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Abstra
tRe
ent advan
es in te
hnology allow for the 
olle
tion and storage of vast amounts ofdata in many di�erent areas. Data mining is the pro
ess of dis
overing new and usefulinformation. Many te
hniques have been developed in re
ent years for the analysisof large datasets, but the task of assessing the signi�
an
e of dis
overed patternsand the validity of fore
ast based on these dis
overies is be
oming a major 
hallengein data intensive appli
ations. The obje
tive of this thesis is the development ofrigorous and e�
ient te
hniques for mining signi�
ant patterns in three di�erentand important s
enarios.The �rst s
enario is the mining of frequent itemsets from transa
tional datasets.For this problem we �rst study two primitives: the extra
tion of top-K frequent
losed itemsets, a re
ently proposed alternative to the extra
tion of frequent item-sets, that provides a better 
ontrol on the output size, whi
h is one of the main
hallenges of the traditional problem; and the use of sampling for the extra
tion oftop-K frequent items/itemsets. The notion of top-K frequent patterns provides a�rst attempt to enhan
e the e�e
tiveness of the traditional framework by relating thesigni�
an
e to a frequen
y based ranking rather than to a mere frequen
y threshold.For both primitives we develop new algorithms and provide experimental eviden
eof their e�e
tiveness. We then address the problem of identifying a meaningful fre-quen
y threshold su
h that that the itemsets that are frequent w.r.t. that threshold
an be �agged as statisti
ally signi�
ant with a small False Dis
overy Rate (FDR),whi
h is de�ned as the expe
ted ratio of false dis
overies among all dis
overies. A
ru
ial feature of our approa
h is that, unlike most previous work, it takes into a
-
ount the entire dataset rather than individual dis
overies. Experimental results arereported whi
h show the e�e
tiveness of our approa
h.The se
ond s
enario is the mining of patterns, 
alled motifs, that repeat fre-quently, possibly with some errors, in biologi
al sequen
es. This problem has at-tra
ted wide interest in re
ent years, sin
e sequen
e similarity is often a ne
essary
ondition for fun
tional 
orrelation. We introdu
e density, a simple and �exiblemeasure for bounding the number of errors, modeled thorugh don't 
ares, in a mo-tif. We design a new algorithm to extra
t maximal dense motifs from a sequen
e,and provide experimental eviden
e of the biologi
al signi�
an
e of the motifs thatthe algorithm returns. Moreover, we 
ompare the motifs extra
ted by our algorithmwith the ones found by a re
ently proposed algorithm, showing that our algorithm
an identify motifs that are more signi�
ant a

ording to z-s
ore, a widely employedmeasure of signi�
an
e.The last problem we 
onsider is the mining of signi�
ant patterns from large-



s
ale gene and protein intera
tion networks, a problem of in
reasing interest sin
e itsimportan
e in 
an
er studies. For this s
enario we de�ne the problem of identifyingsigni�
antly mutated pathways in large s
ale gene and protein intera
tion networks.We introdu
e a 
omputational framework that is the �rst, to our knowledge, todemonstrate a 
omputationally e�
ient strategy for de novo identi�
ation of sta-tisti
ally signi�
ant mutated subnetworks, and design two algorithms to e�
ientlyextra
t the signi�
antly mutated pathways. Moreover we test these algorithms ona large human protein-protein intera
tion network using mutation data from re
entstudies on two di�erent type of 
an
ers. The results of our tests show that ourmethods 
orre
tly identi�es the pathways that are impli
ated in 
an
er.



SommarioI re
enti progressi te
nologi
i permettono la ra

olta e la memorizzazione di enormiquantità di dati in molte aree diverse. Il data mining è il pro
esso di estrazione diinformazione nuova, interessante ed utile. Negli ultimi anni un 
ospi
uo numero disoluzioni sono state sviluppate per l'analisi di grandi moli di dati, ma il pro
esso divalutazione della signi�
atività dei pattern estratti e di validazione delle previsionibasate su questi pattern sta diventando uno dei prin
ipali 
hallenge nell'ambito delleappli
azioni 
he elaborano enormi quantità di dati. Questa tesi si fo
alizza sullosviluppo di te
ni
he rigorose ed e�
ienti per l'estrazione di pattern signi�
ativi intre diversi s
enari rilevanti.Il primo s
enario 
onsiderato è l'estrazione di pattern frequenti, 
hiamati itemset,da dataset transazionali. Inizialmente vengono studiate due primitive molto utiliz-zate per questo problema: l'estrazione dei K itemset 
hiusi più frequenti, un proble-ma proposto re
entemente 
ome alternativa all'estrazione degli itemset frequenti 
hefornis
e un maggior 
ontrollo sulla taglia dell'output, 
he è una delle prin
ipali dif-�
oltà per il problema tradizionale; l'estrazione dei K itemset più frequenti tramitesampling. La nozione di K itemset 
hiusi più frequenti fornis
e un primo tentativodi migliorare l'e�
a
ia del framework tradizionale, legando la signi�
atività ad unordinamento basato sulla frequenza inve
e 
he ad un sempli
e soglia di frequenza.Per entrambe queste primitive vengono sviluppati nuovi algoritmi e viene fornitaevidenza sperimentale della loro e�
a
ia. Su

essivamente viene studiato il prob-lema dell'identi�
azione di una soglia di supporto signi�
ativa tale 
he gli itemset
he risultano frequenti rispetto a tale soglia possono essere 
ontrassegnati 
ome sig-ni�
ativi 
on un basso False Dis
overy Rate (FDR), 
he è de�nito 
ome il rapportoatteso tra il numero di s
operte erronee e il numero totale di pattern prodotti inoutput. Una 
aratteristi
a 
ru
iale 
he distingue il nostro appro

io dalla maggiorparte dei lavori pre
edenti è 
he il nostro framework 
onsidera l'intero dataset pervalutare la signi�
atività di un pattern. Vengono inoltre forniti i risultati dell'analisisperimentale 
he mostrano l'e�
a
ia del nostro appro

io.Il se
ondo s
enario 
he 
onsideriamo è l'estrazione di pattern, 
hiamati motif,
he si ripetono frequentemente, eventualmente 
on errori, in sequenze biologi
he.Questo problema ha attratto molto interesse negli ultimi anni, dato 
he la similaritàa livello di sequenza è spesso una 
ondizione ne
essaria per avere 
orrelazione a livellofunzionale a livello di DNA, RNA o proteine. Per questo problema viene introdottala nozione di densità, una misura sempli
e e �essibile per limitare il numero di errori,rappresentati tramite don't 
ares, in un motif. Viene sviluppato un nuovo algoritmoper l'estrazione di motif densi massimali da una sequenza, e viene fornita evidenza



sperimentale della signi�
atività biologi
a dei motivi 
he l'algoritmo estra. Inoltre,i motivi estratti dal nostro algoritmo vengono 
onfrontati 
on quelli trovati da unaltro algoritmo proposto re
entemente, mostrando 
he il nostro algoritmo identi�
amotif 
he risultano più signi�
ativi rispetto allo z-s
ore, una misura di signi�
ativitàmolto utilizzata.L'ultimo s
enario 
he viene 
onsiderato è l'estrazione di pattern signi�
ativi dagrandi reti di interazione fra geni e proteine, un problema di 
res
ente interesse vistala sua importanza negli studi sul 
an
ro. Per questo s
enario viene de�nito il proble-ma dell'identi�
azione di sottoreti mutate in maniera signi�
ativa. Viene introdottoil primo framework 
omputazionale, al meglio della nostra 
onos
enza, 
he fornis
euna strategia 
omputazionale e�
iente per l'identi�
azione de novo di sottoreti mu-tate in maniera statisti
amente signi�
ativa e vengono sviluppati due algoritmi perl'identi�
azione di tali sottoreti. Tali algoritmi sono valutati utilizzando una granderete di interazione tra proteine e utilizzando dati di mutazione ottenuti da re
entistudi su due tipi di 
an
ro. I risultati di questa valutazione mostrano 
he i nostrialgoritmi identi�
ano 
orrettamente le sottoreti 
he sono impli
ate nell'insorgenzadel 
an
ro.
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Chapter 1Introdu
tionWe are living in the information era. Re
ent advan
es in te
hnology allow for the
olle
tion and storage of vast amounts of data in areas ranging from market basketanalysis and supply 
hain management to 
omputational mole
ular biology and epi-demiology. A 2003 study [LV03℄ reported that between 3 and 6 exabyte (EB, 1018bytes) of newly produ
ed information has been stored in 2002, and that the storageof new information has been growing at a rate of more than 30% a year.Computer s
ien
e has been dealing with problems related to the ever in
reasingneed for 
olle
tion and storage of data for de
ades (e.g., the LZ77 algorithm byLempel and Ziv has been published in 1977 [ZL77℄), developing tools whi
h 
onstitutenow a solid, a

essible ground for managing large datasets, and the improvement ofthese tools is still obje
t of resear
h. Given the ubiquity of large datasets, andthe need not only to transmit, ar
hive, and 
ompress them, but also to analyzeand understand their 
ontent, the 
hallenge of our era is the extra
tion of usefulinformation from overwhelming amounts of data. Even if a huge body of resear
hhas been produ
ed on the pro
essing of large datasets, mu
h work remains to be done.It is possible to �nd a pie
e of data in a petabyte-size storage system, but analyzingan entire dataset to �nd 
orrelations and meaningful trends remains 
hallenging. Onthe one hand there is the need to improve the e�
ien
y of many of the algorithmsdesigned for vast amounts of data, but on the other hand there is the need for novelalgorithmi
 solutions for more e�e
tively extra
ting signi�
ant information from thedata.Data mining is the pro
ess of dis
overing new and useful information. The 
om-munity of data mining resear
hers has developed in re
ent years a set of te
hniquesthat has led to great improvement in the analysis of vast amount of data, but thetask of analyzing that data is still a major 
hallenge, and in parti
ular assessing thesigni�
an
e of dis
overed patterns and the validity of fore
ast based on these dis
ov-1



2 Chapter 1. Introdu
tioneries is be
oming a major 
hallenge in data intensive appli
ations. The obje
tive ofthis thesis is the development of rigorous and e�
ient te
hniques for mining signi�-
ant patterns in the 
ontext of three spe
i�
 and important s
enarios, as explainedbelow.First we 
onsidered the 
lassi
al problem of mining frequent itemsets from trans-a
tional datasets, a fundamental primitive for market basket analysis and severalother 
ommer
ial and s
ienti�
 appli
ations. Given a set of transa
tions, that aresubsets of a base set of items, the traditional de�nition of the problem requires toprodu
e in output all the sets of items (itemsets), that appear in at least a fra
tion
f of the transa
tions, where f is a frequen
y threshold de�ned by the user. Sin
e thenumber of transa
tions is �xed, spe
ifying a minimum frequen
y threshold f is equiv-alent to spe
ify a minimum support threshold σ, where the support of an itemset isthe number of transa
tions in whi
h the itemset appears. This de�nition re�e
ts theidea that the signi�
an
e of an itemset is revealed by its frequen
y. A huge body ofalgorithmi
 studies has been produ
ed for the 
lassi
al problem. However, the 
hoi
eof a suitable frequen
y threshold is usually problemati
, and unless spe
i�
 domainknowledge is available, this 
hoi
e is often arbitrary. One of the problems of thisarbitrariness is that the number of patterns obtained 
an be either too high or toolow, requiring then more iterations of the mining pro
ess to obtain a tra
table anduseful number of patterns in output. Even worse, an arbitrary 
hoi
e of σ 
an leadto an high number of false positive or false negative dis
overies, that 
an underminethe 
orre
tness of subsequent analyses based on frequent itemset mining.The set of frequent itemsets usually 
ontains a lot of redundant information. Toredu
e this redundan
y, the mining of frequent 
losed itemset have been proposed.An itemset is 
losed if any itemset obtained adding an item to it has a lower frequen
y.The set of frequent 
losed itemsets is a 
ompa
t representation of the information
ontained in the set of frequent itemsets, sin
e from the 
losed itemsets and theirfrequen
y it is possible to re
over all frequent itemsets and their frequen
y. Thisvariation however does not solve the problem of the 
hoi
e of the minimum threshold
σ, whi
h remains problemati
.Re
ently in [WHLT05℄ a method has been proposed that does not require aminimum threshold in input, but, rather, extra
ts the top-K most frequent 
loseditemsets, that is, the 
losed itemsets that are frequent w.r.t. a threshold σK , de�nedas the maximum frequen
y threshold resulting in at least K 
losed itemsets in output.In this way it is possible to better 
ontrol the size of the output through the parameter
K, even if it is possible that more than K 
losed itemsets are produ
ed in output.Moreover this approa
h 
an be 
onsidered as an enhan
ement of the traditional



3framework where the signi�
an
e of an itemset is not merely determined by the
omparison of its frequen
y with an arbitrarily �xed threshold but it is related to itsposition in a frequen
y-based ranking of all itemsets.For the problem of frequent itemset mining, this thesis work 
ontributes thefollowing results:(i) We study the basi
 primitive of the extra
tion of top-K frequent 
losed item-sets. For the extra
tion of top-K frequent 
losed itemsets, we provide the �rstanalyti
al eviden
e of its e�e
tiveness, proving a tight upper bound on the ra-tio between the a
tual number of 
losed itemsets returned in output and theinput value K. Then, we develop an e�
ient algorithm for mining top-K fre-quent 
losed itemsets in order of de
reasing support, whi
h exhibits 
onsistentlybetter performan
e than the best previously known one, attaining substantialimprovements in some 
ases. A distin
tive feature of our algorithm is that itallows the user to dynami
ally raise the value K with no need to restart the
omputation from s
rat
h. These results appeared in [PV07℄.(ii) We study a se
ond primitive, the use of sampling to extra
t the top-K frequentitemsets. Traditional methods for the extra
tion of frequent itemsets work onthe entire dataset. Sin
e the size of the dataset 
an be huge, pro
essing theentire dataset 
an require too many resour
es in terms of both spa
e and time,resulting in a mining pro
ess 
omputationally too expensive. To over
omethis problem one natural approa
h is to work only on a small sample of theentire dataset. Sampling has been used extensively to extra
t items/itemsetsin the traditional framework, but its use for the extra
tion of the most frequentitemsets is instead not well studied. We provide a tight bound on the su�
ientsample size required to approximate the top-K frequent items/itemsets whilegiving probabilisti
 guarantees on the quality of the output. Then, we developan algorithm to e�
iently extra
t the top-K frequent items/itemsets throughsampling. These results have been presented in [PRUV09℄(iii) We develop a novel methodology to identify a meaningful support threshold
σ∗ for a dataset, su
h that the number of itemsets with support at least σ∗represents a substantial deviation from what would be expe
ted in a randomdataset with the same number of transa
tions and the same individual itemfrequen
ies. The threshold σ∗ is 
hosen in su
h a way to guarantee that the fre-quent itemsets with respe
t to σ∗ 
an then be �agged as statisti
ally signi�
antwith a small False Dis
overy Rate (FDR), that is the expe
ted ratio of falsedis
overies among all dis
overies. A 
ru
ial feature of our approa
h is that,



4 Chapter 1. Introdu
tionunlike most previous work, it takes into a

ount the entire dataset rather thanindividual dis
overies. It is therefore better able to distinguish between signi�-
ant observations and random �u
tuations. These results have been publishedin [KMP+09a, KMP+09b℄.As a se
ond s
enario, we 
onsidered the mining of patterns, 
alled motifs, whi
ho

ur frequently, possibly with some errors, in biologi
al sequen
es (e.g., DNA se-quen
es). The dis
overy of frequent motifs has attra
ted wide interest in re
ent years,sin
e sequen
e similarity in biologi
al mole
ules (DNA, RNA, amino a
ids sequen
eof proteins) is often a ne
essary 
ondition for fun
tional 
orrelation. The presen
e oferrors in the repetition of a motif are often modeled through the use of the don't 
are
hara
ter in 
ertain positions, whi
h is a wild 
ard mat
hing all 
hara
ters of thealphabet. Sin
e the set of frequent motifs 
ontains a lot of redundan
y, the notion ofmaximal motif (the analogous of 
losed itemset for sequen
es) has been introdu
edto produ
e a more 
ompa
t representation without losing information.Traditionally the signi�
an
e of a motif has been assessed using its frequen
y.However the signi�
an
e of a motif 
annot be ex
lusively related to its frequen
y, asthe following simple experiment taught us. We extra
ted the 10, 000 most frequentmaximal motifs obtained from Human Glutamate Metabotropi
 Re
eptors hgmr 1(410277 bps) and hgmr 5 (91243 bps) sequen
es, and asked a biologist to verifyif there were biologi
ally interesting motifs. The biologist immediately dis
ardedour results as non interesting, sin
e the motifs we reported were either too short or
ontained too many don't 
ares. Then the frequen
y of a motif does not re�e
t itsbiologi
al signi�
an
e, and some of the frequent motifs 
an be immediately �aggedas non signi�
ant simply looking at their stru
ture.For this problem, the thesis 
ontributes the following result:(i) We develop, analyze and experiment with a new tool, 
alled madmx, whi
h ex-tra
ts frequent motifs, possibly in
luding don't 
are 
hara
ters, from biologi
alsequen
es. We introdu
e density, a simple and �exible measure for bounding thenumber of don't 
ares in a motif, de�ned as the ratio of solid (i.e., di�erent fromdon't 
are) 
hara
ters to the total length of the motif. By extra
ting only max-imal dense motifs, madmx redu
es the output size and improves performan
e,while enhan
ing the quality of the dis
overies. The e�
ien
y of our approa
hrelies on a newly de�ned 
ombining operation, dubbed fusion, whi
h allows forthe 
onstru
tion of maximal dense motifs in a bottom-up fashion, while avoid-ing the generation of nonmaximal ones. We provide experimental eviden
e ofthe e�
ien
y and the quality of the motifs returned by madmx, 
omparing



5them with the known biologi
al repetitions available in a very popular genomi
database, and with the motifs extra
ted by the re
ently developed tool varun[ACP09℄ using the same statisti
al metri
 employed in [ACP09℄ for assessingtheir relative signi�
an
e. These results have been published in [GPP+09℄.Finally, we turned our attention to the mining of signi�
ant patterns from large-s
ale gene and protein intera
tion networks. This problem is of great interest in thestudy of 
an
er, sin
e it is a disease 
aused mainly by somati
 mutations, 
hangesin DNA sequen
e that a

umulate during the lifetime of an individual and are notinherited from parents. When a mutation appears in a gene, the portion of the DNAthat 
ontains the information useful to produ
e the 
orresponding protein, it 
an alterthe fun
tionality of the protein produ
ed. Proteins are the primary 
omponents ofliving things. Sin
e it is the intera
tion of the proteins that regulates the a
tivity ofa 
ell and the pro
esses o

urring inside it, 
hanges in the fun
tionality of a protein
an disrupt the 
orre
t fun
tioning of the 
ell, leading to 
an
er.While few of the genes that, when altered, promote the development of malig-nan
ies, 
alled 
an
er genes, are mutated at high frequen
y (e.g. well known 
an
ergenes like TP53 or KRAS), most 
an
er genes are mutated at mu
h lower frequen-
ies. Thus, the observed frequen
y of mutation is an inadequate measure of theimportan
e of a gene, parti
ularly with the relatively modest number of samplesthat are tested in 
urrent 
an
er studies. In fa
t 
an
er is a disease of pathways,sequen
es of intera
tions between proteins that regulate the pro
esses inside the 
ell.It is hypothesized that somati
 mutations target genes in a relatively small numberof regulatory and signaling pathways [HW02, VK04℄. Thus, the fa
t that only fewgenes are mutated in a large number of samples is explained by the fa
t that thereis a huge number of possible 
ombinations of mutations that transform a normal 
ellinto a 
an
er 
ell. To understand what are the me
hanisms leading to 
an
er, andwhat are the genes whose alterations are the 
ause of malignan
ies, it is then 
ru
ialto �nd what are the pathways that are signi�
antly mutated.For this part, this thesis work 
ontributes the following result:(i) We de�ne the problem of identifying signi�
antly mutated pathways in larges
ale gene and protein intera
tion networks. We introdu
e a 
omputationalframework that is the �rst, to our knowledge, to demonstrate a 
omputation-ally e�
ient strategy for de novo identi�
ation of statisti
ally signi�
ant mu-tated subnetworks. We propose two algorithms to identify signi�
antly mutatedpathways, both based on an in�uen
e measure between pairs of genes obtainedusing a di�usion pro
ess de�ned on the intera
tion network. Moreover, build-ing on the te
hnique we developed in [KMP+09a℄ we derive a statisti
al test



6 Chapter 1. Introdu
tionthat identi�es signi�
antly mutated pathways and estimates the FDR of theidenti�ed subnetworks. We test these algorithms on a large human protein-protein intera
tion network using mutation data from re
ent studies on twodi�erent type of 
an
ers (glioblastoma multiforme and lung adeno
ar
inoma).Our methods su

essfully re
over pathways that are known to be important inthe 
onsidered 
an
ers, and moreover identify additional pathways that havebeen impli
ated in 
an
er but not previously reported as mutated in thesesamples. These results appeared in [VUR09, VUR10℄.The rest of this thesis is organized as follows. Chapter 2 provides the ba
kgroundfor the remaining 
hapters. Chapter 3 presents the results regarding the extra
tion oftop-K frequent 
losed itemsets, and the use of sampling to extra
t the top-K frequentitems/itemsets. In Chapter 4 the methodology to identify statisti
ally signi�
antfrequent itemsets is introdu
ed. Chapter 5 presents our tool madmx to extra
tmaximal dense motifs in biologi
al sequen
es. Chapter 6 introdu
es the frameworkto dis
over signi�
antly mutated pathways in biologi
al networks. Chapter 7 endsthe thesis with some 
on
luding remarks.



Chapter 2
Ba
kground
This thesis proposes novel solutions to dis
over signi�
ant patterns in di�erent s
e-narios. In this 
hapter we provide the ba
kground related to the problems addressedin this thesis work, and a survey of previous work. The �rst three se
tions providesthe ba
kground for the �rst part of the thesis. In parti
ular, in Se
tion 2.1 we in-trodu
e the problem of frequent itemsets mining, a problem that has attra
ted a lotof attention in the data mining 
ommunity, as testi�ed from the huge body of workprodu
ed by the resear
her in that �eld, but for whi
h many interesting questionsare still open, like, for example, how to e�
iently extra
t the top-K frequent 
loseditemsets. Another interesting question that is still open is how to employ sampling toextra
t the top-K frequent itemsets: the ba
kground for this problem is presentedin Se
tion 2.2. In Se
tion 2.3 we review the approa
hes that have been proposedto extra
t the statisti
ally signi�
ant frequent itemsets from a dataset, employingmeasures di�erent from the frequen
y to measure the signi�
an
e of an itemsets.Se
tion 2.4 and Se
tion 2.5 provide the ba
kground for the se
ond part of thethesis, where we turn our attention to two problems in 
omputational biology. Inparti
ular, in Se
tion 2.4 we introdu
e the problem of mining motifs in biologi
alsequen
es, that is one of the fundamental problems in 
omputational biology. InSe
tion 2.5 we instead de�ne the problem of �nding signi�
antly mutated pathwaysin biologi
al networks, a problem for whi
h no e�
ient solution as been proposedyet, but that is re
eiving an in
reasing attention in the biomedi
al 
ommunity giventhe availability of the �rst data on large-s
ale tumors sequen
ing.While ea
h se
tion presents a survey of previous work, the works that are 
loselyrelated to our novel 
ontributions will be reviewed in more details in the respe
tive
hapters. 7



8 Chapter 2. Ba
kground2.1 Mining for frequent itemsets: 
lassi
al settingThe dis
overy of frequent itemsets is a fundamental primitive whi
h arises in themining of asso
iation rules and in many other mining problems. The problem hasbeen formally introdu
ed in [AIS93℄, and is the following: given a (multi)set D =
{

t1, t2, . . . , t|D|

} of transa
tions, where ea
h transa
tion tj is a subset of a base set ofitems I, and a minimum threshold σ, produ
e in output the set F(D, σ) of frequentitemsets, that is all of the (nonempty) subsets X ⊆ I whi
h appear in at least σtransa
tions. We use ‖D‖ to denote the dataset size, that is, ‖D‖ =
∑

t∈D |t|. Foran itemset X ⊆ I we de�ne its 
onditional dataset DX ⊆ D as the (multi)set oftransa
tions t ∈ D that 
ontain X. The number of transa
tions of DX is referredto as the support of X w.r.t. D, denoted with sD(X), while the quantity sD(X)
|D|

isreferred to as the frequen
y of X, denoted with fD(X)1.Sin
e the pioneering work by Agrawal et al. [AIS93℄ a vast body of works hasappeared in the literature presenting novel algorithmi
 strategies or 
lever implemen-tations of known strategies, studying foundational issues, and proposing variants ofthe problem together with e�
ient algorithmi
 solutions. Despite this impressiveamount of resear
h, many 
hallenging problems are still open [HCXY07℄.One of the problems in the mining of frequent itemsets is that the size of theoutput 
an be huge, sin
e the number of frequent itemsets 
an be exponential inthe size of the input. It is thus 
hallenging to 
hoose a threshold σ su
h that thenumber of frequent itemsets produ
ed in output is not overwhelming, but still largeenough to permit signi�
ative analyses. However, the set of all frequent itemsetsusually 
ontains a lot of redundant information whi
h is partly responsible for theirlarge number. In order to eliminate the redundan
y, the notion of frequent maximalitemsets [Bay98℄ has been introdu
ed in [Bay98℄: a frequent itemset X is maximalw.r.t. a support threshold σ if there is no itemset Y , with X ⊂ Y ⊆ I, su
h thats(Y ) ≥ σ. From the set of all frequent maximal itemsets and their supports, it ispossible to re
over the set of all frequent itemsets, but it is not possible to re
overtheir supports without a

essing the input database.Another alternative that has been proposed is the mining of the set FC(D, σ) offrequent 
losed itemsets [PBTL99℄: an itemset X is 
losed w.r.t. D if there existsno itemset Y , with X ⊂ Y ⊆ I, su
h that sD(Y ) = sD(X). In other words, if Xis 
losed, then adding a single item to X de
reases its support. Given a supportthreshold σ, an itemset X is then 
losed frequent if it is frequent w.r.t. σ, and it is
losed.1For simpli
ity, in what follows we will omit expli
it referen
e to D in the notation for thesupport and the frequen
y, if D is 
lear from the 
ontext.



2.1. Mining for frequent itemsets: 
lassi
al setting 9For any itemset X, its 
losure w.r.t. D, denoted by CloD(X), is the 
losed itemset
Y ⊇ X su
h that Y =

⋂

t∈DX
t2. From the set of frequent 
losed itemsets and theirsupports it is possible to re
over the set of all frequent itemsets and their supportswithout a

essing the input database.It would be impossible to survey here the vast literature on the mining of fre-quent itemsets, maximal frequent itemsets or frequent 
losed itemsets. We refer theinterested reader to the pro
eedings of the two re
ently held editions of the Fre-quent Itemset Mining Implementations (FIMI) Workshop, whi
h illustrate the stateof the art for these problems [GZ03, BGZ04℄. Among the many algorithms thathave been proposed for extra
ting frequent maximal or 
losed itemsets, algorithmLCM, proposed in [UAUA04℄, is parti
ularly relevant for our purposes. In this work,a 
on
eptual organization of the 
losed itemsets as nodes of a tree, with supportde
reasing with in
reasing depth, is proposed. This organization allows LCM (i) toavoid pro
essing non-
losed itemsets, and (ii) to avoid maintaining in memory thefrequent 
losed itemsets dis
overed before produ
ing them in output, resulting inin
reased time and spa
e performan
e. LCM is the �rst algorithm that exhibitedthese features. A strategy similar to the one employed by LCM is used in [LOP06℄.Although the number of frequent 
losed itemsets is often mu
h smaller than thenumber of all frequent itemsets, there are 
ases when |FC(D, σ)| is still exponentialin ||D||. The following example is by Yang [Yan04℄: let IYang = {a1, a2, . . . , an} andlet DYang = {t1, t2, . . . , tn} with ti = I−{ai}, for 1 ≤ i ≤ n. Thus, ||DYang|| ∈ Θ (n2).It is easy to see that every itemset X ⊆ IYang is 
losed and has support n−|X|, hen
ethe number of 
losed itemsets of support at least σ = ⌊n/2⌋ is ∑⌈n/2⌉

k=1

(

n
k

)

∈ Ω (2n).For a given dataset D and support threshold σ, it is hard to predi
t the |F(D, σ)|or |FC(D, σ)|, and this is a problemati
 aspe
t of the 
lassi
al frequent (
losed)itemset mining task. Setting σ too large may ex
lude interesting itemsets fromthe output, while setting it too small may yield an impra
ti
ally large output set.Consequently, a user may have to repeat the mining pro
ess several times for di�erentsupport thresholds until one is found whi
h yields a suitable number of frequentitemsets. To over
ome this problem, in [WHLT05℄ the authors propose to modifythe mining task into that of dis
overing the top-K frequent 
losed itemsets, as de�nedbelow.De�nition 2.1. For a dataset D and an integer K, de�ne the set of top-K frequent
losed itemsets ( top-K f.
.i., for short) as FCK(D) = FC(D, σK), where σK is themaximum value su
h that FC(D, σK) ≥ K.2For simpli
ity, in what follows the terms 
losed itemset, and 
losure will be used without expli
itreferen
e to D, if D is 
lear from the 
ontext.
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D I
t1 a6 a4 a1

t2 a6 a4

t3 a6 a5 a4 a3 a2

t4 a6 a5

t5 a5 a3 a2

t6 a5 a3 a1

t7 a6 a5 a4 a3 a2 a1(a)
X s(X)
a6 5
a5 5

a6 a4 4
a5 a3 4
a6 a5 3

a5 a3 a2 3
a1 3(b)Figure 2.1: (a) Sample dataset D. (b) Top-5 frequent 
losed itemsets for D.The top-5 frequent 
losed itemsets for a sample dataset D are shown in Figure 2.1.Note that when mining the top-K frequent 
losed itemsets the threshold σK is notgiven as part of the input and it is uniquely, although impli
itly, de�ned as a fun
tionof K, whi
h sets a more dire
t 
onstraint on the output size. However, requiring thedis
overy of all 
losed itemsets of support at least σK may yield many itemsets (ofsupport equal to σK) in ex
ess of K, but these extra itemsets are ne
essary in 
aseother patterns (e.g., asso
iation rules) must be derived from the frequent 
loseditemsets.2.2 Mining of frequent itemsets through samplingWhen dealing with massive datasets, 
omputing the exa
t set of (maximal/
losed)frequent itemsets 
an be too expensive. If the dataset does not �t 
ompletely in mainmemory, disk a

esses may slow down exa
t algorithms to a point where they be
omeimpra
ti
al. Algorithms for the standard frequent itemset mining task developed tosolve the problem in an exa
t way must s
an the entire dataset, typi
ally severaltimes, whi
h has a 
onsiderable impa
t on performan
e. It is then ne
essary to a

epta tradeo� between the a

ura
y of the results and the time needed to 
ompute them,espe
ially if it is possible for the user of the algorithm to spe
ify the maximum de
ayin the �quality� of the output she is willing to a

ept.Sampling is one te
hnique that 
an be employed to redu
e the running time, ob-taining approximated results. Almost immediately after the �rst e�
ient algorithmshad been developed, the data mining 
ommunity started wondering whether it wouldbe possible to lower the exe
ution time by using only a sample of the dataset andgive probabilisti
 guarantees on the output.One of the �rst problems that has been addressed by the 
ommunity is the de-termination of a su�
ient sample size whi
h would allow the sample to respe
t some



2.2. Mining of frequent itemsets through sampling 11�quality standards�. The authors of [ZPLO97℄ fo
used on the use of Cherno� boundsto de�ne these standards in terms of a

ura
y, that is, the ratio between the supportof an itemset in the sample and its real support, and of 
on�den
e of the sample,that is, the probability that the itemsets extra
ted from the sample have a givena

ura
y. There are two drawba
ks in the approa
h of [ZPLO97℄. First of all, thesample size obtained with their method 
an be larger than the original dataset; se
-ond, their approa
h is not sound from a statisti
al point of view sin
e the 
on�den
ebound is derived for one individual itemset, rather than the entire output set. Astraightforward 
orre
tion of this problem would result in an even worse sample size.In [JL96℄ the use of progressive sampling and learning 
urves is proposed fordata mining tasks. Their arti
le refers prin
ipally to 
lassi�
ation, but the ideaspresented 
an be adapted to the mining of frequent itemsets. The main idea is theuse of learning 
urves to evaluate whether the distribution of elements in the sampleis approximately the same distribution of the elements as in the original dataset.This approa
h 
ould solve the issue of having a sample size larger than the size ofthe original dataset. The experimental results presented in that work suggest thatusing progressive sampling 
an be more e�
ient than stati
 sampling sin
e it mayyield higher a

ura
y.An algorithm inspired by the progressive sampling approa
h presented in [JL96℄is introdu
ed in [CHS02℄. The main idea is to derive a small sample that re�e
ts someproperties of the entire dataset starting from a large, hen
e more a

urate, sample.The algorithm 
onsiders at the beginning a large sample S0, from whi
h an a

urateestimation of the frequent items 
an be derived. Then a small �nal sample S of �xedsize n, where n is 
hosen by the user, is obtained by trimming S0. The transa
tionsremoved in the trimming phase are 
hosen so that the set of frequent items in S is
lose to the set of frequent items in S0, given a suitable distan
e fun
tion betweentwo sets of frequent items.Another algorithm that starts from the ideas presented in [JL96℄ is des
ribedin [Par02℄. The goal of this algorithm is to identify the knee of the learning 
urveusing basi
 slope 
hara
terization a
ross re
ently evaluated samples. To this end,progressive sampling is employed: starting from a small sample, larger and largersamples are 
onsidered. A self-similarity measure is de�ned between subsets of fre-quent itemsets obtained from two di�erent samples and is used to stop the growthof the sample size when it be
omes small enough. The subset of frequent item-sets 
onsidered for the self-similarity measure is su
h that the mining pro
ess is nottoo expensive. In that paper the a

ura
y and 
on�den
e proposed method is notassessed analyti
ally, but experimental eviden
e of its e�e
tiveness is provided.



