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Abstract

This Ph.D. thesis is devoted to Statistical Process Control (SPC) methods

for monitoring over time the stability of a relation between two variables

(profile). Very often in literature the functional form of the relation is as-

sumed to be known, whereas in this work we concentrated on generic and

unknown relations which have to be estimated with the usual nonparametric

regression techniques. The original contributes are two, presented in chap-

ters 2 and 3 respectively. In Chapter 1 we make a brief overview on the

topic in order to make you become familiar with these specific problems of

Statistical Process Control (SPC) applications and we introduce you to the

original parts of this work. In Chapter 2 we envelope and compare five new

control charts for monitoring on-line unknown general, and not only linear,

relations among variables over time under the assumption of the normality

of the errors; these charts combine in an original way the following tech-

niques: self-starting methods, useful to drop the distinction between Phase

I and Phase II of the analysis; very known multivariate charting schemes

as MEWMA and CUSCORE; nonparametric testing techniques as wavelet

methods and kernel linear smoothing. In Chapter 3, instead, we construct a

test statistic useful to check with a completely nonparametric procedure the

stability of a process retrospectively, thus off-line. Both second and third

chapters are structured in the following way: brief literature review; frame-

work and model considered in our study; simulation study; a section with

some useful complements on the topics and relative research carried out;

conclusion and suggestions for future research.
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Sommario

Questa tesi è dedicata ai metodi per il Controllo Statistico della Qualità

(CSQ) per il monitoraggio della stabilità nel tempo della relazione tra due

variabili (profilo). Spesso in letteratura si assume nota la forma funzionale

della relazione, viceversa in questo lavoro ci si è concentrati su relazioni

generiche ed ignore e quindi da stimare con le usuali tecniche di regres-

sione non parametrica. I contributi originali sono due, presentati nei capi-

toli 2 e 3 respectively. Nel Capitolo 1 presentiamo una breve panoramica

dell’argomento in modo da far prendere familiarità al lettore con questi prob-

lemi specifici delle applicazioni del Controllo Statistico della Qualità (CSQ)

e introdurlo alle parti originali di questo lavoro. Nel Capitolo 2 sviluppiamo

e confrontiamo cinque nuove carte di controllo per il monitoraggio on-line di

relazioni ignote generiche, e non solo lineari, tra variabili sotto l’assunzione

di normalità degli errori; queste carte mettono insieme in modo originale le

seguenti tecniche: metodi self-starting, utili per eliminare la distinzione tra

Fase I e Fase II dell’analisi; alcune carte di controllo multivariate ben note

come MEWMA e CUSCORE; tecniche non parametriche per la verifica di

ipotesi come metodi wavelet o il lisciamento lineare con il metodo del kernel.

Nel Capitolo 3, invece, costruiamo una statistica test utile per verificare con

una procedura completamente non parametrica la stabilità di un processo in

maniera retrospettiva, quindi off-line. Sia il secondo che il terzo capitolo sono

strutturati nel modo seguente: breve revisione della letteratura; contesto e

modello considerati in questo studio; simulazioni; una sezione con alcuni

complementi utili sugli argomenti e relativa ricerca effettuata; conclusione e

suggerimenti per la ricerca futura.
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Chapter 1

Introduction

1.1 Overview

In most Statistical Process Control (SPC) applications, it is assumed that

the quality of a process or product can be adequately represented by the dis-

tribution of a univariate quality characteristic or by the general multivariate

distribution of a vector consisting of several correlated quality characteristics.

In many practical situations, however, the quality of a process or product is

better characterized and summarized by a relation between a response vari-

able and one or more explanatory variables. Profile monitoring is used to

understand and to check the stability of this relation over time. At each sam-

pling stage, one observes a collection of data points that can be represented

by a curve (or profile). In some calibration applications, the profile can be

adequately represented by a simple straight-line model, while in other ap-

plications more complicated models are needed, involving nonlinear profiles

and the use of nonparametric techniques.

Lots of interesting works about profile monitoring are summarized in two

useful review papers (Woodall et al., 2004; Woodall, 2007) and in a recent

book (Noorossana et al., 2011). Most of work has been focused in linear

profile monitoring, whereas less work has been done in nonlinear and even

less in general/nonparametric profiles.
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In this profile monitoring framework, the so-called Self-Starting (SS)

control schemes (see for example Hawkins & Maboudou-Tchao (2007) and

Capizzi & Masarotto (2010b)) are very useful; they consist in transforming

the original data in a proper way such that we get rid of the estimation of the

parameters of the In-Control (IC) process: this is a good attempt to update

traditional control schemes, which are usually designed with the assumption

that the IC parameters are exactly known. Self-starting control schemes, in-

stead, drop the traditional distinction between a retrospective analysis phase

(Phase I), where one has to be very accurate to check statistical control

and establish control limits, and a prospective monitoring phase (Phase II)

for testing process stability as new samples are collected, and this allows us

to avoid adding a random element (the estimation of the IC parameters in

Phase I) to the Run Length (RL) distribution, the random variable describ-

ing when a control chart signals an out-of-control situation, and to use all

the data immediately to update the parameter estimates and simultaneously

check for Out-of-Control (OC) conditions.

In general for Phase I lots of IC observations are needed to estimate ac-

curately the parameters of the IC distribution of the process, a fortiori in

presence of a profile, where even more parameters are unknown, in particu-

lar when we do not know its shape and we use a nonparametric approach.

Therefore, self-starting control schemes are favored in particular: (1) when

early OC production is costly; (2) when there is considerable delay between

production units; and (3) when samples sufficiently large to approximate

control chart performance with the true parameters are unavailable.

Therefore in the first part of this thesis we want to consider only self-

starting charting schemes and we propose and compare five new control

charts for monitoring general, and not only linear, relations among variables

over time; these charts combine self-starting methods, very known multi-

variate charting schemes as MEWMA and CUSCORE and nonparametric

testing techniques. This work refers to general profiles and its original idea

is just to try to use together self-starting charting schemes to get rid of the
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in-control parameters and nonparametric techniques, such as wavelet trans-

forms and kernel linear smoothing, to synthesize the information about the

relation among the response and the explanatory variables.

Self-starting control charts are thus very useful, but sometimes it is nec-

essary to keep the distinction between Phase I and Phase II and in SPC it is

crucial to check the stability of a process in Phase I. Even here, some methods

which do this in case of a known relation (linear or not linear) are already

existing. Therefore, along the lines of the first part, we would like to propose

a new method completely nonparametric, able to assess the stability of a

general and unknown relation among variables. This new method is actually

a multivariate version of an already existing method, recently proposed by

Capizzi & Masarotto (2012), which tries to make us realize if, in Phase I,

a general profile is stable or not. Furthermore this method will provide an

interesting statistical tool to make some diagnostics in case of instability of

the process, that is to try to understand where the process has started to go

out of control.

1.2 Main Contribution of the Thesis

In our first study the reference model used for the profile data in our first

study is the following simple multivariate Gaussian change-point model:

yt = µ(x) + δ(x)I[τ,+∞)(t) + εt , t = 1, 2, . . . ,

where µ(x) and δ(x) are smooth functions representing the In-Control (IC)

profile and its Out-of-Control (OC) shift occurring from the τ th observation

on, and εt ∼ Nn(0n, σ
2In) is the error term of the model. After a proper

self-starting standardization of the profile data, such that we know the IC

distribution of this transformation, we compared five self-starting charting

schemes:
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• Self-Starting MEWMA (SSMEWMA);

• Self-Starting MEWMA chart with Wavelet thresholding Fan’s test (SS-

WFMEWMA);

• Self-Starting CUSCORE chart (SSCUSCORE);

• Self-Starting CUSCORE chart with Wavelet thresholding Fan’s test

(SSWFCUSCORE);

• Self-Starting MEWMA chart with kernel Nonparametric smoothing

(SSNEWMA).

We investigated the monitoring performance of the five proposed profile mon-

itoring schemes and their parameters in a simulation study which considers

one IC model and three different groups of OC models (all together 90 OC

models), which consider a wide variety of types of deviations (shifted, oscil-

latory and local deviations). Actually, the first control chart, SSMEWMA,

is already existing, since it is simply the Multivariate EWMA (MEWMA)

arranged to profile data; thus it is more correct to say that performances of

the other four control schemes are compared to performances of SSMEWMA.

The performance of the charts in the different scenarios is evaluated

through the Relative Mean Index (RMI), which measures the average rel-

ative efficiency in terms of Average Run Length (ARL) for a range of shift

sizes; a control chart with a smaller RMI is considered better in its overall

performance.

In general the nonparametric charting scheme using kernel linear smooth-

ing, SSNEWMA, seems to be the best one, since it is the only one which

behaves almost always better than the other ones, whereas wavelet trans-

forms do not seem very performing. In a second moment we tried also to

construct an adaptive version of the SSNEWMA chart which could be more

performing, but we saw that it is indeed not substantially better than it.
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For the second purpose of this thesis, we considered a model more general

than model used before:

yt = µ(x) + δ(x)I[τ1,τ2](t) + εt , t = 1, . . . , T ,

where differently from before, the shift δ(x) occurs from the τ th1 profile to

the τ th2 one and ` = τ2 − (τ − 1) = τ2 − τ1 + 1 is the length of the instability

period of the process; in this framework we have to establish a number of

observations T and εt, is a quite general multivariate error term, considering

also the possibility of some forms of intra-profiles correlation (for further

details see model 3.5 at page 49).

The method we propose considers, for each possible combination of be-

gin and end points where the profile may be not stable, a proper beginning

statistic, the vector of the sample difference of the means between the unsta-

ble and the stable intervals, which is then smoothed and standardized. The

final statistic is the maximization of this statistic with respect to all possi-

ble instability points and the degrees of freedom of the considered smoother.

To compute a p-value which should give us a strong indication about the

stability (H0) or instability (H1) of a process, we use a permutation method

which essentially exchanges the profiles and computes the previously de-

scribed statistic for each permutation and then compares the value of the

statistic computed on the data with the values of the statistic computed on

the permutations of the data.

The method proposed in the second part of this thesis to establish the

stability of a process is also able to make some diagnostics on the data, in

order to discover where (and not only if) an instability period in the process

has occurred.





Chapter 2

Self-Starting Control Charts for

Monitoring General Profiles

Using Nonparametric

Techniques

2.1 A Brief Review on Profile Monitoring

In Statistical Process Control (SPC) literature the investigation of the topic

of profile monitoring is quite recent. Differently from simpler and more com-

mon SPC problems, in which we want to monitor one or more parameters

of a univariate or a multivariate distribution which is assumed to describe

completely the process, profile monitoring consists in monitoring a whole

relation among variables. This problem is crucial for lots of production pro-

cesses because very often the quality of a process or product can be better

represented through a relation between a response variable and some ex-

planatory variables instead of simply one or more parameters of a univariate

or a multivariate distribution. Lots of interesting works about profile moni-

toring are summarized in two useful review papers about profile monitoring

(Woodall et al., 2004; Woodall, 2007) and in a recent book by Noorossana
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et al. (2011); furthermore Colosimo & Pacella (2008) compared different ap-

proaches already present in SPC literature to monitor profiles.

