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CREB  cAMP response element binding protein 

Δψm  mitochondrial membrane potential 
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HAP1  huntingtin associated protein 1 

HIP  huntingtin interacting protein 

HD  Huntington’s disease 

Htt  huntingtin 
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1. Summary 

 

Huntington’s disease (HD) in a fatal and hereditary neurodegenerative disorder. It is 

caused by a single mutation within the gene which codes for huntingtin protein (Htt). 

Mutant Htt (mHtt) bears an abnormally long polyglutamine expansion at its N-terminus 

that makes the protein cytotoxic and prone to aggregation. It is known that mHtt can 

negatively affect several different cell processes and mitochondrial function appears to 

be particularly injured. What is still under debate is whether mitochondrial dysfunction 

represents just an epiphenomenon of the cellular degeneration or it has an actual 

pathogenic role. To dissect this issue a wide analysis was performed of the 

mitochondrial function in multiple HD model, both cellular and animal. 

We observed that mitochondria of striatal cells expressing mHtt maintain their basal 

respiration rate and membrane potential unaltered, even if mHtt causes an impairment 

of the electron transport chain. Moreover, the expression of N-terminal mHtt, that is 

known to reproduce a severe phenotype of the disease, increases cell death, but this does 

not seem to correlate with mitochondrial damage. In addition, starting from the 

presymptomatic phase, in HD mice brain mitochondria develop an enhanced resistance 

towards permeability transition induced by Ca
2+

. This is presumably an adaptive change 

arisen to cope with mHtt-related stress. 

These observations lead to hypothesize that mHtt per se does not affect mitochondria as 

a primary effect. It is rather likely that the mitochondrial impairment detected in some 

HD models comes after the alteration of other key cellular process. 

Mitochondria dysfunction in HD has been further characterized by identifying the 

striatal protein Rhes as a relevant contributor of this phenotype. It has been previously 

demonstrated that Rhes increases mHtt cytotoxicity with a mechanism that has still to 

be fully understood. Here we showed that the coexpression of mHtt and Rhes leads to 

increased susceptibility to oxidative stress and loss of mitochondrial membrane 

potential. Conversely, the expression of the two proteins separately does not have any 

effect. 
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Sommario 

 

La corea di Huntington (HD) è una malattia neurodegenerativa letale ed ereditaria. Essa 

si sviluppa in seguito ad una singola mutazione sul gene che codifica per la proteina 

huntingtina (Htt). La Htt mutata (mHtt) presenta all’N-terminale una coda 

poliglutamminica più lunga della forma wild-type e questo la rende prona 

all’aggregazione e citotossica. La mHtt può ostacolare la funzionalità cellulare a vari 

livelli e, in particolar modo, è stato dimostrato che l’espressione della mHtt si 

accompagna ad un’alterazione dell’attività mitocondriale. Nonostante il gran numero di 

studi sull’argomento non è ancora stato chiarito se questo danno sia la causa primaria 

della morte neuronale o semplicemente un effetto secondario dello stress indotto dalla 

mHtt. 

Al fine di ottenere evidenze a sostegno dell’una o dell’altra ipotesi, è stata fatta 

un’analisi a largo raggio sulla funzionalità mitocondriale nell’handling del Ca
2+

 e nella 

respirazione in vari modelli di HD, sia cellulari sia animali. Si è osservato che nelle 

cellule striatali esprimenti mHtt i mitocondri mantengono inalterata la loro respirazione 

basale e il loro potenziale di membrana nonostante la mHtt indebolisca l’attività della 

catena di trasporto degli elettroni. L’espressione del solo N-terminale della mHtt, ossia 

la sua porzione più tossica, causa un aumento di morte cellulare che non sembra 

correlare con un danno a livello mitocondriale. Inoltre, fin da una fase presintomatica 

della malattia, i mitocondri isolati da cervello di topi HD si dimostrano più resistenti nei 

confronti dell’induzione della transizione di permeabilità, presumibilmente come forma 

di adattamento allo stress cellulare procurato dall’accumulo di mHtt.  

Queste osservazioni portano ad ipotizzare che la mHtt di per sé non leda la funzionalità 

mitocondriale come effetto primario e che l’alterazione che si riscontra in alcuni modelli 

di HD sia, in effetti, una conseguenza del malfunzionamento di altri processi chiave 

nella cellula.  

Un ulteriore passo avanti nella caratterizzazione della disfunzione mitocondriale nella 

HD è stato fatto identificando la proteina striatale Rhes come possibile corresponsabile, 

insieme alla mHtt, di questo fenotipo. In precedenza è stato visto che questa proteina 

aumenta la citotossicità della mHtt attraverso meccanismi ancora da definire. In questo 

studio è stato dimostrato che la co-espressione della mHtt con Rhes porta ad una perdita 



 

5 
 

di potenziale mitocondriale e ad aumentata suscettibilità allo stress ossidativo, laddove, 

invece, l’espressione delle due proteine singolarmente non sortisce alcun effetto. 
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2. Introduction 

 

 

2.1 Huntington’s disease 

 

2.1.1 Genetic and clinical aspects 

 

Huntington’s disease in a fatal dominant inherited neurodegenerative disorder caused by 

a single mutation within the coding region of the IT15 (interesting  transcript  15) gene. 

The IT15 gene is located on the short arm of chromosome 4 (4p16.3) and codes for a 

protein called huntingtin (Htt). The mutant gene has an increased number of cytosine-

adenine-guanine (CAG) repeats at the 5’-end of exon 1 compared with the wild-type 

form (Fig. 1). The mutation gives rise to an elongated polyglutamine tract at the N-

terminus of the Htt protein that is associated with protein aggregation and endows the 

protein with new toxic functions that are deleterious for brain cells.
1, 2

  

 

 

Fig. 1. Schematic representation of Htt protein and gene.  In Huntington's disease an 

expansion beyond 36 of the CAG repeats at the 5’-end of exon 1 results in an abnormal 

elongation of the polyglutamine tail at the N-terminus of the protein.  

 

Healthy individuals have typically less than 36 CAG repeats, 36-39 repeats indicate an 

incomplete penetrance of the disease,
3
 while repeats of 40 or above result in HD with 

complete penetrance.  
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The CAG repeat length is a main determinant for HD onset, accounting for nearly 70% 

of the variability observed in the age at onset.
4
 The number of CAG repeats varies 

considerably among patients: a repeat length around 40 is associated with adult onset of 

disease (between 35 and 50 years), whereas expansions of more than 60 repeats lead to 

a juvenile onset. Typically, a longer CAG repeat expansion correlates with an earlier 

onset, a more severe phenotype and more rapid progression of the disease.
5
 

Prevalence of the mutation is 4–10 cases per 100,000 in populations of Western 

European descent, with many more at risk of having inherited the mutant gene without 

knowing it. 

 

 

Fig. 2. Representation of the basal ganglia components and other relevant 

surrounding structures. Basal ganglia includes the striatum, the globus pallidus, the 

substantia nigra, the nucleus accumbens and the subthalamic nucleus. The striatum is the 

largest component of the basal ganglia and it is made of two distinct masses: caudate and 

putamen. About 96% of the striatal neurons are "medium spiny neurons". These are 

GABAergic neurons with small cell bodies and dendrites densely covered with dendritic 

spines, which receive synaptic input primarily from the cortex and thalamus.  From http:// 

www.epistemic-forms.com  

 

Over time, the consequence of carrying the HD mutation is a massive brain 

neurodegeneration characterized by the prevalent loss of medium spiny neurons in the 

striatum (caudate nucleus and putamen) of the basal ganglia (Fig. 2), which is primarily 

responsible for the typical HD symptoms.
6
 The most common grading system to 

evaluate the severity of HD progression refers to the extent of striatal degeneration in 

post mortem tissue and classifies HD cases into five different severity grades (0–4).
7
 

Although the striatum is the most profoundly affected region in HD, it is now well 

established that a more widespread degeneration occurs in the brain and can involve 
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also cerebral cortex (particularly layers III, V, and VI), globus pallidus, thalamus, 

hypothalamus, subthalamic nucleus, substantia nigra and cerebellum (Fig. 3).
8, 9

 

 

 

 

Fig. 3. Brain magnetic resonance imaging of a healthy individual (left) and a patient 

with HD (right). Loss of striatal mass is apparent early in HD, as the disease progress a 

severe atrophy affects also other brain regions. From http://kobiljak.msu.edu  

 

The clinical phenotype of HD is characterized by progressive motor impairments, 

cognitive deterioration, personality changes and susceptibility to severe mental disorder. 

The disease progression is slow and HD mutation leads to death after ten to twenty-five 

years from first symptom appearance. 

In the early stages, HD is typically associated with progressive emotional, psychiatric, 

and cognitive disturbances.
10

 Commonly reported symptoms in HD include progressive 

weight loss, alterations in sexual behaviour and in the wake-sleep cycle that appear very 

early in the course of the disease and may partly be determined by hypothalamic 

dysfunction.
11

 In the later stages, HD patients show motor deficiencies, progressive 

dementia, or gradual impairment of the mental processes involved in comprehension, 

reasoning, judgment, and memory.
12, 13

 Due to increasingly severe dementia and 

progressive motor dysfunction, patients with advanced HD may become unable to walk, 

have poor dietary intake, eventually cease to talk, and become unable to care for 

themselves, therefore potentially requiring long-term institutional care. Life-threatening 

complications may result from injuries related to serious falls, poor nutrition, infection, 

choking, and inflammation. Most HD patients eventually die of cardiac failure or 

aspiration pneumonia because of swallowing difficulties.
10

 

Currently, HD therapy can only limit chorea, that is the involuntary and irregular 

movements of the limbs that characterized this disorder, and battle the mood altering 

aspects of HD, since no disease modifying treatment is available. 

The expansion of CAG tracts encoding polyglutamine stretches is the cause of other 

nine human neurodegenerative diseases:  besides HD, the others are dentatorubral-
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pallidoluysian atrophy, spinobulbar muscular atrophy, and spinocerebellar ataxia types 

1, 2, 3, 6 and 7. These disorders are all characterized by abnormal polyQ expansion of a 

specific protein and loss of a specific type of neurons.
14

  

 

2.1.2 Wild-type huntingtin 

 

Htt is a large protein with a mass of 347 kDa that is made up of 3144 amino acids. It is 

ubiquitously expressed in humans and rodents, with highest concentrations in the 

neurons of the central nervous system.
15, 16

 Htt is particularly enriched in cortical 

pyramidal neurons in layers III and V that project to the striatal neurons.
17

 

Within the cell, Htt is mainly found in the cytoplasm but it can associate with the 

nucleus and a variety of organelles, including endoplasmic reticulum, Golgi complex, 

and mitochondrion.
18, 19

 It has also been found within neurites and at synapses, where it 

can associate with various vesicular structures such as clathrin-coated vesicles, 

endosomes, caveolae, and microtubules.
19, 20

 This widespread subcellular localization 

does not facilitate the definition of Htt physiological function. 

An evident feature of the Htt protein is the polyQ at its N-terminus. In higher 

vertebrates, and specifically in mammals, the polyQ region is followed by a polyproline 

(polyP) stretch (Fig. 4). It has been suggested that the polyP region could have a role in 

mediating Htt interaction with other proteins and also in stabilizing the polyQ tract by 

keeping it soluble. 

Htt is additionally enriched in the so-called HEAT repeat: a sequence of ~40 amino 

acids named after the first four proteins in which it was discovered: Huntingtin, 

Elongation factor 3, a subunit of protein phosphatase 2A and the lipid kinase TOR. 

Although the exact function of HEAT repeats is currently unclear, it has been proposed 

that these domains mediate protein-protein interaction. The identification of 37 putative 

HEAT repeats in Htt suggests that the normal function of Htt may involve some of these 

protein-protein interactions, pointing to the possible role of Htt as a scaffold protein.
21

 

By using yeast two-hybrid screenings, affinity pull-down assays, western blotting, and 

immunoprecipitation, nearly 50 proteins able to directly interact with Htt or its 

fragments have actually been described.
22

 These Htt interactors are involved in gene 

expression, intracellular transport, intracellular signaling and metabolism.
22, 23

 

 

https://www.stanford.edu/group/hopes/cgi-bin/wordpress/glossary/mass/
https://www.stanford.edu/group/hopes/cgi-bin/wordpress/glossary/dalton/
https://www.stanford.edu/group/hopes/cgi-bin/wordpress/glossary/amino-acid/
https://www.stanford.edu/group/hopes/cgi-bin/wordpress/glossary/heat-repeats/
https://www.stanford.edu/group/hopes/cgi-bin/wordpress/glossary/lipid/
https://www.stanford.edu/group/hopes/cgi-bin/wordpress/glossary/kinase/
https://www.stanford.edu/group/hopes/cgi-bin/wordpress/glossary/domain/
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Fig. 4. Schematic diagram of Htt amino acid sequence. (Q)n indicates the polyglutamine 

tract, which is followed by the polyproline sequence, (P)n, and the red squares indicate the 

three main clusters of HEAT repeats. The  green arrows indicate the caspase cleavage sites 

and their amino acid positions, and the blue arrowheads the calpain cleavage sites and their 

amino acid position. NES is the nuclear export signal. The black arrows indicate post-

translational modifications: ubiquitination (UBI) and/or sumoylation (SUMO) at the first 17 

amino acids, and phosphorylation (PHOS) at serine 421 and serine 434.  
 