12 Chapter 2. Ba
kgroundThe authors of [LG04℄ derive a su�
ient sample size based on 
entral limit the-orem. The sample sizes derived with this method are smaller than the ones derivedusing the method of [ZPLO97℄, but the analysis su�ers from the same statisti
alweaknesses as [ZPLO97℄.The question of deriving a su�
ient sample size for sampling is not the onlyone that has been addressed by the data mining 
ommunity. In [Toi96℄ the authordevelops and analyzes an algorithm that with one pass of the entire dataset extra
tsthe entire set of frequent itemsets with probability 1−∆, where ∆ is a user de�nedparameter. The algorithm uses a sample to extra
t a set C of itemsets that representsthe 
andidate set of frequent itemsets w.r.t. the entire dataset, and then one s
anof the entire dataset is performed to 
ompute the exa
t frequen
ies of itemsets in
C. The author shows that if some frequent itemset is not found in the �rst pass(event that holds with probability ∆), an additional pass is su�
ient to 
ompletethe identi�
ation of all frequent itemsets.The literature related to the problem of �nding the top-K frequent items oritemsets by limiting the a

ess to the dataset is not as ri
h as the one on the 
lassi
alproblem. Some papers [CCFC04, MAA05, CGK08℄ appeared in the �eld of datastreams and limited to the 
ase of top-K items, while [WF06℄ deals with top-Kitemsets. In the data stream s
enario, the transa
tions are provided to the algorithmone after the other, and it not possible to maintain all the input dataset in memory,then when a transa
tion is provided to the algorithm, it must de
ide whether to storeit in memory, having then the possibility to use it for the 
omputation, or not. Inthe data stream s
enario the question of major interest is the total spa
e requiredto solve the problem, hen
e the authors of works above were mainly 
on
erned withbounding the spa
e needed to 
ompute a solution to the problem or to one of itsrelaxed versions, and little attention was given to how mu
h data must be sampledto obtain su
h a solution, sin
e su
h a question is less 
ru
ial in the data streamsetting. However, some of these works are of interest be
ause they formally de�nean approximation to the set of top-K items/itemsets.The authors of [CCFC04℄ present a 1-pass algorithm to estimate the most frequentitems in a data stream under the 
onstraint of limited storage spa
e. They presentan algorithm, CountSket
h, whi
h is proved to solve the problem with probability
1− δ using O

(

K log n
δ

) spa
e, where n is the total number of elements in the stream(i.e., n is the length of the stream), while to obtain a set of items su
h the the k mostfrequent items o

ur in the set a sample of size O
(

log K
fK

), where fK is the frequen
y ofthe K-th most frequent item, is required with a naïve approa
h (by keeping a uniformrandom sample of the elements as a list of items and a 
ount for ea
h of them). Sin
e
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fK ≤ 1/n, the improvement obtained with the CountSket
h algorithm is large.A drawba
k of the CountSket
h algorithm is that the parameters of the datastru
ture employed by the algorithm depend on the distribution of the frequen
iesof the items, so one must have some prior knowledge about that distribution to
orre
tly apply the method.The authors of [WF06℄ use the Cherno� bounds to derive a method to mine thetop-K frequent itemsets from a datastream. This method seems promising be
auseit gives a probabilisti
 lower bound to the frequen
y in the sample of the K-th mostfrequent itemset in the dataset. The problem is that the proof of this bound 
ontainsa �aw, whi
h leads to the non-
orre
tness of the entire algorithm. In parti
ular theauthors derive the lower bound to the frequen
y of the real top-K frequent itemsetusing a 
on�den
e interval for the frequen
y in the sample of the K-th most frequentitemset in the dataset, without 
onditioning on the fa
t that the itemset used toderive this lower bound is observed with a 
ertain frequen
y in the sample.To understand why this is not 
orre
t, 
onsider a dataset where all the itemshave the same frequen
y. Using a ball and bins argument it is easy to show that in arandom sample there will be an item with frequen
y f mu
h higher than expe
ted,su
h that the probability of observing that parti
ular item with frequen
y f in arandom sample is negligible. Then the frequen
y of this item 
annot be used toobtain a probabilisti
 lower bound to the frequen
y of the most frequent item.2.3 Statisti
ally signi�
ant frequent itemsetsOf the many problems that remain open 
on
erning the mining of frequent item-sets, assessing the signi�
an
e of the dis
overed itemsets, or equivalently, �aggingstatisti
ally signi�
ant dis
overies with a limited number of false positive out
omes,is still poorly understood and remains one of the most 
hallenging problems in thisarea [HCXY07℄. Sin
e we are interThe 
lassi
al framework requires that the user de
ide what is signi�
ant by spe
-ifying the support threshold σ. Unless spe
i�
 domain knowledge is available, the
hoi
e of su
h a threshold is often arbitrary [HK01, TSK06℄, and may lead to a largenumber of spurious dis
overies that would undermine the su

ess of subsequent anal-ysis.A number of works have explored various notions of signi�
ant itemsets andhave proposed methods for their dis
overy. Below, we review those most relevantto this thesis work and refer the reader to [HCXY07, Se
tion 3℄ for further refer-en
es. The paper [AY98℄ relates the signi�
an
e of an itemset X to the quantity
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((1 − v(X))/(1 − E[v(X)])) · (E[v(X)]/v(X)), where v(X) represents the fra
tionof transa
tions 
ontaining some but not all of the items of X, and E[v(X)] repre-sents the expe
tation of v(X) in a random dataset where items o

ur in transa
tionsindependently. This ratio provides an empiri
al measure of the 
orrelation amongthe items of X whi
h, a

ording to [AY98℄, is more e�e
tive than absolute support.In [SA96, DuM99, DP01℄, the signi�
an
e of an itemset is measured as the ratio Rbetween its a
tual support and its expe
ted support in a random dataset. In orderto make this measure more a

urate for small supports, [DuM99, DP01℄ proposessmoothing the ratio R using an empiri
al Bayesian approa
h. Bayesian analysis isalso employed in [ST96℄ to derive subje
tive measures of signi�
an
e of patterns(e.g., itemsets) based on how strongly they �shake� a system of established beliefs.In [JS05℄, the signi�
an
e of an itemset is de�ned as the absolute di�eren
e betweenthe support of the itemset in the dataset and the estimate of this support made froma Bayesian network with parameters derived from the dataset.A statisti
al approa
h for identifying signi�
ant itemsets is presented in [SBM98℄,where the measure of interest for an itemset is de�ned as the degree of dependen
eamong its 
onstituent items, whi
h is assessed through a χ2 test. Unfortunately,as reported in [DuM99, DP01℄, there are te
hni
al �aws in the appli
ations of thestatisti
al test in [SBM98℄. In parti
ular, it is reported that the χ2 distribution usedin their approa
h has one degree of freedom for any length of 
onsidered itemsets,while this is true only for itemsets of size 2. Their results are then 
orre
t onlyfor itemsets of size 2. Nevertheless, [SBM98℄ pioneered the quest for a rigorousframework for addressing the dis
overy of signi�
ant itemsets.A 
ommon drawba
k of the aforementioned works is that they assess the sig-ni�
an
e of ea
h itemset in isolation, rather than taking into a

ount the global
hara
teristi
s of the dataset from whi
h they are extra
ted. As argued before, ifthe number of itemsets 
onsidered by the analysis is large, even in a purely randomdataset some of them are likely to be �agged as signi�
ant if 
onsidered in isolation.A few works attempt at a

ounting for the global stru
ture of the dataset in the
ontext of frequent itemset mining. The authors of [GMMT07℄ propose an approa
hbased on Markov 
hains to generate a random dataset that has identi
al transa
tionlengths and identi
al frequen
ies of the individual items as the given real dataset.The work suggests 
omparing the out
omes of a number of data mining tasks, fre-quent itemset mining among the others, in the real and the randomly generateddatasets in order to establish whether the real datasets exhibit any signi�
ant globalstru
ture. However, su
h an assessment is 
arried out in a purely qualitative fashionwithout rigorous statisti
al grounding.



2.3. Statisti
ally signi�
ant frequent itemsets 15Multi-hypothesis testingIn a simple statisti
al test, a null hypothesis H0 is tested against an alternativehypothesis H1. A test 
onsists of a reje
tion (
riti
al) region C su
h that, if thestatisti
 (out
ome) of the experiment is in C, then the null hypothesis is reje
ted,and otherwise the null hypothesis is not reje
ted. The signi�
an
e level of a test, α =

Pr(Type I error), is the probability of reje
ting H0 when it is true (false positive). Thepower of the test, 1− Pr(Type II error), is the probability of 
orre
tly reje
ting thenull hypothesis. A �Type II error� is the erroneous non reje
tion of a null hypothesis(false negative). The p-value of a test is the probability of obtaining an out
ome atleast as extreme as the one that was a
tually observed, under the assumption that
H0 is true.In a multi-hypothesis statisti
al test, the out
ome of an experiment is used totest simultaneously a number of hypotheses. For example, in the 
ontext of frequentitemsets, if we seek signi�
ant k-itemsets, we are in prin
iple testing (n

k

) null hypothe-ses simultaneously, where ea
h null hypothesis 
orresponds to the support of a givenitemset not being statisti
ally signi�
ant. The experiment in this 
ase 
orresponds tothe extra
tion of the k-itemsets and their supports from the datasets. In the 
ontextof multi-hypothesis testing, the signi�
an
e level 
annot be assessed by 
onsideringea
h individual hypothesis in isolation. To demonstrate the importan
e of 
orre
tingfor multipli
ity of hypotheses, 
onsider a simple real dataset of 1,000,000 transa
-tions over 1,000 items, ea
h with frequen
y 1/1000. Assume that we observed thata pair of items (i, j) appears in at least 7 transa
tions. Is the support of this pairstatisti
ally signi�
ant? To evaluate the signi�
an
e of this dis
overy we 
onsidera random dataset where ea
h item is in
luded in ea
h transa
tion with probability1/1000, independent of all items. The probability that the pair (i, j) is in
luded ina given transa
tion is 1/1,000,000, thus the expe
ted number of transa
tions thatin
lude this pair is 1. A simple 
al
ulation shows that the probability that (i, j)appears in at least 7 transa
tions is about 0.0001. Thus, it seems that the support of
(i, j) in the real dataset is statisti
ally signi�
ant. However, ea
h of the 499,500 pairsof items has probability 0.0001 to appear in at least 7 transa
tions in the randomdataset. Thus, even under the assumption that items are pla
ed independently intransa
tions, the expe
ted number of pairs with support at least 7 is about 50. Ifthere were only about 50 pairs with support at least 7, returning the pair (i, j) as astatisti
ally signi�
ant itemset would likely be a false dis
overy sin
e its frequen
ywould be better explained by random �u
tuations in observed data. On the otherhand, assume that the real dataset 
ontains 300 disjoint pairs ea
h with support atleast 7. By the Cherno� bound [MU05℄, the probability of that event in the random
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kgrounddataset is less than 2−300. Thus, it is very likely that the support of most of thesepairs would be statisti
ally signi�
ant. A dis
overy pro
ess that does not returnthese pairs will result in a large number of false negatives.A natural generalization of the notion of signi�
an
e level to multi-hypothesistesting is the Family Wise Error Rate (FWER), whi
h is the probability of in
urringat least one Type I error in any of the individual tests. If we are testing simulta-neously m hypotheses and we want to bound the FWER by α, then the Bonferronimethod tests ea
h individual null hypothesis with signi�
an
e level α/m. While 
on-trolling the FWER, this method is too 
onservative in that the power of the test istoo low, resulting in many false negatives. There are a number of te
hniques thatimprove on the Bonferroni method, but for large numbers of hypotheses all of thesete
hniques lead to tests with low power (see [DSB03℄ for a good review).The False Dis
overy Rate (FDR) was suggested by Benjamini and Ho
hberg [BH95℄as an alternative, less 
onservative approa
h to 
ontrol errors in multiple tests. Let
R be the total number of null hypotheses reje
ted by the multiple test, and let V bethe number of Type I errors among these reje
tions. Then we de�ne FDR to be theexpe
ted ratio of erroneous reje
tions among all reje
tions, namely FDR = E[V/R],with V/R = 0 when R = 0. Designing a statisti
al test that 
ontrols for FDR isnot simple, sin
e the FDR is a fun
tion of two random variables that depend bothon the set of null hypotheses and the set of alternative hypotheses. Building on thework of [BH95℄, Benjamini and Yekutieli [BY01℄ developed a general te
hnique for
ontrolling the FDR in any multi-hypothesis test (see Theorem 4.5).Few works employ the multi-hypothesis testing framework for frequent itemsetmining or in the realm of dis
overing asso
iation rules. The problem of spuriousdis
overies when mining signi�
ant patterns is studied in [BHA02℄. The paper is
on
erned with the dis
overy of signi�
ant pairs of items, where signi�
an
e is mea-sured through the p-value, that is, the probability of o

urren
e of the observedsupport in a random dataset. Signi�
ant pairs are those whose p-values are belowa 
ertain threshold that 
an be suitably 
hosen to bound the FWER, or to boundthe FDR. The authors 
ompare the relative power of the two metri
s through exper-imental results, but do not provide methods to set a meaningful support threshold.In [HN08℄, the authors provide a variation of the well-known Apriori strategy for thee�
ient dis
overy of a subset A of asso
iation rules with p-value below a given 
uto�value, while the results in [MS98℄ provide the means of evaluating the FDR in A.The FDR metri
 is also employed in [ZPT04℄ in the 
ontext of dis
overing signi�
antquantitative rules, a variation of asso
iation rules. None of these works is able toestablish support thresholds su
h that the returned dis
overies feature small FDR.



2.4. Mining of motifs in biologi
al sequen
es 172.4 Mining of motifs in biologi
al sequen
esAll of the geneti
 information in any living 
reature is stored in deoxyribonu
lei
 a
id(DNA) and ribonu
lei
 a
id (RNA), whi
h are polymers of four simple nu
lei
 a
idunits, 
alled nu
leotides. The portions of the DNA that really 
ontains the infor-mation ne
essary for the 
orre
t fun
tioning of the 
ell are 
alled genes. Ea
h gene
odi�es the information to produ
e a protein, the �nal produ
t of geneti
 expression.In parti
ular, the pro
ess of geneti
 expression starts from the DNA sequen
e of agene. Using the information 
oded into the gene, an RNA mole
ule is produ
edthrough the pro
ess of trans
ription, and then the amino a
ids sequen
e that 
onsti-tute the protein 
orresponding to the starting gene is produ
ed through translationof the RNA mole
ule. The �nal step of the geneti
 expression is the folding of theprotein into its three-dimensional stru
ture.The dis
overy of frequent patterns (motifs) in biologi
al sequen
es has attra
tedmu
h interest in re
ent years, due to the understanding that sequen
e similarity isoften a ne
essary 
ondition for fun
tional 
orrelation. For example sin
e the stru
tureof a protein is determined by the sequen
e of the 
orresponding gene, genes thathave a similar sequen
e will likely produ
e proteins sharing similar stru
ture andthus probably having similar fun
tions.Among other appli
ations, motif dis
overy proves an important tool for identify-ing regulatory regions and binding sites in the study of fun
tional genomi
s. Regu-latory regions are segments of DNA where proteins that regulates the trans
riptionpro
ess binds preferentially, and are thus involved in the 
ontrol of gene expres-sion. A binding site is a region of a protein, DNA (or RNA) to whi
h spe
i�
 othermole
ules form a 
hemi
al bond. For example, a trans
ription fa
tor binding site isthe portion of DNA to whi
h a protein (
alled trans
ription fa
tor) binds 
ontrollingthe transfer of geneti
 information from DNA to RNA.From a 
omputational point of view, a major 
ompli
ation for the dis
overy ofmotifs is that they may feature some sequen
e variation without loss of fun
tion.The dis
overy pro
ess must therefore target approximate motifs, whose o

urren
esin the input sequen
e are similar but not ne
essarily identi
al. Approximate motifsare often modeled through the use of the don't 
are 
hara
ter in 
ertain positions,whi
h is a wild 
ard mat
hing all 
hara
ters of the alphabet, 
alled solid 
hara
ters[Par07℄.Finding interesting approximate motifs is 
omputationally 
hallenging. As thenumber of don't 
ares in
reases and/or the minimum frequen
y threshold de
reases,the output may explode 
ombinatorially, even if the dis
overy targets only maximalmotifs�a subset of the motifs whi
h su

in
tly represents the 
omplete set. More-
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kgroundover, even when the �nal output is not too large, partial data during the inferen
e oftarget motifs might lead to memory saturation or to extensive 
omputation duringthe intermediate steps.A large body of literature in the last de
ade has dealt with e�
ient motif dis-
overy [Par00, AP04, PCGS05, Ukk07, MNU08, AU07, AT08, ACP09, AT07℄, andan ex
ellent survey of known results 
an be found in the book [Par07℄. In order toalleviate the 
omputational burden of motif extra
tion and to limit the output to themost promising or interesting dis
overies, some works 
ombine the traditional useof a frequen
y threshold with restri
tions on the �exibility of the extra
ted motifs,often 
aptured by limitations on the number of o

urring don't 
ares.Traditionally, the signi�
an
e of a motif has been assessed through its frequen
y.To understand if there is a dire
t 
orrelation between frequen
y and biologi
al sig-ni�
an
e, we extra
ted the 10, 000 most frequent motifs obtained from Human Glu-tamate Metabotropi
 Re
eptors hgmr 1 (410277 bps) and hgmr 5 (91243 bps) se-quen
es, and asked a biologist to verify if there were biologi
ally interesting motifs.The biologist immediately dis
arded our results as non interesting, sin
e the mo-tifs we reported were either too short or 
ontained too many don't 
ares. Thenthe frequen
y of a motif does not re�e
t its biologi
al signi�
an
e. Other then thefrequen
y, a number of di�erent statisti
s have been employed to measure the sig-ni�
an
e of a motif (see [FA07℄ for a 
omparison of these measures). However, to�nd the most signi�
ant motifs under one of those measures, the �rst step is theextra
tion of all motifs, sin
e there no strategy has been proposed to dire
tly extra
tsigni�
ant motifs under those measures.In a re
ent work, Apostoli
o et al. [ACP09℄ study the extra
tion of extensiblemotifs, 
omprising standard don't 
ares and extensible wild 
ards. The latter arespa
ers of variable length that 
an take di�erent size (within pre-spe
i�ed limits) inea
h o

urren
e of the motif. An e�
ient tool, 
alled varun, is devised in [ACP09℄for extra
ting all maximal extensible motifs (a

ording to a suitable notion of max-imality de�ned in the paper) whi
h o

ur with frequen
y above a given threshold σand with upper limits D on the length of the spa
ers. varun returns the extra
tedmotifs sorted by de
reasing z-s
ore, that is the measure of the distan
e in standarddeviations of the out
ome of a random variable from its deviation. The authorsdemonstrate the e�e
tiveness of their approa
h both theoreti
ally, by proving thatea
h maximal motif features the highest z-s
ore within the 
lass of motifs it repre-sents, and experimentally, by showing that the returned top-s
ored motifs 
omprisebiologi
ally relevant ones when run on protein families and dna sequen
es.A slightly more general way of limiting the number of don't 
ares in a motif has
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antly mutated pathways in biologi
al networks 19been explored in [RF98℄. The authors de�ne 〈L, W 〉 motifs, for L ≤ W , where atleast L solid 
hara
ters must o

ur in ea
h substring of length W of the motif. Theypropose a strategy for extra
ting 〈L, W 〉 motifs whi
h are also maximal, althoughtheir notion of maximality is not internal to the 
lass of 〈L, W 〉 motifs. As a 
on-sequen
e, the algorithm is not 
omplete, sin
e it disregards all those 〈L, W 〉 motifsthat are subsumed by a maximal non-〈L, W 〉 one.2.5 Mining of signi�
antly mutated pathways in bi-ologi
al networksCan
er is a disease that is largely driven by somati
 mutations, 
hanges in DNAsequen
e not inherited from parents that a

umulate during the lifetime of an in-dividual. When a mutation appears in a gene, it 
an alter the three-dimensionalstru
ture of the 
orresponding protein, a�e
ting its fun
tionality. Sin
e it is theintera
tion of the proteins that regulates the a
tivity of a 
ell and the pro
esses o
-
urring inside it, 
hanges in the fun
tionality of a protein 
an disrupt the 
orre
tfun
tioning of the 
ell, leading to 
an
er.De
ades of experimental work have identi�ed numerous 
an
er-promoting on
o-genes (also 
alled 
an
er genes) and tumor suppressor genes that are mutated inmany types of 
an
er. Re
ent 
an
er genome sequen
ing studies have dramati
allyexpanded our knowledge about somati
 mutations in 
an
er. For example, largeproje
ts like The Can
er Genome Atlas (TCGA) [Net08℄, the Tumor Sequen
ingProje
t (TSP) [D+08℄, and the Can
er Genome Anatomy Proje
t [G+07℄ have se-quen
ed hundreds of protein 
oding genes in hundreds of patients with a variety of
an
ers. Other e�orts have taken a global survey of approximately 20,000 genes in a1-2 dozen patients [W+07, J+08, P+08℄. These studies have shown that: (i) tumorsharbor on average less than 100 somati
 mutations; (ii) di�erent tumors rarely havethe same set of mutations; (iii) and thousands of genes are mutated in at least onetype of 
an
er [W+07℄. This mutational heterogeneity 
ompli
ates e�orts to distin-guish fun
tional mutations, that alter the three-dimensional stru
ture of the proteinfrom sporadi
, passenger mutations that do not 
ause 
an
er. While a few 
an
ergenes are mutated at high frequen
y (e.g. well known 
an
er genes like TP53 orKRAS), most 
an
er genes are mutated at mu
h lower frequen
ies. Thus, the ob-served frequen
y of mutation is an inadequate measure of the importan
e of a gene,parti
ularly with the relatively modest number of samples that are tested in 
urrent
an
er studies.It is widely a

epted that 
an
er is a disease of pathways: a pathway is a sequen
e
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kgroundof intera
tions between proteins that 
an 
onvert one kind of signal or stimulusre
eived from a 
ell into another (signaling pathway) or that 
an regulate the ratesat whi
h other proteins will be produ
ed (regulatory pathway). The entire set of(pairwise) intera
tions between proteins de�nes the intera
tion network of proteins,and a pathway is a subnetwork of this large intera
tion network. It is hypothesizedthat somati
 mutations target genes in a relatively small number of regulatory andsignaling pathways [HW02, VK04℄. Thus, the observed mutational heterogeneity isexplained by the fa
t that there are myriad 
ombinations of mutations that 
an
er
ells 
an employ to perturb the behavior of these key pathways. The unifying themesof 
an
er are thus not solely revealed by the individual mutated genes, but by theintera
tions between these genes. Standard pra
ti
e in 
an
er sequen
ing studies isto assess whether genes that are mutated at su�
iently high frequen
y signi�
antlyoverlap known 
an
er pathways [Net08, D+08, S+06, W+07, P+08, L+07a℄. Forexample, the TCGA study of glioblastoma multiforme (GBM) [Net08℄ reported thatthree pathways previously identi�ed as important in GBM were somati
ally mutatedin a large per
entage of samples. This result 
on�rms the role of these pathways inGBM, but does not show whether these pathways were the only ones with a surprisingpattern of mutation.Finding signi�
ant overlap between mutated genes and genes that are members ofknown pathways is an important validation of existing knowledge. However, restri
t-ing attention to these known pathways does not allow one to dete
t novel groups ofgenes that are members of less 
hara
terized pathways. Moreover, it is well knownthat signal 
omponents in signal transdu
tion 
an be shared between between di�er-ent signaling pathways, and thus responses to a signal indu
ing 
ondition 
an a
tivatemultiple responses in a 
ell [ZPZ+09, VK04℄, a phenomenon 
alled 
rosstalk. Dividinggenes into dis
rete pathway groupings limits the ability to dire
tly dete
t whether this
rosstalk is a target of mutations. An additional sour
e of information about gene andprotein intera
tions is large-s
ale intera
tion networks, su
h as the Human ProteinReferen
e Database (HPRD) [P+09℄, STRING [J+09℄, and others [B+01, SMS+04℄.These resour
es in
orporate both well-annotated pathways and intera
tions derivedfrom less spe
i�
 and a

urate methods, like high-throughput experiments, auto-mated literature mining, 
ross-spe
ies 
omparisons, and other 
omputational pre-di
tions. Many resear
hers have used these intera
tion networks to analyze geneexpression data. Ideker et al. [IOSS02℄ introdu
ed a method to dis
over subnet-works of di�erentially expressed genes, that are genes whose expression is di�erentin 
an
er and normal samples. This idea was later extended in di�erent dire
tionsby others [NCTLH07, L+07b, UKS08, KSS09, MLWS07, HLCS09, CLL+07℄. Sepa-



2.5. Mining of signi�
antly mutated pathways in biologi
al networks 21rately, [LACB09℄ de�ned metri
s that showed 
lustering of GO annotations [A+00℄on an intera
tion network.To our knowledge, no algorithm has been hitherto proposed to identify signif-i
antly mutated pathways � that is 
onne
ted subnetworks whose genes have moremutations than expe
ted by 
han
e � de novo in a large intera
tion network. Thisproblem di�ers from the dete
tion of subnetworks of di�erentially expressed genes inthat a relatively small number of genes might be measured, a small subset of genesin a pathway may be mutated, and that a single mutated gene may be su�
ient toperturb a pathway.
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Chapter 3Algorithmi
 Aspe
ts of Basi
 MiningPrimitivesIn this 
hapter we study the algorithmi
 aspe
ts of two basi
 mining primitives: theextra
tion of top-K frequent 
losed itemsets, and the use of sampling to extra
tthe top-K frequent items/itemsets. These primitives are used in many data miningproblems and are the �rst attempt to over
ome the traditional view of the frequen
yof an itemsets as a dire
t measure of its signi�
an
e. In fa
t, if we are interestedin the top-K frequent items/itemsets, we are assuming that the signi�
an
e of apattern is not given only by its frequen
y, but that it is the ranking given by thefrequen
y of the itemsets that re�e
ts their signi�
an
e.As explained in Chapter 2, the extra
tion of top-K frequent 
losed itemsetsis a re
ently proposed alternative to the 
lassi
al frequent itemset mining, whosepurpose is to provide better 
ontrol on the output size by making the frequen
ythreshold dependent on a parameter K whi
h represents an approximate estimate ofthe number of returned itemsets, rather than leaving the frequen
y threshold as anindependent input parameter whi
h may be hard to �x.Sampling is one te
hniques that 
an be used to improve the performan
es offrequent itemset mining problems at the 
ost of obtaining approximated results, asseen in Chapter 2. In parti
ular, sampling 
an be use to guarantee 
ertain qualityrequirements on the output when extra
ting the top-K frequent items/itemsets.The 
hapter is organized as follows. In Se
tion 3.1 we present our work onthe dis
overy of top-K frequent 
losed itemsets. Our 
ontribution for this problemis twofold. First, we prove a tight upper bound on the ratio between the a
tualnumber of 
losed itemsets returned in output and the input value K, thus providingthe �rst analyti
al eviden
e of the e�e
tiveness of the new approa
h. Se
ond, wedevelop a new algorithm for mining top-K frequent 
losed itemsets, whi
h features23
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 Aspe
ts of Basi
 Mining Primitivesa tight bound on the number of non-frequent itemsets tou
hed during the miningpro
ess, and allows the user to dynami
ally raise the value K without restartingthe 
omputation from s
rat
h. We also report the results of extensive experimentsshowing that our algorithm exhibits 
onsistently better performan
e than the bestpreviously known one, attaining substantial improvements in some 
ases. The resultsof Se
tion 3.1 were published in [PV07℄. In Se
tion 3.2 we dis
uss the use of samplingto extra
t top-K frequent items/itemsets. We prove a lower bound for the numberof transa
tions that must be 
onsidered by any algorithm that employs sampling toextra
t the top-K frequent items/itemsets and produ
es in output a set satisfyingsome quality requirements, providing moreover a family of datasets for whi
h thislower bound is tight. Moreover, we design a new progressive sampling algorithm toe�
iently solve the problem. The results of Se
tion 3.2 were presented in preliminaryform in [PRUV09℄.3.1 Top-K frequent 
losed itemsets miningThe extra
tion of top-K frequent 
losed itemsets has been proposed in [WHLT05℄to provide the user better 
ontrol on the size of the output set. For 
onvenien
eof the reader, we re
all the de�nition of the problem (introdu
ed in Se
tion 2.1).This variation requires that for a given value K, spe
i�ed as input parameter, allitemsets of support at least σK be dis
overed. σK whi
h is uniquely de�ned by K,is the maximum support threshold that yields at least K frequent 
losed itemsets.Although one is not guaranteed that top-K frequent 
losed itemsets are exa
tly K,it is 
on
eivable that parameter K be more e�e
tive than the minimum supportthreshold in 
ontrolling the output size. It is important to remark that the top-Kfrequent 
losed itemsets 
an be employed in every appli
ation where frequent 
loseditemsets are needed.In [WHLT05℄ the authors present an e�
ient algorithm, 
alled TFP, to minethe top-K frequent 
losed itemsets. The main idea of the algorithm is to use ane�
ient depth-�rst mining pro
ess starting with an initially low support threshold
σ (σ ≤ σK) whi
h is progressively in
reased, as the exe
ution pro
eeds, by means ofseveral e�e
tive heuristi
s, until the �nal value σK is rea
hed. When an itemset isgenerated it is inserted into a suitable data stru
ture from whi
h it 
an be removedlater and dis
arded if found to be non-
losed or infrequent. TFP has an additionalfeature whi
h allows the user to spe
ify a minimum length minℓ for the 
losed itemsetsto be returned. The authors provide experimental eviden
e of the e�
ien
y of theiralgorithm. The main drawba
ks of TFP are that no bound is given on the number
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losed itemsets mining 25of non-
losed or infrequent itemsets that the algorithm must pro
ess, and that aninvolved itemset 
losure 
he
king s
heme is required. Moreover, TFP does not appearto be able to handle e�
iently a dynami
 s
enario where the user is allowed to raisethe value K.Other works have re
ently 
onsidered di�erent, although somewhat related, prob-lems. In [SM04℄ the mining the K itemsets of maximum density with respe
t to a�xed support threshold is studied, where the notion of density relaxes the require-ment of stri
t 
ontainment of an itemset in its supporting transa
tions. The authorspropose a priority-queue based approa
h for solving this problem, whi
h is similar inspirit to the one adopted in our algorithm. The mining of top-K frequent itemsetsfor every itemset length (i.e., the top-K frequent itemsets of length 1, the top-K fre-quent itemsets of length 2, and so on) is studied in [FKT00, CF04℄, and algorithmsare proposed based on breadth-�rst [FKT00℄ and depth-�rst [CF04℄ strategies. Abreadth-�rst algorithm to dis
over the top-K frequent itemsets without restri
tingthe exploration to the 
losed ones, is presented in [SSPT98℄. The algorithm exe
utesa number of iterations, where in the ℓ-th iteration the K most frequent itemsets oflength at most ℓ are dis
overed.We 
ontribute the following new results regarding the mining of top-K frequent
losed itemsets.1. We show that the number of top-K frequent 
losed itemsets 
an be at most
nK, where n is the number of items o

urring in the dataset. No su
h boundwas previously known and this provides the �rst analyti
al estimate of thee�e
tiveness of parameter K in 
ontrolling the output size. We also argue thatwithout the restri
tion to mining 
losed itemsets, the ratio between the numberof itemsets returned and K 
an be exponentially large in size of the dataset.2. We develop a new algorithm, TopKMiner, for dis
overing top-K frequent 
loseditemsets, whi
h, unlike algorithm TFP, features a tight bound on the number ofitemsets tou
hed during the mining pro
ess, and allows the user to dynami
allyraise the value K without the need to restart the 
omputation from s
rat
h.Also, we experimentally 
ompare the performan
e of TopKMiner and TFP onboth real and syntheti
 datasets, for di�erent values of K. The results of theexperiments show that TopKMiner always exhibits better performan
e, withsubstantial improvements in some 
ases (more than two orders of magnitude).The e�
ien
y of TopKMiner be
omes even higher when used in a dynami
s
enario where top-K frequent 
losed itemsets are sought for in
reasing valuesof K su

essively provided by the user.
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 Aspe
ts of Basi
 Mining PrimitivesThe rest of the se
tion is organized as follows. Subse
tion 3.1.1 brie�y des
ribesthe 
hara
teristi
s of the datasets used in the experiments. The bound on the ratiobetween the a
tual number of top-K frequent 
losed itemsets and the input value Kis proved in Subse
tion 3.1.2. Algorithm TopKMiner is des
ribed presenting �rst itshigh-level strategy in Subse
tion 3.1.3 and, then, the most relevant implementationdetails in Subse
tion 3.1.4. The results of the experimental 
omparison between TFPand TopKMiner are reported and dis
ussed in Subse
tion 3.1.5.3.1.1 Dataset used in the experimentsThe experiments of our work have been 
ondu
ted on both real and arti�
ially gen-erated datasets available from the FIMI repository1, whi
h have be
ome standardben
hmarks for frequent itemset mining algorithms. In this 
hapter we report re-sults relative to �ve of them of large size, whi
h represent the most meaningful and
hallenging instan
es for the mining task. These datasets are brie�y des
ribed below.T40I10D100K: An arti�
ial dataset obtained using the generator developed in[AS94℄. For short, we will often refer to this dataset as T40;a

idents: it is derived from a 
olle
tion of data relative to tra�
 a

idents;pos: from Blue-Martini Software In
., it is derived from several months of 
li
k-stream data from e-
ommer
e web sites;kosara
: it is derived from 
li
k-stream data of a hungarian on-line news portal. (Infa
t, we had to 
lean up the original instan
e of the dataset whi
h 
ontained trans-a
tions with dupli
ated item, whi
h is not allowed by the problem's spe
i�
ation.)webdo
s: it is built from a spidered 
olle
tion of web html do
uments. More details
an be found in [LOPS04℄.The table in Figure 3.1 summarizes the main 
hara
teristi
s (number of items,average transa
tion length, and number of transa
tions) of the above datasets, whilethe table in Figure 3.2 reports for ea
h dataset the support threshold σK that yieldsthe top-K frequent 
losed itemsets, for di�erent values of K. For 
larity, in the tablethe frequen
y value σK/|D| rather than the value σK is shown.3.1.2 Tight bound on the output sizeIn this se
tion we provide the �rst analyti
al estimate of the e�e
tiveness of pa-rameter K in 
ontrolling the output size when mining the top-K frequent 
loseditemsets.1 http://fimi.
s.helsinki.fi



