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INTRODUZIONE

Negli ultimi decenni, il mercato ha portato le aziende manifatturiere e di servizi ad essere piu
flessibili e efficienti nella produzione dei propri beni e servizi. Maggior attenzione e stata quindi
posta nei confronti delle performance dei sistemi produttivi-logistici. E infatti noto lo stretto
legame tra flessibilita e competitivita delle aziende con l'efficienza degli impianti produttivi e
della logistica caratterizzanti le stesse.

E importante quindi riuscire a definire, monitorare e migliorare l'efficienza degli impianti
industriali e dei sistemi logistici. Sono stati introdotte numerose definizioni di efficienza, tra le
quali la pitt importante e I'Overall Equipment Efficiency (OEE), introdotta alla fine degli anni
’80 da Nakajima. Tale indice si e presto diffuso in numerosi settori e lega 1'efficienza dei sistemi
produttivi e logistici a tre fattori principali: la disponibilita dei sistemi, la qualita dei beni/servizi
e le performance produttive e logistiche.

Tra questi fattori, maggior attenzione & stata posta al parametro relativo alla disponibilita dei
sistemi. Inoltre e noto come la disponibilita dei sistemi sia strettamente legata al
comportamento affidabilistico dei sistemi stessi.

Su tale fronte, questo elaborato introduce innovativi modelli teorici per 1’analisi dell’affidabilita
e disponibilita di componente e sistemi logistico-produttivi, con particolare attenzione ai sistemi
soggetti a diverse condizioni operative.

La tesi si articola in tali principali parti:

1. Introduzione ai principali modelli di OEE e loro legame con la disponibilita dei
sistemi logistico-produttivi;

2. Discussione del legame stretto tra comportamento affidabilistico e condizioni
ambientali;

3. Sviluppo di modelli teorici innovativi per la modellazione delle caratteristiche
affidabilistiche e loro validazione tramite applicazioni industriali;

4. Definizione e sviluppo di nuove politiche manutentive basate sull’estensione della
letteratura scientifica grazie ai modelli teorici precedentemente verificati, per il
miglioramento degli indici di efficienza;

5. Definizione di un nuovo modello per l'analisi delle performance di sistemi logistici
quali gli Automated Storage/Retrieval Systems e comparazione con i modelli esistenti
in letteratura.

Il lavoro di tesi e stato sviluppato in stretta collaborazione anche con il Prof. Hoang Pham,
direttore del Department of Industrial and Systems Engineering, Rutgers University,
Piscataway — New Jersey (USA), grazie ad un periodo di ricerca di alcuni mesi svolto
dall’autore presso Quality and Reliability Engineering Laboratory di tale dipartimento.

I presente lavoro ha portato anche alla pubblicazione di diversi contributi su importanti riviste
e convegni internazionali, quali International Journal of Mathematics in Operational Research,
International Journal of System Science e IEEE Transactions on Man, Cybernetics and Systems.






ABSTRACT

In the last decades, the global markets have driven the manufacturing and service companies to
be more flexible and efficient as for goods and services operations are concerned. More
attention has also been paid to the performance of productive and logistic systems. In fact, the
strict relation between flexibility and competitiveness of companies and efficiency of their
productive plants and logistics is well known.

It is important to define, monitor and improve the efficiency of industrial and logistic systems.
Many definitions of efficiency have been introduced and the most important is the Overall
Equipment Efficiency (OEE), introduced by Nakajima at the end of the ‘80s. This index quickly
spread in many industrial fields and it connects the efficiency of productive and logistic
systems to three main factors: the availability of systems, the quality of produced
goods/services and the productive and logistics performance.

Between these factors, more attention has been paid to the parameter related to the availability
of systems. Moreover, it is known that the availability is strictly linked to the survival behavior
of systems.

In this field, the manuscript introduces several innovative theoretical models for the survival
analysis of components and productive-logistics complex systems, with particular attention to
the systems which operate in different operative conditions.

This thesis is structured in the following main parts:

1. Introduction of most important models of OEE and their relationship with availability
of productive and logistic systems;

2. Discussion about the relation between survival behavior and operative conditions;

3. Definition and development of innovative theoretical models for the system reliability
modeling and their validation thanks to several industrial applications;

4. Definition and development of innovative maintenance policies for the efficiency
improvement, based on the extension of scientific literature, thanks to the theoretical
models introduced in previous parts;

5. Definition of innovative model for the performance analysis of logistic systems, in
particular for Automated Storage/Retrieval Systems and comparison with the existing
models.

The research has also been carried out in collaboration with Prof. Hoang Pham, director of
Department of Industrial and Systems Engineering, Rutgers University, Piscataway — New
Jersey (USA), during a period the author spent as “visiting researcher” in the Quality and
Reliability Engineering Laboratory of that department.

The present work has carried out to the publishing of several scientific contributions in relevant
International Journals and Conferences, like International Journal of Mathematics in
Operational Research, International Journal of System Science and IEEE Transactions on Man,
Cybernetics and Systems.






ACKNOWLEDGEMENTS

First of all, I would really like to thank to my research supervisor, Professor Alessandro
Persona. With his valuable professional and human suggestions, he was, is and will be a great
example, who led me during this last three years which has driven me in this three years and
has instilled me the passion for research.

A huge thank you goes to Professor Hoang Pham. He has given me the opportunity to live a
beautiful period of my Ph.D. course in one of the most important universities, in the Quality
and Reliability Engineering Laboratory, Department of Industrial and Systems Engineering,
Rutgers University, Piscataway — New Jersey (USA). This thesis is also the result of our
collaboration.

I cannot forget to thank all my research colleagues: Daria Battini, Maurizio Faccio, Anna Azzi,
Chiara Ortolani and Pietro Vecchiato.

A special thank is also due to all the personnel of Department of Engineering and Management,
in particular to the Chairman of Department, Professor Caracciolo; to the Coordinator of
Mechatronics and Industrial Systems Curricula of Ph.D. course Professor Trevisani; to all the
research teams of DTG and to all the student secretaries and administrative officers.

I would like to greet all my colleagues in Ph.D. course, who believed in me, giving me an
important charge, nominating me their Ph.D. student representative inside the Ph.D. course. I
hope to have met all their expectations. We have spent nice time together.

A great thank goes to all my family, that has always been close to me in these last three years
and above all to my beloved Rossana, who supported me in several difficult periods, we also
shared many delighting times together and I hope we will keep on doing this forever.

Last but not least, I thank all my friends, in particular to the cool guys of B.B.L. band.

Thank you all,

Fabio Sgarbossa

31 January 2010






TABLE OF CONTENTS

1.

INErOAUCHION ...t s 1
1.1.  Purpose of ReSEArCh.........cccouiiiiiiiiiiiiiiiiiiiciccc s 1
1.2, Structure Of TRESIS.......ccciiuiriiiiiiiiciiccee et s 2
1.3. Main Scientific Contribution Developed..............cocooueieiiiiiiiiiiii e 4

Efficiency on Industrial Plants and LOGistiCs........ccceeeiviriiiininiiiiiiccicccccceecee 7
2.1 INETOAUCHON. ..ottt 7
2.2.  Overall Equipment Efficiency (OEE): State of art...........cccooviviiniiiniiiniiiiiics 8
2.3.  OEE Definition and the Six Big LOSSeS .........c.ccoeveiriiiriiiiieieiciciciicccccc e 10

2.3.1.  OEE Calculation: Nakaijma model [2.17 — 2.18].....cccceceiririeiiniiriiineecinieecienes 14

2.3.2.  OEE Calculation: SEMI model [2.21 —2.22] ...cocieeiieeeienrieeeieeeeiesieeeeie e e sae e 17
2.4. Strategies to improve OEE: Maintenance Engineering ..........cccccocoovvvivniniininccncnnns 19

Reliability and Maintenance ENgineering ...........cccoceueucucriiiiiiniie s 25
3.1, INtrodUCHON.....ciiiiiiiiiic 25
3.2, Survival Fundamentals..........cccccoiiiiiiniiiiiiiiii e 26

3.2.1.  Failures Definition........ccccceviiiniiiniiiniiiiciicieeceeee ettt 26

322, Time to Failure ..o 27

3.2.3. Repairable and Non-Repairable Components ............cccceeviriiiiiininiiiniinicnceen, 28

3.24. Reliability Definition........ccccccviiiiiiiiiiiiiiiiiiicic s 28

3.2.5.  Reliability FUNCHON R().....c.coviiiiiiiiiiiiiiiiiiiiiiciiccics s 29

3.2.6.  Probability Density Function of Failure f(t) ..o 30

3.2.7.  Unreliability or Cumulative Density Function F(£) ........c.ccccccevriinnneinnnccnnnnes 31

3.2.8.  Hazard Rate FUNCHON A(F) ..o 31

3.29. Mean Time To Failure (MTTEF) ..cc.coeoiiiiriririreeeee ettt 32

3.2.10. Singular Case: Constant Hazard Rate ...........ccccocccovvviiiiiniiiiiiiicccen 32

3.2.11. Bathtub Curve: Description of Hazard Function A() ..o, 33
3.3.  System Reliability Calculation.........ccccoeuiiiiiiniiiiiniiiiccec e 34

3.3.1.  Series CONfIGUIAtiON........cccciiviiiiiiiiiiiiiiiiici s 34

3.3.2.  Parallel Configuration..........ccccocuiiiiiiiiiiiniiiiiiic s 36

3.3.3.  Parallel Configuration with Stand-by Component............ccccoeviiiiinnniiiens 37



3.34.  k-out-of-n Configuration...........cccoceiiviniiiiiiiniiiiiii s 39

3.4.  Lifetime DistribUtiONS ........ccccooiiiiiiiiiiiiicc s 41
3.4.1.  Exponential Distribution ..........ccccccviiiiiiiiiiiiiiiiiiiiii 41
3.4.2.  Normal Distribution.........cccceueiiiiiiiiiiii e 42
3.4.3.  Log-Normal Distribution..........cccccciiiiiiiiiiiiiiiiiiiiiicces 43
3.4.4.  Gamma Distribution ... 44
3.4.5. Weibull Distribution........cccccciuiiiiiiiiiiii e 45

3.5.  Reliability Estimation: Data from field ...........cccccccoiiiiiniiiiiniiiiiiiicccees 47
3.5.1.  Complete Data and Censored Data.........cccccocouvvriniiiniiiiieiiiiiiiicccccce 47
3.5.1.  Evaluation of Reliability FUNCHONS........cccooveiiiiiiiieiccc, 51
3.5.2.  Empirical Functions Direct to Data (EFDD) .......cccccceeuviiinniiiinicinncececeens 51
3.5.3.  Complete Data — Direct Method..........c.ccccooiviiiiiiniiiiiiiiiiiciccccccns 51
3.5.4. Complete Data — Improved Direct Method ............cccoeveieiiiiiii, 52
3.5.,5. Complete Data - Median Rank Method ...........c.coooeiiiiiiiii, 53
3.5.6. Mean Time To Failure Calculation and its Variance ..........ccccccoeeueiiniiiiinicne. 53
3.5.7.  Censored Data — Product Limit EStimator ............cccocoeiiniiiinniiiniiiiiccces 54
3.5.8.  Censored Data — Kaplan Meier Approach ...........cccoeeveieieieiiicccccces 55
3.5.9. Censored Data — Rank Adjustment Method ..., 55
3.5.10. Theoretical distribution research (TDR)........ccccooiririimiriininieeeeeeeee et 56
3.5.11. Least Square Method for the curve fitting ..........ccccccccviviiiinniiinniiiiics 57
3.5.12. Application of Least Square Method to Exponential Distribution.............cccccccc.c.... 57
3.5.13. Application of Least Square Method to Weibull Distribution ..........cccccoovvvnnene. 58
3.5.14. Application of Least Square Method to Normal Distribution............cccccceueveucinunnnes 58
Systemability: the impact of environmental factors on reliability estimation ....................... 61

4.1, INtrOAUCHON....couiiiiiicic ettt 61

4.2. Scientific Contributions on Environmental Effects and Reliability Estimation in
Random ENvironments...........c.ccouiiiiiiiiiiiiiiieiect s 62

4.3. Systemability concept: new approach for the assessment of Reliability in random

ENVITONIMENES. ...t 64
4.4.  Systemability Calculations ..........cccocovoveveieieieiiiiiciccccc 66
44.1. Systemability Calculations: Series system configuration..............cccceeueivineccncnnnes 66

442. Systemability Calculations: Parallel system configuration...........ccccocvvriiinnnne. 68



443. Systemability Calculations: K-out-of-n system configuration ..........cccccevevvvnnnene. 70

4.5. Systemability Application........cocuiuiiiiiiiii e 73
45.1. Systemability Application 1: Automatic Packaging Machines.........c..ccccceeeeunnnnes 73
45.2. Systemability Application 2: Motorcycle Drive-System ..........ccccccceviviiiiiiniiincnnnes 77
453. Several Considerations about Systemability Approach............cccccevvriiiiiinnnnne. 86

4.6. Reliability Growth Modeling using Systemability ............cccocooeriiiiiis 87
4.6.1. Cost Model: Weibull Reliability Model with Environmental Factors....................... 90
4.6.2.  Model Development...........cccccouiuiuiiiiiiiiiiniiiiiiiccitccce e 92
4.6.3. Optimal Industrial System Release POLIiCies ............ccoceeueureeiccciiiccee 94
46.4. Applications to a complex manufacturing System ............ccccoceeieeieiinineninnniienns 98

4.6.5. Discussion about Systemability Application on Reliability Growth Modeling ....102

Maintenance Policies on Industrial Plants ...........cccccocoiiiiiniiiiiiiiicee, 103
5.1, INtrOAUCHON. c.couiiiiiiiiecc ettt 103
5.2.  Maintenance Policies Types: State of Art and Future Researches...........c.cccccevvvrvnnnnnn. 104
5.3. Theory on Age Replacement Policy (ARP) ......ccccoveiiiviiiinniiiinicciireeceeeeeeeees 107

5.3.1.  Classical Approach: Weibull Age Replacement Policy (W-ARP)........cccceeuvvnunenee 109

53.2. New Approach: Systemability Age Replacement Policy (S-ARP)........ccccceevevennnn. 110

53.3.  W-ARP vs S-ARP: Numerical Examples............ccccoooereiiiiiiiieeeee 113

5.3.4. Further analysis about S-ARP: " and %UEC(:,’) curves in function of

Systemability PArameEters. ........cccccoiiriiiiiiniiicie e 119

5.3.5. Real Application: ARP on Automatic Packaging Machines..........c.cccccceueuivninunnee. 125

5.3.6.  Some considerations about Systemability application on ARP ...........cccevinnnee. 127
5.4. Theory on Periodic Replacement Policy (PRP) .........ccccocoveiviniiininiiiiiiiciinccine, 129

5.4.1.  Classical Approach: Weibull Periodic Replacement Policy (W-PRP)..................... 130

5.4.2. New Approach: Systemability Periodic Replacement Policy (S-PRP).................... 131

5.4.3. W-PRP vs S-PRP: Numerical Examples ..........cccccccoeiiiniiinniiinniiciniccnes 134

54.4. Further analysis about S-PRP: ¢ p* and %UEC(tp*) curves in function of

systemability Parameters...........cccoccviiiiiniiiiii 141
5.4.5. Real Application: PRP on Automatic Packaging Machines. ...........cccccceevvuiininnnnne 148

5.4.6. Some considerations about Systemability application on PRP..........ccccccccoeninin. 150



6. Performance Improvement in Logistics: the Automated Storage/Retrieval Systems
(AAS/RSS) vttt 153
0.1, INtrOdUCHON......ooviiiiiiii 153

6.2. Overall Equipment Efficiency of AS/RSs: Reliability, Availability and Cycle Time

EStMatiONS ....cviuiiiiiiiiicccc s 156
6.2.1.  Theoretical Principles of Reliability and Availability of AS/RSs..........ccccevrunee.. 157
6.2.2.  Cycle Time Estimation of AS/RSS........ccccoceiiviniiininiiiiecineeceeeeee e 158

6.3. Development of Innovative AS/RSs with multi-shuttles............ccccccooviiinninnnn. 162

6.4. Estimation of Performance of Dual-Shuttle AS/RSS .....ccooouiiiiiiiiiiiiiieieiieiieeeeiieeeeeeaeeean 164
6.4.1. Bozer & White Based Formulation without acceleration impact............c.c.c.c........ 166
6.4.2.  Bozer & White Based Formulation within acceleration impact..........c.ccccceeveuuneeee. 167
6.4.3. Innovative Travel Time Model based on F.EM. rules ........c.cccccccvvvruiiinniiinnnnee. 168

6.5.  Evaluation of MOdelS ........cccociviiiriiiniiiiiiniiieiececete et 171

6.6. Considerations about the models comparisSon.............cccceeeiiiiiinininnieece 174

7. Conclusions and Future Researches.............ccccooeiieiiiiiiiniiiiiiccccccnes 175
8. REfEIONCES ....couiuiiiiiii s 181

8.1. References of Chapter 2 ........ccccoiiiiiiiiiiiiniiiiic e 181

8.2.  References of Chapter 3 ... 182

8.3.  References of Chapter 4 ...t 183

8.4. References of Chapter 5 ... 188

8.5. References of Chapter 6 ........ccccvuiiiiiiiiiiiiiiiiiic s 190

9. APPENAIX Lo e 193

9.1.  Proof of Theorem T2 (Chapter 4)........ccccceviuiirrieiininiiciieeeeiieeeeeeee e 193



Introduction NELIATI]

1. Introduction

1.1. Purpose of Research

Global market and customized demands are now satisfied by the quick and efficient responses
of manufacturing and logistics systems.

The present thesis has been developed starting from the consideration that the industrial plants
and logistic systems require high efficiency levels in order to guarantee operative flexibility and
to achieve the competitiveness of the companies.

The relevant costs and investments of industrial plants and logistics have involved into the
requirement of the measure of their manufacturing/logistics performances and the aim of
introducting of these measures is to encourage their improvement.

There are many factors that influence the efficiency of a productive and logistic systems and
many of these often depend on the operative and environmental conditions in which the
systems operate.

The research carried out by the author starts from the analysis of the fundamentals theories
concerning the definition of efficiency and performance of productive and logistics systems,
such as the Overall Equipment Efficiency (OEE).

Then several different models, used to calculate this index, have been illustrated in order to
demonstrate the relation between OEE and several factors, like availability of systems, quality
of products/services and performances. Among these factors, it is well known that the
availability is the most important one.

For this reason the main goal of this thesis is the System Reliability Modeling, deeply discussed
in chapters 4, 5 and 6. In this research, the author has developed and introduced innovative
theoretical models in order to define the availability and reliability of complex production and
logistic systems.

These models have permitted to extend the literature contribution also to the systems that
operate under random environmental conditions.

In fact, industrial applications often observe the difference between laboratory reliability test in
standard conditions and component or system reliability when it is set in motion through

different environments and real world conditions. As a matter of fact reliability variable is
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considerably influenced by environmental factors and environmental factors may change

failure rate, reliability and availability of systems.

In particular the thesis have these main objectives:

Introduction and analysis of principal efficiency indices and their relation with
availability of systems;

Introduction and analysis of the theory about reliability and availability fundamentals,
presented in scientific literature;

Definition and study of innovative theoretical models to estimate the survival
parameters of complex productive and logistic systems when they operate in different
environmental and operative conditions;

Definition and development of innovative maintenance policies, based on new
introduced models, in order to increase the efficiency of whole systems;

Modeling of performance of innovative logistics systems, developed to improve the

efficiency in logistics.

1.2. Structure of Thesis

The present thesis has been structured in the following parts, according the main aims of the

research:

Chapter 2: in this chapter, the introduction of Overall Equipment Efficiency and the state
of art of scientific contribution in this field are discussed. Then the definition of OEE and
its relation with the six big losses in industrial and logistic systems are illustrated,
reporting two important OEE calculations: the Nakajima and the SEMI models. At the
end of this chapter, the most important strategies used to improve the efficiency OEE are
discussed. These strategies are usually defined as parts of the Maintenance Engineering,
due to the strict relationship between OEE and availability of systems.

Chapter 3: this chapter illustrates the fundamentals of reliability and maintenance
theory, such as the definitions of failures, reliability function, probability density
function and cumulative density function, hazard rate and its behavior for single

component. Then, the system reliability calculations for different configurations of
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systems are illustrated. The most important lifetime distribution are discussed in order
to model the reliability data. At the end, several methods about the reliability estimation
using data from the field are investigated.

Chapter 4: in this chapter, the impact of environmental conditions on reliability is
studied. In particular, some models are just briefly mentioned in order to define the state
of the art and mathematical models available: a literature analysis is summarized in
order to show this innovative concept. Then, the mathematical function called
systemability is introduced. Moreover, industrial applications of the systemability to
several system configurations are illustrated.

Systemability can also be used to model the cost of complex entire industrial system
development life-cycle that perhaps reflects the perspectives from both developers and
users and to determine the optimal release policies. An industrial application is
discussed to illustrate the results of this study. At the end of the chapter, some careful
considerations about the capability of the application and how to pursue with the
research in that field are shown.

Chapter 5: this chapter introduces the principal maintenance policies in industrial and
logistics systems, the Age Replacement Policy and the Periodic Replacement Policy. The
literature review are reported in order to show the lack of policies that take into
consideration the environmental factors. Starting from this consideration, the innovative
application of systemability on these maintenance policies is investigated, developing
two innovative preventive maintenance policies. An extensive sensitivity analysis is
conducted in order to show the influence of environmental factors to maintenance
results. Also in this chapter the innovative models are validated using several industrial
applications.

Chapter 6: in this chapter, the performance of a logistic systems is investigated. Using
FEM normative, the Overall Equipment Efficiency of Automated Storage/Retrieval
Systems is modelled, related to the availability, reliability and cycle time estimation of
these systems. Moreover an innovative travel time model, based on FEM normative, is
introduced and compared with the models developed by the scientific literature, based
on Bozer & White formulations.

Chapter 7: this chapter reports the conclusions about the researches and the future steps.
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e Chapter 8: this chapter contains the Appendix I, related to section 4.
e Chapter 9: in this chapter, the references are listed, divided by chapter in which they are

mentioned.

1.3. Main Scientific Contribution Developed

The presented research has permitted to write and publish several scientific contributions in
many important international journals during the last three years, like International Journal of
Mathematics in Operational Research, International Journal of System Science, IEEE
Transactions on Man, Cybernetics and Systems and others.

Some of these have been also presented and discussed by the author in several international
conferences, such as ISSAT and national conferences ANIMP.

Moreover, the research has also been carried out during a period of time in 2008 in the Quality
and Reliability Engineering Laboratory, in collaboration with Prof. Hoang Pham, director of
Department of Industrial and Systems Engineering, Rutgers University, Piscataway — New

Jersey (USA).
Here below the list of scientific contributions developed from this research:

INTERNATIONAL JOURNALS

PERSONA A. PHAM H., SGARBOSSA F., (2009), Systemability Function to Optimisation
Reliability in Random Environment. INTERNATIONAL JOURNAL OF MATHEMATICS IN
OPERATIONAL RESEARCH. Vol. 1, No. 3, pp. 397-417. ISSN: 1757-5850.

SGARBOSSA, F.,, PERSONA A., PHAM H. (2009) Age Replacement Policy in Random
Environment using Systemability. INTERNATIONAL JOURNAL OF SYSTEM SCIENCE. IN
PROOFS. ISSN: 0020-7721. (Accepted 4 September 2009) (L.F. 0.634).

SGARBOSSA, F.,, PHAM H., (2008) A Weibull-based Cost Model with Considerations of
Random Field Environments, IEEE TRANSACTION ON MAN, CYBERNETICS AND
SYSTEMS. ISSN: 0018-9529. (L.F. 1.315) Under Review.
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SGARBOSSA, F., PERSONA A., PHAM H., (2009) Periodic Replacement Policy in Random
Environment wusing Systemability. QUALITY AND RELIABILITY ENGINEERING
INTERNATIONAL. ISSN: 0748-8017. (I.F. 0.828) Under review.

AZZ1 A., BATTINI D., FACCIO M., PERSONA A., SGARBOSSA F., (2009) Innovative Travel
Time Model For Dual-Shuttle Automated Storage/Retrieval Systems. European Journal of
Operational Research. ISSN: 1545-8830 (L.F. 1.627) Under revies.

INTERNATIONAL CONFERENCES
BATTINI D., FACCIO M., PERSONA A. SGARBOSSA F.. (2007), Reliability In Random
Environment: Systemability And Its Applications, In: PROCEEDING OF ISSAT 2007. 12th
ISSAT CONFERENCE ON RELIABILITY AND QUALITY IN DESIGN. Seattle, USA. 2-4
August 2007. ISBN 978-0-9763486-2-7.

BATTINI D., FACCIO M., PERSONA A. SGARBOSSA F. (2008), Reliability of motorcycle
components using systemability approach, 14th ISSAT INTERNATIONAL CONFERENCE ON
RELIABILITY AND QUALITY IN DESIGN, Orlando, Florida USA. 7-9 August 2008. ISBN 978-
0-9763486-4-1.

NATIONAL CONFERENCES
BATTINI D., FACCIO M., PERSONA A. SGARBOSSA F. (2008), L’innovativo concetto di
Systemability per l'analisi affidabilistica: sviluppi e applicazioni. Summer School del gruppo

ING-IND 17 “F. Turco”, Gaeta, Italia. 9-12 Settembre 2008.

Az71 A., BATTINI D., PERSONA A., SGARBOSSA F. (2009), Approccio innovativo nella
progettazione e gestione di AS/RS Multishuttle, In: ATTI DEL CONVEGNO ANIMP 2009.
CONVEGNO NAZIONALE "INGEGNERIA E IMPIANTISTICA ITALIANA", Roma, Italia. 11-
12 Giugno 2009.
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2. Efficiency on Industrial Plants and Logistics

2.1. Introduction

Nowadays, quick responses of the companies are required in order to satisfy global markets
and customized demands. To improve the competiveness and to guarantee the revenue of the
companies, high levels of flexibility and efficiency are necessary. The relevant costs and
investments of industrial plants and logistics have involved into the requirement of the measure
of their manufacturing/logistics performances and the aim of the introduction of these measures
is to encourage the improvement.

Most of these measures have been shown to be contradictory [2.11 — 2.13 — 2.17] and many of
the measures used are considered obsolete and inconsistent for various reasons. The changing
on performance measurements are well discussed by Schmenner and Vollmann [2.20], through
an empirical study. They explained that most industrial plants and logistics were both using
wrong measures and failing to use right measures in correct ways. Therefore, it seems
important to identify the critical dimensions in a performance measurement systems and the
optimum characteristics of the measures. Measurement systems could then be evaluated and
improved with the dimensions and characteristics as comparative data.

Likewise, the usefulness of most cost accounting systems, individual measures as well as more
comprehensive activity-based costing systems, are frequently questioned since they do not
cover manufacturing performances relative to the competitive capabilities, e.g. [2.6 — 2.23].
Another serious problem with most performance measurement systems used in industrial
plants and logistics is that they often include too many different measures, which makes it
difficult to understand the “big picture” [2.14]. Integration between measures is often
problematic, and many papers have emphasized that industrial systems have no effective
system that covers all necessary performance dimensions, e.g. [2.2 — 2.8 — 2.16 — 2.20]. This is
why it is not always obvious how companies should measure manufacturing performance.
Nakajima [2.17 — 2.18], the author of the total productive maintenance (TPM) philosophy,
advocates the Overall Equipment Efficiency (OEE) as a metric for the evaluation of equipment
effectiveness. OEE is often used as a driver for improving performance of the business by

concentrating on quality, productivity and machine utilization issues and hence aimed at
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reducing non-value adding activities often inherent in manufacturing processes. Recent
research [2.7] reports that accurate equipment performance data are essential to the success and
long-term effectiveness of TPM activities, however individual equipment performance should
never be considered in isolation because overall factory performance may or may not be
dependent on individual machine performance.

The OEE measure can be applied at several different levels within a manufacturing
environment. First, OEE can be used as a “benchmark” for measuring the initial performance of
a manufacturing plant in its entirety. In this manner the initial OEE measure can be compared
with future OEE values, thus quantifying the level of improvement made. Second, an OEE
value, calculated for one manufacturing line can be used to compare line performance across
the factory, thereby highlighting any poor line performance. Third, if the machine’s processes
work individually, an OEE measure can identify which machine performance is worst, and
therefore indicate where to focus TPM resources [2.17]. In this respect the OEE measurement
system within a company becomes the fundamental measure of TPM activities, and in fact the
basis of improvements for the TPM system.

Dal et al. [2.3] said that by utilizing largely existing performance data, such as preventive
maintenance, material utilization, absenteeism, accidents, labor recovery, conformance to
schedule, set-up and changeover data, etc., the OEE measure could provide topical information
for daily decision making. However, the role of OEE goes far beyond the task of just monitoring
and controlling. It takes into account process improvement initiatives, prevents the sub-
optimization of individual machines or product lines, provides a systematic method for
establishing production targets, and incorporates practical management tools and techniques in

order to achieve a balanced view of process availability, performance rate and quality.

2.2. Overall Equipment Efficiency (OEE): State of art

A key performance measure in mass-production environments is the Overall Equipment
Effectiveness (OEE). OEE was introduced by Nakajima [2.17 — 2.18] in the context of Total
Productivity Maintenance (TPM) and is directed towards equipment/machines. OEE is a simple
and clear overall metric, and managers appreciate such an aggregated metric instead of many

detailed metrics. Huang et al. [2.9] report that the concept of OEE is becoming increasingly
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popular and that it has been widely used as a quantitative tool essential for the measurement of
productivity in semiconductor manufacturing operations, because of extreme capacity
constrained facility investment. They state that traditional metrics for measuring productivity,
throughput and utilization, are insufficient for identifying the problems and underlying
improvements needed to increase productivity.

Semiconductor Equipment and Materials International (SEMI) [2.21 — 2.22] has developed a
standard for the definition and measurement of OEE as introduced by Nakajima [2.17 — 2.18].
The standard is directed towards measuring the effectiveness of equipment. SEMI renamed the
metric Overall Equipment Efficiency, as it is expressed entirely in terms of time. The standard
has been described by SEMI [2.21 — 2.22] and uses definitions as laid down by SEMI [2.21 —
2.22]. A guide for the application of OEE is described by Ames et al. [2.1].

Previous research has targeted various aspects of OEE. For example, Ljundberg [2.15] states that
the definition of OEE does not take into account all factors that reduce the capacity utilization,
e.g. planned downtime, lack of material input, lack of labor. In addition, the available time
would be a more appropriate basis for time measurement than the loading time as it was
originally used by Nakajima [2.17 — 2.18]. Similarly, De Groote [2.4] utilizes a fixed planned
production time and calculates the difference between the actual and planned production time.
The need for a more appropriate time basis is supported by Sattler and Schlueter [2.19], Jonsson
and Lesshammar [2.12] and Jeong and Phillips [2.10]. It is generally observed that the accuracy
of OEE is largely determined by the quality of the collected data. The description given by
Nakajima [2.17] and SEMI [2.21] is directed towards equipment, but OEE is impacted greatly by
factors beyond the equipment itself, including the operator, recipe, facilities, material (input
items) availability,

scheduling requirements, etc. As this may result in OEE values influenced by factors beyond
the equipment itself, a distinction can be made between stand-alone equipment and integrated
equipment. OEE is directed towards equipment integrated in a manufacturing environment, so
that OEE includes the influences of this

environment. As a metric was lacking directed towards stand-alone equipment, De Ron and
Rooda [2.5] proposed the equipment effectiveness E. This performance measure was derived to

monitor the effectiveness of stand-alone equipment, independent of the environment.
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2.3. OEE Definition and the Six Big Losses

Overall equipment effectiveness is a measure of total (complete, inclusive, whole) equipment
performance-the degree to which the asset is doing what it is supposed to do. OEE is also a
three-part analysis tool for equipment performance based on actual availability, performance
efficiency, and quality of product or output. OEE can be applied to manufacturing, logistics,
mobile, petrochemical processes, and environmental equipment.

