| matrices

1: {Initialize Xx, Xy, Xz and |X| to zero matrices}

2: Xx = zeros(N,M)

3: Xy = zeros(N,M)

4: Xz = zeros(N,M)

5: |X| = zeros(N,M)

6: {Compute a vector calculation of relative position}

7: Xx = reshape(position(Ibond, 1)− position(repmat([1 : 1 : N ]′,M, 1), 1), N, [ ])

8: Xy = reshape(position(Ibond, 2)− position(repmat([1 : 1 : N ]′,M, 1), 2), N, [ ])

9: Xz = reshape(position(Ibond, 3)− position(repmat([1 : 1 : N ]′,M, 1), 3), N, [ ])

10: |X| = (Xx.
2 +Xy.

2 +Xz.
2).0.5

Figure 3.6: Algorithm for building the |X| and its component for all the nodes of

the grid.

Where source node ID numbers are present in the corresponding rows of Ibond,

the components in Xx, Xy, Xz and |X| matrices are null.

Algorithm for building the volume correction factor fV matrix

1: {Initialize fV to a zero matrix}

2: fV = zeros(N,M)

3: fV = bsxfun(@lte, |X|, 0.0) · 0.0+

bsxfun(@and, |X| ≤ δ − 1
2
∆x, |X| > 0.0) · 1.0+

bsxfun(@and, |X| ≤ δ + 1
2
∆x, |X| > δ − 1

2
∆x) · ( δ+∆x/2−|X|

∆x
)

Figure 3.7: Algorithm for building the volume correction factor fV for all the nodes

of the grid. This algorithm is shown in [9] as HBB.

It is convenient for computational purposes and for code readability to have a

volume matrix containing all the volumes of the nodes specified in the correspon-

dent element of Ibond (Figure 3.8).
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Algorithm for building the volume matrix V

1: {Initialize V to a zero matrix}

2: V = zeros(N,M)

3: V = reshape(position(Ibond, 4), N, [ ])

Figure 3.8: Algorithm for building the volume matrix V for all the nodes of the

grid.

Employing these matrices, the stiffness matrix of the system can be easily

assembled as shown in Figure 3.9 where a stiffness matrix for a 2D system is

computed. The motivation for the algorithm, especially for command lines 14, 15

and 16 is clarified through a small example in Appendix B.
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Algorithm for building the initial stiffness matrix

1: {Initialize the state of the stiffnesses of all the bonds to a zero state}
2: rigmod = zeros(N,M)
3: {Compute all the stiffnesses in the local coordinate system at once}
4: rigmod =

1
2
V.·fV
|X|

. · repmat(position(:, 4), 1,M)

5: {Compute the components in the global coordinate system}
6: rigxx = rigmod. · (Xx.

2./|X|.2)
7: rigxy = rigmod. · (Xx. ·Xy./|X|.2)
8: rigyy = rigmod. · (Xy.

2./|X|.2)
9: {Initialize the three inputs of sparse function.}

10: R1 = zeros(1, 16N ·M)
11: C1 = zeros(1, 16N ·M)
12: V1 = zeros(1, 16N ·M)
13: {Compute their values}
14: R1 = [repmat(1 : 2 : 2N, 1,M)′; repmat(1 : 2 : 2N, 1,M)′; . . .

repmat(2 : 2 : 2N, 1,M)′; repmat(2 : 2 : 2N, 1,M)′; . . .
repmat(1 : 2 : 2N, 1,M)′; repmat(1 : 2 : 2N, 1,M)′; . . .
repmat(2 : 2 : 2N, 1,M)′; repmat(2 : 2 : 2N, 1,M)′; . . .
2 · Ibond(:)− 1; 2 · Ibond(:)− 1; 2 · Ibond(:); 2 · Ibond(:); . . .
2 · Ibond(:)− 1; 2 · Ibond(:)− 1; 2 · Ibond(:); 2 · Ibond(:)]

15: C1 = [repmat(1 : 2 : 2N, 1,M)′; repmat(2 : 2 : 2N, 1,M)′; . . .
repmat(1 : 2 : 2N, 1,M)′; repmat(2 : 2 : 2N, 1,M)′; . . .
2 · Ibond(:)− 1; 2 · Ibond(:); 2 · Ibond(:)− 1; 2 · Ibond(:); . . .
repmat(1 : 2 : 2N, 1,M)′; repmat(2 : 2 : 2N, 1,M)′; . . .
repmat(1 : 2 : 2N, 1,M)′; repmat(2 : 2 : 2N, 1,M)′; . . .
2 · Ibond(:)− 1; 2 · Ibond(:); 2 · Ibond(:)− 1; 2 · Ibond(:)]

16: V1 = [rigxx(:), rigxy(:), rigxy(:), rigyy(:), . . .
−rigxx(:),−rigxy(:),−rigxy(:),−rigyy(:), . . .
−rigxx(:),−rigxy(:),−rigxy(:),−rigyy(:), . . .
rigxx(:), rigxy(:), rigxy(:), rigyy(:)]

17: [K] = sparse(R1, C1, V1)

Figure 3.9: Algorithm for building the stiffness matrix of the structure.

The tangent stiffness matrix employed an algorithm based on the same ap-

proach, taking into account the additional term of Eq. (3.7).

3.3.2 SBP Formulation

The old algorithm for the SBP code is described in Appendix C.

If the property is associated to each node, then the matrix containing that

property is a column vector of length equal to the total number N of nodes in the
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structure, like in BBP code:

θ =














θ1

θ2
...

θN−1

θN














m =














m1

m2

...

mN−1

mN














(3.15)

If they are vector properties, three (for 3D cases) or two (2D) matrices are built,

one for each components. If the property is associated to a node, the component

matrices are columns, otherwise, if associated to a bond, the component matrices

have N ×M elements. There are some states that don’t get updated during the

simulation, for example the reference state, which is the state containing the initial

length of all the bonds in the structure, the influence function ω, the partial volume

correction factor fV and the weight m in Eq. (1.61). After building these states

the same approach of the BBP formulation (see for example Figures 3.10 and 3.11),

the stiffness matrix can be computed as explained in Figure 3.12. Note that in the

algorithm [Kxp] = K 〈x− p,q− p〉 and [Kxx] = K 〈p− x,q− x〉.

Algorithm for building the influence function ω state

1: {Initialize ω state to a zero state }

2: ω = zeros(N,M)

3: ω = f . (X)

Figure 3.10: Algorithm for building the ω state for all the nodes of the grid,

considering that ω = f (X).

Algorithm for building m weight

1: {Initialize m to a zero state }

2: m = zeros(N, 1)

3: m = sum(ω. · |X|.2. · fV . · V , 2)

Figure 3.11: Algorithm for building the m weight for all the nodes of the grid,

where V is a state containing all the Vnp
of the nodes listed in the correspondent

position of Ibond and the sum(·, 2) function sums along the column dimension.
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Algorithm for building the stiffness matrix

1: {Initialize the stiffness matrix K to a zero state }
2: K = zeros(3×N, 3×M)
3: {Compute a loop within the node ID numbers}
4: for nx = 1 : N
5: {Compute a loop within the family nodes of node nx}
6: for j= 1 :M
7: np = Ibond(nx, j)
8: {Compute a loop within the family nodes of node np and nx}
9: Iq = [Ibond(np, :), Ibond(nx, :)]

10: for k= 1 : 2M
11: nq = Iq(1, k)
12: {Identify to which set of Figure 3.15 nq belongs}
13: PP=find(nq ∈ Ibond(np, :))
14: QQ=find(nq ∈ Ibond(nx, :))
15: if QQ = ∅
16: {Compute [Kxp] with Eq. (1.81) without the Dirac term}
17: {Add [Kxp] to the stiffness matrix}
18: K3nx−2:3nx,3np−2:3np = K3nx−2:3nx,3np−2:3np + [Kxp]
19: K3nx−2:3nx,3nq−2:3nq = K3nx−2:3nx,3nq−2:3nq − [Kxp]
20: elseif PP = ∅
21: {Compute [Kxx] with Eq. (1.81) without the Dirac term}
22: {Add [Kxx] to the stiffness matrix}
23: K3nx−2:3nx,3nx−2:3nx = K3nx−2:3nx,3nx−2:3nx − [Kxx]
24: K3nx−2:3nx,3nq−2:3nq = K3nx−2:3nx,3nq−2:3nq + [Kxx]
25: else
26: {Compute [Kxx] and [Kxp] with or without the Dirac term

with Eq. (1.81)}
27: {Add [Kxx] and [Kxp] to the stiffness matrix}
28: K3nx−2:3nx,3nx−2:3nx = K3nx−2:3nx,3nx−2:3nx − [Kxx]
29: K3nx−2:3nx,3np−2:3np = K3nx−2:3nx,3np−2:3np + [Kxp]
30: K3nx−2:3nx,3nq−2:3nq = K3nx−2:3nx,3nq−2:3nq + [Kxx]− [Kxp]
31: end if
32: end for
33: end for
34: end for

Figure 3.12: Algorithm for building the stiffness matrix of the structure. The

complete algorithm is shown in the flow chart of Figure 3.3, while command lines

12-30 are explained in more details in Figure 3.15.

The optimized code can be seen in Figures 3.13 and 3.14 ad it is built with

the same data structure of the BBP code. Nevertheless, it becomes so complex to

understand that the initial algorithm for the stiffness matrix is shown as well, for

a faster comprehension of the assembly of the stiffness matrix in SBP.
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Algorithm for building the initial stiffness matrix in SBP(1st part)

1: {Initialize the stiffness matrix K to a zero state }
2: K = zeros(3×N, 3×M)
3: {Compute the γ constant}
4: {Computed loop within the node ID numbers}
5: for nx = 1 : N
6: qij = Ibond(Ibond(nx, :), :);

7: KKxxx1 =
γ.·pos(nx,4)
m(nx).2

. · [ω(nx, :)
′ · ω(nx, :)] . · [x(nx, :)

′ · x(nx, :)] . · . . .

. · [V (nx, :)
′ · V (nx, :)] . ·

[
fV (nx, :)

′ · fV (nx, :)
]
. · . . .

. · [Mx(nx, :)
′ ·Mx(nx, :)] ;

8: KKxxy1 =
γ.·pos(nx,4)
m(nx).2

. · [ω(nx, :)
′ · ω(nx, :)] . · [x(nx, :)

′ · x(nx, :)] . · . . .

. · [V (nx, :)
′ · V (nx, :)] . ·

[
fV (nx, :)

′ · fV (nx, :)
]
. · . . .

