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“Ethical axioms are found and tested
not very differently from the axioms of science.

Truth is what stands the test of experience.”
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Abstract

The identification of linear second order models of mechanical systems has been

object of intensive research and of several papers in the last decades. In this thesis

the interest is focused on mechanical systems which can be described by a second

order vector model of the following form:

Mq̈ +Dq̇ +Kq = f (1)

where M and K are symmetric positive definite while D is only symmetric positive

semidefinite. All current identification techniques operate in discrete time. Noisy

data obtained by sampling the system must be used to estimate the continuous

time physical parameters M,K and D. Since identification operates in discrete

time one needs to convert the discrete time identified system into a continuous

time one. There are structural constraints that need to be imposed to obtain the

second order structure (2).

In short, the procedure is composed of three main steps:

1. Discrete-time Identification, mostly using subspace methods, from sampled

input-output data;

2. Implementation of a set of constraints which force the identified system to

the form (2);

3. Conversion from the discrete to a continuous model and conversion of the

relative system parameters.

The usual procedure assumes that the discrete time identified system is a

Zero-Order-Hold (ZOH) discretization of the underlying continuous time system.
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This assumption may lead to serious numerical problems, since the conversion

discrete-to-continuous (d2c) requires the computation of the matrix logarithm of a

2n× 2n matrix, which is well-known to be an ill conditioned problem resulting in

a serious amplification of the noisy errors in the discrete estimates.

The proposed solution to this problem is to introduce a new discretization

technique of the equations of motion of a mechanical systems introduced by

Veselov, and further developed by J.Marsden and co-workers. This technique

has been developed for general mechanical system and leads to discrete systems

characterized by a sort of “discrete mechanical structure”. Unlike the usual

discretization procedures familiar in control, e.g. ZOH, it can lead to linear algebraic

transformation formulas for the recovery of the continuous time parameters from

the discretized model.

In this thesis variational integrators are applied to linear second order mechanical

systems and it is shown that physically meaningful properties of the continuous-time

model, like passivity, are preserved in the discretization.



Sommario

L’identificazione di modelli di sistemi meccanici del secondo ordine è stata oggetto

di un’intensa attività di ricerca negli ultimi decenni. In questa tesi ci si focalizza

nei sistemi meccanici che si posso descrivere con un modello del secondo ordine del

seguente tipo:

Mq̈ +Dq̇ +Kq = f (2)

dove M e K sono matrici definite positive mentre D i solo semidefinita positiva.

Tutte le attuali tecniche di identificazione operano a tempo discreto. I dati rumorosi

ottenuti dal campionamento del sistema devono essere utilizzati per stimare i

parametri fisici del sistema a tempo continuo M,K e D. Poichè il processo di

identificazione opera a tempo discreto si rende necessaria una conversione del

sistema discreto identificato in uno a tempo continuo. Ci sono vincoli strutturali

che devono essere imposti per ottenere la struttura del secondo ordine (2).

In breve, la procedure si compone di tre parti principali:

1. Identificazione a tempo discreto, per lo pi metodi a sottospazi, dai dati

ingresso-uscita campionati;

2. Implementazione di un set di vincoli che forzi il sistema identificato alla forma

(2);

3. Conversione dal dominio di tempo discreto a quello continuo and conversione

dei relativi parametri del sistema.

La procedura classica prevede che il sistema identificato a tempo discreto sia ot-

tenuto per discretizzazione di tipo Zero-Order-Hold (ZOH) del sottostante modello

continuo. Quest’assunzione porta a gravi problemi di tipo numerico, poichè la
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conversione dal discreto al continuo (d2c) richiede il calcolo del logaritmo per una

matrice 2n× 2n. E’ noto che tale operazione comporta problemi di malcondiziona-

mento numerico che producono un amplificazione degli errori di stima nel sistema

discreto.

La soluzione proposta al problema è di introdurre una nuova tecnica di dis-

cretizzazione delle equazioni del moto per sistemi meccanici, introdotta da Veselov,

e successivamente sviluppata da J.Marden e dai suoi collaboratori. Questa tec-

nica è stata sviluppata per sistemi meccanici generici e porta a sistemi discreti

caratterizzati da una sorta di “struttura meccanica discreta”. Diversamente dalle

procedure di discretizzazione classiche, familiari nel mondo del controllo, e.g. ZOH,

tale metodo porta a una formula di trasformazione algebrica lineare per il recupero

dei parametri continui da quelli discreti.

Nella tesi gli integratori variazionali sono applicati ai sistemi meccanici lineari

del secondo ordine e verrà provato che nella discretizzazione vengono preservate

proprietà con intrinseco significato fisico del modello a tempo continuo, ad esempio

la passività.
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Chapter 1

Introduction and Problem

Statement

Of particular interest are systems which can be described by a second order vector

model of the following form:

Mq̈ +Dq̇ +Kq = f (1.1)

where M and K, both symmetric positive definite matrices in Rn×n, have the

interpretation of generalized mass (or inertia) and generalized stiffness coefficient

matrices respectively, while D ∈ Rn×n, D = D> is a linear (viscous) damping

coefficient which is at least positive semidefinite. The generalized forces f acting

on the system can be expressed as a linear function of a vector of independently

assignable generalized input forces u of dimension k ≤ n; namely

f = Lu

where the matrix L, which will be assumed to be known, describes the physical

locations at which the input forces u act on the system. Without loss of generality

it may be assumed that L is of full column rank; i.e.

rankL = k . (1.2)
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For simplicity and for mathematical convenience it will be assumed that a full set of

linear sensors is available to the experimenter; i.e. that all n degrees of freedom are

measured via linear sensors. In particular we shall assume that the measurement

equation is of the form y = Cq where C is a square invertible matrix, which is

clearly equivalent to assuming that the full generalized displacements vector q is

measured. The case in which the generalized velocities vector q̇, or n independent

linear combinations of the q, q̇ variables are measured, can be given an essentially

equivalent treatment. System (1.1) can also be represented in state space form; for

example defining

x := [q, q̇]>, (1.3)

one gets

ẋ =

[
0 I

−M−1K −M−1D

]
x+

[
0

M−1L

]
u

y =
[
I 0

]
x.

(1.4)

We shall comment later on the special (passive Hamiltonian) structure of this

realization which leads to the inverse second-order polynomial transfer function of

the model (1.1).

Throughout the thesis we shall assume that the system (1.1) with input u is

controllable. See [12] for a direct test of controllability/observability of second

order models of the type considered in this paper. Note that under our assumptions

the system is automatically controllable and observable and hence minimal. This

is a necessary condition for parameter identifiability

Now, system identification deals almost exclusively with discrete-time data and

discrete time models. Nevertheless in several areas of engineering, and especially in

mechanical or structural engineering, the estimation of physical parameters which

pertain to the underlying (physical) continuous time model of the type (1.1) is

very often required. A typical example is the estimation of the proper modes of

vibration of a mechanical structure. The proper modes are the eigenvalues of a

linear vector second order continuous time system, i.e. are solutions of an algebraic
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equation of the form:

det
(
Ms2 +Ds+K

)
= 0. (1.5)

It is a well-known fact that accurate information on these proper values and on

the associated proper vectors may be hard to get from an estimated discretized

system, no matter how accurate the estimates may be. The reason of this difficulty

may be attributed to the ill-conditioning of the discrete-to-continuous conversion

(see the next section for some details).

Moreover in the presence of noise, even with the use of anti-aliasing filters

(which must necessarily be approximated since the true bandwidth of the signal

is not known), oversampling has also the well-known effect of bringing in noise

alias in the estimates and further deteriorates the identification of the discrete-time

model.

Another difficulty with the inverse ZOH discretization is that it is highly non-

linear so that, even when the exponential is theoretically invertible, it does introduce

bias in the estimates of the continuous-time parameters, even when the discrete-time

parameters are unbiased and accurate. For this reason a linear (or “approximately

linear”) discrete-to-continuous conversion would be highly desirable1.

One may add that ZOH does not in general preserve the basic physical properties

of the underlying continuous system such as passivity, which may then be impossible

to recapture when transforming back the discrete to a continuous model. We are

in particular seeking transformations which preserve the second order input-output

structure of the type (1.1), which is indeed a basic characteristic of linear models

of fully observed mechanical systems (Newton law). In general a continuous state-

space realization obtained by the d2c routine from an identified discrete model (1.7)

of a mechanical system, say by standard subspace methods, will never possess the

passive-Hamiltonian structure which is necessary for the input-output relation of

the system to have the second-order form (1.1) and hence to allow for the recovery

of the physical parameters M, D, K. That this is not of purely academic interest

is witnessed by the interest in this problem in the recent mechanical engineering

literature, see e.g. [1, 16, 15] and the references therein.

1One may argue that the Euler discretization is a well known instance of linear conversion
map but unfortunately the Euler discretization is way too rough to be of use in most situations.
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Of course one may argue that one should use continuous-time identification

directly. Unfortunately according to the current literature on continuous time

identification, see e.g. [24, 7] and the references therein, the existing continuous-

time algorithms do not seem to be of much help for accurate physical parameters

identification. In many cases continuous-time identification algorithms eventually

end up to relay on logarithmic transforms, like inverting the relation z = exp{sh}
which turns out to be equivalent to the MATLAB d2c transformation. For the

reasons given above, these methods are not always reliable and should be avoided.

There is also a quite popular approach based on filtering the continuous time data

by a family of test functions [20], which may or may not be orthonormal. Besides

facing the problem of numerical integration for computing the inner products over

a long period of time, to reach reasonable accuracy these methods require the

computation of inner products of the signals with a large number of test functions.

This is so since each inner product plays eventually the role of a single discrete-time

sample value of the signal. To our knowledge, reliable continuous-time identification

methods which can be applied to concrete multivariable real-world problems seem

still to be missing. Progress still to be made in this area and for the time being we

may have to stick to discrete-time identification.