Overall equipment effectiveness data is used to identify a single asset (machine or equipment)
and/or single stream process (logistics) related losses for the purpose of improving total asset
performance and reliability.

Overall equipment effectiveness data is used to identify and categorize major losses or reasons
for poor performance. OEE provides the basis for setting improvement priorities and beginning
root cause analysis.

OEE percentage is used to track and trend the improvement, or decline, in equipment
effectiveness over a period of time. OEE percentages can point to hidden or untapped capacity
in a manufacturing process and lead to balanced flow. The use of OEE is also intended to
develop and improve collaboration between asset operations, maintenance, purchasing, and
equipment engineering to jointly identify and eliminate (or reduce) the 2 major causes of poor
performance since “maintenance” alone cannot improve OEE.

OEE is related to the Six Big Losses, that describes the most common causes for efficiency loss —
almost always found in today's manufacturing environment.

One of the major goals of TPM and OEE programs is to reduce and/or eliminate what are called
the Six Big Losses — the most common causes of efficiency loss in manufacturing.

In considering OEE, Nakajima (1988) defines six large equipment losses.

1. Equipment failure/breakdown losses are categorized as time losses when productivity is
reduced, and quality losses caused by defective products.

2. Setup/adjustment time losses result from downtime and defective products that occur
when the production of one item ends and the equipment is adjusted to meet the
requirements of another item.

3. Idling and minor stop losses occur when production is interrupted by a temporary

malfunction or when a machine is idling.
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4. Reduced speed losses refer to the difference between the equipment design speed and

the actual operating speed.

5. Reduced yield occurs during the early stage of production from machine startup

stabilization.

6. Quality defects and rework are losses in quality caused by malfunctioning production

equipment.

The following table lists the Six Big Losses, and shows how they relate to the OEE Loss

categories.
Six Big Losses OEE Loss
Event Examples Comments
Category Category
There is flexibility on
¢ Tooling Failures where to set the
e Unplanned threshold between a
Equipment
Down Time Loss | Maintenance Breakdown (Down
failure/breakdown
¢ General Breakdowns Time Loss) and a
¢ Equipment Failure Small Stop (Speed
Loss).
* Setup/Changeover
This loss is often
* Material Shortages
Setup/adjustment addressed through
Down Time Loss | ® Operator Shortages
time setup time reduction

* Major Adjustments

* Warm-Up Time

programs.

Idling and minor stop

Speed Loss

e Obstructed Product

Flow

* Component Jams

* Misfeeds

* Sensor Blocked

* Delivery Blocked

¢ Cleaning/Checking

Typically only
includes stops that
are under five
minutes and that do
not require
maintenance

personnel.

11
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Six Big Losses OEE Loss
Event Examples Comments
Category Category
Rejects during warm-
® Scrap
up, startup or other
* Rework
early production.
Reduced yield Quality Loss ® In-Process Damage
May be due to
*® In-Process Expiration
improper setup,
¢ Incorrect Assembly
warm-up period, etc.
* Scrap
* Rework
Quality defects and Rejects during steady-
Quality Loss ¢ In-Process Damage
rework state production.
¢ In-Process Expiration
¢ Incorrect Assembly

Table 2.1: Six Big Losses vs. OEE Factor

Now that it is known what the Six Big Losses are and some of the events that contribute to these
losses, it can be focused on ways to monitor and correct them. Categorizing data makes loss
analysis much easier, and a key goal should be fast and efficient data collection, with data put it

to use throughout the day and in real-time.

e Breakdowns
Eliminating unplanned Down Time is critical to improving OEE. Other OEE Factors cannot be
addressed if the process is down. It is not only important to know how much Down Time your
process is experiencing (and when) but also to be able to attribute the lost time to the specific
source or reason for the loss (tabulated through Reason Codes). With Down Time and Reason
Code data tabulated, Root Cause Analysis is applied starting with the most severe loss

categories.

12
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e Setup and Adjustments

Setup and Adjustment time is generally measured as the time between the last good part
produced before Setup to the first consistent good parts produced after Setup. This often
includes substantial adjustment and/or warm-up time in order to consistently produce parts
that meet quality standards.

Tracking Setup Time is critical to reducing this loss, together with an active program to reduce
this time (such as an SMED - Single Minute Exchange of Dies program).

Many companies use creative methods of reducing Setup Time including assembling
changeover carts with all tools and supplies necessary for the changeover in one place, pinned
or marked settings so that coarse adjustments are no longer necessary, and use of prefabricated

setup gauges.

e Small Stops and Reduced Speed

Small Stops and Reduced Speed are the most difficult of the Six Big Losses to monitor and
record. Cycle Time Analysis should be utilized to pinpoint these loss types. In most processes
recording data for Cycle Time Analysis needs to be automated since cycles are quick and
repetitive events that do not leave adequate time for manual data-logging.

By comparing all completed cycles to the Ideal Cycle Time and filtering the data through a
Small Stop Threshold and Reduced Speed Threshold the errant cycles can be automatically
categorized for analysis. The reason for analyzing Small Stops separately from Reduced Speed
is that the root causes are typically very different, as can be seen from the Event Examples in the

previous table.

e Startup Rejects and Production Rejects
Startup Rejects and Production Rejects are differentiated, since often the root causes are
different between startup and steady-state production. Parts that require rework of any kind
should be considered rejects. Tracking when rejects occur during a shift and/or job run can help

pinpoint potential causes, and in many cases patterns will be discovered.

13
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2.3.1. OEE Calculation: Nakaijma model [2.17 - 2.18]

Nakajima [2.17 — 2.18] defined mathematically OEE as follows:
OEE =V*P*Q 2-1

with:

actual operating time _ loading time — downtime

V = availability =
loading time loading time

theoretical cycle time * processed amount

P = performance = ——
actual operating time

processed amount — defect amount

O = quality =

processed amount

where:
e Loading time is the total time that equipment is expected to produce, minus planned
downtime, like annual leave.
e Downtime is the stoppage time loss due to breakdowns, setup and adjustments.
e Theoretical cycle time is the theoretical minimum time to produce one piece.
e Processed amount is the number of items produced.
e Operating time is the productive time available after downtime losses are subtracted.

e Defect amount is the total number of items that not meet quality standard.

Availability

The Availability is a percentage number showing how the machine was available when it was
needed for production. It looks at the first two of the Six Big Losses, Breakdowns and
Setup/Adjustment. That is the downtime that is measured at the equipment. Usually if the
measurements at the equipment/machine are collected manually it is times longer than 5-10

minutes.

14
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Availability is calculated by dividing the actual operating time by the loading time.

The loading time is given by subtracting the unscheduled time; e.g. no costumer demand,
nonworking Sundays, during the day from the total available time or calendar time (24 hours a
day).

The actual operating time is the loading time minus the sum of all downtime losses while

operating, i.e. breakdowns and changeover.

Performance

The performance efficiency takes into account the unrecorded downtime. That is the third and
fourth of the Six Big Losses, all unrecorded downtime, i.e. short stoppages, usually less than 5-
10 minutes and losses due to the difference between ideal cycle time and actual cycle time.

To be able to calculate the performance efficiency an ideal cycle time for the job running at the
machine is needed. If the ideal cycle time is multiplied with the total parts produced the
outcome will be the time it should have taken to produce the parts. To calculate the

performance efficiency the time it should have taken is divided by the actual operating time.

Quality

The quality rate concerns the rejected parts during production and the losses from initial
startup to process stabilization. That is the last two of the Six Big Losses. The quality rate is
calculated by dividing the good parts produced by the total number of parts produced. Good
parts are all items that meet the quality standards. Items that have to be reworked are counted

as scarp.
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Availability
A. Total Available Time (3 shifts * 8 hours = 24 hours) 1440 min
B. Planned Downtime (30 min lunch + 15 min breaks)*3 shifts 135 min
C. Loading Time (A - B) 1305 min
D. Unplanned Downtime 250 min
E. Actual Operating Time (C - D) 1055 min
F. Availability (E/C) 80.8 %
Performance Efficiency
G. Total Parts Run 2004 parts

H. Ideal Cycle Time (30 sec / 60)

0.5 min/part

I. Performance Efficiency (G*H) / E 95 %
Quality Rate

J.  Total Defects (Scrap and Rework) 78 parts

K. Quality Rate (G-])/ G 96.1 %
Overall Equipment Efficiency (F *I1* K) 73.8 %

Table 2.2: OEE Calculation
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2.3.2. OEE Calculation: SEMI model [2.21 — 2.22]

SEMI [2.21] expresses OEE entirely in terms of time. SEMI [2.22] defines six main states of
manufacturing equipment (figure 2.1). Using these states, the following definition of the overall

equipment efficiency can be given [2.21 —2.22]:

non-scheduled A
state
unscheduled * A total
downstate equipment time lime
downtime
scheduled
downstate | ¢ ' operalions
engineering time
state
————— equipment
standby uptime
state manufacturing
productive time
state * Y Y

Figure 2.1: OEE equipment states (from [2.5]).

OEE consists of availability efficiency AE, operational efficiency OE, rate efficiency RE and

quality efficiency QE:
OEE = AE*(OE * RE)* QF 2-2
with:
AE — equipment uptime
total time

OF - production time

equipment uptime
RE - theoretica | production time for actual units

production time

OF = theoretica | production time for effective units

theoretica | production time for actual units

In these definitions, the theoretical production time is the production time at strictly

theoretically efficient rates without efficiency losses.
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The application of OEE is illustrated in the following examples. Table 2.3 shows the
measurement data for the two situations. The difference between the situations is that, in case B,
the throughput is larger than in case A so that the productive time is longer and more items are
produced. Because of the longer production time, the downtime is increased and the standby

time decreased as more capacity is required. The results are given in table 2.4.

A B
Total time (h) 168 168
Non-scheduled time (h) 0 0
Standby time (h) 72 48
Production time (h) 84 105
Engineering time (h) 0 0
Total (un)scheduled downtime (h) 12 15
Theoretical production time per unit (h) 0.044 0.044
Maximum throughput (h_1) 22.73 22.73
Number of items 1860 2324
Number of qualified items 1810 2261

Table 2.3: Measurement data set (from [2.5])

A B
AE (168 - 12)/168 =0.929 (168 — 15)/168 =0.911
OE 84/(168 — 12) = 0.538 105/(168 — 15) = 0.686
RE 1860 x 0.044/84 = 0.974 2324 x 0.044/105 = 0.974
QE 1810/1860 = 0.973 2261/2324 =0.973
OEE 0.929 x 0.538 x 0.974 x 0.973 = 0.474 0911 x 0'6860X58‘2974 x0.973 =

Table 2.4: Results of OEE for data set (from [2.5])

The results show that RE and QE are the same for both situations. The differences are expressed
by the AE and OE and, as a consequence, the OEE values. As the throughput is increased in
case B, the differences between the measurements are not caused by the machine or
workstation, but by their environment. The influence of the environment on OEE can be treated
more generally by considering the utilization. This measure indicates the portion of the total
time that the capacity of the machine is requested. Equation 2-2 shows that OEE contains the

product of AE and OE.
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2.4. Strategies to improve OEE: Maintenance Engineering

As previously discussed, the introduction of Overall Equipment Efficiency index has been
necessary to observe deeply the performance of the industrial and logistic systems.
The applications of OEE, reported in scientific contributions, and the real case studies have
highlighted that the most important aspect which influences the OEE value is the Availability.
In details, the most relevant factors of the Six Big Losses are the first one: equipment
failure/breakdown, for example tooling failures, unplanned maintenance, general breakdowns
and equipment failures.
The reason why it is the most important loss is connected to two big issue:

e the high amount of time spent to repair the failure and to restart the systems;

e the unpredictable characteristic of breakdowns.
These two causes make the Availability the most significant factor of OEE index. The other
factors can be reduced after a good cause-effect analysis, while the breakdowns and general
failures are random features of the industrial and logistic systems.
Consequently, more relevance is given to a specific science: the Maintenance Engineering.
Maintenance Engineering is the combination of all technical and administrative actions,
including supervision actions, intended to retain an item in (components, device, functional
unit, equipment or system), or restore it to, a state in which it can perform a required function.
Maintenance is also defined as a set of organized activities that are carried out in order to keep
an item in its best operational condition with minimum cost acquired.
Maintenance objectives should be consistent with and subordinate to production goals. The
relation between maintenance objectives and production goals is reflected in the action of
keeping production machines and facilities in the best possible condition.
Then, the main goal of Maintenance Engineering is to assure the higher level of Availability of
industrial or logistic system at lower cost, in details, some sub-objective are:

¢ to minimize the breakdown, assuring the operation balance;

e to maintain operating structure and machine in several defined working conditions;

e toadd and improve the global efficiency of production and logistic system;

e to make all the activities economically;

e to guarantee the personal safety and environment protection;
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e to maximize production or increasing facilities availability at the lowest cost and at the
highest quality and safety standards;

e to optimize resources utilization;

e toreduce downtime;

e toimprove spares stock control,

e toimprove equipment efficiency and reducing scrap rate;

e to minimize energy usage;

e to optimize the useful life of equipment;

e to provide reliable cost and budgetary control;

e toidentify and implementing cost reductions;

Several different maintenance strategies and policies have been developed in order to achieve
the main goal of Maintenance Engineering.
A very spread literature about different type of maintenance strategies and policies has been

developed in the last decades.

The principal alternative approaches to support the Maintenance Engineering can be divided

into:

e Breakdown/Corrective Maintenance: it is the oldest type of maintenance. The required
repair, replacement, or restore action performed on a machine or a facility after the
occurrence of a failure in order to bring this machine or facility to at least its minimum
acceptable condition. It is subdivided into two types:

0 Emergency maintenance: it is carried out as fast as possible in order to bring a
failed machine or facility to a safe and operationally efficient condition.

0 Breakdown maintenance: it is performed after the occurrence of an advanced
considered failure for which advanced provision has been made in the form of
repair method, spares, materials, labor and equipment.

The principal disadvantages are:

0 its activities are expensive in terms of both direct and indirect cost;
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using this type of maintenance, the occurrence of a failure in a component can
cause failures in other components in the same equipment, which leads to low
production availability;

its activities are very difficult to plan and schedule in advance.

This type of maintenance is useful in the following situations:

(0]

(0]

the failure of a component in a system is unpredictable,

the cost of performing run to failure maintenance activities is lower than
performing other activities of other types of maintenance;

the equipment failure priority is too low in order to include the activities of

preventing it within the planned maintenance budget.

Preventive Maintenance (PM): It is a set of activities that are performed on plant

equipment, machinery, and systems before the occurrence of a failure in order to protect

them and to prevent or eliminate any degradation in their operating conditions. It is also

defined as the maintenance carried out at predetermined intervals or according to

prescribed criteria and intended to reduce the probability of failure or the degradation

of the functioning and the effects limited. The advantage of applying preventive

maintenance activities is to satisfy most of maintenance objectives.

The factors that affect the efficiency of this type of maintenance:

0]

(0]

0]

the need for an adequate number of staff in the maintenance department in order
to perform this type of maintenance;

the right choice of production equipment and machinery that is suitable for the
working environment and that can tolerate the workload of this environment;
the required staff qualifications and skills, which can be gained through training;
the support and commitment from executive management to the PM program;
the proper planning and scheduling of PM program;

the ability to properly apply the PM program,;

This type of maintenance is useful in the following situations:

(0]

it is good for those machines and facilities which their failure would cause

serious production losses;
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its aim is to maintain machines and facilities in such a condition that breakdowns
and emergency repairs are minimised;
its activities include replacements, adjustments, major overhauls, inspections and

lubrications.

Researchers subdivided preventive maintenance into different kinds according to the

nature of its activities:

(0]

Routine maintenance which includes those maintenance activities that are
repetitive and periodic in nature such as lubrication, cleaning, and small
adjustment.

Running maintenance which includes those maintenance activities that are carried
out while the machine or equipment is running and they represent those
activities that are performed before the actual preventive maintenance activities
take place.

Opportunity maintenance which is a set of maintenance activities that are
performed on a machine or a facility when an unplanned opportunity exists
during the period of performing planned maintenance activities to other
machines or facilities.

Window maintenance which is a set of activities that are carried out when a
machine or equipment is not required for a definite period of time.

Shutdown preventive maintenance, which is a set of preventive maintenance
activities that are carried out when the production line is in total stoppage

situation.

Corrective Maintenance: In this type, actions such as repair, replacement, or restore will

be carried out after the occurrence of a failure in order to eliminate the source of this

failure or reduce the frequency of its occurrence. It is also defined as the maintenance

carried out after recognition and intended to put an item into a state in which it can

perform a required function.

This type of maintenance is subdivided into three types:

0 Remedial maintenance, which is a set of activities that are performed to eliminate

the source of failure without interrupting the continuity of the production
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process. The way to carry out this type of corrective maintenance is by taking the
item to be corrected out of the production line and replacing it with
reconditioned item or transferring its workload to its redundancy.
0 Deferred maintenance, which is a set of corrective maintenance activities that are
not immediately initiated after the occurrence of a failure but are delayed in such
a way that will not affect the production process.
0 Shutdown corrective maintenance, which is a set of corrective maintenance activities
that are performed when the production line is in total stoppage situation.
The main objectives of corrective maintenance are the maximisation of the effectiveness
of all critical plant systems, the elimination of breakdowns, the elimination of
unnecessary repair, and the reduction of the deviations from optimum operating
conditions.
The difference between corrective maintenance and preventive maintenance is that for
the corrective maintenance, the failure should occur before any corrective action is
taken.
Corrective maintenance is different from run to failure maintenance in that its activities
are planned and regularly taken out to keep plant’s machines and equipment in

optimum operating condition.

Improvement Maintenance: It aims at reducing or eliminating entirely the need for
maintenance. This type of maintenance is subdivided into three types as follows:

0 Design-out maintenance which is a set of activities that are used to eliminate the
cause of maintenance, simplify maintenance tasks, or raise machine performance
from the maintenance point of view by redesigning those machines and facilities
which are vulnerable to frequent occurrence of failure and their long term repair
or replacement cost is very expensive.

0 Engineering services which includes construction and construction modification,
removal and installation, and rearrangement of facilities.

0 Shutdown improvement maintenance, which is a set of improvement maintenance
activities that are performed while the production line is in a complete stoppage

situation.
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Predictive Maintenance: Predictive maintenance is a set of activities that detect changes
in the physical condition of equipment (signs of failure) in order to carry out the
appropriate maintenance work for maximising the service life of equipment without
increasing the risk of failure.
It is classified into two kinds according to the methods of detecting the signs of failure
o0 Condition-based predictive maintenance depends on continuous or periodic
condition monitoring equipment to detect the signs of failure.
0 Statistical-based predictive maintenance depends on statistical data from the
meticulous recording of the stoppages of the in-plant items and components in

order to develop models for predicting failures.

The drawback of predictive maintenance is that it depends heavily on information and
the correct interpretation of the information. Some researchers classified predictive
maintenance as a type of preventive maintenance. The main difference between
preventive maintenance and predictive maintenance is that predictive maintenance uses
monitoring the condition of machines or equipment to determine the actual mean time

to failure whereas preventive maintenance depends on industrial average life statistics.

MAINTENANCE

PLANNED UNPLANNED
MAINTENANCE MAINTENANCE
(PROACTIVE) (REACTIVE)

EMERGENCY BREAKDOWN

PREDECTIVE PREVENTIVE IMPROVEMENT CORRECTIVE
MAINTENANCE MAINTENANCE MAINTENANCE MAINTENANCE
STATISTICAL || CONDITION - AT o p— DEFERRED REMEDIAL

-BASED BASED rvie

Shutdown Maintenance

‘ SHUTDHOWIN ‘

WINDOW RUNNING ‘ ROUTINE ‘ OPPORTU- ‘ SHUTDOWN ‘

SHUTDOWN
IMPROVEMENT

NITY PREVENTIVE CORRECTIVE

Figure 2.2: Maintenance Policies Structure
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3. Reliability and Maintenance Engineering

3.1. Introduction

The word “Maintenance” comes from Latin manutere (keep in hand) and meant the actions
previewed to maintain in good conditions, the military units which were exhausted by battles.
Nowadays, in a similar way, maintenance is defined as “the combination of all technical and
administrative actions, including supervision actions, intended to retain an item in
(components, device, functional unit, equipment or system), or restore it to, a state in which it
can perform a required function” [3.2].

More precisely, a component is a generic item (equipment, machine, plant) which survival
behavior is known. On the contrary, a complex system is a set of components connected to
satisfy a specific need. The reliability function of the system is not known, while that of the
generic component is done. In fact, it can be calculated thanks to the survival analysis, applied
to the components belonging to the system.

Several alternative approaches to the maintenance of a component or a system have been
studied.

None of these can be defined as the best developed one, because the efficacy of a maintenance
policy is strictly connected to the nature of the system to which it is applied.

It can be easily understood why maintenance represents a necessity for its function of assuring
the availability of equipment and safety for personnel and goods. Unfortunately for many
decades, and partly also today, maintenance is considered in a very reductive way as a
“necessary evil”, neglecting in this way the remarkable potential in terms of costs reduction and
competitive improvement of companies.

In Italy, preventive maintenance policy is only used from 55% of firms, while the remaining
45% follows the traditional corrective maintenance; on the contrary, in the US, percentages are
respectively 85% against 15% [3.4].

In the last few years, the concept of productive maintenance was introduced, that is the
combination of actions executed for prevention and continuous improvement, using data

collection and diagnostic on units to be maintained.
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Figure 3.1: Effects of productive maintenance on total costs.

The aims of this philosophy concern the improvement of the OEE and the reduction of total
costs (figure 3.1), through the use of innovative techniques and focused and complex
interventions, in order to increment the firm profits.

Therefore it appears the importance of maintenance to guarantee safety, quality and reliability.
Later on, the fundamentals of reliability theory, starting from the failure analysis, will be

illustrated [3.1-3.2-3.4-3.5-3.6].

3.2. Survival Fundamentals

3.2.1. Failures Definition

The components and the systems that are currently designed, realized and developed, are
tested during their operative life from a remarkable quantity and variety of stress (friction,
abrasion, erosion, corrosion, thermal shocks, crashes... ) that bring to different types of fault that
can be classified in the following structure:
e for their own nature:
0 Intrinsic: imputable to weaknesses belonging to the component;
0 External: imputable to the application of stresses, which are bigger than the
specific possibilities of the component;

e for their way of appearing:

0 Progressive: those who could be prevented with a preliminary inspection;
0 Sudden: faults that cannot be prevented with a preliminary inspection;
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e for their magnitude:
o0 Partial: failures that alter the characteristics of the component, beyond the
specified limits but without causing the total loss of performances;
0 Complete: those that cause the total loss of characteristics;

e for their way of appearing and their magnitude:

o Catalectic: sudden and complete;
0 For deterioration: progressive and partial;
e for their effects:
0 Minor: not harming the good conclusion of the mission;
0 Major: harming the good conclusion of the mission;
0 Critical: harming the good conclusion of the mission and creating some serious
risks;

e for their appearing time:

0 Premature: failures that occur at the beginning of the component life and whose
appearing rate is quickly decreasing;

0 Random: failures that occur with a rate almost constant during the operational
life (typical of electric components);

0 Wear-Out: failures that occur with a quickly increasing rate (typical of

mechanical components).

3.2.2. Time to Failure

The under introduced reliability concept is strictly connected to the functioning and non
functioning concept, and therefore to the failure process of a generic component or system. This
process depends on several factors, many of which are unpredictable. For this reason, time to
failure is not a deterministic variable but only random. To indicate this stochastic variable, the
Greek 7 letter was chosen, also called TTF (Time To Failure).

Not always the behavior of 7 can be described through a known statistical distribution (normal,
lognormal, exponential, etc.).

However, let f () be the probability density function (pdf) of 7 values, the following equation

can be introduced:
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P(TST)z]Cf(x)-dx 3-1

This equation represents the probability that the stochastic variable is a value lower than T;

while
[£(x)-de=1 32

represents the condition of normalization common to all statistical probability density
functions. The function f'(¢) is also called non conditional failure rate, because it is a punctual
measure of speed with which a generic component breaks down in a time #, when 7=0 is in

operation.

3.2.3. Repairable and Non-Repairable Components

A distinction between repairable and non-repairable components is fundamental, since the
analytical models that describe their survival behavior remarkably differ.

The acceptation “non-repairable” regards all the components that cannot be repaired after their
failure and are replaced with other ones; while “reparable” is related to the components that
can be repaired after their failure and therefore are subjects to several cycles of working- failure
- repair. These definitions show that non-repairable components are some special cases of the
repairable ones, therefore they can be treated with survival models, developed for repairable
components. Consequently, models that describe the non-repairable components are used for
repairable ones, when usually an industrial engineering wants to study their first failure.

The following concepts and the studied experimental analysis exclusively concern the non-

repairable components.

3.2.4. Reliability Definition

Nowadays, the reliability of a product is design and assured with prevention methodologies. To
prevent means above all to consider all the precautions in order not to let undesired

phenomenon occur, such as failures.
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The concept of failure does not only refer to considerable malfunctioning such as faults or
blocks, but it also considers all the reactions of the products that are not included in the related
“range of acceptability from the customer”. This requires the identification of all the expected
functions of the customer that the product must satisfy and, for each of them, the identification
of a range of values for its reaction. Exceeding it the customer will be unsatisfied. Essentially, it
means assuming some tolerances on the expected functions.

But it is not sufficient for a product to perform reactions within its related ranges of
acceptability, only when it is new. It has to keep this characteristic in time, which means that the
entity of the unavoidable operative decline has to result restrained, as required by the
customers, at least during defined operation periods. This is called reliability in time, and
corresponds to the classical idea of reliability.

More precisely, reliability is the attitude of a component to perform a required function under
working conditions and for a specific period of time.

Studies on reliability of components and systems fulfilled important progresses as for the
statistical issues are concerned.

Some functions have been developed to give analytical models to the problem.

3.2.5. Reliability Function R(%)

If the lifetime of a big number of identical devices under the same conditions is analyzed, and it
is represented on a Cartesian diagram on x-axis the time value and on y-axis the rate of these
components that still work properly in that given time, the reliability function R(f) is obtained
(figure 3.2).

fit)

A Probability of Failure
Unrelishility

Prabability of Success
Reliability

»

a

Figure 3.2: Graphical interpretation of R(t).
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Therefore, reliability is not a punctual time-depended function; it is not defined on a singolar
time t, but it is calculated on a specific time interval. In the formulas that are presented in this

chapter, such as 7(¢) or R(), the term ¢ identifies the range: T =¢—1,.
From the previous definitions of Time to Failure 7 and its probability density function f(z),

reliability can be expressed:
R(t) = j F(x)dx 33
T

If the following assumptions and definitions are considered:

e N number of components working at time 7, =0;
e N;(tf) number of components damaged at a generic time ¢;

e N,(t) number of components running at time 7.

From the introduced definitions, the subsequent equations follow:

Ny(t)=N-N,(0)

. N(t
||m(A) 1
t—0 N

Next, the survival parameters f(¢) and F(¢) will be illustrated and defined in a more detailed

way.

3.2.6. Probability Density Function of Failure f(#)

The probability density function f(f) defines the instantaneous speed of failure of generic
component, working at starting time #, =0.

The following statistical equation is also useful to the reliability theory:

t+dt

fe)-dt=Pt<r<d)= [ f(x)dx 34
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3.2.7. Unreliability or Cumulative Density Function F(#)

The Cumulative Distribution Function F(f) is a unique function which gives the probability

that the component or the system will fail by time 7.

So the following equations can be stated:

t t

F()=P(-o<t<t)=[f(x)-de=PO<r<t)= f(x)-dx 3.5
—0 0

. F(t+At)-F(t) dF(¢
£ =lim (t+A)-F(t) _ dF(t) 36
At—0 At dt
Therefore f(¢) is the derivate of F'(t).
Reliability can be expressed by:
t N-N_(¢
R(t)zNS() _ Q) 3
N N
while failure distribution function F(¢) can be explained with the following formula:

N N

3.2.8. Hazard Rate Function A(%)

Hazard Rate function A(¢), is a very important survival function that represents the failure
behavior of a component, and more precisely it expresses its failure rate. It is a instantaneous
rate and is defined by:

At) - At=P(t <t <t+Ar) 3-9
Therefore, A(t) is defined as the probability that a failure per unit time occurs in the interval,
given that a failure has not occurred prior to #, the beginning of the interval.

Known A(t), the survival functions R(f) and F(¢) can be expressed by the following formulas:

(—J./l(t)u't)
R(t)=e ° 3-10
(- j A(1)-dt)
F(t)=1-¢ ° 3-11
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3.2.9. Mean Time To Failure (MTTF)

Suppose that the reliability function for a system is given by R(t). the expected failure time
during which a component is expected to perform successfully, or the system mean time to

failure (MTTF), is given by:

MTTF = jt f(t)dt_—J't dR(t)
312

Thus, MTTF is the definite integral evaluation of the reliability function. In general, if A(r) is

defined as the failure rate function, then, by definition, MTTF is not equal to 1/ A(r) .

3.2.10. Singular Case: Constant Hazard Rate

Assuming the hazard rate A(f) a constant value A , the following simplified equations can be

traced:
F(r)=1-¢" 3-14
dF (1 ,
f(f) ( ) /1 -1
3-15
MTTF = j R(t)dt ==
0 3-16

These equations demonstrate that if a constant hazard rate is given, the time to failure 7 follows
an exponential distribution. As a result, the failure rate does not depend on time: failure is a
random process and the component doesn’t age.

Since A(#)is constant, furthermore, its opposite 1/ A(f) represents the Mean Time to Failure

(MTTF).
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3.2.11. Bathtub Curve: Description of Hazard Function A(#)

In practice, the hazard rate is described by different trends, according to the component
characteristics and the use which it is designed for.

For mechanical components subject to wear-out, the hazard rate starts to decrease from release
time (where the so-called infant mortality is common to happen), and stabilize at a more or less
constant level that usually last for most part of the component life. In this period the hazard rate
A(t) can be seen as the addition of infant mortality hazard rate, which is slowly increasing, and
hazard rate, slowly increasing, caused by ware-out and degradation phenomenon.

But from a certain time, this last component becomes preponderant and hazard rate A(f) trends
to increase quickly as time goes by. Studying this last phase is very important because it would
be a real advantage to replace a component in the moment when the hazard rate exceeds a fixed
upper bound.

These three phases are in succession in a mechanical system and highlight a “bathtub” trend of

hazard rate function A(¢) (figure 3.3).

Infant
Mortality - .
(—a) Useful Life »l€—~ Wear-out —p
w
E
© Wear.—m.lt_ fgﬂwes
g I
E Infant Mortality
Failures
Early
Failures
Random Failures during
Infant Mortality Life p
Random Failures: constant Hazard Rate >

Figure 3.3: Hazard rate function: Bathtub curve
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The main part of electrical and electronic components are characterized by a constant hazard
rate A(t). The probability that a component fails in a generic time £ is the same that if it fails in
a different time 7,, which means that its failure is random.

