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"Under normal 
onditions the resear
h s
ientist is not an innovator but asolver of puzzles, and the puzzles upon whi
h he 
on
entrates are just thosewhi
h he believes 
an be both stated and solved within the existing s
ienti�
tradition." Thomas S. Kuhn
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Abstra
tAt present, the best model for the Universe as a whole is given by the so 
alled �HotBig Bang�, whi
h des
ribes an expanding universe in whi
h the density and temperatureof matter and radiation are followed in time. The value of the parameters 
hara
terizingthe observed universe is summarized by the 
on
ordan
e ΛCDM model, where CDMstands for Cold Dark Matter (the main matter 
omponent), and Λ is the 
osmologi
al
onstant (some kind of unknown energy, with an anti-gravitational e�e
t). A

ording tothis model, the universe is spatially �at (i.e. the density parameter Ω equals one), and75% of its energy balan
e is assigned to dark energy, about 20% to dark matter andabout 5% to ordinary (baryoni
) matter; the expansion speed assumes a value H0 = 70.5Km/s/Mp
 (the Hubble parameter).The present dissertation fo
uses on the distribution of dark matter into virializedstru
tures, 
alled dark matter haloes. A

ording to stru
ture formation theory, 
os-mi
 stru
tures originates from the ampli�
ation of quantum �u
tuations during anearly stage of a

elerated expansion (
osmi
 in�ation); these perturbations grow byself-gravity until they 
ollapse and originate virialized stru
tures. In the linear regime(when �u
tuations are small), this pro
ess is well understood by the Jeans' theory. Thenon linear regime is mu
h harder to des
ribe; erlier attempts assumed a simple spheri
alsimmetry, where the 
ollapse is driven only by the internal density (e.g. Peebles, 1980);more re
ently (White & Silk 1979; Bond & Myers 1996) this hypothesis has been re-laxed, and a more 
omplex model was proposed in whi
h proto-stru
tures are des
ribedby triaxial ellipsoids, governed by their internal density and shape.Using the results 
oming from the dynami
al analysis of the spheri
al 
ollapse, andexploiting the statisti
al �ex
ursion sets formalism�, it is possible to obtain analyti
alinformation about the mass distribution of dark matter haloes. In this approa
h, forea
h parti
le in the universe, the traje
tory des
ribing the density evolution of a sphereof matter built around that parti
le is modeled as a random walk as a fun
tion of themass M within that sphere. When a traje
tory 
rosses some pre-de�ned threshold, oneassumes that a virialized stru
ture of mass M has formed.By 
onsidering all the parti
les in the universe one obtains analyti
al forms for the1



2 Abstra
tglobal mass fun
tion, and for the progenitor and des
endant mass fun
tions. From theseit is possible to 
al
ulate other quantities, like the (instantaneous and integrated) ratesof 
reation and destru
tion of dark matter haloes.In the 1990's the ellipsoidal 
ollapse was �rst tried in order to �nd a better mat
hwith numeri
al simulations. However, partly due to the analyti
al 
omplexity of themodel, until now one 
an still not �nd in the literature analyti
al forms for e.g. thedes
endant and merger rate distributions (see Table 4.3).The main goal of this work is to provide su
h expressions for a number of statisti
srelated to the mass distributions of dark matter haloes, striving to obtain simple and a
-
urate formulas. In order to do so, we start from the statisti
al 
onsiderations by Sheth,Mo e Tormen (2001), who introdu
ed the dynami
al e�e
ts of the ellipsoidal 
ollapseinto the ex
ursion sets formalism just by modifying the shape of the density threshold.Sheth and Tormen (2002) further suggested an new expression for the ellipsoidal globalmass fun
tion, using a Taylor expansion series for the barrier: this expression allows oneto also derive analyti
al formulas for the 
onditional mass fun
tions. We obtain a set ofmodels 
hanging the order of this Taylor expansion, and 
onsidering the normalizationof the distribution as a free parameter; we then 
ompare these equations with the re-sults of the 
osmologi
al simulation Gif2 (Gao et al. 2004) and, in some 
ases, with theMillennium Simulation (Springel et al. 2005). For the global and 
onditional mass fun
-tions the mat
h between models and simulations is estimated using a χ2-method. Forthe merger rates we 
ompare the results qualitatively, whereas for the 
reation rates weonly derived analyti
al results. We espe
ially fo
us on the 
ases providing the simplestanalyti
al expressions: the zero-order and the in�nite-orders Taylor series.In the last part of the dissertation we propose a new statisti
al method that 
anover
ome two in
onvenients of χ2-methods: (i) data binning and (ii) negle
t of �eldparti
les (dust) in simulations. Con
erning point (i), di�erent bin-sizes 
an lead to smalldi�eren
es in the χ2-results. As for point (ii), parti
les that are not bound to haloesare usually 
onsidered only for 
omputing the normalization. By using a maximumlikelihood analysis we 
an treat unbinned data, as well as take into a

ount dust in thedetermination of the best parameters of the mass fun
tion. Our tests are performed by
omparing a two-parameter mass fun
tion with results of Monte Carlo simulations.Our work naturally settles within the systemati
 sear
h of analyti
al expressionsasso
iated to the ellipsoidal 
ollapse of dark matter haloes. Sin
e haloes are thought tobe the sites where baryons 
an 
ondense and form stars, galaxies and other luminousobje
ts, the expression we derive 
an be used for a number of appli
ations, rangingfrom unveiling the nature of dark matter through self-annihilation, to the understand-ing of the me
hanisms leading to galaxy formation. Furthermore, the des
ription ofgalaxy evolution requires knowledge on the hosting haloes: semi-analyti
al models of



Abstra
t 3galaxy formation depend on the global mass fun
tion of the dark matter haloes, andthe 
orrisponding merger-trees are based on the progenitor mass fun
tions. The ratesof 
reation and destru
tion are useful to 
ompute the abundan
es of obje
ts like A
tiveGala
ti
 Nu
lei (AGNs) and Super Massive Bla
k Holes (SMBHs). Many other exam-ples 
an be found in the literature for the use of dark matter distributions in studies ofgalaxy formation.The stru
ture of the dissertation is as follows: Chapters 1 justi�es the need of darkmatter. In Chapters 2 we present the 
on
ordan
e 
osmologi
al model, its geometryand thermal history. We also introdu
e the linear and non-linear models for the forma-tion of dark matter haloes. Chapter 3 des
ribes the ex
ursion sets approa
h in theframework of the spheri
al 
ollapse. The extension of this method to the ellipsoidal 
ol-lapse is given in Chapter 4, where the �rsts analyti
al results are derived. In Chapter5 we 
ompare our analyti
al predi
tions to a number of results from numeri
al sim-ulations. Chapter 6 is devoted to the new maximum likelihood tests with unbinneddata and dust parti
les. We �nally draw our Con
lusions, followed by one Appendixwhere the numeri
al simulations are des
ribed.





SommarioLa miglior des
rizione dell'Universo, di 
ui si dispone al momento, è il modellodel �Big Bang Caldo�, 
he 
ontempla un universo in espansione nel quale viene seguital'evoluzione temporale della densità e della temperatura della materia e della radiazione.I parametri 
he 
aratterizzano l'Universo osservato sono riassunti in un modello 
hiam-ato ΛCDM di 
on
ordanza: CDM sta per Cold Dark Matter (la 
omponente dominantedella materia), e Λ è la 
ostante 
osmologi
a (una sorta di energia os
ura, 
on e�ettoanti-gravitazionale). Se
ondo questo modello, l'universo è spazialmente piatto (
ioè ilparametro di densità Ω è uguale a uno), e il 75% del suo bilan
io energeti
o è assegnatoall'energia os
ura, 
ir
a il 20% alla materia os
ura e 
ir
a il 5% alla materia ordinaria(barioni); la velo
ità dell'espansione assume il valore 70.5 Km/s/Mp
 (parametro diHubble).Questa tesi si so�erma sulla distribuzione della materia os
ura in strutture virializ-zate, 
hiamate aloni di materia os
ura. Se
ondo la teoria di formazione delle strutture, lestrutture 
osmi
he hanno origine dall'ampli�
azione di �uttuazione quantisti
he duranteun periodo iniziale di espansione a

elerata (in�azione 
osmi
a); queste perturbazioni
res
ono per e�etto dell'autogravità �no al 
ollasso, 
reando delle strutture virializzate.Durante il regime lineare (quando le �uttuazioni sono pi

ole), questo pro
esso è bendes
ritto dalla teoria di Jeans. Il regime non lineare è molto più di�
ile da des
rivere; iprimi tentativi assumono una simmetria sferi
a, per la quale il 
ollasso è des
ritto solodalla densità interna (es. Peebles, 1980); più re
entemente (White & Silk 1979; Bond &Myers 1996) questa ipotesi è stata rilassata, ed è stato proposto un modello più 
omp-lesso nel quale le protostrutture sono des
ritte da ellissoidi triassiali, regolati dalla lorodensità interna e dalla loro forma.Utilizzando i risultati ottenuti dall'analisi dinami
a del 
ollasso sferi
o e sfruttandoil formalismo statisti
o degli �ex
ursion set�, è possibile ottenere informazioni analiti
hein merito alla distribuzione di massa degli aloni di materia os
ura. In questo appro

io,per ogni parti
ella nell'universo, la traiettoria 
he des
rive l'evoluzione della densitàdella sfera di materia 
ostruita attorno a quella parti
ella viene modellata 
ome un
ammino browniano 
ome funzione della massa M all'interno della sfera. Quando una5



6 Sommariotraiettoria interse
a una pre-de�nita soglia, si assume 
he venga a formarsi una strutturavirializzata di massa M .Considerando tutte le parti
elle dell'universo, si ottengono forme analiti
he per lafunzione di massa globale, e per le funzioni di massa dei progenitori e dei �gli. Da queste,è possibile 
al
olare altre quantità, 
ome i tassi di 
reazione e distruzione (istantanei eintegrati).Negli anni '90, il 
ollasso ellissoidale è stato utilizzato per trovare un miglior a

ordo
on le simulazioni numeri
he. Tuttavia, in parte a 
ausa della 
omplessità analiti
a delmodello, �no ad ora non è stato an
ora possibile trovare in letteratura forme analiti
heper esempio per la funzione dei �gli o per i tassi di distruzione (vedi Tabella 4.3).l'obiettivo prin
ipale di questo lavoro è di fornire tali espressioni per una serie difunzioni legate alle distribuzione di massa degli aloni di materia os
ura, aspirando adottenere delle formule sempli
i ed a

urate. Per farlo, siamo partiti dalle 
onsiderazionistatisti
he di Sheth, Mo e Tormen (2001) 
he introdu
ono gli e�etti dinami
i del 
ollassoellissoidale nel formalismo ex
ursion sets, modi�
ando la forma della soglia di densità.Sheth e Tormen (2002), inoltre, propongono una nuova espressione per la funzione dimassa globale ellissoidale, usando uno sviluppo in serie di Taylor per la barriera: questaespressione permette di derivare forme analiti
he an
he per le funzioni di massa 
on-dizionali. Abbiamo ottenuto un set di modelli 
ambiando l'ordine di questo sviluppo diTaylo, e 
onsiderando la normalizzazione delle distribuzioni 
ome un parametro libero;abbiamo poi 
onfrontato queste equazioni 
on i risultati della simulazione 
osmologi
aGif2 (Gao et al. 2004) e, in al
uni 
asi, 
on la Millennium Simulation (Springel et al.2005). Per le funzioni di massa globale e 
ondizionali, l'a

ordo tra modelli e simulazioniè stimato usando un metodo χ2. Per i merger rates abbiamo 
onfronti qualitativi, mentreper i tassi di 
reazione abbiamo derivato le sole equazioni analiti
he. Ci siamo so�ermatispe
ialmente sui 
asi 
he fornis
ono le espressioni analiti
amente più sempli
i: le seriedi Taylor 
on zero ordini e 
on in�niti ordini.Nell'ultima parte della tesi, proponiamo un nuovo metodo statisti
o 
he può s
artaregli in
onvenienti dei metodi χ2: (i) la divisione in intervalli dei dati e (ii) il tras
urare leparti
elle di 
ampo (polvere) delle simulazioni. Per quanto riguarda il punto (i), di�erentiampiezze degli internalli di massa possono portare a pi

ole di�erenze nei risultati del
χ2. Il punto (ii) si riferis
e al fatto 
he le parti
elle 
he non sono legate in aloni sono disolito 
onsiderate solo per il 
al
olo della normalizzazione. Usando un'analisi di massimaverosimiglianza, possiamo trattare dati non raggruppati in intervalli e 
onsiderare lapolvere nella determinazione dei parametri migliori per la funzione di massa. I nostritests sono 
ondotti 
onfrontando una funzione di massa a due parametri 
on i risultatidi simulazioni Monte Carlo.Il nostro lavoro si inseris
e naturalmente nella ri
er
a sistemati
a delle espressioni



Sommario 7analiti
he asso
iate al 
ollasso ellissoidale degli aloni di materia os
ura. Poi
hè si pensa
he gli aloni siano i siti ove i barioni possono 
on
entrarsi e formare stelle, galassie edaltri oggetti luminosi, le espressioni 
he otteniamo possono essere usate in varie appli-
azioni, dallo svelare la natura della materia os
ura attraverso l'auto anni
hilazione,�no alla 
omprensione dei me

anismi 
he portano alla formazione galatti
a. Inoltre, lades
rizione dell'evoluzione galatti
a ri
hiede la 
onos
enza dell'alone 
orrelato: i modellisemi-analiti
i di formazione galatti
a dipendono dalla funzione di massa globale deglialoni di materia os
ura, e i 
orrispondenti merger-trees sono basati sulle funzioni dimassa dei progenitori. I tassi di 
reazione e distruzione sono utili per 
al
olare le ab-bondanze di oggetti 
ome Nu
lei Galatti
i Attivi (AGN) e Bu
hi Neri Super Massi

i(SMBH). Altri esempi dell'utilizzo delle distribuzioni della materia os
ura in studi diformazione galatti
a si possono trovare 
opiosi in letteratura.L'elaborato si arti
ola in questo modo: il Capitoli 1 giusti�
a la ne
essità dellamateria os
ura. Nel Capitolo 2 presentiamo il modello 
osmologi
o di 
on
ordanza, lasua geometria e la storia termi
a. Inoltre, introdu
iamo i modelli, lineare e non lineare,di formazione degli aloni di materia os
ura. Il Capitolo 3 des
rive l'appro

io degliex
ursion sets nel 
ontesto del 
ollasso sferi
o. L'estensione di questo metodo al 
ollassoellissoidale è proposto nel Capitolo 4, ove vengono esposti i primi risultati analiti
i. NelCapitolo 5 
onfrontiamo le nostre predizioni analiti
he 
on i risultati di due simulazioninumeri
he. Il Capitolo 6 è dedi
ato all'esposizione dei test di un nuovo metodo dimassima verosimiglianza 
on l'utilizzo di dati non raggruppati in intervalli e 
on leparti
elle di polvere. In�ne tra

iamo le nostre Con
lusioni, seguite da un'Appendi
eove sono des
ritte le simulazioni numeri
he.





Chapter 1Ne
essity of Dark MatterAn usual way to des
ribe the energeti
 properties of the Universe is the use of thedensity parameter Ω, that shows the ratio between the energy density asso
iated to a
omponent, and the 
riti
al density that dis
riminates between 
losed and open uni-verses. Ea
h 
omponent that �lls the universe has an asso
iated density parameter anda law that des
ribes its time evolution. From the analysis of the density parameters one
an noti
e that the two most important energeti
 
omponents are the most problemati
ones: the Dark Energy (ΩΛ ∼ 0.721) and the Dark Matter (ΩDM ∼ 0.233) (baryoni
matter has ΩBM ∼ 0.046), two 
on
epts that are postulated to frame some observa-tional datas into a 
onsistent theory, but without a pre
ise 
hara
terization in termsof 
urrent parti
le theories. In this 
hapter I will 
onsider the reasons that lead to theintrodu
tion of the 
on
ept of Dark Matter (hereafter DM).DM have been introdu
ed to explain eviden
e of �missing mass� in the universe. Thisphenomenon was �rst dete
ted by F. Zwi
ky [96℄ in 1933, through the observation of theComa 
luster of galaxies: he expressed the �missing mass problem� estimating the totalmass of the 
luster based on the motions of galaxies near its edge (using virial theorem)and 
omparing it to the mass found by the number of galaxies and total brightness of the
luster: there was about 400 times more estimated mass than was visually observable.Then, in the late 1960s and early 1970s, V. Rubin measured the velo
ity 
urve of edge-onspiral galaxies and showed that most stars in spiral galaxies orbit at roughly the samespeed, whi
h implied that their mass densities were uniform well beyond the lo
ationswith most of the stars. This result suggests that either Newtonian gravity does notapply universally or that upwards of 50% of the mass of galaxies was 
ontained in therelatively dark gala
ti
 halo. Sin
e those years, other observational eviden
es for DMhas been 
olle
ted over the de
ades through the analysis of many phenomena (CMBanisotropies, gravitational lenses, large s
ale stru
ture of the universe), theories aboutthe nature of DM were proposed and experiments planned to solve one of the most9
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hallenging issue of modern astrophysi
s.

Figure 1.1: An intuitive representation of the 
ontributions to the total energy of theuniverse.
1.1 The indire
t 
lues1.1.1 Gala
ti
 rotation 
urvesFrom the rotation 
urve of a spiral galaxy, i.e. the rotational velo
ity v(r) of starsand gas as a fun
tion of gala
to
entri
 radius r, one 
an infer the mass of the galaxy
M(r) en
losed in that radius. If the visible stars and gas provided all the mass in thegalaxy, one would expe
t that the rotation 
urve should de
line at radii larger than theextent of stellar disk a

ording to the keplerian relation v2 = GM

r . Instead, one observesthat v(r) remains 
onstant out to mu
h larger radii, indi
ating that the galaxies must
ontain far more matter that 
ontributed by the stars and gas. These mesurements,applied in the Milky Way, are important also for �xing the lo
al DM density, relevantfor dire
t dete
tion of DM.1.1.2 Galaxy ClustersThere are at least three ways to show the dis
repan
y between the mass of visiblematter and the total mass inside a 
luster of galaxies.LensingThe gravitational �eld of the 
lusters 
urves the spa
e around it, so the light raysemitted from obje
ts behind the 
luster travel along 
urved paths (gravitational lensing).If the lensing is strong enough, there are multiple paths from the same obje
t that arrive
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Figure 1.2: Rotation 
urve of NGC 6503. The dotted, dashed and dash-dotted lines arethe 
ontributions of gas, disk and dark matter, respe
tively. From [1℄.at the lo
ation of the teles
ope. Be
ause the light from di�erent sides of the same galaxytravels along di�erent paths, the images of strongly lensed sour
es are distorded intoar
s. For a lensing 
luster with total mass M and impa
t parameter d the de�e
tionangle is of order α ∼
(

GM
dc2

)1/2. From the measurements of the de�e
tion angle andimpa
t parameter, one 
an infer that the total mass of a 
luster is mu
h larger thanthe observed baryoni
 mass. Another way to show that, in a 
luster, Mtotal ≫Mbaryons
onsists in using the equation of hydrostati
 equilibrium: dpdr = −GM(r)ρ(r)
r2 , where thepressure p(r) is measured 
ombining data from the temperature T (r) (inferred usingthe strenght of the emission lines) and from the ele
tron number density ne(r) (inferredusing x-ray luminosity).

Dynami
sThe virial theorem allows to obtain the mass of a 
luster through the relation:
v2(r) = GM(r)

r . On
e again: Mtotal ≫Mbaryons.
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Figure 1.3: Distant galaxy lensed by Abell 
luster 2218. Credit: NASA, Andrew Fru
hterand the ERO team.1.1.3 CMB and LSSThe most 
ompelling hints about the non-baryoni
 nature of DM are provided bythe measurements of the Cosmi
 Mi
rowave Ba
kground (CMB) and by the Large S
aleStru
ture (LSS) of the universe. Tuning the parameters on whi
h theoreti
al predi
tionare based, in order to �t the angular power spe
trum of CMB temperature anisotropies,and 
onstraining the results with the datas from LSS, one 
an obtain Ωmatterh
2 =

0.133 ± 0.006 and Ωbaryonsh
2 = 0.0227 ± 0.0006 (Dunkley et al. 2009 [18℄).1.2 The dire
t investigation1.2.1 Properties of Dark MatterAlthought it is not 
lear whi
h is the parti
le that people 
all DM, there are some
onstrains that restri
t the �eld of investigation:

• DM have no intera
tions with photons (or extremely weak intera
tions), otherwiseit might 
ontribute to the dimming of quasar, 
reating absorption lines or emittingphotons.
• Self-intera
tion should be small, otherwise it would su�er gravotherma 
atastro-
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Figure 1.4: An example of the dependen
e on Ωbaryon of the CMB-angular spe
trum.From Wayne Hu's webpage [32℄phe: in binary intera
tions of two DM parti
les, one 
an get eje
ted from the halo,while the other moves to a lower energy state at smaller radius: in this way mu
hof the halo evaporate and the remaining shrinks.
• Intera
tions with baryons must be weak.
• DM 
annot be made up of standard model parti
les, sin
e most leptons andbaryons are 
harged; the only potentially suitable standard model parti
le is theneutrino, but it 
annot be DM be
ause of Gunn-Tremaine bound.The most attra
tive DM-
andidates are weak-intera
ting massive parti
les (WIMPs)that intera
t, besides through gravity, through weak nu
lear for
e, and that has a largemass 
ompared to standard parti
les; so they are slow, 
old and 
lumpy: WIMPs are
onsidered one of the main 
andidates for "
old dark matter".11.2.2 Dete
tion of Dark DatterThere are many experiments to attempt to dete
t WIMPs, both dire
tly and indi-re
tly. Among the dire
t sear
hes, the majority of present experiments use one of two1Cold means that it has de
oupled from the radiation in a non relativisti
 regime.
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tor te
hnologies. The �rst the 
ryogeni
 dete
tor, operating at temperatures be-low 100mK, dete
t the heat produ
ed when a parti
le hits an atom in a 
rystal matrixof an absorber su
h as germanium. The se
ond is the noble liquid dete
tor that seesthe �ash of s
intillation light produ
ed by a parti
le 
ollision in liquid xenon or ar-gon. Cryogeni
 dete
tor experiments in
lude: CDMS (Cryogeni
 Dark Matter Sear
h),CRESST (Cryogeni
 Rare Event Sear
h with Super
ondu
ting Thermometers), EDEL-WEISS (Expérien
e pour DEte
ter Les Wimps En Site Souterrain), and EURECA(European Underground Rare Event Calorimeter Array). Noble liquid experiments in-
lude ZEPLIN, XENON, ArDM and LUX (Large Underground Xenon Dete
tor). Otherdire
t dark matter experiments in
lude DAMA/NaI, DAMA/LIBRA, DRIFT (Dire
-tional Re
oil Identi�
ation From Tra
ks), and PICASSO (Proje
t in Canada to Sear
hfor Supersymmetri
 Obje
ts). Indire
t dete
tion experiments sear
h for the produ
tsof WIMP annihilation. If WIMPs are majorana parti
les (the parti
le and antiparti-
le are the same) then two WIMPs 
olliding would annihilate to produ
e gamma rays,and parti
le-antiparti
le pairs. This 
ould produ
e a signi�
ant number of gamma rays,antiprotons or positrons in the gala
ti
 halo, that 
an be measured by EGRET (Ener-geti
 Gamma Ray Experiment Teles
ope) or by GLAST (Gamma-ray Large Area Spa
eTeles
ope).1.2.3 Possibility of Baryoni
 Dark MatterAlthough it's most unlike that all the DM that make Ωmatter ∼ 0.3 is made up withbaryons, there are some hints for 
hoosing them as plausible 
andidates for gala
ti
 haloDM. The strongest argument for the existen
e of baryoni
 DM 
omes from primordialnu
leosyntesis: the results for 4He, 3He, 2H, 7Li abundan
es give Ωbaryonh
2 ∼ 0.0125;sin
e the 
ontribution of luminous baryons is Ωlum

baryonh
2 ∼ 0.007, we need the presen
eof dark baryons. If there exist baryoni
 DM, it 
ould take these forms, of de
reasingplausibility:

• stellar mass obje
ts: they 
ould be brown dwarfs (10−3 ÷ 0.08M⊙), white dwarfs(0.4÷ 1.4M⊙), neutron stars (1.4÷ 2M⊙), stellar reli
t bla
k holes from ordinarymassive stars (2 ÷ 10M⊙), bla
k holes from supermassive stars (100 ÷ 104M⊙)
• Di�use dense 
louds of 
old hydrogen.
• Exoti
a, in
luding primordial bla
k holes, and nuggets of strange matter.During the early 90's, these obje
ts were 
alled MACHOs, massive astrophysi
al 
om-pa
t halo obje
ts, a term 
hosen whimsi
ally, by 
ontrast with WIMPs. MACHOs weredete
ted through mi
rolensing analysis: when they pass in front of or nearly in front ofa star they bend the light, 
ausing the star to appear brighter.