Determining the physiological function of wild-type Htt remains elusive, although 

several molecular pathways have been identified in which Htt plays a key role.  

For example, Htt function in transcription is widely documented.
23

 Htt can regulate 

transcription by shuttling transcription factors between the nucleus and the cytoplasm 

and by interacting with spliceosome-related proteins.
24

 Moreover, Htt binds to RE1-

Silencing Transcription factor (REST, also known as Neuron Restrictive Silencer 

Factor) and therefore sequesters it in the cytoplasm.
25

 Htt activates transcription by 

keeping REST in the cytoplasm, away from its nuclear target: the neuron restrictive 

silencer element, which is a consensus sequence found in genes such as the that 

encoding brain derived neurotrophic factor (BDNF). BDNF has been proved to be 

particularly important for the survival of striatal neurons and for the activity of the 

cortico-striatal synapses.
26

 

Evidence is growing to suggest that Htt is also involved in trafficking. Htt interacts with 

many proteins that regulate intracellular transport or endocytosis, such as Htt-associated 

protein 1 (HAP1), Htt-interacting protein 1 and 14 (HIP1 and HIP14), HIP1-related 

protein, protein kinase C and casein kinase substrate in neurons-1.
27, 28

 Htt influences 

both anterograde and retrograde transport in the dendritic and axonal processes by 

binding with HAP1 and subsequently interacting with the molecular motors 

dynein/dynactin and kinesin.
29, 30

 Through this interaction Htt promotes the transport of 

BDNF along microtubules. Indeed, a higher or lower Htt concentration in cells 

respectively increases or decreases intracellular transport of BDNF.
31
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In vitro and in vivo studies have shown that Htt has an anti-apoptotic effect. It has been 

observed that Htt prevents the activation of caspase-8 by interacting with HIP1 and 

hampering its association with HIP1-protein-interactor.
32

 In fact, the complex formed 

by HIP1 and HIP1-protein-interactor induces caspase 8-mediated apoptosis in the cell. 

In addition, Htt blocks the formation of a functional apoptosome complex and the 

consequent activation of caspase-3 and caspase-9.
33, 34

 

Studies in Htt knock-out mice have shown that Htt is required for normal embryonic 

development and neurogenesis: mice lacking Htt die at embryonic day 7.5.
35

 Htt is also 

fundamental in adult life, as the inactivation of its gene in the brain of adult mouse leads 

to neurodegeneration.
36

 Furthermore, wild-type Htt protects against cell death induced 

by mutant Htt in vivo and against neurodegeneration induced by ischaemia or NMDA 

receptor activation.
37

 

Htt contains well-characterized consensus cleavage sites for proteolytic enzymes that 

cut the protein around the 500
th

 amino acid residue and generate a wide range of 

fragments. Caspases, calpain, and aspartyl proteases are all involved in this process. Htt 

is cleaved by caspase-3 and caspase-7 at amino acids 513 and 552, caspase-6 at amino 

acid 586, and caspase-2 at amino acid 552.
38

 Two specific calpain cleavage sites have 

been identified in Htt at residues 469 and 536.
39

 

Htt can undergo several types of posttranslational modifications. It is ubiquitinated at 

the N-terminal lysines K6, K9 and K15 and thus targeted to the proteasome.
40

 When an 

expanded polyQ stretch is present, this process is impaired causing proteosomal 

dysfunction.  

Htt can be phosphorylated at serine-13, -16, -421, -434, -1181 and -1201. It is known 

that phosphorylation can influence Htt susceptibility to clearance by the proteasome or 

cleavage by proteases,
41

 but it is still not clear how phosphorylation can regulate Htt 

physiological activity. Importantly, phosphorylation of mutant Htt modulates its toxicity 

and aggregate formation
42

 suggesting that targeting serine residues may represent a 

potential therapeutic strategy for HD. 

Htt is SUMOylated at the first 17 amino acids and SUMOylation modulates its 

subcellular localization, activity and stability.
43, 44

 

Finally, Htt is palmitoylated,
45

 as other proteins involved in vesicle trafficking, and 

acetylated at lysine-444.
46

 Acetylation has been deeply studied in the case of mHtt as 

this modification facilitates mHtt engulfment by autophagosomes and this significantly 

improves its clearance and reverses mHtt toxic effects.
46
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2.1.3 Mechanisms of neurodegeneration 

 

The exact molecular mechanism whereby mutation in Htt causes the observed striatal 

neurodegeneration, despite a ubiquitous expression, is still elusive. This mechanism is 

likely multifactorial, highly complex and may imply a coexistence of both loss-of-

function and gain-of-function effects. 

Indeed, mutant Htt is known to negatively affect several different aspects of cell life, 

such as transcription, ubiquitin-proteasome system, autophagy, calcium homeostasis, 

vesicular trafficking and mitochondrial function (Fig. 5). In addition, the mutation may 

also hinder the Htt protein from exerting its normal molecular activities that are crucial 

for the functioning and viability of neurons in general and striatal neurons in particular. 

 

Aggregation and proteolysis. Mutant Htt is highly prone to aggregation. The formation 

of cytoplasmic aggregates and nuclear inclusions throughout the brain is one of the most 

striking hallmarks of HD.
47

 Mutant Htt aggregates are made of highly ordered amyloid 

fibers with high β-sheet content and low detergent solubility. These inclusions can 

sequester several other proteins, including factors important for transcription and 

protein quality control, suggesting that their presence is deleterious to cell function and 

contributes to a complex loss of function phenotype. Several lines of evidence identify 

small oligomeric forms as the most toxic species and propose that the formation of large 

inclusions of mHtt might be a protective strategy as mHtt is held into a less pervasive 

structure.
48, 49

 However, the role of aggregates in HD is still a matter of debate, 

especially because a precise correlation between aggregation level of mHtt and neuronal 

death has not been demonstrated yet. 

As described above, Htt is susceptible to proteolysis by a number of proteases (cf. 

paragraph 2.1.2). Proteolytic fragments including the N-terminal part of the protein are 

detectable in brains of HD patients and HD mice before the loss of neurons in the 

striatum. Blocking mHtt cleavage by site-directed mutagenesis or by pharmacological 

approaches reduces cytotoxicity and slows down disease progression.
50

 Moreover, when 

N-terminal mHtt fragments are overexpressed in cell or animal models, they reproduce 

the most severe traits of the full-length mHtt toxicity.
51

 These evidences strongly 

suggest that proteolytic cleavage of the aberrant protein is a key step step in the 

development of HD and that N-terminal fragments are probably the major responsible 

of cell damage. 
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Transcriptional dysregulation. Alteration of gene transcription is certainly an important 

aspect of HD pathogenesis.
52

 In fact, investigations based on DNA microarray 

technology showed a lot of gene expression changes in HD models and human post 

mortem brain tissue. Cell culture and biochemical studies indicated that mHtt can 

interfere with gene transcription.
53, 54

 Several molecular mediators have been proposed, 

including cAMP response element binding protein (CREB),
55

 nuclear receptor 

corepressor, SP1 transcription factor, basal transcription factors, and REST elements. 

Direct mHtt interaction with DNA might also play a part.
56

 Mutant Htt interaction with 

CREB transcription factor can lead to reduced expression of the essential neurotrophic 

factor BDNF,
57

 mitochondrial OXPHOS proteins (e.g. Cox-IV and cytochrome c) and 

PGC-1α,
54

 that is a transcriptional co-activator regulating mitochondrial biogenesis and 

oxidative function. 

 

Excitotoxicity and calcium dyshomeostasis. The excessive stimulation of excitatory 

amino acid receptors, especially of NMDA receptors, is defined as excitotoxicity. This 

has long been regarded as a non-cell autonomous mechanism with a role in 

pathogenesis of Huntington’s disease.
58

 The excessive stimulation of NMDA glutamate 

receptors may be due to increased glutamate release from cortical afferents and/or 

reduced uptake of glutamate by glia. Moreover, hypersensitivity of postsynaptic 

glutamate receptors on striatal projection neurons may also contribute to pathogenesis.
59

 

Excitotoxicity results in the dysfunction of neuronal interaction and circuitries at the 

corticostriatal synapse. In addition, the rise in cytosolic Ca
2+

 concentration can 

potentially bring to ROS overproduction and abnormal activation of several Ca
2+

-

dependent enzymes. The cell damage derived from cytosolic [Ca
2+

] rise can be 

amplified by the defective buffering capacity of mHtt expressing cells, which is largely 

documented.
60

 In some HD models it was observed that mHtt reduces the sensitivity of 

the mitochondrial permeability transition pore (PTP) to Ca
2+

-induced opening with 

consequent release of Ca
2+

 from the matrix.
61

 Moreover, mHtt binds to the inositol 

1,4,5-triphosphate receptor 1 on the endoplasmic reticulum stimulating Ca
2+

 release.
62

 

This causes a further increase in cytosolic [Ca
2+

] that is likely responsible for the  

general dysregulation of Ca
2+

-homeostasis and Ca
2+

-dependent signaling pathways 

observed in experimental HD models. 
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Clearance systems. As in many neurodegenerative diseases associated with 

accumulation of misfolded proteins, also in HD a dysfunction in clearance systems 

takes place. Misfolded proteins can be cleared by both autophagy and ubiquitin-

proteosome machinery. Mutant Htt can interfere with target recognition and 

compromise autophagic clearance causing a lower engulfment of cytosolic 

macromolecules and damaged organelles.
63

 Pharmacological activation of mammalian 

target of rapamycin (mTOR)-dependent autophagy with rapamycin attenuates toxic 

effects of mHtt in fly and mouse model of HD.
64

 The ubiquitin-proteosome system 

(UPS) has been an important topic of research in HD since mHtt aggregates were first 

observed to be ubiquitin-tagged, suggesting a failure in their degradation by UPS.
65

 An 

accumulation of ubiquitin-positive proteins occurs in brain tissue from HD patients and 

HD mice.
66

 The disruption of UPS likely arises because the proteostasis is impaired by 

mHtt. The lower activity of UPS in turn leads to increased level of improperly folded 

proteins and, as a consequence, the great amount of accumulated polyubiquitylated 

proteins overloads the proteasome preventing it from working efficiently. Inhibition of 

clearance systems amplifies mHtt own toxicity as it causes the accumulation of 

defective organelles and proteins different from Htt but potentially harmful. 

 

Vesicular trafficking. Wild-type Htt was found to be part of the motor complex that 

drives anterograde and retrograde transport of vesicles and organelles along the 

microtubules. Many evidences suggest that this motor complex is altered in HD. In 

particular, increased binding of mHtt to HAP1 was found to reduce the association 

between HAP1/dynactin and microtubules altering the mechanism of retrograde 

transport.
31

 On the other hand, anterograde vesicular transport, particularly important 

for BDNF delivery to striatal cells, appears to be altered because of a defect in 

HAP1/Htt/kinesin complex formation. It has been also proposed that dysfunction in 

vesicular trafficking occurs because mHtt aggregates bind to cargoes impairing their 

movement or physically block their movement along the axons.
67

 Finally, it is possible 

that mHtt aggregates impair vesicular trafficking because they recruit motor proteins, 

thus reducing the soluble pool of motor proteins required for transport.
68
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Fig. 5. Postulated intracellular pathogenesis of Huntington’s disease. Mutant Htt with 

an expanded polyglutamine repeat undergoes a conformational change and interferes with 

cellular trafficking, especially of BDNF. Mutant Htt is cleaved at several points to generate 

toxic fragments with abnormal compact β conformation. Pathogenic species can be 

monomeric or, more likely, form small oligomers. Toxic effects in the cytoplasm include 

inhibition of chaperones, proteasomes, and autophagy. There may be direct interactions 

between mutant Htt and mitochondria. Mutant Htt inclusion bodies are found in the nucleus 

and in cytoplasmic regions. A major action of mutant Htt is interference with gene 

transcription leading to decreased transcription of BDNF and PGC1α. From Ross et al., 

Lancet Neurol 2011; 10: 83–98.  