An increasing and constant hazard rate is typical of building components, such as protection
and insulations, where wear-out process is slow but continue.

In industrial application, it is well seen that the survival functions R(t) and f(t) can be
represented by:

e Exponential distribution for random failure process, with constant hazard rate;

e Normal distribution for wear-out process, with increasing hazard rate;

e Weibull distribution for both cases, using its flexibility thanks to its three parameters.

3.3. System Reliability Calculation

The functional structures describe the physical connections of a system, for example a complex
industrial plant, in order to understand the functioning.
Instead, the reliability structures define the functioning and non-functioning logics of the

system, based on the physical connections and operational conditions.

3.3.1. Series Configuration

In this configuration, the components of generic system “S” are all essential for the correct
functioning. A series system is a configuration such that, if any one of the system components

fails, the entire system fails. Conceptually, a series system is one that is as weak as its weakest

link.

X1 x2 X3 XN Functioning System
I | ]
X1 [ X2y x3 XN Failed System

Figure 3.4: Series Configuration Systems
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The reliability of system “S” is expressed by the following statistical equation:

n —T[i(l)dt —}il‘(t)dt
Ry(T)=n(T)-r,(T)-....r,(T) =] [n(T)=e® =e?" 3-17
=1
where:
7.(T) : reliability of component i by time T;

ﬂ,l. : hazard rate of component i;

n: number of components in series.

From the previous formula, next general equation can be calculated:

As(8) = i/@ ) 3-18

Consequently, if the generic hazard rate 4, is constant Vi=1,...,n, the previous equation gives

a constant value: it means that the system has a random failure behavior, too. In other words, it
does not exist any time interval where the system has a bigger probability to be damaged.

From the general equation of MTTF of a component, MTTF for series systems is explain below:

0 0 ii%(x)dx
MTTF = [Ry(t)dt = [e *  dt 3-19
0

0

Therefore, if all components have a constant hazard rate, it can be stated that:

MTTinz L L

ﬂls n = n 1
A(t
PIZIOND) VITF.

3-20

With the series configuration, the reliability of a system is lower than components’ one. If it is
important to increase the reliability of the system, using the same configuration, it is necessary

to operate on components with lower value of reliability.
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3.3.2. Parallel Configuration

A parallel system is a configuration such that, as long as not all of the system components fail,

the entire system works. Conceptually, in a parallel configuration the total system reliability is

higher than the reliability of any single system component.

X1 x1

l N I- -
x2 Functioning System |_X_2_; Failed System
xn Xn

Figure 3.5: Parallel Configuration Systems

The reliability of system “S” is described by the following:

Ry(T) =1-Fy(T) =1- (=5 (T)) ... A=r, (7)) =1-T [L-n(M]= [ [n(D) 3-21
i=l i=L

where:

7,(T): reliability of component i by time T;

A hazard rate of component i;

n: number of components in series.

F(T) : unreliability of system “S”.

Hence:

n —Jr'ﬂ,»(t)dt n —jﬁi(z)-dt
RS(T)=1—H l-e° =He°
=1

i=1

3-22

If it assumes that the generic hazard rate 4 is constant and equal for all components of the

system (4, =4 Vi=1,..,n), the previous equation is modified in this particular form:
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T
—| Ag (¢)-dt

Ry(T)=e I —1-fl-e?] 3-23

where A () : hazard rate of system “S”.

The value of A () is not constant, as demonstrated by the following equation:

a0 =20 _ nie (1—e )"t

3-24
R(t) 1-(1—e™)
Consequently the Mean Time to Failure of system S is:
1
MTTF, # T 3-25

S

3.3.3. Parallel Configuration with Stand-by Component

The following figure shows the reliability structure of the parallel configuration with stand-by
component or sequential parallel. In this case, a switch modifies the connection in order to
guarantee the functioning of the system.

For example, if component A fails during its functioning, component B starts to operate as a

replacement of A, thanks to switch &’

A

B

Figure 3.6: Parallel Configuration with Stand-by component S’.

Reliability of system “S” can be expressed by:

Ry(t)=R,(t)+ R, (¢) 3-26
where:

R, (t) : reliability of component A;

R, () : probability of situation where: A fails, B starts to operate and it is available.
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The previous statistical equation can be introduced because the two terms are measure of

probability of independent events, as shown in figure 3.7.

Ais running from 0 to {

1

Ais running from 0 to £
2)
. B is running from t
Ttoft

Figure 3.7: Stand-by parallel functioning states

Assuming that switch has reliability value equal to 1, the two equations related to R,(#) and

R, (¢) are defined as:

R, (6)=R, (1) 3-27
RH(t):ij(r)-RB(t—r)dr 3-28
hence:

R (t)=R,(t)+R,(t) = exp{— j/lA (x)dx} + j{fA ()- {exp(—IJ‘TﬂB (x)dx}dr 3-29

In a particular case, when A,(¢) =4, (¢) = A, reliability of the system is given by:

R (t)=e " (1+ ) 3-30

Under this assumption the general equation of MTTF of system can be calculated using:

MTTF:% 3-31
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3.3.4. k-out-of-n Configuration

A k-out-of-n configuration can have n components, and requires that k of those n components
must work for the system to function.

A practical example is about a feeding system of a coke oven with 5 conveyors. In order to have
a correct feeding of oven, it can be necessary that at least 3 of 5 conveyors work properly.

This configuration is called majority logic configuration or also partial redundant configuration,
because it is a particular case of parallel structure where not all the components are replacement
as in traditional parallel configuration is.

The number of situations where k of n components are working is:

ny_ nl
[kJ kM (n—k)! 92

In order to better understand the concept of partial redundancy configuration and how the
reliability of system can be calculated, the following example is reported in table. It is related to
a system 2/3 (where k =2, n=3). Each row of the table shows the reliability of functioning
configuration of system. The case A has the assumption of functioning of all components and
reliability can be calculated using the series configuration formulas. The cases B, C and D are

related to the situation of 2 working components of 3 total components of system.

FUNCTIONING COMBINATIONS | RELIABILITY R ; ()
A 123 o

B 1,2 e (-n)

C 23 ryry-(1—n)

D 13 rery-(L-r,)

Table 3.1: Functioning combinations for 2-out-of-3
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The sets in table are independent and consequently, the reliability of system R, is equal to:

Ry()= DR, 3-33

j=A,B,C.D

This equation is related to the assumption that at least 2 components work well in global

system.If , =R (Vi=1,..,n) the previous equation can be expressed as:

3 3
R,;(1)=R, +(2jRB =R’ +(2ij -(L-R)=3R*-2R° 3-34

Under this assumption, if all components have constant hazard rate 4, MTTF of system can be

determined by:

MTTF,, = T(?, e —2.e ) dr = ZMTTF 3-35

0

Generally, assuming that at least k£ of n identical components, the equation of reliability of a k-

out-of-n system can be extended, as follows:

R, ()= Z( jr(t) 1-r(0)]™ 3-36

where: 7(t) is the reliability of each component.

The general equation of MTTF is calculated with following formula, assuming that all

components are characterized by constant hazard rate:

MITF =Y -+ 3-37

i=k A1
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3.4. Lifetime Distributions

In order to evaluate the reliability function and its parameters, it is necessary to use a continue
statistical distribution, where the variable is expressed in a continue time values. Next sub-
sections illustrate several statistical distributions, which are the most used to estimate the

survival functions.

3.4.1. Exponential Distribution

The exponential distribution has a relevant role in reliability field because of its main
characteristic is the constant hazard rate. Mainly it is used to represent the lifetime of electric
and electronic components and systems. This distribution can be applied to components
subjected to random failures. Consequently components has not memory about the previous
faults and they are not subject to aging phenomenon.

This assumption is rather strictly and for this reason the exponential distribution has to be used
with several attention because there are a lot of cases where it cannot be applied.

Time to Failure 7 is described by the exponential probability density function as follows:
f(6)=2e™ 3-38

Then reliability function is given by:

_ At
R(t)=e 3.39
1
where >0 and 1 represents MTTF.

The hazard rate is constant and it is equal to 4 :

h(e) =%: A 3-40

The main reason of diffusion of this distribution is related just to the constant hazard rate and
the simplicity of formulas. The exponential distribution is a good model for the middle part of
bathtub curve. The bigger number of components spent a lot of time in this part of curve and
this justify the use of exponential distribution, but it does not concern the initial failures and

wear-out cases.
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3.4.2. Normal Distribution

The normal distribution is very important because of Middle Limit Theorem. This distribution
has two parameters and it is used to described the components and systems characterized by
wear-out failures. The normal distribution, also known as Guassian distribution, is symmetric
in respect to the mean value and its extension is measured by variance.

The probability density function is given by:

1 Yy

f(t)=——¢ , —0<t<o, 3-41
o2
where u is the mean value and o is the standard deviation.
The cumulative density function is expressed by:
t 1 s—uY
e
Fit)=|——=e ? 7 ’ds 3-42
J;OG\/ 2w
And reliability is given by:
© 1 s—u 2
1 |~
R0 =] e '7) ds 343
L O 27

There is not an analytical solution for previous equation 3-43. However, several tables for
normal density function can be used to determine the probability for different normal
distributions.

If this variable:
7 =17 3-44

is inserted in the normal probability density function, the following equation can be obtained:

ZZ

t

1 _
Z)=|—/—e ?, —0<Z< 3-45
f()_jw% 0<Z <o

This is the standard normal probability density function and it is characterized by mean value
equal to 0 and standard deviation equal to 1.

The standard cumulative density function is given by:

O(f) = [—==e ? ds 3-46
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Therefore, for a random normal variable 7', with mean value x# and standard deviation o, it

can be defined:

P(TSt):P(ZS t‘”j:@(“—“} 3-47
(o2 (o2

The hazard rate function for a normal distribution is increasingly monotonic over ¢, and it is

demonstrated by 4'(t) > 0 for each value of ¢.

Since:
_/®
h(r) = R() 3-48
then:
po - RSO0 g 149

R(1)
The normal distribution is enough flexible and it is very useful, in particular when the failures

are caused by cracks, corrosion, chemical reactions and wear-out phenomenon.

3.4.3. Log-Normal Distribution

The Log-Normal distribution is a very flexible model which can be used to described a large
number of failure modes.

This distribution, applied to mechanical reliability, is able to model the failure probability of
repairable system, compression and tensile stress of components.

The probability density function is given by:

A=)

, 120 3-50

f(0)= ot—\/ge
Where g and o are parameters and —oo< u<ow e ¢ 20. It is important to highlight that
4 and o are not the mean value and standard deviation of the distribution.

Its relation with the normal distribution, given by the logarithms of data, make easy its use to
elaborate data set.

The cumulative density function is defined by:

14
F(t):'([os\/ze ds 3-51
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and it is related with the standard normal distribution Z by:

F(t):P(TSz):P(InTSInt):P(ZS "”_“) 3-52
(o2

Therefore, reliability is expressed by:

R(t):P(ZZ Int_“j 3-53
(o2

and the hazard rate is given by:

Int—u
f(t):q)( ’ j
R(?) otR(?)

h(t) =

3-54

where @ is the cumulative density function of normal distribution.

The log-normal model is very flexible to represent the lifetime of component in a very useful
way.

The application fields are very similar to those of normal distribution, that are when the failures

are caused by cracks, corrosion, chemical reactions and wear-out phenomenon.

3.4.4. Gamma Distribution

The Gamma distribution can be used as survival density function for components and systems
with asymmetric failure distribution.
The probability density function of Gamma distribution is given by:

f(t)—ﬂar(a)e ,t20,a,8>0 3-55

where « is the shape parameter and f is the scale one.

In equation 3-55, I'() is the Gamma function, defined by:
INa)= Ita_le_tdl‘ ,con >0
0

3-56

Hence:

R(t)= | e’ 3-57

t
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The gamma distribution is a good model for several failure modes. Although, it is not used
commonly to model the survival behavior of mechanical components, this distribution is

widely used in Bayesian application.

3.4.5. Weibull Distribution

The exponential distribution is not often applied because of its characteristic of no-memory of
occurred failure.

The Weibull distribution is a generalization of exponential one and it is commonly used to
represent wear-out failures. However, it can be applied to model all parts of bathtub curve of
hazard rate.

For this reason, this distribution is very flexible and suitable to study the lifetime of components
with different hazard rate functions.

The probability density function with 3 parameters is:

)= ﬁ(t_ N, {7)
a

, t<y<0 3-58

where « and f are known respectively as shape and scale parameters, while A is the location

one. These parameters are always positive. Using different values for these parameters, the
weibull distribution can be adapt to exponential, normal and other distributions.

For ¢ > y, the reliability function is given by:

=7
R(t)ze(“j with t>y>0,8>0,a>0 3-59
Hence:

t—y)"*t
h(t):%,t2y>0,,6’>0,a>0 3-60
a

The hazard rate function decreases for [ <1, increases for £ >1, and it is constant for =1

(figure 3.8)
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Figure 3.8: Hazard rate function varying [ parameter.

Therefore, the exponential distribution function is a particular case of Weibull distribution

when f=1 and y=0. Using this parameters values, the reliability function expressed by

Weibull model, is given by:

t

R()=e “ 3-61
And the hazard rate is equal to 1/« .

In figure 3.9 the probability density function f(¢f) and reliability R(z), varying [ parameters,

are well shown.

0.0100
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0 200,00 400,00 600.00 800.00 1000.00 ) 0 e s il e e e
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Figure 3.9: f () and R(¢) function varying S parameter.
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The p values, used in above inserted, represents the 3 parts of “bathtube curve”, that are:
e [ =0.5:itrepresents the infant mortality characterized by decreasing hazard rate;
e f=1:it models the middle part, that has a constant hazard rate and the failures are

caused by random factors;

e [ =3:itdefines the wear-out part, where hazard rate is increasing.

A simplified version of Weibull distribution is the two-parameters one: «, £, assuming y =0.
The fundamentals equation are modified as follows:

p1 (1Y
f(t)=ﬁ(Lj e["J 3-62

ala
R(1) = ef(é) 3-63

B-1
h(t) = g[é} 364

3.5. Reliability Estimation: Data from field

The estimation of reliability functions from data collected on field is very important. Generally,
several data of operating field are collected, in more details are related to failures, such as
number of working cycle, travelled kilometres or time before the component fault. In the most
part of cases they are time to failure and removed time (the components fail and test is finished,
otherwise they are replaced during the test phase then their information are not available).

The goal is to determine an estimation of fundamental reliability functions, in particular the

failure cumulative density function F (#), the survival functions, such as the reliability IAQ(I) and

hazard function A (1) .

3.5.1. Complete Data and Censored Data

Generally, starting from a population of n components, Time To Failure can be estimated for
each one. This condition is also called complete data and it means that all Times To Failure of n

components are available.
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Often, this situation is difficult that it happens because it requires a lot of time and many
information to be collected.

Therefore, in industrial field, failure test are concluded before all components have failed, or
many other have reached their work objective, so the real Times To Failure are unknown.

In this situation, data collected are also called as censured data.

In other words, most types of failure data, as well as some life data, are as complete data.
Complete data means that the value of each sample unit is observed or known. In many cases,
life data contains uncertainty as to when exactly an event happened (i.e. when the unit failed).
Data containing such uncertainty as to exactly when the event happened is termed as censored

data.

Complete Data
Complete data means that the value of each sample unit is observed or known. For example, if
it has had to compute the average test score for a sample of ten students, complete data would
consist of the known score for each student. Likewise in the case of life data analysis, the data
set (if complete) would be composed of the times-to-failure of all units in the sample. For
example, if five units were tested and they all failed (and their times-to-failure were recorded),

then complete information as to the time of each failure in the sample is given.

A Comsglete Data
mpte=5
Unit 1 > Failed
Unit 2 > Failed
Unit 3 X Failed
Unit 4 > Failed
Unit 5 > Failed
Time >

Figure 3.10: Example of Complete Data Set

Complete data is much easier to work with than censored data. For example, it would be much

harder to compute the average test score of the students if the data set were not complete, i.e.

48



Reliability and Maintenance Engineering JROIyaiaae]

the average test score given scores of 30, 80, 60, 90, 95, three scores greater than 50, a score that

is less than 70 and a score that is between 60 and 80.

Censored Data
In many cases when life data are analyzed, all of the units in the sample may not have failed
(i.e. the event of interest was not observed) or the exact times-to-failure of all the units are not
known. This type of data is commonly called censored data . There are three types of possible
censoring schemes, right censored (also called suspended data), interval censored and left
censored.
o Right Censored (Suspended)
The most common case of censoring is what is referred to as right censored data, or
suspended data. In the case of life data, these data sets are composed of units that did
not fail. For example, if five units were tested and only three had failed by the end of the
test, data (or right censored data) for the two unfailed units would be have suspended.
The term "right censored" implies that the event of interest (i.e. the time-to-failure) is to
the right of the data point. In other words, if the units were to keep on operating, the

failure would occur at some time after the data point (or to the right on the time scale).

Data With Right C;mng {Suspensions)
Unit 1 » Running
Unit 2 3¢ Failed
Unit 3 >{ Failed
Unit 4 » Running
Unit 5 3<Failed
Time >

Figure 3.11: Example of Right Censoring Data Set
e [Interval Censored
The second type of censoring is commonly called interval censored data. Interval
censored data reflects uncertainty as to the exact times the units failed within an
interval. This type of data frequently comes from tests or situations where the objects of

interest are not constantly monitored. If a test on five units is running and inspecting
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50

them every 100 hours, it is only known that a unit failed or did not fail between
inspections. More specifically, if a certain unit at 100 hours is inspected and found it is
operating and then perform another inspection at 200 hours to find that the unit is no
longer operating, it is known that a failure occurred in the interval between 100 and 200
hours. In other words, the only available information is that it failed in a certain interval

of time. This is also called inspection data by some authors.

4 Data With Interval Censoring

Sample=5

Unit 1 » Failed <

Unit 2 »Failed <

Unit 3 » Failed <

Unit 4 » Falled <

Unit 5 » Paled <
Time >

Figure 3.12: Example of Interval Censoring Data Set
Left Censored
The third type of censoring is similar to the interval censoring and is called left censored
data. In left censored data, a failure time is only known to be before a certain time. For
instance, it may be known that a certain unit failed sometime before 100 hours but not
exactly when. In other words, it could have failed any time between 0 and 100 hours.

This is identical to interval censored data in which the starting time for the interval is

Zero.
A \
Data With Left Censoring
Bample=5
Failed
Unit 1 <
Unit 2 > Failed
Unit 3 3 Failed
Failed
Unit 4 <
Unit 5 > Failed
Time >

Figure 3.13: Example of Left Censoring Data Set
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3.5.1. Evaluation of Reliability Functions

The main approaches to estimate the reliability functions from real collected data set are
generally two, used both for complete and censored data.

The first approach derives directly empirical survival functions and it is called Empirical
Function Direct to Data (EFDD).

The second one, called Theoretical Distribution Research (TDR), is more complicated and fit the
theoretical distributions, such as Weibull, Exponential, Normal etc.

Generally, TDR is used after EFDD. For both presented approaches several methods have been
developed and introduced in scientific literature.

Next sub-sections face in more details these two approaches.

3.5.2. Empirical Functions Direct to Data (EFDD)
Empirical methods, also called non parametric methods, have the goal to evaluate the main
survival functions, such as F(t), R(t) e A(t), directly from collected data set from field. These
data are related to Time To Failure of Removed Time. The functions calculated using these
approaches are indicated as: F ), ﬁ(t) A (1) .
The empirical method is extremely simple to use and very quick. Usually, the survival function

curves are used to evaluate the estimation of empirical methods.

3.5.3. Complete Data — Direct Method

Given t,t,,t;,...,t,, where ¢, <t,,, are n ordered Times To Failures belonged to a random
sample, and i is the number of faults occur before time ;. The estimation of reliability function
R(t) at time ¢, can be calculated using the quotient of running components at time ¢, over the

total number of components 7 :

é(ti)=”7_i=1—% 3-65

This equation permits to evaluate the cumulative density function F (¢):
n—i i

F(t,)=1-R(r,)=1- . 3-66
n n
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Using the definition of probability density function f(¢f) and hazard function A(¢), from the

previous equation, it can be defined:

- dF(t) —dR(¢) R ) — R, 1
1) = = = —— —~ = for 1. <t <t 3-67
f( ) dt dt Lin L n(ti+1 _ti) o "
S f 1
Alt)= S _ for t, <t<t,, 3-68

R(t) (ti+l — )(n _1)
If F (t,-) is calculated, where i=n: F (tn)z n/n=1, then the probability that a component runs

at time 7, is equal to zero.

Since it is unlikely that any analyzed sample contains the longest survival time. For this reason

~

this method underestimate the reliability of components, R(tl. )

3.5.4. Complete Data — Improved Direct Method

The Improved Direct Method allows a better estimation of cumulative distribution function as
follows:
i

F(t.)= }
(fl) il 3-69

Several applications on scientific literature of this method have obtained better results respect to
Direct Method and for this reason it is widely known and used.

It is simply to estimate:

- ~ i n+l-i
Rt )=1-F(t.)=1- =
) ) n+l n+l 370
7 dF(t) - dR(t) R(tv+1) B R(t) 1
1) = = =~ — d = . .
f( ) dt dt ti+l - (ZH—l -1 )(n + 1) for i <t<ha 3-71
At) = AU 1 for t, <t<t,, 3-72

R(t) (ti+1 _ti)(l’l +1—i)

52



Reliability and Maintenance Engineering JROIyaiaae]

3.5.5. Complete Data - Median Rank Method

The Improved Direct Method gives the mean plotting position for the i-th ordered failure. An

alternative approaches is based on median. That method is better when the distribution of F(¢)

. . 3
is near i values near zero and near to n”.

The Median Rank MR depends on failure order (i) and on the number of components #; it
represents the value of F(¢) by which the probability to have i or more faults is equal to 0,50.

Analytically MR is calculated with:

i[ZjMRk(l—MR)"_k ~0,50 373
k=i

Median Rank can be easily derived from previous equation as follows:

MRNﬁ(Z)Il— i—0,3 _l’l+0,7—i

= 3-74
n+0,4 n+0,4
~ dF(t) —dR(t) _ R,.—R, 1
f)= @) _ZdRWO) . Fon "M _ for t, <t <t,,
dt dt ta—t  (t,—t)n+04) 3-75
A 1
Alt)= S _ _ for t, <t <t,, 3-76
R(t) (ti+1 —L )(n +0,7- Z)
3.5.6. Mean Time To Failure Calculation and its Variance
Others important survival parameters are the Mean Time To Failure and its Variance.
From the data set, MTTF and Variance can be directly calculated using;:
ool
MTTF* =) + 3-77
= N
and
< 2 x \2
« 2 t," —n\MITF
P Z”:(t,.—MTTF) Z_: ( )
= = 3-78
= n-1 n-1

If the sample size is enough large to permit the use of Central Limit Theorem, the confidence

interval for MTTF, based on Student distribution, can be calculated as follows:

N

a/2,n-1 \/;

Pr{MTTF* —t < MTTF < MTTF" +1,,, , %} =(1-¢a) 3-79
n
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where:
a : confidence level;

!4/2.,1+ Student distribution parameter.

3.5.7. Censored Data — Product Limit Estimator

Considering n tested components and 7 <n are the failures occurred. Test is suspended before
n failures, then data are right censored.

The estimation of F ), I%(t) , /{(t) can be obtained, thanks to the approaches used for complete
data, until the suspension time of test. This estimation will be right truncated.

Usually, for multiple censored data, #, defines the Time to Failure while ¢, represents the
censored time. The distribution of lifetime for censored components can be considered equal to
that of those non censored.

The Product Limit Estimator method is based on the Improved Direct method used for
complete data.

Hence, using IDM approach:

R - i n+l1-i

R(t)=1-F()=1- = )
(l‘l) (tz) n+1 n+1 .

and

R . ] 2—1

Rt )=1-F(t )=1-——="T _
(Zz—l) (t’_l) n+ 1 n-+ 1 3 N

Then:

R) _nloi )= ) e
R(,) nv2-i e

If censoring occurs at time ¢,”, the reliability at that time is estimate equal to that at time 7, ;.
While, if the failure occurs before time ¢;, reliability is given by the previous equation:

- n+l-i -
R(t,)=———R(s, -
(t,) 0 i (t4) 3-83

So, using this formula, it can be stated:

~ n+l—i\" ~
R(fl-){—j R(t.,) 3-84

n+2-—i
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where:

0, = (1,0) (if the failure occurs at time ?,, if censoring occurs at time ¢,)
R(0)=1
Therefore, the estimation of F (t),l%(t),/i(t) is done using the equation of Improved Direct

Method, adapting the values of R(t) only with #; corresponding to the Time To Failure.

3.5.8. Censored Data — Kaplan Meier Approach
Kaplan & Meier [3.3] have introduced a variation in Product Limit Estimator. Considering the
ordered Times To Failure #, and 7;, the number of components at risk before the i-th fault, the

estimated reliability function is given by:

R(z,)= (1 = iT R(r.,) 3-85

n.

1
where:

0, = (1,0) (if the failure occurs at time ¢, if censoring occurs at time ¢,)
R(0)=1
Also in this case, the estimation of F (®) ,I%(t),/i(t) is done using the equation of Improved

Direct Method, adapting the values of R(t) only with #; corresponding to the Time To Failure.

3.5.9. Censored Data — Rank Adjustment Method

This method is based on the determination of failure rank, which is influenced by the position
of censored data. The base equation is given by:

) 03
R(t,)= (1— d J 3-86

n+0,4

Where 7 is the total number of components and i, is the rank order of failure at time ¢;.

In particular:

i, =i, +RI 3-87
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Where RI is the rank increment:

(n+1)—i,
Rl =———— 3-88
1+n
n"" represents the number of component at risk (considering also the present component).
The Rank Increment is elaborated for the successive Time To Failure, which follows a censored

component, then it remains the same until a new censoring occurs. At first Time To Failure

i, and R/ is equal to 1.

3.5.10. Theoretical distribution research (TDR)

Previous sub-sections have dealt with the methods to calculate the empirical distribution of
survival function, based on the estimation of working and failure information of components,
directly collected from the fields.

An alternative approach permit to determine the theoretical distribution also using the collected
data from field.

Generally speaking it is preferred to used the second approach because it provides more
information, in particular it permits the evaluation of reliability also out of the range of
collected data set. Moreover the theoretical distribution can be used in more complex analysis in
reliability engineering and maintenance policy decisions.

The starting point, also in this case, is the collection of Times To Failure. The calculation of
Empirical Function Direct to Data (EFDD) is useful to adapt the right distribution.

When the data set includes both complete and censored data, the fitting process is the same,
while different adapting processes are necessary for the estimation of cumulative function,
according with the approaches, discussed in previous sub-sections.

The fitting of a theoretical distribution can be viewed as a two step process: first it is necessary
to identify a distribution and second a test is conducted to evaluate the goodness of fit.

Both these phases have been widely developed in scientific literature. In the next sub-sections
one of the most used approach is introduced and applied to estimate different theoretical

distributions.
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3.5.11. Least Square Method for the curve fitting

This method uses the linear regression and least square in the y = a+ bx form and it adapts it

to the transformed data set that depends on considered theoretical distribution.
If the index of fit, called r, is near to 1 then the fitting is good. The most used distributions with

this approach are the Exponential, Weibull and Normal ones.

3.5.12. Application of Least Square Method to Exponential Distribution

Considering the Exponential distribution, the cumulative distribution function is given by:
F()=1-e" 3-89

Applying the natural logarithm to each terms:

Cin- F(1)= '”[1—;1%)) _u 350

Considering y, =In and Xx; =t,, the slope of the line represents an estimation of

N

1-F(¢)
hazard rate 1.

Using the Least Square method in y = bx form, the value of b term is:

n

xS
b=21=+ 3-91

n
2
Z X
=1

The index of fit, expressed by Correlation Index, using the Least Square method, is given by:

ig(xi—f)(yi—f)
\/ % (x, %) \/Z (v, - ) 392

=1 n i=1 n

=

where yand X are respectively the mean value of y, and x;, and 7 is the number of available

couple (x,. W Vi ) .
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3.5.13. Application of Least Square Method to Weibull Distribution

The Weibull cumulative distribution function gives:

F(f)=1- ef(é) 3-93

Applying twice in sequence the natural logarithms:

1
Inln(l_—F(t)jz,Blnt—ﬂlnH 3-94

1
Defining y, = In |n(1 7 ( )J and x, =Int,, the linear regression form is determined, in
—r\t

particular:

v, =a+bx, 3-95

where:

n

Z(xi _f)(yi _J_/)

b=pf="— and a=-4INf=y-bx 3-96
—\2

Calculated b, 6 is easily determined.

3.5.14. Application of Least Square Method to Normal Distribution

Considering the cumulative distribution function F(f) as a Normal distribution, it is possible to
calculate the normalized variable z .

In particular:

2

F(t) = 4(z) = ¢(“T“j - j% e dy 597

where o is the standard deviation and u is the mean value of normal distribution.
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The relation between z and ¢(z) can be briefly obtained with the inverse function of standard
Normal distribution, available in literature.

Using the inverse function:

¢ [F(t)]=0"4(z)]=2z, =ti%=%—ﬁ 3-98

The previous function is linear over ¢, and thanks to this it is possible to apply the fitting

process through the Least Square method considering:

v, =z, =¢"[F(t)] 3-99

X, =t,. 3-100

3-101

fL=—a6=—— 3-102
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4. Systemability: the impact of environmental factors on

reliability estimation

4.1. Introduction

As well discussed in the introductory chapters, the estimation of reliability and availability
parameters is extremely important in order to guarantee the correct measure of Overall
Equipment Efficiency (OEE) of production and logistic systems.

Industrial applications often observe the difference between laboratory reliability test in
standard conditions and component or system reliability when it is set in motion through
different environments and real world conditions. As a matter of fact reliability variable is
considerably influenced by environmental factors. Environmental factors may change failure
rate, reliability and availability of systems. When a component or a system works in an
operative plant, it reflects a reliability function that is usually different from the theory
reliability but also from all its similar applications in other industrial plants. This concept also
concerns a service or a logistic system and all the other systems in which the reliability
calculation is extremely necessary: it is confirmed in several remote maintenance applications
[4.25]. Usually parameters of survival function of a component or system are calculated during
the testing phases, but environmental factors (i.e. operating temperature, vibrations, possible
shocks, moisture etc.) can change the hazard rate of the components/systems and consequently
their reliability functions during their production time. For this reason, it’s difficult to estimate
the real lifetime distributions of the system products. The operating environment is often
unknown and it is different from the laboratory or standard environment. Therefore, in
reliability engineering, conversion problems and synthesis of test results are often faced from
different environments.

Incorrect estimation of reliability function could lead to the wrong functional design of the
system and an incorrect definition of the appropriate maintenance policies to improve the
efficiency of industrial systems.

The aim of this chapter is to overlap this problem by operational study of the new parameter

introduced by Pham [4.30 — 4.31 — 4.32] called systemability. This approach is very suitable for
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theoretical modelling of manufacturing systems and its application is convenient and simple
particularly in presence of components with Weibull distribution lifetime [4.5 — 4.6].

