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Abstract

Recent advances in technology allow for the collection and storage of vast amounts of
data in many different areas. Data mining is the process of discovering new and useful
information. Many techniques have been developed in recent years for the analysis
of large datasets, but the task of assessing the significance of discovered patterns
and the validity of forecast based on these discoveries is becoming a major challenge
in data intensive applications. The objective of this thesis is the development of
rigorous and efficient techniques for mining significant patterns in three different
and important scenarios.

The first scenario is the mining of frequent itemsets from transactional datasets.
For this problem we first study two primitives: the extraction of top-K frequent
closed itemsets, a recently proposed alternative to the extraction of frequent item-
sets, that provides a better control on the output size, which is one of the main
challenges of the traditional problem; and the use of sampling for the extraction of
top-K frequent items/itemsets. The notion of top-K frequent patterns provides a
first attempt to enhance the effectiveness of the traditional framework by relating the
significance to a frequency based ranking rather than to a mere frequency threshold.
For both primitives we develop new algorithms and provide experimental evidence
of their effectiveness. We then address the problem of identifying a meaningful fre-
quency threshold such that that the itemsets that are frequent w.r.t. that threshold
can be flagged as statistically significant with a small False Discovery Rate (FDR),
which is defined as the expected ratio of false discoveries among all discoveries. A
crucial feature of our approach is that, unlike most previous work, it takes into ac-
count the entire dataset rather than individual discoveries. Experimental results are
reported which show the effectiveness of our approach.

The second scenario is the mining of patterns, called motifs, that repeat fre-
quently, possibly with some errors, in biological sequences. This problem has at-
tracted wide interest in recent years, since sequence similarity is often a necessary
condition for functional correlation. We introduce density, a simple and flexible
measure for bounding the number of errors, modeled thorugh don’t cares, in a mo-
tif. We design a new algorithm to extract maximal dense motifs from a sequence,
and provide experimental evidence of the biological significance of the motifs that
the algorithm returns. Moreover, we compare the motifs extracted by our algorithm
with the ones found by a recently proposed algorithm, showing that our algorithm
can identify motifs that are more significant according to z-score, a widely employed
measure of significance.

The last problem we consider is the mining of significant patterns from large-



scale gene and protein interaction networks, a problem of increasing interest since its
importance in cancer studies. For this scenario we define the problem of identifying
significantly mutated pathways in large scale gene and protein interaction networks.
We introduce a computational framework that is the first, to our knowledge, to
demonstrate a computationally efficient strategy for de novo identification of sta-
tistically significant mutated subnetworks, and design two algorithms to efficiently
extract the significantly mutated pathways. Moreover we test these algorithms on
a large human protein-protein interaction network using mutation data from recent
studies on two different type of cancers. The results of our tests show that our

methods correctly identifies the pathways that are implicated in cancer.



Sommario

I recenti progressi tecnologici permettono la raccolta e la memorizzazione di enormi
quantita di dati in molte aree diverse. Il data mining é il processo di estrazione di
informazione nuova, interessante ed utile. Negli ultimi anni un cospicuo numero di
soluzioni sono state sviluppate per I'analisi di grandi moli di dati, ma il processo di
valutazione della significativita dei pattern estratti e di validazione delle previsioni
basate su questi pattern sta diventando uno dei principali challenge nell’ambito delle
applicazioni che elaborano enormi quantita di dati. Questa tesi si focalizza sullo
sviluppo di tecniche rigorose ed efficienti per I'estrazione di pattern significativi in
tre diversi scenari rilevanti.

Il primo scenario considerato ¢ I'estrazione di pattern frequenti, chiamati itemset,
da dataset transazionali. Inizialmente vengono studiate due primitive molto utiliz-
zate per questo problema: I'estrazione dei K itemset chiusi piu frequenti, un proble-
ma proposto recentemente come alternativa all’estrazione degli itemset frequenti che
fornisce un maggior controllo sulla taglia dell’output, che é una delle principali dif-
ficolta per il problema tradizionale; I’estrazione dei K itemset piu frequenti tramite
sampling. La nozione di K itemset chiusi piu frequenti fornisce un primo tentativo
di migliorare I'efficacia del framework tradizionale, legando la significativita ad un
ordinamento basato sulla frequenza invece che ad un semplice soglia di frequenza.
Per entrambe queste primitive vengono sviluppati nuovi algoritmi e viene fornita
evidenza sperimentale della loro efficacia. Successivamente viene studiato il prob-
lema dell’identificazione di una soglia di supporto significativa tale che gli itemset
che risultano frequenti rispetto a tale soglia possono essere contrassegnati come sig-
nificativi con un basso False Discovery Rate (FDR), che é definito come il rapporto
atteso tra il numero di scoperte erronee e il numero totale di pattern prodotti in
output. Una caratteristica cruciale che distingue il nostro approccio dalla maggior
parte dei lavori precedenti é che il nostro framework considera l'intero dataset per
valutare la significativita di un pattern. Vengono inoltre forniti i risultati dell’analisi
sperimentale che mostrano ’efficacia del nostro approccio.

Il secondo scenario che consideriamo é l’estrazione di pattern, chiamati motif,
che si ripetono frequentemente, eventualmente con errori, in sequenze biologiche.
Questo problema ha attratto molto interesse negli ultimi anni, dato che la similarita
a livello di sequenza é spesso una condizione necessaria per avere correlazione a livello
funzionale a livello di DNA, RNA o proteine. Per questo problema viene introdotta
la nozione di densitd, una misura semplice e flessibile per limitare il numero di errori,
rappresentati tramite don’t cares, in un motif. Viene sviluppato un nuovo algoritmo

per ’estrazione di motif densi massimali da una sequenza, e viene fornita evidenza



sperimentale della significativita biologica dei motivi che I'algoritmo estra. Inoltre,
i motivi estratti dal nostro algoritmo vengono confrontati con quelli trovati da un
altro algoritmo proposto recentemente, mostrando che il nostro algoritmo identifica
motif che risultano piu significativi rispetto allo z-score, una misura di significativita
molto utilizzata.

L’ultimo scenario che viene considerato é ’estrazione di pattern significativi da
grandi reti di interazione fra geni e proteine, un problema di crescente interesse vista
la sua importanza negli studi sul cancro. Per questo scenario viene definito il proble-
ma dell’identificazione di sottoreti mutate in maniera significativa. Viene introdotto
il primo framework computazionale, al meglio della nostra conoscenza, che fornisce
una strategia computazionale efficiente per I'identificazione de novo di sottoreti mu-
tate in maniera statisticamente significativa e vengono sviluppati due algoritmi per
I’identificazione di tali sottoreti. Tali algoritmi sono valutati utilizzando una grande
rete di interazione tra proteine e utilizzando dati di mutazione ottenuti da recenti
studi su due tipi di cancro. I risultati di questa valutazione mostrano che i nostri
algoritmi identificano correttamente le sottoreti che sono implicate nell’insorgenza

del cancro.
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Chapter 1
Introduction

We are living in the information era. Recent advances in technology allow for the
collection and storage of vast amounts of data in areas ranging from market basket
analysis and supply chain management to computational molecular biology and epi-
demiology. A 2003 study [LV03| reported that between 3 and 6 exabyte (EB, 10'®
bytes) of newly produced information has been stored in 2002, and that the storage

of new information has been growing at a rate of more than 30% a year.

Computer science has been dealing with problems related to the ever increasing
need for collection and storage of data for decades (e.g., the LZ77 algorithm by
Lempel and Ziv has been published in 1977 [ZL.77)), developing tools which constitute
now a solid, accessible ground for managing large datasets, and the improvement of
these tools is still object of research. Given the ubiquity of large datasets, and
the need not only to transmit, archive, and compress them, but also to analyze
and understand their content, the challenge of our era is the extraction of useful
information from overwhelming amounts of data. Even if a huge body of research
has been produced on the processing of large datasets, much work remains to be done.
It is possible to find a piece of data in a petabyte-size storage system, but analyzing
an entire dataset to find correlations and meaningful trends remains challenging. On
the one hand there is the need to improve the efficiency of many of the algorithms
designed for vast amounts of data, but on the other hand there is the need for novel
algorithmic solutions for more effectively extracting significant information from the
data.

Data mining is the process of discovering new and useful information. The com-
munity of data mining researchers has developed in recent years a set of techniques
that has led to great improvement in the analysis of vast amount of data, but the
task of analyzing that data is still a major challenge, and in particular assessing the

significance of discovered patterns and the validity of forecast based on these discov-
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eries is becoming a major challenge in data intensive applications. The objective of
this thesis is the development of rigorous and efficient techniques for mining signifi-
cant patterns in the context of three specific and important scenarios, as explained

below.

First we considered the classical problem of mining frequent itemsets from trans-
actional datasets, a fundamental primitive for market basket analysis and several
other commercial and scientific applications. Given a set of transactions, that are
subsets of a base set of items, the traditional definition of the problem requires to
produce in output all the sets of items (itemsets), that appear in at least a fraction
f of the transactions, where f is a frequency threshold defined by the user. Since the
number of transactions is fixed, specifying a minimum frequency threshold f is equiv-
alent to specify a minimum support threshold o, where the support of an itemset is
the number of transactions in which the itemset appears. This definition reflects the
idea that the significance of an itemset is revealed by its frequency. A huge body of
algorithmic studies has been produced for the classical problem. However, the choice
of a suitable frequency threshold is usually problematic, and unless specific domain
knowledge is available, this choice is often arbitrary. One of the problems of this
arbitrariness is that the number of patterns obtained can be either too high or too
low, requiring then more iterations of the mining process to obtain a tractable and
useful number of patterns in output. Even worse, an arbitrary choice of o can lead
to an high number of false positive or false negative discoveries, that can undermine

the correctness of subsequent analyses based on frequent itemset mining.

The set of frequent itemsets usually contains a lot of redundant information. To
reduce this redundancy, the mining of frequent closed itemset have been proposed.
An itemset is closed if any itemset obtained adding an item to it has a lower frequency.
The set of frequent closed itemsets is a compact representation of the information
contained in the set of frequent itemsets, since from the closed itemsets and their
frequency it is possible to recover all frequent itemsets and their frequency. This
variation however does not solve the problem of the choice of the minimum threshold

o, which remains problematic.

Recently in [WHLT05] a method has been proposed that does not require a
minimum threshold in input, but, rather, extracts the top-K most frequent closed
itemsets, that is, the closed itemsets that are frequent w.r.t. a threshold oy, defined
as the maximum frequency threshold resulting in at least K closed itemsets in output.
In this way it is possible to better control the size of the output through the parameter
K, even if it is possible that more than K closed itemsets are produced in output.

Moreover this approach can be considered as an enhancement of the traditional



framework where the significance of an itemset is not merely determined by the

comparison of its frequency with an arbitrarily fixed threshold but it is related to its

position in a frequency-based ranking of all itemsets.

For the problem of frequent itemset mining, this thesis work contributes the

following results:

()

(iii)

We study the basic primitive of the extraction of top-K frequent closed item-
sets. For the extraction of top-K frequent closed itemsets, we provide the first
analytical evidence of its effectiveness, proving a tight upper bound on the ra-
tio between the actual number of closed itemsets returned in output and the
input value K. Then, we develop an efficient algorithm for mining top-K fre-
quent closed itemsets in order of decreasing support, which exhibits consistently
better performance than the best previously known one, attaining substantial
improvements in some cases. A distinctive feature of our algorithm is that it
allows the user to dynamically raise the value K with no need to restart the

computation from scratch. These results appeared in [PV07].

We study a second primitive, the use of sampling to extract the top-K frequent
itemsets. Traditional methods for the extraction of frequent itemsets work on
the entire dataset. Since the size of the dataset can be huge, processing the
entire dataset can require too many resources in terms of both space and time,
resulting in a mining process computationally too expensive. To overcome
this problem one natural approach is to work only on a small sample of the
entire dataset. Sampling has been used extensively to extract items/itemsets
in the traditional framework, but its use for the extraction of the most frequent
itemsets is instead not well studied. We provide a tight bound on the sufficient
sample size required to approximate the top-K frequent items/itemsets while
giving probabilistic guarantees on the quality of the output. Then, we develop
an algorithm to efficiently extract the top-K frequent items/itemsets through
sampling. These results have been presented in [PRUV09|

We develop a novel methodology to identify a meaningful support threshold
o* for a dataset, such that the number of itemsets with support at least o*
represents a substantial deviation from what would be expected in a random
dataset with the same number of transactions and the same individual item
frequencies. The threshold ¢* is chosen in such a way to guarantee that the fre-
quent itemsets with respect to o* can then be flagged as statistically significant
with a small False Discovery Rate (FDR), that is the expected ratio of false

discoveries among all discoveries. A crucial feature of our approach is that,
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unlike most previous work, it takes into account the entire dataset rather than
individual discoveries. It is therefore better able to distinguish between signifi-
cant observations and random fluctuations. These results have been published
in [KMPT09al [IKMPT09b].

As a second scenario, we considered the mining of patterns, called motifs, which
occur frequently, possibly with some errors, in biological sequences (e.g., DNA se-
quences). The discovery of frequent motifs has attracted wide interest in recent years,
since sequence similarity in biological molecules (DNA, RNA, amino acids sequence
of proteins) is often a necessary condition for functional correlation. The presence of
errors in the repetition of a motif are often modeled through the use of the don’t care
character in certain positions, which is a wild card matching all characters of the
alphabet. Since the set of frequent motifs contains a lot of redundancy, the notion of
mazximal motif (the analogous of closed itemset for sequences) has been introduced
to produce a more compact representation without losing information.

Traditionally the significance of a motif has been assessed using its frequency.
However the significance of a motif cannot be exclusively related to its frequency, as
the following simple experiment taught us. We extracted the 10,000 most frequent
maximal motifs obtained from Human Glutamate Metabotropic Receptors HGMR 1
(410277 bps) and HGMR 5 (91243 bps) sequences, and asked a biologist to verify
if there were biologically interesting motifs. The biologist immediately discarded
our results as non interesting, since the motifs we reported were either too short or
contained too many don’t cares. Then the frequency of a motif does not reflect its
biological significance, and some of the frequent motifs can be immediately flagged
as non significant simply looking at their structure.

For this problem, the thesis contributes the following result:

(i) We develop, analyze and experiment with a new tool, called MADMX, which ex-
tracts frequent motifs, possibly including don’t care characters, from biological
sequences. We introduce density, a simple and flexible measure for bounding the
number of don’t cares in a motif, defined as the ratio of solid (i.e., different from
don’t care) characters to the total length of the motif. By extracting only maz-
imal dense motifs, MADMX reduces the output size and improves performance,
while enhancing the quality of the discoveries. The efficiency of our approach
relies on a newly defined combining operation, dubbed fusion, which allows for
the construction of maximal dense motifs in a bottom-up fashion, while avoid-
ing the generation of nonmaximal ones. We provide experimental evidence of

the efficiency and the quality of the motifs returned by MADMX, comparing



them with the known biological repetitions available in a very popular genomic
database, and with the motifs extracted by the recently developed tool VARUN
J[ACP0O9] using the same statistical metric employed in [ACP09| for assessing
their relative significance. These results have been published in [GPPT09).

Finally, we turned our attention to the mining of significant patterns from large-
scale gene and protein interaction networks. This problem is of great interest in the
study of cancer, since it is a disease caused mainly by somatic mutations, changes
in DNA sequence that accumulate during the lifetime of an individual and are not
inherited from parents. When a mutation appears in a gene, the portion of the DNA
that contains the information useful to produce the corresponding protein, it can alter
the functionality of the protein produced. Proteins are the primary components of
living things. Since it is the interaction of the proteins that regulates the activity of
a cell and the processes occurring inside it, changes in the functionality of a protein
can disrupt the correct functioning of the cell, leading to cancer.

While few of the genes that, when altered, promote the development of malig-
nancies, called cancer genes, are mutated at high frequency (e.g. well known cancer
genes like TP53 or KRAS), most cancer genes are mutated at much lower frequen-
cies. Thus, the observed frequency of mutation is an inadequate measure of the
importance of a gene, particularly with the relatively modest number of samples
that are tested in current cancer studies. In fact cancer is a disease of pathways,
sequences of interactions between proteins that regulate the processes inside the cell.
It is hypothesized that somatic mutations target genes in a relatively small number
of regulatory and signaling pathways [HW02|, VK04]. Thus, the fact that only few
genes are mutated in a large number of samples is explained by the fact that there
is a huge number of possible combinations of mutations that transform a normal cell
into a cancer cell. To understand what are the mechanisms leading to cancer, and
what are the genes whose alterations are the cause of malignancies, it is then crucial
to find what are the pathways that are significantly mutated.

For this part, this thesis work contributes the following result:

(i) We define the problem of identifying significantly mutated pathways in large
scale gene and protein interaction networks. We introduce a computational
framework that is the first, to our knowledge, to demonstrate a computation-
ally efficient strategy for de novo identification of statistically significant mu-
tated subnetworks. We propose two algorithms to identify significantly mutated
pathways, both based on an influence measure between pairs of genes obtained
using a diffusion process defined on the interaction network. Moreover, build-

ing on the technique we developed in [KMPT09a| we derive a statistical test
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that identifies significantly mutated pathways and estimates the FDR of the
identified subnetworks. We test these algorithms on a large human protein-
protein interaction network using mutation data from recent studies on two
different type of cancers (glioblastoma multiforme and lung adenocarcinoma).
Our methods successfully recover pathways that are known to be important in
the considered cancers, and moreover identify additional pathways that have

been implicated in cancer but not previously reported as mutated in these

samples. These results appeared in [VUR0O9, VURIO0].

The rest of this thesis is organized as follows. Chapter Bl provides the background
for the remaining chapters. Chapter Bl presents the results regarding the extraction of
top-K frequent closed itemsets, and the use of sampling to extract the top-K frequent
items/itemsets. In Chapter H the methodology to identify statistically significant
frequent itemsets is introduced. Chapter Bl presents our tool MADMX to extract
maximal dense motifs in biological sequences. Chapter Bl introduces the framework
to discover significantly mutated pathways in biological networks. Chapter [ ends

the thesis with some concluding remarks.



Chapter 2
Background

This thesis proposes novel solutions to discover significant patterns in different sce-
narios. In this chapter we provide the background related to the problems addressed
in this thesis work, and a survey of previous work. The first three sections provides
the background for the first part of the thesis. In particular, in Section Il we in-
troduce the problem of frequent itemsets mining, a problem that has attracted a lot
of attention in the data mining community, as testified from the huge body of work
produced by the researcher in that field, but for which many interesting questions
are still open, like, for example, how to efficiently extract the top-K frequent closed
itemsets. Another interesting question that is still open is how to employ sampling to
extract the top-K frequent itemsets: the background for this problem is presented
in Section 22 In Section we review the approaches that have been proposed
to extract the statistically significant frequent itemsets from a dataset, employing

measures different from the frequency to measure the significance of an itemsets.

Section and Section provide the background for the second part of the
thesis, where we turn our attention to two problems in computational biology. In
particular, in Section we introduce the problem of mining motifs in biological
sequences, that is one of the fundamental problems in computational biology. In
Section we instead define the problem of finding significantly mutated pathways
in biological networks, a problem for which no efficient solution as been proposed
yet, but that is receiving an increasing attention in the biomedical community given

the availability of the first data on large-scale tumors sequencing.

While each section presents a survey of previous work, the works that are closely
related to our novel contributions will be reviewed in more details in the respective

chapters.
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2.1 Mining for frequent itemsets: classical setting

The discovery of frequent itemsets is a fundamental primitive which arises in the
mining of association rules and in many other mining problems. The problem has
been formally introduced in [AIS93|, and is the following: given a (multi)set D =
{tl, to, ... ,t‘p|} of transactions, where each transaction ¢; is a subset of a base set of
items Z, and a minimum threshold o, produce in output the set F (D, o) of frequent
itemsets, that is all of the (nonempty) subsets X C Z which appear in at least o
transactions. We use ||D|| to denote the dataset size, that is, | D| = >, 5 [t|. For
an itemset X C T we define its conditional dataset Dx C D as the (multi)set of
transactions t € D that contain X. The number of transactions of Dx is referred
to as the support of X w.r.t. D, denoted with sp(X) s%)‘()
referred to as the frequency of X, denoted with fp(X )EI

Since the pioneering work by Agrawal et al. [AIS93] a vast body of works has

while the quantity is

appeared in the literature presenting novel algorithmic strategies or clever implemen-
tations of known strategies, studying foundational issues, and proposing variants of
the problem together with efficient algorithmic solutions. Despite this impressive
amount of research, many challenging problems are still open [HCXY07].

One of the problems in the mining of frequent itemsets is that the size of the
output can be huge, since the number of frequent itemsets can be exponential in
the size of the input. It is thus challenging to choose a threshold o such that the
number of frequent itemsets produced in output is not overwhelming, but still large
enough to permit significative analyses. However, the set of all frequent itemsets
usually contains a lot of redundant information which is partly responsible for their
large number. In order to eliminate the redundancy, the notion of frequent maximal
itemsets [Bay98| has been introduced in [Bay9§|: a frequent itemset X is mazimal
w.r.t. a support threshold o if there is no itemset Y, with X C Y C Z, such that
s(Y) > o. From the set of all frequent maximal itemsets and their supports, it is
possible to recover the set of all frequent itemsets, but it is not possible to recover
their supports without accessing the input database.

Another alternative that has been proposed is the mining of the set FC(D, o) of
frequent closed itemsets [PBTLI9|: an itemset X is closed w.r.t. D if there exists
no itemset Y, with X C Y C Z, such that sp(Y) = sp(X). In other words, if X
is closed, then adding a single item to X decreases its support. Given a support
threshold o, an itemset X is then closed frequent if it is frequent w.r.t. o, and it is

closed.

IFor simplicity, in what follows we will omit explicit reference to D in the notation for the
support and the frequency, if D is clear from the context.
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For any itemset X, its closure w.r.t. D, denoted by Clop(X), is the closed itemset
Y D X such that Y = ﬂteDX tH From the set of frequent closed itemsets and their
supports it is possible to recover the set of all frequent itemsets and their supports
without accessing the input database.

It would be impossible to survey here the vast literature on the mining of fre-
quent itemsets, maximal frequent itemsets or frequent closed itemsets. We refer the
interested reader to the proceedings of the two recently held editions of the Fre-
quent Ttemset Mining Implementations (FIMI) Workshop, which illustrate the state
of the art for these problems [GZ03, BGZ04]. Among the many algorithms that
have been proposed for extracting frequent maximal or closed itemsets, algorithm
LCM, proposed in [UATA(4], is particularly relevant for our purposes. In this work,
a conceptual organization of the closed itemsets as nodes of a tree, with support
decreasing with increasing depth, is proposed. This organization allows LCM (i) to
avoid processing non-closed itemsets, and (ii) to avoid maintaining in memory the
frequent closed itemsets discovered before producing them in output, resulting in
increased time and space performance. LLCM is the first algorithm that exhibited
these features. A strategy similar to the one employed by LCM is used in [LOP0O6].

Although the number of frequent closed itemsets is often much smaller than the
number of all frequent itemsets, there are cases when |FC(D, )| is still exponential
in ||D||. The following example is by Yang [Yan04]: let Zyan, = {a1, a2, ..., a,} and
let Dyang = {t1,t2,...,tn} with t; = Z—{a;}, for 1 <i < n. Thus, ||Dyang|| € © (n?).
It is easy to see that every itemset X C Zy,,, is closed and has support n—|X]|, hence
the number of closed itemsets of support at least o = [n/2] is ,Li/f] (}) € 22m).

For a given dataset D and support threshold o, it is hard to predict the |F(D, o)|
or |[FC(D,o)|, and this is a problematic aspect of the classical frequent (closed)
itemset mining task. Setting o too large may exclude interesting itemsets from
the output, while setting it too small may yield an impractically large output set.
Consequently, a user may have to repeat the mining process several times for different
support thresholds until one is found which yields a suitable number of frequent
itemsets. To overcome this problem, in [WHILT05| the authors propose to modify
the mining task into that of discovering the top-K frequent closed itemsets, as defined

below.

Definition 2.1. For a dataset D and an integer K, define the set of top-K frequent
closed itemsets (top-K f.c.i., for short) as FCx(D) = FC(D,ok), where ok is the
mazimum value such that FC(D,ok) > K.

2For simplicity, in what follows the terms closed itemset, and closure will be used without explicit
reference to D, if D is clear from the context.



10 Chapter 2. Background

D 7 X [s(X)
tl ag Qg aq Qg 5
t2 ag Qg as 5
t3 ag Qa5 a4 a3 Q9 Qg Qg 4
t4 Qg Qs a5 as 4
t5 as as Qa9 Qg Qs 3
t6 as as ay as asz ag 3
t7 ag a5 a4 Qa3 a2 Qg ay 3

(a) (b)
Figure 2.1: (a) Sample dataset D. (b) Top-5 frequent closed itemsets for D.

The top-5 frequent closed itemsets for a sample dataset D are shown in Figure 211
Note that when mining the top-K frequent closed itemsets the threshold o is not
given as part of the input and it is uniquely, although implicitly, defined as a function
of K, which sets a more direct constraint on the output size. However, requiring the
discovery of all closed itemsets of support at least ox may yield many itemsets (of
support equal to o) in excess of K, but these extra itemsets are necessary in case
other patterns (e.g., association rules) must be derived from the frequent closed

itemsets.

2.2 Mining of frequent itemsets through sampling

When dealing with massive datasets, computing the exact set of (maximal/closed)
frequent itemsets can be too expensive. If the dataset does not fit completely in main
memory, disk accesses may slow down exact algorithms to a point where they become
impractical. Algorithms for the standard frequent itemset mining task developed to
solve the problem in an exact way must scan the entire dataset, typically several
times, which has a considerable impact on performance. It is then necessary to accept
a tradeoff between the accuracy of the results and the time needed to compute them,
especially if it is possible for the user of the algorithm to specify the maximum decay
in the “quality” of the output she is willing to accept.

Sampling is one technique that can be employed to reduce the running time, ob-
taining approximated results. Almost immediately after the first efficient algorithms
had been developed, the data mining community started wondering whether it would
be possible to lower the execution time by using only a sample of the dataset and
give probabilistic guarantees on the output.

One of the first problems that has been addressed by the community is the de-

termination of a sufficient sample size which would allow the sample to respect some
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“quality standards”. The authors of [ZPLO97| focused on the use of Chernoff bounds
to define these standards in terms of accuracy, that is, the ratio between the support
of an itemset in the sample and its real support, and of confidence of the sample,
that is, the probability that the itemsets extracted from the sample have a given
accuracy. There are two drawbacks in the approach of [ZPLO97|. First of all, the
sample size obtained with their method can be larger than the original dataset; sec-
ond, their approach is not sound from a statistical point of view since the confidence
bound is derived for one individual itemset, rather than the entire output set. A

straightforward correction of this problem would result in an even worse sample size.

In [JL96] the use of progressive sampling and learning curves is proposed for
data mining tasks. Their article refers principally to classification, but the ideas
presented can be adapted to the mining of frequent itemsets. The main idea is the
use of learning curves to evaluate whether the distribution of elements in the sample
is approximately the same distribution of the elements as in the original dataset.
This approach could solve the issue of having a sample size larger than the size of
the original dataset. The experimental results presented in that work suggest that
using progressive sampling can be more efficient than static sampling since it may

yield higher accuracy.

An algorithm inspired by the progressive sampling approach presented in [JLI6]
is introduced in [CHS02]. The main idea is to derive a small sample that reflects some
properties of the entire dataset starting from a large, hence more accurate, sample.
The algorithm considers at the beginning a large sample Sy, from which an accurate
estimation of the frequent items can be derived. Then a small final sample § of fixed
size n, where n is chosen by the user, is obtained by trimming &y. The transactions
removed in the trimming phase are chosen so that the set of frequent items in S is
close to the set of frequent items in Sy, given a suitable distance function between

two sets of frequent items.

Another algorithm that starts from the ideas presented in [JL.96] is described
in [Par02]. The goal of this algorithm is to identify the knee of the learning curve
using basic slope characterization across recently evaluated samples. To this end,
progressive sampling is employed: starting from a small sample, larger and larger
samples are considered. A self-similarity measure is defined between subsets of fre-
quent itemsets obtained from two different samples and is used to stop the growth
of the sample size when it becomes small enough. The subset of frequent item-
sets considered for the self-similarity measure is such that the mining process is not
too expensive. In that paper the accuracy and confidence proposed method is not

assessed analytically, but experimental evidence of its effectiveness is provided.
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The authors of [LLGO4] derive a sufficient sample size based on central limit the-
orem. The sample sizes derived with this method are smaller than the ones derived
using the method of [ZPLO97|, but the analysis suffers from the same statistical

weaknesses as [ZPLO97].

The question of deriving a sufficient sample size for sampling is not the only
one that has been addressed by the data mining community. In [T0i96] the author
develops and analyzes an algorithm that with one pass of the entire dataset extracts
the entire set of frequent itemsets with probability 1 — A, where A is a user defined
parameter. The algorithm uses a sample to extract a set C of itemsets that represents
the candidate set of frequent itemsets w.r.t. the entire dataset, and then one scan
of the entire dataset is performed to compute the exact frequencies of itemsets in
C. The author shows that if some frequent itemset is not found in the first pass
(event that holds with probability A), an additional pass is sufficient to complete

the identification of all frequent itemsets.

The literature related to the problem of finding the top-K frequent items or
itemsets by limiting the access to the dataset is not as rich as the one on the classical
problem. Some papers [CCEFC04, IMAADD, [CGKOS| appeared in the field of data
streams and limited to the case of top-K items, while [WE06| deals with top-K
itemsets. In the data stream scenario, the transactions are provided to the algorithm
one after the other, and it not possible to maintain all the input dataset in memory,
then when a transaction is provided to the algorithm, it must decide whether to store
it in memory, having then the possibility to use it for the computation, or not. In
the data stream scenario the question of major interest is the total space required
to solve the problem, hence the authors of works above were mainly concerned with
bounding the space needed to compute a solution to the problem or to one of its
relaxed versions, and little attention was given to how much data must be sampled
to obtain such a solution, since such a question is less crucial in the data stream
setting. However, some of these works are of interest because they formally define

an approximation to the set of top-K items/itemsets.

The authors of [CCFCO4] present a 1-pass algorithm to estimate the most frequent
items in a data stream under the constraint of limited storage space. They present
an algorithm, COUNTSKETCH, which is proved to solve the problem with probability
1 —0 using O (K log %) space, where n is the total number of elements in the stream

(i.e., n is the length of the stream), while to obtain a set of items such the the k£ most
log K
Ik
the K-th most frequent item, is required with a naive approach (by keeping a uniform

frequent items occur in the set a sample of size O ( ) , where ff is the frequency of

random sample of the elements as a list of items and a count for each of them). Since
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fx < 1/n, the improvement obtained with the COUNTSKETCH algorithm is large.
A drawback of the COUNTSKETCH algorithm is that the parameters of the data
structure employed by the algorithm depend on the distribution of the frequencies
of the items, so one must have some prior knowledge about that distribution to
correctly apply the method.

