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Abstract

Stationary reciprocal processes defined on a finite interval of the integer line

can be seen as a special class of Markov random fields restricted to one di-

mension. This kind of processes are potentially useful for describing signals

which naturally live in a finite region of the time (or space) line. Non-

stationary reciprocal processes have been extensively studied in the past es-

pecially by Jamison, Krener, Levy and co-workers. The specialization of

the non-stationary theory to the stationary case, however, does not seem to

have been pursued in sufficient depth in the literature. Moreover, estimation

and identification of reciprocal stochastic models starting from observed data

seems still to be an open problem. This dissertation addresses these prob-

lems showing that maximum likelihood identification of stationary reciprocal

processes on the discrete circle leads to a covariance extension problem for

block-circulant covariance matrices. This generalizes the famous covariance

band extension problem for stationary processes on the integer line. We show

that the maximum entropy principle leads to a complete solution of the pro-

blem. An efficient algorithm for the computation of the maximum likelihood

estimates is also provided.

xiii





Sommario

Un processo reciproco su un intervallo finito può essere visto come la natu-

rale riduzione al caso unidimensionale di un campo di Markov. Questo tipo

di processi è potenzialmente utile per descrivere segnali che vivono su di un

intervallo spaziale o temporale limitato (si pensi ad esempio alle immagini). I

processi reciproci non stazionari sono stati studiati in letteratura da B. Jami-

son, A. J. Krener, B. C. Levy e coautori. La specializzazione di tale teoria al

caso stazionario, tuttavia, non sembra essere stata oggetto di sufficiente ap-

profondimento in letteratura. Inoltre i problemi di stima e identificazione per

processi reciproci a partire da dati osservati sono tuttora aperti. Il presente

lavoro di tesi si è concentrato su tali problematiche. In particolare è stato

mostrato come il problema di stima a massima verosimiglianza per processi

reciproci stazionari sia riconducibile a un problema di estensione di covari-

anza per matrici circolanti. Tale problema generalizza il ben noto problema

di estensione di covarianza per processi stazionari definiti sull’asse degli in-

teri e non sembra essere stato affrontato in letteratura. Nel corso del lavoro

di tesi è stato mostrato come tale problema sia risolubile facendo ricorso a

un principio di massimizzazione dell’entropia. Infine, è stato proposto un

algoritmo efficiente per il calcolo della soluzione.
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Chapter 1

Introduction

Reciprocal processes have been introduced at the beginning of the last cen-

tury [43, 3, 44] even earlier than the idea of Markov process was formalized

by Kolmogorov and are particularly useful to describe processes indexed by

space instead of time (think for example to an image). As for Markov pro-

cesses, the definition of reciprocal process relies on the concept of condition-

ally independence. Recall that a stochastic process on a linearly ordered

time interval I is said to be Markov if, for any t0 ∈ I, the past and the

future of the process (with respect to t0) are conditionally independent given

y(t0). The same process is said to be reciprocal if, given an arbitrary interval

(t0, t1), the random variables in the interior and exterior of this interval are

conditionally independent given y(t0) and y(t1). It follows that the class of

reciprocal processes is larger than the class of Markov processes: Markov

processes are necessarily reciprocal [28], but the converse is not true (exam-

ple of reciprocal processes that are not Markov can be found in [28], [9], [10],

[31]). Moreover, the class of reciprocal processes naturally extends to the

multimensional case. In fact multidimensional Markov random fields (which

find applications in image processing, geophysical signal processing, oceanog-

raphy, meteorology, etc.) reduce in one dimension to a reciprocal process and

not to Markov process. This gives another strong motivation for the study
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Chapter 1. Introduction

reciprocal processes. Reciprocal processes have been extensively studied in

the past notably by Jamison, Krener, Levy and co-workers, see [28, 29, 30],

[33, 32], [37], [36], [21]. However the specialization of the non-stationary

theory to the stationary case, except for a few noticeable exceptions, e.g.

[28], [41, 42], does not seem to have been pursued in sufficient depth in the

literature. Stationary reciprocal processes can be described by constant coef-

ficient models which are a natural generalization of the Gauss-Markov state

space models widely used in engineering and applied sciences. Estimation

and identification of these models starting from observed data seems to be a

completely open problem and is the object of the present work. In particular,

the dissertation is organized as follows.

The rest of this Chapter is devoted to some preliminaries and notations.

An interesting characterization of the covariance matrix of a stationary pe-

riodic process is also provided.

Chapter 2 introduces reciprocal processes on the discrete circle and shows

how they can be modelled by means of a double-sided “symmetric” recursion

which generalizes auto-regressive (AR) processes on the integer line. A char-

acterization of reciprocal processes in terms of the sparsity pattern of their

concentration matrix is also provided. Finally, the identification problem is

introduced and rephrased in terms of a matrix extension problem for block-

circulant covariance matrices, which we shall call the block-circulant band

extension problem. Matrix extension problems have been heavily studied in

the literature (see [16], [25], [18], [24] and references therein). However, the

block-circulant band extension problem seems to be a new problem which

have not yet been studied.

In Chapter 3 the block-circulant band extension problemn, and hence

the maximum likelihood identification problem for reciprocal processes, is

solved via a maximum entropy paradigm. Moreover, the relationship between

the block-circulant band extension problem and the Dempster’s covariance

4



1.1. Hilbert space of second order random variables

selection problem is highlighted.

In Chapter 4 some of the most popular algorithms for the solution of

the covariance selection problem are reviewed and a new, efficient algorithm

for the block-circulant band extension problem is proposed. Numerical experi-

ments show that it compares favourably with the algorithms in the literature.

Finally, Chapter 5 summarizes the dissertation and discusses possible

generalizations and future work.

1.1 Hilbert space of second order random va-

riables

Throughout the dissertation, we work in the wide-sense setting of zero-mean

random variables which have finite second moment. Random variables which

have finite second moment are commonly called second order random varia-

bles. The set of real or complex-valued second-order random variables defined

on the same probability space, say H, is obviously a linear vector space under

the usual operations of sum and multiplication by real (or complex) numbers.

This vector space comes naturally equipped with an inner product

〈ξ, η〉 = E ξη

where E [ · ] denotes the mathematical expectation (i.e. the inner product

is just the correlation of the two random variables) Note that the norm

induced by this inner product is positive, i.e. 〈ξ, ξ〉 = 0 ⇔ ξ = 0, only

if we agree to identify random variables which are equal almost surely, i.e.

differ on a set of probability zero. Convergence with respect to this norm

is called convergence in mean square. It is well-known that H is closed

with respect to convergence in mean square and is therefore a Hilbert space.

The correspondence between probabilistic concepts depending only on second

5



Chapter 1. Introduction

order moments and geometric operations on certain subspaces of the Hilbert

space of finite variance random variables was established by Kolmogorov in

the early 1940’s (see e.g. [17, p. 636-637] for historical remarks on this) and

will be assumed henceforth.

Following this correspondence, we say that two random vectors x =

[x1, . . . , xn] and y = [yi, . . . , yn] are orthogonal, which we shall write x ⊥ y,

if they are componentwise uncorrelated, i.e. if 〈xi, yi〉 = Exiyi = 0 for all

i = 1, . . . , n. The symbol Ê [ · | · ] denotes orthogonal projection (conditional

expectation in the Gaussian case) onto the subspace spanned by a family of

finite variance random variables listed in the second argument. The concept

of conditional orthogonality plays a fundamental role on the definition of

reciprocal process.

Definition 1.1.1. Let X, Y and Z be subspaces of zero mean second order

random variables in a certain common ambient Hilbert space H. X and Y

are said to be conditionally orthogonal, given Z, which we shall write as

X ⊥ Y | Z

if

(
x− Ê [ x | Z ]

)
⊥
(
y − Ê [ y | Z ]

)
, ∀x ∈ X, ∀y ∈ Y . (1.1)

i.e., conditional orthogonality is orthogonality after subtracting the projec-

tions on Z.

Conditional orthogonality is the same as conditional uncorrelatedness (and

hence conditional independence) in the Gaussian case. The intuitive meaning

of conditional orthogonality is captured by the following Lemma (see, e.g.,

[38]).

6



1.2. Stationary processes on a finite interval

Lemma 1.1.1. X ⊥ Y | Z if and only if one of the following equivalent

conditions holds

(i) Ê [x | Y ∨ Z] = Ê (x | Z), x ∈ X

(ii) Ê [y | X ∨ Z] = Ê (y | Z), y ∈ Y

where X ∨ Z (Y ∨ Z) denote the smallest closed vector space containing X

(Y) and Z.

When X, Y, Z are generated by finite dimensional random vectors, con-

dition (1.1) can equivalently be rewritten in terms of the generating vectors,

which we shall normally do in the following.

In the next Section some basic facts about stationary processes on a finite

interval are introduced. An interesting characterization of the covariance

matrix of stationary periodic processes is also provided.

1.2 Stationary processes on a finite interval

A m-dimensional stochastic process on a finite interval [ 1, N ], is just an or-

dered collection of (zero-mean) randomm-vectors y := {y(k), k = 1, 2, . . . , N}
which will be written as a column vector with N , m-dimensional components.

We say that y is wide–sense stationary if the covariances Ey(k)y(j)> depend

only on the difference of the arguments, namely

Ey(k)y(j)> = Σk−j , k, j = 1, . . . , N, (1.2)

In the following, we shall write simply “stationary”, omitting the attribute

“wide sense”. If y is stationary (namely, if condition 1.2 holds), its covariance

7



Chapter 1. Introduction

matrix has a symmetric block-Toeplitz structure, i.e.

ΣN := Eyy> =


Σ0 Σ>1 . . . Σ>N−1

Σ1 Σ0 Σ>1 . . .
... . . . . . . . . .

ΣN−1 . . . Σ1 Σ0

 (1.3)

(From now on, we will use boldface capitals, e.g. IN , ΣN , etc. to denote

block matrices made of N blocks, each of dimension m × m). Processes y

which have a positive definite covariance are called of full rank (or minimal).

In this dissertation, we shall usually deal with full rank processes.

Definition 1.2.1. A block-circulant matrix with N blocks, is a finite block-

Toeplitz matrix whose block-columns (or equivalently, block-rows) are shifted

cyclically. It looks like

CN =



C0 C1 . . . . . . CN−1

CN−1 C0 C1 . . . . . .
... . . . ...
... . . . C1

C1 C2 . . . CN−1 C0


.

where Ck ∈ Rm×m. A block-circulant matrix CN is fully specified by its first

block-row (or column). It will be denoted by

CN = Circ{C0, C1, . . . , CN−1}. (1.4)

For an introduction to circulant matrices see [13] and Appendix A for a

generalization of significant results in [13] for block matrices.

Consider now a stationary process ỹ on the integer line Z, which is periodic

of period T , i.e. a process satisfying ỹ(k + nT ) := ỹ(k) (almost surely) for

8



1.2. Stationary processes on a finite interval

all n ∈ Z. We can think of ỹ as a process indexed on the discrete circle

group, ZT ≡ {1, 2, . . . , T} with arithmetics mod T 1. Clearly, its covariance

function Σ̃ must also be periodic of period T , namely, Σ̃k+T = Σ̃k for all

k ∈ Z. Hence, we may also see the covariance sequence as a function on the

isomorphic discrete group Z̃T ≡ { 0, T − 1 } with arithmetics mod T . But

more must be true.

Proposition 1.2.1. A (second order) stochastic process y on [ 1, T ] is the

restriction to the interval [ 1, T ] of a wide-sense stationary periodic process ỹ

of period T defined on Z, if and only if its covariance matrix ΣT is symmetric

block-circulant.

Proof. (only if) Let k ∈ [ 1, T ]. By assumption there is an m-dimensional

stationary process ỹ on the integer line Z, which is periodic of period T ,

satisfying ỹ(k + nT ) := y(k) (almost surely) for arbitrary n ∈ Z. By wide-

sense stationarity, the covariance function of ỹ must depend only on the

difference of the arguments, namely

Σ̃k,j := E ỹ(k)ỹ(j)> = Σ̃k−j , k, j = 1, . . . , T.

Moreover, it is a well-known fact that, for any wide-sense stationary process

the following symmetry relation holds

Σ̃−τ = Σ̃>τ ∀τ ∈ Z , (1.5)

that is the covariance matrix of ỹ has a symmetric block-Toeplitz structure.

Now since ỹ is periodic of period T , its covariance function must also be

periodic of period T ; i.e. Σ̃k+nT = Σ̃k for arbitrary k, n ∈ Z. Assume, just

to fix the ideas, that T is an even number and consider the midpoint k = T
2

1Whence T + τ = τ so that T plays the role of the zero element.

9



Chapter 1. Introduction

of the interval [1, T ]. The periodicity combined with the symmetry property

(1.5) yields that

Σ̃T
2

+τ = Σ̃T
2

+τ−T = Σ̃τ−T
2

= Σ̃>T
2
−τ ∀τ ∈ Z (1.6)

and since (1.6) holds for τ = 0, 1, . . . , T
2
− 1, we can say that the function Σ̃

must be symmetric with respect to the midpoint τ = T
2
of the interval. Hence,

we can conclude that the covariance matrix of the process ỹ restricted to

[ 1, T ]; that is the covariance ΣT of y, is a symmetric block-circulant matrix,

i.e. it must have the following structure

ΣT =



Σ̃0 Σ̃>1 . . . Σ̃>τ . . . Σ̃τ . . . Σ̃1

Σ̃1 Σ̃0 Σ̃>1
. . . Σ̃>τ . . .

. . . ...
... . . . . . . . . . Σ̃τ

Σ̃τ . . . Σ̃1 Σ̃0 Σ̃>1 . . .
. . .

... Σ̃τ . . . Σ̃0 . . . Σ̃>τ

Σ̃>τ
. . . ...

... . . . . . . . . . . . . Σ̃>1

Σ̃>1 . . . Σ̃>τ . . . Σ̃τ Σ̃1 Σ̃0


which we write

ΣT = Circ{Σ̃0, Σ̃>1 , . . . , Σ̃>τ , . . . , Σ̃T
2
, . . . , Σ̃τ , . . . , Σ̃1} .

Similarly, if T is odd, it must hold that Σ̃T+1
2

+τ = Σ̃>T−1
2
−τ , τ = 0, 1, . . . , T−1

2
−

1 and ΣT can be written as

ΣT = Circ{Σ̃0, Σ̃>1 , . . . , Σ̃>τ , . . . , Σ̃>T−1
2

, Σ̃T−1
2
, . . . , Σ̃τ , . . . , Σ̃1} ,

which proves the first part of the statement.

(if) We want to prove that if y is a process defined on a finite interval

10



1.2. Stationary processes on a finite interval

[1, T ] with a symmetric block-circulant covariance matrix ΣT , then it admits

a wide-sense stationary periodic extension, ỹ, defined on Z of period T .

Let ỹ be the process obained by periodically extending the process y

to the whole interger line Z by setting ỹ(k + nT ) := y(k) for arbitrary

n ∈ Z and let us denote by Σ̃ its (infinite) covariance matrix. Since Σ̃

is a covariance matrix, it must be positive semidefinite. What we need

to show is that it is a symmetric block-Toeplitz matrix. By definition,

Σ̃ is the covariance matrix of the infinite column vector formed by stack-

ing ỹ(0), ỹ(1), . . . , ỹ(T ), . . . , ỹ(nT ), . . . in that order, it is formed by sub-

blocks which replicate ΣT to produce a square matrix of infinite size. Since

ΣT is symmetric block-circulant, then Σ̃ is, in particular, symmetric block-

Toeplitz, which implies that ỹ is stationary. This concludes the proof.

Remark 1.2.1. The periodic extension to the whole line Z of deterministic

signals originally given on a finite interval [ 1, T ] is a common device in (de-

terministic) signal processing. This simple periodic extension does however

not preserve the structure of a stationary random process since the covariance

of a periodically extended process will not be stationary unless the covariance

function of the original process on [ 1, T ] was center-symmetric to start with.

This counter-intuitive fact has to do with the quadratic dependence of the

covariance of the process on its random variables.

Let for example y be a scalar process on the finite interval [1, 4]; i.e. let

T = 4 andm = 1. Suppose y has covariance matrix ΣT = Toepl {σ0, σ1, σ2, σ3},
the notation Toepl {a} meaning that ΣT is a symmetric Toeplitz matrix with

first column given by the vector a. The upper-left 2T × 2T corner of the co-

11



Chapter 1. Introduction

variance of the periodic extension of y is



σ0 σ1 σ2 σ3 σ0 σ1 σ2 σ3

σ1 σ0 σ1 σ2 σ1 σ0 σ1 σ2

σ2 σ1 σ0 σ1 σ2 σ1 σ0 σ1

σ3 σ2 σ1 σ0 σ3 σ2 σ1 σ0

σ0 σ1 σ2 σ3 σ0 σ1 σ2 σ3

σ1 σ0 σ1 σ2 σ1 σ0 σ1 σ2

σ2 σ1 σ0 σ1 σ2 σ1 σ0 σ1

σ3 σ2 σ1 σ0 σ3 σ2 σ1 σ0


.

This matrix is clearly not Toeplitz unless σ3 = σ1, in which case ΣT would

be symmetric circulant. Hence the extended process ỹ is in general not

stationary.

Remark 1.2.2. In many applications to signal and image processing, the

signals under study naturally live on a finite interval and modeling them as

functions defined on the whole line appears just as an artifice introduced in

order to use the standard tools of (causal) time-invariant systems and har-

monic analysis on the line. It may indeed be more logical to describe these

data as stationary processes y defined on a finite interval [1, T ]. The covari-

ance function, say ΣT , of such a process will be a symmetric positive definite

block-Toeplitz matrix which has in general no block-circulant structure.

It is however always possible to extended the covariance function of y to

a larger interval so as to make it center-symmetric. This can be achieved

by simply letting ΣT+τ := Σ>T−1−τ for τ = 0, 1, . . . , T − 1. In this way

ΣT is extended to a symmetric block-circulant matrix Σ̃T of dimension

(2T−1)×(2T−1), but this operation does not necessarily preserve positivity.

Positivity of a symmetric, block-circulant extension, however, can always be

guaranteed provided the extension is done on a suitably large interval. The

details on how to construct such an extension are postponed to Section 3.2,

12



1.2. Stationary processes on a finite interval

see the proof of Theorem 3.2.2. The original process y can then be seen as

the restriction to the interval [1, T ] of an extended process, say ỹ, which

lives on an interval [1, N ] of length N ≥ 2T − 1. Since the extended co-

variance is, in any case, completely determined by the entries of the original

covariance matrix ΣT , any statistical estimate thereof can be computed from

the variables of the original process y in the interval [1, T ] (or from their

sample values). Hence, there is no need to know what the random vectors

{ỹ(k) ; k = T + 1, . . . , N} look like. Indeed, as soon as we are given the

covariance of the process y defined on [ 1, T ], even if we may not ever see

(sample values of) the “external” random vectors {ỹ(k) ; k = T + 1, . . . , N},
we would in any case have a completely determined second-order description

(covariance function) of ỹ.

In this sense, one can think of any stationary process y given on a finite

interval [1, T ] as the restriction to [1, T ] of a wide-sense stationary periodic

process, ỹ, of period N ≥ 2T − 1, defined on the whole integer line Z. This

process naturally lives on the “discrete circle” ZN . Hence dealing in our future

study with the periodic extension ỹ, instead of the original process y, will

entail no loss of generality. �

13





Chapter 2

Reciprocal Processes: modeling and

identification

In this Chapter, reciprocal processes on the discrete circle are introduced. In

particular, it will be shown that full–rank stationary reciprocal processes can

be characterized by a double-sided constant coefficients “symmetric” recur-

sion driven by locally correlated noise whose corelation structure depends by

the dynamics of the model. The identification issue will also be addressed

showing that maximum likelihood identification leads to a matrix extension

problem for block–circulant matrices which does not seem to have been stud-

ied in the literature.

2.1 Reciprocal Processes

In this section we define reciprocal processes on the discrete circle. The

definition is given in terms of conditionally orthogonality (instead of condi-

tionally independence) somewhat extending the common usage which deals

only with Gaussian reciprocal processes. The standard definition follows im-

mediately since, for Gaussian processes, conditional orthogonality is the same

as conditional independence. Moreover, in the spirit of [21], we will consider

15



Chapter 2. Reciprocal Processes: modeling and identification

general reciprocal processes of order n, standard reciprocal processes in the

literature following as a particularization for n = 1.