Most of work has been done when the structure of the relation among

variables is known, in particular when it is linear (linear profile monitoring)

and this substantially consists in finding a charting scheme to monitor the

regression coefficients (and possibly the variance of the error term) of a linear

regression.

The first works about linear profile monitoring suggest for Phase I (Stover

& Brill, 1998) and Phase II (Kang & Albin, 2000) methods to monitor the

coefficients of a simple linear regression, based on Hotelling’s T 2. Kim et al.

(2003) improved the previous methods by adding also an EWMA scheme to

monitor the variance of the error term and not only the regression coefficients.

There are lots of other papers who investigated accurately the monitoring of

the regression coefficients: Shu et al. (2004) proposed two control charts

(based on Shewhart’s and EWMA schemes) with estimated parameters for

monitoring the residuals of the regression; Zou et al. (2006) and Mahmoud

et al. (2007) proposed two change-point methods to detect possible changes in

the regression coefficients through Likelihood Ratio (LR) or/and the EWMA

scheme. Other proposals have been suggested by Zou et al. (2007a), who

proposed a method based on a MEWMA scheme, by Akhavan Niaki et al.

(2007), whose method is based on the Generalized Linear Test (GLT) and the

R chart for monitoring the regression coefficients and the variance of the error

term, and by Zou et al. (2007b), who proposed a self-starting control charts

for monitoring linear profiles. There are also other proposals to monitor

linear profiles, which are even more recent, such as Saghaei et al. (2009),

who proposed a method based on CUSUM scheme that improves Phase II,

Zhang et al. (2009), who proposed another method based on LR, Zou & Qiu

(2009), Zou et al. (2010) and Capizzi & Masarotto (2011), who suggested

methods based on variables selection.

But experience teaches that very often relations among variables are not

linear, nor cannot be linearized at all. There are, indeed, some papers who
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refer their analysis to nonlinear profiles: Brill (2001) suggested how to use

a Hotelling’s T 2-based method on the estimates of the coefficients of a non-

linear regression; Williams et al. (2007) proposed extensions of this method

by suggesting different estimates of the covariance matrix of the regression

coefficients; Mosesova et al. (2006) and Jensen & Birch (2009) proposed the

use of Generalized Linear Mixed Models (GLMM) to deal with nonlinear

profiles; moreover, some works deal with nonlinear profiles by using wavelet

transforms (Chicken et al., 2009).

There are also some authors working on the branch of profile monitoring

who enveloped some nonparametric methods (Zou et al., 2009; Qiu & Zou,

2010), sometimes applied to linear profiles where no assumption on distribu-

tion of the error term is made (Zi et al., 2011); in particular we signal Zou

et al. (2008), where a nonparametric version of the MEWMA scheme, the

so-called NEWMA, is proposed: we will exploit this technique among the

methods we will propose in the first part of this thesis.

Of particular interest there are charting schemes which use wavelet trans-

forms (see Nason (2008) to know more about them and Zeisset (2008) to see

a review of wavelet methods in SPC) to concentrate the basic information

of a profile in few parameters: Jin & Shi (1999) proposed some Shewhart’s

control schemes for monitoring changes in wavelet coefficients; Chicken et al.

(2009) suggested a method for monitoring nonlinear profiles using wavelet

transforms through a semiparametric innovative approach. Wavelet meth-

ods are often used with thresholding, in order to highlight the main noise in

a curve or, more in general, in a functional relation among variables. The

first proposals in this sense are those made in Fan (1996) and Fan & Lin

(1998), whose results are then drawn in Jeong & Lu (2006), where more pro-

posals of “Fan’s test” are presented. These so-called Fan’s tests should be

capable to reduce the in-control variability of the process, by deleting useless

noise, without reducing its out-of-control variability. This is why we think

they could better signal weak signals than traditional tests, like Hotelling’s

T 2.
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Furthermore, as we have already said in the Overview of this thesis, in the

first part of this work we are also particularly focused on self-starting control

charts. A first example of a SS scheme in SPC literature comes from Hawkins

(1987), where a self-starting CUSUM chart for monitoring the mean and the

variance of univariate normal observations is proposed; the topic was drawn

in other articles, but in particular we highlight Sullivan & Jones (2002), who

suggested a MEWMA approach in case of multivariate normal observations

for monitoring the mean vector, and Hawkins & Maboudou-Tchao (2007),

who improved this approach with some further tricks; Capizzi & Masarotto

(2010b), instead, proposed a CUSCORE chart to get even better perfor-

mances in monitoring the mean vector of multivariate normal distributions.

To this day there are, instead, few examples in literature of self-starting charts

used to monitor profiles and not simply parameters: Zou et al. (2007b) pre-

sented a self-starting chart for monitoring simple linear profiles, useful for

detecting shifts in the intercept, the slope and the standard deviation of the

error term; in Qiu & Zou (2010) nonparametric profile monitoring with arbi-

trary design points was investigated and the authors gave also a self-starting

version of the solution.

You can find a good review on profile monitoring with lots of the previous

methods in a book (Noorossana et al., 2011).

In this chapter we will try to combine efficiently the techniques already

existing in literature in order to obtain new flexible charting schemes which

could be possibly useful in as many situations as possible; therefore we want

to try to combine the efficiency of the self-starting charts, in order to use

all the data and not to distinguish between the two phases of the analysis,

and the ability of nonparametric techniques, such as wavelets transforms and

kernel linear smoothing, to synthesize a relation among variables and to let

us free not to hypothesize the form of the profile, that is the type of relation

between the response and the explanatory variables.

This chapter is arranged in the following way: in Section 2.2 we will

expose the reference model and our proposed charts to apply to it, clearly
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distinguishing the common self-starting part and the five ways to accumulate

the observations and obtain the test statistic; in Section 2.3 we will present

our simulation study to test our proposed control schemes and we will make a

summary of what the results suggest; in Section 2.4 we will give some useful

complements on the topic and will present other research tools carried out;

finally, in Section 2.5 we will try to give some hints for future research about

this topic to improve results obtained in this first part of the thesis.

2.2 Framework and Model

In order to build a control chart to monitor profiles (or in general to monitor

the parameters of any process over time), we need to make three proper

choices and combine them:

1. how to deal with unknown parameters in the IC process;

2. how to accumulate the profiles over time;

3. how to accumulate the profiles with respect to the n observations and

thus to construct a test statistic which will try to highlight OC signals.

To deal with the unknown parameters of the IC process, we will use in

any case self-starting control charts. These charts have the great advantage

to remove the dependence of the data on unknown parameters; self-starting

charts, indeed, allow to transform the data such that the transformation

performed has a known IC distribution. They are efficient in the sense they

do not need the plug-in of the estimates of the true parameters and to force

us to distinguish between a I phase, where we collect lots of data in order

to estimate the unknown parameters, and a II phase, where we apply the

chosen chart with estimated parameters to other data.

To accumulate the observations over time we use either a Multivariate

Exponentially Weighted Moving Average charting scheme (MEWMA) or a

CUSCORE charting scheme (see Montgomery (2005) for an excellent docu-

mentation on the most important charting schemes).
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The test statistics considered are either the typical statistics of CUS-

CORE or MEWMA charts, or Hotelling’s T 2; in some cases, these statistics

are properly modified by applying them the kernel linear smoothing or a

wavelet transform (Nason, 2008) with a thresholding Fan’s test (Fan & Lin,

1998).

By properly combining these choices, we consider five types of control

charts, which we will try to use on simulated profile data with respect to

different OC scenarios with small values of the global OC parameter for com-

paring their performances in detecting small deviations from a IC situation

(see Section 2.3):

1. self-starting methods + MEWMA chart + typical MEWMA chart test

statistic: Self-Starting Multivariate Exponentially Weighted Moving

Average chart (SSMEWMA);

2. self-starting methods + MEWMA chart + Wavelet thresholding Fan’s

test: Self-Starting Multivariate Exponentially Weighted Moving Aver-

age with Wavelet thresholding Fan’s test chart (SSWFMEWMA);

3. self-starting methods + CUSCORE chart + typical CUSCORE chart

test statistic: Self-Starting CUSCORE chart (SSCUSCORE);

4. self-starting methods + CUSCORE chart + Wavelet thresholding Fan’s

test: Self-Starting CUSCORE with Wavelet thresholding Fan’s test

chart (SSWFCUSCORE);

5. self-starting methods + MEWMA chart + Kernel: Self-Starting Non-

parametric Multivariate Exponentially Weighted Moving Average (SS-

NEWMA).

Now let us introduce the common part to which we apply the previous

five charting schemes, which are the reference model of the profile data on

which we will work and the self-starting standardization of these data. Con-

sistently with recent literature about self-starting charts (Sullivan & Jones,
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2002; Capizzi & Masarotto, 2010b), the general model we will refer to present

and study the performances of our charting schemes in nonparametric pro-

file monitoring is the following simple multivariate Gaussian change-point

model:

yt = µ(x) + δ(x)I[τ,+∞)(t) + εt , t = 1, 2, . . . , (2.1)

where:

• yt = (y1,t, y2,t, . . . , yn,t)
′ is an n-dimensional vector representing the

response variable of the considered profile; we consider n to be at least

“a few dozen”, so that the knowledge of yt and x can represent in a

quite good way the relation between the two variables at time t;

• µ(x) = (µ(x1), µ(x2), . . . , µ(xn))′, independent of time, is a (sufficiently)

smooth function which represents the relation between the response

variable y and the deterministic explanatory variable x; we therefore

reduce our study to the case of only one explanatory variable;

• δ(x) = (δ(x1), δ(x2), . . . , δ(xn))′ is a (sufficiently) smooth function which

represents the deviation from the IC model occurred after (τ − 1) time

units;

• εt = (ε1,t, ε2,t, . . . , εn,t)
′ ∼ Nn(0n, σ

2In) is the error term of the model;

we therefore reduce our study to the case of independent, Gaussian and

homoschedastic errors;

• IA(x) is the indicator function of x with respect to the set A, therefore

I[τ,+∞)(t) =

1 if t ≥ τ

0 if t < τ .

Before applying our five control charts, in order to get rid of the un-

known parameters, which are, in this case, the mean function µ(·) and the

variance of the error σ2, we apply a self-starting standardization to the pro-

file data similar to those presented in Sullivan & Jones (2002) and Hawkins

& Maboudou-Tchao (2007) and adapted to the case of our model.



14 Self-Starting Control Charts for Monitoring General Profiles

The first step of this standardization is

bt = at(yt − yt−1) , t = 2, 3, . . . ,

where at =
(
t−1
t

) 1
2 is a standardizing constant and yt−1 = 1

t−1
∑t−1

j=1 yj is

the observation mean vector of the first (t− 1) profiles. This transformation

allows us to get rid of the mean function µ(·) and we have that

bt ∼ Nn(0n, σ
2In)

when the process is IC at time t, which means that bi,t are independent

N(0, σ2) ∀ i = 1, . . . , n and t = 2, 3, . . . Then we have to estimate σ2 to get

rid of it and we propose the following estimate:

s2t =
1

2n(t− 1)

n∑
i=1

t∑
j=2

(yi,j − yi,j−1)2 , t = 2, 3, . . . . (2.2)

We prefer this estimate to other estimates of σ2 proposed in the literature

(Sullivan & Jones, 2002) because it introduces possible bias only between

times τ − 1 and τ , that is only at time of the occurred shift in the curve. At

this point, to get rid of the dependence on σ2, we divide bt by st−1, getting

dt =
bt
st−1

=
at(yt − yt−1)

st−1
=

(
t−1
t

) 1
2 (yt − yt−1)
st−1

, t = 3, 4, . . . .