The authors of [WEQ6| use the Chernoff bounds to derive a method to mine the
top-K frequent itemsets from a datastream. This method seems promising because
it gives a probabilistic lower bound to the frequency in the sample of the K-th most
frequent itemset in the dataset. The problem is that the proof of this bound contains
a flaw, which leads to the non-correctness of the entire algorithm. In particular the
authors derive the lower bound to the frequency of the real top-K frequent itemset
using a confidence interval for the frequency in the sample of the K-th most frequent
itemset in the dataset, without conditioning on the fact that the itemset used to
derive this lower bound is observed with a certain frequency in the sample.

To understand why this is not correct, consider a dataset where all the items
have the same frequency. Using a ball and bins argument it is easy to show that in a
random sample there will be an item with frequency f much higher than expected,
such that the probability of observing that particular item with frequency f in a
random sample is negligible. Then the frequency of this item cannot be used to

obtain a probabilistic lower bound to the frequency of the most frequent item.

2.3 Statistically significant frequent itemsets

Of the many problems that remain open concerning the mining of frequent item-
sets, assessing the significance of the discovered itemsets, or equivalently, flagging
statistically significant discoveries with a limited number of false positive outcomes,
is still poorly understood and remains one of the most challenging problems in this
area [HCXY07]. Since we are inter

The classical framework requires that the user decide what is significant by spec-
ifying the support threshold o. Unless specific domain knowledge is available, the
choice of such a threshold is often arbitrary [HKOT), [TSK06]|, and may lead to a large
number of spurious discoveries that would undermine the success of subsequent anal-
ysis.

A number of works have explored various notions of significant itemsets and
have proposed methods for their discovery. Below, we review those most relevant
to this thesis work and refer the reader to [HCXY(T, Section 3| for further refer-
ences. The paper [AYO8| relates the significance of an itemset X to the quantity
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(1 —v(X))/(1 = E[v(X)]) - (E[v(X)]/v(X)), where v(X) represents the fraction
of transactions containing some but not all of the items of X, and E[v(X)] repre-
sents the expectation of v(X) in a random dataset where items occur in transactions
independently. This ratio provides an empirical measure of the correlation among
the items of X which, according to [AY9S], is more effective than absolute support.
In [SA96], DuM99|, [DPOT], the significance of an itemset is measured as the ratio R
between its actual support and its expected support in a random dataset. In order
to make this measure more accurate for small supports, [DuM99], [DPOT] proposes
smoothing the ratio R using an empirical Bayesian approach. Bayesian analysis is
also employed in [ST96| to derive subjective measures of significance of patterns
(e.g., itemsets) based on how strongly they “shake” a system of established beliefs.
In [IS05], the significance of an itemset is defined as the absolute difference between
the support of the itemset in the dataset and the estimate of this support made from

a Bayesian network with parameters derived from the dataset.

A statistical approach for identifying significant itemsets is presented in [SBM98],
where the measure of interest for an itemset is defined as the degree of dependence
among its constituent items, which is assessed through a y? test. Unfortunately,
as reported in [DuM99, [DPOT], there are technical flaws in the applications of the
statistical test in [SBMO98|. In particular, it is reported that the x? distribution used
in their approach has one degree of freedom for any length of considered itemsets,
while this is true only for itemsets of size 2. Their results are then correct only
for itemsets of size 2. Nevertheless, [SBM98| pioneered the quest for a rigorous

framework for addressing the discovery of significant itemsets.

A common drawback of the aforementioned works is that they assess the sig-
nificance of each itemset in isolation, rather than taking into account the global
characteristics of the dataset from which they are extracted. As argued before, if
the number of itemsets considered by the analysis is large, even in a purely random
dataset some of them are likely to be flagged as significant if considered in isolation.
A few works attempt at accounting for the global structure of the dataset in the
context of frequent itemset mining. The authors of [GMMT07| propose an approach
based on Markov chains to generate a random dataset that has identical transaction
lengths and identical frequencies of the individual items as the given real dataset.
The work suggests comparing the outcomes of a number of data mining tasks, fre-
quent itemset mining among the others, in the real and the randomly generated
datasets in order to establish whether the real datasets exhibit any significant global
structure. However, such an assessment is carried out in a purely qualitative fashion

without rigorous statistical grounding.
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Multi-hypothesis testing

In a simple statistical test, a null hypothesis Hj is tested against an alternative
hypothesis H;. A test consists of a rejection (critical) region C' such that, if the
statistic (outcome) of the experiment is in C, then the null hypothesis is rejected,
and otherwise the null hypothesis is not rejected. The significance level of a test, o =
Pr(Type Ierror), is the probability of rejecting Hy when it is true (false positive). The
power of the test, 1 — Pr(Type II error), is the probability of correctly rejecting the
null hypothesis. A “Type II error” is the erroneous non rejection of a null hypothesis
(false negative). The p-value of a test is the probability of obtaining an outcome at
least as extreme as the one that was actually observed, under the assumption that

Hy is true.

In a multi-hypothesis statistical test, the outcome of an experiment is used to
test simultaneously a number of hypotheses. For example, in the context of frequent
itemsets, if we seek significant k-itemsets, we are in principle testing (Z) null hypothe-
ses simultaneously, where each null hypothesis corresponds to the support of a given
itemset not being statistically significant. The experiment in this case corresponds to
the extraction of the k-itemsets and their supports from the datasets. In the context
of multi-hypothesis testing, the significance level cannot be assessed by considering
each individual hypothesis in isolation. To demonstrate the importance of correcting
for multiplicity of hypotheses, consider a simple real dataset of 1,000,000 transac-
tions over 1,000 items, each with frequency 1/1000. Assume that we observed that
a pair of items (7, j) appears in at least 7 transactions. Is the support of this pair
statistically significant? To evaluate the significance of this discovery we consider
a random dataset where each item is included in each transaction with probability
1/1000, independent of all items. The probability that the pair (i, j) is included in
a given transaction is 1/1,000,000, thus the expected number of transactions that
include this pair is 1. A simple calculation shows that the probability that (i, j)
appears in at least 7 transactions is about 0.0001. Thus, it seems that the support of
(1, 7) in the real dataset is statistically significant. However, each of the 499,500 pairs
of items has probability 0.0001 to appear in at least 7 transactions in the random
dataset. Thus, even under the assumption that items are placed independently in
transactions, the expected number of pairs with support at least 7 is about 50. If
there were only about 50 pairs with support at least 7, returning the pair (i, j) as a
statistically significant itemset would likely be a false discovery since its frequency
would be better explained by random fluctuations in observed data. On the other
hand, assume that the real dataset contains 300 disjoint pairs each with support at
least 7. By the Chernoff bound [MU05|, the probability of that event in the random
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27390 Thus, it is very likely that the support of most of these

dataset is less than
pairs would be statistically significant. A discovery process that does not return

these pairs will result in a large number of false negatives.

A natural generalization of the notion of significance level to multi-hypothesis
testing is the Family Wise Error Rate (FWER), which is the probability of incurring
at least one Type I error in any of the individual tests. If we are testing simulta-
neously m hypotheses and we want to bound the FWER by «, then the Bonferroni
method tests each individual null hypothesis with significance level ao/m. While con-
trolling the FWER, this method is too conservative in that the power of the test is
too low, resulting in many false negatives. There are a number of techniques that
improve on the Bonferroni method, but for large numbers of hypotheses all of these

techniques lead to tests with low power (see [DSB03] for a good review).

The False Discovery Rate (FDR)was suggested by Benjamini and Hochberg [BH95)
as an alternative, less conservative approach to control errors in multiple tests. Let
R be the total number of null hypotheses rejected by the multiple test, and let V' be
the number of Type I errors among these rejections. Then we define FDR to be the
expected ratio of erroneous rejections among all rejections, namely FDR = E[V/R],
with V/R = 0 when R = 0. Designing a statistical test that controls for FDR is
not simple, since the FDR is a function of two random variables that depend both
on the set of null hypotheses and the set of alternative hypotheses. Building on the
work of [BH95|, Benjamini and Yekutieli [BY(1] developed a general technique for
controlling the FDR in any multi-hypothesis test (see Theorem ).

Few works employ the multi-hypothesis testing framework for frequent itemset
mining or in the realm of discovering association rules. The problem of spurious
discoveries when mining significant patterns is studied in [BHA02]. The paper is
concerned with the discovery of significant pairs of items, where significance is mea-
sured through the p-value, that is, the probability of occurrence of the observed
support in a random dataset. Significant pairs are those whose p-values are below
a certain threshold that can be suitably chosen to bound the FWER, or to bound
the FDR. The authors compare the relative power of the two metrics through exper-
imental results, but do not provide methods to set a meaningful support threshold.
In [HNOS], the authors provide a variation of the well-known Apriori strategy for the
efficient discovery of a subset A of association rules with p-value below a given cutoff
value, while the results in [MS98| provide the means of evaluating the FDR in A.
The FDR metric is also employed in [ZPT04] in the context of discovering significant
quantitative rules, a variation of association rules. None of these works is able to

establish support thresholds such that the returned discoveries feature small FDR.
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2.4 Mining of motifs in biological sequences

All of the genetic information in any living creature is stored in deozyribonucleic acid
(DNA) and ribonucleic acid (RNA), which are polymers of four simple nucleic acid
units, called nucleotides. The portions of the DNA that really contains the infor-
mation necessary for the correct functioning of the cell are called genes. Each gene
codifies the information to produce a protein, the final product of genetic expression.
In particular, the process of genetic expression starts from the DNA sequence of a
gene. Using the information coded into the gene, an RNA molecule is produced
through the process of transcription, and then the amino acids sequence that consti-
tute the protein corresponding to the starting gene is produced through translation
of the RNA molecule. The final step of the genetic expression is the folding of the
protein into its three-dimensional structure.

The discovery of frequent patterns (motifs) in biological sequences has attracted
much interest in recent years, due to the understanding that sequence similarity is
often a necessary condition for functional correlation. For example since the structure
of a protein is determined by the sequence of the corresponding gene, genes that
have a similar sequence will likely produce proteins sharing similar structure and
thus probably having similar functions.

Among other applications, motif discovery proves an important tool for identify-
ing requlatory regions and binding sites in the study of functional genomics. Regu-
latory regions are segments of DNA where proteins that regulates the transcription
process binds preferentially, and are thus involved in the control of gene expres-
sion. A binding site is a region of a protein, DNA (or RNA) to which specific other
molecules form a chemical bond. For example, a transcription factor binding site is
the portion of DNA to which a protein (called transcription factor) binds controlling
the transfer of genetic information from DNA to RNA.

From a computational point of view, a major complication for the discovery of
motifs is that they may feature some sequence variation without loss of function.
The discovery process must therefore target approzimate motifs, whose occurrences
in the input sequence are similar but not necessarily identical. Approximate motifs
are often modeled through the use of the don’t care character in certain positions,
which is a wild card matching all characters of the alphabet, called solid characters
[Par07].

Finding interesting approximate motifs is computationally challenging. As the
number of don’t cares increases and/or the minimum frequency threshold decreases,
the output may explode combinatorially, even if the discovery targets only maximal

motifs—a subset of the motifs which succinctly represents the complete set. More-
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over, even when the final output is not too large, partial data during the inference of
target motifs might lead to memory saturation or to extensive computation during

the intermediate steps.

A large body of literature in the last decade has dealt with efficient motif dis-
covery [Pari, (AP0, [POGS0, K07, MNUOS, AUN7, AT08, ACP09, [AT07], and
an excellent survey of known results can be found in the book [Par(7]. In order to
alleviate the computational burden of motif extraction and to limit the output to the
most promising or interesting discoveries, some works combine the traditional use
of a frequency threshold with restrictions on the flexibility of the extracted motifs,

often captured by limitations on the number of occurring don’t cares.

Traditionally, the significance of a motif has been assessed through its frequency.
To understand if there is a direct correlation between frequency and biological sig-
nificance, we extracted the 10,000 most frequent motifs obtained from Human Glu-
tamate Metabotropic Receptors HGMR 1 (410277 bps) and HGMR 5 (91243 bps) se-
quences, and asked a biologist to verify if there were biologically interesting motifs.
The biologist immediately discarded our results as non interesting, since the mo-
tifs we reported were either too short or contained too many don’t cares. Then
the frequency of a motif does not reflect its biological significance. Other then the
frequency, a number of different statistics have been employed to measure the sig-
nificance of a motif (see [FA07| for a comparison of these measures). However, to
find the most significant motifs under one of those measures, the first step is the
extraction of all motifs, since there no strategy has been proposed to directly extract

significant motifs under those measures.

In a recent work, Apostolico et al. [ACP09| study the extraction of extensible
motifs, comprising standard don’t cares and extensible wild cards. The latter are
spacers of variable length that can take different size (within pre-specified limits) in
each occurrence of the motif. An efficient tool, called VARUN, is devised in [ACP09]
for extracting all maximal extensible motifs (according to a suitable notion of max-
imality defined in the paper) which occur with frequency above a given threshold o
and with upper limits D on the length of the spacers. VARUN returns the extracted
motifs sorted by decreasing z-score, that is the measure of the distance in standard
deviations of the outcome of a random variable from its deviation. The authors
demonstrate the effectiveness of their approach both theoretically, by proving that
each maximal motif features the highest z-score within the class of motifs it repre-
sents, and experimentally, by showing that the returned top-scored motifs comprise

biologically relevant ones when run on protein families and DNA sequences.

A slightly more general way of limiting the number of don’t cares in a motif has
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been explored in [RE98|. The authors define (L, W) motifs, for L < W, where at
least L solid characters must occur in each substring of length W of the motif. They
propose a strategy for extracting (L, W) motifs which are also maximal, although
their notion of maximality is not internal to the class of (L, W) motifs. As a con-
sequence, the algorithm is not complete, since it disregards all those (L, W) motifs

that are subsumed by a maximal non-(L, W) one.

2.5 Mining of significantly mutated pathways in bi-

ological networks

Cancer is a disease that is largely driven by somatic mutations, changes in DNA
sequence not inherited from parents that accumulate during the lifetime of an in-
dividual. When a mutation appears in a gene, it can alter the three-dimensional
structure of the corresponding protein, affecting its functionality. Since it is the
interaction of the proteins that regulates the activity of a cell and the processes oc-
curring inside it, changes in the functionality of a protein can disrupt the correct
functioning of the cell, leading to cancer.

Decades of experimental work have identified numerous cancer-promoting onco-
genes (also called cancer genes) and tumor suppressor genes that are mutated in
many types of cancer. Recent cancer genome sequencing studies have dramatically
expanded our knowledge about somatic mutations in cancer. For example, large
projects like The Cancer Genome Atlas (TCGA) [Nef08], the Tumor Sequencing
Project (TSP) [DT08], and the Cancer Genome Anatomy Project |[GT07| have se-
quenced hundreds of protein coding genes in hundreds of patients with a variety of
cancers. Other efforts have taken a global survey of approximately 20,000 genes in a
1-2 dozen patients [W07, LIT08, IPT08]. These studies have shown that: (i) tumors
harbor on average less than 100 somatic mutations; (ii) different tumors rarely have
the same set of mutations; (iii) and thousands of genes are mutated in at least one
type of cancer [W07|]. This mutational heterogeneity complicates efforts to distin-
guish functional mutations, that alter the three-dimensional structure of the protein
from sporadic, passenger mutations that do not cause cancer. While a few cancer
genes are mutated at high frequency (e.g. well known cancer genes like TP53 or
KRAS), most cancer genes are mutated at much lower frequencies. Thus, the ob-
served frequency of mutation is an inadequate measure of the importance of a gene,
particularly with the relatively modest number of samples that are tested in current
cancer studies.

It is widely accepted that cancer is a disease of pathways: a pathway is a sequence
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of interactions between proteins that can convert one kind of signal or stimulus
received from a cell into another (signaling pathway) or that can regulate the rates
at which other proteins will be produced (regulatory pathway). The entire set of
(pairwise) interactions between proteins defines the interaction network of proteins,
and a pathway is a subnetwork of this large interaction network. It is hypothesized
that somatic mutations target genes in a relatively small number of regulatory and
signaling pathways [HW02, VK04]. Thus, the observed mutational heterogeneity is
explained by the fact that there are myriad combinations of mutations that cancer
cells can employ to perturb the behavior of these key pathways. The unifying themes
of cancer are thus not solely revealed by the individual mutated genes, but by the
interactions between these genes. Standard practice in cancer sequencing studies is
to assess whether genes that are mutated at sufficiently high frequency significantly
overlap known cancer pathways [Net08, [DF08, ST06, W*07, [PT08, [L.F07al]. For
example, the TCGA study of glioblastoma multiforme (GBM) [Nef(8| reported that
three pathways previously identified as important in GBM were somatically mutated
in a large percentage of samples. This result confirms the role of these pathways in
GBM, but does not show whether these pathways were the only ones with a surprising

pattern of mutation.

Finding significant overlap between mutated genes and genes that are members of
known pathways is an important validation of existing knowledge. However, restrict-
ing attention to these known pathways does not allow one to detect novel groups of
genes that are members of less characterized pathways. Moreover, it is well known
that signal components in signal transduction can be shared between between differ-
ent signaling pathways, and thus responses to a signal inducing condition can activate
multiple responses in a cell [ZPZ709, VK04], a phenomenon called crosstalk. Dividing
genes into discrete pathway groupings limits the ability to directly detect whether this
crosstalk is a target of mutations. An additional source of information about gene and
protein interactions is large-scale interaction networks, such as the Human Protein
Reference Database (HPRD) [PF09], STRING [I709], and others [BF01, SMST04].
These resources incorporate both well-annotated pathways and interactions derived
from less specific and accurate methods, like high-throughput experiments, auto-
mated literature mining, cross-species comparisons, and other computational pre-
dictions. Many researchers have used these interaction networks to analyze gene
expression data. Ideker et al. [[OSS02] introduced a method to discover subnet-
works of differentially expressed genes, that are genes whose expression is different

in cancer and normal samples. This idea was later extended in different directions

by others [NCTLHO7, LF07h, [TKS08, [KSS09, MLWS07, HLCS09, I[CLLT07]|. Sepa-
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rately, [LACB0Y| defined metrics that showed clustering of GO annotations [AT00]
on an interaction network.

To our knowledge, no algorithm has been hitherto proposed to identify signif-
tcantly mutated pathways — that is connected subnetworks whose genes have more
mutations than expected by chance — de novo in a large interaction network. This
problem differs from the detection of subnetworks of differentially expressed genes in
that a relatively small number of genes might be measured, a small subset of genes
in a pathway may be mutated, and that a single mutated gene may be sufficient to

perturb a pathway.
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Chapter 3

Algorithmic Aspects of Basic Mining

Primitives

In this chapter we study the algorithmic aspects of two basic mining primitives: the
extraction of top-K frequent closed itemsets, and the use of sampling to extract
the top-K frequent items/itemsets. These primitives are used in many data mining
problems and are the first attempt to overcome the traditional view of the frequency
of an itemsets as a direct measure of its significance. In fact, if we are interested
in the top-K frequent items/itemsets, we are assuming that the significance of a
pattern is not given only by its frequency, but that it is the ranking given by the
frequency of the itemsets that reflects their significance.

As explained in Chapter B, the extraction of top-K frequent closed itemsets
is a recently proposed alternative to the classical frequent itemset mining, whose
purpose is to provide better control on the output size by making the frequency
threshold dependent on a parameter K which represents an approximate estimate of
the number of returned itemsets, rather than leaving the frequency threshold as an
independent input parameter which may be hard to fix.

Sampling is one techniques that can be used to improve the performances of
frequent itemset mining problems at the cost of obtaining approximated results, as
seen in Chapter I In particular, sampling can be use to guarantee certain quality
requirements on the output when extracting the top-K frequent items/itemsets.

The chapter is organized as follows. In Section Bl we present our work on
the discovery of top-K frequent closed itemsets. Our contribution for this problem
is twofold. First, we prove a tight upper bound on the ratio between the actual
number of closed itemsets returned in output and the input value K, thus providing
the first analytical evidence of the effectiveness of the new approach. Second, we

develop a new algorithm for mining top-K frequent closed itemsets, which features
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a tight bound on the number of non-frequent itemsets touched during the mining
process, and allows the user to dynamically raise the value K without restarting
the computation from scratch. We also report the results of extensive experiments
showing that our algorithm exhibits consistently better performance than the best
previously known one, attaining substantial improvements in some cases. The results
of Section Bl were published in [PV07]. In Section B2 we discuss the use of sampling
to extract top-K frequent items/itemsets. We prove a lower bound for the number
of transactions that must be considered by any algorithm that employs sampling to
extract the top-K frequent items/itemsets and produces in output a set satisfying
some quality requirements, providing moreover a family of datasets for which this
lower bound is tight. Moreover, we design a new progressive sampling algorithm to
efficiently solve the problem. The results of Section B.2 were presented in preliminary
form in [PRUV09).

3.1 Top-K frequent closed itemsets mining

The extraction of top-K frequent closed itemsets has been proposed in [WHLT03]
to provide the user better control on the size of the output set. For convenience
of the reader, we recall the definition of the problem (introduced in Section EZTI).
This variation requires that for a given value K, specified as input parameter, all
itemsets of support at least ox be discovered. ox which is uniquely defined by K,
is the maximum support threshold that yields at least K frequent closed itemsets.
Although one is not guaranteed that top-K frequent closed itemsets are exactly K,
it is conceivable that parameter K be more effective than the minimum support
threshold in controlling the output size. It is important to remark that the top-K
frequent closed itemsets can be employed in every application where frequent closed
itemsets are needed.

In [WHLTO05] the authors present an efficient algorithm, called TFP, to mine
the top-K frequent closed itemsets. The main idea of the algorithm is to use an
efficient depth-first mining process starting with an initially low support threshold
o (0 < ok ) which is progressively increased, as the execution proceeds, by means of
several effective heuristics, until the final value o is reached. When an itemset is
generated it is inserted into a suitable data structure from which it can be removed
later and discarded if found to be non-closed or infrequent. TFP has an additional
feature which allows the user to specify a minimum length min, for the closed itemsets
to be returned. The authors provide experimental evidence of the efficiency of their

algorithm. The main drawbacks of TFP are that no bound is given on the number
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of non-closed or infrequent itemsets that the algorithm must process, and that an
involved itemset closure checking scheme is required. Moreover, TFP does not appear
to be able to handle efficiently a dynamic scenario where the user is allowed to raise
the value K.

Other works have recently considered different, although somewhat related, prob-
lems. In [SM04] the mining the K itemsets of maximum density with respect to a
fixed support threshold is studied, where the notion of density relaxes the require-
ment of strict containment of an itemset in its supporting transactions. The authors
propose a priority-queue based approach for solving this problem, which is similar in
spirit to the one adopted in our algorithm. The mining of top-K frequent itemsets
for every itemset length (i.e., the top-K frequent itemsets of length 1, the top-K fre-
quent itemsets of length 2, and so on) is studied in [FKT0O0, (CE04], and algorithms
are proposed based on breadth-first [FKTO0| and depth-first [CE04] strategies. A
breadth-first algorithm to discover the top-K frequent itemsets without restricting
the exploration to the closed ones, is presented in [SSPT98|. The algorithm executes
a number of iterations, where in the /-th iteration the K most frequent itemsets of
length at most ¢ are discovered.

We contribute the following new results regarding the mining of top-K frequent

closed itemsets.

1. We show that the number of top-K frequent closed itemsets can be at most
nK, where n is the number of items occurring in the dataset. No such bound
was previously known and this provides the first analytical estimate of the
effectiveness of parameter K in controlling the output size. We also argue that
without the restriction to mining closed itemsets, the ratio between the number

of itemsets returned and K can be exponentially large in size of the dataset.

2. We develop a new algorithm, TopKMiner, for discovering top-K frequent closed
itemsets, which, unlike algorithm TFP, features a tight bound on the number of
itemsets touched during the mining process, and allows the user to dynamically
raise the value K without the need to restart the computation from scratch.
Also, we experimentally compare the performance of TopKMiner and TFP on
both real and synthetic datasets, for different values of K. The results of the
experiments show that TopKMiner always exhibits better performance, with
substantial improvements in some cases (more than two orders of magnitude).
The efficiency of TopKMiner becomes even higher when used in a dynamic
scenario where top-K frequent closed itemsets are sought for increasing values

of K successively provided by the user.
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The rest of the section is organized as follows. Subsection BTl briefly describes
the characteristics of the datasets used in the experiments. The bound on the ratio
between the actual number of top-K frequent closed itemsets and the input value K
is proved in Subsection Algorithm TopKMiner is described presenting first its
high-level strategy in Subsection and, then, the most relevant implementation
details in Subsection B4l The results of the experimental comparison between TFP
and TopKMiner are reported and discussed in Subsection B-T.5l.

3.1.1 Dataset used in the experiments

The experiments of our work have been conducted on both real and artificially gen-
erated datasets available from the FIMI repositoryEl, which have become standard
benchmarks for frequent itemset mining algorithms. In this chapter we report re-
sults relative to five of them of large size, which represent the most meaningful and
challenging instances for the mining task. These datasets are briefly described below.
T40I10D100K: An artificial dataset obtained using the generator developed in
JAS94]. For short, we will often refer to this dataset as T40;

accidents: it is derived from a collection of data relative to traffic accidents;

pos: from Blue-Martini Software Inc., it is derived from several months of click-

stream data from e-commerce web sites;

kosarac: it is derived from click-stream data of a hungarian on-line news portal. (In
fact, we had to clean up the original instance of the dataset which contained trans-
actions with duplicated item, which is not allowed by the problem’s specification.)
webdocs: it is built from a spidered collection of web html documents. More details
can be found in [LOPS04].

The table in Figure Bl summarizes the main characteristics (number of items,
average transaction length, and number of transactions) of the above datasets, while
the table in Figure reports for each dataset the support threshold oy that yields
the top-K frequent closed itemsets, for different values of K. For clarity, in the table

the frequency value ok /|D| rather than the value o is shown.

3.1.2 Tight bound on the output size

In this section we provide the first analytical estimate of the effectiveness of pa-
rameter K in controlling the output size when mining the top-K frequent closed

itemsets.

! http://fimi.cs.helsinki.fi
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Dataset #ltems  Avg. Trans. Length # Transactions

T40 1,000 39.5 100,000
accidents 468 33.8 340,183
pos 1,658 7.5 515,597
kosarac 41,270 8.1 990,002
webdocs 5,267,656 177 1,692,082

Figure 3.1: Datasets characteristics

o1c/1D]
D K =100 K =1000 K = 10000
T40 0.092 0.027 0.013
accidents 0.820 0.656 0.483
pos 0.036 0.010 0.003
kosarac 0.023 0.006 0.002
webdocs 0.327 0.216 —

Figure 3.2: Values of o /|D| for K = 100, 1000, 10000

Since the number of frequent itemsets can be much larger than the number of
frequent closed itemsets, when mining the latter it is convenient to avoid processing
non-closed itemsets. To this aim, in [UAUAO4] the authors propose a conceptual
organization of the closed itemsets as nodes of a tree, with support decreasing with
increasing depth. Specifically, let D be a dataset defined over the set of items Z =
{ai,as,...,a,} (the indexing of the items is fixed but arbitrary). For an itemset X
define its i-th prefiz as X(i) = X N{a; : 1 <j <i}, for 1 <i < n. The core index
of a closed itemset X, denoted as core;(X), is defined as the minimum 4 such that
Dx = Dx)-

Definition 3.1 ([UAUAQ4]). A closed itemset X is a prefix-preserving closure ex-
tension (ppc-extension) of a closed itemset Y if: (1) X = Clop(Y U{a;}), for some
a; €Y with j > core;(X); and (2) X(j —1)=Y(j — 1).

Let L= Clop(0), which is the possibly empty closed itemset consisting of the
items occurring in all transactions. The following theorem defines the tree structure

over the set of closed itemsets, with 1 being the root of the tree.

Theorem 3.2 ([UAUAQO4]). Any closed itemset X #.1 is the ppc-extension of exactly
one closed itemset Y, and s(X) < s(Y).

Let A(n) be the family of all datasets D whose defining set of items Z has size n

(we assume that every item in Z occurs in at least one transaction of D). Let also

FCk(D)
K) = bl Sl
p(n, K) X
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The following theorem establishes the main result of this section.
Theorem 3.3. For everyn > 1 and K > 1, we have p(n, K) < n.

Proof. Consider an arbitrary dataset D € A(n) and a value K > 1. Let & =
{X1, Xo,..., Xk} be the set of K most frequent non-empty closed itemsets num-
bered in decreasing order of support and let L= Clop()). By Theorem B2 we know
that any closed itemset X ¢ ® of support o must be a ppc-extension of some closed
itemset Y € (P\{Xx})U L. The upper bound on p(n, K) follows directly from the
argument in [BGKMO3| which shows that any such itemset Y can generate at most
(n — 1) ppc-extensions not belonging to ®. Hence, the number of closed itemsets

not included in ® and of support ok is at most K (n—1), which yields p(n, K) < n. O

The lower bound on p(n, K) is provided by the dataset described in [Yan04,
Section 3.1]. In particular, that dataset shows that p(n,1) = n. One may wonder
whether for every K it holds that p(n, K) = n. The following proposition gives a

negative answer.
Proposition 3.4. For any dataset D € A(n), if FCx(D)/K =n then K = 1.

Proof. Let ® = {X;, Xs,..., Xk} be the set of K most frequent non-empty closed
itemsets numbered in decreasing order of support and let L= Clop(). We first show
that if FCx(D)/K = n, then ®\{Xx} C {a;}. From the proof of Theorem B3, to
have FCk(D)/K = n it necessary that each itemset in Y € (®\{ Xk })U L generates
exactly n — 1 closed itemsets of support ok not in ®\{Xx} through ppc-extension.
Since the ppc-extension is prefiz-preserving, the only (non-empty) itemset for which
this is possible is {a;}, that proves ®\{Xx} C {a;}.

Now we prove that {a;} ¢ ®\{Xx}. First of all, notice that it must be Clo({i, }) =
{i,} for alli = 1,..., n, otherwise there would be a closed itemset different from {a;}
in ®\{ X} that is impossible. (To prove this is sufficient to observe that the intersec-
tion of two closed itemsets X, Y is a closed itemset of support > max {s(X), s(Y)},
when it is non-empty.)