. ·
[
Mx(nx, :)

′ ·My(nx, :)
]
;

9: KKxyx1 =
γ.·pos(nx,4)
m(nx).2

. · [ω(nx, :)
′ · ω(nx, :)] . · [x(nx, :)

′ · x(nx, :)] . · . . .

. · [V (nx, :)
′ · V (nx, :)] . ·

[
fV (nx, :)

′ · fV (nx, :)
]
. · . . .

. ·
[
My(nx, :)

′ ·Mx(nx, :)
]
;

10: KKxyy1 =
γ.·pos(nx,4)
m(nx).2

. · [ω(nx, :)
′ · ω(nx, :)] . · [x(nx, :)

′ · x(nx, :)] . · . . .

. · [V (nx, :)
′ · V (nx, :)] . ·

[
fV (nx, :)

′ · fV (nx, :)
]
. · . . .

. ·
[
My(nx, :)

′ ·My(nx, :)
]
;

11: KKpxx1 =
γ.·repmat(pos(Ibond(nx,:),4),1,M)
.repmat(m(Ibond(nx,:)).2,1,M)

. · . . .
. · [repmat(ω(Ibond(nx, :), :)

′, 1,M) · ω(Ibond(nx, :), :)] . · . . .
. · [repmat(x(nx, :)

′, 1,M) · x(Ibond(nx, :), :)] . · . . .
. · [repmat(V (nx, :)

′, 1,M) · V (Ibond(nx, :), :)] . · . . .
. ·
[
repmat(fV (nx, :)

′, 1,M) · fV (Ibond(nx, :), :)
]
. · . . .

. · [repmat(−Mx(nx, :)
′, 1,M) ·Mx(Ibond(nx, :), :)] ;

12: KKpxy1 =
γ.·repmat(pos(Ibond(nx,:),4),1,M)
.repmat(m(Ibond(nx,:)).2,1,M)

. · . . .
. · [repmat(ω(Ibond(nx, :), :)

′, 1,M) · ω(Ibond(nx, :), :)] . · . . .
. · [repmat(x(nx, :)

′, 1,M) · x(Ibond(nx, :), :)] . · . . .
. · [repmat(V (nx, :)

′, 1,M) · V (Ibond(nx, :), :)] . · . . .
. ·
[
repmat(fV (nx, :)

′, 1,M) · fV (Ibond(nx, :), :)
]
. · . . .

. ·
[
repmat(−Mx(nx, :)

′, 1,M) ·My(Ibond(nx, :), :)
]
;

13: KKpyx1 =
γ.·repmat(pos(Ibond(nx,:),4),1,M)
.repmat(m(Ibond(nx,:)).2,1,M)

. · . . .
. · [repmat(ω(Ibond(nx, :), :)

′, 1,M) · ω(Ibond(nx, :), :)] . · . . .
. · [repmat(x(nx, :)

′, 1,M) · x(Ibond(nx, :), :)] . · . . .
. · [repmat(V (nx, :)

′, 1,M) · V (Ibond(nx, :), :)] . · . . .
. ·
[
repmat(fV (nx, :)

′, 1,M) · fV (Ibond(nx, :), :)
]
. · . . .

. ·
[
repmat(−My(nx, :)

′, 1,M) ·Mx(Ibond(nx, :), :)
]
;

14: KKpyy1 =
γ.·repmat(pos(Ibond(nx,:),4),1,M)
.repmat(m(Ibond(nx,:)).2,1,M)

. · . . .
. · [repmat(ω(Ibond(nx, :), :)

′, 1,M) · ω(Ibond(nx, :), :)] . · . . .
. · [repmat(x(nx, :)

′, 1,M) · x(Ibond(nx, :), :)] . · . . .
. · [repmat(V (nx, :)

′, 1,M) · V (Ibond(nx, :), :)] . · . . .
. ·
[
repmat(fV (nx, :)

′, 1,M) · fV (Ibond(nx, :), :)
]
. · . . .

. ·
[
repmat(−My(nx, :)

′, 1,M) ·My(Ibond(nx, :), :)
]
;

· · ·

Figure 3.13: Algorithm for building the stiffness matrix of the structure: 1st part.
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Algorithm for building the initial stiffness matrix in SBP (2nd part)

15: KKxxx2 =
8µ·pos(nx,4)

m(nx)
. · ω(nx, :)

′. · V (nx, :)
′. · fV (nx, :)

′. · · · ·
[Mx(nx, :)

′ ·Mx(nx, :)] ;
16: KKxxy2 =

8µ·pos(nx,4)
m(nx)

. · ω(nx, :)
′. · V (nx, :)

′. · fV (nx, :)
′. · · · ·

[
Mx(nx, :)

′ ·My(nx, :)
]
;

17: KKxyx2 =
8µ·pos(nx,4)

m(nx)
. · ω(nx, :)

′. · V (nx, :)
′. · fV (nx, :)

′. · · · ·
[
My(nx, :)

′ ·Mx(nx, :)
]
;

18: KKxyy2 =
8µ·pos(nx,4)

m(nx)
. · ω(nx, :)

′. · V (nx, :)
′. · fV (nx, :)

′. · · · ·
[
My(nx, :)

′ ·My(nx, :)
]
;

19: KKpxx2 =
8µ·pos(nx,4)
m(Ibond(nx,:))

. · ω(Ibond(nx, :), :)
′. · V (Ibond(nx, :), :)

′. · · · ·
fV (Ibond(nx, :), :)

′. · [−Mx(Ibond(nx, :), :)
′ · −Mx(Ibond(nx, :), :)] ;

20: KKpxy2 =
8µ·pos(nx,4)
m(Ibond(nx,:))

. · ω(Ibond(nx, :), :)
′. · V (Ibond(nx, :), :)

′. · · · ·

fV (Ibond(nx, :), :)
′. ·

[
−Mx(Ibond(nx, :), :)

′ · −My(Ibond(nx, :), :)
]
;

21: KKpyx2 =
8µ·pos(nx,4)
m(Ibond(nx,:))

. · ω(Ibond(nx, :), :)
′. · V (Ibond(nx, :), :)

′. · · · ·

fV (Ibond(nx, :), :)
′. ·

[
−My(Ibond(nx, :), :)

′ · −Mx(Ibond(nx, :), :)
]
;

22: KKpyy2 =
8µ·pos(nx,4)
m(Ibond(nx,:))

. · ω(Ibond(nx, :), :)
′. · V (Ibond(nx, :), :)

′. · · · ·

fV (Ibond(nx, :), :)
′. ·

[
−My(Ibond(nx, :), :)

′ · −My(Ibond(nx, :), :)
]
;

23: R1 = [2nx − 1, 2nx − 1, 2nx, 2nx, 2nx − 1, 2nx − 1, 2nx, 2nx, · · ·
repmat(2nx − 1, 1, 2M), repmat(2nx, 1, 2M), · · ·
repmat(2nx − 1, 1, 2M), repmat(2nx, 1, 2M), · · ·
repmat(2nx − 1, 1, 2M2), repmat(2nx, 1, 2M

2), · · ·
2nx − 1, 2nx − 1, 2nx, 2nx, repmat(2nx − 1, 1, 2M), · · ·
repmat(2nx, 1, 2M), repmat(2nx − 1, 1, 2M), · · ·
repmat(2nx, 1, 2M), ];

24: C1 = [2nx − 1, 2nx, 2nx − 1, 2nx, 2nx − 1, 2nx, 2nx − 1, 2nx, · · ·
2Ibond(nx, :)− 1, 2Ibond(nx, :), 2Ibond(nx, :)− 1, 2Ibond(nx, :), · · ·
2Ibond(nx, :)− 1, 2Ibond(nx, :), 2Ibond(nx, :)− 1, 2Ibond(nx, :), · · ·
2qij(:)

′ − 1, 2qij(:)
′, 2qij(:)

′ − 1, 2qij(:)
′, 2Ibond(nx, :)− 1, · · ·

2Ibond(nx, :), 2Ibond(nx, :)− 1, 2Ibond(nx, :)];
25: V1 = [sum(sum(−KKxxx1)), sum(sum(−KKxxy1)), · · ·

sum(sum(−KKxyx1)), sum(sum(−KKxyy1)), · · ·
sum(−KKxxx2), sum(−KKxxy2), sum(−KKxyx2), · · ·
sum(−KKxyy2), sum(KKxxx1 , 1), sum(KKxxy1 , 1), · · ·
sum(KKxyx1 , 1), sum(KKxyy1 , 1), KKxxx2 , KKxxy2 , · · ·
KKxyx2 , KKxyy2 ,−KKpxx1(:)

′,−KKpxy1(:)
′,−KKpyx1(:)

′, · · ·
−KKpyy1(:)

′, sum(sum(−KKpxx2)), sum(sum(−KKpxy2)), · · ·
sum(sum(−KKpyx2)), sum(sum(−KKxpyy2)), · · ·
sum(KKpxx1 , 2))

′, sum(KKpxy1 , 2))
′, sum(KKpyx1 , 2))

′, · · ·
sum(KKpyy1 , 2))

′, KKpxx2 , KKpxy2 , KKpyx2 , KKpyy2 ];
26: end for
27: [K] = sparse(R1, C1, V1);

Figure 3.14: Algorithm for building the stiffness matrix of the structure: 2nd part.
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Figure 3.15: Detailed stiffness matrix contribution algorithm. The symbols in-

volved in each choice are graphically presented in Figure 3.16.
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Figure 3.16: Symbols of Figure 3.15 explaining the different sets of q nodes which

leads to different terms in the formulas.

After computing the global stiffness matrix and building the external force

vector, they are reduced [134] and the system shown in Eq. (3.1) is solved by the

biconjugate gradients stabilized method built-in function of Matlabr.

The incremental reduced displacement vector is then integrated with the a

priori known displacements. Therefore, the out of balance force is computed and

if it is smaller than a tolerance value, the next load step can be added, otherwise

the updated stiffness matrix related to the new configuration is computed and a

loop employing a Newton type convergence scheme is used until the tolerance is

reached (equilibrium configuration) and the next load step is subsequently applied.

The other parameters needed for the algorithms are optimized following what

was done for the BBP code. For example, Figure 3.17a shows the original code

with quantities requiring two nested loops for being computed. Thanks to the

code optimization, the number of nested loops as well as the computational time

drastically decrease (Figure 3.17b).
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Figure 3.17: Flow chart of the initial algorithm for the dynamic code: (a) first

algorithm, (b) new algorithm.





Chapter 4

Comparison with Analytical Results

Analytical results can be compared for linear elastic cases to the classical con-

tinuum theory exact results which may be obtained by finite element software with

very high accuracy. The simulations of this chapter are all performed through a

static solver.