 

 

2.2 Mitochondrial dysfunction in Huntington’s disease 

 

Many lines of evidence suggest that mitochondrial dysfunctions play a central role in 

HD.
69

 Mitochondria are key regulators of cell death, a main feature in 

neurodegeneration. Neurons are much sensitive to mitochondrial defects as they are 

characterized by particularly high energy demands. In fact, neurons have to fulfil 

expensive physiological functions like the release and re-uptake of neurotransmitters at 

synapses, a variable plasma membrane potential, and the trafficking of vesicles and 

organelles along extended processes. Moreover, they rely mainly on mitochondria as 

source of ATP production and do not switch to glycolysis when oxidative 

phosphorylation is impaired.
70

 Several mitochondrial defects are documented in HD 

studies and a wide range of pathogenic mechanisms has been proposed, ranging from 

direct mHtt-mitochondria association
71, 72

 to indirect transcriptional dysregulation 
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affecting mitochondrial composition (cf. paragraph 2.1.3).
73, 74

 On the other hand, it has 

been for long debated whether mitochondrial dysfunction is just one of the 

consequences of the cellular degeneration or it has a causative pathogenic role. This 

doubt derived also from the fact that many hereditary and sporadic neurodegenerative 

disorders with different clinical phenotype and pathogenesis share similar mitochondrial 

alterations, suggesting that the mitochondrial contribution may be an aspecific feature of 

the disease progression. To address this issue in the context of HD, an extensive 

research has been dedicated to characterize the mechanisms whereby mHtt can affect 

mitochondrial function, in order to identify new potential therapeutic targets to 

modulate the progression of the disorder. The following paragraph reports a short 

overview of the main mitochondrial defects documented in HD. 

 

Energy metabolism and respiratory chain. In the cerebral cortex and basal ganglia of 

HD patients, increased production of lactate was observed,
75

 suggestive of an elevated 

glycolytic rate. Moreover, positron emission tomography (PET) gave strong evidence 

for altered glucose metabolism in the brain of HD patients, especially in the basal 

ganglia, from the early stages of the disease.
76, 77

 These alterations can possibly be due 

to mitochondrial impairment. ATP depletion was demonstrated in brain of an HD 

mouse model.
78

 Furthermore, by means of 
1
H-magnetic resonance spectroscopy, the 

basal ganglia and thalamus of symptomatic HD patients were shown to have low 

concentration of N-acetylaspartate, a molecule abundant in neurons, whose production 

depend on and is often regarded to reflect mitochondrial metabolic activity.
75, 79

 A few 

studies have investigated whether defects in mitochondrial respiration contribute to the 

observed bioenergetic alterations. Severe reduction in the activity of complex II/III and 

milder reduction of complex IV were found in post mortem samples of caudate/putamen 

in HD patients.
80

 No changes were observed in pre-symptomatic patients.
81

 Lower 

activity of other enzymes involved in oxidative metabolism in the striatum was also 

reported. In particular, massive loss of aconitase and pyruvate dehydrogenase activity 

has been found in the caudate and putamen.
58, 82

 However, these defects were observed 

in symptomatic patients with caudate/putamen atrophy. Since no significant deficiency 

of respiratory chain complexes has been documented in presymptomatic patients or in 

HD model mice expressing full-length mHtt, a causal relationship between cell injury 

and mitochondria dysfunction can not be established and it has been inferred that 

respiratory chain defects are likely a secondary feature in HD pathogenesis. 
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Oxidative stress. Increased ROS production could be one of the causes of impaired 

respiratory chain. Evidence of enhanced oxidative stress in HD brains includes an 

increase in accumulation of lipofuscin, a product of unsaturated fatty acid peroxidation, 

that is more pronounced in vulnerable striatal neurons.
83

 Oxidative modification of 

proteins (protein carbonyls) and lipids (malondialdehyde and 4-hydroxynonenal) are 

also increased in HD brain and in animal models,
83

 and increased malondialdehyde is 

observed in blood.
84

 Moreover, an increase in oxidative defense mechanisms, including 

mitochondrial and cytoplasmic superoxide dismutase, have been found in HD patient 

brains
85

 and transgenic animals.
86

 

Oxidative damage can contribute to neuronal loss in HD. However, it is not clear 

whether oxidative stress is a determining factor or, rather, a late event in the disease 

pathogenesis and even the origin of increased ROS has not been identified conclusively. 

Mitochondrial respiratory chain is a major source of ROS and defects of its complexes 

may cause ROS overproduction. Consistently, complex II inhibition models of HD 

display evidence of oxidative stress.
87

  

Another trigger of mitochondrial ROS production has been proved to be Ca
2+

 

dyshomeostasis. Wang and colleagues showed that higher level of mitochondrial matrix 

Ca
2+

 loading provokes elevated superoxide generation by mitochondria in HD 

neurons.
88

 This in turn leads to higher level of mitochondrial DNA damage impinging 

on mitochondria function.  

Nicotinamide adenine dinucleotide phosphate oxidase (NOX) has recently been 

identified as a key non-mitochondrial contributor of oxidative stress in HD.
89

 NOX 

activity was found increased in human HD post mortem cortex and striatum and also in 

striatum of presymptomatic individuals. 

 

Calcium handling. Initial studies with isolated mouse brain mitochondria showed that 

those isolated from HD mice are characterized by higher Ca
2+

 vulnerability with respect 

to wild-type mitochondria. Vulnerability was proportional to mHtt levels and it was 

proposed to result from deleterious mHtt interaction with mitochondria membranes.
71

 

However, subsequent studies with brain mitochondria, isolated from diverse HD mice, 

revealed either no difference or decreased Ca
2+

 buffering capacity, indicating a higher 

susceptibility to Ca
2+

 loads.
90, 91

 These opposite results with isolated mitochondria may 

be determined by different methodological approaches.
91, 92

 Results may also be 
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influenced by the mixed composition of mitochondria suspensions as they can include 

different percentages of synaptic or non-synaptic and neuronal or glial mitochondria.
93

  

Deficits in mitochondrial-dependent Ca
2+

 handling has been identified also in intact HD 

striatal neurons. In this model mHtt causes a delayed recovery to basal Ca
2+

 levels 

following NMDA receptor activation.
94

 Thus, it has been proposed that, in HD 

pathogenesis, mitochondria could be downstream targets of abnormal NMDA receptor 

iperactivity. 

HD literature provides many conflicting findings about the role of mitochondria in Ca
2+

 

homeostasis so that it is still an unresolved issue. This emphasizes the need for a 

comprehensive study that analyzes multiple models with different methodological 

approaches.  Such a study would allow to exclude that the obtained results are 

influenced by a specific experimental set-up. At the same time, it would be useful to 

investigate in parallel both the direct (Ca
2+

 uptake) and the indirect mitochondrial 

involvement in Ca
2+

 homeostasis (OXPHOS that fuel ATP-dependent non-

mitochondrial Ca
2+

 handling mechanisms, e.g. Ca
2+ 

endoplasmic reticulum pumps). 

 

Motility and morphology. Although research on mitochondrial dysfunction has 

predominantly focused on changes in bioenergetics and Ca
2+

 handling, recently also 

alterations in mitochondrial dynamics has been investigated. Mitochondria are highly 

dynamic organelles organized in a network whose morphology is determined by 

continuous fusion and fission events precisely regulated by pro-fission (cytosolic Drp1 

and its mitochondrial receptor Fis1) and pro-fusion (Opa1 in the IMM and Mfn1 and 2 

in the OMM) proteins. Mutant Htt expression induces mitochondrial fragmentation in 

several HD models
95

 making cells more sensitive to oxidative stress
96

 and apoptotic 

stimuli.
95

 Furthermore, it has been shown that mitochondrial fragmentation could be 

ameliorated by overexpressing a dominant negative version of the pro-fission Drp1 or 

the pro-fusion Mfn2.
97

 Besides fragmentation, expression of polyQ expansion fragments 

also leads to disruption of cristae. This mitochondria remodelling seems to be crucial 

for their hypersensitivity to apoptosis.
95

 Mitochondrial fragmentation in HD has been 

proposed to be due to an increased basal activity of the phosphatase calcineurin which, 

in turn, stimulates the pro-fission activity of Drp1.
95

 Alternatively, mHtt can abnormally 

interact with Drp1 increasing its enzymatic activity.
98

 Inhibition of Drp1 has very 

recently proved to diminish mitochondrial dysfunction, motor deficits and mortality in 

HD transgenic mice.
99
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Mitochondria, as well as other organelles like lysosomes, peroxisomes and ER, are 

actively transported along microtubules towards the cell regions where their function is 

required. In neurons, long-range movements on cytoskeletal elements are essential to 

transport the organelles along dendritic and axonal cell processes. Mutant Htt 

aggregates might physically block mitochondrial movement in neurons
67

 or may also 

impair movement indirectly, namely by precipitating trafficking machinery proteins and 

wild-type Htt, which is needed for efficient axonal trafficking.
100

 However, while in 

cortical neurons mitochondrial trafficking was reduced specifically where there are mHtt 

aggregates,
67

 in striatal neurons mitochondrial trafficking was slower even in regions 

without mHtt aggregates.
101

 This suggests that a mechanism responsible for the high 

vulnerability of striatal neurons to mHtt could imply the impairment of mitochondria 

trafficking. Interestingly, a reduced mitochondrial trafficking in wild-type striatal 

neurons with respect to cortical neurons was observed,
102

 supporting the hypothesis that 

striatal mitochondria are significantly more vulnerable to trafficking impairments. 

 

 

2.3 Rhes protein 

 

Several in vitro e in vivo studies pointed out that Rhes, a small striatal G protein, could 

account for striatal specificity of HD neurodegeneration. Indeed, Rhes mediates mHtt 

cytotoxicity and is required to observe severe disease phenotype in HD mice. The 

reasons of the harmful consequences of mHtt-Rhes coexistence have not been 

completely explained yet. 

 

2.3.1 Features and physiological role 

 

Rhes is a 266 amino acid protein that was discovered during a screen for mRNAs 

predominantly expressed in rodent striatum.
103

 Because of its homology with Ras 

proteins, it was named as Ras Homolog Enriched in Striatum, or Rhes. Like Ras family 

proteins, Rhes contains GTP binding and effector domains and a CAAX box that can be 

farnesylated and mediates membrane localization. However, in addition, Rhes shares 

with the protein Dexras1 a C-terminal extension (95 amino acids in Rhes) that defines a 

new subgroup of Ras family proteins.
104
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Although Rhes mRNA is predominantly localized to brain, some other tissues show 

expression, like, for example, thyroid gland and pancreatic islets.
105

 Moreover, RT-PCR 

studies indicated low expression in kidney, lung, heart, and testis.
106

 Within brain, Rhes 

mRNA is preferentially expressed in striatum but it is also found in layers 2/3 and 5 of 

cerebral cortex, piriform cortex, olfactory tubercle and bulb, subiculum, hippocampus, 

anterior thalamic nucleus and cerebellum.
107

 

The physiological role of Rhes protein is not completely defined, but it is clear that 

Rhes interacts with multiple proteins to affect striatal function at multiple levels.  

Early studies focused on a role for Rhes in signaling by striatal G protein-coupled 

receptors. In cultured cell, Rhes was shown to inhibit signaling through Gs-coupled 

beta-adrenergic and dopamine D1 receptors,
108

 as well as Gi-mediated signaling by 

muscarinic receptors.
109

 Rhes
−/−

mice display up-regulated Gs/olf-mediated signaling, 

indicated by increased phosphorylation of the target glutamate receptor 1 at the PKA 

site, suggesting that Rhes normally inhibits this pathway.
110

 More recently, Rhes has 

been shown to bind to and activate mTOR increasing phosphorylation of targets of both 

mTOR complex 1 and 2.
111

 mTOR is a key regulator of cell growth and survival and it 

regulates autophagy and protein synthesis in response to cellular nutrient, oxygen and 

energy levels.
112

 Rhes appear to be the primary activator of mTOR in the striatum and, 

indeed, in Rhes
−/−

mice mTOR signaling is reduced more than 70%. 

Rhes is also involved in processes that are upstream of mTOR. In fact, it interacts with 

the regulatory subunit of PI3K upon growth factor treatment and it binds to Akt to 

enhance its phosphorylation.
113

 Finally, Rhes protein can behave as a E3 SUMO-ligase 

catalyzing SUMOylation of several striatal proteins and promoting ‘cross-

SUMOylation’ of E1- and E2-SUMO enzymes.
114

 

Rhes expression is regulated by tyroid hormones during postnatal period. Rhes level is 

low during embryonic life and in early postnatal phases, becomes higher at postnatal 

days 15-30 and decreases during adulthood.
104

 Rhes mRNA levels are influenced also 

by dopamine and, notably, striatum is particularly enriched in dopamine receptors. 