3.1. Top-K frequent 
losed itemsets mining 27Dataset #Items Avg. Trans. Length # Transa
tionsT40 1,000 39.5 100,000a

idents 468 33.8 340,183pos 1,658 7.5 515,597kosara
 41,270 8.1 990,002webdo
s 5,267,656 177 1,692,082Figure 3.1: Datasets 
hara
teristi
s
σK/|D|

D K = 100 K = 1000 K = 10000T40 0.092 0.027 0.013a

idents 0.820 0.656 0.483pos 0.036 0.010 0.003kosara
 0.023 0.006 0.002webdo
s 0.327 0.216 �Figure 3.2: Values of σK/|D| for K = 100, 1000, 10000Sin
e the number of frequent itemsets 
an be mu
h larger than the number offrequent 
losed itemsets, when mining the latter it is 
onvenient to avoid pro
essingnon-
losed itemsets. To this aim, in [UAUA04℄ the authors propose a 
on
eptualorganization of the 
losed itemsets as nodes of a tree, with support de
reasing within
reasing depth. Spe
i�
ally, let D be a dataset de�ned over the set of items I =

{a1, a2, . . . , an} (the indexing of the items is �xed but arbitrary). For an itemset Xde�ne its i-th pre�x as X(i) = X ∩ {aj : 1 ≤ j ≤ i}, for 1 ≤ i ≤ n. The 
ore indexof a 
losed itemset X, denoted as 
orei(X), is de�ned as the minimum i su
h that
DX = DX(i).De�nition 3.1 ([UAUA04℄). A 
losed itemset X is a pre�x-preserving 
losure ex-tension (pp
-extension) of a 
losed itemset Y if: (1) X = CloD(Y ∪ {aj}), for some
ai 6∈ Y with j > 
orei(X); and (2) X(j − 1) = Y (j − 1).Let ⊥= CloD(∅), whi
h is the possibly empty 
losed itemset 
onsisting of theitems o

urring in all transa
tions. The following theorem de�nes the tree stru
tureover the set of 
losed itemsets, with ⊥ being the root of the tree.Theorem 3.2 ([UAUA04℄). Any 
losed itemset X 6=⊥ is the pp
-extension of exa
tlyone 
losed itemset Y , and s(X) < s(Y ).Let ∆(n) be the family of all datasets D whose de�ning set of items I has size n(we assume that every item in I o

urs in at least one transa
tion of D). Let also

ρ(n, K) = max
D∈∆(n)

FCK(D)

K
.
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 Aspe
ts of Basi
 Mining PrimitivesThe following theorem establishes the main result of this se
tion.Theorem 3.3. For every n ≥ 1 and K ≥ 1, we have ρ(n, K) ≤ n.Proof. Consider an arbitrary dataset D ∈ ∆(n) and a value K ≥ 1. Let Φ =

{X1, X2, . . . , XK} be the set of K most frequent non-empty 
losed itemsets num-bered in de
reasing order of support and let ⊥= CloD(∅). By Theorem 3.2 we knowthat any 
losed itemset X 6∈ Φ of support σK must be a pp
-extension of some 
loseditemset Y ∈ (Φ\{XK})∪ ⊥. The upper bound on ρ(n, K) follows dire
tly from theargument in [BGKM03℄ whi
h shows that any su
h itemset Y 
an generate at most
(n − 1) pp
-extensions not belonging to Φ. Hen
e, the number of 
losed itemsetsnot in
luded in Φ and of support σK is at most K(n−1), whi
h yields ρ(n, K) ≤ n. �The lower bound on ρ(n, K) is provided by the dataset des
ribed in [Yan04,Se
tion 3.1℄. In parti
ular, that dataset shows that ρ(n, 1) = n. One may wonderwhether for every K it holds that ρ(n, K) = n. The following proposition gives anegative answer.Proposition 3.4. For any dataset D ∈ ∆(n), if FCK(D)/K = n then K = 1.Proof. Let Φ = {X1, X2, . . . , XK} be the set of K most frequent non-empty 
loseditemsets numbered in de
reasing order of support and let ⊥= CloD(∅). We �rst showthat if FCK(D)/K = n, then Φ\{XK} ⊆ {a1}. From the proof of Theorem 3.3, tohave FCK(D)/K = n it ne
essary that ea
h itemset in Y ∈ (Φ\{XK})∪ ⊥ generatesexa
tly n− 1 
losed itemsets of support σK not in Φ\{XK} through pp
-extension.Sin
e the pp
-extension is pre�x-preserving, the only (non-empty) itemset for whi
hthis is possible is {a1}, that proves Φ\{XK} ⊆ {a1}.Now we prove that {a1} /∈ Φ\{XK}. First of all, noti
e that it must be Clo({ir}) =

{ir} for all i = 1, . . . , n, otherwise there would be a 
losed itemset di�erent from {a1}in Φ\{XK} that is impossible. (To prove this is su�
ient to observe that the interse
-tion of two 
losed itemsets X, Y is a 
losed itemset of support > max {s(X), s(Y )},when it is non-empty.)Sin
e ea
h pp
-extension of {a1} is a superset of at least one {ar} with r > 1and to obtain FCK(D)/K = n we need that all the pp
-extensions of {a1} and allthe pp
-extension of ⊥ have frequen
y σK , if {a1} is in Φ\{XK} we will have two
losed itemsets with the same frequen
y and 
ontained one into the other one, thatis impossible. (In parti
ular, the pp
-extension of {a1} using item ar is a superset of
{ar}, and these two itemsets 
annot have the same frequen
y.)This implies that Φ\{XK} = ∅, thus K = 1. �
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FCK(D)/K

D n K = 100 K = 1000 K = 10000T40 1,000 1 1 1.0018a

idents 468 1 1 1pos 1,658 1 1 1.0003kosara
 41,270 1 1 1webdo
s 5,267,656 1 1 �Figure 3.3: Comparison between n and FCK(D)/KThe proof above moreover implies that if FCK(D)/K = n, the top-k frequent
losed itemsets are {a1} , . . . , {an}.The table in Figure 3.3 
ompares the number of items n against the ratioFCK(D)/Kfor the datasets des
ribed in Se
tion 3.1.1 and for di�erent values of K. Note that
FCK(D)/K is always very 
lose to 1. In fa
t, we 
onje
ture that when maximizedover all datasets over n items, the value ρ(n, K) be
ome a de
reasing fun
tion of K.It is important to remark that the result of Theorem 3.3 
ru
ially relies on thefa
t that the mining task is limited to 
losed itemsets. Indeed, we 
ould removethe 
losedness requirement and mine the top-K frequent itemsets, that is, the set
FK(D) = F(D, σK), where σK , is the maximum value that ensures |F(D, σK)| ≥ K.In this 
ase, however, the ratio FK(D)/K 
an be exponentially large in the number ofitemsets even for non-trivial datasets. To see this, 
onsider the following (nontrivial)example from [UAUA04℄. Let n = 2d ≥ 16 and let I1, I2, and I3 be three disjointsets of items of size n − 2(d + 2), d + 2, and d + 2, respe
tively. Let also J2 (resp.,
J3) be a family of n/2− 1 distin
t subsets of I2 (resp., I3) whi
h does not in
lude ∅nor I2 (resp., I3). Consider the dataset D over I1 ∪I2 ∪I3 
omprising the following
n transa
tions:

{I1 ∪ I2 ∪ S : S ∈ J3} ∪ {I1 ∪ I3 ∪ S : S ∈ J2} ∪ {I2 ∪ I3} ∪ {I1}.

D is non-trivial, in the sense that it 
ontains no dupli
ated transa
tions and no itemo

urs in all transa
tions. Moreover, it is easy to see that there are 2n−2(d+2) − 1 ∈
Θ (2n/n2) non-empty itemsets of maximum support n − 1, namely all non-emptysubsets of I1. Hen
e, for K = 1, we have FK(D)/K ∈ Θ (2n/n2).3.1.3 TopKMiner: main strategyIn this subse
tion we des
ribe our algorithm TopKMiner for mining the top-K fre-quent 
losed itemsets from a dataset D, and introdu
e the algorithm's high-levelstrategy and its featured 
hara
teristi
s. We let I = {a1, a2, . . . , an} denote the set
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 Aspe
ts of Basi
 Mining Primitivesof items and assume that they are ordered by non-de
reasing support, that is, item
an has highest support.TopKMiner, whose pseudo
ode is given in Figure 3.4, is based on a 
on
eptuallysimple strategy, whi
h builds on ideas developed in previous works [PZ03, UAUA04,SM04℄. The algorithm re
eives in input the dataset D and a value K∗ that representsthe maximum K for whi
h the user may request the mining of top-K frequent 
loseditemsets. In other words, the user is allowed to dynami
ally raise K up to K∗. Thealgorithm makes use of a priority queue Q whose entries 
orrespond to 
losed item-sets. Spe
i�
ally, an entry for a 
losed itemset Y is a quadruple (DY , s, i, Y (i− 1)),where DY is the 
onditional dataset for Y , s its support, i its 
ore index, and Y (i−1)its i-th pre�x. Two variables σ and σ′ are used to store dynami
 approximations frombelow to σK∗ and σK , respe
tively.TopKMiner starts by asking the user to provide a �rst value K ≤ K∗ (line 1),and by initializing a support threshold σ to be the best approximation from below to
σK∗ (line 2). As we will dis
uss in the next subse
tion, some heuristi
s 
an be used toset σ to a value possibly larger than the trivial lower bound 1. Instead, σ′ is initiallyset equal to σ, and is raised to the �nal value σK as soon as the K-th frequent 
loseditemset is dis
overed. The initialization pro
eeds by determining ⊥= CloD(∅) andby inserting into an initially empty priority queue Q entries for all pp
-extensions of
⊥ of support at least σ (lines 8,9). If ⊥ is not empty, it is produ
ed in output as the
losed itemset of maximum support (lines 5,6). At this point the main loop (lines
10÷ 22) starts, where in ea
h iteration the entry (DY , s, i, Y (i− 1)) with maximumsupport s is extra
ted, the itemset Y is generated and returned in output (line 13),and for ea
h pp
-extension X of Y with support s′ ≥ σ and 
ore index j > i, theentry (DX , s′, j, X(j−1)) is inserted into Q (lines 16÷19). After an insertion into Q,if the number of 
losed itemsets returned in output so far (variable extra
ted) plusthe number of 
losed itemsets represented by entries in Q is greater than or equal to
K∗, the support threshold σ is raised (line 21) to the maximum value for whi
h K∗itemsets of support no less than this value have been seen so far, and all entries in
Q 
orresponding to itemsets of support smaller than the new threshold σ are safelyremoved from Q (line 22). The loop ends when all top-K frequent 
losed itemsetshave been generated or Q be
omes empty. Finally (lines 23÷ 26) if the user raises
K to a new value Knew ≤ K∗, and more 
losed itemsets need to be dis
overed, themain loop is started again resetting σ′ equal to σ as a lower bound to σKnew .We remark that an entry (DY , s, i, Y (i− 1)) in Q for a 
losed itemset Y does not
ontain Y itself but only su�
ient information to generate the itemset. The a
tualgeneration of Y , whi
h is a time-
onsuming task, is done only when stri
tly ne
essary,
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ted from Q and Y is guaranteedto belong to the output set. In fa
t, as it will be shown in the following subse
tion,entries for all pp
-extensions of Y to insert into Q 
an be produ
ed e�
iently withoutgenerating the pp
-extensions themselves.TopKMiner features the following main advantages 
ompared to algorithm TFPby [WHLT05℄: (1) only 
losed itemsets are a
tually pro
essed (i.e., inserted into Q);(2) every itemset Y extra
ted from Q surely belongs to the output set and 
an beimmediately returned to the user; (3) the parameter K 
an be raised dynami
allywithout the need to restart the 
omputation from s
rat
h. Moreover, the upper limit
K∗ on the value K, although not stri
tly needed for 
orre
tness, is useful to providea bound on the maximum number of entries inserted into the priority queue Q. Thisis established by the following theorem.Theorem 3.5. For a dataset D over a set I of n items, and upper limit K∗ on K,algorithm TopKMiner will insert a total of at most nK∗ entries into Q during theentire 
ourse of the 
omputationProof. Let w be number of itemsets initially inserted into Q (lines 7 ÷ 8 of thepseudo
ode) and let z be the total number of entries extra
ted from Q. It is easyto see that be
ause of the dynami
 update of the threshold σ, if z ≥ K∗, as soonas the K∗-th entry is extra
ted from Q, 
orresponding to some itemset Y , we have
σ = σK∗ = sD(Y ). Therefore, for this itemset and for all itemsets asso
iated withentries subsequently extra
ted from Q, no pp
-extension will be generated. Thisimplies that the entries inserted into Q are at most w+k∗−1+T , where w+K∗ +1a

ounts for the w initial entries and the �rst k∗ extra
ted (the very �rst one mustbelong to the w initial ones) and T a

ounts for the pp
-extensions of the �rst k∗−1extra
ted. By reasoning as in the proof of Theorem 3.3, we 
an show that w ≤ nand that T ≤ (k∗ − 1)(n − 1), hen
e the total number of entries inserted into Q isat most

n + K∗ − 1 + (K∗ − 1)(n− 1) ≤ nK∗.

�As an immediate 
orollary of the above theorem we observe that if K∗ = K themaximum number of entries inserted by TopKMiner into the priority queue Q is nKwhi
h is also the maximum size of FCK(D). However, if |FCK(D)| = K we may stillhave nK entries inserted into Q, that is a fa
tor n more than |FCK(D)|. Nevertheless,as reported in the next se
tion, for all of the datasets and values of K we have testedthe number of entries inserted into Q has never ex
eeded |FCK(D)| by a fa
torlarger than 3.3. In fa
t, with a slightly modi�
ation of the algorithm it is possible to
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 Aspe
ts of Basi
 Mining PrimitivesAlgorithm 3.1: TopKMinerInput: Dataset D, max value K∗ for KOutput: Top-K f.
.i for any K ≤ K∗ provided by the user1 K ← input from user; /* K ≤ K∗ */2 Initialize σ as a lower bound to σK∗ ; σ′ ← σ;3 Q← empty priority queue; extra
ted ← 0;4 Compute ⊥= CloD(∅);5 if ⊥6= ∅ then6 Output ⊥; extra
ted++;7 if K = 1 then σ′ = |D|;8 for ea
h pp
-extension Y of ⊥ of support s ≥ σ do9 Q.insert((DY , s, 
orei(Y ), Y (
orei(Y )− 1)));10 while (Q 6= ∅) and (Q.max() ≥ σ′) do11 (DY , s, i, Y (i− 1))← Q.removeMax();12 extra
ted++; if extra
ted = K then σ′ = s;13 Generate and output 
losed itemset Y ;14 if s > σ then15 for j ← i + 1 to n do16 /* Denote X = CloD(Y ∪ {j}) */17 Compute X(j − 1), s′ = sD(X), and DX ;18 if X(j − 1) = Y (j − 1) and s′ ≥ σ then19 Q.insert(DX , s′, j,X(j − 1)) ;20 if extra
ted+|Q| ≥ K∗ then21 Update σ ;22 Remove from Q all entries of support < σ;23 if user wants to raise K then24 K ← new input from user;25 if K > extra
ted then σ′ ← σ;26 goto line 8; Figure 3.4: Algorithm TopKMiner: pseudo
odeguarantee that the number of itemset inserted in Q will never ex
eed nKmax, where
Kmax ≤ K∗ is the maximum K requested by the user. This modi�
ation requiresthat the pp
-extensions of the 
losed itemsets produ
ed in output after s is set tobe equal to σ′ in line 12 are not generated, and the itemsets whose pp
-extensionare not 
omputed in lines 14�22 are stored in a new queue Q′. If the user wants toraise K, as �rst step all the pp
-extension of itemsets in Q′ will be generated. Inthis way the pp
-extensions of at most Kmax itemsets are 
omputed, leading to thebound above.3.1.4 TopKMiner: implementation detailsFor what 
on
erns the implementation of TopKMiner, there are four aspe
ts whi
hhave 
ru
ial impa
t on its performan
e. They are dis
ussed in this subse
tion.
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Figure 3.5: Patri
ia trie for the sample dataset of Figure 2.1 (a). Every node isidenti�ed by a unique id shown in a 
ir
le to the left of the nodeRepresentation of D: as in [PZ03℄ the dataset D is represented through aPatri
ia trie TD [Knu73℄ built on the set of transa
tions regarded as strings of items.The Patri
ia trie di�ers from the standard trie, whi
h is employed by many frequentitemset mining algorithms (see referen
es in [Bod04℄), by the fa
t that 
hains of nodeswith only one 
hild and asso
iated to the same set of transa
tions are 
oales
ed intoa single node. This redu
es the overall number of nodes, thus saving spa
e due tonode overhead. Ea
h transa
tion is asso
iated with a distin
t path from the rootof TD to some leaf or to some internal node with only one 
hild. Ea
h node v of
TD stores a set of items and a 
ount that indi
ates how many transa
tions of D areasso
iated with paths that 
ontain v. The Patri
ia trie TD for the sample datasetof Figure 2.1 (a) is shown in Figure 3.5. It is well known [Bod04℄ that in order tobetter exploit the 
ompa
tion featured by the trie stru
ture, it is 
onvenient to orderthe items in ea
h transa
tion by de
reasing support. A

ording to our indexing ofthe items, this requires that for j > i item aj o

ur before item ai. It has beenshown both analyti
ally and experimentally in [PZ03℄ that the Patri
ia trie providesa spa
e e�
ient representation for all kinds of datasets, and, in parti
ular, for denseones.Implementation of Q: the priority queue employed by TopKMiner is imple-mented as a standard max-heap ve
tor. As mentioned in the previous subse
tion anentry, 
orresponding to some 
losed itemset Y , 
onsists of four 
omponents, namelythe 
onditional dataset DY , the support s of Y , the 
ore index i of Y , and the pre�x
Y (i−1), that is the interse
tion of Y with {aj : 1 ≤ j < i}. The key for the entry isthe support s. While the last three 
omponents are stored in a trivial way, a suitablerepresentation of DY is required for both spa
e and time e�
ien
y. We represent
DY through a list LD(Y ) of nodes of TD su
h that a node v is in
luded in LD(Y ) ifand only if v 
ontains the 
ore index item ai of Y and belongs to a path asso
iatedwith one or more transa
tions in DY . Let DY,v denote the (multi)set of transa
tionsin DY whose asso
iated paths in TD 
ontain the node v, and let ZY,v =

⋂

t∈DY,v
t. In
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 Aspe
ts of Basi
 Mining Primitivesthe list LD(Y ), together with ea
h node v, we store the pre�x ZY,v(i − 1), that isthe interse
tion of all transa
tions in DY,v limited to the items of index less than i.Su
h a pre�x turn out to be useful in the implementation of the while loop des
ribednext. Moreover we asso
iate with every node v the number sY,v of transa
tions in
DY whi
h share this node, that is sY,v = |DY,v|.For very large and sparse datasets, the list LD(Y ) may be very long. If its lengthex
eeds some �xed threshold (5MB in our experiments) the list is stored on diskrather than in main memory. In this fashion we 
an 
onsiderably redu
e the amountof main memory required by the algorithm.Implementation of the while loop: 
onsider an arbitrary iteration of thewhile loop (lines 10 ÷ 22) and suppose that entry (DY , s, i, Y (i − 1)) is extra
tedfrom Q by the �rst instru
tion of the iteration. All of the operations pres
ribed bythe iteration 
an be exe
uted through a simple bottom-up traversal of the sub-trie
T ′ of TD, whose leaves are the nodes in the list LD(Y ) whi
h represents DY , asdes
ribed before. More spe
i�
ally, the purpose of the traversal is to �ll the rowsof a header table HT, whose j-th row, denoted by HT[j], is asso
iated with item
aj and 
ontains a re
ord with three �elds: HT[j].supp, HT[j].pref, and HT[j].list(the 
ontents of these �elds will be des
ribed below). By using a strategy similarto the one introdu
ed in [PZ03℄, the subtrie T ′ 
an be traversed in su
h a way topro
ess ea
h node only on
e. Let X(j) denote the itemset CloD(Y ∪{j}). During thetraversal of T ′, by per
olating upwards the pre�xes ZY,v(i− 1) initially stored withthe leaves of T ′ we 
an update the header table so that, at the end of the traversal,for every j > i we have that:
• HT[j].supp = sD(CloD(Y ∪ {j}));
• HT[j].pref = X(j)(j − 1)

• HT[j].list is the head of the list of all nodes of T ′ 
ontaining item aj . Moreover,with ea
h node v in this list we store the 
ount sX(j),v and the pre�x ZX(j),v(j−
1).In Figure 3.6 the HT �lled after a traversal is shown for sample dataset of Fig-ure 2.1 (a). It is easy to see that on
e the header table is �lled as des
ribed above,the information stored in its rows is su�
ient to fully 
ompute the itemset Y , andto identify ea
h pp
-extension X of Y determining also its support s′, its 
ore index

j, its pre�x X(j − 1) and the representation LD(X) of its 
onditional dataset. Weobserve that, at this point, determining for ea
h pp
-extension X of Y all of its
onstituent items would require an extra non-trivial 
omputation whi
h would be



3.1. Top-K frequent 
losed itemsets mining 35
j supp pref list6 2 a4 a1 5: 2,{a4 a1}5 2 a3 a1 2: 1,{a4 a3 a2 a1}; 8 (1): {a3 a1}4 2 a1 1: 1,{a3 a2 a1}; 4: 1,{a1}3 2 a1 1: 1,{a2 a1}; 8: 1,{a1}2 1 a1 1: 1,{a1}1 - - -Figure 3.6: HT at the end of the traversal of the Patri
ia trie of Figure 3.5, startingfrom nodes of LD({a1}), namely the nodes with id's 0, 3 and 7. For every j andevery node v in HT[j].list, its id, sX(j),v and ZX(j),v(j − 1) are shownuseless in 
ase X turn out not to belong to the output set. For this reason, Top-KMiner postpones the a
tual determination of a 
losed itemset X to the time whenthe entry 
orresponding to X is extra
ted from Q, hen
e ensuring that X belong tothe output set.Update of the threshold σ: at any time during the 
omputation, the threshold

σ that TopKMiner uses 
onstitutes an approximation from below of the �nal value
σK∗ . Raising σ allows us to redu
e the number of entries inserted into Q, hen
e toredu
e the overall spa
e required by these entries. Moreover, a good estimate σ mayallow us to dis
ard infrequent items from the dataset and from the pre�xes whi
h are
arried along with the representations of the 
onditional datasets (this optimization,however, has not been implemented in the 
urrent version of TopKMiner). Threshold
σ 
an be initially set by using the 
losed node heuristi
 des
ribed in [WHLT05℄. Atany time during the 
onstru
tion of the Patri
ia trie, a node v of the Patri
ia trie isa 
losed node if its support is more than the sum of the supports of its 
hildren. Thisheuristi
s is based on the fa
t that, on
e the 
onstru
tion of the Patri
ia trie TD is
ompleted, for ea
h node v ∈ TD whose asso
iated 
ount cv is larger than the sumof the 
ounts of its 
hildren, there exists a di�erent 
losed itemset Xv of support atleast cv. If the number of 
losed nodes is larger than K∗, we 
an derive a �rst lowerbound σ > 1. In parti
ular, 
onsider the de
reasing sequen
e of 
ounts c1, . . . , cK∗asso
iated with the K∗ 
losed nodes with highest 
ounts. The lower bound derivedis then σ = cK∗ .The subsequent updates of σ (i.e., those performed in line 21 of the pseudo
ode)
an be easily implemented by means of a simple di
tionary that maintains for ea
hinteger s the number of entries inserted into Q relative to 
losed itemsets of support
s, and provides a method minSupport() whi
h, if invoked after that at least K∗entries have been inserted into Q, returns the maximum value s su
h that K∗ amongthese entries are relative to 
losed itemsets of support ≥ s. Clearly, the update of
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σ (line 21) 
an be performed by setting σ to the value returned by minSupport().Finally, all entries of support less than σ whi
h must be removed from Q (line 22)
an be identi�ed by maintaining a min-heap Q′ whose entries are pointers to theentries of Q together with their supports whi
h are used as keys.3.1.5 Experimental evaluationThe next two se
tions present the results of the experiments we performed on thedatasets introdu
ed in Se
tion 3.1.1. The experiments have been 
ondu
ed on an HPProliant, using a single AMD Opteron 2.2 GHz pro
essor, with 8 GB main memory,64 KB L1 
a
he and 1 MB L2 
a
he. The system's operating system is linux 2.6.5and the 
ompiler used for the experiments is Intel i

 9.0. The obje
tive of theexperiments has been to 
ompare the performan
e of our algorithm TopKMiner withthat of algorithm TFP [WHLT05℄. Both TopKMiner and TFP have been 
oded inC++ and the sour
e 
ode for TFP has been provided to us by the authors. It must bere
alled that TFP has an additional feature whi
h enables the mining of the top-Kfrequent 
losed itemsets of length greater than or equal to a minimum value minℓspe
i�ed in input. We did not implement a similar feature in TopKMiner, hen
e inthe experiments TFP has always been exe
uted with minℓ = 1.A �rst set of experiments, 
ompares both running time and memory usage ex-hibited by the two algorithms on the ben
hmark datasets for di�erent values of K.In these experiments, the dynami
 raising of K featured by TopKMiner has beendisabled by always setting K∗ = K. A 
riti
al dis
ussion of the main fa
tors in-�uen
ing the performan
e of the two algorithms, besides 
ode optimizations whi
hare hard to a

ount for, is also 
arried out. A se
ond set of experiments, provideseviden
e of the e�e
tiveness of the TopKMiner's feature whi
h allows the dynami
raising of K, by simulating a s
enario where in
reasing values of K are input bythe user and by 
omparing the performan
e of TopKMiner with the one a
hievablethrough repeated invo
ations of TFP. We remark that experiments 
ondu
ted onseveral other datasets available in the FIMI repository and for other values of Khave given results 
onsistent with those reported here.3.1.6 Comparing TFP and TopKMiner without dynami
 rais-ing of KWe run both TopKMiner and TFP on four of the �ve datasets des
ribed before(i.e., all but webdo
s) for values of K ranging from 1000 to 10000 with step 1000.For TopKMiner we imposed K = K∗ and for TFP we imposed minℓ = 1. In this
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losed itemsets mining 37fashion we assessed the relative performan
e of the two algorithms when fo
used onthe basi
 task of mining top-K frequent 
losed itemsets, and with their respe
tiveadditional features disabled. The running times a
hieved by the two algorithms areshown in Figure 3.7. It 
an be seen that TopKMiner runs always faster than TFP,with a performan
e improvement of more than two orders of magnitude for kosara
.We believe that there are two main reasons that explain the superior performan
eof TopKMiner. On the one hand, TopKMiner generates only 
losed itemsets andfully pro
esses itemsets that surely belong to the output set, unlike TFP whi
hmay happen to pro
ess non-
losed and/or infrequent itemsets. On the other hand,TopKMiner features a provable bound on the number of itemsets it tou
hes, whileone su
h bound is not known for TFP. In order to give eviden
e of this fa
t, the tablein Figure 3.8 reports for the various datasets and for K = 1000 and 10000 the numberof itemsets tou
hed by the two algorithms. For TopKMiner we 
onsider an itemset
X to be tou
hed if an entry for X is inserted into the priority queue, while for TFPwe 
onsider an itemset X to be tou
hed if upon its generation it 
annot be dis
ardedas non-
losed or infrequent and, therefore, it must be stored in a data stru
ture aspotential 
andidate for the output set. We see that TFP tou
hes a number of itemsetswhi
h is substantially higher than the number of itemsets tou
hed by TopKMiner.In fa
t it 
an be shown that for the arti�
ial dataset DYang de�ned in [Yan04℄ anddes
ribed in Se
tion 2.1 there are several non-
onstant values of K for whi
h TFPtou
hes a fa
tor n more itemsets than TopKMiner, where n is the number of items.For dataset webdo
s, TFP aborted after a few hours of exe
ution even for K =

