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AbstratAt present, the best model for the Universe as a whole is given by the so alled �HotBig Bang�, whih desribes an expanding universe in whih the density and temperatureof matter and radiation are followed in time. The value of the parameters haraterizingthe observed universe is summarized by the onordane ΛCDM model, where CDMstands for Cold Dark Matter (the main matter omponent), and Λ is the osmologialonstant (some kind of unknown energy, with an anti-gravitational e�et). Aording tothis model, the universe is spatially �at (i.e. the density parameter Ω equals one), and75% of its energy balane is assigned to dark energy, about 20% to dark matter andabout 5% to ordinary (baryoni) matter; the expansion speed assumes a value H0 = 70.5Km/s/Mp (the Hubble parameter).The present dissertation fouses on the distribution of dark matter into virializedstrutures, alled dark matter haloes. Aording to struture formation theory, os-mi strutures originates from the ampli�ation of quantum �utuations during anearly stage of aelerated expansion (osmi in�ation); these perturbations grow byself-gravity until they ollapse and originate virialized strutures. In the linear regime(when �utuations are small), this proess is well understood by the Jeans' theory. Thenon linear regime is muh harder to desribe; erlier attempts assumed a simple spherialsimmetry, where the ollapse is driven only by the internal density (e.g. Peebles, 1980);more reently (White & Silk 1979; Bond & Myers 1996) this hypothesis has been re-laxed, and a more omplex model was proposed in whih proto-strutures are desribedby triaxial ellipsoids, governed by their internal density and shape.Using the results oming from the dynamial analysis of the spherial ollapse, andexploiting the statistial �exursion sets formalism�, it is possible to obtain analytialinformation about the mass distribution of dark matter haloes. In this approah, foreah partile in the universe, the trajetory desribing the density evolution of a sphereof matter built around that partile is modeled as a random walk as a funtion of themass M within that sphere. When a trajetory rosses some pre-de�ned threshold, oneassumes that a virialized struture of mass M has formed.By onsidering all the partiles in the universe one obtains analytial forms for the1



2 Abstratglobal mass funtion, and for the progenitor and desendant mass funtions. From theseit is possible to alulate other quantities, like the (instantaneous and integrated) ratesof reation and destrution of dark matter haloes.In the 1990's the ellipsoidal ollapse was �rst tried in order to �nd a better mathwith numerial simulations. However, partly due to the analytial omplexity of themodel, until now one an still not �nd in the literature analytial forms for e.g. thedesendant and merger rate distributions (see Table 4.3).The main goal of this work is to provide suh expressions for a number of statistisrelated to the mass distributions of dark matter haloes, striving to obtain simple and a-urate formulas. In order to do so, we start from the statistial onsiderations by Sheth,Mo e Tormen (2001), who introdued the dynamial e�ets of the ellipsoidal ollapseinto the exursion sets formalism just by modifying the shape of the density threshold.Sheth and Tormen (2002) further suggested an new expression for the ellipsoidal globalmass funtion, using a Taylor expansion series for the barrier: this expression allows oneto also derive analytial formulas for the onditional mass funtions. We obtain a set ofmodels hanging the order of this Taylor expansion, and onsidering the normalizationof the distribution as a free parameter; we then ompare these equations with the re-sults of the osmologial simulation Gif2 (Gao et al. 2004) and, in some ases, with theMillennium Simulation (Springel et al. 2005). For the global and onditional mass fun-tions the math between models and simulations is estimated using a χ2-method. Forthe merger rates we ompare the results qualitatively, whereas for the reation rates weonly derived analytial results. We espeially fous on the ases providing the simplestanalytial expressions: the zero-order and the in�nite-orders Taylor series.In the last part of the dissertation we propose a new statistial method that anoverome two inonvenients of χ2-methods: (i) data binning and (ii) neglet of �eldpartiles (dust) in simulations. Conerning point (i), di�erent bin-sizes an lead to smalldi�erenes in the χ2-results. As for point (ii), partiles that are not bound to haloesare usually onsidered only for omputing the normalization. By using a maximumlikelihood analysis we an treat unbinned data, as well as take into aount dust in thedetermination of the best parameters of the mass funtion. Our tests are performed byomparing a two-parameter mass funtion with results of Monte Carlo simulations.Our work naturally settles within the systemati searh of analytial expressionsassoiated to the ellipsoidal ollapse of dark matter haloes. Sine haloes are thought tobe the sites where baryons an ondense and form stars, galaxies and other luminousobjets, the expression we derive an be used for a number of appliations, rangingfrom unveiling the nature of dark matter through self-annihilation, to the understand-ing of the mehanisms leading to galaxy formation. Furthermore, the desription ofgalaxy evolution requires knowledge on the hosting haloes: semi-analytial models of



Abstrat 3galaxy formation depend on the global mass funtion of the dark matter haloes, andthe orrisponding merger-trees are based on the progenitor mass funtions. The ratesof reation and destrution are useful to ompute the abundanes of objets like AtiveGalati Nulei (AGNs) and Super Massive Blak Holes (SMBHs). Many other exam-ples an be found in the literature for the use of dark matter distributions in studies ofgalaxy formation.The struture of the dissertation is as follows: Chapters 1 justi�es the need of darkmatter. In Chapters 2 we present the onordane osmologial model, its geometryand thermal history. We also introdue the linear and non-linear models for the forma-tion of dark matter haloes. Chapter 3 desribes the exursion sets approah in theframework of the spherial ollapse. The extension of this method to the ellipsoidal ol-lapse is given in Chapter 4, where the �rsts analytial results are derived. In Chapter5 we ompare our analytial preditions to a number of results from numerial sim-ulations. Chapter 6 is devoted to the new maximum likelihood tests with unbinneddata and dust partiles. We �nally draw our Conlusions, followed by one Appendixwhere the numerial simulations are desribed.





SommarioLa miglior desrizione dell'Universo, di ui si dispone al momento, è il modellodel �Big Bang Caldo�, he ontempla un universo in espansione nel quale viene seguital'evoluzione temporale della densità e della temperatura della materia e della radiazione.I parametri he aratterizzano l'Universo osservato sono riassunti in un modello hiam-ato ΛCDM di onordanza: CDM sta per Cold Dark Matter (la omponente dominantedella materia), e Λ è la ostante osmologia (una sorta di energia osura, on e�ettoanti-gravitazionale). Seondo questo modello, l'universo è spazialmente piatto (ioè ilparametro di densità Ω è uguale a uno), e il 75% del suo bilanio energetio è assegnatoall'energia osura, ira il 20% alla materia osura e ira il 5% alla materia ordinaria(barioni); la veloità dell'espansione assume il valore 70.5 Km/s/Mp (parametro diHubble).Questa tesi si so�erma sulla distribuzione della materia osura in strutture virializ-zate, hiamate aloni di materia osura. Seondo la teoria di formazione delle strutture, lestrutture osmihe hanno origine dall'ampli�azione di �uttuazione quantistihe duranteun periodo iniziale di espansione aelerata (in�azione osmia); queste perturbazioniresono per e�etto dell'autogravità �no al ollasso, reando delle strutture virializzate.Durante il regime lineare (quando le �uttuazioni sono piole), questo proesso è bendesritto dalla teoria di Jeans. Il regime non lineare è molto più di�ile da desrivere; iprimi tentativi assumono una simmetria sferia, per la quale il ollasso è desritto solodalla densità interna (es. Peebles, 1980); più reentemente (White & Silk 1979; Bond &Myers 1996) questa ipotesi è stata rilassata, ed è stato proposto un modello più omp-lesso nel quale le protostrutture sono desritte da ellissoidi triassiali, regolati dalla lorodensità interna e dalla loro forma.Utilizzando i risultati ottenuti dall'analisi dinamia del ollasso sferio e sfruttandoil formalismo statistio degli �exursion set�, è possibile ottenere informazioni analitihein merito alla distribuzione di massa degli aloni di materia osura. In questo approio,per ogni partiella nell'universo, la traiettoria he desrive l'evoluzione della densitàdella sfera di materia ostruita attorno a quella partiella viene modellata ome unammino browniano ome funzione della massa M all'interno della sfera. Quando una5



6 Sommariotraiettoria intersea una pre-de�nita soglia, si assume he venga a formarsi una strutturavirializzata di massa M .Considerando tutte le partielle dell'universo, si ottengono forme analitihe per lafunzione di massa globale, e per le funzioni di massa dei progenitori e dei �gli. Da queste,è possibile alolare altre quantità, ome i tassi di reazione e distruzione (istantanei eintegrati).Negli anni '90, il ollasso ellissoidale è stato utilizzato per trovare un miglior aordoon le simulazioni numerihe. Tuttavia, in parte a ausa della omplessità analitia delmodello, �no ad ora non è stato anora possibile trovare in letteratura forme analitiheper esempio per la funzione dei �gli o per i tassi di distruzione (vedi Tabella 4.3).l'obiettivo prinipale di questo lavoro è di fornire tali espressioni per una serie difunzioni legate alle distribuzione di massa degli aloni di materia osura, aspirando adottenere delle formule semplii ed aurate. Per farlo, siamo partiti dalle onsiderazionistatistihe di Sheth, Mo e Tormen (2001) he introduono gli e�etti dinamii del ollassoellissoidale nel formalismo exursion sets, modi�ando la forma della soglia di densità.Sheth e Tormen (2002), inoltre, propongono una nuova espressione per la funzione dimassa globale ellissoidale, usando uno sviluppo in serie di Taylor per la barriera: questaespressione permette di derivare forme analitihe anhe per le funzioni di massa on-dizionali. Abbiamo ottenuto un set di modelli ambiando l'ordine di questo sviluppo diTaylo, e onsiderando la normalizzazione delle distribuzioni ome un parametro libero;abbiamo poi onfrontato queste equazioni on i risultati della simulazione osmologiaGif2 (Gao et al. 2004) e, in aluni asi, on la Millennium Simulation (Springel et al.2005). Per le funzioni di massa globale e ondizionali, l'aordo tra modelli e simulazioniè stimato usando un metodo χ2. Per i merger rates abbiamo onfronti qualitativi, mentreper i tassi di reazione abbiamo derivato le sole equazioni analitihe. Ci siamo so�ermatispeialmente sui asi he fornisono le espressioni analitiamente più semplii: le seriedi Taylor on zero ordini e on in�niti ordini.Nell'ultima parte della tesi, proponiamo un nuovo metodo statistio he può sartaregli inonvenienti dei metodi χ2: (i) la divisione in intervalli dei dati e (ii) il trasurare lepartielle di ampo (polvere) delle simulazioni. Per quanto riguarda il punto (i), di�erentiampiezze degli internalli di massa possono portare a piole di�erenze nei risultati del
χ2. Il punto (ii) si riferise al fatto he le partielle he non sono legate in aloni sono disolito onsiderate solo per il alolo della normalizzazione. Usando un'analisi di massimaverosimiglianza, possiamo trattare dati non raggruppati in intervalli e onsiderare lapolvere nella determinazione dei parametri migliori per la funzione di massa. I nostritests sono ondotti onfrontando una funzione di massa a due parametri on i risultatidi simulazioni Monte Carlo.Il nostro lavoro si inserise naturalmente nella riera sistematia delle espressioni



Sommario 7analitihe assoiate al ollasso ellissoidale degli aloni di materia osura. Poihè si pensahe gli aloni siano i siti ove i barioni possono onentrarsi e formare stelle, galassie edaltri oggetti luminosi, le espressioni he otteniamo possono essere usate in varie appli-azioni, dallo svelare la natura della materia osura attraverso l'auto annihilazione,�no alla omprensione dei meanismi he portano alla formazione galattia. Inoltre, ladesrizione dell'evoluzione galattia rihiede la onosenza dell'alone orrelato: i modellisemi-analitii di formazione galattia dipendono dalla funzione di massa globale deglialoni di materia osura, e i orrispondenti merger-trees sono basati sulle funzioni dimassa dei progenitori. I tassi di reazione e distruzione sono utili per alolare le ab-bondanze di oggetti ome Nulei Galattii Attivi (AGN) e Buhi Neri Super Massii(SMBH). Altri esempi dell'utilizzo delle distribuzioni della materia osura in studi diformazione galattia si possono trovare opiosi in letteratura.L'elaborato si artiola in questo modo: il Capitoli 1 giusti�a la neessità dellamateria osura. Nel Capitolo 2 presentiamo il modello osmologio di onordanza, lasua geometria e la storia termia. Inoltre, introduiamo i modelli, lineare e non lineare,di formazione degli aloni di materia osura. Il Capitolo 3 desrive l'approio degliexursion sets nel ontesto del ollasso sferio. L'estensione di questo metodo al ollassoellissoidale è proposto nel Capitolo 4, ove vengono esposti i primi risultati analitii. NelCapitolo 5 onfrontiamo le nostre predizioni analitihe on i risultati di due simulazioninumerihe. Il Capitolo 6 è dediato all'esposizione dei test di un nuovo metodo dimassima verosimiglianza on l'utilizzo di dati non raggruppati in intervalli e on lepartielle di polvere. In�ne traiamo le nostre Conlusioni, seguite da un'Appendieove sono desritte le simulazioni numerihe.





Chapter 1Neessity of Dark MatterAn usual way to desribe the energeti properties of the Universe is the use of thedensity parameter Ω, that shows the ratio between the energy density assoiated to aomponent, and the ritial density that disriminates between losed and open uni-verses. Eah omponent that �lls the universe has an assoiated density parameter anda law that desribes its time evolution. From the analysis of the density parameters onean notie that the two most important energeti omponents are the most problemationes: the Dark Energy (ΩΛ ∼ 0.721) and the Dark Matter (ΩDM ∼ 0.233) (baryonimatter has ΩBM ∼ 0.046), two onepts that are postulated to frame some observa-tional datas into a onsistent theory, but without a preise haraterization in termsof urrent partile theories. In this hapter I will onsider the reasons that lead to theintrodution of the onept of Dark Matter (hereafter DM).DM have been introdued to explain evidene of �missing mass� in the universe. Thisphenomenon was �rst deteted by F. Zwiky [96℄ in 1933, through the observation of theComa luster of galaxies: he expressed the �missing mass problem� estimating the totalmass of the luster based on the motions of galaxies near its edge (using virial theorem)and omparing it to the mass found by the number of galaxies and total brightness of theluster: there was about 400 times more estimated mass than was visually observable.Then, in the late 1960s and early 1970s, V. Rubin measured the veloity urve of edge-onspiral galaxies and showed that most stars in spiral galaxies orbit at roughly the samespeed, whih implied that their mass densities were uniform well beyond the loationswith most of the stars. This result suggests that either Newtonian gravity does notapply universally or that upwards of 50% of the mass of galaxies was ontained in therelatively dark galati halo. Sine those years, other observational evidenes for DMhas been olleted over the deades through the analysis of many phenomena (CMBanisotropies, gravitational lenses, large sale struture of the universe), theories aboutthe nature of DM were proposed and experiments planned to solve one of the most9



10 Neessity of Dark Matterhallenging issue of modern astrophysis.

Figure 1.1: An intuitive representation of the ontributions to the total energy of theuniverse.
1.1 The indiret lues1.1.1 Galati rotation urvesFrom the rotation urve of a spiral galaxy, i.e. the rotational veloity v(r) of starsand gas as a funtion of galatoentri radius r, one an infer the mass of the galaxy
M(r) enlosed in that radius. If the visible stars and gas provided all the mass in thegalaxy, one would expet that the rotation urve should deline at radii larger than theextent of stellar disk aording to the keplerian relation v2 = GM

r . Instead, one observesthat v(r) remains onstant out to muh larger radii, indiating that the galaxies mustontain far more matter that ontributed by the stars and gas. These mesurements,applied in the Milky Way, are important also for �xing the loal DM density, relevantfor diret detetion of DM.1.1.2 Galaxy ClustersThere are at least three ways to show the disrepany between the mass of visiblematter and the total mass inside a luster of galaxies.LensingThe gravitational �eld of the lusters urves the spae around it, so the light raysemitted from objets behind the luster travel along urved paths (gravitational lensing).If the lensing is strong enough, there are multiple paths from the same objet that arrive
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Figure 1.2: Rotation urve of NGC 6503. The dotted, dashed and dash-dotted lines arethe ontributions of gas, disk and dark matter, respetively. From [1℄.at the loation of the telesope. Beause the light from di�erent sides of the same galaxytravels along di�erent paths, the images of strongly lensed soures are distorded intoars. For a lensing luster with total mass M and impat parameter d the de�etionangle is of order α ∼
(

GM
dc2

)1/2. From the measurements of the de�etion angle andimpat parameter, one an infer that the total mass of a luster is muh larger thanthe observed baryoni mass. Another way to show that, in a luster, Mtotal ≫Mbaryonsonsists in using the equation of hydrostati equilibrium: dpdr = −GM(r)ρ(r)
r2 , where thepressure p(r) is measured ombining data from the temperature T (r) (inferred usingthe strenght of the emission lines) and from the eletron number density ne(r) (inferredusing x-ray luminosity).

DynamisThe virial theorem allows to obtain the mass of a luster through the relation:
v2(r) = GM(r)

r . One again: Mtotal ≫Mbaryons.
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Figure 1.3: Distant galaxy lensed by Abell luster 2218. Credit: NASA, Andrew Fruhterand the ERO team.1.1.3 CMB and LSSThe most ompelling hints about the non-baryoni nature of DM are provided bythe measurements of the Cosmi Mirowave Bakground (CMB) and by the Large SaleStruture (LSS) of the universe. Tuning the parameters on whih theoretial preditionare based, in order to �t the angular power spetrum of CMB temperature anisotropies,and onstraining the results with the datas from LSS, one an obtain Ωmatterh
2 =

0.133 ± 0.006 and Ωbaryonsh
2 = 0.0227 ± 0.0006 (Dunkley et al. 2009 [18℄).1.2 The diret investigation1.2.1 Properties of Dark MatterAlthought it is not lear whih is the partile that people all DM, there are someonstrains that restrit the �eld of investigation:

• DM have no interations with photons (or extremely weak interations), otherwiseit might ontribute to the dimming of quasar, reating absorption lines or emittingphotons.
• Self-interation should be small, otherwise it would su�er gravotherma atastro-
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Figure 1.4: An example of the dependene on Ωbaryon of the CMB-angular spetrum.From Wayne Hu's webpage [32℄phe: in binary interations of two DM partiles, one an get ejeted from the halo,while the other moves to a lower energy state at smaller radius: in this way muhof the halo evaporate and the remaining shrinks.
• Interations with baryons must be weak.
• DM annot be made up of standard model partiles, sine most leptons andbaryons are harged; the only potentially suitable standard model partile is theneutrino, but it annot be DM beause of Gunn-Tremaine bound.The most attrative DM-andidates are weak-interating massive partiles (WIMPs)that interat, besides through gravity, through weak nulear fore, and that has a largemass ompared to standard partiles; so they are slow, old and lumpy: WIMPs areonsidered one of the main andidates for "old dark matter".11.2.2 Detetion of Dark DatterThere are many experiments to attempt to detet WIMPs, both diretly and indi-retly. Among the diret searhes, the majority of present experiments use one of two1Cold means that it has deoupled from the radiation in a non relativisti regime.