4.1 BBP Analysis Results

Initially the proposed static solution strategy has been applied to three classic

linear elastic cases, shown in Figure 4.1, to verify and illustrate the performance of

Peridynamics applied to linear problems. The beam dimensions are Lx = 30mm

and Ly = 1.5mm. The material properties are E = 70GPa and ν = 0.33. The

solutions for the plane stress conditions have been obtained assuming a linear elastic

behavior for the material. The results of the static analysis have been compared to

those obtained for the same problem solved with the finite element method (FEM)

using the MSC.Nastran solver. The sensitivity of the peridynamic solution with

respect to the horizon and the m-ratio has been investigated for case 1.

Figure 4.1: Case 1: cantilever beam with tip force; case 2: cantilever beam with

tip moment; case 3: simply supported beam with uniformly distributed load.

The classical case results obtained with the static solution of Peridynamics have

125
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been reported in Figures 4.3, 4.4 and 4.5 together with the relevant results obtained

with finite element method: the comparison was made between peridynamic and

FEM model both with 20x400 nodes.

As previously mentioned, the forces have to be applied as force densities on one

or more boundary layers. In particular, the tip moment of case 2 is obtained by a

linear distribution of forces (see Figure 4.2).

F M 

Figure 4.2: The moment is applied as a linear distribution of force density along

the cross sectional area of the tip of the moment.

Figures 4.6, 4.7 and 4.8 show the relative error of the peridynamic solution with

respect to that obtained with FEM.

Figure 4.3: Case 1 of Figure 4.1: comparison between Peridynamics and FEM

results.
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Figure 4.4: Case 2 of Figure 4.1: comparison between Peridynamics and FEM

results.

Figure 4.5: Case 3 of Figure 4.1: comparison between Peridynamics and FEM

results.
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Figure 4.6: Case 1: relative error for the displacements of peridynamic versus FEM

results.

Figure 4.7: Case 2: relative error for the displacements of peridynamic versus FEM

results.
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Figure 4.8: Case 3: relative error for the displacements of peridynamic versus FEM

results.

The peridynamic solution is overall accurate, except in the zone of the structure

where the boundary conditions are applied, where displacements are rather small

and small absolute errors may increase in terms of relative errors. If we disregard

those zones the maximum error for case 1 is about 4.5%, for case 2 is about 5.5%

and for case 3 the maximum relative error is less than 3.5%. The observed error

where the boundary conditions are applied is due to the way the peridynamic

theory deals with external loads and constraints [1, 135]: they are applied within

a horizon distance. The error along the span of the beam is due as well to the skin

softening effect [68] related to the material points that are less than one horizon

away from the system edges: this effect can be controlled by reducing the horizon.

The error depends, in fact, on the horizon and, since the m-ratio is constant, on the

grid size as shown Figure 4.9: the absolute error of the tip displacement for case 1 is

shown as a function of the uniform grid size ∆x and the corresponding percentage

error is presented. The studied peridynamic models have the dimensions given in

Table 4.1:
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∆x numx numy

0.3 · 10−4 100 5

0.15 · 10−4 200 10

0.1 · 10−4 300 15

0.075 · 10−4 400 20

Table 4.1: Grid sizes and numbers of nodes along x and y directions used in the

sensitivity analysis.

Figure 4.9: Absolute error for the tip displacements of case 1 versus the peridy-

namic horizon (δ-convergence) and the corresponding percentage error.

The proposed static approach for the peridynamic analysis is able to capture

the effective elastic behavior of the studied systems. The numerical accuracy of

the results depends on the horizon: decreasing this parameter means increasing

the total number of nodes of the model, since the grid size decreases as well. In

addition, it should be pointed out that a large number of nodes reduces (but not

eliminates) the skin softening effect and allows a better comparison between the

boundary conditions of the peridynamic models and those of the finite element

models. A grid size sensitivity study has been conducted also on the FEM solu-
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tion of case 1 and its results are shown in Figure 4.10, next to the corresponding

Peridynamics results. The comparison between the curves of Figure 4.10 suggests

that the convergence of the FEM solution is faster than that of the peridynamic

solution and that increasing the number of nodes for a peridynamic analysis makes

the model more rigid, whereas for a finite element analysis the model becomes

softer if the mesh is refined.

Figure 4.10: Sensitivity study on the horizon for the case 1 using FEM results.

In all peridynamic simulations δ = 3∆x. Figure 4.11 shows the absolute and

the percentage errors for the m-convergence: the convergence, in this case, is not

to the local exact solution [130] identified by FEM results (black horizontal line),

but to the nonlocal solution for the employed horizon (δ = 0.6mm), so readers

should pay attention to the fact that this error is not expected to go to zero even

with an infinite m-ratio. Figure 4.12 presents a comparison between peridynamic

and FEM results.

Figure 4.11: Absolute error for the tip displacements of case 1 versus the peridy-

namic horizon (m-convergence) and the corresponding percentage error.
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Figure 4.12: Sensitivity study on m-ratio for the case 1 using FEM results.

4.2 SBP Analysis Results

SBP results are compared to FEM results not only in terms of displacement

fields, but also in terms of recovered material properties.

Since the BBP model (see [2]) is limited to a fixed Poisson’s ratio, it is inter-

esting to see how the SBP model is able to reproduce the behavior of an elastic

material with any Poisson’s ratio. For this purpose, Poisson’s ratios varying in the

[0.1− 0.45] range and a constant Young’s modulus of 71GPa are assumed as in-

put parameters of the peridynamic model for simulations employing the linearized

formula.

In addition, an analysis on influence functions is carried out to see their influence

on displacement fields and on errors.

The example is related to the computation of the peridynamic solution of a 2D

plate under tension in plane stress conditions (see Figure 4.13).

y 

x 

Figure 4.13: Simulated system for the recovery of the mechanical properties

(Young’s modulus and Poisson’s ratio).

The simulated structure is a rectangular plate under tension as shown in Figure

4.13. The material properties are: density ρ = 2780 kg/m3 and Young’s modulus
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E = 71GPa. The Poisson’s ratio is varied, the plate dimensions are 8×2mm2. All

simulations are carried out with the plane stress model and the forces are applied

to one layer of nodes.

4.2.1 The effective E and ν modeled by SBP

One of the issues is related to the recovery of properties. How to recover

Young’s modulus and Poisson’s ratio when the body is discretized into a grid of

points instead of mesh of elements?

The effective elastic properties of the plate are evaluated by using the algorithms

described later in this section which makes use of the computed displacement

values. Static analyses have been performed varying the main parameters of the

Peridynamic discretization, the maximum length of the nonlocal interaction δ and

the number of nodes inside the horizon region given by the spatial discretization

used.

Young’s modulus and Poisson’s ratio can be evaluated a posteriori in several

ways; three strategies have been adopted considering different sets of nodes for the

computation:

• the first method, called double node method, considers the central node of the

plate, which is fixed for the symmetry of the problem and two nodes of its

family are considered for the displacements along the two axes;

• the second method, called internal node method, consists in averaging the

deformation of all the internal nodes, which are considered to be those which

are at a distance 2δ from the border;

• the last method, called tensor method, takes into consideration the defor-

mation gradient at the central node of the plate and the definition of the

collapsed peridynamic stress tensor (see [5]).

A detailed description of the three procedures are given in the following sections.
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Double node method

Consider the two nodes (node number 1 and node number 2 in Figure 4.14) of

the family nodes of the central node (the red one in Figure 4.14). For the symmetry

of the problem the central node is fixed along the two axes, node number 1 can

only move in horizontal direction and in a similar way node number 2 can only

move in the vertical direction.

1 

2 

x 

y 

Figure 4.14: Family nodes used for computing the strains: with respect to the

central node, node 1 is used for computing εxx, while node 2 is used for computing

εyy.

The engineering strain εxx is computed as

εxx =
ux,1 − ux,center

∆Lx,1

(4.1)

where ux,1 is the horizontal displacement of point 1, ux,center is the horizontal

displacement of the central point and ∆Lx,1 is their initial horizontal distance. The

resultant reaction force Fx at the ends of the bar is computed, σxx is estimated as

σxx =
Fx

A
(4.2)

where A is the cross section of the bar, Young’s modulus E is computed as

E =
σxx
εxx

(4.3)

As for the Poisson’s ratio, the engineering strain εyy is computed as

εyy =
uy,2 − uy,center

∆Ly,2

(4.4)
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where uy,2 is the vertical displacement of point 2, uy,center is the vertical displace-

ment of the central point, ∆Ly,2 is their initial vertical distance and the Poisson’s

ratio is computed as

ν = −
εyy
εxx

(4.5)

Internal node method

Another way to compute the material properties is to average them for all the

nodes which are in the internal part of the plate to avoid introducing the error

related to the surface effect. The distance of these nodes from the border is at

least twice the horizon, since the simulations analyzing the surface effect show

that it affects in a less relevant way these nodes (Figure 4.15).

Figure 4.15: The set of nodes for the computation of material properties is com-

posed of those contained in the internal body.

So, consider that the number of nodes of the internal part of the body is N−,

the strain is computed in the x direction as the horizontal displacement from

εxx =
1

N−

N−
∑

i=1

ux,i − ux,center
∆Lx,i

(4.6)

while in the y direction is computed as

εyy =
1

N−

N−
∑

i=1

uy,i − uy,center
∆Ly,i

(4.7)

Their values are employed in Eqs. (4.3) and (4.5) to get the properties.

Tensor method

Reference [5] shows that SBP reproduces the classical mechanical local model

highlighting that if the motion and the model are sufficiently smooth, i.e. integrable

on the whole body B [120] as in the present case, the peridynamic stress tensor
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converges as δ → 0 to the Piola-Kirchoff stress tensor in the classical sense of

a stress tensor (i.e. a stress tensor that is a function of the local displacement

gradient tensor). This result comes from the equality of the peridynamic equation

of motion (Eq. (1.80)), to the following partial differential equation:

ρ(x)ÿ(x, t) = ▽ · ν(x, t) + b(x, t) (4.8)

where ▽· identifies the divergence operator and ν(x, t) is the peridynamic stress

tensor field. The Peridynamic stress tensor [63] is:

ν(x, t) =

∫

S

∫ δ

0

∫ δ

0

(y + z)2 T [x− zm, t] 〈(y + z)m〉 ⊗m dz dy dΩm (4.9)

where S is the unit sphere, dΩm is a differential solid angle in the direction of

any unit vector m, which is the dummy variable of integration in the outer integral

(Figure 4.16).

Figure 4.16: Variables used for the computation of the peridynamic stress tensor.