1.2 The dire
t investigation 151.2.4 What is the Dark Matter made of?There are a lot of 
andidates for non-baryoni
 DM, but the most appealing, at themoment, is the neutralino with a mass of ∼ 100GeV . For the rest of this thesis twothings will be enough to know about the nature of DM, in order to develop a modelfor stru
ture formation: the type of intera
tion between DM parti
les and between DMand baryons (i.e. the laws of gravity), and the fa
t that there are hints that the DM is�
old� , i.e. it has de
oupled from the radiation in a non relativisti
 regime.





Chapter 2Stru
ture Formation in a ΛCDMUniverse
2.1 Cosmologi
al Referen
e Paradigm: the Hot Big BangBoth the analyti
al 
al
ulations and the numeri
al simulations shown in this thesisare based on a theoreti
al framework that follows the history of the universe from theBig Bang to the formation of the stru
tures: a 
osmology built on the 
on
ordan
e
ΛCDM model, with parameters de�ned by observational results, is used.The observation of the 
osmologi
al redshift phenomenum, through the re
ession ofthe distant galaxies with a speed proportional to the distan
e (Hubble law), 
ontributedto the development of a 
osmologi
al model based on the idea of Big Bang, the spa
e-time singularity at time t = 0, after whi
h the universe has evolved expanding in anadiabati
 way. The analysis of the light-element abundan
es plus the standard modelof parti
les allow to �x a series of eras 
hara
terized by typi
al temperatures, by thepresen
e of typi
al parti
les and by their densities. The adje
tive �hot� 
omes from the
osmologi
al origin of the radiative 
omponent.2.1.1 From Cosmologi
al Prin
iple to Evolution of the Hubble Para-meterThe 
osmologi
al redshift is interpreted as a 
onsequen
e of the expansion of theuniverse that is predi
ted by the general relativity (GR) theory, used to des
ribe thegravitational for
e that is the main intera
tion when large s
ales are 
onsidered. In orderto introdu
e the gravitational for
e into the des
ription of the spa
e-time, GR uses anexpression 
alled metri
 that identify the spa
e-time interval:ds2 = gijdxidxj , (2.1)17
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 tensor gij des
ribes the properties of the spa
e-time and xk (k = 0, 1, 2, 3,)are the spa
e-time 
oordinates. It is possible to simplify the metri
 using two propertiesof the large s
ale stru
ture of the universe (> 100Mpc) that 
ome from the observationof the small anisotropies of the Cosmi
 Mi
rowave Ba
kground and from the wide �eldsurveys: the omogeneity and the isotropy. The new expression is:ds2 = (cdt)2 − a(t)2
[ dr2
1 −Kr2

+ r2(dθ2 + sin2θdφ2)

]
, (2.2)

a(t) is the expansion fa
tor as a fun
tion of proper time t; r, θ, φ are polar-spheri
al
omoving 
oordinates (i.e. they are de�ned in a referen
e frame that is bound to theexpansion of the universe); K is the 
urvature parameter that admits three values:
−1, 0, 1, that refer to an open, �at or 
losed universe.It is possible to simplify also the Einstein's equations:

Rij −
1

2
gijR =

8πG

c4
Tij , (2.3)in whi
h Rij is the Ri

i's tensor, R the s
alar 
urvature, Tij the energy-momentumtensor, G the gravitational 
onstant and c the speed of light. For the time-time 
ompo-nent:

ä = −4πG

3

(
ρ+

3p

c2

)
a , (2.4)and for the the spa
e-spa
e 
omponents:

aä+ 2ȧ2 + 2Kc2 = 4πG
(
ρ− p

c2

)
a2 , (2.5)from whi
h:

ȧ2 +Kc2 =
8πG

3
ρa2 , (2.6)where the expression of the energy-momentum tensor for ma
ros
opi
 bodies is used:

Tij = (p+ ρc2)UiUj − pgij ,in whi
h Uk is the 4-velo
ity, p the pressure and ρc2 the energy density.The equation (2.2) is 
alled Robertson-Walker metri
; (2.4) and (2.6) are the Fried-mann equations, whi
h are useful to obtain the equation for the evolution of the Hubbleparameter H1:
H2(t) =

(
ȧ

a

)2

= H2
0

(a0

a

)2
[
Ω0w

(a0

a

)1+3w
+ (1 − Ω0w)

]
, (2.7)the subs
ript 0 refers to the present time; Ω0w is the density parameter, de�ned as:

Ω0w = ρ0w

ρ0c
, where w relates the pressure to the energy density in the equation of state21The de�nition for the Hubble parameter is H(t) = ȧ(t)

a(t)
.2A radiative �uid has w = 1

3
, the dust has w = 0.
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p = wρc2; ρ0c =

3H2
0

8πG is the 
riti
al density.3 The analysis of a(t) shows that the GRpredi
ts the expansion of the universe and, in the 
ases with ρ0 > ρ0c, predi
ts the
ollapse of it.2.1.2 Thermal Evolution of the UniverseGoing ba
k in time, Friedmann's equations show that a(t) → 0, and the temper-ature T → ∞. However, there exist a typi
al energy for whi
h the de Broglie wave-lenght asso
iated to a parti
le is less than its S
hwarz
hild's radius: in this regime,one 
an not use the 
lassi
al approximation for the Friedmann equations anymore; thisenergy-threshold de�nes some asso
iated quantities (
alled Plan
k-mass, Plan
k-lenght,Plan
k-temperature, ...), in parti
ular the Plan
k-time (tp = 10−43s) is the time beforewhi
h one 
an not 
onsider the relativisti
 aspe
t and the quantisti
 one together, fora theoreti
al la
k of knowledge.From the Plan
k-time, the universe has evolved in an adiabati
 way, so getting 
oldthrough the relation T (t) ∝ a−1(t). The temperature of the universe, so its energeti

hara
teristi
, determines the presen
e of some parti
les and for
es in di�erent eras.The era between tp and t ≈ 10−5s is 
alled the transition phase era, and it is
hara
terized by the unify des
ription of the fundamental for
es (ele
tromagneti
, weakand strong for
es).From t ≈ 10−5s (T ≈ 200÷300MeV), there is the adron era, when quarks formed theadrons and the universe was �lled by pions, protons, neutrons, antiprotons, antineutrons,leptons, antileptons e photons. The annihilation of the pions at T ≈ 130MeV determinesthe beginning of the lepton era, that lasts untill t ≈ 10s (T ≈ 0.5MeV) when ele
tronsannihilated with positrons.The radiative era followed, with the 
osmologi
al nu
leosynthesis, at T ≈ 109K.The time when the radiation energy density was equal to the matter energy densityis 
alled equivalen
e and depends by Ω and H; the typi
al redshift4 for the equivalen
ebetween radiation and dark matter is zDMeq ≈ 104.At lower temperatures, the protons 
ombine the ele
trons and form neutral hy-drogen; when the ionized atoms are less that 50%, we have the ri
ombination, at
zrec ≈ 1500. When the neutral atoms represent an high per
entage of the total, the 
ross3If ρ0 < ρ0c ⇒ then Ω0 < 1 and K = −1, open universes;if ρ0 > ρ0c ⇒ than Ω0 > 1, K = 1, 
losed universes;if ρ0 = ρ0c ⇒ than Ω0 = 1, K = 0, �at universes.4The redshift is de�ned by:

z =
λ0 − λe

λe

λ0 is the wavelenght of an observed radiation that was emitted with a wavelenght λe at a previous timeby a distant sour
e.
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tion between barions and radiation be
omes negligible: this happens at z ≈ 1000.After this de
oupling, matter and radiation evolve in a di�erent �thermal way� following:
Tm = T0m(1 + z)2 , (2.8)for the matter and:
Tr = T0r(1 + z) , (2.9)for the radiation; the subs
ript 0 refers to the present time.The photons that �rst de
oupled from the matter show a �last s
attering surfa
e�pla
ed at z ≈ 1000 and form a ba
kground of radiation that 
an be des
ribed by abla
k body with T = 2.728 ± 0.004: for this reason it is 
alled �
osmi
 mi
rowaveba
kground�(CMB): this radiation appear similar observing it from all the line of sightin the sky and shows little anisotropies (∼ 10−5).2.2 ΛCDM Con
ordan
e ModelThe Lambda Cold Dark Matter 
on
ordan
e model is based on the Hot Big Bangmodel, but introdu
es the presen
e of a Dark Energy using the parameter Λ, 
alledCosmologi
al Constant ; the model 
onsider also that the most important 
omponentfor the energy density of the matter is a 
ertain type of Cold Dark Matter. Moreover,this model �xes the values of the parameters ne
essary for a quantitative des
ription ofthe evolution of the universe.2.2.1 Cosmologi
al ConstantSome observational results, as those 
oming from supervonae Ia, show that, at lowredshift, the 
osmologi
al expansion is a

elerated. In order to introdu
e su
h phe-nomenum into the model, a term 
alled �dark energy� was introdu
ed in the Einsteinequation, through the 
osmologi
al 
onstant Λ:

Rij −
1

2
gijR =

8πG

c4
Tij + Λgij . (2.10)One 
an obtain the asso
iated Friedmann's equations:

ä = −4πG

3

(
ρ+

3p

c2

)
a+

Λc2a

3
(2.11)and

ȧ2 +Kc2 =
8πG

3
ρa2 +

Λc2a2

3
. (2.12)

Λ has an �anti-gravitational� e�e
t, and it 
orrespond to a �uid with equation of state
p = −ρc2 (w = −1), i.e. a �uid with negative pressure that a

elerates the expansion.The density parameter asso
iated to the dark energy is ΩΛ = 0.7.



2.2 ΛCDM Con
ordan
e Model 212.2.2 Contribution of MatterThe total 
ontribution to the energy density that 
omes from the matter is Ωm ∼ 0.3;from the CMB datas and from the analysis of the deuterium, one 
an obtain the value
Ωb = 0.047 asso
iated to the barions: the stars 
ontribut with an amount Ωstar ≈ 0.005,the remaining part 
omes from the di�use hot gas.2.2.3 Other Density ParametersThe density parameter asso
iated to the radiation 
an be obtained by the temper-ature of the CMB (TCMB = 2.728 ∓ 0.004◦K):

Ωr ≈ 2.3 × 10−5h−2.where h = H
100Km/s/Mpc and H is the Hubble parameter.The 
ontribution of neutrinos is negligible too:

Ων ≈ 10−5.2.2.4 In�ation and Power Spe
trumThere exist some observations that are not explained by Hot Big Bang model: the�atness problem (i.e. the parameter density is ∼ 1), the horizon problem (i.e. the CMBshows the same temperature in ea
h dire
tion of observation so di�ent parts of theuniverse, that had never been in 
ausal 
onne
tion, have the same 
hara
teristi
), themonopole problem (i.e. magneti
 monopoles are not observed tough they are predi
ted bysome theories). The solution of these dis
repan
ies is the phenomenum 
alled in�ationthat predi
ts an a

elerated expansion in the �rst phase of the evolution of the universe:the results is that the geometry of the universe be
omes �at, that di�erent regions of theuniverse are in 
ausal 
onne
tion mu
h before respe
t to the predi
tion of Friedman'smodels, that the magneti
 monopoles are diluted.The in�ation gives also an explanation for the formation of the initial spe
trumof perturbation and for its shape: during the infationary era, quantisti
 �u
tuation ofmatter ampli�ed and be
ame relevant on ma
ros
opi
 s
ales. The type of the powerspe
trum is a fun
tion of the in�ationary model, but the Harrison-Zel'dovi
h resultis always a good approximation: P (k) ∝ k, where P is the spe
trum and k is the
hara
teristi
 s
ale of the perturbation in the Fourier spa
e.2.2.5 Parameter σ8Another parameter that 
hara
terized the 
on
ordan
e model is the mass varian
eon the s
ale 8h−1Mp
. The mass varian
e is obtained multiplying the power spe
trum
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ture Formation in a ΛCDM Universeby a window fun
tion, and integrating this produ
t over all the wavenumbers k:
σ2

M =
1

(2π)3

∫ d3P (k)Ŵ 2(kR) .

σ8 is obtained putting R = 8h−1Mp
 into the expression of the window fun
tion. Inthis thesis σ8 = 0.9 is assumed.2.2.6 WMAPThe Wilkinson Mi
rowave Anisotropy Probe provides from the year 2003 the valuesof the 
osmologi
al parameters for the 
on
ordan
e model. In Table 2.1 the �time evolu-tion� of the results is shown; one 
an noti
e the in
rease in the pre
ision of the variousestimates.parameter WMAP 1 year WMAP 3 years WMAP 5 years
H0 Kms

−1Mpc−1 72 ∓ 5 73.2 ∓ 3.2 70.5 ∓ 1.3

σ8 0.9 ∓ 0.1 0.761 ∓ 0.049 0.812 ∓ 0.026

n 0.99 ∓ 0.04 0.958 ∓ 0.016 0.960 ∓ 0.013

Ωmh
2 0.14 ∓ 0.002 0.1277 ∓ 0.008 0.1358 ∓ 0.0037

Ωbh
2 0.024 ∓ 0.001 0.02229 ∓ 0.00073 0.02267 ∓ 0.00059Table 2.1: Comparison among the values of the 
osmologi
al parameters provided byWMAP after 1 (Spergel et al., 2003 [74℄), 3 (Spergel et al., 2007 [75℄) and 5 (Komatsuet al., 2009 [39℄) years of observation.In this thesis these values for the parameters are 
onsidered: (H0, σ8, n, Ωm, ΩΛ) =(70.5Kms−1Mpc−1, 0.9, 1.0, 0.3, 0.7)2.3 Virialized Stru
ture FormationIf one looks to s
ales smaller than 100Mpc he 
an observe that the matter getsorganized into galaxies or 
lusters that arrange themselves into larger mono- and bi-dimensional stru
tures, brea
king the omogeneity and the isotropy that 
hara
terizedthe universe on larger s
ales. Following the standard s
enario, 
osmi
 stru
tures are
reated by small matter �u
tuations that grow be
ause of self-gravity until the 
ollapse.The �rst stru
tures that arise from this pro
ess are the dark matter haloes, that aggre-gate in a heirar
hi
al way for the gravitational 
ollapse, rea
hing the virial equilibiumbetween potential and kineti
 energy. This dark matter stru
tures 
reate the potentialwells into whi
h the barions �fall�; the 
ollisional gas 
onvert its kineti
 energy into ther-mal energy rea
hing the virial temperature; the 
onsequent radiative loss is the 
ause
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ture Formation 23of the barion 
ooling and 
ondensation of mole
ular 
louds and stars. The standards
enario is 
onsidered into a 
osmologi
al 
ontext that uses the Cosmologi
al Prin
iple(Robertson-Walker metri
) until the epo
h of re
ombination; the universe is almost �atand dominated by the 
old dark matter.2.3.1 Jeans TheoryJeans S
aleThe linear regime of gravitational instability is well des
ribed by the Jeans theorythat 
onsider small density �u
tuations over a uniform �uid, i.e. deviations from themean density over all s
ales. If one 
onsider a spheri
al overdense zone with radius Rand mean density ρ, it has a mass M ∝ ρR3; the typi
al velo
ity of the parti
les is v.One 
an make an a

ount of the two pro
esses that 
ontribute to the evolution of theperturbation: the 
ondensation, due to the gravity, and the di�usion, due to the parti
lemotion. One 
an make this 
omparison with an esteem of the gravitational and kineti
energy Ep and Ek:
Ek ≃ Mv2

2
(2.13)

Ep ≃ −GM
2

R
≃ −GMρR2 ; (2.14)otherwise, one 
an evaluate the gravitational for
e Fg and the pressure Fp:

Fp ≃ −v
2

R
(2.15)

Fg ≃ GM

R2
≃ GρR ; (2.16)otherwise one 
an determine the gravitational free-fall time s
ale τff and the idrody-nami
 time s
ale τh (the time needed to balan
e the pressure and density di�eren
es):

τh ≃ 2R

v
(2.17)

τff ≃ 1√
Gρ

. (2.18)The equality in these quantities is rea
hed for a parti
ular lenght, 
alled Jeans lenght,that determines a threshold for the size of the overdensity, under whi
h the di�usiondominates, and over whi
h the gravity dominates; one 
an �nd, from the energies:
RJ = v

√
1

2Gρ
; (2.19)using the for
es:

RJ = v

√
1

Gρ
; (2.20)
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ture Formation in a ΛCDM Universeand using the time s
ales:
RJ =

v

2

√
1

Gρ
. (2.21)A density with radius R > RJ 
an 
ollapse under self gravity, if R < RJ , the perturba-tion is erased by di�usion e�e
ts.Jeans InstabilityFollowing the Jeans theory, one have to use the equations that relate the �elds de-s
ribing a �uid, in order to obtain the time evolution:- the 
onservation of the mass:

∂ρ

∂t
+ ~∇ · (ρ~v) = 0 ; (2.22)- the Euler equation (φ is the gravitational potential):

∂~v

∂t
+ (~v · ~∇)~v = −1

ρ
~∇p− ~∇φ ; (2.23)- the Poisson equation, that 
onne
ts the gravitational �eld to its sour
e:

∇2φ = 4πGρ ; (2.24)- the equation of state, that give the pressure as a fun
tion of the density andentropy (S):
p = p(ρ, S) ; (2.25)- the equation that des
ribe the time evolution of the entropy for adiabati
 systems:dSdt = 0. (2.26)The written equations 
hara
terize a 
lassi
al approa
h to the time evolution of a per-fe
t �uid, so one must 
onsider only non-relativisti
 parti
les over s
ales less than the
osmologi
al horizon5.In the proper referen
e frame, ~r is the spa
e 
oordinate; in the 
omoving referen
eframe, we use ~x; the two quantities are related by this relation: ~r = a~x, a is the expansion5Given a point O in the universe, the 
osmologi
al horizon is the surfa
e that separates the spa
ewhere a 
ausal 
onne
tion with O 
an exists (within a 
ertain time t) from the zone where there is no
ausal 
onne
tion. This surfa
e is at a distan
e RH(t) = a(t)

t

0
cdt′
a(t′)

from O.
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tor. The velo
ity of the �uid is the sum of the intrinsi
 velo
ity plus the the speedof expansion of the universe:
~u ≡ d~rdt = ȧ~x+ a~̇x = H~r + ~v. (2.27)One must express the �elds as a sum of a non-perturbed part plus a perturbation: we
onsider the time evolution of the perturbation:






ρ = ρb(1 + δ)

~u = H~r + ~v

p = pb + δp

Φ = Φ0 + φThe subs
ript b refers to the non-perturbed part. δ is the �density �u
tuation�:
δ(~r, t) ≡ ρ(~r, t) − ρb

ρb
=
δρ(~r, t)

ρb
. (2.28)In the linear regime δ ≪ 1. When entered into the 
ontinuity, Euler, Poisson equations,the perturbations give these results in a 
omoving referen
e frame:- 
ontinuity equation:

∂

∂t
δρ+ ∂ρba~∇~v + 3Hδρ = 0 ; (2.29)- Euler equation:

∂

∂t
~v +H~v = −v

2

a
~∇δ − 1

a
~∇φ ; (2.30)- Poisson equation:

1

a2
∇2φ = 4πGρbδ. (2.31)The system of these three equations has to be solved sear
hing for a plane wave solution;one 
an obtain for δk6:

δ̈k + 2
ȧ

a
δ̇k + δk

[k2v2

a2
− 4πGρb

]
= 0. (2.32)Using this equation one 
an follow the evolution of the perturbations through di�erentepo
hs:

• before the equivalen
e, the most important 
ontribution to the energy density isthe radiation, so the main �u
tuations are the radiation ones;6δ(~x, t) = δk(t)exp(i~k~x), and analogous relations for ρ, v, φ.
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ture Formation in a ΛCDM Universe- over s
ales greater than the horizon, both the dark matter and baryons �u
-tuations follow the radiation �u
tuations, that are proportional to the squareof the expansion fa
tor:
λ > RH : δDM ∝ δB ∝ δR ∝ a2- over s
ales smaller than the horizon, the Jeans s
ale of the baryon-radiation�uid is greater tha the horizon, so the asso
iated perturbations os
illate; thedark matter perturbations are frozen by the Meszaros e�e
t7:
λ < RH : δB ∝ δR os
illate

