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AbstratReent advanes in tehnology allow for the olletion and storage of vast amounts ofdata in many di�erent areas. Data mining is the proess of disovering new and usefulinformation. Many tehniques have been developed in reent years for the analysisof large datasets, but the task of assessing the signi�ane of disovered patternsand the validity of foreast based on these disoveries is beoming a major hallengein data intensive appliations. The objetive of this thesis is the development ofrigorous and e�ient tehniques for mining signi�ant patterns in three di�erentand important senarios.The �rst senario is the mining of frequent itemsets from transational datasets.For this problem we �rst study two primitives: the extration of top-K frequentlosed itemsets, a reently proposed alternative to the extration of frequent item-sets, that provides a better ontrol on the output size, whih is one of the mainhallenges of the traditional problem; and the use of sampling for the extration oftop-K frequent items/itemsets. The notion of top-K frequent patterns provides a�rst attempt to enhane the e�etiveness of the traditional framework by relating thesigni�ane to a frequeny based ranking rather than to a mere frequeny threshold.For both primitives we develop new algorithms and provide experimental evideneof their e�etiveness. We then address the problem of identifying a meaningful fre-queny threshold suh that that the itemsets that are frequent w.r.t. that thresholdan be �agged as statistially signi�ant with a small False Disovery Rate (FDR),whih is de�ned as the expeted ratio of false disoveries among all disoveries. Aruial feature of our approah is that, unlike most previous work, it takes into a-ount the entire dataset rather than individual disoveries. Experimental results arereported whih show the e�etiveness of our approah.The seond senario is the mining of patterns, alled motifs, that repeat fre-quently, possibly with some errors, in biologial sequenes. This problem has at-trated wide interest in reent years, sine sequene similarity is often a neessaryondition for funtional orrelation. We introdue density, a simple and �exiblemeasure for bounding the number of errors, modeled thorugh don't ares, in a mo-tif. We design a new algorithm to extrat maximal dense motifs from a sequene,and provide experimental evidene of the biologial signi�ane of the motifs thatthe algorithm returns. Moreover, we ompare the motifs extrated by our algorithmwith the ones found by a reently proposed algorithm, showing that our algorithman identify motifs that are more signi�ant aording to z-sore, a widely employedmeasure of signi�ane.The last problem we onsider is the mining of signi�ant patterns from large-



sale gene and protein interation networks, a problem of inreasing interest sine itsimportane in aner studies. For this senario we de�ne the problem of identifyingsigni�antly mutated pathways in large sale gene and protein interation networks.We introdue a omputational framework that is the �rst, to our knowledge, todemonstrate a omputationally e�ient strategy for de novo identi�ation of sta-tistially signi�ant mutated subnetworks, and design two algorithms to e�ientlyextrat the signi�antly mutated pathways. Moreover we test these algorithms ona large human protein-protein interation network using mutation data from reentstudies on two di�erent type of aners. The results of our tests show that ourmethods orretly identi�es the pathways that are impliated in aner.



SommarioI reenti progressi tenologii permettono la raolta e la memorizzazione di enormiquantità di dati in molte aree diverse. Il data mining è il proesso di estrazione diinformazione nuova, interessante ed utile. Negli ultimi anni un ospiuo numero disoluzioni sono state sviluppate per l'analisi di grandi moli di dati, ma il proesso divalutazione della signi�atività dei pattern estratti e di validazione delle previsionibasate su questi pattern sta diventando uno dei prinipali hallenge nell'ambito delleappliazioni he elaborano enormi quantità di dati. Questa tesi si foalizza sullosviluppo di tenihe rigorose ed e�ienti per l'estrazione di pattern signi�ativi intre diversi senari rilevanti.Il primo senario onsiderato è l'estrazione di pattern frequenti, hiamati itemset,da dataset transazionali. Inizialmente vengono studiate due primitive molto utiliz-zate per questo problema: l'estrazione dei K itemset hiusi più frequenti, un proble-ma proposto reentemente ome alternativa all'estrazione degli itemset frequenti hefornise un maggior ontrollo sulla taglia dell'output, he è una delle prinipali dif-�oltà per il problema tradizionale; l'estrazione dei K itemset più frequenti tramitesampling. La nozione di K itemset hiusi più frequenti fornise un primo tentativodi migliorare l'e�aia del framework tradizionale, legando la signi�atività ad unordinamento basato sulla frequenza invee he ad un semplie soglia di frequenza.Per entrambe queste primitive vengono sviluppati nuovi algoritmi e viene fornitaevidenza sperimentale della loro e�aia. Suessivamente viene studiato il prob-lema dell'identi�azione di una soglia di supporto signi�ativa tale he gli itemsethe risultano frequenti rispetto a tale soglia possono essere ontrassegnati ome sig-ni�ativi on un basso False Disovery Rate (FDR), he è de�nito ome il rapportoatteso tra il numero di soperte erronee e il numero totale di pattern prodotti inoutput. Una aratteristia ruiale he distingue il nostro approio dalla maggiorparte dei lavori preedenti è he il nostro framework onsidera l'intero dataset pervalutare la signi�atività di un pattern. Vengono inoltre forniti i risultati dell'analisisperimentale he mostrano l'e�aia del nostro approio.Il seondo senario he onsideriamo è l'estrazione di pattern, hiamati motif,he si ripetono frequentemente, eventualmente on errori, in sequenze biologihe.Questo problema ha attratto molto interesse negli ultimi anni, dato he la similaritàa livello di sequenza è spesso una ondizione neessaria per avere orrelazione a livellofunzionale a livello di DNA, RNA o proteine. Per questo problema viene introdottala nozione di densità, una misura semplie e �essibile per limitare il numero di errori,rappresentati tramite don't ares, in un motif. Viene sviluppato un nuovo algoritmoper l'estrazione di motif densi massimali da una sequenza, e viene fornita evidenza



sperimentale della signi�atività biologia dei motivi he l'algoritmo estra. Inoltre,i motivi estratti dal nostro algoritmo vengono onfrontati on quelli trovati da unaltro algoritmo proposto reentemente, mostrando he il nostro algoritmo identi�amotif he risultano più signi�ativi rispetto allo z-sore, una misura di signi�ativitàmolto utilizzata.L'ultimo senario he viene onsiderato è l'estrazione di pattern signi�ativi dagrandi reti di interazione fra geni e proteine, un problema di resente interesse vistala sua importanza negli studi sul anro. Per questo senario viene de�nito il proble-ma dell'identi�azione di sottoreti mutate in maniera signi�ativa. Viene introdottoil primo framework omputazionale, al meglio della nostra onosenza, he forniseuna strategia omputazionale e�iente per l'identi�azione de novo di sottoreti mu-tate in maniera statistiamente signi�ativa e vengono sviluppati due algoritmi perl'identi�azione di tali sottoreti. Tali algoritmi sono valutati utilizzando una granderete di interazione tra proteine e utilizzando dati di mutazione ottenuti da reentistudi su due tipi di anro. I risultati di questa valutazione mostrano he i nostrialgoritmi identi�ano orrettamente le sottoreti he sono impliate nell'insorgenzadel anro.
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Chapter 1IntrodutionWe are living in the information era. Reent advanes in tehnology allow for theolletion and storage of vast amounts of data in areas ranging from market basketanalysis and supply hain management to omputational moleular biology and epi-demiology. A 2003 study [LV03℄ reported that between 3 and 6 exabyte (EB, 1018bytes) of newly produed information has been stored in 2002, and that the storageof new information has been growing at a rate of more than 30% a year.Computer siene has been dealing with problems related to the ever inreasingneed for olletion and storage of data for deades (e.g., the LZ77 algorithm byLempel and Ziv has been published in 1977 [ZL77℄), developing tools whih onstitutenow a solid, aessible ground for managing large datasets, and the improvement ofthese tools is still objet of researh. Given the ubiquity of large datasets, andthe need not only to transmit, arhive, and ompress them, but also to analyzeand understand their ontent, the hallenge of our era is the extration of usefulinformation from overwhelming amounts of data. Even if a huge body of researhhas been produed on the proessing of large datasets, muh work remains to be done.It is possible to �nd a piee of data in a petabyte-size storage system, but analyzingan entire dataset to �nd orrelations and meaningful trends remains hallenging. Onthe one hand there is the need to improve the e�ieny of many of the algorithmsdesigned for vast amounts of data, but on the other hand there is the need for novelalgorithmi solutions for more e�etively extrating signi�ant information from thedata.Data mining is the proess of disovering new and useful information. The om-munity of data mining researhers has developed in reent years a set of tehniquesthat has led to great improvement in the analysis of vast amount of data, but thetask of analyzing that data is still a major hallenge, and in partiular assessing thesigni�ane of disovered patterns and the validity of foreast based on these disov-1



2 Chapter 1. Introdutioneries is beoming a major hallenge in data intensive appliations. The objetive ofthis thesis is the development of rigorous and e�ient tehniques for mining signi�-ant patterns in the ontext of three spei� and important senarios, as explainedbelow.First we onsidered the lassial problem of mining frequent itemsets from trans-ational datasets, a fundamental primitive for market basket analysis and severalother ommerial and sienti� appliations. Given a set of transations, that aresubsets of a base set of items, the traditional de�nition of the problem requires toprodue in output all the sets of items (itemsets), that appear in at least a fration
f of the transations, where f is a frequeny threshold de�ned by the user. Sine thenumber of transations is �xed, speifying a minimum frequeny threshold f is equiv-alent to speify a minimum support threshold σ, where the support of an itemset isthe number of transations in whih the itemset appears. This de�nition re�ets theidea that the signi�ane of an itemset is revealed by its frequeny. A huge body ofalgorithmi studies has been produed for the lassial problem. However, the hoieof a suitable frequeny threshold is usually problemati, and unless spei� domainknowledge is available, this hoie is often arbitrary. One of the problems of thisarbitrariness is that the number of patterns obtained an be either too high or toolow, requiring then more iterations of the mining proess to obtain a tratable anduseful number of patterns in output. Even worse, an arbitrary hoie of σ an leadto an high number of false positive or false negative disoveries, that an underminethe orretness of subsequent analyses based on frequent itemset mining.The set of frequent itemsets usually ontains a lot of redundant information. Toredue this redundany, the mining of frequent losed itemset have been proposed.An itemset is losed if any itemset obtained adding an item to it has a lower frequeny.The set of frequent losed itemsets is a ompat representation of the informationontained in the set of frequent itemsets, sine from the losed itemsets and theirfrequeny it is possible to reover all frequent itemsets and their frequeny. Thisvariation however does not solve the problem of the hoie of the minimum threshold
σ, whih remains problemati.Reently in [WHLT05℄ a method has been proposed that does not require aminimum threshold in input, but, rather, extrats the top-K most frequent loseditemsets, that is, the losed itemsets that are frequent w.r.t. a threshold σK , de�nedas the maximum frequeny threshold resulting in at least K losed itemsets in output.In this way it is possible to better ontrol the size of the output through the parameter
K, even if it is possible that more than K losed itemsets are produed in output.Moreover this approah an be onsidered as an enhanement of the traditional



3framework where the signi�ane of an itemset is not merely determined by theomparison of its frequeny with an arbitrarily �xed threshold but it is related to itsposition in a frequeny-based ranking of all itemsets.For the problem of frequent itemset mining, this thesis work ontributes thefollowing results:(i) We study the basi primitive of the extration of top-K frequent losed item-sets. For the extration of top-K frequent losed itemsets, we provide the �rstanalytial evidene of its e�etiveness, proving a tight upper bound on the ra-tio between the atual number of losed itemsets returned in output and theinput value K. Then, we develop an e�ient algorithm for mining top-K fre-quent losed itemsets in order of dereasing support, whih exhibits onsistentlybetter performane than the best previously known one, attaining substantialimprovements in some ases. A distintive feature of our algorithm is that itallows the user to dynamially raise the value K with no need to restart theomputation from srath. These results appeared in [PV07℄.(ii) We study a seond primitive, the use of sampling to extrat the top-K frequentitemsets. Traditional methods for the extration of frequent itemsets work onthe entire dataset. Sine the size of the dataset an be huge, proessing theentire dataset an require too many resoures in terms of both spae and time,resulting in a mining proess omputationally too expensive. To overomethis problem one natural approah is to work only on a small sample of theentire dataset. Sampling has been used extensively to extrat items/itemsetsin the traditional framework, but its use for the extration of the most frequentitemsets is instead not well studied. We provide a tight bound on the su�ientsample size required to approximate the top-K frequent items/itemsets whilegiving probabilisti guarantees on the quality of the output. Then, we developan algorithm to e�iently extrat the top-K frequent items/itemsets throughsampling. These results have been presented in [PRUV09℄(iii) We develop a novel methodology to identify a meaningful support threshold
σ∗ for a dataset, suh that the number of itemsets with support at least σ∗represents a substantial deviation from what would be expeted in a randomdataset with the same number of transations and the same individual itemfrequenies. The threshold σ∗ is hosen in suh a way to guarantee that the fre-quent itemsets with respet to σ∗ an then be �agged as statistially signi�antwith a small False Disovery Rate (FDR), that is the expeted ratio of falsedisoveries among all disoveries. A ruial feature of our approah is that,



4 Chapter 1. Introdutionunlike most previous work, it takes into aount the entire dataset rather thanindividual disoveries. It is therefore better able to distinguish between signi�-ant observations and random �utuations. These results have been publishedin [KMP+09a, KMP+09b℄.As a seond senario, we onsidered the mining of patterns, alled motifs, whihour frequently, possibly with some errors, in biologial sequenes (e.g., DNA se-quenes). The disovery of frequent motifs has attrated wide interest in reent years,sine sequene similarity in biologial moleules (DNA, RNA, amino aids sequeneof proteins) is often a neessary ondition for funtional orrelation. The presene oferrors in the repetition of a motif are often modeled through the use of the don't areharater in ertain positions, whih is a wild ard mathing all haraters of thealphabet. Sine the set of frequent motifs ontains a lot of redundany, the notion ofmaximal motif (the analogous of losed itemset for sequenes) has been introduedto produe a more ompat representation without losing information.Traditionally the signi�ane of a motif has been assessed using its frequeny.However the signi�ane of a motif annot be exlusively related to its frequeny, asthe following simple experiment taught us. We extrated the 10, 000 most frequentmaximal motifs obtained from Human Glutamate Metabotropi Reeptors hgmr 1(410277 bps) and hgmr 5 (91243 bps) sequenes, and asked a biologist to verifyif there were biologially interesting motifs. The biologist immediately disardedour results as non interesting, sine the motifs we reported were either too short orontained too many don't ares. Then the frequeny of a motif does not re�et itsbiologial signi�ane, and some of the frequent motifs an be immediately �aggedas non signi�ant simply looking at their struture.For this problem, the thesis ontributes the following result:(i) We develop, analyze and experiment with a new tool, alled madmx, whih ex-trats frequent motifs, possibly inluding don't are haraters, from biologialsequenes. We introdue density, a simple and �exible measure for bounding thenumber of don't ares in a motif, de�ned as the ratio of solid (i.e., di�erent fromdon't are) haraters to the total length of the motif. By extrating only max-imal dense motifs, madmx redues the output size and improves performane,while enhaning the quality of the disoveries. The e�ieny of our approahrelies on a newly de�ned ombining operation, dubbed fusion, whih allows forthe onstrution of maximal dense motifs in a bottom-up fashion, while avoid-ing the generation of nonmaximal ones. We provide experimental evidene ofthe e�ieny and the quality of the motifs returned by madmx, omparing



5them with the known biologial repetitions available in a very popular genomidatabase, and with the motifs extrated by the reently developed tool varun[ACP09℄ using the same statistial metri employed in [ACP09℄ for assessingtheir relative signi�ane. These results have been published in [GPP+09℄.Finally, we turned our attention to the mining of signi�ant patterns from large-sale gene and protein interation networks. This problem is of great interest in thestudy of aner, sine it is a disease aused mainly by somati mutations, hangesin DNA sequene that aumulate during the lifetime of an individual and are notinherited from parents. When a mutation appears in a gene, the portion of the DNAthat ontains the information useful to produe the orresponding protein, it an alterthe funtionality of the protein produed. Proteins are the primary omponents ofliving things. Sine it is the interation of the proteins that regulates the ativity ofa ell and the proesses ourring inside it, hanges in the funtionality of a proteinan disrupt the orret funtioning of the ell, leading to aner.While few of the genes that, when altered, promote the development of malig-nanies, alled aner genes, are mutated at high frequeny (e.g. well known anergenes like TP53 or KRAS), most aner genes are mutated at muh lower frequen-ies. Thus, the observed frequeny of mutation is an inadequate measure of theimportane of a gene, partiularly with the relatively modest number of samplesthat are tested in urrent aner studies. In fat aner is a disease of pathways,sequenes of interations between proteins that regulate the proesses inside the ell.It is hypothesized that somati mutations target genes in a relatively small numberof regulatory and signaling pathways [HW02, VK04℄. Thus, the fat that only fewgenes are mutated in a large number of samples is explained by the fat that thereis a huge number of possible ombinations of mutations that transform a normal ellinto a aner ell. To understand what are the mehanisms leading to aner, andwhat are the genes whose alterations are the ause of malignanies, it is then ruialto �nd what are the pathways that are signi�antly mutated.For this part, this thesis work ontributes the following result:(i) We de�ne the problem of identifying signi�antly mutated pathways in largesale gene and protein interation networks. We introdue a omputationalframework that is the �rst, to our knowledge, to demonstrate a omputation-ally e�ient strategy for de novo identi�ation of statistially signi�ant mu-tated subnetworks. We propose two algorithms to identify signi�antly mutatedpathways, both based on an in�uene measure between pairs of genes obtainedusing a di�usion proess de�ned on the interation network. Moreover, build-ing on the tehnique we developed in [KMP+09a℄ we derive a statistial test



6 Chapter 1. Introdutionthat identi�es signi�antly mutated pathways and estimates the FDR of theidenti�ed subnetworks. We test these algorithms on a large human protein-protein interation network using mutation data from reent studies on twodi�erent type of aners (glioblastoma multiforme and lung adenoarinoma).Our methods suessfully reover pathways that are known to be important inthe onsidered aners, and moreover identify additional pathways that havebeen impliated in aner but not previously reported as mutated in thesesamples. These results appeared in [VUR09, VUR10℄.The rest of this thesis is organized as follows. Chapter 2 provides the bakgroundfor the remaining hapters. Chapter 3 presents the results regarding the extration oftop-K frequent losed itemsets, and the use of sampling to extrat the top-K frequentitems/itemsets. In Chapter 4 the methodology to identify statistially signi�antfrequent itemsets is introdued. Chapter 5 presents our tool madmx to extratmaximal dense motifs in biologial sequenes. Chapter 6 introdues the frameworkto disover signi�antly mutated pathways in biologial networks. Chapter 7 endsthe thesis with some onluding remarks.



Chapter 2
Bakground
This thesis proposes novel solutions to disover signi�ant patterns in di�erent se-narios. In this hapter we provide the bakground related to the problems addressedin this thesis work, and a survey of previous work. The �rst three setions providesthe bakground for the �rst part of the thesis. In partiular, in Setion 2.1 we in-trodue the problem of frequent itemsets mining, a problem that has attrated a lotof attention in the data mining ommunity, as testi�ed from the huge body of workprodued by the researher in that �eld, but for whih many interesting questionsare still open, like, for example, how to e�iently extrat the top-K frequent loseditemsets. Another interesting question that is still open is how to employ sampling toextrat the top-K frequent itemsets: the bakground for this problem is presentedin Setion 2.2. In Setion 2.3 we review the approahes that have been proposedto extrat the statistially signi�ant frequent itemsets from a dataset, employingmeasures di�erent from the frequeny to measure the signi�ane of an itemsets.Setion 2.4 and Setion 2.5 provide the bakground for the seond part of thethesis, where we turn our attention to two problems in omputational biology. Inpartiular, in Setion 2.4 we introdue the problem of mining motifs in biologialsequenes, that is one of the fundamental problems in omputational biology. InSetion 2.5 we instead de�ne the problem of �nding signi�antly mutated pathwaysin biologial networks, a problem for whih no e�ient solution as been proposedyet, but that is reeiving an inreasing attention in the biomedial ommunity giventhe availability of the �rst data on large-sale tumors sequening.While eah setion presents a survey of previous work, the works that are loselyrelated to our novel ontributions will be reviewed in more details in the respetivehapters. 7



8 Chapter 2. Bakground2.1 Mining for frequent itemsets: lassial settingThe disovery of frequent itemsets is a fundamental primitive whih arises in themining of assoiation rules and in many other mining problems. The problem hasbeen formally introdued in [AIS93℄, and is the following: given a (multi)set D =
{

t1, t2, . . . , t|D|

} of transations, where eah transation tj is a subset of a base set ofitems I, and a minimum threshold σ, produe in output the set F(D, σ) of frequentitemsets, that is all of the (nonempty) subsets X ⊆ I whih appear in at least σtransations. We use ‖D‖ to denote the dataset size, that is, ‖D‖ =
∑

t∈D |t|. Foran itemset X ⊆ I we de�ne its onditional dataset DX ⊆ D as the (multi)set oftransations t ∈ D that ontain X. The number of transations of DX is referredto as the support of X w.r.t. D, denoted with sD(X), while the quantity sD(X)
|D|

isreferred to as the frequeny of X, denoted with fD(X)1.Sine the pioneering work by Agrawal et al. [AIS93℄ a vast body of works hasappeared in the literature presenting novel algorithmi strategies or lever implemen-tations of known strategies, studying foundational issues, and proposing variants ofthe problem together with e�ient algorithmi solutions. Despite this impressiveamount of researh, many hallenging problems are still open [HCXY07℄.One of the problems in the mining of frequent itemsets is that the size of theoutput an be huge, sine the number of frequent itemsets an be exponential inthe size of the input. It is thus hallenging to hoose a threshold σ suh that thenumber of frequent itemsets produed in output is not overwhelming, but still largeenough to permit signi�ative analyses. However, the set of all frequent itemsetsusually ontains a lot of redundant information whih is partly responsible for theirlarge number. In order to eliminate the redundany, the notion of frequent maximalitemsets [Bay98℄ has been introdued in [Bay98℄: a frequent itemset X is maximalw.r.t. a support threshold σ if there is no itemset Y , with X ⊂ Y ⊆ I, suh thats(Y ) ≥ σ. From the set of all frequent maximal itemsets and their supports, it ispossible to reover the set of all frequent itemsets, but it is not possible to reovertheir supports without aessing the input database.Another alternative that has been proposed is the mining of the set FC(D, σ) offrequent losed itemsets [PBTL99℄: an itemset X is losed w.r.t. D if there existsno itemset Y , with X ⊂ Y ⊆ I, suh that sD(Y ) = sD(X). In other words, if Xis losed, then adding a single item to X dereases its support. Given a supportthreshold σ, an itemset X is then losed frequent if it is frequent w.r.t. σ, and it islosed.1For simpliity, in what follows we will omit expliit referene to D in the notation for thesupport and the frequeny, if D is lear from the ontext.



2.1. Mining for frequent itemsets: lassial setting 9For any itemset X, its losure w.r.t. D, denoted by CloD(X), is the losed itemset
Y ⊇ X suh that Y =

⋂

t∈DX
t2. From the set of frequent losed itemsets and theirsupports it is possible to reover the set of all frequent itemsets and their supportswithout aessing the input database.It would be impossible to survey here the vast literature on the mining of fre-quent itemsets, maximal frequent itemsets or frequent losed itemsets. We refer theinterested reader to the proeedings of the two reently held editions of the Fre-quent Itemset Mining Implementations (FIMI) Workshop, whih illustrate the stateof the art for these problems [GZ03, BGZ04℄. Among the many algorithms thathave been proposed for extrating frequent maximal or losed itemsets, algorithmLCM, proposed in [UAUA04℄, is partiularly relevant for our purposes. In this work,a oneptual organization of the losed itemsets as nodes of a tree, with supportdereasing with inreasing depth, is proposed. This organization allows LCM (i) toavoid proessing non-losed itemsets, and (ii) to avoid maintaining in memory thefrequent losed itemsets disovered before produing them in output, resulting ininreased time and spae performane. LCM is the �rst algorithm that exhibitedthese features. A strategy similar to the one employed by LCM is used in [LOP06℄.Although the number of frequent losed itemsets is often muh smaller than thenumber of all frequent itemsets, there are ases when |FC(D, σ)| is still exponentialin ||D||. The following example is by Yang [Yan04℄: let IYang = {a1, a2, . . . , an} andlet DYang = {t1, t2, . . . , tn} with ti = I−{ai}, for 1 ≤ i ≤ n. Thus, ||DYang|| ∈ Θ (n2).It is easy to see that every itemset X ⊆ IYang is losed and has support n−|X|, henethe number of losed itemsets of support at least σ = ⌊n/2⌋ is ∑⌈n/2⌉

k=1

(

n
k

)

∈ Ω (2n).For a given dataset D and support threshold σ, it is hard to predit the |F(D, σ)|or |FC(D, σ)|, and this is a problemati aspet of the lassial frequent (losed)itemset mining task. Setting σ too large may exlude interesting itemsets fromthe output, while setting it too small may yield an impratially large output set.Consequently, a user may have to repeat the mining proess several times for di�erentsupport thresholds until one is found whih yields a suitable number of frequentitemsets. To overome this problem, in [WHLT05℄ the authors propose to modifythe mining task into that of disovering the top-K frequent losed itemsets, as de�nedbelow.De�nition 2.1. For a dataset D and an integer K, de�ne the set of top-K frequentlosed itemsets ( top-K f..i., for short) as FCK(D) = FC(D, σK), where σK is themaximum value suh that FC(D, σK) ≥ K.2For simpliity, in what follows the terms losed itemset, and losure will be used without expliitreferene to D, if D is lear from the ontext.
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D I
t1 a6 a4 a1

t2 a6 a4

t3 a6 a5 a4 a3 a2

t4 a6 a5

t5 a5 a3 a2

t6 a5 a3 a1

t7 a6 a5 a4 a3 a2 a1(a)
X s(X)
a6 5
a5 5

a6 a4 4
a5 a3 4
a6 a5 3

a5 a3 a2 3
a1 3(b)Figure 2.1: (a) Sample dataset D. (b) Top-5 frequent losed itemsets for D.The top-5 frequent losed itemsets for a sample dataset D are shown in Figure 2.1.Note that when mining the top-K frequent losed itemsets the threshold σK is notgiven as part of the input and it is uniquely, although impliitly, de�ned as a funtionof K, whih sets a more diret onstraint on the output size. However, requiring thedisovery of all losed itemsets of support at least σK may yield many itemsets (ofsupport equal to σK) in exess of K, but these extra itemsets are neessary in aseother patterns (e.g., assoiation rules) must be derived from the frequent loseditemsets.2.2 Mining of frequent itemsets through samplingWhen dealing with massive datasets, omputing the exat set of (maximal/losed)frequent itemsets an be too expensive. If the dataset does not �t ompletely in mainmemory, disk aesses may slow down exat algorithms to a point where they beomeimpratial. Algorithms for the standard frequent itemset mining task developed tosolve the problem in an exat way must san the entire dataset, typially severaltimes, whih has a onsiderable impat on performane. It is then neessary to aepta tradeo� between the auray of the results and the time needed to ompute them,espeially if it is possible for the user of the algorithm to speify the maximum deayin the �quality� of the output she is willing to aept.Sampling is one tehnique that an be employed to redue the running time, ob-taining approximated results. Almost immediately after the �rst e�ient algorithmshad been developed, the data mining ommunity started wondering whether it wouldbe possible to lower the exeution time by using only a sample of the dataset andgive probabilisti guarantees on the output.One of the �rst problems that has been addressed by the ommunity is the de-termination of a su�ient sample size whih would allow the sample to respet some



2.2. Mining of frequent itemsets through sampling 11�quality standards�. The authors of [ZPLO97℄ foused on the use of Cherno� boundsto de�ne these standards in terms of auray, that is, the ratio between the supportof an itemset in the sample and its real support, and of on�dene of the sample,that is, the probability that the itemsets extrated from the sample have a givenauray. There are two drawbaks in the approah of [ZPLO97℄. First of all, thesample size obtained with their method an be larger than the original dataset; se-ond, their approah is not sound from a statistial point of view sine the on�denebound is derived for one individual itemset, rather than the entire output set. Astraightforward orretion of this problem would result in an even worse sample size.In [JL96℄ the use of progressive sampling and learning urves is proposed fordata mining tasks. Their artile refers prinipally to lassi�ation, but the ideaspresented an be adapted to the mining of frequent itemsets. The main idea is theuse of learning urves to evaluate whether the distribution of elements in the sampleis approximately the same distribution of the elements as in the original dataset.This approah ould solve the issue of having a sample size larger than the size ofthe original dataset. The experimental results presented in that work suggest thatusing progressive sampling an be more e�ient than stati sampling sine it mayyield higher auray.An algorithm inspired by the progressive sampling approah presented in [JL96℄is introdued in [CHS02℄. The main idea is to derive a small sample that re�ets someproperties of the entire dataset starting from a large, hene more aurate, sample.The algorithm onsiders at the beginning a large sample S0, from whih an aurateestimation of the frequent items an be derived. Then a small �nal sample S of �xedsize n, where n is hosen by the user, is obtained by trimming S0. The transationsremoved in the trimming phase are hosen so that the set of frequent items in S islose to the set of frequent items in S0, given a suitable distane funtion betweentwo sets of frequent items.Another algorithm that starts from the ideas presented in [JL96℄ is desribedin [Par02℄. The goal of this algorithm is to identify the knee of the learning urveusing basi slope haraterization aross reently evaluated samples. To this end,progressive sampling is employed: starting from a small sample, larger and largersamples are onsidered. A self-similarity measure is de�ned between subsets of fre-quent itemsets obtained from two di�erent samples and is used to stop the growthof the sample size when it beomes small enough. The subset of frequent item-sets onsidered for the self-similarity measure is suh that the mining proess is nottoo expensive. In that paper the auray and on�dene proposed method is notassessed analytially, but experimental evidene of its e�etiveness is provided.



