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Introduction

Traditionally, educational assessment has evaluated the knowledge of students

at the end of a course or a program by assigning a score that summarizes their

learning. In the last few decades, however, advances in the fields of human learn-

ing and performance have strongly encouraged the development of assessment

practices that focus on the specific knowledge and skills required by students to

perform a task. A new approach to assessment has therefore started to emerge

which is called formative, because it evaluates the specific skills of students in

order to guide teaching and learning. At the same time, it provides information

concerning the effectiveness of educational interventions in promoting specific

learning.

The thesis presents the Gain-Loss Model (GaLoM), which is a formal model

for assessing learning processes. The theoretical framework is knowledge space

theory, a novel approach to the assessment of knowledge proposed by Doignon

and Falmagne in 1985. In contrast with the traditional approach, which is based

on the numerical evaluation of some “aptitude”, knowledge space theory provides

a non-numerical, but nevertheless precise representation of the knowledge of stu-

dents in a certain domain. Such a representation is consistent with the aims of

formative assessment.

The GaLoM assesses the knowledge of students in the different steps of the

learning process, and the effectiveness of an educational intervention, referred to

as a learning object, in promoting specific learning. The core element is repre-
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sented by a skill multimap associating each problem with a collection of subsets

of skills that are necessary and sufficient to solve it. Model parameters are initial

probabilities of the skills, effects of learning objects on gaining and losing the

skills, careless error and lucky guess probabilities of the problems.

The model has been the subject of investigation at different levels. Its func-

tioning has been analyzed under different conditions, and theoretical develop-

ments have been proposed for improving its informative power in practical ap-

plications. The investigations have been conducted through simulated studies

and empirical applications. Both kinds of studies have been used because they

are very informative when a new model is developed. Simulated studies allow

the model to be tested in situations in which all information concerning the data

which is relevant to the analysis (e.g., the association between problems and skills

underlying the data, the noise of the data, and the value of the true parameters)

is present. Empirical applications allow the model to be tested when dealing

with all the elements of uncertainty that characterize the use of a formal model

in practice.

The thesis presents the work completed on the model. On one hand, the

theoretical development of the model itself, as well as some extensions of it,

are described. On the other hand, the results of the simulation studies and the

empirical applications are presented. The argumentation develops in the following

way.

Chapter 1 provides a brief introduction to knowledge space theory. The gen-

eral idea and the basic elements are presented. Emphasis is placed on the concepts

which represent the theoretical background of the GaLoM.

Chapter 2 presents the GaLoM. The mathematical specification of the model

and the estimation of its parameters are described. The results are presented

of a simulation study which investigated the characteristics of identifiability and

goodness-of-recovery of model parameters under different conditions. Moreover,

the results of an empirical application are described, which tested the capability
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of the model to distinguish between different educational interventions.

Chapter 3 presents an extension of the GaLoM in which the estimates of

some model parameters are constrained. Results are described of a simulation

study which investigated the usefulness of the proposed extension for reducing

the variability of the whole set of parameters in non-identifiable models, and for

facilitating the identification of the skill multimap which underlies the data.

Chapter 4 tests the usefulness of the aforementioned extension of the model

for identifying, from a number of alternative solutions, the skill multimap that

best approximates the one underlying the data. The results of a simulation study

and an empirical application are presented.

Chapter 5 presents a logistic reparametrization of the GaLoM. It shows how

logistic parameters can be computed, which provide a new way of reading infor-

mation concerning the learning process. The usefulness of the reparametrization

for highlighting features of the skills and of the learning objects is illustrated

through an empirical application.

Chapter 6 concludes the argumentation. The most important results are re-

viewed, together with some suggestions for increasing the usefulness of the model

which derive from them. Some suggestions for further development of the model

are also presented.
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Chapter 1

Knowledge structures for the

assessment of knowledge

Much of educational assessment aims to evaluate the learning of a student after

the teaching is over. This assessment is known as summative, because it assigns

each student a score that summarizes his learning outcome at the end of a course

or a program. Well-known tests, such as the Scholastic Assessment Test and the

Graduate Record Examination are currently administered in many countries to

inform decisions concerning admissions, placements, scholarships and fellowships.

The analyses are often performed by means of models proposed within classical

testing theory and item response theory because they are useful for grading the

students on continuous unidimensional scales. The success of these models has

been strongly favored by the availability of the computing machines required for

handling the analyses.

In the last few decades, advances in the fields of human learning and perfor-

mance have highlighted the cognitively complex nature of domains such as math-

ematics, science and writing (Nichols & Sugrue, 1999), and they have strongly

encouraged the development of assessment practices that focus on ”component

skills and discrete bits of knowledge to encompass the more complex aspects of

1
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student achievement” (Pellegrino, Chudowsky, & Glaser, 2001, p. 3). A new

approach to assessment has therefore started to emerge which is called forma-

tive because it evaluates the specific knowledge, skills and abilities of students

in order to guide teaching and learning (DiBello & Stout, 2007). Formative as-

sessment enables teachers to determine if students have learned what they were

supposed to, as well as ascertaining whether the educational intervention has

been effective in promoting specific learning or not. Depending on the results

of the assessment, further steps of teaching and learning are planned. Models

for formative assessment pinpoint students’ specific strengths and weaknesses by

assigning multidimensional skill profiles to them. No numerical representation of

students is obtained. The development of these models has been made possible

by the availability of much more powerful computing machines.

This thesis presents a formal model for assessing the knowledge of students

and the effectiveness of educational interventions. The theoretical framework is

knowledge space theory, which is a novel approach for the assessment of knowledge

proposed by Doignon and Falmagne in 1985.

Knowledge space theory represents a sharp departure from the traditional

approach, which is based on the numerical evaluation of some ”aptitude”. This

approach is based on the nineteenth century position that physics, and the as-

sociated methodological approach, was the model for other sciences to imitate.

Such a position is still influential today with a detrimental effect on fields, such as

the psychological sciences, whose phenomena of interest are of a different nature

than those of physics. Falmagne, Cosyn, Doignon, and Thiéry (2006) provided

a nice illustration of the limitations of a purely numerical description of some

phenomena by an analogy with sports. The full quotation is:

“It is true that the success of an athlete in a particular sport is often

described by a set of impressive numbers. So, imagine that some

committee of experts has carefully designed an ‘Athletic Quotient’
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or ‘A.Q.’ test, intended to measure athletic prowess. Suppose that

three exceptional athletes have taken the test, say Michael Jordan,

Tiger Woods and Pete Sampras. Conceivably, all three of them would

get outstanding A.Q.’s. But these high scores equating them would

completely misrepresent how essentially different from each other they

are. One may be tempted to salvage the numerical representation and

argue that the assessment, in this case, should be multidimensional.

However, adding a few numerical dimensions capable of differentiating

Jordan, Woods and Sampras would only be the first step in a sequence.

Including Greg Louganis or Pele to the evaluated lot would require

more dimensions, and there is no satisfactory end in sight. Besides,

assuming that one would settle for a representation in n dimensions,

for some small n equal 3, 4 or 5 say, the numerical vectors representing

these athletes would be poor, misleading expressions of the exquisite

combination of skills making each of them a champion in his own

specialty.” (Falmagne et al., 2006, p. 63).

Knowledge space theory is different in spirit from the traditional approach

to the assessment of knowledge and, consistently with the aims of formative

assessment, it provides a non-numerical, multidimensional representation of the

characteristics of a student.

Since it was first formulated, knowledge space theory has accumulated an

impressive body of theoretical results and developments. The most important

of these are reviewed in Doignon and Falmagne (1999), and more recently in

Falmagne and Doignon (2011). Moreover, it has been applied in a number of

different domains, such as elementary stochastic calculus, geometry, continuation

of number and letter series, chess and, surprisingly, sport. These applications are

collected in a book edited by (Albert & Lukas, 1999). However, the most sig-

nificant application is probably the one concerning the computer system ALEKS
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(acronym for Assessment and LEarning in Knowledge Spaces). ALEKS is an

internet-based, automated mathematics tutor which adaptively assesses students’

knowledge in subjects from basic mathematics to precalculus. It is currently used

for supporting teaching and learning in many countries (for details, see Falmagne

& Doignon, 2011; Falmagne et al., 2006).

This chapter is a brief introduction to knowledge space theory. The general

idea and the basic elements are outlined. In particular, the concepts are intro-

duced which represent the background of the model that is presented in this

thesis. No mathematical formalization is given here. First, the two basic con-

cepts of knowledge state and knowledge structure are introduced. Then, different

methods for building a knowledge structure in a given domain are reviewed. Em-

phasis is placed on a method which takes into account the skills underlying the

responses to the problems. Finally, there is a description of how a knowledge

structure can be empirically validated in a probabilistic framework. The reader

interested in further exploring the theoretical concepts is referred to Falmagne

and Doignon (2011) and to the specific literature which will be indicated when

appropriate.

1.1 Knowledge states and knowledge structures

Knowledge space theory is based on the notion of a field of knowledge that is

parsed into a possibly large set of “units of knowledge”. One such unit might be

a specific problem. In the field of high school algebra, for instance, a problem

concerning quadratic equations, such as 3x2 +5x−2 = 0. A knowledge domain is

therefore identified with a set Q of problems, each of which has a correct response.

A first key concept is that of knowledge state, which is the collection K ⊆ Q of

all the problems in the domain Q that a student is capable of solving. Not all the

2|Q| subsets of Q are plausible knowledge states. In general, the solution behaviors

in a knowledge domain will exhibit some dependencies. From the responses to
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some problems, inferences can sometimes be made regarding the responses to

other problems. These mutual dependencies in the solution behaviour determine

which subsets of Q are feasible knowledge states.

A second key concept is that of knowledge structure, which is a collection

K of knowledge states K of a knowledge domain Q. A knowledge structure is

assumed to contain at least the empty set ∅ and the full set Q, as it may always

be the case that none or all the problems are solved. There are different kinds of

knowledge structures. A structure that is closed under union (i.e., the union of

any two states is also a state of the structure) is a knowledge space. A structure

that is closed under intersection (i.e., the intersection of any two states is also a

state of the structure) is a simple closure space. A structure that is closed under

both union and intersection is a quasi ordinal space.

The aforementioned concepts are illustrated by an example. Consider a do-

main Q that contains five problems and is equipped with the knowledge structure

K = {∅, {1}, {2}, {3}, {2, 3}, {1, 2, 4}, {1, 3, 5}, Q}

The knowledge structure K can be graphically represented by ordering its

knowledge states by set inclusion as in Figure 1.1. This representation is known

as a Hasse diagram. In this example, not all subsets of Q have been assumed

to be knowledge states. In fact, the knowledge structure K contains eight states

out of thirty-two possible ones. Moreover, the structure is a simple closure space

because it is closed under intersection but not under union (e.g., {1}∪ {2} is not

a state of K).

1.2 How to build a knowledge structure

In applying knowledge space theory to a field of knowledge, the most impor-

tant stage lies in building the structure, that is, in finding out what the feasible
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Ø

{2, 3}

{1, 3, 5}

{1, 2, 4}

{2} Q

{1}

{3}

Figure 1.1: Hasse diagram of the knowledge structure K =

{∅, {1}, {2}, {3}, {2, 3}, {1, 2, 4}, {1, 3, 5}, Q}.

knowledge states are. The knowledge structure, indeed, represents the core ele-

ment which determines the quality of the assessment of knowledge.

Different methods have been suggested for building a knowledge structure.

They can be grouped into three classes according to the fact that the knowledge

structure is:

1. Extracted from the data collected on a sample of persons;

2. Derived from questioning experts in the knowledge domain under study;

3. Derived from considering the cognitive processes underlying the responses

to the problems.

There are essentially two methods which extract the structure from the data.

A first method is based on counting the frequencies of all the response patterns,

and on taking as feasible knowledge states the response patterns whose observed

frequencies exceed a specific threshold. This method has been illustrated, for

example, by Falmagne (1989), and Schrepp (1999a). A limit of this method is

that it is feasible only when enough response patterns are available. A slightly

different method is based on item tree analysis (Van Leeuwe, 1974), in which

logical implications between the problems are derived from an inspection of em-

pirical contingency tables for all possible pairs of problems. Developments and

applications of item tree analysis have been described, for example, by Held and
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Korossy (1998), Sargin and Ünlü (2009), and Schrepp (1999b, 2002, 2003). An

important limit of this method is that the knowledge structure resulting from the

analysis strongly depends on the choice of appropriate parameters values (e.g.,

frequency thresholds).

The methods which are based on the questioning of experts represent the typ-

ical way in which a knowledge structure is built. The experts are not directly

asked about what the knowledge states are because the knowledge states are

something that is abstract and difficult to convey in an exact manner. Rather,

experts’ awareness of the feasible knowledge states is indirectly derived by asking

questions such as: “Suppose that a student is not capable of solving problem q.

Could he nevertheless solve problem q′?”, and: “Suppose that a student is not

capable of solving problems q1, q2, . . . , qn. Could he nevertheless solve problem

q′?”. From the responses to questions of the first type, a quasi ordinal space is

derived, whereas from the responses to questions of the second type, a knowledge

space is derived. The algorithms for computerized querying procedures have been

described by Falmagne, Koppen, Villano, Doignon, and Johannesen (1990), Kop-

pen and Doignon (1990), and Messick (1989). Refinements and applications have

been reported by Cosyn and Thiéry (2000), Dowling (1993), Kambouri, Koppen,

Villano, and Falmagne (1994), and Koppen (1993). This method for determin-

ing a knowledge structure is tedious and time consuming, even for domains of

moderate size. Moreover, it is highly sensible to experts’ mistakes and does not

guarantee the validity of the knowledge structure that is obtained. Response data

collected on a sample of students have to be used to test and refine the knowledge

structure.

There are essentially two methods which derive a knowledge structure from

explicit hypotheses and assumptions about the cognitive processes underlying the

responses to the problems. A first method is based on task analysis, that is the

systematic examination of the content of the problems for extracting the relevant

components. Each component is associated with a demand of the problem, and
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it is supposed to contribute to its difficulty. The knowledge structure is then

derived from explicitly formulated principles about the component combinations

contained in each problem. Details about this method, together with a number of

applications, can be found in Albert and Held (1994), Albert and Lukas (1999),

and Lukas and Albert (1993). A second method is based on explicit assumptions

about the skills which underlie the responses to the problems. Each problem is

associated with the skills that are assumed to be useful or instrumental to solve it,

and the feasible knowledge states are derived from this association. Applications

of this method can be found in Albert and Lukas (1999), Düntsch and Gediga

(1995), and Gediga and Düntsch (2002). The structures derived by task analysis

or skill assignment have to be tested on response data.

An important feature of the last two methods is that they take into account

theoretical terms that may be interpreted psychologically, and formulates ex-

plicitly the link between demands or skills and the feasible knowledge states.

The knowledge structures derived from psychological theories about the cogni-

tive processes involved in the response process may be suitable to test the theories

empirically.

1.3 Skills and knowledge structures

In its original formalization, knowledge space theory was purely behavioristic.

Its focus was explicitly on the observable solution behaviour at the level of the

problems.

Following Falmagne et al. (1990), however, the scope of the theory was ex-

tended by taking into account the cognitive processes which underlie the ob-

servable solution behaviour. In subsequent independent developments, Doignon

(1994), Düntsch and Gediga (1995), Heller and Repitsch (2008), and Korossy

(1999) proposed various approaches to consider the skills and competencies that

are required to perform a task. Several results obtained in this area can be found
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in Albert and Lukas (1999).

The approach described here is based on the work by Doignon (1994), and

Falmagne et al. (1990). The assumption is made that there are some basic skills

which may consist in methods, notions, abilities, solution procedures, and so

on. Each problem is associated with the skills that are useful or instrumental

to solve it, and the feasible knowledge states are derived from this association.

There are three methods to formalize the linkage between skills and problems:

the conjunctive model, the disjunctive model, and the competency model.

In the conjunctive model, all the skills associated with a problem are required

in order to solve it. In the disjunctive model, only one of the skills associated

with a problem suffices to solve it. The knowledge structures delineated via the

conjunctive model are simple closure spaces, whereas those delineated via the

disjunctive model are knowledge spaces. The knowledge structures delineated

via the conjunctive and the disjunctive model are dual to each other.

As an example, consider four problems and three skills. Consider also that

each problem is associated with the skills that are relevant for solving it in ac-

cordance with the assignment represented in Table 1.1.

Table 1.1: Skill Assignment in the Conjunctive, Disjunctive and Competency
Model

Conjunctive and disjunctive model Competency model
Problem Skills Problem Competencies
1 {a, b} 1 {a, b}, {a, c}
2 {c} 2 {c}
3 {a, b, c} 3 {a}, {b, c}
4 {b} 4 {b}
Note. Letters from a to c refer to the three skills.

In the example, problems 2 and 4 are associated with one skill, problem 1 is

associated with two skills, and problem 3 is associated with three skills. With

three skills there are 23 = 8 different subsets of skills. Each subset of skills rep-

resents the hypothetical skill profile of a student. Table 1.2 lists the knowledge
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states delineated by each subset of skills via the conjunctive and disjunctive mod-

els. Note that the empty subset of skills always delineates the empty knowledge

state ∅, and that the full subset of skills always delineates the full knowledge state

Q.

Table 1.2: Knowledge States Delineated by each Subset of Skills via the Con-
junctive, Disjunctive and Competency Model

Subset of skills Kc Kd Kco

{} ∅ ∅ ∅
{a} ∅ {1, 3} {3}
{b} {4} {1, 3, 4} {4}
{c} {2} {2, 3} {2}
{a, b} {1, 4} {1, 3, 4} {1, 3, 4}
{a, c} {2} {1, 2, 3} {1, 2, 3}
{b, c} {2, 4} Q {2, 3, 4}
{a, b, c} Q Q Q
Note. Letters from a to c refer to the three skills. Kc, Kd and
Kco = knowledge state delineated via the conjunctive, disjunctive
and competency model, respectively.

The knowledge structure delineated via the conjunctive model is Kc = {∅, {2},

{4}, {1, 4}, {2, 4}, Q}, the one delineated via the disjunctive model is Kd = {∅,

{1, 3}, {2, 3}, {1, 2, 3}, {1, 3, 4}, Q}. Note that Kc is a simple closure space, that

Kd is a knowledge space, and that Kc and Kd are dual to each other.

The conjunctive model and the disjunctive model are particular cases of a

more general model. In the competency model, each problem is associated with

a collection of subsets of skills. Each subset of skills is called competency, and it

represents a method or a strategy for solving the problem. Possessing just one of

these competencies is sufficient for solving the problem, but all the skills contained

in it are necessary. The knowledge structure delineated by a skill multimap is a

general structure, that is, it is not necessarily closed under union or intersection.

As an example, consider four problems and three skills. Each problem is

associated with its competencies according to Table 1.1. Problems 2 and 4 are

associated with one competency, and problems 1 and 3 are associated with two
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competencies. The knowledge states delineated by each subset of skills via the

competency model are listed in Table 1.2. The knowledge structure is Kco =

{∅, {2}, {3}, {4}, {1, 2, 3}, {1, 3, 4}, {2, 3, 4}, Q}.

Note that this structure is closed under neither union (e.g., {2} ∪ {3} is not

a state of Kco) nor intersection (e.g., {1, 2, 3} ∩ {1, 3, 4} is not a state of Kco).

1.4 Probabilistic knowledge structures

The knowledge structure is a deterministic model of the organization of knowledge

in a certain domain. As such, it does not provide a realistic prediction of the

responses that the students give to the problems. A probabilistic framework can

be introduced to overcome this limitation.

There are essentially two ways in which probabilities must be considered.

Firstly, it is expected that the knowledge states occur with different frequencies

within the population of reference. It is therefore reasonable to introduce a prob-

ability distribution on the knowledge states. Secondly, it is expected that there

is not a perfect correspondence between the knowledge state of a student and his

response pattern, that is, between the problems that the student is capable of

solving and those he actually solves. A student who is able to solve a problem

might be careless in responding, and make an error. In contrast, a student who

is not able to solve a problem might guess the correct response. A distinction

has therefore to be made between the knowledge state, which is a latent con-

struct, and the response pattern, which is a manifest indicator of the knowledge

state. If careless errors and lucky guesses are committed, all the 2|Q| subsets of Q

might be response patterns generated by the knowledge states in the structure.

It is therefore reasonable to introduce conditional probabilities of the response

patterns given the knowledge states.

Falmagne and Doignon (1988a) have developed a model of this type, which

is known as the Basic Local Independence Model (BLIM). The model specifies
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the probabilities of the response patterns as a function of the probabilities of the

knowledge states and of the conditional probabilities of the response patterns,

given the knowledge states. The conditional probabilities are governed by the

careless error and lucky guess probabilities of the problems on the basis of the

assumption that the responses to the problems are locally independent, given the

knowledge state of the student. The goodness-of-fit of the model to the data can

be assessed by standard statistics, such as Pearson’s Chi-square and the likelihood

ratio.

The BLIM is the fundamental model in knowledge space theory. Applications

have been described, for example, by Falmagne et al. (1990), Stefanutti (2006),

and Taagepera, Potter, Miller, and Lakshminarayan (1997). The model has been

the foundation of several approaches to the assessment of knowledge and learning.

Some of them are reviewed in Doignon and Falmagne (1999), and Falmagne and

Doignon (2011). The model presented in this thesis is based on the BLIM as well.



Chapter 2

Assessing learning processes with

the Gain-Loss Model

Formative assessment evaluates specific knowledge of students and the effective-

ness of the educational interventions in promoting specific learning. Depending on

the results of the assessment, further steps of teaching and learning are planned.

Within the context of formative assessment, the Gain-Loss Model (GaLoM,

Robusto, Stefanutti, & Anselmi, 2010; Stefanutti, Anselmi, & Robusto, in press)

is presented, which is a formal model for assessing learning processes. The GaLoM

assesses the knowledge of students in the different steps of the learning process,

and the effectiveness of the educational intervention in promoting specific learn-

ing. Such assessments can be obtained with respect to the classroom and to

individual students. Therefore, the model provides the teacher with diagnostic

information on two different levels. At the classroom level, it informs the teacher

about the effectiveness of the educational program that has been carried out and

of the testing tool (e.g., a collection of problems) that has been used to assess

the knowledge. Moreover, at the student level, the model provides information

that enables the teacher to select the best educational intervention for the specific

weaknesses of each student.

13
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The chapter is organized as follows. In the next paragraph, the GaLoM is

introduced, and the aspects concerning mathematical specification and parameter

estimation are described. Next, a simulation study that assesses identifiability

and goodness-of-recovery of the model is provided. Then, an empirical application

that tests the capability of the model of distinguishing between an effective and

an ineffective educational intervention is presented. Finally, practical benefits

for teaching and learning that derive from using the model are explored and

discussed, and a comparison with other models presented in literature is provided.

2.1 The Gain-Loss Model

In knowledge space theory (Doignon & Falmagne, 1985, 1999), the knowledge

of a student in a particular domain is operazionalized as the observable solu-

tion behaviour of that student on a specific set of problems. In contrast, in the

present approach the knowledge of a student is conceptualized in terms of the

unobservable skill profile which characterizes that student and which accounts

for his observable solution behaviour. According to the competence-performance

conception (Korossy, 1999), the two ways of conceptualizing knowledge respec-

tively concern levels of performance and competence. Given a collection Q of

problems, the performance state of a student is the collection K ⊆ Q of all the

problems that this student is capable of solving. A performance structure is a

pair (Q,K), where K is a collection of subsets of Q. Given a collection S of skills,

the competence state of a student is the collection C ⊆ S of non directly observ-

able skills possessed by him and which underlie his observable responses to the

problems. A competence structure is then a pair (S, C), where C is a collection

of subsets of S. In the sequel, the performance structure and the competence

structure will be just indicated with K and C1.

1The performance state and the performance structure correspond to what Doignon and

Falmagne denote with knowledge state and knowledge structure.
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The GaLoM focuses on the skills that the students must possess in order to

solve the problems. The skills are elementary and indecomposable units of knowl-

edge that may represent either declarative or procedural knowledge, including

notions, abilities, solution procedures, tricks, and so on.

The GaLoM models the learning process of the students as a function of the

interaction between their competence state and the effect of an educational inter-

vention, called learning object. The term learning object is used here to represent

every didactic intervention that supports learning and has the potential capabil-

ity of changing the competence state of the students. Learning objects could

be general courses on particular topics, instructional content (including texts,

web pages, images, sounds, videos), glossaries of terms, quizzes, exercises, case

studies, educational games, and so on. The model assesses the effect of learning

objects on the attainment of specific skills which are required to solve problems in

a given field of knowledge. The relation between skills and problems is established

by means of a competency model (Doignon, 1994; Doignon & Falmagne, 1999),

in which a skill multimap associates each problem with a collection of subsets of

skills that are necessary and sufficient to solve it.

The GaLoM is characterized by five types of parameters. The parameter

concerning the initial probability of the skills specifies what skills the students

possess before the teaching begins. The gain and loss parameters respectively

specify if the students attain and eventually lose specific skills as a result of the

learning object they have been presented with. The careless error parameter

specifies whether the students who master a problem fail it through inattention,

whereas the lucky guess parameter specifies whether the students who do not

master a problem solve it by guessing.
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2.1.1 Mathematical specification of the Gain-Loss Model

The GaLoM assesses the effect of m different learning objects in processes with

two assessement steps. The experimental design is t1 → Io → t2, where I

represents the educational intervention carried out with learning object o ∈

{1, 2, . . . ,m}, and t1 and t2 are the pretest and posttest, respectively.

Let S be a finite and non-empty set of discrete skills, and C be any subset of

S. C represents the unknown competence state of a student. Let C1 and C2 be

two discrete random variables whose realizations are the competence states of a

student at the pretest and posttest, respectively. Let Q be a finite and non-empty

set containing n dichotomous problems, and R1 and R2 be two discrete random

variables whose realizations are the response patterns r ∈ {0, 1}n of a student at

the pretest and posttest, respectively.

Assumptions of the model are:

1. The response patterns R1 and R2 are locally independent, given the states

C1 and C2: P (R1,R2|C1,C2) = P (R1|C1)P (R2|C2);

2. The initial state C1 does not depend on learning object o;

3. State C2 depends on previous state C1 and on learning object o.

It follows that the conditional probability that r1 and r2 are the response

patterns of a randomly sampled student at the pretest and posttest, given learning

object o, is:

P (R1 = r1,R2 = r2|o) =
∑
C⊆S

∑
D⊆S

P (R1 = r1|C1 = C)P (R2 = r2|C2 = D)

P (C2 = D|C1 = C, o)P (C1 = C), (2.1)

where P (C1 = C) is the initial probability of the state C at the pretest, P (C2 =

D|C1 = D|C1 = C, o) is the transition probability from state C at the pretest to

state D at the posttest, P (R1 = r1|C1 = C) and P (R2 = r2|C2 = D) are the
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emission probabilities of response patterns r1 and r2 at the pretest and posttest,

respectively.

Equation 2.1 is the basic equation of the model. Assuming total indepen-

dence among the skills in S, the probability P (C1 = C) is resolved according to

Equation 2.2:

P (C1 = C) =
∏
s∈S

πw(s,C)
s (1− πs)1−w(s,C), (2.2)

where πs = P (s ∈ C1) is the probability that skill s belongs to the initial com-

petence state, and w(s, C) ∈ {0, 1} is equal to 1 if skill s belongs to state C.

Given the independence among the skills modelled at time t1, the presence

or absence of a skill at time t2 only depends on its presence or absence at a

previous time. Note that the assumption of independence among the skills is not

a necessary condition for the models to be applied.

Let gain γos be the probability P (s ∈ C2|s /∈ C1, o) that the students pre-

sented with learning object o gain the skill s going from the pretest to the posttest,

and let loss λos be the probability P (s /∈ C2|s ∈ C1, o) that the same students

lose it. The conditional probability of state D at the posttest, given state C at

the pretest and learning object o, turns out to be:

P (C2 = D|C1 = C, o) =
∏
s∈S

[
λ1−w(s,D)
os (1− λos)w(s,D)

]w(s,C)

[
γw(s,D)
os (1− γos)1−w(s,D)

]1−w(s,C)
,

where w(s, C) ∈ {0, 1} (resp. w(s,D)) is equal to 1 if skill s belongs to state C

(resp. D).

Via the competency model, a skill multimap associates each problem with a

collection of subsets of skills that are necessary and sufficient to solve it (Doignon,

1994; Doignon & Falmagne, 1999). Each subset of skills is called competency. A

skill multimap is a triple (Q,S, δ), where δ is a mapping from Q to the powerset

of 2S such that δ(q) 6= ∅ for each q ∈ Q (i.e., each problem is associated with

at least one competency), and C 6= ∅ for each C ∈ δ(q) (i.e., each competency
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contains at least one skill). Each subset C in δ(q) represents a competency for

q. The performance state delineated by C ⊆ S via the competency model is

specified by:

M(C) = {q ∈ Q : C ′ ⊆ C for some C ′ ∈ δ(q)},

and the performance structure delineated by the skill multimap (Q,S, δ) is:

K = {M(C)|C ⊆ S}.

The performance structure delineated by a skill multimap is a general struc-

ture, that is, it is not necessarily closed under union or intersection (Doignon &

Falmagne, 1999).

Let careless error αq be the probability P [Rq = 0|q ∈M(C)] that the students

fail problem q given that they possess a competence for it, and let lucky guess βq

be the probability P [Rq = 1|q /∈ M(C)] that the same students solve problem q

given that they do not possess any competence for it. Therefore, careless error

and lucky guess are the error parameters that govern the emission probabilities of

response patterns. Assuming responses to the problems are locally independent2,

given the student’s competence state, the conditional probability of response

pattern r, given state C, is:

P (Rt = r|Ct = C) =
n∏
q=1

[
α1−rq
q (1− αq)rq

]v(q,C) [
βrqq (1− βq)1−rq

]1−v(q,C)
,

where t ∈ {1, 2}, v(q, C) ∈ {0, 1} is equal to 1 if problem q is solvable by state

C, and rq ∈ {0, 1} is equal to 1 if problem q is solved.

2Local independence specifies that, conditional on the competence states of the student,

the responses to the problems are independent. That is, any correlation between responses is

completely explained by the states. Local independence is the basic assumption underlying

latent variable models, such as factor analysis, latent trait analysis, and latent class analysis.

Details can be found in Lazarsfeld and Henry (1968).
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2.1.2 Parameter estimation of the Gain-Loss Model

In the GaLoM, an initial probability πs is estimated for each skill s ∈ S, a gain

parameter γos and a loss parameter λos for each learning object o ∈ {1, 2, . . . ,m}

and each skill s, a careless error parameter αq and a lucky guess parameter βq for

each problem q ∈ Q. Therefore, the total number of parameters to be estimated

is 2n + (1 + 2m)|S|, where n is the number of problems, m is the number of

learning objects, and |S| is the cardinality of the set of skills. The MATLAB

code for estimating and testing the GaLoM is provided in Appendix A.1.

Since the GaLoM is essentially a latent class model where the latent classes

are the competence states in C, maximum likelihood estimates of the parameters

(Stefanutti et al., in press) can be computed by an application of the Expectation-

Maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977).

Let Xt be a i × n binary matrix each row of which is the response pattern

of student j ∈ {1, 2, . . . , i} to the n problems in Q at time t ∈ {1, 2}. Each cell

xtjq ∈ {0, 1} of Xt is equal to 1 if student j solved problem q ∈ {1, 2, . . . , n}

at time t. The observed data sample is the binary matrix X = (X1,X2) with

dimensions i× 2n. Let θ = (α, β, π, γ, λ) be the vector of all model parameters,

and let o = (o1, o2, . . . , oi)
′ be the vector that associates each student to the

learning object he was presented with. The observed likelihood of X1 and X2,

given the model parameters θ and the learning objects specified by o, is derived

from 2.1. Assuming multinomial sampling, it takes on the form:

l(X1,X2|θ,o) =
i∏

j=1

[∑
C⊆S

∑
D⊆S

P (x1j|C)P (x2j|D)P (D|C, oj)P (C)

]
,

where x1j (resp. x2j) is the jth row-vector of matrix X1 (resp. X2).

The competence states of the students are obviously unknown, but, if there

was complete information, each student j would be represented by a quadruple

(x1j,x2j, Y1j, Y2j), where x1j (resp. x2j) is a 1 × n binary vector representing

the response pattern of j at time 1 (resp. time 2), and Y1j (resp. Y2j) is the
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competence state of j at time 1 (resp. time 2). Therefore, the complete data

sample would be the quadruple (X1,X2,Y1,Y2), and the complete data log-

likelihood of the model would turn out to be:

ln l(X1,X2,Y1,Y2|θ,o) =
i∑

j=1

lnP (x1j,x2j, Y1j, Y2j|θ,o),

where P (x1j,x2j, Y1j, Y2j|θ,o) is the joint probability of response patterns x1j

and x2j and of competence states Y1j and Y2j given the model parameters θ and

the learning objects specified by o.