The peridynamic stress tensor as the horizon tends to zero tends to the collapsed

peridynamic stress tensor which is expressed as [5]:

lim
δ→0

ν(x, t) =

∫

H

T (F (x, t)X,x) 〈ξ〉 ⊗ ξ dVξ (4.10)

where F (x, t)X is the deformation gradient tensor evaluated in the node located

at x and applied to the vector reference state. It is expressed as

F (x, t) =

(∫

H

ω 〈ξ〉Y 〈ξ〉 ⊗ ξ dVξ

)

K−1 (x) (4.11)
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where K (x) is the shape tensor defined by

K (x) =

∫

H

ω 〈ξ〉 ξ ⊗ ξ dVξ (4.12)

and it includes the influence function ω 〈ξ〉. The authors in [5] also mention that

this stress tensor is equivalent to the Piola-Kirchhoff stress tensor of the classical

elasticity theory, so, if we assumed that the displacement field is continuously

differentiable, the corresponding Cauchy stress tensor is defined as

σ = J−1 ν(x, t)FT (x, t) J = det (F(x, t)) (4.13)

in which it is assumed that J 6= 0.

This nonlocal peridynamic strain tensor can be evaluated [63], considering the

definition of the deformation gradient, as

ε (x, t) =
1

2

(
F(x, t) + FT (x, t)

)
− I (4.14)

=
1

2

(∫

H

ω 〈ξ〉Y 〈ξ〉 ⊗ ξ + ω 〈ξ〉 ξ ⊗ Y 〈ξ〉 dVξ

)

K−1 (x)− I

where K−1 (x) is the shape tensor previously defined. So the four components

of the strain tensor (εxx, εxy, εyx, εyy in 2D) can be computed.

Using Hooke’s Law for 2D plane stress, we can write:

εxx =
1

E
(σxx − νσyy)

εyy =
1

E
(σyy − νσxx) (4.15)

which can be rearranged in the unknowns E and ν as following



σyy εxx

σxx εyy











ν

E






=







σxx

σyy






(4.16)

from which 





ν

E






=




σyy εxx

σxx εyy





−1 





σxx

σyy






(4.17)

These methods are used to calculate the local values of Young’s modulus and

Poisson’s ratio in this section. The relative results are shown in the following

section.
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4.2.2 Linear Static Analyses

Every case study is solved with the developed peridynamic solver. The value

of ν and E are computed a posteriori using the displacement data as explained in

section 4.2.1. Then, the computed values are compared to the relevant input values

and a convergence study is carried out by varying the value of the m-ratio and the

horizon. The influence function is fixed for all the simulation in this section. For

some simulations, Poisson’s ratio is fixed; in these cases, it is chosen to be equal

to 0.1, for two main reasons: it is different from the fixed Poisson’s ratio of the

BBP theory for 2D cases and, comparing the results to differing Poisson’s ratios (in

Figure 4.17 Poisson’s ratio is changed from 0.1 to 0.45), it’s possible to see a slight

increase in the error in Poisson’s ratio estimation when Poisson’s ratio decreases.
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(a)

(b)

Figure 4.17: Values of Poisson’s ratio and Young’s modulus computed with the

three methods are plotted and compared with the expected values (continuous

lines) in (a) while the percentage errors are shown in (b). For these simulations:

m-ratio=3 and δ = 0.3mm.

As it is expected these errors decrease as soon as m-ratio increases (this can be

seen from Figure 4.18 in which the results are obtained with m-ratio=5 and can be

compared to those of Figure 4.17). For small values of Poisson’s ratio, the tensor

method shows the best results.
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(a)

(b)

Figure 4.18: Values of Poisson’s ratio and Young’s modulus computed with the

three methods are plotted and compared with the expected values (continuous

lines) in (a) while the percentage errors are shown in (b). For these simulations:

m-ratio=5 and δ = 0.3mm.

The next results show the δ-convergence [130] of the solution in linear elas-

ticity (Figure 4.19): if the m-ratio is kept constant, the solution converges (it’s

more appropriate to write δ-converges) to the theoretical value for the double node

method and the internal node method, while, unexpectedly, the solution does not

change significantly for the tensor method (it δ-converges with a horizon as big

as 1/4 of the smaller dimension of the plate). The single node and the internal
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node computations are affected by large errors, which decrease as the horizon gets

smaller. The error for the tensor method can be reduced only if m-ratio increases,

so the results are relative to the worst case scenario of the entire range.

(a)

(b)

Figure 4.19: δ-convergence: values of Poisson’s ratio and Young’s modulus com-

puted with the three methods are compared to the theoretical values in (a), while

the percentage errors are presented in (b). The simulations are carried out with

m-ratio=3.

Similarly, with a fixed horizon, as the m-ratio increases, the results tend to

the theoretical ones. As it is possible to see from Figures 4.20 and 4.21, when

the m-convergence is analyzed, the results tend to the expected ones as m-ratio
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increases, even though not monotonically: in particular, this is always verified for

the tensor method, while, for the double node and the internal node methods, this

is not evident (in fact, Figures 4.22 and 4.23 show that the errors of the last two

methods are generally higher than the tensor method error).

(a)

(b)

Figure 4.20: m-convergence simulations for different value of Poisson’s ratio (ν =

0.1 (a), 0.2(b)) with the comparison among the three methods. The theoretical

values are identified by continuous lines. For these simulations, δ = 0.3mm.



4.2 SBP Analysis Results 143

(a)

(b)

Figure 4.21: m-convergence simulations for different value of Poisson’s ratio (ν =

0.4(a), 0.45(b)) with the comparison among the three methods. The theoretical

values are identified by continuous lines. For these simulations, δ = 0.3mm.
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(a)

(b)

Figure 4.22: m-convergence simulation percentage errors for different value of Pois-

son’s ratio (ν = 0.1 (a), 0.2(b)) with the comparison among the three methods.

For these simulations, δ = 0.3mm.
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(a)

(b)

Figure 4.23: m-convergence simulation percentage errors for different value of Pois-

son’s ratio (ν = 0.4(a), 0.45(b)) with the comparison among the three methods.

For these simulations, δ = 0.3mm.

The displacement field also has a good correspondence to the one computed by

FEM software MSC.NASTRAN, as it can be seen from Figures 4.24, 4.25 and 4.26:

the simulations are carried out with the same grid spacing of ∆x = 0.05mm so

that each node in the FEM model corresponds to a node in the peridynamic model;

for the peridynamic simulation, the parameters are chosen to be m-ratio= 6 and

δ = 0.3mm. The main differences in the displacement field are near the boundary:

this is due to the surface effect, since in these simulations no technique is adopted
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to take it into account.
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Figure 4.24: Comparison of the horizontal displacements computed with (a) the

analytical solution and (b) Peridynamics.
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Figure 4.25: Comparison of the vertical displacements computed with (a) the an-

alytical solution and (b) Peridynamics.
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Figure 4.26: Comparison of the magnitude of the displacement vector field com-

puted with (a) the analytical solution and (b) Peridynamics.
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4.2.3 Influence Functions

The simulations in the previous sections are all carried out with a constant

influence function, ω = 1, in Eq. (1.92). Spherical influence functions, which means

that their value depends only on the length of the bond and not on the directionality

(ω : |ξ| ∈ [0, δ] 7→ R), have been studied. The most common influence function to

be implemented is the constant (it requires less computational resources) and the

Gaussian; a family of influence functions was simulated in [122] using a dynamic

solver to see if any non-negative influence function is acceptable for an accurate

numerical solution, as it is supposed to be theoretically [2, 122]: the non-negativity

limitation is related to the fact that the influence function is a weight for the bond

interaction in the overall computation. In this section, several influence functions

are considered to see the dependence of the static solution on them: the considered

influence functions are

• the constant ω = 1,

• the Gaussian ω = e−
|ξ|2

δ2 ,

• the linear proportional ω = |ξ|,

• the conical ω = δ − |ξ|,

• the hyperbole ω = |ξ|−1,

• a power function with a negative exponent ω = |ξ|−4,

• a discontinuous function with a vertical asymptote at δ+∆x
2

, ω =
(
δ + ∆x

2
− |ξ|

)−1
,

• a discontinuous function with a vertical asymptote at δ
2
, ω = δ

2|ξ|−δ
,

• a discontinuous function with a vertical asymptote at δ
4
, ω = e

1

|ξ|− δ
4

Eq. (1.80) can be arranged as a Fredholm linear integral equation of the second

kind, which is shown in [120]:

∫

B

C (x,q)u (x)dVq −P (x)u (x) + b (x) = 0 (4.18)
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where C (x,q) is the integral kernel and depends on the source node located at x

and all the other nodes in the body B, u (·) is the displacement vector field, P (x)

is the tensor obtained by the integral of all the contributions multiplying u (x)

and b (x) is the prescribed body force. Since the kernel depends on the influence

function, in the following figures the normalized kernel is plotted as well. It is

computed from the four rows of the stiffness matrix corresponding to the degrees

of freedom of two internal nodes located at x (rows 2nx−1 and 2nx, corresponding

to the horizontal and vertical directions respectively) and at p: these four rows are

composed of tensors of dimension 2×2 which take into consideration the interaction

between nodes (see also Appendix B). The traces of these tensors are the value of

the kernel for the single bond connecting the two nodes, in a similar way of what

is computed for the finite element method (see Eq. (4.19)). Consider the stiffness

matrix of a spring element connecting point nx to point np in the global coordinate

system (see Figure 2.3): it’s a 4× 4 matrix computed as

[K]glo = kspringR
T




1 −1

−1 1



R = (4.19)

= kspring














cos2 α1 cosα1 sinα1

cosα1 sinα1 sin2 α1








− cos2 α1 − cosα1 sinα1

− cosα1 sinα1 − sin2 α1








− cos2 α1 − cosα1 sinα1

− cosα1 sinα1 − sin2 α1








cos2 α1 cosα1 sinα1

cosα1 sinα1 sin2 α1















where kspring is the stiffness of the spring along its local axis and R is the

rotation matrix from local to global coordinates and in the second line of the

equation the attention is focused on its 2 × 2 sub-matrices. The stiffness can be

computed as the trace of any of them. In particular, rows 2nx−1 and 2nx contain

two of the four sub-matrices in Eq. (4.19) for node np and two sub-matrices

for every other bond connected with nx. The traces are computed for all the sub-

matrices of rows 2nx−1 and 2nx. Every value is then divided by the maximum value

(normalization), so that the curve in Figure 4.27 is plotted. In this section several

influence function are taken into consideration and the corresponding kernels are

computed and normalized, as shown in Figure 4.27: every node is influenced by
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nodes that are as far as 2δ, particularity that can also be mathematically seen from

Eq. (1.80), even if this influence is limited compared to that of the nodes within a

distance δ from the source node.

