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Abstract

Helicon plasma sources are an attractive means of plasma production in advanced applica-
tions of space propulsion thanks to their high ionization efficiency. By means of a compact
helicon source, it is possible to enhance the performances of a small propulsive apparatus
from a range of almost negligible values (few micro-Newton of thrust and few tens of sec-
onds of specific impulse) to a range useful for many applications (thrust of milli-Newton
and 1000s seconds of specific impulse). However, the design of such a system is complicated
by the great inter-correlations between the involved parameters, and by the complex phys-
ical mechanisms involved. Moreover, thruster operation involve physical regimes which are
not common in industrial plasma sources. In this research program, helicon physics has
been deeply analyzed in a innovative way, not limiting the study to helicon wave analysis
with dielctric tensors, but recognizing that the electromagnetic wave propagation must be
closely related to macroscopic transport. An equilibrium theory of an helicon discharge has
been derived, where both the plasma-wave local coupling of the RF antenna field with the
plasma, and the transport of plasma species at the macroscopic level, are considered. The
theory has been practically implemented on a code and validated with experiments in Lab-
oratory. The theory has allowed to close the correlations between the design parameters
and to identify preliminary design configurations of helicon thrusters.

Grazie alla loro elevata efficienza, le sorgenti al plasma di tipo helicon sono un attraente
mezzo di produzione di plasma per applicazioni avanzate di propulsione spaziale. Per mezzo
di una compatta sorgente helicon, è possibile incrementare le prestazioni di un piccolo appa-
rato propulsivo, da un range di valori pressoché trascurabili (pochi micro-Newton di spinta
e qualche decina di secondi di impulso specifico) ad un range utile per molte applicazioni
(spinta del milli-Newton e migliaia di secondi di impulso specifico). Tuttavia il design di
un tale sistema è complicato dalla grande inter-correlazione tra i parametri coinvolti, e
dai complessi meccanismi fisici coinvolti. Inoltre il regime operativo del thruster avviene
in regimi fisici non comuni per plasmi di sorgenti industriali. In questo programma di
ricerca la fisica fondamentale degli helicon è stata attentamente studiata, non limitando le
analisi al problema di accoppiamento d’onda con tensore dielettrico, ma riconoscendo che
il problema elettromagnetico è strettamente connesso al traporto macroscopico. E’ stata
sviluppata una teoria dell’equilibrio di una scarica helicon, dove sono tenuti in consider-
azione sia l’accoppiamento locale plasma-onda del campo RF (radiofrequenza) dell’antenna

xxiii
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con il plasma, che il trasporto delle specie di plasma a livello macroscopico. La teoria è
stata implementata in un codice e validata con esperimenti in Laboratorio. La teoria ha
permesso di chiudere le correlazioni fra i parametri di design e di identificare delle config-
urazioni preliminari di propulsori helicon.



Introduction

The next generation of plasma propulsors for space applications relies on the development
of high efficiency plasma sources. Presently the most efficient cold plasma source is the
helicon source, which is based on radio frequency excitation of whistler waves confined
inside a cylindrical tube. For a given amount of input power, a helicon source obtains more
plasma with consequent larger thrust than all other plasma source alternatives. Helicon
waves are in principle compatible with any kind of propellant, which allows maximization of
system specific impulse. The helicon source is therefore a good choice for plasma spacecraft
that must optimize on-board resources.

A basic version of the helicon thruster comprises only two elements: helicon source
and magnetic nozzle. Plasma is created and sustained via helicon wave power deposition
and subsequently accelerated in the magnetic nozzle. The magnetic nozzle requires an
expanding magnetic field of opportune geometry. Thrust from plasma fluid acceleration
through the nozzle is similar to conventional rockets, but with plasma propellant instead
of gas dynamic flow and with magnetic field in concert with exit nozzle shape. The design
of helicon thrusters therefore requires a good comprehension of the helicon physics.

In the present work, a great emphasis has been dedicated to helicon sources and to
their fundamental physics. The underlying physics of helicons is here deeply investigated,
including both the plasma-wave coupling problem and the macroscopic transport problem,
and their relationship with an equilibrium model. The highly non-uniform power deposition
of the plasma wave in the plasma cylinder has been taken into account in the model. A
numerical code able to solve the equilibrium problem has been derived, and used to predict
the absolute values of plasma density and the other relevant parameters of the plasma
discharge. The theoretical results have then been compared with measurements, with a
dedicated experimental campaign. Experiments were done at the Low Temperature Plasma
Technology Laboratory of University of California Los Angeles (UCLA), hosted by Prof.
Francis F. Chen. The measurements were done by means of radio-frequency compensated
Langmuir probes. A comparison of measurements with code predictions has revealed the
absolute agreement of numerical and measured data, within their uncertainties.

The equilibrium theory of helicon discharges has then been applied for the preliminary
design of an helicon thruster. The expected performances have been estimated with the
theory. Finally, a comparison of the helicon thruster with a propellantless system is pre-

1
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sented. Electrodynamic tethers have been considered as a propellanteless system. Tethers
use plasma from environment to get a thrust, instead of creating plasma inside the system.
Innovative applications of electrodynamic tethers are discussed.



Chapter 1

Equilibrium theory of helicon
discharges

1.1 Plasma-Wave coupling

1.1.1 Helicon and Trivelpiece-Gould mode-coupling

Helicons are circularly polarized plasma waves propagating in a bounded plasma. They
occur in a range of frequencies much lower than the electron cyclotron frequency and the
plasma frequency, but higher than the lower hybrid resonance, ωLH < ω << ωce << ωp.
This range of frequencies is far from all the characteristic resonances of the plasma, as
shown in the example of Figure 1.1. The figure shows the frequency response1 of two
different plasmas: a typical Deuterium plasma used in magnetic fusion, and a typical
helicon Argon plasma. The principal resonances can be easily recognized in the two cases.
In the second case, helicon waves occur in a range between 10 and 100 MHz, inside an
interval of frequencies far from resonances. Despite the absence of resonances within this
range, the plasma-wave coupling is well known for its high efficiency, such that high plasma
densities can be obtained in practical devices.

The analytical solution for a uniform plasma in cylindrical domains was obtained for
the first time by Klozenberg in 1965 [1], and then generalized to the case of non-uniform
plasmas by Chen and Arnush in 1997 [2], [3], [4]. Accordingly to these models, the relevant
behavior of helicons can be seen using a fluid model for electrons, satisfying the following
set of equations:

me
∂~v

∂t
+me(~v · ∇)~v = −e( ~E + ~v × ~B0) +

1
n0
∇ · π +

1
n0
∇p−meν~v (1.1)

1The figures show the trend of the three independent components of the Stix tensor versus the frequency;
equations are recalled in Appendix A.1.
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Figure 1.1: Values of the Stix components S,D, P in the cold approximation for (a) a
typical Deuterium fusion plasma, and (b) a typical helicon Argon plasma
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together with the Maxwell equations:

∇ · ~B = 0 (1.2)

∇× ~E = iω ~B (1.3)

∇× ~B = µ0
~j − iωε0 ~E (1.4)

This system of equation can be simplified to a handling form after simple considerations
on the more relevant terms. The magnetic viscosity term (∇ · π)/n0 can be neglected
because it is important only when the electron Larmor radius rL,e is comparable with the
radial wavelength of the waves in the plasma. It turns out that this is an important effect
only in the regime of very-low magnetic fields, below B0 ∼ 10 Gauss, for high energy
electrons kTe > 15 eV, that is when rL,e is comparable with the short-wavelength TG
modes at about 1 mm. For the ordinary electrons encountered in the helicon sources at
kTe ≈ 3 eV, the magnetic viscosity is relevant only below ≈ 6 Gauss, a regime of transition
where the helicon wave is becoming evanescent. The pressure term (∇p)/n0 is the sum
of kinetic temperature and density gradient effects. When finite-Larmor-radius effects are
neglectable, the term (∇p)/n0 is neglectable too, because it is always smaller than the
e ~E term. To include ∇p effects, the warm-plasma theory should be used [5]. This will
be addressed in Appendix A.3. In non-uniform plasmas, a finite electron temperature Te
cause drift-waves, but the frequency of this waves is much lower than that of helicons, and
the two effects can be distinctly treated.

After these simplifications, and assuming first-order perturbations with harmonic de-
pendence exp[i(mθ + kz − ωt)], the motion of fluid electrons is governed by:

− iωme~v = −e( ~E + ~v × ~B0)−meν~v (1.5)

Assuming a uniform magnetic field along the z axis, ~B0 = B0ẑ, neglecting ion motion
in the plasma current, ~j = −en0~v, and assuming a uniform density profile n(r) = n0, Eq.
1.5 gives:

~E = − B0

en0
(iδ~j + ẑ ×~j) (1.6)

where δ = ω/ωc + iν/ωc is the ratio between the frequency and the cyclotron frequency,
corrected with the collisional term. Substituting the Maxwell equations in Eq. 1.6 and ne-
glecting the displacement current, the helicons governing equation can finally be obtained:

δ∇×∇× ~B − k∇× ~B + k2
w
~B = 0 (1.7)

where k2
w = δk2

s is the wave number of a whistler wave propagating in the free space, and
ks = ωp/c is the skin number, which is the ratio between the plasma frequency ωp and the
speed of light.
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Figure 1.2: (a) Dispersion relation of Helicons and Trivelpiece-Gould waves; (b) range of
kmin and kmax of the helicon branch vs. the frequency
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The characteristic equation associated to Eq. 1.7 gives the dispersion relation:

δβ2 − kβ + k2
w = 0 (1.8)

The second-order term δβ2 compares in virtue of the finite electron mass. When the
electron mass goes to zero, me → 0, then also delta goes to zero δ → 0, and the classical
dispersion relation of helicons is recovered:

me → 0 : β = k2
w/k (1.9)

For each axial mode k, the Eq. 1.8 states that two radial wave modes are allowed for the
propagation of the plasma wave:

β1,2 =
1
2

(
qe
me

)
B0

 k
ω
∓

√(
k

ω

)2

− 4µ0men0

B0

 (1.10)

where the lower scripts refer to:

1 : Helicon mode (1.11)
2 : Trivelpiece-Gould mode (1.12)

The first mode β1 is the Helicon mode: it is a low radial mode with high radial wave-
length, which can propagate from the radial boundary until the axis. When the electron
mass vanishes me → 0 the H mode is a pure TE mode, with Ez = 0. The second mode β2

is the Trivielpiece-Gould mode [53], which is an electron cyclotron wave; it has an electro-
static character plus an electromagnetic part which is clearly manifest only at low magnetic
fields. The TG mode has short radial wavelengths and thus it is rapidly absorbed in the
external shells of the plasma cylinder. Figure1.2.a shows an example of the Helicon and
TG dispersion relation in the kappa-beta plane. For the conditions considered, the helicon
branch becomes evanescent under magnetostatic fields of about 10 Gauss. In Fig. 1.2.b
the range kmin < k < kmax of the helicon branch is reported as a function of the frequency,
where kmin = 2δks and kmax = ks

√
δ/(1− δ).

The governing wave equation Eq.1.7 is solved by factorization [1]:

(β1 −∇×)(β2 −∇×) ~B = 0 (1.13)

meaning that the solution is the superimposition of two normal modes:

~B = ~B1 + ~B2 (1.14)

Each one of the two modes ~Bj (j = 1, 2) is obtained from the solution of an Helmholtz
equation:
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∇2 ~B1 + β2
1
~B1 = 0 (1.15)

∇2 ~B2 + β2
2
~B2 = 0 (1.16)

The general solution in cylindrical coordinate is given by:

Br,j = Aj [(βj + k)Jm−1(Tjr) + (βj − k)Jm+1(Tjr)] (1.17)
Bθ,j = iAj [(βj + k)Jm−1(Tjr)− (βj − k)Jm+1(Tjr)] (1.18)
Bz,j = −2iAjTjJm(Tjr) (1.19)

where

T 2
j = β2

j − k2 (1.20)

is the transverse wave number, m is the azimuthal wave number, and Jm are the usual
Bessel functions of the first kind. The coefficients Aj depend on the boundary conditions,
and a detailed treatment on how to obtain them can be found in [2], for both the conducting
and the dielectric boundary cases.

When the boundary is conductive (Eθ = Ez = 0 and jz = 0 at r = a, with a radius
of the plasma cylinder), the k modes are quantized inside the cylinder, meaning that only
certain modes of propagation are allowed. Experimentally only the first one or two of these
modes can be observed, because of damping of higher modes.

When the boundary is insulating (Br, Ez continuos at r = a), the k modes are still
quantized, but they densely sample the region kmin < k < kmax; when dumping is also
considered, the quantization disappears and the region is filled with continuity. The range
kmin < k < kmax constrains the admissible plasma densities n0 to the following values:

k2

4µ0me

(
B0

ω

)2

< n0 < k2 me

µ0e2

(
ωc − ω
ω

)
(1.21)

After the magnetic field ~B is solved, all the other fields are easily derived. The plasma
current is (βj/µ0) times the magnetic field:

~jj =
βj
µ0

~Bj (1.22)

Eq. 1.22 states that the plasma current is always aligned with the magnetic field, and
since ~j is also parallel to the electrons fluid velocity ~v, this means that electrons oscillate
parallel to the RF magnetic field. The only disalignment between ~j and ~B is given by
the displacement current, here neglected for simplicity, but this contribute is always small
compared to the fields inside the plasma.
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The electric field is then obtained from Eq. 1.6:

Ez,j =
(
− iωme

e2n0
+ ν

me

e2n0

)(
βj
µ0

)
Bz,j (1.23)

Er =
ω

k
Bθ −

i

k

∂Ez
∂z

(1.24)

Eθ =
m

kr
Ez −

ω

k
Br (1.25)

1.1.2 Coupling with non-uniform densities

When the density is not uniform along the cylinder radius, the fundamental equation Eq.1.7
is modified by the addition of a source term:

δ∇×∇× ~B − k∇× ~B + k2
w
~B = −n

′
0(r)
n0(r)

[−δ0r̂ × (∇× ~B) + i(∇× ~B)rẑ] (1.26)

The source term on the right-hand side of Eq.1.26 vanishes when the density profile is
uniform. In the general case of non-uniform density, the magnetic field ~B inside the plasma
results to be a combination of two normal functions ~b1,2(r), which reduce to the Helicon
and Trivelpiece-Gould modes when the density profile is uniform. The oscillating magnetic
field along the radius is now given by:

~B(r) =
H2
~b1(r)−H1

~b2(r)
D

Kφ (1.27)

where Kφ is the Fourier transform of the antenna current (sec. 1.1.3), and H,D are the
following combination of modified Bessel functions:

H1,2 =
kb

Ta
pm(b)µ0G1,2 − i

m

a

k2
0

T 2
ρmF1,2 (1.28)

G1,2 = jr1,2(a) + i
m

a

k2
0

T 2

1
µ0
bz1,2(a) +

k

T
qm[ωε0en1,2(a)] (1.29)

F1,2 = −ibr1,2(a) +
k

T
pm(a)bz1,2(a)− i m

aT 2
µ0[ωε0ez1,2(a)] (1.30)

D = F1G2 − F2G1 (1.31)

where

pm(r) =
K ′m(Tr)I ′m(Tc)−K ′m(Tc)I ′m(Tr)
Km(Ta)I ′m(Tc)−K ′m(Tc)I ′m(Ta)

(1.32)

qm =
K ′m(Ta)Im(Tc)−Km(Tc)I ′m(Ta)
Km(Ta)Im(Tc)−Km(Tc)Im(Ta)

(1.33)

ρm =
Km(Tb)Im(Tc)−Km(Tc)Im(Tb)
Km(Ta)Im(Tc)−Km(Tc)Im(Ta)

(1.34)
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Figure 1.3 shows a comparison of the RF fields occurring inside an homogeneous plasma
with the fields of an analogous case non-homogeneous.

1.1.3 Antenna Excitation

In the physical space the antenna current ~jA lies on a cylindrical surface of radius b:

~jA(r, φ, z) = δ(r − b) ~K(φ, z) (1.35)

Fourier tranforming ~K(φ, z) gives ~K(m, k). The two components of ~K(m, k) will be denoted
as (Kφ,Kz); for some standard antenna geometries they are:

Kφ = I0 Loop antenna (m=0) (1.36)

Kφ = −2I0

π

kL

2m
sin(kL/2−mθ)
kL/2−mθ

Fractional helix of twist angle 2θ (m odd) (1.37)

and (for solenoidality of the current):

Kz(m, k) = −m
bk
Kφ(m, k) (1.38)

Figure 1.4 shows the values of Kφ, Kz and |Kφ|2, evaluated with Eq. 1.37, for several an-
tenna geometries. The plots of the power spectra |Kφ|2 show that increasing the twist angle
θ of a fractional helix antenna allows to direct the antenna power in one axial direction,
i.e. parallel to the magnetostatic field.

1.1.4 Power deposition

The specific power deposited into the plasma at each point is given by the projection of
the electric field on the plasma currents2. Then the total power deposited is obtained by
integrating over the desired volume:

P =
1
2

∫
V

~E∗ · ~JpldV =
|I0|2

2
(R+ iX) (1.39)

where R is the plasma resistance, X the plasma reactance, I0 the antenna current, and the
upper script ∗ denotes the conjugate of the vector. The power is transferred by means of
both collisional resistive heating and non-collisional heating (Landau damping). In usual
conditions, most of the power is transferred by collisional phenomena thanks to the TG
wave, absorbed in a thin layer at the edge of the plasma cylinder.

2Being a square complex matrix, the dielectric tensor εij can be uniquely written as the sum of an

Hermitian component plus a skew-Hermitian component, εij = εHij + εSij where εHij = 1/2(εij + ε
(∗)
ij ) and

εSij = 1/2(εij − ε
(∗)
ij ). The upper script (∗) here denotes the conjugate transpose of the matrix. The skew-

Hermitian part of the dielectric tensor is associated to the irreversible dissipation of power per unit volume,
Pabs = ω/(8π) ~E∗0 [εS ] ~E0. The total absorbed power is thus given by the integral of Pabs on the plasma
volume.
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of magnetic field, electric field and plasma currents respectively. Imaginary components
are not reported; fields and currents are evaluated at the following conditions: plasma
radius=10 cm, antenna located on the plasma surface ra = 10 cm, external conducting
boundary at rc = 20 cm, wave numbers m = 0, k = 10 rad/m, magnetostatic field B0 = 250
Gauss, plasma of Argon, homogeneous neutral gas at p0 = 3.0 mTorr, Te = 5eV, antenna
current I0 = 1.0 A, frequency f = 13.56 MHz; calculated fields pertains to the axial
coordinate z = 0, i.e. they are evaluated on the antenna plane.
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1.1.5 Generalizations of the plasma-wave coupling

The theory presented up to here can be generalized in order to include plasma effects that
departs from cold-wave theory, as for example thermal effects, i.e. effects related to a
finite temperature of each plasma species. Other effects are the finite number of plasma
species, the kinetic effects of a non-Maxwellian distribution function, and finite Larmor
radius effects. This can be accomplished semi-analytically by including inside the dielectric
tensor more complex formulations. The most important generalizations are reported in the
Appendix A.3.

1.2 Macroscopic transport

The theory of plasma-wave coupling presented up to here describes how the fields excited
by the antenna can deposit power into the plasma for given arbitrary profiles of n, nn and
Te (plasma density, neutral density and electron temperature). The theory prescribes a
deposition governed by two families of plasma waves, occurring as a consequence of the
finite-geometry of the plasma cylinder. When the plasma density is non-uniform along
the radius, the absorption is greatly altered with respect to the case of uniform density.
However, the plasma-wave coupling theory is not consistent by itself, since it only states
how much power goes into the plasma for given profiles. The actual radial profiles have to
be obtained by solving another set of equations, that account for the macroscopic transport
of ions, electrons and neutrals inside the plasma cylinder. At equilibrium the species will
be in a configuration depending on how the plasma is forced by the wave, and how the
ions/electrons/neutrlas interact together.

In the present section we will address this problem, that will be addressed as the
macroscopic transport problem. All the quantities, comprising the power deposition, will
be taken into account locally, with energy deposition described by the theory of plasma-
wave coupling. In this way, a general model of equilibrium valid for cylindrical plasma
sources excited by RF fields (ICP and helicon sources) will be derived.

1.2.1 Remarks on the transport problem

The equilibrium of the discharge depends on the macroscopic balances of electrons, ions and
neutral species. In stationary conditions, the discharge is sustained by means of electron
impact ionization on neutral atoms. At frequencies in the helicon range, the ions are not
affected by the RF wave, due to their inertia. All the power is transferred to the electrons.
Power is expended to sustain the plasma, and to overcome losses. Electrons are heated
locally by the electromagnetic fields, and power is transferred from electrons to the neutral
gas by collisions. Only the fraction of electrons with energies higher than the ionization
threshold is useful for obtaining new ions and new electrons from neutral atoms. As will
be seen later in more detail, the power deposition process inside an helicon discharge is
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strongly non-uniform. This locally affects the electron heating, and as a consequence the
global equilibrium of the plasma cylinder.

1.2.2 Transport models in non-magnetized discharges

Here the classical transport models studied for discharges are briefly recalled. Classically,
the transport quantities at equilibrium in a cylindrical discharge at pressure p0 and of
characteristic size L∗ are described by different models in different regimes. The discrimi-
nant between the regimes is quantified by a non-dimensional number like the ratio between
the mean-free-path and a characteristic size, Kn = λ/L∗ (Knudsen number), or the prod-
uct between the pressure and the characteristic size, Pa = p0L

∗ (Paschen number). The
characteristic size of the discharge is usually the diameter of the cylinder, or its length,
depending on the problem. The mean free path hasn’t a unique definition. More than one
mean free path can thus be defined, depending on the nature of the collisions. When the
discharge is non-magnetized, three regimes of transport can be recognized, the diffusive
regime, the free-fall regime and the intermediate regime.

Diffusion limit

At high pressures, the mean free path is much smaller than L∗, and a fluid model is appro-
priate. In this diffusion mode, the radial transport is dominated by ambipolar fluxes. When
the discharge is sustained by volume ionization, the balance of the system is determined
by the equilibrium between diffusion and ionization:

Da∇2n+ < σv >ion nnn = 0 (1.40)

where Da is the macroscopic ambipolar diffusion coefficient:

Da =
µiDe + µeDe

µi + µe
= [µe >> µi] ≈ Di +

µi
µe
De = [µ = eD/KT ] ≈ Di

(
1 +

Te
Ti

)
(1.41)

where n is the plasma density, nn is the neutral gas density and < σv >ion is the rate
constant of ionization. In a cylindrical geometry the density in radial direction is thus
governed by the following Bessel equation:

Da
1
r

d

dr

(
r
dn

dr

)
+ < σv >ion nnn = 0 (1.42)

which has the classical solution in term of Bessel functions. In the limiting case of null
boundary condition n(r = R) = 0 the solution is3:

n(r) = n0J0

(
2.405

r

R

)
(1.43)

3In practical cases, the density at the edge of the cylinder is never zero, so the case is just a theoretical
limit.
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where J0 is the Bessel function of the first kind and n0 is the plasma density on the
axis. Substituting the solution inside the original Bessel differential equation, the relation
at steady state between the ionization rate and the system dimension is obtained, n0 <
σv >ion R

2 = 5.78Da. This condition states that the ionization frequency is equal to the
wall loss frequency. When a cylinder of finite length is considered, the plasma density
results to be equal to the Schottky profile, evaluated for null boundary conditions n(r =
R) = n(z = ±l) = 0:

n(r, z) = n0 cos
( π

2l
z
)
J0

(
2.405

r

R

)
(1.44)

where l is the plasma half-length, which is equal to half the length of the discharge minus
the width of the sheath at the endwall.

Free-fall solution

At very low pressure the mean free path is much greater than L∗, and the kinetic free-
fall approach due to Tonks and Langmuir [6] offers the solution to the problem. In this
regime, ions can be considered collisionless. In presence of an electric field they are subject
to a free-fall acceleration, and the ion velocity can be obtained from energy conservation,
v2
i = −2eφ/Mi, where e is the elementary charge, φ the potential, and Mi the ion mass.

Assuming Maxwellian electrons the ion velocity results v2
i = 2C2

s log(n/n0), where Cs is the
ion Bohm velocity. This expression of the ion velocity can be substituted in the continuity
equation to solve for the plasma density. In a monodimensional slab, the resulting non-
linear differential equation is the following:

d(nvi)
dx

=
d

dx

[
n

(
2C2

s log
n

n0

)1/2
]

= nn < σv >ion (1.45)

This equation has an analytical solution, solved for the first time by Tonks and Langmuir
by means of a power series [6]. A closed form has been obtained later, by means of Dawson
functions:

exp
(

Φ(ζ)
Te

)
=

√
Te
2

∫ ζ

0

exp
(

Φ(ζ)
Te

)
√

Φ(ζ)− Φ(z)
dz (1.46)

where ζ = xnn < σv >ion. The solution shows a plasma density on the radial boundary of
one half to one third that along the discharge.

Intermediate regime

The regime of intermediate pressures is the more difficult to treat, because in principle the
discharge medium does not exhibits neither fluid nor single-particle behavior. When the
ambipolar drift velocity at the wall is taken equal to the Bohm velocity, v(r = R) = Cs, a
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finite value of plasma density is obtained at the boundary. This kind of analysis has been
pursued in 1962 by Person [7].

Kino and Shaw [8] first tried to treat the intermediate pressure regime with a fluid
approach, and they found that fluid theory is applicable also to collisionless discharges.

The transition between the diffusion mode at high pressure and the Langmuir mode
at very low pressures, was then analyzed by Self and Ewald [9] in 1966; they found 1D-
distributions of plasma density coinciding with the Schottky profile at high pressures and
with Langmuir profile at very low pressures. They made the simplifying assumption to
have an ion-neutral collision frequency νin independent on drift velocity.

Later Godyak [10] found analytical solutions for the constant mobility case, assuming
to have a Bohm velocity at the plasma boundary. The solution has been found with a
diffusion approximation, assuming that the ambipolar drift velocity is proportional to the
ambipolar field, v = (e/mνin)Eamb. In this case the solution for a rectilinear slab and for
cylindrical geometry are, respectively:

n(x) =n0 cos
[π

2
(1− δx)

x

d

]
(1.47)

n(r) =n0J0 cos
[
2.4(1− δr)

r

R

]
(1.48)

where δx = D/(vsl) << 1, with l the plasma half-length, and δr = D/(vsR) << 1. The
corresponding ratios between the plasma density in the center of the discharge and at the
plasma boundary are:

n(x = L)
n0

=
π

2
D

vsl
= 1.57

λi
l

(
Te
Tg

)1/2

(1.49)

n(r = R)
n0

=1.25
D

vsl
= 1.25

λi
R

(
Te
Tg

)1/2

(1.50)

These profiles are in accord with the previous analysis of Self and Evald.
The solutions for the low pressure case showed up to now all assume a constant mo-

bility, and they are consequently applicable only at relatively high values of the Paschen
parameter Pa = p0L

∗, corresponding to the case when the ionization frequency has still a
local meaning. At lower values of the Paschen parameter (corresponding to lower pressures
or smaller discharges, or both), the constant mobility approximation is no more satisfied.
In this oligo-collisional regime the ion-neutral collisions are dominated by charge exchange,
and diffusion becomes non-linear. The mobility is no more constant, the ambipolar diffu-
sion equation is no more valid, and the solutions obtained for constant mobility must be
corrected.

A first study where the mobility is considered variable with the drift velocity has been
done by Cervenan and Matisovitz [11], where the following relation is obtained for the ratio
of densities:

n(r = R)
n0

≈ 0.6
(

νioniz
νioniz + νin

)1/2

(1.51)
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where νioniz = nn < σv >ion is the ionization frequency.
Godyak [10] identified as the main parameter the ratio between the electron energy re-

laxation length and the plasma dimension, λeT /L∗ << 1, and obtained solutions confirmed
by experimental evidence for the two following cases:

1. λeT > L∗ in the low pressure regime,

2. λeT < L∗ in the high pressure regime.

The main results of such analysis can be found in the Godyak monography [10].

1.2.3 Analysis of collisional processes in Argon

The species composing the plasma (ions, electrons, neutrals, etc.) interact together by
means of collisional processes. Depending on the substances, the involved collisional fea-
tures can span over a considerable parameter space. Here we will take into account Argon
gas. In fact, Argon has been chosen for the experimental validations, for practical reasons
like easiness of its availability, safety during Laboratory operations, electropositivity of its
plasma, and large spread of use in the Laboratories, and thus portability of the results.

Neutral-neutral collisions

In the hard shell limit, Argon atoms have an atomic radius of 71 pm (calculated covalent
atomic radius, [12]), and a geometrical spherical cross section of σn = π(rAr + rAr)2 =
6.33×10−20 m−2. For discharge pressures within the range from 1 to 20 mTorr, this would
lead to a neutral-neutral mean free path in the range λnn ≈ 50 − 2.4 cm respectively.
This range overlaps the usual diameter of discharges, going from 1 cm for very small
discharges, to 40-50 cm, or more, for larger chambers. According to these values, the
neutrals would result only slightly collisional, and in some case they should be not collisional
at all. For Argon at room temperature and at pressure of 10 mTorrs, the number density
is nn = p0/(KBTn) = 3.2 × 1020 m−3, and thus the neutral-neutral mean free path is
λnn = 1/nnσn ≈ 5 cm. When flowed in a small cylindrical discharge of 2 cm in diameter
and 15 cm in length, they could have few chances to collide among each other, and they
should be treated as free particles. However, considering only the geometrical cross section
leads to a wrong evaluation of the cross section.

A more refined evaluation of Argon atom-atom scattering cross sections is done in
greater detail by Phelps et al. [13] over a wide range of energies (10−2 - 104 eV) and using
a quantum mechanical model. A comparison with several experiments and with the results
of other authors is also done. Figures 1.5.a shows the interaction potential of two Argon
atoms versus their internuclear separation4, and 1.5.b shows the total σt, viscosity σv and

4We note that when a new neutral atom enters into the plasma, its ionization potential decreases in the
order of O(e2n

1/3
e (me4/h2T )1/2). The decrease is due to presence of other ions, and to electrons collisions.

This decrease in ionization potential is almost always neglected in the calculations.
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(a) (b)

Figure 1.5: (a) Interaction potential versus internuclear separation for Ar atoms; atomic
units are 27.2 eV and 0.529×10−10 m; (b) Total σt, viscosity σv and inelastic σvuv, σi cross
sections for symmetric Ar atom - Ar atom collisions. Both figures are adopted from [13].

inelastic σvuv, σi cross sections for symmetric Ar atom - Ar atom collisions. The Phelps
neutral-neutral cross sections will be used in our models of neutrals.