Let n be a natural number such that N > 2n. This inequality will be

assumed to hold throughout. We introduce the notation y[t−n, t ) for the

nm-dimensional random vector obtained by stacking y(t− n), . . . ,y(t− 1)

in that order. Similarly, y(t,t+n ] is the vector obtained by stacking y(t +

1), . . . ,y(t + n) in that order. Likewise, the vector y[t−n, t ] is obtained by

appending y(t) as last block to y[t−n, t ), etc.. The sums t − k and t + k are

to be understood modulo N . Consider a subinterval (t1, t2 ) ⊂ [1, N ] where

(t1, t2 ) := {t | t1 < t < t2} and (t1, t2)c denotes the complementary set in

[1, N ].

Definition 2.1.1. A process {y(t)} on ZN is reciprocal of order n if, for

any interval (t1, t2 ) ⊆ ZN the random variables in (t1, t2 ) are conditionally

orthogonal to the random variables in (t1, t2)c , given the 2n boundary values

y(t1−n, t1 ] and y[t2, t2+n ). Equivalently (see Lemma 1.1.1), it must hold that

Ê [ y(t1, t2) | y(s), s ∈ (t1, t2)c ] = Ê [ y(t1, t2) | y(t1−n, t1 ] ∨ y[t2, t2+n ) ] , (2.1)

for t1, t2 ∈ ZN .

2.1.1 AR-type modeling

In this section the modeling issue for stationary reciprocal processes of order

n is addressed. These models generalize the reciprocal models of order one

introduced in [37], discussed in [36] and, for the stationary case, especially

in [41, 42].

Let y be a reciprocal process of order n on ZN . If y is reciprocal, then

(2.1) holds, which, particularized to the interval (t− 1, t+ 1), yields

Ê [ y(t) | y(s), s 6= t ] = Ê [ y(t) | y[t−n,t ) ∨ y(t,t+n ]] , (2.2)

16



2.1. Reciprocal Processes

Let d(t) denote the estimation error

d(t) := y(t)− Ê [ y(t) | y(s), s 6= t ]. (2.3)

Clearly d(t) is orthogonal to all the random variables {y(s), s 6= t }, i.e.

Eyd> = diag {∆0, . . . , ∆N−1} , (2.4)

where y and d are the random vectors obtained by stacking {y(1), . . . ,y(N)}
and {d(1), . . . ,d(N)}, respectively, and ∆t is the variance of the estimation

error, ∆t := Ed(t+ 1)d(t+ 1)>. In the spirit of Masani’s definition [39], d is

called the (unnormalized) conjugate process (or double-sided innovation) of

the process y. In force of (2.2), the estimation error (2.3) becomes

d(t) = y(t)− Ê [ y(t) | y[t−n,t ) ∨ y(t,t+n ]]. (2.5)

i.e. d(t) is a linear combination of {y(t− n), . . . ,y(t+ n)}. Thus, in partic-

ular, the error at t+k, d(t+k), is a linear combination of the components of

the random vector y[t+k−n, t+k+n]. By the orthogonality property (2.4), this

implies that both d(t + k) and d(t − k) are orthogonal to d(t) as soon as

k > n, i.e.

Ed(t+ k) d(t)> = 0 for n < |k| < N − n, k ∈ ZN . (2.6)

which will be referred saying that d is a locally correlated process of band-

width n. Relation (2.5) can be seen as specifying a linear double-sided re-

cursion for y of the form

n∑
k=−n

Fk(t) y(t− k) = d(t) , t ∈ ZN (2.7)

17



Chapter 2. Reciprocal Processes: modeling and identification

where the Fk(t)’s arem×mmatrices, in general dependent on t, with F0 = Im

and the error process d satisfies the orthogonality property (2.4) and is locally

correlated. From the orthogonality condition d(t) ⊥ y[t−n,t )∨y(t,t+n ], we get

that the {Fk(t)}’s can be determined as the solution of the system

[
F−n(t) . . . F−1(t) F1(t) . . . Fn(t)

]  P11(t) P12(t)

P12(t)> P22(t)

 =

= −
[
Σ>n . . .Σ>1 Σ1 . . .Σn

]
(2.8)

where

P11 =


Ey(t+ n)y(t+ n)> . . . Ey(t+ n)y(t+ 1)>

...
...

Ey(t+ 1)y(t+ n)> . . . Ey(t+ 1)y(t+ 1)>



P22 =


Ey(t− 1)y(t− 1)> . . . Ey(t− 1)y(t− n)>

...
...

Ey(t− n)y(t− 1)> . . . Ey(t− n)y(t− n)>

 (2.9)

P12 =


Ey(t+ n)y(t− 1)> . . . Ey(t+ n)y(t− n)>

...
...

Ey(t+ 1)y(t− 1)> . . . Ey(t+ 1)y(t− n)>

 .

Moreover, writing (2.7) as

n∑
k=−n, k 6=0

Fk y(t− k) = d(t)− y(t)

and multiplying it on the left by (d(t)− y(t))>, the error variance can be

18



2.1. Reciprocal Processes

expressed as

Var {d(t)} = Σ0−
[
F−(t) . . . F+(t)

]  P11(t) P12(t)

P12(t)> P22(t)

 [F−(t) . . . F+(t)
]>

(2.10)

where F−(t) and F+(t) are the matrices obtained by stacking {F−n(t), . . . ,

F−1(t)} and {F1(t), . . . , Fn(t)}, respectively, i.e.

F−(t) =
[
F−n(t) . . . F−1(t)

]
, F+(t) =

[
F1(t) . . . Fn(t)

]
.

The following lemmas build on (2.8)–(2.10).

Lemma 2.1.1. If y is stationary, the projection matrices {Fk}’s are inde-

pendent of t, i.e. Fk(t) = Fk for all k = −n, . . . , n. Moreover, if y is full

rank, they are uniquely determined by the covariance lags of the process up

to order 2n.

Proof. By stationarity of y, we can drop off the dependence on t in the Pij(t),

so that system (2.8) becomes

[
F−n(t) . . . F−1(t) F1(t) . . . Fn(t)

] P11 P12

P>12 P11

 =

= −
[
Σ>n . . .Σ>1 Σ1 . . .Σn

]
(2.11)

with

P11 :=


Σ0 Σ1 . . . Σn−1

Σ>1 Σ0 . . .
...

... . . . Σ1

Σ>n−1 . . . Σ>1 Σ0

 , P12 :=


Σn+1 Σn+2 . . . Σ2n

Σn Σn+1 . . . Σ2n−1

... . . . ...

Σ2 . . . Σn Σn+1

 ,

which proves the independence of the Fk(t)’s from the time index t. The
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Chapter 2. Reciprocal Processes: modeling and identification

determinant of the coefficient matrix P in (2.11) is a principal minor of order

2n of ΣN . It follows that, if y is full rank, it must be nonzero. Thus P must

be invertible and the {Fk}’s are uniquely determined.

Lemma 2.1.2. If y is stationary, then the error variance does not depend

on t.

Proof. The conclusion is straightforward by (2.10) observing that, under sta-

tionarity of y, neither the {Fk}’s nor the Pij’s depend on t.

Let us denote with ∆ the constant values taken by the error variance, i.e.

∆ := Ed(t)d(t)>.

Remark 2.1.1. In force of lemma 2.1.2, the orthogonality relation (2.4)

becomes

Eyd> = diag {∆, . . . , ∆} . (2.12)

Lemma 2.1.3. The conjugate process of a stationary reciprocal process is

stationary.

Proof. Equation (2.7) can be written in matrix form as

FNy = d (2.13)

where FN is the block-banded matrix



I F−1(1) . . . F−n(1) 0 . . . 0 Fn(1) . . . F1(1)

F1(2) I F−1(2) . . . F−n(2) 0 . . . 0
. . .

...
...

. . .
. . .

. . .
. . . Fn(n)

Fn(n+ 1)
. . .

. . .
. . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0
. . .

. . .
. . . F−n(N − n)

F−n(N − n+ 1)
. . .

. . .
. . .

. . .
...

. . .
. . .

. . .
. . .

. . . F−1(N − 1)

F−1(N) . . . F−n(N) 0 . . . 0 Fn(N) . . . F1(N) I


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2.1. Reciprocal Processes

If y is stationary, we can drop off the dependence on t for the {Fk}’s (lemma

2.1.1) and FN becomes block-circulant. Multiplying (2.13) from the right by

d> and taking the espectation, we get FNE
{
yd>

}
= E

{
dd>

}
, which, by

(2.12), yields

Var {d} = FNdiag {∆, . . . ,∆} (2.14)

Thus Var {d} is block-circulant, being the product of block-circulant matri-

ces, and the error process is stationary, as claimed.

The above discussion can be summarized in the following representation

theorem.

Theorem 2.1.1. A stationary reciprocal process, y, of order n on ZN satis-

fies a linear, constant-coefficients difference equation of the type

n∑
k=−n

Fk y(t− k) = d(t) , t ∈ [1, N ] , (2.15)

associated to the 2n cyclic boundary conditions

y(k) = y(N + k) ; k = −n+ 1, . . . , n , (2.16)

where the Fk’s are m ×m matrices, with F0 = Im and the error process d,

besides satisfying the orthogonality property (2.12), is locally correlated. The

model can be rewritten in matrix form as

FN y = d . (2.17)

where FN is the N-block banded circulant matrix of bandwidth n,

FN := Circ{I, F−1, . . . , F−n, 0, . . . 0, Fn, . . . , F1} . (2.18)

If the process is full rank this description is unique.
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Chapter 2. Reciprocal Processes: modeling and identification

Up to this point we have derived a system of equations satisfied by y. A

natural question to be answered is whether the system (2.15) is well posed,

i.e. whether it determines y uniquely. From (2.17), we see that the well-

posedness of (2.15) is equivalent to the invertibility of FN . An obvious suf-

ficient condition for the model (2.15) to be well posed is the following.

Lemma 2.1.4. If y is full rank, the model (2.15) is well posed.

From now on we shall focus on full rank reciprocal processes, since for

this class we know that the model is well-posed. The following result is useful

in connection with realization theory.

Proposition 2.1.1. A stationary reciprocal process y is full rank if and only

if the variance matrix ∆ of the conjugate process is positive definite.

Proof. (if) Suppose ∆ > 0. Multiplying both members of (2.13) from the

right by y> and taking expectations, in virtue of the orthogonality relation

(2.12), we get

FN ΣN = FN Eyy> = Edy> = diag{∆, . . . ,∆}. (2.19)

Thus ∆ > 0 implies that the square matrices FN and ΣN are invertible

which, combined with the positive semidefiniteness of ΣN , implies ΣN > 0.

(only if) Suppose now that ∆ is only positive semidefinite. This im-

plies that there exists 0 6= a ∈ Rm s.t. E a>d(t)d(t)>a = 0, i.e. s.t.

a>d(t) = 0 a.s.. This means that the scalar components of d(t) are linearly

dependent, which, by (2.7), implies that y(t − n), . . . ,y(t), . . . ,y(t + n) are

linearly dependent. Thus ΣN must be singular, which contradicts the as-

sumption ΣN > 0.

Remark 2.1.2. Solving (2.19) we get

Σ−1
N = diag{∆−1, . . . ,∆−1}FN (2.20)
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2.1. Reciprocal Processes

i.e. the inverse of the covariance matrix of a full rank stationary reciprocal

process of order n is a banded block-circulant matrix of bandwidth n. As

we will see in a few moments, the converse is also true, providing a useful

characterization of full rank stationary recirprocal processes.

In the above discussion, we have shown that if a process is reciprocal, it

admits an autoregressive model of the form (2.15) associated to the cyclic

boundary conditions (2.16), with noise structure (2.6). However we have not

yet shown that this model captures completely the structure of a reciprocal

processes, i.e. we have not shown that the solution of such a model is neces-

sarily reciprocal. It turns out that this is the case, but instead of considering

directly the model (2.15), we introduce a renormalized version of this model

which is simpler to analyze.

Multiplying (2.15) by the right for ∆−1 and letting Mk := ∆−1Fk, k =

−n, . . . , n (and thus, in particular, M0 = ∆−1), we get

n∑
k=−n

Mk y(t− k) = e(t) , t ∈ ZN (2.21)

where e(t) is the normalized the conjugate process

e(t) := ∆−1d(t) (2.22)

so that Var {e(t)} = ∆−1. Equivalently, one can multiply on the left by

diag {∆−1, . . . ,∆−1} equation (2.17) to get

MNy = e (2.23)

where we have set e = diag {∆−1, . . . ,∆−1}d and

MN = diag
{

∆−1, . . . ,∆−1
}

FN . (2.24)
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Chapter 2. Reciprocal Processes: modeling and identification

The information contained in (2.24) is twofold: comparing (2.24) with (2.19)

we get that the inverse of the covariance matrix of the reciprocal process y

is in fact the coefficient matrix of the normalized model

Σ−1
N = MN , (2.25)

from which we conclude that the (matricial) coefficients of the normalized

model must form a center-symmetric sequence of bandwidth n

M−k = M>
k , k = 1, . . . , n , (2.26)

i.e. the model (2.7) is self-adjoint).

For this symmetrized model, the orthogonality relation (2.12) is replaced

by

Ey e> = IN . (2.27)

Moreover, the coefficient matrix of the normalized model MN , besides

being the inverse of the covariance matrix of the reciprocal process y, is the

covariance matrix of the normalized conjugate process e. In fact, multiplying

(2.23) from the right by e> and taking expectations, we get MN E {ye>} =

E {ee>} which, in force of (2.27), yields

Var {e} = MN (2.28)

as announced.

We are now ready to show that model (2.21) (equivalently, (2.23)) cap-

tures completely the structure of a reciprocal processes, i.e. that, under the

condition that e is stationary and locally correlate process, the solution of

the system MNy = e, is necessarily reciprocal.

24
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Theorem 2.1.2. Consider the linear system

MNy = e , (2.29)

where MN is a symmetric positive-definite banded block-circulant matrix of

bandwidth n and the process {e(t) ; t ∈ ZN} is stationary with covariance

matrix MN (i.e. it is locally correlated of bandwidth n). Then there is a

unique full rank stationary reciprocal process y of order n solution of (2.29).

This process satisfies the orthogonality condition (2.27) and e is its norma-

lized conjugate process.

Proof. Pick a finitely correlated process e with covariance matrix MN (we

can construct such a, say Gaussian, process on a suitable probability space)

and let y be a solution of (2.29). Since MN is invertible, y is uniquely

defined, i.e. there is a unique random vector y, solution of (2.29). Let ΣN

be its covariance matrix. We have

ΣN := E
[
yy>

]
= E

[
M−1

N ee>M−>
N

]
= M−1

N ,

i.e. ΣN is a symmetric positive definite block-circulant matrix, which proves

that y is stationary and full rank on ZN (Proposition 1.2.1).

Moreover, by multiplying (2.29) by e> and taking expectations, we find

MNE {ye>} = MN , so that E {ye>} = IN , or equivalently E {y(t)e(s)>} =

Im δts. Therefore, the orthogonality (2.27) holds on ZN .

Next, we need to show that y is reciprocal of order n. To this end we

shall generalize an argument of [42]. Let s < t be two points in [1, N ] ,

which for the moment we choose such that t − n > s + n, which is always

possible since by assumption N > 2n. The situation is shown in figure 2.1.

Expanding (2.21) and rearranging terms, we get equation (2.28), displayed
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1

s

1N

t

t− n

s+ n

Figure 1: Non overlapping intervals [t− n, t), ( s, s+ n].Figure 2.1: Non overlapping intervals [t− n, t), ( s, s+ n].

at the top of the next page, which can be compactly rewritten as

M̃ y[t, s ] = e[t, s ] −


N 0

0 0

0 N>


y[t−n, t)

y( s, s+n]

 (2.30)

with an obvious meaning of the symbols. Note that M̃ is non-singular,

its determinant being a principal minor of MN , which is positive definite by

assumption. Thus we can solve (2.30) and express y[t, s ] as a sum of two linear

functions of e[t, s ] and of y( s, s+n] ∨ y[t−n, t). The two random vectors on the

right hand side of (2.30) are uncorrelated, since all scalar components of e[t, s ]

are orthogonal to the linear subspace spanned by (the scalar components of)

{y(τ) ; τ ∈ [t, s ]c} and thus, in particular, are orthogonal to the boundary

condition vectors y( s, s+n], y[t−n, t). It follows that the orthogonal projection

of y[t, s ] onto the linear subspace spanned by (the scalar components of)

{y(τ) ; τ ∈ [t, s ]c} results in a linear function of (the scalar components of)

y[t−n, t) ∨ y( s, s+n] alone, which proves the conditional orthogonality of y[t, s ]

to y[t, s ]c , given the boundary values y[t−n, t) , y( s, s+n].
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

M0 M>
1 . . . M>

n 0 . . . 0 0

M1 M0 M>
1

. . . M>
n 0 0

... . . . . . . ...
Mn . . . M1 M0 M>

1 . . . M>
n 0 0

0 Mn . . . M0 . . .
. . .

... . . .
. . . 0

0 . . . . . . M>
n
...

0
. . . . . . M1 M0 M>

1

0 0 . . . 0 Mn . . . M1 M0





y(t)
y(t+ 1)

...
y(t+ n)

...
y(s− n)

...
y(s− 1)

y(s)


=



e(s)
e(s+ 1)

...
e(s+ n)

...
e(t− n)

...
e(t− 1)

e(t)


−



Mn . . . M1 0 . . . 0
0 Mn . . . M2 0 . . . 0

0
... . . . 0 . . . 0

0
. . . Mn 0 . . . 0

0 . . . 0 . . . 0 . . . 0
...

...
...

...
...

...
...

0 . . . 0 . . . 0 . . . 0
0 . . . 0 M>

n 0

0 . . . 0 . . .
... 0

0 . . . 0 M>
2

. . . 0
0 . . . 0 M>

1 . . . M>
n





y(t− n)
y(t− n+ 1)

...
y(t− 1)
y(s+ 1)

...
y(s+ n− 1)

y(s+ n)



(2.28)

The argument remains valid also when the non overlapping condition t−n >
s + n does not hold, i.e. for an arbitrary interval [t, s ] of the discrete circle

ZN (see figures 2.2a and 2.2b). In fact, when [t−n, t) and ( s, s+n] overlap,

clearly we have [t, s ]c ⊆ [t−n, t)∪ ( s, s+n] and hence all random variables

in the subspace spanned by {y(τ) ; τ ∈ [t, s ]c} are contained in the subspace

spanned by the boundary conditions, say C := {y(τ) ; τ ∈ [t−n, t)∪ ( s, s+
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1

s

1N

t

s+ n

t− n

Figure 1: Overlapping intervals [t − n, t), ( s, s + n] with s + n < t and
t− n > s.

(a) s+ n < t and t− n > s

1

s

t− n

1N

s+ n

t

Figure 1: Overlapping intervals [t − n, t), ( s, s + n] with s + n > t and
t− n < s.

(b) s+ n > t and t− n < s

Figure 2.2: Overlapping intervals [t− n, t) and ( s, s+ n].
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2.1. Reciprocal Processes

n]}. This means that Ê [ y(τ) | C ] = y(τ), or equivalently that

y(τ)− Ê [ y(τ) | C ] = 0 , τ ∈ [t, s ]c

i.e. the second member in (1.1) is zero and the orthogonality condition

trivially holds.

From this result, we obtain the following fundamental characterization of

reciprocal processes on the discrete group ZN .

Theorem 2.1.3. A nonsingular mN × mN-dimensional matrix ΣN is the

covariance matrix of a reciprocal process of order n on the discrete group

ZN if and only if its inverse is a positive-definite symmetric block-circulant

matrix banded of bandwidth n.

We conclude this section with a couple of remarks.

Remark 2.1.3. The second order statistics of both y and e are encapsu-

lated in the covariance matrix MN (see (2.25) and (2.28)), which means that

the whole auto-regressive model of y is defined in terms of the matrix MN .