Removal of dopamine inputs to the striatum makes postsynaptic dopamine receptors 

supersensitive to dopamine and results in a decrease in Rhes mRNA expression. It is 

possible that these two events are correlated and it has been hypothesized that Rhes may 

play a role in determining normal dopamine receptor sensitivity.
115

 

Mice with genetic deletion of Rhes are viable and do not display a distinctive 

phenotype. They weight slightly less than wild-type mice and show modest behavioural 
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abnormalities with increase in anxiety and motor coordination defects, but no memory 

or learning disruption.
106

 

 

2.3.2 Rhes in Huntington’s disease 

 

In HD, the selective degeneration of the striatum is enigmatic since Htt protein is 

expressed not only in the whole brain, but also throughout the entire body. Although 

some degeneration of cerebral cortex was observed in the late stages of the disease, this 

is less severe than the striatal damage and may occur after the striatum atrophy. What 

has still to be understood is what is so striatum-specific that causes its selective 

vulnerability in HD. The striatal localization of Rhes pointed to this protein as a unique 

candidate, and, indeed, in a landmark paper in 2009, Subramaniam and colleagues 

described a role for Rhes in selective striatal degeneration in HD.
116

 Rhes was shown to 

bind to wild-type Htt and, more tightly, to mHtt. On the other hand, Rhes did not bind to 

ataxin, the polyQ repeat protein responsible for spinocerebellar ataxia. Importantly, 

Rhes expression significantly increase mHtt cytotoxicity in HEK293 cells, immortalized 

striatal precursors and also primary striatal neurons.
117

 Consistently, Rhes deletion is 

neuroprotective in the 3-nitropropionic acid model of HD,
118

 HD
+
/Rhes

-/-
 mice showed 

remarkably delayed expression of HD-like symptoms
119

 and Rhes deletion through 

RNA interference promotes cell survival in a human embryonic stem cell-derived HD 

model.
120

 Furthermore, cultured rat striatal neurons exhibit a decrease in Rhes gene 

expression in presence of mHtt, and this decrease was interpreted as a compensatory 

response to an hypothetical factor promoting cytotoxicity.117
 

It has been proposed that Rhes effect on mHtt toxicity can stem from its influence on 

mHtt aggregation state. In presence of Rhes, mHtt forms less aggregates in cultured 

HEK293 cells and the soluble protein fraction increases.
116

 

Rhes-induced mHtt preference for soluble state depends on its SUMOylation. 

SUMOylation of mHtt decreases the formation of aggregates and increases the amount 

of soluble, dispersed mHtt.
43

 Rhes behaves as a SUMO E3 ligase and greatly increases 

SUMOylation of mHtt, while decreasing ubiquitination, when the proteins are over-

expressed in HEK293 cells. It has been demonstrated that a causal relationship between 

Rhes-induced SUMOylation and cytotoxicity exists. In fact, Lys to Arg mutations at 

positions 6, 9, 15, and 91 of mHtt not only prevent SUMOylation by Rhes, but also 

prevent mHtt disaggregation and cell death. In addition, manipulations of SUMO1 in 

cultured cells expressing mHtt confirm that Rhes-mediated SUMOylation influences 
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mHtt cytotoxicity: depletion of SUMO1 by RNAi increased mHtt aggregates while 

decreasing the cytotoxicity due to Rhes, whereas over-expression of SUMO1 has 

opposite effects.
116

 Since Rhes does not SUMOylate wild-type Htt, it is likely that the 

expanded polyQ stretch makes the protein more susceptible to SUMOylation. Steffan et 

al. showed that SUMOylation stabilizes mHtt and increases its concentration within the 

cell.
43

 At the moment, the exact mechanism by which the dispersed SUMOylated mHtt 

is cytotoxic is unknown.  

Golgi apparatus could have a role in mediating mHtt-Rhes toxicity as the Golgi protein 

ACBD3 (acyl-CoA binding domain containing 3) appears to function as a scaffold 

which binds physiologically mHtt and Rhes and promotes their interaction.
121

 ACBD3 

deletion abolishes HD neurotoxicity, that it conversely increased by ACBD3 

overexpression. 

Further evidence for a role of Rhes in HD neurodegeneration comes from the work of 

Okamoto et al. on synaptic vs. extrasynaptic NMDA receptors.
122

 Whereas synaptic 

NMDA receptor activation can promote mHtt aggregation and increase cell viability, 

activation of extrasynaptic receptors has opposite consequences. Rhes protein 

expression may be modulated by these extrasynaptic receptors. In fact, when they are 

inhibited, Rhes expression decreases, suggesting that activation of extrasynaptic 

receptors, which causes neurodegeneration, increases Rhes expression. In the same 

study Okamoto et al. show that blocking of extrasynaptic NMDAR restores CREB and 

PGC-1 activity in a cellular model of HD and rescues the disease phenotype in vivo in a 

mouse YAC128 model of HD. At the moment, how changes in Rhes levels could affect 

CREB and PGC-1 activity, and how this correlates with symptomatic improvement in 

vivo, has still to be defined. 

Finally, it has been discovered very recently that Rhes is able to activate autophagy 

independently of mTOR and that mHtt blocks Rhes-induced autophagy activation, 

presumably by sequestering Rhes and hampering it to fulfil its role in autophagy 

regulation.
123 
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3. Aim of the study 

 

Mitochondria are known to play a central role in Huntington’s disease (HD) and several 

functional and morphological defects were documented for mitochondria in HD models. 

In addition, HD patients show metabolic alterations ascribable to mitochondrial loss of 

function. Despite the high number of related studies, it is still debated whether 

mitochondrial dysfunction represents just an epiphenomenon of the cellular 

degeneration or it has an actual pathogenic role.  

The first aim of this study was to clarify whether mitochondrial impairment is a main 

trigger in HD neurodegeneration or a late event.  

To address this issue a complete set of mitochondrial parameters, such as Ca
2+

 retention 

capacity, respiration, membrane potential and ROS concentration, was assessed. The 

study was carried out in striatal precursors expressing full length mutant Htt (mHtt) or 

transfected to express N-terminal mHtt. Bioenergetic parameters were also analyzed in 

brain mitochondria isolated from a mouse HD model at 12 month and 1 week of age.  

As the data obtained from these analysis suggested that mutant mHtt only is not 

sufficient to induce mitochondrial damage, we wondered whether other non-

mitochondrial factors could be involved. The striatal protein Rhes appeared as a likely 

candidate. This protein was recently proposed as an important mediator of mHtt 

cytotoxicity, even if the molecular mechanisms underlying Rhes-mHtt interplay have 

still to be understood.  

Therefore, the second aim of this study was to investigate whether Rhes expression 

affects mitochondrial function in mHtt-expressing cells in order to discover whether it 

can be a contributor of mitochondrial damage in HD. With this goal, immortalized 

striatal precursors were transiently cotransfected to express both mHtt and Rhes. 

Afterwards the mitochondrial function of these cells was characterized in terms of 

mitochondrial membrane potential and ROS concentration. Concomitantly, studying its 

interaction with Rhes, the role of mHtt aggregation in the context of cell death was also 

investigated. 
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4. Materials and methods 

 

4.1 Cell cultures and transfection 

 

STHdhQ7 (Q7) and STHdhQ111 (Q111) clonal striatal cell lines were established from 

E14 striatal primordia of KI-Hdh Q111 and WT-Hdh Q7 littermate mouse embryos
124

 

and kindly provided by Ernesto Carafoli (Department of Biomedical Sciences, 

University of Padua). HEK293 (85120602, ECACC) are human embryonic kidney cells. 

Q7, Q111 and HEK293 cells were grown in Dulbecco’s modified essential medium 

(D5761, Sigma) supplemented with 10% fetal bovine serum, 2 mM glutamine, 10 

units/ml penicillin, 100 µg/ml streptomycin. Q7 and Q111 cells were maintained at the 

permissive temperature of 33 °C in a humidified incubator with 5% CO2. HEK293 cells 

were maintained at 37°C in a humidified incubator with 5% CO2. 

Twenty-four hours after plating, the cells were transfected by lipofectamine 

(Lipofectamine 2000, Life Technologies) following manufacturer’s instructions. 

Briefly, 1 µg of DNA and 2 µL of lipofectamine were added to 100 µL of optiMEM 

(Gibco) and distributed upon each well of a 24-well plate. After 2 hours of incubation, 

the transfection mix was replaced with fresh complete medium. 

The cells were transfected with pRRLsin.PPTs.hCMV.GFPpre vector that codes for 

GFP protein or the same vector with human huntingtin exon 1 gene inserted upstream of 

GFP. Huntingtin exon 1 has 18Q or 150Q at the N-terminus. To perform the 

experiments on Rhes function, Q7 cells were cotransfected with 

pRRLsin.PPTs.hCMV.GFPpre vectors and empty pcDNA3.1 vector or pcDNA3.1 

carrying the human Rhes gene. The total amount of DNA was maintained and equal 

quantities of the two plasmid DNA were used. Transfected cells were analyzed 48 hours 

after transfection. 
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4.2 Amplification and purification of plasmid DNA 

 

4.2.1 Preparation of competent E. coli cells 

 

DH10B E. coli cells were inoculated in a 10 mL overnight culture of Luria Bertani (LB) 

broth at 37°C. On the following morning, 1 L of LB broth was seeded with the 10 mL 

overnight culture. The culture was incubated at 37°C while shaking at 250 rpm until the 

optical density measured at 600 nm (OD600) reaches 0.3-0.4. From this point forward, 

the remainder of the preparation was done in the cold room. The 1 L culture was split 

into 50 mL sterile tubes and the cells were pelleted by chilled centrifugation at 2500 g 

for 15 min. The supernatant LB broth was discarded and the pellet resuspended by 

gentle swirling with 100 mL of CaCl2 100 mM. The resuspended cells were incubated 

on ice for 30 min and then pelleted by chilled centrifugation at 2500 g for 15 min. The 

resuspension and centrifugation steps were repeated another time. Finally, the cell pellet 

was gently resuspended in 5 mL of CaCl2 100 mM plus 20% glycerol and divided into 

60 µL aliquots. The aliquots were flash freezed in liquid nitrogen and stored at −80°C. 

 

4.2.2 Transformation of E. coli 

 

100 ng of plasmid DNA were added to one aliquot of competent DH10B E. coli cells. 

Another aliquot of competent cells was used as negative control. The DNA-cell mixture 

was incubated on ice for 30 min and then heat shocked by keeping it at 42°C in a 

termoblock for 90 sec. The aliquots were immediately returned to ice for 2 min. The 

cells were recovered by adding 900 µL of LB broth and incubating at 37°C while 

shaking at 250 rpm for 1 h. The cells were pelleted by centrifugation at 4000 g for 5 

min. The two pellets was resuspended in a small volume of LB broth and distributed 

into previously prepared LB agar plates containing ampicillin 100 µg/ml. The plates 

were incubated in a stationary 37°C incubator to grow the bacterial colonies. 

 

4.2.3 Amplification and purification of plasmid DNA from E. coli 

 

One colony from LB agar plate seeded with transformed DH10B E. coli was collected 

and inoculated in a 250 mL overnight culture of LB broth at 37°C.  On the following 

morning, the bacteria culture was centrifugated at 4000 rpm for 10 min and plasmid 
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DNA was extracted and purificated following the manufacturer’s instructions of a 

commercial kit (PureLink HiPure Plasmid Maxiprep Kit, Life Technologies). 

 

4.3 Oxygen consumption rate measurement  

 

Q7 and Q111 cells (5000/well) were seeded onto Seahorse 24-well microplates 24 hours 

prior to the analysis on the Seahorse XF24 extracellular flux analyzer (Biosciences) 

following the manufacturer’s instructions. All experiments were performed at 33°C. 

Oxygen consumption rate data consist of mean rates during each measurement cycles 

consisting of a mixing time of 30 sec and a waiting time of 3 min followed by a data 

acquisition period of 3 min. Rates displayed are basal respiration and rates following 

addition of 1 µg/ml oligomycin, 0.6 µM FCCP, 1 µM rotenone and 1 µM antimycin A. 

The FCCP concentration was previously determined as that optimal concentration to 

maximize the stimulation of mitochondrial respiration of Q cells. 

The measured oxygen consumption rate was subsequently normalized to the number of 

viable plated cells using the calcein AM assay. Cell permeant non-fluorescent calcein 

AM dye is converted to the fluorescent calcein dye by intracellular esterase activity in 

live cells. The medium above Q cells was replaced with warm DMEM containing 3 µM 

calcein AM (Life Technologies). The plate was incubated at 33°C for 20 min. Images of 

each well were collected by an epifluorescence inverted microscope (Olympus IMT-2) 

and the number of fluorescent cells attached in the region probed by the extracellular 

flux analyzer was count. 

 

4.4 Calcium Retention Capacity measurement 

 

4.4.1 Isolation of mitochondria from cells 

 

One 500 cm
2
 plate of Q7 or Q111 cells was seeded 48 hours before the experiment. The 

culture medium was removed and the cells were washed once with chilled PBS. PBS 

was removed and the cells were detached using a scraper. The cell suspension was 

centrifugated at 600 g at 4°C for 10 min and then the pellet was resuspended in 1 mL of 

Isolation Buffer (IB: 250 mM sucrose, 10 mM Tris, 0.1 mM EGTA pH 7.4). The cell 



Materials and methods 

 

30 
 

suspension was homogenized by stroking it 35 times with a Teflon pestle in a 2 mL 

glass potter. During this procedure, the glass potter was kept on ice. The homogenate 

was centrifugated at 600 g for 10 min at 4°C and the collected supernatant was 

centrifugated at 7 000 g for 10 min at 4°C. The obtained pellet was resuspended in 500 

µL of ice-cold IB and centrifugated at 7 000 g for 10 min at 4°C. The pellet containing 

mitochondria was resuspended in 50 µL of IB and its protein concentration was 

measured with Bradford method. 