Coulomb collisions

Before treating Coulomb collisions, we have to consider quasineutrality of the plasma inside
the discharge. The electron density inside the discharges can cover a large range, going
from 108 cm−3 for low-power and low-efficiency discharges, to 1014 cm−3 for high-power and
high-efficiency discharges. Laboratory plasma obtained with helicon sources are usually in
the range 1010 cm−3 - 1013 cm−3. Electron temperatures span a range of few electronvolts,
usually around 3 eV. The Debye radius is thus λD =

√
KBTeε0/ne2 ≈ 0.13 mm - 1.3×10−3

mm. For helicons it is λD = 0.13 mm - 4.1 × 10−3 mm. Even in the case of very low-
density discharges, the Debye radius is much smaller than the characteristic size of the
discharge, and the plasma can thus be considered quasi-neutral. Furthermore, a single
charge could not live in the plasma even when the plasma density is low and the gas
pressure is high. In fact, the relaxation time is proportional to ε0/σ, where ε0 is the
vacuum permittivity and σ is the conductibility of the plasma. The worst case in this case
is for ions, which have the lowest mobility. In the low density case of 1016 m−3 at pressures
around 20 mTorr, the Argon charge-exchange is around 200 kHz, and the conductibility



1.2. MACROSCOPIC TRANSPORT 19

results σ = ne2/Miνch.ex = 1016(1.6× 10−19)2/6.7× 10−262× 105 ≈ 10−2 Ω−1m−1, with a
relaxation time of the order of 0.1 nanoseconds. Thus an isolated charge can’t live inside
the plasma much more than this time, and it is rapidly expelled out.
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Figure 1.6: Frequencies of electron-ion and electron-electron Coulomb collisions versus the
plasma density for three values of electron temperature

Electron-ion Coulomb collisions are characterized by many small-angle deflections.
When the electron and the ion are considered as isolated charges, their relative motion
is purely orbital. In this case a 90-dregrees deflection happens when the electron swing by
the ion coming from a distance h, called the impact parameter. In a quasineutral plasma,
the effect of small-angle deflections is to amplify the parameter h of a factor log Λ, the
Coulomb parameter, resulting in even greater cross sections. In cold plasmas the Coulomb
parameter is log Λ ≈ 10. An approximate formula of the ion-electron collision frequency is:

νei ≈ 2.9× 10−6n[cm−3] log Λ/Te[eV]3/2 (1.52)

For the usual electron temperatures of 3 eV, the collision frequency is νei ≈ 5.58 ×
10−6n[cm−3], and in the range of helicon plasma densities 1010−1013 [cm−3] it is comprised
between 56 kHz and 56 MHz. With an electron thermal velocity of ve =

√
2KBTe/me ≈

1.03 × 106 m/s, the resulting mean free path is in the range λei = ve/νei ≈ 18 m - 1.8
cm respectively. Common RF helicon discharges work at 13.56 MHz or 27.12 MHz, corre-
sponding to a mean free path λei,13.56 ≈ 7.6 cm and λei,27.12 ≈ 3.4 cm respectively.

Electron-electron Coulomb collisions can be treated similarly to electron-ion collisions,
and the resulting approximated collision frequency is:

νee ≈ 5.8× 10−6n[cm−3] log Λ/Te[eV]3/2 (1.53)
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In this case the two particles involved have the same mass, and the orbits are both affected
considerably by the collisional process. Electron-electron collisions have thus the main
effect to redistribute their energy, so that in stationary conditions they thermalize to a
Maxwellian distribution for velocities, and to a Boltzmann distribution for their number
density. For the same example as before, with electrons at 3 eV, the resulting collision
frequency is νee ≈ 11.16× 10−6n[cm−3], and in the usual range of helicon plasma densities
1010 − 1013 [cm−3] it is comprised between 112 kHz and 112 MHz. The resulting mean
free path is in the range λee = ve/νee ≈ 9 m - 9 mm respectively. Here we see that for low
density helicon discharges in the 1010 cm−3 range, the electron-electron mean free path can
be greater than the discharge size. Electrons have the time to thermalize only if they stay
inside the discharge for a time high enough to collide many times among each other, in
order to maximize their entropy. In other words, electrons thermalize only if their collision
frequency is much higher than their loss frequency at the walls. Only when this condition
is satisfied, electrons can be treated as a thermalized medium. The flux of electrons to the
wall can hardly be predicted, because it is strictly dependent on the whole transport balance
of the particular discharge considered, and it can vary among regimes and configurations
of the discharges. Roughly speaking, the ion Bohm flux at the walls is one-half the density
in the bulk, and assuming a local quasineutrality, the electron flux is Γe = nCs/2, with
Cs the ion Bohm velocity. The loss frequency of electrons is thus νe,wall = ΓeA, with A
the plasma contacting surface of the discharge. Helicon Argon plasma (1010−1013 [cm−3])
with 3 eV electrons has a Bohm velocity of Cs = 2680 m/s. Their flux of electrons at the
wall is Γe ≈ 1.3× 1019 − 1.3× 1022 electrons/m2/s. A small cylindrical helicon source of 2
cm in diameter and 15 cm long has thus an electron loss frequency of νe,wall ≈ 1.3× 1017 -
1.3× 1017 electrons/s.

Ion-neutral collisions

Ion-neutral collisions in Argon, showed in Figure 1.7.a, are always dominated by charge-
exchange collision phenomena for all the interesting ion energies. This collisional process
is much greater than the electron-neutral processes, exceeding them of two orders of mag-
nitude. The charge-exchange cross section is higher than the neutral-neutral cross section
because the two particles do not have to geometrically collide in order to exchange one
electron. Charge-exchange collisions are responsible of ion scattering even though the tra-
jectories of the particles are not modified. One of the most comprehensive studies of of the
charge exchange between gaseous ions and atom was done in 1962 by Ralph and Francis
[14]. Their charge exchange cross section for ions immersed in their parent neutral atoms
are reported in Fig. 1.7.a. A brief history of studies regarding the resonant charge-echange
has been briefly recalled in [15], recalled as the “Sena effect”.

When the resonant charge-exchange collision happens, the neutral and plasma particles
exchange their velocity. The neutral ”gains” energy and ion loose energy. After the collision
event, the neutrals are faster and they easily reach the wall of the discharge, but they cannot
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Figure 1.7: Argon cross-sections (a) ion-neutral; (b) electron-neutral.
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leave the plasma. They will elastically collide with the wall. In the very low collisional
regime, the radial movement of the neutral will be something like a ping-pong between the
walls. Since we are considering no azimuthal and no axial variations, what is important for
neutrals is their ratio between their mean free path and the source diameter (the Knudsen
number). In the range we are interested, at p0 = 3 mTorr, the mean free path goes from
20 to 100 cm (approx), and with the source of 10 cm in diameter this means they are
reflected 2-10 times by the walls during the time between two collisions. At the next
collision event, the fast neutral could collide either with another neutral or with another
ion. The first event is more likely, and the effect is to redistribute its higher energy to other
colder neutrals. The process continue until neutral thermalize to an higher temperature.
This temperature is given by the equilibrium with resonant charge exchange collisions.
After that neutrals are thermalized, since it’s equally likely that they can gain energy from
resonant charge-exchange collisions, or that they can loose energy among them for elastic
collisions.

Referring to the same example as before, the Argon gas at room temperature and
p0 = 10 mTorr, with ions at Ti = 0.01 eV, has a charge-exchange cross section equal to
σch.ex ≈ 10−18 m−2, and an associated mean free path equal to λch.ex = 1/(nnσch.ex) ≈ 3
mm. Charge-exchange processes is thus a relevant process also in very small discharges,
and can affect greatly the transport phenomena of the discharge. Figure ?? shows charge-
exchange frequency in Argon as a function of gas pressure (charge-exchange data at low Ti
has been analyzed by Sheldon).

Electron-neutral collisions

Electron-neutral collisions are distinguished into three kinds: elastic, excitation and ioniza-
tion. Figure 1.7.b [Vahedi 1993] shows the three electron-neutral cross sections as a function
of the energy of the impacting electron for Argon. The highest cross section is due to elastic
scattering. As can be seen from the curve of elastic scattering, Argon atoms has a large
Ramsaurer effect with a low peak around 0.2-0.4 eV. In the usual range of electron energies
of 3-10 eV, the elastic scattering cross section is in the range σel = 6 - 10 ×10−20 m−2. For
example, the same gas as before at room temperature and p0 = 10 mTorr, with electrons
at 3 eV, has an electron-neutral mean free path equal to λen,el = 1/nnσel ≈ 5 cm. This
means that electrons elastically collide with neutrals as often as neutrals collide among
themselves. The other two kinds of electron-neutral interactions are inelastic and have a
smaller cross section. The electron-neutral ionization event is fundamental for the discharge
ignition and sustainment. Figure 1.8.a shows the electron-Argon collision probabilities me-
diated over a Maxwellian, and Figure 1.8.b shows the source rate g = nn < σv >ion as
a function of neutral pressure p0 for three different values of neutral temperature. The
electron-neutral excitation collision is the lowest, but plays a fundamental role in the eval-
uation of losses for line radiation. Excitation phenomena play also an important role for
the spectral characterization of the discharge.



1.3. DISCHARGE EQUILIBRIUM 23

1.3 Discharge equilibrium

1.3.1 Radial equilibrium model

We consider a plasma in an infinite circular cylinder of radius a in which all quantities
depend only on the coordinate r. There is a uniform, coaxial magnetic field Bẑ. Ions are
accelerated by electric fields, which are scaled to an electron temperature of around 3 eV.
At 100 Gauss, the ion Larmor radius rLi at KTi = 3 eV is equal to 18 cm, which is usually
larger than a. Hence, the ions can be considered unmagnetized. At 1000 Gauss, rLi is of
order 1.8 cm, which may be smaller than a but radial electric fields ~E can only cause the
ions to drift in the ignorable direction θ. There are no azimuthal E-fields in steady state,
there being no dc current in the z direction. Hence, we can ignore the effect of B on ion
motions even at 1000 Gauss. Radial ion motion is controlled by Er and charge-exchange
collisions with neutrals. At 3 eV, argon ions have a mean free path of order 14 cm at
1 mTorr and 0.7 cm at 20 mTorr, and therefore neither the collisionless nor the highly
collisional limit is applicable. The ion equation of motion in equilibrium is

Mn~v · ∇~v = en~E −KBTi∇n−Mn~vνio (1.54)

Here M is the ion mass, n the quasineutral plasma density, ~v the ion fluid velocity, and νio
the charge-exchange collision frequency, whose evaluation is analyzed in Sec.1.2.3. Since
~E is scaled to Te >> Ti, we can simplify by neglecting the KTi term. Defining

~E = −∇φ, η ≡ −eφ/KBTe, and cs ≡ (KBTe/M)1/2 (1.55)

we can write the radial component of Eq. 1.54 as

v
dv

dr
= − e

M

dφ

dr
− νiov =

KBTe
M

dη

dr
− νiov = c2

s

dη

dr
− νiov (1.56)

where v = vr.
The ion equation of continuity is

∇ · (n~v) = Q(r) = nnnPi(r), (1.57)

where Pi(r) is an ionization probability given by

Pi(r) ≡< σv >ion (r) (1.58)

Here nn is the density of neutral argon and < σv >ion is a radially dependent ionization
probability varying sensitively with Te(r). With quantities varying only with radius, Eq.
1.57 can be written

dv

dr
+ v

lnn
dr

+
v

r
= nnPi(r) (1.59)
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We next consider electrons. Their equation of motion is

mn~v · ∇~v = −en( ~E + ~v × ~B)−KBTe∇n−mn~v(νeo + νei) (1.60)

where the collision frequencies are with neutrals and ions. Since the electrons are mag-
netized, classical diffusion theory [17] would predict that their rate of diffusion across ~B
would be slower than that of the unmagnetized ions. This would give rise to a plasma
potential that is more negative at the center than at the edge. In experiment, the opposite
is observed: the potential peaks at the center just as does the density, in agreement with
Boltzmann’s relation Eq. 1.61.

n = n0 exp(eφ/KBTe) = n0 exp (−η) (1.61)

The reason for this is that plasmas are not infinitely long, and electrons can reach the ends
of the chmaber well before they can reach the periphery. In this case the Simon short-
circuit effect [18] must be taken into account. We therefore give a pictorial explanation of
it.

Figure 1.9: Illustration of the short-circuit effect

One end of a finite-length discharge in a magnetized field is shown in Fig. 1.9. Electrons
are strongly magnetized so that they are lost mainly at the endplates. The ions enter the
end sheaths with the Bohm velocity Cs defined in Eq.1.55. Electrons are much faster
but must leave at the same rate to keep the plasma neutral along each field line 5, and
therefore a sheath sets up to form a Coulomb barrier for the electrons. Let the endplates
be at ground, φ = 0. The plasma potential φp is positive to retain the electrons. Consider
the two tubes of plasma shown, with the tube nearer the wall containing more plasma
because the ionization is higher there. The unmagnetized ions will then diffuse toward
the lower-density region. The magnetized electrons cannot follow, but the sheaths at the
end can re-adjust. The sheath in the high-density region becomes thinner, allowing more
electrons to reach the endplate. The sheath in the low-density region becomes thicker,

5This is obviously true if the endplates are insulating, but it is also true if the endplates are conducting.
In that case, electrons can move across B inside the endplate. However, they cannot be injected into a
low-density region unless the endplate is emitting, and we assume that the endplates are not thermionic.
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so fewer electrons reach the endplate. The result is that the sheaths adjust so that more
electrons are taken out of the tubes where there are to many electrons as the ions leave,
and fewer electrons are lost where there are too few electrons as the ions enter. It appears
that electrons have moved across the B-field from high to low density to follow the ions,
but in actuality the electrons never crossed the B-field. There was only a slight adjustment
of the flow of electrons through the sheaths. Thus, φp(r) adjusts so that ions and electrons
leave each tube at the same rate. This mechanism allows electrons to arrive at their
most probable distribution, the Maxwellian one. This results in a φ(r) which obeys the
Boltzmann equation Eq.1.61 even across field lines.

More specifically, the ion flux at the sheath edge is nCs, and the electron flux is nvthe,
where the electron thermal velocity in one direction is the vthe = (KTe/2πm)1/2. Thus,
equal fluxes requires

eφp
KBTe

= ln
(
M

2πm

)1/2

(1.62)

This is the condition for the floating potential of a probe and does not involve the density at
all. Each tube can have an arbitrary density and potential, independent of its neighbors.
This is, of course unreal, since tubes can communicate with one another through ion
motions. As the ions move radially, the electrons can follow via the short-circuit effect.
Hence, the electrons are not restrained by the magnetic field, and Eq. 1.61 is valid over
the whole plasma.

We can now combine equations into a single equation for the ion fluid velocity v in the
radial direction. From Eq. 1.61 we have

d lnn
dr

= −dη
dr

(1.63)

Inserting this into Eq. 1.59 gives

dv

dr
− vdη

dr
+
v

r
= nnPi(r) (1.64)

Eq. 1.56 can be written as
dη

dr
=
(
v
dv

dr
+ νiov

)
C−2
s (1.65)

Finally, substituting this into Eq. 1.64 yields an ordinary differential equation for v:

dv

dr
+
v

r
− v2

C2
s

(
dv

dr
+ νio

)
= nnPi(r) (1.66)

Defining
νio = nn < σv >cx≡ nnPc(r) (1.67)
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where < σv >cx is the Ar+-Ar charge-exchange probability, we now have

dv

dr
+

C2
s

C2
s − v2

(
v

r
− v2

C2
s

nnPc(r)− nnPi(r)
)

= 0 (1.68)

The “plasma solution” given by this ordinary differential equation clearly diverges at a
radius r = ra, where v = Cs. The Bohm criterion for sheath formation is satisfied at ra,
and that radius can be identified as the discharge tube radius a if the sheath thickness is
negligible. The value of ra apparently depends on the physical quantities nn, Cs, Pc and
Pi, but it will turn out that the dependence is very weak. Normalizing v to Cs by

u ≡ v/Cs (1.69)

we can write Eq. 1.68 as

du

dr
+

1
1− u2

[
u

r
− nn
Cs

(u2Pc + Pi)
]

= 0 (1.70)

Here r is still dimensional, and this equation will be solved later. It will be convenient to
rewrite this equation as

du

dr
− 1

1− u2

[
nnPi
Cs

(1 + ku2)− u

r

]
= 0 (1.71)

where
k ≡ Pc/Pi =< σv >cx / < σv >ion (1.72)

Since nnPi/Cs has dimensions of (length)−1, we now introduce a dimensionless independent
variable ρ defined by

ρ ≡ (nnPi/Cs)r (1.73)

obtaining
du

dρ
=

1
1− u2

[
1 + ku2 − u

ρ

]
(1.74)

1.3.2 Analytical treatment of the singularity

The radial diffusion equation Eq.1.74 is of the form:

du

dρ
=

1
1− u2

[
q + ku2 − u

ρ

]
(1.75)

where:

ρ = r/a non-dimensional radius (1.76)
u = vr/Cs radial Mach (1.77)
q = aQ/Cs ionization term (1.78)
k = aνio/Cs charge exchange term (1.79)
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The equation is solved together with the two conditions at the boundaries:

u(0) = 0 Axial-symmetry (1.80)
u(1) = 1 Bohm sonic condition (1.81)

The ordinary differential equation Eq.1.75 together with the two conditions at the two
points ρ = 0 (Eq. 1.80) and ρ = 1 (Eq. 1.81) constitute a boundary value problem.

Near the axis the drift motion of the plasma is subsonic,

u << 1, (1.82)

and there the transport equation becomes

du

dρ
≈ q + (k + q)u2 − u/ρ (1.83)

In this case, and when the parameters q, k are constant, the following analytical solution
is found:

u(ρ) =
(

p

k + q

)
C1K1(−pρ)− I1(pρ)
−C1K0(−pρ) + I0(pρ)

(1.84)

where p =
√
−q(k + q), the constant C1 depends on the boundary condition, and I0,1

K0,1 are the modified Bessel functions of 1st and 2nd kind respectively. Substituting the
axis-symmetry condition of radial Mach equal zero at the axis,

u(0) = 0 (1.85)

the value of C1 is calculated. The l’Hopital rule has to be used to solve the indeterminate
form of the limit,

C1 = lim
ρ→0

(
p
k+q

)
(C1K1(−pρ)− I1(pρ))

−C1K0(−pρ) + I0(pρ)
= 0± (1.86)

The subsonic solution is thus given by:

usubsonic(ρ) = −
(

p

k + q

)
I1(pρ)
I0(pρ)

subsonic solution (u < 0.3), p =
√
−q(k + q) (1.87)

This analytical solution is of great practical utility to treat the equation near the axis,
where the differential equation is singular and the plasma is still subsonic. Figure 1.10.a
shows the real component of the subsonic solution versus ρ, with q = k = 1.0; Figure 1.10.b
shows the comparison of the subsonic solution with the numerical integration of the full
equation done with an adaptive Runge-Kutta of 4th-5th order. The error of the analytical
approximation is small up to u < 0.3, as expected from the subsonic approximation.
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Figure 1.10: (a) Analytical subsonic solution (for q=k=1.0); (b) comparison of the subsonic
solution with the numerical integration of the full equation.

The subsonic solution can also be used to obtain a rough estimate of that particular ρ
where the solution becomes singular, u(1) = 1, by finding the first positive zero near the
origin of the following equation:

I0(pρ) +
(

p

q + k

)
I1(pρ) = 0 (1.88)

The full radial drift equation, Eq. 1.75, exhibits interesting properties of “self-similarity”,
i.e. their solutions are always the same when an opportune renormalization is done. From
the solution u(ρ) of the associated Cauchy problem,

du

dρ
=

1
1− u2

(
q + ku2 − u

ρ

)
(1.89)

u(0) = 0 (1.90)

the radial location of the Bohm singularity can be determined:

ρBohm =
{
ρ : lim

ρ→ρBohm
u(ρ) = 1

}
(1.91)

Then the renormalization is done by means of the formal substitution:

ρ→ ρ

ρBohm
(1.92)
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Figure 1.11: (a) Solutions of Eq.1.74 for three different values of k; in each case the sheath
edge ρa occurs at a different value of ρ, (b) Solutions of Eq.1.74 for 15 mTorr of Argon
and KBTe = 3 eV, yielding v/Cs (black), n/n0 (blue) (red, right scale); the latter two
are related by the Boltzmann relation. The abscissa is normalized so that the sheath edge
occurs at r = a. The curves retain the same shape for any value of a.

1.3.3 Case of constant neutral density and temperature

In this case k is a constant. Eq. 1.74 is a nonlinear ordinary differential equation which
can be solved numerically. Using a variable step Runge-Kutta method, we obtain a unique
solution for each k, starting with u = 0 at ρ = 0. Three such solutions are shown in Fig.
1.11.a, each with a radius ρa where v = Cs. Since the sheath edge must be located at this
point, the curves can be renormalized to fit a dishcarge tube of radius a by setting r/a
equal to ρ/ρa. From the solutions for v(r), Eqs. 1.65 and 1.63 can be used to find η(r)
and n(r)/n0. Figure 1.11.b shows the radial profiles of v/Cs, n/n0 and −η(r) for one case
of fixed KBTe and neutral pressure p0.

The nature of Eq. 1.74 is revealed when the parameters nn, Cs or Pi in Eq. 1.71 are
varied. The values of ρa change, but the renormalized curves of Fig. 1.11.b remain the
same regardless of magnitudes of these parameters. The profiles are identical when plotted
against r/a. The solutions of Eq. 1.74 are self-similar. The curves of Fig. 1.11.b are
independent of the numerical value of a. These renormalized curves change only when the
nonlinear term ku2 changes.

The ratio Pi/Pc cannot actually be varied since the ions are accelerated to a velocity
v/Cs, given by the universal curve of Fig. 1.11.b, where v is a function of r/a. Hence, the
collision frequency νio is not nn < σv >cx averaged over a Maxwellian ion distribution at
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a temperature Ti as given by Eq.1.67, but is fixed by the known velocity at each radius:

νio = nnσcx(Ei)v(r) (1.93)

where v is the fraction of Cs given by the universal curve in Fig. 1.11.b, and the ion energy
is Ei = 1/2Mv2. The charge-exchange cross section as a function of Ei is given in Sec.
1.2.3. We can neglect Ti relative to Te, so νio is a function of Te and not Ti. It is a much
weaker function of Te than νion. With use of Eq. 1.93 for nnPc(r), the ratio Pc(r)/Pi(r)
depends only on Te, and the function k(r) = Pc(r)/Pi(r) will vary in a predictable way as
v(r) changes, taking into account the variation of νio as the ions are accelerated radially.
This feature will be included in future graphs, including those in which nn and Te are
not constant. The normal procedure of calculating a pre-sheath and matching it to the
Debye sheath is no longer necessary. Our simple equation takes collisions and ionization
into account exactly throughout the plasma and pre-sheath.

That such universal radial profiles, valid for any discharge diameter, can be obtained is
a direct consequence of the use of the short-circuit effect to make the electron Boltzmann
relation valid across the magnetic field. Since the magnetic field dod not enter into the
calculations so far, these results are valid for any cylindrical discharge when end losses can
be neglected. Furthermore, Eq. 1.74 naturally defines the sheath edge since du/dρ → ∞
when u = 1, v = Cs. There is no need to calculate a pre-sheath and to match it to the
Debye sheath since all collisions and ionizations have been taken into account at every
radius up to the sheath edge.

1.3.4 Ionization balance

Equation 1.70 for the radial profiles allows for nn and Te to vary with radius. We shall first
consider how Te varies when nn is uniform. It is well known [19] that ionization balance
requires Te to vary with neutral pressure p0. This can be seen easily in a rough calculation.
Let the plasma have a volume V and a surface area A. In steady state, the rate of ion
production is dN/dt = V n̄enn < σv >ion, where n̄e is averaged over the plasma. Ions are
lost to the walls at the rate −dN/dt = Ani(a)Cs = Ane(a)Cs. Equating these two gives

2
a

ne(a)
n̄e

= nn
< σv >ion

Cs
≡ nnf(Te) (1.94)

The ratio between ne at the sheath edge and the average ne is about 1/2, depending on
the collision mechanism, so for a given discharge geometry nn is inversely related to the
function f(Te) as defined above. The absolute value of ne has canceled out. Evaluation of
< σv >ion is given in Sec. 1.2.3.

Equation 1.94 is an appropriate ionization balance averaged over the whole discharge.
Local ionization balance at each radius r can be evaluated as follows. Let nT (r) be the
total number of ions in a shell of width dr at r. The input of ions into the shell per unit
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length (with ne = ni = n) is

dnT (r)
dt

= 2πrdr · n(r)nn(r) < σv >ion (Te) (1.95)

The loss of ions from the shell is

− dnT (r)
dt

= 2πrdr∇ · [n(r)v(r)] = 2πrdr
1
r

d

dr
[rn(r)v(r) ] (1.96)

Equating these gives
1
nr

d

dr
(rnv) = nnPi(Te) (1.97)

where n, nn and v are functions of r found from the solution of Eq. 1.70. This is the local
equivalent of Eq. 1.94.

We can now calculate the Te − p0 relation when nn is uniform, with neutral depletion
neglected. This is found by simultaneously solving Eqs. 1.70 and 1.97 requiring that
the Bohm sheath condition v = Cs be met at r = a. For a given pressure, and a given
discharge radius, there is only one Te satisfying both Eqs. 1.70 and 1.97. Solving the
system of equations, and repeating this for various pressures gives the Te− p0 relationship
for a given gas, as shown in Fig. 1.13 for Argon. Each radius a will have a different curve,
since the surface-to-volume ratio varies as 1/a. These are for uniform pressure, and end
losses are neglected. The variation of Te with r is negligibly small because of the sensitivity
of Pi to Te.

1.3.5 Neutral depletion

To treat neutral depletion, we need to develop an equation for nn(r). Motion of the neutral
gas can be treated with the diffusion equation if their mean free paths are short enough.
The total collision cross section νnn between neutral argon atoms is given by Phelps et al.
[13] and varies only between 2 and 3 ×10−14 cm2 for KBTn between 0.05 and 1.0 eV. This
is the likely range of neutral energies before and after a charge-exchange collision. The
corresponding mean free path varies from 0.1 cm at 20 mTorr to 1.5 cm at 1 mTorr. The
use of the diffusion equation is therefore justified unless the discharge tube is very small.

Except for very narrow tubes, the neutral flux Γ is given by

Γ = nnνn = −D∇nn (1.98)

where the diffusion coefficient D is defined by

D = KBTn/Mνnn (1.99)

Nuetrals are lost by ionization and are replenished by injection of gas from outside the
plasma. With Eq. 1.98, the equation of continuity for neutrals can be written

∇ · Γ = −D∇2nn −∇D · ∇nn = −nnnPi (1.100)
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where Pi is the ionization probability defined by Eq. 1.58. This equation is to be solved
subject to a boundary condition which is the source term for the neutrals.

Since the neutrals are injected at locations that differ from machine to machine, we
have to make a reasonable model that will apply to all machines. The positions of the inlet
and outlet are arbitrary. A baffle in the pump line is often used to limit the pumping speed
at high pressures. We make the basic approximation that the input flux Γ(a) is uniform
uniform in the azimuthal and axial directions regardless of the positions of the input tube
and the pump line. This preserves the one-dimensional nature of the problem. Let p0 be
the pressure in mTorr at the inlet. This is related to the neutral density by nn = N0p0,
with N0 = 3.3 × 1013 cm−3. This follows from the ideal gas law for monoatomic gases at
20 C (293 K or 0.025 eV). The boundary condition is then

Γ(a) = nnνth0 = N0p0(KBTn/2πM)1/2 (1.101)

Before the discharge is struck, there is a balance between the input and output of gas. The
input is usually given in SCCM (standard cubic centimeters per minute), where 1 SCCM
= 4.17 ×1017 sec−1. The pumping speed S is given in liters/sec, usually limited by the
conductance of a baffle. One l/sec at a pressure p0 is 103N0p0 = 3.3×1016 atoms/sec. The
neutral pressure is therefore 12.7 SCCM/S mTorr. In the presence of plasma, however,
the neutrals are heated and Tn may be different at the input and output. After a charge
exchange collision, the neutral acquires an ion energy or order of 1 eV. After an ionization,
the new ion has an energy above 0.025 eV and travels to the wall, where it is neutralized
and reenters the plasma as a neutral. The mean free paths are short, so the neutrals are
thermalized at a higher temperature. Since the degree of ionization is usually less than 1%,
we shall neglect the difference in Tn between the input and output. The working hypothesis
is that the fast neutrals and ions strike the wall and come back into the discharge as cool
neutrals. These neutrals are distributed uniformly by collisions. The same flux leaves the
boundary and enters the pump. Therefore, these processes do not change the overall input
and output rates, so the boundary condition of Eq. 1.101 is still valid. With neglect of
variations in Tn, D is constant; and Eq. 1.100 becomes

D∇2nn = nnnPi (1.102)

which is to be solved with the boundary conditions 1.101 and ndn/dr = 0 at r = 0.
The program EQM (described in detail in Section 2.1) solves the three Eqs. 1.70, 1.97

and 1.102 simultaneously using a Boundary Value solver, with a 4th order Runge-Kutta
to perform the integrations. An examples where neutral depletion is significant is shown
in Fig. 1.14. The Figure shows the dramatic effect of higher electron density at low
pressure. With higher ionization fraction, less than half the neutrals reach the axis. The
corresponding KBTe profiles show the inverse relation between Te and nn predicted by Eqs.
1.94 and 1.97. When nn falls to the order of the electron density, as in the n0 = 5× 1018

m−3 case, KBTe has to rise to extraordinary values (in theory) to provide the requisite
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ionization at such low pressures. These temperatures are, of course, unrealistic. Argon’s
inelastic threshold is around 12 eV, so that radiation losses limit KTe to approximatively
4 eV. An increase of the tube diameter to 10 cm would lead to little additional effects on
the relative profiles.

The problem is that we have not yet considered energy balance. To do so requires more
detail about the ionization and energy loss processes. In the following section, the problem
of the local energy balance between input power and losses is discussed. We will address
the discussion to RF-heated plasma discharges.

1.3.6 Energy balance

The total rf power Pin absorbed by the plasma is, by definition,

Pin =
∫ a

0
P (r)rdr (1.103)

where P (r)rdr is the power deposited into each cylindrical shell. P (r) is calculated by
integration over the local power deposition ~E∗ · ~J , where ~E and ~J are the rf electric field
and current of the helicon wave. Pin can also be calculated from the antenna loading. If
I0 if the peak antenna current and R is the load resistance seen by the antenna, Pin is also
given by

Pin = 1/2RI2
0 (1.104)

R is the same as the plasma resistance Rp arising from electron collisions with ions and
neutrals, and including Landau damping. Note, however, that Pin differs from the power
Prf from the power supply because of losses Rc in the circuitry. At low densities an Rc of
0.5Ω can be comparable to Rp. The relation is [20]

Pin = Prf
Rp

Rp +Rc
(1.105)

First let us calculate overall energy balance. The power lost from the plasma, Pout, consists
of three terms: Wi, We and Wr, where Wi and We are the kinetic energies carried out by
ions and electrons leaving the plasma, and Wr is the (mostly radiative) loss by electrons
making inelastic collisions. Each ion leaving the plasma carries out an energy consisting
of 1/2KBTe of Bohm energy entering the sheath plus a sheath drop of about 5.4KBTe in
argon [19], so it carries out about 6KBTe. Wi has two terms, the first due to flow to the
sidewall and the second due to flow to the endplates:

Wi =
[
n(a)Cs(a)2πaL+ 2

∫ a

0
n(r)Cs(r)2πrdr

]
6KBTe (1.106)

Here we had to choose a length L of the plasma. If the plasma is nonuniform axially, L
can be estimated from the power deposition profile P (z) given by the integration of the
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center of the discharge; the electron temperature is affected by a fast rise when neutrals
are depleted.
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Figure 1.15: Energy required to make one ionization vs. electron temperature.