This result makes the stochastic realization problem for reciprocal processes

of order n conceptually trivial. In fact, given the covariance matrix ΣN (the

external description of the process), assuming that it is in fact the covariance

matrix of such a process, the model matrix MN can be computed by simply

inverting ΣN . This is the simplest answer one could hope for. The solution

requires however a preliminary criterion to check whether a (full rank) sym-

metric block-circulant covariance matrix has a banded inverse. There seems

to be no simple known answer to this question.

Remark 2.1.4. To make contact with the literature, we note that a full rank

reciprocal process of order n can always be represented as a linear memoryless

function of a reciprocal process of order 1. This reciprocal process, however,

29



Chapter 2. Reciprocal Processes: modeling and identification

need not be of full rank. To see that this is the case, introduce the vectors

y+
t :=


y(t)
...

y(t+ n− 1)

 , y−t :=


y(t− n+ 1)

...

y(t)

 . (2.29)

Letting x(t)> :=
[
(y−t )> (y+

t )>
]
, we find the representation

x(t) =

A+ 0

0 0

x(t− 1) +

0 0

0 A−

x(t+ 1) + d̃(t) (2.30)

y(t) =
[
0 . . . 0 1 1 0 . . . 0

]
x(t) (2.31)

where A− and A+ are the block-companion matrices

A+ :=


0 I 0 . . . 0

0 0 I . . . 0

. . . I

−Fn . . . −F1



A− :=


−F−1 . . . −F−n
I 0 . . . 0

0 I 0 . . . 0

. . . I 0


and d̃(t) = 1

2

[
0 . . . 0 d(t)> d(t)> 0 . . . 0

]> has a singular covariance matrix.

This model is in general non-minimal [42].

30



2.2. Identification

2.2 Identification

Assume that T independent realizations of one period of the process y are

available and let us denote by

y :=


y(1)

...

y(T )


the collection of these T realizations. To be more precise, y(k) is the N ·m–

dimensional column vector obtained by stacking the N , m-dimensional vec-

tors which build up the k–th realization, while y is the N ·m ·T–dimensional

column vector obtained by stacking the T realizations one after the other.

(Think for example to a “movie” consisting of T close frame of the same

image, each frame built up of m × N pixels: each frame is a realization of

the “image” process (the process of the columns of the image), made up of

N , m–dimensional samples (the columns of the image) which can be stored

in a N · m-dimensional vector y(k); finally, the samples building up the T

realizations can be collected in the vector y as described above).

The problem we are interested in solving is the following.

Problem 2.2.1 (Identification Problem). Given the observations y of a re-

ciprocal process y of (known) order n, estimate the parameters {Mk} of the
underlying reciprocal model MNy = e .

Remark 2.2.1. If we are given 2n+1 covariance data {Σk ; k = 0, 1, . . . , 2n},
the identification of an order n reciprocal process can be carried out by a

linear algorithm, namely by solving the Yule-Walker-type system of linear

equations (2.11). This procedure is however unsatisfactory since, due to the

symmetry (2.26), there are actually only n+1 unknownMk to be computed.

Hence, one would expect only n + 1 covariance lags to be needed, while

the system (2.11) requires solving also for the negative order coefficients.
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Chapter 2. Reciprocal Processes: modeling and identification

Moreover, in practice, the Σk’s will have to be estimated from observed data

and estimates of covariances with a large lag k will unavoidably be more

uncertain and have a larger variance.

In an attempt to get asymptotically efficient estimates for the Mk’s, we

consider maximum likelihood estimation subject to the constraint that the

inverse of the covariance matrix MN has to be block-circulant and banded.

To this end, we set up a Gaussian likelihood function (which does not require

to assume that y has a Gaussian distribution, see [27, p. 112]), which uses

the density function

p(M0,...,Mn)(y) =
1√

(2π)mNdet
(
M−1

N

)exp

(
−1

2

(
y(k)
)>

MN y
(k)

)
,

where y(k) ∈ RmN . Assuming that the T sample measurements are inde-

pendent and neglecting terms which do not depend on the parameters, the

log-likelihood function is

L(M0, . . . ,Mn) = −T
2

log det M−1
N −

1

2

T∑
k=1

(
y(k)
)>

MN y
(k)

= −T
2

log det M−1
N −

1

2
tr(MNy y

>)

= −T
2

[
log det M−1

N + tr
(
MN Σ̄N

)]
= −T

2

[
log detM−1

N +
n∑
k=0

tr
{
Mk Tk

(
y
)}]

(2.32)

where Σ̄N is the sample covariance Σ̄N = 1
T
y y> and each matrix-valued

statistic Tk(y) has the structure of a sample estimate of the lag k covariance
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2.2. Identification

of the process. For example, T0 and T1 are given by:

T0

(
y
)

=
1

T

T∑
t=1

{
N−1∑
k=0

y(t)(k)
[
y(t)(k)

]>}

T1

(
y
)

=
2

T

T∑
t=1

{
N−1∑
k=1

y(t)(k − 1)
[
y(t)(k)

]>}

+
2

T

T∑
t=1

y(t)(N − 1)
[
y(t)(0)

]>
From exponential class theory [1], we see that the Tk’s are (matrix-valued)

sufficient statistics. Indeed, we have the well-known characterization that

the (suitably normalized) statistics T0, T1, . . . , Tn are maximum likelihood

estimators of their expected values, namely

Σ̂0 :=
1

N
T0 = M.L. Estimator of Ey(k)y(k)>

... (2.33)

Σ̂n :=
1

N
Tn = M.L. Estimator of Ey(k + n)y(k)> .

Let us now consider the following matrix completion problem, which, from

now on, will be referred to as the block-circulant band extension problem.

Problem 2.2.2 (Block-Circulant Band Extension Problem). Given

n+ 1 initial data m×m matrices Σ̂0, . . . , Σ̂n, arranged in a way consistent

with a symmetric block circulant structure, i.e. given the partially specified

33



Chapter 2. Reciprocal Processes: modeling and identification

block–circulant matrix

Σ0 Σ>1 . . . Σ>n ? . . . ? Σn . . . Σ1

Σ1 Σ0 Σ>1
. . . Σ>n ? ?

. . .
...

...
. . . . . . . . . . . . Σn

Σn . . . Σ1 Σ0 Σ>1 . . . Σ>n
. . . ?

? Σn . . . Σ0 . . . Σ>n
. . .

...
...

. . . . . . . . . . . . ?

? Σ>n

Σ>n
. . .

...
...

. . . . . . . . . . . . . . . Σ>1

Σ>1 . . . Σ>n ? . . . ? Σn . . . Σ1 Σ0


complete it in such a way to form a positive definite symmetric block-circulant

matrix ΣN with a (block-circulant) banded inverse of bandwidth n.

Note that the model parameters (M0, M1, . . . ,Mn) are the nonzero blocks

of the (banded) inverse of the covariance matrix ΣN of the process (Theorem

2.1.3). The invariance principle for maximum likelihood estimators [51] leads

then to the following statement.

Theorem 2.2.1. The maximum likelihood estimates of (M0, M1, . . . ,Mn)

are the nonzero blocks of the banded inverse of the matrix Σ̂N solving the

block-circulant band extension problem 2.2.2 with initial data the n + 1 co-

variance estimates (2.33).

For the sake of clarity, let us introduce the following notation. Let Ib be
the sets of pairs of block indices consistent with a banded-symmetric circulant

structure of bandwidth n, i.e.

|i− j| ≤ n⇒ (i, j) ∈ Ib
(i, j) ∈ Ib ⇒ (j, i) ∈ Ib
(i, j) ∈ Ib ⇒

(
(j + 1)mod N, (i+ 1)mod N

)
∈ Ib.
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2.2. Identification

(the set is represented in figure 2.3a) and Rb the corresponding set of blocks

consistent with a banded-symmetric block-circulant structure, i.e.

Rb :=
{
rij ∈ Rm×m | (i, j) ∈ Ib, rij = r>ji, rij = r>(j+1)mod N(i+1)mod N

}
.

Morover, let us denote by ek the m×mN block-matrix with the identity in

the k-th block position,

ek =
[
0 . . . 0 Im 0 . . . 0

]
,

by SN the vector space of symmetric matrices with N ×N square blocks of

dimension m×m, and by CN the set of N×N m-block-circulant matrices. In

the above notation, the ML estimation problem for theMk’s reads as follows:

Problem 2.2.3 (ML estimation problem).

max
{
− log det M−1

N − tr
(
MN Σ̄N

)
|MN ∈ SN , MN > 0

}
(2.34a)

subject to :

e>i MNej = 0, for (i, j) ∈ Icb . (2.34b)

with Icb complement of Ib in [1, . . . , N ] × [1, . . . , N ] (see figure 2.3b), while

the block-circulant band extension problem (2.2.2) becomes
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(b) Block index set Icb

Figure 2.3: Block index sets Ib and Icb .
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Problem 2.2.4 (Block-circulant band extension problem).

Find ΣN ∈ SN such that (2.35a)

e>i ΣNej = rij, for (i, j) ∈ Ib and rij ∈ Rb, (2.35b)

ΣN > 0, (2.35c)

e>i Σ−1
N ej = 0, for (i, j) /∈ Ib, (2.35d)

ΣN ∈ CN . (2.35e)

Up to now, we have shown that solving the ML estimation problem 2.2.3

is equivalent to solve the block-circulant band extension problem 2.2.4. Note,

however, that the block-circulant band extension problem 2.2.2 is nonlinear

and it is hard to see what is going on by elementary means. Below we give

a scalar example.

Example 2.2.1. Let m = 1, N = 8, n = 2 and assume we are given the

covariance estimates σ̂0, σ̂1, σ̂2, forming a positive definite Toeplitz matrix.

The three unknown coefficients in the reciprocal model (2.21) of order 2 are

scalars, denoted m0, m1, m2. Multiplying (2.23) from the right by y>, we get

MNΣN = IN , which leads to



m0 m1 m2 0 0 0 m2 m1

m1 m0 m1 m2 0 0 0 m2

m2 m1 m0 m1 m2 0 0 0

0 m2 m1 m0 m1 m2 0 0

0 0 m2 m1 m0 m1 m2 0

0 0 0 m2 m1 m0 m1 m2

m2 0 0 0 m2 m1 m0 m1

m1 m2 0 0 0 m2 m1 m0





σ̂0

σ̂1

σ̂2

x3

x4

x3

σ̂2

σ̂1


=



1

0
...

...

0

0


,

where x3 := σ3 = σ5 and x4 := σ4 are the unknown extended covariance lags.
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Rearranging and eliminating the last three redundant equations, one obtains

m0σ̂0 + 2m1σ̂1 + 2m2σ̂2 = 1

m0σ̂1 +m1(σ̂0 + σ̂2) +m2(σ̂1 + x3) = 0

m0σ̂2 +m1(σ̂1 + x3) +m2(σ̂0 + x4) = 0

m0x3 +m1(σ̂2 + x4) +m2(σ̂1 + x3) = 0

m0x4 + 2m1x3 + 2m2σ̂2 = 0

which is a system of five quadratic equations in five unknowns whose solution

already looks non-trivial. It may be checked that, under positivity of the ma-

trix Toepl{σ̂0, σ̂1, σ̂2}, it has a unique positive definite solution (i.e. making

MN positive definite).

At a first sight, the block-circulant band extension problem 2.2.4 seems to

be a particular instance of the general covariance extension problem studied

by A. P. Dempster in [16]. Letting I denote the set of pairs of block indices

consistent with a generic (namely not necessarily banded and circulant) sym-

metric structure, i.e.

(i, j) ∈ I ⇒ (j, i) ∈ I

(see also figure 2.4a) and R be the corresponding set of block-entries they

also consistent with a generic symmetric structure, i.e.

R :=
{
rij ∈ Rm×m | (i, j) ∈ I, rij = r>ji

}
,

the problem studied by Dempster reads as follows.
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Figure 2.4: Block index sets I and Ic.
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Problem 2.2.5 (Covariance Selection Problem - Dempster ’72 ).

Find ΣN ∈ SN such that (2.36a)

e>i ΣNej = rij, for (i, j) ∈ I and rij ∈ R, (2.36b)

ΣN > 0, (2.36c)

e>i Σ−1
N ej = 0, for (i, j) /∈ I. (2.36d)

In words, given a partially specified symmetric matrix find a completion ΣN

which agrees with the partially specified one in the given positions, is symmet-

ric positive definite and such that its inverse has zeros in the complementary

positions of those assigned.

Even by setting I = Ib and R = Rb in (2.36b), (2.36d), it is apparent

that the linear constraint (2.35e) that enforces the completed matrix to be

circulant is not present in the Dempster’s setting. Thus, in principle, even

if the given data lie on a band symmetric with respect to the main diagonal

and on the NE and SW corners and they are consistent with the symmetric

block-circulant structure, the solution of the Dempster’s problem need not

be circulant. Neverthless, Dempster’s work contains an observation which

will reveal to be important for our purposes and reads as follows.

Proposition 2.2.1 (Dempster). Assume that Problem 2.2.5 is feasibile.

Then, for the solution of the covariance selection problem, the following prop-

erties hold:

1. Existence and uniqueness. If there is a positive definite symmetric

completion, then there is exactly one with the additional property that

its inverse has zeros in the complementary positions of those where the

elements of the covariance are assigned.

2. Maximum Entropy. This extension corresponds to the Gaussian distri-

bution with maximum entropy.
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Recall that the differential entropy H(p) of a probability distribution with

density p on Rn is defined by

H(p) = −
∫
Rn

log(p(x))p(x)dx. (2.37)

In the case of a zero-mean Gaussian distribution p with covariance matrix

ΣN , we get

H(p) =
1

2
log(det ΣN) +

1

2
n (1 + log(2π)) . (2.38)

Thus, exploiting the maximum entropy principle of Proposition 2.2.1, Pro-

blem 2.2.5 can be restated as:

Problem 2.2.6 (Dempster’s maximum entropy problem (DMEP)).

max {log det ΣN | ΣN ∈ SN , ΣN > 0} (2.39a)

subject to :

e>i ΣNej = rij, for (i, j) ∈ I and rij ∈ R. (2.39b)

which, from now on, will be referred to as the Dempster’s maximum entropy

problem (DMEP, for short). The DMEP has been extensively studied in

the literature. A fundamental reference, besides [16], is the work by Grone,

Johnson, Sa and Wolkowicz [25], see also [2] for the specialization where the

given sparsity pattern corresponds to a chordal graph (we will come back

to this in Chapter 4) and [18] and [24] for the case of given data consistent

with a banded Toeplitz structure and later generalizations to generic banded

algebras.

An independent, simple argument which explains the zero–pattern in the

inverse of the solution of the DMEP is the following.

Proof of 2.2.1. Clearly if Mme exists, it is uniquely defined. Computing the
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Lagrangian

L(M,λk,`) := log det(M) +
∑

(k,`)∈I

λk,`(mk,` − ekMe∗`) (2.40)

and setting the derivative of L with respect to the entries ofM equal to zero,

we readily obtain

M−1 =
∑

(k,`)∈I

λk,`e
∗
ke`. (2.41)

i.e. the inverse of the maximizer has the claimed zero-pattern.

See [16] and [25] for alternative proofs.

Inspired by the maximum entropy principle of Dempster’s setting, we

turn to consider the following problem.

Problem 2.2.7 (Maximum entropy extension problem for block—

circulant matrices (CMEP)).

max {log det ΣN | ΣN ∈ (SN ∩ CN) , ΣN > 0} (2.42a)

subject to :

e>i ΣNej = rij, for (i, j) ∈ Ib and rij ∈ Rb. (2.42b)

This problem has not been studied in the literature. In the next Chapter, we

will solve Problem 2.2.7 and show that it is equivalent to the original block-

circulant band extension problem 2.2.4. The relation between the solutions

of the DMEP 2.2.6 and of the CMEP 2.2.7 will also be highlighted.
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Chapter 3

Amaximum entropy solution of the

covariance extension problem for

reciprocal processes

In this chapter the maximum entropy extension problem for block-circulant

matrices (CMEP) is studied. In particular, it will be shown that solving this

problem leads to a complete solution of the maximum likelihood identification

problem for reciprocal processes. The first step will be to rewrite the problem

in such a way as to make it easier to handle (Section 3.1). In Section 3.2 the

feasibility issue will be addressed. In Section 3.3 existence and uniqueness of

the solution will be proved. In Section 3.4 this unique solution will be shown

to have a banded inverse. This is the result we hope for, since it shows that

solving the CMEP solves also the maximum likelihood identification problem

for reciprocal processes we started with. Moreover, the inverse’s bandedness

property together with the Dempster’s results, implies that the maximum

entropy distribution, subject only to moment constraints consistent with the

block–circulant structure, is automatically block–circulant. A nontrivial ge-

neralization of this result is provided in Section 3.5. This generalization is
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accomplished via an independent argument that exploits the invariance of

the determinant with respect to the group of transformations that leave cir-

culant matrices invariant. Section 3.6 contains some examples which provide

insight into the above developed theory and highlight a connnection with the

factorization of certain polynomials in many variables which is facilitated

by the circulant structure. Some final remarks are collected in Section 3.7,

which concludes the Chapter.

3.1 The maximum entropy extension problem

for banded block-circulant matrices

Let UN denote the block-circulant “shift” matrix with N ×N blocks,

UN =



0 Im 0 . . . 0

0 0 Im . . . 0
...

... . . . ...

0 0 0 . . . Im

Im 0 0 . . . 0


.

Clearly, U>NUN = UNU>N = ImN , i.e. UN is orthogonal. Recall that a

matrix CN with N × N blocks is block-circulant if and only if it commutes

with UN , namely if and only if it satisfies

U>NCNUN = CN . (3.1)
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Moreover, let Tn ∈ Sn+1 be the Toeplitz matrix of boundary data

Tn =



Σ0 Σ>1 . . . . . . Σ>n

Σ1 Σ0 Σ>1
...

... . . . . . . . . . ...

... . . . . . . Σ>1

Σn . . . . . . Σ1 Σ0


(3.2)

and En the N × (n+ 1) block matrix

En =



Im 0 . . . 0

0 Im 0
... . . . ...

0 . . . . . . Im

0 . . . 0
... . . . ...

0 . . . 0


.

In this notation, Problem 2.2.7 can be restated as:

Problem 3.1.1 (Maximum entropy extension problem for block-cir-

culant matrices (CMEP)).

max {log det ΣN | ΣN ∈ SN , ΣN > 0} (3.3a)

subject to :

E>n ΣNEn = Tn, (3.3b)

U>NΣNUN = ΣN . (3.3c)

The above problem indeed amounts to finding the maximum entropy

Gaussian distribution with a block-circulant covariance, whose first n + 1

blocks are precisely Σ0, . . . ,Σn. We observe that in this problem we are
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minimizing a strictly convex function on the intersection of a convex cone

(minus the zero matrix) with a linear manifold. Hence, we are dealing with

a convex optimization problem.

Moreover, note that we are not imposing that the inverse of the solution

ΣN of Problem 3.1.1 should have a banded structure. We shall see that,

whenever solutions exist, this property will be automatically guaranteed.

The first question to be addressed is feasibility of Problem 3.1.1, which

will be the object of the next session.

3.2 Feasibility

In this Section we study feasibility of the CMEP 3.1.1. The first Theorem

provides insight into the shape of the set of all positive definite block-circulant

completions of a partially specified covariance matrix. Next, we will investi-

gate what conditions on the data must be satisfied for Problem 3.1.1 to be

feasible. Theorem 3.2.2 provides a sufficient condition for arbitrary block–

size m and bandwidth n. A necessary and sufficient condition for unitary

block–size and bandwidth is also established (see Theorem 3.2.4 below).

3.2.1 Structure of the feasible set

Theorem 3.2.1 (Shape of the feasible set). Let ΣN = Circ
{

Σ0,Σ
>
1 , . . . ,Σ1

}
be a partially specified N×N m-block circulant matrix. The set of all positive

definite block-circulant completions of ΣN is delimited by the intersection of

the m-order surfaces defined by the positive semidefiniteness of the matrices

Ψ(e−j
2π
N
`) =

N−1∑
k=0

Σ>k e
−j 2π

N
`k, for ` = 0, 1, . . . , N − 1.