Since bt and s2t−1 are approximately independent we have that

dt
·∼ Tn,n(t−2)

when the process is IC at time t, where Tn,ν is the multivariate n-dimensional

Student’s t distribution with ν degrees of freedom. This means that di,t are

approximately independent tn(t−2) ∀ i = 1, . . . , n and t = 3, 4, . . . By using

s2t−1 and not s2t , we reduce the possible, anyway slight, dependence between

the numerator and the denominator and in this way the approximation to

the Student’s t distribution is even better (from some tries we empirically

saw that scatter plots of the two terms signal no evidence of dependence and
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the correlation between the two terms, already very low, becomes even lower

by delaying s2t ). Finally, using the probability integral transform approach

(Sullivan & Jones, 2002; Hawkins & Maboudou-Tchao, 2007) we get

qt = Φ−1
{
Fn(t−2) [dt]

}
= Φ−1

{
Fn(t−2)

[
at(yt − yt−1)

st−1

]}
, t = 3, 4, . . . ,

(2.3)

where Φ−1(·) is the quantile function of a standard normal distribution and

Fν(·) is the distribution function of a Student’s t distribution with ν degrees

of freedom. An approximated IC distribution for qt at time t is

qt
·∼ Nn(0n, In) ,

which means that qi,t are approximately independent N(0, 1) ∀ i = 1, . . . , n

and t = 3, 4, . . . Notice that with n equal to “a few dozen” and already for a

small value of t, we have that Fn(t−2)(·)
·

= Φ(·), therefore

qt
·

= dt =
at(yt − yt−1)

st−1
.

The previous steps are common to all five charts; now, depending on the

combination of the choices we make about accumulating profiles with respect

to time and to the n observations for every time t, we get the following charts.

SSMEWMA first applies a MEWMA scheme (Montgomery, 2005) to qt:

zt = (1− λ)zt−1 + λqt , (2.4)

with z0 = 0n and λ ∈ (0, 1); zt has an approximated Nn

(
0n,

λ
2−λIn

)
distri-

bution when the process is IC at time t. Finally this chart computes the

usual MEWMA-statistic on zt:

SSMEWMAt =
2− λ
λ

z′tzt . (2.5)

If the process is IC at time t, SSMEWMAt
·∼ χ2

n (but they are not indepen-

dent); the chart signals if SSMEWMAt > h1, where h1 is chosen to achieve

a specified IC Average Run Length (ARL0).
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SSWFMEWMA first applies the previous MEWMA scheme (2.4) to qt

and after that it applies a wavelet transform to zt:

wt = Wzt ,

where W is a matrix which defines a particular wavelet transform (Nason,

2008). Since W is an orthonormal matrix, wt has still an approximated

Nn

(
0n,

λ
2−λIn

)
when the process is IC at time t. Finally this chart computes

the usual MEWMA-statistic on wt and then adjusts it with the typical Fan’s

thresholding (for further information about Fan’s test see (Fan & Lin, 1998)):

SSWFMEWMAt =
2− λ
λ

n∑
i=1

w2
i,tI[k1,+∞)(|wi,t|) , (2.6)

where k1 =
√

λ
2−λk is a standardized thresholding constant: to make a good

thresholding it is useful to consider high quantiles of the N
(
0, λ

2−λ

)
distribu-

tion as values for k1, which means to consider high quantiles of the standard

normal distribution as values for k. The wavelet transform should accumu-

late in the first wavelet coefficients and the threshold keeps only the main

wavelet coefficients, that is the main component of the relation between y

and x. The chart signals if SSWFMEWMAt > h2, where h2 is chosen to

achieve a specified ARL0. Note that if k = 0, SSWFMEWMA reduces to

SSMEWMA since
∑n

i=1w
2
i,t = w′twt = z′tW

′Wzt = z′tzt.

SSCUSCORE first applies a recent CUSCORE scheme (Montgomery, 2005)

presented by Capizzi & Masarotto (2010b) to qt: starting from t = 3,

cL2,j = cU2,j = 0 and τL2,j = τU2,j = 3, j = 1, . . . , n, it computes the CUSCORE

statistics

cLt,j = min

{
0, cLt−1,j + ft(τ

L
t−1,j)

[
qt,j +

1

2
ft(τ

L
t−1,j)

]}
cUt,j = max

{
0, cUt−1,j + ft(τ

U
t−1,j)

[
qt,j −

1

2
ft(τ

L
t−1,j)

]}
,

where

τLt,j =

t+ 1 if cLt,j = 0

τLt−1,j if cLt,j < 0 ,
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τUt,j is analogously defined from cUt,j and

ft(τ) = mmax

{
c,

τ − 1√
t(t− 1)

}
,

where m > 0 and 0 < c < 1 are proper design constants, whose recommended

values are 0.25 and 0.5, respectively. The final statistic to monitor is

SSCUSCOREt =
n∑
i=1

max
(
−cLi,t, cUi,t

)
. (2.7)

The chart signals if SSCUSCOREt > h3, where h3 is chosen to achieve a

specified ARL0.

SSWFCUSCORE applies the same previous CUSCORE scheme towt = Wqt,

a wavelet transform of qt, and the final statistic to monitor is

SSWFCUSCOREt =
n∑
i=1

max
(
−cLi,t − k, cUi,t − k, 0

)
, (2.8)

where k is a thresholding constant and cLit and cUit are computed as in SSCUS-

CORE scheme, withwt in place of qt. The chart signals if SSWFCUSCOREt > h4,

where h4 is chosen to achieve a specified ARL0.

SSNEWMA first applies the previous MEWMA scheme to qt and then, as

in Zou et al. (2008), it applies a kernel smoothing to zt:

f t = Szt ,

where S = (Sn(x1),Sn(x2), . . . ,Sn(xn))′, Sn(xi) = (Sn1(xi), Sn2(xi), . . . , Snn(xi))
′,

is the kernel smoothing matrix, whose generic element Sni(x) is defined as

follows:

Sni(x) =
Uni(x)∑n
j=1 Unj(x)

Unj(x) =Kh(xj − x)[mn2(x)− (xj − x)mn1(x)]

mnl(x) =
1

n

n∑
j=1

(xj − x)lKh(xj − x) , l = 1, 2 ,
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where Kh(u) = 1
h
K(u

h
) and K(·) is a symmetric probability density function

and h a bandwidth. Finally this chart computes the usual MEWMA statistic

on f t:

SSNEWMAt =
2− λ
λ

f ′tV f t , (2.9)

where V = S + S′ − S′S. 2−λ
λ
V is the inverse of the variance/covariance

matrix of f t. The chart signals if SSNEWMAt > h5, where h5 is chosen to

achieve a specified ARL0.

2.2.1 An algorithm to estimate the control limit h

For estimating the control limit h for each one of the control charts, we follow

an algorithm introduced in Capizzi & Masarotto (2008), based on imposing

that the in-control average run length, EIC(RL), is equal to a certain (large)

value ARL0. We give a sketch of this algorithm in the following steps:

1. let h1 be an initial thought for h; let A, s0 (the burnin), s (the number

of iterations) and α be suitable constants;

2. for i = 1, . . . , s0 + s− 1 repeat:

(a) simulate a single run length RL∗i using the control limit hi;

(b) update h using the recursive formula

hi+1 = max(0, hi + Ai−αqi) ,

where qi =
RL∗

i−ARL0

ARL0
and the max operator is used to ensure that

the h estimates are positive at each step;

3. discard the first s0 values and estimate the control limit h using

ĥs =
1

s− s0

s0+s∑
j=s0+1

hi .

In order to avoid very long execution times, due to extremely large run

lengths, a truncation can be introduced: it is convenient to arrest the run
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length simulation at the value MRLi such that hi+1 − hi ≤ ξ (which means

MRLi ≤ ARL0(1 + ξA−1iα)), where ξ is a constant for which values 2 or 3

are suggested.

In this way, we keep the sequence hi from wandering too much and also

avoid useless long simulation runs.

On the basis of this algorithm, in literature also another algorithm is used,

based on imposing that the probability of false alarm before some specified

value N0 is equal to a desired (small) value p0, but in this work we used only

the first method to estimate h.

2.3 Simulation Study and Performance Com-

parison

In this section we investigate the monitoring performance of the five proposed

profile monitoring schemes through ARL comparisons in a simulation study

we are going to describe; for simulations we are going to describe we used a

code written both in R (R Development Core Team, 2010) and in C languages:

this makes the code much faster that it would be using only R, indeed C

enhances the part of the simulation of the run length above all.

Actually, the first control chart, SSMEWMA, is already existing, since it

is simply the Multivariate EWMA (MEWMA) arranged to profile data; thus

it is more correct to say that performances of the other four control schemes

are compared to performances of the already existing SSMEWMA charting

scheme.

Consistently with recent literature about profile monitoring (Zou et al.,

2008; Capizzi & Masarotto, 2011), for our simulation study we consider the

IC model

yi,t = µ0(xi) + εi,t , µ0(x) = 1− exp(−x) , i = 1, . . . , n , t = 1, 2, . . .

(2.10)
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and three OC models

yi,t = µj(xi) + εi,t , j = 1, 2, 3 , (2.11)

where

µ1(x; β1, β2) = 1− β1 exp(−β2x) (2.12)

µ2(x; β1, β2) = 1− exp(−x) + β1 cos[β2π(x− 0.5)] (2.13)

µ3(x; β1, β2) = 1− exp

{
−x− β1

[
max

(
x− β2
1− β2

)]2}
. (2.14)

Model Label β1 β2 ν

1 A 1.00 1.20 0.192

1 B 1.10 1.00 0.372

1 C 1.00 1.50 0.428

1 D 1.20 1.00 0.744

1 E 1.30 1.00 1.116

1 F 1.60 1.00 2.232

2 A 0.10 2.00 0.400

2 B 0.10 3.00 0.400

2 C 0.20 4.00 0.800

2 D 0.20 5.00 0.800

2 E 0.30 3.00 1.200

2 F 0.60 3.00 2.400

3 A 2.00 0.90 0.331

3 B 4.00 0.90 0.444

3 C 2.00 0.75 0.545

3 D 4.00 0.75 0.732

3 E 5.00 0.50 1.195

3 F 10.00 0.10 2.205

Table 2.1: Values of the parameters of the 18 OC models used in simulations.