~E∗ · ~J contributions at each z. This can give an equivalent length if the plasma density
varies axially. Electrons leave mostly via the endplates, but the total flux has to equal
the ion flux. Each electron carries out an energy [19] of about 2KBTe ≈ Wi/3. Thus the
conductive losses in watts are

Wi +We ≈ (4/3)eWi Watts (1.107)

where Roman “e” is the electron charge in coulombs.
The inelastic loss Wr can be found from the Ec curve calculated by Vahedi [21]. Ec

is the amount of energy expended by an average electron in making an ionization, taking
into account the radiative losses in all the inelastic collisions made before the ionization.
This depends on the temperature. The Vahedi curve of Argon (Fig. 1.15) can be fitted by
the function

Ec(eV ) = 23 exp(3.68/T 1.61
eV ) (1.108)

where TeV is Te in eV. The loss dWr from each shell of unit length at radius r is then Ec
times the local ionization rate:

dWr = 2πrdrnn(r)n(r) < σv >ion Ec (1.109)

Defining
F (Te) ≡ Ec(Te) < σv >ion (Te) (1.110)
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We write this as
dWr = 2πrdrnn(r)n(r)F [Te(r)] (1.111)

Once n(r), nn(r), and Te(r) have been determined by the EQM program, the total Wr in
watts can be calculated by integration:

Wr = eL
∫ a

0
nn(r)n(r)F [Te(r)]2πrdr Watts (1.112)

where Roman “e” is again the electron charge in coulombs. The total Pout is then

Pout = Wi +We +Wr (1.113)

which can be equated to Pin from Eq. 1.104 to yield the absolute value of plasma density
n(r) for any given value of antenna current I0.

To evaluate local energy balance, we simplify the problem by neglecting the conductive
losses, which are small compared with Wr. The input of energy to each cylindrical shell
is given by the integrand of Eq. 1.103. The loss of energy to each shell is given by
the integrand of Eq. 1.112 (including eL). Equating local Pin to local Pout determines
the temperature profile Te(r). That is, when the input P (r) is high, there will be more
ionization there. This requires a high loss rate, which is accomplished by an increased Te
and, hence, a larger F (Te) in Eq. 1.112. A nonuniform deposition of rf energy giving a
nonuniform ionization profile is expressed via the electron temperature profile.



Chapter 2

Numerical modeling

2.1 The HELIC-EQM code

2.1.1 HELIC code

The calculation of the equilibrium of an helicon discharge is done using an iterative process
between two codes, HELIC and EQM, the former solving the plasma-wave coupling, the
latter solving the macroscopic equilibrium. From the iteration of the two codes together,
the absolute values of the discharge are obtained.

Figure 2.1: Geometry of the HELIC code (Figure credit: [23])

The HELIC code solves the problem of plasma-wave coupling (Sec. 1.1) with a cold
plasma tensor on a plasma cylinder of geometry like in Fig.2.1. Its basic physics relies
on a fluid electrons model together with the Maxwell equations and full displacement
current. HELIC allows to calculate the electromagnetic fields occurring inside the plasma,
the plasma currents, and the derived quantities. HELIC accepts as an input the radial
profiles of plasma density, neutral pressure and electron temperature. Profiles are accepted

39
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in the form of parametric functions of the radius. HELIC was developed at UCLA, details
can be found in [2], [3], and [4].

2.1.2 EQM code

EQM solves the macroscopic transport along radial direction of plasma and neutrals, using
the physical model described in Sec.1.3. EQM accepts the following inputs: the gas type,
the radius of the cylindrical discharge, the temperature of neutrals, the total amount of
RF power used, the radial profile of power absorption (an input coming from HELIC),
and the effective axial extension of power deposition (estimated from the P(z) of HELIC).
EQM gives in output all the quantities of plasma, neutrals and electrons along the radius.
More specifically, it calculates the profiles of plasma drift velocity, plasma potential, plasma
density, neutral pressure and electron temperature. From the iteration of the two codes
together, the radial equilibrium of the helicon discharge is obtained.

The three basic equations solved by EQM are the plasma drift equation, the diffu-
sion equation of neutrals, and the energy equation of electrons. They are solved with the
four conditions at the boundaries. When only the conditions at the axis are assigned, the
problem is simply a Cauchy-type initial value problem, which can be solved analytically
or by means of standard numerical methods. However, in our case the boundary condi-
tions are assigned in more than one location, and the problem turns from being an initial
value problem to a boundary value problem (BVP). Due to its importance for the radial
equilibrium of the helicon discharge, we will address it as the “helicon equilibrium BVP”.
Standard solution methods are the shooting and relaxation methods. When the domain of
integration is not specified, a simple way to solve the problem is to consider it as a free-
boundary problem. In this case the calculation is done by means of a re-parametrization of
the independent variable within the interval [0,1]. In this way it is the size of the domain
to be calculated as an output. This corresponds to evaluate which is the radial size of
the discharge when all the other parameters are known. In EQM it is the radial size of
the cylinder to be known r = a, and the mathematical problem is different than a free-
boundary. The helicon equilibrium BVP solved by EQM can be stated as following. For
a cylindrical discharge of given radius a, and a given profile of power absorption, find the
profiles of plasma and neutrals satisfying the four boundary conditions.

EQM solves the helicon equilibrium BVP by means of a dedicated shooting method.
The inner cycle of EQM is showed in Figure 2.2. The shoot is done on the two quantities at
the axis n(0) and p(0), that are the plasma density and the neutral pressure respectively.
Then the integration of the ODE system is done with a standard 4th order Runge-Kutta
routine. Numerical tests with a more refined integrator, a quality-controlled adaptive step
Adam-Bashforth-Moulton 11th-order PECE (Predictor Evaluation Correction Evaluation),
didn’t revealed a greater accuracy such to justify the bigger computational effort. The
numerical integration starts near the axis of the cylinder, displaced of a small quantity dr
from the axis. The calculation of the initial condition at r = dr was done using an analytic
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subsonic solution. The integration then continues up to the other boundary at r = a,
where a check of the quantities at the other boundary is done. Initial quantities at the axis
are then corrected as a function of the difference between the calculated and the desired
boundary conditions in r = a. The process is iterated until the boundary conditions are
correctly obtained within an admissible tolerance (usually to the third significant digit).

Since EQM treats quantities in real physical units, it allows to evaluate the amount of
plasma density and of neutral pressure inside the discharge for a given RF power. It is from
the iterative process with the HELIC code that the actual value of radial profiles is then
obtained. Among many other information, the two codes together allow to predict which is
the plasma density that can be obtained for a given helicon discharge and a given amount
of RF power. The physical meaning of the helicon equilibrium BVP is even greater. For a
tube of a given size a, the plasma is forced to satisfy the axis-symmetry of the discharge
and the sonic velocity at its edge. Its profile along the radius and the amount of density will
depend on how electrons absorb the power from the helicon wave. As a consequence, the
plasma can configure itself along the radius only according to the profiles that are solution
of the helicon equilibrium BVP. Different pressure regimes and different powers can force
the plasma to jump into different radial configurations, as observed for example in the Big
Blue Mode case [55].

2.1.3 The iterative process

The iterative process between HELIC and EQM is showed in Figure 2.3. The helicon
discharge is described by a set of parameters, comprising its size, the neutral gas, the
antenna, the RF power used and the magnetic field. An initial profile of power absorption is
chosen as a first guess (ex. constant along the radius, or coming from a previous simulation).
The first run is done by EQM, which calculates the profiles of n(r), nn(r) and Te(r). In
order to use these profiles with HELIC, they must be fitted with parametric functions. The
fitting of the plasma profile is done with all the curves allowed by HELIC for n(r), and
then the fit with the minimum sum of squares due to error is chosen. HELIC can treat
with a 3-parameters (s, t, fa) curve,

n

n0
=
[
1−

(r
a

)s
(1− f1/t

a )
]t

(2.1)

or with a 6th degree polynomial,
n

n0
= 1 + a1

r

a
+ a2

(r
a

)2
+ ...+ a6

(r
a

)6
(2.2)

In almost all cases the 6th degree polynomial fits better the plasma profile. The fitting of
the neutral density and of the electron temperature is done similarly, with the 3-parameters
curve (only for p showed):

p

p0
= fa + (1− fa)

[
1−

(r
a

)s]t
, fa =

pa
p0

(2.3)
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here the subscript 0 indicates quantities at the axis, and the subscript a quantities at the
plasma edge. After the fitting procedure, an input file for HELIC is written, containing all
the parameters of the curves. HELIC then solves the electromagnetic fields propagating
inside the plasma for those assigned profiles, it calculates the plasma current, and evaluates
the power absorption in radial and axial direction of the discharge. HELIC can provide
the plasma resistive load R for an antenna current of 1 Ampere, and also the profiles of
P (r) and P (z), that are respectively the radial profile of power deposition integrated over
the axis, and the axial profile of power deposition integrated over (r, θ) planes. Since the
antenna current is supposed to be equal to I0 = 1 Ampere, the power in Watts is

P ′RF,HELIC = R/2 (2.4)

This can be verified also integrating P (r) along the radius,

P ′RF,HELIC =
∫ a

0
P (r)rdr (2.5)

and seeing that it is equal to half the resistance R provided by HELIC. The factor 2π
is already taken into account by HELIC during the evaluation of P (r). Supposing axial
uniformity, the input RF power P ′RF [Watt] is distributed into each radius as:

P ′RF (r) = P ′RF
P (r)rdr∫ a
0 P (r)rdr

(2.6)

The quantity P ′RF (r) [Watt] given by this equation is the fraction of the input power P ′RF
[Watt] going into each cylindrical shell of the discharge. To obtain the power density
[W/m3] a last step is needed. The quantity P ′RF (r) [Watt] has to be divided by the volume
of the cylindrical shell,

Pin(r) =
P ′RF (r)

2πrdr · Lz
(2.7)

and so finally the power density along radius is obtained. Here Lz is the effective axial
extension of power deposition. It quantifies how long the helicon power absorption is along
the axial direction. It can be estimated from the P (z) graph given in output by HELIC.

The new profile of power absorption is then used back as an input in EQM, and the
process is iterated until convergence. The check on convergence is done on the n(r) and
P (r) profiles, and the process ends when the difference between two subsequent iterations is
smaller than a fixed tolerance. The number of iterations depend on the initial P (r) chosen,
and for reasonable profiles the procedure converges in less than a dozen of iterations. From
the iterations of HELIC-EQM the absolute (physical units) values of the helicon discharge
can be calculated. In this paragraph we show the obtained radial profiles of n(r), PRF (r),
φ(r), nn(r), vr(r), Te(r) occurring inside an helicon discharge for the cases of interest.

The sensitivity of the results of HELIC-EQM is mainly influenced by the two free pa-
rameters of the code. The first one is the effective axial extension of power deposition Lz,
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and the second one is the temperature of neutrals Tn. The former is the greatest source of
uncertainty. It is introduced to quantify how long is the axial region of the discharge inter-
ested in the RF power absorption. It serves to overcome the intrinsic limitation of EQM
stemming from the assumption to have no variations in axial direction. The parameter
Lz is estimated from the axial absorption of power P (z) calculated by HELIC. Due to the
uncertainties in the estimation of Lz, all the results are here presented for the expected
range of Lz. The dependence of plasma density on neutral temperature is high at low Tn,
but it decreases when neutrals become hotter. Uncertainty on temperature of neutrals is
neglectable with respect to uncertainty on Lz.

2.2 Physical results using HELIC-EQM

The density, temperature, and neutral density profiles resulting from the highly nonuni-
form rf energy deposition of the combined helicon and TG waves have been computed
by iterating between the EQM and HELIC codes together. Initially, EQM is solved with
uniform ionization, giving n(r), Te(r), and nn(r). These profiles are fitted with a 6-degree
polynomial to be entered into HELIC to obtain P (r). Energy balance yields Te(r). This
profile, representing nonuniform ionization, is then entered into EQM to obtain new pro-
files of n, Te, and nn. The process is repeated until it converges. It normally takes only
five or six iterations for convergence. In the following paragraphs few results of physical
interest obtained with the HELIC-EQM program will be shown.

2.2.1 Edge-peaked energy deposition

In helicon discharges, the TG mode causes highly non-uniform ionization such that the
sourceQ(r) in Eq.1.57 has a large peak near the edge of the plasma. This occurs because the
TG mode deposits rf energy near the edge, raising Te there, thus exponentially increasing
the ionization rate at the edge. Nonetheless, measured density profiles are always peaked
on axis. How this happens can be seen from Eq.1.61, the Boltzmann relation. Initially,
ionization produces a peak in density near r = a. With Boltzmann electrons, the potential
φ has to follow the density, so it also peaks near r = a, resulting in an inward electric field.
The ions are driven inward by E(r), and the electrons follow them via the short-circuit
effect. The density created near the boundary is pushed inwards by the electric field. This
process can be followed in time-dependent calculations. In steady state, the only possible
density profile is peaked at the center; a time-independent profile peaked at the edge is
not possible. Figure 2.4.a shows three P (r) curves produced by HELIC under different
conditions [22]. One is highly peaked at the edge; the second is less peaked; and the third
has almost equal contributions from the TG and H modes. The density profiles produced
by EQM for these three cases are shown in Fig.2.4.b. Case 1 has more density at large radii,
but in all cases the density is peaked on axis. The P (r) profiles here are not consistent
with the n(r) profiles, but this shows that hollow profiles are never produced. “Hollow”
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Figure 2.4: Radial energy deposition profiles for three selected cases, with different magni-
tudes of the TG mode (densities of 12.6, 5.0 and 1.6 ×1017 m−3, B = 65 Gauss and tube
radius is 2.5 cm), and the resulting profiles from the EQM solution

density profiles do not occur in this steady-state theory, and we have never observed them.
However, they have been seen in experiments by others. In those cases either the discharge
was pulsed or other conditions prevented the short-circuit effect from being operative.

2.2.2 Discharge profiles

We next show results in which the P (r) profiles from HELIC are completely consistent with
the n(r) profiles from EQM, as obtained by iteration between the two programs. Several
cases are reported in Figs. 2.5, 2.6,2.7 and 2.8. With large TG-mode deposition at the
edge, electron temperature Te is high there and, hence, high ionization at the edge, giving
rise to the flat density profiles at the center. The 120-G, 1kW, 27.12 MHz case has larger
TG deposition at the edge, giving a flatter density profile. The higher density in that case
also leads to higher neutral depletion: 0.8 mTorr compared with 0.4 mTorr in the analogous
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lower power case. Note that the dip of P (r) in Fig. 2.7 is reflected in the Te(r) profile.
In Fig 2.8, we show a larger plasma 10 cm rather than 5 cm in diam, the pressure is

lower at 5 mTorr, and the B-field is higher. Neutral depletion is higher because of the
lower pressure. At the center of Fig 2.8, Te varies inversely with the pressure according
to ionization balance, but near the edge Te rises from the Trivelpiece-Gould heating there.
These two regions are better separated with the larger diameter. Note that the short-
circuit effect cannot transport electron temperature across B; the heat conductivity is still
reduced by the magnetic field. The absorption is high on axis, with a resulting “triangular”
density profile of plasma.

2.2.3 A reference case for experiments

As a reference case for the experiments, we will consider the case in Fig. 2.5. Here we
will give details about how this simulation has been performed. A 15 mTorr (2 Pa) Argon
helicon discharge of radius a = 2.5 cm, with a single loop m = 0 antenna at 13.56 MHz is
considered. The magnetic field at the antenna is 65 Gauss. The two codes HELIC-EQM
have been iterated together with an input RF power of 200 Watts. The simulation is done
considering neutrals at Tn=400 K and an axial extension of power deposition Lz=30 cm.
The parameter Lz has been estimated from the P (z) graph given by HELIC. The plot
of the plasma drift velocity has been normalized with respect to the local Bohm velocity.
The plot shows that the Bohm velocity is reached at the edge of the plasma, where the
quasineutrality is violated and the sheath solution begins. The plasma density at the edge
n(a) is 0.45 times the density in the axis, proving that the Bohm sheath edge hypothesis
n(a)=n(0)/2 is valid in first approximation. Neutral pressure exhibits a small neutral
depletion, higher powers would have involved more depletion of neutrals. The electron
temperature is almost flat, and it increases near to the wall, as expected in a region of
higher power density and with less plasma. As can be seen from the P(r) graph, the
helicon discharge is ionized primarily at the edge by Trivelpiece-Gould (TG) waves, but
the observed density profiles is peaked at the center. The calculated equilibrium condition
gives the radial equilibrium conditions of the discharge, with the plasma-wave helicon
coupling taken into account.



48 CHAPTER 2. NUMERICAL MODELING

0 0.005 0.01 0.015 0.02 0.025
0

1000

2000

3000

4000

5000

6000

r [m]

P
r 

[O
hm

/m
]

0 0.005 0.01 0.015 0.02 0.025
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r [m]

V
r/

C
s

(a) (b)

0 0.005 0.01 0.015 0.02 0.025
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

r [m]

φ 
[V

ol
t]

0 0.005 0.01 0.015 0.02 0.025
0

1

2

3

4

5

6

7

8

x 10
17

r [m]

n 
[m

−
3]

(c) (d)

0 0.005 0.01 0.015 0.02 0.025
0

2

4

6

8

10

12

14

16

18

r [m]

p 0 [m
T

or
r]

0 0.005 0.01 0.015 0.02 0.025
0

1

2

3

4

5

6

7

r [m]

T
e [e

V
]

(e) (f)

Figure 2.5: Radial profiles obtained by iteration of HELIC-EQM, for a 15 mTorr = 2 Pa
helicon discharge at 65 Gauss with 400 W of RF at 13.56 MHz and an m = 0 antenna, (a)
deposited power per unit current and unit length, (b) drift velocity normalized to the Bohm
velocity, (c) potential, (d) plasma density, (e) neutral pressure, (f) electron temperature.
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Figure 2.6: Radial profiles obtained by iteration of HELIC-EQM, for a 15 mTorr = 2 Pa
helicon discharge at 65 Gauss with 400 W of RF at 27.12 MHz and an m = 0 antenna, (a)
deposited power per unit current and unit length, (b) drift velocity normalized to the Bohm
velocity, (c) potential, (d) plasma density, (e) neutral pressure, (f) electron temperature.
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Figure 2.7: Radial profiles obtained by iteration of HELIC-EQM, for a 15 mTorr = 2 Pa
helicon discharge at 120G with 1000W of RF at 27.12 MHz and an m = 0 antenna, (a)
deposited power per unit current and unit length, (b) drift velocity normalized to the Bohm
velocity, (c) potential, (d) plasma density, (e) neutral pressure, (f) electron temperature.
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Figure 2.8: Radial profiles obtained by iteration of HELIC-EQM, for a larger tube at lower
pressure of 5 mTorr = 0.67 Pa, helicon discharge at 250 Gauss with 400 Watt of RF at
13.56 MHz and an m = 0 antenna, (a) deposited power per unit current and unit length,
(b) drift velocity normalized to the Bohm velocity, (c) potential, (d) plasma density, (e)
neutral pressure, (f) electron temperature.
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2.2.4 Low Pressure Effects and B-peak

In the low pressure range (approximatively below 0.4 Pa, i.e. below 3 mTorr) the colli-
sional deposition of the Trivelpiece Gould mode gradually becomes less effective due to
the decreasing collisionality1. In this regime the mode of deposition can shift from being
edge-localized and collisional in its nature to –for sufficiently large discharges– centered-
localized and wave-heated dominated. For a given pressure, this “mode-shifting” can be
maximized in the range of low magnetic fields, where a peak in plasma resistance has been
observed between 40 < B0 < 80 Gauss. Here we present the numerical simulations where
this phenomenon was observed.

A helicon discharge with a tube radius of 5 cm and length 2 meters, with a 16-cm-long
half-helic antenna of 11 cm diameter, emitting at f= 13.56 MHz has been considered. A
first set of simulations was done to assess the effect of neutrals on power deposition at a
fixed magnetic field B0 = 500 Gauss. The results are shown in Figure 2.9. Each figure
shows Pr versus the radius, with the cylinder axis placed at r=0. In each graph the Pr is
parametrized on plasma density for six assumed values in the range n = 1011− 1012 cm−3.
When pressure is decreased, the absolute value of Pr decreases too, and the penetration
depth of the TG wave increases. At the lowest pressure considered, a small increase of the
coupling at the center is observed.

The magnetic field was thus decreased from 500 to 300 and 100 Gauss, Figs. 2.10, 2.11,
where the deposition at the center is seen to be gradually increased. At 100 Gauss and low
pressure, the deposition is markedly centered.

This effect can be maximized when the magnetic field is further decreased to the range:

40 < B0 < 80 [Gauss] (2.8)

as reported also in Fig. 2.12. Within this interval the Helicon central-peaked deposition
becomes dominant. The helicon nature of this deposition is revealed when B0 is decreased
below this range. In fact, below B0 < 20 Gauss the Helicon wave becomes a superficial
evanescent wave, and the centered-peaked deposition disappears (Fig. 2.12). This pecu-
liarity of the H-TG waves interaction was not seen for discharges working in the ICP mode
B0 = 0. The low-B field peak was also studied and observed by Chen [23].

1This also has an electrical drawback on the efficiency of the power coupling, according to Eq.1.105,
because at some point the plasma resistance becomes comparable with the stray resistance of the coupling
circuit.



2.2. PHYSICAL RESULTS USING HELIC-EQM 53

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

500

1000

1500

2000

2500

3000
Pr from HELIC at p0=10.13 mTorr, Te=3eV, B=500 G

r [m]

Pr

 

 
n=1e+11 cm−3

n=1.6e+11 cm−3

n=2.5e+11 cm−3

n=4e+11 cm−3

n=6.3e+11 cm−3

n=1e+12 cm−3

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

500

1000

1500

2000

2500

3000
Pr from HELIC at p0=6.01 mTorr, Te=3.32eV, B=500 G

r [m]

Pr

 

 
n=1e+11 cm−3

n=1.6e+11 cm−3

n=2.5e+11 cm−3

n=4e+11 cm−3

n=6.3e+11 cm−3

n=1e+12 cm−3

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

500

1000

1500

2000

2500

3000
Pr from HELIC at p0=2.02 mTorr, Te=4.27eV, B=500 G

r [m]

Pr

 

 
n=1e+11 cm−3

n=1.6e+11 cm−3

n=2.5e+11 cm−3

n=4e+11 cm−3

n=6.3e+11 cm−3

n=1e+12 cm−3

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

500

1000

1500

2000

2500

3000
Pr from HELIC at p0=1 mTorr, Te=5.24eV, B=500 G

r [m]

Pr

 

 
n=1e+11 cm−3

n=1.6e+11 cm−3

n=2.5e+11 cm−3

n=4e+11 cm−3

n=6.3e+11 cm−3

n=1e+12 cm−3

Figure 2.9: B0=500 Gauss
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Figure 2.10: B0=300 Gauss
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Figure 2.11: B0=100 Gauss
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Figure 2.12: Low pressure behavior for decreasing magnetic field for the cases B0=80, 40,
20, 10 Gauss
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Figure 2.13: Ion losses toward the wall in a magnetized cylinder

2.3 Modeling particle kinetics

2.3.1 Single particle collider

The confinement time of a charged particle inside the plasma cylinder has been estimated
using a simple Monte Carlo single-particle collider. Figure 2.13.a shows an example. A
single-ionized argon ion generated near the axis of the discharge, moving with its thermal
velocity and colliding mostly by charge-exchange with neutral atoms. An axial magnetic
field of 100G parallel to the axis of the discharge bends slightly the trajectories of ions
among two subsequent collisions. The motion is integrated numerically with an Adam-
Bashforth-Moulton routine. Ions are accelerated outward by the ambipolar electric field,
due to the plasma density gradient.

2.3.2 A numerical method for the free-fall regime

At very low pressures the mean free path between two collisions is much greater than the
size of the discharge. The fluid treatment of the transport ceases to be valid. Following
an approach first proposed by Tonks and Langmuir2 [6], we can consider the ion mean free
path to be much greater than the characteristic size of the discharge; in this case, ions
generated at a location x start at rest and move under the action of the ambipolar electric

2In their work [6] the two authors showed an analytical solution using power series, for few simple cases
where the analytical treatment was possible; in the present paragraph we develop a method for treating
with arbitrary Q(x).
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field out of the discharge. The density of ions at a given location xj is given by:

n(xj) = x−βj

∫ xj

0

Q(x)xβdx
vx

(2.9)

with:

β = 0 Plane geometry (2.10)
β = 1 Cylindrical geometry (2.11)
β = 2 Spherical geometry (2.12)

where Q(x) is the number of new particles generated at a location x (different than xj) per
unit volume and unit time, vx is the velocity of particles at the position dx. The Boltzmann
equation gives the local electron density:

ne = n0 exp
(

qeφ

KBTe

)
(2.13)

In the free-fall model, the velocity vx is obtained from energy balance between the point x
and xj :

vx =
√

2qe
Mi

(φ(x)− φ(xj)) (2.14)

and substituing in Eq. 2.9 it results:

n(xj) = x−βj

∫ xj

0

Q(x)xβdx√
2qe
Mi

(φ(x)− φ(xj))
(2.15)

Quasineutrality ensures that n = ne and thus:

n0 exp
(

qeφ

KBTe

)
= x−βj

∫ xj

0

Q(x)xβdx√
2qe
Mi

(φ(x)− φ(xj))
(2.16)

An analytic solution of Eq. 2.16 can be found for simple cases. Tonks and Langmuir [6]
expressed the solution in a power series for the cases of Q(x) generation proportional to
the electron density and for a constant ionization along the domain. A solution in term
of Dawson functions can also be obtained. However, we are interested in its solution for a
completely generic Q, and thus a numerical scheme must be obtained.

We rewrite Eq. 2.14 of the velocity by substituting Boltzmann electrons, and it results:

vx = C∗s

(
log

n(x)
n(xj)

)1/2

(2.17)
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Figure 2.14: Scheme of the discretization

where C∗s =
√

2KBTe/Mi is an opportune Bohm velocity. Substituting Eq. 2.17 in Eq.
2.9, we get:

n(xj) =
x−βj
C∗s

∫ xj

0
Q(x)xβ[log n(x)/n(xj)]−1/2dx (2.18)

From Eq. 2.18 it can be seen that ∂n/∂x must be minor than zero in order to have a
real solution. The density n(xj) at a given location depends on particles produced at all
locations at higher-potential. The difficulty in the solution of Eq. 2.18 is that the unknown
nj compares on both sides of the equation, and inside the integral.

The discrete form of Eq. 2.18 is:

nj =
n−βj
C∗s

j−1∑
i=1

Qix
β

i+ 1
2

[
log

ni
nj

]− 1
2

∆xi (2.19)

where the symbols Qi, ni, nj means Q(xi), n(xi), n(xj), the radial step is ∆xi = xi+1 −
xi, and the coordinate is kept at the middle step xi+ 1

2
= (xi + xi+1)/2. Figure 2.14

shows a scheme of the discretization, assumed of the first order type. To calculate the
density at a given nj we thus have to solve a non-liner set of equations where the unknown
nj is contained also inside the summation. When the value on axis is assigned n0, this
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corresponds to solve the following equations:

n1 = n0 (2.20)

n2 =
n−β2

C∗s
·
Q1x

β

1+ 1
2

∆x1

(log n1/n2)1/2
(2.21)

n3 =
n−β3

C∗s
·

 Q1x
β

1+ 1
2

∆x1

(log n1/n3)1/2
+

Q2x
β

2+ 1
2

∆x2

(log n2/n3)1/2

 (2.22)

n4 =
n−β4

C∗s
·

 Q1x
β

1+ 1
2

∆x1

(log n1/n4)1/2
+

Q2x
β

2+ 1
2

∆x2

(log n2/n4)1/2
+

Q3x
β

3+ 1
2

∆x3

(log n3/n4)1/2

 (2.23)

... (2.24)

nj =
n−βj
C∗s
·

 Q1x
β

1+ 1
2

∆x1

(log n1/nj)1/2
+

Q2x
β

2+ 1
2

∆x2

(log n2/nj)1/2
+ ...+

Qj−1x
β

j−1+ 1
2

∆xj−1

(log nj−1/nj)1/2

 (2.25)

where the unknowns are n1, n2, ..., nj . When we try to numerically solve the equations, sev-
eral inconveniences occur. A forward solution from top to bottom is not feasible, because
the ratios nj−1/nj comparing inside the logarithms are different for each equation. Equa-
tions have to be solved one-by-one, and for each j-location the zero of a non-linear function
in the unknown nj must be found. A particular caveat must be taken due to the presence
of the (log ni/nj)1/2 term, since the solution is near to the interval of complex solutions
where ni/nj ≤ 1. When using a non-linear zero search algorithm, the search interval [a...b]
must be decided a-priori in order to avoid the solutions become imaginary. From the choice
of the two bounds of the search interval it depends the success of the numerical scheme.
For the choice of the two bounds we note from Eq. 2.18 that the solution nj at each radial
step is a monotonic function, and it is thus comprised between nj−1 < nj < nj+1. The
bound nj−1, called b is simple to estimate because the solution already calculated at the
previous radial step can be used, b = nj−1− δ, where δ is a small number δ ∼ O(n0/1012).
The bound nj+1, called a, is unknown, and at step j it can only be estimated. It turns
out that a fast and practical choice is to put: a = 9/10b. This works good until the Bohm
location is reached. In that region the coefficient 9/10 of a must be increased toward unity
as a function of ∂n/∂r, which is going locally to infinity.

The implementation of the present numerical method has been done by using Maple as
a symbolic manipulator for the automatic construction of the hundred-terms equations Eq.
2.21 - 2.25, which it should be unfeasible to treat by hand. The zeros-finding function is then
a common bisection. The calculation needs some computer resources when over-hundred
terms are required, due to the symbolic manipulation of high-j terms. For j ∼ 100, usual
computational time is of the order of some minute on a X-11 based Dual-Core machine,
and of several tens of minutes on a Windows-based pc.
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As a test of the algorithm, the long mean free path case in planar geometry (β = 0)
with constant ionization has been obtained. Tonks and Langmuir obtained an analytical
solution for the same problem [6]. Figure 2.15.b shows the potential profile along the
coordinate, resulting the same reported in [6]. The first graph 2.15.a is more interesting
from the computational point of view, because it shows the behavior of the numerical
scheme. It shows the real value of fj = Qj/vxj as a function of n/n0 and for all the
iterations. The zeros of fj are the values of the density nj . In this graph computations
begins from the point (1,0). In this point the density is equal to the value at the axis.
The trend of Re(fj) is such that two zeros exist. The first one is the actual value of the
density, in the location near n/n0 = 1. This is the physical value of the density, and the
one that must be obtained from the numerical scheme. All physical values obtained at
each iteration have been marked with a star on the Re(fj) = 0 axis. The second value is
on the opposite side, near n/n0 = 0, and it is unphysical. When iterations go on, the two
values get closer, until they meet. The physical values decreases, as expected for plasma
density, and the unphysical values increases. In this example, they meet near n/n0 = 0.5.
In that location the two solutions are very close one to the other, and they are very hard
to be distinguished by the numerical scheme. In the limit they meet in a single point,
where fj becomes a negative function tangent to the axis Re(fj) = 0 in one point. This is
the location where the quasineutral behavior of the plasma is broken off, and the sheath
solution begins.