Since each ppc-extension of {a;} is a superset of at least one {a,} with r > 1
and to obtain FCx(D)/K = n we need that all the ppc-extensions of {a;} and all
the ppc-extension of L have frequency o, if {a;} is in ®\{Xx} we will have two
closed itemsets with the same frequency and contained one into the other one, that
is impossible. (In particular, the ppc-extension of {a;} using item a, is a superset, of
{a,}, and these two itemsets cannot have the same frequency.)

This implies that ®\{Xx} = 0, thus K = 1. O
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FCk(D)/K
D n K =100 K =1000 K = 10000
T40 1,000 1 1 1.0018
accidents 468 1 1 1
pos 1,658 1 1 1.0003
kosarac 41,270 1 1 1
webdocs 5,267,656 1 1 -

Figure 3.3: Comparison between n and FCk(D)/K

The proof above moreover implies that if FCx(D)/K = n, the top-k frequent
closed itemsets are {a;},...,{a,}.

The table in Figure B3 compares the number of items n against the ratio FCx (D) /K
for the datasets described in Section BT and for different values of K. Note that
FCk(D)/K is always very close to 1. In fact, we conjecture that when maximized
over all datasets over n items, the value p(n, K) become a decreasing function of K.

It is important to remark that the result of Theorem crucially relies on the
fact that the mining task is limited to closed itemsets. Indeed, we could remove
the closedness requirement and mine the top-K frequent itemsets, that is, the set
Fx(D) = F(D,ok), where ok, is the maximum value that ensures | F(D,ox)| > K.
In this case, however, the ratio Fx(D)/K can be exponentially large in the number of
itemsets even for non-trivial datasets. To see this, consider the following (nontrivial)
example from [JAUAQ4|. Let n = 2¢ > 16 and let Z;, o, and Z3 be three disjoint
sets of items of size n — 2(d + 2), d + 2, and d + 2, respectively. Let also Jo (resp.,
J3) be a family of n/2 — 1 distinct subsets of Zy (resp., Z3) which does not include ()
nor Z, (resp., Z3). Consider the dataset D over Z; UZ, UZ3 comprising the following

n transactions:
{Iluz-QUSSE%}U{ZHUZ},USSEJQ}U{IQUIg}U{Il}

D is non-trivial, in the sense that it contains no duplicated transactions and no item
occurs in all transactions. Moreover, it is easy to see that there are 2242 — 1 ¢
© (2"/n?) non-empty itemsets of maximum support n — 1, namely all non-empty
subsets of Z;. Hence, for K = 1, we have Fx(D)/K € © (2"/n?).

3.1.3 TopKMiner: main strategy

In this subsection we describe our algorithm TopKMiner for mining the top-K fre-
quent closed itemsets from a dataset D, and introduce the algorithm’s high-level

strategy and its featured characteristics. We let Z = {ay, as, ..., a,} denote the set
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of items and assume that they are ordered by non-decreasing support, that is, item

a, has highest support.

TopKMiner, whose pseudocode is given in Figure B4, is based on a conceptually
simple strategy, which builds on ideas developed in previous works [PZ03, [JATUA(N4!
SMO4]. The algorithm receives in input the dataset D and a value K* that represents
the maximum K for which the user may request the mining of top-K frequent closed
itemsets. In other words, the user is allowed to dynamically raise K up to K*. The
algorithm makes use of a priority queue ) whose entries correspond to closed item-
sets. Specifically, an entry for a closed itemset Y is a quadruple (Dy,s,7,Y (i — 1)),
where Dy is the conditional dataset for Y, s its support, 7 its core index, and Y (i—1)
its i-th prefix. Two variables o and ¢’ are used to store dynamic approximations from

below to g« and ok, respectively.

TopKMiner starts by asking the user to provide a first value K < K* (line 1),
and by initializing a support threshold o to be the best approximation from below to
ok~ (line 2). As we will discuss in the next subsection, some heuristics can be used to
set o to a value possibly larger than the trivial lower bound 1. Instead, o’ is initially
set equal to o, and is raised to the final value ok as soon as the K-th frequent closed
itemset is discovered. The initialization proceeds by determining L= Clop(()) and
by inserting into an initially empty priority queue () entries for all ppc-extensions of
L of support at least o (lines 8,9). If L is not empty, it is produced in output as the
closed itemset of maximum support (lines 5,6). At this point the main loop (lines
10 + 22) starts, where in each iteration the entry (Dy,s,4,Y (i — 1)) with maximum
support s is extracted, the itemset Y is generated and returned in output (line 13),
and for each ppc-extension X of Y with support ' > ¢ and core index j > i, the
entry (Dx, s, j, X(j—1)) is inserted into @ (lines 16+19). After an insertion into @,
if the number of closed itemsets returned in output so far (variable extracted) plus
the number of closed itemsets represented by entries in () is greater than or equal to
K*, the support threshold o is raised (line 21) to the maximum value for which K*
itemsets of support no less than this value have been seen so far, and all entries in
() corresponding to itemsets of support smaller than the new threshold o are safely
removed from @ (line 22). The loop ends when all top-K frequent closed itemsets
have been generated or () becomes empty. Finally (lines 23 + 26) if the user raises
K to a new value K., < K*, and more closed itemsets need to be discovered, the

main loop is started again resetting ¢’ equal to o as a lower bound to oy, _. .

We remark that an entry (Dy,s,4, Y (i —1)) in @ for a closed itemset Y does not
contain Y itself but only sufficient information to generate the itemset. The actual

generation of Y, which is a time-consuming task, is done only when strictly necessary,
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that is, when the entry (Dy,s,i,Y (i — 1)) is extracted from @) and Y is guaranteed
to belong to the output set. In fact, as it will be shown in the following subsection,
entries for all ppc-extensions of Y to insert into () can be produced efficiently without
generating the ppc-extensions themselves.

TopKMiner features the following main advantages compared to algorithm TFP
by [WHLTO5)]: (1) only closed itemsets are actually processed (i.e., inserted into Q);
(2) every itemset Y extracted from @ surely belongs to the output set and can be
immediately returned to the user; (3) the parameter K can be raised dynamically
without the need to restart the computation from scratch. Moreover, the upper limit
K* on the value K, although not strictly needed for correctness, is useful to provide
a bound on the maximum number of entries inserted into the priority queue ). This

is established by the following theorem.

Theorem 3.5. For a dataset D over a set T of n items, and upper limit K* on K,
algorithm TopKMiner will insert a total of at most nK* entries into () during the

entire course of the computation

Proof. Let w be number of itemsets initially inserted into @ (lines 7 =+ 8 of the
pseudocode) and let z be the total number of entries extracted from Q. It is easy
to see that because of the dynamic update of the threshold o, if z > K*, as soon
as the K*-th entry is extracted from (), corresponding to some itemset Y, we have
o = og+ = sp(Y). Therefore, for this itemset and for all itemsets associated with
entries subsequently extracted from (), no ppc-extension will be generated. This
implies that the entries inserted into () are at most w+ k* —1+7, where w+ K*+1
accounts for the w initial entries and the first &* extracted (the very first one must
belong to the w initial ones) and 7" accounts for the ppc-extensions of the first £* —1
extracted. By reasoning as in the proof of Theorem B3 we can show that w < n
and that 7 < (k* — 1)(n — 1), hence the total number of entries inserted into @ is
at most
n+ K" —1+(K"—=1)(n—1) <nKk".

O
As an immediate corollary of the above theorem we observe that if K* = K the
maximum number of entries inserted by TopKMiner into the priority queue () is nK
which is also the maximum size of FCx (D). However, if | FCx(D)| = K we may still
have nK entries inserted into @), that is a factor n more than | FCx(D)|. Nevertheless,
as reported in the next section, for all of the datasets and values of K we have tested
the number of entries inserted into () has never exceeded |FCk(D)| by a factor

larger than 3.3. In fact, with a slightly modification of the algorithm it is possible to
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Algorithm 3.1: TopKMiner
Input: Dataset D, max value K* for K
Output: Top-K f.c.i for any K < K* provided by the user

1 K « input from user; /¥ K < K* */

2 Initialize o as a lower bound to og+«; 0’ « 0;

3 () «— empty priority queue; extracted « 0;

4 Compute L= Clop(0);

5 if 1# () then

6 Output L; extracted++;

7 if K =1 then ¢’ = |D|,

8 for each ppc-extension Y of L of support s > o do
9  Q.insert((Dy, s, core;(Y),Y (core;(Y) — 1)));
10 while (Q # 0) and (Q.max() > ¢’) do
11 (Dy,s,i,Y (i — 1)) < Q.removeMax();
12 extracted++; if extracted = K then ¢’ = s;
13 Generate and output closed itemset Y;

14 if s > o then

15 for j«—i+1tondo

16 /* Denote X = Clop(Y U{j}) */

17 Compute X(j — 1), s’ = sp(X), and Dx;
18 if X(j—1)=Y(j—1) and s > o then
19 Q.insert(Dyx,s', 5, X(j — 1)) ;
20 if extracted+|Q| > K* then
21 Update o ;
22 Remove from @ all entries of support < o;
23 if user wants to raise K then
24 K « new input from user;
25 if K > extracted then ¢’ « o;
26  goto line §;

Figure 3.4: Algorithm TopKMiner: pseudocode

guarantee that the number of itemset inserted in () will never exceed n Kmax, where
Kmax < K* is the maximum K requested by the user. This modification requires

that the ppc-extensions of the closed itemsets produced in output after s is set to
be equal to ¢’ in line 12 are not generated, and the itemsets whose ppc-extension
are not computed in lines 14-22 are stored in a new queue '. If the user wants to
raise K, as first step all the ppc-extension of itemsets in Q' will be generated. In
this way the ppc-extensions of at most K., itemsets are computed, leading to the

bound above.

3.1.4 TopKMiner: implementation details

For what concerns the implementation of TopKMiner, there are four aspects which

have crucial impact on its performance. They are discussed in this subsection.
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Figure 3.5: Patricia trie for the sample dataset of Figure 2l (a). Every node is
identified by a unique id shown in a circle to the left of the node

Representation of D: as in [PZ03| the dataset D is represented through a
Patricia trie Tp [Knu73| built on the set of transactions regarded as strings of items.
The Patricia trie differs from the standard trie, which is employed by many frequent
itemset mining algorithms (see references in [Bod04]), by the fact that chains of nodes
with only one child and associated to the same set of transactions are coalesced into
a single node. This reduces the overall number of nodes, thus saving space due to
node overhead. Each transaction is associated with a distinct path from the root
of Tp to some leaf or to some internal node with only one child. Each node v of
Tp stores a set of items and a count that indicates how many transactions of D are
associated with paths that contain v. The Patricia trie Tp for the sample dataset
of Figure 1] (a) is shown in Figure It is well known [Bod04] that in order to
better exploit the compaction featured by the trie structure, it is convenient to order
the items in each transaction by decreasing support. According to our indexing of
the items, this requires that for j > ¢ item a; occur before item a,;. It has been
shown both analytically and experimentally in [PZ03| that the Patricia trie provides
a space efficient representation for all kinds of datasets, and, in particular, for dense
ones.

Implementation of (): the priority queue employed by TopKMiner is imple-
mented as a standard max-heap vector. As mentioned in the previous subsection an
entry, corresponding to some closed itemset Y, consists of four components, namely
the conditional dataset Dy, the support s of Y, the core index 7 of Y, and the prefix
Y (i—1), that is the intersection of Y with {a; : 1 < j <i}. The key for the entry is
the support s. While the last three components are stored in a trivial way, a suitable
representation of Dy is required for both space and time efficiency. We represent,
Dy through a list Lp(Y) of nodes of T such that a node v is included in Lp(Y) if
and only if v contains the core index item a; of Y and belongs to a path associated
with one or more transactions in Dy. Let Dy, denote the (multi)set of transactions

in Dy whose associated paths in 7T contain the node v, and let Zy,, = ﬂteph t. In
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the list Lp(Y'), together with each node v, we store the prefix Zy,(i — 1), that is
the intersection of all transactions in Dy, limited to the items of index less than <.
Such a prefix turn out to be useful in the implementation of the while loop described
next. Moreover we associate with every node v the number sy, of transactions in
Dy which share this node, that is sy, = |Dy,|.

For very large and sparse datasets, the list Lp(Y') may be very long. If its length
exceeds some fixed threshold (5MB in our experiments) the list is stored on disk
rather than in main memory. In this fashion we can considerably reduce the amount
of main memory required by the algorithm.

Implementation of the while loop: consider an arbitrary iteration of the
while loop (lines 10 + 22) and suppose that entry (Dy,s,i,Y (i — 1)) is extracted
from () by the first instruction of the iteration. All of the operations prescribed by
the iteration can be executed through a simple bottom-up traversal of the sub-trie
T" of Tp, whose leaves are the nodes in the list Lp(Y) which represents Dy, as
described before. More specifically, the purpose of the traversal is to fill the rows
of a header table HT, whose j-th row, denoted by HT[j], is associated with item
a; and contains a record with three fields: HT[j].supp, HT[j].pref, and HTj].list
(the contents of these fields will be described below). By using a strategy similar
to the one introduced in [PZ03], the subtrie 7" can be traversed in such a way to
process each node only once. Let X) denote the itemset Clop(Y U{j}). During the
traversal of 7", by percolating upwards the prefixes Zy,,(i — 1) initially stored with
the leaves of 7" we can update the header table so that, at the end of the traversal,

for every j > i we have that:

e HT[j].supp = sp(Clop(Y U{j}));
o HT[j].pref = XU)(j —1)

e HTJj].list is the head of the list of all nodes of 7" containing item a;. Moreover,

with each node v in this list we store the count sy , and the prefix Zy ,(j —

1).

In Figure the HT filled after a traversal is shown for sample dataset of Fig-
ure 2] (a). It is easy to see that once the header table is filled as described above,
the information stored in its rows is sufficient to fully compute the itemset Y, and
to identify each ppc-extension X of Y determining also its support &', its core index
J, its prefix X (7 — 1) and the representation Lp(X) of its conditional dataset. We
observe that, at this point, determining for each ppc-extension X of Y all of its

constituent items would require an extra non-trivial computation which would be
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j supp pref list

6 2 a4 aq 5% 2,{(14 al}

5 2 as ap 2: 1,{(14 as a9 al}; 8 (1) {CL3 al}
4 2 a;  1: 1{as as a1}; 4: 1,{ay}

3 2 a;  1: 1,{ay a1 }; 8: 1,{a1}

2 1 ap 1: 1{ay}

1 , , ,

Figure 3.6: HT at the end of the traversal of the Patricia trie of Figure B3, starting
from nodes of Lp({a;}), namely the nodes with id’s 0, 3 and 7. For every j and
every node v in HT[j].list, its id, sx«) , and Zx@) ,(j — 1) are shown

useless in case X turn out not to belong to the output set. For this reason, Top-
KMiner postpones the actual determination of a closed itemset X to the time when
the entry corresponding to X is extracted from (), hence ensuring that X belong to
the output set.

Update of the threshold o: at any time during the computation, the threshold
o that TopKMiner uses constitutes an approximation from below of the final value
ok~. Raising o allows us to reduce the number of entries inserted into (), hence to
reduce the overall space required by these entries. Moreover, a good estimate ¢ may
allow us to discard infrequent items from the dataset and from the prefixes which are
carried along with the representations of the conditional datasets (this optimization,
however, has not been implemented in the current version of TopKMiner). Threshold
o can be initially set by using the closed node heuristic described in [WHLTO5]. At
any time during the construction of the Patricia trie, a node v of the Patricia trie is
a closed node if its support is more than the sum of the supports of its children. This
heuristics is based on the fact that, once the construction of the Patricia trie Tp is
completed, for each node v € Tp whose associated count ¢, is larger than the sum
of the counts of its children, there exists a different closed itemset X, of support at
least ¢,. If the number of closed nodes is larger than K™, we can derive a first lower
bound ¢ > 1. In particular, consider the decreasing sequence of counts cy, ..., cx-
associated with the K™ closed nodes with highest counts. The lower bound derived
is then o = cg=.

The subsequent updates of o (i.e., those performed in line 21 of the pseudocode)
can be easily implemented by means of a simple dictionary that maintains for each
integer s the number of entries inserted into @) relative to closed itemsets of support
s, and provides a method minSupport () which, if invoked after that at least K*
entries have been inserted into (), returns the maximum value s such that K* among

these entries are relative to closed itemsets of support > s. Clearly, the update of
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o (line 21) can be performed by setting o to the value returned by minSupport ().
Finally, all entries of support less than o which must be removed from @ (line 22)
can be identified by maintaining a min-heap ()’ whose entries are pointers to the

entries of () together with their supports which are used as keys.

3.1.5 Experimental evaluation

The next two sections present the results of the experiments we performed on the
datasets introduced in Section BTl The experiments have been conduced on an HP
Proliant, using a single AMD Opteron 2.2 GHz processor, with 8 GB main memory,
64 KB L1 cache and 1 MB L2 cache. The system’s operating system is linux 2.6.5
and the compiler used for the experiments is Intel icc 9.0. The objective of the
experiments has been to compare the performance of our algorithm TopKMiner with
that of algorithm TFP [WHILT05]. Both TopKMiner and TFP have been coded in
C++ and the source code for TFP has been provided to us by the authors. It must be
recalled that TFP has an additional feature which enables the mining of the top-K
frequent closed itemsets of length greater than or equal to a minimum value miny
specified in input. We did not implement a similar feature in TopKMiner, hence in
the experiments TFP has always been executed with min, = 1.

A first set of experiments, compares both running time and memory usage ex-
hibited by the two algorithms on the benchmark datasets for different values of K.
In these experiments, the dynamic raising of K featured by TopKMiner has been
disabled by always setting K* = K. A critical discussion of the main factors in-
fluencing the performance of the two algorithms, besides code optimizations which
are hard to account for, is also carried out. A second set of experiments, provides
evidence of the effectiveness of the TopKMiner’s feature which allows the dynamic
raising of K, by simulating a scenario where increasing values of K are input by
the user and by comparing the performance of TopKMiner with the one achievable
through repeated invocations of TFP. We remark that experiments conducted on
several other datasets available in the FIMI repository and for other values of K

have given results consistent with those reported here.

3.1.6 Comparing TFP and TopKMiner without dynamic rais-
ing of K
We run both TopKMiner and TFP on four of the five datasets described before

(i.e., all but webdocs) for values of K ranging from 1000 to 10000 with step 1000.
For TopKMiner we imposed K = K* and for TFP we imposed min, = 1. In this



3.1. Top-K frequent closed itemsets mining 37

fashion we assessed the relative performance of the two algorithms when focused on
the basic task of mining top-K frequent closed itemsets, and with their respective
additional features disabled. The running times achieved by the two algorithms are
shown in Figure B7l It can be seen that TopKMiner runs always faster than TFP,
with a performance improvement of more than two orders of magnitude for kosarac.
We believe that there are two main reasons that explain the superior performance
of TopKMiner. On the one hand, TopKMiner generates only closed itemsets and
fully processes itemsets that surely belong to the output set, unlike TFP which
may happen to process non-closed and/or infrequent itemsets. On the other hand,
TopKMiner features a provable bound on the number of itemsets it touches, while
one such bound is not known for TFP. In order to give evidence of this fact, the table
in Figure B8 reports for the various datasets and for K = 1000 and 10000 the number
of itemsets touched by the two algorithms. For TopKMiner we consider an itemset
X to be touched if an entry for X is inserted into the priority queue, while for TFP
we consider an itemset X to be touched if upon its generation it cannot be discarded
as non-closed or infrequent and, therefore, it must be stored in a data structure as
potential candidate for the output set. We see that TFP touches a number of itemsets
which is substantially higher than the number of itemsets touched by TopKMiner.
In fact it can be shown that for the artificial dataset Dyapn, defined in [Yan04] and
described in Section EZT] there are several non-constant values of K for which TFP

touches a factor n more itemsets than TopKMiner, where n is the number of items.

For dataset webdocs, TFP aborted after a few hours of execution even for K =
100 and not because of memory problems. Thus, we compared the running time
achieved by TopKMiner with the one achieved by algorithm LCM, [JATUAD3]|, one of
the best algorithms at the FIMI’03 competition for mining frequent closed itemsets,
feeding LCM with the exact support threshold, which gives a clear advantage to
this algorithm in the comparison. As shown in Figure B9 TopKMiner surprisingly
achieved better performance. In this case, because of the large size of the dataset,
it has been crucial for TopKMiner to use external memory to store the conditional

dataset representations.

We also compared the memory usage of the two algorithms. While TFP adopts
a depth-first mining strategy, which is known to be generally space-efficient, Top-
KMiner employs a support-driven exploration which may require more space due to
the need to store each generated closed itemset until all closed itemsets of higher sup-
port have been explored. However, for not too large values of K the actual number of
itemsets the TopKMiner must concurrently maintain in the queue is somewhat lim-

ited. Figure BI0 compares the memory usage of TFP and TopKMiner for the same
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Figure 3.8: Number of itemset “touched” by TopKMiner and TFP

K=1000 K=10000
Dataset  TopKMiner TFP TopKMiner TFP
T40 1,789 6,091 20,314 78,655
accidents 1,542 2,233 11,057 25,890
pos 2,702 3,597 24,157 42,097
kosarac 2,450 3,798 32,861 56,977
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Figure 3.9: Running times of TopKMiner and LCM on webdocs, for various values
of K

datasets and values of K used when measuring running times. Surprisingly, Top-
KMiner requires less memory than TFP in all cases except for the artificial dataset
T40110D100K with K > 5000 for which it requires more memory (a factor 1.5 for
K =10000).

The high memory usage exhibited by TFP can be in part accounted of by the
conditional datasets that it creates during execution, while the lower memory usage
exhibited by TopKMiner in several cases is due to the efficient representation chosen
for the priority queue entries. We remark that although the machine we used for the
experiments features a very large RAM (8 GB), in all of the experiments the actual
total RAM required never exceeded 450 MB, which is a reasonable quantity even for
a low-end PC.

We also profiled the memory usage of TopKMiner separately accounting for the
memory required by the priority queue and the rest of the work space. The respective
values are shown in Figure B.ITl for the various datasets and for K = 10000. We see
that, especially for the cases with highest memory usage, a substantial fraction of
memory is needed for the priority queue. Since accesses to the priority queue are
not the dominant factor in the running time this suggests that the queue could
be stored on disk thus reducing considerably the memory usage. This and other
space optimizations (e.g., compression of the queue entries) could be exploited when

memory is the most important resource.

3.1.7 Comparing TFP and TopKMiner with dynamic raising
of K

We tested the effectiveness of the TopKMiner’s feature which allows the user to

dynamically raise the value K up to a maximum value K*. To this purpose we



40 Chapter 3. Algorithmic Aspects of Basic Mining Primitives

kosarac accidents
600 T T 450 . .
55»7—07»&—7<}7«<}A797—e»767»07»4
400 — O~ —O- = =G =G~ =6 - e e == -4
<= TopKMiner

500 o TFP —x- TopKMiner
o o o TFP
S 40 S 30
<) - o

400 -
2 .- o
@ e b 300
(%] - (%]
=1 350 o 2
Fal _-xT > 250
<7 300 x - 2
IS) - IS)
@ 250 _ g S 200
= o =

200 -

~ 150
150 . L o e mmxmmmXm— e m— Xm —— X - — - == T~ —
.
. . . . . . . . 100 . . . . . . . .
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

(a) (b)

pos T40110D100K

—x= TopKMiner
o TP
220{- [ TopKWier 350 Pk
o TP

o mmOm = =0 m =0 =G == @ == @ T O D

x

Memory usage (MB)
\
X
%
\
Memory usage (MB)

\
\

8
M

\
8

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

(c) (d)

Figure 3.10: Memory for (a) kosarac, (b) accidents, (¢) pos, and (d) T40110D100K
for various values of K

450 T T T T
I \orking space
200 [ Tqueue ]

350

300

alla

1 2

N
a
=]

Memory usage (MB)
N
=}
3

.
@
S

.
1Y
S)

a
=]

o

Figure 3.11: Memory used for queue and for computation for K = 10000 in (1)
T40110D100K, (2) kosarac, (3) accidents, and (4) pos.



3.2. Mining frequent items/itemsets through sampling 41

simulated a scenario where K is raised from 1000 to 10000 with step 1000 and run
TopKMiner with K* = 10000 measuring the running time after the computation
for each value K ended. We compared these running times with those attainable by
TFP if used in a similar scenario, by running, for each K, the algorithm from scratch
and accumulating the running times of previous executions. The results are shown
in Figure only for two datasets. (The time for the user’s input is not accounted
of in the reported times.) Results for the other datasets are similar.

As expected, the time required by TopKMiner for each value of K is considerably
lower than the cumulative time required by TFP, which is a clear evidence of the ef-
fectiveness of TopKMiner’s dynamic feature. Moreover, we remark that the provision
of such a feature adds only a negligible slowdown. Indeed, even if the computation
is stopped after the first value K = 1000, the performance of TopKMiner remains
comparable with the one of TFP. This means that the flexibility of TopKMiner (in
the raising of K) does not cause a degradation in performance. For the memory
usage, the amount used by the two algorithms can be derived from Figure B.I0, since
for both TopKMiner and TFP the maximum memory usage with dynamic raising of

K (up to K*) is equal to the maximum memory usage for K = K*.
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Figure 3.12: Running times of TopKMiner and TFP for (a) accidents, and (b)
T40T10D100K with dynamic update of K from 1000 to 10000.

3.2 Mining frequent items/itemsets through sam-
pling

When dealing with massive datasets, computing the exact set of top-K (maxi-

mal/closed) frequent itemsets can be too expensive. If the dataset does not fit
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completely in the main memory, the disk access may slow down exact algorithms
to a point where they become impractical. Algorithms for the standard frequent
itemset mining task developed to solve the problem in an exact way must scan the
entire dataset, typically several times, which has a considerable impact on perfor-
mance. It is then necessary to accept a trade-off between the accuracy of the results
and the time needed to compute them, especially if it is possible for the user of the
algorithm to specify the maximum decay in the “quality” of the output she is willing
to accept. Sampling is one technique that can be employed to reduce the running
time, obtaining approximated results.

The rest of the section is organized as follows. In Subsection B2Z1] we formally
introduce the problem of extracting top-K frequent itemsets through sampling, pro-
viding a tight bound on the sufficient sample size in Subsection B.Z2 In Subsec-
tion B2 we present an algorithm to solve this problem, and Subsection proves
the correctness of the algorithm. In Subsection we show how to improve the
space requirements of the method using a count-min filter, and prove the correctness
of the approach in Subsection In Subsection we show that our algorithms
can be used to obtain an approximation of top-K frequent itemsets with guarantee
on the quality of the estimated frequencies. Finally, Subsection BZZ7 provides the

results of the experimental assessment of our algorithms.

3.2.1 Mining (approximated) top-K frequent itemset

Consider a dataset D of transactions over the set Z of n items. For convenience, we
fix a canonical ordering of the itemsets built on Z by decreasing frequency, ties broken
arbitrarily. Let m = 2" — 1, we suppose the itemsets to be labeled Xy, Xo,---, X},
according to this order. For a given K, with 1 < K < m, we denote fg() = fp(Xk).
For convenience, we use TOPK(D,Z, K) to indicate the set of top-K frequent item-
sets.

We aim at efficiently mining the following approximation to the set
TOPK(D,Z, K).

Definition 3.6. Let ¢ € (0,1) be a real-valued parameter. A set W C 2T is an
g-approximation to TOPK(D,Z, K) if and only if the following two properties hold:

P1: for each X € W, fp(X) > fg() — &5
P2: for each X ¢ W, fp(X) < fg() +e€.

A similar approximation is defined in [CCEC04|, but requires only P1 to hold,

thus providing only a guarantee that itemsets with frequency well below f*) are



3.2. Mining frequent items/itemsets through sampling 43

not produced in output. The same approximation (i.e., requiring only P1 to hold)
is considered in [VV09| for the problem of mining the top-K frequent items. The
authors of that work define different approximations, with different properties, of the
set of the top-K frequent items and present algorithms to mine them. Other than
the one considered in [CCEFCQO4], one of interest for our work requires in addition an
approximation of the frequencies of the itemsets in output. Moreover, they present
an approximation of the set such that the ranking of the output set is approximately
correct with regards to the relative ranking in the dataset of the output items.
The authors provide bounds on the sufficient sample size required to obtain the
desired approximations. The stricter bounds are based on the idea of lumping small
frequency items, i.e., aggregating two or more items with frequencies smaller than
some threshold to form a meta-item whose frequency is the sum of the frequencies of
the items that form the meta-item. This is done iteratively until none or one (meta-
)item is left with frequency smaller than the threshold. The goal of this lumping
process is to bound the size of the set of elements to be considered, in order to obtain
better bounds on the sufficient sample size. However, their results do not apply to the
problem of approximating top-K frequent itemsets. Moreover, the stricter bounds
related to the problems of interest to our work require the knowledge of the exact

distribution of frequencies of the items, which is not available in real cases.

3.2.2 Bound on sufficient sample size

The following theorem shows that the set of top-K frequent itemsets mined from
a samlea of D of suitable size constitutes an e-approximation to TOPK(D,Z, K),

with a certain probability.

Theorem 3.7. For fized €, € (0,1), consider a random sample S C D containing

2. 2K(m-K)

transactions of D, and let W = TOPK(S,Z, K). Then, W is an e-approzimation to
TOPK(D,Z, K) with probability at least 1 —§.

2In this work we consider sampling with replacement.
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Proof. We define the following four sets:

= {Xe?: pX) 2 0 +¢}
= {xe?: fo(x) < g9 - <}
{X;e2" . 1<i<K}

= {X;e€2" : K+1<i<m},

N S S o~
[

where the indices of the itemsets in the last two sets are consistent with the canonical
ordering mentioned above. Notice that L C M and V C Z. For an itemset X, let
fs(X) denote its frequency in the sample. Define the events

E,: “for all pairs (X,Y) € L x Z we have fs(X) > fs(Y)”
Es: “for all pairs (X,Y) € M x V we have fs(X) > fs(Y)".

We first show that if F; and FE5 occur then W is an e-approximation to
TOPK(D,Z,K). Assume that E; and E, occur. We have to prove that Proper-
ties P1 and P2 in Definition hold for W. Since Ey occurs and |M| = K, no
element of V' can be included in W, hence Property P1 follows. As for Property P2,
consider an itemset X ¢ W and suppose, by contradiction, that fp(X) > fg() + €,
thus X € L. Since [W|> K and [{X €Z : fp(X) > fl()K)}\ < K, there must exists
Y € W that is also in Z (if no element of Z is in W, we have that W = M D L).
Then, there is a pair (X,Y) € L x Z with fs(X) < fs(Y'), which is impossible since
FE; occurs.