12 Chapter 2. BakgroundThe authors of [LG04℄ derive a su�ient sample size based on entral limit the-orem. The sample sizes derived with this method are smaller than the ones derivedusing the method of [ZPLO97℄, but the analysis su�ers from the same statistialweaknesses as [ZPLO97℄.The question of deriving a su�ient sample size for sampling is not the onlyone that has been addressed by the data mining ommunity. In [Toi96℄ the authordevelops and analyzes an algorithm that with one pass of the entire dataset extratsthe entire set of frequent itemsets with probability 1−∆, where ∆ is a user de�nedparameter. The algorithm uses a sample to extrat a set C of itemsets that representsthe andidate set of frequent itemsets w.r.t. the entire dataset, and then one sanof the entire dataset is performed to ompute the exat frequenies of itemsets in
C. The author shows that if some frequent itemset is not found in the �rst pass(event that holds with probability ∆), an additional pass is su�ient to ompletethe identi�ation of all frequent itemsets.The literature related to the problem of �nding the top-K frequent items oritemsets by limiting the aess to the dataset is not as rih as the one on the lassialproblem. Some papers [CCFC04, MAA05, CGK08℄ appeared in the �eld of datastreams and limited to the ase of top-K items, while [WF06℄ deals with top-Kitemsets. In the data stream senario, the transations are provided to the algorithmone after the other, and it not possible to maintain all the input dataset in memory,then when a transation is provided to the algorithm, it must deide whether to storeit in memory, having then the possibility to use it for the omputation, or not. Inthe data stream senario the question of major interest is the total spae requiredto solve the problem, hene the authors of works above were mainly onerned withbounding the spae needed to ompute a solution to the problem or to one of itsrelaxed versions, and little attention was given to how muh data must be sampledto obtain suh a solution, sine suh a question is less ruial in the data streamsetting. However, some of these works are of interest beause they formally de�nean approximation to the set of top-K items/itemsets.The authors of [CCFC04℄ present a 1-pass algorithm to estimate the most frequentitems in a data stream under the onstraint of limited storage spae. They presentan algorithm, CountSketh, whih is proved to solve the problem with probability
1− δ using O

(

K log n
δ

) spae, where n is the total number of elements in the stream(i.e., n is the length of the stream), while to obtain a set of items suh the the k mostfrequent items our in the set a sample of size O
(

log K
fK

), where fK is the frequeny ofthe K-th most frequent item, is required with a naïve approah (by keeping a uniformrandom sample of the elements as a list of items and a ount for eah of them). Sine



2.3. Statistially signi�ant frequent itemsets 13
fK ≤ 1/n, the improvement obtained with the CountSketh algorithm is large.A drawbak of the CountSketh algorithm is that the parameters of the datastruture employed by the algorithm depend on the distribution of the frequeniesof the items, so one must have some prior knowledge about that distribution toorretly apply the method.The authors of [WF06℄ use the Cherno� bounds to derive a method to mine thetop-K frequent itemsets from a datastream. This method seems promising beauseit gives a probabilisti lower bound to the frequeny in the sample of the K-th mostfrequent itemset in the dataset. The problem is that the proof of this bound ontainsa �aw, whih leads to the non-orretness of the entire algorithm. In partiular theauthors derive the lower bound to the frequeny of the real top-K frequent itemsetusing a on�dene interval for the frequeny in the sample of the K-th most frequentitemset in the dataset, without onditioning on the fat that the itemset used toderive this lower bound is observed with a ertain frequeny in the sample.To understand why this is not orret, onsider a dataset where all the itemshave the same frequeny. Using a ball and bins argument it is easy to show that in arandom sample there will be an item with frequeny f muh higher than expeted,suh that the probability of observing that partiular item with frequeny f in arandom sample is negligible. Then the frequeny of this item annot be used toobtain a probabilisti lower bound to the frequeny of the most frequent item.2.3 Statistially signi�ant frequent itemsetsOf the many problems that remain open onerning the mining of frequent item-sets, assessing the signi�ane of the disovered itemsets, or equivalently, �aggingstatistially signi�ant disoveries with a limited number of false positive outomes,is still poorly understood and remains one of the most hallenging problems in thisarea [HCXY07℄. Sine we are interThe lassial framework requires that the user deide what is signi�ant by spe-ifying the support threshold σ. Unless spei� domain knowledge is available, thehoie of suh a threshold is often arbitrary [HK01, TSK06℄, and may lead to a largenumber of spurious disoveries that would undermine the suess of subsequent anal-ysis.A number of works have explored various notions of signi�ant itemsets andhave proposed methods for their disovery. Below, we review those most relevantto this thesis work and refer the reader to [HCXY07, Setion 3℄ for further refer-enes. The paper [AY98℄ relates the signi�ane of an itemset X to the quantity
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((1 − v(X))/(1 − E[v(X)])) · (E[v(X)]/v(X)), where v(X) represents the frationof transations ontaining some but not all of the items of X, and E[v(X)] repre-sents the expetation of v(X) in a random dataset where items our in transationsindependently. This ratio provides an empirial measure of the orrelation amongthe items of X whih, aording to [AY98℄, is more e�etive than absolute support.In [SA96, DuM99, DP01℄, the signi�ane of an itemset is measured as the ratio Rbetween its atual support and its expeted support in a random dataset. In orderto make this measure more aurate for small supports, [DuM99, DP01℄ proposessmoothing the ratio R using an empirial Bayesian approah. Bayesian analysis isalso employed in [ST96℄ to derive subjetive measures of signi�ane of patterns(e.g., itemsets) based on how strongly they �shake� a system of established beliefs.In [JS05℄, the signi�ane of an itemset is de�ned as the absolute di�erene betweenthe support of the itemset in the dataset and the estimate of this support made froma Bayesian network with parameters derived from the dataset.A statistial approah for identifying signi�ant itemsets is presented in [SBM98℄,where the measure of interest for an itemset is de�ned as the degree of dependeneamong its onstituent items, whih is assessed through a χ2 test. Unfortunately,as reported in [DuM99, DP01℄, there are tehnial �aws in the appliations of thestatistial test in [SBM98℄. In partiular, it is reported that the χ2 distribution usedin their approah has one degree of freedom for any length of onsidered itemsets,while this is true only for itemsets of size 2. Their results are then orret onlyfor itemsets of size 2. Nevertheless, [SBM98℄ pioneered the quest for a rigorousframework for addressing the disovery of signi�ant itemsets.A ommon drawbak of the aforementioned works is that they assess the sig-ni�ane of eah itemset in isolation, rather than taking into aount the globalharateristis of the dataset from whih they are extrated. As argued before, ifthe number of itemsets onsidered by the analysis is large, even in a purely randomdataset some of them are likely to be �agged as signi�ant if onsidered in isolation.A few works attempt at aounting for the global struture of the dataset in theontext of frequent itemset mining. The authors of [GMMT07℄ propose an approahbased on Markov hains to generate a random dataset that has idential transationlengths and idential frequenies of the individual items as the given real dataset.The work suggests omparing the outomes of a number of data mining tasks, fre-quent itemset mining among the others, in the real and the randomly generateddatasets in order to establish whether the real datasets exhibit any signi�ant globalstruture. However, suh an assessment is arried out in a purely qualitative fashionwithout rigorous statistial grounding.



2.3. Statistially signi�ant frequent itemsets 15Multi-hypothesis testingIn a simple statistial test, a null hypothesis H0 is tested against an alternativehypothesis H1. A test onsists of a rejetion (ritial) region C suh that, if thestatisti (outome) of the experiment is in C, then the null hypothesis is rejeted,and otherwise the null hypothesis is not rejeted. The signi�ane level of a test, α =

Pr(Type I error), is the probability of rejeting H0 when it is true (false positive). Thepower of the test, 1− Pr(Type II error), is the probability of orretly rejeting thenull hypothesis. A �Type II error� is the erroneous non rejetion of a null hypothesis(false negative). The p-value of a test is the probability of obtaining an outome atleast as extreme as the one that was atually observed, under the assumption that
H0 is true.In a multi-hypothesis statistial test, the outome of an experiment is used totest simultaneously a number of hypotheses. For example, in the ontext of frequentitemsets, if we seek signi�ant k-itemsets, we are in priniple testing (n

k

) null hypothe-ses simultaneously, where eah null hypothesis orresponds to the support of a givenitemset not being statistially signi�ant. The experiment in this ase orresponds tothe extration of the k-itemsets and their supports from the datasets. In the ontextof multi-hypothesis testing, the signi�ane level annot be assessed by onsideringeah individual hypothesis in isolation. To demonstrate the importane of orretingfor multipliity of hypotheses, onsider a simple real dataset of 1,000,000 transa-tions over 1,000 items, eah with frequeny 1/1000. Assume that we observed thata pair of items (i, j) appears in at least 7 transations. Is the support of this pairstatistially signi�ant? To evaluate the signi�ane of this disovery we onsidera random dataset where eah item is inluded in eah transation with probability1/1000, independent of all items. The probability that the pair (i, j) is inluded ina given transation is 1/1,000,000, thus the expeted number of transations thatinlude this pair is 1. A simple alulation shows that the probability that (i, j)appears in at least 7 transations is about 0.0001. Thus, it seems that the support of
(i, j) in the real dataset is statistially signi�ant. However, eah of the 499,500 pairsof items has probability 0.0001 to appear in at least 7 transations in the randomdataset. Thus, even under the assumption that items are plaed independently intransations, the expeted number of pairs with support at least 7 is about 50. Ifthere were only about 50 pairs with support at least 7, returning the pair (i, j) as astatistially signi�ant itemset would likely be a false disovery sine its frequenywould be better explained by random �utuations in observed data. On the otherhand, assume that the real dataset ontains 300 disjoint pairs eah with support atleast 7. By the Cherno� bound [MU05℄, the probability of that event in the random



16 Chapter 2. Bakgrounddataset is less than 2−300. Thus, it is very likely that the support of most of thesepairs would be statistially signi�ant. A disovery proess that does not returnthese pairs will result in a large number of false negatives.A natural generalization of the notion of signi�ane level to multi-hypothesistesting is the Family Wise Error Rate (FWER), whih is the probability of inurringat least one Type I error in any of the individual tests. If we are testing simulta-neously m hypotheses and we want to bound the FWER by α, then the Bonferronimethod tests eah individual null hypothesis with signi�ane level α/m. While on-trolling the FWER, this method is too onservative in that the power of the test istoo low, resulting in many false negatives. There are a number of tehniques thatimprove on the Bonferroni method, but for large numbers of hypotheses all of thesetehniques lead to tests with low power (see [DSB03℄ for a good review).The False Disovery Rate (FDR) was suggested by Benjamini and Hohberg [BH95℄as an alternative, less onservative approah to ontrol errors in multiple tests. Let
R be the total number of null hypotheses rejeted by the multiple test, and let V bethe number of Type I errors among these rejetions. Then we de�ne FDR to be theexpeted ratio of erroneous rejetions among all rejetions, namely FDR = E[V/R],with V/R = 0 when R = 0. Designing a statistial test that ontrols for FDR isnot simple, sine the FDR is a funtion of two random variables that depend bothon the set of null hypotheses and the set of alternative hypotheses. Building on thework of [BH95℄, Benjamini and Yekutieli [BY01℄ developed a general tehnique forontrolling the FDR in any multi-hypothesis test (see Theorem 4.5).Few works employ the multi-hypothesis testing framework for frequent itemsetmining or in the realm of disovering assoiation rules. The problem of spuriousdisoveries when mining signi�ant patterns is studied in [BHA02℄. The paper isonerned with the disovery of signi�ant pairs of items, where signi�ane is mea-sured through the p-value, that is, the probability of ourrene of the observedsupport in a random dataset. Signi�ant pairs are those whose p-values are belowa ertain threshold that an be suitably hosen to bound the FWER, or to boundthe FDR. The authors ompare the relative power of the two metris through exper-imental results, but do not provide methods to set a meaningful support threshold.In [HN08℄, the authors provide a variation of the well-known Apriori strategy for thee�ient disovery of a subset A of assoiation rules with p-value below a given uto�value, while the results in [MS98℄ provide the means of evaluating the FDR in A.The FDR metri is also employed in [ZPT04℄ in the ontext of disovering signi�antquantitative rules, a variation of assoiation rules. None of these works is able toestablish support thresholds suh that the returned disoveries feature small FDR.



2.4. Mining of motifs in biologial sequenes 172.4 Mining of motifs in biologial sequenesAll of the geneti information in any living reature is stored in deoxyribonulei aid(DNA) and ribonulei aid (RNA), whih are polymers of four simple nulei aidunits, alled nuleotides. The portions of the DNA that really ontains the infor-mation neessary for the orret funtioning of the ell are alled genes. Eah geneodi�es the information to produe a protein, the �nal produt of geneti expression.In partiular, the proess of geneti expression starts from the DNA sequene of agene. Using the information oded into the gene, an RNA moleule is produedthrough the proess of transription, and then the amino aids sequene that onsti-tute the protein orresponding to the starting gene is produed through translationof the RNA moleule. The �nal step of the geneti expression is the folding of theprotein into its three-dimensional struture.The disovery of frequent patterns (motifs) in biologial sequenes has attratedmuh interest in reent years, due to the understanding that sequene similarity isoften a neessary ondition for funtional orrelation. For example sine the strutureof a protein is determined by the sequene of the orresponding gene, genes thathave a similar sequene will likely produe proteins sharing similar struture andthus probably having similar funtions.Among other appliations, motif disovery proves an important tool for identify-ing regulatory regions and binding sites in the study of funtional genomis. Regu-latory regions are segments of DNA where proteins that regulates the transriptionproess binds preferentially, and are thus involved in the ontrol of gene expres-sion. A binding site is a region of a protein, DNA (or RNA) to whih spei� othermoleules form a hemial bond. For example, a transription fator binding site isthe portion of DNA to whih a protein (alled transription fator) binds ontrollingthe transfer of geneti information from DNA to RNA.From a omputational point of view, a major ompliation for the disovery ofmotifs is that they may feature some sequene variation without loss of funtion.The disovery proess must therefore target approximate motifs, whose ourrenesin the input sequene are similar but not neessarily idential. Approximate motifsare often modeled through the use of the don't are harater in ertain positions,whih is a wild ard mathing all haraters of the alphabet, alled solid haraters[Par07℄.Finding interesting approximate motifs is omputationally hallenging. As thenumber of don't ares inreases and/or the minimum frequeny threshold dereases,the output may explode ombinatorially, even if the disovery targets only maximalmotifs�a subset of the motifs whih suintly represents the omplete set. More-



18 Chapter 2. Bakgroundover, even when the �nal output is not too large, partial data during the inferene oftarget motifs might lead to memory saturation or to extensive omputation duringthe intermediate steps.A large body of literature in the last deade has dealt with e�ient motif dis-overy [Par00, AP04, PCGS05, Ukk07, MNU08, AU07, AT08, ACP09, AT07℄, andan exellent survey of known results an be found in the book [Par07℄. In order toalleviate the omputational burden of motif extration and to limit the output to themost promising or interesting disoveries, some works ombine the traditional useof a frequeny threshold with restritions on the �exibility of the extrated motifs,often aptured by limitations on the number of ourring don't ares.Traditionally, the signi�ane of a motif has been assessed through its frequeny.To understand if there is a diret orrelation between frequeny and biologial sig-ni�ane, we extrated the 10, 000 most frequent motifs obtained from Human Glu-tamate Metabotropi Reeptors hgmr 1 (410277 bps) and hgmr 5 (91243 bps) se-quenes, and asked a biologist to verify if there were biologially interesting motifs.The biologist immediately disarded our results as non interesting, sine the mo-tifs we reported were either too short or ontained too many don't ares. Thenthe frequeny of a motif does not re�et its biologial signi�ane. Other then thefrequeny, a number of di�erent statistis have been employed to measure the sig-ni�ane of a motif (see [FA07℄ for a omparison of these measures). However, to�nd the most signi�ant motifs under one of those measures, the �rst step is theextration of all motifs, sine there no strategy has been proposed to diretly extratsigni�ant motifs under those measures.In a reent work, Apostolio et al. [ACP09℄ study the extration of extensiblemotifs, omprising standard don't ares and extensible wild ards. The latter arespaers of variable length that an take di�erent size (within pre-spei�ed limits) ineah ourrene of the motif. An e�ient tool, alled varun, is devised in [ACP09℄for extrating all maximal extensible motifs (aording to a suitable notion of max-imality de�ned in the paper) whih our with frequeny above a given threshold σand with upper limits D on the length of the spaers. varun returns the extratedmotifs sorted by dereasing z-sore, that is the measure of the distane in standarddeviations of the outome of a random variable from its deviation. The authorsdemonstrate the e�etiveness of their approah both theoretially, by proving thateah maximal motif features the highest z-sore within the lass of motifs it repre-sents, and experimentally, by showing that the returned top-sored motifs omprisebiologially relevant ones when run on protein families and dna sequenes.A slightly more general way of limiting the number of don't ares in a motif has



2.5. Mining of signi�antly mutated pathways in biologial networks 19been explored in [RF98℄. The authors de�ne 〈L, W 〉 motifs, for L ≤ W , where atleast L solid haraters must our in eah substring of length W of the motif. Theypropose a strategy for extrating 〈L, W 〉 motifs whih are also maximal, althoughtheir notion of maximality is not internal to the lass of 〈L, W 〉 motifs. As a on-sequene, the algorithm is not omplete, sine it disregards all those 〈L, W 〉 motifsthat are subsumed by a maximal non-〈L, W 〉 one.2.5 Mining of signi�antly mutated pathways in bi-ologial networksCaner is a disease that is largely driven by somati mutations, hanges in DNAsequene not inherited from parents that aumulate during the lifetime of an in-dividual. When a mutation appears in a gene, it an alter the three-dimensionalstruture of the orresponding protein, a�eting its funtionality. Sine it is theinteration of the proteins that regulates the ativity of a ell and the proesses o-urring inside it, hanges in the funtionality of a protein an disrupt the orretfuntioning of the ell, leading to aner.Deades of experimental work have identi�ed numerous aner-promoting ono-genes (also alled aner genes) and tumor suppressor genes that are mutated inmany types of aner. Reent aner genome sequening studies have dramatiallyexpanded our knowledge about somati mutations in aner. For example, largeprojets like The Caner Genome Atlas (TCGA) [Net08℄, the Tumor SequeningProjet (TSP) [D+08℄, and the Caner Genome Anatomy Projet [G+07℄ have se-quened hundreds of protein oding genes in hundreds of patients with a variety ofaners. Other e�orts have taken a global survey of approximately 20,000 genes in a1-2 dozen patients [W+07, J+08, P+08℄. These studies have shown that: (i) tumorsharbor on average less than 100 somati mutations; (ii) di�erent tumors rarely havethe same set of mutations; (iii) and thousands of genes are mutated in at least onetype of aner [W+07℄. This mutational heterogeneity ompliates e�orts to distin-guish funtional mutations, that alter the three-dimensional struture of the proteinfrom sporadi, passenger mutations that do not ause aner. While a few anergenes are mutated at high frequeny (e.g. well known aner genes like TP53 orKRAS), most aner genes are mutated at muh lower frequenies. Thus, the ob-served frequeny of mutation is an inadequate measure of the importane of a gene,partiularly with the relatively modest number of samples that are tested in urrentaner studies.It is widely aepted that aner is a disease of pathways: a pathway is a sequene



20 Chapter 2. Bakgroundof interations between proteins that an onvert one kind of signal or stimulusreeived from a ell into another (signaling pathway) or that an regulate the ratesat whih other proteins will be produed (regulatory pathway). The entire set of(pairwise) interations between proteins de�nes the interation network of proteins,and a pathway is a subnetwork of this large interation network. It is hypothesizedthat somati mutations target genes in a relatively small number of regulatory andsignaling pathways [HW02, VK04℄. Thus, the observed mutational heterogeneity isexplained by the fat that there are myriad ombinations of mutations that anerells an employ to perturb the behavior of these key pathways. The unifying themesof aner are thus not solely revealed by the individual mutated genes, but by theinterations between these genes. Standard pratie in aner sequening studies isto assess whether genes that are mutated at su�iently high frequeny signi�antlyoverlap known aner pathways [Net08, D+08, S+06, W+07, P+08, L+07a℄. Forexample, the TCGA study of glioblastoma multiforme (GBM) [Net08℄ reported thatthree pathways previously identi�ed as important in GBM were somatially mutatedin a large perentage of samples. This result on�rms the role of these pathways inGBM, but does not show whether these pathways were the only ones with a surprisingpattern of mutation.Finding signi�ant overlap between mutated genes and genes that are members ofknown pathways is an important validation of existing knowledge. However, restrit-ing attention to these known pathways does not allow one to detet novel groups ofgenes that are members of less haraterized pathways. Moreover, it is well knownthat signal omponents in signal transdution an be shared between between di�er-ent signaling pathways, and thus responses to a signal induing ondition an ativatemultiple responses in a ell [ZPZ+09, VK04℄, a phenomenon alled rosstalk. Dividinggenes into disrete pathway groupings limits the ability to diretly detet whether thisrosstalk is a target of mutations. An additional soure of information about gene andprotein interations is large-sale interation networks, suh as the Human ProteinReferene Database (HPRD) [P+09℄, STRING [J+09℄, and others [B+01, SMS+04℄.These resoures inorporate both well-annotated pathways and interations derivedfrom less spei� and aurate methods, like high-throughput experiments, auto-mated literature mining, ross-speies omparisons, and other omputational pre-ditions. Many researhers have used these interation networks to analyze geneexpression data. Ideker et al. [IOSS02℄ introdued a method to disover subnet-works of di�erentially expressed genes, that are genes whose expression is di�erentin aner and normal samples. This idea was later extended in di�erent diretionsby others [NCTLH07, L+07b, UKS08, KSS09, MLWS07, HLCS09, CLL+07℄. Sepa-



2.5. Mining of signi�antly mutated pathways in biologial networks 21rately, [LACB09℄ de�ned metris that showed lustering of GO annotations [A+00℄on an interation network.To our knowledge, no algorithm has been hitherto proposed to identify signif-iantly mutated pathways � that is onneted subnetworks whose genes have moremutations than expeted by hane � de novo in a large interation network. Thisproblem di�ers from the detetion of subnetworks of di�erentially expressed genes inthat a relatively small number of genes might be measured, a small subset of genesin a pathway may be mutated, and that a single mutated gene may be su�ient toperturb a pathway.
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Chapter 3Algorithmi Aspets of Basi MiningPrimitivesIn this hapter we study the algorithmi aspets of two basi mining primitives: theextration of top-K frequent losed itemsets, and the use of sampling to extratthe top-K frequent items/itemsets. These primitives are used in many data miningproblems and are the �rst attempt to overome the traditional view of the frequenyof an itemsets as a diret measure of its signi�ane. In fat, if we are interestedin the top-K frequent items/itemsets, we are assuming that the signi�ane of apattern is not given only by its frequeny, but that it is the ranking given by thefrequeny of the itemsets that re�ets their signi�ane.As explained in Chapter 2, the extration of top-K frequent losed itemsetsis a reently proposed alternative to the lassial frequent itemset mining, whosepurpose is to provide better ontrol on the output size by making the frequenythreshold dependent on a parameter K whih represents an approximate estimate ofthe number of returned itemsets, rather than leaving the frequeny threshold as anindependent input parameter whih may be hard to �x.Sampling is one tehniques that an be used to improve the performanes offrequent itemset mining problems at the ost of obtaining approximated results, asseen in Chapter 2. In partiular, sampling an be use to guarantee ertain qualityrequirements on the output when extrating the top-K frequent items/itemsets.The hapter is organized as follows. In Setion 3.1 we present our work onthe disovery of top-K frequent losed itemsets. Our ontribution for this problemis twofold. First, we prove a tight upper bound on the ratio between the atualnumber of losed itemsets returned in output and the input value K, thus providingthe �rst analytial evidene of the e�etiveness of the new approah. Seond, wedevelop a new algorithm for mining top-K frequent losed itemsets, whih features23



24 Chapter 3. Algorithmi Aspets of Basi Mining Primitivesa tight bound on the number of non-frequent itemsets touhed during the miningproess, and allows the user to dynamially raise the value K without restartingthe omputation from srath. We also report the results of extensive experimentsshowing that our algorithm exhibits onsistently better performane than the bestpreviously known one, attaining substantial improvements in some ases. The resultsof Setion 3.1 were published in [PV07℄. In Setion 3.2 we disuss the use of samplingto extrat top-K frequent items/itemsets. We prove a lower bound for the numberof transations that must be onsidered by any algorithm that employs sampling toextrat the top-K frequent items/itemsets and produes in output a set satisfyingsome quality requirements, providing moreover a family of datasets for whih thislower bound is tight. Moreover, we design a new progressive sampling algorithm toe�iently solve the problem. The results of Setion 3.2 were presented in preliminaryform in [PRUV09℄.3.1 Top-K frequent losed itemsets miningThe extration of top-K frequent losed itemsets has been proposed in [WHLT05℄to provide the user better ontrol on the size of the output set. For onvenieneof the reader, we reall the de�nition of the problem (introdued in Setion 2.1).This variation requires that for a given value K, spei�ed as input parameter, allitemsets of support at least σK be disovered. σK whih is uniquely de�ned by K,is the maximum support threshold that yields at least K frequent losed itemsets.Although one is not guaranteed that top-K frequent losed itemsets are exatly K,it is oneivable that parameter K be more e�etive than the minimum supportthreshold in ontrolling the output size. It is important to remark that the top-Kfrequent losed itemsets an be employed in every appliation where frequent loseditemsets are needed.In [WHLT05℄ the authors present an e�ient algorithm, alled TFP, to minethe top-K frequent losed itemsets. The main idea of the algorithm is to use ane�ient depth-�rst mining proess starting with an initially low support threshold
σ (σ ≤ σK) whih is progressively inreased, as the exeution proeeds, by means ofseveral e�etive heuristis, until the �nal value σK is reahed. When an itemset isgenerated it is inserted into a suitable data struture from whih it an be removedlater and disarded if found to be non-losed or infrequent. TFP has an additionalfeature whih allows the user to speify a minimum length minℓ for the losed itemsetsto be returned. The authors provide experimental evidene of the e�ieny of theiralgorithm. The main drawbaks of TFP are that no bound is given on the number



3.1. Top-K frequent losed itemsets mining 25of non-losed or infrequent itemsets that the algorithm must proess, and that aninvolved itemset losure heking sheme is required. Moreover, TFP does not appearto be able to handle e�iently a dynami senario where the user is allowed to raisethe value K.Other works have reently onsidered di�erent, although somewhat related, prob-lems. In [SM04℄ the mining the K itemsets of maximum density with respet to a�xed support threshold is studied, where the notion of density relaxes the require-ment of strit ontainment of an itemset in its supporting transations. The authorspropose a priority-queue based approah for solving this problem, whih is similar inspirit to the one adopted in our algorithm. The mining of top-K frequent itemsetsfor every itemset length (i.e., the top-K frequent itemsets of length 1, the top-K fre-quent itemsets of length 2, and so on) is studied in [FKT00, CF04℄, and algorithmsare proposed based on breadth-�rst [FKT00℄ and depth-�rst [CF04℄ strategies. Abreadth-�rst algorithm to disover the top-K frequent itemsets without restritingthe exploration to the losed ones, is presented in [SSPT98℄. The algorithm exeutesa number of iterations, where in the ℓ-th iteration the K most frequent itemsets oflength at most ℓ are disovered.We ontribute the following new results regarding the mining of top-K frequentlosed itemsets.1. We show that the number of top-K frequent losed itemsets an be at most
nK, where n is the number of items ourring in the dataset. No suh boundwas previously known and this provides the �rst analytial estimate of thee�etiveness of parameter K in ontrolling the output size. We also argue thatwithout the restrition to mining losed itemsets, the ratio between the numberof itemsets returned and K an be exponentially large in size of the dataset.2. We develop a new algorithm, TopKMiner, for disovering top-K frequent loseditemsets, whih, unlike algorithm TFP, features a tight bound on the number ofitemsets touhed during the mining proess, and allows the user to dynamiallyraise the value K without the need to restart the omputation from srath.Also, we experimentally ompare the performane of TopKMiner and TFP onboth real and syntheti datasets, for di�erent values of K. The results of theexperiments show that TopKMiner always exhibits better performane, withsubstantial improvements in some ases (more than two orders of magnitude).The e�ieny of TopKMiner beomes even higher when used in a dynamisenario where top-K frequent losed itemsets are sought for inreasing valuesof K suessively provided by the user.



26 Chapter 3. Algorithmi Aspets of Basi Mining PrimitivesThe rest of the setion is organized as follows. Subsetion 3.1.1 brie�y desribesthe harateristis of the datasets used in the experiments. The bound on the ratiobetween the atual number of top-K frequent losed itemsets and the input value Kis proved in Subsetion 3.1.2. Algorithm TopKMiner is desribed presenting �rst itshigh-level strategy in Subsetion 3.1.3 and, then, the most relevant implementationdetails in Subsetion 3.1.4. The results of the experimental omparison between TFPand TopKMiner are reported and disussed in Subsetion 3.1.5.3.1.1 Dataset used in the experimentsThe experiments of our work have been onduted on both real and arti�ially gen-erated datasets available from the FIMI repository1, whih have beome standardbenhmarks for frequent itemset mining algorithms. In this hapter we report re-sults relative to �ve of them of large size, whih represent the most meaningful andhallenging instanes for the mining task. These datasets are brie�y desribed below.T40I10D100K: An arti�ial dataset obtained using the generator developed in[AS94℄. For short, we will often refer to this dataset as T40;aidents: it is derived from a olletion of data relative to tra� aidents;pos: from Blue-Martini Software In., it is derived from several months of lik-stream data from e-ommere web sites;kosara: it is derived from lik-stream data of a hungarian on-line news portal. (Infat, we had to lean up the original instane of the dataset whih ontained trans-ations with dupliated item, whih is not allowed by the problem's spei�ation.)webdos: it is built from a spidered olletion of web html douments. More detailsan be found in [LOPS04℄.The table in Figure 3.1 summarizes the main harateristis (number of items,average transation length, and number of transations) of the above datasets, whilethe table in Figure 3.2 reports for eah dataset the support threshold σK that yieldsthe top-K frequent losed itemsets, for di�erent values of K. For larity, in the tablethe frequeny value σK/|D| rather than the value σK is shown.3.1.2 Tight bound on the output sizeIn this setion we provide the �rst analytial estimate of the e�etiveness of pa-rameter K in ontrolling the output size when mining the top-K frequent loseditemsets.1 http://fimi.s.helsinki.fi



3.1. Top-K frequent losed itemsets mining 27Dataset #Items Avg. Trans. Length # TransationsT40 1,000 39.5 100,000aidents 468 33.8 340,183pos 1,658 7.5 515,597kosara 41,270 8.1 990,002webdos 5,267,656 177 1,692,082Figure 3.1: Datasets harateristis
σK/|D|

D K = 100 K = 1000 K = 10000T40 0.092 0.027 0.013aidents 0.820 0.656 0.483pos 0.036 0.010 0.003kosara 0.023 0.006 0.002webdos 0.327 0.216 �Figure 3.2: Values of σK/|D| for K = 100, 1000, 10000Sine the number of frequent itemsets an be muh larger than the number offrequent losed itemsets, when mining the latter it is onvenient to avoid proessingnon-losed itemsets. To this aim, in [UAUA04℄ the authors propose a oneptualorganization of the losed itemsets as nodes of a tree, with support dereasing withinreasing depth. Spei�ally, let D be a dataset de�ned over the set of items I =

{a1, a2, . . . , an} (the indexing of the items is �xed but arbitrary). For an itemset Xde�ne its i-th pre�x as X(i) = X ∩ {aj : 1 ≤ j ≤ i}, for 1 ≤ i ≤ n. The ore indexof a losed itemset X, denoted as orei(X), is de�ned as the minimum i suh that
DX = DX(i).De�nition 3.1 ([UAUA04℄). A losed itemset X is a pre�x-preserving losure ex-tension (pp-extension) of a losed itemset Y if: (1) X = CloD(Y ∪ {aj}), for some
ai 6∈ Y with j > orei(X); and (2) X(j − 1) = Y (j − 1).Let ⊥= CloD(∅), whih is the possibly empty losed itemset onsisting of theitems ourring in all transations. The following theorem de�nes the tree strutureover the set of losed itemsets, with ⊥ being the root of the tree.Theorem 3.2 ([UAUA04℄). Any losed itemset X 6=⊥ is the pp-extension of exatlyone losed itemset Y , and s(X) < s(Y ).Let ∆(n) be the family of all datasets D whose de�ning set of items I has size n(we assume that every item in I ours in at least one transation of D). Let also

ρ(n, K) = max
D∈∆(n)

FCK(D)

K
.