100 and not be
ause of memory problems. Thus, we 
ompared the running timea
hieved by TopKMiner with the one a
hieved by algorithm LCM, [UAUA03℄, one ofthe best algorithms at the FIMI'03 
ompetition for mining frequent 
losed itemsets,feeding LCM with the exa
t support threshold, whi
h gives a 
lear advantage tothis algorithm in the 
omparison. As shown in Figure 3.9, TopKMiner surprisinglya
hieved better performan
e. In this 
ase, be
ause of the large size of the dataset,it has been 
ru
ial for TopKMiner to use external memory to store the 
onditionaldataset representations.We also 
ompared the memory usage of the two algorithms. While TFP adoptsa depth-�rst mining strategy, whi
h is known to be generally spa
e-e�
ient, Top-KMiner employs a support-driven exploration whi
h may require more spa
e due tothe need to store ea
h generated 
losed itemset until all 
losed itemsets of higher sup-port have been explored. However, for not too large values of K the a
tual number ofitemsets the TopKMiner must 
on
urrently maintain in the queue is somewhat lim-ited. Figure 3.10 
ompares the memory usage of TFP and TopKMiner for the same
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(d)Figure 3.7: Running time for (a) kosara
, (b) a

idents, (
) pos, and (d)T40I10D100K for various values of K

K=1000 K=10000Dataset TopKMiner TFP TopKMiner TFPT40 1,789 6,091 20,314 78,655a

idents 1,542 2,233 11,057 25,890pos 2,702 3,597 24,157 42,097kosara
 2,450 3,798 32,861 56,977Figure 3.8: Number of itemset �tou
hed� by TopKMiner and TFP
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Figure 3.9: Running times of TopKMiner and LCM on webdo
s, for various valuesof Kdatasets and values of K used when measuring running times. Surprisingly, Top-KMiner requires less memory than TFP in all 
ases ex
ept for the arti�
ial datasetT40I10D100K with K > 5000 for whi
h it requires more memory (a fa
tor 1.5 for
K = 10000).The high memory usage exhibited by TFP 
an be in part a

ounted of by the
onditional datasets that it 
reates during exe
ution, while the lower memory usageexhibited by TopKMiner in several 
ases is due to the e�
ient representation 
hosenfor the priority queue entries. We remark that although the ma
hine we used for theexperiments features a very large RAM (8 GB), in all of the experiments the a
tualtotal RAM required never ex
eeded 450 MB, whi
h is a reasonable quantity even fora low-end PC.We also pro�led the memory usage of TopKMiner separately a

ounting for thememory required by the priority queue and the rest of the work spa
e. The respe
tivevalues are shown in Figure 3.11 for the various datasets and for K = 10000. We seethat, espe
ially for the 
ases with highest memory usage, a substantial fra
tion ofmemory is needed for the priority queue. Sin
e a

esses to the priority queue arenot the dominant fa
tor in the running time this suggests that the queue 
ouldbe stored on disk thus redu
ing 
onsiderably the memory usage. This and otherspa
e optimizations (e.g., 
ompression of the queue entries) 
ould be exploited whenmemory is the most important resour
e.3.1.7 Comparing TFP and TopKMiner with dynami
 raisingof KWe tested the e�e
tiveness of the TopKMiner's feature whi
h allows the user todynami
ally raise the value K up to a maximum value K∗. To this purpose we
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(d)Figure 3.10: Memory for (a) kosara
, (b) a

idents, (
) pos, and (d) T40I10D100Kfor various values of K
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enario where K is raised from 1000 to 10000 with step 1000 and runTopKMiner with K∗ = 10000 measuring the running time after the 
omputationfor ea
h value K ended. We 
ompared these running times with those attainable byTFP if used in a similar s
enario, by running, for ea
h K, the algorithm from s
rat
hand a

umulating the running times of previous exe
utions. The results are shownin Figure 3.12 only for two datasets. (The time for the user's input is not a

ountedof in the reported times.) Results for the other datasets are similar.As expe
ted, the time required by TopKMiner for ea
h value of K is 
onsiderablylower than the 
umulative time required by TFP, whi
h is a 
lear eviden
e of the ef-fe
tiveness of TopKMiner's dynami
 feature. Moreover, we remark that the provisionof su
h a feature adds only a negligible slowdown. Indeed, even if the 
omputationis stopped after the �rst value K = 1000, the performan
e of TopKMiner remains
omparable with the one of TFP. This means that the �exibility of TopKMiner (inthe raising of K) does not 
ause a degradation in performan
e. For the memoryusage, the amount used by the two algorithms 
an be derived from Figure 3.10, sin
efor both TopKMiner and TFP the maximum memory usage with dynami
 raising of
K (up to K∗) is equal to the maximum memory usage for K = K∗.
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(b)Figure 3.12: Running times of TopKMiner and TFP for (a) a

idents, and (b)T40I10D100K with dynami
 update of K from 1000 to 10000.
3.2 Mining frequent items/itemsets through sam-plingWhen dealing with massive datasets, 
omputing the exa
t set of top-K (maxi-mal/
losed) frequent itemsets 
an be too expensive. If the dataset does not �t
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ompletely in the main memory, the disk a

ess may slow down exa
t algorithmsto a point where they be
ome impra
ti
al. Algorithms for the standard frequentitemset mining task developed to solve the problem in an exa
t way must s
an theentire dataset, typi
ally several times, whi
h has a 
onsiderable impa
t on perfor-man
e. It is then ne
essary to a

ept a trade-o� between the a

ura
y of the resultsand the time needed to 
ompute them, espe
ially if it is possible for the user of thealgorithm to spe
ify the maximum de
ay in the �quality� of the output she is willingto a

ept. Sampling is one te
hnique that 
an be employed to redu
e the runningtime, obtaining approximated results.The rest of the se
tion is organized as follows. In Subse
tion 3.2.1 we formallyintrodu
e the problem of extra
ting top-K frequent itemsets through sampling, pro-viding a tight bound on the su�
ient sample size in Subse
tion 3.2.2. In Subse
-tion 3.2.3 we present an algorithm to solve this problem, and Subse
tion 3.2.4 provesthe 
orre
tness of the algorithm. In Subse
tion 3.2.5 we show how to improve thespa
e requirements of the method using a 
ount-min �lter, and prove the 
orre
tnessof the approa
h in Subse
tion 3.2.6. In Subse
tion 3.2.8 we show that our algorithms
an be used to obtain an approximation of top-K frequent itemsets with guaranteeon the quality of the estimated frequen
ies. Finally, Subse
tion 3.2.7 provides theresults of the experimental assessment of our algorithms.3.2.1 Mining (approximated) top-K frequent itemsetConsider a dataset D of transa
tions over the set I of n items. For 
onvenien
e, we�x a 
anoni
al ordering of the itemsets built on I by de
reasing frequen
y, ties brokenarbitrarily. Let m = 2n − 1, we suppose the itemsets to be labeled X1, X2, · · · , Xma

ording to this order. For a given K, with 1 ≤ K ≤ m, we denote f
(K)
D = fD(XK).For 
onvenien
e, we use TOPK(D, I, K) to indi
ate the set of top-K frequent item-sets.We aim at e�
iently mining the following approximation to the setTOPK(D, I, K).De�nition 3.6. Let ε ∈ (0, 1) be a real-valued parameter. A set W ⊆ 2I is an

ε-approximation to TOPK(D, I, K) if and only if the following two properties hold:P1: for ea
h X ∈W , fD(X) ≥ f
(K)
D − ε;P2: for ea
h X 6∈W , fD(X) < f
(K)
D + ε.A similar approximation is de�ned in [CCFC04℄, but requires only P1 to hold,thus providing only a guarantee that itemsets with frequen
y well below f (k) are
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ed in output. The same approximation (i.e., requiring only P1 to hold)is 
onsidered in [VV09℄ for the problem of mining the top-K frequent items. Theauthors of that work de�ne di�erent approximations, with di�erent properties, of theset of the top-K frequent items and present algorithms to mine them. Other thanthe one 
onsidered in [CCFC04℄, one of interest for our work requires in addition anapproximation of the frequen
ies of the itemsets in output. Moreover, they presentan approximation of the set su
h that the ranking of the output set is approximately
orre
t with regards to the relative ranking in the dataset of the output items.The authors provide bounds on the su�
ient sample size required to obtain thedesired approximations. The stri
ter bounds are based on the idea of lumping smallfrequen
y items, i.e., aggregating two or more items with frequen
ies smaller thansome threshold to form a meta-item whose frequen
y is the sum of the frequen
ies ofthe items that form the meta-item. This is done iteratively until none or one (meta-)item is left with frequen
y smaller than the threshold. The goal of this lumpingpro
ess is to bound the size of the set of elements to be 
onsidered, in order to obtainbetter bounds on the su�
ient sample size. However, their results do not apply to theproblem of approximating top-K frequent itemsets. Moreover, the stri
ter boundsrelated to the problems of interest to our work require the knowledge of the exa
tdistribution of frequen
ies of the items, whi
h is not available in real 
ases.
3.2.2 Bound on su�
ient sample sizeThe following theorem shows that the set of top-K frequent itemsets mined froma sample2 of D of suitable size 
onstitutes an ε-approximation to TOPK(D, I, K),with a 
ertain probability.Theorem 3.7. For �xed ε, δ ∈ (0, 1), 
onsider a random sample S ⊆ D 
ontaining

t =
2

ε2
ln

2K(m−K)

δtransa
tions of D, and let W = TOPK(S, I, K). Then, W is an ε-approximation toTOPK(D, I, K) with probability at least 1− δ.2In this work we 
onsider sampling with repla
ement.
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 Aspe
ts of Basi
 Mining PrimitivesProof. We de�ne the following four sets:
L =

{

X ∈ 2I : fD(X) ≥ f
(K)
D + ε

}

V =
{

X ∈ 2I : fD(X) < f
(K)
D − ε

}

M =
{

Xi ∈ 2I : 1 ≤ i ≤ K
}

Z =
{

Xi ∈ 2I : K + 1 ≤ i ≤ m
}

,where the indi
es of the itemsets in the last two sets are 
onsistent with the 
anoni
alordering mentioned above. Noti
e that L ⊂ M and V ⊆ Z. For an itemset X, let
fS(X) denote its frequen
y in the sample. De�ne the events
E1: �for all pairs (X, Y ) ∈ L× Z we have fS(X) ≥ fS(Y )�
E2: �for all pairs (X, Y ) ∈ M × V we have fS(X) > fS(Y )�.We �rst show that if E1 and E2 o

ur then W is an ε-approximation toTOPK(D, I, K). Assume that E1 and E2 o

ur. We have to prove that Proper-ties P1 and P2 in De�nition 3.6 hold for W . Sin
e E2 o

urs and |M | = K, noelement of V 
an be in
luded in W , hen
e Property P1 follows. As for Property P2,
onsider an itemset X 6∈ W and suppose, by 
ontradi
tion, that fD(X) ≥ f

(K)
D + ε,thus X ∈ L. Sin
e |W | ≥ K and |{X ∈ I : fD(X) > f

(K)
D }| < K, there must exists

Y ∈ W that is also in Z (if no element of Z is in W , we have that W = M ⊃ L).Then, there is a pair (X, Y ) ∈ L×Z with fS(X) < fS(Y ), whi
h is impossible sin
e
E1 o

urs.We 
omplete the proof by showing that if the sample size is t 
hosen as stated,then both E1 and E2 o

ur with probability at least 1− δ. Consider a pair (x, y) in
L× Z, and let t be the number of transa
tions in S. Sin
e fD(X)− fD(Y ) ≥ ε, bythe Azuma bound we have

Pr(fS(Y ) > fS(X)) ≤ 2e−
ε2

2
t.The same bound applies to an arbitrary pair (X, Y ) ∈ M × V . We now apply theunion bound. Noti
e that the same pair (X, Y ) 
an be in both L × Z and M × V .However, sin
e L ⊂ M , V ⊆ Z, and the sets M, Z are disjoint, we have that thetotal number of pairs that we have to 
onsider in the union bound is ≤ |M | × |Z| <

K ·(M−k). When for all pairs (X, Y ) in (L×Z)∪(M×V ) we have fS(X) > fS(Y ),both E1 and E2 o

ur. Then, the probability that at least one event between E1 and
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E2 does not o

ur is at most

K(m−K)2e−
ε2

2
t ≤ δ.

�

3.2.3 AlgorithmWe now des
ribe an e�
ient algorithm whi
h dis
overs an ε-approximation toTOPK(D, I, K) by mining progressively larger samples of the dataset D until thesample size established in Theorem 3.7 is rea
hed, or a 
ertain stopping 
onditionis met. When the algorithm stops it returns, as output, the set of top-K frequentitemsets with respe
t to the last pro
essed sample. Su
h a set will 
onstitute an
ε-approximation to TOPK(D, I, K) with probability at least 1−δ. For j ≥ 0, de�ne

tj =
8

ε2

(

ln
8aK

δ
+ bj

)

,where a ≥ 1 and b ≥ 1 are suitable parameters. Let also jmax ≥ 0 be the smallestindex su
h that tjmax ≥ min {|D|, 2/(ε2) ln(2K(m−K)/δ)}. The algorithm performsa sequen
e of phases. Spe
i�
ally, in Phase j, for j ≥ 0 and j < jmax, the algorithmpro
esses a random sample of tj transa
tions. In Phase jmax, if tjmax ≥ |D| thealgorithm pro
esses D to extra
t TOPK(D, I, K), otherwise it 
onsiders a randomsample of tjmax transa
tions. The algorithm stops when j = jmax, or j < jmax and asuitable stopping 
ondition (spe
i�ed below) holds.Consider Phase j and let S be the random sample of size tj pro
essed in thephase. De�ne
σj = aK

(e

2

)bj

.For i ≥ 0, de�ne also
sj(i) = ⌊(2σj)

(i+1)2/2⌋,and
Sj(i) =

i
∑

ℓ=0

sj(ℓ).For notational 
onvenien
e, we assume Sj(−1) = 0 and use h(j) as the largest indexsu
h that Sj(h(j)− 1) + 1 ≤ m. Consider an ordering of the itemsets by de
reasingfrequen
y w.r.t. S, and let f
(ℓ)
S be the frequen
y in S of the ℓ-th itemset in this
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 Mining Primitivesordering. The stopping 
ondition for Phase j is
f

(K)
S − f

(Sj(i−1)+1)
S > (i + 1)ε for 1 ≤ i ≤ h(j).3.2.4 AnalysisFor Phase j of the algorithm we de�ne Bj(i), with 0 ≤ i ≤ h(j), as the set of sj(i)itemsets whose rank in the 
anoni
al ordering (w.r.t. the original dataset D) is inthe interval [Sj(i− 1) + 1, Sj(i)].Lemma 3.8. With probability at least 1 − δ the following property holds: for everyPhase j of the algorithm, for every 0 ≤ i ≤ h(j), and for every itemset X ∈ Bj(i)

|fS(X)− fD(X)| < (i + 1)
ε

2
,where S is the sample pro
essed in Phase j.Proof. Let us fo
us on an arbitrary Phase j. By the Azuma bound, we have that forany X ∈ Bj(i)

Pr(|fS(X)− fD(X)| ≥ (i + 1)
ε

2
) ≤ 2e−ε2(i+1)2tj/8.Hen
e the probability that there exists an itemset X (belonging to any Bj(i)) forwhi
h the stated bound does not hold is upper bounded by:

h(j)
∑

i=0

sj(i)2e
−ε2(i+1)2tj/8 ≤

h(j)
∑

i=0

(

2σje
−ε2tj/8

)(i+1)2

=

h(j)
∑

i=0

(

δ

2j+2

)(i+1)2

≤ δ

2j+1
.The lemma follows by applying the union bound over all phases (i.e., j = 0, 1, . . .).

�The following theorem establishes a probabilisti
 guarantee on the 
orre
tness of thealgorithm.Theorem 3.9. The algorithm returns an ε-approximation to TOPK(D, I, K) withprobability at least 1− δ.Proof. We 
onsider two 
ases, depending on when the algorithm stops. If the al-gorithm stops at Phase j = jmax, then the output is 
orre
t with probability atleast 1 − δ, sin
e it is the set TOPK(D, I, K) if tjmax ≥ |D|, and we 
an resort toTheorem 3.7 if tjmax < |D|. Suppose instead that the algorithm stops at an earlierphase j < jmax be
ause the stopping 
ondition is met. By Lemma 3.8, for every
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0 ≤ i ≤ h(j), and for every itemset X ∈ Bj(i), we have |fS(X)− fD(X)| < (i + 1) ε

2
.Let W the set of itemsets returned by the algorithm, namely the set of top-K frequentitemsets with respe
t to the random sample pro
essed in Phase j.We �rst show that W ⊆ B0. By 
ontradi
tion, assume that an itemset X ∈ Wbelongs to Bi, for some i > 0. Hen
e, fD(X) ≤ f

(Sj(i−1)+1)
D and

f
(K)
S ≤ fS(X) ≤ fD(X) + (i + 1)

ε

2
≤ f

(Sj(i−1)+1)
D + (i + 1)

ε

2
. (3.1)Observe that all itemsets whose rank in the 
anoni
al ordering (w.r.t. D) is notlarger than Sj(i− 1) + 1 belong to sets Bℓ with ℓ ≤ i. By Lemma 3.8, for ea
h su
hitemset Z, we have that

fS(Z) ≥ fD(Z)− (i + 1)
ε

2
≥ f

(Sj(i−1)+1)
D − (i + 1)

ε

2
.Hen
e, sin
e there are Sj(i− 1) + 1 of these itemsets, it follows that

f
(Sj(i−1)+1)
S ≥ f

(Sj(i−1)+1)
D − (i + 1)

ε

2
. (3.2)By 
ombining Equations 3.1 and 3.2 we obtain that

f
(K)
S − f

(Sj(i−1)+1)
S ≤ (i + 1)ε,whi
h 
ontradi
ts the stopping 
ondition. Thus, W ⊆ B0. Now, if we 
onsider anyof the �rst K itemsets in the 
anoni
al ordering, say Xℓ, for some 1 ≤ ℓ ≤ K, whi
hbelongs to B0 by 
onstru
tion, we have that fS(Xℓ) ≥ fD(Xℓ)− ε

2
≥ f

(K)
D − ε

2
. Hen
e,

f
(K)
S ≥ f

(K)
D − ε

2
. Therefore, for ea
h X ∈W we have

fD(X) ≥ fS(X)− ε

2
≥ f

(K)
S − ε

2
≥ f

(K)
D − ε,whi
h establishes Property P1. As for Property P2, note that W must 
ontain anitemset Z su
h that fD(Z) ≤ f

(K)
D . As argued before, Z ∈ B0, hen
e

fS(Z) ≤ fD(Z) +
ε

2
≤ f

(K)
D +

ε

2
.Sin
e fS(Z) ≥ f

(K)
S , we have that

f
(K)
S ≤ f

(K)
D +

ε

2
(3.3)Consider an itemset Y 6∈ W . If Y ∈ Bi with i > 0 then by de�nition of Bi itsreal frequen
y is at most f

(K)
D , hen
e it 
annot be greater than or equal to f

(K)
D + ε.
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 Mining PrimitivesIf instead Y ∈ B0 we have
fD(Y ) ≤ fS(Y ) +

ε

2
< f

(K)
S +

ε

2
≤ f

(K)
D + ε,where the last inequality follows from Equation 3.3, and Property P2 follows. �

3.2.5 A Count-Min Filter Based AlgorithmThe algorithm presented in the previous se
tion has a major issue: it needs m 
oun-ters to keep the support 
ounts for all the itemsets in order to be able to �nd the
f

(i)
S for all i's.We now present an improved version of the algorithmwhi
h uses 
ount-min �lters,a variation of Bloom �lters, to save spa
e. A 
ount-min �lter B 
onsists of c 
ounters,and uses kB hash fun
tions. The 
ounters are split into kB disjoint groups of size

c/kB. (We assume that kB divides c evenly.) The kB hash fun
tions map itemsets into
ounters, so for ea
h hash fun
tion Hi, 1 ≤ i ≤ kB we have Hi : 2I → [0, c/kB − 1].A more detailed des
ription of 
ount-min �lters and their properties 
an be foundin [MU05℄, Se
. 13.4.Using 
ount-min �lters, we 
an provide a ε-approximation to TOPK(D, I, K).Given a set of transa
tions S, we use a 
ount-min �lter B to keep tra
k of anapproximation of the supports of the itemsets. Initially, all 
ounters are set to 0.For ea
h transa
tion t ∈ S and ea
h itemset X ⊆ t, we in
rement by one the kB
ounters asso
iated with X.De�nition 3.10. The 
ount-min support of an itemset X is the value of the mini-mum of the kB 
ounters asso
iated with X in B, and is denoted with sB(X).De�nition 3.11. The 
ount-min frequen
y of X is
fB(X) =

sB(X)

|S| .(The notation for 
ount-min support and 
ount-min frequen
y does not in
ludeany referen
e to S be
ause the set of transa
tions on whi
h the 
ount-min �lter isbuilt will be 
lear from the 
ontest.)Given a set of transa
tions S, let the length (as number of items) of a transa
tion
t ∈ S be denoted as |t|. The number of itemsets of non zero length in a transa
tion
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t is 2|t|− 1. We denote the sum of the number of itemsets in the transa
tions as CS :

CS =
∑

t∈S

(2|t| − 1).The following theorem shows that we 
an obtain a good approximation of thefrequen
ies of the itemsets using a 
ount-min �lter.Theorem 3.12. Given δB > 0, εB > 0, and a set of transa
tions S, let εC = εB|S|
CSand δc = δB/m. If B is a 
ount-min �lter of parameters

kB =

⌈

ln
1

δc

⌉ (3.4)
c =

⌈

ln
1

δc

⌉

·
⌈

e

εc

⌉ (3.5)then
Pr(∃X|fB(X) ≥ fS(X) + εB) ≤ δB.Proof. A known result for 
ount-min �lters (see [MU05℄, Theorem 13.12) states thatif the sum of the 
ounts of the elements inserted in a 
ount-min �lter is L, then withprobability 1− (kB/(cεC))kB for any given element X we have

sB(X) ≤ sS(X) + εCL,where sS(X) is the support of X in S.In our 
ase we have that L = CS , thus for any given itemsets X we have that
fB(X) =

sB(X)

|S| ≤
sS(X)

|S| +
εCCS

|S| = fS(X) + εBwith probability
1−

(

kB

cεc

)kB

≥ 1− e− ln(1/δc) = 1− δB

m
.The thesis follow applying the union bound on the 
omplementary events. �Now let K > 0 and S be a set of transa
tions. For given δB > 0, εB > 0, westore the support 
ounts of the itemsets using a 
ount-min �lter B with parameters

c and kB as in Theorem 3.12. From Theorem 3.12 we 
an obtain a lower bound tothe frequen
y of the K-th most frequent itemset in S.Corollary 3.13. Let XB
1 , XB

2 , · · · be a labeling of the itemsets following the de
reas-ing order of their frequen
y in the 
ount-min �lter B, ties broken arbitrarily. Let
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f

(i)
B = fB(XB

i ) and r = f
(K)
B − εB. Then, with probability at least 1 − δB, all thetop-K FI's of S have a frequen
y in B greater or equal to r.Proof. Suppose Theorem 3.12 holds, whi
h happens with probability at least 1− δB .By de�nition of f

(k)
B there are at least k itemsets with a 
ount-min frequen
y ≥ f

(k)
B .We now 
onsider a subset X with size k of these itemsets. Sin
e Theorem 3.12 holds,none of these itemsets has a frequen
y in S less than r. Suppose now that all itemsetsin X are among the top-k FI's of S. Then at least one of them has a frequen
y in

S equal to f
(k)
S . If the size of the set of the top-k FI's of S is exa
tly k, then thethesis follows immediately from Theorem 3.12, the de�nition of r and the propertiesof the 
ount-min �lter. If the size of the sets of the top-k FI's of S is greater than

k, then there is at least one of su
h itemsets that is not in X. Let y be one of theseitemsets. By de�nition, fS(y) ≥ f
(k)
S . Sin
e there is at least one itemset in X withfrequen
y in S equal to f

(k)
S , then from Theorem 3.12, from the de�nition of r, andfrom the properties of the 
ount-min �lter, we have

r ≤ f
(k)
S ≤ fS(y) ≤ fB(y)This holds for any y whi
h belongs to the set of the top-k FI's of S but not to X, sothe thesis follows.Suppose now that not all itemsets in X are among the top-k FI's of S. Thenthere is at least one itemset in X su
h that its frequen
y in S is less than f

(k)
S . Let

w be one of su
h itemsets, and z be any of the top-k FI's of S, we have
r ≤ fS(w) < fS(z) ≤ fB(z)whi
h prove the thesis. �In the following, we develop and analyze an algorithm to �nd an ε-approximationof TOPK(D, I, K) with probability 1− δ.As before, the algorithm requires in input a dataset D and three parameters

K > 0, ε, δ ∈ (0, 1).Let δ1, δ2 > 0 su
h that (1 − δ1)(1 − δ2) = 1 − δ. We de�ne tj similarly toSe
tion 3.2.3. The algorithm performs a sequen
e of phases, and in Phase j, for
j ≥ 0 and j < jmax, the algorithm pro
esses a random sample of tj transa
tions, asit was for the algorithm in Se
tion 3.2.3.The algorithm stops when j = jmax, or j < jmax and a suitable stopping 
ondition(spe
i�ed below) holds. Consider Phase j and let S be the random sample of size tjpro
essed in the phase. De�ne σj , sj(i), and Sj(i) as in Se
tion 3.2.3.



3.2. Mining frequent items/itemsets through sampling 51Let S be the sample analyzed by the algorithm at phase j. The algorithm will usea 
ount-min �lter B with parameters c, kB tuned in su
h a way that Pr(∃X|fB(X) ≥
fS(X) + εB) ≤ δ2 (see Theorem 3.12). Note that εB is not given in input by theuser. Consider an ordering of the itemsets by de
reasing 
ount-min frequen
y w.r.t.
B, and let f

(ℓ)
B be the 
ount-min frequen
y of the ℓ-th itemset in this ordering. Let

r = f
(K)
B − εB. The stopping 
ondition for phase j is

r − f
(Sj(i−1)+1)
B > (i + 1)ε for 1 ≤ i ≤ h(j).(Note that the 
hoi
e of εB in�uen
es the stopping 
onditions, sin
e r = f

(K)
B −

εB.)When the algorithm stops, it 
omputes the exa
t frequen
ies in the sample of theitemsets {X : fB(X) ≥ r} = B. Let f̃
(K)
S the frequen
y in the sample of the K-thmost frequent itemset in B. The output of the algorithm is thus the set of itemsets

W =
{

X ∈ B : fS(X) ≥ f̃
(K)
S

}.3.2.6 Analysis of Count-Min Filter Based AlgorithmFirst of all, note that the de�nition of tj , σj, and Sj(i) are the same as in Se
tion 3.2.3,but for the repla
ement of δ with δ1. Thus Lemma 3.8 holds with probability at least
1− δ1.The following theorem relates the stopping 
ondition of the 
ount-min �lter basedalgorithm to the stopping 
ondition of the algorithm presented in Se
tion 3.2.3.Theorem 3.14. With probability at least 1− δ2, when the stopping 
ondition of the
ount-min �lter based algorithm is met, the stopping 
ondition of the algorithm inSe
tion 3.2.3 holds.Proof. Assume that Corollary 3.13 holds, then r ≤ f

(k)
S . For the properties of the
ount-min �lter we have ∀i, f (i)

B ≥ f
(i)
S . Then,

f
(k)
S − f

(Sj(i−1)+1)
S ≥ r − f

(Sj(i−1)+1)
B for 1 ≤ i ≤ h(j).Hen
e, if the stopping 
ondition for the 
ount-min �lter based algorithm is satis�ed,then also the stopping 
ondition for algorithm of Se
tion 3.2.3 must be satis�ed.Sin
e Corollary 3.13 holds with probability at least 1 − δ2, we obtain the theorem.

� We are now ready to prove the main theorem.



52 Chapter 3. Algorithmi
 Aspe
ts of Basi
 Mining PrimitivesTheorem 3.15. The 
ount-min �lter based algorithm returns an ε-approximation ofTOPK(D, I, K) with probability at least 1− δ = (1− δ1)(1− δ2).Proof. We 
onsider two 
ases, depending on when the algorithm stops. If the algo-rithm stops at phase j = jmax, then the output is 
orre
t with probability at least
1−δ, sin
e it is 
orre
t with probability 1 if the algorithm 
onsiders D in phase jmax,otherwise it is 
orre
t with probability at least 1− δ by virtue of Theorem 3.7.Suppose instead that the algorithm stops at an earlier phase j < jmax be
ausethe stopping 
ondition is met. From now on we assume that Lemma 3.8 andTheorem 3.12 hold (this happens with probability at least (1−δ1)(1−δ2) = 1−δ: inea
h iteration Theorem 3.12 holds with probability at least 1− δ2, sin
e the qualityof approximation of the frequen
ies in the sample provided by the 
ount-min �lterdoes not depend on previous iterations and on the frequen
ies in D). Let W be theset of itemsets given as output. Sin
e Theorem 3.12 holds, then Corollary 3.13 alsoholds, and Theorem 3.14 too. Thus B is a superset of the set of itemsets W ′ thatalgorithm of Se
tion 3.2.3 run with parameters ε, δ would have returned. Thus Wis equal to W ′, and it is an ε-approximation to TOPK(D, I, K) with probability atleast 1− δ = (1− δ1)(1− δ2). �

3.2.7 ExperimentsWe run a preliminary set of experiments to evaluate the performan
es of the algo-rithm des
ribed in Se
tion 3.2.3. We run the experiments on two datasets presentedin Se
tion 3.1.1: kosarak.dat (999002 transa
tions) and webdo
s.dat (512 transa
-tions). Our 
hoi
e for the parameters were �xed to the following values: ε = 0.02,
δ = 0.1, a = 1, b = 1, and we asked our algorithm to extra
t the k most frequentitemsets of length at most l, for di�erent values of k and l, for kosarak, and the k mostfrequent items in webdo
s. We run our algorithm 10 times, and for all exe
utionsthe output satis�ed both properties P1 and P2 of De�nition 3.6.For kosarak and l = 1, the stopping size was always equal to the theoreti
al boundgiven in Theorem 3.7. The results for l = 2, 3 the results are reported in Figure 3.13and Figure 3.14. Figure 3.15 reports instead the results for the extra
tion of top-Kitems from webdo
s.We 
an observe that when the parameter l, that is the maximum size of itemsetsto be extra
ted, in
reases, the gap between the number of transa
tions that ouralgorithm needs to produ
e the output and the number of transa
tions implied fromthe theoreti
al bound widens. Sin
e we expe
t the number of potential itemsets in a
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Figure 3.13: Results of algorithm of Se
tion 3.2.3 with dataset Kosarak, for itemsetsof length at most ℓ = 2.real, enormous dataset to be huge, we believe that this experiments provides a �rstindi
ation of the possible e�e
tiveness of our algorithm. However, a more in depthand a

urate experimental study is required to understand in whi
h s
enarios ouralgorithm 
an provide good performan
e. Moreover, the experimental evaluation ofalgorithm proposed in Se
tion 3.2.5 is still open.3.2.8 Approximating Top-K Frequent Itemset with Frequen-
iesA stri
ter approximation of the set may require a 
on�den
e on the frequen
ies ofea
h itemset in the output:De�nition 3.16. Let ε ∈ (0, 1) be a real-valued parameter. An ε-approximationwith frequen
ies to TOPK(D, I, K) is a set W of K or more ordered pairs (X, f)su
h that X ∈ 2I and f ∈ [0, 1] and for whi
h the following properties hold:P1: for ea
h (X, f) ∈W , fD(X) ≥ f
(K)
D − ε;P2: for ea
h (X, f) 6∈W , fD(X) < f
(K)
D + ε.P3: for ea
h (X, f) ∈W , |f − fD(X)| ≤ ε.Our algorithms provides a ε-approximation with frequen
ies to TOPK(D, I, K)with probability at least 1− δ.
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Figure 3.14: Results of algorithm of Se
tion 3.2.3 with dataset Kosarak, for itemsetsof length at most ℓ = 3.Theorem 3.17. Let S be the sample for whi
h our algorithm stops, and let W =

{(X, fS(X)) : X ∈ TOPK(S, I, K)}. If |W | ≤ K(m − K), with probability at least
1− δ, W is a ε-approximation with frequen
ies to TOPK(D, I, K).Proof. P1 and P2 are satis�ed by the output of our algorithm, so we only need to
onsider P3.When our algorithm stops at Phase j < jmax, with probability at least 1− δ wehave that Lemma 3.8 holds. Sin
e the itemsets returned by our algorithm are alwaysa subset of B0, for ea
h itemset X in output we have:

|fS(X)− fD(X)| < ε

2
.If the algorithm stops at Phase j = jmax and the algorithm uses D to extra
tTOPK(D, I, K), P3 trivially holds. If the algorithm stops at Phase j = jmax andthe algorithm does not use D, for ea
h itemset X the Azuma bound gives:

Pr(|fS(X)− fD(X)| ≥ ε) ≤ 2e−ε2tmax/2 (3.6)
≤ δ

K(m−K)
. (3.7)Sin
e |W | ≤ K(m−K), the union bound gives the desired result.

�
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Figure 3.15: Results of algorithm of Se
tion 3.2.3 with dataset webdo
s, for itemsetsof length at most ℓ = 1.