We complete the proof by showing that if the sample size is ¢ chosen as stated,
then both F; and F5 occur with probability at least 1 — 4. Consider a pair (z,y) in
L x Z, and let t be the number of transactions in S. Since fp(X) — fp(Y) > ¢, by

the Azuma bound we have

2

Pr(fs(Y) > fs(X)) <2e7 7"

The same bound applies to an arbitrary pair (X,Y) € M x V. We now apply the
union bound. Notice that the same pair (X,Y’) can be in both L x Z and M x V.
However, since L C M, V C Z, and the sets M, Z are disjoint, we have that the
total number of pairs that we have to consider in the union bound is < |M| x |Z] <
K- (M —k). When for all pairs (X,Y) in (L x Z)U(M x V) we have fs(X) > fs(Y),
both E; and E, occur. Then, the probability that at least one event between F; and
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FE5 does not occur is at most

3.2.3 Algorithm

We now describe an efficient algorithm which discovers an e-approximation to
TOPK(D,Z, K) by mining progressively larger samples of the dataset D until the
sample size established in Theorem B is reached, or a certain stopping condition
is met. When the algorithm stops it returns, as output, the set of top-K frequent
itemsets with respect to the last processed sample. Such a set will constitute an
g-approximation to TOPK(D,Z, K') with probability at least 1 —¢. For j > 0, define

8 8aK .
tj:g IDT+bj s

where ¢ > 1 and b > 1 are suitable parameters. Let also jn,.x > 0 be the smallest
index such that ¢, > min {|D|,2/(¢?) n(2K(m — K)/d)}. The algorithm performs
a sequence of phases. Specifically, in Phase 7, for j > 0 and j < jyax, the algorithm
processes a random sample of ¢; transactions. In Phase juax, if ;... > |D| the

algorithm processes D to extract TOPK(D,Z, K), otherwise it considers a random

sample of ¢;  transactions. The algorithm stops when 7 = jax, OF j < Jmax and a

max

suitable stopping condition (specified below) holds.

Consider Phase j and let S be the random sample of size t; processed in the

e\ bs
()"
oj=a 5

;1) = [(20,)" /2],

phase. Define
For ¢ > 0, define also

and

=0
For notational convenience, we assume S;(—1) = 0 and use h(j) as the largest index
such that S;(h(j) — 1) +1 < m. Consider an ordering of the itemsets by decreasing
frequency w.r.t. S, and let fg) be the frequency in § of the ¢-th itemset in this
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ordering. The stopping condition for Phase j is

FEO S0 S 4 e for 1< < A()).

3.2.4 Analysis

For Phase j of the algorithm we define B;(i), with 0 < i < h(j), as the set of s;()
itemsets whose rank in the canonical ordering (w.r.t. the original dataset D) is in
the interval [S;(i — 1) + 1, .5;(4)].

Lemma 3.8. With probability at least 1 — § the following property holds: for every
Phase j of the algorithm, for every 0 <1i < h(j), and for every itemset X € B;(7)

, €
£s(X) = Fo(X)] < (i 4 1)%,
where S s the sample processed in Phase j.

Proof. Let us focus on an arbitrary Phase j. By the Azuma bound, we have that for
any X € B;(i)

Pr(|fs(X) — fp(X)| > (i + 1)%) < 9 EHL)8,

Hence the probability that there exists an itemset X (belonging to any B;(i)) for
which the stated bound does not hold is upper bounded by:

>

(]) 9. 9 h(]) 5 (i+1)2 h(]) 5 (’i+1)2 5
st <3 o) S () < g
=0 =0

i

Il
o

The lemma follows by applying the union bound over all phases (i.e., 7 =0,1,...).
OJ
The following theorem establishes a probabilistic guarantee on the correctness of the

algorithm.

Theorem 3.9. The algorithm returns an e-approximation to TOPK(D,Z, K) with
probability at least 1 — 9.

Proof. We consider two cases, depending on when the algorithm stops. If the al-
gorithm stops at Phase j = jnax, then the output is correct with probability at
least 1 — 9, since it is the set TOPK(D,Z, K) if t;, .
Theorem B4 if ¢

phase j < jmax because the stopping condition is met. By Lemma B for every

> |DJ, and we can resort to

< |D|. Suppose instead that the algorithm stops at an earlier
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0 <i < h(j), and for every itemset X € B;(i), we have |fs(X) — fp(X)| < (i +1)5.
Let W the set of itemsets returned by the algorithm, namely the set of top- K frequent
itemsets with respect to the random sample processed in Phase j.

We first show that W C Bjy. By contradiction, assume that an itemset X € W
belongs to B;, for some i > 0. Hence, fp(X) < fl()sj(i_l)ﬂ) and

. 9 (i— . 9
<0<+ E+ D < T G4 Ds B
Observe that all itemsets whose rank in the canonical ordering (w.r.t. D) is not
larger than S;(i — 1) 4+ 1 belong to sets B, with ¢ < i. By Lemma B8 for each such

itemset Z, we have that

fs(2) 2 fo(2) = (i + )5 = S5O0 — i+ 1)

Hence, since there are S;(i — 1) + 1 of these itemsets, it follows that

(i (i , £
fésj( D+ S fésa( D+1) (i + 1)5_ (3.2)

By combining Equations Bl and we obtain that
éK) B éSj(i—l)-i-l) < (i+1)e,

which contradicts the stopping condition. Thus, W C B,. Now, if we consider any
of the first K itemsets in the canonical ordering, say X, for some 1 < ¢ < K, which
belongs to By by construction, we have that fs(X,) > fp(X,)—5 > fg() — 5. Hence,
féK) > fl()K) — 5. Therefore, for each X € W we have

Io(X) 2 fs(X) = 5 2 0 =S =2 g0 -,

which establishes Property P1. As for Property P2, note that W must contain an
itemset Z such that fp(Z) < fl()K). As argued before, Z € By, hence

5 5
Is(Z) < fo(Z) + 5 < fp + 5
Since fs(Z) > féK), we have that
K K €
s <0 g (3.3)

Consider an itemset Y ¢ W. If Y € B; with ¢ > 0 then by definition of B; its

real frequency is at most fl()K), hence it cannot be greater than or equal to fl()K) +e€.
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If instead Y € By we have
€ €
foV) < fs(V) + 5 < [ +5 < fp” +e,

where the last inequality follows from Equation B3, and Property P2 follows. [

3.2.5 A Count-Min Filter Based Algorithm

The algorithm presented in the previous section has a major issue: it needs m coun-
ters to keep the support counts for all the itemsets in order to be able to find the
£ for all 4s.

We now present, an improved version of the algorithm which uses count-min filters,
a variation of Bloom filters, to save space. A count-min filter B consists of ¢ counters,
and uses kp hash functions. The counters are split into kg disjoint groups of size
¢/kp. (We assume that kg divides c evenly.) The kp hash functions map itemsets into
counters, so for each hash function H;,1 < i < kp we have H; : 22 — [0,c/kp — 1].
A more detailed description of count-min filters and their properties can be found
in [MUO5], Sec. 13.4.

Using count-min filters, we can provide a e-approximation to TOPK(D,Z, K).
Given a set of transactions &, we use a count-min filter B to keep track of an
approximation of the supports of the itemsets. Initially, all counters are set to 0.
For each transaction ¢ € S and each itemset X C ¢, we increment by one the kp

counters associated with X.

Definition 3.10. The count-min support of an itemset X is the value of the mini-

mum of the kg counters associated with X in B, and is denoted with sp(X).

Definition 3.11. The count-min frequency of X is

sp(X)
fe(X) = —o—
S|
(The notation for count-min support and count-min frequency does not include
any reference to S because the set of transactions on which the count-min filter is
built will be clear from the contest.)
Given a set of transactions S, let the length (as number of items) of a transaction

t € S be denoted as |t|. The number of itemsets of non zero length in a transaction
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tis 2/l — 1. We denote the sum of the number of itemsets in the transactions as Cs:

Cs =) (2" —1).

tes
The following theorem shows that we can obtain a good approximation of the
frequencies of the itemsets using a count-min filter.

es|S|
Cs

Theorem 3.12. Given ég > 0, eg > 0, and a set of transactions S, let e =

and 0. = 0g/m. If B is a count-min filter of parameters

then
Pr(3X|fp(X) > fs(X) +¢e5) < 0p.

Proof. A known result for count-min filters (see [MUO5], Theorem 13.12) states that
if the sum of the counts of the elements inserted in a count-min filter is L, then with

probability 1 — (kp/(cec))k? for any given element X we have
sp(X) < ss(X) +ecL,

where ss(X) is the support of X in S.

In our case we have that L = Cgs, thus for any given itemsets X we have that

SB<X) S SS(X) + &‘CCS
Sl Sl Sl

fe(X) = = fs(X) +e5

with probability

kp
1— (k—B) 21—6—1““/50):1—5—3.
CE. m

The thesis follow applying the union bound on the complementary events. U

Now let K > 0 and S be a set of transactions. For given dg > 0, eg > 0, we
store the support counts of the itemsets using a count-min filter B with parameters
c and kg as in Theorem From Theorem we can obtain a lower bound to
the frequency of the K-th most frequent itemset in S.

Corollary 3.13. Let XP, XB ... be a labeling of the itemsets following the decreas-

ing order of their frequency in the count-min filter B, ties broken arbitrarily. Let
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f](;) = fp(XP) and r = ](3K) — ep. Then, with probability at least 1 — dp, all the
top-K FI’s of S have a frequency in B greater or equal to r.

Proof. Suppose Theorem holds, which happens with probability at least 1 —d5.
By definition of f]gk) there are at least k itemsets with a count-min frequency > fgc).
We now consider a subset X with size k of these itemsets. Since Theorem holds,
none of these itemsets has a frequency in S less than . Suppose now that all itemsets
in X are among the top-k FI's of S. Then at least one of them has a frequency in
S equal to fék). If the size of the set of the top-k FI's of § is exactly k, then the
thesis follows immediately from Theorem B.I2 the definition of r and the properties
of the count-min filter. If the size of the sets of the top-k FI's of § is greater than
k, then there is at least one of such itemsets that is not in X. Let y be one of these
itemsets. By definition, fs(y) > fék). Since there is at least one itemset in X with
frequency in S equal to fék), then from Theorem B.I2, from the definition of r, and

from the properties of the count-min filter, we have

r< 18 < fs(y) < f5()

This holds for any y which belongs to the set of the top-k FI’s of S but not to X, so
the thesis follows.

Suppose now that not all itemsets in X are among the top-k FI's of §. Then
there is at least one itemset in X such that its frequency in § is less than fék). Let

w be one of such itemsets, and z be any of the top-k FI's of S, we have

r < fs(w) < fs(z) < fa(2)

which prove the thesis. O

In the following, we develop and analyze an algorithm to find an e-approximation
of TOPK(D,Z, K) with probability 1 — 4.

As before, the algorithm requires in input a dataset D and three parameters
K >0,e0¢€(0,1).

Let 91,02 > 0 such that (1 — d1)(1 — d2) = 1 — . We define ¢; similarly to
Section The algorithm performs a sequence of phases, and in Phase j, for
J 2> 0and j < jmax, the algorithm processes a random sample of ¢; transactions, as
it was for the algorithm in Section

The algorithm stops when j = jaz, OT 7 < Jmaz and a suitable stopping condition
(specified below) holds. Consider Phase j and let S be the random sample of size t;
processed in the phase. Define o, s;(7), and S;(i) as in Section
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Let S be the sample analyzed by the algorithm at phase 5. The algorithm will use
a count-min filter B with parameters ¢, kp tuned in such a way that Pr(3X|fp(X) >
fs(X) 4+ ep) < 02 (see Theorem BI2). Note that £p is not given in input by the
user. Consider an ordering of the itemsets by decreasing count-min frequency w.r.t.
B, and let fg) be the count-min frequency of the ¢-th itemset in this ordering. Let

r= f](SK) — ep. The stopping condition for phase j is
r— T S (4 1)e for 1 < i < R().

(Note that the choice of g influences the stopping conditions, since r = f](gK) —
£p.)

When the algorithm stops, it computes the exact frequencies in the sample of the
itemsets {X : fp(X) >r} = B. Let féK) the frequency in the sample of the K-th
most frequent itemset in B. The output of the algorithm is thus the set of itemsets
W= {X eB: fs(X) > f§K>}.

3.2.6 Analysis of Count-Min Filter Based Algorithm

First of all, note that the definition of t;, o;, and S;(¢) are the same as in Section BZ2Z3]
but for the replacement of § with d;. Thus Lemma B8 holds with probability at least
1—6;.

The following theorem relates the stopping condition of the count-min filter based

algorithm to the stopping condition of the algorithm presented in Section B.2Z3

Theorem 3.14. With probability at least 1 — 09, when the stopping condition of the

count-min filter based algorithm is met, the stopping condition of the algorithm in

Section [T.2.3 holds.

Proof. Assume that Corollary holds, then r < fék). For the properties of the
count-min filter we have Vi, g) > féi). Then,

FE = pIY > I for 1 < i < B(j).

Hence, if the stopping condition for the count-min filter based algorithm is satisfied,
then also the stopping condition for algorithm of Section must be satisfied.
Since Corollary B.I3 holds with probability at least 1 — d5, we obtain the theorem.
O

We are now ready to prove the main theorem.
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Theorem 3.15. The count-min filter based algorithm returns an e-approximation of
TOPK(D,Z, K) with probability at least 1 — & = (1 — 61)(1 — d2).

Proof. We consider two cases, depending on when the algorithm stops. If the algo-
rithm stops at phase j = jnax, then the output is correct with probability at least
1—4, since it is correct with probability 1 if the algorithm considers D in phase jyax,
otherwise it is correct with probability at least 1 — § by virtue of Theorem B
Suppose instead that the algorithm stops at an earlier phase j < 7,4 because
the stopping condition is met. From now on we assume that Lemma and
Theorem hold (this happens with probability at least (1—0;)(1—d2) = 1—46: in
each iteration Theorem holds with probability at least 1 — 0o, since the quality
of approximation of the frequencies in the sample provided by the count-min filter
does not depend on previous iterations and on the frequencies in D). Let W be the
set of itemsets given as output. Since Theorem holds, then Corollary also
holds, and Theorem B.I4l too. Thus B is a superset of the set of itemsets W’ that
algorithm of Section run with parameters ¢, would have returned. Thus W
is equal to W', and it is an e-approximation to TOPK(D,Z, K') with probability at
least 1 —0 = (1 — 01)(1 — dq). O

3.2.7 Experiments

We run a preliminary set of experiments to evaluate the performances of the algo-
rithm described in Section B22-3 We run the experiments on two datasets presented
in Section BT} kosarak.dat (999002 transactions) and webdocs.dat (512 transac-
tions). Our choice for the parameters were fixed to the following values: ¢ = 0.02,
0 =0.1,a=1,b=1, and we asked our algorithm to extract the k& most frequent
itemsets of length at most [, for different values of k and [, for kosarak, and the & most
frequent items in webdocs. We run our algorithm 10 times, and for all executions
the output satisfied both properties P1 and P2 of Definition

For kosarak and [ = 1, the stopping size was always equal to the theoretical bound
given in Theorem B The results for [ = 2,3 the results are reported in Figure
and Figure BT4l Figure reports instead the results for the extraction of top-K
items from webdocs.

We can observe that when the parameter [, that is the maximum size of itemsets
to be extracted, increases, the gap between the number of transactions that our
algorithm needs to produce the output and the number of transactions implied from

the theoretical bound widens. Since we expect the number of potential itemsets in a



3.2. Mining frequent items/itemsets through sampling 53

<10° kosarak dat - m=2,6=0.02,d=0.1,a=1,b=1
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Figure 3.13: Results of algorithm of Section with dataset Kosarak, for itemsets
of length at most ¢ = 2.

real, enormous dataset to be huge, we believe that this experiments provides a first
indication of the possible effectiveness of our algorithm. However, a more in depth
and accurate experimental study is required to understand in which scenarios our
algorithm can provide good performance. Moreover, the experimental evaluation of

algorithm proposed in Section is still open.

3.2.8 Approximating Top-K Frequent Itemset with Frequen-

cies

A stricter approximation of the set may require a confidence on the frequencies of

each itemset in the output:

Definition 3.16. Let ¢ € (0,1) be a real-valued parameter. An e-approzimation
with frequencies to TOPK(D,Z, K) is a set W of K or more ordered pairs (X, f)
such that X € 2% and f € [0,1] and for which the following properties hold:

P1: for each (X, f) e W, fp(X) > fl()K) — €
P2: for each (X, f) ¢ W, fp(X) < fj()K) +e.
P3: for each (X, f) e W, |f — fo(X)| <e.

Our algorithms provides a e-approximation with frequencies to TOPK(D,Z, K)
with probability at least 1 — 4.
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K (logarithmic scale)

Figure 3.14: Results of algorithm of Section with dataset Kosarak, for itemsets
of length at most ¢ = 3.

Theorem 3.17. Let S be the sample for which our algorithm stops, and let W =
{(X, fs(X)): X € TOPK(S,Z,K)}. If |[W]| < K(m — K), with probability at least
1 -6, W is a e-approzimation with frequencies to TOPK(D,Z, K).

Proof. P1 and P2 are satisfied by the output of our algorithm, so we only need to
consider P3.

When our algorithm stops at Phase j < jax, with probability at least 1 — § we
have that LemmaB8 holds. Since the itemsets returned by our algorithm are always

a subset of By, for each itemset X in output we have:

£5(X) = fo(X)] < .

If the algorithm stops at Phase j = jna.cx and the algorithm uses D to extract
TOPK(D,Z, K), P3 trivially holds. If the algorithm stops at Phase j = juax and

the algorithm does not use D, for each itemset X the Azuma bound gives:

26_52tmax/2 (36)
)
K(m—-K)

Pr(|fs(X) = fo(X)[ = ¢)

IA

<

Since |W| < K(m — K), the union bound gives the desired result.
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webdocs.dat - m=1,6=0.02,d=0.1,a=1,b=1
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Figure 3.15: Results of algorithm of Section with dataset webdocs, for itemsets
of length at most ¢ = 1.
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Chapter 4

Finding Statistically Significant

Frequent Itemsets

In this chapter we address the classical problem of mining frequent itemsets with
respect to a certain minimum support threshold, and provide a rigorous methodology
to establish a threshold that can guarantee, in a statistical sense, that the returned
family of frequent itemsets contains significant ones with a limited false discovery
rate. The results presented in the chapter appeared in [KMPT09al [IKMPT09b|. Our
methodology crucially relies on the following Poisson approximation result, which is

the main theoretical contribution for the problem.

Consider a dataset D of ¢ transactions on a set Z of n items and let D be a
corresponding random dataset according to the a random model which will described
in Section BTl Let (), be the number of itemsets of size k& with support at least
o with respect to D, and let Qk,o be the corresponding random variable for D.
We show that there exists a minimum support value o, (which depends on the
parameters of D and on k), such that for all o > oy, the distribution of Q;w is well
approximated by a Poisson distribution. Our result is based on a novel application
of the Chen-Stein Poisson approximation method [AGG90)].

The minimum support o.,;, provides the grounds to devise a rigorous method for
establishing a support threshold for mining significant itemsets, both reducing the
overall complexity and improving the accuracy of the discovery process. Specifically,
for a fixed itemset size k, we test a small number of support thresholds ¢ > o, and,
for each such threshold, we measure the p-value corresponding to the null hypoth-
esis H, that the observed value (), comes from a Poisson distribution of suitable
expectation. From the tests we can determine a threshold o* such that, with user-
defined confidence level «, the number of itemsets with support at least ¢* is not

sampled from a Poisson distribution and is therefore statistically significant. The

o7
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fact that the number of itemsets with support at least o* is statistically significant
does not imply necessarily that each of the itemsets is significant. However, our
test is also able to guarantee a user-defined upper bound S on the False Discovery
Rate (FDR). We remark that our approach works for any fixed itemset size k, unlike
traditional frequent itemset mining, where itemsets of all sizes are extracted for a
given threshold.

To grasp the intuition behind the above approach, recall that a Poisson distribu-
tion models the number of occurrences among a large set of possible events, where
the probability of each event is small. In the context of frequent itemset mining, the
Poisson approximation holds when the probability that an individual itemset has
support at least o, in D is small, and thus the existence of such an event in D
is likely to be statistically significant. We stress that our technique discovers sta-
tistically significant itemsets among those of relatively high support. In fact, if the
expected supports of individual itemsets vary in a large range, there may exist item-
sets with very low expected supports in D which may have statistically significant
supports in D. These itemsets would not be discovered by our strategy. However,
any mining strategy aiming at discovering significant, low-support itemsets is likely
to incur high costs due to the large (possibly exponential) number of candidates to
be examined, although only a few of them would turn out to be significant.

We validate our theoretical results by mining significant frequent itemsets from
a number of real datasets that are standard benchmarks in this field. Also, we com-
pare the effectiveness of our methodology to a standard multi-hypothesis approach
based on [BY(I], and provide evidence that the latter often returns fewer significant
itemsets, which indicates that our method has considerably higher power.

The rest of the chapter is structured as follows. Section EETlintroduces the random
model employed in our approach. Section presents the Poisson approximation
result for the random variable @k,o. The methodology for establishing the support
threshold o* is presented in Section L3 and experimental results are reported in

Section B4l

4.1 The model

The significance of a discovery in our framework is assessed based on its deviation
from what would be expected in a random dataset in which individual items are

placed in transactions independently. Formally, let D denote the input dataset and

n

k
itemsets) we are interested in statistically significant ones, that is, those k-itemsets

n the number of items occurring in D. Among all possible ( ) itemsets of size k (k-
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whose supports in D are significantly higher, in a statistical sense, than their expected

supports in a corresponding random dataset.

As in [SBM98], we consider a probability space of datasets with the same number
of transactions ¢, on the same set of items Z as D, and in which item i, of frequency
fi in D, is included in any given transaction with probability f;, independent of all
other items and all other transactions. A similar model is used in [PYGGO4| and
[SVGPO5] to evaluate the running time of algorithms for frequent itemsets mining.
Let D denote a random dataset from this probability space. For a given itemset X,
the null hypothesis Hy is that its support sp(X) in D is drawn from the distribution
of its support s5(X) in D. The alternative hypothesis H; is that sp(X) is not drawn
from that distribution, and in particular that there is a positive correlation between

the occurrences of the individual items in X.

An alternative probability space of datasets, proposed in [GMMT07|, considers
all arrangements of n items to m transactions which match the exact item frequencies
and transaction lengths as D. Conceivably, the technique presented in this chapter

could be adapted to this latter model as well.

4.2 Poisson approximation for Qk,a

The Chen-Stein method [AGGI()] is a powerful tool for bounding the error in approx-
imating probabilities associated with a sequence of dependent events by a Poisson
distribution. To apply the method to our case, we fix parameters k and o, and define
a collection of Bernoulli random variables {Zx | X C Z, | X| = k}, such that Zx =1
if the itemset X appears in at least ¢ transactions in the random dataset 15, and
Zx = 0 otherwise. Also, let px = Pr(Zy = 1). We are interested in the distribution
of Qk,a = ZX:\X|:k Zx-
For each set X we define the neighborhood set of X,

I(X) =A{X" [ XN X"#0,|X"] = |X]}.
If Y ¢ I(X) then Zy and Zx are independent. Adapting [AGG90, Theorem 1| to

our case we have:

Theorem 4.1. Let U be a Poisson random variable such that B[U] = E[Qy] = X <
00. The variation distance between the distributions E(Q;w) of Q;w and L(U) of U
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18 such that

|£(@0) = £@)| = sup | Pr(Qup € 4) — Pr(U € )

S bl + b27
where
= D D pxwy
X:|X|=k YeEI(X)
and

= > ). E[ZxZ]

X:|X|=k X£Y€I(X)

We can derive analytic bounds for b; and by in many situations. Specifically,
suppose that we generate ¢ transactions in the following way. For each item =,
we sample a random variable R, € [0, 1] independently from some distribution R.
Conditioned on the R,’s, each item x occurs independently in each transaction with
probability R,. In what follows, we provide specific bounds for this situation that

depend on the moment E[R?*’] of the random variable R.

As a warm-up, we first consider the specific case where each R, is a fixed value
p = /n for some constant v for all x. That is, each item appears in each transaction
with a fixed probability p, and the expected number of items per transaction is
constant. The more general case follows the same approach, albeit with a few more

technical difficulties.

Theorem 4.2. Consider an asymptotic regime where as n — oo, we have that k, o =
O(1) with o > 2, each item appears in each transaction with probability p = ~/n for
some constant v, and t = O(n) for some positive constant 0 < ¢ < (k—1)(1—1/0).
Let U be a Poisson random variable such that E[U] = E[ng] = A < oo. Then the
variation distance between the distributions E(Qk,a) of Q;w and L(U) of U satisfies

|£(@a) - )| = 001/,

Proof. For a given set X of k items, let pyx; be the probability that X appears in

exactly ¢ transactions, so that px = ZZ:(; px,; and

= () )" ()
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Applying Theorem Il gives

where

Z Z PxDPy

X:|X|=kY€EI(S

- Y Y mna)

X:|S|=k Y#£X€I(S)

and

We now evaluate b; and by. A direct calculation easily gives the value for b; given

in the statement of the theorem. For the asymptotic analysis, we write
n\’ n\ (n—=k
k k k
n—k
(" ))

(v)

and

where we have used the fact that ¢t = o(n*) to obtain the asymptotics for the third
term. Also, we note that for any 1 <7 <t

pxatn _ =i <1>’f L <1>’f -
Pxi 1+1\n n

PXx.i+1 e
max — O n _ O 1 ).
i€{oo+l,..t—1} Px ( ) ( / )

and so

Using a geometric series, it follows that

t

px =3 pxi = pxall+0(1)) = O (17 7*).

=0
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Thus, we obtain

b =0n*1) .0 (t7n+)’
— @(t20n2k(1—0)—1) — @(n2c0+2k(1—0)—1>.

We now turn our attention to by. Consider sets X # Y of k items, let g = | X NY|,
and suppose that g > 0. Then if ZxZy = 1, there exist disjoint subsets A, B,C €
{1,...,t} such that 0 < |A| < o, |B| = |C| = 0 — |A|, all of the transactions in
A contain both X and Y, all of the transactions in B contain X, and all of the

transactions in C contain Y.

Therefore,

- " A\ (2k—g)it2k(o—i)
E[ZxZy] < Z (z 0 — o — z) <E> ’
i=0 N\ ’

where the notation (" ) is a shorthand for (7) (" ) (")

It follows that

- k—1 ( n ) g ( t ) <1>(2kg)i+2k(oi)
_9:1 g k—gk—g \ijo—ijo—i) \n

S S LTt ol VIR C) )
S \gik—gik—g/ \n —\ijo—ij0—1i) \7y
S ()OS () )
=1 g k—gk—g n P 1,0 — 1,0 —1 vy
k-1

I
@
3

[\~
ol
)
+
&
=
—
S|
N—
(V)
o
q
Q
3I
2
VR
2|3
~~
Q

g=1 1=0
k-1 o
_ @(n2k(170)+200> Z n=9 ,yfgin(gfc)'
g=1 1=0
@(n2k(1—a)+200) — n=9 @(1> g <c
g=1 O(nl=97) g>c

_ @(an(l—a)—l—ZCU) i @(n—(k—l)-i-(k—l—c)a)
— @(an(l—a)—i—a(k—l-l—c)—k—l—l)

Note that, in the summation where there are two cases depending on whether

g < cor g > c, we have used the assumption that ¢ < (k — 1)(1 — 1/0) to ensure

the next equality. Finally, it is simple to check that both b; and by are O(1/n*~2)
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if e < (k—1)(1-1/0).

We now provide the more general theorem.

Theorem 4.3. Consider an asymptotic regime where as n — oo, we have that
k,o = O(1) with o > 2, E[R*]| = O(n™?) for some constant 2 < a < 20, and
t = O(n®) for some positive constant c. Let U be a Poisson random variable such

that B[U] = E[Qk.] = A < co. If

c< (k — 1)(a—2)2+rmn(2a—6,0)7
o

then the variation distance between the distributions E(Qkﬁ) of Qk,a and L(U) of U

satisfies

|£@s) ~ £@)| = 00 /m).
Proof. Applying Theorem gives

|£@0) - @) < b1+ 0o
where

Z Z PxPy

X:|X|=kYeEI(X

= > ) E[ZxZ]

X:|X|=k Y£XEI(X)

and

We now evaluate b; and by. Letting R denote the vector of the R,’s, we have

that for any set X of k items

Pr(Zx =1| R) < ()HR”

zeX

Since the R,’s are independent with common distribution R,

g

px = BlPr(Zx =1 ) < (t)E[RU]k.

Using Jensen’s inequality, we now have
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by = Z Z PxDPy

X:|X|=k YeI(X)

(-0 ) (Y
() (- ) () e
_ (Z)z ( Hiﬂf) (;)QEW
S
O

(n*)*-©(1/n) - O(n*7) - O(n™")
(

nk(27a)+2caf 1 )

VAN

We now turn our attention to by. Consider sets X # Y of k items, and suppose
g=|XNY|>0.If ZxZy = 1, there exist disjoint subsets A, B,C € {1,...,t} such
that 0 < |A| < o, |B| = |C| = 0 — |A|, all of the transactions in A contain both
X and Y, all of the transactions in B contain X, and all of the transactions in C

contain Y. Therefore,

oz i<y (L) (T ) (M) (1)

zeXUY zeX yey

S (o DI ) (0 ) (1)
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Applying independence of the R,’s and Jensen’s inequality gives
E[ZxZy] = E[E[Zx Zy | R]|

< Z ( - Z) [R*YB[R7]* )

S Z tQUfiE[RQU] 79(220;”

1=0

— Z tQU—’iE[RZO']k}—’ig/ZO'
=0

E[R*]*"

o

< O(l) n(QU—i)c—a(k—ig/Qa)

1=0

_ O(n20c—ak) i ni(g—gf
=0
-0 <n20c—ak+max{070(%—0)})

It follows that

k—
S Zl <g7 k— g; k — g) O (nQUC—ak-i—max{O,U(%_c)})

~1
_ O(n2k+200—ak) n=90 <nmax{0,a(%70)})

1

N

g

Now, for 20c¢/a < g < k, we have (using the fact that a > 2)

nfgnmax{o,a(%fc)} — p9(5-1)-oc < =D (§-1)—oc

Thus
bg _ O(n2k+ac—ak+(k—1)(% —-1) ) '

(Here we are using the fact that our choice of ¢ satisfies ¢ < (k — 1)(a — 2)/20 to
ensure that n*=DE=D=co — (1))

Now, we have
by = O(1/n)
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since
. (k—1)(a—2) _ Ek(a—2)

20 - 20
and

by = O(1/n)
since

. k(a—2)+ (a—4)
- 20

Thus

t

It is easy to see that for fixed k, the quantities b; and by defined in Theorem
are both decreasing in o. In the following, we will use the notation b;(c) and by(0)
to indicate explicitly the dependence on o. Therefore, for a chosen ¢, with 0 < e < 1,
we can define

Omin = min{o > 1 : by(0) + by(0) < €}. (4.1)

It immediately follows that for every ¢ in the range [0, 00), the variation
distance between the distribution of Q;w and the distribution of a Poisson variable
with the same expectation is less than e. In other words, for every o > o, the
number of k-itemsets with support at least o is well approximated by a Poisson
variable. Theorems and L3 proved above, establish the existence of meaningful
ranges of o for which the Poisson approximation holds, under certain constraints on

the individual item frequencies in the random dataset and on the other parameters.

