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Summary

Understanding the complex feedback mechanisms regulating the land-atmosphere
system has become a scientific imperative, as human induced changes may impact
the stability of the Biosphere, both locally and globally. The present thesis work
aims at improving current understanding and forecasting capabilities of the Soil-
Plant-Atmosphere (SPA) continuum. To this purpose a numerical model of soil
moisture dynamics is coupled with plant transpiration and photosynthesis. Soil
moisture dynamics is modeled by the 3-D Richards equation and plant uptake is
described by an Ohm’s law type model accounting for water potential gradients
and root, xylem and stomatal conductances. The transpiration flux from soil to
the atmosphere is driven by the leaf water potential which is controlled by both
local soil moisture conditions and atmospheric forcing. The hydraulic model is
linked to the atmosphere by the calculation of the stomatal conductance which is
optimized for maximum carbon gain considering Fickian mass transfer of CO2 and
H2O through stomata and a biochemical model of photosynthesis. The model is
used to investigate competition for water among multiple tree rooting systems in
a Loblolly pine (Pinus Taeda) plantation and then coupled with a crop growth
module to investigate farmland productivity at the field scale. In order to provide
a fully-coupled description of the SPA system, the soil-plant model is then coupled
with a slab representation of the Atmospheric Boundary Layer (ABL) and used
to investigate the role of water table fluctuations and free atmospheric state on
convective rainfall initiation. Model results compared well with measurements of
soil moisture, sap flow in the plant xylem as well as energy fluxes above the canopy
and convective rainfall initiation time.

In order to deal with the high degree of uncertainty related to both measure-
ment and model errors the applicability of a data assimilation algorithm has also
been explored to incorporate physical measurements into the transient hydrological
model. Given the recent development of indirect geophysical surveys to monitor soil-
plant interactions in the vadose zone, we tested an innovative iterative particle filter
approach for coupled hydro-geophysical inversion of Electrical Resistivity Tomogra-
phy (ERT) data. Model results demonstrate the ability of the method to improve
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model prediction and estimate multiple model parameters and this work lays the
foundation for application of the methodology to soil-plant-atmosphere modeling.
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Sommario

La comprensione dei molteplici meccanismi che regolano l’interazione tra suolo, vege-
tazione e atmosfera è oggi divenuta un imperativo nel campo della ricerca scientifica,
poichè numerose sono le conseguenze che la presenza antropica può avere sulla sta-
bilità della Biosfera, a livello sia globale che locale. Questo lavoro di tesi si propone
l’obiettivo di sviluppare nuovi strumenti modellistici che consentano una più ac-
curata comprensione e descrizione del sistema suolo-vegetazione-atmosfera. A tal
fine, un modello di trapirazione e fotosintesi della vegetazione è stato introdotto
in un codice numerico per la descrizione del flusso in mezzi porosi. La dinamica
dell’umidità del suolo è descritta dall’equazione tridimensionale di Richards, men-
tre il trasporto d’acqua attraverso le radici ed all’interno della pianta è definito
tramite un modello di resistenze e potenziali idrici basato sulla legge di Ohm. Il
flusso traspirativo è regolato dal potenziale fogliare, a sua volta determinato da con-
dizioni locali di umidità del suolo e dalle forzanti atmosferiche. Il modello idraulico
di assorbimento radicale è collegato all’atmosfera tramite il calcolo della resistenza
stomatica, determinata sulla base di un modello di ottimizzazione dell’apertura degli
stomi che massimizza la fotosintesi (descritta per mezzo di un modello biochimico) e
minimizza la traspirazione. Tale approccio modellistico è stato impiegato per com-
prendere i meccanismi di competizione tra diverse piante per l’assorbimento idrico in
una piantagione di Pinus Taeda. Il modello è stato inoltre integrato con un modulo
di crescita del mais (Zea mays L.) per studiare la produttività agricola alla scala
di bacino. Al fine di descrivere in modo completo le interazioni fra vegetazione
ed atmosfera, il modello è stato poi accoppiato con la dinamica dello strato lim-
ite planetario ed utilizzato per comprendere l’effetto della falda e delle condizioni
dell’atmosfera libera sugli eventi di precipitazione dovuti alla formazione di nubi
convettive. I risultati modellistici illustrati in questa tesi sono confrontati con osser-
vazioni di contenuto d’acqua nel suolo, misure di flussi xilematici, flussi energetici al
di sopra della canopy ed eventi convettivi di precipitazione, dimostrando le ottime
capacità predittive del modello sviluppato.

Sia le osservazioni che i risultati numerici sono tuttavia caratterizzati da un certo
grado di errore. Per ovviare a tale incertezza è stato pertanto studiato un algoritmo
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di assimilazione dei dati che consente di incorporare le osservazioni fisiche nel mod-
ello dinamico idrologico. Dal momento che recenti studi di settore si sono focalizzati
sull’utilizzo di metodi geofisici indiretti per la caratterizzazione dei processi di inter-
azione fra suolo e vegetazione, in questo lavoro di tesi è stato sviluppato un metodo
particle filter iterativo per l’inversione idro-geofisica accoppiata di dati di tomografia
elettrica. I risultati presentati in questa tesi dimostrano l’abilità del metodo proposto
di migliorare le previsioni e stimare i parametri del modello e pongono le basi per un
nuovo approccio alla simulazione numerica del sistema suolo-vegetazione-atmosfera.
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1
Introduction

1.1 Motivations

Vegetated ecosystems cover approximately 30% of Earth’s land surface (42 million
km2 [Bonan, 2008]), they provide many economic, ecological and social benefits [An-
deregg et al., 2013] and understanding how the Soil-Plant-Atmosphere (SPA) contin-
uum responds to anthropogenic modifications (e.g. groundwater pumping, deforesta-
tion) or climate change (rising temperature and CO2) is an open challenge. Over the
last 20 years the interaction between hydrology and plants dynamics received increas-
ing attention within the climate, hydrologic, and ecological communities [Rodrguez-
Iturbe and Porporato, 2004] leading to the current improved understanding of the
hydrologic cycle and the way ecosystems operate and survive [Rodrguez-Iturbe and
Porporato, 2004].

The description of the SPA system initially relied on the simple concepts of field
capacity and available water [Santini, 2013] but the development of more sophisti-
cated monitoring techniques and modeling approaches led to a more accurate, highly
dynamic and non-linear description of the SPA system, accounting for both soil and
atmospheric feedback mechanisms. Recent studies highlighted the importance of
a better understanding of the ecosystem-climate feedbacks with regard to regional
albedo, precipitation and water and energy exchange [Anderegg et al., 2013]. In
fact, although these kinds of consequences have already been partially explored [e.g.,
de Arellano et al., 2012], some key gaps still persist due to the large number of in-
teracting biotic and abiotic processes occurring within the SPA system at different
space and time scales [Siqueira et al., 2009]. Hence the need for more accurate mech-
anistic models capable of describing the complex feedback mechanisms regulating
the energy, water and carbon fluxes between the biosphere and the atmosphere.

Another emerging research area in soil physics consists in the use of non inva-
sive, time lapse geophysical measurements to quantify water balance exchanges in
the root-soil system [Jury et al., 2011]. As a matter of fact, the current under-
standing of the soil-plant interactions is limited by a lack of spatially extensive data
describing the dynamics of root water uptake processes [Boaga et al., 2013]. Tra-
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ditional ecohydrological monitoring consisted in point-based measurements (lacking
of spatial information) or remote sensing techniques (unable to penetrate deep in
the root-zone). Non-invasive geophysical techniques such as Electrical Resistivity
Tomography (ERT) are promising alternatives to monitor soil moisture dynamics
in the root zone and quantify the spatial distribution of plants water use [Boaga
et al., 2013, Garré et al., 2011, Srayeddin and Doussan, 2009]. However, to achieve
a quantitative description of soil moisture dynamics, geophysical observations has
to be included in a modeling framework. The understanding of subsurface phenom-
ena is thus affected by a high degree of uncertainties related to both measurements
and model errors and the development of more accurate inversion techniques capa-
ble of providing quantitative information on subsurface hydrological variables is a
contemporary challenge.

This thesis is a contribution to modeling the ecohydrological feedback mecha-
nisms regulating the SPA system. The physical processes investigated in this study
are illustrated in Fig. 1.1 and briefly outlined in the next section. First an innova-
tive Soil-Plant-Atmosphere model is developed and applied to different case studies.
Then the ability of geophysical surveys to monitor vadose zone processes is discussed
and an innovative data assimilation framework for the coupled hydro-geophysical in-
version of ERT data is proposed.

1.2 Outline

In this dissertation we present an innovative SPA continuum model based on a
mechanistic description of plant transpiration and photosynthesis coupled with the
three-dimensional Richards equation for soil moisture dynamics. The soil-plant hy-
draulic model accounts for soil-root and trunk xylem conductances to describe root
water uptake (RWU) at the tree scale and it is linked to the atmosphere via a
stomatal conductance model that combines a conventional biochemical formulation
for photosynthesis with an optimization hypothesis that regulates stomatal aper-
ture in order to maximize carbon uptake and minimize the evaporative water loss.
In Chapter 2, the model is developed and applied to a Loblolly pine plantation in
North Carolina, USA. The novelty of the modeling approach consists in embedding
plant physiological mechanisms in a robust three-dimensional soil moisture model.
Such a modeling framework allows to diagnose plant responses to water stress in the
presence of competing rooting systems and generalize plant-water relations at larger
scales.

Given the three-dimensionality of the new approach, the model is then applied
to simulate the ecohydrological processes governing farmland productivity in a crop
field. In Chapter 3 the model is coupled with a crop growth module and applied to a
case study on the southern margin of the Venice lagoon, Italy. Part of this research
consisted in field data collection: geophysical surveys, lab testing and continuous
monitoring of hydrological parameters together with crop yield distribution were
performed and acquired from 2010 to 2012. The dataset is presented in Chapter 3
and used to set up field scale simulations of soil-crops dynamics.

The Soil-Plant model is then coupled with a slab representation of the Atmo-
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Figure 1.1: Thesis outline: first a Soil-Plant model is developed and applied to
different case of studies (Chapter 2 and 3); then the model is coupled with a slab
representation of the ABL and LCL to explore the role of vegetation on convective
triggering (Chapter 4); finally a data assimilation framework is developed for the
coupled inversion of resistivity (ρ) data (Chapter 5). An example of monitoring the
Soil-Plant system by ERT is shown (data from [Boaga et al., 2013]). The results
presented in this dissertation have been published [Manoli et al., 2013b] or submitted
for publication [Bonetti et al., 2013, Manoli et al., 2013a,c, Rossi et al., 2013]

spheric Boundary Layer (ABL) and used to gain insight into the complex feedback
mechanisms governing surface energy fluxes and convective rainfall initiation (Chap-
ter 4). As a matter of fact the transpiration fluxes control the dynamics of the ABL
and the Lifting Condensation Level (LCL) and thus their crossing (a necessary but
not sufficient condition for convection trigger). In Chapter 4 the coupled SPA-ABL
model is parametrized on the field case study in North Carolina and used to explore
the role of water table fluctuations and free atmosphere (FA) conditions on con-
vective rainfall initiation. Simulation results demonstrate the interplay of soil and
FA conditions on convection triggers suggesting the existence of a rainfal-no rainfall
transition zone.

The results presented in Chapter 2 and 3 highlighted the need for spatial ex-
tensive information to understand the complex dynamics of soil-plant interactions.
In Chapter 5 the ability of ERT to monitor vadose zone processes is investigated.
In order to overcome the limitations of traditional inversion of ERT data we pro-
pose a sequential data assimilation approach to combine geophysical observations
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with hydrological simulations [Pasetto et al., 2012, Rings et al., 2010]. We use the
Sequential Importance Resampling (SIR) method to assimilate ERT measures in a
coupled hydrogeophysical model: ERT observations are blended in the simulation
to update the state of the system and estimate the model parameters accounting
for both model and observations uncertainties. The methodology is tested on a
controlled infiltration experiment (avoiding the presence of vegetation) in order to
efficiently evaluate the performance of the method. The long term objective is to
couple numerical modeling with ERT monitoring of the soil-plant system, but the
application of the method to vegetated conditions is left for future work.
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2
Modeling
Soil-Plant-Atmosphere
Interactions

2.1 Summary

In this chapter competition for water among multiple tree rooting systems is inves-
tigated using a soil-plant model that accounts for soil moisture dynamics and root
water uptake (RWU), whole plant transpiration, and leaf-level photosynthesis. The
model is based on a numerical solution to the 3D Richards equation modified to
account for a 3D RWU, trunk xylem, and stomatal conductances. The stomatal
conductance is determined by combining a conventional biochemical demand for-
mulation for photosynthesis with an optimization hypothesis that selects stomatal
aperture so as to maximize carbon gain for a given water loss. Model results compare
well with measurements of soil moisture throughout the rooting zone, of total sap
flow in the trunk xylem, as well as of leaf water potential collected in a Loblolly pine
forest. The model is then used to diagnose plant responses to water stress in the
presence of competing rooting systems. Unsurprisingly, the overlap between root-
ing zones is shown to enhance soil drying. However, the 3D spatial model yielded
transpiration-bulk root-zone soil moisture relations that do not deviate appreciably
from their proto-typical form commonly assumed in lumped eco-hydrological mod-
els. The increased overlap among rooting systems primarily alters the timing at
which the point of incipient soil moisture stress is reached by the entire soil-plant
system. The contents of this chapter has been submitted for publication to Advances
in Water Research:

Manoli, G., Bonetti, S., Domec, J. C., Putti, M., Katul, G., and Marani, M.
(2013a). Tree root systems competing for soil moisture in a 3D soil-plant model.
Submitted.
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2.2 Introduction

Background Forest ecosystems provide many economic, ecological and social ben-
efits [Anderegg et al., 2013] and play a key role in regulating the energy, carbon, and
water fluxes between the biosphere and the atmosphere. Soil water is extracted by
plant roots, flows through the plant vascular system and evaporates from the plant
leaves thus providing a bridge in which soil water reservoir and atmospheric water
vapor concentration interact. Root water uptake (RWU) controls the water dy-
namics in the subsurface, thereby affecting plant water availability [Couvreur et al.,
2012], soil water content [Huxman et al., 2005], and the partitioning of net radiation
into latent and sensible heat fluxes thereby impacting atmospheric boundary layer
dynamics [Anderegg et al., 2013, de Arellano et al., 2012, Maxwell et al., 2007].
Yet, despite its documented importance, a number of thorny issues remain when
representing RWU in hydrological and atmospheric models [Dirmeyer et al., 2006],
and addressing a subset of these issues frames the compass of this work. Among
the least studied of these issues is the representation of RWU when competition
among trees for available root-water occurs. Such competition is rarely accounted
for in conventional ecological and hydrological models. Earlier work mostly focused
on grass-trees competition in the vertical dimension. In this type of competition,
it was assumed that deep tree roots use water not consumed by the shallow grass
rooting system [Richard et al., 2011, Rodrguez-Iturbe et al., 1999a] and the compe-
tition for RWU becomes apparent when vertically-averaging the grass-tree rooting
system [Daly et al., 2000, Rodrguez-Iturbe et al., 1999a]. Even within this restricted
representation, resolving such rooting competition was shown to be essential in re-
producing biomass dynamics [Daly et al., 2000, Rodrguez-Iturbe et al., 1999a]. One
of the barriers to progressing on the root-water competition issue is the inherent
three-dimensional nature of the problem. Here, a new 3D model of RWU is devel-
oped to investigate the effects of overlapping root-systems within a forest canopy so
as to infer up-scaled representation of such competition effects on bulk ecohydrologic
models.

RWU Modeling Modeling RWU requires coupling plant transpiration and pho-
tosynthesis together with a three-dimensional evolving soil moisture field. Two main
approaches, both based on Richards’ equation to describe soil water dynamics [Cou-
vreur et al., 2012], have been used to model RWU: (1) a macroscopic approach and
(2) a microscopic approach that accounts for the detailed root architecture. The first
approach accounts for RWU by introducing a “macroscopic” sink term, generally de-
fined as a function of spatially-distributed root parameters (e.g. root length density).
This approach assumes that the vertically integrated RWU can be represented via a
potential transpiration dictated by atmospheric demand for water vapor modulated
by an ad-hoc water stress function (e.g. Feddes approach Feddes et al. [1978]). Some
compensatory mechanisms have been incorporated within such a framework Jarvis
[1994], Šimůnek et al. [2006]. When water potential gradients (WPG) are employed,
this approach can reproduce important processes such as hydraulic redistribution
(HR) [Vogel et al., 2013]. HR has been observed in a number of experiments [Cald-
well and Richards, 1989, Domec et al., 2010] and included in different modeling
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approaches [Amenu and Kumar, 2008, Domec et al., 2012, Mendel et al., 2002,
Neumann and Cardon, 2012, Siqueira et al., 2008, 2009, Vogel et al., 2013, Volpe
et al., 2013]. While most models in this class can satisfactorily reproduce both com-
pensation and redistribution mechanisms, they generally use a vertically distributed
RWU approximation, thereby censoring any horizontal interactions among plants.
Multidimensional macroscopic models do exist [Ivanov et al., 2008, Šimůnek et al.,
2006], but they generally use simplified RWU functions that may be unrealistic in
heterogeneous soils [Kuhlmann et al., 2012]. The importance of a three-dimensional
perspective has been recently underlined [Javaux et al., 2008] spawning a number of
simulations of water flow through soil and roots using a root hydraulic network [Cou-
vreur et al., 2012, Doussan et al., 2006, Javaux et al., 2008, Kalbacher et al., 2011].
This second approach includes detailed plant-scale models based on explicitly re-
solved root architecture coupled with the three-dimensional Richards equation for
water flow in the soil-root system of an isolated single small plant or seedling [Cou-
vreur et al., 2012, Doussan et al., 2006, Javaux et al., 2008]. Because the precise
root architecture for multiple interacting trees is rarely known a priori, and given
the computational demands involved, a root architecture approach is not yet feasi-
ble for large scale hydrological simulations. An intermediate approach that retains
the 3D properties of the problem and yet provides a numerically-viable simplified
RWU approach is needed when exploring the interplay of hydrological, physiological,
and ecological mechanisms at the watershed scale. Existing 3D models (belonging
to both categories) commonly neglect photosynthetic activity of the plant, which
largely controls transpiration, and hence RWU. An approach that also accommo-
dates these mechanisms and can be embedded in a robust three-dimensional soil
moisture model offers a decisive advantage when generalizing plant-water relations
at larger scales. With such a representation, the competition between plants for soil
water (e.g. neighboring trees in a forest stand) can be made explicit and its effects
on upscaled watershed processes can be explored.