14 Neessity of Dark Matterdetetor tehnologies. The �rst the ryogeni detetor, operating at temperatures be-low 100mK, detet the heat produed when a partile hits an atom in a rystal matrixof an absorber suh as germanium. The seond is the noble liquid detetor that seesthe �ash of sintillation light produed by a partile ollision in liquid xenon or ar-gon. Cryogeni detetor experiments inlude: CDMS (Cryogeni Dark Matter Searh),CRESST (Cryogeni Rare Event Searh with Superonduting Thermometers), EDEL-WEISS (Expériene pour DEteter Les Wimps En Site Souterrain), and EURECA(European Underground Rare Event Calorimeter Array). Noble liquid experiments in-lude ZEPLIN, XENON, ArDM and LUX (Large Underground Xenon Detetor). Otherdiret dark matter experiments inlude DAMA/NaI, DAMA/LIBRA, DRIFT (Dire-tional Reoil Identi�ation From Traks), and PICASSO (Projet in Canada to Searhfor Supersymmetri Objets). Indiret detetion experiments searh for the produtsof WIMP annihilation. If WIMPs are majorana partiles (the partile and antiparti-le are the same) then two WIMPs olliding would annihilate to produe gamma rays,and partile-antipartile pairs. This ould produe a signi�ant number of gamma rays,antiprotons or positrons in the galati halo, that an be measured by EGRET (Ener-geti Gamma Ray Experiment Telesope) or by GLAST (Gamma-ray Large Area SpaeTelesope).1.2.3 Possibility of Baryoni Dark MatterAlthough it's most unlike that all the DM that make Ωmatter ∼ 0.3 is made up withbaryons, there are some hints for hoosing them as plausible andidates for galati haloDM. The strongest argument for the existene of baryoni DM omes from primordialnuleosyntesis: the results for 4He, 3He, 2H, 7Li abundanes give Ωbaryonh
2 ∼ 0.0125;sine the ontribution of luminous baryons is Ωlum

baryonh
2 ∼ 0.007, we need the preseneof dark baryons. If there exist baryoni DM, it ould take these forms, of dereasingplausibility:

• stellar mass objets: they ould be brown dwarfs (10−3 ÷ 0.08M⊙), white dwarfs(0.4÷ 1.4M⊙), neutron stars (1.4÷ 2M⊙), stellar relit blak holes from ordinarymassive stars (2 ÷ 10M⊙), blak holes from supermassive stars (100 ÷ 104M⊙)
• Di�use dense louds of old hydrogen.
• Exotia, inluding primordial blak holes, and nuggets of strange matter.During the early 90's, these objets were alled MACHOs, massive astrophysial om-pat halo objets, a term hosen whimsially, by ontrast with WIMPs. MACHOs weredeteted through mirolensing analysis: when they pass in front of or nearly in front ofa star they bend the light, ausing the star to appear brighter.



1.2 The diret investigation 151.2.4 What is the Dark Matter made of?There are a lot of andidates for non-baryoni DM, but the most appealing, at themoment, is the neutralino with a mass of ∼ 100GeV . For the rest of this thesis twothings will be enough to know about the nature of DM, in order to develop a modelfor struture formation: the type of interation between DM partiles and between DMand baryons (i.e. the laws of gravity), and the fat that there are hints that the DM is�old� , i.e. it has deoupled from the radiation in a non relativisti regime.





Chapter 2Struture Formation in a ΛCDMUniverse
2.1 Cosmologial Referene Paradigm: the Hot Big BangBoth the analytial alulations and the numerial simulations shown in this thesisare based on a theoretial framework that follows the history of the universe from theBig Bang to the formation of the strutures: a osmology built on the onordane
ΛCDM model, with parameters de�ned by observational results, is used.The observation of the osmologial redshift phenomenum, through the reession ofthe distant galaxies with a speed proportional to the distane (Hubble law), ontributedto the development of a osmologial model based on the idea of Big Bang, the spae-time singularity at time t = 0, after whih the universe has evolved expanding in anadiabati way. The analysis of the light-element abundanes plus the standard modelof partiles allow to �x a series of eras haraterized by typial temperatures, by thepresene of typial partiles and by their densities. The adjetive �hot� omes from theosmologial origin of the radiative omponent.2.1.1 From Cosmologial Priniple to Evolution of the Hubble Para-meterThe osmologial redshift is interpreted as a onsequene of the expansion of theuniverse that is predited by the general relativity (GR) theory, used to desribe thegravitational fore that is the main interation when large sales are onsidered. In orderto introdue the gravitational fore into the desription of the spae-time, GR uses anexpression alled metri that identify the spae-time interval:ds2 = gijdxidxj , (2.1)17



18 Struture Formation in a ΛCDM Universethe metri tensor gij desribes the properties of the spae-time and xk (k = 0, 1, 2, 3,)are the spae-time oordinates. It is possible to simplify the metri using two propertiesof the large sale struture of the universe (> 100Mpc) that ome from the observationof the small anisotropies of the Cosmi Mirowave Bakground and from the wide �eldsurveys: the omogeneity and the isotropy. The new expression is:ds2 = (cdt)2 − a(t)2
[ dr2
1 −Kr2

+ r2(dθ2 + sin2θdφ2)

]
, (2.2)

a(t) is the expansion fator as a funtion of proper time t; r, θ, φ are polar-spherialomoving oordinates (i.e. they are de�ned in a referene frame that is bound to theexpansion of the universe); K is the urvature parameter that admits three values:
−1, 0, 1, that refer to an open, �at or losed universe.It is possible to simplify also the Einstein's equations:

Rij −
1

2
gijR =

8πG

c4
Tij , (2.3)in whih Rij is the Rii's tensor, R the salar urvature, Tij the energy-momentumtensor, G the gravitational onstant and c the speed of light. For the time-time ompo-nent:

ä = −4πG
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ρ+

3p

c2

)
a , (2.4)and for the the spae-spae omponents:

aä+ 2ȧ2 + 2Kc2 = 4πG
(
ρ− p

c2

)
a2 , (2.5)from whih:

ȧ2 +Kc2 =
8πG

3
ρa2 , (2.6)where the expression of the energy-momentum tensor for marosopi bodies is used:

Tij = (p+ ρc2)UiUj − pgij ,in whih Uk is the 4-veloity, p the pressure and ρc2 the energy density.The equation (2.2) is alled Robertson-Walker metri; (2.4) and (2.6) are the Fried-mann equations, whih are useful to obtain the equation for the evolution of the Hubbleparameter H1:
H2(t) =

(
ȧ

a

)2

= H2
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Ω0w
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)1+3w
+ (1 − Ω0w)

]
, (2.7)the subsript 0 refers to the present time; Ω0w is the density parameter, de�ned as:

Ω0w = ρ0w

ρ0c
, where w relates the pressure to the energy density in the equation of state21The de�nition for the Hubble parameter is H(t) = ȧ(t)

a(t)
.2A radiative �uid has w = 1

3
, the dust has w = 0.
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p = wρc2; ρ0c =

3H2
0

8πG is the ritial density.3 The analysis of a(t) shows that the GRpredits the expansion of the universe and, in the ases with ρ0 > ρ0c, predits theollapse of it.2.1.2 Thermal Evolution of the UniverseGoing bak in time, Friedmann's equations show that a(t) → 0, and the temper-ature T → ∞. However, there exist a typial energy for whih the de Broglie wave-lenght assoiated to a partile is less than its Shwarzhild's radius: in this regime,one an not use the lassial approximation for the Friedmann equations anymore; thisenergy-threshold de�nes some assoiated quantities (alled Plank-mass, Plank-lenght,Plank-temperature, ...), in partiular the Plank-time (tp = 10−43s) is the time beforewhih one an not onsider the relativisti aspet and the quantisti one together, fora theoretial lak of knowledge.From the Plank-time, the universe has evolved in an adiabati way, so getting oldthrough the relation T (t) ∝ a−1(t). The temperature of the universe, so its energetiharateristi, determines the presene of some partiles and fores in di�erent eras.The era between tp and t ≈ 10−5s is alled the transition phase era, and it isharaterized by the unify desription of the fundamental fores (eletromagneti, weakand strong fores).From t ≈ 10−5s (T ≈ 200÷300MeV), there is the adron era, when quarks formed theadrons and the universe was �lled by pions, protons, neutrons, antiprotons, antineutrons,leptons, antileptons e photons. The annihilation of the pions at T ≈ 130MeV determinesthe beginning of the lepton era, that lasts untill t ≈ 10s (T ≈ 0.5MeV) when eletronsannihilated with positrons.The radiative era followed, with the osmologial nuleosynthesis, at T ≈ 109K.The time when the radiation energy density was equal to the matter energy densityis alled equivalene and depends by Ω and H; the typial redshift4 for the equivalenebetween radiation and dark matter is zDMeq ≈ 104.At lower temperatures, the protons ombine the eletrons and form neutral hy-drogen; when the ionized atoms are less that 50%, we have the riombination, at
zrec ≈ 1500. When the neutral atoms represent an high perentage of the total, the ross3If ρ0 < ρ0c ⇒ then Ω0 < 1 and K = −1, open universes;if ρ0 > ρ0c ⇒ than Ω0 > 1, K = 1, losed universes;if ρ0 = ρ0c ⇒ than Ω0 = 1, K = 0, �at universes.4The redshift is de�ned by:

z =
λ0 − λe

λe

λ0 is the wavelenght of an observed radiation that was emitted with a wavelenght λe at a previous timeby a distant soure.



20 Struture Formation in a ΛCDM Universesetion between barions and radiation beomes negligible: this happens at z ≈ 1000.After this deoupling, matter and radiation evolve in a di�erent �thermal way� following:
Tm = T0m(1 + z)2 , (2.8)for the matter and:
Tr = T0r(1 + z) , (2.9)for the radiation; the subsript 0 refers to the present time.The photons that �rst deoupled from the matter show a �last sattering surfae�plaed at z ≈ 1000 and form a bakground of radiation that an be desribed by ablak body with T = 2.728 ± 0.004: for this reason it is alled �osmi mirowavebakground�(CMB): this radiation appear similar observing it from all the line of sightin the sky and shows little anisotropies (∼ 10−5).2.2 ΛCDM Conordane ModelThe Lambda Cold Dark Matter onordane model is based on the Hot Big Bangmodel, but introdues the presene of a Dark Energy using the parameter Λ, alledCosmologial Constant ; the model onsider also that the most important omponentfor the energy density of the matter is a ertain type of Cold Dark Matter. Moreover,this model �xes the values of the parameters neessary for a quantitative desription ofthe evolution of the universe.2.2.1 Cosmologial ConstantSome observational results, as those oming from supervonae Ia, show that, at lowredshift, the osmologial expansion is aelerated. In order to introdue suh phe-nomenum into the model, a term alled �dark energy� was introdued in the Einsteinequation, through the osmologial onstant Λ:
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c4
Tij + Λgij . (2.10)One an obtain the assoiated Friedmann's equations:
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(2.11)and
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Λ has an �anti-gravitational� e�et, and it orrespond to a �uid with equation of state
p = −ρc2 (w = −1), i.e. a �uid with negative pressure that aelerates the expansion.The density parameter assoiated to the dark energy is ΩΛ = 0.7.



2.2 ΛCDM Conordane Model 212.2.2 Contribution of MatterThe total ontribution to the energy density that omes from the matter is Ωm ∼ 0.3;from the CMB datas and from the analysis of the deuterium, one an obtain the value
Ωb = 0.047 assoiated to the barions: the stars ontribut with an amount Ωstar ≈ 0.005,the remaining part omes from the di�use hot gas.2.2.3 Other Density ParametersThe density parameter assoiated to the radiation an be obtained by the temper-ature of the CMB (TCMB = 2.728 ∓ 0.004◦K):

Ωr ≈ 2.3 × 10−5h−2.where h = H
100Km/s/Mpc and H is the Hubble parameter.The ontribution of neutrinos is negligible too:

Ων ≈ 10−5.2.2.4 In�ation and Power SpetrumThere exist some observations that are not explained by Hot Big Bang model: the�atness problem (i.e. the parameter density is ∼ 1), the horizon problem (i.e. the CMBshows the same temperature in eah diretion of observation so di�ent parts of theuniverse, that had never been in ausal onnetion, have the same harateristi), themonopole problem (i.e. magneti monopoles are not observed tough they are predited bysome theories). The solution of these disrepanies is the phenomenum alled in�ationthat predits an aelerated expansion in the �rst phase of the evolution of the universe:the results is that the geometry of the universe beomes �at, that di�erent regions of theuniverse are in ausal onnetion muh before respet to the predition of Friedman'smodels, that the magneti monopoles are diluted.The in�ation gives also an explanation for the formation of the initial spetrumof perturbation and for its shape: during the infationary era, quantisti �utuation ofmatter ampli�ed and beame relevant on marosopi sales. The type of the powerspetrum is a funtion of the in�ationary model, but the Harrison-Zel'dovih resultis always a good approximation: P (k) ∝ k, where P is the spetrum and k is theharateristi sale of the perturbation in the Fourier spae.2.2.5 Parameter σ8Another parameter that haraterized the onordane model is the mass varianeon the sale 8h−1Mp. The mass variane is obtained multiplying the power spetrum



22 Struture Formation in a ΛCDM Universeby a window funtion, and integrating this produt over all the wavenumbers k:
σ2

M =
1

(2π)3

∫ d3P (k)Ŵ 2(kR) .

σ8 is obtained putting R = 8h−1Mp into the expression of the window funtion. Inthis thesis σ8 = 0.9 is assumed.2.2.6 WMAPThe Wilkinson Mirowave Anisotropy Probe provides from the year 2003 the valuesof the osmologial parameters for the onordane model. In Table 2.1 the �time evolu-tion� of the results is shown; one an notie the inrease in the preision of the variousestimates.parameter WMAP 1 year WMAP 3 years WMAP 5 years
H0 Kms

−1Mpc−1 72 ∓ 5 73.2 ∓ 3.2 70.5 ∓ 1.3

σ8 0.9 ∓ 0.1 0.761 ∓ 0.049 0.812 ∓ 0.026

n 0.99 ∓ 0.04 0.958 ∓ 0.016 0.960 ∓ 0.013

Ωmh
2 0.14 ∓ 0.002 0.1277 ∓ 0.008 0.1358 ∓ 0.0037

Ωbh
2 0.024 ∓ 0.001 0.02229 ∓ 0.00073 0.02267 ∓ 0.00059Table 2.1: Comparison among the values of the osmologial parameters provided byWMAP after 1 (Spergel et al., 2003 [74℄), 3 (Spergel et al., 2007 [75℄) and 5 (Komatsuet al., 2009 [39℄) years of observation.In this thesis these values for the parameters are onsidered: (H0, σ8, n, Ωm, ΩΛ) =(70.5Kms−1Mpc−1, 0.9, 1.0, 0.3, 0.7)2.3 Virialized Struture FormationIf one looks to sales smaller than 100Mpc he an observe that the matter getsorganized into galaxies or lusters that arrange themselves into larger mono- and bi-dimensional strutures, breaking the omogeneity and the isotropy that haraterizedthe universe on larger sales. Following the standard senario, osmi strutures arereated by small matter �utuations that grow beause of self-gravity until the ollapse.The �rst strutures that arise from this proess are the dark matter haloes, that aggre-gate in a heirarhial way for the gravitational ollapse, reahing the virial equilibiumbetween potential and kineti energy. This dark matter strutures reate the potentialwells into whih the barions �fall�; the ollisional gas onvert its kineti energy into ther-mal energy reahing the virial temperature; the onsequent radiative loss is the ause



2.3 Virialized Struture Formation 23of the barion ooling and ondensation of moleular louds and stars. The standardsenario is onsidered into a osmologial ontext that uses the Cosmologial Priniple(Robertson-Walker metri) until the epoh of reombination; the universe is almost �atand dominated by the old dark matter.2.3.1 Jeans TheoryJeans SaleThe linear regime of gravitational instability is well desribed by the Jeans theorythat onsider small density �utuations over a uniform �uid, i.e. deviations from themean density over all sales. If one onsider a spherial overdense zone with radius Rand mean density ρ, it has a mass M ∝ ρR3; the typial veloity of the partiles is v.One an make an aount of the two proesses that ontribute to the evolution of theperturbation: the ondensation, due to the gravity, and the di�usion, due to the partilemotion. One an make this omparison with an esteem of the gravitational and kinetienergy Ep and Ek:
Ek ≃ Mv2

2
(2.13)

Ep ≃ −GM
2

R
≃ −GMρR2 ; (2.14)otherwise, one an evaluate the gravitational fore Fg and the pressure Fp:

Fp ≃ −v
2

R
(2.15)

Fg ≃ GM

R2
≃ GρR ; (2.16)otherwise one an determine the gravitational free-fall time sale τff and the idrody-nami time sale τh (the time needed to balane the pressure and density di�erenes):

τh ≃ 2R

v
(2.17)

τff ≃ 1√
Gρ

. (2.18)The equality in these quantities is reahed for a partiular lenght, alled Jeans lenght,that determines a threshold for the size of the overdensity, under whih the di�usiondominates, and over whih the gravity dominates; one an �nd, from the energies:
RJ = v

√
1

2Gρ
; (2.19)using the fores:

RJ = v

√
1

Gρ
; (2.20)



24 Struture Formation in a ΛCDM Universeand using the time sales:
RJ =

v

2

√
1

Gρ
. (2.21)A density with radius R > RJ an ollapse under self gravity, if R < RJ , the perturba-tion is erased by di�usion e�ets.Jeans InstabilityFollowing the Jeans theory, one have to use the equations that relate the �elds de-sribing a �uid, in order to obtain the time evolution:- the onservation of the mass:

∂ρ

∂t
+ ~∇ · (ρ~v) = 0 ; (2.22)- the Euler equation (φ is the gravitational potential):

∂~v

∂t
+ (~v · ~∇)~v = −1

ρ
~∇p− ~∇φ ; (2.23)- the Poisson equation, that onnets the gravitational �eld to its soure:

∇2φ = 4πGρ ; (2.24)- the equation of state, that give the pressure as a funtion of the density andentropy (S):
p = p(ρ, S) ; (2.25)- the equation that desribe the time evolution of the entropy for adiabati systems:dSdt = 0. (2.26)The written equations haraterize a lassial approah to the time evolution of a per-fet �uid, so one must onsider only non-relativisti partiles over sales less than theosmologial horizon5.In the proper referene frame, ~r is the spae oordinate; in the omoving refereneframe, we use ~x; the two quantities are related by this relation: ~r = a~x, a is the expansion5Given a point O in the universe, the osmologial horizon is the surfae that separates the spaewhere a ausal onnetion with O an exists (within a ertain time t) from the zone where there is noausal onnetion. This surfae is at a distane RH(t) = a(t)

t

0
cdt′
a(t′)

from O.



2.3 Virialized Struture Formation 25fator. The veloity of the �uid is the sum of the intrinsi veloity plus the the speedof expansion of the universe:
~u ≡ d~rdt = ȧ~x+ a~̇x = H~r + ~v. (2.27)One must express the �elds as a sum of a non-perturbed part plus a perturbation: weonsider the time evolution of the perturbation:






ρ = ρb(1 + δ)

~u = H~r + ~v

p = pb + δp

Φ = Φ0 + φThe subsript b refers to the non-perturbed part. δ is the �density �utuation�:
δ(~r, t) ≡ ρ(~r, t) − ρb

ρb
=
δρ(~r, t)

ρb
. (2.28)In the linear regime δ ≪ 1. When entered into the ontinuity, Euler, Poisson equations,the perturbations give these results in a omoving referene frame:- ontinuity equation:

∂

∂t
δρ+ ∂ρba~∇~v + 3Hδρ = 0 ; (2.29)- Euler equation:

∂

∂t
~v +H~v = −v

2

a
~∇δ − 1

a
~∇φ ; (2.30)- Poisson equation:

1

a2
∇2φ = 4πGρbδ. (2.31)The system of these three equations has to be solved searhing for a plane wave solution;one an obtain for δk6:

δ̈k + 2
ȧ

a
δ̇k + δk

[k2v2

a2
− 4πGρb

]
= 0. (2.32)Using this equation one an follow the evolution of the perturbations through di�erentepohs:

• before the equivalene, the most important ontribution to the energy density isthe radiation, so the main �utuations are the radiation ones;6δ(~x, t) = δk(t)exp(i~k~x), and analogous relations for ρ, v, φ.



26 Struture Formation in a ΛCDM Universe- over sales greater than the horizon, both the dark matter and baryons �u-tuations follow the radiation �utuations, that are proportional to the squareof the expansion fator:
λ > RH : δDM ∝ δB ∝ δR ∝ a2- over sales smaller than the horizon, the Jeans sale of the baryon-radiation�uid is greater tha the horizon, so the assoiated perturbations osillate; thedark matter perturbations are frozen by the Meszaros e�et7:
λ < RH : δB ∝ δR osillate

δDM almost onstant
• during the epoh between the equivalene and the reombination, the dominantenergy density is the one provided by the dark matter, so the main �utuationsare the DM-�utuations;- over sales greater than the horizon, both baryons and radiation �utuationsfollow the DM-�utuations, that are proportional to the expansion fator:

λ > RH : δR ∝ δB ∝ δDM ∝ a- over sales smaller than the horizon and grater than the Jeans sale, theDM-�utuations grow (∝ a), but the gravitational fore is smaller than theradiation pressure, so the baryon-radiation �uid ontinues to osillate:
RJ < λ < RH : δB ∝ δR osillate

δDM ∝ a- over sales smaller than the Jeans sale, the DM-perturbations are erasedby the free-streaming: the DM partiles di�use from over-dense regions tounder-dens regions following the mean �eld of the universe instead of theloal perturbation.
• after the reombination, the main energy density in the DM-energy density;- over sales greater than the horizon:

λ > RH : δR ∝ δB ∝ δDM ∝ a7The Meszaros e�et shows that before the equivalene the time sale for the expansion is lessthan the time sale for a gravitational free-fall: the DM-perturbations are not able to grow within aHubble-time.