Figure 4.27: The kernels are computed for the constant influence function ω = 1:

the red vertical line marks a horizon distance from the source node located at x

(the origin of the horizontal axis), p is the position of a node at a δ distance from

x and so the node located at q is from p; a node at q affects the behavior of nodes

that are as far as 2δ.
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The following plots summarize the results for different influence functions.

1. Constant influence function ω = 1
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Figure 4.28: Influence function (ω = 1) vs bond length and normalized

kernel; the red vertical line identifies the horizon distance.

In Figure 4.28 the influence function and the kernel are shown. The percent-

age errors of the horizontal displacement field are plotted in Figure 4.29;

only the right half plate is shown due to the symmetry of the problem.

Figure 4.29: Percentage error [%] in the horizontal displacement field for

half plate in a simulation with ω = 1.

2. Gaussian influence function ω = e−
|ξ|2

δ2
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Figure 4.30: Influence function

(

ω = e−
|ξ|2

δ2

)

vs bond length and normal-

ized kernel; the red vertical line identifies the horizon distance.
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In Figure 4.30 the influence function and the kernel are shown. The percent-

age errors of the horizontal displacement field are plotted in Figure 4.31.

Figure 4.31: Percentage error [%] in the horizontal displacement field for

half plate in a simulation with ω = e−
|ξ|2

δ2 .

3. Linear proportional influence function ω = |ξ|
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Figure 4.32: Influence function (ω = |ξ|) vs bond length and normalized

kernel; the red vertical line identifies the horizon distance.

In Figure 4.32 the influence function and the kernel are shown. The percent-

age errors of the horizontal displacement field are plotted in Figure 4.33.

Figure 4.33: Percentage error [%] in the horizontal displacement field for

half plate in a simulation with ω = |ξ|.
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4. Conical influence function ω = δ − |ξ|
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Figure 4.34: Influence function (ω = δ − |ξ|) vs bond length and normal-

ized kernel; the red vertical line identifies the horizon distance.

In Figure 4.34 the influence function and the kernel are shown. The percent-

age errors of the horizontal displacement field are plotted in Figure 4.35.

Figure 4.35: Percentage error [%] in the horizontal displacement field for

half plate in a simulation with ω = |ξ|.

5. Hyperbolic influence function ω = |ξ|−1
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Figure 4.36: Influence function (ω = |ξ|−1) vs bond length and normalized

kernel; the red vertical line identifies the horizon distance.

In Figure 4.36 the influence function and the kernel are shown. The percent-

age errors of the horizontal displacement field are plotted in Figure 4.37.
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Figure 4.37: Percentage error [%] in the horizontal displacement field for

half plate in a simulation with ω = |ξ|−1.

6. A highly local influence function ω = |ξ|−4
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Figure 4.38: Influence function (ω = |ξ|−4) vs bond length and normalized

kernel; the red vertical line identifies the horizon distance.

In Figure 4.38 the influence function and the kernel are shown. The percent-

age errors of the horizontal displacement field are plotted in Figure 4.39.

Figure 4.39: Percentage error [%] in the horizontal displacement field for

half plate in a simulation with ω = |ξ|−4.
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7. An influence function with an asymptote at its domain boundary ω =
(
δ + ∆x

2
− |ξ|

)−1
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Figure 4.40: Influence function
(

ω =
(
δ + ∆x

2
− |ξ|

)−1
)

vs bond length

and normalized kernel; the red vertical line identifies the horizon distance.

In Figure 4.40 the influence function and the kernel are shown. The percent-

age errors of the horizontal displacement field are plotted in Figure 4.41.

Figure 4.41: Percentage error [%] in the horizontal displacement field for

half plate in a simulation with ω =
(
δ + ∆x

2
− |ξ|

)−1
.

8. Influence function with an asymptote inside its domain ω = | δ
2|ξ|−δ

|
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Figure 4.42: Influence function
(

ω = | δ
2|ξ|−δ

|
)

vs bond length and normal-

ized kernel; the red vertical line identifies the horizon distance.

In Figure 4.42 the influence function and the kernel are shown. The percent-

age errors of the horizontal displacement field are plotted in Figure 4.43.
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Figure 4.43: Percentage error [%] in the horizontal displacement field for

half plate in a simulation with ω = | δ
2|ξ|−δ

|.

9. Non-integrable influence function with an asymptote inside its domain ω =

e
1
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4
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Figure 4.44: Influence function

(

ω = e
1

|ξ|− δ
4

)

vs bond length and normal-

ized kernel; the red vertical line identifies the horizon distance.

In Figure 4.44 the influence function and the kernel are shown. The percent-

age errors of the horizontal displacement field are plotted in Figure 4.45.

Figure 4.45: Percentage error [%] in the horizontal displacement field for

half plate in a simulation with ω = e
1

|ξ|− δ
4 .

The accuracy of the static solution is highly dependent on the influence function:

in fact, for some influence functions the modeled plate is too stiff, the displacements

are smaller than the expected ones. This happens with the influence functions for

which the number of nodes contributing to the source node displacement is limited
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and it doesn’t change significantly as m-ratio increases (it’s possible to see it in

Figure 4.39). This effect is due to the numeric integration error with respect to

the theoretical integral value. Unstable behavior may be caused by an influence

function extremely localized (see Figure 4.45).

Percentage Error on

Young’s Modulus [%]

Percentage Error on

Poisson’s Ratio [%]

Double

node

method

Internal

node

method

Tensor

method

Double

node

method

Internal

node

method

Tensor

method

ω = |ξ|−1 9.49 5.74 -2.87 4.55 0.58 0.32

ω = 1 14.27 7.13 -2.90 4.94 -1.20 0.32

ω = e
−

|ξ|2

δ2 12.16 6.61 -1.47 4.37 -0.39 0.16

ω = δ − |ξ| 16.32 7.34 -4.08 5.39 -2.62 0.45

ω = |ξ| 8.53 5.22 2.13 2.98 0.05 -0.24

ω = |ξ|−4 -86.20 -79.56 -83.03 11.78 11.28 9.23

ω =
(

δ + ∆x
2

− |ξ|
)−1

42.37 33.52 11.68 4.93 -5.60 -1.30

ω = | δ
2|ξ|−δ

| 243.61 164.66 -172.33 -21.49 3.63 19.15

ω = e

1

|ξ|− δ
4 142.26 143.21 -341.38 40.01 -30.62 37.93

Table 4.2: The percentage error on both Poisson’s ratio and Young’s modulus

computation are reported with respect to the three estimation procedure previously

explained (m-ratio=6, δ = 0.3mm).

In the previous table (Table 4.2) the results on the errors in the computation

of Poisson’s ratio and Young’s modulus are collected: the best results are given by

the tensor node method for the majority of the studied influence function, while

influence functions that have discontinuity in the domain generate errors indepen-

dently of the employed method (see the last three influence function analyses).

Even if the only restriction to the influence function is its non-negativity in the

domain, for numerical reasons, it has to be regular: it might have jumps, but

not vertical asymptote within it domain. In fact, being nonlocal, the peridynamic

approach cannot describe material behavior even in very simple cases, such as a

mono-dimensional traction test, when the behavior of a node depends on very few

nodes (i.e. the influence function is extremely localized, like with asymptotes).



Chapter 5

Comparison with Experimental

Data

For analyses of fracture mechanics patterns, the comparison is carried out be-

tween experimental data found in literature and numerical results given by the

peridynamic code. In this thesis, brittle fracture is the type of fracture taken into

consideration, since it is one of the common types of mechanical failure in compo-

nents and structures. It is quite interesting, since it can occur under pure mode I,

pure mode II or mixed mode (I and II). In particular, since the 1960s mixed-mode

fracture has been studied numerically, using different failure criteria in simulations

(for example in [136]), or experimentally, using appropriate test methods and care-

fully designed specimens. The numerical tests are mainly concerned with δ and

m-convergences.

5.1 BBP Numerical Results

The numerical tests simulated with the BBP code are employing both the static

and the dynamic code.

The example is a three-point bending test as reported in Carpinteri [137]. The

specimen is 150mm×600mm, the fracture energy G0 = 9.8J/m2, Young’s modulus

E = 35.77GPa, Poisson’s ratio ν = 0.33. For the simulation, m-ratio=3 and

δ = 15mm are adopted, so the total node number is N = 3720 in a plane stress

static formulation. Load and boundary conditions are presented in Figure 5.1a,

while Figure 5.1b shows the deformed configuration.

157
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(a) (b)

Figure 5.1: Results of the BBP static code: (a) Deformed configuration (b) Force

versus opening displacement measured at the nodes where the force is applied.

Figure 5.2 shows that the peridynamic solution is able to identify very well

the maximum value of the applied force and the displacement at which the load

capability drops.
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Figure 5.2: Comparison between experimental data and numerical results in terms

of load vs displacement curve obtained from the three-point bending test.

The dynamic code was employed for analyzing some benchmark problems, such

as the well documented experiment of Kalthoff-Winkler [138]. The experiment

consists of a pre-cracked specimen impacted by a projectile. Young’s modulus is

E = 190GPa, Poisson’s ratio ν = 0.25. The geometric properties of the specimen

an the load condition are shown in Figure 5.3: the specimen is 50mm × 100mm

with two horizontal pre-cracks 25mm long. The projectile is simulated by a velocity

load condition. The time step is ∆t = 125nm.
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V
0
 

25 

50 

100 

Initial cracks 

Figure 5.3: Kalthoff-Winkler experiment: the pre-crack specimen dimensions are

expressed in [mm] and the impacted projectile is simulated by a velocity load

condition.

Since the structure is symmetric, only half of the specimen is simulated, impos-

ing a rolling constraint in the symmetry axis (i.e. zero X-displacement for those

nodes). The simulated grid of nodes and bonds are shown in Figure 5.4

Figure 5.4: Simulated grid of nodes and bonds for the Kalthoff-Winkler experiment.

The body is discretized in N = 2500 nodes, the horizon is δ = 4mm and m-ratio

is equal to 4.
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Figure 5.5: Damage index plot for the Kalthoff-Winkler experiment.

The crack propagates at an angle of approximately 70◦ counterclockwise with

the notch-axis. In Figure 5.5 the damage index expressed in Eq. (1.43) is plotted.

The secondary crack pattern are related to the coarse grid and they can be seen

propagating from the right edge of the sample. This crack is due to numerical

approximations and it does not propagate with a completely finer grid of with a

grid to which an adaptive refinement strategy has been applied [139]. The model,

with a rather coarse grid of nodes, can capture the propagation direction of the

primary cracks, since the results of the original experiment indicated that the brittle

failure cracks extended from the notch tip at an angle of 70◦ from the horizontal

[138].