Objectives The main objective here is to develop a mechanistic 3D model of RWU
so as to explore the implications of root competition on ecosystem transpiration
and carbon uptake. More specific objectives are to (1) develop and apply a soil-
plant-atmosphere model incorporating a 3D description of soil water dynamics, (2)
investigate the effects of some biotic and abiotic compensatory mechanisms such as
HR and Darcian redistribution on RWU and water use efficiency, and (3) evaluate
the effects of tree-to-tree overlapping root zones on ecosystem level RWU rates.
The main novelty is a framework in which a 3D hydrological model is coupled to
plant transpiration and leaf photosynthesis that is then used to explore root water
uptake for overlapping tree rooting systems in the presence of dynamic groundwater
fluctuations.

2.3 Mathematical model

The transpiration flux is expressed in terms of gradients in water potential through
a series of conductances along the pathway connecting water from the soil (ψi), to
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the xylem (ψR), and to the leaf (ψL), (Fig. 4.1). Stomatal conductance is assumed
to maximize carbon gain, while minimizing water loss. The following assumptions
are made Volpe et al. [2013]:

a1) water extracted by roots only feeds transpiration and no water storage occurs
within the plant system,

a2) each soil layer is directly linked to the xylem through the root biomass allocated
to the same layer,

a3) energy losses in the root system are negligible compared to the dissipation in
the soil and soil-root interface,

a4) RWU is not limited by any other mechanism (e.g. nutrient limitation).

a5) root growth is here ignored, though it may be significant at long time scales.

2.3.1 Soil-Plant exchanges

A recent 1D root model [Volpe et al., 2013] is expanded here to a 3D general frame-
work. Richards’ equation is used to describe soil moisture dynamics in a three-
dimensional porous medium and is given as:

SsSw (ψ)
∂ψ

∂t
+ n

∂Sw (ψ)

∂t
= ~∇ ·

[
KsKr (ψ)

(
~∇ψ + ηz

)]
+ q(ψ, x, y, z, t, ψL), (2.1)

where Ss is the elastic storage term [m−1], Sw is water saturation [-], ψ is the soil
water potential [m], t is time [s], n is the porosity [-], Ks is the saturated hy-
draulic conductivity [m s−1] tensor, Kr is the relative hydraulic conductivity [-],
ηz = (0, 0, 1)T is the gravitational potential energy gradient with z, the vertical co-
ordinate, directed upward and q(ψ, x, y, z, t, ψL) is a macroscopic source/sink term
[s−1] through which soil water dynamics is coupled with the root-plant system via
the leaf water potential ψL. Anisotropic saturated hydraulic conductivity is mod-
eled as a diagonal matrix with diagonal elements Kx, Ky, and Kz, the saturated
hydraulic conductivities along the coordinate directions. Eq. (5.9) is highly nonlin-
ear due to the functional dependence upon pressure head of the soil water retention
curves, which are modeled following [van Genuchten and Nielsen, 1985]. The numer-
ical solution to Eq. (5.9) is obtained by means of a Finite Element approach with
linear (P1) basis functions and implicit Euler time-stepping, as implemented in the
CATHY model [Camporese et al., 2010]. The scheme considers nonlinear boundary
conditions at the soil surface to account for ponding or evaporation limitations due
to variable surface soil moisture. The numerical solver is based on an unstructured
tetrahedral grid and employs time step adaptation to ensure convergence for highly
nonlinear problems and address the ODE stiffness resulting from the discretization
of the nonlinear source term. Inexact Krylov-based Picard iteration with ad hoc
efficient preconditioning is used in the solution of the nonlinear system of equa-
tions [Bergamaschi et al., 2013, 2006, Paniconi and Putti, 1994]. Discretization of
the source term is obtained by means of the second order accurate midpoint rule,
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Figure 2.1: Model structure: (a) the pathway of water movement from the soil
through the plant system into the atmosphere modeled using a series of conduc-
tances. Water fluxes are proportional to potential energy gradients between the soil
(ψi), the root system (ψR), and the leaves (ψL). Rainfall, soil evaporation and water
table fluctuations are specified as boundary conditions and the root water competi-
tion between neighboring trees is evaluated by changing the spacing D between two
identical pine trees, each having a root zone length dr.

by which at each grid node i the source term qi = q(ψi, xi, yi, zi, t, ψL) is multiplied
by the corresponding nodal soil volume Vi. Coupling between the soil and the root
system proceeds as follows: Single plants are defined by a surface grid node, j (with
j between 1 and the number of plants in the model domain), which can be identified
as the base of the plant trunk. The total water uptake per unit soil volume from
node i, appearing in Eq. (5.9), is expressed as the uptake from all plants having
non-zero root biomass at node i, i.e. qi =

∑
j qi,j. The term qi,j is the soil water

uptaken (per unit soil volume) by the roots of plant j at grid node i. A plant node j
is connected to each soil node within its root zone through a conductance, gi,j, rep-
resenting the path traveled by water from the soil pores into the nearest root within
the finite element centered in i. The conductance gi,j expresses the water flux from
the soil to the root (or viceversa) crossing the root membrane per unit area of the
membrane and per unit difference of the total water potential between the soil and
the root (see inset in Figure 4.1). To obtain the flux per unit soil volume of the
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domain entering (or exiting) the root system at node i, it is necessary to account
for the total root surface area per unit soil volume, aR,i [m2

root m−3
soil], such that the

soil water (per unit soil volume) uptaken by the roots of plant j at grid node i is:

qi,j = −gi,j [(ψR,j + zR,j)− (ψi + zi)] aR,i. (2.2)

The total root surface area per unit soil volume is computed as aR,i = 2πrBi, where
the effective root radius r is assumed to be 2 mm and Bi is the root length density at
node i [mroot m−3

soil]; zR,j is the elevation of the base of the trunk and zi is the elevation
of the i-th grid node [m]. Because of assumption 3 above, the hydraulic head is
everywhere constant within the root system set to ψR,j + zR,j, which appears in Eq.
(A.2) irrespective of the specific node i considered (see Fig. 4.1). The total soil-
to-root conductance, gi,j, is calculated by considering the effect of soil conductance
(gs,i), relative to the average path traveled by water from the soil to the nearest root,
and of the root membrane conductance (gr,i). The conductance of the path traveled
within the soil to the nearest root is gs,i = Kil

−1
i , where Ki = ‖KsKr‖i is the norm

of the soil hydraulic conductivity [m s−1] evaluated at node i and li the rizhosphere
radius [m], i.e. the mean length traveled from the bulk soil to the root surface.
According to Vogel et al. [2013], the length li can be estimated as li = α/

√
πBi, where

α = 0.53 is an empirical coefficient. The effective conductance (not conductivity)
resulting from two conductances in series is given by gi,j = (gs,i·gr,i)/(gs,i+gr,i) [Volpe
et al., 2013].

The value of ψR,j is now determined by equating the total water flux uptaken by
the root system of plant j,

∑
i Tj = qi,j · Vi, to the transpiration rate driven by the

potential energy gradient between the trunk base and the leaf [Volpe et al., 2013].
This equality yields

Tj = −gx,j [(ψL,j + zL,j)− (ψR,j + zR,j)]Ax,j, (2.3)

where ψL,j is the leaf water potential (discussed later), gx,j is the xylem conductance,
Ax,j is the xylem cross sectional area [m2], and zL,j is the elevation at which the ef-
fective leaf water potential is evaluated at [m]. The conductance gx,j accounts for
the vulnerability of the xylem to cavitation according to Daly et al. [2004] (see Ap-
pendix for details). The pressure head in the xylem, ψR,j can be expressed as [Volpe
et al., 2013]:

ψR,j =
gx,jAx,j(ψL,j + hc,j) + S1j

S2j + gx,jAx,j
, (2.4)

where hc,j = zL,j− zR,j is the canopy height, S1j =
∑

i gi,jaR,i(ψi−di,j)Vi, di,j being
the difference in elevation between the i-th soil node and the base of the trunk,
and S2j =

∑
i gi,jaR,iVi. The leaf water potential ψL,j is unknown and, due to the

dependence of the sink term qi,j on ψL,j, Eq. (5.9) is under-constrained. A leaf scale
mass transfer model is now needed to mathematically close the problem.

2.3.2 Plant-Atmosphere

Even though a single ψL,j(t) is used to represent the water potential in the entire
canopy, the model here incorporates a vertically-explicit description of the light
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regime. This description decomposes the leaf area into vertical layers so as to account
for light attenuation and its effects on the photosynthesis calculations [Volpe et al.,
2013]. At each canopy layer, the leaf-scale transpiration is defined by the mass
transfer of water vapor between the leaf and the atmosphere at the canopy layer r:

fw,j,r (ψL,j) = a gst,j,r (ψL,j)V PD εw (2.5)

where a = 1.6 is the relative diffusivity of water vapor with respect to CO2, gst,j,r
is the CO2 stomatal conductance at canopy layer r [mmol m−2 s−1], V PD is the
vapor pressure deficit (assuming that the leaf is well coupled to the atmosphere) and
εw = MWw/ρw, where MWw [g mol−1] and ρw [kg m−1] are molar weight and density
of water, respectively. The V PD is computed as the difference between vapor pres-
sure at saturation and ambient conditions [Volpe et al., 2013]. Here, air temperature,
water vapor and CO2 concentrations are assumed to be vertically uniform within
canopy air volume set to their (time-varying) measured values above the canopy and
only the light regime is determined at different canopy layers. The leaf photosyn-
thesis at canopy layer r is described by a biochemical demand function [Farquhar
et al., 1980]:

fc,j,r =
a1,r

a2 + cic,r
(cic,r − ccp) , (2.6)

where the photosynthetic parameters a1 and a2 are selected depending on whether
light or Rubisco limits photosynthesis [Volpe et al., 2013] at layer r, ccp is the CO2

compensation point [mmol µmol−1]. The inter-cellular CO2 concentration cic can
be eliminated and replaced by stomatal conductance when assuming Fickian mass
transfer between the leaf and the atmosphere [Volpe et al., 2013] governs CO2

exchange. When Rubisco is limiting a1 = Vc,max and a2 = Kc(1 + Co,a

Ko
) where

Vc,max is the maximum carboxylation capacity referenced at 25◦C, Kc and Ko are
the Michaelis constants for, respectively, CO2 and O2 fixation at 25◦C and Co,a
is the oxygen concentration in the atmosphere. When light is the limiting factor,
a1 = γQp,r and a2 = 2ccp, where γ is the apparent quantum yield [-], Qp,r is the
photosynthetically active radiation at the canopy layer r [µmol m−2 s−1]. Light at-
tenuation within the canopy is modeled using an extinction coefficient accounting
for leaf angle distribution and solar zenith angle [Volpe et al., 2013]. The photosyn-
thetic parameters are adjusted for air temperature as described elsewhere [Campbell
and Norman, 2000]. Stomatal conductance is optimized for maximum carbon gain
according to a linearized formulation also described elsewhere [Katul et al., 2010,
Volpe et al., 2013]. Because nocturnal transpiration can be significant [Domec et al.,
2012, Novick et al., 2009, Vogel et al., 2013], the leaf-level formulation [Katul et al.,
2010] is modified to include nighttime transpiration. This modification is based
on the fact that effective bulk leaf conductance gst,j accounts for both - the opti-
mal stomatal control by the plant on the stomatal aperture, encoded in gst,d, and
a residual loss gst,n when stomata are almost closed (e.g. leaks due to imperfect
closure, curticular, etc...). Under the assumption that these pathways are parallel
(Fig. 4.1), it follows that gst = gst,d+gst,n. As conventional in stomatal optimization
theories [Katul et al., 2010], an objective function for the plant is assumed to be
maximizing the leaf carbon gain fc at a given water loss fw (in units of carbon) for
a species-specific water use efficiency λ. The following objective function can thus
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be defined: f(gs) = fc − λ · fw. Assuming that leaves optimally and autonomously
regulates gst,d only, it is possible to set ∂f(gst)/∂gst,d = 0 and solve for gst,d. Hence,
it follows that at the canopy layer r [Katul et al., 2010]:

gst,r(ψL) =
a1,r

a2 + s ca

[
−1 +

(
ca

a λ(ψL) V PD

)1/2
]

+ gst,n, (2.7)

where s is a model constant connected to the long-term ci/ca, ca [mmol mol−1] is the
CO2 concentration in the atmosphere and the cost parameter λ [µmol mol−1], i.e. the
cost of water for the plant to complete the photosynthesis, is estimated from the time-
integrated leaf water potential according to Manzoni et al. [2011]. We refer to Katul
et al. [2010], Volpe et al. [2013] for further details on the optimality model. The
nocturnal stomatal conductance gst,n can be determined from the relation between
sapflow and V PD [Domec et al., 2012]. Since the cost parameter varies over much
longer time scales than the leaf potential (e.g. daily), a single value of λ is used for
the different canopy layers (but time varying) and the center of the canopy is used
in the calculations of ψL,j(t) [Volpe et al., 2013].

2.3.3 Non-linear closure equation

Because of the flux continuity across the soil-plant system, integrating Eq. (2.5)
over the leaf area and equating to Eq. (2.3) leads to the following nonlinear closure
equation for plant j:

Gj (ψ, ψL,j) = Tj (ψ, ψL,j)−
∑

r
fw,j,r (ψL,j) · LAIj,r · Ac,j = 0, (2.8)

where Ac,j is the canopy projected area [m2] and LAIj,r is the leaf area index at the
canopy layer r [m2

leaf m−2
soil]. Eq. (5.9) is defined for every plant j and is coupled to the

discretized Richards equation to augment the nonlinear system for the variable ψL,j.
Because of the presence of several inflection points in Gj, the numerical solution is
obtained by the secant method at every Picard iteration (see Appendix).

2.4 Case study: A Loblolly pine plantation

2.4.1 Site description

The model is evaluated using a 2-year data set collected in a Loblolly pine plantation
situated in the lower coastal plain of North Carolina, USA (35◦ 11’ N, 76◦ 11’ W).
A description of the study area and data collected can be found elsewhere [Domec
et al., 2012, Sun et al., 2010]. Briefly, the plantation (denoted as US-NC2 in the
Ameriflux database) is a 100 ha mid-rotation Loblolly pine stand established in
1992 after clear cutting the mature pine trees [Domec et al., 2012]. The trees were
planted at a 1.5 m × 4.5 m spacing [Sun et al., 2010]). The plantation is drained
by a network of parallel ditches (90 - 130 cm deep; 90 m spacing) and more widely
spaced roadside canals. The meteorological, hydrological, and eco-physiological data
used were collected during years 2007 and 2008. Input micro-meteorological data

12



Table 2.1: Soil hydraulic parameters: porosity values n are defined according
to Domec et al. [2012] and the saturated hydraulic conductivities Kx,y and Kz are
based on laboratory testing from Diggs [2004]. The residual soil moisture content
θr, the air entry pressure ψs, and the exponent parameter nvg are the coefficients of
the soil water retention curves according to van Genuchten and Nielsen [1985].

Depth n Ksoil θr ψs nvg
[mbs] [−] [ms−1] [−] [m] [−]

0.00 - 0.30 0.50 7.2× 10−5 0.03 -0.10 1.43
0.30 - 0.60 0.45 1.0× 10−4 0.02 -0.10 1.33
0.60 - 5.00 0.37 7.2× 10−5 0.03 -0.25 2.50

(e.g. air temperature, photosynthetically active radiation or PAR, relative humid-
ity, rainfall) were recorded every minute and averaged every 30-minutes. Water
vapor fluxes were also measured using an eddy covariance (EC) system located on
the meteorological tower at the site [Sun et al., 2010]. The EC system sampling
frequency is 10 Hz and the averaging period is 30 minutes, synchronized with the
meteorological measurements. The soil is a stratified sequence of sandy loam (top
30 cm), sandy clay loam (0.3-0.6 m below the surface), and gray sandy clay (below
0.6 m below the surface) [Diggs, 2004, Domec et al., 2012, Sun et al., 2010]. The
soil hydraulic parameters are described elsewhere [Diggs, 2004] and summarized in
Table 2.1. Soil moisture was measured continuously at 10, 20, 30, 40, 50, 60, 80,
and 140 cm depths using Sentek EnviroSCAN capacitance sensors (Sentek Sensor
Technologies, Stepney, Australia) and water table fluctuations were monitored every
hour by a groundwater well installed at the site [Sun et al., 2010]. Tree transpira-
tion was separately determined from trunk sap flux measurements on different pine
trees. Specifically, sapflux measurements were collected at 1.4 m above the ground
at four radial positions using 20 mm heat dissipation probes [Domec et al., 2010].
These transpiration estimates are interpreted as the integrated RWU and are used
in comparisons with model results.

2.4.2 Model run setup

The model is first compared with measured transpiration and photosynthesis for
a single pine tree by using a 1D vertical domain. These simulations are intended
to calibrate the model parameters, ensure a physically plausible model behavior,
and provide a reference 1D case (i.e. not including competition among neighboring
trees). Given the 3D nature of the model formulation, the dimensionality of the
model is reduced to 1D by adopting a model domain that consists of vertical line of
nodes, where Richards’ equation is solved for, surrounded by nodes where boundary
conditions (BCs) are imposed using measured water table levels. The vertical profile
of the root length density Bi is based on Domec et al. [2012], where measurements
commenced at 0.15 m below the soil surface. The Bi near the surface was deter-
mined by extrapolation using a typical exponential root distribution profile [Volpe
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et al., 2013]. Field measurements of the meteorological and hydrological drivers (e.g.
rainfall, temperature, relative humidity, PAR, etc..) are used to calculate the at-
mospheric forcing. Rainfall data are corrected for canopy interception assuming an
interception rate of 15% [Sun et al., 2010]. An understory EvapoTrasnpiration (ET)
is calculated as the difference between the EC measured latent heat flux (LE) above
the canopy converted into mass units [Sun et al., 2010] and the sap flow data. The
resulting net flux is then imposed as a Neumann boundary condition at the soil sur-
face of the model domain. Input precipitation is considered as a potential rate and
actual infiltration is evaluated based on the soil current saturation state, allowing
switching between Neumann and Dirichlet BCs in case of water ponding [Camporese
et al., 2010].