For every OC model we consider six different combinations of the two pa-

rameters, taken in Capizzi & Masarotto (2011) and reported in table 2.1,

in order to obtain 6 × 3 = 18 different OC models, which are illustrated in
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figg. 2.1 (model 2.12), 2.2 (model 2.13) and 2.3 (model 2.14). As you can see

in the figures, model 2.12 represents a series of shifted models which are, in

a sense, parallel to the IC model, model 2.13 provides a kind of wave-shaped

shift and model 2.14 represents a local shift (from a certain point on the OC

curve begins to differ from the IC one). In table 2.1 we also reported for

each model the values of the global out-of-control parameter ν =
√
δ′Σ−1δ,

which in this case is simply ν =
√
δ′δ, since Σ = σ2In = In.
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Figure 2.1: Comparison between IC and OC1 models.

Notice that OC1 model reduces to IC model when β1 = β2 = 1 and the

same happens for OC2 and OC3 models when β1 = 0. For each of these 18

OC models σ2 = 1 and 5 possible values of the change-point τ are considered:

51, 101, 151, 201 and 301. Therefore we apply the presented charting schemes

to 3× 6× 5 = 90 different OC scenarios. Moreover, as in Zou et al. (2008),

we restrict our study to the equally spaced design points for the explanatory
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Figure 2.2: Comparison between IC and OC2 models.

variable x:

xi =
i− 0.5

n
, i = 1, . . . , n ,

with n = 32.

We consider also different choices for the parameters of the charting

schemes in order to investigate their role:

• for SSMEWMA chart: 3 different values for λ (0.025, 0.050 and 0.200);

• for SSWFMEWMA chart: 3 different values for λ (0.025, 0.050 and

0.200), 2 different values for k (1.5 and 3.5, which correspond to high

quantiles, more or less 0.8664 and 0.9995 quantiles, respectively, of

the IC distribution of
√

2−λ
λ
|wi,t|, i = 1, . . . , n, t = 2, 3, . . ., which is

approximately standard normal) and 2 different wavelet transforms:

Least Asymmetric 10 (La10) and Haar transforms (see Nason (2008)

and Doroslovački (1998) for further details about their definition);



2.3 Simulation Study and Performance Comparison 23

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

x

µ 3
 v

s 
µ 0

µ0

µ3a

µ3b

µ3c

µ3d

µ3e

µ3f

Figure 2.3: Comparison between IC and OC3 models.

• for SSCUSCORE chart: only one combination, since it does not depend

on λ, k or any wavelet transformation;

• for SSWFCUSCORE chart: 3 values for k, chosen depending on the

empirical IC distribution of the CUSCORE distribution (we made a

small pilot simulation in order to get it: 0, 2.2 and 4, which corre-

spond to high quantiles, more or less 0, 0.8 and 0.995 quantiles re-

spectively, of the empirical IC distribution of max
(
−CL

i,t, C
U
i,t

)
) and 2

different wavelet transforms (La10 and Haar); note that, differently

from SSWFMEWMA, where if k = 0 it reduces to SSWFMEWMA,

SSWFCUSCORE with k = 0 is different from SSCUSCORE;

• for SSNEWMA chart: 3 different values for λ (0.025, 0.050 and 0.200).

Some charting schemes have also other minor parameters, which we have

taken to be equal to the values suggested in literature. In SSCUSCORE and
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SSWFCUSCORE schemes we consider m = 0.25 and c = 0.50, as suggested

in Capizzi & Masarotto (2010b); in SSNEWMA scheme we use for simplicity,

as in Zou et al. (2008), Epanechnikov’s kernel, which is

KE(u) =
3

4
(1− u2)I[−1,1](u) ,

with bandwidth computed as in Zou et al. (2008):

h = gn−
1
5

(
1

n

n∑
i=1

(xi − x)2
) 1

2

,

where g can empirically be any value in the interval [1.0, 2.0]; we estimate

g such that we get just the quantity of smoothing imposed (in this case we

impose 6 equivalent degrees of freedom).

We therefore obtain 3 SSMEWMA, 3 × 2 × 2 = 12 SSWFMEWMA,

1 SSCUSCORE, 3 × 2 = 6 SSWFCUSCORE and 3 SSNEWMA schemes

combinations of charts, 25 different combinations all together. We estimate

each of the control limits of these 25 combinations of charting schemes (these

estimates are reported in the second column of table 2.2) always imposing

ARL0 = 500 and using an appropriate algorithm (with 10000 iterations)

used also in Capizzi & Masarotto (2008). The first column of table 2.2

reports the names of the 25 control schemes, where one digit in the names

of the scheme (SSMEWMA and SSNEWMA) refers to λ = 0.025, 0.05, 0.2,

two digits (SSWFCUSCORE) refer to La10 and Haar wavelet transform (see

Nason (2008) for their definition) and k = 0, 2.2, 4 respectively, and three

digits (SSWFMEWMA) refer to λ = 0.025, 0.05, 0.2, La10 and Haar wavelet

transform and k = 1.5, 3.5 respectively.

In order to estimate in a quite robust way the OC ARLs, for each of the

90 OC scenarios, for each of the 25 charting schemes, 50000 observations of

the Run Length (RL) are simulated.
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Chart h RMI RMI1 RMI2 RMI3 RMIa RMIb RMIc

SSMEWMA1 52.02 1.00 1.21 0.50 1.30 0.91 0.87 1.49

SSMEWMA2 55.03 1.36 1.56 0.73 1.79 1.55 0.95 1.01

SSMEWMA3 58.96 4.05 4.35 2.93 4.89 4.22 6.77 0.66

SSWFMEWMA111 38.65 0.99 1.19 0.50 1.29 0.88 0.89 1.56

SSWFMEWMA112 12.89 1.01 0.86 0.53 1.63 1.09 0.61 1.08

SSWFMEWMA121 38.77 1.02 1.23 0.52 1.32 0.92 0.90 1.56

SSWFMEWMA122 12.86 1.15 0.85 0.98 1.62 1.18 0.86 1.31

SSWFMEWMA211 41.80 1.42 1.64 0.77 1.86 1.61 1.02 1.07

SSWFMEWMA212 14.06 1.42 1.12 0.84 2.29 1.82 0.57 0.65

SSWFMEWMA221 41.81 1.42 1.63 0.78 1.86 1.62 1.00 1.06

SSWFMEWMA222 14.08 1.65 1.14 1.46 2.35 2.02 0.99 0.85

SSWFMEWMA311 45.38 4.05 4.37 2.93 4.85 4.17 6.90 0.72

SSWFMEWMA312 15.68 3.81 3.14 2.92 5.36 4.47 4.75 0.19

SSWFMEWMA321 45.50 4.20 4.53 3.04 5.02 4.33 7.14 0.72

SSWFMEWMA322 15.65 4.20 3.10 4.17 5.33 4.52 6.66 0.47

SSCUSCORE 62.91 1.41 1.60 0.86 1.77 0.69 2.33 3.37

SSWFCUSCORE11 62.93 2.21 2.83 1.39 2.40 0.78 3.45 6.67

SSWFCUSCORE12 11.94 1.92 2.31 1.24 2.22 0.82 3.02 5.22

SSWFCUSCORE13 2.21 1.28 1.21 0.82 1.80 0.78 1.77 2.77

SSWFCUSCORE21 63.02 2.13 2.87 1.06 2.45 0.78 3.28 6.36

SSWFCUSCORE22 12.05 1.91 2.35 1.14 2.23 0.86 2.96 5.03

SSWFCUSCORE23 2.19 1.40 1.20 1.22 1.79 0.83 2.03 3.06

SSNEWMA1 13.05 0.21 0.19 0.28 0.16 0.10 0.14 0.72

SSNEWMA2 14.65 0.32 0.25 0.53 0.20 0.39 0.00 0.39

SSNEWMA3 17.02 1.59 1.13 2.33 1.29 2.15 0.91 0.00

Table 2.2: Estimated control limits and RMI index for the 25 control charts

used in simulations.
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Figure 2.4: Study of performaces of SSNEWMA chart with λ = 0.025, by

some scenarios and values of τ , with respect to other charts.
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Figure 2.5: Study of performaces of SSNEWMA chart with λ = 0.025, by

values of τ and values of ν, with respect to other charts.
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Figure 2.6: Study of performaces of SSNEWMA chart with λ = 0.05, by

some scenarios and values of τ , with respect to other charts.
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Figure 2.7: Study of performaces of SSMEWMA chart with λ = 0.025, by

some scenarios and values of τ , with respect to other charts.
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Figure 2.8: Study of performaces of SSWFMEWMA chart with λ = 0.025,

La10 wavelet and k = 1.5, by some scenarios and values of τ , with respect

to other charts.



2.3 Simulation Study and Performance Comparison 31

●

●

●

●
●

50 100 150 200 250 300

0
10

0
30

0

OC1A: SSCUSCORE

τ

A
R

L

●

●

●
●

●

50 100 150 200 250 300

0
40

80
12

0

OC1E: SSCUSCORE

τ

A
R

L

●

●

●
●

●

50 100 150 200 250 300

0
10

20
30

40

OC1F: SSCUSCORE

τ

A
R

L

●

●

●

●
●

50 100 150 200 250 300

0
10

0
30

0

OC2A: SSCUSCORE

τ

A
R

L

●

●

●
●

●

50 100 150 200 250 300

0
40

80
12

0

OC2E: SSCUSCORE

τ

A
R

L

●

●

●
●

●

50 100 150 200 250 300

0
10

20
30

40

OC2F: SSCUSCORE

τ

A
R

L

●

●

●

●
●

50 100 150 200 250 300

0
10

0
30

0

OC3A: SSCUSCORE

τ

A
R

L

●

●

●
●

●

50 100 150 200 250 300

0
40

80
12

0

OC3E: SSCUSCORE

τ

A
R

L

●

●

●

●
●

50 100 150 200 250 300

0
10

20
30

40

OC3F: SSCUSCORE

τ

A
R

L

Figure 2.9: Study of performaces of SSCUSCORE chart, by some scenarios

and values of τ , with respect to other charts.
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Figure 2.10: Study of performaces of SSWFCUSCORE chart with La10

wavelet and k = 1.5, by some scenarios and values of τ , with respect to

other charts.
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A quite good method for evaluating control charts and summarizing their

performances is to calculate their Relative Mean Index (RMI) index intro-

duced in Han & Tsung (2006), which is a summary performance measure

defined as

RMI =
1

N

N∑
r=1

ARLδr −MARLδr
MARLδr

, (2.15)

where N is the total number of considered shifts, ARLδr the ARL of a chart

for detecting a shift δr and MARLδr is the smallest ARL among the ARL

values of the compared charts. Hence, RMI measures the average relative

efficiency for a range of shift sizes, and a control chart with a smaller RMI

is considered better in its overall performance.

Columns 3-9 of table 2.2 report the RMI indices of the 25 investigated

control charts: in the third column the RMI index is global and includes

all 90 scenarios (N = 90); in the next three columns we reported the RMI

indices computed on OC1 (RMI1, N1 = 30), OC2 (RMI2, N2 = 30) and

OC3 (RMI3, N3 = 30) scenarios, respectively; the last three columns contain

the RMI indices computed on scenarios with small shifts from the IC model

(RMIa, ν < 1: see labels A, B, C and D of table 2.1) (Na = 60), medium

shifts (RMIb, 1 ≤ ν < 2: label E) (Nb = 15) and large shifts (RMIc, ν ≥ 2:

label F) (Nc = 15). There are more scenarios with ν < 1, because in this

work we are interested mainly in small deviations from the IC model.