In each iteration of the EM algorithm, the conditional expectation of the com-

plete data log-likelihood is maximized, given the observed data X and the model

parameters θ′ obtained in the previous iteration of the algorithm. Indicating with

U(θ,θ′) this conditional expectation, the following derivation is made:

U(θ,θ′) = E[ln l(X1,X2,Y1,Y2|θ,o)|X,θ′]

= E

 i∑
j=1

lnP (x1j ,x2j , Y1j , Y2j |θ, oj)|X,θ′


=
i∑

j=1

E[lnP (x1j ,x2j , Y1j , Y2j |θ, oj)|X,θ′]

=
i∑

j=1

∑
C⊆S

∑
D⊆S

[lnP (x1j ,x2j , C,D|θ, oj)]P (C,D|x1j ,x2j , oj ,θ
′)

=
i∑

j=1

∑
C⊆S

∑
D⊆S

ln[P (x1j |C)P (x2j |D)P (D|C, oj)P (C)]P (C,D|x1j ,x2j , oj ,θ
′),

where oj is the learning object o that student j has been presented with.

The Bayesian posterior probability of competence state at pretest C and

posttest D, given response pattern at pretest x1j and posttest x2j, learning object

oj, and previous estimates of model parameters θ′, is:

P (C,D|x1j ,x2j , oj ,θ
′) =

P (x1j ,x2j , C,D|oj ,θ
′)

P (x1j ,x2j |oj ,θ
′)

=
P (x1j |C,θ′)P (x2j |D,θ′)P (D|C, oj ,θ

′)P (C|θ′)∑
C′
∑

D′ P (x1j |C ′,θ′)P (x2j |D′,θ′)P (D′|C ′, oj ,θ
′)P (C ′|θ′)

.

For the purposes of brevity, in the sequel P (C,D|x1j,x2j, oj,θ
′) will be indi-

cated with bjCD.
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The conditional expected log-likelihood U(θ,θ′) can be broken up into three

functions in the following way:

U(θ,θ′) = U1(θ,θ′) + U2(θ,θ′) + U3(θ,θ′), (2.3)

where U1(θ,θ′), U2(θ,θ′), and U3(θ,θ′) are defined as:

U1(θ,θ′) =
i∑

j=1

∑
C⊆S

∑
D⊆S

bjCD lnP (C),

U2(θ,θ′) =
i∑

j=1

∑
C⊆S

∑
D⊆S

bjCD lnP (D|C, oj),

and

U3(θ,θ′) =
i∑

j=1

∑
C⊆S

∑
D⊆S

bjCD[lnP (x1j|C) + lnP (x2j|D)].

Note that U1 only depends on the initial probabilities πs of the skills, U2 only

depends on gain γos and loss λos parameters, and U3 only depends on careless

error αq and lucky guess βq parameters.

Estimation of the initial probabilities of the skills

In each iteration of the EM algorithm, the function U1(θ,θ′) is maximized by

setting to zero its first partial derivatives with respect to the parameter πs:

∂U1(θ,θ′)

∂πs
=
∑
j

∑
C

bjC·

[
w(s, C)

πs
− 1− w(s, C)

1− πs

]
, (2.4)

where bjC· =
∑

D bjCD, and w(s, C) ∈ {0, 1} is equal to 1 if skill s belongs to

state C. By setting the right-hand term of (2.4) to zero, it follows that:

(1− πs)
∑
j

∑
C

bjC·w(s, C) = πs
∑
j

∑
C

bjC·[1− w(s, C)]. (2.5)

By solving (2.5) for πs, one obtains:

πs =

∑
j

∑
C bjC·w(s, C)∑
j

∑
C bjC·

,
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and, given
∑

C bjC· = 1, it follows that:

πs =
1

i

∑
j

∑
C

bjC·w(s, C). (2.6)

Equation (2.6) represents the adjustment of the estimates of parameter πs in

each iteration of the EM algorithm.

Estimation of the gain and loss parameters

In each iteration of the EM algorithm, the function U2(θ,θ′) is maximized by

setting to zero its first partial derivatives with respect to the parameters γos and

λos. The first partial derivative of U2(θ,θ′) with respect to the parameter γos

turns out to be:

∂U2(θ,θ′)

∂γos
=
∑
j∈Jo

∑
C

∑
D

bjCD

[
[1− w(s, C)]w(s,D)

γos
− [1− w(s, C)][1− w(s,D)]

1− γos

]
,

(2.7)

where Jo = {j : oj = o} is the set of the subjects presented with learning object

o, and w(s, C) ∈ {0, 1} (resp. w(s,D)) is equal to 1 if skill s belongs to state C

(resp. D). By setting the right-hand term of (2.7) to zero, it follows that:

(1− γos)
∑
j∈Jo

∑
C

∑
D

bjCD[1− w(s, C)]w(s,D) =

γos
∑
j∈Jo

∑
C

∑
D

bjCD[1− w(s, C)][1− w(s,D)]. (2.8)

By solving (2.8) for γos, one obtains the equation for the adjustment of the

estimates of such parameters in each iteration of the EM algorithm:

γos =

∑
C

∑
D boCD[1− w(s, C)]w(s,D)∑

C boC·[1− w(s, C)]
,

where boCD =
∑

j∈Jo
bjCD, and boC· =

∑
D boCD.

Following a similar development for the parameters λos, the equation for the

adjustment of the estimates of such parameters turns out to be:

λos =

∑
C

∑
D boCDw(s, C)[1− w(s,D)]∑

C boC·w(s, C)
.
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Estimation of the careless error and lucky guess parameters

In each iteration of the EM algorithm, the function U3(θ,θ′) is maximized by

setting to zero its first partial derivatives with respect to the parameters αq and

βq. The first partial derivative of U3(θ,θ′) with respect to the parameter αq turns

out to be:

∂U3(θ,θ′)

∂αq
=

i∑
j=1

∑
C⊆S

∑
D⊆S

bjCD

[
(1− x1jq)v(q, C) + (1− x2jq)v(q,D)

αq

−x1jqv(q, C) + x2jqv(q,D)

1− αq

]
, (2.9)

where v(q, C) ∈ {0, 1} (resp. v(q,D)) is equal to 1 if problem q is solvable by

state C (resp. D). By setting the right-hand term of (2.9) to zero, it follows that:

(1− αq)
∑
j

∑
C

∑
D

bjCD[(1− x1jq)v(q, C) + (1− x2jq)v(q,D)] =

αq
∑
j

∑
C

∑
D

bjCD[x1jqv(q, C) + x2jqv(q,D)]. (2.10)

By solving (2.10) for αq, one obtains the equation for the adjustment of the

estimates of such parameters in each iteration of the EM algorithm:

αq =

∑
j

∑
C [bjC·(1− x1jq) + bj·C(1− x2jq)]v(q, C)∑

j

∑
C(bjC· + bj·C)v(q, C)

,

where bjC· =
∑

D bjCD, and bj·C
∑

D bjDC .

Following a similar development for the parameters βq, the equation for the

adjustment of the estimates of such parameters turns out to be:

βq =

∑
j

∑
C(bjC·x1jq + bj·Cx2jq)[1− v(q, C)]∑
j

∑
C(bjC· + bj·C)[1− v(q, C)]

.

Computation of the initial probabilities, gain and loss probabilities for

individual students

The model specifications presented so far concern the use of the GaLoM at the

classroom level. However, once the model has been estimated and validated on a
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suitable sample of students, it can be used to obtain diagnostic information at the

student level. The MATLAB code for computing initial probabilities, gain and

loss probabilities for individual students is provided in Appendix A.2. Careless

error and lucky guess probabilities for individual students are not given because

they are more informative at the group level for detecting misspecifications of the

model and noise of the data.

Individual student information can be obtained through a computation of the

relevant conditional probabilities. To make things a little bit simpler, a single

group of students is considered (e.g., all students receiving a specific learning

object). An extension to more than one group is, however, straightforward.

The probability that C ⊆ S is the initial competence state of a student j,

given the student’s initial response pattern rj1 and the model parameters θ =

(α, β, π, γ, λ), is obtained by a straightforward application of Bayes’ theorem:

P (C1 = C|R1 = rj1,θ) =
P (R1 = rj1|C1 = C,θ)P (C1 = C|θ)∑

X⊆S P (R1 = rj1|C1 = X,θ)P (C1 = X|θ)
, (2.11)

where P (C1 = C|θ) is regarded as the probability that the initial knowledge state

of a randomly sampled student is C.

Then, the probability that student j possesses skill s ∈ S at the time of

the pretest is simply the probability of being, at that time, in any of the states

containing s:

π̂js = P (s ∈ C1|R1 = rj1,θ) =
∑
C∈Cs

P (C1 = C|R1 = rj1,θ), (2.12)

where Cs = {C ⊆ S : s ∈ C} is the collection of all states containing s. By

inserting (2.11) into (2.12) one obtains:

π̂js =

∑
C∈Cs P (R1 = rj1|C1 = C,θ)P (C1 = C|θ)∑
X⊆S P (R1 = rj1|C1 = X,θ)P (C1 = X|θ)

.

The gain and loss probabilities for each single student and each skill are now

considered. The joint probability that the initial and final states of student j

are, respectively, C1 = C and C2 = D(C,D ⊆ S) can be derived from the
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basic equation of the GaLoM (Equation 2.1). It sufficies to recall that, for the

specific assumptions of the model, the joint probability P (R1,R2,C1,C2|θ) can

be factored as:

P (R1,R2,C1,C2|θ) = P (R1|C1,θ)P (R2|C2,θ)P (C2|C1,θ)P (C1|θ).

Applying Bayes’ theorem one obtains:

P (C,D|rj1, rj2,θ) =
P (rj1|C,θ)P (rj2|D,θ)P (D|C,θ)P (C|θ)∑

X⊆S
∑

Y⊆S P (rj1|X,θ)P (rj2|Y,θ)P (Y |X,θ)P (X|θ)
.

This equation is at the basis of the computation of individual gain and loss

probabilities. The gain probability concerns the acquisition of a new skill s ∈ S.

It is defined as the conditional probability that s is in the final state C2, given

that it was not in the initial state C1 of the student. Indicating with C̄s = 2S \ Cs
the collection of all states not containing s,

P (s /∈ C1, s ∈ C2|rj1, rj2,θ) =
∑
C∈C̄s

∑
D∈Cs

P (C,D|rj1, rj2,θ),

from which one obtains the gain probability for student j and skill s:

γ̂js = P (s ∈ C2|s /∈ C1, rj1, rj2,θ)

=
P (s /∈ C1, s ∈ C2|rj1, rj2,θ)

1− P (s ∈ C1|rj1,θ)

=
1

1− π̂js

∑
C∈C̄s

∑
D∈Cs

P (C,D|rj1, rj2,θ).

A similar development leads to the loss probability:

λ̂js = P (s /∈ C2|s ∈ C1, rj1, rj2,θ)

=
P (s ∈ C1, s /∈ C2|rj1, rj2,θ)

P (s ∈ C1|rj1,θ)

=
1

π̂js

∑
C∈Cs

∑
D∈C̄s

P (C,D|rj1, rj2,θ).
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2.2 A simulation study

The simulation study tests the GaLoM with respect to model identifiability and

goodness-of-recovery. In particular, considering different levels of information and

noise in the data, and effects of the learning object on the skills, it investigates

under which conditions the model parameters are uniquely determined and well-

recovered.

2.2.1 Simulation of data sets and estimation of the models

Eight thousand random data sets were generated according to the GaLoM and 16

conditions. These conditions were produced by considering two ratios between the

number of problems and underlying skills, four combinations of learning object

effects in gaining and losing the skills, and two levels of noise in the data. With

respect to the first, two collections with 10 and 20 problems were generated, and

five skills were set to underlie both. Each problem of the two collections has been

associated with its competencies according to the skill multimaps represented

in Table 2.1. The two resulting performance structures contain 32 states, and

were used to generate the data for the conditions with 10 and 20 problems. The

learning object was set to highly affect both gain and loss of the skills (γtrue and

λtrue ≥ .66), to highly affect gain and poorly affect loss (γtrue ≥ .66;λtrue ≤ .33),

to poorly affect gain and highly affect loss (γtrue ≤ .33;λtrue ≥ .66), to poorly

affect both gain and loss (γtrue and λtrue ≤ .33)3. The noise in the data was set

to be low (αtrue and βtrue ≤ .1) in one case, and medium (αtrue and βtrue ≤ .3) in

the other case.

The true initial probabilities of the skills πtrue were set to be in the interval

3High loss parameters such as those considered in the study would be improbable in real

educational settings. In fact, they describe a situation which would only occur when learning

objects teach false knowledge. Regardless of their plausibility, it was decided to include these

parameters in order to test the functioning of the model under extreme conditions.
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Table 2.1: Competency Assignment in Collections with 10 and 20 Problems
10 Problems collection 20 Problems collection

Problem Competencies Problem Competencies Problem Competencies
1 {a} 1 {a} 11 {b, c, e}, {a, b, c}
2 {b} 2 {b} 12 {a, b, c, d}, {c, d, e}
3 {c} 3 {c} 13 {d, e}, {a, b, d}
4 {d} 4 {d} 14 {b, c}
5 {a, b}, {e} 5 {e} 15 {b, d}
6 {b, e} 6 {a, b}, {e} 16 {b, c, d, e}
7 {c, e} 7 {b, e} 17 {a, c, d, e}
8 {c, d} 8 {c, e}, {a, b, c} 18 {a, c, e}
9 {a, b, c}, {b, c, e} 9 {c, d} 19 {a, c}
10 {a, b, c, d}, {c, d, e} 10 {a, e} 20 {b, c, d}
Note. Letters from a to e refer to the five skills.

[.1, .9]. This choice was informed by a preliminary set of simulations where it

was observed that, with very high or very low initial probabilities, it becomes

difficult to estimate gain and loss probabilities. This occurs because, when the

initial probability of a skill is very close to, for example, 1, the variance of such

a skill in the sample is extremely small. Therefore, it is not easy to estimate the

probability of gaining the skill in the few students who do not possess it in the

pretest. However, it should be noted that, when the initial probability of a skill

is very high, estimating gain probability of such a skill is negligible. The same

thing stands for estimating loss probability of a skill when the initial probability

is very low. The true model parameters were randomly generated according to

the aforementioned constraints. Initial probabilities of the skills, and gain and

loss parameters, were fixed across the two noise conditions, whereas they varied in

the conditions concerning the number of problems and the learning object effect.

For each of the 16 conditions, 500 random data sets were simulated by using

a parametric bootstrap (see, e.g., Langeheine, Pannekoek, & van de Pol, 1996;

von Davier, 1997). The number of response patterns was set to 1, 000 for each

data set.

For each of the 500× 16 random data sets, the models were estimated which

incorporated the performance structures used to generate the data.
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2.2.2 Testing model identifiability and goodness-of-recovery

Model identifiability was tested in each condition. A rigorous test for identifia-

bility can be accomplished by checking if the Hessian matrix is positive definite

and the Jacobian matrix is non-singular (see, e.g., Arminger, Clogg, & Sobel,

1995). Such a strict analysis goes beyond the purposes of exploring the func-

tioning of the GaLoM in different conditions. Model identifiability was tested

in the following way. One of the 500 simulated data sets was randomly selected

from each condition, and the model parameters were estimated 100 times, by

randomly varying their initial values between 0 and 1. The α and β parameters

were randomly generated between 0 and .5 because, when they are higher than

.5, their interpretation as lucky guess and careless error is meaningless. A model

was taken to be identifiable when the standard deviations were less than .01 for

all the parameters.

The goodness-of-recovery was tested by considering the bias between the true

parameters and the mean of the parameters estimates reproduced on the 500

simulated data sets.

2.2.3 Results

Concerning the problem of identifiability, the models are identifiable (i.e., SD <

.01 for all parameters) in all the conditions with 20 problems, and in the condition

γtrue and λtrue ≤ .33 with 10 problems. In the aforementioned conditions, the

models are identifiable with both levels of noise in the data. On the contrary,

at least one parameter has multiple solutions in the other conditions with 10

problems. This result suggests that model identifiability depends on the ratio

between the number of problems and that of underlying skills, and on the learning

object effect.

The following part concerns the goodness-of-recovery. Only the conditions

in which the model is identifiable are considered. For the condition γtrue and
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λtrue ≤ .33 with 10 problems and noise ≤ .1, Figure 2.1 depicts the true parame-

ters (x axis) plotted versus the mean of the parameter estimates (and the related

standard errors) reproduced on the 500 simulated data sets (y axis). The empir-

ical biases of the estimates are negligible for most of the parameters. Standard

errors of the estimates are also quite small. Figure 2.2 depicts the recovery of

the model parameters for the same condition with noise ≤ .3. It can be seen

that empirical biases and standard errors of the estimates are larger than in the

condition with noise ≤ .1.
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Figure 2.1: True parameters (x axis) versus mean of the parameter estimates

(and related standard errors) reproduced on the simulated data sets (y axis).

Condition γ and λ ≤ .33 with 10 problems and noise ≤ .1. The straight line

x = y is added for reference.

Figure 2.3 depicts the four conditions with 20 problems and noise ≤ .1. The

empirical bias of the estimates is negligible for all the parameters when γtrue and

λtrue ≥ .66, γtrue ≥ .66 and λtrue ≤ .33, and γtrue and λtrue ≤ .33, and it is rather

high for a few parameters when γtrue ≤ .33 and λtrue ≥ .66.

A closer look at the latter condition highlights that there is a relationship

among the parameters with the highest biases. These parameters are the γ and

λ of skill a, and the α of problem 1, which is associated with skill a (see lower left

diagram in Figure 2.3). Considering that skill a has the lowest initial probability

(πtrue = .26) and an extremely high loss probability (λtrue = .97), the cause of
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Figure 2.2: True parameters (x axis) versus mean of the parameter estimates

(and related standard errors) reproduced on the simulated data sets (y axis).

Condition γ and λ ≤ .33 with 10 problems and noise ≤ .3. The straight line

x = y is added for reference.

the biases is understood. It is difficult for the GaLoM to reproduce the high loss

of a skill when the initial probability of that skill is low. The underestimation of

the loss probability of skill a (λrep = .77) is compensated by the overestimation

of its gain probability (γtrue = .03; γrep = .23) and that of the careless error of

problem 1 (αtrue = .02;αrep = .34). It is reasonable to hypothesize that the effect

on problem 1 is stronger than that on the other problems that are associated with

skill a because problem 1 is only associated with skill a. The estimates concerning

the initial probability of skill a and the lucky guess of problem 1 are unbiased.

Perhaps the biases in the present condition are not due to the learning object

effect that is considered but to the specific values of the true parameters that

were used for generating the data. In the other three conditions there are skills

neither with small initial probabilities and very high loss probabilities nor with

high initial probabilities and very high gain probabilities, and all the parameters

are well-recovered.

Figure 2.4 depicts the four conditions with 20 problems and noise ≤ .3. The

empirical biases and standard errors of the estimates become larger than those

of the conditions with noise ≤ .1. This result suggests that the model is capable
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Figure 2.3: True parameters (x axis) versus mean of the parameter estimates

(and related standard errors) reproduced on the simulated data sets (y axis).

Conditions with 20 problems and noise ≤ .1. The straight line x = y is added for

reference.

of recovering the true parameters. Goodness-of-recovery improves when the gain

and loss probabilities of the skills are not too high with respect to their initial

probabilities, as well as when the noise in the data is low.

2.2.4 Discussion

The GaLoM was tested in a simulation study with respect to model identifiability

and goodness-of-recovery. Different levels of information and noise in the data,

and effects of the learning object on the skills have been considered.

Model identifiability seems to depend on the ratio between the number of

problems and underlying skills, and on the learning object effect. It is reasonable

to expect that data provide enough information about the skills so that stable

and reliable estimates can be obtained. The simulations show that, when the

skills are assessed by means of a small number of problems, compensations among
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Figure 2.4: True parameters (x axis) versus mean of the parameter estimates

(and related standard errors) reproduced on the simulated data sets (y axis).

Conditions with 20 problems and noise ≤ .3. The straight line x = y is added for

reference.

model parameters are not excluded. The analysis of the parameters with multiple

solutions highlights that there is a relation between the α and β probabilities of

a problem and the π,γ, and λ probabilities of the skills that are associated with

that problem. This is the case, for example, for condition γtrue and λtrue ≥ .66

with 10 problems and noise ≤ .1, in which the parameters that compensated

each other were the π, γ and λ of skill a, and the α and β of problem 1, that was

associated with that skill.

Among the conditions with 10 problems, γtrue and λtrue ≤ .33 was the only

one in which the model was identifiable. This condition describes a situation in

which there is no change between the two assessment steps. Therefore, even if

it does not provide much information, this information is consistent in the two

assessment steps. This could be the reason for which it has been possible to

obtain unique estimates of the parameters.

The level of information in the data is important for a model to be identifiable
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in the different conditions of learning object effect. Beyond the simple ratio

between the number of problems and underlying skills, it is reasonable to expect

that an important role in model identifiability is played by the way the problems

and the skills are related to each other, that is, by the specification of the skill

multimap. Moreover, it is reasonable to expect that the level of noise in the data

may affect model identifiability, even if this has not been the case in the preset

simulations.

In all cases with no identification problems, the model is able to recover the

true parameters. Not surprisingly, recovery of parameters improves when the

noise in the data is low. Goodness-of-recovery depends on the values of initial

probabilities, and gain and loss probabilities. In fact, it is difficult for the GaLoM

to reproduce a very high loss of a skill when the initial probability of that skill

is low. It is reasonable to expect that the same thing holds for reproducing a

very high gain when the initial probability is high. This result fits with the

observation that it is difficult to estimate gain and loss probabilities when the

initial probabilities are very high or very low.

2.3 An empirical application

The empirical application tests the capability of the GaLoM to assess the effect of

learning objects on the attainment of specific skills. In particular, whether or not

the model correctly distinguishes between an effective and an ineffective learning

object is investigated. The analysis is performed with respect to the classroom

and to individual students.

2.3.1 Method

Sixty-seven psychology students at the University of Padua participated in the

study with no financial reward. The students were attending the course of Psycho-
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metrics in the academic year 2007-2008. Their mean age was 20.57 (SD = 1.05;

range from 19 to 25), and 54 were female. A collection of 13 open response prob-

lems in elementary probability theory (see Appendix B.1) was presented through

a computer-based testing procedure. The data were collected in a computer room

that contained 40 workstations. Four skills (stochastic independence, law of total

probability, conditional probability, probability of the complement of an event),

and their combinations, were assumed to be required for solving the problems.

With the aim of testing the model, a 2 × 2 experimental design with two

learning objects (effective vs. ineffective) and two assessment steps (pretest and

posttest) was planned. The effective learning object was assumed to be useful for

learning the skills required to solve the problems, whereas the ineffective learning

object was assumed not to be useful. To give an example, consider the following

problem (problem 5) taken from the collection:

“Given two events A and B in a sample space S, the following prob-

abilities are known: P (A ∩B) = .86;P (A ∩B) = .02. Find P (A)”.

It is assumed that the problem requires the skills concerning the probability of

the complement of an event and the total probability to be solved. The effective

learning object was the following:

“If S is a sample space, then:

P (X) = 1 − P (X) for any X ⊆ S (for X ⊆ S,X is the complement

of X in S).

P (X) = P (X ∩ Y ) + P (X ∩ Y ) for any X, Y ⊆ S.

P (X|Y ) = P (X ∩ Y )/P (Y ) for any X, Y ⊆ S.

P (X ∩ Y ) = P (X)P (Y ) if X, Y ⊆ S are mutually independent”,

and it was assumed to be useful for attaining the skills required to solve problem

5. The ineffective learning object was:
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“A finite stochastic process is a finite sequence of experiments in which

each experiment has a finite number of outcomes with given proba-

bilities.

The probability of the empty set is 0.

If S is a sample space, then: P (X − Y ) = P (X)− P (X ∩ Y )”,

and it was assumed not to be useful for solving problem 5.

After responding to the problems the first time (pretest), students belonging

to a first group (Group E, N = 36) were presented with the effective learning

object, and those belonging to a second one (Group I, N = 31) with the ineffec-

tive learning object. Then, a posttest with the same problems took place. The

responses to the problems were coded as correct (1) or incorrect (0).

2.3.2 Model estimation

In this application example, the assumption was made that the relation between

problems and skills could have been described through the conjunctive model4.

The conjunctive model is a special case of the competency model. In fact, it

corresponds to a competency model in which each problem is associated only

with one competency. Each problem from the collection was associated with the

skills that were assumed to be necessary and sufficient for its mastery according

to the skill map represented in Table 2.2. The performance structure delineated

by the given skill map is a simple closure space containing 16 states. It is depicted

in Figure 2.5.

4Via the conjunctive model, a skill map associates each problem with a subset of skills that

are necessary and sufficient to solve it. A skill map is a triple (Q,S, σ), where Q is a non-empty

set of problems, S is a non-empty set of skills, and σ is a mapping from Q to 2S such that σ(q) 6=

∅ (i.e., each problem is associated with at least one skill). The performance state delineated by

the subset of skills X ⊆ S via the conjunctive model is specified by: N(X) = {q ∈ Q|σ(q) ⊆ X},

and the performance structure delineated by the skillmap (Q,S, σ) is: K = {N(X)|X ⊆ S}

(Doignon, 1994; Doignon & Falmagne, 1999).
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After estimating and validating the model at the classroom level, the proba-

bilities that are relevant for the assessment of individual students were computed.

Table 2.2: Skill Assignment in the Conjunctive Model
Problem Skills
1 {cp}
2 {tt}
3 {cd}
4 {id}
5 {cp, tt}
6 {cp, cd}
7 {cp, id}
8 {tt, cd}
9 {tt, id}
10 {cd, id}
11 {cp, tt, cd}
12 {cp, tt, id}
13 {cp, cd, id}
Note. cd = conditional probability; cp =
complement of an event; id = stochastic
independence; tt = total probability.

2.3.3 Testing model identifiability, goodness-of-fit and

goodness-of-recovery

To test model identifiability, parameters were estimated 100 times, by randomly

varying their initial values between 0 and 1.

The goodness-of-fit was evaluated using Pearson’s Chi-square statistic. When

the data sample is large enough, the statistic approximates the asymptotic Chi-

square distribution well and such distribution can be used for statistic inference.

In contrast, the approximation to the asymptotic Chi-square distribution of the

statistic lacks accuracy for large and sparse data matrices. This is the case of the

present study, because with 13 problems and two assessment steps the theoretical

number of distinct binary response patterns is huge (213×2), and the observed data
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Figure 2.5: Hasse diagram of the performance structure delineated via the con-

junctive model.

sample of 36 + 31 response patterns is definitely too small. A parametric boot-

strap was therefore used for testing the model (see, e.g., Langeheine et al., 1996;

von Davier, 1997). Using the parameters of the model estimated on the observed

data, 1,000 random data samples of the same size of our sample (i.e., 36 + 31

response patterns) were simulated, and on these samples the model parameters

were estimated. Then, the proportion of random data samples whose Chi-square

was less than the Chi-square of the observed data sample was computed.

The goodness-of-recovery was tested by computing the bias between the pa-

rameter estimates obtained on the observed data sample and the mean of the

parameter estimates reproduced on the 1,000 simulated data samples.

2.3.4 Results

Given that the proportion of random data samples whose Chi-square was less

than the Chi-square of the observed data sample was .12, the goodness-of-fit

of the model is good. Moreover, parameter estimates did not change in any of

the 100 replications from different initial values, an indication that the model is

identifiable.
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With respect to the goodness-of-recovery, Figure 2.6 represents the parameter

estimates obtained on the observed data sample (x axis) plotted versus the mean

of the parameter estimates (and the related standard errors) reproduced on the

1,000 simulated data samples (y axis). Plots concerning loss and gain probabilities

of Group I are not depicted because these probabilities are less than .1 for all the

skills, both of them were estimated on the observed data sample and reproduced

on the simulated ones. The empirical bias of the estimates is negligible for most

of the parameters. Bootstrapped standard errors of the estimates are also quite

small (from .01 to .19, see Tables 2.3 and 2.4).

Table 2.3 contains the estimates of the parameters α and β. The careless

error probabilities are rather high for problems 9, 11, 12, and 13 (α9 = .51;α11 =

.63;α12 = .69;α13 = .49). Considering that the problems were open response, the

lucky guess probabilities are quite high for problems 1, 3, and 13 (β1 = .31; β3 =

.35; β13 = .25). This result suggests that the skill map has not been properly

specified for these problems, even if the model fit is good.

Table 2.3: Maximum Likelihood Estimates of the Parameters α and β
Careless error Lucky guess Careless error Lucky guess

Problem α SE β SE Problem α SE β SE
1 .02 .02 .31 .10 8 .29 .10 .06 .03
2 .22 .06 .04 .04 9 .51 .09 .03 .02
3 .02 .03 .35 .06 10 .07 .07 .17 .04
4 < .01 .02 .20 .05 11 .63 .10 .02 .01
5 .09 .06 < .01 .01 12 .69 .09 < .01 .01
6 .04 .04 .13 .04 13 .49 .13 .25 .04
7 .25 .08 .02 .01
Note. Standard errors (SE) of the estimates were obtained by parametric bootstrap.

Table 2.4 contains the maximum likelihood estimates of the parameters π,

γ and λ. Complement of an event is the knowledge having the highest initial

probability (πcp = .79). Total probability (πtt = .49), conditional probability

(πcd = .36), and stochastic independence (πid = .35) follow.

The learning object presented to Group E has been effective in promoting

the acquisition of knowledge. Total probability is the skill attained with the
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highest probability (γtt = .80), followed by stochastic independence (γid = .48)

and conditional probability (γcd = .23). The skill concerning the complement of

an event is not further acquired (γcp < .01). Given that it is already the skill

with the highest initial probability, it is difficult to find the effectiveness of the

learning object in the few students who do not yet possess it. Unlike the learning

object presented to group E, the one presented to Group I has not been effective

on the attainment of the skills (γ < .01 for all parameters).

Unexpectedly, in Group E the probability of losing three of the four skills is

greater than in Group I, even if these probabilities are quite small (see Table 2.4).

Perhaps, this result is due to a compensation effect between parameters γ and λ

that is observed only in Group E because in this group learning occurs between

the two assessment steps.

Table 2.4: Maximum Likelihood Estimates of the Parameters π, γ and λ
Group E (N = 36) Group I (N = 31)

Initial p. Gain Loss Gain Loss
Skill π SE γ SE λ SE γ SE λ SE
Complement of an event .79 .06 < .01 .05 < .01 .01 < .01 .03 < .01 .02
Total probability .49 .08 .80 .19 .09 .08 < .01 .01 < .01 .02
Conditional probability .36 .07 .23 .10 .02 .06 < .01 .02 < .01 .03
Stochastic independence .35 .07 .48 .13 .10 .10 < .01 .01 < .01 .02
Note. Standard errors (SE) of the estimates were obtained by parametric bootstrap.
Group E = effective learning object; Group I = ineffective learning object.

The probability of skill s at the end of the learning process as a result of

learning object o that has been presented can be easily calculated as πs(1 −

λos) + (1 − πs)γos. This probability will be called final probability. By way of

example, the probability of the skill concerning the total probability increases

from .49 to .85 in the group with the effective learning object, and remains .49

in the group with the ineffective learning object.

The probability of the competence states at the pretest can be computed ac-

cording to Equation (2.2). Similarly, we can use the final probabilities of the skills

for computing the probability of the competence states at the posttest. Figure

2.7 depicts the probability distributions of the competence states at the pretest
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(computed on the whole sample of students) and at the posttest (computed sep-

arately for Groups E and I). The competence state containing complement of an

event, and that containing complement of an event and total probability are the

most probable competence states at the pretest. Compared with the pretest, in

Group E the probabilities of the competence states containing more skills increase

at the posttest, whereas those of the competence states containing less skills de-

crease. In particular, the competence state containing complement of an event,

total probability and stochastic independence, and that containing all the skills are

the most probable competence states at the posttest. On the contrary, in Group

I the probabilities of the competence states do not change between the pretest

and the posttest. Concerning the acquisition of knowledge, this result suggests

that the model correctly distinguishes between the effective learning object and

the ineffective one.

Tables 2.5 and 2.6 contain initial and final probabilities of the skills, and gain

and loss probabilities for each student of Group E and Group I, respectively. For

most of the students of Group E the gain probabilities of the skills are greater

than the loss probabilities and, as expected, the final probabilities of the skills

are greater than the initial ones. In contrast, for students of Group I the initial

and final probabilities of the skills do not differ from each other. The tables also

contain the competence state which is modal for each student. For most students

of Group E the competence state on the posttest contains more skills than that

on the pretest. This does not happen for the students of Group I. As expected,

the learning object presented to Group E has a positive effect on the learning of

the four skills. This is not the case of the learning object presented to Group I.
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Figure 2.6: Parameter estimates obtained on the observed data (x axis) versus

mean parameter estimates (and related standard errors) reproduced on the sim-

ulated data (y axis). Numbers in the plots refer to the problems (from 1 to 13).