28 Chapter 3. Algorithmi Aspets of Basi Mining PrimitivesThe following theorem establishes the main result of this setion.Theorem 3.3. For every n ≥ 1 and K ≥ 1, we have ρ(n, K) ≤ n.Proof. Consider an arbitrary dataset D ∈ ∆(n) and a value K ≥ 1. Let Φ =

{X1, X2, . . . , XK} be the set of K most frequent non-empty losed itemsets num-bered in dereasing order of support and let ⊥= CloD(∅). By Theorem 3.2 we knowthat any losed itemset X 6∈ Φ of support σK must be a pp-extension of some loseditemset Y ∈ (Φ\{XK})∪ ⊥. The upper bound on ρ(n, K) follows diretly from theargument in [BGKM03℄ whih shows that any suh itemset Y an generate at most
(n − 1) pp-extensions not belonging to Φ. Hene, the number of losed itemsetsnot inluded in Φ and of support σK is at most K(n−1), whih yields ρ(n, K) ≤ n. �The lower bound on ρ(n, K) is provided by the dataset desribed in [Yan04,Setion 3.1℄. In partiular, that dataset shows that ρ(n, 1) = n. One may wonderwhether for every K it holds that ρ(n, K) = n. The following proposition gives anegative answer.Proposition 3.4. For any dataset D ∈ ∆(n), if FCK(D)/K = n then K = 1.Proof. Let Φ = {X1, X2, . . . , XK} be the set of K most frequent non-empty loseditemsets numbered in dereasing order of support and let ⊥= CloD(∅). We �rst showthat if FCK(D)/K = n, then Φ\{XK} ⊆ {a1}. From the proof of Theorem 3.3, tohave FCK(D)/K = n it neessary that eah itemset in Y ∈ (Φ\{XK})∪ ⊥ generatesexatly n− 1 losed itemsets of support σK not in Φ\{XK} through pp-extension.Sine the pp-extension is pre�x-preserving, the only (non-empty) itemset for whihthis is possible is {a1}, that proves Φ\{XK} ⊆ {a1}.Now we prove that {a1} /∈ Φ\{XK}. First of all, notie that it must be Clo({ir}) =

{ir} for all i = 1, . . . , n, otherwise there would be a losed itemset di�erent from {a1}in Φ\{XK} that is impossible. (To prove this is su�ient to observe that the interse-tion of two losed itemsets X, Y is a losed itemset of support > max {s(X), s(Y )},when it is non-empty.)Sine eah pp-extension of {a1} is a superset of at least one {ar} with r > 1and to obtain FCK(D)/K = n we need that all the pp-extensions of {a1} and allthe pp-extension of ⊥ have frequeny σK , if {a1} is in Φ\{XK} we will have twolosed itemsets with the same frequeny and ontained one into the other one, thatis impossible. (In partiular, the pp-extension of {a1} using item ar is a superset of
{ar}, and these two itemsets annot have the same frequeny.)This implies that Φ\{XK} = ∅, thus K = 1. �



3.1. Top-K frequent losed itemsets mining 29
FCK(D)/K

D n K = 100 K = 1000 K = 10000T40 1,000 1 1 1.0018aidents 468 1 1 1pos 1,658 1 1 1.0003kosara 41,270 1 1 1webdos 5,267,656 1 1 �Figure 3.3: Comparison between n and FCK(D)/KThe proof above moreover implies that if FCK(D)/K = n, the top-k frequentlosed itemsets are {a1} , . . . , {an}.The table in Figure 3.3 ompares the number of items n against the ratioFCK(D)/Kfor the datasets desribed in Setion 3.1.1 and for di�erent values of K. Note that
FCK(D)/K is always very lose to 1. In fat, we onjeture that when maximizedover all datasets over n items, the value ρ(n, K) beome a dereasing funtion of K.It is important to remark that the result of Theorem 3.3 ruially relies on thefat that the mining task is limited to losed itemsets. Indeed, we ould removethe losedness requirement and mine the top-K frequent itemsets, that is, the set
FK(D) = F(D, σK), where σK , is the maximum value that ensures |F(D, σK)| ≥ K.In this ase, however, the ratio FK(D)/K an be exponentially large in the number ofitemsets even for non-trivial datasets. To see this, onsider the following (nontrivial)example from [UAUA04℄. Let n = 2d ≥ 16 and let I1, I2, and I3 be three disjointsets of items of size n − 2(d + 2), d + 2, and d + 2, respetively. Let also J2 (resp.,
J3) be a family of n/2− 1 distint subsets of I2 (resp., I3) whih does not inlude ∅nor I2 (resp., I3). Consider the dataset D over I1 ∪I2 ∪I3 omprising the following
n transations:

{I1 ∪ I2 ∪ S : S ∈ J3} ∪ {I1 ∪ I3 ∪ S : S ∈ J2} ∪ {I2 ∪ I3} ∪ {I1}.

D is non-trivial, in the sense that it ontains no dupliated transations and no itemours in all transations. Moreover, it is easy to see that there are 2n−2(d+2) − 1 ∈
Θ (2n/n2) non-empty itemsets of maximum support n − 1, namely all non-emptysubsets of I1. Hene, for K = 1, we have FK(D)/K ∈ Θ (2n/n2).3.1.3 TopKMiner: main strategyIn this subsetion we desribe our algorithm TopKMiner for mining the top-K fre-quent losed itemsets from a dataset D, and introdue the algorithm's high-levelstrategy and its featured harateristis. We let I = {a1, a2, . . . , an} denote the set



30 Chapter 3. Algorithmi Aspets of Basi Mining Primitivesof items and assume that they are ordered by non-dereasing support, that is, item
an has highest support.TopKMiner, whose pseudoode is given in Figure 3.4, is based on a oneptuallysimple strategy, whih builds on ideas developed in previous works [PZ03, UAUA04,SM04℄. The algorithm reeives in input the dataset D and a value K∗ that representsthe maximum K for whih the user may request the mining of top-K frequent loseditemsets. In other words, the user is allowed to dynamially raise K up to K∗. Thealgorithm makes use of a priority queue Q whose entries orrespond to losed item-sets. Spei�ally, an entry for a losed itemset Y is a quadruple (DY , s, i, Y (i− 1)),where DY is the onditional dataset for Y , s its support, i its ore index, and Y (i−1)its i-th pre�x. Two variables σ and σ′ are used to store dynami approximations frombelow to σK∗ and σK , respetively.TopKMiner starts by asking the user to provide a �rst value K ≤ K∗ (line 1),and by initializing a support threshold σ to be the best approximation from below to
σK∗ (line 2). As we will disuss in the next subsetion, some heuristis an be used toset σ to a value possibly larger than the trivial lower bound 1. Instead, σ′ is initiallyset equal to σ, and is raised to the �nal value σK as soon as the K-th frequent loseditemset is disovered. The initialization proeeds by determining ⊥= CloD(∅) andby inserting into an initially empty priority queue Q entries for all pp-extensions of
⊥ of support at least σ (lines 8,9). If ⊥ is not empty, it is produed in output as thelosed itemset of maximum support (lines 5,6). At this point the main loop (lines
10÷ 22) starts, where in eah iteration the entry (DY , s, i, Y (i− 1)) with maximumsupport s is extrated, the itemset Y is generated and returned in output (line 13),and for eah pp-extension X of Y with support s′ ≥ σ and ore index j > i, theentry (DX , s′, j, X(j−1)) is inserted into Q (lines 16÷19). After an insertion into Q,if the number of losed itemsets returned in output so far (variable extrated) plusthe number of losed itemsets represented by entries in Q is greater than or equal to
K∗, the support threshold σ is raised (line 21) to the maximum value for whih K∗itemsets of support no less than this value have been seen so far, and all entries in
Q orresponding to itemsets of support smaller than the new threshold σ are safelyremoved from Q (line 22). The loop ends when all top-K frequent losed itemsetshave been generated or Q beomes empty. Finally (lines 23÷ 26) if the user raises
K to a new value Knew ≤ K∗, and more losed itemsets need to be disovered, themain loop is started again resetting σ′ equal to σ as a lower bound to σKnew .We remark that an entry (DY , s, i, Y (i− 1)) in Q for a losed itemset Y does notontain Y itself but only su�ient information to generate the itemset. The atualgeneration of Y , whih is a time-onsuming task, is done only when stritly neessary,



3.1. Top-K frequent losed itemsets mining 31that is, when the entry (DY , s, i, Y (i− 1)) is extrated from Q and Y is guaranteedto belong to the output set. In fat, as it will be shown in the following subsetion,entries for all pp-extensions of Y to insert into Q an be produed e�iently withoutgenerating the pp-extensions themselves.TopKMiner features the following main advantages ompared to algorithm TFPby [WHLT05℄: (1) only losed itemsets are atually proessed (i.e., inserted into Q);(2) every itemset Y extrated from Q surely belongs to the output set and an beimmediately returned to the user; (3) the parameter K an be raised dynamiallywithout the need to restart the omputation from srath. Moreover, the upper limit
K∗ on the value K, although not stritly needed for orretness, is useful to providea bound on the maximum number of entries inserted into the priority queue Q. Thisis established by the following theorem.Theorem 3.5. For a dataset D over a set I of n items, and upper limit K∗ on K,algorithm TopKMiner will insert a total of at most nK∗ entries into Q during theentire ourse of the omputationProof. Let w be number of itemsets initially inserted into Q (lines 7 ÷ 8 of thepseudoode) and let z be the total number of entries extrated from Q. It is easyto see that beause of the dynami update of the threshold σ, if z ≥ K∗, as soonas the K∗-th entry is extrated from Q, orresponding to some itemset Y , we have
σ = σK∗ = sD(Y ). Therefore, for this itemset and for all itemsets assoiated withentries subsequently extrated from Q, no pp-extension will be generated. Thisimplies that the entries inserted into Q are at most w+k∗−1+T , where w+K∗ +1aounts for the w initial entries and the �rst k∗ extrated (the very �rst one mustbelong to the w initial ones) and T aounts for the pp-extensions of the �rst k∗−1extrated. By reasoning as in the proof of Theorem 3.3, we an show that w ≤ nand that T ≤ (k∗ − 1)(n − 1), hene the total number of entries inserted into Q isat most

n + K∗ − 1 + (K∗ − 1)(n− 1) ≤ nK∗.

�As an immediate orollary of the above theorem we observe that if K∗ = K themaximum number of entries inserted by TopKMiner into the priority queue Q is nKwhih is also the maximum size of FCK(D). However, if |FCK(D)| = K we may stillhave nK entries inserted into Q, that is a fator n more than |FCK(D)|. Nevertheless,as reported in the next setion, for all of the datasets and values of K we have testedthe number of entries inserted into Q has never exeeded |FCK(D)| by a fatorlarger than 3.3. In fat, with a slightly modi�ation of the algorithm it is possible to



32 Chapter 3. Algorithmi Aspets of Basi Mining PrimitivesAlgorithm 3.1: TopKMinerInput: Dataset D, max value K∗ for KOutput: Top-K f..i for any K ≤ K∗ provided by the user1 K ← input from user; /* K ≤ K∗ */2 Initialize σ as a lower bound to σK∗ ; σ′ ← σ;3 Q← empty priority queue; extrated ← 0;4 Compute ⊥= CloD(∅);5 if ⊥6= ∅ then6 Output ⊥; extrated++;7 if K = 1 then σ′ = |D|;8 for eah pp-extension Y of ⊥ of support s ≥ σ do9 Q.insert((DY , s, orei(Y ), Y (orei(Y )− 1)));10 while (Q 6= ∅) and (Q.max() ≥ σ′) do11 (DY , s, i, Y (i− 1))← Q.removeMax();12 extrated++; if extrated = K then σ′ = s;13 Generate and output losed itemset Y ;14 if s > σ then15 for j ← i + 1 to n do16 /* Denote X = CloD(Y ∪ {j}) */17 Compute X(j − 1), s′ = sD(X), and DX ;18 if X(j − 1) = Y (j − 1) and s′ ≥ σ then19 Q.insert(DX , s′, j,X(j − 1)) ;20 if extrated+|Q| ≥ K∗ then21 Update σ ;22 Remove from Q all entries of support < σ;23 if user wants to raise K then24 K ← new input from user;25 if K > extrated then σ′ ← σ;26 goto line 8; Figure 3.4: Algorithm TopKMiner: pseudoodeguarantee that the number of itemset inserted in Q will never exeed nKmax, where
Kmax ≤ K∗ is the maximum K requested by the user. This modi�ation requiresthat the pp-extensions of the losed itemsets produed in output after s is set tobe equal to σ′ in line 12 are not generated, and the itemsets whose pp-extensionare not omputed in lines 14�22 are stored in a new queue Q′. If the user wants toraise K, as �rst step all the pp-extension of itemsets in Q′ will be generated. Inthis way the pp-extensions of at most Kmax itemsets are omputed, leading to thebound above.3.1.4 TopKMiner: implementation detailsFor what onerns the implementation of TopKMiner, there are four aspets whihhave ruial impat on its performane. They are disussed in this subsetion.
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Figure 3.5: Patriia trie for the sample dataset of Figure 2.1 (a). Every node isidenti�ed by a unique id shown in a irle to the left of the nodeRepresentation of D: as in [PZ03℄ the dataset D is represented through aPatriia trie TD [Knu73℄ built on the set of transations regarded as strings of items.The Patriia trie di�ers from the standard trie, whih is employed by many frequentitemset mining algorithms (see referenes in [Bod04℄), by the fat that hains of nodeswith only one hild and assoiated to the same set of transations are oalesed intoa single node. This redues the overall number of nodes, thus saving spae due tonode overhead. Eah transation is assoiated with a distint path from the rootof TD to some leaf or to some internal node with only one hild. Eah node v of
TD stores a set of items and a ount that indiates how many transations of D areassoiated with paths that ontain v. The Patriia trie TD for the sample datasetof Figure 2.1 (a) is shown in Figure 3.5. It is well known [Bod04℄ that in order tobetter exploit the ompation featured by the trie struture, it is onvenient to orderthe items in eah transation by dereasing support. Aording to our indexing ofthe items, this requires that for j > i item aj our before item ai. It has beenshown both analytially and experimentally in [PZ03℄ that the Patriia trie providesa spae e�ient representation for all kinds of datasets, and, in partiular, for denseones.Implementation of Q: the priority queue employed by TopKMiner is imple-mented as a standard max-heap vetor. As mentioned in the previous subsetion anentry, orresponding to some losed itemset Y , onsists of four omponents, namelythe onditional dataset DY , the support s of Y , the ore index i of Y , and the pre�x
Y (i−1), that is the intersetion of Y with {aj : 1 ≤ j < i}. The key for the entry isthe support s. While the last three omponents are stored in a trivial way, a suitablerepresentation of DY is required for both spae and time e�ieny. We represent
DY through a list LD(Y ) of nodes of TD suh that a node v is inluded in LD(Y ) ifand only if v ontains the ore index item ai of Y and belongs to a path assoiatedwith one or more transations in DY . Let DY,v denote the (multi)set of transationsin DY whose assoiated paths in TD ontain the node v, and let ZY,v =

⋂

t∈DY,v
t. In



34 Chapter 3. Algorithmi Aspets of Basi Mining Primitivesthe list LD(Y ), together with eah node v, we store the pre�x ZY,v(i − 1), that isthe intersetion of all transations in DY,v limited to the items of index less than i.Suh a pre�x turn out to be useful in the implementation of the while loop desribednext. Moreover we assoiate with every node v the number sY,v of transations in
DY whih share this node, that is sY,v = |DY,v|.For very large and sparse datasets, the list LD(Y ) may be very long. If its lengthexeeds some �xed threshold (5MB in our experiments) the list is stored on diskrather than in main memory. In this fashion we an onsiderably redue the amountof main memory required by the algorithm.Implementation of the while loop: onsider an arbitrary iteration of thewhile loop (lines 10 ÷ 22) and suppose that entry (DY , s, i, Y (i − 1)) is extratedfrom Q by the �rst instrution of the iteration. All of the operations presribed bythe iteration an be exeuted through a simple bottom-up traversal of the sub-trie
T ′ of TD, whose leaves are the nodes in the list LD(Y ) whih represents DY , asdesribed before. More spei�ally, the purpose of the traversal is to �ll the rowsof a header table HT, whose j-th row, denoted by HT[j], is assoiated with item
aj and ontains a reord with three �elds: HT[j].supp, HT[j].pref, and HT[j].list(the ontents of these �elds will be desribed below). By using a strategy similarto the one introdued in [PZ03℄, the subtrie T ′ an be traversed in suh a way toproess eah node only one. Let X(j) denote the itemset CloD(Y ∪{j}). During thetraversal of T ′, by perolating upwards the pre�xes ZY,v(i− 1) initially stored withthe leaves of T ′ we an update the header table so that, at the end of the traversal,for every j > i we have that:
• HT[j].supp = sD(CloD(Y ∪ {j}));
• HT[j].pref = X(j)(j − 1)

• HT[j].list is the head of the list of all nodes of T ′ ontaining item aj . Moreover,with eah node v in this list we store the ount sX(j),v and the pre�x ZX(j),v(j−
1).In Figure 3.6 the HT �lled after a traversal is shown for sample dataset of Fig-ure 2.1 (a). It is easy to see that one the header table is �lled as desribed above,the information stored in its rows is su�ient to fully ompute the itemset Y , andto identify eah pp-extension X of Y determining also its support s′, its ore index

j, its pre�x X(j − 1) and the representation LD(X) of its onditional dataset. Weobserve that, at this point, determining for eah pp-extension X of Y all of itsonstituent items would require an extra non-trivial omputation whih would be
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j supp pref list6 2 a4 a1 5: 2,{a4 a1}5 2 a3 a1 2: 1,{a4 a3 a2 a1}; 8 (1): {a3 a1}4 2 a1 1: 1,{a3 a2 a1}; 4: 1,{a1}3 2 a1 1: 1,{a2 a1}; 8: 1,{a1}2 1 a1 1: 1,{a1}1 - - -Figure 3.6: HT at the end of the traversal of the Patriia trie of Figure 3.5, startingfrom nodes of LD({a1}), namely the nodes with id's 0, 3 and 7. For every j andevery node v in HT[j].list, its id, sX(j),v and ZX(j),v(j − 1) are shownuseless in ase X turn out not to belong to the output set. For this reason, Top-KMiner postpones the atual determination of a losed itemset X to the time whenthe entry orresponding to X is extrated from Q, hene ensuring that X belong tothe output set.Update of the threshold σ: at any time during the omputation, the threshold

σ that TopKMiner uses onstitutes an approximation from below of the �nal value
σK∗ . Raising σ allows us to redue the number of entries inserted into Q, hene toredue the overall spae required by these entries. Moreover, a good estimate σ mayallow us to disard infrequent items from the dataset and from the pre�xes whih arearried along with the representations of the onditional datasets (this optimization,however, has not been implemented in the urrent version of TopKMiner). Threshold
σ an be initially set by using the losed node heuristi desribed in [WHLT05℄. Atany time during the onstrution of the Patriia trie, a node v of the Patriia trie isa losed node if its support is more than the sum of the supports of its hildren. Thisheuristis is based on the fat that, one the onstrution of the Patriia trie TD isompleted, for eah node v ∈ TD whose assoiated ount cv is larger than the sumof the ounts of its hildren, there exists a di�erent losed itemset Xv of support atleast cv. If the number of losed nodes is larger than K∗, we an derive a �rst lowerbound σ > 1. In partiular, onsider the dereasing sequene of ounts c1, . . . , cK∗assoiated with the K∗ losed nodes with highest ounts. The lower bound derivedis then σ = cK∗ .The subsequent updates of σ (i.e., those performed in line 21 of the pseudoode)an be easily implemented by means of a simple ditionary that maintains for eahinteger s the number of entries inserted into Q relative to losed itemsets of support
s, and provides a method minSupport() whih, if invoked after that at least K∗entries have been inserted into Q, returns the maximum value s suh that K∗ amongthese entries are relative to losed itemsets of support ≥ s. Clearly, the update of
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σ (line 21) an be performed by setting σ to the value returned by minSupport().Finally, all entries of support less than σ whih must be removed from Q (line 22)an be identi�ed by maintaining a min-heap Q′ whose entries are pointers to theentries of Q together with their supports whih are used as keys.3.1.5 Experimental evaluationThe next two setions present the results of the experiments we performed on thedatasets introdued in Setion 3.1.1. The experiments have been ondued on an HPProliant, using a single AMD Opteron 2.2 GHz proessor, with 8 GB main memory,64 KB L1 ahe and 1 MB L2 ahe. The system's operating system is linux 2.6.5and the ompiler used for the experiments is Intel i 9.0. The objetive of theexperiments has been to ompare the performane of our algorithm TopKMiner withthat of algorithm TFP [WHLT05℄. Both TopKMiner and TFP have been oded inC++ and the soure ode for TFP has been provided to us by the authors. It must berealled that TFP has an additional feature whih enables the mining of the top-Kfrequent losed itemsets of length greater than or equal to a minimum value minℓspei�ed in input. We did not implement a similar feature in TopKMiner, hene inthe experiments TFP has always been exeuted with minℓ = 1.A �rst set of experiments, ompares both running time and memory usage ex-hibited by the two algorithms on the benhmark datasets for di�erent values of K.In these experiments, the dynami raising of K featured by TopKMiner has beendisabled by always setting K∗ = K. A ritial disussion of the main fators in-�uening the performane of the two algorithms, besides ode optimizations whihare hard to aount for, is also arried out. A seond set of experiments, providesevidene of the e�etiveness of the TopKMiner's feature whih allows the dynamiraising of K, by simulating a senario where inreasing values of K are input bythe user and by omparing the performane of TopKMiner with the one ahievablethrough repeated invoations of TFP. We remark that experiments onduted onseveral other datasets available in the FIMI repository and for other values of Khave given results onsistent with those reported here.3.1.6 Comparing TFP and TopKMiner without dynami rais-ing of KWe run both TopKMiner and TFP on four of the �ve datasets desribed before(i.e., all but webdos) for values of K ranging from 1000 to 10000 with step 1000.For TopKMiner we imposed K = K∗ and for TFP we imposed minℓ = 1. In this



3.1. Top-K frequent losed itemsets mining 37fashion we assessed the relative performane of the two algorithms when foused onthe basi task of mining top-K frequent losed itemsets, and with their respetiveadditional features disabled. The running times ahieved by the two algorithms areshown in Figure 3.7. It an be seen that TopKMiner runs always faster than TFP,with a performane improvement of more than two orders of magnitude for kosara.We believe that there are two main reasons that explain the superior performaneof TopKMiner. On the one hand, TopKMiner generates only losed itemsets andfully proesses itemsets that surely belong to the output set, unlike TFP whihmay happen to proess non-losed and/or infrequent itemsets. On the other hand,TopKMiner features a provable bound on the number of itemsets it touhes, whileone suh bound is not known for TFP. In order to give evidene of this fat, the tablein Figure 3.8 reports for the various datasets and for K = 1000 and 10000 the numberof itemsets touhed by the two algorithms. For TopKMiner we onsider an itemset
X to be touhed if an entry for X is inserted into the priority queue, while for TFPwe onsider an itemset X to be touhed if upon its generation it annot be disardedas non-losed or infrequent and, therefore, it must be stored in a data struture aspotential andidate for the output set. We see that TFP touhes a number of itemsetswhih is substantially higher than the number of itemsets touhed by TopKMiner.In fat it an be shown that for the arti�ial dataset DYang de�ned in [Yan04℄ anddesribed in Setion 2.1 there are several non-onstant values of K for whih TFPtouhes a fator n more itemsets than TopKMiner, where n is the number of items.For dataset webdos, TFP aborted after a few hours of exeution even for K =

100 and not beause of memory problems. Thus, we ompared the running timeahieved by TopKMiner with the one ahieved by algorithm LCM, [UAUA03℄, one ofthe best algorithms at the FIMI'03 ompetition for mining frequent losed itemsets,feeding LCM with the exat support threshold, whih gives a lear advantage tothis algorithm in the omparison. As shown in Figure 3.9, TopKMiner surprisinglyahieved better performane. In this ase, beause of the large size of the dataset,it has been ruial for TopKMiner to use external memory to store the onditionaldataset representations.We also ompared the memory usage of the two algorithms. While TFP adoptsa depth-�rst mining strategy, whih is known to be generally spae-e�ient, Top-KMiner employs a support-driven exploration whih may require more spae due tothe need to store eah generated losed itemset until all losed itemsets of higher sup-port have been explored. However, for not too large values of K the atual number ofitemsets the TopKMiner must onurrently maintain in the queue is somewhat lim-ited. Figure 3.10 ompares the memory usage of TFP and TopKMiner for the same
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(d)Figure 3.7: Running time for (a) kosara, (b) aidents, () pos, and (d)T40I10D100K for various values of K

K=1000 K=10000Dataset TopKMiner TFP TopKMiner TFPT40 1,789 6,091 20,314 78,655aidents 1,542 2,233 11,057 25,890pos 2,702 3,597 24,157 42,097kosara 2,450 3,798 32,861 56,977Figure 3.8: Number of itemset �touhed� by TopKMiner and TFP
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Figure 3.9: Running times of TopKMiner and LCM on webdos, for various valuesof Kdatasets and values of K used when measuring running times. Surprisingly, Top-KMiner requires less memory than TFP in all ases exept for the arti�ial datasetT40I10D100K with K > 5000 for whih it requires more memory (a fator 1.5 for
K = 10000).The high memory usage exhibited by TFP an be in part aounted of by theonditional datasets that it reates during exeution, while the lower memory usageexhibited by TopKMiner in several ases is due to the e�ient representation hosenfor the priority queue entries. We remark that although the mahine we used for theexperiments features a very large RAM (8 GB), in all of the experiments the atualtotal RAM required never exeeded 450 MB, whih is a reasonable quantity even fora low-end PC.We also pro�led the memory usage of TopKMiner separately aounting for thememory required by the priority queue and the rest of the work spae. The respetivevalues are shown in Figure 3.11 for the various datasets and for K = 10000. We seethat, espeially for the ases with highest memory usage, a substantial fration ofmemory is needed for the priority queue. Sine aesses to the priority queue arenot the dominant fator in the running time this suggests that the queue ouldbe stored on disk thus reduing onsiderably the memory usage. This and otherspae optimizations (e.g., ompression of the queue entries) ould be exploited whenmemory is the most important resoure.3.1.7 Comparing TFP and TopKMiner with dynami raisingof KWe tested the e�etiveness of the TopKMiner's feature whih allows the user todynamially raise the value K up to a maximum value K∗. To this purpose we
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(d)Figure 3.10: Memory for (a) kosara, (b) aidents, () pos, and (d) T40I10D100Kfor various values of K
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3.2. Mining frequent items/itemsets through sampling 41simulated a senario where K is raised from 1000 to 10000 with step 1000 and runTopKMiner with K∗ = 10000 measuring the running time after the omputationfor eah value K ended. We ompared these running times with those attainable byTFP if used in a similar senario, by running, for eah K, the algorithm from srathand aumulating the running times of previous exeutions. The results are shownin Figure 3.12 only for two datasets. (The time for the user's input is not aountedof in the reported times.) Results for the other datasets are similar.As expeted, the time required by TopKMiner for eah value of K is onsiderablylower than the umulative time required by TFP, whih is a lear evidene of the ef-fetiveness of TopKMiner's dynami feature. Moreover, we remark that the provisionof suh a feature adds only a negligible slowdown. Indeed, even if the omputationis stopped after the �rst value K = 1000, the performane of TopKMiner remainsomparable with the one of TFP. This means that the �exibility of TopKMiner (inthe raising of K) does not ause a degradation in performane. For the memoryusage, the amount used by the two algorithms an be derived from Figure 3.10, sinefor both TopKMiner and TFP the maximum memory usage with dynami raising of
K (up to K∗) is equal to the maximum memory usage for K = K∗.
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(b)Figure 3.12: Running times of TopKMiner and TFP for (a) aidents, and (b)T40I10D100K with dynami update of K from 1000 to 10000.
3.2 Mining frequent items/itemsets through sam-plingWhen dealing with massive datasets, omputing the exat set of top-K (maxi-mal/losed) frequent itemsets an be too expensive. If the dataset does not �t