2.3 Virialized Struture Formation 27- over sales smaller than the horizon and greater than the Jeans sale, theDM �utuations grow ∝ a; the radiation osillates and deays; the baryonsperturbations, deoupled from the radiations, grow to reah the amplitudeof the DM-perturbations and to follow their trend.
RJ < λ < RH : δDM ∝ a

δR osillate and deay
δB aelerate growth, then ∝ δDM- over sales smaller than the Jeans sale, the DM-perturbations are erasedby the free-streaming and the baryons follow this trend. For old dark mat-ter, the DM-Jeans sale after the equivalene is very small, so this regimepratially does not exist.All these trends hold for universes with Ωm0 = 1.2.3.2 Statistis of PerturbationsFair Sample HypothesisThe standard paradigm about the formation of osmi strutures explains how theyare onsequenes of the ampli�ation (during the in�ation) of quantum �utuations sothey are a produt of a stohasti salar �eld: the gravitational �eld. For this reason itis appropriate the use of a statistial tool for studying the properties of this �eld and,through the Poisson equation, the properties of the assoiated density �utuation �eld:
δ(~x) =

ρ(~x) − ρb

ρb
.In order to re-express the Cosmologial Priniple from a statisti point of view, one anassume that δ(~x) is a omogeneous and isotropi stohasti �eld, so that the observeduniverse an be seen as a statistial realization of that �eld.Sine the observation allow us to know only one realization of δ(~x), in order to obtainits properties, one must onsider a seond hypotesis, the ergodi hypotesis that is: theaverages of a stohasti �eld on a statistial set are equivalent to the spatial average ofeah realization.Joining the ergodi hypothesis and the osmologial priniple, one obtains the FairSample hypothesis.



28 Struture Formation in a ΛCDM UniversePower Spetrum, Variane and Mass VarianeWithin the standard model for the struture formation, the salar �eld δ(~x), isassumed to be stohasti, omogeneous, isotropi and gaussian with average equal tozero: only the variane an individualize it. The variane is de�ined as:
σ2 ≡

〈
δ2(~x)

〉
− 〈δ(~x)〉2 = 〈δ2(~x)〉 , (2.33)where 〈 〉 is the expeted value of the stohasti �eld. Deomposing the �utuation�eld into plane waves:

δ(~x) =
1

(2π)3

∫
δ̂(~k)exp(i~k · ~x)d3k. (2.34)Using this integral, one expresses the variane as a funtion of δ̂(~k) into the Fourierspae:

σ2 =
1

(2π)3V∞

∫ d3〈δ(~̂k)δ∗(~̂k)〉 =
1

(2π)3

∫ d3kP (k) , (2.35)where δ∗ is the onjugata omponent of δ and V∞ is the volume of the universe. In theequation the de�nition of power spetrum P (k) is used:
〈δ̂(~k)δ̂∗(~k′)〉 ≡ (2π)3P (k)δ3D(~k − ~k′) , (2.36)where δ3D(k) = 1

(2π)3

∫ exp(i~k · ~x)d3x is the distribution Dira delta funtion in 3 di-mention. If k = k′, then δ3D(0) = V∞/(2π)3, so 〈|δ̂(~k)|2〉 = V∞P (k).Sine P (k) ∝ |δ̂(~k)|2, its value shows, for eah k, the weight into the Fourier integralof the �utuation over a sale k in order to build the generi �utuation δ(~x). Thevariane is the sum of the power of the �utuation over all the sales k.The written equation of the variane refers to an exat point into the density �eld;however, we need a quantity that refers to �nite volumes; one an obtain it with aonvolution of δ(~x) with a window funtion W with a radius R in order to obtain themean �utuation density within a volume V ∝ R3:
δM (~x) ≡ δM(~x)

M̄
, (2.37)where M̄ is the mean mass within the onsidered volume. It is possible to obtain alsothe massa variane, i.e. the variane of the �utuation �eld �ltered over a sale R:

σ2
M ≡ 〈δ2M 〉 =

1

(2π)3

∫ d3P (k)Ŵ 2(kR) , (2.38)where Ŵ (kR) is the Fourier transform of the window funtion.The most ommon window funtions used are:
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• Top Hat:

WTH(r) =

{
3

4πR3
T

r < R3
TH

0 r > R3
THwith a Fourier transform:

ŴTH(k) =
3

(kRTH)3
[sin(kRTH) − (kRTHos(kRTH))]

• Gaussian:
WG(r) =

1

(2π)3/2R3
G

exp(− r2

2R2
G

)with a Fourier transform:
ŴG(k) = exp(− 2k2

R2
G

)

• sharp k-spae:
WSk(r) =

1

2π2r3
[sin( r

RSk

)
−
( r

RSk

)os( r

RSk

)
]with a Fourier transform:

ŴSk(k) =

{
1 k < 1

RSk

0 k > 1
RSkTransfer FuntionConsider sale-free initial power spetra8. Over sales greater than the horizon,the density �utuations δk(t) evolve depending on the osmologial parameters andfollowing an amplitude distribution that is a funtion of the shape of the primordialspetrum: the perturbations over the sales greater than the horizon are not a�etedby ausal e�ets triggered by the mirosopi physis. Inreasing t, the horizon expandsand allows bigger perturbations to have a ausal relationship, so the primordial powerspetrum is modi�ed depending on the ating miro-physial proess. If a perturbationis reahed by the horizon before aeq, it remains frozen beause of Mezaros e�et, untilthe equivalene; sine the �rst perturbations reahed by the horizon are over smallsales, for those �utuations the stagnation time is longer. If a �utuation is big enoughto be reahed by the horizon after the equivalene, it is not a�eted by the stagnation.This di�erent trend, that depends on the sale, modi�es the shape of the primordialpower spetrum: we want to know how the initial spetrum Pin(k) ∝ kn beomes the8A sale-free spetrum is a power law relation P (k) ∝ kn, with a onstant logaritmi slope over allthe sales.



30 Struture Formation in a ΛCDM Universeproessed spetrum Pfin(k). We want to alulate the growth of a �utuation δ(k) froman initial time, tin, with a primordial power spetrum, to a �nal time, tfin, between theequivalene and the reombination (after this epoh the DM-�utuations are no morea�eted by mirophyisial proesses). Consider these two regimes:1. if k determins aH < aeq, there is a growth until aH , followed by a stagnationuntil the equivalene; the growth from tin to the equivalene happens before beenreahed by the horizon sale:
δ(k; aeq) = δ(k; ain)

(
aH

ain

)2

∝ δ(k; ain)a2
H , (2.39)2. if k determins aH > aeq, there is a growth of the perturbation until aeq. In thisase:

δ(k; aeq) = δ(k; ain)

(
aeq

ain

)2

∝ δ(k; ain) , (2.40)where (aeq/ain)2 is a onstant.To alulate the growth of δ(k) as a funtion of k, one must express aH as a funtionof k. For aH < aeq one obtains:
aH ∝M1/3 ⇒ a2

H ∝M2/3and sine M ∝ R3 ∝ k−3:
a2

H ∝ k−2. (2.41)Using this equation into (2.39) one obtains:
Pfin(k) ∼ δ2(k; aeq) ∝ δ2(k; ain)a4

H ∼ Pin(k)k−4 ∝ kn−4. (2.42)Over small sales (k → ∞), the initial spetrum is modi�ed by a fator k−4. If aH > aeq,from eq. (2.40):
Pfin(k) ∼ δ2(k; aeq) ∝ δ2(k; ain) ∼ Pin(k) ∝ kn , (2.43)i.e. over bigger sales (k → 0), the initial spetrum remains the same until the equiv-alene. The transition between the two regimes happens for k similar to the sale ofthe osmologial horizon at the equivalene. If the universe is dominated by CDM witha Zel'dovih primordial spetrum (spetral index n = 1), the power Pfin(k) d3k ∝

k3Pfin(k) is an inreasing funtion of k, and beome a onstant for k → ∞:
k → 0 ⇒ k3Pfin(k) ∝ kn+3 ∝ k4

k → ∞ ⇒ k3Pfin(k) ∝ kn−4+3 ∝ cost.



2.3 Virialized Struture Formation 31The CDM model predits a greater power on small sales implying a hierarhial lus-tering.The modi�ation of P (k) an be expressed using a transfer funtion:
T (k; zfin) ≡ δ(k; zfin)

δ(k; zin)

D(zin)

D(zfin)
(2.44)So:

Pfin(k) ∝ δ2(k; zfin) = Pin(k)T 2(k; zfin)
[D(zfin)

D(zin)

]2
= k2T 2(k)

[D(zfin)

D(zin)

]2
.The transfer funtions is a low-pass �lter, so:

k → 0 ⇒ T (k) → 1

k → ∞ ⇒ T (k) ∝ k−2 → 02.3.3 Non-Linear RegimesThe Jeans theory holds if the density ontrast remains in the linear regime: δ ≪ 1.However the perturbations evolve towards the unit value and the towards a strong non-linear regime: δ ≫ 1. So we need other theories besides the linear one. Here the spherialollapse model and the ellipsoidal ollapse model are desribed.Spherial CollapseThe idea is to follow a spherial non homogeneous perturbation with a radius Rthat ontains a mass M ; its evolution is:d2Rdt2 = −GM
R2

(2.45)where:
M =

4πR3
i

3
ρ̄i(1 + δi) e δi =

∫ Ri
0 4πr2δi(r) dr

4πR3
i /3

(2.46)where ρ̄i e δi are, respetively, the bakground density and the amplitude of the �u-tuation at the initial time. The model require that the shells remains onentri duringtheir evolution, so that the total mass would be onstant; the equation (2.45) is themotion equation of the shells. The integral of (2.45) gives:
1

2

(dRdt )2

− GM

R
= cost = E. (2.47)If E < 0, then dR/dt an hange the sign: even if the perturbation begins to ex-pand, it will ollapse. If δi ≪ 1, then, at �rst approximation, one assumes that the



32 Struture Formation in a ΛCDM Universeveloities are due only to the Hubble stream: (dR/dt)i ≈ (d(ax)/dt)i = xi (da/dt)i =

Ri [(da/dt) /a]i = HiRi. The initial kineti and potential energies are:
Ki =

(HiRi)
2

2
e Wi = −GM

Ri
= −Ωi(1 + δi)

(HiRi)
2

2
(2.48)where, in the expression of Wi, the mass M (2.46) is insered, and Ωi = ρ̄i/ρci =

8πGρ̄i/3H
2
i is used. The total energy is:

Ei = Ki +Wi = Ki −KiΩi(1 + δi). (2.49)The ollapse happens when (1 + δi) > 1/Ωi. If the perturbation is dense enough inrespet to the bakground, after an initial expansion, and after reahing the turnarounddimension (maximun dimension), ollapses. At the turnaround, the kineti energy isnull; for the onservation of energy:
E = − GM

Rmax
= − Ri

Rmax
KiΩi(1 + δi) = Ei = Ki [1 − Ωi(1 + δi)] (2.50)so:

Rmax

Ri
=

Ωi(1 + δi)

Ωi(1 + δi) − 1
. (2.51)When Ωi = 1, then: Rmax/Ri = (1+δi)/δi ≈ 1/δi: the ratio between the radius at turn-around and the initial radius depends on δi, in the same way for eah M . Shells slightlyoverdense have Rmax ≫ Ri and need a longer time to ollapse. After the turnaround,the perturbation ollapse, there's a mixing of the shells and the struture virializes. Be-ause of the virial equilibrium, −Wvir = 2Kvir ; sine the total energy E = Kvir +Wvirmust be equal to the total energy at turnaround:

E = Kvir +Wvir = Wvir/2 ≈ − GM

2Rvir
= − GM

Rmax
, (2.52)so Rvir ≈ Rmax/2: at the virialization, the struture is 8 times denser respet to theturnaround.The exat time evolution for eah shell has a parametri solution:

R

Ri
= A(1 − cos θ) e t+ T

ti
= B(θ − sin θ) (2.53)where (ARi)

3 = GM (Bti)
2 and θ hanges within 2π. The evolution of an underdenseregion an be obtained hanging (θ − sin θ) with (sinh θ − θ) and (1 − cos θ) with

(cosh θ − 1). The turnaround has θ = π, so A is obtained putting: Rmax/Ri = 2A; Bfollows.
A =

1 + 1/δi
2

e B =
1 + δi

2HitiΩ
1/2
i

[1 + δi − 1/Ωi]
−3/2 . (2.54)
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T is small ompared to ti, so it an be ignored; if Ωi = 1:

Ri = Ri
1 + 1/δi

2
(1 − cos θi)so: θ2

i ≈ 4δi. So:
Hiti (1 + T/ti) =

1 + δi

δ
3/2
i

(θi − sin θi)

2
→ Hiti (1 + T/ti) =

2

3
(1 + δi)from this equation one obtains: T/ti = δi ≪ 1, so that T an be ignored.We onsider an Einstein-de Sitter universe (only dust, �at Ω = 1, without osmo-logial onstant, with ρ̄(t) = 1/

(
6πGt2

)): the ratio between the mean density withinthe perturbation anhe the bakground density evolves as:
1 + δ =

ρ̄i

ρ̄(t)

(
Ri

R

)3

≈ (t/ti)
2

A3(1 − cos θ)3
=

=
B2(θ − sin θ)2

A3(1 − cos θ)3
=

9(θ − sin θ)2

2(1 − cos θ)3
. (2.55)At t ≈ ti:

δ ≈ 3θ2

20
≈ 3

20

(
6t

B

)2/3

≈ 3

5
δi

(
t

ti

)2/3

. (2.56)At turnaround (θ = π) the density respet to the bakground is:
1 + δmax =

9π2

16
≈ 5.55. (2.57)Sine δ > 1, the objet is strongly non linear. Altought formally δ → ∞, when θ → 2π,the objet virializes with a �nite radius. These relations hold: Rvir ≈ Rmax/2; and if

tvir = t(θ = 2π), then tvir = 2tmax. With Ω = 1, the universe expands 22/3 timesbetween tmax and tvir, dereasing its density by a fator 4. At virialization, the densityompared to the bakground is:
1 + δvir =

9π2

16

(
Rmax

Rvir

)3( ρ̄max

ρ̄vir

)
=

9π2

16
· 8 · 4 ≈ 178. (2.58)So the virialized objets have the same densities in spite of di�erent masses.The predition oming from the linear theory about the value of the density is muhless; in fat, using (2.56) and de�ning:

δL =
3

5
δi

(
t

ti

)2/3

=
3

5

(
3

4

)2/3

(θ − sin θ)2/3 , (2.59)where the subsript L refers to the linear regime, one obtains at the turnaround:
δL =

3

5

(
3π

4

)2/3

= 1.062. (2.60)



34 Struture Formation in a ΛCDM UniverseThe linear theory gives a lower esteem of the overdensity, and this gap is greater towardthe ollapse. The predited linear overdesity for a virialized objet has a signi�antinterest for models that exploit the initial density �utuations in order to desribe theevolution of the non linear ustering; the value of this ritial threshold for the ollapseis:
δsc =

3

5

(
3π

2

)2/3

= 1.68647 (2.61)where the subsript sc shows that this value is derived into the spherial model. Herethe value of δsc is obtained for an Einstein-de Sitter universe. For a ΛCDM universe(with Ωm = 0.3; ΩΛ = 0.7) the ritial threshold for the ollapse is δsc = 1.675529.Ellipsoidal CollapseNumerial simulations show that the spherial ollapse model is not the best ap-proximation for desribe the formation of osmi strutures. For example: the massfuntion obtained with the spherial model overestimates the number of low mass ob-jets and underestimates the number of high mass strutures. A more preise modelis the ellipsoidal model that is more re�ned and takes into aount a higher degree ofomplexity for the strutures. From a priori point of view, one an predit that thespherial perturbation is a realisti approximation for masses a little greater than theJeans mass, in a regime where the pressure and dissipative e�ets drive to spherialondensations in whih the self-gravity is supported by the internal pressure. However,at the equivalene, it is unlikely that all the perturbations are spherial beause thison�guration would be unstable when there are non radial motions.The ellipsoidal ollapse model introdues the neessary geometrial omplexity, de-sribing omogeneous and triaxial regions in an uniform bakground: the perturbationswould evolve in omogeneous ellipsoids. In this ontext, the tidal fores a�et the ollapsesubstantially.White & Silk Model White and Silk developed this model in the 1979 [91℄ desribingthe growth and the ollapse of omogeneous ellipsoidal perturbations in a uniform andexpanding bakground; they don't take into aount the tidal fores reated by nearobjets. The homogeneity an seem to be a foring beause every proto-halo, whenbegins to free itself from the expansion, shows a strong oarsesness, due to the sub-strutures already viriaized inside it; however it is possible that visous e�ets ansmooth the �utuations over sales like 1012 ÷ 1013M⊙.The gravitational potential within an uniform ellipsoid is:
Ve = −πGρe

3∑

i=1

αix
2
i , (2.62)



2.3 Virialized Struture Formation 35where ρe is the density of the ellipsoid; the oordinate axis oinide with the prinipalaxis of inertia and Ve is equal to zero in the origin. They de�ne the oe�ients αi:
αi(

a1

a3
,
a2

a3
) = a1a2a3

∫ ∞

0
(ai + λ)−1

3∏

j=1

(aj + λ)−1/2dλ , (2.63)where ai are the semi-axis in omoving oordinates; they assume a1 ≤ a2 ≤ a3. Putting(2.62) into the Poisson equation (2.24) they get:
∑

i

αi = 2. (2.64)The bakground sourronding the perturbation is a homogeneous sphere with density ρb;the assoiated potential is:
Vb = −2

3
πGρb

3∑

i=1

x2
i . (2.65)The sphere is put in the oordinate origin where the potential Vb = 0. The total potentialof a homogeneous perturbation in a non-perturbed universe is:

V = −πG
∑

i

[(ρe − ρb)αi +
2

3
ρb]x

2
i =

= −πG
∑

i

[αiρe +
(2

3
− αi

)
ρb]x

2
i . (2.66)In order to obtain the motion equations starting from the potential equation, one as-sumes that the region outside the bakground sphere is uniform and that the externaldensity an be alulated using Friedmann equations. The quadrati form of the poten-tial and the uniform ρb allow the �utuation to evolve through homogeneous ellipsoids:the veloity �eld remains linear. The evolution of the perturbation follows these equa-tions:






d2aidt2 = −2πG
[
αiρe +

(
2
3 − αi

)
ρb

]d2Rbdt2
= −4π

3 GρbRb

ρea1a2a3 = cost

ρbR
3
b = cost

(2.67)where Rb is the a sale fator of the universe. The equations (2.67) must be integrateduntill the minor axis beomes null and the struture is alled panake.Assuming that the αi's do not depend on time and that ρeai and ρbai have the sametime evolution, an approximation to the �rst equation of the system is obtained:d2aidt2 =
[3
2
αi(t0)

d2Redt2 +
(
1 − 3

2
αi(t0)

)d2Rbdt2 ]αi(t0) , (2.68)



36 Struture Formation in a ΛCDM Universewhere t0 is the initial time and Re is the sale fator of a universe with initial density
ρe(t0). The integration of (2.68) gives:

ai(t)

ai(t0)
=

3

2
αi(t0)Re(t) +

(
1 − 3

2αi(t0)

)
Rb(t) =

= Rb(t) −
3

2
αi(t0)[Rb(t) −Re(t)]. (2.69)These equations desribe the exat evolution of a spherial perturbation and are a goodapproximation to the ellipsoidal evolution.One an obtain the solution of the system (2.67) through a numerial integration.The results show that the time for the ollapse dereases if the eentriity grows;moreover the kinemati properties of the ollapsed ellipsoid depend, besides on theinitial shape of the perturbation, on the density of the universe. The axial ratios dependon time through:

a2(tc)

a3(tc)
≈ a2(t0) − a1(T0)

a3(t0) − a1(T0)
, (2.70)where tc is found putting a1(tc) = 0.The White and Silk approah allows to determine a relation between the initialperturbation and the �nal one, and the kinemati properties of the ollapsed objet.Although the tidal fores are negleted, this model gives a orret qualitative view ofthe proto-struture formation.Eisenstein and Loeb Model The model [19℄ follows, analitially, the non linearollapse of aspheri regions in a gaussian primordial �eld of perturbations. The pertur-bations are desribed as homogeneous triaxial ellipsoids that are subjet to their owngravitational �eld and to an external tidal tensor: this is the news feature respet toother older models. The initial perturbation is generated in a spherial volume arounda density peak; the ollapse is followed hoosing a triaxial ellipsoid with mass equal tothe mass of the spherial region, with the same overdensity and with the quadrupolemomentum equal to the one of the initial �utuation. The tidal tensor is originatedby the external �eld and is alulated drawing spherial radial shells around the peak.This mass distribution plays tidal torsions on the objet that begins to rotate. Usingthe equation of motion one an analyze the linear regime of the initial density �eld and,through an integration, the virialization an be desribed. It is also possible to deter-mine some statistial properties of the virialized objets (shapes, orientations, angolarmomentum) by reating several realizations of the initial �eld. With this model, onean see that the geometry of the ollapse is driven by the tidal fores rather than bythe initial anisotropy of the �utuation.