To summarize clearly the results of the simulations, we cannot represent

all the perfomances of all 25 charts together, therefore we compared each

chart with all other charts together by representing in each graph the ARLs

of the considered chart (by values of τ for a certain scenario or by values

of ν for a certain τ) compared with the smallest ARL among the other 24

charts. In the graphs highlighting the role of τ we report only the ARLs in

models OC1A, OC1E, OC1F, OC2A, OC2E, OC2F, OC3A, OC3E, OC3F,

which are, for each of the three types of OC model, the scenarios with the

smallest, a medium and the highest values of the OC parameter ν, whereas in

the graphs highlighting the role of ν we have reported the ARLs (actually, in

this case, the logarithm of the ARLs, to be able to better read the graphs) in
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all 18 OC models. In both types of graphs the more the line of the considered

chart (the solid one) is near the line of the best charts (the dashed one), the

better is the performance of the considered chart.

In the figures of this paragraph there are only some of the results: in

figg. 2.4 and 2.5 one can see the performances of the SSNEWMA charts with

λ = 0.025 in terms of ARL highlighting the role of τ in the 9 models of

greatest interest and the role of ν in all 18 models. This chart seems to

behave in general in a better way than the other ones, especially in case

of not so large shifts. Even with a value of λ slightly higher (0.05) the

SSNEWMA chart seems to behave in a good way (see fig. 2.6); in this case

the performance of SSNEWMA chart is better in case of medium and large

shifts, whereas it gets a little worse in case of small shifts. In figg. 2.7,

2.8, 2.9 and 2.10 you can find the performances (only graphs highlighting

the role of τ) of the best (in terms of global RMI index) SSMEWMA chart

(λ = 0.025), the best SSWFMEWMA chart (λ = 0.025, La10 wavelet and

k = 1.5), the SSCUSCORE chart and the best SSWFCUSCORE chart (La10

wavelet and k = 4), which seem to have often or always worse performances

of a SSNEWMA chart with a good choice of the smoothing parameter λ.

Have a look at table 2.2, where RMI indices are reported; in table 2.3

there are seven rankings (global, OC1, OC2, OC3, small shifts, medium

shifts, large shifts) made by ordering the 25 control charts investigated by

RMI index (these rankings are obtained simply by ranking charts by RMI

indices reported in table 2.2): this helps us to try to sum up the results of

this simulation study into the following points:

• there are some slight differences of performances in the three different

groups of scenarios, but in general the control schemes behave more or

less in the same way with respect to the model;

• SSNEWMA, with a good choice of λ, seems to have almost always the

best performance in detecting a shift from the expected model;

• for SSNEWMA, SSMEWMA and SSWFMEWMA λ has to be chosen
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in a proper way and in these cases, where all shifts are quite small, a

small value for λ (0.05 or, even better, 0.025) gives better performances

of the charts;

• even with a large shift, a small value of λ is not so bad as a large value

of λ in presence of a small shift, that is in general a small λ is a more

conservative choice;

• type of wavelet transform, even if we tried only two types (La10 and

Haar wavelets), seems not to have a strong influence on performances

of control schemes;

• it seems more difficult to understand the role of the quantity of thresh-

olding in SSWFMEWMA: in general we could say that a certain quan-

tity of smoothing, but not too much, seems useful to improve the per-

formance of SSMEWMA (which is, indeed, a SSWFMEWMA without

any thresholding);

• a high value of the thresholding parameter k often makes SSWFCUS-

CORE better than SSCUSCORE, but in general both these charts have

worse performances than other schemes (even if in case of small shifts

they behave quite good);

• the role of the change point τ is rather clear: the more it is forward

over time, the better are the performances of these charts, because

self-starting procedures have in this case more IC observations at their

disposal;

• in general control charts can detect before a larger shift from the IC

model, but when we deal with values of ν which are very close, the

speed of detecting an OC signal depends also on the type of the OC

model.
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2.4 Other Attempts to Improve This Work

2.4.1 Adaptive λ

Another direction of improvement of this work could be to propose an adap-

tive version of SSMEWMA, SSWFMEWMA and SSNEWMA, by using a

smoothing parameter λ which changes and adapts to the magnitude of the

shift as the observations are collected.

In particular, since in general (and also, as you have seen before, in our

framework) the larger the value of λ is, the more able the chart to recognize

larger shifts (with a larger OC parameter ν) is, the adaptive λ should become

smaller at a certain time t if the chart realizes that in that time a small

deviation from the IC situation or no deviation at all occurs, whereas it

should become larger if the chart realizes that in that time there is a large

deviation from the IC situation.

The first example of adaptive chart was introduced by Sparks (2000),

which is essentially an adaptive version of a CUSUM chart. In Capizzi &

Masarotto (2003), instead, we can see a first proposal of adaptive EWMA

control chart, the so called AEWMA (Adaptive Exponentially Weighted

Moving Average), more useful to our objectives. Mahmoud & Zahran (2010)

introduced a multivariate version of this AEWMA chart, the so-called MAEWMA

chart. In Capizzi & Masarotto (2010a), instead, you can find a first proposal

of adaptive and multivariate EWMA chart applied to profile data, in particu-

lar to the three parameters of a simple linear regression model (the regression

coefficients β0 and β1, and the variance of the error term σ2).

Since SSNEWMA chart seems to be the most performing among the

five control charts we proposed in this work, we try to enhance only its

performance by making λ adaptive. The procedure we used to do this is

described in the following lines.

SSNEWMA chart is based on the usual MEWMA scheme applied to qt

zt = (1− λ)zt−1 + λqt ,
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with z0 = 0n and λ ∈ (0, 1); it can be rewritten in the following way:

zt = zt−1 + λ(qt − zt−1) .

SSNAEWMA , instead, is based on a MAEWMA (Multivariate Adaptive

EWMA) scheme which, differently from the MEWMA, substitutes λ with

w(et), a weight depending on et the euclidean distance between qt and zt−1

(||qt − zt−1||), which means making λ depending on the magnitude of the

shift the chart is analyzing:

zt = zt−1 + w(et)(qt − zt−1) ,

where

w(et) =
φ(et)

et
, et = ||qt − zt−1|| =

√√√√ n∑
i=1

(qi,t − zi,t−1)2 .

As explained in Capizzi & Masarotto (2003), the score function φ(·) is thought

to make the chart behave as a smooth combination of an EWMA chart, more

able to detect small shifts, and a Shewhart chart, more able to detect large

shifts. To do this, φ(·) has to satisfy:

1. φ(x) = −φ(−x) (odd function);

2. φ(x)
x

·
= λ if |x| is small (i.e., behaving like EWMA);

3. φ(x)
x

·
= 1 if |x| is large (i.e., behaving like Shewhart).

In their article Capizzi & Masarotto (2003) discussed three score functions

that satisfy these conditions, but in the present article, as in Mahmoud &

Zahran (2010), we will focus on their first score function

φ(et) =


et − (1− λ)k if et < −k

λet if − k ≤ et ≤ k

et − (1− λ)k if et > k ,
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where λ ∈ (0, 1) and k > 0. Since we are in a multivariate framework and

et, being an euclidean distance, cannot be negative, the particular definition

of φ(·) in our case is

φ(et) =

λet if 0 ≤ et ≤ k

et − (1− λ)k if et > k .
(2.16)

Then, as in SSNEWMA, SSNAEWMA applies a kernel smoothing to this

alternative version of zt:

f t = Szt ,

where S is the kernel smoothing matrix, defined as in SSNEWMA (see page

18). Finally this chart computes the usual MEWMA statistic on f t:

SSNAEWMAt =
2− λ
λ

f ′tV f t , (2.17)

where V is defined as in SSNEWMA.

The chart signals if SSNAEWMAt > h6, where h6 is chosen to achieve a

specified ARL0.

A simulation study has been conducted to compare performances of SS-

NAEWMA with those of SSNEWMA and the same scenarios of section 2.3

have been used: 1 IC and 18 OC models (6 for each of the three types of devi-

ations from the IC model considered) combined with 5 values (51,101,151,201

and 301) of the change point τ , getting 1+18×5 = 91 scenarios all together.

We used the same three values of λ already used (0.025, 0.05 and 0.1), get-

ting 91× 3 = 273 different ARLs which can be compared to learn something

more about this comparison.

Results can be summarized in the following way:

• in scenarios with an OC deviation of the first type, parallel to the IC

model (see fig. 2.1), SSNAEWMA seems to perform always better than

SSNEWMA (ARLs are from 2 to 31% lower);

• in scenarios with an OC deviation of the second type, a kind of wave-

shaped shift (see fig. 2.2), SSNAEWMA seems to perform always better
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than SSNEWMA except for scenario 2C, which has a medium value of

the OC parameter ν;

• in scenarios with an OC deviation of the third type, representing a

local shift (see fig. 2.3), SSNAEWMA seems to perform better than

SSNEWMA only when the OC parameter ν is small;

• in general, as we expected, usually when ν is small SSNAEWMA has

a larger gain in terms of ARL with respect to SSNEWMA with a large

value of λ and vice versa. However, this does not happen always.

Therefore, unless AEWMA (or MAEWMA) is always a guarantee of en-

hanced performance with respect to EWMA (or MEWMA), that is in uni-

variate or simple multivariate frameworks, the behaviour of SSNAEWMA

seems to be still a bit contradictory with profile data and maybe its proper-

ties and capabilities should be better investigated. Furthermore, some other

tricks may be necessary to use adaptive charts in this nonparametric profile

monitoring framework.

2.4.2 Something More About the Correct Number of

Degrees of Freedom in SSNEWMA

In case of SSNEWMA chart, we imposed 6 as number of equivalent parame-

ters because we thought this choice to be the usual good compromise between

goodness of fit and smoothness which we have always to make when we are

dealing with every kind of smoothing parameter.

We would like to try to justify this choice in this work, therefore we made

also a brief simulation study on performances of SSNEWMA chart in function

of the number of degrees of freedom. In particular, in the simulation study,

we chose values 3, 6, 9 and 16 as possible degrees of freedom and for each

of this value we have the same 273 ARLs of before; in figures 2.11, 2.12 and

2.11 we find 9 of them (scenarios OC1A with τ = 201, OC2B with τ = 151
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and OC3B with τ = 51, and all three scenarios with all three values of λ

considered, 0.025, 0.05 and 0.1) as representative examples.
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Figure 2.11: Example 1 on degrees of freedom of SSNEWMA.
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Figure 2.12: Example 2 on degrees of freedom of SSNEWMA.

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 15 20

20
0

25
0

30
0

35
0

40
0

OC3B   τ = 51

DF

A
R

L

λ = 0.025
λ = 0.050
λ = 0.100

Figure 2.13: Example 3 on degrees of freedom of SSNEWMA.
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In the examples in the graphs above, the choice of 6 as the number of

degrees of freedom for simulation studies with SSNEWMA chart is a good

choice, since ARLs in this case are the smallest ones among ARLs obtained

with 3, 6, 9 or 16 degrees of freedom. These are only three examples of all

91 scenarios we tested, but almost always ARLs obtained with 6 degrees of

freedom are the smallest ones or, at least, very close to the smallest ones.