56 Chapter 3. Algorithmi
 Aspe
ts of Basi
 Mining Primitives



Chapter 4Finding Statisti
ally Signi�
antFrequent ItemsetsIn this 
hapter we address the 
lassi
al problem of mining frequent itemsets withrespe
t to a 
ertain minimum support threshold, and provide a rigorous methodologyto establish a threshold that 
an guarantee, in a statisti
al sense, that the returnedfamily of frequent itemsets 
ontains signi�
ant ones with a limited false dis
overyrate. The results presented in the 
hapter appeared in [KMP+09a, KMP+09b℄. Ourmethodology 
ru
ially relies on the following Poisson approximation result, whi
h isthe main theoreti
al 
ontribution for the problem.Consider a dataset D of t transa
tions on a set I of n items and let D̂ be a
orresponding random dataset a

ording to the a random model whi
h will des
ribedin Se
tion 4.1. Let Qk,σ be the number of itemsets of size k with support at least
σ with respe
t to D, and let Q̂k,σ be the 
orresponding random variable for D̂.We show that there exists a minimum support value σmin (whi
h depends on theparameters of D and on k), su
h that for all σ ≥ σmin the distribution of Q̂k,σ is wellapproximated by a Poisson distribution. Our result is based on a novel appli
ationof the Chen-Stein Poisson approximation method [AGG90℄.The minimum support σmin provides the grounds to devise a rigorous method forestablishing a support threshold for mining signi�
ant itemsets, both redu
ing theoverall 
omplexity and improving the a

ura
y of the dis
overy pro
ess. Spe
i�
ally,for a �xed itemset size k, we test a small number of support thresholds σ ≥ σmin, and,for ea
h su
h threshold, we measure the p-value 
orresponding to the null hypoth-esis H0 that the observed value Qk,σ 
omes from a Poisson distribution of suitableexpe
tation. From the tests we 
an determine a threshold σ∗ su
h that, with user-de�ned 
on�den
e level α, the number of itemsets with support at least σ∗ is notsampled from a Poisson distribution and is therefore statisti
ally signi�
ant. The57
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ally Signi�
ant Frequent Itemsetsfa
t that the number of itemsets with support at least σ∗ is statisti
ally signi�
antdoes not imply ne
essarily that ea
h of the itemsets is signi�
ant. However, ourtest is also able to guarantee a user-de�ned upper bound β on the False Dis
overyRate (FDR). We remark that our approa
h works for any �xed itemset size k, unliketraditional frequent itemset mining, where itemsets of all sizes are extra
ted for agiven threshold.To grasp the intuition behind the above approa
h, re
all that a Poisson distribu-tion models the number of o

urren
es among a large set of possible events, wherethe probability of ea
h event is small. In the 
ontext of frequent itemset mining, thePoisson approximation holds when the probability that an individual itemset hassupport at least σmin in D̂ is small, and thus the existen
e of su
h an event in Dis likely to be statisti
ally signi�
ant. We stress that our te
hnique dis
overs sta-tisti
ally signi�
ant itemsets among those of relatively high support. In fa
t, if theexpe
ted supports of individual itemsets vary in a large range, there may exist item-sets with very low expe
ted supports in D̂ whi
h may have statisti
ally signi�
antsupports in D. These itemsets would not be dis
overed by our strategy. However,any mining strategy aiming at dis
overing signi�
ant, low-support itemsets is likelyto in
ur high 
osts due to the large (possibly exponential) number of 
andidates tobe examined, although only a few of them would turn out to be signi�
ant.We validate our theoreti
al results by mining signi�
ant frequent itemsets froma number of real datasets that are standard ben
hmarks in this �eld. Also, we 
om-pare the e�e
tiveness of our methodology to a standard multi-hypothesis approa
hbased on [BY01℄, and provide eviden
e that the latter often returns fewer signi�
antitemsets, whi
h indi
ates that our method has 
onsiderably higher power.The rest of the 
hapter is stru
tured as follows. Se
tion 4.1 introdu
es the randommodel employed in our approa
h. Se
tion 4.2 presents the Poisson approximationresult for the random variable Q̂k,σ. The methodology for establishing the supportthreshold σ∗ is presented in Se
tion 4.3, and experimental results are reported inSe
tion 4.4.4.1 The modelThe signi�
an
e of a dis
overy in our framework is assessed based on its deviationfrom what would be expe
ted in a random dataset in whi
h individual items arepla
ed in transa
tions independently. Formally, let D denote the input dataset and
n the number of items o

urring in D. Among all possible (n

k

) itemsets of size k (k-itemsets) we are interested in statisti
ally signi�
ant ones, that is, those k-itemsets



4.2. Poisson approximation for Q̂k,σ 59whose supports inD are signi�
antly higher, in a statisti
al sense, than their expe
tedsupports in a 
orresponding random dataset.As in [SBM98℄, we 
onsider a probability spa
e of datasets with the same numberof transa
tions t, on the same set of items I as D, and in whi
h item i, of frequen
y
fi in D, is in
luded in any given transa
tion with probability fi, independent of allother items and all other transa
tions. A similar model is used in [PVGG04℄ and[SVGP05℄ to evaluate the running time of algorithms for frequent itemsets mining.Let D̂ denote a random dataset from this probability spa
e. For a given itemset X,the null hypothesis H0 is that its support sD(X) in D is drawn from the distributionof its support sD̂(X) in D̂. The alternative hypothesis H1 is that sD(X) is not drawnfrom that distribution, and in parti
ular that there is a positive 
orrelation betweenthe o

urren
es of the individual items in X.An alternative probability spa
e of datasets, proposed in [GMMT07℄, 
onsidersall arrangements of n items to m transa
tions whi
h mat
h the exa
t item frequen
iesand transa
tion lengths as D. Con
eivably, the te
hnique presented in this 
hapter
ould be adapted to this latter model as well.
4.2 Poisson approximation for Q̂k,σThe Chen-Stein method [AGG90℄ is a powerful tool for bounding the error in approx-imating probabilities asso
iated with a sequen
e of dependent events by a Poissondistribution. To apply the method to our 
ase, we �x parameters k and σ, and de�nea 
olle
tion of Bernoulli random variables {ZX | X ⊂ I, |X| = k}, su
h that ZX = 1if the itemset X appears in at least σ transa
tions in the random dataset D̂, and
ZX = 0 otherwise. Also, let pX = Pr(ZX = 1). We are interested in the distributionof Q̂k,σ =

∑

X:|X|=k ZX .For ea
h set X we de�ne the neighborhood set of X,
I(X) = {X ′ | X ∩X ′ 6= ∅, |X ′| = |X|}.If Y 6∈ I(X) then ZY and ZX are independent. Adapting [AGG90, Theorem 1℄ toour 
ase we have:Theorem 4.1. Let U be a Poisson random variable su
h that E[U ] = E[Q̂k,σ] = λ <

∞. The variation distan
e between the distributions L(Q̂k,σ) of Q̂k,σ and L(U) of U
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ally Signi�
ant Frequent Itemsetsis su
h that
∥

∥

∥
L(Q̂k,σ)−L(U)

∥

∥

∥
= sup

A
|Pr(Q̂k,σ ∈ A)− Pr(U ∈ A)|

≤ b1 + b2,where
b1 =

∑

X:|X|=k

∑

Y ∈I(X)

pXpYand
b2 =

∑

X:|X|=k

∑

X 6=Y ∈I(X)

E[ZXZY ].We 
an derive analyti
 bounds for b1 and b2 in many situations. Spe
i�
ally,suppose that we generate t transa
tions in the following way. For ea
h item x,we sample a random variable Rx ∈ [0, 1] independently from some distribution R.Conditioned on the Rx's, ea
h item x o

urs independently in ea
h transa
tion withprobability Rx. In what follows, we provide spe
i�
 bounds for this situation thatdepend on the moment E[R2σ] of the random variable R.As a warm-up, we �rst 
onsider the spe
i�
 
ase where ea
h Rx is a �xed value
p = γ/n for some 
onstant γ for all x. That is, ea
h item appears in ea
h transa
tionwith a �xed probability p, and the expe
ted number of items per transa
tion is
onstant. The more general 
ase follows the same approa
h, albeit with a few morete
hni
al di�
ulties.Theorem 4.2. Consider an asymptoti
 regime where as n→∞, we have that k, σ =

O(1) with σ ≥ 2, ea
h item appears in ea
h transa
tion with probability p = γ/n forsome 
onstant γ, and t = O(nc) for some positive 
onstant 0 < c ≤ (k−1)(1−1/σ).Let U be a Poisson random variable su
h that E[U ] = E[Q̂k,σ] = λ < ∞. Then thevariation distan
e between the distributions L(Q̂k,σ) of Q̂k,σ and L(U) of U satis�es
∥

∥

∥
L(Q̂k,σ)−L(U)

∥

∥

∥
= O(1/n2σ−2).Proof. For a given set X of k items, let pX,i be the probability that X appears inexa
tly i transa
tions, so that pX =

∑t
i=σ pX,i and

pX,i =

(

t

i

)

(γ

n

)ki
(

1−
(γ

n

)k
)t−i

.
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∥

∥

∥
L(Q̂k,σ)− L(U)

∥

∥

∥
≤ b1 + b2where

b1 =
∑

X:|X|=k

∑

Y ∈I(S)

pXpYand
b2 =

∑

X:|S|=k

∑

Y 6=X∈I(S)

E[ZXZY ].We now evaluate b1 and b2. A dire
t 
al
ulation easily gives the value for b1 givenin the statement of the theorem. For the asymptoti
 analysis, we write
(

(

n

k

)2

−
(

n

k

)(

n− k

k

)

)

=

(

n

k

)2
(

1−
(

n−k
k

)

(

n
k

)

)

=

(

n

k

)2
(

1−
k−1
∏

i=0

n− k − i

n− i

)

= Θ(nk)2 ·Θ(1/n) = Θ(n2k−1)and
pX,σ =

(

t

σ

)

(γ

n

)kσ
(

1−
(γ

n

)k
)t−σ

= Θ(tσ) ·Θ(n−kσ) · (1 + o(1)) = Θ
(

tσn−kσ
)

,where we have used the fa
t that t = o(nk) to obtain the asymptoti
s for the thirdterm. Also, we note that for any 1 ≤ i < t

pX,i+1

pX,i
=

t− i

i + 1

(γ

n

)k
(

1−
(γ

n

)k
)−1and so

max
i∈{σ,σ+1,...,t−1}

pX,i+1

pX,i
= O(tn−k) = O(1/n).Using a geometri
 series, it follows that

pX =

t
∑

i=σ

pX,i = pX,σ(1 + o(1)) = Θ
(

tσn−kσ
)

.
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ally Signi�
ant Frequent ItemsetsThus, we obtain
b1 = Θ(n2k−1) ·Θ

(

tσn−kσ
)2

= Θ(t2σn2k(1−σ)−1) = Θ(n2cσ+2k(1−σ)−1).We now turn our attention to b2. Consider sets X 6= Y of k items, let g = |X∩Y |,and suppose that g > 0. Then if ZXZY = 1, there exist disjoint subsets A, B, C ∈
{1, . . . , t} su
h that 0 ≤ |A| ≤ σ, |B| = |C| = σ − |A|, all of the transa
tions in
A 
ontain both X and Y , all of the transa
tions in B 
ontain X, and all of thetransa
tions in C 
ontain Y .Therefore,

E[ZXZY ] ≤
σ
∑

i=0

(

t

i; σ − i; σ − i

)

(γ

n

)(2k−g)i+2k(σ−i)

,where the notation ( m
x;y;z

) is a shorthand for (m
x

)(

m−x
y

)(

m−x−y
z

).It follows that
b2 ≤

k−1
∑

g=1

(

n

g; k − g; k − g

) σ
∑

i=0

(

t

i; σ − i; σ − i

)

(γ

n

)(2k−g)i+2k(σ−i)

=
k−1
∑

g=1

(

n

g; k − g; k − g

)

(γ

n

)2kσ
σ
∑

i=0

(

t

i; σ − i; σ − i

)(

n

γ

)gi

=

k−1
∑

g=1

(

n

g; k − g; k − g

)

(γ

n

)2kσ
σ
∑

i=0

(

t

i; σ − i; σ − i

)(

n

γ

)gi

=

k−1
∑

g=1

Θ(n2k−g+2cσ)
(γ

n

)2kσ
σ
∑

i=0

n−ic

(

n

γ

)gi

= Θ(n2k(1−σ)+2cσ)
k−1
∑

g=1

n−g
σ
∑

i=0

γ−gin(g−c)i

= Θ(n2k(1−σ)+2cσ)
k−1
∑

g=1

n−g







Θ(1) g ≤ c

Θ(n(g−c)σ) g > c

= Θ(n2k(1−σ)+2cσ) ·Θ(n−(k−1)+(k−1−c)σ)

= Θ(n2k(1−σ)+σ(k−1+c)−k+1)Note that, in the summation where there are two 
ases depending on whether
g ≤ c or g > c, we have used the assumption that c ≤ (k − 1)(1 − 1/σ) to ensurethe next equality. Finally, it is simple to 
he
k that both b1 and b2 are O(1/n2σ−2)
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�We now provide the more general theorem.Theorem 4.3. Consider an asymptoti
 regime where as n → ∞, we have that

k, σ = O(1) with σ ≥ 2, E[R2σ] = O(n−a) for some 
onstant 2 < a ≤ 2σ, and
t = O(nc) for some positive 
onstant c. Let U be a Poisson random variable su
hthat E[U ] = E[Q̂k,σ] = λ <∞. If

c ≤ (k − 1)(a− 2) + min(2a− 6, 0)

2σ
,then the variation distan
e between the distributions L(Q̂k,σ) of Q̂k,σ and L(U) of Usatis�es

∥

∥

∥
L(Q̂k,σ)−L(U)

∥

∥

∥
= O(1/n).Proof. Applying Theorem 4.1 gives

∥

∥

∥
L(Q̂k,σ)− L(U)

∥

∥

∥
≤ b1 + b2where

b1 =
∑

X:|X|=k

∑

Y ∈I(X)

pXpYand
b2 =

∑

X:|X|=k

∑

Y 6=X∈I(X)

E[ZXZY ].We now evaluate b1 and b2. Letting ~R denote the ve
tor of the Rx's, we havethat for any set X of k items
Pr(ZX = 1 | ~R) ≤

(

t

σ

)

∏

x∈X

Rσ
x .Sin
e the Rx's are independent with 
ommon distribution R,

pX = E[Pr(ZX = 1 | ~R)] ≤
(

t

σ

)

E[Rσ]k.Using Jensen's inequality, we now have
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b1 =

∑

X:|X|=k

∑

Y ∈I(X)

pXpY

≤
(

(

n

k

)2

−
(

n

k

)(

n− k

k

)

)

(

t

σ

)2

E[Rσ]2k

≤
(

n

k

)2
(

1−
(

n−k
k

)

(

n
k

)

)

(

t

σ

)2

E[R2σ]k

=

(

n

k

)2
(

1−
k−1
∏

i=0

n− k − i

n− i

)

(

t

σ

)2

E[R2σ]k

= Θ(nk)2 ·Θ(1/n) ·O(n2cσ) ·O(n−ka)

= O(nk(2−a)+2cσ−1)We now turn our attention to b2. Consider sets X 6= Y of k items, and suppose
g = |X ∩ Y | > 0. If ZXZY = 1, there exist disjoint subsets A, B, C ∈ {1, . . . , t} su
hthat 0 ≤ |A| ≤ σ, |B| = |C| = σ − |A|, all of the transa
tions in A 
ontain both
X and Y , all of the transa
tions in B 
ontain X, and all of the transa
tions in C
ontain Y . Therefore,

E[ZXZY | ~R] ≤
σ
∑

i=0

(

t

i; σ − i; σ − i

)

(

∏

x∈X∪Y

Ri
x

)(

∏

x∈X

Rσ−i
x

)(

∏

y∈Y

Rσ−i
y

)

=
σ
∑

i=0

(

t

i; σ − i; σ − i

)

(

∏

x∈X∩Y

R2σ−i
x

)(

∏

x∈X−Y

Rσ
x

)(

∏

y∈Y −X

Rσ
y

)

.
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e of the Rx's and Jensen's inequality gives
E[ZXZY ] = E[E[ZXZY | ~R]]

≤
σ
∑

i=0

(

t

i; σ − i; σ − i

)

E[R2σ−i]gE[Rσ]2(k−g)

≤
σ
∑

i=0

t2σ−i
E[R2σ]

g(2σ−i)
2σ E[R2σ]k−g

=

σ
∑

i=0

t2σ−i
E[R2σ]k−ig/2σ

≤ O(1)
σ
∑

i=0

n(2σ−i)c−a(k−ig/2σ)

= O(n2σc−ak)

σ
∑

i=0

ni( ag
2σ

−c)

= O
(

n2σc−ak+max{0,σ( ag
2σ

−c)})

It follows that
b2 ≤

k−1
∑

g=1

(

n

g; k − g; k − g

)

O
(

n2σc−ak+max{0,σ( ag
2σ

−c)})

= O(n2k+2σc−ak)
k−1
∑

g=1

n−gO
(

nmax{0,σ( ag
2σ

−c)})

Now, for 2σc/a < g < k, we have (using the fa
t that a ≥ 2)
n−gnmax{0,σ( ag

2σ
−c)} = ng(a

2
−1)−σc ≤ n(k−1)(a

2
−1)−σc.Thus

b2 = O(n2k+σc−ak+(k−1)(a
2
−1)).(Here we are using the fa
t that our 
hoi
e of c satis�es c ≤ (k − 1)(a − 2)/2σ toensure that n(k−1)(a

2
−1)−cσ = Ω(1).)

Now, we have
b1 = O(1/n)
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ally Signi�
ant Frequent Itemsetssin
e
c ≤ (k − 1)(a− 2)

2σ
≤ k(a− 2)

2σ
,and

b2 = O(1/n)sin
e
c ≤ k(a− 2) + (a− 4)

2σ
.Thus

b1 + b2 = O(1/n).

�It is easy to see that for �xed k, the quantities b1 and b2 de�ned in Theorem 4.1are both de
reasing in σ. In the following, we will use the notation b1(σ) and b2(σ)to indi
ate expli
itly the dependen
e on σ. Therefore, for a 
hosen ǫ, with 0 < ǫ < 1,we 
an de�ne
σmin = min{σ ≥ 1 : b1(σ) + b2(σ) ≤ ǫ}. (4.1)It immediately follows that for every σ in the range [σmin,∞), the variationdistan
e between the distribution of Q̂k,σ and the distribution of a Poisson variablewith the same expe
tation is less than ǫ. In other words, for every σ ≥ σmin thenumber of k-itemsets with support at least σ is well approximated by a Poissonvariable. Theorems 4.2 and 4.3, proved above, establish the existen
e of meaningfulranges of σ for whi
h the Poisson approximation holds, under 
ertain 
onstraints onthe individual item frequen
ies in the random dataset and on the other parameters.4.2.1 A Monte Carlo method for determining σminWhile the analyti
al results of the previous subse
tion require that the individualitem frequen
ies in the random dataset be drawn from a given distribution, in whatfollows we give experimental eviden
e that the Poisson approximation for the dis-tribution of Q̂k,σ holds also when the item frequen
ies are �xed arbitrarily, as is the
ase of our referen
e random model. More spe
i�
ally, we present a method whi
happroximates the support threshold σmin de�ned by Equation 4.1, based on a simpleMonte Carlo simulation whi
h, given in input the parameters t and n of the inputdataset D, the ve
tor ~f of item frequen
ies, k, ∆, and ǫ, returns estimates of b1(σ)and b2(σ). This approa
h is also 
onvenient in pra
ti
e sin
e it avoids the inevitablesla
k due to the use of asymptoti
s in Theorem 4.3.For a given 
on�guration of item frequen
ies and number of transa
tions, let σ̃
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ted support of any k-itemset in a random dataset sampleda

ording to that 
on�guration, that is, the produ
t of the k largest item frequen
ies.Con
eivably, the value b1(σ̃) is rather large, hen
e it makes sense to sear
h for an
σmin larger than σ̃. For an integral parameter ∆ (a suitable 
hoi
e for ∆ will be givenbelow) we generate ∆ random datasets and from ea
h su
h dataset we mine all ofthe k-itemsets of support at least σ̃. Let W be the set of itemsets extra
ted in thisfashion from all of the generated datasets. For ea
h σ ≥ σ̃ we 
an estimate b1(σ)and b2(σ) by 
omputing for ea
h X ∈ W the empiri
al probability pX of the event
ZX = 1, and for ea
h pair X, Y ∈W , with X∩Y 6= ∅, the empiri
al probability pX,Yof the event (ZX = 1) ∧ (ZY = 1). The empiri
al probability of the event ZX = 1estimated with ∆ (independent) random trials (in our 
ase, generations of randomdatasets) is given by the ratio between the number of trials for whi
h ZX = 1 over
∆. The empiri
al probability pX,Y of the event (ZX = 1) ∧ (ZY = 1) is analogous.On
e pX and pX,Y have been estimated for all itemsets X, Y , we 
an estimate b1(σ)and b2(σ) with the formulas given in Theorem 4.1.Note that for itemsets not in W these probabilities are estimated as 0. If itturns out that b1(σ̃) + b2(σ̃) > ǫ/4, then we let σ̂min be the minimum σ > σ̃ su
hthat b1(σ) + b2(σ) ≤ ǫ/4. Otherwise, if b1(σ̃) + b2(σ̃) ≤ ǫ/4, we repeat the abovepro
edure starting from σ̃/2. (Based on the above 
onsiderations this latter 
ase willbe unlikely.) Algorithm 1 implements the above ideas.The following theorem provides a bound on the probability that σ̂min be a 
on-servative estimate of σmin, that is, σ̂min ≥ σmin.Theorem 4.4. If ∆ = O (log(1/δ)/ǫ), the output σ̂min of the Monte-Carlo pro
esssatis�es

Pr(b1(σ̂min) + b2(σ̂min) ≤ ǫ) ≥ 1− δ.Proof. Let assume b1(σ̂min) + b2(σ̂min) > ǫ. Note that b1(σ̂min) ≤ b2(σ̂min), thereforewe have b2(σ̂min) > ǫ/2. Let B be the random variable 
orresponding to ∆ timesthe estimate of b2(σ̂min) obtained with Algorithm 1. Thus E[B] > ∆ǫ/2. Sin
eAlgorithm 1 returns σ̂min as estimate of σmin, we have that B ≤ ∆ǫ/4. Let
∆ =

8 log(1/δ)

ǫ
,and c < 1 be su
h that:

(1− c)E[B] = ∆ǫ/4.
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ally Signi�
ant Frequent ItemsetsSin
e E[B] > ∆ǫ/2, we have c ≥ 1/2. Using Cherno� bound, we have that:
Pr(B ≤ ∆ǫ/4) ≤ e−

c2E[B]
2

≤ e−
1
4

8 log(1/δ)
2 ≤ δ.Thus Pr(b1(σ̂min) + b2(σ̂min) > ǫ) ≤ δ. �

Algorithm 4.1: FindPoissonThresholdInput: t, n, ve
tor ~f of item frequen
ies, k, ∆, εOutput: Estimate σ̂min of σmin1 σ̃ ← highest expe
ted support of a k-itemset;2 σmax ← 0;3 W ← ∅;4 for i← 1 to ∆ do5 D̂i ← random dataset with parameters n,t,~f ;6 W ←W ∪
{frequent k-itemsets in D̂i w.r.t. σ̃

};7 if W = ∅ then8 σ̃ ← σ̃/2;9 goto 4;10 if (σmax = 0) then11 σmax ← max
X∈W,D̂i

{support of X in D̂i

}

+ 1;12 for σ ← σ̃ to σmax do13 for all X ∈W do14 pX(σ)← empiri
al probability of {ZX = 1};15 for all X,Y ∈W : X ∩ Y 6= ∅ do16 pX,Y (σ)← empiri
al probability of {ZX,Y = 1};17 b1(σ)←
∑

X,Y ∈W ;Y ∈I(X)

pX(σ)pY (σ);18 b2(σ)←
∑

X,Y ∈W ;X 6=Y ∈I(X)

pX,Y (σ);19 if b1(σ̃) + b2(σ̃) ≤ ε/4 then20 σmax ← σ̃;21 σ̃ ← σ̃/2;22 goto 3;23 σmin ← min {σ > σ̃ : b1(σ) + b2(σ) ≤ ε/4};24 return σmin;



4.3. Pro
edures for the Dis
overy of High-Support Signi�
ant Itemsets 694.3 Pro
edures for the Dis
overy of High-SupportSigni�
ant ItemsetsFor a given itemset size k, the value σmin identi�es a region of (relatively high)supports where we 
on
entrate our quest for statisti
ally signi�
ant k-itemsets. Inthis se
tion we develop pro
edures to identify a family of k-itemsets (among thoseof support greater than or equal to σmin) whi
h are statisti
ally signi�
ant with a
ontrolled FDR. More spe
i�
ally, in Subse
tion 4.3.1 we show that a family withthe desired properties 
an be obtained as a subset of the frequent k-itemsets withrespe
t to σmin, sele
ted based on a standard multi-
omparison test. However, thispro
edure may in
ur in a large number of false negatives. To a
hieve higher e�e
tive-ness, in Subse
tion 4.3.2 we devise a more sophisti
ated pro
edure whi
h identi�es asupport threshold σ∗ ≥ σmin su
h that all frequent k-itemsets with respe
t to σ∗ arestatisti
ally signi�
ant with a 
ontrolled FDR. In the next se
tion we will provideexperimental eviden
e that in many 
ases the latter pro
edure yields mu
h fewerfalse negatives.4.3.1 A pro
edure based on a standard multi-
omparison testWe present a �rst, simple pro
edure to dis
over signi�
ant itemsets with 
ontrolledFDR, based on the following well-established result in multi-
omparison testing. Thefollowing test 
an be used for any 
hoi
e of the minimum support σ.Theorem 4.5 ([BY01℄). Assume that we are testing for m null hypotheses. Let
p(1) ≤ p(2) ≤ · · · ≤ p(m) be the ordered observed p-values of the m tests. For a givenparameter β, with 0 < β < 1, de�ne

ℓ = max

{

i ≥ 0 : p(i) ≤
i

m
∑m

j=1
1
j

β

}

, (4.2)and reje
t the null hypotheses 
orresponding to tests (1), . . . , (ℓ). Then, the FDR forthe set of reje
ted null hypotheses is upper bounded by β.Let D denote an input dataset 
onsisting of t transa
tions over n items, and let
k be the �xed itemset size. First, we mine from D the set of frequent k-itemsets
F(k)(σ). Then, for ea
h X ∈ F(k)(σ), we test the null hypothesis HX

0 that theobserved support of X in D is drawn from a Binomial distribution with parameters
t and fX (the produ
t of the individual frequen
ies of the items of X), setting thereje
tion threshold as spe
i�ed by 
ondition (4.2), with parameters β and m =

(

n
k

).
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ally Signi�
ant Frequent ItemsetsBased on Theorem 4.5, the itemsets of F(k)(σ) whose asso
iated null hypothesis isreje
ted 
an be returned as signi�
ant, with FDR upper bounded by β. Sin
e we areinterested in itemsets whose supports is ≥ σmin, we extra
t from D only the itemsetsof support ≥ σmin. The pseudo
ode Pro
edure 1 implements the strategy des
ribedabove.Pro
edure 1Input: Dataset D of t transa
tions over n items, ve
tor ~f of item frequen
ies, k,
β ∈ (0, 1);Output: Family of signi�
ant k-itemsets with FDR ≤ β;1 Determine σmin and 
ompute F(k)(σmin) from D;2 for all X ∈ F(k)(σmin) do3 σX ← support of X in D;4 fX ← Πi∈Xfi;5 p(X) ← Pr(Bin(t, fX) ≥ σX);6 Let p(1), p(2), . . . , be the sorted sequen
e of the values p(X), with X ∈ F(k)(σmin);7 m←

(n
k

);8 ℓ = max

{

0, i : p(i) ≤ i
m

Pm
j=1

1
j

β

};9 return {X ∈ F(k)(σmin) : p(X) = p(i), 1 ≤ i ≤ ℓ
};4.3.2 Establishing a support threshold for signi�
ant frequentitemsetsLet α and β be two 
onstants in (0, 1). We seek a threshold σ∗ su
h that, with
on�den
e 1−α, the k-itemsets in F(k)(σ

∗) 
an be �agged as statisti
ally signi�
antwith FDR at most β. The threshold σ∗ is determined through a robust statisti
alapproa
h whi
h ensures that the number Qk,σ∗ = |F(k)(σ
∗)| deviates signi�
antlyfrom what would be expe
ted in a random dataset, and that the magnitude of thedeviation is su�
ient to guarantee the bound on the FDR.Let σmin be the minimum support su
h that the Poisson approximation for thedistribution of Q̂k,σ holds for σ ≥ σmin, and let σmax be the maximum support ofan item (hen
e, of an itemset) in D. Our pro
edure will performs h 
omparisonsasso
iated to supports σi, 0 ≤ i < h, with σmin ≤ σi ≤ σmax. In the i-th 
omparison,with 0 ≤ i < h, we test the null hypothesis H i

0 that the observed value Qk,σi
is drawnfrom the same Poisson distribution as Q̂k,σi

. We 
hoose as σ∗ the minimum of the
σi's, if any, for whi
h the null hypothesis H i

0 is reje
ted. If no null hypothesis isreje
ted, we set σ∗ =∞.For the 
orre
tness of the above pro
edure, it is 
ru
ial to spe
ify a suitablereje
tion 
ondition for ea
h H i
0. Assume �rst that, for 0 ≤ i < h, we reje
t the
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edures for the Dis
overy of High-Support Signi�
ant Itemsets 71null hypothesis H i
0 when the p-value of the observed value Qk,σi

is smaller than αi,where the αi's are 
hosen so that ∑h−1
i=0 αi = α. Then, the union bound shows thatthe probability of reje
ting any true null hypothesis is less than α. However, thisapproa
h does not yield a bound on the FDR for the set F(k)(σ

∗). In fa
t, someitemsets in F(k)(σ
∗) are likely to o

ur with high support even under H i

0, hen
e theywould represent false dis
overies. The impa
t of this phenomenon 
an be 
ontainedby ensuring that the FDR is below a spe
i�ed level β. To this purpose, we muststrengthen the reje
tion 
ondition, as explained below.Fix suitable values β0, β1, . . . , βh−1 su
h that ∑h−1
i=0 β−1

i ≤ β. For 0 ≤ i < h, let
λi = E[Q̂k,σi

]. We now reje
t H i
0 when the p-value of Qk,σi

is smaller than αi, and
Qk,σi

≥ βiλi. The following theorem establishes the 
orre
tness of this approa
h.Theorem 4.6. With 
on�den
e 1−α, F(k)(σ
∗) is a family of statisti
ally signi�
antfrequent k-itemsets with FDR at most β.Proof. Observe that sin
e ∑h−1

i=0 αi ≤ α, we have that all reje
tions are 
orre
t,with probability at least 1− α. Let Ei be the event �H i
0 is reje
ted� or equivalently,�the p-value of Qk,σi

is smaller than αi and Qk,σi
≥ βiλi�. Suppose that H i

0 is the�rst reje
ted null hypothesis, for some index i, when
e σ∗ = σi. In this 
ase, Qk,σiitemsets are �agged as signi�
ant. We denote by Vi the number of false dis
overiesamong these Qk,σi
itemsets. It is easy to argue that the expe
tation of Vi is upperbounded by E[Xi|Ei, Ēi−1, . . . , Ē0], where Xi is a Poisson variable with expe
tation

λi. Sin
e Qk,σi
≥ βiλi when H i

0 is reje
ted, by the law of total probability we have
FDR ≤

h−1
∑

i=0

E

[

Vi

Qk,σi

]

Pr(Ei, Ēi−1, . . . , Ē0)

≤
h−1
∑

i=0

E [Vi]

βiλi

Pr(Ei, Ēi−1, . . . , Ē0)

≤
h−1
∑

i=0

E[Xi | EiĒi−1, . . . , Ē0]

βiλi
Pr(Ei, Ēi−1, . . . , Ē0)

=

h−1
∑

i=0

∑

j≥0 j Pr(Xi = j, Ei, Ēi−1, . . . , Ē0)

βiλi

≤
h−1
∑

i=0

λi

βiλi
=

h−1
∑

i=0

1

βi
≤ β.