Proof. The result follows immediately recalling (see Theorem A.0.2) that

every block-circulant matrix with N × N blocks each of size m × m, say
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CN = Circ {C0, C1, . . . , CN−1}, can be diagonalized as

(F ∗ ⊗ Im) CN (F ⊗ Im) = diag{Ψ(w0),Ψ(w1),Ψ(w2), . . . ,Ψ(wN−1)}

where ⊗ denote the Kronecker product, F is the Fourier matrix of order N ,

i.e. the matrix whose (k, l)-entry is

fk,l =
1√
N
w(k−1)(l−1) (3.4)

where w := e−j
2π
N , j denoting the imaginary unit

√
−1, and the Ψ(w`)’s are

the polynomial matrices

Ψ(x) =
N−1∑
k=0

xkCk

computed for x = w`, ` = 0, . . . , N − 1.

3.2.2 A sufficient condition for generic block–size and

bandwidth

Theorem 3.2.1 throws light on the structure of the feasible set, but what are

the conditions on the data for Problem 3.1.1 to be feasible, namely what

are the conditions on the matrices Σ0, . . . ,Σn so that a positive definite,

symmetric matrix ΣN satisfying (3.3b)-(3.3c) exists? Obviously, Tn positive

definite is a necessary condition for the existence of such a ΣN . In general

it turns out that, under such a necessary condition, feasibility holds for N

large enough. This is, in short, the content of the next theorem. The idea

is that for N → ∞, existence of a positive block-circulant extension can be

derived from the existence of positive extensions for Toeplitz matrices.

Theorem 3.2.2 (Sufficient condition - block case). Given the sequence Σi ∈
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Rm×m, i = 0, 1, . . . , n, such that

Tn = T>n > 0, (3.5)

there exists N̄ such that for N ≥ N̄ , the matrix Tn can be extended to an

N ×N block-circulant, positive-definite symmetric matrix ΣN .

Proof. A fundamental result in stochastic system theory is the so-called max-

imum entropy covariance extension. It states that, under condition (3.5),

there exists a rational positive real function Φ+(z) = Σ0

2
+ C(zI − A)−1B

such that

1. A has spectrum strictly inside the unit circle.

2. Σi = CAi−1B, i = 1, 2, . . . , n.

3. The spectrum Φ(z) := Φ+(z) + Φ∗+(z) is coercive, i.e.

∃ε > 0 such that Φ(ejϑ) > εI, ∀ϑ ∈ [0, 2π). (3.6)

In fact Φ(z) has no zeros on the unit circle since it can be expressed in the

form

Φ(z) = Ln(z−1)−1ΛnLn(z)−>

where Λn = Λ>n > 0 and Ln(z−1) is the n–th Levinson-Whittle matrix polyno-

mial (also called n–th matrix Szegö polynomial) of the block Toeplitz matrix

Tn,

Ln(z−1) :=
n∑
k=0

An(k)z−k,

where the An(k)’s are the solution of the Yule-Walker equation

[
An(0) An(1) . . . An(n)

]
T>n =

[
0 0 . . . 0

]
,
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with An(0) = Im; see [49], [14] and [50].

Let Σi := CAi−1B, i = n+1, n+2, . . . , so that Φ+(z) = Σ0

2
+
∑∞

i=1 Σiz
−i,

and define

ΣN := Circ
(

Σ0,Σ
>
1 ,Σ

>
2 , . . . ,Σ

>
N−1

2

,ΣN−1
2
,ΣN−1

2
−1, . . .Σ1

)
, (3.7)

for N odd, and

ΣN := Circ
(

Σ0,Σ
>
1 ,Σ

>
2 , . . . ,Σ

>
N−2

2

,Σ>N
2

+ ΣN
2
,ΣN−2

2
,ΣN−2

2
−1, . . .Σ1

)
, (3.8)

for N even. We need to show that there exists N̄ such that ΣN > 0 for

N ≥ N̄ . To this aim, notice that ΣN is, by definition, block-circulant so that,

a similarity transformation induced by a unitary matrix (F⊗Im) reduces ΣN

to a block-diagonal matrix:

(F ∗ ⊗ Im)ΣN(F ⊗ Im) = ΨN := diag (Ψ0,Ψ1, . . . ,ΨN−1) ,

where (F ⊗ Im) is the Fourier block-matrix whose (k, l)–th block is

(F ⊗ Im)k,l = exp [−j2π(k − 1)(l − 1)/N ] Im

and Ψ` are the coefficients of the finite Fourier transform of the first block

row of ΣN :

Ψ` = Σ0 + ejϑ`Σ>1 +
(
ejϑ`
)2

Σ>2 + · · ·+
(
ejϑ`
)N−2

Σ2 +
(
ejϑ`
)N−1

Σ1, (3.9)

with ϑ` := −2π`/N , see e.g. [47, Sec. 3.4]. Clearly,
(
ejϑ`
)N−i

=
(
ejϑ`
)−i and

hence

Ψ` = Φ
(
ejϑ`
)
−
[
δΦN

(
ejϑ`
)

+ δΦ∗N
(
ejϑ`
)]

(3.10)
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where,

δΦN(z) :=
∞∑

i=h+1

Σiz
−i =

∞∑
i=h+1

CAi−1Bz−i

= z−hCAh(zI − A)−1B, (3.11)

with

h :=

 N−1
2
, N odd

N/2, N even

Since A is a stability matrix, if N , and hence h, is large enough, δΦN

(
ejϑ`
)

+

δΦ∗N
(
ejϑ`
)
is dominated by εI, i.e. there exists N̄ such that

δΦN

(
ejϑ`
)

+ δΦ∗N
(
ejϑ`
)
< εI, ∀ϑ`, ∀N ≥ N̄ (3.12)

so that it readily follows from (3.6) and (3.10) that if N ≥ N̄ , Ψ` > 0 for all

`.

Remark 3.2.1. We observe that, given Tn, the triple A,B,C can be explic-

itly computed. In fact, it is well known [19] that ifW (z) = C(zI−A)−1B̃+D̃

is a spectral factor of Φ then the analytic (with rspect to the unit circle) com-

ponent of Φ is given by

Φ+(z) =
Σ0

2
+ C(zI − A)−1B

where B = APC> + B̃D̃>, with P solution of the Lyapunov equation

P = APA> + B̃B̃>

and Σ0 = CPC> +DD>. Thus, letting

Λ
− 1

2
n Ln(z−1) := H(zI − F )−1G+ J
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we get J = Λ
− 1

2
n , H = Λ

− 1
2

n

[
An(n) An(n− 1) . . . An(1)

]
,

G =



0

0
...

0

Im


, F =



0 Im 0 0 . . . 0

0 0 Im 0 . . . 0
... . . . ...
... . . . 0

0 . . . . . . . . . 0 Im

0 . . . . . . . . . . . . 0


,

so that the spectral factor W (z) results

W (z) =
(
Ln(z−1)

)−1
Λ

1
2
n = (H(zI − F )−1G+ J)−1 = C(zI − A)−1B̃ + D̃

with D̃ = Λ
1
2
n , C = −

[
An(n) An(n− 1) . . . . . . An(1)

]

A =



0 Im 0 0 . . . 0

0 0 Im 0 . . . 0
... . . . ...
... . . . 0

0 . . . . . . . . . 0 Im

−An(n) −An(n− 1) . . . . . . . . . −An(1)


, B̃ =



0

0
...

0

Λ
1
2
n


.

Finally, the matrix B is given by B> = APC>+B̃D̃ with P = APA>+B̃B̃>.

Once the matrices A, B and C are known, we can compute ε and N̄ for which

(3.12) holds. In other words, Theorem 3.2.2 provides a sufficient condition

that can be practically tested. Similar bounds, but valid only for the scalar

case, were derived in [15].
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3.2.3 A necessary and sufficient condition for unitary

block–size and bandwidth one

In this Section we provide a necessary and sufficient condition of the CMEP

3.1.1 for the special case of unitary block–size and bandwidth. We will start

considering a real-valued discrete-time stationary periodic process with cir-

culant covariance matrix and we will write explicitly the covariance samples

of such a process. Next we will reformulate the feasibility of the CMEP for

such a process in terms of solvability of a system of linear equations and

provide necessary and sufficient conditions for the solvability of this system.

An intermediate step will be to consider a relaxed version of the feasibility

problem where the completion is required to be only positive semidefinite.

Lemma 3.2.1. Let {y(t)} be a stationary periodic process of period N taking

values in R. Then

(i) {y(t)} can be represented as

y(t) =
1√
N

N−1∑
k=0

cke
jkt 2π

N , (3.13)

where

ck =
1√
N

N−1∑
t=0

y(t)e−jkt
2π
N (3.14)

(ii) the covariance samples of {y(t)} are given by

σm =
1

N

{
E
[
|c0|2

]
+

N
2
−1∑

k=1

E
[
|ck|2

]
2 cos

(
km

2π

N

)
+E

[∣∣∣cN
2

∣∣∣2] cos (mπ)
}

(3.15)
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for N even, and

σm =
1

N

{
E
[
|c0|2

]
+

N−1
2∑

k=0

E
[
|ck|2

]
2 cos

(
km

2π

N

)}
(3.16)

for N odd, where the ck’s are independent random variables.

Proof. (i) The thesis follows immediately by observing that every periodic

process y(t) can be seen as the solution of a linear homogeneous constant

coefficients difference equation of the type

y(t)− y(t−N) = 0.

(ii) Equation (3.13) can be written in matrix form as

x = F ∗c (3.17)

where, as usual, F denote the Fourier matrix (A.3) and x and c are the

column vectors obtained by stacking the x(k)’s and the ck’s for k = 0, . . . , N−
1. From (3.17) we have

E [cc∗] = FΣNF
∗.

which, since ΣN is circulant (see Proposition A.0.2), implies that E [cc∗] is

diagonal, i.e. the ck’s are linearly independent random variables. By the

independence of the ck’s, the covariance samples

σm = E [x(t+m)x(n)∗] = E

[
1√
N

N−1∑
k=0

cke
jk(t+m) 2π

N
1√
N

N−1∑
`=0

c`e
j`m 2π

N

]
,

m = 0, . . . , N − 1, becomes

σm =
1

N

N−1∑
k=0

E
[
|ck|2

]
ejkm

2π
N ,
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which, exploiting the Hermitian symmetry of the {ck}, yields equations

(3.15), (3.16).

Lemma 3.2.1 let us reformulate the feasibility of the CMEP form = n = 1

in terms of the solution of a linear system of equations. This is the content

of the Corollary 3.2.1 below.

Corollary 3.2.1. Let

T2 =

 1 σ1

σ1 1


be the matrix of the boundary data, where, without loss of generality, we have

assumed σ0 = 1, and let σ1 ∈ R and N be a positive integer, N > 3. The data

matrix T2 admits a positive definite (respectively, a positive semidefinite)

circulant completion if and only if the systems
1
N

(
p0 +

∑N
2
−1

k=1 2 pk + pN
2

)
= 1

1
N

(
p0 +

∑N
2
−1

k=1 2 pk cos
(
k 2π
N

)
− pN

2

)
= σ1

, for N even (3.18)

and 
1
N

(
p0 +

∑N−1
2

k=1 2 pk

)
= 1

1
N

(
p0 +

∑N−1
2

k=1 2 pk cos
(
k 2π
N

))
= σ1

, for N odd (3.19)

with the constraints pk > 0 (respectively, pk ≥ 0), k = 0, . . . , N − 1, admit

solution.

Before stating the necessary and sufficient condition for the feasibility

CMEP (see Theorem 3.2.4 below), we give the following intermediate result,

which answer the question on what conditions on the data must be satisfied

for a positive semidefinite completion to exist.

Theorem 3.2.3. The data matrix T2 admits a positive semidefinite circulant

completion if and only if
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- |σ1| ≤ 1, for N even;

- cos
(
N−1
N
π
)
≤ σ1 ≤ 1, for N odd.

Proof. By Corollary 3.2.1, it suffices to prove that system (3.18) for N even

((3.19) for N odd) with the constraints pk ≥ 0, k = 0, . . . , N −1 has solution

if and only if σ1 ∈ [−1, 1] (cos
(
N−1
N
π
)
≤ σ1 ≤ 1, respectively). Necessity is

trivial both for N even and N odd. For what concern sufficiency, we must

distinguish between the two cases.

Sufficiency for N even: we want to prove that if |σ1| ≤ 1, then system

(3.18) with the constraints pk ≥ 0, k = 0, . . . , N − 1, has solution.

- If σ1 = 1 (σ1 = −1), the set {p0 = N , pk = 0 for k 6= 0} (respectively,
the set

{
pN

2
= N , pk = 0 for k 6= N

2

}
) is solution of (3.18);

- For |σ1| < 1, let α ∈ [0, 1]; if one sets
p0 = Nα

pN
2

= N (1− α)

pk = 0 ∀k 6= 0 and k 6= N
2

then the first of (3.18) is satisfied, while the second yields σ1 = 2α− 1,

which means that as α varies continuously over the interval [0, 1], σ1

varies continuously over [−1, 1], i.e. system (3.18) is solvable for every

|σ1| ≤ 1.

Sufficiency for N odd: we want to prove that if cos
(
N−1
N
π
)
≤ σ1 ≤ 1,

system (3.19) with the constraints pk ≥ 0, k = 0, . . . , N−1 admits a solution.

- If σ1 = 1 (σ1 = cos
(
N−1
N
π
)
), the set {p0 = N , pk = 0 for k 6= 0} (re-

spectively, the set
{
pN−1

2
= pN+1

2
= N

2
, pk = 0 for k 6= N−1

2
, N+1

2

}
) is

solution of (3.19);
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- If cos
(
N−1
N
π
)
< σ1 < 1, let α ∈ [0, 1]; if one chooses


p0 = Nα

pN−1
2

= pN+1
2

= N(1−α)
2

pk = 0 ∀k 6= 0, k 6= N−1
2

and k 6= N+1
2

(3.20)

then the first of (3.19) is satisfied while the second yields

σ1 =

[
1− cos

(
N − 1

N
π

)]
α + cos

(
N − 1

N
π

)
,

which implies that as α varies continuously over the interval [0, 1], σ1

varies continuously over
[
cos
(
N−1
N
π
)
, 1
]
, i.e. the system (3.19) is solv-

able for every σ1 ∈
[
cos
(
N−1
N
π
)
, 1
]
, which concludes the proof.

We are now ready to state our main result.

Theorem 3.2.4 (Necessary and sufficient condition - unitary block-

–size and bandwidth). The data matrix T2 admits a positive definite cir-

culant completion if and only if

- |σ1| < 1, for N even;

- cos
(
N−1
N
π
)
≤ σ1 < 1, for N odd.

Proof. Once again, by Corollary 3.2.1, it suffices to prove that system (3.18)

for N even ((3.19) for N odd) with the constraints pk > 0, k = 0, . . . , N − 1

has solution if and only if |σ1| < 1 (respectively, if and only if cos
(
N−1
N
π
)
<

σ1 < 1). Necessity is trivial both for N even and N odd. For what concern

sufficiency, the two cases must be distinguish.
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Sufficiency for N even: we need to prove that if |σ1| < 1, then system

(3.18) with constraints pk > 0, k = 0, . . . , N −1 has solution. In fact, settingp0 = N(α− ε)

pN
2

= N(1− α− ε)

with α ∈ (0, 1), 0 < ε < min {α, 1− α} , then
1
N

(
p0 + pN

2

)
= α− ε+ 1− α− ε = 1− 2ε

1
N

(
p0 − pN

2

)
= α− ε− 1 + α + ε = 2α− 1

.

Thus if one chooses the remaining pk in order to satisfy the system
1
N

∑N
2
−1

k=1 2 pk = 2ε

1
N

∑N
2
−1

k=1 2 pk cos(k 2π
N

) = 0
, (3.21)

then σ0 = 1 and σ1 = 2α − 1, i.e. as α varies continuously over (0, 1), σ1

varies continuously over (−1, 1), namely system (3.18) is solvable for every

σ1 ∈ (−1, 1). Since
∑N

2
−1

k=1 cos
(
k 2π
N

)
= 0, it is easy to see that

pk =
Nε

(N
2
− 1)

, k = 1, . . . ,
N

2
− 1

is a solution of (3.21) and thus
p0 = N(α− ε)

pN
2

= 1− α− ε

pk = Nε
(N
2
−1)

k = 1, . . . , N
2
− 1

with α = σ1+1
2

, 0 < ε < α solves (3.18) with constraints pk > 0, k =

0, . . . , N−1. Finally, let’s note that if σ1 = −1 (i.e. α = 0), then p0 = −ε < 0
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and if σ1 = 1 (i.e. α = 1), then pN
2

= −ε < 0, namely (3.18) with constraints

pk > 0, k = 0, . . . , N − 1 does not admit solution for σ1 = ±1.

Sufficiency for N odd: the aim is to prove that if cos
(
N−1
N
π
)
< σ1 < 1,

then system (3.19) with constraints pk > 0, k = 0, . . . , N −1 has solution. In

fact, if we subtract the quantities Nε and − Nε

2 cos(N−1
N

π)
from p0 and pN−1

2
=

pN+1
2

in (3.20), i.e. if we set


p0 = N(α− ε)

pN−1
2

= pN+1
2

= N(1−α
2

+ ε

2 cos(N−1
N

π)
)

(3.22)

and redistribute the total quantity which has been subtracted, namely

N

(
ε− ε

cos
(
N−1
N
π
))

among all the pk’s, namely if we set
p0 = N(α− ε) + ε− ε

cos(N−1
N

π)

pN−1
2

= pN+1
2

= N(1−α
2

+ ε

2 cos(N−1
N

π)
) + ε− ε

cos(N−1
N

π)

pk = ε− ε

cos(N−1
N

π)
, k 6= 0, N−1

2
, N+1

2

(3.23)

with α ∈ (0, 1), 0 < ε < min

{
− Nα

1−N− 1

cos(N−1
N

π)
, N

2
α−1

N−2

2 cos(N−1
N

π)
+1

}
, then the

first of (3.19) is satisfied and the second yields σ1 =
[
1− cos

(
N−1
N
π
)]
α +

cos
(
N−1
N
π
)
, which means that as α varies continuously over the interval (0, 1),

σ1 varies continuously over
(
cos
(
N−1
N
π
)
, 1
)
, i.e. the system (3.19) is solvable

for every σ1 ∈
(
cos
(
N−1
N
π
)
, 1
)
. Moreover if σ1 = 1 (i.e. α = 1), then

pN−1
2

= ε

cos(N−1
N

π)

(
N
2
− 1
)

+ ε < 0 and if σ1 = cos
(
N−1
N
π
)
(i.e. α = 0),

then p0 = ε

(
1−N − 1

cos(N−1
N

π)

)
< 0, meaning that (3.19) with constraints
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pk > 0, k = 0, . . . , N − 1 is not solvable for σ1 = 1 and σ1 = cos
(
N−1
N
π
)
.

3.3 Variational Analysis

In this section we come back to the main issue, namely existence of a solution

for the primal problem 3.1.1. To this aim, we shall introduce a suitable set of

“Lagrange multipliers” for our constrained optimization problem. Consider

the linear map A : Sn+1 ×SN → SN defined by

A(Λ,Θ) = EnΛE>n + UNΘU>N −Θ, (Λ,Θ) ∈ Sn+1 ×SN

and define the set

L+ :={(Λ,Θ) ∈ (Sn+1 ×SN) | (Λ,Θ) ∈ (ker(A))⊥,(
EnΛE>n + UNΘU>N −Θ

)
> 0}. (3.24)

Observe that L+ is an open, convex subset of (ker(A))⊥. For each (Λ,Θ) ∈
L+, we consider the unconstrained minimization of the Lagrangian function

L(ΣN ,Λ,Θ) := − tr log ΣN + tr
(
Λ
(
E>n ΣNEn −Tn

))
+ tr

(
Θ
(
U>NΣNUN −ΣN

))
= − tr log ΣN + tr

(
EnΛE>n ΣN

)
− tr (ΛTn) + tr

(
UNΘU>NΣN

)
− tr (ΘΣN)

over SN,+ := {ΣN ∈ SN , ΣN > 0}. For δΣN ∈ SN , we get

δL(ΣN ,Λ,Θ; δΣN) =− tr
(
Σ−1
N δΣN

)
+ tr

(
EnΛE>n δΣN

)
+ tr

((
UNΘU>N −Θ

)
δΣN

)
.
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We conclude that δL(ΣN ,Λ,Θ; δΣN) = 0, ∀δΣN ∈ SN if and only if

Σ−1
N = EnΛE>n + UNΘU>N −Θ.