1.1 Continuous to Discrete conversion

The sampling of the continuous system gives a set of discrete data with sampling

time h

(f(k), q(k)) . (1.6)

Assume data are fitted, by some identification algorithm, by a discrete-time state

space model of the form

x(k + 1) =Fx(k) +Gf(k)

y(k) =Hx(k) + Jf(k) .
(1.7)

If h is short enough one can naturally imagine (1.7) to be related to an underlying

(unknown) continuous-time state space model by some discretization rule. A simple

example is the standard zero-order-hold (ZOH). The ZOH sampler transforms a



1.1 Continuous to Discrete conversion 5

continuous time system into a discrete time one by synchronously sampling the

output of the continuous system once the input signal is approximated by a piecewise

constant function on each sampling interval. The matrices that characterize the

transformation in the discrete state space form are

FZOH = eAT = L−1{(sI − A)−1}t=T ,

GZOH =

(∫ T

τ=0

eAτdτ

)
B = A−1(F − I)B,

HZOH = C,

JZOH = D.

(1.8)

The state and output signals turn out to be approximate discretizations of the

continuous counterparts and are exact discretizations only when the input is

actually a piecewise constant function of time. If the input function can be

well approximated by a function which is piecewise constant on each sampling

interval the (ZOH) sampler describes the relation between (1.7) and the underlying

continuous time model. The original parameters, say the matrices A and B of a

2n dimensional continuous time model, may then be recovered from estimates of

the parameters (F,G) of the discrete time model (1.7), by inverting the relations

F = expAh, G =
∫ h

0
expAs dsB. This is what is implemented in the d2c routine

in MATLAB. In certain circumstances this may however turn into a very ill-

conditioned problem. In particular the recovery of matrix A from the estimated F

involves the computation of the logarithm of F which may be a complex matrix

or, for a large sampling period, be undefined as requiring the inversion of the

exponential map in a region of the complex plane where it is not invertible. A

common belief is that the problem should be solvable by choosing a suitably high

sampling frequency, but actually it is easy to see that, even in the trivial example of

a scalar F subject to a perturbation δF , the relative error incurred when computing

A+ δA :=
1

h
log(F + δF ) is

δA

A
=

1

logF

δF

F

a similar formula holding in the matrix case, see [5, Formula 2.3]. Since for h→ 0

F → I, the condition number of computing A = 1
h

logF tends to infinity when
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h→ 0. This means that when the sampling frequency is very high, the effect of

unavoidable random errors on the estimates of F (and G) could be dramatically

amplified in computing A by the logarithmic transformation. See [5] and the

references therein. A deeper analysis of this problem will be given in the following

chapters.

The strategy to convert discrete time model into continuous time domain is

the nodal point in the estimation of continuous time model parameters. Giving

the above analysis some specific features of the desired conversion method can

detected:

� Simple, well-conditioned, possible linear conversion functions;

� Hamiltonian like discrete mechanical structure;

� Preservation of characteristic properties of the mechanical system, e.g. pas-

sivity.

The content of the thesis has the following layout:

1. It will be introduced a discretization technique of mechanical systems based

on the idea of variational integrators. This technique leads to linear conversion

formulas from a discrete identified model to the corresponding continuous

input-output model.

2. It will be shown that in an important special case the variational discretization

leads to a well-know continuous-to-discrete transformation used in system

and control, namely the Cayley-Tustin discretization. This discretization is

different from the usual periodic sampling (ZOH). This alternative sampling

technique will be discussed and some related computational problems will be

addressed.

3. The above technique will be used to attack the mechanical system iden-

tification from noisy discrete input-output data. As a preliminary step a

standard discrete-time subspace identification technique will be discussed and

used in order to supply good starting values to a successive Prediction Error

optimization-based algorithm.



1.1 Continuous to Discrete conversion 7

4. A refinement of the subspace identification estimates by a Prediction Error

algorithm which complies with the constraints of second order mechanical

structure will be described. This is the final step of the procedure.

5. Finally, some simulation results are shown and compared with the results

obtained by state of the art identification methods.
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Chapter 2

The Variational Integrators

approach to discretization

A novel twist to the discretization of mechanical systems has been provided by

the theory of variational integrators, see [29], and the recent work of J. Marsden

and co-workers, see e.g. [17]. These techniques seem to be fairly well known to

numerical analysts working with mechanical models but not so familiar to the

system and control community. The key idea is that the discrete equations of

motion should not be derived by attempting a direct discretization of the equations

(1.1) or (1.4) but rather derived by paraphrasing what happens in continuous time;

i.e. by making stationary a discrete action integral defined in terms of a suitable

discrete Lagrangian function. The (discrete) equations of motion should then follow

just like the Euler-Lagrange equations in continuous time. In short, the variational

integrators paradigm is to build from scratching a theory of Lagrangian Discrete

Mechanics.

In (continuous-time) Lagrangian mechanics we are given a Lagrangian function

L(q(t), q̇(t)) and external forces fL(q(t), q̇(t), t) and the equations of motion follow

from the Lagrange-d’Alembert principle, equivalent in the conservative case to the

stationary action principle. The Lagrange-D’Alembert principle states that the

trajectory of a mechanical system starting at time t0 at position q0 and arriving at
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time t1 at position q1 must satisfy the variational principle

δ

∫ t1

t0

L(q, q̇) dt+

∫ t1

t0

f(q, q, t) δq(t) dt = 0 (2.1)

for arbitrary variations δq(t), while holding the endpoints q0 and q1 of the curve

t 7→ q(t) fixed. This leads to the well-known forced Euler Lagrange equations(see

e.g. [17, p. 421]):

∂L

∂q
(q, q̇)− d

dt

(
∂L

∂q̇
(q, q̇)

)
+ fL(t) = 0 . (2.2)

For a quadratic Lagrangian,

L(q(t), q̇(t)) =
1

2
q̇>Mq̇ − 1

2
q>Kq (2.3)

and an external force composed by a dissipation force fD = −Dq̇ and the actual

(generalized) external force f(t):

fL(t) := −Dq̇(t) + f(t) , (2.4)

one obtains a linear second order vector differential equation of the form (1.1).

2.1 Brief review of variational integrators

theory

In order to mimic this procedure in discrete time one may first consider a discretiza-

tion {qk = q(kh) k ∈ [0, N ]} and a curve segment {qk,k+1(t) ; t ∈ [kh, (k + 1)h )}
between two configuration points, qk = q(kh) and qk+1 = q((k + 1)h), in the

configuration space Q ⊂ Rn, placed h units of time apart.

The discrete (exact) Lagrangian increment LEd (qk, qk+1, h) must contribute to

the action integral along the above curve segment. One defines the exact (forced)
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discrete Lagrangian and the exact discrete forces on that curve segment as:

LEd (qk, qk+1, h) :=

∫ (k+1)h

kh

L(qk,k+1(t), q̇k,k+1(t))dt , (2.5)

fE−d (qk, qk+1, h) :=

∫ (k+1)h

kh

fL(qk,k+1(t), q̇k,k+1(t))
∂qk,k+1

∂qk
(t)dt , (2.6)

fE+
d (qk, qk+1, h) :=

∫ (k+1)h

kh

fL(qk,k+1(t), q̇k,k+1(t))
∂qk,k+1

∂qk+1

(t)dt . (2.7)

where qk,k+1 is the solution of the forced Euler-Lagrange equations (2.2) with

endpoint conditions qk,k+1(kh) = qk and qk,k+1((k + 1)h) = qk+1. See [17, p. 427]

for details.

Consider then the following Discrete Lagrange-D’Alembert principle

δ
N−1∑
k=0

LEd (qk, qk+1, h)+

N−1∑
k=1

(
fE+(qk−1, qk, h) + fE−(qk, qk+1, h)

)
δqk = 0 (2.8)

where the variation δq(t) of a continuous curve is replaced by a discrete (finite)

sequence of variations {δqk}k=0,...,N , for arbitrary δqk’s. The variation is computed

with fixed end points.

The discrete variational principle leads to the (Exact) Discrete Euler-Lagrange

(EDEL) equations

D2L
E
d (qk−1, qk, h) + D1L

E
d (qk, qk+1, h)+

+ fE+(qk−1, qk, h) + fE+(qk, qk+1, h) = 0 . (2.9)

where Di stands for the partial derivative operator applied to the i-th argument

of the function on which it is acting. These equations should be interpreted as

an algorithm mapping the pair (qk, qk+1) ∈ Q×Q to the next configuration pair

(qk+1, qk+2) ∈ Q×Q, i.e.,

DEL : (qk, qk+1) 7→ (qk+1, qk+2) . (2.10)
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If it were possible to compute the integrals (2.5) explicitely, we would have a

discrete model which describes exactly the continuous dynamic at the discrete

time instants t = kh. In general this computation is not possible and we need

to use an approximation both for the discrete Lagrangian and for the discretized

external forces. These approximations are denoted Ld(qk, qk+1), f
+
d (qk, qk+1, k),

f−d (qk, qk+1, k) without superscripts, i.e:

Ld(qk, qk+1, h) ≈
∫ (k+1)h

kh

L(q(t), q̇(t))d , (2.11)

f−d (qk, qk+1, h) ≈
∫ (k+1)h

kh

f(q(t), q̇(t))
∂q

∂qk
(t)dt , (2.12)

f+
d (qk, qk+1, h) ≈

∫ (k+1)h

kh

f(q(t), q̇(t))
∂q

∂qk+1

(t)dt . (2.13)

It is remarkable that although many approximations are possible, the “stationary

action” principle leads in any case to Discrete Euler Lagrange Equations of a

standard form

D2Ld(qk−1, qk) +D1Ld(qk, qk+1) + f+
d (qk−1, qk, k) + f−d (qk, qk+1, k + 1) = 0 (2.14)

The specific form of the approximations depends on the specific discretization rule

used for approximating the integrals.