�The method above needs the values h and σi, 0 ≤ i < h to be spe
i�ed. Note
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ally Signi�
ant Frequent Itemsetsthat h in�uen
es how low a p-value must be to reje
t the 
orresponding null hy-pothesis. An high value of h would require very low p-value to reje
t an hypothesis,redu
ing the power of the method. We then 
hoose to 
onsider a number of hy-pothesis logarithmi
 in the di�eren
e σmax − σmin, and to set the 
orresponding σiwith exponentially in
reasing steps. In our opinion this 
hoi
e gives a good tradeo�between the number of tested supports and the diversity between the tested hypothe-ses, sin
e we are testing more hypothesis for lower supports, where the number ofitemsets is higher. In parti
ular, we set h = ⌊log2(σmax − σmin)⌋ + 1 and σ0 = σminand σi = σmin + 2i, for 1 ≤ i < h.The pseudo
ode Pro
edure 4.3 spe
i�es more formally our approa
h to determinethe support threshold σ∗. Note that estimates for the λi's needed in the for-loop ofLines 7-9 
an be obtained from the same random datasets generated in Algorithm 4.1,whi
h are used there for the estimation of σmin. In fa
t, sin
e λi is the expe
tednumber of k-itemsets of support at least σi in a random dataset D̂, we 
an estimate
λi 
ounting for ea
h of the ∆ random datasets generated by Algorithm 4.1 how many
k-itemsets appears with support ≥ σi.Pro
edure 2Input: Dataset D of t transa
tions over n items, ve
tor ~f of item frequen
ies, k,

α, β ∈ (0, 1);Output: σ∗ su
h that, with 
on�den
e 1− α, F(k)(σ
∗) is a family of signi�
ant

k-itemsets with FDR ≤ β1 Determine σmin and 
ompute F(k)(σmin) from D;2 i← 0;3 σ0 ← σmin;4 h← ⌊log2(σmax − σmin)⌋+ 1;5 Fix α0, . . . , αh−1 ∈ (0, 1) s.t. ∑h−1
i=0 αi = α;6 Fix β0, . . . , βh−1 ∈ (0, 1) s.t. ∑h−1
i=0 β−1

i = β;7 for i← 0 to h− 1 do8 Compute λi = E[Q̂k,σi
];9 while i < h do10 Compute Qk,σi

;11 pσi ← Pr(Poisson(λi) ≥ Qk,σi
);12 if (pσi ≤ αi) and Qk,σi

≥ βiλi then13 return σ∗ ← σi;14 σi+1 ← σmin + 2i+1;15 i← i + 1;16 return σ∗ ←∞ ;



4.4. Experimental Results 73Dataset n [fmin; fmax] m tRetail 16470 [1.13e-05 ; 0.57] 10.3 88162Kosarak 41270 [1.01e-06 ; 0.61] 8.1 990002Bms1 497 [1.68e-05 ; 0.06] 2.5 59602Bms2 3340 [1.29e-05 ; 0.05] 5.6 77512Bmspos 1657 [1.94e-06 ; 0.60] 7.5 515597Pumsb∗ 2088 [2.04e-05 ; 0.79] 50.5 49046Table 4.1: Parameters of the ben
hmark datasets: n is the number of items;
[fmin, fmax] is the range of frequen
ies of the individual items; m is the averagetransa
tion length; and t is the number of transa
tions.4.4 Experimental ResultsIn order to validate the methodology, a number of experiments have been performedon datasets whi
h are standard ben
hmarks in the 
ontext of frequent itemsets min-ing. The main 
hara
teristi
s of the datasets we use are summarized in Table 4.1.A des
ription of the datasets not introdu
ed in Chapter 3 
an be found in theFIMI Repository (http://fimi.
s.helsinki.fi/data/), where they are availablefor download.First of all, we applied the Monte Carlo method of Subse
tion 4.2.1 to determine
σmin: the ranges for whi
h the Poisson approximation holds are reported in Subse
-tion 4.4.1. We then applied our methodology to the ben
hmark datasets of Table 4.1:our �ndings are presented in Subse
tion 4.4.2. In Subse
tion 4.4.3, we 
ompare thesets of signi�
ant itemsets reported by our methodology against those returned bythe standard pro
edure to bound the FDR des
ribed in Subse
tion 4.3.1.4.4.1 Range of σ for Poisson ApproximationFor ea
h dataset D of Table 4.1 and for itemset sizes k = 2, 3, 4, we applied Algorithm4.1 setting ∆ = 1, 000 and ǫ = 0.01. The values of σ̂min we obtained are reported inTable 4.2 (we added the pre�x �Rand� to ea
h dataset name, to denote the fa
t thatthe dataset is random and features the same parameters as the 
orresponding realone).4.4.2 Experiments on ben
hmark datasetsFor ea
h ben
hmark dataset in Table 4.1 and for k = 2, 3, 4, we apply Pro
edure 4.3with α = β = 0.05, and αi = β−1

i = 0.05/h. The results are displayed in Table 4.3,where, for ea
h dataset and for ea
h value of k, we show: the support σ∗ returned
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σ̂minDataset k = 2 k = 3 k = 4RandRetail 9237 4366 784RandKosarak 273266 100543 20120RandBms1 268 23 5RandBms2 168 13 4RandBmspos 76672 15714 2717RandPumsb∗ 29303 21893 16265Table 4.2: Values of ŝmin for ǫ = 0.01 and for k = 2, 3, 4, in random datasets with thesame values of n, t, and with the same frequen
ies of the items as the 
orrespondingben
hmark datasets.by Pro
edure 4.3, the number Qk,σ∗ of k-itemsets with support at least σ∗, andthe expe
ted number λ(σ∗) of itemsets with support at least σ∗ in a 
orrespondingrandom dataset.

k = 2 k = 3 k = 4Dataset σ∗ Qk,σ∗ λ(σ∗) σ∗ Qk,σ∗ λ(σ∗) σ∗ Qk,σ∗ λ(σ∗)Retail ∞ 0 0 ∞ 0 0 848 6 0.01Kosarak ∞ 0 0 ∞ 0 0 21144 12 0.01Bms1 276 56 0.19 23 258859 0.06 5 27M 0.05Bms2 168 429 0.73 13 36112 0.25 4 714045 0.01Bmspos ∞ 0 0 16226 22 0.01 2717 891 0.38Pumsb∗ 29303 29 0.05 21893 406 0.35 16265 6293 1.37Table 4.3: Results obtained by applying Pro
edure 4.3 with α = 0.05, β = 0.05 and
k = 2, 3, 4 to the ben
hmark datasets of Table 4.1.We observe that for most pairs (dataset,k) the number of signi�
ant frequent
k-itemsets obtained is rather small, but, in fa
t, at support σ∗ in random instan
esof those datasets, less than two (often mu
h less than one) frequent k-itemsets wouldbe expe
ted. These results provide eviden
e that our methodology not only de�nessigni�
an
e on statisti
ally rigorous grounds, but also provides the mining task withsuitable support thresholds that avoid explosion of the output size (the widely re
og-nized �A
hilles' heel� of traditional frequent itemset mining). This feature 
ru
iallyrelies on the identi�
ation of a region of �rare events� provided by the Poisson ap-proximation. The dis
overy of signi�
ant itemsets with low support (not returnedby our method) would require the extra
tion of a large (possibly exponential) num-ber of itemsets, that would make any strategy aiming to dis
over these itemsetsunfeasible. Instead, we provide an e�
ient method to identify, with high 
on�den
elevel, the family of most frequent itemsets that are statisti
ally signi�
ant without



4.4. Experimental Results 75overwhelming the user with a huge number of dis
overies.There are, however, a few 
ases where the number of itemsets returned is still
onsiderably high. Their large number may serve as a sign that the results 
allfor further analysis, possibly using 
lustering te
hniques [XHYC05℄ or limiting thesear
h to 
losed itemsets. For example, 
onsider dataset Bms1 with k = 4 and the
orresponding value σ∗ = 5 from Table 4.3. Extra
ting the 
losed itemsets of supportgreater or equal to σ∗ in that dataset revealed the presen
e of a 
losed itemset of
ardinality 154 with support greater than 7 in the dataset. This itemset, whoseo

urren
e by itself represents an extremely unlikely event in a random dataset,a

ounts for more than 22M non-
losed subsets with the same support among the27M reported as signi�
ant.It is interesting to observe that the results obtained for dataset Retail providefurther eviden
e for the 
on
lusions drawn in [GMMT07℄, whi
h suggested randombehavior for this dataset (although the randommodel in that work is slightly di�erentfrom ours, in that the family of random datasets also maintains the same transa
tionlengths as the real one). Indeed, no support threshold σ∗ 
ould be established formining signi�
ant k-itemsets with k = 2, 3, while the support threshold σ∗ identi�edfor k = 4 yielded as few as 6 itemsets. However, the 
on
lusion drawn in [GMMT07℄was based on a qualitative assessment of the dis
repan
y between the numbers offrequent itemsets in the random and real datasets, while our methodology 
on�rmsthe �ndings on a statisti
ally sound and rigorous basis.Observe also that for some other pairs (dataset,k) our pro
edure does not identifyany support threshold useful for mining statisti
ally signi�
ant itemsets. This is aneviden
e that, for the spe
i�
 k and for the high supports 
onsidered by our approa
h,these datasets do not present a signi�
ant deviation from the 
orresponding randomdatasets.Finally, in order to assess its robustness, we applied our methodology to randomdatasets. Spe
i�
ally, for ea
h ben
hmark dataset of Table 4.1 and for k = 2, 3, 4, wegenerated 100 random instan
es with the same parameters as those of the ben
hmark,and applied Pro
edure 4.3 to ea
h instan
e, sear
hing for a support threshold σ∗ formining signi�
ant itemsets. In Table 4.4 we report the number of times Pro
edure 4.3was su

essful in returning a �nite value for σ∗. As expe
ted, the pro
edure returned
σ∗ = ∞, in all 
ases but for 2 of the 100 instan
es of the random dataset with thesame parameters as dataset Pumsb∗ with k = 2. However, in these two latter
ases, mining at the identi�ed support threshold only yielded a very small numberof signi�
ant itemsets (one and two, respe
tively).
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σ∗ <∞Dataset k = 2 k = 3 k = 4RandomRetail 0 0 0RandomKosarak 0 0 0RandomBms1 0 0 0RandomBms2 0 0 0RandomBmspos 0 0 0RandomPumsb∗ 2 0 0Table 4.4: Results for Pro
edure 4.3 with α = 0.05, β = 0.05 for random versions ofben
hmark datasets; ea
h entry reports the number of times, out of 100 trials, thepro
edure returned a �nite value for σ∗.4.4.3 Relative e�e
tiveness of Pro
edures 4.2 and 4.3In order to assess the relative e�e
tiveness of the two pro
edures presented in theprevious se
tion, we applied them to the ben
hmark datasets of Table 4.1. Spe
i�-
ally, we 
ompared the number of itemsets extra
ted using the threshold σ∗ providedby Pro
edure 4.3, with the number of itemsets �agged as signi�
ant using the morestandard method based on Benjamini and Yekutieli's te
hnique (Pro
edure 4.2), im-posing the same upper bound β = 0.05 on the FDR.The results are displayed in Table 4.5, where for ea
h pair (dataset,k), we reportthe 
ardinality of the family R of k-itemsets �agged as signi�
ant by Pro
edure 4.2,and the ratio r = Qk,σ∗/|R|, where Qk,σ∗ is the number of k-itemsets of support atleast σ∗, whi
h are returned as signi�
ant with the methodology of Subse
tion 4.3.2.We observe that in all 
ases where Pro
edure 4.3 returned a �nite value of σ∗the ratio r is greater than or equal to 1 (ex
ept for dataset Bms1 and k = 2, anddataset Bmspos and k = 3, where r is however very 
lose to 1). Moreover, in some
ases the ratio r is rather large. Sin
e both methodologies identify signi�
ant k-itemsets among all those of support at least σmin, these results provide eviden
e thatthe methodology of Subse
tion 4.3.2 is often more (sometimes mu
h more) e�e
tive.The methodology su

eeds in identifying more signi�
ant itemsets, sin
e it evaluatesthe signi�
an
e of the entire set F(k)(σ

∗) by 
omparing Qk,σ∗ to Q̂k,σ∗ . In 
ontrast,Pro
edure 4.2 must impli
itly test 
onsiderably more hypotheses (
orresponding tothe signi�
an
e all possible k-itemsets), thus the power of the test (1-Pr(Type-IIerror)) is signi�
antly smaller.Observe that the 
ases where r = 0 in Table 4.5 
orrespond to pairs (dataset,k) forwhi
h Pro
edure 4.3 returned σ∗ =∞, that is, the pro
edure was not able to identifya threshold for mining signi�
ant k-itemsets. Note, however, that in all of these 
asesthe number of signi�
ant k-itemsets returned by Pro
edure 4.2 is extremely small



4.4. Experimental Results 77(between 1 and 3). Hen
e, for these pairs, both methodologies indi
ate that there isvery little signi�
ant information to be mined at high supports.
k = 2 k = 3 k = 4Dataset |R| r |R| r |R| rRetail 3 0 3 0 6 1.0Kosarak 1 0 1 0 12 1.0Bms1 60 0.933 64367 4.441 219706 122.9Bms2 429 1.0 25906 1.394 60927 11.72Bmspos 2 0 23 0.957 891 1.0Pumsb∗ 29 1.0 406 1.0 6288 1.001Table 4.5: Results using Test 4.2 to bound the FDR with β = 0.05 for itemsets ofsupport ≥ σmin.
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Chapter 5Maximal Dense Motif in Biologi
alSequen
esThis 
hapter fo
uses on the dis
overy of rigid motifs, whi
h 
ontain blo
ks of solid
hara
ters (solid blo
ks) separated by one or more don't 
ares. A rigid motif isdi�erent from an extensible motif in that the latter 
an 
ontain spa
ers, spe
ial
hara
ters that 
orrespond to possibly more than one 
hara
ter of the input string.On the opposite, ea
h don't 
are 
hara
ter 
orrespond to a single 
hara
ter of theinput string, so all o

urren
es of a rigid motif in the input string have the samelength.As dis
ussed in Chapter 1, the signi�
an
e of a motif has been traditionally as-sessed through its frequen
y, but the biologi
al signi�
an
e of a motif 
annot beex
lusively related to its frequen
y. In parti
ular, some very frequently o

urringmotifs 
an deemed as non signi�
ant be
ause of 
ertain aspe
ts of their stru
ture,su
h as, for example, an ex
essive number of errors in their o

urren
es. A strat-egy that returns frequent motifs with a moderate number of don't 
ares 
an thenpresumably provide a more signi�
ant set of motifs.We propose a novel approa
h for 
ontrolling the number of don't 
ares in rigidmotifs. Spe
i�
ally, we introdu
e the notion of dense motif, a frequent pattern wherethe fra
tion of solid 
hara
ters is above a given threshold. Our density notion is more�exible and general than the one 
onsidered in [Par07, ACP09℄, sin
e it allows forarbitrarily long runs of don't 
ares as long as the fra
tion of solid 
hara
ters in thepattern is above the threshold. We de�ne a natural notion of maximality for densepatterns and devise an e�
ient algorithm, 
alled madmx (pronoun
ed Mad Max ),whi
h performs 
omplete maximal dense motif extra
tion from an input sequen
e,with respe
t to user-spe
i�ed frequen
y and density thresholds.The key te
hni
al result at the 
ore of our extra
tion strategy is a 
losure property79



80 Chapter 5. Maximal Dense Motif in Biologi
al Sequen
eswhi
h a�ords the 
omplete generation of all maximal dense motifs in a breadth-�rstfashion, through an apriori -like strategy [AS94℄, starting from a relatively small setof solid blo
ks, and then repeatedly applying a suitable 
ombining operator, 
alledfusion, to pairs of previously generated motifs. In this fashion, our strategy avoidsthe generation and 
onsequent storage of intermediate patterns whi
h are not in theoutput set, whi
h ensures time and spa
e 
omplexities polynomial in the 
ombinedinput and output sizes.We performed a number of experiments on madmx to assess the biologi
al signif-i
an
e of maximal dense motifs and to 
ompare madmx against its most re
ent and
lose 
ompetitor varun [ACP09℄. For the �rst obje
tive, we used madmx to extra
tmaximal dense motifs from a number of human dna fragments. We 
ompared themotifs extra
ted against those in RepBase [JKP+05℄, the largest repository of repet-itive patterns for eukaryoti
 spe
ies, using repeatmasker [SHG04℄, a popular toolfor masking repetitive dna. The experiments show that all of our returned motifs areo

urren
es of patterns in RepBase, and fully 
hara
terize the family of sine/alurepeats (and partially the line/l1 family). This provides eviden
e that the notionof density, when applied to rigid motifs, 
aptures biologi
al signi�
an
e.Next we 
ompared the motifs produ
ed by madmx with the ones returned byvarun using the z-s
ore measure. We ran both algorithms on several families ofdna fragments, limiting varun to the generation of rigid motifs and setting theparameters so as to obtain 
omparable output sizes, with motifs listed by de
reasingz-s
ore. The experiments show that the top-m highest-ranking motifs returned bymadmx almost always feature higher z-s
ores than the 
orresponding top-m onesreturned by varun, even for large values of m, with only a modest in
rease inrunning time, whi
h may be partly due to the fa
t that 
oding of madmx is yet tobe optimized. In fairness, we must remark that varun deals also with extensiblemotifs while madmx only targets rigid motifs.This 
hapter is organized as follows. In Se
tion 5.1 several te
hni
al de�nitionsand properties of motifs with don't 
ares are given. Se
tion 5.2 proves the 
losureproperty at the base of madmx and provides a high-level des
ription of the algorithm.In Se
tion 5.3, the experimental validation of madmx is presented.5.1 Preliminary de�nitions and propertiesLet Σ be an alphabet of m 
hara
ters and let s = s[0]s[1] . . . s[n − 1] be a stringof length n over Σ. We denote the length of s with |s|. We use s[i . . . j] to denotethe substring s[i] s[i + 1] · · · s[j] of s, for i ≤ j. Chara
ters in Σ are also 
alled



5.1. Preliminary de�nitions and properties 81solid 
hara
ters. We use ◦ 6∈ Σ to denote a distinguished 
hara
ter 
alled wild 
ardor don't 
are 
hara
ter. Let ǫ denote the empty string. A pattern x is a string in
{ǫ}∪Σ∪Σ(Σ∪{◦})∗Σ. However, whenever ne
essary, we will assume that patternsare impli
itly padded to their left and right with arbitrary sequen
es of don't 
are
hara
ters.Given two patterns x, y we say that y is more spe
i�
 than x, and write x � y,i� for every i ≥ 0 either x[i] = y[i] or x[i] = ◦. Given two patterns x, y we say that
x o

urs in y at position ℓ i� x � y[ℓ . . . ℓ + |x| − 1]: we also say that y 
ontains x.For a string s, the lo
ation list Lx of a pattern x in s is the 
omplete set of positionsat whi
h x o

urs in s. We refer to f(x) = |Lx| as the frequen
y of pattern x in s.(Note that f(ǫ) = n.) As in [Ukk07℄, the translated representation of the lo
ation list
Lx = {l0, l1, l2, . . . , lk} is τ(Lx) = {l1− l0, l2− l0, . . . , lk− l0}. Given two patterns x, y,we say that y subsumes x in s if f(x) = f(y) and y 
ontains x. As a 
onsequen
e,if y subsumes x then τ(Lx) = τ(Ly). A pattern x is maximal if it is not subsumedby any other pattern y. (We observe that this notion of maximality 
oin
ides withthat of [PCGS05℄.) Given a pattern x, its maximal extension M(x) is the maximalpattern that subsumes x, whi
h 
an be shown to be unique [PCGS05℄.In what follows, we 
all solid blo
k a string in Σ+ and a don't 
are blo
k a stringin ◦+. Furthermore, given a pattern x, d
(x) denotes the number of don't 
are
hara
ters 
ontained in x, while s
(x) denotes the number of solid 
hara
ters in x.De�nition 5.1. The density δ(x) of x is: δ(x) = s
(x)/|x|. Given a (density)threshold ρ, 0 < ρ ≤ 1, we say that a pattern x is dense if δ(x) ≥ ρ.Note that a solid blo
k is a dense pattern with respe
t to every threshold ρ. Itis reasonable to 
on
entrate the attention on dense patterns that are not subsumedby any other dense pattern, sin
e they are the most interesting dense representativesin the equivalen
e 
lasses indu
ed by �sharing� the same translated representation;these representatives are de�ned below.De�nition 5.2. A dense pattern x is a maximal dense pattern in s if it is notsubsumed by any other dense pattern x′ 6= x.Observe that a maximal dense pattern x needs not be a maximal pattern inthe general sense, sin
e M(x) might be a nondense pattern. However, every densepattern x is subsumed by at least one maximal dense pattern. In fa
t, all of themaximal dense patterns that subsume x are dense substrings ofM(x), namely, thosethat 
ontain x and are not substrings of any other dense substring ofM(x). (TODO:Andrea: la pre
edente non e' una prova rigorosa)We want to stress thatthere might be several maximal dense patterns that subsume x. As an example,
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al Sequen
esfor ρ = 2/3, the dense pattern x = B in the string S = AdBeCfAgBhC is subsumedby maximal dense patterns A ◦ B and B ◦ C that are not maximal patterns, while
M(x) = A ◦ B ◦ C is not dense.De�nition 5.3. Given a frequen
y threshold σ and a density threshold ρ, a pattern
x is a dense maximal motif in s if x is a maximal dense pattern in s with respe
t to
ρ, and f(x) ≥ σ. A dense maximal motif for ρ = 1 is also referred to as maximalsolid blo
k. In the rest of the 
hapter, we will omit referen
ing the input string swhen 
lear from the 
ontext.The problem we ta
kle is then the following: we are given an input string s,a frequen
y threshold σ, and a density threshold ρ, and we want to �nd all themaximal dense motifs in s. We restri
t our attention to dense motifs be
ause thenotion of density provides a more general way to 
ontrol the number of don't 
aresthat appear in a motif, and the number of don't 
ares in a motif is related to itsbiologi
al signi�
an
e.An important property of maximal dense patterns, whi
h we will exploit in ourmining strategy, is that all of their solid blo
ks are maximal solid blo
ks. Thisproperty is stated in the following proposition.Proposition 5.4. Let x be a maximal dense pattern with respe
t to a density thresh-old ρ, and let b = x[i . . . j] be a solid blo
k in x su
h that x[i− 1] = x[j + 1] = ◦ and
j ≥ i. Then, b is a maximal solid blo
k.Proof. For the sake of 
ontradi
tion, assume that b is not a maximal solidblo
k. Consider M(x) and let x̃ = M(x)[ℓ1 . . . ℓ2] be the shortest substringof M(x) subsuming x made of 
omplete solid blo
ks, that is, su
h that with
M(x)[ℓ1 − 1] = M(x)[ℓ2 + 1] = ◦. By known results [Ukk07, Pis02℄, all 
ompletesolid blo
ks in M(x), hen
e in x̃, are maximal solid blo
ks. Thus x̃ 
ontains moresolid 
hara
ters than x, and no more don't 
ares than x. This implies that x̃ isstri
tly denser that x. This 
ontradi
ts the hypothesis that x is maximal dense withrespe
t to ρ. �

5.2 An algorithm for MAximal Dense Motif eXtra
-tionIn this se
tion we des
ribe an algorithm, 
alled madmx (pronoun
ed Mad Max ), formaximal dense motif extra
tion. The algorithm adopts a breadth-�rst apriori -like



5.2. An algorithm for MAximal Dense Motif eXtra
tion 83strategy [AS94℄, similar in spirit to the one developed in [ACP09℄, using maximalsolid blo
ks as building blo
ks by virtue of Proposition 5.4. madmx operates byrepeatedly 
ombining together, in a suitable fashion, pairs of maximal dense motifs,and extra
ting from the 
ombinations less frequent maximal dense motifs.A key notion for the algorithm, underlying the aforementioned 
ombining oper-ations, is the fusion of 
hara
ters/patterns.De�nition 5.5. Given three 
hara
ters c, c1, c2 ∈ Σ∪{◦}, we say that c is the fusionof c1 and c2, and write c = c1 ▽ c2, if one of the following holds:1. c = c1 = c2;2. c1 = ◦, c = c2 6= ◦;3. c = c1 6= ◦, c2 = ◦.Observe that if c1, c2 ∈ Σ and c1 6= c2, c1▽ c2 is not de�ned.The above notion of fusion generalizes to patterns as follows.De�nition 5.6. Given three patterns x, y, z and an integer d, we say that z is the
d-fusion of x and y, and write z = x▽dy, if z 
an be obtained by removing the leadingand trailing don't 
are 
hara
ters from the pattern m de�ned as m[i] = x[i+d]▽y[i],for all indi
es i.Note that if d > |x| we have x▽d y = x ◦d′ y for d′ = d − |x|, while if d < −|y|we have x▽d y = y ◦d′′ x for d′′ = −d− |y|.The breadth-�rst strategy adopted by our algorithm 
ru
ially relies on the fol-lowing theorem, whi
h highlights the stru
ture of dense motifs:Theorem 5.7. Let x be a maximal dense motif with d
(x) > 0. Then:(a) there exists a maximal solid blo
k b in x su
h thatM(x) =M(b), or(b) there exist two maximal dense motifs y1, y2 su
h that:

• M(x) =M(y1▽d y2), for some d;
• there are two maximal solid blo
ks b1, b2 in x and an integer d̂ > 0 su
hthat b1 is a maximal solid blo
k in y1, b2 is a maximal solid blo
k in y2,and b1 ◦d̂ b2 is 
ontained in y1▽d y2;
• f(x) < min{f(y1), f(y2)};
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al Sequen
esFor the proof of Theorem 5.7 we need to de�ne another type of pattern 
ombi-nation, namely the operation of merge between two patterns, whi
h is similar to theone introdu
ed in [PCGS05℄. Given two 
hara
ters c1, c2, we de�ne the operator ⊕between them su
h that c1 ⊕ c2 = ◦, if c1 6= c2, and c1 ⊕ c2 = c1 = c2, otherwise.De�nition 5.8. Given two patterns x, y and an integer d, the d-merge of x and yis the pattern z = x⊕d y whi
h 
an be obtained by removing all leading and trailingdon't 
ares from the pattern m de�ned as m[i] = x[i + d]⊕ y[i] for all i.We want to stress the di�eren
e between the notions of merging and fusion: themerge of two patterns x, y is always well de�ned and more general than x, y, whilethe fusion of x, y may not exist and, if it does, is more spe
i�
 than x, y.For the proof of Theorem 5.7 we also need the property established by the fol-lowing lemma.Lemma 5.9. Let x and y be maximal patterns, and d be an integer su
h that z =

x ⊕d y 6= ǫ. Then z is a maximal pattern. Moreover, if z 6= x (resp., z 6= y) then
f(z) > f(x) (resp., f(z) > f(y)).Proof. First we prove that z is maximal. By 
ontradi
tion, suppose that this is notthe 
ase. Then, there exists a position i su
h that z[i] = ◦ and we 
an repla
e the
◦ with a solid 
hara
ter c without de
reasing the frequen
y of the pattern. (Notethat the position of the substitution 
an be to the left of the �rst solid 
hara
ter in
z or to the right of the last 
hara
ter in z.) Sin
e x and y are more spe
i�
 than z,to every o

urren
e of x and y in the string 
orresponds an o

urren
e of z. Hen
e,every o

urren
e of x (resp., y) in the string, 
ontains c in its i + dth (resp., ith)position. Therefore, by maximality of x and y, it must be z[i] = x[i + d] = y[i] = c,whi
h is a 
ontradi
tion. The relations between the frequen
ies of x, y and z followtrivially by their maximality. �We are now ready to prove the theorem.Proof.[Theorem 5.7℄ Given a pattern x and two nonnegative integers i ≤ j, we let
x∗[i . . . j] denote the pattern obtained by removing all the leading and trailing don't
are 
hara
ters from x[i . . . j]. Sin
e x is a maximal dense pattern and dc(x) > 0, itis easy to see that there exist two dense patterns x1, x2 and an integer d > 0 su
hthat x = x1 ◦d x2, hen
e there exists an index s1 > 0 su
h that x∗[0 . . . s1 − 1] and
x∗[s1 + 1 . . . |x| − 1] are dense. We 
all these two patterns the level-1 de
ompositionof x (observe that many su
h de
ompositions may exist). Also, we let ℓ1 = 0 and
r1 = |x| − 1. Now, 
onsider the following iterative pro
ess:
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tion 851. If in the level-i de
omposition of x both x∗[ℓi . . . si − 1] and x∗[si + 1 . . . ri]have frequen
y stri
tly greater than f(x), or at least one of x∗[ℓi . . . si−1] and
x∗[si + 1 . . . ri] is a solid blo
k with frequen
y equal to f(x), then terminate;2. Otherwise, let y = x∗[ℓi+1 . . . ri+1] be (an arbitrary) one of x∗[ℓi . . . si − 1] or
x∗[si + 1 . . . ri] whi
h is not a solid blo
k and has frequen
y equal to f(x).Sin
e y is dense, there exists an index si+1, ℓi+1 < si+1 < ri+1 su
h that
x∗[ℓi+1 . . . si+1 − 1] and x∗[si+1 + 1 . . . ri+1] are both dense. Call these twopatterns the level-(i + 1) de
omposition of x. Set i = i + 1 and go to Step 1.Assume that the de
omposition pro
ess ends by �nding a solid blo
k b thatis a solid blo
k in x and has f(b) = f(x). Then, M(b) = M(x) and the the-orem follows. Otherwise, at the last level j of the de
omposition, we have that

f(x) < min {f(x∗[ℓj . . . sj − 1]), f(x∗[sj + 1 . . . rj ])}. In this latter 
ase, as ex-plained in Se
tion 5.1 (after De�nition 5.2), we 
an determine two maximal densepatterns y1, y2 su
h that y1 
ontains x∗[ℓj . . . sj − 1], y2 
ontains x∗[sj + 1 . . . rj ],and with M(y1) = M(x∗[ℓj . . . sj − 1]) and M(y2) = M(x∗[sj + 1 . . . rj]). Sin
e
f(y1) = f(x∗[ℓj . . . sj − 1]) and f(y2) = f(x∗[sj + 1 . . . rj]), we have that f(x) <

min {f(y1), f(y2)}. Observe that by 
onstru
tion there must exist two solid blo
ks
b1, b2 in x and an integer d̂ su
h that b1 is a solid blo
k in y1, b2 is a solid blo
k in
y2, and b1 ◦d̂ b2 is a sequen
e of two solid blo
ks in x. In fa
t, b1 (resp., b2) is the last(resp., the �rst) solid blo
k of x∗[ℓj . . . sj − 1] (resp., x∗[sj + 1 . . . rj ]).Next, we show that there exists a d su
h that the d-fusion y1▽d y2 is well de�ned,
ontains b1 ◦d̂ b2, andM(y1 ▽d y2) =M(x). We pro
eed as follows. Let us �align�
M(x) and y1 so to mat
h the o

urren
es of b1 in both patterns. Then, for a 
ertaininteger p,M(x)[i+p] 
orresponds to y1[i]. Assume, for the sake of 
ontradi
tion, thatthere exists an index j su
h thatM(x)[j + p] is not more spe
i�
 than y1[j]. Then,Lemma 5.9 implies that z =M(x)⊕pM(y1) 6=M(y1), whi
h 
ontains x∗[ℓj . . . sj −
1], is maximal and has frequen
y stri
tly greater than f(y1), whi
h is impossiblebe
ause we have 
hosen y1 su
h that M(x∗[ℓj . . . sj − 1]) = M(y1) and therefore
f(x∗[ℓj . . . sj − 1]) = f(y1). Therefore,M(x) 
ontains y1. A similar argument showsthatM(x) 
ontains y2.Sin
e y1 and y2 are 
ontained inM(x), there must exist a d su
h that y1▽d y2 iswell de�ned and 
an be aligned withM(x) in su
h a way to mat
h the blo
ks b1 and
b2 of y1 and y2 with the 
orresponding blo
ks in M(x). Moreover, M(x) 
ontains
y1 ▽d y2, hen
e f(y1 ▽d y2) ≥ f(M(x)) = f(x). However, sin
e y1 ▽d y2 
ontainsboth x∗[ℓj . . . sj − 1] and x∗[sj + 1 . . . rj ], it 
ontains also x∗[ℓj . . . rj ], whi
h, by thede
omposition pro
ess, has frequen
y equal to f(x). Therefore, f(y1▽d y2) ≤ f(x),
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al Sequen
esand the theorem follows sin
e f(y1▽d y2) = f(x). �In essen
e, Theorem 5.7 guarantees that we 
an �nd any maximal dense motif
x either within M(b), for some maximal solid blo
k b, or by d-fusing two higher-frequen
y maximal dense motifs y1, y2, for some d, �nding z =M(y1▽d y2) and thenpossibly �trimming� z on both sides to obtain x. Also, the theorem shows that in thelatter 
ase the trimmed sequen
e must 
ontain at least one maximal solid blo
k b1 of
y1 and one maximal solid blo
k b2 of y2. Moreover, we 
an disregard those d-fusions
y1▽d y2 for whi
h no pair of dense subsequen
es b1 of y1 and b2 of y2 exists su
h that
b1 ◦d̂ b2 
ontained in y1▽d y2 for some d̂ > 0.Algorithm 5.1: madmxInput: String s, frequen
y threshold σ, density threshold ρOutput: Maximal dense motifs1 previous ← ∅, current ← ∅, next ← ∅ ;2 blocks ← maximal solid blo
ks of s with frequen
y ≥ σ;3 for ea
h b ∈ blocks do4 �ndM(b) ;5 current ← current∪ extra
tMaximalDense(M(b));6 while current 6= ∅ do7 for ea
h x1 ∈ current do8 for ea
h x2 ∈ previous ∪ current do9 for ea
h d s.t. z = x1 ▽d x2 is a valid fusion do10 �ndM(z);11 DM← extra
tMaximalDense(M(z));12 for ea
h x ∈ DM do13 if f(x) ≥ σ and x /∈ previous ∪ current then next ← next ∪ {x};14 previous ← previous ∪ current ;15 current ← next ; next ← ∅;16 return previous ;madmx implements the strategy inspired by Theorem 5.7 and pseudo
ode isgiven below as Algorithm 5.1. It employs three (initially empty) sets previous, 
ur-rent, and next. In Line 2, the algorithm �rst stores the maximal solid blo
ks b in
s for the given frequen
y in the set blo
ks (see Se
tion 5.1). Then, it extra
ts allof the appropriate maximal dense motifs fromM(b) in lines 3�5, using the fun
tionextra
tMaximalDense, as implied by Theorem 5.7(a). Finally, lines 6�15 implementthe strategy as implied by Theorem 5.7(b). (In Line 9 a d-fusion y1▽d y2 is 
onsid-ered valid if it satis�es the se
ond property of Theorem 5.7(b).) Given a maximalmotif x, extra
tMaximalDense returns all the maximal dense motifs in x whi
h sat-isfy the se
ond 
ondition of Theorem 5.7. In pra
ti
e, when 
alled on Line 5, itreturns all the maximal dense substrings of M(b) that 
ontains b. When 
alled on
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tion 87Line 11, the maximal motif passed in input will be x = M(y1 ▽d y2). In this 
aseextra
tMaximalDense returns all the maximal dense substrings of x that satisfy these
ond property of Theorem 5.7(b), and thus 
ontain at least one blo
k b1 of y1 andat least one blo
k b2 of y2.The 
orre
tness of Algorithm madmx is proved by the following.Theorem 5.10. Given a string s, frequen
y threshold σ and density threshold ρ,Algorithm madmx produ
es in output all the maximal dense motifs in s.Proof. Let assume that there exists a maximal dense motif x that is not returned bymadmx 
Sin
e madmx produ
es all the maximal dense motifs that 
an be generatedfrom M(b), where b is a maximal solid blo
k (lines 3�6), if x is not produ
ed inoutput then there exists a pair of maximal dense motifs y1, z1 su
h that x 
an befound fromM(y1▽d z1), where y1, z1 satisfy the properties of Theorem 5.7(b), su
hthat one of y1, z1 is not produ
ed by madmx 
Let assume that y1 is the maximaldense motif not produ
ed by madmx 
We 
an apply the same reasoning to y1, thuswe 
an �nd another maximal dense motif y2 not produ
ed by madmx�teratingthis reasoning, we 
an �nd a sequen
e y1, y2, . . . , yi, . . . of dense motifs su
h that(i) ∀i, yi are maximal dense motifs (ii) f(yi+1) > f(yi), and (iii) yi is derived fromthe fusion of yi+1 with another maximal dense motif Theorem 5.7 implies that thissequen
e must be �nite, and that the last element of this sequen
e, ỹ, is either asolid blo
k or 
an be found in the maximal extension of a solid blo
k. Therefore ỹhas been generated by the algorithm (lines 3�5), that is a 
ontradi
tion. �An important issue for the e�
ien
y of madmx is that it needs to 
ompute theexa
t frequen
y of ea
h generated pattern. For what 
on
erns the fusion operationof two patterns x1, x2 in Line 10, observe that a simple 
omputation on the pairs
(ℓ1, ℓ2) ∈ Lx1 ×Lx2 is su�
ient to yield the frequen
ies of all the valid fusions of twopatterns. However, given z = x1 ▽d x2, for a maximal dense pattern w whi
h doesnot 
ontain z in its entirety, we 
an only 
on
lude that f(w) ≥ f(z).Therefore, in the 
ourse of the algorithmwe generate two 
lasses of maximal densemotifs: those whose exa
t frequen
ies are known (�nal motifs), and those for whi
honly a lower bound to their frequen
ies is known (tentative motifs). Algorithm 5.1is modi�ed a