The model is subsequently used to simulate two identical and interacting Loblolly
pine trees under conditions similar to those observed within the plantation (3D sim-
ulations). Considering the tree spacing at the site, a 10 m × 5 m × 5 m model
domain is used to represent a portion of the plantation thereby avoiding boundary
effects on the numerical solution. The effect of tree competition for RWU is inves-
tigated by simulating a 100 days drying cycle. The atmospheric forcing recorded
on July 14th, 2007 (a typical day characterized by high transpiration thereby high-
lighting the implications of root competition on soil water availability and RWU),
are repeated periodically during the simulated dry down period: the water table
was kept constant at 3 m below the surface and no-flow conditions were imposed on
the outer soil boundary. Simulations with different tree spacing D, defined as the
distance between the root systems (such that D < 0 indicates partially overlapping
root systems), are also explored (Fig. 4.1).

In all the 3D model calculations, the following assumptions are adopted and re-
peated here for clarity: (a) the root system is static (root growth is neglected) and
(b) only competition for water is considered, assuming that trees do not compete
for other resources. While competition for light is another major factor in forested
canopies, the outcome of this competition is not explicitly considered here though
it does affect canopy height, leaf area, and ratio of leaf-area to root-area index that
are pre-specified here. To compress the 3D simulations so that they are compa-
rable with the 1D simulation results, the root distribution is assumed constant in
the horizontal directions and the same volume of roots as in the 1D simulations is
considered. Preliminary simulations of a drying cycle were run both with the 1D
and 3D set up and comparable results were obtained (not shown here for brevity).
A homogeneous lateral root distribution was not based on field conditions, but it
is the simplest assumption that allows addressing differences in soil water dynamics
and transpiration responses when comparing the 1D and 3D setups.

2.5 Results and discussions

2.5.1 Model calibration

A comparison between measured and modeled soil moisture is presented in Fig. 2.2
for the entire year of 2007. The model satisfactorily captures the observed soil mois-
ture pattens at all depths. The initial discrepancy between simulations and mea-
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Table 2.2: Plant model parameters: values are based on previous literature or on
field measurements.

Parameter Description Unit Value Reference

Plant parameters

hcano Plant/Canopy height m 17 Domec et al. [2012]
Acano Projected canopy area m2 9 Assumed
Axylem Xylem area m2 0.06 Assumed
r Root radius m 0.02 Assumed
RAI Root Area Index m2 m−2 2.1 - 4.7 Domec et al. [2012]
gr Root conductance s−1 3×10−11 Assumed
B Root lenght density cm cm−3 0.07 - 3.70 Domec et al. [2012]
LAI Leaf Area Index m2 m−2 2.5 - 5.6 Domec et al. [2012]

Xylem conductance

gx,max Maximum xylem conduc-
tance

s−1 5×10−6 Assumed

d Vulnerability curve coeffi-
cient

m 200 Aspinwall et al. [2011],
Volpe et al. [2013]

c Vulnerability curve coeffi-
cient

- 2 Aspinwall et al. [2011],
Volpe et al. [2013]

Photosynthetic model

Vc,max25 Maximum carboxylation
capacity at 25◦C

µmol m−2 s−1 41 Domec et al. [2012]

Kc,max25 Michaelis constant for
CO2 fixation at 25◦C

µmol mol−1 300 Volpe et al. [2013]

Ko,max25 Michaelis constant for O2

fixation at 25◦C
mmol mol−1 300 Volpe et al. [2013]

cp,25 CO2 compensation point
at 25◦C

mmol µmol−1 2.6 Volpe et al. [2013]

Stomatal optimality model

λ∗max Maximum marginal water
use efficiency

µmol mol−1 1755 Manzoni et al. [2011]

β Empirical parameter m−2 1.2×10−5 Manzoni et al. [2011]
ψL,max Leaf water potential at

maximum λ
m -277 Manzoni et al. [2011]

γ Apparent quantum yield - 0.015 Samuelson et al. [2001]
a Relative H2O/CO2 diffu-

sivity
- 1.6 Katul et al. [2010],

Volpe et al. [2013]
s Coefficient for gs calcula-

tion
- 0.7 Katul et al. [2010],

Volpe et al. [2013]
Co,a O2 concentration in air mmol mol−1 210 Katul et al. [2010],

Volpe et al. [2013]
c∗a Reference CO2 concentra-

tion
µmol mol−1 400 Katul et al. [2010],

Volpe et al. [2013]
ca Ambient CO2 concentra-

tion
mmol mol−1 380 Katul et al. [2010],

Volpe et al. [2013]
gs,n Nocturnal stomatal con-

ductance
mmol m−2 s−1 18 Domec et al. [2012]
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Figure 2.2: Soil water dynamics: (a) rainfall events and water table fluctuations ob-
served at the site during year 2007. Model results are compared with soil saturation
Sw measured at a depth of (b) 10 cm, (c) 50 cm and (d) 100 cm.
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Figure 2.3: Tree transpiration dynamics: (a) modeled leaf water potential ψL and
(c) tree transpiration during day 144 (year 2007). Leaf (�) and branch (◦) water
potentials measured on different days of year 2007 are also compared with modeled
ψL in panel (b) and shown as reference in panel (a). Sap flow measurements from
different trees are compared with modeled transpiration on day 144 (different sym-
bols in panel c) and cumulative transpiration over year 2007 and 2008 (dashed lines
in panel d).

surements is attributed to the choice of the initial pressure distribution (hydrostatic
profile based on the observed water table), but the simulations adjusts after few
rainfall events. Other discrepancies between model results and measurements are
related to the occasional rapid transients in soil moisture within the deeper layers.
These measured transients can be plausibly explained by small scale heterogeneities
not accounted for in the model (e.g. preferential flow paths causing fast downward
flow or presence of sand/clay lenses not included here). Some evidence that these
small scale heterogeneities play a role can indeed be fingerprinted. For example, the
peak in soil moisture observed at 1 m below the soil surface on day 305 (Fig. 2.2d)
can be explained by the presence of preferential flows since this peak is not related
to a water table fluctuation and is not observed in the upper soil layers (Fig. 2.2a-c).
Not withstanding these deviations between model calculations and measurements,
it can be surmised that the calibrated model behavior realistically reproduces the
main processes impacting soil moisture dynamics in this system.

The ability of the model to describe the RWU mechanisms are shown in Fig. 2.3.
The model captures the biotic behavior in terms of leaf water potential (Fig. 2.3a-b)
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Figure 2.4: Observed root density profile (a,c), modeled RWU (b) and HR (d) during
year 2007 and 2008 at different soil depths. The water table fluctuations are also
shown (black line in panel b).

and transpiration (Fig. 2.3c-d). Because of the single-layer approximation for the
above-ground leaf pressure, modeled ψL is compared with measurements from both
leaf and branches, showing a reasonable match. The measured sap-flux (Fig. 2.3c)
also shows large variability among different trees, but the model provides an ade-
quate description of the mean value (Fig. 2.3c). The dynamics of RWU along the
soil column during the two-years period is also illustrated in Fig. 2.4a. The RWU
is higher during the summer periods as expected and it decreases during the winter
despite the ever-green nature of this stand and the warm climate of NC. During
dry periods, soil water is first redistributed by roots in the top soil, subsequently
redistribution is more prominent in the deeper layers (Fig. 2.4b). In particular, HR
is not high during the first year, as the water table is shallow, while it increases
during the second year, due to a significant drop in the water table (Fig. 2.4b).
The HR estimates span two order of magnitudes across ecosystems [Neumann and
Cardon, 2012] and, as discussed elsewhere [Domec et al., 2010], it can mitigate the
effects of soil drying on stand evapotranspiration and net primary productivity. In
Loblolly pine plantations, reported estimates of HR can exceed 1 mm d−1, ranging
between 6-12% of daily transpiration [Domec et al., 2010]. The model here predicts
a peak HR rate of 0.5 mm d−1 in 2007 and 1.1 mm d−1 in 2008 (i.e. 10-20% of daily
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Figure 2.5: Simulation results of RWU by multiple trees. The RWU rates at time t
= 5.5 days are shown for the test cases with different tree spacing: (a) D = 1m, (b)
D = −0.5m, and (c) D = −1.5m.

transpiration), in agreement with the magnitude of HR observed at the site [Domec
et al., 2012] and reported elsewhere in the literature [Neumann and Cardon, 2012].

2.5.2 Trees competition

Having demonstrated the model skills, a system of two identical trees (T1 and T2)
with interacting roots is now considered so as to explore the effect of root water
competition on RWU and photosynthesis. Each tree has a rooting system with a
projected surface of 9 m2 (dr = 1.5 m). Configurations ranging from no interaction
(D = 1.0 m) to progressively greater overlap (D = −0.5 m and D = −1.5 m,
corresponding to overlaps of 17% and 50% of the projected area of a single root
system) are now examined. In the overlap areas, the total RWU increases due to
increased local root biomass (Fig. 2.5). An increased root overlap leads to an RWU
vertical distribution that appears less localized within the root zone when compared
to the biomass proportion allocated to each layer (the ’bumps’ in Figure 2.4a). This
reduced spatial localization in RWU away from the root density distribution is due
to a proportionally greater uptake in the remaining layers, partly activated by the
compensatory mechanisms (HR and Darcian redistribution). When the response of
a single tree is considered (e.g. T1, as the responses are equal, due to symmetry),
greater interaction among the rooting systems causes an earlier onset of HR and of
water stress, with a corresponding decrease in RWU (Fig. 2.6a-b). This also results
in a faster decline in leaf water potential and a corresponding increase of the cost
parameter λ (Fig. 2.6c-d), causing rapid censoring of leaf transpiration.
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Figure 2.6: Transpiration dynamics of tree T1 for different spacings D: (a) daily
RWU, (b) HR, (c) daily averaged ψL and λ are shown for the case of non-overlapping
(D = 1m) and overlapping (D = −0.5m and D = −1.5m) root systems.
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Figure 2.7: Water fluxes in the root zone of tree T1: modeled (a,b) RWU, (c,d) HR
and (e,f) the Darcy flux divergence as a function of depth for the case D = 1m (left
panels) and D = −1.5m (right panels).

The space-time distributions of water fluxes exchanged by one tree with the soil
within its root zone also show some interesting patterns as the interaction between
root systems is increased (Fig. 2.7). As noted earlier, the soil dries more rapidly
when root competition for water is intensified, with a corresponding inhibition of
RWU and a faster shift of the active uptake layer to greater depthes (Fig. 2.7a,b).
The HR flux initially sustains RWU in the top soil layers (Fig. 2.7a,b), where re-
distribution by Darcy’s flow is partially inhibited (Fig. 2.7c,d) by the low soil water
saturation and the correspondingly low hydraulic conductivity. Darcian redistribu-
tion is, on the contrary, most effective in providing soil moisture within the deeper
layers (Fig. 2.7e-f), where the largest proportion of RWU take place when most of
the soil column has dried down. Overall, RWU is sustained by upward redistribution
of water both through the roots (Fig. 2.7c-d) and through Darcian flow (Fig. 2.7e-f)
but, as e.g. shown in Volpe et al. [2013], the Darcy flow accounts for the majority
of the redistributed water. Also, it should be emphasized that HR and the Darcian
redistribution act in concert within the root zone so as to mediate the spatial regions
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of reduced soil moisture.

The robustness of these patterns for different root density profile shapes and
soil hydraulic properties have also been explored (results shown in the Appendix).
Briefly, drying fronts with the same forcings and boundary conditions but with an
exponentially distributed root biomass having the same total biomass (B(z) = ea·z+b,
where a and b are parameters) were simulated. The same system behavior was
further explored when the soil was assumed to be uniformly sand (Ks = 10−4 m
s−1) or silt (Ks = 10−7 m s−1). Collectively, these simulation results robustly show
the dominance of Darcian upward redistribution to sustain RWU when compared
to root HR. The latter provides significant contribution only near the soil surface,
and in the initial phase of the soil drying. When the top soil layer is dry, the
hydraulic conductivity there rapidly becomes small thus suppressing further root
HR: water potentially lifted by the root system cannot in this case infiltrate into the
surrounding soil. A second robust feature is that Darcian redistribution tends to
be concentrated in the deeper layers, where a greater mean soil saturation ensures
relatively high values of soil hydraulic conductivity and allows significant amounts
of water to be moved towards the lower boundary of the root zone. As expected,
a more conductive soil (sand) produces a faster transition towards stressed plant
conditions, but still induces a significant amount of water redistribution by Darcian
flow (in the deeper rooting zone) and by the root system (in the upper layers at the
initial stages of the drying experiment). In all cases, root competition more rapidly
pushes the system to drier conditions and amplifies the importance of these two
redistribution mechanisms to support RWU and carbon assimilation.

2.5.3 Transpiration and soil saturation

A ’macroscopic’ relation between ET and the root-zone averaged saturation, S̄w, is
often assumed in bulk ecosystem models seeking to capture the essential components
of the soil-plant-atmosphere system [Eagleson, 1978, Laio et al., 2001, Milly, 1993,
Porporato et al., 2004, Rodrguez-Iturbe et al., 1999b]. Typical bulk models are
based on a water balance equation describing the change in soil saturation within the
entire root-zone as a function of water infiltration (generally accounting for stochastic
rainfall, canopy interception and run-off rates [Laio et al., 2001, Porporato et al.,
2004, Rodrguez-Iturbe et al., 1999b]) and ET . The ET rate in this context is often
defined as a fraction of a maximum evapotranspiration for the ecosystem [Laio et al.,
2001, Rodrguez-Iturbe et al., 1999b] through a water stress function, ρ, which varies
with S̄w: ET (S̄w) = ρ(S̄w) · ETmax. The form of ρ(S̄w) and the value of ETmax are
usually assumed with reference to a zeroth-dimensional spatial framework in which
the effects of competition among rooting systems cannot be accounted for. The 3D
nature of the model here is used to investigate the implications of root competition on
the dependence of RWU/transpiration on S̄w. To this end, we extract from the dry-
down experiments corresponding values of ET and S̄w to construct ET (S̄w) curves
for different root spacings D (Fig. 2.8a). The relation between ET and soil-moisture
appears insensitive to D and that ET vs. ρ(S̄w) curves collapse onto one another.
That is, a unique function ρ(S̄w) emerges even when tree spacing is altered (all
else being the same). Irrespective of the D variations, hydraulic limitations to RWU
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Figure 2.8: Transpiration and soil saturation: (a, c) relative RWU and (b, d) WUE
as a function of average soil saturation within the root zone during the drying cycle
with (top panels) and without (bottom panels) rainfall.

commence when soil saturation drops below the same critical value of approximately
S̄∗
w = 0.12. The difference among root spacing scenarios lies in the speed at which the

system traverses through the function in Fig. 2.8a. In particular, for D = 1.0 m (no
overlap), D = −0.5 m, and D = −1.5 m, the critical soil moisture value is reached
after 39, 29, and 24 days, respectively. The mean rainfall inter-arrival time at the
site (see Appendix) is generally lower than the time needed for the system to reach
such stress conditions (around 90% of the rainfall events has an inter-arrival time ≤
8 days). However, inter-arrival times of 18 days have been observed in 2007-2008,
and the degree of root overlapping may play an important role in controlling the
transition to stress conditions. Interestingly, the decrease in RWU corresponds to an
increase in the Water Use Efficiency (WUE), defined as the ratio of the whole plant
photosynthetic rate to the plant transpiration rate (WUE = fc/fw), which is also
insensitive to D (Fig. 2.8b). To verify the robustness of this insensitivity of the stress
response function to root competition, further simulations with different boundary
conditions were run. In particular, the effect of rainfall is evaluated by running
drainage experiments in which a constant rainfall is applied at the top of the domain.
An infiltration rate of 1mmd−1 was assumed so as to explore how the modified
vertical soil moisture profile impacts the ρ(S̄w) form. Precipitation changes the soil
moisture profile with respect to the simple drainage experiment by increasing the
available water in the top soil (where most of the root biomass is) thus slowing down
the onset of water stress. The main finding is that rainfall shifts the critical value of
the mean soil moisture, S̄∗

w, towards drier states (Fig. 2.8c,d). Furthermore, the shift
of the critical value for water stress does exibit a dependence on the amount of root
overlap, albeit relatively mild. Comparable results are obtained from simulations
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with different soil properties (see Appendix). These results suggest the existence of
a stress response function that is independent of the degree of root overlap under dry
conditions, but is dependent on rainfall amount and frequency and, mainly, on soil
hydraulic properties. Understanding how the soil saturation-RWU relation varies
under different hydrological conditions and root biomass allocation strategies is a
topic for future work.