2.5 Conclusion and Suggestions for Future Re-

search

In the work described in this chapter, we tried to suggest some new ap-

proaches for monitoring general profiles combining proper ingredients which

have all already been tested and whose good properties have already been

shown in literature. These ingredients are, as seen, self-starting charts for get-

ting rid of the estimation of the unknown parameters, the MEWMA/CUSCORE

schemes to deal with the accumulation of multivariate observations over

time and some nonparametric technique (wavelet transforms or kernel linear

smoothing for example) to construct a proper statistic test which efficiently

synthesizes the information in the available profiles.

What can be done to improve our study and what could be better in-

vestigated in order to improve this research? First of all one could try to

better investigate the role of the wavelet transform in the schemes which use

them to see if some transforms are appreciably better than other ones and

than other methods which do not use wavelets, by trying also other types

of wavelet transforms instead of only the two ones used (La10 and Haar

wavelets), even if we think that probably the definition of the wavelet trans-

form is not a crucial point. Also the role of the thresholding parameter could

be better investigated, in order to try to find a way to search for a criterion

to choose the value of k which provides the best performance of a control

scheme using wavelets. In the same way one could study the behaviour of

the number of equivalent degrees of freedom in the nonparametric chart to
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try to understand if there is an optimal choice also for it, as we partially did.

In this sense, the best thing to do, but it appears very difficult, would be to

find a way to make a more “honest” comparison between control charts which

use wavelet techniques, SSWFMEWMA and SSWFCUSCORE, and the con-

trol chart which uses kernel linear smoothing, SSNEWMA; thus, we should

find a way to equal the “quantity of smoothing” provided by the number

of equivalent degrees of freedom in kernel linear smoothing to the quantity

of smoothing provided by the threshold k in wavelet techniques with Fan’s

thresholding.

Moreover, this work is limited to profiles data with only one explanatory

variable, but it would be interesting to investigate the potentiality of the

presented charting schemes also in presence of more than one explanatory

variable. Furthermore, we could try to consider to complicate in other ways

the reference model for the data, by considering also heteroschedasticity or

some kind of dependence in the covariance matrix of the dependence variable

or also other probability distributions for the error term, even if it is not so

simple to relax the actual assumptions with sequential data.



Chapter 3

A Statistical Test to Assess the

Stability of a Profile in Phase I

3.1 A Brief Review on Methods to Assess the

Stability of a Process in Phase I

Unfortunately not always in the SPC framework it is possible or convenient

to drop the distinction between Phase I and Phase II and, therefore, to use

self-starting control charts which use all the data immediately to update the

parameter estimates and simultaneously check for OC conditions. In par-

ticular self-starting control charts are not very accurate when a shift occurs

in the beginning of the process, since in this case we have few IC observa-

tions; furthermore they are not so suitable when the shift does not occur

from a certain point on, that is when the IC and the OC models cannot be

represented together by a change point model.

In these cases, where we have to maintain the distinction between the

two phases of the analysis, it is crucial in Phase I to check for IC condi-

tions accurately in order to establish correct control limits for a good Phase

II analysis; errors in Phase I may be fatal, since they make us completely

miss the IC definition of the process we are studying and compromise the

successful performance of the whole SPC analysis.
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Even in this specific framework of SPC some charts which monitor pro-

cesses accurately in Phase I do exist in case of univariate processes, when

the underlying process distribution follows some parametric model, more fre-

quently the normal one; there exist some charts in case of profiles too, when

the type of profile relation among the variables which rule the process is a

known relation, linear or even some specific nonlinear relations, and the dis-

tribution of the error follows some parametric distribution, even here most

frequently the normal distribution. You can find detailed reviews on Phase

I analysis, in particular on univariate Phase I control charts, in Montgomery

(2005) and in Chakraborti et al. (2008).

However, it is known that processes and errors are not normal in many

applications and very often the statistical properties of commonly employed

Phase I control charts, such as the Shewhart-type (Shewhart, 1939), the

CUSUM-type (Page, 1955) or the charts based on binary and multiple seg-

mentation (Sullivan & Woodall, 1996; Sullivan, 2002), are highly affected,

even for slight deviations, from the specified parametric model.

Since in processes which are not profiles the performances of these para-

metric Phase I control charts are good only if some parametric assumptions

are not violated, one could consider the nonparametric versions of Shewhart,

CUSUM or EWMA control charts used for univariate processes and adapt

them to a multivariate framework considering profiles. Indeed, in the univari-

ate case, something has been done for Phase I in this direction (for example

Jones-Farmer et al. (2009)), but even if these charts behave very well when

the process is IC, that is the prescribed IC false alarm probability is con-

served regardless of the underlying process distribution, their performance

when the process is OC depends on the particular shape of the process dis-

tribution and the type of shift from the IC situation. Thus, the choice to

adapt them to processes which are profiles seems not to be worthy.

Therefore we would like to propose a new method, completely nonpara-

metric, able to assess the stability of a general and unknown relation between

a response variable y and one or more explanatory and deterministic vari-
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ables x and to recognize OC signals in almost every situation as soon as

possible. This new method we are going to propose is actually a kind of mul-

tivariate version of an already existing method (Capizzi & Masarotto, 2012)

with some slight differences; indeed, their method was applied to a univariate

situation in which a sample of m subgroups, each of size n, is collected from

the distribution of a quality characteristic y.

In addiction, our method will provide a very useful and interesting statis-

tical tool to make some diagnostics in case of instability of the process, that

is to try to point out the most probable time interval where the process has

gone out of control.

This chapter is arranged in the following way: in Section 3.2 we will

expose the reference model and the statistical test we propose in this work;

in Section 3.3 we will describe and summarize the results our simulation

studies to test performances of this method in different situations; in Section

3.4 we will explain how we can make some diagnostics with this method;

finally, in Section 3.5 we will try to give some hints for future research about

this topic to improve results obtained in this second part of the thesis.

3.2 Framework and Model

In this framework we assume that a sample of T profiles, each of size n, is

collected from the distribution of a quality characteristic, either continuous

or discrete, y. Let yi,t, i = 1, . . . , n, t = 1, . . . , T , be the ith observation of

the tth profile such that yt = (y1,t, y2,t, . . . , yn,t)
′ is an n-dimensional vector

representing the variable of interest of the considered profile. Differently from

Capizzi & Masarotto (2012), we consider also the possibility of a deterministic

explanatory variable x since our research is focused on profiles.

When the process is stable, we assume these profiles to be independent

and drawn from an unknown but common cumulative distribution function

F0(y|x), whereas when the process is unstable1 the profiles can be thought

1With stable and unstable, in this Phase I SPC framework, we mean the same as in
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drawn by the following multiple change-point nonparametric model:

yt ∼



F0(y|x) if 0 < t ≤ τ1

F1(y|x) if τ1 < t ≤ τ2

. . .

Fk(y|x) if τk < t ≤ T ,

(3.1)

where 0 < τ1 < τ2 < . . . < τk < T represent k unknown change points and

Fr(y|x), r = 0, . . . , k, are unknown cumulative distribution functions for y

depending on the values assumed by the explanatory variable x.

Notice that model 3.1 includes a great variety of processes which are not

stable everywhere. It can perfectly describe processes which present step

(ex.: model 3.2), transient (ex.: model 3.3) and even isolated (ex.: model

3.4) shifts.

yt ∼


F0(y|x) if 0 < t ≤ τ1

F1(y|x) if τ1 < t ≤ τ2

F2(y|x) if τ2 < t ≤ T

(3.2)

yt ∼


F0(y|x) if 0 < t ≤ τ1

F1(y|x) if τ1 < t ≤ τ2

F0(y|x) if τ2 < t ≤ T

(3.3)

yt ∼

F0(y|x) if t 6= τ

F1(y|x) if t = τ
(3.4)

Now, let us explain more in detail how we constructed this multivariate

test, on the basis of the previous univariate version presented in Capizzi &

Masarotto (2012). Since we are interested to suggest a new type of Phase I

analysis, we would like to provide a final statistical test in order to obtain a

p-value which will test the hypothesesH0 : the process is stable ∀t, t = 1, . . . , T

H1 : ∃ t, t = 1, . . . , T : the process is not stable .

control and out of control respectively.
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Furthermore we would like to provide a diagnostic tool, connected with the

statistical test, able to identify in some way time and type of changes when

we reject the hypothesis of stability (see Section 3.4).

The reference model for our study will be

yt = µ0(x) + δ(x)I[τ1,τ2](t) + εt , t = 1, . . . , T , (3.5)

where you can see that the OC deviation δ(x) occurs from the τ th1 profile to

the τ th2 one, which thus lasts for an interval of ` = τ2− (τ1− 1) = τ2− τ1 + 1

time units. The number of observations T is fixed; in simulation studies

(Section 3.3) you will find in detail which distributions and which covariance

structures we will consider for the error term εt.

Note that in this second part of this thesis, assumptions are more relaxed

with respect to the first part (see Section 2.2 at page 11): we do not restrict to

the case of Gaussian, homoschedastic and independent errors as done before

and this can be done because when profiles are not sequential, that is when

time T is fixed and not undefined, it is more simple to treat them and thus

to consider also more complicated models. The only assumption the method

will make on the data y is the independence between the profiles, because

we would like to work in an almost completely nonparametric way and to

construct a statistical tool valid in almost every possible situation.

This final statistical test is based on the cumulated sums of the data

St =
t∑
t=1

yt , t = 1, . . . , T .

In particular for t = T , we get the vector of the totals

ST =
T∑
i=1

yi = Ty ,

which is, indeed, the last cumulated sum.

Let us suppose that we are interested to evaluate the stability of the

profiles in particular between the time intervals from t = τ1 to t = τ2 and the

rest of the whole time interval, that is from t = 1 to t = τ1 − 1 jointly with
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t = τ2 + 1 to t = T ; we are thus interested if the distribution which generates

the data is always the same in the two time intervals considered. A possible

measure of the stability of the profiles between the two time intervals can

be the vector of the difference of the sample means between the two time

intervals, y[τ1,τ2] − y[τ1,τ2]
, which can be written (see the appendix at page

69) in the following way:

y[τ1,τ2] − y[τ1,τ2]
= T τ1,τ2 =

Sτ2 − S(τ1−1) − (τ2 − τ1 + 1)y

(τ2 − τ1 + 1)
(
1− τ2−τ1+1

T

) . (3.6)

The higher the magnitude of T τ1,τ2 is, the more unstable the two (actually

three, but the first and the third are thought connected) time intervals are.