ordingly, requiring that x1 and x2 in lines 8 and 9 of the pseudo
odebe �nal. Whenever the set current 
ontains no �nal motifs,we 
an label as �nal themotif in current with the highest lower bound to its frequen
y, and 
ontinue withthe generation. The 
orre
tness of this assumption is proved by the following.Theorem 5.11. Let x be the tentative motif x with the highest lower bound lb(x) onits frequen
y f(x) when current does not 
ontain any �nal motif. Then f(x) = lb(x).
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al Sequen
esProof. For the sake of 
ontradi
tion, assume that f(x) 6= lb(x). In parti
ular, itmust be f(x) > lb(x). From Theorem 5.7 we know that there must be two densemotifs x1, y1 with min {f(x1), f(y1)} > f(x) and an integer d su
h that x 
an beobtained, with its exa
t frequen
y, from M(x1 ▽d y1). If both x1 and y1 havealready been moved to the previous list from Algorithm 5.1, we have f(x) = lb(x).The only possibility is then that at least one of x1 and y1 has not been moved to
previous. Let x1 be this dense motif. Then x1 is either a tentative motif or has notbeen generated by any fusion yet. Applying the same reasoning to x1, we have thatthere exists two dense motifs x2, y2 su
h that at least one of them (let say x2) hasnot been put in previous, min {f(x2), f(y2)} > f(x1) and x1 
an be obtained, withits real frequen
y, from a valid fusion of x2, y2. Iterating this reasoning, we 
an �nda sequen
e x1, x2, . . . , xi, . . . of dense motifs su
h that (i) ∀i, xi has not been put in
previous, (ii) f(xi+1) > f(xi), and (iii) xi is derived from the fusion of xi+1 withanother pattern. Theorem 5.7 implies that this sequen
e must be �nite, and thatthe last element of this sequen
e, x̃, is either a solid blo
k or 
an be found in themaximal extension of a solid blo
k. Therefore x̃ has been generated by the algorithm(lines 3�5) with its 
orre
t frequen
y, thus it is in previous, that is a 
ontradi
tion. �A 
rude upper bound on the running time of madmx 
an be derived by observingthat, for ea
h pair of dense maximal motifs in output, the time spent during all theoperations 
on
erning that pair is (naively) O (n3), where n is the length of the inputstring. If P patterns are produ
ed in output, the overall time 
omplexity is O (n3P 2).5.3 Experimental validation of MADMXWe developed a �rst, non-optimized, implementation of madmx in C++ also in
ludingan additional feature whi
h eliminates, from the set of initial maximal solid blo
ks,those shorter than a given threshold minℓ. The purpose of this latter heuristi
s isto speed up motif generation driving it towards the dis
overy of (possibly) moresigni�
ant motifs, with the ex
lusion of spurious, low-
omplexity ones. (The 
ode isavailable for download at http://www.dei.unipd.it/wdyn/?IDsezione=4534.)We performed two 
lasses of experiments to evaluate how signi�
ant is the setof motifs found using our approa
h. The �rst 
lass of experiments, des
ribed inSe
tion 5.3.1, 
ompares our motifs with the known biologi
al repetitions available inRepBase [JKP+05℄, a very popular genomi
 database. The se
ond 
lass of experi-ments, des
ribed in Se
tion 5.3.2, aims at 
omparing the motifs extra
ted by madmxwith those extra
ted by varun using the same z-s
ore metri
 employed in [ACP09℄
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al signi�
an
e.5.3.1 Evaluating signi�
an
e by known biologi
al repetitionsRepBase [JKP+05℄ is one of the largest repositories of prototypi
 sequen
es repre-senting repetitive dna from di�erent eukaryoti
 spe
ies, 
olle
ted in several di�erentways. RepBase is used as a referen
e 
olle
tion for masking and annotation of repet-itive dna through popular tools su
h as repeatmasker [SHG04℄. repeatmaskers
reens an input dna sequen
e s for simple repeats and low 
omplexity portions,and it uses RepBase to s
reen for interspersed repeats. Sequen
e 
omparisons areperformed through Smith-Waterman s
oring. repeatmasker returns a detailedannotation of the repeats o

urring in s, and a modi�ed version of s in whi
h all ofthe annotated repeats are masked by a spe
ial symbol (N or X). With the 
urrentversion of RepBase, on average, almost 50% of a human genomi
 dna sequen
e willbe masked by the program [SHG04℄.Most of the interspersed repeats found by repeatmasker belong to the families
alled sine/alu and line/l1: the former are Short INterspersed Elements that arerepetitive in the dna of eukaryoti
 genomes (the Alu family in the human genome);the latter are Long Interspersed Nu
leotide Elements, whi
h are typi
ally highlyrepeated sequen
es of 6K�8K bps, 
ontaining rna polymerase II promoters. Theline/l1 family forms about 15% of the human genome.We have 
ondu
ted an experimental study using madmx and repeatmaskeron Human Glutamate Metabotropi
 Re
eptors hgmr 1 (410277 bps) and hgmr 5(91243 bps) as input sequen
es. We have downloaded the sequen
es from the Mar
h2006 release of the UCSC Genome database (http://genome.u
s
.edu). repeat-masker version was open-3.2.7, sensitive mode, with the query spe
ies assumed tobe homologous; it ran using blastp version 2.0a19MP-WashU, and RepBase update20090120.The experiments to assess the biologi
al signi�
an
e of the maximal dense mo-tifs extra
ted by madmx involved three separate stages. In the �rst stage, we ranrepeatmasker on the input sequen
es hgmr 1 and hgmr 5, fo
using the atten-tion only on interspersed repeats using RepBase. One of the output �les (.out) ofrepeatmasker 
ontains the list of found repeats, and provides, for ea
h o

ur-ren
e, the substring s[i . . . j] of the input sequen
e s whi
h is lo
ally aligned with (asubstring of) the repeat.In the se
ond stage, we ran madmx on the same DNA sequen
es, with densitythreshold ρ = 0.8, frequen
y threshold σ = 4, and minℓ = 15. In order to �lter outsimple repeats and low 
omplexity portions, whi
h are dealt with by repeatmasker
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al Sequen
eswithout resorting to RepBase, we modi�ed madmx eliminating periodi
 maximalsolid blo
ks (with short periods), whi
h are the seeds of simple repeats. Then, weidenti�ed the o

urren
es of the motifs returned by madmx in the input sequen
es,using repeatmasker as a pattern mat
hing tool (i.e., repla
ing RepBase with theset of motifs returned by madmx as the database of known repeats). The underlyingidea behind this use of repeatmasker was to employ the same lo
al alignmentalgorithms, so to make the 
omparison fairer.In the third stage, we 
ross-
he
ked the intervals asso
iated with the o

urren
esof the RepBase repeats against those asso
iated with the o

urren
es of our motifs.Surprisingly, madmx was able to identify and 
hara
terize all of the intervals of theknown sine/alu repeats in hgmr 1 and hgmr 5 (respe
tively, 56 repeats plus anextra un
lassi�ed for hgmr 1, and 20 plus an extra un
lassi�ed for hgmr 5). Theremaining o

urren
es of the motifs permitted to identify 29 repeats out of 78 of theline/l1 family in hgmr 1.The 
hoi
e of the parameters ρ, σ, and minl was done using values that seemedreasonable to us, and the results obtained seem to 
on�rm our de�nition. However,a more in depth study of the e�e
tivenes5.3.2 Evaluating signi�
an
e by statisti
al z-s
ore rankingThe z-s
ore is the measure of the distan
e in standard deviations of the out
omeof a random variable from its expe
tation. Consider a dna sequen
e s of length nas if it was generated by a stationary, i.i.d. sour
e with equiprobable symbols; anapproximation to the z-s
ore for a motif of length m that 
ontains c solid 
hara
tersand appears f times in s is given by Z = f−(n−m+1)×p√
(n−m+1)×p×(1−p)

, where p = (1/4)c. Thismetri
 was used in [ACP09℄ to assess the signi�
an
e of the motifs extra
ted byvarun and to rank them in the output. varun is designed to extra
t extensiblemotifs from one or more input sequen
es, and works by 
onverting the input into asequen
e of possibly overlapping 
ells, built during an initialization phase, so thata maximal extensible pattern 
orresponds to a sequen
e of 
ells. All the sequen
esof 
ells 
orresponding to maximal extensible patterns are fund during an iterationphase.We employed the 
ode for varun provided by the authors to extra
t the rigidmotifs from the dna sequen
es analyzed in [ACP09℄. We then ran madmx on thesame sequen
es using the same frequen
y threshold σ, and setting the minimumdensity threshold ρ in su
h a way to obtain a 
omparable yet smaller output size.In this fashion, we tested the ability of madmx to produ
e a su

in
t yet signi�
antset of motifs, by virtue of its more �exible notion of density.



5.3. Experimental validation of MADMX 91The results are shown in Table 5.1 and Table 5.2. For varun we used D = 1,thus allowing at most one don't 
are between two solid 
hara
ters, and ran madmxwith minℓ = 1, so to obtain the 
omplete family of maximal dense motifs. In thetable, there is a row of the table for ea
h sequen
e (identi�ed in the �rst 
olumn).Ea
h sequen
e, whose total length is reported in the se
ond 
olumn, is obtained asthe 
on
atenation of a number of smaller subsequen
es, reported in the third 
olumn.We used the 
on
atenation of input sequen
es sin
e madmx is designed to run onone input sequen
e. On ea
h sequen
e, both tools were run with the same frequen
ythreshold σ, and the table reports for both the output size in terms of the numberof motifs returned and the exe
ution time in se
onds. Also, for madmx, the tablereports the density threshold ρ used in ea
h experiment.varun madmxname length # σ |output| time ρ |output| timea
e2 500 1 2 1866 3s 0.7 1762 18sap1 500 1 2 1555 1s 0.7 1304 5sgal4 3000 6 4 9764 12s 0.67 7606 67sgal4(∗) 3000 6 4 9764 12s 0.65 11733 191suasgaba 1000 2 2 4586 30s 0.70 4194 90sTable 5.1: Results of the 
omparison with varun: output size and running time.best top-m z-s
oresname length # σ m=10 m=50 m=100 m∗ m̂a
e2 500 1 2 10 50 100 1571 1067ap1 500 1 2 10 50 100 392 13gal4 3000 6 4 10 49 99 16 16gal4(∗) 3000 6 4 10 50 100 9764 301uasgaba 1000 2 2 10 50 100 175 175Table 5.2: Results of the 
omparison with varun: z-s
ores. (TODO: Andrea:add 
olumn m=1000)For ea
h experiment, we 
ompared the best top-m z-s
ores, with m = 10, 50, and
100, as follows. Note that, in general, the top-m motifs found by madmx and varundi�er. Thus, we let zi

M (resp., zi
V ) be the z-s
ore of the ith motif in de
reasing z-s
oreorder obtained by madmx (resp., varun). For ea
h m, the table reports how manytimes it was zi

M ≥ zi
V , for 1 ≤ i ≤ m. Also, 
olumn m∗ (resp., 
olumn m̂) gives themaximum m su
h that zi

M ≥ zi
V (resp., zi

M > zi
V ) for every 1 ≤ i ≤ m.The results of the experiment show that even when madmx is 
alibrated to yielda slightly smaller output, the quality of the motifs extra
ted, as measured by the
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al Sequen
esz-s
ore, is higher than those output by varun. Indeed, for sequen
es a
e2 anduasgaba a very large pre�x of the top-ranked motifs extra
ted by madmx featuresstri
tly greater z-s
ores of the 
orresponding top-ranked ones extra
ted by varun.In fa
t, for all of the four sequen
es, at least the thirteen top-ranked motifs enjoythis property. To shed light on the slightly worse performan
e of madmx on gal4,we re-ran madmx with a di�erent density threshold, so to obtain a slightly largeroutput (see row gal4(∗)). In this 
ase, the top-301 motifs extra
ted by madmx havez-s
ore stri
tly greater than the 
orresponding motifs extra
ted by varun, while theexe
ution time remains still a

eptable.For all runs, the top z-s
ore of a motif dis
overed by madmx is 
onsiderablyhigher than the one returned by varun. Spe
i�
ally, on a
e2 our best z-s
ore is387 763 vs. 12 027 of varun; on ap1, we have 12 027 vs. 1 490; on gal4 it is 75 vs.28; on gal4(∗) it is 150 vs. 28; on uasgaba we have 134 532 vs. 67 059. This re�e
tsthe high sele
tivity of madmx, whi
h is to be attributed mostly to adoption of amore �exible density 
onstraint.We must remark that madmx (in its 
urrent nonoptimized version) is slowerthan varun, but it still runs in time a

eptable from the point of view of a user.To further investigate the tradeo� between exe
ution time and signi�
an
e of thedis
overed motifs, we repeated the experiments running madmx with minℓ = 2 and
ρ = 0.65, for all sequen
es. The running time of madmx was almost halved, whilethe small output produ
ed still featured high quality. Notably, for sequen
es a
e2,ap1, and uasgaba the top-100 motifs extra
ted by madmx have z-s
ore greater orequal than the 
orresponding ones returned by varun.We also have attempted a 
omparison between varun and madmx on longersequen
es (su
h as hgmr 1) at higher frequen
ies (sin
e, unfortunately, varun doesnot seem to be able to handle low frequen
ies on very long sequen
es). Even allowinga higher number of don't 
ares between solid 
hara
ters (D = 2) for the motifs ofvarun, all of the top-m z-s
ores featured by the motifs extra
ted by madmx aregreater than or equal to the 
orresponding s
ores in the ranking of varun, with mrea
hing the size of varun's output. The small values of D 
onsidered (D = 1, 2) are
onsistent with the experiments reported in [ACP09℄ for the input DNA sequen
eswe 
onsidered. In [ACP09℄ those values have been shown to produ
e biologi
alsigni�
ant motifs. In fairness, we remark that varun was designed to work at itsbest on protein sequen
es, while madmx's main target are dna sequen
es. Hen
e,these two tools should be regarded as 
omplementary. Moreover, varun has theadvantage of retrieving �exible motifs, while madmx fo
uses only on rigid ones.



Chapter 6Signi�
antly Mutated Pathways inBiologi
al NetworksIn this 
hapter we propose a rigorous framework for de novo identi�
ation of sig-ni�
antly mutated subnetworks. The naïve approa
h is to examine mutations onall subnetworks, or all subnetworks of a �xed size and to apply statisti
al standardmulti-hypothesis testing. This approa
h is problemati
. First, the enumeration ofall su
h subnetworks is prohibitive even for subnetworks of reasonable size. Se
-ond, the extremely large number of hypotheses that are tested makes it di�
ult toa
hieve statisti
al signi�
an
e. Finally, biologi
al intera
tion networks typi
ally havesmall diameter due to the presen
e of hubs, genes of high degree. There are reportsthat 
an
er-asso
iated genes have more intera
tion partners than non-
an
er genes[L+07a, JB06℄, and indeed highly mutated 
an
er genes like TP53 have high degreein most intera
tion networks (e.g. the degree of TP53 in HPRD is 238). Su
h 
or-relations might lead to a large number of �uninteresting� subnetworks being deemedsigni�
ant, sin
e any subnetwork 
ontaining an highly mutated hub will be returnedas signi�
ant.Our framework employs two strategies to over
ome the di�
ulties des
ribedabove. First, we formulate an in�uen
e measure between pairs of genes in the net-work using a di�usion pro
ess de�ned on the graph. This quantity 
onsiders a geneto in�uen
e another gene if they are both 
lose in distan
e on the graph and thenumber of paths between them is relatively high 
ompared to all paths starting fromone of the two genes. We use this measure to build a smaller in�uen
e graph thatin
ludes only the mutated genes but en
odes the neighborhood information from thelarger network. We then identify signi�
ant subnetworks using two te
hniques. Inthe 
ombinatorial model we 
onsider a graph in whi
h ea
h mutated gene is rep-resented by a node, and two genes are 
onne
ted if the in�uen
e between them is93
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antly Mutated Pathways in Biologi
al Networkslarger then some threshold. We formulate on this graph the 
onne
ted maximum
overage problem of �nding the 
onne
ted subgraph that is altered in the highestnumber of patients. We show that this problem is NP-hard and des
ribe an e�
ientapproximation algorithm. We then derive an alternative approa
h, the enhan
edin�uen
e model, in whi
h the in�uen
e between pairs of genes is enhan
ed by thenumber of mutations observed on these genes. Again we 
onsider a graph on the setof mutated genes with edges 
onne
ting pairs of genes with enhan
ed in�uen
e abovea given threshold. Sin
e the mutation information is already en
oded in the edgeweights, the 
omputational problem is redu
ed to just �nding 
onne
ted 
omponentsin the graph. Finally, we derive a two-stage multiple hypothesis test that mitigatesthe testing of a large number of hypotheses by fo
using on the number of dis
overedsubnetworks of a given size rather than on individual subnetworks. We also showhow to estimate the false dis
overy rate (FDR) in
urred by this test.We tested our approa
h on the HPRD human intera
tion network using somati
mutation data from two re
ently published studies: (i) 601 genes in 91 glioblastomamultiforme patients from The Can
er Genome Atlas (TCGA) proje
t; (ii) 623 genesin 188 lung adeno
ar
inoma patients sequen
ed during the Tumor Sequen
ing Proje
t(TSP). In both datasets, we identify statisti
ally signi�
ant mutated subnetworksthat are enri
hed for genes on pathways known to be important in these 
an
ers,in
luding the p53 and RTK/RAS/PI(3)K pathways. We also identify the Not
hsignaling pathway as signi�
antly mutated in the lung samples. Not
h signaling isknown to be deregulated in a number of 
an
ers, but was not reported as mutatedin the TSP publi
ation. Our work is the �rst, to our knowledge, to propose a
omputationally e�
ient strategy for de novo identi�
ation of statisti
ally signi�
antmutated subnetworks. We anti
ipate that our approa
h will �nd in
reasing use as
an
er genome studies in
rease in size and s
ope.The rest of the 
hapter is organized as follows: in Se
tion 6.2 the in�uen
e graphis de�ned, while Se
tion 6.3 presents the two methods we design to �nd signi�
antlymutated pathways. Se
tion 6.4 presents the statisti
al method we design to addressthe signi�
an
e of our �ndings, and Se
tion 6.5 illustrates the results we obtainedwith our method.The results presented in this 
hapter were published in a preliminary versionin [VUR09, VUR10℄.



6.1. Mathemati
al model 956.1 Mathemati
al modelWe model the intera
tion network by a graph G = (V, E), where the verti
es in
V represent individual proteins (and their asso
iated genes), and the edges in Erepresent (pairwise) protein-protein or protein-DNA intera
tions. Let T ⊆ V be thesubset of genes that have been tested, or assayed, for mutations in a set S of samples(patients). The size of T will vary by study; e.g. some re
ent works resequen
edhundreds of genes [Net08, D+08℄ while others examine nearly all known protein-
oding genes in the human genome [W+07, J+08, P+08℄. We assume that ea
h gene
g is assigned one of two labels, mutated or normal, in ea
h sample. Let Mi denotethe subset of genes in T that are mutated in the ith sample, for i = 1, . . . |S|. Let Sjbe the samples in whi
h gene gj ∈ T is mutated, for j = 1, . . . , |T |, let m =

∑

i |Mi|be the total number of o

urren
es of altered genes observed in all samples.We de�ne a pathway or subnetwork to be a 
onne
ted subgraph of G. Note thatthis de�nition mat
hes the 
ommon biologi
al usage of the term where pathwaysmay have arbitrary topology in the graph, and are not restri
ted to be linear 
hainsof verti
es. We generally do not know whether more than one gene must be mutatedto perturb a pathway in a sample, and thus will assume that a pathway is mutatedin a sample if any of the genes in the pathway are mutated. For a subset T ⊆ T , let
S(T ) denote the set of samples in whi
h at least one gene in T is mutated.6.2 In�uen
e graphGiven the protein intera
tion network and the mutation data observed for testedgenes in the samples S, we want to identify subnetworks of genes that are signi�
antlymutated. The genes in a subnetwork should 
orrespond to a pathway, where themutation of a gene 
orresponds to the alteration of the pathway. The mutation of agene g in a subnetwork should then have a signi�
ant e�e
t on at least one other gene
g′ in the same subnetwork. Using the original intera
tion network we 
an observeonly e�e
ts on the neighbours of a gene, but the mutation of g 
an in general alterthe fun
tionality of gene g′ even if g is not dire
tly intera
ting with g′. Consider forexample the linear 
hain of Figure 6.1. The mutation of the gene at the bottom ofthe 
hain 
an have the e�e
t of altering the fun
tionality of the gene at the top of the
hain, even if the two nodes are not dire
tly intera
ting. We thus need a pro
edureto identify the genes whose fun
tionality 
an be altered by the mutation of gene
g. A �rst possibility is to use the distan
e between two genes g, g′ in the proteinintera
tion network as measure for this fun
tional in�uen
e. However the distan
eis not an a

urate measure, sin
e it does not take into a

ount the topology of the
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antly Mutated Pathways in Biologi
al Networksnetwork 
ontaining g and g′, that must be 
onsidered when relating the fun
tionalityof g and g′.We 
an quantify the alteration that mutation of g indu
es in g′ taking into a
-
ount the whole network topology using a di�usion pro
ess. The signi�
an
e of asubnetwork is derived from: (i) the number of samples that have mutations in thegenes of the subnetwork, and (ii) the intera
tions between genes in the subnetwork inthe 
ontext of the whole network topology. For example, 
onsider the two s
enariosof mutated nodes of Figure 6.1. In the �rst s
enario, the two mutated nodes arepart of a linear 
hain in the intera
tion network. In the se
ond s
enario, the twomutated nodes are 
onne
ted through a high-degree node. In the �rst 
ase, thereis a single path joining the two mutated nodes, thus we expe
t the fun
tionality ofthe two nodes to be more related than in the se
ond 
ase, where the two nodes are
onne
ted by a node that is a
tive in a large number of possible pathways. If thenumber of samples in whi
h the two genes are altered is the same in both s
enarios,we would assign greater signi�
an
e to the linear 
hain. Most human intera
tionnetworks have a number of nodes of high-degree, or hubs, and these produ
e manypaths between mutated nodes. A simple 
orre
tion for this problem is to removehigh-degree nodes. However, a number of genes that are 
ommonly mutated in 
an-
er have high-degree in intera
tion networks� and thus removal of high-degree nodesresults in loss of information.
Figure 6.1: Mutation on
hain vs. star graph.

We use a di�usion pro
ess on the intera
tion net-work to de�ne a rigorous measure of in�uen
e be-tween all pairs of nodes. To measure the in�uen
e ofnode s on all the other nodes in the graph, 
onsiderthe following pro
ess, des
ribed by [QSL+08℄. Fluidis pumped into the sour
e node s at a 
onstant rate,and �uid di�uses through the graph along the edges.Fluid is lost from ea
h node at a 
onstant �rst-orderrate γ. Let f s
v (t) denote the amount of �uid at node

v at time t, and let f
s(t) = [f s

1 (t), . . . , f s
n(t)]T be the
olumn ve
tor of �uid at all nodes. Let L be theLapla
ian matrix of the graph1, and let Lγ = L + γI. Then the dynami
s of this
ontinuous-time pro
ess are governed by the ve
tor equation

dfs(t)

dt
= −Lγf

s(t) + b
su(t), (6.1)1L = −A + D, where A is the adja
en
y matrix of the graph and D is a diagonal matrix with

Di,i = degree(vi).



6.3. Dis
overing signi�
ant subnetworks 97where b
s is the elementary unit ve
tor with 1 at the sth pla
e and 0 otherwise, and

u(t) is the unit step fun
tion. As t→∞, the system rea
hes the steady state. Theequilibrium distribution of �uid density on the graph is f
s = L−1

γ b
s (See [QSL+08℄).Note that this di�usion pro
ess is related to the di�usion kernel [KL02℄, or heat kernel[Chu07℄, whi
h models the di�usion of heat on a graph, and these di�usion pro
essesare also related to 
ertain random walks on graphs [DS84, Lov93℄. Di�usion pro-
esses and their related �ow problems have been used in protein fun
tion predi
tionon intera
tion networks [TN04, NJA+05℄ and to de�ne asso
iations between geneexpression and phenotype [MLWS07℄.We interpret f s

i as the in�uen
e i(gs, gi) of gene gs on gene gi. Computing thedi�usion pro
ess for all tested genes gives us, for ea
h pair of genes gj , gk ∈ T , thein�uen
e i(gj, gk) that gene gj has on gene gk. Note that in general the in�uen
e isnot symmetri
; i.e. i(gj , gk) 6= i(gj , gk). We de�ne an in�uen
e graph IG = (T , IE)with the set of nodes 
orresponding to the set of tested genes, the weight of an edge
(gj, gk) is given by

w(gj, gk) = min[i(gk, gj), i(gj, gk)] = min[fk
j , f j

k ].If n is the number of nodes in the intera
tion network, then the 
ost of 
omputing
IG is dominated by the 
omplexity of inverting an n× n matrix.6.3 Dis
overing signi�
ant subnetworks6.3.1 Combinatorial modelGiven an in�uen
e measure between genes, the obvious �rst approa
h for dis
overingsigni�
ant subnetworks is to identify sets of nodes in the in�uen
e graph IG thatare (1) 
onne
ted through edges with high in�uen
e measure; and (2) 
orrespond tomutated genes in a signi�
ant number of samples. We �x a threshold δ and 
omputea redu
ed in�uen
e graph IG(δ) of IG by removing all edges with w(gi, gj) < δ,and all nodes 
orresponding to genes with no mutations in the sample data. The
omputational problem is redu
ed to identifying 
onne
ted subgraphs of IG(δ) su
hthat the 
orresponding set of genes is altered in a signi�
ant number of patients.The size of the 
onne
ted subgraphs we dis
over is 
ontrolled by the threshold
δ. We 
hoose su�
iently small δ su
h that in the null hypothesis, in whi
h themutations are randomly pla
ed in nodes 
orresponding to tested genes, it is unlikelythat our pro
edure �nds 
onne
ted subgraphs with similar properties. Note thatvalue of δ depends only on the null hypothesis and not on the observed sample data
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antly Mutated Pathways in Biologi
al Networks(see Se
tion 6.4 for details of the statisti
al analysis).Computational problemFinding the 
onne
ted subgraph of k genes that is mutated in the highest number ofsamples requires to solve the following problem, that we de�ne as 
onne
ted maximum
overage problem: given a graph G de�ned on a set of m verti
es V , a set of elements
I, a family of subsets P = {P1, . . . , Pm}, with Pi ∈ 2I asso
iated with vi ∈ V , anda value k, �nd the 
onne
ted subgraph C∗ = {vi1 , . . . , vik} with k nodes in G thatmaximize | ∪k

j=1 Pij |. In our 
ase we have G = IG(δ), V is the subset of genes in Tmutated in at least one sample, and for ea
h gi ∈ V the asso
iated set is Si. The
onne
ted maximum 
overage problem is related to the maximum 
overage problem(see e.g. [Ho
97℄ for a survey) where given a set I of elements, a family of subsets
F ⊂ 2I , and a value k, one needs to �nd a 
olle
tion of k sets in F that 
overs themaximum number of elements in I. This problem is NP-hard as set 
over is redu
ibleto it.If the graph G is a 
omplete graph, the 
onne
ted maximum 
overage problem isthe same as the maximum 
overage problem. Thus the 
onne
ted maximum 
overageproblem is NP-hard for a general graph. Moreover we prove that the problem is stillhard even on simple graphs su
h as the star graph (similar result was shown in [SH06℄for the 
onne
ted set 
over problem).Theorem 6.1. The 
onne
ted maximum 
overage problem on star graphs is NP-hard.Proof. The proof is by redu
tion from the maximum 
overage problem. Given aninstan
e of the maximum 
overage problem, 
onsisting of I, F , and k, we build aninstan
e of the 
onne
ted maximum 
overage problem. We de�ne I

′

= I ∪ {v0},with v0 /∈ I; and F
′

= F ∪ {v0}. Moreover, we build the graph G = (V, E) where
V = F

′ and E = {(v0, s)|s ∈ F}. It is easy to verify that G is a star graph, andthen ea
h non-trivial (i.e., with more than 1 vertex) subgraph of G will 
ontain thevertex v0. The solution X to the 
onne
ted maximum 
overage problem on thegraph G is then of the form X = Y ∪ {v0}, where Y ⊆ F . It is easy to verify that
X is a 
onne
ted maximum 
overage of size k + 1 > 1 if and only if Y is maximum
overage of size k > 0. �Sin
e the 
onne
ted maximum 
overage problem is NP-hard even for simplegraphs we turn to approximate solutions. It is not hard to 
onstru
t a polynomialtime 1− 1

e
approximation algorithm for spider graphs (analogously to the result in[SH06℄ for the 
onne
ted set 
over problem). Sin
e the biologi
al network of interest



6.3. Dis
overing signi�
ant subnetworks 99are not spider graphs, we 
onstru
t an alternative polynomial time algorithm thatgives O (1/r) approximation when the radius of the optimal solution C∗ is r.Our algorithm obtains a solution Cv (thus, a 
onne
ted subgraph) starting fromea
h node v ∈ V , and then returns the best solution found. To obtain Cv, ouralgorithm exe
utes an exploration phase, i.e. for ea
h node u ∈ G it �nds a shortestpath pv(u) from v to u. Let ℓv(u) be the set of nodes in pv(u), and Pv(u) the elementsof I they 
over. After this exploration phase, the algorithm builds a 
onne
tedsubgraph Cv starting from v. At the beginning we have Cv = {v}. PCv is the setof elements 
overed by the 
urrent 
onne
ted subgraph Cv. Then, while |Cv| < k,the algorithm 
hooses the node u /∈ Cv su
h that: u = arg maxu∈V

{

|Pv(u)\PCv |

|ℓv(u)\Cv |

} and
|ℓv(u)∪Cv| ≤ K; the new solution is then ℓv(u)∪Cv. The main 
omputational 
ost ofour algorithm is due to the exploration phase, that 
an be performed in polynomialtime. We have the following:Theorem 6.2. The algorithm above gives a 1

cr
-approximation for the 
onne
ted max-imum 
overage problem on G, where c = 2e−1

e−1
and r is the radius of optimal solutionin G.Proof. We �rst analyze the solution obtained assuming the nodes in the solutionare inserted one at the time (i.e., |ℓv(u) \ Cv| = 1 for ea
h node u inserted in thesolution). We will then show that when the nodes are not inserted in the solutionone at the time, the solution obtained 
annot have a worse solution.Let z∗(v) be the value of the best solution OPT (v) that 
an be found starting atnode v. De�ne

OPTi(v) =
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thus OPT (v) =
rv
∑

i=1

OPTi(v), where rv is the radius of OPT (v), and z∗(v) =

∑rv

i=1 |OPTi(v)| . We divide the exe
ution of our algorithm in rv phases: in phase iour algorithm inserts |OPTi(v)| new nodes in the solution. Note that in phase i, ouralgorithm always has the possibility to rea
h ea
h node in OPTi(v). Thus, in phase i,the algorithm above is equivalent to the greedy algorithm for the maximum 
overageproblem where the sets that 
an be 
hosen are all the sets at distan
e at most r−i+1,and then all the sets in OPTi(v) 
an be 
hosen by the greedy algorithm. Let Ai(v) bethe in
rement in the value of the solution found by our algorithm between the end of
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antly Mutated Pathways in Biologi
al Networksphase i and the end of phase i−1. Sin
e the approximation fa
tor for the maximum
overage is 1 − 1/e and ea
h element in OPTi(v) is seen with weight redu
ed of afa
tor 1/(r− i+1) (sin
e it is at distan
e r− i+1), in phase i our algorithm improvethe 
urrent solution of a fa
tor
Ai ≥

1

r

(

1− 1

e

)

(

OPTi(v)−
i−1
∑

j=1

Ai−1(v)

)

.Let A denote the value of the solution returned by our algorithm. Summing theterms above for all i we obtain:
A(v) ≥ 1

r

(

1− 1

e

)

(

rv
∑

i=1

OPTi(v)−
rv−1
∑

j=1

(rv − j)Aj(v)

)

≥ 1

r

(

1− 1

e

) rv
∑

i=1

OPTi(v)− 1

r

(

1− 1

e

) rv−1
∑

j=1

(rv − j)Aj(v)

≥ 1

r

(
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)

OPT (v)− 1

r
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e
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rA(v)

≥ 1

r
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e

)

OPT (v)−
(

1− 1

e

)

A(v).We then obtain
2e− 1

e
A(v) ≥ 1

r

(

e− 1

e

)

OPT (v)that is
A(v) ≥ 1

r

(

e− 1

2e− 1

)