Group E = effective learning object; cd = conditional probability; cp = com-

plement of an event; id = stochastic independence; tt = total probability. The

straight line x = y is added for reference.
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Figure 2.7: Probability distributions of competence states at the pretest (upper

diagram) and at the posttest (central diagram for Group E, lower diagram for

Group I). cd = conditional probability; cp = complement of an event; id =

stochastic independence; tt = total probability.
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2.3.5 Discussion

The empirical application tested the capability of the GaLoM to distinguish be-

tween an effective and an ineffective learning object. The model was applied to

the responses provided by two groups of university students to a collection of

problems in elementary probability theory. Students of a group were presented

with an effective learning object, students of the other group with an ineffec-

tive learning object. Four skills were assumed to underlie the responses to the

problems.

The results show that the model correctly distinguished between the two learn-

ing objects. On the whole, the gain probabilities and the final probabilities of the

skills were greater in the group presented with the effective learning object than

in the other group. Moreover, in the group presented with the effective learning

object, the competence states that were more likely at the posttest contained

more skills than those that were more likely at the pretest. Analogous results

were observed on individual students.

An explicit assumption was made about what skills were required for solving

the problems. This assumption has been confirmed by model fit. However, the

careless error and lucky guess probabilities of some problems were rather high,

and this might be a sign that the skill assignments concerning these problems were

not entirely correct. A high careless error could suggest that a problem requires

more skills than expected, or that it has been associated with superfluous solution

strategies. In the present case, the problems with higher careless errors required

the combination of two or three skills to be solved. A higher-order skill could be

introduced in the model accounting for the capability of the students to properly

combine the basic skills in order to solve the problems. A high lucky guess could

suggest that a problem has been associated with more skills than needed, or that

there is an alternative solution strategy that has not been mapped. Problem 13

is given as an example of the latter: “Given two independent events A and B
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in a sample space S, the following probability is known: P (A|B) = .02. Find

P (A)”. The lucky guess parameter of the problem is quite high for an open

response problem (β13 = .25). According to the specified skill map, the problem

requires the knowledge of three of the four skills to be solved (see Table 2.2).

Nevertheless, there might be students who do not possess the required skills, and

solve the problem anyway by simply subtracting the only probability value from 1.

This possibility could be taken into account by introducing an alternative solution

strategy for problem 13. The aforementioned possibilities for improving the model

have not been pursued because they entail the introduction of additional skills and

thus of additional parameters, and the number of problems which are available

would not be sufficient for obtaining stable and trustworthy estimates.

2.4 Final remarks

A formal model for assessing knowledge and learning processes has been pre-

sented. Practical benefits for teaching and learning that derive from using the

model are now explored and discussed.

The model focuses on the specific skills that a student must possess in order

to solve the problems. This makes the model particularly suitable for didactic

practice, because it enables the teacher to theoretically explain the observed re-

sponses, and to predict responses on another collection of problems. Moreover,

the teacher is helped in identifying which skills should be taught so that a previ-

ously unsolvable problem becomes solvable.

The model provides diagnostic information that helps the teacher in planning

the didactic interventions and in evaluating their effectiveness. This information

can be obtained at both classroom and student levels.

At the classroom level, initial probabilities of the skills enable the teacher to

identify what the classroom already knows and what it is ready to learn. Gain and

loss parameters provide program evaluative information. The teacher is informed
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about the effectiveness of the didactic intervention that has been carried out, and

is enabled to compare different didactic interventions by measuring their effect

on the acquisition of specific skills.

Considering that gain and loss parameters are indexed by learning object and

skill, they enable the teacher to select the best learning objects for the specific

weaknesses of the classroom. In general, these learning objects should have both

high gain probabilities and small loss probabilities of the skills. However, the rel-

ative importance of gain and loss parameters depends on the specific context the

model is applied to. For example, loss parameters are useful in educational set-

tings in which the teacher might be interested in assessing the loss of the skills a

certain period after the didactic intervention was carried out. On the contrary, in

applications such as the one presented, in which the posttest occurs immediately

after the presentation of the learning object, loss estimates are not very impor-

tant. As a consequence, they could be constrained to be equal to zero, reducing

the number of parameters that have to be estimated. If the goodness-of-fit of

the constrained model is not significantly worse than that of the unconstrained

model, the first one will be preferred because it is more parsimonious. In another

context, such as the treatment of senile dementia, loss parameters may be more

important than gain parameters because the specialist would be interested mainly

in selecting the interventions that are associated with the smallest loss of skills

of the patients over time. In this case, the gain estimates could be constrained

to be equal to zero.

Careless error and lucky guess parameters provide information concerning the

goodness of the relationship between latent competence states and observable

responses. When they are small, the teacher is informed that the skill multimap

has been specified appropriately and that the collection of problems has been

effective in assessing the knowledge of the students. This information enables the

teacher to validate his hypothesis on the skills needed for solving the problems

and his assessment instruments. High careless error and lucky guess parameters
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could be a sign of failings in the specification of the skill multimap or of noise in

the data. With respect to the specification of the skill multimap, a high careless

error could suggest that a problem requires more skills than expected, or that

it has been associated with a superfluous solution strategy. Conversely, a high

lucky guess could suggest that a problem has been associated with more skills than

needed, or that there is an alternative solution strategy that has not been mapped.

With respect to noise in the data, a high careless error could suggest fatigue,

motivational decrease, or that the wording of the problem confuses the students

leading them to fail it. Conversely, a high lucky guess rate could indicate that

the wording of the problem suggests the correct response to the students. High

careless error and lucky guess parameters are difficult to interpret in practical

applications because both the skill multimap and the noise underlying the data are

unknown. In the following two chapters, an extension of the GaLoM is described

that can be useful for identifying the best skill multimap among a number of

alternatives.

Once the model has been estimated and validated on a suitable sample of

students, it can be used to obtain diagnostic information at the student level.

The initial probabilities of the skills, and the gain and loss probabilities can be

obtained for each student. Single student proficiencies can be evaluated through

a detailed skill profile. Such a profile can be obtained both before and after a

specific didactic intervention takes place. The latent set of skills possessed by

a student can be recovered by taking as the competence state of the student

the one that has the highest posterior probability, given the observed response

pattern and the parameters of the model. Moreover, since the GaLoM is capable

of comparing the effects of different didactic interventions on the acquisition of

specific skills, it enables the teacher to select the best educational intervention

for the specific weaknesses of each student.

The teacher is thus supported along two parallel pathways. Along the first

pathway the outcome is a detailed skill profile of a single student, which is by
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itself a valuable tool for assessing what the student already knows and what that

student is ready to learn next. The second pathway provides the teacher with

substantive information on the effectiveness of the didactic tools to be used. As

far as a single didactic tool is concerned, this information is twofold, as it at-

tempts to answer the following two questions: (a) “Is this tool appropriate (has

a low loss probability) for improving or consolidating a skill that this student al-

ready possesses?”, and (b) “Is this tool appropriate (has a high gain probability)

for facilitating the learning of a new specific skill?” By having available a whole

collection of didactic tools in the form of exercises and instructions, these two

questions can be restated as: (a) “Which tool is best (has the lowest loss prob-

ability) for consolidating a skill?”, and (b) “Which tool is best (has the highest

gain probability) for learning a new skill?” The teacher would thus be provided

with an objective criterion for choosing didactic tools throughout the teaching of

the course, and this choice could even be personalized according to the specific

students’ needs and skill profiles.

It should be noted that, once the model has been estimated and validated on

a suitable sample of students, it can be used for individual assessment of new

students without having to reestimate the model parameters.

The GaLoM is now compared with some formal models for the assessment

of knowledge that are present in literature. The BLIM (Falmagne & Doignon,

1988a) is considered first, which is the basic model in knowledge space theory and

has been the foundation of several approaches. This model has been applied in a

number of contexts (see, e.g., Falmagne et al., 1990; Stefanutti, 2006; Taagepera

et al., 1997; see also Doignon & Falmagne, 1999). Unlike the BLIM, which

focuses on the solution behaviour at the level of problems, the GaLoM focuses

on the discrete skills that underlie the responses of the problems. Moreover, the

BLIM only assesses the knowledge of students, whereas the GaLoM also provides

information about the effect of an educational intervention on promoting learning.

The Deterministic Inputs, Noisy AND gate (DINA) model (Haberman, 1979;
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Junker & Sijtsma, 2001; Macready & Dayton, 1977) is a very common approach

within the cognitive diagnosis framework. Applications have been described in

different contexts (see, e.g., de la Torre, 2008; de la Torre & Douglas, 2004). Sim-

ilarly to the GaLoM, it assumes the existence of discrete skills that underlie the

responses to the problems. However, whereas the DINA is a conjunctive model,

the GaLoM is a competency model based on a skill multimap. An extension of

the DINA model has been recently proposed, which allows the consideration of

multiple strategies of solving the problems (de la Torre & Douglas, 2008). Unlike

the DINA, which only allows the definition of student skill profiles, the GaLoM al-

lows the assessment of the effect of an educational intervention on the attainment

of specific skills.

The Stochastic Learning Path (SLP) model (Falmagne, 1993; see also Fal-

magne, 1989, 1996; Falmagne & Lakshminarayan, 1994) is an approach proposed

within the knowledge space theory framework which describes the progress of

students learning in a particular field. Applications of the model can be found

in Falmagne et al. (1990), and Lakshminarayan and Gilson (1998). As for the

BLIM, from which it derives, the SLP is developed at the level of the problems

without assuming underlying skills. The SLP assesses learning by analyzing the

progress of students in a collection of learning paths (i.e., chains of performance

states beginning with the empty state ∅ and finishing with the full state Q). In

contrast, in the GaLoM the particular learning paths followed by the students in

between the two assessment steps are not taken into account. Moreover, in the

GaLoM there is the possibility of modelling a certain kind of forgetting through

the loss parameters, whereas the SLP is only suitable for modelling monotonic

learning processes.

A model has been recently proposed (Heller, Levene, Keenoy, Albert, & Hock-

emeyer, 2007) that describes the learning of students while they navigate through

a learning environment. Similarly to the SLP, this model describes how students

move along learning paths, but it also takes into account the skills and competen-
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cies underlying the problems. In this model the performance structure is derived

from a prerequisite map associating each problem with a collection of subsets of

learning objects that provide the content sufficient for solving it. In contrast, in

the GaLoM the performance structure is derived from a skill multimap. Unlike

the GaLoM, in order to be applicable this model requires the assumption that

there is no loss of the skills.
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Chapter 3

Parameter identifiability and

recovery of the correct skill

assignment in the Constrained

Gain-Loss Model

The GaLoM is a formal model for assessing learning processes. It provides de-

tailed information about the knowledge of the students and the effectiveness of

the didactic interventions in promoting specific learning. This information helps

the teacher in planning teaching and learning.

Two elements are needed to reach a trustworthy assessment of students and

didactic interventions. On one hand, data are required that provide enough infor-

mation about the skills and that are not too noisy. When this is not the case, the

results of the assessment might be inaccurate. Moreover, compensations between

the α and β probabilities of some problems and the π,γ, and λ probabilities of the

skills which are associated with those problems might result in multiple solutions

for their estimates.

On the other hand, information is required about which skills are measured

53
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by the assessment instrument and how they are related to the problems. In the

GaLoM this information, which contributes to the construct validity of the as-

sessment instrument (Messick, 1989, 1995), is translated into a skill multimap

associating each problem with a collection of subsets of skills which are necessary

and sufficient to solve it. The skill multimap is the core element that determines

the quality of the assessment. If it is correctly specified, one would expect the

error probabilities to be small for all problems. If they were high for some prob-

lems, then this would be a sign of misspecification of the skill multimap with

respect to these problems. In particular, a high careless error could suggest that

a problem requires more skills than expected, or that it has been associated with

a superfluous solution strategy. On the contrary, a high lucky guess could suggest

that the problem has been associated with more skills than needed, or that there

is an alternative solution strategy that has not been mapped.

A systematic investigation of the effects of misspecifications of the skills as-

signed to a problem has been provided by Rupp and Templin (2008) for the DINA

model (de la Torre & Douglas, 2004; Macready & Dayton, 1977). As already men-

tioned, the DINA is a conjunctive model for the assessment of knowledge. The

authors found that, when a relevant skill is deleted from a problem, the α param-

eter is overestimated whereas the β parameter estimate remains accurate. On

the contrary, when a superfluous skill is added to a problem, the β parameter is

overestimated whereas the α parameter estimate remains accurate. In an exten-

sion of the DINA model that allows for multiple solution strategies, de la Torre

and Douglas (2008) found that the omission of a relevant solution strategy from a

problem causes an overestimation of its lucky guess probability. On the contrary,

the inclusion of an irrelevant solution strategy to a problem causes an overestima-

tion of its careless error probability. The misspecifications have predominantly

local effects in the sense that they mostly affect the α and β estimates of the

problems whose skill assignment is not correct. Moreover, they can affect the

assessment of knowledge. In particular, Rupp and Templin (2008) pointed out
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that the complete deletion of certain skill combinations highly compromises the

assessment of the students with such combinations in their skill profile.

Both the identifiability of the parameters and the recognizability of the skill

multimap underlying the data are addressed in this chapter. Given that there is

a relation between the α and β probabilities of the problems and the π, γ, and λ

probabilities of the skills which are associated with them, one could expect that

constraining the estimates of the α and β parameters only allows the reduction

of the variability of the whole set of parameters in non-identifiable models. This

procedure could also help to distinguish the skill multimap that is correctly spec-

ified from one that is not. Since misspecification of the skill multimap causes an

overestimation of the α and β parameters, constraining their estimates should

constrain the model incorporating an incorrect skill multimap more than the

model incorporating the correct skill multimap. As a consequence, the fit of the

former is expected to get worse to a great extent than that of the latter.

The log-barrier method is used to constrain the estimates of the α and β

parameters to be less than or equal to an upper bound. The constrained ver-

sion of the GaLoM is called Constrained Gain-Loss Model (CoGaLoM, Anselmi,

Stefanutti, & Robusto, Submitted).

The chapter is organized as follows. In the next paragraph, the log-barrier

method and the way it has been used for constraining the α and β parameters

of the GaLoM are described. Then, a simulation study that tests the CoGaLoM

with respect to the identifiability of the parameters and the recognizability of the

skills assignment underlying the data is presented. The chapter concludes with

some remarks concerning the proposed approach and the comparison of models.

3.1 The Constrained Gain-Loss Model

The log-barrier method (see, e.g., Fiacco & McCormick, 1990; Wright, 1997) is

used for constraining the estimates of the α and β parameters of the GaLoM to
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be less than or equal to an upper bound. An application of the same method

to the error parameters of the BLIM (Doignon & Falmagne, 1999; Falmagne &

Doignon, 1988a) is described in Stefanutti and Robusto (2009). The MATLAB

code for estimating and testing the CoGaLoM is provided in Appendix A.3.

3.1.1 The log-barrier method

The log-barrier method is one of the interior point methods, which are a class of

algorithms for solving linear and non-linear convex optimization problems which

reach an optimal solution by traversing the interior of a feasible region. To

illustrate the log-barrier method, an example is chosen which introduces the ap-

plication in the CoGaLoM.

Consider the problem of minimizing a non-linear function f(y) subject to the

inequality constraints yq ≥ 0 and yq ≤ y∗. By applying the log-barrier method,

the function to be minimized takes on the form:

h(y, µ) = f(y)− µ
n∑
q=1

ln[yq(y
∗ − yq)],

where µ ≥ 0 is a penalization parameter. Note that h is convex on the feasible

region.

In each iteration of the EM algorithm, the penalization parameter µ is grad-

ually decreased by some amount (say, µt+1 = cµ, for 0 < c < 1). It can be seen

that, as µ tends to 0, the local minimizer of h(y, µ) approaches that of f(y). It

can also be seen that, as yq approaches one of the boundaries of the feasible region

(i.e., 0 or y∗), yq(y
∗ − yq) tends to 0 and h(y, µ) approaches +∞, thus providing

a “barrier” to crossing the boundary.

Consider a situation in which the initial values of the parameter estimates

belong to the feasible region (i.e., all the inequality constraints are satisfied at

the outset). If the local minimizer of f is an interior point of the feasible region,

then the barrier algorithm will reach such a point. If the local minimizer of f lies
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outside the feasible region, then a point belonging to the boundary of the region

will be reached.

The aforementioned concepts are illustrated with an example. Consider the

quadratic function f(y) = 2y2 − 2y + 1, whose minimizer is y = .5. The function

f(y) has to be minimized subject to the inequality constraints y ≥ 0 and y ≤

y∗. Two values for the upper bounds (y∗ = .25, .60) and three values for the

penalization parameter (µ = 1, .10, .01) are considered. Figure 3.1 depicts the

values of y (x axis) which minimize h(y, µ) for each value of the penalization

parameter (the three curves in the diagrams). The left-hand diagram refers to

the condition with upper bound .60, the right-hand diagram to the condition

with upper bound .25. With y∗ = .60, the minimizer of f(y) is an interior point

of the feasible region and, as µ decreases, the minimizer of h(y, µ) approaches

that of f(y) (y = .33, .42, .48 for µ = 1, .10, .01, respectively). With y∗ = .25,

the minimizer of f(y) lies outside the upper bound of the feasible region and,

as µ decreases, the minimizer of h(y, µ) is a value closer to the upper bound

(y = .14, .19, .24 for µ = 1, .10, .01, respectively).
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Figure 3.1: Minimization of the quadratic function f(y) subject to the inequality

constraints y ≥ 0 and y ≤ y∗. Two values for the upper bounds (y∗ = .25, .60)

and three values for the penalization parameter (µ = 1, .10, .01) are considered.
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3.1.2 Estimation of the careless error and lucky guess pa-

rameters in the Constrained Gain-Loss Model

In the CoGaLoM, the likelihood of the model is maximized subject to the con-

straint that the α and β parameters are less or equal to an upper bound. Only

the part of the conditional expected log-likelihood U(θ,θ′) (Equation 2.3) that

depends on the αq and βq parameters concretely undergoes a constrained maxi-

mization. This part is:

U3(θ,θ′) =
i∑

j=1

∑
C⊆S

∑
D⊆S

bjCD[lnP (x1j|C) + lnP (x2j|D)].

It is worth recalling that θ (resp. θ′) is the vector of model parameters

obtained in the current (resp. previous) iteration of the EM algorithm, x1j (resp.

x2j) is a binary vector representing the response pattern of student j at time 1

(resp. time 2), C (resp. D) is a competence state at the pretest (resp. posttest),

and bjCD corresponds to P (C,D|x1j,x2j, oj,θ
′), where oj is the learning object o

student j has been presented with.

Given suitable upper bounds α∗q , β
∗
q ∈ [0, 1], there are four types of inequality

constraints for each problem q: (a) αq ≥ 0, (b) αq ≤ α∗q , (c) βq ≥ 0, and (d)

βq ≤ β∗q , and the problem itself consists of maximizing the function U3(θ,θ′)

under the constraints (a) to (d). By an application of the log-barrier method,

such a constrained maximization corresponds to an unconstrained minimization

of the function:

V (θ,θ′) = −

{
U1(θ,θ′) + µ

n∑
q=1

ln[αq(α
∗
q − αq)βq(β∗q − βq)]

}
,

where µ is the penalization parameter introduced in the previous section.

In each iteration of the EM algorithm, the function V (θ,θ′) is minimized by

setting to zero its first partial derivatives with respect to the parameters αq and

βq. The first partial derivative of V (θ,θ′) with respect to the parameter αq turns
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out to be:

∂V (θ,θ′)

∂αq
=

i∑
j=1

∑
C⊆S

∑
D⊆S

bjCD

[
(1− x1jq)vqC + (1− x2jq)vqD

αq

−x1jqvqC + x2jqvqD
1− αq

]
+ µ

α∗q − 2αq

αq(α∗q − αq)
, (3.1)

where x1jq ∈ {0, 1} (resp. x2jq) is equal to 1 of student j solved problem q at the

pretest (resp. posttest), and vqC ∈ {0, 1} (resp. vqD) is equal to 1 if problem q is

solvable by state C (resp. D). By setting the right-hand term of (3.1) to zero, it

follows that:

(1−αq)(α∗q−αq)
i∑

j=1

∑
C⊆S

∑
D⊆S

bjCD[(1−x1jq)vqC+(1−x2jq)vqD]+µ(1−αq)(α∗q−2αq) =

αq(α∗q − αq)
i∑

j=1

∑
C⊆S

∑
D⊆S

bjCD(x1jqvqC + x2jqvqD). (3.2)

Solving for αq a second degree equation is obtained. Let aq,0 =
∑i

j=1

∑
C⊆S∑

D⊆S bjCD[(1−x1jq)vqC+(1−x2jq)vqD], aq,1 =
∑i

j=1

∑
C⊆S

∑
D⊆S bjCD(x1jqvqC+

x2jqvqD), and aq = aq,0 + aq,1. Between the two roots of Equation 3.2, the one

which satisfies the constraint 0 ≤ αq ≤ α∗q is:

αq =
(aq,0 + 2µ) + α∗q(aq + µ)

2(aq + 2µ)
−
{[(aq,0 + 2µ) + α∗q(aq + µ)]2 − 4(aq + 2µ)α∗q(aq,0 + µ)}

1
2

2(aq + 2µ)
.

(3.3)

Equation 3.3 represents the adjustment of the estimates of parameter αq in

each iteration of the EM algorithm.

Following a similar development for the parameters βq, and defining bq,0 =∑i
j=1

∑
C⊆S

∑
D⊆S bjCD[(1−x1jq)(1−vqC)+(1−x2jq)(1−vqD)], bq,1 =

∑i
j=1

∑
C⊆S∑

D⊆S bjCD[x1jq(1 − vqC) + x2jq(1 − vqD)], and bq = bq,0 + bq,1, the equation for

adjustment of the estimates of such parameters under the constraint 0 ≤ βq ≤ β∗q

is:

βq =
(bq,1 + 2µ) + β∗q (bq + µ)

2(bq + 2µ)
−
{[(bq,1 + 2µ) + β∗q (bq + µ)]2 − 4(bq + 2µ)β∗q (bq,1 + µ)}

1
2

2(bq + 2µ)
.

(3.4)
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3.2 A simulation study

The primary objectives of the simulation study are to test the CoGaLoM with

respect to the parameter identifiability and the recognizability of the skill assign-

ment underlying the data. In particular, it investigates whether constraining the

parameter space of the α and β estimates constitutes a way of: (a) reducing the

variability of the whole set of parameters in non-identifiable models, and (b) fa-

cilitating the identification of the model which incorporates the skill assignment

underlying the data. A secondary objective is to investigate the effects of mis-

specifications of the skill assignment on the recovery of the problem parameters

and the identification of the skill profiles. Different levels of information and noise

in the data were considered.

3.2.1 Simulation of data sets

Three thousand random data sets were generated according to the GaLoM. Six

conditions were produced by considering two ratios between the number of prob-

lems and underlying skills, and three levels of noise in the data. Two collections

with 10 and 20 problems were generated, and five skills were set to underlie both.

Via the conjunctive model, each problem from the two collections was associated

with the skills that were necessary and sufficient for its mastery according to

the skill maps represented in Table 3.1. Each of the two resulting performance

structures Kc10 and Kc20 contains 32 states, and was used to generate the data

for the conditions with 10 and 20 problems, respectively. The noise in the data

was set to be low (αtrue and βtrue ≤ .1), medium (αtrue and βtrue ≤ .3) or high

(αtrue and βtrue ≤ .5).

For each of the six conditions, 500 random data sets were simulated by using
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Table 3.1: Skill Assignment in the Collections with 10 and 20 Problems
10 Problems collection 20 Problems collection
Problem Skills Problem Skills Problem Skills
1 {a} 1 {a} 11 {b, d}
2 {b} 2 {b} 12 {a, b, d}
3 {c} 3 {c} 13 {c, d, e}
4 {d} 4 {d} 14 {a, b, d, e}
5 {e} 5 {e} 15 {b, c, e}
6 {a, b} 6 {a, b} 16 {a, b, c}
7 {a, c} 7 {a, c} 17 {a, c, d}
8 {d, e} 8 {b, c} 18 {a, b, c, e}
9 {a, b, c} 9 {c, e} 19 {a, d, e}
10 {c, d, e} 10 {d, e} 20 {b, c, d, e}
Note. Letters from a to e refer to the five skills.

a parametric bootstrap (see, e.g., Langeheine et al., 1996; von Davier, 1997).

Each data set takes into account the effects of four learning objects on the skills.

The first learning object was set to poorly affect both gain and loss of the skills

(γtrue and λtrue ≤ .33), the second to highly affect gain and poorly affect loss

(γtrue ≥ .66;λtrue ≤ .33), the third to poorly affect gain and highly affect loss

(γtrue ≤ .33;λtrue ≥ .66), the fourth to highly affect both gain and loss (γtrue

and λtrue ≥ .66). The initial probabilities of the skills πtrue were set to be in the

interval [.1, .9] because, as pointed out in the previous chapter, estimating gain

and loss probabilities is both difficult and negligible when initial probabilities

are very high or very low. The true model parameters were randomly generated

according to the aforementioned constraints. The initial probabilities were fixed

across all conditions, and the gain and loss parameters were fixed across the

conditions concerning levels of noise and information. The number of response

patterns was set to 1,000 for each data set (250 for each learning object).

3.2.2 Estimation of the models

For each of the 500 × 6 data sets, correct and incorrect models were estimated.

The correct models incorporated the performance structures that were used to
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generate the data (i.e., Kc10 and Kc20). The incorrect models incorporated two

performance structures that were different from the correct ones (Ki10 and Ki20).

These performance structures were delineated by two skill maps obtained by

modifying some of the skill assignments of the generating skill maps. The modifi-

cations are listed in Table 3.2. Ki10 contains 32 performance states, Ki20 contains

30 performance states.

Table 3.2: Misspecifications of the Skill Assignment in the Collections with 10
and 20 Problems

Problem Original Modified N skills added N skills deleted
10 Problems collection

6 {a, b} {a, b, d} 1 0
8 {d, e} {a, d, e} 1 0
9 {a, b, c} {a, b} 0 1
10 {c, d, e} {b, d, e} 1 1

20 Problems collection
4 {d} {c, d} 1 0
7 {a, c} {a, c, d, e} 2 0
9 {c, e} {a, c, e} 1 0
13 {c, d, e} {c, e} 0 1
14 {a, b, d, e} {a, b, c, d, e} 1 0
18 {a, b, c, e} {a, e} 0 2
20 {b, c, d, e} {b, d, e} 0 1
Note. Letters from a to e refer to the five skills.

In order to have a measure of how much the incorrect models differed from

the correct ones, a discrepancy index for performance structures was computed1.

The discrepancy between Ki10 and Kc10 was .47 (SD = .71), and that between

1Doignon and Falmagne (1999) described the following measure of the distance between two

performance structures.

Given two performance structures K and K′ on the same domain Q, and two performance

states K ∈ K and K ′ ∈ K′, the symmetric difference between K and K ′ is defined as:

K∆K ′ = |(K \K ′) ∪ (K ′ \K)|.

K∆K ′ specifies the number of problems that are elements of either, but not both, sets K

and K ′. The distance of the state K ∈ K from the performance structure K′ is then computed
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Ki20 and Kc20 was .97 (SD = .98).

Both correct and incorrect models were estimated four times by the CoGa-

LoM, each time with a different choice of the upper bound of the α and β pa-

rameters (α∗, β∗ = 1, .5, .3, .1; the upper bound was equal for all problems). Note

that, when α∗, β∗ = 1, the CoGaloM corresponds to the GaLoM.

3.2.3 Testing parameter identifiability, recognizability of

the true skill assignment, and effects of misspecifi-

cations of the skills assignment

In total, 2 (10 and 20 problems) × 3 (noise ≤ .1, .3, .5) × 2 (correct and incorrect

models) × 4 (α∗, β∗ = 1, .5, .3, .1) conditions were produced.

Model identifiability was tested in the conditions in which the unconstrained

models were estimated (α∗, β∗ = 1; GaLoM). For this purpose, one of the 500

simulated data sets was randomly selected and the model parameters were esti-

mated 100 times, by randomly varying their initial values between 0 and 1. The α

and β parameters were randomly generated between 0 and .5. An unconstrained

model was taken to be identifiable when the standard deviations were less than

.01 for all the parameters.

as:

d(K,K′) = min{K∆K ′ : K ′ ∈ K′}.

d(K,K′) is the minimum of the symmetric differences between K and all the performance

states K ′ ∈ K′. The discrepancy index from K to K′ is obtained by computing the mean of the

minimum distances d(K,K′) of the states K ∈ K from K′:

D(K,K′) =
1
|K|

∑
K∈K

d(K,K′).

D(K,K′) can be considered as a measure of how well a performance structure K approximates

a performance structure K′. It is clear that D(K,K) is equal to 0. It should also be observed

that, in general, D is not commutative, that is, D(K,K′) 6= D(K′,K). Along with D(K,K′), a

standard deviation SD(K,K′) can be computed.
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The effect of constraining the α and β parameters on reducing the variability of

the whole set of parameters has been investigated in the non-identifiable models.

The procedure is similar to the one used for testing model identifiability with

the difference that the α and β parameters were randomly generated between 0

and the upper bounds .5, .3, .1. A parameter was taken to be unique when its

standard deviations were less than .01.

The recognizability of the true skill assignment was tested by computing the

proportion P (χ2
c < χ2

i ) of data sets in which the Pearson’s Chi-square of the

correct models was smaller than that of the incorrect models.

The effect of misspecifications of the skill assignment on the identification of

the skill profiles was assessed in the conditions in which the unconstrained models

were estimated. For each of the 1,000 observations (response patterns), the com-

petence state was taken that was modal across the 500 simulations. The number

of observations that were classified into each competence state by the correct and

the incorrect models was computed. Moreover, an agreement rate was calculated

for each competence state by taking the number of observations that the incorrect

model classified into a competence state in accordance with the correct model,

and dividing it by the number of observations that the correct model classified

into that competence state. An agreement rate across the competence states was

calculated as well. Thus, when all the classifications of the incorrect model are

in agreement with those of the correct model, the agreement rates are 1. In the

opposite case, they are 0.

The effect of misspecifications on the recovery of the problem parameters was

tested by considering the bias between the true problem parameters and the

mean of the problem estimates that were reproduced by the correct and incorrect

models on the 500 simulated data sets.
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3.2.4 Results

Concerning the problem of identifiability, the unconstrained (α∗, β∗ = 1; GaLoM)

correct and incorrect models are identifiable (i.e., SD < .01 for all parameters)

in both the conditions with 10 and 20 problems when noise is ≤ .1, and they are

identifiable in the condition with 20 problems when noise is ≤ .3.

As expected, both the level of information and the noise in the data contribute

to the non-identifiability of the models. The number of not uniquely determined

(SD ≥ .01) parameters increases with the level of noise in the data, and it is

greater when the collection with 10 problems is considered. Interestingly, on

equal levels of information and noise, this number is greater when the incorrect

models are estimated. The smaller the level of the upper bound, the smaller

the number of parameters with multiple solutions. With an upper bound of .1,

the correct and incorrect models that were not identifiable in the unconstrained

estimation reach a unique solution for the estimates of all their parameters. In the

condition with 20 problems and noise ≤ .5 correct model suffices an upper bound

of .3 for reaching a unique solution for all the parameters. Therefore, constraining

the parameter space of the α and β estimates only, reduces the variability of the

whole set of model parameters.

Concerning the problem of recognizing the true skill assignment, Figure 3.2

depicts the proportion of simulated data sets in which the Chi-square of the

correct model χ2
c was smaller than the Chi-square of the incorrect model χ2

i (y

axis) for each level of noise (x axis) and each value of upper bound (the four

lines in the diagrams). The left-hand diagram refers to the conditions with 10

problems, the right-hand diagram to the conditions with 20 problems. With

respect to the former, the proportion of cases in which the correct model obtains

a better fit decreases when the noise increases from .1 to .3 and the upper bound

is .3 or higher. This proportion keeps on decreasing when the noise reaches .5 and

the upper bound is .5, whereas it unexpectedly increases when the upper bounds
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are 1 and .3. Regardless of the level of noise in the data, when the upper bound

is .1 the correct model obtains a better fit in almost 100% of simulated data sets.

In the conditions with 20 problems, regardless of the value of the upper bound,

the higher the noise in the data, the lower the proportion of cases in which the

correct model obtains a better fit. Moreover, regardless of the level of noise in the

data, the smaller the value of the upper bound, the better the separation between

the correct model and the incorrect one. Constraining the α and β estimates is

therefore a way for increasing the recognizability of the true skill assignment.
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Figure 3.2: Proportion of simulated data sets in which the Chi-square of the

correct model χ2
c turned out to be smaller than the Chi-square of the incorrect

model χ2
i (y axis) for each level of noise (x axis) and each value of upper bound

(the four lines in the diagrams).

The rest of this section concerns the effects of misspecifications of the skill

assignment on the identification of the competence states and the recovery of the

true problem parameters. Only the conditions in which the unconstrained models

were identifiable are considered. Table 3.3 contains the number of observations

classified into each competence state by the correct and the incorrect model in

the condition with 20 problems and noise ≤ .1, together with the agreement rates

(AR). Note that the results concerning the correct model are not necessarily free

of error. Nevertheless, they represent what is found under the optimal estimation
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condition.