2.6 Conclusions

A three-dimensional approach of the soil-plant system is presented and applied to
model root water uptake by overlapping rooting systems of Loblolly pine trees. The
approach couples Richard’s equation for soil moisture redistribution with a mecha-
nistic description of plant transpiration and leaf photosynthesis. The results show
that overlapping root systems affect soil moisture dynamics, Darcian redistribution,
and hydraulic redistribution. When the three-dimensional RWU is volume-averaged
in space, the main effect of overlapping root systems is to induce rapidly the onset of
water stress conditions. Averaged ET vs. mean soil moisture relations are relatively
independent of the degree of root overlap under dry conditions, but depend on soil
hydraulic properties and, to a lesser extent, on the amount of rainfall infiltration.
Because the model provides a 3D representation of the processes regulating root
water uptake, it can be used to explore inherently spatial effects such as the role of
soil heterogeneities and root allocation strategies on RWU and carbon uptake.
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3
Modeling and Monitoring
Farmland Productivity

3.1 Summary

The southern portion of the Venice coastland is a very precarious environment and
salt contamination of land and groundwater is a severe problem that is seriously
impacting the farmland productivity. Geophysical surveys, lab testing and contin-
uous monitoring of hydrological parameters together with crop yield distribution
were performed and acquired from 2010 to 2012 in a 21 ha basin cultivated with
maize crop and representative of the area. I this chapter the dataset is presented
and used to set-up a numerical model of soil moisture dynamics coupled with plant
transpiration, photosynthesis and growth. The model is applied to the field site to
understand the impact of land elevation, soil heterogeneities, and seawater contami-
nation on land productivity. The contents of this chapter has been published in the
journal Procedia Environmental Sciences :

Manoli, G., Bonetti, S., Scudiero, E., Teatini, P., Binning, P. J., Morari, F., Putti,
M., and Marani, M. (2013b). Monitoring and modeling farmland productivity along
the venice coastland, Italy. Procedia Environ. Sci., 19:361-368.

3.2 Introduction

Saving water for agricultural activity is an old, but ongoing, challenge [Green et al.,
2006, Srayeddin and Doussan, 2009] and a better understanding of the biophysical
processes of root-water uptake is required to develop more sustainable irrigation
practices. Additionally, saline water intrusion associated with sea level rise is ad-
versely impacting agricultural production of coastal areas at an alarming rate [Green
et al., 2006, Volpe et al., 2011]. The southern portion of the Venice coastland, Italy,
represents a very precarious environment (Fig. 3.1). Due to an elevation down to 4
mbsl (Fig. 3.1c), the seawater intrusion from the Venice Lagoon and the encroach-
ment of salty water from the mouth of the river network, salt contamination of
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land and groundwater is a severe problem that is seriously impacting the farm-
land productivity [Teatini et al., 2011]. Understanding the complex interactions
between plant growth, root water uptake, atmospheric and soil dynamics under
stressed conditions is therefore necessary to optimize land productivity while pre-
serving water resources. Mathematical modeling has been successfully applied to
support on-farm decision-making processes, but understanding and modeling the
field scale soil-plant-atmosphere interactions is an open challenge [Jury et al., 2011].
Existing modeling approaches can be divided into two categories: 1) ecophysiological
models accounting for detailed crop growth but lacking of a detailed description of
water flow (typically a one-dimensional water balance) and 2) hydrological models
describing plant water uptake as a sink term in the Richards equation but generally
neglecting the feedback mechanisms with plant photosynthesis and growth. The
most widely used ecophysiological models, e.g. WOFOST [Supit et al., 1994] and
CERES [Ritchie, 1998], account for water dynamics using a simplified water budget
over soil compartments with a fixed water-holding capacity. Other models, such as
SWAP [van Dam et al., 1997], are Richards equation-based models but only vertical
flow is considered thus limiting the model applicability at the field/watershed scale
where soil heterogeneities and land elevation may play an important role on plant
dynamics. On the other hand most of the existing multidimensional hydrological
models account for root water uptake using simplified sink terms in the Richards
equation (e.g. HYDRUS [Šimůnek et al., 2006]) but it is shown that the applicabil-
ity of simplified macroscopic models is limited in heterogeneous media [Kuhlmann
et al., 2012]. Recently Katul et al. [2010] presented a stomatal optimization theory
to describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration,
further coupled with a one-dimensional model of soil moisture dynamics in [Volpe
et al., 2013]. The modeling framework presented in [Volpe et al., 2013] is here ex-
tended to describe soil productivity at the field/watershed scale and quantify the
factors of land degradation on the Venice coastland.

3.3 Case of Study

The study site (Fig. 3.1) is a 21 ha field located at the southern margins of the Lagoon
of Venice, North-East of Italy, in proximity of the Brenta and Bacchiglione Rivers
and approximately 7 km to the Adriatic Sea shoreline. The area is crossed by two
well-preserved paleochannels (visible from satellite images as shown in Fig. 3.1b) that
could potentially connect the study site to the Lagoon, or to the above-mentioned
rivers. In spring 2012 a micro elevation survey was carried out with the Trimble FM
1000 CNH (Trimble Navigation Ltd., USA) real time kinematic system. The survey
showed that the study site lies in the range of ca. -1.5 to -3.3 m below average
sea level and the paleochannels are generally higher than the neighboring zones
(Fig. 3.1c). Both undisturbed and disturbed soil samples were collected in May 2010
at different depths: disturbed samples were analyzed for soil electrical conductivity
(EC1:2, dS m−1) and soil texture (%) using a laser particle size analyser while
undisturbed cores were analysed for soil bulk density and saturated/unsaturated
hydraulic conductivity [Scudiero et al., 2011]. The site characterization is illustrated
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Figure 3.1: . Study area: (a) location with respect to the Venice Lagoon and (b)
the crop field. Site characterization: (c) land elevation, (d) soil texture (as sand
percentage) and (e) soil salinity (as EC1:2). Red dots represent the monitoring
stations at the site.

in Fig. 3.1c-e. The field was cropped with maize (Zea mais L.) and harvested for
grain. Maize grain yield was measured with a combine harvester equipped with a
yield monitor (Agrocom, Claas, Germany) and a DGPS.

3.4 Mathematical formulation

3.4.1 Model description

SPA model. The model used in this study makes the following assumptions:
a) water extracted by roots is instantaneously transpired by leaves and no water
storage can occur within the plant, b) each soil layer is directly linked to the xylem
by the root biomass allocated in the layer, and c) the model is applied to maize
assuming ample supply of nutrients, and without pests, diseases and weeds. Soil
moisture dynamics is described by the three-dimensional Richards equation (see
Chapter 2). Plant uptake is described by the Ohm’s law type model developed in 2
and schematized in Fig. 3.2a. The transpiration flux is modeled in terms of water
potentials in the leaf (ψL), in the xylem (ψR) and in the soil (ψi).
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Figure 3.2: Conceptual model (a) and simulation grids: plant scale (b) and field
scale (c) model grid.

Crop growth. Carbon assimilation by plant j is described by a biochemical pho-
tosynthesis model Farquhar et al. [1980]:

fc,j =
a1

a2 + ci
(ci − cp) (3.1)

where cp is the CO2 compensation point [mmol µmol−1] and the inter-cellular CO2

concentration ci is estimated assuming Fickian Mass transfer between the leaf and
the atmosphere [Volpe et al., 2013]. The absorbed CO2 is reduced to carbohydrates
(CH2O) using the energy supplied by the absorbed light. The carbon flux fc,j
is used to calculate the dry matter accumulation based on respiration costs (R)
and carbohydrates allocation in the different plant organs (i.e. leaves, stems, roots
and storage organs). Dry matter accumulation and partitioning is based on the
simulation model for crop growth SUCROS [van Laar et al., 1997]. The accumulation
of dry matter in the plant organ k is calculated as follows:

wk,j(t) = wk,j(t0)

∫ t

t0

αk(t) · (fc,j −Rj) · dt (3.2)

where wk,j(t0) is the initial biomass (at seeding), Rj is the respiration cost and
the allocation coefficients αk depend on the phenological development stage of the
crop, which varies between zero at seeding and 2 at maturity. The Leaf Area Index
(LAIj) depends on the rate of growth and senescence of leaves which varies with the
development stage of the crop. We refer van Laar et al. [1997] for further details on
the crop growth processes. The plant parameters varying with growth are adjusted
according to Ref. For Example, the canopy height is defined as:

hc,j(t) = hcmax,j ·

√
LAIj(t)

LAImax,j
(3.3)
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Salt toxicity. According to [Volpe et al., 2011], the parameters a1 and λ are
identified as most significantly controlling the behavior of the linear optimality model
under salt-stress condition. Since the water use efficiency λ is a function of the leaf
water potential (and it is not an independent parameter as in [Volpe et al., 2011]),
salinity is here assumed to affect only the photosynthetic efficiency a1 = a1,max ·
τ(EC) where τ is an empirical salinity response curve defined as [van Genuchten
and Hoffman, 1984]:

τ(EC) =

{
1 if 0 ≤ EC ≤ EClimit

1− s · (EC − EClimit) if EC > EClimit
(3.4)

where s and EClimit are fitting parameters. This means any salt-stress is here in-
terpreted as impacting the photosynthetic efficiency of the plant [Volpe et al., 2011]
neglecting other possible impacts (e.g. on water use efficiency, soil-root conduc-
tances, osmotic pressure, etc.). However, according to the modeling framework pre-
sented herein, an inhibition of the photosynthetic efficiency a1 implicitly influences
the water use efficiency (see model description in Chapter 2).

3.4.2 Model setup

The model is calibrated on a single plant and then applied at the plot scale to
obtain a sort of upscaled version of the plant model. The procedure is schematized
in Fig. 3.2 and will be described with more details in the next section. Given
the model resolution and considering that our interest lies in the simulation of the
long term crop productivity, the temporal dynamics of salt concentration in the
vadose zone is neglected and assumed equal to the measured soil salinity (Fig. 3.1e).
This assumption is further justified by the steady state condition reached by the
farmland-lagoon system. The limited variability in time of salt concentration has
been confirmed also by repeated electro-magnetic surveys covering the whole basin
and continuous records of groundwater conductivity in a number of piezometers
drilled for the purpose.

3.5 Results and discussion

Calibration and upscaling proceeds as follows. A first set of simulations has been
performed to calibrate the model parameters at the plant scale. A cubic portion
of soil of dimensions 5×5×5m (subsequently called the plot) is discretized in the x-
and y-directions with a 0.2 m spacing (fine grid) allowing a detailed description of
132 plants, i.e. the typical number of plants seeded in a 5×5 m plot (Fig. 3.1b).
The upscaled model is then obtained by calibration of the model parameters on the
same plot discretized with a coarse grid (2.5m spacing in x and y) where a single
plant is used to represent the behavior of the whole fine-scale plot. Calibration
is considered achieved when the fluxes in the coarse single-plant plot equal the
fluxes in the fine scale plot. The coarse grid corresponds to the volume related
to a node of the field scale model. All the plant uptake model parameters used
at the plant scale are based on literature values and field observations and only
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Figure 3.3: Calibration of the transpiration flux (a) and the effect of soil salinity
on crop yield (b): model results are compared with experimental data from [van
Genuchten and Hoffman, 1984] (VG 1984).

Figure 3.4: Observed (a) and simulated (b) crop yield at harvesting for year 2011.
Data provided by [Braga et al., 2012].

the parameters related to the plant dimensions (roots lengths, canopy area, etc.)
are modified in the upscaling procedure. Field data (rainfall, temperature, relative
humidity, radiation) are used to calculate the atmospheric forcing. Input evaporation
is considered as a potential rate, and actual evaporation is evaluated based on system
state condition allowing the switching between Neumann and Dirichlet boundary
conditions [Camporese et al., 2010]. Since measurements of transpiration fluxes
are not available at the site, simulation results are compared with the potential
transpiration calculated by the Penmann-Monteith equation (FAO) using the dual-
crop coefficient approach [Allen et al., 1998]. For this purpose, the simulations
were run ensuring well-watered conditions. The upscaled plot model is shown to
capture the expected dynamics (Fig. 3.3a). Notice that a perfect match with the
potential transpiration by FAO is considered beyond the objectives of this study.
To test the response of plant growth to soil salinity, different simulations were run
with increasing values of soil salinity. The predicted relative yield is compared
with experimental data published in [van Genuchten and Hoffman, 1984] and the
model shows a good agreement with data (Fig. 3.3b). The model is then applied
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at the field scale, over a 600×600×5m model domain (red square in Fig. 3.1b) to
predict the farmland productivity. The surface elevation was built using the micro
elevation survey data and the observed soil salinity (Fig. 3.1e) was interpolated over
the model grid by kriging. Water table levels are specified for the Northern and
Southern boundaries of the model domain according to the observed water level in
the irrigation channels. No flow boundary conditions are set on the other edges of
the domain. Preliminary results for year 2011 are shown in Fig. 3.4. The model is
shown to capture the measured crop productivity even if the spatial pattern observed
at the small scale is poorly matched. Moreover, model results show that salt stress
is the major cause of crop stress and the sandy regions are the most productive
(Fig. 3.4b) as confirmed by the field observations (Fig. 3.4a).

3.6 Conclusions

We have used a Richards equation model coupled to plant dynamics to simulate the
spatially distributed maize production on a 21 ha instrumented field on the boundary
of the Venice Lagoon (Italy). We assumed that no limitation on crop production was
due to nutrient scarcity, while the effect of soil salinity was taken in full consideration.
This study is a preliminary application of the model developed and a perfect match
between simulation results and field observations was beyond the objectives of this
work. The aim was to obtain reasonable estimations of crop yield using literature
values of the model parameters and investigate the ability of a fully coupled soil-plant
model to predict the spatial variability of land productivity. Simulation results are in
the same range of the precision agriculture measurements but the model was not able
to capture all the fine scale spatial variability of the observed vegetation patterns.
The discrepancy between observations and simulations are to be attributed mainly to
neglected fine scale hydrologic constraints, such as the presence of the ditch network
used to keep drained the farmland, and physical processes (e.g., nutrient uptake,
salt temporal dynamics, etc.). Future work will be aimed at incorporating these
features in order to proper calibrate and validate the model against hydrological
records (e.g., groundwater levels, soil moisture content, etc.), crop growth and yield
data collected at the site.
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4
Modeling Convective Rainfall
Initiation

4.1 Summary

A mechanistic model for the soil-plant-atmosphere (SPA) system is coupled with a
slab representation of the atmospheric boundary layer (ABL) to explore the role of
water table fluctuations and free atmospheric (FA) states on predisposition of con-
vective rainfall (CR). The crossing of modeled lifting condensation level and ABL
height is interpreted as a necessary (but not sufficient) condition for the predisposi-
tion of CR. If the feedback between surface fluxes and FA conditions is neglected, a
reduction in latent heat flux associated with reduced water table levels is shown to
enhance the predisposition to CR. However, when the SPA system is coupled with
the ABL dynamics as well as atmospheric temperature and water vapor concentra-
tion budgets, FA conditions have a larger impact on rainfall initiation than water
table fluctuations. Plant stress plays a role within a limited range of atmospheric
parameters, and a decrease in latent heat flux leads to a suppression of boundary
layer clouds. The contents of this chapter has been submitted for publication to the
journal Geophysical Research Letters :

Bonetti, S., Manoli, G., Domec, J. C., Putti, M., Marani, M., and Katul, G.
(2013). The role of water table fluctuations and the free atmospheric state on con-
vective rainfall initiation. Submitted.

4.2 Introduction

The link between root-zone soil moisture content, land surface fluxes of sensible (Hs)
and latent heat (LE), and cloud formation continues to attract significant attention
in the climate, atmospheric, hydrological and ecological communities [e.g., de Arel-
lano et al., 2012, Katul et al., 2012, Koster et al., 2004, Santanello et al., 2007]. In
particular, the indirect effects of plants on convective rainfall (CR) initiation remains
illusive given the large number of interacting biotic and abiotic processes within the
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soil-plant-atmosphere (SPA) system. The dynamics of Hs and LE and the soil-plant-
atmospheric state variables, which are regulated by root-zone soil moisture states,
control the diurnal variation of convective ABL height and lifting condensation level
(LCL) and thus their crossing [Siqueira et al., 2009]. This crossing is a necessary but
not sufficient condition for the predisposition to rainfall [Juang et al., 2007, Siqueira
et al., 2009]. Previous studies considered the effects of soil moisture on boundary
layer dynamics under prescribed free atmospheric (FA) forcing [e.g., Koster et al.,
2004, Maxwell et al., 2007], showing that below-ground processes can impact CR
initiation. Other studies focused instead on FA feedbacks on CR with simplified
soil moisture conditions [e.g., Clark and Arritt, 1995, daRocha et al., 1996, Findell,
2003, Konings et al., 2010, Siqueira et al., 2009]. However, the interplay between
water table (WT) fluctuations and predisposition to CR under different FA condi-
tions continues to resist complete theoretical treatment, and frames the compass of
this work. The basic premise is that WT reductions increase Hs by diminishing the
supply of water to the root-plant system. This WT reduction leads to an increase
in the convective ABL height thereby enhancing the ABL-LCL crossing likelihood.
On the other hand, WT reductions also diminish the water vapor source within the
ABL because of reduced LE, thereby increasing the LCL and reducing the ABL-
LCL crossing likelihood. This reduced water vapor source within the ABL may be
mediated by the FA if sufficient water vapor is entrained from the ABL top or enters
laterally through moisture convergence. These two competing effects suggest that
in a soil-plant-atmosphere system where WT and FA water vapor entrainment are
the main sources of water, there exists a rain/no-rain transition such that at a given
WT level, FA water vapor entrainment must exceed a minimum threshold to ensure
an ABL-LCL crossing. The objective of this work is illustrate the existence and the
prototypical shape of such a threshold via simulations and field measurements.

4.3 Mathematical Methods

A conceptual model of the SPA system is illustrated in Fig. 4.1. The modeling
approach is briefly presented but detailed descriptions of the model equations and
parameters are provided in the Appendix.