Thus, for each fixed pair (Λ,Θ) ∈ L+, the unique Σo
N minimizing the La-

grangian is given by

Σo
N =

(
EnΛE>n + UNΘU>N −Θ

)−1
. (3.25)

Consider next L(Σo
N ,Λ,Θ). We get

L(Σo
N ,Λ,Θ) = −tr log

((
EnΛE>n + UNΘU>N −Θ

)−1
)

+ tr
[ (
EnΛE>n + UNΘU>N −Θ

)
(
EnΛE>n + UNΘU>N −Θ

)−1
]
− tr(ΛTn)

= tr log
(
EnΛE>n + UNΘU>N −Θ

)
+ trImN − tr (ΛTn) .

This is a strictly concave function on L+ whose maximization is the dual

problem of (CMEP). We can equivalently consider the convex problem

min {J(Λ,Θ), (Λ,Θ) ∈ L+} , (3.26)

where J (henceforth called dual function) is given by

J(Λ,Θ) = tr (ΛTn)− tr log
(
EnΛE>n + UNΘU>N −Θ

)
. (3.27)

3.3.1 Existence for the dual problem

The minimization of the strictly convex function J(Λ,Θ) on the convex set L+

is a challenging problem as L+ is an open and unbounded subset of (ker(A))⊥.

60



3.3. Variational Analysis

In fact, situations like those displayed in the one–dimensional examples of

Figure 3.1 may arise. Nevertheless, the following existence result in the

Byrnes-Lindquist spirit, [23], [7], [20] can be established.

Theorem 3.3.1. The function J admits a unique minimum point (Λ̄, Θ̄) in

L+.

In order to prove this theorem, we need first to derive a number of aux-

iliary results. Let CN denote the vector subspace of block-circulant matrices

in SN . We proceed to characterize the orthogonal complement of CN in SN .

Lemma 3.3.1. Let M ∈ SN . Then M ∈ (CN)⊥ if and only if it can be

expressed as

M = UNNU>N −N (3.28)

for some N ∈ SN .

Proof. By (3.1), CN is the kernel of the linear map from SN to SN given by

M 7→ U>NMUN −M . Hence, its orthogonal complement is the range of the

adjoint map. Since

tr
(
(U>NMUN −M)N

)
= 〈U>NMUN −M,N〉

= 〈M,UNNU>N −N〉,

the conclusion follows.

Next we show that, as expected, feasibility of the primal problem (CMEP)

implies that the dual function J is bounded below.

Lemma 3.3.2. Assume that there exists Σ̄N ∈ SN,+ satisfying (3.3b)-(3.3c).

Then, for any pair (Λ,Θ) ∈ L+, we have

J(Λ,Θ) ≥ mN + tr log Σ̄N . (3.29)
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Figure 1: One dimensional examples of bounded below strictly convex func-
tions on an open and unbounded interval which do not have a minimum.

(b)

Figure 3.1: One dimensional examples of bounded below strictly convex func-
tions on an open and unbounded interval which do not have a minimum.

62



3.3. Variational Analysis

Proof. By (3.3b), we have tr(ΛTn) = tr(ΛE>n Σ̄NEn) = tr(EnΛE>n Σ̄N). Us-

ing this fact and Lemma 3.3.1, we can now rewrite the dual function J as

follows

J(Λ,Θ) = tr (ΛTn)− tr log
(
EnΛE>n + UNΘU>N −Θ

)
= tr

[(
EnΛE>n + UNΘU>N −Θ

)
Σ̄N

]
− tr log

(
EnΛE>n + UNΘU>N −Θ

)
.

Define M(Λ,Θ) =
(
EnΛE>n + UNΘU>N −Θ

)
which is positive definite for

(Λ,Θ) in L+. Then

J(Λ,Θ) = tr
(
M(Λ,Θ)Σ̄N

)
− tr logM(Λ,Θ).

As a function of M , this is a strictly convex function on SN,+, whose unique

minimum occurs atM = Σ̄
−1
N where the minimum value is tr(ImN)+tr log Σ̄N .

Lemma 3.3.3. Let (Λk,Θk), n ≥ 1 be a sequence of pairs in L+ such that

‖(Λk,Θk)‖ → ∞. Then also ‖A (Λk,Θk) ‖ → ∞. It then follows that

‖(Λk,Θk)‖ → ∞ implies that J(Λk,Θk)→∞.

Proof. Notice that A is a linear operator between finite-dimensional linear

spaces. Denote by σm the smallest singular value of the restriction of A to

(kerA)⊥ (the orthogonal complement of kerA). Clearly, σm > 0, so that,

since each element of the sequence (Λk,Θk) is in (kerA)⊥, ‖A (Λk,Θk) ‖ ≥
σm‖(Λk,Θk)‖ → ∞.

Assume now that

‖A (Λk,Θk) ‖ = ‖
(
EnΛkE

>
n + UNΘkU

>
N −Θk

)
‖ → ∞.

Since these are all positive definite matrices and all matrix norms are equiv-
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alent, it follows that

tr
(
EnΛE>n + UNΘU>N −Θ

)
→∞.

As a consequence, tr
((
EnΛE>n + UNΘU>N −Θ

)
Σ̄N

)
→∞ and, finally,

J(Λk,Θk)→∞

.

We show next that the dual function tends to infinity also when approach-

ing the boundary of L+, namely

∂L+ :={(Λ,Θ) ∈ (Sn+1 ×SN)|(Λ,Θ) ∈ (ker(A))⊥,(
EnΛE>n + UNΘU>N −Θ

)
≥ 0,

det
(
EnΛE>n + UNΘU>N −Θ

)
= 0}.

Lemma 3.3.4. Consider a sequence (Λk,Θk), k ≥ 1 in L+ such that the

matrix limk

(
EnΛkE

>
n + UNΘkU

>
N −Θk

)
is singular. Assume also that the

sequence (Λk,Θk) is bounded. Then, J(Λk,Θk)→∞.

Proof. Simply write

J(Λk,Θk) = − log det
(
EnΛkE

>
n + UNΘkU

>
N −Θk

)
+ tr(ΛkTk).

Since tr(ΛkTk) is bounded, the conclusion follows.

Proof of Theorem 3.3.1. Observe that the function J is a continuous, bounded

below (Lemma 3.3.2) function that tends to infinity both when ‖(Λ,Θ)‖
tends to infinity (Lemma 3.3.3) and when it tends to the boundary ∂L+ with

‖(Λ,Θ)‖ remaining bounded (Lemma 3.3.4). It follows that J is inf-compact
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on L+, namely it has compact sublevel sets. By Weierstrass’ Theorem1, it

admits at least one minimum point. Since J is strictly convex, the minimum

point is unique.

3.4 Bandedness Property

Let (Λ̄, Θ̄) be the unique minimum point of J in L+ (Theorem 3.3.1). Then

Σo
N ∈ SN,+ given by

Σo
N =

(
EnΛ̄E>n + UNΘ̄U>N − Θ̄

)−1 (3.30)

satisfies (3.3b) and (3.3c). Hence, it is the unique solution of the primal pro-

blem (CMEP). Since it satisfies (3.3c), Σo
N is in particular a block-circulant

matrix and hence so is

(Σo
N)−1 =

(
EnΛ̄E>n + UNΘ̄U>N − Θ̄

)
.

Let πCN,s denote the orthogonal projection onto the linear subspace of sym-

metric, block-circulant matrices CN,s. It follows that, in force of Lemma

3.3.1,

(Σo
N)−1 = πCN,s((Σ

o
N)−1)

= πCN,s
(
EnΛ̄E>n + UNΘ̄U>N − Θ̄

)
= πCN,s

(
EnΛ̄E>n

)
. (3.31)

Lemma 3.4.1 (Bandedness property). Let Σo
N be the maximum Gaus-

sian entropy covariance given by (3.30). Then (Σo
N)−1 is a symmetric block-

circulant matrix which is banded of bandwidth n.

1A continuous function on a compact set always achieves its maximum and minimum
on that set.
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Proof. Let

ΠΛ̄ := πCN,s
(
EnΛ̄E>n

)
=



Π0 Π>1 Π>2 . . . Π1

Π1 Π0 Π>1 . . . Π2

... . . . . . . . . . ...

Π>2 . . . Π1 Π0 Π>1

Π>1 Π>2 . . . Π1 Π0


be the orthogonal projection of

(
EnΛ̄E>n

)
onto CN,s. Since ΠΛ̄ is symmetric

and block-circulant, it is characterized by the orthogonality condition

tr
[(
EnΛ̄E>n − ΠΛ̄

)
C
]

= 〈EnΛ̄E>n − ΠΛ̄, C〉 = 0, (3.32)

for all C ∈ CN,s. Next observe that, if we write

C = Circ
[
C0, C

>
1 , C

>
2 , . . . , C2, C1

]
and

Λ̄ =


Λ̄00 Λ̄01 . . . Λ̄0n

Λ̄>01 Λ̄11 . . . Λ̄1n

... . . . ...

Λ̄>0n Λ̄>1n . . . Λ̄nn

 ,

with Λ̄k,j = Λ̄>j,k, then

tr
[
EnΛ̄E>n C

]
= tr

[
Λ̄E>n CEn

]
= tr

[
(Λ̄00 + Λ̄11 + . . .+ Λ̄nn)C0

+ (Λ̄01 + Λ̄12 + . . .+ Λ̄n−1,n)C1 + . . .+ Λ̄0nCn

+ (Λ̄10 + Λ̄21 + . . . , Λ̄n,n−1)C>1 + . . .+ Λ̄n0C
>
n

]
.

On the other hand, recalling that the product of two block-circulant matrices

is block-circulant, we have that tr [ΠΛ̄C] is simply N times the trace of the
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first block row of ΠΛ̄ times the first block column of C. We get

tr [ΠΛ̄C] = N tr
[
Π0C0 + Π>1 C1 + Π>2 C2 + . . .

. . .+ Π2C
>
2 + Π1C

>
1

]
.

Hence, the orthogonality condition (3.32), reads

tr
[(
EnΛ̄E>n − ΠΛ̄

)
C
]

= tr
[(

(Λ̄00 + Λ̄11 + . . .+ Λ̄nn)−NΠ0

)
C0+

+
(
(Λ̄01 + Λ̄12 + . . .+ Λ̄n−1,n)−NΠ>1

)
C1

+
(
(Λ̄10 + Λ̄21 + . . . , Λ̄n,n−1)−NΠ1

)
C>1

+ . . . (Λ̄0n −NΠ>1 )Cn + (Λ̄n0 −NΠ1)C>n )
]

+NΠ>n+1Cn+1 +NΠn+1C
>
n+1

+NΠ>n+2Cn+2 +NΠn+2C
>
n+2 + . . .

= 0.

Since this must hold true for all C ∈ CN,s, we conclude that

Π0 =
1

N
(Λ̄00 + Λ̄11 + . . .+ Λ̄nn),

Π1 =
1

N
(Λ̄01 + Λ̄12 + . . .+ Λ̄n−1,n)>,

...

Πn =
1

N
Λ̄>0n ,

while from the last equation we get Πi = 0, forall i in the interval n + 1 ≤
i ≤ N −n− 1 . From this it is clear that the inverse of the covariance matrix

solving the primal problem (CMEP), namely ΠΛ̄ = (Σo
N)−1 has a circulant

block-banded structure of bandwidth n.

An immediate consequence of Lemma 3.4.1 is the following.

Theorem 3.4.1. The CMEP solves the block–circulant band extension pro-
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blem 2.2.4. and hence (Theorem 2.2.1) the maximum likelihood identification

problem for reciprocal processes (Problem 2.2.3).

As a further implication of Lemma 3.4.1, note that the solution of the

CMEP matches the defining properties of the solution of the Dempster’s

covariance selection problem, since it agrees with the given partially specified

block-circulant matrix in the given positions (central block band and NE and

SW corners) and has the property to have a banded inverse. As the solution

of the Dempster’s covariance selection problem is unique (Proposition 2.2.1),

the following result can be established.

Theorem 3.4.2. If the given data lie on a block band symmetric with re-

spect to the main diagonal and in the NE and SW corners and if they are

consistent with a block-circulant symmetric structure, then the solution of the

CMEP (Problem 2.2.7) and of the DMEP (Problem 2.2.6) coincide. In other

words, the maximum entropy distribution, subject only to moment constraints

(compatible with the circulant structure) on a block band and on the corners,

is necessarily block-circulant, i.e. the underlying process is stationary.

An alternative proof, as well as a generalization of this result is the object

of the next Section.

3.5 Reconciliation with the covariance selection

problem

In Theorem 3.4.2 it has been shown that if a single block band is specified

the constraint that enforces the block-circulant structure when maximizing

the determinant is automatically satisfied (see example in Figure 3.2) . In

this Section we develop an independent proof of this result which in fact

extends naturally to any number of missing block-bands as well as arbitrary
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missing elements in a block-circulant structure (see examples in Figures 3.3a

and 3.3b).

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8
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14

16

18

20

nz = 120

Figure 3.2: Example of sparsity pattern for which, by Theorem 3.4.2, the con-
straint that enforces the block-circulant structures when maximizing the de-
terminant is automatically satisfied. The partially specified block–circulant
matrix is built of 10× 10 blocks, each of size 2. Each blue circle corresponds
to a complex scalar entry. The black lines bounds different blocks.

We will show that this general fact is a direct consequence of the in-

variance of the determinant under the group of transformations that leave

circulant matrices invariant. More specifically, let MN denote the set of all

N ×N m–block matrices over C, HN ⊂MN the subset of all Hermitian ma-

trices and H+
N ⊂ HN the cone of positive definite N ×N m–block matrices.

(not necessarily symmetric). Consider the pair G := ({conj, shift} , ◦) where
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(a) Example of given data lying on non con-
secutive block–bands
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(b) Example of given data which in arbitrary
missing positions.

Figure 3.3: Examples of sparsity patterns for which, according to the gene-
ralization in Theorem 3.5.1, the constraint that enforces the block-circulant
structures is still automatically satisfied. In both the examples, the partially
specified block–circulant matrix is built of 10× 10 blocks, each of size 2.
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conj and shift are the maps

conj : MN −→MN

M 7−→M∗

shift : MN −→MN

M 7−→ U>NMUN

and ◦ denotes the usual composition of maps. It is easy to check that the

pair G is a commutative group and the following characterization of block–

circulant Hermitian matrices holds.

Proposition 3.5.1. Let M ∈ MN . Then M ∈ CN ∩ HN if and only if the

orbit of M under the action of G is M itself.

That is, M ∈ CN ∩ HN if and only if M stays invariant under the action

of the group G and the orbit contains no additional elements.

Before introducing our main result, let us define Ic to be a set of index-

pairs (k, `) consistent with the block–circulant Hermitian structure

(k, `) ∈ Ic ⇒ (`, k) ∈ Ic (3.33a)

(k, `) ∈ Ic ⇒ ((`+m)modnm, (k +m)modnm) ∈ Ic. (3.33b)

(for example one of the sets in Figure 3.3) and

Rc := {mk,` ∈ C | (k, `) ∈ Ic}

the set of mk,`-values consistent with the block–circulant Hermitian structure

i.e. the set of mk,`-values such that

mk,` = m∗`,k (3.34a)

mk,` = m∗(`+m)modnm,(k+m)modnm
(3.34b)
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for all pairs of indices.

Theorem 3.5.1. Let Ic,Rc be the sets of indices and corresponding val-

ues consistent with a Hermitian block–circulant structure defined by (3.33)

– (3.34) and assume that there exists a positive completion (not necessarily

circulant), and that this set is bounded. Then the solution of the DMEP 2.2.6

with I = Ic and R = Rc, say Σo
N , is automatically circulant.

One rather direct proof can be based on the significance of the Lagrange

multipliers as representing the sensitivity of the functional to be maximized

(in this case the determinant) with respect to the corresponding constraints.

Because the circulant structure dictates that all values linked via (3.33a)

and (3.33b) affect the determinant in the same way (since det (U∗NM
∗UN) =

det(M) and hence the value of the determinant is not affected by action of

any G-element), the sensitivity to each value mk,` is the same, and therefore

the corresponding values for the Lagrange multipliers λk,` at the stationary

point (see equation (2.40)) are equal. Thus, (Σo
N)−1 in (2.41) has a circulant

structure and so does Σo
N by Proposition A.0.3. An alternative and almost

immediate proof is given below.

Proof. Once again, observe that for anyM ∈ HN it holds that det(shiftM) =

det(conjM) = det(M) as neither the circulant block-shift nor the conjugation

of Hermitian matrices changes the value of the determinant. Furthermore,

observe that if M satisfies

ekMe∗` = mk,`, for (k, `) ∈ Ic and mk,` ∈ Rc, (3.35)

then the same is true for shiftM as well as conjM . This is due to the fact that

the constraints are consistent with the block-circulant-Hermitian structure

as well. Now since det(·) is strictly log-concave on H+
N , it has a unique

maximum subject to (3.35) (disregarding for the moment any restriction for
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the maximizer to belong to CN). But, this unique maximizing point Σo
N must

be invariant under the group G generated by {conj and shift}, for otherwise,
there would be multiple maxima. This proves directly that Σo

N is in CN .

Remark 3.5.1. The above argument applies to maximizers that may be

restricted further by bounding individual elements, or in combination, to

lie in a convex set in a way that is consistent with the circulant structure.

More specifically and in a very general setting, if a maximizer exists over

H+
N and if the constraints, of whatever nature, are consistent with the block–

circulant structure, then the maximizer necessarily belongs to CN . Thus,

the essence of this result is a rather general invariance principle that the

maximizer of a concave functional when restricted to points that individually

remain invariant under the action of a certain group, it is identical to the

unconstrained one —assuming that the domain of the functional is convex

and invariant under the group.

3.6 Examples

This Section contains some illustrative examples of the theory developed so

far. In the first two examples we compute the feasible set and the maxi-

mum entropy completion for different block and completion size as well as

for different sparsity patterns. The third example aims to clarify the inter-

connection between feasibility and the completion size proved in Theorems

3.2.2, 3.2.4. Finally, the last example highlights some connections between

the above developed theory and the factorization of certain polynomials in

many variables, facilitated by the circulant structure.

Example 3.6.1. Let N = 7, m = 1 and consider the partially specified
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matrix

ΣN =



2 1 x y y x 1

1 2 1 x y y x

x 1 2 1 x y y

y x 1 2 1 x y

y y x 1 2 1 x

x y y x 1 2 1

1 x y y x 1 2


where those in red are the given entries, while x and y stands for the entries

which has been left unspecified. The eigenvalues of ΣN are

a(w0) = 2(2 + x+ y) (3.36a)

a(w1) = 2− 2yCos
[π

7

]
− 2xSin

[ π
14

]
+ 2Sin

[
3π

14

]
(3.36b)

a(w2) = −2

(
−1 + xCos

[π
7

]
+ Sin

[ π
14

]
− ySin

[
3π

14

])
(3.36c)

a(w3) = −2

(
−1 + Cos

[π
7

]
+ ySin

[ π
14

]
− xSin

[
3π

14

])
(3.36d)

a(w4) = a(w4), a(w5) = a(w2), a(w6) = a(w1), (3.36e)

and the feasible set is the interior of the polyhedron shown in Figure 3.4 as

the intersection of half–planes. The maximum entropy completion Σo
N has

x = 0.5321 and y = 0.3473 (we will see how to compute it in Chapter 4). Its
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inverse, say Mo
N , is

Mo
N =



0.8264 −0.3264 0.0000 0.0000 0.0000 0.0000 −0.3264

−0.3264 0.8264 −0.3264 0.0000 0.0000 0.0000 0.0000

0.0000 −0.3264 0.8264 −0.3264 0.0000 0.0000 0.0000

0.0000 0.0000 −0.3264 0.8264 −0.3264 0.0000 0.0000

0.0000 0.0000 0.0000 −0.3264 0.8264 −0.3264 0.0000

0.0000 0.0000 0.0000 0.0000 −0.3264 0.8264 −0.3264

−0.3264 0.0000 0.0000 0.0000 0.0000 −0.3264 0.8264


i.e. it has the claimed zero pattern (see 3.4.1).

Example 3.6.2. Let N = 4, m = 2. In red are the given data, specified in

such a way to be consistent with a block-circulant structure. The third block

has been left completely unspecified (x, y, z stands for unspecified entries).