N.B.: The solution of the Discrete Euler Lagrange Equations derived from an

approximate Lagrangian will not any longer be equal to the true configuration

variable sampled at the discrete time instants t = kh. Now qk will just be an

approximation of the true q(kh). It is known [17] that in any case, when no external

forces are applied, the approximation of the flow preserves symplecticity but does

not preserve (generally speaking) energy.

2.2 Midpoint rule discretization

Probably the simplest way to approximate the Lagrangian and the external forces,

is by the so-called (forward) “midpoint rule” which defines the approximate discrete
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flow {qk} by the substitution

q ' qk + qk+1

2
, q̇ ' qk+1 − qk

h
(2.15)

in the (2.11), (2.12) and (2.13) it holds

Ld(qk, qk+1, hk, h(k + 1)) := hL

(
qk+1 + qk

2
,
qk+1 − qk

h

)
, (2.16)

f−(qk, qk+1, h k, h (k + 1)) :=
h

2
f

(
qk+1 + qk

2
,
qk+1 − qk

h
,
h k + h (k + 1)

2

)
, (2.17)

f+(qk, qk+1, h k, h (k + 1)) :=
h

2
f

(
qk+1 + qk

2
,
qk+1 − qk

h
,
h k + h (k + 1)

2

)
. (2.18)

In the quadratic Lagrangian (2.5) this leads to:

Ld(qk, qk+1) = h[(
qk+1 − qk

h
)>
M

2
(
qk+1 − qk

h
)− (

qk+1 + qk
2

)>
K

2
(
qk+1 + qk

2
)] .

(2.19)

As for the external forces (2.4), the midpoint rule discretization of the general exact

expressions (2.6), (2.7), yields1

f+
d (qk−1, qk, k) = −Dqk − qk−1

2
+
h

4
[f(h(k−1)) + f(hk))]

f−d (qk, qk+1,k+1) = −Dqk+1 − qk
2

+
h

4
[f(hk) + f(h(k+1))] .

By putting together the above equations with

D1Ld(qk, qk+1) = −Mqk+1 − qk
h

− h

2
K
qk+1 + qk

2
,

D2Ld(qk−1, qk) = M
qk − qk−1

h
− h

2
K
qk + qk−1

2
,

and rearranging the time index, we find the forced discrete Euler Lagrange equations

1Details of the approximation will be given in the Appendix.
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which are the discrete-time counterpart to system (1.1):(
M

h
+
hK

4
+
D

2

)
qk −

(
2M

h
− hK

2

)
qk−1

+

(
M

h
+
hK

4
− D

2

)
qk−2 = fd(k) (2.20)

where

fd(k) :=
h

4
[ f(hk) + 2f(h(k−1)) + f(h(k−2)) ] , (2.21)

is an equivalent discrete force. Introducing the discrete mass, damping and stiffness

matrices,

Md :=
M

h
+
hK

4
+
D

2
, (2.22a)

Dd := −[
2M

h
− hK

2
] , (2.22b)

Kd :=
M

h
+
hK

4
− D

2
, (2.22c)

equation (2.20) can be rewritten in a convenient second-order form as

Mdqk +Ddqk−1 +Kdqk−2 = fd(k) , (2.23)

where fd(k) is defined by (2.21) or, equivalently, by

fd(k) = L
h

4
[u(hk) + 2u(h(k−1)) + u(h(k−2)) ] := Lud(k) , (2.24)

the matrix L being the same as in the continuous-time model. Naturally u(k)

denotes the sampled value of the input force at t = kh. Note that the computation

of the discrete forcing function {fd(k)} (or ud(k)) requires adjacent samples at

times k, k− 1 and k− 2 of the sampled external force f (or u) so the input-output

model (2.23) has zeros (or numerator dynamics), contrary to the continuous time

model (1.1). Note that the matrices Md, Kd and Dd are symmetric, hence they

need a reduced number of parameter to be completely described. Moreover if h is
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small enough we have

Md > 0 Md = MT
d , (2.25a)

Kd > 0 Kd = KT
d , (2.25b)

Dd < 0 Dd = DT
d . (2.25c)

The relations (2.22) are linear and invertible. By inverting them, the original

continuous time parameters (M,D,K) can be easily recovered from the parameters

of the discretized model (2.20) by means of the linear relations

M :=
h

4
[Md +Kd −Dd] , (2.26a)

D := Md −Kd , (2.26b)

K :=
1

h
[Md +Kd +Dd] . (2.26c)

These are nice linear relations much in the spirit of what we wanted to achieve.

Naturally, it must be kept in mind that the solution of (2.20) provides only an

approximation of the exact flow t 7→ q(t) sampled at t = kh. The approximation

error for the midpoint rule is of the order of O(h2) see [17, p. 402]. More about

this will be said in the next section. Use of more complicated approximation

schemes than (2.15) can provide approximations of the exact flow of arbitrarily

high order, see [8]. We can conclude that the (2.22) and (2.26) define linear

invertible continuous-to-discrete conversion for linear mechanical systems.
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Chapter 3

The Midpoint discretization and

the Cayley transform

A discrete system with a reduced number of parameters has been described, and a

discrete ”‘mechanical structure”’ has been pointed out. However some questions

need to be answered before using it for identification purpose. It is not clear, in

fact, what kind (if any) of sampling operation on the continuous time data (q, u)

generated by the model (1.1) would lead to the discrete difference equation (2.23).

Still, is the conversion operation better conditioned then the ZOH? In the following

a look into these problems is proposed.

It is a remarkable fact that discretization by the midpoint rule (2.15) applied

to a general linear time-invariant system is equivalent to the well-known Cayley

transformation. Relations with the Cayley transform seem to have been noticed

before; e.g. see [2], but in a rather different context.

3.1 Cayley transformation

Starting from the simple integrator’s differential equation

ẋ(t) = u(t) (3.1)
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and applying the trapezoidal rule with a time step length h, the trivial following

steps ∫ h

0

ẋdt =

∫ h

0

udt (3.2)

x(h)− x(0) =

∫ h

0

udt (3.3)

x(h)− x(0) =
h

2
(u(h) + u(0)) (3.4)

lead to an approximation of integral action in the time step. Passing through the

zeta transformation one can write

1

s
=
h

2

z + 1

z − 1
. (3.5)

Inverting, the well known expression that defines the bilinear transformation map

(also named Tustin transformation [11, 9] ) is obtained

s =
2

h

z − 1

z + 1
. (3.6)

It is known that the state space transformation corresponding to the Tustin

transform (3.6) on transfer function is the so-called Cayley transform. Hence

applying the trapezoidal rule to the standard state space model

ẋ = Ax+Bu

y = Cx+Du
(3.7)

the Cayley transform can be derived. In the interval [0, h] one can write

x(h)− x(0) ' h

2
[Ax(h) +Bu(h) + Ax(0) +Bu(0)] (3.8)

= hA
x(h) + x(0)

2
+ hB

u(h) + u(0)

2
, (3.9)
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which leads to a discrete linear equation:(
I − h

2
A

)
x̄((k + 1)h) =

(
I +

h

2
A

)
x̄(kh)

+
hB

2
(u((k + 1)h) + u(kh)) (3.10)

where x̄(kh) is an approximation of the sampled original continuous state x(kh).

Note that x̄(kh) 6= x(kh) even if the input function is piecewise-linear on each

sampling interval (in which case the integration of u by the trapezoidal rule would

be exact). Now, I − h
2
A is certainly invertible if h is small enough and we can

solve the equation for x̄((k + 1)h). Defining a corresponding approximate output

by ȳ(kh) := Cx̄(kh) +Du(kh) and the “midpoint rule” sequences

u 1
2
(kh):=

u((k+1)h)+u(kh)

2
, ȳ 1

2
(kh):=

ȳ((k+1)h)+ȳ(kh)

2
(3.11)

the discretized state space model is derived, i.e. the Cayley transform of (3.7){
x̄((k + 1)h) = A 1

2
x̄(kh) +B 1

2
u 1

2
(kh)

ȳ 1
2
(kh) = C 1

2
x̄(kh) +D 1

2
u 1

2
(kh)

(3.12)

with the matrices

A 1
2

=

(
I − hA

2

)−1(
I +

hA

2

)
B 1

2
=h

(
I − hA

2

)−1

B , (3.13)

C 1
2

=C

(
I − hA

2

)−1

, D 1
2

=
h

2
C

(
I − hA

2

)−1

B +D .

It’s interesting to note that the system (3.12) describes also the relation from u(kh)

and ȳ(kh). In this case the state is defined by

x∗(hk) =

(
I − hA

2

)
x̄(hk)− hB

2
u(hk) (3.14)

and the system {
x∗((k + 1)h) = Acx

∗(kh) +Bcu(kh)

ȳ(kh) = Cc
∗x(kh) +Dcu(kh)

(3.15)
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has the same matrices of (3.12)

Ac = A 1
2
, Bc = B 1

2
, Cc = C 1

2
, Dc = D 1

2
. (3.16)

The just given relations lead to the following proposition.

Proposition 3.1.1. Variational integration by the midpoint rule (2.15) applied to

the linear mechanical system (1.1) coincides with the Cayley-Tustin discretization.

In other words, the difference equation (2.23) with numerator polynomial defined

by (2.24) acting on the input f(k), is the input-output counterpart of the Cayley

transform (3.13) applied to any (minimal) state space realization of (1.1).

Proof. Let us show that the Tustin transform (3.6) applied to the transfer function

of (1.1) produces the discrete transfer function of the difference equation (2.23).