4.3.1 Soil-Plant model

The SPA system (Fig. 4.1a) is modeled by water potential gradients in the soil
(ψi), plant trunk (ψR) and leaf (ψL) and nonlinear conductivities that vary with the
water potentials of each compartment [Manoli et al., 2013a]. Soil moisture dynamics
is described using a three-dimensional Richards equation modified to include a 3-
D root water uptake (RWU) defined by a local macroscopic sink term. The soil-
plant hydraulic model is then linked to the atmosphere by a biochemical model of
photosynthesis, where light attenuation is resolved across various canopy layers and
the stomatal conductance gs of each layer is optimized for maximum carbon gain
at a given water loss via a marginal water use efficiency [Volpe et al., 2013]. The
derivation of gs includes Fickian mass transfer of CO2 (fc) and H2O (fw) through
stomatal pores and a biochemical model of photosynthesis modified to include the
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Figure 4.1: Conceptual Model: the soil-plant system (a), is modeled in terms of
water potential in the soil (ψi), plant trunk (ψR) and plant leaf (ψL) through a
series of conductactances (e.g. trunk xylem, gx, and stomata, gs). The hydraulic
model is linked to the atmosphere by transpiration flux fw, carbon assimilation fc
and VPD. The ABL model is based on a 1-D energy balance (b) and the atmospheric
feedback (c) is included by considering the evolution of ABL temperature (Ta) and
humidity (w) as described in the Appendix.

effects of water stress via a marginal water use efficiency [Katul et al., 2010, Volpe
et al., 2013]. The transpiration flux fw from the soil through the plant into the
atmosphere is driven by a time-integrated leaf water potential ψL, which is controlled
by both local soil moisture and atmospheric forcings (e.g the vapor pressure deficit,
VPD).

4.3.2 Atmospheric Model

4.3.2.1 LCL Model

The lifting condensation layer (LCL) height zLCL is determined from Juang et al.
[2007]:

zLCL =
RTa
gMa

ln

(
Ps
PLCL

)
(4.1)

where R = 8.314 [J mol−1 K] is the universal gas constant, Ta is the mean air
temperature [K], g is the gravitational acceleration [m s−2], Ma is the molecular
weight of air (∼ 29 g mol−1), Ps [kPa] is the atmospheric pressure at the canopy
surface, and PLCL [kPa] is the atmospheric pressure at zLCL. The value of PLCL can
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be written as Juang et al. [2007]:

PLCL = Ps

(
TLCL
Ta

)3.5

(4.2)

where TLCL [K] is the saturation point temperature at zLCL, which can be derived
from the Clausius-Clapeyron equation Juang et al. [2007]:

TLCL =
2840

3.5 · ln (Ta)− ln
(

rPs

0.622+r

)
− 7.108

+ 55 (4.3)

where the parameter 3.5 is the inverse of the Poisson constant for air and r is the
near-surface atmospheric water vapor mixing ratio, determined by ? as:

r = 0.622 · ea(Ta)

Ps − ea(Ta)
(4.4)

where the actual vapor pressure ea [kPa] is calculated as ea = es · RH/100, being
RH [%] the relative humidity of the air and es [kPa] the saturation vapor pressure,
given by the Clausius-Clapeyron relation:

es (T ) = 0.6108 · exp

(
17.27 · (T − 273.15)

(T − 273.15) + 237.3

)
(4.5)

where T [K] is the temperature.

4.3.2.2 ABL Model

The dynamic of the Atmospheric Boundary Layer (ABL) height zABL is defined as:

dzABL
dt

=
Hs · (1 + β)

γT · zABL
(4.6)

where γT is set to the temperature lapse rate (estimated equal to 5 K km−1 from
sounding data at MHX airport using a linear regression analysis) and Hs is the sur-
face sensible heat flux (described later). According to Tennekes [1973], the sensible
heat flux entrained from the top of the mixed layer is a constant fraction β of Hs.
Numerical and experimental studies ?? suggest β varies between 0.2 and 0.4. Here,
we set β=0.2 to match ABL dynamics with field observations (see next section).

Energy balance The sensible heat flux Hs [K m s−1] is calculated from the energy
balance at the canopy top:

Hs (Ts) =
1

cp · ρa
[Rn (Ts)− LE −G− ST ] (4.7)

where Ts [K] is the canopy skin temperature, LE = λ · ρw · fw · A−1
c is the latent

heat flux [W m−2] with λ = 44000 J mol−1 being the latent heat of vaporization,
cp = 1005 J kg−1 K−1 is the specific heat capacity of dry air at constant pressure,
ρa and ρw [kg m−3] are the air and water density, respectively. The soil heat flux

36



G [W m−2] is based on field data and the storage of heat within the canopy ST
[W m−2] is assumed to be 5% of the net radiation Rn. The net radiation Rn [W
m−2] is calculated as Rn = Rns−Rnl, where Rns and Rnl are the net shortwave and
longwave radiation at the canopy top, respectively. The net shortwave radiation is
calculated as Rns = (1−α) ·Rs being Rs the incoming shortwave radiation measured
above the canopy and α is the canopy albedo (estimated from measured outgoing
shortwave radiation). The net longwave radiation is calculated according to the
Stefan-Boltzmann’s law:

Rnl (Ts) = σ
[
εsT

4
s − εaT 4

a

]
(4.8)

where σ = 5.67·10−8 [W K−4 m−2] is the Stefan-Boltzmann constant and εs [-] is
the canopy surface emissivity that varies between 0.8 and 1.0 ?. In this study, it is
assumed that εs = 0.9, as commonly done in many other models ?. The emissivity
of the clear-sky atmosphere εa [-] is calculated according to Brutsaert [1975]:

εa = 1.24 ·

(
es (Ta) · RH100

Ta

) 1
7

. (4.9)

Aerodynamic balance The sensible heat flux between the canopy surface and
the atmosphere can be expressed as:

Hs (Ts) = ga (Ts − Ta) (4.10)

where ga = 1/ra, being ra [s/m] the aerodynamic resistance, calculated as ?:

ra =
ln
[
zm−d
zom

]
· ln
[
zh−d
zoh

]
k2 · uz

(4.11)

where zm is the height of wind speed measurements [m], zh is the height of humidity
measurements [m], d = 2/3 hc is the zero-plane displacement height [m], zom = 0.123
hc is the roughness length governing the momentum transfer [m], zoh = 0.1 zom is
the roughness length governing transfer of heat and vapor [m], k = 0.41 [-] is the von
Karman’s constant and uz is the wind speed [m/s] at height z above the ground.

Non-linear closure equation Equating Eq.(4.7) and Eq.(4.10) provides a non-
linear equation for the unknown Ts:

H (Ts) = ga · (Ts − Ta)−
1

cp · ρa
· [Rn (Ts)− LE −G− ST ] = 0 (4.12)

which can be solved iteratively by the Newton-Raphson method. Eq.(4.12) is a
4th order polynomial with four real solutions. To ensure the convergence of the
numerical procedure to a correct value of Ts, the air temperature Ta is used as initial
guess of the Newton iteration (i.e. Ts(0) = Ta ). Eq.(4.6) is solved numerically by
the forward Euler scheme. As the simulations require a continuous ABL height, a
Nocturnal Boundary Layer (NBL) must also be included. A stationary NBL height

37



znight = 100 m is imposed Siqueira et al. [2009], ?. This height is constant as
long as nocturnal conditions prevail, and serves as the initial condition for daytime
conditions. The transition from day-to-night is also abrupt, with the ABL height
dropping from its near maximum value to znight when the sensible heat flux at the
surfaces switches from being positive to negative.

4.3.2.3 Soil-Plant-ABL coupling

The Soil-Plant model is coupled with the atmosphere via the calculation of the
stomatal conductance gs:

gs(ψL) =
a1

a2 + s ca

[
−1 +

(
ca

a λ(ψL) V PD

)1/2
]

+ gs,n (4.13)

where s is a model constant, ca [mmol mol−1] is the CO2 concentration in the
atmosphere and the cost parameter λ [µmol mol−1], i.e. the cost of water for the plant
to complete the photosynthesis, is estimated from the leaf water potential according
to Manzoni et al. [2011]. The nocturnal stomatal conductance gs,n is determined
from the relation between sapflow and V PD ?. Given the canopy temperature Ts,
it is possible to define the vapor pressure deficit (V PD) as a function of leaf vapor
pressure and vapor pressure at ambient conditions:

V PD = es (Ts)− es (Ta) ·
RH

100
(4.14)

The soil-plant-atmosphere continuum is thus fully coupled.

4.3.2.4 Atmosphere feedback

To describe the simultaneous effects of surface fluxes and free Atmosphere (FA)
conditions on ABL and LCL dynamics, a well mixed ABL is assumed and the con-
servation equations for ABL potential temperature Ta and specific humidity w are
employed as follows:

zABL
dTa
dt

= Hs + (TFA − Ta) ·
dzABL
dt

(4.15)

zABL
dw

dt
=

LE

ρaλ
+ (wFA − w) · dzABL

dt
(4.16)

where TFA and wFA are the potential temperature and humidity in the FA above
zABL. Assuming a linear profile of TFA and wFA in the free atmosphere it directly
follows that:

TFA = TFA,0 + γT · zABL (4.17)

wFA = wFA,0 + γw · zABL (4.18)

where TFA,0 = 288 [K] and wFA,0 = 7.58 × 10−3 [kg kg−1] according to ?. Relative
Humidity is then calculated as RH = 100 · w/ws, where ws = 0.622 · es(Ta)/(Pa −
es(Ta)) is the specific humidity at saturation [kg kg−1 ]. Modeled Ta and RH are then
coupled with the previously described SPA model, thus providing a fully coupled
description of the ABL-FA structure.
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Figure 4.2: Modeled ABL and LCL heights (a), predicted rainfall event timing
(ABL - LCL crossing defined by the red dot in panel a) and corresponding measured
precipitation on day 176 of year 2007 (b).

4.3.3 Model Runs

First, the model is applied to a study area where the rooting system is sufficiently
deep, WT fluctuations are large, and summertime rainfall is primarily convective.
The site is a Loblolly pine (Pinus taeda L.) plantation in the lower coastal plain of
North Carolina, USA (US-NC2 in the Ameriflux database). The study area and the
data collected are described elsewhere [Sun et al., 2010]. Two sets of model runs are
conducted. The first uses measured Ta and RH as input. By prescribing Ta and RH
from measurements, the zLCL time variations are prescribed and the predisposition
to CR is primarily controlled by ABL dynamics only. That is, the ABL Ta and RH
are independent from changes in Hs and LE within the model runs. The second
set of model runs considers the simultaneous effects of Hs, LE and FA conditions
on zABL and zLCL dynamics. In these model runs, the depth-averaged Ta and RH
within the ABL are computed (Fig. 4.1c).

4.4 Convective rainfall initiation

The model described above was parameterized for the pine plantation case of study.
The soil-plant component was recently evaluated [Manoli et al., 2013a] while the ABL
model is applied here to predict the predisposition of CR events between January
2007 and December 2008. Model results show good agreement with measurements
(see Fig. S1 in the Appendix). In particular, net radiation is well matched: the
correlation coefficient between modeled and measured Rn is 0.99 with the slope of
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the least-squares regression line equal to 0.99 and intercept -5.99 W m−2. On the
other hand, some discrepancies exist between modeled and eddy-covariance mea-
sured Hs and LE, with correlation coefficient of 0.68, a regression slope of 0.75 and
an intercept 30.64 W m−2. However, measured fluxes are also impacted by some
degree of uncertainty (i.e. the energy balance is not closed [Sun et al., 2010]). Not
withstanding these issues, it can be surmised that the model-data Hs and LE agree-
ment is satisfactory. More significant for the objectives here is the ability of the
model to capture the time variation of zABL (see Fig. S2 in the Appendix) and
predict the initiation of CR events (Fig. 4.2). As already mentioned, the proba-
bility of initiation of a CR event is necessarily dictated by a crossing of the ABL
with the LCL (an example is provided in Fig. 4.2a). To further explore the model
performance, the measured rainfall time series is cleared from all nighttime events
and non-clear sky conditions prior to rainfall. The pdf of the timing error of rainfall
events, defined as difference between observed and predicted rainfall initiation time
tdata− tmodel, is shifted towards positive values, thus indicating that the model tends
to satisfactorily anticipate the timing when rainfall events do occur. In particular,
68% of the observed CR events occur after 2 hours from the modeled timing. In
fact, it is well known that after the ABL-LCL intersection, a period ranging from
few minutes up to 2 hours is needed to generate CR on the ground [Juang et al.,
2007].

4.5 Influence of water table fluctuations

The role of WT fluctuations on the predisposition of CR is now investigated using the
model. WT depth is chosen as a control parameter since it is a good predictor of soil
moisture state and easily measured in the field, thus allowing a broader application
at larger scales. Two-years of simulations were conducted by setting a constant WT
and using measured Ta, RH and photosynthetically active radiation (PAR) for 2007
and 2008 to produce plausible initial soil moisture profiles at a specified WT. The
interacting effects of FA conditions at this preset WT level are explored by including
the atmospheric feedback (see Appendix) or censoring them. When the feedbacks are
included, simulation runs are conducted for an additional 100 days with periodically
forced atmospheric conditions represented by a prototypical clear sky day (chosen
here as September 2nd, 2007). The predisposition to CR is then evaluated using
the crossing between the ABL and LCL heights at steady state conditions (see Fig.
S3 in the Appendix). Since nocturnal ABL dynamics are not modeled, measured
Ta and w are imposed at night (periodically forced each evening) and only daytime
dynamics are modeled. The whole scheme is then repeated for another WT level
until a wide range of WT conditions is explored.

4.5.1 Soil-Plant-ABL Model

When the feedback to the atmosphere is censored, the probability of CR initia-
tion increases (Fig. 4.3) with a lowering of the WT as expected. The increase of
predisposition to CR is due to a decrease in LE that then enhances Hs to the at-
mosphere (via the energy balance residual), thereby increasing zABL (via the ABL
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Figure 4.3: Effect of water table fluctuations on the predisposition of CR obtained
by the ABL model.

budget equations). In fact, the number of ABL-LCL crossings (Ncross) increases by
more than 20% when following three possible states: when plants are well watered
- no effects are observed (Case A in Fig. 4.3) until a transition zone (Case B) that
leads to increased water stress (Case C) and subsequent effect on convection trigger.
These results are based on the assumption that RH and Ta are externally imposed
and independent from Hs and LE. It is known that a decrease in LE can lead to
a suppression of ABL clouds [de Arellano et al., 2012] but, on the other hand, it
has also been demonstrated that precipitation may actually be initially enhanced as
observed during the early phases of deforestation in Amazonia [Chagnon and Bras,
2005]. The predisposition to CR is therefore controlled by the interplay between Hs

and LE at the surface and FA conditions at the top of the ABL.

4.5.2 Atmospheric feedback

When the atmospheric feedback between the soil-plant-ABL system and ABL Ta and
RH is allowed, a different picture emerges when compared to the one with imposed
Ta and RH. If Ta and RH are controlled by surface and entrainment fluxes, a
decrease in LE leads to a decline in boundary layer cloud formation [de Arellano
et al., 2012]. A low evaporative fraction (i.e. the ratio between evapotranspiration to
available energy) enhances ABL growth and entrainment of dry air thus leading to a
decrease in RH and an increase in zLCL. Even though the initial increase in zABL due
to reduced WT promotes CR (positive feedback), the subsequent decrease in RH
enhances zLCL and thus reduces the predisposition to CR (negative feedback). To
investigate the role of both WT fluctuations and FA conditions on the predisposition
of CR, a sensitivity analysis is performed by varying γw and WT (Fig. 4.4). The
results demonstrate that plants play some role in controlling the occurrence of CR
only within a restricted range of γw. When w mostly originates from the FA (γw >
-1.0×10−6 kg kg−1m−1 for the case study) the zLCL(t) is not controlled by plants and
the ABL-LCL crossing is not reduced, as in the case of reduced LE fluxes (stress
conditions). On the other hand, a transition zone (-2.5×10−6 < γw <-1.5×10−6

kg kg−1m−1 for the case study) exists where the plant stress (WT lower than the
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Figure 4.4: Effect of WT fluctuations on predisposition of CR by accounting for the
atmospheric feedback. The black region in panel (a) represents ABL-LCL crossing
conditions while the white region represents no-rainfall conditions. Note that the
relative frequency of γw measured at the nearby MHX aiport (from June to Septem-
ber 2007, i.e. during the season of summertime CR) is centered in the transition
zone (b).

root zone) may shift the system to an ABL-FA state where boundary layer cloud
formation is suppressed (as demonstrated, for example, in de Arellano et al. [2012]).
Interestingly, the γw observed at a nearby airport (estimated by us from sounding
data using a linear regression analysis applied between 500 and 5000 m above the
surface) fluctuates in the range of values at this transition zone delineated here.

4.6 Conclusions

Model runs here reveal two contrasting pictures regarding the role of WT fluctu-
ations on the predisposition of CR. When the atmospheric feedback between the
soil-plant-ABL system and the ABL temperature and humidity is censored, low-
ering WT increases the predisposition to CR. The main pathway leading to this
increase in predisposition to CR is that reduced WT reduces root-water uptake, in-
creases sensible heat flux, and subsequently leads to an expansion of the convective
ABL. Because the ABL air temperature and humidity are externally imposed and
not impacted by land-surface or entrainment fluxes, this imposition is equivalent to
forcing the LCL dynamics and de-coupling them from the land-surface fluxes. The
outcome from this picture is as expected: increases in ABL height alone translate
to more frequent crossing with the LCL, thereby enhancing the predisposition to
CR. When atmospheric feedback between the soil-plant-ABL system and the ABL
temperature and humidity is allowed, the emerging picture is more complex. The
predisposition to CR now depends on the FA humidity state, which is governed by
synoptic scale processes much larger than the ABL height. If the entrainment flux of
water vapor is much larger than LE, then lowering WT increases the predisposition
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to CR as before. However, if the entrainment flux of water vapor is commensurate
to or smaller than LE, then lowering WT reduces the predisposition to CR, which
is opposite to the previous case. Here, the expansion in ABL height due to increases
in Hs cannot ’keep-up’ with the increases in LCL resulting from the dryer air within
the ABL column due to reduced LE. Stated differently, if the source of water vapor
within the ABL is originating from the soil reservoir, then lowering the WT will
suppress CR. On the other hand, if the source of water vapor in the ABL is supplied
by the free atmosphere, then lowering WT will have the opposite effect - and the
predisposition to CR is increased.