A first thing to notice is that, for both the correct model and the incorrect

model, the number of observations in each competence state at pretest reflects

the initial probabilities of the skills and the number of observations at posttest

reflects the effects of the four learning objects on the gain and loss probabilities.

At pretest, the overall agreement rate between the two models is .90. Among the

competence states with a non-small number of observations, the lower agreement

between the two models is on state {b, c, d, e} (AR = .83). This is probably

due to the fact that this competence state represents a skill combination that is

present in the generating skill map but not in the modified one (see Tables 3.1

and 3.2). At posttest, the two models are totally in agreement in classifying all

the observations in the full competence state {a, b, c, d, e} when the condition is

γtrue ≥ .66 and λtrue ≤ .33. This result can be explained by considering that,

for both the correct and the incorrect model, the full state is the most probable

competence state at posttest given the initial probabilities of the skills and the

learning object effect that is considered. The agreement rate between the two

models is extremely low (AR = .02) in the condition γtrue ≤ .33 and λtrue ≥ .66.

The distribution of the observations in the condition with noise .3 is similar

to that in the condition with noise .1 but the agreement between the correct

and incorrect model is in general lower (see Table 3.4). The agreement between

the correct and incorrect model become problematic in the condition with 10

problems and noise .1. In particular, the two models are totally in disagreement

at pretest and in the condition γtrue and λtrue ≤ .33 at posttest (see Table 3.5).

Figure 3.3 depicts the true problem parameters (x axis) plotted versus the

mean of the problem parameter estimates (and the related standard errors) re-

produced on the 500 simulated data sets (y axis) in the condition with 20 prob-

lems and noise .1. Left-hand diagrams refer to the correct model and right-hand

diagrams to the incorrect model. Upper diagrams refer to the unconstrained esti-

mation and lower diagrams to the estimation with upper bound of .1. When the
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estimation is unconstrained, the α and β probabilities of all problems are well-

recovered in the correct model. In contrast, the α probabilities of problems 13,

18 and 20, and the β probabilities of problems 4, 7 and 9 are overestimated in the

incorrect model. These biases are consistent with the modifications induced to

the generating skill map (see Table 3.2). The overestimation of the α probability

of problems 13, 18 and 20 is due to the deletion of some skills that were associated

with these problems. The overestimation of the β probability of problems 4, 7

and 9 is due to the addition of some skills to these problems. Only problem 14

is not affected by the modification induced to its skill assignment. The recovery

of problem parameters observed in the correct model with the upper bound of

.1 does not differ from that observed with the unconstrained estimation. This

is not the case with the incorrect model. Indeed, the estimates of the α and β

parameters that were overestimated in the unconstrained estimation are now very

close to the upper bound.

The recovery of problem parameters is similar in the condition with noise .3,

but empirical biases of the estimates are larger for both the correct and incor-

rect models (see Figure 3.4). In the condition with 10 problems and noise .1,

overestimations are observed which are consistent with the modifications induced

to the generating skill map (see Figure 3.5 and Table 3.2). Moreover, overesti-

mations are also observed for the α and β probabilities of some problems whose

skill assignment was not modified. This result points to non-local effects of the

misspecifications which are probably due to the fact that only a few of 2|S| pos-

sible skill combinations could have been taken into account in a collection of 10

problems.

3.2.5 Discussion

The simulation study investigated whether constraining the parameter space of

the α and β estimates was a way of reducing the variability of the whole set of
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Figure 3.3: True problem parameters (x axis) versus mean of the problem param-

eter estimates (and related standard errors) reproduced on the simulated data sets

(y axis) by both correct model (left-hand diagrams) and incorrect model (right-

hand diagrams). Conditions with 20 problems, noise ≤ .1, and upper bound = 1

(upper diagrams) and .1 (lower diagrams). The straight line x = y is added for

reference.

parameters in non-identifiable models, and of facilitating the identification of the

skill assignment underlying the data. The effects of misspecifications of the skill

assignment on the recovery of problem parameters and the identification of the

skill profiles have been investigated as well.

As expected, model identifiability depends on both the level of information

and the noise in the data. The simulations showed that, when the noise in the

data is low (e.g., αtrue and βtrue ≤ .1), the models might be identifiable even if

the skills are assessed by means of a small number of problems. When the noise

increases (e.g., αtrue and βtrue ≤ .3), a greater number of problems is required for

the models to be identifiable.

Across the different conditions, the number of non-identifiable parameters in-
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Figure 3.4: True problem parameters (x axis) versus mean of the problem param-

eter estimates (and related standard errors) reproduced on the simulated data sets

(y axis) by both correct model (left-hand diagrams) and incorrect model (right-

hand diagrams). Conditions with 20 problems, noise ≤ .3, and upper bound = 1

(upper diagrams) and .1 (lower diagrams). The straight line x = y is added for

reference.

creased when the data became more noisy and the collection with 10 problems was

considered. Interestingly, on equal levels of information and noise, this number

was greater when the incorrect models were estimated. These results, together

with those of the simulation study presented in the previous chapter, suggest

that the data should provide enough information about the skills and that they

should not be too noisy in order that the models are identifiable. Moreover, it

is reasonable to expect that an important role in identifiability is played by the

way the skills and the problems are related to each other.

Constraining the parameter space of the α and β estimates is a way of finding

a unique solution for the entire set of the model parameters in non-identifiable

models. The simulations showed that, as the upper bound got lower, the number
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Figure 3.5: True problem parameters (x axis) versus mean of the problem param-

eter estimates (and related standard errors) reproduced on the simulated data sets

(y axis) by both correct model (left-hand diagrams) and incorrect model (right-

hand diagrams). Conditions with 10 problems, noise ≤ .1, and upper bound = 1

(upper diagrams) and .1 (lower diagrams). The straight line x = y is added for

reference.

of non-identifiable parameters decreased until all parameters reached only one

solution for their estimates. This is due to the fact that there is a connection

between the α and β probabilities of the problems and the π, γ and λ probabilities

of the skills that are associated with those problems. It should be noted that,

through this procedure, biased estimates can be obtained. This is especially true

for the α and β parameters which lie on the upper bound.

Misspecifications of the skill assignment affect the identification of the skill

profiles and the recovery of the problem parameters. This result is in line with the

findings of Rupp and Templin (2008), and it suggests the importance of properly

associating the skills with the problems in order to reach an accurate assessment

of students and the didactic interventions, and to obtain reliable estimates of the



72

problems that are contained in the assessment instrument.

Constraining the parameter space of the α and β estimates also helps to

recognize the skill assignment underlying the data. It is interesting to note that,

regardless of the level of noise in the data, the best separation between the correct

model and the incorrect one is obtained with the smallest upper bound value.

This happens in spite of the fact that an upper bound lower than the true value

of the α and β parameters will produce biased estimates for these parameters.

This result can be understood by considering that, unlike the correct model, the

incorrect one tends to inflate the α and β estimates of the problems whose skill

assignment is incorrect until the model likelihood reaches its maximum value.

By imposing an upper bound to such estimates, the CoGaLoM constrains the

incorrect model more than the correct model. As a consequence, the likelihood

of the incorrect model decreases faster than that of the correct one.

3.3 Final remarks

An extension of the GaLoM has been presented, which uses the log-barrier method

in order to constrain the estimates of the careless error and lucky guess parameters

to be less than or equal to an upper bound. However, other ways of constraining

the parameters of a model have been proposed in the literature. Agresti and

Lang (1993), Clogg (1979), Lazarsfeld and Henry (1968), and Lindsay, Clogg,

and Grego (1991) proposed extensions of latent class models in which some of

the conditional probabilities were fixed to given values or constrained to be equal.

Using these kinds of constraints for the GaLoM might be difficult in practical

applications in which there is neither prior knowledge about the error probability

of a problem nor a valid reason for constraining different problems to have the

same error probabilities. In this respect, the log-barrier method seems to be

more feasible. Indeed, it imposes neither equality nor fixed-value constraints

on the parameter estimates, but it only constrains them to be within a feasible
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region. Junker and Sijtsma (2001) proposed a monotonicity constraint for the

careless error and lucky guess parameters of the DINA model (de la Torre &

Douglas, 2004; Macready & Dayton, 1977). Given a problem q, the constraint

requires that αq + βq < 1. This approach does not prevent the inflation of error

parameters that occurs when incorrect models are estimated, and it might not be

useful in practical applications for recognizing the skills assignment that underlies

the data.

In the simulation study that has been presented, the correct models were

tested and compared with the incorrect ones. This situation could not hold in

practice. In fact, in practical applications the skill multimap underlying the

data is not known. Moreover, when there is not much theory about which skills

are measured by the assessment instrument and how they are related to the

problems, more than one skill multimap could be plausible in theory, and no

one corresponding to the true skill multimap. In these cases, the skill multimap

that best approximates the true one has to be identified. The next chapter

investigates the usefulness of constraining the estimates of the α and β parameters

for recognizing, among a number of alternatives, the skill assignment that best

approximates the true one.

A final remark concerns the complexity of the models that are compared. The

complexity of a model is usually related to the number of parameters. Adding

parameters to a model increases its complexity, and it may also improve its fit to

the data. When the models to be compared have the same number of parameters,

Pearson’s Chi-square statistic can be used. This has been the case of the study

presented. On the contrary, when the models to be compared have a different

number of parameters, indices such as the AIC and the BIC should be used

because they correct the fit for complexity.

However, there is a complication that concerns us when comparing different

models. In the GaloM, model complexity depends on the number of problems,

skills and learning objects. Even so, it is not excluded that models incorporat-
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ing performance structures with a different numbers of states result in different

levels of complexity even if the overall number of parameters is the same. Given

a set of skills S, there are 2|S| possible competence states. If the function be-

tween the competence states and the performance states that are delineated from

them is one-to-one, different competence states will delineate different perfor-

mance states. The performance structure will therefore contain 2|S| states. If the

function is not one-to-one, different competence states will delineate the same

performance state, and the performance structure will contain less than 2|S|. As

an example, consider the correct and incorrect models concerning the condition

with 20 problems in the study presented. The two models have the same num-

ber of parameters (55 parameters). The correct model incorporated a structure

containing 32 performance states. It means that, through the generating skill

map, each of the 25 = 32 competence states delineated a different performance

state. The incorrect model incorporated a structure containing 30 performance

states. Through the modified skill map, both the competence states {} and {d}

delineated the performance state in which no problem is solved, and both the

competence states {a} and {a, d} delineated the performance state in which only

problem 1 is solved. A greater number of performance states might lead to a

model that fits better than another even if the two models have the same num-

ber of parameters. This form of complexity should be taken into account when

comparing different models.
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Table 3.3: Classification of the Observations within the Competence States and
Agreement Rates for the Unconstrained Correct and Incorrect Models in the
Condition with 20 Problems and Noise ≤ .1

Competence states Correct model Incorrect model AR
Pretest

{b, c} 104 151 .90
{b, e} 1 1 1.00
{b, c, d} 4 7 .50
{b, c, e} 867 799 .91
{a, b, c, e} 1 2 .00
{b, c, d, e} 23 40 .83

.90
Posttest - γtrue and λtrue ≤ .33

{b, c} 1 0 .00
{c, e} 5 0 .00
{b, c, e} 71 51 .69
{c, d, e} 3 11 1.00
{b, c, d, e} 170 188 .99

.88
Posttest - γtrue ≥ .66;λtrue ≤ .33

{a, b, c, d, e} 250 250 1.00
1.00

Posttest - γtrue ≤ .33;λtrue ≥ .66
{} 250 5 .02
{d} 0 245

.02
Posttest - γtrue and λtrue ≥ .66

{a} 6 2 .17
{a, d} 6 57 .67
{a, e} 114 52 .45
{a, d, e} 124 139 .85

.64
Note. Letters from a to e refer to the five skills. AR = agreement rate.
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Table 3.4: Classification of the Observations within the Competence States and
Agreement Rates for the Unconstrained Correct and Incorrect Models in the
Condition with 20 Problems and Noise ≤ .3

Competence states Correct model Incorrect model AR
Pretest

{b} 2 0 .00
{b, c} 78 186 .69
{c, e} 1 3 1.00
{b, c, d} 0 8
{b, c, e} 890 600 .65
{c, d, e} 0 1
{a, b, c, e} 1 2 .00
{b, c, d, e} 28 200 .71

.66
Posttest - γtrue and λtrue ≤ .33

{b, c} 2 13 1.00
{c, e} 9 1 .11
{b, c, d} 0 3
{b, c, e} 56 19 .29
{c, d, e} 2 2 .50
{b, c, d, e} 181 212 .97

.78
Posttest - γtrue ≥ .66;λtrue ≤ .33

{a, b, c, d, e} 250 250 1.00
1.00

Posttest - γtrue ≤ .33;λtrue ≥ .66
{} 250 107 .43
{d} 0 135
{d, e} 8

.43
Posttest - γtrue and λtrue ≥ .66

{a} 6 2 .33
{a, d} 13 70 .92
{a, e} 48 16 .29
{a, d, e} 183 162 .80

.70
Note. Letters from a to e refer to the five skills. AR = agreement rate.
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Table 3.5: Classification of the Observations within the Competence States and
Agreement Rates for the Unconstrained Correct and Incorrect Models in the
Condition with 10 Problems and Noise ≤ .1

Competence states Correct model Incorrect model AR
Pretest

{b, c} 34 0 .00
{c, e} 3 0 .00
{b, c, d} 0 100
{b, c, e} 957 0 .00
{b, c, d, e} 6 0 .00

.00
Posttest - γtrue and λtrue ≤ .33

{c, d} 0 23
{c, e} 6 0 .00
{b, c, d} 0 226
{b, c, e} 101 0 .00
{c, d, e} 13 0 .00
{a, b, c, d} 0 1
{b, c, d, e} 130 0 .00

.00
Posttest - γtrue ≥ .66;λtrue ≤ .33

{a, b, c, d, e} 250 250 1.00
1.00

Posttest - γtrue ≤ .33;λtrue ≥ .66
{} 250 250 1.00

1.00
Posttest - γtrue and λtrue ≥ .66

{a} 5 169 1.00
{a, d} 3 0 .00
{a, e} 106 24 .19
{a, d, e} 136 57 .38

.30
Note. Letters from a to e refer to the five skills. AR = agreement rate.
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Chapter 4

Selection of the best skill

assignment in practice with the

Constrained Gain-Loss Model

The skill multimap has to be specified in an appropriate way for the assessment

to be accurate and trustworthy. In practical applications, the skill multimap

underlying the data is not known. Moreover, when there is not much theory

about which skills are measured by the assessment instrument and how they are

related to the problems, more than one skill multimap could be plausible, and

the problem would be how to select the best one.

Standard statistics, such as the Pearson’s Chi-square or the likelihood ratio

can be used for computing the fit of models incorporating different skill mul-

timaps. The skill multimap is then chosen which is associated to the model with

the best fit. This approach does not guarantee that the best model is identified.

As observed by Stefanutti and Robusto (2009), an incorrectly specified model

can obtain a good fit, even better than that of the correct model, by an ad hoc

inflation of the error probabilities of the problems. Large values of the error

probabilities might be a sign of misfit that should be taken into account when

79
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comparing different models.

A possibility in this direction is to choose the model with fewer problems with

large α or β probabilities, given that its model fit is acceptable. Since misspecifi-

cations of the skill multimap with respect to some problems inflate the estimate

of their error probabilities, it is expected that the fewer the misspecifications in

the skill multimap, the fewer the problems with large error probabilities. This

approach, although appealing, might be not feasible in practice. In practical

applications, the real level of noise in the data is unknown. Some devices can

be used for reducing the occurrence of careless errors and lucky guesses in re-

sponding to the problems. For example, the problems might be designed to be

open response, and there could be no time pressure imposed in responding to

the problems. However, there could always be some unpredictable or difficult

to control elements which affect the responses to some problems. These might

concern, for example, the wording of a problem, the fatigue, and the motivational

decrease. If this is the case, high error probabilities for some problems could be

erroneously interpreted as a sign of misspecification of the skill multimap with

respect to those problems.

In the previous chapter, an approach was proposed which compares the fit

to the data of models which undergo a constrained estimation of their error

probabilities. An important feature of this approach is that it takes into account

the information about model fit which derives from both the standard fit statistics

and the estimates of the error probabilities. The rationale behind the approach

is the following. Since an incorrect model, unlike the correct model, tends to

inflate the error estimates of the problems until the model likelihood reaches its

maximum value, it is constrained more than the correct model when an upper

bound is imposed on the error estimates. As a consequence, the fit of the incorrect

model deteriorates to a greater extent than that of the correct model.

The usefulness of the approach has been demonstrated in distinguishing the

correct model from an incorrect one. In this chapter a situation is described in
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which the correct model does not belong to the collection of models which are

compared to each other. This is a more interesting situation to test the approach

on because in practical applications it might be that none of the skill multimaps

at hand corresponds to the true skill multimap underlying the data, and that the

skill multimap that best approximates the true skill multimap has to be identified.

The chapter is organized as follows. In the next paragraph, a simulation study

is presented which tests the possibility of identifying, among a number of incorrect

models, the one that best approximates the correct model. Then, an empirical

application is presented in which models that are entirely derived from the anal-

ysis of the problems and from precise assumptions about the skills required for

solving them are compared with models in which some skill assignments are ran-

dom. Finally, a procedure is described that in practical applications can help to

interpret high error probabilities of the problems as a sign of noise in the data

rather than misspecifications of the skill multimap.

4.1 A simulation study

The simulation study investigates whether constraining the estimates of the α

and β parameters allows to identify, from a number of alternative models, the

model that best approximates that underlying the data. In particular, given

a collection of models at different distances from the one used for generating

the data, whether the CoGaLoM can be used for recognizing the closest one is

investigated. The recovery of the problem parameters and the identification of

the skill profiles are investigated as well.

Different strategies for associating the problems with the skills, and levels of

noise in the data were considered.
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4.1.1 Simulation of data sets

Three thousand random data sets were generated according to the GaLoM. Six

conditions were produced by considering two strategies for associating the prob-

lems with the skills, and three levels of noise in the data. A collection with

20 problems was considered, and five skills were set to underlie it. The skill

map and the skill multimap that are represented in Table 4.1 were used to asso-

ciate the problems with the skills via the conjunctive and the competency model,

respectively. The two resulting performance structures (Kc denotes the one delin-

eated by the skill map, Mc the one delineated by the skill multimap) contain 32

performance states, and they were used to generate the data for the conditions

concerning the conjunctive and the competency model. The noise in the data

was set to be low (αtrue and βtrue ≤ .1), medium (αtrue and βtrue ≤ .3) or high

(αtrue and βtrue ≤ .5).

For each of the six conditions, 500 random data sets were simulated by using

a parametric bootstrap (see, e.g., Langeheine et al., 1996; von Davier, 1997).

The number of response patterns was set to 1,000 for each data set. The initial

probabilities of the skills πtrue were set to be in the interval [.1, .9], and the

learning object was set to highly affect gain of the skills and poorly affect loss

(γtrue ≥ .66;λtrue ≤ .33). The true model parameters were randomly generated

according to the aforementioned constraints. To facilitate the comparisons among

the conditions, the initial probabilities, and the gain and loss probabilities were

fixed across all the conditions. The careless error and lucky guess probabilities

were fixed across the conditions concerning the conjunctive and the competency

model.

4.1.2 Estimation of the models

For each of the 500×6 data sets, correct and incorrect models were estimated. The

correct models (henceforth denoted by Kc and Mc) incorporated the performance
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Table 4.1: Skill Assignment in the Conjunctive and Competency Model in the
Simulation Study

Conjunctive model Competency model
Problem Competencies Problem Competencies
1 {a} 1 {a}
2 {b} 2 {b}
3 {c} 3 {c}
4 {d} 4 {d}
5 {e} 5 {e}
6 {a, b} 6 {a, b}, {b, d, e}
7 {a, c} 7 {a, c}
8 {b, c} 8 {b, c}
9 {c, e} 9 {c, e}, {b, d, e}
10 {d, e} 10 {d, e}, {a, d}
11 {b, d} 11 {b, d}
12 {a, b, d} 12 {a, b, d}
13 {c, d, e} 13 {c, d, e}
14 {a, b, d, e} 14 {a, b, d, e}, {a, c, e}
15 {b, c, e} 15 {b, c, e}
16 {a, b, c} 16 {a, b, c}, {b, c, d, e}
17 {a, c, d} 17 {a, c, d}
18 {a, b, c, e} 18 {a, b, c, e}
19 {a, d, e} 19 {a, d, e}
20 {b, c, d, e} 20 {b, c, d, e}
Note. Letters from a to e refer to the five skills.

structures that were used to generate the data (Kc and Mc). Incorrect models

were created that incorporated performance structures at increasing distance from

the correct ones. These performance structures were obtained in the following

way. With respect to the conjunctive models, three skill maps were created by

modifying the generating one (see Table 4.2). In a skill map, only the skills

assigned to a problem were modified. Besides this modification, in another skill

map the skills assigned to a second problem were also modified. Besides the

previous modifications, in the last skill map, the skills assigned to a third problem

were also modified. Therefore, the three skill maps differed from the generating

skill map for the skills assigned to one, two or three problems. In a similar

way, three skill multimaps were created that differed from the generating skill
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multimap for the skills assigned to one, two or three problems (see Table 4.2).

The performance structures delineated by the three skill maps (K1, K2 and K3)

and those delineated by the three skill multimaps (M1,M2 andM3) contain 32

performance states as the correct performance structures (the subscript indicates

the number of problems whose skill assignment was modified).

The incorrect performance structures were at increasing distance from correct

ones. The discrepancies between Kc and K1, K2 and K3 were respectively .25,

.38, and .50 (SD = .43, .60, .75, respectively). The discrepancies between Mc

and M1, M2 and M3 were respectively .19, .25, and .38 (SD = .39, .43, .65,

respectively). The incorrect conjunctive models are denoted by K1, K2 and K3.

The incorrect competency models are denoted by M1, M2 and M3.

Both correct and incorrect models were estimated three times by the Co-

GaLoM, each time with a different choice of the upper bound of the α and β

parameters (α∗, β∗ = 1, .5, .1; the upper bound was equal for all problems). It

worth remembering that, when α∗, β∗ = 1, the CoGaloM corresponds to the

GaLoM.

Table 4.2: Misspecifications of the Skill Assignments in the Conjunctive and
Competency Models in the Simulation Study

Problem Models Original Modified N skills added N skills deleted
Conjunctive models

6 K1,K2,K3 {a, b} {a, d} 1 1
10 K2,K3 {d, e} {b, d, e} 1 0
16 K3 {a, b, c} {a, c, e} 1 1

Competency models
10 M1,M2,M3 {a, d} {a, c, e} 2 1
14 M3 {a, c, e} {a, b, c} 1 1
16 M2,M3 {b, c, d, e} {a, c, d, e} 1 1
Note. Letters from a to e refer to the five skills. K1,K2 and K3 (resp. M1,M2

and M3) = modified conjunctive (resp. competency) models with changes in the
skills assigned to 1, 2 and 3 problems, respectively.
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4.1.3 Testing model identifiability, effects of misspecifica-

tions of the skill assignment, and recognizability of

the best skill assignment

Model identifiability was tested in the conditions in which the unconstrained

models were estimated (α∗, β∗ = 1; GaLoM ). For this purpose, one of the 500

simulated data sets was randomly selected and the model parameters were esti-

mated 100 times, by randomly varying their initial values between 0 and 1. The

α and β parameters were randomly generated between 0 and .5. A model was

taken to be identifiable when the standard deviations were less than .01 for all

the parameters.

The effect of misspecifications of the skills assignment on the identification of

the skill profiles and the recovery of the problem parameters was tested in the

conditions in which the unconstrained models were estimated. The former was

assessed by computing the number of observations that the correct and incorrect

models classified into each competence state. Moreover, agreement rates were

computed between the correct and incorrect models. Agreement rates were cal-

culated for each competence state by taking the number of observations that the

incorrect models classified into a competence state in accordance with the correct

models, and dividing it by the number of observations that the correct models

classified into that competence state. Agreement rates across the competence

states were also calculated. When all the classifications of the incorrect models

were in agreement with those of the correct models, the agreement rates are 1.

In the opposite case, they are 0.

The effect of misspecifications on the recovery of the problem parameters

was tested by considering the bias between the true problems parameters and the

mean of the problem parameter estimates reproduced by the correct and incorrect

models on the 500 simulated data sets.

The recognizability of the skill assignment that best approximates the true
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one was assessed in all the conditions by computing the proportion of data sets in

which the Pearson’s Chi-square of the incorrect models at smaller distance from

the correct ones was smaller than that of the incorrect models at greater distance.

An average Chi-square was also computed for the incorrect models.

4.1.4 Results

All the unconstrained models are identifiable (i.e., SD < .01 for all parameters)

in every noise condition, with the exception of the incorrect competency model

M3 in the condition with noise ≤ .5 (SD ≥ .01 for five out of 55 parameters).

Among the competency models considered in this study, M3 is the farthest from

the correct one (Mc). The model reaches a unique solution for all the parameters

with an upper bound of .1.

With respect to the effect of misspecifications of the skill assignment on the

identification of the skill profiles, Table 4.3 contains the number of observations

that the unconstrained conjunctive models classified into the competence states

and the agreement rates (AR) between them. Table 4.4 contains the same infor-

mation for the competency models. Note that the results concerning the correct

models are not necessarily free of error (misclassifications are not excluded, espe-

cially when the noise is high). Nevertheless, they represent what is found under

the optimal estimation condition. Results concerning the competency model M3

in the condition with noise .5 are not provided because the model was not iden-

tifiable. Only results concerning the pretest are presented. In the posttest, all

the conjunctive and competency models classified the entire set of observations

in the full competence state {a, b, c, d, e} (ARc1 = ARc2 = ARc3 = 1), regardless

of the level of noise in the data. This result is consistent with the learning object

effect that is considered in the study.

In general, there are no big differences in terms of how the conjunctive models

categorize the observations in the pretest. The same thing goes for the compe-
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Table 4.3: Classification of the Observations within the Competence States and
Agreement Rates for the Unconstrained Conjunctive Models in the Pretest

Competence states Kc K1 K2 K3 ARc1 ARc2 ARc3

Noise ≤ .1
{b, c} 128 160 159 91 1.00 .98 .69
{b, c, d} 13 12 11 15 .85 .77 .85
{b, c, e} 840 809 811 873 .96 .96 .99
{a, b, c, e} 1 1 1 1 1.00 1.00 1.00
{b, c, d, e} 18 18 18 20 .94 .94 1.00

.97 .96 .95
Noise ≤ .3

{b, c} 30 31 27 4 .73 .70 .13
{b, c, d} 0 1 1 0
{b, c, e} 970 967 970 995 .99 .99 1.00
{a, b, c, e} 0 0 1 1
{b, c, d, e} 0 1 1 0

.98 .98 .97
Noise ≤ .5

{a, b, c} 1 3 3 4 1.00 1.00 1.00
{b, c, d} 512 566 534 355 .91 .88 .60
{b, c, e} 29 29 23 4 .59 .52 .14
{a, b, c, d} 451 391 431 636 .78 .83 .91
{a, b, c, e} 1 3 2 0 1.00 1.00 .00
{b, c, d, e} 6 8 7 1 .50 .50 .17

.84 .84 .73
Note. Letters from a to e refer to the five skills. Kc = generating model; K1,
K2 and K3 = modified models with changes in the skills assigned to 1, 2 and 3
problems, respectively; ARc1, ARc2 and ARc3 = agreement rate between Kc and
K1, K2 and K3, respectively.
In the posttest, the models classified all the observations in the competence state
{a, b, c, d, e}, and ARc1 = ARc2 = ARc3 = 1.

tency models. This is probably due to the fact that the modifications induced to

the generating skill assignments only concerned the skills associated with a few

problems and, above all, they did not eliminate skill combinations corresponding

to competence states observed in the simulated data sets. As expected, the more

the incorrect models are far from the correct ones, the more the agreement rates

decrease. This is more evident when the noise increases.

The true problem parameters (x axis) are plotted versus the mean of the

problem parameter estimates (and the related standard errors) reproduced on the
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Table 4.4: Classification of the Observations within the Competence States and
Agreement Rates for the Unconstrained Competency Models in the Pretest

Competence states Mc M1 M2 M3 ARc1 ARc2 ARc3

Noise ≤ .1
{b, c} 124 124 128 131 .98 .98 .97
{b, c, d} 16 15 14 16 .94 .88 .94
{b, c, e} 841 842 839 834 1.00 .99 .99
{a, b, c, e} 1 1 1 1 1.00 1.00 1.00
{b, c, d, e} 18 18 18 18 1.00 1.00 1.00

.99 .99 .98
Noise ≤ .3

{b, c} 42 72 75 79 .93 .95 .90
{b, c, d} 2 2 4 2 1.00 1.00 .00
{b, c, e} 956 926 921 918 .97 .96 .96
{a, b, c, e} 0 0 0 1

.96 .96 .95
Noise ≤ .5

{a, b, c} 4 0 0 .00 .00
{b, c, d} 968 968 931 .98 .94
{b, c, e} 24 6 9 .21 .17
{a, b, c, d} 4 26 60 .25 .75

.95 .92
Note. Letters from a to e refer to the five skills. Mc = generating model; M1,
M2 and M3 = modified models with changes in the skills assigned to 1, 2 and 3
problems, respectively; ARc1, ARc2 and ARc3 = agreement rate between Mc and
M1, M2 and M3, respectively.
Model M3 was not identifiable in the condition with noise ≤ .5. In the posttest,
the models classified all the observations in the competence state {a, b, c, d, e},
and ARc1 = ARc2 = ARc3 = 1.

500 simulated data sets (y axis) by the unconstrained correct and incorrect models

in all noise conditions. Figures 4.1 and 4.2 depict the results concerning the

conjunctive models and the competency models, respectively. Results concerning

the competency model M3 in the condition with noise .5 are not provided because

the model was not identifiable.

In the correct models Kc and Mc, the α and β parameters of all problems are

well-recovered when the noise is .1 and .3, whereas those of only a few problems

are overestimated when the noise is .5. In the incorrect models, overestimations

of α and β estimates are observed which are consistent with all misspecifications
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Figure 4.1: True problem parameters (x axis) versus mean of the problem param-

eter estimates (and related standard errors) reproduced on the simulated data sets

(y axis) by the unconstrained correct (Kc) and incorrect (K1, K2, K3) conjunctive

models. The straight line x = y is added for reference.

induced to the generating skill assignments (see Table 4.2). These overestimations

are present in all levels of noise, but their size decreases with the increasing of

the noise.

When the noise in the data is low, the incorrect model that has fewer problems

with large α and β probabilities can be easily recognized, among alternative

models, as the one that best approximates the correct model. In the condition

with noise .1, K1 is easily recognized, among the conjunctive models, as the

one that best approximates Kc. Similarly, M1 is easily recognized, among the

competency models, as the one that best approximates Mc. When the noise

in the data is high, it might be difficult to distinguish high values of α and β

parameters which express misspecifications of the skill assignment from those
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Figure 4.2: True problem parameters (x axis) versus mean of the problem pa-

rameter estimates (and related standard errors) reproduced on the simulated

data sets (y axis) by the unconstrained correct (Mc) and incorrect (M1, M2, M3)

competency models. The straight line x = y is added for reference.

which express noise.

This part concerns the possibility of recognizing the incorrect model that best

approximates the correct one by imposing an upper bound on to the estimates of

the α and β parameters. Figure 4.3 compares the fit of the incorrect conjunctive

models for each level of noise (x axis) and each value of the upper bound (the

three lines in the diagrams). Figure 4.4 contains the same information for the

incorrect competency models. In both the figures, the upper diagrams depict

the proportion of simulated data sets in which the Chi-square of a model at a

smaller distance from the correct one was smaller than that of a model at greater

distance. The lower diagrams depict the logarithm of the ratio between the

average Chi-square of a model at greater distance from the correct one and that

of a model at smaller distance. A value greater that 0 indicates that, between
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the two models that are compared, the one that is closest to the correct model is

correctly identified as the best model. A value smaller than 0 indicates that the

model that is farthest from the correct model is incorrectly identified as the best

model.
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Figure 4.3: Comparison between the incorrect conjunctive models for each level of

noise (x axis) and each value of the upper bound (the three lines in the diagrams).

The upper diagrams depict the proportion of simulated data sets in which the

Chi-square of a model that is closest to the correct one turned out to be smaller

than that of a model that is farthest. The lower diagrams depict the logarithm

of the ratio between the average Chi-square of a model that is farthest from the

correct model and that of a model that is closest.

Some comments on the diagrams follow. In general, the recognizability of the

best model decreases with the increase of the noise in the data. Usually, the best

model is more easily recognized when the upper bound is set to .1. When the

noise is .5 and the estimation of the α and β parameters is unconstrained, a model

that is closest to the correct one might be not distinguished from a model that is

farthest from it by simply comparing their fit. In these cases, an upper bound of
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Figure 4.4: Comparison between the incorrect competency models for each level of

noise (x axis) and each value of the upper bound (the three lines in the diagrams).