In the next section, some models are just briefly mentioned in order to define the state of the art
and mathematical models available: a literature analysis is summarized in order to show this
innovative concept. Section 4.3 introduces the mathematical function called systemability.
Moreover, theoretical application of the systemability to several system configurations are
illustrated in section 4.4. Section 4.5 contains details about systemability approach applied to
two different real case studies. Section 4.5.1 is related to automatic filler for packaging of bottles
of beer, while section 4.5.2 presents the development of systemability on motorcycle
components, demonstrating the goodness-of-fit of this approach. Section 4.6 discusses the
application of systemability on reliability growth modeling of industrial systems. The literature
review on this topic demonstrates that no one global approach exists to estimate the reliability
growth considering also the important impacts of environmental and operating conditions.

At the end of the chapter, some careful consideration about the capability of the application and

how to pursue with the research in that field are shown.

4.2. Scientific Contributions on Environmental Effects and Reliability
Estimation in Random Environments

Reliability is well known as the probability that a component (system) meets a determined
mission, for a determined time and in determined environment [4.33]. The operating
environment is often unknown and it is different from the laboratory or standard environments.
Most used reliability approaches suppose the lifetime distributions to be depending on time
only, so test reliability functions are used to describe also the operating lifetimes. The
environmental factors may change failure rate, reliability and availability of components, so
traditional approaches could cause the incorrect estimation of reliability. For this reason some
researches create several models to estimate the reliability in operating environments, using the
data collected during the test phases. Cox [4.10] firstly studied the relation between the
environmental conditions and the hazard rate, introducing the proportional and additive
hazard rate. These models [4.4 — 4.8 — 4.13 — 4.14] have been widely used in several experiments

where the time to failure depends on a group of covariates. These covariates are usually used to
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define qualitative and quantitative variables, representing different operating conditions,
different environments, different treatments and so on. Badia et al. [4.4] applied the
proportional and additive hazard rate for modelling the change of lifetime distribution of
components. Environmental Factors (EF) have been defined to assess covariates. In fact, an
environmental factor converts reliability data in one environmental condition into equivalent
information in other ones, so EF are defined as the quotient of the mean lives X1 and X2 in two
different environments [4.12 — 4.52 — 4.53 — 4.54 — 4.55]. In scientific literature, the definition of
EF for different distributions has been developed and accepted. Wang et al. [4.52 — 4.53 — 4.54 —
4.55] have defined EF for gamma, normal, log-normal, inverse Gaussian distribution and
Elsayed & Wang [4.12] have studied environmental factors for the binomial distribution.

In the software reliability field, many studies have developed several models to estimate the
reliability of the software in different working conditions [4.29 — 4.45 — 4.47 — 4.48 — 4.56 — 4.57 —
4.59]. In this field, Non Homogeneous Poisson Process (NHPP) has been successfully applied to
model the software failure, and it is widely used to determine when stop testing and release the
software. Generally, these models however assume that the field environments are the same as
a testing environment. So, models with environmental factor consideration are developed:
Zhang et al. [4.57] propose a general NHPP model, based on proportional hazard rate,
considering constant 1 the environmental factor. Pham et al. [4.29] introduce a new model,
called Random Field Environment Model (RFE), where they describe the 1 environmental factor
by gamma and beta distribution.

In mechanical engineering, several contributions have been given and widely accepted. Oh and
Bai [4.24] have proposed some models to study the lifetime distributions based on the test data,
the warranty data and additional field data after the warranty expires. They have illustrated
the methods to estimate the maximum likelihood and so defined specific formulas for Weibull
distribution. Attardi et al. [4.3] have studied the survival characteristics of a component
installed in two different cars with different working conditions. They have introduced a mixed
Weibull distribution which depends on the covariates through the Weibull scale parameters.
Abbassi et al. [4.1] have introduced an approach based to simulated annealing algorithm to
estimate the parameters of Weibull distribution. Sohn et al. [4.44] proposed a random effects
Weibull regression model for forecasting the occupational lifetime of the employees who join

another company, based on their characteristics. Advantage of using such a random effects
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model is the ability of accommodating not only the individual. Ram and Tiwari [4.40] have
estimated the reliability of a component through a Monte-Carlo simulation, with the
introduction of the factor ) that is greater than 1 if the operating condition is more stressful than
the testing ones, otherwise, it is less than 1.

Sun et al. have introduce a new model enables maintenance personnel to predict the reliability
of pipelines with different Preventive Maintenance (PM) strategies and hence effectively assists
them in making optimal PM decisions.

Pham [4.30 — 4.31 — 4.32] recently introduced an innovative approach, called systemability. It is
very innovative and interesting because it’s quite different from literature studies described
before; in fact, it calculates the reliability in random environment using, as starting data, the
reliability obtained during the test, and processing it using a gamma distribution in particular,
or a distribution that represents operating environments in general, which takes into

consideration the EF. This is a fundamental condition for applications in real contexts.

4.3. Systemability concept: new approach for the assessment of
Reliability in random Environments

The traditional reliability definitions and its calculations have commonly been carried out
through the failure rate function within a controlled laboratory-test environment. In other
words, such a reliability function is applied to the failure testing data and, with the help of
parameter estimation approaches, it then can be used to make predictions on the reliability of
the system used in the field. The underlying assumption for such calculation is that the field (or
operating) environments and the testing environments are the same.

By definition, a mathematical reliability function is the probability that a system will be

successful in the interval from time 0 to time t, given by:

—| A(s)ds

R(t) = I fls)ds=e ° 41

where f(s) and h(s) are the failure time density and failure rate function, respectively.
The operating environments are often unknown and yet different due to the uncertainties of

environments in the field. A new look at how reliability researchers can take account of the
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randomness of the field environments into mathematical reliability modelling covering system
failure in the field is great interest.

Pham [4.30 — 4.31 — 4.32] recently developed a new mathematical function, called systemability,
considering the uncertainty of the operating environments in the function for predicting the

reliability of systems.

Notation

h(z;)  i*" component hazard rate function
R(t;)  i™ component reliability function
A

1

A A=A Ageens )

Intensity parameter of Weibull distribution for i component

i Shape parameter of Weibull distribution for i*" component
r Z=(71v72v73-~~v7n)
n A common environment factor

G(p) Cumulative distribution function of 77

Shape parameter of Gamma distribution

Scale parameter of Gamma distribution

Definition [4.14]: systemability is defined as the probability that the system will perform its
intended function for a specified mission time under the random operating environments.

In a mathematical form, the systemabililty function is given by:

ﬁ]jh(s)ds
R(@1)= I e O dG(y) 42
n

where 5 is a random variable that represents the system operating environments with a

distribution function G.

This new function captures the uncertainty of complex operating environments of systems in
terms of the system failure rate. It also would reflect the reliability estimation of the system in
the field.

If it assumes that 5 has a gamma distribution with parameters « and g, i.e. g~gammaie. 53 where
the pdf of r is given by:
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ﬂaxa—le—ﬁx

for a,p>0; x>0 4-3
')

fo(x) =

then the systemability function of the system in eq. 4-2 using the Laplace transform is given by:

R()=| —FL— 4-4

B+ Jh(s)ds
0

4.4. Systemability Calculations

This section presents several systemability results and its variances of some system
configurations such as series, parallel, and k-out-of-n systems. Considering the following
assumptions:
1. A system consists of n independent components where the system is subject to a random
operational environment 7.

2. i component lifetime is assumed to follow the Weibull density function, i.e.
-1
e Component hazard rate h(t)=Ayt" 4-5

o Component reliability R;(?)= e fortzy 4-6

Given common environment factor p~gammaia. @), the series systemability function can be

calculated as follows.

4.4.1. Systemability Calculations: Series system configuration

Now a specific systemability calculation for a series system configuration is presented. In a
series system, all components must operate successfully if the system is to function. The

conditional reliability function of series systems subject to an actual operating environment # is

given by:
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RSeries = (I | nyi,Z) = exp[—nz ﬂ’it}/lj .
i=1

Therefore, from eq. 4-2, the series systemability is given as follows:

o

n
i=1

B+ it
i=1

RSeries = (t | ”!ilZ) = exp(_ Uzﬂ‘it}/[ jdG(n) = L 4.8

The variance of a function R(t) is given by:

varlR(w)= E[R0)- (E[R )P 49

Given 5~ gamma(e,p), the variance of systemability for any system structure can be easily

obtained. Therefore, the variance of series systemability can be obtained:

a 2a

Var[RSeries = (t | ﬂ’ilZ)]: f - ,'16 4-10
B+2D At B+ At
i=1

i=1

Figures 4.1 and 4.2 show the reliability and systemability functions of a series system (here k=5)

for o =2, B =3 and for a = 2, B =1, respectively.

Rseries (tln) Rseries (t)

AN I
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/
[

=
o

/f

=]
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=]

Time (hours)
P o rias(t|n) e—Eceriesit) |

Figure 4.1: Comparisons of Series System Reliability vs. Systemability Functions fora =2 and =3
[4.14]
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1‘ Rseries (tln) —  Rseries (1)
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|—F§5eries[t|n} R e ries(t) |

Figure 4.2: Comparisons of Series System Reliability vs. Systemability Functions fora=2and § =1

[4.14]

4.4.2. Systemability Calculations: Parallel system configuration

Similarly, the systemability of parallel systems (conditional reliability function subject to a

randomly operating environment) is given by:

Reguta = (¢l 2 =opbnie )= D ewolonlins 2 o

i iy =Ly #i,

iexp(— n(ﬂﬂt“ + pt!? + + At ))— +(-1) exp(— 772”: ﬂ[t“] 4-11
)

ip iy, ia =Ly iy #i3

Hence, the parallel systemability is given by:

n _ n ﬂ
RPamll@l = (t | ’7&) 7/) = (_l)k ! T~ . 4-12
- kZ_;‘ il,iz,...ik—lz;il¢i2...¢ik B+ Zﬂ/jtyj
i

To simplify the calculation of a general n-component parallel system, here a parallel system
consisting of two components is considered. The variance of series systemability of a two-

component parallel system is given by:
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Figures 4.3 and 4.4 show the reliability and systemability functions of a parallel system (here

k=1) for a =2, B =3 and for o = 2, § =1, respectively.
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Figure 4.3: Comparisons of Parallel System Reliability vs. Systemability Functions for a =2 and =3
[4.14]
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Figure 4.4: Comparisons of Parallel System Reliability vs. Systemability Functions for o =2 and § =1
[4.14]

69



Chapter 4 Systemability: the impact of environmental factors on reliability estimation

4.4.3. Systemability Calculations: K-out-of-n system configuration

For k-out-of-n system configuration, in order to simplify the complexity of the systemability
function [4.30], it assumes that all the components in the k-out-of-n systems are identical.
Therefore, the conditional reliability function of a component subject to a randomly operating

environment can be written as:

R(t|n, Ay)=e™ 4-14

The systemability of k-out-of-n systems is given by

SIS J N (i) AT
RK out—of — N(tllu'ﬂ’ 7/) Z ( 1) e 4-15
=k 1=0
Note that
g (P (- J — s
ﬁ—e WT ’ ( j( w) 4-16
=20

The conditional reliability function of k-out-of-n systems, from eq. 4-15, can be rewritten as:

Ryt A y) = Z( JZ(”ZJJ( 1) e 1A 417

=k J1=0

Then if 5~ gammda, B) then the k-out-of-n systemability is given by:

o sinan)-S8Y" e s 18
o Pl B+

It can be easily shown that:

R k/n(t|77 A,y)= Z[ ]Z[]}U(H])b’(l e,,wy )(2n—i—j) 1o

j=k

Since

.. 2n—i—j . .
(1_6_’72” }Zn—l—]) _ Z][Zn —Zl—]j(_e_,ﬂﬁ) 4-20

1=0

Equation 4-19 can be rewritten, after several simplifications, as follows:

2n—i—j e A
R%in(t|m, A y) = Z( JZ(]J(_l)z Z [Zn lz j},](HH)M o1

=k 1=0
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Therefore, the variance of k-out-of-n systemability function is given by

2
Var(Rk,,,(tm,y)=LR2m(z|n,z,y)dG(n)—{ jﬂRZk/n(ﬂn,A,y)dG(n)}

SOBLTE Pl

J=k =0

SO )

Figures 4.5 and 4.6 show the reliability and systemability functions of a 3-out-of-5 system for

a=2,B=3and for a =2, B =1, respectively.
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Figure 4.5: Comparisons of k-out-of-n System Reliability vs. Systemability Functions for o =2 and p =3

[4.14]
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Figure 4.6: Comparisons of k-out-of-n System Reliability vs. Systemability Functions fora =2 and =

1[4.14]
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Assume A= 0.00001, y_ =15 n =3, k =2, and n~ gamma (o ,p), the systemability and its
confidence intervals of a 2-out-of-3 system for o =2, B =1 and =2, f =2, are shown in figures

4.7 and 4.8, respectively. Figure 4.9 is the same calculations for oo =3 and B = 2.
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Figure 4.7: A 2-out-of-3 Systemability and its 95% Confidence Interval (o =2, B =1) [4.14]
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Figure 4.8: A 2-out-of-3 Systemability and its 95% Confidence Interval (o = 2, B = 2) [4.14]
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Figure 4.9: A 2-out-of-3 Systemability and its 95% Confidence Interval (o = 3, p = 2) [4.14]
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4.5. Systemability Application

4.5.1. Systemability Application 1: Automatic Packaging Machines

In this section, the systemability function is validated using two different data sets of the same
component but in different operating conditions.

An interesting case study in the automatic packaging machines for beer production is
discussed. A manufacturer of these expensive systems (throughput at least 46.000 bottles per
hour of production) has given us the data for analysis related to different applications of the
same model of machine in several customer plants located in different countries. The two plants
(Peroni Beer Plants) have been visited and analyzed in details, and they present the same
machine subject to different environmental conditions for location, personnel education and
maintenance policies.

Figure 4.10 shows the layout of a typical plant (a) and the automatic bottle filler (b). This study
gives special attentions to this machine because usually it is the bottleneck of the whole
production system and it is more influenced by the environmental factors than the other

machines.

Figure 4.10: (a) Equipments layout of a beverage = oduction line (b) Automatic bottle filler

The main causes of failure are shown in figure 4.11. As it can be observed, the principal

downtimes are caused by failures of the filler heads upon which this study has been oriented.
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B March '06

Figure 4.11: Principal causes of failure

Table 4.1 shows the data set that has taken from this component where the time values t has
been normalized.
Ra(t) represents reliability function values collected from the test environment. The first plant

presents the same data of the test environment while the second one is described by Ru(t).

t 000 003 005 008 010 013 015 018 020 023 0325
R,(f) 10000 9846 9792 96358 9610 9420 93.60 9152 8988 8734 8521
Ry(f) 10000 9478 9321 8956 8823 8541 8263 7899 7509 7102 6638

t - 028 030 033 035 038 040 043 045 048 0530
R(D - 8239 7930 7470 7221 6826 6540 5972 5521 5200 4510
Rylt) - 60.52 5674 5173 4523 41.68 3598 3208 2765 2347 15.66
t - 053 055 058 060 063 065 068 070 073 075
R,(1) - 41.33 37060 3238 20060 2421 1900 1770 1350 1130 9.00
Ry(0) - 1632 1319 1055 834 641 486 378 264 192 1.32
t - 078 080 083 085 08 05 05 098 098 1.00
R,1) - 6.80 530 340 2,60 230 1.63 1.14 077 052 033
Ry(0) - 094 0539 041 026 016 008 004 003 002 001

Table 4.1: Testing and operating data set

The new approach is applied to the second plant where there are differences between testing
values and operational ones.

As it can be noticed from the data set in table 4.1, the reliability of the second working system
field is very different from the one that was revealed in the initial test. What interesting us is
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that it is able to apply the systemability concept by using Weibull parameters found in the test

and to fit the new curve of reliability with respect to the systemability parameters (fig. 4.12).
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Figure 4.12: Reliability during testing (Ra(t)) and reliability during operation (Ro(t))

The Weibull model has been used to fit the reliability data set in the testing environment, while
systemability has been used to fit the reliability data in operational environment. The Weibull

model, that has been used to estimate the reliability in the testing environment, is the following:

i[h(s)ds
R(t)=e? 423

where h(s) is the Weibull baseline hazard rate:

h(t) = Ap”™ 4-24
where } is the shape parameter and A is the intensity one.
So Weibull reliability function is:

R()=e? 4-25
The Weibull parameters that best fit the reliability data are given by: y =8,1 and 42 =0,0000915.

In this case the systemability function will assume the following mathematical form:

R, () { s } 4-26

B+ A7
where 1 and yare Weibull parameters calculated with the data set related to the environment

test.
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Figure 4.13 illustrates the used methodology. Research step were the following:
e Weibull parameters (1 and y) calculus with data set collected from the laboratory
environment;

e Systemability application, considering based parameters as the Weibull previously

calculated;

e The goodness-of-fit estimation of the function, as explained in figure 4.13.
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and
Operational Data Set

Figure 4.13: Steps of the application of systemability model

The parameter’s value of systemability can be estimated using the least squares estimate
method. In this analysis, the goodness-of-fit of the curve is measured by the sum of squares of

errors, SSE. The SSE is defined as follows:

SSE =) (v~ R,(t,))? 4-27
i=1

where 1 represents the size of data set, r, (;,) represents the estimated value of systemability
function to the time #;, and y, the observed value of reliability in the operational environment
to the time /. The smaller the value of SSE is, the better the curve fits.

Systemability parameters have been calculated based on the SSE. The underlying assumption is

to use Weibull testing reliability to calculate the systemability values, using 4-26
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These results are shown in table 4.2. Figure 4.14 shows the goodness-of-fit of systemability

function.
Weibull Systemability Goodness-of-fit
2 y a ) SSE
0.0000915 8.10 3.10 142 33.82

Table 4.2: Parameters of Weibull testing function; parameters of systemability function and goodness-

of-fit of systemability model
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Figure 4.14: Reliability during testing (Ra(#)), during operation (Rs(t)), Weibull function (R«#)) and

systemability function (Rs(?))

4.5.2. Systemability Application 2: Motorcycle Drive-System

Motorcycle components present different lifetime distributions between the testing
environment and the operating one. This aspect makes difficult the prediction of the reliability
of these components in the working conditions, therefore motorcycle manufacturers meet
troubles to estimate the correct warranty policies. After the validation of systemability function,
explained in the previous section, this innovative concept is applied in order to predict and

estimate the lifetime distribution of several components and systems.
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Examined Components and System

The reliability analysis has been carried out on drive-systems (fig. 4.15) of motorcycles
belonging to one of the most important world motorcycle manufacturer. The lifetime data set of
the drive chain (indicated with number 1 in the figure 4.15), relative gear (indicated with

number 2) and entire drive-system have been examined.

Figure 4.15: Motorcycle Drive System

The experimental analysis has studied the testing and operating data set to define the
systemability parameters in order to calculate the goodness-of-fit of this new model to estimate

the working lifetime distributions.

Collected Data Set
The reliability data set have been divided, on which the study has been developed, in these two
different macro-sets:

e Test Data Set (TDS): collected during the testing phases, in well known conditions. This

set contains the series of time to failure of the components, censured (1) and not (0).
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e  Work Data Set (WDS): related to the lifetime data during the operating conditions. This
set contains the reliability of the components and system calculated using the sold spare
parts in specific year and the number of motorcycles on field at the beginning of each
year. It's important to notice that the operating conditions are the same for the two
studied components, because they belong to the same system.

In the next page, the collected data set for each component is illustrated (table 4.3). The data
related to the time have been normalized in order to guarantee the privacy policy of the

manufacturer.

Application of Systemability Concept

With the collected data set, the application of systemability have been analysed through the
following steps:

modelling of all testing data set by Weibull distribution;

estimation of the systemability parameters using the testing and operating data set of one
component (drive-chain);

estimation of the operating lifetime distribution of the other component (gear) and calculation
of the goodness-of-fit of these predicted data, using the systemability parameters, previously
calculated;

estimation of the operating reliability of the entire drive-system using the systemability series

calculations and evaluation of its goodness-of-fit.
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80

Test data set (TDS)

Drive-chain Gear
tf Censured if Censured
0.363 1 0.151 1
0.418 1 0.363 1
0.351 1 0418 1
0.289 1 0.351 1
0.355 1 0.289 1
0.320 1 0.355 1
0.352 1 0.352 1
0.283 1 0.305 1
0.334 1 0.283 1
0.212 1 0.295 1
0.190 1 0.334 1
0.226 1 0.212 1
0.349 1 0.190 1
0.400 1 0.226 1
0.270 0 0.349 1
0.398 0 0.400 1
0.295 0 0.398 0
0.391 0 0.664 0
0.257 0 0.263 0
0.350 0 0.823 0
0.472 0 0.221 0
0.221 0 0.321 0
0.051 0 0.418 0
0.204 0 0.218 0
0.214 0 0.320 0
0.218 0 0.435 0
0.242 0 0.370 0
0.151 0 - -
0.236 0 - -
0.435 0 - -
0.370 0 — —
Work data set (WDS)
Drive-chain Gear Drive-system
t R f Rt) t R
0.173 0.992 0.173 0.981 0.173 0.973
0212 0.980 0.212 0.977 0.212 0.958
0.280 0.971 0.280 0.969 0.280 0.940
0.345 0.960 0.345 0.955 0.345 0.915
0.407 0.941 0.407 0.934 0.407 0.874
0.471 0.910 0.471 0.899 0.471 0.810

Table 4.3: Collected Data Set
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Modelling of the testing data
Using the reliability and survival tool of Minitab® software, the parameters of the Weibull
distribution have been calculated to model the testing data of each component where the

Weibull distribution is given in 4-25.

TDS modelling
Components Weibull parameters Correlation index
Drive-chain M=871 ¥ =2.428 0.941
Gear A'=28.42 y”=3.288 0.951

Table 4.4: Reliability results: Weibull parameters
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Figure 4.16: Reliability analysis and functions for drive-chain (a) and gear (b)
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Figures 4.16a and 4.16b show the results of the Minitab® elaborations while table 4.4 reports the

values of the Weibull parameters for the different components.

Systemability Parameters Estimation

Using the data set of the drive-chain components, the systemability parameters are calculated in
order to model the data set related to the operating conditions (WDS) of this component.

In this case, the systemability function assumes the following math form:

R(0) = {ﬁ} 4-28
where A’ and }’ are Weibull parameters calculated with the data set related to the test of
drive-chain.

Figure 4.17 and table 4.5 show the results of this first step.

Drive-Chain Reliability

—_— R
=

=L - -————_g._________‘_____‘_-
- - - [—
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* R N
Rs(t) .
— - =Rt DI
0,4 <
-~
1 M

0,2

0

0 0,05 01 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5

Figure 4.17: Drive-chain reliability: systemability vs. work data set

Drive-chain: reliability values

1 R(t) Rs(1) e %
0.173 0.992 0.990 0.23
0.213 0.980 0.984 0.36
0.280 0.971 0.970 0.16
0.345 0.960 0.951 0.88
0.408 0.941 0.930 1.11
0.472 0.910 0.905 0.55
Weibull Systemability
A y’ o Jii %
Drive-chain 8.71 2.428 0.4 5 0.55

Table 4.5: Reliability and systemability values of drive-chain component
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The error, in the last column, is given by:

Z:|R(t) R(1)
_ k@) 429
n
and
_[RG) - R (@) 4-30
T R(®)

where R (¢;) is the value of systemability in time #;, using the systemability formula 4-28.
Moreover, in formula 4-30, R(¢;) is the value of the Work Data Set (WDS) collected in the

operating conditions. Finally, # is the number of values.

Application of systemability to Gear component

Using the data related to the gear component and the parameters of systemability calculated
here, the goodness-of-fit has been estimated using the absolute mean error defined before 4-30.
The same values of «,  have been used, because drive-chain and gear belong to the same
systems, so they work in the same operating conditions.

Table 4.6 illustrates the results of this step, also shown in figure 4.18.

Gear Reliability

T = : : — T
b | )
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‘h s
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D.d i — - _Rt{t:l
0,2
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0 0,05 0.1 0,15 0.2 0,25 0,3 0,35 0.4 0,45 0.5

Figure 4.18: Gear reliability: systemability vs. work data set
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Gear: reliability valies

1 R(1) Rs(t) e %
0.173 0.981 0.998 1.73
0.213 0.977 0.996 1.90
0.280 0.969 0.990 2.17
0.345 0.955 0.980 2.69
0.408 0.934 0.967 3.55
0.472 0.899 0.948 543
Weibull Svstemability
A7 y” a B e%
Gear 8.42 3.288 0.4 5 291

Table 4.6: Reliability and systemability values of gear component

In this case, the systemability values have been calculated with:

R.() = {L} 431
‘ B+t

where 1 7 and y”” are Weibull parameters calculated with the data set related to the test of gear.

The errors have been given using formulas 4-29 and 4-30.

Application of systemability to Drive-System

Using the data collected about Drive-System, shown in table 4.3, and using the Weibull
parameters calculated before, the systemability function is applied in order to predict the
system lifetime.

The Drive-System can be studied as a series-system configuration, composed by the gear and
drive-chain components.

Therefore, the systemability of Drive-System , consisting of the gear and drive-chain

components, is given as follows:

B ‘

Rs(t| A,y) = , - 4-32
stldr) {ﬂ+(/1'ty At )}

where A7, 4”7 and )7, 7 are the intensity and the shape parameters of Weibull distribution of

the components.
As in previous application, the mean absolute error is calculated in order to estimate the

goodness-of-fit of the systemability function using formulas 4-29 and 4-30.
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Drive-System Reliability
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Figure 4.19: Drive-system reliability: systemability vs. work data set

Drive-system: reliability values

1 R) Rs(t) e; %
0.173 0.973 0.988 1.51
0.213 0.958 0.980 2.33
0.280 0.940 0.961 2.16
0.345 0.915 0.935 221
0.408 0.874 0.905 3.39
0.472 0.810 0.869 7.17

Weibull Svstemability
Drive-chain Gear
A y A p” a p e%
Drive-system 8.71 2.428 8.42 3.288 0.4 5 3.13

Table 4.7: Reliability and systemability values of drive-system
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4.5.3. Several Considerations about Systemability Approach

In this Chapter, the reliability modeling of practical application-systems with respect to random
tield environments is discussed, addressing the fact that the difference between the lifetime
distributions collected during the test and the distributions related to the operating
environment is well known. For this reason, it is difficult to estimate the reliability of a
component when it works in different environments.
Starting from Pham’s paper [3.30] the concept of systemability, then, in this chapter, this
approach is utilized to examine real world application case studies in automatic manufacturer
packaging machines as well as motorcycle systems in determining the reliability of customer
products. The first one shows the most important features of the Systemability approach, as a
function enables to separate the intrinsic performance of the components or the systems from
the random environmental factors. The second case study has been carried out in order to
estimate the reliability and systemability of several motorcycle components and drive system in
operative conditions, starting from the data collected during the tests.
The chapter demonstrates that this new concept is suitable to predict the reliability of system
products in operating environments and it is easy to use also for predicting the lifetime
distribution of complex system configuration, starting from the data related to single
components.
My research addresses three important aspects:
a) the study of the performance of the systemability when its parameters change, especially
in the field environments;
b) the definition of quantitative relationships between systemability parameters and
different environment conditions; and
c) the definition of a general model for the estimation of reliability function in order to
design and produce components or system products and reflect ways to define the best

maintenance policies.
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4.6. Reliability Growth Modeling using Systemability

Generally, the development of a new complex manufacturing or industrial system produces a
series of prototypes that may contain faults during the processes including development,
design and production. So during the early stages of prototyping complex systems, reliability
often faces a major challenge in meeting the desired requirements. For these reasons, a typical
reliability improvement process is carried out in order to increase a specified system reliability.
Moreover, the penalty costs due to system failures in the field are much more significant than
the system developmental costs. Consequently, the total system costs should consist of not only
the developmental costs but also considers the penalty costs after the system release to the end-
users. Usually, the testing developmental phase has been carried out in a given condition or
control environment, while after the release of the system end-user environment factors can
affect in an unpredictable way to the failure detection rate.

Many reliability cost models have been proposed in the areas of software reliability engineering
[4.7, 4.9, 425, 421, 4.22, 4.27, 4.28, 4.34, 4.38, 4.46, 4.49, 4.50, 4.60], while, to knowledge, yet in
the field environments of complex engineering systems, a generalized cost model have not been
discussed [4.16, 4.51]. Most of the software cost models have been developed based on the non-
homogeneous Poisson process (NHPP) Goel-Okumoto model to estimate the software
reliability and the number of errors remaining in the software [4.38]. Most of them have
assumed that the fault rate function and the mean value function are not affected by the
environment factors. The considerations of the environmental effects have been studied by [4.7,
49, 416, 4.21, 4.22, 4.51, 4.59]. Huang, et al. [4.17] proposed a method for predicting the fault
detection rate to reflect changes in the user’s operational environments. Schneidewind [4.41]
proposed an approach to relate fault correction to failure prediction by introducing a time delay
between failure detection and fault correction time, where the rate of fault correction was
proportional to the rate of failure detection.

Hwang and Pham [4.18] recently develops a generalized NHPP software reliability model
considering quasi-renewal time-delay fault removal. Jeske et al. [4.20] recently extended an
empirical calibration factor for adjusting the failure rate estimate obtained from a test dataset.
The calibration factor studied in [4.20] is calculated from the averaged failure intensity during
the testing and operation phases. It however does not utilize most of the software failure

information in the operational phase. As a result, the method may not provide a good
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assessment on soft-ware reliability. Differing from the other NHPP models, the model proposed
by Teng and Pham [4.47] assumes that the field environment affects the unit failure detection
rate by incorporating a random factor. Assuming that the random effects of the field
environments can be captured by a unit-free environmental factor, which is modeled as a
random-distributed variable, they establish a generalized random field environment (RFE)
software reliability model that covers both the testing phase and the operating phase in the
software development cycle.

The motivation of this research is based on an industrial application (discussed in section 4)
where the Weibull distribution would be a better fit instead of the NHPP Goel-Okumoto model.
Manufacturing systems reliability is completely different from the software one. In fact the
sample of faults, occurred during the development, design, release and production phases of a
manufacturing system (like a CNC work station), is very small and the number of failures is not
high as in software reliability growth process. Moreover each failure in manufacturing system
development is very expensive in term of spent money and spent time to repair the system, in
comparison to software field. Therefore the variance of the data is ignored and the model is
based on the mean value function [4.7]. Because of this observation and motivation, in this
chapter a cost model using Weibull distribution with considerations of the effects of random
tield environment is developed. The adopted modelling techniques are based on an innovative
concept introduced recently by the authors, called systemability [4.30]. Systemability permits to
estimate the reliability of a component/system in operating conditions, that are different from
the testing ones [4.26, 4.43]. Industrial applications often observe the difference between
laboratory reliability test in standard conditions and component or system reliability when it is
set in motion through different environments and real-world conditions. As a matter of fact,
reliability variable is considerably influenced by environmental factors. Environmental factors
may change failure rate, reliability and availability of systems. When a component or a system
works in an operative plant, it reflects a reliability function that is usually different from the
theory reliability, but also from all its similar applications in other industrial plants. Incorrect
estimation of reliability function could lead to the wrong functional design of the system and an
incorrect definition of the appropriate maintenance policies. In general, this model can be used

to model the cost of complex entire industrial system development life-cycle that perhaps

88



Systemability: the impact of environmental factors on reliability estimation JEBIATIR

reflects the perspectives from both developers and users and to determine the optimal release

policies. An industrial application is discussed to illustrate the results of this study.