42 Chapter 3. Algorithmi Aspets of Basi Mining Primitivesompletely in the main memory, the disk aess may slow down exat algorithmsto a point where they beome impratial. Algorithms for the standard frequentitemset mining task developed to solve the problem in an exat way must san theentire dataset, typially several times, whih has a onsiderable impat on perfor-mane. It is then neessary to aept a trade-o� between the auray of the resultsand the time needed to ompute them, espeially if it is possible for the user of thealgorithm to speify the maximum deay in the �quality� of the output she is willingto aept. Sampling is one tehnique that an be employed to redue the runningtime, obtaining approximated results.The rest of the setion is organized as follows. In Subsetion 3.2.1 we formallyintrodue the problem of extrating top-K frequent itemsets through sampling, pro-viding a tight bound on the su�ient sample size in Subsetion 3.2.2. In Subse-tion 3.2.3 we present an algorithm to solve this problem, and Subsetion 3.2.4 provesthe orretness of the algorithm. In Subsetion 3.2.5 we show how to improve thespae requirements of the method using a ount-min �lter, and prove the orretnessof the approah in Subsetion 3.2.6. In Subsetion 3.2.8 we show that our algorithmsan be used to obtain an approximation of top-K frequent itemsets with guaranteeon the quality of the estimated frequenies. Finally, Subsetion 3.2.7 provides theresults of the experimental assessment of our algorithms.3.2.1 Mining (approximated) top-K frequent itemsetConsider a dataset D of transations over the set I of n items. For onveniene, we�x a anonial ordering of the itemsets built on I by dereasing frequeny, ties brokenarbitrarily. Let m = 2n − 1, we suppose the itemsets to be labeled X1, X2, · · · , Xmaording to this order. For a given K, with 1 ≤ K ≤ m, we denote f
(K)
D = fD(XK).For onveniene, we use TOPK(D, I, K) to indiate the set of top-K frequent item-sets.We aim at e�iently mining the following approximation to the setTOPK(D, I, K).De�nition 3.6. Let ε ∈ (0, 1) be a real-valued parameter. A set W ⊆ 2I is an

ε-approximation to TOPK(D, I, K) if and only if the following two properties hold:P1: for eah X ∈W , fD(X) ≥ f
(K)
D − ε;P2: for eah X 6∈W , fD(X) < f
(K)
D + ε.A similar approximation is de�ned in [CCFC04℄, but requires only P1 to hold,thus providing only a guarantee that itemsets with frequeny well below f (k) are



3.2. Mining frequent items/itemsets through sampling 43not produed in output. The same approximation (i.e., requiring only P1 to hold)is onsidered in [VV09℄ for the problem of mining the top-K frequent items. Theauthors of that work de�ne di�erent approximations, with di�erent properties, of theset of the top-K frequent items and present algorithms to mine them. Other thanthe one onsidered in [CCFC04℄, one of interest for our work requires in addition anapproximation of the frequenies of the itemsets in output. Moreover, they presentan approximation of the set suh that the ranking of the output set is approximatelyorret with regards to the relative ranking in the dataset of the output items.The authors provide bounds on the su�ient sample size required to obtain thedesired approximations. The striter bounds are based on the idea of lumping smallfrequeny items, i.e., aggregating two or more items with frequenies smaller thansome threshold to form a meta-item whose frequeny is the sum of the frequenies ofthe items that form the meta-item. This is done iteratively until none or one (meta-)item is left with frequeny smaller than the threshold. The goal of this lumpingproess is to bound the size of the set of elements to be onsidered, in order to obtainbetter bounds on the su�ient sample size. However, their results do not apply to theproblem of approximating top-K frequent itemsets. Moreover, the striter boundsrelated to the problems of interest to our work require the knowledge of the exatdistribution of frequenies of the items, whih is not available in real ases.
3.2.2 Bound on su�ient sample sizeThe following theorem shows that the set of top-K frequent itemsets mined froma sample2 of D of suitable size onstitutes an ε-approximation to TOPK(D, I, K),with a ertain probability.Theorem 3.7. For �xed ε, δ ∈ (0, 1), onsider a random sample S ⊆ D ontaining

t =
2

ε2
ln

2K(m−K)

δtransations of D, and let W = TOPK(S, I, K). Then, W is an ε-approximation toTOPK(D, I, K) with probability at least 1− δ.2In this work we onsider sampling with replaement.
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L =

{

X ∈ 2I : fD(X) ≥ f
(K)
D + ε

}

V =
{

X ∈ 2I : fD(X) < f
(K)
D − ε

}

M =
{

Xi ∈ 2I : 1 ≤ i ≤ K
}

Z =
{

Xi ∈ 2I : K + 1 ≤ i ≤ m
}

,where the indies of the itemsets in the last two sets are onsistent with the anonialordering mentioned above. Notie that L ⊂ M and V ⊆ Z. For an itemset X, let
fS(X) denote its frequeny in the sample. De�ne the events
E1: �for all pairs (X, Y ) ∈ L× Z we have fS(X) ≥ fS(Y )�
E2: �for all pairs (X, Y ) ∈ M × V we have fS(X) > fS(Y )�.We �rst show that if E1 and E2 our then W is an ε-approximation toTOPK(D, I, K). Assume that E1 and E2 our. We have to prove that Proper-ties P1 and P2 in De�nition 3.6 hold for W . Sine E2 ours and |M | = K, noelement of V an be inluded in W , hene Property P1 follows. As for Property P2,onsider an itemset X 6∈ W and suppose, by ontradition, that fD(X) ≥ f

(K)
D + ε,thus X ∈ L. Sine |W | ≥ K and |{X ∈ I : fD(X) > f

(K)
D }| < K, there must exists

Y ∈ W that is also in Z (if no element of Z is in W , we have that W = M ⊃ L).Then, there is a pair (X, Y ) ∈ L×Z with fS(X) < fS(Y ), whih is impossible sine
E1 ours.We omplete the proof by showing that if the sample size is t hosen as stated,then both E1 and E2 our with probability at least 1− δ. Consider a pair (x, y) in
L× Z, and let t be the number of transations in S. Sine fD(X)− fD(Y ) ≥ ε, bythe Azuma bound we have

Pr(fS(Y ) > fS(X)) ≤ 2e−
ε2

2
t.The same bound applies to an arbitrary pair (X, Y ) ∈ M × V . We now apply theunion bound. Notie that the same pair (X, Y ) an be in both L × Z and M × V .However, sine L ⊂ M , V ⊆ Z, and the sets M, Z are disjoint, we have that thetotal number of pairs that we have to onsider in the union bound is ≤ |M | × |Z| <

K ·(M−k). When for all pairs (X, Y ) in (L×Z)∪(M×V ) we have fS(X) > fS(Y ),both E1 and E2 our. Then, the probability that at least one event between E1 and
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E2 does not our is at most

K(m−K)2e−
ε2

2
t ≤ δ.

�

3.2.3 AlgorithmWe now desribe an e�ient algorithm whih disovers an ε-approximation toTOPK(D, I, K) by mining progressively larger samples of the dataset D until thesample size established in Theorem 3.7 is reahed, or a ertain stopping onditionis met. When the algorithm stops it returns, as output, the set of top-K frequentitemsets with respet to the last proessed sample. Suh a set will onstitute an
ε-approximation to TOPK(D, I, K) with probability at least 1−δ. For j ≥ 0, de�ne

tj =
8

ε2

(

ln
8aK

δ
+ bj

)

,where a ≥ 1 and b ≥ 1 are suitable parameters. Let also jmax ≥ 0 be the smallestindex suh that tjmax ≥ min {|D|, 2/(ε2) ln(2K(m−K)/δ)}. The algorithm performsa sequene of phases. Spei�ally, in Phase j, for j ≥ 0 and j < jmax, the algorithmproesses a random sample of tj transations. In Phase jmax, if tjmax ≥ |D| thealgorithm proesses D to extrat TOPK(D, I, K), otherwise it onsiders a randomsample of tjmax transations. The algorithm stops when j = jmax, or j < jmax and asuitable stopping ondition (spei�ed below) holds.Consider Phase j and let S be the random sample of size tj proessed in thephase. De�ne
σj = aK

(e

2

)bj

.For i ≥ 0, de�ne also
sj(i) = ⌊(2σj)

(i+1)2/2⌋,and
Sj(i) =

i
∑

ℓ=0

sj(ℓ).For notational onveniene, we assume Sj(−1) = 0 and use h(j) as the largest indexsuh that Sj(h(j)− 1) + 1 ≤ m. Consider an ordering of the itemsets by dereasingfrequeny w.r.t. S, and let f
(ℓ)
S be the frequeny in S of the ℓ-th itemset in this
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f

(K)
S − f

(Sj(i−1)+1)
S > (i + 1)ε for 1 ≤ i ≤ h(j).3.2.4 AnalysisFor Phase j of the algorithm we de�ne Bj(i), with 0 ≤ i ≤ h(j), as the set of sj(i)itemsets whose rank in the anonial ordering (w.r.t. the original dataset D) is inthe interval [Sj(i− 1) + 1, Sj(i)].Lemma 3.8. With probability at least 1 − δ the following property holds: for everyPhase j of the algorithm, for every 0 ≤ i ≤ h(j), and for every itemset X ∈ Bj(i)

|fS(X)− fD(X)| < (i + 1)
ε

2
,where S is the sample proessed in Phase j.Proof. Let us fous on an arbitrary Phase j. By the Azuma bound, we have that forany X ∈ Bj(i)

Pr(|fS(X)− fD(X)| ≥ (i + 1)
ε

2
) ≤ 2e−ε2(i+1)2tj/8.Hene the probability that there exists an itemset X (belonging to any Bj(i)) forwhih the stated bound does not hold is upper bounded by:

h(j)
∑

i=0

sj(i)2e
−ε2(i+1)2tj/8 ≤

h(j)
∑

i=0

(

2σje
−ε2tj/8

)(i+1)2

=

h(j)
∑

i=0

(

δ

2j+2

)(i+1)2

≤ δ

2j+1
.The lemma follows by applying the union bound over all phases (i.e., j = 0, 1, . . .).

�The following theorem establishes a probabilisti guarantee on the orretness of thealgorithm.Theorem 3.9. The algorithm returns an ε-approximation to TOPK(D, I, K) withprobability at least 1− δ.Proof. We onsider two ases, depending on when the algorithm stops. If the al-gorithm stops at Phase j = jmax, then the output is orret with probability atleast 1 − δ, sine it is the set TOPK(D, I, K) if tjmax ≥ |D|, and we an resort toTheorem 3.7 if tjmax < |D|. Suppose instead that the algorithm stops at an earlierphase j < jmax beause the stopping ondition is met. By Lemma 3.8, for every
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0 ≤ i ≤ h(j), and for every itemset X ∈ Bj(i), we have |fS(X)− fD(X)| < (i + 1) ε

2
.Let W the set of itemsets returned by the algorithm, namely the set of top-K frequentitemsets with respet to the random sample proessed in Phase j.We �rst show that W ⊆ B0. By ontradition, assume that an itemset X ∈ Wbelongs to Bi, for some i > 0. Hene, fD(X) ≤ f

(Sj(i−1)+1)
D and

f
(K)
S ≤ fS(X) ≤ fD(X) + (i + 1)

ε

2
≤ f

(Sj(i−1)+1)
D + (i + 1)

ε

2
. (3.1)Observe that all itemsets whose rank in the anonial ordering (w.r.t. D) is notlarger than Sj(i− 1) + 1 belong to sets Bℓ with ℓ ≤ i. By Lemma 3.8, for eah suhitemset Z, we have that

fS(Z) ≥ fD(Z)− (i + 1)
ε

2
≥ f

(Sj(i−1)+1)
D − (i + 1)

ε

2
.Hene, sine there are Sj(i− 1) + 1 of these itemsets, it follows that

f
(Sj(i−1)+1)
S ≥ f

(Sj(i−1)+1)
D − (i + 1)

ε

2
. (3.2)By ombining Equations 3.1 and 3.2 we obtain that

f
(K)
S − f

(Sj(i−1)+1)
S ≤ (i + 1)ε,whih ontradits the stopping ondition. Thus, W ⊆ B0. Now, if we onsider anyof the �rst K itemsets in the anonial ordering, say Xℓ, for some 1 ≤ ℓ ≤ K, whihbelongs to B0 by onstrution, we have that fS(Xℓ) ≥ fD(Xℓ)− ε

2
≥ f

(K)
D − ε

2
. Hene,

f
(K)
S ≥ f

(K)
D − ε

2
. Therefore, for eah X ∈W we have

fD(X) ≥ fS(X)− ε

2
≥ f

(K)
S − ε

2
≥ f

(K)
D − ε,whih establishes Property P1. As for Property P2, note that W must ontain anitemset Z suh that fD(Z) ≤ f

(K)
D . As argued before, Z ∈ B0, hene

fS(Z) ≤ fD(Z) +
ε

2
≤ f

(K)
D +

ε

2
.Sine fS(Z) ≥ f

(K)
S , we have that

f
(K)
S ≤ f

(K)
D +

ε

2
(3.3)Consider an itemset Y 6∈ W . If Y ∈ Bi with i > 0 then by de�nition of Bi itsreal frequeny is at most f

(K)
D , hene it annot be greater than or equal to f

(K)
D + ε.
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fD(Y ) ≤ fS(Y ) +

ε

2
< f

(K)
S +

ε

2
≤ f

(K)
D + ε,where the last inequality follows from Equation 3.3, and Property P2 follows. �

3.2.5 A Count-Min Filter Based AlgorithmThe algorithm presented in the previous setion has a major issue: it needs m oun-ters to keep the support ounts for all the itemsets in order to be able to �nd the
f

(i)
S for all i's.We now present an improved version of the algorithmwhih uses ount-min �lters,a variation of Bloom �lters, to save spae. A ount-min �lter B onsists of c ounters,and uses kB hash funtions. The ounters are split into kB disjoint groups of size

c/kB. (We assume that kB divides c evenly.) The kB hash funtions map itemsets intoounters, so for eah hash funtion Hi, 1 ≤ i ≤ kB we have Hi : 2I → [0, c/kB − 1].A more detailed desription of ount-min �lters and their properties an be foundin [MU05℄, Se. 13.4.Using ount-min �lters, we an provide a ε-approximation to TOPK(D, I, K).Given a set of transations S, we use a ount-min �lter B to keep trak of anapproximation of the supports of the itemsets. Initially, all ounters are set to 0.For eah transation t ∈ S and eah itemset X ⊆ t, we inrement by one the kBounters assoiated with X.De�nition 3.10. The ount-min support of an itemset X is the value of the mini-mum of the kB ounters assoiated with X in B, and is denoted with sB(X).De�nition 3.11. The ount-min frequeny of X is
fB(X) =

sB(X)

|S| .(The notation for ount-min support and ount-min frequeny does not inludeany referene to S beause the set of transations on whih the ount-min �lter isbuilt will be lear from the ontest.)Given a set of transations S, let the length (as number of items) of a transation
t ∈ S be denoted as |t|. The number of itemsets of non zero length in a transation
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t is 2|t|− 1. We denote the sum of the number of itemsets in the transations as CS :

CS =
∑

t∈S

(2|t| − 1).The following theorem shows that we an obtain a good approximation of thefrequenies of the itemsets using a ount-min �lter.Theorem 3.12. Given δB > 0, εB > 0, and a set of transations S, let εC = εB|S|
CSand δc = δB/m. If B is a ount-min �lter of parameters

kB =

⌈

ln
1

δc

⌉ (3.4)
c =

⌈

ln
1

δc

⌉

·
⌈

e

εc

⌉ (3.5)then
Pr(∃X|fB(X) ≥ fS(X) + εB) ≤ δB.Proof. A known result for ount-min �lters (see [MU05℄, Theorem 13.12) states thatif the sum of the ounts of the elements inserted in a ount-min �lter is L, then withprobability 1− (kB/(cεC))kB for any given element X we have

sB(X) ≤ sS(X) + εCL,where sS(X) is the support of X in S.In our ase we have that L = CS , thus for any given itemsets X we have that
fB(X) =

sB(X)

|S| ≤
sS(X)

|S| +
εCCS

|S| = fS(X) + εBwith probability
1−

(

kB

cεc

)kB

≥ 1− e− ln(1/δc) = 1− δB

m
.The thesis follow applying the union bound on the omplementary events. �Now let K > 0 and S be a set of transations. For given δB > 0, εB > 0, westore the support ounts of the itemsets using a ount-min �lter B with parameters

c and kB as in Theorem 3.12. From Theorem 3.12 we an obtain a lower bound tothe frequeny of the K-th most frequent itemset in S.Corollary 3.13. Let XB
1 , XB

2 , · · · be a labeling of the itemsets following the dereas-ing order of their frequeny in the ount-min �lter B, ties broken arbitrarily. Let
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f

(i)
B = fB(XB

i ) and r = f
(K)
B − εB. Then, with probability at least 1 − δB, all thetop-K FI's of S have a frequeny in B greater or equal to r.Proof. Suppose Theorem 3.12 holds, whih happens with probability at least 1− δB .By de�nition of f

(k)
B there are at least k itemsets with a ount-min frequeny ≥ f

(k)
B .We now onsider a subset X with size k of these itemsets. Sine Theorem 3.12 holds,none of these itemsets has a frequeny in S less than r. Suppose now that all itemsetsin X are among the top-k FI's of S. Then at least one of them has a frequeny in

S equal to f
(k)
S . If the size of the set of the top-k FI's of S is exatly k, then thethesis follows immediately from Theorem 3.12, the de�nition of r and the propertiesof the ount-min �lter. If the size of the sets of the top-k FI's of S is greater than

k, then there is at least one of suh itemsets that is not in X. Let y be one of theseitemsets. By de�nition, fS(y) ≥ f
(k)
S . Sine there is at least one itemset in X withfrequeny in S equal to f

(k)
S , then from Theorem 3.12, from the de�nition of r, andfrom the properties of the ount-min �lter, we have

r ≤ f
(k)
S ≤ fS(y) ≤ fB(y)This holds for any y whih belongs to the set of the top-k FI's of S but not to X, sothe thesis follows.Suppose now that not all itemsets in X are among the top-k FI's of S. Thenthere is at least one itemset in X suh that its frequeny in S is less than f

(k)
S . Let

w be one of suh itemsets, and z be any of the top-k FI's of S, we have
r ≤ fS(w) < fS(z) ≤ fB(z)whih prove the thesis. �In the following, we develop and analyze an algorithm to �nd an ε-approximationof TOPK(D, I, K) with probability 1− δ.As before, the algorithm requires in input a dataset D and three parameters

K > 0, ε, δ ∈ (0, 1).Let δ1, δ2 > 0 suh that (1 − δ1)(1 − δ2) = 1 − δ. We de�ne tj similarly toSetion 3.2.3. The algorithm performs a sequene of phases, and in Phase j, for
j ≥ 0 and j < jmax, the algorithm proesses a random sample of tj transations, asit was for the algorithm in Setion 3.2.3.The algorithm stops when j = jmax, or j < jmax and a suitable stopping ondition(spei�ed below) holds. Consider Phase j and let S be the random sample of size tjproessed in the phase. De�ne σj , sj(i), and Sj(i) as in Setion 3.2.3.



3.2. Mining frequent items/itemsets through sampling 51Let S be the sample analyzed by the algorithm at phase j. The algorithm will usea ount-min �lter B with parameters c, kB tuned in suh a way that Pr(∃X|fB(X) ≥
fS(X) + εB) ≤ δ2 (see Theorem 3.12). Note that εB is not given in input by theuser. Consider an ordering of the itemsets by dereasing ount-min frequeny w.r.t.
B, and let f

(ℓ)
B be the ount-min frequeny of the ℓ-th itemset in this ordering. Let

r = f
(K)
B − εB. The stopping ondition for phase j is

r − f
(Sj(i−1)+1)
B > (i + 1)ε for 1 ≤ i ≤ h(j).(Note that the hoie of εB in�uenes the stopping onditions, sine r = f

(K)
B −

εB.)When the algorithm stops, it omputes the exat frequenies in the sample of theitemsets {X : fB(X) ≥ r} = B. Let f̃
(K)
S the frequeny in the sample of the K-thmost frequent itemset in B. The output of the algorithm is thus the set of itemsets

W =
{

X ∈ B : fS(X) ≥ f̃
(K)
S

}.3.2.6 Analysis of Count-Min Filter Based AlgorithmFirst of all, note that the de�nition of tj , σj, and Sj(i) are the same as in Setion 3.2.3,but for the replaement of δ with δ1. Thus Lemma 3.8 holds with probability at least
1− δ1.The following theorem relates the stopping ondition of the ount-min �lter basedalgorithm to the stopping ondition of the algorithm presented in Setion 3.2.3.Theorem 3.14. With probability at least 1− δ2, when the stopping ondition of theount-min �lter based algorithm is met, the stopping ondition of the algorithm inSetion 3.2.3 holds.Proof. Assume that Corollary 3.13 holds, then r ≤ f

(k)
S . For the properties of theount-min �lter we have ∀i, f (i)

B ≥ f
(i)
S . Then,

f
(k)
S − f

(Sj(i−1)+1)
S ≥ r − f

(Sj(i−1)+1)
B for 1 ≤ i ≤ h(j).Hene, if the stopping ondition for the ount-min �lter based algorithm is satis�ed,then also the stopping ondition for algorithm of Setion 3.2.3 must be satis�ed.Sine Corollary 3.13 holds with probability at least 1 − δ2, we obtain the theorem.

� We are now ready to prove the main theorem.



52 Chapter 3. Algorithmi Aspets of Basi Mining PrimitivesTheorem 3.15. The ount-min �lter based algorithm returns an ε-approximation ofTOPK(D, I, K) with probability at least 1− δ = (1− δ1)(1− δ2).Proof. We onsider two ases, depending on when the algorithm stops. If the algo-rithm stops at phase j = jmax, then the output is orret with probability at least
1−δ, sine it is orret with probability 1 if the algorithm onsiders D in phase jmax,otherwise it is orret with probability at least 1− δ by virtue of Theorem 3.7.Suppose instead that the algorithm stops at an earlier phase j < jmax beausethe stopping ondition is met. From now on we assume that Lemma 3.8 andTheorem 3.12 hold (this happens with probability at least (1−δ1)(1−δ2) = 1−δ: ineah iteration Theorem 3.12 holds with probability at least 1− δ2, sine the qualityof approximation of the frequenies in the sample provided by the ount-min �lterdoes not depend on previous iterations and on the frequenies in D). Let W be theset of itemsets given as output. Sine Theorem 3.12 holds, then Corollary 3.13 alsoholds, and Theorem 3.14 too. Thus B is a superset of the set of itemsets W ′ thatalgorithm of Setion 3.2.3 run with parameters ε, δ would have returned. Thus Wis equal to W ′, and it is an ε-approximation to TOPK(D, I, K) with probability atleast 1− δ = (1− δ1)(1− δ2). �

3.2.7 ExperimentsWe run a preliminary set of experiments to evaluate the performanes of the algo-rithm desribed in Setion 3.2.3. We run the experiments on two datasets presentedin Setion 3.1.1: kosarak.dat (999002 transations) and webdos.dat (512 transa-tions). Our hoie for the parameters were �xed to the following values: ε = 0.02,
δ = 0.1, a = 1, b = 1, and we asked our algorithm to extrat the k most frequentitemsets of length at most l, for di�erent values of k and l, for kosarak, and the k mostfrequent items in webdos. We run our algorithm 10 times, and for all exeutionsthe output satis�ed both properties P1 and P2 of De�nition 3.6.For kosarak and l = 1, the stopping size was always equal to the theoretial boundgiven in Theorem 3.7. The results for l = 2, 3 the results are reported in Figure 3.13and Figure 3.14. Figure 3.15 reports instead the results for the extration of top-Kitems from webdos.We an observe that when the parameter l, that is the maximum size of itemsetsto be extrated, inreases, the gap between the number of transations that ouralgorithm needs to produe the output and the number of transations implied fromthe theoretial bound widens. Sine we expet the number of potential itemsets in a
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Figure 3.13: Results of algorithm of Setion 3.2.3 with dataset Kosarak, for itemsetsof length at most ℓ = 2.real, enormous dataset to be huge, we believe that this experiments provides a �rstindiation of the possible e�etiveness of our algorithm. However, a more in depthand aurate experimental study is required to understand in whih senarios ouralgorithm an provide good performane. Moreover, the experimental evaluation ofalgorithm proposed in Setion 3.2.5 is still open.3.2.8 Approximating Top-K Frequent Itemset with Frequen-iesA striter approximation of the set may require a on�dene on the frequenies ofeah itemset in the output:De�nition 3.16. Let ε ∈ (0, 1) be a real-valued parameter. An ε-approximationwith frequenies to TOPK(D, I, K) is a set W of K or more ordered pairs (X, f)suh that X ∈ 2I and f ∈ [0, 1] and for whih the following properties hold:P1: for eah (X, f) ∈W , fD(X) ≥ f
(K)
D − ε;P2: for eah (X, f) 6∈W , fD(X) < f
(K)
D + ε.P3: for eah (X, f) ∈W , |f − fD(X)| ≤ ε.Our algorithms provides a ε-approximation with frequenies to TOPK(D, I, K)with probability at least 1− δ.
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Figure 3.14: Results of algorithm of Setion 3.2.3 with dataset Kosarak, for itemsetsof length at most ℓ = 3.Theorem 3.17. Let S be the sample for whih our algorithm stops, and let W =

{(X, fS(X)) : X ∈ TOPK(S, I, K)}. If |W | ≤ K(m − K), with probability at least
1− δ, W is a ε-approximation with frequenies to TOPK(D, I, K).Proof. P1 and P2 are satis�ed by the output of our algorithm, so we only need toonsider P3.When our algorithm stops at Phase j < jmax, with probability at least 1− δ wehave that Lemma 3.8 holds. Sine the itemsets returned by our algorithm are alwaysa subset of B0, for eah itemset X in output we have:

|fS(X)− fD(X)| < ε

2
.If the algorithm stops at Phase j = jmax and the algorithm uses D to extratTOPK(D, I, K), P3 trivially holds. If the algorithm stops at Phase j = jmax andthe algorithm does not use D, for eah itemset X the Azuma bound gives:

Pr(|fS(X)− fD(X)| ≥ ε) ≤ 2e−ε2tmax/2 (3.6)
≤ δ

K(m−K)
. (3.7)Sine |W | ≤ K(m−K), the union bound gives the desired result.

�
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Figure 3.15: Results of algorithm of Setion 3.2.3 with dataset webdos, for itemsetsof length at most ℓ = 1.
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Chapter 4Finding Statistially Signi�antFrequent ItemsetsIn this hapter we address the lassial problem of mining frequent itemsets withrespet to a ertain minimum support threshold, and provide a rigorous methodologyto establish a threshold that an guarantee, in a statistial sense, that the returnedfamily of frequent itemsets ontains signi�ant ones with a limited false disoveryrate. The results presented in the hapter appeared in [KMP+09a, KMP+09b℄. Ourmethodology ruially relies on the following Poisson approximation result, whih isthe main theoretial ontribution for the problem.Consider a dataset D of t transations on a set I of n items and let D̂ be aorresponding random dataset aording to the a random model whih will desribedin Setion 4.1. Let Qk,σ be the number of itemsets of size k with support at least
σ with respet to D, and let Q̂k,σ be the orresponding random variable for D̂.We show that there exists a minimum support value σmin (whih depends on theparameters of D and on k), suh that for all σ ≥ σmin the distribution of Q̂k,σ is wellapproximated by a Poisson distribution. Our result is based on a novel appliationof the Chen-Stein Poisson approximation method [AGG90℄.The minimum support σmin provides the grounds to devise a rigorous method forestablishing a support threshold for mining signi�ant itemsets, both reduing theoverall omplexity and improving the auray of the disovery proess. Spei�ally,for a �xed itemset size k, we test a small number of support thresholds σ ≥ σmin, and,for eah suh threshold, we measure the p-value orresponding to the null hypoth-esis H0 that the observed value Qk,σ omes from a Poisson distribution of suitableexpetation. From the tests we an determine a threshold σ∗ suh that, with user-de�ned on�dene level α, the number of itemsets with support at least σ∗ is notsampled from a Poisson distribution and is therefore statistially signi�ant. The57



58 Chapter 4. Finding Statistially Signi�ant Frequent Itemsetsfat that the number of itemsets with support at least σ∗ is statistially signi�antdoes not imply neessarily that eah of the itemsets is signi�ant. However, ourtest is also able to guarantee a user-de�ned upper bound β on the False DisoveryRate (FDR). We remark that our approah works for any �xed itemset size k, unliketraditional frequent itemset mining, where itemsets of all sizes are extrated for agiven threshold.To grasp the intuition behind the above approah, reall that a Poisson distribu-tion models the number of ourrenes among a large set of possible events, wherethe probability of eah event is small. In the ontext of frequent itemset mining, thePoisson approximation holds when the probability that an individual itemset hassupport at least σmin in D̂ is small, and thus the existene of suh an event in Dis likely to be statistially signi�ant. We stress that our tehnique disovers sta-tistially signi�ant itemsets among those of relatively high support. In fat, if theexpeted supports of individual itemsets vary in a large range, there may exist item-sets with very low expeted supports in D̂ whih may have statistially signi�antsupports in D. These itemsets would not be disovered by our strategy. However,any mining strategy aiming at disovering signi�ant, low-support itemsets is likelyto inur high osts due to the large (possibly exponential) number of andidates tobe examined, although only a few of them would turn out to be signi�ant.We validate our theoretial results by mining signi�ant frequent itemsets froma number of real datasets that are standard benhmarks in this �eld. Also, we om-pare the e�etiveness of our methodology to a standard multi-hypothesis approahbased on [BY01℄, and provide evidene that the latter often returns fewer signi�antitemsets, whih indiates that our method has onsiderably higher power.The rest of the hapter is strutured as follows. Setion 4.1 introdues the randommodel employed in our approah. Setion 4.2 presents the Poisson approximationresult for the random variable Q̂k,σ. The methodology for establishing the supportthreshold σ∗ is presented in Setion 4.3, and experimental results are reported inSetion 4.4.4.1 The modelThe signi�ane of a disovery in our framework is assessed based on its deviationfrom what would be expeted in a random dataset in whih individual items areplaed in transations independently. Formally, let D denote the input dataset and
n the number of items ourring in D. Among all possible (n

k

) itemsets of size k (k-itemsets) we are interested in statistially signi�ant ones, that is, those k-itemsets



4.2. Poisson approximation for Q̂k,σ 59whose supports inD are signi�antly higher, in a statistial sense, than their expetedsupports in a orresponding random dataset.As in [SBM98℄, we onsider a probability spae of datasets with the same numberof transations t, on the same set of items I as D, and in whih item i, of frequeny
fi in D, is inluded in any given transation with probability fi, independent of allother items and all other transations. A similar model is used in [PVGG04℄ and[SVGP05℄ to evaluate the running time of algorithms for frequent itemsets mining.Let D̂ denote a random dataset from this probability spae. For a given itemset X,the null hypothesis H0 is that its support sD(X) in D is drawn from the distributionof its support sD̂(X) in D̂. The alternative hypothesis H1 is that sD(X) is not drawnfrom that distribution, and in partiular that there is a positive orrelation betweenthe ourrenes of the individual items in X.An alternative probability spae of datasets, proposed in [GMMT07℄, onsidersall arrangements of n items to m transations whih math the exat item frequeniesand transation lengths as D. Coneivably, the tehnique presented in this hapterould be adapted to this latter model as well.
4.2 Poisson approximation for Q̂k,σThe Chen-Stein method [AGG90℄ is a powerful tool for bounding the error in approx-imating probabilities assoiated with a sequene of dependent events by a Poissondistribution. To apply the method to our ase, we �x parameters k and σ, and de�nea olletion of Bernoulli random variables {ZX | X ⊂ I, |X| = k}, suh that ZX = 1if the itemset X appears in at least σ transations in the random dataset D̂, and
ZX = 0 otherwise. Also, let pX = Pr(ZX = 1). We are interested in the distributionof Q̂k,σ =

∑

X:|X|=k ZX .For eah set X we de�ne the neighborhood set of X,
I(X) = {X ′ | X ∩X ′ 6= ∅, |X ′| = |X|}.If Y 6∈ I(X) then ZY and ZX are independent. Adapting [AGG90, Theorem 1℄ toour ase we have:Theorem 4.1. Let U be a Poisson random variable suh that E[U ] = E[Q̂k,σ] = λ <

∞. The variation distane between the distributions L(Q̂k,σ) of Q̂k,σ and L(U) of U



60 Chapter 4. Finding Statistially Signi�ant Frequent Itemsetsis suh that
∥

∥

∥
L(Q̂k,σ)−L(U)

∥

∥

∥
= sup

A
|Pr(Q̂k,σ ∈ A)− Pr(U ∈ A)|

≤ b1 + b2,where
b1 =

∑

X:|X|=k

∑

Y ∈I(X)

pXpYand
b2 =

∑

X:|X|=k

∑

X 6=Y ∈I(X)

E[ZXZY ].We an derive analyti bounds for b1 and b2 in many situations. Spei�ally,suppose that we generate t transations in the following way. For eah item x,we sample a random variable Rx ∈ [0, 1] independently from some distribution R.Conditioned on the Rx's, eah item x ours independently in eah transation withprobability Rx. In what follows, we provide spei� bounds for this situation thatdepend on the moment E[R2σ] of the random variable R.As a warm-up, we �rst onsider the spei� ase where eah Rx is a �xed value
p = γ/n for some onstant γ for all x. That is, eah item appears in eah transationwith a �xed probability p, and the expeted number of items per transation isonstant. The more general ase follows the same approah, albeit with a few moretehnial di�ulties.Theorem 4.2. Consider an asymptoti regime where as n→∞, we have that k, σ =

O(1) with σ ≥ 2, eah item appears in eah transation with probability p = γ/n forsome onstant γ, and t = O(nc) for some positive onstant 0 < c ≤ (k−1)(1−1/σ).Let U be a Poisson random variable suh that E[U ] = E[Q̂k,σ] = λ < ∞. Then thevariation distane between the distributions L(Q̂k,σ) of Q̂k,σ and L(U) of U satis�es
∥

∥

∥
L(Q̂k,σ)−L(U)

∥

∥

∥
= O(1/n2σ−2).Proof. For a given set X of k items, let pX,i be the probability that X appears inexatly i transations, so that pX =

∑t
i=σ pX,i and

pX,i =

(

t

i

)

(γ

n

)ki
(

1−
(γ

n

)k
)t−i

.