 

4.4.2 Isolation of mitochondria from forebrain 

 

Mitochondria were isolated from the forebrain (brain minus cerebellum) of 1 week or 

12 month-old YAC128 mice or their wild-type littermates. The cerebellum was 

excluded as it is usually not involved in HD pathology. The mouse was killed by 

cervical dislocation (adults) or decapitation (pups). The forebrain were rapidly excised 

and immediately placed in 10 mL of ice-cold Isolation Buffer (IB: 250 mM sucrose, 10 

mM Tris, 0.1 mM EGTA pH 7.4) in a beaker, then it was washed 4 times with IB. The 

forebrain was minced into small pieces with scissors while keeping the beaker in an ice 

bath. The IB used during the mincing was discarded and replaced with 1 ml of ice-cold 

fresh IB. The suspension was homogenized by stroking it 35 times with a Teflon pestle 

in a 2 mL glass potter. During this procedure, the glass potter was kept on ice. The 

homogenate was centrifugated at 1500 g for 10 min at 4°C and the collected supernatant 

was centrifugated at 10 000 g for 10 min at 4°C. The obtained pellet was resuspended in 

100 µL of IB and carefully transferred on the top of a Percoll gradient made of 400 µL 

of Percoll 40% in IB and 600 µL of Percoll 25% in IB. The Percoll gradient was 

centrifugated at 20 000 g for 30 min at 4°C. The pellet split up into two bands with the 

mitochondria concentrated in the bottom one. The collected mitochondria were 

resuspended in 1 mL of ice-cold IB and centrifugated at 10 000 g for 10 min at 4°C. The 

pellet was resuspended in 50 µL of IB and its protein concentration was measured with 

Bradford method. 

 

4.4.3 Cell permeabilization 

 

Two 75 cm
2
 flasks of Q7 or Q111 cells were seeded 48 hours before the experiment. 

The culture medium was removed and the cells were washed once with chilled PBS. 
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PBS was removed and the cells were detached using a scraper. The cell suspension was 

centrifugated at 600 g for 10 min at 4°C and then the pellet was resuspended in 1 mL of 

the following buffer: 130 mM KCl, 5 mM mM phosphate buffer, 10 mM MOPS, 1 mM 

EGTA, pH 7.4. The protein concentration was measured with Bradford method. 

Digitonin 1 µM was added to the cell suspension that was then incubated at 4°C for 10 

min. Afterwards it was centrifugated at 600 g for 10 min at 4°C and resuspended in 

CRC buffer (see next paragraph) supplemented with 10 µM cytochrome c to reach the 

concentration of 0.5 µg/µL. 

 

4.4.4 Calcium Retention Capacity  

 

Mitochondrial calcium retention capacity was measured fluorimetrically using Calcium 

Green-5N (Molecular Probes, excitation at 506 nm, emission at 535 nm) which 

increases its fluorescence emission upon binding extramitochondrial Ca
2+

. Isolated 

mitochondria were diluted in CRC buffer (130 mM KCl, 5 mM phosphate buffer, 10 

mM MOPS, 1 µM EGTA, 5 mM glutamate, 2.5 mM malate, 2.5 µM Calcium Green-

5N, pH 7.4) to reach the concentration of 0.5 µg/µL. The suspension of isolated 

mitochondria or permeabilized cells was transferred in a 96-well dark plate, 100 µL in 

each well. Fluorescent emission of Calcium Green-5N was measured by Fluoroskan 

Ascent (Thermo Scientific) while 10 μM CaCl2 pulses were automatically added every 

minute. When the permeability transition pore opened, a large increase in fluorescence 

was recorded due to release of accumulated Ca
2+

 from mitochondria. The mitochondrial 

calcium retention capacity was indicated as the added Ca
2+

 concentration that causes the 

permeability transition pore opening. 

 

4.5 Fluorescence Microscopy 

 

4.5.1 Measurement of mitochondrial membrane potential 

 

Mitochondrial membrane potential (Δψm) was measured using the cationic 

tetramethylrhodamine methyl ester probe (TMRM, Molecular Probes, λexc  = 548 nm, 

λem = 574 nm). TMRM passes through the plasmatic membrane and accumulates 

selectively in the mitochondria due to the potential difference at the level of inner 
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mitochondrial membrane, so a highly selective, potential-dependent staining of 

mitochondria is obtained. 

The cells were seeded on 24 mm coverslips and the day after they were transfected or 

cotransfected as indicated in the Results section (chapter 5). After 48 hours, the cells 

were incubated for 30 min at 37°C (or 33°C for Q cells) with 10 nM TMRM in DMEM 

supplemented with 2 mM glutamine and 16 μM cyclosporine H in order to block the 

multidrug-resistance pumps and avoid TMRM rejection by cells. Coverslip images were 

collected with an inverted microscope (Olympus IMT-2) equipped with a xenon lamp as 

a fluorescence light (75W), a 16 bit digital cooled CCD camera provided with a cooling 

system (Miromax, Princeton Instruments), a 40 x oil objective and appropriate 

excitation and emission filters. Several fields were acquired of each coverslip before 

and after addition of trifluorocarbonylcyanide phenylhydrazone (FCCP) 4 μM. FCCP 

provokes the Δψm collapse and the consequent TMRM discharge from mitochondria. 

Images were analyzed using Image J software. Fluorescence intensity was measured in 

the regions of interest, defined as cell regions rich in mitochondria. For each analyzed 

coverslip TMRM fluorescence intensity was calculated as the difference between the 

mean fluorescence intensity before and after FCCP addition. 

To measure the mitochondria susceptibility to oligomycin-induced depolarization, one 

image of a selected field of TMRM loaded cells was acquired every 4 min. Once the 

fluorescence intensity of the field was stable over time, 3 μM oligomycin was added 

and the fluorescence was followed for 32 min, afterwards 4 μM FCCP was added. 

Finally, the fluorescence intensity of each analyzed cell was plotted against time.  

 

4.5.2 Measurement of oxidative stress 

 

ROS concentration was measured using the cationic dihydroethidium probe (DHE, 

Sigma, λexc  = 518 nm, λem = 605 nm). DHE freely permeates cell membrane and when 

it is oxidized, mainly by superoxide anion, it becomes red fluorescent. Oxidized DHE 

bind to nuclear DNA, a process that results in a further increase in fluorescence. DHE 

produces diffuse labeling throughout the cells including nucleolar and nuclear regions, 

mitochondria, lysosomes, and the cytosol. 

The cells were seeded on 24 mm coverslips and the day after they were transfected or 

cotransfected as indicated in the Results section (chapter 5). After 48 hours, the cells 

were incubated for 20 min at 37°C (or 33°C for Q cells) with 5 μM DHE in HBSS. 
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Then the DHE solution was replaced with HBSS. When indicated, cells were incubated 

for 15 min at 37°C (or 33°C for Q cells) with 100 μM H2O2 in HBSS before DHE 

loading. Coverslip images were collected with an inverted microscope (Olympus IMT-

2) equipped with a xenon lamp as a fluorescence light (75W), a 16 bit digital cooled 

CCD camera provided with a cooling system (Miromax, Princeton Instruments), a 40 x 

oil objective and appropriate excitation and emission filters. Several fields were 

acquired of each coverslip. Images were analyzed using Image J software. Fluorescence 

intensity was measured in the regions of interest (ROIs) corresponding to the whole 

cell. For each analyzed coverslip DHE fluorescence intensity was calculated as the 

mean fluorescence of all the selected ROIs. 

 

4.5.3 Immunofluorescence 

 

Rhes protein in cotransfected Q7 cells were stained with anti-Rhes antibody. Q7 cells 

were seeded on 15 mm coverslips and the day after they were cotransfected with –GFP 

constructs and Rhes. After 48 hours, the cells were fixed with paraformaldehyde 4% for 

20 min and permeabilized with Triton 0.2% in PBS for 10 min. Then they were 

saturated with BSA 4% in PBS for 1 h. All these steps were performed at room 

temperature. Saturated cells were incubated with mouse anti-Rhes antibody (GeneTex) 

1:100 in BSA 0.5% overnight at 4°C. The cells were washed 3 times with PBS for 10 

min and then incubated with Alexa Fluor 647 goat anti-mouse IgG antibody (Life 

Technologies) 1:100 in BSA 0.5% for 30 min at room temperature. The washing steps 

were repeated. The cells were finally incubated with 10 μM Hoechst 33342 (Sigma) 10 

min at room temperature and the coverslips were mounted onto glass slides using 

ProLong Gold Antifade Reagent (Life Technologies). Images were collected using a 

confocal microscope (Leica SP5), a 63 x oil objective and appropriate emission filters. 

 

4.6 Determination of cell death 

 

4.6.1 Assessment of necrosis 

 

The cells were seeded in a 24-well plate and the day after they were transfected or 

cotransfected with the constructs indicated in each experiment in the Results section 
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(chapter 5). After 48 hours, the cells were detached using trypsin 1 % and centrifugated 

at 600 g for 4 min at room temperature. The pellet obtained from a single well was 

resuspended in 500 μL of propidium iodide 10 μM in HBSS and incubated for 5 min at 

room temperature. The cell suspension was analyzed by flow cytometry (FACS Canto 

II, BD Biosciences): the instrument collected 5000 cells from the sample and measured 

their fluorescence emission in the red and green spectral regions. The green emission is 

given by GFP protein expressed by the transfected cells, while propidium iodide enters 

and marks as red-fluorescent only the cells whose plasma membrane is not intact. Thus, 

the percentage of dead cells was calculated from the ratio between the number of 

propidium iodide-positive transfected cells and the total number of transfected cells. 

 

4.6.2 Assessment of apoptosis 

 

The extent of apoptosis induced by Rhes in cotransfected Q7 cells was measured using 

Hoechst 33342, a cell-permeant nuclear dye that emits blue fluorescence when bound to 

DNA. It can be used to detect cell apoptosis as the chromatin condensation that 

associates with this process determines an increase in fluorescence of the nucleus. 

Q7 cells were seeded in a 24-well plate and the day after they were cotransfected with –

GFP constructs and Rhes or the corresponding empty vector. After 48 hours, the cell 

were incubated 10 min with 10 μM Hoechst 33342 (Sigma) in DMEM at 37°C. The 

Hoechst medium was then replaced with DMEM and the cells were immediately 

analyzed by an inverted microscope (Olympus IMT-2) equipped with a 20 x air 

objective and appropriate excitation and emission filters. Several fields were acquired of 

each well. Images were analyzed using Image J software. The percentage of apoptotic 

cells was calculated from the ratio between the number of transfected cells (those that 

emitted green fluorescence) that showed highly fluorescent nuclei and the total number 

of transfected cells. 

 

4.7 Filter retardation assay 

 

The amount of SDS-insoluble aggregates formed by mHtt exon 1 in presence or absence 

of Rhes was quantified by filter retardation assay. Q7 cells were seeded in a 6-well plate 

and the day after they were cotransfected with 150Q-Httexon1-GFP and Rhes or the 
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corresponding empty vector. After 48 hours, the cells were detached using trypsin 1 % 

and centrifugated at 600 g for 4 min at room temperature. The pellet obtained from a 

single well was resuspended in 100 μL of the following Lysis Buffer: NP-40 1%, 

sodium deoxycholate 0.25%, EDTA 2 mM, β-mercaptoethanol 0.5%, SDS 2% in PBS. 

Samples were homogenized by three passages through a 0.5 mm needle, diluted in Lysis 

Buffer as indicated in figure 15A and heated at 100°C for 5 min. Afterwards, 6 μL of 

each sample were applied with 45 sec of vacuum suction onto a 0.2 μm nitrocellulose 

membrane (BioRad) previously soaked with SDS 2% in PBS. The membrane was 

immunoblotted with anti-GFP antibody (Santa Cruz Biotechnologies) as described in 

the next paragraph. 

The transfection efficiency, as measured by flow cytometry, did not vary significantly 

when Q7 are cotransfected with 150Q-Httexon1-GFP and Rhes or the corresponding 

empty vector. Thus, it can be excluded that the detected difference in aggregate 

formation is due to different transfection efficiencies. 

 

4.8 Cell extracts and western blot analysis 

 

4.8.1 Sample preparation 

 

To obtain the western blot of figure 9B, 13A and 15C, the cells were seeded in a 6-well 

plate and the day after they were transfected or cotransfected with the constructs 

indicated in each experiment in the Results section (chapter 5). After 48 hours, the cells 

were detached using trypsin 1 % and centrifugated at 600 g for 4 min at room 

temperature. The pellet obtained from a single well was resuspended in 100 μL of the 

following Lysis Buffer: NP-40 1%, sodium deoxycholate 0.25%, EDTA 2 mM, β-

mercaptoethanol 0.5%, SDS 2%, 1 x protease inhibitor mix (Roche) in PBS. Samples 

were homogenized by three passages through a 0.5 mm needle and their protein 

concentration was determined with Bradford method. Then 25 μL of Sample Buffer 4 x 

(glycerol 20%, SDS 3%, Tris 75 mM, bromophenol blue 0.02%, β-mercaptoethanol 5% 

in H2O, pH 6.8) were added and the samples were heated at 100°C for 5 min. Finally 

they were loaded on the gel or stored at -20°C. 