ΣN =



2 1
2

1 1 x y 1 0

1
2

2 0 1 y z 1 1

1 0 2 1
2

1 1 x y

1 1 1
2

2 0 1 y z

x y 1 0 2 1
2

1 1

y z 1 1 1
2

2 0 1

1 1 x y 1 0 2 1
2

0 1 y z 1 1 1
2

2


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Figure 3.4: Feasible polyhedral set as the intersection of half–planes for ΣN =
Circ {2, 1, x, y, y, x, 1} .
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The polynomial matrices a(wk), k = 0, 1, 2, 3 results

Ψ(w0) =

4 + x 3
2

+ y

3
2

+ y 4 + z

 ,
Ψ(w1) =

 2− x
(

1
2
− i
)
− y(

1
2

+ i
)
− y 2− z

 = Ψ(w3)>,

Ψ(w2) =

 x −1
2

+ y

−1
2

+ y z

 .
The respective eigenvalues are

Eig
{

Ψ(w0)
}

=
1

2

(
8 + x+ z ±

√
9 + x2 + 12y + 4y2 − 2xz + z2

)
Eig

{
Ψ(w1)

}
=

1

2

(
4− x− z ±

√
5 + x2 − 4y + 4y2 − 2xz + z2

)
Eig

{
Ψ(w2)

}
=

1

2

(
x+ z ±

√
1 + x2 − 4y + 4y2 − 2xz + z2

)
.

and the set where they all are positive is shown in Figure 3.5. The maximum

entropy completion Σo
N has x = z = 0.4853, y = 0.4789 and its inverse Mo

N ,

has blocks

M0 =

 1.1707 −0.0163

−0.0163 1.1707

 , M1 =

−0.4469 −0.4394

0.3335 −0.4469

 ,

M2 =

0.0000 0.0000

0.0000 0.0000

 , M3 = M>
1 ,

where M2 is the 2× 2 zero matrix, as claimed. If we set z = 1 and leave the

entries x and y in Σ2 unspecified, the feasible region is the slice of the set

shown in Figure 3.5 that corresponds to z = 1 and is bounded by parabolas.

These are shown in Figure 3.6 along with the feasible set. The completion

with maximal determinant corresponds to x = 0.3548 and y = 0.4813 and
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Figure 3.5: Feasible set {(x, y, z) | ΣN ≥ 0} for ΣN = Circ
{

Σ0,Σ
>
1 ,Σ2,Σ1

}
with m = 2, Σ2 unspecified.
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Figure 3.6: Curves delineating the feasible set {(x, y) | ΣN ≥ 0} for z = 1
along with their intersection.
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its inverse is Mo
N with

M0 =

 1.5507 −0.0291

−0.0291 1.5869

 , M1 =

−0.6353 −0.8163

0.7344 −0.1893

 ,
M2 =

0.0000 0.0000

0.0000 −0.9644

 , M3 = M>
1 .

once again with zeros in the complementary positions of those fixed in ΣN .

Example 3.6.3. This example serves to stress the interconnection between

feasibility and the size of the completion N which has been proved in The-

orems 3.2.2, 3.2.4, exploting the informations on the shape of the feasible

region gained with Theorem 3.2.1. Let

T2 =

 1 −0.91

−0.91 1

 .
We want to investigate the feasibility of Problem 3.1.1 for N = 7 and N = 9.

Since

cos

{
(N − 1)

N
π

}
=

−0.9010 for N = 7

−0.9397 for N = 9

we expect that for N = 7 the problem is unfeasible while for N ≥ 9 it is

expected to become feasible. Indeed, this is the case, since for N = 7 the

eigenvalues results

Ψ(w0) = −0.82 + 2x+ 2y

Ψ(w1) = Ψ(w6) = −0.134751− 0.445042x− 1.80194y

Ψ(w2) = Ψ(w5) = 1.40499− 1.80194x+ 1.24698y

Ψ(w3) = Ψ(w4) = 2.63976 + 1.24698x− 0.445042y.
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and the feasible set is empty, being the intersection of the four half–planes

represented in Figure 3.7. On the other hand, if N = 9 , the eigenvalues are

Ψ(w0) = −0.82 + 2x+ 2y + 2z

Ψ(w1) = Ψ(w8) = −0.394201 + 0.347296x− y − 1.87939z

Ψ(w2) = Ψ(w7) = 0.68396− 1.87939x− y + 1.53209z

Ψ(w3) = Ψ(w6) = 1.91− x+ 2y − z

Ψ(w4) = Ψ(w5) = 2.71024 + 1.53209x− y + 0.347296z

and the feasible set is the nonempty region shown in Figure 3.8.
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(a) Ψ(w0) > 0
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y

(b) Ψ(w1) > 0
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(c) Ψ(w2) > 0
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y

(d) Ψ(w3) > 0

Figure 3.7: Half–planes representing the regions where the eigenvalues of
the partially specified circulant matrix Circ {1,−0.91, x, y, y, x,−0.91} are
positive.

Example 3.6.4. This example highlights a new facet of the theory developed
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Figure 3.8: Feasible region {(x, y, z) | ΣN ≥ 0} for ΣN =
Circ {1,−0.91, x, y, z, z, y, x,−0.91} .
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so far and concerns the easiness by which polynomials in several variables

that happen to coincide with the determinant of a partially specified circulant

matrix can be factored via a Fourier transformation (an otherwise difficult

task due to the irrationality of the factors in the absence of a suitable field

extension). To this aim, let us come back to the partially specified matrix of

Example 3.6.1. The determinant of ΣN is a polynomial of degree 7,

det (ΣN) = 4 + 42x+ 56x2 − 294x3 + 140x4 + 84x5 − 28x6

+ 2x7 − 14y − 28xy + 350x2y − 196x3y − 112x4y − 84x5y

+ 14x6y − 168xy2 + 56x2y2 + 238x3y2 + 112x4y2 + 14x5y2

+ 28y3 − 238x2y3 − 28x3y3 − 42x4y3 + 98xy4 − 14y5

+ 28x2y5 − 14xy6 + 2y7 (3.37)

in x and y. Over the ring of polynomials with rational coefficients it factors

as (e.g., using Matlab or Mathematica)

det (ΣN) = 2(2 + x+ y)
(
1 + 5x− 8x2 + x3 − 2y + 5xy

+3x2y − y2 − 4xy2 + y3
)2
.

However, using (3.36a-3.36e), we already know that

det (ΣN) = 2(2 + x+ y)×[
2− 2y cos

(π
7

)
− 2x sin

( π
14

)
+ 2 sin

(
3π

14

)]2

[
−2

(
−1 + x cos

(π
7

)
+ sin

( π
14

)
− y sin

(
3π

14

))]2

[
−2

(
−1 + cos

(π
7

)
+ y sin

( π
14

)
− x sin

(
3π

14

))]2

. (3.38)

Provided we know a suitable field extension of Q which contains the coeffi-
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cients of the factors, i.e., Q[cos
(
π
7

)
, sin

(
π
14

)
, etc.], the factorization can be

carried out with standard methods [8]. Finding such an extension, in general,

is a challenging problem. Of course, expressing a given rational polynomial

as the determinant of a circulant matrix with rational coefficients may an

equally challenging one, in general. Yet, we hope that the above observa-

tions may provide alternative ways to factor polynomials in certain suitable

cases.

3.7 Final Remarks

Remark 3.7.1. Since the beginning of of this Chapter, we have been dealing

only with Gaussian distributions in order to facilitate the comparison with

Dempster’s classical results. Now we show that the Gaussian assumption can

be dispensed with, and our solution is indeed optimal in the larger family of

(zero-mean) second-order distributions.

Theorem 3.7.1. The Gaussian distribution with (zero mean and) covariance

Σo
N defined by (3.30) maximizes the entropy functional (2.37) over the set

of all (zero mean) probability densities whose covariance matrix satisfies the

boundary conditions (3.3b), (3.3c).

Proof. Let CN(Tn) be the set of (block-circulant) covariance matrices sat-

isfying the boundary conditions (3.3b), (3.3c) and let pΣ be a probability

density with zero mean and covariance Σ. In particular, we shall denote by

gΣ the Gaussian density with zero mean and covariance Σ. Now, by a fa-

mous theorem of Shannon [45], the probability distribution having maximum

entropy in the class of all distribution with a fixed mean vector (which we

take equal to zero) and variance matrix Σ, is the Gaussian distribution gΣ.

Hence:

max
Σ∈CN (Tn)

{
max
pΣ

[H(pΣ)]

}
= max

Σ∈CN (Tn)
{H(gΣ) }
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where the maximum in the right-hand side is attained by gΣo
N
.

Remark 3.7.2. For a moment, let us consider what would have happened

if, instead of requiring the completed matrix to be circulant, we had added

to the DMEP the constraint requiring the completed matrix to be Toeplitz

(we will refer to this modified version of the problem as the TMEP). In this

case, it would not have been true that in any case, i.e. for any number of

missing elements in the Toeplitz symmetric structure, the completion would

have maintained the inverses’s zero–pattern property. In fact, this holds only

if the given data lie on consecutive bands centred along the main diagonal.

Example 3.7.1 (TMEP). In red: given pattern (oviously consistent with

a Toeplitz symmetric structure). The completed matrix is forced to be

Toeplitz. The given entries lie on consecutive bands. The maximum en-

tropy completion results

Σo
N =



1.0000 0.7000 0.4900 0.3430 0.2401

0.7000 1.0000 0.7000 0.4900 0.3430

0.4900 0.7000 1.0000 0.7000 0.4900

0.3430 0.4900 0.7000 1.0000 0.7000

0.2401 0.3430 0.4900 0.7000 1.0000


and its inverse still has zeros in the complementary positions of those of the

data

(Σo
N)−1 =



1.9608 −1.3725 0.0000 0.0000 0.0000

−1.3725 2.9216 −1.3725 0.0000 0.0000

0.0000 −1.3725 2.9216 −1.3725 0.0000

0.0000 0.0000 −1.3725 2.9216 −1.3725

0.0000 0.0000 0.0000 −1.3725 1.9608


.

On the other end, if the given entries do not lie on consecutive bands, then
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the maximum entropy completion is given by

Σo
N =



1.0000 0.7000 0.3890 0.1000 −0.0636

0.7000 1.0000 0.7000 0.3890 0.1000

0.3890 0.7000 1.0000 0.7000 0.3890

0.1000 0.3890 0.7000 1.0000 0.7000

−0.0636 0.1000 0.3890 0.7000 1.0000


and its inverse does not have zeros in the complementary positions of those

assigned in ΣN

(Σo
N)−1 =



2.1082 −1.6932 0.1010 0.3772 0.0000

−1.6932 3.4681 −1.7743 −0.2020 0.3772

0.1010 −1.7743 3.4055 −1.7743 0.1010

0.3772 −0.2020 −1.7743 3.4681 −1.6932

0.0000 0.3772 0.1010 −1.6932 2.1082


.

Moreover, if instead of adding some more constraints to the DMEP, we

had simply provided it with data consistent with a Toeplitz structure, it

would not have been true that the completion would have been automatically

Toeplitz, this property once again being satisfied only if the data lie on a

single band centred along the main diagonal (see [18]).

Example 3.7.2 (DMEP with Toeplitz data). In red: given data consistent

with a Toeplitz symmetric structure. If the specified elements lie on consec-

utive bands, the maximum entropy completion is still Toeplitz.

Σo
N =



1.0000 0.7000 0.4900 0.3430 0.2401

0.7000 1.0000 0.7000 0.4900 0.3430

0.4900 0.7000 1.0000 0.7000 0.4900

0.3430 0.4900 0.7000 1.0000 0.7000

0.2401 0.3430 0.4900 0.7000 1.0000


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while it fails to be Toeplitz if the given data lie on non consecutive bands

Σo
N =



1.0000 0.7000 0.4124 0.1000 −0.0447

0.7000 1.0000 0.7000 0.3580 0.1000

0.4124 0.7000 1.0000 0.7000 0.4124

0.1000 0.3580 0.7000 1.0000 0.7000

−0.0447 0.1000 0.4124 0.7000 1.0000


These observations contributes to highlight the nontriviality of the results

of this Chapter.

Remark 3.7.3. The theory developed so far can be interpreted as a partic-

ular covariance selection result in the vein of Dempster’s paper; compare in

particular [16, Proposition a]. In fact the results of this Section substantiate

also the maximum entropy principle of Dempster (Proposition 2.2.1). It is

however important to note that none of our results follows as a particular

case from Dempster’s results, since [16] deals with a very unstructured set-

ting. In particular our main result (Theorem 3.4.1) that the solution, Σo
N ,

to our primal problem (CMEP) has a block-circulant banded inverse, is com-

pletely original. Its proof uses in an essential way the characterization of the

CMEP solution provided by our variational analysis and cleverly exploits the

block-circulant structure.

Remark 3.7.4. Because of the equivalence of reciprocal AR modeling and

the underlying process covariance having an inverse with a banded structure,

explained in Section 2.1.1, we see that the maximum entropy principle leads

in fact to (reciprocal) AR models. This makes contact with the ever-present

problem in control an signal processing of (approximate) AR modeling from

finite covariance data, whose solution dates back to the work of N. Levinson

and P. Whittle. That AR modeling from finite covariance data is actually
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equivalent to a positive band extension problems for infinite Toeplitz ma-

trices has been realized and studied in the past decades by Dym, Gohberg

and co-workers, see e.g. [18], [24] as representative references of a very large

literature. We should stress here that band extension problems for infinite

Toeplitz matrices are invariably attacked and solved by factorization tech-

niques, but circulant matrices do not fit in the “banded algebra” framework

used in the literature. Also, one should note that the maximum entropy

property is usually presented in the literature as a final embellishment of a

solution which was already obtained by factorization techniques. Here, for

the circulant band extension problem, factorization techniques do not work

and the maximum entropy principle turns out to be the key to the solution

of the problem.

Finally, we anticipate that the results of this Chapter lead to an efficient

iterative algorithm for the explicit solution of the CMEP which is guaran-

teed to converge to a unique minimum. This solves the variational problem

and hence the circulant band extension problem which subsumes maximum

likelihood identification of reciprocal processes. This algorithm is the object

of the next Chapter.
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Chapter 4

Algorithms for the Block-Circulant

Band Extension Problem

This Chapter deals with efficient algorithms for solving the CMEP. Since

it has been shown that the solutions of the CMEP and of the DMEP with

circulant data coincide, all the methods available in the literature for the

DMEP can be employed. If the graph associated with the specified entries

is chordal, the solution of the DMEP can be expressed in closed form in

terms of the principal minors of the sample covariance matrix. However,

the sparsity pattern associated with the given entries in our problem is not

chordal. For non-chordal graphs the maximum entropy completion has to be

computed iteratively. A straightforward application of standard optimization

algorithms is too expensive for large size problems, and several specialized

algorithms have been proposed in the literature which deals with a general,

very unstructured, setting. In this Chapter we propose a modified matricial

gradient descent algorithm for the solution of the CMEP which naturally

follows from the variational analysis of the previous Chapter and exploits in

an essential way the circulant structure of our problem. This algorithm com-

pares very well with the algorithms proposed in the literature for the solution

of the DMEP. The outline of the Chapter is as follows. Section 4.1 briefly
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reviews some of the most popular methods for the solution of the DMEP.

In Section 4.2 the matricial gradient descent algorithm is introduced. An

experimental comparison between the proposed algorithm and the methods

available in the literature is presented in Section 4.3.

4.1 Algorithms for the covariance selection pro-

blem

Before discussing some of the algorithms proposed in the literature for the

covariance selection problem, a brief digression into some basics of graph

theory is needed. First of all, it is natural to describe the pattern of the

specified entries of an Nm × Nm partial symmetric matrix H = (hij) by

an undirected graph (because hij is specified when hji is) of Nm vertices

which has an edge joining vertex i and vertex j if and only if the entry hij is

specified. Because the diagonal entries are all assumed specified, we ignore

loops at the vertices. The undirected graph will be denoted by G = (V,E)

where V is the vertex set and E the edge set which consists of unordered

pairs of distinct vertices. In any undirected graph we say that 2 vertices u,

v ∈ V are adjacent if (u, v) ∈ E (i.e. if they are joined by an edge). For any

vertex set S ⊆ V , consider the edge set E(S) ⊆ E given by

E(S) := {(u, v) ∈ E | u, v ∈ S}

We say that G(S) is the subgraph of G induced by S if G(S) = (S,E(S)). An

induced subgraph G(S) is complete if the vertices in S are pairwise adjacent

in G. In this case we say that S is complete in G.

Definition 4.1.1. A clique is a complete subgraph that is not contained

within another complete subgraph.

We let [v0, v1, . . . , vk] denote a simple path of length k from v0 to vk in
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G, i.e. vi 6= vj for i 6= j and (vi, vi+1) ∈ E for 0 ≤ i ≤ k − 1. Similarly

[v0, v1, . . . , vk, v0] denotes a simple cycle of length k+1 in G. Finally, a chord

of a path (cycle) is any edge joining two nonconsecutive vertices of the path

(cycle).

Definition 4.1.2. An undirected graph is chordal (triangulated, rigid circuit)

if every cycle of length greater than three has a chord.

Example 4.1.1. A first example of chordal sparsity pattern is the banded

sparsity pattern of Figure 4.1a. The associated graph is shown in Figure 4.1b

which may be drawn also as shown in Figure 4.1c from which it is immediate

to see that it is chordal. Another example of chordal sparsity pattern is the

arrow pattern shown in Figure 4.2 along with its associated graph.

As anticipated in the introduction, if the graph of the specified entries

is chordal ([4]), the maximum determinant matrix completion problem ad-

mits a closed form solution in terms of the principal minors of the sample

covariance matrix (see [2], [35], [22], [40]). However, the graph associated

with banded circulant sparsity patterns we are dealing with is not chordal,

as it is apparent from the examples in Figures 4.3 and 4.4. Therefore we

have to resort to iterative algorithms. For the applications we have in mind,

we are dealing with vector–valued processes possibly defined on a quite large

interval. A straightforward application of standard optimization algorithms

is too expensive for problems of such a size, and several specialized algo-

rithms have been proposed in the literature ([16, 46, 48, 34]) which deals

with the general, very unstructured, setting of the DMEP. In his early work

([16]), Dempster proposed two iterative algorithms which however are very

demanding from a computational point of view. Two popular methods are

those proposed by T. P. Speed and H. T. Kiiveri in [46], that we now briefly

discuss. Following the notation in [46], we will denote by E1, E2, . . . , Ene sets

of unordered pairs of (not necessarily distinct) elements of V and by E their
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Figure 4.1: Banded Sparsity pattern for a 8 × 8 matrix (a) along with its
associated graph (b), (c).

92



4.1. Algorithms for the covariance selection problem

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

nz = 34

(a)

Titolo

1

2

3

4

5

6

7

8

Figure 1: Caption of this wonderful TikZ figure.

1

(b)

Figure 4.2: Banded Sparsity pattern for a 8 × 8 matrix (a) along with its
associated graph (b).
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Figure 4.3: Graph associated to a banded circulant sparsity pattern for N =
10, n = 2. The graph is not chordal since, for example, the cycle {1, 3, 5, 7, 9}
does not have a chord.
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Figure 1: Graph associated to the arrow sparsity pattern of Figure ??.
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Figure 2: Graph associated to the arrow sparsity pattern of Figure ??.Figure 4.4: Graph associated to a banded circulant sparsity pattern for N =
12, n = 3. The graph is not chordal since, for example, the cycle {1, 4, 7, 10}
does not have a chord.
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4.1. Algorithms for the covariance selection problem

union. In its generality, the problem we want to solve is: given two positive

definite matrices G and H, find a third matrix F with the property that

F (α, β) = G(α, β) if (α, β) ∈ E (4.1a)

F−1(α, β) = H(α, β) if (α, β) /∈ E (4.1b)

Both the algorithms in [46] are special cases of the following general cyclic

algorithm.

Algorithm 4.1 General cyclic algorithm (Speed and Kiiveri [46])

Generate a sequence {Fn} of positive definite matrices satisfying F0 = H−1

and, for n ≥ 1,

Fn(α, β) = G(α, β) if (α, β) ∈ En′ (4.2a)
F−1
n (α, β) = F−1

n−1(α, β) if (α, β) /∈ En′ (4.2b)

where n′ = nmod ne (the reminder when n is divided by ne).