4.2. Poisson approximation for Q̂k,σ 61Applying Theorem 4.1 gives
∥

∥

∥
L(Q̂k,σ)− L(U)

∥

∥

∥
≤ b1 + b2where

b1 =
∑

X:|X|=k

∑

Y ∈I(S)

pXpYand
b2 =

∑

X:|S|=k

∑

Y 6=X∈I(S)

E[ZXZY ].We now evaluate b1 and b2. A diret alulation easily gives the value for b1 givenin the statement of the theorem. For the asymptoti analysis, we write
(

(

n

k

)2

−
(

n

k

)(

n− k

k

)

)

=

(

n

k

)2
(

1−
(

n−k
k

)

(

n
k

)

)

=

(

n

k

)2
(

1−
k−1
∏

i=0

n− k − i

n− i

)

= Θ(nk)2 ·Θ(1/n) = Θ(n2k−1)and
pX,σ =

(

t

σ

)

(γ

n

)kσ
(

1−
(γ

n

)k
)t−σ

= Θ(tσ) ·Θ(n−kσ) · (1 + o(1)) = Θ
(

tσn−kσ
)

,where we have used the fat that t = o(nk) to obtain the asymptotis for the thirdterm. Also, we note that for any 1 ≤ i < t

pX,i+1

pX,i
=

t− i

i + 1

(γ

n

)k
(

1−
(γ

n

)k
)−1and so

max
i∈{σ,σ+1,...,t−1}

pX,i+1

pX,i
= O(tn−k) = O(1/n).Using a geometri series, it follows that

pX =

t
∑

i=σ

pX,i = pX,σ(1 + o(1)) = Θ
(

tσn−kσ
)

.



62 Chapter 4. Finding Statistially Signi�ant Frequent ItemsetsThus, we obtain
b1 = Θ(n2k−1) ·Θ

(

tσn−kσ
)2

= Θ(t2σn2k(1−σ)−1) = Θ(n2cσ+2k(1−σ)−1).We now turn our attention to b2. Consider sets X 6= Y of k items, let g = |X∩Y |,and suppose that g > 0. Then if ZXZY = 1, there exist disjoint subsets A, B, C ∈
{1, . . . , t} suh that 0 ≤ |A| ≤ σ, |B| = |C| = σ − |A|, all of the transations in
A ontain both X and Y , all of the transations in B ontain X, and all of thetransations in C ontain Y .Therefore,

E[ZXZY ] ≤
σ
∑

i=0

(

t

i; σ − i; σ − i

)

(γ

n

)(2k−g)i+2k(σ−i)

,where the notation ( m
x;y;z

) is a shorthand for (m
x

)(

m−x
y

)(

m−x−y
z

).It follows that
b2 ≤

k−1
∑

g=1

(

n

g; k − g; k − g

) σ
∑

i=0

(

t

i; σ − i; σ − i

)

(γ

n

)(2k−g)i+2k(σ−i)

=
k−1
∑

g=1

(

n

g; k − g; k − g

)

(γ

n

)2kσ
σ
∑

i=0

(

t

i; σ − i; σ − i

)(

n

γ

)gi

=

k−1
∑

g=1

(

n

g; k − g; k − g

)

(γ

n

)2kσ
σ
∑

i=0

(

t

i; σ − i; σ − i

)(

n

γ

)gi

=

k−1
∑

g=1

Θ(n2k−g+2cσ)
(γ

n

)2kσ
σ
∑

i=0

n−ic

(

n

γ

)gi

= Θ(n2k(1−σ)+2cσ)
k−1
∑

g=1

n−g
σ
∑

i=0

γ−gin(g−c)i

= Θ(n2k(1−σ)+2cσ)
k−1
∑

g=1

n−g







Θ(1) g ≤ c

Θ(n(g−c)σ) g > c

= Θ(n2k(1−σ)+2cσ) ·Θ(n−(k−1)+(k−1−c)σ)

= Θ(n2k(1−σ)+σ(k−1+c)−k+1)Note that, in the summation where there are two ases depending on whether
g ≤ c or g > c, we have used the assumption that c ≤ (k − 1)(1 − 1/σ) to ensurethe next equality. Finally, it is simple to hek that both b1 and b2 are O(1/n2σ−2)



4.2. Poisson approximation for Q̂k,σ 63if c ≤ (k − 1)(1− 1/σ).
�We now provide the more general theorem.Theorem 4.3. Consider an asymptoti regime where as n → ∞, we have that

k, σ = O(1) with σ ≥ 2, E[R2σ] = O(n−a) for some onstant 2 < a ≤ 2σ, and
t = O(nc) for some positive onstant c. Let U be a Poisson random variable suhthat E[U ] = E[Q̂k,σ] = λ <∞. If

c ≤ (k − 1)(a− 2) + min(2a− 6, 0)

2σ
,then the variation distane between the distributions L(Q̂k,σ) of Q̂k,σ and L(U) of Usatis�es

∥

∥

∥
L(Q̂k,σ)−L(U)

∥

∥

∥
= O(1/n).Proof. Applying Theorem 4.1 gives

∥

∥

∥
L(Q̂k,σ)− L(U)

∥

∥

∥
≤ b1 + b2where

b1 =
∑

X:|X|=k

∑

Y ∈I(X)

pXpYand
b2 =

∑

X:|X|=k

∑

Y 6=X∈I(X)

E[ZXZY ].We now evaluate b1 and b2. Letting ~R denote the vetor of the Rx's, we havethat for any set X of k items
Pr(ZX = 1 | ~R) ≤

(

t

σ

)

∏

x∈X

Rσ
x .Sine the Rx's are independent with ommon distribution R,

pX = E[Pr(ZX = 1 | ~R)] ≤
(

t

σ

)

E[Rσ]k.Using Jensen's inequality, we now have



64 Chapter 4. Finding Statistially Signi�ant Frequent Itemsets
b1 =

∑

X:|X|=k

∑

Y ∈I(X)

pXpY

≤
(

(

n

k

)2

−
(

n

k

)(

n− k

k

)

)

(

t

σ

)2

E[Rσ]2k

≤
(

n

k

)2
(

1−
(

n−k
k

)

(

n
k

)

)

(

t

σ

)2

E[R2σ]k

=

(

n

k

)2
(

1−
k−1
∏

i=0

n− k − i

n− i

)

(

t

σ

)2

E[R2σ]k

= Θ(nk)2 ·Θ(1/n) ·O(n2cσ) ·O(n−ka)

= O(nk(2−a)+2cσ−1)We now turn our attention to b2. Consider sets X 6= Y of k items, and suppose
g = |X ∩ Y | > 0. If ZXZY = 1, there exist disjoint subsets A, B, C ∈ {1, . . . , t} suhthat 0 ≤ |A| ≤ σ, |B| = |C| = σ − |A|, all of the transations in A ontain both
X and Y , all of the transations in B ontain X, and all of the transations in Contain Y . Therefore,

E[ZXZY | ~R] ≤
σ
∑

i=0

(

t

i; σ − i; σ − i

)

(

∏

x∈X∪Y

Ri
x

)(

∏

x∈X

Rσ−i
x

)(

∏

y∈Y

Rσ−i
y

)

=
σ
∑

i=0

(

t

i; σ − i; σ − i

)

(

∏

x∈X∩Y

R2σ−i
x

)(

∏

x∈X−Y

Rσ
x

)(

∏

y∈Y −X

Rσ
y

)

.



4.2. Poisson approximation for Q̂k,σ 65Applying independene of the Rx's and Jensen's inequality gives
E[ZXZY ] = E[E[ZXZY | ~R]]

≤
σ
∑

i=0

(

t

i; σ − i; σ − i

)

E[R2σ−i]gE[Rσ]2(k−g)

≤
σ
∑

i=0

t2σ−i
E[R2σ]

g(2σ−i)
2σ E[R2σ]k−g

=

σ
∑

i=0

t2σ−i
E[R2σ]k−ig/2σ

≤ O(1)
σ
∑

i=0

n(2σ−i)c−a(k−ig/2σ)

= O(n2σc−ak)

σ
∑

i=0

ni( ag
2σ

−c)

= O
(

n2σc−ak+max{0,σ( ag
2σ

−c)})

It follows that
b2 ≤

k−1
∑

g=1

(

n

g; k − g; k − g

)

O
(

n2σc−ak+max{0,σ( ag
2σ

−c)})

= O(n2k+2σc−ak)
k−1
∑

g=1

n−gO
(

nmax{0,σ( ag
2σ

−c)})

Now, for 2σc/a < g < k, we have (using the fat that a ≥ 2)
n−gnmax{0,σ( ag

2σ
−c)} = ng(a

2
−1)−σc ≤ n(k−1)(a

2
−1)−σc.Thus

b2 = O(n2k+σc−ak+(k−1)(a
2
−1)).(Here we are using the fat that our hoie of c satis�es c ≤ (k − 1)(a − 2)/2σ toensure that n(k−1)(a

2
−1)−cσ = Ω(1).)

Now, we have
b1 = O(1/n)



66 Chapter 4. Finding Statistially Signi�ant Frequent Itemsetssine
c ≤ (k − 1)(a− 2)

2σ
≤ k(a− 2)

2σ
,and

b2 = O(1/n)sine
c ≤ k(a− 2) + (a− 4)

2σ
.Thus

b1 + b2 = O(1/n).

�It is easy to see that for �xed k, the quantities b1 and b2 de�ned in Theorem 4.1are both dereasing in σ. In the following, we will use the notation b1(σ) and b2(σ)to indiate expliitly the dependene on σ. Therefore, for a hosen ǫ, with 0 < ǫ < 1,we an de�ne
σmin = min{σ ≥ 1 : b1(σ) + b2(σ) ≤ ǫ}. (4.1)It immediately follows that for every σ in the range [σmin,∞), the variationdistane between the distribution of Q̂k,σ and the distribution of a Poisson variablewith the same expetation is less than ǫ. In other words, for every σ ≥ σmin thenumber of k-itemsets with support at least σ is well approximated by a Poissonvariable. Theorems 4.2 and 4.3, proved above, establish the existene of meaningfulranges of σ for whih the Poisson approximation holds, under ertain onstraints onthe individual item frequenies in the random dataset and on the other parameters.4.2.1 A Monte Carlo method for determining σminWhile the analytial results of the previous subsetion require that the individualitem frequenies in the random dataset be drawn from a given distribution, in whatfollows we give experimental evidene that the Poisson approximation for the dis-tribution of Q̂k,σ holds also when the item frequenies are �xed arbitrarily, as is thease of our referene random model. More spei�ally, we present a method whihapproximates the support threshold σmin de�ned by Equation 4.1, based on a simpleMonte Carlo simulation whih, given in input the parameters t and n of the inputdataset D, the vetor ~f of item frequenies, k, ∆, and ǫ, returns estimates of b1(σ)and b2(σ). This approah is also onvenient in pratie sine it avoids the inevitableslak due to the use of asymptotis in Theorem 4.3.For a given on�guration of item frequenies and number of transations, let σ̃



4.2. Poisson approximation for Q̂k,σ 67be the maximum expeted support of any k-itemset in a random dataset sampledaording to that on�guration, that is, the produt of the k largest item frequenies.Coneivably, the value b1(σ̃) is rather large, hene it makes sense to searh for an
σmin larger than σ̃. For an integral parameter ∆ (a suitable hoie for ∆ will be givenbelow) we generate ∆ random datasets and from eah suh dataset we mine all ofthe k-itemsets of support at least σ̃. Let W be the set of itemsets extrated in thisfashion from all of the generated datasets. For eah σ ≥ σ̃ we an estimate b1(σ)and b2(σ) by omputing for eah X ∈ W the empirial probability pX of the event
ZX = 1, and for eah pair X, Y ∈W , with X∩Y 6= ∅, the empirial probability pX,Yof the event (ZX = 1) ∧ (ZY = 1). The empirial probability of the event ZX = 1estimated with ∆ (independent) random trials (in our ase, generations of randomdatasets) is given by the ratio between the number of trials for whih ZX = 1 over
∆. The empirial probability pX,Y of the event (ZX = 1) ∧ (ZY = 1) is analogous.One pX and pX,Y have been estimated for all itemsets X, Y , we an estimate b1(σ)and b2(σ) with the formulas given in Theorem 4.1.Note that for itemsets not in W these probabilities are estimated as 0. If itturns out that b1(σ̃) + b2(σ̃) > ǫ/4, then we let σ̂min be the minimum σ > σ̃ suhthat b1(σ) + b2(σ) ≤ ǫ/4. Otherwise, if b1(σ̃) + b2(σ̃) ≤ ǫ/4, we repeat the aboveproedure starting from σ̃/2. (Based on the above onsiderations this latter ase willbe unlikely.) Algorithm 1 implements the above ideas.The following theorem provides a bound on the probability that σ̂min be a on-servative estimate of σmin, that is, σ̂min ≥ σmin.Theorem 4.4. If ∆ = O (log(1/δ)/ǫ), the output σ̂min of the Monte-Carlo proesssatis�es

Pr(b1(σ̂min) + b2(σ̂min) ≤ ǫ) ≥ 1− δ.Proof. Let assume b1(σ̂min) + b2(σ̂min) > ǫ. Note that b1(σ̂min) ≤ b2(σ̂min), thereforewe have b2(σ̂min) > ǫ/2. Let B be the random variable orresponding to ∆ timesthe estimate of b2(σ̂min) obtained with Algorithm 1. Thus E[B] > ∆ǫ/2. SineAlgorithm 1 returns σ̂min as estimate of σmin, we have that B ≤ ∆ǫ/4. Let
∆ =

8 log(1/δ)

ǫ
,and c < 1 be suh that:

(1− c)E[B] = ∆ǫ/4.



68 Chapter 4. Finding Statistially Signi�ant Frequent ItemsetsSine E[B] > ∆ǫ/2, we have c ≥ 1/2. Using Cherno� bound, we have that:
Pr(B ≤ ∆ǫ/4) ≤ e−

c2E[B]
2

≤ e−
1
4

8 log(1/δ)
2 ≤ δ.Thus Pr(b1(σ̂min) + b2(σ̂min) > ǫ) ≤ δ. �

Algorithm 4.1: FindPoissonThresholdInput: t, n, vetor ~f of item frequenies, k, ∆, εOutput: Estimate σ̂min of σmin1 σ̃ ← highest expeted support of a k-itemset;2 σmax ← 0;3 W ← ∅;4 for i← 1 to ∆ do5 D̂i ← random dataset with parameters n,t,~f ;6 W ←W ∪
{frequent k-itemsets in D̂i w.r.t. σ̃

};7 if W = ∅ then8 σ̃ ← σ̃/2;9 goto 4;10 if (σmax = 0) then11 σmax ← max
X∈W,D̂i

{support of X in D̂i

}

+ 1;12 for σ ← σ̃ to σmax do13 for all X ∈W do14 pX(σ)← empirial probability of {ZX = 1};15 for all X,Y ∈W : X ∩ Y 6= ∅ do16 pX,Y (σ)← empirial probability of {ZX,Y = 1};17 b1(σ)←
∑

X,Y ∈W ;Y ∈I(X)

pX(σ)pY (σ);18 b2(σ)←
∑

X,Y ∈W ;X 6=Y ∈I(X)

pX,Y (σ);19 if b1(σ̃) + b2(σ̃) ≤ ε/4 then20 σmax ← σ̃;21 σ̃ ← σ̃/2;22 goto 3;23 σmin ← min {σ > σ̃ : b1(σ) + b2(σ) ≤ ε/4};24 return σmin;



4.3. Proedures for the Disovery of High-Support Signi�ant Itemsets 694.3 Proedures for the Disovery of High-SupportSigni�ant ItemsetsFor a given itemset size k, the value σmin identi�es a region of (relatively high)supports where we onentrate our quest for statistially signi�ant k-itemsets. Inthis setion we develop proedures to identify a family of k-itemsets (among thoseof support greater than or equal to σmin) whih are statistially signi�ant with aontrolled FDR. More spei�ally, in Subsetion 4.3.1 we show that a family withthe desired properties an be obtained as a subset of the frequent k-itemsets withrespet to σmin, seleted based on a standard multi-omparison test. However, thisproedure may inur in a large number of false negatives. To ahieve higher e�etive-ness, in Subsetion 4.3.2 we devise a more sophistiated proedure whih identi�es asupport threshold σ∗ ≥ σmin suh that all frequent k-itemsets with respet to σ∗ arestatistially signi�ant with a ontrolled FDR. In the next setion we will provideexperimental evidene that in many ases the latter proedure yields muh fewerfalse negatives.4.3.1 A proedure based on a standard multi-omparison testWe present a �rst, simple proedure to disover signi�ant itemsets with ontrolledFDR, based on the following well-established result in multi-omparison testing. Thefollowing test an be used for any hoie of the minimum support σ.Theorem 4.5 ([BY01℄). Assume that we are testing for m null hypotheses. Let
p(1) ≤ p(2) ≤ · · · ≤ p(m) be the ordered observed p-values of the m tests. For a givenparameter β, with 0 < β < 1, de�ne

ℓ = max

{

i ≥ 0 : p(i) ≤
i

m
∑m

j=1
1
j

β

}

, (4.2)and rejet the null hypotheses orresponding to tests (1), . . . , (ℓ). Then, the FDR forthe set of rejeted null hypotheses is upper bounded by β.Let D denote an input dataset onsisting of t transations over n items, and let
k be the �xed itemset size. First, we mine from D the set of frequent k-itemsets
F(k)(σ). Then, for eah X ∈ F(k)(σ), we test the null hypothesis HX

0 that theobserved support of X in D is drawn from a Binomial distribution with parameters
t and fX (the produt of the individual frequenies of the items of X), setting therejetion threshold as spei�ed by ondition (4.2), with parameters β and m =

(

n
k

).



70 Chapter 4. Finding Statistially Signi�ant Frequent ItemsetsBased on Theorem 4.5, the itemsets of F(k)(σ) whose assoiated null hypothesis isrejeted an be returned as signi�ant, with FDR upper bounded by β. Sine we areinterested in itemsets whose supports is ≥ σmin, we extrat from D only the itemsetsof support ≥ σmin. The pseudoode Proedure 1 implements the strategy desribedabove.Proedure 1Input: Dataset D of t transations over n items, vetor ~f of item frequenies, k,
β ∈ (0, 1);Output: Family of signi�ant k-itemsets with FDR ≤ β;1 Determine σmin and ompute F(k)(σmin) from D;2 for all X ∈ F(k)(σmin) do3 σX ← support of X in D;4 fX ← Πi∈Xfi;5 p(X) ← Pr(Bin(t, fX) ≥ σX);6 Let p(1), p(2), . . . , be the sorted sequene of the values p(X), with X ∈ F(k)(σmin);7 m←

(n
k

);8 ℓ = max

{

0, i : p(i) ≤ i
m

Pm
j=1

1
j

β

};9 return {X ∈ F(k)(σmin) : p(X) = p(i), 1 ≤ i ≤ ℓ
};4.3.2 Establishing a support threshold for signi�ant frequentitemsetsLet α and β be two onstants in (0, 1). We seek a threshold σ∗ suh that, withon�dene 1−α, the k-itemsets in F(k)(σ

∗) an be �agged as statistially signi�antwith FDR at most β. The threshold σ∗ is determined through a robust statistialapproah whih ensures that the number Qk,σ∗ = |F(k)(σ
∗)| deviates signi�antlyfrom what would be expeted in a random dataset, and that the magnitude of thedeviation is su�ient to guarantee the bound on the FDR.Let σmin be the minimum support suh that the Poisson approximation for thedistribution of Q̂k,σ holds for σ ≥ σmin, and let σmax be the maximum support ofan item (hene, of an itemset) in D. Our proedure will performs h omparisonsassoiated to supports σi, 0 ≤ i < h, with σmin ≤ σi ≤ σmax. In the i-th omparison,with 0 ≤ i < h, we test the null hypothesis H i

0 that the observed value Qk,σi
is drawnfrom the same Poisson distribution as Q̂k,σi

. We hoose as σ∗ the minimum of the
σi's, if any, for whih the null hypothesis H i

0 is rejeted. If no null hypothesis isrejeted, we set σ∗ =∞.For the orretness of the above proedure, it is ruial to speify a suitablerejetion ondition for eah H i
0. Assume �rst that, for 0 ≤ i < h, we rejet the



4.3. Proedures for the Disovery of High-Support Signi�ant Itemsets 71null hypothesis H i
0 when the p-value of the observed value Qk,σi

is smaller than αi,where the αi's are hosen so that ∑h−1
i=0 αi = α. Then, the union bound shows thatthe probability of rejeting any true null hypothesis is less than α. However, thisapproah does not yield a bound on the FDR for the set F(k)(σ

∗). In fat, someitemsets in F(k)(σ
∗) are likely to our with high support even under H i

0, hene theywould represent false disoveries. The impat of this phenomenon an be ontainedby ensuring that the FDR is below a spei�ed level β. To this purpose, we muststrengthen the rejetion ondition, as explained below.Fix suitable values β0, β1, . . . , βh−1 suh that ∑h−1
i=0 β−1

i ≤ β. For 0 ≤ i < h, let
λi = E[Q̂k,σi

]. We now rejet H i
0 when the p-value of Qk,σi

is smaller than αi, and
Qk,σi

≥ βiλi. The following theorem establishes the orretness of this approah.Theorem 4.6. With on�dene 1−α, F(k)(σ
∗) is a family of statistially signi�antfrequent k-itemsets with FDR at most β.Proof. Observe that sine ∑h−1

i=0 αi ≤ α, we have that all rejetions are orret,with probability at least 1− α. Let Ei be the event �H i
0 is rejeted� or equivalently,�the p-value of Qk,σi

is smaller than αi and Qk,σi
≥ βiλi�. Suppose that H i

0 is the�rst rejeted null hypothesis, for some index i, whene σ∗ = σi. In this ase, Qk,σiitemsets are �agged as signi�ant. We denote by Vi the number of false disoveriesamong these Qk,σi
itemsets. It is easy to argue that the expetation of Vi is upperbounded by E[Xi|Ei, Ēi−1, . . . , Ē0], where Xi is a Poisson variable with expetation

λi. Sine Qk,σi
≥ βiλi when H i

0 is rejeted, by the law of total probability we have
FDR ≤

h−1
∑

i=0

E

[

Vi

Qk,σi

]

Pr(Ei, Ēi−1, . . . , Ē0)

≤
h−1
∑

i=0

E [Vi]

βiλi

Pr(Ei, Ēi−1, . . . , Ē0)

≤
h−1
∑

i=0

E[Xi | EiĒi−1, . . . , Ē0]

βiλi
Pr(Ei, Ēi−1, . . . , Ē0)

=

h−1
∑

i=0

∑

j≥0 j Pr(Xi = j, Ei, Ēi−1, . . . , Ē0)

βiλi

≤
h−1
∑

i=0

λi

βiλi
=

h−1
∑

i=0

1

βi
≤ β.