Since we want to work in a completely nonparametric point of view, in

order to try to be able to recognize every kind of instability in the profiles,

we smooth the statistic T τ1,τ2 with a kernel linear smoothing:

Kτ1,τ2,h = ShT τ1,τ2 ,

where Sh is the kernel smoothing matrix, defined as for SSNEWMA in Sec-

tion 2.2, and h is a proper bandwidth of the smoother (we can also choose

the degrees of freedom and not the bandwidth). The next step is to calculate

a standardized norm of the vector Kτ1,τ2,h through the quadratic form

Tτ1,τ2,h = K ′τ1,τ2,hV hKτ1,τ2,h ,

where V h = Sh + S′h − S′hSh, up to the variance of the sample difference

y[τ1,τ2] − y[τ1,τ2]
, is the inverse of the covariance matrix of Kτ1,τ2,h. We will

completely standardize our statistic in the next steps.

The IC probability distribution function of all Tτ1,τ2,h, τ1 = 1, . . . , T ,

τ2 = 2, . . . , T , τ1 < τ2, h = 1, . . . , H, depends on the unknown distribution

F0(y|x) and thus is unknown as well, but with some tricks we can obtain a

p-value anyway: let Y = [y1, . . . ,yT ] be the n×T matrix of the profiles and

let S be the set of all the T ! n × T matrices obtainable by permuting the

columns of Y . Then, it is known (for further information on permutation
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methods, see Pesarin (2001)) that under H0

Pr [Y = a|S] =


1

T !
if a ∈ S

0 if a /∈ S .
(3.7)

Since the previous result does not depend on the IC distribution F0(y|x),

given a test statistic, we can compute a p-value, which is conditioned only on

the set of permutations of the profiles S. This p-value is calculated as the pro-

portion of permutations where the value of the statistic is greater or equal to

the value of the statistic computed on the original sample. We are interested

only in permuting times and not the whole pooled sample, as in Capizzi &

Masarotto (2012), which presents this permutation method referring to the

global order statistic of the pooled sample of all nT observations.

In particular, knowing that the number of permutations T ! in general

is huge and that, in our case, for each of the H chosen cases of number of

degrees of freedom we want to consider, we have T (T−1)
2

test statistics Tτ1,τ2,h

(it is the number of combinations of the values τ1 and τ2), each assuming that

between τ1 and τ2 the process is unstable and outside is stable (therefore we

have H T (T−1)
2

test statistics all together), we suggest to generate L random

permutations of the data. Then for each permutation l, l = 1, . . . , L, we can

calculate the value of Tτ1,τ2,h, namely T̃
(l)
τ1,τ2,h

. At this point we standardize

both the statistics Tτ1,τ2,h, computed on the original sample, and the group

of statistics T̃
(l)
τ1,τ2,h

, each computed on the lth permutation, in the following

way:

Zτ1,τ2,h =
Tτ1,τ2,h − uτ1,τ2,h

vτ1,τ2,h
and Z̃

(l)
τ1,τ2,h

=
T̃

(l)
τ1,τ2,h

− uτ1,τ2,h
vτ1,τ2,h

, (3.8)

where

uτ1,τ2,h =
1

L

L∑
l=1

T̃
(l)
τ1,τ2,h

and v2τ1,τ2,h =
1

L− 1

L∑
l=1

(
T̃

(l)
τ1,τ2,h

− uτ1,τ2,h
)2

are the sample mean and variance of the statistics T̃
(l)
τ1,τ2,h

respectively.
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Finally we compute the following overall control statistics for both the

original sample and the permutations:

W = max
τ1,τ2,h

Zτ1,τ2,h and W̃ (l) = max
τ1,τ2,h

Z̃
(l)
τ1,τ2,h

. (3.9)

Note that the standardization of Tτ1,τ2,h and T̃
(l)
τ1,τ2,h

with uτ1,τ2,h and vτ1,τ2,h

is crucial, since we need to have comparable quantities to obtain an honest

maximum among them.

Permutations are thus useful to simulate lots of IC values of the statistic

W and therefore a natural way to provide a conditioned p-value can be

defined as

p =
1

L

L∑
l=1

I
(
W̃ (l) ≥ W

)
. (3.10)

As the natural definition of a p-value suggests, it is defined as the proportion

of cases where the values of the statistic W computed on the permutations of

the data (representing a sample of theoretical values of W when the process

is stable everywhere) exceeds or is equal than the value of W observed on

the original data.

3.3 Simulation Study

In this section we investigate the performance of the test in different situa-

tions; for simulations we are going to describe we used a code written in the

R language (R Development Core Team, 2010).

Before describing simulation studies in detail, we have to make some

clarifications: differently from what we said in the previous section, in these

simulation studies we apply some tricks. First the number of test statistics

among which we choose the maximum, is not H T (T−1)
2

, but

H
[
6(T − 9) + (T−10)(T−9)

2

]
because we will actually consider not all combi-

nations of possible τ1 and τ2, but only those where both ` and T − ` are at

least 5, that is both the IC and the OC periods have at least 5 observations.

Furthermore we decided to consider, for simplicity, only H = 3 choices of
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bandwidths/degrees of freedom, with g1 = 3.398 (df = 3), g2 = 1 (df = 6.59)

and g3 = 0.682 (df = 9) and anyway we will see that the choice of g (or df) is

not crucial. In simulation studies, presented in detail in the following lines,

we will apply these two last tricks.

Let us specify the reference model 3.5 at page 49 introduced in the pre-

vious section more particularly for our simulation studies:

• about the error term: εt = Akε
∗
t , where Ak, k = 1, 2, 3, is the Cholesky

factor of a specific covariance matrix Σk and for ε∗tj, j = 1, . . . , n,

the components of ε∗t , we consider three distributions: N(0, 1), t3 or

SN(0, 1, 3);

• about the OC shift: δ(x) = α[µ1(x) − µ0(x)]; the shift is rearranged

such that by varying the intra-profile correlation, it has always the same

meaning;

• α =

√
[µ1(x)− µ0(x)]′[µ1(x)− µ0(x)]

[µ1(x)− µ0(x)]′Σk
−1[µ1(x)− µ0(x)]

is needed to make different

scenarios comparable and it has been calculated such that

α2[µ1(x)−µ0(x)]′Σk
−1[µ1(x)−µ0(x)] = [µ1(x)−µ0(x)]′[µ1(x)−µ0(x)];

• ` = τ2 − (τ1 − 1) = τ2 − τ1 + 1 is the length of the instability period of

the process;

• the number of observations T is fixed;

• Var(εt) = Σk = σ2
r [σij,k], where σij,k =



1 if i = j

0 if i 6= j
if k = 1

ρ|i−j| if k = 21 if i = j

λ if i 6= j
if k = 3 ;

is

the (i, j) element of the covariance matrix Σk; σ
2
r , r = 1, 2, 3, is the

variance of the distribution of each component of ε∗t : 1 with N(0, 1)

(r = 1), 3 with t3 (r = 2) and 0.427 with SN(0, 1, 3) (r = 3). Thus,
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we consider three possibilities of intra-profile correlation: uncorrelation

(k = 1); cascade (k = 2), that is the higher the distance of the compo-

nents, the more the correlation decreases; correlation always equal to

a same value λ (k = 3). We will take ρ = 0.6 and λ = 0.2.

First of all we checked that this test works well when the process is

IC: we considered the three different distributions of the error, the three

covariance matrices and two values of the number of time observations T (10

and 20): we obtain 3 × 3 × 2 = 18 IC scenarios all together. For each IC

scenario we calculate 100 p-values of the test, each computed using L = 1000

permutations. The number of p-values for each scenario is not huge, but the

code which executes the simulations is really slow and even in this way each

scenario takes days to be simulated completely; furthermore, in any case,

already with 100 p-values it is possible to have an idea of their distribution

and to recognize, if the method is good, if the analyzed scenario is effectively

IC or OC (see figures 3.3 and 3.5).

After realizing that IC the method works well we tested this method in

OC situations in two ways.

First we tried to explore performances of our test in 162 different scenar-

ios, obtained by the 27 combinations of before (actually the 18 combinations

of before plus other 9 combinations provided when T = 50) applied to 6

situations (27× 6 = 162) already used in Chapter 2: OC1A, OC1E, OC2A,

OC2E, OC3A and OC3E (for each of the three OC models we chose the

scenario with the smallest value of the OC parameter ν and the scenario

with the medium value of ν: see table 2.1 at page 20 for details on these OC

situations). In all scenarios, the IC/OC pattern is always the same: the first
T
2

observations are IC, whereas from the
(
T
2

+ 1
)th

to the T th are OC. We

provided only one p-value for each of the 162 scenarios just to explore the

capabilities of this test in different situations.

Then we chose one situation, OC3E, to be investigated a bit more deeply:

we considered the three distributions of the error of before, only the first

covariance matrix of before, only 20 as number of time observations T (10 is
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not so interesting and more than 20 time observations take too much long, as

you will see in Section 3.5) and 4 different IC/OC patterns. We thus obtain

3× 1× 1× 4 = 12 specific scenarios in this second group of OC simulations,

which will be used also to make some diagnostics (see Section 3.4). As in IC

simulations, even here we simulate 100 p-values for each scenario and each

p-value is calculated using L = 1000 permutations. The 4 patterns of before

are generated in the following way:

1. 1th pattern: 10 IC observations and 10 OC observations;

2. 2nd pattern: 15 IC observations and 5 OC observations;

3. 3rd pattern: 5 IC observations, 10 OC observations and finally 5 IC

observations again;

4. 4th pattern: 10 IC observations, 5 OC observations and finally 5 IC

observations again.

We explored more deeply one OC situation, in this case model OC3E, because

we intended to explore performances of our test in different situations: both

in step OC shifts (patterns 1 and 2) and in transient OC shifts (patterns 3 and

4); and also both when the OC period is as long as the IC period (patterns

1 and 3) and when the IC period is longer than the OC one (pattern 2 and

4).

Results are quite encouraging in all three simulation studies: let us see

them a bit more in detail.

In IC scenarios, we expect p-values to be uniformly distributed. In fig. 3.1

you can find an example of distribution of the 100 simulated p-values in an

IC situation; here, in particular, we considered the case of normal errors

with the second type of covariance matrix and T = 20. Our method, in

this IC situation, seems to work quite well since the simulated distribution

of p-values seems to be uniform. The boxplot (fig. 3.2) and the descriptive

statistics (table 3.1) about the simulated p-values in this IC situation confirm

our impression got from the histogram.
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Figure 3.1: Simulated distribution of 100 p-values in the considered IC situ-

ation.

When the significance level α is declared equal to 0.05, the estimated first

type error is 0.04; when the nominal α is 0.01, the estimated one is 0.01 too

and when the nominal α is 0.1, the estimated one is 0.09. These results are

rather good and are a further confirm that our test seems to behave very well

in this IC situation.

Min 1st Q Median Mean 3st Q Max Skewness SD

0.0090 0.2952 0.5505 0.5341 0.7732 0.9980 -0.1758 0.2876

Table 3.1: Descriptive statistics of p-values in the considered IC situation.