The upper diagrams depict the proportion of simulated data sets in which the

Chi-square of a model that is closest to the correct one turned out to be smaller

than that of a model that is farthest. The lower diagrams depict the logarithm

of the ratio between the average Chi-square of a model that is farthest from the

correct model and that of a model that is closest.

.1 might affect the fit of the two models in such a way that the one that is closest

to the correct one can be correctly identified. Finally, the results obtained with

an upper bound of .5 do not differ from those obtained with the unconstrained

estimation. This is probably due to the fact that for none of the models that

have been considered were the overestimations of the α and β parameters greater

than .5. For this reason, the upper bound did not apply a real constraint on these

models.



THE CONSTRAINED GAIN-LOSS MODEL IN PRACTICE 93

4.1.5 Discussion

The simulation study investigated whether constraining the α and β parameters

was a way of identifying, among alternative models, the one that best approxi-

mates the true model. Three conjunctive models and three competency models

were created that were at increasing distance from the conjunctive and compe-

tency models used for generating the data.

Misspecifications of the skill assignment affect the identification of the skill

profiles. This result is in line with what was observed in Chapter 3. It is inter-

esting to note that effects can also be observed when only the skill assignments

of a few problems are misspecified.

Large values of the α and β parameters of some problems can point to misspec-

ifications of the skill assignment with respect to these problems. The simulations

showed that, when the noise in the data is low, the model that has fewer prob-

lems with large α and β probabilities can be easily recognized, among alternative

models, as the one that best approximates the correct model. In contrast, when

the noise is high, looking at the large α and β probabilities might be not a feasible

way of recognizing the best model. In practical applications, both the level of

noise and the skill assignment underlying the data are unknown. Therefore, it

might not be possible to distinguish high values of the estimates of α and β pa-

rameters which express misspecifications of the model from those which express

noise.

When the unconstrained models are estimated, comparing their fit does not

ensure that the best model is identified. This is particularly true as the noise

in the data increases. Constraining the estimates of the α and β parameters

increases the recognizability of the model that best approximates the correct

one. This approach seems to be quite powerful given that, in the simulations

presented, it allowed models that differed only in the skills assigned to a few

problems to be distinguished between. The simulations showed that, for an upper
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bound to be effective, it should be lower than the level of noise in the data. In

general, regardless of the level of noise, the best separation between the models

was obtained with the lowest value of the upper bound. In practical applications,

the use of a low upper bound is advisable given that the level of noise in the data

is unknown.

4.2 An empirical application

In practical applications the skill assignment underlying the data is unknown.

Moreover, different solutions could be plausible for associating the problems with

the skills, and the problem would be establishing which the best is.

The assumption is made that a model, which is completely derived from the

analysis of the problems and from specific assumptions about the skills required

for solving them, represents the association underlying the data better than a

model in which some of the associations between problems and skills are random.

The study investigates whether constraining the α and β estimates helps to

recognize models that are entirely derived from plausible assumptions about the

skills required for solving the problems from models in which some skill assign-

ments are random.

4.2.1 Method

The study involved students at the University of Tübingen in the academic year

2009-2010. An invitation to participate in an internet-based study was sent to

their email address. No financial reward was offered. The students who agreed

to take part in the study were presented with two collections of 12 open response

problems in elementary probability theory (see Appendix B.2). Four skills (de-

termination of the probability of an event, probability of the complement of an

event, stochastic independence, union of mutually exclusive events), and their
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combinations, were assumed to be required for solving the problems. The prob-

lems of the two collections were equivalent with respect to the content and the

difficulty of the computation required.

After responding to the first collection of problems (pretest), the students

were presented with a learning object consisting of concepts relative to the four

skills and application examples (see Appendix B.2). Then, the students were

presented with the second collection of problems (posttest).

From the students who took part in the study, 39 were selected that responded

to all the problems and spent a certain time on the learning object pages and

the test pages. Their mean age was 25.63 (SD = 7.51; range from 19 to 56),

and 57 were female. Their responses to the problems were coded as correct (1)

or incorrect (0).

4.2.2 Estimation of the models

Six distinct models were considered in the study. Two of them were completely

derived from a systematic analysis of the content of the problems and from specific

assumptions about the skills and the strategies that were required for solving

them. They are therefore assumed to be two plausible models of the association

between problems and skills. From each of these models, two models were derived

by randomly modifying the skills assigned to certain problems. These four models

are therefore assumed to be less plausible.

The first plausible model is a conjunctive model. It was delineated by a skill

map associating each problem with the skills that were assumed to be necessary

for solving it on the basis of what the problem requested (see Table 4.5). The

performance structure (henceforth denoted by Kp) delineated by the skill map

contains 16 states. The second plausible model is a competency model. From the

skill map, a skill multimap was derived by adding alternative solution strategies to

some problems (see Table 4.5). These strategies were formulated by considering
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that the text of some problems provided the students with information that made

it possible to use alternative approaches to solve the problem. The performance

structure (henceforth denoted byMp) delineated by the skill multimap, contains

13 states. In the sequel, the plausible conjunctive and competency models are

denoted by Kp and Mp, respectively.

Table 4.5: Skill Assignments in the Conjunctive and Competency Model in the
Empirical Application

Conjunctive model Competency model
Problem Competencies Problem Competencies
1 {pb} 1 {pb}
2 {cp} 2 {cp}, {un}
3 {un} 3 {un}, {cp}
4 {id} 4 {id}
5 {pb, cp} 5 {pb, cp}
6 {pb, cp} 6 {pb, cp}, {pb, un}
7 {pb, un} 7 {pb, un}, {pb, cp}
8 {pb, un} 8 {pb, un}
9 {pb, id} 9 {pb, id}
10 {cp, id} 10 {cp, id}
11 {pb, cp, id} 11 {pb, cp, id}
12 {pb, un, id} 12 {pb, un, id}, {pb, cp, id}
Note. cp = complement of an event; id = stochastic independence;
pb = probability of an event; un = union of events.

From each of the two plausible models, two models were derived that were at

increasing distance from them. With respect to the conjunctive models, two skill

maps were created by randomly modifying the skills assigned to some problems in

the plausible skill map (see Table 4.6). In the first one, only the skills assigned to

a problem were modified. Besides this modification, in the second skill map the

skills assigned to a second problem were also modified. Therefore, the two new

skill maps differed from the plausible one due to the skills assigned to one or two

problems. In a similar way, two skill multimaps were created that differed from

the plausible skill multimap due to the skills assigned to one or two problems

(see Table 4.6). The performance structures delineated by the two modified skill
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maps (K1, and K2) contain 16 performance states like Kp, and the performance

structures delineated by the two modified skill multimaps (M1, andM2) contain

13 performance states like Mp (the subscript indicates the number of problems

for which skill assignment was modified).

Table 4.6: Misspecifications of the Skill Assignments in the Conjunctive and
Competency Models in the Empirical Application

Problem Models Original Modified N skills added N skills deleted
Conjunctive models

9 K2 {pb, id} {un, id} 1 1
11 K1,K2 {pb, cp, id} {pb, cp, un} 1 1

Competency models
7 M1,M2 {pb, cp} {pb, id} 1 1
12 M2 {pb, cp, id} {pb, cp, un} 1 1
Note. cp = complement of an event; id = stochastic independence; pb = prob-
ability of an event; un = union of events. K1, and K2 (resp. M1 and M2) =
less plausible conjunctive (resp. competency) models with changes in the skills
assigned to 1 and 2 problems, respectively.

The performance structures delineated by the modified skill maps and skill

multimaps were at increasing distance from those delineated by the plausible skill

map and skill multimap. The discrepancy between K1 and Kp was .13 (SD = .33)

and that between K2 and Kp was .38 (SD = .60). The discrepancy between M1

andMp was .15 (SD = .36) and that betweenM2 andMp was .31 (SD = .46).

In the sequel, the models incorporating those structures are denoted by K1, K2,

M1 and M2.

The six models were estimated three times by the CoGaLoM, each time with

a different choice of the upper bound of the α and β parameters (α∗, β∗ = 1, .5, .1;

the upper bound was equal for all problems).
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4.2.3 Testing model identifiability, goodness-of-fit, effects

of modifications of the skill assignments, and recog-

nizability of the plausible skill assignments

Identifiability and goodness-of-fit of the six models were tested in the conditions

in which the estimation was unconstrained (α∗, β∗ = 1; GaLoM ). To test model

identifiability, parameters were estimated 100 times, by randomly varying their

initial values between 0 and 1. The α and β parameters were randomly generated

between 0 and .5. A model was taken to be identifiable when the standard

deviations were less than .01 for all the parameters. Goodness-of-fit was tested

using Pearson’s Chi-square statistic and a parametric bootstrap (see Chapter 2

for details).

Also the effects of the modifications induced to the plausible skill assignments

were tested when the estimation was unconstrained. The effects on the identifi-

cation of the skill profiles were assessed by taking, for each student, the modal

competence state in accordance with the estimated model. Moreover, agreement

rates were computed between the plausible models and the less plausible ones.

The effects of the modifications induced to the plausible skill assignments on the

estimates of the problem parameters were assessed by analyzing whether the α

and β probabilities obtained with the plausible models differed from those ob-

tained with the modified models.

The recognizability of the plausible models was tested by comparing the Pear-

son’s Chi-squares of plausible and less plausible models estimated with the dif-

ferent levels of upper bound. Moreover, 500 data sets were generated from the

observed data sample by means of a non-parametric bootstrap. Their size was set

to 39 response patterns, as for the observed data set. The six models were esti-

mated on these data sets, and the proportion of data sets in which the Pearson’s

Chi-square of the plausible models was smaller than that of the less plausible

models was computer. The proportion was also computed between the less plau-
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sible models at increasing distance from the plausible ones.

4.2.4 Results

All the unconstrained models are identifiable (i.e., SD < .01 for all parameters),

and their goodness-of-fit is good (the proportion of random data sample whose

Chi-square was less than the Chi-square of the observed data sample was .41, .49,

.46, .47, .48 and .37 for the models Kp, K1, K2, Mp, M1 and M2, respectively).

Table 4.7 contains the unconstrained estimates of the parameters α and β

obtained with the plausible models. In the conjunctive model Kp, the estimates

of the careless error probabilities are rather high for problems 9 and 11 (α9 =

.40;α11 = .39), whereas those of the lucky guess probabilities are very high for

problems 3, 7 and 9 (β3 = .59; β7 = .79; β9 = .40). In the competency model

Mp, additional solution strategies have been considered for the problems 2, 3,

6, 7 and 12. If they were really useful for solving the problems, a deflation of

their lucky guess probability would be observed. The lucky guess probability of

problem 3 decreases from .59 to < .01 with the addition of the solution strategy.

This suggests that the strategy is really required for solving the problem. The

lucky guess probability of problem 7 decreases from .79 to .50, suggesting that the

solution strategy is somehow useful for solving the problem. Without considering

problem 2, whose lucky guess probability was smaller than .01 in both the models,

no improvements were observed for the lucky guess probabilities of the problems 6

and 12. It is difficult to establish whether this is because the alternative strategies

were not useful for solving these problems, or because these probabilities are close

to their actual lucky guess values. Interestingly, the solution strategies added to

the skill map also affected the estimates of problem 8, whose skill assignment was

not modified. Its lucky guess probability increased a bit and its careless error

decreased. This non-local effect is due to the fact that, according to the skill

map, problems 7 and 8 were clones of each other, that is, they were assigned to
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the same skills. The addition of a solution strategy to problem 7 could only have

affected the estimates of the error probabilities of problem 8.

Given that the addition of the solution strategies decreased the lucky guess

probabilities of some problems, the competency models can be assumed to ap-

proximate the true model underlying the data better than the conjunctive model.

Table 4.7: Maximum Likelihood Estimates of the α and β Parameters Obtained
on the Unconstrained Plausible Conjunctive (Kp) and Competency (Mp) Models

Careless error α Lucky guess β
Problem Kp Mp Kp Mp

1 .09 .09 .00 .00
2 .00 .00 .00 .00
3 .04 .05 .59 .00
4 .00 .00 .33 .33
5 .22 .21 .00 .00
6 .09 .09 .25 .25
7 .06 .05 .79 .50
8 .09 .00 .27 .36
9 .40 .40 .40 .40
10 .30 .31 .25 .25
11 .39 .39 .22 .22
12 .16 .21 .32 .31

Figure 4.5 depicts the problem parameter estimates obtained by the plausible

conjunctive model plotted versus the problem estimates obtained by the less

plausible conjunctive models. It was assumed that skills concerning probability

of an event, complement of an event and stochastic independence were necessary

and sufficient for solving problem 11 (see Table 4.5). The modifications induced

to the plausible skill map replaced stochastic independence with union of events

(see Table 4.6). If stochastic independence was necessary for solving problem

11, we would observe an inflation of its careless error probability in models K1

and K2. Moreover, if union of events was superfluous for solving problem 11,

we would observe an inflation of its lucky guess probability. The results confirm

our assumption that stochastic independence is necessary for solving the problem
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(α11 = .39, .53, .53 in Kp, K1, K2, respectively). However, they suggest that the

skill concerning union of events is not superfluous (β11 = .22 in Kp, β11 ≤ .01

in K1 and K2). The modifications induced to problem 11 had an effect on the

lucky guess estimates of problems 3, 7 and 8. It might be that the association

with union of events somehow put problem 11 in connection with problems 3, 7

and 8, which were also associated with that skill. It was assumed that probability

of an event and stochastic independence were necessary and sufficient to solve

problem 9 (see Table 4.5). The modifications to the plausible skill map replaced

probability of an event with union of events (see Table 4.6). In line with our

assumptions, the results show that probability of an event is necessary for solving

problem 9 (α9 = .40, .44 in Kp and K3, respectively), and that union of events is

not (β9 = .40, .46 in Kp and K3, respectively).
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Figure 4.5: Problem parameter estimates obtained by the plausible (Kp) con-

junctive model (x axis) versus problem parameter estimates obtained by the less

plausible (K1,K2) conjunctive models (y axis) in the unconstrained estimation.

The straight line x = y is added for reference.

Figure 4.6 depicts the results concerning the competency models. It was as-

sumed that two competencies were possible for solving problem 7, one containing

probability of an event and union of events, and the other containing probability

of an event and complement of an event (see Table 4.5). The latter competency
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was modified so that complement of an event was replaced with stochastic inde-

pendence (see Table 4.6). If the competency was correctly specified, we would

expect to observe an inflation of both careless error and lucky guess probabili-

ties of problem 7 in models M1 and M2. The results showed an inflation of the

lucky guess (β7 = .50, .65, .69 in Mp, M1, M2, respectively), but not that of the

careless error (α7 = .05 in all competency models). It was assumed that two

competencies were possible for solving problem 12, one containing probability of

an event, union of events and stochastic independence, and the other containing

probability of an event, complement of an event and stochastic independence (see

Table 4.5). The latter competency was modified so that stochastic independence

was replaced with union of events (see Table 4.6). If the competency was cor-

rectly specified, we would expect to observe an inflation of both careless error

and lucky guess probabilities of problem 12 in model M2. Results confirmed our

assumptions (α12 = .21, .38 in Mp and M2, respectively; β12 = .31, .43 in Mp and

M2, respectively). In general, the results suggest that the skill assignments of

the plausible models are effectively more appropriate than those of the modified

models.
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Figure 4.6: Problem parameter estimates obtained by the plausible (Mp) com-

petency model (x axis) versus problem parameter estimates obtained by the less

plausible (M1,M2) competency models (y axis) in the unconstrained estimation.

The straight line x = y is added for reference.
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Table 4.8 contains the number of students classified into the competence states

by the unconstrained conjunctive models, and the agreement rates (AR) between

the models. Table 4.9 contains the same information for the competency models.

Note that the results concerning the plausible models represent what is found

when some plausible assumptions are made for associating the problems with the

skills. Therefore, they are not necessarily correct.

Table 4.8: Classification of the Observations within the Competence States and
Agreement Rates for the Unconstrained Conjunctive Models in the Pretest

Competence states Kp K1 K2 ARp1 ARp2

{pb} 1 1 1 1.00 1.00
{cp, un} 1 1 1 1.00 1.00
{pb, cp, un} 15 16 17 1.00 1.00
{pb, cp, id} 2 1 1 .50 .50
{pb, cp, un, id} 20 20 19 1.00 .95

.97 .95
Note. cp = complement of an event; id = stochastic independence; pb = prob-
ability of an event; un = union of events. Kp = plausible model; K1 and K2 =
less plausible models with changes in the skills assigned to 1 and 2 problems,
respectively. ARp1, ARp2 = agreement rate between the plausible and the less
plausible models.
The results in the posttest are the same than those in the prestest.

Table 4.9: Classification of the Observations within the Competence States and
Agreement Rates for the Unconstrained Competency Models in the Pretest

Competence states Mp M1 M2 ARp1 ARp2

{pb} 1 1 1 1.00 1.00
{pb, cp} 2 0 1 .00 .50
{cp, un} 1 1 1 1.00 1.00
{pb, cp, un} 12 14 12 1.00 1.00
{pb, cp, id} 5 5 6 1.00 1.00
{pb, cp, un, id} 18 18 18 1.00 1.00

.95 .97
Note. cp = complement of an event; id = stochastic independence; pb = prob-
ability of an event; un = union of events. Mp = plausible model; M1 and M2

= less plausible models with changes in the skills assigned to 1 and 2 problems,
respectively. ARp1, ARp2 = agreement rate between the plausible and the less
plausible models.
The results in the posttest are the same than those in the prestest.

The three conjunctive models do not differ in identifying the competence states
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of the students. The same thing goes for the three competency models. However,

the small number of students who were considered in the analysis means that

caution is required in interpreting these results.

This part concerns the possibility of distinguishing the plausible models from

the less plausible ones by imposing an upper bound to the estimates of the α and

β parameters. Figure 4.7 compares the fit of the three conjunctive models for each

value of the upper bound (x axis). The upper diagram depicts the proportion of

simulated data sets in which the Chi-square of Kp was smaller than that of K1 and

that of K2. The proportion is also computed of data sets in which the Chi-square

of K1 was smaller that that of K2. The lower diagram depicts the logarithm

of the Chi-square of the models. Figure 4.8 contains the same information for

the three competency models. When the estimation is unconstrained, the less

plausible models can obtain a better fit than the plausible models. However,

when an upper bound of .1 is specified, the plausible models fit the data better

than the less plausible ones and, therefore, they can be correctly identified. The

same thing goes when, between the less plausible models, that which is closer to

the plausible one has to be identified.

The comparison between the Chi-square of the two plausible models highlights

that, regardless of the level of the upper bound, Mp fits the data better than

Kp. This is the case regardless of the fact that Mp incorporates a performance

structure containing 3 states less than that incorporated by Kp. In line with what

was observed with the estimates of the error probabilities, this result suggests that

the plausible competency model Mp approximates the true model underlying the

data better than the conjunctive model Kp.

4.2.5 Discussion

The study investigated whether constraining the α and β parameters allows the

recognition of models that were entirely derived from precise assumptions about
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Figure 4.7: Comparison between the three conjunctive models for each value of

the upper bound (x axis). The upper diagram depicts the proportion of simulated

data sets in which the Chi-square of the plausible model was smaller than that of

the less plausible models. The lower diagram depicts the logarithm of the Chi-

square of the three models. Kp = plausible model; K1 and K2 = less plausible

models with changes in the skills assigned to 1 and 2 problems, respectively.

the skills required for solving the problems from models in which some problems

were randomly associated with the skills. The assumption was made that the for-

mer models represent the association between problems and skills which underlies

the data better than the latter models.

The results show that constraining the estimates of the α and β parameters

increases the probability that the plausible models are correctly identified when

their fit is compared with that of less plausible models. This goes regardless of

the fact that the models differed only in the skills assigned to a few problems.

A conjunctive model and a competency model were entirely derived from the

analysis of the problems. The competency model resulted in a representation

of the association between the problems and skills underlying the data that was

better than the representation provided by the conjunctive model. However, there

could be another model which describes the data even better. A possibility in this
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Figure 4.8: Comparison between the three competency models for each value of

the upper bound (x axis). The upper diagram depicts the proportion of simulated

data sets in which the Chi-square of the plausible model was smaller than that of

the less plausible models. The lower diagram depicts the logarithm of the Chi-

square of the three models. Mp = plausible model; M1 and M2 = less plausible

models with changes in the skills assigned to 1 and 2 problems, respectively.

direction is the following. Problems 5 and 9 concern computations with a deck

of cards. The careless error probability is quite high for both. It is reasonable

to hypothesize that there are students who possess the skills required for solving

the two problems, but that fail because they do not know what cards are in the

deck. A skill could be added to these problems which concerns the knowledge of

a deck of cards. This possibility has not been pursued here because it would lead

to an increase in the number of parameters, and the number of problems would

not be sufficient to obtain stable and trustworthy estimates.

4.3 Final remarks

An approach has been presented that allows the recognition of, among differ-

ent models, the one that best describes the association between problems and
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skills which underlie the data. An important feature of this approach is that it

takes into account the information about model fit which derives from both the

standard fit statistics and the estimates of the error probabilities.

In practical applications, both the level of noise and the skill multimap un-

derlying the data are unknown. Therefore, it is difficult to interpret large values

of the careless error and the lucky guess probabilities as a sign of misspecification

of the skill multimap rather than expression of noise. The following procedure

can be used for this purpose. Having available a possibly large collection of skill

multimaps, each one representing a way of associating problems with skills which

is plausible in theory, the introduction of a reasonably small upper bound to the

estimates of the error parameters, should allow the identification of the skill mul-

timap that best approximates the true one. Once the best skill multimap has

been identified, it is possible that the estimates of some α and β parameters of

the model incorporating such skill multimap lie on the upper bound. If this is the

case, these estimates could be biased. The model should therefore be estimated

with no constraints. If there are large estimates of the α or β probabilities for

some problems, these could be considered, with relative confidence, as a sign of

noise in the data concerning those problems (e.g., bad wording of the problem)

rather than failings in the specification of the skill multimap.
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Chapter 5

A closer look at the learning

process with a logistic

reparametrization of the

Gain-Loss Model

The GaLoM assesses learning processes by analyzing the effects of learning objects

on specific skills. The gain and loss parameters are informative in this respect,

because they specify the probabilities that the students attain and eventually lose

specific skills as a result of the learning object they have been presented with.

Given that the gain and loss parameters are indexed by learning object and skill,

they inform the teachers of the effectiveness of the educational intervention in pro-

moting specific skills, and enable them to select the best educational intervention

for the specific needs of the students.

This chapter proposes a reparametrization of the GaLoM, which provides a

new way of reading the information concerning the learning process. Logistic

modelling is used to decompose both gain and loss parameters into parameters

which describe the effects of the skills and the effects of the learning objects on

109
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the skills. Parameters that concern general effects of the learning objects are

also derived. These new parameters provide information about the skills and the

learning objects in a form that is easily accessible.

The chapter is organized in the following way. The next paragraph describes

how the gain and loss parameters can be decomposed into a number of logistic pa-

rameters. Subsequently, the reparametrization is illustrated through an empirical

application. The chapter concludes with some remarks concerning the proposed

approach.

5.1 A logistic reparametrization of the Gain-

Loss Model

Logistic modelling is used to decompose the gain and loss parameters into an

effect of the skills and an effect of the learning objects on the skills. An overall

effect of the learning objects is also derived. The MATLAB code for computing

the logistic parameters is provided in Appendix A.4. The reader interested in

logistic modelling is referred to Agresti (2002, 2007).

The probability γos that the students presented with learning object o gain

skill s going from the pretest to the posttest is modelled as a logistic function

of the difference between the effectiveness of learning object o in promoting the

attainment of skill s, and the difficulty of gaining skill s. The logistic model takes

on the form:

ln
γos

1− γos
= ψos − φs, (5.1)

where ln γos

1−γos
is the log-odds (or logit) of gaining skill s when learning object o is

presented, ψos is the effectiveness of learning object o in promoting the attainment

of skill s, and φs is the difficulty of gaining skill s. According to Equation 5.1,

the more (resp. less) effective learning object o for the attainment of skill s, and

the less (resp. more) difficult the gaining of skill s, the greater (resp. lesser) the
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probability of gaining skill s when learning object o is presented.

The parameters φs and ψos are defined as:

φs = −
∑m

o=1 ln[γos/(1− γos)]
m

,

and

ψos = ln[γos/(1− γos)] + φs,

where m is the number of learning objects.

The parameter φs is the negative of the average of the log-odds of skill s across

the learning objects. It follows that a value greater (resp. smaller) than 0 means

that, across the different learning objects that are considered, the probability of

gaining skill s is smaller (resp. greater) than .5. Moreover, the greater the value

of φs, the greater the difficulty of gaining skill s. Note that the difficulties of

attaining different skills can be compared to each other without having to refer

to a specific learning object. Parameter ψos is defined to represent a departure

of the log-odds from φs. Since φs is an average across learning objects, it follows

that
∑m

o=1 ψos = 0. The greater the value of ψos, the greater the effectiveness of

learning object o in promoting the attainment of skill s. Note that the different

difficulties of gaining the skills are taken into account when comparing the effects

of a learning object on different skills.

A parameter ωo representing the effectiveness of learning object o in promoting

the attainment of knowledge in general can be computed as:

ωo =

∑
s∈S ψos

|S|
,

where |S| is the cardinality of the set of skills.

The parameter ωo is the average of parameters ψos across the skills. The

greater the value of ωo, the greater the overall effectiveness of learning object o in

promoting the attainment of knowledge. Note that the effectiveness of different

learning objects can be compared without having to refer to a specific skill.
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The probability λos that the students presented with learning object o lose

skill s going from the pretest to the posttest is modelled as a logistic function

of the difference between the proclivity of losing skill s, and the effectiveness of

learning object o in counteracting the loss of skill s. The model takes on the

form:

ln
λos

1− λos
= φ′s − ψ′os, (5.2)

where ln λos

1−λos
is the log-odds of losing skill s when learning object o is presented,

φ′s is the proclivity of losing skill s, and ψ′os is the effectiveness of learning object

o in counteracting the loss of skill s. According to Equation 5.2, the lesser (resp.

greater) the tendency of losing skill s, and the greater (resp. lesser) the effec-

tiveness of learning object o in counteracting the loss of skill s, the smaller (resp.

greater) the probability of losing skill s when learning object o is presented.

The parameters φ′s and ψ′os are defined as:

φ′s =

∑m
o=1 ln[λos/(1− λos)]

m
,

and

ψ′os = − ln[λos/(1− λos)] + φ′s.

A value of φ′s greater (resp. smaller) than 0 means that, across the different

learning objects, the probability of losing skill s is greater (resp. smaller) than

.5. However, the greater the value of φ′s, the greater the proclivity of losing skill

s. The greater the value of ψ′os, the greater the effectiveness of learning object

o in counteracting the loss of skill s. Note that for parameters ψ′os, it also holds

that
∑m

o=1 ψ
′
os = 0.

It is worth specifying the meaning of parameters φ′s and ψ′os in practice. A

high value for parameter φ′s indicates that skill s is not yet consolidated in the

students who already possess it. On the contrary, a high value for parameter ψ′os

indicates that learning object o is effective for consolidating skill s in the students

who possess it.
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A parameter ω′o representing the effectiveness of learning object o in counter-

acting the loss of knowledge in general is computed as:

ω′o =

∑
s∈S ψ

′
os

|S|
.

The greater the value of ω′o, the greater the overall effectiveness of learning

object o in counteracting the loss of knowledge.

An example is now provided to illustrate how the logistic parameters should

be interpreted. Five skills (denoted by letters from a to e) and three learning

objects (LO1, LO2 and LO3) are considered. The estimates of the gain and

loss parameters which are presented are fictitious, and they were used for the

sole purpose of illustrating particular situations which might be encountered in

practice. Table 5.1 contains the estimates of the gamma parameters and the

logistic parameters derived from them. The parameters φ are considered first.

Skill d is the least difficult to be attained by the students who do not possess it

in the pretest (φd = −1.55), whereas skill e is the most difficult (φe = 1.11). On

the whole, learning object LO1 is the most effective in promoting the attainment

of the skills (ω1 = .20), whereas learning object LO3 is the least effective (ω3 =

−.30). LO1 is more effective than LO2 for the attainment of skills a, b and c, just

as effective for the attainment of skill d, and less effective for the attainment of

skill e. Differently, LO1 is more effective than LO3 for the attainment of all skills.

A learning object can be considered to be at least adequate for the attainment

of a skill if its effectiveness in promoting the attainment of that skill is greater

than the difficulty of attaining it. LO1 is adequate for the attainment of all skills,

with the exception of skill e. Note that the probabilities of attaining skills a and

b with LO1 are the same. However, LO1 is more effective on skill b than on skill

a because attaining the former is more difficult.

Table 5.2 contains the estimates of the lambda parameters and the logistic

parameters derived from them. All skills are consolidated in the students who

possess them in the pretest. All learning objects are good in counteracting the
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Table 5.1: Gain Parameters and Logistic Parameters Derived from Them
Gain γ ψ

Skill LO1 LO2 LO3 φ LO1 LO2 LO3

a .59 .56 .51 −.22 .15 .03 −.18
b .59 .51 .49 −.12 .24 −.08 −.16
c .55 .46 .39 .14 .34 −.02 −.31
d .87 .87 .70 −1.55 .35 .35 −.70
e .23 .30 .22 1.11 −.10 .26 −.16

ω .20 .11 −.30
Note. Letters from a to e refer to the five skills. LO1, LO2 and
LO3 refer to the three learning objects. φ = difficulty of gaining
the skill; ω = effectiveness of the learning object in promoting
the attainment of knowledge; ψ = effectiveness of the learning
object in promoting the attainment of the skill.

loss of the skills, with learning object LO1 being the best.

Table 5.2: Loss Parameters and Logistic Parameters Derived from Them
Lossλ ψ′

Skill LO1 LO2 LO3 φ′ LO1 LO2 LO3

a .09 .11 .10 −2.20 .11 −.11 .00
b .11 .12 .15 −1.94 .15 .05 −.20
c .07 .06 .12 −2.44 .14 .31 −.45
d .03 .03 .04 −3.38 .10 .10 −.20
e .07 .08 .14 −2.28 .31 .16 −.47

ω′ .16 .10 −.26
Note. Letters from a to e refer to the five skills. LO1, LO2 and
LO3 refer to the three learning objects. φ′ = proclivity of losing
a skill; ω′ = effectiveness of a learning object in counteracting
the loss of knowledge; ψ′ = effectiveness of the learning object in
counteracting the loss of a skill.

The example has shown what information concerning the learning process is

derived from the logistic parameters. An important feature of these parameters

is that their statistical significance can be tested. For this purpose, the param-

eters have to be standardized by dividing them by their standard errors. The

values which are obtained are normally distributed. Moreover, the parameters

can be compared to each other. A significance test of any difference between two
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parameters can be accomplished by dividing this difference by the square root of

the sum of the squared standard errors of the two parameters.

5.2 An empirical application

The empirical application illustrates the proposed reparametrization. The pur-

pose is to show the usefulness of the logistic parameters for highlighting features

of the skills and the learning objects which are involved in the learning process.

5.2.1 Method

One hundred and seventy-two psychology students at the University of Padua

participated in the study for course credits. The students were attending the

course of Psychometrics in the academic year 2010-2011. Their mean age was

21.22 (SD = 3.51; range from 19 to 52), and 160 were female. The students were

presented with two collections of 19 open response problems in elementary prob-

ability theory (see Appendix B.3). Four skills (determination of the probability

of an event, probability of the complement of an event, stochastic independence,

union of mutually exclusive events) were assumed to be required for solving the

problems. The two collections (called forms A and B) were equivalent with respect

to the content of the problems and the difficulty of the computations required.

A 2×2 experimental design with two learning objects (good and bad) and two

assessment steps (pretest and posttest) was planned. The bad learning object

only presented concepts of elementary probability theory concerning the four

skills, whereas the good learning object also presented application examples (see

Appendix B.3). In addition, both learning objects pointed out that the order in

which the four skills were used was relevant for solving the problems. Since the

examples provided by the good learning object were problems of the same nature

as those administered to the students, this learning object was assumed to be
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more effective for solving the problems than the other one.

The data were collected in the classroom through a paper-and-pencil proce-

dure. To reduce the occurrence of cheating, forms A and B were distributed

in alternating order. After responding to the problems of the first collection

(pretest), students belonging to a first group (Group G, N = 90) were presented

with the good learning object, and those belonging to a second group (Group B,

N = 82) with the bad learning object. Then, the students were presented with

the second collection of problems (posttest). The students who received a form

in the pretest (A or B) then received the other one in the posttest. The responses

to the problems were coded as correct (1) or incorrect (0).

5.2.2 Model estimation

Different skill assignments were derived from the analysis of the problems and

from specific assumptions about the skills that were required for solving them.

The CoGaLoM and the procedure described in Chapter 4 were used in order to

select the best skill assignment from the various alternatives. The skill assignment

which was found to be the best is the skill multimap represented in Table 5.3.