�The method above needs the values h and σi, 0 ≤ i < h to be spei�ed. Note



72 Chapter 4. Finding Statistially Signi�ant Frequent Itemsetsthat h in�uenes how low a p-value must be to rejet the orresponding null hy-pothesis. An high value of h would require very low p-value to rejet an hypothesis,reduing the power of the method. We then hoose to onsider a number of hy-pothesis logarithmi in the di�erene σmax − σmin, and to set the orresponding σiwith exponentially inreasing steps. In our opinion this hoie gives a good tradeo�between the number of tested supports and the diversity between the tested hypothe-ses, sine we are testing more hypothesis for lower supports, where the number ofitemsets is higher. In partiular, we set h = ⌊log2(σmax − σmin)⌋ + 1 and σ0 = σminand σi = σmin + 2i, for 1 ≤ i < h.The pseudoode Proedure 4.3 spei�es more formally our approah to determinethe support threshold σ∗. Note that estimates for the λi's needed in the for-loop ofLines 7-9 an be obtained from the same random datasets generated in Algorithm 4.1,whih are used there for the estimation of σmin. In fat, sine λi is the expetednumber of k-itemsets of support at least σi in a random dataset D̂, we an estimate
λi ounting for eah of the ∆ random datasets generated by Algorithm 4.1 how many
k-itemsets appears with support ≥ σi.Proedure 2Input: Dataset D of t transations over n items, vetor ~f of item frequenies, k,

α, β ∈ (0, 1);Output: σ∗ suh that, with on�dene 1− α, F(k)(σ
∗) is a family of signi�ant

k-itemsets with FDR ≤ β1 Determine σmin and ompute F(k)(σmin) from D;2 i← 0;3 σ0 ← σmin;4 h← ⌊log2(σmax − σmin)⌋+ 1;5 Fix α0, . . . , αh−1 ∈ (0, 1) s.t. ∑h−1
i=0 αi = α;6 Fix β0, . . . , βh−1 ∈ (0, 1) s.t. ∑h−1
i=0 β−1

i = β;7 for i← 0 to h− 1 do8 Compute λi = E[Q̂k,σi
];9 while i < h do10 Compute Qk,σi

;11 pσi ← Pr(Poisson(λi) ≥ Qk,σi
);12 if (pσi ≤ αi) and Qk,σi

≥ βiλi then13 return σ∗ ← σi;14 σi+1 ← σmin + 2i+1;15 i← i + 1;16 return σ∗ ←∞ ;



4.4. Experimental Results 73Dataset n [fmin; fmax] m tRetail 16470 [1.13e-05 ; 0.57] 10.3 88162Kosarak 41270 [1.01e-06 ; 0.61] 8.1 990002Bms1 497 [1.68e-05 ; 0.06] 2.5 59602Bms2 3340 [1.29e-05 ; 0.05] 5.6 77512Bmspos 1657 [1.94e-06 ; 0.60] 7.5 515597Pumsb∗ 2088 [2.04e-05 ; 0.79] 50.5 49046Table 4.1: Parameters of the benhmark datasets: n is the number of items;
[fmin, fmax] is the range of frequenies of the individual items; m is the averagetransation length; and t is the number of transations.4.4 Experimental ResultsIn order to validate the methodology, a number of experiments have been performedon datasets whih are standard benhmarks in the ontext of frequent itemsets min-ing. The main harateristis of the datasets we use are summarized in Table 4.1.A desription of the datasets not introdued in Chapter 3 an be found in theFIMI Repository (http://fimi.s.helsinki.fi/data/), where they are availablefor download.First of all, we applied the Monte Carlo method of Subsetion 4.2.1 to determine
σmin: the ranges for whih the Poisson approximation holds are reported in Subse-tion 4.4.1. We then applied our methodology to the benhmark datasets of Table 4.1:our �ndings are presented in Subsetion 4.4.2. In Subsetion 4.4.3, we ompare thesets of signi�ant itemsets reported by our methodology against those returned bythe standard proedure to bound the FDR desribed in Subsetion 4.3.1.4.4.1 Range of σ for Poisson ApproximationFor eah dataset D of Table 4.1 and for itemset sizes k = 2, 3, 4, we applied Algorithm4.1 setting ∆ = 1, 000 and ǫ = 0.01. The values of σ̂min we obtained are reported inTable 4.2 (we added the pre�x �Rand� to eah dataset name, to denote the fat thatthe dataset is random and features the same parameters as the orresponding realone).4.4.2 Experiments on benhmark datasetsFor eah benhmark dataset in Table 4.1 and for k = 2, 3, 4, we apply Proedure 4.3with α = β = 0.05, and αi = β−1

i = 0.05/h. The results are displayed in Table 4.3,where, for eah dataset and for eah value of k, we show: the support σ∗ returned



74 Chapter 4. Finding Statistially Signi�ant Frequent Itemsets
σ̂minDataset k = 2 k = 3 k = 4RandRetail 9237 4366 784RandKosarak 273266 100543 20120RandBms1 268 23 5RandBms2 168 13 4RandBmspos 76672 15714 2717RandPumsb∗ 29303 21893 16265Table 4.2: Values of ŝmin for ǫ = 0.01 and for k = 2, 3, 4, in random datasets with thesame values of n, t, and with the same frequenies of the items as the orrespondingbenhmark datasets.by Proedure 4.3, the number Qk,σ∗ of k-itemsets with support at least σ∗, andthe expeted number λ(σ∗) of itemsets with support at least σ∗ in a orrespondingrandom dataset.

k = 2 k = 3 k = 4Dataset σ∗ Qk,σ∗ λ(σ∗) σ∗ Qk,σ∗ λ(σ∗) σ∗ Qk,σ∗ λ(σ∗)Retail ∞ 0 0 ∞ 0 0 848 6 0.01Kosarak ∞ 0 0 ∞ 0 0 21144 12 0.01Bms1 276 56 0.19 23 258859 0.06 5 27M 0.05Bms2 168 429 0.73 13 36112 0.25 4 714045 0.01Bmspos ∞ 0 0 16226 22 0.01 2717 891 0.38Pumsb∗ 29303 29 0.05 21893 406 0.35 16265 6293 1.37Table 4.3: Results obtained by applying Proedure 4.3 with α = 0.05, β = 0.05 and
k = 2, 3, 4 to the benhmark datasets of Table 4.1.We observe that for most pairs (dataset,k) the number of signi�ant frequent
k-itemsets obtained is rather small, but, in fat, at support σ∗ in random instanesof those datasets, less than two (often muh less than one) frequent k-itemsets wouldbe expeted. These results provide evidene that our methodology not only de�nessigni�ane on statistially rigorous grounds, but also provides the mining task withsuitable support thresholds that avoid explosion of the output size (the widely reog-nized �Ahilles' heel� of traditional frequent itemset mining). This feature ruiallyrelies on the identi�ation of a region of �rare events� provided by the Poisson ap-proximation. The disovery of signi�ant itemsets with low support (not returnedby our method) would require the extration of a large (possibly exponential) num-ber of itemsets, that would make any strategy aiming to disover these itemsetsunfeasible. Instead, we provide an e�ient method to identify, with high on�denelevel, the family of most frequent itemsets that are statistially signi�ant without



4.4. Experimental Results 75overwhelming the user with a huge number of disoveries.There are, however, a few ases where the number of itemsets returned is stillonsiderably high. Their large number may serve as a sign that the results allfor further analysis, possibly using lustering tehniques [XHYC05℄ or limiting thesearh to losed itemsets. For example, onsider dataset Bms1 with k = 4 and theorresponding value σ∗ = 5 from Table 4.3. Extrating the losed itemsets of supportgreater or equal to σ∗ in that dataset revealed the presene of a losed itemset ofardinality 154 with support greater than 7 in the dataset. This itemset, whoseourrene by itself represents an extremely unlikely event in a random dataset,aounts for more than 22M non-losed subsets with the same support among the27M reported as signi�ant.It is interesting to observe that the results obtained for dataset Retail providefurther evidene for the onlusions drawn in [GMMT07℄, whih suggested randombehavior for this dataset (although the randommodel in that work is slightly di�erentfrom ours, in that the family of random datasets also maintains the same transationlengths as the real one). Indeed, no support threshold σ∗ ould be established formining signi�ant k-itemsets with k = 2, 3, while the support threshold σ∗ identi�edfor k = 4 yielded as few as 6 itemsets. However, the onlusion drawn in [GMMT07℄was based on a qualitative assessment of the disrepany between the numbers offrequent itemsets in the random and real datasets, while our methodology on�rmsthe �ndings on a statistially sound and rigorous basis.Observe also that for some other pairs (dataset,k) our proedure does not identifyany support threshold useful for mining statistially signi�ant itemsets. This is anevidene that, for the spei� k and for the high supports onsidered by our approah,these datasets do not present a signi�ant deviation from the orresponding randomdatasets.Finally, in order to assess its robustness, we applied our methodology to randomdatasets. Spei�ally, for eah benhmark dataset of Table 4.1 and for k = 2, 3, 4, wegenerated 100 random instanes with the same parameters as those of the benhmark,and applied Proedure 4.3 to eah instane, searhing for a support threshold σ∗ formining signi�ant itemsets. In Table 4.4 we report the number of times Proedure 4.3was suessful in returning a �nite value for σ∗. As expeted, the proedure returned
σ∗ = ∞, in all ases but for 2 of the 100 instanes of the random dataset with thesame parameters as dataset Pumsb∗ with k = 2. However, in these two latterases, mining at the identi�ed support threshold only yielded a very small numberof signi�ant itemsets (one and two, respetively).
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σ∗ <∞Dataset k = 2 k = 3 k = 4RandomRetail 0 0 0RandomKosarak 0 0 0RandomBms1 0 0 0RandomBms2 0 0 0RandomBmspos 0 0 0RandomPumsb∗ 2 0 0Table 4.4: Results for Proedure 4.3 with α = 0.05, β = 0.05 for random versions ofbenhmark datasets; eah entry reports the number of times, out of 100 trials, theproedure returned a �nite value for σ∗.4.4.3 Relative e�etiveness of Proedures 4.2 and 4.3In order to assess the relative e�etiveness of the two proedures presented in theprevious setion, we applied them to the benhmark datasets of Table 4.1. Spei�-ally, we ompared the number of itemsets extrated using the threshold σ∗ providedby Proedure 4.3, with the number of itemsets �agged as signi�ant using the morestandard method based on Benjamini and Yekutieli's tehnique (Proedure 4.2), im-posing the same upper bound β = 0.05 on the FDR.The results are displayed in Table 4.5, where for eah pair (dataset,k), we reportthe ardinality of the family R of k-itemsets �agged as signi�ant by Proedure 4.2,and the ratio r = Qk,σ∗/|R|, where Qk,σ∗ is the number of k-itemsets of support atleast σ∗, whih are returned as signi�ant with the methodology of Subsetion 4.3.2.We observe that in all ases where Proedure 4.3 returned a �nite value of σ∗the ratio r is greater than or equal to 1 (exept for dataset Bms1 and k = 2, anddataset Bmspos and k = 3, where r is however very lose to 1). Moreover, in someases the ratio r is rather large. Sine both methodologies identify signi�ant k-itemsets among all those of support at least σmin, these results provide evidene thatthe methodology of Subsetion 4.3.2 is often more (sometimes muh more) e�etive.The methodology sueeds in identifying more signi�ant itemsets, sine it evaluatesthe signi�ane of the entire set F(k)(σ

∗) by omparing Qk,σ∗ to Q̂k,σ∗ . In ontrast,Proedure 4.2 must impliitly test onsiderably more hypotheses (orresponding tothe signi�ane all possible k-itemsets), thus the power of the test (1-Pr(Type-IIerror)) is signi�antly smaller.Observe that the ases where r = 0 in Table 4.5 orrespond to pairs (dataset,k) forwhih Proedure 4.3 returned σ∗ =∞, that is, the proedure was not able to identifya threshold for mining signi�ant k-itemsets. Note, however, that in all of these asesthe number of signi�ant k-itemsets returned by Proedure 4.2 is extremely small



4.4. Experimental Results 77(between 1 and 3). Hene, for these pairs, both methodologies indiate that there isvery little signi�ant information to be mined at high supports.
k = 2 k = 3 k = 4Dataset |R| r |R| r |R| rRetail 3 0 3 0 6 1.0Kosarak 1 0 1 0 12 1.0Bms1 60 0.933 64367 4.441 219706 122.9Bms2 429 1.0 25906 1.394 60927 11.72Bmspos 2 0 23 0.957 891 1.0Pumsb∗ 29 1.0 406 1.0 6288 1.001Table 4.5: Results using Test 4.2 to bound the FDR with β = 0.05 for itemsets ofsupport ≥ σmin.
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Chapter 5Maximal Dense Motif in BiologialSequenesThis hapter fouses on the disovery of rigid motifs, whih ontain bloks of solidharaters (solid bloks) separated by one or more don't ares. A rigid motif isdi�erent from an extensible motif in that the latter an ontain spaers, speialharaters that orrespond to possibly more than one harater of the input string.On the opposite, eah don't are harater orrespond to a single harater of theinput string, so all ourrenes of a rigid motif in the input string have the samelength.As disussed in Chapter 1, the signi�ane of a motif has been traditionally as-sessed through its frequeny, but the biologial signi�ane of a motif annot beexlusively related to its frequeny. In partiular, some very frequently ourringmotifs an deemed as non signi�ant beause of ertain aspets of their struture,suh as, for example, an exessive number of errors in their ourrenes. A strat-egy that returns frequent motifs with a moderate number of don't ares an thenpresumably provide a more signi�ant set of motifs.We propose a novel approah for ontrolling the number of don't ares in rigidmotifs. Spei�ally, we introdue the notion of dense motif, a frequent pattern wherethe fration of solid haraters is above a given threshold. Our density notion is more�exible and general than the one onsidered in [Par07, ACP09℄, sine it allows forarbitrarily long runs of don't ares as long as the fration of solid haraters in thepattern is above the threshold. We de�ne a natural notion of maximality for densepatterns and devise an e�ient algorithm, alled madmx (pronouned Mad Max ),whih performs omplete maximal dense motif extration from an input sequene,with respet to user-spei�ed frequeny and density thresholds.The key tehnial result at the ore of our extration strategy is a losure property79



80 Chapter 5. Maximal Dense Motif in Biologial Sequeneswhih a�ords the omplete generation of all maximal dense motifs in a breadth-�rstfashion, through an apriori -like strategy [AS94℄, starting from a relatively small setof solid bloks, and then repeatedly applying a suitable ombining operator, alledfusion, to pairs of previously generated motifs. In this fashion, our strategy avoidsthe generation and onsequent storage of intermediate patterns whih are not in theoutput set, whih ensures time and spae omplexities polynomial in the ombinedinput and output sizes.We performed a number of experiments on madmx to assess the biologial signif-iane of maximal dense motifs and to ompare madmx against its most reent andlose ompetitor varun [ACP09℄. For the �rst objetive, we used madmx to extratmaximal dense motifs from a number of human dna fragments. We ompared themotifs extrated against those in RepBase [JKP+05℄, the largest repository of repet-itive patterns for eukaryoti speies, using repeatmasker [SHG04℄, a popular toolfor masking repetitive dna. The experiments show that all of our returned motifs areourrenes of patterns in RepBase, and fully haraterize the family of sine/alurepeats (and partially the line/l1 family). This provides evidene that the notionof density, when applied to rigid motifs, aptures biologial signi�ane.Next we ompared the motifs produed by madmx with the ones returned byvarun using the z-sore measure. We ran both algorithms on several families ofdna fragments, limiting varun to the generation of rigid motifs and setting theparameters so as to obtain omparable output sizes, with motifs listed by dereasingz-sore. The experiments show that the top-m highest-ranking motifs returned bymadmx almost always feature higher z-sores than the orresponding top-m onesreturned by varun, even for large values of m, with only a modest inrease inrunning time, whih may be partly due to the fat that oding of madmx is yet tobe optimized. In fairness, we must remark that varun deals also with extensiblemotifs while madmx only targets rigid motifs.This hapter is organized as follows. In Setion 5.1 several tehnial de�nitionsand properties of motifs with don't ares are given. Setion 5.2 proves the losureproperty at the base of madmx and provides a high-level desription of the algorithm.In Setion 5.3, the experimental validation of madmx is presented.5.1 Preliminary de�nitions and propertiesLet Σ be an alphabet of m haraters and let s = s[0]s[1] . . . s[n − 1] be a stringof length n over Σ. We denote the length of s with |s|. We use s[i . . . j] to denotethe substring s[i] s[i + 1] · · · s[j] of s, for i ≤ j. Charaters in Σ are also alled



5.1. Preliminary de�nitions and properties 81solid haraters. We use ◦ 6∈ Σ to denote a distinguished harater alled wild ardor don't are harater. Let ǫ denote the empty string. A pattern x is a string in
{ǫ}∪Σ∪Σ(Σ∪{◦})∗Σ. However, whenever neessary, we will assume that patternsare impliitly padded to their left and right with arbitrary sequenes of don't areharaters.Given two patterns x, y we say that y is more spei� than x, and write x � y,i� for every i ≥ 0 either x[i] = y[i] or x[i] = ◦. Given two patterns x, y we say that
x ours in y at position ℓ i� x � y[ℓ . . . ℓ + |x| − 1]: we also say that y ontains x.For a string s, the loation list Lx of a pattern x in s is the omplete set of positionsat whih x ours in s. We refer to f(x) = |Lx| as the frequeny of pattern x in s.(Note that f(ǫ) = n.) As in [Ukk07℄, the translated representation of the loation list
Lx = {l0, l1, l2, . . . , lk} is τ(Lx) = {l1− l0, l2− l0, . . . , lk− l0}. Given two patterns x, y,we say that y subsumes x in s if f(x) = f(y) and y ontains x. As a onsequene,if y subsumes x then τ(Lx) = τ(Ly). A pattern x is maximal if it is not subsumedby any other pattern y. (We observe that this notion of maximality oinides withthat of [PCGS05℄.) Given a pattern x, its maximal extension M(x) is the maximalpattern that subsumes x, whih an be shown to be unique [PCGS05℄.In what follows, we all solid blok a string in Σ+ and a don't are blok a stringin ◦+. Furthermore, given a pattern x, d(x) denotes the number of don't areharaters ontained in x, while s(x) denotes the number of solid haraters in x.De�nition 5.1. The density δ(x) of x is: δ(x) = s(x)/|x|. Given a (density)threshold ρ, 0 < ρ ≤ 1, we say that a pattern x is dense if δ(x) ≥ ρ.Note that a solid blok is a dense pattern with respet to every threshold ρ. Itis reasonable to onentrate the attention on dense patterns that are not subsumedby any other dense pattern, sine they are the most interesting dense representativesin the equivalene lasses indued by �sharing� the same translated representation;these representatives are de�ned below.De�nition 5.2. A dense pattern x is a maximal dense pattern in s if it is notsubsumed by any other dense pattern x′ 6= x.Observe that a maximal dense pattern x needs not be a maximal pattern inthe general sense, sine M(x) might be a nondense pattern. However, every densepattern x is subsumed by at least one maximal dense pattern. In fat, all of themaximal dense patterns that subsume x are dense substrings ofM(x), namely, thosethat ontain x and are not substrings of any other dense substring ofM(x). (TODO:Andrea: la preedente non e' una prova rigorosa)We want to stress thatthere might be several maximal dense patterns that subsume x. As an example,



82 Chapter 5. Maximal Dense Motif in Biologial Sequenesfor ρ = 2/3, the dense pattern x = B in the string S = AdBeCfAgBhC is subsumedby maximal dense patterns A ◦ B and B ◦ C that are not maximal patterns, while
M(x) = A ◦ B ◦ C is not dense.De�nition 5.3. Given a frequeny threshold σ and a density threshold ρ, a pattern
x is a dense maximal motif in s if x is a maximal dense pattern in s with respet to
ρ, and f(x) ≥ σ. A dense maximal motif for ρ = 1 is also referred to as maximalsolid blok. In the rest of the hapter, we will omit referening the input string swhen lear from the ontext.The problem we takle is then the following: we are given an input string s,a frequeny threshold σ, and a density threshold ρ, and we want to �nd all themaximal dense motifs in s. We restrit our attention to dense motifs beause thenotion of density provides a more general way to ontrol the number of don't aresthat appear in a motif, and the number of don't ares in a motif is related to itsbiologial signi�ane.An important property of maximal dense patterns, whih we will exploit in ourmining strategy, is that all of their solid bloks are maximal solid bloks. Thisproperty is stated in the following proposition.Proposition 5.4. Let x be a maximal dense pattern with respet to a density thresh-old ρ, and let b = x[i . . . j] be a solid blok in x suh that x[i− 1] = x[j + 1] = ◦ and
j ≥ i. Then, b is a maximal solid blok.Proof. For the sake of ontradition, assume that b is not a maximal solidblok. Consider M(x) and let x̃ = M(x)[ℓ1 . . . ℓ2] be the shortest substringof M(x) subsuming x made of omplete solid bloks, that is, suh that with
M(x)[ℓ1 − 1] = M(x)[ℓ2 + 1] = ◦. By known results [Ukk07, Pis02℄, all ompletesolid bloks in M(x), hene in x̃, are maximal solid bloks. Thus x̃ ontains moresolid haraters than x, and no more don't ares than x. This implies that x̃ isstritly denser that x. This ontradits the hypothesis that x is maximal dense withrespet to ρ. �

5.2 An algorithm for MAximal Dense Motif eXtra-tionIn this setion we desribe an algorithm, alled madmx (pronouned Mad Max ), formaximal dense motif extration. The algorithm adopts a breadth-�rst apriori -like



5.2. An algorithm for MAximal Dense Motif eXtration 83strategy [AS94℄, similar in spirit to the one developed in [ACP09℄, using maximalsolid bloks as building bloks by virtue of Proposition 5.4. madmx operates byrepeatedly ombining together, in a suitable fashion, pairs of maximal dense motifs,and extrating from the ombinations less frequent maximal dense motifs.A key notion for the algorithm, underlying the aforementioned ombining oper-ations, is the fusion of haraters/patterns.De�nition 5.5. Given three haraters c, c1, c2 ∈ Σ∪{◦}, we say that c is the fusionof c1 and c2, and write c = c1 ▽ c2, if one of the following holds:1. c = c1 = c2;2. c1 = ◦, c = c2 6= ◦;3. c = c1 6= ◦, c2 = ◦.Observe that if c1, c2 ∈ Σ and c1 6= c2, c1▽ c2 is not de�ned.The above notion of fusion generalizes to patterns as follows.De�nition 5.6. Given three patterns x, y, z and an integer d, we say that z is the
d-fusion of x and y, and write z = x▽dy, if z an be obtained by removing the leadingand trailing don't are haraters from the pattern m de�ned as m[i] = x[i+d]▽y[i],for all indies i.Note that if d > |x| we have x▽d y = x ◦d′ y for d′ = d − |x|, while if d < −|y|we have x▽d y = y ◦d′′ x for d′′ = −d− |y|.The breadth-�rst strategy adopted by our algorithm ruially relies on the fol-lowing theorem, whih highlights the struture of dense motifs:Theorem 5.7. Let x be a maximal dense motif with d(x) > 0. Then:(a) there exists a maximal solid blok b in x suh thatM(x) =M(b), or(b) there exist two maximal dense motifs y1, y2 suh that:

• M(x) =M(y1▽d y2), for some d;
• there are two maximal solid bloks b1, b2 in x and an integer d̂ > 0 suhthat b1 is a maximal solid blok in y1, b2 is a maximal solid blok in y2,and b1 ◦d̂ b2 is ontained in y1▽d y2;
• f(x) < min{f(y1), f(y2)};



84 Chapter 5. Maximal Dense Motif in Biologial SequenesFor the proof of Theorem 5.7 we need to de�ne another type of pattern ombi-nation, namely the operation of merge between two patterns, whih is similar to theone introdued in [PCGS05℄. Given two haraters c1, c2, we de�ne the operator ⊕between them suh that c1 ⊕ c2 = ◦, if c1 6= c2, and c1 ⊕ c2 = c1 = c2, otherwise.De�nition 5.8. Given two patterns x, y and an integer d, the d-merge of x and yis the pattern z = x⊕d y whih an be obtained by removing all leading and trailingdon't ares from the pattern m de�ned as m[i] = x[i + d]⊕ y[i] for all i.We want to stress the di�erene between the notions of merging and fusion: themerge of two patterns x, y is always well de�ned and more general than x, y, whilethe fusion of x, y may not exist and, if it does, is more spei� than x, y.For the proof of Theorem 5.7 we also need the property established by the fol-lowing lemma.Lemma 5.9. Let x and y be maximal patterns, and d be an integer suh that z =

x ⊕d y 6= ǫ. Then z is a maximal pattern. Moreover, if z 6= x (resp., z 6= y) then
f(z) > f(x) (resp., f(z) > f(y)).Proof. First we prove that z is maximal. By ontradition, suppose that this is notthe ase. Then, there exists a position i suh that z[i] = ◦ and we an replae the
◦ with a solid harater c without dereasing the frequeny of the pattern. (Notethat the position of the substitution an be to the left of the �rst solid harater in
z or to the right of the last harater in z.) Sine x and y are more spei� than z,to every ourrene of x and y in the string orresponds an ourrene of z. Hene,every ourrene of x (resp., y) in the string, ontains c in its i + dth (resp., ith)position. Therefore, by maximality of x and y, it must be z[i] = x[i + d] = y[i] = c,whih is a ontradition. The relations between the frequenies of x, y and z followtrivially by their maximality. �We are now ready to prove the theorem.Proof.[Theorem 5.7℄ Given a pattern x and two nonnegative integers i ≤ j, we let
x∗[i . . . j] denote the pattern obtained by removing all the leading and trailing don'tare haraters from x[i . . . j]. Sine x is a maximal dense pattern and dc(x) > 0, itis easy to see that there exist two dense patterns x1, x2 and an integer d > 0 suhthat x = x1 ◦d x2, hene there exists an index s1 > 0 suh that x∗[0 . . . s1 − 1] and
x∗[s1 + 1 . . . |x| − 1] are dense. We all these two patterns the level-1 deompositionof x (observe that many suh deompositions may exist). Also, we let ℓ1 = 0 and
r1 = |x| − 1. Now, onsider the following iterative proess:



5.2. An algorithm for MAximal Dense Motif eXtration 851. If in the level-i deomposition of x both x∗[ℓi . . . si − 1] and x∗[si + 1 . . . ri]have frequeny stritly greater than f(x), or at least one of x∗[ℓi . . . si−1] and
x∗[si + 1 . . . ri] is a solid blok with frequeny equal to f(x), then terminate;2. Otherwise, let y = x∗[ℓi+1 . . . ri+1] be (an arbitrary) one of x∗[ℓi . . . si − 1] or
x∗[si + 1 . . . ri] whih is not a solid blok and has frequeny equal to f(x).Sine y is dense, there exists an index si+1, ℓi+1 < si+1 < ri+1 suh that
x∗[ℓi+1 . . . si+1 − 1] and x∗[si+1 + 1 . . . ri+1] are both dense. Call these twopatterns the level-(i + 1) deomposition of x. Set i = i + 1 and go to Step 1.Assume that the deomposition proess ends by �nding a solid blok b thatis a solid blok in x and has f(b) = f(x). Then, M(b) = M(x) and the the-orem follows. Otherwise, at the last level j of the deomposition, we have that

f(x) < min {f(x∗[ℓj . . . sj − 1]), f(x∗[sj + 1 . . . rj ])}. In this latter ase, as ex-plained in Setion 5.1 (after De�nition 5.2), we an determine two maximal densepatterns y1, y2 suh that y1 ontains x∗[ℓj . . . sj − 1], y2 ontains x∗[sj + 1 . . . rj ],and with M(y1) = M(x∗[ℓj . . . sj − 1]) and M(y2) = M(x∗[sj + 1 . . . rj]). Sine
f(y1) = f(x∗[ℓj . . . sj − 1]) and f(y2) = f(x∗[sj + 1 . . . rj]), we have that f(x) <

min {f(y1), f(y2)}. Observe that by onstrution there must exist two solid bloks
b1, b2 in x and an integer d̂ suh that b1 is a solid blok in y1, b2 is a solid blok in
y2, and b1 ◦d̂ b2 is a sequene of two solid bloks in x. In fat, b1 (resp., b2) is the last(resp., the �rst) solid blok of x∗[ℓj . . . sj − 1] (resp., x∗[sj + 1 . . . rj ]).Next, we show that there exists a d suh that the d-fusion y1▽d y2 is well de�ned,ontains b1 ◦d̂ b2, andM(y1 ▽d y2) =M(x). We proeed as follows. Let us �align�
M(x) and y1 so to math the ourrenes of b1 in both patterns. Then, for a ertaininteger p,M(x)[i+p] orresponds to y1[i]. Assume, for the sake of ontradition, thatthere exists an index j suh thatM(x)[j + p] is not more spei� than y1[j]. Then,Lemma 5.9 implies that z =M(x)⊕pM(y1) 6=M(y1), whih ontains x∗[ℓj . . . sj −
1], is maximal and has frequeny stritly greater than f(y1), whih is impossiblebeause we have hosen y1 suh that M(x∗[ℓj . . . sj − 1]) = M(y1) and therefore
f(x∗[ℓj . . . sj − 1]) = f(y1). Therefore,M(x) ontains y1. A similar argument showsthatM(x) ontains y2.Sine y1 and y2 are ontained inM(x), there must exist a d suh that y1▽d y2 iswell de�ned and an be aligned withM(x) in suh a way to math the bloks b1 and
b2 of y1 and y2 with the orresponding bloks in M(x). Moreover, M(x) ontains
y1 ▽d y2, hene f(y1 ▽d y2) ≥ f(M(x)) = f(x). However, sine y1 ▽d y2 ontainsboth x∗[ℓj . . . sj − 1] and x∗[sj + 1 . . . rj ], it ontains also x∗[ℓj . . . rj ], whih, by thedeomposition proess, has frequeny equal to f(x). Therefore, f(y1▽d y2) ≤ f(x),



86 Chapter 5. Maximal Dense Motif in Biologial Sequenesand the theorem follows sine f(y1▽d y2) = f(x). �In essene, Theorem 5.7 guarantees that we an �nd any maximal dense motif
x either within M(b), for some maximal solid blok b, or by d-fusing two higher-frequeny maximal dense motifs y1, y2, for some d, �nding z =M(y1▽d y2) and thenpossibly �trimming� z on both sides to obtain x. Also, the theorem shows that in thelatter ase the trimmed sequene must ontain at least one maximal solid blok b1 of
y1 and one maximal solid blok b2 of y2. Moreover, we an disregard those d-fusions
y1▽d y2 for whih no pair of dense subsequenes b1 of y1 and b2 of y2 exists suh that
b1 ◦d̂ b2 ontained in y1▽d y2 for some d̂ > 0.Algorithm 5.1: madmxInput: String s, frequeny threshold σ, density threshold ρOutput: Maximal dense motifs1 previous ← ∅, current ← ∅, next ← ∅ ;2 blocks ← maximal solid bloks of s with frequeny ≥ σ;3 for eah b ∈ blocks do4 �ndM(b) ;5 current ← current∪ extratMaximalDense(M(b));6 while current 6= ∅ do7 for eah x1 ∈ current do8 for eah x2 ∈ previous ∪ current do9 for eah d s.t. z = x1 ▽d x2 is a valid fusion do10 �ndM(z);11 DM← extratMaximalDense(M(z));12 for eah x ∈ DM do13 if f(x) ≥ σ and x /∈ previous ∪ current then next ← next ∪ {x};14 previous ← previous ∪ current ;15 current ← next ; next ← ∅;16 return previous ;madmx implements the strategy inspired by Theorem 5.7 and pseudoode isgiven below as Algorithm 5.1. It employs three (initially empty) sets previous, ur-rent, and next. In Line 2, the algorithm �rst stores the maximal solid bloks b in
s for the given frequeny in the set bloks (see Setion 5.1). Then, it extrats allof the appropriate maximal dense motifs fromM(b) in lines 3�5, using the funtionextratMaximalDense, as implied by Theorem 5.7(a). Finally, lines 6�15 implementthe strategy as implied by Theorem 5.7(b). (In Line 9 a d-fusion y1▽d y2 is onsid-ered valid if it satis�es the seond property of Theorem 5.7(b).) Given a maximalmotif x, extratMaximalDense returns all the maximal dense motifs in x whih sat-isfy the seond ondition of Theorem 5.7. In pratie, when alled on Line 5, itreturns all the maximal dense substrings of M(b) that ontains b. When alled on



5.2. An algorithm for MAximal Dense Motif eXtration 87Line 11, the maximal motif passed in input will be x = M(y1 ▽d y2). In this aseextratMaximalDense returns all the maximal dense substrings of x that satisfy theseond property of Theorem 5.7(b), and thus ontain at least one blok b1 of y1 andat least one blok b2 of y2.The orretness of Algorithm madmx is proved by the following.Theorem 5.10. Given a string s, frequeny threshold σ and density threshold ρ,Algorithm madmx produes in output all the maximal dense motifs in s.Proof. Let assume that there exists a maximal dense motif x that is not returned bymadmx 
Sine madmx produes all the maximal dense motifs that an be generatedfrom M(b), where b is a maximal solid blok (lines 3�6), if x is not produed inoutput then there exists a pair of maximal dense motifs y1, z1 suh that x an befound fromM(y1▽d z1), where y1, z1 satisfy the properties of Theorem 5.7(b), suhthat one of y1, z1 is not produed by madmx 
Let assume that y1 is the maximaldense motif not produed by madmx 
We an apply the same reasoning to y1, thuswe an �nd another maximal dense motif y2 not produed by madmx�teratingthis reasoning, we an �nd a sequene y1, y2, . . . , yi, . . . of dense motifs suh that(i) ∀i, yi are maximal dense motifs (ii) f(yi+1) > f(yi), and (iii) yi is derived fromthe fusion of yi+1 with another maximal dense motif Theorem 5.7 implies that thissequene must be �nite, and that the last element of this sequene, ỹ, is either asolid blok or an be found in the maximal extension of a solid blok. Therefore ỹhas been generated by the algorithm (lines 3�5), that is a ontradition. �An important issue for the e�ieny of madmx is that it needs to ompute theexat frequeny of eah generated pattern. For what onerns the fusion operationof two patterns x1, x2 in Line 10, observe that a simple omputation on the pairs
(ℓ1, ℓ2) ∈ Lx1 ×Lx2 is su�ient to yield the frequenies of all the valid fusions of twopatterns. However, given z = x1 ▽d x2, for a maximal dense pattern w whih doesnot ontain z in its entirety, we an only onlude that f(w) ≥ f(z).Therefore, in the ourse of the algorithmwe generate two lasses of maximal densemotifs: those whose exat frequenies are known (�nal motifs), and those for whihonly a lower bound to their frequenies is known (tentative motifs). Algorithm 5.1is modi�ed aordingly, requiring that x1 and x2 in lines 8 and 9 of the pseudoodebe �nal. Whenever the set current ontains no �nal motifs,we an label as �nal themotif in current with the highest lower bound to its frequeny, and ontinue withthe generation. The orretness of this assumption is proved by the following.Theorem 5.11. Let x be the tentative motif x with the highest lower bound lb(x) onits frequeny f(x) when current does not ontain any �nal motif. Then f(x) = lb(x).