δDM almost 
onstant
• during the epo
h between the equivalen
e and the re
ombination, the dominantenergy density is the one provided by the dark matter, so the main �u
tuationsare the DM-�u
tuations;- over s
ales greater than the horizon, both baryons and radiation �u
tuationsfollow the DM-�u
tuations, that are proportional to the expansion fa
tor:

λ > RH : δR ∝ δB ∝ δDM ∝ a- over s
ales smaller than the horizon and grater than the Jeans s
ale, theDM-�u
tuations grow (∝ a), but the gravitational for
e is smaller than theradiation pressure, so the baryon-radiation �uid 
ontinues to os
illate:
RJ < λ < RH : δB ∝ δR os
illate

δDM ∝ a- over s
ales smaller than the Jeans s
ale, the DM-perturbations are erasedby the free-streaming: the DM parti
les di�use from over-dense regions tounder-dens regions following the mean �eld of the universe instead of thelo
al perturbation.
• after the re
ombination, the main energy density in the DM-energy density;- over s
ales greater than the horizon:

λ > RH : δR ∝ δB ∝ δDM ∝ a7The Meszaros e�e
t shows that before the equivalen
e the time s
ale for the expansion is lessthan the time s
ale for a gravitational free-fall: the DM-perturbations are not able to grow within aHubble-time.
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ture Formation 27- over s
ales smaller than the horizon and greater than the Jeans s
ale, theDM �u
tuations grow ∝ a; the radiation os
illates and de
ays; the baryonsperturbations, de
oupled from the radiations, grow to rea
h the amplitudeof the DM-perturbations and to follow their trend.
RJ < λ < RH : δDM ∝ a

δR os
illate and de
ay
δB a

elerate growth, then ∝ δDM- over s
ales smaller than the Jeans s
ale, the DM-perturbations are erasedby the free-streaming and the baryons follow this trend. For 
old dark mat-ter, the DM-Jeans s
ale after the equivalen
e is very small, so this regimepra
ti
ally does not exist.All these trends hold for universes with Ωm0 = 1.2.3.2 Statisti
s of PerturbationsFair Sample HypothesisThe standard paradigm about the formation of 
osmi
 stru
tures explains how theyare 
onsequen
es of the ampli�
ation (during the in�ation) of quantum �u
tuations sothey are a produ
t of a sto
hasti
 s
alar �eld: the gravitational �eld. For this reason itis appropriate the use of a statisti
al tool for studying the properties of this �eld and,through the Poisson equation, the properties of the asso
iated density �u
tuation �eld:
δ(~x) =

ρ(~x) − ρb

ρb
.In order to re-express the Cosmologi
al Prin
iple from a statisti
 point of view, one 
anassume that δ(~x) is a omogeneous and isotropi
 sto
hasti
 �eld, so that the observeduniverse 
an be seen as a statisti
al realization of that �eld.Sin
e the observation allow us to know only one realization of δ(~x), in order to obtainits properties, one must 
onsider a se
ond hypotesis, the ergodi
 hypotesis that is: theaverages of a sto
hasti
 �eld on a statisti
al set are equivalent to the spatial average ofea
h realization.Joining the ergodi
 hypothesis and the 
osmologi
al prin
iple, one obtains the FairSample hypothesis.
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ture Formation in a ΛCDM UniversePower Spe
trum, Varian
e and Mass Varian
eWithin the standard model for the stru
ture formation, the s
alar �eld δ(~x), isassumed to be sto
hasti
, omogeneous, isotropi
 and gaussian with average equal tozero: only the varian
e 
an individualize it. The varian
e is de�ined as:
σ2 ≡

〈
δ2(~x)

〉
− 〈δ(~x)〉2 = 〈δ2(~x)〉 , (2.33)where 〈 〉 is the expe
ted value of the sto
hasti
 �eld. De
omposing the �u
tuation�eld into plane waves:

δ(~x) =
1

(2π)3

∫
δ̂(~k)exp(i~k · ~x)d3k. (2.34)Using this integral, one expresses the varian
e as a fun
tion of δ̂(~k) into the Fourierspa
e:

σ2 =
1

(2π)3V∞

∫ d3〈δ(~̂k)δ∗(~̂k)〉 =
1

(2π)3

∫ d3kP (k) , (2.35)where δ∗ is the 
onjugata 
omponent of δ and V∞ is the volume of the universe. In theequation the de�nition of power spe
trum P (k) is used:
〈δ̂(~k)δ̂∗(~k′)〉 ≡ (2π)3P (k)δ3D(~k − ~k′) , (2.36)where δ3D(k) = 1

(2π)3

∫ exp(i~k · ~x)d3x is the distribution Dira
 delta fun
tion in 3 di-mention. If k = k′, then δ3D(0) = V∞/(2π)3, so 〈|δ̂(~k)|2〉 = V∞P (k).Sin
e P (k) ∝ |δ̂(~k)|2, its value shows, for ea
h k, the weight into the Fourier integralof the �u
tuation over a s
ale k in order to build the generi
 �u
tuation δ(~x). Thevarian
e is the sum of the power of the �u
tuation over all the s
ales k.The written equation of the varian
e refers to an exa
t point into the density �eld;however, we need a quantity that refers to �nite volumes; one 
an obtain it with a
onvolution of δ(~x) with a window fun
tion W with a radius R in order to obtain themean �u
tuation density within a volume V ∝ R3:
δM (~x) ≡ δM(~x)

M̄
, (2.37)where M̄ is the mean mass within the 
onsidered volume. It is possible to obtain alsothe massa varian
e, i.e. the varian
e of the �u
tuation �eld �ltered over a s
ale R:

σ2
M ≡ 〈δ2M 〉 =

1

(2π)3

∫ d3P (k)Ŵ 2(kR) , (2.38)where Ŵ (kR) is the Fourier transform of the window fun
tion.The most 
ommon window fun
tions used are:
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• Top Hat:

WTH(r) =

{
3

4πR3
T

r < R3
TH

0 r > R3
THwith a Fourier transform:

ŴTH(k) =
3

(kRTH)3
[sin(kRTH) − (kRTH
os(kRTH))]

• Gaussian:
WG(r) =

1

(2π)3/2R3
G

exp(− r2

2R2
G

)with a Fourier transform:
ŴG(k) = exp(− 2k2

R2
G

)

• sharp k-spa
e:
WSk(r) =

1

2π2r3
[sin( r

RSk

)
−
( r

RSk

)
os( r

RSk

)
]with a Fourier transform:

ŴSk(k) =

{
1 k < 1

RSk

0 k > 1
RSkTransfer Fun
tionConsider s
ale-free initial power spe
tra8. Over s
ales greater than the horizon,the density �u
tuations δk(t) evolve depending on the 
osmologi
al parameters andfollowing an amplitude distribution that is a fun
tion of the shape of the primordialspe
trum: the perturbations over the s
ales greater than the horizon are not a�e
tedby 
ausal e�e
ts triggered by the mi
ros
opi
 physi
s. In
reasing t, the horizon expandsand allows bigger perturbations to have a 
ausal relationship, so the primordial powerspe
trum is modi�ed depending on the a
ting mi
ro-physi
al pro
ess. If a perturbationis rea
hed by the horizon before aeq, it remains frozen be
ause of Mezaros e�e
t, untilthe equivalen
e; sin
e the �rst perturbations rea
hed by the horizon are over smalls
ales, for those �u
tuations the stagnation time is longer. If a �u
tuation is big enoughto be rea
hed by the horizon after the equivalen
e, it is not a�e
ted by the stagnation.This di�erent trend, that depends on the s
ale, modi�es the shape of the primordialpower spe
trum: we want to know how the initial spe
trum Pin(k) ∝ kn be
omes the8A s
ale-free spe
trum is a power law relation P (k) ∝ kn, with a 
onstant logaritmi
 slope over allthe s
ales.
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ture Formation in a ΛCDM Universepro
essed spe
trum Pfin(k). We want to 
al
ulate the growth of a �u
tuation δ(k) froman initial time, tin, with a primordial power spe
trum, to a �nal time, tfin, between theequivalen
e and the re
ombination (after this epo
h the DM-�u
tuations are no morea�e
ted by mi
rophyisi
al pro
esses). Consider these two regimes:1. if k determins aH < aeq, there is a growth until aH , followed by a stagnationuntil the equivalen
e; the growth from tin to the equivalen
e happens before beenrea
hed by the horizon s
ale:
δ(k; aeq) = δ(k; ain)

(
aH

ain

)2

∝ δ(k; ain)a2
H , (2.39)2. if k determins aH > aeq, there is a growth of the perturbation until aeq. In this
ase:

δ(k; aeq) = δ(k; ain)

(
aeq

ain

)2

∝ δ(k; ain) , (2.40)where (aeq/ain)2 is a 
onstant.To 
al
ulate the growth of δ(k) as a fun
tion of k, one must express aH as a fun
tionof k. For aH < aeq one obtains:
aH ∝M1/3 ⇒ a2

H ∝M2/3and sin
e M ∝ R3 ∝ k−3:
a2

H ∝ k−2. (2.41)Using this equation into (2.39) one obtains:
Pfin(k) ∼ δ2(k; aeq) ∝ δ2(k; ain)a4

H ∼ Pin(k)k−4 ∝ kn−4. (2.42)Over small s
ales (k → ∞), the initial spe
trum is modi�ed by a fa
tor k−4. If aH > aeq,from eq. (2.40):
Pfin(k) ∼ δ2(k; aeq) ∝ δ2(k; ain) ∼ Pin(k) ∝ kn , (2.43)i.e. over bigger s
ales (k → 0), the initial spe
trum remains the same until the equiv-alen
e. The transition between the two regimes happens for k similar to the s
ale ofthe 
osmologi
al horizon at the equivalen
e. If the universe is dominated by CDM witha Zel'dovi
h primordial spe
trum (spe
tral index n = 1), the power Pfin(k) d3k ∝

k3Pfin(k) is an in
reasing fun
tion of k, and be
ome a 
onstant for k → ∞:
k → 0 ⇒ k3Pfin(k) ∝ kn+3 ∝ k4

k → ∞ ⇒ k3Pfin(k) ∝ kn−4+3 ∝ cost.
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ture Formation 31The CDM model predi
ts a greater power on small s
ales implying a hierar
hi
al 
lus-tering.The modi�
ation of P (k) 
an be expressed using a transfer fun
tion:
T (k; zfin) ≡ δ(k; zfin)

δ(k; zin)

D(zin)

D(zfin)
(2.44)So:

Pfin(k) ∝ δ2(k; zfin) = Pin(k)T 2(k; zfin)
[D(zfin)

D(zin)

]2
= k2T 2(k)

[D(zfin)

D(zin)

]2
.The transfer fun
tions is a low-pass �lter, so:

k → 0 ⇒ T (k) → 1

k → ∞ ⇒ T (k) ∝ k−2 → 02.3.3 Non-Linear RegimesThe Jeans theory holds if the density 
ontrast remains in the linear regime: δ ≪ 1.However the perturbations evolve towards the unit value and the towards a strong non-linear regime: δ ≫ 1. So we need other theories besides the linear one. Here the spheri
al
ollapse model and the ellipsoidal 
ollapse model are des
ribed.Spheri
al CollapseThe idea is to follow a spheri
al non homogeneous perturbation with a radius Rthat 
ontains a mass M ; its evolution is:d2Rdt2 = −GM
R2

(2.45)where:
M =

4πR3
i

3
ρ̄i(1 + δi) e δi =

∫ Ri
0 4πr2δi(r) dr

4πR3
i /3

(2.46)where ρ̄i e δi are, respe
tively, the ba
kground density and the amplitude of the �u
-tuation at the initial time. The model require that the shells remains 
on
entri
 duringtheir evolution, so that the total mass would be 
onstant; the equation (2.45) is themotion equation of the shells. The integral of (2.45) gives:
1

2

(dRdt )2

− GM

R
= cost = E. (2.47)If E < 0, then dR/dt 
an 
hange the sign: even if the perturbation begins to ex-pand, it will 
ollapse. If δi ≪ 1, then, at �rst approximation, one assumes that the



32 Stru
ture Formation in a ΛCDM Universevelo
ities are due only to the Hubble stream: (dR/dt)i ≈ (d(ax)/dt)i = xi (da/dt)i =

Ri [(da/dt) /a]i = HiRi. The initial kineti
 and potential energies are:
Ki =

(HiRi)
2

2
e Wi = −GM

Ri
= −Ωi(1 + δi)

(HiRi)
2

2
(2.48)where, in the expression of Wi, the mass M (2.46) is insered, and Ωi = ρ̄i/ρci =

8πGρ̄i/3H
2
i is used. The total energy is:

Ei = Ki +Wi = Ki −KiΩi(1 + δi). (2.49)The 
ollapse happens when (1 + δi) > 1/Ωi. If the perturbation is dense enough inrespe
t to the ba
kground, after an initial expansion, and after rea
hing the turnarounddimension (maximun dimension), 
ollapses. At the turnaround, the kineti
 energy isnull; for the 
onservation of energy:
E = − GM

Rmax
= − Ri

Rmax
KiΩi(1 + δi) = Ei = Ki [1 − Ωi(1 + δi)] (2.50)so:

Rmax

Ri
=

Ωi(1 + δi)

Ωi(1 + δi) − 1
. (2.51)When Ωi = 1, then: Rmax/Ri = (1+δi)/δi ≈ 1/δi: the ratio between the radius at turn-around and the initial radius depends on δi, in the same way for ea
h M . Shells slightlyoverdense have Rmax ≫ Ri and need a longer time to 
ollapse. After the turnaround,the perturbation 
ollapse, there's a mixing of the shells and the stru
ture virializes. Be-
ause of the virial equilibrium, −Wvir = 2Kvir ; sin
e the total energy E = Kvir +Wvirmust be equal to the total energy at turnaround:

E = Kvir +Wvir = Wvir/2 ≈ − GM

2Rvir
= − GM

Rmax
, (2.52)so Rvir ≈ Rmax/2: at the virialization, the stru
ture is 8 times denser respe
t to theturnaround.The exa
t time evolution for ea
h shell has a parametri
 solution:

R

Ri
= A(1 − cos θ) e t+ T

ti
= B(θ − sin θ) (2.53)where (ARi)

3 = GM (Bti)
2 and θ 
hanges within 2π. The evolution of an underdenseregion 
an be obtained 
hanging (θ − sin θ) with (sinh θ − θ) and (1 − cos θ) with

(cosh θ − 1). The turnaround has θ = π, so A is obtained putting: Rmax/Ri = 2A; Bfollows.
A =

1 + 1/δi
2

e B =
1 + δi

2HitiΩ
1/2
i

[1 + δi − 1/Ωi]
−3/2 . (2.54)
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T is small 
ompared to ti, so it 
an be ignored; if Ωi = 1:

Ri = Ri
1 + 1/δi

2
(1 − cos θi)so: θ2

i ≈ 4δi. So:
Hiti (1 + T/ti) =

1 + δi

δ
3/2
i

(θi − sin θi)

2
→ Hiti (1 + T/ti) =

2

3
(1 + δi)from this equation one obtains: T/ti = δi ≪ 1, so that T 
an be ignored.We 
onsider an Einstein-de Sitter universe (only dust, �at Ω = 1, without 
osmo-logi
al 
onstant, with ρ̄(t) = 1/

(
6πGt2

)): the ratio between the mean density withinthe perturbation an
he the ba
kground density evolves as:
1 + δ =

ρ̄i

ρ̄(t)

(
Ri

R

)3

≈ (t/ti)
2

A3(1 − cos θ)3
=

=
B2(θ − sin θ)2

A3(1 − cos θ)3
=

9(θ − sin θ)2

2(1 − cos θ)3
. (2.55)At t ≈ ti:

δ ≈ 3θ2

20
≈ 3

20

(
6t

B

)2/3

≈ 3

5
δi

(
t

ti

)2/3

. (2.56)At turnaround (θ = π) the density respe
t to the ba
kground is:
1 + δmax =

9π2

16
≈ 5.55. (2.57)Sin
e δ > 1, the obje
t is strongly non linear. Altought formally δ → ∞, when θ → 2π,the obje
t virializes with a �nite radius. These relations hold: Rvir ≈ Rmax/2; and if

tvir = t(θ = 2π), then tvir = 2tmax. With Ω = 1, the universe expands 22/3 timesbetween tmax and tvir, de
reasing its density by a fa
tor 4. At virialization, the density
ompared to the ba
kground is:
1 + δvir =

9π2

16

(
Rmax

Rvir

)3( ρ̄max

ρ̄vir

)
=

9π2

16
· 8 · 4 ≈ 178. (2.58)So the virialized obje
ts have the same densities in spite of di�erent masses.The predi
tion 
oming from the linear theory about the value of the density is mu
hless; in fa
t, using (2.56) and de�ning:

δL =
3

5
δi

(
t

ti

)2/3

=
3

5

(
3

4

)2/3

(θ − sin θ)2/3 , (2.59)where the subs
ript L refers to the linear regime, one obtains at the turnaround:
δL =

3

5

(
3π

4

)2/3

= 1.062. (2.60)



34 Stru
ture Formation in a ΛCDM UniverseThe linear theory gives a lower esteem of the overdensity, and this gap is greater towardthe 
ollapse. The predi
ted linear overdesity for a virialized obje
t has a signi�
antinterest for models that exploit the initial density �u
tuations in order to des
ribe theevolution of the non linear 
ustering; the value of this 
riti
al threshold for the 
ollapseis:
δsc =

3

5

(
3π

2

)2/3

= 1.68647 (2.61)where the subs
ript sc shows that this value is derived into the spheri
al model. Herethe value of δsc is obtained for an Einstein-de Sitter universe. For a ΛCDM universe(with Ωm = 0.3; ΩΛ = 0.7) the 
riti
al threshold for the 
ollapse is δsc = 1.675529.Ellipsoidal CollapseNumeri
al simulations show that the spheri
al 
ollapse model is not the best ap-proximation for des
ribe the formation of 
osmi
 stru
tures. For example: the massfun
tion obtained with the spheri
al model overestimates the number of low mass ob-je
ts and underestimates the number of high mass stru
tures. A more pre
ise modelis the ellipsoidal model that is more re�ned and takes into a

ount a higher degree of
omplexity for the stru
tures. From a priori point of view, one 
an predi
t that thespheri
al perturbation is a realisti
 approximation for masses a little greater than theJeans mass, in a regime where the pressure and dissipative e�e
ts drive to spheri
al
ondensations in whi
h the self-gravity is supported by the internal pressure. However,at the equivalen
e, it is unlikely that all the perturbations are spheri
al be
ause this
on�guration would be unstable when there are non radial motions.The ellipsoidal 
ollapse model introdu
es the ne
essary geometri
al 
omplexity, de-s
ribing omogeneous and triaxial regions in an uniform ba
kground: the perturbationswould evolve in omogeneous ellipsoids. In this 
ontext, the tidal for
es a�e
t the 
ollapsesubstantially.White & Silk Model White and Silk developed this model in the 1979 [91℄ des
ribingthe growth and the 
ollapse of omogeneous ellipsoidal perturbations in a uniform andexpanding ba
kground; they don't take into a

ount the tidal for
es 
reated by nearobje
ts. The homogeneity 
an seem to be a for
ing be
ause every proto-halo, whenbegins to free itself from the expansion, shows a strong 
oarsesness, due to the sub-stru
tures already viriaized inside it; however it is possible that vis
ous e�e
ts 
ansmooth the �u
tuations over s
ales like 1012 ÷ 1013M⊙.The gravitational potential within an uniform ellipsoid is:
Ve = −πGρe

3∑

i=1

αix
2
i , (2.62)
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ture Formation 35where ρe is the density of the ellipsoid; the 
oordinate axis 
oin
ide with the prin
ipalaxis of inertia and Ve is equal to zero in the origin. They de�ne the 
oe�
ients αi:
αi(

a1

a3
,
a2

a3
) = a1a2a3

∫ ∞

0
(ai + λ)−1

3∏

j=1

(aj + λ)−1/2dλ , (2.63)where ai are the semi-axis in 
omoving 
oordinates; they assume a1 ≤ a2 ≤ a3. Putting(2.62) into the Poisson equation (2.24) they get:
∑

i

αi = 2. (2.64)The ba
kground sourronding the perturbation is a homogeneous sphere with density ρb;the asso
iated potential is:
Vb = −2

3
πGρb

3∑

i=1

x2
i . (2.65)The sphere is put in the 
oordinate origin where the potential Vb = 0. The total potentialof a homogeneous perturbation in a non-perturbed universe is:

V = −πG
∑

i

[(ρe − ρb)αi +
2

3
ρb]x

2
i =

= −πG
∑

i

[αiρe +
(2

3
− αi

)
ρb]x

2
i . (2.66)In order to obtain the motion equations starting from the potential equation, one as-sumes that the region outside the ba
kground sphere is uniform and that the externaldensity 
an be 
al
ulated using Friedmann equations. The quadrati
 form of the poten-tial and the uniform ρb allow the �u
tuation to evolve through homogeneous ellipsoids:the velo
ity �eld remains linear. The evolution of the perturbation follows these equa-tions:






d2aidt2 = −2πG
[
αiρe +

(
2
3 − αi

)
ρb

]d2Rbdt2
= −4π

3 GρbRb

ρea1a2a3 = cost

ρbR
3
b = cost

(2.67)where Rb is the a s
ale fa
tor of the universe. The equations (2.67) must be integrateduntill the minor axis be
omes null and the stru
ture is 
alled pan
ake.Assuming that the αi's do not depend on time and that ρeai and ρbai have the sametime evolution, an approximation to the �rst equation of the system is obtained:d2aidt2 =
[3
2
αi(t0)

d2Redt2 +
(
1 − 3

2
αi(t0)

)d2Rbdt2 ]αi(t0) , (2.68)



36 Stru
ture Formation in a ΛCDM Universewhere t0 is the initial time and Re is the s
ale fa
tor of a universe with initial density
ρe(t0). The integration of (2.68) gives:

ai(t)

ai(t0)
=

3

2
αi(t0)Re(t) +

(
1 − 3

2αi(t0)