Denote

G(s) := [Ms2 +Ds+K]−1; (3.17)

then it is immediate to check that

G(s)−1|s= 2
h

z−1
z+1

= M
4

h2

(z − 1)2

(z + 1)2
+D

2

h

z − 1

z + 1
+K

= [Mdz
2 +Ddz +Kd] [In

h

4
(z2 + 2z + 1)]−1 , (3.18)

which is precisely the inverse transfer function of the model (2.20), i.e.(
M

h
+
hK

4
+
D

2

)
qk −

(
2M

h
− hK

2

)
qk−1

+

(
M

h
+
hK

4
− D

2

)
qk−2 = fd(k)

where

fd(k) :=
h

4
[ f(hk) + 2f(h(k−1)) + f(h(k−2)) ] ,

.

It is remarkable that the spurious zeros in the Tustin-discretized transfer

function1 of the system (1.1) are produced by the midpoint discretization (2.21) of

1These are the analog of the Euler-Frobenius polynomials for ZOH discretization, [26].
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the external force. This observation will be useful later on.

Remark 1. Going back to the question posed at the beginning of this section, we

shall now address the problem of how one may compute the signal qk.

Denote by T (f) the Tustin transform of a continuous time signal f and let Gc(z)

be the Tustin transform of the transfer function G(s); i.e. the discrete transfer

function of (3.15). Since it must apparently be true that

T (q) = Gc(z)T (u)

and since the discrete input function in (3.15) is the ordinary sampled input

u(k) ≡ u(kh) (and not the Tustin transform thereof), the signal qk is not equal to

the Tustin transform of the continuous-time flow q(t). On the other hand forcing

the input function u(k) = Z−1 {T (u)} it must be true that qk = Z−1 {T (q)}.

Practical schemes for computing the Tustin transform are discussed in the

literature. See e.g. [21, 28]. These schemes are however computationally demanding.

It is well-known that for a wide class of continuous-time functions, for h →
0 the Tustin discretization becomes arbitrarily close to the ordinary sampling

discretization [9] (and in fact both signals tend to the exact discretization qE).

Equivalently, when h is chosen small enough the approximation error of the Cayley-

Tustin discretization will be of the same order of magnitude of that of the ZOH

transform. We shall compare approximation errors later on.

Right now, we are mostly interested in comparing the relative error amplification

(conditioning) of the inverse transforms (Md, Dd, Kd) 7→ (M,D,K) with that of

the ZOH discretization.

3.2 Ill-conditioning of discrete to continuous

transformation

In the section 1.1 a rough analysis of the ill-conditioning has been shown; this gave

an intuition about the ill-conditioning issue using the ZOH conversion method.

What happens with the just found variational methods? Here a simulative analysis

is proposed with the aim to describe the situation in which the ill-conditioning is
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visible, comparing the two different methods.

Consider a scalar second order mechanical system

q̈ +
d

m
q̇ +

k

m
q =

1

m
f (3.19)

and its state space form

ẋ = Ax+Bu

q = x
A =

[
0 1

− k
m
− d
m

]
, B =

[
0
1
m

]
. (3.20)

The interest is focused on the discrete to continuous conversion. The analysis is

based on measuring the amplification of a perturbation on the discrete model, in

the conversion to the continuous domain. Note that on the contrary of the ZOH

the midpoint conversion is applied directly on the matrices (Md, Kd, Dd) and not

on the state space form. This requires a different treatment for the 2 methods and

the comparison will result to give a partial information. However the linearity of

the variational map suggests the possibility of a complete and quite simple analysis

of the ill-conditioning. ZOH sampling is essentially based on logarithmic function

and an analytic analysis is really difficult (see [5]), therefore only a simulation

result will be shown. The procedure to extract a measure of the ill-conditioning

can be summurized by the following points:

1. Pick the discretization of (3.20);

2. Add a perturbation on the parameters. Note that for ZOH means to perturb

all the state space matrices.

3. Convert to continuous time and measure the “distance” from the original

parameter.

In order to give a fair comparison the sampling time must be chosen as multiple

of the in the bandwidth of the system. Hence, given

ω2
n :=

k

m
, 2ζωn :=

d

m
, (3.21)
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pick ζ < 1, as for most mechanical systems, and compute the 3 dB bandwidth

ωB := ωn

√
1− 2ζ2 +

√
4ζ4 − 4ζ2 + 2, (3.22)

Now set sampling frequencies and sampling time

ωi := iωB, hi :=
2π

ωi
i = 0, 1, 2, 3.

3.2.1 ZOH

The following procedure describes how to obtain a simulated characterization of

the ill-conditioning of the ZOH based on model (3.20).

1. Compute {Fi, gi} := c2d {A, b} , for i = 0, 1, 2, 3.

2. On each entry of Fi, gi add Gaussian errors with standard deviation equal

to 5 % of the Frobenius norm of F (pretending subspace method is used to

identify them). Get 50 samples of

F̃i = Fi + δF, g̃i := gi+ δg (3.23)

3. Compute

d2c
{
F̃i, g̃i

}
:= A+ δAi, b+ δbi (3.24)

and take the sample averages δAi, δbi, where

δAi =

√√√√ 1

N

N∑
k=1

((Ai)k − A).2 N = 50,

δbi =

√√√√ 1

N

N∑
k=1

((bi)k − b).2 .

The operator .2 is the square computed element-wise.

4. Compute
‖δAi‖
‖A‖ ,

‖δbi‖
‖b‖ , i = 0, 1, 2, 3. (3.25)
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Figure 3.1: Relative error on the matrices A and B compared with
1

‖log(Fi)‖

using Frobenius norms.

Figure 3.1 shows the result using the ZOH discretization compared with the

condition number of the logarithm that is in this simple scalar case proportional to

1

‖log(Fi)‖
.

3.2.2 Conditioning of the Midpoint Rule transformation

Define Γ and Γd as

Γ =

MK
D

 ,Γd =

Md

Kd

Dd

 (3.26)
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and the linear operator T

T =


1
h
I h

4
I 1

2
I

1
h
I h

4
I −1

2
I

−2 1
h
I h

2
I 0

 , (3.27)

where I is the identity matrix of proper dimensions. The inverse of T is, in

accordance with 2.26,

R = T−1 =


h
4
I h

4
I −h

4
I

1
h
I 1

h
I 1

h
I

I −I 0

 . (3.28)

With this definition the map (M,K,D) 7→ (Md, Kd, Dd) becomes

Γd = T Γ , (3.29)

and the inverse

Γ = RΓd . (3.30)

With this reformulation the ill-conditioning issue can be as a well known linear

algebra problem, i.e the computation of the condition number of a matrix. In our

specific the problem it is the maximum amplification for a perturbation on Γd,

namely δΓd, through the linear operator R. Formally

κ(R) = max
δΓd,Γd

‖R−1Γd‖/‖R−1δΓd‖
‖Γd‖/‖δΓd‖

. (3.31)

Using the SVD decomposition the solution to the maximization is immediate. R

can be written using the classical notation as

R = UΣV T . (3.32)

The maximum of (3.31) is reached when Γd is the right singular vector relative

to the smallest singular value (last row of V ) and δΓd is the right singular vector

relative to the biggest singular value (first row of V ). Hence the condition number
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becomes function of the singular values

κ(R) = κ(h) =
σmax(R)

σmin(R)
, (3.33)

where it’s highlighted that the interest is on the dependence by the sampling time

h.

In the scalar case the matrices become

R =


h
4

h
4
−h

4
1
h

1
h

1
h

1 −1 0

 , Γ =

mk
d

 ,Γd =

md

kd

dd

 . (3.34)

and the singular value of R can be computed explicitly giving the set

σ(R) =

1/8
√

2

√
48 + 3 h4 +

√
2304− 224 h4 + 9 h8

h2
,
√

2,

1/8
√

2

√
48 + 3 h4 −

√
2304− 224 h4 + 9 h8

h2

 . (3.35)

Therefore the condition number is

κ(h) =
σmax(R)

σmin(R)
=

1/8
√

2
√

48+3 h4+
√

2304−224 h4+9 h8

h2

1/8
√

2
√

48+3 h4−
√

2304−224 h4+9 h8

h2

∝ 1

h2
(3.36)

This result points out that the ill-conditioning of the midpoint rule may be even

worse than the ZOH. But some more information can be extracted from the decom-

position computing U and V . They can be written regardless the normalization
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as

V =


1/2 −8−1/2 h4−1/2

√
2304−224 h4+9 h8

h4−16
−1 1/2 −8−1/2 h4+1/2

√
2304−224 h4+9 h8

h4−16

1/2 −8−1/2 h4−1/2
√

2304−224 h4+9 h8

h4−16
1 1/2 −8−1/2 h4+1/2

√
2304−224 h4+9 h8

h4−16

1 0 1


(3.37)

U =


1 0 1

1/8 48+3 h4+
√

2304−224 h4+9 h8

h2 − 3/4 h2 0 1/8 48+3 h4−
√

2304−224 h4+9 h8

h2 − 3/4 h2

0 1 0

 .
(3.38)

Now it is interesting to note that for h → 0 the singular vectors become really

simple. When normalized these become

V0 =


1√
3
− 1√

2
− 1√

6
1√
3

1√
2
− 1√

6

1√
3

0 −
√

2
3

 U0 =

0 0 1

1 0 0

0 1 0

 . (3.39)

Remark 2. This means that if δΓd = [δmd, δkd, δdd] is proportional to [ 1√
3

1√
3

1√
3

]T ,

say α[ 1√
3

1√
3

1√
3

]T , and Γd = [md, kd, dd] = [− 1√
6
− 1√

6

√
2
3

]T , δΓ = [δm, δk, δd]

is ακ(h)[ 0 1 0 ]T , that is actually

δk ∝ α

h2
.