88 Chapter 5. Maximal Dense Motif in Biologial SequenesProof. For the sake of ontradition, assume that f(x) 6= lb(x). In partiular, itmust be f(x) > lb(x). From Theorem 5.7 we know that there must be two densemotifs x1, y1 with min {f(x1), f(y1)} > f(x) and an integer d suh that x an beobtained, with its exat frequeny, from M(x1 ▽d y1). If both x1 and y1 havealready been moved to the previous list from Algorithm 5.1, we have f(x) = lb(x).The only possibility is then that at least one of x1 and y1 has not been moved to
previous. Let x1 be this dense motif. Then x1 is either a tentative motif or has notbeen generated by any fusion yet. Applying the same reasoning to x1, we have thatthere exists two dense motifs x2, y2 suh that at least one of them (let say x2) hasnot been put in previous, min {f(x2), f(y2)} > f(x1) and x1 an be obtained, withits real frequeny, from a valid fusion of x2, y2. Iterating this reasoning, we an �nda sequene x1, x2, . . . , xi, . . . of dense motifs suh that (i) ∀i, xi has not been put in
previous, (ii) f(xi+1) > f(xi), and (iii) xi is derived from the fusion of xi+1 withanother pattern. Theorem 5.7 implies that this sequene must be �nite, and thatthe last element of this sequene, x̃, is either a solid blok or an be found in themaximal extension of a solid blok. Therefore x̃ has been generated by the algorithm(lines 3�5) with its orret frequeny, thus it is in previous, that is a ontradition. �A rude upper bound on the running time of madmx an be derived by observingthat, for eah pair of dense maximal motifs in output, the time spent during all theoperations onerning that pair is (naively) O (n3), where n is the length of the inputstring. If P patterns are produed in output, the overall time omplexity is O (n3P 2).5.3 Experimental validation of MADMXWe developed a �rst, non-optimized, implementation of madmx in C++ also inludingan additional feature whih eliminates, from the set of initial maximal solid bloks,those shorter than a given threshold minℓ. The purpose of this latter heuristis isto speed up motif generation driving it towards the disovery of (possibly) moresigni�ant motifs, with the exlusion of spurious, low-omplexity ones. (The ode isavailable for download at http://www.dei.unipd.it/wdyn/?IDsezione=4534.)We performed two lasses of experiments to evaluate how signi�ant is the setof motifs found using our approah. The �rst lass of experiments, desribed inSetion 5.3.1, ompares our motifs with the known biologial repetitions available inRepBase [JKP+05℄, a very popular genomi database. The seond lass of experi-ments, desribed in Setion 5.3.2, aims at omparing the motifs extrated by madmxwith those extrated by varun using the same z-sore metri employed in [ACP09℄



5.3. Experimental validation of MADMX 89for assessing their relative statistial signi�ane.5.3.1 Evaluating signi�ane by known biologial repetitionsRepBase [JKP+05℄ is one of the largest repositories of prototypi sequenes repre-senting repetitive dna from di�erent eukaryoti speies, olleted in several di�erentways. RepBase is used as a referene olletion for masking and annotation of repet-itive dna through popular tools suh as repeatmasker [SHG04℄. repeatmaskersreens an input dna sequene s for simple repeats and low omplexity portions,and it uses RepBase to sreen for interspersed repeats. Sequene omparisons areperformed through Smith-Waterman soring. repeatmasker returns a detailedannotation of the repeats ourring in s, and a modi�ed version of s in whih all ofthe annotated repeats are masked by a speial symbol (N or X). With the urrentversion of RepBase, on average, almost 50% of a human genomi dna sequene willbe masked by the program [SHG04℄.Most of the interspersed repeats found by repeatmasker belong to the familiesalled sine/alu and line/l1: the former are Short INterspersed Elements that arerepetitive in the dna of eukaryoti genomes (the Alu family in the human genome);the latter are Long Interspersed Nuleotide Elements, whih are typially highlyrepeated sequenes of 6K�8K bps, ontaining rna polymerase II promoters. Theline/l1 family forms about 15% of the human genome.We have onduted an experimental study using madmx and repeatmaskeron Human Glutamate Metabotropi Reeptors hgmr 1 (410277 bps) and hgmr 5(91243 bps) as input sequenes. We have downloaded the sequenes from the Marh2006 release of the UCSC Genome database (http://genome.us.edu). repeat-masker version was open-3.2.7, sensitive mode, with the query speies assumed tobe homologous; it ran using blastp version 2.0a19MP-WashU, and RepBase update20090120.The experiments to assess the biologial signi�ane of the maximal dense mo-tifs extrated by madmx involved three separate stages. In the �rst stage, we ranrepeatmasker on the input sequenes hgmr 1 and hgmr 5, fousing the atten-tion only on interspersed repeats using RepBase. One of the output �les (.out) ofrepeatmasker ontains the list of found repeats, and provides, for eah our-rene, the substring s[i . . . j] of the input sequene s whih is loally aligned with (asubstring of) the repeat.In the seond stage, we ran madmx on the same DNA sequenes, with densitythreshold ρ = 0.8, frequeny threshold σ = 4, and minℓ = 15. In order to �lter outsimple repeats and low omplexity portions, whih are dealt with by repeatmasker



90 Chapter 5. Maximal Dense Motif in Biologial Sequeneswithout resorting to RepBase, we modi�ed madmx eliminating periodi maximalsolid bloks (with short periods), whih are the seeds of simple repeats. Then, weidenti�ed the ourrenes of the motifs returned by madmx in the input sequenes,using repeatmasker as a pattern mathing tool (i.e., replaing RepBase with theset of motifs returned by madmx as the database of known repeats). The underlyingidea behind this use of repeatmasker was to employ the same loal alignmentalgorithms, so to make the omparison fairer.In the third stage, we ross-heked the intervals assoiated with the ourrenesof the RepBase repeats against those assoiated with the ourrenes of our motifs.Surprisingly, madmx was able to identify and haraterize all of the intervals of theknown sine/alu repeats in hgmr 1 and hgmr 5 (respetively, 56 repeats plus anextra unlassi�ed for hgmr 1, and 20 plus an extra unlassi�ed for hgmr 5). Theremaining ourrenes of the motifs permitted to identify 29 repeats out of 78 of theline/l1 family in hgmr 1.The hoie of the parameters ρ, σ, and minl was done using values that seemedreasonable to us, and the results obtained seem to on�rm our de�nition. However,a more in depth study of the e�etivenes5.3.2 Evaluating signi�ane by statistial z-sore rankingThe z-sore is the measure of the distane in standard deviations of the outomeof a random variable from its expetation. Consider a dna sequene s of length nas if it was generated by a stationary, i.i.d. soure with equiprobable symbols; anapproximation to the z-sore for a motif of length m that ontains c solid haratersand appears f times in s is given by Z = f−(n−m+1)×p√
(n−m+1)×p×(1−p)

, where p = (1/4)c. Thismetri was used in [ACP09℄ to assess the signi�ane of the motifs extrated byvarun and to rank them in the output. varun is designed to extrat extensiblemotifs from one or more input sequenes, and works by onverting the input into asequene of possibly overlapping ells, built during an initialization phase, so thata maximal extensible pattern orresponds to a sequene of ells. All the sequenesof ells orresponding to maximal extensible patterns are fund during an iterationphase.We employed the ode for varun provided by the authors to extrat the rigidmotifs from the dna sequenes analyzed in [ACP09℄. We then ran madmx on thesame sequenes using the same frequeny threshold σ, and setting the minimumdensity threshold ρ in suh a way to obtain a omparable yet smaller output size.In this fashion, we tested the ability of madmx to produe a suint yet signi�antset of motifs, by virtue of its more �exible notion of density.



5.3. Experimental validation of MADMX 91The results are shown in Table 5.1 and Table 5.2. For varun we used D = 1,thus allowing at most one don't are between two solid haraters, and ran madmxwith minℓ = 1, so to obtain the omplete family of maximal dense motifs. In thetable, there is a row of the table for eah sequene (identi�ed in the �rst olumn).Eah sequene, whose total length is reported in the seond olumn, is obtained asthe onatenation of a number of smaller subsequenes, reported in the third olumn.We used the onatenation of input sequenes sine madmx is designed to run onone input sequene. On eah sequene, both tools were run with the same frequenythreshold σ, and the table reports for both the output size in terms of the numberof motifs returned and the exeution time in seonds. Also, for madmx, the tablereports the density threshold ρ used in eah experiment.varun madmxname length # σ |output| time ρ |output| timeae2 500 1 2 1866 3s 0.7 1762 18sap1 500 1 2 1555 1s 0.7 1304 5sgal4 3000 6 4 9764 12s 0.67 7606 67sgal4(∗) 3000 6 4 9764 12s 0.65 11733 191suasgaba 1000 2 2 4586 30s 0.70 4194 90sTable 5.1: Results of the omparison with varun: output size and running time.best top-m z-soresname length # σ m=10 m=50 m=100 m∗ m̂ae2 500 1 2 10 50 100 1571 1067ap1 500 1 2 10 50 100 392 13gal4 3000 6 4 10 49 99 16 16gal4(∗) 3000 6 4 10 50 100 9764 301uasgaba 1000 2 2 10 50 100 175 175Table 5.2: Results of the omparison with varun: z-sores. (TODO: Andrea:add olumn m=1000)For eah experiment, we ompared the best top-m z-sores, with m = 10, 50, and
100, as follows. Note that, in general, the top-m motifs found by madmx and varundi�er. Thus, we let zi

M (resp., zi
V ) be the z-sore of the ith motif in dereasing z-soreorder obtained by madmx (resp., varun). For eah m, the table reports how manytimes it was zi

M ≥ zi
V , for 1 ≤ i ≤ m. Also, olumn m∗ (resp., olumn m̂) gives themaximum m suh that zi

M ≥ zi
V (resp., zi

M > zi
V ) for every 1 ≤ i ≤ m.The results of the experiment show that even when madmx is alibrated to yielda slightly smaller output, the quality of the motifs extrated, as measured by the



92 Chapter 5. Maximal Dense Motif in Biologial Sequenesz-sore, is higher than those output by varun. Indeed, for sequenes ae2 anduasgaba a very large pre�x of the top-ranked motifs extrated by madmx featuresstritly greater z-sores of the orresponding top-ranked ones extrated by varun.In fat, for all of the four sequenes, at least the thirteen top-ranked motifs enjoythis property. To shed light on the slightly worse performane of madmx on gal4,we re-ran madmx with a di�erent density threshold, so to obtain a slightly largeroutput (see row gal4(∗)). In this ase, the top-301 motifs extrated by madmx havez-sore stritly greater than the orresponding motifs extrated by varun, while theexeution time remains still aeptable.For all runs, the top z-sore of a motif disovered by madmx is onsiderablyhigher than the one returned by varun. Spei�ally, on ae2 our best z-sore is387 763 vs. 12 027 of varun; on ap1, we have 12 027 vs. 1 490; on gal4 it is 75 vs.28; on gal4(∗) it is 150 vs. 28; on uasgaba we have 134 532 vs. 67 059. This re�etsthe high seletivity of madmx, whih is to be attributed mostly to adoption of amore �exible density onstraint.We must remark that madmx (in its urrent nonoptimized version) is slowerthan varun, but it still runs in time aeptable from the point of view of a user.To further investigate the tradeo� between exeution time and signi�ane of thedisovered motifs, we repeated the experiments running madmx with minℓ = 2 and
ρ = 0.65, for all sequenes. The running time of madmx was almost halved, whilethe small output produed still featured high quality. Notably, for sequenes ae2,ap1, and uasgaba the top-100 motifs extrated by madmx have z-sore greater orequal than the orresponding ones returned by varun.We also have attempted a omparison between varun and madmx on longersequenes (suh as hgmr 1) at higher frequenies (sine, unfortunately, varun doesnot seem to be able to handle low frequenies on very long sequenes). Even allowinga higher number of don't ares between solid haraters (D = 2) for the motifs ofvarun, all of the top-m z-sores featured by the motifs extrated by madmx aregreater than or equal to the orresponding sores in the ranking of varun, with mreahing the size of varun's output. The small values of D onsidered (D = 1, 2) areonsistent with the experiments reported in [ACP09℄ for the input DNA sequeneswe onsidered. In [ACP09℄ those values have been shown to produe biologialsigni�ant motifs. In fairness, we remark that varun was designed to work at itsbest on protein sequenes, while madmx's main target are dna sequenes. Hene,these two tools should be regarded as omplementary. Moreover, varun has theadvantage of retrieving �exible motifs, while madmx fouses only on rigid ones.



Chapter 6Signi�antly Mutated Pathways inBiologial NetworksIn this hapter we propose a rigorous framework for de novo identi�ation of sig-ni�antly mutated subnetworks. The naïve approah is to examine mutations onall subnetworks, or all subnetworks of a �xed size and to apply statistial standardmulti-hypothesis testing. This approah is problemati. First, the enumeration ofall suh subnetworks is prohibitive even for subnetworks of reasonable size. Se-ond, the extremely large number of hypotheses that are tested makes it di�ult toahieve statistial signi�ane. Finally, biologial interation networks typially havesmall diameter due to the presene of hubs, genes of high degree. There are reportsthat aner-assoiated genes have more interation partners than non-aner genes[L+07a, JB06℄, and indeed highly mutated aner genes like TP53 have high degreein most interation networks (e.g. the degree of TP53 in HPRD is 238). Suh or-relations might lead to a large number of �uninteresting� subnetworks being deemedsigni�ant, sine any subnetwork ontaining an highly mutated hub will be returnedas signi�ant.Our framework employs two strategies to overome the di�ulties desribedabove. First, we formulate an in�uene measure between pairs of genes in the net-work using a di�usion proess de�ned on the graph. This quantity onsiders a geneto in�uene another gene if they are both lose in distane on the graph and thenumber of paths between them is relatively high ompared to all paths starting fromone of the two genes. We use this measure to build a smaller in�uene graph thatinludes only the mutated genes but enodes the neighborhood information from thelarger network. We then identify signi�ant subnetworks using two tehniques. Inthe ombinatorial model we onsider a graph in whih eah mutated gene is rep-resented by a node, and two genes are onneted if the in�uene between them is93



94 Chapter 6. Signi�antly Mutated Pathways in Biologial Networkslarger then some threshold. We formulate on this graph the onneted maximumoverage problem of �nding the onneted subgraph that is altered in the highestnumber of patients. We show that this problem is NP-hard and desribe an e�ientapproximation algorithm. We then derive an alternative approah, the enhanedin�uene model, in whih the in�uene between pairs of genes is enhaned by thenumber of mutations observed on these genes. Again we onsider a graph on the setof mutated genes with edges onneting pairs of genes with enhaned in�uene abovea given threshold. Sine the mutation information is already enoded in the edgeweights, the omputational problem is redued to just �nding onneted omponentsin the graph. Finally, we derive a two-stage multiple hypothesis test that mitigatesthe testing of a large number of hypotheses by fousing on the number of disoveredsubnetworks of a given size rather than on individual subnetworks. We also showhow to estimate the false disovery rate (FDR) inurred by this test.We tested our approah on the HPRD human interation network using somatimutation data from two reently published studies: (i) 601 genes in 91 glioblastomamultiforme patients from The Caner Genome Atlas (TCGA) projet; (ii) 623 genesin 188 lung adenoarinoma patients sequened during the Tumor Sequening Projet(TSP). In both datasets, we identify statistially signi�ant mutated subnetworksthat are enrihed for genes on pathways known to be important in these aners,inluding the p53 and RTK/RAS/PI(3)K pathways. We also identify the Nothsignaling pathway as signi�antly mutated in the lung samples. Noth signaling isknown to be deregulated in a number of aners, but was not reported as mutatedin the TSP publiation. Our work is the �rst, to our knowledge, to propose aomputationally e�ient strategy for de novo identi�ation of statistially signi�antmutated subnetworks. We antiipate that our approah will �nd inreasing use asaner genome studies inrease in size and sope.The rest of the hapter is organized as follows: in Setion 6.2 the in�uene graphis de�ned, while Setion 6.3 presents the two methods we design to �nd signi�antlymutated pathways. Setion 6.4 presents the statistial method we design to addressthe signi�ane of our �ndings, and Setion 6.5 illustrates the results we obtainedwith our method.The results presented in this hapter were published in a preliminary versionin [VUR09, VUR10℄.



6.1. Mathematial model 956.1 Mathematial modelWe model the interation network by a graph G = (V, E), where the verties in
V represent individual proteins (and their assoiated genes), and the edges in Erepresent (pairwise) protein-protein or protein-DNA interations. Let T ⊆ V be thesubset of genes that have been tested, or assayed, for mutations in a set S of samples(patients). The size of T will vary by study; e.g. some reent works resequenedhundreds of genes [Net08, D+08℄ while others examine nearly all known protein-oding genes in the human genome [W+07, J+08, P+08℄. We assume that eah gene
g is assigned one of two labels, mutated or normal, in eah sample. Let Mi denotethe subset of genes in T that are mutated in the ith sample, for i = 1, . . . |S|. Let Sjbe the samples in whih gene gj ∈ T is mutated, for j = 1, . . . , |T |, let m =

∑

i |Mi|be the total number of ourrenes of altered genes observed in all samples.We de�ne a pathway or subnetwork to be a onneted subgraph of G. Note thatthis de�nition mathes the ommon biologial usage of the term where pathwaysmay have arbitrary topology in the graph, and are not restrited to be linear hainsof verties. We generally do not know whether more than one gene must be mutatedto perturb a pathway in a sample, and thus will assume that a pathway is mutatedin a sample if any of the genes in the pathway are mutated. For a subset T ⊆ T , let
S(T ) denote the set of samples in whih at least one gene in T is mutated.6.2 In�uene graphGiven the protein interation network and the mutation data observed for testedgenes in the samples S, we want to identify subnetworks of genes that are signi�antlymutated. The genes in a subnetwork should orrespond to a pathway, where themutation of a gene orresponds to the alteration of the pathway. The mutation of agene g in a subnetwork should then have a signi�ant e�et on at least one other gene
g′ in the same subnetwork. Using the original interation network we an observeonly e�ets on the neighbours of a gene, but the mutation of g an in general alterthe funtionality of gene g′ even if g is not diretly interating with g′. Consider forexample the linear hain of Figure 6.1. The mutation of the gene at the bottom ofthe hain an have the e�et of altering the funtionality of the gene at the top of thehain, even if the two nodes are not diretly interating. We thus need a proedureto identify the genes whose funtionality an be altered by the mutation of gene
g. A �rst possibility is to use the distane between two genes g, g′ in the proteininteration network as measure for this funtional in�uene. However the distaneis not an aurate measure, sine it does not take into aount the topology of the



96 Chapter 6. Signi�antly Mutated Pathways in Biologial Networksnetwork ontaining g and g′, that must be onsidered when relating the funtionalityof g and g′.We an quantify the alteration that mutation of g indues in g′ taking into a-ount the whole network topology using a di�usion proess. The signi�ane of asubnetwork is derived from: (i) the number of samples that have mutations in thegenes of the subnetwork, and (ii) the interations between genes in the subnetwork inthe ontext of the whole network topology. For example, onsider the two senariosof mutated nodes of Figure 6.1. In the �rst senario, the two mutated nodes arepart of a linear hain in the interation network. In the seond senario, the twomutated nodes are onneted through a high-degree node. In the �rst ase, thereis a single path joining the two mutated nodes, thus we expet the funtionality ofthe two nodes to be more related than in the seond ase, where the two nodes areonneted by a node that is ative in a large number of possible pathways. If thenumber of samples in whih the two genes are altered is the same in both senarios,we would assign greater signi�ane to the linear hain. Most human interationnetworks have a number of nodes of high-degree, or hubs, and these produe manypaths between mutated nodes. A simple orretion for this problem is to removehigh-degree nodes. However, a number of genes that are ommonly mutated in an-er have high-degree in interation networks� and thus removal of high-degree nodesresults in loss of information.
Figure 6.1: Mutation onhain vs. star graph.

We use a di�usion proess on the interation net-work to de�ne a rigorous measure of in�uene be-tween all pairs of nodes. To measure the in�uene ofnode s on all the other nodes in the graph, onsiderthe following proess, desribed by [QSL+08℄. Fluidis pumped into the soure node s at a onstant rate,and �uid di�uses through the graph along the edges.Fluid is lost from eah node at a onstant �rst-orderrate γ. Let f s
v (t) denote the amount of �uid at node

v at time t, and let f
s(t) = [f s

1 (t), . . . , f s
n(t)]T be theolumn vetor of �uid at all nodes. Let L be theLaplaian matrix of the graph1, and let Lγ = L + γI. Then the dynamis of thisontinuous-time proess are governed by the vetor equation

dfs(t)

dt
= −Lγf

s(t) + b
su(t), (6.1)1L = −A + D, where A is the adjaeny matrix of the graph and D is a diagonal matrix with

Di,i = degree(vi).



6.3. Disovering signi�ant subnetworks 97where b
s is the elementary unit vetor with 1 at the sth plae and 0 otherwise, and

u(t) is the unit step funtion. As t→∞, the system reahes the steady state. Theequilibrium distribution of �uid density on the graph is f
s = L−1

γ b
s (See [QSL+08℄).Note that this di�usion proess is related to the di�usion kernel [KL02℄, or heat kernel[Chu07℄, whih models the di�usion of heat on a graph, and these di�usion proessesare also related to ertain random walks on graphs [DS84, Lov93℄. Di�usion pro-esses and their related �ow problems have been used in protein funtion preditionon interation networks [TN04, NJA+05℄ and to de�ne assoiations between geneexpression and phenotype [MLWS07℄.We interpret f s

i as the in�uene i(gs, gi) of gene gs on gene gi. Computing thedi�usion proess for all tested genes gives us, for eah pair of genes gj , gk ∈ T , thein�uene i(gj, gk) that gene gj has on gene gk. Note that in general the in�uene isnot symmetri; i.e. i(gj , gk) 6= i(gj , gk). We de�ne an in�uene graph IG = (T , IE)with the set of nodes orresponding to the set of tested genes, the weight of an edge
(gj, gk) is given by

w(gj, gk) = min[i(gk, gj), i(gj, gk)] = min[fk
j , f j

k ].If n is the number of nodes in the interation network, then the ost of omputing
IG is dominated by the omplexity of inverting an n× n matrix.6.3 Disovering signi�ant subnetworks6.3.1 Combinatorial modelGiven an in�uene measure between genes, the obvious �rst approah for disoveringsigni�ant subnetworks is to identify sets of nodes in the in�uene graph IG thatare (1) onneted through edges with high in�uene measure; and (2) orrespond tomutated genes in a signi�ant number of samples. We �x a threshold δ and omputea redued in�uene graph IG(δ) of IG by removing all edges with w(gi, gj) < δ,and all nodes orresponding to genes with no mutations in the sample data. Theomputational problem is redued to identifying onneted subgraphs of IG(δ) suhthat the orresponding set of genes is altered in a signi�ant number of patients.The size of the onneted subgraphs we disover is ontrolled by the threshold
δ. We hoose su�iently small δ suh that in the null hypothesis, in whih themutations are randomly plaed in nodes orresponding to tested genes, it is unlikelythat our proedure �nds onneted subgraphs with similar properties. Note thatvalue of δ depends only on the null hypothesis and not on the observed sample data



98 Chapter 6. Signi�antly Mutated Pathways in Biologial Networks(see Setion 6.4 for details of the statistial analysis).Computational problemFinding the onneted subgraph of k genes that is mutated in the highest number ofsamples requires to solve the following problem, that we de�ne as onneted maximumoverage problem: given a graph G de�ned on a set of m verties V , a set of elements
I, a family of subsets P = {P1, . . . , Pm}, with Pi ∈ 2I assoiated with vi ∈ V , anda value k, �nd the onneted subgraph C∗ = {vi1 , . . . , vik} with k nodes in G thatmaximize | ∪k

j=1 Pij |. In our ase we have G = IG(δ), V is the subset of genes in Tmutated in at least one sample, and for eah gi ∈ V the assoiated set is Si. Theonneted maximum overage problem is related to the maximum overage problem(see e.g. [Ho97℄ for a survey) where given a set I of elements, a family of subsets
F ⊂ 2I , and a value k, one needs to �nd a olletion of k sets in F that overs themaximum number of elements in I. This problem is NP-hard as set over is reduibleto it.If the graph G is a omplete graph, the onneted maximum overage problem isthe same as the maximum overage problem. Thus the onneted maximum overageproblem is NP-hard for a general graph. Moreover we prove that the problem is stillhard even on simple graphs suh as the star graph (similar result was shown in [SH06℄for the onneted set over problem).Theorem 6.1. The onneted maximum overage problem on star graphs is NP-hard.Proof. The proof is by redution from the maximum overage problem. Given aninstane of the maximum overage problem, onsisting of I, F , and k, we build aninstane of the onneted maximum overage problem. We de�ne I

′

= I ∪ {v0},with v0 /∈ I; and F
′

= F ∪ {v0}. Moreover, we build the graph G = (V, E) where
V = F

′ and E = {(v0, s)|s ∈ F}. It is easy to verify that G is a star graph, andthen eah non-trivial (i.e., with more than 1 vertex) subgraph of G will ontain thevertex v0. The solution X to the onneted maximum overage problem on thegraph G is then of the form X = Y ∪ {v0}, where Y ⊆ F . It is easy to verify that
X is a onneted maximum overage of size k + 1 > 1 if and only if Y is maximumoverage of size k > 0. �Sine the onneted maximum overage problem is NP-hard even for simplegraphs we turn to approximate solutions. It is not hard to onstrut a polynomialtime 1− 1

e
approximation algorithm for spider graphs (analogously to the result in[SH06℄ for the onneted set over problem). Sine the biologial network of interest



6.3. Disovering signi�ant subnetworks 99are not spider graphs, we onstrut an alternative polynomial time algorithm thatgives O (1/r) approximation when the radius of the optimal solution C∗ is r.Our algorithm obtains a solution Cv (thus, a onneted subgraph) starting fromeah node v ∈ V , and then returns the best solution found. To obtain Cv, ouralgorithm exeutes an exploration phase, i.e. for eah node u ∈ G it �nds a shortestpath pv(u) from v to u. Let ℓv(u) be the set of nodes in pv(u), and Pv(u) the elementsof I they over. After this exploration phase, the algorithm builds a onnetedsubgraph Cv starting from v. At the beginning we have Cv = {v}. PCv is the setof elements overed by the urrent onneted subgraph Cv. Then, while |Cv| < k,the algorithm hooses the node u /∈ Cv suh that: u = arg maxu∈V

{

|Pv(u)\PCv |

|ℓv(u)\Cv |

} and
|ℓv(u)∪Cv| ≤ K; the new solution is then ℓv(u)∪Cv. The main omputational ost ofour algorithm is due to the exploration phase, that an be performed in polynomialtime. We have the following:Theorem 6.2. The algorithm above gives a 1

cr
-approximation for the onneted max-imum overage problem on G, where c = 2e−1

e−1
and r is the radius of optimal solutionin G.Proof. We �rst analyze the solution obtained assuming the nodes in the solutionare inserted one at the time (i.e., |ℓv(u) \ Cv| = 1 for eah node u inserted in thesolution). We will then show that when the nodes are not inserted in the solutionone at the time, the solution obtained annot have a worse solution.Let z∗(v) be the value of the best solution OPT (v) that an be found starting atnode v. De�ne

OPTi(v) =
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thus OPT (v) =
rv
∑

i=1

OPTi(v), where rv is the radius of OPT (v), and z∗(v) =

∑rv

i=1 |OPTi(v)| . We divide the exeution of our algorithm in rv phases: in phase iour algorithm inserts |OPTi(v)| new nodes in the solution. Note that in phase i, ouralgorithm always has the possibility to reah eah node in OPTi(v). Thus, in phase i,the algorithm above is equivalent to the greedy algorithm for the maximum overageproblem where the sets that an be hosen are all the sets at distane at most r−i+1,and then all the sets in OPTi(v) an be hosen by the greedy algorithm. Let Ai(v) bethe inrement in the value of the solution found by our algorithm between the end of



100 Chapter 6. Signi�antly Mutated Pathways in Biologial Networksphase i and the end of phase i−1. Sine the approximation fator for the maximumoverage is 1 − 1/e and eah element in OPTi(v) is seen with weight redued of afator 1/(r− i+1) (sine it is at distane r− i+1), in phase i our algorithm improvethe urrent solution of a fator
Ai ≥

1

r

(

1− 1

e

)

(

OPTi(v)−
i−1
∑

j=1

Ai−1(v)

)

.Let A denote the value of the solution returned by our algorithm. Summing theterms above for all i we obtain:
A(v) ≥ 1

r

(

1− 1

e

)

(

rv
∑

i=1

OPTi(v)−
rv−1
∑

j=1

(rv − j)Aj(v)

)

≥ 1

r

(

1− 1

e

) rv
∑

i=1

OPTi(v)− 1

r

(

1− 1

e

) rv−1
∑

j=1

(rv − j)Aj(v)

≥ 1

r

(

1− 1

e

)

OPT (v)− 1

r

(

1− 1

e

)

rA(v)

≥ 1

r

(

1− 1

e

)

OPT (v)−
(

1− 1

e

)

A(v).We then obtain
2e− 1

e
A(v) ≥ 1

r

(

e− 1

e

)

OPT (v)that is
A(v) ≥ 1

r

(

e− 1

2e− 1

)

OPT (v).Now onsider the ase |ℓv(u) \ Cv| > 1: this means that that we insert a pathwhose weight, divided by |ℓv(u) \ Cv|, is higher than the weight of any other possiblereahable node (from v). Then we have that the value of the solution found by ouralgorithm an only improve, sine we are inserting |ℓv(u) \ Cv| nodes suh that theaverage value of the inserted nodes is greater than the maximum value of |ℓv(u) \ Cv|reahable nodes in the best solution inluding v divided by its distane (that is atmost rv). �For our experiments we implemented a variation of this algorithm, that for eahpair of nodes (u, v) onsiders all the shortest paths between u and v, and then keepsthe one that maximizes |Pv(u)|
|ℓv(u)|

to build the solution Cv. With this modi�ation thealgorithm is not guaranteed to run in polynomial time in the worst-ase, but rane�iently for all our experiments.