)
Rb(t) =

= Rb(t) −
3

2
αi(t0)[Rb(t) −Re(t)]. (2.69)These equations des
ribe the exa
t evolution of a spheri
al perturbation and are a goodapproximation to the ellipsoidal evolution.One 
an obtain the solution of the system (2.67) through a numeri
al integration.The results show that the time for the 
ollapse de
reases if the e

entri
ity grows;moreover the kinemati
 properties of the 
ollapsed ellipsoid depend, besides on theinitial shape of the perturbation, on the density of the universe. The axial ratios dependon time through:

a2(tc)

a3(tc)
≈ a2(t0) − a1(T0)

a3(t0) − a1(T0)
, (2.70)where tc is found putting a1(tc) = 0.The White and Silk approa
h allows to determine a relation between the initialperturbation and the �nal one, and the kinemati
 properties of the 
ollapsed obje
t.Although the tidal for
es are negle
ted, this model gives a 
orre
t qualitative view ofthe proto-stru
ture formation.Eisenstein and Loeb Model The model [19℄ follows, analiti
ally, the non linear
ollapse of aspheri
 regions in a gaussian primordial �eld of perturbations. The pertur-bations are des
ribed as homogeneous triaxial ellipsoids that are subje
t to their owngravitational �eld and to an external tidal tensor: this is the news feature respe
t toother older models. The initial perturbation is generated in a spheri
al volume arounda density peak; the 
ollapse is followed 
hoosing a triaxial ellipsoid with mass equal tothe mass of the spheri
al region, with the same overdensity and with the quadrupolemomentum equal to the one of the initial �u
tuation. The tidal tensor is originatedby the external �eld and is 
al
ulated drawing spheri
al radial shells around the peak.This mass distribution plays tidal torsions on the obje
t that begins to rotate. Usingthe equation of motion one 
an analyze the linear regime of the initial density �eld and,through an integration, the virialization 
an be des
ribed. It is also possible to deter-mine some statisti
al properties of the virialized obje
ts (shapes, orientations, angolarmomentum) by 
reating several realizations of the initial �eld. With this model, one
an see that the geometry of the 
ollapse is driven by the tidal for
es rather than bythe initial anisotropy of the �u
tuation.
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ture Formation 37Bond and Myers Model The model [8℄ 
onsiders both the non-linear internal dy-nami
 evolution of the stru
tures, and the slow external evolution of the virializedstru
tures, following an approa
h that is the generalization of the peak theory and ofthe Press-S
he
hter method. The proto-stru
ture is identi�ed by a lo
al density peak,�ltered over a s
ale Rf : δf (~r, t;Rf ). In the lo
al peaks, the gradient ∇iδf is equal to zero,and the tensor of the se
ond derivatives, ∇i∇jδf is less than zero. ∇iδf and ∇i∇jδf de-termine the 
entral properties of the peak; the dynami
 of the system is realated to thedispla
ement ~ψ(~r) around the peak. The displa
ement �eld is de
omposed into a part�ltered over a large s
ale (ba
kground) and a part that represents the �u
tuations of thedispla
ement �eld, that are statisti
ally indipendent from the ba
kground: ψ = ψb +ψf .Around the peak, the �eld ψb is identi�ed by the displa
ement of the peak and by thedeformation tensor:
~ψb,i ≈ ~ψpk,i −

∑

j

epk,ij(~r − ~rpk)i + · · · (2.71)The deformation tensor is de�ned by:
eb,ij ≡ −1

2

(∂ψb,i

∂rj
+
∂ψb,j

∂ri

)
(~r) ; (2.72)and:

epk,ij ≡ −eb,ij(~rpk). (2.73)The deformation tensor 
an be expressed as a fun
tion of its eigenvalues, that individ-ualize its prin
ipal axis:
eijpk = −

3∑

l=1

λln̂
i
ln̂

j
l ; (2.74)where n̂l are unit ve
tors.In order to des
ribe the ellipsoidal perturbation, one 
an use three parameters: theellipti
ity e, the prolateness p and the density 
ontrast δ. The relations among theseparameters and the eigenvalues of the tensor are:






λ1 = (δ/3)(1 + 3e+ p)

λ2 = (δ/3)(1 − 2p)

λ3 = (δ/3)(1 − 3e+ p)

(2.75)One 
an obtain:
{
e = (λ1 − λ3)/(2δ)

p = (λ1 + λ3 − 2λ2)/(2δ)
(2.76)



38 Stru
ture Formation in a ΛCDM UniverseIf λ1 ≥ λ2 ≥ λ3, one 
an obtain the 
onstrains: e ≥ 0, −e ≤ p ≤ e. The overdensity ofthe �ltered �eld, δ, 
oin
ides with the tra
e of the tensor:
δ = −eipk,i =

= [~∇ · ~ψb](~rpk) =

= λ1 + λ2 + λ3 (2.77)The 
ollapse begins with the �rst axis and the virialization happens when the third axis
ollapse.



Chapter 3
The Ex
ursion Sets method

The ex
ursion set formalism was introdu
ed by Bond et al. (1991) [7℄ and wasdeveloped by La
ey and Cole (1993) [41℄; they based their work on a model, writtenby Press and S
he
hter (1974) [58℄, that allows an analyti
 approa
h to the hierar
hi
almerging history of the dark matter haloes. The �rst hypothesis of this approa
h isthat the sto
hasti
, homogeneous and isotropi
 �eld δ(~x, t) = δ(~x, t0)D(t)/D(t0) isdetermined by small density �u
tuations, δ ≪ 1, that 
an be treated with the linearregime theory; D(t) is the linear growing fa
tor of the perturbations, ~x is the 
omoving
oordinate and t0 is a referen
e time, e.g. the present time. The �eld δ(~x, t) is setonly by the power spe
trum of the �u
tuations P (~k, t). The linear regime holds untilthe amplitude of the �u
tuations rea
hes the unit value; when this happens, the non-linear e�e
ts dominate and the region separetes from the expansion of the universe and
ollapses forming a virialized obje
t. At this epo
h, the density 
ontrast foretold by thelinear theory is δc ≡ δsc = 1.675529 for the 
on
ordan
e model.It is possible to 
hange the point of view on this linear evolution: one 
an transferthe time dependen
e from the δ-�eld to the 
riti
al threshold, by multiplying δc by
D(t0)/D(t). This means to 
onsider the linear �u
tuation �eld δ(~x) ≡ δ(~x, t0) at time
t0, and a 
riti
al threshold δc(t) = δc D(t0)/D(t) that de
reases while the time t grows.The model wants that the in�nitesimal mass element in ~x is part of a halo with massgreater or equal than M , at time t, if the linear �u
tuation δf (~x;R), 
entered on ~x and�ltered over a sphere with radius R ∝M1/3, is equal or greater than the threshold:

~x ∈M ⇒ δf (~x;R) ≥ δc(t). (3.1)39



40 The Ex
ursion Sets method3.1 Brownian MotionsThe density �eld δf (~x;R), �ltered over a s
ale R, is the 
onvolution of δ(~x) with awindow fun
tion W (~x,R) with a tipi
al amplitude R. Using the Fourier transform:
δf (~x;R) =

1

2π2

∫ ∞

0
δ̂(k)Ŵ (kR)k2 dk ≈ 1

2π2

∫ kf

0
δ̂(k)k2 dk ≡ δf (~x; kf ) (3.2)where kf ∝ 1/R is the wave number related to the �ltering radius R; 
onsidering theposition ~x = 0, one 
an throw away the exponential. δf (~x;R) is the sum over all the�u
tuation with a plane wave shape and with k . kf ; the window fun
tion is a low-pass�lter and removes the 
ontribution of waves with k & kf . The �ltering 
an be doneusing the mass instead of kf ; the mass varian
e over a s
ale kf is:

σ2
R =

1

2π2

∫ ∞

0
P (k)Ŵ 2(kR)k2 dk ≈ 1

2π2

∫ kf

0
P (k)k2 dk ≡ S(kf ) ; (3.3)usually, S(kf ) is a monotoni
 in
reasing fun
tion of kf , so that S(kf = 0) = 0 and

S(kf → ∞) → ∞.Consider, for ea
h point ~x, the path in the 2-dim spa
e (S(kf ), δf (~x; kf )) drawnby the �u
tuation δf 
entered in ~x and �ltered over a s
ale 
orresponding to kf . Ea
htraje
tory starts in (S, δf ) = (0, 0), that 
orresponds to a null �u
tuation with anin�nite window as a �lter, and then moves away from the origin, following the matterdistribution around the point ~x.If the window fun
tion is a Top Hat fun
tion in the Fourier spa
e, then the 
ontribu-tions to the δf (~x; kf )-�eld from di�erent k are not 
orrelated. In this 
ase the traje
toryis a Brownian motion in (S, δf ), that 
an be des
ribed using a di�usion equation:
∂Q

∂S
=

1

2

∂2Q

∂δ2f
, (3.4)where Q(δf , S) is the probability distribution in the sto
hasti
 variable δf for traje
toriesthat have a given σ2(kf ) = S value. For a free Brownian motion, the solution of thisequation is a Gaussian distribution:

Q(δf , S) =
1√
2πS

exp

(
−
δ2f
2S

)
. (3.5)This distribution shows, for ea
h S, the numeri
al density of traje
tories within theinterval [δf , δf + dδf ].3.2 From Traje
tories to HaloesThe traje
tories that, starting from the origin, rea
h the point (S, δf = δc(t)) areasso
iated with �uid elements that belong to haloes with mass M at time t. For ea
h



3.2 From Traje
tories to Haloes 41
t a horizontal threshold δc(t) (
alled also barrier) is determined; this barrier 
an be
rossed, for the �rst time, by a brownian path at a value S of the x-axis: this meansthat, at time t, the mass element related to this traje
tory is part of a halo with mass
M(S). The relation between S and M is given by (3.3) through kf ∝ 1/R ∝ M−1/3.The request that the traje
tory tou
hes the threshold for the �rst time, is equivalent to
onsider the maximum �ltering radius R = Rmax (i.e. the minimum kf or S) for whi
hthe sphere with radius Rmax, at time t, has an overdensity greater or equal to δc(t).Even if the random walk, after this 
rossing, 
omes ba
k again under the barrier, themass element is 
onsider to be part of the biggest halo with mass M(Rmax), be
ausethe region is 
ollapsed over that s
ale. In order to 
al
ulate the mass fun
tion of theDM-haloes, i.e. the mass distribution of the virialized stru
tures at various epo
hs t,one has to 
onsider the various types of traje
tories respe
t to the threshold δc(t) andto 
ount them. Consider a s
ale k0, 
orresponding to the varian
e S0, and an epo
h t.One 
an identify three kind of possible traje
tories:1. traje
tories that 
rossed the barrier at kf < k0 and that are still above the thresh-old:

δf (k) ≥ δc(t) ∀k ∈ [kf , k0] ; (3.6)2. traje
tories that stay under the barrier at kf = k0, but that 
rossed it at a lowervalue of S:
δf (k0) < δc(t) ma ∃ kf < k0 tale 
he: δf (kf ) > δc(t) ; (3.7)3. traje
tories that did not 
ross the barrier:

δf (kf ) < δc(t) ∀ kf ≤ k0. (3.8)A straightforward way to fa
e the problem is to 
onsider the type-3 paths, that 
orre-spond to �uid elemets in haloes with mass M < M(S0) at time t. To do it, one mustsubtra
t, from the total number of traje
tories that are under the threshold, the type-2paths.Sin
e the path is determined by adding indipendent Fourier modes, at every timea traje
tory moves upward or downward with the same probability. So, every type-2traje
tory has a 
orresponding virtual one with the same probability that 
rosses thebarrier at the same point (S, δc(t)), but 
oming from higher values of y-axis: one 
anobtain it by re�e
ting the path before the �rst 
rossing respe
t to the axis δc(t). Thisvirtual traje
tory 
orresponds to a brownian walk starting from (S, δf ) = (0, 2δc(t))and satisfying the di�usion equation with the solution (3.5); note that the 
enter of the



42 The Ex
ursion Sets methodGaussian must be shifted from 0 to 2δc(t). So, the probability for type-2 paths is:
Q1(δf , S, δc(t)) dδf =

1√
2πS

exp

[
−(δf − 2δc(t))

2

2S

] dδf . (3.9)So, the probability for type-3 traje
tories is:
Q2(δf , S, δc(t)) dδf = [Q(δf , S) −Q1(δf , S, δc(t))] dδf

=
1√
2πS

{
exp

(
−
δ2f
2S

)
− exp

[
−(δf − 2δc(t))

2

2S

]} dδf(3.10)Chandrasekhar (1943) shows that this is the solution of the di�usion equation of the

Figure 3.1: An example of sto
hasti
 paths and of the probabilities Q, Q1 and Q2asso
iated to the value of S (on the y-axis: fv ≡ δc(t)), from Bond et al. (1991).sto
hasti
 traje
tories, eq. (3.4); the boundary 
ondition wants the absortion of thetraje
tories that 
ross the barrier. The fra
tion of paths that, within the time t, havenot 
rossed yet the barrier δc(t), is the 
umulative probability obtained with an integralfrom −∞ to δc(t) of the previous expression:
P2(S, δc(t)) =

∫ δc(t)

−∞
Q2(δf , S, δc(t)) dδf . (3.11)The fra
tion of traje
tories that have already 
rossed the barrier within t is the 
om-plementary set:

P̄2(S, δc(t)) = 1 − P2(S, δc(t)) ; (3.12)



3.3 Useful distributions 43(3.12) is the numeri
al fra
tion of �uid element that are part of haloes with varian
e
< S, at time t: this is the de�nition of 
umulative mass fun
tion at time t, expressed inthe S-variable:

P̄2(S, δc(t)) = P (< S, t). (3.13)3.3 Useful distributionsWithin the formalism of the ex
ursion sets, following arguments similar to the onesused for the 
umulative mass fun
tion, and adding some statisti
s, it is possible toobtain other distributions of interest. In the 
ontext of the spheri
al 
ollapse, Bond etal. (1991) [7℄ and La
ey and Cole (1993) [41℄ found the di�erential mass fun
tion; La
eyand Cole [41℄ [42℄ 
onsidered also the progenitor and the des
endant mass fun
tions,besides the merger rate; Cavaliere et al. (1991) [12℄, Blain & Longair (1993) [6℄), Sasaki(1994) [64℄, Kitayama and Suto (1996) [36℄, Per
ival and Miller [57℄ tried to obtainanalyti
al equations for the 
reation and destru
tion rates.3.3.1 Mass Fun
tionThe di�erential mass fun
tion (or global, or un
onditional mass fun
tion) is theprobability that, at time t, a �uid element is part of a halo with mass in the interval[M,M + dM ℄. It 
an be obtained starting from the distribution of the traje
tories that
ross the barrier for the �rst time at t and at [S, S + dS℄; this distribution derives fromthe 
umulative mass fun
tion, by a derivative respe
t to the varian
e S:
p(S, δc(t)) ≡ ∂P̄2(S, δc(t))

∂S
= −∂P2(S, δc(t))

∂S

= − ∂

∂S

∫ δc(t)

−∞
Q2(δf , S, δc(t)) dδf . (3.14)Putting the derivative into the integral and exploiting the di�usion equation (3.4), one
an substitute the derivative respe
t to S with the se
ond derivative respe
to to δf ,obtaining:

p(S, δc(t)) = −1

2

∫ δc(t)

−∞

∂2Q2

∂δ2f
dδf = −1

2

∂Q2

∂δf

∣∣∣∣
δc(t)

−∞
. (3.15)With a derivative of eq. (3.10) one obtains:

∂Q2

∂δf
=

1√
2πS

{
−δf
S

exp

[

−
δ2f
2S

]

+
δf − 2δc(t)

S
exp

[
−(δf − 2δc(t))

2

2S

]}

. (3.16)



44 The Ex
ursion Sets methodIn −∞, the fun
tion is null, be
ause it 
ontains terms like exp(−∞). Only the term in
δc(t) remains, so:

p(S, δc(t)) ≡
df(S)dS = −1

2

∂Q2

∂δf

∣∣∣∣
δc(t)

=
−1

2
√

2πS

(−2δc(t))

S
exp

[
−δ

2
c (t)

2S

]

=
δc(t)√
2πS3/2

exp

[
−δ

2
c (t)

2S

]
. (3.17)This is the fra
tion of mass in haloes with varian
e around S. The fra
tion of mass withmass around M is obtained 
hanging the variable S into M and using the 
onservationof probability:

p(x) dx = p(y) dy ⇒ p(x) = p(y)

∣∣∣∣
dydx ∣∣∣∣ (3.18)so: df(M)dM =

df(S)dS ∣∣∣∣
dSdM ∣∣∣∣ . (3.19)From, ∣∣∣∣

dSdM ∣∣∣∣ =
S

M

∣∣∣∣
d lnSd lnM

∣∣∣∣ =
2S

M

∣∣∣∣
d lnσd lnM

∣∣∣∣ (3.20)one obtains: df(M)dM =

(
2

π

)1/2 δc(t)

Mσ(kf )

∣∣∣∣
d lnσd lnM

∣∣∣∣ exp

[
− δ2c (t)

2σ2(kf )

]
. (3.21)The number of haloes with mass M in a volume V 
ontaining a total mass MV is:df(M)dM MV

M
; (3.22)
onsidering a unit volume (V = 1 and MV = ρ0), one obtains the numeri
al density ofhaloes with mass:dndM (M, t) =

df(M)dM ρ0

M
=

(
2

π

)1/2 ρ0

M2

δc(t)

σ(kf )

∣∣∣∣
d lnσd lnM

∣∣∣∣ exp

[
− δ2c (t)

2σ2(kf )

]
. (3.23)This is the Press-S
he
hter mass fun
tion. It is possible and more useful re-write theglobal mass fun
tion eq. (3.23) in the variable ν = δc(t)/σ(M) be
ause in this way thereis a degenera
y resp
t to the redshift, that means that the fun
tion has the same shapefor ea
h epo
h: df(ν)d ln ν

=

(
2

π

)1/2

ν exp

(
−ν

2

2

)
. (3.24)



3.3 Useful distributions 453.3.2 Progenitor Mass Fun
tionThe results obtained with the ex
ursion sets appra
h, besides the mass fun
tion, are
alled extended Press-S
he
hter model. So far, the traje
tories have been 
ounted at a�xed time in order to obtain the global mass fun
tions. However, a traje
tory δf (S) 
analso des
ribe the merging history of a parti
le throgh various times. The hierar
hi
al
lustering is des
ribed: to follow a given �uid element that, as time in
reases, is part ofmore massive haloes is the same as to follow a traje
tory starting from great values of
S and δc(t) and going toward the bottom and the left of the plot, Figure 3.3.2 pointingat the origin of the 
oordinate system. Sin
e at a given time one assumes that a �uidelement is in
luded in a halo with the minimum value of S for whi
h the asso
iatetraje
tory 
rossed the δ-threshold, as time in
rases (and as the threshold gets lower),the mass of the halo that owns that parti
le follow the trend given by the traje
tory fortype-1 traje
tories, whereas it jumps toward left until it rea
hes the �rst up
rossing fortype-2 traje
tories; this is shown in Figure 3.3.2.In the hierar
hi
al 
lustering, this in
rease in mass is interpreted as the result ofmerging events among di�erent haloes.One 
an be interested in knowing how a given halo of a 
ertain mass that exists ata 
ertain epo
h was splitted in other haloes at a previous times. The progenitor massfun
tion is the distrubution of the haloes at a time t1 that are 
onstrained to beingpart of given halo at time t2 > t1. More pre
isely, using the 
orresponden
e betweentraje
tories and �uid elements: the progenitor mass fun
tions is the probability that aparti
le resides in an obje
t of mass M1 at redshift z1 (it is easier to use the redshiftinstead of the time) provided that it will be part of an obje
t with greater massM2 > M1at a later time or preavious redshift z2 < z1. The request that a halo with mass M1at t1 will have a mass M2 at t2 
orresponds to the sele
tion of all the traje
tories thatpass through the 2 points (S1, δc(t1)) e (S2, δc(t2)) 
on S1 > S2 in the ex
ursion setsdiagram; in Figure 3.3, all the traje
tories 
onditioned to pass through (S2, δc(t2)) areshown. The 
onditional distribution p(S1, δc(z1)|S2, δc(z2)), is obtain from the equation(3.17), noti
ing that it 
orresponds to ask that the traje
tories don't start from thepoint (0, 0), but from (S2, δc(t2)). It is enough to do the repla
ements S → (S1 − S2) e
δc(t) → (δc(t1) − δc(t2)) into (3.17), and one 
an obtain:

p(S1, δc(t1)|S2, δc(t2)) =
dfdS (S1, t1|S2, t2) =

=
δc(t1) − δc(t2)√
2π(S1 − S2)3/2

exp

[

−(δc(t1) − δc(t2))
2

2(S1 − S2)

]

. (3.25)To write the distribution as a fun
tion of the mass, one 
an use the relation (3.18):
p(M1, t1|M2, t2) = p(S1, t1|S2, t2)

∣∣∣∣
dS1dM1

∣∣∣∣ ; (3.26)



46 The Ex
ursion Sets method

Figure 3.2: A random walk and its asso
iated mass history. A merger (m,m −M) →
M at redshift z is depi
ted by the SM → Sm jump at height δc(z). Starting at(SM−m,δc(z)), there is a 
onne
tion between the bran
h and the asso
iated (M −m)�sibling�. From Moreno et al. 2008 [51℄



3.3 Useful distributions 47

Figure 3.3: Set of traje
tories 
onstrained to pass through (S2, δc(t2)) (ω1 ≡ δc(t1) and
ω2 ≡ δc(t2)), that 
orrespond to the parti
les 
onstrained to be part of a halo withvarian
e S2, at t2, from La
ey & Cole (1993).3.3.3 Des
endant Mass Fun
tionThe des
endant mass fun
tion is the probability that a halo of mass M1 at time t1will form a halo of mass M2 > M1 at time t2 > t1 (z2 < z1) through merger events; i.e.the 
onditional probability that a parti
le resides in an obje
t of mass M2 at a redshift
z2 provided that it has been part of an obje
t of mass M1 at z1 > z2. In order to �ndthe analiti
al form of this distribution, it is ne
essary to enun
iate the Bayes theorem:the probability of an event A given an event B, is equal to the ratio of the probabilityof A over the one of B, times the probability of B given A: p(A|B) = p(A)

p(B)p(B|A). So,using the global mass fun
tion an the progenitor mass fun
tion, it is strightforward toobtain the des
endant mass fun
tion:
p(S2, δc(t2)|S1, δc(t1)) dS2 =

p(S1, δc(t1)|S2, δc(t2)) dS1p(S2, δc(t2)) dS2

p(S1, δc(t1)) dS1

=

[
S1

S2(S1 − S2)

]3/2 δc(t2)(δc(t1) − δc(t2))√
2πδc(t1)

× exp

[
−(δc(t2)S1 − δc(t1)S2)

2

2S1S2(S1 − S2)

] dS2 (3.27)The distribution as a fun
tion of mass is obtained multiplying by the Ja
obian | dS2dM2
|.