Notation

R(x|7) reliability function of system by time T for a mission time x

T time to stop testing and release the system for field operations

6t  Cumulative distribution function of random environmental factor
v Shape parameter of field environmental factor

0 Scale parameter of field environmental factor

N@  The number of system failures discovered by time ¢

m()  Expected number of system failures detected by time ¢, m(t)= E[N(T)]

m()  Expected number of system failures detected during testing phase, by timet, t<T

m()  Expected number of system failures detected, since the beginning of the warranty
period, by time ¢, t>T

m.(t|y) Expected number of system failures detected in field by time t

C, Set-up cost for system testing

c, System testing cost per unit time

c, Cost of removing a fault per unit time during testing phase

c, Cost of removing a fault per unit time during warranty period
c, Penalty cost due to system failure

«. (1) Expected time to remove a fault during testing phase (warranty period)

a Number of initial system faults at the beginning of testing
b Scale parameter of Weibull distribution

c Shape parameter of Weibull distribution

T, Time length of the warranty period

x Time length the system is going to be used in the field.
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4.6.1. Cost Model: Weibull Reliability Model with Environmental
Factors

System reliability R(x|7) is defined as the probability that a failure does not occur in the time
interval [t,¢+x], where >0 and x>0. Based on the non-homogeneus Poisson process (NHPP)

[4.47):

R(x| T) = ¢ ln+2)-m0) 4-33
In this chapter, the Weibull NHPP model is used, as a system basic reliability function [4.48]:
m(t) = a(L—exp(=bt°)) 4-34

Note that this model (equation 4-34) becomes the Goel-Okumoto model when ¢ =1, studied by
Teng and Pham [4.47]. Incorporating the environmental field factors, the system reliability in
the operational environments is obtained.

In this section, the generalized NHPP model with random field environments proposed by
Teng and Pham [4.47] is briefly illustrated. Most existing NHPP models [4.15], [4.34], [4.36], do
not consider the affects of the environmental factors on the unit failure detection rate, 5. The
contribution of Teng and Pham [4.47] assume that the field environment affects » by
multiplying a random factor 7. In this chapter, it assumes that the probability that a fault is
successful removed is equal to 1 and the error introduction rate in the testing phase is equal to

0. Based on these assumptions, the mean value m,(¢|7) in operating environment introduced by

[4.47] can be obtain as follows:
m, (t|n) =a(l—exp(-n-bt)) 4-35

The factor » captures the effects of the field environmental factors upon the system failure rate.
The system testing is commonly carried out in a control-known environment where a constant
factor 7 equal to 1 can be used. That environment is usually called testing environment. As for

field environments, the factor » can represent for different values that depend on the effects of
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the operational factors. For example, if the value of 7 is greater than 1, the field conditions are
more favorable to detect the failures than in the testing environment. Likewise, if the 7 is less
than 1, the environmental conditions are less favorable to fault detection than in the testing
environment. Any suitable nonnegative distribution may be used to describe the uncertainty
factor 7. As discussed and supported in [4.48], also in this chapter a Gamma distribution is used
to evaluate and predict the system reliability in the operating environments, and so to describe
the field environmental factor#. If this factor 7 is modeled by a Gamma distribution with the
following probability density function (pdf):

224 .77;/_1 . e—g-v

=",

v 7,0>0,720 4-36

then the mean value function of the Weibull generalized NHPP model is given by:

ml(t):a(l—e’“") t<T

m(t) = 0 ’ 4-37
my(t)y=a|1-¢"" | ———— t>T
O+b(t-T)

Usually, the prediction of system reliability is done after the release of system for the used of

operating environments, i.e. > T . Consequently, the reliability in the field can be obtained:

R(x|f) = exp(ae”“ [(9% : f —7 Jy —(6+b (f_ 7 NJ 4-38

Then, it is interesting to calculate the value of equation 4-38 for /=T, that is the reliability of the

system immediately after the release. In this case, R(x!IT) is given by:

= —ae™|1- 4 y -
R(x|T)_exp[ [1 [9+b(x)‘j ]J 4-39
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4.6.2. Model Development

Obviously the quality of the system will normally depend on the testing efforts such as testing
times, testing methodologies. On the one hand, if the testing is too short, the cost of the system
testing is lower, but the consumers may take higher risk of buying an unreliable system. It
involves also in higher cost during the operating environments since it is much more expensive
to detect a failure during operational phase than testing phase. On the other hand, the longer
testing time the more faults can be removed, which leads to a reliable system; however, the
testing cost of the system will also increase. Therefore, it is important to determine when to
release the system. Figure 4.20 shows the entire system development life cycle that considers in
the following cost model: testing phase before a release time 7, in testing environment;
warranty period and operational life in the field environment, which is usually quite different

from the testing one.

Testing Environment Field Environment
A e N
4 N N
T T+To T+x
| | | 4 |
0 Warranty 7
Testing Period
¢ Phase ’

Operating life period -

Figure 4.20: System cost model infrastructure.

In this study, it considers:
1. There is a set-up cost at the beginning of the system development process.

2. The cost to do testing is a linear function of testing time.

@

The cost to remove faults during the testing period is proportional to the total time of
removing all faults detected during this phase.
4. The cost to remove the errors during warranty periods is proportional to the total time

of removing all errors detected during the period [7,7+7,].

o

There is a risk due to the system failure after release the system.

*

Removing failures takes time and it is assumed that the time to remove each error

follows a truncated exponential distribution.
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From the last assumption, the expected time to remove each error during testing phase is [4-38]:

1-[ AT, +1]e ™"

Hy = iy |:1 B e%‘/TU :| 4-40

4,a constant parameter associated with truncated exponential density function for the time to
remove a fault during testing phase.
. maximum time to remove any fault during testing phase.

Similarly, the expected time to remove each fault during the warranty period is given by [4-38]:

1[4 +1]e

A[1-e] w4

Hey

A,a constant parameter associated with truncated exponential density function for the time to
remove a fault during warranty period.

T, maximum time to remove any fault during warranty period.

The expected total cost E(T) is given by the sum of the following parts [4.38]:

1. set-up cost for starting the system development process, and it is assumed as a constant

C .

0/

2. cost to do testing E(T);
3. error removal cost during the testing period E, (T);
4. error removal cost during the warranty period ES(T);

5. risk cost due to system failure E,(T).

These addendums can be determined as follows:

1. Cost to do testing E, (T) is a linear function of T :

a. E(T)=CT.

1
2. The expected cost to remove all errors detected by time T during the testing phase is
given by:
a. E(T)=Cum(T).
3. The expected cost to remove all errors detected during the warranty period [I,7+T,] is

given by:
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a. E(T)=Cu,(m(T+T)-myT)).

3

4. The penalty cost E4(T) due to the failures occur after the system release time T, is given

by:

a. E,(T)=C,(1-R(xIT)).

Therefore, the total cost function E(T) can be expressed as follows:

E(T)=C,+CT+C,um,(T)

4-42
+Copt, (my(T +T,) = my(T))+ C, (1-R(xIT))

where

m,(T)=m,(T) = a(l—e'”f)

e
m,(T+T,)=a| 1-¢"" S -
0+b(T+T,-T)

4.6.3. Optimal Industrial System Release Policies

In this section, the behavior of the expected total cost function ,E(T), is studied and it is

determined the optimal system release time 7° which minimizes the expected total system cost.

Taking the first and second derivatives of the cost function E(T), respectively, it can be

obtained:

%ch +C* *a*e—f(T)*fv(T)
+C3 */uw *(Sw _1)*a*€*f(T)>(-fV(T)_
~C,*REIT)*(1-8,)*[a*e "= f(T)]
=K(T)

O*E(T A1) x| £ 2 "
e (1) - ()]

2

*1C,*R(xIT)*(1-8,)*| 1-

0*(1-5) ¢+ (£(7))
LF(T) -5
_(Cz * A, * +C3 tu (Sw _1))}
= H(T)[ G(T)-C]

o |
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where f(T), f(T), f'(T), S,, S,, F(T), H(T), G(T) and C are defined as follows:
°  f(T)=bT*

e fU(T)= _a]; (;) = beT*"

. (T -
. f(T):%:bc(c—l)T

e S = L
w H"l‘bTwC

[ ] S = 6
%)

e F(T)=C,—a*e’" *f'(T)*[Q*Rs(xIT)*(l—Sx)—CJ

o H(T)=a*e’M*[ f(T)Y - f(T)]

e G(T)=C,*R(xIT)*(1-S)* 1 8*(1=8)* e f(T)
(1)=C,*RxIT)*(1-S,) { )

o C=(Cru*+C*p,*(S,-1))
Next the following results are presented. It is important to notice that each function used to
define the different cases has not any engineering mean, but they are only mathematical
function, derived by the analytical formulation. The general practitioners, which would like to
apply this model, has to calculate only the functions F(t), G(t) and C as indicated in each case.

Following these guide-lines, the solution could be easily calculated.

Theorem T. Given C, C,, C,, C,, C,, X, T,, 4, u,, b, 6 and y; the optimal solutions of release

time can be obtained for various values of Weibull shape parameter ¢, ¢>0, as follows:

(a) For c=1: go to Theorem T1 (typical of intrinsic failure period also called useful life, with low
constant failure rate);

(b) For 0<c<1: go to Theorem T2 (typical of early failure period also called infant mortality life,
with decreasing failure rate);

(c) For ¢>1: go to Theorem T3 (typical of wear-out failure period also called end-of-life, with

increasing failure rate);
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Theorem T1. (For c¢=1) The optimal value of T , say T°, which minimizes the expected total cost of

system E(T) is as follows:

Case 1.1: if G(0)>C, then
(a) If F(0)>0 then T"=0minimizes E(T);
(b) If F(o)<0 then T* =« minimizes E(T);
(c) if F(0)<0, F(T)<O0 for any Te(O,Tl'] and F(T)>0 for anyTe(Tl',OO) then T'=T,', where

T'=F(0).

Case 1.2:if G(eo)>C, then
(a) If F(0)<O then T* =« minimizes E(T)
(b) If F()>0 then T"=0minimizes E(T)
(c) if F(0)>0, F(T)>0 for any Te(O,Tl"] and F(T)<0 for anyTe(Tl”,OO) then:
a. T =0, if E0)<E(),

b. T'=o,if E0)>E).

Case 1.3: if G(0)<C, G(T)<C for Te(O,Tl“] and G(T)>C for Te(Tl",oo), where T° =G™(C), then:
(a) If F(0)=0 then:
a. T =0, if E0)<ET,),

b. T =T, if EQ0)>ET,), where T, =inf{T>T,_ :F(T)>0};

(b) If F(0)<O then T"=T_," where T_"=F"(0).

PROOF: Can be easily obtained from [4.47].

Theorem T2. (For 0<c<1) The optimal value of T , say T, which minimizes the expected total cost of

system E(T) is as follows:

Case 2.1: If K(T,)< E(T) whereT (O,Tf] , then T =T, minimizes E(T);
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Case 2.2: If E(T;)> E(T) where Te(0,T¢ ] then: T*={Te(0,1;GJ:nﬁn[E(T)]} minimizes E(T); where T, is
as follows:
Case 2.0.1: if G(TS)>C then
(a) If F(T)>0 then T; =TF;
(b) If F(0)<0 then T, = ;
(c) if F(T¢)<0, F(T)<0 for any Te(T¢,T'| and F(T)>0 for anyTe(T'») then T; =T', where
T; =F7(0).
Case 2.0.2: if G(oo)>C then
(a) If F(T¢)<0 then T, =
(b) If F(0)>0 then T, =T;
(c) If F(T¢)>0, F(T)>0 for any Te(T¢,T"] and F(T)<0 for any T (T",) then:
a. T, =T, if E(TF)< E(w),
b. T, =w,if E(TF)> E(w).
Case 2.0.3: if G(17)<C, G(T)<C for Te(TZG,TZ"J and G(T)>C for Te(TZO,oo) where T,=G(C), then
(a) If F(T¢)>0, then:
a. T, =T7,if E(TY)<ET,),
b. T =T,,, if E(T%)> KT, ,), where T, =inf{T>T, :F(T)>0};
(b) If F(Tf)<0, then T; =T, ,"where T,,"=F(0).

PROOF: See the Appendix L. O

Theorem T3. (Forc>1) The optimal value of T, say T°, which minimizes the expected total cost of

system E(T) is as follows:
Case 3.1: if G(0)<C then T" =0 minimizes E(T).

Case 3.2: if G(0)<C<G(w) then:

(a) If F(T?)>0 then: T" =0 minimizes E(T), where T, :{T:{a sTfo)}and{aEm(ﬂT) <Cl}};

(b) If F(T2)<0 then:
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a. T'=0,if EQ0)<KT,,),

b. T'=T,,,if E©0)>ET,,),
) O°E™(0 OE™ (T .
where T, ={T:{ 6T2( )}md{ aT( kq}} T,,=inf{T>T, :F(T)>0};
Case 3.3: if 0<C<G(0) then:
5 ST S s _0E(0),
(a) If F(T2)>0 then: T"=0 minimizes E(T), where T, = FrEa

(b) If K(T})<0 then:
a. T =0,if EQ)<ET,,)

O*E™(0)
T

b. T =T, if E0)>ET,,), where T® = T,,=inf{T>T, :F(T)>0};

7

Case 3.4: if C<0 thenT = {T &(0,00): min[E(T)J} minimizes E(T);

PROOF: See the Appendix I. O

4.6.4. Applications to a complex manufacturing system

In this section the application of the proposed methodology to a real case - a developmental
process and release of a complex industrial system — is discussed. The analyzed case study deals
with a complex flexible manufacturing system for production of several mechanical
components for driver systems. The system is a CNC machine for the metal working of
different kind of driver gears. The data, in term of the number of failures per week, was given
by a development team that related to the testing phase and collected in a fixed interval. After
the release of the system, the data set has been collected by the customer service team where the
intervals are not necessary the same because it also depends on the user environment team. The
data are summarized in table 4.8 and 4.9.

Note that the data have been normalized. The normalized time values have been obtained
dividing the actual time by the total time. In the same way the normalized failure data have
been calculated. Table 1 is related to the testing-development process and the last value of time
is the actual time to release of the system. Table 2 shows the data about the system failures in

the real environment.
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Testing Environment
T Failures
0.000 0.0000
0.050 0.0296
0.100 0.0296
0.150 0.0888
0.200 0.3258
0.250 0.4739
0.300 0.5628
0.350 0.7997
0.400 0.8886
0.450 0.9182

Table 4.8: Normalized cumulative Failures and Times during Testing Environments

Field Environment
T Failures
0.623 0.9250
0.662 0.9359
0.730 0.9443
0.795 0.9546
0.857 0.9722
0.921 1.0000

Table 4.9: Normalized cumulative Failures and Times during Field Environments

It can be seen that the system appears to be more reliable in real environment than in the testing
one. This means that the testing-developmental phase is more liable for the system to fail than
in the operating environment. In fact one of the aims of the testing phases is to stress in various
hard ways the entire system in order to find as many failures in less time as possible.

The model parameters in 4-37 have been obtained using the least squares estimated (LSE)

method:
LSE=(y, -7, 443
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where y, are the observed values and ¥, are the expected values, obtained using 4-37.

The parameters of the Weibull model are as follows:
i=143.53, b=0.000104, ¢ =2.685, 6 =349, 7 =1.04.
It is also obtained the estimated parameters of the Goel-Okumoto model using LSE method. In
this case, the parameters are as follows:
a=150.46, b=0.02718, 6 =1.00, 7 =1.64.

Note that in the NHPP Goel-Okumoto model, the parameter c is equal to 1. Figure 4.21 shows
the mean value function fitting curve of the proposed model during testing, where the
environmental factors do not affect the mean value function. The mean value function fitting
curve for field environment in Figure 4.21 is also plotted. The Goel-Okumoto model is also
included in Figure 4.21. The comparison of the values of Least Squares Function, given by
formula 4-43, calculated for new model and Goel-Okumoto model, permits to validate the more
accuracy of the here introduced model. In fact, from Figure 4.21, the Weibull model provides a
better fit for the collected data than the Goel-Okumoto model based on LSE. In other words,

LSE = 270.28 for Weibull model while LSE = 4969.61 is for Goel-Okumoto model.

1,2
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Figure 4.21: Mean value function fitting curve of the proposed model.
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With a consultation and a discussion with the engineering team that developed the system, the
cost coefficients and parameters values are given at the beginning of the applicaiton as follows:
C,=100, C,=400, C,=1,000, C,=4,000, C,=200,000, x=100,000, T, =10,000, #,=0,2, u =0,5.

C,is the set-up cost for system testing, paid at the beginning of the testing phase. It consists in
the cost of initial activities to prepare the system to be tested. C,is the time-cost of testing phase,
while C,is the cost to remove the failure occurred during the testing. After release, the company
will pay a cost for each failure occurred during warranty period, C,, and a penalty cost due to
system failures, C,. The total time of system operation in work condition is assumed a priori
and it is given by x,while the warranty period is long T . When a failure occurs, the expected
time to remove the fault is given by # and u,, respectively for testing and warranty phase.
Using the proposed theorems, the normalized optimal value of the time to release is calculated,
that is equal to 0.717. This optimal value of time minimizes the total expected system cost to
58,459 €.

If this value is compared with the total cost calculated using the actual time to release 0.450, that
is 245,170 €, it may be noticed the difference on the results using the proposed model cost
model. Figure 4.22 shows the curve of the total expected cost using the parameters introduced
before. This application is a specific example of the set of cases introduced before. Exactly, it is

related to Theorem T3 and Case 4.2, in sub-case b.

TEm
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Figure 4.22: E(T) vs T in a real application.
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4.6.5. Discussion about Systemability Application on Reliability
Growth Modeling

A new generalized cost model to estimate the total expected cost of a general industrial system
is discussed by considering the cost to do testing, to remove faults during testing phase, the cost
of the warranty, and the penalty cost due to system failure after the release. This is the first
study that generalized the NHPP reliability model using a Weibull distribution and also
incorporates the random field environmental factors into the cost model. Then the optimal
release policy is determined which minimizes the total expected cost and also illustrate the
application of this methodology to a real application in order to validate the cost model. This
model can help the development and testing engineering team to decide when to release the
system to the end-user. The proposed model also can be easily applied to various applications

in industries such as communications and manufacturing products.
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5. Maintenance Policies on Industrial Plants

5.1. Introduction

Many modern companies invest relevant capital in the production systems, in order to have
high level of flexibility and efficiency, necessary to guarantee the variety and the volume of
different products to satisfy the various consumer demands. Moreover higher levels of
efficiency of the production systems are required to make convenient the production systems.
In this context the reliability and availability of the production systems become very important
to satisfy the final production rate. Hence, the importance of maintenance of these systems has
grown up, because their reliability can improve thanks to the different applied maintenance
policies.

Starting from the collection of data, related to the systems lifetime and then estimating their
different survival functions, like reliability, hazard rate and so on, several preventive
maintenance policies have been planned [5.18, 5.26]. Thanks to these information, the service
engineer can design the best maintenance strategies for improving system reliability,
preventing the occurrence of system failures, and reducing maintenance costs of systems.

When a component or a system works in an operative plant, it reflects a reliability function that
is usually different from the theory reliability but also from all its similar applications in other
industrial plants. Environmental factors may change failure rate, reliability and availability of
systems. Incorrect estimation of reliability function could lead to the wrong functional design of
the system and an incorrect definition of the appropriate maintenance policies.

In the next section, a literature review is illustrated in order to discuss the importance of this
work. In the section 5.3, the Age Replacement Policy (ARP), introduced by Barlow and Hunter
[5.4] is discussed. the ARP using weibull reliability model is investigated in details in subsection
5.3.1. The environmental factors and their effects on ARP are investigated in subsection 5.3.2. In
this part of chapter 4, the new concept systemability, introduced by Pham [5.19, 5.20, 5.21] is
used to model the Age Replacement Policy. It allows to consider the environmental effects in
the reliability estimation, separating their from the intrinsic survival performances of the

component.
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The subsection 5.3.3 includes several numerical examples of the Age Replacement Policy using
Weibull and systemability reliability modeling. A sensitivity analysis is conducted in order to
study the cost curves in function of change on systemability parameters.

The subsection 5.3.4 shows several graphics in order to analyze the changing of the optimal
time of preventive maintenance and to estimate the difference between the UEC considering the
environmental factors or not.

The proposed methodology is applied, in subsection 5.3.5, to an interesting case study in the
automatic packaging machines for beer production and its performance is discussed in
subsection 5.3.6.

The same section-structure is used for Periodic Replacement Policy (PRP), starting from a
literature review, illustrating the Classical approach versus the systemability one, making a
sensitive analysis of cost curves in function of systemability parameters and applying the new

approach to an interesting real case study, finally discussing the results.

5.2. Maintenance Policies Types: State of Art and Future Researches

In the last decades, most scientific contributions on maintenance policies have been developed
and widely used. The first study of preventive maintenance was carried out by Barlow and
Hunter [5.4]. Their research introduced two different maintenance policies to maximize
‘limiting efficiency' i.e., fractional amount of up-time over long intervals. The first policy is
called policy type I, or also age replacement policy, while the second one is called policy type II
or periodic replacement. The optimum policies are determined, in each case, as unique
solutions of certain integral equations depending on the failure distribution.

In the past several decades, maintenance and replacement problems of deteriorating systems
have been extensively studied in the literature. A survey of all maintenance policies has been
developed by Wang [5.31]. The author has summarized, classified, and compared various
existing maintenance policies in several group, like: age replacement policy, random age
replacement policy, block replacement policy, periodic preventive maintenance policy, failure
limit policy, sequential preventive maintenance policy, repair cost limit policy, repair time limit

policy, repair number counting policy, reference time policy, mixed age policy, preparedness
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maintenance policy, group maintenance policy, opportunistic maintenance policy, etc. [5.16 -
5.22 -5.23 - 5.32].

In some early works, the age replacement policy was extensively studied. Under this policy, a
unit is always replaced at its age T or failure, whichever occurs first, where T is a constant [5.5].
Later, as the concepts of minimal repair and especially imperfect maintenance became more and
more established, various extensions and modifications of the age replacement policy were
proposed. For this class of policy, various maintenance models can be constructed according to
different types of preventive maintenances (minimal, imperfect, perfect), corrective
maintenances (minimal, imperfect, perfect), cost structures, etc. [5.8 — 516 — 523 — 5.32].
Recently other studies have been developed about the replacement policies and spare parts
management under different conditions [5.9 - 5.10 - 5.15 - 5.33].

In the periodic preventive maintenance policy, a unit is preventively maintained at fixed time
intervals kT (T = 1; 2; . . .) independent of the failure history of the unit, and repaired at
intervening failures where T is a constant. The basic periodic preventive maintenance policy is
“periodic replacement with minimal repair at failures”” policy under which a unit is replaced at
predetermined times kT (T =1; 2; . . .) and failures are removed by minimal repair ([5.4], Type
II). As the concepts of minimal repair and especially imperfect maintenance [5.22] became more
and more established, various extensions and variations of these two policies were proposed.
The effects of the environmental factors in the development of preventive maintenance models
are not considered in the previous scientific contributions, as shown in the analysis of this
survey.

It’s very important to design an accurate maintenance plan, to start from the collection of data
on component lifetimes and then to estimate statistically the reliability of the components using
quantities like the failure rate, hazard rate and so on [5.18 — 5.26] taking also in consideration
the environment where the examined components operate.

In fact, the environmental factors may change failure rate, reliability and availability of
components, so traditional approaches could cause the incorrect estimation of reliability. For
this reason some researches create several models to estimate the reliability in operating
environments, using the data collected during the test phases. The relation between the
environmental conditions and the hazard rate was studied firstly by Cox [5.11]. The authors

introduced the concept of proportional and additive hazard rate. These models have been
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widely used in several experiments where the time to failure depends on a group of covariates
[5.3-5.8-5.13-5.14].

Badia et al. [5.3] study the aging characteristics in two mixing models having additive and
proportional hazards; they consider a baseline hazard function and an additive or multiply
functions to represent the changes in the operating conditions. Moreover, they consider three
different types of the group of covariates for this function: Poisson, Bernoulli and Gamma
distribution.

Other researches have carried out to define the Environmental Factor (EF); an environmental
factor converts reliability test result at one environmental condition into equivalent information
at other ones [5.12 — 5.27 — 5.28 — 5. 29 - 5.30]. It is defined as the quotient of the mean life in two
different environments. The definition of EF for different distribution has been developed and
accepted. Wang et al. [5.27 — 5.28 — 5. 29 — 5.30] have defined EF for gamma, normal, log-normal,
inverse Gaussian distribution and Elsayed & Wang [5.12] have studied environmental factors
for the binomial distribution.

In mechanical engineering, several contributions have been given and widely accepted. Ram
and Tiwari [5.24] have estimated the reliability of a component through a Monte-Carlo
simulation, with the introduction of the factor n that is greater than 1 if the operating condition
is more stressful than the testing ones, otherwise, it is less than 1. Other models to study the
lifetime distributions based on the test data, the warranty data and additional field data after
the warranty expires have been developd by Oh and Bai [5.17] illustrating the methods to
estimate the maximum likelihood and so defined specific formulas for Weibull distribution. The
reliability characteristics of a component installed in two different cars with different working
conditions have been studied by Attardi et al. [5.2]. In their work, a mixed Weibull distribution
have been used, depending on the covariates through the Weibull scale parameters.

Abbassi et al. [5.1] have introduced an approach based to simulated annealing algorithm to
estimate the parameters of Weibull distribution. Sohn et al. [5.25] proposed a random effects
Weibull regression model for forecasting the occupational lifetime of the employees who join
another company, based on their characteristics. Advantage of using such a random effects
model is the ability of accommodating not only the individual.

An innovative and important contribution different from the previous ones, has been given by

Pham [5.19 - 520 - 5.21]. Pham recently introduced an innovative approach, called
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systemability. It calculates the reliability in random environment using, as starting data, the
reliability obtained during the test, and processing it using a gamma distribution in particular,
or a distribution that represents operating environments in general, which takes into

consideration the EF. This is a fundamental condition for applications in real contexts [5.6 — 5.7].

5.3. Theory on Age Replacement Policy (ARP)

This policy is one of the most used time-based preventive maintenance policies. It is also called

policy type I. It involves the change of the component after 7, time of work. If a failure occurs
before age ?,, the component is replaced at failure, and the next planned replacement operation
is schedule after 7 time.

After each maintenance replacement action, the component becomes as good as new; in this
case the age replacement policy is also called perfect preventive maintenance.

The optimum policy for minimizing the total expected rate and for maximizing the availability

of the component is shown before.
Notation

f(t)  probability density function of failure
h(t)  hazard rate function

R(t)  reliability function

F() failure function

A intensity parameter of Weibull distribution
v shape parameter of Weibull distribution
n a common environment factor

G(n) cumulative distribution function of 7

a shape parameter of Gamma distribution

Vi scale parameter of Gamma distribution

¢, cost of a preventive maintenance operation
cy cost of a breakdown maintenance operation

UEC  Unit Expected Cost of the replacement policy
t planned time of replacement
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Barlow et al. defined the Unit Excepted Cost as following:

c,*R(t,)+c, *F(t,)
t

UEC(t,) =
.[ R(t)dt
0

5-1

where ¢, and ¢, are the cost of preventive and breakdown replacement, with ¢, < ¢, .
Suppose that a component is replaced at a planned time ¢, or at failure, whichever occurs first,
it is obviously to claim that if 7, =, the policy aims to replacement the unit upon failure and

the Unit Excepted Cost is:

UBC(er) = 2 RV e, T E )

J. R(t)dt
0
Note that R(w)=0, F(x)=1 and .[R(t)dt = MTTF , where MTTF is the Mean Time to Failure, then
0

C
the UEC(:,) is: UEC(00) =—2— .
) (=) MTTF

Differentiating the UEC(z,) with respect to time ¢, and setting it equal to zero:

OUEC(t,) 0 |c,*R(t,)+c, *F(t),)

Cr=C

= — i = O 5_3
ot o, 7
J-R(t)dt
0
The following equation is given:
t
C
M%Vijm-F@)= 5-4
0

As well shown in [5.18] it can be found an optimum time tp* which minimizes the function
UEC(t,), provided the hazard rate function i(z,) is strictly increasing. Since lim, o UEC(t,)=,a
positive ¢,” must exist.

To find a unique optimum solution, the function &(z,) has to be increasing. If this hypothesis is

not guaranteed, the optimal solution could not be the unique one [5.18]. The left-hand side of

equation 5-4 strictly increases from 0 to h(w)*MTTF -1, because h(z,) is strictly increasing.
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Hence, if h(o) < o then ¢," =0, so the component is replaced at failure. On the
MTTF *(c;—c,)

other hand, if #(wx) > °r , then there is a unique and finite ¢, that satisfies the
MTTF *(c; —c,)

equation 5-4. In this case, the Unit Expected Cost is:

UEC(t, ) =(c, —c,)*h(t,’) . 5-5

5.3.1. Classical Approach: Weibull Age Replacement Policy (W-ARP)

Considering Weibull distribution for the lifetime data of replaced components, the age

replacement policy, its minimal Unit Expected Cost UEC(r,") and optimal preventive
maintenance time ¢,” could be analyzed using the following formulas.

In this case, the survival functions are:

R(t)=e* 5-6

h(t) = Apt” ™ (strictly increasing with y>1, see [5.18]) 5.7

then the Unit Expected Cost function is:
*xo M tep*(1-e

ty

Ie%’y dt
0

—Atpy)

UEC(1,) =2 5-8

*

, » Which minimizes the Unit

Algorithm A1l: Given c,, ¢, A, y , the optimal value of t,, say t

Expected Cost for age replacement policy is as follows:
e Step 1: Set-up Phase

Set ¢ cr, A, y, real positive constants

p 7
Sett,,t real positive variables.

e Step 2: Calculation Phase
Calculate h(t) = /1747_1

Calculate R(t) =e ™

Calculate MITF = J.e_wdt
0
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-at,” -at,”
*e T +cf*(1—e 7))
t[’

.[e_'w dt
0

Calculate UEC(t,) = c”

e Step 3: Decision-Making Phase

Condition A1_C1: If k()< o then t, =w;
MTTF *(c; —c,) r

eps X Cr * *
Condition A1_C2: If h(OO)>MTTF*(cf—Cp) for any tpe(O,th and tpe(tp,oo), then

UEC(t,)>UEC(t,"), then t,” minimizes UEC(t,), where UEC(t,")=(c; —c,)*Ay(t, ) ™"

5.3.2. New Approach: Systemability Age Replacement Policy (S-ARP)

As described in Chapter 3, the mathematical form of systemability function is given by:

t

—I]Ih(s)ds
Rs(t):je > dG(n) 5-9
n
where 7 is a random variable that represents the system operating environments with a
distribution function G.