Table 5.3: Skill Assignment in the Competency Model
Problem Competencies Problem Competencies
1 {un}, {cp} 11 {pb, un}
2 {pb, cp} 12 {cp, id}
3 {pb, cp, id, so} 13 {pb, un}
4 {pb} 14 {cp}
5 {cp, id} 15 {pb, cp, un, id, so}
6 {id} 16 {pb, cp, id, so}
7 {pb, cp, un} 17 {pb, cp}, {pb, un}
8 {un, id} 18 {pb, un, id, so}
9 {pb, un, id, so} 19 {pb, cp}, {pb, un}
10 {pb, id, so}
Note. cp = complement of an event; id = stochastic independence;
pb = probability of an event; un = union of events; so = skill order.

In addition to the four skills concerning the concepts of elementary probability
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theory, a higher-order skill was considered which accounts for the capability of

the students to identify the skills which are necessary for solving a problem and

to use them in the proper order. This skill is called correct order. The order

is not relevant for solving some problems. For example, consider problem 11

taken from form A: “Throw a dice. What is the probability of obtaining a 1 or

a 4?” According to the specified skill multimap, the problem requires the skills

concerning probability of an event and union of events to be solved. The problem

can be solved by determining first the probability of the two events and then the

probability of their union. Otherwise, it can be solved by determining first the

successful event, and then its probability. The order is relevant for solving other

problems. For example, consider problem 10 from form A: “A box contains 6

marbles of which 4 are white and 2 are black. Another box contains 8 marbles

of which 3 are white and 5 are black. One marble is extracted randomly from

each box. What is the probability of both marbles being white?” According to

the skill multimap, the problem requires probability of an event and stochastic

independence to be solved. To give the correct response, the probability of the

two events has to be determined first. The skill correct order has been added to

all problems that were associated with both probability of an event and stochastic

independence, and it represents the knowledge of the students that the former skill

has to be used first.

The performance structure delineated by the given skill multimap contains 19

performance states. The model incorporating this structure was estimated with

no constraints (i.e., with the GaLoM).

5.2.3 Testing model identifiability, goodness-of-fit and sig-

nificance of the logistic parameters

To test model identifiability, parameters were estimated 100 times, by randomly

varying their initial values between 0 and 1. The error parameters were randomly
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generated between 0 and .5. The model was taken to be identifiable when the

standard deviations were less than .01 for all parameters. Goodness-of-fit was

tested using Pearson’s Chi-square statistic and a parametric bootstrap with 500

replications (see Chapter 2 for details).

After estimating and validating the model, the logistic parameters were de-

rived from the gain and loss parameters. The standard errors of the logistic

parameters that were required to standardize and compare them were obtained

by the parametric bootstrap.

5.2.4 Results

The model was identifiable (i.e., SD < .01 for all parameters), and its goodness-

of-fit was good (the proportion of random data samples whose Chi-square was

less than the Chi-square of the observed data sample was .55.

Table 5.4 contains the estimates of the parameters α and β. The careless error

probabilities are quite small for all problems, with the exception of problem 15

(α15 = .37). This result is not surprising if we consider that, according to the

specified skill multimap, problem 15 requires the presence of all skills to be solved.

The careless error probabilities of problems 9, 11, 15 and 16 increase if the skill

correct order is eliminated, whereas their lucky guess probabilities do not change.

This result shows that the skill is relevant for solving these problems. The lucky

guess probabilities are not small for all problems, and they are very high for

problems 2, 7, 11, 14 and 17 (β2 = .61; β7 = .57; β11 = .43; β14 = .42; β17 = .44).

This might suggest failings in the specification of the skill multimap. However,

the fact that the lucky guess probabilities are considerable for many problems

suggests that the data are noisy due to the lucky guesses. This possibility is

supported by the fact that the data were collected in a crowded classroom at the

faculty, and this setting, together with the fact that course credits were given

as a reward, might have encouraged the students to cheat in order to solve the
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greatest number of problems.

Table 5.4: Maximum Likelihood Estimates of the Parameters α and β
Careless error Lucky guess Careless error Lucky guess

Problem α SE β SE Problem α SE β SE
1 .09 .02 < .01 .25 11 .07 .02 .43 .06
2 .06 .02 .61 .06 12 .12 .03 .06 .03
3 .25 .04 .24 .04 13 .15 .03 .33 .05
4 .13 .02 .17 .08 14 .06 .02 .42 .13
5 .11 .02 .10 .04 15 .37 .05 .12 .02
6 .09 .02 .32 .05 16 .26 .04 .15 .03
7 .11 .02 .57 .05 17 .09 .02 .44 .07
8 .13 .03 .21 .04 18 .16 .04 .20 .03
9 .19 .04 .14 .03 19 .14 .02 .35 .08
10 .12 .03 .37 .04
Note. Standard errors (SE) of the estimates were obtained by parametric bootstrap.

Table 5.5 contains the estimates of the parameters π, γ and λ. All skills have

a high initial probability. This is consistent with the fact that the students had

already been presented with the four concepts of elementary probability theory

that are the subject of investigation, and they had already completed exercises on

them before data collection took place. Of all of them, stochastic independence

is the skill with the lowest initial probability (πid = .62).

Table 5.5: Maximum Likelihood Estimates of the Parameters π, γ and λ
Group G (N = 90) Group B (N = 82)

Initial p. Gain Loss Gain Loss
Skill π SE γ SE λ SE γ SE λ SE
Probability of an event .86 .03 .39 .16 .02 .03 .22 .11 .06 .04
Complement of an event .93 .02 .59 .31 .04 .05 .54 .31 .10 .07
Union of events .81 .04 .49 .18 .12 .06 .07 .07 .03 .04
Stochastic independence .62 .04 .61 .11 .01 .02 .34 .09 .01 .03
Skill order .89 .04 .01 .18 < .01 .07 .21 .26 .12 .12
Note. Standard errors (SE) of the estimates were obtained by parametric boot-
strap. Group G = good learning object; Group B = bad learning object.

The good learning object was more effective than the bad learning object in

promoting the attainment of knowledge. The probabilities of gaining all four skills

concerning elementary probability theory are greater in Group G than in Group

B. This result confirms the assumption that providing application examples in
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addition to the basic concepts increases the probability of solving the problems.

Unexpectedly, the probability of gaining the skill correct order is greater in Group

B than in Group G.

There are small probabilities of losing the skills in both Groups G and B. This

result might be due to compensation effects between the gain and loss parameters

within each of the two groups. However, it might also be an expression of fatigue,

decrease in motivation or boredom in the posttest for the students who solved

the problems in the pretest.

The logistic parameters are now considered. All comparisons between the pa-

rameters that are described do not show statistically significant differences. How-

ever, they are presented for a descriptive purpose. Table 5.6 contains the logistic

parameters derived from the gamma parameters, together with their standard-

ized value. Among the skills concerning elementary probability theory, union of

events is the most difficult to attain for the students who do not possess it in the

pretest, whereas complement of an event is the least difficult. Among all skills,

correct order is the most difficult to attain. This result is consistent with the

nature of the skill. Given that it concerns the capability of the students to iden-

tify the skills which are necessary for solving a problem and to use them in the

proper order, the skill requires exercise to be attained. On the whole, the good

learning object was more effective than the bad learning object in promoting the

attainment of the skills. This holds for all skills concerning elementary probabil-

ity theory and, in particular, for union of events. The comparison between the

effectiveness of the good learning object in promoting a skill and the difficulty of

that skill shows that the learning object is adequate in promoting the complement

of an event and stochastic independence. In contrast, the bad learning object is

only adequate for promoting complement of an event. An interesting result can

be found by comparing how effective the good learning object is on the different

skills. Among the skills which were considered, the good learning object was more

effective on union of events, even if it was not adequate for that skill, given its
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difficulty. This is due to the fact that attaining the skill is quite difficult for the

students who did not possess it in the pretest.

Table 5.6: Logistic Parameters Derived from the Gain Parameters
Group G (N = 90) Group B (N = 82)

Skill φ (std) ψ (std) ψ (std)
Probability of an event .86 (.41) .42 (.19) −.42 (−.19)
Complement of an event −.25 (−.05) .11 (.02) −.11 (−.02)
Union of events 1.35 (.47) 1.31 (.46) −1.31 (−.46)
Stochastic independence .11 (.21) .57 (1.16) −.57 (−1.16)
Correct order 3.21 (1.25) −1.86 (−.66) 1.86 (.66)

ω (std) .11 (.07) −.11 (−.07)
Note. Group G = good learning object; Group B = bad learning object. φ =
difficulty of gaining the skill; ω = effectiveness of the learning object in promoting
the attainment of knowledge; ψ = effectiveness of the learning object in promoting
the attainment of the skill.

Table 5.7 contains the logistic parameters derived from the lambda param-

eters, together with their standardized value. All skills are consolidated in the

students who already possess them in the pretest. In particular, the probabilities

of losing the skills concerning complement of an event, stochastic independence,

and correct order are significantly smaller less than .5. On the whole, both

learning objects are good for contrasting the loss of the skills, with the good

learning object being the most effective one. The greatest difference between the

two learning objects can be observed with respect to the skill concerning correct

order.

Table 5.7: Logistic Parameters Derived from the Loss Parameters
Group G (N = 90) Group B (N = 82)

Skill φ′ (std) ψ′ (std) ψ′ (std)
Probability of an event −3.23 (−1.70) .48 (.25) −.48 (−.25)
Complement of an event −2.67 (−2.23) .52 (.43) −.52 (−.43)
Union of events −2.74 (−1.01) −.74 (−.27) .74 (.27)
Stochastic independence −4.29 (−7.33) −.04 (−.07) .04 (.07)
Correct order −3.94 (−2.00) 1.95 (.91) −1.95 (−.91)

ω′ (std) .43 (.51) −.43 (−.51)
Note. The significant parameters are shown in bold. Group G = good learning object;
Group B = bad learning object. φ′ = proclivity of losing the skill; ω′ = effectiveness
of the learning object in counteracting the loss of knowledge; ψ′ = effectiveness of the
learning object in counteracting the loss of the skill.
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5.2.5 Discussion

The empirical application illustrated the reparametrization of the gain and loss

probabilities. In particular, it showed which information about the skills and the

learning objects derives from the logistic parameters.

The logistic parameters derived from the gain probabilities allowed the iden-

tification of union of event and correct order as the most difficult skills to attain

for the students who did not possess them, and to identify the good learning ob-

ject as the most effective in promoting the attainment of knowledge. The analysis

revealed the skills for which this learning object was adequate, and it provided in-

formation about its effectiveness on the different skills when their difficulty levels

were taken into account. The logistic parameters derived from the loss probabil-

ities demonstrated that the skills concerning complement of an event, stochastic

independence, and correct order were very consolidated and stable in the stu-

dents who possessed them, and that, in general, both learning objects were good

at counteracting loss of the skills. The statistical significance of each parameter

and each comparison between the parameters was tested.

5.3 Final remarks

A reparametrization of the GaLoM was presented, which allows a deeper analysis

of the learning process. Some remarks about the proposed approach are now

presented and discussed.

The GaLoM provides information about the learning process by means of

2m × |S| gain and loss parameters, where m is the number of learning objects,

and |S| is the number of skills. The reparametrization allows m(2 + 5 × |S|)

logistic parameters to be derived from the gain and loss parameters, which provide

particular information about the skills and the learning objects involved in the

learning process. It should be noted that this information is contained in the
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gain and loss parameters. However, deriving it through observation of these

parameters might not be easy, especially when many learning objects and skills

are taken into account. The reparametrization provides this information in a

form that is easily accessible. This might be especially useful when evaluating

and comparing a large number of skills and learning objects.

An important feature of the logistic parameters is that their statistical sig-

nificance can be tested. Moreover, it is also possible to test the significance of

the differences between them. In this chapter, the standard errors of the logistic

parameters were obtained through a bootstrap procedure. Alternatively, they

could be derived analytically. In testing the significance of the logistic parame-

ters, the inflation of the type I error probability should be controlled for, and a

unique value for the error probability should be attributed to all parameters of

the same type. This value can be computed by dividing the nominal value of type

I error probability (usually .05) by 2× z, where 2 denotes a bidirectional hypoth-

esis, and z denotes the number of linearly independent parameters. This number

corresponds to |S| for the parameters φs (i.e., all parameters φ are linearly inde-

pendent), and to |S| × (m− 1) for the parameters ψos (it is worth restating that∑m
o=1 ψos = 0). The parameters ωo are not independent, but they derive from

ψos. Moreover, when many comparisons between the parameters are made, it is

advisable to divide the type I error probability by the number of comparisons

which are possible.

The proposed approach for the decomposition of the gain and loss probabilities

can not be used when these probabilities are exactly 1 or 0. In the first case the

denominator of the fraction in Equation 5.1 or 5.2 would be 0, whereas in the

second case the logarithm of 0 should be taken. In both cases, an undefined value

would be obtained. The analysis is possible by not considering the parameters

concerning the same skill and the learning object of the parameter which is 0 or

1, and limiting it on the remaining parameters.
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Chapter 6

Conclusions

The thesis has presented the GaLoM, which is a formal model for assessing learn-

ing processes. The model was developed in the context of formative assessment,

an approach which has started to emerge in the last few decades. Formative

assessment represents a sharp departure from the traditional summative assess-

ment, which evaluates the knowledge of students at the end of the course through

a score that summarizes their learning outcomes. Differently, formative assess-

ment is ongoing throughout the teaching of the course, and it evaluates the specific

knowledge and skills of the students by assigning multidimensional skill profiles

to them. In addition, it informs about the effectiveness of the educational inter-

vention in promoting specific learning. The results of the assessment are then

used for planning further steps of teaching and learning.

The theoretical framework of the model is knowledge space theory, a novel

and significant approach for the assessment of knowledge introduced by Doignon

and Falmagne (1985). Knowledge space theory is fundamentally different from

the traditional approach, which is based on the numerical evaluation of some

“aptitude”. In fact, knowledge space theory provides a non-numerical yet precise

representation of the knowledge of students in a given domain. In this way,

knowledge space theory is consistent with the aims of formative assessment.

125
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The GaLoM assesses the knowledge of students in the different steps of the

learning process, and the effectiveness of the educational intervention in pro-

moting specific learning. The specific features of the model make it particularly

suitable for didactic practice.

First of all, the model focuses on the specific skills that the students must

possess in order to solve the problems. This works to the advantage of the edu-

cational process because it allows teachers to explain theoretically the observed

responses, and to predict responses on another collection of problems. More-

over, teachers are helped in identifying which skills should be taught so that the

students become able to solve problems that previously they were not able to

solve.

In addition, the model is characterized by parameters which provide informa-

tion relevant at different levels of didactic practice. From one hand, the initial

probabilities of the skills, and the gain and loss probabilities provide the teachers

with diagnostic information for planning the didactic interventions and evaluat-

ing their effectiveness. This information can be obtained at both classroom and

student levels. At the classroom level, initial probabilities of the skills enable the

teachers to identify what the classroom already knows and what it is ready to

learn next. Gain and loss parameters provide program evaluative information.

They inform the teachers about the effectiveness of the didactic interventions that

have been carried out, and provide them with an objective criterion for choosing,

among the didactic tools which are available, the best one for the specific needs

and weaknesses of the classroom. This tool should be effective both for learning

new skills and for consolidating the skills that the students already possess. Ini-

tial probabilities of the skills, and gain and loss probabilities that are obtained

for each student, provide the teachers with information relevant to the assess-

ment of the knowledge of each student and the selection of the best educational

intervention for his specific weaknesses. Information which derives from these

parameters is therefore useful to obtain a detailed investigation of the knowledge
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and to plan educational interventions which are effective and tailored on the needs

of the classroom and individual students. From the other hand, the careless error

and lucky guess parameters provide the teachers with information relevant to the

validation of their theoretical assumptions and hypotheses about the cognitive

processes involved in the response processes, and the validation of the assessment

instruments that they use for assessing the knowledge of students. Information

which derives from these parameters is therefore useful to realize assessments

which are trustworthy and accurate.

The GaLoM was the subject of investigation at different levels. The func-

tioning of the model was analyzed in different conditions of level of information

and noise in the data, effects of the learning objects on the skills, and misspeci-

fications of the skill multimap. Moreover, theoretical developments of the model

were proposed, which improve its usefulness and informative power in practical

applications. The investigations were conducted through simulated studies and

empirical applications. Both kinds of studies turned out to be very informative.

The former allowed the investigation of the functioning of the model in situa-

tions in which all information about the data which is relevant for the analysis

is present. In our case, it essentially concerns the skill multimap, the level of

noise in the data, and the true value of the parameters. The latter allowed the

investigation of the functioning of the model when dealing with the elements of

uncertainty that characterize the use of the model in practice. In fact, in prac-

tical applications it is not possible to be sure which skills are measured by the

assessment instrument and how they are related to the problems, but only as-

sumptions can be made. At the same time, the level of noise in the data is also

unknown. The main results of the studies are now reviewed, and some suggestions

for increasing the usefulness of the GaLoM which derive from them are presented.

Response data should provide enough information about the skills and they

should not be too noisy so that stable and trustworthy estimates of the parameters

can be obtained. When this is not the case, compensations among the parameters
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might result in multiple solutions for their estimates. However, an important role

in identifiability is also played by the specific way in which the problems and the

skills are related to each other. This is a result that comes out from the entire

collection of studies that have been presented, although a systematic investigation

of it has not been made yet.

From these results it is possible to draw up strategies that the user can im-

plement in order to increase the chance that model will be identifiable. First,

some devices should be used during data collection that reduce the occurrence of

noise in the data, such as designing the problems to be open response or the use

of assessment without strict time limits. Second, it is important for the user to

select collections containing an adequate number of problems in relation to the

quantity of skills to be assessed. Not only is the number of problems per skill rel-

evant, it is also fundamental that the combinations of skills associated with each

problem are varied and, likewise, situations should be avoided where information

concerning a particular skill is derived from only one or two problems.

The model is capable of reproducing the different effects of the learning objects

on the skills that might be observed in educational practice. However, there are

essentially three elements which might have a detrimental effect on the estimates

of the parameters. The first is represented by the level of noise in the data.

The accuracy of the estimates decreases as the noise increases. Once again, it

is worth stressing the importance of using strategies to reduce such noise. The

second is represented by the values of initial probabilities of the skills, and gain

and loss probabilities. It is difficult for the model to reproduce a very high

gain of a skill when its initial probability is very high, just as it is difficult to

reproduce a very high loss of a skill when its initial probability is very low. It

should be noted, however, that in such situations the estimation of gain and

loss probabilities would not make sense. The third element is represented by

the specification of the skill multimap. The incorrect association of the skills

to some problems causes an overestimation of the careless error and lucky guess
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probabilities of those problems. In particular, the omission of a relevant skill

from a problem leads to an overestimation of its careless error probabilities, where

the inclusion of an irrelevant skills leads to an overestimation of its lucky guess

probabilities. These effects have been previously described in Rupp and Templin

(2008), and de la Torre and Douglas (2008). Unusually large values of careless

error and lucky guess probabilities for some problems might therefore point to

the misspecification of the skill multimap for these problems. However, caution

is required in interpreting such values as they could merely represent noise in the

responses to those particular problems.

The specification of the skill multimap constitutes the core element and is

crucial for the assessment to be accurate and trustworthy. The construction

of the skill multimap in practical applications should be informed by several

sources, including, analysis of the contents of the problems, verbal reports from

the students concerning solution strategies utilized and, of course, the knowledge

of experts in the domain under investigation. The combined use of these varied

sources of information is advisable in constructing the skill multimap. However,

it is certainly possible for more than one skill multimap to emerge, each being

more or less plausible. This is especially likely when there is not much theory

in the domain under investigation. In this case, the best skill multimap has

to be selected. The extension of the GaLoM proposed was very useful for this

purpose. In particular, the best skill multimaps were identified by comparing the

fit to the data of alternative models which underwent a constrained estimation of

their careless error and lucky parameters. This approach takes into account the

information about model fit which derives from both the standard fit statistics

and the estimates of the error parameters. The integration of both types of

information facilitates the correct identification of the best skill multimap. The

studies presented suggest that the approach is very powerful because it allows

the identification of the best skill multimaps from alternatives which differed

only in terms of the skills assigned to a few problems. Further work, however,
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is needed to investigate the viability of the approach in varied conditions. This

might involve systematically manipulating characteristics of the skill multimap,

misspecifications of the skill multimap (in terms of degree and type), and levels

of noise.

In the GaLoM, information relevant for assessing the learning process derives

from the gain and loss parameters. These parameters enable the teacher to assess

the effectiveness of the educational interventions in promoting specific skills, and

to select the best educational intervention from a number of available interven-

tions. A reparametrization of the GaLoM has been proposed that decomposes

the gain and loss parameters into a number of logistic parameters. These param-

eters actually represent a new reading of the information concerning the learning

process that can highlight particular features of the skills and of the educational

interventions considered. In other words, they provide information in a form that

can be used to compare skills without reference to each educational intervention

and, conversely, to compare educational interventions without referring to each

skill. This might be especially useful when evaluating and comparing a large

number of skills and educational interventions. Another important feature of

these logistic parameters is that their statistical significance can be tested. The

information which derives from these parameters can inform the identification

of the features from the various educational interventions which best facilitate

the acquisition of new skills, consolidate already possessed skills, and ensure that

skills are not lost with time. Subsequently, these same features can be combined

to create new and more effective educational interventions available for use by

the teacher.

It should be emphasized that the model, and its extensions, can be applied to

each knowledge domain in which it is possible to identify a collection of problems

and a collection of discrete skills underlying them. The approach proposed in this

work offers significant advantages. First, it allows the teacher to reach an accu-

rate assessment of students’ knowledge and to develop educational interventions
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which are effective and tailored to the needs of the students. Moreover, esti-

mates of initial probabilities of the skills, and gain and loss probabilities, which

are obtained for each student, can be used to develop individualized learning

paths. Second, it allows adaptive procedures to be used for efficient assessment

of knowledge; these adaptive procedures have been developed in the context of

knowledge space theory (see, e.g., Falmagne et al., 2006; Falmagne & Doignon,

1988a, 1988b). At the core of such procedures is the performance structure. In

particular, the specific dependencies between the problems it defines can be used

to develop an efficient procedure for the assessment of knowledge, which allows

the teacher to reach an accurate assessment of the student by only presenting a

subset of the problems.

The present work has been completed with a view to providing teachers with

practical tools and procedures that can support teaching practice. Some relevant

contributions have been made in this sense. However, further work is necessary

in order to increase the usefulness of the proposed model and its applicability to

a broad number of contexts. The primary aim of future work is to address the

weaknesses of the model in its current form. Some of these will now be discussed.

The model in the current specification assumes the skills to be stochastically

independent. This assumption was reasonable for the specific kind of problems

that were used in the empirical applications. However, in other contexts it may be

unrealistic. The assumption of independence among the skills is not a necessary

condition for the model to be applied. In particular, given the probabilities of

the competence states at the pretest, any form of dependence among the skills

could be conceived. Some such pathways might be log-linear models (see, e.g.,

Maris, 1999) or Bayesian networks (see, e.g., Mislevy & Gitomer, 1996).

The proposed model can be applied to learning processes with two assessment

steps. In real applications, however, it might be useful to allow multiple testing

points throughout the teaching of a course. The model in the current form rep-

resents a good starting point from which to move forward towards a situation in
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which any number of assessment steps can be considered. An extension in this

direction would qualify the model as a hidden Markov model (see, e.g., Rabiner

& Juang, 1986).

Finally, the model does not take into account that students may need certain

skills to understand the learning objects they are presented with. This is an

important aspect since it might have an impact on the estimation of the gain

probabilities. An extension of the model might take into account whether the

competence state of the students does or does not contain the prerequisites for

understanding a given learning object. One such possibility in this sense consists

in associating with each learning object a subset of skills which constitute a

prerequisite for dealing with that learning object (see, e.g., Hockemeyer, 2003;

Heller, Steiner, Hockemeyer, & Albert, 2006).

The results of this work would certainly increase the usefulness of the proposed

approach and its applicability to a broad number of contexts and situations. This

would contribute to making it more appealing to teachers who wish to use it as

a support for didactic practice.
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MATLAB codes
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A.1 Code for estimating and testing the GaLoM

The MATLAB function GaLoM computes EM estimates of the parameters of the

Gain-Loss Model as well as fit indexes.

The function requires as input pat, freq, itemskill, tol, maxiter, view.

pat is a structure containing m binary matrices with dimensions l × 2n (where

m is the number of learning objects presented to m groups of students, l is the

number of different response patterns observed in each group of students, 2 is

the number of assessment steps, n is the number of problems). Responses at the

pretest precede them at the posttest. freq is a structure containing m column

vectors of the l observed frequencies of each response pattern. itemskill is a

h × (|S| + 1) matrix (where |S| is the number of skills and h is a number that

ranges from n to n× |2S \ {∅}|) specifying the competences associated with each

problem. The first column of the matrix specifies the number of the problem,

the others specify if it is associated (1) or not (0) with a skill. tol (optional) is

the tolerance criterion for the EM algorithm as maximum adjustment among all

the model parameters. The default value is 10−5. maxiter is a scalar value that

specifies the maximum number of iterations in the EM algorithm. The default

value is 500. view (optional) is a boolean variable indicating if an interim model

fit should be displayed (true) or not (false). The default value is “true”.

The function returns a structure containing the estimates of the model param-

eters (pi, gamma, lambda, alpha, beta), and statistics of model fit (chi-square,

log-likelihood, AIC, AICC, BIC).

function model=GaLoM(pat,freq,itemskill,tol,maxiter,view)

% GaLoM: Compute EM estimates of parameters and fit statistics of
% Gain-Loss Model

if nargin<6, view=true; end % Display interim results (true/false)
if nargin<5, maxiter=500; end % Number of iterations by default
if nargin<4, tol=1e-5; end % Tolerance value by default
if nargin<3
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error(’Insufficient number of arguments.’);
end
if maxiter<1

error(’The number of iterations must be positive.’)
end

% Derivate performance states corresponding to skill multimap
[v,w]=skillmap(itemskill);

ngroups=length(pat); % Number of groups
nstates=size(w,1); % Number of performance states
nskills=size(w,2); % Number of skills
nitems=size(v,2); % Number of problems

grp_sz=zeros(ngroups,1);
gpat=[];
gfreq=[];
for g=1:ngroups

gpat=[gpat;pat{g}];
gfreq=[gfreq;freq{g}];
grp_sz(g)=sum(freq{g});

end
[pat0,freq0]=patfreq(gpat,gfreq);
sz=sum(freq0);

npar=2*nitems+(2*ngroups+1)*nskills;
df=2^(2*nitems)-npar-1;
chi=zeros(maxiter,1);

% Initial values of estimates
alpha=rand(nitems,1)*.5; % Careless error
beta=rand(nitems,1)*.5; % Lucky guess
pi=rand(nskills,1); % Initial probabilities of skills
gamma=rand(nskills,ngroups); % Gain
lambda=rand(nskills,ngroups); % Loss

% Main loop of EM algorithm
for iter=1:maxiter

% Expectation step

% Compute vector of initial probabilities of states
p=exp(w*log(pi)+(1-w)*log(1-pi)); % [nstates,1]
p_rep=repmat(p,1,nstates); % [nstates,nstates]

% Iterate on groups
for g=1:ngroups

pat1=pat{g}(:,1:nitems); % [npat(g),nitems]
pat2=pat{g}(:,nitems+1:2*nitems); % [npat(g),nitems]

% Compute matrix of conditional probabilities of response patterns
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% given states at pretest
p1=rho(alpha,beta,v,pat1); % [npat(g),nstates]

% Compute matrix of conditional probabilities of response patterns
% given states at posttest
p2=rho(alpha,beta,v,pat2); % [npat(g),nstates]

% Compute transition probabilities among states
tau=rho(lambda(:,g),gamma(:,g),w,w); % [nstates,nstates]

% Compute conditional probabilities of states given response patterns
b{g}=zeros(nstates,nstates,size(pat1,1));
for i=1:size(pat1,1)

b{g}(:,:,i)=(p1(i,:)’*p2(i,:)).*tau.*p_rep; % [nstates,nstates]
b{g}(:,:,i)=b{g}(:,:,i)/sum(sum(b{g}(:,:,i))); % [nstates,nstates]

end
end

% Compute Pearson’s chi-square for current iteration
ft=sum(expfreq(pat0,grp_sz,alpha,beta,pi,gamma,lambda,v,w),2);
chi(iter)=sum(freq0.*freq0./ft)-sz;
pval=1-gammainc(chi(iter)/2,df/2);

% Display interim fit if requested
if view
fprintf(’\nIteration %d of %d. Chi-square %f’,iter,maxiter,chi(iter));
figure(1);
semilogy(1:iter,chi(1:iter),’b’);
xlabel(sprintf(’Iteration %d of %d’,iter,maxiter));
ylabel(’Chi-square’);
title(sprintf(’Gain-Loss Model. Chi-square = %g. df = %g. p-value = %g’,...
...chi(iter),df,pval));
end

% Maximization step

% Save previous values of estimates
alpha_old=alpha;
beta_old=beta;
gamma_old=gamma;
lambda_old=lambda;
pi_old=pi;

a12=zeros(nitems,1);
b12=a12;
da=a12;
db=b12;
pp=zeros(nskills,1);
% Iterate on groups
for g=1:ngroups
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% Divide response patterns observed in a group into pretest and
%posttest
pat1=pat{g}(:,1:nitems); % [npat(g),nitems]
pat2=pat{g}(:,nitems+1:2*nitems); % [npat(g),nitems]

% Compute conditional probabilities of states at pretest
% given observed response patterns
q1=sum(permute(b{g},[1,3,2]),3); % [states,npat(g)]

% Compute conditional probabilities of states at posttest
% given observed response patterns
q2=sum(permute(b{g},[2,3,1]),3); % [nstates,npat(g)]

% Useful in following computations
qq=(q1+q2)*freq{g}; % [nstates,1]

% Interim amount for adjustment of alpha
a1=(q1’*v).*(1-pat1); % [npat(g),nitems]
a2=(q2’*v).*(1-pat2); % [npat(g),nitems]
a12=a12+(a1+a2)’*freq{g}; % [nitems,1]
da=da+v’*qq; % [nitems,1]

% Interim amount for adjustment of beta
b1=(q1’*(1-v)).*pat1; % [npat(g),nitems]
b2=(q2’*(1-v)).*pat2; % [npat(g),nitems]
b12=b12+(b1+b2)’*freq{g}; % [nitems,1]
db=db+(1-v)’*qq; % [nitems,1]

% Compute expected number of pairs (K,L) of states given
% observed response patterns
bg=zeros(nstates,nstates);
for i=1:size(pat1,1);

bg=bg+freq{g}(i)*b{g}(:,:,i); % [nstates,nstates]
end
bg1=sum(bg,2); % [nstates,1]

% Adjust estimates of gamma and lambda
gamma(:,g)=sum((1-w).*(bg*w))’./((1-w)’*bg1); % [nskills,1]
lambda(:,g)=sum(w.*(bg*(1-w)))’./(w’*bg1); % [nskills,1]

% Interim amount for adjustment of pi
pp=pp+w’*bg1; % [nskills,1]

end

% Adjust estimates of alpha, beta and pi
alpha=a12./da;
beta=b12./db;
pi=pp/sz;

% Check if tolerance value is reached and, if so, end the loop
alpha_max=max(abs(alpha_old-alpha));
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beta_max=max(abs(beta_old-beta));
pi_max=max(abs(pi_old-pi));
lambda_max=max(max(abs(lambda_old-lambda)));
gamma_max=max(max(abs(gamma_old-gamma)));
xmax=max([alpha_max,beta_max,pi_max,lambda_max,gamma_max]);
if xmax<=tol

fprintf(’\n\nTolerance value reached in GaLoM\n\n’);
break;

end
end

if iter==maxiter & xmax>tol
fprintf(’\n\nThe estimates do not converge.’);
fprintf(’\nIncrease the number of iterations or’);
fprintf(’\nthe tolerance value.\n\n’);

end

% Statistics of model fit (Pearson’s chi-square, log-likelihood,
% AIC, AICC, BIC)
model.ft=sum(expfreq(pat0,grp_sz,alpha,beta,pi,gamma,lambda,v,w),2);
model.chisquare=sum(freq0.*freq0./model.ft)-sz;
model.pvalue=1-gammainc(chi(iter)/2,df/2);
model.loglike=-sum(freq0.*log(model.ft/sz));
model.df=df;
model.aic=2*(model.loglike+npar);
model.aicc=model.aic+2*npar*(npar+1)/(sz-npar-1);
model.bic=2*model.loglike+npar*log(sz);

% Save estimates of model parameters
model.alpha=alpha;
model.beta=beta;
model.pi=pi;
model.gamma=gamma;
model.lambda=lambda;

function [v,w]=skillmap(itemskill)

% skillmap: Derivation of performance states corresponding to skill multimap

nl=max(itemskill(:,1));
ns=size(itemskill,2)-1;
w=powerset(ns);
nk=size(w,1);
v=zeros(nk,nl);
for k=1:nk

for i=1:size(itemskill,1)
x=itemskill(i,2:ns+1);
if (x&w(k,:))==x

v(k,itemskill(i,1))=1;
end

end
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end

function c = rho(a,b,states,patterns)

% rho: Conditional probabilities of response patterns given
% performance states

[m,n] = size(patterns);
eps = 1e-9;
a = a+(a < eps)*eps-(1-a < eps)*eps; % prevents log of zero
b = b+(b < eps)*eps-(1-b < eps)*eps;
u = ones(m,1);
xa = u*log(a)’;
ya = u*log(1-a)’;
xb = u*log(b)’;
yb = u*log(1-b)’;
p = (patterns.*ya)*states’;
q = (patterns.*xb)*(1-states)’;
r = ((1-patterns).*xa)*states’;
s = ((1-patterns).*yb)*(1-states)’;
c = exp(p+q+r+s);

function freq=expfreq(pat,sz,alpha,beta,pi,gamma,lambda,v,w)

% expfreq: Compute expected frequencies of Gain-Loss Model

nitems=size(pat,2)/2;
ngroups=size(gamma,2);

pat1=pat(:,1:nitems);
pat2=pat(:,nitems+1:end);

p=exp(w*log(pi)+(1-w)*log(1-pi));
p1=rho(alpha,beta,v,pat1);
p2=rho(alpha,beta,v,pat2);

freq=zeros(size(pat,1),ngroups);
for g=1:ngroups

tau=rho(lambda(:,g),gamma(:,g),w,w);
freq(:,g)=sz(g)*(p1.*(p2*tau))*p;

end
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A.2 Code for computing the probabilities for in-

dividual students

The MATLAB function InProb computes probabilities of states at pretest and

posttest, initial and final probabilities of the skills, gain and loss probabilities for

individual students.