The idea is to maintain 4.1b while cycling through the Ei (at each step only

the elements of F−1
n corresponding to the indices in En′ are affected, see 4.2b)

and forcing 4.1a (|En′ | elements at time, see 4.2a). A convergence proof can

be found in [46, Proposition 3] and relies on the notion of I–divergence (or

discrimination information) [11]. The crucial step in the algorithm involves

going from Fn−1 to Fn and relies on the following Lemma ([46, Lemma 2,

(i)]).

Lemma 4.1.1 (Speed and Kiiveri). Let Q, R and B be positive definite

matrices. Then for a ⊆ V the matrix

Q−1 = R−1 +

 (Ba)
−1 − (Ra)

−1 0

0 0

 (4.3)
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is positive definite and satisfies

Q(α, β) = B(α, β) if α ∈ a and β ∈ a (4.4a)

Q−1(α, β) = R−1(α, β) if α /∈ a and β /∈ a (4.4b)

Proof. See ([46, proof of Lemma 2]).

First algorithm Letting RN denote the sample covariance matrix, the

first algorithm is:

Algorithm 4.2 First algorithm (Speed and Kiiveri [46])

Compute all the cliques c̃t in the complementary graph G̃, say
{c̃t, t = 1, . . . , nc̃t};
Initialize Σ0 = RN ;
while some stopping criterion is satisfyied do
for all the cliques c̃t in the complementary graph do

Σ
(t)
N = Σ

(t−1)
N +


{
diag

[(
(Σ

(t−1)
N )−1

)
c̃t

]−1
}−1

−
[(

(Σ
(t−1)
N )−1

)
c̃t

]−1

0

0 0


(4.5)

end for
end while

which is the general algorithm 4.1 with F = Σ−1
N , En′ = c̃t, G = INm and

H = RN (E = c̃1∪· · ·∪ c̃nc̃t ). In our setting, it reads as follows. Every cycle

consists of as many steps as the cliques in the complementary graph G̃ (the

graph associated to the elements in Icb ). At each step only the elements in ΣN

corresponding to the current clique c̃t (i.e. only a subset of the entries in Icb )
are modified in such a way to set the elements of Σ−1

N in the corresponding

positions to the desired zero–value. Through the iterations the elements in

Σ
(t)
N are fixed over Ib while the elements of

(
Σ

(t)
N

)−1

vary over Icb .
This first algorithm can be seen as a generalization of an algorithm by

96



4.1. Algorithms for the covariance selection problem

Wermuth and Scheidt [48], which, instead of cycling through the cliques c̃t,

iterates through the edges in E.

The Bron–Kerbosch algorithm [6] has been employed for finding the

cliques in the graph.

Example 4.1.2. Let σ0 = 9, σ1 = 3 and suppose we want to compute the

maximum entropy completion for N = 6 by means of Algorithm 4.2. The

complementary graph G̃ for the given pattern is shown in Figure 4.5. The

cliques are

{1, 3, 5} , {2, 4, 6} , {1, 4} , {2, 5} , {3, 6} .

Below we show the first cycle of the algorithm.
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nz = 18

Sparsity pattern

1

1

23
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5 6

Figure 1: Graph associated to the arrow sparsity pattern of Figure ??.
Figure 4.5: Complementary graph G̃ (on the right) and corresponding spar-
sity pattern (on the left). The blue squares represent the unspecified entries.
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***************** Initialization *****************

Σ
(0)
N =

9.0000 3.0000 0.5000 0.2000 0.5000 3.0000
3.0000 9.0000 3.0000 0.5000 0.2000 0.5000
0.5000 3.0000 9.0000 3.0000 0.5000 0.2000
0.2000 0.5000 3.0000 9.0000 3.0000 0.5000
0.5000 0.2000 0.5000 3.0000 9.0000 3.0000
3.0000 0.5000 0.2000 0.5000 3.0000 9.0000

***************** First Iteration *****************

********* Step 1 *********

Σ
(1)
N =

9.0000 3.0000 0.9739 0.2000 0.9739 3.0000
3.0000 9.0000 3.0000 0.5000 0.2000 0.5000
0.9739 3.0000 9.0000 3.0000 0.9739 0.2000
0.2000 0.5000 3.0000 9.0000 3.0000 0.5000
0.9739 0.2000 0.9739 3.0000 9.0000 3.0000
3.0000 0.5000 0.2000 0.5000 3.0000 9.0000

(
Σ

(1)
N

)−1

=

0.1408 −0.0445 0.0000 0.0018 −0.0000 −0.0445
−0.0445 0.1400 −0.0445 0.0071 0.0018 0.0071

0.0000 −0.0445 0.1408 −0.0445 −0.0000 0.0018
0.0018 0.0071 −0.0445 0.1400 −0.0445 0.0071
−0.0000 0.0018 −0.0000 −0.0445 0.1408 −0.0445
−0.0445 0.0071 0.0018 0.0071 −0.0445 0.1400

********* Step 2 *********

Σ
(2)
N =

9.0000 3.0000 0.9739 0.2925 0.9739 3.0000
3.0000 9.0000 3.0000 0.5000 0.2000 0.5000
0.9739 3.0000 9.0000 3.0000 0.9739 0.2000
0.2925 0.5000 3.0000 9.0000 3.0000 0.5000
0.9739 0.2000 0.9739 3.0000 9.0000 3.0000
3.0000 0.5000 0.2000 0.5000 3.0000 9.0000

(
Σ

(2)
N

)−1

=

0.1407 −0.0446 0.0006 −0.0000 0.0006 −0.0446
−0.0446 0.1400 −0.0447 0.0076 0.0016 0.0071

0.0006 −0.0447 0.1408 −0.0445 0.0000 0.0016
−0.0000 0.0076 −0.0445 0.1400 −0.0445 0.0076

0.0006 0.0016 0.0000 −0.0445 0.1408 −0.0447
−0.0446 0.0071 0.0016 0.0076 −0.0447 0.1400
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********* Step 3 *********

Σ
(3)
N =

9.0000 3.0000 0.9739 0.2925 0.9739 3.0000
3.0000 9.0000 3.0000 0.8730 0.2000 0.8448
0.9739 3.0000 9.0000 3.0000 0.9739 0.2000
0.2925 0.8730 3.0000 9.0000 3.0000 0.8730
0.9739 0.2000 0.9739 3.0000 9.0000 3.0000
3.0000 0.8448 0.2000 0.8730 3.0000 9.0000

(
Σ

(3)
N

)−1

=

0.1396 −0.0425 −0.0014 0.0046 −0.0014 −0.0425
−0.0425 0.1393 −0.0425 0.0000 0.0061 0.0000
−0.0014 −0.0425 0.1396 −0.0423 −0.0019 0.0061

0.0046 0.0000 −0.0423 0.1392 −0.0423 −0.0000
−0.0014 0.0061 −0.0019 −0.0423 0.1396 −0.0425
−0.0425 0.0000 0.0061 −0.0000 −0.0425 0.1393

********* Step 4 *********

Σ
(4)
N =

9.0000 3.0000 0.9739 0.2925 0.9739 3.0000
3.0000 9.0000 3.0000 0.8730 0.5143 0.8448
0.9739 3.0000 9.0000 3.0000 0.9739 0.2000
0.2925 0.8730 3.0000 9.0000 3.0000 0.8730
0.9739 0.5143 0.9739 3.0000 9.0000 3.0000
3.0000 0.8448 0.2000 0.8730 3.0000 9.0000

(
Σ

(4)
N

)−1

=

0.1396 −0.0424 −0.0014 0.0041 0.0005 −0.0431
−0.0424 0.1390 −0.0424 0.0018 0.0000 0.0019
−0.0014 −0.0424 0.1396 −0.0429 −0.0001 0.0055

0.0041 0.0018 −0.0429 0.1392 −0.0423 0.0000
0.0005 0.0000 −0.0001 −0.0423 0.1393 −0.0425
−0.0431 0.0019 0.0055 0.0000 −0.0425 0.1393

********* Step 5 *********

Σ
(5)
N =

9.0000 3.0000 0.9739 0.2925 0.9739 3.0000
3.0000 9.0000 3.0000 0.8730 0.5143 0.8448
0.9739 3.0000 9.0000 3.0000 0.9739 0.4851
0.2925 0.8730 3.0000 9.0000 3.0000 0.8730
0.9739 0.5143 0.9739 3.0000 9.0000 3.0000
3.0000 0.8448 0.4851 0.8730 3.0000 9.0000

(
Σ

(5)
N

)−1

=

0.1396 −0.0430 0.0003 0.0035 0.0005 −0.0430
−0.0430 0.1391 −0.0425 0.0019 −0.0005 0.0035

0.0003 −0.0425 0.1394 −0.0429 0.0016 0.0000
0.0035 0.0019 −0.0429 0.1392 −0.0428 0.0017
0.0005 −0.0005 0.0016 −0.0428 0.1394 −0.0425
−0.0430 0.0035 0.0000 0.0017 −0.0425 0.1391
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Second algorithm The second algorithm is:

Algorithm 4.3 Second algorithm – IPS (Speed and Kiiveri [46])
Compute all the cliques ct in the graph G, say {ct, t = 1, . . . , nct};
Initialize Σ0 = INm;
while some stopping criterion is satisfyied do
for all the cliques c̃t in the graph G do

(
Σ

(t)
N

)−1

=
(
Σ

(t−1)
N

)−1

+

 ((RN)ct)
−1 −

((
Σ

(t−1)
N

)
ct

)−1

0

0 0


(4.6)

end for
end while

which is the general algorithm 4.1 with F = ΣN , En′ = ct, G = RN and

H = INm (E = c1∪· · ·∪ cnct ). In our setting, it reads as follows. Every cycle

consists of as many steps as the cliques in the graph of the specified entries G.
At each step only the elements in Σ−1

N corresponding to the current clique ct
(i.e. only a subset of the entries in Ib) are modified in such a way to set the

elements of ΣN in the corresponding positions to the desired value, namely

equal to the sample covariance Rn (see (4.4a)). Through the iterations the

elements in
(
Σ

(t)
N

)−1

are fixed over Icb while the elements of Σ
(t)
N vary over

Ib. This algorithm is the analogous of iterative proportional scaling (IPS)

for contingency tables [26] and can be also seen as a Gaussian version of the

general procedure by Kullback in [34].

Example 4.1.3. Let us apply Algorithm 4.3 to the data of Example 4.1.2.

Algorithm 4.3 works on the cliques of the graph associated to the given entries

(Figure 4.6) which are: {1, 2} , {2, 3} , {3, 4} , {4, 5} , {5, 6} , {6, 7}. The

first iteration is shown below.
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4.1. Algorithms for the covariance selection problem

***************** First Iteration *****************

********* Step 1 *********

K−1
1 =

0.1250 −0.0417 0 0 0 0
−0.0417 0.1250 0 0 0 0

0 0 1.0000 0 0 0
0 0 0 1.0000 0 0
0 0 0 0 1.0000 0
0 0 0 0 0 1.0000

K1 =

9 3 0 0 0 0
3 9 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

********* Step 2 *********

K−1
2 =

0.1250 −0.0417 0 0 0 0
−0.0417 0.1389 −0.0417 0 0 0

0 −0.0417 0.1250 0 0 0
0 0 0 1.0000 0 0
0 0 0 0 1.0000 0
0 0 0 0 0 1.0000

K2 =

9 3 1 0 0 0
3 9 3 0 0 0
1 3 9 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

********* Step 3 *********

K−1
3 =

0.1250 −0.0417 0 0 0 0
−0.0417 0.1389 −0.0417 0 0 0

0 −0.0417 0.1389 −0.0417 0 0
0 0 −0.0417 0.1250 0 0
0 0 0 0 1.0000 0
0 0 0 0 0 1.0000

K3 =

9.0000 3.0000 1.0000 0.3333 0 0
3.0000 9.0000 3.0000 1.0000 0 0
1.0000 3.0000 9.0000 3.0000 0 0
0.3333 1.0000 3.0000 9.0000 0 0

0 0 0 0 1.0000 0
0 0 0 0 0 1.0000
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********* Step 4 *********

K−1
4 =

0.1250 −0.0417 0 0 0 0
−0.0417 0.1389 −0.0417 0 0 0

0 −0.0417 0.1389 −0.0417 0 0
0 0 −0.0417 0.1389 −0.0417 0
0 0 0 −0.0417 0.1250 0
0 0 0 0 0 1.0000

K4 =

9.0000 3.0000 1.0000 0.3333 0.1111 0
3.0000 9.0000 3.0000 1.0000 0.3333 0
1.0000 3.0000 9.0000 3.0000 1.0000 0
0.3333 1.0000 3.0000 9.0000 3.0000 0
0.1111 0.3333 1.0000 3.0000 9.0000 0

0 0 0 0 0 1.0000

********* Step 5 *********

K−1
5 =

0.1250 −0.0417 0 0 0 0
−0.0417 0.1389 −0.0417 0 0 0
−0.0000 −0.0417 0.1389 −0.0417 0.0000 0
−0.0000 0.000 −0.0417 0.1389 −0.0417 0

0 0 0.0000 −0.0417 0.1389 −0.0417
0 0 0 0 −0.0417 0.1250

K5 =

9.0000 3.0000 1.0000 0.3333 0.1111 0.0370
3.0000 9.0000 3.0000 1.0000 0.3333 0.1111
1.0000 3.0000 9.0000 3.0000 1.0000 0.3333
0.3333 1.0000 3.0000 9.0000 3.0000 1.0000
0.1111 0.3333 1.0000 3.0000 9.0000 3.0000
0.0370 0.1111 0.3333 1.0000 3.0000 9.0000

********* Step 6 *********

K−1
6 =

0.1389 −0.0417 0 0 0 −0.0412
−0.0417 0.1389 −0.0417 0 0 0
−0.0000 −0.0417 0.1389 −0.0417 0.0000 −0.0000
−0.0000 0.0000 −0.0417 0.1389 −0.0417 0.0000

0.0000 −0.0000 0.0000 −0.0417 0.1389 −0.0417
−0.0412 0 −0.0000 0.0000 −0.0417 0.1389

K6 =

9.0000 3.0325 1.1084 0.6621 1.0986 3.0000
3.0325 9.0217 3.0397 1.1108 0.6628 1.0986
1.1084 3.0397 9.0241 3.0404 1.1108 0.6621
0.6621 1.1108 3.0404 9.0241 3.0397 1.1084
1.0986 0.6628 1.1108 3.0397 9.0217 3.0325
3.0000 1.0986 0.6621 1.1084 3.0325 9.0000
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Figure 1: Graph associated to the arrow sparsity pattern of Figure ??.
Figure 4.6: Graph G associated with the given data (on the right) and corre-
sponding sparsity pattern (on the left). The blue squares represent the given
entries.

Comparison between the two algorithms The choice of which algo-

rithm is to be preferred in any given situation is very much dependent on the

number and size of the cliques in G and G̃. In our setting the complexity of

the graph associated with the given entries depends on the bandwidth n. In

particular, for bandwidth not too large with respect to the completion size

(which is the case we are interested in, see Section 2.2), the complexity of

the graph associated with the given data G is far lower than the complexity

of its complementary (which, for small n’s, is almost complete), see Figures

4.8 – 4.9. The execution time of the two algorithms has been compared for

a completion size N = 30 and a bandwidth n varying between 2 and 8. The

results are shown in Figure 4.7 and Table 4.1. It turns out that for n small

the second algorithm (which, from now on, will be referred to as IPS) runs

faster than the first, and thus has to be preferred.

Covariance selection via chordal embedding Dahl, Vanderberghe and

Roychowdhury in [12] propose a new technique to improve the efficiency of

Newton’s method for covariance selection problems based on chordal embed-
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Figure 4.7: Comparison between the execution time of the first and second
algorithm for N = 30, m = 1, n = {1, . . . , 8}.

CD IPS
n cl. (max. cl. size) CPU time [s] cl. (max. cl. size) CPU time [s]
2 4608(10) 9.7877 30(3) 0.4109
3 2406(7) 4.1515 30(4) 0.1783
4 1241(6) 1.9419 30(5) 0.3153
5 706(5) 1.0525 30(6) 0.5535
6 445(4) 0.6258 30(7) 0.9854
7 295(3) 0.4145 30(8) 1.7477
8 175(3) 0.2480 30(9) 3.0665

Table 4.1: Execution time of the first and second algorithm for N = 30,
m = 1, bandwidth n = {2, . . . , 8}.

104



4.1. Algorithms for the covariance selection problem

1

2

3

4

5
6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

(a) G for n = 2

1

2

3

4

5
6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

(b) G̃ for n = 2
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(f) G̃ for n = 4

Figure 4.8: Graph G associated with the given data (on the right) and its
complementary G̃ (on the left) for N = 20 and bandwidth n = 2, 3, 4.
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(b) G̃ for n = 5
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(c) G for n = 6
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(e) G for n = 7
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(f) G̃ for n = 7

Figure 4.9: Graph G associated with the given data (on the right) and its
complementary G̃ (on the left) for N = 20 and bandwidth n = 5, 6, 7.
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ding: the given sparsity pattern is embedded in a chordal one for which they

provide efficient techiniques for computing the gradient and the Hessian. The

complexity of the method is dominated by the cost of forming and solving a

system of linear equations in which the number of unknowns depends on the

number of nonzeros added in the chordal embedding. For circulant sparsity

pattern it is easy to check that the number of nonzeros added in the chordal

embedding is quite large, so that the method does not seem to be practicable.

4.2 Matricial Gradient Descent Algorithm

In this section we propose a modified gradient descent algorithm with back-

tracking line search (see, e.g., [5, Ch. 9]) for the numerical solution of the

dual problem (3.26). This task requires some care because we are working in

a matricial space. The algorithm is as follows.

Algorithm 4.4 Matricial gradient descent algorithm
Given a starting point Λ ∈ dom J̄ , α ∈ (0, 0.5), β ∈ (0, 1)
while

∥∥∇ΛJ̄(Λ)
∥∥

2
> η do

∆Λ := −∇ΛJ̄(Λ)
while J̄(Λ + t∆Λ) > J̄(Λ) + αt tr

{
∇J̄(Λ)>∆Λ

}
do

t := βt
end while
Λ := Λ + t∆Λ

end while

where J̄ denote the functional

J̄(Λ) := tr (ΛTn)− tr log
{

ΠCN,s

(
EnΛE>n

)}
. (4.7)

Proposition 4.2.1. The proposed Algorithm 4.4 is a gradient descent algo-

rithm restricted to the subspace

{
(Λ,Θ) | πC⊥N,s

(
EnΛE>n

)
= −

(
UNΘU>N −Θ

)}
. (4.8)
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Proof. Once again, let (Λ̄, Θ̄) be the unique minimum point of the functional

J on L+. We know that (Λ̄, Θ̄) are such that Σo = EnΛ̄E>n + UNΘ̄U>N − Θ̄

is circulant. Thus one can think to restrict to look for the solution of the

optimization problem on the set

{
(Λ,Θ) |

(
EnΛE>n + UNΘU>N −Θ

)
is circulant

}
i.e. on the set

{
(Λ,Θ) | πC⊥N,s

(
EnΛE>n + UNΘU>N −Θ

)
= 0
}

which, taking into account that
(
UNΘU>N −Θ

)
∈ C⊥N,s, can be written as

{
(Λ,Θ) | πC⊥N,s

(
EnΛE>n

)
= −

(
UNΘU>N −Θ

)}
.

If we compute the dual function J on the set (4.8) we obtain

J(Λ,Θ) |{
(Λ,Θ) |π

C⊥
N,s

(EnΛE>n )=−(UNΘU>N−Θ)
} (4.9)

= tr (ΛTn)− tr log
(
EnΛE>n + UNΘU>N −Θ>

)
= tr (ΛTn)− tr log

(
EnΛE>n − πC⊥N,s

(
EnΛE>n

))
= tr (ΛTn)− tr log

(
πCN,s

(
EnΛE>n

))
(4.10)

which is the modified functional defined above. Thus the proposed algorithm

is nothing but a gradient descent algorithm in which the search of the min-

imum point has been restricted to the subspace where the optimal solution

is known to be, i.e. to the subspace (4.8).