48 The Ex
ursion Sets method3.3.4 Merger RateIf one 
onsider a �nite time interval ∆t, the mass of a halo 
an 
hange by an amount
∆M , due to the 
umulative e�e
ts of more than one merger; in an in�nitesimal intervaldt, the entire ∆M must be due to a single merger event. So taking the limit in thedes
endent mass fun
tion for t2 → t1 (so δc2 → δc1), one 
an obtain the merger rate:d2pdln∆Mdt(M1 →M2|t) = 2σ2

∣∣∣∣
dσ2dM2

∣∣∣∣∆M
∣∣∣∣
dδc(t)dt ∣∣∣∣

1√
2π

[
S1

S1(S1 − S2)

]3/2

×

× exp [−δ2c (S1 − S2)

2S1S2

] (3.28)This is the rate of merging of a halo of mass M1 with a halo of mass ∆M .3.3.5 Creation and Destru
tion RatesThe growth of 
lustering in a system in whi
h 
lusters 
oales
e by binary mergers isdes
ribed by the Smolu
howski equation [72℄: given the distribution n(M, t), of obje
tsmasses M at time t, this equation gives the rate of 
hange of this distribution:
∂n(M, t)

∂t
=

∫ M/2

0
Q(M −M ′,M ′; t)n(M −M ′; t)n(M ′; t)dM ′ +

−
∫ ∞

0
Q(M,M ′; t)n(M, t)n(M ′, t)dM ′ (3.29)where Q(M1,M2; t) en
odes the merger rate between obje
ts of mass M1 and M2 attime t. The �rst term represents the 
reation event and the se
ond term the destru
tionones; within the hiera
hi
al s
enario, the destru
tion is the disappearan
e of obje
tsof a 
ertain mass due to the merging with other obje
ts (with the result of formingmore massive stru
tures) and must not be 
onfused with the fragmentation of a haloin smaller haloes, that is 
ommon in numeri
al simulations, but it is not 
ontemplatedin the analyti
al model. Although some authors (Cavaliere et al. 1991 [12℄, Blain &Longair 1993 [6℄) de�ned the 
reation and destru
tion rates of a dark matter halo asthe positive and negative part of the time derivative of the mass fun
tion, there notheoreti
al reasons to a

ept it. In fa
t, this method is tightly related to the �shape�of the analiti
al form of the global mass fun
tion in the spheri
al 
ollapse that allowto obtain only two terms making the derivative, one positive and one negative. A morepre
ise method to obtain these distributions is shown by Kitayama and Suto (1996).They de�ne the 
reation and destru
tion rates as the 
omoving number density of boundsystems of a given mass that are 
reated or destroyed in unit time at a given epo
h.In order to �nd the rates with the Kitayama and Suto pro
edure, one must �nd theinstantaneous transition rates starting from the the progenitor and des
endant mass



3.3 Useful distributions 49fun
tions and making a time derivative of them. For the instantaneous 
reation rate,let put t1 = t− ∆t, t2 = t, M2 = M , in the progenitor mass fun
tion, and 
onsider thelimit ∆t→ 0: dP1(M1 →M ; t)dt ≡ lim
∆t→0

P1(M1, t− ∆t|M, t)

∆t

=
1√
2π

1

(S1 − S)3/2

[
−dδc(t)

dt

] ∣∣∣∣
dS1dM1

∣∣∣∣ ; (3.30)The instantaneous destru
tion rate is obtained by putting t2 = t+∆t, t1 = t,M1 = M ,in the des
endant mass fun
tion and 
onsidering the limit ∆t→ 0:
dP2(M →M2; t)

dt
≡ lim

∆t→0

P2(M2, t+ ∆t|M, t)

∆t

=
1√
2π

[
S

S2(S − S2)

] 3
2
[
−dδc(t)dt ] ∣∣∣∣

dS2dM2

]

×exp [−(S − S2)δ
2
c (t)

2SS2

]
. (3.31)This expression was de�ned as the merger rate. The fomation and destru
tion rates arede�ned as:

Rcrea(M, t) ≡
∫ M

0
dM1

dP1(M1 →M ; t)dt NPS(M, t) (3.32)and
Rdest(M, t) ≡

∫ ∞

M
dM2

dP2(M →M2; t)dt NPS(M, t). (3.33)3.3.6 The di�eren
e between Formation and CreationAuthors have used the term formation to 
onsider both the time in the merginghistory of a halo when the prin
ipal progenitor has at least half of the mass of the
onsidered halo (La
ey and Cole, 1993) and the quantities that follow by the progenitormass fun
tion (Kitayama and Suto, 1996). Following the 
lari�
ation by Gio
oli at al.2007 [26℄ about this misunderstanding, in this thesis the term �
reation� is used referringto the numeri
al in
rement of halo of a 
ertain mass 
aused by the merging of haloes ofsmaller masses.





Chapter 4Distributions in the EllipsoidalCollapse ModelThe un
onditional mass fun
tion found in the spheri
al 
ollapse 
ontext (eq. (3.21))is reasonably a

urate if 
ompared with the results of numeri
al simulations; howeverLa
ey and Cole (1994) [42℄ and Sheth and Tormen (1999) [69℄ showed that the Press-S
he
hter mass fun
tion fails for small haloes and for the high mass 
ut-o�: it predi
tstoo mu
h small stru
tures and less massive obje
ts respe
t to the results of di�erent sim-ulations (e.g. Efstathiou et al. 1985 [20℄ for LC93 and the GIF simulation by Kau�mannet al. 1999 [35℄ for ST99). Sheth, Mo and Tormen (2001) [68℄ showed how this dis
rep-an
y between theory and simulations 
an be redu
ed substantially if bound stru
turesare assumed to form from an ellipsoidal, rather than a spheri
al, 
ollapse.4.1 Moving BarrierThe ex
ursion sets model builds the spheri
al 
ollapse into the Press and S
he
hterformalism, by determing a 
onstant barrier in δ that has to be 
rossed to found the
ollapse. This threshod does not depend on mass (or varian
e) but it is a fun
tionsof the redshift (or time). This re�e
ts the fa
t that the evolution of a spheri
al initialoverdensity is driven only by its self-gravity. The non-
orrelation of the random walksand the independen
e of the barrier on ν = δsc
σ allow to obtain a simple formula forthe mass fun
tion asso
iated to the spheri
al 
ollapse (eq. 3.24). Within this spheri
alapproa
h the e�e
ts due to the ba
kground 
osmology and those due to the powerspe
trum 
an be treated separately: the 
osmologi
al models determine how δsc dependson z (or t), whereas the power spe
trum shape 
onstrains the dependen
e of the varian
eon M ∝ R3.Within the ex
ursion set approa
h the shape of the mass fun
tion is determined by51
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Figure 4.1: The evolution of an ellipsoidal perturbation in an Einstein-de Sitter universe.Symbols show the expansion fa
tor when the longest axis 
ollapses and virializes, as afun
tion of initial e and p, in steps of 0.025, if the initial overdensity was δi. The solid
urve shows the formula for the p = 0 result, and the dashed 
urves show |p| = e/2. Thetime required to 
ollapse in
reases mononi
ally as p de
reases. The axis on the rightshows the asso
iated 
riti
al overdensity required for 
ollapse, and the axis on the topshows the result of using the formula to translate from e to σ(m) when p = 0. FromSMT01 [68℄.the threshold and by the dependen
e of S on M . Sin
e S(M) depends on the initialpower spe
trum but not on the underlying dynami
s, in order to in
orporate the e�e
tsof the ellipsoidal 
ollapse into the ex
ursion sets model, SMT01 determine the barriershape asso
iated with the non-spheri
al dynami
s. They 
onsider the ellipsoidal modeldes
ribed by Bond and Myers (1996) [8℄, in whi
h the perturbation is assumed to bebetter des
ribed by the initial shear �eld than the initial density �eld. For a givenba
kground model (SMT01 assume an Einstein- de Sitter universe), the evolution of anellipsoidal perturbation is determined by the eigenvalues of the perturbation tensor 1:the initial ellipti
ity e, the prolateness p, the density 
ontrast δ. Figure 4.1 shows theexpansion fa
tor at the 
ollapse as a fun
tion of e and p; at a given e, the largest 
ir
les1Any position in a smoothed Gaussian random �eld has an asso
iated perturbation potential, these
ond derivatives of whi
h de�ne the deformation tensor



4.1 Moving Barrier 53show the relation at p = 0, medium ones at |p| ≤ e/2, small ones at |p| ≥ e/2. Onaverage, virialization o

urs later as e in
rease and as p de
reases. For Eistein-de Sittermodels, the expansion fa
tor is proportional to the linear theory grow fa
tor, so theplot shows also a relation for δec(e, p), where the subs
ript ec refers to the ellipsoidal
ollapse. For a range of e and p, a reasonable approximation to this relation is given by:
δec(e, p)

δsc
= 1 + β

[
5(e2 ± p2)

δ2ec(e, p)

δsc

]γ (4.1)where β = 0.47, γ = 0.615, δsc is the 
riti
al spheri
al 
ollapse value; the plus (minus)sign is used if pν is negative (positive). The solide 
urve in Figure 4.1 shows the valuegiven by equation 4.1 with γ = 0.615 and shows that the �tting is pre
ise within 10%.With a Gaussian initial �eld, for every s
ale Rf (parametrized by σ(Rf )), there is arange of probable values of e, p and δ. This means that there is a range of 
ollapsetimes asso
iated with regions of size Rf . One 
an obtain an estimate for an average
δec(σ) by averaging δec(e, p) over p(e, p, δ/σ) suitably. To do this, SMT01 noti
e thaton average, in a Gaussian �eld, p = 0. The solid 
urve in Fig. 4.1 shows the expansionfa
tor at virialization in this 
ase. It is straightforward to use this 
urve to 
omputethe asso
iated δec(e, z). Having done so, if one 
an relate e to the mass m, then he willbe in a position to des
ribe the barrier shape asso
iated with ellipsoidal, rather thanspheri
al 
ollapse. This 
an be done as follows. Regions initially having a given value of
δ/σ most probably have an ellipti
ity emp = (σ/δ)/

√
5. To 
ollapse and form a boundobje
t at z, the initial overdensity of su
h a region must have been δec(emp, z). If onerequires that δ on the right hand side of this relation for emp be equal to this 
riti
alvalue δec(emp, z), then this sets σ2(Rf). Sin
e R3

f is proportional to mass, this providesa relation between e and mass, and so between δec and mass:
δec(σ, z) = δsc(z)

(
1 + β

[
σ2

σ2
∗(z)

]γ)
, (4.2)where σ∗(z) ≡ δsc(z). The axis labels on the top and right of the plot show this (p = 0)relation. Noti
e that the power spe
trum enters only in the relation between σ and

m, whereas the e�e
ts of 
osmology enter only in the relation between δsc and z. Thisexpression is approximately the same for SCDM, OCDM, and ΛCDM models if all vari-an
es σ2(m) are 
omputed using the model dependent power spe
trum, and the value of
δsc(z) is 
omputed using the spheri
al 
ollapse model after in
luding its dependen
e onba
kground 
osmology: the di�eren
es between these models arise primarily from 
on-verting the s
aling variable ν to the physi
al variables z and m. A number of featuresof equation (4.2) are worth noti
ing. Massive obje
ts have σ/σ∗ ≪ 1. For su
h obje
tsequation (4.2) suggests that δec(σ, z) ≈ δsc(z), so the 
riti
al overdensity required for
ollapse at z is approximately independent of mass: massive obje
ts are well des
ribed



54 Distributions in the Ellipsoidal Collapse Modelby the spheri
al 
ollapse model. Se
ond, the 
riti
al overdensity in
reases with σ(m), soit is larger for less massive obje
ts. This is be
ause smaller obje
ts are more in�uen
edby external tides; they must have a greater internal density if they are to hold them-selves together as they 
ollapse. Eq. (4.2) is extremely useful be
ause it allows one toin
lude the e�e
ts of ellipsoidal 
ollapse into the Bond et al. (1991) ex
ursion set modelin a straightforward manner. Namely, all we need to do is to use equation (4.2) whensetting B(σ, z) = δec(σ, z). The threshold B(σ, z) found is 
alled moving barrier allowsto obtain the distributions in an ellispoidal 
ollapse 
ontext using the logi
 of La
eyand Cole (1993).4.1.1 Mass Fun
tionSMT01 give also an estimate of the mass fun
tion asso
iated with ellipsoidal 
ollapse,using the distribution of �rst 
rossing of the moving barrier (4.2) by indipendent randomwalk. This �rst 
rossing distribution is:
ν f(ν) = 2A

(
1 +

1

ν2q

) (
ν2

2π

)1/2

exp

(
−ν

2

2

)
, (4.3)where q = 0.3 and A ≈ 0.3222. This �rst 
rossing distribution di�ers from the onepredi
ted by the �standard� 
onstant barrier model for whi
h q = 0 and A = 1/2. In1999, Sheth and Tormen showed that, for the GIF simulation (Kau�man et al. 1999),the un
onditional mass fun
tion is well approximated by:

νf(ν) = 2A
(
1 +

1

(
√
aν)2q

)√aν√
2π

exp(− aν

2

) (4.4)where a = 0.707, q = 0.3, A ≈ 0.322. A is determined by assuming that ∫ f(ν)dν = 1;
q depends on the shape of the mass fun
tion at the small-mass end; a is determinedby the number of massive haloes in the simulation. It is possible to obtain the barrier
orresponding to this distribution: to a good approximation the threshold asso
iatedwith the GIF simulation has the form:

BGIF (S, z) =
√
aδsc

[
1 + β

( S

aδ2sc

)α] (4.5)where S = σ2, a = 0.707, β ≈ 0.485, α ≈ 0.615. Both the shape of the GIF-barrierand of the GIF-mass fun
tion di�er from equations 4.2 and 4.3 by the fa
tor a. In orderto understand from where this fa
tor 
omes from, 
onsider that when one simulates anumber of ex
ursion sets that 
ross an absorbing barrier, the masses of the haloes thatderive from this analysis are averaged over the mass 
orresponding to ea
h traje
tory;however, that mass is labelled as the one 
orresponding to the 
entral parti
le of theformed halo. So the a
tual mass is less than the predi
ted one be
ause of the 
ontribution
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tories that do not 
orrespond to parti
les in the 
enter. In order toshift the result toward bigger masses, the fa
tor √a is introdu
ed to lower the densitythreshold for the 
ollapse and 
ompensate the la
k of predi
tion of bigger haloes.In the rest of this work we will assume BGIF as the shape of the barrier for theellipsoidal 
ollapse.

Figure 4.2: The same as Figure 4.2 but with a moving barrier (in this 
ase a square-rootbarrier). From Moreno et al. 2008 [51℄.4.1.2 Spe
ial barriersThe value of the exponent α 
an be modi�ed to obtain other barrier shapes that givedi�erent forms for the mass fun
tion. Only in few 
ases this expression 
an be writtenin an analyti
al form:- if α = 0 one obtains the 
onstant barrier that 
hara
terizes the spheri
al 
ollapse.See Se
tion 3.3 for the 
orresponding mass fun
tion.



56 Distributions in the Ellipsoidal Collapse Model- if α = 1 (linear barrier), Sheth (1998) [67℄ shows that:
f(S, z) =

B(0, z)√
2πS3/2

exp [−B2(S, z)

2S

] (4.6)- if α = 0.5 (square-root barrier), Mahmood e Rajesh (2005) [45℄ show that:
f(S) =

exp(− β2

4D

)

2S

∑

v

(aδ2sc
DS

)v/2U
′
v

(
− β√

D

)

Iv

(
− β√

D

) , (4.7)where a = 0.707, β ≈ 0.485; U ′(δ) is the derivative, respe
t to δ, of the paraboli

ylinder fun
tion, de�ned by Erdelyi (1953) [22℄:
Uv(δ) =

√
2

π
ex

2/4

∫ ∞

0
dt e−t2/2tv
os(δt − vπ

2

)
, (4.8)with v ≥ −1; The de�nition of Iv is:

Iv(x) =

∫ ∞

x
U2

v (y)dy ; (4.9)
D is the di�usion 
onstant that 
onstrains the random walks.- if α = 2 (square barrier), Mahmood e Rajesh (2005) show that:

f(S) =
2b2k2e−2b2S3/3D

D

∞∑

n=1

e−λnSAi(2b
√
aδsc/D − λn)

Ai′(−kλn)
(4.10)where b = β(

√
aδsc)

−3 (β ≈ 0.485); k =
[

D
2b2

]1/3; Ai(y) is the Airy fun
tion2; λnare the eigenvalues of the di�usion equation; Ai′(x) is the x-derivative of the Airyfun
tion.4.2 Extension and improvement of the Ellipsoidal CollapseModelIn the last ten years many authors tried to improve the analyti
al form of variousdistributions both remaining within the ex
ursion sets formalism and trying to write�tting formulae so without assuming ne
essarily the pres
riptions of the ellipsoidal 
ol-lapse. For the un
onditional mass fun
tion, the most important �tting forms are thoseof Jenskin et al. (2001) [33℄, Warren et al. (2006) [86℄ and espe
ially for high redshiftmass fun
tion: Reed et al. (2003, 2007) [60℄, [61℄, Luki
 et al. (2007) [44℄. Other authors2The Airy fun
tion is the solution of the di�erential equation: ∂2ψ

∂y2
− yψ = 0.



4.2 Extension and improvement of the Ellipsoidal Collapse Model 57made use of the ex
ursion sets tool and worked on it e.g. 
onsidering series expansions ofthe barrier like Sheth & Tormen (2002) [70℄, or 
onsidering various shapes of the movingbarrier like Mahmood & Rajes (2005) [45℄ or Zhang & Hui (2005) [94℄, or 
onsideringfra
tional or 
orrelated ex
ursion sets like Pan (2007) [53℄ or Pan et al. (2008) [54℄.The progenitor mass fun
tion was �rst 
onsidered by Sheth and Tormen (2002) for theellipsoidal 
ollapse model; Rubino-Martìn at al. (2008) [62℄ obtained the 
onditionalmass fun
iton by a res
aling of the un
onditional one; Zhang, Ma and Fakhouri (2008)[95℄ found equations for progenitor mass fun
tion in the limit of small look ba
k times.The problem of the merger rates was fa
ed by several authors: Benson et al. (2005) [4℄and Benson (2008) [5℄ used the Smolu
howski formalism (1916) [72℄ to deal with thesequantities; Fakhouri & Ma (2008) [23℄ gave di�erent de�nitions of the quantity mergerrate and, for ea
h one, they 
he
ked the behaviour of dark haloes with simulations;Neistein and Dekel (2008) [52℄ derived analyti
 merger rates 
onsidering more than twoprogenitor for ea
h merger. Moreno et al. (2009) [51℄ found an equation for the 
reationrate in moving barrier models.All these e�orts in �nding improvements for the dark matter haloes distributions
ome not only from the purpose to give a 
oherent s
enario for the dark universe,but also from the ne
essity of having pre
ise and possibly simple equations to use invarious �elds of astrophysi
s. Current s
enario of galaxy formation assumes that thedark matter haloes are the stru
tures that trigger the potential well within whi
h thebaryoni
 matter falls and where the gas 
an 
ool and form stars (White & Rees, 1978 [90℄,White & Frenk, 1991 [89℄, Kau�man et al., 1999 [35℄): in su
h models, understanding theproperties of dark haloes is important. Merger history trees are the key to understandgalaxy formation and evolution, and any semi-analyti
al model must in
lude the mergerdynami
s of their host haloes. They are useful at studying the brighter galaxies in the
ore of ri
h galaxy 
lusters (De Lu
ia & Blaizot, 2007 [17℄), satellites and intra 
lusterlight (Conroy et al., 2007 [15℄). Galaxy mergers drive gas toward 
entral starburst(Milhos & Hernquist, 1996 [48℄) and supermassive bla
k holes (Hernquist, 1989 [31℄).The rate of dark matter mergers is a 
ru
ial ingredient in models of galaxy and larges
ale stru
ture formation, from sub-gala
ti
 s
ale to galaxy-
luster s
ale. Merger rateshave been applied to galaxy formation models: to determine the galaxy morphologythrough merger history (Gottlober et al. 1999 [27℄); for AGN a
tivity (Wyithe and Loeb,2003 [92℄); models for Lyman-break galaxies (Kolatt et al., 1999 [38℄); abundan
es ofbinary supermassive bla
k holes (Volonteri et al., 2002 [85℄); rates for SMBH 
oales
en
e(Milovavljevi
 and Merritt, 2001 [49℄) and the resulting LISA event rate (Menou et al.,2001 [47℄, Haehnelt, 1994 [30℄); the �rst stars (Santos et al., 2002 [63℄, S
annapie
o etal., 2003 [65℄); gala
ti
-halo substru
ture (Kamionkowski and Liddle, 2000 [34℄, Bulloket al, 2000 [11℄, Benson et al., 2002 [3℄, Somerville, 2002 [73℄, Sti� et al., 2001 [78℄);



58 Distributions in the Ellipsoidal Collapse Modelhalo angular momenta (Vitvitska et al., 2002 [84℄) and 
on
entrations (We
hstler et al.,2002 [87℄); galaxy 
lustering (Per
ival et al. 2003 [56℄); parti
le a

eleration in 
lusters(Gabi
i & Blasi [24℄); and formation-redshift distributions for galaxies and 
lusters andthus their distributions in size, temperature, luminosity, mass, and velo
ity (Verde etal., 2001, 2002 [82℄, [83℄).4.3 What's new in this thesisThe leading idea of this thesis is to �nd pre
ise and simple analyti
al equations de-s
ribing some usefull distributions for the dark matter haloes, starting from the un
on-ditional mass fun
tion, passing through the progenitor and des
endant mass fun
tions,and arriving to the instantaneous 
reation and destru
tion rates. The 
onstrain is toremain in the 
ontext of the ellipsoidal 
ollapse, sin
e it is built on a robust physi
altheory and it works better for the global mass fun
tion. The tool used is the des
ribedex
ursion sets theory and the approa
h is similar to that exploited to obtain distribu-tions for spheri
al obje
ts. In this way, we want to extend to the more pre
ise ellipsoidaldynami
 the mass distributions that are usually used, remaing in the spheri
al 
ase. InTable 4.3 there is summary of the fun
tions that was so far obtained and 
he
ked withsimulation.Distribution SC 
he
k sim EC 
he
k simUMF LC93 Yes SMT01, ST02, this work YesPMF LC93 Yes ST02, ZMF08, this work YesDMF LC93 Yes This work YesICR KS96 � This work �IDR LC93 Yes This work YesCR KS96 PM99 Yes MGS09 YesDR KS96 � � �Table 4.1: For di�erent distributions (Un
onditional, Progenitor, Des
endant mass fun
-tions, Creation and Destru
tion Rates -Instantaneous and not-), the table shows if thereexist an analyti
al form in the literature and if some authors 
ompare it with the resultsof the numeri
al simulations. The abbreviations refer to the names of the authors, easilyretrievable in the text.We start from the work of Sheth and Tormen (2002) [70℄: in this paper, the authorsshow that in the ellipsoidal 
ontext, a good approximation for the global mass fun
tion,