Reasoning in the same way it holds:

δd ∝ α

h
δm ∝ α

Concluding this theoretical analysis, the parameter k is shown to be the most

affected by the disturbance. On the other hand ill-conditioning on m is actually

close to zero.
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Figure 3.2: Ill-conditioning with midpoint method on the 3 parameters
m,d,k

3.2.2.1 Relative errors in simulation

As in the subsection 3.2.1 a simulation procedure is developed for the sake of

validation of the theoretical analysis just given. Remembering the steps proposed,

in this case the c2d conversion is made by the linear operator T and the disturbances

are applied directly on the discrete parameters md, kd and dd. Then, going back to

the continuous domain through R, one can compute

‖δmi‖
‖m‖ ,

‖δdi‖
‖d‖ ,

‖δki‖
‖k‖ , i = 0, 1, 2, 3. (3.40)

In Figure 3.2 is shown the ill-conditioning for the 3 parameters (m, d, k). The

parameter k is the most affected as seen in the theoretical analysis and the slope

of the corresponding line is in accordance with the result in (3.36). Note that m is

not affected by the ill-conditioning as expected.

In general the linear map (Md, Kd, Dd) 7→ (M,K,D) cannot be considered



3.3 Preservation of passivity under midpoint sampling 29

globally better conditioned than the log function. However, the different structure

of the midpoint model leads to different conditioning behavior for the matrices

M,K,D introducing a new element to be considered. Finally it’s important to

note that it is not known what happens using the midpoint transformation in

identification since it is not known how the estimation errors are distributed in

relation to the singular vectors of R. In short an algorithm has to be pointed out

and then tested to verify the effectiveness in using the midpoint conversion method.

3.3 Preservation of passivity under midpoint

sampling

There is a sizable literature on passivity of sampled (i.e. discretized) continuous

linear systems, see [4, 25, 19]. Even if there is a clear axiomatic definition of

passive discrete linear (and nonlinear) systems, it is not immediately clear how to

do sampling in such a way as to preserve passivity. For example, it is well known

that with the standard definition of sampled input-output functions, neither Euler

method nor the Zero-Order-Hold sampling in general preserve passivity, see [10].

Now assume that the linear system (3.7) is passive; i.e. dim y(t) = dimu(t) and

there exist a quadratic energy function V (x) = 1
2
x>Px such that

V (x(t))− V (x(0)) ≤
∫ t

0

y>(s)u(s) ds . (3.41)

It is a basic fact of linear systems theory [30] that dissipativity is equivalent to

the existence of symmetric positive semidefinite matrices P solutions of the linear

matrix inequality (LMI) [
A>P + PA PB − C>
C −B>P D +D>

]
≤ 0 (3.42)

which is in turn equivalent to the fact that the transfer function of a passive system:

G(s) := C(sI − A)−1B +D should be positive-real, see [30] .

Lossless systems are an important special case. For these systems the inequality

in (3.41) is replaced by an equality sign. It can be shown that, under natural
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minimality assumptions for the realization (A,B,C), the LMI (3.42) has a unique

solution P = P> which is strictly positive definite. This function is a bona-fide

total energy of the system. Linear port-controlled Hamiltonian systems (see [27])

are a special case: they are lossless systems with an Hamiltonian structure. It is

shown in [27] that the energy function of these systems is in fact the Hamiltonian

function.

Passivity for discrete linear systems is defined as for the continuous-time case.

A discrete linear system,

x(k + 1) = Ad x(k) +Bd u(k)

y(k) = Cd x(k) +Dd u(k)
(3.43)

is passive if there exist a quadratic energy function V (x) = 1
2
x>Px such that

V (x(k + 1))− V (x(k)) ≤ y(k)>u(k) . (3.44)

It is shown that a linear discrete system in the form (3.43) is passive if and only if

the discrete linear matrix inequality (DLMI):[
A>d PAd − P A>d PBd − C>d
B>d PAd − Cd B>d PBd − (Dd +D>d )

]
≤ 0 (3.45)

admits symmetric positive semidefinite solution matrices P . The discrete LMI

condition can be generalized to nonlinear systems as reported for example in [13].

The following fact was apparently first discovered by P. Faurre in 1973 and can

be found in an unpublished INRIA report [6].

Theorem 3.3.1 (P. Faurre). Consider a (minimal) linear system (3.7) and its

discrete-time counterpart obtained by the Cayley transform formulas (3.13). Then

one system is passive if and only if the other is, and the energy functions are the

same. Moreover the set of solution of the DLMI is the same of the LMI for the

continuous time model.

Note that this statement per se does not tell how the inputs and outputs of the

continuous system should be “sampled” in order to preserve passivity nor what
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relation the discrete state of the sampled system has with the continuous state.

The midpoint rule interpretation of the bilinear transformation given above answers

these questions.

In particular, the midpoint rule variational integrator is a passive discrete me-

chanical system which is conservative (lossless) if and only if the original continuous-

time system was.

In the discrete domain the lossless systems, in analogy to the continuous case,

are characterized by the equality in (3.44). The definition of energy in this context

is not straightforward but through the discrete Lagrangian a possible definition is

E =
∂Ld
∂h

(3.46)

In variational integrator theory this quantity has an important role and is related

to the simplectic structure that is guaranteed for each variational integrator. In

particular it is proved that every variational integrator of a lossless system has a

bounded energy that oscillates around the value of the original system. This is a

crucial property in the astronomical field for which the classical integrators does

not preserve a coherent energy behavior.

It is interesting to note that the midpoint rule applied to a lossless linear

mechanical system behaves peculiarly, because it does not present the classical

oscillation but the energy is perfectly conserved.
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Chapter 4

Identification

Assume one collects sampled data measurements from our continuous system over

a suitably long (discrete) time interval T

{q(k) ; k = 1, 2, . . . , T} , {u(k) ; k = 1, 2, . . . , T} (4.1)

with sampling period h. From these data one wants to estimate the mechanical

parameters (M,D,K) of the underlying model (1.1). Following the idea exposed

in chapter 1 and in chapter 3, a natural identification procedure should be in three

steps:

1. Estimates the samples of the Tustin transform of u(t) and q(t) (Remark 1);

2. Estimate the parameters (Md, Dd, Kd), of the discrete-time variational model

(2.23);

3. Recover the corresponding estimates of the continuous time parameters by

using the inverse “input-output midpoint transform” (2.26);

Before discussing this however, a reasonable model needs to be set up for describing

the actual sampled data (4.1). For this reason initially the ZOH model derived

by sampling (1.1) is discussed and later on the identification of the discrete-time

variational model (2.23) will be taken up.
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4.1 Identification of the ZOH discretization

Since the measurements of q(k) will invariably be affected by noise, a stochastic

model needs to be set up. Assuming additive white measurement errors y(k) =

q(k) + w(k) (w(k) white stationary) the input-output ZOH discretization of (1.1)

can be rewritten as a second order stochastic vector difference equation model of

the form

y(k) = A1y(k − 1) + A2y(k − 2) +B1f(k − 1) +B2f(k − 2) + e(k) (4.2)

where the process {e(k)} is given by e(k) = w(k) − A1w(k − 1) − A2w(k − 2),

which is colored. Since f(k) acts on the system through the one step delay in the

state equation, in this model there is no direct coupling (no B0f(k) term) between

the external force input and the output variable. In essence the model (4.2) is a

so-called output error (OE) model whose predictor depends non-linearly on the

parameters and gives rise to a nonlinear estimation problem.

For OE models a PEM identification method which can incorporate various

constraints on the system parameters such as symmetry of the various matrices etc.

is the “grey box” IDGREY algorithm described in the MATLAB System Identification

Toolbox guide [14]. This algorithm however is very sensitive to noise and to the

choice of initial values for the parameters and tends to get easily stuck into local

minima. To obtain reasonable results accurate initial parameter estimates are

absolutely necessary.

In order to compute good initial estimates a natural choice is to run a preliminary

subspace algorithm, say the n4sid algorithm, on the data (4.1), using ordinarily

sampled input-output data (y(k), f(k)) or (y(k), u(k)). This will yield a discrete

innovation model of the type

x(k + 1) = Fx(k) +Gf(k) +Ke(k)

y(k) = Hx(k) + e(k) . (4.3)

Since for OE models the state-output dynamics of the stochastic and deterministic

subsystems is the same and we are interested only in the estimation of the “deter-

ministic” subsystem, the estimated Kalman gain K and the innovation covariance
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matrices in the n4sid function, can be forced to zero [14]. Also, since the number

of degrees of freedom is known a priori, the order estimation is not necessary

and the algorithm can be pre-set to return a 2n-dimensional discrete realization

(H, F, G) of the deterministic subsystem. Let us note that in the algorithm the

direct coupling term Jf(k) is forced to be zero.

Now consider the model (2.23) describing the variational midpoint approxima-

tion of q(k). By the argument exposed in Remark 1, the ideal input and output

data set should be the Tustin transformation of the continuous time signals u(t)

and y(t). Let ȳ(k) = Z−1 {T (q)} and f̄(k) = Z−1 {T (u)}.
Actually using the filtered input f̄d defined by (2.24) with f̄ , avoids including

the spurious zero polynomial h
4
(1 + 2z−1 + z−2) in the input-output model. In this

case, the state space model for ȳ(k) has the form

x(k + 1) = Fx(k) +Gf̄d(k) (4.4)

ȳ(k) = Hx(k) + Jf̄d(k) + e(k) . (4.5)

and correspond s to a difference equation

ȳ(k) = Â1ȳ(k − 1) + Â2ȳ(k − 2) + Jf̄d(k) + e(k) (4.6)

where,

Â1 := −M−1
d Dd , Â2 := −M−1

d Kd , J := M−1
d . (4.7)

Using the filtered input f̄d defined by (2.24), the model (4.6) is of the purely

autoregressive (AR) type with J 6= 0 since in the midpoint approximation model

(2.23) there is a direct coupling between fd(k) and qk. In fact J must actually be

equal to M−1
d .