2.3.3 Radial 1D PiC

A comprehensive calculation of all the plasma solution, i.e. comprising the quasi-neutral
region, the pre-sheath and the space-charge region (sheath), would require a great ana-
lytical efforts. The transport equation Eq. 1.74 is able to treat naturally the sheath and
the presheath until the plasma reaches the Bohm velocity, where the solution becomes
singular. The sheath region is treated easily using a Particle-in-Cell method. Here we
give a schematic description of a 1D electrostatic PiC code developed for the treatment
of plasma near the boundaries of the cylinder. The PiC can work both with slabs and
cylinders (Cartesian and Cylindrical geometry), and with Bolztmann electrons or kinetic
electrons, depending on needs.

Radial grid For the analysis of the problem, a 1D domain along the axis r, with 0 < r <
ra, has been considered. The 1D domain has been discretized in Nr cells of equal
size ∆r = ra/Nr, each cell marked with index k = 1, 2, . . . , Nr. Cells are separated
by nodes, placed at coordinates ri = 0,∆r, 2∆r, 3∆r, ..., ra. Nodes are marked with
index i = 1, 2, ...,m where m = Nr + 1.

Initial plasma density profile The initial density profile n(r) is assumed to be know,
and it can be just an initial guess, or it could come from another simulation code
evaluating power deposition (HELIC, etc.).
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Figure 2.15: Long-mean-free path solution in planar geometry, with constant ionization [6]

Particles discretization The total number Np of physical particles contained inside the
domain,

Np =
∫ ra

0
n(r)dr (Cartesian) (2.26)

Np =
∫ ra

0
n(r)rdr (Cylindrical) (2.27)

has been discretized in a number Nc of computational particles, with Np/Nc >> 1. A
ratio Np/Nc as small as possible is achievable; the ideal limit of Np/Nc = 1 means that
all physical particles contained inside the domain have their numerical counterpart.
In practice, small simulation codes developed on laptops allows to treat easily with
only 103–105 particles.

Initial state vector At the beginning of the simulation, positions and velocities has to
be assigned to each computational particle (a procedure called “particle loading”).
Particles are placed at random initial positions inside the domain, 0 < r < ra,
and they are spatially distributed with a probability density following the plasma
density profile n(r). At each particle is then assigned a radial velocity vr, in random
direction (positive or negative along radius), and with a module depending on the
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velocity distribution function. In the practical implementation, some difficulty arise
because random number generators always provide random numbers comprised in
the interval [0, ..., 1]. Thus, we must find a procedure that, given a random number
in the interval [0, ..., 1], gives a location R comprised between 0 < R < ra following
the arbitrary function n(r). The cumulative distribution of the normalized profile
allows to do this, here we resume the required passages. The density profile has to
be normalized with respect to the total number of physical particles in the domain,

ñ(r) = n(r)/Np (2.28)

where

Np =
∫ ra

0
n(r)dr ≈

Nr∑
k=1

Nk
p =

1
2

(ri+1 − ri)(ni+1 + ni) (Cartesian) (2.29)

Np =
∫ ra

0
n(r)rdr ≈

Nr∑
k=1

Nk
p =

1
2

(r2
i+1 − r2

i )(ni+1 + ni) (Cylindrical) (2.30)

The integration along the azimuthal direction would lead to an additional factor of
2π. Each cell of the grid thus contains the following number of physical particles:

N (k)
p =

∫
∆rk

ñ(r)dr ≈ 1
2

Nr∑
i=1

(ri+1 − ri)(ñi+1 + ñi) (Cartesian) (2.31)

N (k)
p =

∫
∆rk

ñ(r)rdr ≈ 1
2

Nr∑
i=1

(r2
i+1 − r2

i )(ñi+1 + ñi) (Cylindrical) (2.32)

with k = 1, ..., Nr and where N
(k)
p is the cumulative distribution function of the

normalized density profile, which is a normalized quantity
∑Nr

k=1N
(k)
p = 1. The

discrete cumulative distribution of N (k)
p is:

Fj =
j∑

k=1

N (k)
p (j = 1, 2, ..., Nr) (2.33)

The cumulative Fj is a number in the interval [0, ..., 1], and its derivative keeps track
of the original n(r) density profile, but in the interval [0, ..., 1]. The pendency of Fj is
higher where the original density is higher, and thus a random number [0, ..., 1] will
fall more likely in regions at higher density. The value of Fj can thus be used for
particle loading with practical random number generators.

The particle is then placed inside the cell at a random position depending on the
topology of the reference frame:

R = rindx + dr · rand[0, ..., 1] (Cartesian) (2.34)
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R = rindx + dr(1−Arnd/Ak) (Cylindrical) (2.35)

where

Ak =
∫ ri+1

ri

rdr =
r2
i+1 − r2

i

2
(2.36)

Arnd =
∫ ri+dr·rand[0,...,1]

ri

rdr =
(ri + dr · rand[0, ..., 1])2 − (ri)2

2
(2.37)

In Cartesian coordinates the position is equiprobable between the two nodes, and in
Cylindrical coordinates it is a more complicated function of radius (deriving from the
cylindrical topology) shown in Fig. 2.16.
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Figure 2.16: (a) Cylindrical random function inside the interval [0, ..., 1], and (b) its be-
havior for random numbers. Particles fall more likely on the external region of the interval,
due to deformation in cylindrical topology.

As an example, in cylindrical coordinates: a 5 cells radial grid in a cylindrical do-
main of radius 0.1 with a constant density profile along the radius has an adimensional
number of physical particles N (k)

p = [0.04, 0.12, 0.20, 0.28, 0.36]. Its discrete cumula-
tive distribution will thus be Fj = [0.04, 0.16, 0.36, 0.64, 1.0]. The random number
r = 0.53928 will state that the particle is fallen in the cell k = 3, and thus it’s
comprised between the nodes i = 3 and i = 4.
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Figure 2.17 shows three examples of 5000 particles in cylindrical coordinates with
different density distributions n(r) along the radius: (a) a uniform distribution; (b)
Gaussian in the middle; (c) a double erf function higher in the middle and in the
edge.

Plasma Source A source volumetric rate Q(r) has been assumed to generate new plasma
particles inside the domain,

Q(r) = n0(r)n(r) < σv >ion (2.38)

where n0(r) is the number density of neutral atoms, and < σv >ion is the ionization
volumetric rate electron-neutrals, which is a function of electron temperature Te. The
new particles coming from the source are generated at random locations inside the
domain, and with a probability density proportional to the distribution Q(r).

Electrostatic potential The electric potential φ is calculated from the numerical solution
of the Poisson equation:

∇2φ = −qe(ni − ne)/ε0 (2.39)

This requires to invert an opportune elliptic matrix which discretizes the Laplacian
operator. When the Boltzman electrons are used, the density ne is evaluated with
the Boltzman relation; when, instead, the PiC is used in its kinetic-kinetic version,
both ni and ne are discretized particles.

Electrostatic Field Once the potential φ is known, the electrostatic field E = −∇φ on
nodes can be evaluated with a central space 2nd-order discretization:

Ei = −φi+1 − φi−1

ri+1 − ri−1
(2.40)

and at boundaries the derivative can be estimated with a 1st-order forward space
scheme:

E1 = −φ2 − φ1

r2 − r1
Em = −φm − φm−1

rm − rm−1
(2.41)

Interpolation of fields The electrostatic field is then interpolated at particles location,
to have the actual electric field acting on each particle at its specific location. The
two procedures of particle interpolation and weighting must be one the opposite of
the other, and they must follow a the same dual scheme. Particle shape has been
assumed to be linear (first order). Particle localization inside the cells is made easier
thanks to the equally-spaced grid. The index k of the cell is given by:

k = 1 + |floor(R/dr)| (2.42)

where the function floor rounds the real number to the first integer toward minus
infinity. The nodes confining with the k cell are placed between indexes k and k+ 1.
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Figure 2.17: Tests of loading 5000 particles in cylindrical geometry: (a) Uniform distri-
bution; (b) Gaussian in the middle; (c) a double erf function in the middle and in the
edge.



2.3. MODELING PARTICLE KINETICS 65

The linear interpolation of E at each particle location Rj , with j = 1, ..., Nc, is given
by:

Ej = Ek

(
1− Rj − rk

rk+1 − rk

)
+ Ek+1

(
Rj − rk
rk+1 − rk

)
(Cartesian) (2.43)

Ej = Ek

(
1−

R2
j − r2

k

r2
k+1 − r2

k

)
+ Ek+1

(
R2
j − r2

k

r2
k+1 − r2

k

)
(Cylindrical) (2.44)

In Cartesian coordinates the weights of the two values at the nodes are the same,
and the interpolation is simply a linear weight depending of the distance between the
two nodes. In cylindrical coordinates the electric field Ei+1 placed at a greater radial
station will weight more on the particle than the electric field at a smaller radial
station Ei due to deformation in cylindrical coordinates.

Moving particle The motion of each particle is advanced in time by numerical integration
of the Newton-Lorentz equation. The algorithm implemented is a Boris-Bunemann
leapfrog algorithm, which guarantees 2nd-order accuracy.

Flag particles went outside Particles that have gone outside the region 0 < r < ra are
flagged as “unused”, and their trajectory is no more taken into account. The memory
locations of this particles will be filled at the following step with data of new particles
coming from source, for optimization of computational resources.

New particles from source New particles are added inside the domain.

Weighting All the particles are then weighted back on the grid, by calculating the weights
Wi (i = 1, 2, ...m). Particle shape has been assumed to be linear. Weighting of
particles must be done using the same identical procedure used for the interpolation,
and thus:

Wk =
Rj − rk
rk+1 − rk

(Cartesian) (2.45)

Wk =
R2
j − r2

k

r2
k+1 − r2

k

(Cylindrical) (2.46)

and
Wk+1 = 1−Wk (2.47)

Assuming particles of finite shape can help to overcome many numerical approxi-
mations, intrinsic to the discretization process (it also serves to avoid divergences
in point-like particles used in classical kinetic theory and electromagnetism). The
charge density at a point ~r′ of a point particle placed at ~r is changed from qδ(~r′ − ~r)
to qS(~r′ − ~r).
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New density profile A new density profile is then evaluated at nodes location,

ni = (Wi/∆r)(Np/Nc) (Cartesian) (2.48)

Time cycle The new density is used as input for the subsequent time step, and the
evolution is iterated for all the time steps desired.

Validation Despite the great simplicity of a 1D PiC code, a validation procedure was
required, since the code was written from scratch. As an example, Fig. 2.18 shows
the comparison of the calculated and the theoretical sheath profile at the wall of an
Argon plasma.
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Figure 2.18: Sheath formation at the wall of an Argon plasma cylinder, as calculated with
the radial 1D PiC (GRIDPIC), and comparison with the analytical curve.
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2.3.4 F3MPIC

F3MPIC is a 3D PIC code developed in the framework of HPHcom3. F3MPIC can handle
a generic plasma of n-species evolving inside an arbitrary 3D geometry discretized with an
unstructured mesh of tetrahedra. F3MPIC uses and integrates several open source codes 4

for management of subtasks. The volume is discretized in a 3D tetrahedral mesh generated
using Gmsh, and the mesh quality is optimized using the 3D Delaunay-Voronoi algorithm
of NETGEN. Each species of the plasmas is represented by N charged macroparticles.
The trajectories of the macroparticles are evaluated by integration of the Newton-Lorentz
equation using a Boris–Leapfrog scheme. The positions and velocities allow to obtain
the charge and current densities at each time step, necessary for the resolution of the
electromagnetic fields. The values of the densities and currents sources on mesh nodes are
obtained using a linear weighting. The electromagnetic fields generated by the interacting
particles are obtained using a Finite Element approach, by means of a modified version
of GetDP. The sparse matrix resulting from the discretization is solved using Sparskit, or
more optimized and parallelizable solvers from the PETSc library. Figure 2.19 is a scheme
of the structure of F3MPiC.

3Helicon Plasma Hydrazine.combined micro, www.hphcom.eu
4F3MPIC uses the following open source codes:

1. Gmsh (http://geuz.org/gmsh/): a three-dimensional finite element mesh generator with built-in
pre- and post-processing facilities, developed by Christophe Geuzaine and Jean-François Remacle;

2. GetDP (http://geuz.org/getdp/): a General Environment for the Treatment of Discrete Problems,
developed by Patrick Dular and Christophe Geuzaine;

3. NETGEN (http://www.hpfem.jku.at/netgen/): an automatic 3D tetrahedral mesh generator; de-
veloped mainly by Joachim Schöberl, significant contributions made by Johannes Gerstmayr (STL
geometry) Robert Gaisbauer (OpenCascade interface).

4. MuPPar : a text file parser developed to easily parse input informations into a generic software,
developed by Davide Rondini;

5. CMake (http://www.cmake.org/): a cross-platform, open-source build system;

6. Sparskit (http://wwwusers.cs.umn.edu/ saad/software/SPARSKIT/ sparskit.html): a basic tool-
kit for sparse matrix computations, developed by Yousef Saad;

7. PETSc (http://www.mcs.anl.gov/petsc/petsc-2/index.html): a suite of data structures and routines
for the scalable (parallel) solution of scientific applications modeled by partial differential equations.
It employs the MPI standard for parallelism. Developed by Argonne National Laboratory (U.S.
Department of Energy laboratory).
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Figure 2.19: Schematics of the F3MPIC code.



Chapter 3

Experimental validation using
Langmuir probes

3.1 UCLA experimental setup

3.1.1 Vacuum plant

The UCLA1 experimental apparatus used for the characterization of the thruster is shown
schematically in Figure 3.1. It was composed by two vacuum chambers (14) and (7), each
chamber with an independent vacuum plant. The first chamber (14) was 30.5 cm, 12
inches, of diameter, the second chamber (7) was of 36 cm, 14.34 inches, of diameter. The
two chambers shared the same Argon tank (1). The plant was configured in order to be
able to run experiments independently in the two chambers.

Each of the two vacuum plants had two-stages of vacuum. A first roughing pump (9),
(16) was used to reach pressures of the order of few Pascal. Then a turbomolecular pump
(8), (15) allowed to reach the high vacuum in the range 6×10−4-10−5 Pascal (5.0-10.0×10−6

Torr). All the surfaces exposed to vacuum were treated and cleaned with acetone (the low
vapor tension of acetone enhances a rapid evaporation of residuals attached to the surfaces
like water drops or vapor, human breath, sweat residuals from handling, etc.).

3.1.2 Pressure probes

The pressure of neutral gas was monitored using Convectron gauges (19), (23), Baratron
gauges (17), and ion gauges (21), (25):

1. Convectron convection-enhanced Pirani thermal conductivity gauge. The gauge
determines the pressure indirectly from the thermal conductivity property of the gas

1F. F. Chen’s laboratory LTPTL, Low Temperature Plasma Technology Laboratory, University of Cal-
ifornia Los Angeles

69
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1. Argon tank 
2. Pressure regulator 
3. Double manometer 
4. T-deviator to the two chambers 
5. on/off valve 
6. Micrometric dosimeter (leak valve) 
7. Vacuum chamber (“big chamber”) 
8. Turbopump 
9. Roughing (rotary) pump 
10. Atmospheric pressure 
11. Plasma source location 
12. on/off valve 
13. Micrometric dosimeter  
14. Vacuum chamber (“small ch.”) 
15. Turbo pump 
16. Roughing pump 
17. Baratron MKS 
18. Baratron digital controller 
19. Convectron Pirani gauge 
20. Convectron 275 analogic controller 
21. Ion gauge 
22. Ion gauge 260 controller 
23. Convectron Pirani gauge 
24. Convectron digital controller 
25. Ion gauge 
26. Ion gauge controller series 260 
27. Turbopump controller (Leybold) 
28. Turbopump controller (CFF 100) 
29. RF antenna 27.12 MHz 
30. Coaxial RF transmission line 
31. L-type matching box 
32. RF Power generator 27.12 MHz 
33. RF antenna 13.56 MHz 
34. Coaxial RF transmission line 
35. RF Power generator 13.56 MHz 
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Figure 3.1: UCLA experimental apparatus
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(a) (b)

Figure 3.2: The two tested plasma sources (a) stubby tube (b) elongated source

medium. This kind of gauge (ex. Granville-Phillips 275) is an industry standard in
the measurements of rough vacuum.

2. Baratron is a direct (gas independent) pressure/vacuum capacitance manometer.
It measures the true pressure (force/unit area). The measurement is insensitive to
the type of gas being measured, other gauges, such as Pirani, thermocouple and
ion gauges, do not measure true pressure and therefore their readings will be gas-
type sensitive. The high sensitivity of the baratron was preserved by not taking the
sensible surface in direct contact with the plasma, to avoid etching on one of the
arms of its capacitive transducer.

3. Ionization gauge For high-vacuum measurements (below 0.133 Pascal, 1 mTorr),
a hot cathode Penning ionization gauge was used. This kind of gauge measures
electrical ions produced when the gas is bombarded with electrons

The three probes were mounted on the chambers as depicted in Fig.3.1. The interesting
range for experiments was below 1-2 Pascals (7.5-15 mTorrs). The convectron and the Ion
Gauge were calibrated for Nitrogen; the corresponding values of Argon were obtained by
means of a conversion chart.

3.1.3 Plasma source

The plasma source (11) was mounted on the top of the chamber. Plasma was injected
downward. The source was a cylindrical tube made of quartz or Pyrex (both materials are
dielectric), with inner diameter of 5.4 cm (2.1 inches) and length 5.6 cm (2.2 inches).
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3.1.4 Magnetostatic field

A Neodimium toroid was used for providing the necessary magnetostatic field. The toroid
had an internal diameter of 7.6 cm, external diameter of 12.7 cm and height 2.54 cm, 3x5x1
inches magnets.
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Figure 3.3: (a) Magnetic field lines of the Neodimium toroid; (b) magnetic field intensity
along the symmetry axis of the Neodimium toroid (here the z axis starts from the center
of the toroid)

Neodymium allows one of the highest magnetizations, and is thus interesting for aerospace
applications thanks to its low B-over-mass ratio. Even lower B-over-mass ratios could in
principle be obtained using superconducting materials.

The magnetization vector was directed parallel to the symmetry axis of the magnet.
Figure 3.3.a shows the magnetic lines of the toroid, together with stubby tube, dimensions
are to to scale. Figure 3.3.b shows the intensity of the magnetic field along the axis of
the toroid. The continuous line is the numerically calculated value of the field. Points are
measures taken with a gaussmeter.

3.1.5 RF power supply

Two radio frequency power supplies were used:

1. RFPP (RF30R model) at 13.56 MHz, 50 Ω, with a range between 0 and 3000 W,
water-cooled

2. RF-20-XXVII at 27.12 MHz, 50 Ω, with a range 0-2000 Watt, air cooled.

Regulation of input power was possible through the digital controller of the generator, with
a one-Watt step precision, as provided by the manufacturer. The forward and reflected
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power was monitored on the display of the generator. The small chamber (14) was usually
dedicated to 13.56 MHz experiments, and the larger chamber (7) to 27.12 MHz experiments.

3.1.6 Antenna

Several kind of antennas was tested. Figure 3.7 shows a single loop antenna (m = 0) that
has been used. Its impedance was adjusted choosing among 1,2,3 turns around the source
tube. A water-cooling circuit was shared by the generator and the antenna. The cooling
system was made with a chiller and by using a copper pipe for the antenna.

3.1.7 Matching network

A L-type matching circuit was used between the 50Ω RF power supply and the antenna,
for impedance matching. The circuit was composed by two variable capacitors C1 and C2,
placed in “standard” or “alternate” configuration, plus a transmission line of opportune
length. The values of the capacitors and the length of the transmission line were calculated
in order to guarantee the plasma coupling at 50Ω with the RF generator.

RF 

C2 

C1 

50Ω 

MATCHING 
BOX 

R1 

L_cable 

Coaxial cable 
Coaxial cable 
RG213/U 

Rant 

Lant 

Figure 3.4: Electric scheme of the RF circuit, with the L-type matching box in the standard
configuration

3.2 RF compensated Langmuir probes

3.2.1 Probes construction

Plasma parameters were measured with RF-compensated Langmuir probes, expressly fab-
ricated for the experiments. Probes consisted mainly of two elements, the tungsten tip and
the radio-frequency compensation system.

The plasma-contacting tip of the probe was a tungsten cylinder of 3-10 mils in diameter.
The size of the plasma-contacting tip is reported in Table 3.1.
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Probe L±1 [mm] diam±0.025 [mm]
ChenB 80903 10 0.254
ChenB 100317 6 0.254

Table 3.1: Tungsten tip of the Langmuir probes

3.2.2 RF compensation

The RF compensation system used for the experimental tests was composed by a notch LC
passive filter located in the proximity of the probe tip. The plasma-contacting electrode
was made of nickel or tungsten, depending on expected plasma densities. The electrode
had a surface able to satisfy the condition on impedances [63]:

eṼrf
KBTe

∣∣∣∣ ZxZck
∣∣∣∣ << 1 (3.1)

Values of the LC components were chosen to have a RF signal choked at the desired
frequency. Each RF choke was tested with an apparatus showed in Fig.3.5.a, where ZSFG
is the impedance of the synthesized function generator Zchoke is the impedance of the choke
system, Rload is a known load resistance (ex. 1000 Ohm), and ZOSC is the impedance
of the digital storage oscilloscope Since the impedances ZSFG and ZOSC were unknown,
a preliminary test was always done without the choke, to calibrate the response of the
oscillator.

 

Zchoke 

ZSFG  ZOSC Rload 

Vin  Vout 

 

Zchoke 

C1  L1  L2 
(27.12 MHz)  (13.56 MHz) 

(a) (b)

Figure 3.5: (a) Apparatus for testing the RF choke of the Langmuir probes; (b) internal
impedances in the RF choke

Figure 3.6 shows an example. Figure 3.6.a shows the RF synthetic signal produced by
the SFG and measured with the oscilloscope, without the choke chain. The test was done in
an interval of frequencies from 10 MHz to 30 MHz, by generating a frequency ramp with the
SFG. A marker signal was put at 27.12 MHZ, corresponding to the small luminous spot in
the figure. The input peak-to-peak RF voltage was V p−p

in = 10 Volt for all the frequencies,
and thus a flat reading would have expected. The reading on the vertical axis is of 5 Volts
per division, so the right voltage is read only on the lower range of the frequencies around
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(a) (b)

Figure 3.6: Testing with the oscilloscope of the RF choke, by using a synthetic RF signal
of V p−p

in = 10 Volt: (a) without the choke impedance (ordinate 1 division = 5 Volts), (b)
with two chokes at 13.56 and 27.12 MHz (ordinate 1 division = 0.2 Volt)

10-12 MHz. At higher frequencies the measured voltage Vout was decreasing, a behavior
attributed to the impedance ZOSC of the Tektronix oscilloscope. After the addition of the
choke to the circuit, the output changed to the one in Fig. 3.6.b. Now the scale of the
vertical axis is 0.2 Volt per division. The horizontal line is a marker signal starting at 13.56
MHz and ending at 27.12 MHz, to put in evidence the two frequencies of interest. The
RF signal is choked at the two frequencies of interest, 13.56 MHz and 27.12 MHz. The
electric scheme of the choke is showed in Fig. 3.5.b. The values of the components (as
measured with a BK precision 875A) were: C1 = 114± 10 pF (100 pF nominal, 200 Volt),
L1 = 58± 10µH (56 µH nominal) and L2 = 115± 10µH (180 µH nominal).

3.2.3 Probe positioning

The probes were mounted on special interfaces allowing one-dimensional movements of the
probe inside the chamber. One allowed radial scans in the plasma plume of the thruster,
the other for axial scans inside the source cylinder.

Figure 3.7: View of the Langmuir probe inside the cylinder of the plasma source
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Figure 3.8: Test of the HIDEN acquisition system with a Zener diode ECG5121A, nominal
Zener voltage of -7.5 Volts

3.2.4 Acquisition system

The Langmuir probe was connected to an HIDEN controller , feeding the input potential
V to the probe. Figure 3.8 shows a test with the I-V characteristic of a Zener diode
ECG5121A, with a nominal Zener voltage of -7.5 Volts. The cable from the probe to the
HIDEN was filtered by wrapping it around a small ferromagnetic toroid. The HIDEN was
then connected to a normal Windows-PC with the original HIDEN ESP software dedicated
for acquisitions. The software allows to export .csv files containing the sampled I-V values
for each probe scan. From the HIDEN software the following parameters was setted: the
range of the scan (usually -100/+20 Volts), the samples per scan, the gain range, the
sample dwell time, the start dwell, the minimum cycle period and the number of scans.

3.2.5 Test types

1. Power scan Langmuir probe acquisitions at increasing power has been taken for
several magnetic configurations. This campaign of tests has been done in order to
study the influence of RF power and magnetic field topology on plasma density n
and electron temperature Te. The low-power range between 50 and 400 Watts has
been characterized.

2. Spatial scan Radial and axial scans have been done by moving the Langmuir probe
inside the chamber and taking data at each station. The movement of the probe was
made possible by means of a dedicated chamber access. The plasma density along
radius of the diffusion chamber exhibits a density peak in the center of the chamber.
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3.3 Langmuir probe data

3.3.1 Analysis of the experimental I-V traces

Choice of the method of analysis. Despite the constructive simplicity of a Langmuir
probe, the analysis of its measured I-V characteristic is not straightforward. Classical
methods of analysis are the ABR, BRL and OML methods. The method based on the
Orbital Motion Limited (OML) theory was proposed by Langmuir [59], and developed by
Chen [60], [48], [64]. The model describes the collection of a plasma on a solid conductive
body placed at potential Vp (probe potential) by using orbital theory of plasma particles.
The exact solution for a cylinder is [59]:

IOML = qeAprobejrF jr =
1
2
n

(
2KBT

πm

)1/2

(3.2)

F =
s

a
erf(Φ1/2) + eηerfc(η + Φ)1/2 (3.3)

η = −qe(Vp − Vs)
KBT

, Φ =
s2

s2 − a2
η (3.4)

where Aprobe is the probe area, jr is the random flux of either species, a is the probe radius,
s an assumed sheath radius, qe the particle charge, Vp the probe potential, and Vs the space
(plasma) potential. When Ti << Te the model is very accurate for ions, and it predicts a
collection current proportional to the square root of the applied potential:

Ii,OML ≈
nqeS

π

(
2qe(Vs − Vp)

Mi

)1/2

(3.5)

where Mi is the ion mass. The range of validity of the OML theory should be limited to
low–density and low-collisionality plasmas, where particles trajectories could in principle
be treated as single charges orbiting inside the potential of the probe. However, Chen
showed that the OML model can be successfully applied to high density plasmas [48] and
even to high-density RF plasmas [64]. The validity of the OML model in regimes such
different is still an open and unresolved question. The OML method has been adopted for
the treatment of the Langmuir probe data during activities at UCLA. The procedure used
for data analysis can be summarized with the following points.

1. Acquisition of experimental data and averaging. Rough experimental data
from the acquisition system, digitally sampled by the HIDEN A/D converter, are stored
in a file in the form of a measured current (Amperes) with respect to the input applied
potential (Volts)

(Vp, Ip)j j = 1, ..., Nsamples (3.6)

Convention for positive current I > 0 is when the electron current is positive. Collected
data are averaged over several acquisitions. The value of the imposed potential Vp is
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recorded in digital form with 5 significant digits. The accuracy of the acquisition system
on the imposed potential is smaller than < 0.1 mV, that is below the last significant
recorded digit. As a consequence, the numerical value of the imposed potential doesn’t
change between two subsequent acquisitions when all other settings remains the same.
Figure 3.9.a shows an example of potential ramp, between -100.00 and +30 Volt. The
value of the current is stored with 5 significant digit by the acquisition system, and the
quantization error depends on the range set during the acquisition (0.1, 1.0, 10.0, 100.0
mA). Fig. 3.9.b shows an example of current Ip collected from the plasma over 5 subsequent
potential ramps, with the plasma remaining stationary. The small variability of the results
can qualitatively be appreciated from the figure. Figure 3.9.c shows the standard deviation
of the measured current, averaged over the scan number

σIp = [1/(Nscans − 1)
Nscans∑
j=1

(I(j)
p − Īp)2]1/2 (3.7)

Īp = (1/Nscans)
Nscans∑
j=1

I(j)
p (3.8)

The figure highlights that experimental data are more scattered in the electronic-current
region than in the ionic region, as expected. The maximum standard deviation reaches the
range of 1.0 mA for the particular case reported in the figure.

2. Averaged spline of measured current. A spline of the measured current
averaged over the aspect ratio of the probe tip is done using a moving average filter of ±Nb

samples before and after the i-esim sample,

I+
i [mA] = −1000

i+Nb∑
k=i−Nb

Ip,k
AR(2Nb + 1)

i = 1 +Nb, ..., Nsamples −Nb (3.9)

where
AR = 1 +

Rprobe
2Lprobe

(3.10)

is the aspect ratio of the plasma-exposed cylindrical conducting tip of the probe, of radius
Rprobe and lenght Lprobe. The error on the size of the tip geometry has revealed to be
also the most important source of error on the interpretation of the IV curves within the
procedure of the OML analysis. After the splining procedure, the array of measured data is
reduced in size from Nsamples to Nsamples−2Nb. Usually Nb = 5 has been used, that means
a span of 11 samples is considered for the splining. Figure 3.9.d shows an example of splined
current I+

i (black curve), together with absolute error bars obtained with propagation of
error from formula Eq.3.9

∆I+
i =

∣∣∣∣ ∂I+
i

∂(AR)
∆(AR)

∣∣∣∣+
∣∣∣∣ ∂I+

i

∂(Ip,k)
∆(Ip,k)

∣∣∣∣ =
∣∣∣∣ Ip,kAR2

∆AR
∣∣∣∣+
∣∣∣∣∆ImAR

∣∣∣∣ (3.11)
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Figure 3.9: (a) Example of Langmuir probe potential ramp between -100/+30 Volts, with
error bars on the applied input voltage; (b) collected current over 5 different ramps, with
the averaged IV line, and error bars over the values of measured currents; (c) standard
deviation of the collected current: data are more scattered in the electronic current region
than the ionic region; (d) averaged spline of the IV trace (black), and first derivative of
the splined curve (blue).