To obtain the western blot of figure 16B, the cell pellet of cotransfected Q7 cells was 

resuspended in 100 μL of PBS supplemented with EDTA 2 mM and 1 x protease 
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inhibitor mix (Roche). The cells were lysated by 3 cycles of freezing in liquid nitrogen 

and thawing at room temperature. Samples were centrifugated at 12 000 g for 10 min at 

4°C and the two obtained fractions, pellet and supernatant, were processed separately. 

The protein concentration of the supernatant was determined with Bradford method, 

then 25 μL of Sample Buffer 4 x were added and the samples were heated at 100°C for 

5 min. The pellet was resuspended in 30 μL of the above Lysis Buffer plus 1x Sample 

Buffer, it was homogenized by three passages through a 0.5 mm needle and then heated 

at 100°C for 5 min. The pellet and the supernatant fraction were loaded in two separate 

gels or stored at -20°C. 

 

4.8.2 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblot 

 

Electrophoresis was performed on polyacrylamide gel prepared in glass slabs 1 mm 

thick with 12% acrylamide in the separating gel and 4% in the stacking gel. The 

following solutions were used for the preparation of the gel and the electrophoresis run: 

 

Acrylamide/bisacrylamide: 30% acrylamide and 0.8% bisacrylamide  

Lower Tris-HCl (4x): 1.5 M Tris-HCl and 0.4% SDS, pH 8.8  

Upper Tris-HCl (4x): 0.5 M Tris-HCl and 0.4% SDS, pH 6.8 

Running buffer (4x): 0.1 M Tris-HCl, 0.77 M glycine and 0.4% SDS, pH 8.3  

 

The polymerization of the gel was obtained by the addition of TEMED (Sigma) and 

ammonium persulfate 0.1 mg/ml (Sigma). Samples were run on the gel at room 

temperature using an Electrophoresis Power Supply (Apelex) that provided a constant 

voltage of 150 V in the stacking gel and 200 V in the separating gel. 

In order to make the proteins accessible to antibody detection, they were moved from 

within the gel onto a nitrocellulose membrane. Once the samples finished the run, the 

gel was washed from the excess SDS with Transfer Buffer (Tris 25 mM, glycine 192 

mM, methanol 20%, pH 8.0). A 0.45 µm nitrocellulose membrane (BioRad 

Laboratories) was placed on top of the gel, avoiding creating bubbles, and a stack of 

tissue papers placed on top. This stack was then inserted into a transfer box filled with 

Transfer Buffer, so that the gel is oriented towards the cathode and the membrane 

towards the anode. When a current is applied to the electrodes, this causes the proteins 

to migrate from the negatively charged cathode to the positively charged anode, i.e. 
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towards the membrane. The separating and the stacking part of the gel were transferred 

separately: the former was transferred 17 h with 150 mA of current, while the latter 24 h 

with 150 mA of current plus 4 h at 400 mA in order to let the high molecular weight 

aggregates pass on the nitrocellulose membrane. The transfer was performed at 4°C. 

Once the transfer was carried out, the membrane was saturated with fat-free milk 5% in 

TBS (Tris-HCl 50 mM, NaCl 150 mM, pH 7.5) for 1 h at room temperature. The 

antibodies used to detect the proteins of interest were diluted in milk 1% in TBS. The 

following primary antibodies were used:  

 

Rabbit Anti GFP (Santa Cruz Biotechnologies), dilution 1 : 1000  

Mouse Anti-Rhes (GeneTex), dilution 1 : 500 

Mouse Anti β-actin (Abcam), dilution 1 : 2000  

 

All the primary antibody incubations were carried out overnight at 4°C. Following the 

incubation, membranes were washed 3 times for 10 min with Washing Buffer (Tris-HCl 

50 mM, NaCl 85 mM, Tween 20 0.1%, pH 7.5). Secondary antibodies were diluted in 

milk 1% in TBS and incubated with the membrane for 1 h at room temperature. 

Secondary antibodies used were: 

 

Rabbit Anti-Mouse (BioRad), dilution 1 : 2000  

Mouse Anti-Rabbit (BioRad), dilution 1 : 2000  

 

Finally membranes were washed 3 times for 10 min with Washing Buffer. 

 

4.8.3 Chemiluminescent detection 

 

Membranes were exposed to LiteAblot PLUS Enhanced Chemiluminescent Substrate 

(EuroClone) for 1 min. This incubation causes the generation of luminous signal due to 

the oxidation of the substrate by horseradish peroxidase bound to the secondary 

antibody. The light, emitted at λmax 340 nm, was detected by a CCD camera (Image 

Station 440 CF, Kodak). 
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4.8.4 Densitometry 

 

Images of the acquired western blots were analyzed using the Image J software. This 

program allows the quantification of the optical density of bands or dots that is directly 

proportional to the protein content.    

 

4.9 Statistics 

 

Results are presented as mean ± standard deviation. When the experiment was repeated 

more than 3 times, comparisons between two groups of data were performed via 2-tailed 

unpaired Student t test. A P-value less than 0.05 was taken to indicate a significant 

difference that was then tagged with an asterisk. 
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5. Results 

 

5.1 Mitochondrial function in cells stably expressing full 

length mutant Htt 

 

The effects of stable expression of full length mutant huntingtin (mHtt) on mitochondria 

functions were studied in a commonly used HD model, i.e. immortalized striatal neuron 

precursors established from a HD knock-in mouse model (Hdh
Q111

) and wild-type mice 

(Hdh
Q7

)
125

. STHdh
Q111/ Q111

 cells (Q111 from now on) homozygously express full length 

mHtt having 111 glutamines at the N-terminus, while STHdh
Q7/ Q7

 cells (Q7) express 

the wild-type form with 7 glutamines. 

 

5.1.1 Q111 mitochondria have a lower spare respiratory capacity 

 

In situ mitochondrial respiration of plate-attached Q7 and Q111 cells was monitored by 

using an extracellular flux analyzer. Five parameters of respiration were measured: (1) 

basal respiration, (2) respiration driving mitochondrial H
+
 leak (after oligomycin 

addition), (3) maximal respiration (after FCCP addition), (4) respiration supported by 

electron flow through complex II (after rotenone addition), (5) non-mitochondrial 

respiration (after antimycin A addition) (Fig. 6). 

Q111 cells showed the same basal respiration as Q7 cells, and we did not detect any 

significant difference also in the respiration parameters (2), (4) and (5). However, when 

FCCP stimulated the maximal respiration by uncoupling the electron transport chain 

from ATP synthesis, Q111 mitochondria proved to be significantly less able to 

upregulate the electron transport chain activity. Specifically, the spare respiratory 

capacity, given by the difference between maximal and basal respiration, is 28% lower 

in Q111 cells than in Q7 cells. 

Thus, mHtt impairs electron transport chain activity in Q111 cells and this defect arises 

when mitochondria are required to do an extra effort, such as that of ATP generation. 

This deficiency could turn out to be particularly harmful to neurons as they change 

continuously the rate of ATP synthesis to match their energy-expensive physiological 

functions. 
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Fig. 6. Oxygen consumption rate of Q7 and Q111 cells measured by extracellular flux 

analyzer. Cells were stressed with different stimuli to reveal possible respiratory defects: 

oligomycin to block ATP synthase, FCCP to uncouple the electron transport chain from 

ATP synthesis, rotenone and antimycin A to inhibit complex I and III, respectively. The 

measured oxygen consumption rate was subsequently normalized to the number of viable 

plated cells using the calcein AM assay. 

 

 

5.1.2 Q111 mitochondria are more susceptible to oligomycin-induced 

depolarization 

 

As reported by Lim et al. Q7 and Q111 cells show only a minor difference in 

mitochondrial membrane potential (Δψm)
126

. However, a defective electron transport 

chain may not lead to a detectable decrease in Δψm if this defect is compensated by ATP 

synthase reversal. ATP synthase can invert its normal activity and hydrolyze ATP while 

pumping proton out of the matrix in order to sustain the proton gradient. Thus, to check 

whether in Q111 cells a lower activity of the electron transport chain is masked by the 

compensation of ATP synthase, Δψm was measured with TMRM fluorescent probe after 

treatment with oligomycin, an ATP synthase inhibitor (Fig. 7). Among all the analyzed 

cells (40 for each cell type in 3 different experiments), 36% of Q111 showed a drop of 

Δψm after blocking ATP synthase versus 2,6 % of Q7 cells. Therefore, in Q111 cells 

mHtt expression results in a lower activity of the electron transport chain and this defect 

is partially compensated by ATP synthase reversal. 
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Fig. 7. Mitochondria susceptibility to oligomycin-

induced membrane depolarization in Q7 vs. Q111 

cells.  (A) Intensity of TMRM fluorescence over time 

following 3 µM oligomycin addition. When indicated by 

arrows 4 µM FCCP was added. (B) Mitochondria 

susceptibility to oligomycin-induced membrane 

depolarization was quantified as the percentage of all 

analyzed cells whose fluorescence had decreased more 

than 50% before FCCP addition. 

 

 

 

 

5.1.3 Q111 and YAC182 brain mitochondria have a higher calcium retention 

capacity 

 

To evaluate whether the defective electron transport chain impinges on mitochondrial 

Ca
2+

 uptake in Q111 cells, we measured the calcium retention capacity (CRC) of 

mitochondria isolated from Q111 cells and their wild-type counterparts (Fig. 8A). CRC 

was quantified as the external [Ca
2+

] at which matrix [Ca
2+

] triggers the permeability 

transition pore (PTP) opening. This is reflected by an abrupt release of accumulated 

Ca
2+

 that is monitored by using Calcium Green-5N, an indicator that does not enter 

mitochondria and exhibits an increase in fluorescence emission upon binding Ca
2+

. The 

external [Ca
2+

] was gradually increased and mitochondria take up this Ca
2+

 until a 

sudden increase in fluorescence indicated PTP opening. 

The CRC measurement was performed also using digitonin-permeabilized Q7 and Q111 

cells (Fig. 8A), an additional model where the cellular context is partially preserved. 

Digitonin treatment permeabilizes both mitochondrial and endoplasmic reticulum 

membranes, so any contribution of the endoplasmic reticulum can be excluded. 
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Surprisingly, in both models, Q111 mitochondria proved to be much more resistant to 

Ca
2+

-induced opening of PTP. 

 

 

 

Fig. 8. Mitochondrial calcium retention 

capacity measured as external [Ca
2+

]
 

required to open the permeability 

transition pore. (A) Q7 vs. Q111 isolated 

mitochondria (left) and Q7 vs. Q111 

digitonin-permeabilized cells (right). (B) 

Mitochondria isolated from forebrain of 

YAC128 mice expressing full-length human 

mHtt with 128Q and their wild-type 

littermates at 1 week or 12 months of age.  

 

 

 

This evidence was strengthened by CRC measurements on isolated mitochondria from 

the forebrain of YAC128 mice and their wild-type littermates (Fig. 8B). YAC128 is a 

yeast artificial chromosome mouse model of HD with the entire human HD gene 

containing 128 CAG repeats. It is reported that, starting from 6
th

 month of age, YAC128 

mice develop motor abnormalities and brain atrophy including cortical and striatal 

atrophy associated with striatal neuronal loss.
127

 

Isolated mitochondria from YAC128 mice showed a higher CRC when compared with 

mitochondria from wild-type mice, in agreement with the results obtained in Q111 and 

Q7 cells. This applies to 12-month-old mice but, remarkably, even to 1-week-old pups 

when the disease phenotype is far from being developed. Thus, it seems that very soon 

in disease progression mitochondria develop a higher resistance to permeability 

transition.  

To date, studies of mitochondrial Ca
2+

-loading capacity in HD have provided 

conflicting results, with some reports claiming that mHtt decreases the mitochondrial 

CRC.
71, 72

 As highlighted elsewhere,
128

 measurements of Ca
2+

 handling on isolated 
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mitochondria can be seriously affected by differences in methodological approaches. 

Mitochondria concentration, proportion of synaptic vs. non- synaptic or neuronal vs. 

glial mitochondria, as well as presence of PTP effectors in the resuspension buffer can 

condition the experimental outcomes. Differences in these parameters may account for 

some of the discrepancies present in the published literature concerning the Ca
2+

-

loading capacity of HD mitochondria. 

To exclude that our data could be influenced by the buffer composition, we repeated 

CRC measurements on isolated mitochondria from Q cells and YAC128 mice with two 

different incubation buffers previously used in works that show opposite results:
71, 72, 91

 

1) a buffer with succinate instead of glutamate and malate as energy source. Since 

complex II was observed to be less expressed in HD,
129

 fuelling mitochondria with its 

direct substrate could potentially reveal this defect; 2) a buffer including Mg
2+

 and ATP, 

two PTP inhibitors. With both these buffers, the obtained results were comparable with 

those reported in Fig. 8. 