43





5
Coupled Hydro-Geophysical
Data Assimilation

5.1 Summary

The modeling of unsaturated groundwater flow is affected by a high degree of uncer-
tainty related to both measurement and model errors. Geophysical methods such as
Electrical Resistivity Tomography (ERT) can provide useful indirect information on
the hydrological processes occurring in the vadose zone. In this paper, we propose
and test an iterataed particle filter method to solve the coupled hydrogeophysical
inverse problem. We focus on an infiltration test monitored by time-lapse ERT and
modeled using Richards equation. The goal is to identify hydrological model param-
eters from ERT electrical potential measurements. Traditional uncoupled inversion
relies on the solution of two sequential inverse problems, the first one applied to the
ERT measurements, the second one to Richards equation. This approach does not
ensure an accurate quantitative description of the physical state, typically violating
mass balance. To avoid one of these two inversions and incorporate in the process
more physical simulation constraints, we cast the problem within the framework of
a SIR (Sequential Importance Resampling) data assimilation approach that uses a
Richards equation solver to model the hydrological dynamics and a forward ERT
simulator combined with Archie’s law to serve as measurement model. ERT obser-
vations are then used to update the state of the system as well as to estimate the
model parameters and their posterior distribution. The limitations of the traditional
sequential Bayesian approach are investigated and an innovative iterative approach
is proposed to estimate the model parameters with high accuracy. The numerical
properties of the developed algorithm are verified on both homogeneous and hetero-
geneous synthetic test cases based on a real-world field experiment. The contents
of this chapter has been submitted for publication to the Journal of Computational
Physics and Water Resources Research:

Manoli, G., Rossi, M., Pasetto, D., Deiana, R., Ferraris, S., Cassiani, G., and
Putti, M. (2013c). An iterative particle filter approach for coupled hydro-geophysical
inversion of a controlled infiltration experiment. Submitted.
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Rossi, M., Manoli, G., Pasetto, D., Deiana, R., Ferraris, S., Strobbia, C., Putti, M.,
and Cassiani, G. (2013). Quantitative hydro-geophysical monitoring and modeling
of a controlled infiltration experiment. Submitted.

5.2 Introduction

Electrical Resistivity Tomography (ERT) is a practical, cost-effective, indirect tool
for collecting soil and moisture content data in subsurface environments [Binley
and Kemma, 2005, Cassiani et al., 2012, Daily et al., 1992, Yeh and Šimůnek, 2002,
Zhou et al., 2002]. When applied to the simulation of the dynamics of the vadose
zone, ERT relies on the inversion of the direct current (DC) flow equation provid-
ing an image of the electrical resistivity [Binley and Kemma, 2005], with the soil
moisture pattern reconstructed from petrophysical relations, such as, e.g., Archie’s
Law [Archie, 1942]. A second inverse problem is finally used to estimate hydrological
model parameters. It is well known that inverse modeling of a parabolic diffusion
equation is generally an ill-posed problem and regularization techniques are often
employed to achieve well-posedness [Chung et al., 2005, Ha et al., 2006, van den
Doel and Ascher, 2006, Yeh and Šimůnek, 2002]. Traditional geophysical inversion
is at the same time an over- and under- constrained problem, in the sense that the
problem character can change in space, and benefits from the use of prior informa-
tion embedded in the regularization procedure [Menke, 1984]. However, imposing
smoothness via regularization may introduce inaccuracies or even unphysical con-
straints into the estimates of the hydrological properties [Rings and Hauck, 2009]. To
cope with this limitation coupled hydro-geophysical approaches seem highly promis-
ing [Hinnell et al., 2010]. By these procedures, the spatial distribution and the
temporal dynamics of the geophysical properties are enforced by a physically based
hydrologic model combined with petrophysical relations, and explicit assumptions
for spatial and temporal regularization are no longer needed.

Even though the coupled approach avoids an independent geophysical inversion,
estimation of the hydrologic properties (e.g. soil hydraulic parameters) is still a
highly non-linear, mixed-determined inversion problem. For these reasons, although
parameter estimation can be made theoretically well-posed, the physical interpreta-
tion of the estimated parameters is still not well understood [Hansen and Penland,
2007]. The presence of structural model errors (model approximations, uncertain
initial conditions, etc.), as well as measurement uncertainties, suggests that a de-
terministic search for the best parameters is not likely to converge to a single set of
“true” values. A stochastic approach based on ensemble forecasting seems therefore
the most appropriate solution procedure [Hansen and Penland, 2007, Smith et al.,
2009].

Sequential Data Assimilation (S-DA) methods (typically called filters) have been
successfully applied to improve model predictions by incorporating real system ob-
servations onto the dynamical model and have been already employed to correct
the hydrological states of groundwater infiltration models [Camporese et al., 2009b].
Their ability to include structural and parametric error distributions make them
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particularly attractive for application to the problem of dynamic parameter estima-
tion [Hansen and Penland, 2007]. Because of the high nonlinearity of porous media
infiltration models, the typical filtering method used in hydrological applications is
the Ensemble Kalman filter (EnKF) [Evensen, 2003]. Notwithstanding the linear
optimality properties of the Kalman Gain [Jazwinski, 1970], the main limitation of
EnKF is that it is based on the Gaussian approximation of the filtering probability
distribution, possibly leading to inaccurate results or even divergence of the poste-
rior pdfs in presence of a strongly nonlinear relation between observations and state
variables [Arulampalam and Ristic, 2000, Gauthier et al., 1993, Pasetto et al., 2012].
To cope with arbitrary non-Gaussian prior distributions, the family of particle fil-
ters is a highly attractive alternative, as it is directly based on the Bayesian filtering
rule [Doucet et al., 2000, Gordon et al., 1993]. Particle filters have been recently
introduced into hydrology [Hsu et al., 2009, Moradkhani et al., 2005, Pasetto et al.,
2012, Weerts and El Serafy, 2006, Zhou et al., 2006] and used also for estimation of
hydrological model parameters [Hendricks Franssen and Kinzelbach, 2008, Salamon
and Feyen, 2009, Vrugt et al., 2005]. All these latter studies focus on the assimila-
tion of direct hydrological information (e.g. discharge [Pasetto et al., 2012] or soil
moisture data [Camporese et al., 2009a, Montzka et al., 2011, Plaza et al., 2012]).
Recently, a coupled hydro-geophysical parameter estimation procedure by S-DA has
been presented by [Rings et al., 2010], but its ability to provide accurate estimates of
unknown model parameters remains to be proven, as shown by the consistent under-
estimation of saturated hydraulic conductivity in the results of [Rings et al., 2010].
As a matter of fact, the structural uncertainties of both the hydrologic evolution and
geophysical observation models strongly affect the estimated parameters. Sequential
filters correct both model parameters and state variables at each assimilation time,
yielding identified parameter values that vary in time [Hansen and Penland, 2007].

In this paper we propose an iterative procedure to overcome the problem of the
sensitivity to the initial guess and provide accurate identification of unknown model
parameters from indirect state information. The method is grounded on a Sequential
Importance Resampling (SIR) particle filter, already tested in similar hydrological
applications [Pasetto et al., 2012, Rings et al., 2010], whereby an ERT forward
simulation model is embedded into the observation equation and both parameter and
state distributions are updated at each assimilation step. Iteration is introduced by
sequentially repeating until convergence the same simulation period, using as initial
guess the state values and parameter pdfs evaluated from the results of the previous
iteraton. Compared to more sofisticated statistical updates, the use of iterations
allows the inclusion of a less accurate but computationally more efficient inversion
scheme able to cope with large dimensional problems. We validate the methodology
on synthetic test cases and apply the methods to a field experiment comparing the
results of our procedure with traditional uncoupled inversion of ERT data. We
focus on both homogeneous and heterogeneous systems with parameters distributed
by zones. The proposed procedure displays convergence of the posterior distribution
towards the correct value of the hydraulic conductivity in both the homogenous
and heterogeneous scenarios independently from the initial guess. The numerical
results obtained from the synthetic test cases show that the iterativ approach yields
faster convergence with respect to standard DA methods, using consistently smaller
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ensemble sizes and a drastic reduction of the number of forward model runs, in
particular for the heterogeneous test case. The results obtained in the application
to the real world problem are consistent with the desired physical constraints at
relatively low computational costs, thus improving significantly on existing coupled
flow-ERT procedures.

5.3 Parameter estimation by sequential data

assimilation

The state space model describing the S-DA problem can be written as:

xt = F(xt−1, λ, wt), (5.1)

yt = H(xt, λ, vt), (5.2)

where xt is the state vector at assimilation time t, F is the evolution operator, λ is
the time-independent parameter vector, wt is the stochastic model error, yt is the
observation vector, H is the observation model, and vt is the stochastic error term in
the observations. Model uncertainty is connected, e.g., to structural model errors,
parameter errors, initial solution errors, etc. Casted in a stochastic framework, the
objective of S-DA is to estimate the posterior probability density function (pdf) of
the state vector at time t conditioned to the observations yobst that become available
at time t. Because of model nonlinearity, Monte Carlo-based approaches are used
to discretize the state and observation pdfs in equations (5.1) and (5.2). To relax
the Gaussian hypothesis inherent to Kalman-filter based algorithms we estimate the
state and parameter pdfs employing a SIR (Sequential Importance Resampling) par-
ticle filter, which has been successfully tested in hydrological applications [Pasetto
et al., 2012] in standard S-DA mode.

5.3.1 Sequential Importance Resampling for parameter
estimation

Let the state vector xt be characterized by a probability density function denoted
by p(xt) and let p(λ) be the prior distribution of the parameters λ. The sequence of
random variables {x0, x1, . . . } defines a Markov chain where (5.1) and p(wt) uniquely
identify the transition probability density function p(xt|xt−1, λ). The variance asso-
ciated to p(xt) typically increases with time during the numerical simulation, leading
to highly uncertain forecasts. Our goal is to obtain the posterior distribution of the
parameters λ and of the state variables xt, conditioned to the field observations yobs1:t ,
i.e., the filtering pdf p(xt, λ|yobs1:t ). Sequential data assimilation allows to compute a
posterior distribution as soon as a field observation yobst becomes available. For this
reason in the following we will assume that the parameters are time dependent, λt,
in the sense that they may change when their posterior distribution changes.

The S-DA technique consists of two basic steps that are repeated sequentially.
In the forecast step the state pdf is propagated in time to obtain the forecast pdf,
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p(xt, λt|yobs1:t−1). This is expressed by the Chapman-Kolmogorov equation as:

p
(
xt, λt|yobs1:t−1

)
=

∫
p (xt, λt|xt−1, λt−1) p

(
xt−1, λt−1|yobs1:t−1

)
dxt−1dλt−1. (5.3)

Note that in this step we have the effective propagation from time t − 1 to time
t of the system state by formal application of (5.1) using constant values of the
parameters. The second step is called analysis or update and consists in correcting
the forecast pdf using the new field observation yobst . Bayes’ theorem allows the
factorization of the filtering pdf as:

p
(
xt, λt|yobs1:t

)
= Cp

(
yobst |xt, λt

)
p
(
xt, λt|yobs1:t−1

)
,

where C is a normalization constant and the other two factors are the likelihood
function, to which we assign a known distribution, and the forecast pdf, computed
in (5.3), respectively. The analysis step essentially consists in a reinitialization of the
system state variables and of the parameters given the forecast and the observations.

In the SIR algorithm the forecast and filtering pdfs are approximated using an
ensemble of N random samples (also called particles), {x(i)t , λ

(i)
t }, i = 1, . . . , N , with

associated weights {ω(i)
t }, i = 1 . . . , N :

p
(
xt, λt|yobs1:t−1

)
≈

N∑
1=1

ω
(i−)
t δ

(
xt − x(i−)

t

)
δ
(
λt − λ(i−)

t

)
, (5.4)

p
(
xt, λt|yobs1:t

)
≈

N∑
1=1

ω
(i+)
t δ

(
xt − x(i+)

t

)
δ
(
λt − λ(i+)

t

)
, (5.5)

where δ(·) is the Dirac delta function, and superscripts ’−’ and ’+’ denote the
realizations before and after the update, respectively. The SIR algorithm starts
by assigning uniform weights to the N realizations of the ensemble. The Monte
Carlo discretization reduces the forecast step to the propagation in time of the
ensemble members using the system dynamics and, in the update step, new weights
are calculated recursively, by means of the likelihood function, as:

ω
(i)
t = Cω

(i)
t−1p(y

obs
1:t |x

(i−)
t , λt), (5.6)

where C is a normalization constant. To avoid the ensemble deterioration phe-
nomenon [?], resampling is performed when Neff < 0.5N , where Neff is the effective
ensemble size, evaluated as:

Neff =

[
N∑
i=1

(ω
(i)
t )2

]−1

,

and is representative of the number of realizations that have non-negligible weights.
We adopt the systematic resampling method [?], to duplicate samples with large
weight and discard samples with negligible weight. The resampling procedure main-
tains the ensemble size equal to N by generating new members using parameters
drawn from the posterior distribution and assigning to them uniform weights. The
duplicated realizations will then differentiate in the following forecast step. If the
resampling step does not occur, i.e., all the particles have sizable weights, then
x
(i+)
t = x

(i−)
t , λ

(i+)
t = λ

(i−)
t and only the weights are changed according to (5.6),

yielding an effective weighted distribution given by (5.4) and (5.5).
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5.3.2 Iterative parameter estimation

Since the resampling step is a reinitialization of the system state variables at an
observation time, it is convenient to use this step to sample new realizations from
the posterior pdf of the parameters. Let {λ̂(i)t }, i = 1, . . . , N be the parameter
values of the realizations after the resample. Most of these parameters are equal,
the number of different values corresponding to the number of realizations that
have non-negligible weights. Maintaining these values for the parameter update, i.e.
λ
(i+)
t = λ̂

(i)
t , may yield an impoverishment of the ensemble with the consequence

that the posterior distribution is not adequately explored and erroneous parameter
estimations may be identified. This can be exemplified in the case that only one
realization is duplicated after the resample. In this case the posterior distribution
collapses in one single value that cannot change in the subsequent updates. To guar-
antee a good performance of the filter it is then necessary to perturb the duplicated
parameters to effectively explore the relevant pdf. Moradkhani et al. [2005] pro-
pose a perturbation of the parameters with independent additive Gaussian variates,
λ
(i+)
t = λ̂

(i)
t + ξ

(i)
t , ξ

(i)
t ∼ N(0, V ar(λ

(i−)
t )), while [Moradkhani et al., 2012, Vrugt

et al., 2012] use a Markov-Chain sampling of the parameters with the computation
of the Metropolis ratio to accept or eventually reject the sampled values. While the
first approach requires a large number of realizations, the second strategy incurs in
increased computational effort due to the repetition of the forecast step necessary
for the computation of the Metropolis ratio. Here we propose to sample the updated
parameters from a probability distribution that maintains the initial structure, but
employing the moments updated with the ensemble statistics. For example, as-
suming an initial distribution defined only by the first and second moments (e.g.,
uniform, normal, log-normal distributions), the proposed scheme updates the ex-

pected value µλt and the coefficient of variation cvλt on the basis of the prior {λ(i−)
t }

and the resampled {λ̂(i)t } parameters. To this aim, we impose that the expected
value of the new distribution be given by the mean of the resampled parameters:

µλt = E[λ̂
(i)
t ], (5.7)

and the coefficient of variation be given by the maximum between the coefficient of
variations of the forecasted and the updated parameters,

cvλt = s ·max
(
cv
λ
(−)
t
, cvλ̂t

)
, (5.8)

where s is a tuning coefficient used to force a gradual reduction of the variance of
the distribution (typically s=0.9) and the use of the maximum value avoids the fast
collapse of the filter when only a few realizations are resampled. The sequence of
posterior parameter distributions obtained with this procedure needs several updates
to converge and hence we iterate the filtering procedure by cyclic repetition of the
assimilation interval until the resampling step is no longer performed at any update
of the period. This stopping criterion ensures that no further progresses are obtained
by continuing the iterations. A more computationally savvy approach would be
to stop on the basis of average residual or parameter update metrics. At each
restart of the filtering process (external iteration) the mean and variance of the
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Figure 5.1: Scheme of the iterative particle filter method (modified from [Dowd,
2007]). The data assimilation cycle starts with a distribution of the system state at
time t− 1 which is used by the evolution model to provide a forecast at time t. The
forecast state is converted by the observation model into a forecasted observation
which is combined with the field observation yt to produce the update at time t.
When all the available data are assimilated, the data assimilation cycle is restarted
(k-th external iteration) until convergence of the model parameter λt (see main text
for details).

prior distribution of the parameters is updated by:

µk+1
λ0

=
1

nt

nt∑
t=1

µkλt ,

cvk+1
λ0

=
1

nt

nt∑
t=1

cvkλt ,

where nt is the number of updates in each S-DA cycle (k-th external iteration).
Instead of restarting the S-DA procedure with the posterior distribution at the pre-
vious S-DA cycle, we use a “mean posterior disitribution” to reduce the effect of the
initial bias on the parameter estimation. The procedure is illustrated schematically
in Figure 5.1.
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5.4 Evolution and Observation models of water

infiltration and ERT

In this study we are interested in applying the S-DA method to a coupled hydro-
geophysical model. The evolution model (5.1) describes the soil moisture dynamics
in the vadose zone and ERT observations are used to update system state and
parameters by means of a geophysical electrical current flow observation model (5.2).