5.2 SBP Numerical Results

For the simulations in this section, a dynamic solver is employed. These anal-

yses are some of the first dynamic analyses employing the two dimensional model

in a dynamic code for fracture dynamics.

The first numerical tests employing the SBP code are aimed at the verification

of the effective influence of the Poisson’s ratio on the reproduced behavior of the

material. In [79], the authors show an example of how SBP can take into considera-
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tion the effect of different Poisson’s ratio on the propagation direction of the crack.

The sample in consideration is in Figure 5.6: a thick square plate is pre-notched

in its symmetry axis where the notch length is half the size of the sample; the

material is linear elastic; the plate is subjected to combined tension and shear and

the failure criterion applied is a maximum stretch criterion, describing a brittle

behavior.

V 

V 

V 

V 

Figure 5.6: System under study for the crack propagation depending on Poisson’s

ratio.

Approximate analysis near the crack tip based on Mohr’s stress circle results

in a maximum principal stress, and so an initial crack direction, at an angle

ψ =
1

2
arctan




1

1 + ν



 (5.1)
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Figure 5.7: Mohr’s circles for the studied case.

In fact, referring to Figure 5.7, σ11 = 0, σ22 = Evt/a and σ12 = µvt/a, where

E is Young’s modulus, µ shear modulus, v the applied velocity, t the time of

application and a the size of the plate. The angle of maximum principal stress is

identified by σ22 and σ12, in particular

ψ =
1

2
arctan




2σ12

σ22



 (5.2)

and since µ = E/ [2 (1 + ν)], Eq. (5.2) becomes Eq. (5.1).

Differently from the authors of [79], where the 3D LPS model has been used,

the plane stress model has been employed, so to take into account only one layer

of nodes z direction. these results are the first numerical results for this case. The

critical stretch is assumed s0 = 0.1%.

The results are shown in Figures 5.8 and 5.9: as the m-ratio increases the

initial propagation direction tends to overlap with the theoretical one for different

Poisson’s ratios (ν = 0.1, 0.4).
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(a) (b) (c)

Figure 5.8: Results of the crack propagation direction compared to the theoretical

one, highlighted by the continuous line in the SBP dynamic code with ν = 0.1: (a)

m-ratio=3 (b) m-ratio=5 (c) m-ratio=7. The theoretical value is ψ = 21.17◦.

(a) (b) (c)

Figure 5.9: Results of the crack propagation direction compared to the theoretical

one, highlighted by the continuous line in the SBP dynamic code with ν = 0.4: (a)

m-ratio=3 (b) m-ratio=5 (c) m-ratio=7. The theoretical value is ψ = 17.77◦.

These preliminary simulations are carried out in order to verify the code and

the potentiality of the theory. Afterwards, several fracture analyses are carried out

involving different failure criteria.

One of these analyses has concerned a test specimen proposed by Ayatollahi,

Aliya and Hassani in [10]. The experimental test is as shown in Figure 5.10. A semi-

circular bending (SCB) specimen was employed for the mixed mode fracture test.

The specimen is 5mm thick, its radius is Rs = 50mm, the initial length of the crack

is a = 15mm and the semi-distance between the two bottom supports is S = 26mm.

A vertical compression force P is applied at the top of the specimen. The material

chosen for the test is Polymethylmethacrylate (PMMA or Plexiglasr) for its brittle

behavior at room temperature. Similarly to what was done by Ayatollahi et al.,

different initial crack angles β are simulated in order to investigate different mode

mixities fracture patterns, from pure mode I (β = 0◦) to pure mode II (β = 50◦).
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a 

β 

2S 

P 

Figure 5.10: Semi-circular bend (SCB) specimen with the relative geometric pa-

rameters in [10].

For these simulations, the plane stress model (Eq. (1.67)) is adopted to carry

out both δ andm-convergences, where a maximum stretch failure criterion has been

employed; the critical value is assumed to be equal to that of the BBP formulation

(see Eq. (1.41)). Crack patterns are qualitatively compared to the experimental

ones.
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(a) (b)

(c)
(d)

Figure 5.11: m-convergence of the Peridynamic solutions compared to the exper-

imental ones. For these simulations, δ = 3mm and β = 0◦: (a) m-ratio=2, (b)

m-ratio=3, (c) m-ratio=4, (d) experimental results.
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(a) (b)

(c)

(d)

Figure 5.12: m-convergence of the Peridynamic solutions compared to the exper-

imental ones. For these simulations, δ = 3mm and β = 10◦: (a) m-ratio=2, (b)

m-ratio=3, (c) m-ratio=4, (d) experimental results.
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(a) (b)

(c)

(d)

Figure 5.13: m-convergence of the Peridynamic solutions compared to the exper-

imental ones. For these simulations, δ = 3mm and β = 30◦: (a) m-ratio=2, (b)

m-ratio=3, (c) m-ratio=4, (d) experimental results.
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(a) (b)

(c)

(d)

Figure 5.14: m-convergence of the Peridynamic solutions compared to the exper-

imental ones. For these simulations, δ = 3mm and β = 50◦: (a) m-ratio=2, (b)

m-ratio=3, (c) m-ratio=4, (d) experimental results.
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(a) (b)

(c)
(d)

Figure 5.15: δ-convergence of the Peridynamic solutions compared to the exper-

imental ones. For these simulations, m-ratio=3 and β = 0◦: (a) δ = 6mm, (b)

δ = 3mm, (c) δ = 2mm, (d) experimental results.
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(a) (b)

(c)

(d)

Figure 5.16: δ-convergence of the Peridynamic solutions compared to the experi-

mental ones. For these simulations, m-ratio=3 and β = 10◦: (a) δ = 6mm, (b)

δ = 3mm, (c) δ = 2mm, (d) experimental results.
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(a) (b)

(c)

(d)

Figure 5.17: δ-convergence of the Peridynamic solutions compared to the experi-

mental ones. For these simulations, m-ratio=3 and β = 30◦: (a) δ = 6mm, (b)

δ = 3mm, (c) δ = 2mm, (d) experimental results.



172 5. Comparison with Experimental Data

(a) (b)

(c)

(d)

Figure 5.18: δ-convergence of the Peridynamic solutions compared to the experi-

mental ones. For these simulations, m-ratio=3 and β = 50◦: (a) δ = 6mm, (b)

δ = 3mm, (c) δ = 2mm, (d) experimental results.

Figures 5.11, 5.12, 5.13 and 5.14 show the m-convergence for different β, respec-

tively 0◦, 10◦, 30◦and 50◦, and for a horizon length δ = 3mm. As m increases, the

theoretical crack path is reproduced more accurately, but an unrealistic behavior

is present especially near the nodes where the load is applied. These numerical

instabilities arise partly because of a nonlocal damage effect which is related to the

horizon length and partly due to the no-fail zone near the nodes where the force

is applied. No surface correction is adopted.

These effects are lighter when carrying out a δ-convergence (Figures 5.15, 5.16,

5.17 and 5.18), where it is clear that big horizons correspond to incorrect behavior

(see Figure 5.18a)This aspect turns out to be really convenient, because it seems

that for this type of problem (SCB test) and for this type of materials (homoge-
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neous, isotropic and brittle), the important parameter to be tuned is the horizon δ,

while the m-ratio (i.e. the number of bonds per node) doesn’t need to be increased

dramatically.

The following example is related to a test proposed by Ayatollahi and Aliya in

[11]. The experimental test is as shown in Figure 5.19.

P 

P 

 

P

Figure 5.19: The diagonally loaded square plate (DLSP) specimen in [11].

In this test configuration, a square plate of edge length 2w = 150mm and of

thickness t = 5mm characterized by an inclined center crack of length 2a = 45mm

is loaded diagonally by two opposite concentrated loads. The concentrated load P

was applied to the boundary of a small hole with 4mm radius, while the second

hole was pinned. The elastic material properties of the brittle polymer Plexiglas

(PMMA, Polymethylmethacrylate) are E = 2940MPa and ν = 0.38.

Pure mode I is at α = 0◦ while pure mode II is at α = 62.5◦. In [11], sev-

eral inclinations are taken into consideration α = 0◦, 15◦, 45◦, 62.5◦; the authors

adopted the maximum tangential stress (MTS) criterion [140] and a modifies MTS

criterion [141]. The crack path is illustrated for different initial crack inclinations

in Figure 5.20 and their numerical simulations are carried out in plane stress con-
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ditions.

This test has been numerically simulated through the SBP code implemented

in Matlab, in which the different failure criteria explained in section 1.2.3 are taken

into consideration for the 45◦ inclination case.

Figures 5.21, 5.23 and 5.25 show the δ-convergence, while Figures 5.22, 5.24 and

5.26 show the m-convergence. The crack line is the black continuous line in the left

plot, while the red line represent the pre-crack in the specimen. The experimental

results are reported on the right picture of each figure.
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Figure 5.20: Fracture pattern in the DLSP specimens made of PMMA and for

different crack inclination angles in [11].
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Figure 5.21: Results for the maximum stretch criterion computed as in the BBP

formulation: (a) δ-convergence, m-ratio=3, (b) experimental results.
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Figure 5.22: Results for the maximum stretch criterion computed as in the BBP

formulation: (a) m-convergence, δ = 5mm, (b) experimental results.
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Figure 5.23: Results for the maximum constant energy criterion computed incre-

mentally: (a) δ-convergence, m-ratio=3, (b) experimental results.
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Figure 5.24: Results for the maximum constant energy criterion computed incre-

mentally: (a) m-convergence, δ = 5mm, (b) experimental results.
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Figure 5.25: Results for the maximum constant energy criterion computed as an

average between the energy density associated to the nodes at the ends of the

bonds: (a) δ-convergence, m-ratio=3, (b) experimental results.
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Figure 5.26: Results for the maximum constant energy criterion computed as an

average between the energy density associated to the nodes at the ends of the

bonds: (a) m-convergence, δ = 5mm, (b) experimental results.

As the m-ratio increases the slope of the fracture pattern is in general more

accurate, but the position of the simulated crack and the experimental one may be
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shifted. Differently, as δ decreases the numerically simulated crack tend to overlap

the experimental one, but the curvature may be inaccurate. This analysis shows

that δ is the main parameter controlling the propagation direction of the crack,

while the m-ratio is mainly affecting the slope of the crack pattern, according to

what was drawn for the SCB numerical example. Figure 5.25 and 5.26 show an

unexpected behavior due to the spread of damage in a relatively large zone: this

criterion may be more appropriate for describing a ductile fracture; in the model

for this type of fracture, two main characteristics have to be considered: clearly,

plasticity have to be implemented and, probably, the horizon have to be related to

the plastic core size at the crack tip.