Therefore, both cell and animal HD models showed that mHtt enhances the 

mitochondria resistance to PTP opening. Brustovetsky et al. obtained analogue results 

with mitochondria isolated from knock-in HD mouse models carrying 92 or 111 

glutamines in the polyQ expansion.
90

 The authors proposed that the cause of this 

unexpected result has to be ascribed to a compensatory response of mitochondria that 

adapt to the stressful environment produced by mHtt accumulation by protecting 

themselves and their host cells from the deleterious consequences of permeability 

transition.  

 

5.2 Mitochondrial function in cells transiently expressing  

N-terminal mutant Htt 

 

The information collected about mitochondrial function in Q7 and Q111 cells suggested 

that this chronic HD model, even if close to patient cells in reproducing the chronic 

feature of mHtt expression, may not be the best choice to dissect mHtt effects on 

mitochondrial function as it makes hard to distinguish between direct effects of mHtt 

expression and adaptive changes.  

To rule out adaptive changes, mitochondrial alterations in HD were then studied in Q7 

and HEK293 cells transiently transfected with non-inducible constructs bearing Htt 

exon 1 with 18 (wild-type form) or 150 (mutant form) glutamines at the N-terminus. Htt 
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exon 1 gene is fused with GFP gene at the C-terminus, thus a construct that codes for 

GFP served as a control in all the experiments.  

The transient nature of mHtt expression allowed to focus on its short term consequences 

and the expression of N-terminal only, instead of the full length protein, limited our 

study to the damage mechanisms that involve the first N-terminal portion of mHtt. 

Mutant Htt is known to be cleaved by several proteases producing a wide range of short 

N-terminal fragments (cf. paragraph 2.1.2). These are thought to be the key player in 

HD pathogenesis, in fact, they are more prone to aggregation and more toxic than the 

full length protein. In addition, when mHtt N-terminal fragments are expressed in cell or 

animal models, they reproduce the most severe traits of full length mHtt toxicity.
130

 

In all the experiments transfected Q7 and HEK293 cells were analyzed 48 hours after 

transfection when the maximum level of overexpression is reached. 

 

5.2.1 N-terminal mutant Htt forms aggregates and is cytotoxic 

 

As expected,
131

 N-terminal mHtt forms large, easily visible and SDS-insoluble 

inclusions within HEK293 and Q7 transfected cells (Fig. 9). Confocal images indicated 

that mHtt aggregates are cytosolic and occasionally show a perinuclear distribution 

(data not shown).  

 

 

 

Fig. 9. N-terminal 150Q-Htt forms aggregates. (A) Fluorescence images of Q7 and 

HEK293 transfected cells: cytosolic aggregates of N-terminal 150Q-Htt are visible in both 

the cell lines. (B) Lysates of Q7 transfected cells immunoblotted with anti-GFP antibody:  

N-terminal 150Q-Htt forms SDS-insoluble aggregates that fail to enter the polyacrylamide 

gel.  
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Fig. 10. Cell death of transfected Q7 and HEK293 cells. The percentage of dead cells 

was quantified by flow cytometry from the ratio between propidium iodide-positive 

transfected cells and the total number of transfected cells.  

 

Cell death analysis of transfected cells showed that N-terminal mHtt significantly 

decreases cell survival in both the cell lines (Fig. 10). In HEK293 cells N-terminal wild-

type Htt seems to be toxic too. Seredenina et al. similarly reported that wild-type Htt 

overexpression in infected primary neurons is cytotoxic and this effect disappears with 

milder infection conditions.
117

 It is likely that wild-type Htt might mimic the mutant 

form when it is highly expressed. Consistently, we observed that N-terminal wild-type 

Htt can form aggregates, just as the mutant form, if it is expressed at high level by the 

transfected cell. 

 

5.2.2 N-terminal mutant Htt affects neither mitochondrial membrane potential 

nor ROS concentration  

 

Mitochondrial function in transfected Q7 and HEK293 cells were characterized by 

measuring mitochondrial membrane potential and ROS concentration (Fig. 11 and 12). 

No significant alteration was detected, irrespectively of which form of Htt was 

expressed. Therefore, even if N-terminal mHtt increases cell death, this does not seem 

to associate with mitochondrial impairment. 

In the case of transfected Q7 cells, ROS concentration was assessed with both DHE and 

Mitotracker Red probe. The first probe has a widespread cellular distribution, while the 

second one specifically accumulates inside mitochondria. Even by using Mitotracker 

Red, mHtt does not induce an increase in oxidative stress (data not shown). 
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Fig. 11. Mitochondrial membrane potential of transfected Q7 and HEK293 cells 

measured by microscopy as fluorescent intensity of TMRM probe.  

 

 

 

 

Fig. 12. ROS concentration of transfected Q7 and HEK293 cells measured by 

microscopy as fluorescent intensity of DHE probe.  

 

In order to understand whether the lack of mHtt effect on mitochondria depend on its 

expression level, we repeated the above analysis at higher levels of expression in 

HEK293 cells (Fig. 13). A remarkable increase in exogenous protein expression was 

obtained by doubling the transfection mix of DNA and lipofectamine. In these 

conditions of ‘high expression’, N-terminal mHtt is considerably cytotoxic and it also 

causes loss of mitochondrial membrane potential and increase in ROS concentration. 

Therefore, a threshold of expression can be described above which mHtt actually 

damages mitochondria. However this threshold is clearly much higher than the level of 

endogenous expression. 

These data made us hypothesize that the endogenous levels of mHtt is not likely to 

affect mitochondrial function as a primary effect and that the occurrence of 

mitochondrial abnormalities might require additional non-mitochondrial stress factors. 
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Fig. 13. Modulation of the expression 

level of N-terminal mHtt in HEK293 cells 

and relative consequences on 

mitochondrial function. Higher expression 

was obtained by doubling the transfection 

mix of DNA e lipofectamine. (A) Western 

blot with anti-GFP antibody of lysates from 

HEK293 cells transfected with standard 

(low expression) or double (high 

expression) transfection mix; in (B) the 

densitometry of the soluble fraction. (C) 

Cell death analysis. (D) Mitochondrial 

membrane potential measured with TMRM. 

(E) ROS concentration measured with DHE.  
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5.3 Mitochondrial function in cells transiently coexpressing 

N-terminal mutant Htt and Rhes 

 

Since N-terminal mutant Htt seems not to cause per se those mitochondrial alterations 

that are largely documented in HD studies,
125

 we wondered whether other factors could 

be involved. Rhes protein drew our attention, because it has been recently proposed as 

an important mediator of mHtt cytotoxicity
116

 and it is not expressed in the cell models 

studied by us so far. It has been demonstrated that Rhes increases mHtt-induced cell 

death, but it is still unknown whether this effect implies a mitochondrial damage. In 

order to investigate whether Rhes expression affects mitochondrial function in mHtt-

cells, we transiently cotransfected Q7 cells with GFP / 18Q-Httexon1-GFP / 150Q-

Httexon1-GFP constructs and Rhes construct or the corresponding empty vector. 

 

5.3.1 Rhes increases mHtt cytotoxicity and decreases mHtt aggregation 

 

Firstly, we confirmed that Rhes increases mHtt cytotoxicity in Q7 cotransfected cells 

(Fig. 14A), as well as in Q111 cells that endogenously express the full length form of 

mHtt (Fig. 14B). Sbodio et al.
121

 and Seredenina et al.
117

 reported similar results by 

overexpressing an N-terminal fragment of mHtt containing 171 amino acids besides the 

polyQ tract. Here we show that Rhes is effective even with a much smaller mHtt 

fragment (78 amino acids).  

Rhes significantly increases apoptosis when coexpressed with N-terminal mHtt (Fig. 

14C), in agreement with the reported increase in cleaved caspase-3.
116

 However, in this 

cell model Rhes induces apoptosis also in the presence of wild-type Htt. As previously 

discussed (cf. paragraph 5.2.1), this lack of specificity between mutant and wild-type 

form might be ascribed to the overexpression of the transfected vectors: in fact, also 

wild-type Htt can be harmful to the cell when it is expressed at high concentration.  

According to Subramaniam et al., Rhes facilitates mHtt neurotoxicity by SUMOylating 

it. SUMOylated mHtt forms less aggregates and this decrease in aggregation correlates 

with an augmented toxicity. 
116
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Fig. 14. Rhes influence on mHtt 

cytotoxicity. (A) Cell death of Q7 

cells cotransfected with –GFP 

constructs and Rhes construct or the 

corresponding empty vector. (B) 

Cell death of Q7 and Q111 cells 

cotransfected with –GFP constructs 

and Rhes construct or the 

corresponding empty vector. (C) 

Apoptosis measured as percentage 

of nuclei with condensed chromatin 

in Q7 cells cotransfected as in A.  
 

 

 

To check whether Rhes influences the mHtt aggregation state in this cell model, SDS-

insoluble aggregates formed by N-terminal mHtt in absence or presence of Rhes were 

quantified by filter retardation assay as described in Material and Methods (Fig. 15A 

and B). Briefly, Q7 cells were cotransfected with 150Q-Htt-GFP construct and Rhes 

construct or the corresponding empty vector. After 48 hours from transfection, the cell 

lysates were filtered through a SDS-soaked nitrocellulose membrane to capture polyQ 

aggregates and the membrane was probed with anti-GFP antibody. Rhes expression 

provokes a 50% decrease in the aggregate amount while the soluble fraction of mHtt 

does not change in presence of Rhes, as quantified by western-blotting the above cell 

lysates with anti-GFP antibody (Fig. 15C and D). Surprisingly, Rhes lowers the 

concentration of the coexpressed GFP and 18Q-Htt-GFP proteins. An increased 

clearance by the ubiquitin-proteasome system could be a possible explanation of this 

reduction in protein levels. This hypothesis was excluded because, when the transfected 

cells were treated with a proteasome inhibitor (MG132), we still measured a remarkable 



Results 

 

50 
 

difference in the concentration of –GFP proteins in absence or presence of Rhes (data 

not shown), similarly to what shown in Fig. 15C and D. 

Very recently it has been discovered that Rhes is able to activate autophagy
123

 and this 

might actually account for the observed changes in protein level. Next experiments will 

be aimed at verifying this possibility. 

 

 

 

  

 

Fig. 15. Rhes effect on mHtt aggregation. (A) Filter retardation assay of N-terminal mHtt 

SDS-insoluble aggregates in presence or absence of Rhes. Lysates of Q7 cells cotransfected 

with 150Q-Htt-GFP construct and Rhes construct or the corresponding empty vector were 

filtered through a SDS-soaked nitrocellulose membrane to capture polyQ aggregates. The 

samples were dot-blotted at four different concentrations and probed with anti-GFP 

antibody. (B) Quantification of filter retardation assay A. (C) Western blot with anti-GFP 

antibody of  lysates from Q7 cells cotransfected with –GFP constructs and Rhes construct 

or the corresponding empty vector, in (D) the densitometry of the soluble fraction.  
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5.3.2 Rhes colocalizes with and is sequestered by mHtt aggregates 

 

Rhes protein overexpressed by Q7 cells is mostly cytosolic but it can also localize on 

the plasma membrane, as observed by Vargiu at al. in PC12 cells.
108

 When coexpressed 

with N-terminal mHtt, Rhes can localize around its aggregates (Fig. 16A). It is 

interesting to point out that an analogous localization has been reported for SUMO-1, 
43

 

that is the known substrate of mHtt SUMOylation catalyzed by Rhes.  

Western blot with anti-Rhes antibody of lysates of Q7 cells expressing both Rhes and 

N-terminal mHtt revealed that 20% of the cell content of Rhes was in the insoluble 

fraction (Fig. 16B).  

 

 

 

 

 

Fig. 16. Rhes localization in mHtt-

Rhes coexpressing Q7 cells. (A) 

Confocal images of Q7 cells 

cotransfected with 150Q-Htt-GFP 

construct and Rhes construct and 

then immunostained with anti-Rhes 

antibody. (B) Western blot of lysates 

from Q7 cells cotransfected with  

-GFP constructs and Rhes construct. 

Cells were lysated by 

repeated cycles of freezing and 

thawing. After centrifugation, pellet 

and supernatant were loaded in 

separate gels for SDS-page and 

immunoblotted with anti-GFP, anti-

Rhes and anti-β-actin. The thinner 

band recognized by anti-Rhes 

antibody is likely to be a partially 

degraded form of Rhes. 
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Taken together these data suggest that Rhes is partially sequestered by mHtt aggregates.  

This recruitment does not seem to lower the concentration of soluble Rhes. However, it 

has to be considered that in Q7 transfected cells Rhes expression is artificially forced by 

the strong CMV promoter. It would be worth investigating whether soluble Rhes 

concentration is unchanged in presence of mHtt even in cells where Rhes is 

endogenously expressed. In fact, it has been hypothesized that Rhes recruitment by 

mHtt might lead to decrease in free Rhes concentration and that the harmful 

consequences of Rhes-mHtt coexpression could be due to a Rhes loss-of-function.
132

 

 

5.3.3 Rhes-Htt coexpression reduces mitochondrial membrane potential  

 

The function of mitochondria in Rhes-Htt coexpressing cells was tested by measuring 

the mitochondrial membrane potential with TMRM probe (Fig. 17).  