2.3 Virialized Struture Formation 37Bond and Myers Model The model [8℄ onsiders both the non-linear internal dy-nami evolution of the strutures, and the slow external evolution of the virializedstrutures, following an approah that is the generalization of the peak theory and ofthe Press-Shehter method. The proto-struture is identi�ed by a loal density peak,�ltered over a sale Rf : δf (~r, t;Rf ). In the loal peaks, the gradient ∇iδf is equal to zero,and the tensor of the seond derivatives, ∇i∇jδf is less than zero. ∇iδf and ∇i∇jδf de-termine the entral properties of the peak; the dynami of the system is realated to thedisplaement ~ψ(~r) around the peak. The displaement �eld is deomposed into a part�ltered over a large sale (bakground) and a part that represents the �utuations of thedisplaement �eld, that are statistially indipendent from the bakground: ψ = ψb +ψf .Around the peak, the �eld ψb is identi�ed by the displaement of the peak and by thedeformation tensor:
~ψb,i ≈ ~ψpk,i −

∑

j

epk,ij(~r − ~rpk)i + · · · (2.71)The deformation tensor is de�ned by:
eb,ij ≡ −1

2

(∂ψb,i

∂rj
+
∂ψb,j

∂ri

)
(~r) ; (2.72)and:

epk,ij ≡ −eb,ij(~rpk). (2.73)The deformation tensor an be expressed as a funtion of its eigenvalues, that individ-ualize its prinipal axis:
eijpk = −

3∑

l=1

λln̂
i
ln̂

j
l ; (2.74)where n̂l are unit vetors.In order to desribe the ellipsoidal perturbation, one an use three parameters: theelliptiity e, the prolateness p and the density ontrast δ. The relations among theseparameters and the eigenvalues of the tensor are:






λ1 = (δ/3)(1 + 3e+ p)

λ2 = (δ/3)(1 − 2p)

λ3 = (δ/3)(1 − 3e+ p)

(2.75)One an obtain:
{
e = (λ1 − λ3)/(2δ)

p = (λ1 + λ3 − 2λ2)/(2δ)
(2.76)



38 Struture Formation in a ΛCDM UniverseIf λ1 ≥ λ2 ≥ λ3, one an obtain the onstrains: e ≥ 0, −e ≤ p ≤ e. The overdensity ofthe �ltered �eld, δ, oinides with the trae of the tensor:
δ = −eipk,i =

= [~∇ · ~ψb](~rpk) =

= λ1 + λ2 + λ3 (2.77)The ollapse begins with the �rst axis and the virialization happens when the third axisollapse.



Chapter 3
The Exursion Sets method

The exursion set formalism was introdued by Bond et al. (1991) [7℄ and wasdeveloped by Laey and Cole (1993) [41℄; they based their work on a model, writtenby Press and Shehter (1974) [58℄, that allows an analyti approah to the hierarhialmerging history of the dark matter haloes. The �rst hypothesis of this approah isthat the stohasti, homogeneous and isotropi �eld δ(~x, t) = δ(~x, t0)D(t)/D(t0) isdetermined by small density �utuations, δ ≪ 1, that an be treated with the linearregime theory; D(t) is the linear growing fator of the perturbations, ~x is the omovingoordinate and t0 is a referene time, e.g. the present time. The �eld δ(~x, t) is setonly by the power spetrum of the �utuations P (~k, t). The linear regime holds untilthe amplitude of the �utuations reahes the unit value; when this happens, the non-linear e�ets dominate and the region separetes from the expansion of the universe andollapses forming a virialized objet. At this epoh, the density ontrast foretold by thelinear theory is δc ≡ δsc = 1.675529 for the onordane model.It is possible to hange the point of view on this linear evolution: one an transferthe time dependene from the δ-�eld to the ritial threshold, by multiplying δc by
D(t0)/D(t). This means to onsider the linear �utuation �eld δ(~x) ≡ δ(~x, t0) at time
t0, and a ritial threshold δc(t) = δc D(t0)/D(t) that dereases while the time t grows.The model wants that the in�nitesimal mass element in ~x is part of a halo with massgreater or equal than M , at time t, if the linear �utuation δf (~x;R), entered on ~x and�ltered over a sphere with radius R ∝M1/3, is equal or greater than the threshold:

~x ∈M ⇒ δf (~x;R) ≥ δc(t). (3.1)39



40 The Exursion Sets method3.1 Brownian MotionsThe density �eld δf (~x;R), �ltered over a sale R, is the onvolution of δ(~x) with awindow funtion W (~x,R) with a tipial amplitude R. Using the Fourier transform:
δf (~x;R) =

1

2π2

∫ ∞

0
δ̂(k)Ŵ (kR)k2 dk ≈ 1

2π2

∫ kf

0
δ̂(k)k2 dk ≡ δf (~x; kf ) (3.2)where kf ∝ 1/R is the wave number related to the �ltering radius R; onsidering theposition ~x = 0, one an throw away the exponential. δf (~x;R) is the sum over all the�utuation with a plane wave shape and with k . kf ; the window funtion is a low-pass�lter and removes the ontribution of waves with k & kf . The �ltering an be doneusing the mass instead of kf ; the mass variane over a sale kf is:

σ2
R =

1

2π2

∫ ∞

0
P (k)Ŵ 2(kR)k2 dk ≈ 1

2π2

∫ kf

0
P (k)k2 dk ≡ S(kf ) ; (3.3)usually, S(kf ) is a monotoni inreasing funtion of kf , so that S(kf = 0) = 0 and

S(kf → ∞) → ∞.Consider, for eah point ~x, the path in the 2-dim spae (S(kf ), δf (~x; kf )) drawnby the �utuation δf entered in ~x and �ltered over a sale orresponding to kf . Eahtrajetory starts in (S, δf ) = (0, 0), that orresponds to a null �utuation with anin�nite window as a �lter, and then moves away from the origin, following the matterdistribution around the point ~x.If the window funtion is a Top Hat funtion in the Fourier spae, then the ontribu-tions to the δf (~x; kf )-�eld from di�erent k are not orrelated. In this ase the trajetoryis a Brownian motion in (S, δf ), that an be desribed using a di�usion equation:
∂Q

∂S
=

1

2

∂2Q

∂δ2f
, (3.4)where Q(δf , S) is the probability distribution in the stohasti variable δf for trajetoriesthat have a given σ2(kf ) = S value. For a free Brownian motion, the solution of thisequation is a Gaussian distribution:

Q(δf , S) =
1√
2πS

exp

(
−
δ2f
2S

)
. (3.5)This distribution shows, for eah S, the numerial density of trajetories within theinterval [δf , δf + dδf ].3.2 From Trajetories to HaloesThe trajetories that, starting from the origin, reah the point (S, δf = δc(t)) areassoiated with �uid elements that belong to haloes with mass M at time t. For eah



3.2 From Trajetories to Haloes 41
t a horizontal threshold δc(t) (alled also barrier) is determined; this barrier an berossed, for the �rst time, by a brownian path at a value S of the x-axis: this meansthat, at time t, the mass element related to this trajetory is part of a halo with mass
M(S). The relation between S and M is given by (3.3) through kf ∝ 1/R ∝ M−1/3.The request that the trajetory touhes the threshold for the �rst time, is equivalent toonsider the maximum �ltering radius R = Rmax (i.e. the minimum kf or S) for whihthe sphere with radius Rmax, at time t, has an overdensity greater or equal to δc(t).Even if the random walk, after this rossing, omes bak again under the barrier, themass element is onsider to be part of the biggest halo with mass M(Rmax), beausethe region is ollapsed over that sale. In order to alulate the mass funtion of theDM-haloes, i.e. the mass distribution of the virialized strutures at various epohs t,one has to onsider the various types of trajetories respet to the threshold δc(t) andto ount them. Consider a sale k0, orresponding to the variane S0, and an epoh t.One an identify three kind of possible trajetories:1. trajetories that rossed the barrier at kf < k0 and that are still above the thresh-old:

δf (k) ≥ δc(t) ∀k ∈ [kf , k0] ; (3.6)2. trajetories that stay under the barrier at kf = k0, but that rossed it at a lowervalue of S:
δf (k0) < δc(t) ma ∃ kf < k0 tale he: δf (kf ) > δc(t) ; (3.7)3. trajetories that did not ross the barrier:

δf (kf ) < δc(t) ∀ kf ≤ k0. (3.8)A straightforward way to fae the problem is to onsider the type-3 paths, that orre-spond to �uid elemets in haloes with mass M < M(S0) at time t. To do it, one mustsubtrat, from the total number of trajetories that are under the threshold, the type-2paths.Sine the path is determined by adding indipendent Fourier modes, at every timea trajetory moves upward or downward with the same probability. So, every type-2trajetory has a orresponding virtual one with the same probability that rosses thebarrier at the same point (S, δc(t)), but oming from higher values of y-axis: one anobtain it by re�eting the path before the �rst rossing respet to the axis δc(t). Thisvirtual trajetory orresponds to a brownian walk starting from (S, δf ) = (0, 2δc(t))and satisfying the di�usion equation with the solution (3.5); note that the enter of the



42 The Exursion Sets methodGaussian must be shifted from 0 to 2δc(t). So, the probability for type-2 paths is:
Q1(δf , S, δc(t)) dδf =

1√
2πS

exp

[
−(δf − 2δc(t))

2

2S

] dδf . (3.9)So, the probability for type-3 trajetories is:
Q2(δf , S, δc(t)) dδf = [Q(δf , S) −Q1(δf , S, δc(t))] dδf

=
1√
2πS

{
exp

(
−
δ2f
2S

)
− exp

[
−(δf − 2δc(t))

2

2S

]} dδf(3.10)Chandrasekhar (1943) shows that this is the solution of the di�usion equation of the

Figure 3.1: An example of stohasti paths and of the probabilities Q, Q1 and Q2assoiated to the value of S (on the y-axis: fv ≡ δc(t)), from Bond et al. (1991).stohasti trajetories, eq. (3.4); the boundary ondition wants the absortion of thetrajetories that ross the barrier. The fration of paths that, within the time t, havenot rossed yet the barrier δc(t), is the umulative probability obtained with an integralfrom −∞ to δc(t) of the previous expression:
P2(S, δc(t)) =

∫ δc(t)

−∞
Q2(δf , S, δc(t)) dδf . (3.11)The fration of trajetories that have already rossed the barrier within t is the om-plementary set:

P̄2(S, δc(t)) = 1 − P2(S, δc(t)) ; (3.12)



3.3 Useful distributions 43(3.12) is the numerial fration of �uid element that are part of haloes with variane
< S, at time t: this is the de�nition of umulative mass funtion at time t, expressed inthe S-variable:

P̄2(S, δc(t)) = P (< S, t). (3.13)3.3 Useful distributionsWithin the formalism of the exursion sets, following arguments similar to the onesused for the umulative mass funtion, and adding some statistis, it is possible toobtain other distributions of interest. In the ontext of the spherial ollapse, Bond etal. (1991) [7℄ and Laey and Cole (1993) [41℄ found the di�erential mass funtion; Laeyand Cole [41℄ [42℄ onsidered also the progenitor and the desendant mass funtions,besides the merger rate; Cavaliere et al. (1991) [12℄, Blain & Longair (1993) [6℄), Sasaki(1994) [64℄, Kitayama and Suto (1996) [36℄, Perival and Miller [57℄ tried to obtainanalytial equations for the reation and destrution rates.3.3.1 Mass FuntionThe di�erential mass funtion (or global, or unonditional mass funtion) is theprobability that, at time t, a �uid element is part of a halo with mass in the interval[M,M + dM ℄. It an be obtained starting from the distribution of the trajetories thatross the barrier for the �rst time at t and at [S, S + dS℄; this distribution derives fromthe umulative mass funtion, by a derivative respet to the variane S:
p(S, δc(t)) ≡ ∂P̄2(S, δc(t))

∂S
= −∂P2(S, δc(t))

∂S

= − ∂

∂S

∫ δc(t)

−∞
Q2(δf , S, δc(t)) dδf . (3.14)Putting the derivative into the integral and exploiting the di�usion equation (3.4), onean substitute the derivative respet to S with the seond derivative respeto to δf ,obtaining:

p(S, δc(t)) = −1

2

∫ δc(t)

−∞

∂2Q2

∂δ2f
dδf = −1

2

∂Q2

∂δf

∣∣∣∣
δc(t)

−∞
. (3.15)With a derivative of eq. (3.10) one obtains:

∂Q2

∂δf
=

1√
2πS

{
−δf
S

exp

[

−
δ2f
2S

]

+
δf − 2δc(t)

S
exp

[
−(δf − 2δc(t))

2

2S

]}

. (3.16)



44 The Exursion Sets methodIn −∞, the funtion is null, beause it ontains terms like exp(−∞). Only the term in
δc(t) remains, so:

p(S, δc(t)) ≡
df(S)dS = −1

2

∂Q2

∂δf

∣∣∣∣
δc(t)

=
−1

2
√

2πS

(−2δc(t))

S
exp

[
−δ

2
c (t)

2S

]

=
δc(t)√
2πS3/2

exp

[
−δ

2
c (t)

2S

]
. (3.17)This is the fration of mass in haloes with variane around S. The fration of mass withmass around M is obtained hanging the variable S into M and using the onservationof probability:

p(x) dx = p(y) dy ⇒ p(x) = p(y)

∣∣∣∣
dydx ∣∣∣∣ (3.18)so: df(M)dM =

df(S)dS ∣∣∣∣
dSdM ∣∣∣∣ . (3.19)From, ∣∣∣∣

dSdM ∣∣∣∣ =
S

M

∣∣∣∣
d lnSd lnM

∣∣∣∣ =
2S

M

∣∣∣∣
d lnσd lnM

∣∣∣∣ (3.20)one obtains: df(M)dM =

(
2

π

)1/2 δc(t)

Mσ(kf )

∣∣∣∣
d lnσd lnM

∣∣∣∣ exp

[
− δ2c (t)

2σ2(kf )

]
. (3.21)The number of haloes with mass M in a volume V ontaining a total mass MV is:df(M)dM MV

M
; (3.22)onsidering a unit volume (V = 1 and MV = ρ0), one obtains the numerial density ofhaloes with mass:dndM (M, t) =

df(M)dM ρ0

M
=

(
2

π

)1/2 ρ0

M2

δc(t)

σ(kf )

∣∣∣∣
d lnσd lnM

∣∣∣∣ exp

[
− δ2c (t)

2σ2(kf )

]
. (3.23)This is the Press-Shehter mass funtion. It is possible and more useful re-write theglobal mass funtion eq. (3.23) in the variable ν = δc(t)/σ(M) beause in this way thereis a degeneray respt to the redshift, that means that the funtion has the same shapefor eah epoh: df(ν)d ln ν

=

(
2

π

)1/2

ν exp

(
−ν

2

2

)
. (3.24)



3.3 Useful distributions 453.3.2 Progenitor Mass FuntionThe results obtained with the exursion sets apprah, besides the mass funtion, arealled extended Press-Shehter model. So far, the trajetories have been ounted at a�xed time in order to obtain the global mass funtions. However, a trajetory δf (S) analso desribe the merging history of a partile throgh various times. The hierarhiallustering is desribed: to follow a given �uid element that, as time inreases, is part ofmore massive haloes is the same as to follow a trajetory starting from great values of
S and δc(t) and going toward the bottom and the left of the plot, Figure 3.3.2 pointingat the origin of the oordinate system. Sine at a given time one assumes that a �uidelement is inluded in a halo with the minimum value of S for whih the assoiatetrajetory rossed the δ-threshold, as time inrases (and as the threshold gets lower),the mass of the halo that owns that partile follow the trend given by the trajetory fortype-1 trajetories, whereas it jumps toward left until it reahes the �rst uprossing fortype-2 trajetories; this is shown in Figure 3.3.2.In the hierarhial lustering, this inrease in mass is interpreted as the result ofmerging events among di�erent haloes.One an be interested in knowing how a given halo of a ertain mass that exists ata ertain epoh was splitted in other haloes at a previous times. The progenitor massfuntion is the distrubution of the haloes at a time t1 that are onstrained to beingpart of given halo at time t2 > t1. More preisely, using the orrespondene betweentrajetories and �uid elements: the progenitor mass funtions is the probability that apartile resides in an objet of mass M1 at redshift z1 (it is easier to use the redshiftinstead of the time) provided that it will be part of an objet with greater massM2 > M1at a later time or preavious redshift z2 < z1. The request that a halo with mass M1at t1 will have a mass M2 at t2 orresponds to the seletion of all the trajetories thatpass through the 2 points (S1, δc(t1)) e (S2, δc(t2)) on S1 > S2 in the exursion setsdiagram; in Figure 3.3, all the trajetories onditioned to pass through (S2, δc(t2)) areshown. The onditional distribution p(S1, δc(z1)|S2, δc(z2)), is obtain from the equation(3.17), notiing that it orresponds to ask that the trajetories don't start from thepoint (0, 0), but from (S2, δc(t2)). It is enough to do the replaements S → (S1 − S2) e
δc(t) → (δc(t1) − δc(t2)) into (3.17), and one an obtain:

p(S1, δc(t1)|S2, δc(t2)) =
dfdS (S1, t1|S2, t2) =

=
δc(t1) − δc(t2)√
2π(S1 − S2)3/2

exp

[

−(δc(t1) − δc(t2))
2

2(S1 − S2)

]

. (3.25)To write the distribution as a funtion of the mass, one an use the relation (3.18):
p(M1, t1|M2, t2) = p(S1, t1|S2, t2)

∣∣∣∣
dS1dM1

∣∣∣∣ ; (3.26)
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Figure 3.2: A random walk and its assoiated mass history. A merger (m,m −M) →
M at redshift z is depited by the SM → Sm jump at height δc(z). Starting at(SM−m,δc(z)), there is a onnetion between the branh and the assoiated (M −m)�sibling�. From Moreno et al. 2008 [51℄
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Figure 3.3: Set of trajetories onstrained to pass through (S2, δc(t2)) (ω1 ≡ δc(t1) and
ω2 ≡ δc(t2)), that orrespond to the partiles onstrained to be part of a halo withvariane S2, at t2, from Laey & Cole (1993).3.3.3 Desendant Mass FuntionThe desendant mass funtion is the probability that a halo of mass M1 at time t1will form a halo of mass M2 > M1 at time t2 > t1 (z2 < z1) through merger events; i.e.the onditional probability that a partile resides in an objet of mass M2 at a redshift
z2 provided that it has been part of an objet of mass M1 at z1 > z2. In order to �ndthe analitial form of this distribution, it is neessary to enuniate the Bayes theorem:the probability of an event A given an event B, is equal to the ratio of the probabilityof A over the one of B, times the probability of B given A: p(A|B) = p(A)

p(B)p(B|A). So,using the global mass funtion an the progenitor mass funtion, it is strightforward toobtain the desendant mass funtion:
p(S2, δc(t2)|S1, δc(t1)) dS2 =

p(S1, δc(t1)|S2, δc(t2)) dS1p(S2, δc(t2)) dS2

p(S1, δc(t1)) dS1

=

[
S1

S2(S1 − S2)

]3/2 δc(t2)(δc(t1) − δc(t2))√
2πδc(t1)

× exp

[
−(δc(t2)S1 − δc(t1)S2)

2

2S1S2(S1 − S2)

] dS2 (3.27)The distribution as a funtion of mass is obtained multiplying by the Jaobian | dS2dM2
|.