4.3 What's new in this thesis 59obtained with the ex
ursion sets approa
h with a generi
 moving barrier, is:
f(S)dS =

|T (S)|√
2πS3/2

exp [−B(S)2

2S

]
dS (4.11)This mass fun
tion is expressed in the variable S, the varian
e of the fu
tuations, be
ausefrom this distribution is easier to do the step toward the progenitor mass fun
tion aswill be des
ribed later. In the equation B(S) is the moving barrier des
ribed by eq.(4.5) and T (S) is one of the key-ingredient for understand the work done; this term isde�ned as:

T (S) =

5∑

n=0

(−S)n

n

∂nB(S)

∂Sn
(4.12)This quantity represents the �rst six terms of the Taylor expansion series of the barrieraround the generi
 position S and evaluated in S = 0. Exploiting some re
ursive prop-erties of the derivative of the barrier respe
t to S, one 
a re-write the mass fun
tion inthis way:

f(S) =
1√

2πS3/2
exp [−B(S)2

2S

]√
aδsc

[
1 +

βSα

(aδ2sc)
α

5∑

n=0

(−1)n

n!

n∏

i=0

α− i

α− n

] (4.13)A �rst look to the geometry of the moving barrier, respe
t to the 
onstant one 
an,suggests that the use of the La
ey & Cole approa
h to �nd the progenitor mass fun
tionis more di�
ult here. The moving barrier shape is not linear in S so, 
hanging the origin(
onstraining the traje
tories of the ex
ursion sets to pass through the point asso
iatedto the a halo of whi
h the progenitors are sought) the barrier has not the same fun
tionalform. The di�eren
e:
B(S1, z1) −B(S2, z2) =

√
aδ(z1)[1 + βSα

1 /(aδ(z1)
2)α] −

√
aδ(z2)[1 + βSα

2 /(aδ(z2)
2)α](4.14)
an be written as a 
onstant plus a term whi
h s
ales as (S1−S2)

α only if α equals zeroor one. This means that the solution of the two barrier problem 
an not be given bya simple res
aling of the un
onditional ellipsoidal mass fun
tion. However, ST02 avoidthis problem starting from eq. (4.11) and making these substitutions: S → (S1 − S2),
B(S) → (B(S1, z1) − B(S2, z2)), T (S) → T (S1|S2), where the subs
ript 2 refers toan halo with varian
e S2 = S(M2) < S1 = S(M1) at time t2 > t1 (
orresponding to
z2 < z1) and the subs
ript 1 is atta
hed to its progenitor. They write:

f(S1, z1|S2, z2)dS1 =
|T (S1|S2)|√

2π(S1 − S2)3/2
exp [− [B(S1, z1) −B(S2, z2)]

2

2(S1 − S2)

]
dS1 (4.15)The term T (S1|S2) is the se
ond important expansion series for this work; it is de�nedas:

T (S1|S2) =
5∑

n=0

(S2 − S1)
n

n!

∂n[B(S2, z2) −B(S1, z1)]

∂S1
(4.16)



60 Distributions in the Ellipsoidal Collapse ModelIt is the di�eren
e between the sum of the �rst 6 terms of the Taylor expansion seriesof B(S, z1) around a generi
 S1 and evaluated in S2, and the value of B(S, z2) in S2.The equation 4.15 
an be re-written in this way:
f(S1, z1|S2, z2)dS1 =

1√
2π(S1 − S2)3/2

exp [− [B(S1, z1) −B(S2, z2)]
2

2(S1 − S2)

]
×

×
[√

a(δsc(z1) − δsc(z2)) + β

(
Sα

1

(aδ(z1)2)α−0.5

( 5∑

n=0

(
S2 − S1

S1

)n 1

n!

n∏

i=0

α− 1

α− n

)

+

− (
Sα

2

(aδ(z2)2)α−0.5

)]
dS1 (4.17)So the introdu
tion of the Taylor expansion series in the mass fun
tion leads to adistribution that is �only� an approximation to the exa
t solution, but allows to obtainthe 
onsequent 
onditional mass fun
tion.A look at the equations written so far 
an highlight how di�
ult 
an be their ap-pli
ation in parti
ular when used to �nd other distributions, e.g. the des
endant massfun
tion or the rates of 
reation and destru
tion. For this reason this thesis investigatesthe possibility to ex
hange the equation found in literature with other forms, possiblysimple, but mantaining, or improving the a

ura
y (measured as a mat
h to the resultsof the numeri
al simulations) and mantaining the basi
 features of the ellipsoidal 
ol-lapse model. In order to �nd an improvement of the �standard� ellipsoidal 
ollapse, twoparameters in the equations of the un
onditional and progenitor mass fun
tion were
hosen to be tuned in order to �nd the best formulas; in this 
ontext the word �best�means both that better �ts the numeri
al simulations and that shows a simple fun
tionalform. The parameter 
hosen to be free are the (i) orders of the two Taylor expansionseries and (ii) the normalization of the distribution. The �hope� in doing this is to �ndthat the best distribution (or, at least, a good approximation), would be the one withzero or in�nite terms in the expansion series be
ause they provide simple analyti
alform for all the distributions in whi
h we are interested. In Figure 4.3 a geometri
alrepresentation of the meaning of T0 and T∞ for the �
onditional� expansion series (eq.(4.16)) is shown. The plot shows that the Taylor expansion is the di�eren
e betweenthe height of two moving barriers 
onsidered at two di�erent epo
hs, and for di�erent

S, depending on the order 
hosen; the results of T (S1|S2) lies between the minimumvalue provide by 
onsidering ∞ terms in the Tayor expansion, and the maximum valuegiven by T with 0 orders. The utility of these two 
ases is higlighted by the simpli
ityif the mass fun
tions that derive; for the un
onditional mass fun
tion one obtains:
f(S)dS =

B(S)√
2πS3/2

exp [−B(S)2

2S

]
dS (4.18)
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Figure 4.3: Two moving barrier are shown at di�erent redshift. The blue shorter drawis the geometri
al meaning of the Taylor expansion series eq. (4.16) with in�nite terms;the red longer draw is the series with 0 term.
onsidering 0 orders;
f(S)dS =

√
aδsc√

2πS3/2
exp [−B(S)2

2S

]
dS (4.19)with in�nite orders. The progenitor mass fun
tion be
omes:

f(S1, z1|S2, z2)dS1 =
B(S1, z1) −B(S2, z2)√

2π(S1 − S2)3/2
exp [− [B(S1, z1) −B(S2, z2)]

2

2(S1 − S2)

]
dS1(4.20)with zero orders;

f(S1, z1|S2, z2)dS1 =
B(S2, z1) −B(S2, z2)√

2π(S1 − S2)3/2
exp [− [B(S1, z1) −B(S2, z2)]

2

2(S1 − S2)

]
dS1(4.21)



62 Distributions in the Ellipsoidal Collapse Modelwith in�nite orders. All these equations have a simple analyti
al form that avoids theTaylor expansion.4.4 Des
endant Mass Fun
tion and Merger RateIn literature there is not an expli
it analyti
al form for the distribution of the de-s
endent of dark matter haloes for the ellipsoidal 
ollapse model. Here the pro
edureof La
ey & Cole (1993) is used to obtain su
h formula (see Se
tion 3.3.3). Exploitingthe Bayes relation for the 
onditional probability, the progenitor and two global massfun
tions are mixed to obtain the probability that a parti
le will resides in a halo ofmass M2 at time z2 given that it is part of a halo of mass M1 < M2 at time z1 > z2. Ifexpressed in the variables S and z one 
an write:
f(S2, z2 | S1, z1) =

1√
(2π)

[
S1

S2(S1 − S2)

] 3
2

×

× exp{−(B(S1, z1)S2 −B(S2, z2)S1)
2

2S1S2(S1 − S2)

}
T (S1|S2)T (S2)

T (S1)
(4.22)Here the 
ombination of the three Taylor series depends on how many orders one 
hoosesfor the three distributions.In order to obtain the fun
tional form for the merger rate (or instantaneous rateof destru
tion), the best 
hoi
e to do is to 
onsider the Taylor expansions with in�niteterms into the des
endant distribution and then follow the pres
riptions explained inSe
tion 3.3.5. The resulting distribution is:d2p(S2, z)dS2dt =

√
a
∣∣dδdt

∣∣
(
1 + β

(
S2
aδ2

)α
(1 − 2α)

)

√
2π

×

×
[

S

S2(S − S2)

] 3
2 exp{−

aδ2(S − S2)
(
1 + β

(aδ2)α

(
SαS2−Sα2 S

S2−S

))2

2SS2

} (4.23)where the dependen
e on time is inherent to the density threshold. Also this resultdoes not show the analyti
al 
omplexity 
oming from the Taylor expansion; moreover,this distribution 
an not be derived using at the same time the method by LC93 and ageneri
 order of the expansion in the progenitor mass fun
tion, be
ause of mathemati
aldi�
ulties.4.5 Instanteneous Rate of CreationThe instantaneous rate of 
reation, as de�ned in Kitayama & Suto (1996) (seeSe
tion 3.3.5) is obtained with a time derivative of the progenitor mass fun
tion. Again,



4.5 Instanteneous Rate of Creation 63here the Taylor expansion with an in�nite number of terms is used:d2p(S1, t)dS1dt =
√
a

∣∣∣∣
dδdt ∣∣∣∣ 1 + β

(
S

aδ2

)α
(1 − 2α)

√
2π(S1 − S)

3
2

(4.24)A
tually, for this distribution there exist a form by Moreno et al. (2009) [51℄ in theellipsidal 
ontext; however these authors �nd it 
onsidering the square-root barrier.





Chapter 5Statisti
al analysis of newdistributionsIn this 
hapter, the 
omparison between the analyti
al equations and the 
orrespond-ing quantities found with the numeri
al simulations is des
ribed. In Chapter 4, thereis the des
ription of some distributions for ellipsoidal dark matter haloes; as alreadydes
ribed, the 
ommon feature of all these formulae is a Taylor expansion series T (S)(eq. (4.12),(4.16)), with a variable number of orders. In order to 
ompare the theoryand the simulations, the number of terms of the expansion series for ea
h distribution iskept variable as well as the normalization of the entire distribution. For ea
h quantity,a �matrix� of models is 
onsidered: one dimension represents a 
ertain �ellipsoidal� dis-tribution with the series trun
ated at orders from 0 to 100, plus the distribution withthe entire series (∞ terms), and the 
orresponding �spheri
al� distribution; the otherdimension has the order �xed and it represents the di�erent normalizations, from 0.1to 3.0, with step 0.01. In this way it is possible to obtain the 
urve that better �ts thesimulation data.The 
hoi
e of the best model is the result of a χ2-test: the data 
oming from the sim-ulations are divided into mass bins with an asso
iated error; the χ2-analysis is weightedon these poissonian un
ertenties. The best model is asso
iated to the minimum valueof:
χ2 =

n∑

i=1

(Di −Ai)
2

nEi
(5.1)where Di indi
ates the value provided by the simulation data for the i-bin; Ei is theasso
iated poissonian un
ertainty; Ai is the value 
oming from the analyti
al models,that 
orresponds to the 
enter of the i-bin; n is the number of the bins.65



66 Statisti
al analysis of new distributions5.1 Un
onditional Mass Fun
tionFor the global mass fun
tion the 
omparison is done between these analyti
al forms:(i) La
ey & Cole 1993 mass fun
tion, eq. (3.17), for the spheri
al 
ollapse, labelled as
SC -spheri
al 
ollapse-(ii) Sheth & Tormen 1999 �t to the GIF simulations, eq. (4.4), labelled as FIT(iii) Sheth & Tormen 2002 mass fun
tion, eq. (4.11), and all the other 
urves thatdes
end from this equation, varying the number of terms of the Taylor expansion series,eq.(4.12), from 0 to 100, labelled as EC0, ..., EC100(iv) Sheth & Tormen 2002 mass fun
tion with the entire expansion series, eq. (4.19),labelled as EC∞.Then, all the 
urves obtained by 
hanging the natural normalization are 
onsidered:not all the distributions have the same �original� normalization, and some of them arealso substantially di�erent from the unit value (see Figure 5.1) that would represent thesituation for whi
h all the matter is bound in some haloes: this is due to the fa
t thatthe expansion series is just a �mathemati
al tri
k� introdu
ed to obtain the progenitormass fun
tion through an approximation of the exa
t solution (see Se
tion 4.3). Allthe analyti
al fun
tions are translated into the ν = δ2

c (z)
S(M) variable in order to obtain adegerena
y of the 
urves and data respe
t to the redshift: in this way one has a morerobust statisti
s for ea
h bin be
ause 
an 
onsider haloes that exist at di�erent epo
hs.The 
onversion between the variables ν and S is provided by:

νf(ν) = Sf(S) (5.2)The models are 
ompared with two simulations: the GIF2 and the Millennium, thatare des
ribed in details in the Appendix. In Figure 5.2 there are the results for the GIF2simulation: in this 
ase, for in
reasing the statisti
s, we sta
k together the snapshots
orresponding to: z = 0.000, 1.052, 2.000, 4.042. From the top-left panel to the bottom-right one, these 
urves are plotted: spheri
al 
ollapse, GIF mass fun
tion, ST02 massfun
tion with |T (S)| trun
ated at the order 0, 1, 2, 5, 10, mass fun
tion from ST02 withthe entire |T (S)| (in�nite orders). Dotted blue lines refer to the mass fun
tions withnormalization equal to one and the blue number refers to the value of the χ2 for that kindof 
urve. Solid red lines refer to un
onditional mass fun
tions with the best normalization(i.e. the normalization that minimizes the χ2 for that model) for that kind of 
urve; thered number is the asso
iated χ2 and it is written following the form �value of χ2 � bestnormalization�. In Figure 5.3 there are the results for the Millennium Simulation: inthis 
ase, we use the snapshots 
orresponding to: z = 0.000, 1.503, 3.060, 6.196, 10.073.For both the GIF2 and the Millennium, the 
urve that best �t the points of sim-ulations has a |T (S)| trun
ated at low orders, and the normalization is higher than
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χ2

SC@BN χ2
FIT @BN χ2

EC5
@BN χ2

EC∞

@ BN χ2
BEST @BN236.7 �0.72 140.5�1.01 55.3�1.08 275�0.71 EC221.09�1.298318�0.7 5961�0.96 1973 �1.05 6036 � 0.69 EC1504.8�1.48

χ2
SC@N χ2

FIT@N χ2
EC5

@N χ2
EC∞

@N4551�1.00 146.2�1.00 1995�1.36 1394�0.5732
> 104�1.00 6693 �1.00 > 104�1.36 > 104�0.57Table 5.1: In the �rst 
olumn, �rst 
ell (BN), the value of the best χ2 provided by the SCmodel and the asso
iated normalization; in se
ond 
ell (N), the value of SC-χ2 providedby the �original� normalization; in the se
ond 
olumn, the χ2s from the FIT99-model;in the third 
olumn the χ2s from the EC5-model and in fourth 
olumn the χ2s providedby the EC∞ model. In the last 
olumn, there is the best model with asso
iated χ2 andnormalization. In ea
h 
ell, the �rst row is the GIF2 result, the se
ond row refers to theMillennium.one (this is not a physi
al result!). In Figure 5.4 we 
ompare the value of the χ2s forvarious models (SC, FIT , EC1,..., EC10, EC∞) with the best value, both for GIF2and Millennium Simulation; ea
h panel 
ontains the results asso
iated to the best nor-malization (no-
rossed symbols) and those asso
iated to the �original� normalization(
rossed symbols). In table 5.1, we show the values of χ2 provided by various modelsasso
iated with the best (BN) and the original normalization (N), both for the GIF2and the Millennium simulations.
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Figure 5.1: Theoreti
al global mass fun
tions with their �original� normalization. Dottedblue 
urve refers to spheri
al 
ollapse; solid red 
urve refers to ST02 with ∞ terms in
T (S); long-dashed orange 
urve is the ST02 with zero orders; short-dashed green 
urveis the ST99 �t to GIF simulation. The 
urves with orders between 0 and ∞ are notshown, but they take intermediate positions between the red and orange ones.
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Figure 5.2: Un
onditional mass fun
tion from GIF2 simulation (various bla
k symbolsfor di�erent redshifts (z = 0.000, 1.052, 2.000, 4.042) and poissonian error bars) andfrom di�erent theoreti
al models. Dotted blue 
urves refer to distributions with a nor-malization equal to one; solid red 
urves refer to distributions with a normalization thatprovides the best �t to the data. The �rst red number is the value for the �χ2�best nor-malization�; the se
ond blue number is the value for the �χ2 for the unit normalization�.Here, EC2 provides the best model among all.



70 Statisti
al analysis of new distributions

Figure 5.3: The same as in Figure 5.2, but using the Millennium Simulation at redshifts:
z = 0.000, 1.503, 3.060, 6.196, 10.073. Here the best model among all is the EC1.
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Figure 5.4: Upper panel: χ2 asso
iated to various models keeping the original normaliza-tion (
rossed symbols) and with �best� normalization (no-
rossed symbols), all 
omparedwith the �best� χ2 (red 
ir
le). Blue triangles refers to spheri
al-
ollapse model; greenexagones to the �tting formula ST99; red squares are results 
oming from various orders(from 1 to 10) of series expansion in eq. (4.11) and orange dots are the results from ∞orders. This data refer to the GIF2 simulation.Lower panel: the same as in the upper panel, but for the Millennium simulation.
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z M∗ in M⊙units z M∗ in M⊙units0.00 8.956 × 1012 0.52 1.829 × 10120.06 7.518 × 1012 1.05 3.505 × 10110.13 6.120 × 1012 2.00 2.155 × 10100.27 3.973 × 1012 4.04 1.382 × 108Table 5.2: The value of M∗ for a number of redshifts.5.2 Progenitor Mass Fun
tionThe analyti
al equations for the progenitor mass fun
tion 
ome from:(i) LC93, eq. (3.25) (SC);(ii) ST02, eq. (4.15), and all the other 
urves that des
end from this equation, vary-ing the numbers of terms of the Taylor expansion series, eq. (4.16), from 0 to 100(EC0, ..., EC100);(iii) ST02 with the entire expansion series, eq. (4.21) (EC∞).This distributions are 
onsidered in the variable M , instead of S. Hereafter, we use thisnotation: M1 → m for the mass of the progenitor; M2 →M for the mass of the halo at

z = 0.Then we 
onsider all the 
urves obtained by 
hanging the natural normalization ofthese models. The �tting analysis is the same as for the un
onditional mass fun
tion,but here we used only the data provided by the GIF2 simulation. We de
ided to showthe result for the progenitors -
onsidered at various redshifts- of haloes that exist at
z = 0, with mass in the intervals: M ∈ [0.125M∗, 0.5M∗], labelled as M = 0.25M∗,
M ∈ [0.5M∗, 2M∗] ↔ M = M∗, M ∈ [2M∗, 8M∗] ↔ M = 4M∗. M∗ is the value ofthe mass determined imposing δ(t)2 = S(M); in Table 5.2 there is the value of M∗ fordi�erent redshifts.A progenitor, in this 
ase, is de�ned as a halo that 
ontains the parti
les that arepart of the 
onsidered halo at z = 0. To identify the progenitor, it is ne
essary totra
e ba
k in time the history of the single parti
les in the simulation. Contrary to themodel, that 
ontemplates only mergers without fragmentations, in the simulation one
an noti
e the phenomenon of the break of a halo due to a merger: in this situationa halo 
ontribute to the formation of another halo through merger events only with alimited number of its parti
les. So we are in the 
ontext in whi
h a stru
ture at z = 0has more than one progenitor at another redshift, but the sum of the masses of all theseprogenitors is greater than the mass of the des
endant obje
t. In order to be 
onsistentwith the theory, we de
ided to label as �mass of the progenitor� the amount of massa
tually donated to the des
endant.
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tion 73The theoreti
al 
urves are tra
ed repla
ing the mass M of the halo at z = 0 withthe mean value of the masses of haloes in ea
h of the three intervals 
onsidered for thesimulation data: M ∈ [0.125M∗, 0.5M∗], [0.5M∗, 2M∗], [2M∗, 8M∗].In the Figures 5.5, 5.6, 5.7, we show the results for 7 di�erent redshifts (z = 0.062,
0.127, 0.271, 0.521, 1.052, 2.000, 4.042) of progenitors with mass m of a halo at z = 0,with massM equal to 0.25M∗,M∗, 4M∗ respe
tively. Bla
k dots, with poissonian errorbars, represent the fra
tion of mass in progenitors of mass m vs the ratio of progenitormass over halo mass log(m/M) provided by the simulation; dotted blue 
urves refers to
SC; short dashed red lines refers to the ellipsoidal distribution with |T (s|S)| trun
atedat 5th order; solid orange ones des
ribe EC∞ (these lines often �hide� the red ones); longdashed green lines are the best mat
hes to the data: they 
an represent the eq. (3.25)with a di�erent normalization, or eq. (4.15) with free order of the expansion series andfree normalization.5.2.1 Quantitative analysis of χ2In order to asso
iate the green 
urves (best models) of Figures 5.5, 5.6, 5.7 toone model or another, we show the 
omparison of the χ2 asso
iated to the best 
urvefor a parti
ular model (i.e. the 
urve des
ribing SC with best normalization or the
EC0,...,100,∞ with the best normalization) with the χ2 asso
iated to the best �t amongall, for a given reshift.Figure 5.8, 5.9, 5.10 show the results for progenitors of haloes of massM = 0.25M∗,
M = M∗, M = 4M∗ respe
tively. Various panels on ea
h �gures represents the sameprogenitor-redshifts 
onsidered in the previous plots. The x-axis is divided into threeparts: the left one (blue triangles) represents the 
urve asso
iated to the spheri
al 
ol-lapse model, for the best normalization; the 
entral part (red squares) of the plot showsthe results for the ellipsoidal progenitor mass fun
tion with |T (s|S)| trun
ated at orders
0 to 10; the right panel (orange 
rossed-dots) of the plot 
onsiders the entire expansionseries. On the y-axis we plot the ratio of the various χ2 over the best χ2 for that parti
-ular redshift, on a logarithmi
 s
ale. The best model is indi
ated by a green 
ir
le andhas obvioulsy a value equal to zero on the y-axis.There is a �rst result shown here: when the ellipsoidal model provide the best �t, thedi�eren
e between the best χ2 and the EC∞-χ2 is very small: so the error made assumingthe progenitor mass fun
tion with in�nite orders in the Taylor expansion series is small.Another important feature of these plots is the eviden
e that the 
urves 
oming from thespheri
al 
ollapse theory (but with various normalizations) better mat
h the progenitormass fun
tion around z = 0.5 and z = 1: one 
an see, that, at those reshifts, the 
uto� for massive progenitors begin to be visible. We think that the distributions provided
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al 
ollapse have a shape that follows better that exponential 
uto�: infa
t, looking at the mass fun
tions, one 
an see that the ST99 �t or the various EC are��atter� than the SC. Maybe, using a larger simulation, one 
an �nd that this trendappear also for lower progenitor redshift where the 
ut o� 
an be displayed.5.3 Fitting the �at part of the fun
tion: χ2 without (m/M) >

0.5The χ2 te
hnique is a global analysis to �nd the best 
urve that approximates a setof data, so we obtain 
urves that �on average� are the best mat
h; in this �average�, thepoints of the simulation that have a higher weight are the ones with smaller error barsand higher y-value: 
onsidering that we start from a limited number of shapes, we 
an�nd situations where the best 
urve does not �t well all the points, but mostly thosethat have a higher weight. Sin
e the ellipsoidal model fails expe
ially at large m/M , wetried also to �t the progenitor mass fun
tion without the high-mass tail, and ex
ludingthe points at m/M > 0.5. The results are shown in Figures 5.11, 5.12, 5.13, wherelabels, 
olors and marks are the same of Figures 5.5, 5.6, 5.7, and in Figures 5.14, 5.15,5.16, similar to Figures 5.8, 5.9, 5.10.We found that, ex
luding from the �t all points at m/M > 0.5, the ellipsoidal modelbe
omes almost always the best one. The previous 
onsideration about the similaritybetween the the best order and the �∞� order is still true, ex
ept at low progenitor-redshifts.