Now let us briefly consider the first group of OC simulations: it is just

explorative, indeed we provided lots of OC situations (162), but only one

p-value for each situation, since the code is too slow to provide a huge num-

ber of p-values for a great number of scenarios. Since it is not possible to

report here all 162 p-values of example, we limit to say that results are quite



3.3 Simulation Study 57

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

IC N(0,1) A2 T=20

Figure 3.2: Boxplot of 100 p-values in the considered IC situation.

encouraging, but not so good: only one p-value out of 3, more or less, is

significant, but we cannot forget that we are evaluating very small devia-

tions distributed on whole profiles. It is thus probably difficult to do better

than this. No particular ingredient of these scenarios (covariance matrix and

distribution of the errors, time observations, type of OC deviation from the

IC model) seem to be particularly favoured with respect to the other ones.

Finally let us consider the second, more interesting, group of OC simula-

tions: in fig. 3.3 you can find an example of distribution of the 100 simulated

p-values in an OC situation with respect to the second group of OC simu-

lations; here, in particular, we considered the fourth pattern applied to the

case of errors with a skew normal distribution; in the other 11 considered

scenarios results are quite similar. As you can see, in this case the method

works quite well since the distribution of p-values is really skew towards 0,

which means that in general our test is able to signal that some profiles are

not IC. The boxplot gives a similar vision of the distribution of the p-values:
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Figure 3.3: Simulated distribution of 100 p-values in the considered OC

situation.

see fig. 3.4.

Some descriptive statistics about these p-values are reported in table 3.2.

The estimated power 1−β when the significance level α is equal to 0.05 is 0.56;

furthermore when α = 0.01, 1− β = 0.35 and when α = 0.1, 1− β = 0.67.

Min 1st Q Median Mean 3st Q Max Skewness SD

0.0000 0.0058 0.0315 0.1552 0.1672 1.0000 2.2035 0.2644

Table 3.2: Descriptive statistics of p-values in the considered OC situation.

Moreover, in order to explore the effect of the choice of the bandwidth, we

report the distributions of the p-values in function of the chosen values for the

parameter g of the bandwidth (g1 = 3.398 (df = 3), g2 = 1 (df = 6.59) and

g3 = 0.682 (df = 9)); these p-values are obtained from the “partial” control

statistics Wh = maxτ1,τ2 Zτ1,τ2,h. We compare these three distributions with

the distribution of p-values of before, that is the one obtained from the final
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Figure 3.4: Boxplot of 100 p-values in the considered OC situation.

statistic W = maxτ1,τ2,h Zτ1,τ2,h, which maximizes also with respect to the

three considered values of h.

Look at fig. 3.5: as you can see the choice of the bandwidth seems not

to be so crucial and maybe it would be even not necessary to maximize the

statistics with respect to some possible bandwidths, but simply to choose

one of them and use it. In any case, by doing the maximization we protect

ourselves from completely wrong choices of the bandwidth. In table 3.3 we

sum up some descriptive statistics of the distributions of p-values in function

of g.
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Figure 3.5: Simulated distributions of 100 p-values in the considered OC

situation with respect to different bandwidths.

g Min 1st Q Median Mean 3st Q Max Skewness SD

3.398 0.0000 0.0058 0.0285 0.1494 0.1952 0.9980 2.2912 0.2540

1.000 0.0000 0.0118 0.0425 0.2011 0.2585 1.0000 1.6056 0.2930

0.682 0.0000 0.0080 0.0500 0.2142 0.3340 1.0000 1.4338 0.2935

max in g 0.0000 0.0058 0.0315 0.1552 0.1672 1.0000 2.2035 0.2644

Table 3.3: Descriptive statistics of p-values in the considered OC situation.
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3.4 Only Assessing the Stability or even some

Diagnostics?

As we have previously said, we would like to provide a diagnostic tool together

with this statistical test for trying to recognize which are the most probable

values for τ1 and τ2, that is where the process could be OC when we refuse

the null hypothesis of stability of the process. We simply suggest to consider

the most probable period of instability the time interval [τ1, τ2] where we

obtain the statistic W , that is where Zτ1,τ2,h is maximum.

To see if this method works, let us take the second group of OC simula-

tions and consider, for each scenario, the M = 100 simulated values of W and

represent in a special graph the correspondent M points (τ1, τ2) where they

maximize the statistics Zτ1,τ2,h. In the next pages you find some examples of

this graphs, where the darker each point (τ1, τ2) is, the higher the frequency

of that point. We chose to report here in particular the following scenarios:

• all 4 OC scenarios (see the previous section for the definitions of the

scenarios) with errors distributed like a Student’s t (figg. 3.6-3.9);

• the third OC scenario with normal errors (fig. 3.10);

• the third OC scenario with skew normal errors (fig. 3.11).

Furthermore we chose an example of IC situation too, in particular the one

with normal errors, second type of covariance matrix and T = 20 (fig. 3.12),

to see how this diagnostic tool of our test behaves when the process is always

stable.
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Figure 3.6: Distribution of points (combination of times) where the statistic

has the maximum value in the considered OC situation.
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Figure 3.7: Distribution of points (combination of times) where the statistic

has the maximum value in the considered OC situation.



3.4 Only Assessing the Stability or even some Diagnostics? 63

t(3) sc3

τ1

τ 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

p  o  l  l  o

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0.00

0.05

0.10

0.15

0.20

Figure 3.8: Distribution of points (combination of times) where the statistic

has the maximum value in the considered OC situation.
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Figure 3.9: Distribution of points (combination of times) where the statistic

has the maximum value in the considered OC situation.
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Figure 3.10: Distribution of points (combination of times) where the statistic

has the maximum value in the considered OC situation.
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Figure 3.11: Distribution of points (combination of times) where the statistic

has the maximum value in the considered IC situation.
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Figure 3.12: Distribution of points (combination of times) where the statistic

has the maximum value in the considered IC situation.
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Let us consider the four scenarios with errors drawn from a Student’s

t distribution (figg. 3.6-3.9). You can see that the instability in the first

scenario, where τ1 = 11 and τ2 = 20 (but the method could exchange the IC

and the OC period and think they are exactly the contrary and so it could

also tell us that τ1 = 1 and τ2 = 10), is more difficult to grasp: in fact here

the IC and the OC periods are compact (step deviation) and have the same

length. The instability periods of the second and the third scenarios are

grasped quite well: this happens probably because the OC period is longer

than the IC one (scenario 2) or because the OC period is in the middle of the

process, which is thus transient (scenario 3). The instability of the fourth

scenario seems to be grasped very well, probably since the OC period is very

short and in the middle of the process.

We report scenario 3 also for normal (fig. 3.10) and skew normal (fig. 3.11)

errors: their distribution seems not to be a crucial point; the only difference

is that with normal errors, deviations from the location of the exact point

(τ1, τ2) seem to spread in every direction, differently from errors with other

distributions. The same happens also for the other scenarios.

Finally we can see also that in the IC example (fig. 3.12) our diagnostic

tool seems to behave well, since there are no “accumulation points” and,

therefore, no information on a more probable (τ1, τ2) seem to be signaled

out.

Note that all graphs have a domain ladder shaped and this because, as

we have already said before, we chose to consider only cases when both the

stable and the unstable periods are longer or equal than 5 time units.

3.5 Conclusion and Suggestions for Future Re-

search

In the work described in this chapter we tried to introduce a new almost

completely nonparametric model for Phase I analysis of profile data.

Probably it is possible to do something more in this research field. First
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we could envelope a statistical test which is useful to treat also profile data

with other types of OC time intervals, for example more than one OC interval

(step shifts from the IC model) or an OC interval consisting in only one time

observation (isolated shift from the IC model).

Furthermore the code which applies this method to profile data is still

really slow and probably one could improve it: nowadays a general scenario

with L = 1000 permutations, M = 100 simulations (to obtain “only” 100

p-values) takes almost 2 hours when T = 10, 34 hours when T = 20 and even

almost 12 days and a half when T = 50! By improving the code, trying to

increase its speed, it will be possible to explore performances of this method

more in detail.

Finally, the diagnostic tool seems to work quite well and it could be a

good proposal to try to find the most probable instability period [τ1, τ2].





Appendix

Proof 1: a good form of the statistic T τ1,τ2

T τ1,τ2 = y[τ1,τ2] − y[τ1,τ2]

=
Sτ2 − S(τ1−1)

τ2 − τ1 + 1
−
Ty − (Sτ2 − S(τ1−1))

T − (τ2 − τ1 + 1)

=
[T − (τ2 − τ1 + 1)](Sτ2 − S(τ1−1))− (τ2 − τ1 + 1)[Ty − (Sτ2 − S(τ1−1))]

(τ2 − τ1 + 1)[T − (τ2 − τ1 + 1)]

=
T (Sτ2 − S(τ1−1))− (τ2 − τ1 + 1)(Sτ2 − S(τ1−1))− T (τ2 − τ1 + 1)y

(τ2 − τ1 + 1)[T − (τ2 − τ1 + 1)]
+

+
(τ2 − τ1 + 1)(Sτ2 − S(τ1−1))

(τ2 − τ1 + 1)[T − (τ2 − τ1 + 1)]

=
T (Sτ2 − S(τ1−1))− T (τ2 − τ1 + 1)y

(τ2 − τ1 + 1)[T − (τ2 − τ1 + 1)]

= T
Sτ2 − S(τ1−1) − (τ2 − τ1 + 1)y

(τ2 − τ1 + 1)[T − (τ2 − τ1 + 1)]

=
Sτ2 − S(τ1−1) − (τ2 − τ1 + 1)y

(τ2 − τ1 + 1)
T − (τ2 − τ1 + 1)

T

=
Sτ2 − S(τ1−1) − (τ2 − τ1 + 1)y

(τ2 − τ1 + 1)

(
1− τ2 − τ1 + 1

T

)
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cietà (Statistics, Population and Society).

University of Padova, Faculty of Statistics

Title of dissertation: “Anatomia di una distribuzione di probabilità” (“Anatomy
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applicazioni su dati aziendali

Supervisor: Prof. Roberto Filippini



Computer skills

• R: very good

• SAS: good

• SPSS: good

• STATA: moderate

• LATEX: very good

Language skills

Italian: native; English: good; Spanish: moderate; Dutch: moderate.

Conference presentations

Tonini, E., (2012). Self-starting control charts for monitoring general pro-

files using wavelet transforms and nonparametric techniques. (invited) Joint

Meeting of y-BIS–International Young Business and Industrial Statisticians

and jSPE–Young Portuguese Statisticians, Lisbon, Portugal, 23–26 July,

2012.

References

Prof. Guido Masarotto

University of Padova

Department of Statistics

via Cesare Battisti 241–243

Phone: +39 049 827 4145

e-mail: masarotto@stat.unipd.it


	Introduction
	Overview
	Main Contribution of the Thesis

	Self-Starting Control Charts for Monitoring General Profiles
	A Brief Review on Profile Monitoring
	Framework and Model
	An algorithm to estimate the control limit h

	Simulation Study and Performance Comparison
	Other Attempts to Improve This Work
	Adaptive 
	Something More About the Correct Number of DF in SSNEWMA

	Conclusion and Suggestions for Future Research

	A Statistical Test to Assess the Stability of a Profile in Phase I
	A Brief Review on Methods to Assess the Stability of a Process in Phase I
	Framework and Model
	Simulation Study
	Only Assessing the Stability or even some Diagnostics?
	Conclusion and Suggestions for Future Research

	Appendix
	Bibliography