80 CHAPTER 3. EXPERIMENTAL VALIDATION USING LANGMUIR PROBES

where the index k is intended summed over the filter span Nsamples < k < Nsamples− 2Nb.
The error on the aspect ratio AR is purely geometry-dependent:

∆(AR) =
∣∣∣∣∆RprobeLprobe

∣∣∣∣+

∣∣∣∣∣RprobeL2
probe

∆Lprobe

∣∣∣∣∣ ≈ O(10−2) (3.12)

as results for typical R and L of R = (5.0±0.5) mils = (0.127±0.013) mm, and L = (6±1)
mm.

3. First guess of plasma parameters (n, Te, Vs). The space potential Vs is the
voltage at which the minimum of the first derivative of the I-V characteristics occurs:

Vs = min
{
V,

dI

dV

}
(3.13)

The first derivative is obtained from the measures I+ using a first or second order finite
difference scheme:

dI

dV
=

Ii+1 − Ii
2(Vi+1 − Vi)

+O(∆V ) (3.14)

dI

dV
=

Ii+1 − Ii−1

2(Vi+1 − Vi−1)
+O(∆V 3) (3.15)

Propagation of errors on derivatives Eq.3.14 and 3.15 is of immediate evaluation. One
example is reported in Fig.3.10. At first, the electron temperature is estimated by noting
that Te is approximated by:

Te ≈
I+

dI/dV
(3.16)

From the space potential and the electron temperature, the plasma potential curve can be
obtained:

η =
Vs − Vp
Te

(3.17)

The first guess of plasma density can be estimated using formulas for ion saturation
current2,

n(Isat) =
1
2
|Isati |

AprobeCs
(3.18)

or the electron saturation current,

n(Esat) =
3.7|Isate |
Aprobe

√
Te

(3.19)

2Generally speaking, the approximated value that can be obtained from the ion saturation current is
1.5-2.0 times higher than the value obtained from the OML fitting, even if this assertion is empirical and
not always true.
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Figure 3.10: (a) First derivative of the splined current; (b) ion current fit with the OML
model; (c) electron current fit with a Maxwellian;
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With the values found from the initial guess, it is possible to make a first graphical check
of the difference between theory and experiment.

4. Ion current fit. From the OML theory, the ion current is:

Ii,OML = 7.05Aproben
√
ηTe
Mi

(3.20)

The unknown parameters (Vs, Te, n) are calculated from the experimental data from the
minimization of the quadratic errors between the experimental data and the OML theo-
retical model in the ion region of the characteristic,

min
{

(n, Vs), εI2i

}
(3.21)

where

εI2i
=

Nsamples∑
k=1

(∆I2
i )k (3.22)

∆I2
i =

∣∣(I+
i )2 − (Ii,OML)2

∣∣ (3.23)

The Nelder-Mead simplex direct search minimization method has been used as a numerical
tool for the minimization of the least squares, with typical iteration numbers of 50-70
and a total function evaluations around 100. The method has the great advantage to be
derivative-free [61]. The deviation on the density is finally given by:

σ2
n2 =

(
∂f

∂Vp

)2

σ2
Vp +

(
∂f

∂(I2
i )

)2

σ2
I2i

+
(

∂f

∂Aprobe

)2

σ2
Aprobe

(3.24)

where

f = f(Vp, I2, Aprobe) ≡ n2 =
MiI

2
i

7.052A2
probe(Vs − Vp)

(3.25)

Because of its parabolic trend, the ion current is conveniently plotted in an (V, I2
i ) graph

(Fig. 3.10.b), where the experimental ion current (I+)2 can easily be compared with the
theoretical current I2

i,OML along a line. The two vertical dashed lines in Fig. 3.10.b enclose
the interval within the fitting has been done.

5. Electron current fit. The electron temperature Te is inferred from the electronic
current Ie in a region of probe potentials after the transition of the IV characteristic and
before the electron saturation. Electron current is corrected from the ion current using the
following rule:

Ie =


η > 0

{
I∗e > 0 Ie[mA] = I∗e + Ii,OML

I∗e ≤ 0 Ie = εmin

η ≤ 0

{
Ip > 0 Ie[mA] = I∗e
Ip ≤ 0 Ie = εmin

(3.26)
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where
I∗e [mA] = 1000Ip/AR (3.27)

and εmin is a minimum error level, equal to the error of digital quantization on the am-
plitude of the current output signal, equal to εmin = 10−5 mA in the HIDEN acquisition
system. For potentials Vp close to the plasma potential, electrons remain Maxwellian, and
the following theoretical model of collection of Maxwellian electrons on a probe has been
used:

IFITe = (268nAprobe
√
Te) exp

(
Vp − Vs1

Te

)
(3.28)

Again, a best fit of experimental data with the theoretical collection model has been done;
the same Nelder-Mead simplex direct search method has been used for the minimization
problem:

min {(Te, Vs1), εIe} (3.29)

where

εIe =
Nsamples∑
k=1

(∆Ie)k (3.30)

∆Ie =
∣∣log Ie − log IFITe

∣∣ (3.31)

The deviations of electron temperature and plasma potential is finally given by:

σ2
Te =

(
∂g

∂Vp

)2

σ2
Vp +

(
∂g

∂Ie

)2

σ2
Ie +

(
∂g

∂Aprobe

)2

σ2
Aprobe

+
(
∂g

∂n

)2

σ2
n (3.32)

σ2
Vs1 =

(
∂h

∂Vp

)2

σ2
Vp +

(
∂h

∂Ie

)2

σ2
Ie +

(
∂h

∂Aprobe

)2

σ2
Aprobe

+
(
∂h

∂Te

)2

σ2
Te (3.33)

where3

g = g(Vp, Ie, Aprobe, n) = Te :
Te
2

log Te − Te log
[

Ie
268nAprobe

]
− Vs1 + Vp = 0 (3.34)

h = h(Vp, Ie, Aprobe, Te) ≡ Vs1 = Vp − Te
[
log
(

Ie
268nAprobe

)
− log T 1/2

e

]
(3.35)

The convenient graph for a plot of the electron current is the semi-log (V, log Ie), where
the exponential electron current appears to be as a line. Figure 3.10.c shows an example.
The two bounds of the interval selected for the fitting are also evidenced with two vertical
lines; the plasma remains Maxwellian within the interval. At higher potentials, the electron
current saturates. At lower potentials, the plasma is usually still Maxwellian within the
range of uncertainty. However, the uncertainty of experimental data is here higher because
of subtraction of the ion current. Deviations from the Maxwellian (like ion/electron beams,
hot electron populations, etc.) cannot usually be appreciated with confidence due to the
higher uncertainty in the transition region.

3Derivatives of the implicit function g were solved numerically
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3.3.2 Experimental results

An example of the experimental apparatus used for the validations is shown in Figure
3.11.a. The cylindrical Pyrex source of 5 cm of inner diameter was mounted on top of
the cylindrical vacuum chamber, with their axis aligned. The top end of the source was
covered with a metallic backplate, necessary for a constructive reflection of the helicon
wave and for short circuiting the plasma. The radio frequency antenna (m = 0) was
wrapped around the Pyrex source, and fed with radio-frequency power through the power
generator. The matching between the generator and the load was obtained with an L-type
matching network with two adjustable vacuum capacitors. The magnetic field along the
axis of the source cylinder was obtained with a Neodimium magnet with the magnetization
vector parallel to the symmetry axis of the source cylinder, placed above the chamber at an
adjustable distance, in order to have the desired value of the magnetic field at the antenna
location. The plasma is created inside the source tube, and then expands down inside the
chamber. All the test were made using Argon. Before each test the air pressure inside the
chamber was floored down to the 10−6 Torr range, in order to have less than 0.001% of
residual air during the acquisitions. The Argon was injected into the chamber from the
top plate or from the sides of the chamber, depending on the needs.

Power scan at 13.56MHz, inside the helicon source, Figs. 3.11, 3.12 and 3.13.

This experimental campaign was oriented to measure the plasma parameters vs. the input
RF power for a fixed gas pressure4. The interesting range occurs between 1.0 and 20
mTorr (0.013-2.67 Pascal). The pressure inside the system was thus set at the value of
(15.0± 0.1) mTorr, measured with the baratron before the ignition of the plasma. Before
the ignition of the RF power and of the plasma, the chamber was uniformly filled by the
gas. After the ignition of the RF power, the values of the capacitors in the matching box
were adjusted until the condition of zero reflected power was obtained. The monitoring
of the reflected power was possible thanks to a digital forward/backward meter included
in the RF generator, with a precision of ±1 Watt on the reading, as provided by the
manufacturer. A Langmuir probe was fit inside the Pyrex cylinder through an aperture
of 5mm on the metallic plate at the top. The tip of the probe was placed as indicated by
the red dot in Fig.3.11.a, inside the Pyrex source and at the center of the antenna. Tests
were done in the range from 1 to 400 Watt of input power. The experimental IV curves
obtained with the HIDEN acquisition system are shown in Fig.3.11.b. From the analysis
of the curves (with the procedure described in Sec. 3.3.1), the values of plasma density
(Fig.3.11.c), electron temperature (Fig.3.11.d) and plasma potential (Fig.3.11.e) have been

4In plasma thrusters experiments the usual regulation is done on the mass-flow, and not on chamber
pressure. However, the behavior of plasma at low powers has been found to be much more influenced by
the local gas pressure than by its mass flow; a pressure-dependent characterization has been considered
more important for the basic understanding of the plasma behavior and for the validation of the theoretical
model.
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obtained. Furthermore an estimate of the ionization fraction has been possible, as the ratio
n/Nn of the plasma density over the neutral-gas density (Fig.3.11.f). Figure 3.11.c shows
that at low powers of 1-100 Watt, the plasma density is in the range 1016-1017 m−3. The
fit of the ion current from the I-V characteristics are reported in Fig. 3.12.a, 3.12.c and
3.12.e, for the three cases of 50,80 and 100 Watt respectively. Ion currents follows the OML
I-square line in a wide range of probe potentials, from -100 up to -20 Volts5. At higher
power levels, of 100-400 Watts, the plasma density increases within the range 1017-1018

m−3. Three curves of the ion current for powers of 200, 300 and 400 Watt are shown in
Fig. 3.13.a, 3.13.c and 3.13.e respectively. Experimental data correctly follows the OML
I-square line within a < 5%. The greater uncertainty of the measure descends from the
uncertainty of the geometrical size of the probe tip. Again, the plasma density estimated
from values of ionic current at saturation are higher than the value descending from the
OML fitting.

The electron current log Ie exhibit a linear Maxwellian trend versus the applied po-
tential. The values of the resulting temperature of electrons is reported in Fig. 3.11.d,
together with the value of the plasma potential obtained from the non-linear LS fit. The
temperature increases from 1eV to 4eV in the low-power range 1-100W, and then stabilizes
to a value around 3eV in the range 100-400W. There is no evidence of increasing electron
temperature for increasing RF powers. Furthermore, the electron current can be approxi-
mated by a Maxwellian within a 10% of approximation. The increase of RF power appears
to affect the range of more energetic electrons; however, the uncertainty in this range is
too affected by ion subtraction, and useful consideration on high-energy electrons cannot
be inferred. The power is expended to sustain a plasma of increasing density, the power
being dissipated in inelastic collisions and losses at the boundaries. How the amplitude of
the RF power affects the electron energy distribution function remains an open question
for an helicon plasma. Some clues can be inferred by looking carefully at the Ie traces,
reported in Figs. 3.11.b, 3.11.d, 3.11.f, 3.12.b, 3.12.d and 3.12.f for powers of 50, 80, 100,
200, 300 and 350 Watt respectively. At low powers the electron behavior is well approxi-
mated by the Maxwellian fit. For increasing powers, the behavior near saturation changes.
The Maxwellian fit is bended downward and the Ie line becomes a Ie curve: the absolute
value of the curvature of Ie increases. According to Druyvesteyn [62], the distribution of
electrons can be inferred from the second derivative of probe data. Numerical trials have
revealed that the noise due to error propagation on the second derivative becomes too
high to infer unambiguous conclusions about the results. However, a detailed study on the
kinetic effects of the RF field on the electron energy distribution appears to be the proper
path of future investigations.

5It’s worthwhile to note that the ion saturation current of, say for example at 100 Watt, Isation ≈ 0.96
mA would lead to a plasma density of nsation ≈ Isation/(qeAprCs) ≈ 2.5 × 1017 m−3 (Te = 3 eV), which
would have been higher than the value obtained from the fitting of the whole OML ion region, nOML

ion =
(1.60± 0.05)× 1017 m−3. At 300 Watt Isation ≈ 3.32 mA, nsation ≈ Isation/(qeAprCs) ≈ 8.8× 1017 m−3 (Te = 3
eV) instead of nOML

ion = (5.5± 0.2)× 1017 m−3, which is 1.6 times higher.
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16.8 cm

B0=64 Gauss at antenna center [SETUP_09]
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13.56MHz, 65Gauss, 15.0mTorr Ar, (r,z)=(0.0,6.0)cm [UCLA 024]

13.56MHz, 65Gauss, 15.0mTorr Ar, (r,z)=(0.0,4.0)cm [UCLA 035]

(e) (f)

Figure 3.11: Power scan at 13.56MHz and for a fixed pressure of 15.0mTorr, inside the
helicon source, (a) experimental setup, with the Langmuir probe position marked with
a red dot; (b) experimental IV traces for increasing power levels; (c) plasma density vs.
power; (d) electron temperature vs. power; (e) plasma potential vs. power; (f) estimate of
the ioniation fraction. [res1a]
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Figure 3.12: Ion and electron current fit for a 15.0 mTorr Argon plasma, inside the helicon
source, with RF power of (a), (b) 50 Watt; (c), (d) 80 Watt; (e), (f) 100 Watt. [res1a]
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Figure 3.13: Ion and electron current fit for a 15.0 mTorr Argon plasma, inside the helicon
source, with RF power of (a), (b) 200 Watt; (c), (d) 300 Watt; (e), (f) 350 Watt. [res1a]
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Power scan at 13.56MHz, downstream conditions, Figs. 3.14, 3.15 and 3.16.

Tests with Langmuir probes placed downstream inside the chamber (probe position marked
with a red dot in Fig. 3.14.a) revealed the behavior of the plasma far from the helicon
source. A power scan in the range 50-1000 Watt at constant neutral gas pressure was
made. The experimental IV traces are reported in Fig. 3.14.b. The resulting plasma
density is approximatively 4-5 times less than inside the source. The 1018 m−3 range of
plasma density is hardly reached even at very high power ≈1 kWatt. The resulting electron
temperature is reported in Fig. 3.14.d. It begins is in a range of 1eV - 2eV at very low
power (50-100 Watt), and then increases to a stationary value around 2.5eV for higher
power levels. The electron temperature remains constant with respect to RF power. The
plasma potential at that location occurs in the usual range of 10-20Volt. Figures 3.15
and 3.16 show the fits of ion and electron currents. The Maxwellian character of electrons
is easily understood when inelastic collisions of electrons with neutral gas is taken into
account. In fact, the ionization fraction downstream is approximatively in the 0.1% range,
as reported in Fig. 3.14.f.
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16.8 cm

B0=64 Gauss at antenna center [SETUP_09]
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(e) (f)

Figure 3.14: Power scan at 13.56MHz and for a fixed pressure of 15.0mTorr, downstream,
(a) experimental setup, with the Langmuir probe position marked with a red dot; (b)
experimental IV traces for increasing power levels; (c) plasma density vs. power; (d) elec-
tron temperature vs. power; (e) plasma potential vs. power; (f) estimate of the ioniation
fraction. [res1b]
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Figure 3.15: Ion and electron current fit for a 15.0 mTorr Argon plasma, downstream, with
RF power of (a), (b) 100 Watt; (c), (d) 200 Watt; (e), (f) 300 Watt. [res1b]
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Figure 3.16: Ion and electron current fit for a 15.0 mTorr Argon plasma, downstream, with
RF power of (a), (b) 400 Watt; (c), (d) 800 Watt; (e), (f) 1000 Watt. [res1b]
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Axial scan at 13.56MHz, inside the source, Figs. 3.17, 3.18 and 3.19.

The spatial structure of the plasma was measured by means of moveable Langmuir probes.
Figure 3.17 shows a scan along the axis of the source cylinder, and down inside the ex-
pansion chamber. The path of the scan has been marked with a red line in Fig. 3.17.a,
and the measured IV traces are reported in Fig. 3.17.b. Figure 3.17.c shows the result-
ing plasma density versus the axis z, measured starting from the backplate of the Pyrex
cylinder. The antenna location occurs at z = 5 cm. The highest plasma density occurs
near the backplate, and then decreases gradually downstream inside the chamber. The
electron temperature (Fig. 3.17.d) is high in the 2.8eV - 3.2eV range inside the source, and
decreases to 2.5eV downstream. One of the most interesting spatial feature is seen from
the trend of the plasma potential (Fig. 3.17.e), where a potential drop has been found.
The electron fit curves exhibit a big change at that location, as showed in Figs. 3.18.b,
3.18.d, 3.18.f, 3.19.b, 3.19.b, 3.19.d and 3.19.f, corresponding to acquisitions at locations
z = 3, 8, 9, 10, 11, 14 cm respectively (before, across and after the potential drop). Before
the potential drop and immediately before, Fig. 3.18.b and 3.18.d, the electron tempera-
ture is in the range of 2.5eV-3.0eV, with plasma potentials in the range of 20V. When the
drop is encountered, the electron curve exhibits a considerable shift downward to ≈ 13V,
Fig. 3.18.f 3.19.b the temperature, remaining at the same value of ≈ 2.5eV. Downstream
the potential drop raises to values around 15-20 Volts. Ion density is not affected by the
drop (3.17.c), the phenomenon is electronic in nature.

Radial scan at 13.56MHz, downstream, Figs. 3.20, 3.21 and 3.22.

The radial plasma structure inside the chamber has been probed with moveable Langmuir
probes under many conditions. Figs. 3.20, 3.21 and 3.22 are a summary of few interesting
cases. The radial profile of plasma density is reported in Fig. 3.20.c, for a case at 15mTorr
and 400 Watt of RF power. The profile is peaked at the center of the cylinder. Electron
temperature (3.20.d) is lower than inside the source cylinder, being in the 2.5eV - 3.0eV
range at the center. The profile of temperature than decreases toward the walls, from 3.0eV
down to the 1.0eV range. Plasma potentials are in the range 15-20 Volts. Figure 3.21 shows
radial scans at 100W and 15mTorr, for two different magnetic fields at the antenna of 65
and 25 Gauss. The magnetic field was adjusted by moving the permanent magnet along
the axis (Fig. 3.21.a and 3.21.b). The plasma density is peaked at the center, where it is
in the range 4-5×1016 m−3, and decreases toward the walls. The electron temperature is
always below 2.5eV, with plasma potentials of 15-20V or lower. The magnetic field does
not affect neither the absolute value of the plasma density, nor the radial shape of the
plasma. Tests reported in Fig. 3.22 show a comparison of downstream profiles for three
different magnetic fields of 65, 90 and 140 Gauss. The profiles are always peaked at the
center of the discharge. The plasma density is not considerably affected by the value of
B. The value of electron temperature and plasma potential are all comparable, within the
uncertainties of the measurements.
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16.8 cm

B0=64 Gauss at antenna center [SETUP_09]

−100 −80 −60 −40 −20 0 20
−20

0

20

40

60

80

100

120

Potential [V]

C
ur

re
nt

 [m
A

]

(a) (b)

0 5 10 15 20
0

1

2

3

4

5

6

7

8

9

10
x 10

17

z [cm]

n 
[m

−
3 ]

 

 

13.56MHz, 65Gauss, 15mTorr Ar, 400Watt, r=0.0cm [UCLA 039]
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13.56MHz, 65Gauss, 15mTorr Ar, 400Watt, r=0.0cm [UCLA 039]
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13.56MHz, 65Gauss, 15mTorr Ar, 400Watt, r=0.0cm [UCLA 039]
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Figure 3.17: Axial scan at 13.56MHz along the cylinder. [res03]
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Figure 3.18: Axial scan, ion and electron current fit, at locations z = 3, 8, 9 cm respectively
[res03]
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Figure 3.19: Axial scan, ion and electron current fit, at locations z = 10, 11, 14 cm respec-
tively [res03]
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16.8 cm

B0=64 Gauss at antenna center [SETUP_09]
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Figure 3.20: Radial scan at 13.56MHz and 400 Watt along the radius of the chamber. [2a]
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(e) (f)

Figure 3.21: Radial scan at 13.56MHz and 400 Watt along the radius of the chamber. [2b]
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B0=64 Gauss at antenna center [SETUP_09]
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(e) (f)

Figure 3.22: Radial scan at 13.56MHz and 400 Watt and several B fields, along the radius
of the chamber. [res06]
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Power scan at several pressures 13.56MHz, inside the helicon source, 3.23, 3.24,
3.25, 3.26 and 3.27.

Several power scans at different pressures 1.0-20 mTorr have been executed with the Lang-
muir probe placed at the center of the plasma source. The setup is shown in Fig. 3.23.a,
with the probe tip marked with a red dot. Pressures have been chosen within an interest-
ing range of expected performances of a thruster. During the experiments the Argon was
flown inside the chamber, and taken to the constant desired pressure. Then the plasma was
ignited at the desired power, the matching obtained (with zero-Watt of reflected power),
and the acquisition done. The gas pressure wasn’t changed until all the interested power
range was probed. Figure 3.23 shows few selected cases that allow to understand the main
trend of the plasma behavior.

Figure 3.23.a shows the plasma density, as obtained from the fitting of the experimental
traces with the OML curve. The 15.0mTorr case (blue measures) is equivalent to the curves
reported in Fig. 3.11. When the pressure is decreased to lower values, the absolute value
of the plasma density decreases. The plasma density is proportional to the neutral gas
pressure. As an example, at 300Watt, a density around 6× 1017 m−3 with 15 mTorr of gas
can be achieved, against a density of around 2.5×1017 m−3 with a density of the neutral gas
5 times less at 3.0mTorr of neutral gas. However, at lower pressures the source is actually
working at higher ionization fractions, i.e. it is more efficient. This can be seen from Fig.
3.23.f, where the ionization fraction has been estimated as the ratio between the calculated
plasma density and the number density of the neutral gas assuming a temperature of
400K. The ionization fraction at lower pressures (ex. 3.0 mTorr) is higher than at higher
pressures. The mechanism of higher ionization efficiency can be explained considering the
behavior of electrons at low pressures.

Figure 3.23.d show the calculated Maxwellian temperature of electrons, as estimated
from the data of electronic currents. The collision-dominated behavior of the 15.0mTorr
presented in Fig. 3.23.d gradually shifts towards a collisionless domain. At lower pres-
sures electrons have more inter-collisional space to be heated by the RF electric field, and
their temperature can increase. At higher Te their ionization cross-section increases, and
consequently the ionization fraction increases too, as obtained in Fig. 3.23.f.

The detailed analysis of electronic currents curves reveals even more interesting features
at low pressures (Figs. 3.24, 3.25, 3.26 and 3.27). At 10.0 mTorr and with a low power
of 50 Watt, Fig. 3.24.a-b, the ions behavior is well approximated by the OML theoretical
prediction; electrons are Maxwellian and at temperatures around 4eVs. When the power
is increased, ions are still OML-like, and electrons are still approximated by a Maxwellian
at 4eVs. An exception has been observed in the low-medium 80-100 Watt range, where
higher Te and plasma potential have been encountered (Figs. 3.24.c-d). At 7.5 mTorr
(1 Pascal) of Argon pressure, Fig. 3.25 the electron current is fitted by Maxwellians at
higher temperatures (Fig. 3.25.b-d-f). When the pressure is further reduced, down to
5.0 mTorr (Fig. 3.26) and 3.0 mTorr (Fig. 3.27), the electron temperature is increased
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up to the 10 eV range. At such low pressures, an influence of the intensity of the RF
field on the ion currents was observed. See for example Fig. 3.27, where the 3.0 mTorr
case is reported. At low powers of 50 Watt, the ion current can still be fitted by the
ionic OML curve; when the power is increased the OML-like behavior is gradually lost, as
reported for example in Fig. 3.27.e. In this regime of low pressure and high powers, despite
electrons are still Maxwellian inside the uncertainty of the probe (Fig. 3.27.f), the plasma
potential shifts upward to 70-80 Volts (4 times than usual), and kinetic effects on ions
might become relevant. In this regime, the OML fit appears only as a theoretical limit.
Ions might be influenced by the higher plasma potential, and plausible conditions for an
efficient acceleration are encountered. This regime appears to be an interesting regime for
an helicon thruster to operate.

Pressure scan at low-powers 13.56MHz, inside the helicon source, Figs.3.28,
3.29 and 3.30; wave-heating cut-off

In order to investigate the feasibility of an helicon ambipolar accelerator in the low-power
range of 50-150 Watt, a pressure scan inside the helicon source was made, Fig. 3.28. This
test differs from the previously described for the following reason. Here the power is
maintained at a fixed level, and the chamber pressure is varied, instead of vice-versa.
Three power levels have been chosen, equal to 50, 100 and 150 Watt. Figure 3.28.c shows
the resulting plasma density, 3.28.d the electron temperature, 3.28.e the plasma potential,
and the estimate of the ionization fraction 3.28.f. Tests were possible in the range 1.5-15.0
mTorr. At lower pressure the helicon discharge was at its cut-off, that is only a glow-
discharge was possible. Electron temperatures of the order of 10eVs has been encountered
in the 1.0 mTorr range. The plots of electron currents are reported in Fig. 3.29 and
Fig. 3.30, showing the increase of electron temperature. Ions behave OML-like at the
upper range of pressures, and then they gradually departs from the OML line, especially
at the region of IV transition, when the pressure is decreased. At very low pressures and
near the wave-heating cut-off, i.e. slightly above ≈ 1.5 mTorr, the electron behavior is
strongly related to pressure (Fig. 3.30), insomuch as variations of ±0.1 mTorrs in pressures
(Fig. 3.30) involve variations of 1-2eVs in Te. Despite this regime looks favorable for an
appropriate acceleration of ions in an helicon thrusters, the sensitivity of Te to the pressure
is too high, and this might introduce problems in the thruster development, like strict
requirements in the pressure/mass-flow control system.
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16.8 cm

B0=64 Gauss at antenna center [SETUP_09]
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(e) (f)

Figure 3.23: Power scan at several pressures (a) experimental setup, with the Langmuir
probe position marked with a red dot; (b) experimental IV traces at 3.0mTorr; (c) plasma
density vs. power; (d) electron temperature vs. power; (e) plasma potential vs. power; (f)
estimate of the ioniation fraction. [4a]



3.3. LANGMUIR PROBE DATA 103

−100 −50 0 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

V [Volts]

I2  [m
A

2 ]

n = 0.51e17 m−3 ( 0.46, 0.56 ) [95%]

UCLA025−TAKE10

 

 

Ii (OML)
Ii squared

−20 −15 −10 −5 0 5 10 15
10

−3

10
−2

10
−1

10
0

10
1

10
2

V

I [
m

A
]

 

 

Te = 4eV ( 3.4, 4.7 ) [95%]

Vs = 35V ( 30, 40 ) [95%]

UCLA025−TAKE10

Ie
Ie(fit)
I probe

(a) (b)

−100 −50 0 50
0

0.1

0.2

0.3

0.4

0.5

V [Volts]

I2  [m
A

2 ]

n = 1.3e17 m−3 ( 1.1, 1.4 ) [95%]

UCLA025−TAKE12

 

 

Ii (OML)
Ii squared

−20 −15 −10 −5 0 5 10 15
10

−3

10
−2

10
−1

10
0

10
1

10
2

V

I [
m

A
]

 

 

Te = 7.3eV ( 6.2, 8.5 ) [95%]

Vs = 52V ( 44, 60 ) [95%]

UCLA025−TAKE12

Ie
Ie(fit)
I probe

(c) (d)

−100 −50 0 50
0

1

2

3

4

5

6

7

8

V [Volts]

I2  [m
A

2 ]

n = 4.9e17 m−3 ( 4.4, 5.3 ) [95%]

UCLA025−TAKE16

 

 

Ii (OML)
Ii squared

−20 −15 −10 −5 0 5 10 15
10

−3

10
−2

10
−1

10
0

10
1

10
2

V

I [
m

A
]

 

 

Te = 3.7eV ( 3.1, 4.4 ) [95%]

Vs = 26V ( 22, 30 ) [95%]

UCLA025−TAKE16

Ie
Ie(fit)
I probe

(e) (f)

Figure 3.24: Ion and electron fit at 10.0 mTorr for powers of (a) (b) 50 Watt, (c) (d) 100
Watt, (e) (f) 300 Watt [res4a]
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Figure 3.25: Ion and electron fit at 7.5 mTorr for powers of (a) (b) 50 Watt, (c) (d) 100
Watt, (e) (f) 300 Watt [res4a]
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Te = 14eV ( 12, 16 ) [95%]
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Figure 3.26: Ion and electron fit at 5.0 mTorr for powers of (a) (b) 50 Watt, (c) (d) 100
Watt, (e) (f) 250 Watt [res4a]
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Figure 3.27: Ion and electron fit at 3.0 mTorr for powers of (a) (b) 50 Watt, (c) (d) 100
Watt, (e) (f) 250 Watt [res4a]
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13.56MHz, 65Gauss, 50W, Ar, (r,z)=(0.0,4.0)cm [UCLA 027(2)]

13.56MHz, 65Gauss, 100W, Ar, (r,z)=(0.0,4.0)cm [UCLA 028]

13.56MHz, 65Gauss, 150W, Ar, (r,z)=(0.0,4.0)cm [UCLA 029]
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13.56MHz, 65Gauss, 50W, Ar, (r,z)=(0.0,4.0)cm [UCLA 027(2)]

13.56MHz, 65Gauss, 100W, Ar, (r,z)=(0.0,4.0)cm [UCLA 028]

13.56MHz, 65Gauss, 150W, Ar, (r,z)=(0.0,4.0)cm [UCLA 029]
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13.56MHz, 65Gauss, 50W, Ar, (r,z)=(0.0,4.0)cm [UCLA 027(2)]

13.56MHz, 65Gauss, 100W, Ar, (r,z)=(0.0,4.0)cm [UCLA 028]

13.56MHz, 65Gauss, 150W, Ar, (r,z)=(0.0,4.0)cm [UCLA 029]

(e) (f)

Figure 3.28: Pressure scan at low-power, inside the helicon source, (a) experimental setup,
with the Langmuir probe position marked with a red dot; (b) experimental IV traces at
150 Watt; (c) plasma density vs. power; (d) electron temperature vs. power; (e) plasma
potential vs. power; (f) estimate of the ioniation fraction. [4b]
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Te = 8.8eV ( 7.6, 10 ) [95%]
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Figure 3.29: Ion and electron current fit (100 Watt RF power) of (a) 10 mTorr; (b) 3.0
mTorr; (c) 2.0 mTorr [res4b]
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Te = 12eV ( 10, 13 ) [95%]
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UCLA028−TAKE7

Ie
Ie(fit)
I probe

(e) (f)

Figure 3.30: Ion and electron current fit (100 Watt RF power) of (a) 1.8 mTorr; (b) 1.7
mTorr; (c) 1.6 mTorr [res4b]
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Tests at 27.12MHz, Figs.3.31, 3.32 and 3.32

The same tests done up to here were repeated in a second independent vacuum chamber,
similar in size and geometry, but using a 27.12MHz RF generator instead of the 13.56MHz.
For brevity, here we will show only few results of this second set of experiments.