48 The Exursion Sets method3.3.4 Merger RateIf one onsider a �nite time interval ∆t, the mass of a halo an hange by an amount
∆M , due to the umulative e�ets of more than one merger; in an in�nitesimal intervaldt, the entire ∆M must be due to a single merger event. So taking the limit in thedesendent mass funtion for t2 → t1 (so δc2 → δc1), one an obtain the merger rate:d2pdln∆Mdt(M1 →M2|t) = 2σ2

∣∣∣∣
dσ2dM2

∣∣∣∣∆M
∣∣∣∣
dδc(t)dt ∣∣∣∣

1√
2π

[
S1

S1(S1 − S2)

]3/2

×

× exp [−δ2c (S1 − S2)

2S1S2

] (3.28)This is the rate of merging of a halo of mass M1 with a halo of mass ∆M .3.3.5 Creation and Destrution RatesThe growth of lustering in a system in whih lusters oalese by binary mergers isdesribed by the Smoluhowski equation [72℄: given the distribution n(M, t), of objetsmasses M at time t, this equation gives the rate of hange of this distribution:
∂n(M, t)

∂t
=

∫ M/2

0
Q(M −M ′,M ′; t)n(M −M ′; t)n(M ′; t)dM ′ +

−
∫ ∞

0
Q(M,M ′; t)n(M, t)n(M ′, t)dM ′ (3.29)where Q(M1,M2; t) enodes the merger rate between objets of mass M1 and M2 attime t. The �rst term represents the reation event and the seond term the destrutionones; within the hierahial senario, the destrution is the disappearane of objetsof a ertain mass due to the merging with other objets (with the result of formingmore massive strutures) and must not be onfused with the fragmentation of a haloin smaller haloes, that is ommon in numerial simulations, but it is not ontemplatedin the analytial model. Although some authors (Cavaliere et al. 1991 [12℄, Blain &Longair 1993 [6℄) de�ned the reation and destrution rates of a dark matter halo asthe positive and negative part of the time derivative of the mass funtion, there notheoretial reasons to aept it. In fat, this method is tightly related to the �shape�of the analitial form of the global mass funtion in the spherial ollapse that allowto obtain only two terms making the derivative, one positive and one negative. A morepreise method to obtain these distributions is shown by Kitayama and Suto (1996).They de�ne the reation and destrution rates as the omoving number density of boundsystems of a given mass that are reated or destroyed in unit time at a given epoh.In order to �nd the rates with the Kitayama and Suto proedure, one must �nd theinstantaneous transition rates starting from the the progenitor and desendant mass



3.3 Useful distributions 49funtions and making a time derivative of them. For the instantaneous reation rate,let put t1 = t− ∆t, t2 = t, M2 = M , in the progenitor mass funtion, and onsider thelimit ∆t→ 0: dP1(M1 →M ; t)dt ≡ lim
∆t→0

P1(M1, t− ∆t|M, t)

∆t

=
1√
2π

1

(S1 − S)3/2

[
−dδc(t)

dt

] ∣∣∣∣
dS1dM1

∣∣∣∣ ; (3.30)The instantaneous destrution rate is obtained by putting t2 = t+∆t, t1 = t,M1 = M ,in the desendant mass funtion and onsidering the limit ∆t→ 0:
dP2(M →M2; t)

dt
≡ lim

∆t→0

P2(M2, t+ ∆t|M, t)

∆t

=
1√
2π

[
S

S2(S − S2)

] 3
2
[
−dδc(t)dt ] ∣∣∣∣

dS2dM2

]

×exp [−(S − S2)δ
2
c (t)

2SS2

]
. (3.31)This expression was de�ned as the merger rate. The fomation and destrution rates arede�ned as:

Rcrea(M, t) ≡
∫ M

0
dM1

dP1(M1 →M ; t)dt NPS(M, t) (3.32)and
Rdest(M, t) ≡

∫ ∞

M
dM2

dP2(M →M2; t)dt NPS(M, t). (3.33)3.3.6 The di�erene between Formation and CreationAuthors have used the term formation to onsider both the time in the merginghistory of a halo when the prinipal progenitor has at least half of the mass of theonsidered halo (Laey and Cole, 1993) and the quantities that follow by the progenitormass funtion (Kitayama and Suto, 1996). Following the lari�ation by Giooli at al.2007 [26℄ about this misunderstanding, in this thesis the term �reation� is used referringto the numerial inrement of halo of a ertain mass aused by the merging of haloes ofsmaller masses.





Chapter 4Distributions in the EllipsoidalCollapse ModelThe unonditional mass funtion found in the spherial ollapse ontext (eq. (3.21))is reasonably aurate if ompared with the results of numerial simulations; howeverLaey and Cole (1994) [42℄ and Sheth and Tormen (1999) [69℄ showed that the Press-Shehter mass funtion fails for small haloes and for the high mass ut-o�: it preditstoo muh small strutures and less massive objets respet to the results of di�erent sim-ulations (e.g. Efstathiou et al. 1985 [20℄ for LC93 and the GIF simulation by Kau�mannet al. 1999 [35℄ for ST99). Sheth, Mo and Tormen (2001) [68℄ showed how this disrep-any between theory and simulations an be redued substantially if bound struturesare assumed to form from an ellipsoidal, rather than a spherial, ollapse.4.1 Moving BarrierThe exursion sets model builds the spherial ollapse into the Press and Shehterformalism, by determing a onstant barrier in δ that has to be rossed to found theollapse. This threshod does not depend on mass (or variane) but it is a funtionsof the redshift (or time). This re�ets the fat that the evolution of a spherial initialoverdensity is driven only by its self-gravity. The non-orrelation of the random walksand the independene of the barrier on ν = δsc
σ allow to obtain a simple formula forthe mass funtion assoiated to the spherial ollapse (eq. 3.24). Within this spherialapproah the e�ets due to the bakground osmology and those due to the powerspetrum an be treated separately: the osmologial models determine how δsc dependson z (or t), whereas the power spetrum shape onstrains the dependene of the varianeon M ∝ R3.Within the exursion set approah the shape of the mass funtion is determined by51



52 Distributions in the Ellipsoidal Collapse Model

Figure 4.1: The evolution of an ellipsoidal perturbation in an Einstein-de Sitter universe.Symbols show the expansion fator when the longest axis ollapses and virializes, as afuntion of initial e and p, in steps of 0.025, if the initial overdensity was δi. The solidurve shows the formula for the p = 0 result, and the dashed urves show |p| = e/2. Thetime required to ollapse inreases mononially as p dereases. The axis on the rightshows the assoiated ritial overdensity required for ollapse, and the axis on the topshows the result of using the formula to translate from e to σ(m) when p = 0. FromSMT01 [68℄.the threshold and by the dependene of S on M . Sine S(M) depends on the initialpower spetrum but not on the underlying dynamis, in order to inorporate the e�etsof the ellipsoidal ollapse into the exursion sets model, SMT01 determine the barriershape assoiated with the non-spherial dynamis. They onsider the ellipsoidal modeldesribed by Bond and Myers (1996) [8℄, in whih the perturbation is assumed to bebetter desribed by the initial shear �eld than the initial density �eld. For a givenbakground model (SMT01 assume an Einstein- de Sitter universe), the evolution of anellipsoidal perturbation is determined by the eigenvalues of the perturbation tensor 1:the initial elliptiity e, the prolateness p, the density ontrast δ. Figure 4.1 shows theexpansion fator at the ollapse as a funtion of e and p; at a given e, the largest irles1Any position in a smoothed Gaussian random �eld has an assoiated perturbation potential, theseond derivatives of whih de�ne the deformation tensor



4.1 Moving Barrier 53show the relation at p = 0, medium ones at |p| ≤ e/2, small ones at |p| ≥ e/2. Onaverage, virialization ours later as e inrease and as p dereases. For Eistein-de Sittermodels, the expansion fator is proportional to the linear theory grow fator, so theplot shows also a relation for δec(e, p), where the subsript ec refers to the ellipsoidalollapse. For a range of e and p, a reasonable approximation to this relation is given by:
δec(e, p)

δsc
= 1 + β

[
5(e2 ± p2)

δ2ec(e, p)

δsc

]γ (4.1)where β = 0.47, γ = 0.615, δsc is the ritial spherial ollapse value; the plus (minus)sign is used if pν is negative (positive). The solide urve in Figure 4.1 shows the valuegiven by equation 4.1 with γ = 0.615 and shows that the �tting is preise within 10%.With a Gaussian initial �eld, for every sale Rf (parametrized by σ(Rf )), there is arange of probable values of e, p and δ. This means that there is a range of ollapsetimes assoiated with regions of size Rf . One an obtain an estimate for an average
δec(σ) by averaging δec(e, p) over p(e, p, δ/σ) suitably. To do this, SMT01 notie thaton average, in a Gaussian �eld, p = 0. The solid urve in Fig. 4.1 shows the expansionfator at virialization in this ase. It is straightforward to use this urve to omputethe assoiated δec(e, z). Having done so, if one an relate e to the mass m, then he willbe in a position to desribe the barrier shape assoiated with ellipsoidal, rather thanspherial ollapse. This an be done as follows. Regions initially having a given value of
δ/σ most probably have an elliptiity emp = (σ/δ)/

√
5. To ollapse and form a boundobjet at z, the initial overdensity of suh a region must have been δec(emp, z). If onerequires that δ on the right hand side of this relation for emp be equal to this ritialvalue δec(emp, z), then this sets σ2(Rf). Sine R3

f is proportional to mass, this providesa relation between e and mass, and so between δec and mass:
δec(σ, z) = δsc(z)

(
1 + β

[
σ2

σ2
∗(z)

]γ)
, (4.2)where σ∗(z) ≡ δsc(z). The axis labels on the top and right of the plot show this (p = 0)relation. Notie that the power spetrum enters only in the relation between σ and

m, whereas the e�ets of osmology enter only in the relation between δsc and z. Thisexpression is approximately the same for SCDM, OCDM, and ΛCDM models if all vari-anes σ2(m) are omputed using the model dependent power spetrum, and the value of
δsc(z) is omputed using the spherial ollapse model after inluding its dependene onbakground osmology: the di�erenes between these models arise primarily from on-verting the saling variable ν to the physial variables z and m. A number of featuresof equation (4.2) are worth notiing. Massive objets have σ/σ∗ ≪ 1. For suh objetsequation (4.2) suggests that δec(σ, z) ≈ δsc(z), so the ritial overdensity required forollapse at z is approximately independent of mass: massive objets are well desribed



54 Distributions in the Ellipsoidal Collapse Modelby the spherial ollapse model. Seond, the ritial overdensity inreases with σ(m), soit is larger for less massive objets. This is beause smaller objets are more in�uenedby external tides; they must have a greater internal density if they are to hold them-selves together as they ollapse. Eq. (4.2) is extremely useful beause it allows one toinlude the e�ets of ellipsoidal ollapse into the Bond et al. (1991) exursion set modelin a straightforward manner. Namely, all we need to do is to use equation (4.2) whensetting B(σ, z) = δec(σ, z). The threshold B(σ, z) found is alled moving barrier allowsto obtain the distributions in an ellispoidal ollapse ontext using the logi of Laeyand Cole (1993).4.1.1 Mass FuntionSMT01 give also an estimate of the mass funtion assoiated with ellipsoidal ollapse,using the distribution of �rst rossing of the moving barrier (4.2) by indipendent randomwalk. This �rst rossing distribution is:
ν f(ν) = 2A

(
1 +

1

ν2q

) (
ν2

2π

)1/2

exp

(
−ν

2

2

)
, (4.3)where q = 0.3 and A ≈ 0.3222. This �rst rossing distribution di�ers from the onepredited by the �standard� onstant barrier model for whih q = 0 and A = 1/2. In1999, Sheth and Tormen showed that, for the GIF simulation (Kau�man et al. 1999),the unonditional mass funtion is well approximated by:

νf(ν) = 2A
(
1 +

1

(
√
aν)2q

)√aν√
2π

exp(− aν

2

) (4.4)where a = 0.707, q = 0.3, A ≈ 0.322. A is determined by assuming that ∫ f(ν)dν = 1;
q depends on the shape of the mass funtion at the small-mass end; a is determinedby the number of massive haloes in the simulation. It is possible to obtain the barrierorresponding to this distribution: to a good approximation the threshold assoiatedwith the GIF simulation has the form:

BGIF (S, z) =
√
aδsc

[
1 + β

( S

aδ2sc

)α] (4.5)where S = σ2, a = 0.707, β ≈ 0.485, α ≈ 0.615. Both the shape of the GIF-barrierand of the GIF-mass funtion di�er from equations 4.2 and 4.3 by the fator a. In orderto understand from where this fator omes from, onsider that when one simulates anumber of exursion sets that ross an absorbing barrier, the masses of the haloes thatderive from this analysis are averaged over the mass orresponding to eah trajetory;however, that mass is labelled as the one orresponding to the entral partile of theformed halo. So the atual mass is less than the predited one beause of the ontribution



4.1 Moving Barrier 55of the other trajetories that do not orrespond to partiles in the enter. In order toshift the result toward bigger masses, the fator √a is introdued to lower the densitythreshold for the ollapse and ompensate the lak of predition of bigger haloes.In the rest of this work we will assume BGIF as the shape of the barrier for theellipsoidal ollapse.

Figure 4.2: The same as Figure 4.2 but with a moving barrier (in this ase a square-rootbarrier). From Moreno et al. 2008 [51℄.4.1.2 Speial barriersThe value of the exponent α an be modi�ed to obtain other barrier shapes that givedi�erent forms for the mass funtion. Only in few ases this expression an be writtenin an analytial form:- if α = 0 one obtains the onstant barrier that haraterizes the spherial ollapse.See Setion 3.3 for the orresponding mass funtion.



56 Distributions in the Ellipsoidal Collapse Model- if α = 1 (linear barrier), Sheth (1998) [67℄ shows that:
f(S, z) =

B(0, z)√
2πS3/2

exp [−B2(S, z)

2S

] (4.6)- if α = 0.5 (square-root barrier), Mahmood e Rajesh (2005) [45℄ show that:
f(S) =

exp(− β2

4D

)

2S

∑

v

(aδ2sc
DS

)v/2U
′
v

(
− β√

D

)

Iv

(
− β√

D

) , (4.7)where a = 0.707, β ≈ 0.485; U ′(δ) is the derivative, respet to δ, of the paraboliylinder funtion, de�ned by Erdelyi (1953) [22℄:
Uv(δ) =

√
2

π
ex

2/4

∫ ∞

0
dt e−t2/2tvos(δt − vπ

2

)
, (4.8)with v ≥ −1; The de�nition of Iv is:

Iv(x) =

∫ ∞

x
U2

v (y)dy ; (4.9)
D is the di�usion onstant that onstrains the random walks.- if α = 2 (square barrier), Mahmood e Rajesh (2005) show that:

f(S) =
2b2k2e−2b2S3/3D

D

∞∑

n=1

e−λnSAi(2b
√
aδsc/D − λn)

Ai′(−kλn)
(4.10)where b = β(

√
aδsc)

−3 (β ≈ 0.485); k =
[

D
2b2

]1/3; Ai(y) is the Airy funtion2; λnare the eigenvalues of the di�usion equation; Ai′(x) is the x-derivative of the Airyfuntion.4.2 Extension and improvement of the Ellipsoidal CollapseModelIn the last ten years many authors tried to improve the analytial form of variousdistributions both remaining within the exursion sets formalism and trying to write�tting formulae so without assuming neessarily the presriptions of the ellipsoidal ol-lapse. For the unonditional mass funtion, the most important �tting forms are thoseof Jenskin et al. (2001) [33℄, Warren et al. (2006) [86℄ and espeially for high redshiftmass funtion: Reed et al. (2003, 2007) [60℄, [61℄, Luki et al. (2007) [44℄. Other authors2The Airy funtion is the solution of the di�erential equation: ∂2ψ

∂y2
− yψ = 0.



4.2 Extension and improvement of the Ellipsoidal Collapse Model 57made use of the exursion sets tool and worked on it e.g. onsidering series expansions ofthe barrier like Sheth & Tormen (2002) [70℄, or onsidering various shapes of the movingbarrier like Mahmood & Rajes (2005) [45℄ or Zhang & Hui (2005) [94℄, or onsideringfrational or orrelated exursion sets like Pan (2007) [53℄ or Pan et al. (2008) [54℄.The progenitor mass funtion was �rst onsidered by Sheth and Tormen (2002) for theellipsoidal ollapse model; Rubino-Martìn at al. (2008) [62℄ obtained the onditionalmass funiton by a resaling of the unonditional one; Zhang, Ma and Fakhouri (2008)[95℄ found equations for progenitor mass funtion in the limit of small look bak times.The problem of the merger rates was faed by several authors: Benson et al. (2005) [4℄and Benson (2008) [5℄ used the Smoluhowski formalism (1916) [72℄ to deal with thesequantities; Fakhouri & Ma (2008) [23℄ gave di�erent de�nitions of the quantity mergerrate and, for eah one, they heked the behaviour of dark haloes with simulations;Neistein and Dekel (2008) [52℄ derived analyti merger rates onsidering more than twoprogenitor for eah merger. Moreno et al. (2009) [51℄ found an equation for the reationrate in moving barrier models.All these e�orts in �nding improvements for the dark matter haloes distributionsome not only from the purpose to give a oherent senario for the dark universe,but also from the neessity of having preise and possibly simple equations to use invarious �elds of astrophysis. Current senario of galaxy formation assumes that thedark matter haloes are the strutures that trigger the potential well within whih thebaryoni matter falls and where the gas an ool and form stars (White & Rees, 1978 [90℄,White & Frenk, 1991 [89℄, Kau�man et al., 1999 [35℄): in suh models, understanding theproperties of dark haloes is important. Merger history trees are the key to understandgalaxy formation and evolution, and any semi-analytial model must inlude the mergerdynamis of their host haloes. They are useful at studying the brighter galaxies in theore of rih galaxy lusters (De Luia & Blaizot, 2007 [17℄), satellites and intra lusterlight (Conroy et al., 2007 [15℄). Galaxy mergers drive gas toward entral starburst(Milhos & Hernquist, 1996 [48℄) and supermassive blak holes (Hernquist, 1989 [31℄).The rate of dark matter mergers is a ruial ingredient in models of galaxy and largesale struture formation, from sub-galati sale to galaxy-luster sale. Merger rateshave been applied to galaxy formation models: to determine the galaxy morphologythrough merger history (Gottlober et al. 1999 [27℄); for AGN ativity (Wyithe and Loeb,2003 [92℄); models for Lyman-break galaxies (Kolatt et al., 1999 [38℄); abundanes ofbinary supermassive blak holes (Volonteri et al., 2002 [85℄); rates for SMBH oalesene(Milovavljevi and Merritt, 2001 [49℄) and the resulting LISA event rate (Menou et al.,2001 [47℄, Haehnelt, 1994 [30℄); the �rst stars (Santos et al., 2002 [63℄, Sannapieo etal., 2003 [65℄); galati-halo substruture (Kamionkowski and Liddle, 2000 [34℄, Bulloket al, 2000 [11℄, Benson et al., 2002 [3℄, Somerville, 2002 [73℄, Sti� et al., 2001 [78℄);