5.4.1 Evolution model

We use Richards’ equation to describe the infiltration process in a variably-saturated
isotropic porous medium:

SsSw (ψ)
∂ψ

∂t
+ φ

∂Sw (ψ)

∂t
= ~∇ ·

[
KsKr (ψ)

(
~∇ψ + ηz

)]
+ q, (5.9)

where Ss is the elastic storage term, Sw is water saturation, ψ is water pressure,
t is time, φ is the porosity, Ks is the saturated hydraulic conductivity tensor, Kr

is the relative hydraulic conductivity, ηz = (0, 0, 1)T with z the vertical coordinate
directed upward and q is a source/sink term. The saturated hydraulic conductiv-
ity is modeled as a diagonal matrix and its components Kx, Ky and Kz are the
saturated hydraulic conductivities along the coordinate directions x, y and z, re-
spectively. Equation (5.9) is highly nonlinear due to the pressure head dependencies
of saturation and relative hydraulic conductivity. These constitutive functions are
modeled using the characteristic relations proposed by [van Genuchten and Nielsen,
1985]:

Sw (ψ) =

{
(1− Swr) (1 + βψ)−m + Swr ψ < 0,

1 ψ ≥ 0,
(5.10)

Kr (ψ) =

{
(1 + βψ)−m/2

[
(1 + βψ)m − βmψ

]2
ψ < 0,

1 ψ ≥ 0,
(5.11)

where Swr is the residual water saturation, βψ = (ψ/ψs)
α, ψs is the capillary or air

entry pressure, α is a constant andm = 1−1/α , with 1.25 < α < 6. Equation (5.9) is
numerically solved using the subsurface module of the CATHY model (CATchment
HYdrology [Camporese et al., 2010]), a linear tetrahedral finite element method with
backward Euler scheme with adaptive time stepping and Newton-like iterations for
the solution of nonlinear system [Paniconi and Putti, 1994]. The system state vector
xt of (5.1) collects the nodal pressure head ψ at simulation time t. The nonlinear
function F is a formal representation of the numerical solver and comprises a number
of time steps to advance within the assimilation interval [t − 1, t]. The stochastic
noise wt, kept constant during the forecast step, represents model uncertainty and
is generally specified by a normal or lognormal distribution of the parameters.

5.4.2 Observation model

We monitor the infiltration process with ERT measurements. ERT emits direct
current (DC) from evenly spaced electrodes installed at the soil surface and mon-
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itors the electrical potential differences at other locations. The DC injection pairs
are moved sequentially to generate a number of electrical potential fields. Using
moisture content-resistivity relationships (e.g., Archie’s Law [Brovelli and Cassiani,
2011, Brovelli et al., 2005]) and assuming that changes in conductivity correspond
to changes in moisture content, the water flow in the vadose zone can be moni-
tored [Hinnell et al., 2010, Nenna et al., 2011, Rings et al., 2010]. The intensity
of the electrical potential field Φ induced in the soil by the input current can be
modeled as [Nenna et al., 2011]:

−~∇ ·
[
κ (Sw) ~∇Φ

]
= I [δ (~r − ~rS+)− δ (~r − ~rS−)] , (5.12)

where κ is the scalar electrical conductivity of the bulk (porous medium plus con-
tained fluid), I is the applied current, δ is the Dirac delta function, and ~rS+ and ~rS−
are the current source and sink electrode position vectors, respectively. The soil elec-
trical conductivity is related to saturation according to the following petrophysical
relationship that is derived from Archie’s law [Archie, 1942]:

κ (Sw) = κ (t0)

(
Sw (t)

Sw (t0)

)n
, (5.13)

where Sw(t0) and κ(t0) are the initial water saturation and the corresponding initial
electrical conductivity of the soil, respectively, and n is a dimensionless parameter
generally calibrated in the lab using soil samples. Since water saturation varies dur-
ing the infiltration process, the induced electric field is time dependent. Let yobst
be the vector collecting the electrical potential differences that are observed at the
measurement electrodes at time t. Equations (5.10)-(5.11), (5.12) and (5.13) imply
that there exists a nonlinear relation between the water pressure in the soil and
the electrical potential differences at all electrodes. In fact, van Genuchten rela-
tions (5.10)-(5.11) and Archie’s law (5.13) allow us to calculate the soil electrical
conductivity field from the water pressure. Equation (5.12) is solved numerically
using a three-dimensional linear finite element solver. In order to avoid boundary
effects on the simulated electrical potential, the model domain used to simulate the
infiltration experiment for both the hydrological and DC current models is enlarged
in the three spatial directions to accommodate the geophysical simulations. The
solution of (5.12) gives the electrical potential differences yt,i, i = 1, . . . , Nobs, at the
Nobs electrode positions to be compared to the corresponding field measurements
yobst . The general observation model of equation (5.2) becomes yt = H (ψt), where
H embeds the nonlinear relation between the soil moisture and the electric poten-
tial. The observation yobst can then be related to the measurement model using the
measurement uncertainties as:

yobst = yt (1 + vt) ,

where vt is the observation error, modeled as an unknown realization of a normal
random variable with zero mean and standard deviation equal to σy. The term vt
incorporates both measurement errors and observation model uncertainties. From
the previous equation and the probability distribution of vt we can now explicitly
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Figure 5.2: Schematic representation of the system geometry (a) and time-behavior
of the infiltration flux rates imposed at the surface boundary (b). Black dots indicate
the time of ERT measurements.

derive the expression for the likelihood function p(yobst |xt), which in the case of a
normal distribution becomes:

p
(
yobst |xt

)
= C · exp

−1

2

Nobs∑
j=1

(
yobst,j − yt,j
σyyt,j

)2
 ,

where C is a normalization constant. This pdf is estimated from the MC ensemble,
hence completing the overall inversion algorithm.

5.5 Experimental Results

The performance of the proposed approach was tested on a controlled infiltration
field experiment. First, using the geometry of the real case study, a synthetic prob-
lem is designed in order to assess the convergence properties of the developed scheme,
then, the real field experiment is simulated.

The controlled infiltration experiment is described in [Rossi et al., 2013] and
is similar to a previous experiment discussed by [Cassiani et al., 2009a]. The ex-
perimental site is located in Grugliasco (Turin, Italy), nearby the campus of the
Agricultural Faculty of the University of Turin. It is characterized by a regular
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Table 5.1: Time invariant model parameters

Parameter Description Unit Value Reference
Evolution model
φ Soil porosity - 0.33 [Cassiani et al., 2009b]
Ss Elastic storage m−1 5.0E-04 Assumed
Swr Residual saturation - 0.003 [Canone et al., 2008]
ψr Capillary pressure m -0.185 [Canone et al., 2008]
α VG model parameter - 2.0 [Canone et al., 2008]
Observation model
n Archie’s law parameter - 1.27 [Cassiani et al., 2009b]
Sw(t0) Initial value of Sw - 0.21 Field data
κ(t0) Initial value of κ S m−1 7.69E-04 Field data

stratigraphic sequence of sandy soil composed mainly of eolic sands with low or-
ganic content [Baudena et al., 2012, Cassiani et al., 2009b]. In the unsaturated zone,
sand grains are relatively homogeneous with a median diameter (d50) of 200 µm and
porosity of φ = 0.33 forming a homogeneous and isotropic soil in the horizon inter-
ested by the infiltration process [Cassiani et al., 2009b]. The water table is located
approximately 20 m below the surface and the vadose zone is not influenced by the
underlying aquifer. A line of sprayers was used to wet an area of about 3 m×20 m
for 6 hours using variable in time irrigation rates (shown in Figure 5.2(b)).

The infiltration front was monitored by means of both ERT and GPR WARR
surveys [Rossi et al., 2013] along a cross section of the irrigated area. ERT was per-
formed in time-lapse mode using a dipole-dipole configuration, using 24 electrodes
placed on the soil surface with a regular spacing of 0.2 m. ERT data were acquired
before irrigation (background ERT), during short intervals within the irrigation pe-
riod, and after the end of irrigation for the following 24 hours. The exact timings of
the ERT acquisitions used in the data assimitation procedure (i.e. during and after
irrigation) are shown as bullets in Figure 5.2(b).

Soil samples at different depths were collected and used to obtain laboratory es-
timates of the hydrological parameters Ss, φ, α, ψs, and Swr, as well as Archie’s law
constant n. Initial volumetric water content was estimated from GPR measurements
at 0.07 m3 m−3, corresponding to an initial water saturation Sw(t0) = 0.21, while
background ERT measurements were used to determine the initial soil electrical con-
ductivity κ(t0) = 7.69×10−4 S m−1, corresponding to a resistivity of 1300 Ω m. This
value is in accordance with Archie’s law parameter calibrated during the laboratory
experiments [Cassiani et al., 2009b]. The values of these parameters are reported in
Table 5.1.

Inverted resistivity data, obtained from the uncoupled approach developed by [Bin-
ley and Kemma, 2005], revealed that irrigation was not uniformly distributed in the
direction orthogonal to the sprinkler line, probably due to the presence of wind [Rossi
et al., 2013]. This was taken into account in order to properly define the top bound-
ary conditions and the irrigation flux was thus modeled with a Gaussian distribution
centered at 2.5 m (top boundary), with variance equal to 0.6 m, both values calcu-
lated such that the total flux equals the real irrigation rate.
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The model of the field experiment is developed using a vertical cross-section
orthogonal to the irrigation line, whose schematic representation is illustrated in
Figure 5.2(a). For the hydrologic simulation, no-flow boundary conditions (BCs)
were set all over the model domain, except for the top boundary where the irriga-
tion rate was imposed as a Neumann flux. Spatially varying input infiltration is
considered as a potential rate, and actual infiltration is evaluated based on system
state condition allowing the switching between Neumann and Dirichlet BCs in the
case of ponding [Camporese et al., 2010].

The finite element grid of the hydrologic model consists of 9792 nodes and 49500
elements while the stationary geophysical model was solved on an enlarged mesh
characterized by 21240 nodes and 112404 elements.

5.5.1 Synthetic case

In the synthetic cases, a forward simulation of both the hydrological and the ERT
models with pre-imposed parameters was used to generate the true state and the
ERT measurements. We are interested in identifying saturated homogeneous or spa-
tially heterogeneous hydraulic conductivity. All other model parameters are based
on the values used in the field case study as listed in Table 5.1. The synthetic
dataset of ERT observations was generated by the coupled hydro-geophysical for-
ward model assuming the same dipole-dipole configuration of the field experiment.
It was then used to constrain the particle filter simulations assuming different levels
of measurement errors (σy = 5 - 20%).

The convergence of the proposed coupled inversion method is tested by looking at
the behavior of a number of error statistics. The discrepancy between measured and
simulated observations (electrical potential at the electrodes) is evaluated in terms
of ensemble mean relative error (εy), maximum relative error (εy,max) and root mean
square error (RMSEy):

εy =
1

N

N∑
i=1

[
1

Nobs

Nobs∑
j=1

|yi,Φt,j − yobst,j |
|yobst,j |

]

εy,max = maxi

{
maxj

{
|yi,Φt,j − yobst,j |
|yobst,j |

}}

RMSEy =
1

N

N∑
i=1

 1

Nobs

√√√√∑
j=1

Nobs

|yi,Φt,j − yobst,j |2

|yobst,j |2


i

We also look at the L2-norm of the error εψ between the true and the simulated
system state values, soil water pressure head, named the pressure error:

εψ = ‖ψ̄t − ψtruet ‖2

where ψ̄t is the ensemble mean pressure field at time t. For all the simulations
we require a fixed number (8) of iterations chosen so that convergence is reached
within a reasonable computational time and a reliable assessment of error statistics
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is obtained. The use of one of the stopping criteria proposed in section 5.3.2 would
yield faster convergence in all test cases.

5.5.1.1 Homogeneous test case

In this test case, an isotropic and homogeneous soil with hydraulic conductivity equal
to Ks = 10−5 [m s−1] was employed. The saturated hydraulic conductivity tensor
is thus the only unknown parameter λt = {Ks} with Kx = Ky = Kz (homogeneous
and isotropic soil).

A preliminary sensitivity analysis on the ensemble size carried out with N =
20, 50, 100 suggests that 20 particles are enough for this case study to obtain reli-
able estimates. Hence, a value N = 20 particles is used to test the performance of
the method with the different measurement errors (Figure 5.3). However, to better
illustrate the behaviour of the pdf of the hydraulic conductivity during the itera-
tive procedure, the simulation results obtained with 100 particles are also shown
(Figure 5.4).

The hydraulic conductivity estimated by the iterative particle filter method is
shown to converge to the true value Ktrue

s as the number of updates is sufficiently
large (Figure 5.3). The number of updates necessary for convergence is shown to
depend on the measurement error: when the true observations are assimilated, i.e.
when the observations are not randomly perturbed, the method approaches Ktrue

s

after four iterations (Figure 5.3a) but for increasing noise, more iterations are needed
to achieve convergence. As a matter of fact, for σΦ = 5% and 20% the estimated
value µλt,k keeps oscillating until the 6th and 7th external iteration, respectively (Fig-
ure 5.3(c) and Figure 5.3(e)). Our iterative DA approach allows reducing the error
between simulated and observed states and the relative errors on the identified pa-
rameters stabilize at a value that necessarily increases with measurement noise. The
convergence speed depends on σΦ, observing slower convergence for higher noises.
The results demonstrate that the traditional particle filter (i.e. the non-iterative
approach) may provide a biased estimate of the model parameter unless larger en-
semble sizes are used. This is highlighted in Figure 5.4 where the pdf of the hydraulic
conductivity at different updates of the first and second iterations are shown. If the
initial guess of the model parameter is overestimated, the predicted value at the end
of the first iteration (8th update in Figure 5.4(a)) is underestimated. This is due
to the fact that the particle filter has to correct the model parameter more than
necessary to balance the bias on the predicted state during the initial updates. For
example, a higher initial estimate of Ks corresponds to a higher infiltration capac-
ity and thus causes an over-estimated total infiltrated water, with a corresponding
over-estimation of the front speed. Hence, at later times, the inversion procedure
must identify an under-estimated Ks to accommodate the slower observed satu-
ration front depth. As a result, the pdf of the parameter is shifted further than
necessary on the opposite direction of the initial guess. The iterative approach al-
lows the filter to “forget” the initial bias and converge more efficiently to the true
parameter (Figure 5.4(b)). The results in Figure 5.5 show that the error εψ develops
at the edge of the infiltration front where sensitivities are highest. The iterative
procedure successfully reduces the discrepancy between simulated and true system
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Figure 5.3: Synthetic test case results: convergence of the hydraulic conductivity
(a,c,e) and relative errors between true and simulated observations (b,d,f). Mean
relative error (εy), Mean RMSEy and Maximum Relative error (εy,max) are shown.
The performance of the method for different measurements error is illustrated: (a,b)
σΦ = 5% with measurements not randomly perturbed, (c,d) σΦ = 5%, and (e,f) σΦ
= 20% with randomly perturbed measurements. Red dots indicate the true value
of Ks. The roman numerals indicate the external iteration step. Each external
iteration consists of 8 SIR updates
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Figure 5.4: Synthetic test case results: pdf of the hydraulic conductivity normalized
on the maximum value of the pdf. Panel (a) and (b) refer to the first and second
external iteration of the SIR method, respectively. The simulation was run with
an ensemble size N=100. Dotted lines indicate the ensemble mean and the red line
indicates the true value of Ks.

state and the restart is shown to be fundamental to achieve negligible errors. The
traditional SIR method corrects also the system state after each update but errors
up to 0.6 m (in term of predicted pressure head) are still observed at the end of the
first iteration of the sequential procedure. The iterated approach allows instead a
reduction of the error εy down to negligible values (εy < 10−3 m). The synthetic
simulations confirmed that the particle filter is an efficient method to update the
system state and the iterative procedure is shown to be essential to provide precise
estimates of the model parameters at lower computational effort.

5.5.1.2 Heterogeneous test case

The ability of the proposed methodology to estimate multiple model parameters is
now investigated. We consider the same infiltration experiment, now characterized
by an isotropic heterogenous soil (Figure 5.6(a-b)). The model domain is divided
into four zones with different hydraulic conductivities (thus providing four unknown
model parameters). The results of the iterative SIR scheme, shown in Figure 5.6(c-
d), demonstrate that the iterative approach successfully estimates multiple model
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Figure 5.5: Spatial distribution of the error εψ, representing the discrepancy between
simulated (ensemble mean) and true system state (pressure field).

parameters. In addition, the results in Figure 5.7 show that the method is insensitive
to the initial guess µλ0 , thus confirming the reliability of the proposed approach.

We note that the identification is practically achieved after four iterations, for a
total of 80 forward model runs. At later iterations the identified values of zones 3 and
4 display small oscillations whose amplitude seem to decrease slowly (Figure 5.6(e-
f)). This is likely due to the fact that both zones 3 and 4 receive information
from the infiltration experiment at later times. At the first 4 observation times
the true infiltration front is shallower than the material interface, and only the
last 4 measurements contribute information towards the identification of hydraulic
conductivity of zones 3 and 4.

To test the improvements obtained by our proposed iterative method with respect
to standard (non iterative) DA methods, we solve the same problem with a one-
iteration SIR approach but with an ensemble size N = 160. This value corresponds
the same number of forward model runs used in the previous simulations using (pre-
fixed) eight iterations. We perform this comparison for the case of σΦ = 20% and
randomly perturbed measurements.

The convergence results of the iterative and non-iterative procedures for this
case are compared in Figure 5.8. The iterated simulation converges to the correct
hydraulic conductivities of zones 1, 2 and 3, and only a small discrepancy exists
in the estimation of Ks in zone 4. The value of this bias is consistent with the

60



Figure 5.6: Heterogeneous test case results: (a) conceptual model of the model
domain (divided into 4 zones with different soil properties) and (b) the simulated
soil saturation at t = 5.5h. Convergence of the hydraulic conductivities of the four
zones is shown in panels c-f. The results are relative to σΦ = 5% with randomly
perturbed measurements.
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Figure 5.7: Heterogeneous test case results: convergence of the hydraulic conduc-
tivities (ensemble mean values) of the four zones (a-d) and mean RMSE (e) for
different initial values µλ0 . The results are relative to σΦ = 5% with randomly
perturbed measurements.
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Figure 5.8: Heterogeneous test case results: comparison of the iterative approach (N
= 20) with a non-iterative simulation with ensemble size N = 160. The convergence
of the four hydraulic conductivities for the iterative (panels a,c,e,g) and non-iterative
(panels b,d,f,h) cases is illustrated (runs with σΦ = 20% and randomly perturbed
measurements).
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Figure 5.9: Field experiment results: convergence of the hydraulic conductivity (a)
and relative errors (b) for different initial values of hydraulic conductivity µλ0 . The
roman numerals at the top of the panels indicate the external iteration count. Mean
relative error (εy), Mean RMSEy and Maximum Relative error (εy,max) are shown.