The last presented study case is the benchmark problem of mixed mode crack

propagation carried out by Nooru-Mohamed et al. in [12], where a double-edge-

notched square specimen made of concrete was subjected to a complex stress con-

dition, due to shear forces and opening displacement loads. The specimen and load

conditions are shown in Figure 5.27: it is a 200mm × 200mm × 50mm specimen

and the notch length is 25mm. Young’s modulus is E = 30GPa, Poisson’s ratio

ν = 0.2 and the fracture energy is G0 = 110J/m2. The analysis was performed

with the 2D plane strain model and the time step of the simulation is ∆t = 500nm.

The numerical results are compared to the red line in Figure 5.28, where the ex-

perimental crack pattern is shown for the front face (red line) and the rear face

(blue line) of the specimen.
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P 

Figure 5.27: Load conditions applied to the pre-cracked specimen in Nooru-

Mohamed’s experiment in [12].

The convergences are shown in the following figures: Figures 5.29, 5.31 and 5.33

show the δ-convergence, while Figures 5.30, 5.32 and 5.34 show the m-convergence.

The experimental crack line is the black continuous line in the plot.

Figure 5.28: Crack pattern shown in [12].
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Figure 5.29: δ-convergence results for the maximum stretch criterion computed as

in the BBP formulation (m-ratio=3).
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Figure 5.30: m-convergence results for the maximum stretch criterion computed

as in the BBP formulation (δ = 20mm).
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Figure 5.31: δ-convergence results for the maximum constant energy criterion com-

puted incrementally (m-ratio=3).
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Figure 5.32: m-convergence results for the maximum constant energy criterion

computed incrementally (δ = 20mm).
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Figure 5.33: δ-convergence results for the maximum constant energy criterion com-

puted as an average between the energy density associated to the nodes at the ends

of the bonds (m-ratio=3).
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Figure 5.34: m-convergence results for the maximum constant energy criterion

computed as an average between the energy density associated to the nodes at the

ends of the bonds (δ = 20mm).

For this example, the m-ratio is linked to the slope of the fracture pattern

and as it increases, the slope becomes more accurate; δ is linked to the actual
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position of the crack pattern: as it decreases the simulated crack overlaps the

experimental one. Figures 5.33 and 5.34 show the unexpected behavior as it was

for the previous study case (Figures 5.25 and 5.26) case. It is related to a spread

of damage in a relatively large zone and may be inappropriate for brittle materials

where directionality of crack propagation is a clear feature of the crack pattern.

Intuitively, the last criterion is based on an averaged energy over a volume that

is almost the same for two neighbor nodes (see Figure 5.35); for this reason, if

one bond reaches the critical value, then the neighbor nodes are in the verge of

reaching it as well, causing a spread of damage.

Figure 5.35: The energy associated every bond is an average value measured on the

volume of the horizon spheres of the nodes linked by the bonds, thus for neighbor

nodes the energy is comparable.



Chapter 6

Comments and Conclusions

Peridynamics employs integration for the calculation of forces on material

points, so to avoid any problem arising from partial derivatives. In fact, in the

classical theory of continuum mechanics, derivatives are involved in the governing

equation, and cannot be applied whenever singularities occur. An integral formula-

tion is not affected by this problem and can use only one mathematical framework

to describe material behavior both where the displacement field is singular and

where it is differentiable.

In this thesis, Peridynamics theory is analyzed and implemented in a Matlabr

code to investigate its potentialities. Several analyses are carried out either with

static or dynamic solvers: both linear and nonlinear static simulations are per-

formed with an algorithm involving the assembly of the stiffness matrix and the

biconjugate gradient stabilized method as solution scheme, while dynamic simula-

tions are performed by using a solver that employs a velocity-Verlet time integration

scheme.

The former approach allows the solution to be computed in one step, differently

from dynamic relaxation or energy minimization methods. It becomes advanta-

geous for the application of Peridynamics to nonlinear problems such as fatigue

crack growth and quasi-static crack propagation, by employing a Newton-Raphson

scheme with the relevant tangent stiffness matrix. The latter is straightforward

and requires modest storage resources compared to the former one. However, it is

explicit and the equilibrium is not verified so that the solution may be subjected

to a drift as the time steps increase.

185
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The original contributions presented in this thesis are the following:

• the derivation of the plane stress and the plane strain formulations for lin-

earized 2D State-Based Peridynamics;

• the study of a set of proposed fracture criteria for the State-Based Peridy-

namics;

• the definition of a strategy to drastically reduce the computational time re-

quired for the assembly of stiffness and tangent matrix;

• the study of convergence of the peridynamic solution to the classical elasticity

by means of static analyses;

• the study of a set of influence functions and of their effects on peridynamic

solutions;

• numerous numerical analyses (both static and dynamic) have been performed

to show the capabilities of Peridynamics to reproduce experimentally ob-

tained crack paths (also in mixed mode fracture).

6.1 Peridynamics Linearized Models

One of the main original contributions to the existing literature in Peridynamics

is the study of the linearized model for 2D plane stress and strain assumptions and

the stiffness matrix in the state-based formulation. In the SBP formulation, the

double tensor K (i.e. the derivative of the force state) necessary for the direct

stiffness matrix method has been derived here for the 2D cases, while [7] illustrates

the double tensor for 3D simulations. The model converges to the classical one in

the limit-to-zero horizon. The verification of the peridynamic model is assessed by

numerical results of linear elastic problems involving homogeneous isotropic brittle

material.

The approach involves the stiffness matrix when the problem is linear, but

for nonlinear solutions the tangent stiffness matrix is required [108]: in current

applications, it is mainly elaborated numerically, because of the high computational
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resources required. However, the present approach may be helpful to compute the

tangent stiffness matrix analytically.

K can be employed in an implicit dynamic solver as suggested by Mitchell in

[7, 8]. To the author’s knowledge, studies on implicit dynamic solvers have yet to

be investigated in detail. Some attempts have been carried out by Mitchell in the

aforementioned reports, but he applied his implicit dynamic solver only to a single

bond.

6.2 Failure Criteria for SBP

This thesis presents failure criteria based on the elastic micropotential of each

interaction. The maximum energy storable in a bond is considered to be indepen-

dent or proportional to the initial length of the bond (similarly to what has been

done in bond-based Peridynamics [68]) or a value related to the average energy

associated to the nodes linked by the bond. The first two criteria do not relate the

maximum energy of the single bond to anything not directly linked to the bond

itself. Therefore, the directionality of cracks in brittle fracture is well reproduced.

They are useful to identify the main roles played by the horizon and the m-ratio

in the overall crack pattern: the horizon controls the crack position (the smaller

the more accurate is the location of the crack in the sample with respect to the

experimental one) while the m-ratio affects the curvature and shape of the cracks.

A noticeable feature of these criteria is that the fracture energy employed is the

fracture energy in mode I, but the results show good correspondence to the experi-

mental data, even in the presence of mixed-mode failures. Besides, a critical stretch

criterion implicitly neglects the contributions from the deviatoric strain tensor to

the total stored energy. This is probably due to the type of described materials

(homogeneous and isotropic). Differently, the last criterion gives rise to a spread

of damage that may be unrealistic in some cases, such as in cracks where direc-

tionality is apparent. These criteria may be applied to specific types of materials,

which are homogeneous and isotropic. Therefore, limits for using them have to be

discussed and further criteria should be investigated.
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6.3 Future works

Future activities concern an efficient and robust software implementation of

the code in a supercomputer, by HCP computing techniques such as paralleliza-

tion and GPU tools. Particular attention has to be paid to estimate numerical

approximation errors, such as the round-off errors and truncation errors [142].

It is rather complex to compute analytically the tangent stiffness matrix, be-

cause it means not only to derive the formula for the second derivative of the force

state J 〈ξ, ζ, ψ〉, but also to implement it correctly. In fact, several terms of the

second derivative of force state will contain more than one Dirac delta functions

(for example terms with ∆(ξ − ζ) · ∆(ξ − ψ)) and have to be reduced to only

one Dirac delta function. Besides, the resulting state will require three vectors as

input. Thus, it will be represented numerically by a 3× 3× 3 matrix1 that has to

be handled for every possible combination of three bonds.

K can be employed in an implicit dynamic solver as suggested by Mitchell in

[7, 8]. To the author’s knowledge, studies on implicit dynamic solvers have yet to

be investigated in detail. Some attempts have been carried out by Mitchell in the

aforementioned reports, but he applied his implicit dynamic solver only to a single

bond. When a problem is nonlinear, the solution strategy may be incremental so

that it consists of finding an increment ∆un to the displacement un to obtain the

displacement un+1 at load step n + 1. ∆un is found through an iterative process,

such as Newton-Raphson scheme. At iteration k, ∆unk is known from the previous

iteration and ∆unk+1 can be computed by the first order approximation (i.e. the

double tensor K) of the integral of internal force vectors at iteration k+1. Implicit

dynamic solver employing a Newton-Raphson technique would be useful for the

accurate prediction of crack patterns, but the costs in terms of time and resources

may become intolerable for every day applications.

Another important future work is related to the implementation in the SBP

code of additional failure criteria. The criteria employed in this thesis give accu-

rate results because of the mechanisms of failure described and because of the type

of described materials. In fact, the proposed failure criteria are applicable to brit-

1In 2D cases, it will be a 2× 2× 2 matrix.
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tle material (the damage spread seen in the energy average criterion is still under

study) when the structure fails in mode I, mode II or mixed mode I/II. Failure

modes as mode III (tearing), environmental effects as corrosion and phenomena

like thermal shocks, impacts or fatigue are not analyzed. To date, most appli-

cations and studies for these failure modes are relative to the BBP formulation.

Besides, the materials of the samples analyzed in this thesis are homogeneous and

isotropic, so no effects related to directional properties (for example in crystal or

composites) are present, so no delamination or damage related to grain bound-

ary can be describe with these criteria. Appropriate considerations and analyses

have to be performed to be able to reproduce with state-based Peridynamics these

phenomena.
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Appendix A

Old algorithms for BBP code

The initial code was more immediate and clear for a first approach to Peridy-

namics, but rather slow and memory consuming. A more advantageous code has

been developed in the PhD course.

In the initial code, Ibond was a sparse matrix of the dimension N×N , where the

(nx, np) component contains 1 if node nx and node np had a connection, a “bond”,

or 0 if otherwise (see Figure A.1). It was needed as a reference matrix containing

information on the existence of bonds. The data structure has been changed. The

new algorithm is shown in Figure 3.5.