58 Distributions in the Ellipsoidal Collapse Modelhalo angular momenta (Vitvitska et al., 2002 [84℄) and onentrations (Wehstler et al.,2002 [87℄); galaxy lustering (Perival et al. 2003 [56℄); partile aeleration in lusters(Gabii & Blasi [24℄); and formation-redshift distributions for galaxies and lusters andthus their distributions in size, temperature, luminosity, mass, and veloity (Verde etal., 2001, 2002 [82℄, [83℄).4.3 What's new in this thesisThe leading idea of this thesis is to �nd preise and simple analytial equations de-sribing some usefull distributions for the dark matter haloes, starting from the unon-ditional mass funtion, passing through the progenitor and desendant mass funtions,and arriving to the instantaneous reation and destrution rates. The onstrain is toremain in the ontext of the ellipsoidal ollapse, sine it is built on a robust physialtheory and it works better for the global mass funtion. The tool used is the desribedexursion sets theory and the approah is similar to that exploited to obtain distribu-tions for spherial objets. In this way, we want to extend to the more preise ellipsoidaldynami the mass distributions that are usually used, remaing in the spherial ase. InTable 4.3 there is summary of the funtions that was so far obtained and heked withsimulation.Distribution SC hek sim EC hek simUMF LC93 Yes SMT01, ST02, this work YesPMF LC93 Yes ST02, ZMF08, this work YesDMF LC93 Yes This work YesICR KS96 � This work �IDR LC93 Yes This work YesCR KS96 PM99 Yes MGS09 YesDR KS96 � � �Table 4.1: For di�erent distributions (Unonditional, Progenitor, Desendant mass fun-tions, Creation and Destrution Rates -Instantaneous and not-), the table shows if thereexist an analytial form in the literature and if some authors ompare it with the resultsof the numerial simulations. The abbreviations refer to the names of the authors, easilyretrievable in the text.We start from the work of Sheth and Tormen (2002) [70℄: in this paper, the authorsshow that in the ellipsoidal ontext, a good approximation for the global mass funtion,



4.3 What's new in this thesis 59obtained with the exursion sets approah with a generi moving barrier, is:
f(S)dS =

|T (S)|√
2πS3/2

exp [−B(S)2

2S

]
dS (4.11)This mass funtion is expressed in the variable S, the variane of the futuations, beausefrom this distribution is easier to do the step toward the progenitor mass funtion aswill be desribed later. In the equation B(S) is the moving barrier desribed by eq.(4.5) and T (S) is one of the key-ingredient for understand the work done; this term isde�ned as:

T (S) =

5∑

n=0

(−S)n

n

∂nB(S)

∂Sn
(4.12)This quantity represents the �rst six terms of the Taylor expansion series of the barrieraround the generi position S and evaluated in S = 0. Exploiting some reursive prop-erties of the derivative of the barrier respet to S, one a re-write the mass funtion inthis way:
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] (4.13)A �rst look to the geometry of the moving barrier, respet to the onstant one an,suggests that the use of the Laey & Cole approah to �nd the progenitor mass funtionis more di�ult here. The moving barrier shape is not linear in S so, hanging the origin(onstraining the trajetories of the exursion sets to pass through the point assoiatedto the a halo of whih the progenitors are sought) the barrier has not the same funtionalform. The di�erene:
B(S1, z1) −B(S2, z2) =

√
aδ(z1)[1 + βSα

1 /(aδ(z1)
2)α] −

√
aδ(z2)[1 + βSα

2 /(aδ(z2)
2)α](4.14)an be written as a onstant plus a term whih sales as (S1−S2)

α only if α equals zeroor one. This means that the solution of the two barrier problem an not be given bya simple resaling of the unonditional ellipsoidal mass funtion. However, ST02 avoidthis problem starting from eq. (4.11) and making these substitutions: S → (S1 − S2),
B(S) → (B(S1, z1) − B(S2, z2)), T (S) → T (S1|S2), where the subsript 2 refers toan halo with variane S2 = S(M2) < S1 = S(M1) at time t2 > t1 (orresponding to
z2 < z1) and the subsript 1 is attahed to its progenitor. They write:

f(S1, z1|S2, z2)dS1 =
|T (S1|S2)|√

2π(S1 − S2)3/2
exp [− [B(S1, z1) −B(S2, z2)]

2

2(S1 − S2)

]
dS1 (4.15)The term T (S1|S2) is the seond important expansion series for this work; it is de�nedas:

T (S1|S2) =
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(S2 − S1)
n

n!

∂n[B(S2, z2) −B(S1, z1)]

∂S1
(4.16)



60 Distributions in the Ellipsoidal Collapse ModelIt is the di�erene between the sum of the �rst 6 terms of the Taylor expansion seriesof B(S, z1) around a generi S1 and evaluated in S2, and the value of B(S, z2) in S2.The equation 4.15 an be re-written in this way:
f(S1, z1|S2, z2)dS1 =

1√
2π(S1 − S2)3/2

exp [− [B(S1, z1) −B(S2, z2)]
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)

+

− (
Sα

2

(aδ(z2)2)α−0.5

)]
dS1 (4.17)So the introdution of the Taylor expansion series in the mass funtion leads to adistribution that is �only� an approximation to the exat solution, but allows to obtainthe onsequent onditional mass funtion.A look at the equations written so far an highlight how di�ult an be their ap-pliation in partiular when used to �nd other distributions, e.g. the desendant massfuntion or the rates of reation and destrution. For this reason this thesis investigatesthe possibility to exhange the equation found in literature with other forms, possiblysimple, but mantaining, or improving the auray (measured as a math to the resultsof the numerial simulations) and mantaining the basi features of the ellipsoidal ol-lapse model. In order to �nd an improvement of the �standard� ellipsoidal ollapse, twoparameters in the equations of the unonditional and progenitor mass funtion werehosen to be tuned in order to �nd the best formulas; in this ontext the word �best�means both that better �ts the numerial simulations and that shows a simple funtionalform. The parameter hosen to be free are the (i) orders of the two Taylor expansionseries and (ii) the normalization of the distribution. The �hope� in doing this is to �ndthat the best distribution (or, at least, a good approximation), would be the one withzero or in�nite terms in the expansion series beause they provide simple analytialform for all the distributions in whih we are interested. In Figure 4.3 a geometrialrepresentation of the meaning of T0 and T∞ for the �onditional� expansion series (eq.(4.16)) is shown. The plot shows that the Taylor expansion is the di�erene betweenthe height of two moving barriers onsidered at two di�erent epohs, and for di�erent

S, depending on the order hosen; the results of T (S1|S2) lies between the minimumvalue provide by onsidering ∞ terms in the Tayor expansion, and the maximum valuegiven by T with 0 orders. The utility of these two ases is higlighted by the simpliityif the mass funtions that derive; for the unonditional mass funtion one obtains:
f(S)dS =

B(S)√
2πS3/2

exp [−B(S)2

2S

]
dS (4.18)
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Figure 4.3: Two moving barrier are shown at di�erent redshift. The blue shorter drawis the geometrial meaning of the Taylor expansion series eq. (4.16) with in�nite terms;the red longer draw is the series with 0 term.onsidering 0 orders;
f(S)dS =

√
aδsc√

2πS3/2
exp [−B(S)2

2S

]
dS (4.19)with in�nite orders. The progenitor mass funtion beomes:

f(S1, z1|S2, z2)dS1 =
B(S1, z1) −B(S2, z2)√

2π(S1 − S2)3/2
exp [− [B(S1, z1) −B(S2, z2)]

2

2(S1 − S2)

]
dS1(4.20)with zero orders;

f(S1, z1|S2, z2)dS1 =
B(S2, z1) −B(S2, z2)√

2π(S1 − S2)3/2
exp [− [B(S1, z1) −B(S2, z2)]

2

2(S1 − S2)

]
dS1(4.21)



62 Distributions in the Ellipsoidal Collapse Modelwith in�nite orders. All these equations have a simple analytial form that avoids theTaylor expansion.4.4 Desendant Mass Funtion and Merger RateIn literature there is not an expliit analytial form for the distribution of the de-sendent of dark matter haloes for the ellipsoidal ollapse model. Here the proedureof Laey & Cole (1993) is used to obtain suh formula (see Setion 3.3.3). Exploitingthe Bayes relation for the onditional probability, the progenitor and two global massfuntions are mixed to obtain the probability that a partile will resides in a halo ofmass M2 at time z2 given that it is part of a halo of mass M1 < M2 at time z1 > z2. Ifexpressed in the variables S and z one an write:
f(S2, z2 | S1, z1) =

1√
(2π)
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] 3
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T (S1|S2)T (S2)

T (S1)
(4.22)Here the ombination of the three Taylor series depends on how many orders one hoosesfor the three distributions.In order to obtain the funtional form for the merger rate (or instantaneous rateof destrution), the best hoie to do is to onsider the Taylor expansions with in�niteterms into the desendant distribution and then follow the presriptions explained inSetion 3.3.5. The resulting distribution is:d2p(S2, z)dS2dt =
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} (4.23)where the dependene on time is inherent to the density threshold. Also this resultdoes not show the analytial omplexity oming from the Taylor expansion; moreover,this distribution an not be derived using at the same time the method by LC93 and ageneri order of the expansion in the progenitor mass funtion, beause of mathematialdi�ulties.4.5 Instanteneous Rate of CreationThe instantaneous rate of reation, as de�ned in Kitayama & Suto (1996) (seeSetion 3.3.5) is obtained with a time derivative of the progenitor mass funtion. Again,



4.5 Instanteneous Rate of Creation 63here the Taylor expansion with an in�nite number of terms is used:d2p(S1, t)dS1dt =
√
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(4.24)Atually, for this distribution there exist a form by Moreno et al. (2009) [51℄ in theellipsidal ontext; however these authors �nd it onsidering the square-root barrier.





Chapter 5Statistial analysis of newdistributionsIn this hapter, the omparison between the analytial equations and the orrespond-ing quantities found with the numerial simulations is desribed. In Chapter 4, thereis the desription of some distributions for ellipsoidal dark matter haloes; as alreadydesribed, the ommon feature of all these formulae is a Taylor expansion series T (S)(eq. (4.12),(4.16)), with a variable number of orders. In order to ompare the theoryand the simulations, the number of terms of the expansion series for eah distribution iskept variable as well as the normalization of the entire distribution. For eah quantity,a �matrix� of models is onsidered: one dimension represents a ertain �ellipsoidal� dis-tribution with the series trunated at orders from 0 to 100, plus the distribution withthe entire series (∞ terms), and the orresponding �spherial� distribution; the otherdimension has the order �xed and it represents the di�erent normalizations, from 0.1to 3.0, with step 0.01. In this way it is possible to obtain the urve that better �ts thesimulation data.The hoie of the best model is the result of a χ2-test: the data oming from the sim-ulations are divided into mass bins with an assoiated error; the χ2-analysis is weightedon these poissonian unertenties. The best model is assoiated to the minimum valueof:
χ2 =

n∑

i=1

(Di −Ai)
2

nEi
(5.1)where Di indiates the value provided by the simulation data for the i-bin; Ei is theassoiated poissonian unertainty; Ai is the value oming from the analytial models,that orresponds to the enter of the i-bin; n is the number of the bins.65



66 Statistial analysis of new distributions5.1 Unonditional Mass FuntionFor the global mass funtion the omparison is done between these analytial forms:(i) Laey & Cole 1993 mass funtion, eq. (3.17), for the spherial ollapse, labelled as
SC -spherial ollapse-(ii) Sheth & Tormen 1999 �t to the GIF simulations, eq. (4.4), labelled as FIT(iii) Sheth & Tormen 2002 mass funtion, eq. (4.11), and all the other urves thatdesend from this equation, varying the number of terms of the Taylor expansion series,eq.(4.12), from 0 to 100, labelled as EC0, ..., EC100(iv) Sheth & Tormen 2002 mass funtion with the entire expansion series, eq. (4.19),labelled as EC∞.Then, all the urves obtained by hanging the natural normalization are onsidered:not all the distributions have the same �original� normalization, and some of them arealso substantially di�erent from the unit value (see Figure 5.1) that would represent thesituation for whih all the matter is bound in some haloes: this is due to the fat thatthe expansion series is just a �mathematial trik� introdued to obtain the progenitormass funtion through an approximation of the exat solution (see Setion 4.3). Allthe analytial funtions are translated into the ν = δ2

c (z)
S(M) variable in order to obtain adegerenay of the urves and data respet to the redshift: in this way one has a morerobust statistis for eah bin beause an onsider haloes that exist at di�erent epohs.The onversion between the variables ν and S is provided by:

νf(ν) = Sf(S) (5.2)The models are ompared with two simulations: the GIF2 and the Millennium, thatare desribed in details in the Appendix. In Figure 5.2 there are the results for the GIF2simulation: in this ase, for inreasing the statistis, we stak together the snapshotsorresponding to: z = 0.000, 1.052, 2.000, 4.042. From the top-left panel to the bottom-right one, these urves are plotted: spherial ollapse, GIF mass funtion, ST02 massfuntion with |T (S)| trunated at the order 0, 1, 2, 5, 10, mass funtion from ST02 withthe entire |T (S)| (in�nite orders). Dotted blue lines refer to the mass funtions withnormalization equal to one and the blue number refers to the value of the χ2 for that kindof urve. Solid red lines refer to unonditional mass funtions with the best normalization(i.e. the normalization that minimizes the χ2 for that model) for that kind of urve; thered number is the assoiated χ2 and it is written following the form �value of χ2 � bestnormalization�. In Figure 5.3 there are the results for the Millennium Simulation: inthis ase, we use the snapshots orresponding to: z = 0.000, 1.503, 3.060, 6.196, 10.073.For both the GIF2 and the Millennium, the urve that best �t the points of sim-ulations has a |T (S)| trunated at low orders, and the normalization is higher than
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χ2

SC@BN χ2
FIT @BN χ2

EC5
@BN χ2

EC∞

@ BN χ2
BEST @BN236.7 �0.72 140.5�1.01 55.3�1.08 275�0.71 EC221.09�1.298318�0.7 5961�0.96 1973 �1.05 6036 � 0.69 EC1504.8�1.48

χ2
SC@N χ2

FIT@N χ2
EC5

@N χ2
EC∞

@N4551�1.00 146.2�1.00 1995�1.36 1394�0.5732
> 104�1.00 6693 �1.00 > 104�1.36 > 104�0.57Table 5.1: In the �rst olumn, �rst ell (BN), the value of the best χ2 provided by the SCmodel and the assoiated normalization; in seond ell (N), the value of SC-χ2 providedby the �original� normalization; in the seond olumn, the χ2s from the FIT99-model;in the third olumn the χ2s from the EC5-model and in fourth olumn the χ2s providedby the EC∞ model. In the last olumn, there is the best model with assoiated χ2 andnormalization. In eah ell, the �rst row is the GIF2 result, the seond row refers to theMillennium.one (this is not a physial result!). In Figure 5.4 we ompare the value of the χ2s forvarious models (SC, FIT , EC1,..., EC10, EC∞) with the best value, both for GIF2and Millennium Simulation; eah panel ontains the results assoiated to the best nor-malization (no-rossed symbols) and those assoiated to the �original� normalization(rossed symbols). In table 5.1, we show the values of χ2 provided by various modelsassoiated with the best (BN) and the original normalization (N), both for the GIF2and the Millennium simulations.
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Figure 5.1: Theoretial global mass funtions with their �original� normalization. Dottedblue urve refers to spherial ollapse; solid red urve refers to ST02 with ∞ terms in
T (S); long-dashed orange urve is the ST02 with zero orders; short-dashed green urveis the ST99 �t to GIF simulation. The urves with orders between 0 and ∞ are notshown, but they take intermediate positions between the red and orange ones.
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Figure 5.2: Unonditional mass funtion from GIF2 simulation (various blak symbolsfor di�erent redshifts (z = 0.000, 1.052, 2.000, 4.042) and poissonian error bars) andfrom di�erent theoretial models. Dotted blue urves refer to distributions with a nor-malization equal to one; solid red urves refer to distributions with a normalization thatprovides the best �t to the data. The �rst red number is the value for the �χ2�best nor-malization�; the seond blue number is the value for the �χ2 for the unit normalization�.Here, EC2 provides the best model among all.
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Figure 5.3: The same as in Figure 5.2, but using the Millennium Simulation at redshifts:
z = 0.000, 1.503, 3.060, 6.196, 10.073. Here the best model among all is the EC1.
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Figure 5.4: Upper panel: χ2 assoiated to various models keeping the original normaliza-tion (rossed symbols) and with �best� normalization (no-rossed symbols), all omparedwith the �best� χ2 (red irle). Blue triangles refers to spherial-ollapse model; greenexagones to the �tting formula ST99; red squares are results oming from various orders(from 1 to 10) of series expansion in eq. (4.11) and orange dots are the results from ∞orders. This data refer to the GIF2 simulation.Lower panel: the same as in the upper panel, but for the Millennium simulation.
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z M∗ in M⊙units z M∗ in M⊙units0.00 8.956 × 1012 0.52 1.829 × 10120.06 7.518 × 1012 1.05 3.505 × 10110.13 6.120 × 1012 2.00 2.155 × 10100.27 3.973 × 1012 4.04 1.382 × 108Table 5.2: The value of M∗ for a number of redshifts.5.2 Progenitor Mass FuntionThe analytial equations for the progenitor mass funtion ome from:(i) LC93, eq. (3.25) (SC);(ii) ST02, eq. (4.15), and all the other urves that desend from this equation, vary-ing the numbers of terms of the Taylor expansion series, eq. (4.16), from 0 to 100(EC0, ..., EC100);(iii) ST02 with the entire expansion series, eq. (4.21) (EC∞).This distributions are onsidered in the variable M , instead of S. Hereafter, we use thisnotation: M1 → m for the mass of the progenitor; M2 →M for the mass of the halo at

z = 0.Then we onsider all the urves obtained by hanging the natural normalization ofthese models. The �tting analysis is the same as for the unonditional mass funtion,but here we used only the data provided by the GIF2 simulation. We deided to showthe result for the progenitors -onsidered at various redshifts- of haloes that exist at
z = 0, with mass in the intervals: M ∈ [0.125M∗, 0.5M∗], labelled as M = 0.25M∗,
M ∈ [0.5M∗, 2M∗] ↔ M = M∗, M ∈ [2M∗, 8M∗] ↔ M = 4M∗. M∗ is the value ofthe mass determined imposing δ(t)2 = S(M); in Table 5.2 there is the value of M∗ fordi�erent redshifts.A progenitor, in this ase, is de�ned as a halo that ontains the partiles that arepart of the onsidered halo at z = 0. To identify the progenitor, it is neessary totrae bak in time the history of the single partiles in the simulation. Contrary to themodel, that ontemplates only mergers without fragmentations, in the simulation onean notie the phenomenon of the break of a halo due to a merger: in this situationa halo ontribute to the formation of another halo through merger events only with alimited number of its partiles. So we are in the ontext in whih a struture at z = 0has more than one progenitor at another redshift, but the sum of the masses of all theseprogenitors is greater than the mass of the desendant objet. In order to be onsistentwith the theory, we deided to label as �mass of the progenitor� the amount of massatually donated to the desendant.