 

 

 

Fig. 17. Effect of Rhes-Htt 

coexpression on mitochondrial 

membrane potential. Q7 cells were 

cotransfected with -GFP constructs and 

Rhes construct or the corresponding 

empty vector and mitochondrial 

membrane potential was assessed as 

fluorescence intensity of TMRM 

probe. (A) Representative images of 

Q7 cotransfected cells loaded with 

TMRM, in Rhes-Htt coexpressing cells 

mitochondria appear less fluorescent 

and outlined as they take up less 

TMRM. (B) Quantification of TMRM 

fluorescence intensity in the analyzed 

samples.  
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While Rhes and N-terminal Htt did not affect the mitochondrial membrane potential by 

themselves, when they were coexpressed a significant decrease in TMRM fluorescence 

was detected. Assuming that the TMRM distribution across the inner mitochondrial 

membrane follows ideally the Nernst law, the detected decrease in fluorescence would 

correspond to a 15 mV loss of potential. 

The fact that mHtt expression is associated with mitochondria depolarization only in 

presence of Rhes suggests that this protein could have a role in determining 

mitochondrial damage in HD. 

 

5.3.4 Rhes-mHtt coexpression makes cells more sensitive to oxidative stress 

 

An enhanced oxidative stress in HD brains has been described in many reports,
83, 84, 133, 

134
 but the origin of this increase in ROS has not been identified conclusively. 

Mitochondria are known to be both a target and a main source of oxidative stress in HD 

pathogenesis, and being a target can turn into being a source as, for example, respiratory 

chain defects increase ROS production.
135

 We did not observe any increase in ROS 

following N-terminal mHtt expression in cells lacking Rhes. We wonder whether Rhes 

could be involved in the oxidative stress associated with mHtt expression 

To address this point, we measured ROS level in Q7 cells coexpressing N-terminal 

mHtt and Rhes by using the DHE probe (Fig. 18A):  we failed to detect any significant 

change. Strikingly, Rhes and mHtt did not increase ROS concentration neither by 

themselves nor when they were coexpressed. However, if the cell were stressed with 

H2O2, an inducer of oxidative stress, only those expressing both Rhes and mHtt showed 

a remarkable increase in ROS concentration (Fig. 18B and C). 

Thus, these data suggest that Rhes protein could lead to striatal neurodegeneration in 

HD by making mHtt expressing neurons more sensitive to oxidative stress. 

Further investigations are required to understand whether the enhanced susceptibility to 

oxidative stress is due to an increase in ROS production by defective mitochondria or 

other sources and oxidative defense mechanisms are involved. 
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Fig. 18. Effect of Rhes-Htt coexpression on ROS concentration. Q7 cells were 

cotransfected with –GFP constructs and Rhes construct or the corresponding empty vector 

and then ROS concentration was assessed as fluorescence intensity of DHE probe. The 

cells were untreated (A) or treated for 15 min with H2O2 100 µM before DHE loading (B). 

(C) Representative images of Q7 cotransfected cells treated with H2O2 and loaded with 

DHE. Cells that express both Rhes and mHtt show much higher fluorescence. 
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6. Discussion 

 

Mitochondrial dysfunction is a well documented feature of HD pathogenesis as well as 

of other neurodegenerative disorders.
125, 136

 Several mechanisms have been proposed to 

explain how mitochondrial defects could activate cell death pathways in HD. However 

the doubt still remains that these defects represent mere epiphenomena and are not 

causally linked to neurodegeneration. 

The present study provides evidence showing that mitochondrial alteration is not 

primarily involved in HD pathogenesis and mHtt hardly affects mitochondrial function 

directly. 

In Q111 cells we observed that endogenous expression of mHtt impairs the electron 

transport chain (ETC) activity, even if this defect is not evident at the steady state. In 

fact, Q111 and Q7 mitochondria have the same basal respiratory rate and a lower ETC 

capacity emerges only when maximal respiration is stimulated by FCCP. In addition, a 

drop in mitochondria membrane potential in Q111 cells is prevented by the 

compensatory ATP synthase reversal. Thus, the mitochondrial respiratory capacity is 

actually impaired by mHtt but the cell seems to respond maintaining the normal 

mitochondrial function. Indeed, Milakovic et al. demonstrated that the activities of 

respiratory complexes are unchanged in Q111 cells and suggested that the defective 

oxidative phosphorylation could be the result of altered mitochondrial Ca
2+

 

concentration.
137

 

It has been proposed that mHtt can lower the mitochondrial calcium buffering capacity 

by favouring permeability transition, with consequent release of cytochrome c and 

induction of cell death.
71, 126

 However, in Q111 isolated mitochondria and 

permeabilized cells we measured an increased resistance of the permeability transition 

pore to Ca
2+

-induced opening in comparison with wild-type counterparts. Importantly, 

this result was confirmed by mitochondria isolated from both adult and pup HD mice. 

These data bring us to exclude that neuronal death in HD is caused by a higher 

vulnerability of mitochondria to permeability transition. Conversely, it is likely that 

mitochondria undergo early compensatory changes to become more resistant. It has 

been previously demonstrated in hepatocyte mitochondria by Klohn et al. that 
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mitochondria are able to adapt to a stressful environment by lowering the sensitivity of 

the permeability transition pore.
138

 

Two plausible stress factors that can trigger this enhanced resistance are Ca
2+

 and ROS. 

Mitochondria of mHtt expressing cells are known to be exposed to persistently high 

Ca
2+

 concentration. For example, it is reported that mHtt and HAP1A form a ternary 

complex with the InsP3 receptor, potentiating its Ca
2+

-releasing activity.
62

 Moreover, 

NMDA receptors are subject to excitotoxicity
58

 that provokes an increase in cytosolic 

Ca
2+

 concentration. Finally, also the increase in contact sites between endoplasmic 

reticulum and mitochondria observed in Q111 cells is a likely stress factor (unpublished 

preliminary data from Giacomello M., Scorrano’s group, University of Padua), since it 

could result in enhanced Ca
2+

 transfer between the two organelles and induction of 

apoptosis. 

As far as oxidative stress is concerned, previous studies showed that in Q111 cells ROS 

concentration does not differ from the control.
126

 Therefore oxidative stress is not likely 

to be involved in the adaptive response of Q111 mitochondria. 

Similarly to what we have seen in Q111 cells, also the transient expression of the N-

terminal fragment of mHtt seems not to associate with a major mitochondrial damage. 

Expression of N-terminal mHtt in animal models reproduce a severe phenotype of 

HD
130

 and when we overexpressed N-terminal mHtt in Q7 and HEK293 cells, we 

indeed measured a significant increase in cell death. However, this does not correlate 

with mitochondrial alteration in terms of membrane potential or ROS concentration.  

Thus, we can hypothesize that the mitochondrial derangement detected in HD patients 

and models is not on top of the cascade of events leading neurodegeneration, although, 

as in any given disease, mitochondrial dysfunction can become apparent at later stages. 

On the other hand, it is possible that in some circumstances mitochondria sense and 

amplify alterations that occur elsewhere in the cell. For example, mHtt accumulation 

compromises autophagic clearance and this can result in delayed engulfment of 

defective mitochondria.
63

 Alternatively, Ca
2+

 dyshomeostasis induced by mHtt can 

affect mitochondria by means of abnormal regulation of Ca
2+

-dependent enzymes, Ca
2+

-

overload or increased fragmentation.
95

 Mutant Htt represses transcription of several 

nuclear genes and some of them are relevant for mitochondria function, such as PGC-

1α
54

 and CREB-dependent OXPHOS proteins.
55

 Therefore, as a late process, 

mitochondrial defects can be secondary to impaired nuclear transcription. 
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The present data suggest that mHtt per se does not affect mitochondria as a primary 

effect, but it is still possible that other factors are involved. Here we showed that the 

striatal protein Rhes can play a role in provoking mitochondrial damage in HD.  

As already seen by Subramaniam et al., and here confirmed in our model, Rhes 

decreases mHtt aggregation and increases its cytotoxicity.
116

 So, in accordance with the 

current view,
139

 large mHtt inclusions seem not to harm the cell. The mechanisms 

underlying the Rhes toxic effect has not been understood yet. Interestingly, here we 

demonstrated that the coexpression of Rhes and N-terminal mHtt causes a loss of 

mitochondrial membrane potential, whereas the expression of one of the two proteins 

does not have any effect. Moreover, Rhes-mHtt copresence makes cells highly 

susceptible to oxidative stress. These two detrimental consequences of mHtt-Rhes 

coexpression could contribute markedly to neuronal death in the striatum and Rhes can 

be, at least partially, responsible for the striatal specificity of HD neurodegeneration. 

In several cell models, Rhes proved to SUMOylate mHtt at its N-terminus.
116, 140

 This 

modification can potentially alter protein-protein interactions in which mHtt is involved 

or create new ones with negative effects on cell function. SUMOylation of mHtt is 

known to reduce the presence of large SDS-insoluble aggregates and this could results 

in a rise of small oligomeric forms that many studies indentified as the most dangerous 

species.
49

 Additionally, it would be worth examining the transcriptional effect of mHtt 

in presence of Rhes. SUMOylation potentiates the ability of mHtt to repress 

transcription.
43

 Mutant Htt N-terminus includes a cytoplasmic retention signal such that, 

once removed, mHtt accumulates in the nucleus. 141
 Thus it is tempting to think that the 

Rhes-mediated SUMOylation of mHtt masks this cytoplasmic retention signal allowing 

easier entry into the nucleus where mHtt represses transcription with lethal 

consequences on mitochondria function and cell viability. Preliminary data (not shown) 

from Q7 transfected cells actually showed that, in presence of Rhes, a higher percentage 

of N-terminal mHtt localizes in the nucleus.  

The first candidate to be involved in transcription-dependent mitochondrial defects 

would be PGC-1α. This is a co-activator of transcription that regulates a number of 

cellular processes, among them mitochondrial biogenesis, oxidative phosphorylation 

and the response of mitochondria to oxidative stress by controlling the transcription of 

ROS-scavenging enzymes. PGC-1α is downregulated in the striatum of HD patients as 

well as in Q111 cells.
54
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Further experiments will be aimed at clarifying how Rhes interplay with mHtt can cause 

mitochondrial dysfunction and increased susceptibility to oxidative stress. A more 

defined knowledge of these pathways and the physiological function of Rhes could help 

to make it a feasible pharmacological target for HD therapy with the attractive 

advantage of a selective localization in the brain region affected by the disease. 
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7. Conclusions 

 

The data presented in this study suggest that mHtt per se does not affect mitochondria 

function as a primary effect and that the mitochondria derangement associated with 

mHtt expression is not the primary cause of cell death in HD. 

We observed that transient expression of N-terminal mHtt in two different cell lines 

induces an increase in cytotoxicity that does not correlate with mitochondrial 

impairment. Moreover, mitochondria isolated from HD mice or from immortalized 

striatal precursors expressing mHtt are even less prone to undergo permeability 

transition, presumably as an adaptive change to cope with mHtt-related stress. 

Therefore, although eventually neuronal death can be caused by the cell death cascade 

that follows permeability transition pore opening, the present results obtained in 

neuronal cells do not provide any evidence that mHtt expression affects directly 

mitochondrial function. We also showed that, even though mHtt alters the electron 

transport chain activity, immortalized striatal cells are able to maintain the basal 

respiratory rate and the proton gradient across the inner mitochondrial membrane which 

are essential to allow proper mitochondrial function. 

These findings lead us to hypothesize that in HD the loss of mitochondrial function 

follows the alteration of other key cellular process, like, for example, Ca
2+

 homeostasis, 

transcription and clearance systems. Mitochondrial impairment is likely to be a common 

feature of dying neurons and this would explain why several neurodegenerative 

disorders that differ in aetiology and clinical phenotype share similar mitochondrial 

alterations. Remarkably, in HD patients these alterations were documented mainly in 

post mortem samples which are very little indicative of the actual trigger of HD 

pathogenesis.  

In the second part of this study we characterized the striatal protein Rhes as a relevant 

contributor to mitochondrial damage in HD and we provided new insights into the 

mechanism that underlies the mHtt-Rhes interplay. In fact, we demonstrated that the 

coexpression of mHtt and Rhes leads to increased susceptibility to oxidative stress and 

loss of mitochondrial membrane potential. 

To characterize the pathways whereby mHtt can affect mitochondrial function in the 

striatum and to understand how this alteration is framed in the sequence of events 
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leading to neuronal death are crucial points to identify new potential therapeutic targets 

to modulate HD progression. 

Additional studies, addressing mitochondrial function in HD neurons that endogenously 

express Rhes will be of importance to elucidate the disorder pathogenesis. 
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