Algorithm for building the initial bond matrix

1: {Initialize the bond matrix Ibond to a zero matrix}

2: Ibond = zeros(N,N)

3: {Compute the distance between two generic nodes nx,1 and node nx,2}

4: {Compute a loop within the node ID numbers}

5: for nx,1 = 1 : N

6: {Compute a nested loop within the node ID numbers}

7: for nx,2 = 1 : N

8: d(nx,1, nx,2) = norm(position(nx,2, 1 : 3)− position(nx,1, 1 : 3))

9: endfor

10: endfor

11: {Associate a unit value to the position in Ibond corresponding to an existing bond}

12: for nx,1 = 1 : N

13: II = find(d(nx,1, :)− δ ≤ 0)

14: for tt = 1 : length(II)

15: Ibond(i, II(tt)) = 1

16: endfor

17: endfor

Figure A.1: Algorithm for building the Initial bond matrix of the structure.
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In the first code, the search for the family nodes was carried out not only

when building Ibond, but also whenever a family node was recalled (i.e if nx is

the node in consideration, then the family nodes are the element of the set npj =

find(Ibond(nx, :) > 0)) in the computation, as you can see in Figure A.2. Note

that the volume correction factor (HHB algorithm in [9]) has not been described

in detail in the algorithm, even if present.

Algorithm for building the initial stiffness matrix
1: {Initialize the stiffness matrix K to a zero state}
2: K = zeros(3×N, 3×N)
3: {Compute a loop within the node ID numbers}
4: for nx = 1 : N
5: {Find its family nodes}
6: npj = find(Ibond(nx, :) > 0)
7: {Compute a loop within the family nodes npj of node nx}
8: for j= 1 : length(npj)
9: np = npj(j)

10: {Compute the initial length of the bond}
11: ξ = position(nx, 1 : 3)− position(np, 1 : 3)
12: {Compute the volume correction factor of the bond}
13: fV = f (δ − |ξ|)
14: {Compute the stiffness of the bond in the local coordinate system}

15: rig = 1
2

fV ·c
|ξ|

· Vnp · Vnx

16: {Compute the rotation angles between the local and the global
coordinate systems}

17: α = | arctan
(

ξ2
ξ1

)

|

18: φ = |π
2
− arctan

(

ξ3
√

ξ2
1
+ξ2

2

)

|

19: {Compute the stiffness of the bond in the global coordinate system}
20: lx = cosα cos

(

π
2
− φ

)

21: mx = cos
(

π
2
− φ

)

cos
(

π
2
− α

)

22: nx = cosφ

23: [A] = rig ·

[

lx2 lx ·mx lx · nx
mx · lx mx2 mx · nx
nx · lx nx ·mx nx2

]

24: {Add [A] to the stiffness matrix}
25: indices = [3nx − 2 3nx − 1 3nx 3np − 2 3np − 1 3np]
26: crow = [1 1 1 −1 −1 −1]
27: ccolumn = [1 1 1 −1 −1 −1]
28: qa = 1
29: for j = 1 : 6
30: if qa > 3
31: qa = 1
32: endif
33: qb = 1
34: for t = 1 : 6
35: if qb > 3
36: qb = 1
37: endif
38: Kindices(j),indices(t) = Kindices(j),indices(t)+

+crow(j) · ccolumn(t) ·A(qa, qb)
39: qb = qb+ 1
40: endfor
41: qa = qa+ 1
42: endfor
43: endfor
44: endfor

Figure A.2: Algorithm for building the stiffness matrix of the structure.

.



Appendix B

Assembling the stiffness matrix in

BBP code

All the xx components of the stiffnesses of the bonds in the global reference

systems are computed and stored in only one matrix (rigxx); other two matrices

are needed in order to stored the xy and yy components separately. rigxx, rigxy

and rigyy can be computed as explained in command lines 6, 7, 8 of Figure 3.9.

The contributes have to be assembled as shown in section 3.2.2. The assembling

can be carried out by the built-in function sparse, requiring three vectors as input:

a vector containing the row indices, a vector containing the column indices and

a vector containing the value of the stiffness to add. Sparse automatically add

contributions when they belong to the same component in the final global matrix.

For example, 





R1(8) = 23

C1(8) = 15

V1(8) = 104

7→ K23,15 = K23,15 + 104 (B.1)

Note that since they are vector, only one index is necessary to identify the

element. So considering a bond, the related stiffness matrix is 4× 4 in x− y plane.

Its components must be added to the appropriate rows ans columns, as shown in

Eq. (B.2), where the relative bond connects point i to point j.
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[K]bond =

2i− 1

2i

2j − 1

2j

2i− 1 2i 2j − 1 2j













rigxx rigxy

rigxy rigyy








−rigxx −rigxy

−rigxy −rigyy








−rigxx −rigxy

−rigxy −rigyy








rigxx rigxy

rigxy rigyy















(B.2)

Consider the component (1, 1) of the [K]bond, corresponding to the rigxx value

for the bond: for every source node i, it must be added to the position (2i− 1, 2i− 1).

In Matlabr a matrix can be seen as a juxtaposition of column vectors, that can

be aligned to be one column vector by the “ :” colon command:

V1(1 : N ×M) = rigxx(:) =










































rigxx(1, 1)

rigxx(2, 1)
...

rigxx(N, 1)





















rigxx(1, 2)

rigxx(2, 2)
...

rigxx(N, 2)











...

rigxx(N − 1,M)

rigxx(N,M)
































(B.3)

Since rigxx is a N ×M matrix, V1 is a (N ·M)× 1 vector. The corresponding row

and column indices for these values are then computed as:
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R1(1 : N ×M) =
































2× (1)− 1

2× (2)− 1
...

2× (N)− 1

2× (1)− 1

2× (2)− 1
...

2× (N)− 1
...

2× (N − 1)− 1

2× (N)− 1
































C1(1 : N ×M) =
































2× (1)− 1

2× (2)− 1
...

2× (N)− 1

2× (1)− 1

2× (2)− 1
...

2× (N)− 1
...

2× (N − 1)− 1

2× (N)− 1
































(B.4)

which can be written as

R1(1 : N ×M) = repmat(1 : 2 : 2N, 1,M)′

C1(1 : N ×M) = repmat(1 : 2 : 2N, 1,M)′
(B.5)

The component (1, 2) of the [K]bond corresponds to the rigxy value for the bond

and it has to be added to the position (2i− 1, 2i), which can be computed as







R1((N ×M) + 1 : 2 (N ×M)) = repmat(1 : 2 : 2N, 1,M)′

C1((N ×M) + 1 : 2 (N ×M)) = repmat(2 : 2 : 2N, 1,M)′

V1((N ×M) + 1 : 2 (N ×M)) = rigxy(:)

The component (1, 3) of the [K]bond corresponds to the −rigxx value for the

bond and it has to be added to the position (2i− 1, 2j − 1), where j is the family

bond. V1 and R1 can be computed as previously explained, while

C1 (2 (N ×M) + 1 : 3 (N ×M)) = 2 · Ibond(:)− 1 (B.6)

This approach is applied to all the components so that R1 , C1 and V1 become

(16 (N ×M) , 1) vectors to give as inputs to sparse function.





Appendix C

Old algorithms for SBP code

If the property is associated to each bond and it is a vector, the first attempts

matrices had the same number of column, M , of the bond matrix Ibond and a

number of rows that was twice (for 2D cases) or three times (for 3D cases) N , the

number of rows of Ibond, since there is a row for every component of the property

for every source node, like the reference state X. For example in a two-dimensional

simulation, for node nx = 1 the associated rows are 1 and 2, for node nx = 2 the

associated rows are 3 and 4, so for a generic node nx the associated rows are 2nx−1

and 2nx.

Ibond =

1

2
...
...











2 3 · · ·

1 3 · · ·
...
...











7→ X =

















ξx,(2−1) ξx,(3−1) · · ·

ξy,(2−1) ξy,(3−1) · · ·

ξx,(1−2) ξx,(3−2) · · ·

ξy,(1−2) ξy,(3−2) · · ·
...
...

















(C.1)

In the first attempt, these states were computed by the command lines in

Figures C.1, C.2, C.3 and C.4.
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Algorithm for building the X state

1: {Initialize X state to a zero state }
2: X = zeros(3×N,M)
3: {Compute a loop within the node ID numbers}
4: for nx = 1 : N
5: {Compute a loop within the family nodes of node nx}
6: for j= 1 :M
7: np = Ibond(nx, j)
8: X(3nx − 2, j) = position(np, 1)− position(nx, 1)
9: X(3nx − 1, j) = position(np, 2)− position(nx, 2)

10: X(3nx, j) = position(np, 3)− position(nx, 3)
11: end for
12: end for
13: end for

Figure C.1: Algorithm for building the X state for all the nodes of the grid.

Algorithm for building the influence function ω state

1: {Initialize ω state to a zero state }
2: ω = zeros(N,M)
3: {Compute a loop within the node ID numbers}
4: for nx = 1 : N
5: {Compute a loop within the family nodes of node nx}
6: for j= 1 :M
7: np = Ibond(nx, j)
8: ω(nx, j) = f (X(nx, j))
9: end for

10: end for

Figure C.2: Algorithm for building the ω state for all the nodes of the grid, con-

sidering that ω = f (X).
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Algorithm for building the volume correction factor fV state
and the scalar reference state |X|

1: {Initialize fV and |X| states to zero states }
2: |X| = zeros(N,M)
3: fV = zeros(N,M)
4: {Compute a loop within the node ID numbers}
5: for nx = 1 : N
6: {Compute a loop within the family nodes of node nx}
7: for j= 1 :M
8: np = Ibond(nx, j)

9: ξ =
√

∑3
k=1 [position(nx, k)− position(np, k)]

2

10: if ξ <= 0.0
11: fV (nx, j) = 0.0
12: |X|(nx, j) = 0.0
13: elseif ξ <= δ − 1

2
∆x

14: fV (nx, j) = 1.0
15: |X|(nx, j) = ξ
16: elseif ξ <= δ + 1

2
∆x

17: fV (nx, j) =
δ+∆x/2−ξ

∆x

18: |X|(nx, j) = δ − ∆x
2
· fV (nx, j)

19: end if
20: end for
21: end for

Figure C.3: Algorithm for building the volume correction factor fV and the scalar

reference state |X| for all the nodes of the grid.

In particular, in Figure C.3 the algorithm explained by Bobaru et al. in [143]

is employed.
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Algorithm for building m weight

1: {Initialize m to a zero state }
2: m = zeros(N, 1)
3: {Compute a loop within the node ID numbers}
4: for nx = 1 : N
5: {Compute a loop within the family nodes of node nx}
6: for j= 1 :M
7: np = Ibond(nx, j)
8: m(nx, 1) = m(nx, 1) + ω(nx, j) · |X|2(nx, j) · fV (nx, j) · Vnp

9: end for
10: end for

Figure C.4: Algorithm for building the m weight for all the nodes of the grid.