4.2.1 A Monte Carlo method for determining o,

While the analytical results of the previous subsection require that the individual
item frequencies in the random dataset be drawn from a given distribution, in what
follows we give experimental evidence that the Poisson approximation for the dis-
tribution of Q;w holds also when the item frequencies are fixed arbitrarily, as is the
case of our reference random model. More specifically, we present a method which
approximates the support threshold o,,;, defined by Equation BTl based on a simple
Monte Carlo simulation which, given in input the parameters ¢ and n of the input
dataset D, the vector fof item frequencies, k, A, and ¢, returns estimates of b;(o)
and by (o). This approach is also convenient in practice since it avoids the inevitable
slack due to the use of asymptotics in Theorem

For a given configuration of item frequencies and number of transactions, let &
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be the maximum expected support of any k-itemset in a random dataset sampled
according to that configuration, that is, the product of the & largest item frequencies.
Conceivably, the value b,(¢) is rather large, hence it makes sense to search for an
Omin larger than 6. For an integral parameter A (a suitable choice for A will be given
below) we generate A random datasets and from each such dataset we mine all of
the k-itemsets of support at least a. Let W be the set of itemsets extracted in this
fashion from all of the generated datasets. For each o > & we can estimate b;(o)
and by(o) by computing for each X € W the empirical probability px of the event
Zx =1, and for each pair X,Y € W, with XNY # (), the empirical probability px y
of the event (Zx = 1) A (Zy = 1). The empirical probability of the event Zx =1
estimated with A (independent) random trials (in our case, generations of random
datasets) is given by the ratio between the number of trials for which Zx = 1 over
A. The empirical probability pxy of the event (Zx = 1) A (Zy = 1) is analogous.
Once px and pxy have been estimated for all itemsets X, Y, we can estimate by (o)
and by(o) with the formulas given in Theorem ET1

Note that for itemsets not in W these probabilities are estimated as 0. If it
turns out that b;(5) + b(6) > €/4, then we let Gy, be the minimum o > & such
that by (o) + ba(0) < €/4. Otherwise, if by () + ba(0) < €/4, we repeat the above
procedure starting from /2. (Based on the above considerations this latter case will

be unlikely.) Algorithm 1 implements the above ideas.

The following theorem provides a bound on the probability that &,,, be a con-

servative estimate of o, that is, omin = Tmin-

Theorem 4.4. If A = O (log(1/d)/¢), the output i of the Monte-Carlo process
satisfies
Pr(bl (a-min) + bQ(a-min) S 6) Z 11— 5

Proof. Let assume by (Gpmin) + b2(0min) > €. Note that by (Gpmin) < b2(Gpmin), therefore
we have by(Gmin) > €/2. Let B be the random variable corresponding to A times
the estimate of by(0pin) obtained with Algorithm 1. Thus E[B] > Ae¢/2. Since
Algorithm 1 returns 6y, as estimate of oy, we have that B < Ae/4. Let
A 810g(1/5)’
€
and ¢ < 1 be such that:
(1 —¢)E[B] = A¢/4.
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Since E[B] > A¢/2, we have ¢ > 1/2. Using Chernoff bound, we have that:

_ 2E[B]
2

Pr(B < Ae¢/4) <e

_18log(1/9)
4 2

<e

<.

Thus Pr(b1 (6min) + b2(6mm) > 6) < 4. O

Algorithm 4.1: FindPoissonThreshold

[ N VN

Input: ¢, n, vector fof item frequencies, k, A, &
Output: Estimate Gyin of omin

o < highest expected support of a k-itemset;
Omax < 0;

W «— 0;

fori<— 1to A do

D; « random dataset with parameters n,t,f;

W —Wu {frequent k-itemsets in D; w.r.t. 5};

7 if W = 0 then

10

11

12
13
14
15
16

17

18

19
20
21
22
23
24

G —7/2;
goto 4;
if (0max = 0) then
Omax < MMax {support of X in 75,} +1;
XeW,D;
for 0 <« 7 to oymax do
for all X € W do
px (o) <« empirical probability of {Zx = 1};
forall X, Y e W:XNY #0 do
px,y (o) < empirical probability of {Zxy = 1};
bio) = Y px(0)py(o);
X,YeW;Yel(X)
o)=Y pxy(o)
X,YEW;X£Y€el(X)
if b1(0) 4+ be(6) < e/4 then
Omax < 0}
g — /2
goto 3;
Omin < min{o > & : bi(0) + ba(o) < e/4};
return oy
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4.3 Procedures for the Discovery of High-Support

Significant Itemsets

For a given itemset size k, the value o, identifies a region of (relatively high)
supports where we concentrate our quest for statistically significant k-itemsets. In
this section we develop procedures to identify a family of k-itemsets (among those
of support greater than or equal to o.,;,) which are statistically significant with a
controlled FDR. More specifically, in Subsection EE3.1] we show that a family with
the desired properties can be obtained as a subset of the frequent k-itemsets with
respect to omi, selected based on a standard multi-comparison test. However, this
procedure may incur in a large number of false negatives. To achieve higher effective-
ness, in Subsection we devise a more sophisticated procedure which identifies a
support threshold ¢* > o,,;, such that all frequent k-itemsets with respect to o* are
statistically significant with a controlled FDR. In the next section we will provide
experimental evidence that in many cases the latter procedure yields much fewer

false negatives.

4.3.1 A procedure based on a standard multi-comparison test

We present a first, simple procedure to discover significant itemsets with controlled
FDR, based on the following well-established result in multi-comparison testing. The

following test can be used for any choice of the minimum support o.

Theorem 4.5 ([BYOI]). Assume that we are testing for m null hypotheses. Let
Pa1) < pe) < - < pemy be the ordered observed p-values of the m tests. For a given
parameter (3, with 0 < § < 1, define

1
¢ = max iZO:p(i)giml}, (4.2)
{ m Zj:l j
and reject the null hypotheses corresponding to tests (1),...,(¢). Then, the FDR for

the set of rejected null hypotheses is upper bounded by (3.

Let D denote an input dataset consisting of ¢ transactions over n items, and let
k be the fixed itemset size. First, we mine from D the set of frequent k-itemsets
Fuy(o). Then, for each X € Fyy(o), we test the null hypothesis Hg* that the
observed support of X in D is drawn from a Binomial distribution with parameters
t and fx (the product of the individual frequencies of the items of X), setting the

rejection threshold as specified by condition [Z), with parameters 3 and m = (}).
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Based on Theorem E3, the itemsets of F;)(c) whose associated null hypothesis is
rejected can be returned as significant, with FDR upper bounded by (. Since we are
interested in itemsets whose supports is > o,in, We extract from D only the itemsets
of support > opi,. The pseudocode Procedure 1 implements the strategy described

above.

Procedure 1

Input: Dataset D of ¢ transactions over n items, vector f of item frequencies, k,
B € (0,1);
Output: Family of significant k-itemsets with FDR < 3;
Determine oy, and compute Fg (0min) from D;
for all X € F)(omin) do
ox < support of X in D;
fx « ex fi;
pX) — Pr(Bin(t, fx) > ox);
Let pa1),P(2), - - -, be the sorted sequence of the values pX) | with X € F)(Omin);

S R W N =

7 m e (3);

o]

f=max4 0,7 1P < WB}:

j=13j

return {X € Fu (Omin) cpX) = Py, 1 <i < 6};

©

4.3.2 Establishing a support threshold for significant frequent

itemsets

Let a and 8 be two constants in (0,1). We seek a threshold ¢* such that, with
confidence 1 — o, the k-itemsets in F;)(c*) can be flagged as statistically significant
with FDR at most 3. The threshold ¢* is determined through a robust statistical
approach which ensures that the number Q. = |Fu(0*)| deviates significantly
from what would be expected in a random dataset, and that the magnitude of the
deviation is sufficient to guarantee the bound on the FDR.

Let oy be the minimum support such that the Poisson approximation for the
distribution of Qkp holds for ¢ > o, and let o,.c be the maximum support of
an item (hence, of an itemset) in D. Our procedure will performs h comparisons
associated to supports 0;,0 < 7 < h, with o, < 0; < Opmax. In the i-th comparison,
with 0 <4 < h, we test the null hypothesis H} that the observed value Q. ,, is drawn
from the same Poisson distribution as ng We choose as ¢* the minimum of the
o;’s, if any, for which the null hypothesis H} is rejected. If no null hypothesis is
rejected, we set 0" = oo.

For the correctness of the above procedure, it is crucial to specify a suitable

rejection condition for each HE. Assume first that, for 0 < i < h, we reject the
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null hypothesis H} when the p-value of the observed value Qy,, is smaller than «;,
where the «;’s are chosen so that Z?:’(]l a; = a. Then, the union bound shows that
the probability of rejecting any true null hypothesis is less than «. However, this
approach does not yield a bound on the FDR. for the set F(c*). In fact, some
itemsets in F(0*) are likely to occur with high support even under H{, hence they
would represent false discoveries. The impact of this phenomenon can be contained
by ensuring that the FDR is below a specified level 3. To this purpose, we must
strengthen the rejection condition, as explained below.

Fix suitable values 3y, 31, ..., Bn—1 such that Z?;Ol Bt < B. For 0<i < h,let
A = E[Q;WZ] We now reject H} when the p-value of Qi ,, is smaller than «;, and

Qk.o; > BiXi. The following theorem establishes the correctness of this approach.

Theorem 4.6. With confidence 1 — o, Fuy(0*) is a family of statistically significant
frequent k-itemsets with FDR at most (3.

Proof. Observe that since Z?;()l a; < «a, we have that all rejections are correct,
with probability at least 1 — a. Let E; be the event “H{ is rejected” or equivalently,
“the p-value of Q, is smaller than «; and Qy,, > B:\;”. Suppose that H{ is the
first rejected null hypothesis, for some index 7, whence o* = o,. In this case, Q o,
itemsets are flagged as significant. We denote by V; the number of false discoveries
among these ()., itemsets. It is easy to argue that the expectation of V; is upper

bounded by E[X;|E;, E;_1,. .., Ey), where X; is a Poisson variable with expectation
Ai. Since Qg o, > i\ when H{ is rejected, by the law of total probability we have

h—1
FDR < ZE[ Vi }Pr(Ei,Ei_l,...,Eo)
0

i— Qk,oi
h—1
EV; _ _
< Vi Pr(Ej, Eiq, ..., Ey)
— Gk
h—1 - -
E[X: | EiEiy,. ... E] i i
< Pr(E,, By y,.... E
N ; BiXi i ' 0)
o gZ]ZOJPr(XZ:j7EhE2177E0)
P BiXi
h—1 h—1
g A -

t

The method above needs the values h and 0;,0 < ¢ < h to be specified. Note
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that h influences how low a p-value must be to reject the corresponding null hy-
pothesis. An high value of h would require very low p-value to reject an hypothesis,
reducing the power of the method. We then choose to consider a number of hy-
pothesis logarithmic in the difference o, — 0min, and to set the corresponding o;
with exponentially increasing steps. In our opinion this choice gives a good tradeoff
between the number of tested supports and the diversity between the tested hypothe-
ses, since we are testing more hypothesis for lower supports, where the number of
itemsets is higher. In particular, we set h = [1ogy(0max — Omin)] + 1 and o9 = o
and 0; = opin + 2¢, for 1 <i < h.

The pseudocode Procedure specifies more formally our approach to determine
the support threshold o*. Note that estimates for the \;’s needed in the for-loop of
Lines 7-9 can be obtained from the same random datasets generated in Algorithm ET]
which are used there for the estimation of o.;,. In fact, since ); is the expected
number of k-itemsets of support at least o; in a random dataset D, we can estimate
A; counting for each of the A random datasets generated by Algorithm EET how many

k-itemsets appears with support > o;.

Procedure 2

Input: Dataset D of ¢ transactions over n items, vector f of item frequencies, k,
a,B€(0,1);
Output: ¢* such that, with confidence 1 — a, F;)(0*) is a family of significant
k-itemsets with FDR < (3
Determine oy, and compute Fg (0min) from D;
1« 0
00 <~ Omin;
h — |1ogs(0max — Omin) ] + 1;
Fix ag,...,ap_1 € (0,1) s.t. Z?;ol o = a;
Fix fo,..., 1 € (0,1) s.t. Y4671 =5
fori—0toh—1do
Compute \; = E[ka],
while ¢ < h do
Compute Q.3
Po; — Pr(Poisson(X\;) > Qi 0,);
if (pgi < Oci) and Qk,oi > G;\; then
return o* < oy;
Oit1 — Omin + 271
te—1+1;
return o* «— oo ;

© 0w N O A Wy =

[ o S S S S
S Uk W N = O
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Dataset n [ finin; fmax] m t

Retail 16470 [1.13e-05; 0.57] 10.3 88162
Kosarak 41270 [1.01e-06 ; 0.61] 8.1 990002
Bmsl 497  [1.68e-05; 0.06] 2.5 59602
Bms2 3340 [1.29e-05; 0.05] 5.6 77512
Bmspos 1657 [1.94e-06 ; 0.60] 7.5 515597
Pumsb* 2088 [2.04e-05; 0.79] 50.5 49046

Table 4.1: Parameters of the benchmark datasets: n is the number of items;
[fmin, fmax] 18 the range of frequencies of the individual items; m is the average
transaction length; and ¢ is the number of transactions.

4.4 Experimental Results

In order to validate the methodology, a number of experiments have been performed
on datasets which are standard benchmarks in the context of frequent itemsets min-
ing. The main characteristics of the datasets we use are summarized in Table ET1
A description of the datasets not introduced in Chapter B can be found in the
FIMI Repository (http://fimi.cs.helsinki.fi/data/), where they are available
for download.

First of all, we applied the Monte Carlo method of Subsection to determine
Omin: the ranges for which the Poisson approximation holds are reported in Subsec-
tion EATl We then applied our methodology to the benchmark datasets of Table LTk
our findings are presented in Subsection In Subsection EEL3, we compare the
sets of significant itemsets reported by our methodology against those returned by
the standard procedure to bound the FDR described in Subsection B3l

4.4.1 Range of o for Poisson Approximation

For each dataset D of Table L1l and for itemset sizes k = 2, 3, 4, we applied Algorithm
4.1 setting A = 1,000 and € = 0.01. The values of 6,,;, we obtained are reported in
Table (we added the prefix “Rand” to each dataset name, to denote the fact that
the dataset is random and features the same parameters as the corresponding real

one).

4.4.2 Experiments on benchmark datasets

For each benchmark dataset in Table and for k = 2, 3,4, we apply Procedure
with a = 3 = 0.05, and a; = 3; ' = 0.05/h. The results are displayed in Table B3,

where, for each dataset and for each value of k, we show: the support ¢* returned
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Omin

Dataset k=2 k=3 k=4
RandRetail 9237 4366 784
RandKosarak 273266 100543 20120
RandBmsl 268 23 5
RandBms2 168 13 4
RandBmspos 76672 15714 2717
RandPumsb* 29303 21893 16265

Table 4.2: Values of 3,,;, for ¢ = 0.01 and for £ = 2, 3,4, in random datasets with the
same values of n, £, and with the same frequencies of the items as the corresponding
benchmark datasets.

by Procedure B3 the number Q.- of k-itemsets with support at least o*, and
the expected number A(c*) of itemsets with support at least ¢* in a corresponding

random dataset.

k=2 k=3 k=4
Dataset o* Qror  Ao*) o* Qro-  Ao™) o* Qror  Mo*)
Retail o0 0 0 00 0 0 848 6 0.01
Kosarak 00 0 0 00 0 0 21144 12 0.01
Bmsl 276 56 0.19 23 258859  0.06 5 27T™M  0.05
Bms2 168 429 0.73 13 36112 0.25 4 714045 0.01
Bmspos o0 0 0 16226 22 0.01 2717 891 0.38
Pumsb* 29303 29 0.05 21893 406 0.35 16265 6293 1.37

Table 4.3: Results obtained by applying Procedure with a = 0.05, 8 = 0.05 and
k =2,3,4 to the benchmark datasets of Table BTl

We observe that for most pairs (dataset,k) the number of significant frequent
k-itemsets obtained is rather small, but, in fact, at support ¢* in random instances
of those datasets, less than two (often much less than one) frequent k-itemsets would
be expected. These results provide evidence that our methodology not only defines
significance on statistically rigorous grounds, but also provides the mining task with
suitable support thresholds that avoid explosion of the output size (the widely recog-
nized “Achilles’ heel” of traditional frequent itemset mining). This feature crucially
relies on the identification of a region of “rare events” provided by the Poisson ap-
proximation. The discovery of significant itemsets with low support (not returned
by our method) would require the extraction of a large (possibly exponential) num-
ber of itemsets, that would make any strategy aiming to discover these itemsets
unfeasible. Instead, we provide an efficient method to identify, with high confidence

level, the family of most frequent itemsets that are statistically significant without
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overwhelming the user with a huge number of discoveries.

There are, however, a few cases where the number of itemsets returned is still
considerably high. Their large number may serve as a sign that the results call
for further analysis, possibly using clustering techniques [XHYCOS| or limiting the
search to closed itemsets. For example, consider dataset Bmsl with £ = 4 and the
corresponding value o* = 5 from Table £3. Extracting the closed itemsets of support
greater or equal to o* in that dataset revealed the presence of a closed itemset of
cardinality 154 with support greater than 7 in the dataset. This itemset, whose
occurrence by itself represents an extremely unlikely event in a random dataset,
accounts for more than 22M non-closed subsets with the same support among the

27M reported as significant.

It is interesting to observe that the results obtained for dataset Retail provide
further evidence for the conclusions drawn in [GMMT07|, which suggested random
behavior for this dataset (although the random model in that work is slightly different
from ours, in that the family of random datasets also maintains the same transaction
lengths as the real one). Indeed, no support threshold o* could be established for
mining significant k-itemsets with k£ = 2,3, while the support threshold ¢* identified
for k = 4 yielded as few as 6 itemsets. However, the conclusion drawn in [GMMT07|
was based on a qualitative assessment of the discrepancy between the numbers of
frequent itemsets in the random and real datasets, while our methodology confirms

the findings on a statistically sound and rigorous basis.

Observe also that for some other pairs (dataset,k) our procedure does not identify
any support threshold useful for mining statistically significant itemsets. This is an
evidence that, for the specific £ and for the high supports considered by our approach,
these datasets do not present a significant deviation from the corresponding random

datasets.

Finally, in order to assess its robustness, we applied our methodology to random
datasets. Specifically, for each benchmark dataset of Table EETl and for £ = 2, 3, 4, we
generated 100 random instances with the same parameters as those of the benchmark,
and applied Procedure to each instance, searching for a support threshold ¢* for
mining significant itemsets. In Table 4l we report the number of times Procedure .3
was successful in returning a finite value for o*. As expected, the procedure returned
0% = oo, in all cases but for 2 of the 100 instances of the random dataset with the
same parameters as dataset Pumsb* with £ = 2. However, in these two latter
cases, mining at the identified support threshold only yielded a very small number

of significant itemsets (one and two, respectively).
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Dataset,
RandomRetail
RandomKosarak
RandomBms1
RandomBms2
RandomBmspos
RandomPumsb*

Table 4.4: Results for Procedure with a = 0.05, 3 = 0.05 for random versions of
benchmark datasets; each entry reports the number of times, out of 100 trials, the
procedure returned a finite value for o*.

4.4.3 Relative effectiveness of Procedures and

In order to assess the relative effectiveness of the two procedures presented in the
previous section, we applied them to the benchmark datasets of Table EETl. Specifi-
cally, we compared the number of itemsets extracted using the threshold ¢* provided
by Procedure B3l with the number of itemsets flagged as significant using the more
standard method based on Benjamini and Yekutieli’s technique (Procedure EE2]), im-
posing the same upper bound = 0.05 on the FDR.

The results are displayed in Table L, where for each pair (dataset,k), we report
the cardinality of the family R of k-itemsets flagged as significant by Procedure EL2]
and the ratio r = Qo+ /
least o, which are returned as significant with the methodology of Subsection

R|, where Q)+ is the number of k-itemsets of support at

We observe that in all cases where Procedure returned a finite value of o*
the ratio r is greater than or equal to 1 (except for dataset Bmsl and k& = 2, and
dataset Bmspos and k = 3, where r is however very close to 1). Moreover, in some
cases the ratio r is rather large. Since both methodologies identify significant k-
itemsets among all those of support at least o,,;,, these results provide evidence that
the methodology of Subsection is often more (sometimes much more) effective.
The methodology succeeds in identifying more significant itemsets, since it evaluates
the significance of the entire set Fy(c*) by comparing Q.+ to Q,w In contrast,
Procedure must implicitly test considerably more hypotheses (corresponding to
the significance all possible k-itemsets), thus the power of the test (1-Pr(Type-II
error)) is significantly smaller.

Observe that the cases where r = 0 in Table EQ correspond to pairs (dataset,k) for
which Procedure 3 returned o* = oo, that is, the procedure was not able to identify
a threshold for mining significant k-itemsets. Note, however, that in all of these cases

the number of significant k-itemsets returned by Procedure is extremely small
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(between 1 and 3). Hence, for these pairs, both methodologies indicate that there is

very little significant information to be mined at high supports.

k=2 k=3 k=4
Dataset  |R] r IR| r IR| r
Retail 3 0 3 0 6 1.0
Kosarak 1 0 1 0 12 1.0

Bmsl 60 0.933 64367 4.441 219706 122.9
Bms2 429 1.0 25906 1.394 60927 11.72
Bmspos 2 0 23 0.957 891 1.0

Pumsb* 29 1.0 406 1.0 6288  1.001

Table 4.5: Results using Test to bound the FDR with § = 0.05 for itemsets of
support > Omin-
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Chapter 5

Maximal Dense Motif in Biological

Sequences

This chapter focuses on the discovery of rigid motifs, which contain blocks of solid
characters (solid blocks) separated by one or more don’t cares. A rigid motif is
different from an extensible motif in that the latter can contain spacers, special
characters that correspond to possibly more than one character of the input string.
On the opposite, each don’t care character correspond to a single character of the
input string, so all occurrences of a rigid motif in the input string have the same
length.

As discussed in Chapter [[l the significance of a motif has been traditionally as-
sessed through its frequency, but the biological significance of a motif cannot be
exclusively related to its frequency. In particular, some very frequently occurring
motifs can deemed as non significant because of certain aspects of their structure,
such as, for example, an excessive number of errors in their occurrences. A strat-
egy that returns frequent motifs with a moderate number of don’t cares can then
presumably provide a more significant set of motifs.

We propose a novel approach for controlling the number of don’t cares in rigid
motifs. Specifically, we introduce the notion of dense motif, a frequent pattern where
the fraction of solid characters is above a given threshold. Our density notion is more
flexible and general than the one considered in [Par(7, [ACP09], since it allows for
arbitrarily long runs of don’t cares as long as the fraction of solid characters in the
pattern is above the threshold. We define a natural notion of mazimality for dense
patterns and devise an efficient algorithm, called MADMX (pronounced Mad Maz),
which performs complete MAximal Dense Motif eXtraction from an input sequence,
with respect to user-specified frequency and density thresholds.

The key technical result at the core of our extraction strategy is a closure property

79
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which affords the complete generation of all maximal dense motifs in a breadth-first
fashion, through an apriori-like strategy [AS94], starting from a relatively small set
of solid blocks, and then repeatedly applying a suitable combining operator, called
fusion, to pairs of previously generated motifs. In this fashion, our strategy avoids
the generation and consequent storage of intermediate patterns which are not in the
output set, which ensures time and space complexities polynomial in the combined
input and output sizes.

We performed a number of experiments on MADMX to assess the biological signif-
icance of maximal dense motifs and to compare MADMX against its most recent and
close competitor VARUN [ACP09|. For the first objective, we used MADMX to extract
maximal dense motifs from a number of human DNA fragments. We compared the
motifs extracted against those in RepBase [JKPT05|, the largest repository of repet-
itive patterns for eukaryotic species, using REPEATMASKER [SHG04|, a popular tool
for masking repetitive DNA. The experiments show that all of our returned motifs are
occurrences of patterns in RepBase, and fully characterize the family of SINE/ALU
repeats (and partially the LINE/L1 family). This provides evidence that the notion
of density, when applied to rigid motifs, captures biological significance.

Next we compared the motifs produced by MADMX with the ones returned by
VARUN using the z-score measure. We ran both algorithms on several families of
DNA fragments, limiting VARUN to the generation of rigid motifs and setting the
parameters so as to obtain comparable output sizes, with motifs listed by decreasing
z-score. The experiments show that the top-m highest-ranking motifs returned by
MADMX almost always feature higher z-scores than the corresponding top-m ones
returned by VARUN, even for large values of m, with only a modest increase in
running time, which may be partly due to the fact that coding of MADMX is yet to
be optimized. In fairness, we must remark that VARUN deals also with extensible
motifs while MADMX only targets rigid motifs.

This chapter is organized as follows. In Section Bl several technical definitions
and properties of motifs with don’t cares are given. Section proves the closure
property at the base of MADMX and provides a high-level description of the algorithm.
In Section B3 the experimental validation of MADMX is presented.

5.1 Preliminary definitions and properties

Let ¥ be an alphabet of m characters and let s = s[0]s[1]...s[n — 1] be a string
of length n over ¥. We denote the length of s with |s|. We use s[i...j]| to denote
the substring s[i] s[i + 1] -+ s[j] of s, for i < j. Characters in ¥ are also called
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solid characters. We use o € ¥ to denote a distinguished character called wild card
or don’t care character. Let € denote the empty string. A pattern x is a string in
{e}UX UX(X U{0})*3. However, whenever necessary, we will assume that patterns
are implicitly padded to their left and right with arbitrary sequences of don’t care
characters.

Given two patterns x,y we say that y is more specific than z, and write x < vy,
iff for every i > 0 either x[i| = y[i] or z[i] = o. Given two patterns z,y we say that
x occurs in y at position ( iff x < y[l... 0+ |x| — 1]: we also say that y contains .
For a string s, the location list L, of a pattern x in s is the complete set of positions
at which z occurs in s. We refer to f(x) = |L£,| as the frequency of pattern z in s.
(Note that f(e) = n.) Asin [UKKO7]|, the translated representation of the location list
L, ={lo,l1,lo,..., lk}isT(L,) ={lb—lo,la—1lo,...,ly—1p}. Given two patterns z,y,
we say that y subsumes x in s if f(z) = f(y) and y contains z. As a consequence,
if y subsumes x then 7(£,) = 7(L£,). A pattern z is mazimal if it is not subsumed
by any other pattern y. (We observe that this notion of maximality coincides with
that of [PCGS05].) Given a pattern z, its mazimal extension M(x) is the maximal
pattern that subsumes 2, which can be shown to be unique [PCGS05].

In what follows, we call solid block a string in X7 and a don’t care block a string
in of. Furthermore, given a pattern z, dc(x) denotes the number of don’t care

characters contained in x, while sc(z) denotes the number of solid characters in z.

Definition 5.1. The density (x) of x is: 0(x) = sc(x)/|x|. Given a (density)
threshold p, 0 < p <1, we say that a pattern x is dense if 6(x) > p.

Note that a solid block is a dense pattern with respect to every threshold p. It
is reasonable to concentrate the attention on dense patterns that are not subsumed
by any other dense pattern, since they are the most interesting dense representatives
in the equivalence classes induced by “sharing” the same translated representation;

these representatives are defined below.

Definition 5.2. A dense pattern x is a maximal dense pattern in s if it is not

subsumed by any other dense pattern x’ # x.

Observe that a maximal dense pattern x needs not be a maximal pattern in
the general sense, since M(z) might be a nondense pattern. However, every dense
pattern z is subsumed by at least one maximal dense pattern. In fact, all of the
maximal dense patterns that subsume x are dense substrings of M (x), namely, those
that contain x and are not substrings of any other dense substring of M(z). (TODO:
Andrea: la precedente non e’ una prova rigorosa)We want to stress that

there might be several maximal dense patterns that subsume z. As an example,
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for p = 2/3, the dense pattern x = B in the string S = AdBeCfAgBhC is subsumed
by maximal dense patterns A o B and B o C that are not maximal patterns, while
M(z) = AoBoCis not dense.

Definition 5.3. Given a frequency threshold o and a density threshold p, a pattern
x 1s a dense maximal motif in s if x is a maximal dense pattern in s with respect to
p, and f(x) > 0. A dense mazimal motif for p = 1 is also referred to as maximal
solid block. In the rest of the chapter, we will omit referencing the input string s

when clear from the context.

The problem we tackle is then the following: we are given an input string s,
a frequency threshold o, and a density threshold p, and we want to find all the
maximal dense motifs in s. We restrict our attention to dense motifs because the
notion of density provides a more general way to control the number of don’t cares
that appear in a motif, and the number of don’t cares in a motif is related to its
biological significance.

An important property of maximal dense patterns, which we will exploit in our
mining strategy, is that all of their solid blocks are maximal solid blocks. This

property is stated in the following proposition.

Proposition 5.4. Let x be a maximal dense pattern with respect to a density thresh-
old p, and let b= z[i...j] be a solid block in x such that x[i — 1] = z[j + 1] = o and

j > 1. Then, b is a maximal solid block.

Proof. For the sake of contradiction, assume that b is not a maximal solid
block. Consider M(z) and let £ = M(x)[f;...¢;] be the shortest substring
of M(z) subsuming = made of complete solid blocks, that is, such that with
M(x)[ly — 1] = M(z)[ly + 1] = o. By known results [UKkO7, [Pis02], all complete
solid blocks in M (z), hence in Z, are maximal solid blocks. Thus Z contains more
solid characters than x, and no more don’t cares than x. This implies that = is
strictly denser that x. This contradicts the hypothesis that x is maximal dense with

respect to p. O

5.2 An algorithm for M Aximal Dense Motif eXtrac-
tion

In this section we describe an algorithm, called MADMX (pronounced Mad Maz), for
MAximal Dense Motif eXtraction. The algorithm adopts a breadth-first apriori-like
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strategy [AS94], similar in spirit to the one developed in [ACP0Y|, using maximal
solid blocks as building blocks by virtue of Proposition B2l MADMX operates by
repeatedly combining together, in a suitable fashion, pairs of maximal dense motifs,
and extracting from the combinations less frequent maximal dense motifs.