Naturally one should account for the fact that the signals ȳ(k) and f̄(k) are

not available. In fact reliable estimate of Tustin transformation using sample

data are difficult to get. A possible procedure based on a cascade of filtering

operations is discussed in [21, p. 688-690] but this approach is not reliable and is

very time-consuming. However the difference between (f, y) and (f̄ , ȳ) is visible

only with increasing h thus the issue of reconstructing the Tustin transformation

can be ignored if h is very small.
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Now we present a procedure to compute a preliminary estimate of the parameters

Md, Dd, Kd from the parameters of the ZOH model (4.2) once the latter is identified

by the subspace algorithm. To this end let us recall the following result; see e.g.

[18].

Lemma 4.1.1. A necessary and sufficient condition for a 2n dimensional discrete

state space model (1.7) with dim y(k) = n, to have an input-output relation described

by a second order vector difference equation is that

rank

[
H

HF

]
= 2n (4.8)

in other words, all the observability indices of the system must be equal to 2.

In practice, for our ZOH system identified by a subspace method, the matrix

Ω :=

[
H

HF

]

will almost always be of rank 2n (invertible). Using Ω−1 as a similarity transforma-

tion one gets the block-companion form

ΩFΩ−1 =

[
0 I

F21 F22

]
, HΩ−1 =

[
I 0

]
where the blocks F21, F22 can be computed by solving the equation 1

HF 2 =
[
F21 F22

]
Ω .

Hence the deterministic identified ZOH model can be transformed into the form

xd(k + 1) =

[
0 I

F21 F22

]
xd(k) +

[
G1

G2

]
f(k) (4.9)

y(k) =
[
I 0

]
xd(k) . (4.10)

1This is often called the “shift-invariance” condition in the identification literature.
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Note that the transformed G matrix, equal to

Ĝ := ΩG =

[
HG

HFG

]
(4.11)

will in general not have the structure necessary to yield a second order input-output

representation of the form (4.2). In general the input-output difference equation

of the system, instead of being of the AR-type as in (2.23), will be of a special

ARMAX form,

y(k) = A1y(k − 1) + A2y(k − 2) +B1f(k − 1) +B2f(k − 2) (4.12)

with B1 = Ĝ1 and B2 = Ĝ2 − F22Ĝ1 as it follows from the general expressions

B1 = Ĝ1 − F22J, B2 = Ĝ2 − F21J − F22Ĝ1 (4.13)

by setting J = 0. Now for h→ 0 the ZOH model (4.12) and the deterministic part

of (4.6) should approximately coincide. This means that

[I + A1z
−1 + A2z

−2]−1[B1z
−1 +B2z

−2] '

[I +M−1
d Ddz

−1 +M−1
d Kdz

−2]−1 [M−1
d

h

4
(1 + 2z−1 + z−2)] (4.14)

In particular the gain matrices of the corresponding transfer functions2 should

be the same and equal to the continuous time gain, K−1, of (1.1). The discrete

mechanical parameters (Md, Dd, Kd) can then be obtained by solving

J = M−1
d = B1 +B2, M−1

d Kd = −F21, M−1
d Dd = −F22 . (4.15)

These relations yield approximate estimates of (Md, Dd, Kd), which can be used

as initial values for the parameter updating recursion of the IDGREY algorithm. Of

course the smaller h the better the approximation.

The deterministic model structure for the IDGREY algorithm is taken to be a

block-companion state space structure of the type (4.9) parametrized directly in

2Obtained by evaluating the two members of (4.14) at z = 1.
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terms of the unknown parameters (Md, Dd, Kd),

x̄(k + 1) =

[
0 I

F21 F22

]
x̄(k) +

[
0

G

]
fd(k + 2) (4.16)

ȳ(k) =
[
I 0

]
x̄(k) , (4.17)

where the filtered input fd is shifted two steps ahead in order to get a zero direct

coupling term in the output equation. The model parameters are

F21 := −M−1
d Kd , F22 := −M−1

d Dd , G := M−1
d . (4.18)

clearly in a one-to-one relation with (Md, Dd, Kd). It is easy to check that this

model corresponds to an input-output difference equation of the type (4.6) with

parameters given by (4.7).

One should keep in mind that the parameter estimates are subjected to two

kinds of errors. The first is the unavoidable stochastic estimation error while the

second is the error due to the (deterministic) model approximation by the midpoint

rule inherent in the variational integration approach. In brief we shall refer to

this last source of errors as being “due to the Cayley transform”. Obviously this

(relative) error increases with h as coarse sampling generally corresponds to bad

approximation by the trapezoidal rule. The first kind of error on the discrete

parameters, depends on the measurement noise variance and on a (information)

matrix which describes the sensitivity of the model class to parameter variations.

In the transition from discrete to continuous systems this error can be amplified

by a bad conditioning of the discrete-to-continuous transform as discussed in

the previous chapters. The aim in the following is to prove, that despite the

ill-conditioning , for a wide range of sampling intervals the linear inverse midpoint

discrete-to-continuous transform (2.26), induces in general smaller relative errors

on the continuous parameters than the logarithmic transform. In the next section,

the procedure will be compared with the continuous time state of the art procedure

proposed in [16] in a couple of simulation examples.
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4.2 The Identification algorithm in 5 steps

Given the previous analysis the whole algorithm can be summarized into the

following sequence ( scheme on Figure 4.1).

Approximation

IdGrey

n4sid

{f(k), q(k)}

Σd

M̂ init
d , K̂init

d , D̂init
d

M̂d, K̂d, D̂d

M̂, K̂, D̂

d2c[Midpoint]

Initialization

Initial condition

Structured PEM

Figure 4.1: Scheme of Identification procedure

1. Are given the sampled data {f(k), q(k)} from the continuous time mechanical

linear system (1.4) with sampling time h. The data are assumed to be good

approximation of the ideal Tustin transformation of {f(t), q(t)};

2. Perform n4sid over the data {f(k), q(k)} and get the system (4.3); (Σd in

the Figure). This system has no specific property or structure;

3. Exploit the condition (4.14) and compute the matrices M̂ init
d , K̂init

d , D̂init
d ,

that are initialization point for the constrained optimization procedure based

on PEM. Note that they are rough estimation of the Md and Dd, Kd;

4. Initialize the Idgrey function with the just found parameters and perform

identification using the data set {fd(k), q(k)} where fd(k) is (2.24). The so

obtained M̂d, D̂d, K̂d are the best estimates for the ”‘discrete mechanical”‘

parameter for the model ((2.23)).
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5. Now let’s use the midpoint transformation and convert in the continuous

time domain. The estimation of the continuous time parameters M̂, D̂, K̂

are by construction symmetric.



Chapter 5

Results

The results are shown comparing the variational integrator procedure with a

continuous time identification based on the d2c conversion. The latter should be

applied to a discrete-time state-space model which we have chosen to identify by

the subspace algorithm implemented in the identification toolbox (n4sid). For

comparison, we need to extract a second order model of the type (1.1) from the

continuous state space model obtained in this way. Unfortunately, for this to be

possible certain Hamiltonian-like structural conditions should be imposed on the

identification algorithm. This, although in principle possible in the continuous

version of IDGREY, slows down the algorithm to the extent to make it practically

unusable. The structural conditions need to be forced upon the identified system

by a suitable “projection” procedure such as that devised by [15, 1] found in the

literature. Such a procedure is summarized by the following points (Figure 5.1):

1. Are given sampled data {f(k), q(k)} from a continuous time linear system;

2. Perform a subspace identification method, say a n4sid, over the data

{f(k), q(k)} and get the system Σd;

3. Convert the system Σd into Σ̂c in the continuous domain using the Matlab

function d2c;

4. Manipulate Σ̂c in order to obtain a second order continuous model of the

system, following the algebraic procedure described in [15]. This produces an

estimation of the continuous time parameters M̂, D̂, K̂.
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IdGrey

d2c[ZOH]

Proj. [Lus]

n4sid

{f(k), q(k)}

Σd

M̂ init
d , K̂init

d , D̂init
d

M̂d, K̂d, D̂d

Σ̂c

M̂, K̂, D̂

M̂ , K̂, D̂

d2c[Midpoint]n4sid + d2c

Variational Approach

Figure 5.1: Scheme of the two compared identification procedures:
n4sid + d2c is taken from [15, 16]

.

5.1 Simulation setting

In the previous chapter a specific procedure has been pointed out but the specific

implementation requires some more descriptions.

The first step of the algorithm is the sampling of a continuous time signal that is

output of a continuous time input-output model. In computed aided simulations

this situation cannot be handled directly , except when the analytic description of

signals is known. In order to approximate the ideal situation a very little simulation

time Ts is defined and a ZOH discretization of the continuous time mechanical

system (1.4) is used. In such a way the approximated solutions of the linear

differential equation are good enough to consider this discretization a hidden layer

in the following description.

A well known difficulty in the identification simulation is the choice of the input

sequence and the present case includes even more difficulties. First of all the input

signals need to be chosen in the continuous domain though the identification is
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discrete time based. This fact, and the multiple identification steps required for

the proposed procedure, do not allow to use any canonical identification inputs

(PBRS or whatever), even if they are proved to be optimal in a sense. Assume the

input signal u(k) is a PBRS that necessarily has to be interpreted in continuous

time using the ZOH principle with time step h. In this framework the relation

from u(kh) and y(kh) is perfectly modeled by the ZOH discretization of (1.4) with

time step h. Hence, in noise free conditions with enough samples, the identification

of such a data-set gives the same result regardless the values of h, i.e. there is no

need to reduce the sampling time to increase performances. In fact no ill-condition

affects the parameters thanks to the noise free condition, and there is no error in

the input approximation. This is far from a realistic situation and may compromise

the comparison of the two procedures. Since the real setting is a motivation for this

study a different choice has to be taken. In this direction the input signal is built

using an actuation time step Ta which is multiple of the generic sampling time h.