If it assumes that 7 has a gamma distribution with parameters ¢ and g, i.e., n~ gamma (,p)
where the pdf of 7is given by:

a_a-1 —px
pBx e

for «,>0; x>0 5-10

where I'(a)=(a-1)!, then the systemability function of the system in equation 5-9 using the

Laplace transform is given by:

a

R ()= —FL— 5-11
B+ | h(s)ds
!
Using formulas 5-1 and 5-12, the UEC(¢,) assumes this mathematical expression:
¢ * B +ep *1- B
B+At" B+t
UEC,4(t,) = 5-12

j’{ s }dt
0 B+t
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Also in this case the ¢, p* is a finite and unique solution if the hazard rate function A/(f) of
systemability is strictly increasing.
If the systemability formula 5-9 is considered with Weibull distribution of testing data, with

hazard rate h(t) as shown in formula 5-7, the systemabilty function is as follows:

Rs(t):{ s } 5-13
B+ A7

and known that 4,(¢) = 1 *(__ﬁRs(t)j,
R, (1) ot

aﬂ}/*( B p ]
where OR,(?) _ L+t g7
ot B+ A7

so the related hazard rate function /(f) becomes:

ady * 17
B+ At7

hy(f) = 5-14

To find a unique optimum solution, the function 5-14 has to be increasing. If this function is

studied, it can be found that the lim_4,(tf)=0 and also lim,_, A,(f) =0. Moreover, the function

hy(?) is major than 0 for all values of variable ¢.

Differentiating the /(f) with respect of time ¢ and setting it equal to zero:

* 71
h(f) = Oh(¢) :g aly *t _0 515
ot ot\ B+ a7

The following solution is given:

¢y Pr=1) 5-16
A

Considering the A,'(f), it can be noticed that %,'(t=0)=0 and #,'(t =) =0. Hence, if 0<¢<¢" the
hazard rate function A(f) is strictly increasing, while on the other hand, if ¢> " the hazard rate
function A (f) is strictly decreasing, due also to 4,'(t=0)=0 and A,'(t =) >0.

It's interesting to notice that ¢ depends only on a parameter of systemability, that is S one.

Moreover, increasing f value, the value of ¢" increases, as shown in the following figure 5.1.
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Figure 5.1: ¢ ( p ) versus [

*

To find a unique and finite solution ¢, ,,

which minimizes UEC,4(t,) , the value of the unique
optimal solution calculated in ¢z, < ¢, based on the hazard rate function #,() of systemability is

strictly increasing, has to be compared with each values of UEC 4(¢,) for t,> ¢ as follows:

*

Algorithm A2: Given ¢,, ¢;, A, v, a, B the optimal value of t,, say t,, , which minimizes the

Unit Expected Cost UEC,4(t,) for age replacement policy using systemabilty Function is as follows:

e Step 1: Set-up Phase

Setc,, c;, A, vy, a, B real positive constants

Set t,, t real positive variables.

e Step 2: Calculation Phase
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ady *t7 1

Calculate h (t) =
B+ At7

Calculate R (1) = I: P :l
B+ At

. ﬂ a W ﬂ a
“ {ﬁmﬂ} e [1 {ﬂww} J

Calculate UEC,4(t,) =

Calculate t*=71f'8i7:1_1j

e Step 3: Decision-Making Phase

For t,<t", for any t, e(O,t;J and ¢, e(t;,t*), then UEC,;(t,)>UEC,,(t,"), then t,” minimizes
UEC,,(t,).

*

Condition A2_C1: If UEC,, (tp*)<UECaﬁ (t,) for any t, >1, tsp* =t, minimizes UEC,4(t,),

then t, p* is the unique optimal solution;

Condition A2_C2: If UEC,, (tp*) >UEC .5 (tpi), where for any t, e(t*,tpi] and t, e(tpi,oo), then
UEC(tp)>UEC(tpi), then tsp*=tpi minimizes UEC,;4(t,), then tsp* is the unique optimal

solution.

5.3.3. W-ARP vs S-ARP: Numerical Examples

Age replacement policy of component with Weibull distribution
Let us consider a component with Weibull distribution of failure rate, where intensity
parameter A=0.005, shape parameter y=3, so with increasing hazard rate h(t). it is also

supposed that the cost of a preventive maintenance operation ¢, =5k€/action the cost of a

breakdown maintenance operation ¢, =50k€/ action .
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Using algorithm A1, proposed in the previous section, let us see how the steps follow:

Step 1: Set-up Phase
Set ¢,=5;¢, =50, 4=0.005, y=3

Set t,,t real positive variables.

Step 2: Calculation Phase

Calculate h(f) = An” ™ =0.005*3%*1 =0.015%12

3
Calculate R(¢) —e M _ 00087
Calculate MTTF= J.e"“y dt= I 0005 1,
0 0

o At

4 A7 _ 3 | 3
e r +Cf*(1—e‘ P ) 0.005¢ 0.00Stp

Calculate UEC(t,) = p : _5%e i +50*(1-e )
-fe—/w dt fe—o.005t3 dt
0 0
Step 3: Decision-Making Phase
Condition A1_C1: If h(w) < ° then t," =;
MTTF *(c; —c,) ’
Condition A1_C2: If h(x)> o for any t,e (O,t;J and 1, e (t;,oo), then

MTTF *(c; —c))
UEC(t,)>UEC(t,’), then t,” minimizes UEC(t,"), where UEC(t, ) =(c; —c,)* Ay(t, ) "
RESULTS:

h(w) =, so Condition A1_C1 = FALSE and Condition A1_C2: TRUE. Then:

tp* =2.24months;

UEC(t," ) =(c; —c,)* Ay (t,*) " = (50-5)*0.015*(2.24)* = 3.386k € / month

With the parameters, introduced before, and using algorithm Al, the values of optimum time

tp* is equal to 2.24 months, where the UEC(t p*) assumes value 3.386 k€/months (see figure 5.2).
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Figure 5.2: a) Reliability for 4 = 0,005 y = 3; b) Unit Expected Cost for 4 =0,005 y = 3.

Age replacement policy using systemability function: UEC curves in function of
systemability parameters

Using the same Weibull parameters and cost values, defined before, in this section the function

of UEC(tp) are tested with the introduction of systemability formula in order to study the effect

of environmental factors, using algorithm AZ2.

Here below, several graphics show the function UEC(t,)for different values of the

systemability parameters a and g, fixing the values of the costs parameters, ¢, and c,.

p

This series of graphics illustrates systemability, R(¢,), and UEC,,(¢,) functions, fixing one of

the systemability parameters to a defined value and changing the other one in a series of values

between 1, 10, 50.
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Let us consider the following values of the parameters in the cost function to carry out this

study: ¢, =5;

¢y =50; A =0.005and y =3.

Using algorithm A2, proposed in the previous section, let us see how the following steps as the

example with =10 and £=50:

116

Step 1: Set-up Phase
Set ¢,=5; ¢, =50; A =0.005y =3, =10, #=50

Sett,,t real positive variables.

Step 2: Calculation Phase

* 4771 * *Qx 31 *,2
Calculate hs(t)za’b/ "~ _10*0.005*3*¢ 0.15*¢

B+ At 50+0.005° 50+ 0.005/°
a 10
Calculate R(1)= p = [ S0 3 }
B+t 50+ 0.005¢
Calculate
c *{ﬁ } +ep* 1{ A } 5*[50 To+5o* 1{50 TO
Plprar] B+t 50 +0.005¢3 50 +0.005¢3

UECaﬁ (tp) = =

Ly a Ly 10

J' P | a ﬂ%} dt

LB+ < L 50+0.005°
Calculate " = 4’8(}/_1) = #50(3_1) =27.144months

P 0.005

Step 3: Decision-Making Phase
For t, <t", for any t, e(O,t;J and t, e(t;,t*), then UECaﬂ(tp)>UECaﬂ(tp*), then tp* minimizes

UEC,4(t, ).

*

Condition A2_C1: If UECaﬁ(tp*)<UECaﬁ(tp) for any ¢, >1, tsp*:tp minimizes UEC,4(t,),

then t, is the unique optimal solution;
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Condition A2_C2: If UEC,,(t, ) >UEC,4(t,"), where for any t, e(t*,tpi] and t, e(t ! oo), then

p

“is the unique optimal

UEC(t,)>UEC(t,'), then t »

"=t "minimizes UEC,4(t,), then t,

Sp p

solution.

RESULT:

tp* = 3.83months

UEC,5(1,") =1973<UEC,,(t,): Condition A2_C1=TRUE > ¢, =¢," minimizes UEC,(t,),

tp

then 1, is the unique optimal solution.

Figures 5.3, 5.4, 5.5 show the systemability function R (¢,) and the cost function UEC,,(z,) for

different values of « , varying the g parameter, in comparison with R(7,) and UEC(t),).
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a) Reliability Functions b) Cost Functions

Figure 5.3: a) Comparison of reliability vs. systemability function for a =1 and g =1, 5, 10, 20 and 50.

b) Comparison of cost function UEC(t,) VS- UEC4(t,) fora=1and f=1,5, 10,20 and 50.
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a) Reliability Functions b) Cost Functions

Figure 5.4: a) Comparison of reliability vs. systemability function for a =10 and g =1, 5, 10, 20 and 50.

b) Comparison of cost function UEC(t,)VS- UEC,,(t,) for a =10 and B =1, 5, 10, 20 and 50.
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Figure 5.5: a) Comparison of reliability vs. systemability function for a =50 and g =1, 5, 10, 20 and 50.

b) Comparison of cost function UEC(t,)VS- UEC,,(t,) for a =50 and B =1, 5, 10, 20 and 50.

Furthermore, figures 5.6, 5.7 and 5.8 show the systemability function R (¢,) and the cost

function UEC,,(t,) for different values of g, varying the a parameter, in comparison with

R(z,) and UEC(z,).
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Figure 5.6: a) Comparison of reliability vs. systemability function for =1 and a =1, 5, 10, 20 and 50.

b) Comparison of cost function UEC(t,) VS UEC,4(t,) for p=1and a=1, 5,10, 20 and 50.
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Figure 5.7: a) Comparison of reliability vs. systemability Function for § =10 and « =1, 5, 10, 20 and 50.

b) Comparison of cost function UEC(t,)VS- UEC,,(t,) for =10 and a =1, 5, 10, 20 and 50.
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Figure 5.8: a) Comparison of reliability vs. systemability function for g =50 and ac =1, 5, 10, 20 and 50.

b) Comparison of cost function UEC(t,)VS- UEC,,(t,) for =50 and =1, 5, 10, 20 and 50.

As well shown in these graphics, two scenarios can be defined:
- Scenario 1:
hard environment effects: when a >f, the UEC,4(t,) is higher than UEC(t,) because R () is
worse than R(t) .
- Scenario 2:

soft environment effects: when a <f, the UECy(t,)is lower than UEC(t,) because R(f)is

better than R(¢) .

The previous figures show the effects of the environmental factors, represented with the
systemability parameters a and S, on reliability and on Expected Unit Cost functions. In fact,
as explained before, if the operating environment is different from the testing one, the reliability
will be different from the one calculated during the test phases. As a consequence, also the
Expected Unit Cost will be different and it could be higher or lower, depending on the effects of

environmental factors, described by « and S parameters, as shown before.

5.3.4. Further analysis about S-ARP: ;" and wuvEec(:,") curves in function
of systemability parameters

The second group shows several graphics in order to analyze the changing of the optimal time
of preventive maintenance and to estimate the difference between the UEC considering the

environmental factors or not.
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Let us consider the following values of the parameters: 4 =0.005 and y =3, for different values

of costs parameters, ¢, and ¢, and it has been illustrated:

p

- a) t,, curve for O<a<wand B=1,5, 10, 20, 50;

- b) ¢, curve for 0<pg<wand a=0.5,1,5, 10, 20, 50;

Sp
- ©) %UEC(z,") curve for 0<a<wand =1, 5, 10, 20, 50;
- d) %UEC(t,’) curve for 0< B <wand a =0.5,1, 5, 10, 20, 50;

- et " surface for 0<a <wand 0<f<o;

sp
- ) %UEC(tp*) surface for 0<a<wand 0< f<w.

where ¢, p* is the value which minimized the UEC,4(¢,), calculated with equation 5-12

Then %UEC(t,") is calculated as:

. UEC 4(t, )
%UEC(IP )2100* m—l 5-17
aff tSp

It indicates the percent difference between the real Unit Expected Cost UEC,,(t,), using a
planned time ¢," calculated with only Weibull distribution, without consider the environmental
effects, and the optimum value of Unit Expected Cost UEG,4(t, p*) estimated considering also the

environmental effects with systemability parameters, calculated in the real optimum time value

*

ty, -

All calculated ¢, p* are minor than ¢, given by equation 5-16, and satisfy condition (a) of
algorithm A2 hence ¢, p* can be considered the unique and finite solution of UEG,(, p*) .

Figures 5.9, 5.10 and 5.11 show the curve of tsp* and %UEC(tp*) for different values of Cp fixed
¢;=50, varying a and g values. For each figure, the optimal times ¢,” has been shown which

values have been calculated with the formula related to the test reliability using algorithm Al.
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Figure 5.9: a) Curve of tsp* in function of ac and B =1, 5, 10, 20 and 50;
b) Curve of tsp* in function of p and a =0.5, 1, 5, 10, 20 and 50;

¢) Curve of tsp* in function of a and B. All these for ¢ ,=1and ¢,=50;

d) Curve of %UEC(t,") in function of o and =1, 5, 10, 20 and 50;

e) Curve of %UEC(ty’) in function of p and a = 0.5, 1, 5, 10, 20 and 50;

f) Curve of %UEC(t") in function of « and f. All these for c,= land ¢ /= 50.
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Figure 5.10: a) Curve of l‘sp* in function of a and g =1, 5, 10, 20 and 50;
b) Curve of tsp* in function of  and a =0.5, 1, 5, 10, 20 and 50;

¢) Curve of tsp* in function of  and . All these for ¢, =10 and ¢ ,=50;

d) Curve of %UEC(t,") in function of a and g =1, 5, 10, 20 and 50;

e) Curve of %UEC(%,") in function of p and a =0.5, 1, 5, 10, 20 and 50;

f) Curve of %UEC(#y") in function of o and . All these for ¢,=10 and ¢ ,=50.

122




Maintenance Policies on Industrial Plants

Chapter 5

cp =25

cf =50

[ow |\

o 5 10

15 20 25,3 35 40 45 50 55

o 5 10 15

B

20 25 30 35 40 45 50 55

a) Optimal Time vs. parameter “o”

b) Optimal Time vs. parameter “”

¢) Optimal Time vs. parameters “o”” and “B”

25000% B 2000% cp=25 cf =50
WUEC (z,) cp=25 cf =50
E cp Doef )
%UEC (1,")
1200,00% \ 1200,00%
150,00% 150.00%
100,00% \\ 100,00%
% /
50,00% ‘ \ 50,00% /
=1 B=5 -
\x £ — g
0.00% —_— —f3 =20 0,009 - —
o 10 0 o 40 50 60 o 10 2 & 40 s0
d) %UEC(ty") vs. parameter “o”

e) %UEC(t,") vs. parameter “B”

f) SUEC(ty) vs. parameters “a” and “B”

Figure 5.11: a) Curve of tsp* in function of a and B =1, 5, 10, 20 and 50;

b) Curve of tsp* in function of f and a = 0.5, 1, 5, 10, 20 and 50;

¢) Curve of tsp* in function of a and B. All these for ¢,=25 and ¢,=50;

d) Curve of %UEC(#,") in function of a and B =1, 5, 10, 20 and 50;

e) Curve of %UEC(ty") in function of p and a = 0.5, 1, 5, 10, 20 and 50;

f) Curve of %UEC(fy’) in function of o and f. All these for ¢, =25 and ¢, = 50.
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From the analysis of the previous graphics some considerations could be made:

fixed parameter g, ¢, i

, 1sadecreasing function of parametera;

- fixed parameter «, ¢, , is an increasing function of parameter g;

- overall, a general increasing of ¢, p* is well shown for increasing values of couple («; 8),
from (0,0) to (50,50).
- increasing the cost parameter c,, the %UEC(z,’) is less influenced by parameter a and
more influenced by the other systemability parameter g;
Furthermore, the %UEC(r,”) values have been collected in different intervals, every five points
percent, and for each interval, the probability distribution Pc of %UEC(t,”) has been calculated

in order to define the mean value of %UEC (tp*) and its distribution.

Here below, several graphics (figure 5.12) show the probability distribution Pc of %UEC(r,") for
different values of the cost parameter ¢, respectively 1, 5, 10, 25, while the cost parameter ¢, is
equal to 50.

The mean value for each case is about 10%, so if a preventive maintenance time is design using

the test data set, the mean major cost, due to the environmental effects, is about 10 %.
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Figure 5.12: Probability distribution of YUEC (¢ p*) for different values of ¢,
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5.3.5. Real Application: ARP on Automatic Packaging Machines.

In this section, the proposed methodology applied to an interesting case study in the automatic
packaging machines for beer production is illustrated. Some data related to different
applications of the same model of machine, in several customer plants located in different
countries, have been collected. The two plants have been visited and analyzed in detail, that
present the same machine subject to different environmental conditions.

The study gives special attention to the automatic bottle filler because usually it is the
bottleneck of the whole production system and it is more influenced by the environmental
factors than the other machines.

The main causes of failure are investigated. As it is observed, the principal downtimes are
caused by failures of the filler heads upon which the study has been oriented.

Table 5.1 shows the data set that has taken from this component where the time values t has
been normalized. Ra(t) represents reliability function values collected from the test environment.
The first plant presents the same data of the test environment while the second one is described

by Ru(t).

T 0.00 0.03 007 010 013 017 020 023 027 030 033
R (T) 100.00 9998 9995 9992 99.86 99.76 99.59 99.33 9894 98.36 97.52
R,(T) 100.00 99.88 99.79 99.64 9940 99.03 9850 97.73 96.66 9520 93.25

T 0.37 0.40 043 047 050 053 057 0.60 0.63 0.67
R (T) 96.34 9471 9321 8959 85.81 8230 7517 66.79 60.10 5221
R,(T) 90.70 87.44 8336 7837 7244 6559 5791 49.61 41.00 3247

T 0.70 0.73 077 080 083 087 090 093 097 1.00
R (T) 4221 3320 2345 1488 9.68 450 256 1.06 037 0.0
R,(T) 2446 1737 1152 705 394 198 088 034 011 0.03

Table 5.1: Testing and operating data set
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Fitting the data using Weibull distribution and systemability function, the parameters
illustrated in table 5.2 and figure 5.13 have been obtained. Also the cost parameters given from

the maintenance service of the company are included.

Weibull parameters Systemability parameters Cost parameters
A /4 a ﬂ Cp C/‘
0.0000915 8.10 3.10 1.42 3 30

Table 5.2: Parameters of Weibull and systemability function and cost parameters

(¢] 0,2

Figure 5.13: Reliability during Testing (Ra(t)), during Operation (Rs(t)), Weibull Function (Re(t)) and

Systemability Function (Rs(t)).

Considering ¢, =3, ¢, =30, 4=0.0000915, y =81, a=310, =142, where the parameters

p
values of systemability have been estimated using the least squares estimate method [5.6], the
age-replacement policy of the second plant has been optimized thanks to the consideration of
the environmental factors with systemability function.

Considering only the Weibull parameters, the application of algorithm A1l have given us the

replacement time related to the testing data, ¢,*=224months, and the Unit Expected Cost is
UEC(t,*) =1.184k€/ month.

Using algorithm A2, the optimal time to replacement has been calculated considering also the
environmental effects to the survival function, applying the systemability function. In this case,

the optimal solution is #,,* =1.71months and the Unit Expected Cost is UEC,(t,,*) =1.998k €/ month .

If it is calculated the Unit Expected Cost in the optimal solution of testing data, but taking into
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consideration the environmental factors, its value will be UEC,,(t,*)=2.392k€/month (figure

5.14). As well demonstrated, the Unit Expected Costs are different between these cases and the
optimal solution, using algorithm A2 and considering the environmental effects, allows to

saving about the 20%.
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Figure 5.14: Real application of the methodology to the age replacement policy on the automatic

machine component

5.3.6. Some considerations about Systemability application on ARP

In the last decades, maintenance policies design have become necessary to guarantee high level
of efficiency of the complex industrial systems. Each maintenance plan has been defined
starting with the collection of data about the lifetime of components in order to use it to
estimate the different survival functions. Thanks to these ones, several maintenance policies can
be applied for improving system reliability, preventing the occurrence of system failures, and
reducing maintenance costs of systems.

Many maintenance models have been developed and widely used in scientific literature. The
age replacement policy is one of the most important.

Incorrect estimation of reliability function could lead to the wrong functional design of the
system and an incorrect definition of the appropriate maintenance policies.

In this chapter, the effects of the different operating environments in the age replacement policy
have been demonstrate using a new concept, called systemability [5.19 — 5.20 - 5.21].

The aim of this work is to introduce the systemability concept in the maintenance policies
design in order to show its benefits, because it considers also the environmental conditions in

which the systems operate.
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With its parameters, systemability calculates the reliability in random environments, using as
starting data, the reliability obtained during the test, and processing it using a gamma
distribution in particular, or a distribution that represents operating environments in general,
which takes into consideration the environmental factors. In other words, each operating
environment is characterized by related systemability parameters calculated before with several
failure data. These parameters allow to estimate the reliability behaviour of each system
operating in such environment conditions, using systemability function.

Hence, the purpose of this chapter is to evaluate the application of systemability function to the
age replacement policy and highlight the benefits arisen with the use of this concept in
comparison with the classical methodology.

The analytical behaviour of the total cost function and a useful algorithm have been introduced
in order to help the practitioners to apply this innovative model. Furthermore, a sensitivity
analysis of these benefits is conducted in order to show how the outcomes vary in function of
the different environmental conditions, represented by systemability parameters a and 4. In
conclusions the application of systemability permits the correct estimation of time-replacement
and consequently the minimization of global maintenance cost UEC. The results of this
application have been illustrated with a series of graphics and summarized at the end. It's

important to highlight that the mean value of %UEC(t,") is about 10%, that is the percent
difference between the real Unit Expected Cost UEC,,(¢,"), using a planned time ¢,” calculated

with only Weibull distribution, without consider the environmental effects, and the optimum

value of Unit Expected Cost UEC,, (tsp*) estimated considering also the environmental effects
with systemability parameters, calculated in the real optimum time value tsp* . A real industrial

application has demonstrated the importance of this study, and shown about a 20% saving
(about 5,000 €/years) using this methodology in comparison with the application of traditional
age replacement policy.

In few words, if a preventive maintenance time is design using the test data set, the mean major
cost, due to the environmental effects, will be about 10% in comparison with the use of

systemability on estimating of the time to replacement.
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5.4. Theory on Periodic Replacement Policy (PRP)

This policy is one of the most used time-based preventive maintenance policies. It is also called
policy type II. It involves a preventive maintenance action on the system after a operative time
t,,independent from the number of replacements at failure, occur in time ¢, .

After each maintenance replacement action, the component becomes as good as new, hence the
number of preventive maintenance actions do not affect to the failure rate of the system.

In other words the system failure rate remains undisturbed by the minimal repair.

The optimum policy for minimizing the total expected rate and for maximizing the availability

of the component is shown before.
Notation

f(t)  probability density function of failure
h(t)  hazard rate function

R(t) reliability function

F(t) failure function

A intensity parameter of Weibull distribution
14 shape parameter of Weibull distribution
n a common environment factor

G(n) cumulative distribution function of 7

a shape parameter of Gamma distribution

B scale parameter of Gamma distribution

¢, cost of a preventive maintenance operation
cy cost of a breakdown maintenance operation

UEC  Unit Expected Cost of the replacement policy

t planned time of replacement

Barlow et al. defined the Unit Excepted Cost as following:

c,tep* I h(t)dt
UEC (t,) = 0 5-18

Ly

where ¢, and ¢, are the cost of preventive and breakdown replacement, with ¢, < c¢,.
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Differentiating the UE((#,) with respect of time ¢, and setting it equal to zero:

[P
c,+c *Jh(t)dt
f
QUEC(t ’
(p) _ a 0 :O 5'19

atp 0tp I,

The followed equation has given:

tP
tp*h(tp)—jh(t)dtzc—p 5-20
0

p

As well shown in [5.18] it can be found an optimum time tp* which minimized the function

UEQt,), provided the hazard rate function A(#,) is strictly increasing. Since Iimtp SoUE,) =,

a positive ¢,” must exist.

In this case, the Unit Expected Cost is:
UEC(t,)=c,*h(t,) 5-21

5.4.1. Classical Approach: Weibull Periodic Replacement Policy (W-PRP)

Considering Weibull distribution for the lifetime data of replaced components, the periodic

replacement policy, its minimal Unit Expected Cost UEC(r,") and optimal preventive
maintenance time ¢,” could be analyzed using the following formulas.

In this case, the different survival functions are:

R(t)=e* 5-22

h(t) = Ap” (strictly increasing with y >1, see (Pham, [1])) 5-23

then the Unit Expected Cost function is:
x A - —At” " )
UEC(tp):cp e t+cf 1-e ):cp+c;, at,” 524
J‘e%’y dt :
0

If the hazard rate follows a Weibull distribution, that is A(r) =A%, the optimal time is given

solving equation 5-20:

LV
b :[(y—l)*cf*zJ '
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*

Algorithm A3: Given c,, c¢;, A, y , the optimal value of t,, say t, , which minimized the Unit

p/

Expected Cost for age replacement policy is as follows:

e Step 1: Set-up Phase

Set ¢,, ¢y, A, y, real positive constants

Set t,, t real positive variables.

e Step 2: Optimal-Solution Calculation Phase

c %

Calculate t,*= —( )”

» )
y=Y*c,*4

c *e—/ltp*r +Cf *(l—e_/“”*y) c +cf *ﬂ,(t *)V
Calculate UEC (1 ,*) = -+ —— =L — L
P
4 p
Ief’“ dt

0

5.4.2. New Approach: Systemability Periodic Replacement Policy (S-
PRP)

The UEC(t,) assumes this mathematical expression in the operating environments:

t!’
c,tep* Jhs ()dt
UEC,4(t,) = 0 5-25

Ip

Also in this case the ¢, p* is a finite and unique solution if the hazard rate function # ) of
systemability is strictly increasing.

If the systemability formula is considered:

s T
R>Y(t)_|:ﬂ+/lty:|

aly *[ p p ]
and kwon that A (f) = L *(—M] , Where OR(1) _ p i * g7t
R (1) ot ot B+’

so the hazard rate function A,(f) becomes:
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*,7-1
() = 5-26
’ B+ A7

Using formulas 5-18 and 5-26, the UE((t,,) assumes this mathematical expression:

Ly _
aly *t77t
Cp ey *J‘ﬁdf ¢, +cf*{a*ln[1+2tp7ﬂ
UEC .45 (t,) = 0 = 5-27

Ly Ly

Also in this case the ¢, p* is a finite and unique solution if the hazard rate function /() of

systemability is strictly increasing. If this function is studied, it can be found that the

lim_,, 4, (£)=0 and also lim,_, A (f)=0. Moreover, the function A (f) is major than 0 for all

values of variable t.

Differentiating the A(f) with respect of time ¢ and setting it equal to zero:

Ohy(t) za(aﬂ}/*tylj -0 5-28
o o\ g+

The followed solution is given:

=7 M 5-29
A

Considering the A4,'(f), it can be noticed that 4;'(t=0)=0 and A,'(t=)=0. Hence, if 0<s</" the
hazard rate function A(¢) is strictly increasing, while on the other hand, if /> " the hazard rate
function A(¢) is strictly decreasing, due also to %,'(t=0)=0 and A,'(t =) >0.

It’s interesting to notice that the :” depends only on a parameter of systemability, that is g one.

Moreover, increasing B value the value of /" increases, as shown in the following figure 5.15.

25
t*
20

10

(0] 10 20 ﬁ 30 40 50

Figure 5.15: £ (3) versus f3
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*

To find a unique and finite solution 7, ,

which minimizes UEC,4(¢,) , the value of the unique
optimal solution calculated in ¢, < ¢, based on the hazard rate function hy(f) of systemability is

strictly increasing, with each values of UEC,4(¢,) for 7,2 ¢ has have to compare as follows:

*

p * which minimized the

Algorithm A4: Given Cps Cr, A, v, a, B, the optimal value of t,,say t

Unit Expected Cost UEC,4(t,) for periodic replacement policy using systemabilty function is as follows:

e Step 1: Set-up Phase

Set c,, ¢y, X, y,a, B, real positive constants

p/

Set t,, t real positive variables.

e Step 2: Calculation Phase

ady *t7 7t

Calculate h,(t) =
+ At

Calculate R,(t) :{ B }

B+t

t, _
fady *t77t

cp+c_,-*_[mdt C,,+Cf*{a*ln(1+/1t/ﬂ
Calculate UEC ,; (t,) = 0 = p

! ¢
Calculate ¢ = W

p p
e Step 3: Decision-Making Phase

For t,<t, for any t, e(O,t;J and 1, e(t;,t*), then UEC,,(t,)>UEC,,(t,"), then t,” minimizes

UEC,,(t,).

*

Condition A4_C1: If UECaﬂ(tp*)<UECaﬂ(tp) for any t, >, tsp* =t, minimizes UEC,4(t,),

then t, p* is the unique optimal solution;

Condition A4_C2: If UEC,, (tp*) >UEC .5 (tpi), where for any t, e(t*,zpi] and t, e(tpi,oo), then

UEC(t,)>UEC(t,'), then t

Sp*:tpiminimizes UEC,4(t,), then tsp*is the unique optimal

solution.
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5.4.3. W-PRP vs S-PRP: Numerical Examples

Periodic replacement policy of component with Weibull distribution
Let us consider a component with Weibull distribution of failure rate, where intensity
parameter 1 =0.005, shape parameter y =3, so with increasing failure intensity rate h(t). The

cost of a preventive maintenance operation c,=5k€/action and the cost of a breakdown

maintenance operation ¢, =50k€/action are also supposed.

Using algorithm A3, proposed in the previous section, let us how follow the steps as:
e Step 1: Set-up Phase
Set ¢,=5; ¢, =50; A =0.005y =3,

Set t,, t real positive variables.

e Step 2: Optimal-Solution Calculation Phase

¢ b N A
Calculate 1 ,*=| —F—— =(—J = 2.154months .

(r=1)*c,*4 2*50*0.005
Calculate
* 7ﬁ'tp*y * 7/“”*'/ * *x7 3
+e, (- +c,* At * *
vEC (10 = ST ¢ T e Tlme (T ) _epre T AT 5480700052 2047 g 4 ke monh
B t,* 2.154
J.e_ﬂt/ dt

0

With the parameters, introduced before, and using algorithm Al, the values of optimum time
tp* is equal to 2.154 months, where the UEC(tp*) assumes value 3.481 k€/month, the time could

be intended as days, or weeks, or months and so on, and the UEC(tp*) is related to the cost of

chosen time unit (see figure 5.16).
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Figure 5.16: a) Reliability for A = 0,005 y = 3; b) Unit Expected Cost for 4 = 0,005 y = 3.

Periodic replacement policy using systemability function: UEC curves in function of
systemability parameters

Using the same Weibull parameters and cost values, defined before, in this section the function

of UEC(t,) are tested with the introduction of systemability formula in order to study the effect

of environmental factors, using algorithm A4.

Here below, several graphics show the function UEC(t,) for different values of the

systemability parameters « and g and fixed the values of the costs parameters, ¢, and ¢,.

p

This series of graphics illustrates systemability, R(¢,), and UEC,4(#,) functions fixed one of the

systemability parameters to a defined value and changing the other one in a series of values
between 1, 5, 10, 20, 50.
Let us consider the following values of the parameters in the cost function to carry out this

study: ¢,=5; ¢, =50; 4 =0,005and y =3.

Using algorithm A4, proposed in the previous section, let us how follow the steps as the

example with =10 and #=50 :
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136

Step 1: Set-up Phase
Set ¢,=5; ¢, =50; A =0.005,y =3, =10, =50

Set t,, t real positive variables.