A key notion for the algorithm, underlying the aforementioned combining oper-

ations, is the fusion of characters/patterns.

Definition 5.5. Given three characters c,ci,co € SU{o}, we say that c is the fusion

of ¢ and co, and write ¢ = ¢y N/ ¢a, if one of the following holds:
1. c=c1 = cy;
2. ¢cp =0, C=Cy F# 0O
3. ¢c=c1 #o0, cy=o0.

Observe that if ¢;,co € X and ¢ # ¢, €1 Y/ ¢2 is not defined.

The above notion of fusion generalizes to patterns as follows.

Definition 5.6. Given three patterns x,y, z and an integer d, we say that z is the
d-fusion of x and y, and write z = x\/4y, if z can be obtained by removing the leading
and trailing don’t care characters from the pattern m defined as mli] = x[i+d] <7 yli],

for all indices i.

Note that if d > |z| we have 2 /gy = x o y for d' = d — |z|, while if d < —|y|
we have 2 /gy =y o x for d" = —d — |y|.
The breadth-first strategy adopted by our algorithm crucially relies on the fol-

lowing theorem, which highlights the structure of dense motifs:

Theorem 5.7. Let x be a mazimal dense motif with de(x) > 0. Then:
(a) there exists a mazimal solid block b in x such that M(z) = M(b), or
(b) there exist two mazimal dense motifs y1,ys such that:

o M(x) = M(y1 Vay2), for some d;

e there are two maximal solid blocks by, by in x and an integer d > 0 such
that by is a mazximal solid block in yy, by is a maximal solid block in yso,

and by 0% by is contained in 1 Vay2;

o f(z) <min{f(y1), f(y2)};
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For the proof of Theorem B we need to define another type of pattern combi-
nation, namely the operation of merge between two patterns, which is similar to the
one introduced in [PCGS05]. Given two characters ¢, ¢y, we define the operator &

between them such that ¢; @ co = o, if ¢; # ¢, and ¢; @ ¢ = ¢; = ¢o, otherwise.

Definition 5.8. Given two patterns x,y and an integer d, the d-merge of x and y
15 the pattern z = x Bg y which can be obtained by removing all leading and trailing

don’t cares from the pattern m defined as m[i| = z[i + d| ® y[i] for all i.

We want to stress the difference between the notions of merging and fusion: the
merge of two patterns x,y is always well defined and more general than x,y, while
the fusion of x,y may not exist and, if it does, is more specific than x, y.

For the proof of Theorem B.7 we also need the property established by the fol-

lowing lemma.

Lemma 5.9. Let x and y be maximal patterns, and d be an integer such that z =

x®qy # €. Then z is a maximal pattern. Moreover, if z # x (resp., z # y) then

f(z) > f(x) (resp., f(z) > f(y)).

Proof. First we prove that z is maximal. By contradiction, suppose that this is not
the case. Then, there exists a position i such that z[i] = o and we can replace the
o with a solid character ¢ without decreasing the frequency of the pattern. (Note
that the position of the substitution can be to the left of the first solid character in
z or to the right of the last character in z.) Since x and y are more specific than z,
to every occurrence of x and y in the string corresponds an occurrence of z. Hence,
every occurrence of x (resp., y) in the string, contains c¢ in its ¢ + dth (resp., ith)
position. Therefore, by maximality of z and y, it must be z[i] = z[i + d] = y[i] = ¢,
which is a contradiction. The relations between the frequencies of z,y and z follow
trivially by their maximality. O
We are now ready to prove the theorem.

Proof.|[Theorem B Given a pattern x and two nonnegative integers ¢ < j, we let
x*[i ... j] denote the pattern obtained by removing all the leading and trailing don’t
care characters from x[i...j|. Since z is a maximal dense pattern and dc(z) > 0, it
is easy to see that there exist two dense patterns x1,zs and an integer d > 0 such
that = 1 o? x5, hence there exists an index s; > 0 such that 2*[0...s; — 1] and
x*[s1 + 1...|x| — 1] are dense. We call these two patterns the level-1 decomposition
of = (observe that many such decompositions may exist). Also, we let ¢; = 0 and

r1 = |z| — 1. Now, consider the following iterative process:
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1. If in the level-i decomposition of x both x*[¢;...s; — 1] and x*[s; + 1...7]
have frequency strictly greater than f(x), or at least one of 2*[¢;...s; — 1] and

x*[s; + 1...7;] is a solid block with frequency equal to f(x), then terminate;

2. Otherwise, let y = x*[¢;11...7:41] be (an arbitrary) one of z*[(;...s; — 1] or
x*[s; + 1...7;] which is not a solid block and has frequency equal to f(z).
Since y is dense, there exists an index s;.1, ¢;117 < S;41 < ;11 such that
*liy1 ... 841 — 1] and z*[s;51 + 1...7r;11] are both dense. Call these two

patterns the level-(i + 1) decomposition of x. Set i =i+ 1 and go to Step [

Assume that the decomposition process ends by finding a solid block b that
is a solid block in x and has f(b) = f(x). Then, M(b) = M(x) and the the-
orem follows. Otherwise, at the last level j of the decomposition, we have that
fx) < min{f(z*[(;...s; —1]), f(z*[s; +1...7])}. In this latter case, as ex-
plained in Section Bl (after Definition B.2), we can determine two maximal dense
patterns y;,y, such that y; contains z*[¢;...s; — 1], y» contains z*[s; + 1...7;],
and with M(y;) = M(z*[¢;...s; — 1]) and M(y2) = M(x*[s; + 1...7;]). Since
fly1) = f(a*[t;...s; —1]) and f(y2) = f(z*[s; +1...7}]), we have that f(z) <
min {f(y1), f(y2)}. Observe that by construction there must exist two solid blocks
bi,bs in x and an integer d such that by is a solid block in yq, by is a solid block in
Yo, and by od by is a sequence of two solid blocks in . In fact, by (resp., bs) is the last
(resp., the first) solid block of z*[¢;...s; — 1] (resp., *[s; + 1...74]).

Next, we show that there exists a d such that the d-fusion y; \/4ys is well defined,
contains by o by, and M(y; Va y2) = M(z). We proceed as follows. Let us “align”
M(z) and y; so to match the occurrences of by in both patterns. Then, for a certain
integer p, M(x)[i+p] corresponds to y;[i]. Assume, for the sake of contradiction, that
there exists an index j such that M(x)[j + p| is not more specific than y;[j]. Then,
Lemma B3 implies that z = M(z) ®, M(y1) # M(y1), which contains z*[¢; ... s; —
1], is maximal and has frequency strictly greater than f(y;), which is impossible
because we have chosen y; such that M(z*[(;...s; — 1]) = M(y;) and therefore
f(x*[¢;...s;—1]) = f(y1). Therefore, M(z) contains y;. A similar argument shows
that M(x) contains ys.

Since y; and y, are contained in M(x), there must exist a d such that y; /42 is
well defined and can be aligned with M(x) in such a way to match the blocks b; and
by of y; and y, with the corresponding blocks in M(z). Moreover, M(x) contains
Y1 Va Yo, hence f(y1 Vay2) > f(M(z)) = f(x). However, since y; /4 y2 contains
both z*[¢;...s; — 1] and z*[s; + 1...7;], it contains also z*[¢;...r;], which, by the
decomposition process, has frequency equal to f(x). Therefore, f(y; Vay2) < f(z),
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and the theorem follows since f(y; Va4 y2) = f(x). O

In essence, Theorem B.7 guarantees that we can find any maximal dense motif
x either within M(b), for some maximal solid block b, or by d-fusing two higher-
frequency maximal dense motifs yy, yo, for some d, finding z = M(y; V4¥2) and then
possibly “trimming” z on both sides to obtain z. Also, the theorem shows that in the
latter case the trimmed sequence must contain at least one maximal solid block b; of
11 and one maximal solid block by of y5. Moreover, we can disregard those d-fusions
Y1 Va Yo for which no pair of dense subsequences b; of y; and by of y, exists such that

by od by contained in y; /4 yo for some d>0.

Algorithm 5.1: MADMX
Input: String s, frequency threshold o, density threshold p
Output: Maximal dense motifs

1 previous < 0, current «— (), next — 0 ;

2 blocks «— maximal solid blocks of s with frequency > o;
3 for each b € blocks do

4 find M(b) ;

5  current < currentU extractMaximalDense(M (b));

6 while current # () do

7 for each z; € current do

8 for each xy € previous U current do

9 for each d s.t. z = x1 /4 22 is a valid fusion do

10 find M(z);

11 DM «— extractMaximalDense(M(z));

12 for each x € DM do

13 if f(x) > o and x ¢ previous U current then next «— next U {x};

14  previous «— previous U current;
15 current < next; next «— ();
16 return previous;

MADMX implements the strategy inspired by Theorem B and pseudocode is
given below as Algorithm Bl Tt employs three (initially empty) sets previous, cur-
rent, and next. In Line 2, the algorithm first stores the maximal solid blocks b in
s for the given frequency in the set blocks (see Section BI). Then, it extracts all
of the appropriate maximal dense motifs from M (b) in lines 3-5, using the function
extractMaximalDense, as implied by Theorem [7(a). Finally, lines 6-15 implement
the strategy as implied by Theorem ET(b). (In Line 9 a d-fusion y; /4 y2 is consid-
ered walid if it satisfies the second property of Theorem ET(b).) Given a maximal
motif z, extractMaximalDense returns all the maximal dense motifs in x which sat-
isfy the second condition of Theorem B In practice, when called on Line 5, it

returns all the maximal dense substrings of M(b) that contains b. When called on
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Line 11, the maximal motif passed in input will be z = M(y; V4 y2). In this case
extractMaximalDense returns all the maximal dense substrings of = that satisfy the
second property of Theorem EZ(b), and thus contain at least one block b; of y; and
at least one block by of ys.

The correctness of Algorithm MADMX is proved by the following.

Theorem 5.10. Given a string s, frequency threshold o and density threshold p,

Algorithm MADMX produces in output all the mazimal dense motifs in s.

Proof. Let assume that there exists a maximal dense motif x that is not returned by
MADMXSince MADMX produces all the maximal dense motifs that can be generated
from M (b), where b is a maximal solid block (lines 3-6), if = is not produced in
output then there exists a pair of maximal dense motifs ¥, z; such that x can be
found from M(y; V4 21), where y;, z; satisfy the properties of Theorem BE(b), such
that one of yi, 2 is not produced by MADMXLet assume that y; is the maximal
dense motif not produced by MADMXWe can apply the same reasoning to y;, thus
we can find another maximal dense motif 3, not produced by MADMXIterating
this reasoning, we can find a sequence yi,¥s,...,¥;, ... of dense motifs such that
(i) Vi,y; are maximal dense motifs (ii) f(y;+1) > f(v:), and (iii) y; is derived from
the fusion of y;,1 with another maximal dense motif Theorem 7 implies that this
sequence must be finite, and that the last element of this sequence, g, is either a
solid block or can be found in the maximal extension of a solid block. Therefore g

has been generated by the algorithm (lines 3-5), that is a contradiction. O

An important issue for the efficiency of MADMX is that it needs to compute the
exact frequency of each generated pattern. For what concerns the fusion operation
of two patterns x1,z in Line 10, observe that a simple computation on the pairs
(01,03) € L, X L,, is sufficient to yield the frequencies of all the valid fusions of two
patterns. However, given z = x; \/4 22, for a maximal dense pattern w which does
not contain z in its entirety, we can only conclude that f(w) > f(2).

Therefore, in the course of the algorithm we generate two classes of maximal dense
motifs: those whose exact frequencies are known (final motifs), and those for which
only a lower bound to their frequencies is known (tentative motifs). Algorithm BT
is modified accordingly, requiring that z; and x5 in lines 8 and 9 of the pseudocode
be final. Whenever the set current contains no final motifs,we can label as final the
motif in current with the highest lower bound to its frequency, and continue with

the generation. The correctness of this assumption is proved by the following.

Theorem 5.11. Let x be the tentative motif x with the highest lower bound Ib(x) on

its frequency f(x) when current does not contain any final motif. Then f(z) = lb(z).



88 Chapter 5. Maximal Dense Motif in Biological Sequences

Proof. For the sake of contradiction, assume that f(x) # lb(x). In particular, it
must be f(z) > Ib(z). From Theorem B we know that there must be two dense
motifs xy,y; with min{f(z1), f(y1)} > f(z) and an integer d such that x can be
obtained, with its exact frequency, from M(zy /4 y1). If both z; and y; have
already been moved to the previous list from Algorithm BTl we have f(z) = Ib(x).
The only possibility is then that at least one of x; and y; has not been moved to
previous. Let x; be this dense motif. Then x, is either a tentative motif or has not
been generated by any fusion yet. Applying the same reasoning to x;, we have that
there exists two dense motifs xo, 3o such that at least one of them (let say x5) has
not been put in previous, min { f(x2), f(y2)} > f(z1) and z; can be obtained, with
its real frequency, from a valid fusion of x5, ys. Iterating this reasoning, we can find
a sequence Iy, s, ..., T;, ... of dense motifs such that (i) Vi, z; has not been put in
previous, (ii) f(z;+1) > f(x;), and (iii) z; is derived from the fusion of x;; with
another pattern. Theorem 7 implies that this sequence must be finite, and that
the last element of this sequence, Z, is either a solid block or can be found in the
maximal extension of a solid block. Therefore = has been generated by the algorithm

(lines 3-5) with its correct frequency, thus it is in previous, that is a contradiction. [

A crude upper bound on the running time of MADMX can be derived by observing
that, for each pair of dense maximal motifs in output, the time spent during all the
operations concerning that pair is (naively) O (n?), where n is the length of the input

string. If P patterns are produced in output, the overall time complexity is O (n3P?).

5.3 Experimental validation of MADMX

We developed a first, non-optimized, implementation of MADMX in C++ also including
an additional feature which eliminates, from the set of initial maximal solid blocks,
those shorter than a given threshold min,. The purpose of this latter heuristics is
to speed up motif generation driving it towards the discovery of (possibly) more
significant motifs, with the exclusion of spurious, low-complexity ones. (The code is
available for download at http://www.dei.unipd.it/wdyn/?IDsezione=4534.)
We performed two classes of experiments to evaluate how significant is the set
of motifs found using our approach. The first class of experiments, described in
Section B30, compares our motifs with the known biological repetitions available in
RepBase [IKPT05|, a very popular genomic database. The second class of experi-
ments, described in Section .32, aims at comparing the motifs extracted by MADMX
with those extracted by VARUN using the same z-score metric employed in [ACPQO9]
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for assessing their relative statistical significance.

5.3.1 Evaluating significance by known biological repetitions

RepBase [JKPT05| is one of the largest repositories of prototypic sequences repre-
senting repetitive DNA from different eukaryotic species, collected in several different
ways. RepBase is used as a reference collection for masking and annotation of repet-
itive DNA through popular tools such as REPEATMASKER [SHG04]. REPEATMASKER
screens an input DNA sequence s for simple repeats and low complexity portions,
and it uses RepBase to screen for interspersed repeats. Sequence comparisons are
performed through Smith-Waterman scoring. REPEATMASKER returns a detailed
annotation of the repeats occurring in s, and a modified version of s in which all of
the annotated repeats are masked by a special symbol (N or X). With the current
version of RepBase, on average, almost 50% of a human genomic DNA sequence will
be masked by the program [SHG04].

Most of the interspersed repeats found by REPEATMASKER belong to the families
called SINE/ALU and LINE/L1: the former are Short INterspersed Elements that are
repetitive in the DNA of eukaryotic genomes (the Alu family in the human genome);
the latter are Long Interspersed Nucleotide Elements, which are typically highly
repeated sequences of 6K—8K bps, containing RNA polymerase II promoters. The
LINE/L1 family forms about 15% of the human genome.

We have conducted an experimental study using MADMX and REPEATMASKER
on Human Glutamate Metabotropic Receptors HGMR 1 (410277 bps) and HGMR 5
(91243 bps) as input sequences. We have downloaded the sequences from the March
2006 release of the UCSC Genome database (http://genome.ucsc.edu). REPEAT-
MASKER. version was open-3.2.7, sensitive mode, with the query species assumed to
be homologous; it ran using blastp version 2.0a19MP-WashU, and RepBase update
20090120.

The experiments to assess the biological significance of the maximal dense mo-
tifs extracted by MADMX involved three separate stages. In the first stage, we ran
REPEATMASKER on the input sequences HGMR 1 and HGMR 5, focusing the atten-
tion only on interspersed repeats using RepBase. One of the output files (.out) of
REPEATMASKER contains the list of found repeats, and provides, for each occur-
rence, the substring s[i. .. j] of the input sequence s which is locally aligned with (a
substring of) the repeat.

In the second stage, we ran MADMX on the same DNA sequences, with density
threshold p = 0.8, frequency threshold o = 4, and min, = 15. In order to filter out
simple repeats and low complexity portions, which are dealt with by REPEATMASKER.
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without resorting to RepBase, we modified MADMX eliminating periodic maximal
solid blocks (with short periods), which are the seeds of simple repeats. Then, we
identified the occurrences of the motifs returned by MADMX in the input sequences,
using REPEATMASKER as a pattern matching tool (i.e., replacing RepBase with the
set of motifs returned by MADMX as the database of known repeats). The underlying
idea behind this use of REPEATMASKER was to employ the same local alignment
algorithms, so to make the comparison fairer.

In the third stage, we cross-checked the intervals associated with the occurrences
of the RepBase repeats against those associated with the occurrences of our motifs.
Surprisingly, MADMX was able to identify and characterize all of the intervals of the
known SINE/ALU repeats in HGMR 1 and HGMR 5 (respectively, 56 repeats plus an
extra unclassified for HGMR 1, and 20 plus an extra unclassified for HGMR 5). The
remaining occurrences of the motifs permitted to identify 29 repeats out of 78 of the
LINE/L1 family in HGMR 1.

The choice of the parameters p, o, and min; was done using values that seemed
reasonable to us, and the results obtained seem to confirm our definition. However,

a more in depth study of the effectivenes

5.3.2 Evaluating significance by statistical z-score ranking

The z-score is the measure of the distance in standard deviations of the outcome
of a random variable from its expectation. Consider a DNA sequence s of length n
as if it was generated by a stationary, i.i.d. source with equiprobable symbols; an

approximation to the z-score for a motif of length m that contains ¢ solid characters

and appears f times in s is given by Z = \/(Z:Z:;?:;Zip) , where p = (1/4)¢. This
metric was used in [ACP09| to assess the significance of the motifs extracted by
VARUN and to rank them in the output. VARUN is designed to extract extensible
motifs from one or more input sequences, and works by converting the input into a
sequence of possibly overlapping cells, built during an initialization phase, so that
a maximal extensible pattern corresponds to a sequence of cells. All the sequences
of cells corresponding to maximal extensible patterns are fund during an iteration
phase.

We employed the code for VARUN provided by the authors to extract the rigid
motifs from the DNA sequences analyzed in [ACP09|. We then ran MADMX on the
same sequences using the same frequency threshold o, and setting the minimum
density threshold p in such a way to obtain a comparable yet smaller output size.
In this fashion, we tested the ability of MADMX to produce a succinct yet significant

set, of motifs, by virtue of its more flexible notion of density.
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The results are shown in Table Bl and Table For VARUN we used D = 1,
thus allowing at most one don’t care between two solid characters, and ran MADMX
with min, = 1, so to obtain the complete family of maximal dense motifs. In the
table, there is a row of the table for each sequence (identified in the first column).
Each sequence, whose total length is reported in the second column, is obtained as
the concatenation of a number of smaller subsequences, reported in the third column.
We used the concatenation of input sequences since MADMX is designed to run on
one input sequence. On each sequence, both tools were run with the same frequency
threshold o, and the table reports for both the output size in terms of the number
of motifs returned and the execution time in seconds. Also, for MADMX, the table

reports the density threshold p used in each experiment.

VARUN MADMX
name length # o |output| time p  |output| time
ace2 500 1 2 1866 3s 0.7 1762 18s
apl 500 1 2 1555 1s 0.7 1304 5s
gald 3000 6 4 9764 12s 0.67 7606 67s
gald® 3000 6 4 9764 12s 0.65 11733  191s
uasgaba 1000 2 2 4586 30s 0.70 4194 90s

Table 5.1: Results of the comparison with VARUN: output size and running time.

best top-m z-scores

name length # o m=10 m=50 m=100 m* m
ace?2 500 1 2 10 50 100 1571 1067
api 500 1 2 10 50 100 392 13
galad 3000 6 4 10 49 99 16 16
ga14t) 3000 6 4 10 50 100 9764 301
uasgaba 1000 2 2 10 50 100 175 175

Table 5.2: Results of the comparison with VARUN: z-scores. (TODO: Andrea:
add column m=1000)

For each experiment, we compared the best top-m z-scores, with m = 10, 50, and
100, as follows. Note that, in general, the top-m motifs found by MADMX and VARUN
differ. Thus, we let 2%, (resp., zi,) be the z-score of the ith motif in decreasing z-score
order obtained by MADMX (resp., VARUN). For each m, the table reports how many
times it was 2%, > zi,, for 1 <i < m. Also, column m* (resp., column m) gives the
maximum m such that 2%, > zi, (resp., 2, > 2i,) for every 1 <i < m.

The results of the experiment show that even when MADMX is calibrated to yield
a slightly smaller output, the quality of the motifs extracted, as measured by the
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z-score, is higher than those output by VARUN. Indeed, for sequences ace2 and
uasgaba a very large prefix of the top-ranked motifs extracted by MADMX features
strictly greater z-scores of the corresponding top-ranked ones extracted by VARUN.
In fact, for all of the four sequences, at least the thirteen top-ranked motifs enjoy
this property. To shed light on the slightly worse performance of MADMX on gal4,
we re-ran MADMX with a different density threshold, so to obtain a slightly larger
output (see row gald®). In this case, the top-301 motifs extracted by MADMX have
z-score strictly greater than the corresponding motifs extracted by VARUN, while the
execution time remains still acceptable.

For all runs, the top z-score of a motif discovered by MADMX is considerably
higher than the one returned by VARUN. Specifically, on ace2 our best z-score is
387763 vs. 12027 of VARUN; on apl, we have 12027 vs. 1490; on gal4 it is 75 vs.
28; on gala™ it is 150 vs. 28; on uasgaba we have 134532 vs. 67059. This reflects
the high selectivity of MADMX, which is to be attributed mostly to adoption of a
more flexible density constraint.

We must remark that MADMX (in its current nonoptimized version) is slower
than VARUN, but it still runs in time acceptable from the point of view of a user.
To further investigate the tradeoff between execution time and significance of the
discovered motifs, we repeated the experiments running MADMX with min, = 2 and
p = 0.65, for all sequences. The running time of MADMX was almost halved, while
the small output produced still featured high quality. Notably, for sequences ace2,
apl, and uasgaba the top-100 motifs extracted by MADMX have z-score greater or
equal than the corresponding ones returned by VARUN.

We also have attempted a comparison between VARUN and MADMX on longer
sequences (such as HGMR 1) at higher frequencies (since, unfortunately, VARUN does
not seem to be able to handle low frequencies on very long sequences). Even allowing
a higher number of don’t cares between solid characters (D = 2) for the motifs of
VARUN, all of the top-m z-scores featured by the motifs extracted by MADMX are
greater than or equal to the corresponding scores in the ranking of VARUN, with m
reaching the size of VARUN’s output. The small values of D considered (D = 1, 2) are
consistent with the experiments reported in [ACP09| for the input DNA sequences
we considered. In [ACPQO9| those values have been shown to produce biological
significant motifs. In fairness, we remark that VARUN was designed to work at its
best on protein sequences, while MADMX’s main target are DNA sequences. Hence,
these two tools should be regarded as complementary. Moreover, VARUN has the

advantage of retrieving flexible motifs, while MADMX focuses only on rigid ones.



Chapter 6

Significantly Mutated Pathways in
Biological Networks

In this chapter we propose a rigorous framework for de novo identification of sig-
nificantly mutated subnetworks. The naive approach is to examine mutations on
all subnetworks, or all subnetworks of a fixed size and to apply statistical standard
multi-hypothesis testing. This approach is problematic. First, the enumeration of
all such subnetworks is prohibitive even for subnetworks of reasonable size. Sec-
ond, the extremely large number of hypotheses that are tested makes it difficult to
achieve statistical significance. Finally, biological interaction networks typically have
small diameter due to the presence of hubs, genes of high degree. There are reports
that cancer-associated genes have more interaction partners than non-cancer genes
IL707a, (JB0O6|, and indeed highly mutated cancer genes like TP53 have high degree
in most interaction networks (e.g. the degree of TP53 in HPRD is 238). Such cor-
relations might lead to a large number of “uninteresting” subnetworks being deemed
significant, since any subnetwork containing an highly mutated hub will be returned
as significant.

Our framework employs two strategies to overcome the difficulties described
above. First, we formulate an influence measure between pairs of genes in the net-
work using a diffusion process defined on the graph. This quantity considers a gene
to influence another gene if they are both close in distance on the graph and the
number of paths between them is relatively high compared to all paths starting from
one of the two genes. We use this measure to build a smaller influence graph that
includes only the mutated genes but encodes the neighborhood information from the
larger network. We then identify significant subnetworks using two techniques. In
the combinatorial model we consider a graph in which each mutated gene is rep-

resented by a node, and two genes are connected if the influence between them is
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larger then some threshold. We formulate on this graph the connected mazrimum
coverage problem of finding the connected subgraph that is altered in the highest
number of patients. We show that this problem is NP-hard and describe an efficient
approximation algorithm. We then derive an alternative approach, the enhanced
influence model, in which the influence between pairs of genes is enhanced by the
number of mutations observed on these genes. Again we consider a graph on the set
of mutated genes with edges connecting pairs of genes with enhanced influence above
a given threshold. Since the mutation information is already encoded in the edge
weights, the computational problem is reduced to just finding connected components
in the graph. Finally, we derive a two-stage multiple hypothesis test that mitigates
the testing of a large number of hypotheses by focusing on the number of discovered
subnetworks of a given size rather than on individual subnetworks. We also show

how to estimate the false discovery rate (FDR) incurred by this test.

We tested our approach on the HPRD human interaction network using somatic
mutation data from two recently published studies: (i) 601 genes in 91 glioblastoma
multiforme patients from The Cancer Genome Atlas (TCGA) project; (ii) 623 genes
in 188 lung adenocarcinoma patients sequenced during the Tumor Sequencing Project
(TSP). In both datasets, we identify statistically significant mutated subnetworks
that are enriched for genes on pathways known to be important in these cancers,
including the p53 and RTK/RAS/PI(3)K pathways. We also identify the Notch
signaling pathway as significantly mutated in the lung samples. Notch signaling is
known to be deregulated in a number of cancers, but was not reported as mutated
in the TSP publication. Our work is the first, to our knowledge, to propose a
computationally efficient strategy for de novo identification of statistically significant
mutated subnetworks. We anticipate that our approach will find increasing use as

cancer genome studies increase in size and scope.

The rest of the chapter is organized as follows: in Section the influence graph
is defined, while Section presents the two methods we design to find significantly
mutated pathways. Section presents the statistical method we design to address
the significance of our findings, and Section illustrates the results we obtained

with our method.

The results presented in this chapter were published in a preliminary version
in [VURO9, VURIO].
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6.1 Mathematical model

We model the interaction network by a graph G = (V| E), where the vertices in
V' represent individual proteins (and their associated genes), and the edges in F
represent (pairwise) protein-protein or protein-DNA interactions. Let 7 C V be the
subset of genes that have been tested, or assayed, for mutations in a set S of samples
(patients). The size of 7 will vary by study; e.g. some recent works resequenced
hundreds of genes [Net08, IDT08| while others examine nearly all known protein-
coding genes in the human genome [W707, .I708, [PT08|. We assume that each gene
g is assigned one of two labels, mutated or normal, in each sample. Let M; denote
the subset of genes in 7 that are mutated in the ith sample, for i = 1,...|S|. Let S;
be the samples in which gene g; € 7 is mutated, for j =1,...,|7], let m =), | M;]
be the total number of occurrences of altered genes observed in all samples.

We define a pathway or subnetwork to be a connected subgraph of GG. Note that
this definition matches the common biological usage of the term where pathways
may have arbitrary topology in the graph, and are not restricted to be linear chains
of vertices. We generally do not know whether more than one gene must be mutated
to perturb a pathway in a sample, and thus will assume that a pathway is mutated
in a sample if any of the genes in the pathway are mutated. For a subset T' C 7, let

S(T') denote the set of samples in which at least one gene in T' is mutated.

6.2 Influence graph

Given the protein interaction network and the mutation data observed for tested
genes in the samples §, we want to identify subnetworks of genes that are significantly
mutated. The genes in a subnetwork should correspond to a pathway, where the
mutation of a gene corresponds to the alteration of the pathway. The mutation of a
gene g in a subnetwork should then have a significant effect on at least one other gene
¢’ in the same subnetwork. Using the original interaction network we can observe
only effects on the neighbours of a gene, but the mutation of g can in general alter
the functionality of gene ¢’ even if ¢ is not directly interacting with ¢’. Consider for
example the linear chain of Figure Bl The mutation of the gene at the bottom of
the chain can have the effect of altering the functionality of the gene at the top of the
chain, even if the two nodes are not directly interacting. We thus need a procedure
to identify the genes whose functionality can be altered by the mutation of gene
g. A first possibility is to use the distance between two genes g, ¢’ in the protein
interaction network as measure for this functional influence. However the distance

is not an accurate measure, since it does not take into account the topology of the



96 Chapter 6. Significantly Mutated Pathways in Biological Networks

network containing g and ¢’, that must be considered when relating the functionality
of g and ¢'.

We can quantify the alteration that mutation of g induces in ¢’ taking into ac-
count the whole network topology using a diffusion process. The significance of a
subnetwork is derived from: (i) the number of samples that have mutations in the
genes of the subnetwork, and (ii) the interactions between genes in the subnetwork in
the context of the whole network topology. For example, consider the two scenarios
of mutated nodes of Figure In the first scenario, the two mutated nodes are
part of a linear chain in the interaction network. In the second scenario, the two
mutated nodes are connected through a high-degree node. In the first case, there
is a single path joining the two mutated nodes, thus we expect the functionality of
the two nodes to be more related than in the second case, where the two nodes are
connected by a node that is active in a large number of possible pathways. If the
number of samples in which the two genes are altered is the same in both scenarios,
we would assign greater significance to the linear chain. Most human interaction
networks have a number of nodes of high-degree, or hubs, and these produce many
paths between mutated nodes. A simple correction for this problem is to remove
high-degree nodes. However, a number of genes that are commonly mutated in can-
cer have high-degree in interaction networks,, and thus removal of high-degree nodes

results in loss of information.