OPT (v).Now 
onsider the 
ase |ℓv(u) \ Cv| > 1: this means that that we insert a pathwhose weight, divided by |ℓv(u) \ Cv|, is higher than the weight of any other possiblerea
hable node (from v). Then we have that the value of the solution found by ouralgorithm 
an only improve, sin
e we are inserting |ℓv(u) \ Cv| nodes su
h that theaverage value of the inserted nodes is greater than the maximum value of |ℓv(u) \ Cv|rea
hable nodes in the best solution in
luding v divided by its distan
e (that is atmost rv). �For our experiments we implemented a variation of this algorithm, that for ea
hpair of nodes (u, v) 
onsiders all the shortest paths between u and v, and then keepsthe one that maximizes |Pv(u)|
|ℓv(u)|

to build the solution Cv. With this modi�
ation thealgorithm is not guaranteed to run in polynomial time in the worst-
ase, but rane�
iently for all our experiments.
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al analysis 1016.3.2 The Enhan
ed In�uen
e modelWe developed an alternative, 
omputationally e�
ient, approa
h for identifying sub-networks that are signi�
ant with respe
t to the gene mutation data. The Enhan
edIn�uen
e Model is based on the idea of enhan
ing the in�uen
e measure betweengenes by a fun
tion of the number of mutations observed in ea
h of these genes, asexplained below, and then de
omposing an asso
iated enhan
ed in�uen
e graph into
onne
ted 
omponents.We de�ne the enhan
ed in�uen
e graph H . It has a node for ea
h gene gi withat least one mutation in the data. The weight of edge (gj, gk) in H is given by
hw(gj, gk) = min {i(gj , gk), i(gk, gj)} ×max {|Sj |, ||Sk|} .Thus, the strength of 
onne
tion between two nodes in the enhan
ed in�uen
e graphis a fun
tion of both the intera
tion between the nodes in the intera
tion networkand the number of mutations observed in their 
orresponding genes. Next we removeall edges with weight smaller than a threshold δ to obtain a graph H(δ). We returnthe 
onne
ted 
omponents in H(δ) as the signi�
ant subnetworks with respe
t tothe mutation data and the threshold δ. The 
omputational 
ost is the 
omplexity of
omputing all 
onne
ted 
omponents in a graph with |S| nodes (number of mutatedgenes), whi
h is linear in the size of the graph. The signi�
an
e of the dis
overedsubnetworks depends on the 
hoi
e of δ. We 
hoose su�
iently small δ su
h that inthe null hypothesis, in whi
h the mutations are randomly pla
ed in nodes 
orrespond-ing to tested genes, it is unlikely that our pro
edure �nds 
onne
ted 
omponents ofsimilar size (see Se
tion 6.4 for details of the statisti
al analysis).6.4 Statisti
al analysisWe assess the statisti
al signi�
an
e of our dis
overies with respe
t to null hypothesisdistributions in whi
h the mutated genes are randomly allo
ated in the network,that is when the o

urren
e of mutations are independent of the network topology.We 
onsider two null hypothesis distributions: in Hsample

0 a total of m =
∑

i |Mi|mutations are pla
ed uniformly at random in the nodes 
orresponding to the |T |tested genes, hen
e preserving the number of mutated genes in ea
h sample. Whileeasier to analyze, this model does not a

ount for the fa
t that in the observed dataa large number of mutations are 
on
entrated in a few genes(e.g. TP53).An alternative null hypothesis distribution we 
onsider, Hgene
0 , is generated byuniformly at randomly permuting the tested genes among the lo
ations of the
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antly Mutated Pathways in Biologi
al Networkstested genes in the network. That is we sele
t a random permutation σ of theset {1, . . . , |T |}, and we the set of samples Sj ⊆ S, asso
iated to gj in the real data,to the lo
ation of gene gσ(j) in the original network.6.4.1 A two stage multi-hypothesis testA major di�
ulty in assessing the statisti
al signi�
an
e of the dis
overed subnet-works is that we test simultaneously for a large number of hypotheses; ea
h 
onne
tedsubnetwork in the intera
tion graph with at least one tested gene is a possible sig-ni�
ant subnetwork and thus an hypothesis. Using the standard approa
h of [BH95℄to 
ontrol the FDR would result in a redu
ed ability of identifying signi�
antly mu-tated pathways. Instead, we adapt the ideas introdu
ed in Se
tion 4.3.2 to developa two stage test for our problem that allows us to �ag a number of subnetworks inour data as statisti
ally signi�
ant while 
ontrolling the FDR of the set of �aggedsubnetworks.We demonstrate our method through the analysis of the Enhan
ed In�uen
emodel. A similar te
hnique was applied to the Combinatorial model. Let C1, . . . , Cℓbe the set of 
onne
ted 
omponents found in the enhan
ed in�uen
e graph H(δ).Testing for the signi�
an
e of these dis
overies is equivalent to simultaneously test-ing for 2|T | hypothesis. To redu
e the number of hypothesis we fo
us on an alter-native statisti
 (out
ome) whi
h is the number of dis
overies of a given size. Let
r̃s be the number of 
onne
ted 
omponents of size ≥ s found in the graph H(δ),and let rs be the 
orresponding random variable in the null hypothesis (Hsample

0 or
Hgene

0 ). We are testing now for just K = |T | simple hypotheses, for s = 1, . . . ,K:
Es ≡ � r̃s 
onforms with the distribution of rs�. Testing ea
h hypothesis with 
on-�den
e level α/K, the �rst stage of our test identi�es the smallest size s su
h thatwith 
on�den
e level α we 
an reje
t the null hypothesis that r̃s 
onforms with thedistribution of rs.The fa
t that the number of 
onne
ted 
omponents of size at least s is statisti-
ally signi�
ant does not imply ne
essarily that ea
h of the 
onne
ted 
omponentsis signi�
ant. We now add a se
ond 
ondition to the test that guarantees an upperbound on the FDR:Theorem 6.3. Fix β1, β2, . . . , βK su
h that ∑K

i=1 βi = β. Let s∗ be the �rst s su
hthat r̃s ≥ E[rs]
βs

. If we return as signi�
ant all 
onne
ted 
omponents of size ≥ s∗,then the FDR of the test is bounded by β.Proof. Let Vi be the number of erroneous reje
tions of 
onne
ted 
omponents of size
i, i.e. the number of 
onne
ted 
omponents of size i that were �agged erroneously
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al analysis 103as signi�
ant. Note that E[Vi] ≤ E[ri], sin
e if these hypothesis were erroneouslyreje
ted they were generated by the null distribution.
FDR =

|K|
∑

i=0

E

[

Vi

r̃i

]

Pr(Ei, Ēi−1, . . . , Ē0)

≤
|K|
∑

i=0

βiE[Xi | EiĒi−1, . . . , Ē0]

E[ri]
Pr(Ei, Ēi−1, . . . , Ē0)

=

|K|
∑

i=0

βi

∑

j j Pr(Xi = j, Ei, Ēi−1, . . . , Ē0)

E[ri]

≤
|K|
∑

i=0

βiE[ri]

E[ri]
≤ β.

�Noti
e that the test above does not require to test all value s = 1, . . . ,K. Infa
t, in our tests we 
onsidered only two thresholds, s = 6, and s = 10. For ea
hhypothesis we 
an then 
ompute what is the minimum threshold α for whi
h thathypothesis would be reje
ted. We 
an moreover 
ompute what is the FDR asso
iatedwith the set of 
onne
ted 
omponents returned using s∗ de�ned in Theorem 6.3. Inour tests we have used βi = β
2i for the ith largest s tested (with βs = β −∑i βi forthe smallest s), sin
e we are more interested in �nding large 
onne
ted 
omponents.6.4.2 Estimating the distribution of the null hypothesisThe null hypothesis distributions 
an be estimated by either a Monte-Carlo simu-lation (known as �permutation test� in the 
omputational biology 
ommunity) orthrough analyti
al bounds.Using Monte-Carlo simulation, two features of our method signi�
antly redu
ethe 
ost of the estimates. First, the In�uen
e Graph IG is 
reated without observingthe sample data. The mutation data and IG are then 
ombined to 
reate the sampledependent graphs IG(δ) and H(δ). Thus, the Monte Carlo simulation needs torun on the graph IG whi
h is signi�
antly smaller than the original intera
tionnetwork (in our data the original intera
tion network had 18796 nodes while thein�uen
e graph had only about 600 nodes), sin
e the verti
es of IG are the testedgenes and both null distributions requires to work only on tested genes . Se
ond,our statisti
al test does not use the p-values of individual 
onne
ted subgraphs butthe p-value of the number of 
onne
ted subgraphs of a given size. Thus, sin
e the
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antly Mutated Pathways in Biologi
al Networksnumber of hypotheses is smaller, we need p-values an order of magnitude larger thanthe ones that would be required if we test for single subgraphs. We then need toestimate p-values to a pre
ision that is an order of magnitude larger, whi
h requiresigni�
antly fewer rounds of simulations. These features allowed us to 
ompute thenull distributions through Monte-Carlo simulations for the size of our data with nosigni�
ant 
omputational 
ost.For larger number of tested genes we 
an estimate the null hypothesis throughanalyti
al bounds. Consider for example the Enhan
ed In�uen
e model, and assumethat the |T | tested genes are randomly permuted among the |T | nodes of the graph
IG to generate a random instan
e graph H̄(δ). Let m be the number of genes withobserved mutations, and let smax be the maximum number of mutations of any gene.Sin
e we are interested in δ that partitions the graph to a number of 
onne
ted
omponents we 
an 
hoose the maximum δ su
h that for any node gi in IG no morethan αm/|T | of the adja
ent edges have weights that satisfy smaxw(gi, gj) ≥ t, forsome �xed α < 1. For the 
hoi
e of δ above, the expe
ted number of 
onne
ted
omponents of size k in H̄(δ) is bounded by

(|T |
k

)

kk−2αk−1 ≤ m

k2
αk−1.Sin
e 
onne
ted 
omponents are disjoint, their o

urren
es are negatively 
orre-lated, and we 
an sto
hasti
ally bound the distribution of rs with a binomial dis-tribution with the above expe
tation. A similar bound 
an be 
omputed for theother models and null hypothesis distributions, and for (somewhat) less restri
tive
onditions on δ.6.5 Experimental resultsWe applied our approa
h to analyze somati
 mutation data from two re
ent studies.The �rst dataset is a 
olle
tion of 453 somati
 mutations identi�ed in 601 testedgenes from 91 glioblastoma multiforme (GBM) samples from The Can
er GenomeAtlas [Net08℄. In total, 223 genes were reported mutated in at least one sample.The se
ond dataset is a 
olle
tion of 1013 somati
 mutations identi�ed in 623 testedgenes from 188 lung adeno
ar
inoma samples from the Tumor Sequen
ing Proje
t[D+08℄. In total, 316 genes were reported su
h that ea
h of them was mutated in atleast one sample. We use the protein intera
tion network from the Human ProteinReferen
e Database (June 2008 version) [P+09℄ whi
h 
onsists of 18796 verti
es and37107 edges. We derive the in�uen
e graph for ea
h dataset by dire
tly 
omputing



6.5. Experimental results 105the inverse2 of Lγ . For all our experiments we �xed the parameter γ = 8, whi
h isapproximately the average degree of a node in HPRD (after the removal of dis
on-ne
ted nodes). We also 
ondu
ted a preliminary study of the impa
t of the 
hoi
e of
γ on the distribution of the weights in the in�uen
e graph. This preliminary studyshows that the 
hoi
e of γ does not have a huge impa
t for our random models.However, the development of a rigorous method to 
hoose γ is an open problem.The in�uen
e graphs obtained from the inversion of Lγ have weights i(gj , gk) 6= 0 foralmost all pairs (gj , gk) of tested genes: less than 2% of the weights are zero in theGBM graph, while all weights in the lung adeno
ar
inoma graph are positive. Wenow des
ribe the results of the applying the 
ombinatorial model (Se
tion 6.5.1) andenhan
ed in�uen
e model (Se
tion 6.5.2) to both datasets. Se
tion 6.5.3 
omparesthese results against those obtained with the naïve algorithm.6.5.1 Combinatorial modelWe used the 
ombinatorial model to extra
t a subnetwork, of k mutated genes, that ismutated in the highest number of samples from GBM and lung adeno
ar
inoma with
k = 10 and k = 20. For both data we used the pro
edure des
ribed in Se
tion 6.3.1to derive the threshold δ = 0.0001 for the redu
ed in�uen
e graph IG(δ). Table 6.1shows that we �nd statisti
ally signi�
ant subnetworks under both the Hgene

0 and
Hsample

0 null hypotheses (p-values for Hsample
0 are 
omputed without Monte-Carlosimulation). The genes in ea
h subnetwork are reported in Table 6.2. To assessthe biologi
al signi�
an
e of our �ndings in GBM, we 
ompared the genes in ea
hsubnetwork to the genes in pathways that were previously impli
ated in GBM andused as a ben
hmark in the TCGA publi
ation [Net08℄ (See also Figure 6.2 (a) below).We �nd that our subnetworks are enri
hed for (i.e., 
ontains a statisti
ally signi�
antnumber of) genes in the RTK/RAS/PI(3)K pathway and to a lesser extent, the p53pathway. For the lung adeno
ar
inoma samples, we �nd that the subnetworks sharesigni�
ant overlap with the pathways reported in the original publi
ation [D+08℄.These results demonstrate that the 
ombinatorial model is e�e
tive in re
overinggenes known to be important in ea
h of these 
an
ers.6.5.2 Enhan
ed In�uen
e modelWe applied the enhan
ed in�uen
e model to the same two datasets. Following thepro
edure des
ribed in Se
tion 6.3.2, we �rst 
omputed the enhan
ed in�uen
e net-2In 
ontrast [QSL+08℄ derive a power series approximation to L−1

γ whose 
onvergen
e dependson the 
hoi
e of γ.
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antly Mutated Pathways in Biologi
al Networksp-val pathway enri
hment p-valdataset k samples Hsample
0 Hgene

0 all RTK/RAS/PI(3)K p53GBM 10 67 < 10−10 4× 10−3 3× 10−4 8× 10−4 0.1920 78 < 10−10 < 10−3 10−5 8× 10−5 0.05Lung 10 140 < 10−10 0.02 8× 10−6 /20 151 < 10−10 0.03 3× 10−3 /Table 6.1: Results of the 
ombinatorial model. k is the number of genes in thesubnetwork. samples is the number of samples in whi
h the subnetwork is mutated.p-val is the probability of observing a 
onne
ted subgraph of size k under the randommodel Hsample
0 or Hgene

0 . enri
hment p-val is the p-value of the hypergeometri
 testfor overlap between genes in the identi�ed subgraph and genes reported signi�
antpathways in [Net08℄ or [D+08℄. For GBM, enri
hment p-val is the p-value of thehypergeometri
 test for RTK/RAS/PI(3)K and p53 pathways.dataset k samples genesGBM 10 67 INSR BCR TP53 PTEN EGFRERBB2 DST PIK3R1 PIK3CA SERPINA320 78 MDM2 FGFR1 BRCA2 CHEK1 COL1A2ITGB3 TNK2 INSR BCR TP53PTEN EGFR ERBB2 DST PIK3R1PIK3CA NF1 SPARC PDGFRA SERPINA3Lung 10 140 CDC25A CHEK1 TP53 STK11 HRASKRAS ERBB4 EGFR NF1 PTEN20 150 MAPK8 PRKDC TP53 STK11 HRASKRAS EGFR PRKD1 NF1 ABL1ERBB4 PTEN HD PRKCE SMAD2TGFBR1 BAX RAPGEF1 PIK3CG ACVR1BTable 6.2: Genes in the 
onne
ted 
omponent of size k that 
overs the maximumnumber of samples as reported by our algorithm for GBM and lung adeno
ar
inoma.work, using a threshold of t = 0.003 for the GBM data and t = 0.01 for the lungadeno
ar
inoma data. Table 6.3 shows the number and sizes of the 
onne
ted 
om-ponents identi�ed in the GBM data, and the asso
iated p-values, the latter obtainedusing the method des
ribed in Se
tion 6.4. Table 6.4 reports the genes in the 
on-ne
ted 
omponents of size > 3.We identify two signi�
ant 
onne
ted 
omponents with more than 19 genes (FDR
≤ 0.14). We �nd signi�
ant overlap (P < 10−2 by hypergeometri
 test) between the68 genes in our 
onne
ted 
omponents and the set of all mutated genes in the sameRTK/RAS/PI(3)K, p53, and RB pathways examined in the TCGA study [Net08℄ (seeTable 6.5). The se
ond largest 
onne
ted 
omponent with 19 genes has signi�
antoverlap to the p53 pathway, while the largest 
onne
ted 
omponent with 22 genes has
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ant overlap with the RTK/RAS/PI(3)K signaling pathway. In 
ontrast to the
ombinatorial model, the enhan
ed in�uen
e model separates these two pathwaysinto di�erent 
onne
ted 
omponents. Figure 6.2 (a) illustrates the overlap betweenthe mutated genes in 
onne
ted 
omponents returned by our method and genes inthe pathways reported in [Net08℄.
Hsample

0 Hgene
0

s # 
.
. ≥ s µ p-val µ p-val2 15 22.18 0.97 13.63 0.383 3 6.37 0.98 4.38 0.619 2 < 10−3 < 10−3 0.07 < 10−322 1 < 10−3 < 10−3 0.05 0.05Table 6.3: Results of the enhan
ed in�uen
e model on GBM samples. s is the sizeof 
onne
ted 
omponents (
.
.) found with our method. # 
.
. ≥ s is the numberof 
.
. with at least s nodes. µ is the expe
ted number of 
.
. with ≥ s nodes underrandom models Hgene
0 , Hsample

0 . p-val is the probability of observing at least # 
.
.
≥ s with at least s nodes in a random dataset.size genes22 MSH2 ATM MSH6 PRKDC ATR BCR KLF6 GLI3 KLF4PML MAPK9 CHEK1 BRCA2 ING4 MDM2 MDM4 TP53 TOP1PTEN KPNA2 STK36 GLI119 ANXA1 TNK2 ERBB3 SERPINA3 SOCS1 TNC PIK3C2B PDGFRBERBB2 NRAS VAV2 EGFR EPHA2 MET ADAM12 PIK3R1PIK3CA CENTG1 AXLTable 6.4: Genes in 
onne
ted 
omponents obtained for GBM the di�usion modelwith γ = 8, t = 0.003. enri
hment p-val

s RTK/RAS/PI(3)K p5319 0.9 4× 10−322 4× 10−6 �Table 6.5: Result of the hypergeometri
 test for enri
hment for RTK/RAS/PI(3)K,and p53 pathways respe
tively. s is the size of 
onne
ted 
omponents (
.
.) foundwith our method.For the lung data, Table 6.6 shows the sizes of 
onne
ted 
omponents returned bythe enhan
ed in�uen
e model and the p-values asso
iated with ea
h. Table 6.7 liststhe genes in ea
h 
onne
ted 
omponent of size > 5. The 88 genes in the union of the
onne
ted 
omponents derived by our method overlap signi�
antly (P < 7 × 10−9
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antly Mutated Pathways in Biologi
al Networksby the hypergeometri
 test) with the mutated pathways reported in the network ofFigure 6 in the TSP publi
ation [D+08℄. We identify 4 
onne
ted 
omponents of size
≥ 7 (FDR ≤ 0.28). The �rst 
onne
ted 
omponent of size 10 
ontains genes in thep53 pathway, and the se
ond one is enri
hed (P < 10−2) for the MAPK pathway(Figure 6.2 (b)). The third 
omponent is the ephrin re
eptor gene family, a largefamily of membrane-bound re
eptor tyrosine kinases, that were reported as mutatedin breast and 
olore
tal 
an
ers [S+06℄. Notably, only one of the genes in this 
ompo-nent, EPHA3, is mentioned as signi�
antly mutated in [D+08℄. Finally, the 
onne
ted
omponent of size 7 
onsists ex
lusively of members of the Not
h signaling pathway(Figure 6.2 (
)). The mutated genes in
lude: the Not
h re
eptor (NOTCH2/3/4);Jagged (JAG1/2), the ligand of Not
h; and Mastermind (MAML1/2), a trans
rip-tional 
o-a
tivator of Not
h target genes. The Not
h signaling pathway is a majordevelopmental pathway that has been impli
ated in a variety of 
an
ers [Axe04℄in
luding lung 
an
er [CKB04℄. Mutations in this pathway were not noted in theoriginal TSP publi
ation [D+08℄, probably be
ause no single gene in this pathwayis mutated in more than 3 samples. Be
ause our method exploits both mutationfrequen
y and network topology, we are able to identify these more subtle mutatedpathways, and in this 
ase identify an entire �signaling 
ir
uit�.
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�����(
)Figure 6.2: (a) Overlap between subnetworks found by the enhan
ed in�uen
e modeland signi�
ant pathways reported in [Net08℄. The genes in the network shown havebeen reported as involved in signi�
ant pathways in [Net08℄. Ea
h 
ir
le is a gene,gray nodes represents protein families or 
omplexes, or small mole
ules. For ea
hprotein family and 
omplex, tested genes are shown. �Dashed� nodes are tested genesthat were not mutated in GBM, and thus 
annot be returned as signi�
ant. Rednodes are found in the 
.
. of size 22, blue nodes in the 
.
. of size 18, and thegreen node in a 
.
. of size 2. (b) Pathway 
orresponding to one of the 
onne
ted
omponents extra
ted with enhan
ed in�uen
e model in lung. (
) Not
h signalingpathway identi�ed in the lung dataset.



6.5. Experimental results 109
Hsample

0 Hgene
0

s # 
.
. ≥ s µ p-val µ p-val enri
hment p-val2 24 23.4 0.7 17.67 0.4 /3 11 6.51 0.13 7.27 0.2 /4 7 3.21 0.07 4.98 0.13 /5 5 2.09 0.01 2.18 0.01 /7 4 0.54 0.01 0.56 0.01 �10 3 < 10−3 < 10−3 0.4 0.02 0.34
10−5

9× 10−8Table 6.6: Results of the enhan
ed in�uen
e model on lung adeno
ar
inoma samples.Columns are as des
ribed in Table 6.3. Last 
olumn shows, for 
.
. with s ≥ 7, theresult of the hypergeometri
 test for enri
hment all genes reported in signi�
antpathways in [D+08℄ (the 3 values shown refers to 
.
. of size 10).size genes10 WT1 CDKN2A TP53 CCNG1 KLF6 ATR CDKN2C TP73L TFDP1 CHEK110 RAP2B PIK3CA HRAS RASSF2 NRAS MRAS PIK3CG BRAF NF1 RHOB10 EPHB1 EPHB6 EPHA7 EPHA6 EPHA5 EPHA4 EPHA3 EPHA2 EPHA1 FGFR47 MAML2 MAML1 NOTCH4 NOTCH2 NOTCH3 JAG2 JAG1Table 6.7: Conne
ted 
omponents of size ≥ 7 for lung adeno
ar
inoma using thedi�usion model with γ = 8, t = 0.01.6.5.3 Naïve approa
hTo demonstrate the impa
t of the in�uen
e graph on the results, we implementeda naïve approa
h that examines all paths in the original HPRD network that 
on-ne
t two tested genes and 
ontain at most 3 nodes. We extra
ted all paths thatwere altered in a signi�
ant number of samples with FDR ≤ 0.01 using the standardBenjamini-Yekutieli method [BY01℄, 
onsidering ea
h path as an hypothesis. Morethan 1700 paths in GBM and > 2200 in lung adeno
ar
inoma are marked as signi�-
ant with this method. A major reason for this large number of paths is the presen
eof highly mutated genes that are also high-degree nodes in the HPRD network (e.g.TP53). Ea
h path through these high degree nodes is marked as signi�
ant, thusa large number of �uninteresting� subnetworks are deemed signi�
ant. One possiblesolution is to remove any path that 
ontains a subpath that is signi�
ant. However,these �ltered paths in
lude none through highly-mutated and high degree genes thatare biologi
ally important for 
an
er (like TP53). Our in�uen
e graph uses bothmutation frequen
y and lo
al topology of the network, allowing us to re
over sub-
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antly Mutated Pathways in Biologi
al Networksnetworks 
ontaining these genes. Finally, we note that �nding larger, statisti
allysigni�
ant subnetworks (e.g. those with 10 or 20 nodes) with the naïve approa
h isimpossible in the GBM and lung datasets be
ause of the severe multiple hypotheses
orre
tion for the large number of subnetworks tested; e.g., the number of 
onne
ted
omponents with 10 tested nodes in the HPRD network is > 1010. For the samereason the enumeration of all the paths or 
onne
ted 
omponents of reasonable sizeis impossible.Table 6.8 shows the signi�
ant paths 
ontaining at most 3 analyzed genes thathave been found signi�
ant using the random model Hsample
0 and the Benjamini-Yekutieli method to 
orre
t for multiple hypothesis test using GBM somati
 muta-tions. In the table only paths that do not 
ontain any subpath that is signi�
ant areshown (e.g., all the paths with > 1 gene that are signi�
ant and 
ontain TP53 arenot reported). Table 6.9 shows the analogous table for Lung adeno
ar
inomagenes # mutated samples p-valueTP53 31 1.11022×10−16PTEN 28 1.11022×10−16EGFR 15 2.55351×10−15NF1 13 1.00975×10−12PIK3R1 9 6.87229×10−08RB1 9 6.87229×10−08DST 8 8.75524×10−07ERBB2 7 9.93594×10−06PDGFRB , PIK3CA 8 0.00010412PIK3CA, PRKCD, EP300 10 5.71599×10−05PIK3CA, IRS4, PRKCZ 8 0.00010412Table 6.8: Statisti
ally signi�
ant mutated paths (FDR = 0.01) using the HPRDnetwork [P+09℄ and the glioblastoma mutations dataset [Net08℄. For ea
h signi�
antpath, the genes in the path, the number of samples with at least one mutation in thepath, and the (non-
orre
ted) p-value are shown.
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genes # mutated samples p-valueTP53 64 < 10−16KRAS 60 < 10−16STK11 34 < 10−16EGFR 30 < 10−16LRP1B 16 1.97591×10−11ATM 13 1.65488×10−08NF1 13 1.65488×10−08APC 11 1.02906×10−06CDKN2A, E4F1, RB1 15 1.28117×10−06CDKN2A, WRN, PRKDC 15 1.28117×10−06EPHA7, EFNA1, EPHA3 15 1.28117×10−06PRKDC, HSP90AA1 , KDR 15 1.28117×10−06EPHA3 , EFNA2, EPHA5 15 1.28117×10−06NTRK3, DYNLL1, NTRK1 14 6.16984×10−06NTRK1, CAV1 , KDR 14 6.16984×10−06KDR, ITGB3, PDGFRA 14 6.16984×10−06Table 6.9: Statisti
ally signi�
ant mutated paths (FDR = 0.001) using the HPRDnetwork [P+09℄ and the lung adeno
ar
inoma mutations dataset [D+08℄. For ea
hsigni�
ant path, the genes in the path, the number of samples with at least onemutation in the path, and the (non-
orre
ted) p-value are shown.
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Chapter 7Con
lusionsIn this �nal 
hapter we summarize the main 
ontributions of this thesis and dis
usssome future resear
h dire
tions.7.1 SummaryIn this thesis we 
ontributed novel results on the mining of signi�
ant patterns,fo
using on the problem of frequent itemsets mining, a fundamental primitive thatarises in many data mining problems, on the extra
tion of motifs from biologi
alsequen
es, and on the dis
overy of signi�
antly mutated pathways in 
an
er.In 
hapter 3 we studied the algorithmi
 aspe
ts of the extra
tion of top-K frequent
losed itemsets and the use of sampling to extra
t the top-K frequent items/itemsets.For the �rst primitive we provide the �rst analyti
al eviden
e of its e�e
tiveness,proving a tight upper bound on the ratio between the number of 
losed itemsetsreturned in output and the input parameter K. We then developed a new algorithmfor mining top-K frequent 
losed itemsets in order of de
reasing support, TopKMiner,whi
h attains substantial improvements w.r.t. the best previously know algorithm.A pe
uliar feature of our algorithm is that it allows the user to dynami
ally raisethe value K, without requiring the 
omputation to restart from s
rat
h. For theextra
tion of top-K frequent items/itemsets through sampling we proved a tightbound on the su�
ient sample size to obtain an approximation the top-K frequentitems/itemsets with probabilisti
 guarantees on the quality of the output. Moreover,we develop an algorithm based on progressive sampling to extra
t the top-K frequentitems/itemsets.In Chapter 4 we proposed a novel methodology to identify a meaningful supportthreshold σ∗ for a dataset su
h that the itemsets with support at least σ∗ 
an be�agged as statisti
ally signi�
ant with a small False Dis
overy Rate (FDR), whi
h113



114 Chapter 7. Con
lusionsis the expe
ted ratio of false dis
overies among all dis
overies. Our methodologyhinges on a Poisson approximation to the distribution of the number of itemsets in arandom dataset with support at least s, for any s greater than or equal to a minimumthreshold smin. We obtained this result through a novel appli
ation of the Chen-Steinapproximation method, whi
h is of independent interest. A 
ru
ial feature of ourapproa
h is that, unlike most previous work, it takes into a

ount the entire datasetrather than individual dis
overies. It is therefore better able to distinguish betweensigni�
ant observations and random �u
tuations. The results of our 
omparison toa standard pro
edure for multi-hypothesis testing provide experimental eviden
e ofthe higher power of our approa
h.In Chapter 5 we studied the dis
overy of motifs, possibly in
luding don't 
are
hara
ters, in biologi
al sequen
es. This problem is highly relevant to 
omputationalbiology. We introdu
ed the density, de�ned as the ratio of solid 
hara
ters to thetotal length of the motif, as a simple and �exible measure for bounding the number ofdon't 
ares in a motif,. We de�ne a natural notion of maximality for dense motifs anddevise an e�
ient algorithm, 
alledmadmx whi
h performs 
ompletemaximal densemotif extra
tion from an input sequen
e, with respe
t to user-spe
i�ed frequen
yand density thresholds. We provided experimental eviden
e of the e�
ien
y andthe quality of the motifs returned by madmx, 
omparing them with the knownbiologi
al repetitions, and with the motifs extra
ted by the re
ently developed toolvarun [ACP09℄ using the same statisti
al metri
 employed in [ACP09℄ for assessingtheir relative signi�
an
e.Finally, in Chapter 6 we addressed the problem of identifying signi�
antly mu-tated pathways in large s
ale gene and protein intera
tion networks. We proposeda new framework based on an in�uen
e measure between pairs of genes obtainedusing a di�usion pro
ess de�ned on the intera
tion network. We then proposed twoalgorithms to identify signi�
antly mutated pathways, both using the in�uen
e mea-sure between pairs of genes. Moreover, we derived a statisti
al test that identi�essigni�
antly mutated pathways and estimates the FDR of the identi�ed subnetworks.This test is built on the te
hnique we developed in Chapter 4 in the 
ontext of fre-quent itemset mining. We tested the algorithms on a large human protein-proteinintera
tion network using mutation data from re
ent studies on two di�erent typeof 
an
ers. The tests showed that our methods su

essfully re
over pathways thatare known to be involved in the 
onsidered 
an
ers, and moreover identify additionalpathways that have been impli
ated in 
an
er but not previously reported as mutatedin the samples we 
onsidered.



7.2. Further resear
h 1157.2 Further resear
hThere are a number of interesting avenues to improve the results presented in thisthesis and to develop new methods to mine signi�
ant patterns.A �rst set of possible dire
tions regards the mining primitives we have studied inChapter 3. For the extra
tion of top-K frequent 
losed itemsets, a natural dire
tionis the development and testing of an external memory algorithm for the problem.Sin
e many datasets of interest for this problem are huge, they will probably not �tin main memory, and new algorithms expli
itly designed to work on external memoryare needed. For the use of sampling to extra
t top-K frequent items/itemsets it wouldbe interesting to study, both analyti
ally and experimentally, the performan
e of ouralgorithm on datasets with di�erent items/itemsets distributions, trying to 
hara
-terize what are the distributions for whi
h our algorithm gives the best performan
e.Another dire
tion for future work is the experimental assessment of the algorithmbased on min-
ount Bloom �lter we proposed.For what 
on
ern instead the mining of statisti
ally signi�
ant itemsets, theframework we have introdu
ed o�ers several interesting dire
tions for further work.Naturally, one goal is to adapt our test to di�erent random models, for example theone introdu
ed in [GMMT07℄. Another interesting dire
tion is the design of a methodthat extra
t statisti
ally signi�
ant itemsets with low supports. Moreover, the statis-ti
al test we have proposed 
an be adapted to the extra
tion of other patterns, as wehave done in Chapter 6 for the extra
tion of signi�
antly mutated pathway. We thinkthat the mining of graphs, for example, would provide an interesting appli
ation ofour method.The extra
tion of signi�
ant motifs provides many interesting dire
tions for futurework. Our de�nition of density provides a way to 
onstrain the stru
ture of the motifsso to enfor
e signi�
an
e more general. than the ones previously employed, but the
hoi
e of the density and frequen
y thresholds are left to the user. An importantproblem is then to understand what is the relation between those parameters andthe biologi
al signi�
an
e of the 
orresponding motifs. Another interesting dire
tionis the design of an algorithm that extra
ts the maximal dense motifs from a set ofsequen
es, where the frequen
y of a pattern is the number of sequen
es in whi
hit appears. madmx 
an be used to solve this problem (by 
on
atenating the inputsequen
es), but novel algorithmi
 solutions 
ould result in better performan
e.For the identi�
ation of signi�
ant pathways in 
an
er mu
h work remains to bedone. For example, we model the protein intera
tion network as an undire
ted graph,while information on the dire
tionality of some intera
tions is already available, andmore will be produ
ed in the next few years. Adapting our models and methods



116 Chapter 7. Con
lusionsto dire
ted graphs requires new solutions. Moreover, somati
 mutations are notthe only 
auses that lead to 
an
er. Other genomi
 alterations, like 
opy numbermodi�
ations or epigeneti
 alterations, have been related to 
an
er. How to analyzedi�erent type of alterations, and how to 
ombine them, to identify the pathwaysspe
i�
 to 
an
ers is one of the most interesting problems that our method does not
urrently ta
kle.
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