5.3 Fitting the �at part of the fun
tion: χ2 without (m/M) > 0.5 75

Figure 5.5: Progenitor mass fun
tion for haloes of mass M = 0.25M∗ at z = 0; progen-itors are 
onsidered at 7 di�erent redshifts: z = 0.062, 0.127, 0.271, 0.521, 1.052, 2.000,
4.042 . Dotted blue 
urves refer to Spheri
al Collapse; short dashed red lines to Ellip-soidal Collapse with 5 orders in the Taylor series expansion; solid orange to ellipsoidal
ollapse with all orders; long dashed green to the best �t; dots represent GIF2 simula-tions with poissonian error bars. On the x-axis: the ratio between the progenitor massover halo mass.
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Figure 5.6: The same as Fig. 5.5, for haloes of mass M = M∗.
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Figure 5.7: The same as Fig. 5.5, for haloes of mass M = 4M∗.
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Figure 5.8: χ2 for 7 redshifts (from top to bottom: z = 0.062, 0.127, 0.271, 0.521, 1.052,
2.000, 4.042) of progenitors of a halo of mass M = 0.25M∗. Blue triangles refer to (SC/ best-χ2); red squares to (EC (orders from 0 to 10) / best-χ2); orange 
rossed dots to(EC all orders / best-χ2). The green 
ir
les show the best χ2s.
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Figure 5.9: The same as Fig. 5.8, for haloes of mass M = M∗.



80 Statisti
al analysis of new distributions

Figure 5.10: The same as Fig. 5.8, for haloes of mass M = 4M∗.
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Figure 5.11: Progenitor mass fun
tion for haloes of mass M = 0.25M∗ at z = 0;progenitors are 
onsidered at 7 di�erent redshifts: z = 0.062, 0.127, 0.271, 0.521, 1.052,
2.000, 4.042. Dotted blue 
urves refer to Spheri
al Collapse; solid red to EllipsoidalCollapse with 5 orders in the Taylor series expansion; long-dashed orange to ellipsoidal
ollapse with all orders; dots represent GIF2 simulations with poissonian error bars. Onthe x-axis: the ratio between the progenitor mass over halo mass. The points markedwith red 
rosses indi
ate the mass-bins that do not 
ontribute to the 
al
ulation of χ2.
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Figure 5.12: The same as Fig. 5.11, for haloes of mass M = M∗.
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Figure 5.13: The same as Fig. 5.11, for haloes of mass M = 4M∗.
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Figure 5.14: The same as Figure 5.8, but ex
luding the 
ontribution of high mass progen-itors (m/M > 0.5).
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Figure 5.15: The same as Figure 5.8, for haloes of mass M = M∗, but ex
luding the
ontribution of high mass progenitors (m/M > 0.5).
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Figure 5.16: The same as Figure 5.8, for haloes of mass M = 4M∗, but ex
luding the
ontribution of high mass progenitors (m/M > 0.5).
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tion 875.4 Des
endant Mass Fun
tionThe analyti
al equations for the des
endant mass fun
tion are:(i) for the SC, eq. (3.27) by LC93;(ii) eq. (4.22), with T (S) = T0(S) (zero orders) for the un
onditional mass fun
tion andall the other 
urves that des
end from this equation, varying the numbers of terms of
T (S1|S2) for the progenitor mass fun
tion from 0 to 100;(iii) eq. (4.22), with T (S) = T∞(S) (all the series) for the un
onditional mass fun
tionand all the other 
urves that des
end from this equation, varying the numbers of termsof T (S1|S2) for the progenitor mass fun
tion from 0 to 100;(iv) eq. (4.22), with T (S) = T0(S) (zero orders) for the un
onditional mass fun
tionand the whole T (S1|S2) for the progenitor mass fun
tion;(v) eq. (4.22), with T (S) = T∞(S) (all the series) for the un
onditional mass fun
tionand the whole T (S1|S2) for the progenitor mass fun
tion.This distributions are 
onsidered in the variable M , instead of S. Hereafter, we use thisnotation: M1 → m for the mass of the halo at di�erent redshifts;M2 →M for the massof the des
endant at z = 0.Then we 
onsider all the 
urves obtained by 
hanging the natural normalization ofthese models. We noted that the di�eren
es between the 
urves with T0 and T∞ arevery small, and there is a degenera
y between type (ii) 
urve and 
orresponding type(iii) with di�erent normalization (the same for type (iv) and (v)). For this reason, we
onsider only type (iii) and (v) 
urves with the whole expansion series for global massfun
tion. Also for this distribution, we perform a χ2 �tting analysis, using the dataprovided by the GIF2 simulation. We show the results for the des
endant mass fun
tionat z = 0 of haloes 
onstrained at di�erent previous redshifts, i.e. we �x di�erent rangesof masses 
al
ulated as fra
tion ofM∗ for di�erent redshifts and we put the des
endantsalways at present time. In this 
ase, the mass interval for the haloes at di�erent redshiftsare not always the same, be
ause, espe
ially at high z, it is di�
ult to have a robuststatisti
s for small obje
ts. In Table 5.4 the used intervals for ea
h redshift are shown.Following the theory, a des
endant is de�ned as the halo resulting from the mass-
onservative merging between two or more progenitors. As already des
ribed for theprogenitors, in the simulation, a halo 
an be the progenitor of more than a des
endant,be
ause of fragmentation. For this study, we tra
e every parti
les from the initial, to the�nal snapshot and we 
onsider as �des
endant� of a halo, the obje
t that re
eived morethan 50% of the mass of the progenitor (raising this threshold, results don't 
hangesigni�
antly). The mass of the des
endant is its total mass. Also in this 
ase, the the-oreti
al 
urves are tra
ed repla
ing the mass m of the halo with the mean value of themasses of haloes in the three intervals of the simulation.
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z = 0.062 z = 0.127 z = 0.271 z = 0.521

[0.125M∗, 0.5M∗] [0.125M∗, 0.5M∗] [0.125M∗, 0.5M∗] [0.125M∗, 0.5M∗]

[0.5M∗, 2M∗] [0.5M∗, 2M∗] [0.5M∗, 2M∗] [0.5M∗, 2M∗]

[2M∗, 8M∗] [2M∗, 8M∗] [2M∗, 8M∗] [2M∗, 8M∗]

z = 1.052 z = 2.000 z = 4.042

[0.25M∗, 1M∗] [5M∗, 20M∗] [1000M∗, 4000M∗]

[0.5M∗, 2M∗] [20M∗, 80M∗] [4000M∗, 16000M∗]

[2M∗, 8M∗] [80M∗, 320M∗] [12000M∗, 48000M∗ ]Table 5.3: For ea
h redshift at whi
h we lo
ate the haloes, the intervals of masses withinwhi
h we 
hoose the haloes are shown.In Figure 5.17, 5.18, 5.19, we show the results for the des
endant mass fun
tion,�xing the haloes at 7 di�erent redshifts (z = 0.062, 0.127, 0.271, 0.521, 1.052, 2.000,
4.042), and 
onsidering the des
endants at z = 0; the halo mass m 
orresponds to thethree intervals de�ned in Table 5.4. Bla
k dots, with poissonian error bars, represent thefra
tion of mass in des
endants of mass M vs the ratio between des
endant mass andhalo mass, log(M/m), provided by the GIF2 simulation; dotted blue 
urves refers to
SC; short dashed red lines refers to the ellipsoidal distribution with the entire |T (s|S)|;solid orange ones des
ribe EC0; long dashed green lines are the best mat
hes to thedata.In Figure 5.20, 5.215.22, we show the 
omparison of the χ2 asso
iated to the best
urve for a parti
ular model (i.e. the 
urve des
ribing SC with best normalization orthe EC0,...,100,∞ with the best normalization) with the χ2 asso
iated to the best �tamong all, for a given reshift. The three �gures show the result for di�erent ranges ofhalo masses; in ea
h plot, from top to bottom, there are the results for halo kept atredshift z = 0.062, 0.127, 0.271, 0.521, 1.052, 2.000, 4.042. The x-axis is divided intothree parts: the left one (blue triangles) represents the 
urve asso
iated to the spheri
al
ollapse model, for the best normalization; the 
entral part (red squares) of the plotshows the results for the ellipsoidal progenitor mass fun
tion with |T (s|S)| trun
atedat orders 0 to 10; the right panel (orange 
rossed-dots) of the plot 
onsiders the entireexpansion series. On the y-axis we plot the ratio of the various χ2 over the best χ2 forthat parti
ular redshift, on a logarithmi
 s
ale. The best model is indi
ated by a green
ir
le and has obvioulsy a value equal to zero on the y-axis.From the plots of the des
endant mass fun
tion, and from the analysis of the χ2, weshow that the ellipsoidal model provides the 
urves that best mat
h the data; it happensfor almost all the redshifts for the lower and upper intervals of halo masses. For the
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tion 89intermediate halo mass interval, in three 
ases the spheri
al model is the best one. In allthe 
ases when the EC∞ is not the best 
hoi
e, it provides a model that di�ers from thebest one by a small amount. This means that one 
an use the the ellipsoidal dynami
s(that is almost always the best representation) with the simplest analyti
al formulas(the ones with the whole Taylor expansion series), without making any big error, forevery redshifts and mass ranges.
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Figure 5.17: Des
endant mass fun
tion for haloes of mass m = 0.25M∗ at z = 0.062,
0.127, 0.271, 0.521, m = 0.5M∗ at z = 1.052, m = 10M∗ at z = 2.000, m = 2000M∗at z = 4.042; all the des
endants are 
omputed at z = 0. Blue 
urves refer to Spher-i
al Collapse; orange 
urves to Ellipsoidal Collapse with 0 orders in the Taylor seriesexpansion; red to Ellipsoidal Collapse with all orders; green to the best �t; dots repre-sent GIF2 simulations with poissonian error bars. On the x-axis: the ratio between theprogenitor mass over halo mass.
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Figure 5.18: The same as 5.17, but with this halo-masses: m = 1M∗ at z = 0.062, 0.127,
0.271, 0.521, 1.05, m = 40M∗ at z = 2.000, m = 8000M∗ at z = 4.042.
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Figure 5.19: The same as 5.17, but with this halo-masses: m = 4M∗ at z = 0.062, 0.127,
0.271, 0.521, 1.05, m = 160M∗ at z = 2.000, m = 24000M∗ at z = 4.042.
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Figure 5.20: χ2 for 7 halo redshifts of halo of mass (from top to bottom) m = 0.25M∗at z = 0.062, 0.127, 0.271, 0.521, m = 0.5M∗ at z = 1.052, m = 10M∗ at z = 2.000,
M = 2000M∗ at z = 4.042 and des
endant at z = 0. Blue triangles refer to (SC /best-χ2); red squares to (EC (orders from 0 to 10) / best-χ2); orange 
rossed dots to(EC all orders / best-χ2). The green 
ir
les show the best χ2s.
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Figure 5.21: The same as 5.20, but with this halo-masses: m = M∗ at z = 0.062, 0.127,
0.271, 0.521, 1.05, m = 40M∗ at z = 2.000, m = 8000M∗ at z = 4.042.
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Figure 5.22: The same as 5.20, but with this halo-masses: m = 4M∗ at z = 0.062, 0.127,
0.271, 0.521, 1.05, m = 160M∗ at z = 2.000, m = 24000M∗ at z = 4.042.
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al analysis of new distributions5.4.1 E�e
t of �nite box size on the des
endant mass fun
tionA look at the plots of the un
onditional mass fun
tion, Figures 5.2 and 5.3, allowsto understand how the �nite size of the box, 
onsidered in running the simulations, 
anintrodu
e a bias in the distribution. In fa
t, for the smaller GIF2 simulation, one 
ansee that there exist some points, for masses greater than ∼ 1015M⊙ that di�er from themodel of about one order of magnitude. This is due to the fa
t that the realizationsof the Fourier modes for the power spe
trum in the simulation have a robust statisti
sfor s
ales smaller than the dimension of the box, but they are a�e
ted by big errors fors
ale ∼box s
ale (en example is shown in Figure 5.23).
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Figure 5.23: A realization of the initial power spe
trum. One 
an see that for small k-bigger s
ales- there is a higher s
atter of di�erent realizations (grey lines) respe
t tothe mean value (bla
k line). From [77℄.In this 
ase there is an overpredi
tion of the haloes of mass greater than ∼ 1015M⊙at z = 0. This 
an lead to overpredi
t also the des
endant mass fun
tion, when thedes
endant are 
ounted at present time. For this reason, we de
ide to 
al
ulate thedes
endant distribution only for haloes that are the progenitors of stru
ture having
m <∼ 1015M⊙. Figure 5.24 shows how the des
endant mass fun
tion 
an be a�e
ted bythis bias: for the GIF2 simulation (bla
k dots) there is a plateau for the high mass tailthat overpredi
ts the fra
tion of progenitor by an order of magnitude respe
t to boththe spheri
al and ellipsoidal theoreti
al 
urve; this trend does not appear for the biggerMillennium simulation (red triangles).
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Figure 5.24: Des
endant mass fun
tion for haloes with mass m = M∗ at z ∼ 0.06and des
endant at z = 0. Red and blue lines are ellipsoidal and spheri
al theoreti
alpredi
tion. Bla
k dots are the GIF2 data and red triangles are the Millennium data.The GIF2 overpredi
ts the number of des
endants in the high mass range.
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al analysis of new distributions5.5 Merger RatesThe only way to extra
t the distribution of merger rates (instantaneous rates ofdestru
tion) in a numeri
al simulation is to build the des
endant mass fun
tion 
onsid-ering two 
ontiguous snapshots, and divide the result by the di�eren
e in 
osmi
 timefrom one redshift to another. In this 
ase we use both the GIF2 and the MillenniumSimulation be
ause we have informations about the des
endants �at the next step� alsofor the bigger simulation. This 
omparison seems to be usefull be
ause, when 
onsider-ing 
ontiguous snapshots, the des
endant mass fun
tion in GIF2 seems mu
h noisy. We
ompare four analyti
al equations:(i) the merger rate for the Spheri
al Collapse, eq. (3.31);(ii) the merger rate for the Ellipsoidal Collapse eq. (4.23);(iii) the spheri
al des
endant mass fun
tion eq. (3.27), devided by the ∆t 
oming fromthe relative snapshots of the simulation;(iv) the ellipsoidal des
endant mass fun
tion eq. (4.22), with T (S) = T∞(S) (all theseries) for the un
onditional mass fun
tion and the whole T (S1|S2) for the progenitormass fun
tion, divided by the ∆t 
oming from the relative snapshots of the simulation.For ∆z → 0, equation (iii) approa
hes (i), and (iv) approa
hes (ii). Figure 5.25 showsthe di�eren
es between the two pairs of 
urves for three di�erent ∆z: in
reasing theredshift-di�eren
e between the halo-snapshot and the des
endant-snapshot, the di�er-en
e between the two pair of equations grows.In this 
ase, we 
onsider the equations with their �original� normalizations, andwe 
ompare them with the distribution of des
endants for haloes in three di�erentmass intervals for ea
h redshift. In Table 5.5 there are the values of the redshift of the
onsidered haloes and the asso
iated redshifts of the des
endants �at the next snapshot�of the two simulations. The mass intervals are the same as for the des
endant massGIF2 Millennium
0.062 → 0.000 0.064 → 0.041

0.127 → 0.062 0.116 → 0.089

0.271 → 0.197 0.279 → 0.242

0.521 → 0.433 0.508 → 0.456

1.052 → 0.933 0.989 → 0.905

2.000 → 1.940 2.070 → 1.913

4.042 → 3.748 4.179 → 3.866Table 5.4: For the GIF2 and the Millennium simulations, the values of the redshifts atwhi
h we 
onsider the haloes and the values of the following redshift at whi
h we lookfor the des
endants.
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Figure 5.25: Comparison between the merger rate (spheri
al=green, ellipsoidal=red) andthe �des
endant mass fun
tion / ∆t� (spheri
al=blu, ellipsoidal=orange), for di�erentvalues of ∆z: in the left panel ∆z = 0.062; in the 
entral panel ∆z = 0.119; in the rightpanel ∆z = 0.294.fun
tion (see Se
tion 5.4).In Figure 5.5, 5.5, 5.5, we show the results for the three intervals of halo-masses.Taking into a

ount the relation between the merger rates and the equation of �des
en-dants over ∆t�, we plot only these se
ond type of 
urves. Moreover, sin
e the 
urvesobtained using the parameters (halo mass, halo-redshift, des
endant-redshift) resultingfrom the GIF2 simulation degenerate over the 
urves plotted using the Millennium pa-rameters, we show the results only for one of the two sets. The blue 
urves represent
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al analysis of new distributionsthe spheri
al 
ollapse model, and the orange ones, the ellipsoidal results; the bla
k dotsare the GIF2-data and the red triangles are the results of Millennium: the data fromsimulations have poissonian error bars.For the merger rates we don't perform a deep statisti
al analysis, sin
e the GIF2simulation shows a big noise espe
ially at high redshifts, and the Millennium have a�bump� that under-predi
ts the number of des
endants for log(M/m) =∼ 0.4÷ ∼ 0.8:with these 
ir
umsta
es, a χ2 analysis would be useless. So, we 
onsider the distributionsfrom a qualitatively point of view, and we 
an assert that the ellipsoidal 
ollapse providesthe best approximation for the merger rates, ex
ept for the regimes where we do nothave enough data (high redshifts).
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Figure 5.26: Blue and orange 
urves: merger rate from the spheri
al and ellipsoidal modelrespe
tively; bla
k dots and red triangles: results from GIF2 and Millennium simulationsrespe
tively, with poissonian error bars. The haloes are kept at various redshift, and thedes
endants found at the next snapshots, see Table 5.5. The haloes have are 
hosen inthe mass interval m = [0.125M∗, 0.5M∗], ex
ept for z = 1.052 (m = [0.25M∗,M∗]), for
z = 2.000 (m = [5M∗, 20M∗]), and for z = 4.042 (m = [1000M∗, 4000M∗]).
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Figure 5.27: The same as �g 5.5, but with halo mass in these intervals:m = [0.5M∗, 2M∗]for z = 0.062, z = 0.127, z = 0.271, z = 0.521, z = 1.052, m = [20M∗, 80M∗] for
z = 2.0002, m = [4000M∗, 16000M∗] for z = 4.042.
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Figure 5.28: The same as �g 5.5, but with halo mass in these intervals: m = [2M∗, 8M∗]for z = 0.062, z = 0.127, z = 0.271, z = 0.521, z = 1.052, m = [80M∗, 320M∗] for
z = 2.0002, m = [12000M∗ , 48000M∗] for z = 4.042.