Figure 3.31 shows the power scan for a fixed pressure of 15.0 mTorr. Langmuir probe
takes were taken inside the helicon source, at a position marked with the red dot in
Fig. 3.31.a. All the plasma parameters (ion density, electron temperature, plasma poten-
tial, ionization fraction) are in the same range and with a similar trend to the 13.56MHz.
No noticeable variations was observed.

Figure 3.32 and Figure 3.33 show the spatial structure of the 27.12MHz plasma, being
the axial and the radial scan respectively. Here some differences appear. No potential drop
occurs at 27.12 MHz (Fig. 3.32.e), and as a consequence the topology of ion density and
electron temperature along the axis results to be different. However, the absolute values
occurs in the same range as the 13.56MHz case, with no other drastic change imputable to
the doubled frequency than the absence of the potential drop at the exit of the Pyrex tube.
The radial structure of the plasma along the radius of the 27.12MHz discharge is reported
in Fig. 3.33, exhibiting a triangular profile. Electron temperatures are in the < 2eV range,
and plasma potentials occur in the < 15Volt range.
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27.12MHz, 65Gauss, 15mTorr Ar, (r,z)=(0.0,2.5)cm [UCLA 045]
27.12MHz, 65Gauss, 15mTorr Ar, (r,z)=(0.0,2.5)cm [UCLA 043]
27.12MHz, 130Gauss, 15mTorr Ar, (r,z)=(0.0,2.5)cm [UCLA 043]
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13.56MHz, 65Gauss, 50W, Ar, (r,z)=(0.0,4.0)cm [UCLA 027(2)]
13.56MHz, 65Gauss, 100W, Ar, (r,z)=(0.0,4.0)cm [UCLA 028]
13.56MHz, 65Gauss, 150W, Ar, (r,z)=(0.0,4.0)cm [UCLA 029]

(e) (f)

Figure 3.31: Power scan at 27.12MHz and for a fixed pressure of 15.0mTorr, inside the
helicon source, (a) experimental setup, with the Langmuir probe position marked with
a red dot; (b) experimental IV traces for increasing power levels; (c) plasma density vs.
power; (d) electron temperature vs. power; (e) plasma potential vs. power; (f) estimate of
the ioniation fraction. [res07]
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16.8 cm

B0=64 Gauss at antenna center [SETUP_09]
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27.12MHz, 65Gauss, 15mTorr Ar, 400Watt, r=0.0cm [UCLA 043(4)]
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27.12MHz, 65Gauss, 15mTorr Ar, 400Watt, r=0.0cm [UCLA 043(4)]
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27.12MHz, 65Gauss, 15mTorr Ar, 400Watt, r=0.0cm [UCLA 043(4)]
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27.12MHz, 65Gauss, 15mTorr Ar, 400Watt, r=0.0cm [UCLA 043(4)]

(e) (f)

Figure 3.32: Axial scan at 27.12MHz and 400 Watt along the cylinder. [res09]



3.3. LANGMUIR PROBE DATA 113

16.8 cm

B0=64 Gauss at antenna center [SETUP_09]

−100 −80 −60 −40 −20 0
−2

0

2

4

6

8

10

12

Potential [V]

C
ur

re
nt

 [m
A

]

(a) (b)

−20 −10 0 10 20
0

1

2

3

4

5

6

7

8
x 10

17

r [cm]

n 
[m

−
3 ]

 

 

27.12MHz, 65Gauss, 15mTorr Ar, 400Watt, z=18.4cm [UCLA 043(3)]
27.12MHz, 65Gauss, 15mTorr Ar, 400Watt, z=18.4cm [UCLA 044]
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27.12MHz, 65Gauss, 15mTorr Ar, 400Watt, z=18.4cm [UCLA 043(3)]
27.12MHz, 65Gauss, 15mTorr Ar, 400Watt, z=18.4cm [UCLA 044]
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27.12MHz, 65Gauss, 15mTorr Ar, 400Watt, z=18.4cm [UCLA 043(3)]
27.12MHz, 65Gauss, 15mTorr Ar, 400Watt, z=18.4cm [UCLA 044]
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27.12MHz, 65Gauss, 15mTorr Ar, 400Watt, z=18.4cm [UCLA 043(3)]
27.12MHz, 65Gauss, 15mTorr Ar, 400Watt, z=18.4cm [UCLA 044]

(e) (f)

Figure 3.33: Radial scan at 27.12MHz and 400 Watt along the radius of the chamber.
[res08]
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Tests with the small diameter source, Figs. 3.34 and 3.35

As a conclusive appendix to the experimental tests, a smaller Pyrex source of 19mm of inner
diameter and 180mm long was tested. The source is depicted in Fig. 3.34.a. The gas was fed
from a 12mm-ID aperture (at the right in the Figure), flown inside the tube, and released
outward after an expansion bell of 51mm ID (at the left on the Figure). The plasma reaction
chamber, 180mm long, was wrapped with a Boswell-typ antenna and fed with RF power at
27.12MHz. The permanent magnet was placed around the plasma reaction chamber with
its center at 120mm from the the gas inlet. In this configuration the maximum B-field
of approximatively 1000 Gauss occurs at the beginning of the plasma reaction chamber,
and the magnetostatic cusp of the permanent magnet occurs inside the reaction chamber.
Despite a perfect matching was not expected due to plasma instabilities and turbulence,
the matching was always possible with reflected power less than 1%. Thanks to the axial
dynamics of this elongated source, the plasma density is expected to be maximum at the
end of the reaction chamber. There a lateral aperture was made in order to host a Langmuir
probe.

Figures 3.34.b shows the IV traces taken at powers of 100, 200 and 300 Watts. Unfor-
tunately during this experiment the gas pressure was monitored only with the Convectron,
and not as usual with the Baratron. As a consequence, the gas pressure is know with an
uncertainty much higher than before, 15±5mTorr, instead that ±50.1mTorr. The resulting
plasma density occurs in the range 1-4×1017 m−3 (Fig. 3.34.c). Electron temperature are
comprised 3.5-4.5eVs (Fig. 3.34.d), with plasma potentials unexpectedly high in the range
35-45Volts (Fig. 3.34.e). The test has given a first indication that sources of smaller di-
ameter allows to deal with higher power densities, higher electron temperature and higher
plasma potentials, all favorable features for low-power thrusters. Ion and electron fits are
finally shown in Fig. 3.35.
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Figure 3.34: Tests on the 2-cm inner diameter source, 27.12MHz, B = (1000± 100) Gauss,
p0 = (10 ± 5) mTorr (a) design of the tube, with the Langmuir probe entrance on its
side; (b) photo of the experimental apparaturs; (c) plasma density vs. power; (d) electron
temperature vs. power; (e) plasma potential vs. power; (f) experimental IV traces for
increasing power levels. [res12]
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Figure 3.35: Ion and electron current fit (a) 100Watt; (b) 200Watt; (c) 250Watt [res12]
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3.4 Comparison of experimental data with theory and dis-
cussion

The main features observed from the measurements can be predicted using the theory and
the HELIC-EQM code. In this section a comparison of the code calculations with the
experimental data is reported.

The power scan of Fig. 3.11 has been reproduced numerically with HELIC-EQM, in
order to validate and calibrate the model. The reference conditions were the following. The
discharge radius was set equal to the Pyrex tube inner diameter, a = 2.5 cm, and filled with
15.0 mTorr of Argon. A loop antenna (m = 0) at 13.56 MHz was placed at radius b = 3.3
cm, and 5 cm far from the metallic backplate closing the end-wall of the cylinder. The
magnetostatic field was assumed constant and equal to the measured field at the antenna
center, 65 Gauss. The input power was set to the desired value, for example 200 Watt,
and then the two codes HELIC and EQM were iterated together. The initial guess was
assumed equal to uniform profiles along the radius. The iterative process converges toward
the equilibrium solution of the plasma column, as forced by the deposition of power from
the RF wave.

Figures 3.36 shows the comparison between the measured and calculated plasma den-
sities, in the range 100 < PRF < 400 Watt. The range of code uncertainties has been
calibrated as a function of the axial extension of power deposition Lz. The values of Lz
are found to be in agreement with the axial integral P (z) of power deposition along the
zeta-axis, within a range Lz = 20± 5 cm; P (z)s are reported in Fig. 3.37.

The values of electron temperatures at the center of cylinder radius are shown in Fig.
3.38, where the experimental and calculated values are compared. Values are in agreement
within the considered power range 100 < PRF < 400 Watt.

The profiles at convergence for one case with PRF = 200 Watt are shown in Fig. 3.39.
The profile of power deposition P (r) shows that the RF power is deposited mostly on the
external layer of the cylinder. This is due mostly thanks to the TG mode, which is rapidly
absorbed near the boundary. Another fraction of the power is absorbed at the center of
the discharge, thanks to the Helicon mode. The low magnetic field of 65 Gauss takes the
two radial modes close together in the modal space. At the center of the discharge the
plasma density is 4.2 × 1017 m−3, and with a B = 65 Gauss the allowed radial modes
have a wavelength of 5.2 cm at k = kmin = 18.2 rad/m, and 1.5cm< λ <18 cm at
k = kmax = 34.6 rad/m. At the boundary of the discharge the allowed k modes are in
the range of 12 < k < 23 rad/m, with longer Helicons but shorter TG modes. The H
mode at the center of the discharge is compatible with its radius, and in fact the helicon
deposition is activated in this case. The ~B, ~E, ~J fields are shown in Fig.3.39, where the
features of the H and TG modes can be recognized. The long-wavelength H mode, well
visible on Br, propagates until the center of the discharge; the short-wavelength TG mode
is absorbed at the boundary instead. The TG mode can be appreciated almost on all the
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fields components except on Eφ. The power is then deposited into the column as ~E∗ · ~J .
The peculiar deposition affects macroscopically the equilibrium of the discharge. More
plasma is created at the boundary, and the resulting profile of plasma density n(r) is as
reported in Fig. 3.39. The quasineutral region of the plasma exhibits a potential drop of
-3 Volts; the plasma is electropositive, with φ = 0 at the center of the cylinder. Summing
the sheath potential of 14 Volt (calculated with the 1D radial pic, shown in Fig.2.18), the
total expected plasma potential is of the order of ≈17 Volt. The measured potential at 200
Watt (Fig. 3.13.b) is equal to 20V (17.5, 23) [95%]. The pressure is only slightly depleted
at the center of the cylinder, as shown by p [mTorr] in Fig. 3.39. The electron temperature
occurs in a range between 2.7 and 3.8 eVs, with some heating near the boundary due to
greater deposition at that location.
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Figure 3.36: Comparison of measured plasma density with the values calculated by the
HELIC-EQM code, as a function of RF input power.
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Figure 3.39: Example of radial profiles obtained at convergence after HELIC-EQM iter-
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3.5 An experimental note about the influence of stray ele-
ments on the impedance matching

Figure 3.40 shows the standard matching network used to couple the RF power generator
to the antenna in an inductive plasma system. The power system is in most of the cases
a 50Ω generator working at a fixed frequency. The industrial standards of frequencies are
13.56MHz and 27.12MHz.

The circuit load is an LR load, where L is the inductance of the antenna, and R is
the plasma resistance as seen by the antenna. A matching box is interposed between the
generator and the load, in order to match a 50Ω resistive impedance. The connections are
done by means of coaxial cables.

RF 

C2 

C1 

50Ω 

MATCHING 
BOX 

R1 

L_cable 

Coaxial cable 
Coaxial cable 
RG213/U 

Rant 

Lant 

Figure 3.40: Standard matching network configuration

An electric equivalent of such a system has been made in order to characterize its
impedance. Measurements of the impedance were done6 using an HP 4195A network
analyzer, showed in Fig. 3.41.a.

All the main electrical parameters involved were considered using lumped electronic
components. The list of electronic components is reported in Tab. 3.2.

In order to understand the influence of stray elements of the circuit, an experimental test
board with nodes equally spaced was constructed (Fig. 3.42.a). The mesh was composed by
4×8 nodes, numbered as in Fig. 3.42.a. Each node had a copper joint where the electronic
components could be soldered. Thanks to this board, the number of possible connections
was limited, and the geometry of each mesh was fixed. The stray inductance due to the
areas of the circuit can be taken into account simply considering the area of the meshes
of the network. Figure 3.42.b shows an example. The inductance of the area enclosed
by the nodes 1-8-32-25 was of 530nH (±2%), as measured by means of the HP4195A.
Measurements were done also with a resonance inductance meter (the R&S BN6100, showed

6Measurements showed in this paragraph were done in the laboratory of Ing. A. Selmo, in San Bonifacio
(Verona).
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(a) (b)

Figure 3.41: (a) HP (Hewlett Packard) 4195A network analyzer, (b) Rohde & Schwart
LRT BN6100 inductance meter

Table 3.2: List of electronic components used during tests
Components Value Uncert. Type

C1 1500 pF ±10% Non-inductive polyester capacitor
C2 820 pF ±2% Non-inductive polyester capacitor
C3 47 pF ±5% Non-inductive polyester capacitor
L1 633 nH ±2% Internal inductance of the resistive load
L2 37 µH ±2% Inductance copper coil
R 5.4 Ω ±2% Resistive load
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Figure 3.42: (a) Experimental test board; nodes are equally spaced, for an easier evaluation
of stray inductances (b) stray inductance of two portions of the test board

in Fig. 3.42.b), giving the same value of 530nH (±5%). The inductance of the area enclosed
by the nodes 1-4-28-25 was 300nH, as measured with both the instruments. Each vertical
ring of the board (ex. 1-2-26-25) gives a contribute of 75nH to the stray inductance.

3.5.1 High-L loads

At first, an highly-inductive load was considered. The high inductance of the load allows to
overcome the stray inductances of the network. The electric circuit is reported in Fig.3.43.a.
The LR load of the plasma source was simulated by making an electrical equivalent with
two ceramic resistors (of measured internal parameters 633nH and 5.4Ω) connected in series
with a copper coil (37µH and 1.5Ω). The load was connected between nodes 4 and 28.
The matching box was simulated by the capacitors C1 and C2. The coaxial cable from the
matching box to the LR load was simulated with C3, a lumped 47pF capacitor, connected
between nodes 3 and 27. At this first step, no coaxial cable was used between the generator
and the matching box.

The measured impedance is reported in Fig. 3.43.b (black squared dots), for a range
of frequencies from 1.0kHz to 2.1MHz. The upper plot shows the module of impedance
and the lower shows the phase in degrees. The theoretical profiles of the impedance are
over-imposed on the same plot, as calculated by solving the electrical network of Fig.3.43.a.
The first profile (blue) is evaluated without the stray elements of the circuit. The second
profile (green) accounts also for stray elements. An optimum agreement is found in both
the cases.

A physical coaxial cable 2-meters long has then been added at the entrance of the net-
work, as showed in Fig.3.43.c. The cable gives an additional capacitance of 101 pF/m and
an additional stray inductance of 270nH/m, as measured with the HP 4195A. The mea-
sured and calculated impedances are reported in Fig.3.43.d. The shift to lower frequencies
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Figure 3.43: Experimental tests on high-inductance load: (a),(c) circuits, (b),(d) compar-
ison of measured and calculated impedances
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Figure 3.44: Experimental tests on high-inductance antenna and with the matching box:
(a),(c) circuits, (b),(d) comparison of measured and calculated impedances
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due to the addition of the coaxial cable is small. The main trend of the impedance remains
the same as in the previous case.

A matching box with vacuum capacitances has then been substituted to its lumped
counterparts C1 and C2, all the other elements remaining the same, as showed in Fig.
3.44.a. The matching box was set to have C1=1263pF and C2=810pF. The measured and
calculated impedance is reported in Fig. 3.44.b. The main trend of the inductance is the
same as before, with an almost perfect agreement between the theory and the measure-
ments.

Finally, the high-inductance copper coil was removed from the circuit (Fig. 3.44.c),
leaving only the small inductance L=633nH. The measured and calculated impedance is
reported in Fig. 3.44.d. The lower inductance causes a shift of the resonances toward
higher frequencies, above the 2.1 MHz upper limit. The network analyzer was thus re-set
to work at higher frequencies, in order to fit with the behavior with low-inductive loads.
The tests at higher frequencies have been reported in the next section.

3.5.2 Low-L loads

When the inductance L of the load is small, the resonance frequencies fall on an higher
range, 1.0-50.0 MHz. In this range of frequencies the stray elements becomes much more
important than before. They can’t be neglected in the electrical description of the circuit.

This can be seen even from the simple case of an LRC-series resonator, as the one
reported in Fig. 3.45.a. The measured and calculated impedance is showed in Fig.
3.45.b. The blue line is the impedance evaluated without considering the stray elements
of the circuit. The minimum of the curve occurs at the theoretical resonance frequency
of 1/(2π

√
LC) ≈ 6.99MHz, which is wrong with respect to the measured minimum. Also,

the curve does not fit the experimental data for frequencies higher than 1.0MHz. However,
when the stray inductance of the circuit is taken into account in the calculation (green
line), the resonance frequency shifts at the lower value of 6.1MHz and the trend of the
theoretical line agrees with the experimental data.

When the shunt capacitor C1=1500pF is added (Fig. 3.45.c), the inductance modifies
as showed in Fig. 3.45.d. The circuit model without the stray elements (blue line) departs
considerably from the measured data. Furthermore, an additional resonance frequency at
10.5MHz appears from the data. Considering in the circuit model also the stray elements
of the circuit allows to describe correctly the experimental data (green line).

The addition of the capacitor C3=47pF, as showed in Fig. 3.46.a, does not considerably
affect the trend of the impedance, Fig. 3.46.b, with respect to the previous case.

When the coaxial cable 2-meters long is connected at the entrance of the network
(Fig. 3.46.c), the trend of the impedance is strongly modified by the stray inductances, as
reported in Fig. 3.46.d. The high-frequency resonance is lowered by the higher capacitive
and inductive components of the cable. The identification of stray inductances becomes
critical and a good theoretical fit of experimental data is troublesome.
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Figure 3.45: Experimental tests on low-inductance antenna: (a),(c) circuits, (b),(d) com-
parison of measured and calculated impedances
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Chapter 4

Applications

4.1 Plasma propulsion using helicon sources

4.1.1 Propulsive parameters

The net thrust F exerted by this system is given by:

F = ṁivi + ṁnvn (4.1)

where ṁi is the mass flow rate of exiting ions, vi the velocity of the ions, ṁn is the mass
flow rate of exiting neutrals, vn the velocity of neutrals. A more convenient form for Eq.4.1
is:

F = MiΓiAivi +MnΓnAnvn (4.2)

The specific impulse is given by:

Isp =
ṁivi + ṁnvn
(ṁi + ṁn)g0

(4.3)

The propulsive efficiency of the system is given by the ratio between the jet power and the
power effectively deposited into the plasma:

ηprop =
1
2ṁiv

2
i

Ppl
(4.4)

The efficiency of transfer between the RF generator and the plasma is given by:

ηRF =
Ppl
PRF

=
Rpl

Rpl +Rcirc
(4.5)

and it depends on plasma load resistance Rpl and on the circuit resistance Rcirc. The total
efficiency of the thruster becomes:

ηtot = ηRF ηprop (4.6)

129



130 CHAPTER 4. APPLICATIONS

Ideal conditions

In ideal conditions the source is supposed to ionize all neutrals, so that only plasma particles
are expelled by the thruster. In this case the thrust is at its maximum, and it’s given by:

F ideal = MiΓiAivi (4.7)

Also the specific impulse is at its maximum and it is only related to the ion exiting velocity:

Iidealsp =
vi
g0

=
Γi/n
g0

=
αCs
g0

(4.8)

where the plasma flux Γi is given by:

Γi = nvi = nαCs (4.9)

where vi = αCs is the exhaust velocity of ions, Cs = (kTe/Mi)1/2 is the Bohm acoustic
velocity of the ions, and the parameter α (Bohm parameter) takes into account for an
accelerating mechanism,

α = 1.0 no accelerating mechanism (4.10)
α > 1.0 accelerating mechanism (4.11)

The acceleration can be a magnetic nozzle [65], a double layer [66], an hot population of
electrons, or an additional selective heating system. Excluding additional heating systems,
the parameter α can reasonably span in the range 1 < α < 2. Figure 4.1 shows the trend
of the specific impulse as a function of the atomic mass number for three different values
of Te and assuming α = 2.0 (as seen from double layer experiments). The figure shows
that lighter nuclei allows higher specific impulses. Figures 4.2 and 4.3 shows the trend
of F ideal and Iidealsp for a thruster of radius of 1.0 cm (Figure 4.2) and of 2.5 cm (Figure
4.3) versus the Bohm parameter. Curves are evaluated for hydrogen, neon and argon. In
a small thruster of 1 cm of radius, an ideal thrust of 1-2 mN can be obtained with an
high-density (1018 m−3), high-Te (¿4-5 eV) plasma accelerated in the supersonic regime
over Mach 2. Figure 4.2 also shows that higher diameters are preferable when an higher
thrust is desired.

Non ideal conditions

In non-ideal conditions the thruster the propellant is not completely ionized, and a fraction
of the gas is lost at neutrals acoustic speed instead that at the ion acoustic speed. As a
consequence, the maximum achievable specific impulse and thrust are reduced. We define
the ionization fraction fiz as the ratio between the ion density and the total number density
of ions plus neutrals,

fiz =
ni
nn

(4.12)
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Figure 4.1: (a) Ideal specific impulse vs. atomic mass number A (number of nucleons), for
three values of the electron temperature; (b) ideal specific impulse vs. electron temperature,
for three values of atomic mass number. A Bohm factor α = 2.0 has been assumed, i.e. ions
are supposed to be accelerated twice the Bohm velocity, as expected from double layers
experiments.

We then define the mass-flow ionization fraction as the ratio between the ion and the total
mass-flow,

fṁ =
ṁi

ṁi + ṁn
=

nivi
nivi + nnvn

(4.13)

The relation between 4.12 and 4.13 is given by:

fiz =
[
1 +

vi
vn

(
1
fṁ
− 1
)]−1

(4.14)

The specific impulse in non-ideal conditions results to be reduced by fṁ to the values:

Isp = fṁ
vi
g0

+ (1− fṁ)
vn
g0

(4.15)

The mass-flow ionization fraction weights the two contributes of ions and neutrals velocities
to the total Isp. Figure 4.4 shows an example of calculations of F and Isp as a function of
fiz, for fixed parameters. The figure shows that when the ionization fraction fiz increases,
the specific impulse is enhanced from the cold-gas-thrusters range at very low (negligible)
ionization fractions, to the plasma-enhanced range of hundreds-to-thousands seconds. In
the cold-gas-thruster range, the expulsion of mass is governed by the ion acoustic sound
speed; in the plasma-enhanced range the expulsion of mass is regulated by the ion acoustic
Bohm velocity Cs, or an α-multiple of Cs.



132 CHAPTER 4. APPLICATIONS

1 2 30

0.5

1

1.5

2
Te= 2 − 5 [eV]

!

F 
id

ea
l [

m
N

]

 

 

1 2 31000

2000

3000

4000

5000

6000

7000
Te= 2 − 5 [eV]

!

Is
p 

id
ea

l [
s]

 

 

n=1e+16
n=5e+16
n=1e+17
n=5e+17
n=1e+18

n=1e+16
n=5e+16
n=1e+17
n=5e+17
n=1e+18

(a)

1 2 30

0.5

1

1.5

2
Te= 2 − 5 [eV]

!

F 
id

ea
l [

m
N

]

 

 

1 2 30

500

1000

1500
Te= 2 − 5 [eV]

!

Is
p 

id
ea

l [
s]

 

 

n=1e+16
n=5e+16
n=1e+17
n=5e+17
n=1e+18

n=1e+16
n=5e+16
n=1e+17
n=5e+17
n=1e+18

(b)

1 2 30

0.5

1

1.5

2
Te= 2 − 5 [eV]

!

F 
id

ea
l [

m
N

]

 

 

1 2 3200

400

600

800

1000

1200
Te= 2 − 5 [eV]

!

Is
p 

id
ea

l [
s]

 

 

n=1e+16
n=5e+16
n=1e+17
n=5e+17
n=1e+18

n=1e+16
n=5e+16
n=1e+17
n=5e+17
n=1e+18

(c)

Figure 4.2: Ideal thrust and specific impulse vs. Bohm parameter (α = vi/Cs) for a helicon
thruster of r = 1.0 cm-radius using (a) hydrogen, (b) neon, (c) argon.
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Figure 4.3: Ideal thrust and specific impulse vs. Bohm parameter (α = vi/Cs) for a helicon
thruster of r = 2.5 cm-radius using (a) hydrogen, (b) neon, (c) argon.
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Figure 4.4: Non-ideal thrust [mN] and specific impulse [s] vs. ionization fraction [%]
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4.1.2 Identification of thruster configurations

Combining informations from the theory developed (plasma-wave coupling plus the macro-
scopic transport), the numerical results from the codes, the expertise from the experimental
campaign, a preliminary design of an helicon thruster has been performed. We will ad-
dress the problem trying to achieve the following goal: specific impulse higher than 1000
s, thrust higher than 1mN. In order to better understand the complexity of the procedure
and the strategy adopted it is worthwhile to briefly describe the main issues involved in
design of such an apparatus. An helicon plasma thruster presents most of the problems
invoved in the design of an helicon source for industrial applications, plus some further
complication due to the fact that ionization must be high in order to allow high specific
impulses. In fact, ionization efficiency must be in the range between 15-40%. To allow a
better understanding of the process we will provide a brief indication of the effect of each
parameter of the plasma source on the overall thruster performances.

Geometrical paramters

Diameter. The radial cross section of the thruster affect the surface losses and wave
propagation into the plasma. Higher plasma source radius increases the wall losses at the
injector and outlet (this is true if the outlet is not completely open because in this case
it is not considered a plasma loss but it is the out coming flow providing thrust). Higher
plasma radius allow better propagation of helicon waves into plasmas, as it is seen in Fig.
4.5, showing the plasma resistance versus the plasma density for sources of different radii.

It is worth it to mention that the diagram present just one case applying a fixed
magnetic field shape but the behavior is very influenced by the value and profile of the
static magnetic field. The diameter influence also the weight of the thruster because the
magnetic coils need to be bigger and thus heavier.

Length: Source length influences modal wave reflection onto the end plates. Source
length need to be optimized depending on the antenna type, frequency, and magnetic field
value and shape to maximize the power deposited into plasmas (Fig. 4.6). The length
of the plasma source also influences power losses at the wall thanks to the increased area
exposed to plasmas. The length however increase the resident time of gas in the source thus
increasing ionization probability . Finally the length influences the mass budget increasing
the mass of the structure itself and of the magnetic system, since it requires to maintain
the necessary magnetic field all over the source length.

Outlet diameter: The outlet diameter influence the mass flow rate of ions and neutrals
ejected into vacuum. It plays a fundamental role in combination with the injected mass
flow rate to determine the pressure regime inside the plasma source. Higher aperture
for a specific mass flow rate causes lower neutral pressure regimes within the source, and
thus lower collisionality, which reduces plasma coupling, as it is seen in the following
diagram of the plasma resistance. The decrease is non-linear, density-dependent and hard-
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to-predict. However, a lower ionization collision reduces power losses of electrons thus
increasing electron temperature and increasing the ionization fraction.

Mass flow rate: The mass flow rate together with the outlet diaphragm influence
the pressure profile within the source. It is worth it to be remarked that the pressure
profile within the source is strongly effect by a phenomena which can be improperly called
“pumping” which take place at high ionization ratio (higher than 15%) due to removal of
neutrals due to ionization and expulsion of high speed of ions (Fig.4.8).

It can be seen that neutrals from a initial density of 2 × 1019 m−3 falls down during
the discharge to 2 × 1018 m−3 thanks to this “pumping” effect. This is not normally the
case on a source used for industrial application since the initial density of neutrals is much
higher than in case of a thruster and this reduction not so relevant. The pressure profile
also change within the source due to the flow into the tube.

Functional parameters

Magnetic field Magnetic field plays a fundamental role on many different aspects: (i)
confinement, higher magnetic field allows better confinement of particles; however, it should
be remarked that till collisionality is high the effect on confinement becomes important at
very high value of magnetic field (¿m1000 G) The magnetic field value and shape also affects
wave propagation, both in radial and axial direction. Axial propagation and reflection onto



138 CHAPTER 4. APPLICATIONS

Figure 4.8: Plasma source evolution within an helicon thruster

the front and back plates allow to obtain a “resonant chamber”, a cavity, that can maximize
or destroy the deposition of power. In the following diagrams is seen the effect or magnetic
field on plasma resistance for different ion densities.

Strongly coupled effects In very small cavities, the geometrical modes of wave propa-
gations can constructively made to interfere in order to have a maximum of power coupling
in regions where a good coupling is not expected. This can be seen in a small source of 2
cm diameter and 6 cm long, where a peak at very low magnetic fields is foreseen by the
simulations: Fig. 4.10, obtained using a loop antenna m = 0. In these conditions the peak
is foreseen to occur at 65 Gauss.

Antenna type and frequency Each antennas have its own spectrum and power
deposition profile ( both axially and radially) as it is seen in Fig. 4.11.a and 4.11.b.

Plasma resistance change also as function of antenna frequency as is seen in Fig. 4.9.
Moreover, an higher frequency determines higher parasitic losses in the coupling circuit,
thus reducing the overall electrical efficiency of the system.

The design procedure has to take into account all the parameters mentioned before to
identify the best compromise among them. Moreover also the thermal control issue has to
be considered. Power fluxes to the external surface has to be controlled in order to avoid
overheating of the thruster, thus the thermal control of thruster need to be sized based on
the expected power losses. As it has been seen the design of a plasma thruster require a
very detailed control on several parameters. The strategy adopted is showed in Fig. 4.12
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Figure 4.10: Low-B field peak in a small plasma cavity of 2 cm diameter and 6 cm long.

The input parameter are: (i) Available power, (ii) Magnetic field value, (iii) Antenna
type and position in the source, (iv) source length and diameter, mass flow rate. As can
be seen, the only fixed parameter is the power available, the other parameter are decided
in a range defined during a preliminary design depending on the specific mission profile.
The optimal value of them is the object of the optimization process. Input parameter are
varied by an optimization algorithm till a “optimal” set of parameter is found.

The input parameter are put into the plasma simulation module which find the plasma
expected plasma parameter as expected plasma density, plasma temperature, plasma dis-
tribution function, neutral density. The plasma tool is a combination of 1-D wave code
(HELIC) and particle /fluid code (EQM or kinetic codes). The fluid code EQM is used to
simulate plasmas as a first step assuming Maxwellian distribution. Than the results are
put as starting condition for the kinetic code to identify the expected distribution function
deviating from the Maxwellian. Structural simulation calculate the mass for the major
structural components of the engine which are magnets and heat exchanger based on the
magnetic field provided chosen as initial parameter and the power flux to be managed by
heat exchanger.