20% measurement uncertainty, implying that the inverse procedure has arrived at
the correct solution. On the contrary, the results for the non-iterative SIR show
a bias in the identification of the parameters of zones 3 and 4. The corresponding
ensemble means underestimate the true values, reflecting the earlier observation that
starting from a large Ks leads to an underestimation of the parameter value. The
final posterior distributions of the parameters have a higher ensemble variance than
the corresponding iterative-results, yielding an uncertain characterization of the soil
structure. The non-iterative SIR procedure shows a parameter distribution with
strong variations during the assimilation, corresponding to a large variance of the
posterior distribution.

5.5.2 Field experiment

The results of the field data inversion are shown in Figure 5.9. The assimilation of
ERT measurements provides similar results to the synthetic test case, thus confirm-
ing the reliability of the method. The iterative particle filter is shown to converge
to a value of hydraulic conductivity K∗ which is independent to the initial guess
µλ0 . As a matter of fact, starting from µλ0 = 10−3 ms−1 the method provides a final
estimate K∗ = 8.9×10−6±3.6×10−7 ms−1 and starting from µλ0 = 10−7 ms−1, the
final estimate is K∗ = 9.8×10−6±2.9×10−7 ms−1. Note that in both cases the ini-
tial guess is two orders of magnitude away from the final estimate and the two final
intervals for the identified parameter value are overlapping. It must be emphasized
that the method does not provide just an estimate of hydraulic conductivity but a
full probability distribution of the estimate. As shown by the synthetic test, in the
case of large measurement noise, the relative errors slightly decrease during the first
updates and quickly stabilize. The residual errors are larger than observed in the
synthetic test case thus indicating a bias due to external factors not accounted for
in the model setup. The hydraulic conductivity estimated by the iterative particle
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Figure 5.10: Time-lapse soil saturation estimated by uncoupled inversion (a,c,e) and
by the forward simulation with the hydraulic conductivity estimated by the coupled
approach (b,d,f). The results are shown at (a,b) t = 2h, (c,d) t = 4h, and (e,f)
t = 5.5h. The black contour indicates the area where uncoupled inversion provides
unphysical saturation estimates (Sw > 1). Mass balance (g): the forward simulation
(black line) matches the volume of water injected at the site (red circles with a 5%
error bar) while the estimate from uncoupled inversion of ERT data overestimates
the mass of water in the system.

filter method is shown to converge to the K∗ value. However, the reliability of the
estimate has to be proven. For this purpose, a forward hydrologic simulation is run
with Ks = K∗ and the results are compared with field observations (Figure 5.10).
The robustness of the estimated parameter is confirmed by the spatial agreement
of simulated soil moisture fields obtained by the coupled and uncoupled inversion
procedures (Figure 5.10(a-f)) and by the excellent agreement between the amount of
injected water and the predicted mass balance (Figure 5.10(g)). Further comparison
between the forward simulation and field data are presented in [Rossi et al., 2013]
where the simulated infiltration is shown to match the front depth estimated by the
GPR survey. The discrepancy between the simulation and the time-lapse saturation
estimated by uncoupled inversion increases for increasing front depth. As a matter
of fact the resolution of traditional ERT inversion decreases with depth and, given
the electrode configuration used in this study, the inverted resistivity is not reliable
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for depth higher than 1 m. In addition, the conversion of inverted resistivity to soil
saturation by Archie’s law (calibrated in the lab) provided regions of Sw > 1 (black
contour in Figure 5.10). Even though these regions can be corrected empirically to
ensure a consistent saturation field (according to common practice in geophysical
applications anyway) the uncoupled approach over-estimates the total water present
in the system at any time (Figure 5.10). Therefore, while the forward simulation
provides a full conservation of mass, the traditional inversion approach provides a
good qualitative description of the physical process but does not ensure a correct
mass balance (Figure 5.10g).

5.6 Discussion

The results presented in this paper demonstrate the accuracy and robustness of the
proposed iterative methodology and highlight the weaknesses of both, uncoupled
ERT inversion and traditional particle filter applications with ERT data. As shown
in Figures 5.3, 5.4, and 5.8 for the synthetic test cases and in Figure 5.9 for the
field simulations, a single iteration of the particle filter method does not provide a
reliable estimate of the soil hydraulic conductivity. To verify this hypothesis, we use
as initial guess the parameter value µλ0 = 10−3 m s−1 and then employ the identified
parameter µλ8 estimated at the end of the first iteration to run a forward simulation
of the infiltration experiment. In this case, the irrigation intensity is found to be
higher than the infiltration capacity, thus leading to surface ponding not observed at
the site during the experiment. Therefore, if the particle filter is used to estimate the
model parameters without enough updates to ensure convergence, the method may
lead to wrong predictions of the system dynamics. The results of our simulations
further show that a non-iterative SIR approach with a large ensemble is not fully
capable of performing a correct identification, suggesting that the iterative approach
is computationally more efficient for solving the problem of interest.

The proposed coupled hydro-geophysical modeling framework presents the fol-
lowing advantages compared to more traditional approaches: (1) a forward geo-
physical model is used and the inversion of the geophysical data is avoided thus
guaranteeing physical consistency with the hydrologic quantities; (2) the sequential
approach provides a dynamic correction of the simulated system state, thus cor-
recting intrinsic model errors (i.e. unknown initial condition), with relatively small
compuational requirements; (3) the data assimilation approach is particularly inter-
esting for field applications where the geophysical measurements can be affected by
external factors (e.g. soil evaporation, a rainfall event during the geophysical sur-
vey, etc.) that can be easily included in the hydro-geophysical modeling framework;
(4) the filtering approach describes quantitatively both model and observation er-
rors, and provides the probability density functions of both system state and model
parameters.
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5.7 Conclusions

A sequential Bayesian approach for coupled hydro-geophysical assimilation of ERT
measurements in a variably saturated flow model is presented. An innovative itera-
tive approach is proposed to achieve accurate identification of the model parameters.
The robustness of the methodology is tested on spatially homogeneous and heteroge-
neous synthetic test cases and validated on a field infiltration experiment. We show
that the new approach has several advantages compared to uncoupled inversion and
traditional sequential data assimilation techniques. In particular the iterative parti-
cle filter provides accurate parameter estimation as opposed to traditional SIR that
may lead to biased results. Further work will focus on testing the methodology
for the estimation of multiple and spatially varying parameters (e.g. Archie’s law,
retention curves, heterogeneous soil, etc.).
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6
Summary and Conclusions

This thesis is a contribution to modeling soil-plant-atmosphere interactions and cou-
pled hydro-geophysical data assimilation for eco-hydrological applications. In this
chapter the scientific results are summarized highlighting the major achievements
and suggesting future research directions.

6.1 Eco-Hydro-Geophysical modeling

Modeling Land-Atmosphere interactions. A mechanistic model for the soil-
plant-atmosphere has been developed and applied to different case studies to im-
prove the current understanding of the feedback mechanisms regulating the land-
atmosphere system. The soil-plant model is based on a numerical solution to the
3D Richards equation modified to account for a 3D RWU, trunk xylem, and stom-
atal conductances. The model is used to diagnose plant responses to water stress
in the presence of competing rooting systems: the overlap between rooting zones
is shown to enhance soil drying but it has been shown that the transpiration-bulk
root-zone soil moisture relations do not deviate appreciably from their proto-typical
form commonly assumed in eco-hydrology. These results are particularly relevant
to account for root competition in common lumped eco-hydrological models.

Given the three-dimensionality of the approach, the model is then applied to a
crop field in order to evaluate the impact of land elevation, soil heterogeneities, and
seawater contamination on farmland productivity. To this purpose, a crop growth
module has been added to the SPA simulator, thus providing an innovative modeling
tool for agricultural applications (e.g. precision farming, irrigation system design,
etc).

The model is then coupled with a slab representation of the atmospheric bound-
ary layer (ABL) to explore the role of water table fluctuations and free atmospheric
(FA) states on predisposition of convective rainfall. Simulation results demonstrated
that a reduction in latent heat flux associated with reduced water table levels may
enhance the predisposition to convective rainfall. However, when the SPA system is
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fully coupled with the atmosphere (i.e. accounting for atmospheric temperature and
water vapor concentration budgets) plant stress plays a role within a limited range
of atmospheric parameters, and a decrease in latent heat flux leads to a suppres-
sion of boundary layer clouds. Understanding such complex feedback mechanisms
has become a scientific imperative to understand the impact of climate change and
human-induced changes on the biosphere. In addition, improving the current un-
derstanding of convective rainfall initiation is crucial to improve the reliability of
seasonal rainfall forecasts [Koster et al., 2004].

Coupled Hydro-Geophysical Inversion. The use of Electrical Resistivity To-
mography to collect indirect information on the hydrological processes occurring
in the vadose zone has been also explored. We presented an infiltration experiment
monitored by time-lapse ERT and we used a modified Sequential Importance Resam-
pling (SIR) method to assimilate ERT measurements in a coupled hydro-geophysical
model. In this dissertation we demonstrated the limitations of the traditional se-
quential Bayesian approach and we proposed an innovative iterative approach to
improve model predictions and estimate the model parameters with high accuracy.

6.2 Challenges for future research

Future research should focus on extending the proposed data assimilation framework
to the soil-plant-atmosphere system. As a matter of fact, calibration of soil-plant
models requires spatial information on RWU processes and the results presented
in this thesis demonstrated that ERT data can be easily used to constrain model
predictions.

In addition, thanks to the applicability of the model developed to large scales
(from field to the watershed), spatially explicit measurements of plant variables (e.g.
the crop yield data illustrated in Chapter 3) can be used as observations to update
the hydrological simulation and estimate the soil parameters.
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A
Appendix

A.1 Soil-Plant Model

A.1.1 Additional model equations

Soil-root system The water flux from the soil to the plant root is derived from
the energy (E) balance:

E = ψi + zi = ψR + zR + ∆Ei + ∆Er (A.1)

where ∆Ei and ∆Er are the energy losses associated with water entering the root
membrane and reaching the trunk. Assuming that energy losses within the root
system are negligible when compared to the energy losses across the membrane, i.e.
∆Er << Ei, and ∆Ei = qi/gi, from Eq. (A.1) it follows that an expression for qi
can be derived and given by:

qi,j = −gi,j [(ψR,j + zR,j)− (ψi + zi)] aR,i, (A.2)

where aR,i is the total root surface area per unit soil volume introduced to obtain a
flux per unit volume (see main text).

Xylem-Leaf system The vulnerability curve (the vulnerability of xylem to cavi-
tation) provides the value of gx (per unit ground area) as a function of the leaf water
potential as ψL [Daly et al., 2004]:

gx(ψL) = gx,maxexp

[
−
(
−ψL
d

)c]
(A.3)

The cost parameter λ, i.e. the cost of water for the plant to complete the pho-
tosynthesis, can be estimated from the leaf water potential ψL according to equa-
tion [Manzoni et al., 2011]:

λ(ψL) = λ∗max
ca
c∗a
exp[−β(< ψL > −ψL,max)2],
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where λ∗max is the maximum λ at a reference ca = c∗a = 400ppm, β is a fitting
parameter, ψL,max is the leaf water potential at λ∗max and < ψL > is the average
value of ψL over a time period that must be much longer than the time scale over
which stomatal conductance varies. Here, the previous 24 hour period is selected as
an averaging period so as to ensure that λ varies on time scales much longer than
diurnal [Volpe et al., 2013]).

A.1.2 Model implementation

Eq. (5.9) is solved numerically using the linear tetrahedral finite element method
with backward Euler scheme for the time discretization. The resulting system of
ODEs can be written as follows:(

Hk+1 +
P k+1

∆tk

)
Ψk+1 =

P k+1

∆tk
Ψk − q(Ψk+1,ΨL) (A.4)

G(Ψk,ΨL) = 0 (A.5)

where Ψ ∈ Rn and ΨL ∈ Rp being n and p the number of grid nodes and the number
of plants respectively. The non-linear system described in Eq.(A.4) is solved using
the Picard iteration Paniconi and Putti [1994]:(

Hk+1,m +
P k+1,m

∆tk

)
sm = −g(Ψk+1,m,ΨL) (A.6)

where sm = Ψk+1,m+1 −Ψk+1,m and Paniconi and Putti [1994]:

g(Ψk+1,ΨL) = Hk+1Ψk+1 +
P k+1

∆tk
(Ψk+1 −Ψk)− q(Ψk+1,ΨL) (A.7)

The value of ΨL = {ψL,j}j=1,p is evaluated from Eq. (A.5) at every Picard iteration
by the secant method:

ψn+1
L,j = ψnL,j −Gj(Ψ

k,m, ψnL,j)
ψnL,j − ψn−1

L,j

Gj(Ψk,m, ψnL,j)−Gj(Ψk,m, ψn−1
L,j )

(A.8)

where Gj is defined by Eq.(4.12) in the main text. The two initial values ψ0
L,j

and ψ1
L,j are chosen from the range of physical values for the leaf water potential

(−10 < ψL,j < 0 MPa) ensuring that Gj(Ψ
k,m, ψ0

L,j) ·Gj(Ψ
k,m, ψ1

L,j) < 0. When no
roots exists, the value of ψL,j that minimizes Gj is assumed as the solution. Since
the function Gj(Ψ, ψL,j) may have multiple unphysical roots, the secant method has
been preferred to other more efficient algorithms (e.g. Newton Raphson). Furher
details on the numerical implementation of the Richards equation (CATHY model)
can be found in Camporese et al. [2010], Paniconi and Putti [1994].
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Figure A.1: Relative frequency of rainfall inter-arrival times based on measured
rainfall collected at the site during years 2007-2008.

Figure A.2: Effect of rainfall on RWU of tree T1 (D = 1m).

A.2 Additional Results

A.2.1 Soil-Plant Model

Additional results are presented in Figures A.1 - A.4. First the relative frequency
of rainfall inter-arrival times observed at the site is illustrated (Fig. A.1). Rainfall
events generally occur every 2-6 days but dry periods of up to 18 days are also
recorded in this 2-year period. The effect of rainfall during the simulated dry-down
experiment is also investigated (Fig. A.2). The simulation was run setting a constant
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Figure A.3: Water fluxes in the root zone of tree T1 (D = −1.5): modeled (a,b,c)
RWU, (d,e,f) HR and (g,h,i) Darcy’s flux divergence as a function of depth for the
case of sandy soil (left panels), silty soil (central panels) and silty soil with constant
rainfall (right panels).

flux of 1 mm/d on the top boundary of the domain. The results demonstrate that
rainfall provides available water on the top soil and RWU is thus sustained during the
drying cycle. Since the simulations are based on a layered soil, additional simulations
were performed with homogeneous soil properties (Fig. A.3). The case of sandy and
silty soils were explored using an exponential root distribution (see main text for
details). The results in Fig. A.4 demonstrate that both soil hydraulic properties and
rainfall modify the dynamics of the system. As expected, the transition to stress
conditions is faster in the case of sandy soil compared to silt. Due to the difference
in the soil water retention curves, the soil saturation-RWU relation varies with the
soil type as expected. Rainfall is shown to delay water stress (because the imposed
rainfall flux is lower than daily transpiration) shifting the stress response function
to drier soil conditions (Fig. A.4a).

A.2.2 Atmospheric Model

Additional model results are presented in Figures A.5 - A.7. First modeled and
observed surface energy fluxes are compared (Fig. A.5). The ability of the model
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Figure A.4: Transpiration dynamics of tree T1 (D = −1.5): (a) relative RWU as a
function of average soil moisture, (b) daily RWU, and (c) λ for different simulation
scenarios (sandy soil, silty soil and silty soil with constant rainfall).

to simulate ABL and LCL dynamics is also demonstrated (Fig. A.6). An example
of simulation results by the fully coupled SPA model is the illustrated (Fig. A.7).
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Figure A.5: Model testing: comparison of modeled and observed net radiation (a)
and sensible heat flux (b). Daily dynamics of air and canopy temperature (c), net
short and long wave radiation (d), sensible heat and latent heat fluxes (e) are shown
and compared with observations.

Figure A.6: (a) Evolution of modeled ABL and LCL profiles during DOY 245 (year
2007) compared with the (b) observed ABL heigth estimated from the potential
temperature profile recorded at a nearby airport (MHX). The jump in potential
temperature observed in panel (b) represents the approximate ABL height.
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Figure A.7: Comparison between modeled and measured Air Temperature Ta (a)
and Relative Humidity RH (b) on 2nd September (DOY 245) 2007. Example of
fully coupled model results with water table depth fixed to 2.5 m and a humidity
lapse rate equal to -2.5E-6 kg/kg/m: (c) Sensible heat flux Hs and Latent heat flux
LE; (d) Air Temperature Ta and Canopy Temperature Ts; (e) Relative Humidity
RH; (f) ABL and LCL heights and their crossing.
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Garré, S., Javaux, M., Vanderborght, J., Pagès, and Vereecken, H. (2011). Three-
dimensional electrical resistivity tomography to monitor root zone water dynam-
ics. Vadose Zone J., 10:412–424.

Gauthier, P., Courtier R, P., and Moll, P. (1993). Assimilation of simulated wind
lidar data with a Kalman filter. Mon. Weather Rev., 121(6):1803–1820.

Gordon, N. J., Salmond, D. J., and Smith, A. F. M. (1993). Novel approach to
nonlinear/non-Gaussian Bayesian state estimation. IEE Proc.-F, 140(2):107–113.

Green, S. R., Kirkham, M. B., and E., C. B. (2006). Root uptake and transpiration:
from measurements and models to sustainable irrigation. Agric. Water Manage.,
86:140–149.

Ha, T., Pyun, S., and Shin, C. (2006). Efficient electric resistivity inversion using
adjoint state of mixed finite-element method for Poissons equation. J. Comp.
Phys., 214:171–186.

Hansen, G. A. and Penland, C. (2007). On stochastic parameter estimation using
data assimilation. Physica D, 230:88–98.

Hendricks Franssen, H.-J. and Kinzelbach, W. (2008). Real-time groundwater flow
modeling with the ensemble Kalman filter: Joint estimation of states and param-
eters and the filter inbreeding problem. Water Resour. Res., 44(9):W09408.
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Šimůnek, J., van Genuchten, M. T., and Šejna, M. (March 2006). The HYDRUS
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