6.4. Statistial analysis 1016.3.2 The Enhaned In�uene modelWe developed an alternative, omputationally e�ient, approah for identifying sub-networks that are signi�ant with respet to the gene mutation data. The EnhanedIn�uene Model is based on the idea of enhaning the in�uene measure betweengenes by a funtion of the number of mutations observed in eah of these genes, asexplained below, and then deomposing an assoiated enhaned in�uene graph intoonneted omponents.We de�ne the enhaned in�uene graph H . It has a node for eah gene gi withat least one mutation in the data. The weight of edge (gj, gk) in H is given by
hw(gj, gk) = min {i(gj , gk), i(gk, gj)} ×max {|Sj |, ||Sk|} .Thus, the strength of onnetion between two nodes in the enhaned in�uene graphis a funtion of both the interation between the nodes in the interation networkand the number of mutations observed in their orresponding genes. Next we removeall edges with weight smaller than a threshold δ to obtain a graph H(δ). We returnthe onneted omponents in H(δ) as the signi�ant subnetworks with respet tothe mutation data and the threshold δ. The omputational ost is the omplexity ofomputing all onneted omponents in a graph with |S| nodes (number of mutatedgenes), whih is linear in the size of the graph. The signi�ane of the disoveredsubnetworks depends on the hoie of δ. We hoose su�iently small δ suh that inthe null hypothesis, in whih the mutations are randomly plaed in nodes orrespond-ing to tested genes, it is unlikely that our proedure �nds onneted omponents ofsimilar size (see Setion 6.4 for details of the statistial analysis).6.4 Statistial analysisWe assess the statistial signi�ane of our disoveries with respet to null hypothesisdistributions in whih the mutated genes are randomly alloated in the network,that is when the ourrene of mutations are independent of the network topology.We onsider two null hypothesis distributions: in Hsample

0 a total of m =
∑

i |Mi|mutations are plaed uniformly at random in the nodes orresponding to the |T |tested genes, hene preserving the number of mutated genes in eah sample. Whileeasier to analyze, this model does not aount for the fat that in the observed dataa large number of mutations are onentrated in a few genes(e.g. TP53).An alternative null hypothesis distribution we onsider, Hgene
0 , is generated byuniformly at randomly permuting the tested genes among the loations of the



102 Chapter 6. Signi�antly Mutated Pathways in Biologial Networkstested genes in the network. That is we selet a random permutation σ of theset {1, . . . , |T |}, and we the set of samples Sj ⊆ S, assoiated to gj in the real data,to the loation of gene gσ(j) in the original network.6.4.1 A two stage multi-hypothesis testA major di�ulty in assessing the statistial signi�ane of the disovered subnet-works is that we test simultaneously for a large number of hypotheses; eah onnetedsubnetwork in the interation graph with at least one tested gene is a possible sig-ni�ant subnetwork and thus an hypothesis. Using the standard approah of [BH95℄to ontrol the FDR would result in a redued ability of identifying signi�antly mu-tated pathways. Instead, we adapt the ideas introdued in Setion 4.3.2 to developa two stage test for our problem that allows us to �ag a number of subnetworks inour data as statistially signi�ant while ontrolling the FDR of the set of �aggedsubnetworks.We demonstrate our method through the analysis of the Enhaned In�uenemodel. A similar tehnique was applied to the Combinatorial model. Let C1, . . . , Cℓbe the set of onneted omponents found in the enhaned in�uene graph H(δ).Testing for the signi�ane of these disoveries is equivalent to simultaneously test-ing for 2|T | hypothesis. To redue the number of hypothesis we fous on an alter-native statisti (outome) whih is the number of disoveries of a given size. Let
r̃s be the number of onneted omponents of size ≥ s found in the graph H(δ),and let rs be the orresponding random variable in the null hypothesis (Hsample

0 or
Hgene

0 ). We are testing now for just K = |T | simple hypotheses, for s = 1, . . . ,K:
Es ≡ � r̃s onforms with the distribution of rs�. Testing eah hypothesis with on-�dene level α/K, the �rst stage of our test identi�es the smallest size s suh thatwith on�dene level α we an rejet the null hypothesis that r̃s onforms with thedistribution of rs.The fat that the number of onneted omponents of size at least s is statisti-ally signi�ant does not imply neessarily that eah of the onneted omponentsis signi�ant. We now add a seond ondition to the test that guarantees an upperbound on the FDR:Theorem 6.3. Fix β1, β2, . . . , βK suh that ∑K

i=1 βi = β. Let s∗ be the �rst s suhthat r̃s ≥ E[rs]
βs

. If we return as signi�ant all onneted omponents of size ≥ s∗,then the FDR of the test is bounded by β.Proof. Let Vi be the number of erroneous rejetions of onneted omponents of size
i, i.e. the number of onneted omponents of size i that were �agged erroneously



6.4. Statistial analysis 103as signi�ant. Note that E[Vi] ≤ E[ri], sine if these hypothesis were erroneouslyrejeted they were generated by the null distribution.
FDR =

|K|
∑

i=0

E

[

Vi

r̃i

]

Pr(Ei, Ēi−1, . . . , Ē0)

≤
|K|
∑

i=0

βiE[Xi | EiĒi−1, . . . , Ē0]

E[ri]
Pr(Ei, Ēi−1, . . . , Ē0)

=

|K|
∑

i=0

βi

∑

j j Pr(Xi = j, Ei, Ēi−1, . . . , Ē0)

E[ri]

≤
|K|
∑

i=0

βiE[ri]

E[ri]
≤ β.

�Notie that the test above does not require to test all value s = 1, . . . ,K. Infat, in our tests we onsidered only two thresholds, s = 6, and s = 10. For eahhypothesis we an then ompute what is the minimum threshold α for whih thathypothesis would be rejeted. We an moreover ompute what is the FDR assoiatedwith the set of onneted omponents returned using s∗ de�ned in Theorem 6.3. Inour tests we have used βi = β
2i for the ith largest s tested (with βs = β −∑i βi forthe smallest s), sine we are more interested in �nding large onneted omponents.6.4.2 Estimating the distribution of the null hypothesisThe null hypothesis distributions an be estimated by either a Monte-Carlo simu-lation (known as �permutation test� in the omputational biology ommunity) orthrough analytial bounds.Using Monte-Carlo simulation, two features of our method signi�antly reduethe ost of the estimates. First, the In�uene Graph IG is reated without observingthe sample data. The mutation data and IG are then ombined to reate the sampledependent graphs IG(δ) and H(δ). Thus, the Monte Carlo simulation needs torun on the graph IG whih is signi�antly smaller than the original interationnetwork (in our data the original interation network had 18796 nodes while thein�uene graph had only about 600 nodes), sine the verties of IG are the testedgenes and both null distributions requires to work only on tested genes . Seond,our statistial test does not use the p-values of individual onneted subgraphs butthe p-value of the number of onneted subgraphs of a given size. Thus, sine the



104 Chapter 6. Signi�antly Mutated Pathways in Biologial Networksnumber of hypotheses is smaller, we need p-values an order of magnitude larger thanthe ones that would be required if we test for single subgraphs. We then need toestimate p-values to a preision that is an order of magnitude larger, whih requiresigni�antly fewer rounds of simulations. These features allowed us to ompute thenull distributions through Monte-Carlo simulations for the size of our data with nosigni�ant omputational ost.For larger number of tested genes we an estimate the null hypothesis throughanalytial bounds. Consider for example the Enhaned In�uene model, and assumethat the |T | tested genes are randomly permuted among the |T | nodes of the graph
IG to generate a random instane graph H̄(δ). Let m be the number of genes withobserved mutations, and let smax be the maximum number of mutations of any gene.Sine we are interested in δ that partitions the graph to a number of onnetedomponents we an hoose the maximum δ suh that for any node gi in IG no morethan αm/|T | of the adjaent edges have weights that satisfy smaxw(gi, gj) ≥ t, forsome �xed α < 1. For the hoie of δ above, the expeted number of onnetedomponents of size k in H̄(δ) is bounded by

(|T |
k

)

kk−2αk−1 ≤ m

k2
αk−1.Sine onneted omponents are disjoint, their ourrenes are negatively orre-lated, and we an stohastially bound the distribution of rs with a binomial dis-tribution with the above expetation. A similar bound an be omputed for theother models and null hypothesis distributions, and for (somewhat) less restritiveonditions on δ.6.5 Experimental resultsWe applied our approah to analyze somati mutation data from two reent studies.The �rst dataset is a olletion of 453 somati mutations identi�ed in 601 testedgenes from 91 glioblastoma multiforme (GBM) samples from The Caner GenomeAtlas [Net08℄. In total, 223 genes were reported mutated in at least one sample.The seond dataset is a olletion of 1013 somati mutations identi�ed in 623 testedgenes from 188 lung adenoarinoma samples from the Tumor Sequening Projet[D+08℄. In total, 316 genes were reported suh that eah of them was mutated in atleast one sample. We use the protein interation network from the Human ProteinReferene Database (June 2008 version) [P+09℄ whih onsists of 18796 verties and37107 edges. We derive the in�uene graph for eah dataset by diretly omputing



6.5. Experimental results 105the inverse2 of Lγ . For all our experiments we �xed the parameter γ = 8, whih isapproximately the average degree of a node in HPRD (after the removal of dison-neted nodes). We also onduted a preliminary study of the impat of the hoie of
γ on the distribution of the weights in the in�uene graph. This preliminary studyshows that the hoie of γ does not have a huge impat for our random models.However, the development of a rigorous method to hoose γ is an open problem.The in�uene graphs obtained from the inversion of Lγ have weights i(gj , gk) 6= 0 foralmost all pairs (gj , gk) of tested genes: less than 2% of the weights are zero in theGBM graph, while all weights in the lung adenoarinoma graph are positive. Wenow desribe the results of the applying the ombinatorial model (Setion 6.5.1) andenhaned in�uene model (Setion 6.5.2) to both datasets. Setion 6.5.3 omparesthese results against those obtained with the naïve algorithm.6.5.1 Combinatorial modelWe used the ombinatorial model to extrat a subnetwork, of k mutated genes, that ismutated in the highest number of samples from GBM and lung adenoarinoma with
k = 10 and k = 20. For both data we used the proedure desribed in Setion 6.3.1to derive the threshold δ = 0.0001 for the redued in�uene graph IG(δ). Table 6.1shows that we �nd statistially signi�ant subnetworks under both the Hgene

0 and
Hsample

0 null hypotheses (p-values for Hsample
0 are omputed without Monte-Carlosimulation). The genes in eah subnetwork are reported in Table 6.2. To assessthe biologial signi�ane of our �ndings in GBM, we ompared the genes in eahsubnetwork to the genes in pathways that were previously impliated in GBM andused as a benhmark in the TCGA publiation [Net08℄ (See also Figure 6.2 (a) below).We �nd that our subnetworks are enrihed for (i.e., ontains a statistially signi�antnumber of) genes in the RTK/RAS/PI(3)K pathway and to a lesser extent, the p53pathway. For the lung adenoarinoma samples, we �nd that the subnetworks sharesigni�ant overlap with the pathways reported in the original publiation [D+08℄.These results demonstrate that the ombinatorial model is e�etive in reoveringgenes known to be important in eah of these aners.6.5.2 Enhaned In�uene modelWe applied the enhaned in�uene model to the same two datasets. Following theproedure desribed in Setion 6.3.2, we �rst omputed the enhaned in�uene net-2In ontrast [QSL+08℄ derive a power series approximation to L−1

γ whose onvergene dependson the hoie of γ.



106 Chapter 6. Signi�antly Mutated Pathways in Biologial Networksp-val pathway enrihment p-valdataset k samples Hsample
0 Hgene

0 all RTK/RAS/PI(3)K p53GBM 10 67 < 10−10 4× 10−3 3× 10−4 8× 10−4 0.1920 78 < 10−10 < 10−3 10−5 8× 10−5 0.05Lung 10 140 < 10−10 0.02 8× 10−6 /20 151 < 10−10 0.03 3× 10−3 /Table 6.1: Results of the ombinatorial model. k is the number of genes in thesubnetwork. samples is the number of samples in whih the subnetwork is mutated.p-val is the probability of observing a onneted subgraph of size k under the randommodel Hsample
0 or Hgene

0 . enrihment p-val is the p-value of the hypergeometri testfor overlap between genes in the identi�ed subgraph and genes reported signi�antpathways in [Net08℄ or [D+08℄. For GBM, enrihment p-val is the p-value of thehypergeometri test for RTK/RAS/PI(3)K and p53 pathways.dataset k samples genesGBM 10 67 INSR BCR TP53 PTEN EGFRERBB2 DST PIK3R1 PIK3CA SERPINA320 78 MDM2 FGFR1 BRCA2 CHEK1 COL1A2ITGB3 TNK2 INSR BCR TP53PTEN EGFR ERBB2 DST PIK3R1PIK3CA NF1 SPARC PDGFRA SERPINA3Lung 10 140 CDC25A CHEK1 TP53 STK11 HRASKRAS ERBB4 EGFR NF1 PTEN20 150 MAPK8 PRKDC TP53 STK11 HRASKRAS EGFR PRKD1 NF1 ABL1ERBB4 PTEN HD PRKCE SMAD2TGFBR1 BAX RAPGEF1 PIK3CG ACVR1BTable 6.2: Genes in the onneted omponent of size k that overs the maximumnumber of samples as reported by our algorithm for GBM and lung adenoarinoma.work, using a threshold of t = 0.003 for the GBM data and t = 0.01 for the lungadenoarinoma data. Table 6.3 shows the number and sizes of the onneted om-ponents identi�ed in the GBM data, and the assoiated p-values, the latter obtainedusing the method desribed in Setion 6.4. Table 6.4 reports the genes in the on-neted omponents of size > 3.We identify two signi�ant onneted omponents with more than 19 genes (FDR
≤ 0.14). We �nd signi�ant overlap (P < 10−2 by hypergeometri test) between the68 genes in our onneted omponents and the set of all mutated genes in the sameRTK/RAS/PI(3)K, p53, and RB pathways examined in the TCGA study [Net08℄ (seeTable 6.5). The seond largest onneted omponent with 19 genes has signi�antoverlap to the p53 pathway, while the largest onneted omponent with 22 genes has



6.5. Experimental results 107signi�ant overlap with the RTK/RAS/PI(3)K signaling pathway. In ontrast to theombinatorial model, the enhaned in�uene model separates these two pathwaysinto di�erent onneted omponents. Figure 6.2 (a) illustrates the overlap betweenthe mutated genes in onneted omponents returned by our method and genes inthe pathways reported in [Net08℄.
Hsample

0 Hgene
0

s # .. ≥ s µ p-val µ p-val2 15 22.18 0.97 13.63 0.383 3 6.37 0.98 4.38 0.619 2 < 10−3 < 10−3 0.07 < 10−322 1 < 10−3 < 10−3 0.05 0.05Table 6.3: Results of the enhaned in�uene model on GBM samples. s is the sizeof onneted omponents (..) found with our method. # .. ≥ s is the numberof .. with at least s nodes. µ is the expeted number of .. with ≥ s nodes underrandom models Hgene
0 , Hsample

0 . p-val is the probability of observing at least # ..
≥ s with at least s nodes in a random dataset.size genes22 MSH2 ATM MSH6 PRKDC ATR BCR KLF6 GLI3 KLF4PML MAPK9 CHEK1 BRCA2 ING4 MDM2 MDM4 TP53 TOP1PTEN KPNA2 STK36 GLI119 ANXA1 TNK2 ERBB3 SERPINA3 SOCS1 TNC PIK3C2B PDGFRBERBB2 NRAS VAV2 EGFR EPHA2 MET ADAM12 PIK3R1PIK3CA CENTG1 AXLTable 6.4: Genes in onneted omponents obtained for GBM the di�usion modelwith γ = 8, t = 0.003. enrihment p-val

s RTK/RAS/PI(3)K p5319 0.9 4× 10−322 4× 10−6 �Table 6.5: Result of the hypergeometri test for enrihment for RTK/RAS/PI(3)K,and p53 pathways respetively. s is the size of onneted omponents (..) foundwith our method.For the lung data, Table 6.6 shows the sizes of onneted omponents returned bythe enhaned in�uene model and the p-values assoiated with eah. Table 6.7 liststhe genes in eah onneted omponent of size > 5. The 88 genes in the union of theonneted omponents derived by our method overlap signi�antly (P < 7 × 10−9



108 Chapter 6. Signi�antly Mutated Pathways in Biologial Networksby the hypergeometri test) with the mutated pathways reported in the network ofFigure 6 in the TSP publiation [D+08℄. We identify 4 onneted omponents of size
≥ 7 (FDR ≤ 0.28). The �rst onneted omponent of size 10 ontains genes in thep53 pathway, and the seond one is enrihed (P < 10−2) for the MAPK pathway(Figure 6.2 (b)). The third omponent is the ephrin reeptor gene family, a largefamily of membrane-bound reeptor tyrosine kinases, that were reported as mutatedin breast and oloretal aners [S+06℄. Notably, only one of the genes in this ompo-nent, EPHA3, is mentioned as signi�antly mutated in [D+08℄. Finally, the onnetedomponent of size 7 onsists exlusively of members of the Noth signaling pathway(Figure 6.2 ()). The mutated genes inlude: the Noth reeptor (NOTCH2/3/4);Jagged (JAG1/2), the ligand of Noth; and Mastermind (MAML1/2), a transrip-tional o-ativator of Noth target genes. The Noth signaling pathway is a majordevelopmental pathway that has been impliated in a variety of aners [Axe04℄inluding lung aner [CKB04℄. Mutations in this pathway were not noted in theoriginal TSP publiation [D+08℄, probably beause no single gene in this pathwayis mutated in more than 3 samples. Beause our method exploits both mutationfrequeny and network topology, we are able to identify these more subtle mutatedpathways, and in this ase identify an entire �signaling iruit�.
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�������������������()Figure 6.2: (a) Overlap between subnetworks found by the enhaned in�uene modeland signi�ant pathways reported in [Net08℄. The genes in the network shown havebeen reported as involved in signi�ant pathways in [Net08℄. Eah irle is a gene,gray nodes represents protein families or omplexes, or small moleules. For eahprotein family and omplex, tested genes are shown. �Dashed� nodes are tested genesthat were not mutated in GBM, and thus annot be returned as signi�ant. Rednodes are found in the .. of size 22, blue nodes in the .. of size 18, and thegreen node in a .. of size 2. (b) Pathway orresponding to one of the onnetedomponents extrated with enhaned in�uene model in lung. () Noth signalingpathway identi�ed in the lung dataset.
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Hsample

0 Hgene
0

s # .. ≥ s µ p-val µ p-val enrihment p-val2 24 23.4 0.7 17.67 0.4 /3 11 6.51 0.13 7.27 0.2 /4 7 3.21 0.07 4.98 0.13 /5 5 2.09 0.01 2.18 0.01 /7 4 0.54 0.01 0.56 0.01 �10 3 < 10−3 < 10−3 0.4 0.02 0.34
10−5

9× 10−8Table 6.6: Results of the enhaned in�uene model on lung adenoarinoma samples.Columns are as desribed in Table 6.3. Last olumn shows, for .. with s ≥ 7, theresult of the hypergeometri test for enrihment all genes reported in signi�antpathways in [D+08℄ (the 3 values shown refers to .. of size 10).size genes10 WT1 CDKN2A TP53 CCNG1 KLF6 ATR CDKN2C TP73L TFDP1 CHEK110 RAP2B PIK3CA HRAS RASSF2 NRAS MRAS PIK3CG BRAF NF1 RHOB10 EPHB1 EPHB6 EPHA7 EPHA6 EPHA5 EPHA4 EPHA3 EPHA2 EPHA1 FGFR47 MAML2 MAML1 NOTCH4 NOTCH2 NOTCH3 JAG2 JAG1Table 6.7: Conneted omponents of size ≥ 7 for lung adenoarinoma using thedi�usion model with γ = 8, t = 0.01.6.5.3 Naïve approahTo demonstrate the impat of the in�uene graph on the results, we implementeda naïve approah that examines all paths in the original HPRD network that on-net two tested genes and ontain at most 3 nodes. We extrated all paths thatwere altered in a signi�ant number of samples with FDR ≤ 0.01 using the standardBenjamini-Yekutieli method [BY01℄, onsidering eah path as an hypothesis. Morethan 1700 paths in GBM and > 2200 in lung adenoarinoma are marked as signi�-ant with this method. A major reason for this large number of paths is the preseneof highly mutated genes that are also high-degree nodes in the HPRD network (e.g.TP53). Eah path through these high degree nodes is marked as signi�ant, thusa large number of �uninteresting� subnetworks are deemed signi�ant. One possiblesolution is to remove any path that ontains a subpath that is signi�ant. However,these �ltered paths inlude none through highly-mutated and high degree genes thatare biologially important for aner (like TP53). Our in�uene graph uses bothmutation frequeny and loal topology of the network, allowing us to reover sub-



110 Chapter 6. Signi�antly Mutated Pathways in Biologial Networksnetworks ontaining these genes. Finally, we note that �nding larger, statistiallysigni�ant subnetworks (e.g. those with 10 or 20 nodes) with the naïve approah isimpossible in the GBM and lung datasets beause of the severe multiple hypothesesorretion for the large number of subnetworks tested; e.g., the number of onnetedomponents with 10 tested nodes in the HPRD network is > 1010. For the samereason the enumeration of all the paths or onneted omponents of reasonable sizeis impossible.Table 6.8 shows the signi�ant paths ontaining at most 3 analyzed genes thathave been found signi�ant using the random model Hsample
0 and the Benjamini-Yekutieli method to orret for multiple hypothesis test using GBM somati muta-tions. In the table only paths that do not ontain any subpath that is signi�ant areshown (e.g., all the paths with > 1 gene that are signi�ant and ontain TP53 arenot reported). Table 6.9 shows the analogous table for Lung adenoarinomagenes # mutated samples p-valueTP53 31 1.11022×10−16PTEN 28 1.11022×10−16EGFR 15 2.55351×10−15NF1 13 1.00975×10−12PIK3R1 9 6.87229×10−08RB1 9 6.87229×10−08DST 8 8.75524×10−07ERBB2 7 9.93594×10−06PDGFRB , PIK3CA 8 0.00010412PIK3CA, PRKCD, EP300 10 5.71599×10−05PIK3CA, IRS4, PRKCZ 8 0.00010412Table 6.8: Statistially signi�ant mutated paths (FDR = 0.01) using the HPRDnetwork [P+09℄ and the glioblastoma mutations dataset [Net08℄. For eah signi�antpath, the genes in the path, the number of samples with at least one mutation in thepath, and the (non-orreted) p-value are shown.
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genes # mutated samples p-valueTP53 64 < 10−16KRAS 60 < 10−16STK11 34 < 10−16EGFR 30 < 10−16LRP1B 16 1.97591×10−11ATM 13 1.65488×10−08NF1 13 1.65488×10−08APC 11 1.02906×10−06CDKN2A, E4F1, RB1 15 1.28117×10−06CDKN2A, WRN, PRKDC 15 1.28117×10−06EPHA7, EFNA1, EPHA3 15 1.28117×10−06PRKDC, HSP90AA1 , KDR 15 1.28117×10−06EPHA3 , EFNA2, EPHA5 15 1.28117×10−06NTRK3, DYNLL1, NTRK1 14 6.16984×10−06NTRK1, CAV1 , KDR 14 6.16984×10−06KDR, ITGB3, PDGFRA 14 6.16984×10−06Table 6.9: Statistially signi�ant mutated paths (FDR = 0.001) using the HPRDnetwork [P+09℄ and the lung adenoarinoma mutations dataset [D+08℄. For eahsigni�ant path, the genes in the path, the number of samples with at least onemutation in the path, and the (non-orreted) p-value are shown.
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Chapter 7ConlusionsIn this �nal hapter we summarize the main ontributions of this thesis and disusssome future researh diretions.7.1 SummaryIn this thesis we ontributed novel results on the mining of signi�ant patterns,fousing on the problem of frequent itemsets mining, a fundamental primitive thatarises in many data mining problems, on the extration of motifs from biologialsequenes, and on the disovery of signi�antly mutated pathways in aner.In hapter 3 we studied the algorithmi aspets of the extration of top-K frequentlosed itemsets and the use of sampling to extrat the top-K frequent items/itemsets.For the �rst primitive we provide the �rst analytial evidene of its e�etiveness,proving a tight upper bound on the ratio between the number of losed itemsetsreturned in output and the input parameter K. We then developed a new algorithmfor mining top-K frequent losed itemsets in order of dereasing support, TopKMiner,whih attains substantial improvements w.r.t. the best previously know algorithm.A peuliar feature of our algorithm is that it allows the user to dynamially raisethe value K, without requiring the omputation to restart from srath. For theextration of top-K frequent items/itemsets through sampling we proved a tightbound on the su�ient sample size to obtain an approximation the top-K frequentitems/itemsets with probabilisti guarantees on the quality of the output. Moreover,we develop an algorithm based on progressive sampling to extrat the top-K frequentitems/itemsets.In Chapter 4 we proposed a novel methodology to identify a meaningful supportthreshold σ∗ for a dataset suh that the itemsets with support at least σ∗ an be�agged as statistially signi�ant with a small False Disovery Rate (FDR), whih113



114 Chapter 7. Conlusionsis the expeted ratio of false disoveries among all disoveries. Our methodologyhinges on a Poisson approximation to the distribution of the number of itemsets in arandom dataset with support at least s, for any s greater than or equal to a minimumthreshold smin. We obtained this result through a novel appliation of the Chen-Steinapproximation method, whih is of independent interest. A ruial feature of ourapproah is that, unlike most previous work, it takes into aount the entire datasetrather than individual disoveries. It is therefore better able to distinguish betweensigni�ant observations and random �utuations. The results of our omparison toa standard proedure for multi-hypothesis testing provide experimental evidene ofthe higher power of our approah.In Chapter 5 we studied the disovery of motifs, possibly inluding don't areharaters, in biologial sequenes. This problem is highly relevant to omputationalbiology. We introdued the density, de�ned as the ratio of solid haraters to thetotal length of the motif, as a simple and �exible measure for bounding the number ofdon't ares in a motif,. We de�ne a natural notion of maximality for dense motifs anddevise an e�ient algorithm, alledmadmx whih performs ompletemaximal densemotif extration from an input sequene, with respet to user-spei�ed frequenyand density thresholds. We provided experimental evidene of the e�ieny andthe quality of the motifs returned by madmx, omparing them with the knownbiologial repetitions, and with the motifs extrated by the reently developed toolvarun [ACP09℄ using the same statistial metri employed in [ACP09℄ for assessingtheir relative signi�ane.Finally, in Chapter 6 we addressed the problem of identifying signi�antly mu-tated pathways in large sale gene and protein interation networks. We proposeda new framework based on an in�uene measure between pairs of genes obtainedusing a di�usion proess de�ned on the interation network. We then proposed twoalgorithms to identify signi�antly mutated pathways, both using the in�uene mea-sure between pairs of genes. Moreover, we derived a statistial test that identi�essigni�antly mutated pathways and estimates the FDR of the identi�ed subnetworks.This test is built on the tehnique we developed in Chapter 4 in the ontext of fre-quent itemset mining. We tested the algorithms on a large human protein-proteininteration network using mutation data from reent studies on two di�erent typeof aners. The tests showed that our methods suessfully reover pathways thatare known to be involved in the onsidered aners, and moreover identify additionalpathways that have been impliated in aner but not previously reported as mutatedin the samples we onsidered.



7.2. Further researh 1157.2 Further researhThere are a number of interesting avenues to improve the results presented in thisthesis and to develop new methods to mine signi�ant patterns.A �rst set of possible diretions regards the mining primitives we have studied inChapter 3. For the extration of top-K frequent losed itemsets, a natural diretionis the development and testing of an external memory algorithm for the problem.Sine many datasets of interest for this problem are huge, they will probably not �tin main memory, and new algorithms expliitly designed to work on external memoryare needed. For the use of sampling to extrat top-K frequent items/itemsets it wouldbe interesting to study, both analytially and experimentally, the performane of ouralgorithm on datasets with di�erent items/itemsets distributions, trying to hara-terize what are the distributions for whih our algorithm gives the best performane.Another diretion for future work is the experimental assessment of the algorithmbased on min-ount Bloom �lter we proposed.For what onern instead the mining of statistially signi�ant itemsets, theframework we have introdued o�ers several interesting diretions for further work.Naturally, one goal is to adapt our test to di�erent random models, for example theone introdued in [GMMT07℄. Another interesting diretion is the design of a methodthat extrat statistially signi�ant itemsets with low supports. Moreover, the statis-tial test we have proposed an be adapted to the extration of other patterns, as wehave done in Chapter 6 for the extration of signi�antly mutated pathway. We thinkthat the mining of graphs, for example, would provide an interesting appliation ofour method.The extration of signi�ant motifs provides many interesting diretions for futurework. Our de�nition of density provides a way to onstrain the struture of the motifsso to enfore signi�ane more general. than the ones previously employed, but thehoie of the density and frequeny thresholds are left to the user. An importantproblem is then to understand what is the relation between those parameters andthe biologial signi�ane of the orresponding motifs. Another interesting diretionis the design of an algorithm that extrats the maximal dense motifs from a set ofsequenes, where the frequeny of a pattern is the number of sequenes in whihit appears. madmx an be used to solve this problem (by onatenating the inputsequenes), but novel algorithmi solutions ould result in better performane.For the identi�ation of signi�ant pathways in aner muh work remains to bedone. For example, we model the protein interation network as an undireted graph,while information on the diretionality of some interations is already available, andmore will be produed in the next few years. Adapting our models and methods



116 Chapter 7. Conlusionsto direted graphs requires new solutions. Moreover, somati mutations are notthe only auses that lead to aner. Other genomi alterations, like opy numbermodi�ations or epigeneti alterations, have been related to aner. How to analyzedi�erent type of alterations, and how to ombine them, to identify the pathwaysspei� to aners is one of the most interesting problems that our method does noturrently takle.
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