Then the actuation signal is chosen as a white noise Gaussian sequence interpolated

cubicly. The greater is h and worse the signal is described by a ZOH approximation

The cubic interpolation of the actuation signal has the aim to reproduce a realistic

situation in which a real actuator works without discontinuities. It’s important to

note that, using such a formulation, there are not discretization rules that produce

models that describe the data, even if without added noise.

5.2 Simulation results

In the following a comparison of the described identification methods is presented.

To show the quality of the identification, relative errors from the original continuous

time parameters are computed for different values of h. Moreover a Monte Carlo

method is applied for each h in order to avoid sample variations. The order of the

model is expected to be a crucial element hence two different models taken from

literature are proposed .
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5.2.1 3× 3 system

Consider the example 1 of [1]. A three point masses system (three degrees of

freedom) is simulated moving along a fixed direction in space, with parameters

M =

0.8 0.0 0.0

0.0 2.0 0.0

0.0 0.0 1.2

 , K =

 4.0 −1.0 −1.0

−1.0 4.0 −1.0

−1.0 −1.0 4.0



D =

 0.4 −0.1 −0.1

−0.1 0.4 −0.1

−0.1 −0.1 0.4

 .

Three sensors measure and record the sampled displacements of the three point

masses with independent (white) measurement noise with SNR 15. Note that such

a noise mimics a difficult realistic condition. An array of 3×N = 3× 6000 data

points is collected and used for system identification. The sampling time interval is

chosen to be the most significant range. The results are shown in Figures 5.2, 5.3,

5.4 and 5.5 and the relative errors are presented for the matrices M̂ , K̂, D̂ and Â.

Formally, usign the matrix M as example, the relative error is computed as

‖δM‖
‖M‖ , (5.1)

where

M̂ = M + δM. (5.2)

The matrix Â is estimated by reconstruction using the state space model 1.4.

It is apparent that the relative error with the variational integrator method is

much smaller than that obtained by the n4sid + d2c procedure. Note how, with

this last procedure, the error clearly blows up when h→ 0 in accordance with the

ill-conditioning of the c2d conversion. Note that the estimation of the matrix D

takes a great advantage from the proposed method, contrary to the estimation of

the composed matrix A. This last discrepancy suggests that the global system A

final observation concerns the lower limit of the sampling time. As described in the
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previous chapter the initialization for the constrained PEM is crucial, and if the

preliminary n4sid does not give a reliable result, the PEM cannot be performed.

This defines a limit in the application of the discrete mechanical structure and

suggests to search for some constraining procedures based on subspace methods.
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Figure 5.2: Comparing relative error of M̂ based on data of the 3× 3
model.
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Figure 5.3: Comparing relative errors of K̂ based on data of the 3× 3
model.
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‖
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Figure 5.4: Comparing relative errors of D̂ based on data of the 3× 3
model.

0.004 0.00875 0.0135 0.01825 0.023

0

0.016

0.032

0.048

0.064

0.08

h

‖δ
A
‖

‖A
‖

 

 
n4sid+c2d

Variational Approach

Figure 5.5: Comparing relative errors of Â based on data of the 3× 3
model.

5.2.2 8× 8 system

The second model is taken from [1] and has order 8 (In appendix A.5). Simulations

are performed exactly in the same way as before, changing only the range of
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sampling times in which the relative errors are observed. The use of a model with a

high order is an interesting test for the algorithm proposed because the advantage

in the reduced number of parameters is expected to increase. In this more critical

condition the peculiarities of midpoint approach will be better shown. First of all

in Figures 5.6, 5.7, 5.8 and 5.9 the results of an identificaiton over 6000 samples

and a 20dB added noise are reported. The graphs show a similar behavior than in

the 3× 3 model, and, observing the values of the relative errors, it is even more

clear the advantage in using the midpoint approach. In particular in the estimation

of matrix D a 5% error is obtained against the 20% of the unstructured approach.
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Figure 5.6: Comparing relative errors of M̂ based on data of the 8× 8
model.
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Figure 5.7: Comparing relative errors of K̂ based on data of the 8× 8
model.
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Figure 5.8: Comparing relative errors of D̂ based on data of the 8× 8
model.
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Figure 5.9: Comparing relative errors of Â based on data of the 8× 8
model.

5.2.2.1 Ill-conditioning consequences in the variational approach

In section 3.2 it has been shown and proved that the midpoint discretization is

ill-conditioned but there is no evidence of this in the results shown up to now. In

order to check these two apparently contrasting facts, a simulation with an exact

initialization of the PEM procedure has been performed. In such a way the lower

bound on the sampling time is avoided and the sampling time range is extended.

Figures 5.10, 5.11, 5.12 and 5.13 show the results obtained in the critical condition

of SNR equal to 8dB and a very small sample time. It is very interesting to note

the accordance with the analysis of the section 3.2. The matrix M is completely

insensitive to the ill-conditioning problem and the estimation increases its accuracy

with decreasing h. The other parameters, on the contrary, present a degradation

of the relative errors similar to the ones of the unstructured approach described

above.



50 Results

0.0001 0.000325 0.00055 0.000775 0.001
0

0.08

0.16

0.24

0.32

0.4

h

‖δ
M

‖
‖M

‖

Figure 5.10: Relative error of M̂ based on data of the 8× 8 model with
variational approach. The PEM is initialized exactly.
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Figure 5.11: Relative error of K̂ based on data of the 8× 8 model with
variational approach. The PEM is initialized exactly.
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Figure 5.12: Relative error of D̂ based on data of the 8× 8 model with
variational approach. The PEM is initialized exactly.
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Figure 5.13: Relative error of Â based on data of the 8× 8 model with
variational approach. The PEM is initialized exactly.

5.2.2.2 Model error with increasing h

The last open problem, more times addressed in the thesis(see Remark (1)), concerns

the consequences of approximating the Tustin transformation with the sampled

signals. The midpoint structure model does not fit the data exactly and with
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increasing values of h the parameters estimation deteriorates. In Figures 5.14 and

5.15 the relative errors are shown in a time sampling range that includes greater

value of h for the most significants matrices identified in M and D. The SNR is

here very low, equal to 8dB. A gradual increase of the relative error is evident for

the matrix M at the point that the old procedure gives a better result. For the

matrix D the good quality of the estimation is confirmed.
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Figure 5.14: Comparing relative errors of M̂ based on data of the 8× 8
model. The model error is visible.
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Figure 5.15: Comparing relative errors of M̂ based on data of the 8× 8
model. The model error is not visible.
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Chapter 6

Conclusion

In this thesis the variational integrator theory has been recovered and applied for

the first time in the mechanical identification field. This powerful tool defines a

natural way to discretize continuous time mechanical systems, conserving many

of their properties in the discrete domain. Exploiting this prerogative, a new

discretization procedure for the second order Lagrangian equations of a linear

mechanical systems has been described and a discrete mechanical structure has

been defined.

The proposed procedure is based on a rather elementary discretization rule (the

midpoint rule) but more elaborate variational discretizations are possible which

lead to approximation errors of higher order than O(h2). On the other hand this

simple approximation gives a transformation function that is linear. The use of

these higher order schemes has not been explored and is left to future investigations.

Note that in general also non linear identification can be performed using this kind

of approach.

The ill-conditioning of the linear operator that defines the time domain con-

version, has been analyzed and a peculiar behavior has been detected. A different

error amplification has been observed for the three matrices M,K and D; this

evidence has underlined the tricky nature of the continuous to discrete conversion.

However the simplicity of the conversion function and the reduced parameters

discrete model are proven to be effective properties.

The simulation results have shown a great advantage in using the proposed
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algorithm, mostly in the extreme condition of the classical approach.

Two main limits are found and narrow the range of applications of the algorithm:

� The necessity of an initialization step before the constrained optimization;

� The necessity to estimate the Tustin transform of continuous time signal by

means of sampled data for accurate result with greater h.

These give the stimuli for future extensions and enhancements. A new procedure

completely based on subspace methods should solve the initialization problem

skipping the curse of the non linear optimization. Also exploiting the principle

described in [21] to obtain a discrete version of the filtering procedure, could lead

to estimate accurately the Tustin transform.

Also the proposed identification procedure should possibly be completed with

order estimation.



Appendix A

A.1 Equivalence of the step-invariant response

discretization and ZOH

Want to prove that the discretization method named step-invariant response [22]

for a piece wise constant input u(t) is equivalent to the classical c2d conversion

(ZHO). The step-invariant response discretization is characterized by (A.1).