The plasma parameter are put in the acceleration/detachment module. The accelera-
tion detachment module implement a look-up table providing expected exhaust speed as
function of electron temperature, magnetic field value, electron distribution function (fitted
with a Bi-Maxwellian) distribution.

Thruster performances in term of specific impulse Isp and thrust F and inert mass are
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Figure 4.11: (a) radial power deposition profile for different antennas; (b) axial power
deposition profile for different antennas
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Figure 4.12: Design scheme adopted for the thruster design

finally calculated; a genetic algorithm runs till optimization is reached.

The following thruster configuration has been selected to perform with: Isp higher than
1050 s, Thrust higher than 1.05 mN, Inert mass lower than 1.2 kg (Magnetic field and
thermal control system). Exception are thruster 5 and 9 which have been selected because
of the expected efficiency.

# Dsource [mm] Dexit [mm] Lsource [mm] B0 [G] ṁ [10−7 kg/s] Antenna type, freq.
1 20 7 50 65 1 m=0 L=30mm 13.56MHz
2 20 10 50 65 2.2 m=0 L=30 mm 13.56MHz
3 20 15 50 65 3 m=0 L=30mm 13.56MHz
4 20 10 100 250 2.2 m=0 L=100 mm 13.56MHz
5 20 10 100 500 2.2 m=0 L=100 mm 27.12MHz
6 50 50 60 65 3.5 m=0 L=25mm 13.56MHz
7 50 50 60 120 3.5 m=0 L=30mm 27.12MHz
8 20 10 80 65 2.2 m=+1 L=80 mm 13.56MHz
9 20 10 200 1000 2.2 m=+1 L=200 mm 13.56MHz
10 20 10 60 150 2.2 m=+1 L=70 mm 13.56MHz

Table 4.1: Helicon thruster, identified configurations
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4.2 Propellantless propulsion using tethers

4.2.1 Exploitation of environmental plasma for propulsion

In this final section we consider a propellantless electrodynamic system, the electrodynamic
tether (EDT), as a system that exploits environmental plasma instead that creating plasma
on board. In factn electrodynamic tether uses the plasma already present in the space
environment to operate, and thus it can be considered as one possible esoreactor case of the
(endoreactor) plasma thruster. In fact, in the case of the tether, the plasma is not generated
inside the system and then accelerated outside, but the plasma is kept from the external
environment to obtain a thrust in a more direct fashion. The principle of operation of the
tether is not based on the acceleration of a fluid and the reaction principle, but it relies on
a direct electrodynamic interaction of the system with the external environment through
the Lorentz force. A bare electrodynamic tether orbiting inside a planetary plasmasphere
(intended as plasma plus magnetic field) can be considered as a conducting wire moving
inside a magnetized plasma. The electric charges contained inside the conducting cable
experience a motional electric field, caused by the relative motion with respect the external
magnetic field. When electrons are repelled by means of an electron emitter (like an
hollow cathode), an electric current flows along the wire. Replenishment of electrons occurs
through the collection of environmental electrons from the ionospheric plasma. A Lorentz
force arises from the interaction of the electric current with the local magnetic field of the
planet. The Lorentz force coming from the interaction of the cable with the plasmasphere
can conveniently be used for propellantless propulsion [26], for example in orbit raising and
lowering maneuvers. Several applications of such a concept have been considered in the
past (see [27], [28], [29], [30]). Significant flight and development activities have also been
conducted on EDT systems (TSS-1, TSS-1R, PMG, and ProSEDS). Furthermore, EDTs
have been demonstrated to be capable of extracting power from space plasmas, i.e. from
the plasmasphere of a planet or the solar wind [31]. Relevant applications at Jupiter have
been proposed, [32] [33] [34] [35]. For these reason EDTs have seriously been considered
as a future efficient tool for power generation and maneuvering in all space applications
where an appropriate plasmasphere is present [36]. In the following section we explicitly
derive the expression of the electrodynamic force acting on a tether.

4.2.2 Electrodynamic force and power

We consider a bare EDT [46] of length L and rectangular section w × h (tape tether),
mounted on a satellite with a load impedance Zc. The motion of electric charges of the
conductor with respect to the background magnetic field is responsible for a motional
electric field (e.f.) ~E, given by:

~E = (~vsc − ~vpl)× ~B (4.16)
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where the plasma is assumed to be frozen to the magnetic field. The motional e.f. projected
along the tether line, Et = ~E · û, provides the potential that drives the electrical current
flowing along the tether. Figure 4.13 shows a schematic model of the tether.
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Figure 4.13: Bare tether schematic (generator mode). The two graphs shows the profiles
of the current I, of the tether potential φt and of the plasma potential φp as a function of
tether abscissa z.

When ohmic losses are neglected, the electric circuit equation is:

EtL = Etz
∗ + ZcI (4.17)

where it was assumed no impedance of the plasma contactor at the cathode, Zc is the
impedance of the load, and z∗ is the zero-bias position along the tether, measured from
the anodic tip. Ohmic losses cannot be neglected in presence of a dense plasmasphere,
but they are negligible for the less dense plasma of Jupiter and a low-resistance wire.
For the plasma density of Jupiter, the tether radius is much less than the Debye length
and the electron Larmor radius and, consequently, electrons are collected according to the
Langmuir’s Orbital Motion Limited model [59], [48]. Under the OML assumptions, the
collected current is a function of the tether-line abscissa z [46]:

dI

dz
=

2w
π
qene

√
2
qe
me

Et(z∗ − z) (4.18)

After analytic integration of Eq. 4.18 the current profile I(z) can be obtained with the
condition I(z = 0) = 0, and the length-averaged value Iavg = (1/L)

∫ L
0 I(z)dz is given by

(see [24] for the derivation):
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Iavg = I0

(
1− 2

5
ζ

)
ζ3/2 (4.19)

where:

I0 =
4
3
w

π
qeneL

3/2

√
2
qe
me

Et (4.20)

and ζ = z∗/L is the non-dimensional zero-bias position.
The power that can be extracted at the load is a function of ζ:

P = ZCI
2
C ≈ ZCI2

avg = I0EtL(1− ζ)ζ3/2 (4.21)

and it has a maximum at ζopt = 3/5. The optimal power condition can be obtained with
an appropriate control of the load-impedence. The optimal impedance ZoptC is proportional
to the following set of parameters [24], which is variable along the trajectory as a function
of
√
Et/Ne,

ZoptC ∝ 1
New

√
Et
L

(4.22)

The Lorentz force due to the interaction of the current with the magnetic field is:

~Fel =
∫ L

0
I(z)dû× ~B = IavgLBû× b̂ (4.23)

where b̂ is the unit vector of the magnetic field vector ~B, and the current is parallel to the
line element of the tether. The unit vector û is assumed to have the same direction of the
conventional electric current, pointing from the cathode to the anode. The tether current
flow involves a particular caveat when dealing with rotating tethers, whereby cathode and
anode reverse one another during each tether rotation. Substituting Eq. 4.19 in Eq. 4.23
yields:

~Fel = I0

(
1− 2

5
ζ

)
ζ3/2LBû× b̂ (4.24)

Eq. 4.24 shows that the Lorentz force is proportional to:

Fel ∝ neBE1/2wL5/2 ∝ nev1/2
rel B

3/2wL5/2 (4.25)

The scaling of the Lorentz force as a 2.5 power of the length enables the extraction of
significant power levels from the plasmasphere using tethers of moderate lengths. In fact,
the electrical energy extracted by the EDT during an infinitesimal time step is:

εload = φloadIavgdt (4.26)
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and the associated electrical power is:

Pel = ~Fel · ~vrel = I0

(
1− 2

5
ζ

)
ζ3/2LB(û× b̂) · ~vrel (4.27)

The maximum power can be obtained when the tether line û is both perpendicular to
the magnetic field and to the relative velocity vector; in this situation we have (û×b̂)·v̂rel =
1 and the power is :

Pel =
4
3
w

π
qenevrelBL

5/2

√
2
qe
me

√
Et

(
1− 2

5
ζ

)
ζ3/2 (4.28)

Like the electrodynamic force, the electrical power Pel scales as L5/2.
From a thermodynamic point of view, the EDT can be seen as a machine capable to

convert directly the kinetic energy of its motion into electrical energy, by virtue of the
induction law. The environmental plasma allows the closure of the electrical circuit and
the possibility to have a current flowing through the tether and possibly a load. The kinetic
energy associated with the relative motion is:

εrelkin =
1
2
mscv

2
rel =

1
2
msc

(
E

B sinϕ

)2

(4.29)

where E = vrelB sinϕ, and ϕ is the angle between ~vrel and ~B. The efficiency of power
production of the EDT can be expressed as the ratio between the electrical power at the
load and the total available power:

η =
Pel

ε̇relkin
(4.30)

In the following discussion we will assume the load impedance being actively controlled
(for example by using variable resistance), in order to track the condition for optimal
matching.

4.2.3 New insights on the orbital dynamics of an EDT

The local nature of the electrodynamic force acting on a tether leads to a complex orbital
dynamics of such a system. The orbital dynamics of EDTs has usually been investigated
with a two-body description of the motion of the system’s center of mass around the
central body. In these models, the tether is modeled as a rigid dumbbell, with attitude
uncorrelated to its orbital dynamics. Even with such simple models, complex dynamical
features and non-trivial stability properties appear, as already outlined by many authors
(see [24], [25]).

The dynamics of an EDT in a three-body gravitational environment has received a
lesser attention than the two-body case. Pioneering studies of tethers in the three-body



4.2. PROPELLANTLESS PROPULSION USING TETHERS 147

environment were done by Colombo [37] and, later, by Farquhar [38]. These studies inves-
tigated a cable-connected satellite for station-keeping around a collinear libration point.
Subsequent works were done by Misra [39] and Wong [40], [41], and recently by Peláez
and Scheeres [42], [43], [44]. A recent study lead by the Advanced Concept Team of the
European Space Agency investigated the dynamics of tethered satellites at Lagrangian
points [45]. The lack of studies of EDTs in the three-body is justifiable when we consider
that in the Earth-Moon system the presence of a third body, the Moon, can be treated
just like a perturbation for LEO applications. This is not true when we deal with more
general cases and with planetary systems like Jupiter. A whole family of new dynamical
features appears when we study the tether dynamics by using the dynamical paradigm of
the circular restricted three body problem. Relevant consequences on power production
and spacecraft maneuvering can be inferred, like for example the possibility to extract
power while maintaing a quasi-stable position with respect to the corotating frame.

The tethered satellite is assumed to have a rectilinear rigid shape of length L, with total
mass m. The center of mass of the satellite is the point C and the unit vector defining its
orientation is û (Figure 4.14). The gravitational potential acting over an element mass dm
of the tether placed at a distance Rdm from an attracting center is given by:

Vgr = −
∫
m

µ

Rdm
dm (4.31)
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Figure 4.14: Gravitational actions on the tether.

The ratio 1/Rdm can conveniently be rewritten using Legendre polynomials:
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1
Rdm

=
1

R
√

1 + 2λcosγ + λ2
=

1
R

∞∑
n=0

(−1)nλnPn[cosγ] (4.32)

Substituting Eq. 4.32 into Eq. 4.31 the gravitational potential becomes:

Vgr = −mµ
R

(
1 +

∞∑
n=2

(−1)n
(
L

R

)n
anPn[cosγ]

)
(4.33)

Eq. 4.33 shows that the potential is given by the sum of a zeroth-order term −mµ/R
corresponding to the potential of a point mass, and a power series of the ratio L/R, where
L is the tether length and R the distance of center of mass C of the tether system from the
attracting primary. The ratio L/R is usually small and the corresponding terms negligible,
but this condition does not hold for an extremely long tether or for a tether orbiting very
close to one of the primaries.

The resultant of gravitational forces can similarly be derived:

~Fgr = −mµ
R3

~R

(
1 +

∞∑
n=2

(−1)n
(
L

R

)n
an

(
Sn[cosγ]R̂− Sn−1[cosγ]û

))
(4.34)

where the Sn[cos γ] are the polynomials of the series:

S1[x] = 3x (4.35)

S2[x] =
3
2

(5x2 − 1) (4.36)

S3[x] =
5
2

(7x3 − 3x) (4.37)

S4[x] =
15
8

(21x4 − 14x2 + 1) (4.38)

In the limiting case when the ratio between tether length L and distance R from
the gravitational attractor is small, the gravitational force coincides with the point-mass
Newton law:

L/R→ 0 : ~Fgr = −mµ
R3

~R (4.39)

When placed in a three-body environment the gravitational attractions of the two
primaries M1 and M2 must be summed together. Here we will assume M1 > M2, and we
will indicate with the subscripts 1 and 2 the relative distances between the tether center
of mass from M1 and M2 respectively. The motion of the center of mass, expressed in
the synodic frame (the frame corotating with the primaries), is expressed by the classical
CRTBP equations plus the perturbation due to the EDT electrodynamic force:
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~̈R + 2~Ω× ~̇R + ~Ω×
(
~Ω× ~R

)
= − µ1

R3
1

~R1 −
µ2

R3
2

~R2 + ~fel (4.40)

with the assumption of a vanishing L/R ratio. When the tether length is not neglegible,
the full gravitational force of Eq. 4.34 must be considered. The non-dimensional form of
Eq. 4.40 is:

ξ̈ − 2η̇ = ξ − ν1

ρ3
1

(ξ + ν2)− ν2

ρ3
2

(ξ − ν1) +
Fel,x
mdΩ2

(4.41)

η̈ + 2ξ̇ = η − ν1

ρ3
1

η − ν2

ρ3
2

η +
Fel,y
mdΩ2

(4.42)

ζ̈ = −ν1

ρ3
1

ζ − ν2

ρ3
2

ζ +
Fel,z
mdΩ2

(4.43)

where (ξ, η, ζ) are the non-dimensional coordinates of the orbital position. Length, mass
and time have been respectively non-dimensionalized with the distance between primaries
d, the total mass of the planetary system M1 + M2, and the inverse of the mean angular
velocity of the primaries 1/Ω. Figure 4.15 shows the geometry of the synodic frame with the
non-dimensional coordinates (ξ, η) centered in the center of mass of the planetary system
(with M1 > M2).
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Figure 4.15: Geometry of synodic plane with non-dimensional quantities.

The non-dimensional mass parameters of the two primaries are:
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ν1 = 1− ν2 =
M1

M1 +M2
(4.44)

ν2 =
M2

M1 +M2
(4.45)

and the non-dimensional distances of the center of mass of the spacecraft from the two
primaries are:

ρ1 =
√

(ξ + ν2)2 + η2 + ζ2 (4.46)

ρ2 =
√

(ξ − ν1)2 + η2 + ζ2 (4.47)

From Eq. 4.46 and 4.47 together with Eqs. 4.41–4.43, it can be shown that in the
unperturbed case the equilibrium points must lie in the intersections of two circumferences
with their centers in (−ν2, 0) and (ν1, 0) and radii equal to ρ1 and ρ2 respectively.

The system of Eqs. 4.41–4.43 describes the dynamics of an active electrodynamic tether
in a three–body case, which corresponds to a perturbation of the classical three body
problem, with a perturbing force due to the specific Lorentz force ~fel.

When ~fel = 0, the system falls back to the case of the classical circular restricted three
body problem, with equilibrium positions consisting of the well-known five Lagrangian
points. Small oscillations around Lagrangian points are expressed by the usual linear-
variational solution of Szebehely [49]:

[
ξ
η

]
=
[
C1

C̄1

]
cos(s1t) +

[
S1

S̄1

]
sin(s1t) +

[
C2

C̄2

]
cos(s2t) +

[
S2

S̄2

]
sin(s2t) (4.48)

Eigenfrequencies at triangular points have the closed form:

s1,2 = Im

[√
(1/2)(−1±

√
1− 27ν2(1− ν2))

]
· Ω [rad/s] (4.49)

expressing a motion that is a combination of short-period terms, associated with the
eigenfrequency s1 and long-period terms, associated with s2. The two characteristic eigen-
frequencies are a function of the planetary system parameter ν2.

The system of Eqs. 4.41–4.43 has no closed analytical solution, and a numerical analysis
is required to solve for the trajectories. However, key features of this dynamical system
can be derived with a qualitative dynamics analysis. In the following section equilibrium
positions of the perturbed CRTBP are obtained, and the EDT equilibrium is analyzed.
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4.2.4 Equilibrium positions

When the EDT orbits in a three-body environment with a plasmasphere, the Lorentz
force (Eq. 4.24) perturbs the natural three-body motion and equilibrium positions different
than Lagrangian points appear. When placed in these positions, the satellite can stay in
equilibrium with respect to the synodic frame, because of the non-zero electrodynamic
force acting on the tether.

The equilibrium positions in the perturbed case are the singular points (null acceleration
and velocity) of the dynamical system described by Eqs. 4.41–4.43. The singular points
are the solutions of the following equations:

ν1

ρ3
1

(ξ + ν2) +
ν2

ρ3
2

(ξ − ν1) = ξ + fξ (4.50)

ν1

ρ3
1

η +
ν2

ρ3
2

η = η + fη (4.51)

ν1

ρ3
1

ζ +
ν2

ρ3
2

ζ = fζ (4.52)

where fξ, fη and fζ are the three non-dimensional components of the perturbing force,

(fξ, fη, fζ) =
(
Fel,x/mdΩ2, Fel,y/mdΩ2, Fel,z/mdΩ2

)
(4.53)

with components expressed in the synodic frame. From the system of Eq. 4.50–Eq. 4.52
the locations of the equilibrium positions (ξ0, η0, ζ0) can be readily found, as a function of
the perturbing electrodynamic force. Eq. 4.52 shows that the equilibrium positions outside
the orbital plane of the two primaries are theoretically possible:

ζ0 =
fζ

ν1/ρ3
1 + ν1/ρ3

1

(4.54)

When the out-of-plane force vanishes fζ = 0, the equilibrium positions lie on the orbital
plane ζ0 = 0. In our simplified model of the electrodynamic force for the EDT we have
assumed fζ ≈ 0, thus no equilibrium positions exists in the out-of-plane region.

Making the substitution τ = 1/ρ3
1 and χ = 1/ρ3

2 the two-dimensional system of
Eqs. 4.50–4.51 yields: [

ν1(ξ + ν2) ν2(ξ − ν1)
ν1η ν2η

] [
τ
χ

]
=
[
ξ + fξ
η + fη

]
(4.55)

The determinant of the matrix on the left-hand side of Eq. 4.55 is ν1ν2η, and for η 6= 0
the matrix can be inverted to obtain (τ, χ). This corresponds to searching equilibrium
positions outside the axis η = 0 that joins the two primaries. Solving Eq. 4.55, the two
distances ρ1, ρ2 of the equilibrium point from the two primaries are found as:
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ρ1 = 3

√
ν1η

ν1η + fξη + fη(ν1 − ξ)
(4.56)

ρ2 = 3

√
ν2η

ν2η − fξη + fη(ν2 + ξ)
(4.57)

For (fξ, fη) = (0, 0) the external force vanishes, the distances from the primaries become
unitary ρ1 = ρ2 = 1, and the equilibrium positions are the classical triangular Lagrangian
points: (ξ0, η0) = (1/2− ν2,±

√
3/2).

For (fξ, fη) = (fξ, 0) the force acts purely in a direction parallel to the synodic ξ–axis. In
this case Eqs. 4.56–4.57 show that the dependence of ρ1, ρ2 on the ξ coordinate disappears
and an analytical solution of the equilibrium points (ξ0, η0) can be readily obtained:

ξ0 =
1
2
− ν2 +

1
2

(
1− ν2

1− ν2 + fξ

)2/3

− 1
2

(
ν2

ν2 − fξ

)2/3

(4.58)

η0 = ±

√√√√( 1− ν2

1− ν2 + fξ

)2/3

−

[
1
2

+
1
2

(
1− ν2

1− ν2 + fξ

)2/3

− 1
2

(
ν2

ν2 − fξ

)2/3
]2

(4.59)

For (fξ, fη) 6= (0, 0) the perturbing components are both different from zero; no closed
form exist, and the equilibrium position must be derived by means of a numerical method.

Interesting properties of the equilibrium locations can be inferred when we shift to
a polar coordinate system (ra, α), by making the substitutions: ξ = racosα − ν2 and
η = ra sinα, with ra the non-dimensional radial distance from the first primary M1 (see
Fig. 4.15). In this new set of coordinates the distances from the primaries take the form:

ρ1 = ra (4.60)

ρ2 =
√
r2
a + 1− 2ra cosα (4.61)

On the circle centered in M1 and joining the triangular points with the second primary
the radius ra is unitary, ra = 1, and the components of the force necessary for maintaining
the equilibrium positions takes the simple expression:[

fξ
fη

]
= ν2

(
1
ρ3

2

− 1
)[

cosα− 1
sinα

]
(4.62)

where ρ1 = 1 and ρ2 =
√

2− 2 cosα. Eq. 4.62 is the non-dimensional force that the tether
(or any other thrust-device) must supply to remain stationary with respect to the synodic
reference frame at a given angular position α in the circle joining the triangular points
with the second primary. In dimensional units the magnitude of the force is:
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F = mdΩ2
√
f2
ξ + f2

η = mdΩ2ν2ρ2

∣∣∣∣ 1
ρ3

2

− 1
∣∣∣∣ (4.63)

Eq. 4.63 shows that no external force is required to maintain an object at |α| = 60
deg, that is at a triangular Lagrangian point, as expected. Figure 4.16 shows the two
components fξ, fη of the electrodynamic force from Eq. 4.62 of the non-dimensional force
vs. the angle α, for all admissible values of the mass parameter 0 < ν2 < 1/2. Note that
a null external force is required at the Lagrangian triangular points (α = 60◦, α = 300◦).
Singular conditions occur at α = 0◦ = 360◦, where the angular position of the second
primary is reached by the spacecraft.

Figure 4.17 shows the non-dimensional force as a vector field superimposed to the
synodic plane of the Jupiter-Io system (ν2 = 4.7× 10−5). In the figure Jupiter is placed at
(−ν2, 0), Io at (ν1, 0), and the five Lagrangian points are marked with a cross. The circle
centered in Jupiter and joining Io with the triangular points is marked with a dotted circle.
Each arrow in the figure shows the direction and the magnitude (with different scales as
explained later) of electrodynamic force required to keep the spacecraft in equilibrium with
respect to the synodic frame at locations different from Lagrangian points. Two main zones
can be identified. The first one is a narrow zone encircling the circle centered in Jupiter
and joining Io with the triangular points. In this region the force has its smaller magnitude
(a scale ×2500 has been used for visualization) and has a non-null tangential component.
The second region is the remaining part of the synodic plane, which is cut into an inner
and an outer zone by the orbit of Io. In this region the force is predominantly directed in
the radial direction, pointing outward in the inner region (0 < r < 1) and pointing inward
in the outer region (r > 1).

4.2.5 Self-powering at equilibrium positions

When the EDT is placed at an equilibrium position away from a Lagrangian point, a non-
zero electrodynamic force acts upon it, and the EDT can supply electrical power to the
spacecraft itself. The region of allowed equilibria for technologically feasible tethers lies in-
side the narrow region encircling the circle centered in M1 and joining the triangular points
with the second primary. When M2 << M1, as in all practical cases of the Solar System,
the equilibrium points are all placed very close to the orbital path of the second primary,
and their effective location is a function of environmental parameters (i.e., plasmasphere
and planetary system), tether size, and plasma collection device.

In a general case, the attitude of the tether affects the magnitude and orientation of the
electrodynamic force, and consequently the location of the equilibrium points. Assuming
the EDT is self-balanced [50], the force vector acts on the center of mass of the system, and
no net electrodynamic torques affect the orientation of the system. Under this hypothesis
the equilibrium locations of the EDT can be obtained by considering only the effect of
electrodynamic force, substituting the electrodynamic force (Eq. 4.23) in the equilibrium
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Figure 4.16: (a) Non-dimensional force component fξ and (b) fη required to maintain an
equilibrium position with respect to the synodic frame as a funciton of the angle α.
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Figure 4.17: Non-dimensional force components (fξ, fη) required to stay in equilibrium in
the synodic frame at locations (marked by dots) different than classical Lagrangian points.

equations of the three-body (Eq. 4.50–4.52). A nonlinear least-squares algorithm has been
used to find the roots of the system formed by Eq. 4.23 and Eqs. 4.50–4.52. A family of
equilibrium locations has been obtained, stemming from the unperturbed triangular points
L4 and L5. Numerical examples are shown in the following paragraph.

A useful simplified model has been derived to describe the powering conditions, under
the following hypotheses: 1) the tether system is contained in the synodic plane (ξ, η) and
points toward M1; 2) the tether system is above the stationary orbit of M1; 3) aligned
and centered magnetic field generated by the first primary and rotating with the angular
velocity of the primary Ω1; 4) orientation of ~B is from north to south (as in Jupiter and
Saturn), thus in the synodic plane the unit vector of ~B is b̂ = (0, 0,−1).

Under these simplifications, when the tether is at equilibrium (meaning that it has a
zero velocity with respect the synodic frame), the projection of the motional electric field
on the tether is simply given by:

Et = B · d · (Ω1 − Ω + Ων2 cosα) (4.64)

The Lorentz force vector, with its components expressed in the synodic frame, has the
following simple expression which represents a counterclockwise force, tangential to the
orbit of the second primary mass:

syn ~Fel = Felû× b̂ = Fel(− sinα; cosα; 0) (4.65)
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where the force magnitude is given by:

Fel =
(

4
3
qe
π

√
2
qe
me

)(
1− 2

5
ζ

)
ζ3/2

(
wL5/2

)(
neB

√
Et

)
(4.66)

In these expressions the tether line û = (cosα; sinα; 0) takes into account the direction
of the current, which is imposed by the motional electric field pointing outward.

As shown previously a non-zero ED force is required to keep the EDT system in an
off-Lagrangian equilibrium position. The scalar product of this force with the velocity
relative to the plasma gives the ideal electrical power generated.

Under the hypotheses of the simplified model the ideal power for a tether placed at an
angle α0 along the orbit of the second primary is:

Pid = IavgLBd (Ω− Ω1 − Ω cosα0ν2) (4.67)

In the two–body case, the mass parameter ν2 vanishes and Eq. 4.67 simplifies to:

Pid = IavgLBd (Ω− Ω1) (4.68)

From the comparison of simplified expressions Eq. 4.67 and Eq. 4.68 some important
differences between the classical 2-Body case and the 3-Body case can be inferred. In
the two-body the ideal power is simply driven by the difference (Ω − Ω1) between the
orbital and plasma angular velocities. In the three body case the ideal power is reduced
by the small term cosα0ν2. The reduction term is of geometrical nature, and is due to
the displacement between the centers of rotations of the plasmasphere and the corotating
frame. The reduction term reaches the maximum value of 0.5 only in the limiting case
when the planetary system has M1 = M2 and the equilibrium point reaches α0 ≈ 0 at
the location of the second primary. In all cases of practical relevance within the Solar
System, the mass parameter is always small, ν2 < 10−3 (except for system of asteroids),
and the reduction of power due to the three-body effect is negligible. As a result, the power
obtained in the three-body case is of the same order of magnitude of the two-body case,
but has the additional feature of keeping the spacecraft at an equilibrium point without
deorbiting.

4.2.6 Applications in the Jupiter Plasma Torus

As an example, the case of Jupiter-Io-EDT system is here discussed. Jupiter offers a
unique environment for an EDT, due to the outstanding morphology of its magnetosphere
and the fast rotation of the planet. All around the orbit of the Galilean moon Io, a
region of increased plasma density called the Plasma Torus modifies and affects the Jupiter
magnetosphere. The presence of the Plasma Torus is a consequence of the volcanic activity
of the moon Io and its strong tidal heating. The motion of a spacecraft within the Torus
is influenced by two main gravitational attractors, Jupiter and Io. Furthermore, all the
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Lagrangian points of the Jupiter-Io-spacecraft system are contained inside the Torus. At
first approximation, the motion of an EDT-spacecraft inside the Torus can be described
by the equations of the circular restricted three body problem, with the addition of the
electrodynamic force produced by the interaction of the EDT with the plasmasphere.

By using the model described in the previous sections, the dynamics of an EDT satellite
inside the Jupiter Plasma Torus has been studied as a special case. High power levels (kilo-
Watts and more) can be obtained by means of an EDT in the Io Torus. These power levels
could be of great interest for Jovian missions, which are always handcuffed by the scarcity
of power.

The Jupiter magnetic field rotates at the same angular velocity of the planet, with
velocity vB = Ω1r, where Ω1 ≈ 1.76× 10−4 rad/s is the Jupiter angular rotation rate and
r is the distance in the equatorial plane. Due to the high rotation rate of the planet, the
stationary quote is relatively low at 2.238 Rj , and the velocity of the mangetic field at Io’s
orbit (5.9 Rj) is about 74 km/s. As a consequence, a spacecraft co-orbiting on the same
orbital path of Io (vsc ≈ 17.3 km/s) has a velocity relative to the Jupiter’s magnetic field
vrel ≈ 57 km/s, that results in a motional electric field E ≈ 0.1 V/m for a local magnetic
field B ≈ 2 × 10−6 T. The resulting electrodynamic force for a spacecraft placed in that
location is a thrust force directed along the orbital velocity of the spacecraft.

An aligned dipolar model has been used for the Jupiter magnetic field:

~B(~r) =
m

r3
[3 (m̂ · r̂) r̂ − m̂] (4.69)

where ~m = µmR
3
jm̂ is the magnetic dipole moment vector of the planet, m̂ is its unit

vector, µm is the intensity of the dipole [Tesla], Rj is the planet equatorial radius, ~r is the
position vector of the spacecraft.

The electron density Ne in the Torus is derived from the Divine and Garrett model
[51], shown in Fig. 4.18 as a function of the radial distance from Jupiter. The locations of
Io and of the four inner moonlets are marked by vertical lines in the figure. The presence
of the plasma torus can be inferred from the electron density increase around the Io orbit
at 5.9 Rj .

The expressions of equilibrium locations given by the system of Eqs. 4.50–4.52 plus
Eq. 4.65–4.66 have been used to size tethers capable of maintaining the spacecraft in
equilibrium in the corotating frame of the Jupiter-Io system. The angle α0 identifys the
equilibrium position of the tether on the circle centered in Jupiter and joining Io with
the triangular points. It has been numerically determined for a set of cases as a function
of the parameters L,w,m, that are the tether length, tether width and spacecraft mass,
respectively. As expected, we found that the EDT parameters influence the magnitude of
the force and, consequently, the location of the equilibrium point. Figure 4.19 shows for a
5 cm width tape tether the equilibrium angle α0 vs. the spacecraft mass ranging from 200
to 1200 kg, for five tether lengths L=8,10,20,30,40 km. As can be seen from Figure 4.19,
a “short” tether is sufficient to stay in equilibrium near a triangular point. The more the
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Figure 4.18: Electron density at Jupiter according to Divine and Garrett model (adapted
from [51]).

position moves away from a triangular point toward the second primary (Io), the longer is
the tether required or the smaller the satellite mass. This in turn implies that a greater
electrodynamic force must be exerted to stay near the second primary body. For example, a
tether with a constant length of 10 km, and a suitable spacecraft mass can have equilibrium
positions within the range α = 34 to 52 deg. Using a controlled variable-length tether and
a constant-mass spacecraft, the equilibrium positions can be moved in region very close to
the Io’s orbital path and inside the Plasma Torus. The equilibrium positions coincide with
the classical triangular points at α = ±60 deg only when the electrodynamic force is equal
to zero.