5.2 Progenitor Mass Funtion 73The theoretial urves are traed replaing the mass M of the halo at z = 0 withthe mean value of the masses of haloes in eah of the three intervals onsidered for thesimulation data: M ∈ [0.125M∗, 0.5M∗], [0.5M∗, 2M∗], [2M∗, 8M∗].In the Figures 5.5, 5.6, 5.7, we show the results for 7 di�erent redshifts (z = 0.062,
0.127, 0.271, 0.521, 1.052, 2.000, 4.042) of progenitors with mass m of a halo at z = 0,with massM equal to 0.25M∗,M∗, 4M∗ respetively. Blak dots, with poissonian errorbars, represent the fration of mass in progenitors of mass m vs the ratio of progenitormass over halo mass log(m/M) provided by the simulation; dotted blue urves refers to
SC; short dashed red lines refers to the ellipsoidal distribution with |T (s|S)| trunatedat 5th order; solid orange ones desribe EC∞ (these lines often �hide� the red ones); longdashed green lines are the best mathes to the data: they an represent the eq. (3.25)with a di�erent normalization, or eq. (4.15) with free order of the expansion series andfree normalization.5.2.1 Quantitative analysis of χ2In order to assoiate the green urves (best models) of Figures 5.5, 5.6, 5.7 toone model or another, we show the omparison of the χ2 assoiated to the best urvefor a partiular model (i.e. the urve desribing SC with best normalization or the
EC0,...,100,∞ with the best normalization) with the χ2 assoiated to the best �t amongall, for a given reshift.Figure 5.8, 5.9, 5.10 show the results for progenitors of haloes of massM = 0.25M∗,
M = M∗, M = 4M∗ respetively. Various panels on eah �gures represents the sameprogenitor-redshifts onsidered in the previous plots. The x-axis is divided into threeparts: the left one (blue triangles) represents the urve assoiated to the spherial ol-lapse model, for the best normalization; the entral part (red squares) of the plot showsthe results for the ellipsoidal progenitor mass funtion with |T (s|S)| trunated at orders
0 to 10; the right panel (orange rossed-dots) of the plot onsiders the entire expansionseries. On the y-axis we plot the ratio of the various χ2 over the best χ2 for that parti-ular redshift, on a logarithmi sale. The best model is indiated by a green irle andhas obvioulsy a value equal to zero on the y-axis.There is a �rst result shown here: when the ellipsoidal model provide the best �t, thedi�erene between the best χ2 and the EC∞-χ2 is very small: so the error made assumingthe progenitor mass funtion with in�nite orders in the Taylor expansion series is small.Another important feature of these plots is the evidene that the urves oming from thespherial ollapse theory (but with various normalizations) better math the progenitormass funtion around z = 0.5 and z = 1: one an see, that, at those reshifts, the uto� for massive progenitors begin to be visible. We think that the distributions provided



74 Statistial analysis of new distributionsby the spherial ollapse have a shape that follows better that exponential uto�: infat, looking at the mass funtions, one an see that the ST99 �t or the various EC are��atter� than the SC. Maybe, using a larger simulation, one an �nd that this trendappear also for lower progenitor redshift where the ut o� an be displayed.5.3 Fitting the �at part of the funtion: χ2 without (m/M) >

0.5The χ2 tehnique is a global analysis to �nd the best urve that approximates a setof data, so we obtain urves that �on average� are the best math; in this �average�, thepoints of the simulation that have a higher weight are the ones with smaller error barsand higher y-value: onsidering that we start from a limited number of shapes, we an�nd situations where the best urve does not �t well all the points, but mostly thosethat have a higher weight. Sine the ellipsoidal model fails expeially at large m/M , wetried also to �t the progenitor mass funtion without the high-mass tail, and exludingthe points at m/M > 0.5. The results are shown in Figures 5.11, 5.12, 5.13, wherelabels, olors and marks are the same of Figures 5.5, 5.6, 5.7, and in Figures 5.14, 5.15,5.16, similar to Figures 5.8, 5.9, 5.10.We found that, exluding from the �t all points at m/M > 0.5, the ellipsoidal modelbeomes almost always the best one. The previous onsideration about the similaritybetween the the best order and the �∞� order is still true, exept at low progenitor-redshifts.
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Figure 5.5: Progenitor mass funtion for haloes of mass M = 0.25M∗ at z = 0; progen-itors are onsidered at 7 di�erent redshifts: z = 0.062, 0.127, 0.271, 0.521, 1.052, 2.000,
4.042 . Dotted blue urves refer to Spherial Collapse; short dashed red lines to Ellip-soidal Collapse with 5 orders in the Taylor series expansion; solid orange to ellipsoidalollapse with all orders; long dashed green to the best �t; dots represent GIF2 simula-tions with poissonian error bars. On the x-axis: the ratio between the progenitor massover halo mass.
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Figure 5.6: The same as Fig. 5.5, for haloes of mass M = M∗.
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Figure 5.7: The same as Fig. 5.5, for haloes of mass M = 4M∗.
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Figure 5.8: χ2 for 7 redshifts (from top to bottom: z = 0.062, 0.127, 0.271, 0.521, 1.052,
2.000, 4.042) of progenitors of a halo of mass M = 0.25M∗. Blue triangles refer to (SC/ best-χ2); red squares to (EC (orders from 0 to 10) / best-χ2); orange rossed dots to(EC all orders / best-χ2). The green irles show the best χ2s.
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Figure 5.9: The same as Fig. 5.8, for haloes of mass M = M∗.
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Figure 5.10: The same as Fig. 5.8, for haloes of mass M = 4M∗.
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Figure 5.11: Progenitor mass funtion for haloes of mass M = 0.25M∗ at z = 0;progenitors are onsidered at 7 di�erent redshifts: z = 0.062, 0.127, 0.271, 0.521, 1.052,
2.000, 4.042. Dotted blue urves refer to Spherial Collapse; solid red to EllipsoidalCollapse with 5 orders in the Taylor series expansion; long-dashed orange to ellipsoidalollapse with all orders; dots represent GIF2 simulations with poissonian error bars. Onthe x-axis: the ratio between the progenitor mass over halo mass. The points markedwith red rosses indiate the mass-bins that do not ontribute to the alulation of χ2.
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Figure 5.12: The same as Fig. 5.11, for haloes of mass M = M∗.
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Figure 5.13: The same as Fig. 5.11, for haloes of mass M = 4M∗.
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Figure 5.14: The same as Figure 5.8, but exluding the ontribution of high mass progen-itors (m/M > 0.5).
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Figure 5.15: The same as Figure 5.8, for haloes of mass M = M∗, but exluding theontribution of high mass progenitors (m/M > 0.5).
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Figure 5.16: The same as Figure 5.8, for haloes of mass M = 4M∗, but exluding theontribution of high mass progenitors (m/M > 0.5).



5.4 Desendant Mass Funtion 875.4 Desendant Mass FuntionThe analytial equations for the desendant mass funtion are:(i) for the SC, eq. (3.27) by LC93;(ii) eq. (4.22), with T (S) = T0(S) (zero orders) for the unonditional mass funtion andall the other urves that desend from this equation, varying the numbers of terms of
T (S1|S2) for the progenitor mass funtion from 0 to 100;(iii) eq. (4.22), with T (S) = T∞(S) (all the series) for the unonditional mass funtionand all the other urves that desend from this equation, varying the numbers of termsof T (S1|S2) for the progenitor mass funtion from 0 to 100;(iv) eq. (4.22), with T (S) = T0(S) (zero orders) for the unonditional mass funtionand the whole T (S1|S2) for the progenitor mass funtion;(v) eq. (4.22), with T (S) = T∞(S) (all the series) for the unonditional mass funtionand the whole T (S1|S2) for the progenitor mass funtion.This distributions are onsidered in the variable M , instead of S. Hereafter, we use thisnotation: M1 → m for the mass of the halo at di�erent redshifts;M2 →M for the massof the desendant at z = 0.Then we onsider all the urves obtained by hanging the natural normalization ofthese models. We noted that the di�erenes between the urves with T0 and T∞ arevery small, and there is a degeneray between type (ii) urve and orresponding type(iii) with di�erent normalization (the same for type (iv) and (v)). For this reason, weonsider only type (iii) and (v) urves with the whole expansion series for global massfuntion. Also for this distribution, we perform a χ2 �tting analysis, using the dataprovided by the GIF2 simulation. We show the results for the desendant mass funtionat z = 0 of haloes onstrained at di�erent previous redshifts, i.e. we �x di�erent rangesof masses alulated as fration ofM∗ for di�erent redshifts and we put the desendantsalways at present time. In this ase, the mass interval for the haloes at di�erent redshiftsare not always the same, beause, espeially at high z, it is di�ult to have a robuststatistis for small objets. In Table 5.4 the used intervals for eah redshift are shown.Following the theory, a desendant is de�ned as the halo resulting from the mass-onservative merging between two or more progenitors. As already desribed for theprogenitors, in the simulation, a halo an be the progenitor of more than a desendant,beause of fragmentation. For this study, we trae every partiles from the initial, to the�nal snapshot and we onsider as �desendant� of a halo, the objet that reeived morethan 50% of the mass of the progenitor (raising this threshold, results don't hangesigni�antly). The mass of the desendant is its total mass. Also in this ase, the the-oretial urves are traed replaing the mass m of the halo with the mean value of themasses of haloes in the three intervals of the simulation.
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z = 0.062 z = 0.127 z = 0.271 z = 0.521

[0.125M∗, 0.5M∗] [0.125M∗, 0.5M∗] [0.125M∗, 0.5M∗] [0.125M∗, 0.5M∗]

[0.5M∗, 2M∗] [0.5M∗, 2M∗] [0.5M∗, 2M∗] [0.5M∗, 2M∗]

[2M∗, 8M∗] [2M∗, 8M∗] [2M∗, 8M∗] [2M∗, 8M∗]

z = 1.052 z = 2.000 z = 4.042

[0.25M∗, 1M∗] [5M∗, 20M∗] [1000M∗, 4000M∗]

[0.5M∗, 2M∗] [20M∗, 80M∗] [4000M∗, 16000M∗]

[2M∗, 8M∗] [80M∗, 320M∗] [12000M∗, 48000M∗ ]Table 5.3: For eah redshift at whih we loate the haloes, the intervals of masses withinwhih we hoose the haloes are shown.In Figure 5.17, 5.18, 5.19, we show the results for the desendant mass funtion,�xing the haloes at 7 di�erent redshifts (z = 0.062, 0.127, 0.271, 0.521, 1.052, 2.000,
4.042), and onsidering the desendants at z = 0; the halo mass m orresponds to thethree intervals de�ned in Table 5.4. Blak dots, with poissonian error bars, represent thefration of mass in desendants of mass M vs the ratio between desendant mass andhalo mass, log(M/m), provided by the GIF2 simulation; dotted blue urves refers to
SC; short dashed red lines refers to the ellipsoidal distribution with the entire |T (s|S)|;solid orange ones desribe EC0; long dashed green lines are the best mathes to thedata.In Figure 5.20, 5.215.22, we show the omparison of the χ2 assoiated to the besturve for a partiular model (i.e. the urve desribing SC with best normalization orthe EC0,...,100,∞ with the best normalization) with the χ2 assoiated to the best �tamong all, for a given reshift. The three �gures show the result for di�erent ranges ofhalo masses; in eah plot, from top to bottom, there are the results for halo kept atredshift z = 0.062, 0.127, 0.271, 0.521, 1.052, 2.000, 4.042. The x-axis is divided intothree parts: the left one (blue triangles) represents the urve assoiated to the spherialollapse model, for the best normalization; the entral part (red squares) of the plotshows the results for the ellipsoidal progenitor mass funtion with |T (s|S)| trunatedat orders 0 to 10; the right panel (orange rossed-dots) of the plot onsiders the entireexpansion series. On the y-axis we plot the ratio of the various χ2 over the best χ2 forthat partiular redshift, on a logarithmi sale. The best model is indiated by a greenirle and has obvioulsy a value equal to zero on the y-axis.From the plots of the desendant mass funtion, and from the analysis of the χ2, weshow that the ellipsoidal model provides the urves that best math the data; it happensfor almost all the redshifts for the lower and upper intervals of halo masses. For the



5.4 Desendant Mass Funtion 89intermediate halo mass interval, in three ases the spherial model is the best one. In allthe ases when the EC∞ is not the best hoie, it provides a model that di�ers from thebest one by a small amount. This means that one an use the the ellipsoidal dynamis(that is almost always the best representation) with the simplest analytial formulas(the ones with the whole Taylor expansion series), without making any big error, forevery redshifts and mass ranges.
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Figure 5.17: Desendant mass funtion for haloes of mass m = 0.25M∗ at z = 0.062,
0.127, 0.271, 0.521, m = 0.5M∗ at z = 1.052, m = 10M∗ at z = 2.000, m = 2000M∗at z = 4.042; all the desendants are omputed at z = 0. Blue urves refer to Spher-ial Collapse; orange urves to Ellipsoidal Collapse with 0 orders in the Taylor seriesexpansion; red to Ellipsoidal Collapse with all orders; green to the best �t; dots repre-sent GIF2 simulations with poissonian error bars. On the x-axis: the ratio between theprogenitor mass over halo mass.
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Figure 5.18: The same as 5.17, but with this halo-masses: m = 1M∗ at z = 0.062, 0.127,
0.271, 0.521, 1.05, m = 40M∗ at z = 2.000, m = 8000M∗ at z = 4.042.
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Figure 5.19: The same as 5.17, but with this halo-masses: m = 4M∗ at z = 0.062, 0.127,
0.271, 0.521, 1.05, m = 160M∗ at z = 2.000, m = 24000M∗ at z = 4.042.
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Figure 5.20: χ2 for 7 halo redshifts of halo of mass (from top to bottom) m = 0.25M∗at z = 0.062, 0.127, 0.271, 0.521, m = 0.5M∗ at z = 1.052, m = 10M∗ at z = 2.000,
M = 2000M∗ at z = 4.042 and desendant at z = 0. Blue triangles refer to (SC /best-χ2); red squares to (EC (orders from 0 to 10) / best-χ2); orange rossed dots to(EC all orders / best-χ2). The green irles show the best χ2s.



94 Statistial analysis of new distributions

Figure 5.21: The same as 5.20, but with this halo-masses: m = M∗ at z = 0.062, 0.127,
0.271, 0.521, 1.05, m = 40M∗ at z = 2.000, m = 8000M∗ at z = 4.042.
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Figure 5.22: The same as 5.20, but with this halo-masses: m = 4M∗ at z = 0.062, 0.127,
0.271, 0.521, 1.05, m = 160M∗ at z = 2.000, m = 24000M∗ at z = 4.042.



96 Statistial analysis of new distributions5.4.1 E�et of �nite box size on the desendant mass funtionA look at the plots of the unonditional mass funtion, Figures 5.2 and 5.3, allowsto understand how the �nite size of the box, onsidered in running the simulations, anintrodue a bias in the distribution. In fat, for the smaller GIF2 simulation, one ansee that there exist some points, for masses greater than ∼ 1015M⊙ that di�er from themodel of about one order of magnitude. This is due to the fat that the realizationsof the Fourier modes for the power spetrum in the simulation have a robust statistisfor sales smaller than the dimension of the box, but they are a�eted by big errors forsale ∼box sale (en example is shown in Figure 5.23).
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Figure 5.23: A realization of the initial power spetrum. One an see that for small k-bigger sales- there is a higher satter of di�erent realizations (grey lines) respet tothe mean value (blak line). From [77℄.In this ase there is an overpredition of the haloes of mass greater than ∼ 1015M⊙at z = 0. This an lead to overpredit also the desendant mass funtion, when thedesendant are ounted at present time. For this reason, we deide to alulate thedesendant distribution only for haloes that are the progenitors of struture having
m <∼ 1015M⊙. Figure 5.24 shows how the desendant mass funtion an be a�eted bythis bias: for the GIF2 simulation (blak dots) there is a plateau for the high mass tailthat overpredits the fration of progenitor by an order of magnitude respet to boththe spherial and ellipsoidal theoretial urve; this trend does not appear for the biggerMillennium simulation (red triangles).
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Figure 5.24: Desendant mass funtion for haloes with mass m = M∗ at z ∼ 0.06and desendant at z = 0. Red and blue lines are ellipsoidal and spherial theoretialpredition. Blak dots are the GIF2 data and red triangles are the Millennium data.The GIF2 overpredits the number of desendants in the high mass range.



98 Statistial analysis of new distributions5.5 Merger RatesThe only way to extrat the distribution of merger rates (instantaneous rates ofdestrution) in a numerial simulation is to build the desendant mass funtion onsid-ering two ontiguous snapshots, and divide the result by the di�erene in osmi timefrom one redshift to another. In this ase we use both the GIF2 and the MillenniumSimulation beause we have informations about the desendants �at the next step� alsofor the bigger simulation. This omparison seems to be usefull beause, when onsider-ing ontiguous snapshots, the desendant mass funtion in GIF2 seems muh noisy. Weompare four analytial equations:(i) the merger rate for the Spherial Collapse, eq. (3.31);(ii) the merger rate for the Ellipsoidal Collapse eq. (4.23);(iii) the spherial desendant mass funtion eq. (3.27), devided by the ∆t oming fromthe relative snapshots of the simulation;(iv) the ellipsoidal desendant mass funtion eq. (4.22), with T (S) = T∞(S) (all theseries) for the unonditional mass funtion and the whole T (S1|S2) for the progenitormass funtion, divided by the ∆t oming from the relative snapshots of the simulation.For ∆z → 0, equation (iii) approahes (i), and (iv) approahes (ii). Figure 5.25 showsthe di�erenes between the two pairs of urves for three di�erent ∆z: inreasing theredshift-di�erene between the halo-snapshot and the desendant-snapshot, the di�er-ene between the two pair of equations grows.In this ase, we onsider the equations with their �original� normalizations, andwe ompare them with the distribution of desendants for haloes in three di�erentmass intervals for eah redshift. In Table 5.5 there are the values of the redshift of theonsidered haloes and the assoiated redshifts of the desendants �at the next snapshot�of the two simulations. The mass intervals are the same as for the desendant massGIF2 Millennium
0.062 → 0.000 0.064 → 0.041

0.127 → 0.062 0.116 → 0.089

0.271 → 0.197 0.279 → 0.242

0.521 → 0.433 0.508 → 0.456

1.052 → 0.933 0.989 → 0.905

2.000 → 1.940 2.070 → 1.913

4.042 → 3.748 4.179 → 3.866Table 5.4: For the GIF2 and the Millennium simulations, the values of the redshifts atwhih we onsider the haloes and the values of the following redshift at whih we lookfor the desendants.
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Figure 5.25: Comparison between the merger rate (spherial=green, ellipsoidal=red) andthe �desendant mass funtion / ∆t� (spherial=blu, ellipsoidal=orange), for di�erentvalues of ∆z: in the left panel ∆z = 0.062; in the entral panel ∆z = 0.119; in the rightpanel ∆z = 0.294.funtion (see Setion 5.4).In Figure 5.5, 5.5, 5.5, we show the results for the three intervals of halo-masses.Taking into aount the relation between the merger rates and the equation of �desen-dants over ∆t�, we plot only these seond type of urves. Moreover, sine the urvesobtained using the parameters (halo mass, halo-redshift, desendant-redshift) resultingfrom the GIF2 simulation degenerate over the urves plotted using the Millennium pa-rameters, we show the results only for one of the two sets. The blue urves represent



100 Statistial analysis of new distributionsthe spherial ollapse model, and the orange ones, the ellipsoidal results; the blak dotsare the GIF2-data and the red triangles are the results of Millennium: the data fromsimulations have poissonian error bars.For the merger rates we don't perform a deep statistial analysis, sine the GIF2simulation shows a big noise espeially at high redshifts, and the Millennium have a�bump� that under-predits the number of desendants for log(M/m) =∼ 0.4÷ ∼ 0.8:with these irumstaes, a χ2 analysis would be useless. So, we onsider the distributionsfrom a qualitatively point of view, and we an assert that the ellipsoidal ollapse providesthe best approximation for the merger rates, exept for the regimes where we do nothave enough data (high redshifts).
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Figure 5.26: Blue and orange urves: merger rate from the spherial and ellipsoidal modelrespetively; blak dots and red triangles: results from GIF2 and Millennium simulationsrespetively, with poissonian error bars. The haloes are kept at various redshift, and thedesendants found at the next snapshots, see Table 5.5. The haloes have are hosen inthe mass interval m = [0.125M∗, 0.5M∗], exept for z = 1.052 (m = [0.25M∗,M∗]), for
z = 2.000 (m = [5M∗, 20M∗]), and for z = 4.042 (m = [1000M∗, 4000M∗]).
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Figure 5.27: The same as �g 5.5, but with halo mass in these intervals:m = [0.5M∗, 2M∗]for z = 0.062, z = 0.127, z = 0.271, z = 0.521, z = 1.052, m = [20M∗, 80M∗] for
z = 2.0002, m = [4000M∗, 16000M∗] for z = 4.042.
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Figure 5.28: The same as �g 5.5, but with halo mass in these intervals: m = [2M∗, 8M∗]for z = 0.062, z = 0.127, z = 0.271, z = 0.521, z = 1.052, m = [80M∗, 320M∗] for
z = 2.0002, m = [12000M∗ , 48000M∗] for z = 4.042.