We use a diffusion process on the interaction net-
work to define a rigorous measure of influence be-
tween all pairs of nodes. To measure the influence of
node s on all the other nodes in the graph, consider
the following process, described by [QSLT08|. Fluid

is pumped into the source node s at a constant rate,

and fluid diffuses through the graph along the edges.
Fluid is lost from each node at a constant first-order Figure 6.1:  Mutation on
rate 7. Let f5(t) denote the amount of fluid at node chain vs. star graph.

v at time ¢, and let £5(£) = [f$(¢), ..., f5(t)]" be the

column vector of fluid at all nodes. Let L be the

Laplacian matrix of the graphEl, and let L, = L 4+ ~vI. Then the dynamics of this

continuous-time process are governed by the vector equation

df* ()
dt

— —L,f°(t) + bou(t), (6.1)

! = —A + D, where A is the adjacency matrix of the graph and D is a diagonal matrix with
D, ; = degree(v;).
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where b® is the elementary unit vector with 1 at the s place and 0 otherwise, and
u(t) is the unit step function. As ¢t — oo, the system reaches the steady state. The
equilibrium distribution of fluid density on the graph is f* = L2 'b® (See [QSLT08]).
Note that this diffusion process is related to the diffusion kernel [KL.02], or heat kernel
[Chu07|, which models the diffusion of heat on a graph, and these diffusion processes
are also related to certain random walks on graphs [DS84. [Lov93|. Diffusion pro-
cesses and their related flow problems have been used in protein function prediction
on interaction networks [TNO4, INJAT05| and to define associations between gene
expression and phenotype [MLWS07].

We interpret f7 as the influence i(gs, g;) of gene g5 on gene g;. Computing the
diffusion process for all tested genes gives us, for each pair of genes g;, gr € 7, the
influence i(g;, gx) that gene g; has on gene g;. Note that in general the influence is
not symmetric; i.e. i(g;, gx) # i(9;, gx). We define an influence graph IG = (T ,IFE)
with the set of nodes corresponding to the set of tested genes, the weight of an edge

(g, g) is given by
w(g;, gr) = minfi(gr, g),(g;, gr)] = min[fF, f]].

If n is the number of nodes in the interaction network, then the cost of computing

IG is dominated by the complexity of inverting an n X n matrix.

6.3 Discovering significant subnetworks

6.3.1 Combinatorial model

Given an influence measure between genes, the obvious first approach for discovering
significant subnetworks is to identify sets of nodes in the influence graph IG that
are (1) connected through edges with high influence measure; and (2) correspond to
mutated genes in a significant number of samples. We fix a threshold § and compute
a reduced influence graph IG(9) of IG by removing all edges with w(g;, g;) < 0,
and all nodes corresponding to genes with no mutations in the sample data. The
computational problem is reduced to identifying connected subgraphs of 1G(§) such
that the corresponding set of genes is altered in a significant number of patients.
The size of the connected subgraphs we discover is controlled by the threshold
0. We choose sufficiently small § such that in the null hypothesis, in which the
mutations are randomly placed in nodes corresponding to tested genes, it is unlikely
that our procedure finds connected subgraphs with similar properties. Note that

value of 0 depends only on the null hypothesis and not on the observed sample data
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(see Section B4 for details of the statistical analysis).

Computational problem

Finding the connected subgraph of k genes that is mutated in the highest number of
samples requires to solve the following problem, that we define as connected mazimum
coverage problem: given a graph G defined on a set of m vertices V', a set of elements
I, a family of subsets P = {P,,..., P,}, with P, € 2! associated with v; € V, and
a value k, find the connected subgraph C* = {v;,,...,v; } with k£ nodes in G that
maximize | U5_, P;;|. In our case we have G = IG(), V' is the subset of genes in 7
mutated in at least one sample, and for each g; € V the associated set is S;. The
connected maximum coverage problem is related to the maximum coverage problem
(see e.g. [Hoc97| for a survey) where given a set I of elements, a family of subsets
F C 27, and a value k, one needs to find a collection of &k sets in F' that covers the
maximum number of elements in /. This problem is NP-hard as set cover is reducible
to it.

If the graph G is a complete graph, the connected maximum coverage problem is
the same as the maximum coverage problem. Thus the connected maximum coverage
problem is NP-hard for a general graph. Moreover we prove that the problem is still
hard even on simple graphs such as the star graph (similar result was shown in [SHO0)

for the connected set cover problem).
Theorem 6.1. The connected maximum coverage problem on star graphs is NP-hard.

Proof. The proof is by reduction from the maximum coverage problem. Given an
instance of the maximum coverage problem, consisting of I, F', and k, we build an
instance of the connected maximum coverage problem. We define I' = I U {vy},
with vo ¢ I; and ' = F U {vg}. Moreover, we build the graph G = (V, E) where
V =F and E = {(vg,s)|s € F}. It is easy to verify that G is a star graph, and
then each non-trivial (i.e., with more than 1 vertex) subgraph of G will contain the
vertex vg. The solution X to the connected maximum coverage problem on the
graph G is then of the form X =Y U {vy}, where Y C F'. It is easy to verify that
X is a connected maximum coverage of size kK + 1 > 1 if and only if YV is maximum

coverage of size k > 0. O

Since the connected maximum coverage problem is NP-hard even for simple
graphs we turn to approximate solutions. It is not hard to construct a polynomial
time 1 — é approximation algorithm for spider graphs (analogously to the result in

[SHO6| for the connected set cover problem). Since the biological network of interest
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are not spider graphs, we construct an alternative polynomial time algorithm that
gives O (1/r) approximation when the radius of the optimal solution C* is .

Our algorithm obtains a solution C, (thus, a connected subgraph) starting from
each node v € V, and then returns the best solution found. To obtain C,, our
algorithm executes an exploration phase, i.e. for each node u € G it finds a shortest
path p,(u) from v to u. Let £,(u) be the set of nodes in p,(u), and P,(u) the elements
of I they cover. After this exploration phase, the algorithm builds a connected
subgraph C, starting from v. At the beginning we have C, = {v}. Pe, is the set
of elements covered by the current connected subgraph C,. Then, while |C,| < k,
the algorithm chooses the node u ¢ C, such that: u = argmax,cy {%} and
|0, (u)UC,| < K the new solution is then ¢,(u) UC,. The main computational cost of
our algorithm is due to the exploration phase, that can be performed in polynomial

time. We have the following:

Theorem 6.2. The algorithm above gives a é—approximation for the connected mazx-

2e—1

= and 7 is the radius of optimal solution

imum, coverage problem on G, where ¢ =

m G.

Proof. We first analyze the solution obtained assuming the nodes in the solution
are inserted one at the time (i.e., |¢,(u) \ Cy| = 1 for each node w inserted in the
solution). We will then show that when the nodes are not inserted in the solution
one at the time, the solution obtained cannot have a worse solution.

Let z*(v) be the value of the best solution OPT'(v) that can be found starting at

node v. Define

OPTi(v) = U Si— U Si ¢l
g; € OPT(v) : g; € OPT(v) :
[ dgj,v) =7 —i+1 r—i+1<d(gj,v) <7

J

thus OPT(v) = ZOPTi<U>; where 7, is the radius of OPT(v), and z*(v) =
i=1

>t |OPT;(v)| . We divide the execution of our algorithm in r, phases: in phase i
our algorithm inserts |OPT;(v)| new nodes in the solution. Note that in phase ¢, our
algorithm always has the possibility to reach each node in O PT;(v). Thus, in phase i,
the algorithm above is equivalent to the greedy algorithm for the maximum coverage
problem where the sets that can be chosen are all the sets at distance at most r—i+1,
and then all the sets in O PT;(v) can be chosen by the greedy algorithm. Let A;(v) be

the increment in the value of the solution found by our algorithm between the end of
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phase 7 and the end of phase i — 1. Since the approximation factor for the maximum
coverage is 1 — 1/e and each element in OPT;(v) is seen with weight reduced of a
factor 1/(r—i+1) (since it is at distance r —i+ 1), in phase i our algorithm improve

the current solution of a factor

az 1 (1-1) (orne)- S,

Jj=1

Let A denote the value of the solution returned by our algorithm. Summing the

terms above for all 7 we obtain:

Alv) = %O—%)(i?ﬂm@%f:%w—ﬁ&wv
> % (1 - %) i;opn(v) _ % (1 - %) i(m — 7)A;(v)
> (=D orro - (1-2) o
> (1= Yorr- (1-2) aw

We then obtain
2e — 1 e—1

e

A(w) > % ( ) OPT(v)

that is

1 /e—-1
Av) > . (26 — 1) OPT (v).

Now consider the case |,(u) \ C,| > 1: this means that that we insert a path
whose weight, divided by |¢,(u) \ C,|, is higher than the weight of any other possible
reachable node (from v). Then we have that the value of the solution found by our
algorithm can only improve, since we are inserting |¢,(u) \ C,| nodes such that the
average value of the inserted nodes is greater than the maximum value of |¢,(u) \ C,|
reachable nodes in the best solution including v divided by its distance (that is at

most 7). O

For our experiments we implemented a variation of this algorithm, that for each
pair of nodes (u, v) considers all the shortest paths between u and v, and then keeps
||ZJ((;L))|| to build the solution C,. With this modification the
algorithm is not guaranteed to run in polynomial time in the worst-case, but ran

the one that maximizes

efficiently for all our experiments.
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6.3.2 The Enhanced Influence model

We developed an alternative, computationally efficient, approach for identifying sub-
networks that are significant with respect to the gene mutation data. The Enhanced
Influence Model is based on the idea of enhancing the influence measure between
genes by a function of the number of mutations observed in each of these genes, as
explained below, and then decomposing an associated enhanced influence graph into
connected components.

We define the enhanced influence graph H. It has a node for each gene g; with
at least one mutation in the data. The weight of edge (g;, gx) in H is given by

hw(g;, gr) = min {i(g;, gr), 1(gk, g;) } x max {|S;], [|Sk|} -

Thus, the strength of connection between two nodes in the enhanced influence graph
is a function of both the interaction between the nodes in the interaction network
and the number of mutations observed in their corresponding genes. Next we remove
all edges with weight smaller than a threshold ¢ to obtain a graph H(J). We return
the connected components in H(J) as the significant subnetworks with respect to
the mutation data and the threshold §. The computational cost is the complexity of
computing all connected components in a graph with |S| nodes (number of mutated
genes), which is linear in the size of the graph. The significance of the discovered
subnetworks depends on the choice of §. We choose sufficiently small § such that in
the null hypothesis, in which the mutations are randomly placed in nodes correspond-
ing to tested genes, it is unlikely that our procedure finds connected components of

similar size (see Section 6.4 for details of the statistical analysis).

6.4 Statistical analysis

We assess the statistical significance of our discoveries with respect to null hypothesis
distributions in which the mutated genes are randomly allocated in the network,
that is when the occurrence of mutations are independent of the network topology.
We consider two null hypothesis distributions: in Hy*™' a total of m = 3, | M;]
mutations are placed uniformly at random in the nodes corresponding to the |7|
tested genes, hence preserving the number of mutated genes in each sample. While
easier to analyze, this model does not account for the fact that in the observed data
a large number of mutations are concentrated in a few genes(e.g. TP53).

An alternative null hypothesis distribution we consider, H§™, is generated by

uniformly at randomly permuting the tested genes among the locations of the
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tested genes in the network. That is we select a random permutation o of the
set {1,...,|7|}, and we the set of samples S; C S, associated to g; in the real data,

to the location of gene g,(;) in the original network.

6.4.1 A two stage multi-hypothesis test

A major difficulty in assessing the statistical significance of the discovered subnet-
works is that we test simultaneously for a large number of hypotheses; each connected
subnetwork in the interaction graph with at least one tested gene is a possible sig-
nificant subnetwork and thus an hypothesis. Using the standard approach of [BH93)]
to control the FDR would result in a reduced ability of identifying significantly mu-
tated pathways. Instead, we adapt the ideas introduced in Section to develop
a two stage test for our problem that allows us to flag a number of subnetworks in
our data as statistically significant while controlling the FDR of the set of flagged
subnetworks.

We demonstrate our method through the analysis of the Enhanced Influence
model. A similar technique was applied to the Combinatorial model. Let C4, ..., C,
be the set of connected components found in the enhanced influence graph H ().
Testing for the significance of these discoveries is equivalent to simultaneously test-
ing for 2!71 hypothesis. To reduce the number of hypothesis we focus on an alter-
native statistic (outcome) which is the number of discoveries of a given size. Let
7s be the number of connected components of size > s found in the graph H(J),
and let r, be the corresponding random variable in the null hypothesis (H;™ or
HE™). We are testing now for just K = |7| simple hypotheses, for s = 1,...,K:
E, = “ry conforms with the distribution of r,”. Testing each hypothesis with con-
fidence level a/IC, the first stage of our test identifies the smallest size s such that
with confidence level o we can reject the null hypothesis that 74 conforms with the
distribution of r;.

The fact that the number of connected components of size at least s is statisti-
cally significant does not imply necessarily that each of the connected components
is significant. We now add a second condition to the test that guarantees an upper
bound on the FDR:

Theorem 6.3. Fiz 31,0, ..., B such that Z:C:1 B; = 3. Let s* be the first s such

that 74 > % If we return as significant all connected components of size > s*,

then the FDR of the test is bounded by (3.

Proof. Let V; be the number of erroneous rejections of connected components of size

1, i.e. the number of connected components of size ¢ that were flagged erroneously
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as significant. Note that E[V;] < E[r;], since if these hypothesis were erroneously
rejected they were generated by the null distribution.

K|

Vi _ _
FDR = E E |:T:| PI"(EZ',EZ'_l,...,EQ)
i
1=0

K|
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N ; Elri] rt ' o)
K . . — =
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K|
ﬁiE[rz]
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< D Fpg <P
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Notice that the test above does not require to test all value s = 1,..., K. In

fact, in our tests we considered only two thresholds, s = 6, and s = 10. For each
hypothesis we can then compute what is the minimum threshold « for which that
hypothesis would be rejected. We can moreover compute what is the FDR associated
with the set of connected components returned using s* defined in Theorem In
our tests we have used 3; = 5 for the i'" largest s tested (with 3, = 3 — ), 3; for

the smallest s), since we are more interested in finding large connected components.

6.4.2 Estimating the distribution of the null hypothesis

The null hypothesis distributions can be estimated by either a Monte-Carlo simu-
lation (known as “permutation test” in the computational biology community) or
through analytical bounds.

Using Monte-Carlo simulation, two features of our method significantly reduce
the cost of the estimates. First, the Influence Graph IG is created without observing
the sample data. The mutation data and /G are then combined to create the sample
dependent graphs IG(6) and H(d). Thus, the Monte Carlo simulation needs to
run on the graph IG which is significantly smaller than the original interaction
network (in our data the original interaction network had 18796 nodes while the
influence graph had only about 600 nodes), since the vertices of IG are the tested
genes and both null distributions requires to work only on tested genes . Second,
our statistical test does not use the p-values of individual connected subgraphs but

the p-value of the number of connected subgraphs of a given size. Thus, since the
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number of hypotheses is smaller, we need p-values an order of magnitude larger than
the ones that would be required if we test for single subgraphs. We then need to
estimate p-values to a precision that is an order of magnitude larger, which require
significantly fewer rounds of simulations. These features allowed us to compute the
null distributions through Monte-Carlo simulations for the size of our data with no
significant computational cost.

For larger number of tested genes we can estimate the null hypothesis through
analytical bounds. Consider for example the Enhanced Influence model, and assume
that the | 7| tested genes are randomly permuted among the |7| nodes of the graph
IG to generate a random instance graph H(J). Let m be the number of genes with
observed mutations, and let s,,,, be the maximum number of mutations of any gene.
Since we are interested in § that partitions the graph to a number of connected
components we can choose the maximum § such that for any node g; in /G no more
than am/|T| of the adjacent edges have weights that satisfy s,.,w(gi,g;) > t, for
some fixed o < 1. For the choice of § above, the expected number of connected

components of size k in H(J) is bounded by

TN 2 ko1 ™ g
(k | A" gﬁa .

Since connected components are disjoint, their occurrences are negatively corre-
lated, and we can stochastically bound the distribution of ry with a binomial dis-
tribution with the above expectation. A similar bound can be computed for the
other models and null hypothesis distributions, and for (somewhat) less restrictive

conditions on 4.

6.5 Experimental results

We applied our approach to analyze somatic mutation data from two recent studies.
The first dataset is a collection of 453 somatic mutations identified in 601 tested
genes from 91 glioblastoma multiforme (GBM) samples from The Cancer Genome
Atlas [Net(8]. In total, 223 genes were reported mutated in at least one sample.
The second dataset is a collection of 1013 somatic mutations identified in 623 tested
genes from 188 lung adenocarcinoma samples from the Tumor Sequencing Project
[IDT08]. In total, 316 genes were reported such that each of them was mutated in at
least one sample. We use the protein interaction network from the Human Protein
Reference Database (June 2008 version) [PT09| which consists of 18796 vertices and
37107 edges. We derive the influence graph for each dataset by directly computing
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the inverseﬁ of L. For all our experiments we fixed the parameter v = 8, which is
approximately the average degree of a node in HPRD (after the removal of discon-
nected nodes). We also conducted a preliminary study of the impact of the choice of
~ on the distribution of the weights in the influence graph. This preliminary study
shows that the choice of 7 does not have a huge impact for our random models.
However, the development of a rigorous method to choose 7 is an open problem.
The influence graphs obtained from the inversion of L. have weights i(g;, g) # 0 for
almost all pairs (g;, gr) of tested genes: less than 2% of the weights are zero in the
GBM graph, while all weights in the lung adenocarcinoma graph are positive. We
now describe the results of the applying the combinatorial model (Section [E5.1]) and
enhanced influence model (Section E52) to both datasets. Section compares

these results against those obtained with the naive algorithm.

6.5.1 Combinatorial model

We used the combinatorial model to extract a subnetwork, of £ mutated genes, that is
mutated in the highest number of samples from GBM and lung adenocarcinoma with
k =10 and k = 20. For both data we used the procedure described in Section
to derive the threshold 6 = 0.0001 for the reduced influence graph IG(J). Table
shows that we find statistically significant subnetworks under both the H§™ and
H¥™ ' pull hypotheses (p-values for HS*™® are computed without Monte-Carlo
simulation). The genes in each subnetwork are reported in Table B2 To assess
the biological significance of our findings in GBM, we compared the genes in each
subnetwork to the genes in pathways that were previously implicated in GBM and
used as a benchmark in the TCGA publication [Net08] (See also Figure[52 (a) below).
We find that our subnetworks are enriched for (i.e., contains a statistically significant
number of) genes in the RTK/RAS/PI(3)K pathway and to a lesser extent, the p53
pathway. For the lung adenocarcinoma samples, we find that the subnetworks share
significant overlap with the pathways reported in the original publication [DT08|.
These results demonstrate that the combinatorial model is effective in recovering

genes known to be important in each of these cancers.

6.5.2 Enhanced Influence model

We applied the enhanced influence model to the same two datasets. Following the

procedure described in Section B32 we first computed the enhanced influence net-

2In contrast |[QSLT08] derive a power series approximation to LY ! whose convergence depends
on the choice of ~.
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p-val pathway enrichment p-val
dataset k& samples H*™°*  HE™° all RTK/RAS/PI(3)K  p53
GBM 10 67 <107 4x10% 3x107* 8 x 1071 0.19
20 78 <1071 <1073 107° 8 x 1075 0.05
Lung 10 140 < 10710 0.02 8 x 1076 /
20 151 < 10710 0.03 3x1073 /

Table 6.1: Results of the combinatorial model. k is the number of genes in the
subnetwork. samples is the number of samples in which the subnetwork is mutated.
p-val is the probability of observing a connected subgraph of size k under the random
model H*™' or HE™. enrichment p-val is the p-value of the hypergeometric test
for overlap between genes in the identified subgraph and genes reported significant
pathways in [NetO8] or [DT08|. For GBM, enrichment p-val is the p-value of the
hypergeometric test for RTK/RAS/PI(3)K and p53 pathways.

dataset &k samples genes
GBM 10 67 INSR BCR TP53 PTEN EGFR
ERBB2 DST PIK3R1 PIK3CA SERPINA3
20 78 MDM2 FGFR1 BRCA2 CHEK1 COL1A2

ITGB3 TNK2 INSR BCR TP53
PTEN EGFR ERBB2 DST PIK3R1
PIK3CA NF1 SPARC PDGFRA SERPINA3

Lung 10 140 CDC25A CHEK1 TP53 STK11 HRAS
KRAS ERBB4 EGFR NF1 PTEN
20 150 MAPKS8 PRKDC TP53 STK11 HRAS

KRAS EGFR PRKD1 NF1 ABL1
ERBB4 PTEN HD PRKCE SMAD2
TGFBR1 BAX RAPGEF1 PIK3CG ACVRI1B

Table 6.2: Genes in the connected component of size k that covers the maximum
number of samples as reported by our algorithm for GBM and lung adenocarcinoma.

work, using a threshold of ¢ = 0.003 for the GBM data and ¢ = 0.01 for the lung
adenocarcinoma data. Table shows the number and sizes of the connected com-
ponents identified in the GBM data, and the associated p-values, the latter obtained
using the method described in Section 4l Table reports the genes in the con-
nected components of size > 3.

We identify two significant connected components with more than 19 genes (FDR
< 0.14). We find significant overlap (P < 1072 by hypergeometric test) between the
68 genes in our connected components and the set of all mutated genes in the same
RTK/RAS/PI(3)K, p53, and RB pathways examined in the TCGA study [Net08| (see
Table B)). The second largest connected component with 19 genes has significant

overlap to the p53 pathway, while the largest connected component with 22 genes has



6.5. Experimental results 107

significant overlap with the RTK/RAS/PI(3)K signaling pathway. In contrast to the
combinatorial model, the enhanced influence model separates these two pathways
into different connected components. Figure [£2 (a) illustrates the overlap between
the mutated genes in connected components returned by our method and genes in

the pathways reported in [Nef(8].

Hgample Hg;ene
s Fcco >s 0 p-val I p-val
2 15 22.18 0.97 13.63  0.38
3 3 6.37 0.98 4.38 0.6
19 2 <1073 <1073 0.07 <1073
22 1 <107 <1073 0.05 0.05

Table 6.3: Results of the enhanced influence model on GBM samples. s is the size
of connected components (c.c.) found with our method. # c.c. > s is the number
of c.c. with at least s nodes. u is the expected number of c.c. with > s nodes under
random models HE™®, HE*™ ' p-pal is the probability of observing at least # c.c.
> s with at least s nodes in a random dataset.

size genes

22 MSH2 ATM MSH6 PRKDC ATR BCR KLF6 GLI3 KLF4
PML MAPK9 CHEK1 BRCA2 ING4 MDM2 MDM4 TP53 TOP1
PTEN KPNA2 STK36 GLI1

19 ANXA1 TNK2 ERBB3 SERPINA3 SOCS1 TNC PIK3C2B PDGFRB
ERBB2 NRAS VAV2 EGFR EPHA2 MET ADAMI12 PIK3R1
PIK3CA CENTG1 AXL

Table 6.4: Genes in connected components obtained for GBM the diffusion model
with v = 8,¢ = 0.003.

enrichment p-val
S RTK/RAS/PI(3)K p53
19 0.9 4 %1073
22 4 %1076 -

Table 6.5: Result of the hypergeometric test for enrichment for RTK/RAS/PI(3)K,
and p5H3 pathways respectively. s is the size of connected components (c.c.) found
with our method.

For the lung data, Table shows the sizes of connected components returned by
the enhanced influence model and the p-values associated with each. Table lists
the genes in each connected component of size > 5. The 88 genes in the union of the

connected components derived by our method overlap significantly (P < 7 x 107
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by the hypergeometric test) with the mutated pathways reported in the network of
Figure 6 in the TSP publication [DF08]. We identify 4 connected components of size
> 7 (FDR < 0.28). The first connected component of size 10 contains genes in the
p53 pathway, and the second one is enriched (P < 1072) for the MAPK pathway
(Figure (b)). The third component is the ephrin receptor gene family, a large
family of membrane-bound receptor tyrosine kinases, that were reported as mutated
in breast and colorectal cancers [ST06]. Notably, only one of the genes in this compo-
nent, EPHA3, is mentioned as significantly mutated in [DT08]. Finally, the connected
component of size 7 consists exclusively of members of the Notch signaling pathway
(Figure (c)). The mutated genes include: the Notch receptor (NOTCH2/3/4);
Jagged (JAG1/2), the ligand of Notch; and Mastermind (MAML1/2), a transcrip-
tional co-activator of Notch target genes. The Notch signaling pathway is a major
developmental pathway that has been implicated in a variety of cancers [Axe(4]
including lung cancer [CKB04|. Mutations in this pathway were not noted in the
original TSP publication [DF08|, probably because no single gene in this pathway
is mutated in more than 3 samples. Because our method exploits both mutation
frequency and network topology, we are able to identify these more subtle mutated

pathways, and in this case identify an entire “signaling circuit”.

RTK/RAS/PI(3)K RB1 signalling @_
signalling P vz
/ 9
) {coke ) {coxa)

p53 signalling signal-sending cell
A
NOTCH

(a) (c)

Figure 6.2: (a) Overlap between subnetworks found by the enhanced influence model
and significant pathways reported in [NetO8]. The genes in the network shown have
been reported as involved in significant pathways in [NetO8]. Each circle is a gene,
gray nodes represents protein families or complexes, or small molecules. For each
protein family and complex, tested genes are shown. “Dashed” nodes are tested genes
that were not mutated in GBM, and thus cannot be returned as significant. Red
nodes are found in the c.c. of size 22, blue nodes in the c.c. of size 18, and the
green node in a c.c. of size 2. (b) Pathway corresponding to one of the connected
components extracted with enhanced influence model in lung. (c¢) Notch signaling
pathway identified in the lung dataset.
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Hgample ngne

s Fcco >s L p-val 1 p-val enrichment p-val
2 24 23.4 0.7 17.67 04 /
3 11 6.51 0.13 727 0.2 /
4 7 3.21 0.07 498 0.13 /
5 5 2.09 0.01 2.18 0.01 /
7 4 0.54 0.01 0.56  0.01 -
10 3 <107% <1073 0.4 0.02 0.34

107°

9x 1078

Table 6.6: Results of the enhanced influence model on lung adenocarcinoma samples.
Columns are as described in Table Last column shows, for c.c. with s > 7, the
result of the hypergeometric test for enrichment all genes reported in significant
pathways in [DT08] (the 3 values shown refers to c.c. of size 10).

size genes

10 WT1 CDKN2A TP53 CCNG1 KLF6 ATR CDKN2C TP73L TFDP1 CHEK1

10 RAP2B PIK3CA HRAS RASSF2 NRAS MRAS PIK3CG BRAF NF1 RHOB

10 EPHB1 EPHB6 EPHA7 EPHA6 EPHA5 EPHA4 EPHA3 EPHA2 EPHA1 FGFR4
7 MAML2 MAML1 NOTCH4 NOTCH2 NOTCH3 JAG2 JAG1

Table 6.7: Connected components of size > 7 for lung adenocarcinoma using the
diffusion model with v = 8,¢ = 0.01.

6.5.3 Naive approach

To demonstrate the impact of the influence graph on the results, we implemented
a naive approach that examines all paths in the original HPRD network that con-
nect two tested genes and contain at most 3 nodes. We extracted all paths that
were altered in a significant number of samples with FDR, < 0.01 using the standard
Benjamini-Yekutieli method [BY(I], considering each path as an hypothesis. More
than 1700 paths in GBM and > 2200 in lung adenocarcinoma are marked as signifi-
cant with this method. A major reason for this large number of paths is the presence
of highly mutated genes that are also high-degree nodes in the HPRD network (e.g.
TP53). FEach path through these high degree nodes is marked as significant, thus
a large number of “uninteresting” subnetworks are deemed significant. One possible
solution is to remove any path that contains a subpath that is significant. However,
these filtered paths include none through highly-mutated and high degree genes that
are biologically important for cancer (like TP53). Our influence graph uses both

mutation frequency and local topology of the network, allowing us to recover sub-
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networks containing these genes. Finally, we note that finding larger, statistically
significant subnetworks (e.g. those with 10 or 20 nodes) with the naive approach is
impossible in the GBM and lung datasets because of the severe multiple hypotheses
correction for the large number of subnetworks tested; e.g., the number of connected
components with 10 tested nodes in the HPRD network is > 10'°. For the same
reason the enumeration of all the paths or connected components of reasonable size
is impossible.

Table shows the significant paths containing at most 3 analyzed genes that
have been found significant using the random model H*™' and the Benjamini-
Yekutieli method to correct for multiple hypothesis test using GBM somatic muta-
tions. In the table only paths that do not contain any subpath that is significant are
shown (e.g., all the paths with > 1 gene that are significant and contain TP53 are

not reported). Table shows the analogous table for Lung adenocarcinoma

genes # mutated samples p-value

TP53 31 1.11022x101¢

PTEN 28 1.11022x1016

EGFR 15 2.55351x 10715

NF1 13 1.00975x 10712

PIK3R1 9 6.87229x10%

RB1 9 6.87229x10%

DST 8 8.75524 %1077

ERBB2 7 9.93594x10~%
PDGFRB , PIK3CA 8 0.00010412

PIK3CA, PRKCD, EP300 10 5.71599x10~%
PIK3CA, IRS4, PRKCZ 8 0.00010412

Table 6.8: Statistically significant mutated paths (FDR = 0.01) using the HPRD
network [PT09] and the glioblastoma mutations dataset [Net08|. For each significant
path, the genes in the path, the number of samples with at least one mutation in the
path, and the (non-corrected) p-value are shown.



6.5. Experimental results

111

genes # mutated samples p-value

TP53 64 <1071

KRAS 60 < 10716

STK11 34 < 10716

EGFR 30 < 10716
LRP1B 16 1.97591x 10~
ATM 13 1.65488x 1078
NF1 13 1.65488x10798
APC 11 1.02906x 1079
CDKN2A, E4F1, RB1 15 1.28117x107%
CDKN2A, WRN, PRKDC 15 1.28117x107%
EPHAT7, EFNA1, EPHA3 15 1.28117x107%
PRKDC, HSP90AA1 , KDR 15 1.28117x107%
EPHA3 , EFNA2, EPHA5S 15 1.28117x107%
NTRK3, DYNLL1, NTRK1 14 6.16984x107%
NTRK1, CAV1 , KDR 14 6.16984x107%
KDR, ITGB3, PDGFRA 14 6.16984x107%

Table 6.9: Statistically significant mutated paths (FDR = 0.001) using the HPRD
network [PT09| and the lung adenocarcinoma mutations dataset [D08|. For each
significant path, the genes in the path, the number of samples with at least one
mutation in the path, and the (non-corrected) p-value are shown.
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Chapter 7
Conclusions

In this final chapter we summarize the main contributions of this thesis and discuss

some future research directions.