The function requires as input pat, model. pat is the same structure contain-

ing the observed response patterns used as input of the function GaLoM. model is

the same structure returned by the function GaLoM.

The function returns a structure containing the probabilities of states at

pretest and posttest (q1, q2), the initial and final probabilities of the skills (ps1,

ps2), and the gain and loss probabilities of the skills (gain, loss) for individual

students.

function individual=InProb(pat,model)

% InProb: Compute probabilities of states at pretest and posttest,
% initial and final probabilities of the skills, gain and loss
% probabilities for individual students

% Model parameters
pi=model.pi;
v=model.v;
w=model.w;
alpha=model.alpha;
beta=model.beta;
gamma=model.gamma;
lambda=model.lambda;

ngroups=length(pat); % number of groups
nstates=size(w,1); % number of performance states
nskills=size(w,2); % number of skills
nitems=size(v,2); % number of problems

% Compute vector of initial probabilities of states
% (equal for all groups)
p=exp(w*log(pi)+(1-w)*log(1-pi)); % [nstates,1]
p_rep=repmat(p,1,nstates); % [nstates,nstates]
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% Iterate on groups
for g=1:ngroups

% Divide response patterns observed in a group into
% pretest and posttest
pat1=pat{g}(:,1:nitems); % [npat(g),nitems]
pat2=pat{g}(:,nitems+1:2*nitems); % [npat(g),nitems]

% Compute matrix of conditional probabilities of response patterns
% given states at pretest
p1=rho(alpha,beta,v,pat1); % [npat(g),nstates]

% Compute matrix of conditional probabilities of response patterns
% given states at posttest
p2=rho(alpha,beta,v,pat2); % [npat(g),nstates]

% Compute transition probabilities among states
tau=rho(lambda(:,g),gamma(:,g),w,w); % [nstates,nstates]

% Compute conditional probabilities of states given response patterns
q12{g}=zeros(nstates,nstates,size(pat1,1));
for i=1:size(pat1,1)

q12{g}(:,:,i)=(p1(i,:)’*p2(i,:)).*tau.*p_rep; % [nstates,nstates]
q12{g}(:,:,i)=q12{g}(:,:,i)/sum(sum(q12{g}(:,:,i))); % [nstates,nstates]

end

% Compute conditional probabilities of states at pretest
% given observed response patterns
q1{g}=sum(permute(q12{g},[1,3,2]),3); % [states,npat(g)]

% Compute conditional probabilities of states at pretest
% given observed response patterns
q2{g}=sum(permute(q12{g},[2,3,1]),3); % [nstates,npat(g)]

% Compute conditional probabilities of skills at pretest
% given observed response patterns
ps1{g}=(q1{g})’*w; % [npat(g),nskills]

% Compute conditional probabilities of skills at posttest
% given observed response patterns
ps2{g}=(q2{g})’*w; % [npat(g),nskills]

% Compute gain and loss probabilities of skills
% given observed response patterns
for i=1:size(pat1,1)

for s=1:nskills
ygain=(1-w(:,s))*w(:,s)’;
yloss=w(:,s)*(1-w(:,s)’);
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gain{g}(i,s)=sum(sum(q12{g}(:,:,i).*ygain))/(1-ps1{g}(i,s));
loss{g}(i,s)=sum(sum(q12{g}(:,:,i).*yloss))/(ps1{g}(i,s));

end
end

end

individual.q1=q1;
individual.q2=q2;
individual.ps1=ps1;
individual.ps2=ps2;
individual.gain=gain;
individual.loss=loss;

function c = rho(a,b,states,patterns)

% rho: Conditional probabilities of response patterns given
% performance states

[m,n] = size(patterns);
eps = 1e-9;
a = a+(a < eps)*eps-(1-a < eps)*eps; % prevents log of zero
b = b+(b < eps)*eps-(1-b < eps)*eps;
u = ones(m,1);
xa = u*log(a)’;
ya = u*log(1-a)’;
xb = u*log(b)’;
yb = u*log(1-b)’;
p = (patterns.*ya)*states’;
q = (patterns.*xb)*(1-states)’;
r = ((1-patterns).*xa)*states’;
s = ((1-patterns).*yb)*(1-states)’;
c = exp(p+q+r+s);
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A.3 Code for estimating and testing the CoGa-

LoM

The MATLAB function CoGaLoM computes EM estimates of the parameters of

the Constrained Gain-Loss Model as well as fit indexes.

The function requires as input pat, freq, itemskill, amax, bmax, tol, maxiter,

view. amax and bmax are two column vectors of length n (where n is the number

of problems). They respectively specify the upper bounds of the careless error

and lucky guess parameters of each problem. The other arguments of the function

correspond to those described in the function GaLoM.

The function returns a structure containing the estimates of the model param-

eters (pi, gamma, lambda, alpha, beta), and statistics of model fit (chi-square,

log-likelihood, AIC, AICC, BIC). The estimates of the alpha and beta parameters

are constrained.

function model=CoGaLoM(pat,freq,itemskill,amax,bmax,tol,maxiter,view)

% CoGaLoM: Compute EM estimates of parameters and fit statistics of
% Constrained Gain-Loss Model

if nargin<8, view=true; end % Display interim results (true/false)
if nargin<7, maxiter=500; end % Number of iterations by default
if nargin<6, tol=1e-5; end % Tolerance value by default
if nargin<5

error(’Insufficient number of arguments.’);
end
if maxiter<1

error(’The number of iterations must be positive.’)
end

% Derivate knowledge states corresponding to skill multimap
[v,w]=skillmap(itemskill);

ngroups=length(pat); % Number of groups
nstates=size(w,1); % Number of knowledge states
nskills=size(w,2); % Number of skills
nitems=size(v,2); % Number of problems

amu=ones(size(pat{1},2)/2,1);
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bmu=amu;
rate=0.9;

grp_sz=zeros(ngroups,1);
gpat=[];
gfreq=[];
for g=1:ngroups

gpat=[gpat;pat{g}];
gfreq=[gfreq;freq{g}];
grp_sz(g)=sum(freq{g});

end
[pat0,freq0]=patfreq(gpat,gfreq);
sz=sum(freq0);

npar=2*nitems+(2*ngroups+1)*nskills;
df=2^(2*nitems)-npar-1;
chi=zeros(maxiter,1);

% Initial values of estimates
alpha=rand(nitems,1)*.5; % Careless error
beta=rand(nitems,1)*.5; % Lucky guess
pi=rand(nskills,1); % Initial probabilities of skills
gamma=rand(nskills,ngroups); % Gain
lambda=rand(nskills,ngroups); % Loss

% Main loop of EM algorithm
for iter=1:maxiter

% Expectation step

% Compute vector of initial probabilities of states
p=exp(w*log(pi)+(1-w)*log(1-pi)); % [nstates,1]
p_rep=repmat(p,1,nstates); % [nstates,nstates]

% Iterate on groups
for g=1:ngroups

pat1=pat{g}(:,1:nitems); % [npat(g),nitems]
pat2=pat{g}(:,nitems+1:2*nitems); % [npat(g),nitems]

% Compute matrix of conditional probabilities of response patterns
% given states at pretest
p1=rho(alpha,beta,v,pat1); % [npat(g),nstates]

% Compute matrix of conditional probabilities of response patterns
% given states at posttest
p2=rho(alpha,beta,v,pat2); % [npat(g),nstates]

% Compute transition probabilities among states
tau=rho(lambda(:,g),gamma(:,g),w,w); % [nstates,nstates]

% Compute conditional probabilities of states given response patterns
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b{g}=zeros(nstates,nstates,size(pat1,1));
for i=1:size(pat1,1)

b{g}(:,:,i)=(p1(i,:)’*p2(i,:)).*tau.*p_rep; % [nstates,nstates]
b{g}(:,:,i)=b{g}(:,:,i)/sum(sum(b{g}(:,:,i))); % [nstates,nstates]

end
end

% Compute Pearson’s chi-square for current iteration
ft=sum(expfreq(pat0,grp_sz,alpha,beta,pi,gamma,lambda,v,w),2);
chi(iter)=sum(freq0.*freq0./ft)-sz;
pval=1-chi2cdf(chi(iter),df);

% Display interim fit if requested
if view
fprintf(’\nIteration %d of %d. Chi-square %f’,iter,maxiter,chi(iter));
figure(1);
semilogy(1:iter,chi(1:iter),’b’);
xlabel(sprintf(’Iteration %d of %d’,iter,maxiter));
ylabel(’Chi-square’);
title(sprintf(’Gain-Loss Model. Chi-square = %g. df = %g. p-value = %g’,...
...chi(iter),df,pval));
pause(1e-6);
end

% Maximization step

% Save previous values of estimates
alpha_old=alpha;
beta_old=beta;
gamma_old=gamma;
lambda_old=lambda;
pi_old=pi;

a12=zeros(nitems,1);
b12=a12;
da=a12;
db=b12;
pp=zeros(nskills,1);
% Iterate on groups
for g=1:ngroups

% Divide response patterns observed in a group into pretest and
% posttest
pat1=pat{g}(:,1:nitems); % [npat(g),nitems]
pat2=pat{g}(:,nitems+1:2*nitems); % [npat(g),nitems]

% Compute conditional probabilities of states at pretest
% given observed response patterns
q1=sum(permute(b{g},[1,3,2]),3); % [states,npat(g)]

% Compute conditional probabilities of states at posttest
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% given observed response patterns
q2=sum(permute(b{g},[2,3,1]),3); % [nstates,npat(g)]

% Useful in following computations
qq=(q1+q2)*freq{g}; % [nstates,1]

% Interim amount for adjustment of alpha
a1=(q1’*v).*(1-pat1); % [npat(g),nitems]
a2=(q2’*v).*(1-pat2); % [npat(g),nitems]
a12=a12+(a1+a2)’*freq{g}; % [nitems,1]
da=da+v’*qq; % [nitems,1]

% Interim amount for adjustment of beta
b1=(q1’*(1-v)).*pat1; % [npat(g),nitems]
b2=(q2’*(1-v)).*pat2; % [npat(g),nitems]
b12=b12+(b1+b2)’*freq{g}; % [nitems,1]
db=db+(1-v)’*qq; % [nitems,1]

% Compute expected number of pairs (K,L) of states given
% observed response patterns
bg=zeros(nstates,nstates);
for i=1:size(pat1,1);

bg=bg+freq{g}(i)*b{g}(:,:,i); % [nstates,nstates]
end
bg1=sum(bg,2); % [nstates,1]

% Adjust estimates of gamma and lambda
gamma(:,g)=sum((1-w).*(bg*w))’./((1-w)’*bg1); % [nskills,1]
lambda(:,g)=sum(w.*(bg*(1-w)))’./(w’*bg1); % [nskills,1]

% Interim amount for adjustment of pi
pp=pp+w’*bg1; % [nskills,1]

end

% Adjust estimates of alpha, beta and pi
acoef=2*amu+amax.*(da+amu)+a12;
alpha=(acoef-sqrt(acoef.*acoef-4*amax.*(da+2*amu).*(a12+amu)))./(2*(da+2*amu));
bcoef=2*bmu+bmax.*(db+bmu)+b12;
beta=(bcoef-sqrt(bcoef.*bcoef-4*bmax.*(db+2*bmu).*(b12+bmu)))./(2*(db+2*bmu));
pi=pp/sz;

amu=rate*amu;
bmu=rate*bmu;

% Check if tolerance value is reached and, if so, end the loop
alpha_max=max(abs(alpha_old-alpha));
beta_max=max(abs(beta_old-beta));
pi_max=max(abs(pi_old-pi));
lambda_max=max(max(abs(lambda_old-lambda)));
gamma_max=max(max(abs(gamma_old-gamma)));
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xmax=max([alpha_max,beta_max,pi_max,lambda_max,gamma_max]);
if xmax<=tol

fprintf(’\n\nTolerance value reached in CoGaLoM\n\n’);
break;

end

end

if iter==maxiter & xmax>tol
fprintf(’\n\nThe estimates do not converge.’);
fprintf(’\nIncrease the number of iterations or’);
fprintf(’\nthe tolerance value.\n\n’);

end

% Statistics of model fit (Pearson’s chi-square, log-likelihood,
% AIC, AICC, BIC)
model.ft=sum(expfreq(pat0,grp_sz,alpha,beta,pi,gamma,lambda,v,w),2);
model.chisquare=sum(freq0.*freq0./model.ft)-sz;
model.pvalue=1-chi2cdf(chi(iter),df);
model.loglike=-sum(freq0.*log(model.ft/sz));
model.df=df;
model.aic=2*(model.loglike+npar);
model.aicc=model.aic+2*npar*(npar+1)/(sz-npar-1);
model.bic=2*model.loglike+npar*log(sz);

% Save estimates of model parameters
model.alpha=alpha;
model.beta=beta;
model.pi=pi;
model.gamma=gamma;
model.lambda=lambda;

function [v,w]=skillmap(itemskill)

% skillmap: Derivation of knowledge states corresponding to skill multimap

nl=max(itemskill(:,1));
ns=size(itemskill,2)-1;
w=powerset(ns);
nk=size(w,1);
v=zeros(nk,nl);
for k=1:nk

for i=1:size(itemskill,1)
x=itemskill(i,2:ns+1);
if (x&w(k,:))==x

v(k,itemskill(i,1))=1;
end

end
end
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function c = rho(a,b,states,patterns)

% rho: Conditional probabilities of response patterns given
% knowledge states

[m,n] = size(patterns);
eps = 1e-9;
a = a+(a < eps)*eps-(1-a < eps)*eps; % prevents log of zero
b = b+(b < eps)*eps-(1-b < eps)*eps;
u = ones(m,1);
xa = u*log(a)’;
ya = u*log(1-a)’;
xb = u*log(b)’;
yb = u*log(1-b)’;
p = (patterns.*ya)*states’;
q = (patterns.*xb)*(1-states)’;
r = ((1-patterns).*xa)*states’;
s = ((1-patterns).*yb)*(1-states)’;
c = exp(p+q+r+s);

function freq=expfreq(pat,sz,alpha,beta,pi,gamma,lambda,v,w)

% expfreq: Compute expected frequencies of Gain-Loss Model

nitems=size(pat,2)/2;
ngroups=size(gamma,2);

pat1=pat(:,1:nitems);
pat2=pat(:,nitems+1:end);

p=exp(w*log(pi)+(1-w)*log(1-pi));
p1=rho(alpha,beta,v,pat1);
p2=rho(alpha,beta,v,pat2);

freq=zeros(size(pat,1),ngroups);
for g=1:ngroups

tau=rho(lambda(:,g),gamma(:,g),w,w);
freq(:,g)=sz(g)*(p1.*(p2*tau))*p;

end
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A.4 Code for computing the logistic parameters

The MATLAB function LogPar decomposes the gain and loss parameters into

the logistic parameters.

The function requires as input gamma, lambda. gamma and lambda are two

|S|×m matrices (where S is the number of skills and m is the number of learning

objects), which respectively specify the gain and the loss probabilities.

The function returns two structures (lngam, lnlam), which contain the lo-

gistic parameters derived from the gain parameters (lngam.phi, lngam.omega,

lngam.psi) and from the loss parameters (lnlam.phi, lnlam.omega, lnlam.psi).

function [lngam,lnlam]=LogPar(gamma,lambda)

% LogPar: Decompose the estimates of gain and loss parameters into
% logistic parameters

ngroups=size(gamma,2); % Number of groups

% Decomposition of gain parameters
gr=log(gamma./(1-gamma));
lngam.phi=-mean(gr,2);
lngam.psi=gr+repmat(lngam.phi,1,ngroups);
lngam.omega=mean(lngam.psi);

% Decomposition of loss parameters
lr=log(lambda./(1-lambda));
lnlam.phi=mean(lr,2);
lnlam.psi=-lr+repmat(lnlam.phi,1,ngroups);
lnlam.omega=mean(lnlam.psi);
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B.1 Materials from Chapter 2
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Table B.1: Collection of Problems
Problem Original Translated
1 Dato un evento A in uno spazio campionario S,

la probabilitá di A é P (A) = .28. Trovare P (A).
Given an event A in a sample space S, the prob-
ability of A is P (A) = .28. Find P (A).

2 Dati due eventi A e B in uno spazio campionario
S, si conoscono le seguenti probabilitá: P (A ∩
B) = .13; P (A ∩B) = .34. Trovare P (A).

Given two events A and B in a sample space
S, the following probabilities are known: P (A ∩
B) = .13; P (A ∩B) = .34. Find P (A).

3 Dati due eventi A e B in uno spazio campionario
S, si conoscono le seguenti probabilitá: P (A ∩
B) = .26; P (B) = .50. Trovare P (A|B).

Given two events A and B in a sample space
S, the following probabilities are known: P (A ∩
B) = .26; P (B) = .50. Find P (A|B).

4 Dati due eventi indipendenti A e B in uno spazio
campionario S, si conoscono le seguenti prob-
abilitá: P (A) = .10; P (B) = .78. Trovare
P (A ∩B).

Given two independent events A and B in a
sample space S, the following probabilities are
known: P (A) = .10; P (B) = .78. Find P (A∩B).

5 Dati due eventi A e B in uno spazio campionario
S, si conoscono le seguenti probabilitá: P (A ∩
B) = .86; P (A ∩B) = .02. Trovare P (A).

Given two events A and B in a sample space
S, the following probabilities are known: P (A ∩
B) = .86; P (A ∩B) = .02. Find P (A).

6 Dati due eventi A e B in uno spazio campionario
S, si conoscono le seguenti probabilitá: P (A ∩
B) = .08; P (B = .20). Trovare P (A|B).

Given two events A and B in a sample space
S, the following probabilities are known: P (A ∩
B) = .08; P (B = .20). Find P (A|B).

7 Dati due eventi indipendenti A e B in uno spazio
campionario S, si conoscono le seguenti prob-
abilitá: P (A) = .95; P (B) = .84. Trovare
P (A ∩B).

Given two independent events A and B in a
sample space S, the following probabilities are
known: P (A) = .95; P (B) = .84. Find P (A∩B).

8 Dati due eventi A e B in uno spazio campionario
S, si conoscono le seguenti probabilitá: P (A ∩
B) = .24; P (A ∩B) = .12. Trovare P (B|A).

Given two events A and B in a sample space
S, the following probabilities are known: P (A ∩
B) = .24; P (A ∩B) = .12. Find P (B|A).

9 Dati due eventi indipendenti A e B in uno spazio
campionario S, si conoscono le seguenti proba-
bilitá: P (A∩B) = .15; P (A∩B) = .18. Trovare
P (B).

Given two independent events A and B in a
sample space S, the following probabilities are
known: P (A ∩ B) = .15; P (A ∩ B) = .18. Find
P (B).

10 Dati due eventi indipendenti A e B in uno spazio
campionario S, si conoscono le seguenti prob-
abilitá: P (A) = .56; P (B) = .78. Trovare
P (A|B).

Given two independent events A and B in a
sample space S, the following probabilities are
known: P (A) = .56; P (B) = .78. Find P (A|B).

11 Dati due eventi A e B in uno spazio campionario
S, si conoscono le seguenti probabilitá: P (A) =
.04; P (B|A) = .67. Trovare P (A ∩B).

Given two events A and B in a sample space S,
the following probabilities are known: P (A) =
.04; P (B|A) = .67. Find P (A ∩B).

12 Dati due eventi indipendenti A e B in uno spazio
campionario S, si conoscono le seguenti proba-
bilitá: P (A∩B) = .34; P (A∩B) = .18. Trovare
P (A ∩B).

Given two independent events A and B in a
sample space S, the following probabilities are
known: P (A ∩ B) = .34; P (A ∩ B) = .18. Find
P (A ∩B).

13 Dati due eventi indipendenti A e B in uno spazio
campionario S, si conosce la seguente proba-
bilitá: P (A|B) = .02. Trovare P (A).

Given two independent events A and B in a sam-
ple space S, the following probability is known:
P (A|B) = .02. Find P (A).
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B.2 Materials from Chapter 4

The material is here provided that was used in the empirical application described

in Chapter 4. The original and translated versions of the learning object are given

in the next section. The collections of problems presented at pretest and posttest

are respectively in Tables B.2 and B.3.

Learning object

Original version

Wahrscheinlichkeit für ein Ereignis

Wenn alle Elementarereignisse für die Ergebnismenge S; die gleiche Wahrschein-

lichkeit haben, dann ist die Wahrscheinlichkeit, dass ein Ereignis A eintritt:

P (A) =
Anzahl der Elemente in A

Anzahl aller Elemente in S

Beispiel: In einer Schachtel befinden sich 10 Murmeln in den folgenden Far-

ben: 6 weiße, 3 rote und 1 schwarze. Wie großist die Wahrscheinlichkeit, dass

eine zufällig gezogene Murmel rot ist?

P (rot) =
Anzahl roter Murmeln

Anzahl aller Murmeln
=

3

10

Komplementärereignis

WennA ein Ereignis ist, dann ist die Wahrscheinlichkeit für das Komplementärereignis

P (A):

P (A) = 1− P (A)

Beispiel: Die Wahrscheinlichkeit aus einem Skatspiel einen Buben zu ziehen

sei .125. Wie großist die Wahrscheinlichkeit keinen Buben zu ziehen?

P (kein Bube) = 1− P (Bube) = 1− .125
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Vereinigung disjunkter Ereignisse

Wenn A und B zwei disjunkte (sich gegenseitig ausschließende) Ereignisse sind,

dann ist die Wahrscheinlichkeit ihrer Vereinigung P (A ∪B):

P (A ∪B) = P (A)− P (B)

Beispiel: Ein Skatspiel besteht aus 32 verschiedenen Karten. Die Wahrschein-

lichkeit eine 7 zu ziehen ist .125 und die Wahrscheinlichkeit eine 8 zu ziehen ist

ebenfalls .125. Wie großist die Wahrscheinlichkeit eine 7 oder eine 8 zu ziehen?

P (7 oder 8) = P (7) + P (8) = .125 + .125

Unabhängigkeit von Ereignissen

Die Ereignisse A und B sind genau dann unabhngig, wenn die Wahrscheinlichkeit

für die Schnittmenge P (A ∩B):

P (A ∩B) = P (A)P (B)

Beispiel: In einer Bibliothek ist die Wahrscheinlichkeit zufällig ein Buch aus

der Kategorie “Roman” auszusuchen .15 und die Wahrscheinlichkeit ein Buch mit

rotem Umschlag auszusuchen .30. Angenommen das Ereignis “Roman” ist un-

abhängig vom Ereignis “roter Umschlag”, wie großist dann die Wahrscheinlichkeit

für das Ereignis “Roman mit rotem Umschlag”?

P (Roman mit rotem Umschlag) = P (Roman)P (roter Umschlag) = .15× .30

Translated version

Determining the probability of an event

If all elementary events in the sample space S have the same probability, the

probability of any event A is given by:

P (A) =
number of elementary events in A

total number of elementary events is S
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Example: A box contains 10 marbles with the following colours: 6 white, 3

red, 1 black. What is the probability that a randomly drawn marble is red?

P (red) =
number of red marbles

total number of marbles
=

3

10

Complement of events

If A is an event in the sample space S, the probability of its complement P (A)

is given by:

P (A) = 1− P (A)

Example: The probability of drawing a Jack from a deck is .08. What is the

probability of not drawing a Jack?

P (not Jack) = 1− P (Jack) = 1− .08

Union of mutually exclusive events

If A and B are two mutually exclusive events in the sample space S, the proba-

bility of their union P (A ∪B) is given by:

P (A ∪B) = P (A) + P (B)

Example: Given a standard deck containing 52 different cards, the probabil-

ity of drawing a 4 is .08, and the probability of drawing a 5 is .08. What is the

probability of drawing a 4 or a 5?

P (4 o 5) = P (4) + P (5) = .08 + .08

Independence of events

If events A and B are independent, the joint probability P (A ∩B) is equal to:

P (A ∩B) = P (A)P (B)
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Example: In a library, the probability of randomly selecting a “fiction” book

is .15 and the probability of selecting a book having a red cover is .30. If the

event “fiction” is independent of the event “red cover”, what is the probability

of the event “fiction and red cover”?

P (fiction and red cover) = P (fiction)P (red cover) = .15× .30
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Table B.2: Collection of Problems presented at the Pretest
Problem Original Translated
1 In einer Schachtel befinden sich 30 Murmeln in den fol-

genden Farben: 8 rote, 10 schwarze und 12 gelbe. Wie
großist die Wahrscheinlichkeit, dass eine zufällig gezogene
Murmel gelb ist?

A box contains 30 marbles with the following colours: 8
red, 10 black and 12 yellow. What is the probability that
a randomly drawn marble is yellow?

2 In einem Beutel befinden sich 5-Cent-, 10-Cent- und 20-
Cent-Stücke. Die Wahrscheinlichkeit zufällig ein 5-Cent-
Stück zu ziehen ist .35, ein 10-Cent-Stück zu ziehen .25
und die Wahrscheinlichkeit ein 20-Cent-Stück zu ziehen
ist .40. Wie großist die Wahrscheinlichkeit, dass eine
zufällig gezogene Münze nicht ein 5-Cent-Stück ist?

A bag contains 5-Cent, 10-Cent and 20-Cent pieces. The
probability of drawing a 5-Cent piece is .35, that of draw-
ing a 10-Cent piece is .25 and that of drawing a 20-Cent
piece is .40. What is the probability that the coin ran-
domly drawn is not a 5-Cent piece?

3 In einem Beutel befinden sich 5-Cent-, 10-Cent- und 20-
Cent-Stücke. Die Wahrscheinlichkeit zufällig ein 5-Cent-
Stück zu ziehen ist .20, ein 10-Cent-Stück zu ziehen .45
und die Wahrscheinlichkeit ein 20-Cent-Stück zu ziehen
ist .35. Wie großist die Wahrscheinlichkeit, dass eine
zufällig gezogene Münze ein 5-Cent-Stück oder ein 20-
Cent-Stück ist?

A bag contains 5-Cent, 10-Cent and 20-Cent pieces. The
probability of drawing a 5-Cent piece is .20, that of draw-
ing a 10-Cent piece is .45 and that of drawing a 20-Cent
piece is .35. What is the probability that the coin ran-
domly drawn is a 5-Cent or a 20-Cent piece?

4 An einer Schule sind 40% der Schüler Jungen und 80%
der Schüler Rechtshänder. Angenommen Geschlecht und
Händigkeit sind voneinander unabhängig. Wie großist
die Wahrscheinlichkeit zufällig einen rechtshändigen Jun-
gen auszusuchen?

In a school the probability of observing a male pupil
is 40% and the probability of observing a right-handed
pupil is 80%. Assume that the hand writing is indepen-
dent from the gender. What is the probability of observ-
ing a pupil that is male and right-handed?

5 Sie haben ein Skatspiel mit 32 Karten. Wie großist die
Wahrscheinlichkeit kein Herz zu ziehen?

Consider a standard deck containing 32 different cards.
What is the probability of not drawing a heart?

6 In einer Schachtel befinden sich 20 Murmeln in den fol-
genden Farben: 4 weiße, 14 grüne und 2 rote. Wie
großist die Wahrscheinlichkeit, dass eine zufällig gezo-
gene Murmel nicht weißist?

A box contains 20 marbles with the following colours: 4
white, 14 green and 2 red. What is the probability that
a randomly drawn marble in not white?

7 In einer Schachtel befinden sich 10 Murmeln in den fol-
genden Farben: 2 gelbe, 5 blaue und 3 rote. Wie
großist die Wahrscheinlichkeit, dass eine zufällig gezo-
gene Murmel gelb oder blau ist?

A box contains 10 marbles with the following colours: 2
yellow, 5 blue and 3 red. What is the probability that a
randomly drawn marble is yellow or blue?

8 Wie großist die Wahrscheinlichkeit mit einem Würfel eine
gerade Zahl zu werfen?

What is the probability of obtain an even number by
throwing a dice?

9 Sie haben ein Skatspiel mit 32 Karten. Wie großist die
Wahrscheinlichkeit eine 9 in einer schwarzen Farbe zu
ziehen?

Consider a standard deck containing 32 different cards.
What is the probability of drawing a 9 in a black suit?

10 In einer Schachtel befinden sich rote und gelbe Murmeln,
die großoder klein sein können. Die Wahrscheinlichkeit
eine rote Murmel zu ziehen ist .70, die Wahrscheinlichkeit
eine kleine Murmel zu ziehen ist .40. Angenommen die
Farbe der Murmeln ist unabhängig von ihrer Größe. Wie
großist die Wahrscheinlichkeit zufällig eine kleine Murmel
zu ziehen, die nicht rot ist?

A box contains marbles that are red or yellow, small or
large. The probability of drawing a red marble is .70, the
probability of drawing a small marble is .40. Assume that
the colour of the marbles is independent from their size.
What is the probability of randomly drawing a marble
that is yellow and small?

11 In einer Garage befinden sich 50 Autos. Davon sind 20
Autos schwarz und 10 Autos tanken Diesel. Angenom-
men Farbe und Art der Tankfüllung sind voneinander
unabhängig. Wie großist die Wahrscheinlichkeit, dass ein
zufällig ausgesuchtes Auto nicht schwarz ist und Diesel
tankt?

In a garage there are 50 cars. 20 are black and 10 are
diesel. Assume that the colour of the cars is independent
from the fuel. What is the probability that a car is not
black and it is diesel?

12 In einer Schachtel befinden sich 20 Murmeln. 10
Murmeln sind rot, 6 sind gelb und 4 sind schwarz. 12
Murmeln sind klein und 8 Murmeln sind groß. Angenom-
men die Farbe der Murmeln ist unabhängig von ihrer
Größe. Wie großist die Wahrscheinlichkeit zufällig eine
kleine Murmel zu ziehen, die gelb oder rot ist?

A box contains 20 marbles. 10 marbles are red, 6 are
yellow and 4 are black. 12 marbles are small and 8 are
large. Assume that the colour of the marbles is indepen-
dent from their size. What is the probability of randomly
drawing a marble that is red or yellow and that is small?

Note. The 32 card deck corresponds to a typical 52 card deck with no values from 2 to 6. It is popular in Germany.
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Table B.3: Collection of Problems presented at the Posttest
Problem Original Translated
1 In einer Schachtel befinden sich 30 Murmeln in den fol-

genden Farben: 10 rote, 14 gelbe und 6 grüne. Wie
großist die Wahrscheinlichkeit, dass eine zufällig gezo-
gene Murmel grün ist?

A box contains 30 marbles with the following colours: 10
red, 14 yellow and 6 green. What is the probability that
a randomly drawn marble is green?

2 In einem Beutel befinden sich 5-Cent-, 10-Cent- und 20-
Cent-Stücke. Die Wahrscheinlichkeit zufällig ein 5-Cent-
Stück zu ziehen ist .25, ein 10-Cent-Stück zu ziehen .60
und die Wahrscheinlichkeit ein 20-Cent-Stück zu ziehen
ist .15. Wie großist die Wahrscheinlichkeit, dass eine
zufällig gezogene Münze nicht ein 5-Cent-Stück ist?

A bag contains 5-Cent, 10-Cent and 20-Cent pieces. The
probability of drawing a 5-Cent piece is .25, that of draw-
ing a 10-cent piece is .60 and that of drawing a 20-Cent
piece is .15. What is the probability that the coin ran-
domly drawn is not 5-Cent piece?

3 In einem Beutel befinden sich 5-Cent-, 10-Cent- und 20-
Cent-Stücke. Die Wahrscheinlichkeit zufällig ein 5-Cent-
Stück zu ziehen ist .35, ein 10-Cent-Stück zu ziehen .20
und die Wahrscheinlichkeit ein 20-Cent-Stück zu ziehen
ist .45. Wie großist die Wahrscheinlichkeit, dass eine
zufällig gezogene Münze ein 5-Cent-Stück oder ein 20-
Cent-Stück ist?