Step 2: Calculation Phase

*yr-l * * Q% 131 * .2
Calculate hs(z)zaﬂﬂ’ ¢ _10*0.005*3*¢ 0.15*¢

B+t 50+0005 50+ 0.005(°
a 10
Calculate R (1) = p :[ S0 3}
B+ | | 50+0.005¢

c,+cy *{a*ln(lvuztpyﬂ 5+50*{10*In(1+ 0'50(?5 lpsﬂ
Calculate yEC o (t,) = _

Ly Ly

Calculate {* = 7\/ Ar=1) _ ?‘/ 508-1) _ 27.144months
2 0.005

Step 3: Decision-Making Phase
For t,<t", for any t, e(O,t;J and t, e(t;,t*), then UEC,,(t,)>UEC,,(t,"), then t,” minimizes

UEC,4(t, ).

*

Condition A4_CT: If UEC,, (tp*) <UEC,4(t,) for any t, >, tsp* =t, minimizes UEC,4(t,),

then t, p* is the unique optimal solution;

Condition A4_C2: If UEC,, (tp*) >UEC .5 (tpi), where for any t, e(t*,t i] and t, e(tpi,oo), then
UEC(t,) >UEC(tPi), then tsp* =tpi minimizes UEC,4(t,), then tsp* is the unique optimal
solution.

RESULT:

tp* = 3.69months

UEC,4(t,*) =2.034<UEC,4(t,): Condition A4 CI=TRUE > ¢ ~=t, minimizes

Sp 4

UEC,;4(t,) , then t "is the unique optimal solution.
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Figures 5.17a, 5.18a, 5.19a, 5.20a and 5.21a show the systemability function R(z,) for different
values of «, respectively 1, 5, 10, 20, 50 and varying the g parameter, where R(z,) is the

reliability function related to the test environment calculated with formula 5-13 and these

weibull parameters A = 0,005 and y = 3. Figures 5.17b, 5.18b, 5.19b, 5.20b and 5.21b show the

cost function UEC,4(¢,) for different values of & and varying the g parameter.
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Figure 5.17: a) Comparison of reliability vs. systemability function for a =1 and g =1, 5, 10, 20 and 50.

b) Comparison of cost function UEC(t,) VS- UEC 4(t,) fora=1and f=1,5,10,20 and 50.
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Figure 5.18: a) Comparison of reliability vs. systemability function for a =5 and g =1, 5, 10, 20 and 50.

b) Comparison of cost function UEC(t,)VS- UEC,,(t,) fora=5and f=1,5, 10,20 and 50.
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Figure 5.19: a) Comparison of reliability vs. systemability function for a =10 and g =1, 5, 10, 20 and 50.

b) Comparison of cost function UEC(t,)VS- UEC,,(t,) for a =10 and B =1, 5, 10, 20 and 50.
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Figure 5.20: a) Comparison of reliability vs. systemability function for a =20 and g =1, 5, 10, 20 and 50.

b) Comparison of cost function UEC(t,)VS- UEC,,(t,) for a =20 and B =1, 5, 10, 20 and 50.
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Figure 5.21: a) Comparison of reliability vs. systemability function for a =50 and g =1, 5, 10, 20 and 50.

138

b) Comparison of cost function UEC(t,)VS- UEC,,(t,) for a =50 and B =1, 5, 10, 20 and 50.



Maintenance Policies on Industrial Plants JeRiZTIad]

Furthermore, figures 5.22a, 5.23a, 5.24a, 5.25a and 5.26a show the systemability function R(z,)
for different values of g, respectively 1, 5, 10, 20, 50 and varying the & parameter, where
R(t,)is the reliability function related to the test environment calculated with formula (11) and
these Weibull parameters 4 =0.005 and y = 3. Figures 5.22b, 5.23b, 5.24b, 5.25b and 5.26b show

the cost function UEC,4(t,) for different values of g and varying the & parameter.

UEC (1,) B =1

o] 2 4 6 8 10 12 14 16 18 29
t

10 15

a) Reliability Functions b) Cost Functions

Figure 5.22: a) Comparison of reliability vs. systemability function for p=1and a =1, 5, 10, 20 and 50.

b) Comparison of cost function UEC(t,) V8- UEC,4(t,) for=1and a=1,5, 10,20 and 50.

15

a) Reliability Functions b) Cost Functions

Figure 5.23: a) Comparison of reliability vs. systemability Function for f =5 and a =1, 5, 10, 20 and 50.

b) Comparison of cost function UEC(t,) VS UEC,,(t,) for p=5and a=1,5, 10, 20 and 50.
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Figure 5.24: a) Comparison of reliability vs. systemability funct. for p =10 and a =1, 5, 10, 20 and 50.

b) Comparison of cost function UEC(t,)VS- UEC,,(t,) for =10 and a =1, 5, 10, 20 and 50.
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Figure 5.25: a) Comparison of reliability vs. systemability function for p =20 and a =1, 5, 10, 20 and 50.

b) Comparison of cost function UEC(t,)VS- UEC,,(t,) for =20 and a =1, 5, 10, 20 and 50.
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Figure 5.26: a) Comparison of reliability vs. systemability function for p =50 and « =1, 5, 10, 20 and 50.

b) Comparison of cost function UEC(t,)VS- UEC,,(t,) for =50 and a =1, 5, 10, 20 and 50.
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As well shown in these graphics, two scenario can be defined:
- Scenario 1:

hard environment effects: when «a>f, the UEC,(t,)is higher than UEC(t,) because the

R, (f)is worse than R(¢) .

- Scenario 2:

soft environment effects: when a < f3, the UEC,4(t,) is lower than UEC(t,) because the R, ) is

better than R(z) .
The previous figures show the effects of the environmental factor, represented with the
systemability parameters @ and f, to the reliability and to the Expected Unit Cost functions.
In fact, as explained before, if the operating environment is different from the testing one, the
reliability will be different from the one calculated during the test phases. As a consequence,
also the Expected Unit Cost will be different and it could be higher or lower, depends on the

effects of environmental factors, described by @ and B parameters, as shown before.

5.4.4. Further analysis about S-PRP: ¢, p* and %UEC(r,") curves in function

of systemability parameters

The second group shows several graphics in order to analyze the changing of the optimal time
of preventive maintenance and to estimate the difference between the UEC considering the
environment factors or not.

Let us consider the following values of the parameters: 4 =0.005 and y =3, for different values

of the costs parameters, ¢, and c,, and it has been illustrated:

p

- a) tsp*curve for O<a<wand =1, 5, 10, 20, 50;

- b) t,, curvefor 0<g<wand @ =0.5,1,5, 10, 20, 50;

Sp
- ©) BUEC(z,") curve for 0<a<wand f=1,5, 10, 20, 50;
- d) BUEC(r,") curve for 0< <o and @=0.5,1, 5, 10, 20, 50;

- €) t,, surface for O<a<wand 0<f<x;

- f) %UEC(t,) surface for 0<a<wand 0<f <.
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where ¢, p* is the value which minimized the UEC,;(7,), calculated with formula 5-27.

Then %UEC(t,") is calculated as:

5-30

) UEC 4(t,"
%UEC(t, )_100*{¢1J

UECaﬁ(t‘ip )
It indicates the percent difference between the real Unit Expected Cost UEC,,(1,"), using a

planned time ¢," calculated with only Weibull distribution, without consider the environmental

effects, and the optimum value of Unit Expected Cost UEC,(t, p*) estimated considering also
the environmental effects with systemability parameters, calculated in the real optimum time
value ¢, p*. All calculated ¢, p* are minor than ¢", calculate with 5-29, and satisfy condition (a) of
algorithm A4 hence 1, p* can be considered the unique and finite solution of UEC,, (tsp*).

Figures 5.27a, 5.28a, 529a and 5.30a show the curve of r,” for different values of c,,

respectively 1, 5, 10, 25, fixed ¢ =50, and for each case, different values of £ (1, 5, 10, 20, 50)

varying continuously @ from 0 to 50. Figures 5.27b, 5.28b, 5.29b and 5.30b show the curve of

tsp* for different values of ¢ b respectively 1, 5, 10, 25, fixed ¢, =50, and for each case, different
values of @ (1, 5, 10, 20, 50) varying continuously g from 0 to 50. For each figure, the optimal

times tp* are also shown, which values have been calculated with the formula related to the test

reliability using algorithm A4. Moreover figures 5.27c, 5.28c, 5.29c and 5.30c show the curve of

tsp* for different values of c¢,, respectively 1, 5, 10, 25, fixed ¢,= 50, and for each case, varying
continuously @ and g from 0 to 50. Instead, figures 5.27d, 5.28d, 5.29d and 5.30d illustrate the
curve of BUEC(t p*) for different values of c,, respectively 1, 5, 10, 25, fixed ¢, =50, and for each
case, different values of g (1, 5, 10, 20, 50) varying continuously @ from 0 to 50. Figures 5.27e,
5.28e¢, 5.29e and 5.30e illustrate the curve of %UEC (¢ p*) for different values of ¢, , respectively 1,
5, 10, 25, fixed c¢,= 50, and for each case, different values of @ (1, 5, 10, 20, 50) varying
continuously g from 0 to 50. Last figures 5.27f, 5.28f, 5.29f and 5.30f show the curve of
%UEC(tp*) for different values of c,, respectively 1, 5, 10, 25, fixed c¢,= 50, and for each case,

varying continuously @ and g from 0 to 50.
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Figure 5.27: a) Curve of tsp* in function of a and =1, 5, 10, 20 and 50;
b) Curve of tsp* in function of p and a = 0.5, 1, 5, 10, 20 and 50;

¢) Curve of tsp* in function of a and . All these for ¢,=1and ¢ ,=50;

d) Curve of %UEC(%,") in function of a and p =1, 5, 10, 20 and 50;

e) Curve of %UEC(ty’) in function of p and a = 0.5, 1, 5, 10, 20 and 50;

f) Curve of %UEC(ty") in function of « and . All these for ¢,=1and ¢,=50.
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Figure 5.28: a) Curve of tsp* in function of « and B =1, 5, 10, 20 and 50;
b) Curve of tsp* in function of  and a =0.5, 1, 5, 10, 20 and 50;

¢) Curve of tsp* in function of a and . All these for ¢,=5 and ¢,=50;

d) Curve of %UEC(#,") in function of a and =1, 5, 10, 20 and 50;

e) Curve of %UEC(,") in function of  and a =0.5, 1, 5, 10, 20 and 50;

f) Curve of %UEC(ty") in function of o and . All these for ¢, =5 and ¢,=50.
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Figure 5.29: a) Curve of tsp* in function of o« and p =1, 5, 10, 20 and 50;
b) Curve of tsp* in function of f and a = 0.5, 1, 5, 10, 20 and 50;

) Curve of tsp* in function of a and B. All these for ¢,=10 and ¢,=50;

d) Curve of %UEC(#,") in function of ac and =1, 5, 10, 20 and 50;
e) Curve of %UEC(%y’) in function of f and « = 0.5, 1, 5, 10, 20 and 50;

f) Curve of %UEC(fy’) in function of o and f. All these for ¢, =10 and ¢, = 50.
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a) %UEC(t,’) vs. parameter “o”

b) %UEC(ty) vs. parameter “B”

¢) %UEC(ty") vs. parameters “o” and “B”

Figure 5.30: a) Curve of tsp* in function of a and p =1, 5, 10, 20 and 50;

b) Curve of tsp* in function of p and a =0.5, 1, 5, 10, 20 and 50;

) Curve of tsp* in function of a and B. All these for ¢,=25and ¢,=50;

d) Curve of %UEC(t,") in function of o and f =1, 5, 10, 20 and 50;

e) Curve of %UEC(ty") in function of p and a = 0.5, 1, 5, 10, 20 and 50;

f) Curve of %UEC(ty") in function of a and f. All these for ¢ b= 25 and ¢ = 50.
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From the analysis of the previous graphics some considerations could be made:

fixed parameter £, t; ~ is a decreasing function of parameter & ;

p

e fixed parameter @, ¢, p* is a increasing function of parameter 3 ;
e overall, a general increasing of tsp* is well shown.
o the %UEC(s,") is not influenced by the increasing the cost parameter ¢, ;

e parameter @ and g affect in the same mode the %UEC(tp*);

Furthermore, the %UEC(s,") values have been collected in different interval, every five points
percent, and for each interval the probability distribution Pc of %UEC(¢,”) has been calculated in
order to define the mean value of %UEC(¢ p*) and its distribution.

Here below, several graphics (figure 5.31) show the probability distribution Pc of %UEC(t,") for
different values of the cost parameter c,, respectively 1, 5, 10, 25, while the cost parameter c,

equal to 50.
The mean value for each cases is about 5%, so if a preventive maintenance time is design using

the test data set, the mean major cost, due to the environmental effects, is about 5 %.
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Figure 5.31: Probability distribution of %UEC (tp*) for different values of ¢,
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5.4.5. Real Application: PRP on Automatic Packaging Machines.

In this section, the proposed methodology is illustrated, applied to an interesting case study in
the automatic packaging machines for beer production. Data related to different applications of
the same model of machine in several customer plants located in different countries has been
collected. The two plants have been visited and analyzed in details, that present the same
machine subject to different environmental conditions.

This study gives special attentions to the automatic bottle filler because usually it is the
bottleneck of the whole production system and it is more influenced by the environmental
factors than the other machines. The main causes of failure are investigated. As it is observed,
the principal downtimes are caused by failures of the filler heads upon which the study has
been oriented.

Table 5.3 shows the data set that has taken from this component where the time values t has
been normalized. Ra(t) represents reliability function values collected from the test environment.

The first plant presents the same data of the test environment while the second one is described

by Ru(t).

T 0.00 0.03 0.07 0.10 0.13 0.17 0.20 0.23 0.27 0.30 0.33
R (T) 100.00 9998 9995 9992 9986 99.76 9959 9933 9894 9836 97.52
R,(T) 100.00 99.88 99.79 99.64 9940 99.03 9850 9773 96.66 9520 93.25

T 0.37 0.40 0.43 0.47 0.50 0.53 0.57 0.60 0.63 0.67
R (T) 96.34 9471 9321 8959 8581 8230 75.17 66.79 60.10 52.21
R,(T) 90.70 8744 83.36 7837 7244 6559 5791 49.61 41.00 3247

T 0.70 0.73 0.77 0.80 0.83 0.87 0.90 0.93 0.97 1.00
R (T) 4221 3320 2345 14.88 9.68 4.50 2.56 1.06 0.37 0.10
R,(T) 2446 17.37 11.52 7.05 3.94 1.98 0.88 0.34 0.11 0.03
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Fitting the data using Weibull distribution and systemability function, the parameters
illustrated in table 5.4 and figure 5.32 have been obtained. The cost parameters given us from

the maintenance service of the company are also included.

Weibull parameters Systemability parameters Cost parameters
A ¥ a ﬁ Cp C/‘
0.0000915 8.10 3.10 1.42 3 30

Table 5.4: Parameters of Weibull and systemability function and cost parameters

(0] \
0 0,2 04 0,6 0,8 1

Figure 5.32: Reliability during Testing (Ra(t)), during Operation (Rs(t)), Weibull Function (Re(t)) and

Systemability Function (Rs(t)).

Considering c,=3, ¢, =30, 4=0.0000915, =81, =310, f=142, the periodic replacement

policy of the second plant has been optimized thanks to the consideration of the environmental
factors with systemability function.
Considering only the Weibull parameters, the application of algorithm Al have given us the

replacement time related to the testing data, r,*=1.91months , and the Unit Expected Cost is
UEC(t,*) = 2.086k €/ month .

Using with algorithm A4, the optimal time to replacement has been calculated considering also
the environmental effects to the survival function, applying the systemability function. In this
case, the optimal solution 1is ¢ ,*=165months and the Unit Expected Cost is
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UEC .5 (t,,*) = 2.414k€/ month . If the Unit Expected Cost is calculated in the optimal solution of

testing data, but taking into consideration the environmental factors, its value will be

UEC .5 (t,*) = 2.657k€/ month (figure 5.33). As well demonstrated, the Unit Expected Costs are

different between these cases and the optimal solution, using algorithm A4 and considering the

environmental effects, allows to saving about the 10%.

Figure 5.33: Real application of the methodology to the periodic replacement policy on the automatic

machine component

5.4.6. Some considerations about Systemability application on PRP

In the modern industrial sectors, many companies are characterized by expensive industrial
systems in order to guarantee high level of flexibility and efficiency to better serve the different
final costumers. In this context the reliability and availability of the production systems become
very important to satisfy the final production rate. Hence, the importance of maintenance of
these systems has grown up, because their reliability can improve thanks to the different
applied maintenance policies. When a component or a system works in an operative plant, it
reflects a reliability function that is usually different from the theory reliability but also from all
its similar applications in other industrial plants.

Many maintenance model have been developed and widely used in scientific literature. The

Periodic Replacement Policy is one of the most important.
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Incorrect estimation of reliability function could lead to the wrong functional design of the
system and an incorrect definition of the appropriate maintenance policies.

In this chapter, the effects of the different operating environments in the Periodic Replacement
Policy have been demonstrate using a new concept, called systemability [5.19]. Systemability,
with its parameters, allows to consider the environmental effects in the reliability estimation,
separating their from the intrinsic survival performances of the component..

Several numerical examples have been carry out in order to validate the initial assumption. The
results of this application have been illustrated with a series of graphics and summarized at the
end.

It's important to highlight that the mean value of %UEC(,’) is about 5%. An real industrial
application have demonstrated the importance of this study, shown a saving about 10% using
this methodology.

In few word, if a preventive maintenance time is design using the test data set, the mean major

cost, due to the environmental effects, will be about 5%.
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6. Performance Improvement in Logistics: the Automated

Storage/Retrieval Systems (AS/RSs)

6.1. Introduction

Recently, many companies have invested in intensive automatic storage systems to keep their
logistics activities more flexible and efficient. Automatic Storage and Retrieval Systems, also
called AS/RSs, have been widely used in different logistics applications, from manufacturing to
warehousing.

An AS/RS is defined as a storage system where a machine performs material handling activities,
on fixed paths in the aisles inside the storage racks. An AS/RS carries out its activities without
the interference of an operator, thus it is completely automated. Typically, an AS/RS is
composed by these mainly components: racks, cranes, aisles, input-output locations and picking
positions.

Racks are typically metal structures with locations that can accommodate loads (e.g., pallets)
that need to be stored. Cranes are the fully automated storage and retrieval machines that can
autonomously move, pick up and drop off loads. Aisles are formed by the empty spaces
between the racks, where the cranes can move. An input/output point (I/O-point) is a location
where retrieved loads are dropped off, and where incoming loads are picked up for storage.
Pick positions (if any) are places where people are working to remove individual items from a
retrieved load before the load is sent back into the system.

The application of AS/RSs has had a relevant development in the last decades. The main
savings are the reduction of direct labor cost, the decrease of handling errors, the improvement
of logistic flows and better inventory control results. On the other hand, these systems require
an high investment mainly due to the high level of automation.

One possible variation of the basic AS/RS is when cranes are capable of changing aisles. In this
case, it is possible to have fewer cranes than aisles in the system. This may be useful if the
amount of requests does not justify the purchase of a crane for each aisle. To overcome the
restriction of the crane’s unit-load capacity, multi-shuttle cranes exist. Such a crane can
transport two or more loads at a time. Cranes which can transport two loads are also referred to

as dual-shuttle cranes; cranes capable of transporting more than two loads are still rarely seen.
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The increased transport capacity enables a crane, for example, to first retrieve one load and then
store another load in the same location without having to go to the I/O-point in between.

Often an AS/RS is installed for handling unit-loads only (typically, pallets). Unit-loads arrive at
the I/O-point of the AS/RS from other parts of the warehouse by means of, for example,
automated guided vehicles, conveyors, or forklift trucks. The unit-loads are stored in the AS/RS
and after a period of time they are retrieved again, for example, to be shipped to a customer. In
many cases, however, only part of the unit-load may be needed to fulfill a customer’s order.
This can be resolved by having a separate picking area in the warehouse; in which case the
AS/RS serves to replenish the picking area. Alternatively, the picking operation can be
integrated with the AS/RS. One option is to design the crane such that a person can ride along
(person-onboard). Instead of retrieving a full pallet automatically from the location, the person
can pick one item from the location. A more common option to integrate item picking is when
the AS/RS drops off the retrieved unit loads at a workstation. A picker at this workstation takes
the required amount of products from the unit-load after which the AS/RS moves the remainder
of the load back into the storage rack. This system is often referred to as an end-of-aisle system.
If the unit-loads are bins, then the system is generally called a miniload AS/RS. Storage in the
racks may occur single or double deep. In a double-deep rack, each rack location has space for
two unit-loads; one load is stored in front of the other load. A load can only be put into or
retrieved from the second position if there is no load in the first position. Double-deep storage
might be beneficial if the variety of loads is relatively low and the turnover rate of these loads is
high [6-15]. Modifications to the crane may be required to be able to store and retrieve loads
from both positions. Carousel systems (horizontal or vertical, single or double) are suitable for
storing small and medium-sized products at different levels. A crane is used to store and
retrieve items from the rotating carousel. The lower and upper part of a double carousel can
rotate independently of each other. Finally, worthy of mentioning is a special type of AS/RSs
called autonomous vehicle storage and retrieval systems. This system separates horizontal and
vertical travel. Vehicles travel horizontally over rails through aisles, while lifts are used to
transfer loads vertically.

To keep the investment more convenient and to increase the performances of the AS/RSs,
several structural solutions have been developed, like AS/RSs with double deep racks, to

contain more loads, or systems with cranes that can change the aisle to serve.
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In the last years, a new kind of AS/RS has been introduced, where the cranes have multi-
shuttles. Usually a normal crane with a single-shuttle moves one load at the time, while a multi-

shuttle crane can transport more than one load, typically two or three (fig. 6.1).

Figure 6.1: Automated Storage and Retrieval System with Dual-Shuttles
(Meller and Mungtwattana [6.9])

Due to the different AS/RS configurations and the high cost of these systems, particular
attention has to be paid during the design process of AS/RS. It is crucial to design AS/RS based
on the current and future demand requirements. An important system performance measure is
the throughput capacity of the systems, calculated as the inverse of the mean time to complete a
storage/retrieval command.

Several different models can help the practitioners to estimate the performance of the system
during the feasibility design process. The mainly used models are based on Bozer and White
formulations [6.1] or on the F.E.M. 9851 (Federation Europeenne de la Manutention normative)
[6.5]. This last solution is often required by the specifications and terms of design contracts. In
scientific literature, many models have been developed to modify the Bozer and White one to
adapt it in order to calculate the multi-shuttle AS/RSs performances, but increasing the
complexity. On the other hand, F.E.M. 9851 normative gives simple models but none of these
consider the case of multi-shuttle AS/RSs.

The purpose of this chapter is to extend the F.E.M. 9851 normative to calculate the throughput
of dual-shuttle AS/RS and compare the results with the applications of the models presented in

literature.
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In the next section and sub-sections the Overall Equipment Efficiency of AS/RSs is investigated,
using the guidelines indicated by the normative F.E.M. 9221 [6.4]. In section 6.3 an innovative
AS/RS is illustrated: the AS/RS multi-shuttle. This kind of system permits an improvement of
efficiency because it eliminates the spare time during the command cycle, moving more than
one load in a cycle. In that section a rigorous review of the scientific contributions concerning
this kind of AS/RS is reported [6.11]. In section 6.4, the mainly travel-time models, presented in
scientific literature, are discussed. At the end of this section, the new travel-time model is
introduced based on the extension of F.E.M. 9851 normative and compared to the other models.
In section 6.5, a Monte Carlo simulation is conducted to evaluate the goodness of fit of the new
model. Finally, in section 6.6, several discussions and further possible researches are

introduced.

6.2. Overall Equipment Efficiency of AS/RSs: Reliability, Availability
and Cycle Time Estimations

The performance of Automated Storage and Retrieval Systems is strictly connected to their
reliability and availability. The Federation Europeenne de la Manutention has discussed the
standard method to determine the survival parameters for this kind of machine. The rule F.E.M.
9221 [6.4] and F.E.M. 9851 [6.5] permit to draw conclusion about the throughput which the user
of AS/RSs requires from the manufacturer.
As previously described, throughput is defined as the number of storage and retrieval
operations per unit of time, then it is a measure of Overall Equipment Efficiency.
Consequently the Overall Equipment Efficiency depends on [6.4]:

e Reliability and Availability of the AS/RSs;

e Cycle Time of the AS/RSs;

In the next sub-section 6.2.1., the theoretical principles, reported in rule F.E.M. 9221 on

Reliability and Availability of AS/RSs will be discussed, while in sub-section 6.2.2. the

guidelines to estimate the Cycle Time will be illustrated, as described in rule F.E.M. 9851.
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6.2.1. Theoretical Principles of Reliability and Availability of AS/RSs

The reliability of a discontinuously loaded system unit is equal to the probability of this unit
carrying out a particular operation correctly and without malfunctions. In tests, reliability is
determined by the quotient:

n,

5-1
n.+ng
where:

n, =number of correctly carried out operations;

n,=number of operations carried out incorrectly or with faults;

The particular operation should be tested with an adequate statistical frequency.
The availability of a system unit for a particular operation is equal to the probability of finding
that unit, at any given time during the period of operation, in a state which will allow the
operation concerned to be carried out correctly and without malfunctions. In order to determine
the availability of individual system units in tests, the unit concerned is considered under
clearly defined operating conditions with the planned average loading for a statistically
adequate period of time T.
Availability is determined by the quotient:

T-T,

aus

T 5-2

nr

where:
T = total operating time

T, =sum of individual periods of downtime

aus
This gives the net operational time:
net = T- Taus 5-3

The mean downtime is the total downtime T

aus

divided by the number of failures, n

aus

T,
— = MTTR 5-4

nlll/IS

Similarly the mean time without failures is

T-T,

—* = MTBF 5-5
n

aus
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And, therefore, availability can also be expressed by the quotient:

MTBF

== 5'6
MTBF + MTTR

nr

Each period of downtime can be divided into the following sub-period:
e DPeriod between stoppage of machine and start of search for fault by appropriate
personnel;
e Time needed to identify cause of failure;

e Time needed to correct fault and restore serviceability.

6.2.2. Cycle Time Estimation of AS/RSs

The cycle time of an AS/RS is the total sum of constant time periods, consisting in positioning,
location check, switching and checking operations and fork cycle, and travel periods. These
periods depend on the specific technical AS/RS data and on the travel path in the x, y and z-
directions. The mean cycle time is the average value, assuming random storage of unit load. An
exact determination of the mean cycle time for calculation and analysis purposes is highly
complex.

The mean cycle time depends on the parameter:

a:%*k 5-7

Vy

where:
H =Maximum lifting path;
L=Maximum travel path;

v, = Maximum travel speed;

v, = Maximum lifting speed.

The velocity vector corresponds with the diagonal of the vertical rack plane, if a = 1. The test
cycle estimation differ from the theoretical time values if a is not equal to 1. Therefore the limits
0.5<a <2 should not be exceeded in order to obtain informative values. The normative F.E.M.
9851 [6.5] are developed for a typical AS/RS with single-shuttle, where usually two locations are
interested by the storage and retrieval process. This normative gives two theoretical reference
points P1 and P2 to be determined according to requirements and warehouse layout. Here

below, several examples of the most frequently cases, from F.E.M. 9851.
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CASE 1: Pick-up and transfer at lower corner point

Point Coordinates
X Y
E=A 0 0
P1 1/5 L 2/aH
P2 2/3L 1/5H
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Figure 6.2: Rack plane, single and combined cycle for case 1 (from F.E.M. 9851 [6.5]).
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CASE 2: Pick-up at corner point E and transfer at corner point A

Point Coordinates
X y
E 0 0
A L 0
P1E 1/5L 2/3H
P2 E 2/3L 1/5 H
P'1A 1/5L 2/3H measured
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Figure 6.3: Rack plane, single and combined cycle for case 2 (from F.E.M. 9851 [6.5]).
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CASE 3: Pick-up and transfer at a location above the corner point

Point ' . Coordinates
X Y
E=A 0 yE

Pl | O<yE<HR2 | /5L | yl=2/3H+13yE
P2 | O<yE<H2 | 2I3L | y2=1/5H+ 1/3yE
Pl | H2<yE<H | /5L | yl=2/3H-1/3yE
P2 | HI2<yE<H | 213L | y2=1/5H+ 3/5yE
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Figure 6.4: Rack plane, single and combined cycle for case 3 (from F.E.M. 9851 [6.5]).
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6.3. Development of Innovative AS/RSs with multi-shuttles

Typically, AS/RSs are characterized by single-shuttle cranes that permit to move one load at the
time. Fixed the cinematic performances of the cranes, multi-shuttle AS/RS have been developed
to increase the throughput, where each crane can transport more than one load at the time.
Generally, increasing the number of shuttles, the performances of the system increase because
of the related decrease of empty trips. On the other hand, increasing the number of shuttles
gives an higher investment cost.

For these reasons, the applications of dual-shuttle AS/RSs are more used than other kinds of
multi-shuttle AS/RSs.

Recent surveys of scientific contributions on warehouse design and control [6.12] and one in
particular on AS/RS [6.11] show the relevant aspects of design process of warehouse and AS/RS
to take into consideration to define the right configuration of the system in order to satisfy the
project requirements. The authors have underlined the importance of the multi-shuttle AS/RSs
in the next future and the related necessity to estimate correctly the performance of such
systems in order to design them properly.

The performance of AS/RS mainly depends on the type of command cycle [6.13]. Figure 6.5
shows the most used command cycles to storage, in locations S1 and S2, and retrieve, from
locations R1 and R2, the loads on racks. For single-shuttle AS/RSs, it can be given the Single
Command Cycle and the Dual Command Cycle, while for dual-shuttle AS/RSs, the possible
cycles are the Single Dual Command Cycle (SDC) and the Quadruple Command Cycle (QC).

2c. Single Dual Command Cycle (SC) 2d. Quadruple Command Cycle (QC)

§1 - S2: Storage Locations R1 - R2: Retrieval Locations

Figure 6.5: Travel cycle for Single Shuttle and Dual Shuttle AS/RSs
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Roodbergen and Vis [6.11] have underlined the requirement to introduced new analytical
models to calculate the performances of non standard AS/RSs, for example in case of dual-
shuttle AS/RSs.

In fact, few contributions have been published on the methodology of estimation of travel-time
for SDC and QC [6.1-6.2-6.3-6.6-6.7-6.8-6.9-6.13-6.14]. Sarker et al [6.13] firstly developed a
model to calculate the performance of these systems using the formulations introduced before
by Bozer and White [6.1]. They introduced also an improving heuristic for the sequencing of
retrievals. Keserla and Peters [6.7] studied and compared the performance of AS/RS with single
and dual shuttles and they also introduced a new heuristic to sequence the retrievals in order to
minimize the travel time in QC mode.

Another analytical model, also based on Bozer and White formulations, has been developed by
Meller and Mungtwattana [6.8-6.9]. They estimated the travel-time of both dual shuttle and
triple shuttle, varying the different storage and retrieval policies. First-come-first-served (FCFS)
policy is the most used in the feasibility design phase, while nearest neighbor (NN) one is
related to the management phase of systems and permits to reduce the total travel-time.

These scientific contributions show the close link to the Bozer and White formulations [6.1] and
all these models do not consider the acceleration and deceleration into the travel-time
calculation.