7.1 Summary

In this thesis we contributed novel results on the mining of significant patterns,
focusing on the problem of frequent itemsets mining, a fundamental primitive that
arises in many data mining problems, on the extraction of motifs from biological
sequences, and on the discovery of significantly mutated pathways in cancer.

In chapter Blwe studied the algorithmic aspects of the extraction of top- K frequent
closed itemsets and the use of sampling to extract the top-K frequent items/itemsets.
For the first primitive we provide the first analytical evidence of its effectiveness,
proving a tight upper bound on the ratio between the number of closed itemsets
returned in output and the input parameter K. We then developed a new algorithm
for mining top-K frequent closed itemsets in order of decreasing support, TopKMiner,
which attains substantial improvements w.r.t. the best previously know algorithm.
A peculiar feature of our algorithm is that it allows the user to dynamically raise
the value K, without requiring the computation to restart from scratch. For the
extraction of top-K frequent items/itemsets through sampling we proved a tight
bound on the sufficient sample size to obtain an approximation the top-K frequent
items/itemsets with probabilistic guarantees on the quality of the output. Moreover,
we develop an algorithm based on progressive sampling to extract the top-K frequent
items/itemsets.

In Chapter H]l we proposed a novel methodology to identify a meaningful support
threshold o* for a dataset such that the itemsets with support at least o* can be

flagged as statistically significant with a small False Discovery Rate (FDR), which
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is the expected ratio of false discoveries among all discoveries. Our methodology
hinges on a Poisson approximation to the distribution of the number of itemsets in a
random dataset with support at least s, for any s greater than or equal to a minimum
threshold s,,;,. We obtained this result through a novel application of the Chen-Stein
approximation method, which is of independent interest. A crucial feature of our
approach is that, unlike most previous work, it takes into account the entire dataset
rather than individual discoveries. It is therefore better able to distinguish between
significant observations and random fluctuations. The results of our comparison to
a standard procedure for multi-hypothesis testing provide experimental evidence of

the higher power of our approach.

In Chapter Bl we studied the discovery of motifs, possibly including don’t care
characters, in biological sequences. This problem is highly relevant to computational
biology. We introduced the density, defined as the ratio of solid characters to the
total length of the motif, as a simple and flexible measure for bounding the number of
don’t cares in a motif,. We define a natural notion of mazimality for dense motifs and
devise an efficient algorithm, called MADMX which performs complete MAximal Dense
Motif eXtraction from an input sequence, with respect to user-specified frequency
and density thresholds. We provided experimental evidence of the efficiency and
the quality of the motifs returned by MADMX, comparing them with the known
biological repetitions, and with the motifs extracted by the recently developed tool
VARUN [ACP(09] using the same statistical metric employed in [ACP09] for assessing

their relative significance.

Finally, in Chapter Bl we addressed the problem of identifying significantly mu-
tated pathways in large scale gene and protein interaction networks. We proposed
a new framework based on an influence measure between pairs of genes obtained
using a diffusion process defined on the interaction network. We then proposed two
algorithms to identify significantly mutated pathways, both using the influence mea-
sure between pairs of genes. Moreover, we derived a statistical test that identifies
significantly mutated pathways and estimates the FDR of the identified subnetworks.
This test is built on the technique we developed in Chapter @l in the context of fre-
quent itemset mining. We tested the algorithms on a large human protein-protein
interaction network using mutation data from recent studies on two different type
of cancers. The tests showed that our methods successfully recover pathways that
are known to be involved in the considered cancers, and moreover identify additional
pathways that have been implicated in cancer but not previously reported as mutated

in the samples we considered.
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7.2 Further research

There are a number of interesting avenues to improve the results presented in this
thesis and to develop new methods to mine significant patterns.

A first set of possible directions regards the mining primitives we have studied in
Chapter Bl For the extraction of top-K frequent closed itemsets, a natural direction
is the development and testing of an external memory algorithm for the problem.
Since many datasets of interest for this problem are huge, they will probably not fit
in main memory, and new algorithms explicitly designed to work on external memory
are needed. For the use of sampling to extract top-K frequent items/itemsets it would
be interesting to study, both analytically and experimentally, the performance of our
algorithm on datasets with different items/itemsets distributions, trying to charac-
terize what are the distributions for which our algorithm gives the best performance.
Another direction for future work is the experimental assessment of the algorithm
based on min-count Bloom filter we proposed.

For what concern instead the mining of statistically significant itemsets, the
framework we have introduced offers several interesting directions for further work.
Naturally, one goal is to adapt our test to different random models, for example the
one introduced in [GMMTQ7]. Another interesting direction is the design of a method
that extract statistically significant itemsets with low supports. Moreover, the statis-
tical test we have proposed can be adapted to the extraction of other patterns, as we
have done in Chapter @ for the extraction of significantly mutated pathway. We think
that the mining of graphs, for example, would provide an interesting application of
our method.

The extraction of significant motifs provides many interesting directions for future
work. Our definition of density provides a way to constrain the structure of the motifs
so to enforce significance more general. than the ones previously employed, but the
choice of the density and frequency thresholds are left to the user. An important
problem is then to understand what is the relation between those parameters and
the biological significance of the corresponding motifs. Another interesting direction
is the design of an algorithm that extracts the maximal dense motifs from a set of
sequences, where the frequency of a pattern is the number of sequences in which
it appears. MADMX can be used to solve this problem (by concatenating the input
sequences), but novel algorithmic solutions could result in better performance.

For the identification of significant pathways in cancer much work remains to be
done. For example, we model the protein interaction network as an undirected graph,
while information on the directionality of some interactions is already available, and

more will be produced in the next few years. Adapting our models and methods
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to directed graphs requires new solutions. Moreover, somatic mutations are not
the only causes that lead to cancer. Other genomic alterations, like copy number
modifications or epigenetic alterations, have been related to cancer. How to analyze
different type of alterations, and how to combine them, to identify the pathways
specific to cancers is one of the most interesting problems that our method does not

currently tackle.



Bibliography

[AT00]

[ACP09)

[AGGI0]

[AISO3)]

[APO4|

[AS94]

[AT07]

[ATO8]

[AUO7]

M. Ashburner et al. Gene ontology: tool for the unification of biology.
The Gene Ontology Consortium. Nature Genetics, 25:25-29, 2000.

A. Apostolico, M. Comin, and L. Parida. Varun: Discovering extensi-
ble motifs under saturation constraints. IEEE/ACM Transactions on

Computational Biology and Bioinformatics, 99(1), 2009.

R. Arratia, L. Goldstein, and L. Gordon. Poisson approximation and
the Chen-Stein method. Statistical Science, 5(4):403-434, 1990.

R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules
between sets of items in large databases. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, pages 207—
216, 1993.

A. Apostolico and L. Parida. Incremental paradigms of motif discovery.
Journal of Computational Biology, 11(1):15-25, 2004.

R. Agrawal and R. Srikant. Fast algorithms for mining association rules
in large databases. In Proceedings of the International Conference on
Very Large Data Bases, pages 487-499, 1994.

A. Apostolico and C. Tagliacollo. Optimal offline extraction of irredun-
dant motif bases. In Proceedings of the International Computing and
Combinatorics Conference, pages 360-371, 2007.

A. Apostolico and C. Tagliacollo. Incremental discovery of the irredun-
dant motif bases for all suffixes of a string in n?logn time. Theoretical
Computer Science, 408(2-3):106-115, 2008.

H. Arimura and T. Uno. Mining maximal flexible patterns in a sequence.
In Proceedings of the Annual Conference of The Japanese Society for
Artificial Intelligence, pages 307-317, 2007.

117



118

Bibliography

[Axe04]

[AYO8)]

[B+01]

[Bay98)]

[BGKMO3]|

[BGZ04]

[BHO5|

IBHA02

[Bod04]

IBY01]

[CCFC04]

H. Axelson. Notch signaling and cancer: emerging complexity. Seminars
in Cancer Biology, 14:317-319, 2004.

C. C. Aggarwal and P. S. Yu. A new framework for itemset genera-
tion. In Proceedings of the ACM Symposium on Principles of Database
Systems, pages 18-24, 1998.

G. D. Bader et al. BIND-The Biomolecular Interaction Network
Database. Nucleic Acids Research, 29:242-245, Jan 2001.

R. J. Bayardo Jr. Efficiently mining long patterns from databases. In
Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, pages 85-93, 1998.

E. Boros, V. Gurvich, L. Khachiyan, and K. Makino. On maximal
frequent and minimal infrequent sets in binary matrices. Annals of
Mathematcs and Artificial Intelligence, 39(3):211-221, 2003.

R. J. Bayardo Jr., B. Goethals, and M. J. Zaki, editors. FIMI 04,
Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining
Implementations, volume 126 of CEUR Workshop Proceedings. CEUR-
WS.org, 2004.

Y. Benjamini and Y. Hochberg. Controlling the false discovery rate:
A practical and powerful approach to multiple testing. Journal of
the Royal Statistical Society. Series B (Methodological), 57(1):289-300,
1995.

R. J. Bolton, D. J. Hand, and N. M. Adams. Determining hit rate in
pattern search. In Proceedings of the ESF FExploratory Workshop on
Pattern Detection and Discovery, pages 36-48, 2002.

F. Bodon. Surprising results of trie-based fim algorithms. In FIMI,
Proceedings of the ICDM 2004 Workshop on Frequent Itemset Mining
Implementations, 2004.

Y. Benjamini and D. Yekutieli. The control of the false discovery rate
in multiple testing under dependency. Annals of Statistics, 4(29):1165—
1188, 2001.

M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items
in data streams. Theoretical Computer Science, 312(1):3-15, 2004.



Bibliography 119

[CF04]

[CGKOS]

|CHS02|

[Chu07]

[CKBO4|

[CLL+07]

[D*08]

IDPO1]

[DS84]

[DSB03]

[DuM99]

[FAO7]

Y.-L. Cheung and A. W.-C. Fu. Mining frequent itemsets without sup-
port threshold: With and without item constraints. IEEE Transactions
on Knowledge Data Engineering, 16(9):1052-1069, 2004.

E. Cohen, N. Grossaug, and H. Kaplan. Processing top-k queries from
samples. Computer Networks, 52(14):2605-2622, 2008.

B. Chen, P. Haas, and P. Scheuermann. A new two-phase sampling
based algorithm for discovering association rules. In Proceedings of ACM

International Conference on Knowledge Discovery and Data Mining,
pages 462-468, 2002.

F. Chung. The heat kernel as the pagerank of a graph. Proceedings of
the National Academy of Sciences, 104(50):19735, 2007.

B. J. Collins, W. Kleeberger, and D. W. Ball. Notch in lung development
and lung cancer. Seminars in Cancer Biology, 14:357-364, 2004.

H. Y. Chuang, E. Lee, Y. T. Liu, D. Lee, and T. Ideker. Network-based
classification of breast cancer metastasis. Molecular Systems Biology,
3:140, 2007.

L. Ding et al. Somatic mutations affect key pathways in lung adenocar-
cinoma. Nature, 455(7216):1069-75, 2008.

W. DuMouchel and D. Pregibon. Empirical bayes screening for multi-
item associations. In Proceedings of the ACM International conference

on Knowledge Discovery and Data Mining, pages 67-76, 2001.

P.G. Doyle and J.L. Snell. Random Walks and FElectric Networks. The

Mathematical Association of America, 1984.

S. Dudoit, J. P. Schaffer, and J. C. Boldrick. Multiple hypothesis testing
in microarray experiments. Statistical Science, 18(1):71-103, 2003.

W. DuMouchel. Bayesian data mining in large frequency tables, with an
application to the FDA spontaneous reporting system. The American
Statistician, 53(3):177-190, August 1999.

P. G. Ferreira and P. J. Azevedo. Evaluating deterministic motif signifi-

cance measures in protein databases. Algorithms for Molecular Biology,
2, 2007.



120

Bibliography

[FKTOO]

[GT07]

[GMMTO7]

[GPP*09]

[GZ03]

[HOXY07]

[HKO1]

[HLCS09)

[HNO8]

[Hoc97]

[HW02

A. W.-C. Fu, R. W.-w. Kwong, and J. Tang. Mining n-most interesting
itemsets. In Proceedings of the International Symposium on Foundations
of Intelligent Systems, pages 59-67, 2000.

C. Greenman et al. Patterns of somatic mutation in human cancer
genomes. Nature, 446:153-158, 2007.

A. Gionis, H. Mannila, T. Mielikidinen, and P. Tsaparas. Assessing
data mining results via swap randomization. ACM Transactions on
Knowledge Discovery from Data, 1(3):14, 2007.

R. Grossi, A. Pietracaprina, N. Pisanti, G. Pucci, E. Upfal, and
F. Vandin. MADMX: A novel strategy for maximal dense motif ex-

traction. In Proceedings of Workshop on Algorithms in Bioinformatics,
pages 362-374, 2009.

B. Goethals and M. J. Zaki, editors. FIMI ’03, Proceedings of the ICDM
2003 Workshop on Frequent Itemset Mining Implementations, volume 90
of CEUR Workshop Proceedings. CEUR-WS.org, 2003.

J. Han, H. Cheng, D. Xin, and X. Yan. Frequent pattern mining: current
status and future directions. Data Mining and Knowledge Discovery,
15(1):55-86, 2007.

J. Han and M. Kamber. Data Mining: Concepts and Techniques. Mor-
gan Kaufmann, San Mateo, CA, 2001.

B. J. Hescott, M. D. M. Leiserson, L.. Cowen, and D. K. Slonim. Evalu-
ating between-pathway models with expression data. In Proceedings of
the International Conference on Research in Computational Molecular
Biology, pages 372-385, 2009.

W. Hémaildinen and M. Nykinen. Efficient discovery of statistically
significant association rules. In Proceedings of the IEEE International
Conference on Data Mining, pages 203-212, 2008.

D. S. Hochbaum, editor. Approzimation algorithms for NP-hard prob-
lems. PWS Publishing Co., Boston, MA, USA, 1997.

W. C. Hahn and R. A. Weinberg. Modelling the molecular circuitry of
cancer. Nature Reviews Cancer, 2(5):331-41, 2002.



Bibliography 121

105502

[7+08]

[7+09]

[JB06]

[TJKP+05]

[JL96]

17505]

IKLO02|

[KMP*09a

[KMP+09b]

[Knu73]

T. Ideker, O. Ozier, B. Schwikowski, and A. F. Siegel. Discovering reg-
ulatory and signalling circuits in molecular interaction networks. Bioin-
formatics, 18 Suppl 1:5233-240, 2002.

S. Jones et al. Core signaling pathways in human pancreatic cancers
revealed by global genomic analyses. Science, 321(5897):1801-6, 2008.

L. J. Jensen et al. STRING 8-a global view on proteins and their func-
tional interactions in 630 organisms. Nucleic Acids Research, 37:D412—
416, Jan 2009.

P. F. Jonsson and P. A. Bates. Global topological features of cancer

proteins in the human interactome. Bioinformatics, 22:2291-2297, 2006.

J. Jurka, V. V. Kapitonov, A. Pavlicek, P. Klonowski, O. Kohany, and
J. Walichiewicz. Repbase update, a database of eukaryotic repetitive
elements. Cytogenetic and Genome Research, 110(1-4):462-467, 2005.

G. H. John and P. Langley. Static versus dynamic sampling for data
mining. In Proceedings of ACM International Conference on Knowledge
Discovery and Data Mining, pages 367-370, 1996.

S. Jaroszewicz and T. Scheffer. Fast discovery of unexpected patterns
in data, relative to a bayesian network. In In Proceedings of the ACM
International conference on Knowledge Discovery in Data Mining, pages
118-127, 2005.

R. I. Kondor and J. Lafferty. Diffusion kernels on graphs and other
discrete structures. In Proceedings of the International Conference on
Machine Learning, pages 315-322, 2002.

A. Kirsch, M. Mitzenmacher, A. Pietracaprina, G. Pucci, E. Upfal, and
F. Vandin. An efficient rigorous approach for identifying statistically
significant frequent itemsets. In Proceedings of the ACM Symposium on
Principles of Database Systems, pages 117-126, 2009.

A. Kirsch, M. Mitzenmacher, A. Pietracaprina, G. Pucci, E. Upfal, and
F. Vandin. An efficient rigorous approach for identifying statistically sig-
nificant frequent itemsets. Submitted to Journal of the ACM (JACM),
2009.

D. E. Knuth. The Art of Computer Programming, Volume III: Sorting
and Searching. Addison-Wesley, 1973.



122

Bibliography

[KSS09]

[LT07al

[L07b]

[LACBO9]

[LGO4]

[LOPO06]

[LOPS04]

[Lov93]

[LVO3]

[MAAO3]

[MLWS07]

[MNUOS]

S. Karni, H. Soreq, and R. Sharan. A network-based method for predict-
ing disease-causing genes. Journal of Computational Biology, 16:181—
189, 2009.

J. Lin et al. A multidimensional analysis of genes mutated in breast
and colorectal cancers. Genome Research, 17:1304-1318, 2007.

M. Liu et al. Network-based analysis of affected biological processes in
type 2 diabetes models. PLoS Genetics, 3:¢96, 2007.

M. Lavallée-Adam, B. Coulombe, and M. Blanchette. Detection of lo-
cally over-represented go terms in protein-protein interaction networks.
In Proceedings of the International Conference on Research in Compu-
tational Molecular Biology, pages 302-320, 20009.

Y. Li and R. P. Gopalan. Effective sampling for mining association rules.
In Proceedings of Australian Conference on Artificial Intelligence, pages
391-401, 2004.

C. Lucchese, S. Orlando, and R. Perego. Fast and memory efficient
mining of frequent closed itemsets. ITEEE Transactions on Knowledge
and Data Engineering, 18(1):21-36, 2006.

C. Lucchese, S. Orlando, R. Perego, and F. Silvestri. Webdocs: a real-
life huge transactional dataset. In FIMI, Proceedings of the ICDM 200/
Workshop on Frequent Itemset Mining Implementations, 2004.

L. Lovasz. Random walks on graphs: A survey, 1993.

P. Lyman and H. Varian. How much information? 2003. School of
Information Management and Systems at the University of California
at Berkeley, 2003.

A. Metwally, D. Agrawal, and A. El Abbadi. Efficient computation of
frequent and top-k elements in data streams. In Proceedings of Inter-

national Conference on Database Theory, pages 398-412, 2005.

X. Ma, H. Lee, L. Wang, and F. Sun. CGI: a new approach for prioritiz-
ing genes by combining gene expression and protein-protein interaction
data. Bioinformatics, 23:215-221, 2007.

M. Michael, F. Nicolas, and E. Ukkonen. On the complexity of finding
gapped motifs. CoRR, abs/0802.0314, 2008.



Bibliography 123

[MS98]

[MUO5]

[NCTLHO7]

[Net08]

[NJAT05]

[P108]

[P+09]

[Par00]

[Par02]

[Par07]

[PBTL99)

N. Megiddo and R. Srikant. Discovering predictive association rules. In
Proceedings of the ACM International Conference on Knowledge Dis-
covery in Databases and Data Mining, pages 274-278, 1998.

M. Mitzenmacher and E. Upfal. Probability and Computing : Random-
ized Algorithms and Probabilistic Analysis. Cambridge University Press,
January 2005.

S. Nacu, R. Critchley-Thorne, P. Lee, and S. Holmes. Gene expres-
sion network analysis and applications to immunology. Bioinformatics,
23:850-858, 2007.

The Cancer Genoma Atlas Network. Comprehensive genomic charac-
terization defines human glioblastoma genes and core pathways. Nature,
455(7216):1061-8, 2008.

E. Nabieva, K. Jim, A. Agarwal, B. Chazelle, and M. Singh. Whole-
proteome prediction of protein function via graph-theoretic analysis of

interaction maps. Bioinformatics, 21 Suppl 1:1302-310, 2005.

D. W. Parsons et al. An integrated genomic analysis of human glioblas-
toma multiforme. Science, 321(5897):1807-12, 2008.

T. S. K. Prasad et al. Human Protein Reference Database—2009 update.
Nucleic Acids Research, 37:D767-772, 2009.

L. Parida. Some results on flexible-pattern discovery. In Proceedings
of the Annual Symposium on Combinatorial Pattern Matching, pages
33-45, 2000.

S. Parthasarathy. Efficient progressive sampling for association rules. In
Proceedings of IEEFE International Conference on Data Mining, pages
354-361, 2002.

L. Parida. Pattern Discovery in Bioinformatics: Theory € Algorithms.
Chapman & Hall/CRC, 2007.

N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Efficient mining
of association rules using closed itemset lattices. Information Systems,
24(1):25-46, 1999.



124

Bibliography

[PCGS05

[Pis02]

[PRUV09)

[PV07]

[PVGGO4]

[PZ03]

[QSL*08]

[RF98]

S+06]

[SA96]

[SBMOS]

N. Pisanti, M. Crochemore, R. Grossi, and M.-F. Sagot. Bases of motifs
for generating repeated patterns with wild cards. IEFE/ACM Transac-
tions on Computational Biology and Bioinformatics, 2(1):40-50, 2005.

N. Pisanti. Segment-based distances and similarities in genomic se-
quences, 2002. PhD thesis, University of Pisa, Italy.

A. Pietracaprina, M. Riondato, E. Upfal, and F. Vandin. Mining top-k
frequent itemsets through sampling. Manuscript, 2009.

A. Pietracaprina and F. Vandin. Efficient incremental mining of top-k
frequent closed itemsets. In Proceedings on International Conference on
Discovery Science, pages 275-280, 2007.

P. W. Purdom, D. Van Gucht, and D. P. Groth. Average case per-
formance of the apriori algorithm. SIAM Journal on Computing, 33
(5):1223-1260, 2004.

A. Pietracaprina and D. Zandolin. Mining frequent itemsets using patri-
cia tries. In FIMI, Proceedings of the ICDM 2003 Workshop on Frequent
Itemset Mining Implementations, 2003.

Y. Qi, Y. Suhail, Y. Y. Lin, J. D. Boeke, and J. S. Bader. Finding friends
and enemies in an enemies-only network: a graph diffusion kernel for
predicting novel genetic interactions and co-complex membership from
yeast genetic interactions. Genome Research, 18:1991-2004, 2008.

I. Rigoutsos and A. Floratos. Combinatorial pattern discovery in biolog-
ical sequences: the TEIRESIAS algorithm. Bioinformatics, 14(1):55-67,
February 1998.

T. Sjoblom et al. The consensus coding sequences of human breast and
colorectal cancers. Science, 314(5797):268-74, 2006.

R. Srikant and R. Agrawal. Mining quantitative association rules in
large relational tables. ACM SIGMOD Record, 25(2):1-12, 1996.

C. Silverstein, S. Brin, and R. Motwani. Beyond market baskets: Gener-
alizing association rules to dependence rules. Data Mining and Knowl-
edge Discovery, 2(1):39-68, 1998.



Bibliography

125

[SHO6]

[SHGO4

[SM04]

[SMS*04]

[SSPT9g]

[ST96]

[SVGPO3]

[TNO4|

[Toi96]

[TSK06]

[UAUAO3]

T.-P. Shuai and X.-D. Hu. Connected set cover problem and its ap-
plications. In Proceedings of International Conference on Algorithmic

Aspects in Information and Management, pages 243-254, 2006.

A.F.A. Smit, R. Hubley, and P. Green. RepeatMasker Open-3.0, 1996—
2004. http://wuw.repeatmasker.org.

J. K. Seppénen and H. Mannila. Dense itemsets. In Proceedings of ACM
International Conference on Knowledge Discovery and Data Mining,
pages 683-688, 2004.

L. Salwinski, C. S. Miller, A. J. Smith, F. K. Pettit, J. U. Bowie, and
D. Eisenberg. The Database of Interacting Proteins: 2004 update. Nu-
cleic Acids Research, 32:D449-451, Jan 2004.

L. Shen, H. Shen, P. Prithard, and R. Topor. Finding the n largest
itemsets. In Proceedings of the IEEE International Conference on Data
Mining, 98.

A. Silberschatz and A. Tuzhilin. What makes patterns interesting in
knowledge discovery systems. IEEE Transactions on Knowledge and
Data Engineering, 8(6):970-974, 1996.

B. Sayrafi, D. Van Gucht, and P. W. Purdom. On the effectiveness
and efficiency of computing bounds on the support of item-sets in the
frequent item-sets mining problem. In Proceedings of the International
Workshop on Open Source Data Mining, pages 4655, 2005.

K. Tsuda and W. S. Noble. Learning kernels from biological networks
by maximizing entropy. Bioinformatics, 20 Suppl 1:i326-333, 2004.

H. Toivonen. Sampling large databases for association rules. In Pro-
ceedings of International Conference on Very Large Data Bases, pages
134-145, 1996.

P. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining.
Addison Wesley, 2006.

T. Uno, T. Asai, Y. Uchida, and H. Arimura. LCM: An efficient algo-
rithm for enumerating frequent closed item sets. In FIMI, Proceedings
of the ICDM 2003 Workshop on Frequent Itemset Mining Implementa-
tions, 2003.



126

Bibliography

[UAUA04|

[UkkO7]

[UKS08]

[VK04]

[VUROY]

[VUR10]

VV09]

[W+07]

[WF06]

[WHLT05]

[XHYC05]

T. Uno, T. Asai, Y. Uchida, and H. Arimura. An efficient algorithm for
enumerating closed patterns in transaction databases. In Proceedings of

the International Conference on Discovery Science, pages 16-31, 2004.

E. Ukkonen. Structural analysis of gapped motifs of a string. In Pro-
ceedings of the International Symposium on Mathematical Foundations
of Computer Science, pages 681-690, 2007.

I. Ulitsky, R. M. Karp, and R. Shamir. Detecting disease-specific dys-
regulated pathways via analysis of clinical expression profiles. In Pro-

ceedings of the International Conference on Research in Computational
Molecular Biology, pages 347-359, 2008.

B. Vogelstein and K. W. Kinzler. Cancer genes and the pathways they
control. Nature Medice, 10:789-799, 2004.

F. Vandin, E. Upfal, and B. J. Raphael. Identification of significantly
mutated pathways in cancer. Abstract, RECOMB Satellite (Systems
Biology), 20009.

F. Vandin, E. Upfal, , and B. J. Raphael. Algorithms for detecting
significantly mutated pathways in cancer. In Proceedings of the Inter-
national Conference on Research in Computational Molecular Biology,

to appear, 2010.

D. Vasudevan and M. Vjnovi¢. Ranking through Random Sampling.
Microsoft Reasearch Technical Report, 2009.

L. D. Wood et al. The genomic landscapes of human breast and col-
orectal cancers. Science, 318(5853):1108-13, 2007.

R. C.-W. Wong and A. W.-C. Fu. Mining top- frequent itemsets from
data streams. Data Mining and Knowledge Discovery, 13(2):193-217,
2006.

J. Wang, J. Han, Y. Lu, and P. Tzvetkov. TFP: An efficient algo-
rithm for mining top-k frequent closed itemsets. IEFE Transactions on
Knowledge and Data Engineering, 17(5):652-664, 2005.

D. Xin, J. Han, X. Yan, and H. Cheng. Mining compressed frequent-
pattern sets. In Proceedings of the International Conference on Very
Large Data Bases, pages 709-720. VLDB Endowment, 2005.



Bibliography

127

[Yan04]

[ZL77]

[ZPLO97]

[ZPT04]

[ZPZT09]

G. Yang. The complexity of mining maximal frequent itemsets and
maximal frequent patterns. In Proceedings of the ACM International
Conference on Knowledge Discovery and Data Mining, pages 344-353,
2004.

J. Ziv and A. Lempel. A universal algorithm for sequential data com-
pression. IEEE Transactions on Information Theory, 23(3):337-343,
1977.

M. J. Zaki, S. Parthasarathy, W. Li, and M. Ogihara. FEvaluation of
sampling for data mining of association rules. In Proceedings of Inter-

national Workshop on Research Issues in Data Engineering, page 42,
1997.

H. Zhang, B. Padmanabhan, and A. Tuzhilin. On the discovery of
significant statistical quantitative rules. In Proceedings of the ACM
International Conference on Knowledge Discovery and Data Mining,
pages 374-383, 2004.

R. Zielinski, P. F. Przytycki, J. Zheng, D. Zhang, T. M. Przytycka, and
J. Capala. The crosstalk between EGF, IGF, and Insulin cell signal-
ing pathways—computational and experimental analysis. BMC' Systems
Biology, 3:88, 2009.



	Introduction
	Background
	Mining for frequent itemsets: classical setting
	Mining of frequent itemsets through sampling
	Statistically significant frequent itemsets
	Mining of motifs in biological sequences
	Mining of significantly mutated pathways in biological networks

	Algorithmic Aspects of Basic Mining Primitives
	Top-K frequent closed itemsets mining
	Dataset used in the experiments 
	Tight bound on the output size
	TopKMiner: main strategy
	TopKMiner: implementation details
	Experimental evaluation
	Comparing TFP and TopKMiner without dynamic raising of K
	Comparing TFP and TopKMiner with dynamic raising of K

	Mining frequent items/itemsets through sampling
	Mining (approximated) top-K frequent itemset
	Bound on sufficient sample size
	Algorithm
	Analysis
	A Count-Min Filter Based Algorithm
	Analysis of Count-Min Filter Based Algorithm
	Experiments
	Approximating Top-K Frequent Itemset with Frequencies


	Finding Statistically Significant Frequent Itemsets
	The model
	Poisson approximation for k,
	A Monte Carlo method for determining min

	Procedures for the Discovery of High-Support Significant Itemsets
	A procedure based on a standard multi-comparison test
	Establishing a support threshold for significant frequent itemsets

	Experimental Results
	Range of  for Poisson Approximation
	Experiments on benchmark datasets
	Relative effectiveness of Procedures 4.2 and 4.3


	Maximal Dense Motif in Biological Sequences
	Preliminary definitions and properties
	An algorithm for MAximal Dense Motif eXtraction
	Experimental validation of MADMX
	Evaluating significance by known biological repetitions
	Evaluating significance by statistical z-score ranking


	Significantly Mutated Pathways in Biological Networks
	Mathematical model
	Influence graph
	Discovering significant subnetworks
	Combinatorial model
	The Enhanced Influence model

	Statistical analysis
	A two stage multi-hypothesis test
	Estimating the distribution of the null hypothesis

	Experimental results
	Combinatorial model
	Enhanced Influence model
	Naïve approach


	Conclusions
	Summary
	Further research

	Bibliography