An explicit formula for πCN,s
(
EnΛE>n

)
has been computed in Section 3.4.
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proportional scaling

The gradient ∇ΛJ̄(Λ) is given by

∇ΛJ̄(Λ) = −E>n
[
πCN,s

(
EnΛE>n

)]−1
En + Tn .

4.2.1 Numerical experiments

The matricial gradient descent algorithm has been implemented in Matlab.

The results are shown in Figures 4.10 and 4.11 along with Tables 4.2 and

4.3. The implementation exploits the block–circulant symmetric structure

(recall, in particular, that for block-circulant matrices the inverse can be

computed efficiently by means of a Fourier transform). At each iteration the

algorithm requires the inversion of
⌈
N+1

2

⌉
matrices of orderm. It follows that

the execution time increases as the completion size N and the block size m

increase (see Figure 4.10 and Table 4.2). Finally, it also increases, even to a

lesser amount, for increasing bandwidth n (see Figure 4.11 and Table 4.3).

4.3 Comparison between matricial gradient de-

scent and iterative proportional scaling

In this section we compare the iterative proportional scaling (IPS) and gra-

dient descent (GD) algorithms. Both the algorithms are implemented in

Matlab. The execution times for different completion size N and block size

m are plotted in Figures 4.12 and 4.13 along with Tables 4.4 and 4.5.

It can be seen that the gradient descent algorithm runs faster than the

iterative proportional scaling and the gap between the two increases as N

increases. Moreover, the gap becomes much more evident asm grows, making

the gradient descent algorithm more attractive for applications where the

process under observation is vector–valued.
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Figure 4.10: Matricial gradient descent algorithm: CPU time [sec.] for band-
width n = 1, m = {1, 3}, and completion size N varying from 50 to 400.

m = 1 m = 3

N

50 0.5535 0.9749
100 1.9376 3.4989
150 4.2258 7.7427
200 7.3857 13.5903
250 11.4440 20.9953
300 16.3449 30.0519
350 22.1412 40.6536
400 28.7854 52.7949

Table 4.2: Matricial gradient descent algorithm: CPU time [sec.] plotted in
Figure 4.10 for bandwidth n = 1, m = {1, 3}, and completion size N varying
from 50 to 400.
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Figure 4.11: Matricial gradient descent algorithm: CPU time [in sec.] for
N = 50, m = 1, n varying between 2 and 20.

n CPU time [sec.]
2 1.1351
4 1.7895
6 1.9818
8 2.2215
10 3.4312
12 4.8058
14 5.2528
16 5.6626
18 7.3284
20 7.4922

Table 4.3: Matricial gradient descent algorithm: CPU time [in sec.] plotted
in Figure 4.11 for N = 50, m = 1, n varying between 2 and 20.
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Figure 4.12: Matricial gradient descent algorithm vs. iterative proportional
scaling: CPU time [in sec.] for N = [25, 50, 75, 100, 125], m = 2, bandwidth
n = 5.

N m IPS GD
25 2 10.0707 0.6689
50 2 26.0420 2.3574
75 2 43.2215 5.0059
100 2 59.6334 8.7657
125 2 77.3164 13.3175

Table 4.4: Matricial gradient descent algorithm vs. iterative proportional
scaling: CPU time [in sec.] for N = [25, 50, 75, 100, 125], m = 2, bandwidth
n = 5.
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Figure 4.13: Matricial gradient descent algorithm vs. iterative proportional
scaling: CPU time [in sec.] for N = [25, 50, 75, 100, 125], m = 4, bandwidth
n = 5.

N m IPS GD
25 4 307.4842 0.7801
50 4 848.3512 2.7421
75 4 1459.3912 5.7583
100 4 2075.0478 10.1143
125 4 2770.5883 15.1963

Table 4.5: Matricial gradient descent algorithm vs. iterative proportional
scaling: CPU time [in sec.] for N = [25, 50, 75, 100, 125], m = 4, bandwidth
n = 5.
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Chapter 5

Conclusions

In this dissertation a class of stationary reciprocal processes on a finite inter-

val has been introduced which are the acausal analog of autoregressive (AR)

processes on the integer line. These processes seem to be useful to describe

signals which naturally live in a finite region of time or space. Maximum like-

lihood identification of these AR-type reciprocal models has been discussed.

In particular it has been shown that the maximum likelihood identification

problem leads to a matrix completion problem for block– circulant matrices.

While circulant covariance matrices have been widely studied in the signal

processing literature, the completion problem for such matrices does not seem

to have been addressed before. In the present work, it has been shown that

this problem can be solved by maximizing an entropy functional. Moreover,

the interconnection between the block–circulant matrix completion problem

and the covariance selection problem has been highlighted.

Finally, a new algorithm, which originates from the variational analysis of

Chapter 3 and heavily exploits the block–circulant structure, has been pro-

posed . This algorithm compares very favourably with the algorithms in the

literature for the covariance selection problem.
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Appendix A

Circulant Matrices

In this Appendix we generalize some relevant results about circulants in [13]

for block–matrices.

Definition A.0.1. A block-circulant matrix with N , m × m blocks, is a

block-Toeplitz matrix whose block-rows (or equivalently, block-columns) are

shifted cyclically, i.e.

CN =



C0 C1 . . . . . . CN−1

CN−1 C0 C1 . . . . . .
... . . . ...
... . . . C1

C1 C2 . . . CN−1 C0


.

where Ck ∈ Rm×m, k = 0, . . . , N − 1.

From the definition it is apparent that a block–circulant matrix is com-

pletely defined by its first block–row, so that it can be denoted by

CN = Circ{C0, C1, . . . , CN−1}. (A.1)

The most simple example of circulant matrix is perhaps the N × N cir-
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culant shift, namely the matrix

S = Circ {0, 1, 0, 0, . . . , 0} .

Clearly SN = IN , and, as is well–known (and easy to check), Sk has the

(eigenvalue–eigenvector) decomposition

SkF = FW k (A.2)

where

W := diag
{

1, w, w2, . . . , wN−1
}

with w := e−j
2π
N , j denoting the imaginary unit

√
−1 and F is the Fourier

matrix of order N , i.e. the matrix whose (k, l)-entry is

fk,l =
1√
N
w(k−1)(l−1). (A.3)

The circulant shift S plays a fundamental role in the theory of circulants. In

fact, it turns out that every block–circulant matrix Circ {C0, C1, . . . , CN−1}
can be represented as

Circ {C0, C1, . . . , CN−1} =
N−1∑
k=0

Sk ⊗ Ck (A.4)

where ⊗ denotes the Kronecker product. Moreover, the following character-

ization of circulants holds.

Proposition A.0.1. Let CN ∈ RNm×Nm. CN is block–circulant if and only

if

(S ⊗ Im)−1 CN (S ⊗ Im) = CN (A.5)

namely, if and only if it commutes with (S ⊗ Im).

Sketch of the proof. It suffices to expand (A.5) and note that this constrains
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the (m×m)-block entries of CN to have the circulant symmetry.

Proposition A.0.2. Every block-circulant matrix with N × N blocks each

of size m×m, say CN = Circ {C0, C1, . . . , CN−1}, can be diagonalized as

(F ∗ ⊗ Im) CN (F ⊗ Im) = diag{Ψ(w0),Ψ(w1),Ψ(w2), . . . ,Ψ(wN−1)}

where the Ψ(w`)’s are the polynomial matrices

Ψ(x) =
N−1∑
k=0

xkCk

computed for x = w`, ` = 0, . . . , N − 1.

Proof. By the representation (A.4) and the decomposition (A.2), recalling

the properties of the Kronecker product, we get

(F ∗ ⊗ Im) CN (F ⊗ Im) = (F ∗ ⊗ Im)

(
N−1∑
k=0

Sk ⊗ Ck
)

(F ⊗ Im)

=
N−1∑
k=0

(
F ∗SkF

)
⊗ Ck

=
N−1∑
k=0

W k ⊗ Ck

=
N−1∑
k=0

diag{w0Ck, w
kCk, w

2kCk, . . . , w
(n−1)kCk}

= diag{Ψ(w0),Ψ(w1),Ψ(w2), . . . ,Ψ(wn−1)}. (A.6)

Proposition A.0.3. The inverse of a block–circulant matrix is block–circulant.
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Proof. In case the inverse exists, then, by (A.6), it is

C−1
N = (F ⊗ Im)

(
diag{Ψ(w0)−1, Ψ(w1)−1, Ψ(w2)−1,

. . . , Ψ(wN−1)−1}
)
(N∗ ⊗ Im).

If we denote with Ek the diagonal matrix with a 1 at the k–th diagonal entry,

i.e.

Ek = diag{0, . . . , 0, 1, 0, . . . , 0}

since (S ⊗ Im)(F ⊗ Im) = (F ⊗ Im)(W ⊗ Im) while W−1 = W ∗, we get

(S ⊗ Im)C−1
N (S∗ ⊗ Im) = (F ⊗ Im)(W ⊗ Im)

×
(
n−1∑
k=0

Ek ⊗Ψ(wk)−1

)
(W−1 ⊗ Im)(F ∗ ⊗ Im)

= (F ⊗ Im)

(
N−1∑
k=0

Ek ⊗Ψ(wk)−1

)
(F ∗ ⊗ Im)

= C−1
N .

which, by Theorem A.0.1, concludes the proof.

120



List of Publications

International Journals

[J2] F. Carli, T. T. Georgiou, “On the Covariance Completion Problem

under a Circulant Structure”, IEEE Transactions on Automatic Control

(accepted for publication)

[J1] F. Carli, A. Ferrante, M. Pavon and G. Picci “A Maximum Entropy

Solution of the Covariance Extension Problem for Reciprocal Processes”

IEEE Transactions on Automatic Control (accepted for publication)

International Conference Proceedings

[C6] F. Carli, A. Ferrante, M. Pavon, G. Picci “A Maximum Entropy ap-

proach to the Covariance Extension Problem for Reciprocal Processes”

Proc. of Int. Symp. Mathematical Theory of Network and Systems,

Budapest, Hungary (5–9 July, 2010).

[C5] F. Carli, G. Picci “On the Factorization Approach to Band Extension of

Block-Circulant Matrices” Proc. of Int. Symp. Mathematical Theory

of Network and Systems, Budapest, Hungary (5–9 July, 2010).

[C4] F. Carli, T. T. Georgiou “On the Maximum Entropy Completion of

Circulant Covariance Matrices” Proc. of Int. Symp. Mathematical

Theory of Network and Systems, Budapest, Hungary (5–9 July, 2010).

121



Appendix A. Circulant Matrices

[C3] F. Carli, A. Ferrante, M. Pavon and G. Picci “A Maximum Entropy

solution of the Covariance Selection Problem for Reciprocal Processes”

A Celebration of the Field of Systems and Control: An international

symposium on the occasion of two milestones in the careers of Chris

Byrnes and Anders Lindquist, Stockholm, Sweden, (September 9–11,

2009).

[C2] G. Picci, F. Carli “Modeling and Identification of Reciprocal Processes”

In Proc. of the 48th IEEE Conference on Decision and Control, Shang-

hai, China (December 16–18, 2009).

[C1] G. Picci, F. Carli “Modelling and Simulation of Images by Reciprocal

Processes” Proc. of EUROSIM/UKSIM08, Cambridge, England (April

1–3, 2008).

122



Bibliography

[1] O.E. Barndorff-Nilsen. Information and Exponential families in Statis-

tica Theory. Wiley, New York, 1978.

[2] W.W. Barrett, C. R. Johnson, and M. Lundquist. Determinantal for-

mulation for matrix completions associated with chordal graphs. Linear

Algebra and Applications, 121:265–289, 1989.

[3] S. Bernstein. Sur les liaisons entre le grandeurs aleatoires. In Proc.

Intern. Congr. Math, pages 288–309, Zurich, Switzerland, 1932.

[4] J. R. S. Blair and B. Peyton. An introduction to chordal graphs and

clique trees. In A. George, J. R. Gilbert, and J. W. H. Liu, editors,

Graph theory and sparse matrix computation. Springer-Verlag, 1993.

[5] S. Boyd and L. Vanderberghe. Convex Optimization. Cambridge Uni-

versity Press, 2004.

[6] C. Bron and J. Kerbosch. Algorithm 475: finding all cliques of an

undirected graph. Commun. ACM, 16(9):575–577, 1973.

[7] C. Byrnes and A. Lindquist. Interior point solutions of variational prob-

lems and global inverse function theorems. International Journal of Ro-

bust and Nonlinear Control (special issue in honor of V.A.Yakubovich

on the occation of his 80th birthday), 17:463–481, 2007.

123



Bibliography

[8] D.G. Cantor and H. Zassenhaus. A new algorithm for factoring polyno-

mials over finite fields. Mathematics of Computation, 36:587–592, 1981.

[9] J. P. Carmichael, J. C. Massé, and R. Theodorescu. Processus gaussiens

stationnaires réciproques sur un intervalle. C. R. Acad. Sci. Paris Sér.

I Math., 295:291–293, 1982.

[10] S. C. Chay. On quasi-markov random fields. J. Multivariate Anal.,

2:14–76, 1972.

[11] I. Csiszar. I–divergence geometry of probability distributions and mini-

mization problems. The Annals of Probability, 3(1):146–158, 1975.

[12] J. Dahl, L. Vanderberghe, and V. Roychowdhury. Covariance selection

for non–chordal graphs via chordal embedding. Optimization Methods

and Software, 23:501–520, 2008.

[13] P. Davis. Circulant Matrices. John Wiley & Sons, 1979.

[14] P. Delsarte, Y. V. Genin, and Y. G. Kamp. Orthogonal polynomial

matrices on the unit circle. IEEE Trans. Circuits Systems, CAS 25:149–

160, 1978.

[15] A. Dembo, C. Mallows, and L. Shepp. Embedding nonnegative definite

Toeplitz matrices in nonnegative definite circulant matrices, with ap-

plication to covariance estimation. IEEE Trans. Information Theory,

IT-35:1206–1212, 1989.

[16] A.P. Dempster. Covariance selection. Biometrics, 28:157–175, 1972.

[17] J. L. Doob. Stochastic processes. Wiley Classics Library. John Wiley

& Sons Inc., New York, 1990. Reprint of the 1953 original, A Wiley-

Interscience Publication.

124



Bibliography

[18] H. Dym and I. Gohberg. Extension of band matrices with band inverses.

Linear Algebra and Applications, 36:1–24, 1981.

[19] P. Faure. Stochastic realization algorithms. In R. Mehra and D. Lain-

iotis, editors, System Identification: advances and case studies, pages

1–25. Academic Press, 1976.

[20] A. Ferrante, M. Pavon, and F. Ramponi. Further results on the

Byrnes-Georgiou-Lindquist generalized moment problem. In A. Ferrante

A. Chiuso and S. Pinzoni, editors, Modeling, Estimation and Control:

Festschrift in honor of Giorgio Picci on the occasion of his sixty-fifth

Birthday, pages 73–83. Springer-Verlag, 2007.

[21] R. Frezza. Models of Higher-order and Mixed-order Gaussian Recipro-

cal Processes with Application to the Smoothing Problem. PhD thesis,

Applied Mathematics Program, U.C.Davis, 1990.

[22] M. Fukuda, M. Kojima, K. Murota, and K. Nakata. Exploiting sparsity

in semidefinite programming via matrix completion i: general frame-

work. SIAM Journal in Optimization, 11:647–674, 2000.

[23] T. T. Georgiou and A. Lindquist. Kullback-Leibler approximation of

spectral density functions. IEEE Trans. Information Theory, 49:2910–

2917, 2003.

[24] I. Gohberg, Goldberg, and M. Kaashoek. Classes of Linear Operators

vol II. Birkhauser, Boston, 1994.

[25] R. Grone, C.R. Johnson, E. M. Sa, and H. Wolkowicz. Positive Defi-

nite Completions of Partial Hermitian Matrices. Linear Algebra and Its

Applications, 58:109–124, 1984.

[26] S. J. Haberman. The Analysis of frequancy data. Univ. Chicago Press,

1974.

125



Bibliography

[27] E.J. Hannan and M. Deistler. The Statistical Theory of Linear Systems.

Wiley, 1988.

[28] B. Jamison. Reciprocal processes: The stationary gaussian case. Ann.

Math. Stat., 41:1624–1630, 1970.

[29] B. Jamison. Reciprocal processes. Zeitschrift. Wahrsch. Verw. Gebiete,

30:65–86, 1974.

[30] B. Jamison. The Markov process of Schrodinger. Zeitschrift. Wahrsch.

Verw. Gebiete, 32:323–331, 1975.

[31] A. J. Krener. Reciprocal diffusions and stochastic differential equations

of second order. Stochastics, 24:393–422, 1988.

[32] A.J. Krener. Realization of reciprocal processes. In C.I. Byrnes, G.B. Di

Masi, and A. Kurshanskij, editors, Proc IIASA Conf. on Modeling and

Adaptive Control. Springer, 1986.

[33] A.J. Krener. Reciprocal processes and the stochastic realization problem

for acausal systems. In C.I. Byrnes and A. Lindquist, editors, Modeling

Identification and Robust Control, pages 197–211. North Holland, 1986.

[34] S. Kullback. Probability densities with given marginals. The Annals of

Mathematical Statistics, 39(4):1236–1243, 1968.

[35] S. L. Lauritzen. Graphical models. Oxford University Press, 1996.

[36] B. C. Levy and A. Ferrante. Characterization of stationary discrete-time

Gaussian reciprocal processes over a finite interval. SIAM J. Matrix

Anal. Appl., 24:334–355, 2002.

[37] B. C. Levy, R. Frezza, and A.J. Krener. Modeling and estimation of

discrete-time Gaussian reciprocal processes. IEEE Trans. Automatic

Control, AC-35(9):1013–1023, 1990.

126



Bibliography

[38] Anders Lindquist and Giorgio Picci. Realization theory for multivariate

stationary Gaussian processes. SIAM J. Control Optim., 23(6):809–857,

1985.

[39] P. Masani. The prediction theory of multivariate stochastic proceses, iii.

Acta Mathematica, 104:141–162, 1960.

[40] K. Nakata, K. Fujitsawa, M. Fukuda, M. Kojima, and K. Murota. Ex-

ploiting sparsity in semidefinite programming via matrix completion ii:

implementation and numerical details. Mathematical Programming Se-

ries B, 95:303–327, 2003.

[41] J. A. Sand. Four papers in Stochastic Realization Theory. PhD thesis,

Dept. of Mathematics, Royal Institute of Technology (KTH), Stockholm,

Sweden, 1994.

[42] J. A. Sand. Reciprocal realizations on the circle. SIAM J. Control and

Optimization, 34:507–520, 1996.

[43] E. Schrödinger. Uber die umkehrung der naturgesetze. Sitzungsber.

Preuss. Akad. Wiss. Berlin Phys. Math. Kl. 8, 9:144–153, 1931.

[44] E. Schrödinger. Sur la theorie relativiste de l’electron et l’interpretation

de la mecanique quantique. Ann. Inst. H. Poincare, 2:269–310, 1932.

[45] C.E. Shannon. A mathematical theory of communication. Bell System

Tech. Journal, 27:379–423, 623–656, 1948. Reprinted in: C.E. Shannon

, W. Weaver , The Mathematical Theory of Communication, Univ. of

Illinois, Press 1949.

[46] T. P. Speed and H. T. Kiiveri. Gaussian markov distribution over finite

graphs. The Annals of Statistics, 14(1):138–150, 1986.

127



Bibliography

[47] G. J. Tee. Eigenvectors of block-circulant and alternating circulant ma-

trices. Re. Lett. Inf. Math. Sci., 8:123–142, 2005.

[48] N. Wermut and E. Scheidt. Fitting a covariance selection model to a

matrix. algorithm as105. Appl. Statist., 26:88–92, 1977.

[49] P. Whittle. On the fitting of multivariate autoregressions and the ap-

proximate spectral factorization of a spectral density matrix. Biomet-

rica, 50:129–134, 1963.

[50] D.C. Youla and N.N. Kazanjian. Bauer-type factorization of positive

matrices and the theory of matrix polynomials orthogonal on the unit

circle. IEEE Trans. Circuits and Systems, CAS-25:57–65, 1978.

[51] P.W. Zehna. Invariance of maximum likelihood estimators. Annals of

Mathematical Statistics, 37:744, 1966.

128