Chapter 6Maximum likelihood based newmethodThe χ2-method, used to hek how aurate are our equations, shows some limits inits appliation. One problem is linked with the reation of mass- (or ν-) bins, in whihthe information about a ertain number of haloes in a simulation is grouped togetherproviding only a mean information for eah bin that depends on the size of the binitself: this an lead to slightly di�erent results in the determination of the best model.The seond problem onerns with the presene, in a simulation, of partiles that arenot bound in haloes, that we all dust partile: in the previous analysis, we onsiderthe presene of these partiles, but only in order to normalize the theoretial urvesonsidering all the matter in the simulation; so the dust partiles did not ontribute tothe determination of the best model. To improve the statistis and the preision of theresults, we introdue a method based on the maximum likelihood analysis that takesinto aount unbinned data and onsiders also the dust partiles in the disriminationof the best urve.The maximum likelohood method is based on the onstrution of a probability distri-bution (likelihood funtion) parameterized by a set of unknown parameters ~θ, assoiatedwith a known probability mass funtion, denoted as f~θ
. With a sample x1,x2,. . . ,xn of nvalues from this distribution, one an ompute the probability density assoiated withthe observed data, f~θ

(x1, . . . , xn). The likelihood funtion, with x1, . . . , xn �xed and asa funtion of ~θ is:
L(~θ) = f~θ

(x1, . . . , xn). (6.1)The method estimates ~θ by �nding the value of ~θ that maximizes L(~θ). This is themaximum likelihood estimator of ~θ: 105
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~̂θ = arg max L(~θ). (6.2)If the data drawn from a partiular distribution are independent, identially distrib-uted with unknown parameters, the likelihood an then be written as a produt of nunivariate probability densities:
L(~θ) =

n∏

i=1

f~θ
(xi); (6.3)one an take the logarithm of this expression to turn it into a sum:logL(~θ) =

n∑

i=1

log f~θ
(xi). (6.4)6.1 Statistis on the Mass FuntionAs probability distribution, we onsider the unonditional mass funtion. The prob-ability for all the partiles to be in haloes of a ertain mass m is:

Npart∏

i=1

f(mi|~θ) (6.5)where Npart is the total number of partiles. If the i-halo ontains Ni partiles, we anwrite:
Nh∏

i=1

f(mi|~θ)Ni (6.6)where Nh is the total number of haloes. The probability for a partile in the dust is:
F (~θ) =

∫ Mdust

0
f(m)dm (6.7)so the probability for all partiles is obtained by raising the integral to the Nd, the totalnumber of dust partiles. So, the logarithm of the likelihood funtion is:lnL = NdlnF (~θ) +

Nh∑

i=1

Nilnfi(~θ). (6.8)Using this method we an go beyond the two problems oming from the previous analy-sis: the binning disappears and eah partile has the same weight in the determinationof the best parameter for the mass funtion; besides, also the dust partiles (onsideredtogether) matter to this determination, beause their integral appears in the likelihoodfuntion.



6.1 Statistis on the Mass Funtion 107We hoose to use the mass funtion by Sheth & Tormen (1999) [69℄ that ontains2 parameters: a and p, (while ν is the `observed' quantity that omes from the simula-tions):
νf(ν|a, p) = A

√
a

2πν
exp [−aν

2

]
(1 + (aν)−p) (6.9)In this ase the likelihood funtion beomes:lnL = Ndln( A√

π

∫ aνd
2

0
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1
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+
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)) (6.10)To �nd the parameters a and p that maximize the likelihood funtion, we need theexpressions for the derivative respet to a and respet to p:
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 (6.12)where Γ(z) is the Gamma funtion1, γ(s, x) is the lower inomplete gamma funtion2and ̥ is the digamma funtion.3In order to hek if the method works, we onsider a Monte Carlo simulation of themass funtion, following the way desribed by Kundu & Gupta (2006) [40℄ to generategamma random variables using generalized exponential distributions and a routine ofthe software supermongo to generate a gaussian distribution; in these simulations we�x the parameters a = 1 and p = 0.3 (Fig. 6.1).Solving the equations ∂lnL

∂a = 0 and ∂lnL

∂p = 0 (i.e. looking for the maximum), we an�nd the best parameters that desribe the analytial equation of the mass funtion.1Γ(z) =
∞

0
tz−1exp−tdt2γ(s, x) =
x

0
ts−1exp−tdt3

̥(z) = ddz lnΓ(z) = Γ′(z)
Γ(z)



108 Maximum likelihood based new methodThe errors assoiated to the best values of the parameters are obtained using theFisher information matrix:
(I (θ))i,j = −

[
∂2

∂θi∂θj
ln f(X; θ)

∣∣∣∣ θ
] (6.13)evaluated in ~̂θ: it is the of the probability surfae in the parameter spae alulatedin the point de�ned by ~̂θ. To apply the Fisher matrix we need the expressions of theseond derivatives of the likelihood funtion; we obtain:
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Figure 6.1: The analytial mass funtion -red line- is ompared with the results of aMonte Carlo simulation -blak histograms-, run following Kundu & Gupta (2006) [40℄.6.2 Results of the testIn Figures 6.2, 6.3, 6.4, we show the results of the best parameters a and p found withour algorithm, that desribe the results of a number of Monte Carlo simulations, runassuming ainput = 1 and pinput = 0.3, and three di�erent values of the dust threshold:
νd = 0.1, 1.0, 2.0. In the plot the red line is the lous of points where the derivativerespet to p is equal to zero (within a ertain error due to numerial approximations ofsome equations); the blu line represents the lous of points where the derivative respetto a is equal to zero; we onsider the intersetion of this two lines as the maximum



110 Maximum likelihood based new methodlikelihood point that desribes the omponents of the vetor of the best parameters: thispoint orresponds also to the enter of the `higher ontour' of the funtion logL (notshown in the plot). Besides, there are the error bars assoiated to the two parametersand their values as well as the number of partiles in the simulation.From the three plots, one an see that the analytial equations and the routineused to obtain the best values for the parameters a and p, starting from the results ofdi�erent Monte Carlo realization of the mass funtion, work. The a and p found are inagreement with the input values, within the error bars.This is only a preliminary test, the �rst that has to be run before applying themethod to a numerial simulation.



6.2 Results of the test 111

Figure 6.2: The best value of the parameters a and p are the oordinates of the interse-tion between the red and the blue lines. The red line represents the solution of ∂L

∂p = 0;the blue line represents the solution of ∂L

∂a = 0; in orange, there are the assoiated errorbars. This is the result found assuming νdust = 0.1.
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Figure 6.3: The same as Fig. 6.2, but assuming νdust = 1.
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Figure 6.4: The same as Fig. 6.2, but assuming νdust = 2.





ConlusionsIn this dissertation, after an introdution on the best models desribing the homo-geneous and isotropi universe and the formation of osmi strutures, we onsider thedi�erenes between the main two paradigms that trae the dynamis of the formationof the dark matter haloes: the spherial and the ellipsoidal model, and we highlightthe better auray of the seond one in reproduing the results of numerial simula-tions. Sine in the literature there is a omplete piture of the distributions of darkmatter haloes only in the spherial ontext, we fae the demand of having analytialequations also for the more preise ellipsoidal ollapse, and we brie�y show how usefulan be suh new distributions to better understand the behaviour both of the dark andbaryoni matter when they organize into osmi strutures.The �rst goal of our work is to �nd new analytial equations for a number of distri-butions, staying within the ontext outlined by the ellipsoidal dynamis, and using asa tool the exursion sets formalism. We �nd forms for the global mass funtion, for theprogenitor and desendant mass funtions, and for the instantaneous rate of reationand destrution.Sine the analytial part of the work is based on the use of a Taylor expansionseries, for eah distribution we have a number of equations, depending on the orderof this expansion. In order to hoose the best formulas, we exploit the results of theGIF2 and of the Millennium simulations; models and data are ompared using a χ2tehnique. The results about the best model are not unique, varying the redshifts orthe mass range, but there is a tendeny toward the ellipsoidal model to be the best one.Within the various hoies provided by stopping the series at di�erent orders, we foundthat the use of the whole Taylor expansion series, when it is not the best formula, itis a�eted by a very small error ompared to the most aurate distribution. This isan important result, sine the equations with ∞ terms in their expansion series are themost analytially simple.In the last part of the dissertation we try to solve two inonvenients that ome fromthe χ2 method: in the proess of the binning of the data, the amplitude of the bin anbias the results of the test; moreover, the approah do not allow to use the partile that115



116 Conlusionsare not bound in haloes (dust) in the determination of the best model. To overome thesetwo problems, we onsider a new statistial method based on the maximum likelihoodtehnique, that allows both to onsider unbinned data and to inlude the dust partilesin the determination of the best parameters of the mass funtion. Starting from a twoparameters mass funtion, we provide all the analytial equations neessary to determinethe best parameters and the assoiated errors. We �rst run a test simulating a massfuntion with a Monte Carlo method: for di�erent hoies of the threshold for the valueof the dust-mass, the results of our routine for the two parameters are in agreementwith the input parameter, within the error bars.The natural ontinuation of this work is the omparison of other analytial quan-tities (e.g. the instantaneous rates of reation, and the integrated rate of reation anddestrution) with the results of numerial simulation. Then, in order to apply a morerobust an aurate statistis to the data, it is neessary to onlude the tests on thenew maximum likelihood method, e.g. the dependene of the results on the number ofpartiles, or on the number of parameters. Moreover we need to performe the relativeequations also for other distributions.



Appendix: Numerial Simulations 117AppendixNumerial CosmologyIn Setion 2.3.3 the basi equations that desribe the strutures formation and evolu-tion in the gravitational instability senario were introdued. The substantial di�ultyof this problem is exaerbated by the inherent three-dimensional harater of strutureformation in a ΛCDM universe, where, due to the shape of the primordial power spe-trum, a large range of wave modes beomes nonlinear in a very short time, resultingin the rapid formation of objets with a wide range of masses whih merge in geomet-rially omplex ways into ever more massive systems. This omplexity of the physialbehaviour of the �utuations makes the analytial models unsuitable for a detaileddesription of non-linear regime. Therefore, diret numerial simulations of strutureformation provide the only method for studying this problem in its full generality.Gravitational fore desription: N-body simulationsIt is possible to represent part of the expanding Universe as a `box' ontaining alarge number N of point masses interating through their mutual gravity. This box,typially a ube, must be at least as large as the sale at whih the Universe beomeshomogeneous if it is to provide a `fair sample' whih is representative of the Universe asa whole. It is ommon pratie to take the ube as having periodi boundary onditionsin all diretions, whih also assists in some of the omputational tehniques by allowingFourier methods to be employed in summing the N-body fores. A number of numerialtehniques are available at the present time; they di�er, for the most part, only in theway the fores on eah partile are alulated. We desribe some of the most popularmethods here:Diret summationThe simplest way to ompute the non-linear evolution of a osmologial �uid isto represent it as a disrete set of partiles, and then sum the (pairwise) interationsbetween them diretly to alulate the Newtonian fores. Suh alulations are oftenalled partile-partile, or PP, alulations. With the adoption of a small timestep, onean use the resulting aeleration to update the partile veloity and then its posi-tion. New positions an then be used to realulate the interpartile fores, and so on.However, there is a numerial problem with summation of the fores: the Newtoniangravitational fore between two partiles inreases as the partiles approah eah otherand it is therefore neessary to hoose an extremely small timestep to resolve the large



118 Appendix: Numerial Simulationsveloity hanges this indues. A very small timestep would require the onsumption ofenormous amounts of CPU time and, in any ase, omputers annot handle the formallydivergent fore terms when the partiles are arbitrarly lose to eah other. One usuallyavoids these problems by treating eah partile not as a point mass, but as an extendedbody. The pratial upshot of this is that one modi�es the Newtonian fore betweenpartiles by putting
Fij =

Gm2(xj − xi)
(
ǫ2 + |xi − xj|2

)3/2
, (17)where the partiles are at positions xi and xj and they all have the same mass m;the form of this equation avoids in�nite fores at zero separations. The parameter ǫ inEquation (17) is usually alled the softening length and it ats to suppress two-bodyfores on small sales. This is equivalent to replaing point masses by extended bodieswith a size of order ǫ. Sine we are not supposed to be dealing with the behaviour ofa set of point masses anyway, the introdution of a softening length is quite reasonablebut it means one annot trust the distribution of matter on sales of order ǫ or less.The ruial limitation of these methods is that they tend to be very slow, with theomputational time required saling roughly as N2 (where N is the number of partilesand N(N − 1)/2 are the evaluations of Eq. (17) required at eah timestep).Partile-mesh tehniquesThe usual method for improving upon diret N-body summation for omputinginter-partile fores is some form of `partile-mesh', or PM, sheme. In this sheme thefores are solved by assigning mass points to a regular grid and then solving Poisson'sequation on it. The use of a regular grid with periodi boundary onditions allow oneto use Fast Fourier Transform (FFT ) methods to reover the potential, whih leads toa onsiderable inrease in speed. Without enter in details, the alulation of the foresbetween partiles an be speeded up by omputing them in Fourier spae. A FFT isbasially of order N logN in the number of grid points and this represents a substantialimprovement for large N over the diret partile-partile summation tehnique. Theprie to be paid for this is that the Fourier summation method impliitly requiresthat the simulation box has periodi boundary onditions: this is probably the mostreasonable hoie for simulating a `representative' part of the Universe, so this does notseem to be too high prie. The potential weakness of this method is the omparativelypoor fore resolution on small sales beause of the �nite spatial size of the mesh. Asubstantial inrease in spatial resolution an be ahieved by using instead a hybrid`partile-partile-partile-mesh' method, whih solves the short range fores diretly(PP) but uses the mesh to ompute those of longer range (PM); hene PP + PM =



Appendix: Numerial Simulations 119P3M, the usual name of suh odes. Here, the short-range resolution of the algorithmis improved by adding a orretion to the mesh fore. This ontribution is obtained bysumming diretly all the fores from neighbours within some �xed distane rs of eahpartile. A typial hoie for rs will be around three grid units. Alternatively, one anuse a modi�ed fore law on these small sales to assign partiular density pro�le tothe partiles, similar to the softening proedure demonstrated in Equation (17). Thispart of the fore may well be quite slow, so it is advantageous merely to alulate theshort-range fore at the start for a large number of points spaed linearly in radiusand then �nd the atual fore by simple interpolation. The long-range part of the forealulation is done by a variant of the PM method desribed earlier.Tree odesAn alternative proedure for enhaning the fore resolution of a partile ode whilstkeeping the neessary demand on omputational time within reasonable limits is toadopt a hierarhial subdivision proedure. The generi name given to this kind oftehnique is `tree ode'. The basi idea is to treat distant lumps of partiles as singlemassive pseudo-partiles. The usual algorithm involves a mesh whih is divided into ellshierarhially in suh a way that every ell whih ontains more than one partile is di-vided into 23 sub-ells. If any of the resulting sub-ells ontains more than one partile,that ell is subdivided again. There are some subtleties involved with ommuniatingpartile positions up and down the resulting `tree', but it is basially quite straight-forward to treat the distant fores using the oarsely grained distribution ontainedin the high level of the tree, while short-range fores use the �ner grid. The greatestproblem with suh odes is that, although they run quite quikly in omparison withpartile-mesh methods with the same resolution, they do require onsiderable memoryresoures. Their use in osmologial ontexts has so far therefore been quite limited,one of the problems being the di�ulty of implementing periodi boundary onditionsin suh algorithms.GIF2 simulationGao et al. (2004) [25℄ performed and desribed the Gif2 simulation that is a os-mologial simulation of a �at ΛCDM universe in a periodi ube of side 110h−1Mp.The total number of partiles onsidered is 4003, with an individual mass of mp =

1.73 × 109M⊙/h. The osmologial parameters adopted are: Ωm = 0.3, ΩΛ = 0.7,
σ8 = 0.9 and h = 0.7. The initial �utuation power spetrum index has been hosento be n = 1, and the transfer funtion has been produed using CMBFAST (Seljak &



120 Appendix: Numerial SimulationsZaldariaga, 1996 [66℄) for Ωbh
2 = 0.0196. The initial onditions were produed by per-turbing an initially uniform state represented by a `glass' distributionof partiles. Thepartile distribution has been generated with the method developed byWhite (1993) [88℄whih involves evolution from a Poisson distribution with the sign of Newton's onstanthanged when alulatinf peuliar gravitational fores. Flutuations are imposed usingthe algorithm desribed in Efstathiou et al. (1985) [20℄. Based on Zel'Dovih (1970)approximation [93℄, a Gaussian random �eld has been set up by perturbing the partilepositions and by assigning them veoities aording to the growing mode solution oflinear theory. In order to save omputational time, the simulation has been performedin two steps:

• from high redshift until z = 2.2 the simulation has been run with SHMEM (par-allel version of HYDRA, Couhman et al. 1995 [16℄). At these times the partiledistributions are lightly lustered and thus the P3M-based gravity solver is quitee�ent;
• from z = 2.2 to z = 0 the simulation has been ompleted with a tree-based parallelode, GADGET, by Springel at al. (2001) [76℄, whih has better performane inthe heavily luster regime.However the two odes adopt di�erent fore-softening shemes, so it is neessary tomath the fore shape at the time of swith from one ode to the other. Experimentationsshowed that ǫHY DRA = 1.06ǫGADGET produes an exellent math of the two fore laws.To take into aount this di�erene from z = 49 to z = 2.2, the simulation has beenperformed with a gravitational softening ǫ = 7kp/h in omoving units, while from

z = 2.2 to z = 0, ǫ = 6.604kp/h using GADGET.The numerial data for GIF2 simulation are publiy available at: http://www.mpa-garhing.mpg.de/Virgo.The GIF2-haloes are identi�ed, at eah snapshot, using the spherial overdensityriterion (Laey & Cole, 1994 [42℄). For eah output time the loal dark matter densityis estimate at the position of eah partile by alulating the distane to the tenthlosest neighbour. A loal density is assigned to eah partile; the partiles are thensorted in density and the enter of the �rst halo is the position of the densest partile.A sphere of matter is then built around this enter and stopped when the mean densitywithin the sphere �rst fall below the virial value appropriate for the osmologial modelat that redshift. For the de�nition of virial density the model of Eke et al. (1996) [21℄is adopted; e.g. at z = 0 a newly formed halo formed when the its density is 324 timesthe bakground. At this point, the partiles assigned to the �rst halo are removed fromthe list. The enter of the next halo is the position of the densest partile among theremaining ones. A seond sphere is built and so on, until all partiles are sreened.



Appendix: Numerial Simulations 121A halo must ontain at least 10 partiles. The partiles non ending up in haloes areonsidered as `�eld' or 'dust' partiles.Millennium SimulationThe Millennium Simulation (Springel et al. 2005 [77℄) was arried out with a us-tomized version of the GADGET2 ode, using the TreePM method (Xu, 1995) [℄ forevaluating gravitational fores. This is a ombination of a hierarhial multipole expan-sion, or tree algorithm, and a lassial Fourier transform partile-mesh method. This is a
ΛCDM simulation with osmologial parameters: Ωm = ΩDM + Ωb = 0.25, Ωb = 0.045,
ΩΛ = 0.75, h = 0.73, n = 1, σ8 = 0.9. The simulation volume is a periodi box of size
500h−1Mp and individual partiles have a mass of 8.6× 108h−1M⊙. The gravitationalfore law is softened isotropially ona o-moving sale of 5h−1kp. Initial onditionswere laid down by perturbing a homogeneous `glass-like' partile distribution witharealization f a gaussia random �eld with the ΛCDM power spetrum as give by theode CMBFAST [66℄. The displaement �eld in Fourier spae was onstruted using theZel'Dovih approximation, with the amplitude of eah random ohase mode drawn froma Rayleigh distribution. The simulation started at redshift z = 127 and was evolved tothe present.Within the simuation a Friend-of-friend (FOF) group �nder was built in order to�nd large virialized strutures. These FOF groups found are equivalene lasses in whihny pair of partiles belongs to the same groups if their separation is less than 0.2 ofthe mean partile separation. This riterion ombines partiles into groups with a meanoverdensity that orresponds approximately to the expeted density of virialized groups.However, the FOF algorithm is not able to identify subhaloes, that are strutures ofgravitationally bound dark matter orbiting within the larger FOF-haloes. The subhaloesare found with an improved version of the SUBFIND algorithm.
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