The useful power extracted by the EDT at equilibrium is shown in Figure 4.20, for
the librating tether case. The ideal power given by Eq. 4.27 can be converted into about
30% for a librating tether, and 20% for a rotating tether (see [24] for details). The power
is proportional to the tether length, with a law P ∝ L5/2, as mentioned earlier and also
shown in this figure. Kilowatt-level of useful power can be delivered by the EDT to the
spacecraft, by extracting the energy from the Jupiter plasmasphere.

A set of numerical simulations with an upgraded 3D model was carried out. This model
integrates the 3D orbital dynamics of a rigid dumbbell satellite in the 3-body system (as
described by Eq.4.40), plus the two angular degrees of freedom of its attitude dynamics.
The two attitude angles evolve under the effect of the external gravitational torques of the
two primaries. The numerical integration of the governing equations is carried out with a
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Figure 4.19: Equilibrium locations of an EDT as a function of the angle α in the Jupiter-Io
system, on the orbital path of the second primary (Io).

standard Adam-Bashforth-Moulton 11th-order PECE routine [52]. A detailed description
of the code implementing this model, together to its validation for a set of relevant cases of
both orbital and attitude motion, can be found in [45]. A tilted dipolar magnetic field of
Jupiter is considered to model the perturbing effects due to the oscillating field. The Divine
and Garrett model [51] is adopted for the plasma electron density. The higher fidelity model
confirmed the results obtained with the simplified model, finding that the EDT can remain
in equilibrium at off-Lagrangian locations. Several values of mass, length and width were
considered, in order to identify the equilibrium position for each configuration.

Figure 4.21 (a) shows a 20 km tether of 5 cm tape width and a 600 kg mass spacecraft
in equilibrium in the corotating frame of Jupiter and Io, for a simulation time t = 40Trev ≈
70.76 days (Io’s Trev = 1.77 days). The position of the spacecraft is at α0 = 29.63◦,
marked with the arrow-tail sign in the figure. The simplified model predicts an equilibrium
position at α0 = 29.75◦, in accordance with the higher fidelity model. Jupiter and Io are
to scale, and their triangular points are also marked in the figure. Figure 4.21 (b) depicts
small oscillations around the equilibrium point that exhibits a motion characterized by
two eigenfrequencies, analogous to the unperturbed motion around the natural Lagrangian
points. The two eigenfrequencies of the classical circular restricted three body problem
[49] are expressed by Eq. 4.49.

A Lorentz force of about 0.06 N is exerted on the system, producing a useful power
of about 1130 Watts for on-board use (see Fig. 4.22). The perturbation due to the other
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Figure 4.20: Useful power at equilibrium for a librating tether vs. spacecraft mass.

Galilean satellites is always smaller than this electrodynamic force. The main perturbation
is given by the attraction of Europa and Ganymede, being in the worst case one order of
magnitude less than the electrodynamic force. However, the effect of the other moons
could not be completely neglected because of the Laplace resonance 1:2:4 between the
orbital periods of Io, Europa and Ganymede, that can lead to a pumping effect to a
satellite placed on the Io orbit. These kind of effects are not addressed in the present
study. Numerical simulations with a 4-body simulator have revealed that equilibrium can
be reached also in the perturbed case and the equilibrium is disrupted after a long period
of time.
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Figure 4.22: (a) Electrodynamic force and (b) generated power vs orbital revolutions (Io’s
Trev = 1.77 days) by a 20-km EDT at equilibrium at Jupiter obtained with the higher
fidelity model EDT3BODY. These results are in accordance with the simplified model,
which gives Fel = 0.064 N and Pu = 1082 W .



Conclusion

In the present work, helicon plasma sources have been analyzed in detail, in order to
identify strategies for high-density and high-electron-temperature plasmas, necessary for
system design of an advanced and innovative kind of thruster.

At first, a theory describing the equilibrium of a cylindrical helicon discharge has been
derived. This involved an in-depth analysis of the phenomena occurring inside an helicon
discharge and the development of a quantitative model of the interested plasma parame-
ters. This problem was solved only partially in literature. Two theoretical sub-problems
have been resolved, the first regarding the plasma-wave coupling, the second regarding the
macroscopic transport of ions electrons and neutrals inside the plasma discharge. It has
been found that the two sub-problems are strictly related one to the other, and that only
when considered together they concur to the determination of the global equilibrium of the
plasma. The plasma-wave coupling problem has been solved using a classical treatment,
the theory of Chen-Arnush [2],[3],[4]. This theory describes the coupling of electrons to
the radio-frequency field by means of two families of plasma waves, Trivelpiece-Gould and
Helicon; this model allows the evaluation of the electromagnetic fields occurring inside the
plasma column for assumed profiles of charged and neutral species. These profiles comes
from the solution of the second problem, the macroscopic transport. The transport theory
has been developed within the contest of this thesis. It solves for a quasi-neutral plasma
along the radius of the cylinder, considering local collisional process, local ionization bal-
ance and local power deposition. The system is closed by taking into account the short
circuit effect of electrons at the axial end walls of the plasma cylinder. The local input
power comes from the solution of the plasma-wave coupling. The theory allows the evalu-
ation of profiles at equilibrium of drift velocity, plasma potential, plasma density, neutral
density and electron temperature. A numerical code implementing the theory has been
developed and used for the calculations of equilibrium conditions. The HELIC code devel-
oped at UCLA [4] was used for the solutions of the plasma-wave coupling. A second code,
called EQM, was developed for the solution of the macroscopic transport problem. From
the iteration of the two codes together the equilibrium of an helicon plasma column has
been calculated. One of the results from the theory development allowed a direct evaluation
of the discharge profiles for a given amount of power. Examples under several conditions
are reported. The code allowed study of helicon discharges. All the involved parameters
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are strongly coupled together; electrons are heated locally by the electromagnetic fields,
and their temperature modifies the local acoustic velocity of ions. This in turns affects
the drift velocity and the resulting profile of plasma. Neutral depletion is also taken into
account. Neutrals are depleted by the plasma, mostly at the center of the cylinder.

An extensive experimental campaign at UCLA Laboratory1 has been done, to validate
the theory. Helicon sources were tested under several operative conditions, with mea-
surements done using RF-compensated Langmuir probes. The I-V characteristics of the
probes have been analyzed using the standard OML theory, to obtain plasma densities,
electron temperature and plasma potential. Power scans, radial scans, axial scans at sev-
eral pressures and for two RF frequencies (13.56 and 27.12 MHz) have been done. From the
comparison of experimental measures with the calculated data, an agreement has found
within their uncertainties. The numerical model developed is not only a very useful tool
for preliminary design a plasma thruster, but it’s also a powerfull tool to perfom indirect
measurements on its physical parameters.

The theory has thus been applied for the preliminary design of a thruster using an
helicon source. The helicon-source-only propulsive system was thought, composed by a
cylindrical plasma chamber with the propellant excited by an helicon antenna. The pres-
ence of an additional acceleration mechanisms (magnetic nozzle, double layers, etc.) is
desirable but not necessary. As expected, it has been found that this system receives an
enhancement in performances as a function of the ionization fraction, shifting gradually
from the cold-gas-thruster regime at low fiz to the helicon-thruster regime at high fiz. A
target system with thrust 1mN and Isp 1000 seconds working at very low power has been
addressed. The strong intercorrelations between the design parameters in described. A list
of possible thruster configurations satisfying the target requisites has been obtained.

Finally, a propellantless plasma system has been considered, an electrodynamic tether,
and innovative applications of such a systems have been proposed. The Lorentz force
produced by an electrodynamic tether placed inside the plasmasphere of a three-body
planetary system has been modeled, with a focus on system dynamics and power generation
at equilibrium points of the gravitational system. It was found the Lorentz force produced
by the tether through the interaction with the super-rotating plasma sphere perturbs the
natural Lagrangian equilibrium points, and new equilibrium positions appears with respect
to the synodic frame corotating with the primary bodies. The equilibrium is among the
two gravitational forces of the two primaries, the inertial forces and the local Lorentz force.
The results of simplified model developed to derive the equilibria locations in the synodic
plane shows that for technologically feasible tethers those points are located along the circle
centered in the first primary and joining the triangular points with the second primary.
Differently from the two body case, in the three-body scenario an EDT can be placed at
equilibrium position and at the same time generate electrical power, without de-orbiting.
The electrical power is generated at the expense of the corotating plasma energy. A higher

1Low Temperature Plasma Technology Laboratory, University of California Los Angeles
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fidelity numerical model confirmed the presence of equilibrium positions and the possibility
to place an electrodynamic tether in their neighborhood while extracting power from the
environmental plasma. The analysis has been applied to the Jupiter-Io system, where the
presence of the Plasma Torus make this region an attractive place for an EDT to operate.
An EDT in the Plasma Torus can generate in a continuous way kilo-Watts of useful power
(with a tether length of order 20 km and more), that can be used on board the spacecraft.
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Appendix A

Plasma waves

A.1 Dielectric tensor of a cold plasma (T = 0)

The dielectric tensor of an infinite homogeneous cold (T = 0) plasma can be treated using
the motion of a single particle in an electromagnetic field:

m
d

dt
~vj = qj( ~E + ~v × ~B) (A.1)

where j is the species index, and the fields are the solution of Maxwell equations:

∇× ~E = −∂
~B

∂t
(A.2)

∇× ~B = µ0

(
~J + ε0

∂ ~E

∂t

)
(A.3)

Assuming small perturbations

~E = ~E1e
i(~k·~r−ωt) (A.4)

~B = ~B0 + ~B1e
i(~k·~r−ωt) (A.5)

~v = ~v1e
i(~k·~r−ωt) (A.6)

and

| ~B1| << | ~B0| (A.7)
~B0 = (0, 0, Bz) (A.8)

the motion of particles becomes linear:

− iωmj~v1j = qj( ~E1 + ~v1j × ~B0) (A.9)

173
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The solution (analytical) is:

vxj =
iqj

mj(ω2 − ω2
cj)

(ωEx + sign(j)iωcjEy) (A.10)

vyj =
iqj

mj(ω2 − ω2
cj)

(−isign(j)ωcjEx + ωEy) (A.11)

vzj =
iqj
mjω

Ez (A.12)

where sign(j) is the sign of charges belonging to the species j, and ωcj = |qj |B0/mj is
the cyclotron frequency of the species j. In the rotating frame the velocity becomes v± =
vx ± ivy and the (circularly polarized) electric field E± = (Ex ± iEy)/

√
2, so that

v± =
iqj

mj(ω ∓ sign(j)ωcj)
E± (A.13)

The plasma current density is thus given by:

J± = iε0
∑
j

ω2
pj

ω ∓ sign(j)ωcj
E± (A.14)

Jz = iε0
∑
j

ω2
pj

ω
Ez (A.15)

where ωpj is the plasma frequency of the species j,

ω2
pj =

njq
2
j

mjε0
. (A.16)

The total current (plasma plus displacement), leads to the following constitutive (Ohm)
relation for the cold plasma:

~Jtot = ~J − iωε0 ~E = −iωε0 [K] ~E (A.17)

where the dielectric tensor is given by (using classical notation by Stix, 1962):

[K] =

 S −iD 0
iD S 0
0 0 P

 =

 K1 K2 0
−K2 K1 0

0 0 K3

 (A.18)
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Figure A.1: Values of the Stix components S,D, P for a single-species electrons plasma

with

K1 = S =
1
2

(R+ L) = 1−
∑
j

ω2
pj

ω2 − ω2
cj

(A.19)

iK2 = D =
1
2

(R− L) =
∑
j

sign(j)ωcj
ω

ω2
pj

ω2 − ω2
cj

(A.20)

K3 = P = 1−
∑
j

ω2
pj

ω2
(A.21)

R = S +D = K1 + iK2 = 1−
∑
j

ω2
pj

ω2

ω

ω + sign(j)ωcj
(A.22)

L = S −D = K1 − iK2 = 1−
∑
j

ω2
pj

ω2

ω

ω − sign(j)ωcj
(A.23)

Figure A.1 shows the three Stix components for a single species plasma of electrons.
The two quantities L and R are the diagonal components of the dielectric tensor in the
rotating frame (circularly polarized),

[K] =

L 0 0
0 R 0
0 0 P

 (A.24)

The transformation matrix between the two systems (cartesian x, y, z and rotating polar-
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ized +,−, z) is given by: E+

E−
Ez

 =

1/
√

2 i/
√

2 0
1/
√

2 −i/
√

2 0
0 0 1

ExEy
Ez

 (A.25)

Now substituting ~Jtot in the Fourier transform of the two Maxwell wave equations

i~k × ~E = iω ~B (A.26)

i~k × ~B = −iωε0µ0 [K] ~E (A.27)

the following wave equation of the index refraction vector is finally found:

~n× (~n× ~E) + [K] ~E = 0 (A.28)

where

~n =
~kc

ω
(A.29)

is the index refraction vector, pointing in the same direction of the wave vector and with
magnitude equal to the local refraction index. Usually the equation of the refraction index
vector is expressed in a convenient reference frame. Deciding that ~n lies in the x, z plane
( ~B0 is already aligned to the z axis), and calling θ the angle between ~n and z, the index
refraction vector equation becomes:S − n2 cos θ −iD n2 cos θ sin θ

iD S − n2 0
n2 cos θ sin θ 0 P − n2 sin θ

ExEy
Ez

 = 0 (A.30)

Non-trivial solutions (the determinant of the matrix) constitutes the dispersion relation,
which is:

An4 +Bn2 + C = 0 (A.31)

where

A = S sin2 θ + P cos2 θ (A.32)

B = RL sin2 θ + PS(1 + cos2 θ) (A.33)
C = PRL (A.34)

The solution is usually given in term of the angle, to better express cutoffs and resonances:

tan2 θ = − P (n2 −R)(n2 − L)
(Sn2 −RL)(n2 − P )

(A.35)
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The plasma wave propagates parallel to ~B0 when the numerator vanishes (plasma oscilla-
tions, right-handed and left-handed polarized waves), and perpendicular to ~B0 when the
denominator vanishes (ordinary and extraordinary waves). Propagation at arbitrary θ in-
cludes torsional and compressional Alfvén waves, and whistler waves. The CMA diagram
is the usual way to resume the behavior of a cold uniform plasma in a single graph, for fast
recognition of resonances and cutoffs.

A.2 Dielectric tensor with fluid collisions

In presence of electron-neutral collisions, the Krook model can be used (neutrals are much
slower than electrons), and the equation of motion becomes:

mene

[
∂~ve
∂t

+ ~ve · ∇~ve
]

= −enne( ~E + ~ve × ~B)−∇pe −mene~veν (A.36)

where νen is the electron neutral collision frequency. In frequency domain,

(ν − iω)mene~ve = −ene( ~E + ~ve × ~B)−∇pe (A.37)

and thus the modification in the dielectric tensor is done with the formal substitution of
the electron mass me → me/(1 + iνω). It results:

K1 = S =
1
2

(R+ L) = 1−
∑
j

ω2
pj(ω + iνj)

ω[(ω + iν)2 − ω2
cj ]

(A.38)

iK2 = D =
1
2

(R− L) =
∑
j

sign(j)ωcj
ω

ω2
pj

(ω + iν)2 − ω2
cj

(A.39)

K3 = P = 1−
∑
j

ω2
pj

ω(ω + iν)
(A.40)

R = S +D = K1 + iK2 = 1−
∑
j

ω2
pj

ω2

ω

ω + iνj + sign(j)ωcj
(A.41)

L = S −D = K1 − iK2 = 1−
∑
j

ω2
pj

ω2

ω

ω + iνj − sign(j)ωcj
(A.42)

A.3 Generalization to non-Maxwellian plasmas

Here we will show how the dielectric tensor of the plasma is modified by a generic non-
Maxwellian distribution. For the treatment we will follow an approach proposed by [cite
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M. Brambilla]. We split the distribution function of each plasma species α into a stationary
and oscillating part,

fα(~r,~v, t) = Fα(~r,~v) + f̃α(~r,~v, t) (A.43)

where the two terms satisfy the steady-state Vlasov equation and the linearized Vlasov
equation respectively (the Fokker-Planck integral can be neglected if ω >> νcoll):

~v · ∇Fα +
eZα
mα

(
~v

c
× ~B0

)
∂Fα
∂~v

= 0 (A.44)

df̃α
dt

=
∂f̃α
∂t

+ ~v · ~∇fα +
eZα
mα

(
~v

c
× ~B0

)
∂f̃α
∂~v

= −eZα
mα

(
~E +

~v

c
× ~B

)
∂Fα
∂~v

(A.45)

The perturbing fields ~E, ~B are assumed of small amplitude, in order to linearize the ki-
netic equation and get a dielectric tensor. The solution, obtained with the method of
characteristics, is:

f̃α(~r,~v, t) = −eZα
mα

∫ t

−∞

[
~E(~r′, t′) +

~v′

c
× ~B(~r′, t′)

]
∂Fα
∂~v′

(A.46)

where ~r′ = ~r′(~r,~v, t − t′) and ~v′ = ~v′(~r,~v, t − t′) are the solutions of the unperturbed
equations of motion:

d~r′

dt′
= ~v′ (A.47)

d~v′

dt′
=
eZα
mα

(
~v′

c
× ~B0

)
(A.48)

Substituting the solution in the definition of current density:

~j(~r, t) =
∑
α

eZα

∫
~vfα(~r,~v, t)d~v (A.49)

we obtain

~j(~r, t) = −
∑
α

nαe
2Z2

α

mα

∫
~vd~v

∫ t

−∞
dt′
{[

~E(~r′, t′) +
~v′

c
× ~B(~r′, t′)

]
∂Fα
∂~v′

}
(A.50)

The integral is non-local, since ~j depends on motion of particles at previous times. We
thus consider quantities (plane waves) in the Fourier space,

~E(~r, t) = ~E~k,ωe
i(~k·~r−ωt) (A.51)

f̃α(~r,~v, t) = ~fα~k,ωe
i(~k·~r−ωt) (A.52)
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where locality is re-obtained1. The distribution function becomes

fα~k,ω(~v) = −eZα
mα

∫ t

−∞
dt′e−i[

~k(~r−~r′)−ω(t−t′)]
{[

~E~k,ω +
~v′

ω
× (~k × ~E~k,ω)

]
∂Fα
∂~v′

}
(A.53)

and substituting in the current density and comparing the result with the definitions of
conductivity tensor and dielectric tensor,

~j~k,ω = [σ]~k,ω
~E~k,ω (A.54)

εij(~k, ω) = δij +
4πi
ω
σij(~k, ω) (A.55)

the dielectric tensor is finally obtained:

εij(~k, ω) = δij+
∑
α

ω2
pα

ω2

∫
d~v

{
−iω

∫ t

−∞
dt′e−i[

~k·(~r−~r′)−ω(t−t′)]

[(
1−

~k · ~v′

ω

)
∂Fα
∂v′j

+

(
~k

ω

∂Fα
∂~v′

)
v′j

]}
(A.56)

where ωpα = 4πe2Zαnα/mα is the plasma frequency of the species α.

The general expression of the dielectric tensor has to be written in a reference frame
to be explicitly calculable. In order to make results comparable with the Stix cold tensor,
we use the same reference frame (x, y, z) with z-axis along the magnetostatic field ~B0 and
the x-axis oriented so that the wavevector ~k lies in the (x, z) plane. In the velocity space
a convenient reference frame is the cylindrical system with symmetry axis in the direction
of ~B0 (v⊥ and v// are constants of motion). In this reference frame the dielectric tensor
results:

εij(~k, ω) = δij +
∑
α

ω2
pα

ω2

∫ ∞
−∞

dv||

∫ ∞
−∞

v⊥dv⊥

∫ 2π

0
dφ

{
−iω

∫ t

−∞
dt′Gα~k,ωT

α
ij

}
(A.57)

where

Gα~k,ω = Gα~k,ω(v⊥, v||, φ, t− t′) = e−i[
~k·(~r−~r′)−ω(t−t′)] (A.58)

is the propagator (i.e., the phase of the wave seen by the particle along the unperturbed

1Thanks to properties of Helmholtz decomposition
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orbit), and the tensor Tαij = Tαij(~k, ω;~v; t− t′) is:

Tαxx = v⊥ cosφ
(
∂Fα
∂v⊥

+
k||

ω
ΘvFα

)
cosβ (A.59)

Tαxy = v⊥ cosφ
(
∂Fα
∂v⊥

+
k||

ω
ΘvFα

)
sinβ (A.60)

Tαxz = v⊥ cosφ
(
∂Fα
∂v||
− k⊥

ω
ΘvFα cosβ

)
(A.61)

Tαyx = v⊥ sinφ
(
∂Fα
∂v⊥

+
k||

ω
ΘvFα

)
cosβ (A.62)

Tαyy = v⊥ sinφ
(
∂Fα
∂v⊥

+
k||

ω
ΘvFα

)
sinβ (A.63)

Tαyz = v⊥ sinφ
(
∂Fα
∂v||
− k⊥

ω
ΘvFα cosβ

)
(A.64)

Tαzx = v||

(
∂Fα
∂v⊥

+
k||

ω
ΘvFα

)
cosβ (A.65)

Tαzy = v||

(
∂Fα
∂v⊥

+
k||

ω
ΘvFα

)
sinβ (A.66)

Tαzz = v||

(
∂Fα
∂v||
− k⊥

ω
ΘvFα cosβ

)
(A.67)

where

β = φ+ Ωcα(t− t′) (A.68)

and the differential operator

ΘvFα = v⊥
∂Fα
∂v||
− v||

∂Fα
∂v⊥

(A.69)

represents the derivative of Fα with respect to the pitch angle of the velocity, equal to zero
for isotropic velocity distributions.

Two integrations (in time and in φ) of Eq.A.57 can be resolved in analytic form using
Bessel function expansion, and obtain

εij(~k, ω) = δij −
∑
α

ω2
pα

ω2

∫ ∞
0

v⊥dv⊥

∫ ∞
−∞

dv||

[
2π

∞∑
n=−∞

ω

ω − nΩc − k||v||
Qα,nij

]
(A.70)
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where

Qα,nxx = −n
2

ξ2
⊥
J2
n(ξ⊥)

(
v⊥
∂Fα
∂v⊥

+
k||v⊥

ω
ΘvFα

)
(A.71)

Qα,nxy = −i n
ξ⊥
Jn(ξ⊥)J ′n(ξ⊥)

(
v⊥
∂Fα
∂v⊥

+
k||v⊥

ω
ΘvFα

)
(A.72)

Qα,nxz = − n

ξ⊥
J2
n(ξ⊥)

(
v⊥
∂Fα
∂v||
− nΩcα

ω
ΘvFα

)
(A.73)

Qα,nyx = −Qα,nxy (A.74)

Qα,nyy = −J2
n(ξ⊥)

(
v⊥
∂Fα
∂v⊥

+
k||v⊥

ω
ΘvFα

)
(A.75)

Qα,nyz = iJn(ξ⊥)J ′n(ξ⊥)
(
v⊥
∂Fα
∂v||
− nΩcα

ω
ΘvFα

)
(A.76)

Qα,nzx = − n

ξ⊥
J2
n(ξ⊥)

(
v||
∂Fα
∂v⊥

+
k||v||

ω
ΘvFα

)
(A.77)

Qα,nzy = −iJn(ξ⊥)J ′n(ξ⊥)
(
v||
∂Fα
∂v⊥

+
k||v||

ω
ΘvFα

)
(A.78)

Qα,nzz = −J2
n(ξ⊥)

(
v||
∂Fα
∂v||
− nΩcα

ω

v||

v⊥
ΘvFα

)
(A.79)

where the argument of the Bessel function is ξ⊥ = k⊥v⊥/Ωcα. The Onsager symmetry
relations assure some symmetries in the dielectric tensor, εxy = −εyx, εxz = −εzx and
εyz = −εzy, independently on the particular equilibrium distribution function.

A.4 Finite temperature (T 6= 0) Maxwellian plasma

When the equilibrium distribution function of each species in the plasma is Maxwellian,

Fα(~v) =
e−v

2/v2thα

π3v3
thα

= FMα (v) (A.80)
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with vthα =
√

(2Tα/mα) the most probable (thermal) velocity, then the dielectric tensor
results:

εxx = 1−
∑
α

ω2
pα

ω2

n=+∞∑
n=−∞

n2

λα
In(λα)e−λα(−x0αZ(xnα)) (A.81)

εxy = −i
∑
α

ω2
pα

ω2

n=+∞∑
n=−∞

n
[
I ′n(λα)− In(λα)

]
e−λα(−x0αZ(xnα)) (A.82)

εxz = −1
2
n⊥n||

∑
α

ω2
pα

ωΩcα

v2
thα

c2

n=+∞∑
n=−∞

n

λα
In(λα)e−λα(x2

0αZ
′(xnα)) (A.83)

εyx = −εxy (A.84)

εyy = 1−
∑
α

ω2
pα

ω

n=+∞∑
n=−∞

{
n2

λα
In(λα)− 2λα[I ′n(λα)− In(λα]

}
e−λα(−x0αZ(xnα)) (A.85)

εyz =
i

2
n⊥n||

∑
α

ω2
pα

ωΩcα

v2
thα

c2

n=+∞∑
n=−∞

[I ′n(λα)− In(λα)]e−λα(x2
0αZ

′(xnα)) (A.86)

εzx = εxz (A.87)
εzy = −εyz (A.88)

εzz = 1−
∑
α

ω2
pα

ω2

n=+∞∑
n=−∞

In(λα)e−λα(x0αxnαZ
′(xnα)) (A.89)

where the dimensionless quantities are :

λα = µ2
α/2 = k2

⊥v
2
thα/2Ω2

cα (A.90)

xnα =
ω − nΩcα

k||vthα
(A.91)

µα = rLαk⊥ ratio of Larmor radius over the wavelength (A.92)
rLα = vthα/Ωcα thermal Larmor radius (A.93)

and the plasma dispersion function is

Z(ζ) =
1√
π

∫ ∞
−∞

e−u
2

u− ζ
du+ iσ

√
πe−ζ

2
(A.94)

with

σ = 0 for Im(ζ) > 0 (A.95)
σ = 1 for Im(ζ) = 0 (A.96)
σ = 2 for Im(ζ) < 0 (A.97)



A.5. PLASMA WITH TWO MAXWELLIAN POPULATIONS 183

The dispersion function can be calculated using one of the following formulae (only one
can be chosen depending on the computational needs):

Z(ζ) = i
√
πErfc(iζ) (A.98)

Z(ζ) = i
√
πe−ξ

2 − 2ζ
∞∑
n=0

cnζ
2n c0 = 1 cn+1 = −2cn/(2n+ 1) (A.99)

Z(ζ) ≈ iσ
√
πe−ζ

2 − 1
ζ

∞∑
n=0

dn
ζ2n

d0 = 1 dn+1 =
2n+ 1

2
dn (for large ζ) (A.100)

Z(ζ) = e−ζ
2

[
i
√
π − ζ

∞∑
n=0

ζ2n

n!(2n+ 1)

]
(for |ζ| = O(1)) (A.101)

and its derivative is:
Z ′(ζ) = −2[1 + ζZ(ζ)] (A.102)

The series comparing in the dielectric tensor is rapidly convergent for small λα. When
λα → 0 only the n = 0 term does not vanishes (cold plasma). In the regime of small
λα << 1 the terms εxz = εzx and εyz = εzy are one power of λα smaller than the others, i.e.
they tend to the cold plasma limit. The anti-Hermitian part of the dielectric tensor (related
to the irreversible exchange of energy between the wave and the plasma) is different than
zero when |xnα| = O(1), occurring at Cerenkov resonance (n = 0), cyclotron resonances
(n = 1) and cyclotron harmonics (n > 1).

A.5 Plasma with two Maxwellian populations

When the plasma is composed by two Maxwellian populations at a different temperatures
(B: Bulk and T: Tail),

F (vB, vT ) = νB
e−v

2/v2thB

π3/2v3
thB

+ νT
e−v

2/v2thT

π3/2v3
thT

(A.103)

with νB,T their concentrations, it is sufficient to treat each population as a separate species
in the treatment described in the previous paragraph.

A.6 Finite Larmor radius effects

When the wavelengths are larger than the ion thermal Larmor radius, or of the same order
of magnitude, a Larmor radius expansion of the dielectric tensor is convenient. The original
distribution function is rewritten as a sum of anisotropic Maxwellian distributions,

Fα(v⊥, v||) =
∑
ν

Fαν(v⊥, v||) =
∑
ν

e−v
2
⊥/α

2
⊥ν

πα2
⊥ν

e
−v2||/α

2
||ν

√
πα2
⊥ν

Ψν(v2
⊥, v⊥) (A.104)
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with α||ν and α⊥ν now the thermal speeds. The dielectric tensor results:

εxx = 1−
∑
α

ω2
pα

ω2

+∞∑
n=−∞

n2

λ

∞∑
k=0

Cn,k
n!k!

(
λ

2

)|n|+k [
−x0Z̃

(|n|+k−1)(xn)− 1
2
n2
||
α2
||

c2
Y (|n|+k)(xn)

]
(A.105)

εxy = −i
∑
α

ω2
pα

ω2

+∞∑
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]
(A.106)
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εyx = −εxy (A.108)
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εzx = εxz (A.111)
εzy = εyz (A.112)
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where the non-dimensional parameters are:

λ = µ2/2 = k2
⊥α

2
⊥/2Ω2

c (A.114)

xn =
ω − nΩc

k||α||
(A.115)

w = v⊥/α⊥ (A.116)
u = v||/α|| (A.117)
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the plasma dispersion functions are

Z̃p(ζ) =
1√
π

∫ +∞

−∞

e−u
2

u− ζ
g(p)(u)du (A.118)

W̃ p(ζ) =
1√
π

∫ +∞

−∞

e−u
2

u− ζ
dg(p)(u)
du

du (A.119)

Y (|n|+k)(xn) = x2
0

[
Z̃
′(|n|+k−1)(xn)− W̃ (|n|+k−1)(xn)−

α2
⊥
α2
||
Z̃
′(|n|+k)(xn)

]
(A.120)

the reduced distribution is:

g(p)(u) =
2
p!

∫ ∞
0

w2p+1e−w
2
Ψ(w, u) (A.121)

and the other factors are

Dn,k =
(

1 +
k

|n|

)
Cn,k (A.122)

Tn,k =
[
1 +

2k(2|n|+ k)(|n|+ k − 1)
n2(2|n|+ 2k − 1)

]
Cn,k (A.123)

Cn,k =
(−1)k|n|![2(|n|+ k)]!
(2|n|+ k)!(|n|+ k)!

(A.124)
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