H(z) =
Z {y(kh)}
Z {u(kh)} = (1− z−1)Z

{
L−1

{
H(s)

s

}}
(A.1)

On the other hand the c2d conversion is defined w.r.t the standard state space

form (A,B,C,D) in (A.2).

x(k + 1) = eAhx(k) + (eAh − I)A−1Bu(k);

y(k) = Cx(k),
(A.2)

Proof. To prove the equivalence we can apply the step-invariant transformation to

the continuous time system with transfer function :

G(s) = C (sI − A)−1B. (A.3)
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Hence

(
1− z−1

)
Z

{
L−1

{
G(s)

s

}}
= Z

{
C
(
eAt − I

)
A−1B

}
=
(
1− z−1

)
CA−1

(
I − z−1eAh

)−1
B − C

(
I − z−1I

)−1
A−1B

= C
(
I − z−1I

) ((
I − z−1eAh

)−1 −
(
I − z−1I

)−1
)
A−1B

= C
((
I − z−1eAh

)−1 − z−1
(
I − z−1eAh

)−1 −
(
I − z−1eAh

) (
I − z−1eAh

)−1
)
A−1B

= z−1C
(
eAh − I

) (
I − z−1eAh

)−1
A−1B

= z−1C
(
I − z−1eAh

)−1 (
eAh − I

)
A−1B,

(A.4)

That is exactly the transfer function of (A.2). In the proof we exploit that

(
I − z−1eAh

)−1 (
eAh − I

)
=
(
eAh − I

) (
I − z−1eAh

)−1
, (A.5)

and that

AeAh = eAhA. (A.6)

A.2 More on Discrete Euler-Lagrange (DEL)

equations with forcing

This is taken from [23]. Consider the extended action functional S(q(·), t(·)) defined

(for strictly increasing function t : [s0, s1]→ [t0, t1]) as

S(q(·), t(·)) =

∫ s1

s0

L(q(s), q′(s)/t′(s)) t′(s)ds . (A.7)
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Its first variation can be computed as follow

δS = δ

∫ s1

s0

L (q(s), q′(s)/t′(s)) t′(s)ds

=

∫ s1

s0

{[
∂L

∂q
(q, q′/t′) δq +

∂L

∂q̇
(q, q′/t′) δq′/t′ − ∂L

∂q̇
(q, q′/t′) q′δt′/(t′)2

]
t′

+L (q, q′/t′) δt′
}
ds

=

∫ s1

s0

(
∂L

∂q
(q, q′/t′)− d

ds

∂L

∂q̇
(q, q′/t′)

1

t′

)
δq t′ds+

∂L

∂q̇
δq

∣∣∣∣s1
s0

+

∫ s1

s0

d

ds

(
∂L

∂q̇
(q, q′/t′)

q′

t′
− L (q, q′/t′)

)
1

t′
δt t′ds

+

(
L (q, q′/t′)− ∂L

∂q̇
(q, q′/t′)

q′

t′

)
δt

∣∣∣∣s1
s0

. (A.8)

Now, let qE(t, q0, q1, t0, t1, u(·)) be the solution of the forced Euler-Lagrangian

equations that starts from q0 at time t0 and arrives in q1 at time t1 under the

influence of the (generalized) force u(·). We have

δ

∫ t1

t0

L(qE(τ), q̇E(τ))dτ +

∫ t1

t0

u(τ) δq(τ) dτ = 0 . (A.9)

Define the exact discrete Lagrangian LEd as

LEd (q0, q1, t0, t1, u(·)) := S(qE(t, q0, q1, t0, t1, u(·))) (A.10)

and compute its partial derivative with respect to q0, q1, t0, and t1. From the

expression of the first variation of S we get

∂LEd
∂q0

(q0, q1, t0, t1, u(·)) = −
∫ t1

t0

u(τ)
∂qE(τ)

∂q0

dτ − ∂L

∂q̇
(q0, q̇0) (A.11a)

and

∂LEd
∂q1

(q0, q1, t0, t1, u(·)) = −
∫ t1

t0

u(τ)
∂qE(τ)

∂q1

dτ +
∂L

∂q̇
(q1, q̇1) . (A.11b)
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where q̇0 := d
dt
qE(t, q0, q1, t0, t1, u(·))|t=t0 and q̇1 := d

dt
qE(t, q0, q1, t0, t1, u(·))|t=t1 .

Remark 3. From equations (A.11a) and (A.11b), it is straightforward to derive

the forced DEL equations presented Marsden and West 2001. Indeed, we have

−∂L
∂q̇

(qE(t1), q̇E(t1)) =
∂LEd
∂q0

(q1, q2, t1, t2, u(·)) +

∫ t2

t1

u(τ)
∂qE(τ)

∂q0

dτ . (A.12a)

∂L

∂q̇
(qE(t1), q̇E(t1)) =

∂LEd
∂q1

(q0, q1, t0, t1, u(·)) +

∫ t1

t0

u(τ)
∂qE(τ)

∂q1

dτ . (A.12b)

Summing up the two equations above, one gets the desired result, i.e.,

D2L
E
d (q0, q1, t0, t1, u(·)) + D1L

E
d (q1, q2, t1, t2, u(·))+

fE+
d (q0, q1, t0, t1, u(·)) + fE−d (q0, q1, t0, t1, u(·)) = 0 (A.13)

where

fE+
d (q0, q1, t0, t1, u(·)) :=

∫ t1

t0

u(τ)
∂qE(τ)

∂q1

dτ , (A.14a)

fE−d (q1, q2, t1, t2, u(·)) :=

∫ t2

t1

u(τ)
∂qE(τ)

∂q0

dτ . (A.14b)

A.3 Discretization of the external forces

It is here shown how, starting from

fE+
d (q0, q1, t0, t1, f(·)) :=

∫ t1

t0

f(τ)
∂qE(τ)

∂q1

dτ , (A.15a)

fE−d (q1, q2, t1, t2, f(·)) :=

∫ t2

t1

f(τ)
∂qE(τ)

∂q0

dτ . (A.15b)

one arrives at the approximations h
4
[f(h(k−1))+f(hk))] and h

4
[f(h(k))+f(h(k+1))].

Consider the exact trajectory qE(t; q0, q1, f(·)) in the interval t ∈ [t0, t1]. This
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trajectory satisfies the boundary conditions

qE(t0; q0, q1, f(·)) = q0, qE(t1; q0, q1, f(·)) = q1

and hence

∂

∂q0

qE(t0; q0, q1, f(·)) = Id,
∂

∂q1

qE(t0; q0, q1, f(·)) = 0

∂

∂q0

qE(t1; q0, q1, f(·)) = 0, ,
∂

∂q1

qE(t1; q0, q1, f(·)) = Id

Now to approximate ∫ t1

t0

f(τ)
∂qE(τ)

∂q0

dτ (∗)

one can choose

(t1 − t0)/2× (f(t0)
∂

∂q0

qE(t0; q0, q1, f(·)) + f(t1)
∂

∂q0

qE(t1; q0, q1, f(·)))

which, based on the previous expressions for the derivatives, is equal to

(t1 − t0)/2× f(t0).

A “midpoint rule” approximation of (*) is

(t1 − t0)× ((f(t0) + f(t1))/2× (
∂

∂q0

qE(t0; q0, q1, f(·)) +
∂

∂q0

qE(t1; q0, q1, f(·)))/2)

which leads to

(t1 − t0)× (f(t0) + f(t1))/4 .

This is the formula we wanted to justify.
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A.4 Relative errors measured on estimation of

mechanical parameters

The analysis computed in the section 3.2 does face the ill-conditioning of the

logarithmic function in the state space form. No words are spent for the the

propagation of the errors after the projection used in the (n4sid + d2c) (see ??).

In this direction the step 3 and 4 of subsection 3.2.1 are replaced with:

4. Compute

d2c
{
F̃i, g̃i

}
= Ãi, b̃i := A+ δAi, b+ δbi. (A.16)

Then, with the same algebraic technique used in the identification proce-

dure [15], manipulate Ãi, b̃i and recover estimation of original mechanical

parameters. Thus we have m̃i, d̃i, k̃i and we can compute

δmi =

√√√√ 1

N

N∑
k=1

((mi)k −m)2 N = 50

and the same for δdi and δki.

5. Compute
‖δmi‖
‖m‖ ,

‖δdi‖
‖d‖ ,

‖δki‖
‖k‖ , i = 0, 1, 2, 3. (A.17)

The result in Figure A.1 show that, the relative error is propagated on the three

parameters in the same way. The relative errors amplification different for the

parameters, shown in the theoretical analysis of the midpoint conversion is a

peculiarity thereof.
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A.5 Matrices of the 8× 8 system

M =



100 0 0 0 0 0 0 0

0 100 0 0 0 0 0 0

0 0 100 0 0 0 0 0

0 0 0 100 0 0 0 0

0 0 0 0 100 0 0 0

0 0 0 0 0 100 0 0

0 0 0 0 0 0 100 0

0 0 0 0 0 0 0 100


(A.18)

K =



27071.1 0 0 0 −10000 0 −3535.5 −3535.5

0 17071.1 0 −10000 0 0 −3535.5 −3535.5

0 0 27071.1 0 −3535.5 3535.5 −10000 0

0 −10000 0 17071.1 3535.5 −3535.5 0 0

−10000 0 −3535.5 3535.5 27071.1 0 0 0

0 0 3535.5 −3535.5 0 17071.1 0 −10000

−3535.5 −3535.5 −10000 0 0 0 27071.1 0

−3535.5 −3535.5 0 0 0 −10000 0 17071.1


(A.19)

D =



136.4 0 0 0 −50 0 −17.7 −17.7

0 86.4 0 −50 0 0 −17.7 −17.7

0 0 136.4 0 −17.7 17.7 −50 0

0 −50 0 86.4 17.7 −17.7 0 0

−50 0 −17.7 17.7 136.4 0 0 0

0 0 17.7 −17.7 0 86.4 0 −50

−17.7 −17.7 −50 0 0 0 136.4 0

−17.7 −17.7 0 0 0 −50 0 86.4


(A.20)



References

[1] M. De Angelis, H. Lus, R. Betti, and R. W. Longman. Extracting physical

parameters of mechanical models from identified state-space representations.

Journal of Applied Mechanics, 69(5):617–625, 2002.

[2] Mark A. Austin, P. S. Krishnaprasad, and Li-Sheng Wang. Almost poisson

integration of rigid body systems. Journal of Computational Physics, 107(1):105

– 117, 1993.

[3] M. Bruschetta, G. Picci, and A. Saccon. Discrete mechanical systems: Second

order modelling and identification. In Proceedings of the 15th IFAC Symposium

on System Identification, pages 456–461, July 6 2009.

[4] R. Costa-Castello and E. Fossas. On preserving passivity in sampled-data

linear systems. In American Control Conference, 2006, page 6. IEEE, 2006.

[5] Luca Dieci and Alessandra Papini. Conditioning and pad approximation of

the logarithm of a matrix. SIAM J. Matrix Anal. Appl., 21:913–930, February

2000.
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[15] H. Luş, M. De Angelis, and R.W. Longman. Constructing second-order

models of mechanical systems from identified state space realizations. Part I:

theoretical discussions. Journal of Engineering Mechanics, 129:477, 2003.
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