For this reason, other models have been developed in order to consider also these cinematic
aspects. De Puy [6.3] extended the model of Meller and Mungtwattana for each policy, applying
the research of Chang et al [6.2] about the extension of Bozer and White model, with
acceleration and deceleration consideration. This model better fits the real travel-time values
but it is more complex to apply.

Other contributions have used a simulation approach to evaluate and estimate the different
travel-time for multi-shuttle AS/RSs [6.10] and to validate the increasing of efficiency and
flexibility in comparison to single-shuttle AS/RSs, as demonstrated in [6.11].

It is important to highlight that in many industrial applications the feasibility study of AS/RS
required to follow several normatives, recognized by the international industries.

The Federation Européenne de la Manutention gives the guide-lines to estimate the travel-time for

different configurations of AS/RS, in section IX of the F.E.M. 9851 normative [6.5], which is
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related to the storage plants. In more details, this normative introduces several coefficients to be
used during the design process, but it does not consider the case of multi-shuttle AS/RSs.

From the literature review, it points out the lack of an analytical model that has to be used
during the feasibility study of the system and as consequence it should be simple and quick to
use but with high accuracy in travel-time estimation.

The purpose of this chapter is to introduce an analytical model, extending the F.E.M. 9851
normative, giving the right coefficients useful to estimate the travel-time in case of dual-shuttle
AS/RSs. The results here obtained are validated using a Monte Carlo simulation and the better

titting is compared to the other models.

6.4. Estimation of Performance of Dual-Shuttle AS/RSs

Bozer and White [6.1] were the first ones to introduce an analytical travel time model to
estimate the transaction time of an AS/RS. Their developed model has been widely used in the
design of traditional automated storage systems.

Meller and Mungtwattana [6.8-6.9] extended this formulation to multi-shuttle AS/RSs in order
to evaluate the time saving in comparison to traditional systems.

They assumed a randomized storage and a FCFS processing of both storage and retrieval.
Generally, other assumptions regard the dimension of rack, length L and height H, the
input/output station, that is located at the lower left-hand corner, and the cranes and shuttles,
that travel simultaneously in the horizontal and vertical directions.

Here below, the main two travel time models for dual-shuttle AS/RSs, based on Bozer and
White formulations, are discussed. The first model was introduced by Meller and
Mungtwattana [6.8-6.9] and the second one is an extension developed by De Puy [6.3]. The
latter model is based on studies conducted by Chang et al. [6.2] in order to consider also the

acceleration and deceleration on classical models.

Notation
L =Length of rack [m]
H =Height of rack [m]

s, = horizontal speed [m [ s ]
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a, = horizontal acceleration [m / 5% ]

s, = vertical speed [m/ s ]

a, = vertical acceleration [/ s”]

t, =horizontal dimension of rack in time [s]
t, = vertical dimension of rack in time [s]

T’ = scaling factor

b = shape factor

E (SC )BW = expected single-command round-trip travel time calculated with classical Bozer

and White [6.1] formulations [s].

E(TB)

o = expected travel time between two locations calculated with classical Bozer and

White [6.1] formulations [s].

E (SC )BW ' = expected single-command round-trip travel time calculated with extended Bozer

and White [6.1] formulations [s].

E (T B) ' = expected travel time between two locations calculated with extended Bozer and

BW

White [6.1] formulations [s].

E (SDC )BW = expected single-dual-command round-trip time calculated with classical Bozer

and White [6.1] formulations [s].

E (QC ) s = expected quadruple-command round-trip time calculated with classical Bozer and

White [6.1] formulations [s].

E(SDC) oy = expected single-dual-command round-trip time calculated with extended Bozer
and White [6.1] formulations [s].

E(QC) oy = expected quadruple-command round-trip time calculated with extended Bozer
and White [6.1] formulations [s].

E (SDC' ) = expected single-dual-command round-trip time calculated with extended F.E.M.

FEM

formulations [s].

E (QC ) ey = €xpected quadruple-command round-trip time calculated with extended F.E.M.

formulations [s].
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E (SDC )M = expected single-dual-command round-trip time resulted from Monte Carlo

simulation [s].

E (QC )M ~ = expected quadruple-command round-trip time resulted from Monte Carlo
simulation [s].

MAD = Mean Absolute Deviation.

MRD = Mean Relative Deviation.

D =Dispersion.

6.4.1. Bozer & White Based Formulation without acceleration impact

The first model introduced in international literature was developed by Meller and
Mungtwattana [6.8-6.9] starting from the Bozer and White formulations, that do not consider
the impact of acceleration in travel time estimation.

Here below the algorithm, studied by Meller and Mungtwattana [6.8-6.9], to calculated the

expected travel times:

Algorithm of Meller and Mungtwattana [6.8-6.9]:
Defined the dimensions of the rack, L and H, and the cinematic parameter of crane, s, and s, :

Calculate the dimension of rack in time as follows:

H
t,=— and 1, =—;
s, s

n v

Determine the factor scale T and the shape scale b :
(1, t,
T=max(t,t,) and b=min| L > |;
T
Compute the normalized travel times:
b 1 5 b
E(SC)BW = [l+?j and E(TB)BW = £—+€—%];

Calculate the expected times for dual-shuttle AS/RSs cycles:

E(SDC),, =2T| E(SC),, +E(TB),, ]

E(QC)BW - TI:E(SC)BW +3E(TB)BW:| ’
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6.4.2. Bozer & White Based Formulation within acceleration impact

The impact of acceleration and deceleration on expected travel time was studied by Chang et al.
[6.2] and extended by De Puy [6.3].

The author developed an extended formulation to estimate the expected travel times for dual-
shuttle AS/RSs based on Bozer and White paper, considering the acceleration and deceleration

of the system, too.

Algorithm of De Puy [6.3] using the formulations of Chang et al [6.2]:

Defined the dimensions of the rack, L and H, and the cinematic parameter of crane, s,, q,
and s,,4a,:
Compute the travel time for half rack length 7 as follows:

L _ s L s
szZ—h t=—+-1
a, 2s, a,

2
2 aq, 2a,

Compute the travel time for half rack height 7, as follows:

7

s’ H s,
=, =y
a 2s, a

v

H s’ AH
if —<—, t = |—;
f2 a, "\ 2q,

Calculate the acceleration/deceleration parameters £, 53,,4,,4,:

H
f — 2
lf2

v

. Inz. —Inz, Inz, —In¢,

fu26, A= 05 BT 0s
Int. —In¢ Int =Int

ift,<t, p=—2"—""" f=—2=—7>"

In0.5 2 In05

1 1
AT BT

Determine the normalized travel times:

E(SC), '=2 4 +2[ t 1 ]b‘“”
BW A +1 A+l A+, +1
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E(TB)BW'=[1— 2 1 j+b*¢“( 2 __ 4 ,_ j+
A+l 24 +1 A+l A+ +1 A4 +24,+1 ‘

a2 1 1 '
+b* - -
2L+, +1 24 +24,+1 24 +1
Calculate the expected times for dual-shuttle AS/RSs cycles:

E(SDC),,'=2T|E(SC),, +E(TB),, ]

E(QC),, ' =T[E(SC),, +3E(TB),,"]

6.4.3. Innovative Travel Time Model based on F.E.M. rules

The model developed and introduced in this chapter follows the guidelines given by the
Federation Européenne de la Manutention, in section IX, Series Lifting Equipment, Rules F.E.M.
9851: “Performance Data of S/R Machines Cycle Times” [6.5].

The F.E.M. 9851 rules are widely used by practitioners and industrial engineers to conduct the
feasibility studies in future AS/RS applications because they are quick and simple to use and the
estimated travel times are close to real values.

Such rules permit to calculate the travel-times for traditional single-shuttle AS/RSs, introducing
two virtual locations, characterized by parametric coordinates of length and height of rack.

The F.E.M. 9851 normative mentions the possibility to extend the traditional formulations also
to dual-shuttle AS/RSs but the rules do not suggest any parametric coordinates for the other
two locations, served by the system during single-dual command or quadruple command.

For this reason, the aim of this chapter is to cover this lack, introducing the parametric
coordinates also for the two new locations.

A Monte Carlo simulation has been conducted varying the cinematic parameters and the
dimension of rack. In total, 1512 scenarios have been created to collected a wide set of values,

composed by 54 different cinematic profiles and 28 different rack configurations (Table 6.1).
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Factor Levels

s, [mls] 234

a,[mls®] 0.8;1.2; 1.6;

s, [mls] 0.4; 0.8; 1.2;

a,[mls?] 0.4; 0.8;

Lim] 80; 120; 160; 200;

Hm] k*L::—; where k=[0.4,0.5,0.6,0.7,0.8,0.9,1]

Table 6.1: Levels of factors for scenarios simulation

The Monte Carlo simulation has been carried out with 10,000 runs for each scenario, generating
for each run four different locations to be served and calculating the travel time to make the
Single Dual Command and the Quadruple Command. The main assumptions regard: the
randomized distribution of the unit load inside the rack, the First Come First Served (FCFS)
policy used to complete the travel and the input/output station located at the lower left-hand
corner. This last assumption could be relaxed, dividing the rack into two independent ones and
calculating the travel times as weighted average of travel times in the two independent areas of
rack.

Table 6.2 shows the parametric coordinates of modified F.E.M. 9851 for dual-shuttle AS/RSs.

Coordinates
Point

X Y

I/O 0 0
P1 (from F.E.M. 9851 rules) 1/5L 2/3H
P2 0.38 L 0.49 H
P3 L 0.80 H
P4 (from F.E.M. 9851 rules) 2/3L 1/5H

Table 6.2: Estimated modified F.E.M. coefficients
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The method of least squares has been used to calculate the values of parametric coordinates,
comparing the estimated travel time of the extended F.E.M. model with Monte Carlo values.
Noted the four locations P1, P2, P3 and P4, the estimation of travel-times is simple and quick,

following the present algorithm:

Algorithm of Extended F.E.M.

Defined the dimensions of the rack, L and H, and the cinematic parameter of crane, s,, q,
and s,,a,:
Calculate the coordinates (Xin) of locations P1, P2, P3, P4 using the coefficients defined in

table 2.

Calculate the expected times for AS/RS dual-shuttle cycles:

E(SDC),  =T(I1/0-P)+T(P1-P2)+T(P2—-110)+
+T({1O-P3)+T(P3-P4)+T(P4-110)

FEM

E(QC),, =T(110-Pl)+T(PL-P2)+T(P2-P3)+
+T(P3—~P4)+T(P4—1/0)

The travel-time between two locations is calculated by:
T(P—P)=max(T.(R-P);T,(F-F))

where each time is the following;:

T.(R-P):
lf”%z<\Xf—X,-\ n(e—a)z‘)(f;—Xf‘+Z—h;
h h h
"fiZ‘XFXj‘ T.(R-P)=2 M
a, a,
T.(R~P):
? Y,-Y,
’fijf\K—Yj\ Ty(R—P,»)J N "+;—:;
: %-7
if==2[Y, =Y T,(P-P)=2 ;
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6.5. Evaluation of Models

In this section, the introduced models are compared with the travel-time values obtained by the
Monte Carlo simulation.

A series of evaluation functions is introduced to measure the goodness of fit of each model. The
Mean Absolute Deviation (MAD) is defined as the average of the absolute differences between
the values estimated by the model and the Monte Carlo ones. The Mean Relative Deviation
(MRD) compares the difference between the estimated value and Monte Carlo one with the
Monte Carlo value. It represents the percentage error of the model. The last evaluation function

is the Deviation (D) that is the measure of the variability or dispersion.

The following equations have been used to calculate the evaluation functions:

E(c), ~E(e),,,

n

(), = E(€), e
T

i,MC

MAD, ="

MRD, =£*Z
n -

LG —f<c>,.McT

where i = scenarios, j = BW, BW’, F.EM.” and ¢ =5SDC, QC.

The following tables reports the values of these functions based on type of command: Single

Dual Command or Quadruple Command.

SINGLE DUAL COMMAND
MAD MRD D
BOZER & WHITE 13.62 9.54% 139.99
BOZER & WHITE MODIFIED 3.04 2.00% 3.83
F.E.M. MODIFIED 0.87 0.58% 4.68

Table 6.3: Comparison between models on Single Dual Command travel time estimation.
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QUADRUPLE COMMAND
MAD MRD D
BOZER & WHITE 11.24 10.27% 206.33
BOZER & WHITE MODIFIED 1.84 1.56% 10.21
F.E.M. MODIFIED 1.56 1.24% 1.44

Table 6.4: Comparison between models on Quadruple Command travel time estimation.

As well shown in these tables and in the following figures, the modified F.E.M. model
developed in this chapter has a better accuracy than the previous models. In fact, each

evaluation function has lower value than the other ones.
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6.6. Considerations about the models comparison

The present work focuses on designing of automated storage/retrieval systems, called AS/RSs.
Such a type of plants is widely used in different businesses, from the manufacturing to
warehousing applications. They permit to achieve several benefits like reduction of errors,
reduction of direct labor costs, better logistics performances, but they require an elevate capital
investment. To increase their performances and reduce the cycle times, several different
configurations have been developed and introduced in the last decades.

One of the most relevant structures of AS/RS is a system that uses a multi-shuttle cranes to
move more than one load during each cycle, typically two or three loads.

In scientific literature, several models have been introduced to calculate the performance of
such AS/RS in order to help the practitioners during the feasibility study and first phase of
design process.

In this chapter, a model based on F.E.M. 9851 rules has been developed to estimate the travel-
time for dual-shuttle AS/RSs. The results of this application have been compared with the
previous models presented in literature. Meller and Mungtwattana model [6.8-6.9] is based on
Bozer and White formulations, not considering the impact of acceleration/deceleration while De
Puy model [6.3] extends it using the formulas by Chang et al. [6.2] in order to consider the
acceleration and deceleration. Each model has been evaluated comparing it to the real values
resulting from a Monte Carlo Simulation, over about 1500 different scenarios.

Generally, the Mean Relative Deviation (MRD) is about 1% for the model here introduced. This
result is more convenient compared to the other methods. Meller and Mungtwattana model
[6.8-6.9] fits the data with a MRD of about 11%, while De Puy one, considering also the
acceleration/deceleration, is characterized by a MRD of about 2%.

The future researches will consider several aspects related to different movement policies and
to the percentage of Single Dual Command and Quadruple Command to be used during the
preliminary design of the system. Also the class based storage policy will be studied in the next

model development.
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7. Conclusions and Future Researches

In the last years, the efficiency of industrial plants and logistic systems, defined by the
Overall Equipment Efficiency (OEE), have been considered with more relevance by the
researchers and industrial managers, in order to improve the flexibility and to quicken the

response to the market of productive and logistics systems.

About this, the estimation of reliability and availability of complex industrial systems is
very important to calculate the OEE indices in the right way. Consequently, it is relevant to
evaluate the correct survival functions, in order to monitory and improve the efficiency of
productive and logistics systems. Wrong values of OEE indices lead to wrong actions of

improvement.

In the first three chapters of this thesis, an introduction to the problems of efficiency and

performance evaluation has been treated.

In particular, chapter 1 has illustrated the goals of this research, the structure of the thesis
and the scientific contributions published by the author in the last three years about these

topics.

Chapter 2 has introduced the definition of efficiency on industrial and logistic systems.
Two Overall Equipment Efficiency indices have been investigated: the Nakajima and the SEMI
model. At the end of this chapter, the relation between efficiency, defined by OEE, and the
maintenance of productive and logistic systems has been well studied. The scientific literature
and the practice have shown the relevance of developing of several different maintenance

policies in order to improve the overall efficiency.
Then in chapter 3, the survival fundamentals have been introduced in order to specify the

models for the estimation of reliability and availability starting, from the data collected from the

industrial fields.
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The main part of the thesis is included in chapters 4, 5 and 6, where:

¢ an innovative model for the estimation of reliability of systems operating in different
productive environments has been defined and introduced;

e new maintenance policies have been developed and studied, in order to improve the
efficiency of productive and logistic systems;

e the efficiency of a particular case of logistic system has been investigated. The efficiency

and performance models have been introduced and deeply studied.

Chapter 4 discussed the reliability modeling of industrial systems with respect to random
field environments has been discussed, addressing the fact that it is difficult to estimate the
reliability of a component when it works in different environments.

The concept of systemability has been introduced and used to examine real world application
case studies in automatic manufacturer packaging machines as well as motorcycle systems in
determining the reliability of customer products. The first one shows the most important
features of the systemability approach, as a function that enables to separate the intrinsic
performance of the components or the systems from the random environmental factors. The
second case study has been carried out in order to estimate the reliability and systemability of
several motorcycle components and drive system in operative conditions, starting from the data
collected during the tests.

The chapter has demonstrated that this new concept is suitable to predict the reliability of
system products in operating environments and it is easy to use also for predicting the lifetime
distribution of complex system configuration, starting from the data related to single
components.

At the end of this chapter, this innovative concept has been applied to model the cost of
complex entire industrial system development life-cycle that perhaps reflects the perspectives
from both developers and users and to determine the optimal release policies. An industrial
application has been discussed to illustrate the results of this study. This is the first study that
generalized the NHPP reliability model using a Weibull distribution and also incorporates the

random field environmental factors into the cost model.
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Several future researches about reliability modeling concern the study of the performance
of the systemability when its parameters change; the definition of quantitative relationships
between systemability parameters and different environment conditions and the definition of a
general model for the estimation of reliability function in order to design and produce

components or system products and reflect ways to define the best maintenance policies.

Chapter 5 highlighted the necessary of maintenance policies design to guarantee high
level of efficiency of the complex industrial systems, improving system reliability, preventing
the occurrence of system failures, and reducing maintenance costs of systems.

Many maintenance models have been developed and widely used in scientific literature. The
Age Replacement Policy (ARP) and the Periodic Replacement Policy (PRP) are some of the most
important policies. Incorrect estimation of reliability function could lead to the wrong
functional design of the system and to an incorrect definition of the appropriate maintenance
policies, and as a consequence the wrong design of actions to improve the efficiency of systems.
In this chapter, the effects of the different operating environments in the Age Replacement
Policy have been demonstrated using the innovative concept, introduced before, called
systemability. The aim of this chapter is introducing the systemability concept in the
maintenance policies design, in order to show its benefits, because it also considers the
environmental conditions in which the systems operate.

The purpose of this chapter is evaluating the application of systemability function to the Age
Replacement Policy and Periodic Replacement Policy and highlighting the benefits arisen with
the use of this concept in comparison with the classical methodology.

The analytical behaviour of the total cost function and a useful algorithm have been introduced
in order to help the practitioners to apply this innovative model. Furthermore, a sensitivity
analysis of these benefits is conducted in order to show how the outcomes vary in function of
the different environmental conditions, represented by systemability parameters o and f3.

In conclusions the application of systemability permits the correct estimation of
time-replacement and consequently the minimization of global maintenance cost UEC.

The results of this application have been illustrated with a series of graphics and summarized at

the end.
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Real industrial applications have demonstrated the relevance of this study, and shown about a
10-20% saving (about 5,000 €/years) using this methodology in comparison with the application
of traditional replacement policy. In few words, if a preventive maintenance time is designed
using the test data set, the mean major cost, due to the environmental effects, will be about 10-

20% in comparison with the use of systemability on estimating the time to replacement.

The future research in this field will extend other maintenance policies using the
systemability function in order to give a general overview. It will also investigated the behavior
of the most used maintenance policies, varying the parameters of systemability function, which

model the environmental effects.

Chapter 6 has introduced the study of the efficiency of a particular logistic system: the
Automated Storage and Retrieval System (AS/RS). In this industrial application, the efficiency is
strictly related to the availability and performance of system. In this chapter, the Overall
Equipment Efficiency of AS/RSs has been investigated, using the guidelines indicated by the
normative F.E.M. 9221.

In the last years, a new kind of AS/RS has been introduced in order to improve the efficiency of
the whole system. In these kind of industrial application, the cranes have multishuttles. Usually
a normal crane with a single-shuttle moves one load at the time, while a multishuttles crane can
transport more than one load, typically two or three. In few words, this kind of system permits
an improvement of efficiency because it eliminates the spare time during the command cycle,
moving more than one load in a cycle.

It is very important to estimate also the performance of those systems, defined by the travel
time. Then the mainly travel-time models, presented in scientific literature, are discussed and
an innovative travel-time model is introduced based on the extension of F.E.M. 9851 normative
and compared to other models.

The results of this application have been compared with the previous models presented in
literature. Meller and Mungtwattana model is based on Bozer and White formulations, not
considering the impact of acceleration/deceleration while De Puy model extends it using the

formulas by Chang et al. in order to consider the acceleration and deceleration. Each model has
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been evaluated comparing it to the real values resulting from a Monte Carlo Simulation, over
about 1500 different scenarios.

Generally, the Mean Relative Deviation (MRD) is about 1% for the model here introduced. This
result is more conveniently compared to other methods. Meller and Mungtwattana model fits
the data with a MRD of about 11%, while De Puy one, considering also the

acceleration/deceleration, is characterized by a MRD of about 2%.

The future researches about innovative logistic systems will consider several aspects
related to different movement policies and to the percentage of Single Dual Command and
Quadruple Command to be used during the preliminary design of the system. Also the class

based storage policy will be studied in the next model development.

In conclusion, this thesis has investigated the importance of correct estimation of
reliability and performance, in different operating conditions, in order to define, monitory and
improve the Overall Equipment Efficiency (OEE) of industrial and logistics plants.

Several innovative models have been introduced and their goodness has been evaluated,
comparing to models presented in scientific literature.

The innovative characteristic of this research has been well demonstrated and its
applications on industrial systems have been deeply investigated, well highlighting the great
benefits of the models introduced in this thesis. Several future steps have been introduced in

order to continue the research activity in this important field.
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9. Appendix I

9.1. Proof of Theorem T2 (Chapter 4).

Taking the second derivate of E(T), given by (10):
8*E(T)
oT*

H(T)=a*e O] f(T) - ()]
:a*e”r*[—bcT“z*(c—l—bcTﬁﬁ}

=H(T)[G(T)-C]

a*(1-8)* e * f(T)
[F(T) = F1(D)]
=C,*R(xIT)*(1-S,)* L(T)

G(T):C4*R(xIT)*(l—SX)*{l—

where L(T)is as follows:

. L(T)— 1_a*(1_sx)*e*f<T)x-f'(T)
“ { LF(Ty - f1(T)]

e H(I)20

Then 0 E(ZT) >0where [G(T) —CJ >0
oT

OR(x1T . . . . . . . . .
R(x1T)>0 and %2 0,50 R(xIT) is strictly increasing, then G(T) is strictly increasing if

8G(T)

o =C,*(1-5,)

{aR(xIT) * L(T) 4 R(XIT)* aL(xIT)}ZO
oT oT

so if L(T)is strictly increasing and L(T)>0.
Studying 1(T), then L(0)=1 and L(x)=1.

Taking the first derivate of L(T):

(1) - L. S(0)+<=
aL(T) :a*(l_Sx)*ea/(T)*f'(T)* 5
oT c—-1
{m _}
Cc
* alé(T) >0 if L(T)=f(T)* - *f(T)+—>0
The equation L,(T) has two roots but only one, called 7,,. is major than 0, then:

AL(T)

J <0 for 0<T<T,
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oL(T)
or

=0 for T=T7,

6L—(TT)>O for 7>71,

Then L(T) is decreasing for 0<7 <7,, and increasing for 7 >7,,, and the behavior of L(T) is as
follows (see Figures 10.1 and 10.2):
o If (T )<O, ag—(TT)zo and L(T)>0 for 7>77, where 7, :inf{T >T,, : L(T)20};

o If L(T)>0, ag—(TT)zo and L(T)>0 for T >TS, where 7 =T,

Y
e if T>T°, G(T) is strictly increasing;

e if T<T¢, G(T) could have any behavior.

L(T)

L(0)

" >

Figure 9.1: L(T)vs. T for 0<c<1 and L(T,,)<0

L(T)

L(0)

/_

T T

2

Figure 9.2: L(T)vs. T for 0<c<1 and L(T,,)>0

So all the optimal solutions of the previous cases, have to be compared to any value of E(T) for

rT<r/.0
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9.2. Proof of Theorem T3 (Chapter 4)

Taking the second derivate of E(T), given by (10), it can be obtained:

ZED _pemy[em)-c]

H(T)=a*e O *[ f(T) - f'(T) ]
=a*e *[—bcT"2 *(c-1- bcTC’l)}

where:

Y
e H(I)<0 0<T<T¥,for T3”=[Cb—j
C

Y
e H(I)>0 TZTBH,forTst(cb—lj
C

Studying function G(T):

G(T)=C,* R(xIT)*(1-S.)* 1_u*(1—sx)*€fﬂr)*f,(T)
(T)=C,*R(xIT)*(1-8,) { Gairan)

=C,*R(xIT)*(1-S,)* L(T)

e G(0)=C,*(1-5)%e "
e G(0)=C,*(1-S5,)
e G(»)=G(0)

Then L(T) is as follows:

b L(T)= 1_ﬂ*(1_5x)*g’f(T)>(-fy(T)
" Lf( = f(D)]

Note that(0)=1 and L()=1. Taking the first derivative of L(T), it is given:

:_c-1, c-1
6L(T) =a*(1—S )*ef/(T)*f-(T)*f(T) C f(T)+ C

P IRE
! [f(T) —"1}
C

aL—(T)zo if Ll(T):f(T)z—C—_l*f(T)+c__lZO'
oT c c

The equation L,(T) has negative discriminant, then aLa—(TT)z 0 for VT.
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1\
Studying function L(T), the singular point7;" = (Cb—lj is well noted. In this point, L(T)=+wx, then
C

the behavior of L(T)is shown in Figure 10.3.

L(T)

Figure 9.3: L(T) vs. T for c¢>1.

OR(xIT)
P

Note thatR(xIT)>0 and >0, s0 R(xIT) is strictly increasing, and the formula of G(T), the

behavior of function G(T) is as shown in Figure 10.4. For 7,/ <T<T°, G(T)<0, and it could have

any behavior.
G(T)

G ()

G(0) /

Figure 9.4: G(T) vs. T for c>1.

OE(T)")

. OE(T
Since = # =H

- (D[ G(T)-C]:

<0, the following cases are given about the study of
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Case 3.1: if G(»)<C, itis given:
(a) G(T)-C<0  0<T<T,;

(b) G(T)-C>0 T, <T<T/;

(c) G(T)-C<0 T>T/.

Considering the behavior of H(T), 0 ET(;[ ) is as follows:
TED o o<T<T,
° oT? ;
6E(2T)<O T>T. ,
o T _
So, D) _ E(T) is increasing for 0<T<T,, and decreasing for T>T_, . Given OEO) _ OE() _ C,
oT oT oT
OKE(T) L . . L .
then >0 VT.So E(T)is strictly increasing, then 7° =0 minimizes E(T) (see Figures 10.5 —
10.7).
G(T)
C |
G() i
|
I /
|
O
[
T, |& e T

Figure 9.5: G(T) vs. T for c>1 and G(»)<C

o)
oT

OE(T) _

o F(T)vs. T for c>1 and G(x)<C

Figure 9.6:
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E(T)

E(0)

Figure 9.7: E(T)vs. T for c>1 and G(»)<C
Case 3.2: if G(0)<C <G(x), it is given:
(@) G(T)-C<0  0<T<T',;
(b) G(T)-C>0 T.,<T<T';
(c) G(T)-C<0 T,/<T<T:,

(d) Gm-c>0 T>TZ,.

. . . *E(T) .
Considering the behavior of H(T), % is as follows:
2
aE(;‘r)zo 0<T<T.,
O*E(T)
. o <0 TG{2<T<TG{2;
2
0 E(;T) >0 T=T:,
o« T _
OE(T) . . . ,
So, o7 =F(T) is increasing for 0<T<T,,, decreasing for T ,<T<T:, and increasing for T>T;,.
. E E .
Given % =% =C,, two subcases are defined:

JE(T)

3.2.a) if (T“) 0, then ——=>0 VT.So E(T)is strictly increasing, then T* =0 minimizes E(T);

3.2.b) if OE(I; 2) <0, then:
oT

o o<rsr,

o oT o
6E(T)<O T, <T<T,,
aE(T)ZO T>T,,

o oT e
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So, E(T)has a minimum at T=T,,. If E0)>ET,,), T"'=T,, minimizes E(T), otherwise T'=0
minimizes E(T) (see Figures 10.8 —10.13).

G(T)

G ()

C___;__________}K_

GO ! /

Figure 9.8: G(T)vs. T for ¢>1 and G(0) < C < G(wx)

E(T)
or
C \
\/
T;,Z T@Z,z T
OE(T?
Figure 9.9: @:F(T) vs. T for ¢>1 and G(0)<C < G(x») and OE1;,) >0.
oT oT
E(T)
E(0)
7
i OE(T7,)
Figure 9.10: E(T)vs. T for c>1 and G(0) <C <G(«) and T >0.
OE(T)
or
Cl

\
N
OE(T

Figure 9.11: 6—T):F(T) vs. T for ¢>1 and G(0) < C < G(»).
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E(0)
T, T, T
. OE(T¢ ,)
Figure 9.12: E(T)vs. T for c>1 and G(0)<C < G(x) and 6—T>O and E(0)>E(T,,).
E(T)

E() N e

Figure 9.13: E(T)vs. T for c>1 and G(0) < C < G(») and

% >0 and E(0)<KT,,)

Case 3.3:if 0<C <G(0), itis given:
(a) G(T)-C>0  0<T<T);
(b) G(T)-C<0 T/<T<T_,
(c) G(M)-C>0 T>T

G-3°

0*E(T)

T2 is as follows:

Considering the behavior of H(T),

2
6E(2T)<O 0<T<T,,
2
0 E(;T) >0 T>T.,
o OT :
OK(T) _ OE(0) _ OE() _

So, C,

E(T) is decreasing for 0<T<T,, and increasing for T>T_,. Given T o7 )

oT
two subcases are defined:

BE(T)

E(T . . . . c .
3.3.a) if %>0, then >0 VT.So E(T)is strictly increasing, then T* =0 minimizes E(T);

3.2.0) if s o then:
oT
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20 0<T<T,
. or s
M<0 I <T<T,
o or - ;
8E(T)20 T>T,,
. or -

So, E(T)has a minimum at T=T,,. If E(0)>ET,,), T'=T,, minimizes E(T), otherwise T'=0

minimizes E(T) (see Figures 10.14 —10.19).

G(M)
|
G() i
!
G(0) e
cl /.' ________
!
T L, 7

Figure 9.14: G(T)vs. T for c>1 and 0<C <G(0).

20)
or

OE(T
Figure 9.15: %=F(T) vs. T for ¢c>1 and 0<C <G(0) and — é;-a) 50.

E(T)

E(0)

OE(T,
Figure 9.16: E(T)vs. T for ¢>1 and 0<C <G(0) and %>O.
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OE(T)
or

OE(T,) _,

Figure 9.17:
oT

_agg) =F(T)vs. T for c>1 and 0<C <G(0) and

E(T)

EOL TN\ e

T, ! T,

3-d

OE(T,
Figure 9.18: E(T) vs. T for c>1 and 0<C <G(0) and %<O and E(0)> E(T,_,)

E(0)

OE(T
Figure 9.19: E(T) vs. T for ¢>1 and 0<C <G(0) and %<0 and E(0)<E(T,,)

0°E(T)

TZ

Case 3.4: if C<0, the behavior of , for T'<T<T’, where G(T)<0, is unknown,

thenT" ={T &(0,00): min[ E(T) |} minimizes £(T). O
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