Chapter 6Maximum likelihood based newmethodThe χ2-method, used to 
he
k how a

urate are our equations, shows some limits inits appli
ation. One problem is linked with the 
reation of mass- (or ν-) bins, in whi
hthe information about a 
ertain number of haloes in a simulation is grouped togetherproviding only a mean information for ea
h bin that depends on the size of the binitself: this 
an lead to slightly di�erent results in the determination of the best model.The se
ond problem 
on
erns with the presen
e, in a simulation, of parti
les that arenot bound in haloes, that we 
all dust parti
le: in the previous analysis, we 
onsiderthe presen
e of these parti
les, but only in order to normalize the theoreti
al 
urves
onsidering all the matter in the simulation; so the dust parti
les did not 
ontribute tothe determination of the best model. To improve the statisti
s and the pre
ision of theresults, we introdu
e a method based on the maximum likelihood analysis that takesinto a

ount unbinned data and 
onsiders also the dust parti
les in the dis
riminationof the best 
urve.The maximum likelohood method is based on the 
onstru
tion of a probability distri-bution (likelihood fun
tion) parameterized by a set of unknown parameters ~θ, asso
iatedwith a known probability mass fun
tion, denoted as f~θ
. With a sample x1,x2,. . . ,xn of nvalues from this distribution, one 
an 
ompute the probability density asso
iated withthe observed data, f~θ

(x1, . . . , xn). The likelihood fun
tion, with x1, . . . , xn �xed and asa fun
tion of ~θ is:
L(~θ) = f~θ

(x1, . . . , xn). (6.1)The method estimates ~θ by �nding the value of ~θ that maximizes L(~θ). This is themaximum likelihood estimator of ~θ: 105
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~̂θ = arg max L(~θ). (6.2)If the data drawn from a parti
ular distribution are independent, identi
ally distrib-uted with unknown parameters, the likelihood 
an then be written as a produ
t of nunivariate probability densities:
L(~θ) =

n∏

i=1

f~θ
(xi); (6.3)one 
an take the logarithm of this expression to turn it into a sum:logL(~θ) =

n∑

i=1

log f~θ
(xi). (6.4)6.1 Statisti
s on the Mass Fun
tionAs probability distribution, we 
onsider the un
onditional mass fun
tion. The prob-ability for all the parti
les to be in haloes of a 
ertain mass m is:

Npart∏

i=1

f(mi|~θ) (6.5)where Npart is the total number of parti
les. If the i-halo 
ontains Ni parti
les, we 
anwrite:
Nh∏

i=1

f(mi|~θ)Ni (6.6)where Nh is the total number of haloes. The probability for a parti
le in the dust is:
F (~θ) =

∫ Mdust

0
f(m)dm (6.7)so the probability for all parti
les is obtained by raising the integral to the Nd, the totalnumber of dust parti
les. So, the logarithm of the likelihood fun
tion is:lnL = NdlnF (~θ) +

Nh∑

i=1

Nilnfi(~θ). (6.8)Using this method we 
an go beyond the two problems 
oming from the previous analy-sis: the binning disappears and ea
h parti
le has the same weight in the determinationof the best parameter for the mass fun
tion; besides, also the dust parti
les (
onsideredtogether) matter to this determination, be
ause their integral appears in the likelihoodfun
tion.



6.1 Statisti
s on the Mass Fun
tion 107We 
hoose to use the mass fun
tion by Sheth & Tormen (1999) [69℄ that 
ontains2 parameters: a and p, (while ν is the `observed' quantity that 
omes from the simula-tions):
νf(ν|a, p) = A

√
a

2πν
exp [−aν

2

]
(1 + (aν)−p) (6.9)In this 
ase the likelihood fun
tion be
omes:lnL = Ndln( A√

π

∫ aνd
2

0
x−0.5exp(−x)(1 +

1

(2x)p

) dx)+

+

Np∑

i=1

ln(A√ a

2πνi
exp(−aνi

2

) (
1 + (aνi)

−p
)) (6.10)To �nd the parameters a and p that maximize the likelihood fun
tion, we need theexpressions for the derivative respe
t to a and respe
t to p:

∂lnL
∂a

=
1

a

{[
Nd

√
aνd
2 exp(−aνd

2 )(1 + (aνd)
−p)

γ
(

1
2 ,

aνd
2

)
+ 1

2pγ
(

1
2 − p, aνd

2

)
]

+

+

Np∑

i=1

(
1

2
− aνi

2
− p

(aνi)p + 1

)} (6.11)
∂lnL
∂p

= Nd
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ln2 + ̥(1

2 − p)
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+ 1
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− ln2
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2 )
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+
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i=1


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2pΓ( 1
2)

Γ( 1
2
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+ 1
− ln(aνi)

(aνi)p + 1



 (6.12)where Γ(z) is the Gamma fun
tion1, γ(s, x) is the lower in
omplete gamma fun
tion2and ̥ is the digamma fun
tion.3In order to 
he
k if the method works, we 
onsider a Monte Carlo simulation of themass fun
tion, following the way des
ribed by Kundu & Gupta (2006) [40℄ to generategamma random variables using generalized exponential distributions and a routine ofthe software supermongo to generate a gaussian distribution; in these simulations we�x the parameters a = 1 and p = 0.3 (Fig. 6.1).Solving the equations ∂lnL

∂a = 0 and ∂lnL

∂p = 0 (i.e. looking for the maximum), we 
an�nd the best parameters that des
ribe the analyti
al equation of the mass fun
tion.1Γ(z) =
∞

0
tz−1exp−tdt2γ(s, x) =
x

0
ts−1exp−tdt3

̥(z) = ddz lnΓ(z) = Γ′(z)
Γ(z)
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iated to the best values of the parameters are obtained using theFisher information matrix:
(I (θ))i,j = −

[
∂2

∂θi∂θj
ln f(X; θ)

∣∣∣∣ θ
] (6.13)evaluated in ~̂θ: it is the of the probability surfa
e in the parameter spa
e 
al
ulatedin the point de�ned by ~̂θ. To apply the Fisher matrix we need the expressions of these
ond derivatives of the likelihood fun
tion; we obtain:

∂2lnL
∂a2

=
1

a2

{
Nd

√
aνd

2
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2

)
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−p) ×

×
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+
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Figure 6.1: The analyti
al mass fun
tion -red line- is 
ompared with the results of aMonte Carlo simulation -bla
k histograms-, run following Kundu & Gupta (2006) [40℄.6.2 Results of the testIn Figures 6.2, 6.3, 6.4, we show the results of the best parameters a and p found withour algorithm, that des
ribe the results of a number of Monte Carlo simulations, runassuming ainput = 1 and pinput = 0.3, and three di�erent values of the dust threshold:
νd = 0.1, 1.0, 2.0. In the plot the red line is the lo
us of points where the derivativerespe
t to p is equal to zero (within a 
ertain error due to numeri
al approximations ofsome equations); the blu line represents the lo
us of points where the derivative respe
tto a is equal to zero; we 
onsider the interse
tion of this two lines as the maximum



110 Maximum likelihood based new methodlikelihood point that des
ribes the 
omponents of the ve
tor of the best parameters: thispoint 
orresponds also to the 
enter of the `higher 
ontour' of the fun
tion logL (notshown in the plot). Besides, there are the error bars asso
iated to the two parametersand their values as well as the number of parti
les in the simulation.From the three plots, one 
an see that the analyti
al equations and the routineused to obtain the best values for the parameters a and p, starting from the results ofdi�erent Monte Carlo realization of the mass fun
tion, work. The a and p found are inagreement with the input values, within the error bars.This is only a preliminary test, the �rst that has to be run before applying themethod to a numeri
al simulation.
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Figure 6.2: The best value of the parameters a and p are the 
oordinates of the interse
-tion between the red and the blue lines. The red line represents the solution of ∂L

∂p = 0;the blue line represents the solution of ∂L

∂a = 0; in orange, there are the asso
iated errorbars. This is the result found assuming νdust = 0.1.
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Figure 6.3: The same as Fig. 6.2, but assuming νdust = 1.
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Figure 6.4: The same as Fig. 6.2, but assuming νdust = 2.





Con
lusionsIn this dissertation, after an introdu
tion on the best models des
ribing the homo-geneous and isotropi
 universe and the formation of 
osmi
 stru
tures, we 
onsider thedi�eren
es between the main two paradigms that tra
e the dynami
s of the formationof the dark matter haloes: the spheri
al and the ellipsoidal model, and we highlightthe better a

ura
y of the se
ond one in reprodu
ing the results of numeri
al simula-tions. Sin
e in the literature there is a 
omplete pi
ture of the distributions of darkmatter haloes only in the spheri
al 
ontext, we fa
e the demand of having analyti
alequations also for the more pre
ise ellipsoidal 
ollapse, and we brie�y show how useful
an be su
h new distributions to better understand the behaviour both of the dark andbaryoni
 matter when they organize into 
osmi
 strutures.The �rst goal of our work is to �nd new analyti
al equations for a number of distri-butions, staying within the 
ontext outlined by the ellipsoidal dynami
s, and using asa tool the ex
ursion sets formalism. We �nd forms for the global mass fun
tion, for theprogenitor and des
endant mass fun
tions, and for the instantaneous rate of 
reationand destru
tion.Sin
e the analyti
al part of the work is based on the use of a Taylor expansionseries, for ea
h distribution we have a number of equations, depending on the orderof this expansion. In order to 
hoose the best formulas, we exploit the results of theGIF2 and of the Millennium simulations; models and data are 
ompared using a χ2te
hnique. The results about the best model are not unique, varying the redshifts orthe mass range, but there is a tenden
y toward the ellipsoidal model to be the best one.Within the various 
hoi
es provided by stopping the series at di�erent orders, we foundthat the use of the whole Taylor expansion series, when it is not the best formula, itis a�e
ted by a very small error 
ompared to the most a

urate distribution. This isan important result, sin
e the equations with ∞ terms in their expansion series are themost analyti
ally simple.In the last part of the dissertation we try to solve two in
onvenients that 
ome fromthe χ2 method: in the pro
ess of the binning of the data, the amplitude of the bin 
anbias the results of the test; moreover, the approa
h do not allow to use the parti
le that115



116 Con
lusionsare not bound in haloes (dust) in the determination of the best model. To over
ome thesetwo problems, we 
onsider a new statisti
al method based on the maximum likelihoodte
hnique, that allows both to 
onsider unbinned data and to in
lude the dust parti
lesin the determination of the best parameters of the mass fun
tion. Starting from a twoparameters mass fun
tion, we provide all the analyti
al equations ne
essary to determinethe best parameters and the asso
iated errors. We �rst run a test simulating a massfun
tion with a Monte Carlo method: for di�erent 
hoi
es of the threshold for the valueof the dust-mass, the results of our routine for the two parameters are in agreementwith the input parameter, within the error bars.The natural 
ontinuation of this work is the 
omparison of other analyti
al quan-tities (e.g. the instantaneous rates of 
reation, and the integrated rate of 
reation anddestru
tion) with the results of numeri
al simulation. Then, in order to apply a morerobust an a

urate statisti
s to the data, it is ne
essary to 
on
lude the tests on thenew maximum likelihood method, e.g. the dependen
e of the results on the number ofparti
les, or on the number of parameters. Moreover we need to performe the relativeequations also for other distributions.
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al Simulations 117AppendixNumeri
al CosmologyIn Se
tion 2.3.3 the basi
 equations that des
ribe the stru
tures formation and evolu-tion in the gravitational instability s
enario were introdu
ed. The substantial di�
ultyof this problem is exa
erbated by the inherent three-dimensional 
hara
ter of stru
tureformation in a ΛCDM universe, where, due to the shape of the primordial power spe
-trum, a large range of wave modes be
omes nonlinear in a very short time, resultingin the rapid formation of obje
ts with a wide range of masses whi
h merge in geomet-ri
ally 
omplex ways into ever more massive systems. This 
omplexity of the physi
albehaviour of the �u
tuations makes the analyti
al models unsuitable for a detaileddes
ription of non-linear regime. Therefore, dire
t numeri
al simulations of stru
tureformation provide the only method for studying this problem in its full generality.Gravitational for
e des
ription: N-body simulationsIt is possible to represent part of the expanding Universe as a `box' 
ontaining alarge number N of point masses intera
ting through their mutual gravity. This box,typi
ally a 
ube, must be at least as large as the s
ale at whi
h the Universe be
omeshomogeneous if it is to provide a `fair sample' whi
h is representative of the Universe asa whole. It is 
ommon pra
ti
e to take the 
ube as having periodi
 boundary 
onditionsin all dire
tions, whi
h also assists in some of the 
omputational te
hniques by allowingFourier methods to be employed in summing the N-body for
es. A number of numeri
alte
hniques are available at the present time; they di�er, for the most part, only in theway the for
es on ea
h parti
le are 
al
ulated. We des
ribe some of the most popularmethods here:Dire
t summationThe simplest way to 
ompute the non-linear evolution of a 
osmologi
al �uid isto represent it as a dis
rete set of parti
les, and then sum the (pairwise) intera
tionsbetween them dire
tly to 
al
ulate the Newtonian for
es. Su
h 
al
ulations are often
alled parti
le-parti
le, or PP, 
al
ulations. With the adoption of a small timestep, one
an use the resulting a

eleration to update the parti
le velo
ity and then its posi-tion. New positions 
an then be used to re
al
ulate the interparti
le for
es, and so on.However, there is a numeri
al problem with summation of the for
es: the Newtoniangravitational for
e between two parti
les in
reases as the parti
les approa
h ea
h otherand it is therefore ne
essary to 
hoose an extremely small timestep to resolve the large
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al Simulationsvelo
ity 
hanges this indu
es. A very small timestep would require the 
onsumption ofenormous amounts of CPU time and, in any 
ase, 
omputers 
annot handle the formallydivergent for
e terms when the parti
les are arbitrarly 
lose to ea
h other. One usuallyavoids these problems by treating ea
h parti
le not as a point mass, but as an extendedbody. The pra
ti
al upshot of this is that one modi�es the Newtonian for
e betweenparti
les by putting
Fij =

Gm2(xj − xi)
(
ǫ2 + |xi − xj|2

)3/2
, (17)where the parti
les are at positions xi and xj and they all have the same mass m;the form of this equation avoids in�nite for
es at zero separations. The parameter ǫ inEquation (17) is usually 
alled the softening length and it a
ts to suppress two-bodyfor
es on small s
ales. This is equivalent to repla
ing point masses by extended bodieswith a size of order ǫ. Sin
e we are not supposed to be dealing with the behaviour ofa set of point masses anyway, the introdu
tion of a softening length is quite reasonablebut it means one 
annot trust the distribution of matter on s
ales of order ǫ or less.The 
ru
ial limitation of these methods is that they tend to be very slow, with the
omputational time required s
aling roughly as N2 (where N is the number of parti
lesand N(N − 1)/2 are the evaluations of Eq. (17) required at ea
h timestep).Parti
le-mesh te
hniquesThe usual method for improving upon dire
t N-body summation for 
omputinginter-parti
le for
es is some form of `parti
le-mesh', or PM, s
heme. In this s
heme thefor
es are solved by assigning mass points to a regular grid and then solving Poisson'sequation on it. The use of a regular grid with periodi
 boundary 
onditions allow oneto use Fast Fourier Transform (FFT ) methods to re
over the potential, whi
h leads toa 
onsiderable in
rease in speed. Without enter in details, the 
al
ulation of the for
esbetween parti
les 
an be speeded up by 
omputing them in Fourier spa
e. A FFT isbasi
ally of order N logN in the number of grid points and this represents a substantialimprovement for large N over the dire
t parti
le-parti
le summation te
hnique. Thepri
e to be paid for this is that the Fourier summation method impli
itly requiresthat the simulation box has periodi
 boundary 
onditions: this is probably the mostreasonable 
hoi
e for simulating a `representative' part of the Universe, so this does notseem to be too high pri
e. The potential weakness of this method is the 
omparativelypoor for
e resolution on small s
ales be
ause of the �nite spatial size of the mesh. Asubstantial in
rease in spatial resolution 
an be a
hieved by using instead a hybrid`parti
le-parti
le-parti
le-mesh' method, whi
h solves the short range for
es dire
tly(PP) but uses the mesh to 
ompute those of longer range (PM); hen
e PP + PM =
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al Simulations 119P3M, the usual name of su
h 
odes. Here, the short-range resolution of the algorithmis improved by adding a 
orre
tion to the mesh for
e. This 
ontribution is obtained bysumming dire
tly all the for
es from neighbours within some �xed distan
e rs of ea
hparti
le. A typi
al 
hoi
e for rs will be around three grid units. Alternatively, one 
anuse a modi�ed for
e law on these small s
ales to assign parti
ular density pro�le tothe parti
les, similar to the softening pro
edure demonstrated in Equation (17). Thispart of the for
e may well be quite slow, so it is advantageous merely to 
al
ulate theshort-range for
e at the start for a large number of points spa
ed linearly in radiusand then �nd the a
tual for
e by simple interpolation. The long-range part of the for
e
al
ulation is done by a variant of the PM method des
ribed earlier.Tree 
odesAn alternative pro
edure for enhan
ing the for
e resolution of a parti
le 
ode whilstkeeping the ne
essary demand on 
omputational time within reasonable limits is toadopt a hierar
hi
al subdivision pro
edure. The generi
 name given to this kind ofte
hnique is `tree 
ode'. The basi
 idea is to treat distant 
lumps of parti
les as singlemassive pseudo-parti
les. The usual algorithm involves a mesh whi
h is divided into 
ellshierar
hi
ally in su
h a way that every 
ell whi
h 
ontains more than one parti
le is di-vided into 23 sub-
ells. If any of the resulting sub-
ells 
ontains more than one parti
le,that 
ell is subdivided again. There are some subtleties involved with 
ommuni
atingparti
le positions up and down the resulting `tree', but it is basi
ally quite straight-forward to treat the distant for
es using the 
oarsely grained distribution 
ontainedin the high level of the tree, while short-range for
es use the �ner grid. The greatestproblem with su
h 
odes is that, although they run quite qui
kly in 
omparison withparti
le-mesh methods with the same resolution, they do require 
onsiderable memoryresour
es. Their use in 
osmologi
al 
ontexts has so far therefore been quite limited,one of the problems being the di�
ulty of implementing periodi
 boundary 
onditionsin su
h algorithms.GIF2 simulationGao et al. (2004) [25℄ performed and des
ribed the Gif2 simulation that is a 
os-mologi
al simulation of a �at ΛCDM universe in a periodi
 
ube of side 110h−1Mp
.The total number of parti
les 
onsidered is 4003, with an individual mass of mp =

1.73 × 109M⊙/h. The 
osmologi
al parameters adopted are: Ωm = 0.3, ΩΛ = 0.7,
σ8 = 0.9 and h = 0.7. The initial �u
tuation power spe
trum index has been 
hosento be n = 1, and the transfer fun
tion has been produ
ed using CMBFAST (Seljak &



120 Appendix: Numeri
al SimulationsZaldariaga, 1996 [66℄) for Ωbh
2 = 0.0196. The initial 
onditions were produ
ed by per-turbing an initially uniform state represented by a `glass' distributionof parti
les. Theparti
le distribution has been generated with the method developed byWhite (1993) [88℄whi
h involves evolution from a Poisson distribution with the sign of Newton's 
onstant
hanged when 
al
ulatinf pe
uliar gravitational for
es. Flu
tuations are imposed usingthe algorithm des
ribed in Efstathiou et al. (1985) [20℄. Based on Zel'Dovi
h (1970)approximation [93℄, a Gaussian random �eld has been set up by perturbing the parti
lepositions and by assigning them veo
ities a

ording to the growing mode solution oflinear theory. In order to save 
omputational time, the simulation has been performedin two steps:

• from high redshift until z = 2.2 the simulation has been run with SHMEM (par-allel version of HYDRA, Cou
hman et al. 1995 [16℄). At these times the parti
ledistributions are lightly 
lustered and thus the P3M-based gravity solver is quitee�
ent;
• from z = 2.2 to z = 0 the simulation has been 
ompleted with a tree-based parallel
ode, GADGET, by Springel at al. (2001) [76℄, whi
h has better performan
e inthe heavily 
luster regime.However the two 
odes adopt di�erent for
e-softening s
hemes, so it is ne
essary tomat
h the for
e shape at the time of swit
h from one 
ode to the other. Experimentationsshowed that ǫHY DRA = 1.06ǫGADGET produ
es an ex
ellent mat
h of the two for
e laws.To take into a

ount this di�eren
e from z = 49 to z = 2.2, the simulation has beenperformed with a gravitational softening ǫ = 7kp
/h in 
omoving units, while from

z = 2.2 to z = 0, ǫ = 6.604kp
/h using GADGET.The numeri
al data for GIF2 simulation are publi
y available at: http://www.mpa-gar
hing.mpg.de/Virgo.The GIF2-haloes are identi�ed, at ea
h snapshot, using the spheri
al overdensity
riterion (La
ey & Cole, 1994 [42℄). For ea
h output time the lo
al dark matter densityis estimate at the position of ea
h parti
le by 
al
ulating the distan
e to the tenth
losest neighbour. A lo
al density is assigned to ea
h parti
le; the parti
les are thensorted in density and the 
enter of the �rst halo is the position of the densest parti
le.A sphere of matter is then built around this 
enter and stopped when the mean densitywithin the sphere �rst fall below the virial value appropriate for the 
osmologi
al modelat that redshift. For the de�nition of virial density the model of Eke et al. (1996) [21℄is adopted; e.g. at z = 0 a newly formed halo formed when the its density is 324 timesthe ba
kground. At this point, the parti
les assigned to the �rst halo are removed fromthe list. The 
enter of the next halo is the position of the densest parti
le among theremaining ones. A se
ond sphere is built and so on, until all parti
les are s
reened.



Appendix: Numeri
al Simulations 121A halo must 
ontain at least 10 parti
les. The parti
les non ending up in haloes are
onsidered as `�eld' or 'dust' parti
les.Millennium SimulationThe Millennium Simulation (Springel et al. 2005 [77℄) was 
arried out with a 
us-tomized version of the GADGET2 
ode, using the TreePM method (Xu, 1995) [℄ forevaluating gravitational for
es. This is a 
ombination of a hierar
hi
al multipole expan-sion, or tree algorithm, and a 
lassi
al Fourier transform parti
le-mesh method. This is a
ΛCDM simulation with 
osmologi
al parameters: Ωm = ΩDM + Ωb = 0.25, Ωb = 0.045,
ΩΛ = 0.75, h = 0.73, n = 1, σ8 = 0.9. The simulation volume is a periodi
 box of size
500h−1Mp
 and individual parti
les have a mass of 8.6× 108h−1M⊙. The gravitationalfor
e law is softened isotropi
ally ona 
o-moving s
ale of 5h−1kp
. Initial 
onditionswere laid down by perturbing a homogeneous `glass-like' parti
le distribution witharealization f a gaussia random �eld with the ΛCDM power spe
trum as give by the
ode CMBFAST [66℄. The displa
ement �eld in Fourier spa
e was 
onstru
ted using theZel'Dovi
h approximation, with the amplitude of ea
h random ohase mode drawn froma Rayleigh distribution. The simulation started at redshift z = 127 and was evolved tothe present.Within the simuation a Friend-of-friend (FOF) group �nder was built in order to�nd large virialized stru
tures. These FOF groups found are equivalen
e 
lasses in whi
hny pair of parti
les belongs to the same groups if their separation is less than 0.2 ofthe mean parti
le separation. This 
riterion 
ombines parti
les into groups with a meanoverdensity that 
orresponds approximately to the expe
ted density of virialized groups.However, the FOF algorithm is not able to identify subhaloes, that are stru
tures ofgravitationally bound dark matter orbiting within the larger FOF-haloes. The subhaloesare found with an improved version of the SUBFIND algorithm.
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