A bag contains 5-Cent, 10-Cent and 20-Cent pieces. The
probability of drawing a 5-Cent piece is .35, that of draw-
ing a 10-Cent piece is .20 and that of drawing a 20-Cent
piece is .45. What is the probability that the coin ran-
domly drawn is a 5-Cent or or a 20-Cent piece?

4 An einer Schule sind 70% der Scḧler Mädchen und
10% der Schüler Linkshänder. Angenommen Geschlecht
und Händigkeit sind voneinander unabhängig. Wie
großist die Wahrscheinlichkeit zufällig ein linkshändiges
Mädchen auszusuchen?

In a school the probability of observing a female pupil is
70% and the probability of observing a left-handed pupil
is 10%. Assume that the hand writing is independent
from the gender. What is the probability of observing a
pupil that is female and left-handed?

5 Sie haben ein Skatspiel mit 32 Karten. Wie großist die
Wahrscheinlichkeit kein Kreuz zu ziehen?

Consider a standard deck containing 32 different cards.
What is the probability of not drawing a club?

6 In einer Schachtel befinden sich 20 Murmeln in den fol-
genden Farben: 6 gelbe, 10 rote und 4 grüne. Wie
großist die Wahrscheinlichkeit, dass eine zufällig gezo-
gene Murmel nicht gelb ist?

A box contains 20 marbles with the following colours: 6
yellow, 10 red, 4 green. What is the probability that a
randomly drawn marble in not yellow?

7 In einer Schachtel befinden sich 10 Murmeln in den fol-
genden Farben: 5 blaue, 3 rote und 2 grüne. Wie
großist die Wahrscheinlichkeit, dass eine zufällig gezo-
gene Murmel blau oder rot ist?

A box contains 10 marbles with the following colours:
5 blue, 3 red, 2 green. What is the probability that a
randomly drawn marble is blue or red?

8 Wie großist die Wahrscheinlichkeit mit einem Würfel eine
ungerade Zahl zu werfen?

What is the probability of obtaining an odd number by
throwing a dice?

9 Sie haben ein Skatspiel mit 32 Karten. Wie großist die
Wahrscheinlichkeit eine 10 in einer roten Farbe zu ziehen?

Consider a standard deck containing 52 different cards.
What is the probability of drawing a 10 in a red suit?

10 In einer Schachtel befinden sich grüne und rote Murmeln,
die großoder klein sein knnen. Die Wahrscheinlichkeit
eine grüne Murmel zu ziehen ist .40, die Wahrschein-
lichkeit eine große Murmel zu ziehen ist .20. Angenom-
men die Farbe der Murmeln ist unabhängig von ihrer
Größe. Wie großist die Wahrscheinlichkeit zufällig eine
große Murmel zu ziehen, die nicht grün ist?

A box contains marbles that are green or red, large or
small. The probability of drawing a green marble is .40,
the probability of drawing a large marble is .20. Assume
that the colour of the marbles is independent from their
size. What is the probability of randomly drawing a mar-
ble that is red and large?

11 In einer Garage befinden sich 50 Autos. Davon sind
15 Autos weißund 20 Autos tanken Diesel. Angenom-
men Farbe und Art der Tankfüllung sind voneinander
unabhängig. Wie großist die Wahrscheinlichkeit, dass
ein zufällig ausgesuchtes Auto nicht weißist und Diesel
tankt?

In a garage there are 50 cars. 15 are white and 20 are
diesel. Assume that the colour of the cars is independent
from the fuel. What is the probability that a car is not
white and it is diesel?

12 In einer Schachtel befinden sich 20 Murmeln. 8 Murmeln
sind weiß, 4 sind grün und 8 sind rot. 15 Murmeln
sind klein und 5 Murmeln sind groß. Angenommen die
Farbe der Murmeln ist unabhängig von ihrer Größe. Wie
großist die Wahrscheinlichkeit zufällig eine große Murmel
zu ziehen, die weißoder grün ist?

A box contains 20 marbles. 8 marbles are white, 4 are
green and 8 are red. 5 marbles are large and 15 are small.
Assume that the colour of the marbles is independent
from their size. What is the probability of randomly
drawing a marble that is white or green and that is large?

Note. The 32 card deck corresponds to a typical 52 card deck with no values from 2 to 6. It is popular in Germany.
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B.3 Materials from Chapter 5

The material is here provided that was used in the empirical application described

in Chapter 5. The good learnin objetc is given in the next section in the original

and translated version. The bad learning object correspond to the good learning

object without the examples. The two collections of problems denoted by form

A and form B are respectively in Tables B.4 and B.5.

Good Learning object

Original version

Determinare la probabilità di un evento

Se tutti gli esiti nello spazio campionario S sono equiprobabili, la probabilità di

un qualunque evento A è data da:

P (A) =
numero di esiti in A

numero totale di esiti in S

Esempio: Una scatola contiene 10 palline dei seguenti colori: 6 bianche, 3

rosse, 1 nera. Qual è la probabilità che una pallina estratta a caso sia rossa?

P (rossa) =
numero di palline rosse

numero totale di palline
=

3

10

Complemento di eventi

Se A è un evento nello spazio campionario S, la probabilità del suo complemento

P (A) è data da:

P (A) = 1− P (A)

Esempio: Dato un mazzo contenente 52 diverse carte da gioco, la probabilità

di estrarre un Jack è 4
52

. Qual è la probabilità di estrarre una carta che non sia

un Jack?

P (no Jack) = 1− P (Jack) = 1− 4

52
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Unione di eventi incompatibili

Se A e B sono due eventi incompatibili nello spazio campionario S, la probabilità

della loro unione P (A ∪B) è data da:

P (A ∪B) = P (A) + P (B)

Esempio: Dato un mazzo contenente 52 diverse carte da gioco, la probabilità

di estrarre un 4 è 4
52

, e la probabilità di estrarre un 5 è 4
52

. Qual è la probabilità

di estrarre un 4 o un 5?

P (4 o 5) = P (4) + P (5) =
4

52
+

4

52

Probabilità congiunta di eventi indipendenti

Se A e B sono due eventi indipendenti, la loro probabilità congiunta P (A∩B) è

data da:

P (A ∩B) = P (A)× P (B)

Esempio: Si lanci un dado due volte. Qual è la probabilità di ottenere un 2

al primo lancio e un 4 al secondo lancio?

P (2 primo lancio ∩ 4 secondo lancio) =

P (2 primo lancio)× P (4 secondo lancio) =
1

6
× 1

6

Alcuni problemi richiedono solo uno dei quattro concetti presentati per essere

risolti, altri richiedono pi di un concetto. Rispetto a questi ultimi, è importante

individuare i concetti necessari ed utilizzarli nell’ordine appropriato.

Esempio: Dato un mazzo contenente 52 diverse carte da gioco, qual è la

probabilità di estrarre un 5 o un 7?

Passo 1: Si calcola la probabilità di estrarre un 5 e quella di estrarre un 7.
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P (5) =
numero di carte con il 5

numero totale di carte
=

4

52

P (7) =
numero di carte con il 7

numero totale di carte
=

4

52

Passo 2: Si calcola la probabilità di estrarre un 5 o un 7.

P (5 o 7) = P (5) + P (7) =
4

52
+

4

52

Translated version

Determining the probability of an event

If all the outcomes in sample space S are equiprobable, the probability of given

event A is given by:

P (A) =
number of outcomes in A

total number of outcomes in S

Example: A box contains 10 marbles of the following colours: 6 white, 3 red,

1 black. What is a probability of a marble, extracted randomly, being red?

P (red) =
number of red marbles

total number of marbles
=

3

10

Complement of events

If A is an event in sample space S, the probability of its complement P (A) is

given by:

P (A) = 1− P (A)

Example: Assuming a deck of cards contains 52 different playing cards, the

probability of extracting a Jack is 4
52

. What is the probability of extracting a

card which is not a Jack?

P (no Jack) = 1− P (Jack) = 1− 4

52
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Union of mutially exclusive events

If A and B are two mutually exclusive events in sample space S, the probability

of their union P (A ∪B) is given by:

P (A ∪B) = P (A) + P (B)

Example: Assuming a deck of cards contains 52 different playing cards, the

probability of extracting a 4 is 4
52

, and the probability of extracting a 5 is 4
52

.

What is the probability of extracting a 4 or a 5?

P (4 or 5) = P (4) + P (5) =
4

52
+

4

52

Joint probability of independent events

If A and B are two independent events, their joint probability P (A∩B) is given

by:

P (A ∩B) = P (A)× P (B)

Esempio: One die is thrown twice. What is the probability of obtaining a 2

on the first throw and a 4 on the second throw?

P (2 first throw ∩ 4 second throw) =

P (2 first throw)× P (4 second throw) =
1

6
× 1

6

Some problems only require one of the 4 concepts presented in order to be re-

solved, other problems require more than one concept. With regard to the these

problems, it is important to identify the necessary concepts and to use them in

the correct order.

Example: Assuming a deck of cards contains 52 different playing cards, what

is the probability of extracting a 5 or a 7?
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Step 1: Calculation of the probability of extracting a 5 and the probability of

extracting a 7.

P (5) =
number of cards with 5

total number of cards
=

4

52

P (7) =
number of cards with 7

total number of cards
=

4

52

Step 2: Calculation of the probability of extracting a 5 or a 7.

P (5 or 7) = P (5) + P (7) =
4

52
+

4

52
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Table B.4: Collection of Problems of Form A
Problem Original Translated
1 Una scatola contiene palline verdi, bianche e rosse. La proba-

bilità di estrarre una pallina verde è 2
15

, quella di estrarre una
pallina bianca è 7

15
, e quella di estrarre una pallina rossa è 6

15
.

Qual è la probabilità che una pallina estratta a caso sia verde
o rossa?

A box contains green, white and red marbles. The probability
of extracting a green marble is 2

15
, that of extracting a white

marble is 7
15

, and that of extracting a red marble is 6
15

. What
is the probability of a marble, extracted randomly, being green
or red?

2 Dato un mazzo contenente 52 diverse carte da gioco, qual è la
probabilità di non estrarre una carta di cuori?

Assuming a deck of cards contains 52 different playing cards,
what is the probability of not extracting a hearts card?

3 In un garage ci sono 50 automobili. Di queste, 20 sono nere
e 10 sono diesel. Se il colore delle automobili è indipendente
dal carburante, qual è la probabilità che un’automobile non sia
nera e sia diesel?

In a garage there are 50 cars. Of these, 20 are black and 10
are diesel. If the colour of the car is independent of the fuel
type, what is the probability of a car not being black but being
diesel?

4 Dato un mazzo contenente 52 diverse carte da gioco, qual è la
probabilità di estrarre un 4 di colore nero?

Assuming a deck of cards contains 52 different playing cards,
what is the probability of extracting a black 4?

5 Una scatola contiene palline che sono rosse o gialle, piccole o
grandi. La probabilità di estrarre una pallina rossa è 7

10
, la

probabilità di estrarre una pallina piccola è 2
5
. Se il colore delle

palline è indipendente dalla loro grandezza, qual è la probabilità
di estrarre a caso una pallina che sia gialla e piccola?

A box contains marbles that are red or yellow, small or large.
The probability of extracting a red marble is 7

10
, the probability

of extracting a small marble is 2
5
. If the colour of the marbles is

independent of their size, what is the probability of randomly
extracting a marble which is yellow and small?

6 In una scuola, la probabilità di osservare uno alunno maschio è
2
5

e la probabilità di osservare un alunno destrimane è 4
5
. Se la

mano con cui un alunno scrive è indipendente dal suo genere,
qual è la probabilità di osservare un alunno che sia maschio e
destrimane?

In a school, the probability of observing a male student is 2
5

and the probability of observing a right-handed student is 4
5
. If

the handedness of a student is independent of gender, what is
the probability of observing a student who is male and right-
handed?

7 Si lanci un dado. Qual è la probabilità di non ottenere né un 2
né un 5?

Throw a dice. What is the probability of obtaining neither a 2
nor a 5?

8 Una scatola contiene palline che sono rosse, gialle, bianche e
nere, piccole e grandi. La probabilità di estrarre una pallina
rossa è 7

25
, quella di estrarre una pallina gialla è 4

25
, quella di

estrarre una pallina bianca è 12
25

, e quella di estrarre una pallina
nera è 2

25
. La probabilità di estrarre una pallina piccola è 1

3
. Se

il colore delle palline è indipendente dalla loro grandezza, qual
è la probabilità di estrarre a caso una pallina che sia rossa o
gialla e che sia piccola?

A box contains marbles which are red, yellow, white, black,
small and large. The probability of extracting a red marble is
7
25

, that of extracting a yellow marble is 4
25

, that of extracting
a white marble is 12

25
, and that of extracting a black marble is

2
25

. The probability of extracting a small marble is 1
3
. If the

colour of the marbles is independent of their size, what is the
probability of randomly extracting a marble which is both small
and yellow or red?

9 Si lanci un dado cento volte. Qual è la probabilità di ottenere
2 o 3 al primo lancio e di ottenere 4, 5 o 6 al secondo lancio?

Throw a dice 100 times. What is the probability of obtaining 2
or 3 on the first throw and of obtaining 4, 5 or 6 on the second
throw?

10 Una scatola contiene 6 palline di cui 4 bianche e 2 nere. Un’altra
scatola contiene 8 palline di cui 3 bianche e 5 nere. Si estragga
a caso una pallina da ciascuna scatola. Qual è la probabilità
che entrambe le palline siano bianche?

A box contains 6 marbles of which 4 are white and 2 are black.
Another box contains 8 marbles of which 3 are white and 5 are
black. 1 marble is extracted randomly from each box. What is
the probability of both marbles being white?

11 Si lanci un dado. Qual è la probabilità di ottenere un 1 o un 4? Throw a dice. What is the probability of obtaining a 1 or a 4?
12 In una biblioteca la probabilità di prendere un libro di narrativa

è 3
20

e la probabilità di prendere un libro con la copertina rossa
è 3

5
. Se il genere letterario del libro è indipendente dal colore

della copertina, qual è la probabilità di prendere un libro di
narrativa che non abbia la copertina rossa?

In a library the probability of picking up a fiction book is 3
20

and the probability of picking up a book with a red cover is
3
5
. If the book genre is independent of the colour of the cover,

what is the probability of picking up a fiction book which does
not have a red cover?

13 Una scatola contiene 75 palline dei seguenti colori: 10 rosse, 20
azzurre, 30 bianche e 15 gialle. Qual è la probabilità che una
pallina estratta a caso non sia né rossa né azzurra?

A box contains 75 marbles of the following colours: 10 red,
20 blue, 30 white and 15 yellow. What is the probability of
randomly extracting a marble that is neither red nor blue?

14 Una scatola contiene palline rosse, gialle e verdi. La probabilità
di estrarre una pallina rossa è 3

10
. Qual è la probabilità di

estrarre una pallina non rossa?

A box contains red, yellow and green marbles. The probability
of extracting a red marble is 3

10
. What is the probability of

extracting a marble that is not red?
15 Si lanci un dado cento volte. Qual è la probabilità di non ot-

tenere 5 al primo lancio e di non ottenere né 1 né 2 al secondo
lancio?

Throw a dice 100 times. What is the probability of not obtain-
ing 5 on the first throw and of obtaining neither 1 nor 2 on the
second throw?

16 Una scatola contiene 10 palline di cui 3 verdi. Un’altra scatola
contiene 20 palline di cui 4 verdi. Si estragga a caso una pallina
da ciascuna scatola. Qual è la probabilità che né la pallina
estratta dalla prima scatola, né quella estratta dalla seconda
siano verdi?

A box contains 10 marbles of which 3 are green. Another box
contains 20 marbles of which 4 are green. 1 marble is extracted
from each box. What is the probability that neither the first
marble, nor the second marble extracted will be green?

17 Una scatola contiene 20 palline dei seguenti colori: 4 bianche,
14 verdi, 2 rosse. Qual è la probabilità che una pallina estratta
a caso non sia bianca?

A box contains 20 marbles of the following colours: 4 white, 14
green, 2 red. What is the probability that a randomly extracted
marble is not white?

18 Una scatola contiene 20 palline. 10 palline sono rosse, 6 sono
gialle e 4 sono nere. 12 palline sono piccole e 8 sono grandi. Se
il colore delle palline è indipendente dalla loro grandezza, qual
è la probabilità di estrarre a caso una pallina che sia rossa o
gialla e che sia piccola?

A box contains 20 marbles. 10 marbles are red, 6 are yellow
and 4 are black. 12 marbles are small and 8 are large. If the
colour of the marbles is independent of their size, what is the
probability of randomly extracting a marble which is small and
red or yellow?

19 Una scatola contiene 10 palline dei seguenti colori: 2 gialle, 5
blu, 3 rosse. Qual è la probabilità che una pallina estratta a
caso sia gialla o blu?

A box contains 10 marbles of the following colours: 2 yellow,
5 blue, 3 red. What is the probability of a marble, extracted
randomly, being yellow or blue?
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Table B.5: Collection of Problems of Form B
Problem Original Translated
1 Una scatola contiene palline blu, nere e gialle. La probabilità

di estrarre una pallina blu 6
15

, quella di estrarre una pallina
nera 2

15
, e quella di estrarre una pallina gialla 7

15
. Qual è la

probabilità che una pallina estratta a caso sia blu o gialla?

A box contains blue, black and yellow marbles. The probability
of extracting a blue marble is 6

15
, that of extracting a black

marble is 2
15

, and that of extracting a yellow marble is 7
15

. What
is the probability of a marble, extracted randomly, being blue
or yellow?

2 Dato un mazzo contenente 52 diverse carte da gioco, qual è la
probabilità di non estrarre una carta di fiori?

Assuming a deck of cards contains 52 different playing cards,
what is the probability of not extracting a clubs card?

3 In un garage ci sono 50 automobili. Di queste, 15 sono bianche
e 20 sono dicesel. Se il colore delle automobili è indipendente
dal carburante, qual è la probabilità che unautomobile non sia
bianca e sia dicesel?

In a garage there are 50 cars. Of these, 15 are white and 20
are dicesel. If the colour of the car is independent of the fuel
type, what is the probability of a car not being white but being
dicesel?

4 Dato un mazzo contenente 52 diverse carte da gioco, qual è la
probabilità di estrarre un 10 di colore rosso?

Assuming a deck of cards contains 52 different playing cards,
what is the probability of extracting a red 10?

5 Una scatola contiene palline che sono blu o verdi, piccole o
grandi. La probabilità di estrarre una pallina blu è 3

10
, la proba-

bilità di estrarre una pallina piccola è 4
5
. Se il colore delle palline

è indipendente dalla loro grandezza, qual è la probabilità di es-
trarre a caso una pallina che sia verde e piccola?

A box contains marbles that are blue or green, small or large.
The probability of extracting a blue marble is 3

10
, the probability

of extracting a small marble is 4
5
. If the colour of the marbles

is independent of their size, what is the probability of randomly
extracting a marble which is green and small?

6 In una scuola, la probabilità di osservare uno alunno maschio è
3
7

e la probabilità di osservare un alunno destrimane è 5
7
. Se la

mano con cui un alunno scrive è indipendente dal suo genere,
qual è la probabilità di osservare un alunno che sia maschio e
destrimane?

In a school, the probability of observing a male student is 3
7

and
the probability of observing a right-handed student is 5

7
. If the

handedness of a student is independent of gender, what is the
probability of observing a student who is male and right-handed?

7 Si lanci un dado. Qual è la probabilità di non ottenere né un 3
né un 4?

Throw a dice. What is the probability of obtaining neither a 3
nor a 4?

8 Una scatola contiene palline che sono verdi, rosse, bianche e nere,
piccole e grandi. La probabilità di estrarre una pallina verde è
8
25

, quella di estrarre una pallina rossa è 6
25

, quella di estrarre
una pallina bianca è 9

25
, e quella di estrarre una pallina nera

è 2
25

. La probabilità di estrarre una pallina piccola è 2
3
. Se il

colore delle palline è indipendente dalla loro grandezza, qual è
la probabilità di estrarre a caso una pallina che sia verde o rossa
e che sia piccola?

A box contains marbles which are green, red, white, black, small
and large. The probability of extracting a green marble is 8

25
,

that of extracting a red marble is 6
25

, that of extracting a white
marble is 9

25
, and that of extracting a black marble is 2

25
. The

probability of extracting a small marble is 2
3
. If the colour of the

marbles is independent of their size, what is the probability of
randomly extracting a marble which is both small and green or
red?

9 Si lanci un dado cento volte. Qual è la probabilità di ottenere 1
o 4 al primo lancio e di ottenere 2, 3 o 5 al secondo lancio?

Throw a dice 100 times. What is the probability of obtaining 1
or 4 on the first throw and of obtaining 2, 3 or 5 on the second
throw?

10 Una scatola contiene 8 palline di cui 5 gialle e 3 rosse. Unaltra
scatola contiene 6 palline di cui 4 gialle e 2 rosse. Si estragga a
caso una pallina da ciascuna scatola. Qual è la probabilità che
entrambe le palline siano gialle?

A box contains 8 marbles of which 5 are yellow and 3 are red.
Another box contains 6 marbles of which 4 are yellow and 2 are
red. 1 marble is extracted randomly from each box. What is the
probability of both marbles being yellow?

11 Si lanci un dado. Qual è la probabilità di ottenere un 2 o un 6? Throw a dice. What is the probability of obtaining a 2 or a 6?
12 In una biblioteca la probabilità di prendere un libro di narrativa

è 7
20

e la probabilità di prendere un libro con la copertina blu è
2
5
. Se il genere letterario del libro è indipendente dal colore della

copertina, qual è la probabilità di prendere un libro di narrativa
che non abbia la copertina blu?

In a library the probability of picking up a fiction book is 7
20

and
the probability of picking up a book with a blue cover is 2

5
. If

the book genre is independent of the colour of the cover, what is
the probability of picking up a fiction book which does not have
a blue cover?

13 Una scatola contiene 75 palline dei seguenti colori: 30 bianche,
10 verdi, 20 rosse e 15 blu. Qual è la probabilità che una pallina
estratta a caso non sia né bianca né verde?

A box contains 75 marbles of the following colours: 30 white, 10
green, 20 red and 15 blue. What is the probability of randomly
extracting a marble that is neither whie nor green?

14 Una scatola contiene palline bianche, rosse e gialle. La proba-
bilità di estrarre una pallina bianca è 6

10
. Qual è la probabilità

di estrarre una pallina non bianca?

A box contains white, red and yellow marbles. The probability
of extracting a white marble is 6

10
. What is the probability of

extracting a marble that is not white?
15 Si lanci un dado cento volte. Qual è la probabilità di non ot-

tenere 2 al primo lancio e di non ottenere né 4 né 5 al secondo
lancio

Throw a dice 100 times. What is the probability of not obtaining
2 on the first throw and of obtaining neither 4 nor 5 on the second
throw?

16 Una scatola contiene 10 palline di cui 4 blu. Unaltra scatola
contiene 20 palline di cui 5 blu. Si estragga a caso una pallina da
ciascuna scatola. Qual è la probabilità che né la pallina estratta
dalla prima scatola, né quella estratta dalla seconda siano blu?

A box contains 10 marbles of which 4 are blue. Another box
contains 20 marbles of which 5 are blue. 1 marble is extracted
from each box. What is the probability that neither the first
marble, nor the second marble extracted will be blue?

17 Una scatola contiene 20 palline dei seguenti colori: 6 blu, 2 rosse,
12 gialle. Qual è la probabilità che una pallina estratta a caso
non sia blu?

A box contains 20 marbles of the following colours: 6 blue, 2 red,
12 yellow. What is the probability that a randomly extracted
marble is not blue?

18 Una scatola contiene 20 palline. 8 palline sono blu, 10 sono
bianche e 2 sono gialle. 6 palline sono piccole e 14 sono grandi.
Se il colore delle palline è indipendente dalla loro grandezza,
qual è la probabilità di estrarre a caso una pallina che sia blu o
bianca e che sia piccola?

A box contains 20 marbles. 8 marbles are blue, 10 are white
and 2 are yellow. 6 marbles are small and 14 are large. If the
colour of the marbles is independent of their size, what is the
probability of randomly extracting a marble which is small and
blue or white?

19 Una scatola contiene 10 palline dei seguenti colori: 5 blu, 3 rosse,
2 verdi. Qual è la probabilità che una pallina estratta a caso sia
blu o rossa?

A box contains 10 marbles of the following colours: 5 blue, 3
red, 2 green. What is the probability of a marble, extracted
randomly, being blue or red?
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ment of knowledge, in theory and in practice. In B. Ganter & L. Kwuida

(Eds.), Formal Concept Analysis, 4th International Conference, ICFCA

2006, Dresden, Germany, february 13-17, 2006, Lecture Notes in Artifi-

cial Intelligence (pp. 61–79). Berlin: Springer–Verlag.

Falmagne, J.-C., & Doignon, J.-P. (1988a). A class of stochastic procedures for the

assessment of knowledge. British Journal of Mathematical and Statistical

Psychology, 41, 1–23.

Falmagne, J.-C., & Doignon, J.-P. (1988b). A markovian procedure for assessing

the state of a system. Journal of Mathematical Psychology, 32, 232–258.

Falmagne, J.-C., & Doignon, J.-P. (2011). Learning spaces: Interdisciplinary

applied mathematics. Berlin: Springer-Verlag.

Falmagne, J.-C., Koppen, M., Villano, M., Doignon, J.-P., & Johannesen, L.

(1990). Introduction to knowledge spaces: How to build, test, and search

them. Psychological Review, 97 (2), 201–224.

Falmagne, J.-C., & Lakshminarayan, K. (1994). Stochastic learning paths – Esti-

mation and simulation. In G. H. Fisher & D. Laming (Eds.), Contributions



170

to mathematical psychology, psychometrics and methodology (pp. 91–110).

New York, NY: Springer-Verlag.

Fiacco, A. V., & McCormick, G. P. (Eds.). (1990). Nonlinear programming:

Sequential unconstrained minimization techniques. Philadelphia, PA: SIAM.

Gediga, G., & Düntsch, I. (2002). Skill set analysis in knowledge structures.

British Journal of Mathematical and Statistical Psychology, 55, 361–384.

Haberman, S. (1979). Qualitative data analysis (Vols. 1, 2). New York, NY:

Academic Press.

Held, T., & Korossy, K. (1998). Data analysis as a heuristic for establishing

theoretically founded item structures. Zeitschrift für Psychologie, 206 (2),

169–188.

Heller, J., Levene, M., Keenoy, K., Albert, D., & Hockemeyer, C. (2007). Cog-

nitive aspects of trails: A stochastic model linking navigation behaviour to

the learner’s cognitive state. In J. Schoonenboom, J. Heller, K. Keenoy,

M. Levene, & M. Turcsanyi-Szabo (Eds.), Trails in education: Technolo-

gies that support navigational learning (pp. 119–146). Rotterdam: Sense

Publisher.

Heller, J., & Repitsch, C. (2008). Distributed skill functions and the meshing of

knowledge structures. Journal of Mathematical Psychology, 52, 147–157.

Heller, J., Steiner, C., Hockemeyer, C., & Albert, D. (2006). Competence-based

knowledge structures for personalised learning. International Journal on

E-Learning, 5, 75–88.

Hockemeyer, C. (2003). Competence based adaptive e-learning in dynamic do-

mains. In F. W. Hesse & Y. Tamura (Eds.), The joint workshop of cognition

and learning through mediacommunication for advanced e-learning (jwcl)

(pp. 79–82). Berlin.



CONCLUSIONS 171

Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with few

assumptions, and connections with nonparametric item response theory.

Applied Psychological Measurement, 25, 258–272.

Kambouri, M., Koppen, M., Villano, M., & Falmagne, J.-C. (1994). Knowledge

assessment: Tapping human expertise by the QUERY routine. Interna-

tional Journal of Human-Computer Studies, 40, 119–151.

Koppen, M. (1993). Extracting human expertise for constructing knowledge

spaces: An algorithm. Journal of Mathematical Psychology, 37, 1–20.

Koppen, M., & Doignon, J.-P. (1990). How to build a knowledge space by

querying an expert. Journal of Mathematical Psychology, 34, 311–331.

Korossy, K. (1999). Modeling knowledge as competence and performance. In

D. Albert & J. Lukas (Eds.), Knowledge spaces: Theories, empirical re-

search, and applications (pp. 103–132). Mahwah: Lawrence Erlbaum Asso-

ciates.

Lakshminarayan, K., & Gilson, F. (1998). An application of a stochastic knowl-

edge structure model. In C. E. Dowling, F. S. Roberts, & P. Theuns (Eds.),

Recent progress in mathematical psychology, scientific psychology series (pp.

155–172). Mahwah: Lawrence Erlbaum Associates.

Langeheine, R., Pannekoek, J., & van de Pol, F. (1996). Bootstrapping goodness-

of-fit measures in categorical data analysis. Sociological Methods and Re-

search, 24, 492–516.

Lazarsfeld, P. F., & Henry, N. W. (1968). Latent structure analysis. Boston:

Houghton Mill.

Lindsay, B., Clogg, C. C., & Grego, J. (1991). Semiparametric estimation in the

rasch model and related exponential response models, including a simple



172

latent class model for item analysis. Journal of the American Statistical

Association, 86, 96–107.

Lukas, J., & Albert, D. (1993). Knowledge assessment based on skill assignment

and psychological task analysis. In G. Strube & K. F. Wender (Eds.),

The cognitive psychology of knowledge (pp. 139–159). Amsterdam: Elsevier

Science Publishers B.V.

Macready, G. B., & Dayton, C. M. (1977). The use of probabilistic models in the

assessment of mastery. Journal of Educational and Behavioral Statistics, 2,

99–120.

Maris, E. (1999). Estimating multiple classification latent class models. Psy-

chometrika, 64, 187–212.

Masters, G. (1995). Validity of psychological assessment: Validation of inferences

from persons’ responses and performances as scientific inquiry into score

meaning. American Psychologist, 50, 741–749.

Messick, S. (1989). Validity. In R. Linn (Ed.), Educational measurement (pp.

13–103). New York, NY: Macmillian.

Mislevy, R. J., & Gitomer, D. H. (1996). The role of probability-based infer-

ence in an intelligent tutoring system. User-Modeling and User-Adapted

Interaction, 5, 253–282.

Nichols, P., & Sugrue, B. (1999). The lack of fidelity between cognitively com-

plex constructs and conventional test development practice. Educational

Measurement: Issues and Practice, 18, 18–29.

Pellegrino, J., Chudowsky, N., & Glaser, R. (Eds.). (2001). Knowing what stu-

dents know: The science and design of educational assessment. Washington,

DC: National Academy Press.



CONCLUSIONS 173

Rabiner, L. R., & Juang, B. H. (1986). An introduction to hidden Markov models.

IEEE Acoustics, Speech & Signal Processing, Magazine, 3, 4–16.

Robusto, E., Stefanutti, L., & Anselmi, P. (2010). The Gain-Loss Model: A

probabilistic skill multimap model for assessing learning processes. Journal

of Educational Measurement, 47, 373–394.

Rupp, A. A., & Templin, J. (2008). The effects of Q-matrix misspecification

on parameter estimates and classification accuracy in the DINA model.

Educational and Psychological Measurement, 68, 78–96.

Sargin, A., & Ünlü, A. (2009). Inductive item tree analysis: Corrections, im-

provements, and comparisons. Mathematical Social Sciences, 58, 376–392.

Schrepp, M. (1999a). Extracting knowledge structures from observed data.

British Journal of Mathematical and Statistical Psychology, 52, 213–224.

Schrepp, M. (1999b). On the empirical construction of implications between

bi-valued test items. Mathematical Social Sciences, 38, 361–375.

Schrepp, M. (2002). Explorative analysis of empirical data by boolean analysis

of questionnaires. Zeitschrift für Psychologie, 210 (2), 99–109.

Schrepp, M. (2003). A method for the analysis of hierarchical dependencies

between items of a questionnaire. Methods of Psychological Research, 19,

43–79.

Stefanutti, L. (2006). A logistic approach to knowledge structures. Journal of

Mathematical Psychology, 50, 545–561.

Stefanutti, L., Anselmi, P., & Robusto, E. (in press). Assessing learning processes

with the Gain-Loss Model. Behavior Research Methods.

Stefanutti, L., & Robusto, E. (2009). Recovering a probabilistic knowledge

structure by constraining its parameter space. Psychometrika, 74, 83–96.



174

Taagepera, M., Potter, F., Miller, G. E., & Lakshminarayan, K. (1997). Map-

ping students’ thinking patterns by the use of the knowledge space theory.

International Journal of Science Education, 19, 283–302.

Van Leeuwe, J. F. J. (1974). Item tree analysis. Nederlands Tijdschrift voor de

Psychologie, 29, 475–484.

von Davier, M. (1997). Bootstrapping goodness-of-fit statistics for sparse cat-

egorical data: Results of a Monte Carlo study. Methods of Psychological

Research, 2, 29–48.

Wright, S. J. (Ed.). (1997). Primal-dual interior-point methods. Philadelphia,

PA: SIAM.


